diff --git a/.quarto/_freeze/posts/2020-06-15-science-communication/index/execute-results/html.json b/.quarto/_freeze/posts/2020-06-15-science-communication/index/execute-results/html.json index 9b35080..81536ce 100644 --- a/.quarto/_freeze/posts/2020-06-15-science-communication/index/execute-results/html.json +++ b/.quarto/_freeze/posts/2020-06-15-science-communication/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "32731220dc2884ca05a893eb4d727aa5", + "hash": "16eb9577cf6f5dccfcab36b6972360af", "result": { - "markdown": "---\ntitle: \"Science Communication\"\ndescription: |\n Recordings, content and handouts from a 6-hour Science Communication workshop held over two days on 15 and 16 June 2020.\nauthor:\n - name: \"Gracielle Higino\"\n affiliation: Université de Montréal\n - name: \"Katherine Hébert\"\n affiliation: Université de Sherbrooke\nbase_url: https://bios2.github.io/\nimage: image.jpg\ncategories: [Career, Fellow contributed, EN]\ndate: \"2020-06-15\"\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nThe objective of this training is to share and discuss the concepts and tools that contribute to effective science communication. The training is split into two sessions, which cover the basic concepts of effective science communication and how social media tools can be used to boost the signal of your research and extend your research network. Each training takes the form of a presentation interspersed with several short activity modules, where participants are invited to use the tools we will be discussing to kickstart their own science communication.\n\nThis training was given on June 1 and 2, 2020. You can view recordings of each session here:\n\n### Day 1\n\n\n\n### Day 2\n\n\n\n## Session 1: The basics of science communication\n\n#### Objectives:\n\n1. Discuss what science communication (or SciComm) can be, and its potential role in boosting the signal of your research\n2. Make an overview of basic concepts and tools that you can use in any medium (blog posts, presentations, conversations, twitter, etc.) to do effective science communication\n\nDuring this session, we:\n\n1. Discuss the potential pitfalls of science communication (notably, diversity and inclusivity problems).\n2. Cover the basic concepts of science communication, including the Golden Circle method, the creation of personas, and storytelling techniques.\n3. Have short activities where participants can try to use some of the techniques we will be covering, such as filling in their own Golden Circle and explaining a blog post as a storyboard.\n\n\n\n\n\n





\n\n## Session 2: Social media as a science communication tool\n\n#### Objectives:\n\n1. Rethink the way we write about science by exploring the world of blog posts\n2. Clarify the mechanics of Twitter and how it can be used effectively for science communication\n\nDuring this session, we:\n\n1. Discuss how to create a story structure using titles and the flow of ideas in blog posts, especially when we are used to writing scientific articles\n2. Cover the basics of how Twitter works (retweets, threads, replies, hashtags, photo captions, etc.) and how to find helpful connections\n3. Have short activities where participants will be invited to write their own Twitter biographies and to create a Twitter thread explaining a project of their choice.\n\n\n\n\n\n



\n", + "markdown": "---\ntitle: \"Science Communication\"\ndescription: |\n Recordings, content and handouts from a 6-hour Science Communication workshop held over two days on 15 and 16 June 2020.\nauthor:\n - name: Gracielle Higino\n - name: Katherine Hébert\nbase_url: https://bios2.github.io/\nimage: image.jpg\ncategories: [Career, Fellow contributed, EN]\ndate: \"2020-06-15\"\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nThe objective of this training is to share and discuss the concepts and tools that contribute to effective science communication. The training is split into two sessions, which cover the basic concepts of effective science communication and how social media tools can be used to boost the signal of your research and extend your research network. Each training takes the form of a presentation interspersed with several short activity modules, where participants are invited to use the tools we will be discussing to kickstart their own science communication.\n\nThis training was given on June 1 and 2, 2020. You can view recordings of each session here:\n\n### Day 1\n\n\n\n### Day 2\n\n\n\n## Session 1: The basics of science communication\n\n#### Objectives:\n\n1. Discuss what science communication (or SciComm) can be, and its potential role in boosting the signal of your research\n2. Make an overview of basic concepts and tools that you can use in any medium (blog posts, presentations, conversations, twitter, etc.) to do effective science communication\n\nDuring this session, we:\n\n1. Discuss the potential pitfalls of science communication (notably, diversity and inclusivity problems).\n2. Cover the basic concepts of science communication, including the Golden Circle method, the creation of personas, and storytelling techniques.\n3. Have short activities where participants can try to use some of the techniques we will be covering, such as filling in their own Golden Circle and explaining a blog post as a storyboard.\n\n\n\n\n\n





\n\n## Session 2: Social media as a science communication tool\n\n#### Objectives:\n\n1. Rethink the way we write about science by exploring the world of blog posts\n2. Clarify the mechanics of Twitter and how it can be used effectively for science communication\n\nDuring this session, we:\n\n1. Discuss how to create a story structure using titles and the flow of ideas in blog posts, especially when we are used to writing scientific articles\n2. Cover the basics of how Twitter works (retweets, threads, replies, hashtags, photo captions, etc.) and how to find helpful connections\n3. Have short activities where participants will be invited to write their own Twitter biographies and to create a Twitter thread explaining a project of their choice.\n\n\n\n\n\n



\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/.quarto/_freeze/posts/2020-09-21-data-visualization/index/execute-results/html.json b/.quarto/_freeze/posts/2020-09-21-data-visualization/index/execute-results/html.json index bc4be28..c85525d 100644 --- a/.quarto/_freeze/posts/2020-09-21-data-visualization/index/execute-results/html.json +++ b/.quarto/_freeze/posts/2020-09-21-data-visualization/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "739bf50a2939995dffa89c8a810a1c81", + "hash": "7f5d3d74170356e739fc12fb640c4a08", "result": { - "markdown": "---\ntitle: \"Data Visualization\"\ndescription: |\n General principles of visualization and graphic design, and techniques of tailored visualization. This training was developed and delivered by Alex Arkilanian and Katherine Hébert on September 21st and 22nd, 2020.\nauthor:\n - name: \"Alex Arkilanian\"\n affiliation: McGill University\n - name: \"Katherine Hébert\"\n affiliation: Université de Sherbrooke\ncategories: [Technical, Fellow contributed, EN]\ndate: \"09-21-2020\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\nformat: \n html:\n code-fold: true\n code-summary: \"Show code\"\nexecute: \n cache: true\n warning: false\n message: false\n collapse: true\n---\n\n\nWelcome!\n\nThis training covers the general principles of visualization and graphic design, and techniques of tailored visualization. More specifically, the objectives of the training are:\n\n- Make an overview of basic data visualization principles, including shapes, sizes, colours, and fonts.\n- Discuss how to choose the right visualization for your data, what you want to communicate, and who you want to communicate to.\n- Tools and principles to tailor visualizations, particularly in making interpretable, interactive, and honest visualizations.\n\n## Training material\n\n*Click on \"Show code\" to learn how to do each plot!*\n\n### Interactive examples\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-1_3ffdc9070d841790d6510b3c8ffbac4e'}\n\n:::\n\n\n\n\n#### Streamgraph\n\n\n::: {.cell hash='index_cache/html/streamgraph-plot_93fdd122ca2090828f4a810da98557e8'}\n\n```{.r .cell-code}\n# Script to make a streamgraph of the top 10 most popular dog breeds in \n# New York City from 1999 to 2015\n\n# load libraries\nlibrary(lubridate) # dealing with dates\nlibrary(dplyr) # data manipulation\nlibrary(streamgraph) #devtools::install_github(\"hrbrmstr/streamgraph\")\nlibrary(htmlwidgets) # to save the widget!\n\n# load the dataset\n# more information about this dataset can be found here:\n# https://www.kaggle.com/smithaachar/nyc-dog-licensing-clean\nnyc_dogs <- read.csv(\"data/nyc_dogs.csv\")\n\n# convert birth year to date format (and keep only the year)\nnyc_dogs$AnimalBirthYear <- mdy_hms(nyc_dogs$AnimalBirthMonth) %>% year()\n\n# identify 10 most common dogs\ntopdogs <- nyc_dogs %>% count(BreedName) \ntopdogs <- topdogs[order(topdogs$n, decreasing = TRUE),]\n# keep 10 most common breeds (and remove last year of data which is incomplete)\ndf <- filter(nyc_dogs, BreedName %in% topdogs$BreedName[2:11] & AnimalBirthYear < 2016) %>% \n group_by(AnimalBirthYear) %>% \n count(BreedName) %>% ungroup()\n\n# get some nice colours from viridis (magma)\ncols <- viridis::viridis_pal(option = \"magma\")(length(unique(df$BreedName)))\n\n# make streamgraph!\npp <- streamgraph(df, \n key = BreedName, value = n, date = AnimalBirthYear, \n height=\"600px\", width=\"1000px\") %>%\n sg_legend(show=TRUE, label=\"names: \") %>%\n sg_fill_manual(values = cols) \n# saveWidget(pp, file=paste0(getwd(), \"/figures/dogs_streamgraph.html\"))\n\n# plot\npp\n```\n\n::: {.cell-output-display}\n```{=html}\n
\n
\n\n```\n:::\n:::\n\n\n------------------------------------------------------------------------\n\n#### Interactive plot\n\n\n::: {.cell hash='index_cache/html/interactive-plot_ffab3ec1ce4e0abef23fd229dc1c8908'}\n\n```{.r .cell-code}\n# Script to generate plots to demonstrate how combinations of information dimensions\n# can become overwhelming and difficult to interpret.\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(plotly) # interactive plots\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\n# more info on this dataset: https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-07-28/readme.md\npenguins <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv') \n\n# get some nice colours from viridis (magma)\nsp_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n\n\n#### Day 1 ####\n\n# 1. Similarity\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, col = species), size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) # sets the colour scale we created above \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-1.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_similarity.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Proximity\n\ndf <- penguins %>% group_by(sex, species) %>% \n summarise(mean_mass = mean(body_mass_g, na.rm = TRUE)) %>% na.omit() \nggplot(df) +\n geom_bar(aes(y = mean_mass, x = species, fill = sex), \n position = \"dodge\", stat = \"identity\") +\n labs(x = \"Species\", y = \"Mean body mass (g)\", col = \"Sex\") + # labels\n scale_fill_manual(values = sp_cols) # sets the colour scale we created above\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-2.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_proximity.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Enclosure (Ellipses over a fake PCA)\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(size = 2.1, col = \"grey30\") +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"PCA1\", y = \"PCA2\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) + # sets the colour scale we created above\n theme(axis.text = element_blank(), axis.ticks = element_blank())\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-3.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_enclosure.png\", width = 6, height = 3, units = \"in\")\n\n# 4. Mismatched combination of principles\ntemp_palette <- rev(c(sp_cols, \"#1f78b4\", \"#33a02c\"))\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(aes(col = sex), size = 2.1) +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"?\") + # labels\n scale_color_manual(values = temp_palette) # sets the colour scale we created above\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-4.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_mismatchedgestalt.png\", width = 6, height = 3, units = \"in\")\n\n\n\n#### Day 2 ####\n\n# 1. Ineffective combinations: Luminance & shading -----------------------------\n\n# create the plot\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n col = species, # hue\n alpha = log(body_mass_g)), # luminance\n size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n col = \"Species\", alpha = \"Body mass (g)\") +\n scale_color_manual(values = sp_cols)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-5.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_incompatible1.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Ineffective combinations: Sizes and shapes --------------------------------\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n shape = species, # shape\n size = log(body_mass_g)), alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\") \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-6.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_incompatible2.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Cognitive overload --------------------------------------------------------\n\n# get some nice colours from viridis (magma)\nsex_cols <- viridis::viridis_pal(option = \"magma\")(8)[c(3,6)]\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n shape = species, # dimension 3: shape\n size = log(body_mass_g), # dimension 4: size\n col = sex), # dimension 5: hue\n alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\", col = \"Sex\") +\n scale_color_manual(values = sex_cols)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-7.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_5dimensions.png\", width = 7, height = 4, units = \"in\")\n\n\n# 4. Panels -------------------------------------------------------------------\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n col = log(body_mass_g)), # dimension 3: hue\n alpha = .7, size = 2) + \n facet_wrap(~ species) + # dimension 4: species!\n # this will create a separate panel for each species\n # note: this also automatically uses the same axes for all panels! If you want \n # axes to vary between panels, use the argument scales = \"free\"\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-8.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_dimensions_facets.png\", width = 7, height = 4, units = \"in\")\n\n\n# 5. Interactive ---------------------------------------------------------------\n\np <- na.omit(penguins) %>%\n ggplot(aes(y = bill_length_mm, \n x = bill_depth_mm, \n col = log(body_mass_g))) +\n geom_point(size = 2, alpha = .7) + \n facet_wrap(~ species) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\np <- ggplotly(p)\n#setwd(\"figures\")\nhtmlwidgets::saveWidget(as_widget(p), \"figures/penguins_interactive.html\")\np\n```\n\n::: {.cell-output-display}\n```{=html}\n
\n\n```\n:::\n:::\n\n\n### Example figures\n\n\n::: {.cell hash='index_cache/html/animated.volcano_e85afe995a0e6702984595b25d6489b8'}\n\n```{.r .cell-code}\n# Script to make animated plot of volcano eruptions over time\n\n# Load libraries:\nlibrary(dplyr) # data manipulation\nlibrary(ggplot2) # plotting\nlibrary(gganimate) # animation\nlibrary(gifski) # creating gifs\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# function to floor a year to the decade\nfloor_decade = function(value){return(value - value %% 10)}\n\n# read data \neruptions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-05-12/eruptions.csv')\n\n# select top 5 most frequently exploding volcanoes\ntemp <- group_by(eruptions, volcano_name) %>% tally() \ntemp <- temp[order(temp$n, decreasing = TRUE),]\n\n# make a time series dataset (number of eruptions per year)\neruptions$start_decade = floor_decade(eruptions$start_year)\n\n# filter dataset to subset we want to visualize\ndf <- eruptions %>% \n filter(between(start_decade, 1900, 2019)) %>%\n filter(volcano_name %in% temp$volcano_name[1:5]) %>%\n group_by(start_decade) %>%\n count(volcano_name) %>% ungroup()\n\n# plot!\np <- ggplot(df, aes(x = start_decade, y = n, fill = volcano_name)) +\n geom_area() +\n geom_vline(aes(xintercept = start_decade)) + # line that follows the current decade\n scale_fill_viridis_d(option = \"magma\", end = .8) +\n labs(x = \"\", y = \"Number of eruptions\", fill = \"Volcano\",\n title = 'Eruptions of the top 5 most frequently erupting volcanos worldwide') +\n # gganimate part: reveals each decade\n transition_reveal(start_decade) \nanimate(p, duration = 5, fps = 20, width = 800, height = 300, renderer = gifski_renderer())\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/animated.volcano-1.gif)\n:::\n\n```{.r .cell-code}\n#anim_save(\"figures/volcano_eruptions.gif\")\n```\n:::\n\n::: {.cell hash='index_cache/html/coffee.uncertainty_21b5746a8b00c943a4574608fa050b80'}\n\n```{.r .cell-code}\n# Script to generate plots with various ways of representing uncertainty, based \n# Coffee & Code dataset from https://www.kaggle.com/devready/coffee-and-code/data\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(ggridges) # for density ridge plots\nlibrary(patchwork) # great package for \"patching\" plots together!\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\ndf <- read.csv(\"data/coffee_code.csv\")\n\n# set labels to be used in all plots\ncoffee_labels <- labs(title = \"Does coffee help programmers code?\",\n x = \"Coffee while coding\", \n y = \"Time spent coding \\n(hours/day)\") \n\n# the variable CodingWithoutCoffee is negative, which is harder to understand\n# (i.e. \"No\" means they drink coffee...). So, let's transform it into a more \n# intuitive variable!\ndf$CodingWithCoffee <- gsub(\"No\", \"Usually\", df$CodingWithoutCoffee)\ndf$CodingWithCoffee <- gsub(\"Yes\", \"Rarely\\n or never\", df$CodingWithCoffee)\n# convert to factor and set levels so they show up in a logical order\ndf$CodingWithCoffee <- factor(df$CodingWithCoffee,\n levels = c(\"Rarely\\n or never\", \n \"Sometimes\", \n \"Usually\"))\n\n# calculate summary statistics for the variable of choice\ndf_summary <- group_by(df, CodingWithCoffee) %>%\n summarise(\n # mean\n mean_codinghours = mean(CodingHours), \n # standard deviation\n sd_codinghours = sd(CodingHours), \n # standard error\n se_codinghours = sd(CodingHours)/sqrt(length(CodingHours)))\n\n\n# 1. Error bars (standard error) -----------------------------------------------\n\nggplot(df_summary) +\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours), \n width = .2) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(0,10)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-1.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_errorbars.png\", width = 5, height = 3, units = \"in\")\n\n# 2. Boxplot -------------------------------------------------------------------\n\nggplot(df) +\n geom_boxplot(aes(x = CodingWithCoffee, y = CodingHours)) +\n coffee_labels\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-2.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_boxplot.png\", width = 5, height = 3, units = \"in\")\n\n\n# 3. Error bar demonstration ---------------------------------------------------\n\n# get some nice colours from viridis (magma)\nerror_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n# set labels to be used in the palette\nerror_labels = c(\"standard deviation\",\"95% confidence interval\",\"standard error\")\n\nggplot(df_summary) +\n # show the raw data\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n # standard deviation\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - sd_codinghours,\n ymax = mean_codinghours + sd_codinghours,\n col = \"SD\"), width = .2, lwd = 1) +\n # 95% confidence interval\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - 1.96*se_codinghours,\n ymax = mean_codinghours + 1.96*se_codinghours, \n col = \"CI\"), width = .2, lwd = 1) +\n # standard error\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours, \n col = \"SE\"), width = .2, lwd = 1) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(c(0,11)) +\n # manual palette/legend set-up!\n scale_colour_manual(name = \"Uncertainty metric\", \n values = c(SD = error_cols[1], \n CI = error_cols[2], \n SE = error_cols[3]),\n labels = error_labels) +\n theme(legend.position = \"top\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-3.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_bars_demo.png\", width = 7, height = 5, units = \"in\")\n\n\n# 4. Jitter plot with violin ---------------------------------------------------\n\nggplot() +\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n geom_violin(data = df, aes(x = CodingWithCoffee, \n y = CodingHours), alpha = 0) +\n geom_linerange(data = df_summary,\n aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours)) +\n geom_point(data = df_summary, \n aes(x = CodingWithCoffee, \n y = mean_codinghours), size = 3) +\n coffee_labels\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-4.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_violin_jitter.png\", width = 5, height = 3, units = \"in\")\n\n\n# 5. Density ridge plot --------------------------------------------------------\n\nggplot(df) + \n aes(y = CodingWithCoffee, x = CodingHours, fill = stat(x)) +\n geom_density_ridges_gradient(scale = 1.9, size = .2, rel_min_height = 0.005) +\n # colour palette (gradient according to CodingHours)\n scale_fill_viridis_c(option = \"magma\", direction = -1) +\n # remove legend - it's not necessary here!\n theme(legend.position = \"none\") +\n labs(title = coffee_labels$title, \n x = coffee_labels$y, \n y = \"Coffee \\nwhile coding\") + \n theme(axis.title.y = element_text(angle=0, hjust = 1, vjust = .9, \n margin = margin(t = 0, r = -50, b = 0, l = 0)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-5.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_density_ridges.png\", width = 5, height = 3, units = \"in\")\n\n# 6. Jitter vs. Rug plot ------------------------------------------------------------------\n\njitterplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_jitter(alpha = .2) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n coffee_labels + ylim(c(0,11)) + labs(x = \"Cups of coffee (per day)\")\n\nrugplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n geom_rug(position=\"jitter\", alpha = .7) + ylim(c(0,11)) +\n coffee_labels + labs(x = \"Cups of coffee (per day)\")\n\n# patch the two plots together\njitterplot + rugplot\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-6.png){width=672}\n:::\n\n```{.r .cell-code}\n#ggsave(\"figures/coffee_jitter_vs_rugplot.png\", width = 10, height = 4, units = \"in\")\n```\n:::\n\n::: {.cell hash='index_cache/html/densiplot_9e12ea96cb628e826d38f0919f99fa44'}\n\n```{.r .cell-code}\n# Script to generate 95% confidence intervals of a generated random normal distribution\n# as an example in Day 2: Visualizing uncertainty.\n\n# load library\nlibrary(ggplot2)\nlibrary(magrittr)\nlibrary(dplyr)\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# set random seed\nset.seed(22)\n\n# generate population (random normal distribution)\ndf <- data.frame(\"value\" = rnorm(50, mean = 0, sd = 1))\n\n# descriptive stats for each distribution\ndesc_stats = df %>% \n summarise(mean_val = mean(value, na.rm = TRUE),\n se_val = sqrt(var(value)/length(value)))\n\n# build density plot!\np <- ggplot(data = df, aes(x = value, y = ..count..)) +\n geom_density(alpha = .2, lwd = .3) +\n xlim(c(min(df$value-1), max(df$value+1))) \n# extract plotted values\nbase_p <- ggplot_build(p)$data[[1]]\n# shade the 95% confidence interval\np + \n geom_area(data = subset(base_p, \n between(x, \n left = (desc_stats$mean_val - 1.96*desc_stats$se_val),\n right = (desc_stats$mean_val + 1.96*desc_stats$se_val))),\n aes(x = x, y = y), fill = \"cadetblue3\", alpha = .6) +\n # add vertical line to show population mean\n geom_vline(aes(xintercept = 0), lty = 2) +\n annotate(\"text\", x = 0.9, y = 19, label = \"True mean\", fontface = \"italic\") +\n # label axis!\n labs(x = \"Variable of interest\", y = \"\") \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/densiplot-1.png){width=672}\n:::\n\n```{.r .cell-code}\n#ggsave(\"figures/confidenceinterval_example.png\", width = 5, height = 3.5, units = \"in\")\n```\n:::\n\n\n### Annotated resource library\n\nThis is an annotated library of data visualization resources we used to build the BIOS² Data Visualization Training, as well as some bonus resources we didn't have the time to include. Feel free to save this page as a reference for your data visualization adventures!\n\n------------------------------------------------------------------------\n\n#### Books & articles\n\n[**Fundamentals of Data Visualization**](https://serialmentor.com/dataviz/)
A primer on making informative and compelling figures. This is the website for the book \"Fundamentals of Data Visualization\" by Claus O. Wilke, published by O'Reilly Media, Inc.\n\n[**Data Visualization: A practical introduction**](https://socviz.co/index.html#preface)
An accessible primer on how to create effective graphics from data using R (mainly ggplot). This book provides a hands-on introduction to the principles and practice of data visualization, explaining what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way.\n\n[**Data Science Design (Chapter 6: Visualizing Data)**](https://link.springer.com/content/pdf/10.1007%2F978-3-319-55444-0.pdf)
Covers the principles that make standard plot designs work, show how they can be misleading if not properly used, and develop a sense of when graphs might be lying, and how to construct better ones.\n\n[**Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods**](https://www.jstor.org/stable/2288400)
Cleveland, William S., and Robert McGill. \"Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods.\" Journal of the American Statistical Association, vol. 79, no. 387, 1984, pp. 531--554. JSTOR, www.jstor.org/stable/2288400. Accessed 9 Oct. 2020.\n\n[**Graphical Perception and Graphical Methods for Analyzing Scientific Data**](10.1126/science.229.4716.828)
Cleveland, William S., and Robert McGill. \"Graphical perception and graphical methods for analyzing scientific data.\" Science 229.4716 (1985): 828-833.\n\n[**From Static to Interactive: Transforming Data Visualization to Improve Transparency**](https://doi.org/10.1371/journal.pbio.1002484)
Weissgerber TL, Garovic VD, Savic M, Winham SJ, Milic NM (2016) designed an interactive line graph that demonstrates how dynamic alternatives to static graphics for small sample size studies allow for additional exploration of empirical datasets. This [simple, free, web-based tool](http://statistika.mfub.bg.ac.rs/interactive-graph/) demonstrates the overall concept and may promote widespread use of interactive graphics.\n\n[**Data visualization: ambiguity as a fellow traveler**](https://doi.org/10.1038/nmeth.2530)
Research that is being done about how to visualize uncertainty in data visualizations. Marx, V. Nat Methods 10, 613--615 (2013). \n\n[**Data visualization standards**](https://xdgov.github.io/data-design-standards/)
Collection of guidance and resources to help create better data visualizations with less effort.\n\n------------------------------------------------------------------------\n\n#### Design principles\n\n[**Gestalt Principles for Data Visualization: Similarity, Proximity & Enclosure**](http://emeeks.github.io/gestaltdataviz/section1.html)
Short visual guide to the Gestalt Principles.\n\n[**Why scientists need to be better at data visualization**](https://www.knowablemagazine.org/article/mind/2019/science-data-visualization?utm_campaign=2019-11-17)
A great overview of principles that could improve how we visualize scientific data and results.\n\n[**A collection of graphic pitfalls**](https://www.data-to-viz.com/caveats.html)
A collection of short articles about common issues with data visualizations that can mislead or obscure your message.\n\n------------------------------------------------------------------------\n\n#### Choosing a visualization\n\n[**Data Viz Project**](https://datavizproject.com/)
This is a great place to get inspiration and guidance about how to choose an appropriate visualization. There are many visualizations we are not used to seeing in ecology!\n\n[**From data to Viz \\| Find the graphic you need**](https://www.data-to-viz.com/)
Interactive tool to choose an appropriate visualization type for your data.\n\n------------------------------------------------------------------------\n\n#### Colour\n\n[**What to consider when choosing colors for data visualization**](https://blog.datawrapper.de/colors/)
A short, visual guide on things to keep in mind when using colour, such as when and how to use colour gradients, the colour grey, etc.\n\n[**ColorBrewer: Color Advice for Maps**](https://colorbrewer2.org/)
Tool to generate colour palettes for visualizations with colorblind-friendly options. You can also use these palettes in R using the [RColorBrewer](https://cran.r-project.org/web/packages/RColorBrewer/index.html) package, and the `scale_*_brewer()` (for discrete palettes) or `scale_*_distiller()` (for continuous palettes) functions in ggplot2.\n\n[**Color.review**](https://color.review/)
Tool to pick or verify colour palettes with high relative contrast between colours, to ensure your information is readable for everyone.\n\n[**Coblis --- Color Blindness Simulator**](https://www.color-blindness.com/coblis-color-blindness-simulator/)
Tool to upload an image and view it as they would appear to a colorblind person, with the option to simulate several color-vision deficiencies.\n\n[**500+ Named Colours with rgb and hex values**](http://cloford.com/resources/colours/500col.htm)
List of named colours along with their hex values.\n\n[**CartoDB/CartoColor**](https://github.com/CartoDB/cartocolor)
CARTOColors are a set of custom color palettes built on top of well-known standards for color use on maps, with next generation enhancements for the web and CARTO basemaps. Choose from a selection of sequential, diverging, or qualitative schemes for your next CARTO powered visualization using their [online module](https://carto.com/carto-colors/).\n\n------------------------------------------------------------------------\n\n#### Tools\n\n##### R\n\n[**The R Graph Gallery**](https://www.r-graph-gallery.com/index.html)
A collection of charts made with the R programming language. Hundreds of charts are displayed in several sections, always with their reproducible code available. The gallery makes a focus on the tidyverse and ggplot2.\n\n###### Base R {.unnumbered}\n\n[**Cheatsheet: Margins in base R**](https://www.r-graph-gallery.com/74-margin-and-oma-cheatsheet)
Edit your margins in base R to accommodate axis titles, legends, captions, etc.!\n\n[**Customizing tick marks in base R**](https://insileco.github.io/2020/08/29/custom-tick-marks-with-rs-base-graphics-system/)
Seems like a simple thing, but it can be so frustrating! This is a great post about customizing tick marks with base plot in R.\n\n[**Animations in R (for time series)**](https://insileco.github.io/2017/07/05/animations-in-r-time-series-of-erythemal-irradiance-in-the-st.-lawrence/)
If you want to use animations but don't want to use ggplot2, this demo might help you!\n\n###### ggplot2 {.unnumbered}\n\n[**Cheatsheet: ggplot2**](http://r-statistics.co/ggplot2-cheatsheet.html)
Cheatsheet for ggplot2 in R - anything you want to do is probably covered here!\n\n[**Coding Club tutorial: Data Viz Part 1 - Beautiful and informative data visualization**](https://ourcodingclub.github.io/tutorials/datavis/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**Coding Club tutorial: Data Viz Part 2 - Customizing your figures**](https://ourcodingclub.github.io/tutorials/data-vis-2/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**ggplot flipbook**](https://evamaerey.github.io/ggplot_flipbook/ggplot_flipbook_xaringan.html#1)
A flipbook-style demonstration that builds and customizes plots line by line using ggplot in R.\n\n[**gganimate: A Grammar of Animated Graphics**](https://github.com/thomasp85/gganimate)
Package to create animated graphics in R (with ggplot2).\n\n##### Python\n\n[**The Python Graph Gallery**](https://python-graph-gallery.com/)
This website displays hundreds of charts, always providing the reproducible python code.\n\n[**Python Tutorial: Intro to Matplotlib**](https://github.com/Randonnees-Datatrek/data-trek-2020/blob/master/Tutorials/Python_Tutorial/python_tutorial.ipynb)
Introduction to basic functionalities of the Python's library Matplotlib covering basic plots, plot attributes, subplots and plotting the `iris` dataset.\n\n[**The Art of Effective Visualization of Multi-dimensional Data**](https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57)
Covers both univariate (one-dimension) and multivariate (multi-dimensional) data visualization strategies using the Python machine learning ecosystem.\n\n##### Julia\n\n[**Julia Plots Gallery**](https://goropikari.github.io/PlotsGallery.jl/)
Display of various plots with reproducible code in Julia.\n\n[**Plots in Julia**](http://docs.juliaplots.org/latest/#Plots-powerful-convenience-for-visualization-in-Julia)
Documentation for the Plots package in Julia, including demonstrations for animated plots, and links to tutorials.\n\n[**Animations in Julia**](http://docs.juliaplots.org/latest/animations/)
How to start making animated plots in Julia.\n\n------------------------------------------------------------------------\n\n#### Customization\n\n[**Chart Studio**](https://plotly.com/chart-studio/)
Web editor to create interactive plots with plotly. You can download the image as .html, or static images, without coding the figure yourself.\n\n[**PhyloPic**](http://phylopic.org/)
Vector images of living organisms. This is great for ecologists who want to add silhouettes of their organisms onto their plots - search anything, and you will likely find it!\n\n[**Add icons on your R plot**](https://insileco.github.io/2017/05/23/add-icons-on-your-r-plot/)
Add special icons to your plot as a great way to customize it, and save space with labels!\n\n------------------------------------------------------------------------\n\n#### Inspiration (pretty things!)\n\n[**Information is Beautiful**](https://informationisbeautiful.net/visualizations/)
Collection of beautiful original visualizations about a variety of topics!\n\n[**TidyTuesday**](https://github.com/rfordatascience/tidytuesday)
A weekly data project aimed at the R ecosystem, where people wrangle and visualize data in loads of creative ways. Browse what people have created ([#TidyTuesday](https://twitter.com/search?q=%23TidyTuesday) on Twitter is great too!), and the visualizations that have inspired each week's theme.\n\n[**Wind currents on Earth**](https://earth.nullschool.net/)
Dynamic and interactive map of wind currents on Earth.\n\n[**A Day in the Life of Americans**](https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans/)
Dynamic visualisation of how Americans spend their time in an average day.\n\n[**2019: The Year in Visual Stories and Graphics**](https://www.nytimes.com/interactive/2019/12/30/us/2019-year-in-graphics.html)
Collection of the most popular visualizations by the New York Times in 2019.\n", + "markdown": "---\ntitle: \"Data Visualization\"\ndescription: |\n General principles of visualization and graphic design, and techniques of tailored visualization. This training was developed and delivered by Alex Arkilanian and Katherine Hébert on September 21st and 22nd, 2020.\nauthor:\n - Alex Arkilanian\n - Katherine Hébert\ncategories: [Technical, Fellow contributed, EN]\ndate: \"09-21-2020\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\nformat: \n html:\n code-fold: true\n code-summary: \"Show code\"\nexecute: \n cache: true\n warning: false\n message: false\n collapse: true\n---\n\n\nWelcome!\n\nThis training covers the general principles of visualization and graphic design, and techniques of tailored visualization. More specifically, the objectives of the training are:\n\n- Make an overview of basic data visualization principles, including shapes, sizes, colours, and fonts.\n- Discuss how to choose the right visualization for your data, what you want to communicate, and who you want to communicate to.\n- Tools and principles to tailor visualizations, particularly in making interpretable, interactive, and honest visualizations.\n\n## Training material\n\n*Click on \"Show code\" to learn how to do each plot!*\n\n### Interactive examples\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-1_3ffdc9070d841790d6510b3c8ffbac4e'}\n\n:::\n\n\n\n\n#### Streamgraph\n\n\n::: {.cell hash='index_cache/html/streamgraph-plot_93fdd122ca2090828f4a810da98557e8'}\n\n```{.r .cell-code}\n# Script to make a streamgraph of the top 10 most popular dog breeds in \n# New York City from 1999 to 2015\n\n# load libraries\nlibrary(lubridate) # dealing with dates\nlibrary(dplyr) # data manipulation\nlibrary(streamgraph) #devtools::install_github(\"hrbrmstr/streamgraph\")\nlibrary(htmlwidgets) # to save the widget!\n\n# load the dataset\n# more information about this dataset can be found here:\n# https://www.kaggle.com/smithaachar/nyc-dog-licensing-clean\nnyc_dogs <- read.csv(\"data/nyc_dogs.csv\")\n\n# convert birth year to date format (and keep only the year)\nnyc_dogs$AnimalBirthYear <- mdy_hms(nyc_dogs$AnimalBirthMonth) %>% year()\n\n# identify 10 most common dogs\ntopdogs <- nyc_dogs %>% count(BreedName) \ntopdogs <- topdogs[order(topdogs$n, decreasing = TRUE),]\n# keep 10 most common breeds (and remove last year of data which is incomplete)\ndf <- filter(nyc_dogs, BreedName %in% topdogs$BreedName[2:11] & AnimalBirthYear < 2016) %>% \n group_by(AnimalBirthYear) %>% \n count(BreedName) %>% ungroup()\n\n# get some nice colours from viridis (magma)\ncols <- viridis::viridis_pal(option = \"magma\")(length(unique(df$BreedName)))\n\n# make streamgraph!\npp <- streamgraph(df, \n key = BreedName, value = n, date = AnimalBirthYear, \n height=\"600px\", width=\"1000px\") %>%\n sg_legend(show=TRUE, label=\"names: \") %>%\n sg_fill_manual(values = cols) \n# saveWidget(pp, file=paste0(getwd(), \"/figures/dogs_streamgraph.html\"))\n\n# plot\npp\n```\n\n::: {.cell-output-display}\n```{=html}\n
\n
\n\n```\n:::\n:::\n\n\n------------------------------------------------------------------------\n\n#### Interactive plot\n\n\n::: {.cell hash='index_cache/html/interactive-plot_ffab3ec1ce4e0abef23fd229dc1c8908'}\n\n```{.r .cell-code}\n# Script to generate plots to demonstrate how combinations of information dimensions\n# can become overwhelming and difficult to interpret.\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(plotly) # interactive plots\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\n# more info on this dataset: https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-07-28/readme.md\npenguins <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv') \n\n# get some nice colours from viridis (magma)\nsp_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n\n\n#### Day 1 ####\n\n# 1. Similarity\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, col = species), size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) # sets the colour scale we created above \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-1.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_similarity.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Proximity\n\ndf <- penguins %>% group_by(sex, species) %>% \n summarise(mean_mass = mean(body_mass_g, na.rm = TRUE)) %>% na.omit() \nggplot(df) +\n geom_bar(aes(y = mean_mass, x = species, fill = sex), \n position = \"dodge\", stat = \"identity\") +\n labs(x = \"Species\", y = \"Mean body mass (g)\", col = \"Sex\") + # labels\n scale_fill_manual(values = sp_cols) # sets the colour scale we created above\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-2.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_proximity.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Enclosure (Ellipses over a fake PCA)\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(size = 2.1, col = \"grey30\") +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"PCA1\", y = \"PCA2\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) + # sets the colour scale we created above\n theme(axis.text = element_blank(), axis.ticks = element_blank())\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-3.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_enclosure.png\", width = 6, height = 3, units = \"in\")\n\n# 4. Mismatched combination of principles\ntemp_palette <- rev(c(sp_cols, \"#1f78b4\", \"#33a02c\"))\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(aes(col = sex), size = 2.1) +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"?\") + # labels\n scale_color_manual(values = temp_palette) # sets the colour scale we created above\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-4.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_mismatchedgestalt.png\", width = 6, height = 3, units = \"in\")\n\n\n\n#### Day 2 ####\n\n# 1. Ineffective combinations: Luminance & shading -----------------------------\n\n# create the plot\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n col = species, # hue\n alpha = log(body_mass_g)), # luminance\n size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n col = \"Species\", alpha = \"Body mass (g)\") +\n scale_color_manual(values = sp_cols)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-5.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_incompatible1.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Ineffective combinations: Sizes and shapes --------------------------------\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n shape = species, # shape\n size = log(body_mass_g)), alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\") \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-6.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_incompatible2.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Cognitive overload --------------------------------------------------------\n\n# get some nice colours from viridis (magma)\nsex_cols <- viridis::viridis_pal(option = \"magma\")(8)[c(3,6)]\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n shape = species, # dimension 3: shape\n size = log(body_mass_g), # dimension 4: size\n col = sex), # dimension 5: hue\n alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\", col = \"Sex\") +\n scale_color_manual(values = sex_cols)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-7.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_5dimensions.png\", width = 7, height = 4, units = \"in\")\n\n\n# 4. Panels -------------------------------------------------------------------\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n col = log(body_mass_g)), # dimension 3: hue\n alpha = .7, size = 2) + \n facet_wrap(~ species) + # dimension 4: species!\n # this will create a separate panel for each species\n # note: this also automatically uses the same axes for all panels! If you want \n # axes to vary between panels, use the argument scales = \"free\"\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-8.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_dimensions_facets.png\", width = 7, height = 4, units = \"in\")\n\n\n# 5. Interactive ---------------------------------------------------------------\n\np <- na.omit(penguins) %>%\n ggplot(aes(y = bill_length_mm, \n x = bill_depth_mm, \n col = log(body_mass_g))) +\n geom_point(size = 2, alpha = .7) + \n facet_wrap(~ species) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\np <- ggplotly(p)\n#setwd(\"figures\")\nhtmlwidgets::saveWidget(as_widget(p), \"figures/penguins_interactive.html\")\np\n```\n\n::: {.cell-output-display}\n```{=html}\n
\n\n```\n:::\n:::\n\n\n### Example figures\n\n\n::: {.cell hash='index_cache/html/animated.volcano_e85afe995a0e6702984595b25d6489b8'}\n\n```{.r .cell-code}\n# Script to make animated plot of volcano eruptions over time\n\n# Load libraries:\nlibrary(dplyr) # data manipulation\nlibrary(ggplot2) # plotting\nlibrary(gganimate) # animation\nlibrary(gifski) # creating gifs\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# function to floor a year to the decade\nfloor_decade = function(value){return(value - value %% 10)}\n\n# read data \neruptions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-05-12/eruptions.csv')\n\n# select top 5 most frequently exploding volcanoes\ntemp <- group_by(eruptions, volcano_name) %>% tally() \ntemp <- temp[order(temp$n, decreasing = TRUE),]\n\n# make a time series dataset (number of eruptions per year)\neruptions$start_decade = floor_decade(eruptions$start_year)\n\n# filter dataset to subset we want to visualize\ndf <- eruptions %>% \n filter(between(start_decade, 1900, 2019)) %>%\n filter(volcano_name %in% temp$volcano_name[1:5]) %>%\n group_by(start_decade) %>%\n count(volcano_name) %>% ungroup()\n\n# plot!\np <- ggplot(df, aes(x = start_decade, y = n, fill = volcano_name)) +\n geom_area() +\n geom_vline(aes(xintercept = start_decade)) + # line that follows the current decade\n scale_fill_viridis_d(option = \"magma\", end = .8) +\n labs(x = \"\", y = \"Number of eruptions\", fill = \"Volcano\",\n title = 'Eruptions of the top 5 most frequently erupting volcanos worldwide') +\n # gganimate part: reveals each decade\n transition_reveal(start_decade) \nanimate(p, duration = 5, fps = 20, width = 800, height = 300, renderer = gifski_renderer())\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/animated.volcano-1.gif)\n:::\n\n```{.r .cell-code}\n#anim_save(\"figures/volcano_eruptions.gif\")\n```\n:::\n\n::: {.cell hash='index_cache/html/coffee.uncertainty_21b5746a8b00c943a4574608fa050b80'}\n\n```{.r .cell-code}\n# Script to generate plots with various ways of representing uncertainty, based \n# Coffee & Code dataset from https://www.kaggle.com/devready/coffee-and-code/data\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(ggridges) # for density ridge plots\nlibrary(patchwork) # great package for \"patching\" plots together!\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\ndf <- read.csv(\"data/coffee_code.csv\")\n\n# set labels to be used in all plots\ncoffee_labels <- labs(title = \"Does coffee help programmers code?\",\n x = \"Coffee while coding\", \n y = \"Time spent coding \\n(hours/day)\") \n\n# the variable CodingWithoutCoffee is negative, which is harder to understand\n# (i.e. \"No\" means they drink coffee...). So, let's transform it into a more \n# intuitive variable!\ndf$CodingWithCoffee <- gsub(\"No\", \"Usually\", df$CodingWithoutCoffee)\ndf$CodingWithCoffee <- gsub(\"Yes\", \"Rarely\\n or never\", df$CodingWithCoffee)\n# convert to factor and set levels so they show up in a logical order\ndf$CodingWithCoffee <- factor(df$CodingWithCoffee,\n levels = c(\"Rarely\\n or never\", \n \"Sometimes\", \n \"Usually\"))\n\n# calculate summary statistics for the variable of choice\ndf_summary <- group_by(df, CodingWithCoffee) %>%\n summarise(\n # mean\n mean_codinghours = mean(CodingHours), \n # standard deviation\n sd_codinghours = sd(CodingHours), \n # standard error\n se_codinghours = sd(CodingHours)/sqrt(length(CodingHours)))\n\n\n# 1. Error bars (standard error) -----------------------------------------------\n\nggplot(df_summary) +\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours), \n width = .2) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(0,10)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-1.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_errorbars.png\", width = 5, height = 3, units = \"in\")\n\n# 2. Boxplot -------------------------------------------------------------------\n\nggplot(df) +\n geom_boxplot(aes(x = CodingWithCoffee, y = CodingHours)) +\n coffee_labels\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-2.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_boxplot.png\", width = 5, height = 3, units = \"in\")\n\n\n# 3. Error bar demonstration ---------------------------------------------------\n\n# get some nice colours from viridis (magma)\nerror_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n# set labels to be used in the palette\nerror_labels = c(\"standard deviation\",\"95% confidence interval\",\"standard error\")\n\nggplot(df_summary) +\n # show the raw data\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n # standard deviation\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - sd_codinghours,\n ymax = mean_codinghours + sd_codinghours,\n col = \"SD\"), width = .2, lwd = 1) +\n # 95% confidence interval\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - 1.96*se_codinghours,\n ymax = mean_codinghours + 1.96*se_codinghours, \n col = \"CI\"), width = .2, lwd = 1) +\n # standard error\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours, \n col = \"SE\"), width = .2, lwd = 1) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(c(0,11)) +\n # manual palette/legend set-up!\n scale_colour_manual(name = \"Uncertainty metric\", \n values = c(SD = error_cols[1], \n CI = error_cols[2], \n SE = error_cols[3]),\n labels = error_labels) +\n theme(legend.position = \"top\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-3.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_bars_demo.png\", width = 7, height = 5, units = \"in\")\n\n\n# 4. Jitter plot with violin ---------------------------------------------------\n\nggplot() +\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n geom_violin(data = df, aes(x = CodingWithCoffee, \n y = CodingHours), alpha = 0) +\n geom_linerange(data = df_summary,\n aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours)) +\n geom_point(data = df_summary, \n aes(x = CodingWithCoffee, \n y = mean_codinghours), size = 3) +\n coffee_labels\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-4.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_violin_jitter.png\", width = 5, height = 3, units = \"in\")\n\n\n# 5. Density ridge plot --------------------------------------------------------\n\nggplot(df) + \n aes(y = CodingWithCoffee, x = CodingHours, fill = stat(x)) +\n geom_density_ridges_gradient(scale = 1.9, size = .2, rel_min_height = 0.005) +\n # colour palette (gradient according to CodingHours)\n scale_fill_viridis_c(option = \"magma\", direction = -1) +\n # remove legend - it's not necessary here!\n theme(legend.position = \"none\") +\n labs(title = coffee_labels$title, \n x = coffee_labels$y, \n y = \"Coffee \\nwhile coding\") + \n theme(axis.title.y = element_text(angle=0, hjust = 1, vjust = .9, \n margin = margin(t = 0, r = -50, b = 0, l = 0)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-5.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_density_ridges.png\", width = 5, height = 3, units = \"in\")\n\n# 6. Jitter vs. Rug plot ------------------------------------------------------------------\n\njitterplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_jitter(alpha = .2) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n coffee_labels + ylim(c(0,11)) + labs(x = \"Cups of coffee (per day)\")\n\nrugplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n geom_rug(position=\"jitter\", alpha = .7) + ylim(c(0,11)) +\n coffee_labels + labs(x = \"Cups of coffee (per day)\")\n\n# patch the two plots together\njitterplot + rugplot\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-6.png){width=672}\n:::\n\n```{.r .cell-code}\n#ggsave(\"figures/coffee_jitter_vs_rugplot.png\", width = 10, height = 4, units = \"in\")\n```\n:::\n\n::: {.cell hash='index_cache/html/densiplot_9e12ea96cb628e826d38f0919f99fa44'}\n\n```{.r .cell-code}\n# Script to generate 95% confidence intervals of a generated random normal distribution\n# as an example in Day 2: Visualizing uncertainty.\n\n# load library\nlibrary(ggplot2)\nlibrary(magrittr)\nlibrary(dplyr)\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# set random seed\nset.seed(22)\n\n# generate population (random normal distribution)\ndf <- data.frame(\"value\" = rnorm(50, mean = 0, sd = 1))\n\n# descriptive stats for each distribution\ndesc_stats = df %>% \n summarise(mean_val = mean(value, na.rm = TRUE),\n se_val = sqrt(var(value)/length(value)))\n\n# build density plot!\np <- ggplot(data = df, aes(x = value, y = ..count..)) +\n geom_density(alpha = .2, lwd = .3) +\n xlim(c(min(df$value-1), max(df$value+1))) \n# extract plotted values\nbase_p <- ggplot_build(p)$data[[1]]\n# shade the 95% confidence interval\np + \n geom_area(data = subset(base_p, \n between(x, \n left = (desc_stats$mean_val - 1.96*desc_stats$se_val),\n right = (desc_stats$mean_val + 1.96*desc_stats$se_val))),\n aes(x = x, y = y), fill = \"cadetblue3\", alpha = .6) +\n # add vertical line to show population mean\n geom_vline(aes(xintercept = 0), lty = 2) +\n annotate(\"text\", x = 0.9, y = 19, label = \"True mean\", fontface = \"italic\") +\n # label axis!\n labs(x = \"Variable of interest\", y = \"\") \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/densiplot-1.png){width=672}\n:::\n\n```{.r .cell-code}\n#ggsave(\"figures/confidenceinterval_example.png\", width = 5, height = 3.5, units = \"in\")\n```\n:::\n\n\n### Annotated resource library\n\nThis is an annotated library of data visualization resources we used to build the BIOS² Data Visualization Training, as well as some bonus resources we didn't have the time to include. Feel free to save this page as a reference for your data visualization adventures!\n\n------------------------------------------------------------------------\n\n#### Books & articles\n\n[**Fundamentals of Data Visualization**](https://serialmentor.com/dataviz/)
A primer on making informative and compelling figures. This is the website for the book \"Fundamentals of Data Visualization\" by Claus O. Wilke, published by O'Reilly Media, Inc.\n\n[**Data Visualization: A practical introduction**](https://socviz.co/index.html#preface)
An accessible primer on how to create effective graphics from data using R (mainly ggplot). This book provides a hands-on introduction to the principles and practice of data visualization, explaining what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way.\n\n[**Data Science Design (Chapter 6: Visualizing Data)**](https://link.springer.com/content/pdf/10.1007%2F978-3-319-55444-0.pdf)
Covers the principles that make standard plot designs work, show how they can be misleading if not properly used, and develop a sense of when graphs might be lying, and how to construct better ones.\n\n[**Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods**](https://www.jstor.org/stable/2288400)
Cleveland, William S., and Robert McGill. \"Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods.\" Journal of the American Statistical Association, vol. 79, no. 387, 1984, pp. 531--554. JSTOR, www.jstor.org/stable/2288400. Accessed 9 Oct. 2020.\n\n[**Graphical Perception and Graphical Methods for Analyzing Scientific Data**](10.1126/science.229.4716.828)
Cleveland, William S., and Robert McGill. \"Graphical perception and graphical methods for analyzing scientific data.\" Science 229.4716 (1985): 828-833.\n\n[**From Static to Interactive: Transforming Data Visualization to Improve Transparency**](https://doi.org/10.1371/journal.pbio.1002484)
Weissgerber TL, Garovic VD, Savic M, Winham SJ, Milic NM (2016) designed an interactive line graph that demonstrates how dynamic alternatives to static graphics for small sample size studies allow for additional exploration of empirical datasets. This [simple, free, web-based tool](http://statistika.mfub.bg.ac.rs/interactive-graph/) demonstrates the overall concept and may promote widespread use of interactive graphics.\n\n[**Data visualization: ambiguity as a fellow traveler**](https://doi.org/10.1038/nmeth.2530)
Research that is being done about how to visualize uncertainty in data visualizations. Marx, V. Nat Methods 10, 613--615 (2013). \n\n[**Data visualization standards**](https://xdgov.github.io/data-design-standards/)
Collection of guidance and resources to help create better data visualizations with less effort.\n\n------------------------------------------------------------------------\n\n#### Design principles\n\n[**Gestalt Principles for Data Visualization: Similarity, Proximity & Enclosure**](http://emeeks.github.io/gestaltdataviz/section1.html)
Short visual guide to the Gestalt Principles.\n\n[**Why scientists need to be better at data visualization**](https://www.knowablemagazine.org/article/mind/2019/science-data-visualization?utm_campaign=2019-11-17)
A great overview of principles that could improve how we visualize scientific data and results.\n\n[**A collection of graphic pitfalls**](https://www.data-to-viz.com/caveats.html)
A collection of short articles about common issues with data visualizations that can mislead or obscure your message.\n\n------------------------------------------------------------------------\n\n#### Choosing a visualization\n\n[**Data Viz Project**](https://datavizproject.com/)
This is a great place to get inspiration and guidance about how to choose an appropriate visualization. There are many visualizations we are not used to seeing in ecology!\n\n[**From data to Viz \\| Find the graphic you need**](https://www.data-to-viz.com/)
Interactive tool to choose an appropriate visualization type for your data.\n\n------------------------------------------------------------------------\n\n#### Colour\n\n[**What to consider when choosing colors for data visualization**](https://blog.datawrapper.de/colors/)
A short, visual guide on things to keep in mind when using colour, such as when and how to use colour gradients, the colour grey, etc.\n\n[**ColorBrewer: Color Advice for Maps**](https://colorbrewer2.org/)
Tool to generate colour palettes for visualizations with colorblind-friendly options. You can also use these palettes in R using the [RColorBrewer](https://cran.r-project.org/web/packages/RColorBrewer/index.html) package, and the `scale_*_brewer()` (for discrete palettes) or `scale_*_distiller()` (for continuous palettes) functions in ggplot2.\n\n[**Color.review**](https://color.review/)
Tool to pick or verify colour palettes with high relative contrast between colours, to ensure your information is readable for everyone.\n\n[**Coblis --- Color Blindness Simulator**](https://www.color-blindness.com/coblis-color-blindness-simulator/)
Tool to upload an image and view it as they would appear to a colorblind person, with the option to simulate several color-vision deficiencies.\n\n[**500+ Named Colours with rgb and hex values**](http://cloford.com/resources/colours/500col.htm)
List of named colours along with their hex values.\n\n[**CartoDB/CartoColor**](https://github.com/CartoDB/cartocolor)
CARTOColors are a set of custom color palettes built on top of well-known standards for color use on maps, with next generation enhancements for the web and CARTO basemaps. Choose from a selection of sequential, diverging, or qualitative schemes for your next CARTO powered visualization using their [online module](https://carto.com/carto-colors/).\n\n------------------------------------------------------------------------\n\n#### Tools\n\n##### R\n\n[**The R Graph Gallery**](https://www.r-graph-gallery.com/index.html)
A collection of charts made with the R programming language. Hundreds of charts are displayed in several sections, always with their reproducible code available. The gallery makes a focus on the tidyverse and ggplot2.\n\n###### Base R {.unnumbered}\n\n[**Cheatsheet: Margins in base R**](https://www.r-graph-gallery.com/74-margin-and-oma-cheatsheet)
Edit your margins in base R to accommodate axis titles, legends, captions, etc.!\n\n[**Customizing tick marks in base R**](https://insileco.github.io/2020/08/29/custom-tick-marks-with-rs-base-graphics-system/)
Seems like a simple thing, but it can be so frustrating! This is a great post about customizing tick marks with base plot in R.\n\n[**Animations in R (for time series)**](https://insileco.github.io/2017/07/05/animations-in-r-time-series-of-erythemal-irradiance-in-the-st.-lawrence/)
If you want to use animations but don't want to use ggplot2, this demo might help you!\n\n###### ggplot2 {.unnumbered}\n\n[**Cheatsheet: ggplot2**](http://r-statistics.co/ggplot2-cheatsheet.html)
Cheatsheet for ggplot2 in R - anything you want to do is probably covered here!\n\n[**Coding Club tutorial: Data Viz Part 1 - Beautiful and informative data visualization**](https://ourcodingclub.github.io/tutorials/datavis/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**Coding Club tutorial: Data Viz Part 2 - Customizing your figures**](https://ourcodingclub.github.io/tutorials/data-vis-2/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**ggplot flipbook**](https://evamaerey.github.io/ggplot_flipbook/ggplot_flipbook_xaringan.html#1)
A flipbook-style demonstration that builds and customizes plots line by line using ggplot in R.\n\n[**gganimate: A Grammar of Animated Graphics**](https://github.com/thomasp85/gganimate)
Package to create animated graphics in R (with ggplot2).\n\n##### Python\n\n[**The Python Graph Gallery**](https://python-graph-gallery.com/)
This website displays hundreds of charts, always providing the reproducible python code.\n\n[**Python Tutorial: Intro to Matplotlib**](https://github.com/Randonnees-Datatrek/data-trek-2020/blob/master/Tutorials/Python_Tutorial/python_tutorial.ipynb)
Introduction to basic functionalities of the Python's library Matplotlib covering basic plots, plot attributes, subplots and plotting the `iris` dataset.\n\n[**The Art of Effective Visualization of Multi-dimensional Data**](https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57)
Covers both univariate (one-dimension) and multivariate (multi-dimensional) data visualization strategies using the Python machine learning ecosystem.\n\n##### Julia\n\n[**Julia Plots Gallery**](https://goropikari.github.io/PlotsGallery.jl/)
Display of various plots with reproducible code in Julia.\n\n[**Plots in Julia**](http://docs.juliaplots.org/latest/#Plots-powerful-convenience-for-visualization-in-Julia)
Documentation for the Plots package in Julia, including demonstrations for animated plots, and links to tutorials.\n\n[**Animations in Julia**](http://docs.juliaplots.org/latest/animations/)
How to start making animated plots in Julia.\n\n------------------------------------------------------------------------\n\n#### Customization\n\n[**Chart Studio**](https://plotly.com/chart-studio/)
Web editor to create interactive plots with plotly. You can download the image as .html, or static images, without coding the figure yourself.\n\n[**PhyloPic**](http://phylopic.org/)
Vector images of living organisms. This is great for ecologists who want to add silhouettes of their organisms onto their plots - search anything, and you will likely find it!\n\n[**Add icons on your R plot**](https://insileco.github.io/2017/05/23/add-icons-on-your-r-plot/)
Add special icons to your plot as a great way to customize it, and save space with labels!\n\n------------------------------------------------------------------------\n\n#### Inspiration (pretty things!)\n\n[**Information is Beautiful**](https://informationisbeautiful.net/visualizations/)
Collection of beautiful original visualizations about a variety of topics!\n\n[**TidyTuesday**](https://github.com/rfordatascience/tidytuesday)
A weekly data project aimed at the R ecosystem, where people wrangle and visualize data in loads of creative ways. Browse what people have created ([#TidyTuesday](https://twitter.com/search?q=%23TidyTuesday) on Twitter is great too!), and the visualizations that have inspired each week's theme.\n\n[**Wind currents on Earth**](https://earth.nullschool.net/)
Dynamic and interactive map of wind currents on Earth.\n\n[**A Day in the Life of Americans**](https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans/)
Dynamic visualisation of how Americans spend their time in an average day.\n\n[**2019: The Year in Visual Stories and Graphics**](https://www.nytimes.com/interactive/2019/12/30/us/2019-year-in-graphics.html)
Collection of the most popular visualizations by the New York Times in 2019.\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/.quarto/_freeze/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index/execute-results/html.json b/.quarto/_freeze/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index/execute-results/html.json index 6986b5b..9aebb99 100644 --- a/.quarto/_freeze/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index/execute-results/html.json +++ b/.quarto/_freeze/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "19dde62c3bfc1dca0ccb3bd9ef87397b", + "hash": "79e046f2b374d59cdb91e5bdc7ad320a", "result": { - "markdown": "---\ntitle: \"Spatial Statistics in Ecology\"\ndescription: |\n Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). | \n Session de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).\nauthor: \n - name: \"Philippe Marchand\"\n affiliation: Université du Québec en Abitibi-Témiscamingue\ncategories: [FR, EN, Technical]\ndate: \"2021-01-12\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\nexecute:\n freeze: true\n cache: true\n---\n\n\nVersion en français [à la suite](#statistiques-spatiales-en-écologie).\n\n# Spatial Statistics in Ecology\n\nBIOS² hosted an online training session about statistical analysis of spatial data in ecology, led by Pr. Philippe Marchand (UQAT). This 12-hour training was conducted in 4 sessions: January 12, 14, 19 & 21 (2021) from 1:00 to 4:00 pm EST.\n\nThe content included three types of spatial statistical analyses and their applications to ecology: (1) point pattern analysis to study the distribution of individuals or events in space; (2) geostatistical models to represent the spatial correlation of variables sampled at geolocated points; and (3) areal data models, which apply to measurements taken on areas in space and model spatial relationships as networks of neighbouring regions. The training also included practical exercises using the R statistical programming environment.\n\n[Philippe Marchand](https://github.com/pmarchand1) is a professor in ecology and biostatistics at Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) and BIOS² academic member. His research focuses on modeling processes that influence the spatial distribution of populations, including: seed dispersal and seedling establishment, animal movement, and the spread of forest diseases.\n\n**If you wish to consult the lesson materials and follow the exercises at your own pace, you can access them through [this link](https://bios2.github.io/Marchand.html#category:EN). Basic knowledge of linear regression models and experience fitting them in R is recommended. Original repository can be found [here](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Course outline\n\n| Day | Topics (EN) |\n|-----------------|:--------------------------|\n| 1 | • [Introduction to spatial statistics](#introduction)
• [Point pattern analysis](#point-pattern)
|\n| 2 | • [Spatial correlation](#spatial-correlation)
• [Geostatistical models](#geostat-models) |\n| 3 | • [Areal data](#areal-data)
• [Moran's I](#moran-i)
• [Spatial autoregression models](#spatial-autoreg)
• [Analysis of areal data in R](#analysis-areal) |\n| 4 | • [GLMM with spatial Gaussian process](#glmm-spatial-gaussian)
• [GLMM with spatial autoregression](#glmm-spatial-autoreg) |\n\n\n# Introduction to spatial statistics {#introduction}\n\n## Types of spatial analyses\n\nIn this training, we will discuss three types of spatial analyses: point pattern analysis, geostatistical models and models for areal data.\n\nIn **point pattern analysis**, we have point data representing the position of individuals or events in a study area and we assume that all individuals or events have been identified in that area. That analysis focuses on the distribution of the positions of the points themselves. Here are some typical questions for the analysis of point patterns:\n\n- Are the points randomly arranged or clustered?\n\n- Are two types of points arranged independently?\n\n**Geostatistical models** represent the spatial distribution of continuous variables that are measured at certain sampling points. They assume that measurements of those variables at different points are correlated as a function of the distance between the points. Applications of geostatistical models include the smoothing of spatial data (e.g., producing a map of a variable over an entire region based on point measurements) and the prediction of those variables for non-sampled points.\n\n**Areal data** are measurements taken not at points, but for regions of space represented by polygons (e.g. administrative divisions, grid cells). Models representing these types of data define a network linking each region to its neighbours and include correlations in the variable of interest between neighbouring regions.\n\n## Stationarity and isotropy\n\nSeveral spatial analyses assume that the variables are **stationary** in space. As with stationarity in the time domain, this property means that summary statistics (mean, variance and correlations between measures of a variable) do not vary with translation in space. For example, the spatial correlation between two points may depend on the distance between them, but not on their absolute position.\n\nIn particular, there cannot be a large-scale trend (often called *gradient* in a spatial context), or this trend must be taken into account before modelling the spatial correlation of residuals.\n\nIn the case of point pattern analysis, stationarity (also called homogeneity) means that point density does not follow a large-scale trend.\n\nIn a **isotropic** statistical model, the spatial correlations between measurements at two points depend only on the distance between the points, not on the direction. In this case, the summary statistics do not change under a spatial rotation of the data.\n\n## Georeferenced data\n\nEnvironmental studies increasingly use data from geospatial data sources, i.e. variables measured over a large part of the globe (e.g. climate, remote sensing). The processing of these data requires concepts related to Geographic Information Systems (GIS), which are not covered in this workshop, where we focus on the statistical aspects of spatially varying data.\n\nThe use of geospatial data does not necessarily mean that spatial statistics are required. For example, we will often extract values of geographic variables at study points to explain a biological response observed in the field. In this case, the use of spatial statistics is only necessary when there is a spatial correlation in the residuals, after controlling for the effect of the predictors.\n\n# Point pattern analysis {#point-pattern}\n\n## Point pattern and point process\n\nA *point pattern* describes the spatial position (most often in 2D) of individuals or events, represented by points, in a given study area, often called the observation \"window\".\n\nIt is assumed that each point has a negligible spatial extent relative to the distances between the points. More complex methods exist to deal with spatial patterns of objects that have a non-negligible width, but this topic is beyond the scope of this workshop.\n\nA *point process* is a statistical model that can be used to simulate point patterns or explain an observed point pattern.\n\n## Complete spatial randomness\n\nComplete spatial randomness (CSR) is one of the simplest point patterns, which serves as a null model for evaluating the characteristics of real point patterns. In this pattern, the presence of a point at a given position is independent of the presence of points in a neighbourhood.\n\nThe process creating this pattern is a homogeneous Poisson process. According to this model, the number of points in any area $A$ follows a Poisson distribution: $N(A) \\sim \\text{Pois}(\\lambda A)$, where $\\lambda$ is the *intensity* of the process (i.e. the density of points per unit area). $N$ is independent between two disjoint regions, no matter how those regions are defined.\n\nIn the graph below, only the pattern on the right is completely random. The pattern on the left shows point aggregation (higher probability of observing a point close to another point), while the pattern in the center shows repulsion (low probability of observing a point very close to another).\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-2_c019229dfeb24b4b22a136e6b038583d'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-2-1.png){width=864}\n:::\n:::\n\n\n## Exploratory or inferential analysis for a point pattern\n\nSeveral summary statistics are used to describe the characteristics of a point pattern. The simplest is the intensity $\\lambda$, which as mentioned above represents the density of points per unit area. If the point pattern is heterogeneous, the intensity is not constant, but depends on the position: $\\lambda(x, y)$.\n\nCompared to intensity, which is a first-order statistic, second-order statistics describe how the probability of the presence of a point in a region depends on the presence of other points. The Ripley's $K$ function presented in the next section is an example of a second-order summary statistic.\n\nStatistical inferences on point patterns usually consist of testing the hypothesis that the point pattern corresponds to a given null model, such as CSR or a more complex null model. Even for the simplest null models, we rarely know the theoretical distribution for a summary statistic of the point pattern under the null model. Hypothesis tests on point patterns are therefore performed by simulation: a large number of point patterns are simulated from the null model and the distribution of the summary statistics of interest for these simulations is compared to their values for the observed point pattern.\n\n## Ripley's K function\n\nRipley's K function $K(r)$ is defined as the mean number of points within a circle of radius $r$ around a point in the pattern, standardized by the intensity $\\lambda$.\n\nUnder the CSR null model, the mean number of points in any circle of radius $r$ is $\\lambda \\pi r^2$, thus in theory $K(r) = \\pi r^2$ for that model. A higher value of $K(r)$ means that there is an aggregation of points at the scale $r$, whereas a lower value means that there is repulsion.\n\nIn practice, $K(r)$ is estimated for a specific point pattern by the equation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\nwhere $A$ is the area of the observation window and $n$ is the number of points in the pattern, so $n(n-1)$ is the number of distinct pairs of points. We take the sum for all pairs of points of the indicator function $I$, which takes a value of 1 if the distance between points $i$ and $j$ is less than or equal to $r$. Finally, the term $w_{ij}$ is used to give extra weight to certain pairs of points to account for edge effects, as discussed in the next section.\n\nFor example, the graphs below show the estimated $K(r)$ function for the patterns shown above, for values of $r$ up to 1/4 of the window width. The red dashed curve shows the theoretical value for CSR and the gray area is an \"envelope\" produced by 99 simulations of that null pattern. The aggregated pattern shows an excess of neighbours up to $r = 0.25$ and the pattern with repulsion shows a significant deficit of neighbours for small values of $r$.\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-4_93b9963febba16ed4365408bd10b6c70'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-4-1.png){width=864}\n:::\n:::\n\n\nIn addition to $K$, there are other statistics to describe the second-order properties of point patterns, such as the mean distance between a point and its nearest $N$ neighbours. You can refer to the Wiegand and Moloney (2013) textbook in the references to learn more about different summary statistics for point patterns.\n\n## Edge effects\n\nIn the context of point pattern analysis, edge effects are due to the fact that we have incomplete knowledge of the neighbourhood of points near the edge of the observation window, which can induce a bias in the calculation of statistics such as Ripley's $K$.\n\nDifferent methods have been developed to correct the bias due to edge effects. In Ripley's edge correction method, the contribution of a neighbour $j$ located at a distance $r$ from a point $i$ receives a weight $w_{ij} = 1/\\phi_i(r)$, where $\\phi_i(r)$ is the fraction of the circle of radius $r$ around $i$ contained in the observation window. For example, if 2/3 of the circle is in the window, this neighbour counts as 3/2 neighbours in the calculation of a statistic like $K$.\n\n![](images/ripley_edge.png)\n\nRipley's method is one of the simplest to correct for edge effects, but is not necessarily the most efficient; in particular, larger weights given to certain pairs of points tend to increase the variance of the calculated statistic. Other correction methods are presented in specialized textbooks, such as Wiegand and Moloney (2013).\n\n## Example\n\nFor this example, we use the dataset [semis_xy.csv](data/semis_xy.csv), which represents the $(x, y)$ coordinates for seedlings of two species (*sp*, B = birch and P = poplar) in a 15 x 15 m plot.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-5_0f8146040b7a6a70fa3c497cc0385db2'}\n\n```{.r .cell-code}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y sp\n1 14.73 0.05 P\n2 14.72 1.71 P\n3 14.31 2.06 P\n4 14.16 2.64 P\n5 14.12 4.15 B\n6 9.88 4.08 B\n```\n:::\n:::\n\n\nThe *spatstat* package provides tools for point pattern analysis in R. The first step consists in transforming our data frame into a `ppp` object (point pattern) with the function of the same name. In this function, we specify which columns contain the coordinates *x* and *y* as well as the *marks*, which here will be the species codes. We also need to specify an observation window (`window`) using the `owin` function, where we provide the plot limits in *x* and *y*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-6_57149b36e4a5be5442a99b8f45b2dbdd'}\n\n```{.r .cell-code}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMarked planar point pattern: 281 points\nMultitype, with levels = B, P \nwindow: rectangle = [0, 15] x [0, 15] units\n```\n:::\n:::\n\n\nMarks can be numeric or categorical. Note that for categorical marks as is the case here, the variable must be explicitly converted to a factor.\n\nThe `plot` function applied to a point pattern shows a diagram of the pattern.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-7_ba656f4aa5befb58b9e9845ae787d99d'}\n\n```{.r .cell-code}\nplot(semis)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-7-1.png){width=672}\n:::\n:::\n\n\nThe `intensity` function calculates the density of points of each species by unit area (here, by $m^2$).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-8_0b22d4b3b39bd4dc862f8c161efb9330'}\n\n```{.r .cell-code}\nintensity(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n B P \n0.6666667 0.5822222 \n```\n:::\n:::\n\n\nTo first analyze the distribution of each species separately, we split the pattern with `split`. Since the pattern contains categorical marks, it is automatically split according to the values of those marks. The result is a list of two point patterns.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-9_5ff3f6384afcf7ed706bbf891accd2fa'}\n\n```{.r .cell-code}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-9-1.png){width=672}\n:::\n:::\n\n\nThe `Kest` function calculates Ripley's $K$ for a series of distances up to (by default) 1/4 of the width of the window. Here we apply it to the first pattern (birch) by choosing `semis_split[[1]]`. Note that double square brackets are necessary to choose an item from a list in R.\n\nThe argument `correction = \"iso\"` tells the function to apply Ripley's correction for edge effects.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-10_67e4bd9ed190d1af69a48250adb1bc3d'}\n\n```{.r .cell-code}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-10-1.png){width=672}\n:::\n:::\n\n\nAccording to this graph, there seems to be an excess of neighbours for distances of 1 m and above. To check if this is a significant difference, we produce a simulation envelope with the `envelope` function. The first argument of `envelope` is a point pattern to which the simulations will be compared, the second one is a function to be computed (here, `Kest`) for each simulated pattern, then we add the arguments of the `Kest` function (here, only `correction`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-11_ebe814599d9537b0a51121b965182658'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-11-1.png){width=672}\n:::\n:::\n\n\nAs indicated by the message, by default the function performs 99 simulations of the null model corresponding to complete spatial randomness (CSR).\n\nThe observed curve falls outside the envelope of the 99 simulations near $r = 2$. We must be careful not to interpret too quickly a result that is outside the envelope. Although there is about a 1% probability of obtaining a more extreme result under the null hypothesis at a given distance, the envelope is calculated for a large number of values of $r$ and is not corrected for multiple comparisons. Thus, a significant difference for a very small range of values of $r$ may be simply due to chance.\n\n### Exercise 1\n\nLooking at the graph of the second point pattern (poplar seedlings), can you predict where Ripley's $K$ will be in relation to the null hypothesis of complete spatial randomness? Verify your prediction by calculating Ripley's $K$ for this point pattern in R.\n\n## Effect of heterogeneity\n\nThe graph below illustrates a *heterogeneous* point pattern, i.e. it shows an density gradient (more points on the left than on the right).\n\n\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-13_36849871c75ced31ddf5bd09edb7ace9'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-13-1.png){width=672}\n:::\n:::\n\n\nA density gradient can be confused with an aggregation of points, as can be seen on the graph of the corresponding Ripley's $K$. In theory, these are two different processes:\n\n- Heterogeneity: The density of points varies in the study area, for example due to the fact that certain local conditions are more favorable to the presence of the species of interest.\n\n- Aggregation: The mean density of points is homogeneous, but the presence of one point increases the presence of other points in its vicinity, for example due to positive interactions between individuals.\n\nHowever, it may be difficult to differentiate between the two in practice, especially since some patterns may be both heterogeneous and aggregated.\n\nLet's take the example of the poplar seedlings from the previous exercise. The `density` function applied to a point pattern performs a kernel density estimation of the density of the seedlings across the plot. By default, this function uses a Gaussian kernel with a standard deviation `sigma` specified in the function, which determines the scale at which density fluctuations are \"smoothed\". Here, we use a value of 2 m for `sigma` and we first represent the estimated density with `plot`, before overlaying the points (`add = TRUE` means that the points are added to the existing plot rather than creating a new plot).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-14_3332987af85b2014bbebfa360ce15a9b'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n\nTo measure the aggregation or repulsion of points in a heterogeneous pattern, we must use the inhomogeneous version of the $K$ statistic (`Kinhom` in *spatstat*). This statistic is still equal to the mean number of neighbours within a radius $r$ of a point in the pattern, but rather than standardizing this number by the overall intensity of the pattern, it is standardized by the local estimated density. As above, we specify `sigma = 2` to control the level of smoothing for the varying density estimate.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-15_f82857163481aaf3f03a5dd201df8615'}\n\n```{.r .cell-code}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-15-1.png){width=672}\n:::\n:::\n\n\nTaking into account the heterogeneity of the pattern at a scale `sigma` of 2 m, there seems to be a deficit of neighbours starting at a radius of about 1.5 m. We can now check whether this deviation is significant.\n\nAs before, we use `envelope` to simulate the `Kinhom` statistic under the null model. However, the null model here is not a homogeneous Poisson process (CSR). It is instead a heterogeneous Poisson process simulated by the function `rpoispp(dens_p)`, i.e. the points are independent of each other, but their density is heterogeneous and given by `dens_p`. The `simulate` argument of the `envelope` function specifies the function used for simulations under the null model; this function must have one argument, here `x`, even if it is not used.\n\nFinally, in addition to the arguments needed for `Kinhom`, i.e. `sigma` and `correction`, we also specify `nsim = 199` to perform 199 simulations and `nrank = 5` to eliminate the 5 most extreme results on each side of the envelope, i.e. the 10 most extreme results out of 199, to achieve an interval containing about 95% of the probability under the null hypothesis.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-16_7119c82106369cf2aa8fe32fff918b5e'}\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-16-1.png){width=672}\n:::\n:::\n\n\n*Note*: For a hypothesis test based on simulations of a null hypothesis, the $p$-value is estimated by $(m + 1)/(n + 1)$, where $n$ is the number of simulations and $m$ is the number of simulations where the value of the statistic is more extreme than that of the observed data. This is why the number of simulations is often chosen to be 99, 199, etc.\n\n### Exercise 2\n\nRepeat the heterogeneous density estimation and `Kinhom` calculation with a standard deviation `sigma` of 5 rather than 2. How does the smoothing level for the density estimation influence the conclusions?\n\nTo differentiate between a variation in the density of points from an interaction (aggregation or repulsion) between these points with this type of analysis, it is generally assumed that the two processes operate at different scales. Typically, we can test whether the points are aggregated at a small scale after accounting for a variation in density at a larger scale.\n\n## Relationship between two point patterns\n\nLet's consider a case where we have two point patterns, for example the position of trees of two species in a plot (orange and green points in the graph below). Each of the two patterns may or may not present an aggregation of points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-17_b4289a87928bcb641b5e8e2bd2b6abf1'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-17-1.png){width=672}\n:::\n:::\n\n\nRegardless of whether points are aggregated at the species level, we want to determine whether the two species are arranged independently. In other words, does the probability of observing a tree of one species depend on the presence of a tree of the other species at a given distance?\n\nThe bivariate version of Ripley's $K$ allows us to answer this question. For two patterns noted 1 and 2, the function $K_{12}(r)$ calculates the mean number of points in pattern 2 within a radius $r$ from a point in pattern 1, standardized by the density of pattern 2.\n\nIn theory, this function is symmetrical, so $K_{12}(r) = K_{21}(r)$ and the result would be the same whether the points of pattern 1 or 2 are chosen as \"focal\" points for the analysis. However, the estimation of the two quantities for an observed pattern may differ, in particular because of edge effects. The variance of $K_{12}$ and $K_{21}$ between simulations of a null model may also differ, so the null hypothesis test may have more or less power depending on the choice of the focal species.\n\nThe choice of an appropriate null model is important here. In order to determine whether there is a significant attraction or repulsion between the two patterns, the position of one of the patterns must be randomly moved relative to that of the other pattern, while keeping the spatial structure of each pattern taken in isolation.\n\nOne way to do this randomization is to shift one of the two patterns horizontally and/or vertically by a random distance. The part of the pattern that \"comes out\" on one side of the window is attached to the other side. This method is called a toroidal shift, because by connecting the top and bottom as well as the left and right of a rectangular surface, we obtain the shape of a torus (a three-dimensional \"donut\").\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-18_2719c0934b27fb43697dae326b9542d1'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-18-1.png){width=672}\n:::\n:::\n\n\nThe graph above shows a translation of the green pattern to the right, while the orange pattern remains in the same place. The green points in the shaded area are brought back on the other side. Note that while this method generally preserves the structure of each pattern while randomizing their relative position, it can have some drawbacks, such as dividing point clusters that are near the cutoff point.\n\nLet's now check whether the position of the two species (birch and poplar) is independent in our plot. The function `Kcross` calculates the bivariate $K_{ij}$, we must specify which type of point (mark) is considered as the focal species $i$ and the neighbouring species $j$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-19_4dcee95d46a21e9800bad80559da1926'}\n\n```{.r .cell-code}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-19-1.png){width=672}\n:::\n:::\n\n\nHere, the observed $K$ is lower than the theoretical value, indicating a possible repulsion between the two patterns.\n\nTo determine the envelope of the $K$ under the null hypothesis of independence of the two patterns, we must specify that the simulations are based on a translation of the patterns. We indicate that the simulations use the function `rshift` (random translation) with the argument `simulate = function(x) rshift(x, which = \"B\")`; here, the `x` argument in `simulate` corresponds to the original point pattern and the `which` argument indicates which of the patterns is translated. As in the previous case, the arguments needed for `Kcross`, i.e. `i`, `j` and `correction`, must be repeated in the `envelope` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-20_0ac003a9d3ff5047aa7ab53d990626d2'}\n\n```{.r .cell-code}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-20-1.png){width=672}\n:::\n:::\n\n\nHere, the observed curve is totally within the envelope, so we do not reject the null hypothesis of independence of the two patterns.\n\n### Questions\n\n1. What would be one reason for our choice to translate the points of the birch rather than poplar?\n\n2. Would the simulations generated by random translation be a good null model if the two patterns were heterogeneous?\n\n## Marked point patterns\n\nThe [fir.csv](data/fir.csv) dataset contains the $(x, y)$ coordinates of 822 fir trees in a 1 hectare plot and their status (A = alive, D = dead) following a spruce budworm outbreak.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-21_facfc5f20aa18027ead60eade7d1f3e8'}\n\n```{.r .cell-code}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y status\n1 31.50 1.00 A\n2 85.25 30.75 D\n3 83.50 38.50 A\n4 84.00 37.75 A\n5 83.00 33.25 A\n6 33.25 0.25 A\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-22_8ca66569ad633346ebe5c4d72856947e'}\n\n```{.r .cell-code}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-22-1.png){width=672}\n:::\n:::\n\n\nSuppose that we want to check whether fir mortality is independent or correlated between neighbouring trees. How does this question differ from the previous example, where we wanted to know if the position of the points of two species was independent?\n\nIn the previous example, the independence or interaction between the species referred to the formation of the pattern itself (whether or not seedlings of one species establish near those of the other species). Here, the characteristic of interest (survival) occurs after the establishment of the pattern, assuming that all those trees were alive at first and that some died as a result of the outbreak. So we take the position of the trees as fixed and we want to know whether the distribution of status (dead, alive) among those trees is random or shows a spatial pattern.\n\nIn Wiegand and Moloney's textbook, the first situation (establishment of seedlings of two species) is called a bivariate pattern, so it is really two interacting patterns, while the second is a single pattern with a qualitative *mark*. The *spatstat* package in R does not differentiate between the two in terms of pattern definition (types of points are always represented by the `marks` argument), but the analysis methods applied to the two questions differ.\n\nIn the case of a pattern with a qualitative mark, we can define a *mark connection function* $p_{ij}(r)$. For two points separated by a distance $r$, this function gives the probability that the first point has the mark $i$ and the second the mark $j$. Under the null hypothesis where the marks are independent, this probability is equal to the product of the proportions of each mark in the entire pattern, $p_{ij}(r) = p_i p_j$ independently of $r$.\n\nIn *spatstat*, the mark connection function is computed with the `markconnect` function, where the marks $i$ and $j$ and the type of edge correction must be specified. In our example, we see that two closely spaced points are less likely to have a different status (A and D) than expected under the assumption of random and independent distribution of marks (red dotted line).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-23_ea3bee43b75cb2228264e2bba732134d'}\n\n```{.r .cell-code}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-23-1.png){width=672}\n:::\n:::\n\n\nIn this graph, the fluctuations in the function are due to the estimation error of a continuous $r$ function from a limited number of discrete point pairs.\n\nTo simulate the null model in this case, we use the `rlabel` function, which randomly reassigns the marks among the points of the pattern, keeping the points' positions fixed.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-24_b5961fa24a7b5816b3a04f809a6a674c'}\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-24-1.png){width=672}\n:::\n:::\n\n\nNote that since the `rlabel` function has only one required argument corresponding to the original point pattern, it was not necessary to specify: `simulate = function(x) rlabel(x)`.\n\nHere are the results for tree pairs of the same status A or D:\n\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-25_b52d50f419fba628767a4e51fec12988'}\n\n```{.r .cell-code}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-25-1.png){width=960}\n:::\n:::\n\n\nIt therefore appears that fir mortality due to this outbreak is spatially aggregated, since trees located in close proximity to each other have a greater probability of sharing the same status than predicted by the null hypothesis.\n\n## References\n\nFortin, M.-J. and Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK.\n\nWiegand, T. and Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nThe dataset in the last example is a subet of the Lake Duparquet Research and Teaching Forest (LDRTF) data, available on Dryad [here](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n# Solutions\n\n### Exercise 1\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-26_b3fd18c8b6c242843edf3836d1967112'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-26-1.png){width=672}\n:::\n:::\n\n\nPoplar seedlings seem to be significantly aggregated according to the $K$ function.\n\n### Exercise 2\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-27_acce28ca3e937720b0224ba60b6c233b'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-27-1.png){width=672}\n:::\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-27-2.png){width=672}\n:::\n:::\n\n\nHere, as we estimate density variations at a larger scale, even after accounting for this variation, the poplar seedlings seem to be aggregated at a small scale.\n\n# Spatial correlation of a variable {#spatial-correlation}\n\n\n\n\n\nCorrelation between measurements of a variable taken at nearby points often occurs in environmental data. This principle is sometimes referred to as the \"first law of geography\" and is expressed in the following quote from Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things\".\n\nIn statistics, we often refer to *autocorrelation* as the correlation between measurements of the same variable taken at different times (temporal autocorrelation) or places (spatial autocorrelation).\n\n## Intrinsic or induced dependence\n\nThere are two basic types of spatial dependence on a measured variable $y$: an *intrinsic* dependence on $y$, or a dependence *induced* by external variables influencing $y$, which are themselves spatially correlated.\n\nFor example, suppose that the abundance of a species is correlated between two sites located near each other:\n\n- this spatial dependence can be induced if it is due to a spatial correlation of habitat factors that are favorable or unfavorable to the species;\n\n- or it can be intrinsic if it is due to the dispersion of individuals to nearby sites.\n\nIn many cases, both types of dependence affect a given variable.\n\nIf the dependence is simply induced and the external variables that cause it are included in the model explaining $y$, then the model residuals will be independent and we can use all the methods already seen that ignore spatial correlation.\n\nHowever, if the dependence is intrinsic or due to unmeasured external factors, then the spatial correlation of the residuals in the model will have to be taken into account.\n\n## Different ways to model spatial effects\n\nIn this training, we will directly model the spatial correlations of our data. It is useful to compare this approach to other ways of including spatial aspects in a statistical model.\n\nFirst, we could include predictors in the model that represent position (e.g., longitude, latitude). Such predictors may be useful for detecting a systematic large-scale trend or gradient, whether or not the trend is linear (e.g., with a generalized additive model).\n\nIn contrast to this approach, the models we will see now serve to model a spatial correlation in the random fluctuations of a variable (i.e., in the residuals after removing any systematic effect).\n\nMixed models use random effects to represent the non-independence of data on the basis of their grouping, i.e., after accounting for systematic fixed effects, data from the same group are more similar (their residual variation is correlated) than data from different groups. These groups were sometimes defined according to spatial criteria (observations grouped into sites).\n\nHowever, in the context of a random group effect, all groups are as different from each other, e.g., two sites within 100 km of each other are no more or less similar than two sites 2 km apart.\n\nThe methods we will see here and in the next parts of the training therefore allow us to model non-independence on a continuous scale (closer = more correlated) rather than just discrete (hierarchy of groups).\n\n# Geostatistical models {#geostat-models}\n\nGeostatistics refers to a group of techniques that originated in the earth sciences. Geostatistics is concerned with variables that are continuously distributed in space and where a number of points are sampled to estimate this distribution. A classic example of these techniques comes from the mining field, where the aim was to create a map of the concentration of ore at a site from samples taken at different points on the site.\n\nFor these models, we will assume that $z(x, y)$ is a stationary spatial variable measured at points with coordinates $x$ and $y$.\n\n## Variogram\n\nA central aspect of geostatistics is the estimation of the variogram $\\gamma_z$ . The variogram is equal to half the mean square difference between the values of $z$ for two points $(x_i, y_i)$ and $(x_j, y_j)$ separated by a distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nIn this equation, the $\\text{E}$ function with the index $d_{ij}=h$ designates the statistical expectation (i.e., the mean) of the squared deviation between the values of $z$ for points separated by a distance $h$.\n\nIf we want instead to express the autocorrelation $\\rho_z(h)$ between measures of $z$ separated by a distance $h$, it is related to the variogram by the equation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\nwhere $\\sigma_z^2$ is the global variance of $z$.\n\nNote that $\\gamma_z = \\sigma_z^2$ when we reach a distance where the measurements of $z$ are independent, so $\\rho_z = 0$. In this case, we can see that $\\gamma_z$ is similar to a variance, although it is sometimes called \"semivariogram\" or \"semivariance\" because of the 1/2 factor in the above equation.\n\n## Theoretical models for the variogram\n\nSeveral parametric models have been proposed to represent the spatial correlation as a function of the distance between sampling points. Let us first consider a correlation that decreases exponentially:\n\n$$\\rho_z(h) = e^{-h/r}$$\n\nHere, $\\rho_z = 1$ for $h = 0$ and the correlation is multiplied by $1/e \\approx 0.37$ each time the distance increases by $r$. In this context, $r$ is called the *range* of the correlation.\n\nFrom the above equation, we can calculate the corresponding variogram.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nHere is a graphical representation of this variogram.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-28_db8b05730133a816cb7d6c558cbd7757'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-28-1.png){width=672}\n:::\n:::\n\n\nBecause of the exponential function, the value of $\\gamma$ at large distances approaches the global variance $\\sigma_z^2$ without exactly reaching it. This asymptote is called a *sill* in the geostatistical context and is represented by the symbol $s$.\n\nFinally, it is sometimes unrealistic to assume a perfect correlation when the distance tends towards 0, because of a possible variation of $z$ at a very small scale. A *nugget* effect, denoted $n$, can be added to the model so that $\\gamma$ approaches $n$ (rather than 0) if $h$ tends towards 0. The term nugget comes from the mining origin of these techniques, where a nugget could be the source of a sudden small-scale variation in the concentration of a mineral.\n\nBy adding the nugget effect, the remainder of the variogram is \"compressed\" to keep the same sill, resulting in the following equation.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nIn the *gstat* package that we use below, the term $(s-n)$ is called a *partial sill* or `psill` for the exponential portion of the variogram.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-29_76ce196068f7afb370f9fcd84ff0bf2d'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-29-1.png){width=672}\n:::\n:::\n\n\nIn addition to the exponential model, two other common theoretical models for the variogram are the Gaussian model (where the correlation follows a half-normal curve), and the spherical model (where the variogram increases linearly at the start and then curves and reaches the plateau at a distance equal to its range $r$). The spherical model thus allows the correlation to be exactly 0 at large distances, rather than gradually approaching zero in the case of the other models.\n\n| Model | $\\rho(h)$ | $\\gamma(h)$ |\n|------------------|-------------------------|-----------------------------|\n| Exponential | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$ |\n| Gaussian | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$ |\n| Spherical $(h < r)$ \\* | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$ |\n\n\\* For the spherical model, $\\rho = 0$ and $\\gamma = s$ if $h \\ge r$.\n\n\n::: {.cell fig.dim='[9,4]' hash='index_cache/html/unnamed-chunk-30_36d08077ec0b54caf8dbcbb8751648be'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-30-1.png){width=864}\n:::\n:::\n\n\n## Empirical variogram\n\nTo estimate $\\gamma_z(h)$ from empirical data, we need to define distance classes, thus grouping different distances within a margin of $\\pm \\delta$ around a distance $h$, then calculating the mean square deviation for the pairs of points in that distance class.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nWe will see in the next section how to estimate a variogram in R.\n\n## Regression model with spatial correlation\n\nThe following equation represents a multiple linear regression including residual spatial correlation:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nHere, $v$ designates the response variable and $u$ the predictors, to avoid confusion with the spatial coordinates $x$ and $y$.\n\nIn addition to the residual $\\epsilon$ that is independent between observations, the model includes a term $z$ that represents the spatially correlated portion of the residual variance.\n\nHere are suggested steps to apply this type of model:\n\n1. Fit the regression model without spatial correlation.\n\n2. Verify the presence of spatial correlation from the empirical variogram of the residuals.\n\n3. Fit one or more regression models with spatial correlation and select the one that shows the best fit to the data.\n\n# Geostatistical models in R\n\nThe *gstat* package contains functions related to geostatistics. For this example, we will use the `oxford` dataset from this package, which contains measurements of physical and chemical properties for 126 soil samples from a site, along with their coordinates `XCOORD` and `YCOORD`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-31_d42a00ecb66d27e6d127659ed2dfd66c'}\n\n```{.r .cell-code}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n'data.frame':\t126 obs. of 22 variables:\n $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...\n $ XCOORD : num 100 100 100 100 100 100 100 100 100 100 ...\n $ YCOORD : num 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...\n $ ELEV : num 598 597 610 615 610 595 580 590 598 588 ...\n $ PROFCLASS: Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 2 2 3 3 2 3 2 3 3 ...\n $ MAPCLASS : Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 3 3 3 3 2 2 3 3 3 ...\n $ VAL1 : num 3 3 4 4 3 3 4 4 4 3 ...\n $ CHR1 : num 3 3 3 3 3 2 2 3 3 3 ...\n $ LIME1 : num 4 4 4 4 4 0 2 1 0 4 ...\n $ VAL2 : num 4 4 5 8 8 4 8 4 8 8 ...\n $ CHR2 : num 4 4 4 2 2 4 2 4 2 2 ...\n $ LIME2 : num 4 4 4 5 5 4 5 4 5 5 ...\n $ DEPTHCM : num 61 91 46 20 20 91 30 61 38 25 ...\n $ DEP2LIME : num 20 20 20 20 20 20 20 20 40 20 ...\n $ PCLAY1 : num 15 25 20 20 18 25 25 35 35 12 ...\n $ PCLAY2 : num 10 10 20 10 10 20 10 20 10 10 ...\n $ MG1 : num 63 58 55 60 88 168 99 59 233 87 ...\n $ OM1 : num 5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...\n $ CEC1 : num 20 22 17 23 27 27 21 14 27 20 ...\n $ PH1 : num 7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...\n $ PHOS1 : num 13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...\n $ POT1 : num 196 157 115 172 238 164 312 184 123 282 ...\n```\n:::\n:::\n\n\nSuppose that we want to model the magnesium concentration (`MG1`), represented as a function of the spatial position in the following graph.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-32_cf223f9501bba263c237e06328f21358'}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-32-1.png){width=672}\n:::\n:::\n\n\nNote that the $x$ and $y$ axes have been inverted to save space. The `coord_fixed()` function of *ggplot2* ensures that the scale is the same on both axes, which is useful for representing spatial data.\n\nWe can immediately see that these measurements were taken on a 100 m grid. It seems that the magnesium concentration is spatially correlated, although it may be a correlation induced by another variable. In particular, we know that the concentration of magnesium is negatively related to the soil pH (`PH1`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-33_a9ec8bcf320a9e52d1252e4725f81bf7'}\n\n```{.r .cell-code}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-33-1.png){width=672}\n:::\n:::\n\n\nThe `variogram` function of *gstat* is used to estimate a variogram from empirical data. Here is the result obtained for the variable `MG1`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-34_c3f828164d93cc2b3d38500281fe87b9'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n np dist gamma dir.hor dir.ver id\n1 225 100.0000 1601.404 0 0 var1\n2 200 141.4214 1950.805 0 0 var1\n3 548 215.0773 2171.231 0 0 var1\n4 623 303.6283 2422.245 0 0 var1\n5 258 360.5551 2704.366 0 0 var1\n6 144 400.0000 2948.774 0 0 var1\n7 570 427.5569 2994.621 0 0 var1\n8 291 500.0000 3402.058 0 0 var1\n9 366 522.8801 3844.165 0 0 var1\n10 200 577.1759 3603.060 0 0 var1\n11 458 619.8400 3816.595 0 0 var1\n12 90 670.8204 3345.739 0 0 var1\n```\n:::\n:::\n\n\nThe formula `MG1 ~ 1` indicates that no linear predictor is included in this model, while the argument `locations` indicates which variables in the data frame correspond to the spatial coordinates.\n\nIn the resulting table, `gamma` is the value of the variogram for the distance class centered on `dist`, while `np` is the number of pairs of points in that class. Here, since the points are located on a grid, we obtain regular distance classes (e.g.: 100 m for neighboring points on the grid, 141 m for diagonal neighbors, etc.).\n\nHere, we limit ourselves to the estimation of isotropic variograms, i.e. the variogram depends only on the distance between the two points and not on the direction. Although we do not have time to see it today, it is possible with *gstat* to estimate the variogram separately in different directions.\n\nWe can illustrate the variogram with `plot`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-35_dced0e607669b721d5ef7df8faa51cb2'}\n\n```{.r .cell-code}\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-35-1.png){width=672}\n:::\n:::\n\n\nIf we want to estimate the residual spatial correlation of `MG1` after including the effect of `PH1`, we can add that predictor to the formula.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-36_41f230bd5a30f1cb7752e89e361c338a'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-36-1.png){width=672}\n:::\n:::\n\n\nIncluding the effect of pH, the range of the spatial correlation seems to decrease, while the plateau is reached around 300 m. It even seems that the variogram decreases beyond 400 m. In general, we assume that the variance between two points does not decrease with distance, unless there is a periodic spatial pattern.\n\nThe function `fit.variogram` accepts as arguments a variogram estimated from the data, as well as a theoretical model described in a `vgm` function, and then estimates the parameters of that model according to the data. The fitting is done by the method of least squares.\n\nFor example, `vgm(\"Exp\")` means we want to fit an exponential model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-37_b852e100bd05bd7def030586576b386c'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nThere is no nugget effect, because `psill = 0` for the `Nug` (nugget) part of the model. The exponential part has a sill at 1951 and a range of 95 m.\n\nTo compare different models, a vector of model names can be given to `vgm`. In the following example, we include the exponential, gaussian (\"Gau\") and spherical (\"Sph\") models.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-38_5af5359b8627d50d97bf2175f4728362'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nThe function gives us the result of the model with the best fit (lowest sum of squared deviations), which here is the same exponential model.\n\nFinally, we can superimpose the theoretical model and the empirical variogram on the same graph.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-39_acab997244a63895e5eaedd7b9e62465'}\n\n```{.r .cell-code}\nplot(var_mg, vfit, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-39-1.png){width=672}\n:::\n:::\n\n\n## Regression with spatial correlation\n\nWe have seen above that the *gstat* package allows us to estimate the variogram of the residuals of a linear model. In our example, the magnesium concentration was modeled as a function of pH, with spatially correlated residuals.\n\nAnother tool to fit this same type of model is the `gls` function of the *nlme* package, which is included with the installation of R.\n\nThis function applies the *generalized least squares* method to fit linear regression models when the residuals are not independent or when the residual variance is not the same for all observations. Since the estimates of the coefficients depend on the estimated correlations between the residuals and the residuals themselves depend on the coefficients, the model is fitted by an iterative algorithm:\n\n1. A classical linear regression model (without correlation) is fitted to obtain residuals.\n\n2. The spatial correlation model (variogram) is fitted with those residuals.\n\n3. The regression coefficients are re-estimated, now taking into account the correlations.\n\nSteps 2 and 3 are repeated until the estimates are stable at a desired precision.\n\nHere is the application of this method to the same model for the magnesium concentration in the `oxford` dataset. In the `correlation` argument of `gls`, we specify an exponential correlation model as a function of our spatial coordinates and we include a possible nugget effect.\n\nIn addition to the exponential correlation `corExp`, the `gls` function can also estimate a Gaussian (`corGaus`) or spherical (`corSpher`) model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-40_0b3199847595fbf9b39d87618cbffc8f'}\n\n```{.r .cell-code}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: MG1 ~ PH1 \n Data: oxford \n AIC BIC logLik\n 1278.65 1292.751 -634.325\n\nCorrelation Structure: Exponential spatial correlation\n Formula: ~XCOORD + YCOORD \n Parameter estimate(s):\n range nugget \n478.0322964 0.2944753 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 391.1387 50.42343 7.757084 0\nPH1 -41.0836 6.15662 -6.673079 0\n\n Correlation: \n (Intr)\nPH1 -0.891\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-2.1846957 -0.6684520 -0.3687813 0.4627580 3.1918604 \n\nResidual standard error: 53.8233 \nDegrees of freedom: 126 total; 124 residual\n```\n:::\n:::\n\n\nTo compare this result with the adjusted variogram above, the parameters given by `gls` must be transformed. The range has the same meaning in both cases and corresponds to 478 m for the result of `gls`. The global variance of the residuals is the square of `Residual standard error`. The nugget effect here (0.294) is expressed as a fraction of that variance. Finally, to obtain the partial sill of the exponential part, the nugget effect must be subtracted from the total variance.\n\nAfter performing these calculations, we can give these parameters to the `vgm` function of *gstat* to superimpose this variogram estimated by `gls` on our variogram of the residuals of the classical linear model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-41_bdace2c5570a84ab706e3cc520568742'}\n\n```{.r .cell-code}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-41-1.png){width=672}\n:::\n:::\n\n\nDoes the model fit the data less well here? In fact, this empirical variogram represented by the points was obtained from the residuals of the linear model ignoring the spatial correlation, so it is a biased estimate of the actual spatial correlations. The method is still adequate to quickly check if spatial correlations are present. However, to simultaneously fit the regression coefficients and the spatial correlation parameters, the generalized least squares (GLS) approach is preferable and will produce more accurate estimates.\n\nFinally, note that the result of the `gls` model also gives the AIC, which we can use to compare the fit of different models (with different predictors or different forms of spatial correlation).\n\n## Exercise\n\nThe [bryo_belg.csv](data/bryo_belg.csv) dataset is adapted from the data of this study:\n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nThis data frame shows the specific richness of ground bryophytes (*richness*) for different sampling points in the Belgian province of Limburg, with their position *(x, y)* in km, in addition to information on the proportion of forest (*forest*) and wetlands (*wetland*) in a 1 km\\^2\\$ cell containing the sampling point.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-42_c25ae6f03a62752dff743e2d40b205a0'}\n\n```{.r .cell-code}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n richness forest wetland x y\n1 9 0.2556721 0.5036614 228.9516 220.8869\n2 6 0.6449114 0.1172068 227.6714 219.8613\n3 5 0.5039905 0.6327003 228.8252 220.1073\n4 3 0.5987329 0.2432942 229.2775 218.9035\n5 2 0.7600775 0.1163538 209.2435 215.2414\n6 10 0.6865434 0.0000000 210.4142 216.5579\n```\n:::\n:::\n\n\nFor this exercise, we will use the square root of the specific richness as the response variable. The square root transformation often allows to homogenize the variance of the count data in order to apply a linear regression.\n\na) Fit a linear model of the transformed species richness to the proportion of forest and wetlands, without taking into account spatial correlations. What is the effect of the two predictors in this model?\n\nb) Calculate the empirical variogram of the model residuals in (a). Does there appear to be a spatial correlation between the points?\n\n*Note*: The `cutoff` argument to the `variogram` function specifies the maximum distance at which the variogram is calculated. You can manually adjust this value to get a good view of the sill.\n\nc) Re-fit the linear model in (a) with the `gls` function in the *nlme* package, trying different types of spatial correlations (exponential, Gaussian, spherical). Compare the models (including the one without spatial correlation) with the AIC.\n\nd) What is the effect of the proportion of forests and wetlands according to the model in (c)? Explain the differences between the conclusions of this model and the model in (a).\n\n# Kriging\n\nAs mentioned before, a common application of geostatistical models is to predict the value of the response variable at unsampled locations, a form of spatial interpolation called kriging (pronounced with a hard \"g\").\n\nThere are three basic types of kriging based on the assumptions made about the response variable:\n\n- Ordinary kriging: Stationary variable with an unknown mean.\n\n- Simple kriging: Stationary variable with a known mean.\n\n- Universal kriging: Variable with a trend given by a linear or non-linear model.\n\nFor all kriging methods, the predictions at a new point are a weighted mean of the values at known points. These weights are chosen so that kriging provides the best linear unbiased prediction of the response variable, if the model assumptions (in particular the variogram) are correct. That is, among all possible unbiased predictions, the weights are chosen to give the minimum mean square error. Kriging also provides an estimate of the uncertainty of each prediction.\n\nWhile we will not present the detailed kriging equations here, the weights depend on both the correlations (estimated by the variogram) between the sampled points and the new point, as well of the correlations between the sampled points themselves. In other words, sampled points near the new point are given more weight, but isolated sampled points are also given more weight, because sample points close to each other provide redundant information.\n\nKriging is an interpolation method, so the prediction at a sampled point will always be equal to the measured value (the measurement is supposed to have no error, just spatial variation). However, in the presence of a nugget effect, any small displacement from the sampled location will show variability according to the nugget.\n\nIn the example below, we generate a new dataset composed of randomly-generated (x, y) coordinates within the study area as well as randomly-generated pH values based on the `oxford` data. We then apply the function `krige` to predict the magnesium values at these new points. Note that we specify the variogram derived from the GLS results in the `model` argument to `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-43_f81acecbca5eefa202e114614faebc54'}\n\n```{.r .cell-code}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[using universal kriging]\n```\n:::\n\n```{.r .cell-code}\nhead(pred)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD var1.pred var1.var\n1 227.0169 162.1185 47.13065 1269.002\n2 418.9136 465.9013 79.68437 1427.269\n3 578.5943 2032.7477 60.30539 1264.471\n4 376.2734 1530.7193 127.22366 1412.875\n5 591.5336 421.6290 105.88124 1375.485\n6 355.7369 404.3378 127.73055 1250.114\n```\n:::\n:::\n\n\nThe result of `krige` includes the new point coordinates, the prediction of the variable `var1.pred` along with its estimated variance `var1.var`. In the graph below, we show the mean MG1 predictions from kriging (triangles) along with the measurements (circles).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-44_8a46f7bb0f5137f5dae6fef418b6b61e'}\n\n```{.r .cell-code}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-44-1.png){width=672}\n:::\n:::\n\n\nThe estimated mean and variance from kriging can be used to simulate possible values of the variable at each new point, conditional on the sampled values. In the example below, we performed 4 conditional simulations by adding the argument `nsim = 4` to the same `krige` instruction.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-45_15e6975ae8f74fb12acd4b9d15610303'}\n\n```{.r .cell-code}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ndrawing 4 GLS realisations of beta...\n[using conditional Gaussian simulation]\n```\n:::\n\n```{.r .cell-code}\nhead(sim_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD sim1 sim2 sim3 sim4\n1 227.0169 162.1185 9.638739 34.53159 46.08685 77.86376\n2 418.9136 465.9013 60.029144 20.17179 76.46333 59.57924\n3 578.5943 2032.7477 100.791412 77.47887 73.50058 59.40279\n4 376.2734 1530.7193 112.615730 150.96664 78.76125 146.83928\n5 591.5336 421.6290 70.925240 72.85522 153.90610 126.63758\n6 355.7369 404.3378 161.608032 118.93640 134.45695 142.20074\n```\n:::\n:::\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-46_dc67747871861d460645cc2d898c2797'}\n\n```{.r .cell-code}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-46-1.png){width=960}\n:::\n:::\n\n\n# Solutions\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-47_46625f4b0eb7a89df12358298784d779'}\n\n```{.r .cell-code}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = sqrt(richness) ~ forest + wetland, data = bryo_belg)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.8847 -0.4622 0.0545 0.4974 2.3116 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 2.34159 0.08369 27.981 < 2e-16 ***\nforest 1.11883 0.13925 8.034 9.74e-15 ***\nwetland -0.59264 0.17216 -3.442 0.000635 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.7095 on 417 degrees of freedom\nMultiple R-squared: 0.2231,\tAdjusted R-squared: 0.2193 \nF-statistic: 59.86 on 2 and 417 DF, p-value: < 2.2e-16\n```\n:::\n:::\n\n\nThe proportion of forest has a significant positive effect and the proportion of wetlands has a significant negative effect on bryophyte richness.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-48_9f1b47ee10d87121e3853375afbb8273'}\n\n```{.r .cell-code}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-1.png){width=672}\n:::\n:::\n\n\nThe variogram is increasing from 0 to at least 40 km, so there appears to be spatial correlations in the model residuals.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-49_2a94f7a8b64ea0bb9127648e255fcbd3'}\n\n```{.r .cell-code}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-50_9d306abf18fdbd164c34d87f9f9832d8'}\n\n```{.r .cell-code}\nAIC(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 908.6358\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_exp)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 867.822\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_gaus)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 870.9592\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 866.9117\n```\n:::\n:::\n\n\nThe spherical model has the smallest AIC.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-51_5c26da31bc0b2db751ce60929eb7b8be'}\n\n```{.r .cell-code}\nsummary(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: sqrt(richness) ~ forest + wetland \n Data: bryo_belg \n AIC BIC logLik\n 866.9117 891.1102 -427.4558\n\nCorrelation Structure: Spherical spatial correlation\n Formula: ~x + y \n Parameter estimate(s):\n range nugget \n43.1727664 0.6063187 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 2.0368769 0.2481636 8.207800 0.000\nforest 0.6989844 0.1481690 4.717481 0.000\nwetland -0.2441130 0.1809118 -1.349348 0.178\n\n Correlation: \n (Intr) forest\nforest -0.251 \nwetland -0.235 0.241\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-1.75204183 -0.06568688 0.61415597 1.15240370 3.23322743 \n\nResidual standard error: 0.7998264 \nDegrees of freedom: 420 total; 417 residual\n```\n:::\n:::\n\n\nBoth effects are less important in magnitude and the effect of wetlands is not significant anymore. As is the case for other types of non-independent residuals, the \"effective sample size\" here is less than the number of points, since points close to each other provide redundant information. Therefore, the relationship between predictors and response is less clear than given by the model assuming all these points were independent.\n\nNote that the results for all three `gls` models are quite similar, so the choice to include spatial correlations was more important than the exact shape assumed for the variogram.\n\n\n# Areal data {#areal-data}\n\nAreal data are variables measured for regions of space, defined by polygons. This type of data is more common in the social sciences, human geography and epidemiology, where data is often available at the scale of administrative divisions.\n\nThis type of data also appears frequently in natural resource management. For example, the following map shows the forest management units of the Ministère de la Forêt, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSuppose that a variable is available at the level of these management units. How can we model the spatial correlation between units that are spatially close together?\n\nOne option would be to apply the geostatistical methods seen before, for example by calculating the distance between the centers of the polygons.\n\nAnother option, which is more adapted for areal data, is to define a network where each region is connected to neighbouring regions by a link. It is then assumed that the variables are directly correlated between neighbouring regions only. (Note, however, that direct correlations between immediate neighbours also generate indirect correlations for a chain of neighbours).\n\nIn this type of model, the correlation is not necessarily the same from one link to another. In this case, each link in the network can be associated with a *weight* representing its importance for the spatial correlation. We represent these weights by a matrix $W$ where $w_{ij}$ is the weight of the link between regions $i$ and $j$. A region has no link with itself, so $w_{ii} = 0$.\n\nA simple choice for $W$ is to assign a weight equal to 1 if the regions are neighbours, otherwise 0 (binary weight).\n\nIn addition to land divisions represented by polygons, another example of areal data consists of a grid where the variable is calculated for each cell of the grid. In this case, a cell generally has 4 or 8 neighbouring cells, depending on whether diagonals are included or not.\n\n# Moran's I {#moran-i}\n\nBefore discussing spatial autocorrelation models, we present Moran's $I$ statistic, which allows us to test whether a significant correlation is present between neighbouring regions.\n\nMoran's $I$ is a spatial autocorrelation coefficient of $z$, weighted by the $w_{ij}$. It therefore takes values between -1 and 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nIn this equation, we recognize the expression of a correlation, which is the product of the deviations from the mean for two variables $z_i$ and $z_j$, divided by the product of their standard deviations (it is the same variable here, so we get the variance). The contribution of each pair $(i, j)$ is multiplied by its weight $w_{ij}$ and the term on the left (the number of regions $N$ divided by the sum of the weights) ensures that the result is bounded between -1 and 1.\n\nSince the distribution of $I$ is known in the absence of spatial autocorrelation, this statistic serves to test the null hypothesis that there is no spatial correlation between neighbouring regions.\n\nAlthough we will not see an example in this course, Moran's $I$ can also be applied to point data. In this case, we divide the pairs of points into distance classes and calculate $I$ for each distance class; the weight $w_{ij} = 1$ if the distance between $i$ and $j$ is in the desired distance class, otherwise 0.\n\n# Spatial autoregression models {#spatial-autoreg}\n\nLet us recall the formula for a linear regression with spatial dependence:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nwhere $z$ is the portion of the residual variance that is spatially correlated.\n\nThere are two main types of autoregressive models to represent the spatial dependence of $z$: conditional autoregression (CAR) and simultaneous autoregressive (SAR).\n\n## Conditional autoregressive (CAR) model\n\nIn the conditional autoregressive model, the value of $z_i$ for the region $i$ follows a normal distribution: its mean depends on the value $z_j$ of neighbouring regions, multiplied by the weight $w_{ij}$ and a correlation coefficient $\\rho$; its standard deviation $\\sigma_{z_i}$ may vary from one region to another.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nIn this model, if $w_{ij}$ is a binary matrix (0 for non-neighbours, 1 for neighbours), then $\\rho$ is the coefficient of partial correlation between neighbouring regions. This is similar to a first-order autoregressive model in the context of time series, where the autoregression coefficient indicates the partial correlation.\n\n## Simultaneous autoregressive (SAR) model\n\nIn the simultaneous autoregressive model, the value of $z_i$ is given directly by the sum of contributions from neighbouring values $z_j$, multiplied by $\\rho w_{ij}$, with an independent residual $\\nu_i$ of standard deviation $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nAt first glance, this looks like a temporal autoregressive model. However, there is an important conceptual difference. For temporal models, the causal influence is directed in only one direction: $v(t-2)$ affects $v(t-1)$ which then affects $v(t)$. For a spatial model, each $z_j$ that affects $z_i$ depends in turn on $z_i$. Thus, to determine the joint distribution of $z$, a system of equations must be solved simultaneously (hence the name of the model).\n\nFor this reason, although this model resembles the formula of CAR model, the solutions of the two models differ and in the case of SAR, the coefficient $\\rho$ is not directly equal to the partial correlation due to each neighbouring region.\n\nFor more details on the mathematical aspects of these models, see the article by Ver Hoef et al. (2018) suggested in reference.\n\nFor the moment, we will consider SAR and CAR as two types of possible models to represent a spatial correlation on a network. We can always fit several models and compare them with the AIC to choose the best form of correlation or the best weight matrix.\n\nThe CAR and SAR models share an advantage over geostatistical models in terms of efficiency. In a geostatistical model, spatial correlations are defined between each pair of points, although they become negligible as distance increases. For a CAR or SAR model, only neighbouring regions contribute and most weights are equal to 0, making these models faster to fit than a geostatistical model when the data are massive.\n\n# Analysis of areal data in R {#analysis-areal}\n\nTo illustrate the analysis of areal data in R, we load the packages *sf* (to read geospatial data), *spdep* (to define spatial networks and calculate Moran's $I$) and *spatialreg* (for SAR and CAR models).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-52_bbb39418b6f206ecf18ea280d1186280'}\n\n```{.r .cell-code}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n:::\n\n\nAs an example, we will use a dataset that presents some of the results of the 2018 provincial election in Quebec, with population characteristics of each riding. This data is included in a *shapefile* (.shp) file type, which we can read with the `read_sf` function of the *sf* package.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-53_57544cb924c4156b05da2ae4a2ea020a'}\n\n```{.r .cell-code}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 9 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 97879.03 ymin: 174515.3 xmax: 694261.1 ymax: 599757.1\nProjected CRS: LambertAQ\n# A tibble: 6 × 10\n circ age_moy pct_frn pct_prp rev_med propCAQ propPQ propPLQ propQS\n \n1 Abitibi-Est 40.8 0.963 0.644 34518 42.7 19.5 18.8 15.7\n2 Abitibi-Ouest 42.2 0.987 0.735 33234 34.1 33.3 11.3 16.6\n3 Acadie 40.3 0.573 0.403 25391 16.5 9 53.8 13.8\n4 Anjou-Louis-Riel 43.5 0.821 0.416 31275 28.9 14.7 39.1 14.5\n5 Argenteuil 43.3 0.858 0.766 31097 38.9 21.1 17.4 12.2\n6 Arthabaska 43.4 0.989 0.679 30082 61.8 9.4 11.4 12.6\n# … with 1 more variable: geometry \n```\n:::\n:::\n\n\n*Note*: The dataset is actually composed of 4 files with the extensions .dbf, .prj, .shp and .shx, but it is sufficient to write the name of the .shp file in `read_sf`.\n\nThe columns of the dataset are, in order:\n\n- the name of the electoral riding (`circ`);\n- four characteristics of the population (`age_moy` = mean age, `pct_frn` = fraction of the population that speaks mainly French at home, `pct_prp` = fraction of households that own their home, `rev_med` = median income);\n- four columns showing the fraction of votes obtained by the main parties (CAQ, PQ, PLQ, QS);\n- a `geometry` column that contains the geometric object (multipolygon) corresponding to the riding.\n\nTo illustrate one of the variables on a map, we call the `plot` function with the name of the column in square brackets and quotation marks.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-54_b911c1230b37d88999c315735187b9c4'}\n\n```{.r .cell-code}\nplot(elect2018[\"rev_med\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-54-1.png){width=672}\n:::\n:::\n\n\nIn this example, we want to model the fraction of votes obtained by the CAQ based on the characteristics of the population in each riding and taking into account the spatial correlations between neighbouring ridings.\n\n## Definition of the neighbourhood network\n\nThe `poly2nb` function of the *spdep* package defines a neighbourhood network from polygons. The result `vois` is a list of 125 elements where each element contains the indices of the neighbouring (bordering) polygons of a given polygon.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-55_98b699432f680855147ba1bd583f3497'}\n\n```{.r .cell-code}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 2 37 63 88 101 117\n```\n:::\n:::\n\n\nThus, the first riding (Abitibi-Est) has 6 neighbouring ridings, for which the names can be found as follows:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-56_1fa15a9556e3ec5f51ffe127e1e42830'}\n\n```{.r .cell-code}\nelect2018$circ[vois[[1]]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"Abitibi-Ouest\" \"Gatineau\" \n[3] \"Laviolette-Saint-Maurice\" \"Pontiac\" \n[5] \"Rouyn-Noranda-Témiscamingue\" \"Ungava\" \n```\n:::\n:::\n\n\nWe can illustrate this network by extracting the coordinates of the center of each district, creating a blank map with `plot(elect2018[\"geometry\"])`, then adding the network as an additional layer with `plot(vois, add = TRUE, coords = coords)`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-57_f0d7bd96b26b0a6cd39daec9f4aad58b'}\n\n```{.r .cell-code}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-57-1.png){width=672}\n:::\n:::\n\n\nWe can \"zoom\" on southern Québec by choosing the limits `xlim` and `ylim`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-58_1fa7ea9cbb36326317c26af33b739d1c'}\n\n```{.r .cell-code}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-58-1.png){width=672}\n:::\n:::\n\n\nWe still have to add weights to each network link with the `nb2listw` function. The style of weights \"B\" corresponds to binary weights, i.e. 1 for the presence of link and 0 for the absence of link between two ridings.\n\nOnce these weights are defined, we can verify with Moran's test whether there is a significant autocorrelation of votes obtained by the CAQ between neighbouring ridings.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-59_94da4f87bfc6fa6486cce26e9c1ed239'}\n\n```{.r .cell-code}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: elect2018$propCAQ \nweights: poids \n\nMoran I statistic standard deviate = 13.148, p-value < 2.2e-16\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.680607768 -0.008064516 0.002743472 \n```\n:::\n:::\n\n\nThe value $I = 0.68$ is very significant judging by the $p$-value of the test.\n\nLet's verify if the spatial correlation persists after taking into account the four characteristics of the population, therefore by inspecting the residuals of a linear model including these four predictors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-60_48eb067e5cfdccfc3e81ace94767cddc'}\n\n```{.r .cell-code}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018)\n\nResiduals:\n Min 1Q Median 3Q Max \n-30.9890 -4.4878 0.0562 6.2653 25.8146 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 1.354e+01 1.836e+01 0.737 0.463 \nage_moy -9.170e-01 3.855e-01 -2.378 0.019 * \npct_frn 4.588e+01 5.202e+00 8.820 1.09e-14 ***\npct_prp 3.582e+01 6.527e+00 5.488 2.31e-07 ***\nrev_med -2.624e-05 2.465e-04 -0.106 0.915 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 9.409 on 120 degrees of freedom\nMultiple R-squared: 0.6096,\tAdjusted R-squared: 0.5965 \nF-statistic: 46.84 on 4 and 120 DF, p-value: < 2.2e-16\n```\n:::\n\n```{.r .cell-code}\nmoran.test(residuals(elect_lm), poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: residuals(elect_lm) \nweights: poids \n\nMoran I statistic standard deviate = 6.7047, p-value = 1.009e-11\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.340083290 -0.008064516 0.002696300 \n```\n:::\n:::\n\n\nMoran's $I$ has decreased but remains significant, so some of the previous correlation was induced by these predictors, but there remains a spatial correlation due to other factors.\n\n## Spatial autoregression models\n\nFinally, we fit SAR and CAR models to these data with the `spautolm` (*spatial autoregressive linear model*) function of *spatialreg*. Here is the code for a SAR model including the effect of the same four predictors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-61_13bb8dc5c63cce02c362b41c905f9de5'}\n\n```{.r .cell-code}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\n\nResiduals:\n Min 1Q Median 3Q Max \n-23.08342 -4.10573 0.24274 4.29941 23.08245 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 15.09421119 16.52357745 0.9135 0.36098\nage_moy -0.70481703 0.32204139 -2.1886 0.02863\npct_frn 39.09375061 5.43653962 7.1909 6.435e-13\npct_prp 14.32329345 6.96492611 2.0565 0.03974\nrev_med 0.00016730 0.00023209 0.7208 0.47101\n\nLambda: 0.12887 LR test value: 42.274 p-value: 7.9339e-11 \nNumerical Hessian standard error of lambda: 0.012069 \n\nLog likelihood: -433.8862 \nML residual variance (sigma squared): 53.028, (sigma: 7.282)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 881.77\n```\n:::\n:::\n\n\nThe value given by `Lambda` in the summary corresponds to the coefficient $\\rho$ in our description of the model. The likelihood-ratio test (`LR test`) confirms that this residual spatial correlation (after controlling for the effect of predictors) is significant.\n\nThe estimated effects for the predictors are similar to those of the linear model without spatial correlation. The effects of mean age, fraction of francophones and fraction of homeowners remain significant, although their magnitude has decreased somewhat.\n\nTo fit a CAR rather than SAR model, we must specify `family = \"CAR\"`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-62_29349c4a3573934d0da78be8a806d927'}\n\n```{.r .cell-code}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-21.73315 -4.24623 -0.24369 3.44228 23.43749 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 16.57164696 16.84155327 0.9840 0.325128\nage_moy -0.79072151 0.32972225 -2.3981 0.016478\npct_frn 38.99116707 5.43667482 7.1719 7.399e-13\npct_prp 17.98557474 6.80333470 2.6436 0.008202\nrev_med 0.00012639 0.00023106 0.5470 0.584364\n\nLambda: 0.15517 LR test value: 40.532 p-value: 1.9344e-10 \nNumerical Hessian standard error of lambda: 0.0026868 \n\nLog likelihood: -434.7573 \nML residual variance (sigma squared): 53.9, (sigma: 7.3416)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 883.51\n```\n:::\n:::\n\n\nFor a CAR model with binary weights, the value of `Lambda` (which we called $\\rho$) directly gives the partial correlation coefficient between neighbouring districts. Note that the AIC here is slightly higher than the SAR model, so the latter gave a better fit.\n\n## Exercise\n\nThe `rls_covid` dataset, in *shapefile* format, contains data on detected COVID-19 cases (`cas`), number of cases per 1000 people (`taux_1k`) and the population density (`dens_pop`) in each of Quebec's local health service networks (RLS) (Source: Data downloaded from the Institut national de santé publique du Québec as of January 17, 2021).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-63_93fde0bc2a6d31114d1cad8dee5f0aa1'}\n\n```{.r .cell-code}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 5 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 785111.2 ymin: 341057.8 xmax: 979941.5 ymax: 541112.7\nProjected CRS: Conique_conforme_de_Lambert_du_MTQ_utilis_e_pour_Adresse_Qu_be\n# A tibble: 6 × 6\n RLS_code RLS_nom cas taux_1k dens_…¹ geometry\n \n1 0111 RLS de Kamouraska 152 7.34 6.76 (((827028.3 412772.4, 82…\n2 0112 RLS de Rivière-du-Lo… 256 7.34 19.6 (((855905 452116.9, 8557…\n3 0113 RLS de Témiscouata 81 4.26 4.69 (((911829.4 441311.2, 91…\n4 0114 RLS des Basques 28 3.3 5.35 (((879249.6 471975.6, 87…\n5 0115 RLS de Rimouski 576 9.96 15.5 (((917748.1 503148.7, 91…\n6 0116 RLS de La Mitis 76 4.24 5.53 (((951316 523499.3, 9525…\n# … with abbreviated variable name ¹​dens_pop\n```\n:::\n:::\n\n\nFit a linear model of the number of cases per 1000 as a function of population density (it is suggested to apply a logarithmic transform to the latter). Check whether the model residuals are correlated between bordering RLS with a Moran's test and then model the same data with a conditional autoregressive model.\n\n## Reference\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. and Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n\n\n\n# GLMM with spatial Gaussian process {#glmm-spatial-gaussian}\n\n## Data\n\nThe `gambia` dataset found in the *geoR* package presents the results of a study of malaria prevalence among children of 65 villages in The Gambia. We will use a slightly transformed version of the data found in the file [gambia.csv](data/gambia.csv).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-64_c90dcebc741300cf593af262129c15ab'}\n\n```{.r .cell-code}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n id_village x y pos age netuse treated green phc\n1 1 349.6313 1458.055 1 1783 0 0 40.85 1\n2 1 349.6313 1458.055 0 404 1 0 40.85 1\n3 1 349.6313 1458.055 0 452 1 0 40.85 1\n4 1 349.6313 1458.055 1 566 1 0 40.85 1\n5 1 349.6313 1458.055 0 598 1 0 40.85 1\n6 1 349.6313 1458.055 1 590 1 0 40.85 1\n```\n:::\n:::\n\n\nHere are the fields in that dataset:\n\n- *id_village*: Identifier of the village.\n- *x* and *y*: Spatial coordinates of the village (in kilometers, based on UTM coordinates).\n- *pos*: Binary response, whether the child tested positive for malaria.\n- *age*: Age of the child in days.\n- *netuse*: Whether or not the child sleeps under a bed net.\n- *treated*: Whether or not the bed net is treated.\n- *green*: Remote sensing based measure of greenness of vegetation (measured at the village level).\n- *phc*: Presence or absence of a public health centre for the village.\n\nWe can count the number of positive cases and total children tested by village to map the fraction of positive cases (or prevalence, *prev*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-65_8c814c1bf1c630ff765172316c6e438a'}\n\n```{.r .cell-code}\n# Create village-level dataset\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\n```\n\n::: {.cell-output .cell-output-stderr}\n```\n`summarise()` has grouped output by 'id_village', 'x', 'y', 'green'. You can\noverride using the `.groups` argument.\n```\n:::\n\n```{.r .cell-code}\nhead(gambia_agg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n# A tibble: 6 × 8\n id_village x y green phc pos total prev\n \n1 1 350. 1458. 40.8 1 17 33 0.515\n2 2 359. 1460. 40.8 1 19 63 0.302\n3 3 360. 1460. 40.1 0 7 17 0.412\n4 4 364. 1497. 40.8 0 8 24 0.333\n5 5 366. 1460. 40.8 0 10 26 0.385\n6 6 367. 1463. 40.8 0 7 18 0.389\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-66_ae2eb69bc71b443b86ab8b607284711a'}\n\n```{.r .cell-code}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-66-1.png){width=672}\n:::\n:::\n\n\nWe use the `gambia.borders` dataset from the *geoR* package to trace the country boundaries with `geom_path`. Since those boundaries are in meters, we divide by 1000 to get the same scale as our points. We also use `coord_fixed` to ensure a 1:1 aspect ratio between the axes and use the `viridis` color scale, which makes it easier to visualize a continuous variable compared with the default gradient scale in *ggplot2*.\n\nBased on this map, there seems to be spatial correlation in malaria prevalence, with the eastern cluster of villages showing more high prevalence values (yellow-green) and the middle cluster showing more low prevalence values (purple).\n\n## Non-spatial GLMM\n\nFor this first example, we will ignore the spatial aspect of the data and model the presence of malaria (*pos*) as a function of the use of a bed net (*netuse*) and the presence of a public health centre (*phc*). Since we have a binary response, we need to use a logistic regression model (a GLM). Since we have predictors at both the individual and village level, and we expect that children of the same village have more similar probabilities of having malaria even after accounting for those predictors, we need to add a random effect of the village. The result is a GLMM that we fit using the `glmer` function in the *lme4* package.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-67_5c5fd662cb4ced05e844aabdfdb7a676'}\n\n```{.r .cell-code}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Laplace\n Approximation) [glmerMod]\n Family: binomial ( logit )\nFormula: pos ~ netuse + phc + (1 | id_village)\n Data: gambia\n\n AIC BIC logLik deviance df.resid \n 2428.0 2450.5 -1210.0 2420.0 2031 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-2.1286 -0.7120 -0.4142 0.8474 3.3434 \n\nRandom effects:\n Groups Name Variance Std.Dev.\n id_village (Intercept) 0.8149 0.9027 \nNumber of obs: 2035, groups: id_village, 65\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 0.1491 0.2297 0.649 0.5164 \nnetuse -0.6044 0.1442 -4.190 2.79e-05 ***\nphc -0.4985 0.2604 -1.914 0.0556 . \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) netuse\nnetuse -0.422 \nphc -0.715 -0.025\n```\n:::\n:::\n\n\nAccording to these results, both *netuse* and *phc* result in a decrease of malaria prevalence, although the effect of *phc* is not significant at a threshold $\\alpha = 0.05$. The intercept (0.149) is the logit of the probability of malaria presence for a child with no bednet and no public health centre, but it is the mean intercept across all villages, and there is a lot of variation between villages, based on the random effect standard deviation of 0.90. We can get the estimated intercept for each village with the function `coef`:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-68_3720c229ebd5b2262ea78c97fa323bc0'}\n\n```{.r .cell-code}\nhead(coef(mod_glmm)$id_village)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n (Intercept) netuse phc\n1 0.93727515 -0.6043602 -0.4984835\n2 0.09204843 -0.6043602 -0.4984835\n3 0.22500620 -0.6043602 -0.4984835\n4 -0.46271089 -0.6043602 -0.4984835\n5 0.13680037 -0.6043602 -0.4984835\n6 -0.03723346 -0.6043602 -0.4984835\n```\n:::\n:::\n\n\nSo for example, the intercept for village 1 is around 0.94, equivalent to a probability of 72%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-69_5db6d43ef9ff435eae9aedd3aebe48f9'}\n\n```{.r .cell-code}\nplogis(0.937)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7184933\n```\n:::\n:::\n\n\nwhile the intercept in village 2 is equivalent to a probability of 52%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-70_8c98817d65db7e2319175c4f3cba494c'}\n\n```{.r .cell-code}\nplogis(0.092)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.5229838\n```\n:::\n:::\n\n\nThe [DHARMa package](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) provides a general method for checking whether the residuals of a GLMM are distributed according to the specified model and whether there is any residual trend. The package works by simulating replicates of each observation according to the fitted model and then determining a \"standardized residual\", which is the relative position of the observed value with respect to the simulated values, e.g. 0 if the observation is smaller than all the simulations, 0.5 if it is in the middle, etc. If the model represents the data well, each value of the standardized residual between 0 and 1 should be equally likely, so the standardized residuals should produce a uniform distribution between 0 and 1.\n\nThe `simulateResiduals` function performs the calculation of the standardized residuals, then the `plot` function plots the diagnostic graphs with the results of certain tests.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-71_7045ff49e2f9776387a59c78b53a1341'}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-71-1.png){width=672}\n:::\n:::\n\n\nThe graph on the left is a quantile-quantile plot of standardized residuals. The results of three statistical tests also also shown: a Kolmogorov-Smirnov (*KS*) test which checks whether there is a deviation from the theoretical distribution, a dispersion test that checks whether there is underdispersion or overdispersion, and an outlier test based on the number of residuals that are more extreme than all the simulations. Here, we get a significant result for the outliers, though the message indicates that this result might have an inflated type I error rate in this case.\n\nOn the right, we generally get a graph of standardized residuals (in *y*) as a function of the rank of the predicted values, in order to check for any leftover trend in the residual. Here, the predictions are binned by quartile, so it might be better to instead aggregate the predictions and residuals by village, which we can do with the `recalculateResiduals` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-72_65a9d2bb93c9d14f4d7fcc7b40b03c87'}\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-72-1.png){width=672}\n:::\n:::\n\n\nThe plot to the right now shows individual points, along with a quantile regression for the 1st quartile, the median and the 3rd quartile. In theory, these three curves should be horizontal straight lines (no leftover trend in the residuals vs. predictions). The curve for the 3rd quartile (in red) is significantly different from a horizontal line, which could indicate some systematic effect that is missing from the model.\n\n## Spatial GLMM with spaMM\n\nThe *spaMM* (spatial mixed models) package is a relatively new R package that can perform approximate maximum likelihood estimation of parameters for GLMM with spatial dependence, modelled either as a Gaussian process or with a CAR (we will see the latter in the last section). The package implements different algorithms, but there is a single `fitme` function that chooses the appropriate algorithm for each model type. For example, here is the same (non-spatial) model as above fit with *spaMM*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-73_4095dfb1a2890efd12578324ce9cfb41'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + (1 | id_village)\nEstimation of lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.1491 0.2287 0.6519\nnetuse -0.6045 0.1420 -4.2567\nphc -0.4986 0.2593 -1.9231\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n id_village : 0.8151 \n --- Coefficients for log(lambda):\n Group Term Estimate Cond.SE\n id_village (Intercept) -0.2045 0.2008\n# of obs: 2035; # of groups: id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1210.016\n```\n:::\n:::\n\n\nNote that the estimates of the fixed effects as well as the variance of random effects are nearly identical to those obtained by `glmer` above.\n\nWe can now use *spaMM* to fit the same model with the addition of spatial correlations between villages. In the formula of the model, this is represented as a random effect `Matern(1 | x + y)`, which means that the intercepts are spatially correlated between villages following a Matérn correlation function of coordinates (*x, y*). The Matérn function is a flexible function for spatial correlation that includes a shape parameter $\\nu$ (`nu`), so that when $\\nu = 0.5$ it is equivalent to the exponential correlation but as $\\nu$ grows to large values, it approaches a Gaussian correlation. We could let the function estimate $\\nu$, but here we will fix it to 0.5 with the `fixed` argument of `fitme`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-74_d3aef70cffd85f41f037e30922c132c2'}\n\n```{.r .cell-code}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.rho \n0.50000000 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.6421 \n id_village : 0.1978 \n# of obs: 2035; # of groups: x + y, 65; id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nLet's first check the random effects of the model. The spatial correlation function has a parameter `rho` equal to 0.0513. This parameter in *spaMM* is the inverse of the range, so here the range of exponential correlation is 1/0.0513 or around 19.5 km. There are now two variance prameters, the one identified as `x + y` is the long-range variance (i.e. sill) for the exponential correlation model whereas the one identified as `id_village` shows the non-spatially correlated portion of the variation between villages.\n\nIn fact, while we left the random effects `(1 | id_village)` in the formula to represent the non-spatial portion of variation between villages, we could also represent this with a nugget effect in the geostatistical model. In both cases, it would represent the idea that even two villages very close to each other would have different baseline prevalences in the model.\n\nBy default, the `Matern` function has no nugget effect, but we can add one by specifying a non-zero `Nugget` in the initial parameter list `init`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-75_dbd5d25ae78a3c934126be892144af99'}\n\n```{.r .cell-code}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm2)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.Nugget 1.rho \n0.50000000 0.23551027 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.8399 \n# of obs: 2035; # of groups: x + y, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nAs you can see, all estimates are the same, except that the variance of the spatial portion (sill) is now 0.84 and the nugget is equal to a fraction 0.235 of that sill, so a variance of 0.197, which is the same as the `id_village` random effect in the version above. Thus the two formulations are equivalent.\n\nNow, recall the coefficients we obtained for the non-spatial GLMM:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-76_2ff7323dca01a1d9207ef38489d6b664'}\n\n```{.r .cell-code}\nsummary(mod_glmm)$coefficients\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01\nnetuse -0.6043602 0.1442448 -4.1898243 2.791706e-05\nphc -0.4984835 0.2604083 -1.9142382 5.558973e-02\n```\n:::\n:::\n\n\nIn the spatial version, both fixed effects have moved slightly towards zero, but the standard error of the effect of `phc` has decreased. It is interesting that the inclusion of spatial dependence has allowed us to estimate more precisely the effect of having a public health centre in the village. This would not always be the case: for a predictor that is also strongly correlated in space, spatial correlation in the response makes it harder to estimate the effect of this predictor, since it is confounded with the spatial effect. However, for a predictor that is not correlated in space, including the spatial effect reduces the residual (non-spatial) variance and may thus increase the precision of the predictor's effect.\n\nThe *spaMM* package is also compatible with *DHARMa* for residual diagnostics. (You can in fact ignore the warning that it is not in the class of supported models, this is due to using the `fitme` function rather than a specific algorithm function in *spaMM*.)\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-77_435151fa87f7c6c10fa17fe4778779f0'}\n\n```{.r .cell-code}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-1.png){width=672}\n:::\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-2.png){width=672}\n:::\n:::\n\n\nFinally, while we will show how to make and visualize spatial predictions below, we can produce a quick map of the estimated spatial effects in a *spaMM* model with the `filled.mapMM` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-78_9aa73f93f8884bdd0fab5e2e18929e73'}\n\n```{.r .cell-code}\nfilled.mapMM(mod_spamm2)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-78-1.png){width=672}\n:::\n:::\n\n\n## Gaussian process models vs. smoothing splines\n\nIf you are familiar with generalized additive models (GAM), you might think that the spatial variation in malaria prevalence (as shown in the map above) could be represented by a 2D smoothing spline (as a function of $x$ and $y$) within a GAM.\n\nThe code below fits the GAM equivalent of our Gaussian process GLMM above with the `gam` function in the *mgcv* package. The spatial effect is represented by the 2D spline `s(x, y)` whereas the non-spatial random effect of village is represented by `s(id_village, bs = \"re\")`, which is the same as `(1 | id_village)` in the previous models. Note that for the `gam` function, categorical variables must be explicitly converted to factors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-79_ae40737239f2e38abf88e2861e3870b5'}\n\n```{.r .cell-code}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n:::\n\n\nTo visualize the 2D spline, we will use the [*gratia* package](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-80_d5c74c6f14896719f6bab59691ffa563'}\n\n```{.r .cell-code}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-80-1.png){width=672}\n:::\n:::\n\n\nNote that the plot of the spline `s(x, y)` (top right) does not extend too far from the locations of the data (other areas are blank). In this graph, we can also see that the village random effects follow the expected Gaussian distribution (top left).\n\nNext, we will use both the spatial GLMM from the previous section and this GAMM to predict the mean prevalence on a spatial grid of points contained in the file [gambia_pred.csv](data/gambia_pred.csv). The graph below adds those prediction points (in black) on the previous map of the data points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-81_29ad1d87f053e7c4195d592da7d54ff1'}\n\n```{.r .cell-code}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-81-1.png){width=672}\n:::\n:::\n\n\nTo make predictions from the GAMM model at those points, the code below goes through the following steps:\n\n- All predictors in the model must be in the prediction data frame, so we add constant values of *netuse* and *phc* (both equal to 1) for all points. Thus, we will make predictions of malaria prevalence in the case where a net is used and a public health centre is present. We also add a constant *id_village*, although it will not be used in predictions (see below).\n\n- We call the `predict` function on the output of `gam` to produce predictions at the new data points (argument `newdata`), including standard errors (`se.fit = TRUE`) and excluding the village random effects, so the prediction is made for an \"average village\". The resulting object `gam_pred` will have columns `fit` (mean prediction) and `se.fit` (standard error). Those predictions and standard errors are on the link (logit) scale.\n\n- We add the original prediction data frame to `gam_pred` with `cbind`.\n\n- We add columns for the mean prediction and 50% confidence interval boundaries (mean $\\pm$ 0.674 standard error), converted from the logit scale to the probability scale with `plogis`. We choose a 50% interval since a 95% interval may be too wide here to contrast the different predictions on the map at the end of this section.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-82_a655e5eb759da0f74f34c89ed61d58a2'}\n\n```{.r .cell-code}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\n*Note*: The reason we do not make predictions directly on the probability (response) scale is that the normal formula for confidence intervals applies more accurately on the logit scale. Adding a certain number of standard errors around the mean on the probability scale would lead to less accurate intervals and maybe even confidence intervals outside the possible range (0, 1) for a probability.\n\nWe apply the same strategy to make predictions from the *spaMM* spatial GLMM model. There are a few differences in the `predict` method compared with the GAMM case.\n\n- The argument `binding = \"fit\"` means that mean predictions (`fit` column) will be attached to the prediction dataset and returned as `spamm_pred`.\n\n- The `variances = list(linPred = TRUE)` tells `predict` to calculate the variance of the linear predictor (so the square of the standard error). However, it appears as an attribute `predVar` in the output data frame rather than a `se.fit` column, so we move it to a column on the next line.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-83_8466cc239c165bb619c3ec38ce8db16a'}\n\n```{.r .cell-code}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\nFinally, we combine both sets of predictions as different rows of a `pred_all` dataset with `bind_rows`. The name of the dataset each prediction originates from (`gam` or `spamm`) will appear in the \"model\" column (argument `.id`). To simplify production of the next plot, we then use `pivot_longer` in the *tidyr* package to change the three columns \"pred\", \"lo\" and \"hi\" to two columns, \"stat\" and \"value\" (`pred_tall` has thus three rows for every row in `pred_all`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-84_7a8a967d3486a1ba90686ccd4eede914'}\n\n```{.r .cell-code}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n:::\n\n\nHaving done these steps, we can finally look at the prediction maps (mean, lower and upper bounds of the 50% confidence interval) with `ggplot`. The original data points are shown in red.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-85_31003401bd646a7f13b4009bc478ce83'}\n\n```{.r .cell-code}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-85-1.png){width=672}\n:::\n:::\n\n\nWhile both models agree that there is a higher prevalence near the eastern cluster of villages, the GAMM also estimates a higher prevalence at a few points (western edge and around the center) where there is no data. This is an artifact of the shape of the spline fit around the data points, since a spline is meant to fit a global, although nonlinear, trend. In contrast, the geostatistical model represents the spatial effect as local correlations and reverts to the overall mean prevalence when far from any data points, which is a safer assumption. This is one reason to choose a geostatistical / Gaussian process model in this case.\n\n## Bayesian methods for GLMMs with Gaussian processes\n\nBayesian models provide a flexible framework to express models with complex dependence structure among the data, including spatial dependence. However, fitting a Gaussian process model with a fully Bayesian approach can be slow, due the need to compute a spatial covariance matrix between all point pairs at each iteration.\n\nThe INLA (integrated nested Laplace approximation) method performs an approximate calculation of the Bayesian posterior distribution, which makes it suitable for spatial regression problems. We do not cover it in this course, but I recommend the textbook by Paula Moraga (in the references section below) that provides worked examples of using INLA for various geostatistical and areal data models, in the context of epidemiology, including models with both space and time dependence. The book presents the same Gambia malaria data as an example of a geostatistical dataset, which inspired its use in this course.\n\n# GLMM with spatial autoregression {#glmm-spatial-autoreg}\n\nWe return to the last example of the previous part, where we modelled the rate of COVID-19 cases (cases / 1000) for administrative health network divisions (RLS) in Quebec as a function of their population density. The rate is given by the \"taux_1k\" column in the `rls_covid` shapefile.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-86_dee7e0520a18d70a7e5f70f91e7f0d0a'}\n\n```{.r .cell-code}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-86-1.png){width=672}\n:::\n:::\n\n\nPreviously, we modelled the logarithm of this rate as a linear function of the logarithm of population density, with the residual variance correlated among neighbouring units via a CAR (conditional autoregression) structure, as shown in the code below.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-87_51a48c9cba07b64df6887bc1c93140b3'}\n\n```{.r .cell-code}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid, \n listw = rls_w, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.201858 -0.254084 -0.053348 0.281482 1.427053 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16\nlog(dens_pop) 0.206623 0.032848 6.2903 3.169e-10\n\nLambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07 \nNumerical Hessian standard error of lambda: 0.0050486 \n\nLog likelihood: -80.68953 \nML residual variance (sigma squared): 0.2814, (sigma: 0.53048)\nNumber of observations: 95 \nNumber of parameters estimated: 4 \nAIC: 169.38\n```\n:::\n:::\n\n\nAs a reminder, the `poly2nb` function in the *spdep* package creates a list of neighbours based on bordering polygons in a shapefile, then the `nb2listw` converts it to a list of weights, here binary weights (`style = \"B\"`) so that each bordering region receives the same weight of 1 in the autoregressive model.\n\nInstead of using the rates, it would be possible to model the cases directly (column \"cas\" in the dataset) with a Poisson regression, which is appropriate for count data. To account for the fact that if the risk per person were equal, cases would be proportional to population, we can add the unit's population `pop` as an *offset* in the Poisson regression. Therefore, the model would look like: `cas ~ log(dens_pop) + offset(log(pop))`. Note that since the Poisson regression uses a logarithmic link, that model with `log(pop)` as an offset assumes that `log(cas / pop)` (so the log rate) is proportional to `log(dens_pop)`, just like the linear model above, but it has the advantage of modelling the stochasticity of the raw data (the number of cases) directly with a Poisson distribution.\n\nWe do not have the population in this data, but we can estimate it from the cases and the rate (cases / 1000) as follows:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-88_dd571339361d6d0f00653ec574a812b8'}\n\n```{.r .cell-code}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n:::\n\n\nTo define a CAR model in *spaMM*, we need a weights matrix rather than a list of weights as in the *spatialreg* package. Fortunately, the *spdep* package also includes a function `nb2mat` to convert the neighbours list to a matrix of weights, here again using binary weights. To avoid a warning, we specify the row and column names of that matrix to be equal to the IDs associated with each unit (`RLS_code`). Then, we add a term `adjacency(1 | RLS_code)` to the model to specify that the residual variation between different groups defined by `RLS_code` is spatially correlated with a CAR structure (here, each group has only one observation since we have one data point by RLS unit).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-89_96e9784ebad8d38cbd211f444a330b0c'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: poisson( link = log ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) -5.1618 0.16855 -30.625\nlog(dens_pop) 0.1999 0.03267 6.119\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.rho \n0.1576605 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n RLS_code : 0.266 \n# of obs: 95; # of groups: RLS_code, 95 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -709.3234\n```\n:::\n:::\n\n\nNote that the spatial correlation coefficient `rho` (0.158) is similar to the equivalent quantity in the `spautolm` model above, where it was called `Lambda`. The effect of `log(dens_pop)` is also approximately 0.2 in both models.\n\n## Reference\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Available online at .\n\n------------------------------------------------------------------------\n\n# Statistiques spatiales en écologie {#statistiques-spatiales-en-écologie}\n\nBIOS² a organisé une session de formation en ligne sur l'analyse statistique des données spatiales en écologie, animée par le Pr. Philippe Marchand (UQAT). Cette formation de 12 heures s'est déroulée en 4 sessions : 12, 14, 19 & 21 janvier (2021) de 13h00 à 16h00 HNE.\n\nLe contenu comprenait trois types d'analyses statistiques spatiales et leurs applications en écologie : (1) l'analyse des patrons de points qui permet d'étudier la distribution d'individus ou d'événements dans l'espace; (2) les modèles géostatistiques qui représentent la corrélation spatiale de variables échantillonnées à des points géoréférencés; et (3) les modèles de données aréales, qui s'appliquent aux mesures prises sur des régions de l'espace et qui représentent les liens spatiaux par le biais de réseaux de voisinage. La formation comprenait également des exercices pratiques utilisant l'environnement de programmation statistique R.\n\n[Philippe Marchand](https://github.com/pmarchand1) est professeur d'écologie et de biostatistique à l'Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) et membre académique de BIOS². Ses travaux de recherche portent sur la modélisation de processus qui influencent la distribution spatiale des populations, incluant: la dispersion des graines et l'établissement des semis, le mouvement des animaux, et la propagation des épidémies forestières.\n\n**Si vous souhaitez consulter le matériel pédagogique et suivre les exercices à votre propre rythme, vous pouvez y accéder par [ce lien](https://bios2.github.io/Marchand.html#category:FR). Une connaissance de base des modèles de régression linéaire et une expérience de l'ajustement de ces modèles dans R sont recommandées. Le repositoire original se trouve [ici](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Plan du cours\n\n| Jour | Sujets | \n|-----------------|:--------------------------|\n| 1 | • [Introduction aux statistiques spatiales](#introduction-fr)
• [Analyse des patrons de points](#point-pattern-fr)
|\n| 2 | • [Corrélation spatiale d'une variable](#spatial-correlation-fr)
• [Modèles géostatistiques](#geostat-models-fr) | \n| 3 | • [Données aréales](#areal-data-fr)
• [Indice de Moran](#moran-i-fr)
• [Modèles d'autorégression spatiale](#spatial-autoreg-fr)
• [Analyse des données aréales dans R](#analysis-areal-fr) |\n| 4 | • [GLMM avec processus spatial gaussien](#glmm-spatial-gaussian-fr)
• [GLMM avec autorégression spatiale](#glmm-spatial-autoreg-fr)| \n\n# Introduction aux statistiques spatiales {#introduction-fr}\n\n## Types d'analyses spatiales\n\nDans le cadre de cette formation, nous discuterons de trois types d'analyses spatiales: l'analyse des patrons de points, les modèles géostatistiques et les modèles de données aréales.\n\nDans l'**analyse des patrons de points**, nous avons des données ponctuelles représentant la position d'individus ou d'événements dans une région d'étude et nous supposons que tous les individus ou événements ont été recensés dans cette région. Cette analyse s'intéresse à la distribution des positions des points eux-mêmes. Voici quelques questions typiques de l'analyse des patrons de points:\n\n- Les points sont-ils disposés aléatoirement ou agglomérés?\n\n- Deux types de points sont-ils disposés indépendamment?\n\nLes **modèles géostatistiques** visent à représenter la distribution spatiale de variables continues qui sont mesurés à certains points d'échantillonnage. Ils supposent que les mesures de ces variables à différents points sont corrélées en fonction de la distance entre ces points. Parmi les applications des modèles géostatistiques, notons le lissage des données spatiales (ex.: produire une carte d'une variable sur l'ensemble d'une région en fonction des mesures ponctuelles) et la prédiction de ces variables pour des points non-échantillonnés.\n\nLes **données aréales** sont des mesures prises non pas à des points, mais pour des régions de l'espace représentées par des polygones (ex.: divisions du territoire, cellules d'une grille). Les modèles représentant ces types de données définissent un réseau de voisinage reliant les régions et incluent une corrélation spatiale entre régions voisines. \n\n## Stationnarité et isotropie\n\nPlusieurs analyses spatiales supposent que les variables sont **stationnaires** dans l'espace. Comme pour la stationnarité dans le domaine temporel, cette propriété signifie que les statistiques sommaires (moyenne, variance et corrélations entre mesures d'une variable) ne varient pas avec une translation dans l'espace. Par exemple, la corrélation spatiale entre deux points peut dépendre de la distance les séparant, mais pas de leur position absolue.\n\nEn particulier, il ne peut pas y avoir de tendance à grande échelle (souvent appelée *gradient* dans un contexte spatial), ou bien cette tendance doit être prise en compte afin de modéliser la corrélation spatiale des résidus.\n\nDans le cas de l'analyse des patrons de points, la stationnarité (aussi appelée homogénéité dans ce contexte) signifie que la densité des points ne suit pas de tendance à grande échelle.\n\nDans un modèle statistique **isotropique**, les corrélations spatiales entre les mesures à deux points dépendent seulement de la distance entre ces points, pas de la direction. Dans ce cas, les statistiques sommaires ne varient pas si on effectue une rotation dans l'espace.\n\n## Données géoréférencées\n\nLes études environnementales utilisent de plus en plus de données provenant de sources de données géospatiales, c'est-à-dire des variables mesurées sur une grande partie du globe (ex.: climat, télédétection). Le traitement de ces données requiert des concepts liés aux systèmes d'information géographique (SIG), qui ne sont pas couverts dans cet atelier, alors que nous nous concentrons sur les aspects statistiques de données variant dans l'espace.\n\nL'utilisation de données géospatiales ne signifie pas nécessairement qu'il faut avoir recours à des statistiques spatiales. Par exemple, il est courant d'extraire les valeurs de ces variables géographiques à des points d'étude pour expliquer une réponse biologique observée sur le terrain. Dans ce cas, l'utilisation de statistiques spatiales est seulement nécessaire en présence d'une corrélation spatiale dans les résidus, après avoir tenu compte de l'effet des prédicteurs.\n\n\n# Analyse des patrons de points {#point-pattern-fr}\n\n## Patron de points et processus ponctuel\n\nUn patron de points (*point pattern*) décrit la position spatiale (le plus souvent en 2D) d'individus ou d'événements, représentés par des points, dans une aire d'étude donnée, souvent appelée la *fenêtre* d'observation. \n\nOn suppose que chaque point a une étendue spatiale négligeable par rapport aux distances entre les points. Des méthodes plus complexes existent pour traiter des patrons spatiaux d'objets qui ont une largeur non-néligeable, mais ce sujet dépasse la portée de cet atelier.\n\nUn processus ponctuel (*point process*) est un modèle statistique qui peut être utilisé pour simuler des patrons de points ou expliquer un patron de points observé.\n\n## Structure spatiale totalement aléatoire\n\nUne structure spatiale totalement aléatoire (*complete spatial randomness*) est un des patrons les plus simples, qui sert de modèle nul pour évaluer les caractéristiques de patrons de points réels. Dans ce patron, la présence d'un point à une position donnée est indépendante de la présence de points dans un voisinage. \n\nLe processus créant ce patron est un processus de Poisson homogène. Selon ce modèle, le nombre de points dans toute région de superficie $A$ suit une distribution de Poisson: $N(A) \\sim \\text{Pois}(\\lambda A)$, où $\\lambda$ est l'*intensité* du processus (i.e. la densité de points). $N$ est indépendant entre deux régions disjointes, peu importe comment ces régions sont définies.\n\nDans le graphique ci-dessous, seul le patron à droite est totalement aléatoire. Le patron à gauche montre une agrégation des points (probabilité plus grande d'observer un point si on est à proximité d'un autre point), tandis que le patron du centre montre une répulsion (faible probabilité d'observer un point très près d'un autre).\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-91_adc67cb15e035b62bde9aae5a2aa1217'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-91-1.png){width=864}\n:::\n:::\n\n\n## Analyse exploratoire ou inférentielle pour un patron de points\n\nPlusieurs statistiques sommaires sont utilisées pour décrire les caractéristiques un patron de points. La plus simple est l'**intensité** $\\lambda$, qui comme mentionné plus haut représente la densité de points par unité de surface. Si le patron de points est hétérogène, l'intensité n'est pas constante, mais dépend de la position: $\\lambda(x, y)$.\n\nPar rapport à l'intensité qui est une statistique dite de premier ordre, les statistiques de second ordre décrivent comment la probabilité de présence d'un point dans une région dépend de la présence d'autres points. L'indice $K$ de Ripley présenté dans la prochaine section est un exemple de statistique sommaire de second ordre.\n\nLes inférences statistiques réalisées sur des patrons de points consistent habituellement à tester l'hypothèse que le patron de points correspond à un modèle nul donné, par exemple une structure spatiale totalement aléatoire, ou un modèle nul plus complexe. Même pour les modèles nuls les plus simples, nous connaissons rarement la distribution théorique pour une statistique sommaire du patron de points sous le modèle nul. Les tests d'hypothèses sur les patrons de points sont donc réalisés par simulation: on simule un grand nombre de patrons de points à partir du modèle nul et on compare la distribution des statistiques sommaires qui nous intéressent pour ces simulations à la valeur des statistiques pour le patron de points observé.\n\n## Indice $K$ de Ripley\n\nL'indice de Ripley $K(r)$ est défini comme le nombre moyen de points se trouvant dans un cercle de rayon $r$ donné autour d'un point du patron, normalisé par l'intensité $\\lambda$. \n\nPour un patron totalement aléatoire, le nombre moyen de points dans un cercle de rayon $r$ est $\\lambda \\pi r^2$, donc en théorie $K(r) = \\pi r^2$ pour ce modèle nul. Une valeur de $K(r)$ supérieure signifie qu'il y a agrégation des points à l'échelle $r$, tandis qu'une valeur inférieure signifie qu'il y a une répulsion.\n\nEn pratique, $K(r)$ est estimé pour un patron de points donné par l'équation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\noù $A$ est l'aire de la fenêtre d'observation et $n$ est le nombre de points du patron, donc $n(n-1)$ est le nombre de paires de points distinctes. On fait la somme pour toutes les paires de points de la fonction indicatrice $I$, qui prend une valeur de 1 si la distance entre les points $i$ et $j$ est inférieure ou égale à $r$. Finalement, le terme $w_{ij}$ permet de donner un poids supplémentaire à certaines paires de points pour tenir compte des effets de bordure, tel que discuté dans la section suivante.\n\nPar exemple, les graphiques ci-dessous présentent la fonction estimée $K(r)$ pour les patrons illustrés ci-dessus, pour des valeurs de $r$ allant jusqu'à 1/4 de la largeur de la fenêtre. La courbe pointillée rouge indique la valeur théorique pour une structure spatiale totalement aléatoire et la zone grise est une \"enveloppe\" produite par 99 simulations de ce modèle nul. Le patron agrégé montre un excès de voisins jusqu'à $r = 0.25$ et le patron avec répulsion montre un déficit significatif de voisins pour les petites valeurs de $r$. \n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-93_6abeb25aeaeb61368f985f60bb26c046'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-93-1.png){width=864}\n:::\n:::\n\n\nOutre le $K$, il existe d'autres statistiques pour décrire les propriétés de second ordre du patron, par exemple la distance moyenne entre un point et ses $N$ plus proches voisins. Vous pouvez consulter le manuel de Wiegand et Moloney (2013) suggéré en référence pour en apprendre plus sur différentes statistiques sommaires des patrons de points.\n\n## Effets de bordure\n\nDans le contexte de l'analyse de patrons de points, l'effet de bordure (\"edge effect\") est dû au fait que nous avons une connaissance incomplète du voisinage des points près du bord de la fenêtre d'observation, ce qui peut induire un biais dans le calcul des statistiques comme le $K$ de Ripley. \n\nDifférentes méthodes ont été développées pour corriger le biais dû aux effets de bordure. Selon la méthode de Ripley, la contribution d'un voisin $j$ situé à une distance $r$ d'un point $i$ reçoit un poids $w_{ij} = 1/\\phi_i(r)$, où $\\phi_i(r)$ est la fraction du cercle de rayon $r$ autour de $i$ contenu dans la fenêtre d'observation. Par exemple, si 2/3 du cercle se trouve dans la fenêtre, ce voisin compte pour 3/2 voisins dans le calcul d'une statistique comme $K$.\n\n![](images/ripley_edge.png)\n\nLa méthode de Ripley est une des plus simples pour corriger les effets de bordure, mais n'est pas nécessairement la plus efficace; notamment, les poids plus grands donnés à certaines paires de points tend à accroître la variance du calcul de la statistique. D'autres méthodes de correction sont présentées dans les manuels spécialisés, comme celui de Wiegand et Moloney (2013) en référence.\n\n## Exemple\n\nPour cet exemple, nous utilisons le jeu de données [semis_xy.csv](data/semis_xy.csv), qui représente les coordonnées $(x, y)$ de semis de deux espèces (*sp*, B = bouleau et P = peuplier) dans une placette de 15 x 15 m.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-94_327e5e9e3c1899c6fc6b1fb294f06e68'}\n\n```{.r .cell-code}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y sp\n1 14.73 0.05 P\n2 14.72 1.71 P\n3 14.31 2.06 P\n4 14.16 2.64 P\n5 14.12 4.15 B\n6 9.88 4.08 B\n```\n:::\n:::\n\n\nLe package *spatstat* permet d'effectuer des analyses de patrons de point dans R. La première étape consiste à transformer notre tableau de données en objet `ppp` (patron de points) avec la fonction du même nom. Dans cette fonction, nous spécifions quelles colonnes contiennent les coordonnées *x* et *y* ainsi que les marques (`marks`), qui seront ici les codes d'espèce. Il faut aussi spécifier une fenêtre d'observation (`window`) à l'aide de la fonction `owin`, à laquelle nous indiquons les limites de la placette en *x* et *y*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-95_e246a905ab0e728b8bebd2e4c7effcef'}\n\n```{.r .cell-code}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMarked planar point pattern: 281 points\nMultitype, with levels = B, P \nwindow: rectangle = [0, 15] x [0, 15] units\n```\n:::\n:::\n\n\nLes marques peuvent être numériques ou catégorielles. Notez que pour des marques catégorielles comme c'est le cas ici, il faut convertir explicitement la variable en facteur.\n\nLa fonction `plot` appliquée à un patron de points montre un diagramme du patron.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-96_96d77aa12e04c69ed21ee84e297dba59'}\n\n```{.r .cell-code}\nplot(semis)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-96-1.png){width=672}\n:::\n:::\n\n\nLa fonction `intensity` calcule la densité des points de chaque espèce par unité de surface, ici en $m^2$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-97_beac65d0093c1448eec5b7873eb79e0b'}\n\n```{.r .cell-code}\nintensity(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n B P \n0.6666667 0.5822222 \n```\n:::\n:::\n\n\nPour analyser d'abord séparément la distribution de chaque espèce, nous séparons le patron avec `split`. Puisque le patron contient des marques catégorielles, la séparation se fait automatiquement en fonction de la valeur des marques. Le résultat est une liste de deux patrons de points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-98_b03959fb9ef2a14b73c3512a12d3e227'}\n\n```{.r .cell-code}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-98-1.png){width=672}\n:::\n:::\n\n\nLa fonction `Kest` calcule le $K$ de Ripley pour une série de distances allant (par défaut) jusqu'à 1/4 de la largeur de la fenêtre. Ici, nous l'appliquons au premier patron (bouleau) en choisissant `semis_split[[1]]`. Notez que les doubles crochets sont nécessaires pour choisir un élément d'une liste dans R.\n\nL'argument `correction = \"iso\"` indique d'appliquer la méthode de Ripley pour corriger les effets de bordure.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-99_181444d1e19a264175dc77ad57d2d3d0'}\n\n```{.r .cell-code}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-99-1.png){width=672}\n:::\n:::\n\n\nSelon ce graphique, il semble y avoir une excès de voisins à partir d'un rayon de 1 m. Pour vérifier s'il s'agit d'un écart significatif, nous produisons une enveloppe de simulation avec la fonction `envelope`. Le permier argument d'`envelope` est un patron de point auquel les simulations seront comparées, le deuxième une fonction à calculer (ici, `Kest`) pour chaque patron simulé, puis on y ajoute les arguments de la fonction `Kest` (ici, seulement `correction`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-100_c8ef12d95e636626e72d894b8455cc8e'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-100-1.png){width=672}\n:::\n:::\n\n\nTel qu'indiqué par le message, cette fonction effectue par défaut 99 simulations de l'hypothèse nulle correspondant à une structure spatiale totalement aléatoire (CSR, pour *complete spatial randomness*).\n\nLa courbe observée sort de l'enveloppe des 99 simulations près de $r = 2$. Il faut être prudent de ne pas interpréter trop rapidement un résultat sortant de l'enveloppe. Même s'il y a environ une probabilité de 1% d'obtenir un résultat plus extrême selon l'hypothèse nulle à une distance donnée, l'enveloppe est calculée pour un grand nombre de valeurs de la distance et nous n'effectuons pas de correction pour les comparaisons multiples. Ainsi, un écart significatif pour une très petite plage de valeurs de $r$ peut être simplement dû au hasard.\n\n\n### Exercice 1\n\nEn regardant le graphique du deuxième patron de points (semis de peuplier), pouvez-vous prédire où se situera le $K$ de Ripley par rapport à l'hypothèse nulle d'une structure spatiale totalement aléatoire? Vérifiez votre prédiction en calculant le $K$ de Ripley pour ce patron de points dans R.\n\n\n## Effet de l'hétérogénéité\n\nLe graphique ci-dessous illustre un patron de points *hétérogène*, c'est-à-dire qu'il présente un gradient d'intensité (plus de points à gauche qu'à droite).\n\n\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-102_4f8ece21b321a6bc37f12ea916525a4e'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-102-1.png){width=672}\n:::\n:::\n\n\nUn gradient de densité peut être confondu avec une agrégation des points, comme on peut voir sur le graphique du $K$ de Ripley correspondant. En théorie, il s'agit de deux processus différents:\n\n- Hétérogénéité: La densité de points varie dans la région d'étude, par exemple dû au fait que certaines conditions locales sont plus propices à la présence de l'espèce étudiée.\n\n- Agrégation: La densité moyenne des points est homogène, mais la présence d'un point augmente la présence d'autre points dans son voisinage, par exemple en raison d'interactions positives entre les individus.\n\nCependant, il peut être difficile de différencier les deux en pratique, surtout que certains patrons peuvent être à la fois hétérogènes et agrégés.\n\nPrenons l'exemple des semis de peuplier de l'exercice précédent. La fonction `density` appliquée à un patron de points effectue une estimation par noyau (*kernel density estimation*) de la densité des semis à travers la placette. Par défaut, cette fonction utilise un noyau gaussien avec un écart-type `sigma` spécifié dans la fonction, qui détermine l'échelle à laquelle les fluctuations de densité sont \"lissées\". Ici, nous utilisons une valeur de 2 m pour `sigma` et nous représentons d'abord la densité estimée avec `plot`, avant d'y superposer les points (`add = TRUE` signifie que les points sont ajoutés au graphique existant plutôt que de créer un nouveau graphique).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-103_293155d4d47f9be8ba5f92c275edfe33'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-103-1.png){width=672}\n:::\n:::\n\n\nPour mesurer l'agrégation ou la répulsion des points d'un patron hétérogène, nous devons utilisé la version non-homogène de la statistique $K$ (`Kinhom` dans *spatstat*). Cette statistique est toujours égale au nombre moyen de voisins dans un rayon $r$ d'un point du patron, mais plutôt que de normaliser ce nombre par l'intensité globale du patron, il est normalisé par l'estimation locale de la densité de points. Comme ci-dessus, nous spécifions `sigma = 2` pour contrôler le niveau de lissage de l'estimation de la densité variable.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-104_2e7d6e77388db4c6cf95e3825468e730'}\n\n```{.r .cell-code}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-104-1.png){width=672}\n:::\n:::\n\n\nEn tenant compte de l'hétérogénéité du patron à une échelle `sigma` de 2 m, il semble donc y avoir un déficit de voisins à partir d'environ 1.5 m des points du patron. Il reste à voir si cette déviation est significative.\n\nComme précédemment, nous utilisons `envelope` pour simuler la statistique `Kinhom` sous le modèle nul. Cependant, ici le modèle nul n'est pas un processus de Poisson homogène (structure spatiale totalement aléatoire). Il s'agit plutôt d'un processus de Poisson hétérogène simulé par la fonction `rpoispp(dens_p)`, c'est-à-dire que les points sont indépendants les uns des autres, mais leur densité est hétérogène et donnée par `dens_p`. L'argument `simulate` de la fonction `envelope` permet de spécifier une fonction utilisée pour les simulations sous le modèle nul; cette fonction doit avoir un argument, ici `x`, même s'il n'est pas utilisé.\n\nFinalement, en plus des arguments nécessaires pour `Kinhom`, soit `sigma` et `correction`, nous spécifions aussi `nsim = 199` pour réaliser 199 simulations et `nrank = 5` pour éliminer les 5 résultats les plus extrêmes de chaque côté de l'enveloppe, donc les 10 plus extrêmes sur 199, pour réaliser un intervalle contenant environ 95% de la probabilité sous l'hypothèse nulle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-105_372339d2d2e016521c3700d91cc77898'}\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-105-1.png){width=672}\n:::\n:::\n\n\n*Note*: Pour un test d'hypothèse basé sur des simulations d'une hypothèse nulle, la valeur $p$ est estimée par $(m + 1)/(n + 1)$, où $n$ est le nombre de simulations et $m$ est le nombre de simulations où la valeur de la statistique est plus extrême que celle des données observées. C'est pour cette raison qu'on choisit un nombre de simulations comme 99, 199, etc.\n\n### Exercice 2\n\nRépétez l'estimation de la densité hétérogène et le calcul de `Kinhom` avec un écart-type `sigma` de 5 plutôt que 2. Comment le niveau de lissage pour la densité influence-t-il les conclusions?\n\nPour différencier une variation de densité des points et d'une interaction (agrégation ou répulsion) entre ces points avec ce type d'analyse, il faut généralement supposer que les deux processus opèrent à différentes échelles. Typiquement, nous pouvons tester si les points sont agrégés à petite échelle après avoir tenu compte d'une variation de la densité à une échelle plus grande.\n\n\n## Relation entre deux patrons de points\n\nConsidérons un cas où nous avons deux patrons de points, par exemple la position des arbres de deux espèces dans une parcelle (points oranges et verts dans le graphique ci-dessous). Chacun des deux patrons peut présenter ou non des agrégations de points. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-106_a7d54ff1bdd2b3ad9381ec359732b6e9'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-106-1.png){width=672}\n:::\n:::\n\n\nSans égard à cette agrégation au niveau de l'espèce, nous voulons déterminer si les deux espèces sont disposées indépendamment. Autrement dit, la probabilité d'observer un arbre d'une espèce dépend-elle de la présence d'un arbre de l'autre espèce à une distance donnée?\n\nLa version bivariée du $K$ de Ripley permet de répondre à cette question. Pour deux patrons désignés 1 et 2, l'indice $K_{12}(r)$ calcule le nombre moyen de points du patron 2 dans un rayon $r$ autour d'un point du patron 1, normalisé par la densité du patron 2.\n\nEn théorie, cet indice est symétrique, donc $K_{12}(r) = K_{21}(r)$ et le résultat serait le même si on choisit les points du patron 1 ou 2 comme points \"focaux\" pour l'analyse. Cependant, l'estimation des deux quantités pour un patron observé peut différer, notamment en raison des effets de bord. La variabilité peut aussi être différente pour $K_{12}$ et $K_{21}$ entre les simulations d'un modèle nul, donc le test de l'hypothèse nulle peut avoir une puissance différente selon le choix de l'espèce focale.\n\nLe choix d'un modèle nul approprié est important ici. Afin de déterminer s'il existe une attraction ou une répulsion significative entre les deux patrons, il faut déplacer aléatoirement la position d'un des patrons relative à celle de l'autre patron, tout en conservant la structure spatiale de chaque patron pris isolément.\n\nUne des façons d'effectuer cette randomisation consiste à décaler l'un des deux patrons horizontalement et/ou verticalement d'une distance aléatoire. La partie du patron qui \"sort\" d'un côté de la fenêtre est rattachée de l'autre côté. Cette méthode s'appelle une translation toroïdale (*toroidal shift*), car en connectant le haut et le bas ainsi que la gauche et la droite d'une surface rectangulaire, on obtient la forme d'un tore (un \"beigne\" en trois dimensions).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-107_1757cb541cf05d572ea82ab56ed6f90e'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-107-1.png){width=672}\n:::\n:::\n\n\nLe graphique ci-dessus illustre une translation du patron vert vers la droite, tandis que le patron orange reste au même endroit. Les points verts dans la zone ombragée sont ramenés de l'autre côté. Notez que si cette méthode préserve de façon générale la structure de chaque patron tout en randomisant leur position relative, elle peut comporter certains inconvénients, comme de diviser des amas de points qui se trouvent près du point de coupure.\n\nVérifions maintenant s'il y a une dépendance entre la position des deux espèces (bouleau et peuplier) dans notre placette. La fonction `Kcross` calcule l'indice bivarié $K_{ij}$, il faut spécifier quel type de point est considéré comme l'espèce focale $i$ et l'espèce voisine $j$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-108_e1fb67c992e6fbc5436f40af7db13109'}\n\n```{.r .cell-code}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-108-1.png){width=672}\n:::\n:::\n\n\nIci, le $K$ observé est inférieur à la valeur théorique, indiquant une répulsion possible des deux patrons.\n\nPour déterminer l'enveloppe du $K$ selon l'hypothèse nulle d'indépendance des deux patrons, nous devons spécifier que les simulations doivent être basées sur une translation des patrons. Nous indiquons que les simulations doivent utiliser la fonction `rshift` (translation aléatoire) avec l'argument `simulate = function(x) rshift(x, which = \"B\")`; ici, l'argument `x` de `simulate` correspond au patron de points original et l'argument `which` indique quel type de points subit la translation. Comme pour le cas précédent, il faut répéter dans la fonction `envelope` les arguments nécessaires pour `Kcross`, soit `i`, `j` et `correction`. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-109_727b1efb5e977942d084f00027cda511'}\n\n```{.r .cell-code}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-109-1.png){width=672}\n:::\n:::\n\n\nIci, la courbe observée se situe totalement dans l'enveloppe, donc nous ne rejetons pas l'hypothèse nulle d'indépendance des deux patrons.\n\n### Questions\n\n1. Quelle raison pourrait justifier ici notre choix d'effectuer la translation des points du bouleau plutôt que du peuplier?\n\n2. Est-ce que les simulations générées par translation aléatoire constitueraient un bon modèle nul si les deux patrons étaient hétérogènes?\n\n\n## Patrons de points marqués\n\nLe jeu de données [fir.csv](data/fir.csv) contient les coordonnées $(x, y)$ de 822 sapins dans une placette d'un hectare et leur statut (A = vivant, D = mort) suivant une épidémie de tordeuse des bourgeons de l'épinette.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-110_b43d75059cee9e8f87a67abfa290388c'}\n\n```{.r .cell-code}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y status\n1 31.50 1.00 A\n2 85.25 30.75 D\n3 83.50 38.50 A\n4 84.00 37.75 A\n5 83.00 33.25 A\n6 33.25 0.25 A\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-111_2327e6a3855266c0ba92a5eed5b7ce1a'}\n\n```{.r .cell-code}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-111-1.png){width=672}\n:::\n:::\n\n\nSupposons que nous voulons vérifier si la mortalité des sapins est indépendante ou corrélée entre arbres rapprochés. En quoi cette question diffère-t-elle de l'exemple précédent où nous voulions savoir si la position des points de deux espèces était indépendante?\n\nDans l'exemple précédent, l'indépendance ou l'interaction entre les espèces référait à la formation du patron lui-même (que des semis d'une espèce s'établissent ou non à proximité de ceux de l'autre espèce). Ici, la caractéristique qui nous intéresse (survie des sapins) est postérieure à l'établissement du patron, en supposant que tous ces arbres étaient vivants d'abord et que certains sont morts suite à l'épidémie. Donc nous prenons la position des arbres comme fixe et nous voulons savoir si la distribution des statuts (mort, vivant) entre ces arbres est aléatoire ou présente un patron spatial.\n\nDans le manuel de Wiegand et Moloney, la première situation (établissement de semis de deux espèces) est appelé patron bivarié, donc il s'agit vraiment de deux patrons qui interagissent, tandis que la deuxième est un seul patron avec une *marque* qualitative. Le package *spatstat* dans R ne fait pas de différences entre les deux au niveau de la définition du patron (les types de points sont toujours représentés par l'argument `marks`), mais les méthodes d'analyse appliquées aux deux questions diffèrent.\n\nDans le cas d'un patron avec une marque qualitative, nous pouvons définir une fonction de connexion de marques (*mark connection function*) $p_{ij}(r)$. Pour deux points séparés par une distance $r$, cette fonction donne la probabilité que le premier point porte la marque $i$ et le deuxième la marque $j$. Selon l'hypothèse nulle où les marques sont indépendantes, cette probabilité est égale au produit des proportions de chaque marque dans le patron entier, $p_{ij}(r) = p_i p_j$ indépendamment de $r$.\n\nDans *spatstat*, la fonction de connexion de marques est calculée avec la fonction `markconnect`, où il faut spécifier les marques $i$ et $j$ ainsi que le type de correction des effets de bord. Dans notre exemple, nous voyons que deux points rapprochés ont moins de chance d'avoir une statut différent (A et D) que prévu selon l'hypothèse de distribution aléatoire et indépendante des marques (ligne rouge pointillée).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-112_e925b891841588727659504a7a0c6e6d'}\n\n```{.r .cell-code}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-112-1.png){width=672}\n:::\n:::\n\n\nDans ce graphique, les ondulations dans la fonction sont dues à l'erreur d'estimation d'une fonction continue de $r$ à partir d'un nombre limité de paires de points discrètes.\n\nPour simuler le modèle nul dans ce cas-ci, nous utilisons la fonction `rlabel` qui réassigne aléatoirement les marques parmi les points du patron, en maintenant la position des points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-113_41cb4b77111500454c477fbd4c96dd08'}\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-113-1.png){width=672}\n:::\n:::\n\n\nNotez que puisque la fonction `rlabel` a un seul argument obligatoire correspondant au patron de points original, il n'était pas nécessaire de spécifier au long: `simulate = function(x) rlabel(x)`.\n\nVoici les résultats pour les paires d'arbres du même statut A ou D:\n\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-114_2a3fc9a64a69a67d1266f0273c3bb85c'}\n\n```{.r .cell-code}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-114-1.png){width=960}\n:::\n:::\n\n\nIl semble donc que la mortalité des sapins due à cette épidémie est agrégée spatialement, puisque les arbres situés à proximité l'un de l'autre ont une plus grande probabilité de partager le même statut que prévu par l'hypothèse nulle.\n\n## Références\n\nFortin, M.-J. et Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK. \n\nWiegand, T. et Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nLe jeu de données du dernier exemple est tiré des données de la Forêt d'enseignement et de recherche du Lac Duparquet (FERLD), disponibles sur Dryad en suivant [ce lien](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n\n# Solutions\n\n### Exercice 1\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-115_7bc8effd281fccbd2a1c1e21cd801493'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-115-1.png){width=672}\n:::\n:::\n\n\nLes semis de peuplier semblent significativement agrégés selon la valeur du $K$.\n\n### Exercice 2\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-116_53115f6ed07f7e0e4e7d2c8989998e70'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-116-1.png){width=672}\n:::\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-116-2.png){width=672}\n:::\n:::\n\n\nIci, puisque nous estimons la variation de densité à une plus grande échelle, même après avoir tenu compte de cette variation, les semis de peuplier semblent agrégés à petite échelle.\n\n\n# Corrélation spatiale d'une variable {#spatial-correlation-fr}\n\nLa corrélation entre les mesures d'une variable prises à des points rapprochés est une caractéristique dans de nombreux jeux de données. Ce principe est parfois appelé \"première loi de la géographie\" et exprimé par la citation de Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things.\" (Tout est relié, mais les choses rapprochées le sont davantage que celles éloignées).\n\nEn statistique, nous parlons souvent d'*autocorrélation* pour désigner la corrélation qui existe entre les mesures d'une même variable prises à différents moments (autocorrélation temporelle) ou différents lieux (autocorrélation spatiale).\n\n## Dépendance intrinsèque ou induite\n\nIl existe deux types fondamentaux de dépendance spatiale sur une variable mesurée $y$: une dépendance *intrinsèque* à $y$, ou une dépendance *induite* par des variables externes influençant $y$, qui sont elles-mêmes corrélées dans l'espace.\n\nPar exemple, supposons que l'abondance d'une espèce soit corrélée entre deux sites rapprochés:\n\n- cette dépendance spatiale peut être induite si elle est due à une corrélation spatiale des facteurs d'habitat qui favorisent ou défavorisent l'espèce;\n\n- ou elle peut être intrinsèque si elle est due à la dispersion d'individus entre sites rapprochés.\n\nDans plusieurs cas, les deux types de dépendance affectent une variable donnée.\n\nSi la dépendance est simplement induite et que les variables externes qui en sont la cause sont incluses dans le modèle expliquant $y$, alors les résidus du modèle seront indépendants et nous pouvons utiliser toutes les méthodes déjà vues qui ignorent la dépendance spatiale.\n\nCependant, si la dépendance est intrinsèque ou due à des influences externes non-mesurées, alors il faudra tenir compte de la dépendance spatiale des résidus dans le modèle.\n\n## Différentes façons de modéliser les effets spatiaux\n\nDans cette formation, nous modéliserons directement les corrélations spatiales de nos données. Il est utile de comparer cette approche à d'autres façons d'inclure des aspects spatiaux dans un modèle statistique.\n\nD'abord, nous pourrions inclure des prédicteurs dans le modèle qui représentent la position (ex.: longitude, latitude). De tels prédicteurs peuvent être utiles pour détecter une tendance ou un gradient systématique à grande échelle, que cette tendance soit linéaire ou non (par exemple, avec un modèle additif généralisé).\n\nEn contraste à cette approche, les modèles que nous verrons maintenant servent à modéliser une corrélation spatiale dans les fluctuations aléatoires d'une variable (i.e., dans les résidus après avoir enlevé tout effet systématique).\n\nLes modèles mixtes utilisent des effets aléatoires pour représenter la non-indépendance de données sur la base de leur groupement, c'est-à-dire qu'après avoir tenu compte des effets fixes systématiques, les données d'un même groupe sont plus semblables (leur variation résiduelle est corrélée) par rapport aux données de groupes différents. Ces groupes étaient parfois définis selon des critères spatiaux (observations regroupées en sites).\n\nCependant, dans un contexte d'effet aléatoire de groupe, tous les groupes sont aussi différents les uns des autres, ex.: deux sites à 100 km l'un de l'autre ne sont pas plus ou moins semblables que deux sites distants de 2 km.\n\nLes méthodes que nous verrons ici et dans les prochains parties de la formation nous permettent donc ce modéliser la non-indépendance sur une échelle continue (plus proche = plus corrélé) plutôt que seulement discrète (hiérarchie de groupements).\n\n\n# Modèles géostatistiques {#geostat-models-fr}\n\nLa géostatistique désigne un groupe de techniques tirant leur origine en sciences de la Terre. Elle s'intéresse à des variables distribuées de façon continue dans l'espace, dont on cherche à estimer la distribution en échantillonnant un nombre de points. Un exemple classique de ces techniques provient du domaine minier, où l'on cherchait à créer une carte de la concentration du minerai sur un site à partir d'échantillons pris à différents points du site.\n\nPour ces modèles, nous supposerons que $z(x, y)$ est une variable spatiale stationnaire mesurée selon les coordonnées $x$ et $y$.\n\n## Variogramme\n\nUn aspect central de la géostatistique est l'estimation du variogramme $\\gamma_z$ de la variable $z$. Le variogramme est égal à la moitié de l'écart carré moyen entre les valeurs de $z$ pour deux points $(x_i, y_i)$ et $(x_j, y_j)$ séparés par une distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nDans cette équation, la fonction $\\text{E}$ avec l'indice $d_{ij}=h$ désigne l'espérance statistique (autrement dit, la moyenne) de l'écart au carré entre les valeurs de $z$ pour les points séparés par une distance $h$.\n\nSi on préfère exprimer l'autocorrélation $\\rho_z(h)$ entre mesures de $z$ séparées par une distance $h$, celle-ci est reliée au variogramme par l'équation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\noù $\\sigma_z^2$ est la variance globale de $z$. \n\nNotez que $\\gamma_z = \\sigma_z^2$ si nous sommes à une distance où les mesures de $z$ sont indépendantes, donc $\\rho_z = 0$. Dans ce cas, on voit bien que $\\gamma_z$ s'apparente à une variance, même s'il est parfois appelé \"semivariogramme\" ou \"semivariance\" en raison du facteur 1/2 dans l'équation ci-dessus.\n\n## Modèles théoriques du variogramme\n\nPlusieurs modèles paramétriques ont été proposés pour représenter la corrélation spatiale en fonction de la distance entre points d'échantillonnage. Considérons d'abord une corrélation qui diminue de façon exponentielle: \n\n$$\\rho_z(h) = e^{-h/r}$$\n\nIci, $\\rho_z = 1$ pour $h = 0$ et la corréaltion est multipliée par $1/e \\approx 0.37$ pour chaque augmentation de $r$ de la distance. Dans ce contexte, $r$ se nomme la portée (*range*) de la corrélation.\n\nÀ partir de l'équation ci-dessus, nous pouvons calculer le variogramme correspondant.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nVoici une représentation graphique de ce variogramme.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-117_94b4bef8ba36e1b515cfee5fff6c1ebb'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-117-1.png){width=672}\n:::\n:::\n\n\nEn raison de la fonction exponentielle, la valeur de $\\gamma$ à des grandes distances s'approche de la variance globale $\\sigma_z^2$ sans exactement l'atteindre. Cette asymptote est appelée palier (*sill*) dans le contexte géostatistique et représentée par le symbole $s$.\n\nFinalement, il n'est parfois pas réaliste de supposer une corrélation parfaite lorsque la distance tend vers 0, en raison d'une variation possible de $z$ à très petite échelle. On peut ajouter au modèle un effet de pépite (*nugget*), noté $n$, pour que $\\gamma$ s'approche de $n$ (plutôt que 0) si $h$ tend vers 0. Le terme pépite provient de l'origine minière de ces techniques, où une pépite d'un minerai pourrait être la source d'une variation abrupte de la concentration à petite échelle.\n\nEn ajoutant l'effet de pépite, le reste du variogramme est \"compressé\" pour conserver le même palier, ce qui résulte en l'équation suivante.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nDans le package *gstat* que nous utiliserons ci-dessous, le terme $(s - n)$ est le palier partiel (*partial sill*, ou `psill`) pour la partie exponentielle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-118_616ef9e44728a1524a3df51fd61bde38'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-118-1.png){width=672}\n:::\n:::\n\n\nEn plus du modèle exponentiel, deux autres modèles théoriques courants pour le variogramme sont le modèle gaussien (où la corrélation suit une courbe demi-normale), ainsi que le modèle sphérique (où le variogramme augmente de façon linéaire au départ pour ensuite courber et atteindre le palier à une distance égale à sa portée $r$). Le modèle sphérique permet donc à la corrélation d'être exactement 0 à grande distance, plutôt que de s'approcher graduellement de zéro dans le cas des autres modèles.\n\n Modèle | $\\rho(h)$ | $\\gamma(h)$\n-------|-----------|-------------\nExponentiel | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$\nGaussien | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$\nSphérique $(h < r)$ * | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$\n\n\\* Pour le modèle sphérique, $\\rho = 0$ et $\\gamma = s$ si $h \\ge r$.\n\n\n\n::: {.cell fig.dim='[9,4]' hash='index_cache/html/unnamed-chunk-119_df4e0a7376691267996d3cce69016995'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-119-1.png){width=864}\n:::\n:::\n\n\n## Variogramme empirique\n\nPour estimer $\\gamma_z(h)$ à partir de données empiriques, nous devons définir des classes de distance, donc grouper différentes distances dans une marge $\\pm \\delta$ autour d'une distance $h$, puis calculer l'écart-carré moyen pour les paires de points dans cette classe de distance.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nNous verrons dans la partie suivante comment estimer un variogramme dans R.\n\n## Modèle de régression avec corrélation spatiale\n\nL'équation suivante représente une régression linéaire multiple incluant une corrélation spatiale résiduelle:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nIci, $v$ désigne la variable réponse et $u$ les prédicteurs, pour ne pas confondre avec les coordonnées spatiales $x$ et $y$. \n\nEn plus du résidu $\\epsilon$ qui est indépendant entre les observations, le modèle inclut un terme $z$ qui représente la portion spatialement corrélée de la variance résiduelle.\n\nVoici une suggestions d'étapes à suivre pour appliquer ce type de modèle:\n\n1. Ajuster le modèle de régression sans corrélation spatiale.\n\n2. Vérifier la présence de corrélation spatiale à partir du variogramme empirique des résidus.\n\n3. Ajuster un ou plusieurs modèles de régression avec corrélation spatiale et choisir celui qui montre le meilleur ajustement aux données. \n\n# Modèles géostatistiques dans R\n\nLe package *gstat* contient des fonctions liées à la géostatistique. Pour cet exemple, nous utiliserons le jeu de données `oxford` de ce package, qui contient des mesures de propriétés physiques et chimiques pour 126 échantillons du sol d'un site, ainsi que leurs coordonnées `XCOORD` et `YCOORD`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-120_bb070aeb602b5bb93fe5df883fdd6dbe'}\n\n```{.r .cell-code}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n'data.frame':\t126 obs. of 22 variables:\n $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...\n $ XCOORD : num 100 100 100 100 100 100 100 100 100 100 ...\n $ YCOORD : num 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...\n $ ELEV : num 598 597 610 615 610 595 580 590 598 588 ...\n $ PROFCLASS: Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 2 2 3 3 2 3 2 3 3 ...\n $ MAPCLASS : Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 3 3 3 3 2 2 3 3 3 ...\n $ VAL1 : num 3 3 4 4 3 3 4 4 4 3 ...\n $ CHR1 : num 3 3 3 3 3 2 2 3 3 3 ...\n $ LIME1 : num 4 4 4 4 4 0 2 1 0 4 ...\n $ VAL2 : num 4 4 5 8 8 4 8 4 8 8 ...\n $ CHR2 : num 4 4 4 2 2 4 2 4 2 2 ...\n $ LIME2 : num 4 4 4 5 5 4 5 4 5 5 ...\n $ DEPTHCM : num 61 91 46 20 20 91 30 61 38 25 ...\n $ DEP2LIME : num 20 20 20 20 20 20 20 20 40 20 ...\n $ PCLAY1 : num 15 25 20 20 18 25 25 35 35 12 ...\n $ PCLAY2 : num 10 10 20 10 10 20 10 20 10 10 ...\n $ MG1 : num 63 58 55 60 88 168 99 59 233 87 ...\n $ OM1 : num 5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...\n $ CEC1 : num 20 22 17 23 27 27 21 14 27 20 ...\n $ PH1 : num 7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...\n $ PHOS1 : num 13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...\n $ POT1 : num 196 157 115 172 238 164 312 184 123 282 ...\n```\n:::\n:::\n\n\nSupposons que nous souhaitons modéliser la concentration de magnésium (`MG1`), représentée en fonction de la position spatiale dans le graphique suivant.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-121_16158cd54c4487cc58ec9fd8dedf3de7'}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-121-1.png){width=672}\n:::\n:::\n\n\nNotez que les axes $x$ et $y$ ont été inversés par souci d'espace. La fonction `coord_fixed()` de *ggplot2* assure que l'échelle soit la même sur les deux axes, ce qui est utile pour représenter des données spatiales. \n\nNous voyons tout de suite que ces mesures ont été prises sur une grille de 100 m de côté. Il semble que la concentration de magnésium soit spatialement corrélée, bien qu'il puisse s'agir d'une corrélation induite par une autre variable. Nous savons notamment que la concentration de magnésium est reliée négativement au pH du sol (`PH1`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-122_d467da9d444c7554518f3d138f017425'}\n\n```{.r .cell-code}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-122-1.png){width=672}\n:::\n:::\n\n\nLa fonction `variogram` de *gstat* sert à estimer un variogramme à partir de données empiriques. Voici le résultat obtenu pour la variable `MG1`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-123_d148763eb057ac91a7c45c4a49d51a00'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n np dist gamma dir.hor dir.ver id\n1 225 100.0000 1601.404 0 0 var1\n2 200 141.4214 1950.805 0 0 var1\n3 548 215.0773 2171.231 0 0 var1\n4 623 303.6283 2422.245 0 0 var1\n5 258 360.5551 2704.366 0 0 var1\n6 144 400.0000 2948.774 0 0 var1\n7 570 427.5569 2994.621 0 0 var1\n8 291 500.0000 3402.058 0 0 var1\n9 366 522.8801 3844.165 0 0 var1\n10 200 577.1759 3603.060 0 0 var1\n11 458 619.8400 3816.595 0 0 var1\n12 90 670.8204 3345.739 0 0 var1\n```\n:::\n:::\n\n\nLa formule `MG1 ~ 1` indique qu'aucun prédicteur linéaire n'est inclus dans ce modèle, tandis que l'argument `locations` indique quelles variables du tableau correspondent aux coordonnées spatiales. \n\nDans le tableau obtenu, `gamma` est la valeur du variogramme pour la classe de distance centrée sur `dist`, tandis que `np` est le nombre de paires de points dans cette classe. Ici, puisque les points sont situés sur une grille, nous obtenons des classes de distance régulières (ex.: 100 m pour les points voisins sur la grille, 141 m pour les voisins en diagonale, etc.).\n\nNous nous limitons ici à l'estimation de variogrammes isotropiques, c'est-à-dire que le variogramme dépend seulement de la distance entre les deux points et non de la direction. Bien que nous n'ayons pas le temps de le voir aujourd'hui, il est possible avec *gstat* d'estimer séparément le variogramme dans différentes directions.\n\nNous pouvons illustrer le variogramme avec `plot`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-124_ca0a474a676de6872283aecd1d7057df'}\n\n```{.r .cell-code}\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-124-1.png){width=672}\n:::\n:::\n\n\nSi nous voulons estimer la corrélation spatiale résiduelle de `MG1` après avoir inclus l'effet de `PH1`, nous pouvons ajouter ce prédicteur à la formule.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-125_11cddc5b7e870cd1cc0cda1a95fac338'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-125-1.png){width=672}\n:::\n:::\n\n\nEn incluant l'effet du pH, la portée de la corrélation spatiale semble diminuer, alors que le plateau est atteint autour de 300 m. Il semble même que le variogramme diminue au-delà de 400 m. En général, nous supposons que la variance entre deux points ne diminue pas avec la distance, à moins d'avoir un patron spatial périodique.\n\nLa fonction `fit.variogram` accepte comme arguments un variogramme estimé à partir des données, ainsi qu'un modèle théorique décrit dans une fonction `vgm`, puis estime les paramètres de ce modèle en fonction des données. L'ajustement se fait par la méthode des moindres carrés.\n\nPar exemple, `vgm(\"Exp\")` indique d'ajuster un modèle exponentiel. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-126_03d3f3aa8b262e89fa7d8da65b62e30c'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nIl n'y a aucun effet de pépite, car `psill = 0` pour la partie `Nug` (*nugget*) du modèle. La partie exponentielle a un palier à 1951 et une portée de 95 m.\n\nPour comparer différents modèles, on peut donner un vecteur de noms de modèles à `vgm`. Dans l'exemple suivant, nous incluons les modèles exponentiel, gaussien (\"Gau\") et sphérique (\"Sph\").\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-127_2f3bfeceade9f4f4dfc5b3eba9eda432'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nLa fonction nous donne le résultat du modèle le mieux ajusté (plus faible somme des écarts au carré), qui est ici le même modèle exponentiel.\n\nFinalement, nous pouvons superposer le modèle théorique et le variogramme empirique sur un même graphique.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-128_c877e0be691daa5fe18f6d2ba00dfdcd'}\n\n```{.r .cell-code}\nplot(var_mg, vfit, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-128-1.png){width=672}\n:::\n:::\n\n\n## Régression avec corrélation spatiale\n\nNous avons vu ci-dessus que le package *gstat* permet d'estimer le variogramme des résidus d'un modèle linéaire. Dans notre exemple, la concentration de magnésium était modélisée en fonction du pH, avec des résidus spatialement corrélés.\n\nUn autre outil pour ajuster ce même type de modèle est la fonction `gls` du package *nlme*, qui est inclus avec l'installation de R. \n\nCette fonction applique la méthode des moindres carrés généralisés (*generalized least squares*) pour ajuster des modèles de régression linéaire lorsque les résidus ne sont pas indépendants ou lorsque la variance résiduelle n'est pas la même pour toutes les observations. Comme les estimés des coefficients dépendent de l'estimé des corrélations entre les résidus et que ces derniers dépendent eux-mêmes des coefficients, le modèle est ajusté par un algorithme itératif:\n\n1. On ajuste un modèle de régression linéaire classique (sans corrélation) pour obtenir des résidus.\n\n2. On ajuste le modèle de corrélation spatiale (variogramme) avec ses résidus.\n\n3. On ré-estime les coefficients de la régression en tenant compte maintenant des corrélations.\n\nLes étapes 2 et 3 sont répétées jusqu'à ce que les estimés soient stables à une précision voulue.\n\nVoici l'application de cette méthode au même modèle pour la concentration de magnésium dans le jeu de données `oxford`. Dans l'argument `correlation` de `gls`, nous spécifions un modèle de corrélation exponentielle en fonction de nos coordonnées spatiales et indiquons que nous voulons aussi estimer un effet de pépite.\n\nEn plus de la corrélation exponentielle `corExp`, la fonction `gls` peut aussi estimer un modèle gaussien (`corGaus`) ou sphérique (`corSpher`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-129_c4131310eb8ea32e0ccf4187e678e982'}\n\n```{.r .cell-code}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: MG1 ~ PH1 \n Data: oxford \n AIC BIC logLik\n 1278.65 1292.751 -634.325\n\nCorrelation Structure: Exponential spatial correlation\n Formula: ~XCOORD + YCOORD \n Parameter estimate(s):\n range nugget \n478.0322964 0.2944753 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 391.1387 50.42343 7.757084 0\nPH1 -41.0836 6.15662 -6.673079 0\n\n Correlation: \n (Intr)\nPH1 -0.891\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-2.1846957 -0.6684520 -0.3687813 0.4627580 3.1918604 \n\nResidual standard error: 53.8233 \nDegrees of freedom: 126 total; 124 residual\n```\n:::\n:::\n\n\nPour comparer ce résultat au variogramme ajusté ci-dessus, il faut transformer les paramètres donnés par `gls`. La portée (range) a le même sens dans les deux cas et correspond à 478 m pour le résultat de `gls`. La variance globale des résidus est le carré de `Residual standard error`. L'effet de pépite ici (0.294) est exprimé comme fraction de cette variance. Finalement, pour obtenir le palier partiel de la partie exponentielle, il faut soustraire l'effet de pépite de la variance totale. \n\nAprès avoir réalisé ces calculs, nous pouvons donner ces paramètres à la fonction `vgm` de *gstat* pour superposer ce variogramme estimé par `gls` à notre variogramme des résidus du modèle linéaire classique.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-130_1b4118890801a03647e2f78590f222be'}\n\n```{.r .cell-code}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-130-1.png){width=672}\n:::\n:::\n\n\nEst-ce que le modèle est moins bien ajusté aux données ici? En fait, ce variogramme empirique représenté par les points avait été obtenu à partir des résidus du modèle linéaire ignorant la corrélation spatiale, donc c'est un estimé biaisé des corrélations spatiales réelles. La méthode est quand même adéquate pour vérifier rapidement s'il y a présence de corrélations spatiales. Toutefois, pour ajuster simultanément les coefficients de la régression et les paramètres de corrélation spatiale, l'approche des moindres carrés généralisés (GLS) est préférable et produira des estimés plus justes.\n\nFinalement, notez que le résultat du modèle `gls` donne aussi l'AIC, que nous pouvons utiliser pour comparer l'ajustement de différents modèles (avec différents prédicteurs ou différentes formes de corrélation spatiale).\n\n## Exercice\n\nLe fichier [bryo_belg.csv](data/bryo_belg.csv) est adapté des données de l'étude: \n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nCe tableau de données indique la richesse spécifique des bryophytes au sol (*richness*) pour différents points d'échantillonnage de la province belge de Limbourg, avec leur position *(x, y)* en km, en plus de l'information sur la proportion de forêts (*forest*) et de milieux humides (*wetland*) dans une cellule de 1 km$^2$ contenant le point d'échantillonnage.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-131_9e78f0ec8229f51b3dcf95f72b18a23a'}\n\n```{.r .cell-code}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n richness forest wetland x y\n1 9 0.2556721 0.5036614 228.9516 220.8869\n2 6 0.6449114 0.1172068 227.6714 219.8613\n3 5 0.5039905 0.6327003 228.8252 220.1073\n4 3 0.5987329 0.2432942 229.2775 218.9035\n5 2 0.7600775 0.1163538 209.2435 215.2414\n6 10 0.6865434 0.0000000 210.4142 216.5579\n```\n:::\n:::\n\n\nPour cet exercice, nous utiliserons la racine carrée de la richesse spécifique comme variable réponse. La transformation racine carrée permet souvent d'homogénéiser la variance des données de comptage afin d'y appliquer une régression linéaire. \n\na) Ajustez un modèle linéaire de la richesse spécifique transformée en fonction de la fraction de forêt et de milieux humides, sans tenir compte des corrélations spatiales. Quel est l'effet des deux prédicteurs selon ce modèle?\n\nb) Calculez le variogramme empirique des résidus du modèle en (a). Semble-t-il y avoir une corrélation spatiale entre les points?\n\n*Note*: L'argument `cutoff` de la fonction `variogram` spécifie la distance maximale à laquelle le variogramme est calculé. Vous pouvez ajuster manuellement cette valeur pour bien voir le palier.\n\nc) Ré-ajustez le modèle linéaire en (a) avec la fonction `gls` du package *nlme*, en essayant différents types de corrélations spatiales (exponentielle, gaussienne, sphérique). Comparez les modèles (incluant celui sans corrélation spatiale) avec l'AIC.\n\nd) Quel est l'effet de la fraction de forêts et de milieux humides selon le modèle en (c)? Expliquez les différences entre les conclusions de ce modèle et du modèle en (a).\n\n\n# Krigeage\n\nTel que mentionné précédemment, une application courante des modèles géostatistiques consiste à prédire la valeur de la variable de réponse à des points non-échantillonnés, une forme d'interpolation spatiale appelée krigeage (*kriging*).\n\nIl existe trois principaux types de krigeage selon les suppositions faites au sujet de la variable réponse:\n\n- Krigeage ordinaire: variable stationnaire avec une moyenne inconnue.\n\n- Krigeage simple: Variable stationnaire avec une moyenne connue.\n\n- Krigeage universel: Variable dont la tendance est donnée par un modèle linéaire ou non linéaire.\n\nPour toutes les méthodes de krigeage, les prédictions à un nouveau point sont une moyenne pondérée des valeurs à des points connus. Ces pondérations sont choisies de manière à ce que le krigeage fournisse la meilleure prédiction linéaire non biaisée de la variable de réponse, si les hypothèses du modèle (en particulier le variogramme) sont correctes. C'est-à-dire que, parmi toutes les prédictions non biaisées possibles, les poids sont choisis de manière à donner l'erreur quadratique moyenne minimale. Le krigeage fournit également une estimation de l'incertitude de chaque prédiction.\n\nBien que nous ne présentions pas ici les équations détaillées du krigeage, les poids dépendent à la fois des corrélations (estimées par le variogramme) entre les points échantillonnés et le nouveau point, ainsi que des corrélations entre les points échantillonnés eux-mêmes. Autrement dit, les points échantillonnés proches du nouveau point ont plus de poids, mais les points échantillonnés isolés ont également plus de poids, car les points échantillonnés proches les uns des autres fournissent une informations redondante.\n\nLe krigeage est une méthode d'interpolation, donc la prédiction à un point échantillonné sera toujours égale à la valeur mesurée (la variable est supposée être mesurée sans erreur, elle varie seulement entre les points). Cependant, en présence d'un effet de pépite, tout petit déplacement par rapport à l'endroit échantillonné présentera une variabilité en fonction de la pépite.\n\nDans l'exemple ci-dessous, nous générons un nouvel ensemble de données composé de coordonnées (x, y) générées de façon aléatoire dans la zone d'étude ainsi que des valeurs de pH générées de façon aléatoire sur la base des données `oxford`. Nous appliquons ensuite la fonction `krige` pour prédire les valeurs de magnésium à ces nouveaux points. Notez que nous spécifions le variogramme dérivé des résultats du `gls` dans l'argument `model` de `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-132_027c26268d41b1f7157bb584e297db99'}\n\n```{.r .cell-code}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[using universal kriging]\n```\n:::\n\n```{.r .cell-code}\nhead(pred)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD var1.pred var1.var\n1 227.0169 162.1185 47.13065 1269.002\n2 418.9136 465.9013 79.68437 1427.269\n3 578.5943 2032.7477 60.30539 1264.471\n4 376.2734 1530.7193 127.22366 1412.875\n5 591.5336 421.6290 105.88124 1375.485\n6 355.7369 404.3378 127.73055 1250.114\n```\n:::\n:::\n\n\nLe résultat de `krige` comprend les nouvelles coordonnées du point, la prédiction de la variable `var1.pred` ainsi que sa variance estimée `var1.var`. Dans le graphique ci-dessous, nous montrons les prédictions moyennes de MG1 à partir du krigeage (triangles) ainsi que les mesures (cercles).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-133_1b4299bab8f6eba5fe4ea3b112a66235'}\n\n```{.r .cell-code}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-133-1.png){width=672}\n:::\n:::\n\n\nLa moyenne et la variance estimées par krigeage peuvent être utilisées pour simuler les valeurs possibles de la variable à chaque nouveau point, conditionnellement aux valeurs échantillonnées. Dans l'exemple ci-dessous, nous avons effectué 4 simulations conditionnelles en ajoutant l'argument `nsim = 4` à la même instruction `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-134_9a008c1eb0ae0b7b22fbfc9aa9ca64ba'}\n\n```{.r .cell-code}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ndrawing 4 GLS realisations of beta...\n[using conditional Gaussian simulation]\n```\n:::\n\n```{.r .cell-code}\nhead(sim_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD sim1 sim2 sim3 sim4\n1 227.0169 162.1185 9.638739 34.53159 46.08685 77.86376\n2 418.9136 465.9013 60.029144 20.17179 76.46333 59.57924\n3 578.5943 2032.7477 100.791412 77.47887 73.50058 59.40279\n4 376.2734 1530.7193 112.615730 150.96664 78.76125 146.83928\n5 591.5336 421.6290 70.925240 72.85522 153.90610 126.63758\n6 355.7369 404.3378 161.608032 118.93640 134.45695 142.20074\n```\n:::\n:::\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-135_3de9cc48384c950ead05df0c82810126'}\n\n```{.r .cell-code}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-135-1.png){width=960}\n:::\n:::\n\n\n\n# Solutions\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-136_e5d36a60c009aa3f50973208ae8f2f5b'}\n\n```{.r .cell-code}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = sqrt(richness) ~ forest + wetland, data = bryo_belg)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.8847 -0.4622 0.0545 0.4974 2.3116 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 2.34159 0.08369 27.981 < 2e-16 ***\nforest 1.11883 0.13925 8.034 9.74e-15 ***\nwetland -0.59264 0.17216 -3.442 0.000635 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.7095 on 417 degrees of freedom\nMultiple R-squared: 0.2231,\tAdjusted R-squared: 0.2193 \nF-statistic: 59.86 on 2 and 417 DF, p-value: < 2.2e-16\n```\n:::\n:::\n\n\nLa proportion de forêts a un effet positif significatif et la proportion de milieux humides a un effet négatif significatif sur la richesse des bryophytes.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-137_ec3dcc9a8a06613df18c98b96808666b'}\n\n```{.r .cell-code}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-137-1.png){width=672}\n:::\n:::\n\n\nLe variogramme augmente au moins jusqu'à une distance de 40 km, il semble donc y avoir des corrélations spatiales dans les résidus du modèle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-138_7c7f1feca29413974ebbf1ffe2ed08c2'}\n\n```{.r .cell-code}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-139_8c08d48b4eaefbe6cc8947569ca14603'}\n\n```{.r .cell-code}\nAIC(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 908.6358\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_exp)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 867.822\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_gaus)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 870.9592\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 866.9117\n```\n:::\n:::\n\n\nLe modèle sphérique a l'AIC le plus faible.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-140_6c6c64ec797a7b31d531a376b94c8dbc'}\n\n```{.r .cell-code}\nsummary(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: sqrt(richness) ~ forest + wetland \n Data: bryo_belg \n AIC BIC logLik\n 866.9117 891.1102 -427.4558\n\nCorrelation Structure: Spherical spatial correlation\n Formula: ~x + y \n Parameter estimate(s):\n range nugget \n43.1727664 0.6063187 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 2.0368769 0.2481636 8.207800 0.000\nforest 0.6989844 0.1481690 4.717481 0.000\nwetland -0.2441130 0.1809118 -1.349348 0.178\n\n Correlation: \n (Intr) forest\nforest -0.251 \nwetland -0.235 0.241\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-1.75204183 -0.06568688 0.61415597 1.15240370 3.23322743 \n\nResidual standard error: 0.7998264 \nDegrees of freedom: 420 total; 417 residual\n```\n:::\n:::\n\n\nLa magnitude des deux effets est moins importante et l'effet des milieux humides n'est plus significatif. Comme c'est le cas pour d'autres types de résidus non indépendants, la \"taille effective\" de l'échantillon est ici inférieure au nombre de points, car des points proches les uns des autres fournissent une information redondante. Par conséquent, la relation entre les prédicteurs et la réponse est moins claire que celle donnée par le modèle supposant que tous ces points étaient indépendants.\n\nNotez que les résultats pour les trois modèles `gls` sont assez similaires, donc le choix d'inclure des corrélations spatiales était plus important que la forme exacte supposée pour le variogramme.\n\n\n# Données aréales {#areal-data-fr}\n\nLes données aréales sont des variables mesurées pour des régions de l'espace; ces régions sont définies par des polygones. Ce type de données est plus courant en sciences sociales, en géographie humaine et en épidémiologie, où les données sont souvent disponibles à l'échelle de divisions administratives du territoire. \n\nCe type de données apparaît aussi fréquemment dans la gestion des ressources naturelles. Par exemple, la carte suivante montre les unités d'aménagement forestier du Ministère de la Forêts, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSupposons qu'une certaine variable soit disponible au niveau de ces divisions du territoire. Comment pouvons-nous modéliser la corrélation spatiale entre les unités qui sont spatialement rapprochées?\n\nUne option serait d'appliquer les méthodes géostatistiques vues précédemment, en calculant par exemple la distance entre les centres des polygones.\n\nUne autre option, qui est davantage privilégiée pour les données aréales, consiste à définir un réseau où chaque région est connectée aux régions voisines par un lien. On suppose ensuite que les variables sont directement corrélées entre régions voisines seulement. (Notons toutefois que les corrélations directes entre voisins immédiats génèrent aussi des corrélations indirectes pour une chaîne de voisins.)\n\nDans ce type de modèle, la corrélation n'est pas nécessairement la même d'un lien à un autre. Dans ce cas, chaque lien du réseau peut être associé à un *poids* représentant son importance pour la corrélation spatiale. Nous représentons ces poids par une matrice $W$ où $w_{ij}$ est le poids du lien entre les régions $i$ et $j$. Une région n'a pas de lien avec elle-même, donc $w_{ii} = 0$.\n\nUn choix simple pour $W$ consiste à assigner un poids égal à 1 si les régions sont voisines, sinon 0 (poids binaires).\n\nOutre les divisions du territoire en polygones, un autre exemple de données aréales consiste en une grille où la variable est compilée pour chaque cellule de la grille. Dans ce cas, une cellule a généralement 4 ou 8 cellules voisines, selon que les diagonales soient incluses ou non.\n\n# Indice de Moran {#moran-i-fr}\n\nAvant de discuter des modèles d'autocorrélation spatiale, nous présentons l'indice $I$ de Moran, qui permet de tester si une corrélation significative est présente entre régions voisines. \n\nL'indice de Moran est un coefficient d'autocorrélation spatiale des $z$, pondéré par les poids $w_{ij}$. Il prend donc des valeurs entre -1 et 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nDans cette équation, nous reconnaissons l'expression d'une corrélation, soit le produit des écarts à la moyenne de deux variables $z_i$ et $z_j$, divisé par le produit de leurs écarts-types (qui est le même, donc on obtient la variance). La contribution de chaque paire $(i, j)$ est multipliée par son poids $w_{ij}$ et le terme à gauche (le nombre de régions $N$ divisé par la somme des poids) assure que le résultat soit borné entre -1 et 1.\n\nPuisque la distribution de $I$ est connue en l'absence d'autocorrélation spatiale, cette statistique permet de tester l'hypothèse nulle selon laquelle il n'y a pas de corrélation spatiale entre régions voisines.\n\nBien que nous ne verrons pas d'exemple dans ce cours-ci, l'indice de Moran peut aussi être appliqué aux données ponctuelles. Dans ce cas, on divise les paires de points en classes de distance et on calcule $I$ pour chaque classe de distance; le poids $w_{ij} = 1$ si la distance entre $i$ et $j$ se trouve dans la classe de distance voulue, 0 autrement.\n\n# Modèles d'autorégression spatiale {#spatial-autoreg-fr}\n\nRappelons-nous la formule pour une régression linéaire avec dépendance spatiale:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\noù $z$ est la portion de la variance résiduelle qui est spatialement corrélée.\n\nIl existe deux principaux types de modèles autorégressifs pour représenter la dépendance spatiale de $z$: l'autorégression conditionnelle (CAR) et l'autorégression simultanée (SAR).\n\n## Autorégression conditionnelle (CAR)\n\nDans le modèle d'autorégression conditionnelle, la valeur de $z_i$ pour la région $i$ suit une distribution normale: sa moyenne dépend de la valeur $z_j$ des régions voisines, multipliée par le poids $w_{ij}$ et un coefficient de corrélation $\\rho$; son écart-type $\\sigma_{z_i}$ peut varier d'une région à l'autre.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nDans ce modèle, si $w_{ij}$ est une matrice binaire (0 pour les non-voisins, 1 pour les voisins), alors $\\rho$ est le coefficient de corrélation partielle entre régions voisines. Cela est semblable à un modèle autorégressif d'ordre 1 dans le contexte de séries temporelles, où le coefficient d'autorégression indique la corrélation partielle.\n\n## Autorégression simultanée (SAR)\n\nDans le modèle d'autorégression simultanée, la valeur de $z_i$ est donnée directement par la somme de contributions des valeurs voisines $z_j$, multipliées par $\\rho w_{ij}$, avec un résidu indépendant $\\nu_i$ d'écart-type $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nÀ première vue, cela ressemble à un modèle autorégressif temporel. Il existe cependant une différence conceptuelle importante. Pour les modèles temporels, l'influence causale est dirigée dans une seule direction: $v(t-2)$ affecte $v(t-1)$ qui affecte ensuite $v(t)$. Pour un modèle spatial, chaque $z_j$ qui affecte $z_i$ dépend à son tour de $z_i$. Ainsi, pour déterminer la distribution conjointe des $z$, il faut résoudre simultanément (d'où le nom du modèle) un système d'équations. \n\nPour cette raison, même si ce modèle ressemble à la formule du modèle conditionnel (CAR), les solutions des deux modèles diffèrent et dans le cas du SAR, le coefficient $\\rho$ n'est pas directement égal à la corrélation partielle due à chaque région voisine.\n\nPour plus de détails sur les aspects mathématiques de ces modèles, vous pouvez consulter l'article de Ver Hoef et al. (2018) suggéré en référence. \n\nPour l'instant, nous considérerons les SAR et les CAR comme deux types de modèles possibles pour représenter une corrélation spatiale sur un réseau. Nous pouvons toujours ajuster plusieurs modèles et les comparer avec l'AIC pour choisir la meilleure forme de la corrélation ou la meilleure matrice de poids.\n\nLes modèles CAR et SAR partagent un avantage sur les modèles géostatistiques au niveau de l'efficacité. Dans un modèle géostatistique, les corrélations spatiales sont définies entre chaque paire de points, même si elles deviennent négligeables lorsque la distance augmente. Pour un modèle CAR ou SAR, seules les régions voisines contribuent et la plupart des poids sont égaux à 0, ce qui rend ces modèles plus rapides à ajuster qu'un modèle géostatistique lorsque les données sont massives.\n\n# Analyse des données aréales dans R {#analysis-areal-fr}\n\nPour illustrer l'analyse de données aréales dans R, nous chargeons les packages *sf* (pour lire des données géospatiales), *spdep* (pour définir des réseaux spatiaux et calculer l'indice de Moran) et *spatialreg* (pour les modèles SAR et CAR).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-141_8c941e8bafdfac85f5eb2821d17ab03b'}\n\n```{.r .cell-code}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n:::\n\n\nNous utiliserons comme exemple un jeu de données qui présente une partie des résultats de l'élection provinciale de 2018 au Québec, avec des caractéristiques de la population de chaque circonscription. Ces données sont inclues dans un fichier de type *shapefile* (.shp), que nous pouvons lire avec la fonction `read_sf` du package *sf*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-142_f24372ba1482109fbffa68f052fd7dfb'}\n\n```{.r .cell-code}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 9 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 97879.03 ymin: 174515.3 xmax: 694261.1 ymax: 599757.1\nProjected CRS: LambertAQ\n# A tibble: 6 × 10\n circ age_moy pct_frn pct_prp rev_med propCAQ propPQ propPLQ propQS\n \n1 Abitibi-Est 40.8 0.963 0.644 34518 42.7 19.5 18.8 15.7\n2 Abitibi-Ouest 42.2 0.987 0.735 33234 34.1 33.3 11.3 16.6\n3 Acadie 40.3 0.573 0.403 25391 16.5 9 53.8 13.8\n4 Anjou-Louis-Riel 43.5 0.821 0.416 31275 28.9 14.7 39.1 14.5\n5 Argenteuil 43.3 0.858 0.766 31097 38.9 21.1 17.4 12.2\n6 Arthabaska 43.4 0.989 0.679 30082 61.8 9.4 11.4 12.6\n# … with 1 more variable: geometry \n```\n:::\n:::\n\n\n*Note*: Le jeu de données est en fait composé de 4 fichiers avec les extensions .dbf, .prj, .shp et .shx, mais il suffit d'inscrire le nom du fichier .shp dans `read_sf`.\n\nLes colonnes du jeu de données sont dans l'ordre:\n\n- le nom de la circonscription électorale;\n- quatre caractéristiques de la population (âge moyen, fraction de la population qui parle principalement français à la maison, fraction des ménages qui sont propriétaires de leur logement, revenu médian);\n- quatre colonnes montrant la fraction des votes obtenues par les principaux partis (CAQ, PQ, PLQ, QS);\n- une colonne `geometry` qui contient l'objet géométrique (multipolygone) correspondant à la circonscription.\n\nPour illustrer une des variables sur une carte, nous appelons la fonction `plot` avec le nom de la colonne entre crochets et guillemets. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-143_118d70deac183e230a7c64b3208cd1a7'}\n\n```{.r .cell-code}\nplot(elect2018[\"rev_med\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-143-1.png){width=672}\n:::\n:::\n\n\nDans cet exemple, nous voulons modéliser la fraction des votes obtenue par la CAQ en fonction des caractéristiques de la population dans chaque circonscription et en tenant compte des corrélations spatiales entre circonscriptions voisines.\n\n## Définition du réseau de voisinage\n\nLa fonction `poly2nb` du package *spdep* définit un réseau de voisinage à partir de polygones. Le résultat `vois` est une liste de 125 éléments où chaque élément contient les indices des polygones voisins (limitrophes) d'un polygone donné.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-144_e6285b834db05d427f22b7669e5dbee2'}\n\n```{.r .cell-code}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 2 37 63 88 101 117\n```\n:::\n:::\n\n\nAinsi, la première circonscription (Abitibi-Est) a 6 circonscriptions voisines, dont on peut trouver les noms ainsi:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-145_2fc04a4a3fbb352f0ae58db913423a12'}\n\n```{.r .cell-code}\nelect2018$circ[vois[[1]]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"Abitibi-Ouest\" \"Gatineau\" \n[3] \"Laviolette-Saint-Maurice\" \"Pontiac\" \n[5] \"Rouyn-Noranda-Témiscamingue\" \"Ungava\" \n```\n:::\n:::\n\n\nNous pouvons illustrer ce réseau en faisant l'extraction des coordonnées du centre de chaque circonscription, en créant une carte muette avec `plot(elect2018[\"geometry\"])`, puis en ajoutant le réseau comme couche additionnelle avec `plot(vois, add = TRUE, coords = coords)`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-146_56fcb69c11c78b9880373ab1b16efb12'}\n\n```{.r .cell-code}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-146-1.png){width=672}\n:::\n:::\n\n\nOn peut faire un \"zoom\" sur le sud du Québec en choisissant les limites `xlim` et `ylim` appropriées.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-147_b0a05b92ad9c5bc6e15ecbc77d7fd239'}\n\n```{.r .cell-code}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-147-1.png){width=672}\n:::\n:::\n\n\nIl nous reste à ajouter des poids à chaque lien du réseau avec la fonction `nb2listw`. Le style de poids \"B\" correspond aux poids binaires, soit 1 pour la présence de lien et 0 pour l'absence de lien entre deux circonscriptions.\n\nUne fois ces poids définis, nous pouvons vérifier avec le test de Moran s'il y a une autocorrélation significative des votes obtenus par la CAQ entre circonscriptions voisines.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-148_59eb24f4ba758ea6399bc94ea1c419ba'}\n\n```{.r .cell-code}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: elect2018$propCAQ \nweights: poids \n\nMoran I statistic standard deviate = 13.148, p-value < 2.2e-16\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.680607768 -0.008064516 0.002743472 \n```\n:::\n:::\n\n\nLa valeur de $I = 0.68$ est très significative à en juger par la valeur $p$ du test.\n\nVérifions si la corrélation spatiale persiste après avoir tenu compte des quatre caractéristiques de la population, donc en inspectant les résidus d'un modèle linéaire incluant ces quatre prédicteurs.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-149_7d8643515ed0e408c5e5163ec8e3740c'}\n\n```{.r .cell-code}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018)\n\nResiduals:\n Min 1Q Median 3Q Max \n-30.9890 -4.4878 0.0562 6.2653 25.8146 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 1.354e+01 1.836e+01 0.737 0.463 \nage_moy -9.170e-01 3.855e-01 -2.378 0.019 * \npct_frn 4.588e+01 5.202e+00 8.820 1.09e-14 ***\npct_prp 3.582e+01 6.527e+00 5.488 2.31e-07 ***\nrev_med -2.624e-05 2.465e-04 -0.106 0.915 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 9.409 on 120 degrees of freedom\nMultiple R-squared: 0.6096,\tAdjusted R-squared: 0.5965 \nF-statistic: 46.84 on 4 and 120 DF, p-value: < 2.2e-16\n```\n:::\n\n```{.r .cell-code}\nmoran.test(residuals(elect_lm), poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: residuals(elect_lm) \nweights: poids \n\nMoran I statistic standard deviate = 6.7047, p-value = 1.009e-11\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.340083290 -0.008064516 0.002696300 \n```\n:::\n:::\n\n\nL'indice de Moran a diminué mais demeure significatif, donc une partie de la corrélation précédente était induite par ces prédicteurs, mais il reste une corrélation spatiale due à d'autres facteurs. \n\n## Modèles d'autorégression spatiale\n\nFinalement, nous ajustons des modèles SAR et CAR à ces données avec la fonction `spautolm` (*spatial autoregressive linear model*) de *spatialreg*. Voici le code pour un modèle SAR incluant l'effet des même quatre prédicteurs. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-150_34bc73005b64f5a3ee73549b2cbc9b5e'}\n\n```{.r .cell-code}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\n\nResiduals:\n Min 1Q Median 3Q Max \n-23.08342 -4.10573 0.24274 4.29941 23.08245 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 15.09421119 16.52357745 0.9135 0.36098\nage_moy -0.70481703 0.32204139 -2.1886 0.02863\npct_frn 39.09375061 5.43653962 7.1909 6.435e-13\npct_prp 14.32329345 6.96492611 2.0565 0.03974\nrev_med 0.00016730 0.00023209 0.7208 0.47101\n\nLambda: 0.12887 LR test value: 42.274 p-value: 7.9339e-11 \nNumerical Hessian standard error of lambda: 0.012069 \n\nLog likelihood: -433.8862 \nML residual variance (sigma squared): 53.028, (sigma: 7.282)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 881.77\n```\n:::\n:::\n\n\nLa valeur donnée par `Lambda` dans le sommaire correspond au coefficient $\\rho$ dans notre description du modèle. Le test du rapport de vraisemblance (`LR test`) confirme que cette corrélation spatiale résiduelle (après avoir tenu compte de l'effet des prédicteurs) est significative.\n\nLes effets estimés pour les prédicteurs sont semblables à ceux du modèle linéaire sans corrélation spatiale. Les effets de l'âge moyen, de la fraction de francophones et la fraction de propriétaires demeurent significatifs, bien que leur magnitude ait un peu diminué.\n\nPour évaluer un modèle CAR plutôt que SAR, nous devons spécifier `family = \"CAR\"`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-151_7ba6f7fcd4cc33a20eb6848945d3cce4'}\n\n```{.r .cell-code}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-21.73315 -4.24623 -0.24369 3.44228 23.43749 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 16.57164696 16.84155327 0.9840 0.325128\nage_moy -0.79072151 0.32972225 -2.3981 0.016478\npct_frn 38.99116707 5.43667482 7.1719 7.399e-13\npct_prp 17.98557474 6.80333470 2.6436 0.008202\nrev_med 0.00012639 0.00023106 0.5470 0.584364\n\nLambda: 0.15517 LR test value: 40.532 p-value: 1.9344e-10 \nNumerical Hessian standard error of lambda: 0.0026868 \n\nLog likelihood: -434.7573 \nML residual variance (sigma squared): 53.9, (sigma: 7.3416)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 883.51\n```\n:::\n:::\n\n\nPour un modèle CAR avec des poids binaires, la valeur de `Lambda` (que nous avions appelé $\\rho$) donne directement le coefficient de corrélation partielle entre circonscriptions voisines. Notez que l'AIC ici est légèrement supérieur au modèle SAR, donc ce dernier donnait un meilleur ajustement.\n\n## Exercice\n\nLe jeu de données `rls_covid`, en format *shapefile*, contient des données sur les cas de COVID-19 détectés, le nombre de cas par 1000 personnes (`taux_1k`) et la densité de population (`dens_pop`) dans chacun des réseaux locaux de service de santé (RLS) du Québec. (Source: Données téléchargées de l'Institut national de santé publique du Québec en date du 17 janvier 2021.)\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-152_117a49f704cd9751636b707b593f6428'}\n\n```{.r .cell-code}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 5 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 785111.2 ymin: 341057.8 xmax: 979941.5 ymax: 541112.7\nProjected CRS: Conique_conforme_de_Lambert_du_MTQ_utilis_e_pour_Adresse_Qu_be\n# A tibble: 6 × 6\n RLS_code RLS_nom cas taux_1k dens_…¹ geometry\n \n1 0111 RLS de Kamouraska 152 7.34 6.76 (((827028.3 412772.4, 82…\n2 0112 RLS de Rivière-du-Lo… 256 7.34 19.6 (((855905 452116.9, 8557…\n3 0113 RLS de Témiscouata 81 4.26 4.69 (((911829.4 441311.2, 91…\n4 0114 RLS des Basques 28 3.3 5.35 (((879249.6 471975.6, 87…\n5 0115 RLS de Rimouski 576 9.96 15.5 (((917748.1 503148.7, 91…\n6 0116 RLS de La Mitis 76 4.24 5.53 (((951316 523499.3, 9525…\n# … with abbreviated variable name ¹​dens_pop\n```\n:::\n:::\n\n\nAjustez un modèle linéaire du nombre de cas par 1000 en fonction de la densité de population (il est suggéré d'appliquer une transformation logarithmique à cette dernière). Vérifiez si les résidus du modèle sont corrélés entre RLS limitrophes avec un test de Moran, puis modélisez les mêmes données avec un modèle autorégressif conditionnel.\n\n## Référence\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. et Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n# GLMM avec processus spatial gaussien {#glmm-spatial-gaussian-fr}\n\nDans les parties précédentes, nous avons vu comment tenir compte de la dépendance spatiale dans les modèles de régression linéaire avec des modèles géostatistiques (également appelés processus gaussiens) ou des modèles d'autocorrélation spatiale (CAR/SAR). Dans cette dernière partie, nous verrons comment combiner ces caractéristiques avec des modèles de régression plus complexes, en particulier les modèles linéaires généralisés à effets mixtes (GLMM).\n\n## Données\n\nLe jeu de données `gambia` inclus avec le package *geoR* présente les résultats d'une étude sur la prévalence du paludisme chez les enfants de 65 villages en Gambie. Nous utiliserons une version légèrement transformée des données contenues dans le fichier [gambia.csv](data/gambia.csv).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-153_94be0528ee530f4b0d9120a3e4a412d9'}\n\n```{.r .cell-code}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n id_village x y pos age netuse treated green phc\n1 1 349.6313 1458.055 1 1783 0 0 40.85 1\n2 1 349.6313 1458.055 0 404 1 0 40.85 1\n3 1 349.6313 1458.055 0 452 1 0 40.85 1\n4 1 349.6313 1458.055 1 566 1 0 40.85 1\n5 1 349.6313 1458.055 0 598 1 0 40.85 1\n6 1 349.6313 1458.055 1 590 1 0 40.85 1\n```\n:::\n:::\n\n\nVoici les champs de ce jeu de données:\n\n- *id_village*: Identifiant du village.\n- *x* and *y*: Coordonnées spatiales du village (en km, basé sur les coordonnées UTM).\n- *pos*: Réponse binaire, si l'enfant a eu un test positif du paludisme.\n- *age*: Âge de l'enfant en jours.\n- *netuse*: Si l'enfant dort sous un moustiquaire ou non.\n- *treated*: Si le moustiquaire est traité ou non.\n- *green*: Mesure de la végétation basée sur les données de télédétection (disponible à l'échelle du village).\n- *phc*: Présence ou absence d'un centre de santé publique pour le village.\n\nNous pouvons compter le nombre de cas positifs et le nombre total d'enfants testés par village pour cartographier la fraction des cas positifs (ou prévalence, *prev*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-154_f2e9fe8cc46d29ee6147236d160f6a1a'}\n\n```{.r .cell-code}\n# Jeu de données à l'échelle du village\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\n```\n\n::: {.cell-output .cell-output-stderr}\n```\n`summarise()` has grouped output by 'id_village', 'x', 'y', 'green'. You can\noverride using the `.groups` argument.\n```\n:::\n\n```{.r .cell-code}\nhead(gambia_agg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n# A tibble: 6 × 8\n id_village x y green phc pos total prev\n \n1 1 350. 1458. 40.8 1 17 33 0.515\n2 2 359. 1460. 40.8 1 19 63 0.302\n3 3 360. 1460. 40.1 0 7 17 0.412\n4 4 364. 1497. 40.8 0 8 24 0.333\n5 5 366. 1460. 40.8 0 10 26 0.385\n6 6 367. 1463. 40.8 0 7 18 0.389\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-155_b02463961b3424baa4da82ed27a5ca7e'}\n\n```{.r .cell-code}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-155-1.png){width=672}\n:::\n:::\n\n\nNous utilisons le jeu de données `gambia.borders` du package *geoR* pour tracer les frontières des pays avec `geom_path`. Comme ces frontières sont en mètres, nous les divisons par 1000 pour obtenir la même échelle que nos points. Nous utilisons également `coord_fixed` pour assurer un rapport d'aspect de 1:1 entre les axes et utilisons la palette de couleur `viridis`, qui permet de visualiser plus facilement une variable continue par rapport à la palette par défaut dans *ggplot2*.\n\nSur la base de cette carte, il semble y avoir une corrélation spatiale dans la prévalence du paludisme, le groupe de villages de l'est montrant des valeurs de prévalence plus élevées (jaune-vert) et le groupe du milieu montrant des valeurs de prévalence plus faibles (violet).\n\n## GLMM non spatial\n\nPour ce premier exemple, nous allons ignorer l'aspect spatial des données et modéliser la présence du paludisme (*pos*) en fonction de l'utilisation d'une moustiquaire (*netuse*) et de la présence d'un centre de santé publique (*phc*). Comme nous avons une réponse binaire, nous devons utiliser un modèle de régression logistique (un GLM). Comme nous avons des prédicteurs au niveau individuel et au niveau du village et que nous nous attendons à ce que les enfants d'un même village aient une probabilité plus similaire d'avoir le paludisme même après avoir pris en compte ces prédicteurs, nous devons ajouter un effet aléatoire du village. Le résultat est un GLMM que nous ajustons en utilisant la fonction `glmer` du package *lme4*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-156_7c91bce3c832a01ae8f8b3f26d71b9fa'}\n\n```{.r .cell-code}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Laplace\n Approximation) [glmerMod]\n Family: binomial ( logit )\nFormula: pos ~ netuse + phc + (1 | id_village)\n Data: gambia\n\n AIC BIC logLik deviance df.resid \n 2428.0 2450.5 -1210.0 2420.0 2031 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-2.1286 -0.7120 -0.4142 0.8474 3.3434 \n\nRandom effects:\n Groups Name Variance Std.Dev.\n id_village (Intercept) 0.8149 0.9027 \nNumber of obs: 2035, groups: id_village, 65\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 0.1491 0.2297 0.649 0.5164 \nnetuse -0.6044 0.1442 -4.190 2.79e-05 ***\nphc -0.4985 0.2604 -1.914 0.0556 . \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) netuse\nnetuse -0.422 \nphc -0.715 -0.025\n```\n:::\n:::\n\n\nD'après ces résultats, les variables *netuse* et *phc* sont toutes deux associées à une diminution de la prévalence du paludisme, bien que l'effet de *phc* ne soit pas significatif à un seuil $\\alpha = 0.05$. L'ordonnée à l'origine (0.149) est le logit de la probabilité de présence du paludisme pour un enfant sans moustiquaire et sans centre de santé publique, mais c'est l'ordonnée à l'origine moyenne pour tous les villages. Il y a beaucoup de variation entre les villages selon l'écart-type de l'effet aléatoire (0.90). Nous pouvons obtenir l'ordonnée à l'origine estimée pour chaque village avec la fonction `coef`:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-157_63042bdf37fbb1a41197653e4f00698a'}\n\n```{.r .cell-code}\nhead(coef(mod_glmm)$id_village)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n (Intercept) netuse phc\n1 0.93727515 -0.6043602 -0.4984835\n2 0.09204843 -0.6043602 -0.4984835\n3 0.22500620 -0.6043602 -0.4984835\n4 -0.46271089 -0.6043602 -0.4984835\n5 0.13680037 -0.6043602 -0.4984835\n6 -0.03723346 -0.6043602 -0.4984835\n```\n:::\n:::\n\n\nPar exemple, l'ordonnée à l'origine pour le village 1 est environ 0.94, équivalente à une probabilité de 72%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-158_4a79548bf948a9a1dd6b953821a54623'}\n\n```{.r .cell-code}\nplogis(0.937)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7184933\n```\n:::\n:::\n\n\ntandis que celle pour le village 2 est équivalente à une probabilité de 52%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-159_4c5678258eaea6caef0b0f87f03a5423'}\n\n```{.r .cell-code}\nplogis(0.092)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.5229838\n```\n:::\n:::\n\n\nLe [package DHARMa](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) fournit une méthode générale pour vérifier si les résidus d'un GLMM sont distribués selon le modèle spécifié et s'il existe une tendance résiduelle. Il simule des réplicats de chaque observation selon le modèle ajusté et détermine ensuite un \"résidu standardisé\", qui est la position relative de la valeur observée par rapport aux valeurs simulées, par exemple 0 si l'observation est plus petite que toutes les simulations, 0.5 si elle se trouve au milieu, etc. Si le modèle représente bien les données, chaque valeur du résidu standardisé entre 0 et 1 doit avoir la même probabilité, de sorte que les résidus standardisés doivent produire une distribution uniforme entre 0 et 1.\n\nLa fonction `simulateResiduals` effectue le calcul des résidus standardisés, puis la fonction `plot` trace les graphiques de diagnostic avec les résultats de certains tests.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-160_9f18e83c75ae6d568f2e7722da9a3235'}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-160-1.png){width=672}\n:::\n:::\n\n\nLe graphique de gauche est un graphique quantile-quantile des résidus standardisés. Les résultats de trois tests statistiques sont également présentés: un test de Kolmogorov-Smirnov (*KS*) qui vérifie s'il y a un écart par rapport à la distribution théorique, un test de dispersion qui vérifie s'il y a une sous-dispersion ou une surdispersion et un test de valeurs aberrantes (*outlier*) basé sur le nombre de résidus qui sont plus extrêmes que toutes les simulations. Ici, nous obtenons un résultat significatif pour les valeurs aberrantes, bien que le message indique que ce résultat pourrait avoir un taux d'erreur de type I plus grand que prévu dans ce cas.\n\nÀ droite, nous obtenons généralement un graphique des résidus standardisés (en *y*) en fonction du rang des valeurs prédites, afin de vérifier l'absence de tendance résiduelle. Ici, les prédictions sont regroupées par quartile, il serait donc préférable d'agréger les prédictions et les résidus par village, ce que nous pouvons faire avec la fonction `recalculateResiduals`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-161_24ccd295095906cee82b1b1c09edfb05'}\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-161-1.png){width=672}\n:::\n:::\n\n\nLe graphique de droite montre les points individuels, ainsi qu'une régression quantile pour le 1er quartile, la médiane et le 3e quartile. En théorie, ces trois courbes devraient être des lignes droites horizontales (pas de tendance des résidus par rapport aux prévisions). La courbe pour le 3e quartile (en rouge) est significativement différente d'une ligne horizontale, ce qui pourrait indiquer un effet systématique manquant dans le modèle.\n\n## GLMM spatial avec spaMM\n\nLe package *spaMM* (modèles mixtes spatiaux) est un package R relativement récent qui permet d'effectuer une estimation approximative du maximum de vraisemblance des paramètres pour les GLM avec dépendance spatiale, modélisés soit comme un processus gaussien, soit avec un CAR (nous verrons ce dernier dans la dernière section). Le package implémente différents algorithmes, mais il existe une fonction unique `fitme` qui choisit l'algorithme approprié pour chaque type de modèle. Par exemple, voici le même modèle (non spatial) que nous avons vu ci-dessus, ajusté avec *spaMM*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-162_54461b112807b785cded2a0cabf936b4'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + (1 | id_village)\nEstimation of lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.1491 0.2287 0.6519\nnetuse -0.6045 0.1420 -4.2567\nphc -0.4986 0.2593 -1.9231\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n id_village : 0.8151 \n --- Coefficients for log(lambda):\n Group Term Estimate Cond.SE\n id_village (Intercept) -0.2045 0.2008\n# of obs: 2035; # of groups: id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1210.016\n```\n:::\n:::\n\n\nNotez que les estimés des effets fixes ainsi que la variance des effets aléatoires sont presque identiques à ceeux obtenues par `glmer` ci-dessus.\n\nNous pouvons maintenant utiliser *spaMM* pour ajuster le même modèle avec l'ajout de corrélations spatiales entre les villages. Dans la formule du modèle, ceci est représenté comme un effet aléatoire `Matern(1 | x + y)`, ce qui signifie que les ordonnées à l'origine sont spatialement corrélées entre les villages suivant une fonction de corrélation de Matérn des coordonnées (*x, y*). La fonction de Matérn est une fonction flexible de corrélation spatiale qui comprend un paramètre de forme $\\nu$ (`nu`), de sorte que lorsque $\\nu = 0,5$, elle est équivalente à la corrélation exponentielle, mais quand $\\nu$ prend de grandes valeurs, elle se rapproche d'une corrélation gaussienne. Nous pourrions laisser la fonction estimer $\\nu$, mais ici nous le fixons à 0.5 avec l'argument `fixed` de `fitme`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-163_94f8693a9a4ea45698056ea7d175adbc'}\n\n```{.r .cell-code}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.rho \n0.50000000 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.6421 \n id_village : 0.1978 \n# of obs: 2035; # of groups: x + y, 65; id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nCommençons par vérifier les effets aléatoires du modèle. La fonction de corrélation spatiale a un paramètre `rho` égal à 0.0513. Ce paramètre dans *spaMM* est l'inverse de la portée, donc ici la portée de la corrélation exponentielle est de 1/0.0513 ou environ 19.5 km. Il y a maintenant deux pramètres de variance, celui identifié comme `x + y` est la variance à longue distance (i.e. le palier) pour le modèle de corrélation exponentielle alors que celui identifié comme `id_village` montre la portion non corrélée de la variation entre les villages.\n\nSi nous avions ici laissé les effets aléatoires `(1 | id_village)` dans la formule pour représenter la partie non spatiale de la variation entre les villages, nous pourrions également représenter ceci avec un effet de pépite dans le modèle géostatistique. Dans les deux cas, cela représenterait l'idée que même deux villages très proches l'un de l'autre auraient des prévalences de base différentes dans le modèle.\n\nPar défaut, la fonction `Matern` n'a pas d'effet de pépite, mais nous pouvons en ajouter un en spécifiant une `pépite` non nulle dans la liste initiale des paramètres `init`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-164_7807f13fbd48e4a433573a5160e106f1'}\n\n```{.r .cell-code}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm2)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.Nugget 1.rho \n0.50000000 0.23551027 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.8399 \n# of obs: 2035; # of groups: x + y, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nComme vous pouvez le voir, toutes les estimations sont les mêmes, sauf que la variance de la portion spatiale (palier) est maintenant de 0.84 et que la pépite est égale à une fraction 0.235 de ce palier, soit une variance de 0.197, ce qui est identique à l'effet aléatoire `id_village` dans la version ci-dessus. Les deux formulations sont donc équivalentes.\n\nMaintenant, rappelons les coefficients que nous avions obtenus pour le GLMM non spatial :\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-165_d9e37edd6e102c7e0e32c00182b4c98d'}\n\n```{.r .cell-code}\nsummary(mod_glmm)$coefficients\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01\nnetuse -0.6043602 0.1442448 -4.1898243 2.791706e-05\nphc -0.4984835 0.2604083 -1.9142382 5.558973e-02\n```\n:::\n:::\n\n\nDans la version spatiale, les deux effets fixes se sont légèrement rapprochés de zéro, mais l'erreur-type de l'effet de `phc` a diminué. Il est intéressant de noter que l'inclusion de la dépendance spatiale nous a permis d'estimer plus précisément l'effet de la présence d'un centre de santé publique dans le village. Ce ne serait pas toujours le cas: pour un prédicteur qui est également fortement corrélé dans l'espace, la corrélation spatiale dans la réponse rend plus difficile l'estimation de l'effet de ce prédicteur, puisqu'il est confondu avec l'effet spatial. Cependant, pour un prédicteur qui n'est pas corrélé dans l'espace, l'inclusion de l'effet spatial réduit la variance résiduelle (non spatiale) et peut donc augmenter la précision de l'effet du prédicteur.\n\nLe package *spaMM* est également compatible avec *DHARMa* pour les diagnostics résiduels. (Vous pouvez ignorer l'avertissement selon lequel il ne fait pas partie de la classe des modèles pris en charge, cela est dû à l'utilisation de la fonction `fitme` plutôt que d'une fonction d'algorithme spécifique dans *spaMM*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-166_482f0fc040c81b2f1de2f8ee99aed0d1'}\n\n```{.r .cell-code}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-166-1.png){width=672}\n:::\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-166-2.png){width=672}\n:::\n:::\n\n\nEnfin, bien que nous allons montrer comment calculer et visualiser des prédictions spatiales ci-dessous, nous pouvons produire une carte rapide des effets spatiaux estimés dans un modèle *spaMM* avec la fonction `filled.mapMM`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-167_e868e1e85e43353fb2484a914c5ac95b'}\n\n```{.r .cell-code}\nfilled.mapMM(mod_spamm2)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-167-1.png){width=672}\n:::\n:::\n\n\n## Processus gaussiens vs. splines de lissage\n\nSi vous connaissez bien les modèles additifs généralisés (GAM), vous avez peut-être pensé à représenter la variation spatiale de la prévalence du paludisme (comme le montre la carte ci-dessus) par une spline de lissage en 2D (en fonction de $x$ et $y$) dans un GAM.\n\nLe code ci-dessous correspond à l'équivalent GAM de notre GLMM avec processus gaussien ci-dessus, ajusté avec la fonction `gam` du package *mgcv*. L'effet spatial est représenté par la spline 2D `s(x, y)` alors que l'effet aléatoire non spatial de village est représenté par `s(id_village, bs = \"re\")`, qui est équivalent à `(1 | id_village)` dans les modèles précédents. Notez que pour la fonction `gam`, les variables catégorielles doivent être explicitement converties en facteurs.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-168_5bc46e857407589375ab5b89e189742e'}\n\n```{.r .cell-code}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n:::\n\n\nPour visualiser la spline en 2D, nous utiliserons le package [*gratia*](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-169_07227aba979cb7fed1f2b23e7e58bfaa'}\n\n```{.r .cell-code}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-169-1.png){width=672}\n:::\n:::\n\n\nNotez que le graphique de la spline `s(x, y)` (en haut à droite) ne s'étend pas trop loin des emplacements des données (les autres zones sont vides). Dans ce graphique, on peut également voir que les effets aléatoires des villages suivent la distribution gaussienne attendue (en haut à gauche).\n\nEnsuite, nous utiliserons à la fois le GLMM spatial de la section précédente et ce GAMM pour prédire la prévalence moyenne sur une grille spatiale de points contenue dans le fichier [gambia_pred.csv](data/gambia_pred.csv). Le graphique ci-dessous ajoute ces points de prédiction (en noir) sur la carte précédente des points de données.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-170_a944ccbc8f583a47e766a152bff9062f'}\n\n```{.r .cell-code}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-170-1.png){width=672}\n:::\n:::\n\n\nPour faire des prédictions à partir du modèle GAMM à ces endroits, le code ci-dessous effectue les étapes suivantes:\n\n- Tous les prédicteurs du modèle doivent se trouver dans le tableau de données de prédiction, nous ajoutons donc des valeurs constantes de *netuse* et *phc* (toutes deux égales à 1) pour tous les points. Ainsi, nous ferons des prédictions sur la prévalence du paludisme dans le cas où un moustiquaire est utilisée et où un centre de santé publique est présent. Nous ajoutons également un *id_village* constant, bien qu'il ne soit pas utilisé dans les prédictions (voir ci-dessous).\n\n- Nous appelons la fonction `predict` à la sortie de `gam` pour produire des prédictions aux nouveaux points de données (argument `newdata`), en incluant les erreurs-types (`se.fit = TRUE`) et en excluant les effets aléatoires du village, donc la prédiction est faite pour un \"village moyen\". L'objet résultant `gam_pred` aura des colonnes `fit` (prédiction moyenne) et `se.fit` (erreur-type). Ces prédictions et erreurs-types sont sur l'échelle du lien (logit).\n\n- Nous rattachons le jeu de données de prédiction original à `gam_pred` avec `cbind`. \n\n- Nous ajoutons des colonnes pour la prédiction moyenne et les limites de l'intervalle de confiance à 50% (moyenne $\\pm$ 0.674 erreur-type), converties de l'échelle logit à l'échelle de probabilité avec `plogis`. Nous choisissons un intervalle de 50% car un intervalle de 95% peut être trop large ici pour contraster les différentes prédictions sur la carte à la fin de cette section.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-171_357ffbfea872595db79ace469d64440a'}\n\n```{.r .cell-code}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\n*Note* : La raison pour laquelle nous ne faisons pas de prédictions directement sur l'échelle de probabilité (réponse) est que la formule normale des intervalles de confiance s'applique plus précisément sur l'échelle logit. L'ajout d'un certain nombre d'erreurs-types autour de la moyenne sur l'échelle de probabilité conduirait à des intervalles moins précis et peut-être même à des intervalles de confiance en dehors de la plage de valeurs possible (0, 1) pour une probabilité.\n\nNous appliquons la même stratégie pour faire des prédictions à partir du GLMM spatial avec *spaMM*. Il y a quelques différences dans la méthode `predict` par rapport au cas du GAMM.\n\n- L'argument `binding = \"fit\"` signifie que les prédictions moyennes (colonne `fit`) seront attachées à l'ensemble de données de prédiction et retournées sous forme de tableau de données `spamm_pred`.\n\n- L'argument `variances = list(linPred = TRUE)` indique à `predict` de calculer la variance du prédicteur linéaire (donc le carré de l'erreur-type). Cependant, il apparaît comme un attribut `predVar` dans le tableau de données de sortie plutôt que dans une colonne `se.fit`, donc nous le déplaçons vers une colonne sur la ligne suivante. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-172_4419491a3882f147cdc904a6d1ed9d9c'}\n\n```{.r .cell-code}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\nEnfin, nous combinons les deux ensembles de prédictions sous la forme de différentes rangées d'un tableau de données `pred_all` avec `bind_rows`. Le nom du tableau de données d'où provient chaque prédiction (`gam` ou `spamm`) apparaîtra dans la colonne \"model\" (argument `.id`). Pour simplifier la production du prochain graphique, nous utilisons ensuite `pivot_longer` dans le package *tidyr* pour changer les trois colonnes \"pred\", \"lo\" et \"hi\" en deux colonnes, \"stat\" et \"value\" (`pred_tall` a donc trois rangées pour chaque rangée dans `pred_all`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-173_1fc1b4f68f5b10a718d8d768a968469c'}\n\n```{.r .cell-code}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n:::\n\n\nUne fois ces étapes franchies, nous pouvons enfin examiner les cartes de prédiction (moyenne, limites inférieure et supérieure de l'intervalle de confiance à 50 %) à l'aide d'un graphique `ggplot`. Les points de données originaux sont indiqués en rouge.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-174_f5e1618501cf8d5cc8fb3b12843ae8e2'}\n\n```{.r .cell-code}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-174-1.png){width=672}\n:::\n:::\n\n\nBien que les deux modèles s'accordent à dire que la prévalence est plus élevée près du groupe de villages de l'est, le GAMM estime également une prévalence plus élevée en quelques points (bord ouest et autour du centre) où il n'y a pas de données. Il s'agit d'un artefact de la forme de la spline autour des points de données, puisqu'une spline est censée correspondre à une tendance globale, bien que non linéaire. En revanche, le modèle géostatistique représente l'effet spatial sous forme de corrélations locales et revient à la prévalence moyenne globale lorsqu'il est éloigné de tout point de données, ce qui est une supposition plus sûre. C'est l'une des raisons pour lesquelles il est préférable de choisir un modèle géostatistique / processus gaussien dans ce cas.\n\n## Méthodes bayésiennes pour les GLMM avec processus gaussiens\n\nLes modèles bayésiens fournissent un cadre flexible pour exprimer des modèles avec une structure de dépendance complexe entre les données, y compris la dépendance spatiale. Cependant, l'ajustement d'un modèle de processus gaussien avec une approche entièrement bayésienne peut être lent, en raison de la nécessité de calculer une matrice de covariance spatiale entre toutes les paires de points à chaque itération. \n\nLa méthode INLA (pour *integrated nested Laplace approximation*) effectue un calcul approximatif de la distribution postérieure bayésienne, ce qui la rend adaptée aux problèmes de régression spatiale. Nous ne l'abordons pas dans ce cours, mais je recommande le manuel de Paula Moraga (dans la section des références ci-dessous) qui fournit des exemples concrets d'utilisation de la méthode INLA pour divers modèles de données géostatistiques et aréales, dans le contexte de l'épidémiologie, y compris des modèles avec une dépendance à la fois spatiale et temporelle. Le livre présente les mêmes données sur le paludisme en Gambie comme exemple d'un ensemble de données géostatistiques, ce qui a inspiré son utilisation dans ce cours.\n\n# GLMM avec autorégression spatiale {#glmm-spatial-autoreg-fr}\n\nNous revenons au dernier exemple de la partie précédente, où nous avions modélisé le taux de cas de COVID-19 (cas / 1000) pour les divisions administratives du réseau de la santé (RLS) au Québec en fonction de leur densité de population. Le taux est donné par la colonne \"taux_1k\" dans le *shapefile* `rls_covid`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-175_d979460e37556b83e05dc8fb16e15b65'}\n\n```{.r .cell-code}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-175-1.png){width=672}\n:::\n:::\n\n\nAuparavant, nous avions modélisé le logarithme de ce taux comme une fonction linéaire du logarithme de la densité de population, la variance résiduelle étant corrélée entre les unités voisines via une structure CAR (autorégression conditionnelle), comme le montre le code ci-dessous.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-176_eabbd635c0d88a1a771574c50afa7c53'}\n\n```{.r .cell-code}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid, \n listw = rls_w, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.201858 -0.254084 -0.053348 0.281482 1.427053 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16\nlog(dens_pop) 0.206623 0.032848 6.2903 3.169e-10\n\nLambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07 \nNumerical Hessian standard error of lambda: 0.0050486 \n\nLog likelihood: -80.68953 \nML residual variance (sigma squared): 0.2814, (sigma: 0.53048)\nNumber of observations: 95 \nNumber of parameters estimated: 4 \nAIC: 169.38\n```\n:::\n:::\n\n\n*Rappel*: La fonction `poly2nb` du package *spdep* crée une liste de voisins basée sur les polygones limitrophes dans un *shapefile*, puis `nb2listw` la convertit en une liste de poids, ici des poids binaires (`style = \"B\"`) de sorte que chaque région limitrophe reçoive le même poids de 1 dans le modèle autorégressif.\n\nAu lieu d'utiliser les taux, il serait possible de modéliser directement les cas avec une régression de Poisson, qui est appropriée pour les données de comptage. Pour tenir compte du fait que si le risque par personne était égal, les cas seraient proportionnels à la population, nous pouvons ajouter la population de l'unité `pop` comme *offset* dans la régression de Poisson. Par conséquent, le modèle ressemblerait à : `cas ~ log(dens_pop) + offset(log(pop))`. Notez que puisque la régression de Poisson utilise un lien logarithmique, ce modèle avec `log(pop)` comme *offset* suppose que `log(cas / pop)` (donc le taux logarithmique) est proportionnel à `log(dens_pop)`, tout comme le modèle linéaire ci-dessus, mais il a l'avantage de modéliser la variabilité des données brutes (le nombre de cas) directement avec une distribution de Poisson.\n\nNous n'avons pas la population dans ces données, mais nous pouvons l'estimer à partir des cas et du taux (cas / 1000) comme suit:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-177_6dfaa30fb79c49e08cda1647cb0cd013'}\n\n```{.r .cell-code}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n:::\n\n\nPour définir un modèle CAR dans *spaMM*, nous avons besoin d'une matrice de poids plutôt que d'une liste de poids comme dans le package *spatialreg*. Heureusement, le package *spdep* comprend également une fonction `nb2mat` pour convertir la liste des voisins en une matrice de poids, là encore en utilisant des poids binaires. Pour éviter un avertissement dans R, nous spécifions que les noms des lignes et des colonnes de cette matrice doivent être égaux aux identifiants associés à chaque unité (`RLS_code`). Ensuite, nous ajoutons un terme `adjacency(1 | RLS_code)` au modèle pour spécifier que la variation résiduelle entre les différents groupes définis par `RLS_code` est spatialement corrélée avec une structure CAR (ici, chaque groupe n'a qu'une observation puisque nous avons un point de données par unité RLS).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-178_c3221c2defe378081625dfcfb8bdbe89'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: poisson( link = log ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) -5.1618 0.16855 -30.625\nlog(dens_pop) 0.1999 0.03267 6.119\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.rho \n0.1576605 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n RLS_code : 0.266 \n# of obs: 95; # of groups: RLS_code, 95 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -709.3234\n```\n:::\n:::\n\n\nNotez que le coefficient de corrélation spatiale `rho` (0.158) est similaire à la quantité équivalente dans le modèle `spautolm` ci-dessus, où il était appelé `Lambda`. L'effet de `log(dens_pop)` est également d'environ 0.2 dans les deux modèles.\n\n\n## Référence\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Disponible en ligne: [https://www.paulamoraga.com/book-geospatial/](https://www.paulamoraga.com/book-geospatial/). \n", + "markdown": "---\ntitle: \"4-Day Training in Spatial Statistics with Philippe Marchand\"\ndescription: |\n Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). | \n Session de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).\nauthor: Philippe Marchand\ncategories: [FR, EN, Technical]\ndate: \"2021-01-12\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\nexecute:\n freeze: true\n cache: true\n---\n\n\nVersion en français [à la suite](#statistiques-spatiales-en-écologie).\n\n# Spatial statistics in ecology\n\nBIOS² hosted an online training session about statistical analysis of spatial data in ecology, led by Pr. Philippe Marchand (UQAT). This 12-hour training was conducted in 4 sessions: January 12, 14, 19 & 21 (2021) from 1:00 to 4:00 pm EST.\n\nThe content included three types of spatial statistical analyses and their applications to ecology: (1) point pattern analysis to study the distribution of individuals or events in space; (2) geostatistical models to represent the spatial correlation of variables sampled at geolocated points; and (3) areal data models, which apply to measurements taken on areas in space and model spatial relationships as networks of neighbouring regions. The training also included practical exercises using the R statistical programming environment.\n\n[Philippe Marchand](https://github.com/pmarchand1) is a professor in ecology and biostatistics at Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) and BIOS² academic member. His research focuses on modeling processes that influence the spatial distribution of populations, including: seed dispersal and seedling establishment, animal movement, and the spread of forest diseases.\n\n**If you wish to consult the lesson materials and follow the exercises at your own pace, you can access them through [this link](https://bios2.github.io/Marchand.html#category:EN). Basic knowledge of linear regression models and experience fitting them in R is recommended. Original repository can be found [here](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Course outline\n\n| Day | Topics (EN) |\n|-----------------|:--------------------------|\n| 1 | • [Introduction to spatial statistics](#introduction)
• [Point pattern analysis](#point-pattern)
|\n| 2 | • [Spatial correlation](#spatial-correlation)
• [Geostatistical models](#geostat-models) |\n| 3 | • [Areal data](#areal-data)
• [Moran's I](#moran-i)
• [Spatial autoregression models](#spatial-autoreg)
• [Analysis of areal data in R](#analysis-areal) |\n| 4 | • [GLMM with spatial Gaussian process](#glmm-spatial-gaussian)
• [GLMM with spatial autoregression](#glmm-spatial-autoreg) |\n\n\n# Introduction to spatial statistics {#introduction}\n\n## Types of spatial analyses\n\nIn this training, we will discuss three types of spatial analyses: point pattern analysis, geostatistical models and models for areal data.\n\nIn **point pattern analysis**, we have point data representing the position of individuals or events in a study area and we assume that all individuals or events have been identified in that area. That analysis focuses on the distribution of the positions of the points themselves. Here are some typical questions for the analysis of point patterns:\n\n- Are the points randomly arranged or clustered?\n\n- Are two types of points arranged independently?\n\n**Geostatistical models** represent the spatial distribution of continuous variables that are measured at certain sampling points. They assume that measurements of those variables at different points are correlated as a function of the distance between the points. Applications of geostatistical models include the smoothing of spatial data (e.g., producing a map of a variable over an entire region based on point measurements) and the prediction of those variables for non-sampled points.\n\n**Areal data** are measurements taken not at points, but for regions of space represented by polygons (e.g. administrative divisions, grid cells). Models representing these types of data define a network linking each region to its neighbours and include correlations in the variable of interest between neighbouring regions.\n\n## Stationarity and isotropy\n\nSeveral spatial analyses assume that the variables are **stationary** in space. As with stationarity in the time domain, this property means that summary statistics (mean, variance and correlations between measures of a variable) do not vary with translation in space. For example, the spatial correlation between two points may depend on the distance between them, but not on their absolute position.\n\nIn particular, there cannot be a large-scale trend (often called *gradient* in a spatial context), or this trend must be taken into account before modelling the spatial correlation of residuals.\n\nIn the case of point pattern analysis, stationarity (also called homogeneity) means that point density does not follow a large-scale trend.\n\nIn a **isotropic** statistical model, the spatial correlations between measurements at two points depend only on the distance between the points, not on the direction. In this case, the summary statistics do not change under a spatial rotation of the data.\n\n## Georeferenced data\n\nEnvironmental studies increasingly use data from geospatial data sources, i.e. variables measured over a large part of the globe (e.g. climate, remote sensing). The processing of these data requires concepts related to Geographic Information Systems (GIS), which are not covered in this workshop, where we focus on the statistical aspects of spatially varying data.\n\nThe use of geospatial data does not necessarily mean that spatial statistics are required. For example, we will often extract values of geographic variables at study points to explain a biological response observed in the field. In this case, the use of spatial statistics is only necessary when there is a spatial correlation in the residuals, after controlling for the effect of the predictors.\n\n# Point pattern analysis {#point-pattern}\n\n## Point pattern and point process\n\nA *point pattern* describes the spatial position (most often in 2D) of individuals or events, represented by points, in a given study area, often called the observation \"window\".\n\nIt is assumed that each point has a negligible spatial extent relative to the distances between the points. More complex methods exist to deal with spatial patterns of objects that have a non-negligible width, but this topic is beyond the scope of this workshop.\n\nA *point process* is a statistical model that can be used to simulate point patterns or explain an observed point pattern.\n\n## Complete spatial randomness\n\nComplete spatial randomness (CSR) is one of the simplest point patterns, which serves as a null model for evaluating the characteristics of real point patterns. In this pattern, the presence of a point at a given position is independent of the presence of points in a neighbourhood.\n\nThe process creating this pattern is a homogeneous Poisson process. According to this model, the number of points in any area $A$ follows a Poisson distribution: $N(A) \\sim \\text{Pois}(\\lambda A)$, where $\\lambda$ is the *intensity* of the process (i.e. the density of points per unit area). $N$ is independent between two disjoint regions, no matter how those regions are defined.\n\nIn the graph below, only the pattern on the right is completely random. The pattern on the left shows point aggregation (higher probability of observing a point close to another point), while the pattern in the center shows repulsion (low probability of observing a point very close to another).\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-2_c019229dfeb24b4b22a136e6b038583d'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-2-1.png){width=864}\n:::\n:::\n\n\n## Exploratory or inferential analysis for a point pattern\n\nSeveral summary statistics are used to describe the characteristics of a point pattern. The simplest is the intensity $\\lambda$, which as mentioned above represents the density of points per unit area. If the point pattern is heterogeneous, the intensity is not constant, but depends on the position: $\\lambda(x, y)$.\n\nCompared to intensity, which is a first-order statistic, second-order statistics describe how the probability of the presence of a point in a region depends on the presence of other points. The Ripley's $K$ function presented in the next section is an example of a second-order summary statistic.\n\nStatistical inferences on point patterns usually consist of testing the hypothesis that the point pattern corresponds to a given null model, such as CSR or a more complex null model. Even for the simplest null models, we rarely know the theoretical distribution for a summary statistic of the point pattern under the null model. Hypothesis tests on point patterns are therefore performed by simulation: a large number of point patterns are simulated from the null model and the distribution of the summary statistics of interest for these simulations is compared to their values for the observed point pattern.\n\n## Ripley's K function\n\nRipley's K function $K(r)$ is defined as the mean number of points within a circle of radius $r$ around a point in the pattern, standardized by the intensity $\\lambda$.\n\nUnder the CSR null model, the mean number of points in any circle of radius $r$ is $\\lambda \\pi r^2$, thus in theory $K(r) = \\pi r^2$ for that model. A higher value of $K(r)$ means that there is an aggregation of points at the scale $r$, whereas a lower value means that there is repulsion.\n\nIn practice, $K(r)$ is estimated for a specific point pattern by the equation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\nwhere $A$ is the area of the observation window and $n$ is the number of points in the pattern, so $n(n-1)$ is the number of distinct pairs of points. We take the sum for all pairs of points of the indicator function $I$, which takes a value of 1 if the distance between points $i$ and $j$ is less than or equal to $r$. Finally, the term $w_{ij}$ is used to give extra weight to certain pairs of points to account for edge effects, as discussed in the next section.\n\nFor example, the graphs below show the estimated $K(r)$ function for the patterns shown above, for values of $r$ up to 1/4 of the window width. The red dashed curve shows the theoretical value for CSR and the gray area is an \"envelope\" produced by 99 simulations of that null pattern. The aggregated pattern shows an excess of neighbours up to $r = 0.25$ and the pattern with repulsion shows a significant deficit of neighbours for small values of $r$.\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-4_93b9963febba16ed4365408bd10b6c70'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-4-1.png){width=864}\n:::\n:::\n\n\nIn addition to $K$, there are other statistics to describe the second-order properties of point patterns, such as the mean distance between a point and its nearest $N$ neighbours. You can refer to the Wiegand and Moloney (2013) textbook in the references to learn more about different summary statistics for point patterns.\n\n## Edge effects\n\nIn the context of point pattern analysis, edge effects are due to the fact that we have incomplete knowledge of the neighbourhood of points near the edge of the observation window, which can induce a bias in the calculation of statistics such as Ripley's $K$.\n\nDifferent methods have been developed to correct the bias due to edge effects. In Ripley's edge correction method, the contribution of a neighbour $j$ located at a distance $r$ from a point $i$ receives a weight $w_{ij} = 1/\\phi_i(r)$, where $\\phi_i(r)$ is the fraction of the circle of radius $r$ around $i$ contained in the observation window. For example, if 2/3 of the circle is in the window, this neighbour counts as 3/2 neighbours in the calculation of a statistic like $K$.\n\n![](images/ripley_edge.png)\n\nRipley's method is one of the simplest to correct for edge effects, but is not necessarily the most efficient; in particular, larger weights given to certain pairs of points tend to increase the variance of the calculated statistic. Other correction methods are presented in specialized textbooks, such as Wiegand and Moloney (2013).\n\n## Example\n\nFor this example, we use the dataset [semis_xy.csv](data/semis_xy.csv), which represents the $(x, y)$ coordinates for seedlings of two species (*sp*, B = birch and P = poplar) in a 15 x 15 m plot.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-5_0f8146040b7a6a70fa3c497cc0385db2'}\n\n```{.r .cell-code}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y sp\n1 14.73 0.05 P\n2 14.72 1.71 P\n3 14.31 2.06 P\n4 14.16 2.64 P\n5 14.12 4.15 B\n6 9.88 4.08 B\n```\n:::\n:::\n\n\nThe *spatstat* package provides tools for point pattern analysis in R. The first step consists in transforming our data frame into a `ppp` object (point pattern) with the function of the same name. In this function, we specify which columns contain the coordinates *x* and *y* as well as the *marks*, which here will be the species codes. We also need to specify an observation window (`window`) using the `owin` function, where we provide the plot limits in *x* and *y*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-6_57149b36e4a5be5442a99b8f45b2dbdd'}\n\n```{.r .cell-code}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMarked planar point pattern: 281 points\nMultitype, with levels = B, P \nwindow: rectangle = [0, 15] x [0, 15] units\n```\n:::\n:::\n\n\nMarks can be numeric or categorical. Note that for categorical marks as is the case here, the variable must be explicitly converted to a factor.\n\nThe `plot` function applied to a point pattern shows a diagram of the pattern.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-7_ba656f4aa5befb58b9e9845ae787d99d'}\n\n```{.r .cell-code}\nplot(semis)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-7-1.png){width=672}\n:::\n:::\n\n\nThe `intensity` function calculates the density of points of each species by unit area (here, by $m^2$).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-8_0b22d4b3b39bd4dc862f8c161efb9330'}\n\n```{.r .cell-code}\nintensity(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n B P \n0.6666667 0.5822222 \n```\n:::\n:::\n\n\nTo first analyze the distribution of each species separately, we split the pattern with `split`. Since the pattern contains categorical marks, it is automatically split according to the values of those marks. The result is a list of two point patterns.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-9_5ff3f6384afcf7ed706bbf891accd2fa'}\n\n```{.r .cell-code}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-9-1.png){width=672}\n:::\n:::\n\n\nThe `Kest` function calculates Ripley's $K$ for a series of distances up to (by default) 1/4 of the width of the window. Here we apply it to the first pattern (birch) by choosing `semis_split[[1]]`. Note that double square brackets are necessary to choose an item from a list in R.\n\nThe argument `correction = \"iso\"` tells the function to apply Ripley's correction for edge effects.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-10_67e4bd9ed190d1af69a48250adb1bc3d'}\n\n```{.r .cell-code}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-10-1.png){width=672}\n:::\n:::\n\n\nAccording to this graph, there seems to be an excess of neighbours for distances of 1 m and above. To check if this is a significant difference, we produce a simulation envelope with the `envelope` function. The first argument of `envelope` is a point pattern to which the simulations will be compared, the second one is a function to be computed (here, `Kest`) for each simulated pattern, then we add the arguments of the `Kest` function (here, only `correction`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-11_ebe814599d9537b0a51121b965182658'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-11-1.png){width=672}\n:::\n:::\n\n\nAs indicated by the message, by default the function performs 99 simulations of the null model corresponding to complete spatial randomness (CSR).\n\nThe observed curve falls outside the envelope of the 99 simulations near $r = 2$. We must be careful not to interpret too quickly a result that is outside the envelope. Although there is about a 1% probability of obtaining a more extreme result under the null hypothesis at a given distance, the envelope is calculated for a large number of values of $r$ and is not corrected for multiple comparisons. Thus, a significant difference for a very small range of values of $r$ may be simply due to chance.\n\n### Exercise 1\n\nLooking at the graph of the second point pattern (poplar seedlings), can you predict where Ripley's $K$ will be in relation to the null hypothesis of complete spatial randomness? Verify your prediction by calculating Ripley's $K$ for this point pattern in R.\n\n## Effect of heterogeneity\n\nThe graph below illustrates a *heterogeneous* point pattern, i.e. it shows an density gradient (more points on the left than on the right).\n\n\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-13_36849871c75ced31ddf5bd09edb7ace9'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-13-1.png){width=672}\n:::\n:::\n\n\nA density gradient can be confused with an aggregation of points, as can be seen on the graph of the corresponding Ripley's $K$. In theory, these are two different processes:\n\n- Heterogeneity: The density of points varies in the study area, for example due to the fact that certain local conditions are more favorable to the presence of the species of interest.\n\n- Aggregation: The mean density of points is homogeneous, but the presence of one point increases the presence of other points in its vicinity, for example due to positive interactions between individuals.\n\nHowever, it may be difficult to differentiate between the two in practice, especially since some patterns may be both heterogeneous and aggregated.\n\nLet's take the example of the poplar seedlings from the previous exercise. The `density` function applied to a point pattern performs a kernel density estimation of the density of the seedlings across the plot. By default, this function uses a Gaussian kernel with a standard deviation `sigma` specified in the function, which determines the scale at which density fluctuations are \"smoothed\". Here, we use a value of 2 m for `sigma` and we first represent the estimated density with `plot`, before overlaying the points (`add = TRUE` means that the points are added to the existing plot rather than creating a new plot).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-14_3332987af85b2014bbebfa360ce15a9b'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n\nTo measure the aggregation or repulsion of points in a heterogeneous pattern, we must use the inhomogeneous version of the $K$ statistic (`Kinhom` in *spatstat*). This statistic is still equal to the mean number of neighbours within a radius $r$ of a point in the pattern, but rather than standardizing this number by the overall intensity of the pattern, it is standardized by the local estimated density. As above, we specify `sigma = 2` to control the level of smoothing for the varying density estimate.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-15_f82857163481aaf3f03a5dd201df8615'}\n\n```{.r .cell-code}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-15-1.png){width=672}\n:::\n:::\n\n\nTaking into account the heterogeneity of the pattern at a scale `sigma` of 2 m, there seems to be a deficit of neighbours starting at a radius of about 1.5 m. We can now check whether this deviation is significant.\n\nAs before, we use `envelope` to simulate the `Kinhom` statistic under the null model. However, the null model here is not a homogeneous Poisson process (CSR). It is instead a heterogeneous Poisson process simulated by the function `rpoispp(dens_p)`, i.e. the points are independent of each other, but their density is heterogeneous and given by `dens_p`. The `simulate` argument of the `envelope` function specifies the function used for simulations under the null model; this function must have one argument, here `x`, even if it is not used.\n\nFinally, in addition to the arguments needed for `Kinhom`, i.e. `sigma` and `correction`, we also specify `nsim = 199` to perform 199 simulations and `nrank = 5` to eliminate the 5 most extreme results on each side of the envelope, i.e. the 10 most extreme results out of 199, to achieve an interval containing about 95% of the probability under the null hypothesis.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-16_7119c82106369cf2aa8fe32fff918b5e'}\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-16-1.png){width=672}\n:::\n:::\n\n\n*Note*: For a hypothesis test based on simulations of a null hypothesis, the $p$-value is estimated by $(m + 1)/(n + 1)$, where $n$ is the number of simulations and $m$ is the number of simulations where the value of the statistic is more extreme than that of the observed data. This is why the number of simulations is often chosen to be 99, 199, etc.\n\n### Exercise 2\n\nRepeat the heterogeneous density estimation and `Kinhom` calculation with a standard deviation `sigma` of 5 rather than 2. How does the smoothing level for the density estimation influence the conclusions?\n\nTo differentiate between a variation in the density of points from an interaction (aggregation or repulsion) between these points with this type of analysis, it is generally assumed that the two processes operate at different scales. Typically, we can test whether the points are aggregated at a small scale after accounting for a variation in density at a larger scale.\n\n## Relationship between two point patterns\n\nLet's consider a case where we have two point patterns, for example the position of trees of two species in a plot (orange and green points in the graph below). Each of the two patterns may or may not present an aggregation of points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-17_b4289a87928bcb641b5e8e2bd2b6abf1'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-17-1.png){width=672}\n:::\n:::\n\n\nRegardless of whether points are aggregated at the species level, we want to determine whether the two species are arranged independently. In other words, does the probability of observing a tree of one species depend on the presence of a tree of the other species at a given distance?\n\nThe bivariate version of Ripley's $K$ allows us to answer this question. For two patterns noted 1 and 2, the function $K_{12}(r)$ calculates the mean number of points in pattern 2 within a radius $r$ from a point in pattern 1, standardized by the density of pattern 2.\n\nIn theory, this function is symmetrical, so $K_{12}(r) = K_{21}(r)$ and the result would be the same whether the points of pattern 1 or 2 are chosen as \"focal\" points for the analysis. However, the estimation of the two quantities for an observed pattern may differ, in particular because of edge effects. The variance of $K_{12}$ and $K_{21}$ between simulations of a null model may also differ, so the null hypothesis test may have more or less power depending on the choice of the focal species.\n\nThe choice of an appropriate null model is important here. In order to determine whether there is a significant attraction or repulsion between the two patterns, the position of one of the patterns must be randomly moved relative to that of the other pattern, while keeping the spatial structure of each pattern taken in isolation.\n\nOne way to do this randomization is to shift one of the two patterns horizontally and/or vertically by a random distance. The part of the pattern that \"comes out\" on one side of the window is attached to the other side. This method is called a toroidal shift, because by connecting the top and bottom as well as the left and right of a rectangular surface, we obtain the shape of a torus (a three-dimensional \"donut\").\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-18_2719c0934b27fb43697dae326b9542d1'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-18-1.png){width=672}\n:::\n:::\n\n\nThe graph above shows a translation of the green pattern to the right, while the orange pattern remains in the same place. The green points in the shaded area are brought back on the other side. Note that while this method generally preserves the structure of each pattern while randomizing their relative position, it can have some drawbacks, such as dividing point clusters that are near the cutoff point.\n\nLet's now check whether the position of the two species (birch and poplar) is independent in our plot. The function `Kcross` calculates the bivariate $K_{ij}$, we must specify which type of point (mark) is considered as the focal species $i$ and the neighbouring species $j$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-19_4dcee95d46a21e9800bad80559da1926'}\n\n```{.r .cell-code}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-19-1.png){width=672}\n:::\n:::\n\n\nHere, the observed $K$ is lower than the theoretical value, indicating a possible repulsion between the two patterns.\n\nTo determine the envelope of the $K$ under the null hypothesis of independence of the two patterns, we must specify that the simulations are based on a translation of the patterns. We indicate that the simulations use the function `rshift` (random translation) with the argument `simulate = function(x) rshift(x, which = \"B\")`; here, the `x` argument in `simulate` corresponds to the original point pattern and the `which` argument indicates which of the patterns is translated. As in the previous case, the arguments needed for `Kcross`, i.e. `i`, `j` and `correction`, must be repeated in the `envelope` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-20_0ac003a9d3ff5047aa7ab53d990626d2'}\n\n```{.r .cell-code}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-20-1.png){width=672}\n:::\n:::\n\n\nHere, the observed curve is totally within the envelope, so we do not reject the null hypothesis of independence of the two patterns.\n\n### Questions\n\n1. What would be one reason for our choice to translate the points of the birch rather than poplar?\n\n2. Would the simulations generated by random translation be a good null model if the two patterns were heterogeneous?\n\n## Marked point patterns\n\nThe [fir.csv](data/fir.csv) dataset contains the $(x, y)$ coordinates of 822 fir trees in a 1 hectare plot and their status (A = alive, D = dead) following a spruce budworm outbreak.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-21_facfc5f20aa18027ead60eade7d1f3e8'}\n\n```{.r .cell-code}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y status\n1 31.50 1.00 A\n2 85.25 30.75 D\n3 83.50 38.50 A\n4 84.00 37.75 A\n5 83.00 33.25 A\n6 33.25 0.25 A\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-22_8ca66569ad633346ebe5c4d72856947e'}\n\n```{.r .cell-code}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-22-1.png){width=672}\n:::\n:::\n\n\nSuppose that we want to check whether fir mortality is independent or correlated between neighbouring trees. How does this question differ from the previous example, where we wanted to know if the position of the points of two species was independent?\n\nIn the previous example, the independence or interaction between the species referred to the formation of the pattern itself (whether or not seedlings of one species establish near those of the other species). Here, the characteristic of interest (survival) occurs after the establishment of the pattern, assuming that all those trees were alive at first and that some died as a result of the outbreak. So we take the position of the trees as fixed and we want to know whether the distribution of status (dead, alive) among those trees is random or shows a spatial pattern.\n\nIn Wiegand and Moloney's textbook, the first situation (establishment of seedlings of two species) is called a bivariate pattern, so it is really two interacting patterns, while the second is a single pattern with a qualitative *mark*. The *spatstat* package in R does not differentiate between the two in terms of pattern definition (types of points are always represented by the `marks` argument), but the analysis methods applied to the two questions differ.\n\nIn the case of a pattern with a qualitative mark, we can define a *mark connection function* $p_{ij}(r)$. For two points separated by a distance $r$, this function gives the probability that the first point has the mark $i$ and the second the mark $j$. Under the null hypothesis where the marks are independent, this probability is equal to the product of the proportions of each mark in the entire pattern, $p_{ij}(r) = p_i p_j$ independently of $r$.\n\nIn *spatstat*, the mark connection function is computed with the `markconnect` function, where the marks $i$ and $j$ and the type of edge correction must be specified. In our example, we see that two closely spaced points are less likely to have a different status (A and D) than expected under the assumption of random and independent distribution of marks (red dotted line).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-23_ea3bee43b75cb2228264e2bba732134d'}\n\n```{.r .cell-code}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-23-1.png){width=672}\n:::\n:::\n\n\nIn this graph, the fluctuations in the function are due to the estimation error of a continuous $r$ function from a limited number of discrete point pairs.\n\nTo simulate the null model in this case, we use the `rlabel` function, which randomly reassigns the marks among the points of the pattern, keeping the points' positions fixed.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-24_b5961fa24a7b5816b3a04f809a6a674c'}\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-24-1.png){width=672}\n:::\n:::\n\n\nNote that since the `rlabel` function has only one required argument corresponding to the original point pattern, it was not necessary to specify: `simulate = function(x) rlabel(x)`.\n\nHere are the results for tree pairs of the same status A or D:\n\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-25_b52d50f419fba628767a4e51fec12988'}\n\n```{.r .cell-code}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-25-1.png){width=960}\n:::\n:::\n\n\nIt therefore appears that fir mortality due to this outbreak is spatially aggregated, since trees located in close proximity to each other have a greater probability of sharing the same status than predicted by the null hypothesis.\n\n## References\n\nFortin, M.-J. and Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK.\n\nWiegand, T. and Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nThe dataset in the last example is a subet of the Lake Duparquet Research and Teaching Forest (LDRTF) data, available on Dryad [here](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n# Solutions\n\n### Exercise 1\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-26_b3fd18c8b6c242843edf3836d1967112'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-26-1.png){width=672}\n:::\n:::\n\n\nPoplar seedlings seem to be significantly aggregated according to the $K$ function.\n\n### Exercise 2\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-27_acce28ca3e937720b0224ba60b6c233b'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-27-1.png){width=672}\n:::\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-27-2.png){width=672}\n:::\n:::\n\n\nHere, as we estimate density variations at a larger scale, even after accounting for this variation, the poplar seedlings seem to be aggregated at a small scale.\n\n# Spatial correlation of a variable {#spatial-correlation}\n\n\n\n\n\nCorrelation between measurements of a variable taken at nearby points often occurs in environmental data. This principle is sometimes referred to as the \"first law of geography\" and is expressed in the following quote from Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things\".\n\nIn statistics, we often refer to *autocorrelation* as the correlation between measurements of the same variable taken at different times (temporal autocorrelation) or places (spatial autocorrelation).\n\n## Intrinsic or induced dependence\n\nThere are two basic types of spatial dependence on a measured variable $y$: an *intrinsic* dependence on $y$, or a dependence *induced* by external variables influencing $y$, which are themselves spatially correlated.\n\nFor example, suppose that the abundance of a species is correlated between two sites located near each other:\n\n- this spatial dependence can be induced if it is due to a spatial correlation of habitat factors that are favorable or unfavorable to the species;\n\n- or it can be intrinsic if it is due to the dispersion of individuals to nearby sites.\n\nIn many cases, both types of dependence affect a given variable.\n\nIf the dependence is simply induced and the external variables that cause it are included in the model explaining $y$, then the model residuals will be independent and we can use all the methods already seen that ignore spatial correlation.\n\nHowever, if the dependence is intrinsic or due to unmeasured external factors, then the spatial correlation of the residuals in the model will have to be taken into account.\n\n## Different ways to model spatial effects\n\nIn this training, we will directly model the spatial correlations of our data. It is useful to compare this approach to other ways of including spatial aspects in a statistical model.\n\nFirst, we could include predictors in the model that represent position (e.g., longitude, latitude). Such predictors may be useful for detecting a systematic large-scale trend or gradient, whether or not the trend is linear (e.g., with a generalized additive model).\n\nIn contrast to this approach, the models we will see now serve to model a spatial correlation in the random fluctuations of a variable (i.e., in the residuals after removing any systematic effect).\n\nMixed models use random effects to represent the non-independence of data on the basis of their grouping, i.e., after accounting for systematic fixed effects, data from the same group are more similar (their residual variation is correlated) than data from different groups. These groups were sometimes defined according to spatial criteria (observations grouped into sites).\n\nHowever, in the context of a random group effect, all groups are as different from each other, e.g., two sites within 100 km of each other are no more or less similar than two sites 2 km apart.\n\nThe methods we will see here and in the next parts of the training therefore allow us to model non-independence on a continuous scale (closer = more correlated) rather than just discrete (hierarchy of groups).\n\n# Geostatistical models {#geostat-models}\n\nGeostatistics refers to a group of techniques that originated in the earth sciences. Geostatistics is concerned with variables that are continuously distributed in space and where a number of points are sampled to estimate this distribution. A classic example of these techniques comes from the mining field, where the aim was to create a map of the concentration of ore at a site from samples taken at different points on the site.\n\nFor these models, we will assume that $z(x, y)$ is a stationary spatial variable measured at points with coordinates $x$ and $y$.\n\n## Variogram\n\nA central aspect of geostatistics is the estimation of the variogram $\\gamma_z$ . The variogram is equal to half the mean square difference between the values of $z$ for two points $(x_i, y_i)$ and $(x_j, y_j)$ separated by a distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nIn this equation, the $\\text{E}$ function with the index $d_{ij}=h$ designates the statistical expectation (i.e., the mean) of the squared deviation between the values of $z$ for points separated by a distance $h$.\n\nIf we want instead to express the autocorrelation $\\rho_z(h)$ between measures of $z$ separated by a distance $h$, it is related to the variogram by the equation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\nwhere $\\sigma_z^2$ is the global variance of $z$.\n\nNote that $\\gamma_z = \\sigma_z^2$ when we reach a distance where the measurements of $z$ are independent, so $\\rho_z = 0$. In this case, we can see that $\\gamma_z$ is similar to a variance, although it is sometimes called \"semivariogram\" or \"semivariance\" because of the 1/2 factor in the above equation.\n\n## Theoretical models for the variogram\n\nSeveral parametric models have been proposed to represent the spatial correlation as a function of the distance between sampling points. Let us first consider a correlation that decreases exponentially:\n\n$$\\rho_z(h) = e^{-h/r}$$\n\nHere, $\\rho_z = 1$ for $h = 0$ and the correlation is multiplied by $1/e \\approx 0.37$ each time the distance increases by $r$. In this context, $r$ is called the *range* of the correlation.\n\nFrom the above equation, we can calculate the corresponding variogram.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nHere is a graphical representation of this variogram.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-28_db8b05730133a816cb7d6c558cbd7757'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-28-1.png){width=672}\n:::\n:::\n\n\nBecause of the exponential function, the value of $\\gamma$ at large distances approaches the global variance $\\sigma_z^2$ without exactly reaching it. This asymptote is called a *sill* in the geostatistical context and is represented by the symbol $s$.\n\nFinally, it is sometimes unrealistic to assume a perfect correlation when the distance tends towards 0, because of a possible variation of $z$ at a very small scale. A *nugget* effect, denoted $n$, can be added to the model so that $\\gamma$ approaches $n$ (rather than 0) if $h$ tends towards 0. The term nugget comes from the mining origin of these techniques, where a nugget could be the source of a sudden small-scale variation in the concentration of a mineral.\n\nBy adding the nugget effect, the remainder of the variogram is \"compressed\" to keep the same sill, resulting in the following equation.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nIn the *gstat* package that we use below, the term $(s-n)$ is called a *partial sill* or `psill` for the exponential portion of the variogram.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-29_76ce196068f7afb370f9fcd84ff0bf2d'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-29-1.png){width=672}\n:::\n:::\n\n\nIn addition to the exponential model, two other common theoretical models for the variogram are the Gaussian model (where the correlation follows a half-normal curve), and the spherical model (where the variogram increases linearly at the start and then curves and reaches the plateau at a distance equal to its range $r$). The spherical model thus allows the correlation to be exactly 0 at large distances, rather than gradually approaching zero in the case of the other models.\n\n| Model | $\\rho(h)$ | $\\gamma(h)$ |\n|------------------|-------------------------|-----------------------------|\n| Exponential | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$ |\n| Gaussian | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$ |\n| Spherical $(h < r)$ \\* | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$ |\n\n\\* For the spherical model, $\\rho = 0$ and $\\gamma = s$ if $h \\ge r$.\n\n\n::: {.cell fig.dim='[9,4]' hash='index_cache/html/unnamed-chunk-30_36d08077ec0b54caf8dbcbb8751648be'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-30-1.png){width=864}\n:::\n:::\n\n\n## Empirical variogram\n\nTo estimate $\\gamma_z(h)$ from empirical data, we need to define distance classes, thus grouping different distances within a margin of $\\pm \\delta$ around a distance $h$, then calculating the mean square deviation for the pairs of points in that distance class.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nWe will see in the next section how to estimate a variogram in R.\n\n## Regression model with spatial correlation\n\nThe following equation represents a multiple linear regression including residual spatial correlation:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nHere, $v$ designates the response variable and $u$ the predictors, to avoid confusion with the spatial coordinates $x$ and $y$.\n\nIn addition to the residual $\\epsilon$ that is independent between observations, the model includes a term $z$ that represents the spatially correlated portion of the residual variance.\n\nHere are suggested steps to apply this type of model:\n\n1. Fit the regression model without spatial correlation.\n\n2. Verify the presence of spatial correlation from the empirical variogram of the residuals.\n\n3. Fit one or more regression models with spatial correlation and select the one that shows the best fit to the data.\n\n# Geostatistical models in R\n\nThe *gstat* package contains functions related to geostatistics. For this example, we will use the `oxford` dataset from this package, which contains measurements of physical and chemical properties for 126 soil samples from a site, along with their coordinates `XCOORD` and `YCOORD`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-31_d42a00ecb66d27e6d127659ed2dfd66c'}\n\n```{.r .cell-code}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n'data.frame':\t126 obs. of 22 variables:\n $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...\n $ XCOORD : num 100 100 100 100 100 100 100 100 100 100 ...\n $ YCOORD : num 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...\n $ ELEV : num 598 597 610 615 610 595 580 590 598 588 ...\n $ PROFCLASS: Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 2 2 3 3 2 3 2 3 3 ...\n $ MAPCLASS : Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 3 3 3 3 2 2 3 3 3 ...\n $ VAL1 : num 3 3 4 4 3 3 4 4 4 3 ...\n $ CHR1 : num 3 3 3 3 3 2 2 3 3 3 ...\n $ LIME1 : num 4 4 4 4 4 0 2 1 0 4 ...\n $ VAL2 : num 4 4 5 8 8 4 8 4 8 8 ...\n $ CHR2 : num 4 4 4 2 2 4 2 4 2 2 ...\n $ LIME2 : num 4 4 4 5 5 4 5 4 5 5 ...\n $ DEPTHCM : num 61 91 46 20 20 91 30 61 38 25 ...\n $ DEP2LIME : num 20 20 20 20 20 20 20 20 40 20 ...\n $ PCLAY1 : num 15 25 20 20 18 25 25 35 35 12 ...\n $ PCLAY2 : num 10 10 20 10 10 20 10 20 10 10 ...\n $ MG1 : num 63 58 55 60 88 168 99 59 233 87 ...\n $ OM1 : num 5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...\n $ CEC1 : num 20 22 17 23 27 27 21 14 27 20 ...\n $ PH1 : num 7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...\n $ PHOS1 : num 13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...\n $ POT1 : num 196 157 115 172 238 164 312 184 123 282 ...\n```\n:::\n:::\n\n\nSuppose that we want to model the magnesium concentration (`MG1`), represented as a function of the spatial position in the following graph.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-32_cf223f9501bba263c237e06328f21358'}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-32-1.png){width=672}\n:::\n:::\n\n\nNote that the $x$ and $y$ axes have been inverted to save space. The `coord_fixed()` function of *ggplot2* ensures that the scale is the same on both axes, which is useful for representing spatial data.\n\nWe can immediately see that these measurements were taken on a 100 m grid. It seems that the magnesium concentration is spatially correlated, although it may be a correlation induced by another variable. In particular, we know that the concentration of magnesium is negatively related to the soil pH (`PH1`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-33_a9ec8bcf320a9e52d1252e4725f81bf7'}\n\n```{.r .cell-code}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-33-1.png){width=672}\n:::\n:::\n\n\nThe `variogram` function of *gstat* is used to estimate a variogram from empirical data. Here is the result obtained for the variable `MG1`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-34_c3f828164d93cc2b3d38500281fe87b9'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n np dist gamma dir.hor dir.ver id\n1 225 100.0000 1601.404 0 0 var1\n2 200 141.4214 1950.805 0 0 var1\n3 548 215.0773 2171.231 0 0 var1\n4 623 303.6283 2422.245 0 0 var1\n5 258 360.5551 2704.366 0 0 var1\n6 144 400.0000 2948.774 0 0 var1\n7 570 427.5569 2994.621 0 0 var1\n8 291 500.0000 3402.058 0 0 var1\n9 366 522.8801 3844.165 0 0 var1\n10 200 577.1759 3603.060 0 0 var1\n11 458 619.8400 3816.595 0 0 var1\n12 90 670.8204 3345.739 0 0 var1\n```\n:::\n:::\n\n\nThe formula `MG1 ~ 1` indicates that no linear predictor is included in this model, while the argument `locations` indicates which variables in the data frame correspond to the spatial coordinates.\n\nIn the resulting table, `gamma` is the value of the variogram for the distance class centered on `dist`, while `np` is the number of pairs of points in that class. Here, since the points are located on a grid, we obtain regular distance classes (e.g.: 100 m for neighboring points on the grid, 141 m for diagonal neighbors, etc.).\n\nHere, we limit ourselves to the estimation of isotropic variograms, i.e. the variogram depends only on the distance between the two points and not on the direction. Although we do not have time to see it today, it is possible with *gstat* to estimate the variogram separately in different directions.\n\nWe can illustrate the variogram with `plot`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-35_dced0e607669b721d5ef7df8faa51cb2'}\n\n```{.r .cell-code}\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-35-1.png){width=672}\n:::\n:::\n\n\nIf we want to estimate the residual spatial correlation of `MG1` after including the effect of `PH1`, we can add that predictor to the formula.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-36_41f230bd5a30f1cb7752e89e361c338a'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-36-1.png){width=672}\n:::\n:::\n\n\nIncluding the effect of pH, the range of the spatial correlation seems to decrease, while the plateau is reached around 300 m. It even seems that the variogram decreases beyond 400 m. In general, we assume that the variance between two points does not decrease with distance, unless there is a periodic spatial pattern.\n\nThe function `fit.variogram` accepts as arguments a variogram estimated from the data, as well as a theoretical model described in a `vgm` function, and then estimates the parameters of that model according to the data. The fitting is done by the method of least squares.\n\nFor example, `vgm(\"Exp\")` means we want to fit an exponential model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-37_b852e100bd05bd7def030586576b386c'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nThere is no nugget effect, because `psill = 0` for the `Nug` (nugget) part of the model. The exponential part has a sill at 1951 and a range of 95 m.\n\nTo compare different models, a vector of model names can be given to `vgm`. In the following example, we include the exponential, gaussian (\"Gau\") and spherical (\"Sph\") models.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-38_5af5359b8627d50d97bf2175f4728362'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nThe function gives us the result of the model with the best fit (lowest sum of squared deviations), which here is the same exponential model.\n\nFinally, we can superimpose the theoretical model and the empirical variogram on the same graph.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-39_acab997244a63895e5eaedd7b9e62465'}\n\n```{.r .cell-code}\nplot(var_mg, vfit, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-39-1.png){width=672}\n:::\n:::\n\n\n## Regression with spatial correlation\n\nWe have seen above that the *gstat* package allows us to estimate the variogram of the residuals of a linear model. In our example, the magnesium concentration was modeled as a function of pH, with spatially correlated residuals.\n\nAnother tool to fit this same type of model is the `gls` function of the *nlme* package, which is included with the installation of R.\n\nThis function applies the *generalized least squares* method to fit linear regression models when the residuals are not independent or when the residual variance is not the same for all observations. Since the estimates of the coefficients depend on the estimated correlations between the residuals and the residuals themselves depend on the coefficients, the model is fitted by an iterative algorithm:\n\n1. A classical linear regression model (without correlation) is fitted to obtain residuals.\n\n2. The spatial correlation model (variogram) is fitted with those residuals.\n\n3. The regression coefficients are re-estimated, now taking into account the correlations.\n\nSteps 2 and 3 are repeated until the estimates are stable at a desired precision.\n\nHere is the application of this method to the same model for the magnesium concentration in the `oxford` dataset. In the `correlation` argument of `gls`, we specify an exponential correlation model as a function of our spatial coordinates and we include a possible nugget effect.\n\nIn addition to the exponential correlation `corExp`, the `gls` function can also estimate a Gaussian (`corGaus`) or spherical (`corSpher`) model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-40_0b3199847595fbf9b39d87618cbffc8f'}\n\n```{.r .cell-code}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: MG1 ~ PH1 \n Data: oxford \n AIC BIC logLik\n 1278.65 1292.751 -634.325\n\nCorrelation Structure: Exponential spatial correlation\n Formula: ~XCOORD + YCOORD \n Parameter estimate(s):\n range nugget \n478.0322964 0.2944753 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 391.1387 50.42343 7.757084 0\nPH1 -41.0836 6.15662 -6.673079 0\n\n Correlation: \n (Intr)\nPH1 -0.891\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-2.1846957 -0.6684520 -0.3687813 0.4627580 3.1918604 \n\nResidual standard error: 53.8233 \nDegrees of freedom: 126 total; 124 residual\n```\n:::\n:::\n\n\nTo compare this result with the adjusted variogram above, the parameters given by `gls` must be transformed. The range has the same meaning in both cases and corresponds to 478 m for the result of `gls`. The global variance of the residuals is the square of `Residual standard error`. The nugget effect here (0.294) is expressed as a fraction of that variance. Finally, to obtain the partial sill of the exponential part, the nugget effect must be subtracted from the total variance.\n\nAfter performing these calculations, we can give these parameters to the `vgm` function of *gstat* to superimpose this variogram estimated by `gls` on our variogram of the residuals of the classical linear model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-41_bdace2c5570a84ab706e3cc520568742'}\n\n```{.r .cell-code}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-41-1.png){width=672}\n:::\n:::\n\n\nDoes the model fit the data less well here? In fact, this empirical variogram represented by the points was obtained from the residuals of the linear model ignoring the spatial correlation, so it is a biased estimate of the actual spatial correlations. The method is still adequate to quickly check if spatial correlations are present. However, to simultaneously fit the regression coefficients and the spatial correlation parameters, the generalized least squares (GLS) approach is preferable and will produce more accurate estimates.\n\nFinally, note that the result of the `gls` model also gives the AIC, which we can use to compare the fit of different models (with different predictors or different forms of spatial correlation).\n\n## Exercise\n\nThe [bryo_belg.csv](data/bryo_belg.csv) dataset is adapted from the data of this study:\n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nThis data frame shows the specific richness of ground bryophytes (*richness*) for different sampling points in the Belgian province of Limburg, with their position *(x, y)* in km, in addition to information on the proportion of forest (*forest*) and wetlands (*wetland*) in a 1 km\\^2\\$ cell containing the sampling point.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-42_c25ae6f03a62752dff743e2d40b205a0'}\n\n```{.r .cell-code}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n richness forest wetland x y\n1 9 0.2556721 0.5036614 228.9516 220.8869\n2 6 0.6449114 0.1172068 227.6714 219.8613\n3 5 0.5039905 0.6327003 228.8252 220.1073\n4 3 0.5987329 0.2432942 229.2775 218.9035\n5 2 0.7600775 0.1163538 209.2435 215.2414\n6 10 0.6865434 0.0000000 210.4142 216.5579\n```\n:::\n:::\n\n\nFor this exercise, we will use the square root of the specific richness as the response variable. The square root transformation often allows to homogenize the variance of the count data in order to apply a linear regression.\n\na) Fit a linear model of the transformed species richness to the proportion of forest and wetlands, without taking into account spatial correlations. What is the effect of the two predictors in this model?\n\nb) Calculate the empirical variogram of the model residuals in (a). Does there appear to be a spatial correlation between the points?\n\n*Note*: The `cutoff` argument to the `variogram` function specifies the maximum distance at which the variogram is calculated. You can manually adjust this value to get a good view of the sill.\n\nc) Re-fit the linear model in (a) with the `gls` function in the *nlme* package, trying different types of spatial correlations (exponential, Gaussian, spherical). Compare the models (including the one without spatial correlation) with the AIC.\n\nd) What is the effect of the proportion of forests and wetlands according to the model in (c)? Explain the differences between the conclusions of this model and the model in (a).\n\n# Kriging\n\nAs mentioned before, a common application of geostatistical models is to predict the value of the response variable at unsampled locations, a form of spatial interpolation called kriging (pronounced with a hard \"g\").\n\nThere are three basic types of kriging based on the assumptions made about the response variable:\n\n- Ordinary kriging: Stationary variable with an unknown mean.\n\n- Simple kriging: Stationary variable with a known mean.\n\n- Universal kriging: Variable with a trend given by a linear or non-linear model.\n\nFor all kriging methods, the predictions at a new point are a weighted mean of the values at known points. These weights are chosen so that kriging provides the best linear unbiased prediction of the response variable, if the model assumptions (in particular the variogram) are correct. That is, among all possible unbiased predictions, the weights are chosen to give the minimum mean square error. Kriging also provides an estimate of the uncertainty of each prediction.\n\nWhile we will not present the detailed kriging equations here, the weights depend on both the correlations (estimated by the variogram) between the sampled points and the new point, as well of the correlations between the sampled points themselves. In other words, sampled points near the new point are given more weight, but isolated sampled points are also given more weight, because sample points close to each other provide redundant information.\n\nKriging is an interpolation method, so the prediction at a sampled point will always be equal to the measured value (the measurement is supposed to have no error, just spatial variation). However, in the presence of a nugget effect, any small displacement from the sampled location will show variability according to the nugget.\n\nIn the example below, we generate a new dataset composed of randomly-generated (x, y) coordinates within the study area as well as randomly-generated pH values based on the `oxford` data. We then apply the function `krige` to predict the magnesium values at these new points. Note that we specify the variogram derived from the GLS results in the `model` argument to `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-43_f81acecbca5eefa202e114614faebc54'}\n\n```{.r .cell-code}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[using universal kriging]\n```\n:::\n\n```{.r .cell-code}\nhead(pred)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD var1.pred var1.var\n1 227.0169 162.1185 47.13065 1269.002\n2 418.9136 465.9013 79.68437 1427.269\n3 578.5943 2032.7477 60.30539 1264.471\n4 376.2734 1530.7193 127.22366 1412.875\n5 591.5336 421.6290 105.88124 1375.485\n6 355.7369 404.3378 127.73055 1250.114\n```\n:::\n:::\n\n\nThe result of `krige` includes the new point coordinates, the prediction of the variable `var1.pred` along with its estimated variance `var1.var`. In the graph below, we show the mean MG1 predictions from kriging (triangles) along with the measurements (circles).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-44_8a46f7bb0f5137f5dae6fef418b6b61e'}\n\n```{.r .cell-code}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-44-1.png){width=672}\n:::\n:::\n\n\nThe estimated mean and variance from kriging can be used to simulate possible values of the variable at each new point, conditional on the sampled values. In the example below, we performed 4 conditional simulations by adding the argument `nsim = 4` to the same `krige` instruction.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-45_15e6975ae8f74fb12acd4b9d15610303'}\n\n```{.r .cell-code}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ndrawing 4 GLS realisations of beta...\n[using conditional Gaussian simulation]\n```\n:::\n\n```{.r .cell-code}\nhead(sim_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD sim1 sim2 sim3 sim4\n1 227.0169 162.1185 9.638739 34.53159 46.08685 77.86376\n2 418.9136 465.9013 60.029144 20.17179 76.46333 59.57924\n3 578.5943 2032.7477 100.791412 77.47887 73.50058 59.40279\n4 376.2734 1530.7193 112.615730 150.96664 78.76125 146.83928\n5 591.5336 421.6290 70.925240 72.85522 153.90610 126.63758\n6 355.7369 404.3378 161.608032 118.93640 134.45695 142.20074\n```\n:::\n:::\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-46_dc67747871861d460645cc2d898c2797'}\n\n```{.r .cell-code}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-46-1.png){width=960}\n:::\n:::\n\n\n# Solutions\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-47_46625f4b0eb7a89df12358298784d779'}\n\n```{.r .cell-code}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = sqrt(richness) ~ forest + wetland, data = bryo_belg)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.8847 -0.4622 0.0545 0.4974 2.3116 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 2.34159 0.08369 27.981 < 2e-16 ***\nforest 1.11883 0.13925 8.034 9.74e-15 ***\nwetland -0.59264 0.17216 -3.442 0.000635 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.7095 on 417 degrees of freedom\nMultiple R-squared: 0.2231,\tAdjusted R-squared: 0.2193 \nF-statistic: 59.86 on 2 and 417 DF, p-value: < 2.2e-16\n```\n:::\n:::\n\n\nThe proportion of forest has a significant positive effect and the proportion of wetlands has a significant negative effect on bryophyte richness.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-48_9f1b47ee10d87121e3853375afbb8273'}\n\n```{.r .cell-code}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-1.png){width=672}\n:::\n:::\n\n\nThe variogram is increasing from 0 to at least 40 km, so there appears to be spatial correlations in the model residuals.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-49_2a94f7a8b64ea0bb9127648e255fcbd3'}\n\n```{.r .cell-code}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-50_9d306abf18fdbd164c34d87f9f9832d8'}\n\n```{.r .cell-code}\nAIC(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 908.6358\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_exp)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 867.822\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_gaus)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 870.9592\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 866.9117\n```\n:::\n:::\n\n\nThe spherical model has the smallest AIC.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-51_5c26da31bc0b2db751ce60929eb7b8be'}\n\n```{.r .cell-code}\nsummary(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: sqrt(richness) ~ forest + wetland \n Data: bryo_belg \n AIC BIC logLik\n 866.9117 891.1102 -427.4558\n\nCorrelation Structure: Spherical spatial correlation\n Formula: ~x + y \n Parameter estimate(s):\n range nugget \n43.1727664 0.6063187 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 2.0368769 0.2481636 8.207800 0.000\nforest 0.6989844 0.1481690 4.717481 0.000\nwetland -0.2441130 0.1809118 -1.349348 0.178\n\n Correlation: \n (Intr) forest\nforest -0.251 \nwetland -0.235 0.241\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-1.75204183 -0.06568688 0.61415597 1.15240370 3.23322743 \n\nResidual standard error: 0.7998264 \nDegrees of freedom: 420 total; 417 residual\n```\n:::\n:::\n\n\nBoth effects are less important in magnitude and the effect of wetlands is not significant anymore. As is the case for other types of non-independent residuals, the \"effective sample size\" here is less than the number of points, since points close to each other provide redundant information. Therefore, the relationship between predictors and response is less clear than given by the model assuming all these points were independent.\n\nNote that the results for all three `gls` models are quite similar, so the choice to include spatial correlations was more important than the exact shape assumed for the variogram.\n\n\n# Areal data {#areal-data}\n\nAreal data are variables measured for regions of space, defined by polygons. This type of data is more common in the social sciences, human geography and epidemiology, where data is often available at the scale of administrative divisions.\n\nThis type of data also appears frequently in natural resource management. For example, the following map shows the forest management units of the Ministère de la Forêt, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSuppose that a variable is available at the level of these management units. How can we model the spatial correlation between units that are spatially close together?\n\nOne option would be to apply the geostatistical methods seen before, for example by calculating the distance between the centers of the polygons.\n\nAnother option, which is more adapted for areal data, is to define a network where each region is connected to neighbouring regions by a link. It is then assumed that the variables are directly correlated between neighbouring regions only. (Note, however, that direct correlations between immediate neighbours also generate indirect correlations for a chain of neighbours).\n\nIn this type of model, the correlation is not necessarily the same from one link to another. In this case, each link in the network can be associated with a *weight* representing its importance for the spatial correlation. We represent these weights by a matrix $W$ where $w_{ij}$ is the weight of the link between regions $i$ and $j$. A region has no link with itself, so $w_{ii} = 0$.\n\nA simple choice for $W$ is to assign a weight equal to 1 if the regions are neighbours, otherwise 0 (binary weight).\n\nIn addition to land divisions represented by polygons, another example of areal data consists of a grid where the variable is calculated for each cell of the grid. In this case, a cell generally has 4 or 8 neighbouring cells, depending on whether diagonals are included or not.\n\n# Moran's I {#moran-i}\n\nBefore discussing spatial autocorrelation models, we present Moran's $I$ statistic, which allows us to test whether a significant correlation is present between neighbouring regions.\n\nMoran's $I$ is a spatial autocorrelation coefficient of $z$, weighted by the $w_{ij}$. It therefore takes values between -1 and 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nIn this equation, we recognize the expression of a correlation, which is the product of the deviations from the mean for two variables $z_i$ and $z_j$, divided by the product of their standard deviations (it is the same variable here, so we get the variance). The contribution of each pair $(i, j)$ is multiplied by its weight $w_{ij}$ and the term on the left (the number of regions $N$ divided by the sum of the weights) ensures that the result is bounded between -1 and 1.\n\nSince the distribution of $I$ is known in the absence of spatial autocorrelation, this statistic serves to test the null hypothesis that there is no spatial correlation between neighbouring regions.\n\nAlthough we will not see an example in this course, Moran's $I$ can also be applied to point data. In this case, we divide the pairs of points into distance classes and calculate $I$ for each distance class; the weight $w_{ij} = 1$ if the distance between $i$ and $j$ is in the desired distance class, otherwise 0.\n\n# Spatial autoregression models {#spatial-autoreg}\n\nLet us recall the formula for a linear regression with spatial dependence:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nwhere $z$ is the portion of the residual variance that is spatially correlated.\n\nThere are two main types of autoregressive models to represent the spatial dependence of $z$: conditional autoregression (CAR) and simultaneous autoregressive (SAR).\n\n## Conditional autoregressive (CAR) model\n\nIn the conditional autoregressive model, the value of $z_i$ for the region $i$ follows a normal distribution: its mean depends on the value $z_j$ of neighbouring regions, multiplied by the weight $w_{ij}$ and a correlation coefficient $\\rho$; its standard deviation $\\sigma_{z_i}$ may vary from one region to another.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nIn this model, if $w_{ij}$ is a binary matrix (0 for non-neighbours, 1 for neighbours), then $\\rho$ is the coefficient of partial correlation between neighbouring regions. This is similar to a first-order autoregressive model in the context of time series, where the autoregression coefficient indicates the partial correlation.\n\n## Simultaneous autoregressive (SAR) model\n\nIn the simultaneous autoregressive model, the value of $z_i$ is given directly by the sum of contributions from neighbouring values $z_j$, multiplied by $\\rho w_{ij}$, with an independent residual $\\nu_i$ of standard deviation $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nAt first glance, this looks like a temporal autoregressive model. However, there is an important conceptual difference. For temporal models, the causal influence is directed in only one direction: $v(t-2)$ affects $v(t-1)$ which then affects $v(t)$. For a spatial model, each $z_j$ that affects $z_i$ depends in turn on $z_i$. Thus, to determine the joint distribution of $z$, a system of equations must be solved simultaneously (hence the name of the model).\n\nFor this reason, although this model resembles the formula of CAR model, the solutions of the two models differ and in the case of SAR, the coefficient $\\rho$ is not directly equal to the partial correlation due to each neighbouring region.\n\nFor more details on the mathematical aspects of these models, see the article by Ver Hoef et al. (2018) suggested in reference.\n\nFor the moment, we will consider SAR and CAR as two types of possible models to represent a spatial correlation on a network. We can always fit several models and compare them with the AIC to choose the best form of correlation or the best weight matrix.\n\nThe CAR and SAR models share an advantage over geostatistical models in terms of efficiency. In a geostatistical model, spatial correlations are defined between each pair of points, although they become negligible as distance increases. For a CAR or SAR model, only neighbouring regions contribute and most weights are equal to 0, making these models faster to fit than a geostatistical model when the data are massive.\n\n# Analysis of areal data in R {#analysis-areal}\n\nTo illustrate the analysis of areal data in R, we load the packages *sf* (to read geospatial data), *spdep* (to define spatial networks and calculate Moran's $I$) and *spatialreg* (for SAR and CAR models).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-52_bbb39418b6f206ecf18ea280d1186280'}\n\n```{.r .cell-code}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n:::\n\n\nAs an example, we will use a dataset that presents some of the results of the 2018 provincial election in Quebec, with population characteristics of each riding. This data is included in a *shapefile* (.shp) file type, which we can read with the `read_sf` function of the *sf* package.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-53_57544cb924c4156b05da2ae4a2ea020a'}\n\n```{.r .cell-code}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 9 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 97879.03 ymin: 174515.3 xmax: 694261.1 ymax: 599757.1\nProjected CRS: LambertAQ\n# A tibble: 6 × 10\n circ age_moy pct_frn pct_prp rev_med propCAQ propPQ propPLQ propQS\n \n1 Abitibi-Est 40.8 0.963 0.644 34518 42.7 19.5 18.8 15.7\n2 Abitibi-Ouest 42.2 0.987 0.735 33234 34.1 33.3 11.3 16.6\n3 Acadie 40.3 0.573 0.403 25391 16.5 9 53.8 13.8\n4 Anjou-Louis-Riel 43.5 0.821 0.416 31275 28.9 14.7 39.1 14.5\n5 Argenteuil 43.3 0.858 0.766 31097 38.9 21.1 17.4 12.2\n6 Arthabaska 43.4 0.989 0.679 30082 61.8 9.4 11.4 12.6\n# … with 1 more variable: geometry \n```\n:::\n:::\n\n\n*Note*: The dataset is actually composed of 4 files with the extensions .dbf, .prj, .shp and .shx, but it is sufficient to write the name of the .shp file in `read_sf`.\n\nThe columns of the dataset are, in order:\n\n- the name of the electoral riding (`circ`);\n- four characteristics of the population (`age_moy` = mean age, `pct_frn` = fraction of the population that speaks mainly French at home, `pct_prp` = fraction of households that own their home, `rev_med` = median income);\n- four columns showing the fraction of votes obtained by the main parties (CAQ, PQ, PLQ, QS);\n- a `geometry` column that contains the geometric object (multipolygon) corresponding to the riding.\n\nTo illustrate one of the variables on a map, we call the `plot` function with the name of the column in square brackets and quotation marks.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-54_b911c1230b37d88999c315735187b9c4'}\n\n```{.r .cell-code}\nplot(elect2018[\"rev_med\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-54-1.png){width=672}\n:::\n:::\n\n\nIn this example, we want to model the fraction of votes obtained by the CAQ based on the characteristics of the population in each riding and taking into account the spatial correlations between neighbouring ridings.\n\n## Definition of the neighbourhood network\n\nThe `poly2nb` function of the *spdep* package defines a neighbourhood network from polygons. The result `vois` is a list of 125 elements where each element contains the indices of the neighbouring (bordering) polygons of a given polygon.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-55_98b699432f680855147ba1bd583f3497'}\n\n```{.r .cell-code}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 2 37 63 88 101 117\n```\n:::\n:::\n\n\nThus, the first riding (Abitibi-Est) has 6 neighbouring ridings, for which the names can be found as follows:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-56_1fa15a9556e3ec5f51ffe127e1e42830'}\n\n```{.r .cell-code}\nelect2018$circ[vois[[1]]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"Abitibi-Ouest\" \"Gatineau\" \n[3] \"Laviolette-Saint-Maurice\" \"Pontiac\" \n[5] \"Rouyn-Noranda-Témiscamingue\" \"Ungava\" \n```\n:::\n:::\n\n\nWe can illustrate this network by extracting the coordinates of the center of each district, creating a blank map with `plot(elect2018[\"geometry\"])`, then adding the network as an additional layer with `plot(vois, add = TRUE, coords = coords)`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-57_f0d7bd96b26b0a6cd39daec9f4aad58b'}\n\n```{.r .cell-code}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-57-1.png){width=672}\n:::\n:::\n\n\nWe can \"zoom\" on southern Québec by choosing the limits `xlim` and `ylim`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-58_1fa7ea9cbb36326317c26af33b739d1c'}\n\n```{.r .cell-code}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-58-1.png){width=672}\n:::\n:::\n\n\nWe still have to add weights to each network link with the `nb2listw` function. The style of weights \"B\" corresponds to binary weights, i.e. 1 for the presence of link and 0 for the absence of link between two ridings.\n\nOnce these weights are defined, we can verify with Moran's test whether there is a significant autocorrelation of votes obtained by the CAQ between neighbouring ridings.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-59_94da4f87bfc6fa6486cce26e9c1ed239'}\n\n```{.r .cell-code}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: elect2018$propCAQ \nweights: poids \n\nMoran I statistic standard deviate = 13.148, p-value < 2.2e-16\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.680607768 -0.008064516 0.002743472 \n```\n:::\n:::\n\n\nThe value $I = 0.68$ is very significant judging by the $p$-value of the test.\n\nLet's verify if the spatial correlation persists after taking into account the four characteristics of the population, therefore by inspecting the residuals of a linear model including these four predictors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-60_48eb067e5cfdccfc3e81ace94767cddc'}\n\n```{.r .cell-code}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018)\n\nResiduals:\n Min 1Q Median 3Q Max \n-30.9890 -4.4878 0.0562 6.2653 25.8146 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 1.354e+01 1.836e+01 0.737 0.463 \nage_moy -9.170e-01 3.855e-01 -2.378 0.019 * \npct_frn 4.588e+01 5.202e+00 8.820 1.09e-14 ***\npct_prp 3.582e+01 6.527e+00 5.488 2.31e-07 ***\nrev_med -2.624e-05 2.465e-04 -0.106 0.915 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 9.409 on 120 degrees of freedom\nMultiple R-squared: 0.6096,\tAdjusted R-squared: 0.5965 \nF-statistic: 46.84 on 4 and 120 DF, p-value: < 2.2e-16\n```\n:::\n\n```{.r .cell-code}\nmoran.test(residuals(elect_lm), poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: residuals(elect_lm) \nweights: poids \n\nMoran I statistic standard deviate = 6.7047, p-value = 1.009e-11\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.340083290 -0.008064516 0.002696300 \n```\n:::\n:::\n\n\nMoran's $I$ has decreased but remains significant, so some of the previous correlation was induced by these predictors, but there remains a spatial correlation due to other factors.\n\n## Spatial autoregression models\n\nFinally, we fit SAR and CAR models to these data with the `spautolm` (*spatial autoregressive linear model*) function of *spatialreg*. Here is the code for a SAR model including the effect of the same four predictors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-61_13bb8dc5c63cce02c362b41c905f9de5'}\n\n```{.r .cell-code}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\n\nResiduals:\n Min 1Q Median 3Q Max \n-23.08342 -4.10573 0.24274 4.29941 23.08245 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 15.09421119 16.52357745 0.9135 0.36098\nage_moy -0.70481703 0.32204139 -2.1886 0.02863\npct_frn 39.09375061 5.43653962 7.1909 6.435e-13\npct_prp 14.32329345 6.96492611 2.0565 0.03974\nrev_med 0.00016730 0.00023209 0.7208 0.47101\n\nLambda: 0.12887 LR test value: 42.274 p-value: 7.9339e-11 \nNumerical Hessian standard error of lambda: 0.012069 \n\nLog likelihood: -433.8862 \nML residual variance (sigma squared): 53.028, (sigma: 7.282)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 881.77\n```\n:::\n:::\n\n\nThe value given by `Lambda` in the summary corresponds to the coefficient $\\rho$ in our description of the model. The likelihood-ratio test (`LR test`) confirms that this residual spatial correlation (after controlling for the effect of predictors) is significant.\n\nThe estimated effects for the predictors are similar to those of the linear model without spatial correlation. The effects of mean age, fraction of francophones and fraction of homeowners remain significant, although their magnitude has decreased somewhat.\n\nTo fit a CAR rather than SAR model, we must specify `family = \"CAR\"`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-62_29349c4a3573934d0da78be8a806d927'}\n\n```{.r .cell-code}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-21.73315 -4.24623 -0.24369 3.44228 23.43749 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 16.57164696 16.84155327 0.9840 0.325128\nage_moy -0.79072151 0.32972225 -2.3981 0.016478\npct_frn 38.99116707 5.43667482 7.1719 7.399e-13\npct_prp 17.98557474 6.80333470 2.6436 0.008202\nrev_med 0.00012639 0.00023106 0.5470 0.584364\n\nLambda: 0.15517 LR test value: 40.532 p-value: 1.9344e-10 \nNumerical Hessian standard error of lambda: 0.0026868 \n\nLog likelihood: -434.7573 \nML residual variance (sigma squared): 53.9, (sigma: 7.3416)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 883.51\n```\n:::\n:::\n\n\nFor a CAR model with binary weights, the value of `Lambda` (which we called $\\rho$) directly gives the partial correlation coefficient between neighbouring districts. Note that the AIC here is slightly higher than the SAR model, so the latter gave a better fit.\n\n## Exercise\n\nThe `rls_covid` dataset, in *shapefile* format, contains data on detected COVID-19 cases (`cas`), number of cases per 1000 people (`taux_1k`) and the population density (`dens_pop`) in each of Quebec's local health service networks (RLS) (Source: Data downloaded from the Institut national de santé publique du Québec as of January 17, 2021).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-63_93fde0bc2a6d31114d1cad8dee5f0aa1'}\n\n```{.r .cell-code}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 5 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 785111.2 ymin: 341057.8 xmax: 979941.5 ymax: 541112.7\nProjected CRS: Conique_conforme_de_Lambert_du_MTQ_utilis_e_pour_Adresse_Qu_be\n# A tibble: 6 × 6\n RLS_code RLS_nom cas taux_1k dens_…¹ geometry\n \n1 0111 RLS de Kamouraska 152 7.34 6.76 (((827028.3 412772.4, 82…\n2 0112 RLS de Rivière-du-Lo… 256 7.34 19.6 (((855905 452116.9, 8557…\n3 0113 RLS de Témiscouata 81 4.26 4.69 (((911829.4 441311.2, 91…\n4 0114 RLS des Basques 28 3.3 5.35 (((879249.6 471975.6, 87…\n5 0115 RLS de Rimouski 576 9.96 15.5 (((917748.1 503148.7, 91…\n6 0116 RLS de La Mitis 76 4.24 5.53 (((951316 523499.3, 9525…\n# … with abbreviated variable name ¹​dens_pop\n```\n:::\n:::\n\n\nFit a linear model of the number of cases per 1000 as a function of population density (it is suggested to apply a logarithmic transform to the latter). Check whether the model residuals are correlated between bordering RLS with a Moran's test and then model the same data with a conditional autoregressive model.\n\n## Reference\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. and Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n\n\n\n# GLMM with spatial Gaussian process {#glmm-spatial-gaussian}\n\n## Data\n\nThe `gambia` dataset found in the *geoR* package presents the results of a study of malaria prevalence among children of 65 villages in The Gambia. We will use a slightly transformed version of the data found in the file [gambia.csv](data/gambia.csv).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-64_c90dcebc741300cf593af262129c15ab'}\n\n```{.r .cell-code}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n id_village x y pos age netuse treated green phc\n1 1 349.6313 1458.055 1 1783 0 0 40.85 1\n2 1 349.6313 1458.055 0 404 1 0 40.85 1\n3 1 349.6313 1458.055 0 452 1 0 40.85 1\n4 1 349.6313 1458.055 1 566 1 0 40.85 1\n5 1 349.6313 1458.055 0 598 1 0 40.85 1\n6 1 349.6313 1458.055 1 590 1 0 40.85 1\n```\n:::\n:::\n\n\nHere are the fields in that dataset:\n\n- *id_village*: Identifier of the village.\n- *x* and *y*: Spatial coordinates of the village (in kilometers, based on UTM coordinates).\n- *pos*: Binary response, whether the child tested positive for malaria.\n- *age*: Age of the child in days.\n- *netuse*: Whether or not the child sleeps under a bed net.\n- *treated*: Whether or not the bed net is treated.\n- *green*: Remote sensing based measure of greenness of vegetation (measured at the village level).\n- *phc*: Presence or absence of a public health centre for the village.\n\nWe can count the number of positive cases and total children tested by village to map the fraction of positive cases (or prevalence, *prev*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-65_8c814c1bf1c630ff765172316c6e438a'}\n\n```{.r .cell-code}\n# Create village-level dataset\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\n```\n\n::: {.cell-output .cell-output-stderr}\n```\n`summarise()` has grouped output by 'id_village', 'x', 'y', 'green'. You can\noverride using the `.groups` argument.\n```\n:::\n\n```{.r .cell-code}\nhead(gambia_agg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n# A tibble: 6 × 8\n id_village x y green phc pos total prev\n \n1 1 350. 1458. 40.8 1 17 33 0.515\n2 2 359. 1460. 40.8 1 19 63 0.302\n3 3 360. 1460. 40.1 0 7 17 0.412\n4 4 364. 1497. 40.8 0 8 24 0.333\n5 5 366. 1460. 40.8 0 10 26 0.385\n6 6 367. 1463. 40.8 0 7 18 0.389\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-66_ae2eb69bc71b443b86ab8b607284711a'}\n\n```{.r .cell-code}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-66-1.png){width=672}\n:::\n:::\n\n\nWe use the `gambia.borders` dataset from the *geoR* package to trace the country boundaries with `geom_path`. Since those boundaries are in meters, we divide by 1000 to get the same scale as our points. We also use `coord_fixed` to ensure a 1:1 aspect ratio between the axes and use the `viridis` color scale, which makes it easier to visualize a continuous variable compared with the default gradient scale in *ggplot2*.\n\nBased on this map, there seems to be spatial correlation in malaria prevalence, with the eastern cluster of villages showing more high prevalence values (yellow-green) and the middle cluster showing more low prevalence values (purple).\n\n## Non-spatial GLMM\n\nFor this first example, we will ignore the spatial aspect of the data and model the presence of malaria (*pos*) as a function of the use of a bed net (*netuse*) and the presence of a public health centre (*phc*). Since we have a binary response, we need to use a logistic regression model (a GLM). Since we have predictors at both the individual and village level, and we expect that children of the same village have more similar probabilities of having malaria even after accounting for those predictors, we need to add a random effect of the village. The result is a GLMM that we fit using the `glmer` function in the *lme4* package.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-67_5c5fd662cb4ced05e844aabdfdb7a676'}\n\n```{.r .cell-code}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Laplace\n Approximation) [glmerMod]\n Family: binomial ( logit )\nFormula: pos ~ netuse + phc + (1 | id_village)\n Data: gambia\n\n AIC BIC logLik deviance df.resid \n 2428.0 2450.5 -1210.0 2420.0 2031 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-2.1286 -0.7120 -0.4142 0.8474 3.3434 \n\nRandom effects:\n Groups Name Variance Std.Dev.\n id_village (Intercept) 0.8149 0.9027 \nNumber of obs: 2035, groups: id_village, 65\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 0.1491 0.2297 0.649 0.5164 \nnetuse -0.6044 0.1442 -4.190 2.79e-05 ***\nphc -0.4985 0.2604 -1.914 0.0556 . \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) netuse\nnetuse -0.422 \nphc -0.715 -0.025\n```\n:::\n:::\n\n\nAccording to these results, both *netuse* and *phc* result in a decrease of malaria prevalence, although the effect of *phc* is not significant at a threshold $\\alpha = 0.05$. The intercept (0.149) is the logit of the probability of malaria presence for a child with no bednet and no public health centre, but it is the mean intercept across all villages, and there is a lot of variation between villages, based on the random effect standard deviation of 0.90. We can get the estimated intercept for each village with the function `coef`:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-68_3720c229ebd5b2262ea78c97fa323bc0'}\n\n```{.r .cell-code}\nhead(coef(mod_glmm)$id_village)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n (Intercept) netuse phc\n1 0.93727515 -0.6043602 -0.4984835\n2 0.09204843 -0.6043602 -0.4984835\n3 0.22500620 -0.6043602 -0.4984835\n4 -0.46271089 -0.6043602 -0.4984835\n5 0.13680037 -0.6043602 -0.4984835\n6 -0.03723346 -0.6043602 -0.4984835\n```\n:::\n:::\n\n\nSo for example, the intercept for village 1 is around 0.94, equivalent to a probability of 72%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-69_5db6d43ef9ff435eae9aedd3aebe48f9'}\n\n```{.r .cell-code}\nplogis(0.937)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7184933\n```\n:::\n:::\n\n\nwhile the intercept in village 2 is equivalent to a probability of 52%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-70_8c98817d65db7e2319175c4f3cba494c'}\n\n```{.r .cell-code}\nplogis(0.092)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.5229838\n```\n:::\n:::\n\n\nThe [DHARMa package](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) provides a general method for checking whether the residuals of a GLMM are distributed according to the specified model and whether there is any residual trend. The package works by simulating replicates of each observation according to the fitted model and then determining a \"standardized residual\", which is the relative position of the observed value with respect to the simulated values, e.g. 0 if the observation is smaller than all the simulations, 0.5 if it is in the middle, etc. If the model represents the data well, each value of the standardized residual between 0 and 1 should be equally likely, so the standardized residuals should produce a uniform distribution between 0 and 1.\n\nThe `simulateResiduals` function performs the calculation of the standardized residuals, then the `plot` function plots the diagnostic graphs with the results of certain tests.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-71_7045ff49e2f9776387a59c78b53a1341'}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-71-1.png){width=672}\n:::\n:::\n\n\nThe graph on the left is a quantile-quantile plot of standardized residuals. The results of three statistical tests also also shown: a Kolmogorov-Smirnov (*KS*) test which checks whether there is a deviation from the theoretical distribution, a dispersion test that checks whether there is underdispersion or overdispersion, and an outlier test based on the number of residuals that are more extreme than all the simulations. Here, we get a significant result for the outliers, though the message indicates that this result might have an inflated type I error rate in this case.\n\nOn the right, we generally get a graph of standardized residuals (in *y*) as a function of the rank of the predicted values, in order to check for any leftover trend in the residual. Here, the predictions are binned by quartile, so it might be better to instead aggregate the predictions and residuals by village, which we can do with the `recalculateResiduals` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-72_65a9d2bb93c9d14f4d7fcc7b40b03c87'}\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-72-1.png){width=672}\n:::\n:::\n\n\nThe plot to the right now shows individual points, along with a quantile regression for the 1st quartile, the median and the 3rd quartile. In theory, these three curves should be horizontal straight lines (no leftover trend in the residuals vs. predictions). The curve for the 3rd quartile (in red) is significantly different from a horizontal line, which could indicate some systematic effect that is missing from the model.\n\n## Spatial GLMM with spaMM\n\nThe *spaMM* (spatial mixed models) package is a relatively new R package that can perform approximate maximum likelihood estimation of parameters for GLMM with spatial dependence, modelled either as a Gaussian process or with a CAR (we will see the latter in the last section). The package implements different algorithms, but there is a single `fitme` function that chooses the appropriate algorithm for each model type. For example, here is the same (non-spatial) model as above fit with *spaMM*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-73_4095dfb1a2890efd12578324ce9cfb41'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + (1 | id_village)\nEstimation of lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.1491 0.2287 0.6519\nnetuse -0.6045 0.1420 -4.2567\nphc -0.4986 0.2593 -1.9231\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n id_village : 0.8151 \n --- Coefficients for log(lambda):\n Group Term Estimate Cond.SE\n id_village (Intercept) -0.2045 0.2008\n# of obs: 2035; # of groups: id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1210.016\n```\n:::\n:::\n\n\nNote that the estimates of the fixed effects as well as the variance of random effects are nearly identical to those obtained by `glmer` above.\n\nWe can now use *spaMM* to fit the same model with the addition of spatial correlations between villages. In the formula of the model, this is represented as a random effect `Matern(1 | x + y)`, which means that the intercepts are spatially correlated between villages following a Matérn correlation function of coordinates (*x, y*). The Matérn function is a flexible function for spatial correlation that includes a shape parameter $\\nu$ (`nu`), so that when $\\nu = 0.5$ it is equivalent to the exponential correlation but as $\\nu$ grows to large values, it approaches a Gaussian correlation. We could let the function estimate $\\nu$, but here we will fix it to 0.5 with the `fixed` argument of `fitme`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-74_d3aef70cffd85f41f037e30922c132c2'}\n\n```{.r .cell-code}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.rho \n0.50000000 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.6421 \n id_village : 0.1978 \n# of obs: 2035; # of groups: x + y, 65; id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nLet's first check the random effects of the model. The spatial correlation function has a parameter `rho` equal to 0.0513. This parameter in *spaMM* is the inverse of the range, so here the range of exponential correlation is 1/0.0513 or around 19.5 km. There are now two variance prameters, the one identified as `x + y` is the long-range variance (i.e. sill) for the exponential correlation model whereas the one identified as `id_village` shows the non-spatially correlated portion of the variation between villages.\n\nIn fact, while we left the random effects `(1 | id_village)` in the formula to represent the non-spatial portion of variation between villages, we could also represent this with a nugget effect in the geostatistical model. In both cases, it would represent the idea that even two villages very close to each other would have different baseline prevalences in the model.\n\nBy default, the `Matern` function has no nugget effect, but we can add one by specifying a non-zero `Nugget` in the initial parameter list `init`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-75_dbd5d25ae78a3c934126be892144af99'}\n\n```{.r .cell-code}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm2)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.Nugget 1.rho \n0.50000000 0.23551027 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.8399 \n# of obs: 2035; # of groups: x + y, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nAs you can see, all estimates are the same, except that the variance of the spatial portion (sill) is now 0.84 and the nugget is equal to a fraction 0.235 of that sill, so a variance of 0.197, which is the same as the `id_village` random effect in the version above. Thus the two formulations are equivalent.\n\nNow, recall the coefficients we obtained for the non-spatial GLMM:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-76_2ff7323dca01a1d9207ef38489d6b664'}\n\n```{.r .cell-code}\nsummary(mod_glmm)$coefficients\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01\nnetuse -0.6043602 0.1442448 -4.1898243 2.791706e-05\nphc -0.4984835 0.2604083 -1.9142382 5.558973e-02\n```\n:::\n:::\n\n\nIn the spatial version, both fixed effects have moved slightly towards zero, but the standard error of the effect of `phc` has decreased. It is interesting that the inclusion of spatial dependence has allowed us to estimate more precisely the effect of having a public health centre in the village. This would not always be the case: for a predictor that is also strongly correlated in space, spatial correlation in the response makes it harder to estimate the effect of this predictor, since it is confounded with the spatial effect. However, for a predictor that is not correlated in space, including the spatial effect reduces the residual (non-spatial) variance and may thus increase the precision of the predictor's effect.\n\nThe *spaMM* package is also compatible with *DHARMa* for residual diagnostics. (You can in fact ignore the warning that it is not in the class of supported models, this is due to using the `fitme` function rather than a specific algorithm function in *spaMM*.)\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-77_435151fa87f7c6c10fa17fe4778779f0'}\n\n```{.r .cell-code}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-1.png){width=672}\n:::\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-2.png){width=672}\n:::\n:::\n\n\nFinally, while we will show how to make and visualize spatial predictions below, we can produce a quick map of the estimated spatial effects in a *spaMM* model with the `filled.mapMM` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-78_9aa73f93f8884bdd0fab5e2e18929e73'}\n\n```{.r .cell-code}\nfilled.mapMM(mod_spamm2)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-78-1.png){width=672}\n:::\n:::\n\n\n## Gaussian process models vs. smoothing splines\n\nIf you are familiar with generalized additive models (GAM), you might think that the spatial variation in malaria prevalence (as shown in the map above) could be represented by a 2D smoothing spline (as a function of $x$ and $y$) within a GAM.\n\nThe code below fits the GAM equivalent of our Gaussian process GLMM above with the `gam` function in the *mgcv* package. The spatial effect is represented by the 2D spline `s(x, y)` whereas the non-spatial random effect of village is represented by `s(id_village, bs = \"re\")`, which is the same as `(1 | id_village)` in the previous models. Note that for the `gam` function, categorical variables must be explicitly converted to factors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-79_ae40737239f2e38abf88e2861e3870b5'}\n\n```{.r .cell-code}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n:::\n\n\nTo visualize the 2D spline, we will use the [*gratia* package](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-80_d5c74c6f14896719f6bab59691ffa563'}\n\n```{.r .cell-code}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-80-1.png){width=672}\n:::\n:::\n\n\nNote that the plot of the spline `s(x, y)` (top right) does not extend too far from the locations of the data (other areas are blank). In this graph, we can also see that the village random effects follow the expected Gaussian distribution (top left).\n\nNext, we will use both the spatial GLMM from the previous section and this GAMM to predict the mean prevalence on a spatial grid of points contained in the file [gambia_pred.csv](data/gambia_pred.csv). The graph below adds those prediction points (in black) on the previous map of the data points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-81_29ad1d87f053e7c4195d592da7d54ff1'}\n\n```{.r .cell-code}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-81-1.png){width=672}\n:::\n:::\n\n\nTo make predictions from the GAMM model at those points, the code below goes through the following steps:\n\n- All predictors in the model must be in the prediction data frame, so we add constant values of *netuse* and *phc* (both equal to 1) for all points. Thus, we will make predictions of malaria prevalence in the case where a net is used and a public health centre is present. We also add a constant *id_village*, although it will not be used in predictions (see below).\n\n- We call the `predict` function on the output of `gam` to produce predictions at the new data points (argument `newdata`), including standard errors (`se.fit = TRUE`) and excluding the village random effects, so the prediction is made for an \"average village\". The resulting object `gam_pred` will have columns `fit` (mean prediction) and `se.fit` (standard error). Those predictions and standard errors are on the link (logit) scale.\n\n- We add the original prediction data frame to `gam_pred` with `cbind`.\n\n- We add columns for the mean prediction and 50% confidence interval boundaries (mean $\\pm$ 0.674 standard error), converted from the logit scale to the probability scale with `plogis`. We choose a 50% interval since a 95% interval may be too wide here to contrast the different predictions on the map at the end of this section.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-82_a655e5eb759da0f74f34c89ed61d58a2'}\n\n```{.r .cell-code}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\n*Note*: The reason we do not make predictions directly on the probability (response) scale is that the normal formula for confidence intervals applies more accurately on the logit scale. Adding a certain number of standard errors around the mean on the probability scale would lead to less accurate intervals and maybe even confidence intervals outside the possible range (0, 1) for a probability.\n\nWe apply the same strategy to make predictions from the *spaMM* spatial GLMM model. There are a few differences in the `predict` method compared with the GAMM case.\n\n- The argument `binding = \"fit\"` means that mean predictions (`fit` column) will be attached to the prediction dataset and returned as `spamm_pred`.\n\n- The `variances = list(linPred = TRUE)` tells `predict` to calculate the variance of the linear predictor (so the square of the standard error). However, it appears as an attribute `predVar` in the output data frame rather than a `se.fit` column, so we move it to a column on the next line.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-83_8466cc239c165bb619c3ec38ce8db16a'}\n\n```{.r .cell-code}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\nFinally, we combine both sets of predictions as different rows of a `pred_all` dataset with `bind_rows`. The name of the dataset each prediction originates from (`gam` or `spamm`) will appear in the \"model\" column (argument `.id`). To simplify production of the next plot, we then use `pivot_longer` in the *tidyr* package to change the three columns \"pred\", \"lo\" and \"hi\" to two columns, \"stat\" and \"value\" (`pred_tall` has thus three rows for every row in `pred_all`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-84_7a8a967d3486a1ba90686ccd4eede914'}\n\n```{.r .cell-code}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n:::\n\n\nHaving done these steps, we can finally look at the prediction maps (mean, lower and upper bounds of the 50% confidence interval) with `ggplot`. The original data points are shown in red.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-85_31003401bd646a7f13b4009bc478ce83'}\n\n```{.r .cell-code}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-85-1.png){width=672}\n:::\n:::\n\n\nWhile both models agree that there is a higher prevalence near the eastern cluster of villages, the GAMM also estimates a higher prevalence at a few points (western edge and around the center) where there is no data. This is an artifact of the shape of the spline fit around the data points, since a spline is meant to fit a global, although nonlinear, trend. In contrast, the geostatistical model represents the spatial effect as local correlations and reverts to the overall mean prevalence when far from any data points, which is a safer assumption. This is one reason to choose a geostatistical / Gaussian process model in this case.\n\n## Bayesian methods for GLMMs with Gaussian processes\n\nBayesian models provide a flexible framework to express models with complex dependence structure among the data, including spatial dependence. However, fitting a Gaussian process model with a fully Bayesian approach can be slow, due the need to compute a spatial covariance matrix between all point pairs at each iteration.\n\nThe INLA (integrated nested Laplace approximation) method performs an approximate calculation of the Bayesian posterior distribution, which makes it suitable for spatial regression problems. We do not cover it in this course, but I recommend the textbook by Paula Moraga (in the references section below) that provides worked examples of using INLA for various geostatistical and areal data models, in the context of epidemiology, including models with both space and time dependence. The book presents the same Gambia malaria data as an example of a geostatistical dataset, which inspired its use in this course.\n\n# GLMM with spatial autoregression {#glmm-spatial-autoreg}\n\nWe return to the last example of the previous part, where we modelled the rate of COVID-19 cases (cases / 1000) for administrative health network divisions (RLS) in Quebec as a function of their population density. The rate is given by the \"taux_1k\" column in the `rls_covid` shapefile.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-86_dee7e0520a18d70a7e5f70f91e7f0d0a'}\n\n```{.r .cell-code}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-86-1.png){width=672}\n:::\n:::\n\n\nPreviously, we modelled the logarithm of this rate as a linear function of the logarithm of population density, with the residual variance correlated among neighbouring units via a CAR (conditional autoregression) structure, as shown in the code below.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-87_51a48c9cba07b64df6887bc1c93140b3'}\n\n```{.r .cell-code}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid, \n listw = rls_w, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.201858 -0.254084 -0.053348 0.281482 1.427053 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16\nlog(dens_pop) 0.206623 0.032848 6.2903 3.169e-10\n\nLambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07 \nNumerical Hessian standard error of lambda: 0.0050486 \n\nLog likelihood: -80.68953 \nML residual variance (sigma squared): 0.2814, (sigma: 0.53048)\nNumber of observations: 95 \nNumber of parameters estimated: 4 \nAIC: 169.38\n```\n:::\n:::\n\n\nAs a reminder, the `poly2nb` function in the *spdep* package creates a list of neighbours based on bordering polygons in a shapefile, then the `nb2listw` converts it to a list of weights, here binary weights (`style = \"B\"`) so that each bordering region receives the same weight of 1 in the autoregressive model.\n\nInstead of using the rates, it would be possible to model the cases directly (column \"cas\" in the dataset) with a Poisson regression, which is appropriate for count data. To account for the fact that if the risk per person were equal, cases would be proportional to population, we can add the unit's population `pop` as an *offset* in the Poisson regression. Therefore, the model would look like: `cas ~ log(dens_pop) + offset(log(pop))`. Note that since the Poisson regression uses a logarithmic link, that model with `log(pop)` as an offset assumes that `log(cas / pop)` (so the log rate) is proportional to `log(dens_pop)`, just like the linear model above, but it has the advantage of modelling the stochasticity of the raw data (the number of cases) directly with a Poisson distribution.\n\nWe do not have the population in this data, but we can estimate it from the cases and the rate (cases / 1000) as follows:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-88_dd571339361d6d0f00653ec574a812b8'}\n\n```{.r .cell-code}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n:::\n\n\nTo define a CAR model in *spaMM*, we need a weights matrix rather than a list of weights as in the *spatialreg* package. Fortunately, the *spdep* package also includes a function `nb2mat` to convert the neighbours list to a matrix of weights, here again using binary weights. To avoid a warning, we specify the row and column names of that matrix to be equal to the IDs associated with each unit (`RLS_code`). Then, we add a term `adjacency(1 | RLS_code)` to the model to specify that the residual variation between different groups defined by `RLS_code` is spatially correlated with a CAR structure (here, each group has only one observation since we have one data point by RLS unit).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-89_96e9784ebad8d38cbd211f444a330b0c'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: poisson( link = log ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) -5.1618 0.16855 -30.625\nlog(dens_pop) 0.1999 0.03267 6.119\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.rho \n0.1576605 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n RLS_code : 0.266 \n# of obs: 95; # of groups: RLS_code, 95 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -709.3234\n```\n:::\n:::\n\n\nNote that the spatial correlation coefficient `rho` (0.158) is similar to the equivalent quantity in the `spautolm` model above, where it was called `Lambda`. The effect of `log(dens_pop)` is also approximately 0.2 in both models.\n\n## Reference\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Available online at .\n\n------------------------------------------------------------------------\n\n# Statistiques spatiales en écologie {#statistiques-spatiales-en-écologie}\n\nBIOS² a organisé une session de formation en ligne sur l'analyse statistique des données spatiales en écologie, animée par le Pr. Philippe Marchand (UQAT). Cette formation de 12 heures s'est déroulée en 4 sessions : 12, 14, 19 & 21 janvier (2021) de 13h00 à 16h00 HNE.\n\nLe contenu comprenait trois types d'analyses statistiques spatiales et leurs applications en écologie : (1) l'analyse des patrons de points qui permet d'étudier la distribution d'individus ou d'événements dans l'espace; (2) les modèles géostatistiques qui représentent la corrélation spatiale de variables échantillonnées à des points géoréférencés; et (3) les modèles de données aréales, qui s'appliquent aux mesures prises sur des régions de l'espace et qui représentent les liens spatiaux par le biais de réseaux de voisinage. La formation comprenait également des exercices pratiques utilisant l'environnement de programmation statistique R.\n\n[Philippe Marchand](https://github.com/pmarchand1) est professeur d'écologie et de biostatistique à l'Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) et membre académique de BIOS². Ses travaux de recherche portent sur la modélisation de processus qui influencent la distribution spatiale des populations, incluant: la dispersion des graines et l'établissement des semis, le mouvement des animaux, et la propagation des épidémies forestières.\n\n**Si vous souhaitez consulter le matériel pédagogique et suivre les exercices à votre propre rythme, vous pouvez y accéder par [ce lien](https://bios2.github.io/Marchand.html#category:FR). Une connaissance de base des modèles de régression linéaire et une expérience de l'ajustement de ces modèles dans R sont recommandées. Le repositoire original se trouve [ici](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Plan du cours\n\n| Jour | Sujets | \n|-----------------|:--------------------------|\n| 1 | • [Introduction aux statistiques spatiales](#introduction-fr)
• [Analyse des patrons de points](#point-pattern-fr)
|\n| 2 | • [Corrélation spatiale d'une variable](#spatial-correlation-fr)
• [Modèles géostatistiques](#geostat-models-fr) | \n| 3 | • [Données aréales](#areal-data-fr)
• [Indice de Moran](#moran-i-fr)
• [Modèles d'autorégression spatiale](#spatial-autoreg-fr)
• [Analyse des données aréales dans R](#analysis-areal-fr) |\n| 4 | • [GLMM avec processus spatial gaussien](#glmm-spatial-gaussian-fr)
• [GLMM avec autorégression spatiale](#glmm-spatial-autoreg-fr)| \n\n# Introduction aux statistiques spatiales {#introduction-fr}\n\n## Types d'analyses spatiales\n\nDans le cadre de cette formation, nous discuterons de trois types d'analyses spatiales: l'analyse des patrons de points, les modèles géostatistiques et les modèles de données aréales.\n\nDans l'**analyse des patrons de points**, nous avons des données ponctuelles représentant la position d'individus ou d'événements dans une région d'étude et nous supposons que tous les individus ou événements ont été recensés dans cette région. Cette analyse s'intéresse à la distribution des positions des points eux-mêmes. Voici quelques questions typiques de l'analyse des patrons de points:\n\n- Les points sont-ils disposés aléatoirement ou agglomérés?\n\n- Deux types de points sont-ils disposés indépendamment?\n\nLes **modèles géostatistiques** visent à représenter la distribution spatiale de variables continues qui sont mesurés à certains points d'échantillonnage. Ils supposent que les mesures de ces variables à différents points sont corrélées en fonction de la distance entre ces points. Parmi les applications des modèles géostatistiques, notons le lissage des données spatiales (ex.: produire une carte d'une variable sur l'ensemble d'une région en fonction des mesures ponctuelles) et la prédiction de ces variables pour des points non-échantillonnés.\n\nLes **données aréales** sont des mesures prises non pas à des points, mais pour des régions de l'espace représentées par des polygones (ex.: divisions du territoire, cellules d'une grille). Les modèles représentant ces types de données définissent un réseau de voisinage reliant les régions et incluent une corrélation spatiale entre régions voisines. \n\n## Stationnarité et isotropie\n\nPlusieurs analyses spatiales supposent que les variables sont **stationnaires** dans l'espace. Comme pour la stationnarité dans le domaine temporel, cette propriété signifie que les statistiques sommaires (moyenne, variance et corrélations entre mesures d'une variable) ne varient pas avec une translation dans l'espace. Par exemple, la corrélation spatiale entre deux points peut dépendre de la distance les séparant, mais pas de leur position absolue.\n\nEn particulier, il ne peut pas y avoir de tendance à grande échelle (souvent appelée *gradient* dans un contexte spatial), ou bien cette tendance doit être prise en compte afin de modéliser la corrélation spatiale des résidus.\n\nDans le cas de l'analyse des patrons de points, la stationnarité (aussi appelée homogénéité dans ce contexte) signifie que la densité des points ne suit pas de tendance à grande échelle.\n\nDans un modèle statistique **isotropique**, les corrélations spatiales entre les mesures à deux points dépendent seulement de la distance entre ces points, pas de la direction. Dans ce cas, les statistiques sommaires ne varient pas si on effectue une rotation dans l'espace.\n\n## Données géoréférencées\n\nLes études environnementales utilisent de plus en plus de données provenant de sources de données géospatiales, c'est-à-dire des variables mesurées sur une grande partie du globe (ex.: climat, télédétection). Le traitement de ces données requiert des concepts liés aux systèmes d'information géographique (SIG), qui ne sont pas couverts dans cet atelier, alors que nous nous concentrons sur les aspects statistiques de données variant dans l'espace.\n\nL'utilisation de données géospatiales ne signifie pas nécessairement qu'il faut avoir recours à des statistiques spatiales. Par exemple, il est courant d'extraire les valeurs de ces variables géographiques à des points d'étude pour expliquer une réponse biologique observée sur le terrain. Dans ce cas, l'utilisation de statistiques spatiales est seulement nécessaire en présence d'une corrélation spatiale dans les résidus, après avoir tenu compte de l'effet des prédicteurs.\n\n\n# Analyse des patrons de points {#point-pattern-fr}\n\n## Patron de points et processus ponctuel\n\nUn patron de points (*point pattern*) décrit la position spatiale (le plus souvent en 2D) d'individus ou d'événements, représentés par des points, dans une aire d'étude donnée, souvent appelée la *fenêtre* d'observation. \n\nOn suppose que chaque point a une étendue spatiale négligeable par rapport aux distances entre les points. Des méthodes plus complexes existent pour traiter des patrons spatiaux d'objets qui ont une largeur non-néligeable, mais ce sujet dépasse la portée de cet atelier.\n\nUn processus ponctuel (*point process*) est un modèle statistique qui peut être utilisé pour simuler des patrons de points ou expliquer un patron de points observé.\n\n## Structure spatiale totalement aléatoire\n\nUne structure spatiale totalement aléatoire (*complete spatial randomness*) est un des patrons les plus simples, qui sert de modèle nul pour évaluer les caractéristiques de patrons de points réels. Dans ce patron, la présence d'un point à une position donnée est indépendante de la présence de points dans un voisinage. \n\nLe processus créant ce patron est un processus de Poisson homogène. Selon ce modèle, le nombre de points dans toute région de superficie $A$ suit une distribution de Poisson: $N(A) \\sim \\text{Pois}(\\lambda A)$, où $\\lambda$ est l'*intensité* du processus (i.e. la densité de points). $N$ est indépendant entre deux régions disjointes, peu importe comment ces régions sont définies.\n\nDans le graphique ci-dessous, seul le patron à droite est totalement aléatoire. Le patron à gauche montre une agrégation des points (probabilité plus grande d'observer un point si on est à proximité d'un autre point), tandis que le patron du centre montre une répulsion (faible probabilité d'observer un point très près d'un autre).\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-91_adc67cb15e035b62bde9aae5a2aa1217'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-91-1.png){width=864}\n:::\n:::\n\n\n## Analyse exploratoire ou inférentielle pour un patron de points\n\nPlusieurs statistiques sommaires sont utilisées pour décrire les caractéristiques un patron de points. La plus simple est l'**intensité** $\\lambda$, qui comme mentionné plus haut représente la densité de points par unité de surface. Si le patron de points est hétérogène, l'intensité n'est pas constante, mais dépend de la position: $\\lambda(x, y)$.\n\nPar rapport à l'intensité qui est une statistique dite de premier ordre, les statistiques de second ordre décrivent comment la probabilité de présence d'un point dans une région dépend de la présence d'autres points. L'indice $K$ de Ripley présenté dans la prochaine section est un exemple de statistique sommaire de second ordre.\n\nLes inférences statistiques réalisées sur des patrons de points consistent habituellement à tester l'hypothèse que le patron de points correspond à un modèle nul donné, par exemple une structure spatiale totalement aléatoire, ou un modèle nul plus complexe. Même pour les modèles nuls les plus simples, nous connaissons rarement la distribution théorique pour une statistique sommaire du patron de points sous le modèle nul. Les tests d'hypothèses sur les patrons de points sont donc réalisés par simulation: on simule un grand nombre de patrons de points à partir du modèle nul et on compare la distribution des statistiques sommaires qui nous intéressent pour ces simulations à la valeur des statistiques pour le patron de points observé.\n\n## Indice $K$ de Ripley\n\nL'indice de Ripley $K(r)$ est défini comme le nombre moyen de points se trouvant dans un cercle de rayon $r$ donné autour d'un point du patron, normalisé par l'intensité $\\lambda$. \n\nPour un patron totalement aléatoire, le nombre moyen de points dans un cercle de rayon $r$ est $\\lambda \\pi r^2$, donc en théorie $K(r) = \\pi r^2$ pour ce modèle nul. Une valeur de $K(r)$ supérieure signifie qu'il y a agrégation des points à l'échelle $r$, tandis qu'une valeur inférieure signifie qu'il y a une répulsion.\n\nEn pratique, $K(r)$ est estimé pour un patron de points donné par l'équation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\noù $A$ est l'aire de la fenêtre d'observation et $n$ est le nombre de points du patron, donc $n(n-1)$ est le nombre de paires de points distinctes. On fait la somme pour toutes les paires de points de la fonction indicatrice $I$, qui prend une valeur de 1 si la distance entre les points $i$ et $j$ est inférieure ou égale à $r$. Finalement, le terme $w_{ij}$ permet de donner un poids supplémentaire à certaines paires de points pour tenir compte des effets de bordure, tel que discuté dans la section suivante.\n\nPar exemple, les graphiques ci-dessous présentent la fonction estimée $K(r)$ pour les patrons illustrés ci-dessus, pour des valeurs de $r$ allant jusqu'à 1/4 de la largeur de la fenêtre. La courbe pointillée rouge indique la valeur théorique pour une structure spatiale totalement aléatoire et la zone grise est une \"enveloppe\" produite par 99 simulations de ce modèle nul. Le patron agrégé montre un excès de voisins jusqu'à $r = 0.25$ et le patron avec répulsion montre un déficit significatif de voisins pour les petites valeurs de $r$. \n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-93_6abeb25aeaeb61368f985f60bb26c046'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-93-1.png){width=864}\n:::\n:::\n\n\nOutre le $K$, il existe d'autres statistiques pour décrire les propriétés de second ordre du patron, par exemple la distance moyenne entre un point et ses $N$ plus proches voisins. Vous pouvez consulter le manuel de Wiegand et Moloney (2013) suggéré en référence pour en apprendre plus sur différentes statistiques sommaires des patrons de points.\n\n## Effets de bordure\n\nDans le contexte de l'analyse de patrons de points, l'effet de bordure (\"edge effect\") est dû au fait que nous avons une connaissance incomplète du voisinage des points près du bord de la fenêtre d'observation, ce qui peut induire un biais dans le calcul des statistiques comme le $K$ de Ripley. \n\nDifférentes méthodes ont été développées pour corriger le biais dû aux effets de bordure. Selon la méthode de Ripley, la contribution d'un voisin $j$ situé à une distance $r$ d'un point $i$ reçoit un poids $w_{ij} = 1/\\phi_i(r)$, où $\\phi_i(r)$ est la fraction du cercle de rayon $r$ autour de $i$ contenu dans la fenêtre d'observation. Par exemple, si 2/3 du cercle se trouve dans la fenêtre, ce voisin compte pour 3/2 voisins dans le calcul d'une statistique comme $K$.\n\n![](images/ripley_edge.png)\n\nLa méthode de Ripley est une des plus simples pour corriger les effets de bordure, mais n'est pas nécessairement la plus efficace; notamment, les poids plus grands donnés à certaines paires de points tend à accroître la variance du calcul de la statistique. D'autres méthodes de correction sont présentées dans les manuels spécialisés, comme celui de Wiegand et Moloney (2013) en référence.\n\n## Exemple\n\nPour cet exemple, nous utilisons le jeu de données [semis_xy.csv](data/semis_xy.csv), qui représente les coordonnées $(x, y)$ de semis de deux espèces (*sp*, B = bouleau et P = peuplier) dans une placette de 15 x 15 m.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-94_327e5e9e3c1899c6fc6b1fb294f06e68'}\n\n```{.r .cell-code}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y sp\n1 14.73 0.05 P\n2 14.72 1.71 P\n3 14.31 2.06 P\n4 14.16 2.64 P\n5 14.12 4.15 B\n6 9.88 4.08 B\n```\n:::\n:::\n\n\nLe package *spatstat* permet d'effectuer des analyses de patrons de point dans R. La première étape consiste à transformer notre tableau de données en objet `ppp` (patron de points) avec la fonction du même nom. Dans cette fonction, nous spécifions quelles colonnes contiennent les coordonnées *x* et *y* ainsi que les marques (`marks`), qui seront ici les codes d'espèce. Il faut aussi spécifier une fenêtre d'observation (`window`) à l'aide de la fonction `owin`, à laquelle nous indiquons les limites de la placette en *x* et *y*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-95_e246a905ab0e728b8bebd2e4c7effcef'}\n\n```{.r .cell-code}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMarked planar point pattern: 281 points\nMultitype, with levels = B, P \nwindow: rectangle = [0, 15] x [0, 15] units\n```\n:::\n:::\n\n\nLes marques peuvent être numériques ou catégorielles. Notez que pour des marques catégorielles comme c'est le cas ici, il faut convertir explicitement la variable en facteur.\n\nLa fonction `plot` appliquée à un patron de points montre un diagramme du patron.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-96_96d77aa12e04c69ed21ee84e297dba59'}\n\n```{.r .cell-code}\nplot(semis)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-96-1.png){width=672}\n:::\n:::\n\n\nLa fonction `intensity` calcule la densité des points de chaque espèce par unité de surface, ici en $m^2$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-97_beac65d0093c1448eec5b7873eb79e0b'}\n\n```{.r .cell-code}\nintensity(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n B P \n0.6666667 0.5822222 \n```\n:::\n:::\n\n\nPour analyser d'abord séparément la distribution de chaque espèce, nous séparons le patron avec `split`. Puisque le patron contient des marques catégorielles, la séparation se fait automatiquement en fonction de la valeur des marques. Le résultat est une liste de deux patrons de points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-98_b03959fb9ef2a14b73c3512a12d3e227'}\n\n```{.r .cell-code}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-98-1.png){width=672}\n:::\n:::\n\n\nLa fonction `Kest` calcule le $K$ de Ripley pour une série de distances allant (par défaut) jusqu'à 1/4 de la largeur de la fenêtre. Ici, nous l'appliquons au premier patron (bouleau) en choisissant `semis_split[[1]]`. Notez que les doubles crochets sont nécessaires pour choisir un élément d'une liste dans R.\n\nL'argument `correction = \"iso\"` indique d'appliquer la méthode de Ripley pour corriger les effets de bordure.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-99_181444d1e19a264175dc77ad57d2d3d0'}\n\n```{.r .cell-code}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-99-1.png){width=672}\n:::\n:::\n\n\nSelon ce graphique, il semble y avoir une excès de voisins à partir d'un rayon de 1 m. Pour vérifier s'il s'agit d'un écart significatif, nous produisons une enveloppe de simulation avec la fonction `envelope`. Le permier argument d'`envelope` est un patron de point auquel les simulations seront comparées, le deuxième une fonction à calculer (ici, `Kest`) pour chaque patron simulé, puis on y ajoute les arguments de la fonction `Kest` (ici, seulement `correction`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-100_c8ef12d95e636626e72d894b8455cc8e'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-100-1.png){width=672}\n:::\n:::\n\n\nTel qu'indiqué par le message, cette fonction effectue par défaut 99 simulations de l'hypothèse nulle correspondant à une structure spatiale totalement aléatoire (CSR, pour *complete spatial randomness*).\n\nLa courbe observée sort de l'enveloppe des 99 simulations près de $r = 2$. Il faut être prudent de ne pas interpréter trop rapidement un résultat sortant de l'enveloppe. Même s'il y a environ une probabilité de 1% d'obtenir un résultat plus extrême selon l'hypothèse nulle à une distance donnée, l'enveloppe est calculée pour un grand nombre de valeurs de la distance et nous n'effectuons pas de correction pour les comparaisons multiples. Ainsi, un écart significatif pour une très petite plage de valeurs de $r$ peut être simplement dû au hasard.\n\n\n### Exercice 1\n\nEn regardant le graphique du deuxième patron de points (semis de peuplier), pouvez-vous prédire où se situera le $K$ de Ripley par rapport à l'hypothèse nulle d'une structure spatiale totalement aléatoire? Vérifiez votre prédiction en calculant le $K$ de Ripley pour ce patron de points dans R.\n\n\n## Effet de l'hétérogénéité\n\nLe graphique ci-dessous illustre un patron de points *hétérogène*, c'est-à-dire qu'il présente un gradient d'intensité (plus de points à gauche qu'à droite).\n\n\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-102_4f8ece21b321a6bc37f12ea916525a4e'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-102-1.png){width=672}\n:::\n:::\n\n\nUn gradient de densité peut être confondu avec une agrégation des points, comme on peut voir sur le graphique du $K$ de Ripley correspondant. En théorie, il s'agit de deux processus différents:\n\n- Hétérogénéité: La densité de points varie dans la région d'étude, par exemple dû au fait que certaines conditions locales sont plus propices à la présence de l'espèce étudiée.\n\n- Agrégation: La densité moyenne des points est homogène, mais la présence d'un point augmente la présence d'autre points dans son voisinage, par exemple en raison d'interactions positives entre les individus.\n\nCependant, il peut être difficile de différencier les deux en pratique, surtout que certains patrons peuvent être à la fois hétérogènes et agrégés.\n\nPrenons l'exemple des semis de peuplier de l'exercice précédent. La fonction `density` appliquée à un patron de points effectue une estimation par noyau (*kernel density estimation*) de la densité des semis à travers la placette. Par défaut, cette fonction utilise un noyau gaussien avec un écart-type `sigma` spécifié dans la fonction, qui détermine l'échelle à laquelle les fluctuations de densité sont \"lissées\". Ici, nous utilisons une valeur de 2 m pour `sigma` et nous représentons d'abord la densité estimée avec `plot`, avant d'y superposer les points (`add = TRUE` signifie que les points sont ajoutés au graphique existant plutôt que de créer un nouveau graphique).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-103_293155d4d47f9be8ba5f92c275edfe33'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-103-1.png){width=672}\n:::\n:::\n\n\nPour mesurer l'agrégation ou la répulsion des points d'un patron hétérogène, nous devons utilisé la version non-homogène de la statistique $K$ (`Kinhom` dans *spatstat*). Cette statistique est toujours égale au nombre moyen de voisins dans un rayon $r$ d'un point du patron, mais plutôt que de normaliser ce nombre par l'intensité globale du patron, il est normalisé par l'estimation locale de la densité de points. Comme ci-dessus, nous spécifions `sigma = 2` pour contrôler le niveau de lissage de l'estimation de la densité variable.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-104_2e7d6e77388db4c6cf95e3825468e730'}\n\n```{.r .cell-code}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-104-1.png){width=672}\n:::\n:::\n\n\nEn tenant compte de l'hétérogénéité du patron à une échelle `sigma` de 2 m, il semble donc y avoir un déficit de voisins à partir d'environ 1.5 m des points du patron. Il reste à voir si cette déviation est significative.\n\nComme précédemment, nous utilisons `envelope` pour simuler la statistique `Kinhom` sous le modèle nul. Cependant, ici le modèle nul n'est pas un processus de Poisson homogène (structure spatiale totalement aléatoire). Il s'agit plutôt d'un processus de Poisson hétérogène simulé par la fonction `rpoispp(dens_p)`, c'est-à-dire que les points sont indépendants les uns des autres, mais leur densité est hétérogène et donnée par `dens_p`. L'argument `simulate` de la fonction `envelope` permet de spécifier une fonction utilisée pour les simulations sous le modèle nul; cette fonction doit avoir un argument, ici `x`, même s'il n'est pas utilisé.\n\nFinalement, en plus des arguments nécessaires pour `Kinhom`, soit `sigma` et `correction`, nous spécifions aussi `nsim = 199` pour réaliser 199 simulations et `nrank = 5` pour éliminer les 5 résultats les plus extrêmes de chaque côté de l'enveloppe, donc les 10 plus extrêmes sur 199, pour réaliser un intervalle contenant environ 95% de la probabilité sous l'hypothèse nulle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-105_372339d2d2e016521c3700d91cc77898'}\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-105-1.png){width=672}\n:::\n:::\n\n\n*Note*: Pour un test d'hypothèse basé sur des simulations d'une hypothèse nulle, la valeur $p$ est estimée par $(m + 1)/(n + 1)$, où $n$ est le nombre de simulations et $m$ est le nombre de simulations où la valeur de la statistique est plus extrême que celle des données observées. C'est pour cette raison qu'on choisit un nombre de simulations comme 99, 199, etc.\n\n### Exercice 2\n\nRépétez l'estimation de la densité hétérogène et le calcul de `Kinhom` avec un écart-type `sigma` de 5 plutôt que 2. Comment le niveau de lissage pour la densité influence-t-il les conclusions?\n\nPour différencier une variation de densité des points et d'une interaction (agrégation ou répulsion) entre ces points avec ce type d'analyse, il faut généralement supposer que les deux processus opèrent à différentes échelles. Typiquement, nous pouvons tester si les points sont agrégés à petite échelle après avoir tenu compte d'une variation de la densité à une échelle plus grande.\n\n\n## Relation entre deux patrons de points\n\nConsidérons un cas où nous avons deux patrons de points, par exemple la position des arbres de deux espèces dans une parcelle (points oranges et verts dans le graphique ci-dessous). Chacun des deux patrons peut présenter ou non des agrégations de points. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-106_a7d54ff1bdd2b3ad9381ec359732b6e9'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-106-1.png){width=672}\n:::\n:::\n\n\nSans égard à cette agrégation au niveau de l'espèce, nous voulons déterminer si les deux espèces sont disposées indépendamment. Autrement dit, la probabilité d'observer un arbre d'une espèce dépend-elle de la présence d'un arbre de l'autre espèce à une distance donnée?\n\nLa version bivariée du $K$ de Ripley permet de répondre à cette question. Pour deux patrons désignés 1 et 2, l'indice $K_{12}(r)$ calcule le nombre moyen de points du patron 2 dans un rayon $r$ autour d'un point du patron 1, normalisé par la densité du patron 2.\n\nEn théorie, cet indice est symétrique, donc $K_{12}(r) = K_{21}(r)$ et le résultat serait le même si on choisit les points du patron 1 ou 2 comme points \"focaux\" pour l'analyse. Cependant, l'estimation des deux quantités pour un patron observé peut différer, notamment en raison des effets de bord. La variabilité peut aussi être différente pour $K_{12}$ et $K_{21}$ entre les simulations d'un modèle nul, donc le test de l'hypothèse nulle peut avoir une puissance différente selon le choix de l'espèce focale.\n\nLe choix d'un modèle nul approprié est important ici. Afin de déterminer s'il existe une attraction ou une répulsion significative entre les deux patrons, il faut déplacer aléatoirement la position d'un des patrons relative à celle de l'autre patron, tout en conservant la structure spatiale de chaque patron pris isolément.\n\nUne des façons d'effectuer cette randomisation consiste à décaler l'un des deux patrons horizontalement et/ou verticalement d'une distance aléatoire. La partie du patron qui \"sort\" d'un côté de la fenêtre est rattachée de l'autre côté. Cette méthode s'appelle une translation toroïdale (*toroidal shift*), car en connectant le haut et le bas ainsi que la gauche et la droite d'une surface rectangulaire, on obtient la forme d'un tore (un \"beigne\" en trois dimensions).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-107_1757cb541cf05d572ea82ab56ed6f90e'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-107-1.png){width=672}\n:::\n:::\n\n\nLe graphique ci-dessus illustre une translation du patron vert vers la droite, tandis que le patron orange reste au même endroit. Les points verts dans la zone ombragée sont ramenés de l'autre côté. Notez que si cette méthode préserve de façon générale la structure de chaque patron tout en randomisant leur position relative, elle peut comporter certains inconvénients, comme de diviser des amas de points qui se trouvent près du point de coupure.\n\nVérifions maintenant s'il y a une dépendance entre la position des deux espèces (bouleau et peuplier) dans notre placette. La fonction `Kcross` calcule l'indice bivarié $K_{ij}$, il faut spécifier quel type de point est considéré comme l'espèce focale $i$ et l'espèce voisine $j$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-108_e1fb67c992e6fbc5436f40af7db13109'}\n\n```{.r .cell-code}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-108-1.png){width=672}\n:::\n:::\n\n\nIci, le $K$ observé est inférieur à la valeur théorique, indiquant une répulsion possible des deux patrons.\n\nPour déterminer l'enveloppe du $K$ selon l'hypothèse nulle d'indépendance des deux patrons, nous devons spécifier que les simulations doivent être basées sur une translation des patrons. Nous indiquons que les simulations doivent utiliser la fonction `rshift` (translation aléatoire) avec l'argument `simulate = function(x) rshift(x, which = \"B\")`; ici, l'argument `x` de `simulate` correspond au patron de points original et l'argument `which` indique quel type de points subit la translation. Comme pour le cas précédent, il faut répéter dans la fonction `envelope` les arguments nécessaires pour `Kcross`, soit `i`, `j` et `correction`. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-109_727b1efb5e977942d084f00027cda511'}\n\n```{.r .cell-code}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-109-1.png){width=672}\n:::\n:::\n\n\nIci, la courbe observée se situe totalement dans l'enveloppe, donc nous ne rejetons pas l'hypothèse nulle d'indépendance des deux patrons.\n\n### Questions\n\n1. Quelle raison pourrait justifier ici notre choix d'effectuer la translation des points du bouleau plutôt que du peuplier?\n\n2. Est-ce que les simulations générées par translation aléatoire constitueraient un bon modèle nul si les deux patrons étaient hétérogènes?\n\n\n## Patrons de points marqués\n\nLe jeu de données [fir.csv](data/fir.csv) contient les coordonnées $(x, y)$ de 822 sapins dans une placette d'un hectare et leur statut (A = vivant, D = mort) suivant une épidémie de tordeuse des bourgeons de l'épinette.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-110_b43d75059cee9e8f87a67abfa290388c'}\n\n```{.r .cell-code}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y status\n1 31.50 1.00 A\n2 85.25 30.75 D\n3 83.50 38.50 A\n4 84.00 37.75 A\n5 83.00 33.25 A\n6 33.25 0.25 A\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-111_2327e6a3855266c0ba92a5eed5b7ce1a'}\n\n```{.r .cell-code}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-111-1.png){width=672}\n:::\n:::\n\n\nSupposons que nous voulons vérifier si la mortalité des sapins est indépendante ou corrélée entre arbres rapprochés. En quoi cette question diffère-t-elle de l'exemple précédent où nous voulions savoir si la position des points de deux espèces était indépendante?\n\nDans l'exemple précédent, l'indépendance ou l'interaction entre les espèces référait à la formation du patron lui-même (que des semis d'une espèce s'établissent ou non à proximité de ceux de l'autre espèce). Ici, la caractéristique qui nous intéresse (survie des sapins) est postérieure à l'établissement du patron, en supposant que tous ces arbres étaient vivants d'abord et que certains sont morts suite à l'épidémie. Donc nous prenons la position des arbres comme fixe et nous voulons savoir si la distribution des statuts (mort, vivant) entre ces arbres est aléatoire ou présente un patron spatial.\n\nDans le manuel de Wiegand et Moloney, la première situation (établissement de semis de deux espèces) est appelé patron bivarié, donc il s'agit vraiment de deux patrons qui interagissent, tandis que la deuxième est un seul patron avec une *marque* qualitative. Le package *spatstat* dans R ne fait pas de différences entre les deux au niveau de la définition du patron (les types de points sont toujours représentés par l'argument `marks`), mais les méthodes d'analyse appliquées aux deux questions diffèrent.\n\nDans le cas d'un patron avec une marque qualitative, nous pouvons définir une fonction de connexion de marques (*mark connection function*) $p_{ij}(r)$. Pour deux points séparés par une distance $r$, cette fonction donne la probabilité que le premier point porte la marque $i$ et le deuxième la marque $j$. Selon l'hypothèse nulle où les marques sont indépendantes, cette probabilité est égale au produit des proportions de chaque marque dans le patron entier, $p_{ij}(r) = p_i p_j$ indépendamment de $r$.\n\nDans *spatstat*, la fonction de connexion de marques est calculée avec la fonction `markconnect`, où il faut spécifier les marques $i$ et $j$ ainsi que le type de correction des effets de bord. Dans notre exemple, nous voyons que deux points rapprochés ont moins de chance d'avoir une statut différent (A et D) que prévu selon l'hypothèse de distribution aléatoire et indépendante des marques (ligne rouge pointillée).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-112_e925b891841588727659504a7a0c6e6d'}\n\n```{.r .cell-code}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-112-1.png){width=672}\n:::\n:::\n\n\nDans ce graphique, les ondulations dans la fonction sont dues à l'erreur d'estimation d'une fonction continue de $r$ à partir d'un nombre limité de paires de points discrètes.\n\nPour simuler le modèle nul dans ce cas-ci, nous utilisons la fonction `rlabel` qui réassigne aléatoirement les marques parmi les points du patron, en maintenant la position des points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-113_41cb4b77111500454c477fbd4c96dd08'}\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-113-1.png){width=672}\n:::\n:::\n\n\nNotez que puisque la fonction `rlabel` a un seul argument obligatoire correspondant au patron de points original, il n'était pas nécessaire de spécifier au long: `simulate = function(x) rlabel(x)`.\n\nVoici les résultats pour les paires d'arbres du même statut A ou D:\n\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-114_2a3fc9a64a69a67d1266f0273c3bb85c'}\n\n```{.r .cell-code}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-114-1.png){width=960}\n:::\n:::\n\n\nIl semble donc que la mortalité des sapins due à cette épidémie est agrégée spatialement, puisque les arbres situés à proximité l'un de l'autre ont une plus grande probabilité de partager le même statut que prévu par l'hypothèse nulle.\n\n## Références\n\nFortin, M.-J. et Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK. \n\nWiegand, T. et Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nLe jeu de données du dernier exemple est tiré des données de la Forêt d'enseignement et de recherche du Lac Duparquet (FERLD), disponibles sur Dryad en suivant [ce lien](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n\n# Solutions\n\n### Exercice 1\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-115_7bc8effd281fccbd2a1c1e21cd801493'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-115-1.png){width=672}\n:::\n:::\n\n\nLes semis de peuplier semblent significativement agrégés selon la valeur du $K$.\n\n### Exercice 2\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-116_53115f6ed07f7e0e4e7d2c8989998e70'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-116-1.png){width=672}\n:::\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-116-2.png){width=672}\n:::\n:::\n\n\nIci, puisque nous estimons la variation de densité à une plus grande échelle, même après avoir tenu compte de cette variation, les semis de peuplier semblent agrégés à petite échelle.\n\n\n# Corrélation spatiale d'une variable {#spatial-correlation-fr}\n\nLa corrélation entre les mesures d'une variable prises à des points rapprochés est une caractéristique dans de nombreux jeux de données. Ce principe est parfois appelé \"première loi de la géographie\" et exprimé par la citation de Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things.\" (Tout est relié, mais les choses rapprochées le sont davantage que celles éloignées).\n\nEn statistique, nous parlons souvent d'*autocorrélation* pour désigner la corrélation qui existe entre les mesures d'une même variable prises à différents moments (autocorrélation temporelle) ou différents lieux (autocorrélation spatiale).\n\n## Dépendance intrinsèque ou induite\n\nIl existe deux types fondamentaux de dépendance spatiale sur une variable mesurée $y$: une dépendance *intrinsèque* à $y$, ou une dépendance *induite* par des variables externes influençant $y$, qui sont elles-mêmes corrélées dans l'espace.\n\nPar exemple, supposons que l'abondance d'une espèce soit corrélée entre deux sites rapprochés:\n\n- cette dépendance spatiale peut être induite si elle est due à une corrélation spatiale des facteurs d'habitat qui favorisent ou défavorisent l'espèce;\n\n- ou elle peut être intrinsèque si elle est due à la dispersion d'individus entre sites rapprochés.\n\nDans plusieurs cas, les deux types de dépendance affectent une variable donnée.\n\nSi la dépendance est simplement induite et que les variables externes qui en sont la cause sont incluses dans le modèle expliquant $y$, alors les résidus du modèle seront indépendants et nous pouvons utiliser toutes les méthodes déjà vues qui ignorent la dépendance spatiale.\n\nCependant, si la dépendance est intrinsèque ou due à des influences externes non-mesurées, alors il faudra tenir compte de la dépendance spatiale des résidus dans le modèle.\n\n## Différentes façons de modéliser les effets spatiaux\n\nDans cette formation, nous modéliserons directement les corrélations spatiales de nos données. Il est utile de comparer cette approche à d'autres façons d'inclure des aspects spatiaux dans un modèle statistique.\n\nD'abord, nous pourrions inclure des prédicteurs dans le modèle qui représentent la position (ex.: longitude, latitude). De tels prédicteurs peuvent être utiles pour détecter une tendance ou un gradient systématique à grande échelle, que cette tendance soit linéaire ou non (par exemple, avec un modèle additif généralisé).\n\nEn contraste à cette approche, les modèles que nous verrons maintenant servent à modéliser une corrélation spatiale dans les fluctuations aléatoires d'une variable (i.e., dans les résidus après avoir enlevé tout effet systématique).\n\nLes modèles mixtes utilisent des effets aléatoires pour représenter la non-indépendance de données sur la base de leur groupement, c'est-à-dire qu'après avoir tenu compte des effets fixes systématiques, les données d'un même groupe sont plus semblables (leur variation résiduelle est corrélée) par rapport aux données de groupes différents. Ces groupes étaient parfois définis selon des critères spatiaux (observations regroupées en sites).\n\nCependant, dans un contexte d'effet aléatoire de groupe, tous les groupes sont aussi différents les uns des autres, ex.: deux sites à 100 km l'un de l'autre ne sont pas plus ou moins semblables que deux sites distants de 2 km.\n\nLes méthodes que nous verrons ici et dans les prochains parties de la formation nous permettent donc ce modéliser la non-indépendance sur une échelle continue (plus proche = plus corrélé) plutôt que seulement discrète (hiérarchie de groupements).\n\n\n# Modèles géostatistiques {#geostat-models-fr}\n\nLa géostatistique désigne un groupe de techniques tirant leur origine en sciences de la Terre. Elle s'intéresse à des variables distribuées de façon continue dans l'espace, dont on cherche à estimer la distribution en échantillonnant un nombre de points. Un exemple classique de ces techniques provient du domaine minier, où l'on cherchait à créer une carte de la concentration du minerai sur un site à partir d'échantillons pris à différents points du site.\n\nPour ces modèles, nous supposerons que $z(x, y)$ est une variable spatiale stationnaire mesurée selon les coordonnées $x$ et $y$.\n\n## Variogramme\n\nUn aspect central de la géostatistique est l'estimation du variogramme $\\gamma_z$ de la variable $z$. Le variogramme est égal à la moitié de l'écart carré moyen entre les valeurs de $z$ pour deux points $(x_i, y_i)$ et $(x_j, y_j)$ séparés par une distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nDans cette équation, la fonction $\\text{E}$ avec l'indice $d_{ij}=h$ désigne l'espérance statistique (autrement dit, la moyenne) de l'écart au carré entre les valeurs de $z$ pour les points séparés par une distance $h$.\n\nSi on préfère exprimer l'autocorrélation $\\rho_z(h)$ entre mesures de $z$ séparées par une distance $h$, celle-ci est reliée au variogramme par l'équation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\noù $\\sigma_z^2$ est la variance globale de $z$. \n\nNotez que $\\gamma_z = \\sigma_z^2$ si nous sommes à une distance où les mesures de $z$ sont indépendantes, donc $\\rho_z = 0$. Dans ce cas, on voit bien que $\\gamma_z$ s'apparente à une variance, même s'il est parfois appelé \"semivariogramme\" ou \"semivariance\" en raison du facteur 1/2 dans l'équation ci-dessus.\n\n## Modèles théoriques du variogramme\n\nPlusieurs modèles paramétriques ont été proposés pour représenter la corrélation spatiale en fonction de la distance entre points d'échantillonnage. Considérons d'abord une corrélation qui diminue de façon exponentielle: \n\n$$\\rho_z(h) = e^{-h/r}$$\n\nIci, $\\rho_z = 1$ pour $h = 0$ et la corréaltion est multipliée par $1/e \\approx 0.37$ pour chaque augmentation de $r$ de la distance. Dans ce contexte, $r$ se nomme la portée (*range*) de la corrélation.\n\nÀ partir de l'équation ci-dessus, nous pouvons calculer le variogramme correspondant.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nVoici une représentation graphique de ce variogramme.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-117_94b4bef8ba36e1b515cfee5fff6c1ebb'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-117-1.png){width=672}\n:::\n:::\n\n\nEn raison de la fonction exponentielle, la valeur de $\\gamma$ à des grandes distances s'approche de la variance globale $\\sigma_z^2$ sans exactement l'atteindre. Cette asymptote est appelée palier (*sill*) dans le contexte géostatistique et représentée par le symbole $s$.\n\nFinalement, il n'est parfois pas réaliste de supposer une corrélation parfaite lorsque la distance tend vers 0, en raison d'une variation possible de $z$ à très petite échelle. On peut ajouter au modèle un effet de pépite (*nugget*), noté $n$, pour que $\\gamma$ s'approche de $n$ (plutôt que 0) si $h$ tend vers 0. Le terme pépite provient de l'origine minière de ces techniques, où une pépite d'un minerai pourrait être la source d'une variation abrupte de la concentration à petite échelle.\n\nEn ajoutant l'effet de pépite, le reste du variogramme est \"compressé\" pour conserver le même palier, ce qui résulte en l'équation suivante.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nDans le package *gstat* que nous utiliserons ci-dessous, le terme $(s - n)$ est le palier partiel (*partial sill*, ou `psill`) pour la partie exponentielle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-118_616ef9e44728a1524a3df51fd61bde38'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-118-1.png){width=672}\n:::\n:::\n\n\nEn plus du modèle exponentiel, deux autres modèles théoriques courants pour le variogramme sont le modèle gaussien (où la corrélation suit une courbe demi-normale), ainsi que le modèle sphérique (où le variogramme augmente de façon linéaire au départ pour ensuite courber et atteindre le palier à une distance égale à sa portée $r$). Le modèle sphérique permet donc à la corrélation d'être exactement 0 à grande distance, plutôt que de s'approcher graduellement de zéro dans le cas des autres modèles.\n\n Modèle | $\\rho(h)$ | $\\gamma(h)$\n-------|-----------|-------------\nExponentiel | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$\nGaussien | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$\nSphérique $(h < r)$ * | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$\n\n\\* Pour le modèle sphérique, $\\rho = 0$ et $\\gamma = s$ si $h \\ge r$.\n\n\n\n::: {.cell fig.dim='[9,4]' hash='index_cache/html/unnamed-chunk-119_df4e0a7376691267996d3cce69016995'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-119-1.png){width=864}\n:::\n:::\n\n\n## Variogramme empirique\n\nPour estimer $\\gamma_z(h)$ à partir de données empiriques, nous devons définir des classes de distance, donc grouper différentes distances dans une marge $\\pm \\delta$ autour d'une distance $h$, puis calculer l'écart-carré moyen pour les paires de points dans cette classe de distance.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nNous verrons dans la partie suivante comment estimer un variogramme dans R.\n\n## Modèle de régression avec corrélation spatiale\n\nL'équation suivante représente une régression linéaire multiple incluant une corrélation spatiale résiduelle:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nIci, $v$ désigne la variable réponse et $u$ les prédicteurs, pour ne pas confondre avec les coordonnées spatiales $x$ et $y$. \n\nEn plus du résidu $\\epsilon$ qui est indépendant entre les observations, le modèle inclut un terme $z$ qui représente la portion spatialement corrélée de la variance résiduelle.\n\nVoici une suggestions d'étapes à suivre pour appliquer ce type de modèle:\n\n1. Ajuster le modèle de régression sans corrélation spatiale.\n\n2. Vérifier la présence de corrélation spatiale à partir du variogramme empirique des résidus.\n\n3. Ajuster un ou plusieurs modèles de régression avec corrélation spatiale et choisir celui qui montre le meilleur ajustement aux données. \n\n# Modèles géostatistiques dans R\n\nLe package *gstat* contient des fonctions liées à la géostatistique. Pour cet exemple, nous utiliserons le jeu de données `oxford` de ce package, qui contient des mesures de propriétés physiques et chimiques pour 126 échantillons du sol d'un site, ainsi que leurs coordonnées `XCOORD` et `YCOORD`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-120_bb070aeb602b5bb93fe5df883fdd6dbe'}\n\n```{.r .cell-code}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n'data.frame':\t126 obs. of 22 variables:\n $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...\n $ XCOORD : num 100 100 100 100 100 100 100 100 100 100 ...\n $ YCOORD : num 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...\n $ ELEV : num 598 597 610 615 610 595 580 590 598 588 ...\n $ PROFCLASS: Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 2 2 3 3 2 3 2 3 3 ...\n $ MAPCLASS : Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 3 3 3 3 2 2 3 3 3 ...\n $ VAL1 : num 3 3 4 4 3 3 4 4 4 3 ...\n $ CHR1 : num 3 3 3 3 3 2 2 3 3 3 ...\n $ LIME1 : num 4 4 4 4 4 0 2 1 0 4 ...\n $ VAL2 : num 4 4 5 8 8 4 8 4 8 8 ...\n $ CHR2 : num 4 4 4 2 2 4 2 4 2 2 ...\n $ LIME2 : num 4 4 4 5 5 4 5 4 5 5 ...\n $ DEPTHCM : num 61 91 46 20 20 91 30 61 38 25 ...\n $ DEP2LIME : num 20 20 20 20 20 20 20 20 40 20 ...\n $ PCLAY1 : num 15 25 20 20 18 25 25 35 35 12 ...\n $ PCLAY2 : num 10 10 20 10 10 20 10 20 10 10 ...\n $ MG1 : num 63 58 55 60 88 168 99 59 233 87 ...\n $ OM1 : num 5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...\n $ CEC1 : num 20 22 17 23 27 27 21 14 27 20 ...\n $ PH1 : num 7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...\n $ PHOS1 : num 13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...\n $ POT1 : num 196 157 115 172 238 164 312 184 123 282 ...\n```\n:::\n:::\n\n\nSupposons que nous souhaitons modéliser la concentration de magnésium (`MG1`), représentée en fonction de la position spatiale dans le graphique suivant.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-121_16158cd54c4487cc58ec9fd8dedf3de7'}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-121-1.png){width=672}\n:::\n:::\n\n\nNotez que les axes $x$ et $y$ ont été inversés par souci d'espace. La fonction `coord_fixed()` de *ggplot2* assure que l'échelle soit la même sur les deux axes, ce qui est utile pour représenter des données spatiales. \n\nNous voyons tout de suite que ces mesures ont été prises sur une grille de 100 m de côté. Il semble que la concentration de magnésium soit spatialement corrélée, bien qu'il puisse s'agir d'une corrélation induite par une autre variable. Nous savons notamment que la concentration de magnésium est reliée négativement au pH du sol (`PH1`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-122_d467da9d444c7554518f3d138f017425'}\n\n```{.r .cell-code}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-122-1.png){width=672}\n:::\n:::\n\n\nLa fonction `variogram` de *gstat* sert à estimer un variogramme à partir de données empiriques. Voici le résultat obtenu pour la variable `MG1`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-123_d148763eb057ac91a7c45c4a49d51a00'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n np dist gamma dir.hor dir.ver id\n1 225 100.0000 1601.404 0 0 var1\n2 200 141.4214 1950.805 0 0 var1\n3 548 215.0773 2171.231 0 0 var1\n4 623 303.6283 2422.245 0 0 var1\n5 258 360.5551 2704.366 0 0 var1\n6 144 400.0000 2948.774 0 0 var1\n7 570 427.5569 2994.621 0 0 var1\n8 291 500.0000 3402.058 0 0 var1\n9 366 522.8801 3844.165 0 0 var1\n10 200 577.1759 3603.060 0 0 var1\n11 458 619.8400 3816.595 0 0 var1\n12 90 670.8204 3345.739 0 0 var1\n```\n:::\n:::\n\n\nLa formule `MG1 ~ 1` indique qu'aucun prédicteur linéaire n'est inclus dans ce modèle, tandis que l'argument `locations` indique quelles variables du tableau correspondent aux coordonnées spatiales. \n\nDans le tableau obtenu, `gamma` est la valeur du variogramme pour la classe de distance centrée sur `dist`, tandis que `np` est le nombre de paires de points dans cette classe. Ici, puisque les points sont situés sur une grille, nous obtenons des classes de distance régulières (ex.: 100 m pour les points voisins sur la grille, 141 m pour les voisins en diagonale, etc.).\n\nNous nous limitons ici à l'estimation de variogrammes isotropiques, c'est-à-dire que le variogramme dépend seulement de la distance entre les deux points et non de la direction. Bien que nous n'ayons pas le temps de le voir aujourd'hui, il est possible avec *gstat* d'estimer séparément le variogramme dans différentes directions.\n\nNous pouvons illustrer le variogramme avec `plot`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-124_ca0a474a676de6872283aecd1d7057df'}\n\n```{.r .cell-code}\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-124-1.png){width=672}\n:::\n:::\n\n\nSi nous voulons estimer la corrélation spatiale résiduelle de `MG1` après avoir inclus l'effet de `PH1`, nous pouvons ajouter ce prédicteur à la formule.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-125_11cddc5b7e870cd1cc0cda1a95fac338'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-125-1.png){width=672}\n:::\n:::\n\n\nEn incluant l'effet du pH, la portée de la corrélation spatiale semble diminuer, alors que le plateau est atteint autour de 300 m. Il semble même que le variogramme diminue au-delà de 400 m. En général, nous supposons que la variance entre deux points ne diminue pas avec la distance, à moins d'avoir un patron spatial périodique.\n\nLa fonction `fit.variogram` accepte comme arguments un variogramme estimé à partir des données, ainsi qu'un modèle théorique décrit dans une fonction `vgm`, puis estime les paramètres de ce modèle en fonction des données. L'ajustement se fait par la méthode des moindres carrés.\n\nPar exemple, `vgm(\"Exp\")` indique d'ajuster un modèle exponentiel. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-126_03d3f3aa8b262e89fa7d8da65b62e30c'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nIl n'y a aucun effet de pépite, car `psill = 0` pour la partie `Nug` (*nugget*) du modèle. La partie exponentielle a un palier à 1951 et une portée de 95 m.\n\nPour comparer différents modèles, on peut donner un vecteur de noms de modèles à `vgm`. Dans l'exemple suivant, nous incluons les modèles exponentiel, gaussien (\"Gau\") et sphérique (\"Sph\").\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-127_2f3bfeceade9f4f4dfc5b3eba9eda432'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nLa fonction nous donne le résultat du modèle le mieux ajusté (plus faible somme des écarts au carré), qui est ici le même modèle exponentiel.\n\nFinalement, nous pouvons superposer le modèle théorique et le variogramme empirique sur un même graphique.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-128_c877e0be691daa5fe18f6d2ba00dfdcd'}\n\n```{.r .cell-code}\nplot(var_mg, vfit, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-128-1.png){width=672}\n:::\n:::\n\n\n## Régression avec corrélation spatiale\n\nNous avons vu ci-dessus que le package *gstat* permet d'estimer le variogramme des résidus d'un modèle linéaire. Dans notre exemple, la concentration de magnésium était modélisée en fonction du pH, avec des résidus spatialement corrélés.\n\nUn autre outil pour ajuster ce même type de modèle est la fonction `gls` du package *nlme*, qui est inclus avec l'installation de R. \n\nCette fonction applique la méthode des moindres carrés généralisés (*generalized least squares*) pour ajuster des modèles de régression linéaire lorsque les résidus ne sont pas indépendants ou lorsque la variance résiduelle n'est pas la même pour toutes les observations. Comme les estimés des coefficients dépendent de l'estimé des corrélations entre les résidus et que ces derniers dépendent eux-mêmes des coefficients, le modèle est ajusté par un algorithme itératif:\n\n1. On ajuste un modèle de régression linéaire classique (sans corrélation) pour obtenir des résidus.\n\n2. On ajuste le modèle de corrélation spatiale (variogramme) avec ses résidus.\n\n3. On ré-estime les coefficients de la régression en tenant compte maintenant des corrélations.\n\nLes étapes 2 et 3 sont répétées jusqu'à ce que les estimés soient stables à une précision voulue.\n\nVoici l'application de cette méthode au même modèle pour la concentration de magnésium dans le jeu de données `oxford`. Dans l'argument `correlation` de `gls`, nous spécifions un modèle de corrélation exponentielle en fonction de nos coordonnées spatiales et indiquons que nous voulons aussi estimer un effet de pépite.\n\nEn plus de la corrélation exponentielle `corExp`, la fonction `gls` peut aussi estimer un modèle gaussien (`corGaus`) ou sphérique (`corSpher`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-129_c4131310eb8ea32e0ccf4187e678e982'}\n\n```{.r .cell-code}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: MG1 ~ PH1 \n Data: oxford \n AIC BIC logLik\n 1278.65 1292.751 -634.325\n\nCorrelation Structure: Exponential spatial correlation\n Formula: ~XCOORD + YCOORD \n Parameter estimate(s):\n range nugget \n478.0322964 0.2944753 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 391.1387 50.42343 7.757084 0\nPH1 -41.0836 6.15662 -6.673079 0\n\n Correlation: \n (Intr)\nPH1 -0.891\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-2.1846957 -0.6684520 -0.3687813 0.4627580 3.1918604 \n\nResidual standard error: 53.8233 \nDegrees of freedom: 126 total; 124 residual\n```\n:::\n:::\n\n\nPour comparer ce résultat au variogramme ajusté ci-dessus, il faut transformer les paramètres donnés par `gls`. La portée (range) a le même sens dans les deux cas et correspond à 478 m pour le résultat de `gls`. La variance globale des résidus est le carré de `Residual standard error`. L'effet de pépite ici (0.294) est exprimé comme fraction de cette variance. Finalement, pour obtenir le palier partiel de la partie exponentielle, il faut soustraire l'effet de pépite de la variance totale. \n\nAprès avoir réalisé ces calculs, nous pouvons donner ces paramètres à la fonction `vgm` de *gstat* pour superposer ce variogramme estimé par `gls` à notre variogramme des résidus du modèle linéaire classique.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-130_1b4118890801a03647e2f78590f222be'}\n\n```{.r .cell-code}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-130-1.png){width=672}\n:::\n:::\n\n\nEst-ce que le modèle est moins bien ajusté aux données ici? En fait, ce variogramme empirique représenté par les points avait été obtenu à partir des résidus du modèle linéaire ignorant la corrélation spatiale, donc c'est un estimé biaisé des corrélations spatiales réelles. La méthode est quand même adéquate pour vérifier rapidement s'il y a présence de corrélations spatiales. Toutefois, pour ajuster simultanément les coefficients de la régression et les paramètres de corrélation spatiale, l'approche des moindres carrés généralisés (GLS) est préférable et produira des estimés plus justes.\n\nFinalement, notez que le résultat du modèle `gls` donne aussi l'AIC, que nous pouvons utiliser pour comparer l'ajustement de différents modèles (avec différents prédicteurs ou différentes formes de corrélation spatiale).\n\n## Exercice\n\nLe fichier [bryo_belg.csv](data/bryo_belg.csv) est adapté des données de l'étude: \n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nCe tableau de données indique la richesse spécifique des bryophytes au sol (*richness*) pour différents points d'échantillonnage de la province belge de Limbourg, avec leur position *(x, y)* en km, en plus de l'information sur la proportion de forêts (*forest*) et de milieux humides (*wetland*) dans une cellule de 1 km$^2$ contenant le point d'échantillonnage.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-131_9e78f0ec8229f51b3dcf95f72b18a23a'}\n\n```{.r .cell-code}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n richness forest wetland x y\n1 9 0.2556721 0.5036614 228.9516 220.8869\n2 6 0.6449114 0.1172068 227.6714 219.8613\n3 5 0.5039905 0.6327003 228.8252 220.1073\n4 3 0.5987329 0.2432942 229.2775 218.9035\n5 2 0.7600775 0.1163538 209.2435 215.2414\n6 10 0.6865434 0.0000000 210.4142 216.5579\n```\n:::\n:::\n\n\nPour cet exercice, nous utiliserons la racine carrée de la richesse spécifique comme variable réponse. La transformation racine carrée permet souvent d'homogénéiser la variance des données de comptage afin d'y appliquer une régression linéaire. \n\na) Ajustez un modèle linéaire de la richesse spécifique transformée en fonction de la fraction de forêt et de milieux humides, sans tenir compte des corrélations spatiales. Quel est l'effet des deux prédicteurs selon ce modèle?\n\nb) Calculez le variogramme empirique des résidus du modèle en (a). Semble-t-il y avoir une corrélation spatiale entre les points?\n\n*Note*: L'argument `cutoff` de la fonction `variogram` spécifie la distance maximale à laquelle le variogramme est calculé. Vous pouvez ajuster manuellement cette valeur pour bien voir le palier.\n\nc) Ré-ajustez le modèle linéaire en (a) avec la fonction `gls` du package *nlme*, en essayant différents types de corrélations spatiales (exponentielle, gaussienne, sphérique). Comparez les modèles (incluant celui sans corrélation spatiale) avec l'AIC.\n\nd) Quel est l'effet de la fraction de forêts et de milieux humides selon le modèle en (c)? Expliquez les différences entre les conclusions de ce modèle et du modèle en (a).\n\n\n# Krigeage\n\nTel que mentionné précédemment, une application courante des modèles géostatistiques consiste à prédire la valeur de la variable de réponse à des points non-échantillonnés, une forme d'interpolation spatiale appelée krigeage (*kriging*).\n\nIl existe trois principaux types de krigeage selon les suppositions faites au sujet de la variable réponse:\n\n- Krigeage ordinaire: variable stationnaire avec une moyenne inconnue.\n\n- Krigeage simple: Variable stationnaire avec une moyenne connue.\n\n- Krigeage universel: Variable dont la tendance est donnée par un modèle linéaire ou non linéaire.\n\nPour toutes les méthodes de krigeage, les prédictions à un nouveau point sont une moyenne pondérée des valeurs à des points connus. Ces pondérations sont choisies de manière à ce que le krigeage fournisse la meilleure prédiction linéaire non biaisée de la variable de réponse, si les hypothèses du modèle (en particulier le variogramme) sont correctes. C'est-à-dire que, parmi toutes les prédictions non biaisées possibles, les poids sont choisis de manière à donner l'erreur quadratique moyenne minimale. Le krigeage fournit également une estimation de l'incertitude de chaque prédiction.\n\nBien que nous ne présentions pas ici les équations détaillées du krigeage, les poids dépendent à la fois des corrélations (estimées par le variogramme) entre les points échantillonnés et le nouveau point, ainsi que des corrélations entre les points échantillonnés eux-mêmes. Autrement dit, les points échantillonnés proches du nouveau point ont plus de poids, mais les points échantillonnés isolés ont également plus de poids, car les points échantillonnés proches les uns des autres fournissent une informations redondante.\n\nLe krigeage est une méthode d'interpolation, donc la prédiction à un point échantillonné sera toujours égale à la valeur mesurée (la variable est supposée être mesurée sans erreur, elle varie seulement entre les points). Cependant, en présence d'un effet de pépite, tout petit déplacement par rapport à l'endroit échantillonné présentera une variabilité en fonction de la pépite.\n\nDans l'exemple ci-dessous, nous générons un nouvel ensemble de données composé de coordonnées (x, y) générées de façon aléatoire dans la zone d'étude ainsi que des valeurs de pH générées de façon aléatoire sur la base des données `oxford`. Nous appliquons ensuite la fonction `krige` pour prédire les valeurs de magnésium à ces nouveaux points. Notez que nous spécifions le variogramme dérivé des résultats du `gls` dans l'argument `model` de `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-132_027c26268d41b1f7157bb584e297db99'}\n\n```{.r .cell-code}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[using universal kriging]\n```\n:::\n\n```{.r .cell-code}\nhead(pred)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD var1.pred var1.var\n1 227.0169 162.1185 47.13065 1269.002\n2 418.9136 465.9013 79.68437 1427.269\n3 578.5943 2032.7477 60.30539 1264.471\n4 376.2734 1530.7193 127.22366 1412.875\n5 591.5336 421.6290 105.88124 1375.485\n6 355.7369 404.3378 127.73055 1250.114\n```\n:::\n:::\n\n\nLe résultat de `krige` comprend les nouvelles coordonnées du point, la prédiction de la variable `var1.pred` ainsi que sa variance estimée `var1.var`. Dans le graphique ci-dessous, nous montrons les prédictions moyennes de MG1 à partir du krigeage (triangles) ainsi que les mesures (cercles).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-133_1b4299bab8f6eba5fe4ea3b112a66235'}\n\n```{.r .cell-code}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-133-1.png){width=672}\n:::\n:::\n\n\nLa moyenne et la variance estimées par krigeage peuvent être utilisées pour simuler les valeurs possibles de la variable à chaque nouveau point, conditionnellement aux valeurs échantillonnées. Dans l'exemple ci-dessous, nous avons effectué 4 simulations conditionnelles en ajoutant l'argument `nsim = 4` à la même instruction `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-134_9a008c1eb0ae0b7b22fbfc9aa9ca64ba'}\n\n```{.r .cell-code}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ndrawing 4 GLS realisations of beta...\n[using conditional Gaussian simulation]\n```\n:::\n\n```{.r .cell-code}\nhead(sim_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD sim1 sim2 sim3 sim4\n1 227.0169 162.1185 9.638739 34.53159 46.08685 77.86376\n2 418.9136 465.9013 60.029144 20.17179 76.46333 59.57924\n3 578.5943 2032.7477 100.791412 77.47887 73.50058 59.40279\n4 376.2734 1530.7193 112.615730 150.96664 78.76125 146.83928\n5 591.5336 421.6290 70.925240 72.85522 153.90610 126.63758\n6 355.7369 404.3378 161.608032 118.93640 134.45695 142.20074\n```\n:::\n:::\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-135_3de9cc48384c950ead05df0c82810126'}\n\n```{.r .cell-code}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-135-1.png){width=960}\n:::\n:::\n\n\n\n# Solutions\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-136_e5d36a60c009aa3f50973208ae8f2f5b'}\n\n```{.r .cell-code}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = sqrt(richness) ~ forest + wetland, data = bryo_belg)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.8847 -0.4622 0.0545 0.4974 2.3116 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 2.34159 0.08369 27.981 < 2e-16 ***\nforest 1.11883 0.13925 8.034 9.74e-15 ***\nwetland -0.59264 0.17216 -3.442 0.000635 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.7095 on 417 degrees of freedom\nMultiple R-squared: 0.2231,\tAdjusted R-squared: 0.2193 \nF-statistic: 59.86 on 2 and 417 DF, p-value: < 2.2e-16\n```\n:::\n:::\n\n\nLa proportion de forêts a un effet positif significatif et la proportion de milieux humides a un effet négatif significatif sur la richesse des bryophytes.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-137_ec3dcc9a8a06613df18c98b96808666b'}\n\n```{.r .cell-code}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-137-1.png){width=672}\n:::\n:::\n\n\nLe variogramme augmente au moins jusqu'à une distance de 40 km, il semble donc y avoir des corrélations spatiales dans les résidus du modèle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-138_7c7f1feca29413974ebbf1ffe2ed08c2'}\n\n```{.r .cell-code}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-139_8c08d48b4eaefbe6cc8947569ca14603'}\n\n```{.r .cell-code}\nAIC(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 908.6358\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_exp)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 867.822\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_gaus)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 870.9592\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 866.9117\n```\n:::\n:::\n\n\nLe modèle sphérique a l'AIC le plus faible.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-140_6c6c64ec797a7b31d531a376b94c8dbc'}\n\n```{.r .cell-code}\nsummary(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: sqrt(richness) ~ forest + wetland \n Data: bryo_belg \n AIC BIC logLik\n 866.9117 891.1102 -427.4558\n\nCorrelation Structure: Spherical spatial correlation\n Formula: ~x + y \n Parameter estimate(s):\n range nugget \n43.1727664 0.6063187 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 2.0368769 0.2481636 8.207800 0.000\nforest 0.6989844 0.1481690 4.717481 0.000\nwetland -0.2441130 0.1809118 -1.349348 0.178\n\n Correlation: \n (Intr) forest\nforest -0.251 \nwetland -0.235 0.241\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-1.75204183 -0.06568688 0.61415597 1.15240370 3.23322743 \n\nResidual standard error: 0.7998264 \nDegrees of freedom: 420 total; 417 residual\n```\n:::\n:::\n\n\nLa magnitude des deux effets est moins importante et l'effet des milieux humides n'est plus significatif. Comme c'est le cas pour d'autres types de résidus non indépendants, la \"taille effective\" de l'échantillon est ici inférieure au nombre de points, car des points proches les uns des autres fournissent une information redondante. Par conséquent, la relation entre les prédicteurs et la réponse est moins claire que celle donnée par le modèle supposant que tous ces points étaient indépendants.\n\nNotez que les résultats pour les trois modèles `gls` sont assez similaires, donc le choix d'inclure des corrélations spatiales était plus important que la forme exacte supposée pour le variogramme.\n\n\n# Données aréales {#areal-data-fr}\n\nLes données aréales sont des variables mesurées pour des régions de l'espace; ces régions sont définies par des polygones. Ce type de données est plus courant en sciences sociales, en géographie humaine et en épidémiologie, où les données sont souvent disponibles à l'échelle de divisions administratives du territoire. \n\nCe type de données apparaît aussi fréquemment dans la gestion des ressources naturelles. Par exemple, la carte suivante montre les unités d'aménagement forestier du Ministère de la Forêts, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSupposons qu'une certaine variable soit disponible au niveau de ces divisions du territoire. Comment pouvons-nous modéliser la corrélation spatiale entre les unités qui sont spatialement rapprochées?\n\nUne option serait d'appliquer les méthodes géostatistiques vues précédemment, en calculant par exemple la distance entre les centres des polygones.\n\nUne autre option, qui est davantage privilégiée pour les données aréales, consiste à définir un réseau où chaque région est connectée aux régions voisines par un lien. On suppose ensuite que les variables sont directement corrélées entre régions voisines seulement. (Notons toutefois que les corrélations directes entre voisins immédiats génèrent aussi des corrélations indirectes pour une chaîne de voisins.)\n\nDans ce type de modèle, la corrélation n'est pas nécessairement la même d'un lien à un autre. Dans ce cas, chaque lien du réseau peut être associé à un *poids* représentant son importance pour la corrélation spatiale. Nous représentons ces poids par une matrice $W$ où $w_{ij}$ est le poids du lien entre les régions $i$ et $j$. Une région n'a pas de lien avec elle-même, donc $w_{ii} = 0$.\n\nUn choix simple pour $W$ consiste à assigner un poids égal à 1 si les régions sont voisines, sinon 0 (poids binaires).\n\nOutre les divisions du territoire en polygones, un autre exemple de données aréales consiste en une grille où la variable est compilée pour chaque cellule de la grille. Dans ce cas, une cellule a généralement 4 ou 8 cellules voisines, selon que les diagonales soient incluses ou non.\n\n# Indice de Moran {#moran-i-fr}\n\nAvant de discuter des modèles d'autocorrélation spatiale, nous présentons l'indice $I$ de Moran, qui permet de tester si une corrélation significative est présente entre régions voisines. \n\nL'indice de Moran est un coefficient d'autocorrélation spatiale des $z$, pondéré par les poids $w_{ij}$. Il prend donc des valeurs entre -1 et 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nDans cette équation, nous reconnaissons l'expression d'une corrélation, soit le produit des écarts à la moyenne de deux variables $z_i$ et $z_j$, divisé par le produit de leurs écarts-types (qui est le même, donc on obtient la variance). La contribution de chaque paire $(i, j)$ est multipliée par son poids $w_{ij}$ et le terme à gauche (le nombre de régions $N$ divisé par la somme des poids) assure que le résultat soit borné entre -1 et 1.\n\nPuisque la distribution de $I$ est connue en l'absence d'autocorrélation spatiale, cette statistique permet de tester l'hypothèse nulle selon laquelle il n'y a pas de corrélation spatiale entre régions voisines.\n\nBien que nous ne verrons pas d'exemple dans ce cours-ci, l'indice de Moran peut aussi être appliqué aux données ponctuelles. Dans ce cas, on divise les paires de points en classes de distance et on calcule $I$ pour chaque classe de distance; le poids $w_{ij} = 1$ si la distance entre $i$ et $j$ se trouve dans la classe de distance voulue, 0 autrement.\n\n# Modèles d'autorégression spatiale {#spatial-autoreg-fr}\n\nRappelons-nous la formule pour une régression linéaire avec dépendance spatiale:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\noù $z$ est la portion de la variance résiduelle qui est spatialement corrélée.\n\nIl existe deux principaux types de modèles autorégressifs pour représenter la dépendance spatiale de $z$: l'autorégression conditionnelle (CAR) et l'autorégression simultanée (SAR).\n\n## Autorégression conditionnelle (CAR)\n\nDans le modèle d'autorégression conditionnelle, la valeur de $z_i$ pour la région $i$ suit une distribution normale: sa moyenne dépend de la valeur $z_j$ des régions voisines, multipliée par le poids $w_{ij}$ et un coefficient de corrélation $\\rho$; son écart-type $\\sigma_{z_i}$ peut varier d'une région à l'autre.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nDans ce modèle, si $w_{ij}$ est une matrice binaire (0 pour les non-voisins, 1 pour les voisins), alors $\\rho$ est le coefficient de corrélation partielle entre régions voisines. Cela est semblable à un modèle autorégressif d'ordre 1 dans le contexte de séries temporelles, où le coefficient d'autorégression indique la corrélation partielle.\n\n## Autorégression simultanée (SAR)\n\nDans le modèle d'autorégression simultanée, la valeur de $z_i$ est donnée directement par la somme de contributions des valeurs voisines $z_j$, multipliées par $\\rho w_{ij}$, avec un résidu indépendant $\\nu_i$ d'écart-type $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nÀ première vue, cela ressemble à un modèle autorégressif temporel. Il existe cependant une différence conceptuelle importante. Pour les modèles temporels, l'influence causale est dirigée dans une seule direction: $v(t-2)$ affecte $v(t-1)$ qui affecte ensuite $v(t)$. Pour un modèle spatial, chaque $z_j$ qui affecte $z_i$ dépend à son tour de $z_i$. Ainsi, pour déterminer la distribution conjointe des $z$, il faut résoudre simultanément (d'où le nom du modèle) un système d'équations. \n\nPour cette raison, même si ce modèle ressemble à la formule du modèle conditionnel (CAR), les solutions des deux modèles diffèrent et dans le cas du SAR, le coefficient $\\rho$ n'est pas directement égal à la corrélation partielle due à chaque région voisine.\n\nPour plus de détails sur les aspects mathématiques de ces modèles, vous pouvez consulter l'article de Ver Hoef et al. (2018) suggéré en référence. \n\nPour l'instant, nous considérerons les SAR et les CAR comme deux types de modèles possibles pour représenter une corrélation spatiale sur un réseau. Nous pouvons toujours ajuster plusieurs modèles et les comparer avec l'AIC pour choisir la meilleure forme de la corrélation ou la meilleure matrice de poids.\n\nLes modèles CAR et SAR partagent un avantage sur les modèles géostatistiques au niveau de l'efficacité. Dans un modèle géostatistique, les corrélations spatiales sont définies entre chaque paire de points, même si elles deviennent négligeables lorsque la distance augmente. Pour un modèle CAR ou SAR, seules les régions voisines contribuent et la plupart des poids sont égaux à 0, ce qui rend ces modèles plus rapides à ajuster qu'un modèle géostatistique lorsque les données sont massives.\n\n# Analyse des données aréales dans R {#analysis-areal-fr}\n\nPour illustrer l'analyse de données aréales dans R, nous chargeons les packages *sf* (pour lire des données géospatiales), *spdep* (pour définir des réseaux spatiaux et calculer l'indice de Moran) et *spatialreg* (pour les modèles SAR et CAR).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-141_8c941e8bafdfac85f5eb2821d17ab03b'}\n\n```{.r .cell-code}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n:::\n\n\nNous utiliserons comme exemple un jeu de données qui présente une partie des résultats de l'élection provinciale de 2018 au Québec, avec des caractéristiques de la population de chaque circonscription. Ces données sont inclues dans un fichier de type *shapefile* (.shp), que nous pouvons lire avec la fonction `read_sf` du package *sf*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-142_f24372ba1482109fbffa68f052fd7dfb'}\n\n```{.r .cell-code}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 9 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 97879.03 ymin: 174515.3 xmax: 694261.1 ymax: 599757.1\nProjected CRS: LambertAQ\n# A tibble: 6 × 10\n circ age_moy pct_frn pct_prp rev_med propCAQ propPQ propPLQ propQS\n \n1 Abitibi-Est 40.8 0.963 0.644 34518 42.7 19.5 18.8 15.7\n2 Abitibi-Ouest 42.2 0.987 0.735 33234 34.1 33.3 11.3 16.6\n3 Acadie 40.3 0.573 0.403 25391 16.5 9 53.8 13.8\n4 Anjou-Louis-Riel 43.5 0.821 0.416 31275 28.9 14.7 39.1 14.5\n5 Argenteuil 43.3 0.858 0.766 31097 38.9 21.1 17.4 12.2\n6 Arthabaska 43.4 0.989 0.679 30082 61.8 9.4 11.4 12.6\n# … with 1 more variable: geometry \n```\n:::\n:::\n\n\n*Note*: Le jeu de données est en fait composé de 4 fichiers avec les extensions .dbf, .prj, .shp et .shx, mais il suffit d'inscrire le nom du fichier .shp dans `read_sf`.\n\nLes colonnes du jeu de données sont dans l'ordre:\n\n- le nom de la circonscription électorale;\n- quatre caractéristiques de la population (âge moyen, fraction de la population qui parle principalement français à la maison, fraction des ménages qui sont propriétaires de leur logement, revenu médian);\n- quatre colonnes montrant la fraction des votes obtenues par les principaux partis (CAQ, PQ, PLQ, QS);\n- une colonne `geometry` qui contient l'objet géométrique (multipolygone) correspondant à la circonscription.\n\nPour illustrer une des variables sur une carte, nous appelons la fonction `plot` avec le nom de la colonne entre crochets et guillemets. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-143_118d70deac183e230a7c64b3208cd1a7'}\n\n```{.r .cell-code}\nplot(elect2018[\"rev_med\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-143-1.png){width=672}\n:::\n:::\n\n\nDans cet exemple, nous voulons modéliser la fraction des votes obtenue par la CAQ en fonction des caractéristiques de la population dans chaque circonscription et en tenant compte des corrélations spatiales entre circonscriptions voisines.\n\n## Définition du réseau de voisinage\n\nLa fonction `poly2nb` du package *spdep* définit un réseau de voisinage à partir de polygones. Le résultat `vois` est une liste de 125 éléments où chaque élément contient les indices des polygones voisins (limitrophes) d'un polygone donné.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-144_e6285b834db05d427f22b7669e5dbee2'}\n\n```{.r .cell-code}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 2 37 63 88 101 117\n```\n:::\n:::\n\n\nAinsi, la première circonscription (Abitibi-Est) a 6 circonscriptions voisines, dont on peut trouver les noms ainsi:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-145_2fc04a4a3fbb352f0ae58db913423a12'}\n\n```{.r .cell-code}\nelect2018$circ[vois[[1]]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"Abitibi-Ouest\" \"Gatineau\" \n[3] \"Laviolette-Saint-Maurice\" \"Pontiac\" \n[5] \"Rouyn-Noranda-Témiscamingue\" \"Ungava\" \n```\n:::\n:::\n\n\nNous pouvons illustrer ce réseau en faisant l'extraction des coordonnées du centre de chaque circonscription, en créant une carte muette avec `plot(elect2018[\"geometry\"])`, puis en ajoutant le réseau comme couche additionnelle avec `plot(vois, add = TRUE, coords = coords)`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-146_56fcb69c11c78b9880373ab1b16efb12'}\n\n```{.r .cell-code}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-146-1.png){width=672}\n:::\n:::\n\n\nOn peut faire un \"zoom\" sur le sud du Québec en choisissant les limites `xlim` et `ylim` appropriées.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-147_b0a05b92ad9c5bc6e15ecbc77d7fd239'}\n\n```{.r .cell-code}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-147-1.png){width=672}\n:::\n:::\n\n\nIl nous reste à ajouter des poids à chaque lien du réseau avec la fonction `nb2listw`. Le style de poids \"B\" correspond aux poids binaires, soit 1 pour la présence de lien et 0 pour l'absence de lien entre deux circonscriptions.\n\nUne fois ces poids définis, nous pouvons vérifier avec le test de Moran s'il y a une autocorrélation significative des votes obtenus par la CAQ entre circonscriptions voisines.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-148_59eb24f4ba758ea6399bc94ea1c419ba'}\n\n```{.r .cell-code}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: elect2018$propCAQ \nweights: poids \n\nMoran I statistic standard deviate = 13.148, p-value < 2.2e-16\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.680607768 -0.008064516 0.002743472 \n```\n:::\n:::\n\n\nLa valeur de $I = 0.68$ est très significative à en juger par la valeur $p$ du test.\n\nVérifions si la corrélation spatiale persiste après avoir tenu compte des quatre caractéristiques de la population, donc en inspectant les résidus d'un modèle linéaire incluant ces quatre prédicteurs.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-149_7d8643515ed0e408c5e5163ec8e3740c'}\n\n```{.r .cell-code}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018)\n\nResiduals:\n Min 1Q Median 3Q Max \n-30.9890 -4.4878 0.0562 6.2653 25.8146 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 1.354e+01 1.836e+01 0.737 0.463 \nage_moy -9.170e-01 3.855e-01 -2.378 0.019 * \npct_frn 4.588e+01 5.202e+00 8.820 1.09e-14 ***\npct_prp 3.582e+01 6.527e+00 5.488 2.31e-07 ***\nrev_med -2.624e-05 2.465e-04 -0.106 0.915 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 9.409 on 120 degrees of freedom\nMultiple R-squared: 0.6096,\tAdjusted R-squared: 0.5965 \nF-statistic: 46.84 on 4 and 120 DF, p-value: < 2.2e-16\n```\n:::\n\n```{.r .cell-code}\nmoran.test(residuals(elect_lm), poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: residuals(elect_lm) \nweights: poids \n\nMoran I statistic standard deviate = 6.7047, p-value = 1.009e-11\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.340083290 -0.008064516 0.002696300 \n```\n:::\n:::\n\n\nL'indice de Moran a diminué mais demeure significatif, donc une partie de la corrélation précédente était induite par ces prédicteurs, mais il reste une corrélation spatiale due à d'autres facteurs. \n\n## Modèles d'autorégression spatiale\n\nFinalement, nous ajustons des modèles SAR et CAR à ces données avec la fonction `spautolm` (*spatial autoregressive linear model*) de *spatialreg*. Voici le code pour un modèle SAR incluant l'effet des même quatre prédicteurs. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-150_34bc73005b64f5a3ee73549b2cbc9b5e'}\n\n```{.r .cell-code}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\n\nResiduals:\n Min 1Q Median 3Q Max \n-23.08342 -4.10573 0.24274 4.29941 23.08245 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 15.09421119 16.52357745 0.9135 0.36098\nage_moy -0.70481703 0.32204139 -2.1886 0.02863\npct_frn 39.09375061 5.43653962 7.1909 6.435e-13\npct_prp 14.32329345 6.96492611 2.0565 0.03974\nrev_med 0.00016730 0.00023209 0.7208 0.47101\n\nLambda: 0.12887 LR test value: 42.274 p-value: 7.9339e-11 \nNumerical Hessian standard error of lambda: 0.012069 \n\nLog likelihood: -433.8862 \nML residual variance (sigma squared): 53.028, (sigma: 7.282)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 881.77\n```\n:::\n:::\n\n\nLa valeur donnée par `Lambda` dans le sommaire correspond au coefficient $\\rho$ dans notre description du modèle. Le test du rapport de vraisemblance (`LR test`) confirme que cette corrélation spatiale résiduelle (après avoir tenu compte de l'effet des prédicteurs) est significative.\n\nLes effets estimés pour les prédicteurs sont semblables à ceux du modèle linéaire sans corrélation spatiale. Les effets de l'âge moyen, de la fraction de francophones et la fraction de propriétaires demeurent significatifs, bien que leur magnitude ait un peu diminué.\n\nPour évaluer un modèle CAR plutôt que SAR, nous devons spécifier `family = \"CAR\"`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-151_7ba6f7fcd4cc33a20eb6848945d3cce4'}\n\n```{.r .cell-code}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-21.73315 -4.24623 -0.24369 3.44228 23.43749 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 16.57164696 16.84155327 0.9840 0.325128\nage_moy -0.79072151 0.32972225 -2.3981 0.016478\npct_frn 38.99116707 5.43667482 7.1719 7.399e-13\npct_prp 17.98557474 6.80333470 2.6436 0.008202\nrev_med 0.00012639 0.00023106 0.5470 0.584364\n\nLambda: 0.15517 LR test value: 40.532 p-value: 1.9344e-10 \nNumerical Hessian standard error of lambda: 0.0026868 \n\nLog likelihood: -434.7573 \nML residual variance (sigma squared): 53.9, (sigma: 7.3416)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 883.51\n```\n:::\n:::\n\n\nPour un modèle CAR avec des poids binaires, la valeur de `Lambda` (que nous avions appelé $\\rho$) donne directement le coefficient de corrélation partielle entre circonscriptions voisines. Notez que l'AIC ici est légèrement supérieur au modèle SAR, donc ce dernier donnait un meilleur ajustement.\n\n## Exercice\n\nLe jeu de données `rls_covid`, en format *shapefile*, contient des données sur les cas de COVID-19 détectés, le nombre de cas par 1000 personnes (`taux_1k`) et la densité de population (`dens_pop`) dans chacun des réseaux locaux de service de santé (RLS) du Québec. (Source: Données téléchargées de l'Institut national de santé publique du Québec en date du 17 janvier 2021.)\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-152_117a49f704cd9751636b707b593f6428'}\n\n```{.r .cell-code}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 5 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 785111.2 ymin: 341057.8 xmax: 979941.5 ymax: 541112.7\nProjected CRS: Conique_conforme_de_Lambert_du_MTQ_utilis_e_pour_Adresse_Qu_be\n# A tibble: 6 × 6\n RLS_code RLS_nom cas taux_1k dens_…¹ geometry\n \n1 0111 RLS de Kamouraska 152 7.34 6.76 (((827028.3 412772.4, 82…\n2 0112 RLS de Rivière-du-Lo… 256 7.34 19.6 (((855905 452116.9, 8557…\n3 0113 RLS de Témiscouata 81 4.26 4.69 (((911829.4 441311.2, 91…\n4 0114 RLS des Basques 28 3.3 5.35 (((879249.6 471975.6, 87…\n5 0115 RLS de Rimouski 576 9.96 15.5 (((917748.1 503148.7, 91…\n6 0116 RLS de La Mitis 76 4.24 5.53 (((951316 523499.3, 9525…\n# … with abbreviated variable name ¹​dens_pop\n```\n:::\n:::\n\n\nAjustez un modèle linéaire du nombre de cas par 1000 en fonction de la densité de population (il est suggéré d'appliquer une transformation logarithmique à cette dernière). Vérifiez si les résidus du modèle sont corrélés entre RLS limitrophes avec un test de Moran, puis modélisez les mêmes données avec un modèle autorégressif conditionnel.\n\n## Référence\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. et Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n# GLMM avec processus spatial gaussien {#glmm-spatial-gaussian-fr}\n\nDans les parties précédentes, nous avons vu comment tenir compte de la dépendance spatiale dans les modèles de régression linéaire avec des modèles géostatistiques (également appelés processus gaussiens) ou des modèles d'autocorrélation spatiale (CAR/SAR). Dans cette dernière partie, nous verrons comment combiner ces caractéristiques avec des modèles de régression plus complexes, en particulier les modèles linéaires généralisés à effets mixtes (GLMM).\n\n## Données\n\nLe jeu de données `gambia` inclus avec le package *geoR* présente les résultats d'une étude sur la prévalence du paludisme chez les enfants de 65 villages en Gambie. Nous utiliserons une version légèrement transformée des données contenues dans le fichier [gambia.csv](data/gambia.csv).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-153_94be0528ee530f4b0d9120a3e4a412d9'}\n\n```{.r .cell-code}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n id_village x y pos age netuse treated green phc\n1 1 349.6313 1458.055 1 1783 0 0 40.85 1\n2 1 349.6313 1458.055 0 404 1 0 40.85 1\n3 1 349.6313 1458.055 0 452 1 0 40.85 1\n4 1 349.6313 1458.055 1 566 1 0 40.85 1\n5 1 349.6313 1458.055 0 598 1 0 40.85 1\n6 1 349.6313 1458.055 1 590 1 0 40.85 1\n```\n:::\n:::\n\n\nVoici les champs de ce jeu de données:\n\n- *id_village*: Identifiant du village.\n- *x* and *y*: Coordonnées spatiales du village (en km, basé sur les coordonnées UTM).\n- *pos*: Réponse binaire, si l'enfant a eu un test positif du paludisme.\n- *age*: Âge de l'enfant en jours.\n- *netuse*: Si l'enfant dort sous un moustiquaire ou non.\n- *treated*: Si le moustiquaire est traité ou non.\n- *green*: Mesure de la végétation basée sur les données de télédétection (disponible à l'échelle du village).\n- *phc*: Présence ou absence d'un centre de santé publique pour le village.\n\nNous pouvons compter le nombre de cas positifs et le nombre total d'enfants testés par village pour cartographier la fraction des cas positifs (ou prévalence, *prev*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-154_f2e9fe8cc46d29ee6147236d160f6a1a'}\n\n```{.r .cell-code}\n# Jeu de données à l'échelle du village\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\n```\n\n::: {.cell-output .cell-output-stderr}\n```\n`summarise()` has grouped output by 'id_village', 'x', 'y', 'green'. You can\noverride using the `.groups` argument.\n```\n:::\n\n```{.r .cell-code}\nhead(gambia_agg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n# A tibble: 6 × 8\n id_village x y green phc pos total prev\n \n1 1 350. 1458. 40.8 1 17 33 0.515\n2 2 359. 1460. 40.8 1 19 63 0.302\n3 3 360. 1460. 40.1 0 7 17 0.412\n4 4 364. 1497. 40.8 0 8 24 0.333\n5 5 366. 1460. 40.8 0 10 26 0.385\n6 6 367. 1463. 40.8 0 7 18 0.389\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-155_b02463961b3424baa4da82ed27a5ca7e'}\n\n```{.r .cell-code}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-155-1.png){width=672}\n:::\n:::\n\n\nNous utilisons le jeu de données `gambia.borders` du package *geoR* pour tracer les frontières des pays avec `geom_path`. Comme ces frontières sont en mètres, nous les divisons par 1000 pour obtenir la même échelle que nos points. Nous utilisons également `coord_fixed` pour assurer un rapport d'aspect de 1:1 entre les axes et utilisons la palette de couleur `viridis`, qui permet de visualiser plus facilement une variable continue par rapport à la palette par défaut dans *ggplot2*.\n\nSur la base de cette carte, il semble y avoir une corrélation spatiale dans la prévalence du paludisme, le groupe de villages de l'est montrant des valeurs de prévalence plus élevées (jaune-vert) et le groupe du milieu montrant des valeurs de prévalence plus faibles (violet).\n\n## GLMM non spatial\n\nPour ce premier exemple, nous allons ignorer l'aspect spatial des données et modéliser la présence du paludisme (*pos*) en fonction de l'utilisation d'une moustiquaire (*netuse*) et de la présence d'un centre de santé publique (*phc*). Comme nous avons une réponse binaire, nous devons utiliser un modèle de régression logistique (un GLM). Comme nous avons des prédicteurs au niveau individuel et au niveau du village et que nous nous attendons à ce que les enfants d'un même village aient une probabilité plus similaire d'avoir le paludisme même après avoir pris en compte ces prédicteurs, nous devons ajouter un effet aléatoire du village. Le résultat est un GLMM que nous ajustons en utilisant la fonction `glmer` du package *lme4*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-156_7c91bce3c832a01ae8f8b3f26d71b9fa'}\n\n```{.r .cell-code}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Laplace\n Approximation) [glmerMod]\n Family: binomial ( logit )\nFormula: pos ~ netuse + phc + (1 | id_village)\n Data: gambia\n\n AIC BIC logLik deviance df.resid \n 2428.0 2450.5 -1210.0 2420.0 2031 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-2.1286 -0.7120 -0.4142 0.8474 3.3434 \n\nRandom effects:\n Groups Name Variance Std.Dev.\n id_village (Intercept) 0.8149 0.9027 \nNumber of obs: 2035, groups: id_village, 65\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 0.1491 0.2297 0.649 0.5164 \nnetuse -0.6044 0.1442 -4.190 2.79e-05 ***\nphc -0.4985 0.2604 -1.914 0.0556 . \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) netuse\nnetuse -0.422 \nphc -0.715 -0.025\n```\n:::\n:::\n\n\nD'après ces résultats, les variables *netuse* et *phc* sont toutes deux associées à une diminution de la prévalence du paludisme, bien que l'effet de *phc* ne soit pas significatif à un seuil $\\alpha = 0.05$. L'ordonnée à l'origine (0.149) est le logit de la probabilité de présence du paludisme pour un enfant sans moustiquaire et sans centre de santé publique, mais c'est l'ordonnée à l'origine moyenne pour tous les villages. Il y a beaucoup de variation entre les villages selon l'écart-type de l'effet aléatoire (0.90). Nous pouvons obtenir l'ordonnée à l'origine estimée pour chaque village avec la fonction `coef`:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-157_63042bdf37fbb1a41197653e4f00698a'}\n\n```{.r .cell-code}\nhead(coef(mod_glmm)$id_village)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n (Intercept) netuse phc\n1 0.93727515 -0.6043602 -0.4984835\n2 0.09204843 -0.6043602 -0.4984835\n3 0.22500620 -0.6043602 -0.4984835\n4 -0.46271089 -0.6043602 -0.4984835\n5 0.13680037 -0.6043602 -0.4984835\n6 -0.03723346 -0.6043602 -0.4984835\n```\n:::\n:::\n\n\nPar exemple, l'ordonnée à l'origine pour le village 1 est environ 0.94, équivalente à une probabilité de 72%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-158_4a79548bf948a9a1dd6b953821a54623'}\n\n```{.r .cell-code}\nplogis(0.937)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7184933\n```\n:::\n:::\n\n\ntandis que celle pour le village 2 est équivalente à une probabilité de 52%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-159_4c5678258eaea6caef0b0f87f03a5423'}\n\n```{.r .cell-code}\nplogis(0.092)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.5229838\n```\n:::\n:::\n\n\nLe [package DHARMa](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) fournit une méthode générale pour vérifier si les résidus d'un GLMM sont distribués selon le modèle spécifié et s'il existe une tendance résiduelle. Il simule des réplicats de chaque observation selon le modèle ajusté et détermine ensuite un \"résidu standardisé\", qui est la position relative de la valeur observée par rapport aux valeurs simulées, par exemple 0 si l'observation est plus petite que toutes les simulations, 0.5 si elle se trouve au milieu, etc. Si le modèle représente bien les données, chaque valeur du résidu standardisé entre 0 et 1 doit avoir la même probabilité, de sorte que les résidus standardisés doivent produire une distribution uniforme entre 0 et 1.\n\nLa fonction `simulateResiduals` effectue le calcul des résidus standardisés, puis la fonction `plot` trace les graphiques de diagnostic avec les résultats de certains tests.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-160_9f18e83c75ae6d568f2e7722da9a3235'}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-160-1.png){width=672}\n:::\n:::\n\n\nLe graphique de gauche est un graphique quantile-quantile des résidus standardisés. Les résultats de trois tests statistiques sont également présentés: un test de Kolmogorov-Smirnov (*KS*) qui vérifie s'il y a un écart par rapport à la distribution théorique, un test de dispersion qui vérifie s'il y a une sous-dispersion ou une surdispersion et un test de valeurs aberrantes (*outlier*) basé sur le nombre de résidus qui sont plus extrêmes que toutes les simulations. Ici, nous obtenons un résultat significatif pour les valeurs aberrantes, bien que le message indique que ce résultat pourrait avoir un taux d'erreur de type I plus grand que prévu dans ce cas.\n\nÀ droite, nous obtenons généralement un graphique des résidus standardisés (en *y*) en fonction du rang des valeurs prédites, afin de vérifier l'absence de tendance résiduelle. Ici, les prédictions sont regroupées par quartile, il serait donc préférable d'agréger les prédictions et les résidus par village, ce que nous pouvons faire avec la fonction `recalculateResiduals`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-161_24ccd295095906cee82b1b1c09edfb05'}\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-161-1.png){width=672}\n:::\n:::\n\n\nLe graphique de droite montre les points individuels, ainsi qu'une régression quantile pour le 1er quartile, la médiane et le 3e quartile. En théorie, ces trois courbes devraient être des lignes droites horizontales (pas de tendance des résidus par rapport aux prévisions). La courbe pour le 3e quartile (en rouge) est significativement différente d'une ligne horizontale, ce qui pourrait indiquer un effet systématique manquant dans le modèle.\n\n## GLMM spatial avec spaMM\n\nLe package *spaMM* (modèles mixtes spatiaux) est un package R relativement récent qui permet d'effectuer une estimation approximative du maximum de vraisemblance des paramètres pour les GLM avec dépendance spatiale, modélisés soit comme un processus gaussien, soit avec un CAR (nous verrons ce dernier dans la dernière section). Le package implémente différents algorithmes, mais il existe une fonction unique `fitme` qui choisit l'algorithme approprié pour chaque type de modèle. Par exemple, voici le même modèle (non spatial) que nous avons vu ci-dessus, ajusté avec *spaMM*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-162_54461b112807b785cded2a0cabf936b4'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + (1 | id_village)\nEstimation of lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.1491 0.2287 0.6519\nnetuse -0.6045 0.1420 -4.2567\nphc -0.4986 0.2593 -1.9231\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n id_village : 0.8151 \n --- Coefficients for log(lambda):\n Group Term Estimate Cond.SE\n id_village (Intercept) -0.2045 0.2008\n# of obs: 2035; # of groups: id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1210.016\n```\n:::\n:::\n\n\nNotez que les estimés des effets fixes ainsi que la variance des effets aléatoires sont presque identiques à ceeux obtenues par `glmer` ci-dessus.\n\nNous pouvons maintenant utiliser *spaMM* pour ajuster le même modèle avec l'ajout de corrélations spatiales entre les villages. Dans la formule du modèle, ceci est représenté comme un effet aléatoire `Matern(1 | x + y)`, ce qui signifie que les ordonnées à l'origine sont spatialement corrélées entre les villages suivant une fonction de corrélation de Matérn des coordonnées (*x, y*). La fonction de Matérn est une fonction flexible de corrélation spatiale qui comprend un paramètre de forme $\\nu$ (`nu`), de sorte que lorsque $\\nu = 0,5$, elle est équivalente à la corrélation exponentielle, mais quand $\\nu$ prend de grandes valeurs, elle se rapproche d'une corrélation gaussienne. Nous pourrions laisser la fonction estimer $\\nu$, mais ici nous le fixons à 0.5 avec l'argument `fixed` de `fitme`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-163_94f8693a9a4ea45698056ea7d175adbc'}\n\n```{.r .cell-code}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.rho \n0.50000000 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.6421 \n id_village : 0.1978 \n# of obs: 2035; # of groups: x + y, 65; id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nCommençons par vérifier les effets aléatoires du modèle. La fonction de corrélation spatiale a un paramètre `rho` égal à 0.0513. Ce paramètre dans *spaMM* est l'inverse de la portée, donc ici la portée de la corrélation exponentielle est de 1/0.0513 ou environ 19.5 km. Il y a maintenant deux pramètres de variance, celui identifié comme `x + y` est la variance à longue distance (i.e. le palier) pour le modèle de corrélation exponentielle alors que celui identifié comme `id_village` montre la portion non corrélée de la variation entre les villages.\n\nSi nous avions ici laissé les effets aléatoires `(1 | id_village)` dans la formule pour représenter la partie non spatiale de la variation entre les villages, nous pourrions également représenter ceci avec un effet de pépite dans le modèle géostatistique. Dans les deux cas, cela représenterait l'idée que même deux villages très proches l'un de l'autre auraient des prévalences de base différentes dans le modèle.\n\nPar défaut, la fonction `Matern` n'a pas d'effet de pépite, mais nous pouvons en ajouter un en spécifiant une `pépite` non nulle dans la liste initiale des paramètres `init`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-164_7807f13fbd48e4a433573a5160e106f1'}\n\n```{.r .cell-code}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm2)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.Nugget 1.rho \n0.50000000 0.23551027 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.8399 \n# of obs: 2035; # of groups: x + y, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nComme vous pouvez le voir, toutes les estimations sont les mêmes, sauf que la variance de la portion spatiale (palier) est maintenant de 0.84 et que la pépite est égale à une fraction 0.235 de ce palier, soit une variance de 0.197, ce qui est identique à l'effet aléatoire `id_village` dans la version ci-dessus. Les deux formulations sont donc équivalentes.\n\nMaintenant, rappelons les coefficients que nous avions obtenus pour le GLMM non spatial :\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-165_d9e37edd6e102c7e0e32c00182b4c98d'}\n\n```{.r .cell-code}\nsummary(mod_glmm)$coefficients\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01\nnetuse -0.6043602 0.1442448 -4.1898243 2.791706e-05\nphc -0.4984835 0.2604083 -1.9142382 5.558973e-02\n```\n:::\n:::\n\n\nDans la version spatiale, les deux effets fixes se sont légèrement rapprochés de zéro, mais l'erreur-type de l'effet de `phc` a diminué. Il est intéressant de noter que l'inclusion de la dépendance spatiale nous a permis d'estimer plus précisément l'effet de la présence d'un centre de santé publique dans le village. Ce ne serait pas toujours le cas: pour un prédicteur qui est également fortement corrélé dans l'espace, la corrélation spatiale dans la réponse rend plus difficile l'estimation de l'effet de ce prédicteur, puisqu'il est confondu avec l'effet spatial. Cependant, pour un prédicteur qui n'est pas corrélé dans l'espace, l'inclusion de l'effet spatial réduit la variance résiduelle (non spatiale) et peut donc augmenter la précision de l'effet du prédicteur.\n\nLe package *spaMM* est également compatible avec *DHARMa* pour les diagnostics résiduels. (Vous pouvez ignorer l'avertissement selon lequel il ne fait pas partie de la classe des modèles pris en charge, cela est dû à l'utilisation de la fonction `fitme` plutôt que d'une fonction d'algorithme spécifique dans *spaMM*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-166_482f0fc040c81b2f1de2f8ee99aed0d1'}\n\n```{.r .cell-code}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-166-1.png){width=672}\n:::\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-166-2.png){width=672}\n:::\n:::\n\n\nEnfin, bien que nous allons montrer comment calculer et visualiser des prédictions spatiales ci-dessous, nous pouvons produire une carte rapide des effets spatiaux estimés dans un modèle *spaMM* avec la fonction `filled.mapMM`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-167_e868e1e85e43353fb2484a914c5ac95b'}\n\n```{.r .cell-code}\nfilled.mapMM(mod_spamm2)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-167-1.png){width=672}\n:::\n:::\n\n\n## Processus gaussiens vs. splines de lissage\n\nSi vous connaissez bien les modèles additifs généralisés (GAM), vous avez peut-être pensé à représenter la variation spatiale de la prévalence du paludisme (comme le montre la carte ci-dessus) par une spline de lissage en 2D (en fonction de $x$ et $y$) dans un GAM.\n\nLe code ci-dessous correspond à l'équivalent GAM de notre GLMM avec processus gaussien ci-dessus, ajusté avec la fonction `gam` du package *mgcv*. L'effet spatial est représenté par la spline 2D `s(x, y)` alors que l'effet aléatoire non spatial de village est représenté par `s(id_village, bs = \"re\")`, qui est équivalent à `(1 | id_village)` dans les modèles précédents. Notez que pour la fonction `gam`, les variables catégorielles doivent être explicitement converties en facteurs.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-168_5bc46e857407589375ab5b89e189742e'}\n\n```{.r .cell-code}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n:::\n\n\nPour visualiser la spline en 2D, nous utiliserons le package [*gratia*](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-169_07227aba979cb7fed1f2b23e7e58bfaa'}\n\n```{.r .cell-code}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-169-1.png){width=672}\n:::\n:::\n\n\nNotez que le graphique de la spline `s(x, y)` (en haut à droite) ne s'étend pas trop loin des emplacements des données (les autres zones sont vides). Dans ce graphique, on peut également voir que les effets aléatoires des villages suivent la distribution gaussienne attendue (en haut à gauche).\n\nEnsuite, nous utiliserons à la fois le GLMM spatial de la section précédente et ce GAMM pour prédire la prévalence moyenne sur une grille spatiale de points contenue dans le fichier [gambia_pred.csv](data/gambia_pred.csv). Le graphique ci-dessous ajoute ces points de prédiction (en noir) sur la carte précédente des points de données.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-170_a944ccbc8f583a47e766a152bff9062f'}\n\n```{.r .cell-code}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-170-1.png){width=672}\n:::\n:::\n\n\nPour faire des prédictions à partir du modèle GAMM à ces endroits, le code ci-dessous effectue les étapes suivantes:\n\n- Tous les prédicteurs du modèle doivent se trouver dans le tableau de données de prédiction, nous ajoutons donc des valeurs constantes de *netuse* et *phc* (toutes deux égales à 1) pour tous les points. Ainsi, nous ferons des prédictions sur la prévalence du paludisme dans le cas où un moustiquaire est utilisée et où un centre de santé publique est présent. Nous ajoutons également un *id_village* constant, bien qu'il ne soit pas utilisé dans les prédictions (voir ci-dessous).\n\n- Nous appelons la fonction `predict` à la sortie de `gam` pour produire des prédictions aux nouveaux points de données (argument `newdata`), en incluant les erreurs-types (`se.fit = TRUE`) et en excluant les effets aléatoires du village, donc la prédiction est faite pour un \"village moyen\". L'objet résultant `gam_pred` aura des colonnes `fit` (prédiction moyenne) et `se.fit` (erreur-type). Ces prédictions et erreurs-types sont sur l'échelle du lien (logit).\n\n- Nous rattachons le jeu de données de prédiction original à `gam_pred` avec `cbind`. \n\n- Nous ajoutons des colonnes pour la prédiction moyenne et les limites de l'intervalle de confiance à 50% (moyenne $\\pm$ 0.674 erreur-type), converties de l'échelle logit à l'échelle de probabilité avec `plogis`. Nous choisissons un intervalle de 50% car un intervalle de 95% peut être trop large ici pour contraster les différentes prédictions sur la carte à la fin de cette section.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-171_357ffbfea872595db79ace469d64440a'}\n\n```{.r .cell-code}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\n*Note* : La raison pour laquelle nous ne faisons pas de prédictions directement sur l'échelle de probabilité (réponse) est que la formule normale des intervalles de confiance s'applique plus précisément sur l'échelle logit. L'ajout d'un certain nombre d'erreurs-types autour de la moyenne sur l'échelle de probabilité conduirait à des intervalles moins précis et peut-être même à des intervalles de confiance en dehors de la plage de valeurs possible (0, 1) pour une probabilité.\n\nNous appliquons la même stratégie pour faire des prédictions à partir du GLMM spatial avec *spaMM*. Il y a quelques différences dans la méthode `predict` par rapport au cas du GAMM.\n\n- L'argument `binding = \"fit\"` signifie que les prédictions moyennes (colonne `fit`) seront attachées à l'ensemble de données de prédiction et retournées sous forme de tableau de données `spamm_pred`.\n\n- L'argument `variances = list(linPred = TRUE)` indique à `predict` de calculer la variance du prédicteur linéaire (donc le carré de l'erreur-type). Cependant, il apparaît comme un attribut `predVar` dans le tableau de données de sortie plutôt que dans une colonne `se.fit`, donc nous le déplaçons vers une colonne sur la ligne suivante. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-172_4419491a3882f147cdc904a6d1ed9d9c'}\n\n```{.r .cell-code}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\nEnfin, nous combinons les deux ensembles de prédictions sous la forme de différentes rangées d'un tableau de données `pred_all` avec `bind_rows`. Le nom du tableau de données d'où provient chaque prédiction (`gam` ou `spamm`) apparaîtra dans la colonne \"model\" (argument `.id`). Pour simplifier la production du prochain graphique, nous utilisons ensuite `pivot_longer` dans le package *tidyr* pour changer les trois colonnes \"pred\", \"lo\" et \"hi\" en deux colonnes, \"stat\" et \"value\" (`pred_tall` a donc trois rangées pour chaque rangée dans `pred_all`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-173_1fc1b4f68f5b10a718d8d768a968469c'}\n\n```{.r .cell-code}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n:::\n\n\nUne fois ces étapes franchies, nous pouvons enfin examiner les cartes de prédiction (moyenne, limites inférieure et supérieure de l'intervalle de confiance à 50 %) à l'aide d'un graphique `ggplot`. Les points de données originaux sont indiqués en rouge.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-174_f5e1618501cf8d5cc8fb3b12843ae8e2'}\n\n```{.r .cell-code}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-174-1.png){width=672}\n:::\n:::\n\n\nBien que les deux modèles s'accordent à dire que la prévalence est plus élevée près du groupe de villages de l'est, le GAMM estime également une prévalence plus élevée en quelques points (bord ouest et autour du centre) où il n'y a pas de données. Il s'agit d'un artefact de la forme de la spline autour des points de données, puisqu'une spline est censée correspondre à une tendance globale, bien que non linéaire. En revanche, le modèle géostatistique représente l'effet spatial sous forme de corrélations locales et revient à la prévalence moyenne globale lorsqu'il est éloigné de tout point de données, ce qui est une supposition plus sûre. C'est l'une des raisons pour lesquelles il est préférable de choisir un modèle géostatistique / processus gaussien dans ce cas.\n\n## Méthodes bayésiennes pour les GLMM avec processus gaussiens\n\nLes modèles bayésiens fournissent un cadre flexible pour exprimer des modèles avec une structure de dépendance complexe entre les données, y compris la dépendance spatiale. Cependant, l'ajustement d'un modèle de processus gaussien avec une approche entièrement bayésienne peut être lent, en raison de la nécessité de calculer une matrice de covariance spatiale entre toutes les paires de points à chaque itération. \n\nLa méthode INLA (pour *integrated nested Laplace approximation*) effectue un calcul approximatif de la distribution postérieure bayésienne, ce qui la rend adaptée aux problèmes de régression spatiale. Nous ne l'abordons pas dans ce cours, mais je recommande le manuel de Paula Moraga (dans la section des références ci-dessous) qui fournit des exemples concrets d'utilisation de la méthode INLA pour divers modèles de données géostatistiques et aréales, dans le contexte de l'épidémiologie, y compris des modèles avec une dépendance à la fois spatiale et temporelle. Le livre présente les mêmes données sur le paludisme en Gambie comme exemple d'un ensemble de données géostatistiques, ce qui a inspiré son utilisation dans ce cours.\n\n# GLMM avec autorégression spatiale {#glmm-spatial-autoreg-fr}\n\nNous revenons au dernier exemple de la partie précédente, où nous avions modélisé le taux de cas de COVID-19 (cas / 1000) pour les divisions administratives du réseau de la santé (RLS) au Québec en fonction de leur densité de population. Le taux est donné par la colonne \"taux_1k\" dans le *shapefile* `rls_covid`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-175_d979460e37556b83e05dc8fb16e15b65'}\n\n```{.r .cell-code}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-175-1.png){width=672}\n:::\n:::\n\n\nAuparavant, nous avions modélisé le logarithme de ce taux comme une fonction linéaire du logarithme de la densité de population, la variance résiduelle étant corrélée entre les unités voisines via une structure CAR (autorégression conditionnelle), comme le montre le code ci-dessous.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-176_eabbd635c0d88a1a771574c50afa7c53'}\n\n```{.r .cell-code}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid, \n listw = rls_w, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.201858 -0.254084 -0.053348 0.281482 1.427053 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16\nlog(dens_pop) 0.206623 0.032848 6.2903 3.169e-10\n\nLambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07 \nNumerical Hessian standard error of lambda: 0.0050486 \n\nLog likelihood: -80.68953 \nML residual variance (sigma squared): 0.2814, (sigma: 0.53048)\nNumber of observations: 95 \nNumber of parameters estimated: 4 \nAIC: 169.38\n```\n:::\n:::\n\n\n*Rappel*: La fonction `poly2nb` du package *spdep* crée une liste de voisins basée sur les polygones limitrophes dans un *shapefile*, puis `nb2listw` la convertit en une liste de poids, ici des poids binaires (`style = \"B\"`) de sorte que chaque région limitrophe reçoive le même poids de 1 dans le modèle autorégressif.\n\nAu lieu d'utiliser les taux, il serait possible de modéliser directement les cas avec une régression de Poisson, qui est appropriée pour les données de comptage. Pour tenir compte du fait que si le risque par personne était égal, les cas seraient proportionnels à la population, nous pouvons ajouter la population de l'unité `pop` comme *offset* dans la régression de Poisson. Par conséquent, le modèle ressemblerait à : `cas ~ log(dens_pop) + offset(log(pop))`. Notez que puisque la régression de Poisson utilise un lien logarithmique, ce modèle avec `log(pop)` comme *offset* suppose que `log(cas / pop)` (donc le taux logarithmique) est proportionnel à `log(dens_pop)`, tout comme le modèle linéaire ci-dessus, mais il a l'avantage de modéliser la variabilité des données brutes (le nombre de cas) directement avec une distribution de Poisson.\n\nNous n'avons pas la population dans ces données, mais nous pouvons l'estimer à partir des cas et du taux (cas / 1000) comme suit:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-177_6dfaa30fb79c49e08cda1647cb0cd013'}\n\n```{.r .cell-code}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n:::\n\n\nPour définir un modèle CAR dans *spaMM*, nous avons besoin d'une matrice de poids plutôt que d'une liste de poids comme dans le package *spatialreg*. Heureusement, le package *spdep* comprend également une fonction `nb2mat` pour convertir la liste des voisins en une matrice de poids, là encore en utilisant des poids binaires. Pour éviter un avertissement dans R, nous spécifions que les noms des lignes et des colonnes de cette matrice doivent être égaux aux identifiants associés à chaque unité (`RLS_code`). Ensuite, nous ajoutons un terme `adjacency(1 | RLS_code)` au modèle pour spécifier que la variation résiduelle entre les différents groupes définis par `RLS_code` est spatialement corrélée avec une structure CAR (ici, chaque groupe n'a qu'une observation puisque nous avons un point de données par unité RLS).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-178_c3221c2defe378081625dfcfb8bdbe89'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: poisson( link = log ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) -5.1618 0.16855 -30.625\nlog(dens_pop) 0.1999 0.03267 6.119\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.rho \n0.1576605 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n RLS_code : 0.266 \n# of obs: 95; # of groups: RLS_code, 95 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -709.3234\n```\n:::\n:::\n\n\nNotez que le coefficient de corrélation spatiale `rho` (0.158) est similaire à la quantité équivalente dans le modèle `spautolm` ci-dessus, où il était appelé `Lambda`. L'effet de `log(dens_pop)` est également d'environ 0.2 dans les deux modèles.\n\n\n## Référence\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Disponible en ligne: [https://www.paulamoraga.com/book-geospatial/](https://www.paulamoraga.com/book-geospatial/). \n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/.quarto/_freeze/posts/2021-03-25-point-count-data-analysis/index/execute-results/html.json b/.quarto/_freeze/posts/2021-03-25-point-count-data-analysis/index/execute-results/html.json index e8032b8..2729741 100644 --- a/.quarto/_freeze/posts/2021-03-25-point-count-data-analysis/index/execute-results/html.json +++ b/.quarto/_freeze/posts/2021-03-25-point-count-data-analysis/index/execute-results/html.json @@ -1,10 +1,8 @@ { - "hash": "81d2f348a7490fadd07c97687be6f98a", + "hash": "bdd59f9c065e2296897c5e573a62409d", "result": { - "markdown": "---\ntitle: \"Point-count Data Analysis\"\ndescription: |\n Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Péter Sólymos to BIOS2 Fellows in March 2021.\nauthor: \n - name: \"Péter Sólymos\"\n affiliation: University of Alberta\nimage: thumb.jpeg\ndate: \"2021-03-25\"\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nThis course is aimed towards researchers analyzing field observations, who are often faced by data heterogeneities due to field sampling protocols changing from one project to another, or through time over the lifespan of projects, or trying to combine 'legacy' data sets with new data collected by recording units.\n\nSuch heterogeneities can bias analyses when data sets are integrated inadequately, or can lead to information loss when filtered and standardized to common standards. Accounting for these issues is important for better inference regarding status and trend of species and communities.\n\nAnalysts of such 'messy' data sets need to feel comfortable with manipulating the data, need a full understanding the mechanics of the models being used (i.e. critically interpreting the results and acknowledging assumptions and limitations), and should be able to make informed choices when faced with methodological challenges.\n\nThe course emphasizes critical thinking and active learning through hands on programming exercises. We will use publicly available data sets to demonstrate the data manipulation and analysis. We will use freely available and open-source R packages.\n\nThe expected outcome of the course is a solid foundation for further professional development via increased confidence in applying these methods for field observations.\n\n## Instructor\n\n[**Dr. Peter Solymos**](https://peter.solymos.org)\\\n[Boreal Avian Modelling Project](https://borealbirds.ca) and the [Alberta Biodiversity Monitoring Institute](https://abmi.ca)\\\n[Department of Biological Sciences](https://www.ualberta.ca/biological-sciences/), [University of Alberta](https://ualberta.ca)\n\n## Outline\n\nEach day will consist of 3 sessions, roughly one hour each, with short breaks in between.\n\n> The video recordings from the workshop can be found on [YouTube](https://www.youtube.com/watch?v=cXGXvAOqEng&list=PLH424kyZX5ip0PfOo7g13nJEQNVxZlMOh).\n\n| Session | Topic | Files | Videos |\n|-----------------|-----------------|:-----------------:|:-----------------:|\n| **Day 1** | **Naive techniques** | | |\n| | 1\\. Introductions | [Slides](https://peter.solymos.org/qpad-workshop/day1-1-intro.pdf) | [Video](https://youtu.be/cXGXvAOqEng) |\n| | 2\\. Organizing point count data | [Notes](https://peter.solymos.org/qpad-workshop/day1-2-data-processing.html) | [Part 1](https://youtu.be/4PLyaU6bqRc), [Part 2](https://youtu.be/dcsiv-v0UgA) |\n| | 3\\. Regression techniques | [Notes](https://peter.solymos.org/qpad-workshop/day1-3-regression.html) | [Part 1](https://youtu.be/z_TpcF0FD4o), [Part 2](https://youtu.be/ZdTgdTqxFSM) |\n| **Day 2** | **Behavioral complexities** | | |\n| | 1\\. Statistical assumptions and nuisance variables | [Slides](https://peter.solymos.org/qpad-workshop/day2-1-intro.pdf) | [Video](https://youtu.be/8v3Uf_aILxI) |\n| | 2\\. Behavioral complexities | [Notes](https://peter.solymos.org/qpad-workshop/day2-2-behavior.html) | [bSims](https://youtu.be/gJ11_wlsEfU), [Video](https://youtu.be/UgGeaxMCs2c) |\n| | 3\\. Removal modeling techniques | [Notes](https://peter.solymos.org/qpad-workshop/day2-3-removal.html) | [Video](https://youtu.be/ny0ED9cxzeg) |\n| | 4\\. Finite mixture models and testing assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day2-4-mixtures.html) | [Mixtures](https://youtu.be/A1cnzXMMlxU), [Testing](https://youtu.be/flF5NL73ZZE) |\n| **Day 3** | **The detection process** | | |\n| | 1\\. The detection process | [Slides](https://peter.solymos.org/qpad-workshop/day3-1-intro.pdf) | [Video](https://youtu.be/CkdYEF_hZqY) |\n| | 2\\. Distance sampling and density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/x8GfKDEJcrA) |\n| | 3\\. Estimating population density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/yeoGxRQd6o0) |\n| | 4\\. Assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/o0bx-vNCaL0) |\n| **Day 4** | **Coming full circle** | | |\n| | 1\\. QPAD overview | [Slides](https://peter.solymos.org/qpad-workshop/day4-1-intro.pdf) | [Video](https://youtu.be/TU9rcwY2Y-g) |\n| | 2\\. Models with detectability offsets | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Offsets](https://youtu.be/vw_WO2hgNwk), [Models](https://youtu.be/Cy68E1GyNVU) |\n| | 3\\. Model validation and error propagation | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Validation](https://youtu.be/lRcJzfE838k), [Error](https://youtu.be/na5cTYNq2HM) |\n| | 4\\. Recordings, roadsides, closing remarks | [Notes](https://peter.solymos.org/qpad-workshop/day4-3-recordings.html) | [Video](https://youtu.be/ckEDGdLA_J4) |\n\n## Get course materials\n\n### Install required software\n\nFollow the instructions at the [R website](http://cran.r-project.org) to download and install the most up-to-date base R version suitable for your operating system (the latest R version at the time of writing these instructions is 4.0.4).\n\nThen run the following script in R:\n\n``` r\nsource(\"https://raw.githubusercontent.com/psolymos/qpad-workshop/main/src/install.R\")\n```\n\nHaving RStudio is not absolutely necessary, but it will make life easier. RStudio is also available for different operating systems. Pick the open source desktop edition from [here](http://www.rstudio.com/products/rstudio/download/) (the latest RStudio Desktop version at the time of writing these instructions is 1.4.1106).\n\nPrior exposure to R programming is not necessary, but knowledge of basic R object types and their manipulation (arrays, data frames, indexing) is useful for following hands-on exercises. Software Carpentry's [Data types and structures in R](http://swcarpentry.github.io/r-novice-inflammation/13-supp-data-structures/index.html) is a good resource to brush up your R skills.\n\n### Get the notes\n\nIf you don't want to use git:\n\n1. Download the [workshop archive](qpad-workshop-Final.zip) release into a folder\n2. Extract the zip archive\n3. Open the `workshop.Rproj` file in RStudio (or open any other R GUI/console and `setwd()` to the directory where you downloaded the file)\n4. (You can delete the archive)\n\nIf you want to use git: fork or clone the repository\n\n``` bash\ncd into/your/dir\ngit clone https://github.com/psolymos/qpad-workshop.git\n```\n\n## Useful resources\n\n- [Using the QPAD package to get offsets based on estimates from the Boreal Avian Modelling Project's database](https://github.com/ABbiodiversity/recurring/blob/master/offset/README.md)\n- [NA-POPS: Point count Offsets for Population Sizes of North America landbirds](http://na-pops.org/)\n\n## References\n\nSólymos, P., Toms, J. D., Matsuoka, S. M., Cumming, S. G., Barker, N. K. S., Thogmartin, W. E., Stralberg, D., Crosby, A. D., Dénes, F. V., Haché, S., Mahon, C. L., Schmiegelow, F. K. A., and Bayne, E. M., 2020. Lessons learned from comparing spatially explicit models and the Partners in Flight approach to estimate population sizes of boreal birds in Alberta, Canada. *Condor*, 122: 1-22. [PDF](https://drive.google.com/file/d/115WgtPd4zUSIFfSTHbWYs8OCHNdpKkh5/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Cumming, S. G., Stralberg, D., Fontaine, P., Schmiegelow, F. K. A., Song, S. J., and Bayne, E. M., 2018. Evaluating time-removal models for estimating availability of boreal birds during point-count surveys: sample size requirements and model complexity. *Condor*, 120: 765-786. [PDF](https://drive.google.com/file/d/13Czd_A82P0ZhIlvAEabxdHfmaZcJaNU3/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S., and Bayne, E. M., 2018. Phylogeny and species traits predict bird detectability. *Ecography*, 41: 1595-1603. [PDF](https://drive.google.com/file/d/1CRKl-bh1tqxddijEWZoNcDO_xFIgOfWZ/view?usp=sharing)\n\nVan Wilgenburg, S. L., Sólymos, P., Kardynal, K. J. and Frey, M. D., 2017. Paired sampling standardizes point count data from humans and acoustic recorders. *Avian Conservation and Ecology*, 12(1):13. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPOTZyTXlDb0xFQTA/view?usp=sharing)\n\nYip, D. A., Leston, L., Bayne, E. M., Sólymos, P. and Grover, A., 2017. Experimentally derived detection distances from audio recordings and human observers enable integrated analysis of point count data. *Avian Conservation and Ecology*, 12(1):11. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPQ2F6d1llQ3lPTzg/view?usp=sharing)\n\nSólymos, P., and Lele, S. R., 2016. Revisiting resource selection probability functions and single-visit methods: clarification and extensions. *Methods in Ecology and Evolution*, 7:196-205. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPRE5tVlRMSmhLWmM/view?usp=sharing)\n\nMatsuoka, S. M., Mahon, C. L., Handel, C. M., Sólymos, P., Bayne, E. M., Fontaine, P. C., and Ralph, C. J., 2014. Reviving common standards in point-count surveys for broad inference across studies. *Condor* 116:599-608. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPcGZNS3JSRUlBdDQ/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K. A. & Song, S. J., 2013. Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. *Methods in Ecology and Evolution* 4:1047-1058. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPV0RNUFU1N1dmS1E/view?usp=sharing)\n\nMatsuoka, S. M., Bayne, E. M., Sólymos, P., Fontaine, P., Cumming, S. G., Schmiegelow, F. K. A., & Song, S. A., 2012. Using binomial distance-sampling models to estimate the effective detection radius of point-counts surveys across boreal Canada. *Auk* 129:268-282. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPbFhhRUtZNWQyMk0/view?usp=sharing)\n\n## License\n\nThe course material is licensed under [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Source code is under [MIT](LICENSE) license.\n", - "supporting": [ - "index_files" - ], + "markdown": "---\ntitle: \"Point-count Data Analysis\"\ndescription: |\n Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Peter Solymos to BIOS2 Fellows in March 2021.\nauthor: Peter Solymos\nimage: thumb.jpeg\ndate: \"2021-03-25\"\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nThis course is aimed towards researchers analyzing field observations, who are often faced by data heterogeneities due to field sampling protocols changing from one project to another, or through time over the lifespan of projects, or trying to combine 'legacy' data sets with new data collected by recording units.\n\nSuch heterogeneities can bias analyses when data sets are integrated inadequately, or can lead to information loss when filtered and standardized to common standards. Accounting for these issues is important for better inference regarding status and trend of species and communities.\n\nAnalysts of such 'messy' data sets need to feel comfortable with manipulating the data, need a full understanding the mechanics of the models being used (i.e. critically interpreting the results and acknowledging assumptions and limitations), and should be able to make informed choices when faced with methodological challenges.\n\nThe course emphasizes critical thinking and active learning through hands on programming exercises. We will use publicly available data sets to demonstrate the data manipulation and analysis. We will use freely available and open-source R packages.\n\nThe expected outcome of the course is a solid foundation for further professional development via increased confidence in applying these methods for field observations.\n\n## Instructor\n\n[**Dr. Peter Solymos**](https://peter.solymos.org)\\\n[Boreal Avian Modelling Project](https://borealbirds.ca) and the [Alberta Biodiversity Monitoring Institute](https://abmi.ca)\\\n[Department of Biological Sciences](https://www.ualberta.ca/biological-sciences/), [University of Alberta](https://ualberta.ca)\n\n## Outline\n\nEach day will consist of 3 sessions, roughly one hour each, with short breaks in between.\n\n> The video recordings from the workshop can be found on [YouTube](https://www.youtube.com/watch?v=cXGXvAOqEng&list=PLH424kyZX5ip0PfOo7g13nJEQNVxZlMOh).\n\n| Session | Topic | Files | Videos |\n|-----------|----------------------------------------------------|:----------------------------------------------------------------------------:|:---------------------------------------------------------------------------------:|\n| **Day 1** | **Naive techniques** | | |\n| | 1\\. Introductions | [Slides](https://peter.solymos.org/qpad-workshop/day1-1-intro.pdf) | [Video](https://youtu.be/cXGXvAOqEng) |\n| | 2\\. Organizing point count data | [Notes](https://peter.solymos.org/qpad-workshop/day1-2-data-processing.html) | [Part 1](https://youtu.be/4PLyaU6bqRc), [Part 2](https://youtu.be/dcsiv-v0UgA) |\n| | 3\\. Regression techniques | [Notes](https://peter.solymos.org/qpad-workshop/day1-3-regression.html) | [Part 1](https://youtu.be/z_TpcF0FD4o), [Part 2](https://youtu.be/ZdTgdTqxFSM) |\n| **Day 2** | **Behavioral complexities** | | |\n| | 1\\. Statistical assumptions and nuisance variables | [Slides](https://peter.solymos.org/qpad-workshop/day2-1-intro.pdf) | [Video](https://youtu.be/8v3Uf_aILxI) |\n| | 2\\. Behavioral complexities | [Notes](https://peter.solymos.org/qpad-workshop/day2-2-behavior.html) | [bSims](https://youtu.be/gJ11_wlsEfU), [Video](https://youtu.be/UgGeaxMCs2c) |\n| | 3\\. Removal modeling techniques | [Notes](https://peter.solymos.org/qpad-workshop/day2-3-removal.html) | [Video](https://youtu.be/ny0ED9cxzeg) |\n| | 4\\. Finite mixture models and testing assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day2-4-mixtures.html) | [Mixtures](https://youtu.be/A1cnzXMMlxU), [Testing](https://youtu.be/flF5NL73ZZE) |\n| **Day 3** | **The detection process** | | |\n| | 1\\. The detection process | [Slides](https://peter.solymos.org/qpad-workshop/day3-1-intro.pdf) | [Video](https://youtu.be/CkdYEF_hZqY) |\n| | 2\\. Distance sampling and density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/x8GfKDEJcrA) |\n| | 3\\. Estimating population density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/yeoGxRQd6o0) |\n| | 4\\. Assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/o0bx-vNCaL0) |\n| **Day 4** | **Coming full circle** | | |\n| | 1\\. QPAD overview | [Slides](https://peter.solymos.org/qpad-workshop/day4-1-intro.pdf) | [Video](https://youtu.be/TU9rcwY2Y-g) |\n| | 2\\. Models with detectability offsets | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Offsets](https://youtu.be/vw_WO2hgNwk), [Models](https://youtu.be/Cy68E1GyNVU) |\n| | 3\\. Model validation and error propagation | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Validation](https://youtu.be/lRcJzfE838k), [Error](https://youtu.be/na5cTYNq2HM) |\n| | 4\\. Recordings, roadsides, closing remarks | [Notes](https://peter.solymos.org/qpad-workshop/day4-3-recordings.html) | [Video](https://youtu.be/ckEDGdLA_J4) |\n\n## Get course materials\n\n### Install required software\n\nFollow the instructions at the [R website](http://cran.r-project.org) to download and install the most up-to-date base R version suitable for your operating system (the latest R version at the time of writing these instructions is 4.0.4).\n\nThen run the following script in R:\n\n``` r\nsource(\"https://raw.githubusercontent.com/psolymos/qpad-workshop/main/src/install.R\")\n```\n\nHaving RStudio is not absolutely necessary, but it will make life easier. RStudio is also available for different operating systems. Pick the open source desktop edition from [here](http://www.rstudio.com/products/rstudio/download/) (the latest RStudio Desktop version at the time of writing these instructions is 1.4.1106).\n\nPrior exposure to R programming is not necessary, but knowledge of basic R object types and their manipulation (arrays, data frames, indexing) is useful for following hands-on exercises. Software Carpentry's [Data types and structures in R](http://swcarpentry.github.io/r-novice-inflammation/13-supp-data-structures/index.html) is a good resource to brush up your R skills.\n\n### Get the notes\n\nIf you don't want to use git:\n\n1. Download the [workshop archive](qpad-workshop-Final.zip) release into a folder\n2. Extract the zip archive\n3. Open the `workshop.Rproj` file in RStudio (or open any other R GUI/console and `setwd()` to the directory where you downloaded the file)\n4. (You can delete the archive)\n\nIf you want to use git: fork or clone the repository\n\n``` bash\ncd into/your/dir\ngit clone https://github.com/psolymos/qpad-workshop.git\n```\n\n## Useful resources\n\n- [Using the QPAD package to get offsets based on estimates from the Boreal Avian Modelling Project's database](https://github.com/ABbiodiversity/recurring/blob/master/offset/README.md)\n- [NA-POPS: Point count Offsets for Population Sizes of North America landbirds](http://na-pops.org/)\n\n## References\n\nSólymos, P., Toms, J. D., Matsuoka, S. M., Cumming, S. G., Barker, N. K. S., Thogmartin, W. E., Stralberg, D., Crosby, A. D., Dénes, F. V., Haché, S., Mahon, C. L., Schmiegelow, F. K. A., and Bayne, E. M., 2020. Lessons learned from comparing spatially explicit models and the Partners in Flight approach to estimate population sizes of boreal birds in Alberta, Canada. *Condor*, 122: 1-22. [PDF](https://drive.google.com/file/d/115WgtPd4zUSIFfSTHbWYs8OCHNdpKkh5/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Cumming, S. G., Stralberg, D., Fontaine, P., Schmiegelow, F. K. A., Song, S. J., and Bayne, E. M., 2018. Evaluating time-removal models for estimating availability of boreal birds during point-count surveys: sample size requirements and model complexity. *Condor*, 120: 765-786. [PDF](https://drive.google.com/file/d/13Czd_A82P0ZhIlvAEabxdHfmaZcJaNU3/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S., and Bayne, E. M., 2018. Phylogeny and species traits predict bird detectability. *Ecography*, 41: 1595-1603. [PDF](https://drive.google.com/file/d/1CRKl-bh1tqxddijEWZoNcDO_xFIgOfWZ/view?usp=sharing)\n\nVan Wilgenburg, S. L., Sólymos, P., Kardynal, K. J. and Frey, M. D., 2017. Paired sampling standardizes point count data from humans and acoustic recorders. *Avian Conservation and Ecology*, 12(1):13. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPOTZyTXlDb0xFQTA/view?usp=sharing)\n\nYip, D. A., Leston, L., Bayne, E. M., Sólymos, P. and Grover, A., 2017. Experimentally derived detection distances from audio recordings and human observers enable integrated analysis of point count data. *Avian Conservation and Ecology*, 12(1):11. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPQ2F6d1llQ3lPTzg/view?usp=sharing)\n\nSólymos, P., and Lele, S. R., 2016. Revisiting resource selection probability functions and single-visit methods: clarification and extensions. *Methods in Ecology and Evolution*, 7:196-205. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPRE5tVlRMSmhLWmM/view?usp=sharing)\n\nMatsuoka, S. M., Mahon, C. L., Handel, C. M., Sólymos, P., Bayne, E. M., Fontaine, P. C., and Ralph, C. J., 2014. Reviving common standards in point-count surveys for broad inference across studies. *Condor* 116:599-608. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPcGZNS3JSRUlBdDQ/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K. A. & Song, S. J., 2013. Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. *Methods in Ecology and Evolution* 4:1047-1058. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPV0RNUFU1N1dmS1E/view?usp=sharing)\n\nMatsuoka, S. M., Bayne, E. M., Sólymos, P., Fontaine, P., Cumming, S. G., Schmiegelow, F. K. A., & Song, S. A., 2012. Using binomial distance-sampling models to estimate the effective detection radius of point-counts surveys across boreal Canada. *Auk* 129:268-282. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPbFhhRUtZNWQyMk0/view?usp=sharing)\n\n## License\n\nThe course material is licensed under [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Source code is under [MIT](LICENSE) license.\n", + "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" ], diff --git a/.quarto/_freeze/posts/2021-05-04-building-r-packages/index/execute-results/html.json b/.quarto/_freeze/posts/2021-05-04-building-r-packages/index/execute-results/html.json index 91de80c..5d646d1 100644 --- a/.quarto/_freeze/posts/2021-05-04-building-r-packages/index/execute-results/html.json +++ b/.quarto/_freeze/posts/2021-05-04-building-r-packages/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "f9c5cd75754140ed67e59951a6ea480b", + "hash": "2759d1707cdb7cd48df6fad351b0353b", "result": { - "markdown": "---\ntitle: \"Building R packages\"\ndescription: |\n This practical training will cover the basics of modern package development in R with a focus on the following three aspects: (1) how to turn your code into functions, (2) how to write tests and documentation, and (3) how to share your R package on GitHub..\nauthor: \n - name: \"Andrew MacDonald\"\n affilitation: Université de Sherbrooke\ndate: \"2021-05-04\"\nimage: altumcode-PNbDkQ2DDgM-unsplash.jpeg\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n\n\n

via GIPHY

\n\nR packages! they are kind of like cookies:\n\n- Almost everyone enjoys them\n\n- delicious when homemade\n\n- Lots of storebought options available\n\n- Great skill to have\n\n- not necessary to sell them!\n\n \n\nBut most of all: cookies are delicious for what they *contain*: chocolate chunks, candy, oats, cocoa. However, all cookies share some fundamental ingredients and nearly identical structure. Flour, saturated with fat and sugar hydrated only with an egg, flavoured with vanilla and salt. The basic formula is invariant and admits only slight deviation -- otherwise, it becomes something other than a cookie.\n\nThis workshop is devoted to the study of cookie dough.\n\n### *Mise en place* : development environment\n\nWe'll explore a few useful packages in this workshop. The first two in particular are very popular tools for modern-day R package development:\n\n``` r\ninstall.packages(\"devtools\")\ninstall.packages(\"usethis\")\ninstall.packages(\"testthat\")\ninstall.packages(\"assertthat\")\n```\n\nBuilding an R package also requires specific tools for compiling the finished package. Run the following line to make sure you have the development environment:\n\n``` r\ndevtools::has_devel()\n```\n\nIf you do not have the software to build R packages, you should see a message which will help you find the correct links to download what you need!\n\nWindows will need RTools. First do the check above to see if you are already set up. If not then [download the software here](https://cran.r-project.org/bin/windows/Rtools/).\n\nand Install. After that, open R and run the following:\n\n``` r\nwriteLines('PATH=\"${RTOOLS40_HOME}\\\\usr\\\\bin;${PATH}\"', con = \"~/.Renviron\")\n```\n\nand restart R. Then run the check above once more to confirm\n\n\n\n## The structure: flour and sugar\n\n> No cookies without carbs\n\nAn R package is essentially a folder on your computer with specific structure. We will begin by creating an empty R package and taking a tour!\n\nOpen your R code editor, and find out where you are:\n\n``` r\ngetwd()\n```\n\nThis is to prepare for the next step, where we will choose a location for our R package folder. Please be intentional about where you place your R package! Do not place it in the same space as another package, Rstudio project or other project. Create a new and isolated location for it.\n\nI am working from an existing R project in my typical R Projects folder, so I go up one level:\n\n``` r\nusethis::create_package(\"../netwerk\")\n```\n\n\n\n![](start_pkg.png)\n\nLet's run R CMD CHECK right away. We will do this MANY TIMES.\n\n``` r\ndevtools::check()\n```\n\nWe should see some warnings! let's keep these in mind as we continue our tour.\n\n### The DESCRIPTION file\n\nThe most important file to notice is the DESCRIPTION. This gives general information about the entire package. It is written in a specific file format\n\n``` dcf\nPackage: netwerk\nTitle: Werks with Networks\nVersion: 0.0.0.9000\nAuthors@R: \n person(given = \"Andrew\",\n family = \"MacDonald\",\n role = c(\"aut\", \"cre\"),\n email = \"\")\nDescription: it does networks.\nLicense: MIT + file LICENSE\nEncoding: UTF-8\nLazyData: true\nRoxygen: list(markdown = TRUE)\nRoxygenNote: 7.1.1\nSuggests: \n testthat (>= 3.0.0)\nConfig/testthat/edition: 3\n```\n\nHere are some things to edit *manually* in `DESCRIPTION`:\n\n- package name \\[tk naming of R packages\\] -- make it short and convenient if you can!\n- Title: write this part In Title Case. Don't end the title with a period.\n- Description: Describe the package in a short block of text. This *should* end with a period.\n- Authors: Add your name here and the name of anyone building the package with you. `usethis` will have done the first step for you, and filled in the structure. Only \"aut\" (author) and \"cre\" (creator) are essential. [but many others are possible](https://www.loc.gov/marc/relators/relaterm.html)\n\nAdd your name here.\n\nAdd a license\n\n``` r\nusethis::use_mit_license(copyright_holder = \"\")\n```\n\nnote about the different roles that R package authors can have. Funny ones. but creator and maintainer are the key ones.\n\nNote the R folder. We'll get much more into that later\n\n- Rbuildignore\n\n## Keeping notes\n\ncreate an R file\n\n``` r\nusethis::use_build_ignore(\"dev.R\")\n```\n\nthe docs folder\n\nhere we have a very minimal version of an R packages we're going to be adding to it as the course progresses.\n\nOne thing we can do right away is build and check the R package\n\nWhat exactly is happining here? slide from R package tutorial.\n\nLots of checkpoints and progress confrimations along the way.\n\nOK so what is that all about? we have compiled the R package and it has gone to where the R packages on our computer go.\n\nThere is a natural cycle to how the different steps in an R package workflow proceed -- see the documentation for this lesson -- we will be following this process (TK another pictures?\n\nOk so now that we ahve the basic structure, let's talk about some content for the R package. I received the donation of a little R function already that we can use to create this workflow in a nice way\n\nThis R function (explain what the function does)\n\nOK so let's focus on just one part of this function.\n\nload all -- shortcut\n\n> how do we do this in VScode?\n\n> how to add something to the .Rbuildignore? it would be nice to have a little .dev script as a space to create all the ohter dependencies that are involved in making an R package.\n\n\n::: {.cell}\n\n:::\n\n\n## Useful links\n\nThis workshop borrows heavily from some excellent sources:\n\n- the [R packages book](https://r-pkgs.org/index.html) especially the [\"Whole Game\"](https://r-pkgs.org/whole-game.html#whole-game) chapter!\n- [rOpenSci Packages: Development, Maintenance, and Peer Review](https://devguide.ropensci.org/index.html)\n\nhttps://builder.r-hub.io/about.html\n", + "markdown": "---\ntitle: \"Building R packages\"\ndescription: |\n This practical training will cover the basics of modern package development in R with a focus on the following three aspects: (1) how to turn your code into functions, (2) how to write tests and documentation, and (3) how to share your R package on GitHub..\nauthor: Andrew MacDonald\ndate: \"2021-05-04\"\nimage: altumcode-PNbDkQ2DDgM-unsplash.jpeg\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n\n\n

via GIPHY

\n\nR packages! they are kind of like cookies:\n\n- Almost everyone enjoys them\n\n- delicious when homemade\n\n- Lots of storebought options available\n\n- Great skill to have\n\n- not necessary to sell them!\n\n \n\nBut most of all: cookies are delicious for what they *contain*: chocolate chunks, candy, oats, cocoa. However, all cookies share some fundamental ingredients and nearly identical structure. Flour, saturated with fat and sugar hydrated only with an egg, flavoured with vanilla and salt. The basic formula is invariant and admits only slight deviation -- otherwise, it becomes something other than a cookie.\n\nThis workshop is devoted to the study of cookie dough.\n\n### *Mise en place* : development environment\n\nWe'll explore a few useful packages in this workshop. The first two in particular are very popular tools for modern-day R package development:\n\n``` r\ninstall.packages(\"devtools\")\ninstall.packages(\"usethis\")\ninstall.packages(\"testthat\")\ninstall.packages(\"assertthat\")\n```\n\nBuilding an R package also requires specific tools for compiling the finished package. Run the following line to make sure you have the development environment:\n\n``` r\ndevtools::has_devel()\n```\n\nIf you do not have the software to build R packages, you should see a message which will help you find the correct links to download what you need!\n\nWindows will need RTools. First do the check above to see if you are already set up. If not then [download the software here](https://cran.r-project.org/bin/windows/Rtools/).\n\nand Install. After that, open R and run the following:\n\n``` r\nwriteLines('PATH=\"${RTOOLS40_HOME}\\\\usr\\\\bin;${PATH}\"', con = \"~/.Renviron\")\n```\n\nand restart R. Then run the check above once more to confirm\n\n\n\n## The structure: flour and sugar\n\n> No cookies without carbs\n\nAn R package is essentially a folder on your computer with specific structure. We will begin by creating an empty R package and taking a tour!\n\nOpen your R code editor, and find out where you are:\n\n``` r\ngetwd()\n```\n\nThis is to prepare for the next step, where we will choose a location for our R package folder. Please be intentional about where you place your R package! Do not place it in the same space as another package, Rstudio project or other project. Create a new and isolated location for it.\n\nI am working from an existing R project in my typical R Projects folder, so I go up one level:\n\n``` r\nusethis::create_package(\"../netwerk\")\n```\n\n\n\n![](start_pkg.png)\n\nLet's run R CMD CHECK right away. We will do this MANY TIMES.\n\n``` r\ndevtools::check()\n```\n\nWe should see some warnings! let's keep these in mind as we continue our tour.\n\n### The DESCRIPTION file\n\nThe most important file to notice is the DESCRIPTION. This gives general information about the entire package. It is written in a specific file format\n\n``` dcf\nPackage: netwerk\nTitle: Werks with Networks\nVersion: 0.0.0.9000\nAuthors@R: \n person(given = \"Andrew\",\n family = \"MacDonald\",\n role = c(\"aut\", \"cre\"),\n email = \"\")\nDescription: it does networks.\nLicense: MIT + file LICENSE\nEncoding: UTF-8\nLazyData: true\nRoxygen: list(markdown = TRUE)\nRoxygenNote: 7.1.1\nSuggests: \n testthat (>= 3.0.0)\nConfig/testthat/edition: 3\n```\n\nHere are some things to edit *manually* in `DESCRIPTION`:\n\n- package name \\[tk naming of R packages\\] -- make it short and convenient if you can!\n- Title: write this part In Title Case. Don't end the title with a period.\n- Description: Describe the package in a short block of text. This *should* end with a period.\n- Authors: Add your name here and the name of anyone building the package with you. `usethis` will have done the first step for you, and filled in the structure. Only \"aut\" (author) and \"cre\" (creator) are essential. [but many others are possible](https://www.loc.gov/marc/relators/relaterm.html)\n\nAdd your name here.\n\nAdd a license\n\n``` r\nusethis::use_mit_license(copyright_holder = \"\")\n```\n\nnote about the different roles that R package authors can have. Funny ones. but creator and maintainer are the key ones.\n\nNote the R folder. We'll get much more into that later\n\n- Rbuildignore\n\n## Keeping notes\n\ncreate an R file\n\n``` r\nusethis::use_build_ignore(\"dev.R\")\n```\n\nthe docs folder\n\nhere we have a very minimal version of an R packages we're going to be adding to it as the course progresses.\n\nOne thing we can do right away is build and check the R package\n\nWhat exactly is happining here? slide from R package tutorial.\n\nLots of checkpoints and progress confrimations along the way.\n\nOK so what is that all about? we have compiled the R package and it has gone to where the R packages on our computer go.\n\nThere is a natural cycle to how the different steps in an R package workflow proceed -- see the documentation for this lesson -- we will be following this process (TK another pictures?\n\nOk so now that we ahve the basic structure, let's talk about some content for the R package. I received the donation of a little R function already that we can use to create this workflow in a nice way\n\nThis R function (explain what the function does)\n\nOK so let's focus on just one part of this function.\n\nload all -- shortcut\n\n> how do we do this in VScode?\n\n> how to add something to the .Rbuildignore? it would be nice to have a little .dev script as a space to create all the ohter dependencies that are involved in making an R package.\n\n\n::: {.cell}\n\n:::\n\n\n## Useful links\n\nThis workshop borrows heavily from some excellent sources:\n\n- the [R packages book](https://r-pkgs.org/index.html) especially the [\"Whole Game\"](https://r-pkgs.org/whole-game.html#whole-game) chapter!\n- [rOpenSci Packages: Development, Maintenance, and Peer Review](https://devguide.ropensci.org/index.html)\n\nhttps://builder.r-hub.io/about.html\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/.quarto/_freeze/posts/2021-06-22-introduction-to-shiny-apps/index/execute-results/html.json b/.quarto/_freeze/posts/2021-06-22-introduction-to-shiny-apps/index/execute-results/html.json index 316242f..7463485 100644 --- a/.quarto/_freeze/posts/2021-06-22-introduction-to-shiny-apps/index/execute-results/html.json +++ b/.quarto/_freeze/posts/2021-06-22-introduction-to-shiny-apps/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "81821a688a1a06601deacad615689703", + "hash": "0731d9bc5af487d5bd597e0159bdd54a", "result": { - "markdown": "---\ntitle: \"Introduction to Shiny Apps\"\ndescription: \"Introduction to interactive app development with R Shiny.\"\nauthor:\n - name: \"Katherine Hébert\"\n affiliation: Université de Sherbrooke\n - name: \"Andrew MacDonald\"\n affiliation: Université de Sherbrooke\n - name: \"Jake Lawlor\"\n affiliation: McGill University\n - name: \"Vincent Bellavance\"\n affiliation: Université de Sherbrooke\ndate: \"06-22-2021\"\nimage: image.jpg\ncategories: [Technical, Fellow contributed, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n## Why do you want to use Shiny?\n\nThere are many reasons to consider using Shiny for a project:\n\n- Sharing results from a paper with your readers;\n- Helping you explore a model, mathematics, simulations;\n- Letting non R users use R.\n\n## Hello Shiny!\n\nHere is an example of a Shiny app that RStudio generates when you open a new Shiny Web App file:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for app that draws a histogram ----\nui <- fluidPage(\n\n # App title ----\n titlePanel(\"Hello Shiny!\"),\n\n # Sidebar layout with input and output definitions ----\n sidebarLayout(\n\n # Sidebar panel for inputs ----\n sidebarPanel(\n\n # Input: Slider for the number of bins ----\n sliderInput(inputId = \"bins\",\n label = \"Number of bins:\",\n min = 1,\n max = 50,\n value = 30)\n\n ),\n\n # Main panel for displaying outputs ----\n mainPanel(\n\n # Output: Histogram ----\n plotOutput(outputId = \"distPlot\")\n\n )\n )\n)\n```\n:::\n\n\n# How a Shiny app works\n\n## Building blocks\n\nWe've now seen the basic building blocks of a Shiny app:\n\n- The **user interface**, which determines how the app \"looks\". This is how we tell Shiny where to ask for user inputs, and where to put any outputs we create.\n- **Reactive values**, which are values that change according to user inputs. These are values that affect the outputs we create in the Shiny app, such as tables or plots.\n- The **server**, where we use reactive values to generate some outputs.\n\n### IDs\n\nThe **user interface** and **server** communicate through IDs that we assign to inputs from the user and outputs from the server.\n\n![](images/app-ids.png)\n\nWe use an ID (*in orange*) to link the user input in the UI to the reactive values used in the server:\n\n![](images/app-reactiveid.png)\n\nWe use another ID (*in blue*) to link the output created in the server to the output shown in the user interface:\n\n![](images/app-output.png)\n\n### Organisation\n\nThese elements can all be placed in one script named `app.R` or separately in scripts named `ui.R` and `server.R`. The choice is up to you, although it becomes easier to work in separate `ui.R` and `server.R` scripts when the Shiny app becomes more complex.\n\n**Example 1: Everything in `app.R`**\n\n![](images/app-in1.png) **Example 2: Split things into `ui.R` and `server.R`**\n\n![](images/app-in2.png)\n\n## Plots\n\nShiny is an excellent tool for visual exploration - it is at its most useful when a user can *see* something change before their eyes according to some selections. This is a great way to allow users to explore a dataset, explore the results of some analyses according to different parameters, and so on!\n\nLet's now add a plot to our Shiny app, to visualize the distribution of a variable depending on user input. We'll be adding the `ggplot2` and `ggridges` packages in the set-up step at the top of our `app.R` to allow us to make a plot.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load packages\nlibrary(shiny)\nlibrary(ggridges)\nlibrary(ggplot2)\nlibrary(here)\nlibrary(readr)\n```\n:::\n\n\n### User interface\n\nTo add a plot in our Shiny, we need to indicate where the plot should appear in the app. We can do this with `plotOutput()`, a similar function to `tableOutput()` in the previous section that is meant for plot outputs, as the name suggests.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n )\n)\n```\n:::\n\n\nNow our Shiny app knows where we want to place our plot.\n\n### Server\n\nWe now need to create the plot we want to show in our app. This plot will change depending on one or several reactive values that the user can input or select in our UI.\n\nWe link the UI and server together with IDs that are assigned to each object. Above, we told the UI to expect a plot output with the ID `\"ridgePlot\"`. In the server, we will create a plot and render it as a plot object using `renderPlot()`, and we will assign this plot output to the ID we call in the UI (as `output$ridgePlot`).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n\n \n # prepare the data\n # ----------------------------------------------------------\n \n # read the dataset\n eruptions <- readr::read_rds(here::here(\"data\", \"eruptions.rds\"))\n \n # filter the dataset to avoid overloading the plot \n eruptions <- eruptions[which(eruptions$volcano_name %in% names(which(table(eruptions$volcano_name) > 30))),]\n # this subsets to volcanoes that have erupted more than 30 times\n \n \n # make reactive dataset\n # ----------------------------------------------------------\n \n # subset volcano data with input year range\n eruptions_filtered <- reactive({\n subset(eruptions, start_year >= input$years[1] & end_year <= input$years[2])\n })\n \n \n # create and render the outputs\n # ----------------------------------------------------------\n \n # create the table of volcanoes\n output$erupt_table <- renderTable({\n head(eruptions_filtered())\n })\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name,\n fill = volcano_name)) +\n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges( size = .5) + # line width\n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # adjust the ggplot theme to make the plot \"prettier\"\n theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n}\n```\n:::\n\n\n### The Shiny app\n\nNow, if we run the Shiny app, we have a plot above the table we made previously. They are positioned in this way because the `plotOutput()` comes before the `tableOutput()` in the UI.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Run the application\nshinyApp(ui = ui, server = server)\n```\n:::\n\n\n![](images/plotOutput.png)\n\n## Customising the theme\n\nIf you'd like to go one step further, you can also customize the appearance of your Shiny app using built-in themes, or creating your own themes.\n\n### Using built-in themes\n\nThere are several built-in themes in Shiny, which allow you to quickly change the appearance of your app. You can browse a gallery of available themes here [here](https://rstudio.github.io/shinythemes/), or test themes out interactively [here](https://shiny.rstudio.com/gallery/shiny-theme-selector.html).\n\nLet's try the *darkly* theme on our Shiny app. To do this, we will need the `shinythemes` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(shinythemes)\n```\n:::\n\n\nWe can change the theme of our previous app with one line of code:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use the darkly theme\n theme = shinythemes::shinytheme(\"darkly\")\n)\n```\n:::\n\n\nNow, if we run the app, it looks a little different:\n\n![](images/darklytheme.png)\n\n### Using a custom theme\n\nYou can also go beyond the built-in themes, and create your own custom theme with the fonts and colours of your choice. You can also apply this theme to the outputs rendered in the app, to bring all the visuals together for a more cohesive look.\n\n#### Customizing a theme\n\nTo create a custom theme, we will be using the `bs_theme()` function from the `bslib` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(bslib)\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# Create a custom theme \ncute_theme <- bslib::bs_theme(\n \n bg = \"#36393B\", # background colour\n fg = \"#FFD166\", # most of the text on your app\n primary = \"#F26430\", # buttons, ...\n \n # you can also choose fonts\n base_font = font_google(\"Open Sans\"),\n heading_font = font_google(\"Open Sans\")\n)\n```\n:::\n\n\nTo apply this theme to our Shiny app (and the outputs), we will be using the `thematic` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(thematic)\n```\n:::\n\n\nThere are two essential steps to apply a custom theme to a Shiny app:\n\n1. Activating thematic.\n2. Setting the user interface's theme to the custom theme (`cute_theme`).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Activate thematic\n# so your R outputs will be changed to match up with your chosen styling\nthematic::thematic_shiny()\n\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use our custom theme\n theme = cute_theme\n)\n```\n:::\n\n\nNow, if we run the app, the user interface and plot theme is set to the colours and fonts we set in `cute_theme`:\n\n![](images/thematic.png)\n\nHere, `thematic` is not changing the colours used to represent a variable in our plot, because this is an informative colour scale (unlike the colour of axis labels, lines, and the plot background). However, if we remove this colour variable in our ridgeplot in the server, thematic will change the plot colours as well. Here is a simplified example of our server to see what these changes would look like:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n \n #... (all the good stuff we wrote above)\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name)) + # we are no longer setting \n # the fill argument to a variable\n \n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges(size = .5) + \n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # remove the \"classic\" ggplot2 so it doesn't override thematic's changes\n # theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n }\n```\n:::\n\n\nNow, our plot's theme follows the app's custom theme as well:\n\n![](images/thematic_plot.png)\n\n# Constructing a Shiny app using shinyDashboards\n\n## Taking advantage of good defaults\n\nHere, we will use shiny extension `shinyDashboards` and `leaflet` to construct a custom Shiny App to map volcanoes of the world. First, we need a few additional packages.\n\n**Note: All Source code for this app can be found [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) on the BIOS2 Github.**\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load packages\nlibrary(shiny)\nlibrary(shinydashboard) # dashboard layout package\nlibrary(shinyWidgets) # fancy widgets package\nlibrary(leaflet) # interactive maps package\nlibrary(dplyr)\nlibrary(ggplot2)\n```\n:::\n\n\n### Using ShinyDashboard\n\nWe will create our app using defaults from the ShinyDashboard package, which always includes three main components: a header, using `dashboardHeader()`, a sidebar, using `dashboardSidebar()`, and a body, using `dashboardBody()`. These are then added together using the `dashboardPage()` function.\n\nBuilding these elements is less like usual R coding, and more like web design, since we are, in fact, designing a unser interface for a web app. Here, we'll make a basic layout before populating it.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create the header of our app\nheader <- dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n)\n\n\n# create dashboard body - this is the major UI element\nbody <- dashboardBody(\n\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n \n # make first column, 25% of page - width = 3 of 12 columns\n column(width = 3,\n \n \n # Box 1: text explaining what this app is\n #-----------------------------------------------\n box( width = NULL,\n status=\"primary\", # this line can change the automatic color of the box.\n title = NULL,\n p(\"here, we'll include some info about this app\")\n\n \n ), # end box 1\n \n \n # box 2 : input for selecting volcano type\n #-----------------------------------------------\n box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T, \n \n p(\"here, we'll add a UI element for selecting volcano types\"),\n\n ), # end box 2\n \n \n \n # box 3: ggplot of selected volcanoes by continent\n #------------------------------------------------\n box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\",\n p(\"here, we'll add a bar plot of volcanoes in each continent\")\n ) # end box 3\n \n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n #--------------------------------------------------\n column(width = 9,\n # Box 4: leaflet map\n box(width = NULL, background = \"light-blue\", height = 850,\n p(\"here, we'll show volcanoes on a map\"),\n ) # end box with map\n ) # end second column\n \n ) # end fluidrow\n) # end body\n\n\n# add elements together\ndashboardPage(\n skin = \"blue\",\n header = header,\n sidebar = dashboardSidebar(disable = TRUE), # here, we only have one tab of our app, so we don't need a sidebar\n body = body\n)\n```\n:::\n\n\n![](images/shiny_dashboard_layout.png)\n\n## Populating the Layout\n\nNow, we are going to fill out app with elements. In this app, we will only have one user input: a selection of the volcano type to show. We will use this input (`input$volcano_type`), which will be used to filter data in the server (i.e. make a smaller dataset using only volcanoes of the selected types), then use this filtered dataset to create output elements (plots and maps).\n\nBelow, we show the necessary code to include in both the UI and the Server to create each plot element. Notice that after the reactive value `selected_volcanoes` is created in the selection box, this is the only object that is used to create the other elements in the app.\n\n| Location | Element | UI | Server |\n|:----------------|:----------------|:------------------|:------------------|\n| Box 1 | **Intro Textbox** | Markdown/HTML text code | |\n| Box 2 | **Selection Wigets** | `checkboxGroupButtons(` `inputID = \"volcano_type\")` | `selected_volcanoes <- reactive({` `volcano_df %>% filter(type %in% input$volcano_type)})` to create a filtered dataset that will react to user input |\n| Box 3 | **Bar Graph** | `plotOutput(\"continentplot\")` | `output$continentplot <- renderPlot(...))` which will plot from the `selectied_volcanoes` reactive object |\n| Box 4 | **Leaflet Map** | `leafletOutput(\"volcanomap\")` | `output$volcanomap <- renderLeaflet(...)` to map points from the `selectied_volcanoes` reactive object |\n\n![](images/populated_shiny.png)\n\n## Challenge!\n\nUse the code provided to add your own additional user input to the Shiny App. The code (which you can access [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) leaves a space for an additional UI input inside box 2). Then, you'll need to use your new input element to the reactive value in the Server, as noted in the server code.\n\nUse the [Default Shiny Widgets](https://shiny.rstudio.com/gallery/widget-gallery.html) or [shinyWidgets extended package](http://shinyapps.dreamrs.fr/shinyWidgets/) galleries to explore the types of elements you can add.\n\n![](images/add_elements_diagram.png)\n\n### See the completed app\n\nSee our completed app [HERE](https://jakelawlor.shinyapps.io/Volcanoes_of_the_World/)\n\n# Constructing a Shiny app using Golem\n\nFirst step is creating your own golem project:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.25.32.png)\n\nGolem provides you with some very helpful \"workflow\" scripts:\n\nEdit the Description by filling in this function in `01_dev.R`\n\nThen, add all the dependencies\n\nTogether, this edits the `DESCRIPTION` of your R package to look something like this:\n\nNow we can start building the app.\n\n\n::: {.cell}\n\n```{.r .cell-code}\napp_ui <- function(request) {\n tagList(\n # Leave this function for adding external resources\n golem_add_external_resources(),\n # Your application UI logic \n shinydashboard::dashboardPage(\n header = shinydashboard::dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n ),\n sidebar = shinydashboard::dashboardSidebar(disable = TRUE), # here, we only have one tab, so we don't need a sidebar\n body = shinydashboard::dashboardBody(\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n # make first column, 25% of page - width = 3 of 12 colums\n column(width = 3,\n # box 1 : input for selecting volcano type\n #-----------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T\n \n ## CHECKBOX HERE\n \n ), # end box 1\n # box 2: ggplot of selected volcanoes by continent\n #------------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\"\n \n ## PLOT HERE\n\n ) # end box 2\n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n column(width = 9,\n \n # Box 3: leaflet map\n shinydashboard::box(width = NULL, background = \"light-blue\"\n \n ## MAP HERE \n \n ) # end box with map\n ) # end second column\n ) # end fluidrow\n ) # end body\n )\n )\n}\n```\n:::\n\n\nThis indicates where each of the three components of the app would go.\n\nAt this point we can run the app to get a very empty-looking UI:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.58.08.png)\n\n### Golem modules\n\nWe could split this app into three different sections, corresponding to each of the three boxes:\n\n1. Filter the type of volcano we see\n2. take the filtered volcanoes and plot a stacked bar chart\n3. take the filtered volcanoes and plot a map\n\n### Selecting the volcanoes\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#' volcano_select UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_volcano_select_ui <- function(id){\n ns <- NS(id)\n tagList(\n # Widget specifying the species to be included on the plot\n shinyWidgets::checkboxGroupButtons(\n inputId = ns(\"volcano_type\"),\n label = \"Volcano Type\",\n choices = c(\"Stratovolcano\" , \"Shield\" ,\"Cone\" , \"Caldera\" , \"Volcanic Field\",\n \"Complex\" , \"Other\", \"Lava Dome\" , \"Submarine\" ),\n checkIcon = list(\n yes = tags$i(class = \"fa fa-check-square\", \n style = \"color: steelblue\"),\n no = tags$i(class = \"fa fa-square-o\", \n style = \"color: steelblue\"))\n ) # end checkboxGroupButtons\n )\n}\n \n#' volcano_select Server Functions\n#'\n#' @noRd \nmod_volcano_select_server <- function(id, volcano){\n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n # make reactive dataset\n # ------------------------------------------------\n # Make a subset of the data as a reactive value\n # this subset pulls volcano rows only in the selected types of volcano\n selected_volcanoes <- reactive({\n \n req(input$volcano_type)\n \n volcano %>%\n \n # select only volcanoes in the selected volcano type (by checkboxes in the UI)\n dplyr::filter(volcano_type_consolidated %in% input$volcano_type) %>%\n # Space to add your suggested filter here!! \n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # filter() %>%\n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # change volcano type into factor (this makes plotting it more consistent)\n dplyr::mutate(volcano_type_consolidated = factor(volcano_type_consolidated,\n levels = c(\"Stratovolcano\" , \"Shield\", \"Cone\", \"Caldera\", \"Volcanic Field\",\n \"Complex\" , \"Other\" , \"Lava Dome\" , \"Submarine\" ) ) )\n })\n \n })\n}\n \n## To be copied in the UI\n# mod_volcano_select_ui(\"volcano_select_1\")\n \n## To be copied in the server\n# mod_volcano_select_server(\"volcano_select_1\")\n```\n:::\n\n\nI also like to test my modules by using them to create a toy Shiny app. The best place to do this is by using a testthat directory. This is another great advantage of using a package workflow. You can set this up easily with `usethis::use_test()`: just run `usethis::use_test` from the R console when you have the module open.\n\nThen write a simple test like this\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntest_that(\"volcano selection module works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_volcano_select_ui(\"volcano_select_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n selected_data <- mod_volcano_select_server(\"volcano_select_1\",\n volcano = volcano_data)\n \n output$table <- renderTable(selected_data())\n }\n \n shinyApp(ui = ui, server = server)\n \n})\n```\n:::\n\n\nWhich generates the following simple app:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2006.25.38.png)\n\n### Barplot of continents\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#' continentplot UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_continentplot_ui <- function(id){\n ns <- NS(id)\n tagList(\n plotOutput(ns(\"barplot\"), # this calls to object continentplot that is made in the server page\n height = 350)\n )\n}\n \n#' continentplot Server Functions\n#'\n#' @noRd \nmod_continentplot_server <- function(id, volcano, selected_volcanoes){\n \n # kind of helpful\n stopifnot(is.reactive(selected_volcanoes))\n \n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n output$barplot <- renderPlot({\n \n # create basic barplot\n barplot <- ggplot2::ggplot(data = volcano,\n ggplot2::aes(x=continent,\n fill = volcano_type_consolidated))+\n # update theme and axis labels:\n ggplot2::theme_bw()+\n ggplot2::theme(plot.background = ggplot2::element_rect(color=\"transparent\",fill = \"transparent\"),\n panel.background = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"),\n panel.border = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"))+\n ggplot2::labs(x=NULL, y=NULL, title = NULL) +\n ggplot2::theme(axis.text.x = ggplot2::element_text(angle=45,hjust=1))\n \n \n # IF a selected_volcanoes() object exists, update the blank ggplot. \n # basically this makes it not mess up when nothing is selected\n \n barplot <- barplot +\n ggplot2::geom_bar(data = selected_volcanoes(), show.legend = F) +\n ggplot2::scale_fill_manual(values = RColorBrewer::brewer.pal(9,\"Set1\"), drop=F) +\n ggplot2::scale_x_discrete(drop=F)\n \n \n # print the plot\n barplot\n \n }) # end renderplot command\n \n \n })\n}\n \n## To be copied in the UI\n# mod_continentplot_ui(\"continentplot_1\")\n \n## To be copied in the server\n# mod_continentplot_server(\"continentplot_1\")\n```\n:::\n\n\nthe test\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntest_that(\"volano barplot works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_continentplot_ui(\"continentplot_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n volcano_recent <- subset(volcano_data, last_eruption_year > 2000)\n mod_continentplot_server(\"continentplot_1\",\n volcano = volcano_data,\n selected_volcanoes = reactive(volcano_recent))\n }\n \n shinyApp(ui = ui, server = server)\n})\n```\n:::\n", + "markdown": "---\ntitle: \"Introduction to Shiny Apps\"\ndescription: |\n Introduction to interactive app development with R Shiny. \nauthor:\n - name: Katherine Hébert\n - name: Andrew MacDonald\n - name: Jake Lawlor\n - name: Vincent Bellevance\ndate: \"06-22-2021\"\nimage: image.jpg\ncategories: [Technical, Fellow contributed, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n## Why do you want to use Shiny?\n\nThere are many reasons to consider using Shiny for a project:\n\n- Sharing results from a paper with your readers;\n- Helping you explore a model, mathematics, simulations;\n- Letting non R users use R.\n\n## Hello Shiny!\n\nHere is an example of a Shiny app that RStudio generates when you open a new Shiny Web App file:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for app that draws a histogram ----\nui <- fluidPage(\n\n # App title ----\n titlePanel(\"Hello Shiny!\"),\n\n # Sidebar layout with input and output definitions ----\n sidebarLayout(\n\n # Sidebar panel for inputs ----\n sidebarPanel(\n\n # Input: Slider for the number of bins ----\n sliderInput(inputId = \"bins\",\n label = \"Number of bins:\",\n min = 1,\n max = 50,\n value = 30)\n\n ),\n\n # Main panel for displaying outputs ----\n mainPanel(\n\n # Output: Histogram ----\n plotOutput(outputId = \"distPlot\")\n\n )\n )\n)\n```\n:::\n\n\n\n# How a Shiny app works\n\n## Building blocks\n\nWe've now seen the basic building blocks of a Shiny app:\n\n- The **user interface**, which determines how the app \"looks\". This is how we tell Shiny where to ask for user inputs, and where to put any outputs we create.\n- **Reactive values**, which are values that change according to user inputs. These are values that affect the outputs we create in the Shiny app, such as tables or plots.\n- The **server**, where we use reactive values to generate some outputs.\n\n### IDs\n\nThe **user interface** and **server** communicate through IDs that we assign to inputs from the user and outputs from the server.\n\n![](images/app-ids.png)\n\nWe use an ID (*in orange*) to link the user input in the UI to the reactive values used in the server:\n\n![](images/app-reactiveid.png)\n\nWe use another ID (*in blue*) to link the output created in the server to the output shown in the user interface:\n\n![](images/app-output.png)\n\n### Organisation\n\nThese elements can all be placed in one script named `app.R` or separately in scripts named `ui.R` and `server.R`. The choice is up to you, although it becomes easier to work in separate `ui.R` and `server.R` scripts when the Shiny app becomes more complex.\n\n**Example 1: Everything in `app.R`**\n\n![](images/app-in1.png) **Example 2: Split things into `ui.R` and `server.R`**\n\n![](images/app-in2.png)\n\n## Plots\n\nShiny is an excellent tool for visual exploration - it is at its most useful when a user can *see* something change before their eyes according to some selections. This is a great way to allow users to explore a dataset, explore the results of some analyses according to different parameters, and so on!\n\nLet's now add a plot to our Shiny app, to visualize the distribution of a variable depending on user input. We'll be adding the `ggplot2` and `ggridges` packages in the set-up step at the top of our `app.R` to allow us to make a plot.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load packages\nlibrary(shiny)\nlibrary(ggridges)\nlibrary(ggplot2)\nlibrary(here)\nlibrary(readr)\n```\n:::\n\n\n### User interface\n\nTo add a plot in our Shiny, we need to indicate where the plot should appear in the app. We can do this with `plotOutput()`, a similar function to `tableOutput()` in the previous section that is meant for plot outputs, as the name suggests.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n )\n)\n```\n:::\n\n\nNow our Shiny app knows where we want to place our plot.\n\n### Server\n\nWe now need to create the plot we want to show in our app. This plot will change depending on one or several reactive values that the user can input or select in our UI.\n\nWe link the UI and server together with IDs that are assigned to each object. Above, we told the UI to expect a plot output with the ID `\"ridgePlot\"`. In the server, we will create a plot and render it as a plot object using `renderPlot()`, and we will assign this plot output to the ID we call in the UI (as `output$ridgePlot`).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n\n \n # prepare the data\n # ----------------------------------------------------------\n \n # read the dataset\n eruptions <- readr::read_rds(here::here(\"data\", \"eruptions.rds\"))\n \n # filter the dataset to avoid overloading the plot \n eruptions <- eruptions[which(eruptions$volcano_name %in% names(which(table(eruptions$volcano_name) > 30))),]\n # this subsets to volcanoes that have erupted more than 30 times\n \n \n # make reactive dataset\n # ----------------------------------------------------------\n \n # subset volcano data with input year range\n eruptions_filtered <- reactive({\n subset(eruptions, start_year >= input$years[1] & end_year <= input$years[2])\n })\n \n \n # create and render the outputs\n # ----------------------------------------------------------\n \n # create the table of volcanoes\n output$erupt_table <- renderTable({\n head(eruptions_filtered())\n })\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name,\n fill = volcano_name)) +\n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges( size = .5) + # line width\n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # adjust the ggplot theme to make the plot \"prettier\"\n theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n}\n```\n:::\n\n\n### The Shiny app\n\nNow, if we run the Shiny app, we have a plot above the table we made previously. They are positioned in this way because the `plotOutput()` comes before the `tableOutput()` in the UI.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Run the application\nshinyApp(ui = ui, server = server)\n```\n:::\n\n\n![](images/plotOutput.png)\n\n## Customising the theme\n\nIf you'd like to go one step further, you can also customize the appearance of your Shiny app using built-in themes, or creating your own themes.\n\n### Using built-in themes\n\nThere are several built-in themes in Shiny, which allow you to quickly change the appearance of your app. You can browse a gallery of available themes here [here](https://rstudio.github.io/shinythemes/), or test themes out interactively [here](https://shiny.rstudio.com/gallery/shiny-theme-selector.html).\n\nLet's try the *darkly* theme on our Shiny app. To do this, we will need the `shinythemes` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(shinythemes)\n```\n:::\n\n\nWe can change the theme of our previous app with one line of code:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use the darkly theme\n theme = shinythemes::shinytheme(\"darkly\")\n)\n```\n:::\n\n\nNow, if we run the app, it looks a little different:\n\n![](images/darklytheme.png)\n\n### Using a custom theme\n\nYou can also go beyond the built-in themes, and create your own custom theme with the fonts and colours of your choice. You can also apply this theme to the outputs rendered in the app, to bring all the visuals together for a more cohesive look.\n\n#### Customizing a theme\n\nTo create a custom theme, we will be using the `bs_theme()` function from the `bslib` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(bslib)\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# Create a custom theme \ncute_theme <- bslib::bs_theme(\n \n bg = \"#36393B\", # background colour\n fg = \"#FFD166\", # most of the text on your app\n primary = \"#F26430\", # buttons, ...\n \n # you can also choose fonts\n base_font = font_google(\"Open Sans\"),\n heading_font = font_google(\"Open Sans\")\n)\n```\n:::\n\n\nTo apply this theme to our Shiny app (and the outputs), we will be using the `thematic` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(thematic)\n```\n:::\n\n\nThere are two essential steps to apply a custom theme to a Shiny app:\n\n1. Activating thematic.\n2. Setting the user interface's theme to the custom theme (`cute_theme`).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Activate thematic\n# so your R outputs will be changed to match up with your chosen styling\nthematic::thematic_shiny()\n\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use our custom theme\n theme = cute_theme\n)\n```\n:::\n\n\nNow, if we run the app, the user interface and plot theme is set to the colours and fonts we set in `cute_theme`:\n\n![](images/thematic.png)\n\nHere, `thematic` is not changing the colours used to represent a variable in our plot, because this is an informative colour scale (unlike the colour of axis labels, lines, and the plot background). However, if we remove this colour variable in our ridgeplot in the server, thematic will change the plot colours as well. Here is a simplified example of our server to see what these changes would look like:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n \n #... (all the good stuff we wrote above)\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name)) + # we are no longer setting \n # the fill argument to a variable\n \n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges(size = .5) + \n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # remove the \"classic\" ggplot2 so it doesn't override thematic's changes\n # theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n }\n```\n:::\n\n\nNow, our plot's theme follows the app's custom theme as well:\n\n![](images/thematic_plot.png)\n\n\n# Constructing a Shiny app using shinyDashboards\n\n## Taking advantage of good defaults\n\nHere, we will use shiny extension `shinyDashboards` and `leaflet` to construct a custom Shiny App to map volcanoes of the world. First, we need a few additional packages.\n\n**Note: All Source code for this app can be found [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) on the BIOS2 Github.**\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load packages\nlibrary(shiny)\nlibrary(shinydashboard) # dashboard layout package\nlibrary(shinyWidgets) # fancy widgets package\nlibrary(leaflet) # interactive maps package\nlibrary(dplyr)\nlibrary(ggplot2)\n```\n:::\n\n\n### Using ShinyDashboard\n\nWe will create our app using defaults from the ShinyDashboard package, which always includes three main components: a header, using `dashboardHeader()`, a sidebar, using `dashboardSidebar()`, and a body, using `dashboardBody()`. These are then added together using the `dashboardPage()` function.\n\nBuilding these elements is less like usual R coding, and more like web design, since we are, in fact, designing a unser interface for a web app. Here, we'll make a basic layout before populating it.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create the header of our app\nheader <- dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n)\n\n\n# create dashboard body - this is the major UI element\nbody <- dashboardBody(\n\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n \n # make first column, 25% of page - width = 3 of 12 columns\n column(width = 3,\n \n \n # Box 1: text explaining what this app is\n #-----------------------------------------------\n box( width = NULL,\n status=\"primary\", # this line can change the automatic color of the box.\n title = NULL,\n p(\"here, we'll include some info about this app\")\n\n \n ), # end box 1\n \n \n # box 2 : input for selecting volcano type\n #-----------------------------------------------\n box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T, \n \n p(\"here, we'll add a UI element for selecting volcano types\"),\n\n ), # end box 2\n \n \n \n # box 3: ggplot of selected volcanoes by continent\n #------------------------------------------------\n box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\",\n p(\"here, we'll add a bar plot of volcanoes in each continent\")\n ) # end box 3\n \n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n #--------------------------------------------------\n column(width = 9,\n # Box 4: leaflet map\n box(width = NULL, background = \"light-blue\", height = 850,\n p(\"here, we'll show volcanoes on a map\"),\n ) # end box with map\n ) # end second column\n \n ) # end fluidrow\n) # end body\n\n\n# add elements together\ndashboardPage(\n skin = \"blue\",\n header = header,\n sidebar = dashboardSidebar(disable = TRUE), # here, we only have one tab of our app, so we don't need a sidebar\n body = body\n)\n```\n:::\n\n\n![](images/shiny_dashboard_layout.png)\n\n## Populating the Layout\n\nNow, we are going to fill out app with elements. In this app, we will only have one user input: a selection of the volcano type to show. We will use this input (`input$volcano_type`), which will be used to filter data in the server (i.e. make a smaller dataset using only volcanoes of the selected types), then use this filtered dataset to create output elements (plots and maps).\n\nBelow, we show the necessary code to include in both the UI and the Server to create each plot element. Notice that after the reactive value `selected_volcanoes` is created in the selection box, this is the only object that is used to create the other elements in the app.\n\n| Location | Element | UI | Server |\n|:----------------|:----------------|:-------------------|:-------------------|\n| Box 1 | **Intro Textbox** | Markdown/HTML text code | |\n| Box 2 | **Selection Wigets** | `checkboxGroupButtons(` `inputID = \"volcano_type\")` | `selected_volcanoes <- reactive({` `volcano_df %>% filter(type %in% input$volcano_type)})` to create a filtered dataset that will react to user input |\n| Box 3 | **Bar Graph** | `plotOutput(\"continentplot\")` | `output$continentplot <- renderPlot(...))` which will plot from the `selectied_volcanoes` reactive object |\n| Box 4 | **Leaflet Map** | `leafletOutput(\"volcanomap\")` | `output$volcanomap <- renderLeaflet(...)` to map points from the `selectied_volcanoes` reactive object |\n\n![](images/populated_shiny.png)\n\n## Challenge!\n\nUse the code provided to add your own additional user input to the Shiny App. The code (which you can access [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) leaves a space for an additional UI input inside box 2). Then, you'll need to use your new input element to the reactive value in the Server, as noted in the server code.\n\nUse the [Default Shiny Widgets](https://shiny.rstudio.com/gallery/widget-gallery.html) or [shinyWidgets extended package](http://shinyapps.dreamrs.fr/shinyWidgets/) galleries to explore the types of elements you can add.\n\n![](images/add_elements_diagram.png)\n\n### See the completed app\n\nSee our completed app [HERE](https://jakelawlor.shinyapps.io/Volcanoes_of_the_World/)\n\n\n# Constructing a Shiny app using Golem\n\nFirst step is creating your own golem project:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.25.32.png)\n\nGolem provides you with some very helpful \"workflow\" scripts:\n\nEdit the Description by filling in this function in `01_dev.R`\n\nThen, add all the dependencies\n\nTogether, this edits the `DESCRIPTION` of your R package to look something like this:\n\nNow we can start building the app.\n\n\n::: {.cell}\n\n```{.r .cell-code}\napp_ui <- function(request) {\n tagList(\n # Leave this function for adding external resources\n golem_add_external_resources(),\n # Your application UI logic \n shinydashboard::dashboardPage(\n header = shinydashboard::dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n ),\n sidebar = shinydashboard::dashboardSidebar(disable = TRUE), # here, we only have one tab, so we don't need a sidebar\n body = shinydashboard::dashboardBody(\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n # make first column, 25% of page - width = 3 of 12 colums\n column(width = 3,\n # box 1 : input for selecting volcano type\n #-----------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T\n \n ## CHECKBOX HERE\n \n ), # end box 1\n # box 2: ggplot of selected volcanoes by continent\n #------------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\"\n \n ## PLOT HERE\n\n ) # end box 2\n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n column(width = 9,\n \n # Box 3: leaflet map\n shinydashboard::box(width = NULL, background = \"light-blue\"\n \n ## MAP HERE \n \n ) # end box with map\n ) # end second column\n ) # end fluidrow\n ) # end body\n )\n )\n}\n```\n:::\n\n\nThis indicates where each of the three components of the app would go.\n\nAt this point we can run the app to get a very empty-looking UI:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.58.08.png)\n\n### Golem modules\n\nWe could split this app into three different sections, corresponding to each of the three boxes:\n\n1. Filter the type of volcano we see\n2. take the filtered volcanoes and plot a stacked bar chart\n3. take the filtered volcanoes and plot a map\n\n### Selecting the volcanoes\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#' volcano_select UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_volcano_select_ui <- function(id){\n ns <- NS(id)\n tagList(\n # Widget specifying the species to be included on the plot\n shinyWidgets::checkboxGroupButtons(\n inputId = ns(\"volcano_type\"),\n label = \"Volcano Type\",\n choices = c(\"Stratovolcano\" , \"Shield\" ,\"Cone\" , \"Caldera\" , \"Volcanic Field\",\n \"Complex\" , \"Other\", \"Lava Dome\" , \"Submarine\" ),\n checkIcon = list(\n yes = tags$i(class = \"fa fa-check-square\", \n style = \"color: steelblue\"),\n no = tags$i(class = \"fa fa-square-o\", \n style = \"color: steelblue\"))\n ) # end checkboxGroupButtons\n )\n}\n \n#' volcano_select Server Functions\n#'\n#' @noRd \nmod_volcano_select_server <- function(id, volcano){\n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n # make reactive dataset\n # ------------------------------------------------\n # Make a subset of the data as a reactive value\n # this subset pulls volcano rows only in the selected types of volcano\n selected_volcanoes <- reactive({\n \n req(input$volcano_type)\n \n volcano %>%\n \n # select only volcanoes in the selected volcano type (by checkboxes in the UI)\n dplyr::filter(volcano_type_consolidated %in% input$volcano_type) %>%\n # Space to add your suggested filter here!! \n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # filter() %>%\n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # change volcano type into factor (this makes plotting it more consistent)\n dplyr::mutate(volcano_type_consolidated = factor(volcano_type_consolidated,\n levels = c(\"Stratovolcano\" , \"Shield\", \"Cone\", \"Caldera\", \"Volcanic Field\",\n \"Complex\" , \"Other\" , \"Lava Dome\" , \"Submarine\" ) ) )\n })\n \n })\n}\n \n## To be copied in the UI\n# mod_volcano_select_ui(\"volcano_select_1\")\n \n## To be copied in the server\n# mod_volcano_select_server(\"volcano_select_1\")\n```\n:::\n\n\nI also like to test my modules by using them to create a toy Shiny app. The best place to do this is by using a testthat directory. This is another great advantage of using a package workflow. You can set this up easily with `usethis::use_test()`: just run `usethis::use_test` from the R console when you have the module open.\n\nThen write a simple test like this\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntest_that(\"volcano selection module works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_volcano_select_ui(\"volcano_select_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n selected_data <- mod_volcano_select_server(\"volcano_select_1\",\n volcano = volcano_data)\n \n output$table <- renderTable(selected_data())\n }\n \n shinyApp(ui = ui, server = server)\n \n})\n```\n:::\n\n\nWhich generates the following simple app:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2006.25.38.png)\n\n### Barplot of continents\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#' continentplot UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_continentplot_ui <- function(id){\n ns <- NS(id)\n tagList(\n plotOutput(ns(\"barplot\"), # this calls to object continentplot that is made in the server page\n height = 350)\n )\n}\n \n#' continentplot Server Functions\n#'\n#' @noRd \nmod_continentplot_server <- function(id, volcano, selected_volcanoes){\n \n # kind of helpful\n stopifnot(is.reactive(selected_volcanoes))\n \n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n output$barplot <- renderPlot({\n \n # create basic barplot\n barplot <- ggplot2::ggplot(data = volcano,\n ggplot2::aes(x=continent,\n fill = volcano_type_consolidated))+\n # update theme and axis labels:\n ggplot2::theme_bw()+\n ggplot2::theme(plot.background = ggplot2::element_rect(color=\"transparent\",fill = \"transparent\"),\n panel.background = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"),\n panel.border = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"))+\n ggplot2::labs(x=NULL, y=NULL, title = NULL) +\n ggplot2::theme(axis.text.x = ggplot2::element_text(angle=45,hjust=1))\n \n \n # IF a selected_volcanoes() object exists, update the blank ggplot. \n # basically this makes it not mess up when nothing is selected\n \n barplot <- barplot +\n ggplot2::geom_bar(data = selected_volcanoes(), show.legend = F) +\n ggplot2::scale_fill_manual(values = RColorBrewer::brewer.pal(9,\"Set1\"), drop=F) +\n ggplot2::scale_x_discrete(drop=F)\n \n \n # print the plot\n barplot\n \n }) # end renderplot command\n \n \n })\n}\n \n## To be copied in the UI\n# mod_continentplot_ui(\"continentplot_1\")\n \n## To be copied in the server\n# mod_continentplot_server(\"continentplot_1\")\n```\n:::\n\n\nthe test\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntest_that(\"volano barplot works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_continentplot_ui(\"continentplot_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n volcano_recent <- subset(volcano_data, last_eruption_year > 2000)\n mod_continentplot_server(\"continentplot_1\",\n volcano = volcano_data,\n selected_volcanoes = reactive(volcano_recent))\n }\n \n shinyApp(ui = ui, server = server)\n})\n```\n:::\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/.quarto/_freeze/site_libs/plotly-binding-4.10.0/plotly.js b/.quarto/_freeze/site_libs/plotly-binding-4.10.0/plotly.js index 1155269..aaca427 100644 --- a/.quarto/_freeze/site_libs/plotly-binding-4.10.0/plotly.js +++ b/.quarto/_freeze/site_libs/plotly-binding-4.10.0/plotly.js @@ -616,9 +616,9 @@ TraceManager.prototype.updateFilter = function(group, keys) { traces.push(trace); } } - this.gd.data = traces; } + this.gd.data = traces; Plotly.redraw(this.gd); // NOTE: we purposely do _not_ restore selection(s), since on filter, diff --git a/.quarto/_freeze/site_libs/plotly-main-2.5.1/plotly-latest.min.js b/.quarto/_freeze/site_libs/plotly-main-2.5.1/plotly-latest.min.js index 27bfdaa..d6b2f17 100644 --- a/.quarto/_freeze/site_libs/plotly-main-2.5.1/plotly-latest.min.js +++ b/.quarto/_freeze/site_libs/plotly-main-2.5.1/plotly-latest.min.js @@ -1,69 +1,62 @@ /** -* plotly.js v2.11.1 -* Copyright 2012-2022, Plotly, Inc. +* plotly.js v2.5.1 +* Copyright 2012-2021, Plotly, Inc. * All rights reserved. * Licensed under the MIT license */ -!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}((function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module '"+o+"'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,(function(t){return i(e[o][1][t]||t)}),u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o:not(.watermark)":"opacity:0;-webkit-transition:opacity .3s ease 0s;-moz-transition:opacity .3s ease 0s;-ms-transition:opacity .3s ease 0s;-o-transition:opacity .3s ease 0s;transition:opacity .3s ease 0s;","X:hover .modebar--hover .modebar-group":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;padding-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;height:22px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar.vertical":"display:flex;flex-direction:column;flex-wrap:wrap;align-content:flex-end;max-height:100%;","X .modebar.vertical svg":"top:-1px;","X .modebar.vertical .modebar-group":"display:block;float:none;padding-left:0px;padding-bottom:8px;","X .modebar.vertical .modebar-group .modebar-btn":"display:block;text-align:center;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":'content:"";position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;',"X [data-title]:after":"content:attr(data-title);background:#69738a;color:#fff;padding:8px 10px;font-size:12px;line-height:12px;white-space:nowrap;margin-right:-18px;border-radius:2px;","X .vertical [data-title]:before,X .vertical [data-title]:after":"top:0%;right:200%;","X .vertical [data-title]:before":"border:6px solid transparent;border-left-color:#69738a;margin-top:8px;margin-right:-30px;","X .select-outline":"fill:none;stroke-width:1;shape-rendering:crispEdges;","X .select-outline-1":"stroke:#fff;","X .select-outline-2":"stroke:#000;stroke-dasharray:2px 2px;",Y:'font-family:"Open Sans",verdana,arial,sans-serif;position:fixed;top:50px;right:20px;z-index:10000;font-size:10pt;max-width:180px;',"Y p":"margin:0;","Y .notifier-note":"min-width:180px;max-width:250px;border:1px solid #fff;z-index:3000;margin:0;background-color:#8c97af;background-color:rgba(140,151,175,.9);color:#fff;padding:10px;overflow-wrap:break-word;word-wrap:break-word;-ms-hyphens:auto;-webkit-hyphens:auto;hyphens:auto;","Y .notifier-close":"color:#fff;opacity:.8;float:right;padding:0 5px;background:none;border:none;font-size:20px;font-weight:bold;line-height:20px;","Y .notifier-close:hover":"color:#444;text-decoration:none;cursor:pointer;"};for(var a in i){var o=a.replace(/^,/," ,").replace(/X/g,".js-plotly-plot .plotly").replace(/Y/g,".plotly-notifier");n.addStyleRule(o,i[a])}},{"../src/lib":498}],2:[function(t,e,r){"use strict";e.exports=t("../src/transforms/aggregate")},{"../src/transforms/aggregate":1113}],3:[function(t,e,r){"use strict";e.exports=t("../src/traces/bar")},{"../src/traces/bar":651}],4:[function(t,e,r){"use strict";e.exports=t("../src/traces/barpolar")},{"../src/traces/barpolar":664}],5:[function(t,e,r){"use strict";e.exports=t("../src/traces/box")},{"../src/traces/box":674}],6:[function(t,e,r){"use strict";e.exports=t("../src/components/calendars")},{"../src/components/calendars":359}],7:[function(t,e,r){"use strict";e.exports=t("../src/traces/candlestick")},{"../src/traces/candlestick":683}],8:[function(t,e,r){"use strict";e.exports=t("../src/traces/carpet")},{"../src/traces/carpet":702}],9:[function(t,e,r){"use strict";e.exports=t("../src/traces/choropleth")},{"../src/traces/choropleth":716}],10:[function(t,e,r){"use strict";e.exports=t("../src/traces/choroplethmapbox")},{"../src/traces/choroplethmapbox":723}],11:[function(t,e,r){"use strict";e.exports=t("../src/traces/cone")},{"../src/traces/cone":729}],12:[function(t,e,r){"use strict";e.exports=t("../src/traces/contour")},{"../src/traces/contour":744}],13:[function(t,e,r){"use strict";e.exports=t("../src/traces/contourcarpet")},{"../src/traces/contourcarpet":755}],14:[function(t,e,r){"use strict";e.exports=t("../src/core")},{"../src/core":476}],15:[function(t,e,r){"use strict";e.exports=t("../src/traces/densitymapbox")},{"../src/traces/densitymapbox":763}],16:[function(t,e,r){"use strict";e.exports=t("../src/transforms/filter")},{"../src/transforms/filter":1114}],17:[function(t,e,r){"use strict";e.exports=t("../src/traces/funnel")},{"../src/traces/funnel":773}],18:[function(t,e,r){"use strict";e.exports=t("../src/traces/funnelarea")},{"../src/traces/funnelarea":782}],19:[function(t,e,r){"use strict";e.exports=t("../src/transforms/groupby")},{"../src/transforms/groupby":1115}],20:[function(t,e,r){"use strict";e.exports=t("../src/traces/heatmap")},{"../src/traces/heatmap":795}],21:[function(t,e,r){"use strict";e.exports=t("../src/traces/heatmapgl")},{"../src/traces/heatmapgl":806}],22:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram")},{"../src/traces/histogram":818}],23:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram2d")},{"../src/traces/histogram2d":824}],24:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram2dcontour")},{"../src/traces/histogram2dcontour":828}],25:[function(t,e,r){"use strict";e.exports=t("../src/traces/icicle")},{"../src/traces/icicle":834}],26:[function(t,e,r){"use strict";e.exports=t("../src/traces/image")},{"../src/traces/image":847}],27:[function(t,e,r){"use strict";var n=t("./core");n.register([t("./bar"),t("./box"),t("./heatmap"),t("./histogram"),t("./histogram2d"),t("./histogram2dcontour"),t("./contour"),t("./scatterternary"),t("./violin"),t("./funnel"),t("./waterfall"),t("./image"),t("./pie"),t("./sunburst"),t("./treemap"),t("./icicle"),t("./funnelarea"),t("./scatter3d"),t("./surface"),t("./isosurface"),t("./volume"),t("./mesh3d"),t("./cone"),t("./streamtube"),t("./scattergeo"),t("./choropleth"),t("./scattergl"),t("./splom"),t("./pointcloud"),t("./heatmapgl"),t("./parcoords"),t("./parcats"),t("./scattermapbox"),t("./choroplethmapbox"),t("./densitymapbox"),t("./sankey"),t("./indicator"),t("./table"),t("./carpet"),t("./scattercarpet"),t("./contourcarpet"),t("./ohlc"),t("./candlestick"),t("./scatterpolar"),t("./scatterpolargl"),t("./barpolar"),t("./scattersmith"),t("./aggregate"),t("./filter"),t("./groupby"),t("./sort"),t("./calendars")]),e.exports=n},{"./aggregate":2,"./bar":3,"./barpolar":4,"./box":5,"./calendars":6,"./candlestick":7,"./carpet":8,"./choropleth":9,"./choroplethmapbox":10,"./cone":11,"./contour":12,"./contourcarpet":13,"./core":14,"./densitymapbox":15,"./filter":16,"./funnel":17,"./funnelarea":18,"./groupby":19,"./heatmap":20,"./heatmapgl":21,"./histogram":22,"./histogram2d":23,"./histogram2dcontour":24,"./icicle":25,"./image":26,"./indicator":28,"./isosurface":29,"./mesh3d":30,"./ohlc":31,"./parcats":32,"./parcoords":33,"./pie":34,"./pointcloud":35,"./sankey":36,"./scatter3d":37,"./scattercarpet":38,"./scattergeo":39,"./scattergl":40,"./scattermapbox":41,"./scatterpolar":42,"./scatterpolargl":43,"./scattersmith":44,"./scatterternary":45,"./sort":46,"./splom":47,"./streamtube":48,"./sunburst":49,"./surface":50,"./table":51,"./treemap":52,"./violin":53,"./volume":54,"./waterfall":55}],28:[function(t,e,r){"use strict";e.exports=t("../src/traces/indicator")},{"../src/traces/indicator":855}],29:[function(t,e,r){"use strict";e.exports=t("../src/traces/isosurface")},{"../src/traces/isosurface":861}],30:[function(t,e,r){"use strict";e.exports=t("../src/traces/mesh3d")},{"../src/traces/mesh3d":866}],31:[function(t,e,r){"use strict";e.exports=t("../src/traces/ohlc")},{"../src/traces/ohlc":871}],32:[function(t,e,r){"use strict";e.exports=t("../src/traces/parcats")},{"../src/traces/parcats":880}],33:[function(t,e,r){"use strict";e.exports=t("../src/traces/parcoords")},{"../src/traces/parcoords":891}],34:[function(t,e,r){"use strict";e.exports=t("../src/traces/pie")},{"../src/traces/pie":902}],35:[function(t,e,r){"use strict";e.exports=t("../src/traces/pointcloud")},{"../src/traces/pointcloud":911}],36:[function(t,e,r){"use strict";e.exports=t("../src/traces/sankey")},{"../src/traces/sankey":917}],37:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatter3d")},{"../src/traces/scatter3d":955}],38:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattercarpet")},{"../src/traces/scattercarpet":962}],39:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattergeo")},{"../src/traces/scattergeo":970}],40:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattergl")},{"../src/traces/scattergl":984}],41:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattermapbox")},{"../src/traces/scattermapbox":994}],42:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterpolar")},{"../src/traces/scatterpolar":1002}],43:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterpolargl")},{"../src/traces/scatterpolargl":1010}],44:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattersmith")},{"../src/traces/scattersmith":1017}],45:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterternary")},{"../src/traces/scatterternary":1025}],46:[function(t,e,r){"use strict";e.exports=t("../src/transforms/sort")},{"../src/transforms/sort":1117}],47:[function(t,e,r){"use strict";e.exports=t("../src/traces/splom")},{"../src/traces/splom":1035}],48:[function(t,e,r){"use strict";e.exports=t("../src/traces/streamtube")},{"../src/traces/streamtube":1043}],49:[function(t,e,r){"use strict";e.exports=t("../src/traces/sunburst")},{"../src/traces/sunburst":1051}],50:[function(t,e,r){"use strict";e.exports=t("../src/traces/surface")},{"../src/traces/surface":1060}],51:[function(t,e,r){"use strict";e.exports=t("../src/traces/table")},{"../src/traces/table":1068}],52:[function(t,e,r){"use strict";e.exports=t("../src/traces/treemap")},{"../src/traces/treemap":1079}],53:[function(t,e,r){"use strict";e.exports=t("../src/traces/violin")},{"../src/traces/violin":1092}],54:[function(t,e,r){"use strict";e.exports=t("../src/traces/volume")},{"../src/traces/volume":1100}],55:[function(t,e,r){"use strict";e.exports=t("../src/traces/waterfall")},{"../src/traces/waterfall":1108}],56:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-array"),t("d3-collection"),t("d3-shape"),t("elementary-circuits-directed-graph")):i(n.d3=n.d3||{},n.d3,n.d3,n.d3,null)}(this,(function(t,e,r,n,i){"use strict";function a(t){return t.target.depth}function o(t,e){return t.sourceLinks.length?t.depth:e-1}function s(t){return function(){return t}}i=i&&i.hasOwnProperty("default")?i.default:i;var l="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(t){return typeof t}:function(t){return t&&"function"==typeof Symbol&&t.constructor===Symbol&&t!==Symbol.prototype?"symbol":typeof t};function c(t,e){return f(t.source,e.source)||t.index-e.index}function u(t,e){return f(t.target,e.target)||t.index-e.index}function f(t,e){return t.partOfCycle===e.partOfCycle?t.y0-e.y0:"top"===t.circularLinkType||"bottom"===e.circularLinkType?-1:1}function h(t){return t.value}function p(t){return(t.y0+t.y1)/2}function d(t){return p(t.source)}function m(t){return p(t.target)}function g(t){return t.index}function v(t){return t.nodes}function y(t){return t.links}function x(t,e){var r=t.get(e);if(!r)throw new Error("missing: "+e);return r}function b(t,e){return e(t)}function _(t,e,r){var n=0;if(null===r){for(var a=[],o=0;o1||i>1)}function M(t,e,r){return t.sort(E),t.forEach((function(n,i){var a,o,s=0;if(q(n,r)&&A(n))n.circularPathData.verticalBuffer=s+n.width/2;else{for(var l=0;lo.source.column)){var c=t[l].circularPathData.verticalBuffer+t[l].width/2+e;s=c>s?c:s}n.circularPathData.verticalBuffer=s+n.width/2}})),t}function S(t,r,i,a){var o=e.min(t.links,(function(t){return t.source.y0}));t.links.forEach((function(t){t.circular&&(t.circularPathData={})})),M(t.links.filter((function(t){return"top"==t.circularLinkType})),r,a),M(t.links.filter((function(t){return"bottom"==t.circularLinkType})),r,a),t.links.forEach((function(e){if(e.circular){if(e.circularPathData.arcRadius=e.width+10,e.circularPathData.leftNodeBuffer=5,e.circularPathData.rightNodeBuffer=5,e.circularPathData.sourceWidth=e.source.x1-e.source.x0,e.circularPathData.sourceX=e.source.x0+e.circularPathData.sourceWidth,e.circularPathData.targetX=e.target.x0,e.circularPathData.sourceY=e.y0,e.circularPathData.targetY=e.y1,q(e,a)&&A(e))e.circularPathData.leftSmallArcRadius=10+e.width/2,e.circularPathData.leftLargeArcRadius=10+e.width/2,e.circularPathData.rightSmallArcRadius=10+e.width/2,e.circularPathData.rightLargeArcRadius=10+e.width/2,"bottom"==e.circularLinkType?(e.circularPathData.verticalFullExtent=e.source.y1+25+e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.rightLargeArcRadius):(e.circularPathData.verticalFullExtent=e.source.y0-25-e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.rightLargeArcRadius);else{var s=e.source.column,l=e.circularLinkType,c=t.links.filter((function(t){return t.source.column==s&&t.circularLinkType==l}));"bottom"==e.circularLinkType?c.sort(C):c.sort(L);var u=0;c.forEach((function(t,n){t.circularLinkID==e.circularLinkID&&(e.circularPathData.leftSmallArcRadius=10+e.width/2+u,e.circularPathData.leftLargeArcRadius=10+e.width/2+n*r+u),u+=t.width})),s=e.target.column,c=t.links.filter((function(t){return t.target.column==s&&t.circularLinkType==l})),"bottom"==e.circularLinkType?c.sort(I):c.sort(P),u=0,c.forEach((function(t,n){t.circularLinkID==e.circularLinkID&&(e.circularPathData.rightSmallArcRadius=10+e.width/2+u,e.circularPathData.rightLargeArcRadius=10+e.width/2+n*r+u),u+=t.width})),"bottom"==e.circularLinkType?(e.circularPathData.verticalFullExtent=Math.max(i,e.source.y1,e.target.y1)+25+e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.rightLargeArcRadius):(e.circularPathData.verticalFullExtent=o-25-e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.rightLargeArcRadius)}e.circularPathData.leftInnerExtent=e.circularPathData.sourceX+e.circularPathData.leftNodeBuffer,e.circularPathData.rightInnerExtent=e.circularPathData.targetX-e.circularPathData.rightNodeBuffer,e.circularPathData.leftFullExtent=e.circularPathData.sourceX+e.circularPathData.leftLargeArcRadius+e.circularPathData.leftNodeBuffer,e.circularPathData.rightFullExtent=e.circularPathData.targetX-e.circularPathData.rightLargeArcRadius-e.circularPathData.rightNodeBuffer}if(e.circular)e.path=function(t){var e="";e="top"==t.circularLinkType?"M"+t.circularPathData.sourceX+" "+t.circularPathData.sourceY+" L"+t.circularPathData.leftInnerExtent+" "+t.circularPathData.sourceY+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftSmallArcRadius+" 0 0 0 "+t.circularPathData.leftFullExtent+" "+(t.circularPathData.sourceY-t.circularPathData.leftSmallArcRadius)+" L"+t.circularPathData.leftFullExtent+" "+t.circularPathData.verticalLeftInnerExtent+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftLargeArcRadius+" 0 0 0 "+t.circularPathData.leftInnerExtent+" "+t.circularPathData.verticalFullExtent+" L"+t.circularPathData.rightInnerExtent+" "+t.circularPathData.verticalFullExtent+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightLargeArcRadius+" 0 0 0 "+t.circularPathData.rightFullExtent+" "+t.circularPathData.verticalRightInnerExtent+" L"+t.circularPathData.rightFullExtent+" "+(t.circularPathData.targetY-t.circularPathData.rightSmallArcRadius)+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightSmallArcRadius+" 0 0 0 "+t.circularPathData.rightInnerExtent+" "+t.circularPathData.targetY+" L"+t.circularPathData.targetX+" "+t.circularPathData.targetY:"M"+t.circularPathData.sourceX+" "+t.circularPathData.sourceY+" L"+t.circularPathData.leftInnerExtent+" "+t.circularPathData.sourceY+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftSmallArcRadius+" 0 0 1 "+t.circularPathData.leftFullExtent+" "+(t.circularPathData.sourceY+t.circularPathData.leftSmallArcRadius)+" L"+t.circularPathData.leftFullExtent+" "+t.circularPathData.verticalLeftInnerExtent+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftLargeArcRadius+" 0 0 1 "+t.circularPathData.leftInnerExtent+" "+t.circularPathData.verticalFullExtent+" L"+t.circularPathData.rightInnerExtent+" "+t.circularPathData.verticalFullExtent+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightLargeArcRadius+" 0 0 1 "+t.circularPathData.rightFullExtent+" "+t.circularPathData.verticalRightInnerExtent+" L"+t.circularPathData.rightFullExtent+" "+(t.circularPathData.targetY+t.circularPathData.rightSmallArcRadius)+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightSmallArcRadius+" 0 0 1 "+t.circularPathData.rightInnerExtent+" "+t.circularPathData.targetY+" L"+t.circularPathData.targetX+" "+t.circularPathData.targetY;return e}(e);else{var f=n.linkHorizontal().source((function(t){return[t.source.x0+(t.source.x1-t.source.x0),t.y0]})).target((function(t){return[t.target.x0,t.y1]}));e.path=f(e)}}))}function E(t,e){return O(t)==O(e)?"bottom"==t.circularLinkType?C(t,e):L(t,e):O(e)-O(t)}function L(t,e){return t.y0-e.y0}function C(t,e){return e.y0-t.y0}function P(t,e){return t.y1-e.y1}function I(t,e){return e.y1-t.y1}function O(t){return t.target.column-t.source.column}function z(t){return t.target.x0-t.source.x1}function D(t,e){var r=T(t),n=z(e)/Math.tan(r);return"up"==H(t)?t.y1+n:t.y1-n}function R(t,e){var r=T(t),n=z(e)/Math.tan(r);return"up"==H(t)?t.y1-n:t.y1+n}function F(t,e,r,n){t.links.forEach((function(i){if(!i.circular&&i.target.column-i.source.column>1){var a=i.source.column+1,o=i.target.column-1,s=1,l=o-a+1;for(s=1;a<=o;a++,s++)t.nodes.forEach((function(o){if(o.column==a){var c,u=s/(l+1),f=Math.pow(1-u,3),h=3*u*Math.pow(1-u,2),p=3*Math.pow(u,2)*(1-u),d=Math.pow(u,3),m=f*i.y0+h*i.y0+p*i.y1+d*i.y1,g=m-i.width/2,v=m+i.width/2;g>o.y0&&go.y0&&vo.y1)&&(c=v-o.y0+10,o=N(o,c,e,r),t.nodes.forEach((function(t){b(t,n)!=b(o,n)&&t.column==o.column&&t.y0o.y1&&N(t,c,e,r)})))}}))}}))}function B(t,e){return t.y0>e.y0&&t.y0e.y0&&t.y1e.y1)}function N(t,e,r,n){return t.y0+e>=r&&t.y1+e<=n&&(t.y0=t.y0+e,t.y1=t.y1+e,t.targetLinks.forEach((function(t){t.y1=t.y1+e})),t.sourceLinks.forEach((function(t){t.y0=t.y0+e}))),t}function j(t,e,r,n){t.nodes.forEach((function(i){n&&i.y+(i.y1-i.y0)>e&&(i.y=i.y-(i.y+(i.y1-i.y0)-e));var a=t.links.filter((function(t){return b(t.source,r)==b(i,r)})),o=a.length;o>1&&a.sort((function(t,e){if(!t.circular&&!e.circular){if(t.target.column==e.target.column)return t.y1-e.y1;if(!V(t,e))return t.y1-e.y1;if(t.target.column>e.target.column){var r=R(e,t);return t.y1-r}if(e.target.column>t.target.column)return R(t,e)-e.y1}return t.circular&&!e.circular?"top"==t.circularLinkType?-1:1:e.circular&&!t.circular?"top"==e.circularLinkType?1:-1:t.circular&&e.circular?t.circularLinkType===e.circularLinkType&&"top"==t.circularLinkType?t.target.column===e.target.column?t.target.y1-e.target.y1:e.target.column-t.target.column:t.circularLinkType===e.circularLinkType&&"bottom"==t.circularLinkType?t.target.column===e.target.column?e.target.y1-t.target.y1:t.target.column-e.target.column:"top"==t.circularLinkType?-1:1:void 0}));var s=i.y0;a.forEach((function(t){t.y0=s+t.width/2,s+=t.width})),a.forEach((function(t,e){if("bottom"==t.circularLinkType){for(var r=e+1,n=0;r1&&n.sort((function(t,e){if(!t.circular&&!e.circular){if(t.source.column==e.source.column)return t.y0-e.y0;if(!V(t,e))return t.y0-e.y0;if(e.source.column0?"up":"down"}function q(t,e){return b(t.source,e)==b(t.target,e)}function G(t,r,n){var i=t.nodes,a=t.links,o=!1,s=!1;if(a.forEach((function(t){"top"==t.circularLinkType?o=!0:"bottom"==t.circularLinkType&&(s=!0)})),0==o||0==s){var l=e.min(i,(function(t){return t.y0})),c=(n-r)/(e.max(i,(function(t){return t.y1}))-l);i.forEach((function(t){var e=(t.y1-t.y0)*c;t.y0=(t.y0-l)*c,t.y1=t.y0+e})),a.forEach((function(t){t.y0=(t.y0-l)*c,t.y1=(t.y1-l)*c,t.width=t.width*c}))}}t.sankeyCircular=function(){var t,n,i=0,a=0,b=1,T=1,A=24,M=g,E=o,L=v,C=y,P=32,I=2,O=null;function z(){var t={nodes:L.apply(null,arguments),links:C.apply(null,arguments)};D(t),_(t,M,O),R(t),B(t),w(t,M),N(t,P,M),V(t);for(var e=4,r=0;r0?r+25+10:r,bottom:n=n>0?n+25+10:n,left:a=a>0?a+25+10:a,right:i=i>0?i+25+10:i}}(o),f=function(t,r){var n=e.max(t.nodes,(function(t){return t.column})),o=b-i,s=T-a,l=o/(o+r.right+r.left),c=s/(s+r.top+r.bottom);return i=i*l+r.left,b=0==r.right?b:b*l,a=a*c+r.top,T*=c,t.nodes.forEach((function(t){t.x0=i+t.column*((b-i-A)/n),t.x1=t.x0+A})),c}(o,u);l*=f,o.links.forEach((function(t){t.width=t.value*l})),c.forEach((function(t){var e=t.length;t.forEach((function(t,n){t.depth==c.length-1&&1==e||0==t.depth&&1==e?(t.y0=T/2-t.value*l,t.y1=t.y0+t.value*l):t.partOfCycle?0==k(t,r)?(t.y0=T/2+n,t.y1=t.y0+t.value*l):"top"==t.circularLinkType?(t.y0=a+n,t.y1=t.y0+t.value*l):(t.y0=T-t.value*l-n,t.y1=t.y0+t.value*l):0==u.top||0==u.bottom?(t.y0=(T-a)/e*n,t.y1=t.y0+t.value*l):(t.y0=(T-a)/2-e/2+n,t.y1=t.y0+t.value*l)}))}))}(l),y();for(var u=1,g=s;g>0;--g)v(u*=.99,l),y();function v(t,r){var n=c.length;c.forEach((function(i){var a=i.length,o=i[0].depth;i.forEach((function(i){var s;if(i.sourceLinks.length||i.targetLinks.length)if(i.partOfCycle&&k(i,r)>0);else if(0==o&&1==a)s=i.y1-i.y0,i.y0=T/2-s/2,i.y1=T/2+s/2;else if(o==n-1&&1==a)s=i.y1-i.y0,i.y0=T/2-s/2,i.y1=T/2+s/2;else{var l=e.mean(i.sourceLinks,m),c=e.mean(i.targetLinks,d),u=((l&&c?(l+c)/2:l||c)-p(i))*t;i.y0+=u,i.y1+=u}}))}))}function y(){c.forEach((function(e){var r,n,i,o=a,s=e.length;for(e.sort(f),i=0;i0&&(r.y0+=n,r.y1+=n),o=r.y1+t;if((n=o-t-T)>0)for(o=r.y0-=n,r.y1-=n,i=s-2;i>=0;--i)(n=(r=e[i]).y1+t-o)>0&&(r.y0-=n,r.y1-=n),o=r.y0}))}}function V(t){t.nodes.forEach((function(t){t.sourceLinks.sort(u),t.targetLinks.sort(c)})),t.nodes.forEach((function(t){var e=t.y0,r=e,n=t.y1,i=n;t.sourceLinks.forEach((function(t){t.circular?(t.y0=n-t.width/2,n-=t.width):(t.y0=e+t.width/2,e+=t.width)})),t.targetLinks.forEach((function(t){t.circular?(t.y1=i-t.width/2,i-=t.width):(t.y1=r+t.width/2,r+=t.width)}))}))}return z.nodeId=function(t){return arguments.length?(M="function"==typeof t?t:s(t),z):M},z.nodeAlign=function(t){return arguments.length?(E="function"==typeof t?t:s(t),z):E},z.nodeWidth=function(t){return arguments.length?(A=+t,z):A},z.nodePadding=function(e){return arguments.length?(t=+e,z):t},z.nodes=function(t){return arguments.length?(L="function"==typeof t?t:s(t),z):L},z.links=function(t){return arguments.length?(C="function"==typeof t?t:s(t),z):C},z.size=function(t){return arguments.length?(i=a=0,b=+t[0],T=+t[1],z):[b-i,T-a]},z.extent=function(t){return arguments.length?(i=+t[0][0],b=+t[1][0],a=+t[0][1],T=+t[1][1],z):[[i,a],[b,T]]},z.iterations=function(t){return arguments.length?(P=+t,z):P},z.circularLinkGap=function(t){return arguments.length?(I=+t,z):I},z.nodePaddingRatio=function(t){return arguments.length?(n=+t,z):n},z.sortNodes=function(t){return arguments.length?(O=t,z):O},z.update=function(t){return w(t,M),V(t),t.links.forEach((function(t){t.circular&&(t.circularLinkType=t.y0+t.y1a&&(b=a);var o=e.min(i,(function(t){return(y-n-(t.length-1)*b)/e.sum(t,u)}));i.forEach((function(t){t.forEach((function(t,e){t.y1=(t.y0=e)+t.value*o}))})),t.links.forEach((function(t){t.width=t.value*o}))}(),d();for(var a=1,o=A;o>0;--o)l(a*=.99),d(),s(a),d();function s(t){i.forEach((function(r){r.forEach((function(r){if(r.targetLinks.length){var n=(e.sum(r.targetLinks,h)/e.sum(r.targetLinks,u)-f(r))*t;r.y0+=n,r.y1+=n}}))}))}function l(t){i.slice().reverse().forEach((function(r){r.forEach((function(r){if(r.sourceLinks.length){var n=(e.sum(r.sourceLinks,p)/e.sum(r.sourceLinks,u)-f(r))*t;r.y0+=n,r.y1+=n}}))}))}function d(){i.forEach((function(t){var e,r,i,a=n,o=t.length;for(t.sort(c),i=0;i0&&(e.y0+=r,e.y1+=r),a=e.y1+b;if((r=a-b-y)>0)for(a=e.y0-=r,e.y1-=r,i=o-2;i>=0;--i)(r=(e=t[i]).y1+b-a)>0&&(e.y0-=r,e.y1-=r),a=e.y0}))}}function P(t){t.nodes.forEach((function(t){t.sourceLinks.sort(l),t.targetLinks.sort(s)})),t.nodes.forEach((function(t){var e=t.y0,r=e;t.sourceLinks.forEach((function(t){t.y0=e+t.width/2,e+=t.width})),t.targetLinks.forEach((function(t){t.y1=r+t.width/2,r+=t.width}))}))}return M.update=function(t){return P(t),t},M.nodeId=function(t){return arguments.length?(_="function"==typeof t?t:o(t),M):_},M.nodeAlign=function(t){return arguments.length?(w="function"==typeof t?t:o(t),M):w},M.nodeWidth=function(t){return arguments.length?(x=+t,M):x},M.nodePadding=function(t){return arguments.length?(b=+t,M):b},M.nodes=function(t){return arguments.length?(T="function"==typeof t?t:o(t),M):T},M.links=function(t){return arguments.length?(k="function"==typeof t?t:o(t),M):k},M.size=function(e){return arguments.length?(t=n=0,i=+e[0],y=+e[1],M):[i-t,y-n]},M.extent=function(e){return arguments.length?(t=+e[0][0],i=+e[1][0],n=+e[0][1],y=+e[1][1],M):[[t,n],[i,y]]},M.iterations=function(t){return arguments.length?(A=+t,M):A},M},t.sankeyCenter=function(t){return t.targetLinks.length?t.depth:t.sourceLinks.length?e.min(t.sourceLinks,i)-1:0},t.sankeyLeft=function(t){return t.depth},t.sankeyRight=function(t,e){return e-1-t.height},t.sankeyJustify=a,t.sankeyLinkHorizontal=function(){return n.linkHorizontal().source(y).target(x)},Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":102,"d3-collection":103,"d3-shape":114}],58:[function(t,e,r){(function(){var t={version:"3.8.0"},r=[].slice,n=function(t){return r.call(t)},i=self.document;function a(t){return t&&(t.ownerDocument||t.document||t).documentElement}function o(t){return t&&(t.ownerDocument&&t.ownerDocument.defaultView||t.document&&t||t.defaultView)}if(i)try{n(i.documentElement.childNodes)[0].nodeType}catch(t){n=function(t){for(var e=t.length,r=new Array(e);e--;)r[e]=t[e];return r}}if(Date.now||(Date.now=function(){return+new Date}),i)try{i.createElement("DIV").style.setProperty("opacity",0,"")}catch(t){var s=this.Element.prototype,l=s.setAttribute,c=s.setAttributeNS,u=this.CSSStyleDeclaration.prototype,f=u.setProperty;s.setAttribute=function(t,e){l.call(this,t,e+"")},s.setAttributeNS=function(t,e,r){c.call(this,t,e,r+"")},u.setProperty=function(t,e,r){f.call(this,t,e+"",r)}}function h(t,e){return te?1:t>=e?0:NaN}function p(t){return null===t?NaN:+t}function d(t){return!isNaN(t)}function m(t){return{left:function(e,r,n,i){for(arguments.length<3&&(n=0),arguments.length<4&&(i=e.length);n>>1;t(e[a],r)<0?n=a+1:i=a}return n},right:function(e,r,n,i){for(arguments.length<3&&(n=0),arguments.length<4&&(i=e.length);n>>1;t(e[a],r)>0?i=a:n=a+1}return n}}}t.ascending=h,t.descending=function(t,e){return et?1:e>=t?0:NaN},t.min=function(t,e){var r,n,i=-1,a=t.length;if(1===arguments.length){for(;++i=n){r=n;break}for(;++in&&(r=n)}else{for(;++i=n){r=n;break}for(;++in&&(r=n)}return r},t.max=function(t,e){var r,n,i=-1,a=t.length;if(1===arguments.length){for(;++i=n){r=n;break}for(;++ir&&(r=n)}else{for(;++i=n){r=n;break}for(;++ir&&(r=n)}return r},t.extent=function(t,e){var r,n,i,a=-1,o=t.length;if(1===arguments.length){for(;++a=n){r=i=n;break}for(;++an&&(r=n),i=n){r=i=n;break}for(;++an&&(r=n),i1)return o/(l-1)},t.deviation=function(){var e=t.variance.apply(this,arguments);return e?Math.sqrt(e):e};var g=m(h);function v(t){return t.length}t.bisectLeft=g.left,t.bisect=t.bisectRight=g.right,t.bisector=function(t){return m(1===t.length?function(e,r){return h(t(e),r)}:t)},t.shuffle=function(t,e,r){(a=arguments.length)<3&&(r=t.length,a<2&&(e=0));for(var n,i,a=r-e;a;)i=Math.random()*a--|0,n=t[a+e],t[a+e]=t[i+e],t[i+e]=n;return t},t.permute=function(t,e){for(var r=e.length,n=new Array(r);r--;)n[r]=t[e[r]];return n},t.pairs=function(t){for(var e=0,r=t.length-1,n=t[0],i=new Array(r<0?0:r);e=0;)for(e=(n=t[i]).length;--e>=0;)r[--o]=n[e];return r};var y=Math.abs;function x(t){for(var e=1;t*e%1;)e*=10;return e}function b(t,e){for(var r in e)Object.defineProperty(t.prototype,r,{value:e[r],enumerable:!1})}function _(){this._=Object.create(null)}t.range=function(t,e,r){if(arguments.length<3&&(r=1,arguments.length<2&&(e=t,t=0)),(e-t)/r==1/0)throw new Error("infinite range");var n,i=[],a=x(y(r)),o=-1;if(t*=a,e*=a,(r*=a)<0)for(;(n=t+r*++o)>e;)i.push(n/a);else for(;(n=t+r*++o)=i.length)return r?r.call(n,a):e?a.sort(e):a;for(var l,c,u,f,h=-1,p=a.length,d=i[s++],m=new _;++h=i.length)return e;var n=[],o=a[r++];return e.forEach((function(e,i){n.push({key:e,values:t(i,r)})})),o?n.sort((function(t,e){return o(t.key,e.key)})):n}(o(t.map,e,0),0)},n.key=function(t){return i.push(t),n},n.sortKeys=function(t){return a[i.length-1]=t,n},n.sortValues=function(t){return e=t,n},n.rollup=function(t){return r=t,n},n},t.set=function(t){var e=new L;if(t)for(var r=0,n=t.length;r=0&&(n=t.slice(r+1),t=t.slice(0,r)),t)return arguments.length<2?this[t].on(n):this[t].on(n,e);if(2===arguments.length){if(null==e)for(t in this)this.hasOwnProperty(t)&&this[t].on(n,null);return this}},t.event=null,t.requote=function(t){return t.replace(j,"\\$&")};var j=/[\\\^\$\*\+\?\|\[\]\(\)\.\{\}]/g,U={}.__proto__?function(t,e){t.__proto__=e}:function(t,e){for(var r in e)t[r]=e[r]};function V(t){return U(t,Y),t}var H=function(t,e){return e.querySelector(t)},q=function(t,e){return e.querySelectorAll(t)},G=function(t,e){var r=t.matches||t[I(t,"matchesSelector")];return(G=function(t,e){return r.call(t,e)})(t,e)};"function"==typeof Sizzle&&(H=function(t,e){return Sizzle(t,e)[0]||null},q=Sizzle,G=Sizzle.matchesSelector),t.selection=function(){return t.select(i.documentElement)};var Y=t.selection.prototype=[];function W(t){return"function"==typeof t?t:function(){return H(t,this)}}function X(t){return"function"==typeof t?t:function(){return q(t,this)}}Y.select=function(t){var e,r,n,i,a=[];t=W(t);for(var o=-1,s=this.length;++o=0&&"xmlns"!==(r=t.slice(0,e))&&(t=t.slice(e+1)),J.hasOwnProperty(r)?{space:J[r],local:t}:t}},Y.attr=function(e,r){if(arguments.length<2){if("string"==typeof e){var n=this.node();return(e=t.ns.qualify(e)).local?n.getAttributeNS(e.space,e.local):n.getAttribute(e)}for(r in e)this.each(K(r,e[r]));return this}return this.each(K(e,r))},Y.classed=function(t,e){if(arguments.length<2){if("string"==typeof t){var r=this.node(),n=(t=tt(t)).length,i=-1;if(e=r.classList){for(;++i=0;)(r=n[i])&&(a&&a!==r.nextSibling&&a.parentNode.insertBefore(r,a),a=r);return this},Y.sort=function(t){t=ct.apply(this,arguments);for(var e=-1,r=this.length;++e=e&&(e=i+1);!(o=s[e])&&++e0&&(e=e.slice(0,o));var l=mt.get(e);function c(){var t=this[a];t&&(this.removeEventListener(e,t,t.$),delete this[a])}return l&&(e=l,s=vt),o?r?function(){var t=s(r,n(arguments));c.call(this),this.addEventListener(e,this[a]=t,t.$=i),t._=r}:c:r?z:function(){var r,n=new RegExp("^__on([^.]+)"+t.requote(e)+"$");for(var i in this)if(r=i.match(n)){var a=this[i];this.removeEventListener(r[1],a,a.$),delete this[i]}}}t.selection.enter=ft,t.selection.enter.prototype=ht,ht.append=Y.append,ht.empty=Y.empty,ht.node=Y.node,ht.call=Y.call,ht.size=Y.size,ht.select=function(t){for(var e,r,n,i,a,o=[],s=-1,l=this.length;++s1?Et:t<-1?-Et:Math.asin(t)}function It(t){return((t=Math.exp(t))+1/t)/2}var Ot=Math.SQRT2;t.interpolateZoom=function(t,e){var r,n,i=t[0],a=t[1],o=t[2],s=e[0],l=e[1],c=e[2],u=s-i,f=l-a,h=u*u+f*f;if(h<1e-12)n=Math.log(c/o)/Ot,r=function(t){return[i+t*u,a+t*f,o*Math.exp(Ot*t*n)]};else{var p=Math.sqrt(h),d=(c*c-o*o+4*h)/(2*o*2*p),m=(c*c-o*o-4*h)/(2*c*2*p),g=Math.log(Math.sqrt(d*d+1)-d),v=Math.log(Math.sqrt(m*m+1)-m);n=(v-g)/Ot,r=function(t){var e,r=t*n,s=It(g),l=o/(2*p)*(s*(e=Ot*r+g,((e=Math.exp(2*e))-1)/(e+1))-function(t){return((t=Math.exp(t))-1/t)/2}(g));return[i+l*u,a+l*f,o*s/It(Ot*r+g)]}}return r.duration=1e3*n,r},t.behavior.zoom=function(){var e,r,n,a,s,l,c,u,f,h={x:0,y:0,k:1},p=[960,500],d=Rt,m=250,g=0,v="mousedown.zoom",y="mousemove.zoom",x="mouseup.zoom",b="touchstart.zoom",_=N(w,"zoomstart","zoom","zoomend");function w(t){t.on(v,P).on(Dt+".zoom",O).on("dblclick.zoom",z).on(b,I)}function T(t){return[(t[0]-h.x)/h.k,(t[1]-h.y)/h.k]}function k(t){h.k=Math.max(d[0],Math.min(d[1],t))}function A(t,e){e=function(t){return[t[0]*h.k+h.x,t[1]*h.k+h.y]}(e),h.x+=t[0]-e[0],h.y+=t[1]-e[1]}function M(e,n,i,a){e.__chart__={x:h.x,y:h.y,k:h.k},k(Math.pow(2,a)),A(r=n,i),e=t.select(e),m>0&&(e=e.transition().duration(m)),e.call(w.event)}function S(){c&&c.domain(l.range().map((function(t){return(t-h.x)/h.k})).map(l.invert)),f&&f.domain(u.range().map((function(t){return(t-h.y)/h.k})).map(u.invert))}function E(t){g++||t({type:"zoomstart"})}function L(t){S(),t({type:"zoom",scale:h.k,translate:[h.x,h.y]})}function C(t){--g||(t({type:"zoomend"}),r=null)}function P(){var e=this,r=_.of(e,arguments),n=0,i=t.select(o(e)).on(y,l).on(x,c),a=T(t.mouse(e)),s=bt(e);function l(){n=1,A(t.mouse(e),a),L(r)}function c(){i.on(y,null).on(x,null),s(n),C(r)}Di.call(e),E(r)}function I(){var e,r=this,n=_.of(r,arguments),i={},a=0,o=".zoom-"+t.event.changedTouches[0].identifier,l="touchmove"+o,c="touchend"+o,u=[],f=t.select(r),p=bt(r);function d(){var n=t.touches(r);return e=h.k,n.forEach((function(t){t.identifier in i&&(i[t.identifier]=T(t))})),n}function m(){var e=t.event.target;t.select(e).on(l,g).on(c,y),u.push(e);for(var n=t.event.changedTouches,o=0,f=n.length;o1){v=p[0];var x=p[1],b=v[0]-x[0],_=v[1]-x[1];a=b*b+_*_}}function g(){var o,l,c,u,f=t.touches(r);Di.call(r);for(var h=0,p=f.length;h360?t-=360:t<0&&(t+=360),t<60?n+(i-n)*t/60:t<180?i:t<240?n+(i-n)*(240-t)/60:n}(t))}return t=isNaN(t)?0:(t%=360)<0?t+360:t,e=isNaN(e)||e<0?0:e>1?1:e,n=2*(r=r<0?0:r>1?1:r)-(i=r<=.5?r*(1+e):r+e-r*e),new Qt(a(t+120),a(t),a(t-120))}function Ut(e,r,n){return this instanceof Ut?(this.h=+e,this.c=+r,void(this.l=+n)):arguments.length<2?e instanceof Ut?new Ut(e.h,e.c,e.l):Xt(e instanceof qt?e.l:(e=ae((e=t.rgb(e)).r,e.g,e.b)).l,e.a,e.b):new Ut(e,r,n)}Nt.brighter=function(t){return t=Math.pow(.7,arguments.length?t:1),new Bt(this.h,this.s,this.l/t)},Nt.darker=function(t){return t=Math.pow(.7,arguments.length?t:1),new Bt(this.h,this.s,t*this.l)},Nt.rgb=function(){return jt(this.h,this.s,this.l)},t.hcl=Ut;var Vt=Ut.prototype=new Ft;function Ht(t,e,r){return isNaN(t)&&(t=0),isNaN(e)&&(e=0),new qt(r,Math.cos(t*=Lt)*e,Math.sin(t)*e)}function qt(t,e,r){return this instanceof qt?(this.l=+t,this.a=+e,void(this.b=+r)):arguments.length<2?t instanceof qt?new qt(t.l,t.a,t.b):t instanceof Ut?Ht(t.h,t.c,t.l):ae((t=Qt(t)).r,t.g,t.b):new qt(t,e,r)}Vt.brighter=function(t){return new Ut(this.h,this.c,Math.min(100,this.l+Gt*(arguments.length?t:1)))},Vt.darker=function(t){return new Ut(this.h,this.c,Math.max(0,this.l-Gt*(arguments.length?t:1)))},Vt.rgb=function(){return Ht(this.h,this.c,this.l).rgb()},t.lab=qt;var Gt=18,Yt=qt.prototype=new Ft;function Wt(t,e,r){var n=(t+16)/116,i=n+e/500,a=n-r/200;return new Qt(Kt(3.2404542*(i=.95047*Zt(i))-1.5371385*(n=1*Zt(n))-.4985314*(a=1.08883*Zt(a))),Kt(-.969266*i+1.8760108*n+.041556*a),Kt(.0556434*i-.2040259*n+1.0572252*a))}function Xt(t,e,r){return t>0?new Ut(Math.atan2(r,e)*Ct,Math.sqrt(e*e+r*r),t):new Ut(NaN,NaN,t)}function Zt(t){return t>.206893034?t*t*t:(t-4/29)/7.787037}function Jt(t){return t>.008856?Math.pow(t,1/3):7.787037*t+4/29}function Kt(t){return Math.round(255*(t<=.00304?12.92*t:1.055*Math.pow(t,1/2.4)-.055))}function Qt(t,e,r){return this instanceof Qt?(this.r=~~t,this.g=~~e,void(this.b=~~r)):arguments.length<2?t instanceof Qt?new Qt(t.r,t.g,t.b):ne(""+t,Qt,jt):new Qt(t,e,r)}function $t(t){return new Qt(t>>16,t>>8&255,255&t)}function te(t){return $t(t)+""}Yt.brighter=function(t){return new qt(Math.min(100,this.l+Gt*(arguments.length?t:1)),this.a,this.b)},Yt.darker=function(t){return new qt(Math.max(0,this.l-Gt*(arguments.length?t:1)),this.a,this.b)},Yt.rgb=function(){return Wt(this.l,this.a,this.b)},t.rgb=Qt;var ee=Qt.prototype=new Ft;function re(t){return t<16?"0"+Math.max(0,t).toString(16):Math.min(255,t).toString(16)}function ne(t,e,r){var n,i,a,o=0,s=0,l=0;if(n=/([a-z]+)\((.*)\)/.exec(t=t.toLowerCase()))switch(i=n[2].split(","),n[1]){case"hsl":return r(parseFloat(i[0]),parseFloat(i[1])/100,parseFloat(i[2])/100);case"rgb":return e(se(i[0]),se(i[1]),se(i[2]))}return(a=le.get(t))?e(a.r,a.g,a.b):(null==t||"#"!==t.charAt(0)||isNaN(a=parseInt(t.slice(1),16))||(4===t.length?(o=(3840&a)>>4,o|=o>>4,s=240&a,s|=s>>4,l=15&a,l|=l<<4):7===t.length&&(o=(16711680&a)>>16,s=(65280&a)>>8,l=255&a)),e(o,s,l))}function ie(t,e,r){var n,i,a=Math.min(t/=255,e/=255,r/=255),o=Math.max(t,e,r),s=o-a,l=(o+a)/2;return s?(i=l<.5?s/(o+a):s/(2-o-a),n=t==o?(e-r)/s+(e0&&l<1?0:n),new Bt(n,i,l)}function ae(t,e,r){var n=Jt((.4124564*(t=oe(t))+.3575761*(e=oe(e))+.1804375*(r=oe(r)))/.95047),i=Jt((.2126729*t+.7151522*e+.072175*r)/1);return qt(116*i-16,500*(n-i),200*(i-Jt((.0193339*t+.119192*e+.9503041*r)/1.08883)))}function oe(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function se(t){var e=parseFloat(t);return"%"===t.charAt(t.length-1)?Math.round(2.55*e):e}ee.brighter=function(t){t=Math.pow(.7,arguments.length?t:1);var e=this.r,r=this.g,n=this.b,i=30;return e||r||n?(e&&e=200&&e<300||304===e){try{t=i.call(o,c)}catch(t){return void s.error.call(o,t)}s.load.call(o,t)}else s.error.call(o,c)}return self.XDomainRequest&&!("withCredentials"in c)&&/^(http(s)?:)?\/\//.test(e)&&(c=new XDomainRequest),"onload"in c?c.onload=c.onerror=f:c.onreadystatechange=function(){c.readyState>3&&f()},c.onprogress=function(e){var r=t.event;t.event=e;try{s.progress.call(o,c)}finally{t.event=r}},o.header=function(t,e){return t=(t+"").toLowerCase(),arguments.length<2?l[t]:(null==e?delete l[t]:l[t]=e+"",o)},o.mimeType=function(t){return arguments.length?(r=null==t?null:t+"",o):r},o.responseType=function(t){return arguments.length?(u=t,o):u},o.response=function(t){return i=t,o},["get","post"].forEach((function(t){o[t]=function(){return o.send.apply(o,[t].concat(n(arguments)))}})),o.send=function(t,n,i){if(2===arguments.length&&"function"==typeof n&&(i=n,n=null),c.open(t,e,!0),null==r||"accept"in l||(l.accept=r+",*/*"),c.setRequestHeader)for(var a in l)c.setRequestHeader(a,l[a]);return null!=r&&c.overrideMimeType&&c.overrideMimeType(r),null!=u&&(c.responseType=u),null!=i&&o.on("error",i).on("load",(function(t){i(null,t)})),s.beforesend.call(o,c),c.send(null==n?null:n),o},o.abort=function(){return c.abort(),o},t.rebind(o,s,"on"),null==a?o:o.get(function(t){return 1===t.length?function(e,r){t(null==e?r:null)}:t}(a))}le.forEach((function(t,e){le.set(t,$t(e))})),t.functor=ce,t.xhr=ue(C),t.dsv=function(t,e){var r=new RegExp('["'+t+"\n]"),n=t.charCodeAt(0);function i(t,r,n){arguments.length<3&&(n=r,r=null);var i=fe(t,e,null==r?a:o(r),n);return i.row=function(t){return arguments.length?i.response(null==(r=t)?a:o(t)):r},i}function a(t){return i.parse(t.responseText)}function o(t){return function(e){return i.parse(e.responseText,t)}}function s(e){return e.map(l).join(t)}function l(t){return r.test(t)?'"'+t.replace(/\"/g,'""')+'"':t}return i.parse=function(t,e){var r;return i.parseRows(t,(function(t,n){if(r)return r(t,n-1);var i=function(e){for(var r={},n=t.length,i=0;i=l)return o;if(i)return i=!1,a;var e=c;if(34===t.charCodeAt(e)){for(var r=e;r++24?(isFinite(e)&&(clearTimeout(me),me=setTimeout(ye,e)),de=0):(de=1,ge(ye))}function xe(){for(var t=Date.now(),e=he;e;)t>=e.t&&e.c(t-e.t)&&(e.c=null),e=e.n;return t}function be(){for(var t,e=he,r=1/0;e;)e.c?(e.t1&&(e=t[a[o-2]],r=t[a[o-1]],n=t[s],(r[0]-e[0])*(n[1]-e[1])-(r[1]-e[1])*(n[0]-e[0])<=0);)--o;a[o++]=s}return a.slice(0,o)}function ke(t,e){return t[0]-e[0]||t[1]-e[1]}t.timer=function(){ve.apply(this,arguments)},t.timer.flush=function(){xe(),be()},t.round=function(t,e){return e?Math.round(t*(e=Math.pow(10,e)))/e:Math.round(t)},t.geom={},t.geom.hull=function(t){var e=_e,r=we;if(arguments.length)return n(t);function n(t){if(t.length<3)return[];var n,i=ce(e),a=ce(r),o=t.length,s=[],l=[];for(n=0;n=0;--n)p.push(t[s[c[n]][2]]);for(n=+f;nkt)s=s.L;else{if(!((i=a-Ve(s,o))>kt)){n>-kt?(e=s.P,r=s):i>-kt?(e=s,r=s.N):e=r=s;break}if(!s.R){e=s;break}s=s.R}var l=Fe(t);if(Pe.insert(e,l),e||r){if(e===r)return We(e),r=Fe(e.site),Pe.insert(l,r),l.edge=r.edge=Je(e.site,l.site),Ye(e),void Ye(r);if(r){We(e),We(r);var c=e.site,u=c.x,f=c.y,h=t.x-u,p=t.y-f,d=r.site,m=d.x-u,g=d.y-f,v=2*(h*g-p*m),y=h*h+p*p,x=m*m+g*g,b={x:(g*y-p*x)/v+u,y:(h*x-m*y)/v+f};Qe(r.edge,c,d,b),l.edge=Je(c,t,null,b),r.edge=Je(t,d,null,b),Ye(e),Ye(r)}else l.edge=Je(e.site,l.site)}}function Ue(t,e){var r=t.site,n=r.x,i=r.y,a=i-e;if(!a)return n;var o=t.P;if(!o)return-1/0;var s=(r=o.site).x,l=r.y,c=l-e;if(!c)return s;var u=s-n,f=1/a-1/c,h=u/c;return f?(-h+Math.sqrt(h*h-2*f*(u*u/(-2*c)-l+c/2+i-a/2)))/f+n:(n+s)/2}function Ve(t,e){var r=t.N;if(r)return Ue(r,e);var n=t.site;return n.y===e?n.x:1/0}function He(t){this.site=t,this.edges=[]}function qe(t,e){return e.angle-t.angle}function Ge(){er(this),this.x=this.y=this.arc=this.site=this.cy=null}function Ye(t){var e=t.P,r=t.N;if(e&&r){var n=e.site,i=t.site,a=r.site;if(n!==a){var o=i.x,s=i.y,l=n.x-o,c=n.y-s,u=a.x-o,f=2*(l*(g=a.y-s)-c*u);if(!(f>=-1e-12)){var h=l*l+c*c,p=u*u+g*g,d=(g*h-c*p)/f,m=(l*p-u*h)/f,g=m+s,v=De.pop()||new Ge;v.arc=t,v.site=i,v.x=d+o,v.y=g+Math.sqrt(d*d+m*m),v.cy=g,t.circle=v;for(var y=null,x=Oe._;x;)if(v.y=s)return;if(h>d){if(a){if(a.y>=c)return}else a={x:g,y:l};r={x:g,y:c}}else{if(a){if(a.y1)if(h>d){if(a){if(a.y>=c)return}else a={x:(l-i)/n,y:l};r={x:(c-i)/n,y:c}}else{if(a){if(a.y=s)return}else a={x:o,y:n*o+i};r={x:s,y:n*s+i}}else{if(a){if(a.x0)){if(e/=h,h<0){if(e0){if(e>f)return;e>u&&(u=e)}if(e=i-l,h||!(e<0)){if(e/=h,h<0){if(e>f)return;e>u&&(u=e)}else if(h>0){if(e0)){if(e/=p,p<0){if(e0){if(e>f)return;e>u&&(u=e)}if(e=a-c,p||!(e<0)){if(e/=p,p<0){if(e>f)return;e>u&&(u=e)}else if(p>0){if(e0&&(t.a={x:l+u*h,y:c+u*p}),f<1&&(t.b={x:l+f*h,y:c+f*p}),t}}}}}),l=o.length;l--;)(!Xe(e=o[l],t)||!s(e)||y(e.a.x-e.b.x)kt||y(i-r)>kt)&&(s.splice(o,0,new $e(Ke(a.site,u,y(n-f)kt?{x:f,y:y(e-f)kt?{x:y(r-d)kt?{x:h,y:y(e-h)kt?{x:y(r-p)=r&&c.x<=i&&c.y>=n&&c.y<=o?[[r,o],[i,o],[i,n],[r,n]]:[]).point=t[s]})),e}function s(t){return t.map((function(t,e){return{x:Math.round(n(t,e)/kt)*kt,y:Math.round(i(t,e)/kt)*kt,i:e}}))}return o.links=function(t){return ar(s(t)).edges.filter((function(t){return t.l&&t.r})).map((function(e){return{source:t[e.l.i],target:t[e.r.i]}}))},o.triangles=function(t){var e=[];return ar(s(t)).cells.forEach((function(r,n){for(var i,a,o,s,l=r.site,c=r.edges.sort(qe),u=-1,f=c.length,h=c[f-1].edge,p=h.l===l?h.r:h.l;++ua||f>o||h=_)<<1|e>=b,T=w+4;wa&&(i=e.slice(a,i),s[o]?s[o]+=i:s[++o]=i),(r=r[0])===(n=n[0])?s[o]?s[o]+=n:s[++o]=n:(s[++o]=null,l.push({i:o,x:dr(r,n)})),a=vr.lastIndex;return am&&(m=l.x),l.y>g&&(g=l.y),c.push(l.x),u.push(l.y);else for(f=0;fm&&(m=b),_>g&&(g=_),c.push(b),u.push(_)}var w=m-p,T=g-d;function k(t,e,r,n,i,a,o,s){if(!isNaN(r)&&!isNaN(n))if(t.leaf){var l=t.x,c=t.y;if(null!=l)if(y(l-r)+y(c-n)<.01)A(t,e,r,n,i,a,o,s);else{var u=t.point;t.x=t.y=t.point=null,A(t,u,l,c,i,a,o,s),A(t,e,r,n,i,a,o,s)}else t.x=r,t.y=n,t.point=e}else A(t,e,r,n,i,a,o,s)}function A(t,e,r,n,i,a,o,s){var l=.5*(i+o),c=.5*(a+s),u=r>=l,f=n>=c,h=f<<1|u;t.leaf=!1,u?i=l:o=l,f?a=c:s=c,k(t=t.nodes[h]||(t.nodes[h]={leaf:!0,nodes:[],point:null,x:null,y:null}),e,r,n,i,a,o,s)}w>T?g=d+w:m=p+T;var M={leaf:!0,nodes:[],point:null,x:null,y:null,add:function(t){k(M,t,+v(t,++f),+x(t,f),p,d,m,g)},visit:function(t){ur(t,M,p,d,m,g)},find:function(t){return fr(M,t[0],t[1],p,d,m,g)}};if(f=-1,null==e){for(;++f=0&&!(n=t.interpolators[i](e,r)););return n}function xr(t,e){var r,n=[],i=[],a=t.length,o=e.length,s=Math.min(t.length,e.length);for(r=0;r=1?1:t(e)}}function kr(t){return function(e){return 1-t(1-e)}}function Ar(t){return function(e){return.5*(e<.5?t(2*e):2-t(2-2*e))}}function Mr(t){return t*t}function Sr(t){return t*t*t}function Er(t){if(t<=0)return 0;if(t>=1)return 1;var e=t*t,r=e*t;return 4*(t<.5?r:3*(t-e)+r-.75)}function Lr(t){return 1-Math.cos(t*Et)}function Cr(t){return Math.pow(2,10*(t-1))}function Pr(t){return 1-Math.sqrt(1-t*t)}function Ir(t){return t<1/2.75?7.5625*t*t:t<2/2.75?7.5625*(t-=1.5/2.75)*t+.75:t<2.5/2.75?7.5625*(t-=2.25/2.75)*t+.9375:7.5625*(t-=2.625/2.75)*t+.984375}function Or(t,e){return e-=t,function(r){return Math.round(t+e*r)}}function zr(t){var e,r,n,i=[t.a,t.b],a=[t.c,t.d],o=Rr(i),s=Dr(i,a),l=Rr(((e=a)[0]+=(n=-s)*(r=i)[0],e[1]+=n*r[1],e))||0;i[0]*a[1]=0?t.slice(0,e):t,i=e>=0?t.slice(e+1):"in";return n=_r.get(n)||br,Tr((i=wr.get(i)||C)(n.apply(null,r.call(arguments,1))))},t.interpolateHcl=function(e,r){e=t.hcl(e),r=t.hcl(r);var n=e.h,i=e.c,a=e.l,o=r.h-n,s=r.c-i,l=r.l-a;isNaN(s)&&(s=0,i=isNaN(i)?r.c:i);isNaN(o)?(o=0,n=isNaN(n)?r.h:n):o>180?o-=360:o<-180&&(o+=360);return function(t){return Ht(n+o*t,i+s*t,a+l*t)+""}},t.interpolateHsl=function(e,r){e=t.hsl(e),r=t.hsl(r);var n=e.h,i=e.s,a=e.l,o=r.h-n,s=r.s-i,l=r.l-a;isNaN(s)&&(s=0,i=isNaN(i)?r.s:i);isNaN(o)?(o=0,n=isNaN(n)?r.h:n):o>180?o-=360:o<-180&&(o+=360);return function(t){return jt(n+o*t,i+s*t,a+l*t)+""}},t.interpolateLab=function(e,r){e=t.lab(e),r=t.lab(r);var n=e.l,i=e.a,a=e.b,o=r.l-n,s=r.a-i,l=r.b-a;return function(t){return Wt(n+o*t,i+s*t,a+l*t)+""}},t.interpolateRound=Or,t.transform=function(e){var r=i.createElementNS(t.ns.prefix.svg,"g");return(t.transform=function(t){if(null!=t){r.setAttribute("transform",t);var e=r.transform.baseVal.consolidate()}return new zr(e?e.matrix:Fr)})(e)},zr.prototype.toString=function(){return"translate("+this.translate+")rotate("+this.rotate+")skewX("+this.skew+")scale("+this.scale+")"};var Fr={a:1,b:0,c:0,d:1,e:0,f:0};function Br(t){return t.length?t.pop()+",":""}function Nr(e,r){var n=[],i=[];return e=t.transform(e),r=t.transform(r),function(t,e,r,n){if(t[0]!==e[0]||t[1]!==e[1]){var i=r.push("translate(",null,",",null,")");n.push({i:i-4,x:dr(t[0],e[0])},{i:i-2,x:dr(t[1],e[1])})}else(e[0]||e[1])&&r.push("translate("+e+")")}(e.translate,r.translate,n,i),function(t,e,r,n){t!==e?(t-e>180?e+=360:e-t>180&&(t+=360),n.push({i:r.push(Br(r)+"rotate(",null,")")-2,x:dr(t,e)})):e&&r.push(Br(r)+"rotate("+e+")")}(e.rotate,r.rotate,n,i),function(t,e,r,n){t!==e?n.push({i:r.push(Br(r)+"skewX(",null,")")-2,x:dr(t,e)}):e&&r.push(Br(r)+"skewX("+e+")")}(e.skew,r.skew,n,i),function(t,e,r,n){if(t[0]!==e[0]||t[1]!==e[1]){var i=r.push(Br(r)+"scale(",null,",",null,")");n.push({i:i-4,x:dr(t[0],e[0])},{i:i-2,x:dr(t[1],e[1])})}else 1===e[0]&&1===e[1]||r.push(Br(r)+"scale("+e+")")}(e.scale,r.scale,n,i),e=r=null,function(t){for(var e,r=-1,a=i.length;++r0?n=t:(e.c=null,e.t=NaN,e=null,l.end({type:"end",alpha:n=0})):t>0&&(l.start({type:"start",alpha:n=t}),e=ve(s.tick)),s):n},s.start=function(){var t,e,r,n=v.length,l=y.length,u=c[0],d=c[1];for(t=0;t=0;)r.push(i[n])}function $r(t,e){for(var r=[t],n=[];null!=(t=r.pop());)if(n.push(t),(a=t.children)&&(i=a.length))for(var i,a,o=-1;++o=0;)o.push(u=c[l]),u.parent=a,u.depth=a.depth+1;r&&(a.value=0),a.children=c}else r&&(a.value=+r.call(n,a,a.depth)||0),delete a.children;return $r(i,(function(e){var n,i;t&&(n=e.children)&&n.sort(t),r&&(i=e.parent)&&(i.value+=e.value)})),s}return n.sort=function(e){return arguments.length?(t=e,n):t},n.children=function(t){return arguments.length?(e=t,n):e},n.value=function(t){return arguments.length?(r=t,n):r},n.revalue=function(t){return r&&(Qr(t,(function(t){t.children&&(t.value=0)})),$r(t,(function(t){var e;t.children||(t.value=+r.call(n,t,t.depth)||0),(e=t.parent)&&(e.value+=t.value)}))),t},n},t.layout.partition=function(){var e=t.layout.hierarchy(),r=[1,1];function n(t,n){var i=e.call(this,t,n);return function t(e,r,n,i){var a=e.children;if(e.x=r,e.y=e.depth*i,e.dx=n,e.dy=i,a&&(o=a.length)){var o,s,l,c=-1;for(n=e.value?n/e.value:0;++cs&&(s=n),o.push(n)}for(r=0;ri&&(n=r,i=e);return n}function dn(t){return t.reduce(mn,0)}function mn(t,e){return t+e[1]}function gn(t,e){return vn(t,Math.ceil(Math.log(e.length)/Math.LN2+1))}function vn(t,e){for(var r=-1,n=+t[0],i=(t[1]-n)/e,a=[];++r<=e;)a[r]=i*r+n;return a}function yn(e){return[t.min(e),t.max(e)]}function xn(t,e){return t.value-e.value}function bn(t,e){var r=t._pack_next;t._pack_next=e,e._pack_prev=t,e._pack_next=r,r._pack_prev=e}function _n(t,e){t._pack_next=e,e._pack_prev=t}function wn(t,e){var r=e.x-t.x,n=e.y-t.y,i=t.r+e.r;return.999*i*i>r*r+n*n}function Tn(t){if((e=t.children)&&(l=e.length)){var e,r,n,i,a,o,s,l,c=1/0,u=-1/0,f=1/0,h=-1/0;if(e.forEach(kn),(r=e[0]).x=-r.r,r.y=0,x(r),l>1&&((n=e[1]).x=n.r,n.y=0,x(n),l>2))for(Mn(r,n,i=e[2]),x(i),bn(r,i),r._pack_prev=i,bn(i,n),n=r._pack_next,a=3;a0)for(o=-1;++o=f[0]&&l<=f[1]&&((s=c[t.bisect(h,l,1,d)-1]).y+=m,s.push(a[o]));return c}return a.value=function(t){return arguments.length?(r=t,a):r},a.range=function(t){return arguments.length?(n=ce(t),a):n},a.bins=function(t){return arguments.length?(i="number"==typeof t?function(e){return vn(e,t)}:ce(t),a):i},a.frequency=function(t){return arguments.length?(e=!!t,a):e},a},t.layout.pack=function(){var e,r=t.layout.hierarchy().sort(xn),n=0,i=[1,1];function a(t,a){var o=r.call(this,t,a),s=o[0],l=i[0],c=i[1],u=null==e?Math.sqrt:"function"==typeof e?e:function(){return e};if(s.x=s.y=0,$r(s,(function(t){t.r=+u(t.value)})),$r(s,Tn),n){var f=n*(e?1:Math.max(2*s.r/l,2*s.r/c))/2;$r(s,(function(t){t.r+=f})),$r(s,Tn),$r(s,(function(t){t.r-=f}))}return function t(e,r,n,i){var a=e.children;if(e.x=r+=i*e.x,e.y=n+=i*e.y,e.r*=i,a)for(var o=-1,s=a.length;++op.x&&(p=t),t.depth>d.depth&&(d=t)}));var m=r(h,p)/2-h.x,g=n[0]/(p.x+r(p,h)/2+m),v=n[1]/(d.depth||1);Qr(u,(function(t){t.x=(t.x+m)*g,t.y=t.depth*v}))}return c}function o(t){var e=t.children,n=t.parent.children,i=t.i?n[t.i-1]:null;if(e.length){!function(t){var e,r=0,n=0,i=t.children,a=i.length;for(;--a>=0;)(e=i[a]).z+=r,e.m+=r,r+=e.s+(n+=e.c)}(t);var a=(e[0].z+e[e.length-1].z)/2;i?(t.z=i.z+r(t._,i._),t.m=t.z-a):t.z=a}else i&&(t.z=i.z+r(t._,i._));t.parent.A=function(t,e,n){if(e){for(var i,a=t,o=t,s=e,l=a.parent.children[0],c=a.m,u=o.m,f=s.m,h=l.m;s=Ln(s),a=En(a),s&&a;)l=En(l),(o=Ln(o)).a=t,(i=s.z+f-a.z-c+r(s._,a._))>0&&(Cn(Pn(s,t,n),t,i),c+=i,u+=i),f+=s.m,c+=a.m,h+=l.m,u+=o.m;s&&!Ln(o)&&(o.t=s,o.m+=f-u),a&&!En(l)&&(l.t=a,l.m+=c-h,n=t)}return n}(t,i,t.parent.A||n[0])}function s(t){t._.x=t.z+t.parent.m,t.m+=t.parent.m}function l(t){t.x*=n[0],t.y=t.depth*n[1]}return a.separation=function(t){return arguments.length?(r=t,a):r},a.size=function(t){return arguments.length?(i=null==(n=t)?l:null,a):i?null:n},a.nodeSize=function(t){return arguments.length?(i=null==(n=t)?null:l,a):i?n:null},Kr(a,e)},t.layout.cluster=function(){var e=t.layout.hierarchy().sort(null).value(null),r=Sn,n=[1,1],i=!1;function a(a,o){var s,l=e.call(this,a,o),c=l[0],u=0;$r(c,(function(e){var n=e.children;n&&n.length?(e.x=function(t){return t.reduce((function(t,e){return t+e.x}),0)/t.length}(n),e.y=function(e){return 1+t.max(e,(function(t){return t.y}))}(n)):(e.x=s?u+=r(e,s):0,e.y=0,s=e)}));var f=function t(e){var r=e.children;return r&&r.length?t(r[0]):e}(c),h=function t(e){var r,n=e.children;return n&&(r=n.length)?t(n[r-1]):e}(c),p=f.x-r(f,h)/2,d=h.x+r(h,f)/2;return $r(c,i?function(t){t.x=(t.x-c.x)*n[0],t.y=(c.y-t.y)*n[1]}:function(t){t.x=(t.x-p)/(d-p)*n[0],t.y=(1-(c.y?t.y/c.y:1))*n[1]}),l}return a.separation=function(t){return arguments.length?(r=t,a):r},a.size=function(t){return arguments.length?(i=null==(n=t),a):i?null:n},a.nodeSize=function(t){return arguments.length?(i=null!=(n=t),a):i?n:null},Kr(a,e)},t.layout.treemap=function(){var e,r=t.layout.hierarchy(),n=Math.round,i=[1,1],a=null,o=In,s=!1,l="squarify",c=.5*(1+Math.sqrt(5));function u(t,e){for(var r,n,i=-1,a=t.length;++i0;)s.push(r=c[i-1]),s.area+=r.area,"squarify"!==l||(n=p(s,m))<=h?(c.pop(),h=n):(s.area-=s.pop().area,d(s,m,a,!1),m=Math.min(a.dx,a.dy),s.length=s.area=0,h=1/0);s.length&&(d(s,m,a,!0),s.length=s.area=0),e.forEach(f)}}function h(t){var e=t.children;if(e&&e.length){var r,n=o(t),i=e.slice(),a=[];for(u(i,n.dx*n.dy/t.value),a.area=0;r=i.pop();)a.push(r),a.area+=r.area,null!=r.z&&(d(a,r.z?n.dx:n.dy,n,!i.length),a.length=a.area=0);e.forEach(h)}}function p(t,e){for(var r,n=t.area,i=0,a=1/0,o=-1,s=t.length;++oi&&(i=r));return e*=e,(n*=n)?Math.max(e*i*c/n,n/(e*a*c)):1/0}function d(t,e,r,i){var a,o=-1,s=t.length,l=r.x,c=r.y,u=e?n(t.area/e):0;if(e==r.dx){for((i||u>r.dy)&&(u=r.dy);++or.dx)&&(u=r.dx);++o1);return t+e*r*Math.sqrt(-2*Math.log(i)/i)}},logNormal:function(){var e=t.random.normal.apply(t,arguments);return function(){return Math.exp(e())}},bates:function(e){var r=t.random.irwinHall(e);return function(){return r()/e}},irwinHall:function(t){return function(){for(var e=0,r=0;r2?jn:Rn,s=i?Ur:jr;return a=t(e,r,s,n),o=t(r,e,s,yr),l}function l(t){return a(t)}return l.invert=function(t){return o(t)},l.domain=function(t){return arguments.length?(e=t.map(Number),s()):e},l.range=function(t){return arguments.length?(r=t,s()):r},l.rangeRound=function(t){return l.range(t).interpolate(Or)},l.clamp=function(t){return arguments.length?(i=t,s()):i},l.interpolate=function(t){return arguments.length?(n=t,s()):n},l.ticks=function(t){return qn(e,t)},l.tickFormat=function(t,r){return d3_scale_linearTickFormat(e,t,r)},l.nice=function(t){return Vn(e,t),s()},l.copy=function(){return t(e,r,n,i)},s()}([0,1],[0,1],yr,!1)};t.scale.log=function(){return function t(e,r,n,i){function a(t){return(n?Math.log(t<0?0:t):-Math.log(t>0?0:-t))/Math.log(r)}function o(t){return n?Math.pow(r,t):-Math.pow(r,-t)}function s(t){return e(a(t))}return s.invert=function(t){return o(e.invert(t))},s.domain=function(t){return arguments.length?(n=t[0]>=0,e.domain((i=t.map(Number)).map(a)),s):i},s.base=function(t){return arguments.length?(r=+t,e.domain(i.map(a)),s):r},s.nice=function(){var t=Fn(i.map(a),n?Math:Gn);return e.domain(t),i=t.map(o),s},s.ticks=function(){var t=zn(i),e=[],s=t[0],l=t[1],c=Math.floor(a(s)),u=Math.ceil(a(l)),f=r%1?2:r;if(isFinite(u-c)){if(n){for(;c0;h--)e.push(o(c)*h);for(c=0;e[c]l;u--);e=e.slice(c,u)}return e},s.copy=function(){return t(e.copy(),r,n,i)},Un(s,e)}(t.scale.linear().domain([0,1]),10,!0,[1,10])};var Gn={floor:function(t){return-Math.ceil(-t)},ceil:function(t){return-Math.floor(-t)}};function Yn(t){return function(e){return e<0?-Math.pow(-e,t):Math.pow(e,t)}}t.scale.pow=function(){return function t(e,r,n){var i=Yn(r),a=Yn(1/r);function o(t){return e(i(t))}return o.invert=function(t){return a(e.invert(t))},o.domain=function(t){return arguments.length?(e.domain((n=t.map(Number)).map(i)),o):n},o.ticks=function(t){return qn(n,t)},o.tickFormat=function(t,e){return d3_scale_linearTickFormat(n,t,e)},o.nice=function(t){return o.domain(Vn(n,t))},o.exponent=function(t){return arguments.length?(i=Yn(r=t),a=Yn(1/r),e.domain(n.map(i)),o):r},o.copy=function(){return t(e.copy(),r,n)},Un(o,e)}(t.scale.linear(),1,[0,1])},t.scale.sqrt=function(){return t.scale.pow().exponent(.5)},t.scale.ordinal=function(){return function e(r,n){var i,a,o;function s(t){return a[((i.get(t)||("range"===n.t?i.set(t,r.push(t)):NaN))-1)%a.length]}function l(e,n){return t.range(r.length).map((function(t){return e+n*t}))}return s.domain=function(t){if(!arguments.length)return r;r=[],i=new _;for(var e,a=-1,o=t.length;++a0?i[t-1]:r[0],tf?0:1;if(c=St)return l(c,p)+(s?l(s,1-p):"")+"Z";var d,m,g,v,y,x,b,_,w,T,k,A,M=0,S=0,E=[];if((v=(+o.apply(this,arguments)||0)/2)&&(g=n===Qn?Math.sqrt(s*s+c*c):+n.apply(this,arguments),p||(S*=-1),c&&(S=Pt(g/c*Math.sin(v))),s&&(M=Pt(g/s*Math.sin(v)))),c){y=c*Math.cos(u+S),x=c*Math.sin(u+S),b=c*Math.cos(f-S),_=c*Math.sin(f-S);var L=Math.abs(f-u-2*S)<=At?0:1;if(S&&ii(y,x,b,_)===p^L){var C=(u+f)/2;y=c*Math.cos(C),x=c*Math.sin(C),b=_=null}}else y=x=0;if(s){w=s*Math.cos(f-M),T=s*Math.sin(f-M),k=s*Math.cos(u+M),A=s*Math.sin(u+M);var P=Math.abs(u-f+2*M)<=At?0:1;if(M&&ii(w,T,k,A)===1-p^P){var I=(u+f)/2;w=s*Math.cos(I),T=s*Math.sin(I),k=A=null}}else w=T=0;if(h>kt&&(d=Math.min(Math.abs(c-s)/2,+r.apply(this,arguments)))>.001){m=s0?0:1}function ai(t,e,r,n,i){var a=t[0]-e[0],o=t[1]-e[1],s=(i?n:-n)/Math.sqrt(a*a+o*o),l=s*o,c=-s*a,u=t[0]+l,f=t[1]+c,h=e[0]+l,p=e[1]+c,d=(u+h)/2,m=(f+p)/2,g=h-u,v=p-f,y=g*g+v*v,x=r-n,b=u*p-h*f,_=(v<0?-1:1)*Math.sqrt(Math.max(0,x*x*y-b*b)),w=(b*v-g*_)/y,T=(-b*g-v*_)/y,k=(b*v+g*_)/y,A=(-b*g+v*_)/y,M=w-d,S=T-m,E=k-d,L=A-m;return M*M+S*S>E*E+L*L&&(w=k,T=A),[[w-l,T-c],[w*r/x,T*r/x]]}function oi(){return!0}function si(t){var e=_e,r=we,n=oi,i=ci,a=i.key,o=.7;function s(a){var s,l=[],c=[],u=-1,f=a.length,h=ce(e),p=ce(r);function d(){l.push("M",i(t(c),o))}for(;++u1&&i.push("H",n[0]);return i.join("")},"step-before":fi,"step-after":hi,basis:mi,"basis-open":function(t){if(t.length<4)return ci(t);var e,r=[],n=-1,i=t.length,a=[0],o=[0];for(;++n<3;)e=t[n],a.push(e[0]),o.push(e[1]);r.push(gi(xi,a)+","+gi(xi,o)),--n;for(;++n9&&(i=3*e/Math.sqrt(i),o[s]=i*r,o[s+1]=i*n));s=-1;for(;++s<=l;)i=(t[Math.min(l,s+1)][0]-t[Math.max(0,s-1)][0])/(6*(1+o[s]*o[s])),a.push([i||0,o[s]*i||0]);return a}(t))}});function ci(t){return t.length>1?t.join("L"):t+"Z"}function ui(t){return t.join("L")+"Z"}function fi(t){for(var e=0,r=t.length,n=t[0],i=[n[0],",",n[1]];++e1){s=e[1],a=t[l],l++,n+="C"+(i[0]+o[0])+","+(i[1]+o[1])+","+(a[0]-s[0])+","+(a[1]-s[1])+","+a[0]+","+a[1];for(var c=2;cAt)+",1 "+e}function l(t,e,r,n){return"Q 0,0 "+n}return a.radius=function(t){return arguments.length?(r=ce(t),a):r},a.source=function(e){return arguments.length?(t=ce(e),a):t},a.target=function(t){return arguments.length?(e=ce(t),a):e},a.startAngle=function(t){return arguments.length?(n=ce(t),a):n},a.endAngle=function(t){return arguments.length?(i=ce(t),a):i},a},t.svg.diagonal=function(){var t=ki,e=Ai,r=Si;function n(n,i){var a=t.call(this,n,i),o=e.call(this,n,i),s=(a.y+o.y)/2,l=[a,{x:a.x,y:s},{x:o.x,y:s},o];return"M"+(l=l.map(r))[0]+"C"+l[1]+" "+l[2]+" "+l[3]}return n.source=function(e){return arguments.length?(t=ce(e),n):t},n.target=function(t){return arguments.length?(e=ce(t),n):e},n.projection=function(t){return arguments.length?(r=t,n):r},n},t.svg.diagonal.radial=function(){var e=t.svg.diagonal(),r=Si,n=e.projection;return e.projection=function(t){return arguments.length?n(Ei(r=t)):r},e},t.svg.symbol=function(){var t=Ci,e=Li;function r(r,n){return(Ii.get(t.call(this,r,n))||Pi)(e.call(this,r,n))}return r.type=function(e){return arguments.length?(t=ce(e),r):t},r.size=function(t){return arguments.length?(e=ce(t),r):e},r};var Ii=t.map({circle:Pi,cross:function(t){var e=Math.sqrt(t/5)/2;return"M"+-3*e+","+-e+"H"+-e+"V"+-3*e+"H"+e+"V"+-e+"H"+3*e+"V"+e+"H"+e+"V"+3*e+"H"+-e+"V"+e+"H"+-3*e+"Z"},diamond:function(t){var e=Math.sqrt(t/(2*zi)),r=e*zi;return"M0,"+-e+"L"+r+",0 0,"+e+" "+-r+",0Z"},square:function(t){var e=Math.sqrt(t)/2;return"M"+-e+","+-e+"L"+e+","+-e+" "+e+","+e+" "+-e+","+e+"Z"},"triangle-down":function(t){var e=Math.sqrt(t/Oi),r=e*Oi/2;return"M0,"+r+"L"+e+","+-r+" "+-e+","+-r+"Z"},"triangle-up":function(t){var e=Math.sqrt(t/Oi),r=e*Oi/2;return"M0,"+-r+"L"+e+","+r+" "+-e+","+r+"Z"}});t.svg.symbolTypes=Ii.keys();var Oi=Math.sqrt(3),zi=Math.tan(30*Lt);Y.transition=function(t){for(var e,r,n=Bi||++Ui,i=qi(t),a=[],o=Ni||{time:Date.now(),ease:Er,delay:0,duration:250},s=-1,l=this.length;++s0;)c[--h].call(t,o);if(a>=1)return f.event&&f.event.end.call(t,t.__data__,e),--u.count?delete u[n]:delete t[r],1}f||(a=i.time,o=ve((function(t){var e=f.delay;if(o.t=e+a,e<=t)return h(t-e);o.c=h}),0,a),f=u[n]={tween:new _,time:a,timer:o,delay:i.delay,duration:i.duration,ease:i.ease,index:e},i=null,++u.count)}ji.call=Y.call,ji.empty=Y.empty,ji.node=Y.node,ji.size=Y.size,t.transition=function(e,r){return e&&e.transition?Bi?e.transition(r):e:t.selection().transition(e)},t.transition.prototype=ji,ji.select=function(t){var e,r,n,i=this.id,a=this.namespace,o=[];t=W(t);for(var s=-1,l=this.length;++srect,.s>rect").attr("width",s[1]-s[0])}function m(t){t.select(".extent").attr("y",l[0]),t.selectAll(".extent,.e>rect,.w>rect").attr("height",l[1]-l[0])}function g(){var f,g,v=this,y=t.select(t.event.target),x=n.of(v,arguments),b=t.select(v),_=y.datum(),w=!/^(n|s)$/.test(_)&&i,T=!/^(e|w)$/.test(_)&&a,k=y.classed("extent"),A=bt(v),M=t.mouse(v),S=t.select(o(v)).on("keydown.brush",C).on("keyup.brush",P);if(t.event.changedTouches?S.on("touchmove.brush",I).on("touchend.brush",z):S.on("mousemove.brush",I).on("mouseup.brush",z),b.interrupt().selectAll("*").interrupt(),k)M[0]=s[0]-M[0],M[1]=l[0]-M[1];else if(_){var E=+/w$/.test(_),L=+/^n/.test(_);g=[s[1-E]-M[0],l[1-L]-M[1]],M[0]=s[E],M[1]=l[L]}else t.event.altKey&&(f=M.slice());function C(){32==t.event.keyCode&&(k||(f=null,M[0]-=s[1],M[1]-=l[1],k=2),F())}function P(){32==t.event.keyCode&&2==k&&(M[0]+=s[1],M[1]+=l[1],k=0,F())}function I(){var e=t.mouse(v),r=!1;g&&(e[0]+=g[0],e[1]+=g[1]),k||(t.event.altKey?(f||(f=[(s[0]+s[1])/2,(l[0]+l[1])/2]),M[0]=s[+(e[0]>>1;e.dtype||(e.dtype="array"),"string"==typeof e.dtype?d=new(f(e.dtype))(g):e.dtype&&(d=e.dtype,Array.isArray(d)&&(d.length=g));for(var v=0;vr||s>1073741824){for(var h=0;he+n||w>r+n||T=A||a===o)){var s=y[i];void 0===o&&(o=s.length);for(var l=a;l=d&&u<=g&&f>=m&&f<=v&&S.push(c)}var h=x[i],p=h[4*a+0],b=h[4*a+1],M=h[4*a+2],E=h[4*a+3],P=C(h,a+1),I=.5*n,O=i+1;L(e,r,I,O,p,b||M||E||P),L(e,r+I,I,O,b,M||E||P),L(e+I,r,I,O,M,E||P),L(e+I,r+I,I,O,E,P)}}function C(t,e){for(var r=null,n=0;null===r;)if(r=t[4*e+n],++n>t.length)return null;return r}return L(0,0,1,0,0,1),S},d;function E(t,e,r,i,a){for(var o=[],s=0;s0){e+=Math.abs(a(t[0]));for(var r=1;r2){for(s=0;st[0]&&(e[0]=t[0]),e[1]>t[1]&&(e[1]=t[1]),e[2]=0))throw new Error("precision must be a positive number");var r=Math.pow(10,e||0);return Math.round(t*r)/r},r.radiansToLength=f,r.lengthToRadians=h,r.lengthToDegrees=function(t,e){return p(h(t,e))},r.bearingToAzimuth=function(t){var e=t%360;return e<0&&(e+=360),e},r.radiansToDegrees=p,r.degreesToRadians=function(t){return t%360*Math.PI/180},r.convertLength=function(t,e,r){if(void 0===e&&(e="kilometers"),void 0===r&&(r="kilometers"),!(t>=0))throw new Error("length must be a positive number");return f(h(t,e),r)},r.convertArea=function(t,e,n){if(void 0===e&&(e="meters"),void 0===n&&(n="kilometers"),!(t>=0))throw new Error("area must be a positive number");var i=r.areaFactors[e];if(!i)throw new Error("invalid original units");var a=r.areaFactors[n];if(!a)throw new Error("invalid final units");return t/i*a},r.isNumber=d,r.isObject=function(t){return!!t&&t.constructor===Object},r.validateBBox=function(t){if(!t)throw new Error("bbox is required");if(!Array.isArray(t))throw new Error("bbox must be an Array");if(4!==t.length&&6!==t.length)throw new Error("bbox must be an Array of 4 or 6 numbers");t.forEach((function(t){if(!d(t))throw new Error("bbox must only contain numbers")}))},r.validateId=function(t){if(!t)throw new Error("id is required");if(-1===["string","number"].indexOf(typeof t))throw new Error("id must be a number or a string")}},{}],65:[function(t,e,r){"use strict";Object.defineProperty(r,"__esModule",{value:!0});var n=t("@turf/helpers");function i(t,e,r){if(null!==t)for(var n,a,o,s,l,c,u,f,h=0,p=0,d=t.type,m="FeatureCollection"===d,g="Feature"===d,v=m?t.features.length:1,y=0;yc||p>u||d>f)return l=i,c=r,u=p,f=d,void(o=0);var m=n.lineString([l,i],t.properties);if(!1===e(m,r,a,d,o))return!1;o++,l=i}))&&void 0}}}))}function u(t,e){if(!t)throw new Error("geojson is required");l(t,(function(t,r,i){if(null!==t.geometry){var a=t.geometry.type,o=t.geometry.coordinates;switch(a){case"LineString":if(!1===e(t,r,i,0,0))return!1;break;case"Polygon":for(var s=0;si&&(i=t[o]),t[o]:not(.watermark)":"opacity:0;-webkit-transition:opacity .3s ease 0s;-moz-transition:opacity .3s ease 0s;-ms-transition:opacity .3s ease 0s;-o-transition:opacity .3s ease 0s;transition:opacity .3s ease 0s;","X:hover .modebar--hover .modebar-group":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;padding-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;height:22px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar.vertical":"display:flex;flex-direction:column;flex-wrap:wrap;align-content:flex-end;max-height:100%;","X .modebar.vertical svg":"top:-1px;","X .modebar.vertical .modebar-group":"display:block;float:none;padding-left:0px;padding-bottom:8px;","X .modebar.vertical .modebar-group .modebar-btn":"display:block;text-align:center;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":'content:"";position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;',"X [data-title]:after":"content:attr(data-title);background:#69738a;color:#fff;padding:8px 10px;font-size:12px;line-height:12px;white-space:nowrap;margin-right:-18px;border-radius:2px;","X .vertical [data-title]:before,X .vertical [data-title]:after":"top:0%;right:200%;","X .vertical [data-title]:before":"border:6px solid transparent;border-left-color:#69738a;margin-top:8px;margin-right:-30px;","X .select-outline":"fill:none;stroke-width:1;shape-rendering:crispEdges;","X .select-outline-1":"stroke:#fff;","X .select-outline-2":"stroke:#000;stroke-dasharray:2px 2px;",Y:'font-family:"Open Sans",verdana,arial,sans-serif;position:fixed;top:50px;right:20px;z-index:10000;font-size:10pt;max-width:180px;',"Y p":"margin:0;","Y .notifier-note":"min-width:180px;max-width:250px;border:1px solid #fff;z-index:3000;margin:0;background-color:#8c97af;background-color:rgba(140,151,175,.9);color:#fff;padding:10px;overflow-wrap:break-word;word-wrap:break-word;-ms-hyphens:auto;-webkit-hyphens:auto;hyphens:auto;","Y .notifier-close":"color:#fff;opacity:.8;float:right;padding:0 5px;background:none;border:none;font-size:20px;font-weight:bold;line-height:20px;","Y .notifier-close:hover":"color:#444;text-decoration:none;cursor:pointer;"};for(var a in i){var o=a.replace(/^,/," ,").replace(/X/g,".js-plotly-plot .plotly").replace(/Y/g,".plotly-notifier");n.addStyleRule(o,i[a])}},{"../src/lib":776}],2:[function(t,e,r){"use strict";e.exports=t("../src/transforms/aggregate")},{"../src/transforms/aggregate":1372}],3:[function(t,e,r){"use strict";e.exports=t("../src/traces/bar")},{"../src/traces/bar":922}],4:[function(t,e,r){"use strict";e.exports=t("../src/traces/barpolar")},{"../src/traces/barpolar":935}],5:[function(t,e,r){"use strict";e.exports=t("../src/traces/box")},{"../src/traces/box":945}],6:[function(t,e,r){"use strict";e.exports=t("../src/components/calendars")},{"../src/components/calendars":637}],7:[function(t,e,r){"use strict";e.exports=t("../src/traces/candlestick")},{"../src/traces/candlestick":954}],8:[function(t,e,r){"use strict";e.exports=t("../src/traces/carpet")},{"../src/traces/carpet":973}],9:[function(t,e,r){"use strict";e.exports=t("../src/traces/choropleth")},{"../src/traces/choropleth":987}],10:[function(t,e,r){"use strict";e.exports=t("../src/traces/choroplethmapbox")},{"../src/traces/choroplethmapbox":994}],11:[function(t,e,r){"use strict";e.exports=t("../src/traces/cone")},{"../src/traces/cone":1e3}],12:[function(t,e,r){"use strict";e.exports=t("../src/traces/contour")},{"../src/traces/contour":1015}],13:[function(t,e,r){"use strict";e.exports=t("../src/traces/contourcarpet")},{"../src/traces/contourcarpet":1026}],14:[function(t,e,r){"use strict";e.exports=t("../src/core")},{"../src/core":754}],15:[function(t,e,r){"use strict";e.exports=t("../src/traces/densitymapbox")},{"../src/traces/densitymapbox":1034}],16:[function(t,e,r){"use strict";e.exports=t("../src/transforms/filter")},{"../src/transforms/filter":1373}],17:[function(t,e,r){"use strict";e.exports=t("../src/traces/funnel")},{"../src/traces/funnel":1044}],18:[function(t,e,r){"use strict";e.exports=t("../src/traces/funnelarea")},{"../src/traces/funnelarea":1053}],19:[function(t,e,r){"use strict";e.exports=t("../src/transforms/groupby")},{"../src/transforms/groupby":1374}],20:[function(t,e,r){"use strict";e.exports=t("../src/traces/heatmap")},{"../src/traces/heatmap":1066}],21:[function(t,e,r){"use strict";e.exports=t("../src/traces/heatmapgl")},{"../src/traces/heatmapgl":1076}],22:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram")},{"../src/traces/histogram":1088}],23:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram2d")},{"../src/traces/histogram2d":1094}],24:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram2dcontour")},{"../src/traces/histogram2dcontour":1098}],25:[function(t,e,r){"use strict";e.exports=t("../src/traces/icicle")},{"../src/traces/icicle":1104}],26:[function(t,e,r){"use strict";e.exports=t("../src/traces/image")},{"../src/traces/image":1117}],27:[function(t,e,r){"use strict";var n=t("./core");n.register([t("./bar"),t("./box"),t("./heatmap"),t("./histogram"),t("./histogram2d"),t("./histogram2dcontour"),t("./contour"),t("./scatterternary"),t("./violin"),t("./funnel"),t("./waterfall"),t("./image"),t("./pie"),t("./sunburst"),t("./treemap"),t("./icicle"),t("./funnelarea"),t("./scatter3d"),t("./surface"),t("./isosurface"),t("./volume"),t("./mesh3d"),t("./cone"),t("./streamtube"),t("./scattergeo"),t("./choropleth"),t("./scattergl"),t("./splom"),t("./pointcloud"),t("./heatmapgl"),t("./parcoords"),t("./parcats"),t("./scattermapbox"),t("./choroplethmapbox"),t("./densitymapbox"),t("./sankey"),t("./indicator"),t("./table"),t("./carpet"),t("./scattercarpet"),t("./contourcarpet"),t("./ohlc"),t("./candlestick"),t("./scatterpolar"),t("./scatterpolargl"),t("./barpolar"),t("./aggregate"),t("./filter"),t("./groupby"),t("./sort"),t("./calendars")]),e.exports=n},{"./aggregate":2,"./bar":3,"./barpolar":4,"./box":5,"./calendars":6,"./candlestick":7,"./carpet":8,"./choropleth":9,"./choroplethmapbox":10,"./cone":11,"./contour":12,"./contourcarpet":13,"./core":14,"./densitymapbox":15,"./filter":16,"./funnel":17,"./funnelarea":18,"./groupby":19,"./heatmap":20,"./heatmapgl":21,"./histogram":22,"./histogram2d":23,"./histogram2dcontour":24,"./icicle":25,"./image":26,"./indicator":28,"./isosurface":29,"./mesh3d":30,"./ohlc":31,"./parcats":32,"./parcoords":33,"./pie":34,"./pointcloud":35,"./sankey":36,"./scatter3d":37,"./scattercarpet":38,"./scattergeo":39,"./scattergl":40,"./scattermapbox":41,"./scatterpolar":42,"./scatterpolargl":43,"./scatterternary":44,"./sort":45,"./splom":46,"./streamtube":47,"./sunburst":48,"./surface":49,"./table":50,"./treemap":51,"./violin":52,"./volume":53,"./waterfall":54}],28:[function(t,e,r){"use strict";e.exports=t("../src/traces/indicator")},{"../src/traces/indicator":1125}],29:[function(t,e,r){"use strict";e.exports=t("../src/traces/isosurface")},{"../src/traces/isosurface":1131}],30:[function(t,e,r){"use strict";e.exports=t("../src/traces/mesh3d")},{"../src/traces/mesh3d":1136}],31:[function(t,e,r){"use strict";e.exports=t("../src/traces/ohlc")},{"../src/traces/ohlc":1141}],32:[function(t,e,r){"use strict";e.exports=t("../src/traces/parcats")},{"../src/traces/parcats":1150}],33:[function(t,e,r){"use strict";e.exports=t("../src/traces/parcoords")},{"../src/traces/parcoords":1160}],34:[function(t,e,r){"use strict";e.exports=t("../src/traces/pie")},{"../src/traces/pie":1171}],35:[function(t,e,r){"use strict";e.exports=t("../src/traces/pointcloud")},{"../src/traces/pointcloud":1180}],36:[function(t,e,r){"use strict";e.exports=t("../src/traces/sankey")},{"../src/traces/sankey":1186}],37:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatter3d")},{"../src/traces/scatter3d":1224}],38:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattercarpet")},{"../src/traces/scattercarpet":1231}],39:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattergeo")},{"../src/traces/scattergeo":1239}],40:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattergl")},{"../src/traces/scattergl":1252}],41:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattermapbox")},{"../src/traces/scattermapbox":1262}],42:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterpolar")},{"../src/traces/scatterpolar":1270}],43:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterpolargl")},{"../src/traces/scatterpolargl":1277}],44:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterternary")},{"../src/traces/scatterternary":1285}],45:[function(t,e,r){"use strict";e.exports=t("../src/transforms/sort")},{"../src/transforms/sort":1376}],46:[function(t,e,r){"use strict";e.exports=t("../src/traces/splom")},{"../src/traces/splom":1294}],47:[function(t,e,r){"use strict";e.exports=t("../src/traces/streamtube")},{"../src/traces/streamtube":1302}],48:[function(t,e,r){"use strict";e.exports=t("../src/traces/sunburst")},{"../src/traces/sunburst":1310}],49:[function(t,e,r){"use strict";e.exports=t("../src/traces/surface")},{"../src/traces/surface":1319}],50:[function(t,e,r){"use strict";e.exports=t("../src/traces/table")},{"../src/traces/table":1327}],51:[function(t,e,r){"use strict";e.exports=t("../src/traces/treemap")},{"../src/traces/treemap":1338}],52:[function(t,e,r){"use strict";e.exports=t("../src/traces/violin")},{"../src/traces/violin":1351}],53:[function(t,e,r){"use strict";e.exports=t("../src/traces/volume")},{"../src/traces/volume":1359}],54:[function(t,e,r){"use strict";e.exports=t("../src/traces/waterfall")},{"../src/traces/waterfall":1367}],55:[function(t,e,r){"use strict";e.exports=function(t){var e=(t=t||{}).eye||[0,0,1],r=t.center||[0,0,0],s=t.up||[0,1,0],l=t.distanceLimits||[0,1/0],c=t.mode||"turntable",u=n(),f=i(),h=a();return u.setDistanceLimits(l[0],l[1]),u.lookAt(0,e,r,s),f.setDistanceLimits(l[0],l[1]),f.lookAt(0,e,r,s),h.setDistanceLimits(l[0],l[1]),h.lookAt(0,e,r,s),new o({turntable:u,orbit:f,matrix:h},c)};var n=t("turntable-camera-controller"),i=t("orbit-camera-controller"),a=t("matrix-camera-controller");function o(t,e){this._controllerNames=Object.keys(t),this._controllerList=this._controllerNames.map((function(e){return t[e]})),this._mode=e,this._active=t[e],this._active||(this._mode="turntable",this._active=t.turntable),this.modes=this._controllerNames,this.computedMatrix=this._active.computedMatrix,this.computedEye=this._active.computedEye,this.computedUp=this._active.computedUp,this.computedCenter=this._active.computedCenter,this.computedRadius=this._active.computedRadius}var s=o.prototype;s.flush=function(t){for(var e=this._controllerList,r=0;r1||i>1)}function M(t,e,r){return t.sort(E),t.forEach((function(n,i){var a,o,s=0;if(q(n,r)&&A(n))n.circularPathData.verticalBuffer=s+n.width/2;else{for(var l=0;lo.source.column)){var c=t[l].circularPathData.verticalBuffer+t[l].width/2+e;s=c>s?c:s}n.circularPathData.verticalBuffer=s+n.width/2}})),t}function S(t,r,i,a){var o=e.min(t.links,(function(t){return t.source.y0}));t.links.forEach((function(t){t.circular&&(t.circularPathData={})})),M(t.links.filter((function(t){return"top"==t.circularLinkType})),r,a),M(t.links.filter((function(t){return"bottom"==t.circularLinkType})),r,a),t.links.forEach((function(e){if(e.circular){if(e.circularPathData.arcRadius=e.width+10,e.circularPathData.leftNodeBuffer=5,e.circularPathData.rightNodeBuffer=5,e.circularPathData.sourceWidth=e.source.x1-e.source.x0,e.circularPathData.sourceX=e.source.x0+e.circularPathData.sourceWidth,e.circularPathData.targetX=e.target.x0,e.circularPathData.sourceY=e.y0,e.circularPathData.targetY=e.y1,q(e,a)&&A(e))e.circularPathData.leftSmallArcRadius=10+e.width/2,e.circularPathData.leftLargeArcRadius=10+e.width/2,e.circularPathData.rightSmallArcRadius=10+e.width/2,e.circularPathData.rightLargeArcRadius=10+e.width/2,"bottom"==e.circularLinkType?(e.circularPathData.verticalFullExtent=e.source.y1+25+e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.rightLargeArcRadius):(e.circularPathData.verticalFullExtent=e.source.y0-25-e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.rightLargeArcRadius);else{var s=e.source.column,l=e.circularLinkType,c=t.links.filter((function(t){return t.source.column==s&&t.circularLinkType==l}));"bottom"==e.circularLinkType?c.sort(C):c.sort(L);var u=0;c.forEach((function(t,n){t.circularLinkID==e.circularLinkID&&(e.circularPathData.leftSmallArcRadius=10+e.width/2+u,e.circularPathData.leftLargeArcRadius=10+e.width/2+n*r+u),u+=t.width})),s=e.target.column,c=t.links.filter((function(t){return t.target.column==s&&t.circularLinkType==l})),"bottom"==e.circularLinkType?c.sort(I):c.sort(P),u=0,c.forEach((function(t,n){t.circularLinkID==e.circularLinkID&&(e.circularPathData.rightSmallArcRadius=10+e.width/2+u,e.circularPathData.rightLargeArcRadius=10+e.width/2+n*r+u),u+=t.width})),"bottom"==e.circularLinkType?(e.circularPathData.verticalFullExtent=Math.max(i,e.source.y1,e.target.y1)+25+e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.rightLargeArcRadius):(e.circularPathData.verticalFullExtent=o-25-e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.rightLargeArcRadius)}e.circularPathData.leftInnerExtent=e.circularPathData.sourceX+e.circularPathData.leftNodeBuffer,e.circularPathData.rightInnerExtent=e.circularPathData.targetX-e.circularPathData.rightNodeBuffer,e.circularPathData.leftFullExtent=e.circularPathData.sourceX+e.circularPathData.leftLargeArcRadius+e.circularPathData.leftNodeBuffer,e.circularPathData.rightFullExtent=e.circularPathData.targetX-e.circularPathData.rightLargeArcRadius-e.circularPathData.rightNodeBuffer}if(e.circular)e.path=function(t){var e="";e="top"==t.circularLinkType?"M"+t.circularPathData.sourceX+" "+t.circularPathData.sourceY+" L"+t.circularPathData.leftInnerExtent+" "+t.circularPathData.sourceY+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftSmallArcRadius+" 0 0 0 "+t.circularPathData.leftFullExtent+" "+(t.circularPathData.sourceY-t.circularPathData.leftSmallArcRadius)+" L"+t.circularPathData.leftFullExtent+" "+t.circularPathData.verticalLeftInnerExtent+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftLargeArcRadius+" 0 0 0 "+t.circularPathData.leftInnerExtent+" "+t.circularPathData.verticalFullExtent+" L"+t.circularPathData.rightInnerExtent+" "+t.circularPathData.verticalFullExtent+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightLargeArcRadius+" 0 0 0 "+t.circularPathData.rightFullExtent+" "+t.circularPathData.verticalRightInnerExtent+" L"+t.circularPathData.rightFullExtent+" "+(t.circularPathData.targetY-t.circularPathData.rightSmallArcRadius)+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightSmallArcRadius+" 0 0 0 "+t.circularPathData.rightInnerExtent+" "+t.circularPathData.targetY+" L"+t.circularPathData.targetX+" "+t.circularPathData.targetY:"M"+t.circularPathData.sourceX+" "+t.circularPathData.sourceY+" L"+t.circularPathData.leftInnerExtent+" "+t.circularPathData.sourceY+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftSmallArcRadius+" 0 0 1 "+t.circularPathData.leftFullExtent+" "+(t.circularPathData.sourceY+t.circularPathData.leftSmallArcRadius)+" L"+t.circularPathData.leftFullExtent+" "+t.circularPathData.verticalLeftInnerExtent+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftLargeArcRadius+" 0 0 1 "+t.circularPathData.leftInnerExtent+" "+t.circularPathData.verticalFullExtent+" L"+t.circularPathData.rightInnerExtent+" "+t.circularPathData.verticalFullExtent+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightLargeArcRadius+" 0 0 1 "+t.circularPathData.rightFullExtent+" "+t.circularPathData.verticalRightInnerExtent+" L"+t.circularPathData.rightFullExtent+" "+(t.circularPathData.targetY+t.circularPathData.rightSmallArcRadius)+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightSmallArcRadius+" 0 0 1 "+t.circularPathData.rightInnerExtent+" "+t.circularPathData.targetY+" L"+t.circularPathData.targetX+" "+t.circularPathData.targetY;return e}(e);else{var f=n.linkHorizontal().source((function(t){return[t.source.x0+(t.source.x1-t.source.x0),t.y0]})).target((function(t){return[t.target.x0,t.y1]}));e.path=f(e)}}))}function E(t,e){return O(t)==O(e)?"bottom"==t.circularLinkType?C(t,e):L(t,e):O(e)-O(t)}function L(t,e){return t.y0-e.y0}function C(t,e){return e.y0-t.y0}function P(t,e){return t.y1-e.y1}function I(t,e){return e.y1-t.y1}function O(t){return t.target.column-t.source.column}function z(t){return t.target.x0-t.source.x1}function D(t,e){var r=T(t),n=z(e)/Math.tan(r);return"up"==H(t)?t.y1+n:t.y1-n}function R(t,e){var r=T(t),n=z(e)/Math.tan(r);return"up"==H(t)?t.y1-n:t.y1+n}function F(t,e,r,n){t.links.forEach((function(i){if(!i.circular&&i.target.column-i.source.column>1){var a=i.source.column+1,o=i.target.column-1,s=1,l=o-a+1;for(s=1;a<=o;a++,s++)t.nodes.forEach((function(o){if(o.column==a){var c,u=s/(l+1),f=Math.pow(1-u,3),h=3*u*Math.pow(1-u,2),p=3*Math.pow(u,2)*(1-u),d=Math.pow(u,3),m=f*i.y0+h*i.y0+p*i.y1+d*i.y1,g=m-i.width/2,v=m+i.width/2;g>o.y0&&go.y0&&vo.y1)&&(c=v-o.y0+10,o=N(o,c,e,r),t.nodes.forEach((function(t){b(t,n)!=b(o,n)&&t.column==o.column&&t.y0o.y1&&N(t,c,e,r)})))}}))}}))}function B(t,e){return t.y0>e.y0&&t.y0e.y0&&t.y1e.y1)}function N(t,e,r,n){return t.y0+e>=r&&t.y1+e<=n&&(t.y0=t.y0+e,t.y1=t.y1+e,t.targetLinks.forEach((function(t){t.y1=t.y1+e})),t.sourceLinks.forEach((function(t){t.y0=t.y0+e}))),t}function j(t,e,r,n){t.nodes.forEach((function(i){n&&i.y+(i.y1-i.y0)>e&&(i.y=i.y-(i.y+(i.y1-i.y0)-e));var a=t.links.filter((function(t){return b(t.source,r)==b(i,r)})),o=a.length;o>1&&a.sort((function(t,e){if(!t.circular&&!e.circular){if(t.target.column==e.target.column)return t.y1-e.y1;if(!V(t,e))return t.y1-e.y1;if(t.target.column>e.target.column){var r=R(e,t);return t.y1-r}if(e.target.column>t.target.column)return R(t,e)-e.y1}return t.circular&&!e.circular?"top"==t.circularLinkType?-1:1:e.circular&&!t.circular?"top"==e.circularLinkType?1:-1:t.circular&&e.circular?t.circularLinkType===e.circularLinkType&&"top"==t.circularLinkType?t.target.column===e.target.column?t.target.y1-e.target.y1:e.target.column-t.target.column:t.circularLinkType===e.circularLinkType&&"bottom"==t.circularLinkType?t.target.column===e.target.column?e.target.y1-t.target.y1:t.target.column-e.target.column:"top"==t.circularLinkType?-1:1:void 0}));var s=i.y0;a.forEach((function(t){t.y0=s+t.width/2,s+=t.width})),a.forEach((function(t,e){if("bottom"==t.circularLinkType){for(var r=e+1,n=0;r1&&n.sort((function(t,e){if(!t.circular&&!e.circular){if(t.source.column==e.source.column)return t.y0-e.y0;if(!V(t,e))return t.y0-e.y0;if(e.source.column0?"up":"down"}function q(t,e){return b(t.source,e)==b(t.target,e)}function G(t,r,n){var i=t.nodes,a=t.links,o=!1,s=!1;if(a.forEach((function(t){"top"==t.circularLinkType?o=!0:"bottom"==t.circularLinkType&&(s=!0)})),0==o||0==s){var l=e.min(i,(function(t){return t.y0})),c=(n-r)/(e.max(i,(function(t){return t.y1}))-l);i.forEach((function(t){var e=(t.y1-t.y0)*c;t.y0=(t.y0-l)*c,t.y1=t.y0+e})),a.forEach((function(t){t.y0=(t.y0-l)*c,t.y1=(t.y1-l)*c,t.width=t.width*c}))}}t.sankeyCircular=function(){var t,n,i=0,a=0,b=1,T=1,A=24,M=g,E=o,L=v,C=y,P=32,I=2,O=null;function z(){var t={nodes:L.apply(null,arguments),links:C.apply(null,arguments)};D(t),_(t,M,O),R(t),B(t),w(t,M),N(t,P,M),V(t);for(var e=4,r=0;r0?r+25+10:r,bottom:n=n>0?n+25+10:n,left:a=a>0?a+25+10:a,right:i=i>0?i+25+10:i}}(o),f=function(t,r){var n=e.max(t.nodes,(function(t){return t.column})),o=b-i,s=T-a,l=o/(o+r.right+r.left),c=s/(s+r.top+r.bottom);return i=i*l+r.left,b=0==r.right?b:b*l,a=a*c+r.top,T*=c,t.nodes.forEach((function(t){t.x0=i+t.column*((b-i-A)/n),t.x1=t.x0+A})),c}(o,u);l*=f,o.links.forEach((function(t){t.width=t.value*l})),c.forEach((function(t){var e=t.length;t.forEach((function(t,n){t.depth==c.length-1&&1==e||0==t.depth&&1==e?(t.y0=T/2-t.value*l,t.y1=t.y0+t.value*l):t.partOfCycle?0==k(t,r)?(t.y0=T/2+n,t.y1=t.y0+t.value*l):"top"==t.circularLinkType?(t.y0=a+n,t.y1=t.y0+t.value*l):(t.y0=T-t.value*l-n,t.y1=t.y0+t.value*l):0==u.top||0==u.bottom?(t.y0=(T-a)/e*n,t.y1=t.y0+t.value*l):(t.y0=(T-a)/2-e/2+n,t.y1=t.y0+t.value*l)}))}))}(l),y();for(var u=1,g=s;g>0;--g)v(u*=.99,l),y();function v(t,r){var n=c.length;c.forEach((function(i){var a=i.length,o=i[0].depth;i.forEach((function(i){var s;if(i.sourceLinks.length||i.targetLinks.length)if(i.partOfCycle&&k(i,r)>0);else if(0==o&&1==a)s=i.y1-i.y0,i.y0=T/2-s/2,i.y1=T/2+s/2;else if(o==n-1&&1==a)s=i.y1-i.y0,i.y0=T/2-s/2,i.y1=T/2+s/2;else{var l=e.mean(i.sourceLinks,m),c=e.mean(i.targetLinks,d),u=((l&&c?(l+c)/2:l||c)-p(i))*t;i.y0+=u,i.y1+=u}}))}))}function y(){c.forEach((function(e){var r,n,i,o=a,s=e.length;for(e.sort(f),i=0;i0&&(r.y0+=n,r.y1+=n),o=r.y1+t;if((n=o-t-T)>0)for(o=r.y0-=n,r.y1-=n,i=s-2;i>=0;--i)(n=(r=e[i]).y1+t-o)>0&&(r.y0-=n,r.y1-=n),o=r.y0}))}}function V(t){t.nodes.forEach((function(t){t.sourceLinks.sort(u),t.targetLinks.sort(c)})),t.nodes.forEach((function(t){var e=t.y0,r=e,n=t.y1,i=n;t.sourceLinks.forEach((function(t){t.circular?(t.y0=n-t.width/2,n-=t.width):(t.y0=e+t.width/2,e+=t.width)})),t.targetLinks.forEach((function(t){t.circular?(t.y1=i-t.width/2,i-=t.width):(t.y1=r+t.width/2,r+=t.width)}))}))}return z.nodeId=function(t){return arguments.length?(M="function"==typeof t?t:s(t),z):M},z.nodeAlign=function(t){return arguments.length?(E="function"==typeof t?t:s(t),z):E},z.nodeWidth=function(t){return arguments.length?(A=+t,z):A},z.nodePadding=function(e){return arguments.length?(t=+e,z):t},z.nodes=function(t){return arguments.length?(L="function"==typeof t?t:s(t),z):L},z.links=function(t){return arguments.length?(C="function"==typeof t?t:s(t),z):C},z.size=function(t){return arguments.length?(i=a=0,b=+t[0],T=+t[1],z):[b-i,T-a]},z.extent=function(t){return arguments.length?(i=+t[0][0],b=+t[1][0],a=+t[0][1],T=+t[1][1],z):[[i,a],[b,T]]},z.iterations=function(t){return arguments.length?(P=+t,z):P},z.circularLinkGap=function(t){return arguments.length?(I=+t,z):I},z.nodePaddingRatio=function(t){return arguments.length?(n=+t,z):n},z.sortNodes=function(t){return arguments.length?(O=t,z):O},z.update=function(t){return w(t,M),V(t),t.links.forEach((function(t){t.circular&&(t.circularLinkType=t.y0+t.y1a&&(b=a);var o=e.min(i,(function(t){return(y-n-(t.length-1)*b)/e.sum(t,u)}));i.forEach((function(t){t.forEach((function(t,e){t.y1=(t.y0=e)+t.value*o}))})),t.links.forEach((function(t){t.width=t.value*o}))}(),d();for(var a=1,o=A;o>0;--o)l(a*=.99),d(),s(a),d();function s(t){i.forEach((function(r){r.forEach((function(r){if(r.targetLinks.length){var n=(e.sum(r.targetLinks,h)/e.sum(r.targetLinks,u)-f(r))*t;r.y0+=n,r.y1+=n}}))}))}function l(t){i.slice().reverse().forEach((function(r){r.forEach((function(r){if(r.sourceLinks.length){var n=(e.sum(r.sourceLinks,p)/e.sum(r.sourceLinks,u)-f(r))*t;r.y0+=n,r.y1+=n}}))}))}function d(){i.forEach((function(t){var e,r,i,a=n,o=t.length;for(t.sort(c),i=0;i0&&(e.y0+=r,e.y1+=r),a=e.y1+b;if((r=a-b-y)>0)for(a=e.y0-=r,e.y1-=r,i=o-2;i>=0;--i)(r=(e=t[i]).y1+b-a)>0&&(e.y0-=r,e.y1-=r),a=e.y0}))}}function P(t){t.nodes.forEach((function(t){t.sourceLinks.sort(l),t.targetLinks.sort(s)})),t.nodes.forEach((function(t){var e=t.y0,r=e;t.sourceLinks.forEach((function(t){t.y0=e+t.width/2,e+=t.width})),t.targetLinks.forEach((function(t){t.y1=r+t.width/2,r+=t.width}))}))}return M.update=function(t){return P(t),t},M.nodeId=function(t){return arguments.length?(_="function"==typeof t?t:o(t),M):_},M.nodeAlign=function(t){return arguments.length?(w="function"==typeof t?t:o(t),M):w},M.nodeWidth=function(t){return arguments.length?(x=+t,M):x},M.nodePadding=function(t){return arguments.length?(b=+t,M):b},M.nodes=function(t){return arguments.length?(T="function"==typeof t?t:o(t),M):T},M.links=function(t){return arguments.length?(k="function"==typeof t?t:o(t),M):k},M.size=function(e){return arguments.length?(t=n=0,i=+e[0],y=+e[1],M):[i-t,y-n]},M.extent=function(e){return arguments.length?(t=+e[0][0],i=+e[1][0],n=+e[0][1],y=+e[1][1],M):[[t,n],[i,y]]},M.iterations=function(t){return arguments.length?(A=+t,M):A},M},t.sankeyCenter=function(t){return t.targetLinks.length?t.depth:t.sourceLinks.length?e.min(t.sourceLinks,i)-1:0},t.sankeyLeft=function(t){return t.depth},t.sankeyRight=function(t,e){return e-1-t.height},t.sankeyJustify=a,t.sankeyLinkHorizontal=function(){return n.linkHorizontal().source(y).target(x)},Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":155,"d3-collection":156,"d3-shape":167}],58:[function(t,e,r){(function(){var t={version:"3.8.0"},r=[].slice,n=function(t){return r.call(t)},i=self.document;function a(t){return t&&(t.ownerDocument||t.document||t).documentElement}function o(t){return t&&(t.ownerDocument&&t.ownerDocument.defaultView||t.document&&t||t.defaultView)}if(i)try{n(i.documentElement.childNodes)[0].nodeType}catch(t){n=function(t){for(var e=t.length,r=new Array(e);e--;)r[e]=t[e];return r}}if(Date.now||(Date.now=function(){return+new Date}),i)try{i.createElement("DIV").style.setProperty("opacity",0,"")}catch(t){var s=this.Element.prototype,l=s.setAttribute,c=s.setAttributeNS,u=this.CSSStyleDeclaration.prototype,f=u.setProperty;s.setAttribute=function(t,e){l.call(this,t,e+"")},s.setAttributeNS=function(t,e,r){c.call(this,t,e,r+"")},u.setProperty=function(t,e,r){f.call(this,t,e+"",r)}}function h(t,e){return te?1:t>=e?0:NaN}function p(t){return null===t?NaN:+t}function d(t){return!isNaN(t)}function m(t){return{left:function(e,r,n,i){for(arguments.length<3&&(n=0),arguments.length<4&&(i=e.length);n>>1;t(e[a],r)<0?n=a+1:i=a}return n},right:function(e,r,n,i){for(arguments.length<3&&(n=0),arguments.length<4&&(i=e.length);n>>1;t(e[a],r)>0?i=a:n=a+1}return n}}}t.ascending=h,t.descending=function(t,e){return et?1:e>=t?0:NaN},t.min=function(t,e){var r,n,i=-1,a=t.length;if(1===arguments.length){for(;++i=n){r=n;break}for(;++in&&(r=n)}else{for(;++i=n){r=n;break}for(;++in&&(r=n)}return r},t.max=function(t,e){var r,n,i=-1,a=t.length;if(1===arguments.length){for(;++i=n){r=n;break}for(;++ir&&(r=n)}else{for(;++i=n){r=n;break}for(;++ir&&(r=n)}return r},t.extent=function(t,e){var r,n,i,a=-1,o=t.length;if(1===arguments.length){for(;++a=n){r=i=n;break}for(;++an&&(r=n),i=n){r=i=n;break}for(;++an&&(r=n),i1)return o/(l-1)},t.deviation=function(){var e=t.variance.apply(this,arguments);return e?Math.sqrt(e):e};var g=m(h);function v(t){return t.length}t.bisectLeft=g.left,t.bisect=t.bisectRight=g.right,t.bisector=function(t){return m(1===t.length?function(e,r){return h(t(e),r)}:t)},t.shuffle=function(t,e,r){(a=arguments.length)<3&&(r=t.length,a<2&&(e=0));for(var n,i,a=r-e;a;)i=Math.random()*a--|0,n=t[a+e],t[a+e]=t[i+e],t[i+e]=n;return t},t.permute=function(t,e){for(var r=e.length,n=new Array(r);r--;)n[r]=t[e[r]];return n},t.pairs=function(t){for(var e=0,r=t.length-1,n=t[0],i=new Array(r<0?0:r);e=0;)for(e=(n=t[i]).length;--e>=0;)r[--o]=n[e];return r};var y=Math.abs;function x(t){for(var e=1;t*e%1;)e*=10;return e}function b(t,e){for(var r in e)Object.defineProperty(t.prototype,r,{value:e[r],enumerable:!1})}function _(){this._=Object.create(null)}t.range=function(t,e,r){if(arguments.length<3&&(r=1,arguments.length<2&&(e=t,t=0)),(e-t)/r==1/0)throw new Error("infinite range");var n,i=[],a=x(y(r)),o=-1;if(t*=a,e*=a,(r*=a)<0)for(;(n=t+r*++o)>e;)i.push(n/a);else for(;(n=t+r*++o)=i.length)return r?r.call(n,a):e?a.sort(e):a;for(var l,c,u,f,h=-1,p=a.length,d=i[s++],m=new _;++h=i.length)return e;var n=[],o=a[r++];return e.forEach((function(e,i){n.push({key:e,values:t(i,r)})})),o?n.sort((function(t,e){return o(t.key,e.key)})):n}(o(t.map,e,0),0)},n.key=function(t){return i.push(t),n},n.sortKeys=function(t){return a[i.length-1]=t,n},n.sortValues=function(t){return e=t,n},n.rollup=function(t){return r=t,n},n},t.set=function(t){var e=new L;if(t)for(var r=0,n=t.length;r=0&&(n=t.slice(r+1),t=t.slice(0,r)),t)return arguments.length<2?this[t].on(n):this[t].on(n,e);if(2===arguments.length){if(null==e)for(t in this)this.hasOwnProperty(t)&&this[t].on(n,null);return this}},t.event=null,t.requote=function(t){return t.replace(j,"\\$&")};var j=/[\\\^\$\*\+\?\|\[\]\(\)\.\{\}]/g,U={}.__proto__?function(t,e){t.__proto__=e}:function(t,e){for(var r in e)t[r]=e[r]};function V(t){return U(t,Y),t}var H=function(t,e){return e.querySelector(t)},q=function(t,e){return e.querySelectorAll(t)},G=function(t,e){var r=t.matches||t[I(t,"matchesSelector")];return(G=function(t,e){return r.call(t,e)})(t,e)};"function"==typeof Sizzle&&(H=function(t,e){return Sizzle(t,e)[0]||null},q=Sizzle,G=Sizzle.matchesSelector),t.selection=function(){return t.select(i.documentElement)};var Y=t.selection.prototype=[];function W(t){return"function"==typeof t?t:function(){return H(t,this)}}function X(t){return"function"==typeof t?t:function(){return q(t,this)}}Y.select=function(t){var e,r,n,i,a=[];t=W(t);for(var o=-1,s=this.length;++o=0&&"xmlns"!==(r=t.slice(0,e))&&(t=t.slice(e+1)),J.hasOwnProperty(r)?{space:J[r],local:t}:t}},Y.attr=function(e,r){if(arguments.length<2){if("string"==typeof e){var n=this.node();return(e=t.ns.qualify(e)).local?n.getAttributeNS(e.space,e.local):n.getAttribute(e)}for(r in e)this.each(K(r,e[r]));return this}return this.each(K(e,r))},Y.classed=function(t,e){if(arguments.length<2){if("string"==typeof t){var r=this.node(),n=(t=tt(t)).length,i=-1;if(e=r.classList){for(;++i=0;)(r=n[i])&&(a&&a!==r.nextSibling&&a.parentNode.insertBefore(r,a),a=r);return this},Y.sort=function(t){t=ct.apply(this,arguments);for(var e=-1,r=this.length;++e=e&&(e=i+1);!(o=s[e])&&++e0&&(e=e.slice(0,o));var l=mt.get(e);function c(){var t=this[a];t&&(this.removeEventListener(e,t,t.$),delete this[a])}return l&&(e=l,s=vt),o?r?function(){var t=s(r,n(arguments));c.call(this),this.addEventListener(e,this[a]=t,t.$=i),t._=r}:c:r?z:function(){var r,n=new RegExp("^__on([^.]+)"+t.requote(e)+"$");for(var i in this)if(r=i.match(n)){var a=this[i];this.removeEventListener(r[1],a,a.$),delete this[i]}}}t.selection.enter=ft,t.selection.enter.prototype=ht,ht.append=Y.append,ht.empty=Y.empty,ht.node=Y.node,ht.call=Y.call,ht.size=Y.size,ht.select=function(t){for(var e,r,n,i,a,o=[],s=-1,l=this.length;++s1?Et:t<-1?-Et:Math.asin(t)}function It(t){return((t=Math.exp(t))+1/t)/2}var Ot=Math.SQRT2;t.interpolateZoom=function(t,e){var r,n,i=t[0],a=t[1],o=t[2],s=e[0],l=e[1],c=e[2],u=s-i,f=l-a,h=u*u+f*f;if(h<1e-12)n=Math.log(c/o)/Ot,r=function(t){return[i+t*u,a+t*f,o*Math.exp(Ot*t*n)]};else{var p=Math.sqrt(h),d=(c*c-o*o+4*h)/(2*o*2*p),m=(c*c-o*o-4*h)/(2*c*2*p),g=Math.log(Math.sqrt(d*d+1)-d),v=Math.log(Math.sqrt(m*m+1)-m);n=(v-g)/Ot,r=function(t){var e,r=t*n,s=It(g),l=o/(2*p)*(s*(e=Ot*r+g,((e=Math.exp(2*e))-1)/(e+1))-function(t){return((t=Math.exp(t))-1/t)/2}(g));return[i+l*u,a+l*f,o*s/It(Ot*r+g)]}}return r.duration=1e3*n,r},t.behavior.zoom=function(){var e,r,n,a,s,l,c,u,f,h={x:0,y:0,k:1},p=[960,500],d=Rt,m=250,g=0,v="mousedown.zoom",y="mousemove.zoom",x="mouseup.zoom",b="touchstart.zoom",_=N(w,"zoomstart","zoom","zoomend");function w(t){t.on(v,P).on(Dt+".zoom",O).on("dblclick.zoom",z).on(b,I)}function T(t){return[(t[0]-h.x)/h.k,(t[1]-h.y)/h.k]}function k(t){h.k=Math.max(d[0],Math.min(d[1],t))}function A(t,e){e=function(t){return[t[0]*h.k+h.x,t[1]*h.k+h.y]}(e),h.x+=t[0]-e[0],h.y+=t[1]-e[1]}function M(e,n,i,a){e.__chart__={x:h.x,y:h.y,k:h.k},k(Math.pow(2,a)),A(r=n,i),e=t.select(e),m>0&&(e=e.transition().duration(m)),e.call(w.event)}function S(){c&&c.domain(l.range().map((function(t){return(t-h.x)/h.k})).map(l.invert)),f&&f.domain(u.range().map((function(t){return(t-h.y)/h.k})).map(u.invert))}function E(t){g++||t({type:"zoomstart"})}function L(t){S(),t({type:"zoom",scale:h.k,translate:[h.x,h.y]})}function C(t){--g||(t({type:"zoomend"}),r=null)}function P(){var e=this,r=_.of(e,arguments),n=0,i=t.select(o(e)).on(y,l).on(x,c),a=T(t.mouse(e)),s=bt(e);function l(){n=1,A(t.mouse(e),a),L(r)}function c(){i.on(y,null).on(x,null),s(n),C(r)}Di.call(e),E(r)}function I(){var e,r=this,n=_.of(r,arguments),i={},a=0,o=".zoom-"+t.event.changedTouches[0].identifier,l="touchmove"+o,c="touchend"+o,u=[],f=t.select(r),p=bt(r);function d(){var n=t.touches(r);return e=h.k,n.forEach((function(t){t.identifier in i&&(i[t.identifier]=T(t))})),n}function m(){var e=t.event.target;t.select(e).on(l,g).on(c,y),u.push(e);for(var n=t.event.changedTouches,o=0,f=n.length;o1){v=p[0];var x=p[1],b=v[0]-x[0],_=v[1]-x[1];a=b*b+_*_}}function g(){var o,l,c,u,f=t.touches(r);Di.call(r);for(var h=0,p=f.length;h360?t-=360:t<0&&(t+=360),t<60?n+(i-n)*t/60:t<180?i:t<240?n+(i-n)*(240-t)/60:n}(t))}return t=isNaN(t)?0:(t%=360)<0?t+360:t,e=isNaN(e)||e<0?0:e>1?1:e,n=2*(r=r<0?0:r>1?1:r)-(i=r<=.5?r*(1+e):r+e-r*e),new Qt(a(t+120),a(t),a(t-120))}function Ut(e,r,n){return this instanceof Ut?(this.h=+e,this.c=+r,void(this.l=+n)):arguments.length<2?e instanceof Ut?new Ut(e.h,e.c,e.l):Xt(e instanceof qt?e.l:(e=ae((e=t.rgb(e)).r,e.g,e.b)).l,e.a,e.b):new Ut(e,r,n)}Nt.brighter=function(t){return t=Math.pow(.7,arguments.length?t:1),new Bt(this.h,this.s,this.l/t)},Nt.darker=function(t){return t=Math.pow(.7,arguments.length?t:1),new Bt(this.h,this.s,t*this.l)},Nt.rgb=function(){return jt(this.h,this.s,this.l)},t.hcl=Ut;var Vt=Ut.prototype=new Ft;function Ht(t,e,r){return isNaN(t)&&(t=0),isNaN(e)&&(e=0),new qt(r,Math.cos(t*=Lt)*e,Math.sin(t)*e)}function qt(t,e,r){return this instanceof qt?(this.l=+t,this.a=+e,void(this.b=+r)):arguments.length<2?t instanceof qt?new qt(t.l,t.a,t.b):t instanceof Ut?Ht(t.h,t.c,t.l):ae((t=Qt(t)).r,t.g,t.b):new qt(t,e,r)}Vt.brighter=function(t){return new Ut(this.h,this.c,Math.min(100,this.l+Gt*(arguments.length?t:1)))},Vt.darker=function(t){return new Ut(this.h,this.c,Math.max(0,this.l-Gt*(arguments.length?t:1)))},Vt.rgb=function(){return Ht(this.h,this.c,this.l).rgb()},t.lab=qt;var Gt=18,Yt=qt.prototype=new Ft;function Wt(t,e,r){var n=(t+16)/116,i=n+e/500,a=n-r/200;return new Qt(Kt(3.2404542*(i=.95047*Zt(i))-1.5371385*(n=1*Zt(n))-.4985314*(a=1.08883*Zt(a))),Kt(-.969266*i+1.8760108*n+.041556*a),Kt(.0556434*i-.2040259*n+1.0572252*a))}function Xt(t,e,r){return t>0?new Ut(Math.atan2(r,e)*Ct,Math.sqrt(e*e+r*r),t):new Ut(NaN,NaN,t)}function Zt(t){return t>.206893034?t*t*t:(t-4/29)/7.787037}function Jt(t){return t>.008856?Math.pow(t,1/3):7.787037*t+4/29}function Kt(t){return Math.round(255*(t<=.00304?12.92*t:1.055*Math.pow(t,1/2.4)-.055))}function Qt(t,e,r){return this instanceof Qt?(this.r=~~t,this.g=~~e,void(this.b=~~r)):arguments.length<2?t instanceof Qt?new Qt(t.r,t.g,t.b):ne(""+t,Qt,jt):new Qt(t,e,r)}function $t(t){return new Qt(t>>16,t>>8&255,255&t)}function te(t){return $t(t)+""}Yt.brighter=function(t){return new qt(Math.min(100,this.l+Gt*(arguments.length?t:1)),this.a,this.b)},Yt.darker=function(t){return new qt(Math.max(0,this.l-Gt*(arguments.length?t:1)),this.a,this.b)},Yt.rgb=function(){return Wt(this.l,this.a,this.b)},t.rgb=Qt;var ee=Qt.prototype=new Ft;function re(t){return t<16?"0"+Math.max(0,t).toString(16):Math.min(255,t).toString(16)}function ne(t,e,r){var n,i,a,o=0,s=0,l=0;if(n=/([a-z]+)\((.*)\)/.exec(t=t.toLowerCase()))switch(i=n[2].split(","),n[1]){case"hsl":return r(parseFloat(i[0]),parseFloat(i[1])/100,parseFloat(i[2])/100);case"rgb":return e(se(i[0]),se(i[1]),se(i[2]))}return(a=le.get(t))?e(a.r,a.g,a.b):(null==t||"#"!==t.charAt(0)||isNaN(a=parseInt(t.slice(1),16))||(4===t.length?(o=(3840&a)>>4,o|=o>>4,s=240&a,s|=s>>4,l=15&a,l|=l<<4):7===t.length&&(o=(16711680&a)>>16,s=(65280&a)>>8,l=255&a)),e(o,s,l))}function ie(t,e,r){var n,i,a=Math.min(t/=255,e/=255,r/=255),o=Math.max(t,e,r),s=o-a,l=(o+a)/2;return s?(i=l<.5?s/(o+a):s/(2-o-a),n=t==o?(e-r)/s+(e0&&l<1?0:n),new Bt(n,i,l)}function ae(t,e,r){var n=Jt((.4124564*(t=oe(t))+.3575761*(e=oe(e))+.1804375*(r=oe(r)))/.95047),i=Jt((.2126729*t+.7151522*e+.072175*r)/1);return qt(116*i-16,500*(n-i),200*(i-Jt((.0193339*t+.119192*e+.9503041*r)/1.08883)))}function oe(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function se(t){var e=parseFloat(t);return"%"===t.charAt(t.length-1)?Math.round(2.55*e):e}ee.brighter=function(t){t=Math.pow(.7,arguments.length?t:1);var e=this.r,r=this.g,n=this.b,i=30;return e||r||n?(e&&e=200&&e<300||304===e){try{t=i.call(o,c)}catch(t){return void s.error.call(o,t)}s.load.call(o,t)}else s.error.call(o,c)}return self.XDomainRequest&&!("withCredentials"in c)&&/^(http(s)?:)?\/\//.test(e)&&(c=new XDomainRequest),"onload"in c?c.onload=c.onerror=f:c.onreadystatechange=function(){c.readyState>3&&f()},c.onprogress=function(e){var r=t.event;t.event=e;try{s.progress.call(o,c)}finally{t.event=r}},o.header=function(t,e){return t=(t+"").toLowerCase(),arguments.length<2?l[t]:(null==e?delete l[t]:l[t]=e+"",o)},o.mimeType=function(t){return arguments.length?(r=null==t?null:t+"",o):r},o.responseType=function(t){return arguments.length?(u=t,o):u},o.response=function(t){return i=t,o},["get","post"].forEach((function(t){o[t]=function(){return o.send.apply(o,[t].concat(n(arguments)))}})),o.send=function(t,n,i){if(2===arguments.length&&"function"==typeof n&&(i=n,n=null),c.open(t,e,!0),null==r||"accept"in l||(l.accept=r+",*/*"),c.setRequestHeader)for(var a in l)c.setRequestHeader(a,l[a]);return null!=r&&c.overrideMimeType&&c.overrideMimeType(r),null!=u&&(c.responseType=u),null!=i&&o.on("error",i).on("load",(function(t){i(null,t)})),s.beforesend.call(o,c),c.send(null==n?null:n),o},o.abort=function(){return c.abort(),o},t.rebind(o,s,"on"),null==a?o:o.get(function(t){return 1===t.length?function(e,r){t(null==e?r:null)}:t}(a))}le.forEach((function(t,e){le.set(t,$t(e))})),t.functor=ce,t.xhr=ue(C),t.dsv=function(t,e){var r=new RegExp('["'+t+"\n]"),n=t.charCodeAt(0);function i(t,r,n){arguments.length<3&&(n=r,r=null);var i=fe(t,e,null==r?a:o(r),n);return i.row=function(t){return arguments.length?i.response(null==(r=t)?a:o(t)):r},i}function a(t){return i.parse(t.responseText)}function o(t){return function(e){return i.parse(e.responseText,t)}}function s(e){return e.map(l).join(t)}function l(t){return r.test(t)?'"'+t.replace(/\"/g,'""')+'"':t}return i.parse=function(t,e){var r;return i.parseRows(t,(function(t,n){if(r)return r(t,n-1);var i=function(e){for(var r={},n=t.length,i=0;i=l)return o;if(i)return i=!1,a;var e=c;if(34===t.charCodeAt(e)){for(var r=e;r++24?(isFinite(e)&&(clearTimeout(me),me=setTimeout(ye,e)),de=0):(de=1,ge(ye))}function xe(){for(var t=Date.now(),e=he;e;)t>=e.t&&e.c(t-e.t)&&(e.c=null),e=e.n;return t}function be(){for(var t,e=he,r=1/0;e;)e.c?(e.t1&&(e=t[a[o-2]],r=t[a[o-1]],n=t[s],(r[0]-e[0])*(n[1]-e[1])-(r[1]-e[1])*(n[0]-e[0])<=0);)--o;a[o++]=s}return a.slice(0,o)}function ke(t,e){return t[0]-e[0]||t[1]-e[1]}t.timer=function(){ve.apply(this,arguments)},t.timer.flush=function(){xe(),be()},t.round=function(t,e){return e?Math.round(t*(e=Math.pow(10,e)))/e:Math.round(t)},t.geom={},t.geom.hull=function(t){var e=_e,r=we;if(arguments.length)return n(t);function n(t){if(t.length<3)return[];var n,i=ce(e),a=ce(r),o=t.length,s=[],l=[];for(n=0;n=0;--n)p.push(t[s[c[n]][2]]);for(n=+f;nkt)s=s.L;else{if(!((i=a-Ve(s,o))>kt)){n>-kt?(e=s.P,r=s):i>-kt?(e=s,r=s.N):e=r=s;break}if(!s.R){e=s;break}s=s.R}var l=Fe(t);if(Pe.insert(e,l),e||r){if(e===r)return We(e),r=Fe(e.site),Pe.insert(l,r),l.edge=r.edge=Je(e.site,l.site),Ye(e),void Ye(r);if(r){We(e),We(r);var c=e.site,u=c.x,f=c.y,h=t.x-u,p=t.y-f,d=r.site,m=d.x-u,g=d.y-f,v=2*(h*g-p*m),y=h*h+p*p,x=m*m+g*g,b={x:(g*y-p*x)/v+u,y:(h*x-m*y)/v+f};Qe(r.edge,c,d,b),l.edge=Je(c,t,null,b),r.edge=Je(t,d,null,b),Ye(e),Ye(r)}else l.edge=Je(e.site,l.site)}}function Ue(t,e){var r=t.site,n=r.x,i=r.y,a=i-e;if(!a)return n;var o=t.P;if(!o)return-1/0;var s=(r=o.site).x,l=r.y,c=l-e;if(!c)return s;var u=s-n,f=1/a-1/c,h=u/c;return f?(-h+Math.sqrt(h*h-2*f*(u*u/(-2*c)-l+c/2+i-a/2)))/f+n:(n+s)/2}function Ve(t,e){var r=t.N;if(r)return Ue(r,e);var n=t.site;return n.y===e?n.x:1/0}function He(t){this.site=t,this.edges=[]}function qe(t,e){return e.angle-t.angle}function Ge(){er(this),this.x=this.y=this.arc=this.site=this.cy=null}function Ye(t){var e=t.P,r=t.N;if(e&&r){var n=e.site,i=t.site,a=r.site;if(n!==a){var o=i.x,s=i.y,l=n.x-o,c=n.y-s,u=a.x-o,f=2*(l*(g=a.y-s)-c*u);if(!(f>=-1e-12)){var h=l*l+c*c,p=u*u+g*g,d=(g*h-c*p)/f,m=(l*p-u*h)/f,g=m+s,v=De.pop()||new Ge;v.arc=t,v.site=i,v.x=d+o,v.y=g+Math.sqrt(d*d+m*m),v.cy=g,t.circle=v;for(var y=null,x=Oe._;x;)if(v.y=s)return;if(h>d){if(a){if(a.y>=c)return}else a={x:g,y:l};r={x:g,y:c}}else{if(a){if(a.y1)if(h>d){if(a){if(a.y>=c)return}else a={x:(l-i)/n,y:l};r={x:(c-i)/n,y:c}}else{if(a){if(a.y=s)return}else a={x:o,y:n*o+i};r={x:s,y:n*s+i}}else{if(a){if(a.x0)){if(e/=h,h<0){if(e0){if(e>f)return;e>u&&(u=e)}if(e=i-l,h||!(e<0)){if(e/=h,h<0){if(e>f)return;e>u&&(u=e)}else if(h>0){if(e0)){if(e/=p,p<0){if(e0){if(e>f)return;e>u&&(u=e)}if(e=a-c,p||!(e<0)){if(e/=p,p<0){if(e>f)return;e>u&&(u=e)}else if(p>0){if(e0&&(t.a={x:l+u*h,y:c+u*p}),f<1&&(t.b={x:l+f*h,y:c+f*p}),t}}}}}),l=o.length;l--;)(!Xe(e=o[l],t)||!s(e)||y(e.a.x-e.b.x)kt||y(i-r)>kt)&&(s.splice(o,0,new $e(Ke(a.site,u,y(n-f)kt?{x:f,y:y(e-f)kt?{x:y(r-d)kt?{x:h,y:y(e-h)kt?{x:y(r-p)=r&&c.x<=i&&c.y>=n&&c.y<=o?[[r,o],[i,o],[i,n],[r,n]]:[]).point=t[s]})),e}function s(t){return t.map((function(t,e){return{x:Math.round(n(t,e)/kt)*kt,y:Math.round(i(t,e)/kt)*kt,i:e}}))}return o.links=function(t){return ar(s(t)).edges.filter((function(t){return t.l&&t.r})).map((function(e){return{source:t[e.l.i],target:t[e.r.i]}}))},o.triangles=function(t){var e=[];return ar(s(t)).cells.forEach((function(r,n){for(var i,a,o,s,l=r.site,c=r.edges.sort(qe),u=-1,f=c.length,h=c[f-1].edge,p=h.l===l?h.r:h.l;++ua||f>o||h=_)<<1|e>=b,T=w+4;wa&&(i=e.slice(a,i),s[o]?s[o]+=i:s[++o]=i),(r=r[0])===(n=n[0])?s[o]?s[o]+=n:s[++o]=n:(s[++o]=null,l.push({i:o,x:dr(r,n)})),a=vr.lastIndex;return am&&(m=l.x),l.y>g&&(g=l.y),c.push(l.x),u.push(l.y);else for(f=0;fm&&(m=b),_>g&&(g=_),c.push(b),u.push(_)}var w=m-p,T=g-d;function k(t,e,r,n,i,a,o,s){if(!isNaN(r)&&!isNaN(n))if(t.leaf){var l=t.x,c=t.y;if(null!=l)if(y(l-r)+y(c-n)<.01)A(t,e,r,n,i,a,o,s);else{var u=t.point;t.x=t.y=t.point=null,A(t,u,l,c,i,a,o,s),A(t,e,r,n,i,a,o,s)}else t.x=r,t.y=n,t.point=e}else A(t,e,r,n,i,a,o,s)}function A(t,e,r,n,i,a,o,s){var l=.5*(i+o),c=.5*(a+s),u=r>=l,f=n>=c,h=f<<1|u;t.leaf=!1,u?i=l:o=l,f?a=c:s=c,k(t=t.nodes[h]||(t.nodes[h]={leaf:!0,nodes:[],point:null,x:null,y:null}),e,r,n,i,a,o,s)}w>T?g=d+w:m=p+T;var M={leaf:!0,nodes:[],point:null,x:null,y:null,add:function(t){k(M,t,+v(t,++f),+x(t,f),p,d,m,g)},visit:function(t){ur(t,M,p,d,m,g)},find:function(t){return fr(M,t[0],t[1],p,d,m,g)}};if(f=-1,null==e){for(;++f=0&&!(n=t.interpolators[i](e,r)););return n}function xr(t,e){var r,n=[],i=[],a=t.length,o=e.length,s=Math.min(t.length,e.length);for(r=0;r=1?1:t(e)}}function kr(t){return function(e){return 1-t(1-e)}}function Ar(t){return function(e){return.5*(e<.5?t(2*e):2-t(2-2*e))}}function Mr(t){return t*t}function Sr(t){return t*t*t}function Er(t){if(t<=0)return 0;if(t>=1)return 1;var e=t*t,r=e*t;return 4*(t<.5?r:3*(t-e)+r-.75)}function Lr(t){return 1-Math.cos(t*Et)}function Cr(t){return Math.pow(2,10*(t-1))}function Pr(t){return 1-Math.sqrt(1-t*t)}function Ir(t){return t<1/2.75?7.5625*t*t:t<2/2.75?7.5625*(t-=1.5/2.75)*t+.75:t<2.5/2.75?7.5625*(t-=2.25/2.75)*t+.9375:7.5625*(t-=2.625/2.75)*t+.984375}function Or(t,e){return e-=t,function(r){return Math.round(t+e*r)}}function zr(t){var e,r,n,i=[t.a,t.b],a=[t.c,t.d],o=Rr(i),s=Dr(i,a),l=Rr(((e=a)[0]+=(n=-s)*(r=i)[0],e[1]+=n*r[1],e))||0;i[0]*a[1]=0?t.slice(0,e):t,i=e>=0?t.slice(e+1):"in";return n=_r.get(n)||br,Tr((i=wr.get(i)||C)(n.apply(null,r.call(arguments,1))))},t.interpolateHcl=function(e,r){e=t.hcl(e),r=t.hcl(r);var n=e.h,i=e.c,a=e.l,o=r.h-n,s=r.c-i,l=r.l-a;isNaN(s)&&(s=0,i=isNaN(i)?r.c:i);isNaN(o)?(o=0,n=isNaN(n)?r.h:n):o>180?o-=360:o<-180&&(o+=360);return function(t){return Ht(n+o*t,i+s*t,a+l*t)+""}},t.interpolateHsl=function(e,r){e=t.hsl(e),r=t.hsl(r);var n=e.h,i=e.s,a=e.l,o=r.h-n,s=r.s-i,l=r.l-a;isNaN(s)&&(s=0,i=isNaN(i)?r.s:i);isNaN(o)?(o=0,n=isNaN(n)?r.h:n):o>180?o-=360:o<-180&&(o+=360);return function(t){return jt(n+o*t,i+s*t,a+l*t)+""}},t.interpolateLab=function(e,r){e=t.lab(e),r=t.lab(r);var n=e.l,i=e.a,a=e.b,o=r.l-n,s=r.a-i,l=r.b-a;return function(t){return Wt(n+o*t,i+s*t,a+l*t)+""}},t.interpolateRound=Or,t.transform=function(e){var r=i.createElementNS(t.ns.prefix.svg,"g");return(t.transform=function(t){if(null!=t){r.setAttribute("transform",t);var e=r.transform.baseVal.consolidate()}return new zr(e?e.matrix:Fr)})(e)},zr.prototype.toString=function(){return"translate("+this.translate+")rotate("+this.rotate+")skewX("+this.skew+")scale("+this.scale+")"};var Fr={a:1,b:0,c:0,d:1,e:0,f:0};function Br(t){return t.length?t.pop()+",":""}function Nr(e,r){var n=[],i=[];return e=t.transform(e),r=t.transform(r),function(t,e,r,n){if(t[0]!==e[0]||t[1]!==e[1]){var i=r.push("translate(",null,",",null,")");n.push({i:i-4,x:dr(t[0],e[0])},{i:i-2,x:dr(t[1],e[1])})}else(e[0]||e[1])&&r.push("translate("+e+")")}(e.translate,r.translate,n,i),function(t,e,r,n){t!==e?(t-e>180?e+=360:e-t>180&&(t+=360),n.push({i:r.push(Br(r)+"rotate(",null,")")-2,x:dr(t,e)})):e&&r.push(Br(r)+"rotate("+e+")")}(e.rotate,r.rotate,n,i),function(t,e,r,n){t!==e?n.push({i:r.push(Br(r)+"skewX(",null,")")-2,x:dr(t,e)}):e&&r.push(Br(r)+"skewX("+e+")")}(e.skew,r.skew,n,i),function(t,e,r,n){if(t[0]!==e[0]||t[1]!==e[1]){var i=r.push(Br(r)+"scale(",null,",",null,")");n.push({i:i-4,x:dr(t[0],e[0])},{i:i-2,x:dr(t[1],e[1])})}else 1===e[0]&&1===e[1]||r.push(Br(r)+"scale("+e+")")}(e.scale,r.scale,n,i),e=r=null,function(t){for(var e,r=-1,a=i.length;++r0?n=t:(e.c=null,e.t=NaN,e=null,l.end({type:"end",alpha:n=0})):t>0&&(l.start({type:"start",alpha:n=t}),e=ve(s.tick)),s):n},s.start=function(){var t,e,r,n=v.length,l=y.length,u=c[0],d=c[1];for(t=0;t=0;)r.push(i[n])}function $r(t,e){for(var r=[t],n=[];null!=(t=r.pop());)if(n.push(t),(a=t.children)&&(i=a.length))for(var i,a,o=-1;++o=0;)o.push(u=c[l]),u.parent=a,u.depth=a.depth+1;r&&(a.value=0),a.children=c}else r&&(a.value=+r.call(n,a,a.depth)||0),delete a.children;return $r(i,(function(e){var n,i;t&&(n=e.children)&&n.sort(t),r&&(i=e.parent)&&(i.value+=e.value)})),s}return n.sort=function(e){return arguments.length?(t=e,n):t},n.children=function(t){return arguments.length?(e=t,n):e},n.value=function(t){return arguments.length?(r=t,n):r},n.revalue=function(t){return r&&(Qr(t,(function(t){t.children&&(t.value=0)})),$r(t,(function(t){var e;t.children||(t.value=+r.call(n,t,t.depth)||0),(e=t.parent)&&(e.value+=t.value)}))),t},n},t.layout.partition=function(){var e=t.layout.hierarchy(),r=[1,1];function n(t,n){var i=e.call(this,t,n);return function t(e,r,n,i){var a=e.children;if(e.x=r,e.y=e.depth*i,e.dx=n,e.dy=i,a&&(o=a.length)){var o,s,l,c=-1;for(n=e.value?n/e.value:0;++cs&&(s=n),o.push(n)}for(r=0;ri&&(n=r,i=e);return n}function dn(t){return t.reduce(mn,0)}function mn(t,e){return t+e[1]}function gn(t,e){return vn(t,Math.ceil(Math.log(e.length)/Math.LN2+1))}function vn(t,e){for(var r=-1,n=+t[0],i=(t[1]-n)/e,a=[];++r<=e;)a[r]=i*r+n;return a}function yn(e){return[t.min(e),t.max(e)]}function xn(t,e){return t.value-e.value}function bn(t,e){var r=t._pack_next;t._pack_next=e,e._pack_prev=t,e._pack_next=r,r._pack_prev=e}function _n(t,e){t._pack_next=e,e._pack_prev=t}function wn(t,e){var r=e.x-t.x,n=e.y-t.y,i=t.r+e.r;return.999*i*i>r*r+n*n}function Tn(t){if((e=t.children)&&(l=e.length)){var e,r,n,i,a,o,s,l,c=1/0,u=-1/0,f=1/0,h=-1/0;if(e.forEach(kn),(r=e[0]).x=-r.r,r.y=0,x(r),l>1&&((n=e[1]).x=n.r,n.y=0,x(n),l>2))for(Mn(r,n,i=e[2]),x(i),bn(r,i),r._pack_prev=i,bn(i,n),n=r._pack_next,a=3;a0)for(o=-1;++o=f[0]&&l<=f[1]&&((s=c[t.bisect(h,l,1,d)-1]).y+=m,s.push(a[o]));return c}return a.value=function(t){return arguments.length?(r=t,a):r},a.range=function(t){return arguments.length?(n=ce(t),a):n},a.bins=function(t){return arguments.length?(i="number"==typeof t?function(e){return vn(e,t)}:ce(t),a):i},a.frequency=function(t){return arguments.length?(e=!!t,a):e},a},t.layout.pack=function(){var e,r=t.layout.hierarchy().sort(xn),n=0,i=[1,1];function a(t,a){var o=r.call(this,t,a),s=o[0],l=i[0],c=i[1],u=null==e?Math.sqrt:"function"==typeof e?e:function(){return e};if(s.x=s.y=0,$r(s,(function(t){t.r=+u(t.value)})),$r(s,Tn),n){var f=n*(e?1:Math.max(2*s.r/l,2*s.r/c))/2;$r(s,(function(t){t.r+=f})),$r(s,Tn),$r(s,(function(t){t.r-=f}))}return function t(e,r,n,i){var a=e.children;if(e.x=r+=i*e.x,e.y=n+=i*e.y,e.r*=i,a)for(var o=-1,s=a.length;++op.x&&(p=t),t.depth>d.depth&&(d=t)}));var m=r(h,p)/2-h.x,g=n[0]/(p.x+r(p,h)/2+m),v=n[1]/(d.depth||1);Qr(u,(function(t){t.x=(t.x+m)*g,t.y=t.depth*v}))}return c}function o(t){var e=t.children,n=t.parent.children,i=t.i?n[t.i-1]:null;if(e.length){!function(t){var e,r=0,n=0,i=t.children,a=i.length;for(;--a>=0;)(e=i[a]).z+=r,e.m+=r,r+=e.s+(n+=e.c)}(t);var a=(e[0].z+e[e.length-1].z)/2;i?(t.z=i.z+r(t._,i._),t.m=t.z-a):t.z=a}else i&&(t.z=i.z+r(t._,i._));t.parent.A=function(t,e,n){if(e){for(var i,a=t,o=t,s=e,l=a.parent.children[0],c=a.m,u=o.m,f=s.m,h=l.m;s=Ln(s),a=En(a),s&&a;)l=En(l),(o=Ln(o)).a=t,(i=s.z+f-a.z-c+r(s._,a._))>0&&(Cn(Pn(s,t,n),t,i),c+=i,u+=i),f+=s.m,c+=a.m,h+=l.m,u+=o.m;s&&!Ln(o)&&(o.t=s,o.m+=f-u),a&&!En(l)&&(l.t=a,l.m+=c-h,n=t)}return n}(t,i,t.parent.A||n[0])}function s(t){t._.x=t.z+t.parent.m,t.m+=t.parent.m}function l(t){t.x*=n[0],t.y=t.depth*n[1]}return a.separation=function(t){return arguments.length?(r=t,a):r},a.size=function(t){return arguments.length?(i=null==(n=t)?l:null,a):i?null:n},a.nodeSize=function(t){return arguments.length?(i=null==(n=t)?null:l,a):i?n:null},Kr(a,e)},t.layout.cluster=function(){var e=t.layout.hierarchy().sort(null).value(null),r=Sn,n=[1,1],i=!1;function a(a,o){var s,l=e.call(this,a,o),c=l[0],u=0;$r(c,(function(e){var n=e.children;n&&n.length?(e.x=function(t){return t.reduce((function(t,e){return t+e.x}),0)/t.length}(n),e.y=function(e){return 1+t.max(e,(function(t){return t.y}))}(n)):(e.x=s?u+=r(e,s):0,e.y=0,s=e)}));var f=function t(e){var r=e.children;return r&&r.length?t(r[0]):e}(c),h=function t(e){var r,n=e.children;return n&&(r=n.length)?t(n[r-1]):e}(c),p=f.x-r(f,h)/2,d=h.x+r(h,f)/2;return $r(c,i?function(t){t.x=(t.x-c.x)*n[0],t.y=(c.y-t.y)*n[1]}:function(t){t.x=(t.x-p)/(d-p)*n[0],t.y=(1-(c.y?t.y/c.y:1))*n[1]}),l}return a.separation=function(t){return arguments.length?(r=t,a):r},a.size=function(t){return arguments.length?(i=null==(n=t),a):i?null:n},a.nodeSize=function(t){return arguments.length?(i=null!=(n=t),a):i?n:null},Kr(a,e)},t.layout.treemap=function(){var e,r=t.layout.hierarchy(),n=Math.round,i=[1,1],a=null,o=In,s=!1,l="squarify",c=.5*(1+Math.sqrt(5));function u(t,e){for(var r,n,i=-1,a=t.length;++i0;)s.push(r=c[i-1]),s.area+=r.area,"squarify"!==l||(n=p(s,m))<=h?(c.pop(),h=n):(s.area-=s.pop().area,d(s,m,a,!1),m=Math.min(a.dx,a.dy),s.length=s.area=0,h=1/0);s.length&&(d(s,m,a,!0),s.length=s.area=0),e.forEach(f)}}function h(t){var e=t.children;if(e&&e.length){var r,n=o(t),i=e.slice(),a=[];for(u(i,n.dx*n.dy/t.value),a.area=0;r=i.pop();)a.push(r),a.area+=r.area,null!=r.z&&(d(a,r.z?n.dx:n.dy,n,!i.length),a.length=a.area=0);e.forEach(h)}}function p(t,e){for(var r,n=t.area,i=0,a=1/0,o=-1,s=t.length;++oi&&(i=r));return e*=e,(n*=n)?Math.max(e*i*c/n,n/(e*a*c)):1/0}function d(t,e,r,i){var a,o=-1,s=t.length,l=r.x,c=r.y,u=e?n(t.area/e):0;if(e==r.dx){for((i||u>r.dy)&&(u=r.dy);++or.dx)&&(u=r.dx);++o1);return t+e*r*Math.sqrt(-2*Math.log(i)/i)}},logNormal:function(){var e=t.random.normal.apply(t,arguments);return function(){return Math.exp(e())}},bates:function(e){var r=t.random.irwinHall(e);return function(){return r()/e}},irwinHall:function(t){return function(){for(var e=0,r=0;r2?jn:Rn,s=i?Ur:jr;return a=t(e,r,s,n),o=t(r,e,s,yr),l}function l(t){return a(t)}return l.invert=function(t){return o(t)},l.domain=function(t){return arguments.length?(e=t.map(Number),s()):e},l.range=function(t){return arguments.length?(r=t,s()):r},l.rangeRound=function(t){return l.range(t).interpolate(Or)},l.clamp=function(t){return arguments.length?(i=t,s()):i},l.interpolate=function(t){return arguments.length?(n=t,s()):n},l.ticks=function(t){return qn(e,t)},l.tickFormat=function(t,r){return d3_scale_linearTickFormat(e,t,r)},l.nice=function(t){return Vn(e,t),s()},l.copy=function(){return t(e,r,n,i)},s()}([0,1],[0,1],yr,!1)};t.scale.log=function(){return function t(e,r,n,i){function a(t){return(n?Math.log(t<0?0:t):-Math.log(t>0?0:-t))/Math.log(r)}function o(t){return n?Math.pow(r,t):-Math.pow(r,-t)}function s(t){return e(a(t))}return s.invert=function(t){return o(e.invert(t))},s.domain=function(t){return arguments.length?(n=t[0]>=0,e.domain((i=t.map(Number)).map(a)),s):i},s.base=function(t){return arguments.length?(r=+t,e.domain(i.map(a)),s):r},s.nice=function(){var t=Fn(i.map(a),n?Math:Gn);return e.domain(t),i=t.map(o),s},s.ticks=function(){var t=zn(i),e=[],s=t[0],l=t[1],c=Math.floor(a(s)),u=Math.ceil(a(l)),f=r%1?2:r;if(isFinite(u-c)){if(n){for(;c0;h--)e.push(o(c)*h);for(c=0;e[c]l;u--);e=e.slice(c,u)}return e},s.copy=function(){return t(e.copy(),r,n,i)},Un(s,e)}(t.scale.linear().domain([0,1]),10,!0,[1,10])};var Gn={floor:function(t){return-Math.ceil(-t)},ceil:function(t){return-Math.floor(-t)}};function Yn(t){return function(e){return e<0?-Math.pow(-e,t):Math.pow(e,t)}}t.scale.pow=function(){return function t(e,r,n){var i=Yn(r),a=Yn(1/r);function o(t){return e(i(t))}return o.invert=function(t){return a(e.invert(t))},o.domain=function(t){return arguments.length?(e.domain((n=t.map(Number)).map(i)),o):n},o.ticks=function(t){return qn(n,t)},o.tickFormat=function(t,e){return d3_scale_linearTickFormat(n,t,e)},o.nice=function(t){return o.domain(Vn(n,t))},o.exponent=function(t){return arguments.length?(i=Yn(r=t),a=Yn(1/r),e.domain(n.map(i)),o):r},o.copy=function(){return t(e.copy(),r,n)},Un(o,e)}(t.scale.linear(),1,[0,1])},t.scale.sqrt=function(){return t.scale.pow().exponent(.5)},t.scale.ordinal=function(){return function e(r,n){var i,a,o;function s(t){return a[((i.get(t)||("range"===n.t?i.set(t,r.push(t)):NaN))-1)%a.length]}function l(e,n){return t.range(r.length).map((function(t){return e+n*t}))}return s.domain=function(t){if(!arguments.length)return r;r=[],i=new _;for(var e,a=-1,o=t.length;++a0?i[t-1]:r[0],tf?0:1;if(c=St)return l(c,p)+(s?l(s,1-p):"")+"Z";var d,m,g,v,y,x,b,_,w,T,k,A,M=0,S=0,E=[];if((v=(+o.apply(this,arguments)||0)/2)&&(g=n===Qn?Math.sqrt(s*s+c*c):+n.apply(this,arguments),p||(S*=-1),c&&(S=Pt(g/c*Math.sin(v))),s&&(M=Pt(g/s*Math.sin(v)))),c){y=c*Math.cos(u+S),x=c*Math.sin(u+S),b=c*Math.cos(f-S),_=c*Math.sin(f-S);var L=Math.abs(f-u-2*S)<=At?0:1;if(S&&ii(y,x,b,_)===p^L){var C=(u+f)/2;y=c*Math.cos(C),x=c*Math.sin(C),b=_=null}}else y=x=0;if(s){w=s*Math.cos(f-M),T=s*Math.sin(f-M),k=s*Math.cos(u+M),A=s*Math.sin(u+M);var P=Math.abs(u-f+2*M)<=At?0:1;if(M&&ii(w,T,k,A)===1-p^P){var I=(u+f)/2;w=s*Math.cos(I),T=s*Math.sin(I),k=A=null}}else w=T=0;if(h>kt&&(d=Math.min(Math.abs(c-s)/2,+r.apply(this,arguments)))>.001){m=s0?0:1}function ai(t,e,r,n,i){var a=t[0]-e[0],o=t[1]-e[1],s=(i?n:-n)/Math.sqrt(a*a+o*o),l=s*o,c=-s*a,u=t[0]+l,f=t[1]+c,h=e[0]+l,p=e[1]+c,d=(u+h)/2,m=(f+p)/2,g=h-u,v=p-f,y=g*g+v*v,x=r-n,b=u*p-h*f,_=(v<0?-1:1)*Math.sqrt(Math.max(0,x*x*y-b*b)),w=(b*v-g*_)/y,T=(-b*g-v*_)/y,k=(b*v+g*_)/y,A=(-b*g+v*_)/y,M=w-d,S=T-m,E=k-d,L=A-m;return M*M+S*S>E*E+L*L&&(w=k,T=A),[[w-l,T-c],[w*r/x,T*r/x]]}function oi(){return!0}function si(t){var e=_e,r=we,n=oi,i=ci,a=i.key,o=.7;function s(a){var s,l=[],c=[],u=-1,f=a.length,h=ce(e),p=ce(r);function d(){l.push("M",i(t(c),o))}for(;++u1&&i.push("H",n[0]);return i.join("")},"step-before":fi,"step-after":hi,basis:mi,"basis-open":function(t){if(t.length<4)return ci(t);var e,r=[],n=-1,i=t.length,a=[0],o=[0];for(;++n<3;)e=t[n],a.push(e[0]),o.push(e[1]);r.push(gi(xi,a)+","+gi(xi,o)),--n;for(;++n9&&(i=3*e/Math.sqrt(i),o[s]=i*r,o[s+1]=i*n));s=-1;for(;++s<=l;)i=(t[Math.min(l,s+1)][0]-t[Math.max(0,s-1)][0])/(6*(1+o[s]*o[s])),a.push([i||0,o[s]*i||0]);return a}(t))}});function ci(t){return t.length>1?t.join("L"):t+"Z"}function ui(t){return t.join("L")+"Z"}function fi(t){for(var e=0,r=t.length,n=t[0],i=[n[0],",",n[1]];++e1){s=e[1],a=t[l],l++,n+="C"+(i[0]+o[0])+","+(i[1]+o[1])+","+(a[0]-s[0])+","+(a[1]-s[1])+","+a[0]+","+a[1];for(var c=2;cAt)+",1 "+e}function l(t,e,r,n){return"Q 0,0 "+n}return a.radius=function(t){return arguments.length?(r=ce(t),a):r},a.source=function(e){return arguments.length?(t=ce(e),a):t},a.target=function(t){return arguments.length?(e=ce(t),a):e},a.startAngle=function(t){return arguments.length?(n=ce(t),a):n},a.endAngle=function(t){return arguments.length?(i=ce(t),a):i},a},t.svg.diagonal=function(){var t=ki,e=Ai,r=Si;function n(n,i){var a=t.call(this,n,i),o=e.call(this,n,i),s=(a.y+o.y)/2,l=[a,{x:a.x,y:s},{x:o.x,y:s},o];return"M"+(l=l.map(r))[0]+"C"+l[1]+" "+l[2]+" "+l[3]}return n.source=function(e){return arguments.length?(t=ce(e),n):t},n.target=function(t){return arguments.length?(e=ce(t),n):e},n.projection=function(t){return arguments.length?(r=t,n):r},n},t.svg.diagonal.radial=function(){var e=t.svg.diagonal(),r=Si,n=e.projection;return e.projection=function(t){return arguments.length?n(Ei(r=t)):r},e},t.svg.symbol=function(){var t=Ci,e=Li;function r(r,n){return(Ii.get(t.call(this,r,n))||Pi)(e.call(this,r,n))}return r.type=function(e){return arguments.length?(t=ce(e),r):t},r.size=function(t){return arguments.length?(e=ce(t),r):e},r};var Ii=t.map({circle:Pi,cross:function(t){var e=Math.sqrt(t/5)/2;return"M"+-3*e+","+-e+"H"+-e+"V"+-3*e+"H"+e+"V"+-e+"H"+3*e+"V"+e+"H"+e+"V"+3*e+"H"+-e+"V"+e+"H"+-3*e+"Z"},diamond:function(t){var e=Math.sqrt(t/(2*zi)),r=e*zi;return"M0,"+-e+"L"+r+",0 0,"+e+" "+-r+",0Z"},square:function(t){var e=Math.sqrt(t)/2;return"M"+-e+","+-e+"L"+e+","+-e+" "+e+","+e+" "+-e+","+e+"Z"},"triangle-down":function(t){var e=Math.sqrt(t/Oi),r=e*Oi/2;return"M0,"+r+"L"+e+","+-r+" "+-e+","+-r+"Z"},"triangle-up":function(t){var e=Math.sqrt(t/Oi),r=e*Oi/2;return"M0,"+-r+"L"+e+","+r+" "+-e+","+r+"Z"}});t.svg.symbolTypes=Ii.keys();var Oi=Math.sqrt(3),zi=Math.tan(30*Lt);Y.transition=function(t){for(var e,r,n=Bi||++Ui,i=qi(t),a=[],o=Ni||{time:Date.now(),ease:Er,delay:0,duration:250},s=-1,l=this.length;++s0;)c[--h].call(t,o);if(a>=1)return f.event&&f.event.end.call(t,t.__data__,e),--u.count?delete u[n]:delete t[r],1}f||(a=i.time,o=ve((function(t){var e=f.delay;if(o.t=e+a,e<=t)return h(t-e);o.c=h}),0,a),f=u[n]={tween:new _,time:a,timer:o,delay:i.delay,duration:i.duration,ease:i.ease,index:e},i=null,++u.count)}ji.call=Y.call,ji.empty=Y.empty,ji.node=Y.node,ji.size=Y.size,t.transition=function(e,r){return e&&e.transition?Bi?e.transition(r):e:t.selection().transition(e)},t.transition.prototype=ji,ji.select=function(t){var e,r,n,i=this.id,a=this.namespace,o=[];t=W(t);for(var s=-1,l=this.length;++srect,.s>rect").attr("width",s[1]-s[0])}function m(t){t.select(".extent").attr("y",l[0]),t.selectAll(".extent,.e>rect,.w>rect").attr("height",l[1]-l[0])}function g(){var f,g,v=this,y=t.select(t.event.target),x=n.of(v,arguments),b=t.select(v),_=y.datum(),w=!/^(n|s)$/.test(_)&&i,T=!/^(e|w)$/.test(_)&&a,k=y.classed("extent"),A=bt(v),M=t.mouse(v),S=t.select(o(v)).on("keydown.brush",C).on("keyup.brush",P);if(t.event.changedTouches?S.on("touchmove.brush",I).on("touchend.brush",z):S.on("mousemove.brush",I).on("mouseup.brush",z),b.interrupt().selectAll("*").interrupt(),k)M[0]=s[0]-M[0],M[1]=l[0]-M[1];else if(_){var E=+/w$/.test(_),L=+/^n/.test(_);g=[s[1-E]-M[0],l[1-L]-M[1]],M[0]=s[E],M[1]=l[L]}else t.event.altKey&&(f=M.slice());function C(){32==t.event.keyCode&&(k||(f=null,M[0]-=s[1],M[1]-=l[1],k=2),F())}function P(){32==t.event.keyCode&&2==k&&(M[0]+=s[1],M[1]+=l[1],k=0,F())}function I(){var e=t.mouse(v),r=!1;g&&(e[0]+=g[0],e[1]+=g[1]),k||(t.event.altKey?(f||(f=[(s[0]+s[1])/2,(l[0]+l[1])/2]),M[0]=s[+(e[0]>>1;e.dtype||(e.dtype="array"),"string"==typeof e.dtype?d=new(f(e.dtype))(g):e.dtype&&(d=e.dtype,Array.isArray(d)&&(d.length=g));for(var v=0;vr||s>1073741824){for(var h=0;he+n||w>r+n||T=A||a===o)){var s=y[i];void 0===o&&(o=s.length);for(var l=a;l=d&&u<=g&&f>=m&&f<=v&&S.push(c)}var h=x[i],p=h[4*a+0],b=h[4*a+1],M=h[4*a+2],E=h[4*a+3],P=C(h,a+1),I=.5*n,O=i+1;L(e,r,I,O,p,b||M||E||P),L(e,r+I,I,O,b,M||E||P),L(e+I,r,I,O,M,E||P),L(e+I,r+I,I,O,E,P)}}function C(t,e){for(var r=null,n=0;null===r;)if(r=t[4*e+n],++n>t.length)return null;return r}return L(0,0,1,0,0,1),S},d;function E(t,e,r,i,a){for(var o=[],s=0;s0){e+=Math.abs(a(t[0]));for(var r=1;r2){for(s=0;st[0]&&(e[0]=t[0]),e[1]>t[1]&&(e[1]=t[1]),e[2]=0))throw new Error("precision must be a positive number");var r=Math.pow(10,e||0);return Math.round(t*r)/r},r.radiansToLength=f,r.lengthToRadians=h,r.lengthToDegrees=function(t,e){return p(h(t,e))},r.bearingToAzimuth=function(t){var e=t%360;return e<0&&(e+=360),e},r.radiansToDegrees=p,r.degreesToRadians=function(t){return t%360*Math.PI/180},r.convertLength=function(t,e,r){if(void 0===e&&(e="kilometers"),void 0===r&&(r="kilometers"),!(t>=0))throw new Error("length must be a positive number");return f(h(t,e),r)},r.convertArea=function(t,e,n){if(void 0===e&&(e="meters"),void 0===n&&(n="kilometers"),!(t>=0))throw new Error("area must be a positive number");var i=r.areaFactors[e];if(!i)throw new Error("invalid original units");var a=r.areaFactors[n];if(!a)throw new Error("invalid final units");return t/i*a},r.isNumber=d,r.isObject=function(t){return!!t&&t.constructor===Object},r.validateBBox=function(t){if(!t)throw new Error("bbox is required");if(!Array.isArray(t))throw new Error("bbox must be an Array");if(4!==t.length&&6!==t.length)throw new Error("bbox must be an Array of 4 or 6 numbers");t.forEach((function(t){if(!d(t))throw new Error("bbox must only contain numbers")}))},r.validateId=function(t){if(!t)throw new Error("id is required");if(-1===["string","number"].indexOf(typeof t))throw new Error("id must be a number or a string")}},{}],65:[function(t,e,r){"use strict";Object.defineProperty(r,"__esModule",{value:!0});var n=t("@turf/helpers");function i(t,e,r){if(null!==t)for(var n,a,o,s,l,c,u,f,h=0,p=0,d=t.type,m="FeatureCollection"===d,g="Feature"===d,v=m?t.features.length:1,y=0;yc||p>u||d>f)return l=i,c=r,u=p,f=d,void(o=0);var m=n.lineString([l,i],t.properties);if(!1===e(m,r,a,d,o))return!1;o++,l=i}))&&void 0}}}))}function u(t,e){if(!t)throw new Error("geojson is required");l(t,(function(t,r,i){if(null!==t.geometry){var a=t.geometry.type,o=t.geometry.coordinates;switch(a){case"LineString":if(!1===e(t,r,i,0,0))return!1;break;case"Polygon":for(var s=0;si&&(i=t[o]),t[o] * @license MIT - */function i(t,e){if(t===e)return 0;for(var r=t.length,n=e.length,i=0,a=Math.min(r,n);i=0;c--)if(u[c]!==f[c])return!1;for(c=u.length-1;c>=0;c--)if(s=u[c],!x(t[s],e[s],r,n))return!1;return!0}(t,e,r,n))}return r?t===e:t==e}function b(t){return"[object Arguments]"==Object.prototype.toString.call(t)}function _(t,e){if(!t||!e)return!1;if("[object RegExp]"==Object.prototype.toString.call(e))return e.test(t);try{if(t instanceof e)return!0}catch(t){}return!Error.isPrototypeOf(e)&&!0===e.call({},t)}function w(t,e,r,n){var i;if("function"!=typeof e)throw new TypeError('"block" argument must be a function');"string"==typeof r&&(n=r,r=null),i=function(t){var e;try{t()}catch(t){e=t}return e}(e),n=(r&&r.name?" ("+r.name+").":".")+(n?" "+n:"."),t&&!i&&v(i,r,"Missing expected exception"+n);var a="string"==typeof n,s=!t&&i&&!r;if((!t&&o.isError(i)&&a&&_(i,r)||s)&&v(i,r,"Got unwanted exception"+n),t&&i&&r&&!_(i,r)||!t&&i)throw i}h.AssertionError=function(t){this.name="AssertionError",this.actual=t.actual,this.expected=t.expected,this.operator=t.operator,t.message?(this.message=t.message,this.generatedMessage=!1):(this.message=function(t){return m(g(t.actual),128)+" "+t.operator+" "+m(g(t.expected),128)}(this),this.generatedMessage=!0);var e=t.stackStartFunction||v;if(Error.captureStackTrace)Error.captureStackTrace(this,e);else{var r=new Error;if(r.stack){var n=r.stack,i=d(e),a=n.indexOf("\n"+i);if(a>=0){var o=n.indexOf("\n",a+1);n=n.substring(o+1)}this.stack=n}}},o.inherits(h.AssertionError,Error),h.fail=v,h.ok=y,h.equal=function(t,e,r){t!=e&&v(t,e,r,"==",h.equal)},h.notEqual=function(t,e,r){t==e&&v(t,e,r,"!=",h.notEqual)},h.deepEqual=function(t,e,r){x(t,e,!1)||v(t,e,r,"deepEqual",h.deepEqual)},h.deepStrictEqual=function(t,e,r){x(t,e,!0)||v(t,e,r,"deepStrictEqual",h.deepStrictEqual)},h.notDeepEqual=function(t,e,r){x(t,e,!1)&&v(t,e,r,"notDeepEqual",h.notDeepEqual)},h.notDeepStrictEqual=function t(e,r,n){x(e,r,!0)&&v(e,r,n,"notDeepStrictEqual",t)},h.strictEqual=function(t,e,r){t!==e&&v(t,e,r,"===",h.strictEqual)},h.notStrictEqual=function(t,e,r){t===e&&v(t,e,r,"!==",h.notStrictEqual)},h.throws=function(t,e,r){w(!0,t,e,r)},h.doesNotThrow=function(t,e,r){w(!1,t,e,r)},h.ifError=function(t){if(t)throw t},h.strict=n((function t(e,r){e||v(e,!0,r,"==",t)}),h,{equal:h.strictEqual,deepEqual:h.deepStrictEqual,notEqual:h.notStrictEqual,notDeepEqual:h.notDeepStrictEqual}),h.strict.strict=h.strict;var T=Object.keys||function(t){var e=[];for(var r in t)s.call(t,r)&&e.push(r);return e}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"object-assign":242,"util/":74}],72:[function(t,e,r){"function"==typeof Object.create?e.exports=function(t,e){t.super_=e,t.prototype=Object.create(e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}})}:e.exports=function(t,e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}},{}],73:[function(t,e,r){e.exports=function(t){return t&&"object"==typeof t&&"function"==typeof t.copy&&"function"==typeof t.fill&&"function"==typeof t.readUInt8}},{}],74:[function(t,e,r){(function(e,n){(function(){var i=/%[sdj%]/g;r.format=function(t){if(!v(t)){for(var e=[],r=0;r=a)return t;switch(t){case"%s":return String(n[r++]);case"%d":return Number(n[r++]);case"%j":try{return JSON.stringify(n[r++])}catch(t){return"[Circular]"}default:return t}})),l=n[r];r=3&&(n.depth=arguments[2]),arguments.length>=4&&(n.colors=arguments[3]),d(e)?n.showHidden=e:e&&r._extend(n,e),y(n.showHidden)&&(n.showHidden=!1),y(n.depth)&&(n.depth=2),y(n.colors)&&(n.colors=!1),y(n.customInspect)&&(n.customInspect=!0),n.colors&&(n.stylize=l),u(n,t,n.depth)}function l(t,e){var r=s.styles[e];return r?"\x1b["+s.colors[r][0]+"m"+t+"\x1b["+s.colors[r][1]+"m":t}function c(t,e){return t}function u(t,e,n){if(t.customInspect&&e&&T(e.inspect)&&e.inspect!==r.inspect&&(!e.constructor||e.constructor.prototype!==e)){var i=e.inspect(n,t);return v(i)||(i=u(t,i,n)),i}var a=function(t,e){if(y(e))return t.stylize("undefined","undefined");if(v(e)){var r="'"+JSON.stringify(e).replace(/^"|"$/g,"").replace(/'/g,"\\'").replace(/\\"/g,'"')+"'";return t.stylize(r,"string")}if(g(e))return t.stylize(""+e,"number");if(d(e))return t.stylize(""+e,"boolean");if(m(e))return t.stylize("null","null")}(t,e);if(a)return a;var o=Object.keys(e),s=function(t){var e={};return t.forEach((function(t,r){e[t]=!0})),e}(o);if(t.showHidden&&(o=Object.getOwnPropertyNames(e)),w(e)&&(o.indexOf("message")>=0||o.indexOf("description")>=0))return f(e);if(0===o.length){if(T(e)){var l=e.name?": "+e.name:"";return t.stylize("[Function"+l+"]","special")}if(x(e))return t.stylize(RegExp.prototype.toString.call(e),"regexp");if(_(e))return t.stylize(Date.prototype.toString.call(e),"date");if(w(e))return f(e)}var c,b="",k=!1,A=["{","}"];(p(e)&&(k=!0,A=["[","]"]),T(e))&&(b=" [Function"+(e.name?": "+e.name:"")+"]");return x(e)&&(b=" "+RegExp.prototype.toString.call(e)),_(e)&&(b=" "+Date.prototype.toUTCString.call(e)),w(e)&&(b=" "+f(e)),0!==o.length||k&&0!=e.length?n<0?x(e)?t.stylize(RegExp.prototype.toString.call(e),"regexp"):t.stylize("[Object]","special"):(t.seen.push(e),c=k?function(t,e,r,n,i){for(var a=[],o=0,s=e.length;o=0&&0,t+e.replace(/\u001b\[\d\d?m/g,"").length+1}),0)>60)return r[0]+(""===e?"":e+"\n ")+" "+t.join(",\n ")+" "+r[1];return r[0]+e+" "+t.join(", ")+" "+r[1]}(c,b,A)):A[0]+b+A[1]}function f(t){return"["+Error.prototype.toString.call(t)+"]"}function h(t,e,r,n,i,a){var o,s,l;if((l=Object.getOwnPropertyDescriptor(e,i)||{value:e[i]}).get?s=l.set?t.stylize("[Getter/Setter]","special"):t.stylize("[Getter]","special"):l.set&&(s=t.stylize("[Setter]","special")),E(n,i)||(o="["+i+"]"),s||(t.seen.indexOf(l.value)<0?(s=m(r)?u(t,l.value,null):u(t,l.value,r-1)).indexOf("\n")>-1&&(s=a?s.split("\n").map((function(t){return" "+t})).join("\n").substr(2):"\n"+s.split("\n").map((function(t){return" "+t})).join("\n")):s=t.stylize("[Circular]","special")),y(o)){if(a&&i.match(/^\d+$/))return s;(o=JSON.stringify(""+i)).match(/^"([a-zA-Z_][a-zA-Z_0-9]*)"$/)?(o=o.substr(1,o.length-2),o=t.stylize(o,"name")):(o=o.replace(/'/g,"\\'").replace(/\\"/g,'"').replace(/(^"|"$)/g,"'"),o=t.stylize(o,"string"))}return o+": "+s}function p(t){return Array.isArray(t)}function d(t){return"boolean"==typeof t}function m(t){return null===t}function g(t){return"number"==typeof t}function v(t){return"string"==typeof t}function y(t){return void 0===t}function x(t){return b(t)&&"[object RegExp]"===k(t)}function b(t){return"object"==typeof t&&null!==t}function _(t){return b(t)&&"[object Date]"===k(t)}function w(t){return b(t)&&("[object Error]"===k(t)||t instanceof Error)}function T(t){return"function"==typeof t}function k(t){return Object.prototype.toString.call(t)}function A(t){return t<10?"0"+t.toString(10):t.toString(10)}r.debuglog=function(t){if(y(a)&&(a=e.env.NODE_DEBUG||""),t=t.toUpperCase(),!o[t])if(new RegExp("\\b"+t+"\\b","i").test(a)){var n=e.pid;o[t]=function(){var e=r.format.apply(r,arguments);console.error("%s %d: %s",t,n,e)}}else o[t]=function(){};return o[t]},r.inspect=s,s.colors={bold:[1,22],italic:[3,23],underline:[4,24],inverse:[7,27],white:[37,39],grey:[90,39],black:[30,39],blue:[34,39],cyan:[36,39],green:[32,39],magenta:[35,39],red:[31,39],yellow:[33,39]},s.styles={special:"cyan",number:"yellow",boolean:"yellow",undefined:"grey",null:"bold",string:"green",date:"magenta",regexp:"red"},r.isArray=p,r.isBoolean=d,r.isNull=m,r.isNullOrUndefined=function(t){return null==t},r.isNumber=g,r.isString=v,r.isSymbol=function(t){return"symbol"==typeof t},r.isUndefined=y,r.isRegExp=x,r.isObject=b,r.isDate=_,r.isError=w,r.isFunction=T,r.isPrimitive=function(t){return null===t||"boolean"==typeof t||"number"==typeof t||"string"==typeof t||"symbol"==typeof t||void 0===t},r.isBuffer=t("./support/isBuffer");var M=["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];function S(){var t=new Date,e=[A(t.getHours()),A(t.getMinutes()),A(t.getSeconds())].join(":");return[t.getDate(),M[t.getMonth()],e].join(" ")}function E(t,e){return Object.prototype.hasOwnProperty.call(t,e)}r.log=function(){console.log("%s - %s",S(),r.format.apply(r,arguments))},r.inherits=t("inherits"),r._extend=function(t,e){if(!e||!b(e))return t;for(var r=Object.keys(e),n=r.length;n--;)t[r[n]]=e[r[n]];return t}}).call(this)}).call(this,t("_process"),"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./support/isBuffer":73,_process:272,inherits:72}],75:[function(t,e,r){"use strict";r.byteLength=function(t){var e=c(t),r=e[0],n=e[1];return 3*(r+n)/4-n},r.toByteArray=function(t){var e,r,n=c(t),o=n[0],s=n[1],l=new a(function(t,e,r){return 3*(e+r)/4-r}(0,o,s)),u=0,f=s>0?o-4:o;for(r=0;r>16&255,l[u++]=e>>8&255,l[u++]=255&e;2===s&&(e=i[t.charCodeAt(r)]<<2|i[t.charCodeAt(r+1)]>>4,l[u++]=255&e);1===s&&(e=i[t.charCodeAt(r)]<<10|i[t.charCodeAt(r+1)]<<4|i[t.charCodeAt(r+2)]>>2,l[u++]=e>>8&255,l[u++]=255&e);return l},r.fromByteArray=function(t){for(var e,r=t.length,i=r%3,a=[],o=0,s=r-i;os?s:o+16383));1===i?(e=t[r-1],a.push(n[e>>2]+n[e<<4&63]+"==")):2===i&&(e=(t[r-2]<<8)+t[r-1],a.push(n[e>>10]+n[e>>4&63]+n[e<<2&63]+"="));return a.join("")};for(var n=[],i=[],a="undefined"!=typeof Uint8Array?Uint8Array:Array,o="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",s=0,l=o.length;s0)throw new Error("Invalid string. Length must be a multiple of 4");var r=t.indexOf("=");return-1===r&&(r=e),[r,r===e?0:4-r%4]}function u(t,e,r){for(var i,a,o=[],s=e;s>18&63]+n[a>>12&63]+n[a>>6&63]+n[63&a]);return o.join("")}i["-".charCodeAt(0)]=62,i["_".charCodeAt(0)]=63},{}],76:[function(t,e,r){"use strict";function n(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>=0?(a=o,i=o-1):n=o+1}return a}function i(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>0?(a=o,i=o-1):n=o+1}return a}function a(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<0?(a=o,n=o+1):i=o-1}return a}function o(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<=0?(a=o,n=o+1):i=o-1}return a}function s(t,e,r,n,i){for(;n<=i;){var a=n+i>>>1,o=t[a],s=void 0!==r?r(o,e):o-e;if(0===s)return a;s<=0?n=a+1:i=a-1}return-1}function l(t,e,r,n,i,a){return"function"==typeof r?a(t,e,r,void 0===n?0:0|n,void 0===i?t.length-1:0|i):a(t,e,void 0,void 0===r?0:0|r,void 0===n?t.length-1:0|n)}e.exports={ge:function(t,e,r,i,a){return l(t,e,r,i,a,n)},gt:function(t,e,r,n,a){return l(t,e,r,n,a,i)},lt:function(t,e,r,n,i){return l(t,e,r,n,i,a)},le:function(t,e,r,n,i){return l(t,e,r,n,i,o)},eq:function(t,e,r,n,i){return l(t,e,r,n,i,s)}}},{}],77:[function(t,e,r){"use strict";function n(t){var e=32;return(t&=-t)&&e--,65535&t&&(e-=16),16711935&t&&(e-=8),252645135&t&&(e-=4),858993459&t&&(e-=2),1431655765&t&&(e-=1),e}r.INT_BITS=32,r.INT_MAX=2147483647,r.INT_MIN=-1<<31,r.sign=function(t){return(t>0)-(t<0)},r.abs=function(t){var e=t>>31;return(t^e)-e},r.min=function(t,e){return e^(t^e)&-(t65535)<<4,e|=r=((t>>>=e)>255)<<3,e|=r=((t>>>=r)>15)<<2,(e|=r=((t>>>=r)>3)<<1)|(t>>>=r)>>1},r.log10=function(t){return t>=1e9?9:t>=1e8?8:t>=1e7?7:t>=1e6?6:t>=1e5?5:t>=1e4?4:t>=1e3?3:t>=100?2:t>=10?1:0},r.popCount=function(t){return 16843009*((t=(858993459&(t-=t>>>1&1431655765))+(t>>>2&858993459))+(t>>>4)&252645135)>>>24},r.countTrailingZeros=n,r.nextPow2=function(t){return t+=0===t,--t,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)+1},r.prevPow2=function(t){return t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)-(t>>>1)},r.parity=function(t){return t^=t>>>16,t^=t>>>8,t^=t>>>4,27030>>>(t&=15)&1};var i=new Array(256);!function(t){for(var e=0;e<256;++e){var r=e,n=e,i=7;for(r>>>=1;r;r>>>=1)n<<=1,n|=1&r,--i;t[e]=n<>>8&255]<<16|i[t>>>16&255]<<8|i[t>>>24&255]},r.interleave2=function(t,e){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t&=65535)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e&=65535)|e<<8))|e<<4))|e<<2))|e<<1))<<1},r.deinterleave2=function(t,e){return(t=65535&((t=16711935&((t=252645135&((t=858993459&((t=t>>>e&1431655765)|t>>>1))|t>>>2))|t>>>4))|t>>>16))<<16>>16},r.interleave3=function(t,e,r){return t=1227133513&((t=3272356035&((t=251719695&((t=4278190335&((t&=1023)|t<<16))|t<<8))|t<<4))|t<<2),(t|=(e=1227133513&((e=3272356035&((e=251719695&((e=4278190335&((e&=1023)|e<<16))|e<<8))|e<<4))|e<<2))<<1)|(r=1227133513&((r=3272356035&((r=251719695&((r=4278190335&((r&=1023)|r<<16))|r<<8))|r<<4))|r<<2))<<2},r.deinterleave3=function(t,e){return(t=1023&((t=4278190335&((t=251719695&((t=3272356035&((t=t>>>e&1227133513)|t>>>2))|t>>>4))|t>>>8))|t>>>16))<<22>>22},r.nextCombination=function(t){var e=t|t-1;return e+1|(~e&-~e)-1>>>n(t)+1}},{}],78:[function(t,e,r){"use strict";var n=t("clamp");e.exports=function(t,e){e||(e={});var r,o,s,l,c,u,f,h,p,d,m,g=null==e.cutoff?.25:e.cutoff,v=null==e.radius?8:e.radius,y=e.channel||0;if(ArrayBuffer.isView(t)||Array.isArray(t)){if(!e.width||!e.height)throw Error("For raw data width and height should be provided by options");r=e.width,o=e.height,l=t,u=e.stride?e.stride:Math.floor(t.length/r/o)}else window.HTMLCanvasElement&&t instanceof window.HTMLCanvasElement?(f=(h=t).getContext("2d"),r=h.width,o=h.height,p=f.getImageData(0,0,r,o),l=p.data,u=4):window.CanvasRenderingContext2D&&t instanceof window.CanvasRenderingContext2D?(h=t.canvas,f=t,r=h.width,o=h.height,p=f.getImageData(0,0,r,o),l=p.data,u=4):window.ImageData&&t instanceof window.ImageData&&(p=t,r=t.width,o=t.height,l=p.data,u=4);if(s=Math.max(r,o),window.Uint8ClampedArray&&l instanceof window.Uint8ClampedArray||window.Uint8Array&&l instanceof window.Uint8Array)for(c=l,l=Array(r*o),d=0,m=c.length;d=0;c--)if(u[c]!==f[c])return!1;for(c=u.length-1;c>=0;c--)if(s=u[c],!x(t[s],e[s],r,n))return!1;return!0}(t,e,r,n))}return r?t===e:t==e}function b(t){return"[object Arguments]"==Object.prototype.toString.call(t)}function _(t,e){if(!t||!e)return!1;if("[object RegExp]"==Object.prototype.toString.call(e))return e.test(t);try{if(t instanceof e)return!0}catch(t){}return!Error.isPrototypeOf(e)&&!0===e.call({},t)}function w(t,e,r,n){var i;if("function"!=typeof e)throw new TypeError('"block" argument must be a function');"string"==typeof r&&(n=r,r=null),i=function(t){var e;try{t()}catch(t){e=t}return e}(e),n=(r&&r.name?" ("+r.name+").":".")+(n?" "+n:"."),t&&!i&&v(i,r,"Missing expected exception"+n);var a="string"==typeof n,s=!t&&i&&!r;if((!t&&o.isError(i)&&a&&_(i,r)||s)&&v(i,r,"Got unwanted exception"+n),t&&i&&r&&!_(i,r)||!t&&i)throw i}h.AssertionError=function(t){this.name="AssertionError",this.actual=t.actual,this.expected=t.expected,this.operator=t.operator,t.message?(this.message=t.message,this.generatedMessage=!1):(this.message=function(t){return m(g(t.actual),128)+" "+t.operator+" "+m(g(t.expected),128)}(this),this.generatedMessage=!0);var e=t.stackStartFunction||v;if(Error.captureStackTrace)Error.captureStackTrace(this,e);else{var r=new Error;if(r.stack){var n=r.stack,i=d(e),a=n.indexOf("\n"+i);if(a>=0){var o=n.indexOf("\n",a+1);n=n.substring(o+1)}this.stack=n}}},o.inherits(h.AssertionError,Error),h.fail=v,h.ok=y,h.equal=function(t,e,r){t!=e&&v(t,e,r,"==",h.equal)},h.notEqual=function(t,e,r){t==e&&v(t,e,r,"!=",h.notEqual)},h.deepEqual=function(t,e,r){x(t,e,!1)||v(t,e,r,"deepEqual",h.deepEqual)},h.deepStrictEqual=function(t,e,r){x(t,e,!0)||v(t,e,r,"deepStrictEqual",h.deepStrictEqual)},h.notDeepEqual=function(t,e,r){x(t,e,!1)&&v(t,e,r,"notDeepEqual",h.notDeepEqual)},h.notDeepStrictEqual=function t(e,r,n){x(e,r,!0)&&v(e,r,n,"notDeepStrictEqual",t)},h.strictEqual=function(t,e,r){t!==e&&v(t,e,r,"===",h.strictEqual)},h.notStrictEqual=function(t,e,r){t===e&&v(t,e,r,"!==",h.notStrictEqual)},h.throws=function(t,e,r){w(!0,t,e,r)},h.doesNotThrow=function(t,e,r){w(!1,t,e,r)},h.ifError=function(t){if(t)throw t},h.strict=n((function t(e,r){e||v(e,!0,r,"==",t)}),h,{equal:h.strictEqual,deepEqual:h.deepStrictEqual,notEqual:h.notStrictEqual,notDeepEqual:h.notDeepStrictEqual}),h.strict.strict=h.strict;var T=Object.keys||function(t){var e=[];for(var r in t)s.call(t,r)&&e.push(r);return e}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"object-assign":466,"util/":79}],77:[function(t,e,r){"function"==typeof Object.create?e.exports=function(t,e){t.super_=e,t.prototype=Object.create(e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}})}:e.exports=function(t,e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}},{}],78:[function(t,e,r){e.exports=function(t){return t&&"object"==typeof t&&"function"==typeof t.copy&&"function"==typeof t.fill&&"function"==typeof t.readUInt8}},{}],79:[function(t,e,r){(function(e,n){(function(){var i=/%[sdj%]/g;r.format=function(t){if(!v(t)){for(var e=[],r=0;r=a)return t;switch(t){case"%s":return String(n[r++]);case"%d":return Number(n[r++]);case"%j":try{return JSON.stringify(n[r++])}catch(t){return"[Circular]"}default:return t}})),l=n[r];r=3&&(n.depth=arguments[2]),arguments.length>=4&&(n.colors=arguments[3]),d(e)?n.showHidden=e:e&&r._extend(n,e),y(n.showHidden)&&(n.showHidden=!1),y(n.depth)&&(n.depth=2),y(n.colors)&&(n.colors=!1),y(n.customInspect)&&(n.customInspect=!0),n.colors&&(n.stylize=l),u(n,t,n.depth)}function l(t,e){var r=s.styles[e];return r?"\x1b["+s.colors[r][0]+"m"+t+"\x1b["+s.colors[r][1]+"m":t}function c(t,e){return t}function u(t,e,n){if(t.customInspect&&e&&T(e.inspect)&&e.inspect!==r.inspect&&(!e.constructor||e.constructor.prototype!==e)){var i=e.inspect(n,t);return v(i)||(i=u(t,i,n)),i}var a=function(t,e){if(y(e))return t.stylize("undefined","undefined");if(v(e)){var r="'"+JSON.stringify(e).replace(/^"|"$/g,"").replace(/'/g,"\\'").replace(/\\"/g,'"')+"'";return t.stylize(r,"string")}if(g(e))return t.stylize(""+e,"number");if(d(e))return t.stylize(""+e,"boolean");if(m(e))return t.stylize("null","null")}(t,e);if(a)return a;var o=Object.keys(e),s=function(t){var e={};return t.forEach((function(t,r){e[t]=!0})),e}(o);if(t.showHidden&&(o=Object.getOwnPropertyNames(e)),w(e)&&(o.indexOf("message")>=0||o.indexOf("description")>=0))return f(e);if(0===o.length){if(T(e)){var l=e.name?": "+e.name:"";return t.stylize("[Function"+l+"]","special")}if(x(e))return t.stylize(RegExp.prototype.toString.call(e),"regexp");if(_(e))return t.stylize(Date.prototype.toString.call(e),"date");if(w(e))return f(e)}var c,b="",k=!1,A=["{","}"];(p(e)&&(k=!0,A=["[","]"]),T(e))&&(b=" [Function"+(e.name?": "+e.name:"")+"]");return x(e)&&(b=" "+RegExp.prototype.toString.call(e)),_(e)&&(b=" "+Date.prototype.toUTCString.call(e)),w(e)&&(b=" "+f(e)),0!==o.length||k&&0!=e.length?n<0?x(e)?t.stylize(RegExp.prototype.toString.call(e),"regexp"):t.stylize("[Object]","special"):(t.seen.push(e),c=k?function(t,e,r,n,i){for(var a=[],o=0,s=e.length;o=0&&0,t+e.replace(/\u001b\[\d\d?m/g,"").length+1}),0)>60)return r[0]+(""===e?"":e+"\n ")+" "+t.join(",\n ")+" "+r[1];return r[0]+e+" "+t.join(", ")+" "+r[1]}(c,b,A)):A[0]+b+A[1]}function f(t){return"["+Error.prototype.toString.call(t)+"]"}function h(t,e,r,n,i,a){var o,s,l;if((l=Object.getOwnPropertyDescriptor(e,i)||{value:e[i]}).get?s=l.set?t.stylize("[Getter/Setter]","special"):t.stylize("[Getter]","special"):l.set&&(s=t.stylize("[Setter]","special")),E(n,i)||(o="["+i+"]"),s||(t.seen.indexOf(l.value)<0?(s=m(r)?u(t,l.value,null):u(t,l.value,r-1)).indexOf("\n")>-1&&(s=a?s.split("\n").map((function(t){return" "+t})).join("\n").substr(2):"\n"+s.split("\n").map((function(t){return" "+t})).join("\n")):s=t.stylize("[Circular]","special")),y(o)){if(a&&i.match(/^\d+$/))return s;(o=JSON.stringify(""+i)).match(/^"([a-zA-Z_][a-zA-Z_0-9]*)"$/)?(o=o.substr(1,o.length-2),o=t.stylize(o,"name")):(o=o.replace(/'/g,"\\'").replace(/\\"/g,'"').replace(/(^"|"$)/g,"'"),o=t.stylize(o,"string"))}return o+": "+s}function p(t){return Array.isArray(t)}function d(t){return"boolean"==typeof t}function m(t){return null===t}function g(t){return"number"==typeof t}function v(t){return"string"==typeof t}function y(t){return void 0===t}function x(t){return b(t)&&"[object RegExp]"===k(t)}function b(t){return"object"==typeof t&&null!==t}function _(t){return b(t)&&"[object Date]"===k(t)}function w(t){return b(t)&&("[object Error]"===k(t)||t instanceof Error)}function T(t){return"function"==typeof t}function k(t){return Object.prototype.toString.call(t)}function A(t){return t<10?"0"+t.toString(10):t.toString(10)}r.debuglog=function(t){if(y(a)&&(a=e.env.NODE_DEBUG||""),t=t.toUpperCase(),!o[t])if(new RegExp("\\b"+t+"\\b","i").test(a)){var n=e.pid;o[t]=function(){var e=r.format.apply(r,arguments);console.error("%s %d: %s",t,n,e)}}else o[t]=function(){};return o[t]},r.inspect=s,s.colors={bold:[1,22],italic:[3,23],underline:[4,24],inverse:[7,27],white:[37,39],grey:[90,39],black:[30,39],blue:[34,39],cyan:[36,39],green:[32,39],magenta:[35,39],red:[31,39],yellow:[33,39]},s.styles={special:"cyan",number:"yellow",boolean:"yellow",undefined:"grey",null:"bold",string:"green",date:"magenta",regexp:"red"},r.isArray=p,r.isBoolean=d,r.isNull=m,r.isNullOrUndefined=function(t){return null==t},r.isNumber=g,r.isString=v,r.isSymbol=function(t){return"symbol"==typeof t},r.isUndefined=y,r.isRegExp=x,r.isObject=b,r.isDate=_,r.isError=w,r.isFunction=T,r.isPrimitive=function(t){return null===t||"boolean"==typeof t||"number"==typeof t||"string"==typeof t||"symbol"==typeof t||void 0===t},r.isBuffer=t("./support/isBuffer");var M=["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];function S(){var t=new Date,e=[A(t.getHours()),A(t.getMinutes()),A(t.getSeconds())].join(":");return[t.getDate(),M[t.getMonth()],e].join(" ")}function E(t,e){return Object.prototype.hasOwnProperty.call(t,e)}r.log=function(){console.log("%s - %s",S(),r.format.apply(r,arguments))},r.inherits=t("inherits"),r._extend=function(t,e){if(!e||!b(e))return t;for(var r=Object.keys(e),n=r.length;n--;)t[r[n]]=e[r[n]];return t}}).call(this)}).call(this,t("_process"),"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./support/isBuffer":78,_process:504,inherits:77}],80:[function(t,e,r){e.exports=function(t){return atob(t)}},{}],81:[function(t,e,r){"use strict";e.exports=function(t,e){for(var r=e.length,a=new Array(r+1),o=0;o0?o-4:o;for(r=0;r>16&255,l[u++]=e>>8&255,l[u++]=255&e;2===s&&(e=i[t.charCodeAt(r)]<<2|i[t.charCodeAt(r+1)]>>4,l[u++]=255&e);1===s&&(e=i[t.charCodeAt(r)]<<10|i[t.charCodeAt(r+1)]<<4|i[t.charCodeAt(r+2)]>>2,l[u++]=e>>8&255,l[u++]=255&e);return l},r.fromByteArray=function(t){for(var e,r=t.length,i=r%3,a=[],o=0,s=r-i;os?s:o+16383));1===i?(e=t[r-1],a.push(n[e>>2]+n[e<<4&63]+"==")):2===i&&(e=(t[r-2]<<8)+t[r-1],a.push(n[e>>10]+n[e>>4&63]+n[e<<2&63]+"="));return a.join("")};for(var n=[],i=[],a="undefined"!=typeof Uint8Array?Uint8Array:Array,o="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",s=0,l=o.length;s0)throw new Error("Invalid string. Length must be a multiple of 4");var r=t.indexOf("=");return-1===r&&(r=e),[r,r===e?0:4-r%4]}function u(t,e,r){for(var i,a,o=[],s=e;s>18&63]+n[a>>12&63]+n[a>>6&63]+n[63&a]);return o.join("")}i["-".charCodeAt(0)]=62,i["_".charCodeAt(0)]=63},{}],83:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[1]).add(e[0].mul(t[1])),t[1].mul(e[1]))}},{"./lib/rationalize":93}],84:[function(t,e,r){"use strict";e.exports=function(t,e){return t[0].mul(e[1]).cmp(e[0].mul(t[1]))}},{}],85:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[1]),t[1].mul(e[0]))}},{"./lib/rationalize":93}],86:[function(t,e,r){"use strict";var n=t("./is-rat"),i=t("./lib/is-bn"),a=t("./lib/num-to-bn"),o=t("./lib/str-to-bn"),s=t("./lib/rationalize"),l=t("./div");e.exports=function t(e,r){if(n(e))return r?l(e,t(r)):[e[0].clone(),e[1].clone()];var c,u,f=0;if(i(e))c=e.clone();else if("string"==typeof e)c=o(e);else{if(0===e)return[a(0),a(1)];if(e===Math.floor(e))c=a(e);else{for(;e!==Math.floor(e);)e*=Math.pow(2,256),f-=256;c=a(e)}}if(n(r))c.mul(r[1]),u=r[0].clone();else if(i(r))u=r.clone();else if("string"==typeof r)u=o(r);else if(r)if(r===Math.floor(r))u=a(r);else{for(;r!==Math.floor(r);)r*=Math.pow(2,256),f+=256;u=a(r)}else u=a(1);f>0?c=c.ushln(f):f<0&&(u=u.ushln(-f));return s(c,u)}},{"./div":85,"./is-rat":87,"./lib/is-bn":91,"./lib/num-to-bn":92,"./lib/rationalize":93,"./lib/str-to-bn":94}],87:[function(t,e,r){"use strict";var n=t("./lib/is-bn");e.exports=function(t){return Array.isArray(t)&&2===t.length&&n(t[0])&&n(t[1])}},{"./lib/is-bn":91}],88:[function(t,e,r){"use strict";var n=t("bn.js");e.exports=function(t){return t.cmp(new n(0))}},{"bn.js":96}],89:[function(t,e,r){"use strict";var n=t("./bn-sign");e.exports=function(t){var e=t.length,r=t.words,i=0;if(1===e)i=r[0];else if(2===e)i=r[0]+67108864*r[1];else for(var a=0;a20)return 52;return r+32}},{"bit-twiddle":101,"double-bits":174}],91:[function(t,e,r){"use strict";t("bn.js");e.exports=function(t){return t&&"object"==typeof t&&Boolean(t.words)}},{"bn.js":96}],92:[function(t,e,r){"use strict";var n=t("bn.js"),i=t("double-bits");e.exports=function(t){var e=i.exponent(t);return e<52?new n(t):new n(t*Math.pow(2,52-e)).ushln(e-52)}},{"bn.js":96,"double-bits":174}],93:[function(t,e,r){"use strict";var n=t("./num-to-bn"),i=t("./bn-sign");e.exports=function(t,e){var r=i(t),a=i(e);if(0===r)return[n(0),n(1)];if(0===a)return[n(0),n(0)];a<0&&(t=t.neg(),e=e.neg());var o=t.gcd(e);if(o.cmpn(1))return[t.div(o),e.div(o)];return[t,e]}},{"./bn-sign":88,"./num-to-bn":92}],94:[function(t,e,r){"use strict";var n=t("bn.js");e.exports=function(t){return new n(t)}},{"bn.js":96}],95:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[0]),t[1].mul(e[1]))}},{"./lib/rationalize":93}],96:[function(t,e,r){!function(e,r){"use strict";function n(t,e){if(!t)throw new Error(e||"Assertion failed")}function i(t,e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}function a(t,e,r){if(a.isBN(t))return t;this.negative=0,this.words=null,this.length=0,this.red=null,null!==t&&("le"!==e&&"be"!==e||(r=e,e=10),this._init(t||0,e||10,r||"be"))}var o;"object"==typeof e?e.exports=a:r.BN=a,a.BN=a,a.wordSize=26;try{o="undefined"!=typeof window&&void 0!==window.Buffer?window.Buffer:t("buffer").Buffer}catch(t){}function s(t,e){var r=t.charCodeAt(e);return r>=65&&r<=70?r-55:r>=97&&r<=102?r-87:r-48&15}function l(t,e,r){var n=s(t,r);return r-1>=e&&(n|=s(t,r-1)<<4),n}function c(t,e,r,n){for(var i=0,a=Math.min(t.length,r),o=e;o=49?s-49+10:s>=17?s-17+10:s}return i}a.isBN=function(t){return t instanceof a||null!==t&&"object"==typeof t&&t.constructor.wordSize===a.wordSize&&Array.isArray(t.words)},a.max=function(t,e){return t.cmp(e)>0?t:e},a.min=function(t,e){return t.cmp(e)<0?t:e},a.prototype._init=function(t,e,r){if("number"==typeof t)return this._initNumber(t,e,r);if("object"==typeof t)return this._initArray(t,e,r);"hex"===e&&(e=16),n(e===(0|e)&&e>=2&&e<=36);var i=0;"-"===(t=t.toString().replace(/\s+/g,""))[0]&&(i++,this.negative=1),i=0;i-=3)o=t[i]|t[i-1]<<8|t[i-2]<<16,this.words[a]|=o<>>26-s&67108863,(s+=24)>=26&&(s-=26,a++);else if("le"===r)for(i=0,a=0;i>>26-s&67108863,(s+=24)>=26&&(s-=26,a++);return this.strip()},a.prototype._parseHex=function(t,e,r){this.length=Math.ceil((t.length-e)/6),this.words=new Array(this.length);for(var n=0;n=e;n-=2)i=l(t,e,n)<=18?(a-=18,o+=1,this.words[o]|=i>>>26):a+=8;else for(n=(t.length-e)%2==0?e+1:e;n=18?(a-=18,o+=1,this.words[o]|=i>>>26):a+=8;this.strip()},a.prototype._parseBase=function(t,e,r){this.words=[0],this.length=1;for(var n=0,i=1;i<=67108863;i*=e)n++;n--,i=i/e|0;for(var a=t.length-r,o=a%n,s=Math.min(a,a-o)+r,l=0,u=r;u1&&0===this.words[this.length-1];)this.length--;return this._normSign()},a.prototype._normSign=function(){return 1===this.length&&0===this.words[0]&&(this.negative=0),this},a.prototype.inspect=function(){return(this.red?""};var u=["","0","00","000","0000","00000","000000","0000000","00000000","000000000","0000000000","00000000000","000000000000","0000000000000","00000000000000","000000000000000","0000000000000000","00000000000000000","000000000000000000","0000000000000000000","00000000000000000000","000000000000000000000","0000000000000000000000","00000000000000000000000","000000000000000000000000","0000000000000000000000000"],f=[0,0,25,16,12,11,10,9,8,8,7,7,7,7,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5],h=[0,0,33554432,43046721,16777216,48828125,60466176,40353607,16777216,43046721,1e7,19487171,35831808,62748517,7529536,11390625,16777216,24137569,34012224,47045881,64e6,4084101,5153632,6436343,7962624,9765625,11881376,14348907,17210368,20511149,243e5,28629151,33554432,39135393,45435424,52521875,60466176];function p(t,e,r){r.negative=e.negative^t.negative;var n=t.length+e.length|0;r.length=n,n=n-1|0;var i=0|t.words[0],a=0|e.words[0],o=i*a,s=67108863&o,l=o/67108864|0;r.words[0]=s;for(var c=1;c>>26,f=67108863&l,h=Math.min(c,e.length-1),p=Math.max(0,c-t.length+1);p<=h;p++){var d=c-p|0;u+=(o=(i=0|t.words[d])*(a=0|e.words[p])+f)/67108864|0,f=67108863&o}r.words[c]=0|f,l=0|u}return 0!==l?r.words[c]=0|l:r.length--,r.strip()}a.prototype.toString=function(t,e){var r;if(e=0|e||1,16===(t=t||10)||"hex"===t){r="";for(var i=0,a=0,o=0;o>>24-i&16777215)||o!==this.length-1?u[6-l.length]+l+r:l+r,(i+=2)>=26&&(i-=26,o--)}for(0!==a&&(r=a.toString(16)+r);r.length%e!=0;)r="0"+r;return 0!==this.negative&&(r="-"+r),r}if(t===(0|t)&&t>=2&&t<=36){var c=f[t],p=h[t];r="";var d=this.clone();for(d.negative=0;!d.isZero();){var m=d.modn(p).toString(t);r=(d=d.idivn(p)).isZero()?m+r:u[c-m.length]+m+r}for(this.isZero()&&(r="0"+r);r.length%e!=0;)r="0"+r;return 0!==this.negative&&(r="-"+r),r}n(!1,"Base should be between 2 and 36")},a.prototype.toNumber=function(){var t=this.words[0];return 2===this.length?t+=67108864*this.words[1]:3===this.length&&1===this.words[2]?t+=4503599627370496+67108864*this.words[1]:this.length>2&&n(!1,"Number can only safely store up to 53 bits"),0!==this.negative?-t:t},a.prototype.toJSON=function(){return this.toString(16)},a.prototype.toBuffer=function(t,e){return n(void 0!==o),this.toArrayLike(o,t,e)},a.prototype.toArray=function(t,e){return this.toArrayLike(Array,t,e)},a.prototype.toArrayLike=function(t,e,r){var i=this.byteLength(),a=r||Math.max(1,i);n(i<=a,"byte array longer than desired length"),n(a>0,"Requested array length <= 0"),this.strip();var o,s,l="le"===e,c=new t(a),u=this.clone();if(l){for(s=0;!u.isZero();s++)o=u.andln(255),u.iushrn(8),c[s]=o;for(;s=4096&&(r+=13,e>>>=13),e>=64&&(r+=7,e>>>=7),e>=8&&(r+=4,e>>>=4),e>=2&&(r+=2,e>>>=2),r+e},a.prototype._zeroBits=function(t){if(0===t)return 26;var e=t,r=0;return 0==(8191&e)&&(r+=13,e>>>=13),0==(127&e)&&(r+=7,e>>>=7),0==(15&e)&&(r+=4,e>>>=4),0==(3&e)&&(r+=2,e>>>=2),0==(1&e)&&r++,r},a.prototype.bitLength=function(){var t=this.words[this.length-1],e=this._countBits(t);return 26*(this.length-1)+e},a.prototype.zeroBits=function(){if(this.isZero())return 0;for(var t=0,e=0;et.length?this.clone().ior(t):t.clone().ior(this)},a.prototype.uor=function(t){return this.length>t.length?this.clone().iuor(t):t.clone().iuor(this)},a.prototype.iuand=function(t){var e;e=this.length>t.length?t:this;for(var r=0;rt.length?this.clone().iand(t):t.clone().iand(this)},a.prototype.uand=function(t){return this.length>t.length?this.clone().iuand(t):t.clone().iuand(this)},a.prototype.iuxor=function(t){var e,r;this.length>t.length?(e=this,r=t):(e=t,r=this);for(var n=0;nt.length?this.clone().ixor(t):t.clone().ixor(this)},a.prototype.uxor=function(t){return this.length>t.length?this.clone().iuxor(t):t.clone().iuxor(this)},a.prototype.inotn=function(t){n("number"==typeof t&&t>=0);var e=0|Math.ceil(t/26),r=t%26;this._expand(e),r>0&&e--;for(var i=0;i0&&(this.words[i]=~this.words[i]&67108863>>26-r),this.strip()},a.prototype.notn=function(t){return this.clone().inotn(t)},a.prototype.setn=function(t,e){n("number"==typeof t&&t>=0);var r=t/26|0,i=t%26;return this._expand(r+1),this.words[r]=e?this.words[r]|1<t.length?(r=this,n=t):(r=t,n=this);for(var i=0,a=0;a>>26;for(;0!==i&&a>>26;if(this.length=r.length,0!==i)this.words[this.length]=i,this.length++;else if(r!==this)for(;at.length?this.clone().iadd(t):t.clone().iadd(this)},a.prototype.isub=function(t){if(0!==t.negative){t.negative=0;var e=this.iadd(t);return t.negative=1,e._normSign()}if(0!==this.negative)return this.negative=0,this.iadd(t),this.negative=1,this._normSign();var r,n,i=this.cmp(t);if(0===i)return this.negative=0,this.length=1,this.words[0]=0,this;i>0?(r=this,n=t):(r=t,n=this);for(var a=0,o=0;o>26,this.words[o]=67108863&e;for(;0!==a&&o>26,this.words[o]=67108863&e;if(0===a&&o>>13,p=0|o[1],d=8191&p,m=p>>>13,g=0|o[2],v=8191&g,y=g>>>13,x=0|o[3],b=8191&x,_=x>>>13,w=0|o[4],T=8191&w,k=w>>>13,A=0|o[5],M=8191&A,S=A>>>13,E=0|o[6],L=8191&E,C=E>>>13,P=0|o[7],I=8191&P,O=P>>>13,z=0|o[8],D=8191&z,R=z>>>13,F=0|o[9],B=8191&F,N=F>>>13,j=0|s[0],U=8191&j,V=j>>>13,H=0|s[1],q=8191&H,G=H>>>13,Y=0|s[2],W=8191&Y,X=Y>>>13,Z=0|s[3],J=8191&Z,K=Z>>>13,Q=0|s[4],$=8191&Q,tt=Q>>>13,et=0|s[5],rt=8191&et,nt=et>>>13,it=0|s[6],at=8191&it,ot=it>>>13,st=0|s[7],lt=8191&st,ct=st>>>13,ut=0|s[8],ft=8191&ut,ht=ut>>>13,pt=0|s[9],dt=8191&pt,mt=pt>>>13;r.negative=t.negative^e.negative,r.length=19;var gt=(c+(n=Math.imul(f,U))|0)+((8191&(i=(i=Math.imul(f,V))+Math.imul(h,U)|0))<<13)|0;c=((a=Math.imul(h,V))+(i>>>13)|0)+(gt>>>26)|0,gt&=67108863,n=Math.imul(d,U),i=(i=Math.imul(d,V))+Math.imul(m,U)|0,a=Math.imul(m,V);var vt=(c+(n=n+Math.imul(f,q)|0)|0)+((8191&(i=(i=i+Math.imul(f,G)|0)+Math.imul(h,q)|0))<<13)|0;c=((a=a+Math.imul(h,G)|0)+(i>>>13)|0)+(vt>>>26)|0,vt&=67108863,n=Math.imul(v,U),i=(i=Math.imul(v,V))+Math.imul(y,U)|0,a=Math.imul(y,V),n=n+Math.imul(d,q)|0,i=(i=i+Math.imul(d,G)|0)+Math.imul(m,q)|0,a=a+Math.imul(m,G)|0;var yt=(c+(n=n+Math.imul(f,W)|0)|0)+((8191&(i=(i=i+Math.imul(f,X)|0)+Math.imul(h,W)|0))<<13)|0;c=((a=a+Math.imul(h,X)|0)+(i>>>13)|0)+(yt>>>26)|0,yt&=67108863,n=Math.imul(b,U),i=(i=Math.imul(b,V))+Math.imul(_,U)|0,a=Math.imul(_,V),n=n+Math.imul(v,q)|0,i=(i=i+Math.imul(v,G)|0)+Math.imul(y,q)|0,a=a+Math.imul(y,G)|0,n=n+Math.imul(d,W)|0,i=(i=i+Math.imul(d,X)|0)+Math.imul(m,W)|0,a=a+Math.imul(m,X)|0;var xt=(c+(n=n+Math.imul(f,J)|0)|0)+((8191&(i=(i=i+Math.imul(f,K)|0)+Math.imul(h,J)|0))<<13)|0;c=((a=a+Math.imul(h,K)|0)+(i>>>13)|0)+(xt>>>26)|0,xt&=67108863,n=Math.imul(T,U),i=(i=Math.imul(T,V))+Math.imul(k,U)|0,a=Math.imul(k,V),n=n+Math.imul(b,q)|0,i=(i=i+Math.imul(b,G)|0)+Math.imul(_,q)|0,a=a+Math.imul(_,G)|0,n=n+Math.imul(v,W)|0,i=(i=i+Math.imul(v,X)|0)+Math.imul(y,W)|0,a=a+Math.imul(y,X)|0,n=n+Math.imul(d,J)|0,i=(i=i+Math.imul(d,K)|0)+Math.imul(m,J)|0,a=a+Math.imul(m,K)|0;var bt=(c+(n=n+Math.imul(f,$)|0)|0)+((8191&(i=(i=i+Math.imul(f,tt)|0)+Math.imul(h,$)|0))<<13)|0;c=((a=a+Math.imul(h,tt)|0)+(i>>>13)|0)+(bt>>>26)|0,bt&=67108863,n=Math.imul(M,U),i=(i=Math.imul(M,V))+Math.imul(S,U)|0,a=Math.imul(S,V),n=n+Math.imul(T,q)|0,i=(i=i+Math.imul(T,G)|0)+Math.imul(k,q)|0,a=a+Math.imul(k,G)|0,n=n+Math.imul(b,W)|0,i=(i=i+Math.imul(b,X)|0)+Math.imul(_,W)|0,a=a+Math.imul(_,X)|0,n=n+Math.imul(v,J)|0,i=(i=i+Math.imul(v,K)|0)+Math.imul(y,J)|0,a=a+Math.imul(y,K)|0,n=n+Math.imul(d,$)|0,i=(i=i+Math.imul(d,tt)|0)+Math.imul(m,$)|0,a=a+Math.imul(m,tt)|0;var _t=(c+(n=n+Math.imul(f,rt)|0)|0)+((8191&(i=(i=i+Math.imul(f,nt)|0)+Math.imul(h,rt)|0))<<13)|0;c=((a=a+Math.imul(h,nt)|0)+(i>>>13)|0)+(_t>>>26)|0,_t&=67108863,n=Math.imul(L,U),i=(i=Math.imul(L,V))+Math.imul(C,U)|0,a=Math.imul(C,V),n=n+Math.imul(M,q)|0,i=(i=i+Math.imul(M,G)|0)+Math.imul(S,q)|0,a=a+Math.imul(S,G)|0,n=n+Math.imul(T,W)|0,i=(i=i+Math.imul(T,X)|0)+Math.imul(k,W)|0,a=a+Math.imul(k,X)|0,n=n+Math.imul(b,J)|0,i=(i=i+Math.imul(b,K)|0)+Math.imul(_,J)|0,a=a+Math.imul(_,K)|0,n=n+Math.imul(v,$)|0,i=(i=i+Math.imul(v,tt)|0)+Math.imul(y,$)|0,a=a+Math.imul(y,tt)|0,n=n+Math.imul(d,rt)|0,i=(i=i+Math.imul(d,nt)|0)+Math.imul(m,rt)|0,a=a+Math.imul(m,nt)|0;var wt=(c+(n=n+Math.imul(f,at)|0)|0)+((8191&(i=(i=i+Math.imul(f,ot)|0)+Math.imul(h,at)|0))<<13)|0;c=((a=a+Math.imul(h,ot)|0)+(i>>>13)|0)+(wt>>>26)|0,wt&=67108863,n=Math.imul(I,U),i=(i=Math.imul(I,V))+Math.imul(O,U)|0,a=Math.imul(O,V),n=n+Math.imul(L,q)|0,i=(i=i+Math.imul(L,G)|0)+Math.imul(C,q)|0,a=a+Math.imul(C,G)|0,n=n+Math.imul(M,W)|0,i=(i=i+Math.imul(M,X)|0)+Math.imul(S,W)|0,a=a+Math.imul(S,X)|0,n=n+Math.imul(T,J)|0,i=(i=i+Math.imul(T,K)|0)+Math.imul(k,J)|0,a=a+Math.imul(k,K)|0,n=n+Math.imul(b,$)|0,i=(i=i+Math.imul(b,tt)|0)+Math.imul(_,$)|0,a=a+Math.imul(_,tt)|0,n=n+Math.imul(v,rt)|0,i=(i=i+Math.imul(v,nt)|0)+Math.imul(y,rt)|0,a=a+Math.imul(y,nt)|0,n=n+Math.imul(d,at)|0,i=(i=i+Math.imul(d,ot)|0)+Math.imul(m,at)|0,a=a+Math.imul(m,ot)|0;var Tt=(c+(n=n+Math.imul(f,lt)|0)|0)+((8191&(i=(i=i+Math.imul(f,ct)|0)+Math.imul(h,lt)|0))<<13)|0;c=((a=a+Math.imul(h,ct)|0)+(i>>>13)|0)+(Tt>>>26)|0,Tt&=67108863,n=Math.imul(D,U),i=(i=Math.imul(D,V))+Math.imul(R,U)|0,a=Math.imul(R,V),n=n+Math.imul(I,q)|0,i=(i=i+Math.imul(I,G)|0)+Math.imul(O,q)|0,a=a+Math.imul(O,G)|0,n=n+Math.imul(L,W)|0,i=(i=i+Math.imul(L,X)|0)+Math.imul(C,W)|0,a=a+Math.imul(C,X)|0,n=n+Math.imul(M,J)|0,i=(i=i+Math.imul(M,K)|0)+Math.imul(S,J)|0,a=a+Math.imul(S,K)|0,n=n+Math.imul(T,$)|0,i=(i=i+Math.imul(T,tt)|0)+Math.imul(k,$)|0,a=a+Math.imul(k,tt)|0,n=n+Math.imul(b,rt)|0,i=(i=i+Math.imul(b,nt)|0)+Math.imul(_,rt)|0,a=a+Math.imul(_,nt)|0,n=n+Math.imul(v,at)|0,i=(i=i+Math.imul(v,ot)|0)+Math.imul(y,at)|0,a=a+Math.imul(y,ot)|0,n=n+Math.imul(d,lt)|0,i=(i=i+Math.imul(d,ct)|0)+Math.imul(m,lt)|0,a=a+Math.imul(m,ct)|0;var kt=(c+(n=n+Math.imul(f,ft)|0)|0)+((8191&(i=(i=i+Math.imul(f,ht)|0)+Math.imul(h,ft)|0))<<13)|0;c=((a=a+Math.imul(h,ht)|0)+(i>>>13)|0)+(kt>>>26)|0,kt&=67108863,n=Math.imul(B,U),i=(i=Math.imul(B,V))+Math.imul(N,U)|0,a=Math.imul(N,V),n=n+Math.imul(D,q)|0,i=(i=i+Math.imul(D,G)|0)+Math.imul(R,q)|0,a=a+Math.imul(R,G)|0,n=n+Math.imul(I,W)|0,i=(i=i+Math.imul(I,X)|0)+Math.imul(O,W)|0,a=a+Math.imul(O,X)|0,n=n+Math.imul(L,J)|0,i=(i=i+Math.imul(L,K)|0)+Math.imul(C,J)|0,a=a+Math.imul(C,K)|0,n=n+Math.imul(M,$)|0,i=(i=i+Math.imul(M,tt)|0)+Math.imul(S,$)|0,a=a+Math.imul(S,tt)|0,n=n+Math.imul(T,rt)|0,i=(i=i+Math.imul(T,nt)|0)+Math.imul(k,rt)|0,a=a+Math.imul(k,nt)|0,n=n+Math.imul(b,at)|0,i=(i=i+Math.imul(b,ot)|0)+Math.imul(_,at)|0,a=a+Math.imul(_,ot)|0,n=n+Math.imul(v,lt)|0,i=(i=i+Math.imul(v,ct)|0)+Math.imul(y,lt)|0,a=a+Math.imul(y,ct)|0,n=n+Math.imul(d,ft)|0,i=(i=i+Math.imul(d,ht)|0)+Math.imul(m,ft)|0,a=a+Math.imul(m,ht)|0;var At=(c+(n=n+Math.imul(f,dt)|0)|0)+((8191&(i=(i=i+Math.imul(f,mt)|0)+Math.imul(h,dt)|0))<<13)|0;c=((a=a+Math.imul(h,mt)|0)+(i>>>13)|0)+(At>>>26)|0,At&=67108863,n=Math.imul(B,q),i=(i=Math.imul(B,G))+Math.imul(N,q)|0,a=Math.imul(N,G),n=n+Math.imul(D,W)|0,i=(i=i+Math.imul(D,X)|0)+Math.imul(R,W)|0,a=a+Math.imul(R,X)|0,n=n+Math.imul(I,J)|0,i=(i=i+Math.imul(I,K)|0)+Math.imul(O,J)|0,a=a+Math.imul(O,K)|0,n=n+Math.imul(L,$)|0,i=(i=i+Math.imul(L,tt)|0)+Math.imul(C,$)|0,a=a+Math.imul(C,tt)|0,n=n+Math.imul(M,rt)|0,i=(i=i+Math.imul(M,nt)|0)+Math.imul(S,rt)|0,a=a+Math.imul(S,nt)|0,n=n+Math.imul(T,at)|0,i=(i=i+Math.imul(T,ot)|0)+Math.imul(k,at)|0,a=a+Math.imul(k,ot)|0,n=n+Math.imul(b,lt)|0,i=(i=i+Math.imul(b,ct)|0)+Math.imul(_,lt)|0,a=a+Math.imul(_,ct)|0,n=n+Math.imul(v,ft)|0,i=(i=i+Math.imul(v,ht)|0)+Math.imul(y,ft)|0,a=a+Math.imul(y,ht)|0;var Mt=(c+(n=n+Math.imul(d,dt)|0)|0)+((8191&(i=(i=i+Math.imul(d,mt)|0)+Math.imul(m,dt)|0))<<13)|0;c=((a=a+Math.imul(m,mt)|0)+(i>>>13)|0)+(Mt>>>26)|0,Mt&=67108863,n=Math.imul(B,W),i=(i=Math.imul(B,X))+Math.imul(N,W)|0,a=Math.imul(N,X),n=n+Math.imul(D,J)|0,i=(i=i+Math.imul(D,K)|0)+Math.imul(R,J)|0,a=a+Math.imul(R,K)|0,n=n+Math.imul(I,$)|0,i=(i=i+Math.imul(I,tt)|0)+Math.imul(O,$)|0,a=a+Math.imul(O,tt)|0,n=n+Math.imul(L,rt)|0,i=(i=i+Math.imul(L,nt)|0)+Math.imul(C,rt)|0,a=a+Math.imul(C,nt)|0,n=n+Math.imul(M,at)|0,i=(i=i+Math.imul(M,ot)|0)+Math.imul(S,at)|0,a=a+Math.imul(S,ot)|0,n=n+Math.imul(T,lt)|0,i=(i=i+Math.imul(T,ct)|0)+Math.imul(k,lt)|0,a=a+Math.imul(k,ct)|0,n=n+Math.imul(b,ft)|0,i=(i=i+Math.imul(b,ht)|0)+Math.imul(_,ft)|0,a=a+Math.imul(_,ht)|0;var St=(c+(n=n+Math.imul(v,dt)|0)|0)+((8191&(i=(i=i+Math.imul(v,mt)|0)+Math.imul(y,dt)|0))<<13)|0;c=((a=a+Math.imul(y,mt)|0)+(i>>>13)|0)+(St>>>26)|0,St&=67108863,n=Math.imul(B,J),i=(i=Math.imul(B,K))+Math.imul(N,J)|0,a=Math.imul(N,K),n=n+Math.imul(D,$)|0,i=(i=i+Math.imul(D,tt)|0)+Math.imul(R,$)|0,a=a+Math.imul(R,tt)|0,n=n+Math.imul(I,rt)|0,i=(i=i+Math.imul(I,nt)|0)+Math.imul(O,rt)|0,a=a+Math.imul(O,nt)|0,n=n+Math.imul(L,at)|0,i=(i=i+Math.imul(L,ot)|0)+Math.imul(C,at)|0,a=a+Math.imul(C,ot)|0,n=n+Math.imul(M,lt)|0,i=(i=i+Math.imul(M,ct)|0)+Math.imul(S,lt)|0,a=a+Math.imul(S,ct)|0,n=n+Math.imul(T,ft)|0,i=(i=i+Math.imul(T,ht)|0)+Math.imul(k,ft)|0,a=a+Math.imul(k,ht)|0;var Et=(c+(n=n+Math.imul(b,dt)|0)|0)+((8191&(i=(i=i+Math.imul(b,mt)|0)+Math.imul(_,dt)|0))<<13)|0;c=((a=a+Math.imul(_,mt)|0)+(i>>>13)|0)+(Et>>>26)|0,Et&=67108863,n=Math.imul(B,$),i=(i=Math.imul(B,tt))+Math.imul(N,$)|0,a=Math.imul(N,tt),n=n+Math.imul(D,rt)|0,i=(i=i+Math.imul(D,nt)|0)+Math.imul(R,rt)|0,a=a+Math.imul(R,nt)|0,n=n+Math.imul(I,at)|0,i=(i=i+Math.imul(I,ot)|0)+Math.imul(O,at)|0,a=a+Math.imul(O,ot)|0,n=n+Math.imul(L,lt)|0,i=(i=i+Math.imul(L,ct)|0)+Math.imul(C,lt)|0,a=a+Math.imul(C,ct)|0,n=n+Math.imul(M,ft)|0,i=(i=i+Math.imul(M,ht)|0)+Math.imul(S,ft)|0,a=a+Math.imul(S,ht)|0;var Lt=(c+(n=n+Math.imul(T,dt)|0)|0)+((8191&(i=(i=i+Math.imul(T,mt)|0)+Math.imul(k,dt)|0))<<13)|0;c=((a=a+Math.imul(k,mt)|0)+(i>>>13)|0)+(Lt>>>26)|0,Lt&=67108863,n=Math.imul(B,rt),i=(i=Math.imul(B,nt))+Math.imul(N,rt)|0,a=Math.imul(N,nt),n=n+Math.imul(D,at)|0,i=(i=i+Math.imul(D,ot)|0)+Math.imul(R,at)|0,a=a+Math.imul(R,ot)|0,n=n+Math.imul(I,lt)|0,i=(i=i+Math.imul(I,ct)|0)+Math.imul(O,lt)|0,a=a+Math.imul(O,ct)|0,n=n+Math.imul(L,ft)|0,i=(i=i+Math.imul(L,ht)|0)+Math.imul(C,ft)|0,a=a+Math.imul(C,ht)|0;var Ct=(c+(n=n+Math.imul(M,dt)|0)|0)+((8191&(i=(i=i+Math.imul(M,mt)|0)+Math.imul(S,dt)|0))<<13)|0;c=((a=a+Math.imul(S,mt)|0)+(i>>>13)|0)+(Ct>>>26)|0,Ct&=67108863,n=Math.imul(B,at),i=(i=Math.imul(B,ot))+Math.imul(N,at)|0,a=Math.imul(N,ot),n=n+Math.imul(D,lt)|0,i=(i=i+Math.imul(D,ct)|0)+Math.imul(R,lt)|0,a=a+Math.imul(R,ct)|0,n=n+Math.imul(I,ft)|0,i=(i=i+Math.imul(I,ht)|0)+Math.imul(O,ft)|0,a=a+Math.imul(O,ht)|0;var Pt=(c+(n=n+Math.imul(L,dt)|0)|0)+((8191&(i=(i=i+Math.imul(L,mt)|0)+Math.imul(C,dt)|0))<<13)|0;c=((a=a+Math.imul(C,mt)|0)+(i>>>13)|0)+(Pt>>>26)|0,Pt&=67108863,n=Math.imul(B,lt),i=(i=Math.imul(B,ct))+Math.imul(N,lt)|0,a=Math.imul(N,ct),n=n+Math.imul(D,ft)|0,i=(i=i+Math.imul(D,ht)|0)+Math.imul(R,ft)|0,a=a+Math.imul(R,ht)|0;var It=(c+(n=n+Math.imul(I,dt)|0)|0)+((8191&(i=(i=i+Math.imul(I,mt)|0)+Math.imul(O,dt)|0))<<13)|0;c=((a=a+Math.imul(O,mt)|0)+(i>>>13)|0)+(It>>>26)|0,It&=67108863,n=Math.imul(B,ft),i=(i=Math.imul(B,ht))+Math.imul(N,ft)|0,a=Math.imul(N,ht);var Ot=(c+(n=n+Math.imul(D,dt)|0)|0)+((8191&(i=(i=i+Math.imul(D,mt)|0)+Math.imul(R,dt)|0))<<13)|0;c=((a=a+Math.imul(R,mt)|0)+(i>>>13)|0)+(Ot>>>26)|0,Ot&=67108863;var zt=(c+(n=Math.imul(B,dt))|0)+((8191&(i=(i=Math.imul(B,mt))+Math.imul(N,dt)|0))<<13)|0;return c=((a=Math.imul(N,mt))+(i>>>13)|0)+(zt>>>26)|0,zt&=67108863,l[0]=gt,l[1]=vt,l[2]=yt,l[3]=xt,l[4]=bt,l[5]=_t,l[6]=wt,l[7]=Tt,l[8]=kt,l[9]=At,l[10]=Mt,l[11]=St,l[12]=Et,l[13]=Lt,l[14]=Ct,l[15]=Pt,l[16]=It,l[17]=Ot,l[18]=zt,0!==c&&(l[19]=c,r.length++),r};function m(t,e,r){return(new g).mulp(t,e,r)}function g(t,e){this.x=t,this.y=e}Math.imul||(d=p),a.prototype.mulTo=function(t,e){var r=this.length+t.length;return 10===this.length&&10===t.length?d(this,t,e):r<63?p(this,t,e):r<1024?function(t,e,r){r.negative=e.negative^t.negative,r.length=t.length+e.length;for(var n=0,i=0,a=0;a>>26)|0)>>>26,o&=67108863}r.words[a]=s,n=o,o=i}return 0!==n?r.words[a]=n:r.length--,r.strip()}(this,t,e):m(this,t,e)},g.prototype.makeRBT=function(t){for(var e=new Array(t),r=a.prototype._countBits(t)-1,n=0;n>=1;return n},g.prototype.permute=function(t,e,r,n,i,a){for(var o=0;o>>=1)i++;return 1<>>=13,r[2*o+1]=8191&a,a>>>=13;for(o=2*e;o>=26,e+=i/67108864|0,e+=a>>>26,this.words[r]=67108863&a}return 0!==e&&(this.words[r]=e,this.length++),this},a.prototype.muln=function(t){return this.clone().imuln(t)},a.prototype.sqr=function(){return this.mul(this)},a.prototype.isqr=function(){return this.imul(this.clone())},a.prototype.pow=function(t){var e=function(t){for(var e=new Array(t.bitLength()),r=0;r>>i}return e}(t);if(0===e.length)return new a(1);for(var r=this,n=0;n=0);var e,r=t%26,i=(t-r)/26,a=67108863>>>26-r<<26-r;if(0!==r){var o=0;for(e=0;e>>26-r}o&&(this.words[e]=o,this.length++)}if(0!==i){for(e=this.length-1;e>=0;e--)this.words[e+i]=this.words[e];for(e=0;e=0),i=e?(e-e%26)/26:0;var a=t%26,o=Math.min((t-a)/26,this.length),s=67108863^67108863>>>a<o)for(this.length-=o,c=0;c=0&&(0!==u||c>=i);c--){var f=0|this.words[c];this.words[c]=u<<26-a|f>>>a,u=f&s}return l&&0!==u&&(l.words[l.length++]=u),0===this.length&&(this.words[0]=0,this.length=1),this.strip()},a.prototype.ishrn=function(t,e,r){return n(0===this.negative),this.iushrn(t,e,r)},a.prototype.shln=function(t){return this.clone().ishln(t)},a.prototype.ushln=function(t){return this.clone().iushln(t)},a.prototype.shrn=function(t){return this.clone().ishrn(t)},a.prototype.ushrn=function(t){return this.clone().iushrn(t)},a.prototype.testn=function(t){n("number"==typeof t&&t>=0);var e=t%26,r=(t-e)/26,i=1<=0);var e=t%26,r=(t-e)/26;if(n(0===this.negative,"imaskn works only with positive numbers"),this.length<=r)return this;if(0!==e&&r++,this.length=Math.min(r,this.length),0!==e){var i=67108863^67108863>>>e<=67108864;e++)this.words[e]-=67108864,e===this.length-1?this.words[e+1]=1:this.words[e+1]++;return this.length=Math.max(this.length,e+1),this},a.prototype.isubn=function(t){if(n("number"==typeof t),n(t<67108864),t<0)return this.iaddn(-t);if(0!==this.negative)return this.negative=0,this.iaddn(t),this.negative=1,this;if(this.words[0]-=t,1===this.length&&this.words[0]<0)this.words[0]=-this.words[0],this.negative=1;else for(var e=0;e>26)-(l/67108864|0),this.words[i+r]=67108863&a}for(;i>26,this.words[i+r]=67108863&a;if(0===s)return this.strip();for(n(-1===s),s=0,i=0;i>26,this.words[i]=67108863&a;return this.negative=1,this.strip()},a.prototype._wordDiv=function(t,e){var r=(this.length,t.length),n=this.clone(),i=t,o=0|i.words[i.length-1];0!==(r=26-this._countBits(o))&&(i=i.ushln(r),n.iushln(r),o=0|i.words[i.length-1]);var s,l=n.length-i.length;if("mod"!==e){(s=new a(null)).length=l+1,s.words=new Array(s.length);for(var c=0;c=0;f--){var h=67108864*(0|n.words[i.length+f])+(0|n.words[i.length+f-1]);for(h=Math.min(h/o|0,67108863),n._ishlnsubmul(i,h,f);0!==n.negative;)h--,n.negative=0,n._ishlnsubmul(i,1,f),n.isZero()||(n.negative^=1);s&&(s.words[f]=h)}return s&&s.strip(),n.strip(),"div"!==e&&0!==r&&n.iushrn(r),{div:s||null,mod:n}},a.prototype.divmod=function(t,e,r){return n(!t.isZero()),this.isZero()?{div:new a(0),mod:new a(0)}:0!==this.negative&&0===t.negative?(s=this.neg().divmod(t,e),"mod"!==e&&(i=s.div.neg()),"div"!==e&&(o=s.mod.neg(),r&&0!==o.negative&&o.iadd(t)),{div:i,mod:o}):0===this.negative&&0!==t.negative?(s=this.divmod(t.neg(),e),"mod"!==e&&(i=s.div.neg()),{div:i,mod:s.mod}):0!=(this.negative&t.negative)?(s=this.neg().divmod(t.neg(),e),"div"!==e&&(o=s.mod.neg(),r&&0!==o.negative&&o.isub(t)),{div:s.div,mod:o}):t.length>this.length||this.cmp(t)<0?{div:new a(0),mod:this}:1===t.length?"div"===e?{div:this.divn(t.words[0]),mod:null}:"mod"===e?{div:null,mod:new a(this.modn(t.words[0]))}:{div:this.divn(t.words[0]),mod:new a(this.modn(t.words[0]))}:this._wordDiv(t,e);var i,o,s},a.prototype.div=function(t){return this.divmod(t,"div",!1).div},a.prototype.mod=function(t){return this.divmod(t,"mod",!1).mod},a.prototype.umod=function(t){return this.divmod(t,"mod",!0).mod},a.prototype.divRound=function(t){var e=this.divmod(t);if(e.mod.isZero())return e.div;var r=0!==e.div.negative?e.mod.isub(t):e.mod,n=t.ushrn(1),i=t.andln(1),a=r.cmp(n);return a<0||1===i&&0===a?e.div:0!==e.div.negative?e.div.isubn(1):e.div.iaddn(1)},a.prototype.modn=function(t){n(t<=67108863);for(var e=(1<<26)%t,r=0,i=this.length-1;i>=0;i--)r=(e*r+(0|this.words[i]))%t;return r},a.prototype.idivn=function(t){n(t<=67108863);for(var e=0,r=this.length-1;r>=0;r--){var i=(0|this.words[r])+67108864*e;this.words[r]=i/t|0,e=i%t}return this.strip()},a.prototype.divn=function(t){return this.clone().idivn(t)},a.prototype.egcd=function(t){n(0===t.negative),n(!t.isZero());var e=this,r=t.clone();e=0!==e.negative?e.umod(t):e.clone();for(var i=new a(1),o=new a(0),s=new a(0),l=new a(1),c=0;e.isEven()&&r.isEven();)e.iushrn(1),r.iushrn(1),++c;for(var u=r.clone(),f=e.clone();!e.isZero();){for(var h=0,p=1;0==(e.words[0]&p)&&h<26;++h,p<<=1);if(h>0)for(e.iushrn(h);h-- >0;)(i.isOdd()||o.isOdd())&&(i.iadd(u),o.isub(f)),i.iushrn(1),o.iushrn(1);for(var d=0,m=1;0==(r.words[0]&m)&&d<26;++d,m<<=1);if(d>0)for(r.iushrn(d);d-- >0;)(s.isOdd()||l.isOdd())&&(s.iadd(u),l.isub(f)),s.iushrn(1),l.iushrn(1);e.cmp(r)>=0?(e.isub(r),i.isub(s),o.isub(l)):(r.isub(e),s.isub(i),l.isub(o))}return{a:s,b:l,gcd:r.iushln(c)}},a.prototype._invmp=function(t){n(0===t.negative),n(!t.isZero());var e=this,r=t.clone();e=0!==e.negative?e.umod(t):e.clone();for(var i,o=new a(1),s=new a(0),l=r.clone();e.cmpn(1)>0&&r.cmpn(1)>0;){for(var c=0,u=1;0==(e.words[0]&u)&&c<26;++c,u<<=1);if(c>0)for(e.iushrn(c);c-- >0;)o.isOdd()&&o.iadd(l),o.iushrn(1);for(var f=0,h=1;0==(r.words[0]&h)&&f<26;++f,h<<=1);if(f>0)for(r.iushrn(f);f-- >0;)s.isOdd()&&s.iadd(l),s.iushrn(1);e.cmp(r)>=0?(e.isub(r),o.isub(s)):(r.isub(e),s.isub(o))}return(i=0===e.cmpn(1)?o:s).cmpn(0)<0&&i.iadd(t),i},a.prototype.gcd=function(t){if(this.isZero())return t.abs();if(t.isZero())return this.abs();var e=this.clone(),r=t.clone();e.negative=0,r.negative=0;for(var n=0;e.isEven()&&r.isEven();n++)e.iushrn(1),r.iushrn(1);for(;;){for(;e.isEven();)e.iushrn(1);for(;r.isEven();)r.iushrn(1);var i=e.cmp(r);if(i<0){var a=e;e=r,r=a}else if(0===i||0===r.cmpn(1))break;e.isub(r)}return r.iushln(n)},a.prototype.invm=function(t){return this.egcd(t).a.umod(t)},a.prototype.isEven=function(){return 0==(1&this.words[0])},a.prototype.isOdd=function(){return 1==(1&this.words[0])},a.prototype.andln=function(t){return this.words[0]&t},a.prototype.bincn=function(t){n("number"==typeof t);var e=t%26,r=(t-e)/26,i=1<>>26,s&=67108863,this.words[o]=s}return 0!==a&&(this.words[o]=a,this.length++),this},a.prototype.isZero=function(){return 1===this.length&&0===this.words[0]},a.prototype.cmpn=function(t){var e,r=t<0;if(0!==this.negative&&!r)return-1;if(0===this.negative&&r)return 1;if(this.strip(),this.length>1)e=1;else{r&&(t=-t),n(t<=67108863,"Number is too big");var i=0|this.words[0];e=i===t?0:it.length)return 1;if(this.length=0;r--){var n=0|this.words[r],i=0|t.words[r];if(n!==i){ni&&(e=1);break}}return e},a.prototype.gtn=function(t){return 1===this.cmpn(t)},a.prototype.gt=function(t){return 1===this.cmp(t)},a.prototype.gten=function(t){return this.cmpn(t)>=0},a.prototype.gte=function(t){return this.cmp(t)>=0},a.prototype.ltn=function(t){return-1===this.cmpn(t)},a.prototype.lt=function(t){return-1===this.cmp(t)},a.prototype.lten=function(t){return this.cmpn(t)<=0},a.prototype.lte=function(t){return this.cmp(t)<=0},a.prototype.eqn=function(t){return 0===this.cmpn(t)},a.prototype.eq=function(t){return 0===this.cmp(t)},a.red=function(t){return new T(t)},a.prototype.toRed=function(t){return n(!this.red,"Already a number in reduction context"),n(0===this.negative,"red works only with positives"),t.convertTo(this)._forceRed(t)},a.prototype.fromRed=function(){return n(this.red,"fromRed works only with numbers in reduction context"),this.red.convertFrom(this)},a.prototype._forceRed=function(t){return this.red=t,this},a.prototype.forceRed=function(t){return n(!this.red,"Already a number in reduction context"),this._forceRed(t)},a.prototype.redAdd=function(t){return n(this.red,"redAdd works only with red numbers"),this.red.add(this,t)},a.prototype.redIAdd=function(t){return n(this.red,"redIAdd works only with red numbers"),this.red.iadd(this,t)},a.prototype.redSub=function(t){return n(this.red,"redSub works only with red numbers"),this.red.sub(this,t)},a.prototype.redISub=function(t){return n(this.red,"redISub works only with red numbers"),this.red.isub(this,t)},a.prototype.redShl=function(t){return n(this.red,"redShl works only with red numbers"),this.red.shl(this,t)},a.prototype.redMul=function(t){return n(this.red,"redMul works only with red numbers"),this.red._verify2(this,t),this.red.mul(this,t)},a.prototype.redIMul=function(t){return n(this.red,"redMul works only with red numbers"),this.red._verify2(this,t),this.red.imul(this,t)},a.prototype.redSqr=function(){return n(this.red,"redSqr works only with red numbers"),this.red._verify1(this),this.red.sqr(this)},a.prototype.redISqr=function(){return n(this.red,"redISqr works only with red numbers"),this.red._verify1(this),this.red.isqr(this)},a.prototype.redSqrt=function(){return n(this.red,"redSqrt works only with red numbers"),this.red._verify1(this),this.red.sqrt(this)},a.prototype.redInvm=function(){return n(this.red,"redInvm works only with red numbers"),this.red._verify1(this),this.red.invm(this)},a.prototype.redNeg=function(){return n(this.red,"redNeg works only with red numbers"),this.red._verify1(this),this.red.neg(this)},a.prototype.redPow=function(t){return n(this.red&&!t.red,"redPow(normalNum)"),this.red._verify1(this),this.red.pow(this,t)};var v={k256:null,p224:null,p192:null,p25519:null};function y(t,e){this.name=t,this.p=new a(e,16),this.n=this.p.bitLength(),this.k=new a(1).iushln(this.n).isub(this.p),this.tmp=this._tmp()}function x(){y.call(this,"k256","ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f")}function b(){y.call(this,"p224","ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001")}function _(){y.call(this,"p192","ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff")}function w(){y.call(this,"25519","7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed")}function T(t){if("string"==typeof t){var e=a._prime(t);this.m=e.p,this.prime=e}else n(t.gtn(1),"modulus must be greater than 1"),this.m=t,this.prime=null}function k(t){T.call(this,t),this.shift=this.m.bitLength(),this.shift%26!=0&&(this.shift+=26-this.shift%26),this.r=new a(1).iushln(this.shift),this.r2=this.imod(this.r.sqr()),this.rinv=this.r._invmp(this.m),this.minv=this.rinv.mul(this.r).isubn(1).div(this.m),this.minv=this.minv.umod(this.r),this.minv=this.r.sub(this.minv)}y.prototype._tmp=function(){var t=new a(null);return t.words=new Array(Math.ceil(this.n/13)),t},y.prototype.ireduce=function(t){var e,r=t;do{this.split(r,this.tmp),e=(r=(r=this.imulK(r)).iadd(this.tmp)).bitLength()}while(e>this.n);var n=e0?r.isub(this.p):void 0!==r.strip?r.strip():r._strip(),r},y.prototype.split=function(t,e){t.iushrn(this.n,0,e)},y.prototype.imulK=function(t){return t.imul(this.k)},i(x,y),x.prototype.split=function(t,e){for(var r=Math.min(t.length,9),n=0;n>>22,i=a}i>>>=22,t.words[n-10]=i,0===i&&t.length>10?t.length-=10:t.length-=9},x.prototype.imulK=function(t){t.words[t.length]=0,t.words[t.length+1]=0,t.length+=2;for(var e=0,r=0;r>>=26,t.words[r]=i,e=n}return 0!==e&&(t.words[t.length++]=e),t},a._prime=function(t){if(v[t])return v[t];var e;if("k256"===t)e=new x;else if("p224"===t)e=new b;else if("p192"===t)e=new _;else{if("p25519"!==t)throw new Error("Unknown prime "+t);e=new w}return v[t]=e,e},T.prototype._verify1=function(t){n(0===t.negative,"red works only with positives"),n(t.red,"red works only with red numbers")},T.prototype._verify2=function(t,e){n(0==(t.negative|e.negative),"red works only with positives"),n(t.red&&t.red===e.red,"red works only with red numbers")},T.prototype.imod=function(t){return this.prime?this.prime.ireduce(t)._forceRed(this):t.umod(this.m)._forceRed(this)},T.prototype.neg=function(t){return t.isZero()?t.clone():this.m.sub(t)._forceRed(this)},T.prototype.add=function(t,e){this._verify2(t,e);var r=t.add(e);return r.cmp(this.m)>=0&&r.isub(this.m),r._forceRed(this)},T.prototype.iadd=function(t,e){this._verify2(t,e);var r=t.iadd(e);return r.cmp(this.m)>=0&&r.isub(this.m),r},T.prototype.sub=function(t,e){this._verify2(t,e);var r=t.sub(e);return r.cmpn(0)<0&&r.iadd(this.m),r._forceRed(this)},T.prototype.isub=function(t,e){this._verify2(t,e);var r=t.isub(e);return r.cmpn(0)<0&&r.iadd(this.m),r},T.prototype.shl=function(t,e){return this._verify1(t),this.imod(t.ushln(e))},T.prototype.imul=function(t,e){return this._verify2(t,e),this.imod(t.imul(e))},T.prototype.mul=function(t,e){return this._verify2(t,e),this.imod(t.mul(e))},T.prototype.isqr=function(t){return this.imul(t,t.clone())},T.prototype.sqr=function(t){return this.mul(t,t)},T.prototype.sqrt=function(t){if(t.isZero())return t.clone();var e=this.m.andln(3);if(n(e%2==1),3===e){var r=this.m.add(new a(1)).iushrn(2);return this.pow(t,r)}for(var i=this.m.subn(1),o=0;!i.isZero()&&0===i.andln(1);)o++,i.iushrn(1);n(!i.isZero());var s=new a(1).toRed(this),l=s.redNeg(),c=this.m.subn(1).iushrn(1),u=this.m.bitLength();for(u=new a(2*u*u).toRed(this);0!==this.pow(u,c).cmp(l);)u.redIAdd(l);for(var f=this.pow(u,i),h=this.pow(t,i.addn(1).iushrn(1)),p=this.pow(t,i),d=o;0!==p.cmp(s);){for(var m=p,g=0;0!==m.cmp(s);g++)m=m.redSqr();n(g=0;n--){for(var c=e.words[n],u=l-1;u>=0;u--){var f=c>>u&1;i!==r[0]&&(i=this.sqr(i)),0!==f||0!==o?(o<<=1,o|=f,(4===++s||0===n&&0===u)&&(i=this.mul(i,r[o]),s=0,o=0)):s=0}l=26}return i},T.prototype.convertTo=function(t){var e=t.umod(this.m);return e===t?e.clone():e},T.prototype.convertFrom=function(t){var e=t.clone();return e.red=null,e},a.mont=function(t){return new k(t)},i(k,T),k.prototype.convertTo=function(t){return this.imod(t.ushln(this.shift))},k.prototype.convertFrom=function(t){var e=this.imod(t.mul(this.rinv));return e.red=null,e},k.prototype.imul=function(t,e){if(t.isZero()||e.isZero())return t.words[0]=0,t.length=1,t;var r=t.imul(e),n=r.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m),i=r.isub(n).iushrn(this.shift),a=i;return i.cmp(this.m)>=0?a=i.isub(this.m):i.cmpn(0)<0&&(a=i.iadd(this.m)),a._forceRed(this)},k.prototype.mul=function(t,e){if(t.isZero()||e.isZero())return new a(0)._forceRed(this);var r=t.mul(e),n=r.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m),i=r.isub(n).iushrn(this.shift),o=i;return i.cmp(this.m)>=0?o=i.isub(this.m):i.cmpn(0)<0&&(o=i.iadd(this.m)),o._forceRed(this)},k.prototype.invm=function(t){return this.imod(t._invmp(this.m).mul(this.r2))._forceRed(this)}}(void 0===e||e,this)},{buffer:111}],97:[function(t,e,r){"use strict";var n=t("./lib/bn-sign");e.exports=function(t){return n(t[0])*n(t[1])}},{"./lib/bn-sign":88}],98:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[1]).sub(t[1].mul(e[0])),t[1].mul(e[1]))}},{"./lib/rationalize":93}],99:[function(t,e,r){"use strict";var n=t("./lib/bn-to-num"),i=t("./lib/ctz");e.exports=function(t){var e=t[0],r=t[1];if(0===e.cmpn(0))return 0;var a=e.abs().divmod(r.abs()),o=a.div,s=n(o),l=a.mod,c=e.negative!==r.negative?-1:1;if(0===l.cmpn(0))return c*s;if(s){var u=i(s)+4,f=n(l.ushln(u).divRound(r));return c*(s+f*Math.pow(2,-u))}var h=r.bitLength()-l.bitLength()+53;f=n(l.ushln(h).divRound(r));return h<1023?c*f*Math.pow(2,-h):(f*=Math.pow(2,-1023),c*f*Math.pow(2,1023-h))}},{"./lib/bn-to-num":89,"./lib/ctz":90}],100:[function(t,e,r){"use strict";function n(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>=0?(a=o,i=o-1):n=o+1}return a}function i(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>0?(a=o,i=o-1):n=o+1}return a}function a(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<0?(a=o,n=o+1):i=o-1}return a}function o(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<=0?(a=o,n=o+1):i=o-1}return a}function s(t,e,r,n,i){for(;n<=i;){var a=n+i>>>1,o=t[a],s=void 0!==r?r(o,e):o-e;if(0===s)return a;s<=0?n=a+1:i=a-1}return-1}function l(t,e,r,n,i,a){return"function"==typeof r?a(t,e,r,void 0===n?0:0|n,void 0===i?t.length-1:0|i):a(t,e,void 0,void 0===r?0:0|r,void 0===n?t.length-1:0|n)}e.exports={ge:function(t,e,r,i,a){return l(t,e,r,i,a,n)},gt:function(t,e,r,n,a){return l(t,e,r,n,a,i)},lt:function(t,e,r,n,i){return l(t,e,r,n,i,a)},le:function(t,e,r,n,i){return l(t,e,r,n,i,o)},eq:function(t,e,r,n,i){return l(t,e,r,n,i,s)}}},{}],101:[function(t,e,r){"use strict";function n(t){var e=32;return(t&=-t)&&e--,65535&t&&(e-=16),16711935&t&&(e-=8),252645135&t&&(e-=4),858993459&t&&(e-=2),1431655765&t&&(e-=1),e}r.INT_BITS=32,r.INT_MAX=2147483647,r.INT_MIN=-1<<31,r.sign=function(t){return(t>0)-(t<0)},r.abs=function(t){var e=t>>31;return(t^e)-e},r.min=function(t,e){return e^(t^e)&-(t65535)<<4,e|=r=((t>>>=e)>255)<<3,e|=r=((t>>>=r)>15)<<2,(e|=r=((t>>>=r)>3)<<1)|(t>>>=r)>>1},r.log10=function(t){return t>=1e9?9:t>=1e8?8:t>=1e7?7:t>=1e6?6:t>=1e5?5:t>=1e4?4:t>=1e3?3:t>=100?2:t>=10?1:0},r.popCount=function(t){return 16843009*((t=(858993459&(t-=t>>>1&1431655765))+(t>>>2&858993459))+(t>>>4)&252645135)>>>24},r.countTrailingZeros=n,r.nextPow2=function(t){return t+=0===t,--t,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)+1},r.prevPow2=function(t){return t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)-(t>>>1)},r.parity=function(t){return t^=t>>>16,t^=t>>>8,t^=t>>>4,27030>>>(t&=15)&1};var i=new Array(256);!function(t){for(var e=0;e<256;++e){var r=e,n=e,i=7;for(r>>>=1;r;r>>>=1)n<<=1,n|=1&r,--i;t[e]=n<>>8&255]<<16|i[t>>>16&255]<<8|i[t>>>24&255]},r.interleave2=function(t,e){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t&=65535)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e&=65535)|e<<8))|e<<4))|e<<2))|e<<1))<<1},r.deinterleave2=function(t,e){return(t=65535&((t=16711935&((t=252645135&((t=858993459&((t=t>>>e&1431655765)|t>>>1))|t>>>2))|t>>>4))|t>>>16))<<16>>16},r.interleave3=function(t,e,r){return t=1227133513&((t=3272356035&((t=251719695&((t=4278190335&((t&=1023)|t<<16))|t<<8))|t<<4))|t<<2),(t|=(e=1227133513&((e=3272356035&((e=251719695&((e=4278190335&((e&=1023)|e<<16))|e<<8))|e<<4))|e<<2))<<1)|(r=1227133513&((r=3272356035&((r=251719695&((r=4278190335&((r&=1023)|r<<16))|r<<8))|r<<4))|r<<2))<<2},r.deinterleave3=function(t,e){return(t=1023&((t=4278190335&((t=251719695&((t=3272356035&((t=t>>>e&1227133513)|t>>>2))|t>>>4))|t>>>8))|t>>>16))<<22>>22},r.nextCombination=function(t){var e=t|t-1;return e+1|(~e&-~e)-1>>>n(t)+1}},{}],102:[function(t,e,r){"use strict";var n=t("clamp");e.exports=function(t,e){e||(e={});var r,o,s,l,c,u,f,h,p,d,m,g=null==e.cutoff?.25:e.cutoff,v=null==e.radius?8:e.radius,y=e.channel||0;if(ArrayBuffer.isView(t)||Array.isArray(t)){if(!e.width||!e.height)throw Error("For raw data width and height should be provided by options");r=e.width,o=e.height,l=t,u=e.stride?e.stride:Math.floor(t.length/r/o)}else window.HTMLCanvasElement&&t instanceof window.HTMLCanvasElement?(f=(h=t).getContext("2d"),r=h.width,o=h.height,p=f.getImageData(0,0,r,o),l=p.data,u=4):window.CanvasRenderingContext2D&&t instanceof window.CanvasRenderingContext2D?(h=t.canvas,f=t,r=h.width,o=h.height,p=f.getImageData(0,0,r,o),l=p.data,u=4):window.ImageData&&t instanceof window.ImageData&&(p=t,r=t.width,o=t.height,l=p.data,u=4);if(s=Math.max(r,o),window.Uint8ClampedArray&&l instanceof window.Uint8ClampedArray||window.Uint8Array&&l instanceof window.Uint8Array)for(c=l,l=Array(r*o),d=0,m=c.length;d>>1;if(!(u<=0)){var f,h=i.mallocDouble(2*u*s),p=i.mallocInt32(s);if((s=l(t,u,h,p))>0){if(1===u&&n)a.init(s),f=a.sweepComplete(u,r,0,s,h,p,0,s,h,p);else{var d=i.mallocDouble(2*u*c),m=i.mallocInt32(c);(c=l(e,u,d,m))>0&&(a.init(s+c),f=1===u?a.sweepBipartite(u,r,0,s,h,p,0,c,d,m):o(u,r,n,s,h,p,c,d,m),i.free(d),i.free(m))}i.free(h),i.free(p)}return f}}}function u(t,e){n.push([t,e])}function f(t){return n=[],c(t,t,u,!0),n}function h(t,e){return n=[],c(t,e,u,!1),n}},{"./lib/intersect":106,"./lib/sweep":110,"typedarray-pool":590}],105:[function(t,e,r){"use strict";function n(t){return t?function(t,e,r,n,i,a,o,s,l,c,u){return i-n>l-s?function(t,e,r,n,i,a,o,s,l,c,u){for(var f=2*t,h=n,p=f*n;hc-l?n?function(t,e,r,n,i,a,o,s,l,c,u){for(var f=2*t,h=n,p=f*n;h0;){var L=6*(S-=1),C=v[L],P=v[L+1],I=v[L+2],O=v[L+3],z=v[L+4],D=v[L+5],R=2*S,F=y[R],B=y[R+1],N=1&D,j=!!(16&D),U=u,V=w,H=k,q=A;if(N&&(U=k,V=A,H=u,q=w),!(2&D&&(I=p(t,C,P,I,U,V,B),P>=I)||4&D&&(P=d(t,C,P,I,U,V,F))>=I)){var G=I-P,Y=z-O;if(j){if(t*G*(G+Y)<1<<22){if(void 0!==(M=l.scanComplete(t,C,e,P,I,U,V,O,z,H,q)))return M;continue}}else{if(t*Math.min(G,Y)<128){if(void 0!==(M=o(t,C,e,N,P,I,U,V,O,z,H,q)))return M;continue}if(t*G*Y<1<<22){if(void 0!==(M=l.scanBipartite(t,C,e,N,P,I,U,V,O,z,H,q)))return M;continue}}var W=f(t,C,P,I,U,V,F,B);if(P=p0)&&!(p1>=hi)"),h=u("lo===p0"),p=u("lo>>1,f=2*t,h=u,p=o[f*u+e];for(;l=y?(h=v,p=y):g>=b?(h=m,p=g):(h=x,p=b):y>=b?(h=v,p=y):b>=g?(h=m,p=g):(h=x,p=b);for(var _=f*(c-1),w=f*h,T=0;Tr&&i[f+e]>c;--u,f-=o){for(var h=f,p=f+o,d=0;dh;++h,l+=s){if(i[l+f]===o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"loh;++h,l+=s){if(i[l+f]p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"lo<=p0":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=t+e,h=r;n>h;++h,l+=s){if(i[l+f]<=o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"hi<=p0":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=t+e,h=r;n>h;++h,l+=s){if(i[l+f]<=o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"lop;++p,l+=s){var d=i[l+f],m=i[l+h];if(dg;++g){var v=i[l+g];i[l+g]=i[c],i[c++]=v}var y=a[p];a[p]=a[u],a[u++]=y}}return u},"lo<=p0&&p0<=hi":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=e,h=t+e,p=r;n>p;++p,l+=s){var d=i[l+f],m=i[l+h];if(d<=o&&o<=m)if(u===p)u+=1,c+=s;else{for(var g=0;s>g;++g){var v=i[l+g];i[l+g]=i[c],i[c++]=v}var y=a[p];a[p]=a[u],a[u++]=y}}return u},"!(lo>=p0)&&!(p1>=hi)":function(t,e,r,n,i,a,o,s){for(var l=2*t,c=l*r,u=c,f=r,h=e,p=t+e,d=r;n>d;++d,c+=l){var m=i[c+h],g=i[c+p];if(!(m>=o||s>=g))if(f===d)f+=1,u+=l;else{for(var v=0;l>v;++v){var y=i[c+v];i[c+v]=i[u],i[u++]=y}var x=a[d];a[d]=a[f],a[f++]=x}}return f}}},{}],109:[function(t,e,r){"use strict";e.exports=function(t,e){e<=128?n(0,e-1,t):function t(e,r,u){var f=(r-e+1)/6|0,h=e+f,p=r-f,d=e+r>>1,m=d-f,g=d+f,v=h,y=m,x=d,b=g,_=p,w=e+1,T=r-1,k=0;l(v,y,u)&&(k=v,v=y,y=k);l(b,_,u)&&(k=b,b=_,_=k);l(v,x,u)&&(k=v,v=x,x=k);l(y,x,u)&&(k=y,y=x,x=k);l(v,b,u)&&(k=v,v=b,b=k);l(x,b,u)&&(k=x,x=b,b=k);l(y,_,u)&&(k=y,y=_,_=k);l(y,x,u)&&(k=y,y=x,x=k);l(b,_,u)&&(k=b,b=_,_=k);for(var A=u[2*y],M=u[2*y+1],S=u[2*b],E=u[2*b+1],L=2*v,C=2*x,P=2*_,I=2*h,O=2*d,z=2*p,D=0;D<2;++D){var R=u[L+D],F=u[C+D],B=u[P+D];u[I+D]=R,u[O+D]=F,u[z+D]=B}a(m,e,u),a(g,r,u);for(var N=w;N<=T;++N)if(c(N,A,M,u))N!==w&&i(N,w,u),++w;else if(!c(N,S,E,u))for(;;){if(c(T,S,E,u)){c(T,A,M,u)?(o(N,w,T,u),++w,--T):(i(N,T,u),--T);break}if(--Tt;){var c=r[l-2],u=r[l-1];if(cr[e+1])}function c(t,e,r,n){var i=n[t*=2];return i>>1;a(h,M);var S=0,E=0;for(w=0;w=1<<28)p(l,c,E--,L=L-(1<<28)|0);else if(L>=0)p(o,s,S--,L);else if(L<=-(1<<28)){L=-L-(1<<28)|0;for(var C=0;C>>1;a(h,E);var L=0,C=0,P=0;for(k=0;k>1==h[2*k+3]>>1&&(O=2,k+=1),I<0){for(var z=-(I>>1)-1,D=0;D>1)-1;0===O?p(o,s,L--,z):1===O?p(l,c,C--,z):2===O&&p(u,f,P--,z)}}},scanBipartite:function(t,e,r,n,i,l,c,u,f,m,g,v){var y=0,x=2*t,b=e,_=e+t,w=1,T=1;n?T=1<<28:w=1<<28;for(var k=i;k>>1;a(h,E);var L=0;for(k=0;k=1<<28?(P=!n,A-=1<<28):(P=!!n,A-=1),P)d(o,s,L++,A);else{var I=v[A],O=x*A,z=g[O+e+1],D=g[O+e+1+t];t:for(var R=0;R>>1;a(h,w);var T=0;for(y=0;y=1<<28)o[T++]=x-(1<<28);else{var A=p[x-=1],M=m*x,S=f[M+e+1],E=f[M+e+1+t];t:for(var L=0;L=0;--L)if(o[L]===x){for(O=L+1;O * @license MIT */ -"use strict";var e=t("base64-js"),n=t("ieee754");r.Buffer=a,r.SlowBuffer=function(t){+t!=t&&(t=0);return a.alloc(+t)},r.INSPECT_MAX_BYTES=50;function i(t){if(t>2147483647)throw new RangeError('The value "'+t+'" is invalid for option "size"');var e=new Uint8Array(t);return e.__proto__=a.prototype,e}function a(t,e,r){if("number"==typeof t){if("string"==typeof e)throw new TypeError('The "string" argument must be of type string. Received type number');return l(t)}return o(t,e,r)}function o(t,e,r){if("string"==typeof t)return function(t,e){"string"==typeof e&&""!==e||(e="utf8");if(!a.isEncoding(e))throw new TypeError("Unknown encoding: "+e);var r=0|f(t,e),n=i(r),o=n.write(t,e);o!==r&&(n=n.slice(0,o));return n}(t,e);if(ArrayBuffer.isView(t))return c(t);if(null==t)throw TypeError("The first argument must be one of type string, Buffer, ArrayBuffer, Array, or Array-like Object. Received type "+typeof t);if(B(t,ArrayBuffer)||t&&B(t.buffer,ArrayBuffer))return function(t,e,r){if(e<0||t.byteLength=2147483647)throw new RangeError("Attempt to allocate Buffer larger than maximum size: 0x"+2147483647..toString(16)+" bytes");return 0|t}function f(t,e){if(a.isBuffer(t))return t.length;if(ArrayBuffer.isView(t)||B(t,ArrayBuffer))return t.byteLength;if("string"!=typeof t)throw new TypeError('The "string" argument must be one of type string, Buffer, or ArrayBuffer. Received type '+typeof t);var r=t.length,n=arguments.length>2&&!0===arguments[2];if(!n&&0===r)return 0;for(var i=!1;;)switch(e){case"ascii":case"latin1":case"binary":return r;case"utf8":case"utf-8":return D(t).length;case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return 2*r;case"hex":return r>>>1;case"base64":return R(t).length;default:if(i)return n?-1:D(t).length;e=(""+e).toLowerCase(),i=!0}}function h(t,e,r){var n=!1;if((void 0===e||e<0)&&(e=0),e>this.length)return"";if((void 0===r||r>this.length)&&(r=this.length),r<=0)return"";if((r>>>=0)<=(e>>>=0))return"";for(t||(t="utf8");;)switch(t){case"hex":return M(this,e,r);case"utf8":case"utf-8":return T(this,e,r);case"ascii":return k(this,e,r);case"latin1":case"binary":return A(this,e,r);case"base64":return w(this,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return S(this,e,r);default:if(n)throw new TypeError("Unknown encoding: "+t);t=(t+"").toLowerCase(),n=!0}}function p(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function d(t,e,r,n,i){if(0===t.length)return-1;if("string"==typeof r?(n=r,r=0):r>2147483647?r=2147483647:r<-2147483648&&(r=-2147483648),N(r=+r)&&(r=i?0:t.length-1),r<0&&(r=t.length+r),r>=t.length){if(i)return-1;r=t.length-1}else if(r<0){if(!i)return-1;r=0}if("string"==typeof e&&(e=a.from(e,n)),a.isBuffer(e))return 0===e.length?-1:m(t,e,r,n,i);if("number"==typeof e)return e&=255,"function"==typeof Uint8Array.prototype.indexOf?i?Uint8Array.prototype.indexOf.call(t,e,r):Uint8Array.prototype.lastIndexOf.call(t,e,r):m(t,[e],r,n,i);throw new TypeError("val must be string, number or Buffer")}function m(t,e,r,n,i){var a,o=1,s=t.length,l=e.length;if(void 0!==n&&("ucs2"===(n=String(n).toLowerCase())||"ucs-2"===n||"utf16le"===n||"utf-16le"===n)){if(t.length<2||e.length<2)return-1;o=2,s/=2,l/=2,r/=2}function c(t,e){return 1===o?t[e]:t.readUInt16BE(e*o)}if(i){var u=-1;for(a=r;as&&(r=s-l),a=r;a>=0;a--){for(var f=!0,h=0;hi&&(n=i):n=i;var a=e.length;n>a/2&&(n=a/2);for(var o=0;o>8,i=r%256,a.push(i),a.push(n);return a}(e,t.length-r),t,r,n)}function w(t,r,n){return 0===r&&n===t.length?e.fromByteArray(t):e.fromByteArray(t.slice(r,n))}function T(t,e,r){r=Math.min(t.length,r);for(var n=[],i=e;i239?4:c>223?3:c>191?2:1;if(i+f<=r)switch(f){case 1:c<128&&(u=c);break;case 2:128==(192&(a=t[i+1]))&&(l=(31&c)<<6|63&a)>127&&(u=l);break;case 3:a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&(l=(15&c)<<12|(63&a)<<6|63&o)>2047&&(l<55296||l>57343)&&(u=l);break;case 4:a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&(l=(15&c)<<18|(63&a)<<12|(63&o)<<6|63&s)>65535&&l<1114112&&(u=l)}null===u?(u=65533,f=1):u>65535&&(u-=65536,n.push(u>>>10&1023|55296),u=56320|1023&u),n.push(u),i+=f}return function(t){var e=t.length;if(e<=4096)return String.fromCharCode.apply(String,t);var r="",n=0;for(;ne&&(t+=" ... "),""},a.prototype.compare=function(t,e,r,n,i){if(B(t,Uint8Array)&&(t=a.from(t,t.offset,t.byteLength)),!a.isBuffer(t))throw new TypeError('The "target" argument must be one of type Buffer or Uint8Array. Received type '+typeof t);if(void 0===e&&(e=0),void 0===r&&(r=t?t.length:0),void 0===n&&(n=0),void 0===i&&(i=this.length),e<0||r>t.length||n<0||i>this.length)throw new RangeError("out of range index");if(n>=i&&e>=r)return 0;if(n>=i)return-1;if(e>=r)return 1;if(this===t)return 0;for(var o=(i>>>=0)-(n>>>=0),s=(r>>>=0)-(e>>>=0),l=Math.min(o,s),c=this.slice(n,i),u=t.slice(e,r),f=0;f>>=0,isFinite(r)?(r>>>=0,void 0===n&&(n="utf8")):(n=r,r=void 0)}var i=this.length-e;if((void 0===r||r>i)&&(r=i),t.length>0&&(r<0||e<0)||e>this.length)throw new RangeError("Attempt to write outside buffer bounds");n||(n="utf8");for(var a=!1;;)switch(n){case"hex":return g(this,t,e,r);case"utf8":case"utf-8":return v(this,t,e,r);case"ascii":return y(this,t,e,r);case"latin1":case"binary":return x(this,t,e,r);case"base64":return b(this,t,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return _(this,t,e,r);default:if(a)throw new TypeError("Unknown encoding: "+n);n=(""+n).toLowerCase(),a=!0}},a.prototype.toJSON=function(){return{type:"Buffer",data:Array.prototype.slice.call(this._arr||this,0)}};function k(t,e,r){var n="";r=Math.min(t.length,r);for(var i=e;in)&&(r=n);for(var i="",a=e;ar)throw new RangeError("Trying to access beyond buffer length")}function L(t,e,r,n,i,o){if(!a.isBuffer(t))throw new TypeError('"buffer" argument must be a Buffer instance');if(e>i||et.length)throw new RangeError("Index out of range")}function C(t,e,r,n,i,a){if(r+n>t.length)throw new RangeError("Index out of range");if(r<0)throw new RangeError("Index out of range")}function P(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,4),n.write(t,e,r,i,23,4),r+4}function I(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,8),n.write(t,e,r,i,52,8),r+8}a.prototype.slice=function(t,e){var r=this.length;(t=~~t)<0?(t+=r)<0&&(t=0):t>r&&(t=r),(e=void 0===e?r:~~e)<0?(e+=r)<0&&(e=0):e>r&&(e=r),e>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t+--e],i=1;e>0&&(i*=256);)n+=this[t+--e]*i;return n},a.prototype.readUInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),this[t]},a.prototype.readUInt16LE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]|this[t+1]<<8},a.prototype.readUInt16BE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]<<8|this[t+1]},a.prototype.readUInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),(this[t]|this[t+1]<<8|this[t+2]<<16)+16777216*this[t+3]},a.prototype.readUInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),16777216*this[t]+(this[t+1]<<16|this[t+2]<<8|this[t+3])},a.prototype.readIntLE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a=(i*=128)&&(n-=Math.pow(2,8*e)),n},a.prototype.readIntBE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=e,i=1,a=this[t+--n];n>0&&(i*=256);)a+=this[t+--n]*i;return a>=(i*=128)&&(a-=Math.pow(2,8*e)),a},a.prototype.readInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),128&this[t]?-1*(255-this[t]+1):this[t]},a.prototype.readInt16LE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t]|this[t+1]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt16BE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t+1]|this[t]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]|this[t+1]<<8|this[t+2]<<16|this[t+3]<<24},a.prototype.readInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]<<24|this[t+1]<<16|this[t+2]<<8|this[t+3]},a.prototype.readFloatLE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!0,23,4)},a.prototype.readFloatBE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!1,23,4)},a.prototype.readDoubleLE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!0,52,8)},a.prototype.readDoubleBE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!1,52,8)},a.prototype.writeUIntLE=function(t,e,r,n){(t=+t,e>>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=1,a=0;for(this[e]=255&t;++a>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=r-1,a=1;for(this[e+i]=255&t;--i>=0&&(a*=256);)this[e+i]=t/a&255;return e+r},a.prototype.writeUInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,255,0),this[e]=255&t,e+1},a.prototype.writeUInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeUInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeUInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e+3]=t>>>24,this[e+2]=t>>>16,this[e+1]=t>>>8,this[e]=255&t,e+4},a.prototype.writeUInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeIntLE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=0,o=1,s=0;for(this[e]=255&t;++a>0)-s&255;return e+r},a.prototype.writeIntBE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=r-1,o=1,s=0;for(this[e+a]=255&t;--a>=0&&(o*=256);)t<0&&0===s&&0!==this[e+a+1]&&(s=1),this[e+a]=(t/o>>0)-s&255;return e+r},a.prototype.writeInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,127,-128),t<0&&(t=255+t+1),this[e]=255&t,e+1},a.prototype.writeInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),this[e]=255&t,this[e+1]=t>>>8,this[e+2]=t>>>16,this[e+3]=t>>>24,e+4},a.prototype.writeInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),t<0&&(t=4294967295+t+1),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeFloatLE=function(t,e,r){return P(this,t,e,!0,r)},a.prototype.writeFloatBE=function(t,e,r){return P(this,t,e,!1,r)},a.prototype.writeDoubleLE=function(t,e,r){return I(this,t,e,!0,r)},a.prototype.writeDoubleBE=function(t,e,r){return I(this,t,e,!1,r)},a.prototype.copy=function(t,e,r,n){if(!a.isBuffer(t))throw new TypeError("argument should be a Buffer");if(r||(r=0),n||0===n||(n=this.length),e>=t.length&&(e=t.length),e||(e=0),n>0&&n=this.length)throw new RangeError("Index out of range");if(n<0)throw new RangeError("sourceEnd out of bounds");n>this.length&&(n=this.length),t.length-e=0;--o)t[o+e]=this[o+r];else Uint8Array.prototype.set.call(t,this.subarray(r,n),e);return i},a.prototype.fill=function(t,e,r,n){if("string"==typeof t){if("string"==typeof e?(n=e,e=0,r=this.length):"string"==typeof r&&(n=r,r=this.length),void 0!==n&&"string"!=typeof n)throw new TypeError("encoding must be a string");if("string"==typeof n&&!a.isEncoding(n))throw new TypeError("Unknown encoding: "+n);if(1===t.length){var i=t.charCodeAt(0);("utf8"===n&&i<128||"latin1"===n)&&(t=i)}}else"number"==typeof t&&(t&=255);if(e<0||this.length>>=0,r=void 0===r?this.length:r>>>0,t||(t=0),"number"==typeof t)for(o=e;o55295&&r<57344){if(!i){if(r>56319){(e-=3)>-1&&a.push(239,191,189);continue}if(o+1===n){(e-=3)>-1&&a.push(239,191,189);continue}i=r;continue}if(r<56320){(e-=3)>-1&&a.push(239,191,189),i=r;continue}r=65536+(i-55296<<10|r-56320)}else i&&(e-=3)>-1&&a.push(239,191,189);if(i=null,r<128){if((e-=1)<0)break;a.push(r)}else if(r<2048){if((e-=2)<0)break;a.push(r>>6|192,63&r|128)}else if(r<65536){if((e-=3)<0)break;a.push(r>>12|224,r>>6&63|128,63&r|128)}else{if(!(r<1114112))throw new Error("Invalid code point");if((e-=4)<0)break;a.push(r>>18|240,r>>12&63|128,r>>6&63|128,63&r|128)}}return a}function R(t){return e.toByteArray(function(t){if((t=(t=t.split("=")[0]).trim().replace(O,"")).length<2)return"";for(;t.length%4!=0;)t+="=";return t}(t))}function F(t,e,r,n){for(var i=0;i=e.length||i>=t.length);++i)e[i+r]=t[i];return i}function B(t,e){return t instanceof e||null!=t&&null!=t.constructor&&null!=t.constructor.name&&t.constructor.name===e.name}function N(t){return t!=t}}).call(this)}).call(this,t("buffer").Buffer)},{"base64-js":75,buffer:80,ieee754:225}],81:[function(t,e,r){e.exports=function(t,e,r){return er?r:t:te?e:t}},{}],82:[function(t,e,r){"use strict";var n=t("clamp");function i(t,e){null==e&&(e=!0);var r=t[0],i=t[1],a=t[2],o=t[3];return null==o&&(o=e?1:255),e&&(r*=255,i*=255,a*=255,o*=255),16777216*(r=255&n(r,0,255))+((i=255&n(i,0,255))<<16)+((a=255&n(a,0,255))<<8)+(o=255&n(o,0,255))}e.exports=i,e.exports.to=i,e.exports.from=function(t,e){var r=(t=+t)>>>24,n=(16711680&t)>>>16,i=(65280&t)>>>8,a=255&t;return!1===e?[r,n,i,a]:[r/255,n/255,i/255,a/255]}},{clamp:81}],83:[function(t,e,r){"use strict";e.exports={aliceblue:[240,248,255],antiquewhite:[250,235,215],aqua:[0,255,255],aquamarine:[127,255,212],azure:[240,255,255],beige:[245,245,220],bisque:[255,228,196],black:[0,0,0],blanchedalmond:[255,235,205],blue:[0,0,255],blueviolet:[138,43,226],brown:[165,42,42],burlywood:[222,184,135],cadetblue:[95,158,160],chartreuse:[127,255,0],chocolate:[210,105,30],coral:[255,127,80],cornflowerblue:[100,149,237],cornsilk:[255,248,220],crimson:[220,20,60],cyan:[0,255,255],darkblue:[0,0,139],darkcyan:[0,139,139],darkgoldenrod:[184,134,11],darkgray:[169,169,169],darkgreen:[0,100,0],darkgrey:[169,169,169],darkkhaki:[189,183,107],darkmagenta:[139,0,139],darkolivegreen:[85,107,47],darkorange:[255,140,0],darkorchid:[153,50,204],darkred:[139,0,0],darksalmon:[233,150,122],darkseagreen:[143,188,143],darkslateblue:[72,61,139],darkslategray:[47,79,79],darkslategrey:[47,79,79],darkturquoise:[0,206,209],darkviolet:[148,0,211],deeppink:[255,20,147],deepskyblue:[0,191,255],dimgray:[105,105,105],dimgrey:[105,105,105],dodgerblue:[30,144,255],firebrick:[178,34,34],floralwhite:[255,250,240],forestgreen:[34,139,34],fuchsia:[255,0,255],gainsboro:[220,220,220],ghostwhite:[248,248,255],gold:[255,215,0],goldenrod:[218,165,32],gray:[128,128,128],green:[0,128,0],greenyellow:[173,255,47],grey:[128,128,128],honeydew:[240,255,240],hotpink:[255,105,180],indianred:[205,92,92],indigo:[75,0,130],ivory:[255,255,240],khaki:[240,230,140],lavender:[230,230,250],lavenderblush:[255,240,245],lawngreen:[124,252,0],lemonchiffon:[255,250,205],lightblue:[173,216,230],lightcoral:[240,128,128],lightcyan:[224,255,255],lightgoldenrodyellow:[250,250,210],lightgray:[211,211,211],lightgreen:[144,238,144],lightgrey:[211,211,211],lightpink:[255,182,193],lightsalmon:[255,160,122],lightseagreen:[32,178,170],lightskyblue:[135,206,250],lightslategray:[119,136,153],lightslategrey:[119,136,153],lightsteelblue:[176,196,222],lightyellow:[255,255,224],lime:[0,255,0],limegreen:[50,205,50],linen:[250,240,230],magenta:[255,0,255],maroon:[128,0,0],mediumaquamarine:[102,205,170],mediumblue:[0,0,205],mediumorchid:[186,85,211],mediumpurple:[147,112,219],mediumseagreen:[60,179,113],mediumslateblue:[123,104,238],mediumspringgreen:[0,250,154],mediumturquoise:[72,209,204],mediumvioletred:[199,21,133],midnightblue:[25,25,112],mintcream:[245,255,250],mistyrose:[255,228,225],moccasin:[255,228,181],navajowhite:[255,222,173],navy:[0,0,128],oldlace:[253,245,230],olive:[128,128,0],olivedrab:[107,142,35],orange:[255,165,0],orangered:[255,69,0],orchid:[218,112,214],palegoldenrod:[238,232,170],palegreen:[152,251,152],paleturquoise:[175,238,238],palevioletred:[219,112,147],papayawhip:[255,239,213],peachpuff:[255,218,185],peru:[205,133,63],pink:[255,192,203],plum:[221,160,221],powderblue:[176,224,230],purple:[128,0,128],rebeccapurple:[102,51,153],red:[255,0,0],rosybrown:[188,143,143],royalblue:[65,105,225],saddlebrown:[139,69,19],salmon:[250,128,114],sandybrown:[244,164,96],seagreen:[46,139,87],seashell:[255,245,238],sienna:[160,82,45],silver:[192,192,192],skyblue:[135,206,235],slateblue:[106,90,205],slategray:[112,128,144],slategrey:[112,128,144],snow:[255,250,250],springgreen:[0,255,127],steelblue:[70,130,180],tan:[210,180,140],teal:[0,128,128],thistle:[216,191,216],tomato:[255,99,71],turquoise:[64,224,208],violet:[238,130,238],wheat:[245,222,179],white:[255,255,255],whitesmoke:[245,245,245],yellow:[255,255,0],yellowgreen:[154,205,50]}},{}],84:[function(t,e,r){"use strict";var n=t("color-rgba"),i=t("clamp"),a=t("dtype");e.exports=function(t,e){"float"!==e&&e||(e="array"),"uint"===e&&(e="uint8"),"uint_clamped"===e&&(e="uint8_clamped");var r=new(a(e))(4),o="uint8"!==e&&"uint8_clamped"!==e;return t.length&&"string"!=typeof t||((t=n(t))[0]/=255,t[1]/=255,t[2]/=255),function(t){return t instanceof Uint8Array||t instanceof Uint8ClampedArray||!!(Array.isArray(t)&&(t[0]>1||0===t[0])&&(t[1]>1||0===t[1])&&(t[2]>1||0===t[2])&&(!t[3]||t[3]>1))}(t)?(r[0]=t[0],r[1]=t[1],r[2]=t[2],r[3]=null!=t[3]?t[3]:255,o&&(r[0]/=255,r[1]/=255,r[2]/=255,r[3]/=255),r):(o?(r[0]=t[0],r[1]=t[1],r[2]=t[2],r[3]=null!=t[3]?t[3]:1):(r[0]=i(Math.floor(255*t[0]),0,255),r[1]=i(Math.floor(255*t[1]),0,255),r[2]=i(Math.floor(255*t[2]),0,255),r[3]=null==t[3]?255:i(Math.floor(255*t[3]),0,255)),r)}},{clamp:81,"color-rgba":86,dtype:121}],85:[function(t,e,r){(function(r){(function(){"use strict";var n=t("color-name"),i=t("is-plain-obj"),a=t("defined");e.exports=function(t){var e,s,l=[],c=1;if("string"==typeof t)if(n[t])l=n[t].slice(),s="rgb";else if("transparent"===t)c=0,s="rgb",l=[0,0,0];else if(/^#[A-Fa-f0-9]+$/.test(t)){var u=(p=t.slice(1)).length;c=1,u<=4?(l=[parseInt(p[0]+p[0],16),parseInt(p[1]+p[1],16),parseInt(p[2]+p[2],16)],4===u&&(c=parseInt(p[3]+p[3],16)/255)):(l=[parseInt(p[0]+p[1],16),parseInt(p[2]+p[3],16),parseInt(p[4]+p[5],16)],8===u&&(c=parseInt(p[6]+p[7],16)/255)),l[0]||(l[0]=0),l[1]||(l[1]=0),l[2]||(l[2]=0),s="rgb"}else if(e=/^((?:rgb|hs[lvb]|hwb|cmyk?|xy[zy]|gray|lab|lchu?v?|[ly]uv|lms)a?)\s*\(([^\)]*)\)/.exec(t)){var f=e[1],h="rgb"===f,p=f.replace(/a$/,"");s=p;u="cmyk"===p?4:"gray"===p?1:3;l=e[2].trim().split(/\s*,\s*/).map((function(t,e){if(/%$/.test(t))return e===u?parseFloat(t)/100:"rgb"===p?255*parseFloat(t)/100:parseFloat(t);if("h"===p[e]){if(/deg$/.test(t))return parseFloat(t);if(void 0!==o[t])return o[t]}return parseFloat(t)})),f===p&&l.push(1),c=h||void 0===l[u]?1:l[u],l=l.slice(0,u)}else t.length>10&&/[0-9](?:\s|\/)/.test(t)&&(l=t.match(/([0-9]+)/g).map((function(t){return parseFloat(t)})),s=t.match(/([a-z])/gi).join("").toLowerCase());else if(isNaN(t))if(i(t)){var d=a(t.r,t.red,t.R,null);null!==d?(s="rgb",l=[d,a(t.g,t.green,t.G),a(t.b,t.blue,t.B)]):(s="hsl",l=[a(t.h,t.hue,t.H),a(t.s,t.saturation,t.S),a(t.l,t.lightness,t.L,t.b,t.brightness)]),c=a(t.a,t.alpha,t.opacity,1),null!=t.opacity&&(c/=100)}else(Array.isArray(t)||r.ArrayBuffer&&ArrayBuffer.isView&&ArrayBuffer.isView(t))&&(l=[t[0],t[1],t[2]],s="rgb",c=4===t.length?t[3]:1);else s="rgb",l=[t>>>16,(65280&t)>>>8,255&t];return{space:s,values:l,alpha:c}};var o={red:0,orange:60,yellow:120,green:180,blue:240,purple:300}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"color-name":83,defined:118,"is-plain-obj":231}],86:[function(t,e,r){"use strict";var n=t("color-parse"),i=t("color-space/hsl"),a=t("clamp");e.exports=function(t){var e,r=n(t);return r.space?((e=Array(3))[0]=a(r.values[0],0,255),e[1]=a(r.values[1],0,255),e[2]=a(r.values[2],0,255),"h"===r.space[0]&&(e=i.rgb(e)),e.push(a(r.alpha,0,1)),e):[]}},{clamp:81,"color-parse":85,"color-space/hsl":87}],87:[function(t,e,r){"use strict";var n=t("./rgb");e.exports={name:"hsl",min:[0,0,0],max:[360,100,100],channel:["hue","saturation","lightness"],alias:["HSL"],rgb:function(t){var e,r,n,i,a,o=t[0]/360,s=t[1]/100,l=t[2]/100;if(0===s)return[a=255*l,a,a];e=2*l-(r=l<.5?l*(1+s):l+s-l*s),i=[0,0,0];for(var c=0;c<3;c++)(n=o+1/3*-(c-1))<0?n++:n>1&&n--,a=6*n<1?e+6*(r-e)*n:2*n<1?r:3*n<2?e+(r-e)*(2/3-n)*6:e,i[c]=255*a;return i}},n.hsl=function(t){var e,r,n=t[0]/255,i=t[1]/255,a=t[2]/255,o=Math.min(n,i,a),s=Math.max(n,i,a),l=s-o;return s===o?e=0:n===s?e=(i-a)/l:i===s?e=2+(a-n)/l:a===s&&(e=4+(n-i)/l),(e=Math.min(60*e,360))<0&&(e+=360),r=(o+s)/2,[e,100*(s===o?0:r<=.5?l/(s+o):l/(2-s-o)),100*r]}},{"./rgb":88}],88:[function(t,e,r){"use strict";e.exports={name:"rgb",min:[0,0,0],max:[255,255,255],channel:["red","green","blue"],alias:["RGB"]}},{}],89:[function(t,e,r){e.exports={AFG:"afghan",ALA:"\\b\\wland",ALB:"albania",DZA:"algeria",ASM:"^(?=.*americ).*samoa",AND:"andorra",AGO:"angola",AIA:"anguill?a",ATA:"antarctica",ATG:"antigua",ARG:"argentin",ARM:"armenia",ABW:"^(?!.*bonaire).*\\baruba",AUS:"australia",AUT:"^(?!.*hungary).*austria|\\baustri.*\\bemp",AZE:"azerbaijan",BHS:"bahamas",BHR:"bahrain",BGD:"bangladesh|^(?=.*east).*paki?stan",BRB:"barbados",BLR:"belarus|byelo",BEL:"^(?!.*luxem).*belgium",BLZ:"belize|^(?=.*british).*honduras",BEN:"benin|dahome",BMU:"bermuda",BTN:"bhutan",BOL:"bolivia",BES:"^(?=.*bonaire).*eustatius|^(?=.*carib).*netherlands|\\bbes.?islands",BIH:"herzegovina|bosnia",BWA:"botswana|bechuana",BVT:"bouvet",BRA:"brazil",IOT:"british.?indian.?ocean",BRN:"brunei",BGR:"bulgaria",BFA:"burkina|\\bfaso|upper.?volta",BDI:"burundi",CPV:"verde",KHM:"cambodia|kampuchea|khmer",CMR:"cameroon",CAN:"canada",CYM:"cayman",CAF:"\\bcentral.african.republic",TCD:"\\bchad",CHL:"\\bchile",CHN:"^(?!.*\\bmac)(?!.*\\bhong)(?!.*\\btai)(?!.*\\brep).*china|^(?=.*peo)(?=.*rep).*china",CXR:"christmas",CCK:"\\bcocos|keeling",COL:"colombia",COM:"comoro",COG:"^(?!.*\\bdem)(?!.*\\bd[\\.]?r)(?!.*kinshasa)(?!.*zaire)(?!.*belg)(?!.*l.opoldville)(?!.*free).*\\bcongo",COK:"\\bcook",CRI:"costa.?rica",CIV:"ivoire|ivory",HRV:"croatia",CUB:"\\bcuba",CUW:"^(?!.*bonaire).*\\bcura(c|\xe7)ao",CYP:"cyprus",CSK:"czechoslovakia",CZE:"^(?=.*rep).*czech|czechia|bohemia",COD:"\\bdem.*congo|congo.*\\bdem|congo.*\\bd[\\.]?r|\\bd[\\.]?r.*congo|belgian.?congo|congo.?free.?state|kinshasa|zaire|l.opoldville|drc|droc|rdc",DNK:"denmark",DJI:"djibouti",DMA:"dominica(?!n)",DOM:"dominican.rep",ECU:"ecuador",EGY:"egypt",SLV:"el.?salvador",GNQ:"guine.*eq|eq.*guine|^(?=.*span).*guinea",ERI:"eritrea",EST:"estonia",ETH:"ethiopia|abyssinia",FLK:"falkland|malvinas",FRO:"faroe|faeroe",FJI:"fiji",FIN:"finland",FRA:"^(?!.*\\bdep)(?!.*martinique).*france|french.?republic|\\bgaul",GUF:"^(?=.*french).*guiana",PYF:"french.?polynesia|tahiti",ATF:"french.?southern",GAB:"gabon",GMB:"gambia",GEO:"^(?!.*south).*georgia",DDR:"german.?democratic.?republic|democratic.?republic.*germany|east.germany",DEU:"^(?!.*east).*germany|^(?=.*\\bfed.*\\brep).*german",GHA:"ghana|gold.?coast",GIB:"gibraltar",GRC:"greece|hellenic|hellas",GRL:"greenland",GRD:"grenada",GLP:"guadeloupe",GUM:"\\bguam",GTM:"guatemala",GGY:"guernsey",GIN:"^(?!.*eq)(?!.*span)(?!.*bissau)(?!.*portu)(?!.*new).*guinea",GNB:"bissau|^(?=.*portu).*guinea",GUY:"guyana|british.?guiana",HTI:"haiti",HMD:"heard.*mcdonald",VAT:"holy.?see|vatican|papal.?st",HND:"^(?!.*brit).*honduras",HKG:"hong.?kong",HUN:"^(?!.*austr).*hungary",ISL:"iceland",IND:"india(?!.*ocea)",IDN:"indonesia",IRN:"\\biran|persia",IRQ:"\\biraq|mesopotamia",IRL:"(^ireland)|(^republic.*ireland)",IMN:"^(?=.*isle).*\\bman",ISR:"israel",ITA:"italy",JAM:"jamaica",JPN:"japan",JEY:"jersey",JOR:"jordan",KAZ:"kazak",KEN:"kenya|british.?east.?africa|east.?africa.?prot",KIR:"kiribati",PRK:"^(?=.*democrat|people|north|d.*p.*.r).*\\bkorea|dprk|korea.*(d.*p.*r)",KWT:"kuwait",KGZ:"kyrgyz|kirghiz",LAO:"\\blaos?\\b",LVA:"latvia",LBN:"lebanon",LSO:"lesotho|basuto",LBR:"liberia",LBY:"libya",LIE:"liechtenstein",LTU:"lithuania",LUX:"^(?!.*belg).*luxem",MAC:"maca(o|u)",MDG:"madagascar|malagasy",MWI:"malawi|nyasa",MYS:"malaysia",MDV:"maldive",MLI:"\\bmali\\b",MLT:"\\bmalta",MHL:"marshall",MTQ:"martinique",MRT:"mauritania",MUS:"mauritius",MYT:"\\bmayotte",MEX:"\\bmexic",FSM:"fed.*micronesia|micronesia.*fed",MCO:"monaco",MNG:"mongolia",MNE:"^(?!.*serbia).*montenegro",MSR:"montserrat",MAR:"morocco|\\bmaroc",MOZ:"mozambique",MMR:"myanmar|burma",NAM:"namibia",NRU:"nauru",NPL:"nepal",NLD:"^(?!.*\\bant)(?!.*\\bcarib).*netherlands",ANT:"^(?=.*\\bant).*(nether|dutch)",NCL:"new.?caledonia",NZL:"new.?zealand",NIC:"nicaragua",NER:"\\bniger(?!ia)",NGA:"nigeria",NIU:"niue",NFK:"norfolk",MNP:"mariana",NOR:"norway",OMN:"\\boman|trucial",PAK:"^(?!.*east).*paki?stan",PLW:"palau",PSE:"palestin|\\bgaza|west.?bank",PAN:"panama",PNG:"papua|new.?guinea",PRY:"paraguay",PER:"peru",PHL:"philippines",PCN:"pitcairn",POL:"poland",PRT:"portugal",PRI:"puerto.?rico",QAT:"qatar",KOR:"^(?!.*d.*p.*r)(?!.*democrat)(?!.*people)(?!.*north).*\\bkorea(?!.*d.*p.*r)",MDA:"moldov|b(a|e)ssarabia",REU:"r(e|\xe9)union",ROU:"r(o|u|ou)mania",RUS:"\\brussia|soviet.?union|u\\.?s\\.?s\\.?r|socialist.?republics",RWA:"rwanda",BLM:"barth(e|\xe9)lemy",SHN:"helena",KNA:"kitts|\\bnevis",LCA:"\\blucia",MAF:"^(?=.*collectivity).*martin|^(?=.*france).*martin(?!ique)|^(?=.*french).*martin(?!ique)",SPM:"miquelon",VCT:"vincent",WSM:"^(?!.*amer).*samoa",SMR:"san.?marino",STP:"\\bs(a|\xe3)o.?tom(e|\xe9)",SAU:"\\bsa\\w*.?arabia",SEN:"senegal",SRB:"^(?!.*monte).*serbia",SYC:"seychell",SLE:"sierra",SGP:"singapore",SXM:"^(?!.*martin)(?!.*saba).*maarten",SVK:"^(?!.*cze).*slovak",SVN:"slovenia",SLB:"solomon",SOM:"somali",ZAF:"south.africa|s\\\\..?africa",SGS:"south.?georgia|sandwich",SSD:"\\bs\\w*.?sudan",ESP:"spain",LKA:"sri.?lanka|ceylon",SDN:"^(?!.*\\bs(?!u)).*sudan",SUR:"surinam|dutch.?guiana",SJM:"svalbard",SWZ:"swaziland",SWE:"sweden",CHE:"switz|swiss",SYR:"syria",TWN:"taiwan|taipei|formosa|^(?!.*peo)(?=.*rep).*china",TJK:"tajik",THA:"thailand|\\bsiam",MKD:"macedonia|fyrom",TLS:"^(?=.*leste).*timor|^(?=.*east).*timor",TGO:"togo",TKL:"tokelau",TON:"tonga",TTO:"trinidad|tobago",TUN:"tunisia",TUR:"turkey",TKM:"turkmen",TCA:"turks",TUV:"tuvalu",UGA:"uganda",UKR:"ukrain",ARE:"emirates|^u\\.?a\\.?e\\.?$|united.?arab.?em",GBR:"united.?kingdom|britain|^u\\.?k\\.?$",TZA:"tanzania",USA:"united.?states\\b(?!.*islands)|\\bu\\.?s\\.?a\\.?\\b|^\\s*u\\.?s\\.?\\b(?!.*islands)",UMI:"minor.?outlying.?is",URY:"uruguay",UZB:"uzbek",VUT:"vanuatu|new.?hebrides",VEN:"venezuela",VNM:"^(?!.*republic).*viet.?nam|^(?=.*socialist).*viet.?nam",VGB:"^(?=.*\\bu\\.?\\s?k).*virgin|^(?=.*brit).*virgin|^(?=.*kingdom).*virgin",VIR:"^(?=.*\\bu\\.?\\s?s).*virgin|^(?=.*states).*virgin",WLF:"futuna|wallis",ESH:"western.sahara",YEM:"^(?!.*arab)(?!.*north)(?!.*sana)(?!.*peo)(?!.*dem)(?!.*south)(?!.*aden)(?!.*\\bp\\.?d\\.?r).*yemen",YMD:"^(?=.*peo).*yemen|^(?!.*rep)(?=.*dem).*yemen|^(?=.*south).*yemen|^(?=.*aden).*yemen|^(?=.*\\bp\\.?d\\.?r).*yemen",YUG:"yugoslavia",ZMB:"zambia|northern.?rhodesia",EAZ:"zanzibar",ZWE:"zimbabwe|^(?!.*northern).*rhodesia"}},{}],90:[function(t,e,r){e.exports=["xx-small","x-small","small","medium","large","x-large","xx-large","larger","smaller"]},{}],91:[function(t,e,r){e.exports=["normal","condensed","semi-condensed","extra-condensed","ultra-condensed","expanded","semi-expanded","extra-expanded","ultra-expanded"]},{}],92:[function(t,e,r){e.exports=["normal","italic","oblique"]},{}],93:[function(t,e,r){e.exports=["normal","bold","bolder","lighter","100","200","300","400","500","600","700","800","900"]},{}],94:[function(t,e,r){"use strict";e.exports={parse:t("./parse"),stringify:t("./stringify")}},{"./parse":96,"./stringify":97}],95:[function(t,e,r){"use strict";var n=t("css-font-size-keywords");e.exports={isSize:function(t){return/^[\d\.]/.test(t)||-1!==t.indexOf("/")||-1!==n.indexOf(t)}}},{"css-font-size-keywords":90}],96:[function(t,e,r){"use strict";var n=t("unquote"),i=t("css-global-keywords"),a=t("css-system-font-keywords"),o=t("css-font-weight-keywords"),s=t("css-font-style-keywords"),l=t("css-font-stretch-keywords"),c=t("string-split-by"),u=t("./lib/util").isSize;e.exports=h;var f=h.cache={};function h(t){if("string"!=typeof t)throw new Error("Font argument must be a string.");if(f[t])return f[t];if(""===t)throw new Error("Cannot parse an empty string.");if(-1!==a.indexOf(t))return f[t]={system:t};for(var e,r={style:"normal",variant:"normal",weight:"normal",stretch:"normal",lineHeight:"normal",size:"1rem",family:["serif"]},h=c(t,/\s+/);e=h.shift();){if(-1!==i.indexOf(e))return["style","variant","weight","stretch"].forEach((function(t){r[t]=e})),f[t]=r;if(-1===s.indexOf(e))if("normal"!==e&&"small-caps"!==e)if(-1===l.indexOf(e)){if(-1===o.indexOf(e)){if(u(e)){var d=c(e,"/");if(r.size=d[0],null!=d[1]?r.lineHeight=p(d[1]):"/"===h[0]&&(h.shift(),r.lineHeight=p(h.shift())),!h.length)throw new Error("Missing required font-family.");return r.family=c(h.join(" "),/\s*,\s*/).map(n),f[t]=r}throw new Error("Unknown or unsupported font token: "+e)}r.weight=e}else r.stretch=e;else r.variant=e;else r.style=e}throw new Error("Missing required font-size.")}function p(t){var e=parseFloat(t);return e.toString()===t?e:t}},{"./lib/util":95,"css-font-stretch-keywords":91,"css-font-style-keywords":92,"css-font-weight-keywords":93,"css-global-keywords":98,"css-system-font-keywords":99,"string-split-by":299,unquote:323}],97:[function(t,e,r){"use strict";var n=t("pick-by-alias"),i=t("./lib/util").isSize,a=m(t("css-global-keywords")),o=m(t("css-system-font-keywords")),s=m(t("css-font-weight-keywords")),l=m(t("css-font-style-keywords")),c=m(t("css-font-stretch-keywords")),u={normal:1,"small-caps":1},f={serif:1,"sans-serif":1,monospace:1,cursive:1,fantasy:1,"system-ui":1},h="1rem",p="serif";function d(t,e){if(t&&!e[t]&&!a[t])throw Error("Unknown keyword `"+t+"`");return t}function m(t){for(var e={},r=0;re?1:t>=e?0:NaN}function r(t){var r;return 1===t.length&&(r=t,t=function(t,n){return e(r(t),n)}),{left:function(e,r,n,i){for(null==n&&(n=0),null==i&&(i=e.length);n>>1;t(e[a],r)<0?n=a+1:i=a}return n},right:function(e,r,n,i){for(null==n&&(n=0),null==i&&(i=e.length);n>>1;t(e[a],r)>0?i=a:n=a+1}return n}}}var n=r(e),i=n.right,a=n.left;function o(t,e){return[t,e]}function s(t){return null===t?NaN:+t}function l(t,e){var r,n,i=t.length,a=0,o=-1,l=0,c=0;if(null==e)for(;++o1)return c/(a-1)}function c(t,e){var r=l(t,e);return r?Math.sqrt(r):r}function u(t,e){var r,n,i,a=t.length,o=-1;if(null==e){for(;++o=r)for(n=i=r;++or&&(n=r),i=r)for(n=i=r;++or&&(n=r),i=0?(a>=v?10:a>=y?5:a>=x?2:1)*Math.pow(10,i):-Math.pow(10,-i)/(a>=v?10:a>=y?5:a>=x?2:1)}function _(t,e,r){var n=Math.abs(e-t)/Math.max(0,r),i=Math.pow(10,Math.floor(Math.log(n)/Math.LN10)),a=n/i;return a>=v?i*=10:a>=y?i*=5:a>=x&&(i*=2),e=1)return+r(t[n-1],n-1,t);var n,i=(n-1)*e,a=Math.floor(i),o=+r(t[a],a,t);return o+(+r(t[a+1],a+1,t)-o)*(i-a)}}function k(t,e){var r,n,i=t.length,a=-1;if(null==e){for(;++a=r)for(n=r;++ar&&(n=r)}else for(;++a=r)for(n=r;++ar&&(n=r);return n}function A(t){if(!(i=t.length))return[];for(var e=-1,r=k(t,M),n=new Array(r);++et?1:e>=t?0:NaN},t.deviation=c,t.extent=u,t.histogram=function(){var t=m,e=u,r=w;function n(n){var a,o,s=n.length,l=new Array(s);for(a=0;af;)h.pop(),--p;var d,m=new Array(p+1);for(a=0;a<=p;++a)(d=m[a]=[]).x0=a>0?h[a-1]:u,d.x1=a=r)for(n=r;++an&&(n=r)}else for(;++a=r)for(n=r;++an&&(n=r);return n},t.mean=function(t,e){var r,n=t.length,i=n,a=-1,o=0;if(null==e)for(;++a=0;)for(e=(n=t[i]).length;--e>=0;)r[--o]=n[e];return r},t.min=k,t.pairs=function(t,e){null==e&&(e=o);for(var r=0,n=t.length-1,i=t[0],a=new Array(n<0?0:n);r0)return[t];if((n=e0)for(t=Math.ceil(t/o),e=Math.floor(e/o),a=new Array(i=Math.ceil(e-t+1));++s=l.length)return null!=t&&n.sort(t),null!=e?e(n):n;for(var s,c,f,h=-1,p=n.length,d=l[i++],m=r(),g=a();++hl.length)return r;var i,a=c[n-1];return null!=e&&n>=l.length?i=r.entries():(i=[],r.each((function(e,r){i.push({key:r,values:t(e,n)})}))),null!=a?i.sort((function(t,e){return a(t.key,e.key)})):i}(u(t,0,a,o),0)},key:function(t){return l.push(t),s},sortKeys:function(t){return c[l.length-1]=t,s},sortValues:function(e){return t=e,s},rollup:function(t){return e=t,s}}},t.set=c,t.map=r,t.keys=function(t){var e=[];for(var r in t)e.push(r);return e},t.values=function(t){var e=[];for(var r in t)e.push(t[r]);return e},t.entries=function(t){var e=[];for(var r in t)e.push({key:r,value:t[r]});return e},Object.defineProperty(t,"__esModule",{value:!0})}))},{}],104:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e,r){t.prototype=e.prototype=r,r.constructor=t}function r(t,e){var r=Object.create(t.prototype);for(var n in e)r[n]=e[n];return r}function n(){}var i="\\s*([+-]?\\d+)\\s*",a="\\s*([+-]?\\d*\\.?\\d+(?:[eE][+-]?\\d+)?)\\s*",o="\\s*([+-]?\\d*\\.?\\d+(?:[eE][+-]?\\d+)?)%\\s*",s=/^#([0-9a-f]{3,8})$/,l=new RegExp("^rgb\\("+[i,i,i]+"\\)$"),c=new RegExp("^rgb\\("+[o,o,o]+"\\)$"),u=new RegExp("^rgba\\("+[i,i,i,a]+"\\)$"),f=new RegExp("^rgba\\("+[o,o,o,a]+"\\)$"),h=new RegExp("^hsl\\("+[a,o,o]+"\\)$"),p=new RegExp("^hsla\\("+[a,o,o,a]+"\\)$"),d={aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074};function m(){return this.rgb().formatHex()}function g(){return this.rgb().formatRgb()}function v(t){var e,r;return t=(t+"").trim().toLowerCase(),(e=s.exec(t))?(r=e[1].length,e=parseInt(e[1],16),6===r?y(e):3===r?new w(e>>8&15|e>>4&240,e>>4&15|240&e,(15&e)<<4|15&e,1):8===r?x(e>>24&255,e>>16&255,e>>8&255,(255&e)/255):4===r?x(e>>12&15|e>>8&240,e>>8&15|e>>4&240,e>>4&15|240&e,((15&e)<<4|15&e)/255):null):(e=l.exec(t))?new w(e[1],e[2],e[3],1):(e=c.exec(t))?new w(255*e[1]/100,255*e[2]/100,255*e[3]/100,1):(e=u.exec(t))?x(e[1],e[2],e[3],e[4]):(e=f.exec(t))?x(255*e[1]/100,255*e[2]/100,255*e[3]/100,e[4]):(e=h.exec(t))?M(e[1],e[2]/100,e[3]/100,1):(e=p.exec(t))?M(e[1],e[2]/100,e[3]/100,e[4]):d.hasOwnProperty(t)?y(d[t]):"transparent"===t?new w(NaN,NaN,NaN,0):null}function y(t){return new w(t>>16&255,t>>8&255,255&t,1)}function x(t,e,r,n){return n<=0&&(t=e=r=NaN),new w(t,e,r,n)}function b(t){return t instanceof n||(t=v(t)),t?new w((t=t.rgb()).r,t.g,t.b,t.opacity):new w}function _(t,e,r,n){return 1===arguments.length?b(t):new w(t,e,r,null==n?1:n)}function w(t,e,r,n){this.r=+t,this.g=+e,this.b=+r,this.opacity=+n}function T(){return"#"+A(this.r)+A(this.g)+A(this.b)}function k(){var t=this.opacity;return(1===(t=isNaN(t)?1:Math.max(0,Math.min(1,t)))?"rgb(":"rgba(")+Math.max(0,Math.min(255,Math.round(this.r)||0))+", "+Math.max(0,Math.min(255,Math.round(this.g)||0))+", "+Math.max(0,Math.min(255,Math.round(this.b)||0))+(1===t?")":", "+t+")")}function A(t){return((t=Math.max(0,Math.min(255,Math.round(t)||0)))<16?"0":"")+t.toString(16)}function M(t,e,r,n){return n<=0?t=e=r=NaN:r<=0||r>=1?t=e=NaN:e<=0&&(t=NaN),new L(t,e,r,n)}function S(t){if(t instanceof L)return new L(t.h,t.s,t.l,t.opacity);if(t instanceof n||(t=v(t)),!t)return new L;if(t instanceof L)return t;var e=(t=t.rgb()).r/255,r=t.g/255,i=t.b/255,a=Math.min(e,r,i),o=Math.max(e,r,i),s=NaN,l=o-a,c=(o+a)/2;return l?(s=e===o?(r-i)/l+6*(r0&&c<1?0:s,new L(s,l,c,t.opacity)}function E(t,e,r,n){return 1===arguments.length?S(t):new L(t,e,r,null==n?1:n)}function L(t,e,r,n){this.h=+t,this.s=+e,this.l=+r,this.opacity=+n}function C(t,e,r){return 255*(t<60?e+(r-e)*t/60:t<180?r:t<240?e+(r-e)*(240-t)/60:e)}e(n,v,{copy:function(t){return Object.assign(new this.constructor,this,t)},displayable:function(){return this.rgb().displayable()},hex:m,formatHex:m,formatHsl:function(){return S(this).formatHsl()},formatRgb:g,toString:g}),e(w,_,r(n,{brighter:function(t){return t=null==t?1/.7:Math.pow(1/.7,t),new w(this.r*t,this.g*t,this.b*t,this.opacity)},darker:function(t){return t=null==t?.7:Math.pow(.7,t),new w(this.r*t,this.g*t,this.b*t,this.opacity)},rgb:function(){return this},displayable:function(){return-.5<=this.r&&this.r<255.5&&-.5<=this.g&&this.g<255.5&&-.5<=this.b&&this.b<255.5&&0<=this.opacity&&this.opacity<=1},hex:T,formatHex:T,formatRgb:k,toString:k})),e(L,E,r(n,{brighter:function(t){return t=null==t?1/.7:Math.pow(1/.7,t),new L(this.h,this.s,this.l*t,this.opacity)},darker:function(t){return t=null==t?.7:Math.pow(.7,t),new L(this.h,this.s,this.l*t,this.opacity)},rgb:function(){var t=this.h%360+360*(this.h<0),e=isNaN(t)||isNaN(this.s)?0:this.s,r=this.l,n=r+(r<.5?r:1-r)*e,i=2*r-n;return new w(C(t>=240?t-240:t+120,i,n),C(t,i,n),C(t<120?t+240:t-120,i,n),this.opacity)},displayable:function(){return(0<=this.s&&this.s<=1||isNaN(this.s))&&0<=this.l&&this.l<=1&&0<=this.opacity&&this.opacity<=1},formatHsl:function(){var t=this.opacity;return(1===(t=isNaN(t)?1:Math.max(0,Math.min(1,t)))?"hsl(":"hsla(")+(this.h||0)+", "+100*(this.s||0)+"%, "+100*(this.l||0)+"%"+(1===t?")":", "+t+")")}}));var P=Math.PI/180,I=180/Math.PI,O=6/29,z=3*O*O;function D(t){if(t instanceof F)return new F(t.l,t.a,t.b,t.opacity);if(t instanceof q)return G(t);t instanceof w||(t=b(t));var e,r,n=U(t.r),i=U(t.g),a=U(t.b),o=B((.2225045*n+.7168786*i+.0606169*a)/1);return n===i&&i===a?e=r=o:(e=B((.4360747*n+.3850649*i+.1430804*a)/.96422),r=B((.0139322*n+.0971045*i+.7141733*a)/.82521)),new F(116*o-16,500*(e-o),200*(o-r),t.opacity)}function R(t,e,r,n){return 1===arguments.length?D(t):new F(t,e,r,null==n?1:n)}function F(t,e,r,n){this.l=+t,this.a=+e,this.b=+r,this.opacity=+n}function B(t){return t>.008856451679035631?Math.pow(t,1/3):t/z+4/29}function N(t){return t>O?t*t*t:z*(t-4/29)}function j(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function U(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function V(t){if(t instanceof q)return new q(t.h,t.c,t.l,t.opacity);if(t instanceof F||(t=D(t)),0===t.a&&0===t.b)return new q(NaN,0=0&&(r=t.slice(n+1),t=t.slice(0,n)),t&&!e.hasOwnProperty(t))throw new Error("unknown type: "+t);return{type:t,name:r}}))}function a(t,e){for(var r,n=0,i=t.length;n0)for(var r,n,i=new Array(r),a=0;ah+c||np+c||au.index){var f=h-s.x-s.vx,g=p-s.y-s.vy,v=f*f+g*g;vt.r&&(t.r=t[e].r)}function h(){if(r){var e,i,a=r.length;for(n=new Array(a),e=0;e=c)){(t.data!==r||t.next)&&(0===f&&(d+=(f=o())*f),0===h&&(d+=(h=o())*h),d1?(null==r?u.remove(t):u.set(t,v(r)),e):u.get(t)},find:function(e,r,n){var i,a,o,s,l,c=0,u=t.length;for(null==n?n=1/0:n*=n,c=0;c1?(h.on(t,r),e):h.on(t)}}},t.forceX=function(t){var e,r,n,i=a(.1);function o(t){for(var i,a=0,o=e.length;a1?n[0]+n.slice(2):n,+t.slice(r+1)]}function r(t){return(t=e(Math.abs(t)))?t[1]:NaN}var n,i=/^(?:(.)?([<>=^]))?([+\-( ])?([$#])?(0)?(\d+)?(,)?(\.\d+)?(~)?([a-z%])?$/i;function a(t){if(!(e=i.exec(t)))throw new Error("invalid format: "+t);var e;return new o({fill:e[1],align:e[2],sign:e[3],symbol:e[4],zero:e[5],width:e[6],comma:e[7],precision:e[8]&&e[8].slice(1),trim:e[9],type:e[10]})}function o(t){this.fill=void 0===t.fill?" ":t.fill+"",this.align=void 0===t.align?">":t.align+"",this.sign=void 0===t.sign?"-":t.sign+"",this.symbol=void 0===t.symbol?"":t.symbol+"",this.zero=!!t.zero,this.width=void 0===t.width?void 0:+t.width,this.comma=!!t.comma,this.precision=void 0===t.precision?void 0:+t.precision,this.trim=!!t.trim,this.type=void 0===t.type?"":t.type+""}function s(t,r){var n=e(t,r);if(!n)return t+"";var i=n[0],a=n[1];return a<0?"0."+new Array(-a).join("0")+i:i.length>a+1?i.slice(0,a+1)+"."+i.slice(a+1):i+new Array(a-i.length+2).join("0")}a.prototype=o.prototype,o.prototype.toString=function(){return this.fill+this.align+this.sign+this.symbol+(this.zero?"0":"")+(void 0===this.width?"":Math.max(1,0|this.width))+(this.comma?",":"")+(void 0===this.precision?"":"."+Math.max(0,0|this.precision))+(this.trim?"~":"")+this.type};var l={"%":function(t,e){return(100*t).toFixed(e)},b:function(t){return Math.round(t).toString(2)},c:function(t){return t+""},d:function(t){return Math.abs(t=Math.round(t))>=1e21?t.toLocaleString("en").replace(/,/g,""):t.toString(10)},e:function(t,e){return t.toExponential(e)},f:function(t,e){return t.toFixed(e)},g:function(t,e){return t.toPrecision(e)},o:function(t){return Math.round(t).toString(8)},p:function(t,e){return s(100*t,e)},r:s,s:function(t,r){var i=e(t,r);if(!i)return t+"";var a=i[0],o=i[1],s=o-(n=3*Math.max(-8,Math.min(8,Math.floor(o/3))))+1,l=a.length;return s===l?a:s>l?a+new Array(s-l+1).join("0"):s>0?a.slice(0,s)+"."+a.slice(s):"0."+new Array(1-s).join("0")+e(t,Math.max(0,r+s-1))[0]},X:function(t){return Math.round(t).toString(16).toUpperCase()},x:function(t){return Math.round(t).toString(16)}};function c(t){return t}var u,f=Array.prototype.map,h=["y","z","a","f","p","n","\xb5","m","","k","M","G","T","P","E","Z","Y"];function p(t){var e,i,o=void 0===t.grouping||void 0===t.thousands?c:(e=f.call(t.grouping,Number),i=t.thousands+"",function(t,r){for(var n=t.length,a=[],o=0,s=e[0],l=0;n>0&&s>0&&(l+s+1>r&&(s=Math.max(1,r-l)),a.push(t.substring(n-=s,n+s)),!((l+=s+1)>r));)s=e[o=(o+1)%e.length];return a.reverse().join(i)}),s=void 0===t.currency?"":t.currency[0]+"",u=void 0===t.currency?"":t.currency[1]+"",p=void 0===t.decimal?".":t.decimal+"",d=void 0===t.numerals?c:function(t){return function(e){return e.replace(/[0-9]/g,(function(e){return t[+e]}))}}(f.call(t.numerals,String)),m=void 0===t.percent?"%":t.percent+"",g=void 0===t.minus?"-":t.minus+"",v=void 0===t.nan?"NaN":t.nan+"";function y(t){var e=(t=a(t)).fill,r=t.align,i=t.sign,c=t.symbol,f=t.zero,y=t.width,x=t.comma,b=t.precision,_=t.trim,w=t.type;"n"===w?(x=!0,w="g"):l[w]||(void 0===b&&(b=12),_=!0,w="g"),(f||"0"===e&&"="===r)&&(f=!0,e="0",r="=");var T="$"===c?s:"#"===c&&/[boxX]/.test(w)?"0"+w.toLowerCase():"",k="$"===c?u:/[%p]/.test(w)?m:"",A=l[w],M=/[defgprs%]/.test(w);function S(t){var a,s,l,c=T,u=k;if("c"===w)u=A(t)+u,t="";else{var m=(t=+t)<0||1/t<0;if(t=isNaN(t)?v:A(Math.abs(t),b),_&&(t=function(t){t:for(var e,r=t.length,n=1,i=-1;n0&&(i=0)}return i>0?t.slice(0,i)+t.slice(e+1):t}(t)),m&&0==+t&&"+"!==i&&(m=!1),c=(m?"("===i?i:g:"-"===i||"("===i?"":i)+c,u=("s"===w?h[8+n/3]:"")+u+(m&&"("===i?")":""),M)for(a=-1,s=t.length;++a(l=t.charCodeAt(a))||l>57){u=(46===l?p+t.slice(a+1):t.slice(a))+u,t=t.slice(0,a);break}}x&&!f&&(t=o(t,1/0));var S=c.length+t.length+u.length,E=S>1)+c+t+u+E.slice(S);break;default:t=E+c+t+u}return d(t)}return b=void 0===b?6:/[gprs]/.test(w)?Math.max(1,Math.min(21,b)):Math.max(0,Math.min(20,b)),S.toString=function(){return t+""},S}return{format:y,formatPrefix:function(t,e){var n=y(((t=a(t)).type="f",t)),i=3*Math.max(-8,Math.min(8,Math.floor(r(e)/3))),o=Math.pow(10,-i),s=h[8+i/3];return function(t){return n(o*t)+s}}}}function d(e){return u=p(e),t.format=u.format,t.formatPrefix=u.formatPrefix,u}d({decimal:".",thousands:",",grouping:[3],currency:["$",""],minus:"-"}),t.FormatSpecifier=o,t.formatDefaultLocale=d,t.formatLocale=p,t.formatSpecifier=a,t.precisionFixed=function(t){return Math.max(0,-r(Math.abs(t)))},t.precisionPrefix=function(t,e){return Math.max(0,3*Math.max(-8,Math.min(8,Math.floor(r(e)/3)))-r(Math.abs(t)))},t.precisionRound=function(t,e){return t=Math.abs(t),e=Math.abs(e)-t,Math.max(0,r(e)-r(t))+1},Object.defineProperty(t,"__esModule",{value:!0})}))},{}],108:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-geo"),t("d3-array")):i(n.d3=n.d3||{},n.d3,n.d3)}(this,(function(t,e,r){"use strict";var n=Math.abs,i=Math.atan,a=Math.atan2,o=Math.cos,s=Math.exp,l=Math.floor,c=Math.log,u=Math.max,f=Math.min,h=Math.pow,p=Math.round,d=Math.sign||function(t){return t>0?1:t<0?-1:0},m=Math.sin,g=Math.tan,v=1e-6,y=Math.PI,x=y/2,b=y/4,_=Math.SQRT1_2,w=L(2),T=L(y),k=2*y,A=180/y,M=y/180;function S(t){return t>1?x:t<-1?-x:Math.asin(t)}function E(t){return t>1?0:t<-1?y:Math.acos(t)}function L(t){return t>0?Math.sqrt(t):0}function C(t){return(s(t)-s(-t))/2}function P(t){return(s(t)+s(-t))/2}function I(t){var e=g(t/2),r=2*c(o(t/2))/(e*e);function i(t,e){var n=o(t),i=o(e),a=m(e),s=i*n,l=-((1-s?c((1+s)/2)/(1-s):-.5)+r/(1+s));return[l*i*m(t),l*a]}return i.invert=function(e,i){var s,l=L(e*e+i*i),u=-t/2,f=50;if(!l)return[0,0];do{var h=u/2,p=o(h),d=m(h),g=d/p,y=-c(n(p));u-=s=(2/g*y-r*g-l)/(-y/(d*d)+1-r/(2*p*p))*(p<0?.7:1)}while(n(s)>v&&--f>0);var x=m(u);return[a(e*x,l*o(u)),S(i*x/l)]},i}function O(t,e){var r=o(e),n=function(t){return t?t/Math.sin(t):1}(E(r*o(t/=2)));return[2*r*m(t)*n,m(e)*n]}function z(t){var e=m(t),r=o(t),i=t>=0?1:-1,s=g(i*t),l=(1+e-r)/2;function c(t,n){var c=o(n),u=o(t/=2);return[(1+c)*m(t),(i*n>-a(u,s)-.001?0:10*-i)+l+m(n)*r-(1+c)*e*u]}return c.invert=function(t,c){var u=0,f=0,h=50;do{var p=o(u),d=m(u),g=o(f),y=m(f),x=1+g,b=x*d-t,_=l+y*r-x*e*p-c,w=x*p/2,T=-d*y,k=e*x*d/2,A=r*g+e*p*y,M=T*k-A*w,S=(_*T-b*A)/M/2,E=(b*k-_*w)/M;n(E)>2&&(E/=2),u-=S,f-=E}while((n(S)>v||n(E)>v)&&--h>0);return i*f>-a(o(u),s)-.001?[2*u,f]:null},c}function D(t,e){var r=g(e/2),n=L(1-r*r),i=1+n*o(t/=2),a=m(t)*n/i,s=r/i,l=a*a,c=s*s;return[4/3*a*(3+l-3*c),4/3*s*(3+3*l-c)]}O.invert=function(t,e){if(!(t*t+4*e*e>y*y+v)){var r=t,i=e,a=25;do{var s,l=m(r),c=m(r/2),u=o(r/2),f=m(i),h=o(i),p=m(2*i),d=f*f,g=h*h,x=c*c,b=1-g*u*u,_=b?E(h*u)*L(s=1/b):s=0,w=2*_*h*c-t,T=_*f-e,k=s*(g*x+_*h*u*d),A=s*(.5*l*p-2*_*f*c),M=.25*s*(p*c-_*f*g*l),S=s*(d*u+_*x*h),C=A*M-S*k;if(!C)break;var P=(T*A-w*S)/C,I=(w*M-T*k)/C;r-=P,i-=I}while((n(P)>v||n(I)>v)&&--a>0);return[r,i]}},D.invert=function(t,e){if(e*=3/8,!(t*=3/8)&&n(e)>1)return null;var r=1+t*t+e*e,i=L((r-L(r*r-4*e*e))/2),s=S(i)/3,l=i?function(t){return c(t+L(t*t-1))}(n(e/i))/3:function(t){return c(t+L(t*t+1))}(n(t))/3,u=o(s),f=P(l),h=f*f-u*u;return[2*d(t)*a(C(l)*u,.25-h),2*d(e)*a(f*m(s),.25+h)]};var R=L(8),F=c(1+w);function B(t,e){var r=n(e);return rx){var l=a(s[1],s[0]),c=L(s[0]*s[0]+s[1]*s[1]),u=r*p((l-x)/r)+x,f=a(m(l-=u),2-o(l));l=u+S(y/c*m(f))-f,s[0]=c*o(l),s[1]=c*m(l)}return s}return s.invert=function(t,n){var s=L(t*t+n*n);if(s>x){var l=a(n,t),c=r*p((l-x)/r)+x,u=l>c?-1:1,f=s*o(c-l),h=1/g(u*E((f-y)/L(y*(y-2*f)+s*s)));l=c+2*i((h+u*L(h*h-3))/3),t=s*o(l),n=s*m(l)}return e.geoAzimuthalEquidistantRaw.invert(t,n)},s}function j(t,r){if(arguments.length<2&&(r=t),1===r)return e.geoAzimuthalEqualAreaRaw;if(r===1/0)return U;function n(n,i){var a=e.geoAzimuthalEqualAreaRaw(n/r,i);return a[0]*=t,a}return n.invert=function(n,i){var a=e.geoAzimuthalEqualAreaRaw.invert(n/t,i);return a[0]*=r,a},n}function U(t,e){return[t*o(e)/o(e/=2),2*m(e)]}function V(t,e,r){var i,a,o,s=100;r=void 0===r?0:+r,e=+e;do{(a=t(r))===(o=t(r+v))&&(o=a+v),r-=i=-1*v*(a-e)/(a-o)}while(s-- >0&&n(i)>v);return s<0?NaN:r}function H(t,e,r){return void 0===e&&(e=40),void 0===r&&(r=1e-12),function(i,a,o,s){var l,c,u;o=void 0===o?0:+o,s=void 0===s?0:+s;for(var f=0;fl)o-=c/=2,s-=u/=2;else{l=m;var g=(o>0?-1:1)*r,v=(s>0?-1:1)*r,y=t(o+g,s),x=t(o,s+v),b=(y[0]-h[0])/g,_=(y[1]-h[1])/g,w=(x[0]-h[0])/v,T=(x[1]-h[1])/v,k=T*b-_*w,A=(n(k)<.5?.5:1)/k;if(o+=c=(d*w-p*T)*A,s+=u=(p*_-d*b)*A,n(c)0&&(i[1]*=1+a/1.5*i[0]*i[0]),i}return e.invert=H(e),e}function G(t,e){var r,i=t*m(e),a=30;do{e-=r=(e+m(e)-i)/(1+o(e))}while(n(r)>v&&--a>0);return e/2}function Y(t,e,r){function n(n,i){return[t*n*o(i=G(r,i)),e*m(i)]}return n.invert=function(n,i){return i=S(i/e),[n/(t*o(i)),S((2*i+m(2*i))/r)]},n}B.invert=function(t,e){if((a=n(e))1e-12&&--u>0);return[t/(o(l)*(R-1/m(l))),d(e)*l]},U.invert=function(t,e){var r=2*S(e/2);return[t*o(r/2)/o(r),r]};var W=Y(w/x,w,y);var X=2.00276,Z=1.11072;function J(t,e){var r=G(y,e);return[X*t/(1/o(e)+Z/o(r)),(e+w*m(r))/X]}function K(t){var r=0,n=e.geoProjectionMutator(t),i=n(r);return i.parallel=function(t){return arguments.length?n(r=t*M):r*A},i}function Q(t,e){return[t*o(e),e]}function $(t){if(!t)return Q;var e=1/g(t);function r(r,n){var i=e+t-n,a=i?r*o(n)/i:i;return[i*m(a),e-i*o(a)]}return r.invert=function(r,n){var i=L(r*r+(n=e-n)*n),s=e+t-i;return[i/o(s)*a(r,n),s]},r}function tt(t){function e(e,r){var n=x-r,i=n?e*t*m(n)/n:n;return[n*m(i)/t,x-n*o(i)]}return e.invert=function(e,r){var n=e*t,i=x-r,o=L(n*n+i*i),s=a(n,i);return[(o?o/m(o):1)*s/t,x-o]},e}J.invert=function(t,e){var r,i,a=X*e,s=e<0?-b:b,l=25;do{i=a-w*m(s),s-=r=(m(2*s)+2*s-y*m(i))/(2*o(2*s)+2+y*o(i)*w*o(s))}while(n(r)>v&&--l>0);return i=a-w*m(s),[t*(1/o(i)+Z/o(s))/X,i]},Q.invert=function(t,e){return[t/o(e),e]};var et=Y(1,4/y,y);function rt(t,e,r,i,s,l){var c,u=o(l);if(n(t)>1||n(l)>1)c=E(r*s+e*i*u);else{var f=m(t/2),h=m(l/2);c=2*S(L(f*f+e*i*h*h))}return n(c)>v?[c,a(i*m(l),e*s-r*i*u)]:[0,0]}function nt(t,e,r){return E((t*t+e*e-r*r)/(2*t*e))}function it(t){return t-2*y*l((t+y)/(2*y))}function at(t,e,r){for(var n,i=[[t[0],t[1],m(t[1]),o(t[1])],[e[0],e[1],m(e[1]),o(e[1])],[r[0],r[1],m(r[1]),o(r[1])]],a=i[2],s=0;s<3;++s,a=n)n=i[s],a.v=rt(n[1]-a[1],a[3],a[2],n[3],n[2],n[0]-a[0]),a.point=[0,0];var l=nt(i[0].v[0],i[2].v[0],i[1].v[0]),c=nt(i[0].v[0],i[1].v[0],i[2].v[0]),u=y-l;i[2].point[1]=0,i[0].point[0]=-(i[1].point[0]=i[0].v[0]/2);var f=[i[2].point[0]=i[0].point[0]+i[2].v[0]*o(l),2*(i[0].point[1]=i[1].point[1]=i[2].v[0]*m(l))];return function(t,e){var r,n=m(e),a=o(e),s=new Array(3);for(r=0;r<3;++r){var l=i[r];if(s[r]=rt(e-l[1],l[3],l[2],a,n,t-l[0]),!s[r][0])return l.point;s[r][1]=it(s[r][1]-l.v[1])}var h=f.slice();for(r=0;r<3;++r){var p=2==r?0:r+1,d=nt(i[r].v[0],s[r][0],s[p][0]);s[r][1]<0&&(d=-d),r?1==r?(d=c-d,h[0]-=s[r][0]*o(d),h[1]-=s[r][0]*m(d)):(d=u-d,h[0]+=s[r][0]*o(d),h[1]+=s[r][0]*m(d)):(h[0]+=s[r][0]*o(d),h[1]-=s[r][0]*m(d))}return h[0]/=3,h[1]/=3,h}}function ot(t){return t[0]*=M,t[1]*=M,t}function st(t,r,n){var i=e.geoCentroid({type:"MultiPoint",coordinates:[t,r,n]}),a=[-i[0],-i[1]],o=e.geoRotation(a),s=at(ot(o(t)),ot(o(r)),ot(o(n)));s.invert=H(s);var l=e.geoProjection(s).rotate(a),c=l.center;return delete l.rotate,l.center=function(t){return arguments.length?c(o(t)):o.invert(c())},l.clipAngle(90)}function lt(t,e){var r=L(1-m(e));return[2/T*t*r,T*(1-r)]}function ct(t){var e=g(t);function r(t,r){return[t,(t?t/m(t):1)*(m(r)*o(t)-e*o(r))]}return r.invert=e?function(t,r){t&&(r*=m(t)/t);var n=o(t);return[t,2*a(L(n*n+e*e-r*r)-n,e-r)]}:function(t,e){return[t,S(t?e*g(t)/t:e)]},r}lt.invert=function(t,e){var r=(r=e/T-1)*r;return[r>0?t*L(y/r)/2:0,S(1-r)]};var ut=L(3);function ft(t,e){return[ut*t*(2*o(2*e/3)-1)/T,ut*T*m(e/3)]}function ht(t){var e=o(t);function r(t,r){return[t*e,m(r)/e]}return r.invert=function(t,r){return[t/e,S(r*e)]},r}function pt(t){var e=o(t);function r(t,r){return[t*e,(1+e)*g(r/2)]}return r.invert=function(t,r){return[t/e,2*i(r/(1+e))]},r}function dt(t,e){var r=L(8/(3*y));return[r*t*(1-n(e)/y),r*e]}function mt(t,e){var r=L(4-3*m(n(e)));return[2/L(6*y)*t*r,d(e)*L(2*y/3)*(2-r)]}function gt(t,e){var r=L(y*(4+y));return[2/r*t*(1+L(1-4*e*e/(y*y))),4/r*e]}function vt(t,e){var r=(2+x)*m(e);e/=2;for(var i=0,a=1/0;i<10&&n(a)>v;i++){var s=o(e);e-=a=(e+m(e)*(s+2)-r)/(2*s*(1+s))}return[2/L(y*(4+y))*t*(1+o(e)),2*L(y/(4+y))*m(e)]}function yt(t,e){return[t*(1+o(e))/L(2+y),2*e/L(2+y)]}function xt(t,e){for(var r=(1+x)*m(e),i=0,a=1/0;i<10&&n(a)>v;i++)e-=a=(e+m(e)-r)/(1+o(e));return r=L(2+y),[t*(1+o(e))/r,2*e/r]}ft.invert=function(t,e){var r=3*S(e/(ut*T));return[T*t/(ut*(2*o(2*r/3)-1)),r]},dt.invert=function(t,e){var r=L(8/(3*y)),i=e/r;return[t/(r*(1-n(i)/y)),i]},mt.invert=function(t,e){var r=2-n(e)/L(2*y/3);return[t*L(6*y)/(2*r),d(e)*S((4-r*r)/3)]},gt.invert=function(t,e){var r=L(y*(4+y))/2;return[t*r/(1+L(1-e*e*(4+y)/(4*y))),e*r/2]},vt.invert=function(t,e){var r=e*L((4+y)/y)/2,n=S(r),i=o(n);return[t/(2/L(y*(4+y))*(1+i)),S((n+r*(i+2))/(2+x))]},yt.invert=function(t,e){var r=L(2+y),n=e*r/2;return[r*t/(1+o(n)),n]},xt.invert=function(t,e){var r=1+x,n=L(r/2);return[2*t*n/(1+o(e*=n)),S((e+m(e))/r)]};var bt=3+2*w;function _t(t,e){var r=m(t/=2),n=o(t),a=L(o(e)),s=o(e/=2),l=m(e)/(s+w*n*a),u=L(2/(1+l*l)),f=L((w*s+(n+r)*a)/(w*s+(n-r)*a));return[bt*(u*(f-1/f)-2*c(f)),bt*(u*l*(f+1/f)-2*i(l))]}_t.invert=function(t,e){if(!(r=D.invert(t/1.2,1.065*e)))return null;var r,a=r[0],s=r[1],l=20;t/=bt,e/=bt;do{var h=a/2,p=s/2,d=m(h),g=o(h),y=m(p),b=o(p),T=o(s),k=L(T),A=y/(b+w*g*k),M=A*A,S=L(2/(1+M)),E=(w*b+(g+d)*k)/(w*b+(g-d)*k),C=L(E),P=C-1/C,I=C+1/C,O=S*P-2*c(C)-t,z=S*A*I-2*i(A)-e,R=y&&_*k*d*M/y,F=(w*g*b+k)/(2*(b+w*g*k)*(b+w*g*k)*k),B=-.5*A*S*S*S,N=B*R,j=B*F,U=(U=2*b+w*k*(g-d))*U*C,V=(w*g*b*k+T)/U,H=-w*d*y/(k*U),q=P*N-2*V/C+S*(V+V/E),G=P*j-2*H/C+S*(H+H/E),Y=A*I*N-2*R/(1+M)+S*I*R+S*A*(V-V/E),W=A*I*j-2*F/(1+M)+S*I*F+S*A*(H-H/E),X=G*Y-W*q;if(!X)break;var Z=(z*G-O*W)/X,J=(O*Y-z*q)/X;a-=Z,s=u(-x,f(x,s-J))}while((n(Z)>v||n(J)>v)&&--l>0);return n(n(s)-x)s){var d=L(h),g=a(f,u),b=i*p(g/i),_=g-b,w=t*o(_),T=(t*m(_)-_*m(w))/(x-w),k=Lt(_,T),A=(y-t)/Ct(k,w,y);u=d;var M,S=50;do{u-=M=(t+Ct(k,w,u)*A-d)/(k(u)*A)}while(n(M)>v&&--S>0);f=_*m(u),us){var u=L(c),f=a(l,r),h=i*p(f/i),d=f-h;r=u*o(d),l=u*m(d);for(var g=r-x,v=m(r),b=l/v,_=rv||n(p)>v)&&--x>0);return[d,g]},u}Tt.invert=function(t,e){var r=e/(1+wt);return[t&&t/(wt*L(1-r*r)),2*i(r)]},kt.invert=function(t,e){var r=i(e/T),n=o(r),a=2*r;return[t*T/2/(o(a)*n*n),a]};var It=Pt(2.8284,-1.6988,.75432,-.18071,1.76003,-.38914,.042555);var Ot=Pt(2.583819,-.835827,.170354,-.038094,1.543313,-.411435,.082742);var zt=Pt(5/6*y,-.62636,-.0344,0,1.3493,-.05524,0,.045);function Dt(t,e){var r=t*t,n=e*e;return[t*(1-.162388*n)*(.87-952426e-9*r*r),e*(1+n/12)]}Dt.invert=function(t,e){var r,i=t,a=e,o=50;do{var s=a*a;a-=r=(a*(1+s/12)-e)/(1+s/4)}while(n(r)>v&&--o>0);o=50,t/=1-.162388*s;do{var l=(l=i*i)*l;i-=r=(i*(.87-952426e-9*l)-t)/(.87-.00476213*l)}while(n(r)>v&&--o>0);return[i,a]};var Rt=Pt(2.6516,-.76534,.19123,-.047094,1.36289,-.13965,.031762);function Ft(t){var e=t(x,0)[0]-t(-x,0)[0];function r(r,n){var i=r>0?-.5:.5,a=t(r+i*y,n);return a[0]-=i*e,a}return t.invert&&(r.invert=function(r,n){var i=r>0?-.5:.5,a=t.invert(r+i*e,n),o=a[0]-i*y;return o<-y?o+=2*y:o>y&&(o-=2*y),a[0]=o,a}),r}function Bt(t,e){var r=d(t),i=d(e),s=o(e),l=o(t)*s,c=m(t)*s,u=m(i*e);t=n(a(c,u)),e=S(l),n(t-x)>v&&(t%=x);var f=function(t,e){if(e===x)return[0,0];var r,i,a=m(e),s=a*a,l=s*s,c=1+l,u=1+3*l,f=1-l,h=S(1/L(c)),p=f+s*c*h,d=(1-a)/p,g=L(d),b=d*c,_=L(b),w=g*f;if(0===t)return[0,-(w+s*_)];var T,k=o(e),A=1/k,M=2*a*k,E=(-p*k-(-3*s+h*u)*M*(1-a))/(p*p),C=-A*M,P=-A*(s*c*E+d*u*M),I=-2*A*(f*(.5*E/g)-2*s*g*M),O=4*t/y;if(t>.222*y||e.175*y){if(r=(w+s*L(b*(1+l)-w*w))/(1+l),t>y/4)return[r,r];var z=r,D=.5*r;r=.5*(D+z),i=50;do{var R=L(b-r*r),F=r*(I+C*R)+P*S(r/_)-O;if(!F)break;F<0?D=r:z=r,r=.5*(D+z)}while(n(z-D)>v&&--i>0)}else{r=v,i=25;do{var B=r*r,N=L(b-B),j=I+C*N,U=r*j+P*S(r/_)-O,V=j+(P-C*B)/N;r-=T=N?U/V:0}while(n(T)>v&&--i>0)}return[r,-w-s*L(b-r*r)]}(t>y/4?x-t:t,e);return t>y/4&&(u=f[0],f[0]=-f[1],f[1]=-u),f[0]*=r,f[1]*=-i,f}function Nt(t,e){var r,a,l,c,u,f;if(e=1-v)return r=(1-e)/4,l=1/(a=P(t)),[(c=((f=s(2*(f=t)))-1)/(f+1))+r*((u=a*C(t))-t)/(a*a),l-r*c*l*(u-t),l+r*c*l*(u+t),2*i(s(t))-x+r*(u-t)/a];var h=[1,0,0,0,0,0,0,0,0],p=[L(e),0,0,0,0,0,0,0,0],d=0;for(a=L(1-e),u=1;n(p[d]/h[d])>v&&d<8;)r=h[d++],p[d]=(r-a)/2,h[d]=(r+a)/2,a=L(r*a),u*=2;l=u*h[d]*t;do{l=(S(c=p[d]*m(a=l)/h[d])+l)/2}while(--d);return[m(l),c=o(l),c/o(l-a),l]}function jt(t,e){if(!e)return t;if(1===e)return c(g(t/2+b));for(var r=1,a=L(1-e),o=L(e),s=0;n(o)>v;s++){if(t%y){var l=i(a*g(t)/r);l<0&&(l+=y),t+=l+~~(t/y)*y}else t+=t;o=(r+a)/2,a=L(r*a),o=((r=o)-a)/2}return t/(h(2,s)*r)}function Ut(t,e){var r=(w-1)/(w+1),l=L(1-r*r),u=jt(x,l*l),f=c(g(y/4+n(e)/2)),h=s(-1*f)/L(r),p=function(t,e){var r=t*t,n=e+1,i=1-r-e*e;return[.5*((t>=0?x:-x)-a(i,2*t)),-.25*c(i*i+4*r)+.5*c(n*n+r)]}(h*o(-1*t),h*m(-1*t)),v=function(t,e,r){var a=n(t),o=C(n(e));if(a){var s=1/m(a),l=1/(g(a)*g(a)),c=-(l+r*(o*o*s*s)-1+r),u=(-c+L(c*c-4*((r-1)*l)))/2;return[jt(i(1/L(u)),r)*d(t),jt(i(L((u/l-1)/r)),1-r)*d(e)]}return[0,jt(i(o),1-r)*d(e)]}(p[0],p[1],l*l);return[-v[1],(e>=0?1:-1)*(.5*u-v[0])]}function Vt(t){var e=m(t),r=o(t),i=Ht(t);function s(t,a){var s=i(t,a);t=s[0],a=s[1];var l=m(a),c=o(a),u=o(t),f=E(e*l+r*c*u),h=m(f),p=n(h)>v?f/h:1;return[p*r*m(t),(n(t)>x?p:-p)*(e*c-r*l*u)]}return i.invert=Ht(-t),s.invert=function(t,r){var n=L(t*t+r*r),s=-m(n),l=o(n),c=n*l,u=-r*s,f=n*e,h=L(c*c+u*u-f*f),p=a(c*f+u*h,u*f-c*h),d=(n>x?-1:1)*a(t*s,n*o(p)*l+r*m(p)*s);return i.invert(d,p)},s}function Ht(t){var e=m(t),r=o(t);return function(t,n){var i=o(n),s=o(t)*i,l=m(t)*i,c=m(n);return[a(l,s*r-c*e),S(c*r+s*e)]}}Bt.invert=function(t,e){n(t)>1&&(t=2*d(t)-t),n(e)>1&&(e=2*d(e)-e);var r=d(t),i=d(e),s=-r*t,l=-i*e,c=l/s<1,u=function(t,e){var r=0,i=1,a=.5,s=50;for(;;){var l=a*a,c=L(a),u=S(1/L(1+l)),f=1-l+a*(1+l)*u,h=(1-c)/f,p=L(h),d=h*(1+l),m=p*(1-l),g=L(d-t*t),v=e+m+a*g;if(n(i-r)<1e-12||0==--s||0===v)break;v>0?r=a:i=a,a=.5*(r+i)}if(!s)return null;var x=S(c),b=o(x),_=1/b,w=2*c*b,T=(-f*b-(-3*a+u*(1+3*l))*w*(1-c))/(f*f);return[y/4*(t*(-2*_*(.5*T/p*(1-l)-2*a*p*w)+-_*w*g)+-_*(a*(1+l)*T+h*(1+3*l)*w)*S(t/L(d))),x]}(c?l:s,c?s:l),f=u[0],h=u[1],p=o(h);return c&&(f=-x-f),[r*(a(m(f)*p,-m(h))+y),i*S(o(f)*p)]},Ut.invert=function(t,e){var r,n,o,l,u,f,h=(w-1)/(w+1),p=L(1-h*h),d=jt(x,p*p),m=(n=-t,o=p*p,(r=.5*d-e)?(l=Nt(r,o),n?(f=(u=Nt(n,1-o))[1]*u[1]+o*l[0]*l[0]*u[0]*u[0],[[l[0]*u[2]/f,l[1]*l[2]*u[0]*u[1]/f],[l[1]*u[1]/f,-l[0]*l[2]*u[0]*u[2]/f],[l[2]*u[1]*u[2]/f,-o*l[0]*l[1]*u[0]/f]]):[[l[0],0],[l[1],0],[l[2],0]]):[[0,(u=Nt(n,1-o))[0]/u[1]],[1/u[1],0],[u[2]/u[1],0]]),g=function(t,e){var r=e[0]*e[0]+e[1]*e[1];return[(t[0]*e[0]+t[1]*e[1])/r,(t[1]*e[0]-t[0]*e[1])/r]}(m[0],m[1]);return[a(g[1],g[0])/-1,2*i(s(-.5*c(h*g[0]*g[0]+h*g[1]*g[1])))-x]};var qt=S(1-1/3)*A,Gt=ht(0);function Yt(t){var e=qt*M,r=lt(y,e)[0]-lt(-y,e)[0],i=Gt(0,e)[1],a=lt(0,e)[1],o=T-a,s=k/t,c=4/k,h=i+o*o*4/k;function p(p,d){var m,g=n(d);if(g>e){var v=f(t-1,u(0,l((p+y)/s)));(m=lt(p+=y*(t-1)/t-v*s,g))[0]=m[0]*k/r-k*(t-1)/(2*t)+v*k/t,m[1]=i+4*(m[1]-a)*o/k,d<0&&(m[1]=-m[1])}else m=Gt(p,d);return m[0]*=c,m[1]/=h,m}return p.invert=function(e,p){e/=c;var d=n(p*=h);if(d>i){var m=f(t-1,u(0,l((e+y)/s)));e=(e+y*(t-1)/t-m*s)*r/k;var g=lt.invert(e,.25*(d-i)*k/o+a);return g[0]-=y*(t-1)/t-m*s,p<0&&(g[1]=-g[1]),g}return Gt.invert(e,p)},p}function Wt(t,e){return[t,1&e?90-v:qt]}function Xt(t,e){return[t,1&e?-90+v:-qt]}function Zt(t){return[t[0]*(1-v),t[1]]}function Jt(t){var e,r=1+t,i=S(m(1/r)),s=2*L(y/(e=y+4*i*r)),l=.5*s*(r+L(t*(2+t))),c=t*t,u=r*r;function f(f,h){var p,d,g=1-m(h);if(g&&g<2){var v,b=x-h,_=25;do{var w=m(b),T=o(b),k=i+a(w,r-T),A=1+u-2*r*T;b-=v=(b-c*i-r*w+A*k-.5*g*e)/(2*r*w*k)}while(n(v)>1e-12&&--_>0);p=s*L(A),d=f*k/y}else p=s*(t+g),d=f*i/y;return[p*m(d),l-p*o(d)]}return f.invert=function(t,n){var o=t*t+(n-=l)*n,f=(1+u-o/(s*s))/(2*r),h=E(f),p=m(h),d=i+a(p,r-f);return[S(t/L(o))*y/d,S(1-2*(h-c*i-r*p+(1+u-2*r*f)*d)/e)]},f}function Kt(t,e){return e>-.7109889596207567?((t=W(t,e))[1]+=.0528035274542,t):Q(t,e)}function Qt(t,e){return n(e)>.7109889596207567?((t=W(t,e))[1]-=e>0?.0528035274542:-.0528035274542,t):Q(t,e)}function $t(t,e,r,n){var i=L(4*y/(2*r+(1+t-e/2)*m(2*r)+(t+e)/2*m(4*r)+e/2*m(6*r))),a=L(n*m(r)*L((1+t*o(2*r)+e*o(4*r))/(1+t+e))),s=r*c(1);function l(r){return L(1+t*o(2*r)+e*o(4*r))}function c(n){var i=n*r;return(2*i+(1+t-e/2)*m(2*i)+(t+e)/2*m(4*i)+e/2*m(6*i))/r}function u(t){return l(t)*m(t)}var f=function(t,e){var n=r*V(c,s*m(e)/r,e/y);isNaN(n)&&(n=r*d(e));var u=i*l(n);return[u*a*t/y*o(n),u/a*m(n)]};return f.invert=function(t,e){var n=V(u,e*a/i);return[t*y/(o(n)*i*a*l(n)),S(r*c(n/r)/s)]},0===r&&(i=L(n/y),(f=function(t,e){return[t*i,m(e)/i]}).invert=function(t,e){return[t/i,S(e*i)]}),f}function te(t,e,r,n,i){void 0===n&&(n=1e-8),void 0===i&&(i=20);var a=t(e),o=t(.5*(e+r)),s=t(r);return function t(e,r,n,i,a,o,s,l,c,u,f){if(f.nanEncountered)return NaN;var h,p,d,m,g,v,y,x,b,_;if(p=e(r+.25*(h=n-r)),d=e(n-.25*h),isNaN(p))f.nanEncountered=!0;else{if(!isNaN(d))return _=((v=(m=h*(i+4*p+a)/12)+(g=h*(a+4*d+o)/12))-s)/15,u>c?(f.maxDepthCount++,v+_):Math.abs(_)t?r=n:e=n,n=e+r>>1}while(n>e);var i=c[n+1]-c[n];return i&&(i=(t-c[n+1])/i),(n+1+i)/s}var p=2*f(1)/y*o/r,g=function(t,e){var r=f(n(m(e))),a=i(r)*t;return r/=p,[a,e>=0?r:-r]};return g.invert=function(t,e){var r;return n(e*=p)<1&&(r=d(e)*S(a(n(e))*o)),[t/i(n(e)),r]},g}function re(t,e){return n(t[0]-e[0])=0;--l)n=(e=t[1][l])[0][0],i=e[0][1],a=e[1][1],o=e[2][0],s=e[2][1],c.push(ne([[o-v,s-v],[o-v,a+v],[n+v,a+v],[n+v,i-v]],30));return{type:"Polygon",coordinates:[r.merge(c)]}}function ae(t,r,n){var i,a;function o(e,n){for(var i=n<0?-1:1,a=r[+(n<0)],o=0,s=a.length-1;oa[o][2][0];++o);var l=t(e-a[o][1][0],n);return l[0]+=t(a[o][1][0],i*n>i*a[o][0][1]?a[o][0][1]:n)[0],l}n?o.invert=n(o):t.invert&&(o.invert=function(e,n){for(var i=a[+(n<0)],s=r[+(n<0)],l=0,c=i.length;lo&&(r=a,a=o,o=r),[[n,a],[i,o]]}))})),s):r.map((function(t){return t.map((function(t){return[[t[0][0]*A,t[0][1]*A],[t[1][0]*A,t[1][1]*A],[t[2][0]*A,t[2][1]*A]]}))}))},null!=r&&s.lobes(r),s}Kt.invert=function(t,e){return e>-.7109889596207567?W.invert(t,e-.0528035274542):Q.invert(t,e)},Qt.invert=function(t,e){return n(e)>.7109889596207567?W.invert(t,e+(e>0?.0528035274542:-.0528035274542)):Q.invert(t,e)};var oe=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var se=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var le=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var ce=[[[[-180,0],[-90,90],[0,0]],[[0,0],[90,90],[180,0]]],[[[-180,0],[-90,-90],[0,0]],[[0,0],[90,-90],[180,0]]]];var ue=[[[[-180,35],[-30,90],[0,35]],[[0,35],[30,90],[180,35]]],[[[-180,-10],[-102,-90],[-65,-10]],[[-65,-10],[5,-90],[77,-10]],[[77,-10],[103,-90],[180,-10]]]];var fe=[[[[-180,0],[-110,90],[-40,0]],[[-40,0],[0,90],[40,0]],[[40,0],[110,90],[180,0]]],[[[-180,0],[-110,-90],[-40,0]],[[-40,0],[0,-90],[40,0]],[[40,0],[110,-90],[180,0]]]];function he(t,e){return[3/k*t*L(y*y/3-e*e),e]}function pe(t){function e(e,r){if(n(n(r)-x)2)return null;var o=(e/=2)*e,s=(r/=2)*r,l=2*r/(1+o+s);return l=h((1+l)/(1-l),1/t),[a(2*e,1-o-s)/t,S((l-1)/(l+1))]},e}he.invert=function(t,e){return[k/3*t/L(y*y/3-e*e),e]};var de=y/w;function me(t,e){return[t*(1+L(o(e)))/2,e/(o(e/2)*o(t/6))]}function ge(t,e){var r=t*t,n=e*e;return[t*(.975534+n*(-.0143059*r-.119161+-.0547009*n)),e*(1.00384+r*(.0802894+-.02855*n+199025e-9*r)+n*(.0998909+-.0491032*n))]}function ve(t,e){return[m(t)/o(e),g(e)*o(t)]}function ye(t){var e=o(t),r=g(b+t/2);function i(i,a){var o=a-t,s=n(o)=0;)h=(f=t[u])[0]+l*(i=h)-c*p,p=f[1]+l*p+c*i;return[h=l*(i=h)-c*p,p=l*p+c*i]}return r.invert=function(r,s){var l=20,c=r,u=s;do{for(var f,h=e,p=t[h],d=p[0],g=p[1],v=0,y=0;--h>=0;)v=d+c*(f=v)-u*y,y=g+c*y+u*f,d=(p=t[h])[0]+c*(f=d)-u*g,g=p[1]+c*g+u*f;var x,b,_=(v=d+c*(f=v)-u*y)*v+(y=g+c*y+u*f)*y;c-=x=((d=c*(f=d)-u*g-r)*v+(g=c*g+u*f-s)*y)/_,u-=b=(g*v-d*y)/_}while(n(x)+n(b)>1e-12&&--l>0);if(l){var w=L(c*c+u*u),T=2*i(.5*w),k=m(T);return[a(c*k,w*o(T)),w?S(u*k/w):0]}},r}me.invert=function(t,e){var r=n(t),i=n(e),a=v,s=x;iv||n(b)>v)&&--a>0);return a&&[r,i]},ve.invert=function(t,e){var r=t*t,n=e*e+1,i=r+n,a=t?_*L((i-L(i*i-4*r))/r):1/L(n);return[S(t*a),d(e)*E(a)]},xe.invert=function(t,e){return[t,2.5*i(s(.8*e))-.625*y]};var _e=[[.9972523,0],[.0052513,-.0041175],[.0074606,.0048125],[-.0153783,-.1968253],[.0636871,-.1408027],[.3660976,-.2937382]],we=[[.98879,0],[0,0],[-.050909,0],[0,0],[.075528,0]],Te=[[.984299,0],[.0211642,.0037608],[-.1036018,-.0575102],[-.0329095,-.0320119],[.0499471,.1223335],[.026046,.0899805],[7388e-7,-.1435792],[.0075848,-.1334108],[-.0216473,.0776645],[-.0225161,.0853673]],ke=[[.9245,0],[0,0],[.01943,0]],Ae=[[.721316,0],[0,0],[-.00881625,-.00617325]];function Me(t,r){var n=e.geoProjection(be(t)).rotate(r).clipAngle(90),i=e.geoRotation(r),a=n.center;return delete n.rotate,n.center=function(t){return arguments.length?a(i(t)):i.invert(a())},n}var Se=L(6),Ee=L(7);function Le(t,e){var r=S(7*m(e)/(3*Se));return[Se*t*(2*o(2*r/3)-1)/Ee,9*m(r/3)/Ee]}function Ce(t,e){for(var r,i=(1+_)*m(e),a=e,s=0;s<25&&(a-=r=(m(a/2)+m(a)-i)/(.5*o(a/2)+o(a)),!(n(r)1e-12&&--l>0);return[t/(.84719-.13063*(i=s*s)+(o=i*(a=i*i))*o*(.05494*i-.04515-.02326*a+.00331*o)),s]},Oe.invert=function(t,e){for(var r=e/2,i=0,a=1/0;i<10&&n(a)>v;++i){var s=o(e/2);e-=a=(e-g(e/2)-r)/(1-.5/(s*s))}return[2*t/(1+o(e)),e]};var ze=[[[[-180,0],[-90,90],[0,0]],[[0,0],[90,90],[180,0]]],[[[-180,0],[-90,-90],[0,0]],[[0,0],[90,-90],[180,0]]]];function De(t,e){var r=m(e),i=o(e),a=d(t);if(0===t||n(e)===x)return[0,e];if(0===e)return[t,0];if(n(t)===x)return[t*i,x*r];var s=y/(2*t)-2*t/y,l=2*e/y,c=(1-l*l)/(r-l),u=s*s,f=c*c,h=1+u/f,p=1+f/u,g=(s*r/c-s/2)/h,v=(f*r/u+c/2)/p,b=v*v-(f*r*r/u+c*r-1)/p;return[x*(g+L(g*g+i*i/h)*a),x*(v+L(b<0?0:b)*d(-e*s)*a)]}De.invert=function(t,e){var r=(t/=x)*t,n=r+(e/=x)*e,i=y*y;return[t?(n-1+L((1-n)*(1-n)+4*r))/(2*t)*x:0,V((function(t){return n*(y*m(t)-2*t)*y+4*t*t*(e-m(t))+2*y*t-i*e}),0)]};function Re(t,e){var r=e*e;return[t,e*(1.0148+r*r*(.23185+r*(.02406*r-.14499)))]}function Fe(t,e){if(n(e)=0;)if(n=e[s],r[0]===n[0]&&r[1]===n[1]){if(a)return[a,r];a=r}}}(e.face,r.face),i=Be(n.map(r.project),n.map(e.project));e.transform=r.transform?Ne(r.transform,i):i;for(var a=r.edges,o=0,s=a.length;o1.790857183?e=1.790857183:e<-1.790857183&&(e=-1.790857183);var r,i=e;do{var a=i*i;i-=r=(i*(1.0148+a*a*(.23185+a*(.02406*a-.14499)))-e)/(1.0148+a*a*(5*.23185+a*(.21654*a-1.01493)))}while(n(r)>v);return[t,i]},Fe.invert=function(t,e){if(n(e)v&&--s>0);return l=g(a),[(n(e)n^p>n&&r<(h-c)*(n-u)/(p-u)+c&&(i=!i)}return i}(t[0],r))return t.push(e),!0}))||t.push([e])})),nr=[],t.length?t.length>1?{type:"MultiPolygon",coordinates:t}:{type:"Polygon",coordinates:t[0]}:null}};function sr(t){var r=t(x,0)[0]-t(-x,0)[0];function i(e,i){var a=n(e)0?e-y:e+y,i),s=(o[0]-o[1])*_,l=(o[0]+o[1])*_;if(a)return[s,l];var c=r*_,u=s>0^l>0?-1:1;return[u*s-d(l)*c,u*l-d(s)*c]}return t.invert&&(i.invert=function(e,i){var a=(e+i)*_,o=(i-e)*_,s=n(a)<.5*r&&n(o)<.5*r;if(!s){var l=r*_,c=a>0^o>0?-1:1,u=-c*e+(o>0?1:-1)*l,f=-c*i+(a>0?1:-1)*l;a=(-u-f)*_,o=(u-f)*_}var h=t.invert(a,o);return s||(h[0]+=a>0?y:-y),h}),e.geoProjection(i).rotate([-90,-90,45]).clipAngle(179.999)}function lr(){return sr(Ut).scale(111.48)}function cr(t){var e=m(t);function r(r,n){var a=e?g(r*e/2)/e:r/2;if(!n)return[2*a,-t];var s=2*i(a*m(n)),l=1/g(n);return[m(s)*l,n+(1-o(s))*l-t]}return r.invert=function(r,a){if(n(a+=t)v&&--u>0);var d=r*(f=g(c)),x=g(n(a)0?x:-x)*(h+o*(d-c)/2+o*o*(d-2*h+c)/2)]}function hr(t,e){var r=function(t){function e(e,r){var n=o(r),i=(t-1)/(t-n*o(e));return[i*n*m(e),i*m(r)]}return e.invert=function(e,r){var n=e*e+r*r,i=L(n),o=(t-L(1-n*(t+1)/(t-1)))/((t-1)/i+i/(t-1));return[a(e*o,i*L(1-o*o)),i?S(r*o/i):0]},e}(t);if(!e)return r;var n=o(e),i=m(e);function s(e,a){var o=r(e,a),s=o[1],l=s*i/(t-1)+n;return[o[0]*n/l,s/l]}return s.invert=function(e,a){var o=(t-1)/(t-1-a*i);return r.invert(o*e,o*a*n)},s}ur.forEach((function(t){t[1]*=1.0144})),fr.invert=function(t,e){var r=e/x,i=90*r,a=f(18,n(i/5)),o=u(0,l(a));do{var s=ur[o][1],c=ur[o+1][1],h=ur[f(19,o+2)][1],p=h-s,d=h-2*c+s,m=2*(n(r)-c)/p,g=d/p,v=m*(1-g*m*(1-2*g*m));if(v>=0||1===o){i=(e>=0?5:-5)*(v+a);var y,b=50;do{v=(a=f(18,n(i)/5))-(o=l(a)),s=ur[o][1],c=ur[o+1][1],h=ur[f(19,o+2)][1],i-=(y=(e>=0?x:-x)*(c+v*(h-s)/2+v*v*(h-2*c+s)/2)-e)*A}while(n(y)>1e-12&&--b>0);break}}while(--o>=0);var _=ur[o][0],w=ur[o+1][0],T=ur[f(19,o+2)][0];return[t/(w+v*(T-_)/2+v*v*(T-2*w+_)/2),i*M]};var pr=-179.9999,dr=179.9999,mr=-89.9999;function gr(t){return t.length>0}function vr(t){return-90===t||90===t?[0,t]:[-180,(e=t,Math.floor(1e4*e)/1e4)];var e}function yr(t){var e=t[0],r=t[1],n=!1;return e<=pr?(e=-180,n=!0):e>=dr&&(e=180,n=!0),r<=mr?(r=-90,n=!0):r>=89.9999&&(r=90,n=!0),n?[e,r]:t}function xr(t){return t.map(yr)}function br(t,e,r){for(var n=0,i=t.length;n=dr||u<=mr||u>=89.9999){a[o]=yr(l);for(var f=o+1;fpr&&pmr&&d<89.9999)break}if(f===o+1)continue;if(o){var m={index:-1,polygon:e,ring:a.slice(0,o+1)};m.ring[m.ring.length-1]=vr(u),r[r.length-1]=m}else r.pop();if(f>=s)break;r.push({index:-1,polygon:e,ring:a=a.slice(f-1)}),a[0]=vr(a[0][1]),o=-1,s=a.length}}}}function _r(t){var e,r,n,i,a,o,s=t.length,l={},c={};for(e=0;e0?y-l:l)*A],u=e.geoProjection(t(s)).rotate(c),f=e.geoRotation(c),h=u.center;return delete u.rotate,u.center=function(t){return arguments.length?h(f(t)):f.invert(h())},u.clipAngle(90)}function Mr(t){var r=o(t);function n(t,n){var i=e.geoGnomonicRaw(t,n);return i[0]*=r,i}return n.invert=function(t,n){return e.geoGnomonicRaw.invert(t/r,n)},n}function Sr(t,e){return Ar(Mr,t,e)}function Er(t){if(!(t*=2))return e.geoAzimuthalEquidistantRaw;var r=-t/2,n=-r,i=t*t,s=g(n),l=.5/m(n);function c(e,a){var s=E(o(a)*o(e-r)),l=E(o(a)*o(e-n));return[((s*=s)-(l*=l))/(2*t),(a<0?-1:1)*L(4*i*l-(i-s+l)*(i-s+l))/(2*t)]}return c.invert=function(t,e){var i,c,u=e*e,f=o(L(u+(i=t+r)*i)),h=o(L(u+(i=t+n)*i));return[a(c=f-h,i=(f+h)*s),(e<0?-1:1)*E(L(i*i+c*c)*l)]},c}function Lr(t,e){return Ar(Er,t,e)}function Cr(t,e){if(n(e)v&&--l>0);return[d(t)*(L(a*a+4)+a)*y/4,x*s]};var Rr=4*y+3*L(3),Fr=2*L(2*y*L(3)/Rr),Br=Y(Fr*L(3)/y,Fr,Rr/6);function Nr(t,e){return[t*L(1-3*e*e/(y*y)),e]}function jr(t,e){var r=o(e),n=o(t)*r,i=1-n,s=o(t=a(m(t)*r,-m(e))),l=m(t);return[l*(r=L(1-n*n))-s*i,-s*r-l*i]}function Ur(t,e){var r=O(t,e);return[(r[0]+t/x)/2,(r[1]+e)/2]}Nr.invert=function(t,e){return[t/L(1-3*e*e/(y*y)),e]},jr.invert=function(t,e){var r=(t*t+e*e)/-2,n=L(-r*(2+r)),i=e*r+t*n,o=t*r-e*n,s=L(o*o+i*i);return[a(n*i,s*(1+r)),s?-S(n*o/s):0]},Ur.invert=function(t,e){var r=t,i=e,a=25;do{var s,l=o(i),c=m(i),u=m(2*i),f=c*c,h=l*l,p=m(r),d=o(r/2),g=m(r/2),y=g*g,b=1-h*d*d,_=b?E(l*d)*L(s=1/b):s=0,w=.5*(2*_*l*g+r/x)-t,T=.5*(_*c+i)-e,k=.5*s*(h*y+_*l*d*f)+.5/x,A=s*(p*u/4-_*c*g),M=.125*s*(u*g-_*c*h*p),S=.5*s*(f*d+_*y*l)+.5,C=A*M-S*k,P=(T*A-w*S)/C,I=(w*M-T*k)/C;r-=P,i-=I}while((n(P)>v||n(I)>v)&&--a>0);return[r,i]},t.geoNaturalEarth=e.geoNaturalEarth1,t.geoNaturalEarthRaw=e.geoNaturalEarth1Raw,t.geoAiry=function(){var t=x,r=e.geoProjectionMutator(I),n=r(t);return n.radius=function(e){return arguments.length?r(t=e*M):t*A},n.scale(179.976).clipAngle(147)},t.geoAiryRaw=I,t.geoAitoff=function(){return e.geoProjection(O).scale(152.63)},t.geoAitoffRaw=O,t.geoArmadillo=function(){var t=20*M,r=t>=0?1:-1,n=g(r*t),i=e.geoProjectionMutator(z),s=i(t),l=s.stream;return s.parallel=function(e){return arguments.length?(n=g((r=(t=e*M)>=0?1:-1)*t),i(t)):t*A},s.stream=function(e){var i=s.rotate(),c=l(e),u=(s.rotate([0,0]),l(e)),f=s.precision();return s.rotate(i),c.sphere=function(){u.polygonStart(),u.lineStart();for(var e=-180*r;r*e<180;e+=90*r)u.point(e,90*r);if(t)for(;r*(e-=3*r*f)>=-180;)u.point(e,r*-a(o(e*M/2),n)*A);u.lineEnd(),u.polygonEnd()},c},s.scale(218.695).center([0,28.0974])},t.geoArmadilloRaw=z,t.geoAugust=function(){return e.geoProjection(D).scale(66.1603)},t.geoAugustRaw=D,t.geoBaker=function(){return e.geoProjection(B).scale(112.314)},t.geoBakerRaw=B,t.geoBerghaus=function(){var t=5,r=e.geoProjectionMutator(N),n=r(t),i=n.stream,s=-o(.01*M),l=m(.01*M);return n.lobes=function(e){return arguments.length?r(t=+e):t},n.stream=function(e){var r=n.rotate(),c=i(e),u=(n.rotate([0,0]),i(e));return n.rotate(r),c.sphere=function(){u.polygonStart(),u.lineStart();for(var e=0,r=360/t,n=2*y/t,i=90-180/t,c=x;e=0;)t.point((e=r[i])[0],e[1]);t.lineEnd(),t.polygonEnd()},t},n.scale(79.4187).parallel(45).clipAngle(179.999)},t.geoHammerRetroazimuthalRaw=Vt,t.geoHealpix=function(){var t=4,n=e.geoProjectionMutator(Yt),i=n(t),a=i.stream;return i.lobes=function(e){return arguments.length?n(t=+e):t},i.stream=function(n){var o=i.rotate(),s=a(n),l=(i.rotate([0,0]),a(n));return i.rotate(o),s.sphere=function(){var n,i;e.geoStream((n=180/t,i=[].concat(r.range(-180,180+n/2,n).map(Wt),r.range(180,-180-n/2,-n).map(Xt)),{type:"Polygon",coordinates:[180===n?i.map(Zt):i]}),l)},s},i.scale(239.75)},t.geoHealpixRaw=Yt,t.geoHill=function(){var t=1,r=e.geoProjectionMutator(Jt),n=r(t);return n.ratio=function(e){return arguments.length?r(t=+e):t},n.scale(167.774).center([0,18.67])},t.geoHillRaw=Jt,t.geoHomolosine=function(){return e.geoProjection(Qt).scale(152.63)},t.geoHomolosineRaw=Qt,t.geoHufnagel=function(){var t=1,r=0,n=45*M,i=2,a=e.geoProjectionMutator($t),o=a(t,r,n,i);return o.a=function(e){return arguments.length?a(t=+e,r,n,i):t},o.b=function(e){return arguments.length?a(t,r=+e,n,i):r},o.psiMax=function(e){return arguments.length?a(t,r,n=+e*M,i):n*A},o.ratio=function(e){return arguments.length?a(t,r,n,i=+e):i},o.scale(180.739)},t.geoHufnagelRaw=$t,t.geoHyperelliptical=function(){var t=0,r=2.5,n=1.183136,i=e.geoProjectionMutator(ee),a=i(t,r,n);return a.alpha=function(e){return arguments.length?i(t=+e,r,n):t},a.k=function(e){return arguments.length?i(t,r=+e,n):r},a.gamma=function(e){return arguments.length?i(t,r,n=+e):n},a.scale(152.63)},t.geoHyperellipticalRaw=ee,t.geoInterrupt=ae,t.geoInterruptedBoggs=function(){return ae(J,oe).scale(160.857)},t.geoInterruptedHomolosine=function(){return ae(Qt,se).scale(152.63)},t.geoInterruptedMollweide=function(){return ae(W,le).scale(169.529)},t.geoInterruptedMollweideHemispheres=function(){return ae(W,ce).scale(169.529).rotate([20,0])},t.geoInterruptedSinuMollweide=function(){return ae(Kt,ue,H).rotate([-20,-55]).scale(164.263).center([0,-5.4036])},t.geoInterruptedSinusoidal=function(){return ae(Q,fe).scale(152.63).rotate([-20,0])},t.geoKavrayskiy7=function(){return e.geoProjection(he).scale(158.837)},t.geoKavrayskiy7Raw=he,t.geoLagrange=function(){var t=.5,r=e.geoProjectionMutator(pe),n=r(t);return n.spacing=function(e){return arguments.length?r(t=+e):t},n.scale(124.75)},t.geoLagrangeRaw=pe,t.geoLarrivee=function(){return e.geoProjection(me).scale(97.2672)},t.geoLarriveeRaw=me,t.geoLaskowski=function(){return e.geoProjection(ge).scale(139.98)},t.geoLaskowskiRaw=ge,t.geoLittrow=function(){return e.geoProjection(ve).scale(144.049).clipAngle(89.999)},t.geoLittrowRaw=ve,t.geoLoximuthal=function(){return K(ye).parallel(40).scale(158.837)},t.geoLoximuthalRaw=ye,t.geoMiller=function(){return e.geoProjection(xe).scale(108.318)},t.geoMillerRaw=xe,t.geoModifiedStereographic=Me,t.geoModifiedStereographicRaw=be,t.geoModifiedStereographicAlaska=function(){return Me(_e,[152,-64]).scale(1400).center([-160.908,62.4864]).clipAngle(30).angle(7.8)},t.geoModifiedStereographicGs48=function(){return Me(we,[95,-38]).scale(1e3).clipAngle(55).center([-96.5563,38.8675])},t.geoModifiedStereographicGs50=function(){return Me(Te,[120,-45]).scale(359.513).clipAngle(55).center([-117.474,53.0628])},t.geoModifiedStereographicMiller=function(){return Me(ke,[-20,-18]).scale(209.091).center([20,16.7214]).clipAngle(82)},t.geoModifiedStereographicLee=function(){return Me(Ae,[165,10]).scale(250).clipAngle(130).center([-165,-10])},t.geoMollweide=function(){return e.geoProjection(W).scale(169.529)},t.geoMollweideRaw=W,t.geoMtFlatPolarParabolic=function(){return e.geoProjection(Le).scale(164.859)},t.geoMtFlatPolarParabolicRaw=Le,t.geoMtFlatPolarQuartic=function(){return e.geoProjection(Ce).scale(188.209)},t.geoMtFlatPolarQuarticRaw=Ce,t.geoMtFlatPolarSinusoidal=function(){return e.geoProjection(Pe).scale(166.518)},t.geoMtFlatPolarSinusoidalRaw=Pe,t.geoNaturalEarth2=function(){return e.geoProjection(Ie).scale(175.295)},t.geoNaturalEarth2Raw=Ie,t.geoNellHammer=function(){return e.geoProjection(Oe).scale(152.63)},t.geoNellHammerRaw=Oe,t.geoInterruptedQuarticAuthalic=function(){return ae(j(1/0),ze).rotate([20,0]).scale(152.63)},t.geoNicolosi=function(){return e.geoProjection(De).scale(127.267)},t.geoNicolosiRaw=De,t.geoPatterson=function(){return e.geoProjection(Re).scale(139.319)},t.geoPattersonRaw=Re,t.geoPolyconic=function(){return e.geoProjection(Fe).scale(103.74)},t.geoPolyconicRaw=Fe,t.geoPolyhedral=Ve,t.geoPolyhedralButterfly=function(t){t=t||function(t){var r=e.geoCentroid({type:"MultiPoint",coordinates:t});return e.geoGnomonic().scale(1).translate([0,0]).rotate([-r[0],-r[1]])};var r=Ye.map((function(e){return{face:e,project:t(e)}}));return[-1,0,0,1,0,1,4,5].forEach((function(t,e){var n=r[t];n&&(n.children||(n.children=[])).push(r[e])})),Ve(r[0],(function(t,e){return r[t<-y/2?e<0?6:4:t<0?e<0?2:0:t0?[-r[0],0]:[180-r[0],180])};var r=Ye.map((function(e){return{face:e,project:t(e)}}));return[-1,0,0,1,0,1,4,5].forEach((function(t,e){var n=r[t];n&&(n.children||(n.children=[])).push(r[e])})),Ve(r[0],(function(t,e){return r[t<-y/2?e<0?6:4:t<0?e<0?2:0:t2||a[0]!=e[0]||a[1]!=e[1])&&(n.push(a),e=a)}return 1===n.length&&t.length>1&&n.push(r(t[t.length-1])),n}function a(t){return t.map(i)}function o(t){if(null==t)return t;var e;switch(t.type){case"GeometryCollection":e={type:"GeometryCollection",geometries:t.geometries.map(o)};break;case"Point":e={type:"Point",coordinates:r(t.coordinates)};break;case"MultiPoint":e={type:t.type,coordinates:n(t.coordinates)};break;case"LineString":e={type:t.type,coordinates:i(t.coordinates)};break;case"MultiLineString":case"Polygon":e={type:t.type,coordinates:a(t.coordinates)};break;case"MultiPolygon":e={type:"MultiPolygon",coordinates:t.coordinates.map(a)};break;default:return t}return null!=t.bbox&&(e.bbox=t.bbox),e}function s(t){var e={type:"Feature",properties:t.properties,geometry:o(t.geometry)};return null!=t.id&&(e.id=t.id),null!=t.bbox&&(e.bbox=t.bbox),e}if(null!=t)switch(t.type){case"Feature":return s(t);case"FeatureCollection":var l={type:"FeatureCollection",features:t.features.map(s)};return null!=t.bbox&&(l.bbox=t.bbox),l;default:return o(t)}return t},t.geoQuincuncial=sr,t.geoRectangularPolyconic=function(){return K(cr).scale(131.215)},t.geoRectangularPolyconicRaw=cr,t.geoRobinson=function(){return e.geoProjection(fr).scale(152.63)},t.geoRobinsonRaw=fr,t.geoSatellite=function(){var t=2,r=0,n=e.geoProjectionMutator(hr),i=n(t,r);return i.distance=function(e){return arguments.length?n(t=+e,r):t},i.tilt=function(e){return arguments.length?n(t,r=e*M):r*A},i.scale(432.147).clipAngle(E(1/t)*A-1e-6)},t.geoSatelliteRaw=hr,t.geoSinuMollweide=function(){return e.geoProjection(Kt).rotate([-20,-55]).scale(164.263).center([0,-5.4036])},t.geoSinuMollweideRaw=Kt,t.geoSinusoidal=function(){return e.geoProjection(Q).scale(152.63)},t.geoSinusoidalRaw=Q,t.geoStitch=function(t){if(null==t)return t;switch(t.type){case"Feature":return wr(t);case"FeatureCollection":var e={type:"FeatureCollection",features:t.features.map(wr)};return null!=t.bbox&&(e.bbox=t.bbox),e;default:return Tr(t)}},t.geoTimes=function(){return e.geoProjection(kr).scale(146.153)},t.geoTimesRaw=kr,t.geoTwoPointAzimuthal=Sr,t.geoTwoPointAzimuthalRaw=Mr,t.geoTwoPointAzimuthalUsa=function(){return Sr([-158,21.5],[-77,39]).clipAngle(60).scale(400)},t.geoTwoPointEquidistant=Lr,t.geoTwoPointEquidistantRaw=Er,t.geoTwoPointEquidistantUsa=function(){return Lr([-158,21.5],[-77,39]).clipAngle(130).scale(122.571)},t.geoVanDerGrinten=function(){return e.geoProjection(Cr).scale(79.4183)},t.geoVanDerGrintenRaw=Cr,t.geoVanDerGrinten2=function(){return e.geoProjection(Pr).scale(79.4183)},t.geoVanDerGrinten2Raw=Pr,t.geoVanDerGrinten3=function(){return e.geoProjection(Ir).scale(79.4183)},t.geoVanDerGrinten3Raw=Ir,t.geoVanDerGrinten4=function(){return e.geoProjection(Or).scale(127.16)},t.geoVanDerGrinten4Raw=Or,t.geoWagner=Dr,t.geoWagner7=function(){return Dr().poleline(65).parallels(60).inflation(0).ratio(200).scale(172.633)},t.geoWagnerRaw=zr,t.geoWagner4=function(){return e.geoProjection(Br).scale(176.84)},t.geoWagner4Raw=Br,t.geoWagner6=function(){return e.geoProjection(Nr).scale(152.63)},t.geoWagner6Raw=Nr,t.geoWiechel=function(){return e.geoProjection(jr).rotate([0,-90,45]).scale(124.75).clipAngle(179.999)},t.geoWiechelRaw=jr,t.geoWinkel3=function(){return e.geoProjection(Ur).scale(158.837)},t.geoWinkel3Raw=Ur,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":102,"d3-geo":109}],109:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-array")):i((n=n||self).d3=n.d3||{},n.d3)}(this,(function(t,e){"use strict";function r(){return new n}function n(){this.reset()}n.prototype={constructor:n,reset:function(){this.s=this.t=0},add:function(t){a(i,t,this.t),a(this,i.s,this.s),this.s?this.t+=i.t:this.s=i.t},valueOf:function(){return this.s}};var i=new n;function a(t,e,r){var n=t.s=e+r,i=n-e,a=n-i;t.t=e-a+(r-i)}var o=1e-6,s=Math.PI,l=s/2,c=s/4,u=2*s,f=180/s,h=s/180,p=Math.abs,d=Math.atan,m=Math.atan2,g=Math.cos,v=Math.ceil,y=Math.exp,x=Math.log,b=Math.pow,_=Math.sin,w=Math.sign||function(t){return t>0?1:t<0?-1:0},T=Math.sqrt,k=Math.tan;function A(t){return t>1?0:t<-1?s:Math.acos(t)}function M(t){return t>1?l:t<-1?-l:Math.asin(t)}function S(t){return(t=_(t/2))*t}function E(){}function L(t,e){t&&P.hasOwnProperty(t.type)&&P[t.type](t,e)}var C={Feature:function(t,e){L(t.geometry,e)},FeatureCollection:function(t,e){for(var r=t.features,n=-1,i=r.length;++n=0?1:-1,i=n*r,a=g(e=(e*=h)/2+c),o=_(e),s=N*o,l=B*a+s*g(i),u=s*n*_(i);j.add(m(u,l)),F=t,B=a,N=o}function W(t){return[m(t[1],t[0]),M(t[2])]}function X(t){var e=t[0],r=t[1],n=g(r);return[n*g(e),n*_(e),_(r)]}function Z(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}function J(t,e){return[t[1]*e[2]-t[2]*e[1],t[2]*e[0]-t[0]*e[2],t[0]*e[1]-t[1]*e[0]]}function K(t,e){t[0]+=e[0],t[1]+=e[1],t[2]+=e[2]}function Q(t,e){return[t[0]*e,t[1]*e,t[2]*e]}function $(t){var e=T(t[0]*t[0]+t[1]*t[1]+t[2]*t[2]);t[0]/=e,t[1]/=e,t[2]/=e}var tt,et,rt,nt,it,at,ot,st,lt,ct,ut,ft,ht,pt,dt,mt,gt,vt,yt,xt,bt,_t,wt,Tt,kt,At,Mt=r(),St={point:Et,lineStart:Ct,lineEnd:Pt,polygonStart:function(){St.point=It,St.lineStart=Ot,St.lineEnd=zt,Mt.reset(),V.polygonStart()},polygonEnd:function(){V.polygonEnd(),St.point=Et,St.lineStart=Ct,St.lineEnd=Pt,j<0?(tt=-(rt=180),et=-(nt=90)):Mt>o?nt=90:Mt<-o&&(et=-90),ct[0]=tt,ct[1]=rt},sphere:function(){tt=-(rt=180),et=-(nt=90)}};function Et(t,e){lt.push(ct=[tt=t,rt=t]),ent&&(nt=e)}function Lt(t,e){var r=X([t*h,e*h]);if(st){var n=J(st,r),i=J([n[1],-n[0],0],n);$(i),i=W(i);var a,o=t-it,s=o>0?1:-1,l=i[0]*f*s,c=p(o)>180;c^(s*itnt&&(nt=a):c^(s*it<(l=(l+360)%360-180)&&lnt&&(nt=e)),c?tDt(tt,rt)&&(rt=t):Dt(t,rt)>Dt(tt,rt)&&(tt=t):rt>=tt?(trt&&(rt=t)):t>it?Dt(tt,t)>Dt(tt,rt)&&(rt=t):Dt(t,rt)>Dt(tt,rt)&&(tt=t)}else lt.push(ct=[tt=t,rt=t]);ent&&(nt=e),st=r,it=t}function Ct(){St.point=Lt}function Pt(){ct[0]=tt,ct[1]=rt,St.point=Et,st=null}function It(t,e){if(st){var r=t-it;Mt.add(p(r)>180?r+(r>0?360:-360):r)}else at=t,ot=e;V.point(t,e),Lt(t,e)}function Ot(){V.lineStart()}function zt(){It(at,ot),V.lineEnd(),p(Mt)>o&&(tt=-(rt=180)),ct[0]=tt,ct[1]=rt,st=null}function Dt(t,e){return(e-=t)<0?e+360:e}function Rt(t,e){return t[0]-e[0]}function Ft(t,e){return t[0]<=t[1]?t[0]<=e&&e<=t[1]:es?t+Math.round(-t/u)*u:t,e]}function Qt(t,e,r){return(t%=u)?e||r?Jt(te(t),ee(e,r)):te(t):e||r?ee(e,r):Kt}function $t(t){return function(e,r){return[(e+=t)>s?e-u:e<-s?e+u:e,r]}}function te(t){var e=$t(t);return e.invert=$t(-t),e}function ee(t,e){var r=g(t),n=_(t),i=g(e),a=_(e);function o(t,e){var o=g(e),s=g(t)*o,l=_(t)*o,c=_(e),u=c*r+s*n;return[m(l*i-u*a,s*r-c*n),M(u*i+l*a)]}return o.invert=function(t,e){var o=g(e),s=g(t)*o,l=_(t)*o,c=_(e),u=c*i-l*a;return[m(l*i+c*a,s*r+u*n),M(u*r-s*n)]},o}function re(t){function e(e){return(e=t(e[0]*h,e[1]*h))[0]*=f,e[1]*=f,e}return t=Qt(t[0]*h,t[1]*h,t.length>2?t[2]*h:0),e.invert=function(e){return(e=t.invert(e[0]*h,e[1]*h))[0]*=f,e[1]*=f,e},e}function ne(t,e,r,n,i,a){if(r){var o=g(e),s=_(e),l=n*r;null==i?(i=e+n*u,a=e-l/2):(i=ie(o,i),a=ie(o,a),(n>0?ia)&&(i+=n*u));for(var c,f=i;n>0?f>a:f1&&e.push(e.pop().concat(e.shift()))},result:function(){var r=e;return e=[],t=null,r}}}function oe(t,e){return p(t[0]-e[0])=0;--a)i.point((f=u[a])[0],f[1]);else n(p.x,p.p.x,-1,i);p=p.p}u=(p=p.o).z,d=!d}while(!p.v);i.lineEnd()}}}function ce(t){if(e=t.length){for(var e,r,n=0,i=t[0];++n=0?1:-1,z=O*I,D=z>s,R=T*C;if(ue.add(m(R*O*_(z),k*P+R*g(z))),f+=D?I+O*u:I,D^b>=r^E>=r){var F=J(X(x),X(S));$(F);var B=J(a,F);$(B);var N=(D^I>=0?-1:1)*M(B[2]);(n>N||n===N&&(F[0]||F[1]))&&(h+=D^I>=0?1:-1)}}return(f<-o||f0){for(h||(a.polygonStart(),h=!0),a.lineStart(),t=0;t1&&2&i&&c.push(c.pop().concat(c.shift())),s.push(c.filter(de))}return p}}function de(t){return t.length>1}function me(t,e){return((t=t.x)[0]<0?t[1]-l-o:l-t[1])-((e=e.x)[0]<0?e[1]-l-o:l-e[1])}var ge=pe((function(){return!0}),(function(t){var e,r=NaN,n=NaN,i=NaN;return{lineStart:function(){t.lineStart(),e=1},point:function(a,c){var u=a>0?s:-s,f=p(a-r);p(f-s)0?l:-l),t.point(i,n),t.lineEnd(),t.lineStart(),t.point(u,n),t.point(a,n),e=0):i!==u&&f>=s&&(p(r-i)o?d((_(e)*(a=g(n))*_(r)-_(n)*(i=g(e))*_(t))/(i*a*s)):(e+n)/2}(r,n,a,c),t.point(i,n),t.lineEnd(),t.lineStart(),t.point(u,n),e=0),t.point(r=a,n=c),i=u},lineEnd:function(){t.lineEnd(),r=n=NaN},clean:function(){return 2-e}}}),(function(t,e,r,n){var i;if(null==t)i=r*l,n.point(-s,i),n.point(0,i),n.point(s,i),n.point(s,0),n.point(s,-i),n.point(0,-i),n.point(-s,-i),n.point(-s,0),n.point(-s,i);else if(p(t[0]-e[0])>o){var a=t[0]0,i=p(e)>o;function a(t,r){return g(t)*g(r)>e}function l(t,r,n){var i=[1,0,0],a=J(X(t),X(r)),l=Z(a,a),c=a[0],u=l-c*c;if(!u)return!n&&t;var f=e*l/u,h=-e*c/u,d=J(i,a),m=Q(i,f);K(m,Q(a,h));var g=d,v=Z(m,g),y=Z(g,g),x=v*v-y*(Z(m,m)-1);if(!(x<0)){var b=T(x),_=Q(g,(-v-b)/y);if(K(_,m),_=W(_),!n)return _;var w,k=t[0],A=r[0],M=t[1],S=r[1];A0^_[1]<(p(_[0]-k)s^(k<=_[0]&&_[0]<=A)){var C=Q(g,(-v+b)/y);return K(C,m),[_,W(C)]}}}function c(e,r){var i=n?t:s-t,a=0;return e<-i?a|=1:e>i&&(a|=2),r<-i?a|=4:r>i&&(a|=8),a}return pe(a,(function(t){var e,r,o,u,f;return{lineStart:function(){u=o=!1,f=1},point:function(h,p){var d,m=[h,p],g=a(h,p),v=n?g?0:c(h,p):g?c(h+(h<0?s:-s),p):0;if(!e&&(u=o=g)&&t.lineStart(),g!==o&&(!(d=l(e,m))||oe(e,d)||oe(m,d))&&(m[2]=1),g!==o)f=0,g?(t.lineStart(),d=l(m,e),t.point(d[0],d[1])):(d=l(e,m),t.point(d[0],d[1],2),t.lineEnd()),e=d;else if(i&&e&&n^g){var y;v&r||!(y=l(m,e,!0))||(f=0,n?(t.lineStart(),t.point(y[0][0],y[0][1]),t.point(y[1][0],y[1][1]),t.lineEnd()):(t.point(y[1][0],y[1][1]),t.lineEnd(),t.lineStart(),t.point(y[0][0],y[0][1],3)))}!g||e&&oe(e,m)||t.point(m[0],m[1]),e=m,o=g,r=v},lineEnd:function(){o&&t.lineEnd(),e=null},clean:function(){return f|(u&&o)<<1}}}),(function(e,n,i,a){ne(a,t,r,i,e,n)}),n?[0,-t]:[-s,t-s])}function ye(t,r,n,i){function a(e,a){return t<=e&&e<=n&&r<=a&&a<=i}function s(e,a,o,s){var c=0,f=0;if(null==e||(c=l(e,o))!==(f=l(a,o))||u(e,a)<0^o>0)do{s.point(0===c||3===c?t:n,c>1?i:r)}while((c=(c+o+4)%4)!==f);else s.point(a[0],a[1])}function l(e,i){return p(e[0]-t)0?0:3:p(e[0]-n)0?2:1:p(e[1]-r)0?1:0:i>0?3:2}function c(t,e){return u(t.x,e.x)}function u(t,e){var r=l(t,1),n=l(e,1);return r!==n?r-n:0===r?e[1]-t[1]:1===r?t[0]-e[0]:2===r?t[1]-e[1]:e[0]-t[0]}return function(o){var l,u,f,h,p,d,m,g,v,y,x,b=o,_=ae(),w={point:T,lineStart:function(){w.point=k,u&&u.push(f=[]);y=!0,v=!1,m=g=NaN},lineEnd:function(){l&&(k(h,p),d&&v&&_.rejoin(),l.push(_.result()));w.point=T,v&&b.lineEnd()},polygonStart:function(){b=_,l=[],u=[],x=!0},polygonEnd:function(){var r=function(){for(var e=0,r=0,n=u.length;ri&&(h-a)*(i-o)>(p-o)*(t-a)&&++e:p<=i&&(h-a)*(i-o)<(p-o)*(t-a)&&--e;return e}(),n=x&&r,a=(l=e.merge(l)).length;(n||a)&&(o.polygonStart(),n&&(o.lineStart(),s(null,null,1,o),o.lineEnd()),a&&le(l,c,r,s,o),o.polygonEnd());b=o,l=u=f=null}};function T(t,e){a(t,e)&&b.point(t,e)}function k(e,o){var s=a(e,o);if(u&&f.push([e,o]),y)h=e,p=o,d=s,y=!1,s&&(b.lineStart(),b.point(e,o));else if(s&&v)b.point(e,o);else{var l=[m=Math.max(-1e9,Math.min(1e9,m)),g=Math.max(-1e9,Math.min(1e9,g))],c=[e=Math.max(-1e9,Math.min(1e9,e)),o=Math.max(-1e9,Math.min(1e9,o))];!function(t,e,r,n,i,a){var o,s=t[0],l=t[1],c=0,u=1,f=e[0]-s,h=e[1]-l;if(o=r-s,f||!(o>0)){if(o/=f,f<0){if(o0){if(o>u)return;o>c&&(c=o)}if(o=i-s,f||!(o<0)){if(o/=f,f<0){if(o>u)return;o>c&&(c=o)}else if(f>0){if(o0)){if(o/=h,h<0){if(o0){if(o>u)return;o>c&&(c=o)}if(o=a-l,h||!(o<0)){if(o/=h,h<0){if(o>u)return;o>c&&(c=o)}else if(h>0){if(o0&&(t[0]=s+c*f,t[1]=l+c*h),u<1&&(e[0]=s+u*f,e[1]=l+u*h),!0}}}}}(l,c,t,r,n,i)?s&&(b.lineStart(),b.point(e,o),x=!1):(v||(b.lineStart(),b.point(l[0],l[1])),b.point(c[0],c[1]),s||b.lineEnd(),x=!1)}m=e,g=o,v=s}return w}}var xe,be,_e,we=r(),Te={sphere:E,point:E,lineStart:function(){Te.point=Ae,Te.lineEnd=ke},lineEnd:E,polygonStart:E,polygonEnd:E};function ke(){Te.point=Te.lineEnd=E}function Ae(t,e){xe=t*=h,be=_(e*=h),_e=g(e),Te.point=Me}function Me(t,e){t*=h;var r=_(e*=h),n=g(e),i=p(t-xe),a=g(i),o=n*_(i),s=_e*r-be*n*a,l=be*r+_e*n*a;we.add(m(T(o*o+s*s),l)),xe=t,be=r,_e=n}function Se(t){return we.reset(),z(t,Te),+we}var Ee=[null,null],Le={type:"LineString",coordinates:Ee};function Ce(t,e){return Ee[0]=t,Ee[1]=e,Se(Le)}var Pe={Feature:function(t,e){return Oe(t.geometry,e)},FeatureCollection:function(t,e){for(var r=t.features,n=-1,i=r.length;++n0&&(i=Ce(t[a],t[a-1]))>0&&r<=i&&n<=i&&(r+n-i)*(1-Math.pow((r-n)/i,2))<1e-12*i)return!0;r=n}return!1}function Re(t,e){return!!he(t.map(Fe),Be(e))}function Fe(t){return(t=t.map(Be)).pop(),t}function Be(t){return[t[0]*h,t[1]*h]}function Ne(t,r,n){var i=e.range(t,r-o,n).concat(r);return function(t){return i.map((function(e){return[t,e]}))}}function je(t,r,n){var i=e.range(t,r-o,n).concat(r);return function(t){return i.map((function(e){return[e,t]}))}}function Ue(){var t,r,n,i,a,s,l,c,u,f,h,d,m=10,g=m,y=90,x=360,b=2.5;function _(){return{type:"MultiLineString",coordinates:w()}}function w(){return e.range(v(i/y)*y,n,y).map(h).concat(e.range(v(c/x)*x,l,x).map(d)).concat(e.range(v(r/m)*m,t,m).filter((function(t){return p(t%y)>o})).map(u)).concat(e.range(v(s/g)*g,a,g).filter((function(t){return p(t%x)>o})).map(f))}return _.lines=function(){return w().map((function(t){return{type:"LineString",coordinates:t}}))},_.outline=function(){return{type:"Polygon",coordinates:[h(i).concat(d(l).slice(1),h(n).reverse().slice(1),d(c).reverse().slice(1))]}},_.extent=function(t){return arguments.length?_.extentMajor(t).extentMinor(t):_.extentMinor()},_.extentMajor=function(t){return arguments.length?(i=+t[0][0],n=+t[1][0],c=+t[0][1],l=+t[1][1],i>n&&(t=i,i=n,n=t),c>l&&(t=c,c=l,l=t),_.precision(b)):[[i,c],[n,l]]},_.extentMinor=function(e){return arguments.length?(r=+e[0][0],t=+e[1][0],s=+e[0][1],a=+e[1][1],r>t&&(e=r,r=t,t=e),s>a&&(e=s,s=a,a=e),_.precision(b)):[[r,s],[t,a]]},_.step=function(t){return arguments.length?_.stepMajor(t).stepMinor(t):_.stepMinor()},_.stepMajor=function(t){return arguments.length?(y=+t[0],x=+t[1],_):[y,x]},_.stepMinor=function(t){return arguments.length?(m=+t[0],g=+t[1],_):[m,g]},_.precision=function(e){return arguments.length?(b=+e,u=Ne(s,a,90),f=je(r,t,b),h=Ne(c,l,90),d=je(i,n,b),_):b},_.extentMajor([[-180,-90+o],[180,90-o]]).extentMinor([[-180,-80-o],[180,80+o]])}function Ve(t){return t}var He,qe,Ge,Ye,We=r(),Xe=r(),Ze={point:E,lineStart:E,lineEnd:E,polygonStart:function(){Ze.lineStart=Je,Ze.lineEnd=$e},polygonEnd:function(){Ze.lineStart=Ze.lineEnd=Ze.point=E,We.add(p(Xe)),Xe.reset()},result:function(){var t=We/2;return We.reset(),t}};function Je(){Ze.point=Ke}function Ke(t,e){Ze.point=Qe,He=Ge=t,qe=Ye=e}function Qe(t,e){Xe.add(Ye*t-Ge*e),Ge=t,Ye=e}function $e(){Qe(He,qe)}var tr=1/0,er=tr,rr=-tr,nr=rr,ir={point:function(t,e){trr&&(rr=t);enr&&(nr=e)},lineStart:E,lineEnd:E,polygonStart:E,polygonEnd:E,result:function(){var t=[[tr,er],[rr,nr]];return rr=nr=-(er=tr=1/0),t}};var ar,or,sr,lr,cr=0,ur=0,fr=0,hr=0,pr=0,dr=0,mr=0,gr=0,vr=0,yr={point:xr,lineStart:br,lineEnd:Tr,polygonStart:function(){yr.lineStart=kr,yr.lineEnd=Ar},polygonEnd:function(){yr.point=xr,yr.lineStart=br,yr.lineEnd=Tr},result:function(){var t=vr?[mr/vr,gr/vr]:dr?[hr/dr,pr/dr]:fr?[cr/fr,ur/fr]:[NaN,NaN];return cr=ur=fr=hr=pr=dr=mr=gr=vr=0,t}};function xr(t,e){cr+=t,ur+=e,++fr}function br(){yr.point=_r}function _r(t,e){yr.point=wr,xr(sr=t,lr=e)}function wr(t,e){var r=t-sr,n=e-lr,i=T(r*r+n*n);hr+=i*(sr+t)/2,pr+=i*(lr+e)/2,dr+=i,xr(sr=t,lr=e)}function Tr(){yr.point=xr}function kr(){yr.point=Mr}function Ar(){Sr(ar,or)}function Mr(t,e){yr.point=Sr,xr(ar=sr=t,or=lr=e)}function Sr(t,e){var r=t-sr,n=e-lr,i=T(r*r+n*n);hr+=i*(sr+t)/2,pr+=i*(lr+e)/2,dr+=i,mr+=(i=lr*t-sr*e)*(sr+t),gr+=i*(lr+e),vr+=3*i,xr(sr=t,lr=e)}function Er(t){this._context=t}Er.prototype={_radius:4.5,pointRadius:function(t){return this._radius=t,this},polygonStart:function(){this._line=0},polygonEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){0===this._line&&this._context.closePath(),this._point=NaN},point:function(t,e){switch(this._point){case 0:this._context.moveTo(t,e),this._point=1;break;case 1:this._context.lineTo(t,e);break;default:this._context.moveTo(t+this._radius,e),this._context.arc(t,e,this._radius,0,u)}},result:E};var Lr,Cr,Pr,Ir,Or,zr=r(),Dr={point:E,lineStart:function(){Dr.point=Rr},lineEnd:function(){Lr&&Fr(Cr,Pr),Dr.point=E},polygonStart:function(){Lr=!0},polygonEnd:function(){Lr=null},result:function(){var t=+zr;return zr.reset(),t}};function Rr(t,e){Dr.point=Fr,Cr=Ir=t,Pr=Or=e}function Fr(t,e){Ir-=t,Or-=e,zr.add(T(Ir*Ir+Or*Or)),Ir=t,Or=e}function Br(){this._string=[]}function Nr(t){return"m0,"+t+"a"+t+","+t+" 0 1,1 0,"+-2*t+"a"+t+","+t+" 0 1,1 0,"+2*t+"z"}function jr(t){return function(e){var r=new Ur;for(var n in t)r[n]=t[n];return r.stream=e,r}}function Ur(){}function Vr(t,e,r){var n=t.clipExtent&&t.clipExtent();return t.scale(150).translate([0,0]),null!=n&&t.clipExtent(null),z(r,t.stream(ir)),e(ir.result()),null!=n&&t.clipExtent(n),t}function Hr(t,e,r){return Vr(t,(function(r){var n=e[1][0]-e[0][0],i=e[1][1]-e[0][1],a=Math.min(n/(r[1][0]-r[0][0]),i/(r[1][1]-r[0][1])),o=+e[0][0]+(n-a*(r[1][0]+r[0][0]))/2,s=+e[0][1]+(i-a*(r[1][1]+r[0][1]))/2;t.scale(150*a).translate([o,s])}),r)}function qr(t,e,r){return Hr(t,[[0,0],e],r)}function Gr(t,e,r){return Vr(t,(function(r){var n=+e,i=n/(r[1][0]-r[0][0]),a=(n-i*(r[1][0]+r[0][0]))/2,o=-i*r[0][1];t.scale(150*i).translate([a,o])}),r)}function Yr(t,e,r){return Vr(t,(function(r){var n=+e,i=n/(r[1][1]-r[0][1]),a=-i*r[0][0],o=(n-i*(r[1][1]+r[0][1]))/2;t.scale(150*i).translate([a,o])}),r)}Br.prototype={_radius:4.5,_circle:Nr(4.5),pointRadius:function(t){return(t=+t)!==this._radius&&(this._radius=t,this._circle=null),this},polygonStart:function(){this._line=0},polygonEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){0===this._line&&this._string.push("Z"),this._point=NaN},point:function(t,e){switch(this._point){case 0:this._string.push("M",t,",",e),this._point=1;break;case 1:this._string.push("L",t,",",e);break;default:null==this._circle&&(this._circle=Nr(this._radius)),this._string.push("M",t,",",e,this._circle)}},result:function(){if(this._string.length){var t=this._string.join("");return this._string=[],t}return null}},Ur.prototype={constructor:Ur,point:function(t,e){this.stream.point(t,e)},sphere:function(){this.stream.sphere()},lineStart:function(){this.stream.lineStart()},lineEnd:function(){this.stream.lineEnd()},polygonStart:function(){this.stream.polygonStart()},polygonEnd:function(){this.stream.polygonEnd()}};var Wr=g(30*h);function Xr(t,e){return+e?function(t,e){function r(n,i,a,s,l,c,u,f,h,d,g,v,y,x){var b=u-n,_=f-i,w=b*b+_*_;if(w>4*e&&y--){var k=s+d,A=l+g,S=c+v,E=T(k*k+A*A+S*S),L=M(S/=E),C=p(p(S)-1)e||p((b*z+_*D)/w-.5)>.3||s*d+l*g+c*v2?t[2]%360*h:0,I()):[y*f,x*f,b*f]},C.angle=function(t){return arguments.length?(_=t%360*h,I()):_*f},C.reflectX=function(t){return arguments.length?(w=t?-1:1,I()):w<0},C.reflectY=function(t){return arguments.length?(k=t?-1:1,I()):k<0},C.precision=function(t){return arguments.length?(o=Xr(s,L=t*t),O()):T(L)},C.fitExtent=function(t,e){return Hr(C,t,e)},C.fitSize=function(t,e){return qr(C,t,e)},C.fitWidth=function(t,e){return Gr(C,t,e)},C.fitHeight=function(t,e){return Yr(C,t,e)},function(){return e=t.apply(this,arguments),C.invert=e.invert&&P,I()}}function tn(t){var e=0,r=s/3,n=$r(t),i=n(e,r);return i.parallels=function(t){return arguments.length?n(e=t[0]*h,r=t[1]*h):[e*f,r*f]},i}function en(t,e){var r=_(t),n=(r+_(e))/2;if(p(n)0?e<-l+o&&(e=-l+o):e>l-o&&(e=l-o);var r=i/b(fn(e),n);return[r*_(n*t),i-r*g(n*t)]}return a.invert=function(t,e){var r=i-e,a=w(n)*T(t*t+r*r),o=m(t,p(r))*w(r);return r*n<0&&(o-=s*w(t)*w(r)),[o/n,2*d(b(i/a,1/n))-l]},a}function pn(t,e){return[t,e]}function dn(t,e){var r=g(t),n=t===e?_(t):(r-g(e))/(e-t),i=r/n+t;if(p(n)o&&--i>0);return[t/(.8707+(a=n*n)*(a*(a*a*a*(.003971-.001529*a)-.013791)-.131979)),n]},Tn.invert=on(M),kn.invert=on((function(t){return 2*d(t)})),An.invert=function(t,e){return[-e,2*d(y(t))-l]},t.geoAlbers=nn,t.geoAlbersUsa=function(){var t,e,r,n,i,a,s=nn(),l=rn().rotate([154,0]).center([-2,58.5]).parallels([55,65]),c=rn().rotate([157,0]).center([-3,19.9]).parallels([8,18]),u={point:function(t,e){a=[t,e]}};function f(t){var e=t[0],o=t[1];return a=null,r.point(e,o),a||(n.point(e,o),a)||(i.point(e,o),a)}function h(){return t=e=null,f}return f.invert=function(t){var e=s.scale(),r=s.translate(),n=(t[0]-r[0])/e,i=(t[1]-r[1])/e;return(i>=.12&&i<.234&&n>=-.425&&n<-.214?l:i>=.166&&i<.234&&n>=-.214&&n<-.115?c:s).invert(t)},f.stream=function(r){return t&&e===r?t:(n=[s.stream(e=r),l.stream(r),c.stream(r)],i=n.length,t={point:function(t,e){for(var r=-1;++rDt(n[0],n[1])&&(n[1]=i[1]),Dt(i[0],n[1])>Dt(n[0],n[1])&&(n[0]=i[0])):a.push(n=i);for(o=-1/0,e=0,n=a[r=a.length-1];e<=r;n=i,++e)i=a[e],(s=Dt(n[1],i[0]))>o&&(o=s,tt=i[0],rt=n[1])}return lt=ct=null,tt===1/0||et===1/0?[[NaN,NaN],[NaN,NaN]]:[[tt,et],[rt,nt]]},t.geoCentroid=function(t){ut=ft=ht=pt=dt=mt=gt=vt=yt=xt=bt=0,z(t,Bt);var e=yt,r=xt,n=bt,i=e*e+r*r+n*n;return i<1e-12&&(e=mt,r=gt,n=vt,ft2?t[2]+90:90]):[(t=r())[0],t[1],t[2]-90]},r([0,0,90]).scale(159.155)},t.geoTransverseMercatorRaw=An,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":102}],110:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e){return t.parent===e.parent?1:2}function r(t,e){return t+e.x}function n(t,e){return Math.max(t,e.y)}function i(t){var e=0,r=t.children,n=r&&r.length;if(n)for(;--n>=0;)e+=r[n].value;else e=1;t.value=e}function a(t,e){var r,n,i,a,s,u=new c(t),f=+t.value&&(u.value=t.value),h=[u];for(null==e&&(e=o);r=h.pop();)if(f&&(r.value=+r.data.value),(i=e(r.data))&&(s=i.length))for(r.children=new Array(s),a=s-1;a>=0;--a)h.push(n=r.children[a]=new c(i[a])),n.parent=r,n.depth=r.depth+1;return u.eachBefore(l)}function o(t){return t.children}function s(t){t.data=t.data.data}function l(t){var e=0;do{t.height=e}while((t=t.parent)&&t.height<++e)}function c(t){this.data=t,this.depth=this.height=0,this.parent=null}c.prototype=a.prototype={constructor:c,count:function(){return this.eachAfter(i)},each:function(t){var e,r,n,i,a=this,o=[a];do{for(e=o.reverse(),o=[];a=e.pop();)if(t(a),r=a.children)for(n=0,i=r.length;n=0;--r)i.push(e[r]);return this},sum:function(t){return this.eachAfter((function(e){for(var r=+t(e.data)||0,n=e.children,i=n&&n.length;--i>=0;)r+=n[i].value;e.value=r}))},sort:function(t){return this.eachBefore((function(e){e.children&&e.children.sort(t)}))},path:function(t){for(var e=this,r=function(t,e){if(t===e)return t;var r=t.ancestors(),n=e.ancestors(),i=null;t=r.pop(),e=n.pop();for(;t===e;)i=t,t=r.pop(),e=n.pop();return i}(e,t),n=[e];e!==r;)e=e.parent,n.push(e);for(var i=n.length;t!==r;)n.splice(i,0,t),t=t.parent;return n},ancestors:function(){for(var t=this,e=[t];t=t.parent;)e.push(t);return e},descendants:function(){var t=[];return this.each((function(e){t.push(e)})),t},leaves:function(){var t=[];return this.eachBefore((function(e){e.children||t.push(e)})),t},links:function(){var t=this,e=[];return t.each((function(r){r!==t&&e.push({source:r.parent,target:r})})),e},copy:function(){return a(this).eachBefore(s)}};var u=Array.prototype.slice;function f(t){for(var e,r,n=0,i=(t=function(t){for(var e,r,n=t.length;n;)r=Math.random()*n--|0,e=t[n],t[n]=t[r],t[r]=e;return t}(u.call(t))).length,a=[];n0&&r*r>n*n+i*i}function m(t,e){for(var r=0;r(o*=o)?(n=(c+o-i)/(2*c),a=Math.sqrt(Math.max(0,o/c-n*n)),r.x=t.x-n*s-a*l,r.y=t.y-n*l+a*s):(n=(c+i-o)/(2*c),a=Math.sqrt(Math.max(0,i/c-n*n)),r.x=e.x+n*s-a*l,r.y=e.y+n*l+a*s)):(r.x=e.x+r.r,r.y=e.y)}function b(t,e){var r=t.r+e.r-1e-6,n=e.x-t.x,i=e.y-t.y;return r>0&&r*r>n*n+i*i}function _(t){var e=t._,r=t.next._,n=e.r+r.r,i=(e.x*r.r+r.x*e.r)/n,a=(e.y*r.r+r.y*e.r)/n;return i*i+a*a}function w(t){this._=t,this.next=null,this.previous=null}function T(t){if(!(i=t.length))return 0;var e,r,n,i,a,o,s,l,c,u,h;if((e=t[0]).x=0,e.y=0,!(i>1))return e.r;if(r=t[1],e.x=-r.r,r.x=e.r,r.y=0,!(i>2))return e.r+r.r;x(r,e,n=t[2]),e=new w(e),r=new w(r),n=new w(n),e.next=n.previous=r,r.next=e.previous=n,n.next=r.previous=e;t:for(s=3;sh&&(h=s),g=u*u*m,(p=Math.max(h/g,g/f))>d){u-=s;break}d=p}v.push(o={value:u,dice:l1?e:1)},r}(G);var X=function t(e){function r(t,r,n,i,a){if((o=t._squarify)&&o.ratio===e)for(var o,s,l,c,u,f=-1,h=o.length,p=t.value;++f1?e:1)},r}(G);t.cluster=function(){var t=e,i=1,a=1,o=!1;function s(e){var s,l=0;e.eachAfter((function(e){var i=e.children;i?(e.x=function(t){return t.reduce(r,0)/t.length}(i),e.y=function(t){return 1+t.reduce(n,0)}(i)):(e.x=s?l+=t(e,s):0,e.y=0,s=e)}));var c=function(t){for(var e;e=t.children;)t=e[0];return t}(e),u=function(t){for(var e;e=t.children;)t=e[e.length-1];return t}(e),f=c.x-t(c,u)/2,h=u.x+t(u,c)/2;return e.eachAfter(o?function(t){t.x=(t.x-e.x)*i,t.y=(e.y-t.y)*a}:function(t){t.x=(t.x-f)/(h-f)*i,t.y=(1-(e.y?t.y/e.y:1))*a})}return s.separation=function(e){return arguments.length?(t=e,s):t},s.size=function(t){return arguments.length?(o=!1,i=+t[0],a=+t[1],s):o?null:[i,a]},s.nodeSize=function(t){return arguments.length?(o=!0,i=+t[0],a=+t[1],s):o?[i,a]:null},s},t.hierarchy=a,t.pack=function(){var t=null,e=1,r=1,n=M;function i(i){return i.x=e/2,i.y=r/2,t?i.eachBefore(L(t)).eachAfter(C(n,.5)).eachBefore(P(1)):i.eachBefore(L(E)).eachAfter(C(M,1)).eachAfter(C(n,i.r/Math.min(e,r))).eachBefore(P(Math.min(e,r)/(2*i.r))),i}return i.radius=function(e){return arguments.length?(t=k(e),i):t},i.size=function(t){return arguments.length?(e=+t[0],r=+t[1],i):[e,r]},i.padding=function(t){return arguments.length?(n="function"==typeof t?t:S(+t),i):n},i},t.packEnclose=f,t.packSiblings=function(t){return T(t),t},t.partition=function(){var t=1,e=1,r=0,n=!1;function i(i){var a=i.height+1;return i.x0=i.y0=r,i.x1=t,i.y1=e/a,i.eachBefore(function(t,e){return function(n){n.children&&O(n,n.x0,t*(n.depth+1)/e,n.x1,t*(n.depth+2)/e);var i=n.x0,a=n.y0,o=n.x1-r,s=n.y1-r;o0)throw new Error("cycle");return a}return r.id=function(e){return arguments.length?(t=A(e),r):t},r.parentId=function(t){return arguments.length?(e=A(t),r):e},r},t.tree=function(){var t=B,e=1,r=1,n=null;function i(i){var l=function(t){for(var e,r,n,i,a,o=new H(t,0),s=[o];e=s.pop();)if(n=e._.children)for(e.children=new Array(a=n.length),i=a-1;i>=0;--i)s.push(r=e.children[i]=new H(n[i],i)),r.parent=e;return(o.parent=new H(null,0)).children=[o],o}(i);if(l.eachAfter(a),l.parent.m=-l.z,l.eachBefore(o),n)i.eachBefore(s);else{var c=i,u=i,f=i;i.eachBefore((function(t){t.xu.x&&(u=t),t.depth>f.depth&&(f=t)}));var h=c===u?1:t(c,u)/2,p=h-c.x,d=e/(u.x+h+p),m=r/(f.depth||1);i.eachBefore((function(t){t.x=(t.x+p)*d,t.y=t.depth*m}))}return i}function a(e){var r=e.children,n=e.parent.children,i=e.i?n[e.i-1]:null;if(r){!function(t){for(var e,r=0,n=0,i=t.children,a=i.length;--a>=0;)(e=i[a]).z+=r,e.m+=r,r+=e.s+(n+=e.c)}(e);var a=(r[0].z+r[r.length-1].z)/2;i?(e.z=i.z+t(e._,i._),e.m=e.z-a):e.z=a}else i&&(e.z=i.z+t(e._,i._));e.parent.A=function(e,r,n){if(r){for(var i,a=e,o=e,s=r,l=a.parent.children[0],c=a.m,u=o.m,f=s.m,h=l.m;s=j(s),a=N(a),s&&a;)l=N(l),(o=j(o)).a=e,(i=s.z+f-a.z-c+t(s._,a._))>0&&(U(V(s,e,n),e,i),c+=i,u+=i),f+=s.m,c+=a.m,h+=l.m,u+=o.m;s&&!j(o)&&(o.t=s,o.m+=f-u),a&&!N(l)&&(l.t=a,l.m+=c-h,n=e)}return n}(e,i,e.parent.A||n[0])}function o(t){t._.x=t.z+t.parent.m,t.m+=t.parent.m}function s(t){t.x*=e,t.y=t.depth*r}return i.separation=function(e){return arguments.length?(t=e,i):t},i.size=function(t){return arguments.length?(n=!1,e=+t[0],r=+t[1],i):n?null:[e,r]},i.nodeSize=function(t){return arguments.length?(n=!0,e=+t[0],r=+t[1],i):n?[e,r]:null},i},t.treemap=function(){var t=W,e=!1,r=1,n=1,i=[0],a=M,o=M,s=M,l=M,c=M;function u(t){return t.x0=t.y0=0,t.x1=r,t.y1=n,t.eachBefore(f),i=[0],e&&t.eachBefore(I),t}function f(e){var r=i[e.depth],n=e.x0+r,u=e.y0+r,f=e.x1-r,h=e.y1-r;f=r-1){var u=s[e];return u.x0=i,u.y0=a,u.x1=o,void(u.y1=l)}var f=c[e],h=n/2+f,p=e+1,d=r-1;for(;p>>1;c[m]l-a){var y=(i*v+o*g)/n;t(e,p,g,i,a,y,l),t(p,r,v,y,a,o,l)}else{var x=(a*v+l*g)/n;t(e,p,g,i,a,o,x),t(p,r,v,i,x,o,l)}}(0,l,t.value,e,r,n,i)},t.treemapDice=O,t.treemapResquarify=X,t.treemapSlice=q,t.treemapSliceDice=function(t,e,r,n,i){(1&t.depth?q:O)(t,e,r,n,i)},t.treemapSquarify=W,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],111:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-color")):i((n=n||self).d3=n.d3||{},n.d3)}(this,(function(t,e){"use strict";function r(t,e,r,n,i){var a=t*t,o=a*t;return((1-3*t+3*a-o)*e+(4-6*a+3*o)*r+(1+3*t+3*a-3*o)*n+o*i)/6}function n(t){var e=t.length-1;return function(n){var i=n<=0?n=0:n>=1?(n=1,e-1):Math.floor(n*e),a=t[i],o=t[i+1],s=i>0?t[i-1]:2*a-o,l=i180||r<-180?r-360*Math.round(r/360):r):a(isNaN(t)?e:t)}function l(t){return 1==(t=+t)?c:function(e,r){return r-e?function(t,e,r){return t=Math.pow(t,r),e=Math.pow(e,r)-t,r=1/r,function(n){return Math.pow(t+n*e,r)}}(e,r,t):a(isNaN(e)?r:e)}}function c(t,e){var r=e-t;return r?o(t,r):a(isNaN(t)?e:t)}var u=function t(r){var n=l(r);function i(t,r){var i=n((t=e.rgb(t)).r,(r=e.rgb(r)).r),a=n(t.g,r.g),o=n(t.b,r.b),s=c(t.opacity,r.opacity);return function(e){return t.r=i(e),t.g=a(e),t.b=o(e),t.opacity=s(e),t+""}}return i.gamma=t,i}(1);function f(t){return function(r){var n,i,a=r.length,o=new Array(a),s=new Array(a),l=new Array(a);for(n=0;na&&(i=e.slice(a,i),s[o]?s[o]+=i:s[++o]=i),(r=r[0])===(n=n[0])?s[o]?s[o]+=n:s[++o]=n:(s[++o]=null,l.push({i:o,x:y(r,n)})),a=_.lastIndex;return a180?e+=360:e-t>180&&(t+=360),a.push({i:r.push(i(r)+"rotate(",null,n)-2,x:y(t,e)})):e&&r.push(i(r)+"rotate("+e+n)}(a.rotate,o.rotate,s,l),function(t,e,r,a){t!==e?a.push({i:r.push(i(r)+"skewX(",null,n)-2,x:y(t,e)}):e&&r.push(i(r)+"skewX("+e+n)}(a.skewX,o.skewX,s,l),function(t,e,r,n,a,o){if(t!==r||e!==n){var s=a.push(i(a)+"scale(",null,",",null,")");o.push({i:s-4,x:y(t,r)},{i:s-2,x:y(e,n)})}else 1===r&&1===n||a.push(i(a)+"scale("+r+","+n+")")}(a.scaleX,a.scaleY,o.scaleX,o.scaleY,s,l),a=o=null,function(t){for(var e,r=-1,n=l.length;++r1e-6)if(Math.abs(f*l-c*u)>1e-6&&a){var p=n-o,d=i-s,m=l*l+c*c,g=p*p+d*d,v=Math.sqrt(m),y=Math.sqrt(h),x=a*Math.tan((e-Math.acos((m+h-g)/(2*v*y)))/2),b=x/y,_=x/v;Math.abs(b-1)>1e-6&&(this._+="L"+(t+b*u)+","+(r+b*f)),this._+="A"+a+","+a+",0,0,"+ +(f*p>u*d)+","+(this._x1=t+_*l)+","+(this._y1=r+_*c)}else this._+="L"+(this._x1=t)+","+(this._y1=r);else;},arc:function(t,i,a,o,s,l){t=+t,i=+i,l=!!l;var c=(a=+a)*Math.cos(o),u=a*Math.sin(o),f=t+c,h=i+u,p=1^l,d=l?o-s:s-o;if(a<0)throw new Error("negative radius: "+a);null===this._x1?this._+="M"+f+","+h:(Math.abs(this._x1-f)>1e-6||Math.abs(this._y1-h)>1e-6)&&(this._+="L"+f+","+h),a&&(d<0&&(d=d%r+r),d>n?this._+="A"+a+","+a+",0,1,"+p+","+(t-c)+","+(i-u)+"A"+a+","+a+",0,1,"+p+","+(this._x1=f)+","+(this._y1=h):d>1e-6&&(this._+="A"+a+","+a+",0,"+ +(d>=e)+","+p+","+(this._x1=t+a*Math.cos(s))+","+(this._y1=i+a*Math.sin(s))))},rect:function(t,e,r,n){this._+="M"+(this._x0=this._x1=+t)+","+(this._y0=this._y1=+e)+"h"+ +r+"v"+ +n+"h"+-r+"Z"},toString:function(){return this._}},t.path=a,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],113:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e,r,n){if(isNaN(e)||isNaN(r))return t;var i,a,o,s,l,c,u,f,h,p=t._root,d={data:n},m=t._x0,g=t._y0,v=t._x1,y=t._y1;if(!p)return t._root=d,t;for(;p.length;)if((c=e>=(a=(m+v)/2))?m=a:v=a,(u=r>=(o=(g+y)/2))?g=o:y=o,i=p,!(p=p[f=u<<1|c]))return i[f]=d,t;if(s=+t._x.call(null,p.data),l=+t._y.call(null,p.data),e===s&&r===l)return d.next=p,i?i[f]=d:t._root=d,t;do{i=i?i[f]=new Array(4):t._root=new Array(4),(c=e>=(a=(m+v)/2))?m=a:v=a,(u=r>=(o=(g+y)/2))?g=o:y=o}while((f=u<<1|c)==(h=(l>=o)<<1|s>=a));return i[h]=p,i[f]=d,t}function r(t,e,r,n,i){this.node=t,this.x0=e,this.y0=r,this.x1=n,this.y1=i}function n(t){return t[0]}function i(t){return t[1]}function a(t,e,r){var a=new o(null==e?n:e,null==r?i:r,NaN,NaN,NaN,NaN);return null==t?a:a.addAll(t)}function o(t,e,r,n,i,a){this._x=t,this._y=e,this._x0=r,this._y0=n,this._x1=i,this._y1=a,this._root=void 0}function s(t){for(var e={data:t.data},r=e;t=t.next;)r=r.next={data:t.data};return e}var l=a.prototype=o.prototype;l.copy=function(){var t,e,r=new o(this._x,this._y,this._x0,this._y0,this._x1,this._y1),n=this._root;if(!n)return r;if(!n.length)return r._root=s(n),r;for(t=[{source:n,target:r._root=new Array(4)}];n=t.pop();)for(var i=0;i<4;++i)(e=n.source[i])&&(e.length?t.push({source:e,target:n.target[i]=new Array(4)}):n.target[i]=s(e));return r},l.add=function(t){var r=+this._x.call(null,t),n=+this._y.call(null,t);return e(this.cover(r,n),r,n,t)},l.addAll=function(t){var r,n,i,a,o=t.length,s=new Array(o),l=new Array(o),c=1/0,u=1/0,f=-1/0,h=-1/0;for(n=0;nf&&(f=i),ah&&(h=a));if(c>f||u>h)return this;for(this.cover(c,u).cover(f,h),n=0;nt||t>=i||n>e||e>=a;)switch(s=(ep||(o=c.y0)>d||(s=c.x1)=y)<<1|t>=v)&&(c=m[m.length-1],m[m.length-1]=m[m.length-1-u],m[m.length-1-u]=c)}else{var x=t-+this._x.call(null,g.data),b=e-+this._y.call(null,g.data),_=x*x+b*b;if(_=(s=(d+g)/2))?d=s:g=s,(u=o>=(l=(m+v)/2))?m=l:v=l,e=p,!(p=p[f=u<<1|c]))return this;if(!p.length)break;(e[f+1&3]||e[f+2&3]||e[f+3&3])&&(r=e,h=f)}for(;p.data!==t;)if(n=p,!(p=p.next))return this;return(i=p.next)&&delete p.next,n?(i?n.next=i:delete n.next,this):e?(i?e[f]=i:delete e[f],(p=e[0]||e[1]||e[2]||e[3])&&p===(e[3]||e[2]||e[1]||e[0])&&!p.length&&(r?r[h]=p:this._root=p),this):(this._root=i,this)},l.removeAll=function(t){for(var e=0,r=t.length;e1?0:t<-1?u:Math.acos(t)}function d(t){return t>=1?f:t<=-1?-f:Math.asin(t)}function m(t){return t.innerRadius}function g(t){return t.outerRadius}function v(t){return t.startAngle}function y(t){return t.endAngle}function x(t){return t&&t.padAngle}function b(t,e,r,n,i,a,o,s){var l=r-t,c=n-e,u=o-i,f=s-a,h=f*l-u*c;if(!(h*h<1e-12))return[t+(h=(u*(e-a)-f*(t-i))/h)*l,e+h*c]}function _(t,e,r,n,i,a,s){var l=t-r,u=e-n,f=(s?a:-a)/c(l*l+u*u),h=f*u,p=-f*l,d=t+h,m=e+p,g=r+h,v=n+p,y=(d+g)/2,x=(m+v)/2,b=g-d,_=v-m,w=b*b+_*_,T=i-a,k=d*v-g*m,A=(_<0?-1:1)*c(o(0,T*T*w-k*k)),M=(k*_-b*A)/w,S=(-k*b-_*A)/w,E=(k*_+b*A)/w,L=(-k*b+_*A)/w,C=M-y,P=S-x,I=E-y,O=L-x;return C*C+P*P>I*I+O*O&&(M=E,S=L),{cx:M,cy:S,x01:-h,y01:-p,x11:M*(i/T-1),y11:S*(i/T-1)}}function w(t){this._context=t}function T(t){return new w(t)}function k(t){return t[0]}function A(t){return t[1]}function M(){var t=k,n=A,i=r(!0),a=null,o=T,s=null;function l(r){var l,c,u,f=r.length,h=!1;for(null==a&&(s=o(u=e.path())),l=0;l<=f;++l)!(l=f;--h)c.point(v[h],y[h]);c.lineEnd(),c.areaEnd()}g&&(v[u]=+t(p,u,r),y[u]=+i(p,u,r),c.point(n?+n(p,u,r):v[u],a?+a(p,u,r):y[u]))}if(d)return c=null,d+""||null}function f(){return M().defined(o).curve(l).context(s)}return u.x=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),n=null,u):t},u.x0=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),u):t},u.x1=function(t){return arguments.length?(n=null==t?null:"function"==typeof t?t:r(+t),u):n},u.y=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),a=null,u):i},u.y0=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),u):i},u.y1=function(t){return arguments.length?(a=null==t?null:"function"==typeof t?t:r(+t),u):a},u.lineX0=u.lineY0=function(){return f().x(t).y(i)},u.lineY1=function(){return f().x(t).y(a)},u.lineX1=function(){return f().x(n).y(i)},u.defined=function(t){return arguments.length?(o="function"==typeof t?t:r(!!t),u):o},u.curve=function(t){return arguments.length?(l=t,null!=s&&(c=l(s)),u):l},u.context=function(t){return arguments.length?(null==t?s=c=null:c=l(s=t),u):s},u}function E(t,e){return et?1:e>=t?0:NaN}function L(t){return t}w.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:this._context.lineTo(t,e)}}};var C=I(T);function P(t){this._curve=t}function I(t){function e(e){return new P(t(e))}return e._curve=t,e}function O(t){var e=t.curve;return t.angle=t.x,delete t.x,t.radius=t.y,delete t.y,t.curve=function(t){return arguments.length?e(I(t)):e()._curve},t}function z(){return O(M().curve(C))}function D(){var t=S().curve(C),e=t.curve,r=t.lineX0,n=t.lineX1,i=t.lineY0,a=t.lineY1;return t.angle=t.x,delete t.x,t.startAngle=t.x0,delete t.x0,t.endAngle=t.x1,delete t.x1,t.radius=t.y,delete t.y,t.innerRadius=t.y0,delete t.y0,t.outerRadius=t.y1,delete t.y1,t.lineStartAngle=function(){return O(r())},delete t.lineX0,t.lineEndAngle=function(){return O(n())},delete t.lineX1,t.lineInnerRadius=function(){return O(i())},delete t.lineY0,t.lineOuterRadius=function(){return O(a())},delete t.lineY1,t.curve=function(t){return arguments.length?e(I(t)):e()._curve},t}function R(t,e){return[(e=+e)*Math.cos(t-=Math.PI/2),e*Math.sin(t)]}P.prototype={areaStart:function(){this._curve.areaStart()},areaEnd:function(){this._curve.areaEnd()},lineStart:function(){this._curve.lineStart()},lineEnd:function(){this._curve.lineEnd()},point:function(t,e){this._curve.point(e*Math.sin(t),e*-Math.cos(t))}};var F=Array.prototype.slice;function B(t){return t.source}function N(t){return t.target}function j(t){var n=B,i=N,a=k,o=A,s=null;function l(){var r,l=F.call(arguments),c=n.apply(this,l),u=i.apply(this,l);if(s||(s=r=e.path()),t(s,+a.apply(this,(l[0]=c,l)),+o.apply(this,l),+a.apply(this,(l[0]=u,l)),+o.apply(this,l)),r)return s=null,r+""||null}return l.source=function(t){return arguments.length?(n=t,l):n},l.target=function(t){return arguments.length?(i=t,l):i},l.x=function(t){return arguments.length?(a="function"==typeof t?t:r(+t),l):a},l.y=function(t){return arguments.length?(o="function"==typeof t?t:r(+t),l):o},l.context=function(t){return arguments.length?(s=null==t?null:t,l):s},l}function U(t,e,r,n,i){t.moveTo(e,r),t.bezierCurveTo(e=(e+n)/2,r,e,i,n,i)}function V(t,e,r,n,i){t.moveTo(e,r),t.bezierCurveTo(e,r=(r+i)/2,n,r,n,i)}function H(t,e,r,n,i){var a=R(e,r),o=R(e,r=(r+i)/2),s=R(n,r),l=R(n,i);t.moveTo(a[0],a[1]),t.bezierCurveTo(o[0],o[1],s[0],s[1],l[0],l[1])}var q={draw:function(t,e){var r=Math.sqrt(e/u);t.moveTo(r,0),t.arc(0,0,r,0,h)}},G={draw:function(t,e){var r=Math.sqrt(e/5)/2;t.moveTo(-3*r,-r),t.lineTo(-r,-r),t.lineTo(-r,-3*r),t.lineTo(r,-3*r),t.lineTo(r,-r),t.lineTo(3*r,-r),t.lineTo(3*r,r),t.lineTo(r,r),t.lineTo(r,3*r),t.lineTo(-r,3*r),t.lineTo(-r,r),t.lineTo(-3*r,r),t.closePath()}},Y=Math.sqrt(1/3),W=2*Y,X={draw:function(t,e){var r=Math.sqrt(e/W),n=r*Y;t.moveTo(0,-r),t.lineTo(n,0),t.lineTo(0,r),t.lineTo(-n,0),t.closePath()}},Z=Math.sin(u/10)/Math.sin(7*u/10),J=Math.sin(h/10)*Z,K=-Math.cos(h/10)*Z,Q={draw:function(t,e){var r=Math.sqrt(.8908130915292852*e),n=J*r,i=K*r;t.moveTo(0,-r),t.lineTo(n,i);for(var a=1;a<5;++a){var o=h*a/5,s=Math.cos(o),l=Math.sin(o);t.lineTo(l*r,-s*r),t.lineTo(s*n-l*i,l*n+s*i)}t.closePath()}},$={draw:function(t,e){var r=Math.sqrt(e),n=-r/2;t.rect(n,n,r,r)}},tt=Math.sqrt(3),et={draw:function(t,e){var r=-Math.sqrt(e/(3*tt));t.moveTo(0,2*r),t.lineTo(-tt*r,-r),t.lineTo(tt*r,-r),t.closePath()}},rt=-.5,nt=Math.sqrt(3)/2,it=1/Math.sqrt(12),at=3*(it/2+1),ot={draw:function(t,e){var r=Math.sqrt(e/at),n=r/2,i=r*it,a=n,o=r*it+r,s=-a,l=o;t.moveTo(n,i),t.lineTo(a,o),t.lineTo(s,l),t.lineTo(rt*n-nt*i,nt*n+rt*i),t.lineTo(rt*a-nt*o,nt*a+rt*o),t.lineTo(rt*s-nt*l,nt*s+rt*l),t.lineTo(rt*n+nt*i,rt*i-nt*n),t.lineTo(rt*a+nt*o,rt*o-nt*a),t.lineTo(rt*s+nt*l,rt*l-nt*s),t.closePath()}},st=[q,G,X,$,Q,et,ot];function lt(){}function ct(t,e,r){t._context.bezierCurveTo((2*t._x0+t._x1)/3,(2*t._y0+t._y1)/3,(t._x0+2*t._x1)/3,(t._y0+2*t._y1)/3,(t._x0+4*t._x1+e)/6,(t._y0+4*t._y1+r)/6)}function ut(t){this._context=t}function ft(t){this._context=t}function ht(t){this._context=t}function pt(t,e){this._basis=new ut(t),this._beta=e}ut.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){switch(this._point){case 3:ct(this,this._x1,this._y1);case 2:this._context.lineTo(this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3,this._context.lineTo((5*this._x0+this._x1)/6,(5*this._y0+this._y1)/6);default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},ft.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._y0=this._y1=this._y2=this._y3=this._y4=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x2,this._y2),this._context.closePath();break;case 2:this._context.moveTo((this._x2+2*this._x3)/3,(this._y2+2*this._y3)/3),this._context.lineTo((this._x3+2*this._x2)/3,(this._y3+2*this._y2)/3),this._context.closePath();break;case 3:this.point(this._x2,this._y2),this.point(this._x3,this._y3),this.point(this._x4,this._y4)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x2=t,this._y2=e;break;case 1:this._point=2,this._x3=t,this._y3=e;break;case 2:this._point=3,this._x4=t,this._y4=e,this._context.moveTo((this._x0+4*this._x1+t)/6,(this._y0+4*this._y1+e)/6);break;default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},ht.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3;var r=(this._x0+4*this._x1+t)/6,n=(this._y0+4*this._y1+e)/6;this._line?this._context.lineTo(r,n):this._context.moveTo(r,n);break;case 3:this._point=4;default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},pt.prototype={lineStart:function(){this._x=[],this._y=[],this._basis.lineStart()},lineEnd:function(){var t=this._x,e=this._y,r=t.length-1;if(r>0)for(var n,i=t[0],a=e[0],o=t[r]-i,s=e[r]-a,l=-1;++l<=r;)n=l/r,this._basis.point(this._beta*t[l]+(1-this._beta)*(i+n*o),this._beta*e[l]+(1-this._beta)*(a+n*s));this._x=this._y=null,this._basis.lineEnd()},point:function(t,e){this._x.push(+t),this._y.push(+e)}};var dt=function t(e){function r(t){return 1===e?new ut(t):new pt(t,e)}return r.beta=function(e){return t(+e)},r}(.85);function mt(t,e,r){t._context.bezierCurveTo(t._x1+t._k*(t._x2-t._x0),t._y1+t._k*(t._y2-t._y0),t._x2+t._k*(t._x1-e),t._y2+t._k*(t._y1-r),t._x2,t._y2)}function gt(t,e){this._context=t,this._k=(1-e)/6}gt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:mt(this,this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2,this._x1=t,this._y1=e;break;case 2:this._point=3;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var vt=function t(e){function r(t){return new gt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function yt(t,e){this._context=t,this._k=(1-e)/6}yt.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var xt=function t(e){function r(t){return new yt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function bt(t,e){this._context=t,this._k=(1-e)/6}bt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var _t=function t(e){function r(t){return new bt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function wt(t,e,r){var n=t._x1,i=t._y1,a=t._x2,o=t._y2;if(t._l01_a>1e-12){var s=2*t._l01_2a+3*t._l01_a*t._l12_a+t._l12_2a,l=3*t._l01_a*(t._l01_a+t._l12_a);n=(n*s-t._x0*t._l12_2a+t._x2*t._l01_2a)/l,i=(i*s-t._y0*t._l12_2a+t._y2*t._l01_2a)/l}if(t._l23_a>1e-12){var c=2*t._l23_2a+3*t._l23_a*t._l12_a+t._l12_2a,u=3*t._l23_a*(t._l23_a+t._l12_a);a=(a*c+t._x1*t._l23_2a-e*t._l12_2a)/u,o=(o*c+t._y1*t._l23_2a-r*t._l12_2a)/u}t._context.bezierCurveTo(n,i,a,o,t._x2,t._y2)}function Tt(t,e){this._context=t,this._alpha=e}Tt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:this.point(this._x2,this._y2)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var kt=function t(e){function r(t){return e?new Tt(t,e):new gt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function At(t,e){this._context=t,this._alpha=e}At.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var Mt=function t(e){function r(t){return e?new At(t,e):new yt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function St(t,e){this._context=t,this._alpha=e}St.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var Et=function t(e){function r(t){return e?new St(t,e):new bt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function Lt(t){this._context=t}function Ct(t){return t<0?-1:1}function Pt(t,e,r){var n=t._x1-t._x0,i=e-t._x1,a=(t._y1-t._y0)/(n||i<0&&-0),o=(r-t._y1)/(i||n<0&&-0),s=(a*i+o*n)/(n+i);return(Ct(a)+Ct(o))*Math.min(Math.abs(a),Math.abs(o),.5*Math.abs(s))||0}function It(t,e){var r=t._x1-t._x0;return r?(3*(t._y1-t._y0)/r-e)/2:e}function Ot(t,e,r){var n=t._x0,i=t._y0,a=t._x1,o=t._y1,s=(a-n)/3;t._context.bezierCurveTo(n+s,i+s*e,a-s,o-s*r,a,o)}function zt(t){this._context=t}function Dt(t){this._context=new Rt(t)}function Rt(t){this._context=t}function Ft(t){this._context=t}function Bt(t){var e,r,n=t.length-1,i=new Array(n),a=new Array(n),o=new Array(n);for(i[0]=0,a[0]=2,o[0]=t[0]+2*t[1],e=1;e=0;--e)i[e]=(o[e]-i[e+1])/a[e];for(a[n-1]=(t[n]+i[n-1])/2,e=0;e1)for(var r,n,i,a=1,o=t[e[0]],s=o.length;a=0;)r[e]=e;return r}function Vt(t,e){return t[e]}function Ht(t){var e=t.map(qt);return Ut(t).sort((function(t,r){return e[t]-e[r]}))}function qt(t){for(var e,r=-1,n=0,i=t.length,a=-1/0;++ra&&(a=e,n=r);return n}function Gt(t){var e=t.map(Yt);return Ut(t).sort((function(t,r){return e[t]-e[r]}))}function Yt(t){for(var e,r=0,n=-1,i=t.length;++n=0&&(this._t=1-this._t,this._line=1-this._line)},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:if(this._t<=0)this._context.lineTo(this._x,e),this._context.lineTo(t,e);else{var r=this._x*(1-this._t)+t*this._t;this._context.lineTo(r,this._y),this._context.lineTo(r,e)}}this._x=t,this._y=e}},t.arc=function(){var t=m,o=g,w=r(0),T=null,k=v,A=y,M=x,S=null;function E(){var r,m,g=+t.apply(this,arguments),v=+o.apply(this,arguments),y=k.apply(this,arguments)-f,x=A.apply(this,arguments)-f,E=n(x-y),L=x>y;if(S||(S=r=e.path()),v1e-12)if(E>h-1e-12)S.moveTo(v*a(y),v*l(y)),S.arc(0,0,v,y,x,!L),g>1e-12&&(S.moveTo(g*a(x),g*l(x)),S.arc(0,0,g,x,y,L));else{var C,P,I=y,O=x,z=y,D=x,R=E,F=E,B=M.apply(this,arguments)/2,N=B>1e-12&&(T?+T.apply(this,arguments):c(g*g+v*v)),j=s(n(v-g)/2,+w.apply(this,arguments)),U=j,V=j;if(N>1e-12){var H=d(N/g*l(B)),q=d(N/v*l(B));(R-=2*H)>1e-12?(z+=H*=L?1:-1,D-=H):(R=0,z=D=(y+x)/2),(F-=2*q)>1e-12?(I+=q*=L?1:-1,O-=q):(F=0,I=O=(y+x)/2)}var G=v*a(I),Y=v*l(I),W=g*a(D),X=g*l(D);if(j>1e-12){var Z,J=v*a(O),K=v*l(O),Q=g*a(z),$=g*l(z);if(E1e-12?V>1e-12?(C=_(Q,$,G,Y,v,V,L),P=_(J,K,W,X,v,V,L),S.moveTo(C.cx+C.x01,C.cy+C.y01),V1e-12&&R>1e-12?U>1e-12?(C=_(W,X,J,K,g,-U,L),P=_(G,Y,Q,$,g,-U,L),S.lineTo(C.cx+C.x01,C.cy+C.y01),U0&&(d+=f);for(null!=e?m.sort((function(t,r){return e(g[t],g[r])})):null!=n&&m.sort((function(t,e){return n(r[t],r[e])})),s=0,c=d?(y-p*b)/d:0;s0?f*c:0)+b,g[l]={data:r[l],index:s,value:f,startAngle:v,endAngle:u,padAngle:x};return g}return s.value=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),s):t},s.sortValues=function(t){return arguments.length?(e=t,n=null,s):e},s.sort=function(t){return arguments.length?(n=t,e=null,s):n},s.startAngle=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),s):i},s.endAngle=function(t){return arguments.length?(a="function"==typeof t?t:r(+t),s):a},s.padAngle=function(t){return arguments.length?(o="function"==typeof t?t:r(+t),s):o},s},t.pointRadial=R,t.radialArea=D,t.radialLine=z,t.stack=function(){var t=r([]),e=Ut,n=jt,i=Vt;function a(r){var a,o,s=t.apply(this,arguments),l=r.length,c=s.length,u=new Array(c);for(a=0;a0)for(var r,n,i,a,o,s,l=0,c=t[e[0]].length;l0?(n[0]=a,n[1]=a+=i):i<0?(n[1]=o,n[0]=o+=i):(n[0]=0,n[1]=i)},t.stackOffsetExpand=function(t,e){if((n=t.length)>0){for(var r,n,i,a=0,o=t[0].length;a0){for(var r,n=0,i=t[e[0]],a=i.length;n0&&(n=(r=t[e[0]]).length)>0){for(var r,n,i,a=0,o=1;o=12)]},q:function(t){return 1+~~(t.getMonth()/3)},Q:wt,s:Tt,S:H,u:q,U:G,V:W,w:X,W:Z,x:null,X:null,y:J,Y:Q,Z:tt,"%":_t},zt={a:function(t){return f[t.getUTCDay()]},A:function(t){return u[t.getUTCDay()]},b:function(t){return Y[t.getUTCMonth()]},B:function(t){return h[t.getUTCMonth()]},c:null,d:et,e:et,f:ot,g:vt,G:xt,H:rt,I:nt,j:it,L:at,m:st,M:lt,p:function(t){return c[+(t.getUTCHours()>=12)]},q:function(t){return 1+~~(t.getUTCMonth()/3)},Q:wt,s:Tt,S:ct,u:ut,U:ft,V:pt,w:dt,W:mt,x:null,X:null,y:gt,Y:yt,Z:bt,"%":_t},Dt={a:function(t,e,r){var n=St.exec(e.slice(r));return n?(t.w=Et[n[0].toLowerCase()],r+n[0].length):-1},A:function(t,e,r){var n=At.exec(e.slice(r));return n?(t.w=Mt[n[0].toLowerCase()],r+n[0].length):-1},b:function(t,e,r){var n=Pt.exec(e.slice(r));return n?(t.m=It[n[0].toLowerCase()],r+n[0].length):-1},B:function(t,e,r){var n=Lt.exec(e.slice(r));return n?(t.m=Ct[n[0].toLowerCase()],r+n[0].length):-1},c:function(t,e,r){return Bt(t,a,e,r)},d:A,e:A,f:P,g:_,G:b,H:S,I:S,j:M,L:C,m:k,M:E,p:function(t,e,r){var n=ht.exec(e.slice(r));return n?(t.p=kt[n[0].toLowerCase()],r+n[0].length):-1},q:T,Q:O,s:z,S:L,u:g,U:v,V:y,w:m,W:x,x:function(t,e,r){return Bt(t,o,e,r)},X:function(t,e,r){return Bt(t,l,e,r)},y:_,Y:b,Z:w,"%":I};function Rt(t,e){return function(r){var n,i,a,o=[],l=-1,c=0,u=t.length;for(r instanceof Date||(r=new Date(+r));++l53)return null;"w"in c||(c.w=1),"Z"in c?(l=(s=n(i(c.y,0,1))).getUTCDay(),s=l>4||0===l?e.utcMonday.ceil(s):e.utcMonday(s),s=e.utcDay.offset(s,7*(c.V-1)),c.y=s.getUTCFullYear(),c.m=s.getUTCMonth(),c.d=s.getUTCDate()+(c.w+6)%7):(l=(s=r(i(c.y,0,1))).getDay(),s=l>4||0===l?e.timeMonday.ceil(s):e.timeMonday(s),s=e.timeDay.offset(s,7*(c.V-1)),c.y=s.getFullYear(),c.m=s.getMonth(),c.d=s.getDate()+(c.w+6)%7)}else("W"in c||"U"in c)&&("w"in c||(c.w="u"in c?c.u%7:"W"in c?1:0),l="Z"in c?n(i(c.y,0,1)).getUTCDay():r(i(c.y,0,1)).getDay(),c.m=0,c.d="W"in c?(c.w+6)%7+7*c.W-(l+5)%7:c.w+7*c.U-(l+6)%7);return"Z"in c?(c.H+=c.Z/100|0,c.M+=c.Z%100,n(c)):r(c)}}function Bt(t,e,r,n){for(var i,a,o=0,l=e.length,c=r.length;o=c)return-1;if(37===(i=e.charCodeAt(o++))){if(i=e.charAt(o++),!(a=Dt[i in s?e.charAt(o++):i])||(n=a(t,r,n))<0)return-1}else if(i!=r.charCodeAt(n++))return-1}return n}return Ot.x=Rt(o,Ot),Ot.X=Rt(l,Ot),Ot.c=Rt(a,Ot),zt.x=Rt(o,zt),zt.X=Rt(l,zt),zt.c=Rt(a,zt),{format:function(t){var e=Rt(t+="",Ot);return e.toString=function(){return t},e},parse:function(t){var e=Ft(t+="",!1);return e.toString=function(){return t},e},utcFormat:function(t){var e=Rt(t+="",zt);return e.toString=function(){return t},e},utcParse:function(t){var e=Ft(t+="",!0);return e.toString=function(){return t},e}}}var o,s={"-":"",_:" ",0:"0"},l=/^\s*\d+/,c=/^%/,u=/[\\^$*+?|[\]().{}]/g;function f(t,e,r){var n=t<0?"-":"",i=(n?-t:t)+"",a=i.length;return n+(a68?1900:2e3),r+n[0].length):-1}function w(t,e,r){var n=/^(Z)|([+-]\d\d)(?::?(\d\d))?/.exec(e.slice(r,r+6));return n?(t.Z=n[1]?0:-(n[2]+(n[3]||"00")),r+n[0].length):-1}function T(t,e,r){var n=l.exec(e.slice(r,r+1));return n?(t.q=3*n[0]-3,r+n[0].length):-1}function k(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.m=n[0]-1,r+n[0].length):-1}function A(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.d=+n[0],r+n[0].length):-1}function M(t,e,r){var n=l.exec(e.slice(r,r+3));return n?(t.m=0,t.d=+n[0],r+n[0].length):-1}function S(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.H=+n[0],r+n[0].length):-1}function E(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.M=+n[0],r+n[0].length):-1}function L(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.S=+n[0],r+n[0].length):-1}function C(t,e,r){var n=l.exec(e.slice(r,r+3));return n?(t.L=+n[0],r+n[0].length):-1}function P(t,e,r){var n=l.exec(e.slice(r,r+6));return n?(t.L=Math.floor(n[0]/1e3),r+n[0].length):-1}function I(t,e,r){var n=c.exec(e.slice(r,r+1));return n?r+n[0].length:-1}function O(t,e,r){var n=l.exec(e.slice(r));return n?(t.Q=+n[0],r+n[0].length):-1}function z(t,e,r){var n=l.exec(e.slice(r));return n?(t.s=+n[0],r+n[0].length):-1}function D(t,e){return f(t.getDate(),e,2)}function R(t,e){return f(t.getHours(),e,2)}function F(t,e){return f(t.getHours()%12||12,e,2)}function B(t,r){return f(1+e.timeDay.count(e.timeYear(t),t),r,3)}function N(t,e){return f(t.getMilliseconds(),e,3)}function j(t,e){return N(t,e)+"000"}function U(t,e){return f(t.getMonth()+1,e,2)}function V(t,e){return f(t.getMinutes(),e,2)}function H(t,e){return f(t.getSeconds(),e,2)}function q(t){var e=t.getDay();return 0===e?7:e}function G(t,r){return f(e.timeSunday.count(e.timeYear(t)-1,t),r,2)}function Y(t){var r=t.getDay();return r>=4||0===r?e.timeThursday(t):e.timeThursday.ceil(t)}function W(t,r){return t=Y(t),f(e.timeThursday.count(e.timeYear(t),t)+(4===e.timeYear(t).getDay()),r,2)}function X(t){return t.getDay()}function Z(t,r){return f(e.timeMonday.count(e.timeYear(t)-1,t),r,2)}function J(t,e){return f(t.getFullYear()%100,e,2)}function K(t,e){return f((t=Y(t)).getFullYear()%100,e,2)}function Q(t,e){return f(t.getFullYear()%1e4,e,4)}function $(t,r){var n=t.getDay();return f((t=n>=4||0===n?e.timeThursday(t):e.timeThursday.ceil(t)).getFullYear()%1e4,r,4)}function tt(t){var e=t.getTimezoneOffset();return(e>0?"-":(e*=-1,"+"))+f(e/60|0,"0",2)+f(e%60,"0",2)}function et(t,e){return f(t.getUTCDate(),e,2)}function rt(t,e){return f(t.getUTCHours(),e,2)}function nt(t,e){return f(t.getUTCHours()%12||12,e,2)}function it(t,r){return f(1+e.utcDay.count(e.utcYear(t),t),r,3)}function at(t,e){return f(t.getUTCMilliseconds(),e,3)}function ot(t,e){return at(t,e)+"000"}function st(t,e){return f(t.getUTCMonth()+1,e,2)}function lt(t,e){return f(t.getUTCMinutes(),e,2)}function ct(t,e){return f(t.getUTCSeconds(),e,2)}function ut(t){var e=t.getUTCDay();return 0===e?7:e}function ft(t,r){return f(e.utcSunday.count(e.utcYear(t)-1,t),r,2)}function ht(t){var r=t.getUTCDay();return r>=4||0===r?e.utcThursday(t):e.utcThursday.ceil(t)}function pt(t,r){return t=ht(t),f(e.utcThursday.count(e.utcYear(t),t)+(4===e.utcYear(t).getUTCDay()),r,2)}function dt(t){return t.getUTCDay()}function mt(t,r){return f(e.utcMonday.count(e.utcYear(t)-1,t),r,2)}function gt(t,e){return f(t.getUTCFullYear()%100,e,2)}function vt(t,e){return f((t=ht(t)).getUTCFullYear()%100,e,2)}function yt(t,e){return f(t.getUTCFullYear()%1e4,e,4)}function xt(t,r){var n=t.getUTCDay();return f((t=n>=4||0===n?e.utcThursday(t):e.utcThursday.ceil(t)).getUTCFullYear()%1e4,r,4)}function bt(){return"+0000"}function _t(){return"%"}function wt(t){return+t}function Tt(t){return Math.floor(+t/1e3)}function kt(e){return o=a(e),t.timeFormat=o.format,t.timeParse=o.parse,t.utcFormat=o.utcFormat,t.utcParse=o.utcParse,o}kt({dateTime:"%x, %X",date:"%-m/%-d/%Y",time:"%-I:%M:%S %p",periods:["AM","PM"],days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]});var At=Date.prototype.toISOString?function(t){return t.toISOString()}:t.utcFormat("%Y-%m-%dT%H:%M:%S.%LZ");var Mt=+new Date("2000-01-01T00:00:00.000Z")?function(t){var e=new Date(t);return isNaN(e)?null:e}:t.utcParse("%Y-%m-%dT%H:%M:%S.%LZ");t.isoFormat=At,t.isoParse=Mt,t.timeFormatDefaultLocale=kt,t.timeFormatLocale=a,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-time":116}],116:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";var e=new Date,r=new Date;function n(t,i,a,o){function s(e){return t(e=0===arguments.length?new Date:new Date(+e)),e}return s.floor=function(e){return t(e=new Date(+e)),e},s.ceil=function(e){return t(e=new Date(e-1)),i(e,1),t(e),e},s.round=function(t){var e=s(t),r=s.ceil(t);return t-e0))return o;do{o.push(a=new Date(+e)),i(e,n),t(e)}while(a=r)for(;t(r),!e(r);)r.setTime(r-1)}),(function(t,r){if(t>=t)if(r<0)for(;++r<=0;)for(;i(t,-1),!e(t););else for(;--r>=0;)for(;i(t,1),!e(t););}))},a&&(s.count=function(n,i){return e.setTime(+n),r.setTime(+i),t(e),t(r),Math.floor(a(e,r))},s.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?s.filter(o?function(e){return o(e)%t==0}:function(e){return s.count(0,e)%t==0}):s:null}),s}var i=n((function(){}),(function(t,e){t.setTime(+t+e)}),(function(t,e){return e-t}));i.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?n((function(e){e.setTime(Math.floor(e/t)*t)}),(function(e,r){e.setTime(+e+r*t)}),(function(e,r){return(r-e)/t})):i:null};var a=i.range,o=n((function(t){t.setTime(t-t.getMilliseconds())}),(function(t,e){t.setTime(+t+1e3*e)}),(function(t,e){return(e-t)/1e3}),(function(t){return t.getUTCSeconds()})),s=o.range,l=n((function(t){t.setTime(t-t.getMilliseconds()-1e3*t.getSeconds())}),(function(t,e){t.setTime(+t+6e4*e)}),(function(t,e){return(e-t)/6e4}),(function(t){return t.getMinutes()})),c=l.range,u=n((function(t){t.setTime(t-t.getMilliseconds()-1e3*t.getSeconds()-6e4*t.getMinutes())}),(function(t,e){t.setTime(+t+36e5*e)}),(function(t,e){return(e-t)/36e5}),(function(t){return t.getHours()})),f=u.range,h=n((function(t){t.setHours(0,0,0,0)}),(function(t,e){t.setDate(t.getDate()+e)}),(function(t,e){return(e-t-6e4*(e.getTimezoneOffset()-t.getTimezoneOffset()))/864e5}),(function(t){return t.getDate()-1})),p=h.range;function d(t){return n((function(e){e.setDate(e.getDate()-(e.getDay()+7-t)%7),e.setHours(0,0,0,0)}),(function(t,e){t.setDate(t.getDate()+7*e)}),(function(t,e){return(e-t-6e4*(e.getTimezoneOffset()-t.getTimezoneOffset()))/6048e5}))}var m=d(0),g=d(1),v=d(2),y=d(3),x=d(4),b=d(5),_=d(6),w=m.range,T=g.range,k=v.range,A=y.range,M=x.range,S=b.range,E=_.range,L=n((function(t){t.setDate(1),t.setHours(0,0,0,0)}),(function(t,e){t.setMonth(t.getMonth()+e)}),(function(t,e){return e.getMonth()-t.getMonth()+12*(e.getFullYear()-t.getFullYear())}),(function(t){return t.getMonth()})),C=L.range,P=n((function(t){t.setMonth(0,1),t.setHours(0,0,0,0)}),(function(t,e){t.setFullYear(t.getFullYear()+e)}),(function(t,e){return e.getFullYear()-t.getFullYear()}),(function(t){return t.getFullYear()}));P.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n((function(e){e.setFullYear(Math.floor(e.getFullYear()/t)*t),e.setMonth(0,1),e.setHours(0,0,0,0)}),(function(e,r){e.setFullYear(e.getFullYear()+r*t)})):null};var I=P.range,O=n((function(t){t.setUTCSeconds(0,0)}),(function(t,e){t.setTime(+t+6e4*e)}),(function(t,e){return(e-t)/6e4}),(function(t){return t.getUTCMinutes()})),z=O.range,D=n((function(t){t.setUTCMinutes(0,0,0)}),(function(t,e){t.setTime(+t+36e5*e)}),(function(t,e){return(e-t)/36e5}),(function(t){return t.getUTCHours()})),R=D.range,F=n((function(t){t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCDate(t.getUTCDate()+e)}),(function(t,e){return(e-t)/864e5}),(function(t){return t.getUTCDate()-1})),B=F.range;function N(t){return n((function(e){e.setUTCDate(e.getUTCDate()-(e.getUTCDay()+7-t)%7),e.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCDate(t.getUTCDate()+7*e)}),(function(t,e){return(e-t)/6048e5}))}var j=N(0),U=N(1),V=N(2),H=N(3),q=N(4),G=N(5),Y=N(6),W=j.range,X=U.range,Z=V.range,J=H.range,K=q.range,Q=G.range,$=Y.range,tt=n((function(t){t.setUTCDate(1),t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCMonth(t.getUTCMonth()+e)}),(function(t,e){return e.getUTCMonth()-t.getUTCMonth()+12*(e.getUTCFullYear()-t.getUTCFullYear())}),(function(t){return t.getUTCMonth()})),et=tt.range,rt=n((function(t){t.setUTCMonth(0,1),t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCFullYear(t.getUTCFullYear()+e)}),(function(t,e){return e.getUTCFullYear()-t.getUTCFullYear()}),(function(t){return t.getUTCFullYear()}));rt.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n((function(e){e.setUTCFullYear(Math.floor(e.getUTCFullYear()/t)*t),e.setUTCMonth(0,1),e.setUTCHours(0,0,0,0)}),(function(e,r){e.setUTCFullYear(e.getUTCFullYear()+r*t)})):null};var nt=rt.range;t.timeDay=h,t.timeDays=p,t.timeFriday=b,t.timeFridays=S,t.timeHour=u,t.timeHours=f,t.timeInterval=n,t.timeMillisecond=i,t.timeMilliseconds=a,t.timeMinute=l,t.timeMinutes=c,t.timeMonday=g,t.timeMondays=T,t.timeMonth=L,t.timeMonths=C,t.timeSaturday=_,t.timeSaturdays=E,t.timeSecond=o,t.timeSeconds=s,t.timeSunday=m,t.timeSundays=w,t.timeThursday=x,t.timeThursdays=M,t.timeTuesday=v,t.timeTuesdays=k,t.timeWednesday=y,t.timeWednesdays=A,t.timeWeek=m,t.timeWeeks=w,t.timeYear=P,t.timeYears=I,t.utcDay=F,t.utcDays=B,t.utcFriday=G,t.utcFridays=Q,t.utcHour=D,t.utcHours=R,t.utcMillisecond=i,t.utcMilliseconds=a,t.utcMinute=O,t.utcMinutes=z,t.utcMonday=U,t.utcMondays=X,t.utcMonth=tt,t.utcMonths=et,t.utcSaturday=Y,t.utcSaturdays=$,t.utcSecond=o,t.utcSeconds=s,t.utcSunday=j,t.utcSundays=W,t.utcThursday=q,t.utcThursdays=K,t.utcTuesday=V,t.utcTuesdays=Z,t.utcWednesday=H,t.utcWednesdays=J,t.utcWeek=j,t.utcWeeks=W,t.utcYear=rt,t.utcYears=nt,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],117:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";var e,r,n=0,i=0,a=0,o=0,s=0,l=0,c="object"==typeof performance&&performance.now?performance:Date,u="object"==typeof window&&window.requestAnimationFrame?window.requestAnimationFrame.bind(window):function(t){setTimeout(t,17)};function f(){return s||(u(h),s=c.now()+l)}function h(){s=0}function p(){this._call=this._time=this._next=null}function d(t,e,r){var n=new p;return n.restart(t,e,r),n}function m(){f(),++n;for(var t,r=e;r;)(t=s-r._time)>=0&&r._call.call(null,t),r=r._next;--n}function g(){s=(o=c.now())+l,n=i=0;try{m()}finally{n=0,function(){var t,n,i=e,a=1/0;for(;i;)i._call?(a>i._time&&(a=i._time),t=i,i=i._next):(n=i._next,i._next=null,i=t?t._next=n:e=n);r=t,y(a)}(),s=0}}function v(){var t=c.now(),e=t-o;e>1e3&&(l-=e,o=t)}function y(t){n||(i&&(i=clearTimeout(i)),t-s>24?(t<1/0&&(i=setTimeout(g,t-c.now()-l)),a&&(a=clearInterval(a))):(a||(o=c.now(),a=setInterval(v,1e3)),n=1,u(g)))}p.prototype=d.prototype={constructor:p,restart:function(t,n,i){if("function"!=typeof t)throw new TypeError("callback is not a function");i=(null==i?f():+i)+(null==n?0:+n),this._next||r===this||(r?r._next=this:e=this,r=this),this._call=t,this._time=i,y()},stop:function(){this._call&&(this._call=null,this._time=1/0,y())}},t.interval=function(t,e,r){var n=new p,i=e;return null==e?(n.restart(t,e,r),n):(e=+e,r=null==r?f():+r,n.restart((function a(o){o+=i,n.restart(a,i+=e,r),t(o)}),e,r),n)},t.now=f,t.timeout=function(t,e,r){var n=new p;return e=null==e?0:+e,n.restart((function(r){n.stop(),t(r+e)}),e,r),n},t.timer=d,t.timerFlush=m,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],118:[function(t,e,r){e.exports=function(){for(var t=0;ts*l){var p=(h-f)/s;a[u]=1e3*p}}return a}function o(t){for(var e=[],r=t[0];r<=t[1];r++)for(var n=String.fromCharCode(r),i=t[0];i0)return function(t,e){var r,n;for(r=new Array(t),n=0;n80*r){n=l=t[0],s=c=t[1];for(var b=r;bl&&(l=u),p>c&&(c=p);d=0!==(d=Math.max(l-n,c-s))?1/d:0}return o(y,x,r,n,s,d),x}function i(t,e,r,n,i){var a,o;if(i===E(t,e,r,n)>0)for(a=e;a=e;a-=n)o=A(a,t[a],t[a+1],o);return o&&x(o,o.next)&&(M(o),o=o.next),o}function a(t,e){if(!t)return t;e||(e=t);var r,n=t;do{if(r=!1,n.steiner||!x(n,n.next)&&0!==y(n.prev,n,n.next))n=n.next;else{if(M(n),(n=e=n.prev)===n.next)break;r=!0}}while(r||n!==e);return e}function o(t,e,r,n,i,f,h){if(t){!h&&f&&function(t,e,r,n){var i=t;do{null===i.z&&(i.z=d(i.x,i.y,e,r,n)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==t);i.prevZ.nextZ=null,i.prevZ=null,function(t){var e,r,n,i,a,o,s,l,c=1;do{for(r=t,t=null,a=null,o=0;r;){for(o++,n=r,s=0,e=0;e0||l>0&&n;)0!==s&&(0===l||!n||r.z<=n.z)?(i=r,r=r.nextZ,s--):(i=n,n=n.nextZ,l--),a?a.nextZ=i:t=i,i.prevZ=a,a=i;r=n}a.nextZ=null,c*=2}while(o>1)}(i)}(t,n,i,f);for(var p,m,g=t;t.prev!==t.next;)if(p=t.prev,m=t.next,f?l(t,n,i,f):s(t))e.push(p.i/r),e.push(t.i/r),e.push(m.i/r),M(t),t=m.next,g=m.next;else if((t=m)===g){h?1===h?o(t=c(a(t),e,r),e,r,n,i,f,2):2===h&&u(t,e,r,n,i,f):o(a(t),e,r,n,i,f,1);break}}}function s(t){var e=t.prev,r=t,n=t.next;if(y(e,r,n)>=0)return!1;for(var i=t.next.next;i!==t.prev;){if(g(e.x,e.y,r.x,r.y,n.x,n.y,i.x,i.y)&&y(i.prev,i,i.next)>=0)return!1;i=i.next}return!0}function l(t,e,r,n){var i=t.prev,a=t,o=t.next;if(y(i,a,o)>=0)return!1;for(var s=i.xa.x?i.x>o.x?i.x:o.x:a.x>o.x?a.x:o.x,u=i.y>a.y?i.y>o.y?i.y:o.y:a.y>o.y?a.y:o.y,f=d(s,l,e,r,n),h=d(c,u,e,r,n),p=t.prevZ,m=t.nextZ;p&&p.z>=f&&m&&m.z<=h;){if(p!==t.prev&&p!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&y(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,m!==t.prev&&m!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,m.x,m.y)&&y(m.prev,m,m.next)>=0)return!1;m=m.nextZ}for(;p&&p.z>=f;){if(p!==t.prev&&p!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&y(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;m&&m.z<=h;){if(m!==t.prev&&m!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,m.x,m.y)&&y(m.prev,m,m.next)>=0)return!1;m=m.nextZ}return!0}function c(t,e,r){var n=t;do{var i=n.prev,o=n.next.next;!x(i,o)&&b(i,n,n.next,o)&&T(i,o)&&T(o,i)&&(e.push(i.i/r),e.push(n.i/r),e.push(o.i/r),M(n),M(n.next),n=t=o),n=n.next}while(n!==t);return a(n)}function u(t,e,r,n,i,s){var l=t;do{for(var c=l.next.next;c!==l.prev;){if(l.i!==c.i&&v(l,c)){var u=k(l,c);return l=a(l,l.next),u=a(u,u.next),o(l,e,r,n,i,s),void o(u,e,r,n,i,s)}c=c.next}l=l.next}while(l!==t)}function f(t,e){return t.x-e.x}function h(t,e){var r=function(t,e){var r,n=e,i=t.x,a=t.y,o=-1/0;do{if(a<=n.y&&a>=n.next.y&&n.next.y!==n.y){var s=n.x+(a-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(s<=i&&s>o){if(o=s,s===i){if(a===n.y)return n;if(a===n.next.y)return n.next}r=n.x=n.x&&n.x>=u&&i!==n.x&&g(ar.x||n.x===r.x&&p(r,n)))&&(r=n,h=l)),n=n.next}while(n!==c);return r}(t,e);if(!r)return e;var n=k(r,t),i=a(r,r.next);return a(n,n.next),e===r?i:e}function p(t,e){return y(t.prev,t,e.prev)<0&&y(e.next,t,t.next)<0}function d(t,e,r,n,i){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-r)*i)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function m(t){var e=t,r=t;do{(e.x=0&&(t-o)*(n-s)-(r-o)*(e-s)>=0&&(r-o)*(a-s)-(i-o)*(n-s)>=0}function v(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){var r=t;do{if(r.i!==t.i&&r.next.i!==t.i&&r.i!==e.i&&r.next.i!==e.i&&b(r,r.next,t,e))return!0;r=r.next}while(r!==t);return!1}(t,e)&&(T(t,e)&&T(e,t)&&function(t,e){var r=t,n=!1,i=(t.x+e.x)/2,a=(t.y+e.y)/2;do{r.y>a!=r.next.y>a&&r.next.y!==r.y&&i<(r.next.x-r.x)*(a-r.y)/(r.next.y-r.y)+r.x&&(n=!n),r=r.next}while(r!==t);return n}(t,e)&&(y(t.prev,t,e.prev)||y(t,e.prev,e))||x(t,e)&&y(t.prev,t,t.next)>0&&y(e.prev,e,e.next)>0)}function y(t,e,r){return(e.y-t.y)*(r.x-e.x)-(e.x-t.x)*(r.y-e.y)}function x(t,e){return t.x===e.x&&t.y===e.y}function b(t,e,r,n){var i=w(y(t,e,r)),a=w(y(t,e,n)),o=w(y(r,n,t)),s=w(y(r,n,e));return i!==a&&o!==s||(!(0!==i||!_(t,r,e))||(!(0!==a||!_(t,n,e))||(!(0!==o||!_(r,t,n))||!(0!==s||!_(r,e,n)))))}function _(t,e,r){return e.x<=Math.max(t.x,r.x)&&e.x>=Math.min(t.x,r.x)&&e.y<=Math.max(t.y,r.y)&&e.y>=Math.min(t.y,r.y)}function w(t){return t>0?1:t<0?-1:0}function T(t,e){return y(t.prev,t,t.next)<0?y(t,e,t.next)>=0&&y(t,t.prev,e)>=0:y(t,e,t.prev)<0||y(t,t.next,e)<0}function k(t,e){var r=new S(t.i,t.x,t.y),n=new S(e.i,e.x,e.y),i=t.next,a=e.prev;return t.next=e,e.prev=t,r.next=i,i.prev=r,n.next=r,r.prev=n,a.next=n,n.prev=a,n}function A(t,e,r,n){var i=new S(t,e,r);return n?(i.next=n.next,i.prev=n,n.next.prev=i,n.next=i):(i.prev=i,i.next=i),i}function M(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function S(t,e,r){this.i=t,this.x=e,this.y=r,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}function E(t,e,r,n){for(var i=0,a=e,o=r-n;a0&&(n+=t[i-1].length,r.holes.push(n))}return r}},{}],124:[function(t,e,r){var n=t("strongly-connected-components");e.exports=function(t,e){var r,i=[],a=[],o=[],s={},l=[];function c(t){var e,n,i=!1;for(a.push(t),o[t]=!0,e=0;e=e}))}(e);for(var r,i=n(t).components.filter((function(t){return t.length>1})),a=1/0,o=0;o=55296&&y<=56319&&(w+=t[++r]),w=T?h.call(T,k,w,m):w,e?(p.value=w,d(g,m,p)):g[m]=w,++m;v=m}if(void 0===v)for(v=o(t.length),e&&(g=new e(v)),r=0;r0?1:-1}},{}],135:[function(t,e,r){"use strict";var n=t("../math/sign"),i=Math.abs,a=Math.floor;e.exports=function(t){return isNaN(t)?0:0!==(t=Number(t))&&isFinite(t)?n(t)*a(i(t)):t}},{"../math/sign":132}],136:[function(t,e,r){"use strict";var n=t("./to-integer"),i=Math.max;e.exports=function(t){return i(0,n(t))}},{"./to-integer":135}],137:[function(t,e,r){"use strict";var n=t("./valid-callable"),i=t("./valid-value"),a=Function.prototype.bind,o=Function.prototype.call,s=Object.keys,l=Object.prototype.propertyIsEnumerable;e.exports=function(t,e){return function(r,c){var u,f=arguments[2],h=arguments[3];return r=Object(i(r)),n(c),u=s(r),h&&u.sort("function"==typeof h?a.call(h,r):void 0),"function"!=typeof t&&(t=u[t]),o.call(t,u,(function(t,n){return l.call(r,t)?o.call(c,f,r[t],t,r,n):e}))}}},{"./valid-callable":154,"./valid-value":156}],138:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?Object.assign:t("./shim")},{"./is-implemented":139,"./shim":140}],139:[function(t,e,r){"use strict";e.exports=function(){var t,e=Object.assign;return"function"==typeof e&&(e(t={foo:"raz"},{bar:"dwa"},{trzy:"trzy"}),t.foo+t.bar+t.trzy==="razdwatrzy")}},{}],140:[function(t,e,r){"use strict";var n=t("../keys"),i=t("../valid-value"),a=Math.max;e.exports=function(t,e){var r,o,s,l=a(arguments.length,2);for(t=Object(i(t)),s=function(n){try{t[n]=e[n]}catch(t){r||(r=t)}},o=1;o-1}},{}],160:[function(t,e,r){"use strict";var n=Object.prototype.toString,i=n.call("");e.exports=function(t){return"string"==typeof t||t&&"object"==typeof t&&(t instanceof String||n.call(t)===i)||!1}},{}],161:[function(t,e,r){"use strict";var n=Object.create(null),i=Math.random;e.exports=function(){var t;do{t=i().toString(36).slice(2)}while(n[t]);return t}},{}],162:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/set-prototype-of"),a=t("es5-ext/string/#/contains"),o=t("d"),s=t("es6-symbol"),l=t("./"),c=Object.defineProperty;n=e.exports=function(t,e){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");l.call(this,t),e=e?a.call(e,"key+value")?"key+value":a.call(e,"key")?"key":"value":"value",c(this,"__kind__",o("",e))},i&&i(n,l),delete n.prototype.constructor,n.prototype=Object.create(l.prototype,{_resolve:o((function(t){return"value"===this.__kind__?this.__list__[t]:"key+value"===this.__kind__?[t,this.__list__[t]]:t}))}),c(n.prototype,s.toStringTag,o("c","Array Iterator"))},{"./":165,d:101,"es5-ext/object/set-prototype-of":151,"es5-ext/string/#/contains":157,"es6-symbol":169}],163:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/object/valid-callable"),a=t("es5-ext/string/is-string"),o=t("./get"),s=Array.isArray,l=Function.prototype.call,c=Array.prototype.some;e.exports=function(t,e){var r,u,f,h,p,d,m,g,v=arguments[2];if(s(t)||n(t)?r="array":a(t)?r="string":t=o(t),i(e),f=function(){h=!0},"array"!==r)if("string"!==r)for(u=t.next();!u.done;){if(l.call(e,v,u.value,f),h)return;u=t.next()}else for(d=t.length,p=0;p=55296&&g<=56319&&(m+=t[++p]),l.call(e,v,m,f),!h);++p);else c.call(t,(function(t){return l.call(e,v,t,f),h}))}},{"./get":164,"es5-ext/function/is-arguments":129,"es5-ext/object/valid-callable":154,"es5-ext/string/is-string":160}],164:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/string/is-string"),a=t("./array"),o=t("./string"),s=t("./valid-iterable"),l=t("es6-symbol").iterator;e.exports=function(t){return"function"==typeof s(t)[l]?t[l]():n(t)?new a(t):i(t)?new o(t):new a(t)}},{"./array":162,"./string":167,"./valid-iterable":168,"es5-ext/function/is-arguments":129,"es5-ext/string/is-string":160,"es6-symbol":169}],165:[function(t,e,r){"use strict";var n,i=t("es5-ext/array/#/clear"),a=t("es5-ext/object/assign"),o=t("es5-ext/object/valid-callable"),s=t("es5-ext/object/valid-value"),l=t("d"),c=t("d/auto-bind"),u=t("es6-symbol"),f=Object.defineProperty,h=Object.defineProperties;e.exports=n=function(t,e){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");h(this,{__list__:l("w",s(t)),__context__:l("w",e),__nextIndex__:l("w",0)}),e&&(o(e.on),e.on("_add",this._onAdd),e.on("_delete",this._onDelete),e.on("_clear",this._onClear))},delete n.prototype.constructor,h(n.prototype,a({_next:l((function(){var t;if(this.__list__)return this.__redo__&&void 0!==(t=this.__redo__.shift())?t:this.__nextIndex__=this.__nextIndex__||(++this.__nextIndex__,this.__redo__?(this.__redo__.forEach((function(e,r){e>=t&&(this.__redo__[r]=++e)}),this),this.__redo__.push(t)):f(this,"__redo__",l("c",[t])))})),_onDelete:l((function(t){var e;t>=this.__nextIndex__||(--this.__nextIndex__,this.__redo__&&(-1!==(e=this.__redo__.indexOf(t))&&this.__redo__.splice(e,1),this.__redo__.forEach((function(e,r){e>t&&(this.__redo__[r]=--e)}),this)))})),_onClear:l((function(){this.__redo__&&i.call(this.__redo__),this.__nextIndex__=0}))}))),f(n.prototype,u.iterator,l((function(){return this})))},{d:101,"d/auto-bind":100,"es5-ext/array/#/clear":125,"es5-ext/object/assign":138,"es5-ext/object/valid-callable":154,"es5-ext/object/valid-value":156,"es6-symbol":169}],166:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/object/is-value"),a=t("es5-ext/string/is-string"),o=t("es6-symbol").iterator,s=Array.isArray;e.exports=function(t){return!!i(t)&&(!!s(t)||(!!a(t)||(!!n(t)||"function"==typeof t[o])))}},{"es5-ext/function/is-arguments":129,"es5-ext/object/is-value":145,"es5-ext/string/is-string":160,"es6-symbol":169}],167:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/set-prototype-of"),a=t("d"),o=t("es6-symbol"),s=t("./"),l=Object.defineProperty;n=e.exports=function(t){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");t=String(t),s.call(this,t),l(this,"__length__",a("",t.length))},i&&i(n,s),delete n.prototype.constructor,n.prototype=Object.create(s.prototype,{_next:a((function(){if(this.__list__)return this.__nextIndex__=55296&&e<=56319?r+this.__list__[this.__nextIndex__++]:r}))}),l(n.prototype,o.toStringTag,a("c","String Iterator"))},{"./":165,d:101,"es5-ext/object/set-prototype-of":151,"es6-symbol":169}],168:[function(t,e,r){"use strict";var n=t("./is-iterable");e.exports=function(t){if(!n(t))throw new TypeError(t+" is not iterable");return t}},{"./is-iterable":166}],169:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?t("ext/global-this").Symbol:t("./polyfill")},{"./is-implemented":170,"./polyfill":175,"ext/global-this":183}],170:[function(t,e,r){"use strict";var n=t("ext/global-this"),i={object:!0,symbol:!0};e.exports=function(){var t,e=n.Symbol;if("function"!=typeof e)return!1;t=e("test symbol");try{String(t)}catch(t){return!1}return!!i[typeof e.iterator]&&(!!i[typeof e.toPrimitive]&&!!i[typeof e.toStringTag])}},{"ext/global-this":183}],171:[function(t,e,r){"use strict";e.exports=function(t){return!!t&&("symbol"==typeof t||!!t.constructor&&("Symbol"===t.constructor.name&&"Symbol"===t[t.constructor.toStringTag]))}},{}],172:[function(t,e,r){"use strict";var n=t("d"),i=Object.create,a=Object.defineProperty,o=Object.prototype,s=i(null);e.exports=function(t){for(var e,r,i=0;s[t+(i||"")];)++i;return s[t+=i||""]=!0,a(o,e="@@"+t,n.gs(null,(function(t){r||(r=!0,a(this,e,n(t)),r=!1)}))),e}},{d:101}],173:[function(t,e,r){"use strict";var n=t("d"),i=t("ext/global-this").Symbol;e.exports=function(t){return Object.defineProperties(t,{hasInstance:n("",i&&i.hasInstance||t("hasInstance")),isConcatSpreadable:n("",i&&i.isConcatSpreadable||t("isConcatSpreadable")),iterator:n("",i&&i.iterator||t("iterator")),match:n("",i&&i.match||t("match")),replace:n("",i&&i.replace||t("replace")),search:n("",i&&i.search||t("search")),species:n("",i&&i.species||t("species")),split:n("",i&&i.split||t("split")),toPrimitive:n("",i&&i.toPrimitive||t("toPrimitive")),toStringTag:n("",i&&i.toStringTag||t("toStringTag")),unscopables:n("",i&&i.unscopables||t("unscopables"))})}},{d:101,"ext/global-this":183}],174:[function(t,e,r){"use strict";var n=t("d"),i=t("../../../validate-symbol"),a=Object.create(null);e.exports=function(t){return Object.defineProperties(t,{for:n((function(e){return a[e]?a[e]:a[e]=t(String(e))})),keyFor:n((function(t){var e;for(e in i(t),a)if(a[e]===t)return e}))})}},{"../../../validate-symbol":176,d:101}],175:[function(t,e,r){"use strict";var n,i,a,o=t("d"),s=t("./validate-symbol"),l=t("ext/global-this").Symbol,c=t("./lib/private/generate-name"),u=t("./lib/private/setup/standard-symbols"),f=t("./lib/private/setup/symbol-registry"),h=Object.create,p=Object.defineProperties,d=Object.defineProperty;if("function"==typeof l)try{String(l()),a=!0}catch(t){}else l=null;i=function(t){if(this instanceof i)throw new TypeError("Symbol is not a constructor");return n(t)},e.exports=n=function t(e){var r;if(this instanceof t)throw new TypeError("Symbol is not a constructor");return a?l(e):(r=h(i.prototype),e=void 0===e?"":String(e),p(r,{__description__:o("",e),__name__:o("",c(e))}))},u(n),f(n),p(i.prototype,{constructor:o(n),toString:o("",(function(){return this.__name__}))}),p(n.prototype,{toString:o((function(){return"Symbol ("+s(this).__description__+")"})),valueOf:o((function(){return s(this)}))}),d(n.prototype,n.toPrimitive,o("",(function(){var t=s(this);return"symbol"==typeof t?t:t.toString()}))),d(n.prototype,n.toStringTag,o("c","Symbol")),d(i.prototype,n.toStringTag,o("c",n.prototype[n.toStringTag])),d(i.prototype,n.toPrimitive,o("c",n.prototype[n.toPrimitive]))},{"./lib/private/generate-name":172,"./lib/private/setup/standard-symbols":173,"./lib/private/setup/symbol-registry":174,"./validate-symbol":176,d:101,"ext/global-this":183}],176:[function(t,e,r){"use strict";var n=t("./is-symbol");e.exports=function(t){if(!n(t))throw new TypeError(t+" is not a symbol");return t}},{"./is-symbol":171}],177:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?WeakMap:t("./polyfill")},{"./is-implemented":178,"./polyfill":180}],178:[function(t,e,r){"use strict";e.exports=function(){var t,e;if("function"!=typeof WeakMap)return!1;try{t=new WeakMap([[e={},"one"],[{},"two"],[{},"three"]])}catch(t){return!1}return"[object WeakMap]"===String(t)&&("function"==typeof t.set&&(t.set({},1)===t&&("function"==typeof t.delete&&("function"==typeof t.has&&"one"===t.get(e)))))}},{}],179:[function(t,e,r){"use strict";e.exports="function"==typeof WeakMap&&"[object WeakMap]"===Object.prototype.toString.call(new WeakMap)},{}],180:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/is-value"),a=t("es5-ext/object/set-prototype-of"),o=t("es5-ext/object/valid-object"),s=t("es5-ext/object/valid-value"),l=t("es5-ext/string/random-uniq"),c=t("d"),u=t("es6-iterator/get"),f=t("es6-iterator/for-of"),h=t("es6-symbol").toStringTag,p=t("./is-native-implemented"),d=Array.isArray,m=Object.defineProperty,g=Object.prototype.hasOwnProperty,v=Object.getPrototypeOf;e.exports=n=function(){var t,e=arguments[0];if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");return t=p&&a&&WeakMap!==n?a(new WeakMap,v(this)):this,i(e)&&(d(e)||(e=u(e))),m(t,"__weakMapData__",c("c","$weakMap$"+l())),e?(f(e,(function(e){s(e),t.set(e[0],e[1])})),t):t},p&&(a&&a(n,WeakMap),n.prototype=Object.create(WeakMap.prototype,{constructor:c(n)})),Object.defineProperties(n.prototype,{delete:c((function(t){return!!g.call(o(t),this.__weakMapData__)&&(delete t[this.__weakMapData__],!0)})),get:c((function(t){if(g.call(o(t),this.__weakMapData__))return t[this.__weakMapData__]})),has:c((function(t){return g.call(o(t),this.__weakMapData__)})),set:c((function(t,e){return m(o(t),this.__weakMapData__,c("c",e)),this})),toString:c((function(){return"[object WeakMap]"}))}),m(n.prototype,h,c("c","WeakMap"))},{"./is-native-implemented":179,d:101,"es5-ext/object/is-value":145,"es5-ext/object/set-prototype-of":151,"es5-ext/object/valid-object":155,"es5-ext/object/valid-value":156,"es5-ext/string/random-uniq":161,"es6-iterator/for-of":163,"es6-iterator/get":164,"es6-symbol":169}],181:[function(t,e,r){"use strict";var n,i="object"==typeof Reflect?Reflect:null,a=i&&"function"==typeof i.apply?i.apply:function(t,e,r){return Function.prototype.apply.call(t,e,r)};n=i&&"function"==typeof i.ownKeys?i.ownKeys:Object.getOwnPropertySymbols?function(t){return Object.getOwnPropertyNames(t).concat(Object.getOwnPropertySymbols(t))}:function(t){return Object.getOwnPropertyNames(t)};var o=Number.isNaN||function(t){return t!=t};function s(){s.init.call(this)}e.exports=s,e.exports.once=function(t,e){return new Promise((function(r,n){function i(r){t.removeListener(e,a),n(r)}function a(){"function"==typeof t.removeListener&&t.removeListener("error",i),r([].slice.call(arguments))}v(t,e,a,{once:!0}),"error"!==e&&function(t,e,r){"function"==typeof t.on&&v(t,"error",e,r)}(t,i,{once:!0})}))},s.EventEmitter=s,s.prototype._events=void 0,s.prototype._eventsCount=0,s.prototype._maxListeners=void 0;var l=10;function c(t){if("function"!=typeof t)throw new TypeError('The "listener" argument must be of type Function. Received type '+typeof t)}function u(t){return void 0===t._maxListeners?s.defaultMaxListeners:t._maxListeners}function f(t,e,r,n){var i,a,o,s;if(c(r),void 0===(a=t._events)?(a=t._events=Object.create(null),t._eventsCount=0):(void 0!==a.newListener&&(t.emit("newListener",e,r.listener?r.listener:r),a=t._events),o=a[e]),void 0===o)o=a[e]=r,++t._eventsCount;else if("function"==typeof o?o=a[e]=n?[r,o]:[o,r]:n?o.unshift(r):o.push(r),(i=u(t))>0&&o.length>i&&!o.warned){o.warned=!0;var l=new Error("Possible EventEmitter memory leak detected. "+o.length+" "+String(e)+" listeners added. Use emitter.setMaxListeners() to increase limit");l.name="MaxListenersExceededWarning",l.emitter=t,l.type=e,l.count=o.length,s=l,console&&console.warn&&console.warn(s)}return t}function h(){if(!this.fired)return this.target.removeListener(this.type,this.wrapFn),this.fired=!0,0===arguments.length?this.listener.call(this.target):this.listener.apply(this.target,arguments)}function p(t,e,r){var n={fired:!1,wrapFn:void 0,target:t,type:e,listener:r},i=h.bind(n);return i.listener=r,n.wrapFn=i,i}function d(t,e,r){var n=t._events;if(void 0===n)return[];var i=n[e];return void 0===i?[]:"function"==typeof i?r?[i.listener||i]:[i]:r?function(t){for(var e=new Array(t.length),r=0;r0&&(o=e[0]),o instanceof Error)throw o;var s=new Error("Unhandled error."+(o?" ("+o.message+")":""));throw s.context=o,s}var l=i[t];if(void 0===l)return!1;if("function"==typeof l)a(l,this,e);else{var c=l.length,u=g(l,c);for(r=0;r=0;a--)if(r[a]===e||r[a].listener===e){o=r[a].listener,i=a;break}if(i<0)return this;0===i?r.shift():function(t,e){for(;e+1=0;n--)this.removeListener(t,e[n]);return this},s.prototype.listeners=function(t){return d(this,t,!0)},s.prototype.rawListeners=function(t){return d(this,t,!1)},s.listenerCount=function(t,e){return"function"==typeof t.listenerCount?t.listenerCount(e):m.call(t,e)},s.prototype.listenerCount=m,s.prototype.eventNames=function(){return this._eventsCount>0?n(this._events):[]}},{}],182:[function(t,e,r){var n=function(){if("object"==typeof self&&self)return self;if("object"==typeof window&&window)return window;throw new Error("Unable to resolve global `this`")};e.exports=function(){if(this)return this;try{Object.defineProperty(Object.prototype,"__global__",{get:function(){return this},configurable:!0})}catch(t){return n()}try{return __global__||n()}finally{delete Object.prototype.__global__}}()},{}],183:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?globalThis:t("./implementation")},{"./implementation":182,"./is-implemented":184}],184:[function(t,e,r){"use strict";e.exports=function(){return"object"==typeof globalThis&&(!!globalThis&&globalThis.Array===Array)}},{}],185:[function(t,e,r){"use strict";var n=t("is-string-blank");e.exports=function(t){var e=typeof t;if("string"===e){var r=t;if(0===(t=+t)&&n(r))return!1}else if("number"!==e)return!1;return t-t<1}},{"is-string-blank":232}],186:[function(t,e,r){var n=t("dtype");e.exports=function(t,e,r){if(!t)throw new TypeError("must specify data as first parameter");if(r=0|+(r||0),Array.isArray(t)&&t[0]&&"number"==typeof t[0][0]){var i,a,o,s,l=t[0].length,c=t.length*l;e&&"string"!=typeof e||(e=new(n(e||"float32"))(c+r));var u=e.length-r;if(c!==u)throw new Error("source length "+c+" ("+l+"x"+t.length+") does not match destination length "+u);for(i=0,o=r;ie[0]-o[0]/2&&(h=o[0]/2,p+=o[1]);return r}},{"css-font/stringify":97}],188:[function(t,e,r){"use strict";function n(t,e){e||(e={}),("string"==typeof t||Array.isArray(t))&&(e.family=t);var r=Array.isArray(e.family)?e.family.join(", "):e.family;if(!r)throw Error("`family` must be defined");var s=e.size||e.fontSize||e.em||48,l=e.weight||e.fontWeight||"",c=(t=[e.style||e.fontStyle||"",l,s].join(" ")+"px "+r,e.origin||"top");if(n.cache[r]&&s<=n.cache[r].em)return i(n.cache[r],c);var u=e.canvas||n.canvas,f=u.getContext("2d"),h={upper:void 0!==e.upper?e.upper:"H",lower:void 0!==e.lower?e.lower:"x",descent:void 0!==e.descent?e.descent:"p",ascent:void 0!==e.ascent?e.ascent:"h",tittle:void 0!==e.tittle?e.tittle:"i",overshoot:void 0!==e.overshoot?e.overshoot:"O"},p=Math.ceil(1.5*s);u.height=p,u.width=.5*p,f.font=t;var d={top:0};f.clearRect(0,0,p,p),f.textBaseline="top",f.fillStyle="black",f.fillText("H",0,0);var m=a(f.getImageData(0,0,p,p));f.clearRect(0,0,p,p),f.textBaseline="bottom",f.fillText("H",0,p);var g=a(f.getImageData(0,0,p,p));d.lineHeight=d.bottom=p-g+m,f.clearRect(0,0,p,p),f.textBaseline="alphabetic",f.fillText("H",0,p);var v=p-a(f.getImageData(0,0,p,p))-1+m;d.baseline=d.alphabetic=v,f.clearRect(0,0,p,p),f.textBaseline="middle",f.fillText("H",0,.5*p);var y=a(f.getImageData(0,0,p,p));d.median=d.middle=p-y-1+m-.5*p,f.clearRect(0,0,p,p),f.textBaseline="hanging",f.fillText("H",0,.5*p);var x=a(f.getImageData(0,0,p,p));d.hanging=p-x-1+m-.5*p,f.clearRect(0,0,p,p),f.textBaseline="ideographic",f.fillText("H",0,p);var b=a(f.getImageData(0,0,p,p));if(d.ideographic=p-b-1+m,h.upper&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.upper,0,0),d.upper=a(f.getImageData(0,0,p,p)),d.capHeight=d.baseline-d.upper),h.lower&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.lower,0,0),d.lower=a(f.getImageData(0,0,p,p)),d.xHeight=d.baseline-d.lower),h.tittle&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.tittle,0,0),d.tittle=a(f.getImageData(0,0,p,p))),h.ascent&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.ascent,0,0),d.ascent=a(f.getImageData(0,0,p,p))),h.descent&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.descent,0,0),d.descent=o(f.getImageData(0,0,p,p))),h.overshoot){f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.overshoot,0,0);var _=o(f.getImageData(0,0,p,p));d.overshoot=_-v}for(var w in d)d[w]/=s;return d.em=s,n.cache[r]=d,i(d,c)}function i(t,e){var r={};for(var n in"string"==typeof e&&(e=t[e]),t)"em"!==n&&(r[n]=t[n]-e);return r}function a(t){for(var e=t.height,r=t.data,n=3;n0;n-=4)if(0!==r[n])return Math.floor(.25*(n-3)/e)}e.exports=n,n.canvas=document.createElement("canvas"),n.cache={}},{}],189:[function(t,e,r){e.exports=function(t,e){if("string"!=typeof t)throw new TypeError("must specify type string");if(e=e||{},"undefined"==typeof document&&!e.canvas)return null;var r=e.canvas||document.createElement("canvas");"number"==typeof e.width&&(r.width=e.width);"number"==typeof e.height&&(r.height=e.height);var n,i=e;try{var a=[t];0===t.indexOf("webgl")&&a.push("experimental-"+t);for(var o=0;o halfCharStep + halfCharWidth ||\n\t\t\t\t\tfloor(uv.x) < halfCharStep - halfCharWidth) return;\n\n\t\t\t\tuv += charId * charStep;\n\t\t\t\tuv = uv / atlasSize;\n\n\t\t\t\tvec4 color = fontColor;\n\t\t\t\tvec4 mask = texture2D(atlas, uv);\n\n\t\t\t\tfloat maskY = lightness(mask);\n\t\t\t\t// float colorY = lightness(color);\n\t\t\t\tcolor.a *= maskY;\n\t\t\t\tcolor.a *= opacity;\n\n\t\t\t\t// color.a += .1;\n\n\t\t\t\t// antialiasing, see yiq color space y-channel formula\n\t\t\t\t// color.rgb += (1. - color.rgb) * (1. - mask.rgb);\n\n\t\t\t\tgl_FragColor = color;\n\t\t\t}"});return{regl:t,draw:e,atlas:{}}},T.prototype.update=function(t){var e=this;if("string"==typeof t)t={text:t};else if(!t)return;null!=(t=i(t,{position:"position positions coord coords coordinates",font:"font fontFace fontface typeface cssFont css-font family fontFamily",fontSize:"fontSize fontsize size font-size",text:"text texts chars characters value values symbols",align:"align alignment textAlign textbaseline",baseline:"baseline textBaseline textbaseline",direction:"dir direction textDirection",color:"color colour fill fill-color fillColor textColor textcolor",kerning:"kerning kern",range:"range dataBox",viewport:"vp viewport viewBox viewbox viewPort",opacity:"opacity alpha transparency visible visibility opaque",offset:"offset positionOffset padding shift indent indentation"},!0)).opacity&&(Array.isArray(t.opacity)?this.opacity=t.opacity.map((function(t){return parseFloat(t)})):this.opacity=parseFloat(t.opacity)),null!=t.viewport&&(this.viewport=f(t.viewport),this.viewportArray=[this.viewport.x,this.viewport.y,this.viewport.width,this.viewport.height]),null==this.viewport&&(this.viewport={x:0,y:0,width:this.gl.drawingBufferWidth,height:this.gl.drawingBufferHeight},this.viewportArray=[this.viewport.x,this.viewport.y,this.viewport.width,this.viewport.height]),null!=t.kerning&&(this.kerning=t.kerning),null!=t.offset&&("number"==typeof t.offset&&(t.offset=[t.offset,0]),this.positionOffset=y(t.offset)),t.direction&&(this.direction=t.direction),t.range&&(this.range=t.range,this.scale=[1/(t.range[2]-t.range[0]),1/(t.range[3]-t.range[1])],this.translate=[-t.range[0],-t.range[1]]),t.scale&&(this.scale=t.scale),t.translate&&(this.translate=t.translate),this.scale||(this.scale=[1/this.viewport.width,1/this.viewport.height]),this.translate||(this.translate=[0,0]),this.font.length||t.font||(t.font=T.baseFontSize+"px sans-serif");var r,a=!1,o=!1;if(t.font&&(Array.isArray(t.font)?t.font:[t.font]).forEach((function(t,r){if("string"==typeof t)try{t=n.parse(t)}catch(e){t=n.parse(T.baseFontSize+"px "+t)}else t=n.parse(n.stringify(t));var i=n.stringify({size:T.baseFontSize,family:t.family,stretch:_?t.stretch:void 0,variant:t.variant,weight:t.weight,style:t.style}),s=p(t.size),l=Math.round(s[0]*d(s[1]));if(l!==e.fontSize[r]&&(o=!0,e.fontSize[r]=l),!(e.font[r]&&i==e.font[r].baseString||(a=!0,e.font[r]=T.fonts[i],e.font[r]))){var c=t.family.join(", "),u=[t.style];t.style!=t.variant&&u.push(t.variant),t.variant!=t.weight&&u.push(t.weight),_&&t.weight!=t.stretch&&u.push(t.stretch),e.font[r]={baseString:i,family:c,weight:t.weight,stretch:t.stretch,style:t.style,variant:t.variant,width:{},kerning:{},metrics:v(c,{origin:"top",fontSize:T.baseFontSize,fontStyle:u.join(" ")})},T.fonts[i]=e.font[r]}})),(a||o)&&this.font.forEach((function(r,i){var a=n.stringify({size:e.fontSize[i],family:r.family,stretch:_?r.stretch:void 0,variant:r.variant,weight:r.weight,style:r.style});if(e.fontAtlas[i]=e.shader.atlas[a],!e.fontAtlas[i]){var o=r.metrics;e.shader.atlas[a]=e.fontAtlas[i]={fontString:a,step:2*Math.ceil(e.fontSize[i]*o.bottom*.5),em:e.fontSize[i],cols:0,rows:0,height:0,width:0,chars:[],ids:{},texture:e.regl.texture()}}null==t.text&&(t.text=e.text)})),"string"==typeof t.text&&t.position&&t.position.length>2){for(var s=Array(.5*t.position.length),h=0;h2){for(var w=!t.position[0].length,k=u.mallocFloat(2*this.count),A=0,M=0;A1?e.align[r]:e.align[0]:e.align;if("number"==typeof n)return n;switch(n){case"right":case"end":return-t;case"center":case"centre":case"middle":return.5*-t}return 0}))),null==this.baseline&&null==t.baseline&&(t.baseline=0),null!=t.baseline&&(this.baseline=t.baseline,Array.isArray(this.baseline)||(this.baseline=[this.baseline]),this.baselineOffset=this.baseline.map((function(t,r){var n=(e.font[r]||e.font[0]).metrics,i=0;return i+=.5*n.bottom,i+="number"==typeof t?t-n.baseline:-n[t],i*=-1}))),null!=t.color)if(t.color||(t.color="transparent"),"string"!=typeof t.color&&isNaN(t.color)){var q;if("number"==typeof t.color[0]&&t.color.length>this.counts.length){var G=t.color.length;q=u.mallocUint8(G);for(var Y=(t.color.subarray||t.color.slice).bind(t.color),W=0;W4||this.baselineOffset.length>1||this.align&&this.align.length>1||this.fontAtlas.length>1||this.positionOffset.length>2){var J=Math.max(.5*this.position.length||0,.25*this.color.length||0,this.baselineOffset.length||0,this.alignOffset.length||0,this.font.length||0,this.opacity.length||0,.5*this.positionOffset.length||0);this.batch=Array(J);for(var K=0;K1?this.counts[K]:this.counts[0],offset:this.textOffsets.length>1?this.textOffsets[K]:this.textOffsets[0],color:this.color?this.color.length<=4?this.color:this.color.subarray(4*K,4*K+4):[0,0,0,255],opacity:Array.isArray(this.opacity)?this.opacity[K]:this.opacity,baseline:null!=this.baselineOffset[K]?this.baselineOffset[K]:this.baselineOffset[0],align:this.align?null!=this.alignOffset[K]?this.alignOffset[K]:this.alignOffset[0]:0,atlas:this.fontAtlas[K]||this.fontAtlas[0],positionOffset:this.positionOffset.length>2?this.positionOffset.subarray(2*K,2*K+2):this.positionOffset}}else this.count?this.batch=[{count:this.count,offset:0,color:this.color||[0,0,0,255],opacity:Array.isArray(this.opacity)?this.opacity[0]:this.opacity,baseline:this.baselineOffset[0],align:this.alignOffset?this.alignOffset[0]:0,atlas:this.fontAtlas[0],positionOffset:this.positionOffset}]:this.batch=[]},T.prototype.destroy=function(){},T.prototype.kerning=!0,T.prototype.position={constant:new Float32Array(2)},T.prototype.translate=null,T.prototype.scale=null,T.prototype.font=null,T.prototype.text="",T.prototype.positionOffset=[0,0],T.prototype.opacity=1,T.prototype.color=new Uint8Array([0,0,0,255]),T.prototype.alignOffset=[0,0],T.maxAtlasSize=1024,T.atlasCanvas=document.createElement("canvas"),T.atlasContext=T.atlasCanvas.getContext("2d",{alpha:!1}),T.baseFontSize=64,T.fonts={},e.exports=T},{"bit-twiddle":77,"color-normalize":84,"css-font":94,"detect-kerning":119,"es6-weak-map":177,"flatten-vertex-data":186,"font-atlas":187,"font-measure":188,"gl-util/context":221,"is-plain-obj":231,"object-assign":242,"parse-rect":244,"parse-unit":246,"pick-by-alias":248,regl:278,"to-px":309,"typedarray-pool":322}],221:[function(t,e,r){(function(r){(function(){"use strict";var n=t("pick-by-alias");function i(t){if(t.container)if(t.container==document.body)document.body.style.width||(t.canvas.width=t.width||t.pixelRatio*r.innerWidth),document.body.style.height||(t.canvas.height=t.height||t.pixelRatio*r.innerHeight);else{var e=t.container.getBoundingClientRect();t.canvas.width=t.width||e.right-e.left,t.canvas.height=t.height||e.bottom-e.top}}function a(t){return"function"==typeof t.getContext&&"width"in t&&"height"in t}function o(){var t=document.createElement("canvas");return t.style.position="absolute",t.style.top=0,t.style.left=0,t}e.exports=function(t){var e;if(t?"string"==typeof t&&(t={container:t}):t={},a(t)?t={container:t}:t="string"==typeof(e=t).nodeName&&"function"==typeof e.appendChild&&"function"==typeof e.getBoundingClientRect?{container:t}:function(t){return"function"==typeof t.drawArrays||"function"==typeof t.drawElements}(t)?{gl:t}:n(t,{container:"container target element el canvas holder parent parentNode wrapper use ref root node",gl:"gl context webgl glContext",attrs:"attributes attrs contextAttributes",pixelRatio:"pixelRatio pxRatio px ratio pxratio pixelratio",width:"w width",height:"h height"},!0),t.pixelRatio||(t.pixelRatio=r.pixelRatio||1),t.gl)return t.gl;if(t.canvas&&(t.container=t.canvas.parentNode),t.container){if("string"==typeof t.container){var s=document.querySelector(t.container);if(!s)throw Error("Element "+t.container+" is not found");t.container=s}a(t.container)?(t.canvas=t.container,t.container=t.canvas.parentNode):t.canvas||(t.canvas=o(),t.container.appendChild(t.canvas),i(t))}else if(!t.canvas){if("undefined"==typeof document)throw Error("Not DOM environment. Use headless-gl.");t.container=document.body||document.documentElement,t.canvas=o(),t.container.appendChild(t.canvas),i(t)}return t.gl||["webgl","experimental-webgl","webgl-experimental"].some((function(e){try{t.gl=t.canvas.getContext(e,t.attrs)}catch(t){}return t.gl})),t.gl}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"pick-by-alias":248}],222:[function(t,e,r){e.exports=function(t){"string"==typeof t&&(t=[t]);for(var e=[].slice.call(arguments,1),r=[],n=0;n2147483647)throw new RangeError('The value "'+t+'" is invalid for option "size"');var e=new Uint8Array(t);return e.__proto__=a.prototype,e}function a(t,e,r){if("number"==typeof t){if("string"==typeof e)throw new TypeError('The "string" argument must be of type string. Received type number');return l(t)}return o(t,e,r)}function o(t,e,r){if("string"==typeof t)return function(t,e){"string"==typeof e&&""!==e||(e="utf8");if(!a.isEncoding(e))throw new TypeError("Unknown encoding: "+e);var r=0|f(t,e),n=i(r),o=n.write(t,e);o!==r&&(n=n.slice(0,o));return n}(t,e);if(ArrayBuffer.isView(t))return c(t);if(null==t)throw TypeError("The first argument must be one of type string, Buffer, ArrayBuffer, Array, or Array-like Object. Received type "+typeof t);if(B(t,ArrayBuffer)||t&&B(t.buffer,ArrayBuffer))return function(t,e,r){if(e<0||t.byteLength=2147483647)throw new RangeError("Attempt to allocate Buffer larger than maximum size: 0x"+2147483647..toString(16)+" bytes");return 0|t}function f(t,e){if(a.isBuffer(t))return t.length;if(ArrayBuffer.isView(t)||B(t,ArrayBuffer))return t.byteLength;if("string"!=typeof t)throw new TypeError('The "string" argument must be one of type string, Buffer, or ArrayBuffer. Received type '+typeof t);var r=t.length,n=arguments.length>2&&!0===arguments[2];if(!n&&0===r)return 0;for(var i=!1;;)switch(e){case"ascii":case"latin1":case"binary":return r;case"utf8":case"utf-8":return D(t).length;case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return 2*r;case"hex":return r>>>1;case"base64":return R(t).length;default:if(i)return n?-1:D(t).length;e=(""+e).toLowerCase(),i=!0}}function h(t,e,r){var n=!1;if((void 0===e||e<0)&&(e=0),e>this.length)return"";if((void 0===r||r>this.length)&&(r=this.length),r<=0)return"";if((r>>>=0)<=(e>>>=0))return"";for(t||(t="utf8");;)switch(t){case"hex":return M(this,e,r);case"utf8":case"utf-8":return T(this,e,r);case"ascii":return k(this,e,r);case"latin1":case"binary":return A(this,e,r);case"base64":return w(this,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return S(this,e,r);default:if(n)throw new TypeError("Unknown encoding: "+t);t=(t+"").toLowerCase(),n=!0}}function p(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function d(t,e,r,n,i){if(0===t.length)return-1;if("string"==typeof r?(n=r,r=0):r>2147483647?r=2147483647:r<-2147483648&&(r=-2147483648),N(r=+r)&&(r=i?0:t.length-1),r<0&&(r=t.length+r),r>=t.length){if(i)return-1;r=t.length-1}else if(r<0){if(!i)return-1;r=0}if("string"==typeof e&&(e=a.from(e,n)),a.isBuffer(e))return 0===e.length?-1:m(t,e,r,n,i);if("number"==typeof e)return e&=255,"function"==typeof Uint8Array.prototype.indexOf?i?Uint8Array.prototype.indexOf.call(t,e,r):Uint8Array.prototype.lastIndexOf.call(t,e,r):m(t,[e],r,n,i);throw new TypeError("val must be string, number or Buffer")}function m(t,e,r,n,i){var a,o=1,s=t.length,l=e.length;if(void 0!==n&&("ucs2"===(n=String(n).toLowerCase())||"ucs-2"===n||"utf16le"===n||"utf-16le"===n)){if(t.length<2||e.length<2)return-1;o=2,s/=2,l/=2,r/=2}function c(t,e){return 1===o?t[e]:t.readUInt16BE(e*o)}if(i){var u=-1;for(a=r;as&&(r=s-l),a=r;a>=0;a--){for(var f=!0,h=0;hi&&(n=i):n=i;var a=e.length;n>a/2&&(n=a/2);for(var o=0;o>8,i=r%256,a.push(i),a.push(n);return a}(e,t.length-r),t,r,n)}function w(t,r,n){return 0===r&&n===t.length?e.fromByteArray(t):e.fromByteArray(t.slice(r,n))}function T(t,e,r){r=Math.min(t.length,r);for(var n=[],i=e;i239?4:c>223?3:c>191?2:1;if(i+f<=r)switch(f){case 1:c<128&&(u=c);break;case 2:128==(192&(a=t[i+1]))&&(l=(31&c)<<6|63&a)>127&&(u=l);break;case 3:a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&(l=(15&c)<<12|(63&a)<<6|63&o)>2047&&(l<55296||l>57343)&&(u=l);break;case 4:a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&(l=(15&c)<<18|(63&a)<<12|(63&o)<<6|63&s)>65535&&l<1114112&&(u=l)}null===u?(u=65533,f=1):u>65535&&(u-=65536,n.push(u>>>10&1023|55296),u=56320|1023&u),n.push(u),i+=f}return function(t){var e=t.length;if(e<=4096)return String.fromCharCode.apply(String,t);var r="",n=0;for(;ne&&(t+=" ... "),""},a.prototype.compare=function(t,e,r,n,i){if(B(t,Uint8Array)&&(t=a.from(t,t.offset,t.byteLength)),!a.isBuffer(t))throw new TypeError('The "target" argument must be one of type Buffer or Uint8Array. Received type '+typeof t);if(void 0===e&&(e=0),void 0===r&&(r=t?t.length:0),void 0===n&&(n=0),void 0===i&&(i=this.length),e<0||r>t.length||n<0||i>this.length)throw new RangeError("out of range index");if(n>=i&&e>=r)return 0;if(n>=i)return-1;if(e>=r)return 1;if(this===t)return 0;for(var o=(i>>>=0)-(n>>>=0),s=(r>>>=0)-(e>>>=0),l=Math.min(o,s),c=this.slice(n,i),u=t.slice(e,r),f=0;f>>=0,isFinite(r)?(r>>>=0,void 0===n&&(n="utf8")):(n=r,r=void 0)}var i=this.length-e;if((void 0===r||r>i)&&(r=i),t.length>0&&(r<0||e<0)||e>this.length)throw new RangeError("Attempt to write outside buffer bounds");n||(n="utf8");for(var a=!1;;)switch(n){case"hex":return g(this,t,e,r);case"utf8":case"utf-8":return v(this,t,e,r);case"ascii":return y(this,t,e,r);case"latin1":case"binary":return x(this,t,e,r);case"base64":return b(this,t,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return _(this,t,e,r);default:if(a)throw new TypeError("Unknown encoding: "+n);n=(""+n).toLowerCase(),a=!0}},a.prototype.toJSON=function(){return{type:"Buffer",data:Array.prototype.slice.call(this._arr||this,0)}};function k(t,e,r){var n="";r=Math.min(t.length,r);for(var i=e;in)&&(r=n);for(var i="",a=e;ar)throw new RangeError("Trying to access beyond buffer length")}function L(t,e,r,n,i,o){if(!a.isBuffer(t))throw new TypeError('"buffer" argument must be a Buffer instance');if(e>i||et.length)throw new RangeError("Index out of range")}function C(t,e,r,n,i,a){if(r+n>t.length)throw new RangeError("Index out of range");if(r<0)throw new RangeError("Index out of range")}function P(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,4),n.write(t,e,r,i,23,4),r+4}function I(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,8),n.write(t,e,r,i,52,8),r+8}a.prototype.slice=function(t,e){var r=this.length;(t=~~t)<0?(t+=r)<0&&(t=0):t>r&&(t=r),(e=void 0===e?r:~~e)<0?(e+=r)<0&&(e=0):e>r&&(e=r),e>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t+--e],i=1;e>0&&(i*=256);)n+=this[t+--e]*i;return n},a.prototype.readUInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),this[t]},a.prototype.readUInt16LE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]|this[t+1]<<8},a.prototype.readUInt16BE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]<<8|this[t+1]},a.prototype.readUInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),(this[t]|this[t+1]<<8|this[t+2]<<16)+16777216*this[t+3]},a.prototype.readUInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),16777216*this[t]+(this[t+1]<<16|this[t+2]<<8|this[t+3])},a.prototype.readIntLE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a=(i*=128)&&(n-=Math.pow(2,8*e)),n},a.prototype.readIntBE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=e,i=1,a=this[t+--n];n>0&&(i*=256);)a+=this[t+--n]*i;return a>=(i*=128)&&(a-=Math.pow(2,8*e)),a},a.prototype.readInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),128&this[t]?-1*(255-this[t]+1):this[t]},a.prototype.readInt16LE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t]|this[t+1]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt16BE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t+1]|this[t]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]|this[t+1]<<8|this[t+2]<<16|this[t+3]<<24},a.prototype.readInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]<<24|this[t+1]<<16|this[t+2]<<8|this[t+3]},a.prototype.readFloatLE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!0,23,4)},a.prototype.readFloatBE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!1,23,4)},a.prototype.readDoubleLE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!0,52,8)},a.prototype.readDoubleBE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!1,52,8)},a.prototype.writeUIntLE=function(t,e,r,n){(t=+t,e>>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=1,a=0;for(this[e]=255&t;++a>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=r-1,a=1;for(this[e+i]=255&t;--i>=0&&(a*=256);)this[e+i]=t/a&255;return e+r},a.prototype.writeUInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,255,0),this[e]=255&t,e+1},a.prototype.writeUInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeUInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeUInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e+3]=t>>>24,this[e+2]=t>>>16,this[e+1]=t>>>8,this[e]=255&t,e+4},a.prototype.writeUInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeIntLE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=0,o=1,s=0;for(this[e]=255&t;++a>0)-s&255;return e+r},a.prototype.writeIntBE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=r-1,o=1,s=0;for(this[e+a]=255&t;--a>=0&&(o*=256);)t<0&&0===s&&0!==this[e+a+1]&&(s=1),this[e+a]=(t/o>>0)-s&255;return e+r},a.prototype.writeInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,127,-128),t<0&&(t=255+t+1),this[e]=255&t,e+1},a.prototype.writeInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),this[e]=255&t,this[e+1]=t>>>8,this[e+2]=t>>>16,this[e+3]=t>>>24,e+4},a.prototype.writeInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),t<0&&(t=4294967295+t+1),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeFloatLE=function(t,e,r){return P(this,t,e,!0,r)},a.prototype.writeFloatBE=function(t,e,r){return P(this,t,e,!1,r)},a.prototype.writeDoubleLE=function(t,e,r){return I(this,t,e,!0,r)},a.prototype.writeDoubleBE=function(t,e,r){return I(this,t,e,!1,r)},a.prototype.copy=function(t,e,r,n){if(!a.isBuffer(t))throw new TypeError("argument should be a Buffer");if(r||(r=0),n||0===n||(n=this.length),e>=t.length&&(e=t.length),e||(e=0),n>0&&n=this.length)throw new RangeError("Index out of range");if(n<0)throw new RangeError("sourceEnd out of bounds");n>this.length&&(n=this.length),t.length-e=0;--o)t[o+e]=this[o+r];else Uint8Array.prototype.set.call(t,this.subarray(r,n),e);return i},a.prototype.fill=function(t,e,r,n){if("string"==typeof t){if("string"==typeof e?(n=e,e=0,r=this.length):"string"==typeof r&&(n=r,r=this.length),void 0!==n&&"string"!=typeof n)throw new TypeError("encoding must be a string");if("string"==typeof n&&!a.isEncoding(n))throw new TypeError("Unknown encoding: "+n);if(1===t.length){var i=t.charCodeAt(0);("utf8"===n&&i<128||"latin1"===n)&&(t=i)}}else"number"==typeof t&&(t&=255);if(e<0||this.length>>=0,r=void 0===r?this.length:r>>>0,t||(t=0),"number"==typeof t)for(o=e;o55295&&r<57344){if(!i){if(r>56319){(e-=3)>-1&&a.push(239,191,189);continue}if(o+1===n){(e-=3)>-1&&a.push(239,191,189);continue}i=r;continue}if(r<56320){(e-=3)>-1&&a.push(239,191,189),i=r;continue}r=65536+(i-55296<<10|r-56320)}else i&&(e-=3)>-1&&a.push(239,191,189);if(i=null,r<128){if((e-=1)<0)break;a.push(r)}else if(r<2048){if((e-=2)<0)break;a.push(r>>6|192,63&r|128)}else if(r<65536){if((e-=3)<0)break;a.push(r>>12|224,r>>6&63|128,63&r|128)}else{if(!(r<1114112))throw new Error("Invalid code point");if((e-=4)<0)break;a.push(r>>18|240,r>>12&63|128,r>>6&63|128,63&r|128)}}return a}function R(t){return e.toByteArray(function(t){if((t=(t=t.split("=")[0]).trim().replace(O,"")).length<2)return"";for(;t.length%4!=0;)t+="=";return t}(t))}function F(t,e,r,n){for(var i=0;i=e.length||i>=t.length);++i)e[i+r]=t[i];return i}function B(t,e){return t instanceof e||null!=t&&null!=t.constructor&&null!=t.constructor.name&&t.constructor.name===e.name}function N(t){return t!=t}}).call(this)}).call(this,t("buffer").Buffer)},{"base64-js":82,buffer:112,ieee754:427}],113:[function(t,e,r){"use strict";var n=t("./lib/monotone"),i=t("./lib/triangulation"),a=t("./lib/delaunay"),o=t("./lib/filter");function s(t){return[Math.min(t[0],t[1]),Math.max(t[0],t[1])]}function l(t,e){return t[0]-e[0]||t[1]-e[1]}function c(t,e,r){return e in t?t[e]:r}e.exports=function(t,e,r){Array.isArray(e)?(r=r||{},e=e||[]):(r=e||{},e=[]);var u=!!c(r,"delaunay",!0),f=!!c(r,"interior",!0),h=!!c(r,"exterior",!0),p=!!c(r,"infinity",!1);if(!f&&!h||0===t.length)return[];var d=n(t,e);if(u||f!==h||p){for(var m=i(t.length,function(t){return t.map(s).sort(l)}(e)),g=0;g0;){for(var p=r.pop(),d=(s=r.pop(),u=-1,f=-1,l=o[s],1);d=0||(e.flip(s,p),i(t,e,r,u,s,f),i(t,e,r,s,f,u),i(t,e,r,f,p,u),i(t,e,r,p,u,f)))}}},{"binary-search-bounds":100,"robust-in-sphere":522}],115:[function(t,e,r){"use strict";var n,i=t("binary-search-bounds");function a(t,e,r,n,i,a,o){this.cells=t,this.neighbor=e,this.flags=n,this.constraint=r,this.active=i,this.next=a,this.boundary=o}function o(t,e){return t[0]-e[0]||t[1]-e[1]||t[2]-e[2]}e.exports=function(t,e,r){var n=function(t,e){for(var r=t.cells(),n=r.length,i=0;i0||l.length>0;){for(;s.length>0;){var p=s.pop();if(c[p]!==-i){c[p]=i;u[p];for(var d=0;d<3;++d){var m=h[3*p+d];m>=0&&0===c[m]&&(f[3*p+d]?l.push(m):(s.push(m),c[m]=i))}}}var g=l;l=s,s=g,l.length=0,i=-i}var v=function(t,e,r){for(var n=0,i=0;i1&&i(r[h[p-2]],r[h[p-1]],a)>0;)t.push([h[p-1],h[p-2],o]),p-=1;h.length=p,h.push(o);var d=f.upperIds;for(p=d.length;p>1&&i(r[d[p-2]],r[d[p-1]],a)<0;)t.push([d[p-2],d[p-1],o]),p-=1;d.length=p,d.push(o)}}function u(t,e){var r;return(r=t.a[0]d[0]&&i.push(new o(d,p,2,l),new o(p,d,1,l))}i.sort(s);for(var m=i[0].a[0]-(1+Math.abs(i[0].a[0]))*Math.pow(2,-52),g=[new a([m,1],[m,0],-1,[],[],[],[])],v=[],y=(l=0,i.length);l=0}}(),a.removeTriangle=function(t,e,r){var n=this.stars;o(n[t],e,r),o(n[e],r,t),o(n[r],t,e)},a.addTriangle=function(t,e,r){var n=this.stars;n[t].push(e,r),n[e].push(r,t),n[r].push(t,e)},a.opposite=function(t,e){for(var r=this.stars[e],n=1,i=r.length;nr?r:t:te?e:t}},{}],122:[function(t,e,r){"use strict";e.exports=function(t,e,r){var n;if(r){n=e;for(var i=new Array(e.length),a=0;ae[2]?1:0)}function v(t,e,r){if(0!==t.length){if(e)for(var n=0;n=0;--a){var x=e[u=(S=n[a])[0]],b=x[0],_=x[1],w=t[b],T=t[_];if((w[0]-T[0]||w[1]-T[1])<0){var k=b;b=_,_=k}x[0]=b;var A,M=x[1]=S[1];for(i&&(A=x[2]);a>0&&n[a-1][0]===u;){var S,E=(S=n[--a])[1];i?e.push([M,E,A]):e.push([M,E]),M=E}i?e.push([M,_,A]):e.push([M,_])}return h}(t,e,h,g,r));return v(e,y,r),!!y||(h.length>0||g.length>0)}},{"./lib/rat-seg-intersect":123,"big-rat":86,"big-rat/cmp":84,"big-rat/to-float":99,"box-intersect":104,nextafter:463,"rat-vec":508,"robust-segment-intersect":527,"union-find":591}],123:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){var a=s(e,t),f=s(n,r),h=u(a,f);if(0===o(h))return null;var p=s(t,r),d=u(f,p),m=i(d,h),g=c(a,m);return l(t,g)};var n=t("big-rat/mul"),i=t("big-rat/div"),a=t("big-rat/sub"),o=t("big-rat/sign"),s=t("rat-vec/sub"),l=t("rat-vec/add"),c=t("rat-vec/muls");function u(t,e){return a(n(t[0],e[1]),n(t[1],e[0]))}},{"big-rat/div":85,"big-rat/mul":95,"big-rat/sign":97,"big-rat/sub":98,"rat-vec/add":507,"rat-vec/muls":509,"rat-vec/sub":510}],124:[function(t,e,r){"use strict";var n=t("clamp");function i(t,e){null==e&&(e=!0);var r=t[0],i=t[1],a=t[2],o=t[3];return null==o&&(o=e?1:255),e&&(r*=255,i*=255,a*=255,o*=255),16777216*(r=255&n(r,0,255))+((i=255&n(i,0,255))<<16)+((a=255&n(a,0,255))<<8)+(o=255&n(o,0,255))}e.exports=i,e.exports.to=i,e.exports.from=function(t,e){var r=(t=+t)>>>24,n=(16711680&t)>>>16,i=(65280&t)>>>8,a=255&t;return!1===e?[r,n,i,a]:[r/255,n/255,i/255,a/255]}},{clamp:121}],125:[function(t,e,r){"use strict";e.exports={aliceblue:[240,248,255],antiquewhite:[250,235,215],aqua:[0,255,255],aquamarine:[127,255,212],azure:[240,255,255],beige:[245,245,220],bisque:[255,228,196],black:[0,0,0],blanchedalmond:[255,235,205],blue:[0,0,255],blueviolet:[138,43,226],brown:[165,42,42],burlywood:[222,184,135],cadetblue:[95,158,160],chartreuse:[127,255,0],chocolate:[210,105,30],coral:[255,127,80],cornflowerblue:[100,149,237],cornsilk:[255,248,220],crimson:[220,20,60],cyan:[0,255,255],darkblue:[0,0,139],darkcyan:[0,139,139],darkgoldenrod:[184,134,11],darkgray:[169,169,169],darkgreen:[0,100,0],darkgrey:[169,169,169],darkkhaki:[189,183,107],darkmagenta:[139,0,139],darkolivegreen:[85,107,47],darkorange:[255,140,0],darkorchid:[153,50,204],darkred:[139,0,0],darksalmon:[233,150,122],darkseagreen:[143,188,143],darkslateblue:[72,61,139],darkslategray:[47,79,79],darkslategrey:[47,79,79],darkturquoise:[0,206,209],darkviolet:[148,0,211],deeppink:[255,20,147],deepskyblue:[0,191,255],dimgray:[105,105,105],dimgrey:[105,105,105],dodgerblue:[30,144,255],firebrick:[178,34,34],floralwhite:[255,250,240],forestgreen:[34,139,34],fuchsia:[255,0,255],gainsboro:[220,220,220],ghostwhite:[248,248,255],gold:[255,215,0],goldenrod:[218,165,32],gray:[128,128,128],green:[0,128,0],greenyellow:[173,255,47],grey:[128,128,128],honeydew:[240,255,240],hotpink:[255,105,180],indianred:[205,92,92],indigo:[75,0,130],ivory:[255,255,240],khaki:[240,230,140],lavender:[230,230,250],lavenderblush:[255,240,245],lawngreen:[124,252,0],lemonchiffon:[255,250,205],lightblue:[173,216,230],lightcoral:[240,128,128],lightcyan:[224,255,255],lightgoldenrodyellow:[250,250,210],lightgray:[211,211,211],lightgreen:[144,238,144],lightgrey:[211,211,211],lightpink:[255,182,193],lightsalmon:[255,160,122],lightseagreen:[32,178,170],lightskyblue:[135,206,250],lightslategray:[119,136,153],lightslategrey:[119,136,153],lightsteelblue:[176,196,222],lightyellow:[255,255,224],lime:[0,255,0],limegreen:[50,205,50],linen:[250,240,230],magenta:[255,0,255],maroon:[128,0,0],mediumaquamarine:[102,205,170],mediumblue:[0,0,205],mediumorchid:[186,85,211],mediumpurple:[147,112,219],mediumseagreen:[60,179,113],mediumslateblue:[123,104,238],mediumspringgreen:[0,250,154],mediumturquoise:[72,209,204],mediumvioletred:[199,21,133],midnightblue:[25,25,112],mintcream:[245,255,250],mistyrose:[255,228,225],moccasin:[255,228,181],navajowhite:[255,222,173],navy:[0,0,128],oldlace:[253,245,230],olive:[128,128,0],olivedrab:[107,142,35],orange:[255,165,0],orangered:[255,69,0],orchid:[218,112,214],palegoldenrod:[238,232,170],palegreen:[152,251,152],paleturquoise:[175,238,238],palevioletred:[219,112,147],papayawhip:[255,239,213],peachpuff:[255,218,185],peru:[205,133,63],pink:[255,192,203],plum:[221,160,221],powderblue:[176,224,230],purple:[128,0,128],rebeccapurple:[102,51,153],red:[255,0,0],rosybrown:[188,143,143],royalblue:[65,105,225],saddlebrown:[139,69,19],salmon:[250,128,114],sandybrown:[244,164,96],seagreen:[46,139,87],seashell:[255,245,238],sienna:[160,82,45],silver:[192,192,192],skyblue:[135,206,235],slateblue:[106,90,205],slategray:[112,128,144],slategrey:[112,128,144],snow:[255,250,250],springgreen:[0,255,127],steelblue:[70,130,180],tan:[210,180,140],teal:[0,128,128],thistle:[216,191,216],tomato:[255,99,71],turquoise:[64,224,208],violet:[238,130,238],wheat:[245,222,179],white:[255,255,255],whitesmoke:[245,245,245],yellow:[255,255,0],yellowgreen:[154,205,50]}},{}],126:[function(t,e,r){"use strict";var n=t("color-rgba"),i=t("clamp"),a=t("dtype");e.exports=function(t,e){"float"!==e&&e||(e="array"),"uint"===e&&(e="uint8"),"uint_clamped"===e&&(e="uint8_clamped");var r=new(a(e))(4),o="uint8"!==e&&"uint8_clamped"!==e;return t.length&&"string"!=typeof t||((t=n(t))[0]/=255,t[1]/=255,t[2]/=255),function(t){return t instanceof Uint8Array||t instanceof Uint8ClampedArray||!!(Array.isArray(t)&&(t[0]>1||0===t[0])&&(t[1]>1||0===t[1])&&(t[2]>1||0===t[2])&&(!t[3]||t[3]>1))}(t)?(r[0]=t[0],r[1]=t[1],r[2]=t[2],r[3]=null!=t[3]?t[3]:255,o&&(r[0]/=255,r[1]/=255,r[2]/=255,r[3]/=255),r):(o?(r[0]=t[0],r[1]=t[1],r[2]=t[2],r[3]=null!=t[3]?t[3]:1):(r[0]=i(Math.floor(255*t[0]),0,255),r[1]=i(Math.floor(255*t[1]),0,255),r[2]=i(Math.floor(255*t[2]),0,255),r[3]=null==t[3]?255:i(Math.floor(255*t[3]),0,255)),r)}},{clamp:121,"color-rgba":128,dtype:176}],127:[function(t,e,r){(function(r){(function(){"use strict";var n=t("color-name"),i=t("is-plain-obj"),a=t("defined");e.exports=function(t){var e,s,l=[],c=1;if("string"==typeof t)if(n[t])l=n[t].slice(),s="rgb";else if("transparent"===t)c=0,s="rgb",l=[0,0,0];else if(/^#[A-Fa-f0-9]+$/.test(t)){var u=(p=t.slice(1)).length;c=1,u<=4?(l=[parseInt(p[0]+p[0],16),parseInt(p[1]+p[1],16),parseInt(p[2]+p[2],16)],4===u&&(c=parseInt(p[3]+p[3],16)/255)):(l=[parseInt(p[0]+p[1],16),parseInt(p[2]+p[3],16),parseInt(p[4]+p[5],16)],8===u&&(c=parseInt(p[6]+p[7],16)/255)),l[0]||(l[0]=0),l[1]||(l[1]=0),l[2]||(l[2]=0),s="rgb"}else if(e=/^((?:rgb|hs[lvb]|hwb|cmyk?|xy[zy]|gray|lab|lchu?v?|[ly]uv|lms)a?)\s*\(([^\)]*)\)/.exec(t)){var f=e[1],h="rgb"===f,p=f.replace(/a$/,"");s=p;u="cmyk"===p?4:"gray"===p?1:3;l=e[2].trim().split(/\s*,\s*/).map((function(t,e){if(/%$/.test(t))return e===u?parseFloat(t)/100:"rgb"===p?255*parseFloat(t)/100:parseFloat(t);if("h"===p[e]){if(/deg$/.test(t))return parseFloat(t);if(void 0!==o[t])return o[t]}return parseFloat(t)})),f===p&&l.push(1),c=h||void 0===l[u]?1:l[u],l=l.slice(0,u)}else t.length>10&&/[0-9](?:\s|\/)/.test(t)&&(l=t.match(/([0-9]+)/g).map((function(t){return parseFloat(t)})),s=t.match(/([a-z])/gi).join("").toLowerCase());else if(isNaN(t))if(i(t)){var d=a(t.r,t.red,t.R,null);null!==d?(s="rgb",l=[d,a(t.g,t.green,t.G),a(t.b,t.blue,t.B)]):(s="hsl",l=[a(t.h,t.hue,t.H),a(t.s,t.saturation,t.S),a(t.l,t.lightness,t.L,t.b,t.brightness)]),c=a(t.a,t.alpha,t.opacity,1),null!=t.opacity&&(c/=100)}else(Array.isArray(t)||r.ArrayBuffer&&ArrayBuffer.isView&&ArrayBuffer.isView(t))&&(l=[t[0],t[1],t[2]],s="rgb",c=4===t.length?t[3]:1);else s="rgb",l=[t>>>16,(65280&t)>>>8,255&t];return{space:s,values:l,alpha:c}};var o={red:0,orange:60,yellow:120,green:180,blue:240,purple:300}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"color-name":125,defined:171,"is-plain-obj":437}],128:[function(t,e,r){"use strict";var n=t("color-parse"),i=t("color-space/hsl"),a=t("clamp");e.exports=function(t){var e,r=n(t);return r.space?((e=Array(3))[0]=a(r.values[0],0,255),e[1]=a(r.values[1],0,255),e[2]=a(r.values[2],0,255),"h"===r.space[0]&&(e=i.rgb(e)),e.push(a(r.alpha,0,1)),e):[]}},{clamp:121,"color-parse":127,"color-space/hsl":129}],129:[function(t,e,r){"use strict";var n=t("./rgb");e.exports={name:"hsl",min:[0,0,0],max:[360,100,100],channel:["hue","saturation","lightness"],alias:["HSL"],rgb:function(t){var e,r,n,i,a,o=t[0]/360,s=t[1]/100,l=t[2]/100;if(0===s)return[a=255*l,a,a];e=2*l-(r=l<.5?l*(1+s):l+s-l*s),i=[0,0,0];for(var c=0;c<3;c++)(n=o+1/3*-(c-1))<0?n++:n>1&&n--,a=6*n<1?e+6*(r-e)*n:2*n<1?r:3*n<2?e+(r-e)*(2/3-n)*6:e,i[c]=255*a;return i}},n.hsl=function(t){var e,r,n=t[0]/255,i=t[1]/255,a=t[2]/255,o=Math.min(n,i,a),s=Math.max(n,i,a),l=s-o;return s===o?e=0:n===s?e=(i-a)/l:i===s?e=2+(a-n)/l:a===s&&(e=4+(n-i)/l),(e=Math.min(60*e,360))<0&&(e+=360),r=(o+s)/2,[e,100*(s===o?0:r<=.5?l/(s+o):l/(2-s-o)),100*r]}},{"./rgb":130}],130:[function(t,e,r){"use strict";e.exports={name:"rgb",min:[0,0,0],max:[255,255,255],channel:["red","green","blue"],alias:["RGB"]}},{}],131:[function(t,e,r){e.exports={jet:[{index:0,rgb:[0,0,131]},{index:.125,rgb:[0,60,170]},{index:.375,rgb:[5,255,255]},{index:.625,rgb:[255,255,0]},{index:.875,rgb:[250,0,0]},{index:1,rgb:[128,0,0]}],hsv:[{index:0,rgb:[255,0,0]},{index:.169,rgb:[253,255,2]},{index:.173,rgb:[247,255,2]},{index:.337,rgb:[0,252,4]},{index:.341,rgb:[0,252,10]},{index:.506,rgb:[1,249,255]},{index:.671,rgb:[2,0,253]},{index:.675,rgb:[8,0,253]},{index:.839,rgb:[255,0,251]},{index:.843,rgb:[255,0,245]},{index:1,rgb:[255,0,6]}],hot:[{index:0,rgb:[0,0,0]},{index:.3,rgb:[230,0,0]},{index:.6,rgb:[255,210,0]},{index:1,rgb:[255,255,255]}],spring:[{index:0,rgb:[255,0,255]},{index:1,rgb:[255,255,0]}],summer:[{index:0,rgb:[0,128,102]},{index:1,rgb:[255,255,102]}],autumn:[{index:0,rgb:[255,0,0]},{index:1,rgb:[255,255,0]}],winter:[{index:0,rgb:[0,0,255]},{index:1,rgb:[0,255,128]}],bone:[{index:0,rgb:[0,0,0]},{index:.376,rgb:[84,84,116]},{index:.753,rgb:[169,200,200]},{index:1,rgb:[255,255,255]}],copper:[{index:0,rgb:[0,0,0]},{index:.804,rgb:[255,160,102]},{index:1,rgb:[255,199,127]}],greys:[{index:0,rgb:[0,0,0]},{index:1,rgb:[255,255,255]}],yignbu:[{index:0,rgb:[8,29,88]},{index:.125,rgb:[37,52,148]},{index:.25,rgb:[34,94,168]},{index:.375,rgb:[29,145,192]},{index:.5,rgb:[65,182,196]},{index:.625,rgb:[127,205,187]},{index:.75,rgb:[199,233,180]},{index:.875,rgb:[237,248,217]},{index:1,rgb:[255,255,217]}],greens:[{index:0,rgb:[0,68,27]},{index:.125,rgb:[0,109,44]},{index:.25,rgb:[35,139,69]},{index:.375,rgb:[65,171,93]},{index:.5,rgb:[116,196,118]},{index:.625,rgb:[161,217,155]},{index:.75,rgb:[199,233,192]},{index:.875,rgb:[229,245,224]},{index:1,rgb:[247,252,245]}],yiorrd:[{index:0,rgb:[128,0,38]},{index:.125,rgb:[189,0,38]},{index:.25,rgb:[227,26,28]},{index:.375,rgb:[252,78,42]},{index:.5,rgb:[253,141,60]},{index:.625,rgb:[254,178,76]},{index:.75,rgb:[254,217,118]},{index:.875,rgb:[255,237,160]},{index:1,rgb:[255,255,204]}],bluered:[{index:0,rgb:[0,0,255]},{index:1,rgb:[255,0,0]}],rdbu:[{index:0,rgb:[5,10,172]},{index:.35,rgb:[106,137,247]},{index:.5,rgb:[190,190,190]},{index:.6,rgb:[220,170,132]},{index:.7,rgb:[230,145,90]},{index:1,rgb:[178,10,28]}],picnic:[{index:0,rgb:[0,0,255]},{index:.1,rgb:[51,153,255]},{index:.2,rgb:[102,204,255]},{index:.3,rgb:[153,204,255]},{index:.4,rgb:[204,204,255]},{index:.5,rgb:[255,255,255]},{index:.6,rgb:[255,204,255]},{index:.7,rgb:[255,153,255]},{index:.8,rgb:[255,102,204]},{index:.9,rgb:[255,102,102]},{index:1,rgb:[255,0,0]}],rainbow:[{index:0,rgb:[150,0,90]},{index:.125,rgb:[0,0,200]},{index:.25,rgb:[0,25,255]},{index:.375,rgb:[0,152,255]},{index:.5,rgb:[44,255,150]},{index:.625,rgb:[151,255,0]},{index:.75,rgb:[255,234,0]},{index:.875,rgb:[255,111,0]},{index:1,rgb:[255,0,0]}],portland:[{index:0,rgb:[12,51,131]},{index:.25,rgb:[10,136,186]},{index:.5,rgb:[242,211,56]},{index:.75,rgb:[242,143,56]},{index:1,rgb:[217,30,30]}],blackbody:[{index:0,rgb:[0,0,0]},{index:.2,rgb:[230,0,0]},{index:.4,rgb:[230,210,0]},{index:.7,rgb:[255,255,255]},{index:1,rgb:[160,200,255]}],earth:[{index:0,rgb:[0,0,130]},{index:.1,rgb:[0,180,180]},{index:.2,rgb:[40,210,40]},{index:.4,rgb:[230,230,50]},{index:.6,rgb:[120,70,20]},{index:1,rgb:[255,255,255]}],electric:[{index:0,rgb:[0,0,0]},{index:.15,rgb:[30,0,100]},{index:.4,rgb:[120,0,100]},{index:.6,rgb:[160,90,0]},{index:.8,rgb:[230,200,0]},{index:1,rgb:[255,250,220]}],alpha:[{index:0,rgb:[255,255,255,0]},{index:1,rgb:[255,255,255,1]}],viridis:[{index:0,rgb:[68,1,84]},{index:.13,rgb:[71,44,122]},{index:.25,rgb:[59,81,139]},{index:.38,rgb:[44,113,142]},{index:.5,rgb:[33,144,141]},{index:.63,rgb:[39,173,129]},{index:.75,rgb:[92,200,99]},{index:.88,rgb:[170,220,50]},{index:1,rgb:[253,231,37]}],inferno:[{index:0,rgb:[0,0,4]},{index:.13,rgb:[31,12,72]},{index:.25,rgb:[85,15,109]},{index:.38,rgb:[136,34,106]},{index:.5,rgb:[186,54,85]},{index:.63,rgb:[227,89,51]},{index:.75,rgb:[249,140,10]},{index:.88,rgb:[249,201,50]},{index:1,rgb:[252,255,164]}],magma:[{index:0,rgb:[0,0,4]},{index:.13,rgb:[28,16,68]},{index:.25,rgb:[79,18,123]},{index:.38,rgb:[129,37,129]},{index:.5,rgb:[181,54,122]},{index:.63,rgb:[229,80,100]},{index:.75,rgb:[251,135,97]},{index:.88,rgb:[254,194,135]},{index:1,rgb:[252,253,191]}],plasma:[{index:0,rgb:[13,8,135]},{index:.13,rgb:[75,3,161]},{index:.25,rgb:[125,3,168]},{index:.38,rgb:[168,34,150]},{index:.5,rgb:[203,70,121]},{index:.63,rgb:[229,107,93]},{index:.75,rgb:[248,148,65]},{index:.88,rgb:[253,195,40]},{index:1,rgb:[240,249,33]}],warm:[{index:0,rgb:[125,0,179]},{index:.13,rgb:[172,0,187]},{index:.25,rgb:[219,0,170]},{index:.38,rgb:[255,0,130]},{index:.5,rgb:[255,63,74]},{index:.63,rgb:[255,123,0]},{index:.75,rgb:[234,176,0]},{index:.88,rgb:[190,228,0]},{index:1,rgb:[147,255,0]}],cool:[{index:0,rgb:[125,0,179]},{index:.13,rgb:[116,0,218]},{index:.25,rgb:[98,74,237]},{index:.38,rgb:[68,146,231]},{index:.5,rgb:[0,204,197]},{index:.63,rgb:[0,247,146]},{index:.75,rgb:[0,255,88]},{index:.88,rgb:[40,255,8]},{index:1,rgb:[147,255,0]}],"rainbow-soft":[{index:0,rgb:[125,0,179]},{index:.1,rgb:[199,0,180]},{index:.2,rgb:[255,0,121]},{index:.3,rgb:[255,108,0]},{index:.4,rgb:[222,194,0]},{index:.5,rgb:[150,255,0]},{index:.6,rgb:[0,255,55]},{index:.7,rgb:[0,246,150]},{index:.8,rgb:[50,167,222]},{index:.9,rgb:[103,51,235]},{index:1,rgb:[124,0,186]}],bathymetry:[{index:0,rgb:[40,26,44]},{index:.13,rgb:[59,49,90]},{index:.25,rgb:[64,76,139]},{index:.38,rgb:[63,110,151]},{index:.5,rgb:[72,142,158]},{index:.63,rgb:[85,174,163]},{index:.75,rgb:[120,206,163]},{index:.88,rgb:[187,230,172]},{index:1,rgb:[253,254,204]}],cdom:[{index:0,rgb:[47,15,62]},{index:.13,rgb:[87,23,86]},{index:.25,rgb:[130,28,99]},{index:.38,rgb:[171,41,96]},{index:.5,rgb:[206,67,86]},{index:.63,rgb:[230,106,84]},{index:.75,rgb:[242,149,103]},{index:.88,rgb:[249,193,135]},{index:1,rgb:[254,237,176]}],chlorophyll:[{index:0,rgb:[18,36,20]},{index:.13,rgb:[25,63,41]},{index:.25,rgb:[24,91,59]},{index:.38,rgb:[13,119,72]},{index:.5,rgb:[18,148,80]},{index:.63,rgb:[80,173,89]},{index:.75,rgb:[132,196,122]},{index:.88,rgb:[175,221,162]},{index:1,rgb:[215,249,208]}],density:[{index:0,rgb:[54,14,36]},{index:.13,rgb:[89,23,80]},{index:.25,rgb:[110,45,132]},{index:.38,rgb:[120,77,178]},{index:.5,rgb:[120,113,213]},{index:.63,rgb:[115,151,228]},{index:.75,rgb:[134,185,227]},{index:.88,rgb:[177,214,227]},{index:1,rgb:[230,241,241]}],"freesurface-blue":[{index:0,rgb:[30,4,110]},{index:.13,rgb:[47,14,176]},{index:.25,rgb:[41,45,236]},{index:.38,rgb:[25,99,212]},{index:.5,rgb:[68,131,200]},{index:.63,rgb:[114,156,197]},{index:.75,rgb:[157,181,203]},{index:.88,rgb:[200,208,216]},{index:1,rgb:[241,237,236]}],"freesurface-red":[{index:0,rgb:[60,9,18]},{index:.13,rgb:[100,17,27]},{index:.25,rgb:[142,20,29]},{index:.38,rgb:[177,43,27]},{index:.5,rgb:[192,87,63]},{index:.63,rgb:[205,125,105]},{index:.75,rgb:[216,162,148]},{index:.88,rgb:[227,199,193]},{index:1,rgb:[241,237,236]}],oxygen:[{index:0,rgb:[64,5,5]},{index:.13,rgb:[106,6,15]},{index:.25,rgb:[144,26,7]},{index:.38,rgb:[168,64,3]},{index:.5,rgb:[188,100,4]},{index:.63,rgb:[206,136,11]},{index:.75,rgb:[220,174,25]},{index:.88,rgb:[231,215,44]},{index:1,rgb:[248,254,105]}],par:[{index:0,rgb:[51,20,24]},{index:.13,rgb:[90,32,35]},{index:.25,rgb:[129,44,34]},{index:.38,rgb:[159,68,25]},{index:.5,rgb:[182,99,19]},{index:.63,rgb:[199,134,22]},{index:.75,rgb:[212,171,35]},{index:.88,rgb:[221,210,54]},{index:1,rgb:[225,253,75]}],phase:[{index:0,rgb:[145,105,18]},{index:.13,rgb:[184,71,38]},{index:.25,rgb:[186,58,115]},{index:.38,rgb:[160,71,185]},{index:.5,rgb:[110,97,218]},{index:.63,rgb:[50,123,164]},{index:.75,rgb:[31,131,110]},{index:.88,rgb:[77,129,34]},{index:1,rgb:[145,105,18]}],salinity:[{index:0,rgb:[42,24,108]},{index:.13,rgb:[33,50,162]},{index:.25,rgb:[15,90,145]},{index:.38,rgb:[40,118,137]},{index:.5,rgb:[59,146,135]},{index:.63,rgb:[79,175,126]},{index:.75,rgb:[120,203,104]},{index:.88,rgb:[193,221,100]},{index:1,rgb:[253,239,154]}],temperature:[{index:0,rgb:[4,35,51]},{index:.13,rgb:[23,51,122]},{index:.25,rgb:[85,59,157]},{index:.38,rgb:[129,79,143]},{index:.5,rgb:[175,95,130]},{index:.63,rgb:[222,112,101]},{index:.75,rgb:[249,146,66]},{index:.88,rgb:[249,196,65]},{index:1,rgb:[232,250,91]}],turbidity:[{index:0,rgb:[34,31,27]},{index:.13,rgb:[65,50,41]},{index:.25,rgb:[98,69,52]},{index:.38,rgb:[131,89,57]},{index:.5,rgb:[161,112,59]},{index:.63,rgb:[185,140,66]},{index:.75,rgb:[202,174,88]},{index:.88,rgb:[216,209,126]},{index:1,rgb:[233,246,171]}],"velocity-blue":[{index:0,rgb:[17,32,64]},{index:.13,rgb:[35,52,116]},{index:.25,rgb:[29,81,156]},{index:.38,rgb:[31,113,162]},{index:.5,rgb:[50,144,169]},{index:.63,rgb:[87,173,176]},{index:.75,rgb:[149,196,189]},{index:.88,rgb:[203,221,211]},{index:1,rgb:[254,251,230]}],"velocity-green":[{index:0,rgb:[23,35,19]},{index:.13,rgb:[24,64,38]},{index:.25,rgb:[11,95,45]},{index:.38,rgb:[39,123,35]},{index:.5,rgb:[95,146,12]},{index:.63,rgb:[152,165,18]},{index:.75,rgb:[201,186,69]},{index:.88,rgb:[233,216,137]},{index:1,rgb:[255,253,205]}],cubehelix:[{index:0,rgb:[0,0,0]},{index:.07,rgb:[22,5,59]},{index:.13,rgb:[60,4,105]},{index:.2,rgb:[109,1,135]},{index:.27,rgb:[161,0,147]},{index:.33,rgb:[210,2,142]},{index:.4,rgb:[251,11,123]},{index:.47,rgb:[255,29,97]},{index:.53,rgb:[255,54,69]},{index:.6,rgb:[255,85,46]},{index:.67,rgb:[255,120,34]},{index:.73,rgb:[255,157,37]},{index:.8,rgb:[241,191,57]},{index:.87,rgb:[224,220,93]},{index:.93,rgb:[218,241,142]},{index:1,rgb:[227,253,198]}]}},{}],132:[function(t,e,r){"use strict";var n=t("./colorScale"),i=t("lerp");function a(t){return[t[0]/255,t[1]/255,t[2]/255,t[3]]}function o(t){for(var e,r="#",n=0;n<3;++n)r+=("00"+(e=(e=t[n]).toString(16))).substr(e.length);return r}function s(t){return"rgba("+t.join(",")+")"}e.exports=function(t){var e,r,l,c,u,f,h,p,d,m;t||(t={});p=(t.nshades||72)-1,h=t.format||"hex",(f=t.colormap)||(f="jet");if("string"==typeof f){if(f=f.toLowerCase(),!n[f])throw Error(f+" not a supported colorscale");u=n[f]}else{if(!Array.isArray(f))throw Error("unsupported colormap option",f);u=f.slice()}if(u.length>p+1)throw new Error(f+" map requires nshades to be at least size "+u.length);d=Array.isArray(t.alpha)?2!==t.alpha.length?[1,1]:t.alpha.slice():"number"==typeof t.alpha?[t.alpha,t.alpha]:[1,1];e=u.map((function(t){return Math.round(t.index*p)})),d[0]=Math.min(Math.max(d[0],0),1),d[1]=Math.min(Math.max(d[1],0),1);var g=u.map((function(t,e){var r=u[e].index,n=u[e].rgb.slice();return 4===n.length&&n[3]>=0&&n[3]<=1||(n[3]=d[0]+(d[1]-d[0])*r),n})),v=[];for(m=0;m0||l(t,e,a)?-1:1:0===s?c>0||l(t,e,r)?1:-1:i(c-s)}var h=n(t,e,r);return h>0?o>0&&n(t,e,a)>0?1:-1:h<0?o>0||n(t,e,a)>0?1:-1:n(t,e,a)>0||l(t,e,r)?1:-1};var n=t("robust-orientation"),i=t("signum"),a=t("two-sum"),o=t("robust-product"),s=t("robust-sum");function l(t,e,r){var n=a(t[0],-e[0]),i=a(t[1],-e[1]),l=a(r[0],-e[0]),c=a(r[1],-e[1]),u=s(o(n,l),o(i,c));return u[u.length-1]>=0}},{"robust-orientation":524,"robust-product":525,"robust-sum":529,signum:134,"two-sum":578}],134:[function(t,e,r){"use strict";e.exports=function(t){return t<0?-1:t>0?1:0}},{}],135:[function(t,e,r){e.exports=function(t,e){var r=t.length,a=t.length-e.length;if(a)return a;switch(r){case 0:return 0;case 1:return t[0]-e[0];case 2:return t[0]+t[1]-e[0]-e[1]||n(t[0],t[1])-n(e[0],e[1]);case 3:var o=t[0]+t[1],s=e[0]+e[1];if(a=o+t[2]-(s+e[2]))return a;var l=n(t[0],t[1]),c=n(e[0],e[1]);return n(l,t[2])-n(c,e[2])||n(l+t[2],o)-n(c+e[2],s);case 4:var u=t[0],f=t[1],h=t[2],p=t[3],d=e[0],m=e[1],g=e[2],v=e[3];return u+f+h+p-(d+m+g+v)||n(u,f,h,p)-n(d,m,g,v,d)||n(u+f,u+h,u+p,f+h,f+p,h+p)-n(d+m,d+g,d+v,m+g,m+v,g+v)||n(u+f+h,u+f+p,u+h+p,f+h+p)-n(d+m+g,d+m+v,d+g+v,m+g+v);default:for(var y=t.slice().sort(i),x=e.slice().sort(i),b=0;bt[r][0]&&(r=n);return er?[[r],[e]]:[[e]]}},{}],139:[function(t,e,r){"use strict";e.exports=function(t){var e=n(t),r=e.length;if(r<=2)return[];for(var i=new Array(r),a=e[r-1],o=0;o=e[l]&&(s+=1);a[o]=s}}return t}(n(a,!0),r)}};var n=t("incremental-convex-hull"),i=t("affine-hull")},{"affine-hull":69,"incremental-convex-hull":428}],141:[function(t,e,r){e.exports={AFG:"afghan",ALA:"\\b\\wland",ALB:"albania",DZA:"algeria",ASM:"^(?=.*americ).*samoa",AND:"andorra",AGO:"angola",AIA:"anguill?a",ATA:"antarctica",ATG:"antigua",ARG:"argentin",ARM:"armenia",ABW:"^(?!.*bonaire).*\\baruba",AUS:"australia",AUT:"^(?!.*hungary).*austria|\\baustri.*\\bemp",AZE:"azerbaijan",BHS:"bahamas",BHR:"bahrain",BGD:"bangladesh|^(?=.*east).*paki?stan",BRB:"barbados",BLR:"belarus|byelo",BEL:"^(?!.*luxem).*belgium",BLZ:"belize|^(?=.*british).*honduras",BEN:"benin|dahome",BMU:"bermuda",BTN:"bhutan",BOL:"bolivia",BES:"^(?=.*bonaire).*eustatius|^(?=.*carib).*netherlands|\\bbes.?islands",BIH:"herzegovina|bosnia",BWA:"botswana|bechuana",BVT:"bouvet",BRA:"brazil",IOT:"british.?indian.?ocean",BRN:"brunei",BGR:"bulgaria",BFA:"burkina|\\bfaso|upper.?volta",BDI:"burundi",CPV:"verde",KHM:"cambodia|kampuchea|khmer",CMR:"cameroon",CAN:"canada",CYM:"cayman",CAF:"\\bcentral.african.republic",TCD:"\\bchad",CHL:"\\bchile",CHN:"^(?!.*\\bmac)(?!.*\\bhong)(?!.*\\btai)(?!.*\\brep).*china|^(?=.*peo)(?=.*rep).*china",CXR:"christmas",CCK:"\\bcocos|keeling",COL:"colombia",COM:"comoro",COG:"^(?!.*\\bdem)(?!.*\\bd[\\.]?r)(?!.*kinshasa)(?!.*zaire)(?!.*belg)(?!.*l.opoldville)(?!.*free).*\\bcongo",COK:"\\bcook",CRI:"costa.?rica",CIV:"ivoire|ivory",HRV:"croatia",CUB:"\\bcuba",CUW:"^(?!.*bonaire).*\\bcura(c|\xe7)ao",CYP:"cyprus",CSK:"czechoslovakia",CZE:"^(?=.*rep).*czech|czechia|bohemia",COD:"\\bdem.*congo|congo.*\\bdem|congo.*\\bd[\\.]?r|\\bd[\\.]?r.*congo|belgian.?congo|congo.?free.?state|kinshasa|zaire|l.opoldville|drc|droc|rdc",DNK:"denmark",DJI:"djibouti",DMA:"dominica(?!n)",DOM:"dominican.rep",ECU:"ecuador",EGY:"egypt",SLV:"el.?salvador",GNQ:"guine.*eq|eq.*guine|^(?=.*span).*guinea",ERI:"eritrea",EST:"estonia",ETH:"ethiopia|abyssinia",FLK:"falkland|malvinas",FRO:"faroe|faeroe",FJI:"fiji",FIN:"finland",FRA:"^(?!.*\\bdep)(?!.*martinique).*france|french.?republic|\\bgaul",GUF:"^(?=.*french).*guiana",PYF:"french.?polynesia|tahiti",ATF:"french.?southern",GAB:"gabon",GMB:"gambia",GEO:"^(?!.*south).*georgia",DDR:"german.?democratic.?republic|democratic.?republic.*germany|east.germany",DEU:"^(?!.*east).*germany|^(?=.*\\bfed.*\\brep).*german",GHA:"ghana|gold.?coast",GIB:"gibraltar",GRC:"greece|hellenic|hellas",GRL:"greenland",GRD:"grenada",GLP:"guadeloupe",GUM:"\\bguam",GTM:"guatemala",GGY:"guernsey",GIN:"^(?!.*eq)(?!.*span)(?!.*bissau)(?!.*portu)(?!.*new).*guinea",GNB:"bissau|^(?=.*portu).*guinea",GUY:"guyana|british.?guiana",HTI:"haiti",HMD:"heard.*mcdonald",VAT:"holy.?see|vatican|papal.?st",HND:"^(?!.*brit).*honduras",HKG:"hong.?kong",HUN:"^(?!.*austr).*hungary",ISL:"iceland",IND:"india(?!.*ocea)",IDN:"indonesia",IRN:"\\biran|persia",IRQ:"\\biraq|mesopotamia",IRL:"(^ireland)|(^republic.*ireland)",IMN:"^(?=.*isle).*\\bman",ISR:"israel",ITA:"italy",JAM:"jamaica",JPN:"japan",JEY:"jersey",JOR:"jordan",KAZ:"kazak",KEN:"kenya|british.?east.?africa|east.?africa.?prot",KIR:"kiribati",PRK:"^(?=.*democrat|people|north|d.*p.*.r).*\\bkorea|dprk|korea.*(d.*p.*r)",KWT:"kuwait",KGZ:"kyrgyz|kirghiz",LAO:"\\blaos?\\b",LVA:"latvia",LBN:"lebanon",LSO:"lesotho|basuto",LBR:"liberia",LBY:"libya",LIE:"liechtenstein",LTU:"lithuania",LUX:"^(?!.*belg).*luxem",MAC:"maca(o|u)",MDG:"madagascar|malagasy",MWI:"malawi|nyasa",MYS:"malaysia",MDV:"maldive",MLI:"\\bmali\\b",MLT:"\\bmalta",MHL:"marshall",MTQ:"martinique",MRT:"mauritania",MUS:"mauritius",MYT:"\\bmayotte",MEX:"\\bmexic",FSM:"fed.*micronesia|micronesia.*fed",MCO:"monaco",MNG:"mongolia",MNE:"^(?!.*serbia).*montenegro",MSR:"montserrat",MAR:"morocco|\\bmaroc",MOZ:"mozambique",MMR:"myanmar|burma",NAM:"namibia",NRU:"nauru",NPL:"nepal",NLD:"^(?!.*\\bant)(?!.*\\bcarib).*netherlands",ANT:"^(?=.*\\bant).*(nether|dutch)",NCL:"new.?caledonia",NZL:"new.?zealand",NIC:"nicaragua",NER:"\\bniger(?!ia)",NGA:"nigeria",NIU:"niue",NFK:"norfolk",MNP:"mariana",NOR:"norway",OMN:"\\boman|trucial",PAK:"^(?!.*east).*paki?stan",PLW:"palau",PSE:"palestin|\\bgaza|west.?bank",PAN:"panama",PNG:"papua|new.?guinea",PRY:"paraguay",PER:"peru",PHL:"philippines",PCN:"pitcairn",POL:"poland",PRT:"portugal",PRI:"puerto.?rico",QAT:"qatar",KOR:"^(?!.*d.*p.*r)(?!.*democrat)(?!.*people)(?!.*north).*\\bkorea(?!.*d.*p.*r)",MDA:"moldov|b(a|e)ssarabia",REU:"r(e|\xe9)union",ROU:"r(o|u|ou)mania",RUS:"\\brussia|soviet.?union|u\\.?s\\.?s\\.?r|socialist.?republics",RWA:"rwanda",BLM:"barth(e|\xe9)lemy",SHN:"helena",KNA:"kitts|\\bnevis",LCA:"\\blucia",MAF:"^(?=.*collectivity).*martin|^(?=.*france).*martin(?!ique)|^(?=.*french).*martin(?!ique)",SPM:"miquelon",VCT:"vincent",WSM:"^(?!.*amer).*samoa",SMR:"san.?marino",STP:"\\bs(a|\xe3)o.?tom(e|\xe9)",SAU:"\\bsa\\w*.?arabia",SEN:"senegal",SRB:"^(?!.*monte).*serbia",SYC:"seychell",SLE:"sierra",SGP:"singapore",SXM:"^(?!.*martin)(?!.*saba).*maarten",SVK:"^(?!.*cze).*slovak",SVN:"slovenia",SLB:"solomon",SOM:"somali",ZAF:"south.africa|s\\\\..?africa",SGS:"south.?georgia|sandwich",SSD:"\\bs\\w*.?sudan",ESP:"spain",LKA:"sri.?lanka|ceylon",SDN:"^(?!.*\\bs(?!u)).*sudan",SUR:"surinam|dutch.?guiana",SJM:"svalbard",SWZ:"swaziland",SWE:"sweden",CHE:"switz|swiss",SYR:"syria",TWN:"taiwan|taipei|formosa|^(?!.*peo)(?=.*rep).*china",TJK:"tajik",THA:"thailand|\\bsiam",MKD:"macedonia|fyrom",TLS:"^(?=.*leste).*timor|^(?=.*east).*timor",TGO:"togo",TKL:"tokelau",TON:"tonga",TTO:"trinidad|tobago",TUN:"tunisia",TUR:"turkey",TKM:"turkmen",TCA:"turks",TUV:"tuvalu",UGA:"uganda",UKR:"ukrain",ARE:"emirates|^u\\.?a\\.?e\\.?$|united.?arab.?em",GBR:"united.?kingdom|britain|^u\\.?k\\.?$",TZA:"tanzania",USA:"united.?states\\b(?!.*islands)|\\bu\\.?s\\.?a\\.?\\b|^\\s*u\\.?s\\.?\\b(?!.*islands)",UMI:"minor.?outlying.?is",URY:"uruguay",UZB:"uzbek",VUT:"vanuatu|new.?hebrides",VEN:"venezuela",VNM:"^(?!.*republic).*viet.?nam|^(?=.*socialist).*viet.?nam",VGB:"^(?=.*\\bu\\.?\\s?k).*virgin|^(?=.*brit).*virgin|^(?=.*kingdom).*virgin",VIR:"^(?=.*\\bu\\.?\\s?s).*virgin|^(?=.*states).*virgin",WLF:"futuna|wallis",ESH:"western.sahara",YEM:"^(?!.*arab)(?!.*north)(?!.*sana)(?!.*peo)(?!.*dem)(?!.*south)(?!.*aden)(?!.*\\bp\\.?d\\.?r).*yemen",YMD:"^(?=.*peo).*yemen|^(?!.*rep)(?=.*dem).*yemen|^(?=.*south).*yemen|^(?=.*aden).*yemen|^(?=.*\\bp\\.?d\\.?r).*yemen",YUG:"yugoslavia",ZMB:"zambia|northern.?rhodesia",EAZ:"zanzibar",ZWE:"zimbabwe|^(?!.*northern).*rhodesia"}},{}],142:[function(t,e,r){e.exports=["xx-small","x-small","small","medium","large","x-large","xx-large","larger","smaller"]},{}],143:[function(t,e,r){e.exports=["normal","condensed","semi-condensed","extra-condensed","ultra-condensed","expanded","semi-expanded","extra-expanded","ultra-expanded"]},{}],144:[function(t,e,r){e.exports=["normal","italic","oblique"]},{}],145:[function(t,e,r){e.exports=["normal","bold","bolder","lighter","100","200","300","400","500","600","700","800","900"]},{}],146:[function(t,e,r){"use strict";e.exports={parse:t("./parse"),stringify:t("./stringify")}},{"./parse":148,"./stringify":149}],147:[function(t,e,r){"use strict";var n=t("css-font-size-keywords");e.exports={isSize:function(t){return/^[\d\.]/.test(t)||-1!==t.indexOf("/")||-1!==n.indexOf(t)}}},{"css-font-size-keywords":142}],148:[function(t,e,r){"use strict";var n=t("unquote"),i=t("css-global-keywords"),a=t("css-system-font-keywords"),o=t("css-font-weight-keywords"),s=t("css-font-style-keywords"),l=t("css-font-stretch-keywords"),c=t("string-split-by"),u=t("./lib/util").isSize;e.exports=h;var f=h.cache={};function h(t){if("string"!=typeof t)throw new Error("Font argument must be a string.");if(f[t])return f[t];if(""===t)throw new Error("Cannot parse an empty string.");if(-1!==a.indexOf(t))return f[t]={system:t};for(var e,r={style:"normal",variant:"normal",weight:"normal",stretch:"normal",lineHeight:"normal",size:"1rem",family:["serif"]},h=c(t,/\s+/);e=h.shift();){if(-1!==i.indexOf(e))return["style","variant","weight","stretch"].forEach((function(t){r[t]=e})),f[t]=r;if(-1===s.indexOf(e))if("normal"!==e&&"small-caps"!==e)if(-1===l.indexOf(e)){if(-1===o.indexOf(e)){if(u(e)){var d=c(e,"/");if(r.size=d[0],null!=d[1]?r.lineHeight=p(d[1]):"/"===h[0]&&(h.shift(),r.lineHeight=p(h.shift())),!h.length)throw new Error("Missing required font-family.");return r.family=c(h.join(" "),/\s*,\s*/).map(n),f[t]=r}throw new Error("Unknown or unsupported font token: "+e)}r.weight=e}else r.stretch=e;else r.variant=e;else r.style=e}throw new Error("Missing required font-size.")}function p(t){var e=parseFloat(t);return e.toString()===t?e:t}},{"./lib/util":147,"css-font-stretch-keywords":143,"css-font-style-keywords":144,"css-font-weight-keywords":145,"css-global-keywords":150,"css-system-font-keywords":151,"string-split-by":562,unquote:593}],149:[function(t,e,r){"use strict";var n=t("pick-by-alias"),i=t("./lib/util").isSize,a=m(t("css-global-keywords")),o=m(t("css-system-font-keywords")),s=m(t("css-font-weight-keywords")),l=m(t("css-font-style-keywords")),c=m(t("css-font-stretch-keywords")),u={normal:1,"small-caps":1},f={serif:1,"sans-serif":1,monospace:1,cursive:1,fantasy:1,"system-ui":1},h="1rem",p="serif";function d(t,e){if(t&&!e[t]&&!a[t])throw Error("Unknown keyword `"+t+"`");return t}function m(t){for(var e={},r=0;r=0;--p)a[p]=c*t[p]+u*e[p]+f*r[p]+h*n[p];return a}return c*t+u*e+f*r+h*n},e.exports.derivative=function(t,e,r,n,i,a){var o=6*i*i-6*i,s=3*i*i-4*i+1,l=-6*i*i+6*i,c=3*i*i-2*i;if(t.length){a||(a=new Array(t.length));for(var u=t.length-1;u>=0;--u)a[u]=o*t[u]+s*e[u]+l*r[u]+c*n[u];return a}return o*t+s*e+l*r[u]+c*n}},{}],153:[function(t,e,r){"use strict";var n,i=t("type/value/is"),a=t("type/value/ensure"),o=t("type/plain-function/ensure"),s=t("es5-ext/object/copy"),l=t("es5-ext/object/normalize-options"),c=t("es5-ext/object/map"),u=Function.prototype.bind,f=Object.defineProperty,h=Object.prototype.hasOwnProperty;n=function(t,e,r){var n,i=a(e)&&o(e.value);return delete(n=s(e)).writable,delete n.value,n.get=function(){return!r.overwriteDefinition&&h.call(this,t)?i:(e.value=u.call(i,r.resolveContext?r.resolveContext(this):this),f(this,t,e),this[t])},n},e.exports=function(t){var e=l(arguments[1]);return i(e.resolveContext)&&o(e.resolveContext),c(t,(function(t,r){return n(r,t,e)}))}},{"es5-ext/object/copy":197,"es5-ext/object/map":205,"es5-ext/object/normalize-options":206,"type/plain-function/ensure":584,"type/value/ensure":588,"type/value/is":589}],154:[function(t,e,r){"use strict";var n=t("type/value/is"),i=t("type/plain-function/is"),a=t("es5-ext/object/assign"),o=t("es5-ext/object/normalize-options"),s=t("es5-ext/string/#/contains");(e.exports=function(t,e){var r,i,l,c,u;return arguments.length<2||"string"!=typeof t?(c=e,e=t,t=null):c=arguments[2],n(t)?(r=s.call(t,"c"),i=s.call(t,"e"),l=s.call(t,"w")):(r=l=!0,i=!1),u={value:e,configurable:r,enumerable:i,writable:l},c?a(o(c),u):u}).gs=function(t,e,r){var l,c,u,f;return"string"!=typeof t?(u=r,r=e,e=t,t=null):u=arguments[3],n(e)?i(e)?n(r)?i(r)||(u=r,r=void 0):r=void 0:(u=e,e=r=void 0):e=void 0,n(t)?(l=s.call(t,"c"),c=s.call(t,"e")):(l=!0,c=!1),f={get:e,set:r,configurable:l,enumerable:c},u?a(o(u),f):f}},{"es5-ext/object/assign":194,"es5-ext/object/normalize-options":206,"es5-ext/string/#/contains":213,"type/plain-function/is":585,"type/value/is":589}],155:[function(t,e,r){!function(t,n){n("object"==typeof r&&void 0!==e?r:t.d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e){return te?1:t>=e?0:NaN}function r(t){var r;return 1===t.length&&(r=t,t=function(t,n){return e(r(t),n)}),{left:function(e,r,n,i){for(null==n&&(n=0),null==i&&(i=e.length);n>>1;t(e[a],r)<0?n=a+1:i=a}return n},right:function(e,r,n,i){for(null==n&&(n=0),null==i&&(i=e.length);n>>1;t(e[a],r)>0?i=a:n=a+1}return n}}}var n=r(e),i=n.right,a=n.left;function o(t,e){return[t,e]}function s(t){return null===t?NaN:+t}function l(t,e){var r,n,i=t.length,a=0,o=-1,l=0,c=0;if(null==e)for(;++o1)return c/(a-1)}function c(t,e){var r=l(t,e);return r?Math.sqrt(r):r}function u(t,e){var r,n,i,a=t.length,o=-1;if(null==e){for(;++o=r)for(n=i=r;++or&&(n=r),i=r)for(n=i=r;++or&&(n=r),i=0?(a>=v?10:a>=y?5:a>=x?2:1)*Math.pow(10,i):-Math.pow(10,-i)/(a>=v?10:a>=y?5:a>=x?2:1)}function _(t,e,r){var n=Math.abs(e-t)/Math.max(0,r),i=Math.pow(10,Math.floor(Math.log(n)/Math.LN10)),a=n/i;return a>=v?i*=10:a>=y?i*=5:a>=x&&(i*=2),e=1)return+r(t[n-1],n-1,t);var n,i=(n-1)*e,a=Math.floor(i),o=+r(t[a],a,t);return o+(+r(t[a+1],a+1,t)-o)*(i-a)}}function k(t,e){var r,n,i=t.length,a=-1;if(null==e){for(;++a=r)for(n=r;++ar&&(n=r)}else for(;++a=r)for(n=r;++ar&&(n=r);return n}function A(t){if(!(i=t.length))return[];for(var e=-1,r=k(t,M),n=new Array(r);++et?1:e>=t?0:NaN},t.deviation=c,t.extent=u,t.histogram=function(){var t=m,e=u,r=w;function n(n){var a,o,s=n.length,l=new Array(s);for(a=0;af;)h.pop(),--p;var d,m=new Array(p+1);for(a=0;a<=p;++a)(d=m[a]=[]).x0=a>0?h[a-1]:u,d.x1=a=r)for(n=r;++an&&(n=r)}else for(;++a=r)for(n=r;++an&&(n=r);return n},t.mean=function(t,e){var r,n=t.length,i=n,a=-1,o=0;if(null==e)for(;++a=0;)for(e=(n=t[i]).length;--e>=0;)r[--o]=n[e];return r},t.min=k,t.pairs=function(t,e){null==e&&(e=o);for(var r=0,n=t.length-1,i=t[0],a=new Array(n<0?0:n);r0)return[t];if((n=e0)for(t=Math.ceil(t/o),e=Math.floor(e/o),a=new Array(i=Math.ceil(e-t+1));++s=l.length)return null!=t&&n.sort(t),null!=e?e(n):n;for(var s,c,f,h=-1,p=n.length,d=l[i++],m=r(),g=a();++hl.length)return r;var i,a=c[n-1];return null!=e&&n>=l.length?i=r.entries():(i=[],r.each((function(e,r){i.push({key:r,values:t(e,n)})}))),null!=a?i.sort((function(t,e){return a(t.key,e.key)})):i}(u(t,0,a,o),0)},key:function(t){return l.push(t),s},sortKeys:function(t){return c[l.length-1]=t,s},sortValues:function(e){return t=e,s},rollup:function(t){return e=t,s}}},t.set=c,t.map=r,t.keys=function(t){var e=[];for(var r in t)e.push(r);return e},t.values=function(t){var e=[];for(var r in t)e.push(t[r]);return e},t.entries=function(t){var e=[];for(var r in t)e.push({key:r,value:t[r]});return e},Object.defineProperty(t,"__esModule",{value:!0})}))},{}],157:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e,r){t.prototype=e.prototype=r,r.constructor=t}function r(t,e){var r=Object.create(t.prototype);for(var n in e)r[n]=e[n];return r}function n(){}var i="\\s*([+-]?\\d+)\\s*",a="\\s*([+-]?\\d*\\.?\\d+(?:[eE][+-]?\\d+)?)\\s*",o="\\s*([+-]?\\d*\\.?\\d+(?:[eE][+-]?\\d+)?)%\\s*",s=/^#([0-9a-f]{3,8})$/,l=new RegExp("^rgb\\("+[i,i,i]+"\\)$"),c=new RegExp("^rgb\\("+[o,o,o]+"\\)$"),u=new RegExp("^rgba\\("+[i,i,i,a]+"\\)$"),f=new RegExp("^rgba\\("+[o,o,o,a]+"\\)$"),h=new RegExp("^hsl\\("+[a,o,o]+"\\)$"),p=new RegExp("^hsla\\("+[a,o,o,a]+"\\)$"),d={aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074};function m(){return this.rgb().formatHex()}function g(){return this.rgb().formatRgb()}function v(t){var e,r;return t=(t+"").trim().toLowerCase(),(e=s.exec(t))?(r=e[1].length,e=parseInt(e[1],16),6===r?y(e):3===r?new w(e>>8&15|e>>4&240,e>>4&15|240&e,(15&e)<<4|15&e,1):8===r?x(e>>24&255,e>>16&255,e>>8&255,(255&e)/255):4===r?x(e>>12&15|e>>8&240,e>>8&15|e>>4&240,e>>4&15|240&e,((15&e)<<4|15&e)/255):null):(e=l.exec(t))?new w(e[1],e[2],e[3],1):(e=c.exec(t))?new w(255*e[1]/100,255*e[2]/100,255*e[3]/100,1):(e=u.exec(t))?x(e[1],e[2],e[3],e[4]):(e=f.exec(t))?x(255*e[1]/100,255*e[2]/100,255*e[3]/100,e[4]):(e=h.exec(t))?M(e[1],e[2]/100,e[3]/100,1):(e=p.exec(t))?M(e[1],e[2]/100,e[3]/100,e[4]):d.hasOwnProperty(t)?y(d[t]):"transparent"===t?new w(NaN,NaN,NaN,0):null}function y(t){return new w(t>>16&255,t>>8&255,255&t,1)}function x(t,e,r,n){return n<=0&&(t=e=r=NaN),new w(t,e,r,n)}function b(t){return t instanceof n||(t=v(t)),t?new w((t=t.rgb()).r,t.g,t.b,t.opacity):new w}function _(t,e,r,n){return 1===arguments.length?b(t):new w(t,e,r,null==n?1:n)}function w(t,e,r,n){this.r=+t,this.g=+e,this.b=+r,this.opacity=+n}function T(){return"#"+A(this.r)+A(this.g)+A(this.b)}function k(){var t=this.opacity;return(1===(t=isNaN(t)?1:Math.max(0,Math.min(1,t)))?"rgb(":"rgba(")+Math.max(0,Math.min(255,Math.round(this.r)||0))+", "+Math.max(0,Math.min(255,Math.round(this.g)||0))+", "+Math.max(0,Math.min(255,Math.round(this.b)||0))+(1===t?")":", "+t+")")}function A(t){return((t=Math.max(0,Math.min(255,Math.round(t)||0)))<16?"0":"")+t.toString(16)}function M(t,e,r,n){return n<=0?t=e=r=NaN:r<=0||r>=1?t=e=NaN:e<=0&&(t=NaN),new L(t,e,r,n)}function S(t){if(t instanceof L)return new L(t.h,t.s,t.l,t.opacity);if(t instanceof n||(t=v(t)),!t)return new L;if(t instanceof L)return t;var e=(t=t.rgb()).r/255,r=t.g/255,i=t.b/255,a=Math.min(e,r,i),o=Math.max(e,r,i),s=NaN,l=o-a,c=(o+a)/2;return l?(s=e===o?(r-i)/l+6*(r0&&c<1?0:s,new L(s,l,c,t.opacity)}function E(t,e,r,n){return 1===arguments.length?S(t):new L(t,e,r,null==n?1:n)}function L(t,e,r,n){this.h=+t,this.s=+e,this.l=+r,this.opacity=+n}function C(t,e,r){return 255*(t<60?e+(r-e)*t/60:t<180?r:t<240?e+(r-e)*(240-t)/60:e)}e(n,v,{copy:function(t){return Object.assign(new this.constructor,this,t)},displayable:function(){return this.rgb().displayable()},hex:m,formatHex:m,formatHsl:function(){return S(this).formatHsl()},formatRgb:g,toString:g}),e(w,_,r(n,{brighter:function(t){return t=null==t?1/.7:Math.pow(1/.7,t),new w(this.r*t,this.g*t,this.b*t,this.opacity)},darker:function(t){return t=null==t?.7:Math.pow(.7,t),new w(this.r*t,this.g*t,this.b*t,this.opacity)},rgb:function(){return this},displayable:function(){return-.5<=this.r&&this.r<255.5&&-.5<=this.g&&this.g<255.5&&-.5<=this.b&&this.b<255.5&&0<=this.opacity&&this.opacity<=1},hex:T,formatHex:T,formatRgb:k,toString:k})),e(L,E,r(n,{brighter:function(t){return t=null==t?1/.7:Math.pow(1/.7,t),new L(this.h,this.s,this.l*t,this.opacity)},darker:function(t){return t=null==t?.7:Math.pow(.7,t),new L(this.h,this.s,this.l*t,this.opacity)},rgb:function(){var t=this.h%360+360*(this.h<0),e=isNaN(t)||isNaN(this.s)?0:this.s,r=this.l,n=r+(r<.5?r:1-r)*e,i=2*r-n;return new w(C(t>=240?t-240:t+120,i,n),C(t,i,n),C(t<120?t+240:t-120,i,n),this.opacity)},displayable:function(){return(0<=this.s&&this.s<=1||isNaN(this.s))&&0<=this.l&&this.l<=1&&0<=this.opacity&&this.opacity<=1},formatHsl:function(){var t=this.opacity;return(1===(t=isNaN(t)?1:Math.max(0,Math.min(1,t)))?"hsl(":"hsla(")+(this.h||0)+", "+100*(this.s||0)+"%, "+100*(this.l||0)+"%"+(1===t?")":", "+t+")")}}));var P=Math.PI/180,I=180/Math.PI,O=6/29,z=3*O*O;function D(t){if(t instanceof F)return new F(t.l,t.a,t.b,t.opacity);if(t instanceof q)return G(t);t instanceof w||(t=b(t));var e,r,n=U(t.r),i=U(t.g),a=U(t.b),o=B((.2225045*n+.7168786*i+.0606169*a)/1);return n===i&&i===a?e=r=o:(e=B((.4360747*n+.3850649*i+.1430804*a)/.96422),r=B((.0139322*n+.0971045*i+.7141733*a)/.82521)),new F(116*o-16,500*(e-o),200*(o-r),t.opacity)}function R(t,e,r,n){return 1===arguments.length?D(t):new F(t,e,r,null==n?1:n)}function F(t,e,r,n){this.l=+t,this.a=+e,this.b=+r,this.opacity=+n}function B(t){return t>.008856451679035631?Math.pow(t,1/3):t/z+4/29}function N(t){return t>O?t*t*t:z*(t-4/29)}function j(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function U(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function V(t){if(t instanceof q)return new q(t.h,t.c,t.l,t.opacity);if(t instanceof F||(t=D(t)),0===t.a&&0===t.b)return new q(NaN,0=0&&(r=t.slice(n+1),t=t.slice(0,n)),t&&!e.hasOwnProperty(t))throw new Error("unknown type: "+t);return{type:t,name:r}}))}function a(t,e){for(var r,n=0,i=t.length;n0)for(var r,n,i=new Array(r),a=0;ah+c||np+c||au.index){var f=h-s.x-s.vx,g=p-s.y-s.vy,v=f*f+g*g;vt.r&&(t.r=t[e].r)}function h(){if(r){var e,i,a=r.length;for(n=new Array(a),e=0;e=c)){(t.data!==r||t.next)&&(0===f&&(d+=(f=o())*f),0===h&&(d+=(h=o())*h),d1?(null==r?u.remove(t):u.set(t,v(r)),e):u.get(t)},find:function(e,r,n){var i,a,o,s,l,c=0,u=t.length;for(null==n?n=1/0:n*=n,c=0;c1?(h.on(t,r),e):h.on(t)}}},t.forceX=function(t){var e,r,n,i=a(.1);function o(t){for(var i,a=0,o=e.length;a1?n[0]+n.slice(2):n,+t.slice(r+1)]}function r(t){return(t=e(Math.abs(t)))?t[1]:NaN}var n,i=/^(?:(.)?([<>=^]))?([+\-( ])?([$#])?(0)?(\d+)?(,)?(\.\d+)?(~)?([a-z%])?$/i;function a(t){if(!(e=i.exec(t)))throw new Error("invalid format: "+t);var e;return new o({fill:e[1],align:e[2],sign:e[3],symbol:e[4],zero:e[5],width:e[6],comma:e[7],precision:e[8]&&e[8].slice(1),trim:e[9],type:e[10]})}function o(t){this.fill=void 0===t.fill?" ":t.fill+"",this.align=void 0===t.align?">":t.align+"",this.sign=void 0===t.sign?"-":t.sign+"",this.symbol=void 0===t.symbol?"":t.symbol+"",this.zero=!!t.zero,this.width=void 0===t.width?void 0:+t.width,this.comma=!!t.comma,this.precision=void 0===t.precision?void 0:+t.precision,this.trim=!!t.trim,this.type=void 0===t.type?"":t.type+""}function s(t,r){var n=e(t,r);if(!n)return t+"";var i=n[0],a=n[1];return a<0?"0."+new Array(-a).join("0")+i:i.length>a+1?i.slice(0,a+1)+"."+i.slice(a+1):i+new Array(a-i.length+2).join("0")}a.prototype=o.prototype,o.prototype.toString=function(){return this.fill+this.align+this.sign+this.symbol+(this.zero?"0":"")+(void 0===this.width?"":Math.max(1,0|this.width))+(this.comma?",":"")+(void 0===this.precision?"":"."+Math.max(0,0|this.precision))+(this.trim?"~":"")+this.type};var l={"%":function(t,e){return(100*t).toFixed(e)},b:function(t){return Math.round(t).toString(2)},c:function(t){return t+""},d:function(t){return Math.abs(t=Math.round(t))>=1e21?t.toLocaleString("en").replace(/,/g,""):t.toString(10)},e:function(t,e){return t.toExponential(e)},f:function(t,e){return t.toFixed(e)},g:function(t,e){return t.toPrecision(e)},o:function(t){return Math.round(t).toString(8)},p:function(t,e){return s(100*t,e)},r:s,s:function(t,r){var i=e(t,r);if(!i)return t+"";var a=i[0],o=i[1],s=o-(n=3*Math.max(-8,Math.min(8,Math.floor(o/3))))+1,l=a.length;return s===l?a:s>l?a+new Array(s-l+1).join("0"):s>0?a.slice(0,s)+"."+a.slice(s):"0."+new Array(1-s).join("0")+e(t,Math.max(0,r+s-1))[0]},X:function(t){return Math.round(t).toString(16).toUpperCase()},x:function(t){return Math.round(t).toString(16)}};function c(t){return t}var u,f=Array.prototype.map,h=["y","z","a","f","p","n","\xb5","m","","k","M","G","T","P","E","Z","Y"];function p(t){var e,i,o=void 0===t.grouping||void 0===t.thousands?c:(e=f.call(t.grouping,Number),i=t.thousands+"",function(t,r){for(var n=t.length,a=[],o=0,s=e[0],l=0;n>0&&s>0&&(l+s+1>r&&(s=Math.max(1,r-l)),a.push(t.substring(n-=s,n+s)),!((l+=s+1)>r));)s=e[o=(o+1)%e.length];return a.reverse().join(i)}),s=void 0===t.currency?"":t.currency[0]+"",u=void 0===t.currency?"":t.currency[1]+"",p=void 0===t.decimal?".":t.decimal+"",d=void 0===t.numerals?c:function(t){return function(e){return e.replace(/[0-9]/g,(function(e){return t[+e]}))}}(f.call(t.numerals,String)),m=void 0===t.percent?"%":t.percent+"",g=void 0===t.minus?"-":t.minus+"",v=void 0===t.nan?"NaN":t.nan+"";function y(t){var e=(t=a(t)).fill,r=t.align,i=t.sign,c=t.symbol,f=t.zero,y=t.width,x=t.comma,b=t.precision,_=t.trim,w=t.type;"n"===w?(x=!0,w="g"):l[w]||(void 0===b&&(b=12),_=!0,w="g"),(f||"0"===e&&"="===r)&&(f=!0,e="0",r="=");var T="$"===c?s:"#"===c&&/[boxX]/.test(w)?"0"+w.toLowerCase():"",k="$"===c?u:/[%p]/.test(w)?m:"",A=l[w],M=/[defgprs%]/.test(w);function S(t){var a,s,l,c=T,u=k;if("c"===w)u=A(t)+u,t="";else{var m=(t=+t)<0||1/t<0;if(t=isNaN(t)?v:A(Math.abs(t),b),_&&(t=function(t){t:for(var e,r=t.length,n=1,i=-1;n0&&(i=0)}return i>0?t.slice(0,i)+t.slice(e+1):t}(t)),m&&0==+t&&"+"!==i&&(m=!1),c=(m?"("===i?i:g:"-"===i||"("===i?"":i)+c,u=("s"===w?h[8+n/3]:"")+u+(m&&"("===i?")":""),M)for(a=-1,s=t.length;++a(l=t.charCodeAt(a))||l>57){u=(46===l?p+t.slice(a+1):t.slice(a))+u,t=t.slice(0,a);break}}x&&!f&&(t=o(t,1/0));var S=c.length+t.length+u.length,E=S>1)+c+t+u+E.slice(S);break;default:t=E+c+t+u}return d(t)}return b=void 0===b?6:/[gprs]/.test(w)?Math.max(1,Math.min(21,b)):Math.max(0,Math.min(20,b)),S.toString=function(){return t+""},S}return{format:y,formatPrefix:function(t,e){var n=y(((t=a(t)).type="f",t)),i=3*Math.max(-8,Math.min(8,Math.floor(r(e)/3))),o=Math.pow(10,-i),s=h[8+i/3];return function(t){return n(o*t)+s}}}}function d(e){return u=p(e),t.format=u.format,t.formatPrefix=u.formatPrefix,u}d({decimal:".",thousands:",",grouping:[3],currency:["$",""],minus:"-"}),t.FormatSpecifier=o,t.formatDefaultLocale=d,t.formatLocale=p,t.formatSpecifier=a,t.precisionFixed=function(t){return Math.max(0,-r(Math.abs(t)))},t.precisionPrefix=function(t,e){return Math.max(0,3*Math.max(-8,Math.min(8,Math.floor(r(e)/3)))-r(Math.abs(t)))},t.precisionRound=function(t,e){return t=Math.abs(t),e=Math.abs(e)-t,Math.max(0,r(e)-r(t))+1},Object.defineProperty(t,"__esModule",{value:!0})}))},{}],161:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-geo"),t("d3-array")):i(n.d3=n.d3||{},n.d3,n.d3)}(this,(function(t,e,r){"use strict";var n=Math.abs,i=Math.atan,a=Math.atan2,o=Math.cos,s=Math.exp,l=Math.floor,c=Math.log,u=Math.max,f=Math.min,h=Math.pow,p=Math.round,d=Math.sign||function(t){return t>0?1:t<0?-1:0},m=Math.sin,g=Math.tan,v=1e-6,y=Math.PI,x=y/2,b=y/4,_=Math.SQRT1_2,w=L(2),T=L(y),k=2*y,A=180/y,M=y/180;function S(t){return t>1?x:t<-1?-x:Math.asin(t)}function E(t){return t>1?0:t<-1?y:Math.acos(t)}function L(t){return t>0?Math.sqrt(t):0}function C(t){return(s(t)-s(-t))/2}function P(t){return(s(t)+s(-t))/2}function I(t){var e=g(t/2),r=2*c(o(t/2))/(e*e);function i(t,e){var n=o(t),i=o(e),a=m(e),s=i*n,l=-((1-s?c((1+s)/2)/(1-s):-.5)+r/(1+s));return[l*i*m(t),l*a]}return i.invert=function(e,i){var s,l=L(e*e+i*i),u=-t/2,f=50;if(!l)return[0,0];do{var h=u/2,p=o(h),d=m(h),g=d/p,y=-c(n(p));u-=s=(2/g*y-r*g-l)/(-y/(d*d)+1-r/(2*p*p))*(p<0?.7:1)}while(n(s)>v&&--f>0);var x=m(u);return[a(e*x,l*o(u)),S(i*x/l)]},i}function O(t,e){var r=o(e),n=function(t){return t?t/Math.sin(t):1}(E(r*o(t/=2)));return[2*r*m(t)*n,m(e)*n]}function z(t){var e=m(t),r=o(t),i=t>=0?1:-1,s=g(i*t),l=(1+e-r)/2;function c(t,n){var c=o(n),u=o(t/=2);return[(1+c)*m(t),(i*n>-a(u,s)-.001?0:10*-i)+l+m(n)*r-(1+c)*e*u]}return c.invert=function(t,c){var u=0,f=0,h=50;do{var p=o(u),d=m(u),g=o(f),y=m(f),x=1+g,b=x*d-t,_=l+y*r-x*e*p-c,w=x*p/2,T=-d*y,k=e*x*d/2,A=r*g+e*p*y,M=T*k-A*w,S=(_*T-b*A)/M/2,E=(b*k-_*w)/M;n(E)>2&&(E/=2),u-=S,f-=E}while((n(S)>v||n(E)>v)&&--h>0);return i*f>-a(o(u),s)-.001?[2*u,f]:null},c}function D(t,e){var r=g(e/2),n=L(1-r*r),i=1+n*o(t/=2),a=m(t)*n/i,s=r/i,l=a*a,c=s*s;return[4/3*a*(3+l-3*c),4/3*s*(3+3*l-c)]}O.invert=function(t,e){if(!(t*t+4*e*e>y*y+v)){var r=t,i=e,a=25;do{var s,l=m(r),c=m(r/2),u=o(r/2),f=m(i),h=o(i),p=m(2*i),d=f*f,g=h*h,x=c*c,b=1-g*u*u,_=b?E(h*u)*L(s=1/b):s=0,w=2*_*h*c-t,T=_*f-e,k=s*(g*x+_*h*u*d),A=s*(.5*l*p-2*_*f*c),M=.25*s*(p*c-_*f*g*l),S=s*(d*u+_*x*h),C=A*M-S*k;if(!C)break;var P=(T*A-w*S)/C,I=(w*M-T*k)/C;r-=P,i-=I}while((n(P)>v||n(I)>v)&&--a>0);return[r,i]}},D.invert=function(t,e){if(e*=3/8,!(t*=3/8)&&n(e)>1)return null;var r=1+t*t+e*e,i=L((r-L(r*r-4*e*e))/2),s=S(i)/3,l=i?function(t){return c(t+L(t*t-1))}(n(e/i))/3:function(t){return c(t+L(t*t+1))}(n(t))/3,u=o(s),f=P(l),h=f*f-u*u;return[2*d(t)*a(C(l)*u,.25-h),2*d(e)*a(f*m(s),.25+h)]};var R=L(8),F=c(1+w);function B(t,e){var r=n(e);return rx){var l=a(s[1],s[0]),c=L(s[0]*s[0]+s[1]*s[1]),u=r*p((l-x)/r)+x,f=a(m(l-=u),2-o(l));l=u+S(y/c*m(f))-f,s[0]=c*o(l),s[1]=c*m(l)}return s}return s.invert=function(t,n){var s=L(t*t+n*n);if(s>x){var l=a(n,t),c=r*p((l-x)/r)+x,u=l>c?-1:1,f=s*o(c-l),h=1/g(u*E((f-y)/L(y*(y-2*f)+s*s)));l=c+2*i((h+u*L(h*h-3))/3),t=s*o(l),n=s*m(l)}return e.geoAzimuthalEquidistantRaw.invert(t,n)},s}function j(t,r){if(arguments.length<2&&(r=t),1===r)return e.geoAzimuthalEqualAreaRaw;if(r===1/0)return U;function n(n,i){var a=e.geoAzimuthalEqualAreaRaw(n/r,i);return a[0]*=t,a}return n.invert=function(n,i){var a=e.geoAzimuthalEqualAreaRaw.invert(n/t,i);return a[0]*=r,a},n}function U(t,e){return[t*o(e)/o(e/=2),2*m(e)]}function V(t,e,r){var i,a,o,s=100;r=void 0===r?0:+r,e=+e;do{(a=t(r))===(o=t(r+v))&&(o=a+v),r-=i=-1*v*(a-e)/(a-o)}while(s-- >0&&n(i)>v);return s<0?NaN:r}function H(t,e,r){return void 0===e&&(e=40),void 0===r&&(r=1e-12),function(i,a,o,s){var l,c,u;o=void 0===o?0:+o,s=void 0===s?0:+s;for(var f=0;fl)o-=c/=2,s-=u/=2;else{l=m;var g=(o>0?-1:1)*r,v=(s>0?-1:1)*r,y=t(o+g,s),x=t(o,s+v),b=(y[0]-h[0])/g,_=(y[1]-h[1])/g,w=(x[0]-h[0])/v,T=(x[1]-h[1])/v,k=T*b-_*w,A=(n(k)<.5?.5:1)/k;if(o+=c=(d*w-p*T)*A,s+=u=(p*_-d*b)*A,n(c)0&&(i[1]*=1+a/1.5*i[0]*i[0]),i}return e.invert=H(e),e}function G(t,e){var r,i=t*m(e),a=30;do{e-=r=(e+m(e)-i)/(1+o(e))}while(n(r)>v&&--a>0);return e/2}function Y(t,e,r){function n(n,i){return[t*n*o(i=G(r,i)),e*m(i)]}return n.invert=function(n,i){return i=S(i/e),[n/(t*o(i)),S((2*i+m(2*i))/r)]},n}B.invert=function(t,e){if((a=n(e))1e-12&&--u>0);return[t/(o(l)*(R-1/m(l))),d(e)*l]},U.invert=function(t,e){var r=2*S(e/2);return[t*o(r/2)/o(r),r]};var W=Y(w/x,w,y);var X=2.00276,Z=1.11072;function J(t,e){var r=G(y,e);return[X*t/(1/o(e)+Z/o(r)),(e+w*m(r))/X]}function K(t){var r=0,n=e.geoProjectionMutator(t),i=n(r);return i.parallel=function(t){return arguments.length?n(r=t*M):r*A},i}function Q(t,e){return[t*o(e),e]}function $(t){if(!t)return Q;var e=1/g(t);function r(r,n){var i=e+t-n,a=i?r*o(n)/i:i;return[i*m(a),e-i*o(a)]}return r.invert=function(r,n){var i=L(r*r+(n=e-n)*n),s=e+t-i;return[i/o(s)*a(r,n),s]},r}function tt(t){function e(e,r){var n=x-r,i=n?e*t*m(n)/n:n;return[n*m(i)/t,x-n*o(i)]}return e.invert=function(e,r){var n=e*t,i=x-r,o=L(n*n+i*i),s=a(n,i);return[(o?o/m(o):1)*s/t,x-o]},e}J.invert=function(t,e){var r,i,a=X*e,s=e<0?-b:b,l=25;do{i=a-w*m(s),s-=r=(m(2*s)+2*s-y*m(i))/(2*o(2*s)+2+y*o(i)*w*o(s))}while(n(r)>v&&--l>0);return i=a-w*m(s),[t*(1/o(i)+Z/o(s))/X,i]},Q.invert=function(t,e){return[t/o(e),e]};var et=Y(1,4/y,y);function rt(t,e,r,i,s,l){var c,u=o(l);if(n(t)>1||n(l)>1)c=E(r*s+e*i*u);else{var f=m(t/2),h=m(l/2);c=2*S(L(f*f+e*i*h*h))}return n(c)>v?[c,a(i*m(l),e*s-r*i*u)]:[0,0]}function nt(t,e,r){return E((t*t+e*e-r*r)/(2*t*e))}function it(t){return t-2*y*l((t+y)/(2*y))}function at(t,e,r){for(var n,i=[[t[0],t[1],m(t[1]),o(t[1])],[e[0],e[1],m(e[1]),o(e[1])],[r[0],r[1],m(r[1]),o(r[1])]],a=i[2],s=0;s<3;++s,a=n)n=i[s],a.v=rt(n[1]-a[1],a[3],a[2],n[3],n[2],n[0]-a[0]),a.point=[0,0];var l=nt(i[0].v[0],i[2].v[0],i[1].v[0]),c=nt(i[0].v[0],i[1].v[0],i[2].v[0]),u=y-l;i[2].point[1]=0,i[0].point[0]=-(i[1].point[0]=i[0].v[0]/2);var f=[i[2].point[0]=i[0].point[0]+i[2].v[0]*o(l),2*(i[0].point[1]=i[1].point[1]=i[2].v[0]*m(l))];return function(t,e){var r,n=m(e),a=o(e),s=new Array(3);for(r=0;r<3;++r){var l=i[r];if(s[r]=rt(e-l[1],l[3],l[2],a,n,t-l[0]),!s[r][0])return l.point;s[r][1]=it(s[r][1]-l.v[1])}var h=f.slice();for(r=0;r<3;++r){var p=2==r?0:r+1,d=nt(i[r].v[0],s[r][0],s[p][0]);s[r][1]<0&&(d=-d),r?1==r?(d=c-d,h[0]-=s[r][0]*o(d),h[1]-=s[r][0]*m(d)):(d=u-d,h[0]+=s[r][0]*o(d),h[1]+=s[r][0]*m(d)):(h[0]+=s[r][0]*o(d),h[1]-=s[r][0]*m(d))}return h[0]/=3,h[1]/=3,h}}function ot(t){return t[0]*=M,t[1]*=M,t}function st(t,r,n){var i=e.geoCentroid({type:"MultiPoint",coordinates:[t,r,n]}),a=[-i[0],-i[1]],o=e.geoRotation(a),s=at(ot(o(t)),ot(o(r)),ot(o(n)));s.invert=H(s);var l=e.geoProjection(s).rotate(a),c=l.center;return delete l.rotate,l.center=function(t){return arguments.length?c(o(t)):o.invert(c())},l.clipAngle(90)}function lt(t,e){var r=L(1-m(e));return[2/T*t*r,T*(1-r)]}function ct(t){var e=g(t);function r(t,r){return[t,(t?t/m(t):1)*(m(r)*o(t)-e*o(r))]}return r.invert=e?function(t,r){t&&(r*=m(t)/t);var n=o(t);return[t,2*a(L(n*n+e*e-r*r)-n,e-r)]}:function(t,e){return[t,S(t?e*g(t)/t:e)]},r}lt.invert=function(t,e){var r=(r=e/T-1)*r;return[r>0?t*L(y/r)/2:0,S(1-r)]};var ut=L(3);function ft(t,e){return[ut*t*(2*o(2*e/3)-1)/T,ut*T*m(e/3)]}function ht(t){var e=o(t);function r(t,r){return[t*e,m(r)/e]}return r.invert=function(t,r){return[t/e,S(r*e)]},r}function pt(t){var e=o(t);function r(t,r){return[t*e,(1+e)*g(r/2)]}return r.invert=function(t,r){return[t/e,2*i(r/(1+e))]},r}function dt(t,e){var r=L(8/(3*y));return[r*t*(1-n(e)/y),r*e]}function mt(t,e){var r=L(4-3*m(n(e)));return[2/L(6*y)*t*r,d(e)*L(2*y/3)*(2-r)]}function gt(t,e){var r=L(y*(4+y));return[2/r*t*(1+L(1-4*e*e/(y*y))),4/r*e]}function vt(t,e){var r=(2+x)*m(e);e/=2;for(var i=0,a=1/0;i<10&&n(a)>v;i++){var s=o(e);e-=a=(e+m(e)*(s+2)-r)/(2*s*(1+s))}return[2/L(y*(4+y))*t*(1+o(e)),2*L(y/(4+y))*m(e)]}function yt(t,e){return[t*(1+o(e))/L(2+y),2*e/L(2+y)]}function xt(t,e){for(var r=(1+x)*m(e),i=0,a=1/0;i<10&&n(a)>v;i++)e-=a=(e+m(e)-r)/(1+o(e));return r=L(2+y),[t*(1+o(e))/r,2*e/r]}ft.invert=function(t,e){var r=3*S(e/(ut*T));return[T*t/(ut*(2*o(2*r/3)-1)),r]},dt.invert=function(t,e){var r=L(8/(3*y)),i=e/r;return[t/(r*(1-n(i)/y)),i]},mt.invert=function(t,e){var r=2-n(e)/L(2*y/3);return[t*L(6*y)/(2*r),d(e)*S((4-r*r)/3)]},gt.invert=function(t,e){var r=L(y*(4+y))/2;return[t*r/(1+L(1-e*e*(4+y)/(4*y))),e*r/2]},vt.invert=function(t,e){var r=e*L((4+y)/y)/2,n=S(r),i=o(n);return[t/(2/L(y*(4+y))*(1+i)),S((n+r*(i+2))/(2+x))]},yt.invert=function(t,e){var r=L(2+y),n=e*r/2;return[r*t/(1+o(n)),n]},xt.invert=function(t,e){var r=1+x,n=L(r/2);return[2*t*n/(1+o(e*=n)),S((e+m(e))/r)]};var bt=3+2*w;function _t(t,e){var r=m(t/=2),n=o(t),a=L(o(e)),s=o(e/=2),l=m(e)/(s+w*n*a),u=L(2/(1+l*l)),f=L((w*s+(n+r)*a)/(w*s+(n-r)*a));return[bt*(u*(f-1/f)-2*c(f)),bt*(u*l*(f+1/f)-2*i(l))]}_t.invert=function(t,e){if(!(r=D.invert(t/1.2,1.065*e)))return null;var r,a=r[0],s=r[1],l=20;t/=bt,e/=bt;do{var h=a/2,p=s/2,d=m(h),g=o(h),y=m(p),b=o(p),T=o(s),k=L(T),A=y/(b+w*g*k),M=A*A,S=L(2/(1+M)),E=(w*b+(g+d)*k)/(w*b+(g-d)*k),C=L(E),P=C-1/C,I=C+1/C,O=S*P-2*c(C)-t,z=S*A*I-2*i(A)-e,R=y&&_*k*d*M/y,F=(w*g*b+k)/(2*(b+w*g*k)*(b+w*g*k)*k),B=-.5*A*S*S*S,N=B*R,j=B*F,U=(U=2*b+w*k*(g-d))*U*C,V=(w*g*b*k+T)/U,H=-w*d*y/(k*U),q=P*N-2*V/C+S*(V+V/E),G=P*j-2*H/C+S*(H+H/E),Y=A*I*N-2*R/(1+M)+S*I*R+S*A*(V-V/E),W=A*I*j-2*F/(1+M)+S*I*F+S*A*(H-H/E),X=G*Y-W*q;if(!X)break;var Z=(z*G-O*W)/X,J=(O*Y-z*q)/X;a-=Z,s=u(-x,f(x,s-J))}while((n(Z)>v||n(J)>v)&&--l>0);return n(n(s)-x)s){var d=L(h),g=a(f,u),b=i*p(g/i),_=g-b,w=t*o(_),T=(t*m(_)-_*m(w))/(x-w),k=Lt(_,T),A=(y-t)/Ct(k,w,y);u=d;var M,S=50;do{u-=M=(t+Ct(k,w,u)*A-d)/(k(u)*A)}while(n(M)>v&&--S>0);f=_*m(u),us){var u=L(c),f=a(l,r),h=i*p(f/i),d=f-h;r=u*o(d),l=u*m(d);for(var g=r-x,v=m(r),b=l/v,_=rv||n(p)>v)&&--x>0);return[d,g]},u}Tt.invert=function(t,e){var r=e/(1+wt);return[t&&t/(wt*L(1-r*r)),2*i(r)]},kt.invert=function(t,e){var r=i(e/T),n=o(r),a=2*r;return[t*T/2/(o(a)*n*n),a]};var It=Pt(2.8284,-1.6988,.75432,-.18071,1.76003,-.38914,.042555);var Ot=Pt(2.583819,-.835827,.170354,-.038094,1.543313,-.411435,.082742);var zt=Pt(5/6*y,-.62636,-.0344,0,1.3493,-.05524,0,.045);function Dt(t,e){var r=t*t,n=e*e;return[t*(1-.162388*n)*(.87-952426e-9*r*r),e*(1+n/12)]}Dt.invert=function(t,e){var r,i=t,a=e,o=50;do{var s=a*a;a-=r=(a*(1+s/12)-e)/(1+s/4)}while(n(r)>v&&--o>0);o=50,t/=1-.162388*s;do{var l=(l=i*i)*l;i-=r=(i*(.87-952426e-9*l)-t)/(.87-.00476213*l)}while(n(r)>v&&--o>0);return[i,a]};var Rt=Pt(2.6516,-.76534,.19123,-.047094,1.36289,-.13965,.031762);function Ft(t){var e=t(x,0)[0]-t(-x,0)[0];function r(r,n){var i=r>0?-.5:.5,a=t(r+i*y,n);return a[0]-=i*e,a}return t.invert&&(r.invert=function(r,n){var i=r>0?-.5:.5,a=t.invert(r+i*e,n),o=a[0]-i*y;return o<-y?o+=2*y:o>y&&(o-=2*y),a[0]=o,a}),r}function Bt(t,e){var r=d(t),i=d(e),s=o(e),l=o(t)*s,c=m(t)*s,u=m(i*e);t=n(a(c,u)),e=S(l),n(t-x)>v&&(t%=x);var f=function(t,e){if(e===x)return[0,0];var r,i,a=m(e),s=a*a,l=s*s,c=1+l,u=1+3*l,f=1-l,h=S(1/L(c)),p=f+s*c*h,d=(1-a)/p,g=L(d),b=d*c,_=L(b),w=g*f;if(0===t)return[0,-(w+s*_)];var T,k=o(e),A=1/k,M=2*a*k,E=(-p*k-(-3*s+h*u)*M*(1-a))/(p*p),C=-A*M,P=-A*(s*c*E+d*u*M),I=-2*A*(f*(.5*E/g)-2*s*g*M),O=4*t/y;if(t>.222*y||e.175*y){if(r=(w+s*L(b*(1+l)-w*w))/(1+l),t>y/4)return[r,r];var z=r,D=.5*r;r=.5*(D+z),i=50;do{var R=L(b-r*r),F=r*(I+C*R)+P*S(r/_)-O;if(!F)break;F<0?D=r:z=r,r=.5*(D+z)}while(n(z-D)>v&&--i>0)}else{r=v,i=25;do{var B=r*r,N=L(b-B),j=I+C*N,U=r*j+P*S(r/_)-O,V=j+(P-C*B)/N;r-=T=N?U/V:0}while(n(T)>v&&--i>0)}return[r,-w-s*L(b-r*r)]}(t>y/4?x-t:t,e);return t>y/4&&(u=f[0],f[0]=-f[1],f[1]=-u),f[0]*=r,f[1]*=-i,f}function Nt(t,e){var r,a,l,c,u,f;if(e=1-v)return r=(1-e)/4,l=1/(a=P(t)),[(c=((f=s(2*(f=t)))-1)/(f+1))+r*((u=a*C(t))-t)/(a*a),l-r*c*l*(u-t),l+r*c*l*(u+t),2*i(s(t))-x+r*(u-t)/a];var h=[1,0,0,0,0,0,0,0,0],p=[L(e),0,0,0,0,0,0,0,0],d=0;for(a=L(1-e),u=1;n(p[d]/h[d])>v&&d<8;)r=h[d++],p[d]=(r-a)/2,h[d]=(r+a)/2,a=L(r*a),u*=2;l=u*h[d]*t;do{l=(S(c=p[d]*m(a=l)/h[d])+l)/2}while(--d);return[m(l),c=o(l),c/o(l-a),l]}function jt(t,e){if(!e)return t;if(1===e)return c(g(t/2+b));for(var r=1,a=L(1-e),o=L(e),s=0;n(o)>v;s++){if(t%y){var l=i(a*g(t)/r);l<0&&(l+=y),t+=l+~~(t/y)*y}else t+=t;o=(r+a)/2,a=L(r*a),o=((r=o)-a)/2}return t/(h(2,s)*r)}function Ut(t,e){var r=(w-1)/(w+1),l=L(1-r*r),u=jt(x,l*l),f=c(g(y/4+n(e)/2)),h=s(-1*f)/L(r),p=function(t,e){var r=t*t,n=e+1,i=1-r-e*e;return[.5*((t>=0?x:-x)-a(i,2*t)),-.25*c(i*i+4*r)+.5*c(n*n+r)]}(h*o(-1*t),h*m(-1*t)),v=function(t,e,r){var a=n(t),o=C(n(e));if(a){var s=1/m(a),l=1/(g(a)*g(a)),c=-(l+r*(o*o*s*s)-1+r),u=(-c+L(c*c-4*((r-1)*l)))/2;return[jt(i(1/L(u)),r)*d(t),jt(i(L((u/l-1)/r)),1-r)*d(e)]}return[0,jt(i(o),1-r)*d(e)]}(p[0],p[1],l*l);return[-v[1],(e>=0?1:-1)*(.5*u-v[0])]}function Vt(t){var e=m(t),r=o(t),i=Ht(t);function s(t,a){var s=i(t,a);t=s[0],a=s[1];var l=m(a),c=o(a),u=o(t),f=E(e*l+r*c*u),h=m(f),p=n(h)>v?f/h:1;return[p*r*m(t),(n(t)>x?p:-p)*(e*c-r*l*u)]}return i.invert=Ht(-t),s.invert=function(t,r){var n=L(t*t+r*r),s=-m(n),l=o(n),c=n*l,u=-r*s,f=n*e,h=L(c*c+u*u-f*f),p=a(c*f+u*h,u*f-c*h),d=(n>x?-1:1)*a(t*s,n*o(p)*l+r*m(p)*s);return i.invert(d,p)},s}function Ht(t){var e=m(t),r=o(t);return function(t,n){var i=o(n),s=o(t)*i,l=m(t)*i,c=m(n);return[a(l,s*r-c*e),S(c*r+s*e)]}}Bt.invert=function(t,e){n(t)>1&&(t=2*d(t)-t),n(e)>1&&(e=2*d(e)-e);var r=d(t),i=d(e),s=-r*t,l=-i*e,c=l/s<1,u=function(t,e){var r=0,i=1,a=.5,s=50;for(;;){var l=a*a,c=L(a),u=S(1/L(1+l)),f=1-l+a*(1+l)*u,h=(1-c)/f,p=L(h),d=h*(1+l),m=p*(1-l),g=L(d-t*t),v=e+m+a*g;if(n(i-r)<1e-12||0==--s||0===v)break;v>0?r=a:i=a,a=.5*(r+i)}if(!s)return null;var x=S(c),b=o(x),_=1/b,w=2*c*b,T=(-f*b-(-3*a+u*(1+3*l))*w*(1-c))/(f*f);return[y/4*(t*(-2*_*(.5*T/p*(1-l)-2*a*p*w)+-_*w*g)+-_*(a*(1+l)*T+h*(1+3*l)*w)*S(t/L(d))),x]}(c?l:s,c?s:l),f=u[0],h=u[1],p=o(h);return c&&(f=-x-f),[r*(a(m(f)*p,-m(h))+y),i*S(o(f)*p)]},Ut.invert=function(t,e){var r,n,o,l,u,f,h=(w-1)/(w+1),p=L(1-h*h),d=jt(x,p*p),m=(n=-t,o=p*p,(r=.5*d-e)?(l=Nt(r,o),n?(f=(u=Nt(n,1-o))[1]*u[1]+o*l[0]*l[0]*u[0]*u[0],[[l[0]*u[2]/f,l[1]*l[2]*u[0]*u[1]/f],[l[1]*u[1]/f,-l[0]*l[2]*u[0]*u[2]/f],[l[2]*u[1]*u[2]/f,-o*l[0]*l[1]*u[0]/f]]):[[l[0],0],[l[1],0],[l[2],0]]):[[0,(u=Nt(n,1-o))[0]/u[1]],[1/u[1],0],[u[2]/u[1],0]]),g=function(t,e){var r=e[0]*e[0]+e[1]*e[1];return[(t[0]*e[0]+t[1]*e[1])/r,(t[1]*e[0]-t[0]*e[1])/r]}(m[0],m[1]);return[a(g[1],g[0])/-1,2*i(s(-.5*c(h*g[0]*g[0]+h*g[1]*g[1])))-x]};var qt=S(1-1/3)*A,Gt=ht(0);function Yt(t){var e=qt*M,r=lt(y,e)[0]-lt(-y,e)[0],i=Gt(0,e)[1],a=lt(0,e)[1],o=T-a,s=k/t,c=4/k,h=i+o*o*4/k;function p(p,d){var m,g=n(d);if(g>e){var v=f(t-1,u(0,l((p+y)/s)));(m=lt(p+=y*(t-1)/t-v*s,g))[0]=m[0]*k/r-k*(t-1)/(2*t)+v*k/t,m[1]=i+4*(m[1]-a)*o/k,d<0&&(m[1]=-m[1])}else m=Gt(p,d);return m[0]*=c,m[1]/=h,m}return p.invert=function(e,p){e/=c;var d=n(p*=h);if(d>i){var m=f(t-1,u(0,l((e+y)/s)));e=(e+y*(t-1)/t-m*s)*r/k;var g=lt.invert(e,.25*(d-i)*k/o+a);return g[0]-=y*(t-1)/t-m*s,p<0&&(g[1]=-g[1]),g}return Gt.invert(e,p)},p}function Wt(t,e){return[t,1&e?90-v:qt]}function Xt(t,e){return[t,1&e?-90+v:-qt]}function Zt(t){return[t[0]*(1-v),t[1]]}function Jt(t){var e,r=1+t,i=S(m(1/r)),s=2*L(y/(e=y+4*i*r)),l=.5*s*(r+L(t*(2+t))),c=t*t,u=r*r;function f(f,h){var p,d,g=1-m(h);if(g&&g<2){var v,b=x-h,_=25;do{var w=m(b),T=o(b),k=i+a(w,r-T),A=1+u-2*r*T;b-=v=(b-c*i-r*w+A*k-.5*g*e)/(2*r*w*k)}while(n(v)>1e-12&&--_>0);p=s*L(A),d=f*k/y}else p=s*(t+g),d=f*i/y;return[p*m(d),l-p*o(d)]}return f.invert=function(t,n){var o=t*t+(n-=l)*n,f=(1+u-o/(s*s))/(2*r),h=E(f),p=m(h),d=i+a(p,r-f);return[S(t/L(o))*y/d,S(1-2*(h-c*i-r*p+(1+u-2*r*f)*d)/e)]},f}function Kt(t,e){return e>-.7109889596207567?((t=W(t,e))[1]+=.0528035274542,t):Q(t,e)}function Qt(t,e){return n(e)>.7109889596207567?((t=W(t,e))[1]-=e>0?.0528035274542:-.0528035274542,t):Q(t,e)}function $t(t,e,r,n){var i=L(4*y/(2*r+(1+t-e/2)*m(2*r)+(t+e)/2*m(4*r)+e/2*m(6*r))),a=L(n*m(r)*L((1+t*o(2*r)+e*o(4*r))/(1+t+e))),s=r*c(1);function l(r){return L(1+t*o(2*r)+e*o(4*r))}function c(n){var i=n*r;return(2*i+(1+t-e/2)*m(2*i)+(t+e)/2*m(4*i)+e/2*m(6*i))/r}function u(t){return l(t)*m(t)}var f=function(t,e){var n=r*V(c,s*m(e)/r,e/y);isNaN(n)&&(n=r*d(e));var u=i*l(n);return[u*a*t/y*o(n),u/a*m(n)]};return f.invert=function(t,e){var n=V(u,e*a/i);return[t*y/(o(n)*i*a*l(n)),S(r*c(n/r)/s)]},0===r&&(i=L(n/y),(f=function(t,e){return[t*i,m(e)/i]}).invert=function(t,e){return[t/i,S(e*i)]}),f}function te(t,e,r,n,i){void 0===n&&(n=1e-8),void 0===i&&(i=20);var a=t(e),o=t(.5*(e+r)),s=t(r);return function t(e,r,n,i,a,o,s,l,c,u,f){if(f.nanEncountered)return NaN;var h,p,d,m,g,v,y,x,b,_;if(p=e(r+.25*(h=n-r)),d=e(n-.25*h),isNaN(p))f.nanEncountered=!0;else{if(!isNaN(d))return _=((v=(m=h*(i+4*p+a)/12)+(g=h*(a+4*d+o)/12))-s)/15,u>c?(f.maxDepthCount++,v+_):Math.abs(_)t?r=n:e=n,n=e+r>>1}while(n>e);var i=c[n+1]-c[n];return i&&(i=(t-c[n+1])/i),(n+1+i)/s}var p=2*f(1)/y*o/r,g=function(t,e){var r=f(n(m(e))),a=i(r)*t;return r/=p,[a,e>=0?r:-r]};return g.invert=function(t,e){var r;return n(e*=p)<1&&(r=d(e)*S(a(n(e))*o)),[t/i(n(e)),r]},g}function re(t,e){return n(t[0]-e[0])=0;--l)n=(e=t[1][l])[0][0],i=e[0][1],a=e[1][1],o=e[2][0],s=e[2][1],c.push(ne([[o-v,s-v],[o-v,a+v],[n+v,a+v],[n+v,i-v]],30));return{type:"Polygon",coordinates:[r.merge(c)]}}function ae(t,r,n){var i,a;function o(e,n){for(var i=n<0?-1:1,a=r[+(n<0)],o=0,s=a.length-1;oa[o][2][0];++o);var l=t(e-a[o][1][0],n);return l[0]+=t(a[o][1][0],i*n>i*a[o][0][1]?a[o][0][1]:n)[0],l}n?o.invert=n(o):t.invert&&(o.invert=function(e,n){for(var i=a[+(n<0)],s=r[+(n<0)],l=0,c=i.length;lo&&(r=a,a=o,o=r),[[n,a],[i,o]]}))})),s):r.map((function(t){return t.map((function(t){return[[t[0][0]*A,t[0][1]*A],[t[1][0]*A,t[1][1]*A],[t[2][0]*A,t[2][1]*A]]}))}))},null!=r&&s.lobes(r),s}Kt.invert=function(t,e){return e>-.7109889596207567?W.invert(t,e-.0528035274542):Q.invert(t,e)},Qt.invert=function(t,e){return n(e)>.7109889596207567?W.invert(t,e+(e>0?.0528035274542:-.0528035274542)):Q.invert(t,e)};var oe=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var se=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var le=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var ce=[[[[-180,0],[-90,90],[0,0]],[[0,0],[90,90],[180,0]]],[[[-180,0],[-90,-90],[0,0]],[[0,0],[90,-90],[180,0]]]];var ue=[[[[-180,35],[-30,90],[0,35]],[[0,35],[30,90],[180,35]]],[[[-180,-10],[-102,-90],[-65,-10]],[[-65,-10],[5,-90],[77,-10]],[[77,-10],[103,-90],[180,-10]]]];var fe=[[[[-180,0],[-110,90],[-40,0]],[[-40,0],[0,90],[40,0]],[[40,0],[110,90],[180,0]]],[[[-180,0],[-110,-90],[-40,0]],[[-40,0],[0,-90],[40,0]],[[40,0],[110,-90],[180,0]]]];function he(t,e){return[3/k*t*L(y*y/3-e*e),e]}function pe(t){function e(e,r){if(n(n(r)-x)2)return null;var o=(e/=2)*e,s=(r/=2)*r,l=2*r/(1+o+s);return l=h((1+l)/(1-l),1/t),[a(2*e,1-o-s)/t,S((l-1)/(l+1))]},e}he.invert=function(t,e){return[k/3*t/L(y*y/3-e*e),e]};var de=y/w;function me(t,e){return[t*(1+L(o(e)))/2,e/(o(e/2)*o(t/6))]}function ge(t,e){var r=t*t,n=e*e;return[t*(.975534+n*(-.0143059*r-.119161+-.0547009*n)),e*(1.00384+r*(.0802894+-.02855*n+199025e-9*r)+n*(.0998909+-.0491032*n))]}function ve(t,e){return[m(t)/o(e),g(e)*o(t)]}function ye(t){var e=o(t),r=g(b+t/2);function i(i,a){var o=a-t,s=n(o)=0;)h=(f=t[u])[0]+l*(i=h)-c*p,p=f[1]+l*p+c*i;return[h=l*(i=h)-c*p,p=l*p+c*i]}return r.invert=function(r,s){var l=20,c=r,u=s;do{for(var f,h=e,p=t[h],d=p[0],g=p[1],v=0,y=0;--h>=0;)v=d+c*(f=v)-u*y,y=g+c*y+u*f,d=(p=t[h])[0]+c*(f=d)-u*g,g=p[1]+c*g+u*f;var x,b,_=(v=d+c*(f=v)-u*y)*v+(y=g+c*y+u*f)*y;c-=x=((d=c*(f=d)-u*g-r)*v+(g=c*g+u*f-s)*y)/_,u-=b=(g*v-d*y)/_}while(n(x)+n(b)>1e-12&&--l>0);if(l){var w=L(c*c+u*u),T=2*i(.5*w),k=m(T);return[a(c*k,w*o(T)),w?S(u*k/w):0]}},r}me.invert=function(t,e){var r=n(t),i=n(e),a=v,s=x;iv||n(b)>v)&&--a>0);return a&&[r,i]},ve.invert=function(t,e){var r=t*t,n=e*e+1,i=r+n,a=t?_*L((i-L(i*i-4*r))/r):1/L(n);return[S(t*a),d(e)*E(a)]},xe.invert=function(t,e){return[t,2.5*i(s(.8*e))-.625*y]};var _e=[[.9972523,0],[.0052513,-.0041175],[.0074606,.0048125],[-.0153783,-.1968253],[.0636871,-.1408027],[.3660976,-.2937382]],we=[[.98879,0],[0,0],[-.050909,0],[0,0],[.075528,0]],Te=[[.984299,0],[.0211642,.0037608],[-.1036018,-.0575102],[-.0329095,-.0320119],[.0499471,.1223335],[.026046,.0899805],[7388e-7,-.1435792],[.0075848,-.1334108],[-.0216473,.0776645],[-.0225161,.0853673]],ke=[[.9245,0],[0,0],[.01943,0]],Ae=[[.721316,0],[0,0],[-.00881625,-.00617325]];function Me(t,r){var n=e.geoProjection(be(t)).rotate(r).clipAngle(90),i=e.geoRotation(r),a=n.center;return delete n.rotate,n.center=function(t){return arguments.length?a(i(t)):i.invert(a())},n}var Se=L(6),Ee=L(7);function Le(t,e){var r=S(7*m(e)/(3*Se));return[Se*t*(2*o(2*r/3)-1)/Ee,9*m(r/3)/Ee]}function Ce(t,e){for(var r,i=(1+_)*m(e),a=e,s=0;s<25&&(a-=r=(m(a/2)+m(a)-i)/(.5*o(a/2)+o(a)),!(n(r)1e-12&&--l>0);return[t/(.84719-.13063*(i=s*s)+(o=i*(a=i*i))*o*(.05494*i-.04515-.02326*a+.00331*o)),s]},Oe.invert=function(t,e){for(var r=e/2,i=0,a=1/0;i<10&&n(a)>v;++i){var s=o(e/2);e-=a=(e-g(e/2)-r)/(1-.5/(s*s))}return[2*t/(1+o(e)),e]};var ze=[[[[-180,0],[-90,90],[0,0]],[[0,0],[90,90],[180,0]]],[[[-180,0],[-90,-90],[0,0]],[[0,0],[90,-90],[180,0]]]];function De(t,e){var r=m(e),i=o(e),a=d(t);if(0===t||n(e)===x)return[0,e];if(0===e)return[t,0];if(n(t)===x)return[t*i,x*r];var s=y/(2*t)-2*t/y,l=2*e/y,c=(1-l*l)/(r-l),u=s*s,f=c*c,h=1+u/f,p=1+f/u,g=(s*r/c-s/2)/h,v=(f*r/u+c/2)/p,b=v*v-(f*r*r/u+c*r-1)/p;return[x*(g+L(g*g+i*i/h)*a),x*(v+L(b<0?0:b)*d(-e*s)*a)]}De.invert=function(t,e){var r=(t/=x)*t,n=r+(e/=x)*e,i=y*y;return[t?(n-1+L((1-n)*(1-n)+4*r))/(2*t)*x:0,V((function(t){return n*(y*m(t)-2*t)*y+4*t*t*(e-m(t))+2*y*t-i*e}),0)]};function Re(t,e){var r=e*e;return[t,e*(1.0148+r*r*(.23185+r*(.02406*r-.14499)))]}function Fe(t,e){if(n(e)=0;)if(n=e[s],r[0]===n[0]&&r[1]===n[1]){if(a)return[a,r];a=r}}}(e.face,r.face),i=Be(n.map(r.project),n.map(e.project));e.transform=r.transform?Ne(r.transform,i):i;for(var a=r.edges,o=0,s=a.length;o1.790857183?e=1.790857183:e<-1.790857183&&(e=-1.790857183);var r,i=e;do{var a=i*i;i-=r=(i*(1.0148+a*a*(.23185+a*(.02406*a-.14499)))-e)/(1.0148+a*a*(5*.23185+a*(.21654*a-1.01493)))}while(n(r)>v);return[t,i]},Fe.invert=function(t,e){if(n(e)v&&--s>0);return l=g(a),[(n(e)n^p>n&&r<(h-c)*(n-u)/(p-u)+c&&(i=!i)}return i}(t[0],r))return t.push(e),!0}))||t.push([e])})),nr=[],t.length?t.length>1?{type:"MultiPolygon",coordinates:t}:{type:"Polygon",coordinates:t[0]}:null}};function sr(t){var r=t(x,0)[0]-t(-x,0)[0];function i(e,i){var a=n(e)0?e-y:e+y,i),s=(o[0]-o[1])*_,l=(o[0]+o[1])*_;if(a)return[s,l];var c=r*_,u=s>0^l>0?-1:1;return[u*s-d(l)*c,u*l-d(s)*c]}return t.invert&&(i.invert=function(e,i){var a=(e+i)*_,o=(i-e)*_,s=n(a)<.5*r&&n(o)<.5*r;if(!s){var l=r*_,c=a>0^o>0?-1:1,u=-c*e+(o>0?1:-1)*l,f=-c*i+(a>0?1:-1)*l;a=(-u-f)*_,o=(u-f)*_}var h=t.invert(a,o);return s||(h[0]+=a>0?y:-y),h}),e.geoProjection(i).rotate([-90,-90,45]).clipAngle(179.999)}function lr(){return sr(Ut).scale(111.48)}function cr(t){var e=m(t);function r(r,n){var a=e?g(r*e/2)/e:r/2;if(!n)return[2*a,-t];var s=2*i(a*m(n)),l=1/g(n);return[m(s)*l,n+(1-o(s))*l-t]}return r.invert=function(r,a){if(n(a+=t)v&&--u>0);var d=r*(f=g(c)),x=g(n(a)0?x:-x)*(h+o*(d-c)/2+o*o*(d-2*h+c)/2)]}function hr(t,e){var r=function(t){function e(e,r){var n=o(r),i=(t-1)/(t-n*o(e));return[i*n*m(e),i*m(r)]}return e.invert=function(e,r){var n=e*e+r*r,i=L(n),o=(t-L(1-n*(t+1)/(t-1)))/((t-1)/i+i/(t-1));return[a(e*o,i*L(1-o*o)),i?S(r*o/i):0]},e}(t);if(!e)return r;var n=o(e),i=m(e);function s(e,a){var o=r(e,a),s=o[1],l=s*i/(t-1)+n;return[o[0]*n/l,s/l]}return s.invert=function(e,a){var o=(t-1)/(t-1-a*i);return r.invert(o*e,o*a*n)},s}ur.forEach((function(t){t[1]*=1.0144})),fr.invert=function(t,e){var r=e/x,i=90*r,a=f(18,n(i/5)),o=u(0,l(a));do{var s=ur[o][1],c=ur[o+1][1],h=ur[f(19,o+2)][1],p=h-s,d=h-2*c+s,m=2*(n(r)-c)/p,g=d/p,v=m*(1-g*m*(1-2*g*m));if(v>=0||1===o){i=(e>=0?5:-5)*(v+a);var y,b=50;do{v=(a=f(18,n(i)/5))-(o=l(a)),s=ur[o][1],c=ur[o+1][1],h=ur[f(19,o+2)][1],i-=(y=(e>=0?x:-x)*(c+v*(h-s)/2+v*v*(h-2*c+s)/2)-e)*A}while(n(y)>1e-12&&--b>0);break}}while(--o>=0);var _=ur[o][0],w=ur[o+1][0],T=ur[f(19,o+2)][0];return[t/(w+v*(T-_)/2+v*v*(T-2*w+_)/2),i*M]};var pr=-179.9999,dr=179.9999,mr=-89.9999;function gr(t){return t.length>0}function vr(t){return-90===t||90===t?[0,t]:[-180,(e=t,Math.floor(1e4*e)/1e4)];var e}function yr(t){var e=t[0],r=t[1],n=!1;return e<=pr?(e=-180,n=!0):e>=dr&&(e=180,n=!0),r<=mr?(r=-90,n=!0):r>=89.9999&&(r=90,n=!0),n?[e,r]:t}function xr(t){return t.map(yr)}function br(t,e,r){for(var n=0,i=t.length;n=dr||u<=mr||u>=89.9999){a[o]=yr(l);for(var f=o+1;fpr&&pmr&&d<89.9999)break}if(f===o+1)continue;if(o){var m={index:-1,polygon:e,ring:a.slice(0,o+1)};m.ring[m.ring.length-1]=vr(u),r[r.length-1]=m}else r.pop();if(f>=s)break;r.push({index:-1,polygon:e,ring:a=a.slice(f-1)}),a[0]=vr(a[0][1]),o=-1,s=a.length}}}}function _r(t){var e,r,n,i,a,o,s=t.length,l={},c={};for(e=0;e0?y-l:l)*A],u=e.geoProjection(t(s)).rotate(c),f=e.geoRotation(c),h=u.center;return delete u.rotate,u.center=function(t){return arguments.length?h(f(t)):f.invert(h())},u.clipAngle(90)}function Mr(t){var r=o(t);function n(t,n){var i=e.geoGnomonicRaw(t,n);return i[0]*=r,i}return n.invert=function(t,n){return e.geoGnomonicRaw.invert(t/r,n)},n}function Sr(t,e){return Ar(Mr,t,e)}function Er(t){if(!(t*=2))return e.geoAzimuthalEquidistantRaw;var r=-t/2,n=-r,i=t*t,s=g(n),l=.5/m(n);function c(e,a){var s=E(o(a)*o(e-r)),l=E(o(a)*o(e-n));return[((s*=s)-(l*=l))/(2*t),(a<0?-1:1)*L(4*i*l-(i-s+l)*(i-s+l))/(2*t)]}return c.invert=function(t,e){var i,c,u=e*e,f=o(L(u+(i=t+r)*i)),h=o(L(u+(i=t+n)*i));return[a(c=f-h,i=(f+h)*s),(e<0?-1:1)*E(L(i*i+c*c)*l)]},c}function Lr(t,e){return Ar(Er,t,e)}function Cr(t,e){if(n(e)v&&--l>0);return[d(t)*(L(a*a+4)+a)*y/4,x*s]};var Rr=4*y+3*L(3),Fr=2*L(2*y*L(3)/Rr),Br=Y(Fr*L(3)/y,Fr,Rr/6);function Nr(t,e){return[t*L(1-3*e*e/(y*y)),e]}function jr(t,e){var r=o(e),n=o(t)*r,i=1-n,s=o(t=a(m(t)*r,-m(e))),l=m(t);return[l*(r=L(1-n*n))-s*i,-s*r-l*i]}function Ur(t,e){var r=O(t,e);return[(r[0]+t/x)/2,(r[1]+e)/2]}Nr.invert=function(t,e){return[t/L(1-3*e*e/(y*y)),e]},jr.invert=function(t,e){var r=(t*t+e*e)/-2,n=L(-r*(2+r)),i=e*r+t*n,o=t*r-e*n,s=L(o*o+i*i);return[a(n*i,s*(1+r)),s?-S(n*o/s):0]},Ur.invert=function(t,e){var r=t,i=e,a=25;do{var s,l=o(i),c=m(i),u=m(2*i),f=c*c,h=l*l,p=m(r),d=o(r/2),g=m(r/2),y=g*g,b=1-h*d*d,_=b?E(l*d)*L(s=1/b):s=0,w=.5*(2*_*l*g+r/x)-t,T=.5*(_*c+i)-e,k=.5*s*(h*y+_*l*d*f)+.5/x,A=s*(p*u/4-_*c*g),M=.125*s*(u*g-_*c*h*p),S=.5*s*(f*d+_*y*l)+.5,C=A*M-S*k,P=(T*A-w*S)/C,I=(w*M-T*k)/C;r-=P,i-=I}while((n(P)>v||n(I)>v)&&--a>0);return[r,i]},t.geoNaturalEarth=e.geoNaturalEarth1,t.geoNaturalEarthRaw=e.geoNaturalEarth1Raw,t.geoAiry=function(){var t=x,r=e.geoProjectionMutator(I),n=r(t);return n.radius=function(e){return arguments.length?r(t=e*M):t*A},n.scale(179.976).clipAngle(147)},t.geoAiryRaw=I,t.geoAitoff=function(){return e.geoProjection(O).scale(152.63)},t.geoAitoffRaw=O,t.geoArmadillo=function(){var t=20*M,r=t>=0?1:-1,n=g(r*t),i=e.geoProjectionMutator(z),s=i(t),l=s.stream;return s.parallel=function(e){return arguments.length?(n=g((r=(t=e*M)>=0?1:-1)*t),i(t)):t*A},s.stream=function(e){var i=s.rotate(),c=l(e),u=(s.rotate([0,0]),l(e)),f=s.precision();return s.rotate(i),c.sphere=function(){u.polygonStart(),u.lineStart();for(var e=-180*r;r*e<180;e+=90*r)u.point(e,90*r);if(t)for(;r*(e-=3*r*f)>=-180;)u.point(e,r*-a(o(e*M/2),n)*A);u.lineEnd(),u.polygonEnd()},c},s.scale(218.695).center([0,28.0974])},t.geoArmadilloRaw=z,t.geoAugust=function(){return e.geoProjection(D).scale(66.1603)},t.geoAugustRaw=D,t.geoBaker=function(){return e.geoProjection(B).scale(112.314)},t.geoBakerRaw=B,t.geoBerghaus=function(){var t=5,r=e.geoProjectionMutator(N),n=r(t),i=n.stream,s=-o(.01*M),l=m(.01*M);return n.lobes=function(e){return arguments.length?r(t=+e):t},n.stream=function(e){var r=n.rotate(),c=i(e),u=(n.rotate([0,0]),i(e));return n.rotate(r),c.sphere=function(){u.polygonStart(),u.lineStart();for(var e=0,r=360/t,n=2*y/t,i=90-180/t,c=x;e=0;)t.point((e=r[i])[0],e[1]);t.lineEnd(),t.polygonEnd()},t},n.scale(79.4187).parallel(45).clipAngle(179.999)},t.geoHammerRetroazimuthalRaw=Vt,t.geoHealpix=function(){var t=4,n=e.geoProjectionMutator(Yt),i=n(t),a=i.stream;return i.lobes=function(e){return arguments.length?n(t=+e):t},i.stream=function(n){var o=i.rotate(),s=a(n),l=(i.rotate([0,0]),a(n));return i.rotate(o),s.sphere=function(){var n,i;e.geoStream((n=180/t,i=[].concat(r.range(-180,180+n/2,n).map(Wt),r.range(180,-180-n/2,-n).map(Xt)),{type:"Polygon",coordinates:[180===n?i.map(Zt):i]}),l)},s},i.scale(239.75)},t.geoHealpixRaw=Yt,t.geoHill=function(){var t=1,r=e.geoProjectionMutator(Jt),n=r(t);return n.ratio=function(e){return arguments.length?r(t=+e):t},n.scale(167.774).center([0,18.67])},t.geoHillRaw=Jt,t.geoHomolosine=function(){return e.geoProjection(Qt).scale(152.63)},t.geoHomolosineRaw=Qt,t.geoHufnagel=function(){var t=1,r=0,n=45*M,i=2,a=e.geoProjectionMutator($t),o=a(t,r,n,i);return o.a=function(e){return arguments.length?a(t=+e,r,n,i):t},o.b=function(e){return arguments.length?a(t,r=+e,n,i):r},o.psiMax=function(e){return arguments.length?a(t,r,n=+e*M,i):n*A},o.ratio=function(e){return arguments.length?a(t,r,n,i=+e):i},o.scale(180.739)},t.geoHufnagelRaw=$t,t.geoHyperelliptical=function(){var t=0,r=2.5,n=1.183136,i=e.geoProjectionMutator(ee),a=i(t,r,n);return a.alpha=function(e){return arguments.length?i(t=+e,r,n):t},a.k=function(e){return arguments.length?i(t,r=+e,n):r},a.gamma=function(e){return arguments.length?i(t,r,n=+e):n},a.scale(152.63)},t.geoHyperellipticalRaw=ee,t.geoInterrupt=ae,t.geoInterruptedBoggs=function(){return ae(J,oe).scale(160.857)},t.geoInterruptedHomolosine=function(){return ae(Qt,se).scale(152.63)},t.geoInterruptedMollweide=function(){return ae(W,le).scale(169.529)},t.geoInterruptedMollweideHemispheres=function(){return ae(W,ce).scale(169.529).rotate([20,0])},t.geoInterruptedSinuMollweide=function(){return ae(Kt,ue,H).rotate([-20,-55]).scale(164.263).center([0,-5.4036])},t.geoInterruptedSinusoidal=function(){return ae(Q,fe).scale(152.63).rotate([-20,0])},t.geoKavrayskiy7=function(){return e.geoProjection(he).scale(158.837)},t.geoKavrayskiy7Raw=he,t.geoLagrange=function(){var t=.5,r=e.geoProjectionMutator(pe),n=r(t);return n.spacing=function(e){return arguments.length?r(t=+e):t},n.scale(124.75)},t.geoLagrangeRaw=pe,t.geoLarrivee=function(){return e.geoProjection(me).scale(97.2672)},t.geoLarriveeRaw=me,t.geoLaskowski=function(){return e.geoProjection(ge).scale(139.98)},t.geoLaskowskiRaw=ge,t.geoLittrow=function(){return e.geoProjection(ve).scale(144.049).clipAngle(89.999)},t.geoLittrowRaw=ve,t.geoLoximuthal=function(){return K(ye).parallel(40).scale(158.837)},t.geoLoximuthalRaw=ye,t.geoMiller=function(){return e.geoProjection(xe).scale(108.318)},t.geoMillerRaw=xe,t.geoModifiedStereographic=Me,t.geoModifiedStereographicRaw=be,t.geoModifiedStereographicAlaska=function(){return Me(_e,[152,-64]).scale(1400).center([-160.908,62.4864]).clipAngle(30).angle(7.8)},t.geoModifiedStereographicGs48=function(){return Me(we,[95,-38]).scale(1e3).clipAngle(55).center([-96.5563,38.8675])},t.geoModifiedStereographicGs50=function(){return Me(Te,[120,-45]).scale(359.513).clipAngle(55).center([-117.474,53.0628])},t.geoModifiedStereographicMiller=function(){return Me(ke,[-20,-18]).scale(209.091).center([20,16.7214]).clipAngle(82)},t.geoModifiedStereographicLee=function(){return Me(Ae,[165,10]).scale(250).clipAngle(130).center([-165,-10])},t.geoMollweide=function(){return e.geoProjection(W).scale(169.529)},t.geoMollweideRaw=W,t.geoMtFlatPolarParabolic=function(){return e.geoProjection(Le).scale(164.859)},t.geoMtFlatPolarParabolicRaw=Le,t.geoMtFlatPolarQuartic=function(){return e.geoProjection(Ce).scale(188.209)},t.geoMtFlatPolarQuarticRaw=Ce,t.geoMtFlatPolarSinusoidal=function(){return e.geoProjection(Pe).scale(166.518)},t.geoMtFlatPolarSinusoidalRaw=Pe,t.geoNaturalEarth2=function(){return e.geoProjection(Ie).scale(175.295)},t.geoNaturalEarth2Raw=Ie,t.geoNellHammer=function(){return e.geoProjection(Oe).scale(152.63)},t.geoNellHammerRaw=Oe,t.geoInterruptedQuarticAuthalic=function(){return ae(j(1/0),ze).rotate([20,0]).scale(152.63)},t.geoNicolosi=function(){return e.geoProjection(De).scale(127.267)},t.geoNicolosiRaw=De,t.geoPatterson=function(){return e.geoProjection(Re).scale(139.319)},t.geoPattersonRaw=Re,t.geoPolyconic=function(){return e.geoProjection(Fe).scale(103.74)},t.geoPolyconicRaw=Fe,t.geoPolyhedral=Ve,t.geoPolyhedralButterfly=function(t){t=t||function(t){var r=e.geoCentroid({type:"MultiPoint",coordinates:t});return e.geoGnomonic().scale(1).translate([0,0]).rotate([-r[0],-r[1]])};var r=Ye.map((function(e){return{face:e,project:t(e)}}));return[-1,0,0,1,0,1,4,5].forEach((function(t,e){var n=r[t];n&&(n.children||(n.children=[])).push(r[e])})),Ve(r[0],(function(t,e){return r[t<-y/2?e<0?6:4:t<0?e<0?2:0:t0?[-r[0],0]:[180-r[0],180])};var r=Ye.map((function(e){return{face:e,project:t(e)}}));return[-1,0,0,1,0,1,4,5].forEach((function(t,e){var n=r[t];n&&(n.children||(n.children=[])).push(r[e])})),Ve(r[0],(function(t,e){return r[t<-y/2?e<0?6:4:t<0?e<0?2:0:t2||a[0]!=e[0]||a[1]!=e[1])&&(n.push(a),e=a)}return 1===n.length&&t.length>1&&n.push(r(t[t.length-1])),n}function a(t){return t.map(i)}function o(t){if(null==t)return t;var e;switch(t.type){case"GeometryCollection":e={type:"GeometryCollection",geometries:t.geometries.map(o)};break;case"Point":e={type:"Point",coordinates:r(t.coordinates)};break;case"MultiPoint":e={type:t.type,coordinates:n(t.coordinates)};break;case"LineString":e={type:t.type,coordinates:i(t.coordinates)};break;case"MultiLineString":case"Polygon":e={type:t.type,coordinates:a(t.coordinates)};break;case"MultiPolygon":e={type:"MultiPolygon",coordinates:t.coordinates.map(a)};break;default:return t}return null!=t.bbox&&(e.bbox=t.bbox),e}function s(t){var e={type:"Feature",properties:t.properties,geometry:o(t.geometry)};return null!=t.id&&(e.id=t.id),null!=t.bbox&&(e.bbox=t.bbox),e}if(null!=t)switch(t.type){case"Feature":return s(t);case"FeatureCollection":var l={type:"FeatureCollection",features:t.features.map(s)};return null!=t.bbox&&(l.bbox=t.bbox),l;default:return o(t)}return t},t.geoQuincuncial=sr,t.geoRectangularPolyconic=function(){return K(cr).scale(131.215)},t.geoRectangularPolyconicRaw=cr,t.geoRobinson=function(){return e.geoProjection(fr).scale(152.63)},t.geoRobinsonRaw=fr,t.geoSatellite=function(){var t=2,r=0,n=e.geoProjectionMutator(hr),i=n(t,r);return i.distance=function(e){return arguments.length?n(t=+e,r):t},i.tilt=function(e){return arguments.length?n(t,r=e*M):r*A},i.scale(432.147).clipAngle(E(1/t)*A-1e-6)},t.geoSatelliteRaw=hr,t.geoSinuMollweide=function(){return e.geoProjection(Kt).rotate([-20,-55]).scale(164.263).center([0,-5.4036])},t.geoSinuMollweideRaw=Kt,t.geoSinusoidal=function(){return e.geoProjection(Q).scale(152.63)},t.geoSinusoidalRaw=Q,t.geoStitch=function(t){if(null==t)return t;switch(t.type){case"Feature":return wr(t);case"FeatureCollection":var e={type:"FeatureCollection",features:t.features.map(wr)};return null!=t.bbox&&(e.bbox=t.bbox),e;default:return Tr(t)}},t.geoTimes=function(){return e.geoProjection(kr).scale(146.153)},t.geoTimesRaw=kr,t.geoTwoPointAzimuthal=Sr,t.geoTwoPointAzimuthalRaw=Mr,t.geoTwoPointAzimuthalUsa=function(){return Sr([-158,21.5],[-77,39]).clipAngle(60).scale(400)},t.geoTwoPointEquidistant=Lr,t.geoTwoPointEquidistantRaw=Er,t.geoTwoPointEquidistantUsa=function(){return Lr([-158,21.5],[-77,39]).clipAngle(130).scale(122.571)},t.geoVanDerGrinten=function(){return e.geoProjection(Cr).scale(79.4183)},t.geoVanDerGrintenRaw=Cr,t.geoVanDerGrinten2=function(){return e.geoProjection(Pr).scale(79.4183)},t.geoVanDerGrinten2Raw=Pr,t.geoVanDerGrinten3=function(){return e.geoProjection(Ir).scale(79.4183)},t.geoVanDerGrinten3Raw=Ir,t.geoVanDerGrinten4=function(){return e.geoProjection(Or).scale(127.16)},t.geoVanDerGrinten4Raw=Or,t.geoWagner=Dr,t.geoWagner7=function(){return Dr().poleline(65).parallels(60).inflation(0).ratio(200).scale(172.633)},t.geoWagnerRaw=zr,t.geoWagner4=function(){return e.geoProjection(Br).scale(176.84)},t.geoWagner4Raw=Br,t.geoWagner6=function(){return e.geoProjection(Nr).scale(152.63)},t.geoWagner6Raw=Nr,t.geoWiechel=function(){return e.geoProjection(jr).rotate([0,-90,45]).scale(124.75).clipAngle(179.999)},t.geoWiechelRaw=jr,t.geoWinkel3=function(){return e.geoProjection(Ur).scale(158.837)},t.geoWinkel3Raw=Ur,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":155,"d3-geo":162}],162:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-array")):i((n=n||self).d3=n.d3||{},n.d3)}(this,(function(t,e){"use strict";function r(){return new n}function n(){this.reset()}n.prototype={constructor:n,reset:function(){this.s=this.t=0},add:function(t){a(i,t,this.t),a(this,i.s,this.s),this.s?this.t+=i.t:this.s=i.t},valueOf:function(){return this.s}};var i=new n;function a(t,e,r){var n=t.s=e+r,i=n-e,a=n-i;t.t=e-a+(r-i)}var o=1e-6,s=Math.PI,l=s/2,c=s/4,u=2*s,f=180/s,h=s/180,p=Math.abs,d=Math.atan,m=Math.atan2,g=Math.cos,v=Math.ceil,y=Math.exp,x=Math.log,b=Math.pow,_=Math.sin,w=Math.sign||function(t){return t>0?1:t<0?-1:0},T=Math.sqrt,k=Math.tan;function A(t){return t>1?0:t<-1?s:Math.acos(t)}function M(t){return t>1?l:t<-1?-l:Math.asin(t)}function S(t){return(t=_(t/2))*t}function E(){}function L(t,e){t&&P.hasOwnProperty(t.type)&&P[t.type](t,e)}var C={Feature:function(t,e){L(t.geometry,e)},FeatureCollection:function(t,e){for(var r=t.features,n=-1,i=r.length;++n=0?1:-1,i=n*r,a=g(e=(e*=h)/2+c),o=_(e),s=N*o,l=B*a+s*g(i),u=s*n*_(i);j.add(m(u,l)),F=t,B=a,N=o}function W(t){return[m(t[1],t[0]),M(t[2])]}function X(t){var e=t[0],r=t[1],n=g(r);return[n*g(e),n*_(e),_(r)]}function Z(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}function J(t,e){return[t[1]*e[2]-t[2]*e[1],t[2]*e[0]-t[0]*e[2],t[0]*e[1]-t[1]*e[0]]}function K(t,e){t[0]+=e[0],t[1]+=e[1],t[2]+=e[2]}function Q(t,e){return[t[0]*e,t[1]*e,t[2]*e]}function $(t){var e=T(t[0]*t[0]+t[1]*t[1]+t[2]*t[2]);t[0]/=e,t[1]/=e,t[2]/=e}var tt,et,rt,nt,it,at,ot,st,lt,ct,ut,ft,ht,pt,dt,mt,gt,vt,yt,xt,bt,_t,wt,Tt,kt,At,Mt=r(),St={point:Et,lineStart:Ct,lineEnd:Pt,polygonStart:function(){St.point=It,St.lineStart=Ot,St.lineEnd=zt,Mt.reset(),V.polygonStart()},polygonEnd:function(){V.polygonEnd(),St.point=Et,St.lineStart=Ct,St.lineEnd=Pt,j<0?(tt=-(rt=180),et=-(nt=90)):Mt>o?nt=90:Mt<-o&&(et=-90),ct[0]=tt,ct[1]=rt},sphere:function(){tt=-(rt=180),et=-(nt=90)}};function Et(t,e){lt.push(ct=[tt=t,rt=t]),ent&&(nt=e)}function Lt(t,e){var r=X([t*h,e*h]);if(st){var n=J(st,r),i=J([n[1],-n[0],0],n);$(i),i=W(i);var a,o=t-it,s=o>0?1:-1,l=i[0]*f*s,c=p(o)>180;c^(s*itnt&&(nt=a):c^(s*it<(l=(l+360)%360-180)&&lnt&&(nt=e)),c?tDt(tt,rt)&&(rt=t):Dt(t,rt)>Dt(tt,rt)&&(tt=t):rt>=tt?(trt&&(rt=t)):t>it?Dt(tt,t)>Dt(tt,rt)&&(rt=t):Dt(t,rt)>Dt(tt,rt)&&(tt=t)}else lt.push(ct=[tt=t,rt=t]);ent&&(nt=e),st=r,it=t}function Ct(){St.point=Lt}function Pt(){ct[0]=tt,ct[1]=rt,St.point=Et,st=null}function It(t,e){if(st){var r=t-it;Mt.add(p(r)>180?r+(r>0?360:-360):r)}else at=t,ot=e;V.point(t,e),Lt(t,e)}function Ot(){V.lineStart()}function zt(){It(at,ot),V.lineEnd(),p(Mt)>o&&(tt=-(rt=180)),ct[0]=tt,ct[1]=rt,st=null}function Dt(t,e){return(e-=t)<0?e+360:e}function Rt(t,e){return t[0]-e[0]}function Ft(t,e){return t[0]<=t[1]?t[0]<=e&&e<=t[1]:es?t+Math.round(-t/u)*u:t,e]}function Qt(t,e,r){return(t%=u)?e||r?Jt(te(t),ee(e,r)):te(t):e||r?ee(e,r):Kt}function $t(t){return function(e,r){return[(e+=t)>s?e-u:e<-s?e+u:e,r]}}function te(t){var e=$t(t);return e.invert=$t(-t),e}function ee(t,e){var r=g(t),n=_(t),i=g(e),a=_(e);function o(t,e){var o=g(e),s=g(t)*o,l=_(t)*o,c=_(e),u=c*r+s*n;return[m(l*i-u*a,s*r-c*n),M(u*i+l*a)]}return o.invert=function(t,e){var o=g(e),s=g(t)*o,l=_(t)*o,c=_(e),u=c*i-l*a;return[m(l*i+c*a,s*r+u*n),M(u*r-s*n)]},o}function re(t){function e(e){return(e=t(e[0]*h,e[1]*h))[0]*=f,e[1]*=f,e}return t=Qt(t[0]*h,t[1]*h,t.length>2?t[2]*h:0),e.invert=function(e){return(e=t.invert(e[0]*h,e[1]*h))[0]*=f,e[1]*=f,e},e}function ne(t,e,r,n,i,a){if(r){var o=g(e),s=_(e),l=n*r;null==i?(i=e+n*u,a=e-l/2):(i=ie(o,i),a=ie(o,a),(n>0?ia)&&(i+=n*u));for(var c,f=i;n>0?f>a:f1&&e.push(e.pop().concat(e.shift()))},result:function(){var r=e;return e=[],t=null,r}}}function oe(t,e){return p(t[0]-e[0])=0;--a)i.point((f=u[a])[0],f[1]);else n(p.x,p.p.x,-1,i);p=p.p}u=(p=p.o).z,d=!d}while(!p.v);i.lineEnd()}}}function ce(t){if(e=t.length){for(var e,r,n=0,i=t[0];++n=0?1:-1,z=O*I,D=z>s,R=T*C;if(ue.add(m(R*O*_(z),k*P+R*g(z))),f+=D?I+O*u:I,D^b>=r^E>=r){var F=J(X(x),X(S));$(F);var B=J(a,F);$(B);var N=(D^I>=0?-1:1)*M(B[2]);(n>N||n===N&&(F[0]||F[1]))&&(h+=D^I>=0?1:-1)}}return(f<-o||f0){for(h||(a.polygonStart(),h=!0),a.lineStart(),t=0;t1&&2&i&&c.push(c.pop().concat(c.shift())),s.push(c.filter(de))}return p}}function de(t){return t.length>1}function me(t,e){return((t=t.x)[0]<0?t[1]-l-o:l-t[1])-((e=e.x)[0]<0?e[1]-l-o:l-e[1])}var ge=pe((function(){return!0}),(function(t){var e,r=NaN,n=NaN,i=NaN;return{lineStart:function(){t.lineStart(),e=1},point:function(a,c){var u=a>0?s:-s,f=p(a-r);p(f-s)0?l:-l),t.point(i,n),t.lineEnd(),t.lineStart(),t.point(u,n),t.point(a,n),e=0):i!==u&&f>=s&&(p(r-i)o?d((_(e)*(a=g(n))*_(r)-_(n)*(i=g(e))*_(t))/(i*a*s)):(e+n)/2}(r,n,a,c),t.point(i,n),t.lineEnd(),t.lineStart(),t.point(u,n),e=0),t.point(r=a,n=c),i=u},lineEnd:function(){t.lineEnd(),r=n=NaN},clean:function(){return 2-e}}}),(function(t,e,r,n){var i;if(null==t)i=r*l,n.point(-s,i),n.point(0,i),n.point(s,i),n.point(s,0),n.point(s,-i),n.point(0,-i),n.point(-s,-i),n.point(-s,0),n.point(-s,i);else if(p(t[0]-e[0])>o){var a=t[0]0,i=p(e)>o;function a(t,r){return g(t)*g(r)>e}function l(t,r,n){var i=[1,0,0],a=J(X(t),X(r)),l=Z(a,a),c=a[0],u=l-c*c;if(!u)return!n&&t;var f=e*l/u,h=-e*c/u,d=J(i,a),m=Q(i,f);K(m,Q(a,h));var g=d,v=Z(m,g),y=Z(g,g),x=v*v-y*(Z(m,m)-1);if(!(x<0)){var b=T(x),_=Q(g,(-v-b)/y);if(K(_,m),_=W(_),!n)return _;var w,k=t[0],A=r[0],M=t[1],S=r[1];A0^_[1]<(p(_[0]-k)s^(k<=_[0]&&_[0]<=A)){var C=Q(g,(-v+b)/y);return K(C,m),[_,W(C)]}}}function c(e,r){var i=n?t:s-t,a=0;return e<-i?a|=1:e>i&&(a|=2),r<-i?a|=4:r>i&&(a|=8),a}return pe(a,(function(t){var e,r,o,u,f;return{lineStart:function(){u=o=!1,f=1},point:function(h,p){var d,m=[h,p],g=a(h,p),v=n?g?0:c(h,p):g?c(h+(h<0?s:-s),p):0;if(!e&&(u=o=g)&&t.lineStart(),g!==o&&(!(d=l(e,m))||oe(e,d)||oe(m,d))&&(m[2]=1),g!==o)f=0,g?(t.lineStart(),d=l(m,e),t.point(d[0],d[1])):(d=l(e,m),t.point(d[0],d[1],2),t.lineEnd()),e=d;else if(i&&e&&n^g){var y;v&r||!(y=l(m,e,!0))||(f=0,n?(t.lineStart(),t.point(y[0][0],y[0][1]),t.point(y[1][0],y[1][1]),t.lineEnd()):(t.point(y[1][0],y[1][1]),t.lineEnd(),t.lineStart(),t.point(y[0][0],y[0][1],3)))}!g||e&&oe(e,m)||t.point(m[0],m[1]),e=m,o=g,r=v},lineEnd:function(){o&&t.lineEnd(),e=null},clean:function(){return f|(u&&o)<<1}}}),(function(e,n,i,a){ne(a,t,r,i,e,n)}),n?[0,-t]:[-s,t-s])}function ye(t,r,n,i){function a(e,a){return t<=e&&e<=n&&r<=a&&a<=i}function s(e,a,o,s){var c=0,f=0;if(null==e||(c=l(e,o))!==(f=l(a,o))||u(e,a)<0^o>0)do{s.point(0===c||3===c?t:n,c>1?i:r)}while((c=(c+o+4)%4)!==f);else s.point(a[0],a[1])}function l(e,i){return p(e[0]-t)0?0:3:p(e[0]-n)0?2:1:p(e[1]-r)0?1:0:i>0?3:2}function c(t,e){return u(t.x,e.x)}function u(t,e){var r=l(t,1),n=l(e,1);return r!==n?r-n:0===r?e[1]-t[1]:1===r?t[0]-e[0]:2===r?t[1]-e[1]:e[0]-t[0]}return function(o){var l,u,f,h,p,d,m,g,v,y,x,b=o,_=ae(),w={point:T,lineStart:function(){w.point=k,u&&u.push(f=[]);y=!0,v=!1,m=g=NaN},lineEnd:function(){l&&(k(h,p),d&&v&&_.rejoin(),l.push(_.result()));w.point=T,v&&b.lineEnd()},polygonStart:function(){b=_,l=[],u=[],x=!0},polygonEnd:function(){var r=function(){for(var e=0,r=0,n=u.length;ri&&(h-a)*(i-o)>(p-o)*(t-a)&&++e:p<=i&&(h-a)*(i-o)<(p-o)*(t-a)&&--e;return e}(),n=x&&r,a=(l=e.merge(l)).length;(n||a)&&(o.polygonStart(),n&&(o.lineStart(),s(null,null,1,o),o.lineEnd()),a&&le(l,c,r,s,o),o.polygonEnd());b=o,l=u=f=null}};function T(t,e){a(t,e)&&b.point(t,e)}function k(e,o){var s=a(e,o);if(u&&f.push([e,o]),y)h=e,p=o,d=s,y=!1,s&&(b.lineStart(),b.point(e,o));else if(s&&v)b.point(e,o);else{var l=[m=Math.max(-1e9,Math.min(1e9,m)),g=Math.max(-1e9,Math.min(1e9,g))],c=[e=Math.max(-1e9,Math.min(1e9,e)),o=Math.max(-1e9,Math.min(1e9,o))];!function(t,e,r,n,i,a){var o,s=t[0],l=t[1],c=0,u=1,f=e[0]-s,h=e[1]-l;if(o=r-s,f||!(o>0)){if(o/=f,f<0){if(o0){if(o>u)return;o>c&&(c=o)}if(o=i-s,f||!(o<0)){if(o/=f,f<0){if(o>u)return;o>c&&(c=o)}else if(f>0){if(o0)){if(o/=h,h<0){if(o0){if(o>u)return;o>c&&(c=o)}if(o=a-l,h||!(o<0)){if(o/=h,h<0){if(o>u)return;o>c&&(c=o)}else if(h>0){if(o0&&(t[0]=s+c*f,t[1]=l+c*h),u<1&&(e[0]=s+u*f,e[1]=l+u*h),!0}}}}}(l,c,t,r,n,i)?s&&(b.lineStart(),b.point(e,o),x=!1):(v||(b.lineStart(),b.point(l[0],l[1])),b.point(c[0],c[1]),s||b.lineEnd(),x=!1)}m=e,g=o,v=s}return w}}var xe,be,_e,we=r(),Te={sphere:E,point:E,lineStart:function(){Te.point=Ae,Te.lineEnd=ke},lineEnd:E,polygonStart:E,polygonEnd:E};function ke(){Te.point=Te.lineEnd=E}function Ae(t,e){xe=t*=h,be=_(e*=h),_e=g(e),Te.point=Me}function Me(t,e){t*=h;var r=_(e*=h),n=g(e),i=p(t-xe),a=g(i),o=n*_(i),s=_e*r-be*n*a,l=be*r+_e*n*a;we.add(m(T(o*o+s*s),l)),xe=t,be=r,_e=n}function Se(t){return we.reset(),z(t,Te),+we}var Ee=[null,null],Le={type:"LineString",coordinates:Ee};function Ce(t,e){return Ee[0]=t,Ee[1]=e,Se(Le)}var Pe={Feature:function(t,e){return Oe(t.geometry,e)},FeatureCollection:function(t,e){for(var r=t.features,n=-1,i=r.length;++n0&&(i=Ce(t[a],t[a-1]))>0&&r<=i&&n<=i&&(r+n-i)*(1-Math.pow((r-n)/i,2))<1e-12*i)return!0;r=n}return!1}function Re(t,e){return!!he(t.map(Fe),Be(e))}function Fe(t){return(t=t.map(Be)).pop(),t}function Be(t){return[t[0]*h,t[1]*h]}function Ne(t,r,n){var i=e.range(t,r-o,n).concat(r);return function(t){return i.map((function(e){return[t,e]}))}}function je(t,r,n){var i=e.range(t,r-o,n).concat(r);return function(t){return i.map((function(e){return[e,t]}))}}function Ue(){var t,r,n,i,a,s,l,c,u,f,h,d,m=10,g=m,y=90,x=360,b=2.5;function _(){return{type:"MultiLineString",coordinates:w()}}function w(){return e.range(v(i/y)*y,n,y).map(h).concat(e.range(v(c/x)*x,l,x).map(d)).concat(e.range(v(r/m)*m,t,m).filter((function(t){return p(t%y)>o})).map(u)).concat(e.range(v(s/g)*g,a,g).filter((function(t){return p(t%x)>o})).map(f))}return _.lines=function(){return w().map((function(t){return{type:"LineString",coordinates:t}}))},_.outline=function(){return{type:"Polygon",coordinates:[h(i).concat(d(l).slice(1),h(n).reverse().slice(1),d(c).reverse().slice(1))]}},_.extent=function(t){return arguments.length?_.extentMajor(t).extentMinor(t):_.extentMinor()},_.extentMajor=function(t){return arguments.length?(i=+t[0][0],n=+t[1][0],c=+t[0][1],l=+t[1][1],i>n&&(t=i,i=n,n=t),c>l&&(t=c,c=l,l=t),_.precision(b)):[[i,c],[n,l]]},_.extentMinor=function(e){return arguments.length?(r=+e[0][0],t=+e[1][0],s=+e[0][1],a=+e[1][1],r>t&&(e=r,r=t,t=e),s>a&&(e=s,s=a,a=e),_.precision(b)):[[r,s],[t,a]]},_.step=function(t){return arguments.length?_.stepMajor(t).stepMinor(t):_.stepMinor()},_.stepMajor=function(t){return arguments.length?(y=+t[0],x=+t[1],_):[y,x]},_.stepMinor=function(t){return arguments.length?(m=+t[0],g=+t[1],_):[m,g]},_.precision=function(e){return arguments.length?(b=+e,u=Ne(s,a,90),f=je(r,t,b),h=Ne(c,l,90),d=je(i,n,b),_):b},_.extentMajor([[-180,-90+o],[180,90-o]]).extentMinor([[-180,-80-o],[180,80+o]])}function Ve(t){return t}var He,qe,Ge,Ye,We=r(),Xe=r(),Ze={point:E,lineStart:E,lineEnd:E,polygonStart:function(){Ze.lineStart=Je,Ze.lineEnd=$e},polygonEnd:function(){Ze.lineStart=Ze.lineEnd=Ze.point=E,We.add(p(Xe)),Xe.reset()},result:function(){var t=We/2;return We.reset(),t}};function Je(){Ze.point=Ke}function Ke(t,e){Ze.point=Qe,He=Ge=t,qe=Ye=e}function Qe(t,e){Xe.add(Ye*t-Ge*e),Ge=t,Ye=e}function $e(){Qe(He,qe)}var tr=1/0,er=tr,rr=-tr,nr=rr,ir={point:function(t,e){trr&&(rr=t);enr&&(nr=e)},lineStart:E,lineEnd:E,polygonStart:E,polygonEnd:E,result:function(){var t=[[tr,er],[rr,nr]];return rr=nr=-(er=tr=1/0),t}};var ar,or,sr,lr,cr=0,ur=0,fr=0,hr=0,pr=0,dr=0,mr=0,gr=0,vr=0,yr={point:xr,lineStart:br,lineEnd:Tr,polygonStart:function(){yr.lineStart=kr,yr.lineEnd=Ar},polygonEnd:function(){yr.point=xr,yr.lineStart=br,yr.lineEnd=Tr},result:function(){var t=vr?[mr/vr,gr/vr]:dr?[hr/dr,pr/dr]:fr?[cr/fr,ur/fr]:[NaN,NaN];return cr=ur=fr=hr=pr=dr=mr=gr=vr=0,t}};function xr(t,e){cr+=t,ur+=e,++fr}function br(){yr.point=_r}function _r(t,e){yr.point=wr,xr(sr=t,lr=e)}function wr(t,e){var r=t-sr,n=e-lr,i=T(r*r+n*n);hr+=i*(sr+t)/2,pr+=i*(lr+e)/2,dr+=i,xr(sr=t,lr=e)}function Tr(){yr.point=xr}function kr(){yr.point=Mr}function Ar(){Sr(ar,or)}function Mr(t,e){yr.point=Sr,xr(ar=sr=t,or=lr=e)}function Sr(t,e){var r=t-sr,n=e-lr,i=T(r*r+n*n);hr+=i*(sr+t)/2,pr+=i*(lr+e)/2,dr+=i,mr+=(i=lr*t-sr*e)*(sr+t),gr+=i*(lr+e),vr+=3*i,xr(sr=t,lr=e)}function Er(t){this._context=t}Er.prototype={_radius:4.5,pointRadius:function(t){return this._radius=t,this},polygonStart:function(){this._line=0},polygonEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){0===this._line&&this._context.closePath(),this._point=NaN},point:function(t,e){switch(this._point){case 0:this._context.moveTo(t,e),this._point=1;break;case 1:this._context.lineTo(t,e);break;default:this._context.moveTo(t+this._radius,e),this._context.arc(t,e,this._radius,0,u)}},result:E};var Lr,Cr,Pr,Ir,Or,zr=r(),Dr={point:E,lineStart:function(){Dr.point=Rr},lineEnd:function(){Lr&&Fr(Cr,Pr),Dr.point=E},polygonStart:function(){Lr=!0},polygonEnd:function(){Lr=null},result:function(){var t=+zr;return zr.reset(),t}};function Rr(t,e){Dr.point=Fr,Cr=Ir=t,Pr=Or=e}function Fr(t,e){Ir-=t,Or-=e,zr.add(T(Ir*Ir+Or*Or)),Ir=t,Or=e}function Br(){this._string=[]}function Nr(t){return"m0,"+t+"a"+t+","+t+" 0 1,1 0,"+-2*t+"a"+t+","+t+" 0 1,1 0,"+2*t+"z"}function jr(t){return function(e){var r=new Ur;for(var n in t)r[n]=t[n];return r.stream=e,r}}function Ur(){}function Vr(t,e,r){var n=t.clipExtent&&t.clipExtent();return t.scale(150).translate([0,0]),null!=n&&t.clipExtent(null),z(r,t.stream(ir)),e(ir.result()),null!=n&&t.clipExtent(n),t}function Hr(t,e,r){return Vr(t,(function(r){var n=e[1][0]-e[0][0],i=e[1][1]-e[0][1],a=Math.min(n/(r[1][0]-r[0][0]),i/(r[1][1]-r[0][1])),o=+e[0][0]+(n-a*(r[1][0]+r[0][0]))/2,s=+e[0][1]+(i-a*(r[1][1]+r[0][1]))/2;t.scale(150*a).translate([o,s])}),r)}function qr(t,e,r){return Hr(t,[[0,0],e],r)}function Gr(t,e,r){return Vr(t,(function(r){var n=+e,i=n/(r[1][0]-r[0][0]),a=(n-i*(r[1][0]+r[0][0]))/2,o=-i*r[0][1];t.scale(150*i).translate([a,o])}),r)}function Yr(t,e,r){return Vr(t,(function(r){var n=+e,i=n/(r[1][1]-r[0][1]),a=-i*r[0][0],o=(n-i*(r[1][1]+r[0][1]))/2;t.scale(150*i).translate([a,o])}),r)}Br.prototype={_radius:4.5,_circle:Nr(4.5),pointRadius:function(t){return(t=+t)!==this._radius&&(this._radius=t,this._circle=null),this},polygonStart:function(){this._line=0},polygonEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){0===this._line&&this._string.push("Z"),this._point=NaN},point:function(t,e){switch(this._point){case 0:this._string.push("M",t,",",e),this._point=1;break;case 1:this._string.push("L",t,",",e);break;default:null==this._circle&&(this._circle=Nr(this._radius)),this._string.push("M",t,",",e,this._circle)}},result:function(){if(this._string.length){var t=this._string.join("");return this._string=[],t}return null}},Ur.prototype={constructor:Ur,point:function(t,e){this.stream.point(t,e)},sphere:function(){this.stream.sphere()},lineStart:function(){this.stream.lineStart()},lineEnd:function(){this.stream.lineEnd()},polygonStart:function(){this.stream.polygonStart()},polygonEnd:function(){this.stream.polygonEnd()}};var Wr=g(30*h);function Xr(t,e){return+e?function(t,e){function r(n,i,a,s,l,c,u,f,h,d,g,v,y,x){var b=u-n,_=f-i,w=b*b+_*_;if(w>4*e&&y--){var k=s+d,A=l+g,S=c+v,E=T(k*k+A*A+S*S),L=M(S/=E),C=p(p(S)-1)e||p((b*z+_*D)/w-.5)>.3||s*d+l*g+c*v2?t[2]%360*h:0,I()):[y*f,x*f,b*f]},C.angle=function(t){return arguments.length?(_=t%360*h,I()):_*f},C.reflectX=function(t){return arguments.length?(w=t?-1:1,I()):w<0},C.reflectY=function(t){return arguments.length?(k=t?-1:1,I()):k<0},C.precision=function(t){return arguments.length?(o=Xr(s,L=t*t),O()):T(L)},C.fitExtent=function(t,e){return Hr(C,t,e)},C.fitSize=function(t,e){return qr(C,t,e)},C.fitWidth=function(t,e){return Gr(C,t,e)},C.fitHeight=function(t,e){return Yr(C,t,e)},function(){return e=t.apply(this,arguments),C.invert=e.invert&&P,I()}}function tn(t){var e=0,r=s/3,n=$r(t),i=n(e,r);return i.parallels=function(t){return arguments.length?n(e=t[0]*h,r=t[1]*h):[e*f,r*f]},i}function en(t,e){var r=_(t),n=(r+_(e))/2;if(p(n)0?e<-l+o&&(e=-l+o):e>l-o&&(e=l-o);var r=i/b(fn(e),n);return[r*_(n*t),i-r*g(n*t)]}return a.invert=function(t,e){var r=i-e,a=w(n)*T(t*t+r*r),o=m(t,p(r))*w(r);return r*n<0&&(o-=s*w(t)*w(r)),[o/n,2*d(b(i/a,1/n))-l]},a}function pn(t,e){return[t,e]}function dn(t,e){var r=g(t),n=t===e?_(t):(r-g(e))/(e-t),i=r/n+t;if(p(n)o&&--i>0);return[t/(.8707+(a=n*n)*(a*(a*a*a*(.003971-.001529*a)-.013791)-.131979)),n]},Tn.invert=on(M),kn.invert=on((function(t){return 2*d(t)})),An.invert=function(t,e){return[-e,2*d(y(t))-l]},t.geoAlbers=nn,t.geoAlbersUsa=function(){var t,e,r,n,i,a,s=nn(),l=rn().rotate([154,0]).center([-2,58.5]).parallels([55,65]),c=rn().rotate([157,0]).center([-3,19.9]).parallels([8,18]),u={point:function(t,e){a=[t,e]}};function f(t){var e=t[0],o=t[1];return a=null,r.point(e,o),a||(n.point(e,o),a)||(i.point(e,o),a)}function h(){return t=e=null,f}return f.invert=function(t){var e=s.scale(),r=s.translate(),n=(t[0]-r[0])/e,i=(t[1]-r[1])/e;return(i>=.12&&i<.234&&n>=-.425&&n<-.214?l:i>=.166&&i<.234&&n>=-.214&&n<-.115?c:s).invert(t)},f.stream=function(r){return t&&e===r?t:(n=[s.stream(e=r),l.stream(r),c.stream(r)],i=n.length,t={point:function(t,e){for(var r=-1;++rDt(n[0],n[1])&&(n[1]=i[1]),Dt(i[0],n[1])>Dt(n[0],n[1])&&(n[0]=i[0])):a.push(n=i);for(o=-1/0,e=0,n=a[r=a.length-1];e<=r;n=i,++e)i=a[e],(s=Dt(n[1],i[0]))>o&&(o=s,tt=i[0],rt=n[1])}return lt=ct=null,tt===1/0||et===1/0?[[NaN,NaN],[NaN,NaN]]:[[tt,et],[rt,nt]]},t.geoCentroid=function(t){ut=ft=ht=pt=dt=mt=gt=vt=yt=xt=bt=0,z(t,Bt);var e=yt,r=xt,n=bt,i=e*e+r*r+n*n;return i<1e-12&&(e=mt,r=gt,n=vt,ft2?t[2]+90:90]):[(t=r())[0],t[1],t[2]-90]},r([0,0,90]).scale(159.155)},t.geoTransverseMercatorRaw=An,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":155}],163:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e){return t.parent===e.parent?1:2}function r(t,e){return t+e.x}function n(t,e){return Math.max(t,e.y)}function i(t){var e=0,r=t.children,n=r&&r.length;if(n)for(;--n>=0;)e+=r[n].value;else e=1;t.value=e}function a(t,e){var r,n,i,a,s,u=new c(t),f=+t.value&&(u.value=t.value),h=[u];for(null==e&&(e=o);r=h.pop();)if(f&&(r.value=+r.data.value),(i=e(r.data))&&(s=i.length))for(r.children=new Array(s),a=s-1;a>=0;--a)h.push(n=r.children[a]=new c(i[a])),n.parent=r,n.depth=r.depth+1;return u.eachBefore(l)}function o(t){return t.children}function s(t){t.data=t.data.data}function l(t){var e=0;do{t.height=e}while((t=t.parent)&&t.height<++e)}function c(t){this.data=t,this.depth=this.height=0,this.parent=null}c.prototype=a.prototype={constructor:c,count:function(){return this.eachAfter(i)},each:function(t){var e,r,n,i,a=this,o=[a];do{for(e=o.reverse(),o=[];a=e.pop();)if(t(a),r=a.children)for(n=0,i=r.length;n=0;--r)i.push(e[r]);return this},sum:function(t){return this.eachAfter((function(e){for(var r=+t(e.data)||0,n=e.children,i=n&&n.length;--i>=0;)r+=n[i].value;e.value=r}))},sort:function(t){return this.eachBefore((function(e){e.children&&e.children.sort(t)}))},path:function(t){for(var e=this,r=function(t,e){if(t===e)return t;var r=t.ancestors(),n=e.ancestors(),i=null;t=r.pop(),e=n.pop();for(;t===e;)i=t,t=r.pop(),e=n.pop();return i}(e,t),n=[e];e!==r;)e=e.parent,n.push(e);for(var i=n.length;t!==r;)n.splice(i,0,t),t=t.parent;return n},ancestors:function(){for(var t=this,e=[t];t=t.parent;)e.push(t);return e},descendants:function(){var t=[];return this.each((function(e){t.push(e)})),t},leaves:function(){var t=[];return this.eachBefore((function(e){e.children||t.push(e)})),t},links:function(){var t=this,e=[];return t.each((function(r){r!==t&&e.push({source:r.parent,target:r})})),e},copy:function(){return a(this).eachBefore(s)}};var u=Array.prototype.slice;function f(t){for(var e,r,n=0,i=(t=function(t){for(var e,r,n=t.length;n;)r=Math.random()*n--|0,e=t[n],t[n]=t[r],t[r]=e;return t}(u.call(t))).length,a=[];n0&&r*r>n*n+i*i}function m(t,e){for(var r=0;r(o*=o)?(n=(c+o-i)/(2*c),a=Math.sqrt(Math.max(0,o/c-n*n)),r.x=t.x-n*s-a*l,r.y=t.y-n*l+a*s):(n=(c+i-o)/(2*c),a=Math.sqrt(Math.max(0,i/c-n*n)),r.x=e.x+n*s-a*l,r.y=e.y+n*l+a*s)):(r.x=e.x+r.r,r.y=e.y)}function b(t,e){var r=t.r+e.r-1e-6,n=e.x-t.x,i=e.y-t.y;return r>0&&r*r>n*n+i*i}function _(t){var e=t._,r=t.next._,n=e.r+r.r,i=(e.x*r.r+r.x*e.r)/n,a=(e.y*r.r+r.y*e.r)/n;return i*i+a*a}function w(t){this._=t,this.next=null,this.previous=null}function T(t){if(!(i=t.length))return 0;var e,r,n,i,a,o,s,l,c,u,h;if((e=t[0]).x=0,e.y=0,!(i>1))return e.r;if(r=t[1],e.x=-r.r,r.x=e.r,r.y=0,!(i>2))return e.r+r.r;x(r,e,n=t[2]),e=new w(e),r=new w(r),n=new w(n),e.next=n.previous=r,r.next=e.previous=n,n.next=r.previous=e;t:for(s=3;sh&&(h=s),g=u*u*m,(p=Math.max(h/g,g/f))>d){u-=s;break}d=p}v.push(o={value:u,dice:l1?e:1)},r}(G);var X=function t(e){function r(t,r,n,i,a){if((o=t._squarify)&&o.ratio===e)for(var o,s,l,c,u,f=-1,h=o.length,p=t.value;++f1?e:1)},r}(G);t.cluster=function(){var t=e,i=1,a=1,o=!1;function s(e){var s,l=0;e.eachAfter((function(e){var i=e.children;i?(e.x=function(t){return t.reduce(r,0)/t.length}(i),e.y=function(t){return 1+t.reduce(n,0)}(i)):(e.x=s?l+=t(e,s):0,e.y=0,s=e)}));var c=function(t){for(var e;e=t.children;)t=e[0];return t}(e),u=function(t){for(var e;e=t.children;)t=e[e.length-1];return t}(e),f=c.x-t(c,u)/2,h=u.x+t(u,c)/2;return e.eachAfter(o?function(t){t.x=(t.x-e.x)*i,t.y=(e.y-t.y)*a}:function(t){t.x=(t.x-f)/(h-f)*i,t.y=(1-(e.y?t.y/e.y:1))*a})}return s.separation=function(e){return arguments.length?(t=e,s):t},s.size=function(t){return arguments.length?(o=!1,i=+t[0],a=+t[1],s):o?null:[i,a]},s.nodeSize=function(t){return arguments.length?(o=!0,i=+t[0],a=+t[1],s):o?[i,a]:null},s},t.hierarchy=a,t.pack=function(){var t=null,e=1,r=1,n=M;function i(i){return i.x=e/2,i.y=r/2,t?i.eachBefore(L(t)).eachAfter(C(n,.5)).eachBefore(P(1)):i.eachBefore(L(E)).eachAfter(C(M,1)).eachAfter(C(n,i.r/Math.min(e,r))).eachBefore(P(Math.min(e,r)/(2*i.r))),i}return i.radius=function(e){return arguments.length?(t=k(e),i):t},i.size=function(t){return arguments.length?(e=+t[0],r=+t[1],i):[e,r]},i.padding=function(t){return arguments.length?(n="function"==typeof t?t:S(+t),i):n},i},t.packEnclose=f,t.packSiblings=function(t){return T(t),t},t.partition=function(){var t=1,e=1,r=0,n=!1;function i(i){var a=i.height+1;return i.x0=i.y0=r,i.x1=t,i.y1=e/a,i.eachBefore(function(t,e){return function(n){n.children&&O(n,n.x0,t*(n.depth+1)/e,n.x1,t*(n.depth+2)/e);var i=n.x0,a=n.y0,o=n.x1-r,s=n.y1-r;o0)throw new Error("cycle");return a}return r.id=function(e){return arguments.length?(t=A(e),r):t},r.parentId=function(t){return arguments.length?(e=A(t),r):e},r},t.tree=function(){var t=B,e=1,r=1,n=null;function i(i){var l=function(t){for(var e,r,n,i,a,o=new H(t,0),s=[o];e=s.pop();)if(n=e._.children)for(e.children=new Array(a=n.length),i=a-1;i>=0;--i)s.push(r=e.children[i]=new H(n[i],i)),r.parent=e;return(o.parent=new H(null,0)).children=[o],o}(i);if(l.eachAfter(a),l.parent.m=-l.z,l.eachBefore(o),n)i.eachBefore(s);else{var c=i,u=i,f=i;i.eachBefore((function(t){t.xu.x&&(u=t),t.depth>f.depth&&(f=t)}));var h=c===u?1:t(c,u)/2,p=h-c.x,d=e/(u.x+h+p),m=r/(f.depth||1);i.eachBefore((function(t){t.x=(t.x+p)*d,t.y=t.depth*m}))}return i}function a(e){var r=e.children,n=e.parent.children,i=e.i?n[e.i-1]:null;if(r){!function(t){for(var e,r=0,n=0,i=t.children,a=i.length;--a>=0;)(e=i[a]).z+=r,e.m+=r,r+=e.s+(n+=e.c)}(e);var a=(r[0].z+r[r.length-1].z)/2;i?(e.z=i.z+t(e._,i._),e.m=e.z-a):e.z=a}else i&&(e.z=i.z+t(e._,i._));e.parent.A=function(e,r,n){if(r){for(var i,a=e,o=e,s=r,l=a.parent.children[0],c=a.m,u=o.m,f=s.m,h=l.m;s=j(s),a=N(a),s&&a;)l=N(l),(o=j(o)).a=e,(i=s.z+f-a.z-c+t(s._,a._))>0&&(U(V(s,e,n),e,i),c+=i,u+=i),f+=s.m,c+=a.m,h+=l.m,u+=o.m;s&&!j(o)&&(o.t=s,o.m+=f-u),a&&!N(l)&&(l.t=a,l.m+=c-h,n=e)}return n}(e,i,e.parent.A||n[0])}function o(t){t._.x=t.z+t.parent.m,t.m+=t.parent.m}function s(t){t.x*=e,t.y=t.depth*r}return i.separation=function(e){return arguments.length?(t=e,i):t},i.size=function(t){return arguments.length?(n=!1,e=+t[0],r=+t[1],i):n?null:[e,r]},i.nodeSize=function(t){return arguments.length?(n=!0,e=+t[0],r=+t[1],i):n?[e,r]:null},i},t.treemap=function(){var t=W,e=!1,r=1,n=1,i=[0],a=M,o=M,s=M,l=M,c=M;function u(t){return t.x0=t.y0=0,t.x1=r,t.y1=n,t.eachBefore(f),i=[0],e&&t.eachBefore(I),t}function f(e){var r=i[e.depth],n=e.x0+r,u=e.y0+r,f=e.x1-r,h=e.y1-r;f=r-1){var u=s[e];return u.x0=i,u.y0=a,u.x1=o,void(u.y1=l)}var f=c[e],h=n/2+f,p=e+1,d=r-1;for(;p>>1;c[m]l-a){var y=(i*v+o*g)/n;t(e,p,g,i,a,y,l),t(p,r,v,y,a,o,l)}else{var x=(a*v+l*g)/n;t(e,p,g,i,a,o,x),t(p,r,v,i,x,o,l)}}(0,l,t.value,e,r,n,i)},t.treemapDice=O,t.treemapResquarify=X,t.treemapSlice=q,t.treemapSliceDice=function(t,e,r,n,i){(1&t.depth?q:O)(t,e,r,n,i)},t.treemapSquarify=W,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],164:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-color")):i((n=n||self).d3=n.d3||{},n.d3)}(this,(function(t,e){"use strict";function r(t,e,r,n,i){var a=t*t,o=a*t;return((1-3*t+3*a-o)*e+(4-6*a+3*o)*r+(1+3*t+3*a-3*o)*n+o*i)/6}function n(t){var e=t.length-1;return function(n){var i=n<=0?n=0:n>=1?(n=1,e-1):Math.floor(n*e),a=t[i],o=t[i+1],s=i>0?t[i-1]:2*a-o,l=i180||r<-180?r-360*Math.round(r/360):r):a(isNaN(t)?e:t)}function l(t){return 1==(t=+t)?c:function(e,r){return r-e?function(t,e,r){return t=Math.pow(t,r),e=Math.pow(e,r)-t,r=1/r,function(n){return Math.pow(t+n*e,r)}}(e,r,t):a(isNaN(e)?r:e)}}function c(t,e){var r=e-t;return r?o(t,r):a(isNaN(t)?e:t)}var u=function t(r){var n=l(r);function i(t,r){var i=n((t=e.rgb(t)).r,(r=e.rgb(r)).r),a=n(t.g,r.g),o=n(t.b,r.b),s=c(t.opacity,r.opacity);return function(e){return t.r=i(e),t.g=a(e),t.b=o(e),t.opacity=s(e),t+""}}return i.gamma=t,i}(1);function f(t){return function(r){var n,i,a=r.length,o=new Array(a),s=new Array(a),l=new Array(a);for(n=0;na&&(i=e.slice(a,i),s[o]?s[o]+=i:s[++o]=i),(r=r[0])===(n=n[0])?s[o]?s[o]+=n:s[++o]=n:(s[++o]=null,l.push({i:o,x:y(r,n)})),a=_.lastIndex;return a180?e+=360:e-t>180&&(t+=360),a.push({i:r.push(i(r)+"rotate(",null,n)-2,x:y(t,e)})):e&&r.push(i(r)+"rotate("+e+n)}(a.rotate,o.rotate,s,l),function(t,e,r,a){t!==e?a.push({i:r.push(i(r)+"skewX(",null,n)-2,x:y(t,e)}):e&&r.push(i(r)+"skewX("+e+n)}(a.skewX,o.skewX,s,l),function(t,e,r,n,a,o){if(t!==r||e!==n){var s=a.push(i(a)+"scale(",null,",",null,")");o.push({i:s-4,x:y(t,r)},{i:s-2,x:y(e,n)})}else 1===r&&1===n||a.push(i(a)+"scale("+r+","+n+")")}(a.scaleX,a.scaleY,o.scaleX,o.scaleY,s,l),a=o=null,function(t){for(var e,r=-1,n=l.length;++r1e-6)if(Math.abs(f*l-c*u)>1e-6&&a){var p=n-o,d=i-s,m=l*l+c*c,g=p*p+d*d,v=Math.sqrt(m),y=Math.sqrt(h),x=a*Math.tan((e-Math.acos((m+h-g)/(2*v*y)))/2),b=x/y,_=x/v;Math.abs(b-1)>1e-6&&(this._+="L"+(t+b*u)+","+(r+b*f)),this._+="A"+a+","+a+",0,0,"+ +(f*p>u*d)+","+(this._x1=t+_*l)+","+(this._y1=r+_*c)}else this._+="L"+(this._x1=t)+","+(this._y1=r);else;},arc:function(t,i,a,o,s,l){t=+t,i=+i,l=!!l;var c=(a=+a)*Math.cos(o),u=a*Math.sin(o),f=t+c,h=i+u,p=1^l,d=l?o-s:s-o;if(a<0)throw new Error("negative radius: "+a);null===this._x1?this._+="M"+f+","+h:(Math.abs(this._x1-f)>1e-6||Math.abs(this._y1-h)>1e-6)&&(this._+="L"+f+","+h),a&&(d<0&&(d=d%r+r),d>n?this._+="A"+a+","+a+",0,1,"+p+","+(t-c)+","+(i-u)+"A"+a+","+a+",0,1,"+p+","+(this._x1=f)+","+(this._y1=h):d>1e-6&&(this._+="A"+a+","+a+",0,"+ +(d>=e)+","+p+","+(this._x1=t+a*Math.cos(s))+","+(this._y1=i+a*Math.sin(s))))},rect:function(t,e,r,n){this._+="M"+(this._x0=this._x1=+t)+","+(this._y0=this._y1=+e)+"h"+ +r+"v"+ +n+"h"+-r+"Z"},toString:function(){return this._}},t.path=a,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],166:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e,r,n){if(isNaN(e)||isNaN(r))return t;var i,a,o,s,l,c,u,f,h,p=t._root,d={data:n},m=t._x0,g=t._y0,v=t._x1,y=t._y1;if(!p)return t._root=d,t;for(;p.length;)if((c=e>=(a=(m+v)/2))?m=a:v=a,(u=r>=(o=(g+y)/2))?g=o:y=o,i=p,!(p=p[f=u<<1|c]))return i[f]=d,t;if(s=+t._x.call(null,p.data),l=+t._y.call(null,p.data),e===s&&r===l)return d.next=p,i?i[f]=d:t._root=d,t;do{i=i?i[f]=new Array(4):t._root=new Array(4),(c=e>=(a=(m+v)/2))?m=a:v=a,(u=r>=(o=(g+y)/2))?g=o:y=o}while((f=u<<1|c)==(h=(l>=o)<<1|s>=a));return i[h]=p,i[f]=d,t}function r(t,e,r,n,i){this.node=t,this.x0=e,this.y0=r,this.x1=n,this.y1=i}function n(t){return t[0]}function i(t){return t[1]}function a(t,e,r){var a=new o(null==e?n:e,null==r?i:r,NaN,NaN,NaN,NaN);return null==t?a:a.addAll(t)}function o(t,e,r,n,i,a){this._x=t,this._y=e,this._x0=r,this._y0=n,this._x1=i,this._y1=a,this._root=void 0}function s(t){for(var e={data:t.data},r=e;t=t.next;)r=r.next={data:t.data};return e}var l=a.prototype=o.prototype;l.copy=function(){var t,e,r=new o(this._x,this._y,this._x0,this._y0,this._x1,this._y1),n=this._root;if(!n)return r;if(!n.length)return r._root=s(n),r;for(t=[{source:n,target:r._root=new Array(4)}];n=t.pop();)for(var i=0;i<4;++i)(e=n.source[i])&&(e.length?t.push({source:e,target:n.target[i]=new Array(4)}):n.target[i]=s(e));return r},l.add=function(t){var r=+this._x.call(null,t),n=+this._y.call(null,t);return e(this.cover(r,n),r,n,t)},l.addAll=function(t){var r,n,i,a,o=t.length,s=new Array(o),l=new Array(o),c=1/0,u=1/0,f=-1/0,h=-1/0;for(n=0;nf&&(f=i),ah&&(h=a));if(c>f||u>h)return this;for(this.cover(c,u).cover(f,h),n=0;nt||t>=i||n>e||e>=a;)switch(s=(ep||(o=c.y0)>d||(s=c.x1)=y)<<1|t>=v)&&(c=m[m.length-1],m[m.length-1]=m[m.length-1-u],m[m.length-1-u]=c)}else{var x=t-+this._x.call(null,g.data),b=e-+this._y.call(null,g.data),_=x*x+b*b;if(_=(s=(d+g)/2))?d=s:g=s,(u=o>=(l=(m+v)/2))?m=l:v=l,e=p,!(p=p[f=u<<1|c]))return this;if(!p.length)break;(e[f+1&3]||e[f+2&3]||e[f+3&3])&&(r=e,h=f)}for(;p.data!==t;)if(n=p,!(p=p.next))return this;return(i=p.next)&&delete p.next,n?(i?n.next=i:delete n.next,this):e?(i?e[f]=i:delete e[f],(p=e[0]||e[1]||e[2]||e[3])&&p===(e[3]||e[2]||e[1]||e[0])&&!p.length&&(r?r[h]=p:this._root=p),this):(this._root=i,this)},l.removeAll=function(t){for(var e=0,r=t.length;e1?0:t<-1?u:Math.acos(t)}function d(t){return t>=1?f:t<=-1?-f:Math.asin(t)}function m(t){return t.innerRadius}function g(t){return t.outerRadius}function v(t){return t.startAngle}function y(t){return t.endAngle}function x(t){return t&&t.padAngle}function b(t,e,r,n,i,a,o,s){var l=r-t,c=n-e,u=o-i,f=s-a,h=f*l-u*c;if(!(h*h<1e-12))return[t+(h=(u*(e-a)-f*(t-i))/h)*l,e+h*c]}function _(t,e,r,n,i,a,s){var l=t-r,u=e-n,f=(s?a:-a)/c(l*l+u*u),h=f*u,p=-f*l,d=t+h,m=e+p,g=r+h,v=n+p,y=(d+g)/2,x=(m+v)/2,b=g-d,_=v-m,w=b*b+_*_,T=i-a,k=d*v-g*m,A=(_<0?-1:1)*c(o(0,T*T*w-k*k)),M=(k*_-b*A)/w,S=(-k*b-_*A)/w,E=(k*_+b*A)/w,L=(-k*b+_*A)/w,C=M-y,P=S-x,I=E-y,O=L-x;return C*C+P*P>I*I+O*O&&(M=E,S=L),{cx:M,cy:S,x01:-h,y01:-p,x11:M*(i/T-1),y11:S*(i/T-1)}}function w(t){this._context=t}function T(t){return new w(t)}function k(t){return t[0]}function A(t){return t[1]}function M(){var t=k,n=A,i=r(!0),a=null,o=T,s=null;function l(r){var l,c,u,f=r.length,h=!1;for(null==a&&(s=o(u=e.path())),l=0;l<=f;++l)!(l=f;--h)c.point(v[h],y[h]);c.lineEnd(),c.areaEnd()}g&&(v[u]=+t(p,u,r),y[u]=+i(p,u,r),c.point(n?+n(p,u,r):v[u],a?+a(p,u,r):y[u]))}if(d)return c=null,d+""||null}function f(){return M().defined(o).curve(l).context(s)}return u.x=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),n=null,u):t},u.x0=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),u):t},u.x1=function(t){return arguments.length?(n=null==t?null:"function"==typeof t?t:r(+t),u):n},u.y=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),a=null,u):i},u.y0=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),u):i},u.y1=function(t){return arguments.length?(a=null==t?null:"function"==typeof t?t:r(+t),u):a},u.lineX0=u.lineY0=function(){return f().x(t).y(i)},u.lineY1=function(){return f().x(t).y(a)},u.lineX1=function(){return f().x(n).y(i)},u.defined=function(t){return arguments.length?(o="function"==typeof t?t:r(!!t),u):o},u.curve=function(t){return arguments.length?(l=t,null!=s&&(c=l(s)),u):l},u.context=function(t){return arguments.length?(null==t?s=c=null:c=l(s=t),u):s},u}function E(t,e){return et?1:e>=t?0:NaN}function L(t){return t}w.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:this._context.lineTo(t,e)}}};var C=I(T);function P(t){this._curve=t}function I(t){function e(e){return new P(t(e))}return e._curve=t,e}function O(t){var e=t.curve;return t.angle=t.x,delete t.x,t.radius=t.y,delete t.y,t.curve=function(t){return arguments.length?e(I(t)):e()._curve},t}function z(){return O(M().curve(C))}function D(){var t=S().curve(C),e=t.curve,r=t.lineX0,n=t.lineX1,i=t.lineY0,a=t.lineY1;return t.angle=t.x,delete t.x,t.startAngle=t.x0,delete t.x0,t.endAngle=t.x1,delete t.x1,t.radius=t.y,delete t.y,t.innerRadius=t.y0,delete t.y0,t.outerRadius=t.y1,delete t.y1,t.lineStartAngle=function(){return O(r())},delete t.lineX0,t.lineEndAngle=function(){return O(n())},delete t.lineX1,t.lineInnerRadius=function(){return O(i())},delete t.lineY0,t.lineOuterRadius=function(){return O(a())},delete t.lineY1,t.curve=function(t){return arguments.length?e(I(t)):e()._curve},t}function R(t,e){return[(e=+e)*Math.cos(t-=Math.PI/2),e*Math.sin(t)]}P.prototype={areaStart:function(){this._curve.areaStart()},areaEnd:function(){this._curve.areaEnd()},lineStart:function(){this._curve.lineStart()},lineEnd:function(){this._curve.lineEnd()},point:function(t,e){this._curve.point(e*Math.sin(t),e*-Math.cos(t))}};var F=Array.prototype.slice;function B(t){return t.source}function N(t){return t.target}function j(t){var n=B,i=N,a=k,o=A,s=null;function l(){var r,l=F.call(arguments),c=n.apply(this,l),u=i.apply(this,l);if(s||(s=r=e.path()),t(s,+a.apply(this,(l[0]=c,l)),+o.apply(this,l),+a.apply(this,(l[0]=u,l)),+o.apply(this,l)),r)return s=null,r+""||null}return l.source=function(t){return arguments.length?(n=t,l):n},l.target=function(t){return arguments.length?(i=t,l):i},l.x=function(t){return arguments.length?(a="function"==typeof t?t:r(+t),l):a},l.y=function(t){return arguments.length?(o="function"==typeof t?t:r(+t),l):o},l.context=function(t){return arguments.length?(s=null==t?null:t,l):s},l}function U(t,e,r,n,i){t.moveTo(e,r),t.bezierCurveTo(e=(e+n)/2,r,e,i,n,i)}function V(t,e,r,n,i){t.moveTo(e,r),t.bezierCurveTo(e,r=(r+i)/2,n,r,n,i)}function H(t,e,r,n,i){var a=R(e,r),o=R(e,r=(r+i)/2),s=R(n,r),l=R(n,i);t.moveTo(a[0],a[1]),t.bezierCurveTo(o[0],o[1],s[0],s[1],l[0],l[1])}var q={draw:function(t,e){var r=Math.sqrt(e/u);t.moveTo(r,0),t.arc(0,0,r,0,h)}},G={draw:function(t,e){var r=Math.sqrt(e/5)/2;t.moveTo(-3*r,-r),t.lineTo(-r,-r),t.lineTo(-r,-3*r),t.lineTo(r,-3*r),t.lineTo(r,-r),t.lineTo(3*r,-r),t.lineTo(3*r,r),t.lineTo(r,r),t.lineTo(r,3*r),t.lineTo(-r,3*r),t.lineTo(-r,r),t.lineTo(-3*r,r),t.closePath()}},Y=Math.sqrt(1/3),W=2*Y,X={draw:function(t,e){var r=Math.sqrt(e/W),n=r*Y;t.moveTo(0,-r),t.lineTo(n,0),t.lineTo(0,r),t.lineTo(-n,0),t.closePath()}},Z=Math.sin(u/10)/Math.sin(7*u/10),J=Math.sin(h/10)*Z,K=-Math.cos(h/10)*Z,Q={draw:function(t,e){var r=Math.sqrt(.8908130915292852*e),n=J*r,i=K*r;t.moveTo(0,-r),t.lineTo(n,i);for(var a=1;a<5;++a){var o=h*a/5,s=Math.cos(o),l=Math.sin(o);t.lineTo(l*r,-s*r),t.lineTo(s*n-l*i,l*n+s*i)}t.closePath()}},$={draw:function(t,e){var r=Math.sqrt(e),n=-r/2;t.rect(n,n,r,r)}},tt=Math.sqrt(3),et={draw:function(t,e){var r=-Math.sqrt(e/(3*tt));t.moveTo(0,2*r),t.lineTo(-tt*r,-r),t.lineTo(tt*r,-r),t.closePath()}},rt=-.5,nt=Math.sqrt(3)/2,it=1/Math.sqrt(12),at=3*(it/2+1),ot={draw:function(t,e){var r=Math.sqrt(e/at),n=r/2,i=r*it,a=n,o=r*it+r,s=-a,l=o;t.moveTo(n,i),t.lineTo(a,o),t.lineTo(s,l),t.lineTo(rt*n-nt*i,nt*n+rt*i),t.lineTo(rt*a-nt*o,nt*a+rt*o),t.lineTo(rt*s-nt*l,nt*s+rt*l),t.lineTo(rt*n+nt*i,rt*i-nt*n),t.lineTo(rt*a+nt*o,rt*o-nt*a),t.lineTo(rt*s+nt*l,rt*l-nt*s),t.closePath()}},st=[q,G,X,$,Q,et,ot];function lt(){}function ct(t,e,r){t._context.bezierCurveTo((2*t._x0+t._x1)/3,(2*t._y0+t._y1)/3,(t._x0+2*t._x1)/3,(t._y0+2*t._y1)/3,(t._x0+4*t._x1+e)/6,(t._y0+4*t._y1+r)/6)}function ut(t){this._context=t}function ft(t){this._context=t}function ht(t){this._context=t}function pt(t,e){this._basis=new ut(t),this._beta=e}ut.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){switch(this._point){case 3:ct(this,this._x1,this._y1);case 2:this._context.lineTo(this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3,this._context.lineTo((5*this._x0+this._x1)/6,(5*this._y0+this._y1)/6);default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},ft.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._y0=this._y1=this._y2=this._y3=this._y4=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x2,this._y2),this._context.closePath();break;case 2:this._context.moveTo((this._x2+2*this._x3)/3,(this._y2+2*this._y3)/3),this._context.lineTo((this._x3+2*this._x2)/3,(this._y3+2*this._y2)/3),this._context.closePath();break;case 3:this.point(this._x2,this._y2),this.point(this._x3,this._y3),this.point(this._x4,this._y4)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x2=t,this._y2=e;break;case 1:this._point=2,this._x3=t,this._y3=e;break;case 2:this._point=3,this._x4=t,this._y4=e,this._context.moveTo((this._x0+4*this._x1+t)/6,(this._y0+4*this._y1+e)/6);break;default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},ht.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3;var r=(this._x0+4*this._x1+t)/6,n=(this._y0+4*this._y1+e)/6;this._line?this._context.lineTo(r,n):this._context.moveTo(r,n);break;case 3:this._point=4;default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},pt.prototype={lineStart:function(){this._x=[],this._y=[],this._basis.lineStart()},lineEnd:function(){var t=this._x,e=this._y,r=t.length-1;if(r>0)for(var n,i=t[0],a=e[0],o=t[r]-i,s=e[r]-a,l=-1;++l<=r;)n=l/r,this._basis.point(this._beta*t[l]+(1-this._beta)*(i+n*o),this._beta*e[l]+(1-this._beta)*(a+n*s));this._x=this._y=null,this._basis.lineEnd()},point:function(t,e){this._x.push(+t),this._y.push(+e)}};var dt=function t(e){function r(t){return 1===e?new ut(t):new pt(t,e)}return r.beta=function(e){return t(+e)},r}(.85);function mt(t,e,r){t._context.bezierCurveTo(t._x1+t._k*(t._x2-t._x0),t._y1+t._k*(t._y2-t._y0),t._x2+t._k*(t._x1-e),t._y2+t._k*(t._y1-r),t._x2,t._y2)}function gt(t,e){this._context=t,this._k=(1-e)/6}gt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:mt(this,this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2,this._x1=t,this._y1=e;break;case 2:this._point=3;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var vt=function t(e){function r(t){return new gt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function yt(t,e){this._context=t,this._k=(1-e)/6}yt.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var xt=function t(e){function r(t){return new yt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function bt(t,e){this._context=t,this._k=(1-e)/6}bt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var _t=function t(e){function r(t){return new bt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function wt(t,e,r){var n=t._x1,i=t._y1,a=t._x2,o=t._y2;if(t._l01_a>1e-12){var s=2*t._l01_2a+3*t._l01_a*t._l12_a+t._l12_2a,l=3*t._l01_a*(t._l01_a+t._l12_a);n=(n*s-t._x0*t._l12_2a+t._x2*t._l01_2a)/l,i=(i*s-t._y0*t._l12_2a+t._y2*t._l01_2a)/l}if(t._l23_a>1e-12){var c=2*t._l23_2a+3*t._l23_a*t._l12_a+t._l12_2a,u=3*t._l23_a*(t._l23_a+t._l12_a);a=(a*c+t._x1*t._l23_2a-e*t._l12_2a)/u,o=(o*c+t._y1*t._l23_2a-r*t._l12_2a)/u}t._context.bezierCurveTo(n,i,a,o,t._x2,t._y2)}function Tt(t,e){this._context=t,this._alpha=e}Tt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:this.point(this._x2,this._y2)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var kt=function t(e){function r(t){return e?new Tt(t,e):new gt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function At(t,e){this._context=t,this._alpha=e}At.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var Mt=function t(e){function r(t){return e?new At(t,e):new yt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function St(t,e){this._context=t,this._alpha=e}St.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var Et=function t(e){function r(t){return e?new St(t,e):new bt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function Lt(t){this._context=t}function Ct(t){return t<0?-1:1}function Pt(t,e,r){var n=t._x1-t._x0,i=e-t._x1,a=(t._y1-t._y0)/(n||i<0&&-0),o=(r-t._y1)/(i||n<0&&-0),s=(a*i+o*n)/(n+i);return(Ct(a)+Ct(o))*Math.min(Math.abs(a),Math.abs(o),.5*Math.abs(s))||0}function It(t,e){var r=t._x1-t._x0;return r?(3*(t._y1-t._y0)/r-e)/2:e}function Ot(t,e,r){var n=t._x0,i=t._y0,a=t._x1,o=t._y1,s=(a-n)/3;t._context.bezierCurveTo(n+s,i+s*e,a-s,o-s*r,a,o)}function zt(t){this._context=t}function Dt(t){this._context=new Rt(t)}function Rt(t){this._context=t}function Ft(t){this._context=t}function Bt(t){var e,r,n=t.length-1,i=new Array(n),a=new Array(n),o=new Array(n);for(i[0]=0,a[0]=2,o[0]=t[0]+2*t[1],e=1;e=0;--e)i[e]=(o[e]-i[e+1])/a[e];for(a[n-1]=(t[n]+i[n-1])/2,e=0;e1)for(var r,n,i,a=1,o=t[e[0]],s=o.length;a=0;)r[e]=e;return r}function Vt(t,e){return t[e]}function Ht(t){var e=t.map(qt);return Ut(t).sort((function(t,r){return e[t]-e[r]}))}function qt(t){for(var e,r=-1,n=0,i=t.length,a=-1/0;++ra&&(a=e,n=r);return n}function Gt(t){var e=t.map(Yt);return Ut(t).sort((function(t,r){return e[t]-e[r]}))}function Yt(t){for(var e,r=0,n=-1,i=t.length;++n=0&&(this._t=1-this._t,this._line=1-this._line)},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:if(this._t<=0)this._context.lineTo(this._x,e),this._context.lineTo(t,e);else{var r=this._x*(1-this._t)+t*this._t;this._context.lineTo(r,this._y),this._context.lineTo(r,e)}}this._x=t,this._y=e}},t.arc=function(){var t=m,o=g,w=r(0),T=null,k=v,A=y,M=x,S=null;function E(){var r,m,g=+t.apply(this,arguments),v=+o.apply(this,arguments),y=k.apply(this,arguments)-f,x=A.apply(this,arguments)-f,E=n(x-y),L=x>y;if(S||(S=r=e.path()),v1e-12)if(E>h-1e-12)S.moveTo(v*a(y),v*l(y)),S.arc(0,0,v,y,x,!L),g>1e-12&&(S.moveTo(g*a(x),g*l(x)),S.arc(0,0,g,x,y,L));else{var C,P,I=y,O=x,z=y,D=x,R=E,F=E,B=M.apply(this,arguments)/2,N=B>1e-12&&(T?+T.apply(this,arguments):c(g*g+v*v)),j=s(n(v-g)/2,+w.apply(this,arguments)),U=j,V=j;if(N>1e-12){var H=d(N/g*l(B)),q=d(N/v*l(B));(R-=2*H)>1e-12?(z+=H*=L?1:-1,D-=H):(R=0,z=D=(y+x)/2),(F-=2*q)>1e-12?(I+=q*=L?1:-1,O-=q):(F=0,I=O=(y+x)/2)}var G=v*a(I),Y=v*l(I),W=g*a(D),X=g*l(D);if(j>1e-12){var Z,J=v*a(O),K=v*l(O),Q=g*a(z),$=g*l(z);if(E1e-12?V>1e-12?(C=_(Q,$,G,Y,v,V,L),P=_(J,K,W,X,v,V,L),S.moveTo(C.cx+C.x01,C.cy+C.y01),V1e-12&&R>1e-12?U>1e-12?(C=_(W,X,J,K,g,-U,L),P=_(G,Y,Q,$,g,-U,L),S.lineTo(C.cx+C.x01,C.cy+C.y01),U0&&(d+=f);for(null!=e?m.sort((function(t,r){return e(g[t],g[r])})):null!=n&&m.sort((function(t,e){return n(r[t],r[e])})),s=0,c=d?(y-p*b)/d:0;s0?f*c:0)+b,g[l]={data:r[l],index:s,value:f,startAngle:v,endAngle:u,padAngle:x};return g}return s.value=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),s):t},s.sortValues=function(t){return arguments.length?(e=t,n=null,s):e},s.sort=function(t){return arguments.length?(n=t,e=null,s):n},s.startAngle=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),s):i},s.endAngle=function(t){return arguments.length?(a="function"==typeof t?t:r(+t),s):a},s.padAngle=function(t){return arguments.length?(o="function"==typeof t?t:r(+t),s):o},s},t.pointRadial=R,t.radialArea=D,t.radialLine=z,t.stack=function(){var t=r([]),e=Ut,n=jt,i=Vt;function a(r){var a,o,s=t.apply(this,arguments),l=r.length,c=s.length,u=new Array(c);for(a=0;a0)for(var r,n,i,a,o,s,l=0,c=t[e[0]].length;l0?(n[0]=a,n[1]=a+=i):i<0?(n[1]=o,n[0]=o+=i):(n[0]=0,n[1]=i)},t.stackOffsetExpand=function(t,e){if((n=t.length)>0){for(var r,n,i,a=0,o=t[0].length;a0){for(var r,n=0,i=t[e[0]],a=i.length;n0&&(n=(r=t[e[0]]).length)>0){for(var r,n,i,a=0,o=1;o=12)]},q:function(t){return 1+~~(t.getMonth()/3)},Q:wt,s:Tt,S:H,u:q,U:G,V:W,w:X,W:Z,x:null,X:null,y:J,Y:Q,Z:tt,"%":_t},zt={a:function(t){return f[t.getUTCDay()]},A:function(t){return u[t.getUTCDay()]},b:function(t){return Y[t.getUTCMonth()]},B:function(t){return h[t.getUTCMonth()]},c:null,d:et,e:et,f:ot,g:vt,G:xt,H:rt,I:nt,j:it,L:at,m:st,M:lt,p:function(t){return c[+(t.getUTCHours()>=12)]},q:function(t){return 1+~~(t.getUTCMonth()/3)},Q:wt,s:Tt,S:ct,u:ut,U:ft,V:pt,w:dt,W:mt,x:null,X:null,y:gt,Y:yt,Z:bt,"%":_t},Dt={a:function(t,e,r){var n=St.exec(e.slice(r));return n?(t.w=Et[n[0].toLowerCase()],r+n[0].length):-1},A:function(t,e,r){var n=At.exec(e.slice(r));return n?(t.w=Mt[n[0].toLowerCase()],r+n[0].length):-1},b:function(t,e,r){var n=Pt.exec(e.slice(r));return n?(t.m=It[n[0].toLowerCase()],r+n[0].length):-1},B:function(t,e,r){var n=Lt.exec(e.slice(r));return n?(t.m=Ct[n[0].toLowerCase()],r+n[0].length):-1},c:function(t,e,r){return Bt(t,a,e,r)},d:A,e:A,f:P,g:_,G:b,H:S,I:S,j:M,L:C,m:k,M:E,p:function(t,e,r){var n=ht.exec(e.slice(r));return n?(t.p=kt[n[0].toLowerCase()],r+n[0].length):-1},q:T,Q:O,s:z,S:L,u:g,U:v,V:y,w:m,W:x,x:function(t,e,r){return Bt(t,o,e,r)},X:function(t,e,r){return Bt(t,l,e,r)},y:_,Y:b,Z:w,"%":I};function Rt(t,e){return function(r){var n,i,a,o=[],l=-1,c=0,u=t.length;for(r instanceof Date||(r=new Date(+r));++l53)return null;"w"in c||(c.w=1),"Z"in c?(l=(s=n(i(c.y,0,1))).getUTCDay(),s=l>4||0===l?e.utcMonday.ceil(s):e.utcMonday(s),s=e.utcDay.offset(s,7*(c.V-1)),c.y=s.getUTCFullYear(),c.m=s.getUTCMonth(),c.d=s.getUTCDate()+(c.w+6)%7):(l=(s=r(i(c.y,0,1))).getDay(),s=l>4||0===l?e.timeMonday.ceil(s):e.timeMonday(s),s=e.timeDay.offset(s,7*(c.V-1)),c.y=s.getFullYear(),c.m=s.getMonth(),c.d=s.getDate()+(c.w+6)%7)}else("W"in c||"U"in c)&&("w"in c||(c.w="u"in c?c.u%7:"W"in c?1:0),l="Z"in c?n(i(c.y,0,1)).getUTCDay():r(i(c.y,0,1)).getDay(),c.m=0,c.d="W"in c?(c.w+6)%7+7*c.W-(l+5)%7:c.w+7*c.U-(l+6)%7);return"Z"in c?(c.H+=c.Z/100|0,c.M+=c.Z%100,n(c)):r(c)}}function Bt(t,e,r,n){for(var i,a,o=0,l=e.length,c=r.length;o=c)return-1;if(37===(i=e.charCodeAt(o++))){if(i=e.charAt(o++),!(a=Dt[i in s?e.charAt(o++):i])||(n=a(t,r,n))<0)return-1}else if(i!=r.charCodeAt(n++))return-1}return n}return Ot.x=Rt(o,Ot),Ot.X=Rt(l,Ot),Ot.c=Rt(a,Ot),zt.x=Rt(o,zt),zt.X=Rt(l,zt),zt.c=Rt(a,zt),{format:function(t){var e=Rt(t+="",Ot);return e.toString=function(){return t},e},parse:function(t){var e=Ft(t+="",!1);return e.toString=function(){return t},e},utcFormat:function(t){var e=Rt(t+="",zt);return e.toString=function(){return t},e},utcParse:function(t){var e=Ft(t+="",!0);return e.toString=function(){return t},e}}}var o,s={"-":"",_:" ",0:"0"},l=/^\s*\d+/,c=/^%/,u=/[\\^$*+?|[\]().{}]/g;function f(t,e,r){var n=t<0?"-":"",i=(n?-t:t)+"",a=i.length;return n+(a68?1900:2e3),r+n[0].length):-1}function w(t,e,r){var n=/^(Z)|([+-]\d\d)(?::?(\d\d))?/.exec(e.slice(r,r+6));return n?(t.Z=n[1]?0:-(n[2]+(n[3]||"00")),r+n[0].length):-1}function T(t,e,r){var n=l.exec(e.slice(r,r+1));return n?(t.q=3*n[0]-3,r+n[0].length):-1}function k(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.m=n[0]-1,r+n[0].length):-1}function A(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.d=+n[0],r+n[0].length):-1}function M(t,e,r){var n=l.exec(e.slice(r,r+3));return n?(t.m=0,t.d=+n[0],r+n[0].length):-1}function S(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.H=+n[0],r+n[0].length):-1}function E(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.M=+n[0],r+n[0].length):-1}function L(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.S=+n[0],r+n[0].length):-1}function C(t,e,r){var n=l.exec(e.slice(r,r+3));return n?(t.L=+n[0],r+n[0].length):-1}function P(t,e,r){var n=l.exec(e.slice(r,r+6));return n?(t.L=Math.floor(n[0]/1e3),r+n[0].length):-1}function I(t,e,r){var n=c.exec(e.slice(r,r+1));return n?r+n[0].length:-1}function O(t,e,r){var n=l.exec(e.slice(r));return n?(t.Q=+n[0],r+n[0].length):-1}function z(t,e,r){var n=l.exec(e.slice(r));return n?(t.s=+n[0],r+n[0].length):-1}function D(t,e){return f(t.getDate(),e,2)}function R(t,e){return f(t.getHours(),e,2)}function F(t,e){return f(t.getHours()%12||12,e,2)}function B(t,r){return f(1+e.timeDay.count(e.timeYear(t),t),r,3)}function N(t,e){return f(t.getMilliseconds(),e,3)}function j(t,e){return N(t,e)+"000"}function U(t,e){return f(t.getMonth()+1,e,2)}function V(t,e){return f(t.getMinutes(),e,2)}function H(t,e){return f(t.getSeconds(),e,2)}function q(t){var e=t.getDay();return 0===e?7:e}function G(t,r){return f(e.timeSunday.count(e.timeYear(t)-1,t),r,2)}function Y(t){var r=t.getDay();return r>=4||0===r?e.timeThursday(t):e.timeThursday.ceil(t)}function W(t,r){return t=Y(t),f(e.timeThursday.count(e.timeYear(t),t)+(4===e.timeYear(t).getDay()),r,2)}function X(t){return t.getDay()}function Z(t,r){return f(e.timeMonday.count(e.timeYear(t)-1,t),r,2)}function J(t,e){return f(t.getFullYear()%100,e,2)}function K(t,e){return f((t=Y(t)).getFullYear()%100,e,2)}function Q(t,e){return f(t.getFullYear()%1e4,e,4)}function $(t,r){var n=t.getDay();return f((t=n>=4||0===n?e.timeThursday(t):e.timeThursday.ceil(t)).getFullYear()%1e4,r,4)}function tt(t){var e=t.getTimezoneOffset();return(e>0?"-":(e*=-1,"+"))+f(e/60|0,"0",2)+f(e%60,"0",2)}function et(t,e){return f(t.getUTCDate(),e,2)}function rt(t,e){return f(t.getUTCHours(),e,2)}function nt(t,e){return f(t.getUTCHours()%12||12,e,2)}function it(t,r){return f(1+e.utcDay.count(e.utcYear(t),t),r,3)}function at(t,e){return f(t.getUTCMilliseconds(),e,3)}function ot(t,e){return at(t,e)+"000"}function st(t,e){return f(t.getUTCMonth()+1,e,2)}function lt(t,e){return f(t.getUTCMinutes(),e,2)}function ct(t,e){return f(t.getUTCSeconds(),e,2)}function ut(t){var e=t.getUTCDay();return 0===e?7:e}function ft(t,r){return f(e.utcSunday.count(e.utcYear(t)-1,t),r,2)}function ht(t){var r=t.getUTCDay();return r>=4||0===r?e.utcThursday(t):e.utcThursday.ceil(t)}function pt(t,r){return t=ht(t),f(e.utcThursday.count(e.utcYear(t),t)+(4===e.utcYear(t).getUTCDay()),r,2)}function dt(t){return t.getUTCDay()}function mt(t,r){return f(e.utcMonday.count(e.utcYear(t)-1,t),r,2)}function gt(t,e){return f(t.getUTCFullYear()%100,e,2)}function vt(t,e){return f((t=ht(t)).getUTCFullYear()%100,e,2)}function yt(t,e){return f(t.getUTCFullYear()%1e4,e,4)}function xt(t,r){var n=t.getUTCDay();return f((t=n>=4||0===n?e.utcThursday(t):e.utcThursday.ceil(t)).getUTCFullYear()%1e4,r,4)}function bt(){return"+0000"}function _t(){return"%"}function wt(t){return+t}function Tt(t){return Math.floor(+t/1e3)}function kt(e){return o=a(e),t.timeFormat=o.format,t.timeParse=o.parse,t.utcFormat=o.utcFormat,t.utcParse=o.utcParse,o}kt({dateTime:"%x, %X",date:"%-m/%-d/%Y",time:"%-I:%M:%S %p",periods:["AM","PM"],days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]});var At=Date.prototype.toISOString?function(t){return t.toISOString()}:t.utcFormat("%Y-%m-%dT%H:%M:%S.%LZ");var Mt=+new Date("2000-01-01T00:00:00.000Z")?function(t){var e=new Date(t);return isNaN(e)?null:e}:t.utcParse("%Y-%m-%dT%H:%M:%S.%LZ");t.isoFormat=At,t.isoParse=Mt,t.timeFormatDefaultLocale=kt,t.timeFormatLocale=a,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-time":169}],169:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";var e=new Date,r=new Date;function n(t,i,a,o){function s(e){return t(e=0===arguments.length?new Date:new Date(+e)),e}return s.floor=function(e){return t(e=new Date(+e)),e},s.ceil=function(e){return t(e=new Date(e-1)),i(e,1),t(e),e},s.round=function(t){var e=s(t),r=s.ceil(t);return t-e0))return o;do{o.push(a=new Date(+e)),i(e,n),t(e)}while(a=r)for(;t(r),!e(r);)r.setTime(r-1)}),(function(t,r){if(t>=t)if(r<0)for(;++r<=0;)for(;i(t,-1),!e(t););else for(;--r>=0;)for(;i(t,1),!e(t););}))},a&&(s.count=function(n,i){return e.setTime(+n),r.setTime(+i),t(e),t(r),Math.floor(a(e,r))},s.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?s.filter(o?function(e){return o(e)%t==0}:function(e){return s.count(0,e)%t==0}):s:null}),s}var i=n((function(){}),(function(t,e){t.setTime(+t+e)}),(function(t,e){return e-t}));i.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?n((function(e){e.setTime(Math.floor(e/t)*t)}),(function(e,r){e.setTime(+e+r*t)}),(function(e,r){return(r-e)/t})):i:null};var a=i.range,o=n((function(t){t.setTime(t-t.getMilliseconds())}),(function(t,e){t.setTime(+t+1e3*e)}),(function(t,e){return(e-t)/1e3}),(function(t){return t.getUTCSeconds()})),s=o.range,l=n((function(t){t.setTime(t-t.getMilliseconds()-1e3*t.getSeconds())}),(function(t,e){t.setTime(+t+6e4*e)}),(function(t,e){return(e-t)/6e4}),(function(t){return t.getMinutes()})),c=l.range,u=n((function(t){t.setTime(t-t.getMilliseconds()-1e3*t.getSeconds()-6e4*t.getMinutes())}),(function(t,e){t.setTime(+t+36e5*e)}),(function(t,e){return(e-t)/36e5}),(function(t){return t.getHours()})),f=u.range,h=n((function(t){t.setHours(0,0,0,0)}),(function(t,e){t.setDate(t.getDate()+e)}),(function(t,e){return(e-t-6e4*(e.getTimezoneOffset()-t.getTimezoneOffset()))/864e5}),(function(t){return t.getDate()-1})),p=h.range;function d(t){return n((function(e){e.setDate(e.getDate()-(e.getDay()+7-t)%7),e.setHours(0,0,0,0)}),(function(t,e){t.setDate(t.getDate()+7*e)}),(function(t,e){return(e-t-6e4*(e.getTimezoneOffset()-t.getTimezoneOffset()))/6048e5}))}var m=d(0),g=d(1),v=d(2),y=d(3),x=d(4),b=d(5),_=d(6),w=m.range,T=g.range,k=v.range,A=y.range,M=x.range,S=b.range,E=_.range,L=n((function(t){t.setDate(1),t.setHours(0,0,0,0)}),(function(t,e){t.setMonth(t.getMonth()+e)}),(function(t,e){return e.getMonth()-t.getMonth()+12*(e.getFullYear()-t.getFullYear())}),(function(t){return t.getMonth()})),C=L.range,P=n((function(t){t.setMonth(0,1),t.setHours(0,0,0,0)}),(function(t,e){t.setFullYear(t.getFullYear()+e)}),(function(t,e){return e.getFullYear()-t.getFullYear()}),(function(t){return t.getFullYear()}));P.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n((function(e){e.setFullYear(Math.floor(e.getFullYear()/t)*t),e.setMonth(0,1),e.setHours(0,0,0,0)}),(function(e,r){e.setFullYear(e.getFullYear()+r*t)})):null};var I=P.range,O=n((function(t){t.setUTCSeconds(0,0)}),(function(t,e){t.setTime(+t+6e4*e)}),(function(t,e){return(e-t)/6e4}),(function(t){return t.getUTCMinutes()})),z=O.range,D=n((function(t){t.setUTCMinutes(0,0,0)}),(function(t,e){t.setTime(+t+36e5*e)}),(function(t,e){return(e-t)/36e5}),(function(t){return t.getUTCHours()})),R=D.range,F=n((function(t){t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCDate(t.getUTCDate()+e)}),(function(t,e){return(e-t)/864e5}),(function(t){return t.getUTCDate()-1})),B=F.range;function N(t){return n((function(e){e.setUTCDate(e.getUTCDate()-(e.getUTCDay()+7-t)%7),e.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCDate(t.getUTCDate()+7*e)}),(function(t,e){return(e-t)/6048e5}))}var j=N(0),U=N(1),V=N(2),H=N(3),q=N(4),G=N(5),Y=N(6),W=j.range,X=U.range,Z=V.range,J=H.range,K=q.range,Q=G.range,$=Y.range,tt=n((function(t){t.setUTCDate(1),t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCMonth(t.getUTCMonth()+e)}),(function(t,e){return e.getUTCMonth()-t.getUTCMonth()+12*(e.getUTCFullYear()-t.getUTCFullYear())}),(function(t){return t.getUTCMonth()})),et=tt.range,rt=n((function(t){t.setUTCMonth(0,1),t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCFullYear(t.getUTCFullYear()+e)}),(function(t,e){return e.getUTCFullYear()-t.getUTCFullYear()}),(function(t){return t.getUTCFullYear()}));rt.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n((function(e){e.setUTCFullYear(Math.floor(e.getUTCFullYear()/t)*t),e.setUTCMonth(0,1),e.setUTCHours(0,0,0,0)}),(function(e,r){e.setUTCFullYear(e.getUTCFullYear()+r*t)})):null};var nt=rt.range;t.timeDay=h,t.timeDays=p,t.timeFriday=b,t.timeFridays=S,t.timeHour=u,t.timeHours=f,t.timeInterval=n,t.timeMillisecond=i,t.timeMilliseconds=a,t.timeMinute=l,t.timeMinutes=c,t.timeMonday=g,t.timeMondays=T,t.timeMonth=L,t.timeMonths=C,t.timeSaturday=_,t.timeSaturdays=E,t.timeSecond=o,t.timeSeconds=s,t.timeSunday=m,t.timeSundays=w,t.timeThursday=x,t.timeThursdays=M,t.timeTuesday=v,t.timeTuesdays=k,t.timeWednesday=y,t.timeWednesdays=A,t.timeWeek=m,t.timeWeeks=w,t.timeYear=P,t.timeYears=I,t.utcDay=F,t.utcDays=B,t.utcFriday=G,t.utcFridays=Q,t.utcHour=D,t.utcHours=R,t.utcMillisecond=i,t.utcMilliseconds=a,t.utcMinute=O,t.utcMinutes=z,t.utcMonday=U,t.utcMondays=X,t.utcMonth=tt,t.utcMonths=et,t.utcSaturday=Y,t.utcSaturdays=$,t.utcSecond=o,t.utcSeconds=s,t.utcSunday=j,t.utcSundays=W,t.utcThursday=q,t.utcThursdays=K,t.utcTuesday=V,t.utcTuesdays=Z,t.utcWednesday=H,t.utcWednesdays=J,t.utcWeek=j,t.utcWeeks=W,t.utcYear=rt,t.utcYears=nt,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],170:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";var e,r,n=0,i=0,a=0,o=0,s=0,l=0,c="object"==typeof performance&&performance.now?performance:Date,u="object"==typeof window&&window.requestAnimationFrame?window.requestAnimationFrame.bind(window):function(t){setTimeout(t,17)};function f(){return s||(u(h),s=c.now()+l)}function h(){s=0}function p(){this._call=this._time=this._next=null}function d(t,e,r){var n=new p;return n.restart(t,e,r),n}function m(){f(),++n;for(var t,r=e;r;)(t=s-r._time)>=0&&r._call.call(null,t),r=r._next;--n}function g(){s=(o=c.now())+l,n=i=0;try{m()}finally{n=0,function(){var t,n,i=e,a=1/0;for(;i;)i._call?(a>i._time&&(a=i._time),t=i,i=i._next):(n=i._next,i._next=null,i=t?t._next=n:e=n);r=t,y(a)}(),s=0}}function v(){var t=c.now(),e=t-o;e>1e3&&(l-=e,o=t)}function y(t){n||(i&&(i=clearTimeout(i)),t-s>24?(t<1/0&&(i=setTimeout(g,t-c.now()-l)),a&&(a=clearInterval(a))):(a||(o=c.now(),a=setInterval(v,1e3)),n=1,u(g)))}p.prototype=d.prototype={constructor:p,restart:function(t,n,i){if("function"!=typeof t)throw new TypeError("callback is not a function");i=(null==i?f():+i)+(null==n?0:+n),this._next||r===this||(r?r._next=this:e=this,r=this),this._call=t,this._time=i,y()},stop:function(){this._call&&(this._call=null,this._time=1/0,y())}},t.interval=function(t,e,r){var n=new p,i=e;return null==e?(n.restart(t,e,r),n):(e=+e,r=null==r?f():+r,n.restart((function a(o){o+=i,n.restart(a,i+=e,r),t(o)}),e,r),n)},t.now=f,t.timeout=function(t,e,r){var n=new p;return e=null==e?0:+e,n.restart((function(r){n.stop(),t(r+e)}),e,r),n},t.timer=d,t.timerFlush=m,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],171:[function(t,e,r){e.exports=function(){for(var t=0;t=2)return!1;t[r]=n}return!0})):_.filter((function(t){for(var e=0;e<=s;++e){var r=v[t[e]];if(r<0)return!1;t[e]=r}return!0}));if(1&s)for(u=0;u<_.length;++u){h=(b=_[u])[0];b[0]=b[1],b[1]=h}return _}},{"incremental-convex-hull":428,uniq:592}],173:[function(t,e,r){"use strict";e.exports=a;var n=(a.canvas=document.createElement("canvas")).getContext("2d"),i=o([32,126]);function a(t,e){Array.isArray(t)&&(t=t.join(", "));var r,a={},s=16,l=.05;e&&(2===e.length&&"number"==typeof e[0]?r=o(e):Array.isArray(e)?r=e:(e.o?r=o(e.o):e.pairs&&(r=e.pairs),e.fontSize&&(s=e.fontSize),null!=e.threshold&&(l=e.threshold))),r||(r=i),n.font=s+"px "+t;for(var c=0;cs*l){var p=(h-f)/s;a[u]=1e3*p}}return a}function o(t){for(var e=[],r=t[0];r<=t[1];r++)for(var n=String.fromCharCode(r),i=t[0];i>>31},e.exports.exponent=function(t){return(e.exports.hi(t)<<1>>>21)-1023},e.exports.fraction=function(t){var r=e.exports.lo(t),n=e.exports.hi(t),i=1048575&n;return 2146435072&n&&(i+=1<<20),[r,i]},e.exports.denormalized=function(t){return!(2146435072&e.exports.hi(t))}}).call(this)}).call(this,t("buffer").Buffer)},{buffer:112}],175:[function(t,e,r){var n=t("abs-svg-path"),i=t("normalize-svg-path"),a={M:"moveTo",C:"bezierCurveTo"};e.exports=function(t,e){t.beginPath(),i(n(e)).forEach((function(e){var r=e[0],n=e.slice(1);t[a[r]].apply(t,n)})),t.closePath()}},{"abs-svg-path":67,"normalize-svg-path":464}],176:[function(t,e,r){e.exports=function(t){switch(t){case"int8":return Int8Array;case"int16":return Int16Array;case"int32":return Int32Array;case"uint8":return Uint8Array;case"uint16":return Uint16Array;case"uint32":return Uint32Array;case"float32":return Float32Array;case"float64":return Float64Array;case"array":return Array;case"uint8_clamped":return Uint8ClampedArray}}},{}],177:[function(t,e,r){"use strict";e.exports=function(t,e){switch(void 0===e&&(e=0),typeof t){case"number":if(t>0)return function(t,e){var r,n;for(r=new Array(t),n=0;n80*r){n=l=t[0],s=c=t[1];for(var b=r;bl&&(l=u),p>c&&(c=p);d=0!==(d=Math.max(l-n,c-s))?1/d:0}return o(y,x,r,n,s,d),x}function i(t,e,r,n,i){var a,o;if(i===E(t,e,r,n)>0)for(a=e;a=e;a-=n)o=A(a,t[a],t[a+1],o);return o&&x(o,o.next)&&(M(o),o=o.next),o}function a(t,e){if(!t)return t;e||(e=t);var r,n=t;do{if(r=!1,n.steiner||!x(n,n.next)&&0!==y(n.prev,n,n.next))n=n.next;else{if(M(n),(n=e=n.prev)===n.next)break;r=!0}}while(r||n!==e);return e}function o(t,e,r,n,i,f,h){if(t){!h&&f&&function(t,e,r,n){var i=t;do{null===i.z&&(i.z=d(i.x,i.y,e,r,n)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==t);i.prevZ.nextZ=null,i.prevZ=null,function(t){var e,r,n,i,a,o,s,l,c=1;do{for(r=t,t=null,a=null,o=0;r;){for(o++,n=r,s=0,e=0;e0||l>0&&n;)0!==s&&(0===l||!n||r.z<=n.z)?(i=r,r=r.nextZ,s--):(i=n,n=n.nextZ,l--),a?a.nextZ=i:t=i,i.prevZ=a,a=i;r=n}a.nextZ=null,c*=2}while(o>1)}(i)}(t,n,i,f);for(var p,m,g=t;t.prev!==t.next;)if(p=t.prev,m=t.next,f?l(t,n,i,f):s(t))e.push(p.i/r),e.push(t.i/r),e.push(m.i/r),M(t),t=m.next,g=m.next;else if((t=m)===g){h?1===h?o(t=c(a(t),e,r),e,r,n,i,f,2):2===h&&u(t,e,r,n,i,f):o(a(t),e,r,n,i,f,1);break}}}function s(t){var e=t.prev,r=t,n=t.next;if(y(e,r,n)>=0)return!1;for(var i=t.next.next;i!==t.prev;){if(g(e.x,e.y,r.x,r.y,n.x,n.y,i.x,i.y)&&y(i.prev,i,i.next)>=0)return!1;i=i.next}return!0}function l(t,e,r,n){var i=t.prev,a=t,o=t.next;if(y(i,a,o)>=0)return!1;for(var s=i.xa.x?i.x>o.x?i.x:o.x:a.x>o.x?a.x:o.x,u=i.y>a.y?i.y>o.y?i.y:o.y:a.y>o.y?a.y:o.y,f=d(s,l,e,r,n),h=d(c,u,e,r,n),p=t.prevZ,m=t.nextZ;p&&p.z>=f&&m&&m.z<=h;){if(p!==t.prev&&p!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&y(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,m!==t.prev&&m!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,m.x,m.y)&&y(m.prev,m,m.next)>=0)return!1;m=m.nextZ}for(;p&&p.z>=f;){if(p!==t.prev&&p!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&y(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;m&&m.z<=h;){if(m!==t.prev&&m!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,m.x,m.y)&&y(m.prev,m,m.next)>=0)return!1;m=m.nextZ}return!0}function c(t,e,r){var n=t;do{var i=n.prev,o=n.next.next;!x(i,o)&&b(i,n,n.next,o)&&T(i,o)&&T(o,i)&&(e.push(i.i/r),e.push(n.i/r),e.push(o.i/r),M(n),M(n.next),n=t=o),n=n.next}while(n!==t);return a(n)}function u(t,e,r,n,i,s){var l=t;do{for(var c=l.next.next;c!==l.prev;){if(l.i!==c.i&&v(l,c)){var u=k(l,c);return l=a(l,l.next),u=a(u,u.next),o(l,e,r,n,i,s),void o(u,e,r,n,i,s)}c=c.next}l=l.next}while(l!==t)}function f(t,e){return t.x-e.x}function h(t,e){var r=function(t,e){var r,n=e,i=t.x,a=t.y,o=-1/0;do{if(a<=n.y&&a>=n.next.y&&n.next.y!==n.y){var s=n.x+(a-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(s<=i&&s>o){if(o=s,s===i){if(a===n.y)return n;if(a===n.next.y)return n.next}r=n.x=n.x&&n.x>=u&&i!==n.x&&g(ar.x||n.x===r.x&&p(r,n)))&&(r=n,h=l)),n=n.next}while(n!==c);return r}(t,e);if(!r)return e;var n=k(r,t),i=a(r,r.next);return a(n,n.next),e===r?i:e}function p(t,e){return y(t.prev,t,e.prev)<0&&y(e.next,t,t.next)<0}function d(t,e,r,n,i){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-r)*i)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function m(t){var e=t,r=t;do{(e.x=0&&(t-o)*(n-s)-(r-o)*(e-s)>=0&&(r-o)*(a-s)-(i-o)*(n-s)>=0}function v(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){var r=t;do{if(r.i!==t.i&&r.next.i!==t.i&&r.i!==e.i&&r.next.i!==e.i&&b(r,r.next,t,e))return!0;r=r.next}while(r!==t);return!1}(t,e)&&(T(t,e)&&T(e,t)&&function(t,e){var r=t,n=!1,i=(t.x+e.x)/2,a=(t.y+e.y)/2;do{r.y>a!=r.next.y>a&&r.next.y!==r.y&&i<(r.next.x-r.x)*(a-r.y)/(r.next.y-r.y)+r.x&&(n=!n),r=r.next}while(r!==t);return n}(t,e)&&(y(t.prev,t,e.prev)||y(t,e.prev,e))||x(t,e)&&y(t.prev,t,t.next)>0&&y(e.prev,e,e.next)>0)}function y(t,e,r){return(e.y-t.y)*(r.x-e.x)-(e.x-t.x)*(r.y-e.y)}function x(t,e){return t.x===e.x&&t.y===e.y}function b(t,e,r,n){var i=w(y(t,e,r)),a=w(y(t,e,n)),o=w(y(r,n,t)),s=w(y(r,n,e));return i!==a&&o!==s||(!(0!==i||!_(t,r,e))||(!(0!==a||!_(t,n,e))||(!(0!==o||!_(r,t,n))||!(0!==s||!_(r,e,n)))))}function _(t,e,r){return e.x<=Math.max(t.x,r.x)&&e.x>=Math.min(t.x,r.x)&&e.y<=Math.max(t.y,r.y)&&e.y>=Math.min(t.y,r.y)}function w(t){return t>0?1:t<0?-1:0}function T(t,e){return y(t.prev,t,t.next)<0?y(t,e,t.next)>=0&&y(t,t.prev,e)>=0:y(t,e,t.prev)<0||y(t,t.next,e)<0}function k(t,e){var r=new S(t.i,t.x,t.y),n=new S(e.i,e.x,e.y),i=t.next,a=e.prev;return t.next=e,e.prev=t,r.next=i,i.prev=r,n.next=r,r.prev=n,a.next=n,n.prev=a,n}function A(t,e,r,n){var i=new S(t,e,r);return n?(i.next=n.next,i.prev=n,n.next.prev=i,n.next=i):(i.prev=i,i.next=i),i}function M(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function S(t,e,r){this.i=t,this.x=e,this.y=r,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}function E(t,e,r,n){for(var i=0,a=e,o=r-n;a0&&(n+=t[i-1].length,r.holes.push(n))}return r}},{}],179:[function(t,e,r){"use strict";e.exports=function(t,e){var r=t.length;if("number"!=typeof e){e=0;for(var i=0;i=e}))}(e);for(var r,i=n(t).components.filter((function(t){return t.length>1})),a=1/0,o=0;o=55296&&y<=56319&&(w+=t[++r]),w=T?h.call(T,k,w,m):w,e?(p.value=w,d(g,m,p)):g[m]=w,++m;v=m}if(void 0===v)for(v=o(t.length),e&&(g=new e(v)),r=0;r0?1:-1}},{}],191:[function(t,e,r){"use strict";var n=t("../math/sign"),i=Math.abs,a=Math.floor;e.exports=function(t){return isNaN(t)?0:0!==(t=Number(t))&&isFinite(t)?n(t)*a(i(t)):t}},{"../math/sign":188}],192:[function(t,e,r){"use strict";var n=t("./to-integer"),i=Math.max;e.exports=function(t){return i(0,n(t))}},{"./to-integer":191}],193:[function(t,e,r){"use strict";var n=t("./valid-callable"),i=t("./valid-value"),a=Function.prototype.bind,o=Function.prototype.call,s=Object.keys,l=Object.prototype.propertyIsEnumerable;e.exports=function(t,e){return function(r,c){var u,f=arguments[2],h=arguments[3];return r=Object(i(r)),n(c),u=s(r),h&&u.sort("function"==typeof h?a.call(h,r):void 0),"function"!=typeof t&&(t=u[t]),o.call(t,u,(function(t,n){return l.call(r,t)?o.call(c,f,r[t],t,r,n):e}))}}},{"./valid-callable":210,"./valid-value":212}],194:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?Object.assign:t("./shim")},{"./is-implemented":195,"./shim":196}],195:[function(t,e,r){"use strict";e.exports=function(){var t,e=Object.assign;return"function"==typeof e&&(e(t={foo:"raz"},{bar:"dwa"},{trzy:"trzy"}),t.foo+t.bar+t.trzy==="razdwatrzy")}},{}],196:[function(t,e,r){"use strict";var n=t("../keys"),i=t("../valid-value"),a=Math.max;e.exports=function(t,e){var r,o,s,l=a(arguments.length,2);for(t=Object(i(t)),s=function(n){try{t[n]=e[n]}catch(t){r||(r=t)}},o=1;o-1}},{}],216:[function(t,e,r){"use strict";var n=Object.prototype.toString,i=n.call("");e.exports=function(t){return"string"==typeof t||t&&"object"==typeof t&&(t instanceof String||n.call(t)===i)||!1}},{}],217:[function(t,e,r){"use strict";var n=Object.create(null),i=Math.random;e.exports=function(){var t;do{t=i().toString(36).slice(2)}while(n[t]);return t}},{}],218:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/set-prototype-of"),a=t("es5-ext/string/#/contains"),o=t("d"),s=t("es6-symbol"),l=t("./"),c=Object.defineProperty;n=e.exports=function(t,e){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");l.call(this,t),e=e?a.call(e,"key+value")?"key+value":a.call(e,"key")?"key":"value":"value",c(this,"__kind__",o("",e))},i&&i(n,l),delete n.prototype.constructor,n.prototype=Object.create(l.prototype,{_resolve:o((function(t){return"value"===this.__kind__?this.__list__[t]:"key+value"===this.__kind__?[t,this.__list__[t]]:t}))}),c(n.prototype,s.toStringTag,o("c","Array Iterator"))},{"./":221,d:154,"es5-ext/object/set-prototype-of":207,"es5-ext/string/#/contains":213,"es6-symbol":225}],219:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/object/valid-callable"),a=t("es5-ext/string/is-string"),o=t("./get"),s=Array.isArray,l=Function.prototype.call,c=Array.prototype.some;e.exports=function(t,e){var r,u,f,h,p,d,m,g,v=arguments[2];if(s(t)||n(t)?r="array":a(t)?r="string":t=o(t),i(e),f=function(){h=!0},"array"!==r)if("string"!==r)for(u=t.next();!u.done;){if(l.call(e,v,u.value,f),h)return;u=t.next()}else for(d=t.length,p=0;p=55296&&g<=56319&&(m+=t[++p]),l.call(e,v,m,f),!h);++p);else c.call(t,(function(t){return l.call(e,v,t,f),h}))}},{"./get":220,"es5-ext/function/is-arguments":185,"es5-ext/object/valid-callable":210,"es5-ext/string/is-string":216}],220:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/string/is-string"),a=t("./array"),o=t("./string"),s=t("./valid-iterable"),l=t("es6-symbol").iterator;e.exports=function(t){return"function"==typeof s(t)[l]?t[l]():n(t)?new a(t):i(t)?new o(t):new a(t)}},{"./array":218,"./string":223,"./valid-iterable":224,"es5-ext/function/is-arguments":185,"es5-ext/string/is-string":216,"es6-symbol":225}],221:[function(t,e,r){"use strict";var n,i=t("es5-ext/array/#/clear"),a=t("es5-ext/object/assign"),o=t("es5-ext/object/valid-callable"),s=t("es5-ext/object/valid-value"),l=t("d"),c=t("d/auto-bind"),u=t("es6-symbol"),f=Object.defineProperty,h=Object.defineProperties;e.exports=n=function(t,e){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");h(this,{__list__:l("w",s(t)),__context__:l("w",e),__nextIndex__:l("w",0)}),e&&(o(e.on),e.on("_add",this._onAdd),e.on("_delete",this._onDelete),e.on("_clear",this._onClear))},delete n.prototype.constructor,h(n.prototype,a({_next:l((function(){var t;if(this.__list__)return this.__redo__&&void 0!==(t=this.__redo__.shift())?t:this.__nextIndex__=this.__nextIndex__||(++this.__nextIndex__,this.__redo__?(this.__redo__.forEach((function(e,r){e>=t&&(this.__redo__[r]=++e)}),this),this.__redo__.push(t)):f(this,"__redo__",l("c",[t])))})),_onDelete:l((function(t){var e;t>=this.__nextIndex__||(--this.__nextIndex__,this.__redo__&&(-1!==(e=this.__redo__.indexOf(t))&&this.__redo__.splice(e,1),this.__redo__.forEach((function(e,r){e>t&&(this.__redo__[r]=--e)}),this)))})),_onClear:l((function(){this.__redo__&&i.call(this.__redo__),this.__nextIndex__=0}))}))),f(n.prototype,u.iterator,l((function(){return this})))},{d:154,"d/auto-bind":153,"es5-ext/array/#/clear":181,"es5-ext/object/assign":194,"es5-ext/object/valid-callable":210,"es5-ext/object/valid-value":212,"es6-symbol":225}],222:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/object/is-value"),a=t("es5-ext/string/is-string"),o=t("es6-symbol").iterator,s=Array.isArray;e.exports=function(t){return!!i(t)&&(!!s(t)||(!!a(t)||(!!n(t)||"function"==typeof t[o])))}},{"es5-ext/function/is-arguments":185,"es5-ext/object/is-value":201,"es5-ext/string/is-string":216,"es6-symbol":225}],223:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/set-prototype-of"),a=t("d"),o=t("es6-symbol"),s=t("./"),l=Object.defineProperty;n=e.exports=function(t){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");t=String(t),s.call(this,t),l(this,"__length__",a("",t.length))},i&&i(n,s),delete n.prototype.constructor,n.prototype=Object.create(s.prototype,{_next:a((function(){if(this.__list__)return this.__nextIndex__=55296&&e<=56319?r+this.__list__[this.__nextIndex__++]:r}))}),l(n.prototype,o.toStringTag,a("c","String Iterator"))},{"./":221,d:154,"es5-ext/object/set-prototype-of":207,"es6-symbol":225}],224:[function(t,e,r){"use strict";var n=t("./is-iterable");e.exports=function(t){if(!n(t))throw new TypeError(t+" is not iterable");return t}},{"./is-iterable":222}],225:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?t("ext/global-this").Symbol:t("./polyfill")},{"./is-implemented":226,"./polyfill":231,"ext/global-this":239}],226:[function(t,e,r){"use strict";var n=t("ext/global-this"),i={object:!0,symbol:!0};e.exports=function(){var t,e=n.Symbol;if("function"!=typeof e)return!1;t=e("test symbol");try{String(t)}catch(t){return!1}return!!i[typeof e.iterator]&&(!!i[typeof e.toPrimitive]&&!!i[typeof e.toStringTag])}},{"ext/global-this":239}],227:[function(t,e,r){"use strict";e.exports=function(t){return!!t&&("symbol"==typeof t||!!t.constructor&&("Symbol"===t.constructor.name&&"Symbol"===t[t.constructor.toStringTag]))}},{}],228:[function(t,e,r){"use strict";var n=t("d"),i=Object.create,a=Object.defineProperty,o=Object.prototype,s=i(null);e.exports=function(t){for(var e,r,i=0;s[t+(i||"")];)++i;return s[t+=i||""]=!0,a(o,e="@@"+t,n.gs(null,(function(t){r||(r=!0,a(this,e,n(t)),r=!1)}))),e}},{d:154}],229:[function(t,e,r){"use strict";var n=t("d"),i=t("ext/global-this").Symbol;e.exports=function(t){return Object.defineProperties(t,{hasInstance:n("",i&&i.hasInstance||t("hasInstance")),isConcatSpreadable:n("",i&&i.isConcatSpreadable||t("isConcatSpreadable")),iterator:n("",i&&i.iterator||t("iterator")),match:n("",i&&i.match||t("match")),replace:n("",i&&i.replace||t("replace")),search:n("",i&&i.search||t("search")),species:n("",i&&i.species||t("species")),split:n("",i&&i.split||t("split")),toPrimitive:n("",i&&i.toPrimitive||t("toPrimitive")),toStringTag:n("",i&&i.toStringTag||t("toStringTag")),unscopables:n("",i&&i.unscopables||t("unscopables"))})}},{d:154,"ext/global-this":239}],230:[function(t,e,r){"use strict";var n=t("d"),i=t("../../../validate-symbol"),a=Object.create(null);e.exports=function(t){return Object.defineProperties(t,{for:n((function(e){return a[e]?a[e]:a[e]=t(String(e))})),keyFor:n((function(t){var e;for(e in i(t),a)if(a[e]===t)return e}))})}},{"../../../validate-symbol":232,d:154}],231:[function(t,e,r){"use strict";var n,i,a,o=t("d"),s=t("./validate-symbol"),l=t("ext/global-this").Symbol,c=t("./lib/private/generate-name"),u=t("./lib/private/setup/standard-symbols"),f=t("./lib/private/setup/symbol-registry"),h=Object.create,p=Object.defineProperties,d=Object.defineProperty;if("function"==typeof l)try{String(l()),a=!0}catch(t){}else l=null;i=function(t){if(this instanceof i)throw new TypeError("Symbol is not a constructor");return n(t)},e.exports=n=function t(e){var r;if(this instanceof t)throw new TypeError("Symbol is not a constructor");return a?l(e):(r=h(i.prototype),e=void 0===e?"":String(e),p(r,{__description__:o("",e),__name__:o("",c(e))}))},u(n),f(n),p(i.prototype,{constructor:o(n),toString:o("",(function(){return this.__name__}))}),p(n.prototype,{toString:o((function(){return"Symbol ("+s(this).__description__+")"})),valueOf:o((function(){return s(this)}))}),d(n.prototype,n.toPrimitive,o("",(function(){var t=s(this);return"symbol"==typeof t?t:t.toString()}))),d(n.prototype,n.toStringTag,o("c","Symbol")),d(i.prototype,n.toStringTag,o("c",n.prototype[n.toStringTag])),d(i.prototype,n.toPrimitive,o("c",n.prototype[n.toPrimitive]))},{"./lib/private/generate-name":228,"./lib/private/setup/standard-symbols":229,"./lib/private/setup/symbol-registry":230,"./validate-symbol":232,d:154,"ext/global-this":239}],232:[function(t,e,r){"use strict";var n=t("./is-symbol");e.exports=function(t){if(!n(t))throw new TypeError(t+" is not a symbol");return t}},{"./is-symbol":227}],233:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?WeakMap:t("./polyfill")},{"./is-implemented":234,"./polyfill":236}],234:[function(t,e,r){"use strict";e.exports=function(){var t,e;if("function"!=typeof WeakMap)return!1;try{t=new WeakMap([[e={},"one"],[{},"two"],[{},"three"]])}catch(t){return!1}return"[object WeakMap]"===String(t)&&("function"==typeof t.set&&(t.set({},1)===t&&("function"==typeof t.delete&&("function"==typeof t.has&&"one"===t.get(e)))))}},{}],235:[function(t,e,r){"use strict";e.exports="function"==typeof WeakMap&&"[object WeakMap]"===Object.prototype.toString.call(new WeakMap)},{}],236:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/is-value"),a=t("es5-ext/object/set-prototype-of"),o=t("es5-ext/object/valid-object"),s=t("es5-ext/object/valid-value"),l=t("es5-ext/string/random-uniq"),c=t("d"),u=t("es6-iterator/get"),f=t("es6-iterator/for-of"),h=t("es6-symbol").toStringTag,p=t("./is-native-implemented"),d=Array.isArray,m=Object.defineProperty,g=Object.prototype.hasOwnProperty,v=Object.getPrototypeOf;e.exports=n=function(){var t,e=arguments[0];if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");return t=p&&a&&WeakMap!==n?a(new WeakMap,v(this)):this,i(e)&&(d(e)||(e=u(e))),m(t,"__weakMapData__",c("c","$weakMap$"+l())),e?(f(e,(function(e){s(e),t.set(e[0],e[1])})),t):t},p&&(a&&a(n,WeakMap),n.prototype=Object.create(WeakMap.prototype,{constructor:c(n)})),Object.defineProperties(n.prototype,{delete:c((function(t){return!!g.call(o(t),this.__weakMapData__)&&(delete t[this.__weakMapData__],!0)})),get:c((function(t){if(g.call(o(t),this.__weakMapData__))return t[this.__weakMapData__]})),has:c((function(t){return g.call(o(t),this.__weakMapData__)})),set:c((function(t,e){return m(o(t),this.__weakMapData__,c("c",e)),this})),toString:c((function(){return"[object WeakMap]"}))}),m(n.prototype,h,c("c","WeakMap"))},{"./is-native-implemented":235,d:154,"es5-ext/object/is-value":201,"es5-ext/object/set-prototype-of":207,"es5-ext/object/valid-object":211,"es5-ext/object/valid-value":212,"es5-ext/string/random-uniq":217,"es6-iterator/for-of":219,"es6-iterator/get":220,"es6-symbol":225}],237:[function(t,e,r){"use strict";var n,i="object"==typeof Reflect?Reflect:null,a=i&&"function"==typeof i.apply?i.apply:function(t,e,r){return Function.prototype.apply.call(t,e,r)};n=i&&"function"==typeof i.ownKeys?i.ownKeys:Object.getOwnPropertySymbols?function(t){return Object.getOwnPropertyNames(t).concat(Object.getOwnPropertySymbols(t))}:function(t){return Object.getOwnPropertyNames(t)};var o=Number.isNaN||function(t){return t!=t};function s(){s.init.call(this)}e.exports=s,e.exports.once=function(t,e){return new Promise((function(r,n){function i(r){t.removeListener(e,a),n(r)}function a(){"function"==typeof t.removeListener&&t.removeListener("error",i),r([].slice.call(arguments))}v(t,e,a,{once:!0}),"error"!==e&&function(t,e,r){"function"==typeof t.on&&v(t,"error",e,r)}(t,i,{once:!0})}))},s.EventEmitter=s,s.prototype._events=void 0,s.prototype._eventsCount=0,s.prototype._maxListeners=void 0;var l=10;function c(t){if("function"!=typeof t)throw new TypeError('The "listener" argument must be of type Function. Received type '+typeof t)}function u(t){return void 0===t._maxListeners?s.defaultMaxListeners:t._maxListeners}function f(t,e,r,n){var i,a,o,s;if(c(r),void 0===(a=t._events)?(a=t._events=Object.create(null),t._eventsCount=0):(void 0!==a.newListener&&(t.emit("newListener",e,r.listener?r.listener:r),a=t._events),o=a[e]),void 0===o)o=a[e]=r,++t._eventsCount;else if("function"==typeof o?o=a[e]=n?[r,o]:[o,r]:n?o.unshift(r):o.push(r),(i=u(t))>0&&o.length>i&&!o.warned){o.warned=!0;var l=new Error("Possible EventEmitter memory leak detected. "+o.length+" "+String(e)+" listeners added. Use emitter.setMaxListeners() to increase limit");l.name="MaxListenersExceededWarning",l.emitter=t,l.type=e,l.count=o.length,s=l,console&&console.warn&&console.warn(s)}return t}function h(){if(!this.fired)return this.target.removeListener(this.type,this.wrapFn),this.fired=!0,0===arguments.length?this.listener.call(this.target):this.listener.apply(this.target,arguments)}function p(t,e,r){var n={fired:!1,wrapFn:void 0,target:t,type:e,listener:r},i=h.bind(n);return i.listener=r,n.wrapFn=i,i}function d(t,e,r){var n=t._events;if(void 0===n)return[];var i=n[e];return void 0===i?[]:"function"==typeof i?r?[i.listener||i]:[i]:r?function(t){for(var e=new Array(t.length),r=0;r0&&(o=e[0]),o instanceof Error)throw o;var s=new Error("Unhandled error."+(o?" ("+o.message+")":""));throw s.context=o,s}var l=i[t];if(void 0===l)return!1;if("function"==typeof l)a(l,this,e);else{var c=l.length,u=g(l,c);for(r=0;r=0;a--)if(r[a]===e||r[a].listener===e){o=r[a].listener,i=a;break}if(i<0)return this;0===i?r.shift():function(t,e){for(;e+1=0;n--)this.removeListener(t,e[n]);return this},s.prototype.listeners=function(t){return d(this,t,!0)},s.prototype.rawListeners=function(t){return d(this,t,!1)},s.listenerCount=function(t,e){return"function"==typeof t.listenerCount?t.listenerCount(e):m.call(t,e)},s.prototype.listenerCount=m,s.prototype.eventNames=function(){return this._eventsCount>0?n(this._events):[]}},{}],238:[function(t,e,r){var n=function(){if("object"==typeof self&&self)return self;if("object"==typeof window&&window)return window;throw new Error("Unable to resolve global `this`")};e.exports=function(){if(this)return this;try{Object.defineProperty(Object.prototype,"__global__",{get:function(){return this},configurable:!0})}catch(t){return n()}try{return __global__||n()}finally{delete Object.prototype.__global__}}()},{}],239:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?globalThis:t("./implementation")},{"./implementation":238,"./is-implemented":240}],240:[function(t,e,r){"use strict";e.exports=function(){return"object"==typeof globalThis&&(!!globalThis&&globalThis.Array===Array)}},{}],241:[function(t,e,r){"use strict";e.exports=function(t,e,r){var n=e||0,i=r||1;return[[t[12]+t[0],t[13]+t[1],t[14]+t[2],t[15]+t[3]],[t[12]-t[0],t[13]-t[1],t[14]-t[2],t[15]-t[3]],[t[12]+t[4],t[13]+t[5],t[14]+t[6],t[15]+t[7]],[t[12]-t[4],t[13]-t[5],t[14]-t[6],t[15]-t[7]],[n*t[12]+t[8],n*t[13]+t[9],n*t[14]+t[10],n*t[15]+t[11]],[i*t[12]-t[8],i*t[13]-t[9],i*t[14]-t[10],i*t[15]-t[11]]]}},{}],242:[function(t,e,r){"use strict";var n=t("is-string-blank");e.exports=function(t){var e=typeof t;if("string"===e){var r=t;if(0===(t=+t)&&n(r))return!1}else if("number"!==e)return!1;return t-t<1}},{"is-string-blank":438}],243:[function(t,e,r){"use strict";e.exports=function(t,e,r){switch(arguments.length){case 0:return new o([0],[0],0);case 1:return"number"==typeof t?new o(n=l(t),n,0):new o(t,l(t.length),0);case 2:if("number"==typeof e){var n=l(t.length);return new o(t,n,+e)}r=0;case 3:if(t.length!==e.length)throw new Error("state and velocity lengths must match");return new o(t,e,r)}};var n=t("cubic-hermite"),i=t("binary-search-bounds");function a(t,e,r){return Math.min(e,Math.max(t,r))}function o(t,e,r){this.dimension=t.length,this.bounds=[new Array(this.dimension),new Array(this.dimension)];for(var n=0;n=r-1){h=l.length-1;var d=t-e[r-1];for(p=0;p=r-1)for(var u=s.length-1,f=(e[r-1],0);f=0;--r)if(t[--e])return!1;return!0},s.jump=function(t){var e=this.lastT(),r=this.dimension;if(!(t0;--f)n.push(a(l[f-1],c[f-1],arguments[f])),i.push(0)}},s.push=function(t){var e=this.lastT(),r=this.dimension;if(!(t1e-6?1/s:0;this._time.push(t);for(var h=r;h>0;--h){var p=a(c[h-1],u[h-1],arguments[h]);n.push(p),i.push((p-n[o++])*f)}}},s.set=function(t){var e=this.dimension;if(!(t0;--l)r.push(a(o[l-1],s[l-1],arguments[l])),n.push(0)}},s.move=function(t){var e=this.lastT(),r=this.dimension;if(!(t<=e||arguments.length!==r+1)){var n=this._state,i=this._velocity,o=n.length-this.dimension,s=this.bounds,l=s[0],c=s[1],u=t-e,f=u>1e-6?1/u:0;this._time.push(t);for(var h=r;h>0;--h){var p=arguments[h];n.push(a(l[h-1],c[h-1],n[o++]+p)),i.push(p*f)}}},s.idle=function(t){var e=this.lastT();if(!(t=0;--f)n.push(a(l[f],c[f],n[o]+u*i[o])),i.push(0),o+=1}}},{"binary-search-bounds":100,"cubic-hermite":152}],244:[function(t,e,r){var n=t("dtype");e.exports=function(t,e,r){if(!t)throw new TypeError("must specify data as first parameter");if(r=0|+(r||0),Array.isArray(t)&&t[0]&&"number"==typeof t[0][0]){var i,a,o,s,l=t[0].length,c=t.length*l;e&&"string"!=typeof e||(e=new(n(e||"float32"))(c+r));var u=e.length-r;if(c!==u)throw new Error("source length "+c+" ("+l+"x"+t.length+") does not match destination length "+u);for(i=0,o=r;ie[0]-o[0]/2&&(h=o[0]/2,p+=o[1]);return r}},{"css-font/stringify":149}],246:[function(t,e,r){"use strict";function n(t,e){e||(e={}),("string"==typeof t||Array.isArray(t))&&(e.family=t);var r=Array.isArray(e.family)?e.family.join(", "):e.family;if(!r)throw Error("`family` must be defined");var s=e.size||e.fontSize||e.em||48,l=e.weight||e.fontWeight||"",c=(t=[e.style||e.fontStyle||"",l,s].join(" ")+"px "+r,e.origin||"top");if(n.cache[r]&&s<=n.cache[r].em)return i(n.cache[r],c);var u=e.canvas||n.canvas,f=u.getContext("2d"),h={upper:void 0!==e.upper?e.upper:"H",lower:void 0!==e.lower?e.lower:"x",descent:void 0!==e.descent?e.descent:"p",ascent:void 0!==e.ascent?e.ascent:"h",tittle:void 0!==e.tittle?e.tittle:"i",overshoot:void 0!==e.overshoot?e.overshoot:"O"},p=Math.ceil(1.5*s);u.height=p,u.width=.5*p,f.font=t;var d={top:0};f.clearRect(0,0,p,p),f.textBaseline="top",f.fillStyle="black",f.fillText("H",0,0);var m=a(f.getImageData(0,0,p,p));f.clearRect(0,0,p,p),f.textBaseline="bottom",f.fillText("H",0,p);var g=a(f.getImageData(0,0,p,p));d.lineHeight=d.bottom=p-g+m,f.clearRect(0,0,p,p),f.textBaseline="alphabetic",f.fillText("H",0,p);var v=p-a(f.getImageData(0,0,p,p))-1+m;d.baseline=d.alphabetic=v,f.clearRect(0,0,p,p),f.textBaseline="middle",f.fillText("H",0,.5*p);var y=a(f.getImageData(0,0,p,p));d.median=d.middle=p-y-1+m-.5*p,f.clearRect(0,0,p,p),f.textBaseline="hanging",f.fillText("H",0,.5*p);var x=a(f.getImageData(0,0,p,p));d.hanging=p-x-1+m-.5*p,f.clearRect(0,0,p,p),f.textBaseline="ideographic",f.fillText("H",0,p);var b=a(f.getImageData(0,0,p,p));if(d.ideographic=p-b-1+m,h.upper&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.upper,0,0),d.upper=a(f.getImageData(0,0,p,p)),d.capHeight=d.baseline-d.upper),h.lower&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.lower,0,0),d.lower=a(f.getImageData(0,0,p,p)),d.xHeight=d.baseline-d.lower),h.tittle&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.tittle,0,0),d.tittle=a(f.getImageData(0,0,p,p))),h.ascent&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.ascent,0,0),d.ascent=a(f.getImageData(0,0,p,p))),h.descent&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.descent,0,0),d.descent=o(f.getImageData(0,0,p,p))),h.overshoot){f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.overshoot,0,0);var _=o(f.getImageData(0,0,p,p));d.overshoot=_-v}for(var w in d)d[w]/=s;return d.em=s,n.cache[r]=d,i(d,c)}function i(t,e){var r={};for(var n in"string"==typeof e&&(e=t[e]),t)"em"!==n&&(r[n]=t[n]-e);return r}function a(t){for(var e=t.height,r=t.data,n=3;n0;n-=4)if(0!==r[n])return Math.floor(.25*(n-3)/e)}e.exports=n,n.canvas=document.createElement("canvas"),n.cache={}},{}],247:[function(t,e,r){"use strict";e.exports=function(t){return new s(t||m,null)};function n(t,e,r,n,i,a){this._color=t,this.key=e,this.value=r,this.left=n,this.right=i,this._count=a}function i(t){return new n(t._color,t.key,t.value,t.left,t.right,t._count)}function a(t,e){return new n(t,e.key,e.value,e.left,e.right,e._count)}function o(t){t._count=1+(t.left?t.left._count:0)+(t.right?t.right._count:0)}function s(t,e){this._compare=t,this.root=e}var l=s.prototype;function c(t,e){var r;if(e.left&&(r=c(t,e.left)))return r;return(r=t(e.key,e.value))||(e.right?c(t,e.right):void 0)}function u(t,e,r,n){if(e(t,n.key)<=0){var i;if(n.left)if(i=u(t,e,r,n.left))return i;if(i=r(n.key,n.value))return i}if(n.right)return u(t,e,r,n.right)}function f(t,e,r,n,i){var a,o=r(t,i.key),s=r(e,i.key);if(o<=0){if(i.left&&(a=f(t,e,r,n,i.left)))return a;if(s>0&&(a=n(i.key,i.value)))return a}if(s>0&&i.right)return f(t,e,r,n,i.right)}function h(t,e){this.tree=t,this._stack=e}Object.defineProperty(l,"keys",{get:function(){var t=[];return this.forEach((function(e,r){t.push(e)})),t}}),Object.defineProperty(l,"values",{get:function(){var t=[];return this.forEach((function(e,r){t.push(r)})),t}}),Object.defineProperty(l,"length",{get:function(){return this.root?this.root._count:0}}),l.insert=function(t,e){for(var r=this._compare,i=this.root,l=[],c=[];i;){var u=r(t,i.key);l.push(i),c.push(u),i=u<=0?i.left:i.right}l.push(new n(0,t,e,null,null,1));for(var f=l.length-2;f>=0;--f){i=l[f];c[f]<=0?l[f]=new n(i._color,i.key,i.value,l[f+1],i.right,i._count+1):l[f]=new n(i._color,i.key,i.value,i.left,l[f+1],i._count+1)}for(f=l.length-1;f>1;--f){var h=l[f-1];i=l[f];if(1===h._color||1===i._color)break;var p=l[f-2];if(p.left===h)if(h.left===i){if(!(d=p.right)||0!==d._color){if(p._color=0,p.left=h.right,h._color=1,h.right=p,l[f-2]=h,l[f-1]=i,o(p),o(h),f>=3)(m=l[f-3]).left===p?m.left=h:m.right=h;break}h._color=1,p.right=a(1,d),p._color=0,f-=1}else{if(!(d=p.right)||0!==d._color){if(h.right=i.left,p._color=0,p.left=i.right,i._color=1,i.left=h,i.right=p,l[f-2]=i,l[f-1]=h,o(p),o(h),o(i),f>=3)(m=l[f-3]).left===p?m.left=i:m.right=i;break}h._color=1,p.right=a(1,d),p._color=0,f-=1}else if(h.right===i){if(!(d=p.left)||0!==d._color){if(p._color=0,p.right=h.left,h._color=1,h.left=p,l[f-2]=h,l[f-1]=i,o(p),o(h),f>=3)(m=l[f-3]).right===p?m.right=h:m.left=h;break}h._color=1,p.left=a(1,d),p._color=0,f-=1}else{var d;if(!(d=p.left)||0!==d._color){var m;if(h.left=i.right,p._color=0,p.right=i.left,i._color=1,i.right=h,i.left=p,l[f-2]=i,l[f-1]=h,o(p),o(h),o(i),f>=3)(m=l[f-3]).right===p?m.right=i:m.left=i;break}h._color=1,p.left=a(1,d),p._color=0,f-=1}}return l[0]._color=1,new s(r,l[0])},l.forEach=function(t,e,r){if(this.root)switch(arguments.length){case 1:return c(t,this.root);case 2:return u(e,this._compare,t,this.root);case 3:if(this._compare(e,r)>=0)return;return f(e,r,this._compare,t,this.root)}},Object.defineProperty(l,"begin",{get:function(){for(var t=[],e=this.root;e;)t.push(e),e=e.left;return new h(this,t)}}),Object.defineProperty(l,"end",{get:function(){for(var t=[],e=this.root;e;)t.push(e),e=e.right;return new h(this,t)}}),l.at=function(t){if(t<0)return new h(this,[]);for(var e=this.root,r=[];;){if(r.push(e),e.left){if(t=e.right._count)break;e=e.right}return new h(this,[])},l.ge=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a<=0&&(i=n.length),r=a<=0?r.left:r.right}return n.length=i,new h(this,n)},l.gt=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a<0&&(i=n.length),r=a<0?r.left:r.right}return n.length=i,new h(this,n)},l.lt=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a>0&&(i=n.length),r=a<=0?r.left:r.right}return n.length=i,new h(this,n)},l.le=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a>=0&&(i=n.length),r=a<0?r.left:r.right}return n.length=i,new h(this,n)},l.find=function(t){for(var e=this._compare,r=this.root,n=[];r;){var i=e(t,r.key);if(n.push(r),0===i)return new h(this,n);r=i<=0?r.left:r.right}return new h(this,[])},l.remove=function(t){var e=this.find(t);return e?e.remove():this},l.get=function(t){for(var e=this._compare,r=this.root;r;){var n=e(t,r.key);if(0===n)return r.value;r=n<=0?r.left:r.right}};var p=h.prototype;function d(t,e){t.key=e.key,t.value=e.value,t.left=e.left,t.right=e.right,t._color=e._color,t._count=e._count}function m(t,e){return te?1:0}Object.defineProperty(p,"valid",{get:function(){return this._stack.length>0}}),Object.defineProperty(p,"node",{get:function(){return this._stack.length>0?this._stack[this._stack.length-1]:null},enumerable:!0}),p.clone=function(){return new h(this.tree,this._stack.slice())},p.remove=function(){var t=this._stack;if(0===t.length)return this.tree;var e=new Array(t.length),r=t[t.length-1];e[e.length-1]=new n(r._color,r.key,r.value,r.left,r.right,r._count);for(var l=t.length-2;l>=0;--l){(r=t[l]).left===t[l+1]?e[l]=new n(r._color,r.key,r.value,e[l+1],r.right,r._count):e[l]=new n(r._color,r.key,r.value,r.left,e[l+1],r._count)}if((r=e[e.length-1]).left&&r.right){var c=e.length;for(r=r.left;r.right;)e.push(r),r=r.right;var u=e[c-1];e.push(new n(r._color,u.key,u.value,r.left,r.right,r._count)),e[c-1].key=r.key,e[c-1].value=r.value;for(l=e.length-2;l>=c;--l)r=e[l],e[l]=new n(r._color,r.key,r.value,r.left,e[l+1],r._count);e[c-1].left=e[c]}if(0===(r=e[e.length-1])._color){var f=e[e.length-2];f.left===r?f.left=null:f.right===r&&(f.right=null),e.pop();for(l=0;l=0;--l){if(e=t[l],0===l)return void(e._color=1);if((r=t[l-1]).left===e){if((n=r.right).right&&0===n.right._color){if(s=(n=r.right=i(n)).right=i(n.right),r.right=n.left,n.left=r,n.right=s,n._color=r._color,e._color=1,r._color=1,s._color=1,o(r),o(n),l>1)(c=t[l-2]).left===r?c.left=n:c.right=n;return void(t[l-1]=n)}if(n.left&&0===n.left._color){if(s=(n=r.right=i(n)).left=i(n.left),r.right=s.left,n.left=s.right,s.left=r,s.right=n,s._color=r._color,r._color=1,n._color=1,e._color=1,o(r),o(n),o(s),l>1)(c=t[l-2]).left===r?c.left=s:c.right=s;return void(t[l-1]=s)}if(1===n._color){if(0===r._color)return r._color=1,void(r.right=a(0,n));r.right=a(0,n);continue}n=i(n),r.right=n.left,n.left=r,n._color=r._color,r._color=0,o(r),o(n),l>1&&((c=t[l-2]).left===r?c.left=n:c.right=n),t[l-1]=n,t[l]=r,l+11)(c=t[l-2]).right===r?c.right=n:c.left=n;return void(t[l-1]=n)}if(n.right&&0===n.right._color){if(s=(n=r.left=i(n)).right=i(n.right),r.left=s.right,n.right=s.left,s.right=r,s.left=n,s._color=r._color,r._color=1,n._color=1,e._color=1,o(r),o(n),o(s),l>1)(c=t[l-2]).right===r?c.right=s:c.left=s;return void(t[l-1]=s)}if(1===n._color){if(0===r._color)return r._color=1,void(r.left=a(0,n));r.left=a(0,n);continue}var c;n=i(n),r.left=n.right,n.right=r,n._color=r._color,r._color=0,o(r),o(n),l>1&&((c=t[l-2]).right===r?c.right=n:c.left=n),t[l-1]=n,t[l]=r,l+10)return this._stack[this._stack.length-1].key},enumerable:!0}),Object.defineProperty(p,"value",{get:function(){if(this._stack.length>0)return this._stack[this._stack.length-1].value},enumerable:!0}),Object.defineProperty(p,"index",{get:function(){var t=0,e=this._stack;if(0===e.length){var r=this.tree.root;return r?r._count:0}e[e.length-1].left&&(t=e[e.length-1].left._count);for(var n=e.length-2;n>=0;--n)e[n+1]===e[n].right&&(++t,e[n].left&&(t+=e[n].left._count));return t},enumerable:!0}),p.next=function(){var t=this._stack;if(0!==t.length){var e=t[t.length-1];if(e.right)for(e=e.right;e;)t.push(e),e=e.left;else for(t.pop();t.length>0&&t[t.length-1].right===e;)e=t[t.length-1],t.pop()}},Object.defineProperty(p,"hasNext",{get:function(){var t=this._stack;if(0===t.length)return!1;if(t[t.length-1].right)return!0;for(var e=t.length-1;e>0;--e)if(t[e-1].left===t[e])return!0;return!1}}),p.update=function(t){var e=this._stack;if(0===e.length)throw new Error("Can't update empty node!");var r=new Array(e.length),i=e[e.length-1];r[r.length-1]=new n(i._color,i.key,t,i.left,i.right,i._count);for(var a=e.length-2;a>=0;--a)(i=e[a]).left===e[a+1]?r[a]=new n(i._color,i.key,i.value,r[a+1],i.right,i._count):r[a]=new n(i._color,i.key,i.value,i.left,r[a+1],i._count);return new s(this.tree._compare,r[0])},p.prev=function(){var t=this._stack;if(0!==t.length){var e=t[t.length-1];if(e.left)for(e=e.left;e;)t.push(e),e=e.right;else for(t.pop();t.length>0&&t[t.length-1].left===e;)e=t[t.length-1],t.pop()}},Object.defineProperty(p,"hasPrev",{get:function(){var t=this._stack;if(0===t.length)return!1;if(t[t.length-1].left)return!0;for(var e=t.length-1;e>0;--e)if(t[e-1].right===t[e])return!0;return!1}})},{}],248:[function(t,e,r){e.exports=function(t,e){if("string"!=typeof t)throw new TypeError("must specify type string");if(e=e||{},"undefined"==typeof document&&!e.canvas)return null;var r=e.canvas||document.createElement("canvas");"number"==typeof e.width&&(r.width=e.width);"number"==typeof e.height&&(r.height=e.height);var n,i=e;try{var a=[t];0===t.indexOf("webgl")&&a.push("experimental-"+t);for(var o=0;o0?(p[u]=-1,d[u]=0):(p[u]=0,d[u]=1)}}var m=[0,0,0],g={model:l,view:l,projection:l,_ortho:!1};f.isOpaque=function(){return!0},f.isTransparent=function(){return!1},f.drawTransparent=function(t){};var v=[0,0,0],y=[0,0,0],x=[0,0,0];f.draw=function(t){t=t||g;for(var e=this.gl,r=t.model||l,n=t.view||l,i=t.projection||l,a=this.bounds,s=t._ortho||!1,u=o(r,n,i,a,s),f=u.cubeEdges,h=u.axis,b=n[12],_=n[13],w=n[14],T=n[15],k=(s?2:1)*this.pixelRatio*(i[3]*b+i[7]*_+i[11]*w+i[15]*T)/e.drawingBufferHeight,A=0;A<3;++A)this.lastCubeProps.cubeEdges[A]=f[A],this.lastCubeProps.axis[A]=h[A];var M=p;for(A=0;A<3;++A)d(p[A],A,this.bounds,f,h);e=this.gl;var S,E=m;for(A=0;A<3;++A)this.backgroundEnable[A]?E[A]=h[A]:E[A]=0;this._background.draw(r,n,i,a,E,this.backgroundColor),this._lines.bind(r,n,i,this);for(A=0;A<3;++A){var L=[0,0,0];h[A]>0?L[A]=a[1][A]:L[A]=a[0][A];for(var C=0;C<2;++C){var P=(A+1+C)%3,I=(A+1+(1^C))%3;this.gridEnable[P]&&this._lines.drawGrid(P,I,this.bounds,L,this.gridColor[P],this.gridWidth[P]*this.pixelRatio)}for(C=0;C<2;++C){P=(A+1+C)%3,I=(A+1+(1^C))%3;this.zeroEnable[I]&&Math.min(a[0][I],a[1][I])<=0&&Math.max(a[0][I],a[1][I])>=0&&this._lines.drawZero(P,I,this.bounds,L,this.zeroLineColor[I],this.zeroLineWidth[I]*this.pixelRatio)}}for(A=0;A<3;++A){this.lineEnable[A]&&this._lines.drawAxisLine(A,this.bounds,M[A].primalOffset,this.lineColor[A],this.lineWidth[A]*this.pixelRatio),this.lineMirror[A]&&this._lines.drawAxisLine(A,this.bounds,M[A].mirrorOffset,this.lineColor[A],this.lineWidth[A]*this.pixelRatio);var O=c(v,M[A].primalMinor),z=c(y,M[A].mirrorMinor),D=this.lineTickLength;for(C=0;C<3;++C){var R=k/r[5*C];O[C]*=D[C]*R,z[C]*=D[C]*R}this.lineTickEnable[A]&&this._lines.drawAxisTicks(A,M[A].primalOffset,O,this.lineTickColor[A],this.lineTickWidth[A]*this.pixelRatio),this.lineTickMirror[A]&&this._lines.drawAxisTicks(A,M[A].mirrorOffset,z,this.lineTickColor[A],this.lineTickWidth[A]*this.pixelRatio)}this._lines.unbind(),this._text.bind(r,n,i,this.pixelRatio);var F,B;function N(t){(B=[0,0,0])[t]=1}function j(t,e,r){var n=(t+1)%3,i=(t+2)%3,a=e[n],o=e[i],s=r[n],l=r[i];a>0&&l>0||a>0&&l<0||a<0&&l>0||a<0&&l<0?N(n):(o>0&&s>0||o>0&&s<0||o<0&&s>0||o<0&&s<0)&&N(i)}for(A=0;A<3;++A){var U=M[A].primalMinor,V=M[A].mirrorMinor,H=c(x,M[A].primalOffset);for(C=0;C<3;++C)this.lineTickEnable[A]&&(H[C]+=k*U[C]*Math.max(this.lineTickLength[C],0)/r[5*C]);var q=[0,0,0];if(q[A]=1,this.tickEnable[A]){-3600===this.tickAngle[A]?(this.tickAngle[A]=0,this.tickAlign[A]="auto"):this.tickAlign[A]=-1,F=1,"auto"===(S=[this.tickAlign[A],.5,F])[0]?S[0]=0:S[0]=parseInt(""+S[0]),B=[0,0,0],j(A,U,V);for(C=0;C<3;++C)H[C]+=k*U[C]*this.tickPad[C]/r[5*C];this._text.drawTicks(A,this.tickSize[A],this.tickAngle[A],H,this.tickColor[A],q,B,S)}if(this.labelEnable[A]){F=0,B=[0,0,0],this.labels[A].length>4&&(N(A),F=1),"auto"===(S=[this.labelAlign[A],.5,F])[0]?S[0]=0:S[0]=parseInt(""+S[0]);for(C=0;C<3;++C)H[C]+=k*U[C]*this.labelPad[C]/r[5*C];H[A]+=.5*(a[0][A]+a[1][A]),this._text.drawLabel(A,this.labelSize[A],this.labelAngle[A],H,this.labelColor[A],[0,0,0],B,S)}}this._text.unbind()},f.dispose=function(){this._text.dispose(),this._lines.dispose(),this._background.dispose(),this._lines=null,this._text=null,this._background=null,this.gl=null}},{"./lib/background.js":250,"./lib/cube.js":251,"./lib/lines.js":252,"./lib/text.js":254,"./lib/ticks.js":255}],250:[function(t,e,r){"use strict";e.exports=function(t){for(var e=[],r=[],s=0,l=0;l<3;++l)for(var c=(l+1)%3,u=(l+2)%3,f=[0,0,0],h=[0,0,0],p=-1;p<=1;p+=2){r.push(s,s+2,s+1,s+1,s+2,s+3),f[l]=p,h[l]=p;for(var d=-1;d<=1;d+=2){f[c]=d;for(var m=-1;m<=1;m+=2)f[u]=m,e.push(f[0],f[1],f[2],h[0],h[1],h[2]),s+=1}var g=c;c=u,u=g}var v=n(t,new Float32Array(e)),y=n(t,new Uint16Array(r),t.ELEMENT_ARRAY_BUFFER),x=i(t,[{buffer:v,type:t.FLOAT,size:3,offset:0,stride:24},{buffer:v,type:t.FLOAT,size:3,offset:12,stride:24}],y),b=a(t);return b.attributes.position.location=0,b.attributes.normal.location=1,new o(t,v,x,b)};var n=t("gl-buffer"),i=t("gl-vao"),a=t("./shaders").bg;function o(t,e,r,n){this.gl=t,this.buffer=e,this.vao=r,this.shader=n}var s=o.prototype;s.draw=function(t,e,r,n,i,a){for(var o=!1,s=0;s<3;++s)o=o||i[s];if(o){var l=this.gl;l.enable(l.POLYGON_OFFSET_FILL),l.polygonOffset(1,2),this.shader.bind(),this.shader.uniforms={model:t,view:e,projection:r,bounds:n,enable:i,colors:a},this.vao.bind(),this.vao.draw(this.gl.TRIANGLES,36),this.vao.unbind(),l.disable(l.POLYGON_OFFSET_FILL)}},s.dispose=function(){this.vao.dispose(),this.buffer.dispose(),this.shader.dispose()}},{"./shaders":253,"gl-buffer":257,"gl-vao":343}],251:[function(t,e,r){"use strict";e.exports=function(t,e,r,a,p){i(s,e,t),i(s,r,s);for(var y=0,x=0;x<2;++x){u[2]=a[x][2];for(var b=0;b<2;++b){u[1]=a[b][1];for(var _=0;_<2;++_)u[0]=a[_][0],h(l[y],u,s),y+=1}}var w=-1;for(x=0;x<8;++x){for(var T=l[x][3],k=0;k<3;++k)c[x][k]=l[x][k]/T;p&&(c[x][2]*=-1),T<0&&(w<0||c[x][2]E&&(w|=1<E&&(w|=1<c[x][1])&&(R=x);var F=-1;for(x=0;x<3;++x){if((N=R^1<c[B][0]&&(B=N)}var j=m;j[0]=j[1]=j[2]=0,j[n.log2(F^R)]=R&F,j[n.log2(R^B)]=R&B;var U=7^B;U===w||U===D?(U=7^F,j[n.log2(B^U)]=U&B):j[n.log2(F^U)]=U&F;var V=g,H=w;for(A=0;A<3;++A)V[A]=H&1< HALF_PI) && (b <= ONE_AND_HALF_PI)) ?\n b - PI :\n b;\n}\n\nfloat look_horizontal_or_vertical(float a, float ratio) {\n // ratio controls the ratio between being horizontal to (vertical + horizontal)\n // if ratio is set to 0.5 then it is 50%, 50%.\n // when using a higher ratio e.g. 0.75 the result would\n // likely be more horizontal than vertical.\n\n float b = positive_angle(a);\n\n return\n (b < ( ratio) * HALF_PI) ? 0.0 :\n (b < (2.0 - ratio) * HALF_PI) ? -HALF_PI :\n (b < (2.0 + ratio) * HALF_PI) ? 0.0 :\n (b < (4.0 - ratio) * HALF_PI) ? HALF_PI :\n 0.0;\n}\n\nfloat roundTo(float a, float b) {\n return float(b * floor((a + 0.5 * b) / b));\n}\n\nfloat look_round_n_directions(float a, int n) {\n float b = positive_angle(a);\n float div = TWO_PI / float(n);\n float c = roundTo(b, div);\n return look_upwards(c);\n}\n\nfloat applyAlignOption(float rawAngle, float delta) {\n return\n (option > 2) ? look_round_n_directions(rawAngle + delta, option) : // option 3-n: round to n directions\n (option == 2) ? look_horizontal_or_vertical(rawAngle + delta, hv_ratio) : // horizontal or vertical\n (option == 1) ? rawAngle + delta : // use free angle, and flip to align with one direction of the axis\n (option == 0) ? look_upwards(rawAngle) : // use free angle, and stay upwards\n (option ==-1) ? 0.0 : // useful for backward compatibility, all texts remains horizontal\n rawAngle; // otherwise return back raw input angle\n}\n\nbool isAxisTitle = (axis.x == 0.0) &&\n (axis.y == 0.0) &&\n (axis.z == 0.0);\n\nvoid main() {\n //Compute world offset\n float axisDistance = position.z;\n vec3 dataPosition = axisDistance * axis + offset;\n\n float beta = angle; // i.e. user defined attributes for each tick\n\n float axisAngle;\n float clipAngle;\n float flip;\n\n if (enableAlign) {\n axisAngle = (isAxisTitle) ? HALF_PI :\n computeViewAngle(dataPosition, dataPosition + axis);\n clipAngle = computeViewAngle(dataPosition, dataPosition + alignDir);\n\n axisAngle += (sin(axisAngle) < 0.0) ? PI : 0.0;\n clipAngle += (sin(clipAngle) < 0.0) ? PI : 0.0;\n\n flip = (dot(vec2(cos(axisAngle), sin(axisAngle)),\n vec2(sin(clipAngle),-cos(clipAngle))) > 0.0) ? 1.0 : 0.0;\n\n beta += applyAlignOption(clipAngle, flip * PI);\n }\n\n //Compute plane offset\n vec2 planeCoord = position.xy * pixelScale;\n\n mat2 planeXform = scale * mat2(\n cos(beta), sin(beta),\n -sin(beta), cos(beta)\n );\n\n vec2 viewOffset = 2.0 * planeXform * planeCoord / resolution;\n\n //Compute clip position\n vec3 clipPosition = project(dataPosition);\n\n //Apply text offset in clip coordinates\n clipPosition += vec3(viewOffset, 0.0);\n\n //Done\n gl_Position = vec4(clipPosition, 1.0);\n}"]),l=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec4 color;\nvoid main() {\n gl_FragColor = color;\n}"]);r.text=function(t){return i(t,s,l,null,[{name:"position",type:"vec3"}])};var c=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec3 normal;\n\nuniform mat4 model, view, projection;\nuniform vec3 enable;\nuniform vec3 bounds[2];\n\nvarying vec3 colorChannel;\n\nvoid main() {\n\n vec3 signAxis = sign(bounds[1] - bounds[0]);\n\n vec3 realNormal = signAxis * normal;\n\n if(dot(realNormal, enable) > 0.0) {\n vec3 minRange = min(bounds[0], bounds[1]);\n vec3 maxRange = max(bounds[0], bounds[1]);\n vec3 nPosition = mix(minRange, maxRange, 0.5 * (position + 1.0));\n gl_Position = projection * view * model * vec4(nPosition, 1.0);\n } else {\n gl_Position = vec4(0,0,0,0);\n }\n\n colorChannel = abs(realNormal);\n}"]),u=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec4 colors[3];\n\nvarying vec3 colorChannel;\n\nvoid main() {\n gl_FragColor = colorChannel.x * colors[0] +\n colorChannel.y * colors[1] +\n colorChannel.z * colors[2];\n}"]);r.bg=function(t){return i(t,c,u,null,[{name:"position",type:"vec3"},{name:"normal",type:"vec3"}])}},{"gl-shader":323,glslify:424}],254:[function(t,e,r){(function(r){(function(){"use strict";e.exports=function(t,e,r,a,s,l){var u=n(t),f=i(t,[{buffer:u,size:3}]),h=o(t);h.attributes.position.location=0;var p=new c(t,h,u,f);return p.update(e,r,a,s,l),p};var n=t("gl-buffer"),i=t("gl-vao"),a=t("vectorize-text"),o=t("./shaders").text,s=window||r.global||{},l=s.__TEXT_CACHE||{};s.__TEXT_CACHE={};function c(t,e,r,n){this.gl=t,this.shader=e,this.buffer=r,this.vao=n,this.tickOffset=this.tickCount=this.labelOffset=this.labelCount=null}var u=c.prototype,f=[0,0];u.bind=function(t,e,r,n){this.vao.bind(),this.shader.bind();var i=this.shader.uniforms;i.model=t,i.view=e,i.projection=r,i.pixelScale=n,f[0]=this.gl.drawingBufferWidth,f[1]=this.gl.drawingBufferHeight,this.shader.uniforms.resolution=f},u.unbind=function(){this.vao.unbind()},u.update=function(t,e,r,n,i){var o=[];function s(t,e,r,n,i,s){var c=l[r];c||(c=l[r]={});var u=c[e];u||(u=c[e]=function(t,e){try{return a(t,e)}catch(e){return console.warn('error vectorizing text:"'+t+'" error:',e),{cells:[],positions:[]}}}(e,{triangles:!0,font:r,textAlign:"center",textBaseline:"middle",lineSpacing:i,styletags:s}));for(var f=(n||12)/12,h=u.positions,p=u.cells,d=0,m=p.length;d=0;--v){var y=h[g[v]];o.push(f*y[0],-f*y[1],t)}}for(var c=[0,0,0],u=[0,0,0],f=[0,0,0],h=[0,0,0],p={breaklines:!0,bolds:!0,italics:!0,subscripts:!0,superscripts:!0},d=0;d<3;++d){f[d]=o.length/3|0,s(.5*(t[0][d]+t[1][d]),e[d],r[d],12,1.25,p),h[d]=(o.length/3|0)-f[d],c[d]=o.length/3|0;for(var m=0;m=0&&(i=r.length-n-1);var a=Math.pow(10,i),o=Math.round(t*e*a),s=o+"";if(s.indexOf("e")>=0)return s;var l=o/a,c=o%a;o<0?(l=0|-Math.ceil(l),c=0|-c):(l=0|Math.floor(l),c|=0);var u=""+l;if(o<0&&(u="-"+u),i){for(var f=""+c;f.length=t[0][i];--o)a.push({x:o*e[i],text:n(e[i],o)});r.push(a)}return r},r.equal=function(t,e){for(var r=0;r<3;++r){if(t[r].length!==e[r].length)return!1;for(var n=0;nr)throw new Error("gl-buffer: If resizing buffer, must not specify offset");return t.bufferSubData(e,a,i),r}function u(t,e){for(var r=n.malloc(t.length,e),i=t.length,a=0;a=0;--n){if(e[n]!==r)return!1;r*=t[n]}return!0}(t.shape,t.stride))0===t.offset&&t.data.length===t.shape[0]?this.length=c(this.gl,this.type,this.length,this.usage,t.data,e):this.length=c(this.gl,this.type,this.length,this.usage,t.data.subarray(t.offset,t.shape[0]),e);else{var s=n.malloc(t.size,r),l=a(s,t.shape);i.assign(l,t),this.length=c(this.gl,this.type,this.length,this.usage,e<0?s:s.subarray(0,t.size),e),n.free(s)}}else if(Array.isArray(t)){var f;f=this.type===this.gl.ELEMENT_ARRAY_BUFFER?u(t,"uint16"):u(t,"float32"),this.length=c(this.gl,this.type,this.length,this.usage,e<0?f:f.subarray(0,t.length),e),n.free(f)}else if("object"==typeof t&&"number"==typeof t.length)this.length=c(this.gl,this.type,this.length,this.usage,t,e);else{if("number"!=typeof t&&void 0!==t)throw new Error("gl-buffer: Invalid data type");if(e>=0)throw new Error("gl-buffer: Cannot specify offset when resizing buffer");(t|=0)<=0&&(t=1),this.gl.bufferData(this.type,0|t,this.usage),this.length=t}},e.exports=function(t,e,r,n){if(r=r||t.ARRAY_BUFFER,n=n||t.DYNAMIC_DRAW,r!==t.ARRAY_BUFFER&&r!==t.ELEMENT_ARRAY_BUFFER)throw new Error("gl-buffer: Invalid type for webgl buffer, must be either gl.ARRAY_BUFFER or gl.ELEMENT_ARRAY_BUFFER");if(n!==t.DYNAMIC_DRAW&&n!==t.STATIC_DRAW&&n!==t.STREAM_DRAW)throw new Error("gl-buffer: Invalid usage for buffer, must be either gl.DYNAMIC_DRAW, gl.STATIC_DRAW or gl.STREAM_DRAW");var i=t.createBuffer(),a=new s(t,r,i,0,n);return a.update(e),a}},{ndarray:462,"ndarray-ops":457,"typedarray-pool":590}],258:[function(t,e,r){"use strict";var n=t("gl-vec3");e.exports=function(t,e){var r=t.positions,i=t.vectors,a={positions:[],vertexIntensity:[],vertexIntensityBounds:t.vertexIntensityBounds,vectors:[],cells:[],coneOffset:t.coneOffset,colormap:t.colormap};if(0===t.positions.length)return e&&(e[0]=[0,0,0],e[1]=[0,0,0]),a;for(var o=0,s=1/0,l=-1/0,c=1/0,u=-1/0,f=1/0,h=-1/0,p=null,d=null,m=[],g=1/0,v=!1,y=0;yo&&(o=n.length(b)),y){var _=2*n.distance(p,x)/(n.length(d)+n.length(b));_?(g=Math.min(g,_),v=!1):v=!0}v||(p=x,d=b),m.push(b)}var w=[s,c,f],T=[l,u,h];e&&(e[0]=w,e[1]=T),0===o&&(o=1);var k=1/o;isFinite(g)||(g=1),a.vectorScale=g;var A=t.coneSize||.5;t.absoluteConeSize&&(A=t.absoluteConeSize*k),a.coneScale=A;y=0;for(var M=0;y=1},p.isTransparent=function(){return this.opacity<1},p.pickSlots=1,p.setPickBase=function(t){this.pickId=t},p.update=function(t){t=t||{};var e=this.gl;this.dirty=!0,"lightPosition"in t&&(this.lightPosition=t.lightPosition),"opacity"in t&&(this.opacity=t.opacity),"ambient"in t&&(this.ambientLight=t.ambient),"diffuse"in t&&(this.diffuseLight=t.diffuse),"specular"in t&&(this.specularLight=t.specular),"roughness"in t&&(this.roughness=t.roughness),"fresnel"in t&&(this.fresnel=t.fresnel),void 0!==t.tubeScale&&(this.tubeScale=t.tubeScale),void 0!==t.vectorScale&&(this.vectorScale=t.vectorScale),void 0!==t.coneScale&&(this.coneScale=t.coneScale),void 0!==t.coneOffset&&(this.coneOffset=t.coneOffset),t.colormap&&(this.texture.shape=[256,256],this.texture.minFilter=e.LINEAR_MIPMAP_LINEAR,this.texture.magFilter=e.LINEAR,this.texture.setPixels(function(t){for(var e=u({colormap:t,nshades:256,format:"rgba"}),r=new Uint8Array(1024),n=0;n<256;++n){for(var i=e[n],a=0;a<3;++a)r[4*n+a]=i[a];r[4*n+3]=255*i[3]}return c(r,[256,256,4],[4,0,1])}(t.colormap)),this.texture.generateMipmap());var r=t.cells,n=t.positions,i=t.vectors;if(n&&r&&i){var a=[],o=[],s=[],l=[],f=[];this.cells=r,this.positions=n,this.vectors=i;var h=t.meshColor||[1,1,1,1],p=t.vertexIntensity,d=1/0,m=-1/0;if(p)if(t.vertexIntensityBounds)d=+t.vertexIntensityBounds[0],m=+t.vertexIntensityBounds[1];else for(var g=0;g0){var m=this.triShader;m.bind(),m.uniforms=c,this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind()}},p.drawPick=function(t){t=t||{};for(var e=this.gl,r=t.model||f,n=t.view||f,i=t.projection||f,a=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],o=0;o<3;++o)a[0][o]=Math.max(a[0][o],this.clipBounds[0][o]),a[1][o]=Math.min(a[1][o],this.clipBounds[1][o]);this._model=[].slice.call(r),this._view=[].slice.call(n),this._projection=[].slice.call(i),this._resolution=[e.drawingBufferWidth,e.drawingBufferHeight];var s={model:r,view:n,projection:i,clipBounds:a,tubeScale:this.tubeScale,vectorScale:this.vectorScale,coneScale:this.coneScale,coneOffset:this.coneOffset,pickId:this.pickId/255},l=this.pickShader;l.bind(),l.uniforms=s,this.triangleCount>0&&(this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind())},p.pick=function(t){if(!t)return null;if(t.id!==this.pickId)return null;var e=t.value[0]+256*t.value[1]+65536*t.value[2],r=this.cells[e],n=this.positions[r[1]].slice(0,3),i={position:n,dataCoordinate:n,index:Math.floor(r[1]/48)};return"cone"===this.traceType?i.index=Math.floor(r[1]/48):"streamtube"===this.traceType&&(i.intensity=this.intensity[r[1]],i.velocity=this.vectors[r[1]].slice(0,3),i.divergence=this.vectors[r[1]][3],i.index=e),i},p.dispose=function(){this.texture.dispose(),this.triShader.dispose(),this.pickShader.dispose(),this.triangleVAO.dispose(),this.trianglePositions.dispose(),this.triangleVectors.dispose(),this.triangleColors.dispose(),this.triangleUVs.dispose(),this.triangleIds.dispose()},e.exports=function(t,e,r){var n=r.shaders;1===arguments.length&&(t=(e=t).gl);var s=d(t,n),l=m(t,n),u=o(t,c(new Uint8Array([255,255,255,255]),[1,1,4]));u.generateMipmap(),u.minFilter=t.LINEAR_MIPMAP_LINEAR,u.magFilter=t.LINEAR;var f=i(t),p=i(t),g=i(t),v=i(t),y=i(t),x=a(t,[{buffer:f,type:t.FLOAT,size:4},{buffer:y,type:t.UNSIGNED_BYTE,size:4,normalized:!0},{buffer:g,type:t.FLOAT,size:4},{buffer:v,type:t.FLOAT,size:2},{buffer:p,type:t.FLOAT,size:4}]),b=new h(t,u,s,l,f,p,y,g,v,x,r.traceType||"cone");return b.update(e),b}},{colormap:132,"gl-buffer":257,"gl-mat4/invert":287,"gl-mat4/multiply":289,"gl-shader":323,"gl-texture2d":338,"gl-vao":343,ndarray:462}],260:[function(t,e,r){var n=t("glslify"),i=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the cone vertex and normal at the given index.\n//\n// The returned vertex is for a cone with its top at origin and height of 1.0,\n// pointing in the direction of the vector attribute.\n//\n// Each cone is made up of a top vertex, a center base vertex and base perimeter vertices.\n// These vertices are used to make up the triangles of the cone by the following:\n// segment + 0 top vertex\n// segment + 1 perimeter vertex a+1\n// segment + 2 perimeter vertex a\n// segment + 3 center base vertex\n// segment + 4 perimeter vertex a\n// segment + 5 perimeter vertex a+1\n// Where segment is the number of the radial segment * 6 and a is the angle at that radial segment.\n// To go from index to segment, floor(index / 6)\n// To go from segment to angle, 2*pi * (segment/segmentCount)\n// To go from index to segment index, index - (segment*6)\n//\nvec3 getConePosition(vec3 d, float rawIndex, float coneOffset, out vec3 normal) {\n\n const float segmentCount = 8.0;\n\n float index = rawIndex - floor(rawIndex /\n (segmentCount * 6.0)) *\n (segmentCount * 6.0);\n\n float segment = floor(0.001 + index/6.0);\n float segmentIndex = index - (segment*6.0);\n\n normal = -normalize(d);\n\n if (segmentIndex > 2.99 && segmentIndex < 3.01) {\n return mix(vec3(0.0), -d, coneOffset);\n }\n\n float nextAngle = (\n (segmentIndex > 0.99 && segmentIndex < 1.01) ||\n (segmentIndex > 4.99 && segmentIndex < 5.01)\n ) ? 1.0 : 0.0;\n float angle = 2.0 * 3.14159 * ((segment + nextAngle) / segmentCount);\n\n vec3 v1 = mix(d, vec3(0.0), coneOffset);\n vec3 v2 = v1 - d;\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d)*0.25;\n vec3 y = v * sin(angle) * length(d)*0.25;\n vec3 v3 = v2 + x + y;\n if (segmentIndex < 3.0) {\n vec3 tx = u * sin(angle);\n vec3 ty = v * -cos(angle);\n vec3 tangent = tx + ty;\n normal = normalize(cross(v3 - v1, tangent));\n }\n\n if (segmentIndex == 0.0) {\n return mix(d, vec3(0.0), coneOffset);\n }\n return v3;\n}\n\nattribute vec3 vector;\nattribute vec4 color, position;\nattribute vec2 uv;\n\nuniform float vectorScale, coneScale, coneOffset;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 eyePosition, lightPosition;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n // Scale the vector magnitude to stay constant with\n // model & view changes.\n vec3 normal;\n vec3 XYZ = getConePosition(mat3(model) * ((vectorScale * coneScale) * vector), position.w, coneOffset, normal);\n vec4 conePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * conePosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n // vec4 m_position = model * vec4(conePosition, 1.0);\n vec4 t_position = view * conePosition;\n gl_Position = projection * t_position;\n\n f_color = color;\n f_data = conePosition.xyz;\n f_position = position.xyz;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform sampler2D texture;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = f_color * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * opacity;\n}\n"]),o=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the cone vertex and normal at the given index.\n//\n// The returned vertex is for a cone with its top at origin and height of 1.0,\n// pointing in the direction of the vector attribute.\n//\n// Each cone is made up of a top vertex, a center base vertex and base perimeter vertices.\n// These vertices are used to make up the triangles of the cone by the following:\n// segment + 0 top vertex\n// segment + 1 perimeter vertex a+1\n// segment + 2 perimeter vertex a\n// segment + 3 center base vertex\n// segment + 4 perimeter vertex a\n// segment + 5 perimeter vertex a+1\n// Where segment is the number of the radial segment * 6 and a is the angle at that radial segment.\n// To go from index to segment, floor(index / 6)\n// To go from segment to angle, 2*pi * (segment/segmentCount)\n// To go from index to segment index, index - (segment*6)\n//\nvec3 getConePosition(vec3 d, float rawIndex, float coneOffset, out vec3 normal) {\n\n const float segmentCount = 8.0;\n\n float index = rawIndex - floor(rawIndex /\n (segmentCount * 6.0)) *\n (segmentCount * 6.0);\n\n float segment = floor(0.001 + index/6.0);\n float segmentIndex = index - (segment*6.0);\n\n normal = -normalize(d);\n\n if (segmentIndex > 2.99 && segmentIndex < 3.01) {\n return mix(vec3(0.0), -d, coneOffset);\n }\n\n float nextAngle = (\n (segmentIndex > 0.99 && segmentIndex < 1.01) ||\n (segmentIndex > 4.99 && segmentIndex < 5.01)\n ) ? 1.0 : 0.0;\n float angle = 2.0 * 3.14159 * ((segment + nextAngle) / segmentCount);\n\n vec3 v1 = mix(d, vec3(0.0), coneOffset);\n vec3 v2 = v1 - d;\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d)*0.25;\n vec3 y = v * sin(angle) * length(d)*0.25;\n vec3 v3 = v2 + x + y;\n if (segmentIndex < 3.0) {\n vec3 tx = u * sin(angle);\n vec3 ty = v * -cos(angle);\n vec3 tangent = tx + ty;\n normal = normalize(cross(v3 - v1, tangent));\n }\n\n if (segmentIndex == 0.0) {\n return mix(d, vec3(0.0), coneOffset);\n }\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform float vectorScale, coneScale, coneOffset;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n vec3 normal;\n vec3 XYZ = getConePosition(mat3(model) * ((vectorScale * coneScale) * vector.xyz), position.w, coneOffset, normal);\n vec4 conePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n gl_Position = projection * view * conePosition;\n f_id = id;\n f_position = position.xyz;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec4"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"vector",type:"vec3"}]},r.pickShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec4"},{name:"id",type:"vec4"},{name:"vector",type:"vec3"}]}},{glslify:424}],261:[function(t,e,r){e.exports={0:"NONE",1:"ONE",2:"LINE_LOOP",3:"LINE_STRIP",4:"TRIANGLES",5:"TRIANGLE_STRIP",6:"TRIANGLE_FAN",256:"DEPTH_BUFFER_BIT",512:"NEVER",513:"LESS",514:"EQUAL",515:"LEQUAL",516:"GREATER",517:"NOTEQUAL",518:"GEQUAL",519:"ALWAYS",768:"SRC_COLOR",769:"ONE_MINUS_SRC_COLOR",770:"SRC_ALPHA",771:"ONE_MINUS_SRC_ALPHA",772:"DST_ALPHA",773:"ONE_MINUS_DST_ALPHA",774:"DST_COLOR",775:"ONE_MINUS_DST_COLOR",776:"SRC_ALPHA_SATURATE",1024:"STENCIL_BUFFER_BIT",1028:"FRONT",1029:"BACK",1032:"FRONT_AND_BACK",1280:"INVALID_ENUM",1281:"INVALID_VALUE",1282:"INVALID_OPERATION",1285:"OUT_OF_MEMORY",1286:"INVALID_FRAMEBUFFER_OPERATION",2304:"CW",2305:"CCW",2849:"LINE_WIDTH",2884:"CULL_FACE",2885:"CULL_FACE_MODE",2886:"FRONT_FACE",2928:"DEPTH_RANGE",2929:"DEPTH_TEST",2930:"DEPTH_WRITEMASK",2931:"DEPTH_CLEAR_VALUE",2932:"DEPTH_FUNC",2960:"STENCIL_TEST",2961:"STENCIL_CLEAR_VALUE",2962:"STENCIL_FUNC",2963:"STENCIL_VALUE_MASK",2964:"STENCIL_FAIL",2965:"STENCIL_PASS_DEPTH_FAIL",2966:"STENCIL_PASS_DEPTH_PASS",2967:"STENCIL_REF",2968:"STENCIL_WRITEMASK",2978:"VIEWPORT",3024:"DITHER",3042:"BLEND",3088:"SCISSOR_BOX",3089:"SCISSOR_TEST",3106:"COLOR_CLEAR_VALUE",3107:"COLOR_WRITEMASK",3317:"UNPACK_ALIGNMENT",3333:"PACK_ALIGNMENT",3379:"MAX_TEXTURE_SIZE",3386:"MAX_VIEWPORT_DIMS",3408:"SUBPIXEL_BITS",3410:"RED_BITS",3411:"GREEN_BITS",3412:"BLUE_BITS",3413:"ALPHA_BITS",3414:"DEPTH_BITS",3415:"STENCIL_BITS",3553:"TEXTURE_2D",4352:"DONT_CARE",4353:"FASTEST",4354:"NICEST",5120:"BYTE",5121:"UNSIGNED_BYTE",5122:"SHORT",5123:"UNSIGNED_SHORT",5124:"INT",5125:"UNSIGNED_INT",5126:"FLOAT",5386:"INVERT",5890:"TEXTURE",6401:"STENCIL_INDEX",6402:"DEPTH_COMPONENT",6406:"ALPHA",6407:"RGB",6408:"RGBA",6409:"LUMINANCE",6410:"LUMINANCE_ALPHA",7680:"KEEP",7681:"REPLACE",7682:"INCR",7683:"DECR",7936:"VENDOR",7937:"RENDERER",7938:"VERSION",9728:"NEAREST",9729:"LINEAR",9984:"NEAREST_MIPMAP_NEAREST",9985:"LINEAR_MIPMAP_NEAREST",9986:"NEAREST_MIPMAP_LINEAR",9987:"LINEAR_MIPMAP_LINEAR",10240:"TEXTURE_MAG_FILTER",10241:"TEXTURE_MIN_FILTER",10242:"TEXTURE_WRAP_S",10243:"TEXTURE_WRAP_T",10497:"REPEAT",10752:"POLYGON_OFFSET_UNITS",16384:"COLOR_BUFFER_BIT",32769:"CONSTANT_COLOR",32770:"ONE_MINUS_CONSTANT_COLOR",32771:"CONSTANT_ALPHA",32772:"ONE_MINUS_CONSTANT_ALPHA",32773:"BLEND_COLOR",32774:"FUNC_ADD",32777:"BLEND_EQUATION_RGB",32778:"FUNC_SUBTRACT",32779:"FUNC_REVERSE_SUBTRACT",32819:"UNSIGNED_SHORT_4_4_4_4",32820:"UNSIGNED_SHORT_5_5_5_1",32823:"POLYGON_OFFSET_FILL",32824:"POLYGON_OFFSET_FACTOR",32854:"RGBA4",32855:"RGB5_A1",32873:"TEXTURE_BINDING_2D",32926:"SAMPLE_ALPHA_TO_COVERAGE",32928:"SAMPLE_COVERAGE",32936:"SAMPLE_BUFFERS",32937:"SAMPLES",32938:"SAMPLE_COVERAGE_VALUE",32939:"SAMPLE_COVERAGE_INVERT",32968:"BLEND_DST_RGB",32969:"BLEND_SRC_RGB",32970:"BLEND_DST_ALPHA",32971:"BLEND_SRC_ALPHA",33071:"CLAMP_TO_EDGE",33170:"GENERATE_MIPMAP_HINT",33189:"DEPTH_COMPONENT16",33306:"DEPTH_STENCIL_ATTACHMENT",33635:"UNSIGNED_SHORT_5_6_5",33648:"MIRRORED_REPEAT",33901:"ALIASED_POINT_SIZE_RANGE",33902:"ALIASED_LINE_WIDTH_RANGE",33984:"TEXTURE0",33985:"TEXTURE1",33986:"TEXTURE2",33987:"TEXTURE3",33988:"TEXTURE4",33989:"TEXTURE5",33990:"TEXTURE6",33991:"TEXTURE7",33992:"TEXTURE8",33993:"TEXTURE9",33994:"TEXTURE10",33995:"TEXTURE11",33996:"TEXTURE12",33997:"TEXTURE13",33998:"TEXTURE14",33999:"TEXTURE15",34e3:"TEXTURE16",34001:"TEXTURE17",34002:"TEXTURE18",34003:"TEXTURE19",34004:"TEXTURE20",34005:"TEXTURE21",34006:"TEXTURE22",34007:"TEXTURE23",34008:"TEXTURE24",34009:"TEXTURE25",34010:"TEXTURE26",34011:"TEXTURE27",34012:"TEXTURE28",34013:"TEXTURE29",34014:"TEXTURE30",34015:"TEXTURE31",34016:"ACTIVE_TEXTURE",34024:"MAX_RENDERBUFFER_SIZE",34041:"DEPTH_STENCIL",34055:"INCR_WRAP",34056:"DECR_WRAP",34067:"TEXTURE_CUBE_MAP",34068:"TEXTURE_BINDING_CUBE_MAP",34069:"TEXTURE_CUBE_MAP_POSITIVE_X",34070:"TEXTURE_CUBE_MAP_NEGATIVE_X",34071:"TEXTURE_CUBE_MAP_POSITIVE_Y",34072:"TEXTURE_CUBE_MAP_NEGATIVE_Y",34073:"TEXTURE_CUBE_MAP_POSITIVE_Z",34074:"TEXTURE_CUBE_MAP_NEGATIVE_Z",34076:"MAX_CUBE_MAP_TEXTURE_SIZE",34338:"VERTEX_ATTRIB_ARRAY_ENABLED",34339:"VERTEX_ATTRIB_ARRAY_SIZE",34340:"VERTEX_ATTRIB_ARRAY_STRIDE",34341:"VERTEX_ATTRIB_ARRAY_TYPE",34342:"CURRENT_VERTEX_ATTRIB",34373:"VERTEX_ATTRIB_ARRAY_POINTER",34466:"NUM_COMPRESSED_TEXTURE_FORMATS",34467:"COMPRESSED_TEXTURE_FORMATS",34660:"BUFFER_SIZE",34661:"BUFFER_USAGE",34816:"STENCIL_BACK_FUNC",34817:"STENCIL_BACK_FAIL",34818:"STENCIL_BACK_PASS_DEPTH_FAIL",34819:"STENCIL_BACK_PASS_DEPTH_PASS",34877:"BLEND_EQUATION_ALPHA",34921:"MAX_VERTEX_ATTRIBS",34922:"VERTEX_ATTRIB_ARRAY_NORMALIZED",34930:"MAX_TEXTURE_IMAGE_UNITS",34962:"ARRAY_BUFFER",34963:"ELEMENT_ARRAY_BUFFER",34964:"ARRAY_BUFFER_BINDING",34965:"ELEMENT_ARRAY_BUFFER_BINDING",34975:"VERTEX_ATTRIB_ARRAY_BUFFER_BINDING",35040:"STREAM_DRAW",35044:"STATIC_DRAW",35048:"DYNAMIC_DRAW",35632:"FRAGMENT_SHADER",35633:"VERTEX_SHADER",35660:"MAX_VERTEX_TEXTURE_IMAGE_UNITS",35661:"MAX_COMBINED_TEXTURE_IMAGE_UNITS",35663:"SHADER_TYPE",35664:"FLOAT_VEC2",35665:"FLOAT_VEC3",35666:"FLOAT_VEC4",35667:"INT_VEC2",35668:"INT_VEC3",35669:"INT_VEC4",35670:"BOOL",35671:"BOOL_VEC2",35672:"BOOL_VEC3",35673:"BOOL_VEC4",35674:"FLOAT_MAT2",35675:"FLOAT_MAT3",35676:"FLOAT_MAT4",35678:"SAMPLER_2D",35680:"SAMPLER_CUBE",35712:"DELETE_STATUS",35713:"COMPILE_STATUS",35714:"LINK_STATUS",35715:"VALIDATE_STATUS",35716:"INFO_LOG_LENGTH",35717:"ATTACHED_SHADERS",35718:"ACTIVE_UNIFORMS",35719:"ACTIVE_UNIFORM_MAX_LENGTH",35720:"SHADER_SOURCE_LENGTH",35721:"ACTIVE_ATTRIBUTES",35722:"ACTIVE_ATTRIBUTE_MAX_LENGTH",35724:"SHADING_LANGUAGE_VERSION",35725:"CURRENT_PROGRAM",36003:"STENCIL_BACK_REF",36004:"STENCIL_BACK_VALUE_MASK",36005:"STENCIL_BACK_WRITEMASK",36006:"FRAMEBUFFER_BINDING",36007:"RENDERBUFFER_BINDING",36048:"FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE",36049:"FRAMEBUFFER_ATTACHMENT_OBJECT_NAME",36050:"FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL",36051:"FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE",36053:"FRAMEBUFFER_COMPLETE",36054:"FRAMEBUFFER_INCOMPLETE_ATTACHMENT",36055:"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT",36057:"FRAMEBUFFER_INCOMPLETE_DIMENSIONS",36061:"FRAMEBUFFER_UNSUPPORTED",36064:"COLOR_ATTACHMENT0",36096:"DEPTH_ATTACHMENT",36128:"STENCIL_ATTACHMENT",36160:"FRAMEBUFFER",36161:"RENDERBUFFER",36162:"RENDERBUFFER_WIDTH",36163:"RENDERBUFFER_HEIGHT",36164:"RENDERBUFFER_INTERNAL_FORMAT",36168:"STENCIL_INDEX8",36176:"RENDERBUFFER_RED_SIZE",36177:"RENDERBUFFER_GREEN_SIZE",36178:"RENDERBUFFER_BLUE_SIZE",36179:"RENDERBUFFER_ALPHA_SIZE",36180:"RENDERBUFFER_DEPTH_SIZE",36181:"RENDERBUFFER_STENCIL_SIZE",36194:"RGB565",36336:"LOW_FLOAT",36337:"MEDIUM_FLOAT",36338:"HIGH_FLOAT",36339:"LOW_INT",36340:"MEDIUM_INT",36341:"HIGH_INT",36346:"SHADER_COMPILER",36347:"MAX_VERTEX_UNIFORM_VECTORS",36348:"MAX_VARYING_VECTORS",36349:"MAX_FRAGMENT_UNIFORM_VECTORS",37440:"UNPACK_FLIP_Y_WEBGL",37441:"UNPACK_PREMULTIPLY_ALPHA_WEBGL",37442:"CONTEXT_LOST_WEBGL",37443:"UNPACK_COLORSPACE_CONVERSION_WEBGL",37444:"BROWSER_DEFAULT_WEBGL"}},{}],262:[function(t,e,r){var n=t("./1.0/numbers");e.exports=function(t){return n[t]}},{"./1.0/numbers":261}],263:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl,r=n(e),o=i(e,[{buffer:r,type:e.FLOAT,size:3,offset:0,stride:40},{buffer:r,type:e.FLOAT,size:4,offset:12,stride:40},{buffer:r,type:e.FLOAT,size:3,offset:28,stride:40}]),l=a(e);l.attributes.position.location=0,l.attributes.color.location=1,l.attributes.offset.location=2;var c=new s(e,r,o,l);return c.update(t),c};var n=t("gl-buffer"),i=t("gl-vao"),a=t("./shaders/index"),o=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function s(t,e,r,n){this.gl=t,this.shader=n,this.buffer=e,this.vao=r,this.pixelRatio=1,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.lineWidth=[1,1,1],this.capSize=[10,10,10],this.lineCount=[0,0,0],this.lineOffset=[0,0,0],this.opacity=1,this.hasAlpha=!1}var l=s.prototype;function c(t,e){for(var r=0;r<3;++r)t[0][r]=Math.min(t[0][r],e[r]),t[1][r]=Math.max(t[1][r],e[r])}l.isOpaque=function(){return!this.hasAlpha},l.isTransparent=function(){return this.hasAlpha},l.drawTransparent=l.draw=function(t){var e=this.gl,r=this.shader.uniforms;this.shader.bind();var n=r.view=t.view||o,i=r.projection=t.projection||o;r.model=t.model||o,r.clipBounds=this.clipBounds,r.opacity=this.opacity;var a=n[12],s=n[13],l=n[14],c=n[15],u=(t._ortho||!1?2:1)*this.pixelRatio*(i[3]*a+i[7]*s+i[11]*l+i[15]*c)/e.drawingBufferHeight;this.vao.bind();for(var f=0;f<3;++f)e.lineWidth(this.lineWidth[f]*this.pixelRatio),r.capSize=this.capSize[f]*u,this.lineCount[f]&&e.drawArrays(e.LINES,this.lineOffset[f],this.lineCount[f]);this.vao.unbind()};var u=function(){for(var t=new Array(3),e=0;e<3;++e){for(var r=[],n=1;n<=2;++n)for(var i=-1;i<=1;i+=2){var a=[0,0,0];a[(n+e)%3]=i,r.push(a)}t[e]=r}return t}();function f(t,e,r,n){for(var i=u[n],a=0;a0)(m=u.slice())[s]+=p[1][s],i.push(u[0],u[1],u[2],d[0],d[1],d[2],d[3],0,0,0,m[0],m[1],m[2],d[0],d[1],d[2],d[3],0,0,0),c(this.bounds,m),o+=2+f(i,m,d,s)}}this.lineCount[s]=o-this.lineOffset[s]}this.buffer.update(i)}},l.dispose=function(){this.shader.dispose(),this.buffer.dispose(),this.vao.dispose()}},{"./shaders/index":264,"gl-buffer":257,"gl-vao":343}],264:[function(t,e,r){"use strict";var n=t("glslify"),i=t("gl-shader"),a=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position, offset;\nattribute vec4 color;\nuniform mat4 model, view, projection;\nuniform float capSize;\nvarying vec4 fragColor;\nvarying vec3 fragPosition;\n\nvoid main() {\n vec4 worldPosition = model * vec4(position, 1.0);\n worldPosition = (worldPosition / worldPosition.w) + vec4(capSize * offset, 0.0);\n gl_Position = projection * view * worldPosition;\n fragColor = color;\n fragPosition = position;\n}"]),o=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float opacity;\nvarying vec3 fragPosition;\nvarying vec4 fragColor;\n\nvoid main() {\n if (\n outOfRange(clipBounds[0], clipBounds[1], fragPosition) ||\n fragColor.a * opacity == 0.\n ) discard;\n\n gl_FragColor = opacity * fragColor;\n}"]);e.exports=function(t){return i(t,a,o,null,[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"offset",type:"vec3"}])}},{"gl-shader":323,glslify:424}],265:[function(t,e,r){"use strict";var n=t("gl-texture2d");e.exports=function(t,e,r,n){i||(i=t.FRAMEBUFFER_UNSUPPORTED,a=t.FRAMEBUFFER_INCOMPLETE_ATTACHMENT,o=t.FRAMEBUFFER_INCOMPLETE_DIMENSIONS,s=t.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT);var c=t.getExtension("WEBGL_draw_buffers");!l&&c&&function(t,e){var r=t.getParameter(e.MAX_COLOR_ATTACHMENTS_WEBGL);l=new Array(r+1);for(var n=0;n<=r;++n){for(var i=new Array(r),a=0;au||r<0||r>u)throw new Error("gl-fbo: Parameters are too large for FBO");var f=1;if("color"in(n=n||{})){if((f=Math.max(0|n.color,0))<0)throw new Error("gl-fbo: Must specify a nonnegative number of colors");if(f>1){if(!c)throw new Error("gl-fbo: Multiple draw buffer extension not supported");if(f>t.getParameter(c.MAX_COLOR_ATTACHMENTS_WEBGL))throw new Error("gl-fbo: Context does not support "+f+" draw buffers")}}var h=t.UNSIGNED_BYTE,p=t.getExtension("OES_texture_float");if(n.float&&f>0){if(!p)throw new Error("gl-fbo: Context does not support floating point textures");h=t.FLOAT}else n.preferFloat&&f>0&&p&&(h=t.FLOAT);var m=!0;"depth"in n&&(m=!!n.depth);var g=!1;"stencil"in n&&(g=!!n.stencil);return new d(t,e,r,h,f,m,g,c)};var i,a,o,s,l=null;function c(t){return[t.getParameter(t.FRAMEBUFFER_BINDING),t.getParameter(t.RENDERBUFFER_BINDING),t.getParameter(t.TEXTURE_BINDING_2D)]}function u(t,e){t.bindFramebuffer(t.FRAMEBUFFER,e[0]),t.bindRenderbuffer(t.RENDERBUFFER,e[1]),t.bindTexture(t.TEXTURE_2D,e[2])}function f(t){switch(t){case i:throw new Error("gl-fbo: Framebuffer unsupported");case a:throw new Error("gl-fbo: Framebuffer incomplete attachment");case o:throw new Error("gl-fbo: Framebuffer incomplete dimensions");case s:throw new Error("gl-fbo: Framebuffer incomplete missing attachment");default:throw new Error("gl-fbo: Framebuffer failed for unspecified reason")}}function h(t,e,r,i,a,o){if(!i)return null;var s=n(t,e,r,a,i);return s.magFilter=t.NEAREST,s.minFilter=t.NEAREST,s.mipSamples=1,s.bind(),t.framebufferTexture2D(t.FRAMEBUFFER,o,t.TEXTURE_2D,s.handle,0),s}function p(t,e,r,n,i){var a=t.createRenderbuffer();return t.bindRenderbuffer(t.RENDERBUFFER,a),t.renderbufferStorage(t.RENDERBUFFER,n,e,r),t.framebufferRenderbuffer(t.FRAMEBUFFER,i,t.RENDERBUFFER,a),a}function d(t,e,r,n,i,a,o,s){this.gl=t,this._shape=[0|e,0|r],this._destroyed=!1,this._ext=s,this.color=new Array(i);for(var d=0;d1&&s.drawBuffersWEBGL(l[o]);var y=r.getExtension("WEBGL_depth_texture");y?d?t.depth=h(r,i,a,y.UNSIGNED_INT_24_8_WEBGL,r.DEPTH_STENCIL,r.DEPTH_STENCIL_ATTACHMENT):m&&(t.depth=h(r,i,a,r.UNSIGNED_SHORT,r.DEPTH_COMPONENT,r.DEPTH_ATTACHMENT)):m&&d?t._depth_rb=p(r,i,a,r.DEPTH_STENCIL,r.DEPTH_STENCIL_ATTACHMENT):m?t._depth_rb=p(r,i,a,r.DEPTH_COMPONENT16,r.DEPTH_ATTACHMENT):d&&(t._depth_rb=p(r,i,a,r.STENCIL_INDEX,r.STENCIL_ATTACHMENT));var x=r.checkFramebufferStatus(r.FRAMEBUFFER);if(x!==r.FRAMEBUFFER_COMPLETE){t._destroyed=!0,r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteFramebuffer(t.handle),t.handle=null,t.depth&&(t.depth.dispose(),t.depth=null),t._depth_rb&&(r.deleteRenderbuffer(t._depth_rb),t._depth_rb=null);for(v=0;vi||r<0||r>i)throw new Error("gl-fbo: Can't resize FBO, invalid dimensions");t._shape[0]=e,t._shape[1]=r;for(var a=c(n),o=0;o>8*p&255;this.pickOffset=r,i.bind();var d=i.uniforms;d.viewTransform=t,d.pickOffset=e,d.shape=this.shape;var m=i.attributes;return this.positionBuffer.bind(),m.position.pointer(),this.weightBuffer.bind(),m.weight.pointer(s.UNSIGNED_BYTE,!1),this.idBuffer.bind(),m.pickId.pointer(s.UNSIGNED_BYTE,!1),s.drawArrays(s.TRIANGLES,0,o),r+this.shape[0]*this.shape[1]}}}(),f.pick=function(t,e,r){var n=this.pickOffset,i=this.shape[0]*this.shape[1];if(r=n+i)return null;var a=r-n,o=this.xData,s=this.yData;return{object:this,pointId:a,dataCoord:[o[a%this.shape[0]],s[a/this.shape[0]|0]]}},f.update=function(t){var e=(t=t||{}).shape||[0,0],r=t.x||i(e[0]),o=t.y||i(e[1]),s=t.z||new Float32Array(e[0]*e[1]),l=!1!==t.zsmooth;this.xData=r,this.yData=o;var c,u,f,p,d=t.colorLevels||[0],m=t.colorValues||[0,0,0,1],g=d.length,v=this.bounds;l?(c=v[0]=r[0],u=v[1]=o[0],f=v[2]=r[r.length-1],p=v[3]=o[o.length-1]):(c=v[0]=r[0]+(r[1]-r[0])/2,u=v[1]=o[0]+(o[1]-o[0])/2,f=v[2]=r[r.length-1]+(r[r.length-1]-r[r.length-2])/2,p=v[3]=o[o.length-1]+(o[o.length-1]-o[o.length-2])/2);var y=1/(f-c),x=1/(p-u),b=e[0],_=e[1];this.shape=[b,_];var w=(l?(b-1)*(_-1):b*_)*(h.length>>>1);this.numVertices=w;for(var T=a.mallocUint8(4*w),k=a.mallocFloat32(2*w),A=a.mallocUint8(2*w),M=a.mallocUint32(w),S=0,E=l?b-1:b,L=l?_-1:_,C=0;C max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform sampler2D dashTexture;\nuniform float dashScale;\nuniform float opacity;\n\nvarying vec3 worldPosition;\nvarying float pixelArcLength;\nvarying vec4 fragColor;\n\nvoid main() {\n if (\n outOfRange(clipBounds[0], clipBounds[1], worldPosition) ||\n fragColor.a * opacity == 0.\n ) discard;\n\n float dashWeight = texture2D(dashTexture, vec2(dashScale * pixelArcLength, 0)).r;\n if(dashWeight < 0.5) {\n discard;\n }\n gl_FragColor = fragColor * opacity;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\n#define FLOAT_MAX 1.70141184e38\n#define FLOAT_MIN 1.17549435e-38\n\n// https://github.com/mikolalysenko/glsl-read-float/blob/master/index.glsl\nvec4 packFloat(float v) {\n float av = abs(v);\n\n //Handle special cases\n if(av < FLOAT_MIN) {\n return vec4(0.0, 0.0, 0.0, 0.0);\n } else if(v > FLOAT_MAX) {\n return vec4(127.0, 128.0, 0.0, 0.0) / 255.0;\n } else if(v < -FLOAT_MAX) {\n return vec4(255.0, 128.0, 0.0, 0.0) / 255.0;\n }\n\n vec4 c = vec4(0,0,0,0);\n\n //Compute exponent and mantissa\n float e = floor(log2(av));\n float m = av * pow(2.0, -e) - 1.0;\n\n //Unpack mantissa\n c[1] = floor(128.0 * m);\n m -= c[1] / 128.0;\n c[2] = floor(32768.0 * m);\n m -= c[2] / 32768.0;\n c[3] = floor(8388608.0 * m);\n\n //Unpack exponent\n float ebias = e + 127.0;\n c[0] = floor(ebias / 2.0);\n ebias -= c[0] * 2.0;\n c[1] += floor(ebias) * 128.0;\n\n //Unpack sign bit\n c[0] += 128.0 * step(0.0, -v);\n\n //Scale back to range\n return c / 255.0;\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform float pickId;\nuniform vec3 clipBounds[2];\n\nvarying vec3 worldPosition;\nvarying float pixelArcLength;\nvarying vec4 fragColor;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], worldPosition)) discard;\n\n gl_FragColor = vec4(pickId/255.0, packFloat(pixelArcLength).xyz);\n}"]),l=[{name:"position",type:"vec3"},{name:"nextPosition",type:"vec3"},{name:"arcLength",type:"float"},{name:"lineWidth",type:"float"},{name:"color",type:"vec4"}];r.createShader=function(t){return i(t,a,o,null,l)},r.createPickShader=function(t){return i(t,a,s,null,l)}},{"gl-shader":323,glslify:424}],270:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl||t.scene&&t.scene.gl,r=f(e);r.attributes.position.location=0,r.attributes.nextPosition.location=1,r.attributes.arcLength.location=2,r.attributes.lineWidth.location=3,r.attributes.color.location=4;var o=h(e);o.attributes.position.location=0,o.attributes.nextPosition.location=1,o.attributes.arcLength.location=2,o.attributes.lineWidth.location=3,o.attributes.color.location=4;for(var s=n(e),l=i(e,[{buffer:s,size:3,offset:0,stride:48},{buffer:s,size:3,offset:12,stride:48},{buffer:s,size:1,offset:24,stride:48},{buffer:s,size:1,offset:28,stride:48},{buffer:s,size:4,offset:32,stride:48}]),u=c(new Array(1024),[256,1,4]),p=0;p<1024;++p)u.data[p]=255;var d=a(e,u);d.wrap=e.REPEAT;var m=new v(e,r,o,s,l,d);return m.update(t),m};var n=t("gl-buffer"),i=t("gl-vao"),a=t("gl-texture2d"),o=new Uint8Array(4),s=new Float32Array(o.buffer);var l=t("binary-search-bounds"),c=t("ndarray"),u=t("./lib/shaders"),f=u.createShader,h=u.createPickShader,p=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function d(t,e){for(var r=0,n=0;n<3;++n){var i=t[n]-e[n];r+=i*i}return Math.sqrt(r)}function m(t){for(var e=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],r=0;r<3;++r)e[0][r]=Math.max(t[0][r],e[0][r]),e[1][r]=Math.min(t[1][r],e[1][r]);return e}function g(t,e,r,n){this.arcLength=t,this.position=e,this.index=r,this.dataCoordinate=n}function v(t,e,r,n,i,a){this.gl=t,this.shader=e,this.pickShader=r,this.buffer=n,this.vao=i,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.points=[],this.arcLength=[],this.vertexCount=0,this.bounds=[[0,0,0],[0,0,0]],this.pickId=0,this.lineWidth=1,this.texture=a,this.dashScale=1,this.opacity=1,this.hasAlpha=!1,this.dirty=!0,this.pixelRatio=1}var y=v.prototype;y.isTransparent=function(){return this.hasAlpha},y.isOpaque=function(){return!this.hasAlpha},y.pickSlots=1,y.setPickBase=function(t){this.pickId=t},y.drawTransparent=y.draw=function(t){if(this.vertexCount){var e=this.gl,r=this.shader,n=this.vao;r.bind(),r.uniforms={model:t.model||p,view:t.view||p,projection:t.projection||p,clipBounds:m(this.clipBounds),dashTexture:this.texture.bind(),dashScale:this.dashScale/this.arcLength[this.arcLength.length-1],opacity:this.opacity,screenShape:[e.drawingBufferWidth,e.drawingBufferHeight],pixelRatio:this.pixelRatio},n.bind(),n.draw(e.TRIANGLE_STRIP,this.vertexCount),n.unbind()}},y.drawPick=function(t){if(this.vertexCount){var e=this.gl,r=this.pickShader,n=this.vao;r.bind(),r.uniforms={model:t.model||p,view:t.view||p,projection:t.projection||p,pickId:this.pickId,clipBounds:m(this.clipBounds),screenShape:[e.drawingBufferWidth,e.drawingBufferHeight],pixelRatio:this.pixelRatio},n.bind(),n.draw(e.TRIANGLE_STRIP,this.vertexCount),n.unbind()}},y.update=function(t){var e,r;this.dirty=!0;var n=!!t.connectGaps;"dashScale"in t&&(this.dashScale=t.dashScale),this.hasAlpha=!1,"opacity"in t&&(this.opacity=+t.opacity,this.opacity<1&&(this.hasAlpha=!0));var i=[],a=[],o=[],s=0,u=0,f=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],h=t.position||t.positions;if(h){var p=t.color||t.colors||[0,0,0,1],m=t.lineWidth||1,g=!1;t:for(e=1;e0){for(var w=0;w<24;++w)i.push(i[i.length-12]);u+=2,g=!0}continue t}f[0][r]=Math.min(f[0][r],b[r],_[r]),f[1][r]=Math.max(f[1][r],b[r],_[r])}Array.isArray(p[0])?(v=p.length>e-1?p[e-1]:p.length>0?p[p.length-1]:[0,0,0,1],y=p.length>e?p[e]:p.length>0?p[p.length-1]:[0,0,0,1]):v=y=p,3===v.length&&(v=[v[0],v[1],v[2],1]),3===y.length&&(y=[y[0],y[1],y[2],1]),!this.hasAlpha&&v[3]<1&&(this.hasAlpha=!0),x=Array.isArray(m)?m.length>e-1?m[e-1]:m.length>0?m[m.length-1]:[0,0,0,1]:m;var T=s;if(s+=d(b,_),g){for(r=0;r<2;++r)i.push(b[0],b[1],b[2],_[0],_[1],_[2],T,x,v[0],v[1],v[2],v[3]);u+=2,g=!1}i.push(b[0],b[1],b[2],_[0],_[1],_[2],T,x,v[0],v[1],v[2],v[3],b[0],b[1],b[2],_[0],_[1],_[2],T,-x,v[0],v[1],v[2],v[3],_[0],_[1],_[2],b[0],b[1],b[2],s,-x,y[0],y[1],y[2],y[3],_[0],_[1],_[2],b[0],b[1],b[2],s,x,y[0],y[1],y[2],y[3]),u+=4}}if(this.buffer.update(i),a.push(s),o.push(h[h.length-1].slice()),this.bounds=f,this.vertexCount=u,this.points=o,this.arcLength=a,"dashes"in t){var k=t.dashes.slice();for(k.unshift(0),e=1;e1.0001)return null;v+=g[f]}if(Math.abs(v-1)>.001)return null;return[h,s(t,g),g]}},{barycentric:81,"polytope-closest-point/lib/closest_point_2d.js":488}],302:[function(t,e,r){var n=t("glslify"),i=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position, normal;\nattribute vec4 color;\nattribute vec2 uv;\n\nuniform mat4 model\n , view\n , projection\n , inverseModel;\nuniform vec3 eyePosition\n , lightPosition;\n\nvarying vec3 f_normal\n , f_lightDirection\n , f_eyeDirection\n , f_data;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvec4 project(vec3 p) {\n return projection * view * model * vec4(p, 1.0);\n}\n\nvoid main() {\n gl_Position = project(position);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * vec4(position , 1.0);\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n f_color = color;\n f_data = position;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\n//#pragma glslify: beckmann = require(glsl-specular-beckmann) // used in gl-surface3d\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness\n , fresnel\n , kambient\n , kdiffuse\n , kspecular;\nuniform sampler2D texture;\n\nvarying vec3 f_normal\n , f_lightDirection\n , f_eyeDirection\n , f_data;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (f_color.a == 0.0 ||\n outOfRange(clipBounds[0], clipBounds[1], f_data)\n ) discard;\n\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n //float specular = max(0.0, beckmann(L, V, N, roughness)); // used in gl-surface3d\n\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = vec4(f_color.rgb, 1.0) * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * f_color.a;\n}\n"]),o=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 uv;\n\nuniform mat4 model, view, projection;\n\nvarying vec4 f_color;\nvarying vec3 f_data;\nvarying vec2 f_uv;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n f_color = color;\n f_data = position;\n f_uv = uv;\n}"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform sampler2D texture;\nuniform float opacity;\n\nvarying vec4 f_color;\nvarying vec3 f_data;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_data)) discard;\n\n gl_FragColor = f_color * texture2D(texture, f_uv) * opacity;\n}"]),l=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 uv;\nattribute float pointSize;\n\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0.0, 0.0 ,0.0 ,0.0);\n } else {\n gl_Position = projection * view * model * vec4(position, 1.0);\n }\n gl_PointSize = pointSize;\n f_color = color;\n f_uv = uv;\n}"]),c=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform sampler2D texture;\nuniform float opacity;\n\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n vec2 pointR = gl_PointCoord.xy - vec2(0.5, 0.5);\n if(dot(pointR, pointR) > 0.25) {\n discard;\n }\n gl_FragColor = f_color * texture2D(texture, f_uv) * opacity;\n}"]),u=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n f_id = id;\n f_position = position;\n}"]),f=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]),h=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute float pointSize;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n } else {\n gl_Position = projection * view * model * vec4(position, 1.0);\n gl_PointSize = pointSize;\n }\n f_id = id;\n f_position = position;\n}"]),p=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\n\nuniform mat4 model, view, projection;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n}"]),d=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec3 contourColor;\n\nvoid main() {\n gl_FragColor = vec4(contourColor, 1.0);\n}\n"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec3"},{name:"normal",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"}]},r.wireShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"}]},r.pointShader={vertex:l,fragment:c,attributes:[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"pointSize",type:"float"}]},r.pickShader={vertex:u,fragment:f,attributes:[{name:"position",type:"vec3"},{name:"id",type:"vec4"}]},r.pointPickShader={vertex:h,fragment:f,attributes:[{name:"position",type:"vec3"},{name:"pointSize",type:"float"},{name:"id",type:"vec4"}]},r.contourShader={vertex:p,fragment:d,attributes:[{name:"position",type:"vec3"}]}},{glslify:424}],303:[function(t,e,r){"use strict";var n=t("gl-shader"),i=t("gl-buffer"),a=t("gl-vao"),o=t("gl-texture2d"),s=t("normals"),l=t("gl-mat4/multiply"),c=t("gl-mat4/invert"),u=t("ndarray"),f=t("colormap"),h=t("simplicial-complex-contour"),p=t("typedarray-pool"),d=t("./lib/shaders"),m=t("./lib/closest-point"),g=d.meshShader,v=d.wireShader,y=d.pointShader,x=d.pickShader,b=d.pointPickShader,_=d.contourShader,w=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function T(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,T,k,A,M,S){this.gl=t,this.pixelRatio=1,this.cells=[],this.positions=[],this.intensity=[],this.texture=e,this.dirty=!0,this.triShader=r,this.lineShader=n,this.pointShader=i,this.pickShader=a,this.pointPickShader=o,this.contourShader=s,this.trianglePositions=l,this.triangleColors=u,this.triangleNormals=h,this.triangleUVs=f,this.triangleIds=c,this.triangleVAO=p,this.triangleCount=0,this.lineWidth=1,this.edgePositions=d,this.edgeColors=g,this.edgeUVs=v,this.edgeIds=m,this.edgeVAO=y,this.edgeCount=0,this.pointPositions=x,this.pointColors=_,this.pointUVs=T,this.pointSizes=k,this.pointIds=b,this.pointVAO=A,this.pointCount=0,this.contourLineWidth=1,this.contourPositions=M,this.contourVAO=S,this.contourCount=0,this.contourColor=[0,0,0],this.contourEnable=!0,this.pickVertex=!0,this.pickId=1,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.lightPosition=[1e5,1e5,0],this.ambientLight=.8,this.diffuseLight=.8,this.specularLight=2,this.roughness=.5,this.fresnel=1.5,this.opacity=1,this.hasAlpha=!1,this.opacityscale=!1,this._model=w,this._view=w,this._projection=w,this._resolution=[1,1]}var k=T.prototype;function A(t,e){if(!e)return 1;if(!e.length)return 1;for(var r=0;rt&&r>0){var n=(e[r][0]-t)/(e[r][0]-e[r-1][0]);return e[r][1]*(1-n)+n*e[r-1][1]}}return 1}function M(t){var e=n(t,g.vertex,g.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e.attributes.normal.location=4,e}function S(t){var e=n(t,v.vertex,v.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e}function E(t){var e=n(t,y.vertex,y.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e.attributes.pointSize.location=4,e}function L(t){var e=n(t,x.vertex,x.fragment);return e.attributes.position.location=0,e.attributes.id.location=1,e}function C(t){var e=n(t,b.vertex,b.fragment);return e.attributes.position.location=0,e.attributes.id.location=1,e.attributes.pointSize.location=4,e}function P(t){var e=n(t,_.vertex,_.fragment);return e.attributes.position.location=0,e}k.isOpaque=function(){return!this.hasAlpha},k.isTransparent=function(){return this.hasAlpha},k.pickSlots=1,k.setPickBase=function(t){this.pickId=t},k.highlight=function(t){if(t&&this.contourEnable){for(var e=h(this.cells,this.intensity,t.intensity),r=e.cells,n=e.vertexIds,i=e.vertexWeights,a=r.length,o=p.mallocFloat32(6*a),s=0,l=0;l0&&((f=this.triShader).bind(),f.uniforms=s,this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind());this.edgeCount>0&&this.lineWidth>0&&((f=this.lineShader).bind(),f.uniforms=s,this.edgeVAO.bind(),e.lineWidth(this.lineWidth*this.pixelRatio),e.drawArrays(e.LINES,0,2*this.edgeCount),this.edgeVAO.unbind());this.pointCount>0&&((f=this.pointShader).bind(),f.uniforms=s,this.pointVAO.bind(),e.drawArrays(e.POINTS,0,this.pointCount),this.pointVAO.unbind());this.contourEnable&&this.contourCount>0&&this.contourLineWidth>0&&((f=this.contourShader).bind(),f.uniforms=s,this.contourVAO.bind(),e.drawArrays(e.LINES,0,this.contourCount),this.contourVAO.unbind())},k.drawPick=function(t){t=t||{};for(var e=this.gl,r=t.model||w,n=t.view||w,i=t.projection||w,a=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],o=0;o<3;++o)a[0][o]=Math.max(a[0][o],this.clipBounds[0][o]),a[1][o]=Math.min(a[1][o],this.clipBounds[1][o]);this._model=[].slice.call(r),this._view=[].slice.call(n),this._projection=[].slice.call(i),this._resolution=[e.drawingBufferWidth,e.drawingBufferHeight];var s,l={model:r,view:n,projection:i,clipBounds:a,pickId:this.pickId/255};((s=this.pickShader).bind(),s.uniforms=l,this.triangleCount>0&&(this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind()),this.edgeCount>0&&(this.edgeVAO.bind(),e.lineWidth(this.lineWidth*this.pixelRatio),e.drawArrays(e.LINES,0,2*this.edgeCount),this.edgeVAO.unbind()),this.pointCount>0)&&((s=this.pointPickShader).bind(),s.uniforms=l,this.pointVAO.bind(),e.drawArrays(e.POINTS,0,this.pointCount),this.pointVAO.unbind())},k.pick=function(t){if(!t)return null;if(t.id!==this.pickId)return null;for(var e=t.value[0]+256*t.value[1]+65536*t.value[2],r=this.cells[e],n=this.positions,i=new Array(r.length),a=0;ai[k]&&(r.uniforms.dataAxis=c,r.uniforms.screenOffset=u,r.uniforms.color=g[t],r.uniforms.angle=v[t],a.drawArrays(a.TRIANGLES,i[k],i[A]-i[k]))),y[t]&&T&&(u[1^t]-=M*p*x[t],r.uniforms.dataAxis=f,r.uniforms.screenOffset=u,r.uniforms.color=b[t],r.uniforms.angle=_[t],a.drawArrays(a.TRIANGLES,w,T)),u[1^t]=M*s[2+(1^t)]-1,d[t+2]&&(u[1^t]+=M*p*m[t+2],ki[k]&&(r.uniforms.dataAxis=c,r.uniforms.screenOffset=u,r.uniforms.color=g[t+2],r.uniforms.angle=v[t+2],a.drawArrays(a.TRIANGLES,i[k],i[A]-i[k]))),y[t+2]&&T&&(u[1^t]+=M*p*x[t+2],r.uniforms.dataAxis=f,r.uniforms.screenOffset=u,r.uniforms.color=b[t+2],r.uniforms.angle=_[t+2],a.drawArrays(a.TRIANGLES,w,T))}),m.drawTitle=function(){var t=[0,0],e=[0,0];return function(){var r=this.plot,n=this.shader,i=r.gl,a=r.screenBox,o=r.titleCenter,s=r.titleAngle,l=r.titleColor,c=r.pixelRatio;if(this.titleCount){for(var u=0;u<2;++u)e[u]=2*(o[u]*c-a[u])/(a[2+u]-a[u])-1;n.bind(),n.uniforms.dataAxis=t,n.uniforms.screenOffset=e,n.uniforms.angle=s,n.uniforms.color=l,i.drawArrays(i.TRIANGLES,this.titleOffset,this.titleCount)}}}(),m.bind=(h=[0,0],p=[0,0],d=[0,0],function(){var t=this.plot,e=this.shader,r=t._tickBounds,n=t.dataBox,i=t.screenBox,a=t.viewBox;e.bind();for(var o=0;o<2;++o){var s=r[o],l=r[o+2]-s,c=.5*(n[o+2]+n[o]),u=n[o+2]-n[o],f=a[o],m=a[o+2]-f,g=i[o],v=i[o+2]-g;p[o]=2*l/u*m/v,h[o]=2*(s-c)/u*m/v}d[1]=2*t.pixelRatio/(i[3]-i[1]),d[0]=d[1]*(i[3]-i[1])/(i[2]-i[0]),e.uniforms.dataScale=p,e.uniforms.dataShift=h,e.uniforms.textScale=d,this.vbo.bind(),e.attributes.textCoordinate.pointer()}),m.update=function(t){var e,r,n,i,o,s=[],l=t.ticks,c=t.bounds;for(o=0;o<2;++o){var u=[Math.floor(s.length/3)],f=[-1/0],h=l[o];for(e=0;e=0){var m=e[d]-n[d]*(e[d+2]-e[d])/(n[d+2]-n[d]);0===d?o.drawLine(m,e[1],m,e[3],p[d],h[d]):o.drawLine(e[0],m,e[2],m,p[d],h[d])}}for(d=0;d=0;--t)this.objects[t].dispose();this.objects.length=0;for(t=this.overlays.length-1;t>=0;--t)this.overlays[t].dispose();this.overlays.length=0,this.gl=null},c.addObject=function(t){this.objects.indexOf(t)<0&&(this.objects.push(t),this.setDirty())},c.removeObject=function(t){for(var e=this.objects,r=0;rMath.abs(e))c.rotate(a,0,0,-t*r*Math.PI*d.rotateSpeed/window.innerWidth);else if(!d._ortho){var o=-d.zoomSpeed*i*e/window.innerHeight*(a-c.lastT())/20;c.pan(a,0,0,f*(Math.exp(o)-1))}}}),!0)},d.enableMouseListeners(),d};var n=t("right-now"),i=t("3d-view"),a=t("mouse-change"),o=t("mouse-wheel"),s=t("mouse-event-offset"),l=t("has-passive-events")},{"3d-view":55,"has-passive-events":426,"mouse-change":449,"mouse-event-offset":450,"mouse-wheel":452,"right-now":518}],311:[function(t,e,r){var n=t("glslify"),i=t("gl-shader"),a=n(["precision mediump float;\n#define GLSLIFY 1\nattribute vec2 position;\nvarying vec2 uv;\nvoid main() {\n uv = position;\n gl_Position = vec4(position, 0, 1);\n}"]),o=n(["precision mediump float;\n#define GLSLIFY 1\n\nuniform sampler2D accumBuffer;\nvarying vec2 uv;\n\nvoid main() {\n vec4 accum = texture2D(accumBuffer, 0.5 * (uv + 1.0));\n gl_FragColor = min(vec4(1,1,1,1), accum);\n}"]);e.exports=function(t){return i(t,a,o,null,[{name:"position",type:"vec2"}])}},{"gl-shader":323,glslify:424}],312:[function(t,e,r){"use strict";var n=t("./camera.js"),i=t("gl-axes3d"),a=t("gl-axes3d/properties"),o=t("gl-spikes3d"),s=t("gl-select-static"),l=t("gl-fbo"),c=t("a-big-triangle"),u=t("mouse-change"),f=t("gl-mat4/perspective"),h=t("gl-mat4/ortho"),p=t("./lib/shader"),d=t("is-mobile")({tablet:!0,featureDetect:!0});function m(){this.mouse=[-1,-1],this.screen=null,this.distance=1/0,this.index=null,this.dataCoordinate=null,this.dataPosition=null,this.object=null,this.data=null}function g(t){var e=Math.round(Math.log(Math.abs(t))/Math.log(10));if(e<0){var r=Math.round(Math.pow(10,-e));return Math.ceil(t*r)/r}if(e>0){r=Math.round(Math.pow(10,e));return Math.ceil(t/r)*r}return Math.ceil(t)}function v(t){return"boolean"!=typeof t||t}e.exports={createScene:function(t){(t=t||{}).camera=t.camera||{};var e=t.canvas;if(!e){if(e=document.createElement("canvas"),t.container)t.container.appendChild(e);else document.body.appendChild(e)}var r=t.gl;r||(t.glOptions&&(d=!!t.glOptions.preserveDrawingBuffer),r=function(t,e){var r=null;try{(r=t.getContext("webgl",e))||(r=t.getContext("experimental-webgl",e))}catch(t){return null}return r}(e,t.glOptions||{premultipliedAlpha:!0,antialias:!0,preserveDrawingBuffer:d}));if(!r)throw new Error("webgl not supported");var y=t.bounds||[[-10,-10,-10],[10,10,10]],x=new m,b=l(r,r.drawingBufferWidth,r.drawingBufferHeight,{preferFloat:!d}),_=p(r),w=t.cameraObject&&!0===t.cameraObject._ortho||t.camera.projection&&"orthographic"===t.camera.projection.type||!1,T={eye:t.camera.eye||[2,0,0],center:t.camera.center||[0,0,0],up:t.camera.up||[0,1,0],zoomMin:t.camera.zoomMax||.1,zoomMax:t.camera.zoomMin||100,mode:t.camera.mode||"turntable",_ortho:w},k=t.axes||{},A=i(r,k);A.enable=!k.disable;var M=t.spikes||{},S=o(r,M),E=[],L=[],C=[],P=[],I=!0,O=!0,z=new Array(16),D=new Array(16),R={view:null,projection:z,model:D,_ortho:!1},F=(O=!0,[r.drawingBufferWidth,r.drawingBufferHeight]),B=t.cameraObject||n(e,T),N={gl:r,contextLost:!1,pixelRatio:t.pixelRatio||1,canvas:e,selection:x,camera:B,axes:A,axesPixels:null,spikes:S,bounds:y,objects:E,shape:F,aspect:t.aspectRatio||[1,1,1],pickRadius:t.pickRadius||10,zNear:t.zNear||.01,zFar:t.zFar||1e3,fovy:t.fovy||Math.PI/4,clearColor:t.clearColor||[0,0,0,0],autoResize:v(t.autoResize),autoBounds:v(t.autoBounds),autoScale:!!t.autoScale,autoCenter:v(t.autoCenter),clipToBounds:v(t.clipToBounds),snapToData:!!t.snapToData,onselect:t.onselect||null,onrender:t.onrender||null,onclick:t.onclick||null,cameraParams:R,oncontextloss:null,mouseListener:null,_stopped:!1,getAspectratio:function(){return{x:this.aspect[0],y:this.aspect[1],z:this.aspect[2]}},setAspectratio:function(t){this.aspect[0]=t.x,this.aspect[1]=t.y,this.aspect[2]=t.z,O=!0},setBounds:function(t,e){this.bounds[0][t]=e.min,this.bounds[1][t]=e.max},setClearColor:function(t){this.clearColor=t},clearRGBA:function(){this.gl.clearColor(this.clearColor[0],this.clearColor[1],this.clearColor[2],this.clearColor[3]),this.gl.clear(this.gl.COLOR_BUFFER_BIT|this.gl.DEPTH_BUFFER_BIT)}},j=[r.drawingBufferWidth/N.pixelRatio|0,r.drawingBufferHeight/N.pixelRatio|0];function U(){if(!N._stopped&&N.autoResize){var t=e.parentNode,r=1,n=1;t&&t!==document.body?(r=t.clientWidth,n=t.clientHeight):(r=window.innerWidth,n=window.innerHeight);var i=0|Math.ceil(r*N.pixelRatio),a=0|Math.ceil(n*N.pixelRatio);if(i!==e.width||a!==e.height){e.width=i,e.height=a;var o=e.style;o.position=o.position||"absolute",o.left="0px",o.top="0px",o.width=r+"px",o.height=n+"px",I=!0}}}N.autoResize&&U();function V(){for(var t=E.length,e=P.length,n=0;n0&&0===C[e-1];)C.pop(),P.pop().dispose()}function H(){if(N.contextLost)return!0;r.isContextLost()&&(N.contextLost=!0,N.mouseListener.enabled=!1,N.selection.object=null,N.oncontextloss&&N.oncontextloss())}window.addEventListener("resize",U),N.update=function(t){N._stopped||(t=t||{},I=!0,O=!0)},N.add=function(t){N._stopped||(t.axes=A,E.push(t),L.push(-1),I=!0,O=!0,V())},N.remove=function(t){if(!N._stopped){var e=E.indexOf(t);e<0||(E.splice(e,1),L.pop(),I=!0,O=!0,V())}},N.dispose=function(){if(!N._stopped&&(N._stopped=!0,window.removeEventListener("resize",U),e.removeEventListener("webglcontextlost",H),N.mouseListener.enabled=!1,!N.contextLost)){A.dispose(),S.dispose();for(var t=0;tx.distance)continue;for(var c=0;c 1.0) {\n discard;\n }\n baseColor = mix(borderColor, color, step(radius, centerFraction));\n gl_FragColor = vec4(baseColor.rgb * baseColor.a, baseColor.a);\n }\n}\n"]),r.pickVertex=n(["precision mediump float;\n#define GLSLIFY 1\n\nattribute vec2 position;\nattribute vec4 pickId;\n\nuniform mat3 matrix;\nuniform float pointSize;\nuniform vec4 pickOffset;\n\nvarying vec4 fragId;\n\nvoid main() {\n vec3 hgPosition = matrix * vec3(position, 1);\n gl_Position = vec4(hgPosition.xy, 0, hgPosition.z);\n gl_PointSize = pointSize;\n\n vec4 id = pickId + pickOffset;\n id.y += floor(id.x / 256.0);\n id.x -= floor(id.x / 256.0) * 256.0;\n\n id.z += floor(id.y / 256.0);\n id.y -= floor(id.y / 256.0) * 256.0;\n\n id.w += floor(id.z / 256.0);\n id.z -= floor(id.z / 256.0) * 256.0;\n\n fragId = id;\n}\n"]),r.pickFragment=n(["precision mediump float;\n#define GLSLIFY 1\n\nvarying vec4 fragId;\n\nvoid main() {\n float radius = length(2.0 * gl_PointCoord.xy - 1.0);\n if(radius > 1.0) {\n discard;\n }\n gl_FragColor = fragId / 255.0;\n}\n"])},{glslify:424}],314:[function(t,e,r){"use strict";var n=t("gl-shader"),i=t("gl-buffer"),a=t("typedarray-pool"),o=t("./lib/shader");function s(t,e,r,n,i){this.plot=t,this.offsetBuffer=e,this.pickBuffer=r,this.shader=n,this.pickShader=i,this.sizeMin=.5,this.sizeMinCap=2,this.sizeMax=20,this.areaRatio=1,this.pointCount=0,this.color=[1,0,0,1],this.borderColor=[0,0,0,1],this.blend=!1,this.pickOffset=0,this.points=null}e.exports=function(t,e){var r=t.gl,a=i(r),l=i(r),c=n(r,o.pointVertex,o.pointFragment),u=n(r,o.pickVertex,o.pickFragment),f=new s(t,a,l,c,u);return f.update(e),t.addObject(f),f};var l,c,u=s.prototype;u.dispose=function(){this.shader.dispose(),this.pickShader.dispose(),this.offsetBuffer.dispose(),this.pickBuffer.dispose(),this.plot.removeObject(this)},u.update=function(t){var e;function r(e,r){return e in t?t[e]:r}t=t||{},this.sizeMin=r("sizeMin",.5),this.sizeMax=r("sizeMax",20),this.color=r("color",[1,0,0,1]).slice(),this.areaRatio=r("areaRatio",1),this.borderColor=r("borderColor",[0,0,0,1]).slice(),this.blend=r("blend",!1);var n=t.positions.length>>>1,i=t.positions instanceof Float32Array,o=t.idToIndex instanceof Int32Array&&t.idToIndex.length>=n,s=t.positions,l=i?s:a.mallocFloat32(s.length),c=o?t.idToIndex:a.mallocInt32(n);if(i||l.set(s),!o)for(l.set(s),e=0;e>>1;for(r=0;r=e[0]&&a<=e[2]&&o>=e[1]&&o<=e[3]&&n++}return n}(this.points,i),u=this.plot.pickPixelRatio*Math.max(Math.min(this.sizeMinCap,this.sizeMin),Math.min(this.sizeMax,this.sizeMax/Math.pow(s,.33333)));l[0]=2/a,l[4]=2/o,l[6]=-2*i[0]/a-1,l[7]=-2*i[1]/o-1,this.offsetBuffer.bind(),r.bind(),r.attributes.position.pointer(),r.uniforms.matrix=l,r.uniforms.color=this.color,r.uniforms.borderColor=this.borderColor,r.uniforms.pointCloud=u<5,r.uniforms.pointSize=u,r.uniforms.centerFraction=Math.min(1,Math.max(0,Math.sqrt(1-this.areaRatio))),e&&(c[0]=255&t,c[1]=t>>8&255,c[2]=t>>16&255,c[3]=t>>24&255,this.pickBuffer.bind(),r.attributes.pickId.pointer(n.UNSIGNED_BYTE),r.uniforms.pickOffset=c,this.pickOffset=t);var f=n.getParameter(n.BLEND),h=n.getParameter(n.DITHER);return f&&!this.blend&&n.disable(n.BLEND),h&&n.disable(n.DITHER),n.drawArrays(n.POINTS,0,this.pointCount),f&&!this.blend&&n.enable(n.BLEND),h&&n.enable(n.DITHER),t+this.pointCount}),u.draw=u.unifiedDraw,u.drawPick=u.unifiedDraw,u.pick=function(t,e,r){var n=this.pickOffset,i=this.pointCount;if(r=n+i)return null;var a=r-n,o=this.points;return{object:this,pointId:a,dataCoord:[o[2*a],o[2*a+1]]}}},{"./lib/shader":313,"gl-buffer":257,"gl-shader":323,"typedarray-pool":590}],315:[function(t,e,r){e.exports=function(t,e,r,n){var i,a,o,s,l,c=e[0],u=e[1],f=e[2],h=e[3],p=r[0],d=r[1],m=r[2],g=r[3];(a=c*p+u*d+f*m+h*g)<0&&(a=-a,p=-p,d=-d,m=-m,g=-g);1-a>1e-6?(i=Math.acos(a),o=Math.sin(i),s=Math.sin((1-n)*i)/o,l=Math.sin(n*i)/o):(s=1-n,l=n);return t[0]=s*c+l*p,t[1]=s*u+l*d,t[2]=s*f+l*m,t[3]=s*h+l*g,t}},{}],316:[function(t,e,r){"use strict";e.exports=function(t){return t||0===t?t.toString():""}},{}],317:[function(t,e,r){"use strict";var n=t("vectorize-text");e.exports=function(t,e,r){var a=i[e];a||(a=i[e]={});if(t in a)return a[t];var o={textAlign:"center",textBaseline:"middle",lineHeight:1,font:e,lineSpacing:1.25,styletags:{breaklines:!0,bolds:!0,italics:!0,subscripts:!0,superscripts:!0},triangles:!0},s=n(t,o);o.triangles=!1;var l,c,u=n(t,o);if(r&&1!==r){for(l=0;l max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform vec4 highlightId;\nuniform float highlightScale;\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float scale = 1.0;\n if(distance(highlightId, id) < 0.0001) {\n scale = highlightScale;\n }\n\n vec4 worldPosition = model * vec4(position, 1);\n vec4 viewPosition = view * worldPosition;\n viewPosition = viewPosition / viewPosition.w;\n vec4 clipPosition = projection * (viewPosition + scale * vec4(glyph.x, -glyph.y, 0, 0));\n\n gl_Position = clipPosition;\n interpColor = color;\n pickId = id;\n dataCoordinate = position;\n }\n}"]),o=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform vec2 screenSize;\nuniform vec3 clipBounds[2];\nuniform float highlightScale, pixelRatio;\nuniform vec4 highlightId;\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float scale = pixelRatio;\n if(distance(highlightId.bgr, id.bgr) < 0.001) {\n scale *= highlightScale;\n }\n\n vec4 worldPosition = model * vec4(position, 1.0);\n vec4 viewPosition = view * worldPosition;\n vec4 clipPosition = projection * viewPosition;\n clipPosition /= clipPosition.w;\n\n gl_Position = clipPosition + vec4(screenSize * scale * vec2(glyph.x, -glyph.y), 0.0, 0.0);\n interpColor = color;\n pickId = id;\n dataCoordinate = position;\n }\n}"]),s=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform float highlightScale;\nuniform vec4 highlightId;\nuniform vec3 axes[2];\nuniform mat4 model, view, projection;\nuniform vec2 screenSize;\nuniform vec3 clipBounds[2];\nuniform float scale, pixelRatio;\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float lscale = pixelRatio * scale;\n if(distance(highlightId, id) < 0.0001) {\n lscale *= highlightScale;\n }\n\n vec4 clipCenter = projection * view * model * vec4(position, 1);\n vec3 dataPosition = position + 0.5*lscale*(axes[0] * glyph.x + axes[1] * glyph.y) * clipCenter.w * screenSize.y;\n vec4 clipPosition = projection * view * model * vec4(dataPosition, 1);\n\n gl_Position = clipPosition;\n interpColor = color;\n pickId = id;\n dataCoordinate = dataPosition;\n }\n}\n"]),l=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 fragClipBounds[2];\nuniform float opacity;\n\nvarying vec4 interpColor;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (\n outOfRange(fragClipBounds[0], fragClipBounds[1], dataCoordinate) ||\n interpColor.a * opacity == 0.\n ) discard;\n gl_FragColor = interpColor * opacity;\n}\n"]),c=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 fragClipBounds[2];\nuniform float pickGroup;\n\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(fragClipBounds[0], fragClipBounds[1], dataCoordinate)) discard;\n\n gl_FragColor = vec4(pickGroup, pickId.bgr);\n}"]),u=[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"glyph",type:"vec2"},{name:"id",type:"vec4"}],f={vertex:a,fragment:l,attributes:u},h={vertex:o,fragment:l,attributes:u},p={vertex:s,fragment:l,attributes:u},d={vertex:a,fragment:c,attributes:u},m={vertex:o,fragment:c,attributes:u},g={vertex:s,fragment:c,attributes:u};function v(t,e){var r=n(t,e),i=r.attributes;return i.position.location=0,i.color.location=1,i.glyph.location=2,i.id.location=3,r}r.createPerspective=function(t){return v(t,f)},r.createOrtho=function(t){return v(t,h)},r.createProject=function(t){return v(t,p)},r.createPickPerspective=function(t){return v(t,d)},r.createPickOrtho=function(t){return v(t,m)},r.createPickProject=function(t){return v(t,g)}},{"gl-shader":323,glslify:424}],319:[function(t,e,r){"use strict";var n=t("is-string-blank"),i=t("gl-buffer"),a=t("gl-vao"),o=t("typedarray-pool"),s=t("gl-mat4/multiply"),l=t("./lib/shaders"),c=t("./lib/glyphs"),u=t("./lib/get-simple-string"),f=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function h(t,e){var r=t[0],n=t[1],i=t[2],a=t[3];return t[0]=e[0]*r+e[4]*n+e[8]*i+e[12]*a,t[1]=e[1]*r+e[5]*n+e[9]*i+e[13]*a,t[2]=e[2]*r+e[6]*n+e[10]*i+e[14]*a,t[3]=e[3]*r+e[7]*n+e[11]*i+e[15]*a,t}function p(t,e,r,n){return h(n,n),h(n,n),h(n,n)}function d(t,e){this.index=t,this.dataCoordinate=this.position=e}function m(t){return!0===t||t>1?1:t}function g(t,e,r,n,i,a,o,s,l,c,u,f){this.gl=t,this.pixelRatio=1,this.shader=e,this.orthoShader=r,this.projectShader=n,this.pointBuffer=i,this.colorBuffer=a,this.glyphBuffer=o,this.idBuffer=s,this.vao=l,this.vertexCount=0,this.lineVertexCount=0,this.opacity=1,this.hasAlpha=!1,this.lineWidth=0,this.projectScale=[2/3,2/3,2/3],this.projectOpacity=[1,1,1],this.projectHasAlpha=!1,this.pickId=0,this.pickPerspectiveShader=c,this.pickOrthoShader=u,this.pickProjectShader=f,this.points=[],this._selectResult=new d(0,[0,0,0]),this.useOrtho=!0,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.axesProject=[!0,!0,!0],this.axesBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.highlightId=[1,1,1,1],this.highlightScale=2,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.dirty=!0}e.exports=function(t){var e=t.gl,r=l.createPerspective(e),n=l.createOrtho(e),o=l.createProject(e),s=l.createPickPerspective(e),c=l.createPickOrtho(e),u=l.createPickProject(e),f=i(e),h=i(e),p=i(e),d=i(e),m=a(e,[{buffer:f,size:3,type:e.FLOAT},{buffer:h,size:4,type:e.FLOAT},{buffer:p,size:2,type:e.FLOAT},{buffer:d,size:4,type:e.UNSIGNED_BYTE,normalized:!0}]),v=new g(e,r,n,o,f,h,p,d,m,s,c,u);return v.update(t),v};var v=g.prototype;v.pickSlots=1,v.setPickBase=function(t){this.pickId=t},v.isTransparent=function(){if(this.hasAlpha)return!0;for(var t=0;t<3;++t)if(this.axesProject[t]&&this.projectHasAlpha)return!0;return!1},v.isOpaque=function(){if(!this.hasAlpha)return!0;for(var t=0;t<3;++t)if(this.axesProject[t]&&!this.projectHasAlpha)return!0;return!1};var y=[0,0],x=[0,0,0],b=[0,0,0],_=[0,0,0,1],w=[0,0,0,1],T=f.slice(),k=[0,0,0],A=[[0,0,0],[0,0,0]];function M(t){return t[0]=t[1]=t[2]=0,t}function S(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=1,t}function E(t,e,r,n){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[r]=n,t}function L(t,e,r,n){var i,a=e.axesProject,o=e.gl,l=t.uniforms,c=r.model||f,u=r.view||f,h=r.projection||f,d=e.axesBounds,m=function(t){for(var e=A,r=0;r<2;++r)for(var n=0;n<3;++n)e[r][n]=Math.max(Math.min(t[r][n],1e8),-1e8);return e}(e.clipBounds);i=e.axes&&e.axes.lastCubeProps?e.axes.lastCubeProps.axis:[1,1,1],y[0]=2/o.drawingBufferWidth,y[1]=2/o.drawingBufferHeight,t.bind(),l.view=u,l.projection=h,l.screenSize=y,l.highlightId=e.highlightId,l.highlightScale=e.highlightScale,l.clipBounds=m,l.pickGroup=e.pickId/255,l.pixelRatio=n;for(var g=0;g<3;++g)if(a[g]){l.scale=e.projectScale[g],l.opacity=e.projectOpacity[g];for(var v=T,L=0;L<16;++L)v[L]=0;for(L=0;L<4;++L)v[5*L]=1;v[5*g]=0,i[g]<0?v[12+g]=d[0][g]:v[12+g]=d[1][g],s(v,c,v),l.model=v;var C=(g+1)%3,P=(g+2)%3,I=M(x),O=M(b);I[C]=1,O[P]=1;var z=p(0,0,0,S(_,I)),D=p(0,0,0,S(w,O));if(Math.abs(z[1])>Math.abs(D[1])){var R=z;z=D,D=R,R=I,I=O,O=R;var F=C;C=P,P=F}z[0]<0&&(I[C]=-1),D[1]>0&&(O[P]=-1);var B=0,N=0;for(L=0;L<4;++L)B+=Math.pow(c[4*C+L],2),N+=Math.pow(c[4*P+L],2);I[C]/=Math.sqrt(B),O[P]/=Math.sqrt(N),l.axes[0]=I,l.axes[1]=O,l.fragClipBounds[0]=E(k,m[0],g,-1e8),l.fragClipBounds[1]=E(k,m[1],g,1e8),e.vao.bind(),e.vao.draw(o.TRIANGLES,e.vertexCount),e.lineWidth>0&&(o.lineWidth(e.lineWidth*n),e.vao.draw(o.LINES,e.lineVertexCount,e.vertexCount)),e.vao.unbind()}}var C=[[-1e8,-1e8,-1e8],[1e8,1e8,1e8]];function P(t,e,r,n,i,a,o){var s=r.gl;if((a===r.projectHasAlpha||o)&&L(e,r,n,i),a===r.hasAlpha||o){t.bind();var l=t.uniforms;l.model=n.model||f,l.view=n.view||f,l.projection=n.projection||f,y[0]=2/s.drawingBufferWidth,y[1]=2/s.drawingBufferHeight,l.screenSize=y,l.highlightId=r.highlightId,l.highlightScale=r.highlightScale,l.fragClipBounds=C,l.clipBounds=r.axes.bounds,l.opacity=r.opacity,l.pickGroup=r.pickId/255,l.pixelRatio=i,r.vao.bind(),r.vao.draw(s.TRIANGLES,r.vertexCount),r.lineWidth>0&&(s.lineWidth(r.lineWidth*i),r.vao.draw(s.LINES,r.lineVertexCount,r.vertexCount)),r.vao.unbind()}}function I(t,e,r,i){var a;a=Array.isArray(t)?e=this.pointCount||e<0)return null;var r=this.points[e],n=this._selectResult;n.index=e;for(var i=0;i<3;++i)n.position[i]=n.dataCoordinate[i]=r[i];return n},v.highlight=function(t){if(t){var e=t.index,r=255&e,n=e>>8&255,i=e>>16&255;this.highlightId=[r/255,n/255,i/255,0]}else this.highlightId=[1,1,1,1]},v.update=function(t){if("perspective"in(t=t||{})&&(this.useOrtho=!t.perspective),"orthographic"in t&&(this.useOrtho=!!t.orthographic),"lineWidth"in t&&(this.lineWidth=t.lineWidth),"project"in t)if(Array.isArray(t.project))this.axesProject=t.project;else{var e=!!t.project;this.axesProject=[e,e,e]}if("projectScale"in t)if(Array.isArray(t.projectScale))this.projectScale=t.projectScale.slice();else{var r=+t.projectScale;this.projectScale=[r,r,r]}if(this.projectHasAlpha=!1,"projectOpacity"in t){if(Array.isArray(t.projectOpacity))this.projectOpacity=t.projectOpacity.slice();else{r=+t.projectOpacity;this.projectOpacity=[r,r,r]}for(var n=0;n<3;++n)this.projectOpacity[n]=m(this.projectOpacity[n]),this.projectOpacity[n]<1&&(this.projectHasAlpha=!0)}this.hasAlpha=!1,"opacity"in t&&(this.opacity=m(t.opacity),this.opacity<1&&(this.hasAlpha=!0)),this.dirty=!0;var i,a,s=t.position,l=t.font||"normal",c=t.alignment||[0,0];if(2===c.length)i=c[0],a=c[1];else{i=[],a=[];for(n=0;n0){var O=0,z=x,D=[0,0,0,1],R=[0,0,0,1],F=Array.isArray(p)&&Array.isArray(p[0]),B=Array.isArray(v)&&Array.isArray(v[0]);t:for(n=0;n<_;++n){y+=1;for(w=s[n],T=0;T<3;++T){if(isNaN(w[T])||!isFinite(w[T]))continue t;f[T]=Math.max(f[T],w[T]),u[T]=Math.min(u[T],w[T])}k=(N=I(h,n,l,this.pixelRatio)).mesh,A=N.lines,M=N.bounds;var N,j=N.visible;if(j)if(Array.isArray(p)){if(3===(U=F?n0?1-M[0][0]:Y<0?1+M[1][0]:1,W*=W>0?1-M[0][1]:W<0?1+M[1][1]:1],Z=k.cells||[],J=k.positions||[];for(T=0;T0){var v=r*u;o.drawBox(f-v,h-v,p+v,h+v,a),o.drawBox(f-v,d-v,p+v,d+v,a),o.drawBox(f-v,h-v,f+v,d+v,a),o.drawBox(p-v,h-v,p+v,d+v,a)}}}},s.update=function(t){t=t||{},this.innerFill=!!t.innerFill,this.outerFill=!!t.outerFill,this.innerColor=(t.innerColor||[0,0,0,.5]).slice(),this.outerColor=(t.outerColor||[0,0,0,.5]).slice(),this.borderColor=(t.borderColor||[0,0,0,1]).slice(),this.borderWidth=t.borderWidth||0,this.selectBox=(t.selectBox||this.selectBox).slice()},s.dispose=function(){this.boxBuffer.dispose(),this.boxShader.dispose(),this.plot.removeOverlay(this)}},{"./lib/shaders":320,"gl-buffer":257,"gl-shader":323}],322:[function(t,e,r){"use strict";e.exports=function(t,e){var r=e[0],a=e[1],o=n(t,r,a,{}),s=i.mallocUint8(r*a*4);return new l(t,o,s)};var n=t("gl-fbo"),i=t("typedarray-pool"),a=t("ndarray"),o=t("bit-twiddle").nextPow2;function s(t,e,r,n,i){this.coord=[t,e],this.id=r,this.value=n,this.distance=i}function l(t,e,r){this.gl=t,this.fbo=e,this.buffer=r,this._readTimeout=null;var n=this;this._readCallback=function(){n.gl&&(e.bind(),t.readPixels(0,0,e.shape[0],e.shape[1],t.RGBA,t.UNSIGNED_BYTE,n.buffer),n._readTimeout=null)}}var c=l.prototype;Object.defineProperty(c,"shape",{get:function(){return this.gl?this.fbo.shape.slice():[0,0]},set:function(t){if(this.gl){this.fbo.shape=t;var e=this.fbo.shape[0],r=this.fbo.shape[1];if(r*e*4>this.buffer.length){i.free(this.buffer);for(var n=this.buffer=i.mallocUint8(o(r*e*4)),a=0;ar)for(t=r;te)for(t=e;t=0){for(var T=0|w.type.charAt(w.type.length-1),k=new Array(T),A=0;A=0;)M+=1;_[y]=M}var S=new Array(r.length);function E(){h.program=o.program(p,h._vref,h._fref,b,_);for(var t=0;t=0){if((d=h.charCodeAt(h.length-1)-48)<2||d>4)throw new n("","Invalid data type for attribute "+f+": "+h);s(t,e,p[0],i,d,a,f)}else{if(!(h.indexOf("mat")>=0))throw new n("","Unknown data type for attribute "+f+": "+h);var d;if((d=h.charCodeAt(h.length-1)-48)<2||d>4)throw new n("","Invalid data type for attribute "+f+": "+h);l(t,e,p,i,d,a,f)}}}return a};var n=t("./GLError");function i(t,e,r,n,i,a){this._gl=t,this._wrapper=e,this._index=r,this._locations=n,this._dimension=i,this._constFunc=a}var a=i.prototype;a.pointer=function(t,e,r,n){var i=this._gl,a=this._locations[this._index];i.vertexAttribPointer(a,this._dimension,t||i.FLOAT,!!e,r||0,n||0),i.enableVertexAttribArray(a)},a.set=function(t,e,r,n){return this._constFunc(this._locations[this._index],t,e,r,n)},Object.defineProperty(a,"location",{get:function(){return this._locations[this._index]},set:function(t){return t!==this._locations[this._index]&&(this._locations[this._index]=0|t,this._wrapper.program=null),0|t}});var o=[function(t,e,r){return void 0===r.length?t.vertexAttrib1f(e,r):t.vertexAttrib1fv(e,r)},function(t,e,r,n){return void 0===r.length?t.vertexAttrib2f(e,r,n):t.vertexAttrib2fv(e,r)},function(t,e,r,n,i){return void 0===r.length?t.vertexAttrib3f(e,r,n,i):t.vertexAttrib3fv(e,r)},function(t,e,r,n,i,a){return void 0===r.length?t.vertexAttrib4f(e,r,n,i,a):t.vertexAttrib4fv(e,r)}];function s(t,e,r,n,a,s,l){var c=o[a],u=new i(t,e,r,n,a,c);Object.defineProperty(s,l,{set:function(e){return t.disableVertexAttribArray(n[r]),c(t,n[r],e),e},get:function(){return u},enumerable:!0})}function l(t,e,r,n,i,a,o){for(var l=new Array(i),c=new Array(i),u=0;u4)throw new i("","Invalid uniform dimension type for matrix "+name+": "+v);t["uniformMatrix"+g+"fv"](s[u],!1,f);break}throw new i("","Unknown uniform data type for "+name+": "+v)}if((g=v.charCodeAt(v.length-1)-48)<2||g>4)throw new i("","Invalid data type");switch(v.charAt(0)){case"b":case"i":t["uniform"+g+"iv"](s[u],f);break;case"v":t["uniform"+g+"fv"](s[u],f);break;default:throw new i("","Unrecognized data type for vector "+name+": "+v)}}}}}}function c(t,e,n){if("object"==typeof n){var c=u(n);Object.defineProperty(t,e,{get:a(c),set:l(n),enumerable:!0,configurable:!1})}else s[n]?Object.defineProperty(t,e,{get:(f=n,function(t,e,r){return t.getUniform(e.program,r[f])}),set:l(n),enumerable:!0,configurable:!1}):t[e]=function(t){switch(t){case"bool":return!1;case"int":case"sampler2D":case"samplerCube":case"float":return 0;default:var e=t.indexOf("vec");if(0<=e&&e<=1&&t.length===4+e){if((r=t.charCodeAt(t.length-1)-48)<2||r>4)throw new i("","Invalid data type");return"b"===t.charAt(0)?o(r,!1):o(r,0)}if(0===t.indexOf("mat")&&4===t.length){var r;if((r=t.charCodeAt(t.length-1)-48)<2||r>4)throw new i("","Invalid uniform dimension type for matrix "+name+": "+t);return o(r*r,0)}throw new i("","Unknown uniform data type for "+name+": "+t)}}(r[n].type);var f}function u(t){var e;if(Array.isArray(t)){e=new Array(t.length);for(var r=0;r1){s[0]in a||(a[s[0]]=[]),a=a[s[0]];for(var l=1;l1)for(var l=0;l 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the tube vertex and normal at the given index.\n//\n// The returned vertex is for a tube ring with its center at origin, radius of length(d), pointing in the direction of d.\n//\n// Each tube segment is made up of a ring of vertices.\n// These vertices are used to make up the triangles of the tube by connecting them together in the vertex array.\n// The indexes of tube segments run from 0 to 8.\n//\nvec3 getTubePosition(vec3 d, float index, out vec3 normal) {\n float segmentCount = 8.0;\n\n float angle = 2.0 * 3.14159 * (index / segmentCount);\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d);\n vec3 y = v * sin(angle) * length(d);\n vec3 v3 = x + y;\n\n normal = normalize(v3);\n\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 color, position;\nattribute vec2 uv;\n\nuniform float vectorScale, tubeScale;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 eyePosition, lightPosition;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n // Scale the vector magnitude to stay constant with\n // model & view changes.\n vec3 normal;\n vec3 XYZ = getTubePosition(mat3(model) * (tubeScale * vector.w * normalize(vector.xyz)), position.w, normal);\n vec4 tubePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * tubePosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n // vec4 m_position = model * vec4(tubePosition, 1.0);\n vec4 t_position = view * tubePosition;\n gl_Position = projection * t_position;\n\n f_color = color;\n f_data = tubePosition.xyz;\n f_position = position.xyz;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform sampler2D texture;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = f_color * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * opacity;\n}\n"]),o=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the tube vertex and normal at the given index.\n//\n// The returned vertex is for a tube ring with its center at origin, radius of length(d), pointing in the direction of d.\n//\n// Each tube segment is made up of a ring of vertices.\n// These vertices are used to make up the triangles of the tube by connecting them together in the vertex array.\n// The indexes of tube segments run from 0 to 8.\n//\nvec3 getTubePosition(vec3 d, float index, out vec3 normal) {\n float segmentCount = 8.0;\n\n float angle = 2.0 * 3.14159 * (index / segmentCount);\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d);\n vec3 y = v * sin(angle) * length(d);\n vec3 v3 = x + y;\n\n normal = normalize(v3);\n\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform float tubeScale;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n vec3 normal;\n vec3 XYZ = getTubePosition(mat3(model) * (tubeScale * vector.w * normalize(vector.xyz)), position.w, normal);\n vec4 tubePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n gl_Position = projection * view * tubePosition;\n f_id = id;\n f_position = position.xyz;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec4"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"vector",type:"vec4"}]},r.pickShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec4"},{name:"id",type:"vec4"},{name:"vector",type:"vec4"}]}},{glslify:424}],334:[function(t,e,r){"use strict";var n=t("gl-vec3"),i=t("gl-vec4"),a=["xyz","xzy","yxz","yzx","zxy","zyx"],o=function(t,e,r,a){for(var o=0,s=0;s0)for(T=0;T<8;T++){var k=(T+1)%8;c.push(h[T],p[T],p[k],p[k],h[k],h[T]),f.push(y,v,v,v,y,y),d.push(m,g,g,g,m,m);var A=c.length;u.push([A-6,A-5,A-4],[A-3,A-2,A-1])}var M=h;h=p,p=M;var S=y;y=v,v=S;var E=m;m=g,g=E}return{positions:c,cells:u,vectors:f,vertexIntensity:d}}(t,r,a,o)})),f=[],h=[],p=[],d=[];for(s=0;se)return r-1}return r},l=function(t,e,r){return tr?r:t},c=function(t){var e=1/0;t.sort((function(t,e){return t-e}));for(var r=t.length,n=1;nf-1||y>h-1||x>p-1)return n.create();var b,_,w,T,k,A,M=a[0][d],S=a[0][v],E=a[1][m],L=a[1][y],C=a[2][g],P=(o-M)/(S-M),I=(c-E)/(L-E),O=(u-C)/(a[2][x]-C);switch(isFinite(P)||(P=.5),isFinite(I)||(I=.5),isFinite(O)||(O=.5),r.reversedX&&(d=f-1-d,v=f-1-v),r.reversedY&&(m=h-1-m,y=h-1-y),r.reversedZ&&(g=p-1-g,x=p-1-x),r.filled){case 5:k=g,A=x,w=m*p,T=y*p,b=d*p*h,_=v*p*h;break;case 4:k=g,A=x,b=d*p,_=v*p,w=m*p*f,T=y*p*f;break;case 3:w=m,T=y,k=g*h,A=x*h,b=d*h*p,_=v*h*p;break;case 2:w=m,T=y,b=d*h,_=v*h,k=g*h*f,A=x*h*f;break;case 1:b=d,_=v,k=g*f,A=x*f,w=m*f*p,T=y*f*p;break;default:b=d,_=v,w=m*f,T=y*f,k=g*f*h,A=x*f*h}var z=i[b+w+k],D=i[b+w+A],R=i[b+T+k],F=i[b+T+A],B=i[_+w+k],N=i[_+w+A],j=i[_+T+k],U=i[_+T+A],V=n.create(),H=n.create(),q=n.create(),G=n.create();n.lerp(V,z,B,P),n.lerp(H,D,N,P),n.lerp(q,R,j,P),n.lerp(G,F,U,P);var Y=n.create(),W=n.create();n.lerp(Y,V,q,I),n.lerp(W,H,G,I);var X=n.create();return n.lerp(X,Y,W,O),X}(e,t,p)},m=t.getDivergence||function(t,e){var r=n.create(),i=1e-4;n.add(r,t,[i,0,0]);var a=d(r);n.subtract(a,a,e),n.scale(a,a,1/i),n.add(r,t,[0,i,0]);var o=d(r);n.subtract(o,o,e),n.scale(o,o,1/i),n.add(r,t,[0,0,i]);var s=d(r);return n.subtract(s,s,e),n.scale(s,s,1/i),n.add(r,a,o),n.add(r,r,s),r},g=[],v=e[0][0],y=e[0][1],x=e[0][2],b=e[1][0],_=e[1][1],w=e[1][2],T=function(t){var e=t[0],r=t[1],n=t[2];return!(eb||r_||nw)},k=10*n.distance(e[0],e[1])/i,A=k*k,M=1,S=0,E=r.length;E>1&&(M=function(t){for(var e=[],r=[],n=[],i={},a={},o={},s=t.length,l=0;lS&&(S=F),D.push(F),g.push({points:P,velocities:I,divergences:D});for(var B=0;B<100*i&&P.lengthA&&n.scale(N,N,k/Math.sqrt(j)),n.add(N,N,C),O=d(N),n.squaredDistance(z,N)-A>-1e-4*A){P.push(N),z=N,I.push(O);R=m(N,O),F=n.length(R);isFinite(F)&&F>S&&(S=F),D.push(F)}C=N}}var U=o(g,t.colormap,S,M);return f?U.tubeScale=f:(0===S&&(S=1),U.tubeScale=.5*u*M/S),U};var u=t("./lib/shaders"),f=t("gl-cone3d").createMesh;e.exports.createTubeMesh=function(t,e){return f(t,e,{shaders:u,traceType:"streamtube"})}},{"./lib/shaders":333,"gl-cone3d":258,"gl-vec3":362,"gl-vec4":398}],335:[function(t,e,r){var n=t("gl-shader"),i=t("glslify"),a=i(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec4 uv;\nattribute vec3 f;\nattribute vec3 normal;\n\nuniform vec3 objectOffset;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 lightPosition, eyePosition;\nuniform sampler2D colormap;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n vec3 localCoordinate = vec3(uv.zw, f.x);\n worldCoordinate = objectOffset + localCoordinate;\n vec4 worldPosition = model * vec4(worldCoordinate, 1.0);\n vec4 clipPosition = projection * view * worldPosition;\n gl_Position = clipPosition;\n kill = f.y;\n value = f.z;\n planeCoordinate = uv.xy;\n\n vColor = texture2D(colormap, vec2(value, value));\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * worldPosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n lightDirection = lightPosition - cameraCoordinate.xyz;\n eyeDirection = eyePosition - cameraCoordinate.xyz;\n surfaceNormal = normalize((vec4(normal,0) * inverseModel).xyz);\n}\n"]),o=i(["precision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat beckmannSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness) {\n return beckmannDistribution(dot(surfaceNormal, normalize(lightDirection + viewDirection)), roughness);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 lowerBound, upperBound;\nuniform float contourTint;\nuniform vec4 contourColor;\nuniform sampler2D colormap;\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform float vertexColor;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n if (\n kill > 0.0 ||\n vColor.a == 0.0 ||\n outOfRange(clipBounds[0], clipBounds[1], worldCoordinate)\n ) discard;\n\n vec3 N = normalize(surfaceNormal);\n vec3 V = normalize(eyeDirection);\n vec3 L = normalize(lightDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = max(beckmannSpecular(L, V, N, roughness), 0.);\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n //decide how to interpolate color \u2014 in vertex or in fragment\n vec4 surfaceColor =\n step(vertexColor, .5) * texture2D(colormap, vec2(value, value)) +\n step(.5, vertexColor) * vColor;\n\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = mix(litColor, contourColor, contourTint) * opacity;\n}\n"]),s=i(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec4 uv;\nattribute float f;\n\nuniform vec3 objectOffset;\nuniform mat3 permutation;\nuniform mat4 model, view, projection;\nuniform float height, zOffset;\nuniform sampler2D colormap;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n vec3 dataCoordinate = permutation * vec3(uv.xy, height);\n worldCoordinate = objectOffset + dataCoordinate;\n vec4 worldPosition = model * vec4(worldCoordinate, 1.0);\n\n vec4 clipPosition = projection * view * worldPosition;\n clipPosition.z += zOffset;\n\n gl_Position = clipPosition;\n value = f + objectOffset.z;\n kill = -1.0;\n planeCoordinate = uv.zw;\n\n vColor = texture2D(colormap, vec2(value, value));\n\n //Don't do lighting for contours\n surfaceNormal = vec3(1,0,0);\n eyeDirection = vec3(0,1,0);\n lightDirection = vec3(0,0,1);\n}\n"]),l=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec2 shape;\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 surfaceNormal;\n\nvec2 splitFloat(float v) {\n float vh = 255.0 * v;\n float upper = floor(vh);\n float lower = fract(vh);\n return vec2(upper / 255.0, floor(lower * 16.0) / 16.0);\n}\n\nvoid main() {\n if ((kill > 0.0) ||\n (outOfRange(clipBounds[0], clipBounds[1], worldCoordinate))) discard;\n\n vec2 ux = splitFloat(planeCoordinate.x / shape.x);\n vec2 uy = splitFloat(planeCoordinate.y / shape.y);\n gl_FragColor = vec4(pickId, ux.x, uy.x, ux.y + (uy.y/16.0));\n}\n"]);r.createShader=function(t){var e=n(t,a,o,null,[{name:"uv",type:"vec4"},{name:"f",type:"vec3"},{name:"normal",type:"vec3"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e.attributes.normal.location=2,e},r.createPickShader=function(t){var e=n(t,a,l,null,[{name:"uv",type:"vec4"},{name:"f",type:"vec3"},{name:"normal",type:"vec3"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e.attributes.normal.location=2,e},r.createContourShader=function(t){var e=n(t,s,o,null,[{name:"uv",type:"vec4"},{name:"f",type:"float"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e},r.createPickContourShader=function(t){var e=n(t,s,l,null,[{name:"uv",type:"vec4"},{name:"f",type:"float"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e}},{"gl-shader":323,glslify:424}],336:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl,r=y(e),n=b(e),s=x(e),l=_(e),c=i(e),u=a(e,[{buffer:c,size:4,stride:40,offset:0},{buffer:c,size:3,stride:40,offset:16},{buffer:c,size:3,stride:40,offset:28}]),f=i(e),h=a(e,[{buffer:f,size:4,stride:20,offset:0},{buffer:f,size:1,stride:20,offset:16}]),p=i(e),d=a(e,[{buffer:p,size:2,type:e.FLOAT}]),m=o(e,1,256,e.RGBA,e.UNSIGNED_BYTE);m.minFilter=e.LINEAR,m.magFilter=e.LINEAR;var g=new M(e,[0,0],[[0,0,0],[0,0,0]],r,n,c,u,m,s,l,f,h,p,d,[0,0,0]),v={levels:[[],[],[]]};for(var w in t)v[w]=t[w];return v.colormap=v.colormap||"jet",g.update(v),g};var n=t("bit-twiddle"),i=t("gl-buffer"),a=t("gl-vao"),o=t("gl-texture2d"),s=t("typedarray-pool"),l=t("colormap"),c=t("ndarray-ops"),u=t("ndarray-pack"),f=t("ndarray"),h=t("surface-nets"),p=t("gl-mat4/multiply"),d=t("gl-mat4/invert"),m=t("binary-search-bounds"),g=t("ndarray-gradient"),v=t("./lib/shaders"),y=v.createShader,x=v.createContourShader,b=v.createPickShader,_=v.createPickContourShader,w=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],T=[[0,0],[0,1],[1,0],[1,1],[1,0],[0,1]],k=[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]];function A(t,e,r,n,i){this.position=t,this.index=e,this.uv=r,this.level=n,this.dataCoordinate=i}!function(){for(var t=0;t<3;++t){var e=k[t],r=(t+2)%3;e[(t+1)%3+0]=1,e[r+3]=1,e[t+6]=1}}();function M(t,e,r,n,i,a,o,l,c,u,h,p,d,m,g){this.gl=t,this.shape=e,this.bounds=r,this.objectOffset=g,this.intensityBounds=[],this._shader=n,this._pickShader=i,this._coordinateBuffer=a,this._vao=o,this._colorMap=l,this._contourShader=c,this._contourPickShader=u,this._contourBuffer=h,this._contourVAO=p,this._contourOffsets=[[],[],[]],this._contourCounts=[[],[],[]],this._vertexCount=0,this._pickResult=new A([0,0,0],[0,0],[0,0],[0,0,0],[0,0,0]),this._dynamicBuffer=d,this._dynamicVAO=m,this._dynamicOffsets=[0,0,0],this._dynamicCounts=[0,0,0],this.contourWidth=[1,1,1],this.contourLevels=[[1],[1],[1]],this.contourTint=[0,0,0],this.contourColor=[[.5,.5,.5,1],[.5,.5,.5,1],[.5,.5,.5,1]],this.showContour=!0,this.showSurface=!0,this.enableHighlight=[!0,!0,!0],this.highlightColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.highlightTint=[1,1,1],this.highlightLevel=[-1,-1,-1],this.enableDynamic=[!0,!0,!0],this.dynamicLevel=[NaN,NaN,NaN],this.dynamicColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.dynamicTint=[1,1,1],this.dynamicWidth=[1,1,1],this.axesBounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.surfaceProject=[!1,!1,!1],this.contourProject=[[!1,!1,!1],[!1,!1,!1],[!1,!1,!1]],this.colorBounds=[!1,!1],this._field=[f(s.mallocFloat(1024),[0,0]),f(s.mallocFloat(1024),[0,0]),f(s.mallocFloat(1024),[0,0])],this.pickId=1,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.snapToData=!1,this.pixelRatio=1,this.opacity=1,this.lightPosition=[10,1e4,0],this.ambientLight=.8,this.diffuseLight=.8,this.specularLight=2,this.roughness=.5,this.fresnel=1.5,this.vertexColor=0,this.dirty=!0}var S=M.prototype;S.genColormap=function(t,e){var r=!1,n=u([l({colormap:t,nshades:256,format:"rgba"}).map((function(t,n){var i=e?function(t,e){if(!e)return 1;if(!e.length)return 1;for(var r=0;rt&&r>0){var n=(e[r][0]-t)/(e[r][0]-e[r-1][0]);return e[r][1]*(1-n)+n*e[r-1][1]}}return 1}(n/255,e):t[3];return i<1&&(r=!0),[t[0],t[1],t[2],255*i]}))]);return c.divseq(n,255),this.hasAlphaScale=r,n},S.isTransparent=function(){return this.opacity<1||this.hasAlphaScale},S.isOpaque=function(){return!this.isTransparent()},S.pickSlots=1,S.setPickBase=function(t){this.pickId=t};var E=[0,0,0],L={showSurface:!1,showContour:!1,projections:[w.slice(),w.slice(),w.slice()],clipBounds:[[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]]]};function C(t,e){var r,n,i,a=e.axes&&e.axes.lastCubeProps.axis||E,o=e.showSurface,s=e.showContour;for(r=0;r<3;++r)for(o=o||e.surfaceProject[r],n=0;n<3;++n)s=s||e.contourProject[r][n];for(r=0;r<3;++r){var l=L.projections[r];for(n=0;n<16;++n)l[n]=0;for(n=0;n<4;++n)l[5*n]=1;l[5*r]=0,l[12+r]=e.axesBounds[+(a[r]>0)][r],p(l,t.model,l);var c=L.clipBounds[r];for(i=0;i<2;++i)for(n=0;n<3;++n)c[i][n]=t.clipBounds[i][n];c[0][r]=-1e8,c[1][r]=1e8}return L.showSurface=o,L.showContour=s,L}var P={model:w,view:w,projection:w,inverseModel:w.slice(),lowerBound:[0,0,0],upperBound:[0,0,0],colorMap:0,clipBounds:[[0,0,0],[0,0,0]],height:0,contourTint:0,contourColor:[0,0,0,1],permutation:[1,0,0,0,1,0,0,0,1],zOffset:-1e-4,objectOffset:[0,0,0],kambient:1,kdiffuse:1,kspecular:1,lightPosition:[1e3,1e3,1e3],eyePosition:[0,0,0],roughness:1,fresnel:1,opacity:1,vertexColor:0},I=w.slice(),O=[1,0,0,0,1,0,0,0,1];function z(t,e){t=t||{};var r=this.gl;r.disable(r.CULL_FACE),this._colorMap.bind(0);var n=P;n.model=t.model||w,n.view=t.view||w,n.projection=t.projection||w,n.lowerBound=[this.bounds[0][0],this.bounds[0][1],this.colorBounds[0]||this.bounds[0][2]],n.upperBound=[this.bounds[1][0],this.bounds[1][1],this.colorBounds[1]||this.bounds[1][2]],n.objectOffset=this.objectOffset,n.contourColor=this.contourColor[0],n.inverseModel=d(n.inverseModel,n.model);for(var i=0;i<2;++i)for(var a=n.clipBounds[i],o=0;o<3;++o)a[o]=Math.min(Math.max(this.clipBounds[i][o],-1e8),1e8);n.kambient=this.ambientLight,n.kdiffuse=this.diffuseLight,n.kspecular=this.specularLight,n.roughness=this.roughness,n.fresnel=this.fresnel,n.opacity=this.opacity,n.height=0,n.permutation=O,n.vertexColor=this.vertexColor;var s=I;for(p(s,n.view,n.model),p(s,n.projection,s),d(s,s),i=0;i<3;++i)n.eyePosition[i]=s[12+i]/s[15];var l=s[15];for(i=0;i<3;++i)l+=this.lightPosition[i]*s[4*i+3];for(i=0;i<3;++i){var c=s[12+i];for(o=0;o<3;++o)c+=s[4*o+i]*this.lightPosition[o];n.lightPosition[i]=c/l}var u=C(n,this);if(u.showSurface){for(this._shader.bind(),this._shader.uniforms=n,this._vao.bind(),this.showSurface&&this._vertexCount&&this._vao.draw(r.TRIANGLES,this._vertexCount),i=0;i<3;++i)this.surfaceProject[i]&&this.vertexCount&&(this._shader.uniforms.model=u.projections[i],this._shader.uniforms.clipBounds=u.clipBounds[i],this._vao.draw(r.TRIANGLES,this._vertexCount));this._vao.unbind()}if(u.showContour){var f=this._contourShader;n.kambient=1,n.kdiffuse=0,n.kspecular=0,n.opacity=1,f.bind(),f.uniforms=n;var h=this._contourVAO;for(h.bind(),i=0;i<3;++i)for(f.uniforms.permutation=k[i],r.lineWidth(this.contourWidth[i]*this.pixelRatio),o=0;o>4)/16)/255,i=Math.floor(n),a=n-i,o=e[1]*(t.value[1]+(15&t.value[2])/16)/255,s=Math.floor(o),l=o-s;i+=1,s+=1;var c=r.position;c[0]=c[1]=c[2]=0;for(var u=0;u<2;++u)for(var f=u?a:1-a,h=0;h<2;++h)for(var p=i+u,d=s+h,g=f*(h?l:1-l),v=0;v<3;++v)c[v]+=this._field[v].get(p,d)*g;for(var y=this._pickResult.level,x=0;x<3;++x)if(y[x]=m.le(this.contourLevels[x],c[x]),y[x]<0)this.contourLevels[x].length>0&&(y[x]=0);else if(y[x]Math.abs(_-c[x])&&(y[x]+=1)}for(r.index[0]=a<.5?i:i+1,r.index[1]=l<.5?s:s+1,r.uv[0]=n/e[0],r.uv[1]=o/e[1],v=0;v<3;++v)r.dataCoordinate[v]=this._field[v].get(r.index[0],r.index[1]);return r},S.padField=function(t,e){var r=e.shape.slice(),n=t.shape.slice();c.assign(t.lo(1,1).hi(r[0],r[1]),e),c.assign(t.lo(1).hi(r[0],1),e.hi(r[0],1)),c.assign(t.lo(1,n[1]-1).hi(r[0],1),e.lo(0,r[1]-1).hi(r[0],1)),c.assign(t.lo(0,1).hi(1,r[1]),e.hi(1)),c.assign(t.lo(n[0]-1,1).hi(1,r[1]),e.lo(r[0]-1)),t.set(0,0,e.get(0,0)),t.set(0,n[1]-1,e.get(0,r[1]-1)),t.set(n[0]-1,0,e.get(r[0]-1,0)),t.set(n[0]-1,n[1]-1,e.get(r[0]-1,r[1]-1))},S.update=function(t){t=t||{},this.objectOffset=t.objectOffset||this.objectOffset,this.dirty=!0,"contourWidth"in t&&(this.contourWidth=R(t.contourWidth,Number)),"showContour"in t&&(this.showContour=R(t.showContour,Boolean)),"showSurface"in t&&(this.showSurface=!!t.showSurface),"contourTint"in t&&(this.contourTint=R(t.contourTint,Boolean)),"contourColor"in t&&(this.contourColor=B(t.contourColor)),"contourProject"in t&&(this.contourProject=R(t.contourProject,(function(t){return R(t,Boolean)}))),"surfaceProject"in t&&(this.surfaceProject=t.surfaceProject),"dynamicColor"in t&&(this.dynamicColor=B(t.dynamicColor)),"dynamicTint"in t&&(this.dynamicTint=R(t.dynamicTint,Number)),"dynamicWidth"in t&&(this.dynamicWidth=R(t.dynamicWidth,Number)),"opacity"in t&&(this.opacity=t.opacity),"opacityscale"in t&&(this.opacityscale=t.opacityscale),"colorBounds"in t&&(this.colorBounds=t.colorBounds),"vertexColor"in t&&(this.vertexColor=t.vertexColor?1:0),"colormap"in t&&this._colorMap.setPixels(this.genColormap(t.colormap,this.opacityscale));var e=t.field||t.coords&&t.coords[2]||null,r=!1;if(e||(e=this._field[2].shape[0]||this._field[2].shape[2]?this._field[2].lo(1,1).hi(this._field[2].shape[0]-2,this._field[2].shape[1]-2):this._field[2].hi(0,0)),"field"in t||"coords"in t){var i=(e.shape[0]+2)*(e.shape[1]+2);i>this._field[2].data.length&&(s.freeFloat(this._field[2].data),this._field[2].data=s.mallocFloat(n.nextPow2(i))),this._field[2]=f(this._field[2].data,[e.shape[0]+2,e.shape[1]+2]),this.padField(this._field[2],e),this.shape=e.shape.slice();for(var a=this.shape,o=0;o<2;++o)this._field[2].size>this._field[o].data.length&&(s.freeFloat(this._field[o].data),this._field[o].data=s.mallocFloat(this._field[2].size)),this._field[o]=f(this._field[o].data,[a[0]+2,a[1]+2]);if(t.coords){var l=t.coords;if(!Array.isArray(l)||3!==l.length)throw new Error("gl-surface: invalid coordinates for x/y");for(o=0;o<2;++o){var c=l[o];for(v=0;v<2;++v)if(c.shape[v]!==a[v])throw new Error("gl-surface: coords have incorrect shape");this.padField(this._field[o],c)}}else if(t.ticks){var u=t.ticks;if(!Array.isArray(u)||2!==u.length)throw new Error("gl-surface: invalid ticks");for(o=0;o<2;++o){var p=u[o];if((Array.isArray(p)||p.length)&&(p=f(p)),p.shape[0]!==a[o])throw new Error("gl-surface: invalid tick length");var d=f(p.data,a);d.stride[o]=p.stride[0],d.stride[1^o]=0,this.padField(this._field[o],d)}}else{for(o=0;o<2;++o){var m=[0,0];m[o]=1,this._field[o]=f(this._field[o].data,[a[0]+2,a[1]+2],m,0)}this._field[0].set(0,0,0);for(var v=0;v0){for(var xt=0;xt<5;++xt)Q.pop();U-=1}continue t}Q.push(nt[0],nt[1],ot[0],ot[1],nt[2]),U+=1}}rt.push(U)}this._contourOffsets[$]=et,this._contourCounts[$]=rt}var bt=s.mallocFloat(Q.length);for(o=0;o halfCharStep + halfCharWidth ||\n\t\t\t\t\tfloor(uv.x) < halfCharStep - halfCharWidth) return;\n\n\t\t\t\tuv += charId * charStep;\n\t\t\t\tuv = uv / atlasSize;\n\n\t\t\t\tvec4 color = fontColor;\n\t\t\t\tvec4 mask = texture2D(atlas, uv);\n\n\t\t\t\tfloat maskY = lightness(mask);\n\t\t\t\t// float colorY = lightness(color);\n\t\t\t\tcolor.a *= maskY;\n\t\t\t\tcolor.a *= opacity;\n\n\t\t\t\t// color.a += .1;\n\n\t\t\t\t// antialiasing, see yiq color space y-channel formula\n\t\t\t\t// color.rgb += (1. - color.rgb) * (1. - mask.rgb);\n\n\t\t\t\tgl_FragColor = color;\n\t\t\t}"});return{regl:t,draw:e,atlas:{}}},T.prototype.update=function(t){var e=this;if("string"==typeof t)t={text:t};else if(!t)return;null!=(t=i(t,{position:"position positions coord coords coordinates",font:"font fontFace fontface typeface cssFont css-font family fontFamily",fontSize:"fontSize fontsize size font-size",text:"text texts chars characters value values symbols",align:"align alignment textAlign textbaseline",baseline:"baseline textBaseline textbaseline",direction:"dir direction textDirection",color:"color colour fill fill-color fillColor textColor textcolor",kerning:"kerning kern",range:"range dataBox",viewport:"vp viewport viewBox viewbox viewPort",opacity:"opacity alpha transparency visible visibility opaque",offset:"offset positionOffset padding shift indent indentation"},!0)).opacity&&(Array.isArray(t.opacity)?this.opacity=t.opacity.map((function(t){return parseFloat(t)})):this.opacity=parseFloat(t.opacity)),null!=t.viewport&&(this.viewport=f(t.viewport),this.viewportArray=[this.viewport.x,this.viewport.y,this.viewport.width,this.viewport.height]),null==this.viewport&&(this.viewport={x:0,y:0,width:this.gl.drawingBufferWidth,height:this.gl.drawingBufferHeight},this.viewportArray=[this.viewport.x,this.viewport.y,this.viewport.width,this.viewport.height]),null!=t.kerning&&(this.kerning=t.kerning),null!=t.offset&&("number"==typeof t.offset&&(t.offset=[t.offset,0]),this.positionOffset=y(t.offset)),t.direction&&(this.direction=t.direction),t.range&&(this.range=t.range,this.scale=[1/(t.range[2]-t.range[0]),1/(t.range[3]-t.range[1])],this.translate=[-t.range[0],-t.range[1]]),t.scale&&(this.scale=t.scale),t.translate&&(this.translate=t.translate),this.scale||(this.scale=[1/this.viewport.width,1/this.viewport.height]),this.translate||(this.translate=[0,0]),this.font.length||t.font||(t.font=T.baseFontSize+"px sans-serif");var r,a=!1,o=!1;if(t.font&&(Array.isArray(t.font)?t.font:[t.font]).forEach((function(t,r){if("string"==typeof t)try{t=n.parse(t)}catch(e){t=n.parse(T.baseFontSize+"px "+t)}else t=n.parse(n.stringify(t));var i=n.stringify({size:T.baseFontSize,family:t.family,stretch:_?t.stretch:void 0,variant:t.variant,weight:t.weight,style:t.style}),s=p(t.size),l=Math.round(s[0]*d(s[1]));if(l!==e.fontSize[r]&&(o=!0,e.fontSize[r]=l),!(e.font[r]&&i==e.font[r].baseString||(a=!0,e.font[r]=T.fonts[i],e.font[r]))){var c=t.family.join(", "),u=[t.style];t.style!=t.variant&&u.push(t.variant),t.variant!=t.weight&&u.push(t.weight),_&&t.weight!=t.stretch&&u.push(t.stretch),e.font[r]={baseString:i,family:c,weight:t.weight,stretch:t.stretch,style:t.style,variant:t.variant,width:{},kerning:{},metrics:v(c,{origin:"top",fontSize:T.baseFontSize,fontStyle:u.join(" ")})},T.fonts[i]=e.font[r]}})),(a||o)&&this.font.forEach((function(r,i){var a=n.stringify({size:e.fontSize[i],family:r.family,stretch:_?r.stretch:void 0,variant:r.variant,weight:r.weight,style:r.style});if(e.fontAtlas[i]=e.shader.atlas[a],!e.fontAtlas[i]){var o=r.metrics;e.shader.atlas[a]=e.fontAtlas[i]={fontString:a,step:2*Math.ceil(e.fontSize[i]*o.bottom*.5),em:e.fontSize[i],cols:0,rows:0,height:0,width:0,chars:[],ids:{},texture:e.regl.texture()}}null==t.text&&(t.text=e.text)})),"string"==typeof t.text&&t.position&&t.position.length>2){for(var s=Array(.5*t.position.length),h=0;h2){for(var w=!t.position[0].length,k=u.mallocFloat(2*this.count),A=0,M=0;A1?e.align[r]:e.align[0]:e.align;if("number"==typeof n)return n;switch(n){case"right":case"end":return-t;case"center":case"centre":case"middle":return.5*-t}return 0}))),null==this.baseline&&null==t.baseline&&(t.baseline=0),null!=t.baseline&&(this.baseline=t.baseline,Array.isArray(this.baseline)||(this.baseline=[this.baseline]),this.baselineOffset=this.baseline.map((function(t,r){var n=(e.font[r]||e.font[0]).metrics,i=0;return i+=.5*n.bottom,i+="number"==typeof t?t-n.baseline:-n[t],i*=-1}))),null!=t.color)if(t.color||(t.color="transparent"),"string"!=typeof t.color&&isNaN(t.color)){var q;if("number"==typeof t.color[0]&&t.color.length>this.counts.length){var G=t.color.length;q=u.mallocUint8(G);for(var Y=(t.color.subarray||t.color.slice).bind(t.color),W=0;W4||this.baselineOffset.length>1||this.align&&this.align.length>1||this.fontAtlas.length>1||this.positionOffset.length>2){var J=Math.max(.5*this.position.length||0,.25*this.color.length||0,this.baselineOffset.length||0,this.alignOffset.length||0,this.font.length||0,this.opacity.length||0,.5*this.positionOffset.length||0);this.batch=Array(J);for(var K=0;K1?this.counts[K]:this.counts[0],offset:this.textOffsets.length>1?this.textOffsets[K]:this.textOffsets[0],color:this.color?this.color.length<=4?this.color:this.color.subarray(4*K,4*K+4):[0,0,0,255],opacity:Array.isArray(this.opacity)?this.opacity[K]:this.opacity,baseline:null!=this.baselineOffset[K]?this.baselineOffset[K]:this.baselineOffset[0],align:this.align?null!=this.alignOffset[K]?this.alignOffset[K]:this.alignOffset[0]:0,atlas:this.fontAtlas[K]||this.fontAtlas[0],positionOffset:this.positionOffset.length>2?this.positionOffset.subarray(2*K,2*K+2):this.positionOffset}}else this.count?this.batch=[{count:this.count,offset:0,color:this.color||[0,0,0,255],opacity:Array.isArray(this.opacity)?this.opacity[0]:this.opacity,baseline:this.baselineOffset[0],align:this.alignOffset?this.alignOffset[0]:0,atlas:this.fontAtlas[0],positionOffset:this.positionOffset}]:this.batch=[]},T.prototype.destroy=function(){},T.prototype.kerning=!0,T.prototype.position={constant:new Float32Array(2)},T.prototype.translate=null,T.prototype.scale=null,T.prototype.font=null,T.prototype.text="",T.prototype.positionOffset=[0,0],T.prototype.opacity=1,T.prototype.color=new Uint8Array([0,0,0,255]),T.prototype.alignOffset=[0,0],T.maxAtlasSize=1024,T.atlasCanvas=document.createElement("canvas"),T.atlasContext=T.atlasCanvas.getContext("2d",{alpha:!1}),T.baseFontSize=64,T.fonts={},e.exports=T},{"bit-twiddle":101,"color-normalize":126,"css-font":146,"detect-kerning":173,"es6-weak-map":233,"flatten-vertex-data":244,"font-atlas":245,"font-measure":246,"gl-util/context":339,"is-plain-obj":437,"object-assign":466,"parse-rect":471,"parse-unit":473,"pick-by-alias":475,regl:516,"to-px":574,"typedarray-pool":590}],338:[function(t,e,r){"use strict";var n=t("ndarray"),i=t("ndarray-ops"),a=t("typedarray-pool");e.exports=function(t){if(arguments.length<=1)throw new Error("gl-texture2d: Missing arguments for texture2d constructor");o||c(t);if("number"==typeof arguments[1])return v(t,arguments[1],arguments[2],arguments[3]||t.RGBA,arguments[4]||t.UNSIGNED_BYTE);if(Array.isArray(arguments[1]))return v(t,0|arguments[1][0],0|arguments[1][1],arguments[2]||t.RGBA,arguments[3]||t.UNSIGNED_BYTE);if("object"==typeof arguments[1]){var e=arguments[1],r=u(e)?e:e.raw;if(r)return y(t,r,0|e.width,0|e.height,arguments[2]||t.RGBA,arguments[3]||t.UNSIGNED_BYTE);if(e.shape&&e.data&&e.stride)return x(t,e)}throw new Error("gl-texture2d: Invalid arguments for texture2d constructor")};var o=null,s=null,l=null;function c(t){o=[t.LINEAR,t.NEAREST_MIPMAP_LINEAR,t.LINEAR_MIPMAP_NEAREST,t.LINEAR_MIPMAP_NEAREST],s=[t.NEAREST,t.LINEAR,t.NEAREST_MIPMAP_NEAREST,t.NEAREST_MIPMAP_LINEAR,t.LINEAR_MIPMAP_NEAREST,t.LINEAR_MIPMAP_LINEAR],l=[t.REPEAT,t.CLAMP_TO_EDGE,t.MIRRORED_REPEAT]}function u(t){return"undefined"!=typeof HTMLCanvasElement&&t instanceof HTMLCanvasElement||"undefined"!=typeof HTMLImageElement&&t instanceof HTMLImageElement||"undefined"!=typeof HTMLVideoElement&&t instanceof HTMLVideoElement||"undefined"!=typeof ImageData&&t instanceof ImageData}var f=function(t,e){i.muls(t,e,255)};function h(t,e,r){var n=t.gl,i=n.getParameter(n.MAX_TEXTURE_SIZE);if(e<0||e>i||r<0||r>i)throw new Error("gl-texture2d: Invalid texture size");return t._shape=[e,r],t.bind(),n.texImage2D(n.TEXTURE_2D,0,t.format,e,r,0,t.format,t.type,null),t._mipLevels=[0],t}function p(t,e,r,n,i,a){this.gl=t,this.handle=e,this.format=i,this.type=a,this._shape=[r,n],this._mipLevels=[0],this._magFilter=t.NEAREST,this._minFilter=t.NEAREST,this._wrapS=t.CLAMP_TO_EDGE,this._wrapT=t.CLAMP_TO_EDGE,this._anisoSamples=1;var o=this,s=[this._wrapS,this._wrapT];Object.defineProperties(s,[{get:function(){return o._wrapS},set:function(t){return o.wrapS=t}},{get:function(){return o._wrapT},set:function(t){return o.wrapT=t}}]),this._wrapVector=s;var l=[this._shape[0],this._shape[1]];Object.defineProperties(l,[{get:function(){return o._shape[0]},set:function(t){return o.width=t}},{get:function(){return o._shape[1]},set:function(t){return o.height=t}}]),this._shapeVector=l}var d=p.prototype;function m(t,e){return 3===t.length?1===e[2]&&e[1]===t[0]*t[2]&&e[0]===t[2]:1===e[0]&&e[1]===t[0]}function g(t){var e=t.createTexture();return t.bindTexture(t.TEXTURE_2D,e),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_MIN_FILTER,t.NEAREST),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_MAG_FILTER,t.NEAREST),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_WRAP_S,t.CLAMP_TO_EDGE),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_WRAP_T,t.CLAMP_TO_EDGE),e}function v(t,e,r,n,i){var a=t.getParameter(t.MAX_TEXTURE_SIZE);if(e<0||e>a||r<0||r>a)throw new Error("gl-texture2d: Invalid texture shape");if(i===t.FLOAT&&!t.getExtension("OES_texture_float"))throw new Error("gl-texture2d: Floating point textures not supported on this platform");var o=g(t);return t.texImage2D(t.TEXTURE_2D,0,n,e,r,0,n,i,null),new p(t,o,e,r,n,i)}function y(t,e,r,n,i,a){var o=g(t);return t.texImage2D(t.TEXTURE_2D,0,i,i,a,e),new p(t,o,r,n,i,a)}function x(t,e){var r=e.dtype,o=e.shape.slice(),s=t.getParameter(t.MAX_TEXTURE_SIZE);if(o[0]<0||o[0]>s||o[1]<0||o[1]>s)throw new Error("gl-texture2d: Invalid texture size");var l=m(o,e.stride.slice()),c=0;"float32"===r?c=t.FLOAT:"float64"===r?(c=t.FLOAT,l=!1,r="float32"):"uint8"===r?c=t.UNSIGNED_BYTE:(c=t.UNSIGNED_BYTE,l=!1,r="uint8");var u,h,d=0;if(2===o.length)d=t.LUMINANCE,o=[o[0],o[1],1],e=n(e.data,o,[e.stride[0],e.stride[1],1],e.offset);else{if(3!==o.length)throw new Error("gl-texture2d: Invalid shape for texture");if(1===o[2])d=t.ALPHA;else if(2===o[2])d=t.LUMINANCE_ALPHA;else if(3===o[2])d=t.RGB;else{if(4!==o[2])throw new Error("gl-texture2d: Invalid shape for pixel coords");d=t.RGBA}}c!==t.FLOAT||t.getExtension("OES_texture_float")||(c=t.UNSIGNED_BYTE,l=!1);var v=e.size;if(l)u=0===e.offset&&e.data.length===v?e.data:e.data.subarray(e.offset,e.offset+v);else{var y=[o[2],o[2]*o[0],1];h=a.malloc(v,r);var x=n(h,o,y,0);"float32"!==r&&"float64"!==r||c!==t.UNSIGNED_BYTE?i.assign(x,e):f(x,e),u=h.subarray(0,v)}var b=g(t);return t.texImage2D(t.TEXTURE_2D,0,d,o[0],o[1],0,d,c,u),l||a.free(h),new p(t,b,o[0],o[1],d,c)}Object.defineProperties(d,{minFilter:{get:function(){return this._minFilter},set:function(t){this.bind();var e=this.gl;if(this.type===e.FLOAT&&o.indexOf(t)>=0&&(e.getExtension("OES_texture_float_linear")||(t=e.NEAREST)),s.indexOf(t)<0)throw new Error("gl-texture2d: Unknown filter mode "+t);return e.texParameteri(e.TEXTURE_2D,e.TEXTURE_MIN_FILTER,t),this._minFilter=t}},magFilter:{get:function(){return this._magFilter},set:function(t){this.bind();var e=this.gl;if(this.type===e.FLOAT&&o.indexOf(t)>=0&&(e.getExtension("OES_texture_float_linear")||(t=e.NEAREST)),s.indexOf(t)<0)throw new Error("gl-texture2d: Unknown filter mode "+t);return e.texParameteri(e.TEXTURE_2D,e.TEXTURE_MAG_FILTER,t),this._magFilter=t}},mipSamples:{get:function(){return this._anisoSamples},set:function(t){var e=this._anisoSamples;if(this._anisoSamples=0|Math.max(t,1),e!==this._anisoSamples){var r=this.gl.getExtension("EXT_texture_filter_anisotropic");r&&this.gl.texParameterf(this.gl.TEXTURE_2D,r.TEXTURE_MAX_ANISOTROPY_EXT,this._anisoSamples)}return this._anisoSamples}},wrapS:{get:function(){return this._wrapS},set:function(t){if(this.bind(),l.indexOf(t)<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);return this.gl.texParameteri(this.gl.TEXTURE_2D,this.gl.TEXTURE_WRAP_S,t),this._wrapS=t}},wrapT:{get:function(){return this._wrapT},set:function(t){if(this.bind(),l.indexOf(t)<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);return this.gl.texParameteri(this.gl.TEXTURE_2D,this.gl.TEXTURE_WRAP_T,t),this._wrapT=t}},wrap:{get:function(){return this._wrapVector},set:function(t){if(Array.isArray(t)||(t=[t,t]),2!==t.length)throw new Error("gl-texture2d: Must specify wrap mode for rows and columns");for(var e=0;e<2;++e)if(l.indexOf(t[e])<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);this._wrapS=t[0],this._wrapT=t[1];var r=this.gl;return this.bind(),r.texParameteri(r.TEXTURE_2D,r.TEXTURE_WRAP_S,this._wrapS),r.texParameteri(r.TEXTURE_2D,r.TEXTURE_WRAP_T,this._wrapT),t}},shape:{get:function(){return this._shapeVector},set:function(t){if(Array.isArray(t)){if(2!==t.length)throw new Error("gl-texture2d: Invalid texture shape")}else t=[0|t,0|t];return h(this,0|t[0],0|t[1]),[0|t[0],0|t[1]]}},width:{get:function(){return this._shape[0]},set:function(t){return h(this,t|=0,this._shape[1]),t}},height:{get:function(){return this._shape[1]},set:function(t){return t|=0,h(this,this._shape[0],t),t}}}),d.bind=function(t){var e=this.gl;return void 0!==t&&e.activeTexture(e.TEXTURE0+(0|t)),e.bindTexture(e.TEXTURE_2D,this.handle),void 0!==t?0|t:e.getParameter(e.ACTIVE_TEXTURE)-e.TEXTURE0},d.dispose=function(){this.gl.deleteTexture(this.handle)},d.generateMipmap=function(){this.bind(),this.gl.generateMipmap(this.gl.TEXTURE_2D);for(var t=Math.min(this._shape[0],this._shape[1]),e=0;t>0;++e,t>>>=1)this._mipLevels.indexOf(e)<0&&this._mipLevels.push(e)},d.setPixels=function(t,e,r,o){var s=this.gl;this.bind(),Array.isArray(e)?(o=r,r=0|e[1],e=0|e[0]):(e=e||0,r=r||0),o=o||0;var l=u(t)?t:t.raw;if(l){this._mipLevels.indexOf(o)<0?(s.texImage2D(s.TEXTURE_2D,0,this.format,this.format,this.type,l),this._mipLevels.push(o)):s.texSubImage2D(s.TEXTURE_2D,o,e,r,this.format,this.type,l)}else{if(!(t.shape&&t.stride&&t.data))throw new Error("gl-texture2d: Unsupported data type");if(t.shape.length<2||e+t.shape[1]>this._shape[1]>>>o||r+t.shape[0]>this._shape[0]>>>o||e<0||r<0)throw new Error("gl-texture2d: Texture dimensions are out of bounds");!function(t,e,r,o,s,l,c,u){var h=u.dtype,p=u.shape.slice();if(p.length<2||p.length>3)throw new Error("gl-texture2d: Invalid ndarray, must be 2d or 3d");var d=0,g=0,v=m(p,u.stride.slice());"float32"===h?d=t.FLOAT:"float64"===h?(d=t.FLOAT,v=!1,h="float32"):"uint8"===h?d=t.UNSIGNED_BYTE:(d=t.UNSIGNED_BYTE,v=!1,h="uint8");if(2===p.length)g=t.LUMINANCE,p=[p[0],p[1],1],u=n(u.data,p,[u.stride[0],u.stride[1],1],u.offset);else{if(3!==p.length)throw new Error("gl-texture2d: Invalid shape for texture");if(1===p[2])g=t.ALPHA;else if(2===p[2])g=t.LUMINANCE_ALPHA;else if(3===p[2])g=t.RGB;else{if(4!==p[2])throw new Error("gl-texture2d: Invalid shape for pixel coords");g=t.RGBA}p[2]}g!==t.LUMINANCE&&g!==t.ALPHA||s!==t.LUMINANCE&&s!==t.ALPHA||(g=s);if(g!==s)throw new Error("gl-texture2d: Incompatible texture format for setPixels");var y=u.size,x=c.indexOf(o)<0;x&&c.push(o);if(d===l&&v)0===u.offset&&u.data.length===y?x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,u.data):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,u.data):x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,u.data.subarray(u.offset,u.offset+y)):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,u.data.subarray(u.offset,u.offset+y));else{var b;b=l===t.FLOAT?a.mallocFloat32(y):a.mallocUint8(y);var _=n(b,p,[p[2],p[2]*p[0],1]);d===t.FLOAT&&l===t.UNSIGNED_BYTE?f(_,u):i.assign(_,u),x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,b.subarray(0,y)):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,b.subarray(0,y)),l===t.FLOAT?a.freeFloat32(b):a.freeUint8(b)}}(s,e,r,o,this.format,this.type,this._mipLevels,t)}}},{ndarray:462,"ndarray-ops":457,"typedarray-pool":590}],339:[function(t,e,r){(function(r){(function(){"use strict";var n=t("pick-by-alias");function i(t){if(t.container)if(t.container==document.body)document.body.style.width||(t.canvas.width=t.width||t.pixelRatio*r.innerWidth),document.body.style.height||(t.canvas.height=t.height||t.pixelRatio*r.innerHeight);else{var e=t.container.getBoundingClientRect();t.canvas.width=t.width||e.right-e.left,t.canvas.height=t.height||e.bottom-e.top}}function a(t){return"function"==typeof t.getContext&&"width"in t&&"height"in t}function o(){var t=document.createElement("canvas");return t.style.position="absolute",t.style.top=0,t.style.left=0,t}e.exports=function(t){var e;if(t?"string"==typeof t&&(t={container:t}):t={},a(t)?t={container:t}:t="string"==typeof(e=t).nodeName&&"function"==typeof e.appendChild&&"function"==typeof e.getBoundingClientRect?{container:t}:function(t){return"function"==typeof t.drawArrays||"function"==typeof t.drawElements}(t)?{gl:t}:n(t,{container:"container target element el canvas holder parent parentNode wrapper use ref root node",gl:"gl context webgl glContext",attrs:"attributes attrs contextAttributes",pixelRatio:"pixelRatio pxRatio px ratio pxratio pixelratio",width:"w width",height:"h height"},!0),t.pixelRatio||(t.pixelRatio=r.pixelRatio||1),t.gl)return t.gl;if(t.canvas&&(t.container=t.canvas.parentNode),t.container){if("string"==typeof t.container){var s=document.querySelector(t.container);if(!s)throw Error("Element "+t.container+" is not found");t.container=s}a(t.container)?(t.canvas=t.container,t.container=t.canvas.parentNode):t.canvas||(t.canvas=o(),t.container.appendChild(t.canvas),i(t))}else if(!t.canvas){if("undefined"==typeof document)throw Error("Not DOM environment. Use headless-gl.");t.container=document.body||document.documentElement,t.canvas=o(),t.container.appendChild(t.canvas),i(t)}return t.gl||["webgl","experimental-webgl","webgl-experimental"].some((function(e){try{t.gl=t.canvas.getContext(e,t.attrs)}catch(t){}return t.gl})),t.gl}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"pick-by-alias":475}],340:[function(t,e,r){"use strict";e.exports=function(t,e,r){e?e.bind():t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null);var n=0|t.getParameter(t.MAX_VERTEX_ATTRIBS);if(r){if(r.length>n)throw new Error("gl-vao: Too many vertex attributes");for(var i=0;i1?0:Math.acos(s)};var n=t("./fromValues"),i=t("./normalize"),a=t("./dot")},{"./dot":355,"./fromValues":361,"./normalize":372}],346:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.ceil(e[0]),t[1]=Math.ceil(e[1]),t[2]=Math.ceil(e[2]),t}},{}],347:[function(t,e,r){e.exports=function(t){var e=new Float32Array(3);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e}},{}],348:[function(t,e,r){e.exports=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t}},{}],349:[function(t,e,r){e.exports=function(){var t=new Float32Array(3);return t[0]=0,t[1]=0,t[2]=0,t}},{}],350:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2];return t[0]=i*l-a*s,t[1]=a*o-n*l,t[2]=n*s-i*o,t}},{}],351:[function(t,e,r){e.exports=t("./distance")},{"./distance":352}],352:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2];return Math.sqrt(r*r+n*n+i*i)}},{}],353:[function(t,e,r){e.exports=t("./divide")},{"./divide":354}],354:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]/r[0],t[1]=e[1]/r[1],t[2]=e[2]/r[2],t}},{}],355:[function(t,e,r){e.exports=function(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}},{}],356:[function(t,e,r){e.exports=1e-6},{}],357:[function(t,e,r){e.exports=function(t,e){var r=t[0],i=t[1],a=t[2],o=e[0],s=e[1],l=e[2];return Math.abs(r-o)<=n*Math.max(1,Math.abs(r),Math.abs(o))&&Math.abs(i-s)<=n*Math.max(1,Math.abs(i),Math.abs(s))&&Math.abs(a-l)<=n*Math.max(1,Math.abs(a),Math.abs(l))};var n=t("./epsilon")},{"./epsilon":356}],358:[function(t,e,r){e.exports=function(t,e){return t[0]===e[0]&&t[1]===e[1]&&t[2]===e[2]}},{}],359:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.floor(e[0]),t[1]=Math.floor(e[1]),t[2]=Math.floor(e[2]),t}},{}],360:[function(t,e,r){e.exports=function(t,e,r,i,a,o){var s,l;e||(e=3);r||(r=0);l=i?Math.min(i*e+r,t.length):t.length;for(s=r;s0&&(a=1/Math.sqrt(a),t[0]=e[0]*a,t[1]=e[1]*a,t[2]=e[2]*a);return t}},{}],373:[function(t,e,r){e.exports=function(t,e){e=e||1;var r=2*Math.random()*Math.PI,n=2*Math.random()-1,i=Math.sqrt(1-n*n)*e;return t[0]=Math.cos(r)*i,t[1]=Math.sin(r)*i,t[2]=n*e,t}},{}],374:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[1],a=r[2],o=e[1]-i,s=e[2]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=e[0],t[1]=i+o*c-s*l,t[2]=a+o*l+s*c,t}},{}],375:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[0],a=r[2],o=e[0]-i,s=e[2]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=i+s*l+o*c,t[1]=e[1],t[2]=a+s*c-o*l,t}},{}],376:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[0],a=r[1],o=e[0]-i,s=e[1]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=i+o*c-s*l,t[1]=a+o*l+s*c,t[2]=e[2],t}},{}],377:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.round(e[0]),t[1]=Math.round(e[1]),t[2]=Math.round(e[2]),t}},{}],378:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r,t[1]=e[1]*r,t[2]=e[2]*r,t}},{}],379:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e[0]+r[0]*n,t[1]=e[1]+r[1]*n,t[2]=e[2]+r[2]*n,t}},{}],380:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e,t[1]=r,t[2]=n,t}},{}],381:[function(t,e,r){e.exports=t("./squaredDistance")},{"./squaredDistance":383}],382:[function(t,e,r){e.exports=t("./squaredLength")},{"./squaredLength":384}],383:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2];return r*r+n*n+i*i}},{}],384:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2];return e*e+r*r+n*n}},{}],385:[function(t,e,r){e.exports=t("./subtract")},{"./subtract":386}],386:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t}},{}],387:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2];return t[0]=n*r[0]+i*r[3]+a*r[6],t[1]=n*r[1]+i*r[4]+a*r[7],t[2]=n*r[2]+i*r[5]+a*r[8],t}},{}],388:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[3]*n+r[7]*i+r[11]*a+r[15];return o=o||1,t[0]=(r[0]*n+r[4]*i+r[8]*a+r[12])/o,t[1]=(r[1]*n+r[5]*i+r[9]*a+r[13])/o,t[2]=(r[2]*n+r[6]*i+r[10]*a+r[14])/o,t}},{}],389:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2],c=r[3],u=c*n+s*a-l*i,f=c*i+l*n-o*a,h=c*a+o*i-s*n,p=-o*n-s*i-l*a;return t[0]=u*c+p*-o+f*-l-h*-s,t[1]=f*c+p*-s+h*-o-u*-l,t[2]=h*c+p*-l+u*-s-f*-o,t}},{}],390:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]+r[0],t[1]=e[1]+r[1],t[2]=e[2]+r[2],t[3]=e[3]+r[3],t}},{}],391:[function(t,e,r){e.exports=function(t){var e=new Float32Array(4);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[3],e}},{}],392:[function(t,e,r){e.exports=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=e[3],t}},{}],393:[function(t,e,r){e.exports=function(){var t=new Float32Array(4);return t[0]=0,t[1]=0,t[2]=0,t[3]=0,t}},{}],394:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2],a=e[3]-t[3];return Math.sqrt(r*r+n*n+i*i+a*a)}},{}],395:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]/r[0],t[1]=e[1]/r[1],t[2]=e[2]/r[2],t[3]=e[3]/r[3],t}},{}],396:[function(t,e,r){e.exports=function(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]+t[3]*e[3]}},{}],397:[function(t,e,r){e.exports=function(t,e,r,n){var i=new Float32Array(4);return i[0]=t,i[1]=e,i[2]=r,i[3]=n,i}},{}],398:[function(t,e,r){e.exports={create:t("./create"),clone:t("./clone"),fromValues:t("./fromValues"),copy:t("./copy"),set:t("./set"),add:t("./add"),subtract:t("./subtract"),multiply:t("./multiply"),divide:t("./divide"),min:t("./min"),max:t("./max"),scale:t("./scale"),scaleAndAdd:t("./scaleAndAdd"),distance:t("./distance"),squaredDistance:t("./squaredDistance"),length:t("./length"),squaredLength:t("./squaredLength"),negate:t("./negate"),inverse:t("./inverse"),normalize:t("./normalize"),dot:t("./dot"),lerp:t("./lerp"),random:t("./random"),transformMat4:t("./transformMat4"),transformQuat:t("./transformQuat")}},{"./add":390,"./clone":391,"./copy":392,"./create":393,"./distance":394,"./divide":395,"./dot":396,"./fromValues":397,"./inverse":399,"./length":400,"./lerp":401,"./max":402,"./min":403,"./multiply":404,"./negate":405,"./normalize":406,"./random":407,"./scale":408,"./scaleAndAdd":409,"./set":410,"./squaredDistance":411,"./squaredLength":412,"./subtract":413,"./transformMat4":414,"./transformQuat":415}],399:[function(t,e,r){e.exports=function(t,e){return t[0]=1/e[0],t[1]=1/e[1],t[2]=1/e[2],t[3]=1/e[3],t}},{}],400:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2],i=t[3];return Math.sqrt(e*e+r*r+n*n+i*i)}},{}],401:[function(t,e,r){e.exports=function(t,e,r,n){var i=e[0],a=e[1],o=e[2],s=e[3];return t[0]=i+n*(r[0]-i),t[1]=a+n*(r[1]-a),t[2]=o+n*(r[2]-o),t[3]=s+n*(r[3]-s),t}},{}],402:[function(t,e,r){e.exports=function(t,e,r){return t[0]=Math.max(e[0],r[0]),t[1]=Math.max(e[1],r[1]),t[2]=Math.max(e[2],r[2]),t[3]=Math.max(e[3],r[3]),t}},{}],403:[function(t,e,r){e.exports=function(t,e,r){return t[0]=Math.min(e[0],r[0]),t[1]=Math.min(e[1],r[1]),t[2]=Math.min(e[2],r[2]),t[3]=Math.min(e[3],r[3]),t}},{}],404:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r[0],t[1]=e[1]*r[1],t[2]=e[2]*r[2],t[3]=e[3]*r[3],t}},{}],405:[function(t,e,r){e.exports=function(t,e){return t[0]=-e[0],t[1]=-e[1],t[2]=-e[2],t[3]=-e[3],t}},{}],406:[function(t,e,r){e.exports=function(t,e){var r=e[0],n=e[1],i=e[2],a=e[3],o=r*r+n*n+i*i+a*a;o>0&&(o=1/Math.sqrt(o),t[0]=r*o,t[1]=n*o,t[2]=i*o,t[3]=a*o);return t}},{}],407:[function(t,e,r){var n=t("./normalize"),i=t("./scale");e.exports=function(t,e){return e=e||1,t[0]=Math.random(),t[1]=Math.random(),t[2]=Math.random(),t[3]=Math.random(),n(t,t),i(t,t,e),t}},{"./normalize":406,"./scale":408}],408:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r,t[1]=e[1]*r,t[2]=e[2]*r,t[3]=e[3]*r,t}},{}],409:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e[0]+r[0]*n,t[1]=e[1]+r[1]*n,t[2]=e[2]+r[2]*n,t[3]=e[3]+r[3]*n,t}},{}],410:[function(t,e,r){e.exports=function(t,e,r,n,i){return t[0]=e,t[1]=r,t[2]=n,t[3]=i,t}},{}],411:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2],a=e[3]-t[3];return r*r+n*n+i*i+a*a}},{}],412:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2],i=t[3];return e*e+r*r+n*n+i*i}},{}],413:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t[3]=e[3]-r[3],t}},{}],414:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3];return t[0]=r[0]*n+r[4]*i+r[8]*a+r[12]*o,t[1]=r[1]*n+r[5]*i+r[9]*a+r[13]*o,t[2]=r[2]*n+r[6]*i+r[10]*a+r[14]*o,t[3]=r[3]*n+r[7]*i+r[11]*a+r[15]*o,t}},{}],415:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2],c=r[3],u=c*n+s*a-l*i,f=c*i+l*n-o*a,h=c*a+o*i-s*n,p=-o*n-s*i-l*a;return t[0]=u*c+p*-o+f*-l-h*-s,t[1]=f*c+p*-s+h*-o-u*-l,t[2]=h*c+p*-l+u*-s-f*-o,t[3]=e[3],t}},{}],416:[function(t,e,r){var n=t("glsl-tokenizer"),i=t("atob-lite");e.exports=function(t){for(var e=Array.isArray(t)?t:n(t),r=0;r0)continue;r=t.slice(0,1).join("")}return A(r),v+=r.length,(p=p.slice(r.length)).length}}function I(){return/[^a-fA-F0-9]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function O(){return"."===e||/[eE]/.test(e)?(p.push(e),h=5,r=e,u+1):"x"===e&&1===p.length&&"0"===p[0]?(h=11,p.push(e),r=e,u+1):/[^\d]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function z(){return"f"===e&&(p.push(e),r=e,u+=1),/[eE]/.test(e)?(p.push(e),r=e,u+1):("-"!==e&&"+"!==e||!/[eE]/.test(r))&&/[^\d]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function D(){if(/[^\d\w_]/.test(e)){var t=p.join("");return h=k[t]?8:T[t]?7:6,A(p.join("")),h=999,u}return p.push(e),r=e,u+1}};var n=t("./lib/literals"),i=t("./lib/operators"),a=t("./lib/builtins"),o=t("./lib/literals-300es"),s=t("./lib/builtins-300es"),l=["block-comment","line-comment","preprocessor","operator","integer","float","ident","builtin","keyword","whitespace","eof","integer"]},{"./lib/builtins":419,"./lib/builtins-300es":418,"./lib/literals":421,"./lib/literals-300es":420,"./lib/operators":422}],418:[function(t,e,r){var n=t("./builtins");n=n.slice().filter((function(t){return!/^(gl\_|texture)/.test(t)})),e.exports=n.concat(["gl_VertexID","gl_InstanceID","gl_Position","gl_PointSize","gl_FragCoord","gl_FrontFacing","gl_FragDepth","gl_PointCoord","gl_MaxVertexAttribs","gl_MaxVertexUniformVectors","gl_MaxVertexOutputVectors","gl_MaxFragmentInputVectors","gl_MaxVertexTextureImageUnits","gl_MaxCombinedTextureImageUnits","gl_MaxTextureImageUnits","gl_MaxFragmentUniformVectors","gl_MaxDrawBuffers","gl_MinProgramTexelOffset","gl_MaxProgramTexelOffset","gl_DepthRangeParameters","gl_DepthRange","trunc","round","roundEven","isnan","isinf","floatBitsToInt","floatBitsToUint","intBitsToFloat","uintBitsToFloat","packSnorm2x16","unpackSnorm2x16","packUnorm2x16","unpackUnorm2x16","packHalf2x16","unpackHalf2x16","outerProduct","transpose","determinant","inverse","texture","textureSize","textureProj","textureLod","textureOffset","texelFetch","texelFetchOffset","textureProjOffset","textureLodOffset","textureProjLod","textureProjLodOffset","textureGrad","textureGradOffset","textureProjGrad","textureProjGradOffset"])},{"./builtins":419}],419:[function(t,e,r){e.exports=["abs","acos","all","any","asin","atan","ceil","clamp","cos","cross","dFdx","dFdy","degrees","distance","dot","equal","exp","exp2","faceforward","floor","fract","gl_BackColor","gl_BackLightModelProduct","gl_BackLightProduct","gl_BackMaterial","gl_BackSecondaryColor","gl_ClipPlane","gl_ClipVertex","gl_Color","gl_DepthRange","gl_DepthRangeParameters","gl_EyePlaneQ","gl_EyePlaneR","gl_EyePlaneS","gl_EyePlaneT","gl_Fog","gl_FogCoord","gl_FogFragCoord","gl_FogParameters","gl_FragColor","gl_FragCoord","gl_FragData","gl_FragDepth","gl_FragDepthEXT","gl_FrontColor","gl_FrontFacing","gl_FrontLightModelProduct","gl_FrontLightProduct","gl_FrontMaterial","gl_FrontSecondaryColor","gl_LightModel","gl_LightModelParameters","gl_LightModelProducts","gl_LightProducts","gl_LightSource","gl_LightSourceParameters","gl_MaterialParameters","gl_MaxClipPlanes","gl_MaxCombinedTextureImageUnits","gl_MaxDrawBuffers","gl_MaxFragmentUniformComponents","gl_MaxLights","gl_MaxTextureCoords","gl_MaxTextureImageUnits","gl_MaxTextureUnits","gl_MaxVaryingFloats","gl_MaxVertexAttribs","gl_MaxVertexTextureImageUnits","gl_MaxVertexUniformComponents","gl_ModelViewMatrix","gl_ModelViewMatrixInverse","gl_ModelViewMatrixInverseTranspose","gl_ModelViewMatrixTranspose","gl_ModelViewProjectionMatrix","gl_ModelViewProjectionMatrixInverse","gl_ModelViewProjectionMatrixInverseTranspose","gl_ModelViewProjectionMatrixTranspose","gl_MultiTexCoord0","gl_MultiTexCoord1","gl_MultiTexCoord2","gl_MultiTexCoord3","gl_MultiTexCoord4","gl_MultiTexCoord5","gl_MultiTexCoord6","gl_MultiTexCoord7","gl_Normal","gl_NormalMatrix","gl_NormalScale","gl_ObjectPlaneQ","gl_ObjectPlaneR","gl_ObjectPlaneS","gl_ObjectPlaneT","gl_Point","gl_PointCoord","gl_PointParameters","gl_PointSize","gl_Position","gl_ProjectionMatrix","gl_ProjectionMatrixInverse","gl_ProjectionMatrixInverseTranspose","gl_ProjectionMatrixTranspose","gl_SecondaryColor","gl_TexCoord","gl_TextureEnvColor","gl_TextureMatrix","gl_TextureMatrixInverse","gl_TextureMatrixInverseTranspose","gl_TextureMatrixTranspose","gl_Vertex","greaterThan","greaterThanEqual","inversesqrt","length","lessThan","lessThanEqual","log","log2","matrixCompMult","max","min","mix","mod","normalize","not","notEqual","pow","radians","reflect","refract","sign","sin","smoothstep","sqrt","step","tan","texture2D","texture2DLod","texture2DProj","texture2DProjLod","textureCube","textureCubeLod","texture2DLodEXT","texture2DProjLodEXT","textureCubeLodEXT","texture2DGradEXT","texture2DProjGradEXT","textureCubeGradEXT"]},{}],420:[function(t,e,r){var n=t("./literals");e.exports=n.slice().concat(["layout","centroid","smooth","case","mat2x2","mat2x3","mat2x4","mat3x2","mat3x3","mat3x4","mat4x2","mat4x3","mat4x4","uvec2","uvec3","uvec4","samplerCubeShadow","sampler2DArray","sampler2DArrayShadow","isampler2D","isampler3D","isamplerCube","isampler2DArray","usampler2D","usampler3D","usamplerCube","usampler2DArray","coherent","restrict","readonly","writeonly","resource","atomic_uint","noperspective","patch","sample","subroutine","common","partition","active","filter","image1D","image2D","image3D","imageCube","iimage1D","iimage2D","iimage3D","iimageCube","uimage1D","uimage2D","uimage3D","uimageCube","image1DArray","image2DArray","iimage1DArray","iimage2DArray","uimage1DArray","uimage2DArray","image1DShadow","image2DShadow","image1DArrayShadow","image2DArrayShadow","imageBuffer","iimageBuffer","uimageBuffer","sampler1DArray","sampler1DArrayShadow","isampler1D","isampler1DArray","usampler1D","usampler1DArray","isampler2DRect","usampler2DRect","samplerBuffer","isamplerBuffer","usamplerBuffer","sampler2DMS","isampler2DMS","usampler2DMS","sampler2DMSArray","isampler2DMSArray","usampler2DMSArray"])},{"./literals":421}],421:[function(t,e,r){e.exports=["precision","highp","mediump","lowp","attribute","const","uniform","varying","break","continue","do","for","while","if","else","in","out","inout","float","int","uint","void","bool","true","false","discard","return","mat2","mat3","mat4","vec2","vec3","vec4","ivec2","ivec3","ivec4","bvec2","bvec3","bvec4","sampler1D","sampler2D","sampler3D","samplerCube","sampler1DShadow","sampler2DShadow","struct","asm","class","union","enum","typedef","template","this","packed","goto","switch","default","inline","noinline","volatile","public","static","extern","external","interface","long","short","double","half","fixed","unsigned","input","output","hvec2","hvec3","hvec4","dvec2","dvec3","dvec4","fvec2","fvec3","fvec4","sampler2DRect","sampler3DRect","sampler2DRectShadow","sizeof","cast","namespace","using"]},{}],422:[function(t,e,r){e.exports=["<<=",">>=","++","--","<<",">>","<=",">=","==","!=","&&","||","+=","-=","*=","/=","%=","&=","^^","^=","|=","(",")","[","]",".","!","~","*","/","%","+","-","<",">","&","^","|","?",":","=",",",";","{","}"]},{}],423:[function(t,e,r){var n=t("./index");e.exports=function(t,e){var r=n(e),i=[];return i=(i=i.concat(r(t))).concat(r(null))}},{"./index":417}],424:[function(t,e,r){e.exports=function(t){"string"==typeof t&&(t=[t]);for(var e=[].slice.call(arguments,1),r=[],n=0;n */ -r.read=function(t,e,r,n,i){var a,o,s=8*i-n-1,l=(1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},r.write=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m}},{}],226:[function(t,e,r){"function"==typeof Object.create?e.exports=function(t,e){e&&(t.super_=e,t.prototype=Object.create(e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}}))}:e.exports=function(t,e){if(e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}}},{}],227:[function(t,e,r){e.exports=!0},{}],228:[function(t,e,r){"use strict";e.exports="undefined"!=typeof navigator&&(/MSIE/.test(navigator.userAgent)||/Trident\//.test(navigator.appVersion))},{}],229:[function(t,e,r){"use strict";e.exports=a,e.exports.isMobile=a,e.exports.default=a;var n=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i,i=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino|android|ipad|playbook|silk/i;function a(t){t||(t={});var e=t.ua;if(e||"undefined"==typeof navigator||(e=navigator.userAgent),e&&e.headers&&"string"==typeof e.headers["user-agent"]&&(e=e.headers["user-agent"]),"string"!=typeof e)return!1;var r=t.tablet?i.test(e):n.test(e);return!r&&t.tablet&&t.featureDetect&&navigator&&navigator.maxTouchPoints>1&&-1!==e.indexOf("Macintosh")&&-1!==e.indexOf("Safari")&&(r=!0),r}},{}],230:[function(t,e,r){"use strict";e.exports=function(t){var e=typeof t;return null!==t&&("object"===e||"function"===e)}},{}],231:[function(t,e,r){"use strict";var n=Object.prototype.toString;e.exports=function(t){var e;return"[object Object]"===n.call(t)&&(null===(e=Object.getPrototypeOf(t))||e===Object.getPrototypeOf({}))}},{}],232:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=t.length,n=0;n13)&&32!==e&&133!==e&&160!==e&&5760!==e&&6158!==e&&(e<8192||e>8205)&&8232!==e&&8233!==e&&8239!==e&&8287!==e&&8288!==e&&12288!==e&&65279!==e)return!1;return!0}},{}],233:[function(t,e,r){"use strict";e.exports=function(t){return"string"==typeof t&&(t=t.trim(),!!(/^[mzlhvcsqta]\s*[-+.0-9][^mlhvzcsqta]+/i.test(t)&&/[\dz]$/i.test(t)&&t.length>4))}},{}],234:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?e.exports=n():(t=t||self).mapboxgl=n()}(this,(function(){"use strict";var t,e,r;function n(n,i){if(t)if(e){var a="var sharedChunk = {}; ("+t+")(sharedChunk); ("+e+")(sharedChunk);",o={};t(o),(r=i(o)).workerUrl=window.URL.createObjectURL(new Blob([a],{type:"text/javascript"}))}else e=i;else t=i}return n(0,(function(t){function e(t,e){return t(e={exports:{}},e.exports),e.exports}var r=n;function n(t,e,r,n){this.cx=3*t,this.bx=3*(r-t)-this.cx,this.ax=1-this.cx-this.bx,this.cy=3*e,this.by=3*(n-e)-this.cy,this.ay=1-this.cy-this.by,this.p1x=t,this.p1y=n,this.p2x=r,this.p2y=n}n.prototype.sampleCurveX=function(t){return((this.ax*t+this.bx)*t+this.cx)*t},n.prototype.sampleCurveY=function(t){return((this.ay*t+this.by)*t+this.cy)*t},n.prototype.sampleCurveDerivativeX=function(t){return(3*this.ax*t+2*this.bx)*t+this.cx},n.prototype.solveCurveX=function(t,e){var r,n,i,a,o;for(void 0===e&&(e=1e-6),i=t,o=0;o<8;o++){if(a=this.sampleCurveX(i)-t,Math.abs(a)(n=1))return n;for(;ra?r=i:n=i,i=.5*(n-r)+r}return i},n.prototype.solve=function(t,e){return this.sampleCurveY(this.solveCurveX(t,e))};var i=a;function a(t,e){this.x=t,this.y=e}function o(t,e,n,i){var a=new r(t,e,n,i);return function(t){return a.solve(t)}}a.prototype={clone:function(){return new a(this.x,this.y)},add:function(t){return this.clone()._add(t)},sub:function(t){return this.clone()._sub(t)},multByPoint:function(t){return this.clone()._multByPoint(t)},divByPoint:function(t){return this.clone()._divByPoint(t)},mult:function(t){return this.clone()._mult(t)},div:function(t){return this.clone()._div(t)},rotate:function(t){return this.clone()._rotate(t)},rotateAround:function(t,e){return this.clone()._rotateAround(t,e)},matMult:function(t){return this.clone()._matMult(t)},unit:function(){return this.clone()._unit()},perp:function(){return this.clone()._perp()},round:function(){return this.clone()._round()},mag:function(){return Math.sqrt(this.x*this.x+this.y*this.y)},equals:function(t){return this.x===t.x&&this.y===t.y},dist:function(t){return Math.sqrt(this.distSqr(t))},distSqr:function(t){var e=t.x-this.x,r=t.y-this.y;return e*e+r*r},angle:function(){return Math.atan2(this.y,this.x)},angleTo:function(t){return Math.atan2(this.y-t.y,this.x-t.x)},angleWith:function(t){return this.angleWithSep(t.x,t.y)},angleWithSep:function(t,e){return Math.atan2(this.x*e-this.y*t,this.x*t+this.y*e)},_matMult:function(t){var e=t[0]*this.x+t[1]*this.y,r=t[2]*this.x+t[3]*this.y;return this.x=e,this.y=r,this},_add:function(t){return this.x+=t.x,this.y+=t.y,this},_sub:function(t){return this.x-=t.x,this.y-=t.y,this},_mult:function(t){return this.x*=t,this.y*=t,this},_div:function(t){return this.x/=t,this.y/=t,this},_multByPoint:function(t){return this.x*=t.x,this.y*=t.y,this},_divByPoint:function(t){return this.x/=t.x,this.y/=t.y,this},_unit:function(){return this._div(this.mag()),this},_perp:function(){var t=this.y;return this.y=this.x,this.x=-t,this},_rotate:function(t){var e=Math.cos(t),r=Math.sin(t),n=e*this.x-r*this.y,i=r*this.x+e*this.y;return this.x=n,this.y=i,this},_rotateAround:function(t,e){var r=Math.cos(t),n=Math.sin(t),i=e.x+r*(this.x-e.x)-n*(this.y-e.y),a=e.y+n*(this.x-e.x)+r*(this.y-e.y);return this.x=i,this.y=a,this},_round:function(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this}},a.convert=function(t){return t instanceof a?t:Array.isArray(t)?new a(t[0],t[1]):t};var s=o(.25,.1,.25,1);function l(t,e,r){return Math.min(r,Math.max(e,t))}function c(t,e,r){var n=r-e,i=((t-e)%n+n)%n+e;return i===e?r:i}function u(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];for(var n=0,i=e;n>e/4).toString(16):([1e7]+-[1e3]+-4e3+-8e3+-1e11).replace(/[018]/g,t)}()}function d(t){return!!t&&/^[0-9a-f]{8}-[0-9a-f]{4}-[4][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$/i.test(t)}function m(t,e){t.forEach((function(t){e[t]&&(e[t]=e[t].bind(e))}))}function g(t,e){return-1!==t.indexOf(e,t.length-e.length)}function v(t,e,r){var n={};for(var i in t)n[i]=e.call(r||this,t[i],i,t);return n}function y(t,e,r){var n={};for(var i in t)e.call(r||this,t[i],i,t)&&(n[i]=t[i]);return n}function x(t){return Array.isArray(t)?t.map(x):"object"==typeof t&&t?v(t,x):t}var b={};function _(t){b[t]||("undefined"!=typeof console&&console.warn(t),b[t]=!0)}function w(t,e,r){return(r.y-t.y)*(e.x-t.x)>(e.y-t.y)*(r.x-t.x)}function T(t){for(var e=0,r=0,n=t.length,i=n-1,a=void 0,o=void 0;r@\,;\:\\"\/\[\]\?\=\{\}\x7F]+)(?:\=(?:([^\x00-\x20\(\)<>@\,;\:\\"\/\[\]\?\=\{\}\x7F]+)|(?:\"((?:[^"\\]|\\.)*)\")))?/g,(function(t,r,n,i){var a=n||i;return e[r]=!a||a.toLowerCase(),""})),e["max-age"]){var r=parseInt(e["max-age"],10);isNaN(r)?delete e["max-age"]:e["max-age"]=r}return e}var M=null;function S(t){if(null==M){var e=t.navigator?t.navigator.userAgent:null;M=!!t.safari||!(!e||!(/\b(iPad|iPhone|iPod)\b/.test(e)||e.match("Safari")&&!e.match("Chrome")))}return M}function E(t){try{var e=self[t];return e.setItem("_mapbox_test_",1),e.removeItem("_mapbox_test_"),!0}catch(t){return!1}}var L,C,P,I,O=self.performance&&self.performance.now?self.performance.now.bind(self.performance):Date.now.bind(Date),z=self.requestAnimationFrame||self.mozRequestAnimationFrame||self.webkitRequestAnimationFrame||self.msRequestAnimationFrame,D=self.cancelAnimationFrame||self.mozCancelAnimationFrame||self.webkitCancelAnimationFrame||self.msCancelAnimationFrame,R={now:O,frame:function(t){var e=z(t);return{cancel:function(){return D(e)}}},getImageData:function(t,e){void 0===e&&(e=0);var r=self.document.createElement("canvas"),n=r.getContext("2d");if(!n)throw new Error("failed to create canvas 2d context");return r.width=t.width,r.height=t.height,n.drawImage(t,0,0,t.width,t.height),n.getImageData(-e,-e,t.width+2*e,t.height+2*e)},resolveURL:function(t){return L||(L=self.document.createElement("a")),L.href=t,L.href},hardwareConcurrency:self.navigator.hardwareConcurrency||4,get devicePixelRatio(){return self.devicePixelRatio},get prefersReducedMotion(){return!!self.matchMedia&&(null==C&&(C=self.matchMedia("(prefers-reduced-motion: reduce)")),C.matches)}},F={API_URL:"https://api.mapbox.com",get EVENTS_URL(){return this.API_URL?0===this.API_URL.indexOf("https://api.mapbox.cn")?"https://events.mapbox.cn/events/v2":0===this.API_URL.indexOf("https://api.mapbox.com")?"https://events.mapbox.com/events/v2":null:null},FEEDBACK_URL:"https://apps.mapbox.com/feedback",REQUIRE_ACCESS_TOKEN:!0,ACCESS_TOKEN:null,MAX_PARALLEL_IMAGE_REQUESTS:16},B={supported:!1,testSupport:function(t){if(N||!I)return;j?U(t):P=t}},N=!1,j=!1;function U(t){var e=t.createTexture();t.bindTexture(t.TEXTURE_2D,e);try{if(t.texImage2D(t.TEXTURE_2D,0,t.RGBA,t.RGBA,t.UNSIGNED_BYTE,I),t.isContextLost())return;B.supported=!0}catch(t){}t.deleteTexture(e),N=!0}self.document&&((I=self.document.createElement("img")).onload=function(){P&&U(P),P=null,j=!0},I.onerror=function(){N=!0,P=null},I.src="");var V="01";var H=function(t,e){this._transformRequestFn=t,this._customAccessToken=e,this._createSkuToken()};function q(t){return 0===t.indexOf("mapbox:")}H.prototype._createSkuToken=function(){var t=function(){for(var t="",e=0;e<10;e++)t+="0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"[Math.floor(62*Math.random())];return{token:["1",V,t].join(""),tokenExpiresAt:Date.now()+432e5}}();this._skuToken=t.token,this._skuTokenExpiresAt=t.tokenExpiresAt},H.prototype._isSkuTokenExpired=function(){return Date.now()>this._skuTokenExpiresAt},H.prototype.transformRequest=function(t,e){return this._transformRequestFn&&this._transformRequestFn(t,e)||{url:t}},H.prototype.normalizeStyleURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/styles/v1"+r.path,this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeGlyphsURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/fonts/v1"+r.path,this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeSourceURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/v4/"+r.authority+".json",r.params.push("secure"),this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeSpriteURL=function(t,e,r,n){var i=X(t);return q(t)?(i.path="/styles/v1"+i.path+"/sprite"+e+r,this._makeAPIURL(i,this._customAccessToken||n)):(i.path+=""+e+r,Z(i))},H.prototype.normalizeTileURL=function(t,e){if(this._isSkuTokenExpired()&&this._createSkuToken(),t&&!q(t))return t;var r=X(t),n=R.devicePixelRatio>=2||512===e?"@2x":"",i=B.supported?".webp":"$1";r.path=r.path.replace(/(\.(png|jpg)\d*)(?=$)/,""+n+i),r.path=r.path.replace(/^.+\/v4\//,"/"),r.path="/v4"+r.path;var a=this._customAccessToken||function(t){for(var e=0,r=t;e=1&&self.localStorage.setItem(e,JSON.stringify(this.eventData))}catch(t){_("Unable to write to LocalStorage")}},K.prototype.processRequests=function(t){},K.prototype.postEvent=function(t,e,r,n){var i=this;if(F.EVENTS_URL){var a=X(F.EVENTS_URL);a.params.push("access_token="+(n||F.ACCESS_TOKEN||""));var o={event:this.type,created:new Date(t).toISOString(),sdkIdentifier:"mapbox-gl-js",sdkVersion:"1.10.1",skuId:V,userId:this.anonId},s=e?u(o,e):o,l={url:Z(a),headers:{"Content-Type":"text/plain"},body:JSON.stringify([s])};this.pendingRequest=bt(l,(function(t){i.pendingRequest=null,r(t),i.saveEventData(),i.processRequests(n)}))}},K.prototype.queueRequest=function(t,e){this.queue.push(t),this.processRequests(e)};var Q,$,tt=function(t){function e(){t.call(this,"map.load"),this.success={},this.skuToken=""}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.postMapLoadEvent=function(t,e,r,n){this.skuToken=r,(F.EVENTS_URL&&n||F.ACCESS_TOKEN&&Array.isArray(t)&&t.some((function(t){return q(t)||Y(t)})))&&this.queueRequest({id:e,timestamp:Date.now()},n)},e.prototype.processRequests=function(t){var e=this;if(!this.pendingRequest&&0!==this.queue.length){var r=this.queue.shift(),n=r.id,i=r.timestamp;n&&this.success[n]||(this.anonId||this.fetchEventData(),d(this.anonId)||(this.anonId=p()),this.postEvent(i,{skuToken:this.skuToken},(function(t){t||n&&(e.success[n]=!0)}),t))}},e}(K),et=new(function(t){function e(e){t.call(this,"appUserTurnstile"),this._customAccessToken=e}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.postTurnstileEvent=function(t,e){F.EVENTS_URL&&F.ACCESS_TOKEN&&Array.isArray(t)&&t.some((function(t){return q(t)||Y(t)}))&&this.queueRequest(Date.now(),e)},e.prototype.processRequests=function(t){var e=this;if(!this.pendingRequest&&0!==this.queue.length){this.anonId&&this.eventData.lastSuccess&&this.eventData.tokenU||this.fetchEventData();var r=J(F.ACCESS_TOKEN),n=r?r.u:F.ACCESS_TOKEN,i=n!==this.eventData.tokenU;d(this.anonId)||(this.anonId=p(),i=!0);var a=this.queue.shift();if(this.eventData.lastSuccess){var o=new Date(this.eventData.lastSuccess),s=new Date(a),l=(a-this.eventData.lastSuccess)/864e5;i=i||l>=1||l<-1||o.getDate()!==s.getDate()}else i=!0;if(!i)return this.processRequests();this.postEvent(a,{"enabled.telemetry":!1},(function(t){t||(e.eventData.lastSuccess=a,e.eventData.tokenU=n)}),t)}},e}(K)),rt=et.postTurnstileEvent.bind(et),nt=new tt,it=nt.postMapLoadEvent.bind(nt),at=500,ot=50;function st(){self.caches&&!Q&&(Q=self.caches.open("mapbox-tiles"))}function lt(t,e,r){if(st(),Q){var n={status:e.status,statusText:e.statusText,headers:new self.Headers};e.headers.forEach((function(t,e){return n.headers.set(e,t)}));var i=A(e.headers.get("Cache-Control")||"");if(!i["no-store"])i["max-age"]&&n.headers.set("Expires",new Date(r+1e3*i["max-age"]).toUTCString()),new Date(n.headers.get("Expires")).getTime()-r<42e4||function(t,e){if(void 0===$)try{new Response(new ReadableStream),$=!0}catch(t){$=!1}$?e(t.body):t.blob().then(e)}(e,(function(e){var r=new self.Response(e,n);st(),Q&&Q.then((function(e){return e.put(ct(t.url),r)})).catch((function(t){return _(t.message)}))}))}}function ct(t){var e=t.indexOf("?");return e<0?t:t.slice(0,e)}function ut(t,e){if(st(),!Q)return e(null);var r=ct(t.url);Q.then((function(t){t.match(r).then((function(n){var i=function(t){if(!t)return!1;var e=new Date(t.headers.get("Expires")||0),r=A(t.headers.get("Cache-Control")||"");return e>Date.now()&&!r["no-cache"]}(n);t.delete(r),i&&t.put(r,n.clone()),e(null,n,i)})).catch(e)})).catch(e)}var ft,ht=1/0;function pt(){return null==ft&&(ft=self.OffscreenCanvas&&new self.OffscreenCanvas(1,1).getContext("2d")&&"function"==typeof self.createImageBitmap),ft}var dt={Unknown:"Unknown",Style:"Style",Source:"Source",Tile:"Tile",Glyphs:"Glyphs",SpriteImage:"SpriteImage",SpriteJSON:"SpriteJSON",Image:"Image"};"function"==typeof Object.freeze&&Object.freeze(dt);var mt=function(t){function e(e,r,n){401===r&&Y(n)&&(e+=": you may have provided an invalid Mapbox access token. See https://www.mapbox.com/api-documentation/#access-tokens-and-token-scopes"),t.call(this,e),this.status=r,this.url=n,this.name=this.constructor.name,this.message=e}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.toString=function(){return this.name+": "+this.message+" ("+this.status+"): "+this.url},e}(Error),gt=k()?function(){return self.worker&&self.worker.referrer}:function(){return("blob:"===self.location.protocol?self.parent:self).location.href};function vt(t,e){var r,n=new self.AbortController,i=new self.Request(t.url,{method:t.method||"GET",body:t.body,credentials:t.credentials,headers:t.headers,referrer:gt(),signal:n.signal}),a=!1,o=!1,s=(r=i.url).indexOf("sku=")>0&&Y(r);"json"===t.type&&i.headers.set("Accept","application/json");var l=function(r,n,a){if(!o){if(r&&"SecurityError"!==r.message&&_(r),n&&a)return c(n);var l=Date.now();self.fetch(i).then((function(r){if(r.ok){var n=s?r.clone():null;return c(r,n,l)}return e(new mt(r.statusText,r.status,t.url))})).catch((function(t){20!==t.code&&e(new Error(t.message))}))}},c=function(r,n,s){("arrayBuffer"===t.type?r.arrayBuffer():"json"===t.type?r.json():r.text()).then((function(t){o||(n&&s&<(i,n,s),a=!0,e(null,t,r.headers.get("Cache-Control"),r.headers.get("Expires")))})).catch((function(t){o||e(new Error(t.message))}))};return s?ut(i,l):l(null,null),{cancel:function(){o=!0,a||n.abort()}}}var yt=function(t,e){if(r=t.url,!(/^file:/.test(r)||/^file:/.test(gt())&&!/^\w+:/.test(r))){if(self.fetch&&self.Request&&self.AbortController&&self.Request.prototype.hasOwnProperty("signal"))return vt(t,e);if(k()&&self.worker&&self.worker.actor){return self.worker.actor.send("getResource",t,e,void 0,!0)}}var r;return function(t,e){var r=new self.XMLHttpRequest;for(var n in r.open(t.method||"GET",t.url,!0),"arrayBuffer"===t.type&&(r.responseType="arraybuffer"),t.headers)r.setRequestHeader(n,t.headers[n]);return"json"===t.type&&(r.responseType="text",r.setRequestHeader("Accept","application/json")),r.withCredentials="include"===t.credentials,r.onerror=function(){e(new Error(r.statusText))},r.onload=function(){if((r.status>=200&&r.status<300||0===r.status)&&null!==r.response){var n=r.response;if("json"===t.type)try{n=JSON.parse(r.response)}catch(t){return e(t)}e(null,n,r.getResponseHeader("Cache-Control"),r.getResponseHeader("Expires"))}else e(new mt(r.statusText,r.status,t.url))},r.send(t.body),{cancel:function(){return r.abort()}}}(t,e)},xt=function(t,e){return yt(u(t,{type:"arrayBuffer"}),e)},bt=function(t,e){return yt(u(t,{method:"POST"}),e)};var _t,wt;_t=[],wt=0;var Tt=function(t,e){if(B.supported&&(t.headers||(t.headers={}),t.headers.accept="image/webp,*/*"),wt>=F.MAX_PARALLEL_IMAGE_REQUESTS){var r={requestParameters:t,callback:e,cancelled:!1,cancel:function(){this.cancelled=!0}};return _t.push(r),r}wt++;var n=!1,i=function(){if(!n)for(n=!0,wt--;_t.length&&wt0||this._oneTimeListeners&&this._oneTimeListeners[t]&&this._oneTimeListeners[t].length>0||this._eventedParent&&this._eventedParent.listens(t)},Et.prototype.setEventedParent=function(t,e){return this._eventedParent=t,this._eventedParentData=e,this};var Lt={$version:8,$root:{version:{required:!0,type:"enum",values:[8]},name:{type:"string"},metadata:{type:"*"},center:{type:"array",value:"number"},zoom:{type:"number"},bearing:{type:"number",default:0,period:360,units:"degrees"},pitch:{type:"number",default:0,units:"degrees"},light:{type:"light"},sources:{required:!0,type:"sources"},sprite:{type:"string"},glyphs:{type:"string"},transition:{type:"transition"},layers:{required:!0,type:"array",value:"layer"}},sources:{"*":{type:"source"}},source:["source_vector","source_raster","source_raster_dem","source_geojson","source_video","source_image"],source_vector:{type:{required:!0,type:"enum",values:{vector:{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},scheme:{type:"enum",values:{xyz:{},tms:{}},default:"xyz"},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},attribution:{type:"string"},promoteId:{type:"promoteId"},"*":{type:"*"}},source_raster:{type:{required:!0,type:"enum",values:{raster:{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},tileSize:{type:"number",default:512,units:"pixels"},scheme:{type:"enum",values:{xyz:{},tms:{}},default:"xyz"},attribution:{type:"string"},"*":{type:"*"}},source_raster_dem:{type:{required:!0,type:"enum",values:{"raster-dem":{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},tileSize:{type:"number",default:512,units:"pixels"},attribution:{type:"string"},encoding:{type:"enum",values:{terrarium:{},mapbox:{}},default:"mapbox"},"*":{type:"*"}},source_geojson:{type:{required:!0,type:"enum",values:{geojson:{}}},data:{type:"*"},maxzoom:{type:"number",default:18},attribution:{type:"string"},buffer:{type:"number",default:128,maximum:512,minimum:0},tolerance:{type:"number",default:.375},cluster:{type:"boolean",default:!1},clusterRadius:{type:"number",default:50,minimum:0},clusterMaxZoom:{type:"number"},clusterProperties:{type:"*"},lineMetrics:{type:"boolean",default:!1},generateId:{type:"boolean",default:!1},promoteId:{type:"promoteId"}},source_video:{type:{required:!0,type:"enum",values:{video:{}}},urls:{required:!0,type:"array",value:"string"},coordinates:{required:!0,type:"array",length:4,value:{type:"array",length:2,value:"number"}}},source_image:{type:{required:!0,type:"enum",values:{image:{}}},url:{required:!0,type:"string"},coordinates:{required:!0,type:"array",length:4,value:{type:"array",length:2,value:"number"}}},layer:{id:{type:"string",required:!0},type:{type:"enum",values:{fill:{},line:{},symbol:{},circle:{},heatmap:{},"fill-extrusion":{},raster:{},hillshade:{},background:{}},required:!0},metadata:{type:"*"},source:{type:"string"},"source-layer":{type:"string"},minzoom:{type:"number",minimum:0,maximum:24},maxzoom:{type:"number",minimum:0,maximum:24},filter:{type:"filter"},layout:{type:"layout"},paint:{type:"paint"}},layout:["layout_fill","layout_line","layout_circle","layout_heatmap","layout_fill-extrusion","layout_symbol","layout_raster","layout_hillshade","layout_background"],layout_background:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_fill:{"fill-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_circle:{"circle-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_heatmap:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},"layout_fill-extrusion":{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_line:{"line-cap":{type:"enum",values:{butt:{},round:{},square:{}},default:"butt",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"line-join":{type:"enum",values:{bevel:{},round:{},miter:{}},default:"miter",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"line-miter-limit":{type:"number",default:2,requires:[{"line-join":"miter"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-round-limit":{type:"number",default:1.05,requires:[{"line-join":"round"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_symbol:{"symbol-placement":{type:"enum",values:{point:{},line:{},"line-center":{}},default:"point",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"symbol-spacing":{type:"number",default:250,minimum:1,units:"pixels",requires:[{"symbol-placement":"line"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"symbol-avoid-edges":{type:"boolean",default:!1,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"symbol-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"symbol-z-order":{type:"enum",values:{auto:{},"viewport-y":{},source:{}},default:"auto",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-allow-overlap":{type:"boolean",default:!1,requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-ignore-placement":{type:"boolean",default:!1,requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-optional":{type:"boolean",default:!1,requires:["icon-image","text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-rotation-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-size":{type:"number",default:1,minimum:0,units:"factor of the original icon size",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-text-fit":{type:"enum",values:{none:{},width:{},height:{},both:{}},default:"none",requires:["icon-image","text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-text-fit-padding":{type:"array",value:"number",length:4,default:[0,0,0,0],units:"pixels",requires:["icon-image","text-field",{"icon-text-fit":["both","width","height"]}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-image":{type:"resolvedImage",tokens:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-rotate":{type:"number",default:0,period:360,units:"degrees",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-padding":{type:"number",default:2,minimum:0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-keep-upright":{type:"boolean",default:!1,requires:["icon-image",{"icon-rotation-alignment":"map"},{"symbol-placement":["line","line-center"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-offset":{type:"array",value:"number",length:2,default:[0,0],requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-anchor":{type:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},default:"center",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-pitch-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-pitch-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-rotation-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-field":{type:"formatted",default:"",tokens:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-font":{type:"array",value:"string",default:["Open Sans Regular","Arial Unicode MS Regular"],requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-size":{type:"number",default:16,minimum:0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-max-width":{type:"number",default:10,minimum:0,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-line-height":{type:"number",default:1.2,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-letter-spacing":{type:"number",default:0,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-justify":{type:"enum",values:{auto:{},left:{},center:{},right:{}},default:"center",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-radial-offset":{type:"number",units:"ems",default:0,requires:["text-field"],"property-type":"data-driven",expression:{interpolated:!0,parameters:["zoom","feature"]}},"text-variable-anchor":{type:"array",value:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},requires:["text-field",{"symbol-placement":["point"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-anchor":{type:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},default:"center",requires:["text-field",{"!":"text-variable-anchor"}],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-max-angle":{type:"number",default:45,units:"degrees",requires:["text-field",{"symbol-placement":["line","line-center"]}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-writing-mode":{type:"array",value:"enum",values:{horizontal:{},vertical:{}},requires:["text-field",{"symbol-placement":["point"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-rotate":{type:"number",default:0,period:360,units:"degrees",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-padding":{type:"number",default:2,minimum:0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-keep-upright":{type:"boolean",default:!0,requires:["text-field",{"text-rotation-alignment":"map"},{"symbol-placement":["line","line-center"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-transform":{type:"enum",values:{none:{},uppercase:{},lowercase:{}},default:"none",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-offset":{type:"array",value:"number",units:"ems",length:2,default:[0,0],requires:["text-field",{"!":"text-radial-offset"}],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-allow-overlap":{type:"boolean",default:!1,requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-ignore-placement":{type:"boolean",default:!1,requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-optional":{type:"boolean",default:!1,requires:["text-field","icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_raster:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_hillshade:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},filter:{type:"array",value:"*"},filter_operator:{type:"enum",values:{"==":{},"!=":{},">":{},">=":{},"<":{},"<=":{},in:{},"!in":{},all:{},any:{},none:{},has:{},"!has":{},within:{}}},geometry_type:{type:"enum",values:{Point:{},LineString:{},Polygon:{}}},function:{expression:{type:"expression"},stops:{type:"array",value:"function_stop"},base:{type:"number",default:1,minimum:0},property:{type:"string",default:"$zoom"},type:{type:"enum",values:{identity:{},exponential:{},interval:{},categorical:{}},default:"exponential"},colorSpace:{type:"enum",values:{rgb:{},lab:{},hcl:{}},default:"rgb"},default:{type:"*",required:!1}},function_stop:{type:"array",minimum:0,maximum:24,value:["number","color"],length:2},expression:{type:"array",value:"*",minimum:1},expression_name:{type:"enum",values:{let:{group:"Variable binding"},var:{group:"Variable binding"},literal:{group:"Types"},array:{group:"Types"},at:{group:"Lookup"},in:{group:"Lookup"},"index-of":{group:"Lookup"},slice:{group:"Lookup"},case:{group:"Decision"},match:{group:"Decision"},coalesce:{group:"Decision"},step:{group:"Ramps, scales, curves"},interpolate:{group:"Ramps, scales, curves"},"interpolate-hcl":{group:"Ramps, scales, curves"},"interpolate-lab":{group:"Ramps, scales, curves"},ln2:{group:"Math"},pi:{group:"Math"},e:{group:"Math"},typeof:{group:"Types"},string:{group:"Types"},number:{group:"Types"},boolean:{group:"Types"},object:{group:"Types"},collator:{group:"Types"},format:{group:"Types"},image:{group:"Types"},"number-format":{group:"Types"},"to-string":{group:"Types"},"to-number":{group:"Types"},"to-boolean":{group:"Types"},"to-rgba":{group:"Color"},"to-color":{group:"Types"},rgb:{group:"Color"},rgba:{group:"Color"},get:{group:"Lookup"},has:{group:"Lookup"},length:{group:"Lookup"},properties:{group:"Feature data"},"feature-state":{group:"Feature data"},"geometry-type":{group:"Feature data"},id:{group:"Feature data"},zoom:{group:"Zoom"},"heatmap-density":{group:"Heatmap"},"line-progress":{group:"Feature data"},accumulated:{group:"Feature data"},"+":{group:"Math"},"*":{group:"Math"},"-":{group:"Math"},"/":{group:"Math"},"%":{group:"Math"},"^":{group:"Math"},sqrt:{group:"Math"},log10:{group:"Math"},ln:{group:"Math"},log2:{group:"Math"},sin:{group:"Math"},cos:{group:"Math"},tan:{group:"Math"},asin:{group:"Math"},acos:{group:"Math"},atan:{group:"Math"},min:{group:"Math"},max:{group:"Math"},round:{group:"Math"},abs:{group:"Math"},ceil:{group:"Math"},floor:{group:"Math"},distance:{group:"Math"},"==":{group:"Decision"},"!=":{group:"Decision"},">":{group:"Decision"},"<":{group:"Decision"},">=":{group:"Decision"},"<=":{group:"Decision"},all:{group:"Decision"},any:{group:"Decision"},"!":{group:"Decision"},within:{group:"Decision"},"is-supported-script":{group:"String"},upcase:{group:"String"},downcase:{group:"String"},concat:{group:"String"},"resolved-locale":{group:"String"}}},light:{anchor:{type:"enum",default:"viewport",values:{map:{},viewport:{}},"property-type":"data-constant",transition:!1,expression:{interpolated:!1,parameters:["zoom"]}},position:{type:"array",default:[1.15,210,30],length:3,value:"number","property-type":"data-constant",transition:!0,expression:{interpolated:!0,parameters:["zoom"]}},color:{type:"color","property-type":"data-constant",default:"#ffffff",expression:{interpolated:!0,parameters:["zoom"]},transition:!0},intensity:{type:"number","property-type":"data-constant",default:.5,minimum:0,maximum:1,expression:{interpolated:!0,parameters:["zoom"]},transition:!0}},paint:["paint_fill","paint_line","paint_circle","paint_heatmap","paint_fill-extrusion","paint_symbol","paint_raster","paint_hillshade","paint_background"],paint_fill:{"fill-antialias":{type:"boolean",default:!0,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"fill-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-outline-color":{type:"color",transition:!0,requires:[{"!":"fill-pattern"},{"fill-antialias":!0}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["fill-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"}},"paint_fill-extrusion":{"fill-extrusion-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"fill-extrusion-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["fill-extrusion-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"},"fill-extrusion-height":{type:"number",default:0,minimum:0,units:"meters",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-base":{type:"number",default:0,minimum:0,units:"meters",transition:!0,requires:["fill-extrusion-height"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-vertical-gradient":{type:"boolean",default:!0,transition:!1,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"}},paint_line:{"line-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"line-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["line-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"line-width":{type:"number",default:1,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-gap-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-offset":{type:"number",default:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-dasharray":{type:"array",value:"number",minimum:0,transition:!0,units:"line widths",requires:[{"!":"line-pattern"}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"cross-faded"},"line-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"},"line-gradient":{type:"color",transition:!1,requires:[{"!":"line-dasharray"},{"!":"line-pattern"},{source:"geojson",has:{lineMetrics:!0}}],expression:{interpolated:!0,parameters:["line-progress"]},"property-type":"color-ramp"}},paint_circle:{"circle-radius":{type:"number",default:5,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-blur":{type:"number",default:0,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"circle-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["circle-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-pitch-scale":{type:"enum",values:{map:{},viewport:{}},default:"map",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-pitch-alignment":{type:"enum",values:{map:{},viewport:{}},default:"viewport",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-stroke-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-stroke-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-stroke-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"}},paint_heatmap:{"heatmap-radius":{type:"number",default:30,minimum:1,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"heatmap-weight":{type:"number",default:1,minimum:0,transition:!1,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"heatmap-intensity":{type:"number",default:1,minimum:0,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"heatmap-color":{type:"color",default:["interpolate",["linear"],["heatmap-density"],0,"rgba(0, 0, 255, 0)",.1,"royalblue",.3,"cyan",.5,"lime",.7,"yellow",1,"red"],transition:!1,expression:{interpolated:!0,parameters:["heatmap-density"]},"property-type":"color-ramp"},"heatmap-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_symbol:{"icon-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-color":{type:"color",default:"#000000",transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-color":{type:"color",default:"rgba(0, 0, 0, 0)",transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["icon-image","icon-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-color":{type:"color",default:"#000000",transition:!0,overridable:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-color":{type:"color",default:"rgba(0, 0, 0, 0)",transition:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["text-field","text-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"}},paint_raster:{"raster-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-hue-rotate":{type:"number",default:0,period:360,transition:!0,units:"degrees",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-brightness-min":{type:"number",default:0,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-brightness-max":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-saturation":{type:"number",default:0,minimum:-1,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-contrast":{type:"number",default:0,minimum:-1,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-resampling":{type:"enum",values:{linear:{},nearest:{}},default:"linear",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"raster-fade-duration":{type:"number",default:300,minimum:0,transition:!1,units:"milliseconds",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_hillshade:{"hillshade-illumination-direction":{type:"number",default:335,minimum:0,maximum:359,transition:!1,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-illumination-anchor":{type:"enum",values:{map:{},viewport:{}},default:"viewport",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-exaggeration":{type:"number",default:.5,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-shadow-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-highlight-color":{type:"color",default:"#FFFFFF",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-accent-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_background:{"background-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"background-pattern"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"background-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"cross-faded"},"background-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},transition:{duration:{type:"number",default:300,minimum:0,units:"milliseconds"},delay:{type:"number",default:0,minimum:0,units:"milliseconds"}},"property-type":{"data-driven":{type:"property-type"},"cross-faded":{type:"property-type"},"cross-faded-data-driven":{type:"property-type"},"color-ramp":{type:"property-type"},"data-constant":{type:"property-type"},constant:{type:"property-type"}},promoteId:{"*":{type:"string"}}},Ct=function(t,e,r,n){this.message=(t?t+": ":"")+r,n&&(this.identifier=n),null!=e&&e.__line__&&(this.line=e.__line__)};function Pt(t){var e=t.key,r=t.value;return r?[new Ct(e,r,"constants have been deprecated as of v8")]:[]}function It(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];for(var n=0,i=e;n":"value"===t.itemType.kind?"array":"array<"+e+">"}return t.kind}var Zt=[Ft,Bt,Nt,jt,Ut,Gt,Vt,Wt(Ht),Yt];function Jt(t,e){if("error"===e.kind)return null;if("array"===t.kind){if("array"===e.kind&&(0===e.N&&"value"===e.itemType.kind||!Jt(t.itemType,e.itemType))&&("number"!=typeof t.N||t.N===e.N))return null}else{if(t.kind===e.kind)return null;if("value"===t.kind)for(var r=0,n=Zt;r255?255:t}function i(t){return t<0?0:t>1?1:t}function a(t){return"%"===t[t.length-1]?n(parseFloat(t)/100*255):n(parseInt(t))}function o(t){return"%"===t[t.length-1]?i(parseFloat(t)/100):i(parseFloat(t))}function s(t,e,r){return r<0?r+=1:r>1&&(r-=1),6*r<1?t+(e-t)*r*6:2*r<1?e:3*r<2?t+(e-t)*(2/3-r)*6:t}try{e.parseCSSColor=function(t){var e,i=t.replace(/ /g,"").toLowerCase();if(i in r)return r[i].slice();if("#"===i[0])return 4===i.length?(e=parseInt(i.substr(1),16))>=0&&e<=4095?[(3840&e)>>4|(3840&e)>>8,240&e|(240&e)>>4,15&e|(15&e)<<4,1]:null:7===i.length&&(e=parseInt(i.substr(1),16))>=0&&e<=16777215?[(16711680&e)>>16,(65280&e)>>8,255&e,1]:null;var l=i.indexOf("("),c=i.indexOf(")");if(-1!==l&&c+1===i.length){var u=i.substr(0,l),f=i.substr(l+1,c-(l+1)).split(","),h=1;switch(u){case"rgba":if(4!==f.length)return null;h=o(f.pop());case"rgb":return 3!==f.length?null:[a(f[0]),a(f[1]),a(f[2]),h];case"hsla":if(4!==f.length)return null;h=o(f.pop());case"hsl":if(3!==f.length)return null;var p=(parseFloat(f[0])%360+360)%360/360,d=o(f[1]),m=o(f[2]),g=m<=.5?m*(d+1):m+d-m*d,v=2*m-g;return[n(255*s(v,g,p+1/3)),n(255*s(v,g,p)),n(255*s(v,g,p-1/3)),h];default:return null}}return null}}catch(t){}})).parseCSSColor,te=function(t,e,r,n){void 0===n&&(n=1),this.r=t,this.g=e,this.b=r,this.a=n};te.parse=function(t){if(t){if(t instanceof te)return t;if("string"==typeof t){var e=$t(t);if(e)return new te(e[0]/255*e[3],e[1]/255*e[3],e[2]/255*e[3],e[3])}}},te.prototype.toString=function(){var t=this.toArray(),e=t[0],r=t[1],n=t[2],i=t[3];return"rgba("+Math.round(e)+","+Math.round(r)+","+Math.round(n)+","+i+")"},te.prototype.toArray=function(){var t=this.r,e=this.g,r=this.b,n=this.a;return 0===n?[0,0,0,0]:[255*t/n,255*e/n,255*r/n,n]},te.black=new te(0,0,0,1),te.white=new te(1,1,1,1),te.transparent=new te(0,0,0,0),te.red=new te(1,0,0,1);var ee=function(t,e,r){this.sensitivity=t?e?"variant":"case":e?"accent":"base",this.locale=r,this.collator=new Intl.Collator(this.locale?this.locale:[],{sensitivity:this.sensitivity,usage:"search"})};ee.prototype.compare=function(t,e){return this.collator.compare(t,e)},ee.prototype.resolvedLocale=function(){return new Intl.Collator(this.locale?this.locale:[]).resolvedOptions().locale};var re=function(t,e,r,n,i){this.text=t,this.image=e,this.scale=r,this.fontStack=n,this.textColor=i},ne=function(t){this.sections=t};ne.fromString=function(t){return new ne([new re(t,null,null,null,null)])},ne.prototype.isEmpty=function(){return 0===this.sections.length||!this.sections.some((function(t){return 0!==t.text.length||t.image&&0!==t.image.name.length}))},ne.factory=function(t){return t instanceof ne?t:ne.fromString(t)},ne.prototype.toString=function(){return 0===this.sections.length?"":this.sections.map((function(t){return t.text})).join("")},ne.prototype.serialize=function(){for(var t=["format"],e=0,r=this.sections;e=0&&t<=255&&"number"==typeof e&&e>=0&&e<=255&&"number"==typeof r&&r>=0&&r<=255?void 0===n||"number"==typeof n&&n>=0&&n<=1?null:"Invalid rgba value ["+[t,e,r,n].join(", ")+"]: 'a' must be between 0 and 1.":"Invalid rgba value ["+("number"==typeof n?[t,e,r,n]:[t,e,r]).join(", ")+"]: 'r', 'g', and 'b' must be between 0 and 255."}function oe(t){if(null===t)return!0;if("string"==typeof t)return!0;if("boolean"==typeof t)return!0;if("number"==typeof t)return!0;if(t instanceof te)return!0;if(t instanceof ee)return!0;if(t instanceof ne)return!0;if(t instanceof ie)return!0;if(Array.isArray(t)){for(var e=0,r=t;e2){var s=t[1];if("string"!=typeof s||!(s in fe)||"object"===s)return e.error('The item type argument of "array" must be one of string, number, boolean',1);a=fe[s],n++}else a=Ht;if(t.length>3){if(null!==t[2]&&("number"!=typeof t[2]||t[2]<0||t[2]!==Math.floor(t[2])))return e.error('The length argument to "array" must be a positive integer literal',2);o=t[2],n++}r=Wt(a,o)}else r=fe[i];for(var l=[];n1)&&e.push(n)}}return e.concat(this.args.map((function(t){return t.serialize()})))};var pe=function(t){this.type=Gt,this.sections=t};pe.parse=function(t,e){if(t.length<2)return e.error("Expected at least one argument.");var r=t[1];if(!Array.isArray(r)&&"object"==typeof r)return e.error("First argument must be an image or text section.");for(var n=[],i=!1,a=1;a<=t.length-1;++a){var o=t[a];if(i&&"object"==typeof o&&!Array.isArray(o)){i=!1;var s=null;if(o["font-scale"]&&!(s=e.parse(o["font-scale"],1,Bt)))return null;var l=null;if(o["text-font"]&&!(l=e.parse(o["text-font"],1,Wt(Nt))))return null;var c=null;if(o["text-color"]&&!(c=e.parse(o["text-color"],1,Ut)))return null;var u=n[n.length-1];u.scale=s,u.font=l,u.textColor=c}else{var f=e.parse(t[a],1,Ht);if(!f)return null;var h=f.type.kind;if("string"!==h&&"value"!==h&&"null"!==h&&"resolvedImage"!==h)return e.error("Formatted text type must be 'string', 'value', 'image' or 'null'.");i=!0,n.push({content:f,scale:null,font:null,textColor:null})}}return new pe(n)},pe.prototype.evaluate=function(t){return new ne(this.sections.map((function(e){var r=e.content.evaluate(t);return se(r)===Yt?new re("",r,null,null,null):new re(le(r),null,e.scale?e.scale.evaluate(t):null,e.font?e.font.evaluate(t).join(","):null,e.textColor?e.textColor.evaluate(t):null)})))},pe.prototype.eachChild=function(t){for(var e=0,r=this.sections;e-1),r},de.prototype.eachChild=function(t){t(this.input)},de.prototype.outputDefined=function(){return!1},de.prototype.serialize=function(){return["image",this.input.serialize()]};var me={"to-boolean":jt,"to-color":Ut,"to-number":Bt,"to-string":Nt},ge=function(t,e){this.type=t,this.args=e};ge.parse=function(t,e){if(t.length<2)return e.error("Expected at least one argument.");var r=t[0];if(("to-boolean"===r||"to-string"===r)&&2!==t.length)return e.error("Expected one argument.");for(var n=me[r],i=[],a=1;a4?"Invalid rbga value "+JSON.stringify(e)+": expected an array containing either three or four numeric values.":ae(e[0],e[1],e[2],e[3])))return new te(e[0]/255,e[1]/255,e[2]/255,e[3])}throw new ue(r||"Could not parse color from value '"+("string"==typeof e?e:String(JSON.stringify(e)))+"'")}if("number"===this.type.kind){for(var o=null,s=0,l=this.args;s=e[2])&&(!(t[1]<=e[1])&&!(t[3]>=e[3])))}function Te(t,e){var r,n=(180+t[0])/360,i=(r=t[1],(180-180/Math.PI*Math.log(Math.tan(Math.PI/4+r*Math.PI/360)))/360),a=Math.pow(2,e.z);return[Math.round(n*a*8192),Math.round(i*a*8192)]}function ke(t,e,r){return e[1]>t[1]!=r[1]>t[1]&&t[0]<(r[0]-e[0])*(t[1]-e[1])/(r[1]-e[1])+e[0]}function Ae(t,e){for(var r,n,i,a,o,s,l,c=!1,u=0,f=e.length;u0&&f<0||u<0&&f>0}function Ee(t,e,r){for(var n=0,i=r;nr[2]){var i=.5*n,a=t[0]-r[0]>i?-n:r[0]-t[0]>i?n:0;0===a&&(a=t[0]-r[2]>i?-n:r[2]-t[0]>i?n:0),t[0]+=a}_e(e,t)}function ze(t,e,r,n){for(var i=8192*Math.pow(2,n.z),a=[8192*n.x,8192*n.y],o=[],s=0,l=t;s=0)return!1;var r=!0;return t.eachChild((function(t){r&&!Ne(t,e)&&(r=!1)})),r}Re.parse=function(t,e){if(2!==t.length)return e.error("'within' expression requires exactly one argument, but found "+(t.length-1)+" instead.");if(oe(t[1])){var r=t[1];if("FeatureCollection"===r.type)for(var n=0;ne))throw new ue("Input is not a number.");o=s-1}return 0}Ue.prototype.parse=function(t,e,r,n,i){return void 0===i&&(i={}),e?this.concat(e,r,n)._parse(t,i):this._parse(t,i)},Ue.prototype._parse=function(t,e){function r(t,e,r){return"assert"===r?new he(e,[t]):"coerce"===r?new ge(e,[t]):t}if(null!==t&&"string"!=typeof t&&"boolean"!=typeof t&&"number"!=typeof t||(t=["literal",t]),Array.isArray(t)){if(0===t.length)return this.error('Expected an array with at least one element. If you wanted a literal array, use ["literal", []].');var n=t[0];if("string"!=typeof n)return this.error("Expression name must be a string, but found "+typeof n+' instead. If you wanted a literal array, use ["literal", [...]].',0),null;var i=this.registry[n];if(i){var a=i.parse(t,this);if(!a)return null;if(this.expectedType){var o=this.expectedType,s=a.type;if("string"!==o.kind&&"number"!==o.kind&&"boolean"!==o.kind&&"object"!==o.kind&&"array"!==o.kind||"value"!==s.kind)if("color"!==o.kind&&"formatted"!==o.kind&&"resolvedImage"!==o.kind||"value"!==s.kind&&"string"!==s.kind){if(this.checkSubtype(o,s))return null}else a=r(a,o,e.typeAnnotation||"coerce");else a=r(a,o,e.typeAnnotation||"assert")}if(!(a instanceof ce)&&"resolvedImage"!==a.type.kind&&function t(e){if(e instanceof je)return t(e.boundExpression);if(e instanceof xe&&"error"===e.name)return!1;if(e instanceof be)return!1;if(e instanceof Re)return!1;var r=e instanceof ge||e instanceof he,n=!0;if(e.eachChild((function(e){n=r?n&&t(e):n&&e instanceof ce})),!n)return!1;return Fe(e)&&Ne(e,["zoom","heatmap-density","line-progress","accumulated","is-supported-script"])}(a)){var l=new ye;try{a=new ce(a.type,a.evaluate(l))}catch(t){return this.error(t.message),null}}return a}return this.error('Unknown expression "'+n+'". If you wanted a literal array, use ["literal", [...]].',0)}return void 0===t?this.error("'undefined' value invalid. Use null instead."):"object"==typeof t?this.error('Bare objects invalid. Use ["literal", {...}] instead.'):this.error("Expected an array, but found "+typeof t+" instead.")},Ue.prototype.concat=function(t,e,r){var n="number"==typeof t?this.path.concat(t):this.path,i=r?this.scope.concat(r):this.scope;return new Ue(this.registry,n,e||null,i,this.errors)},Ue.prototype.error=function(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];var n=""+this.key+e.map((function(t){return"["+t+"]"})).join("");this.errors.push(new Dt(n,t))},Ue.prototype.checkSubtype=function(t,e){var r=Jt(t,e);return r&&this.error(r),r};var He=function(t,e,r){this.type=t,this.input=e,this.labels=[],this.outputs=[];for(var n=0,i=r;n=o)return e.error('Input/output pairs for "step" expressions must be arranged with input values in strictly ascending order.',l);var u=e.parse(s,c,i);if(!u)return null;i=i||u.type,n.push([o,u])}return new He(i,r,n)},He.prototype.evaluate=function(t){var e=this.labels,r=this.outputs;if(1===e.length)return r[0].evaluate(t);var n=this.input.evaluate(t);if(n<=e[0])return r[0].evaluate(t);var i=e.length;return n>=e[i-1]?r[i-1].evaluate(t):r[Ve(e,n)].evaluate(t)},He.prototype.eachChild=function(t){t(this.input);for(var e=0,r=this.outputs;e0&&t.push(this.labels[e]),t.push(this.outputs[e].serialize());return t};var Ge=Object.freeze({__proto__:null,number:qe,color:function(t,e,r){return new te(qe(t.r,e.r,r),qe(t.g,e.g,r),qe(t.b,e.b,r),qe(t.a,e.a,r))},array:function(t,e,r){return t.map((function(t,n){return qe(t,e[n],r)}))}}),Ye=6/29,We=3*Ye*Ye,Xe=Math.PI/180,Ze=180/Math.PI;function Je(t){return t>.008856451679035631?Math.pow(t,1/3):t/We+4/29}function Ke(t){return t>Ye?t*t*t:We*(t-4/29)}function Qe(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function $e(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function tr(t){var e=$e(t.r),r=$e(t.g),n=$e(t.b),i=Je((.4124564*e+.3575761*r+.1804375*n)/.95047),a=Je((.2126729*e+.7151522*r+.072175*n)/1);return{l:116*a-16,a:500*(i-a),b:200*(a-Je((.0193339*e+.119192*r+.9503041*n)/1.08883)),alpha:t.a}}function er(t){var e=(t.l+16)/116,r=isNaN(t.a)?e:e+t.a/500,n=isNaN(t.b)?e:e-t.b/200;return e=1*Ke(e),r=.95047*Ke(r),n=1.08883*Ke(n),new te(Qe(3.2404542*r-1.5371385*e-.4985314*n),Qe(-.969266*r+1.8760108*e+.041556*n),Qe(.0556434*r-.2040259*e+1.0572252*n),t.alpha)}function rr(t,e,r){var n=e-t;return t+r*(n>180||n<-180?n-360*Math.round(n/360):n)}var nr={forward:tr,reverse:er,interpolate:function(t,e,r){return{l:qe(t.l,e.l,r),a:qe(t.a,e.a,r),b:qe(t.b,e.b,r),alpha:qe(t.alpha,e.alpha,r)}}},ir={forward:function(t){var e=tr(t),r=e.l,n=e.a,i=e.b,a=Math.atan2(i,n)*Ze;return{h:a<0?a+360:a,c:Math.sqrt(n*n+i*i),l:r,alpha:t.a}},reverse:function(t){var e=t.h*Xe,r=t.c;return er({l:t.l,a:Math.cos(e)*r,b:Math.sin(e)*r,alpha:t.alpha})},interpolate:function(t,e,r){return{h:rr(t.h,e.h,r),c:qe(t.c,e.c,r),l:qe(t.l,e.l,r),alpha:qe(t.alpha,e.alpha,r)}}},ar=Object.freeze({__proto__:null,lab:nr,hcl:ir}),or=function(t,e,r,n,i){this.type=t,this.operator=e,this.interpolation=r,this.input=n,this.labels=[],this.outputs=[];for(var a=0,o=i;a1})))return e.error("Cubic bezier interpolation requires four numeric arguments with values between 0 and 1.",1);n={name:"cubic-bezier",controlPoints:s}}if(t.length-1<4)return e.error("Expected at least 4 arguments, but found only "+(t.length-1)+".");if((t.length-1)%2!=0)return e.error("Expected an even number of arguments.");if(!(i=e.parse(i,2,Bt)))return null;var l=[],c=null;"interpolate-hcl"===r||"interpolate-lab"===r?c=Ut:e.expectedType&&"value"!==e.expectedType.kind&&(c=e.expectedType);for(var u=0;u=f)return e.error('Input/output pairs for "interpolate" expressions must be arranged with input values in strictly ascending order.',p);var m=e.parse(h,d,c);if(!m)return null;c=c||m.type,l.push([f,m])}return"number"===c.kind||"color"===c.kind||"array"===c.kind&&"number"===c.itemType.kind&&"number"==typeof c.N?new or(c,r,n,i,l):e.error("Type "+Xt(c)+" is not interpolatable.")},or.prototype.evaluate=function(t){var e=this.labels,r=this.outputs;if(1===e.length)return r[0].evaluate(t);var n=this.input.evaluate(t);if(n<=e[0])return r[0].evaluate(t);var i=e.length;if(n>=e[i-1])return r[i-1].evaluate(t);var a=Ve(e,n),o=e[a],s=e[a+1],l=or.interpolationFactor(this.interpolation,n,o,s),c=r[a].evaluate(t),u=r[a+1].evaluate(t);return"interpolate"===this.operator?Ge[this.type.kind.toLowerCase()](c,u,l):"interpolate-hcl"===this.operator?ir.reverse(ir.interpolate(ir.forward(c),ir.forward(u),l)):nr.reverse(nr.interpolate(nr.forward(c),nr.forward(u),l))},or.prototype.eachChild=function(t){t(this.input);for(var e=0,r=this.outputs;e=r.length)throw new ue("Array index out of bounds: "+e+" > "+(r.length-1)+".");if(e!==Math.floor(e))throw new ue("Array index must be an integer, but found "+e+" instead.");return r[e]},ur.prototype.eachChild=function(t){t(this.index),t(this.input)},ur.prototype.outputDefined=function(){return!1},ur.prototype.serialize=function(){return["at",this.index.serialize(),this.input.serialize()]};var fr=function(t,e){this.type=jt,this.needle=t,this.haystack=e};fr.parse=function(t,e){if(3!==t.length)return e.error("Expected 2 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Ht);return r&&n?Kt(r.type,[jt,Nt,Bt,Ft,Ht])?new fr(r,n):e.error("Expected first argument to be of type boolean, string, number or null, but found "+Xt(r.type)+" instead"):null},fr.prototype.evaluate=function(t){var e=this.needle.evaluate(t),r=this.haystack.evaluate(t);if(!r)return!1;if(!Qt(e,["boolean","string","number","null"]))throw new ue("Expected first argument to be of type boolean, string, number or null, but found "+Xt(se(e))+" instead.");if(!Qt(r,["string","array"]))throw new ue("Expected second argument to be of type array or string, but found "+Xt(se(r))+" instead.");return r.indexOf(e)>=0},fr.prototype.eachChild=function(t){t(this.needle),t(this.haystack)},fr.prototype.outputDefined=function(){return!0},fr.prototype.serialize=function(){return["in",this.needle.serialize(),this.haystack.serialize()]};var hr=function(t,e,r){this.type=Bt,this.needle=t,this.haystack=e,this.fromIndex=r};hr.parse=function(t,e){if(t.length<=2||t.length>=5)return e.error("Expected 3 or 4 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Ht);if(!r||!n)return null;if(!Kt(r.type,[jt,Nt,Bt,Ft,Ht]))return e.error("Expected first argument to be of type boolean, string, number or null, but found "+Xt(r.type)+" instead");if(4===t.length){var i=e.parse(t[3],3,Bt);return i?new hr(r,n,i):null}return new hr(r,n)},hr.prototype.evaluate=function(t){var e=this.needle.evaluate(t),r=this.haystack.evaluate(t);if(!Qt(e,["boolean","string","number","null"]))throw new ue("Expected first argument to be of type boolean, string, number or null, but found "+Xt(se(e))+" instead.");if(!Qt(r,["string","array"]))throw new ue("Expected second argument to be of type array or string, but found "+Xt(se(r))+" instead.");if(this.fromIndex){var n=this.fromIndex.evaluate(t);return r.indexOf(e,n)}return r.indexOf(e)},hr.prototype.eachChild=function(t){t(this.needle),t(this.haystack),this.fromIndex&&t(this.fromIndex)},hr.prototype.outputDefined=function(){return!1},hr.prototype.serialize=function(){if(null!=this.fromIndex&&void 0!==this.fromIndex){var t=this.fromIndex.serialize();return["index-of",this.needle.serialize(),this.haystack.serialize(),t]}return["index-of",this.needle.serialize(),this.haystack.serialize()]};var pr=function(t,e,r,n,i,a){this.inputType=t,this.type=e,this.input=r,this.cases=n,this.outputs=i,this.otherwise=a};pr.parse=function(t,e){if(t.length<5)return e.error("Expected at least 4 arguments, but found only "+(t.length-1)+".");if(t.length%2!=1)return e.error("Expected an even number of arguments.");var r,n;e.expectedType&&"value"!==e.expectedType.kind&&(n=e.expectedType);for(var i={},a=[],o=2;oNumber.MAX_SAFE_INTEGER)return c.error("Branch labels must be integers no larger than "+Number.MAX_SAFE_INTEGER+".");if("number"==typeof h&&Math.floor(h)!==h)return c.error("Numeric branch labels must be integer values.");if(r){if(c.checkSubtype(r,se(h)))return null}else r=se(h);if(void 0!==i[String(h)])return c.error("Branch labels must be unique.");i[String(h)]=a.length}var p=e.parse(l,o,n);if(!p)return null;n=n||p.type,a.push(p)}var d=e.parse(t[1],1,Ht);if(!d)return null;var m=e.parse(t[t.length-1],t.length-1,n);return m?"value"!==d.type.kind&&e.concat(1).checkSubtype(r,d.type)?null:new pr(r,n,d,i,a,m):null},pr.prototype.evaluate=function(t){var e=this.input.evaluate(t);return(se(e)===this.inputType&&this.outputs[this.cases[e]]||this.otherwise).evaluate(t)},pr.prototype.eachChild=function(t){t(this.input),this.outputs.forEach(t),t(this.otherwise)},pr.prototype.outputDefined=function(){return this.outputs.every((function(t){return t.outputDefined()}))&&this.otherwise.outputDefined()},pr.prototype.serialize=function(){for(var t=this,e=["match",this.input.serialize()],r=[],n={},i=0,a=Object.keys(this.cases).sort();i=5)return e.error("Expected 3 or 4 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Bt);if(!r||!n)return null;if(!Kt(r.type,[Wt(Ht),Nt,Ht]))return e.error("Expected first argument to be of type array or string, but found "+Xt(r.type)+" instead");if(4===t.length){var i=e.parse(t[3],3,Bt);return i?new mr(r.type,r,n,i):null}return new mr(r.type,r,n)},mr.prototype.evaluate=function(t){var e=this.input.evaluate(t),r=this.beginIndex.evaluate(t);if(!Qt(e,["string","array"]))throw new ue("Expected first argument to be of type array or string, but found "+Xt(se(e))+" instead.");if(this.endIndex){var n=this.endIndex.evaluate(t);return e.slice(r,n)}return e.slice(r)},mr.prototype.eachChild=function(t){t(this.input),t(this.beginIndex),this.endIndex&&t(this.endIndex)},mr.prototype.outputDefined=function(){return!1},mr.prototype.serialize=function(){if(null!=this.endIndex&&void 0!==this.endIndex){var t=this.endIndex.serialize();return["slice",this.input.serialize(),this.beginIndex.serialize(),t]}return["slice",this.input.serialize(),this.beginIndex.serialize()]};var xr=yr("==",(function(t,e,r){return e===r}),vr),br=yr("!=",(function(t,e,r){return e!==r}),(function(t,e,r,n){return!vr(0,e,r,n)})),_r=yr("<",(function(t,e,r){return e",(function(t,e,r){return e>r}),(function(t,e,r,n){return n.compare(e,r)>0})),Tr=yr("<=",(function(t,e,r){return e<=r}),(function(t,e,r,n){return n.compare(e,r)<=0})),kr=yr(">=",(function(t,e,r){return e>=r}),(function(t,e,r,n){return n.compare(e,r)>=0})),Ar=function(t,e,r,n,i){this.type=Nt,this.number=t,this.locale=e,this.currency=r,this.minFractionDigits=n,this.maxFractionDigits=i};Ar.parse=function(t,e){if(3!==t.length)return e.error("Expected two arguments.");var r=e.parse(t[1],1,Bt);if(!r)return null;var n=t[2];if("object"!=typeof n||Array.isArray(n))return e.error("NumberFormat options argument must be an object.");var i=null;if(n.locale&&!(i=e.parse(n.locale,1,Nt)))return null;var a=null;if(n.currency&&!(a=e.parse(n.currency,1,Nt)))return null;var o=null;if(n["min-fraction-digits"]&&!(o=e.parse(n["min-fraction-digits"],1,Bt)))return null;var s=null;return n["max-fraction-digits"]&&!(s=e.parse(n["max-fraction-digits"],1,Bt))?null:new Ar(r,i,a,o,s)},Ar.prototype.evaluate=function(t){return new Intl.NumberFormat(this.locale?this.locale.evaluate(t):[],{style:this.currency?"currency":"decimal",currency:this.currency?this.currency.evaluate(t):void 0,minimumFractionDigits:this.minFractionDigits?this.minFractionDigits.evaluate(t):void 0,maximumFractionDigits:this.maxFractionDigits?this.maxFractionDigits.evaluate(t):void 0}).format(this.number.evaluate(t))},Ar.prototype.eachChild=function(t){t(this.number),this.locale&&t(this.locale),this.currency&&t(this.currency),this.minFractionDigits&&t(this.minFractionDigits),this.maxFractionDigits&&t(this.maxFractionDigits)},Ar.prototype.outputDefined=function(){return!1},Ar.prototype.serialize=function(){var t={};return this.locale&&(t.locale=this.locale.serialize()),this.currency&&(t.currency=this.currency.serialize()),this.minFractionDigits&&(t["min-fraction-digits"]=this.minFractionDigits.serialize()),this.maxFractionDigits&&(t["max-fraction-digits"]=this.maxFractionDigits.serialize()),["number-format",this.number.serialize(),t]};var Mr=function(t){this.type=Bt,this.input=t};Mr.parse=function(t,e){if(2!==t.length)return e.error("Expected 1 argument, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1);return r?"array"!==r.type.kind&&"string"!==r.type.kind&&"value"!==r.type.kind?e.error("Expected argument of type string or array, but found "+Xt(r.type)+" instead."):new Mr(r):null},Mr.prototype.evaluate=function(t){var e=this.input.evaluate(t);if("string"==typeof e)return e.length;if(Array.isArray(e))return e.length;throw new ue("Expected value to be of type string or array, but found "+Xt(se(e))+" instead.")},Mr.prototype.eachChild=function(t){t(this.input)},Mr.prototype.outputDefined=function(){return!1},Mr.prototype.serialize=function(){var t=["length"];return this.eachChild((function(e){t.push(e.serialize())})),t};var Sr={"==":xr,"!=":br,">":wr,"<":_r,">=":kr,"<=":Tr,array:he,at:ur,boolean:he,case:dr,coalesce:lr,collator:be,format:pe,image:de,in:fr,"index-of":hr,interpolate:or,"interpolate-hcl":or,"interpolate-lab":or,length:Mr,let:cr,literal:ce,match:pr,number:he,"number-format":Ar,object:he,slice:mr,step:He,string:he,"to-boolean":ge,"to-color":ge,"to-number":ge,"to-string":ge,var:je,within:Re};function Er(t,e){var r=e[0],n=e[1],i=e[2],a=e[3];r=r.evaluate(t),n=n.evaluate(t),i=i.evaluate(t);var o=a?a.evaluate(t):1,s=ae(r,n,i,o);if(s)throw new ue(s);return new te(r/255*o,n/255*o,i/255*o,o)}function Lr(t,e){return t in e}function Cr(t,e){var r=e[t];return void 0===r?null:r}function Pr(t){return{type:t}}function Ir(t){return{result:"success",value:t}}function Or(t){return{result:"error",value:t}}function zr(t){return"data-driven"===t["property-type"]||"cross-faded-data-driven"===t["property-type"]}function Dr(t){return!!t.expression&&t.expression.parameters.indexOf("zoom")>-1}function Rr(t){return!!t.expression&&t.expression.interpolated}function Fr(t){return t instanceof Number?"number":t instanceof String?"string":t instanceof Boolean?"boolean":Array.isArray(t)?"array":null===t?"null":typeof t}function Br(t){return"object"==typeof t&&null!==t&&!Array.isArray(t)}function Nr(t){return t}function jr(t,e,r){return void 0!==t?t:void 0!==e?e:void 0!==r?r:void 0}function Ur(t,e,r,n,i){return jr(typeof r===i?n[r]:void 0,t.default,e.default)}function Vr(t,e,r){if("number"!==Fr(r))return jr(t.default,e.default);var n=t.stops.length;if(1===n)return t.stops[0][1];if(r<=t.stops[0][0])return t.stops[0][1];if(r>=t.stops[n-1][0])return t.stops[n-1][1];var i=Ve(t.stops.map((function(t){return t[0]})),r);return t.stops[i][1]}function Hr(t,e,r){var n=void 0!==t.base?t.base:1;if("number"!==Fr(r))return jr(t.default,e.default);var i=t.stops.length;if(1===i)return t.stops[0][1];if(r<=t.stops[0][0])return t.stops[0][1];if(r>=t.stops[i-1][0])return t.stops[i-1][1];var a=Ve(t.stops.map((function(t){return t[0]})),r),o=function(t,e,r,n){var i=n-r,a=t-r;return 0===i?0:1===e?a/i:(Math.pow(e,a)-1)/(Math.pow(e,i)-1)}(r,n,t.stops[a][0],t.stops[a+1][0]),s=t.stops[a][1],l=t.stops[a+1][1],c=Ge[e.type]||Nr;if(t.colorSpace&&"rgb"!==t.colorSpace){var u=ar[t.colorSpace];c=function(t,e){return u.reverse(u.interpolate(u.forward(t),u.forward(e),o))}}return"function"==typeof s.evaluate?{evaluate:function(){for(var t=[],e=arguments.length;e--;)t[e]=arguments[e];var r=s.evaluate.apply(void 0,t),n=l.evaluate.apply(void 0,t);if(void 0!==r&&void 0!==n)return c(r,n,o)}}:c(s,l,o)}function qr(t,e,r){return"color"===e.type?r=te.parse(r):"formatted"===e.type?r=ne.fromString(r.toString()):"resolvedImage"===e.type?r=ie.fromString(r.toString()):Fr(r)===e.type||"enum"===e.type&&e.values[r]||(r=void 0),jr(r,t.default,e.default)}xe.register(Sr,{error:[{kind:"error"},[Nt],function(t,e){var r=e[0];throw new ue(r.evaluate(t))}],typeof:[Nt,[Ht],function(t,e){return Xt(se(e[0].evaluate(t)))}],"to-rgba":[Wt(Bt,4),[Ut],function(t,e){return e[0].evaluate(t).toArray()}],rgb:[Ut,[Bt,Bt,Bt],Er],rgba:[Ut,[Bt,Bt,Bt,Bt],Er],has:{type:jt,overloads:[[[Nt],function(t,e){return Lr(e[0].evaluate(t),t.properties())}],[[Nt,Vt],function(t,e){var r=e[0],n=e[1];return Lr(r.evaluate(t),n.evaluate(t))}]]},get:{type:Ht,overloads:[[[Nt],function(t,e){return Cr(e[0].evaluate(t),t.properties())}],[[Nt,Vt],function(t,e){var r=e[0],n=e[1];return Cr(r.evaluate(t),n.evaluate(t))}]]},"feature-state":[Ht,[Nt],function(t,e){return Cr(e[0].evaluate(t),t.featureState||{})}],properties:[Vt,[],function(t){return t.properties()}],"geometry-type":[Nt,[],function(t){return t.geometryType()}],id:[Ht,[],function(t){return t.id()}],zoom:[Bt,[],function(t){return t.globals.zoom}],"heatmap-density":[Bt,[],function(t){return t.globals.heatmapDensity||0}],"line-progress":[Bt,[],function(t){return t.globals.lineProgress||0}],accumulated:[Ht,[],function(t){return void 0===t.globals.accumulated?null:t.globals.accumulated}],"+":[Bt,Pr(Bt),function(t,e){for(var r=0,n=0,i=e;n":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i>a}],"filter-id->":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n>i}],"filter-<=":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i<=a}],"filter-id-<=":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n<=i}],"filter->=":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i>=a}],"filter-id->=":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n>=i}],"filter-has":[jt,[Ht],function(t,e){return e[0].value in t.properties()}],"filter-has-id":[jt,[],function(t){return null!==t.id()&&void 0!==t.id()}],"filter-type-in":[jt,[Wt(Nt)],function(t,e){return e[0].value.indexOf(t.geometryType())>=0}],"filter-id-in":[jt,[Wt(Ht)],function(t,e){return e[0].value.indexOf(t.id())>=0}],"filter-in-small":[jt,[Nt,Wt(Ht)],function(t,e){var r=e[0];return e[1].value.indexOf(t.properties()[r.value])>=0}],"filter-in-large":[jt,[Nt,Wt(Ht)],function(t,e){var r=e[0],n=e[1];return function(t,e,r,n){for(;r<=n;){var i=r+n>>1;if(e[i]===t)return!0;e[i]>t?n=i-1:r=i+1}return!1}(t.properties()[r.value],n.value,0,n.value.length-1)}],all:{type:jt,overloads:[[[jt,jt],function(t,e){var r=e[0],n=e[1];return r.evaluate(t)&&n.evaluate(t)}],[Pr(jt),function(t,e){for(var r=0,n=e;r0&&"string"==typeof t[0]&&t[0]in Sr}function Wr(t,e){var r=new Ue(Sr,[],e?function(t){var e={color:Ut,string:Nt,number:Bt,enum:Nt,boolean:jt,formatted:Gt,resolvedImage:Yt};if("array"===t.type)return Wt(e[t.value]||Ht,t.length);return e[t.type]}(e):void 0),n=r.parse(t,void 0,void 0,void 0,e&&"string"===e.type?{typeAnnotation:"coerce"}:void 0);return n?Ir(new Gr(n,e)):Or(r.errors)}Gr.prototype.evaluateWithoutErrorHandling=function(t,e,r,n,i,a){return this._evaluator.globals=t,this._evaluator.feature=e,this._evaluator.featureState=r,this._evaluator.canonical=n,this._evaluator.availableImages=i||null,this._evaluator.formattedSection=a,this.expression.evaluate(this._evaluator)},Gr.prototype.evaluate=function(t,e,r,n,i,a){this._evaluator.globals=t,this._evaluator.feature=e||null,this._evaluator.featureState=r||null,this._evaluator.canonical=n,this._evaluator.availableImages=i||null,this._evaluator.formattedSection=a||null;try{var o=this.expression.evaluate(this._evaluator);if(null==o||"number"==typeof o&&o!=o)return this._defaultValue;if(this._enumValues&&!(o in this._enumValues))throw new ue("Expected value to be one of "+Object.keys(this._enumValues).map((function(t){return JSON.stringify(t)})).join(", ")+", but found "+JSON.stringify(o)+" instead.");return o}catch(t){return this._warningHistory[t.message]||(this._warningHistory[t.message]=!0,"undefined"!=typeof console&&console.warn(t.message)),this._defaultValue}};var Xr=function(t,e){this.kind=t,this._styleExpression=e,this.isStateDependent="constant"!==t&&!Be(e.expression)};Xr.prototype.evaluateWithoutErrorHandling=function(t,e,r,n,i,a){return this._styleExpression.evaluateWithoutErrorHandling(t,e,r,n,i,a)},Xr.prototype.evaluate=function(t,e,r,n,i,a){return this._styleExpression.evaluate(t,e,r,n,i,a)};var Zr=function(t,e,r,n){this.kind=t,this.zoomStops=r,this._styleExpression=e,this.isStateDependent="camera"!==t&&!Be(e.expression),this.interpolationType=n};function Jr(t,e){if("error"===(t=Wr(t,e)).result)return t;var r=t.value.expression,n=Fe(r);if(!n&&!zr(e))return Or([new Dt("","data expressions not supported")]);var i=Ne(r,["zoom"]);if(!i&&!Dr(e))return Or([new Dt("","zoom expressions not supported")]);var a=function t(e){var r=null;if(e instanceof cr)r=t(e.result);else if(e instanceof lr)for(var n=0,i=e.args;nn.maximum?[new Ct(e,r,r+" is greater than the maximum value "+n.maximum)]:[]}function en(t){var e,r,n,i=t.valueSpec,a=Ot(t.value.type),o={},s="categorical"!==a&&void 0===t.value.property,l=!s,c="array"===Fr(t.value.stops)&&"array"===Fr(t.value.stops[0])&&"object"===Fr(t.value.stops[0][0]),u=Qr({key:t.key,value:t.value,valueSpec:t.styleSpec.function,style:t.style,styleSpec:t.styleSpec,objectElementValidators:{stops:function(t){if("identity"===a)return[new Ct(t.key,t.value,'identity function may not have a "stops" property')];var e=[],r=t.value;e=e.concat($r({key:t.key,value:r,valueSpec:t.valueSpec,style:t.style,styleSpec:t.styleSpec,arrayElementValidator:f})),"array"===Fr(r)&&0===r.length&&e.push(new Ct(t.key,r,"array must have at least one stop"));return e},default:function(t){return kn({key:t.key,value:t.value,valueSpec:i,style:t.style,styleSpec:t.styleSpec})}}});return"identity"===a&&s&&u.push(new Ct(t.key,t.value,'missing required property "property"')),"identity"===a||t.value.stops||u.push(new Ct(t.key,t.value,'missing required property "stops"')),"exponential"===a&&t.valueSpec.expression&&!Rr(t.valueSpec)&&u.push(new Ct(t.key,t.value,"exponential functions not supported")),t.styleSpec.$version>=8&&(l&&!zr(t.valueSpec)?u.push(new Ct(t.key,t.value,"property functions not supported")):s&&!Dr(t.valueSpec)&&u.push(new Ct(t.key,t.value,"zoom functions not supported"))),"categorical"!==a&&!c||void 0!==t.value.property||u.push(new Ct(t.key,t.value,'"property" property is required')),u;function f(t){var e=[],a=t.value,s=t.key;if("array"!==Fr(a))return[new Ct(s,a,"array expected, "+Fr(a)+" found")];if(2!==a.length)return[new Ct(s,a,"array length 2 expected, length "+a.length+" found")];if(c){if("object"!==Fr(a[0]))return[new Ct(s,a,"object expected, "+Fr(a[0])+" found")];if(void 0===a[0].zoom)return[new Ct(s,a,"object stop key must have zoom")];if(void 0===a[0].value)return[new Ct(s,a,"object stop key must have value")];if(n&&n>Ot(a[0].zoom))return[new Ct(s,a[0].zoom,"stop zoom values must appear in ascending order")];Ot(a[0].zoom)!==n&&(n=Ot(a[0].zoom),r=void 0,o={}),e=e.concat(Qr({key:s+"[0]",value:a[0],valueSpec:{zoom:{}},style:t.style,styleSpec:t.styleSpec,objectElementValidators:{zoom:tn,value:h}}))}else e=e.concat(h({key:s+"[0]",value:a[0],valueSpec:{},style:t.style,styleSpec:t.styleSpec},a));return Yr(zt(a[1]))?e.concat([new Ct(s+"[1]",a[1],"expressions are not allowed in function stops.")]):e.concat(kn({key:s+"[1]",value:a[1],valueSpec:i,style:t.style,styleSpec:t.styleSpec}))}function h(t,n){var s=Fr(t.value),l=Ot(t.value),c=null!==t.value?t.value:n;if(e){if(s!==e)return[new Ct(t.key,c,s+" stop domain type must match previous stop domain type "+e)]}else e=s;if("number"!==s&&"string"!==s&&"boolean"!==s)return[new Ct(t.key,c,"stop domain value must be a number, string, or boolean")];if("number"!==s&&"categorical"!==a){var u="number expected, "+s+" found";return zr(i)&&void 0===a&&(u+='\nIf you intended to use a categorical function, specify `"type": "categorical"`.'),[new Ct(t.key,c,u)]}return"categorical"!==a||"number"!==s||isFinite(l)&&Math.floor(l)===l?"categorical"!==a&&"number"===s&&void 0!==r&&l=2&&"$id"!==t[1]&&"$type"!==t[1];case"in":return t.length>=3&&("string"!=typeof t[1]||Array.isArray(t[2]));case"!in":case"!has":case"none":return!1;case"==":case"!=":case">":case">=":case"<":case"<=":return 3!==t.length||Array.isArray(t[1])||Array.isArray(t[2]);case"any":case"all":for(var e=0,r=t.slice(1);ee?1:0}function cn(t){if(!t)return!0;var e,r=t[0];return t.length<=1?"any"!==r:"=="===r?un(t[1],t[2],"=="):"!="===r?pn(un(t[1],t[2],"==")):"<"===r||">"===r||"<="===r||">="===r?un(t[1],t[2],r):"any"===r?(e=t.slice(1),["any"].concat(e.map(cn))):"all"===r?["all"].concat(t.slice(1).map(cn)):"none"===r?["all"].concat(t.slice(1).map(cn).map(pn)):"in"===r?fn(t[1],t.slice(2)):"!in"===r?pn(fn(t[1],t.slice(2))):"has"===r?hn(t[1]):"!has"===r?pn(hn(t[1])):"within"!==r||t}function un(t,e,r){switch(t){case"$type":return["filter-type-"+r,e];case"$id":return["filter-id-"+r,e];default:return["filter-"+r,t,e]}}function fn(t,e){if(0===e.length)return!1;switch(t){case"$type":return["filter-type-in",["literal",e]];case"$id":return["filter-id-in",["literal",e]];default:return e.length>200&&!e.some((function(t){return typeof t!=typeof e[0]}))?["filter-in-large",t,["literal",e.sort(ln)]]:["filter-in-small",t,["literal",e]]}}function hn(t){switch(t){case"$type":return!0;case"$id":return["filter-has-id"];default:return["filter-has",t]}}function pn(t){return["!",t]}function dn(t){return an(zt(t.value))?rn(It({},t,{expressionContext:"filter",valueSpec:{value:"boolean"}})):function t(e){var r=e.value,n=e.key;if("array"!==Fr(r))return[new Ct(n,r,"array expected, "+Fr(r)+" found")];var i,a=e.styleSpec,o=[];if(r.length<1)return[new Ct(n,r,"filter array must have at least 1 element")];switch(o=o.concat(nn({key:n+"[0]",value:r[0],valueSpec:a.filter_operator,style:e.style,styleSpec:e.styleSpec})),Ot(r[0])){case"<":case"<=":case">":case">=":r.length>=2&&"$type"===Ot(r[1])&&o.push(new Ct(n,r,'"$type" cannot be use with operator "'+r[0]+'"'));case"==":case"!=":3!==r.length&&o.push(new Ct(n,r,'filter array for operator "'+r[0]+'" must have 3 elements'));case"in":case"!in":r.length>=2&&"string"!==(i=Fr(r[1]))&&o.push(new Ct(n+"[1]",r[1],"string expected, "+i+" found"));for(var s=2;s=u[p+0]&&n>=u[p+1])?(o[h]=!0,a.push(c[h])):o[h]=!1}}},Dn.prototype._forEachCell=function(t,e,r,n,i,a,o,s){for(var l=this._convertToCellCoord(t),c=this._convertToCellCoord(e),u=this._convertToCellCoord(r),f=this._convertToCellCoord(n),h=l;h<=u;h++)for(var p=c;p<=f;p++){var d=this.d*p+h;if((!s||s(this._convertFromCellCoord(h),this._convertFromCellCoord(p),this._convertFromCellCoord(h+1),this._convertFromCellCoord(p+1)))&&i.call(this,t,e,r,n,d,a,o,s))return}},Dn.prototype._convertFromCellCoord=function(t){return(t-this.padding)/this.scale},Dn.prototype._convertToCellCoord=function(t){return Math.max(0,Math.min(this.d-1,Math.floor(t*this.scale)+this.padding))},Dn.prototype.toArrayBuffer=function(){if(this.arrayBuffer)return this.arrayBuffer;for(var t=this.cells,e=3+this.cells.length+1+1,r=0,n=0;n=0)){var f=t[u];c[u]=Bn[l].shallow.indexOf(u)>=0?f:Hn(f,e)}t instanceof Error&&(c.message=t.message)}if(c.$name)throw new Error("$name property is reserved for worker serialization logic.");return"Object"!==l&&(c.$name=l),c}throw new Error("can't serialize object of type "+typeof t)}function qn(t){if(null==t||"boolean"==typeof t||"number"==typeof t||"string"==typeof t||t instanceof Boolean||t instanceof Number||t instanceof String||t instanceof Date||t instanceof RegExp||Un(t)||Vn(t)||ArrayBuffer.isView(t)||t instanceof Rn)return t;if(Array.isArray(t))return t.map(qn);if("object"==typeof t){var e=t.$name||"Object",r=Bn[e].klass;if(!r)throw new Error("can't deserialize unregistered class "+e);if(r.deserialize)return r.deserialize(t);for(var n=Object.create(r.prototype),i=0,a=Object.keys(t);i=0?s:qn(s)}}return n}throw new Error("can't deserialize object of type "+typeof t)}var Gn=function(){this.first=!0};Gn.prototype.update=function(t,e){var r=Math.floor(t);return this.first?(this.first=!1,this.lastIntegerZoom=r,this.lastIntegerZoomTime=0,this.lastZoom=t,this.lastFloorZoom=r,!0):(this.lastFloorZoom>r?(this.lastIntegerZoom=r+1,this.lastIntegerZoomTime=e):this.lastFloorZoom=128&&t<=255},Arabic:function(t){return t>=1536&&t<=1791},"Arabic Supplement":function(t){return t>=1872&&t<=1919},"Arabic Extended-A":function(t){return t>=2208&&t<=2303},"Hangul Jamo":function(t){return t>=4352&&t<=4607},"Unified Canadian Aboriginal Syllabics":function(t){return t>=5120&&t<=5759},Khmer:function(t){return t>=6016&&t<=6143},"Unified Canadian Aboriginal Syllabics Extended":function(t){return t>=6320&&t<=6399},"General Punctuation":function(t){return t>=8192&&t<=8303},"Letterlike Symbols":function(t){return t>=8448&&t<=8527},"Number Forms":function(t){return t>=8528&&t<=8591},"Miscellaneous Technical":function(t){return t>=8960&&t<=9215},"Control Pictures":function(t){return t>=9216&&t<=9279},"Optical Character Recognition":function(t){return t>=9280&&t<=9311},"Enclosed Alphanumerics":function(t){return t>=9312&&t<=9471},"Geometric Shapes":function(t){return t>=9632&&t<=9727},"Miscellaneous Symbols":function(t){return t>=9728&&t<=9983},"Miscellaneous Symbols and Arrows":function(t){return t>=11008&&t<=11263},"CJK Radicals Supplement":function(t){return t>=11904&&t<=12031},"Kangxi Radicals":function(t){return t>=12032&&t<=12255},"Ideographic Description Characters":function(t){return t>=12272&&t<=12287},"CJK Symbols and Punctuation":function(t){return t>=12288&&t<=12351},Hiragana:function(t){return t>=12352&&t<=12447},Katakana:function(t){return t>=12448&&t<=12543},Bopomofo:function(t){return t>=12544&&t<=12591},"Hangul Compatibility Jamo":function(t){return t>=12592&&t<=12687},Kanbun:function(t){return t>=12688&&t<=12703},"Bopomofo Extended":function(t){return t>=12704&&t<=12735},"CJK Strokes":function(t){return t>=12736&&t<=12783},"Katakana Phonetic Extensions":function(t){return t>=12784&&t<=12799},"Enclosed CJK Letters and Months":function(t){return t>=12800&&t<=13055},"CJK Compatibility":function(t){return t>=13056&&t<=13311},"CJK Unified Ideographs Extension A":function(t){return t>=13312&&t<=19903},"Yijing Hexagram Symbols":function(t){return t>=19904&&t<=19967},"CJK Unified Ideographs":function(t){return t>=19968&&t<=40959},"Yi Syllables":function(t){return t>=40960&&t<=42127},"Yi Radicals":function(t){return t>=42128&&t<=42191},"Hangul Jamo Extended-A":function(t){return t>=43360&&t<=43391},"Hangul Syllables":function(t){return t>=44032&&t<=55215},"Hangul Jamo Extended-B":function(t){return t>=55216&&t<=55295},"Private Use Area":function(t){return t>=57344&&t<=63743},"CJK Compatibility Ideographs":function(t){return t>=63744&&t<=64255},"Arabic Presentation Forms-A":function(t){return t>=64336&&t<=65023},"Vertical Forms":function(t){return t>=65040&&t<=65055},"CJK Compatibility Forms":function(t){return t>=65072&&t<=65103},"Small Form Variants":function(t){return t>=65104&&t<=65135},"Arabic Presentation Forms-B":function(t){return t>=65136&&t<=65279},"Halfwidth and Fullwidth Forms":function(t){return t>=65280&&t<=65519}};function Wn(t){for(var e=0,r=t;e=65097&&t<=65103)||(!!Yn["CJK Compatibility Ideographs"](t)||(!!Yn["CJK Compatibility"](t)||(!!Yn["CJK Radicals Supplement"](t)||(!!Yn["CJK Strokes"](t)||(!(!Yn["CJK Symbols and Punctuation"](t)||t>=12296&&t<=12305||t>=12308&&t<=12319||12336===t)||(!!Yn["CJK Unified Ideographs Extension A"](t)||(!!Yn["CJK Unified Ideographs"](t)||(!!Yn["Enclosed CJK Letters and Months"](t)||(!!Yn["Hangul Compatibility Jamo"](t)||(!!Yn["Hangul Jamo Extended-A"](t)||(!!Yn["Hangul Jamo Extended-B"](t)||(!!Yn["Hangul Jamo"](t)||(!!Yn["Hangul Syllables"](t)||(!!Yn.Hiragana(t)||(!!Yn["Ideographic Description Characters"](t)||(!!Yn.Kanbun(t)||(!!Yn["Kangxi Radicals"](t)||(!!Yn["Katakana Phonetic Extensions"](t)||(!(!Yn.Katakana(t)||12540===t)||(!(!Yn["Halfwidth and Fullwidth Forms"](t)||65288===t||65289===t||65293===t||t>=65306&&t<=65310||65339===t||65341===t||65343===t||t>=65371&&t<=65503||65507===t||t>=65512&&t<=65519)||(!(!Yn["Small Form Variants"](t)||t>=65112&&t<=65118||t>=65123&&t<=65126)||(!!Yn["Unified Canadian Aboriginal Syllabics"](t)||(!!Yn["Unified Canadian Aboriginal Syllabics Extended"](t)||(!!Yn["Vertical Forms"](t)||(!!Yn["Yijing Hexagram Symbols"](t)||(!!Yn["Yi Syllables"](t)||!!Yn["Yi Radicals"](t))))))))))))))))))))))))))))))}function Jn(t){return!(Zn(t)||function(t){return!(!Yn["Latin-1 Supplement"](t)||167!==t&&169!==t&&174!==t&&177!==t&&188!==t&&189!==t&&190!==t&&215!==t&&247!==t)||(!(!Yn["General Punctuation"](t)||8214!==t&&8224!==t&&8225!==t&&8240!==t&&8241!==t&&8251!==t&&8252!==t&&8258!==t&&8263!==t&&8264!==t&&8265!==t&&8273!==t)||(!!Yn["Letterlike Symbols"](t)||(!!Yn["Number Forms"](t)||(!(!Yn["Miscellaneous Technical"](t)||!(t>=8960&&t<=8967||t>=8972&&t<=8991||t>=8996&&t<=9e3||9003===t||t>=9085&&t<=9114||t>=9150&&t<=9165||9167===t||t>=9169&&t<=9179||t>=9186&&t<=9215))||(!(!Yn["Control Pictures"](t)||9251===t)||(!!Yn["Optical Character Recognition"](t)||(!!Yn["Enclosed Alphanumerics"](t)||(!!Yn["Geometric Shapes"](t)||(!(!Yn["Miscellaneous Symbols"](t)||t>=9754&&t<=9759)||(!(!Yn["Miscellaneous Symbols and Arrows"](t)||!(t>=11026&&t<=11055||t>=11088&&t<=11097||t>=11192&&t<=11243))||(!!Yn["CJK Symbols and Punctuation"](t)||(!!Yn.Katakana(t)||(!!Yn["Private Use Area"](t)||(!!Yn["CJK Compatibility Forms"](t)||(!!Yn["Small Form Variants"](t)||(!!Yn["Halfwidth and Fullwidth Forms"](t)||(8734===t||8756===t||8757===t||t>=9984&&t<=10087||t>=10102&&t<=10131||65532===t||65533===t)))))))))))))))))}(t))}function Kn(t){return t>=1424&&t<=2303||Yn["Arabic Presentation Forms-A"](t)||Yn["Arabic Presentation Forms-B"](t)}function Qn(t,e){return!(!e&&Kn(t))&&!(t>=2304&&t<=3583||t>=3840&&t<=4255||Yn.Khmer(t))}function $n(t){for(var e=0,r=t;e-1&&(ai=ni),ii&&ii(t)};function li(){ci.fire(new Mt("pluginStateChange",{pluginStatus:ai,pluginURL:oi}))}var ci=new Et,ui=function(){return ai},fi=function(){if(ai!==ti||!oi)throw new Error("rtl-text-plugin cannot be downloaded unless a pluginURL is specified");ai=ei,li(),oi&&xt({url:oi},(function(t){t?si(t):(ai=ri,li())}))},hi={applyArabicShaping:null,processBidirectionalText:null,processStyledBidirectionalText:null,isLoaded:function(){return ai===ri||null!=hi.applyArabicShaping},isLoading:function(){return ai===ei},setState:function(t){ai=t.pluginStatus,oi=t.pluginURL},isParsed:function(){return null!=hi.applyArabicShaping&&null!=hi.processBidirectionalText&&null!=hi.processStyledBidirectionalText},getPluginURL:function(){return oi}},pi=function(t,e){this.zoom=t,e?(this.now=e.now,this.fadeDuration=e.fadeDuration,this.zoomHistory=e.zoomHistory,this.transition=e.transition):(this.now=0,this.fadeDuration=0,this.zoomHistory=new Gn,this.transition={})};pi.prototype.isSupportedScript=function(t){return function(t,e){for(var r=0,n=t;rthis.zoomHistory.lastIntegerZoom?{fromScale:2,toScale:1,t:e+(1-e)*r}:{fromScale:.5,toScale:1,t:1-(1-r)*e}};var di=function(t,e){this.property=t,this.value=e,this.expression=function(t,e){if(Br(t))return new Kr(t,e);if(Yr(t)){var r=Jr(t,e);if("error"===r.result)throw new Error(r.value.map((function(t){return t.key+": "+t.message})).join(", "));return r.value}var n=t;return"string"==typeof t&&"color"===e.type&&(n=te.parse(t)),{kind:"constant",evaluate:function(){return n}}}(void 0===e?t.specification.default:e,t.specification)};di.prototype.isDataDriven=function(){return"source"===this.expression.kind||"composite"===this.expression.kind},di.prototype.possiblyEvaluate=function(t,e,r){return this.property.possiblyEvaluate(this,t,e,r)};var mi=function(t){this.property=t,this.value=new di(t,void 0)};mi.prototype.transitioned=function(t,e){return new vi(this.property,this.value,e,u({},t.transition,this.transition),t.now)},mi.prototype.untransitioned=function(){return new vi(this.property,this.value,null,{},0)};var gi=function(t){this._properties=t,this._values=Object.create(t.defaultTransitionablePropertyValues)};gi.prototype.getValue=function(t){return x(this._values[t].value.value)},gi.prototype.setValue=function(t,e){this._values.hasOwnProperty(t)||(this._values[t]=new mi(this._values[t].property)),this._values[t].value=new di(this._values[t].property,null===e?void 0:x(e))},gi.prototype.getTransition=function(t){return x(this._values[t].transition)},gi.prototype.setTransition=function(t,e){this._values.hasOwnProperty(t)||(this._values[t]=new mi(this._values[t].property)),this._values[t].transition=x(e)||void 0},gi.prototype.serialize=function(){for(var t={},e=0,r=Object.keys(this._values);ethis.end)return this.prior=null,i;if(this.value.isDataDriven())return this.prior=null,i;if(n=1)return 1;var e=t*t,r=e*t;return 4*(t<.5?r:3*(t-e)+r-.75)}(o))}return i};var yi=function(t){this._properties=t,this._values=Object.create(t.defaultTransitioningPropertyValues)};yi.prototype.possiblyEvaluate=function(t,e,r){for(var n=new _i(this._properties),i=0,a=Object.keys(this._values);in.zoomHistory.lastIntegerZoom?{from:t,to:e}:{from:r,to:e}},e.prototype.interpolate=function(t){return t},e}(Ti),Ai=function(t){this.specification=t};Ai.prototype.possiblyEvaluate=function(t,e,r,n){if(void 0!==t.value){if("constant"===t.expression.kind){var i=t.expression.evaluate(e,null,{},r,n);return this._calculate(i,i,i,e)}return this._calculate(t.expression.evaluate(new pi(Math.floor(e.zoom-1),e)),t.expression.evaluate(new pi(Math.floor(e.zoom),e)),t.expression.evaluate(new pi(Math.floor(e.zoom+1),e)),e)}},Ai.prototype._calculate=function(t,e,r,n){return n.zoom>n.zoomHistory.lastIntegerZoom?{from:t,to:e}:{from:r,to:e}},Ai.prototype.interpolate=function(t){return t};var Mi=function(t){this.specification=t};Mi.prototype.possiblyEvaluate=function(t,e,r,n){return!!t.expression.evaluate(e,null,{},r,n)},Mi.prototype.interpolate=function(){return!1};var Si=function(t){for(var e in this.properties=t,this.defaultPropertyValues={},this.defaultTransitionablePropertyValues={},this.defaultTransitioningPropertyValues={},this.defaultPossiblyEvaluatedValues={},this.overridableProperties=[],t){var r=t[e];r.specification.overridable&&this.overridableProperties.push(e);var n=this.defaultPropertyValues[e]=new di(r,void 0),i=this.defaultTransitionablePropertyValues[e]=new mi(r);this.defaultTransitioningPropertyValues[e]=i.untransitioned(),this.defaultPossiblyEvaluatedValues[e]=n.possiblyEvaluate({})}};Nn("DataDrivenProperty",Ti),Nn("DataConstantProperty",wi),Nn("CrossFadedDataDrivenProperty",ki),Nn("CrossFadedProperty",Ai),Nn("ColorRampProperty",Mi);var Ei=function(t){function e(e,r){if(t.call(this),this.id=e.id,this.type=e.type,this._featureFilter={filter:function(){return!0},needGeometry:!1},"custom"!==e.type&&(e=e,this.metadata=e.metadata,this.minzoom=e.minzoom,this.maxzoom=e.maxzoom,"background"!==e.type&&(this.source=e.source,this.sourceLayer=e["source-layer"],this.filter=e.filter),r.layout&&(this._unevaluatedLayout=new xi(r.layout)),r.paint)){for(var n in this._transitionablePaint=new gi(r.paint),e.paint)this.setPaintProperty(n,e.paint[n],{validate:!1});for(var i in e.layout)this.setLayoutProperty(i,e.layout[i],{validate:!1});this._transitioningPaint=this._transitionablePaint.untransitioned(),this.paint=new _i(r.paint)}}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getCrossfadeParameters=function(){return this._crossfadeParameters},e.prototype.getLayoutProperty=function(t){return"visibility"===t?this.visibility:this._unevaluatedLayout.getValue(t)},e.prototype.setLayoutProperty=function(t,e,r){if(void 0===r&&(r={}),null!=e){var n="layers."+this.id+".layout."+t;if(this._validate(In,n,t,e,r))return}"visibility"!==t?this._unevaluatedLayout.setValue(t,e):this.visibility=e},e.prototype.getPaintProperty=function(t){return g(t,"-transition")?this._transitionablePaint.getTransition(t.slice(0,-"-transition".length)):this._transitionablePaint.getValue(t)},e.prototype.setPaintProperty=function(t,e,r){if(void 0===r&&(r={}),null!=e){var n="layers."+this.id+".paint."+t;if(this._validate(Pn,n,t,e,r))return!1}if(g(t,"-transition"))return this._transitionablePaint.setTransition(t.slice(0,-"-transition".length),e||void 0),!1;var i=this._transitionablePaint._values[t],a="cross-faded-data-driven"===i.property.specification["property-type"],o=i.value.isDataDriven(),s=i.value;this._transitionablePaint.setValue(t,e),this._handleSpecialPaintPropertyUpdate(t);var l=this._transitionablePaint._values[t].value;return l.isDataDriven()||o||a||this._handleOverridablePaintPropertyUpdate(t,s,l)},e.prototype._handleSpecialPaintPropertyUpdate=function(t){},e.prototype._handleOverridablePaintPropertyUpdate=function(t,e,r){return!1},e.prototype.isHidden=function(t){return!!(this.minzoom&&t=this.maxzoom)||"none"===this.visibility)},e.prototype.updateTransitions=function(t){this._transitioningPaint=this._transitionablePaint.transitioned(t,this._transitioningPaint)},e.prototype.hasTransition=function(){return this._transitioningPaint.hasTransition()},e.prototype.recalculate=function(t,e){t.getCrossfadeParameters&&(this._crossfadeParameters=t.getCrossfadeParameters()),this._unevaluatedLayout&&(this.layout=this._unevaluatedLayout.possiblyEvaluate(t,void 0,e)),this.paint=this._transitioningPaint.possiblyEvaluate(t,void 0,e)},e.prototype.serialize=function(){var t={id:this.id,type:this.type,source:this.source,"source-layer":this.sourceLayer,metadata:this.metadata,minzoom:this.minzoom,maxzoom:this.maxzoom,filter:this.filter,layout:this._unevaluatedLayout&&this._unevaluatedLayout.serialize(),paint:this._transitionablePaint&&this._transitionablePaint.serialize()};return this.visibility&&(t.layout=t.layout||{},t.layout.visibility=this.visibility),y(t,(function(t,e){return!(void 0===t||"layout"===e&&!Object.keys(t).length||"paint"===e&&!Object.keys(t).length)}))},e.prototype._validate=function(t,e,r,n,i){return void 0===i&&(i={}),(!i||!1!==i.validate)&&On(this,t.call(Ln,{key:e,layerType:this.type,objectKey:r,value:n,styleSpec:Lt,style:{glyphs:!0,sprite:!0}}))},e.prototype.is3D=function(){return!1},e.prototype.isTileClipped=function(){return!1},e.prototype.hasOffscreenPass=function(){return!1},e.prototype.resize=function(){},e.prototype.isStateDependent=function(){for(var t in this.paint._values){var e=this.paint.get(t);if(e instanceof bi&&zr(e.property.specification)&&(("source"===e.value.kind||"composite"===e.value.kind)&&e.value.isStateDependent))return!0}return!1},e}(Et),Li={Int8:Int8Array,Uint8:Uint8Array,Int16:Int16Array,Uint16:Uint16Array,Int32:Int32Array,Uint32:Uint32Array,Float32:Float32Array},Ci=function(t,e){this._structArray=t,this._pos1=e*this.size,this._pos2=this._pos1/2,this._pos4=this._pos1/4,this._pos8=this._pos1/8},Pi=function(){this.isTransferred=!1,this.capacity=-1,this.resize(0)};function Ii(t,e){void 0===e&&(e=1);var r=0,n=0;return{members:t.map((function(t){var i,a=(i=t.type,Li[i].BYTES_PER_ELEMENT),o=r=Oi(r,Math.max(e,a)),s=t.components||1;return n=Math.max(n,a),r+=a*s,{name:t.name,type:t.type,components:s,offset:o}})),size:Oi(r,Math.max(n,e)),alignment:e}}function Oi(t,e){return Math.ceil(t/e)*e}Pi.serialize=function(t,e){return t._trim(),e&&(t.isTransferred=!0,e.push(t.arrayBuffer)),{length:t.length,arrayBuffer:t.arrayBuffer}},Pi.deserialize=function(t){var e=Object.create(this.prototype);return e.arrayBuffer=t.arrayBuffer,e.length=t.length,e.capacity=t.arrayBuffer.byteLength/e.bytesPerElement,e._refreshViews(),e},Pi.prototype._trim=function(){this.length!==this.capacity&&(this.capacity=this.length,this.arrayBuffer=this.arrayBuffer.slice(0,this.length*this.bytesPerElement),this._refreshViews())},Pi.prototype.clear=function(){this.length=0},Pi.prototype.resize=function(t){this.reserve(t),this.length=t},Pi.prototype.reserve=function(t){if(t>this.capacity){this.capacity=Math.max(t,Math.floor(5*this.capacity),128),this.arrayBuffer=new ArrayBuffer(this.capacity*this.bytesPerElement);var e=this.uint8;this._refreshViews(),e&&this.uint8.set(e)}},Pi.prototype._refreshViews=function(){throw new Error("_refreshViews() must be implemented by each concrete StructArray layout")};var zi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.int16[n+0]=e,this.int16[n+1]=r,t},e}(Pi);zi.prototype.bytesPerElement=4,Nn("StructArrayLayout2i4",zi);var Di=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=4*t;return this.int16[a+0]=e,this.int16[a+1]=r,this.int16[a+2]=n,this.int16[a+3]=i,t},e}(Pi);Di.prototype.bytesPerElement=8,Nn("StructArrayLayout4i8",Di);var Ri=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=6*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.int16[s+2]=n,this.int16[s+3]=i,this.int16[s+4]=a,this.int16[s+5]=o,t},e}(Pi);Ri.prototype.bytesPerElement=12,Nn("StructArrayLayout2i4i12",Ri);var Fi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=4*t,l=8*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.uint8[l+4]=n,this.uint8[l+5]=i,this.uint8[l+6]=a,this.uint8[l+7]=o,t},e}(Pi);Fi.prototype.bytesPerElement=8,Nn("StructArrayLayout2i4ub8",Fi);var Bi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c){var u=this.length;return this.resize(u+1),this.emplace(u,t,e,r,n,i,a,o,s,l,c)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u){var f=9*t,h=18*t;return this.uint16[f+0]=e,this.uint16[f+1]=r,this.uint16[f+2]=n,this.uint16[f+3]=i,this.uint16[f+4]=a,this.uint16[f+5]=o,this.uint16[f+6]=s,this.uint16[f+7]=l,this.uint8[h+16]=c,this.uint8[h+17]=u,t},e}(Pi);Bi.prototype.bytesPerElement=18,Nn("StructArrayLayout8ui2ub18",Bi);var Ni=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f){var h=this.length;return this.resize(h+1),this.emplace(h,t,e,r,n,i,a,o,s,l,c,u,f)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h){var p=12*t;return this.int16[p+0]=e,this.int16[p+1]=r,this.int16[p+2]=n,this.int16[p+3]=i,this.uint16[p+4]=a,this.uint16[p+5]=o,this.uint16[p+6]=s,this.uint16[p+7]=l,this.int16[p+8]=c,this.int16[p+9]=u,this.int16[p+10]=f,this.int16[p+11]=h,t},e}(Pi);Ni.prototype.bytesPerElement=24,Nn("StructArrayLayout4i4ui4i24",Ni);var ji=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.float32[i+0]=e,this.float32[i+1]=r,this.float32[i+2]=n,t},e}(Pi);ji.prototype.bytesPerElement=12,Nn("StructArrayLayout3f12",ji);var Ui=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.uint32[r+0]=e,t},e}(Pi);Ui.prototype.bytesPerElement=4,Nn("StructArrayLayout1ul4",Ui);var Vi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l){var c=this.length;return this.resize(c+1),this.emplace(c,t,e,r,n,i,a,o,s,l)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c){var u=10*t,f=5*t;return this.int16[u+0]=e,this.int16[u+1]=r,this.int16[u+2]=n,this.int16[u+3]=i,this.int16[u+4]=a,this.int16[u+5]=o,this.uint32[f+3]=s,this.uint16[u+8]=l,this.uint16[u+9]=c,t},e}(Pi);Vi.prototype.bytesPerElement=20,Nn("StructArrayLayout6i1ul2ui20",Vi);var Hi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=6*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.int16[s+2]=n,this.int16[s+3]=i,this.int16[s+4]=a,this.int16[s+5]=o,t},e}(Pi);Hi.prototype.bytesPerElement=12,Nn("StructArrayLayout2i2i2i12",Hi);var qi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i){var a=this.length;return this.resize(a+1),this.emplace(a,t,e,r,n,i)},e.prototype.emplace=function(t,e,r,n,i,a){var o=4*t,s=8*t;return this.float32[o+0]=e,this.float32[o+1]=r,this.float32[o+2]=n,this.int16[s+6]=i,this.int16[s+7]=a,t},e}(Pi);qi.prototype.bytesPerElement=16,Nn("StructArrayLayout2f1f2i16",qi);var Gi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=12*t,o=3*t;return this.uint8[a+0]=e,this.uint8[a+1]=r,this.float32[o+1]=n,this.float32[o+2]=i,t},e}(Pi);Gi.prototype.bytesPerElement=12,Nn("StructArrayLayout2ub2f12",Gi);var Yi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.uint16[i+0]=e,this.uint16[i+1]=r,this.uint16[i+2]=n,t},e}(Pi);Yi.prototype.bytesPerElement=6,Nn("StructArrayLayout3ui6",Yi);var Wi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g){var v=this.length;return this.resize(v+1),this.emplace(v,t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v){var y=24*t,x=12*t,b=48*t;return this.int16[y+0]=e,this.int16[y+1]=r,this.uint16[y+2]=n,this.uint16[y+3]=i,this.uint32[x+2]=a,this.uint32[x+3]=o,this.uint32[x+4]=s,this.uint16[y+10]=l,this.uint16[y+11]=c,this.uint16[y+12]=u,this.float32[x+7]=f,this.float32[x+8]=h,this.uint8[b+36]=p,this.uint8[b+37]=d,this.uint8[b+38]=m,this.uint32[x+10]=g,this.int16[y+22]=v,t},e}(Pi);Wi.prototype.bytesPerElement=48,Nn("StructArrayLayout2i2ui3ul3ui2f3ub1ul1i48",Wi);var Xi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S){var E=this.length;return this.resize(E+1),this.emplace(E,t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S,E){var L=34*t,C=17*t;return this.int16[L+0]=e,this.int16[L+1]=r,this.int16[L+2]=n,this.int16[L+3]=i,this.int16[L+4]=a,this.int16[L+5]=o,this.int16[L+6]=s,this.int16[L+7]=l,this.uint16[L+8]=c,this.uint16[L+9]=u,this.uint16[L+10]=f,this.uint16[L+11]=h,this.uint16[L+12]=p,this.uint16[L+13]=d,this.uint16[L+14]=m,this.uint16[L+15]=g,this.uint16[L+16]=v,this.uint16[L+17]=y,this.uint16[L+18]=x,this.uint16[L+19]=b,this.uint16[L+20]=_,this.uint16[L+21]=w,this.uint16[L+22]=T,this.uint32[C+12]=k,this.float32[C+13]=A,this.float32[C+14]=M,this.float32[C+15]=S,this.float32[C+16]=E,t},e}(Pi);Xi.prototype.bytesPerElement=68,Nn("StructArrayLayout8i15ui1ul4f68",Xi);var Zi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.float32[r+0]=e,t},e}(Pi);Zi.prototype.bytesPerElement=4,Nn("StructArrayLayout1f4",Zi);var Ji=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.int16[i+0]=e,this.int16[i+1]=r,this.int16[i+2]=n,t},e}(Pi);Ji.prototype.bytesPerElement=6,Nn("StructArrayLayout3i6",Ji);var Ki=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=2*t,a=4*t;return this.uint32[i+0]=e,this.uint16[a+2]=r,this.uint16[a+3]=n,t},e}(Pi);Ki.prototype.bytesPerElement=8,Nn("StructArrayLayout1ul2ui8",Ki);var Qi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.uint16[n+0]=e,this.uint16[n+1]=r,t},e}(Pi);Qi.prototype.bytesPerElement=4,Nn("StructArrayLayout2ui4",Qi);var $i=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.uint16[r+0]=e,t},e}(Pi);$i.prototype.bytesPerElement=2,Nn("StructArrayLayout1ui2",$i);var ta=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.float32[n+0]=e,this.float32[n+1]=r,t},e}(Pi);ta.prototype.bytesPerElement=8,Nn("StructArrayLayout2f8",ta);var ea=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=4*t;return this.float32[a+0]=e,this.float32[a+1]=r,this.float32[a+2]=n,this.float32[a+3]=i,t},e}(Pi);ea.prototype.bytesPerElement=16,Nn("StructArrayLayout4f16",ea);var ra=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorPointX:{configurable:!0},anchorPointY:{configurable:!0},x1:{configurable:!0},y1:{configurable:!0},x2:{configurable:!0},y2:{configurable:!0},featureIndex:{configurable:!0},sourceLayerIndex:{configurable:!0},bucketIndex:{configurable:!0},anchorPoint:{configurable:!0}};return r.anchorPointX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorPointY.get=function(){return this._structArray.int16[this._pos2+1]},r.x1.get=function(){return this._structArray.int16[this._pos2+2]},r.y1.get=function(){return this._structArray.int16[this._pos2+3]},r.x2.get=function(){return this._structArray.int16[this._pos2+4]},r.y2.get=function(){return this._structArray.int16[this._pos2+5]},r.featureIndex.get=function(){return this._structArray.uint32[this._pos4+3]},r.sourceLayerIndex.get=function(){return this._structArray.uint16[this._pos2+8]},r.bucketIndex.get=function(){return this._structArray.uint16[this._pos2+9]},r.anchorPoint.get=function(){return new i(this.anchorPointX,this.anchorPointY)},Object.defineProperties(e.prototype,r),e}(Ci);ra.prototype.size=20;var na=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ra(this,t)},e}(Vi);Nn("CollisionBoxArray",na);var ia=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorX:{configurable:!0},anchorY:{configurable:!0},glyphStartIndex:{configurable:!0},numGlyphs:{configurable:!0},vertexStartIndex:{configurable:!0},lineStartIndex:{configurable:!0},lineLength:{configurable:!0},segment:{configurable:!0},lowerSize:{configurable:!0},upperSize:{configurable:!0},lineOffsetX:{configurable:!0},lineOffsetY:{configurable:!0},writingMode:{configurable:!0},placedOrientation:{configurable:!0},hidden:{configurable:!0},crossTileID:{configurable:!0},associatedIconIndex:{configurable:!0}};return r.anchorX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorY.get=function(){return this._structArray.int16[this._pos2+1]},r.glyphStartIndex.get=function(){return this._structArray.uint16[this._pos2+2]},r.numGlyphs.get=function(){return this._structArray.uint16[this._pos2+3]},r.vertexStartIndex.get=function(){return this._structArray.uint32[this._pos4+2]},r.lineStartIndex.get=function(){return this._structArray.uint32[this._pos4+3]},r.lineLength.get=function(){return this._structArray.uint32[this._pos4+4]},r.segment.get=function(){return this._structArray.uint16[this._pos2+10]},r.lowerSize.get=function(){return this._structArray.uint16[this._pos2+11]},r.upperSize.get=function(){return this._structArray.uint16[this._pos2+12]},r.lineOffsetX.get=function(){return this._structArray.float32[this._pos4+7]},r.lineOffsetY.get=function(){return this._structArray.float32[this._pos4+8]},r.writingMode.get=function(){return this._structArray.uint8[this._pos1+36]},r.placedOrientation.get=function(){return this._structArray.uint8[this._pos1+37]},r.placedOrientation.set=function(t){this._structArray.uint8[this._pos1+37]=t},r.hidden.get=function(){return this._structArray.uint8[this._pos1+38]},r.hidden.set=function(t){this._structArray.uint8[this._pos1+38]=t},r.crossTileID.get=function(){return this._structArray.uint32[this._pos4+10]},r.crossTileID.set=function(t){this._structArray.uint32[this._pos4+10]=t},r.associatedIconIndex.get=function(){return this._structArray.int16[this._pos2+22]},Object.defineProperties(e.prototype,r),e}(Ci);ia.prototype.size=48;var aa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ia(this,t)},e}(Wi);Nn("PlacedSymbolArray",aa);var oa=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorX:{configurable:!0},anchorY:{configurable:!0},rightJustifiedTextSymbolIndex:{configurable:!0},centerJustifiedTextSymbolIndex:{configurable:!0},leftJustifiedTextSymbolIndex:{configurable:!0},verticalPlacedTextSymbolIndex:{configurable:!0},placedIconSymbolIndex:{configurable:!0},verticalPlacedIconSymbolIndex:{configurable:!0},key:{configurable:!0},textBoxStartIndex:{configurable:!0},textBoxEndIndex:{configurable:!0},verticalTextBoxStartIndex:{configurable:!0},verticalTextBoxEndIndex:{configurable:!0},iconBoxStartIndex:{configurable:!0},iconBoxEndIndex:{configurable:!0},verticalIconBoxStartIndex:{configurable:!0},verticalIconBoxEndIndex:{configurable:!0},featureIndex:{configurable:!0},numHorizontalGlyphVertices:{configurable:!0},numVerticalGlyphVertices:{configurable:!0},numIconVertices:{configurable:!0},numVerticalIconVertices:{configurable:!0},useRuntimeCollisionCircles:{configurable:!0},crossTileID:{configurable:!0},textBoxScale:{configurable:!0},textOffset0:{configurable:!0},textOffset1:{configurable:!0},collisionCircleDiameter:{configurable:!0}};return r.anchorX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorY.get=function(){return this._structArray.int16[this._pos2+1]},r.rightJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+2]},r.centerJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+3]},r.leftJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+4]},r.verticalPlacedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+5]},r.placedIconSymbolIndex.get=function(){return this._structArray.int16[this._pos2+6]},r.verticalPlacedIconSymbolIndex.get=function(){return this._structArray.int16[this._pos2+7]},r.key.get=function(){return this._structArray.uint16[this._pos2+8]},r.textBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+9]},r.textBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+10]},r.verticalTextBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+11]},r.verticalTextBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+12]},r.iconBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+13]},r.iconBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+14]},r.verticalIconBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+15]},r.verticalIconBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+16]},r.featureIndex.get=function(){return this._structArray.uint16[this._pos2+17]},r.numHorizontalGlyphVertices.get=function(){return this._structArray.uint16[this._pos2+18]},r.numVerticalGlyphVertices.get=function(){return this._structArray.uint16[this._pos2+19]},r.numIconVertices.get=function(){return this._structArray.uint16[this._pos2+20]},r.numVerticalIconVertices.get=function(){return this._structArray.uint16[this._pos2+21]},r.useRuntimeCollisionCircles.get=function(){return this._structArray.uint16[this._pos2+22]},r.crossTileID.get=function(){return this._structArray.uint32[this._pos4+12]},r.crossTileID.set=function(t){this._structArray.uint32[this._pos4+12]=t},r.textBoxScale.get=function(){return this._structArray.float32[this._pos4+13]},r.textOffset0.get=function(){return this._structArray.float32[this._pos4+14]},r.textOffset1.get=function(){return this._structArray.float32[this._pos4+15]},r.collisionCircleDiameter.get=function(){return this._structArray.float32[this._pos4+16]},Object.defineProperties(e.prototype,r),e}(Ci);oa.prototype.size=68;var sa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new oa(this,t)},e}(Xi);Nn("SymbolInstanceArray",sa);var la=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getoffsetX=function(t){return this.float32[1*t+0]},e}(Zi);Nn("GlyphOffsetArray",la);var ca=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getx=function(t){return this.int16[3*t+0]},e.prototype.gety=function(t){return this.int16[3*t+1]},e.prototype.gettileUnitDistanceFromAnchor=function(t){return this.int16[3*t+2]},e}(Ji);Nn("SymbolLineVertexArray",ca);var ua=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={featureIndex:{configurable:!0},sourceLayerIndex:{configurable:!0},bucketIndex:{configurable:!0}};return r.featureIndex.get=function(){return this._structArray.uint32[this._pos4+0]},r.sourceLayerIndex.get=function(){return this._structArray.uint16[this._pos2+2]},r.bucketIndex.get=function(){return this._structArray.uint16[this._pos2+3]},Object.defineProperties(e.prototype,r),e}(Ci);ua.prototype.size=8;var fa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ua(this,t)},e}(Ki);Nn("FeatureIndexArray",fa);var ha=Ii([{name:"a_pos",components:2,type:"Int16"}],4).members,pa=function(t){void 0===t&&(t=[]),this.segments=t};function da(t,e){return 256*(t=l(Math.floor(t),0,255))+(e=l(Math.floor(e),0,255))}pa.prototype.prepareSegment=function(t,e,r,n){var i=this.segments[this.segments.length-1];return t>pa.MAX_VERTEX_ARRAY_LENGTH&&_("Max vertices per segment is "+pa.MAX_VERTEX_ARRAY_LENGTH+": bucket requested "+t),(!i||i.vertexLength+t>pa.MAX_VERTEX_ARRAY_LENGTH||i.sortKey!==n)&&(i={vertexOffset:e.length,primitiveOffset:r.length,vertexLength:0,primitiveLength:0},void 0!==n&&(i.sortKey=n),this.segments.push(i)),i},pa.prototype.get=function(){return this.segments},pa.prototype.destroy=function(){for(var t=0,e=this.segments;t>>16)*o&65535)<<16)&4294967295)<<15|l>>>17))*s+(((l>>>16)*s&65535)<<16)&4294967295)<<13|i>>>19))+((5*(i>>>16)&65535)<<16)&4294967295))+((58964+(a>>>16)&65535)<<16);switch(l=0,r){case 3:l^=(255&t.charCodeAt(c+2))<<16;case 2:l^=(255&t.charCodeAt(c+1))<<8;case 1:i^=l=(65535&(l=(l=(65535&(l^=255&t.charCodeAt(c)))*o+(((l>>>16)*o&65535)<<16)&4294967295)<<15|l>>>17))*s+(((l>>>16)*s&65535)<<16)&4294967295}return i^=t.length,i=2246822507*(65535&(i^=i>>>16))+((2246822507*(i>>>16)&65535)<<16)&4294967295,i=3266489909*(65535&(i^=i>>>13))+((3266489909*(i>>>16)&65535)<<16)&4294967295,(i^=i>>>16)>>>0}})),va=e((function(t){t.exports=function(t,e){for(var r,n=t.length,i=e^n,a=0;n>=4;)r=1540483477*(65535&(r=255&t.charCodeAt(a)|(255&t.charCodeAt(++a))<<8|(255&t.charCodeAt(++a))<<16|(255&t.charCodeAt(++a))<<24))+((1540483477*(r>>>16)&65535)<<16),i=1540483477*(65535&i)+((1540483477*(i>>>16)&65535)<<16)^(r=1540483477*(65535&(r^=r>>>24))+((1540483477*(r>>>16)&65535)<<16)),n-=4,++a;switch(n){case 3:i^=(255&t.charCodeAt(a+2))<<16;case 2:i^=(255&t.charCodeAt(a+1))<<8;case 1:i=1540483477*(65535&(i^=255&t.charCodeAt(a)))+((1540483477*(i>>>16)&65535)<<16)}return i=1540483477*(65535&(i^=i>>>13))+((1540483477*(i>>>16)&65535)<<16),(i^=i>>>15)>>>0}})),ya=ga,xa=ga,ba=va;ya.murmur3=xa,ya.murmur2=ba;var _a=function(){this.ids=[],this.positions=[],this.indexed=!1};_a.prototype.add=function(t,e,r,n){this.ids.push(Ta(t)),this.positions.push(e,r,n)},_a.prototype.getPositions=function(t){for(var e=Ta(t),r=0,n=this.ids.length-1;r>1;this.ids[i]>=e?n=i:r=i+1}for(var a=[];this.ids[r]===e;){var o=this.positions[3*r],s=this.positions[3*r+1],l=this.positions[3*r+2];a.push({index:o,start:s,end:l}),r++}return a},_a.serialize=function(t,e){var r=new Float64Array(t.ids),n=new Uint32Array(t.positions);return function t(e,r,n,i){for(;n>1],o=n-1,s=i+1;;){do{o++}while(e[o]a);if(o>=s)break;ka(e,o,s),ka(r,3*o,3*s),ka(r,3*o+1,3*s+1),ka(r,3*o+2,3*s+2)}s-nGa.max||o.yGa.max)&&(_("Geometry exceeds allowed extent, reduce your vector tile buffer size"),o.x=l(o.x,Ga.min,Ga.max),o.y=l(o.y,Ga.min,Ga.max))}return r}function Wa(t,e,r,n,i){t.emplaceBack(2*e+(n+1)/2,2*r+(i+1)/2)}var Xa=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.layoutVertexArray=new zi,this.indexArray=new Yi,this.segments=new pa,this.programConfigurations=new Ua(ha,t.layers,t.zoom),this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};function Za(t,e){for(var r=0;r1){if($a(t,e))return!0;for(var n=0;n1?t.distSqr(r):t.distSqr(r.sub(e)._mult(i)._add(e))}function no(t,e){for(var r,n,i,a=!1,o=0;oe.y!=i.y>e.y&&e.x<(i.x-n.x)*(e.y-n.y)/(i.y-n.y)+n.x&&(a=!a);return a}function io(t,e){for(var r=!1,n=0,i=t.length-1;ne.y!=o.y>e.y&&e.x<(o.x-a.x)*(e.y-a.y)/(o.y-a.y)+a.x&&(r=!r)}return r}function ao(t,e,r){var n=r[0],i=r[2];if(t.xi.x&&e.x>i.x||t.yi.y&&e.y>i.y)return!1;var a=w(t,e,r[0]);return a!==w(t,e,r[1])||a!==w(t,e,r[2])||a!==w(t,e,r[3])}function oo(t,e,r){var n=e.paint.get(t).value;return"constant"===n.kind?n.value:r.programConfigurations.get(e.id).getMaxValue(t)}function so(t){return Math.sqrt(t[0]*t[0]+t[1]*t[1])}function lo(t,e,r,n,a){if(!e[0]&&!e[1])return t;var o=i.convert(e)._mult(a);"viewport"===r&&o._rotate(-n);for(var s=[],l=0;l=8192||u<0||u>=8192)){var f=this.segments.prepareSegment(4,this.layoutVertexArray,this.indexArray,t.sortKey),h=f.vertexLength;Wa(this.layoutVertexArray,c,u,-1,-1),Wa(this.layoutVertexArray,c,u,1,-1),Wa(this.layoutVertexArray,c,u,1,1),Wa(this.layoutVertexArray,c,u,-1,1),this.indexArray.emplaceBack(h,h+1,h+2),this.indexArray.emplaceBack(h,h+3,h+2),f.vertexLength+=4,f.primitiveLength+=2}}this.programConfigurations.populatePaintArrays(this.layoutVertexArray.length,t,r,{},n)},Nn("CircleBucket",Xa,{omit:["layers"]});var co=new Si({"circle-sort-key":new Ti(Lt.layout_circle["circle-sort-key"])}),uo={paint:new Si({"circle-radius":new Ti(Lt.paint_circle["circle-radius"]),"circle-color":new Ti(Lt.paint_circle["circle-color"]),"circle-blur":new Ti(Lt.paint_circle["circle-blur"]),"circle-opacity":new Ti(Lt.paint_circle["circle-opacity"]),"circle-translate":new wi(Lt.paint_circle["circle-translate"]),"circle-translate-anchor":new wi(Lt.paint_circle["circle-translate-anchor"]),"circle-pitch-scale":new wi(Lt.paint_circle["circle-pitch-scale"]),"circle-pitch-alignment":new wi(Lt.paint_circle["circle-pitch-alignment"]),"circle-stroke-width":new Ti(Lt.paint_circle["circle-stroke-width"]),"circle-stroke-color":new Ti(Lt.paint_circle["circle-stroke-color"]),"circle-stroke-opacity":new Ti(Lt.paint_circle["circle-stroke-opacity"])}),layout:co},fo="undefined"!=typeof Float32Array?Float32Array:Array;function ho(t){return t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=1,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=1,t[11]=0,t[12]=0,t[13]=0,t[14]=0,t[15]=1,t}function po(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3],s=e[4],l=e[5],c=e[6],u=e[7],f=e[8],h=e[9],p=e[10],d=e[11],m=e[12],g=e[13],v=e[14],y=e[15],x=r[0],b=r[1],_=r[2],w=r[3];return t[0]=x*n+b*s+_*f+w*m,t[1]=x*i+b*l+_*h+w*g,t[2]=x*a+b*c+_*p+w*v,t[3]=x*o+b*u+_*d+w*y,x=r[4],b=r[5],_=r[6],w=r[7],t[4]=x*n+b*s+_*f+w*m,t[5]=x*i+b*l+_*h+w*g,t[6]=x*a+b*c+_*p+w*v,t[7]=x*o+b*u+_*d+w*y,x=r[8],b=r[9],_=r[10],w=r[11],t[8]=x*n+b*s+_*f+w*m,t[9]=x*i+b*l+_*h+w*g,t[10]=x*a+b*c+_*p+w*v,t[11]=x*o+b*u+_*d+w*y,x=r[12],b=r[13],_=r[14],w=r[15],t[12]=x*n+b*s+_*f+w*m,t[13]=x*i+b*l+_*h+w*g,t[14]=x*a+b*c+_*p+w*v,t[15]=x*o+b*u+_*d+w*y,t}Math.hypot||(Math.hypot=function(){for(var t=arguments,e=0,r=arguments.length;r--;)e+=t[r]*t[r];return Math.sqrt(e)});var mo=po;var go,vo,yo=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t};go=new fo(3),fo!=Float32Array&&(go[0]=0,go[1]=0,go[2]=0),vo=go;function xo(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3];return t[0]=r[0]*n+r[4]*i+r[8]*a+r[12]*o,t[1]=r[1]*n+r[5]*i+r[9]*a+r[13]*o,t[2]=r[2]*n+r[6]*i+r[10]*a+r[14]*o,t[3]=r[3]*n+r[7]*i+r[11]*a+r[15]*o,t}!function(){var t=function(){var t=new fo(4);return fo!=Float32Array&&(t[0]=0,t[1]=0,t[2]=0,t[3]=0),t}()}();var bo=function(t){var e=t[0],r=t[1];return e*e+r*r},_o=(function(){var t=function(){var t=new fo(2);return fo!=Float32Array&&(t[0]=0,t[1]=0),t}()}(),function(t){function e(e){t.call(this,e,uo)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.createBucket=function(t){return new Xa(t)},e.prototype.queryRadius=function(t){var e=t;return oo("circle-radius",this,e)+oo("circle-stroke-width",this,e)+so(this.paint.get("circle-translate"))},e.prototype.queryIntersectsFeature=function(t,e,r,n,i,a,o,s){for(var l=lo(t,this.paint.get("circle-translate"),this.paint.get("circle-translate-anchor"),a.angle,o),c=this.paint.get("circle-radius").evaluate(e,r)+this.paint.get("circle-stroke-width").evaluate(e,r),u="map"===this.paint.get("circle-pitch-alignment"),f=u?l:function(t,e){return t.map((function(t){return wo(t,e)}))}(l,s),h=u?c*o:c,p=0,d=n;pt.width||i.height>t.height||r.x>t.width-i.width||r.y>t.height-i.height)throw new RangeError("out of range source coordinates for image copy");if(i.width>e.width||i.height>e.height||n.x>e.width-i.width||n.y>e.height-i.height)throw new RangeError("out of range destination coordinates for image copy");for(var o=t.data,s=e.data,l=0;l80*r){n=a=t[0],i=o=t[1];for(var d=r;da&&(a=s),l>o&&(o=l);c=0!==(c=Math.max(a-n,o-i))?1/c:0}return jo(h,p,r,n,i,c),p}function Bo(t,e,r,n,i){var a,o;if(i===ls(t,e,r,n)>0)for(a=e;a=e;a-=n)o=as(a,t[a],t[a+1],o);return o&&$o(o,o.next)&&(os(o),o=o.next),o}function No(t,e){if(!t)return t;e||(e=t);var r,n=t;do{if(r=!1,n.steiner||!$o(n,n.next)&&0!==Qo(n.prev,n,n.next))n=n.next;else{if(os(n),(n=e=n.prev)===n.next)break;r=!0}}while(r||n!==e);return e}function jo(t,e,r,n,i,a,o){if(t){!o&&a&&function(t,e,r,n){var i=t;do{null===i.z&&(i.z=Xo(i.x,i.y,e,r,n)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==t);i.prevZ.nextZ=null,i.prevZ=null,function(t){var e,r,n,i,a,o,s,l,c=1;do{for(r=t,t=null,a=null,o=0;r;){for(o++,n=r,s=0,e=0;e0||l>0&&n;)0!==s&&(0===l||!n||r.z<=n.z)?(i=r,r=r.nextZ,s--):(i=n,n=n.nextZ,l--),a?a.nextZ=i:t=i,i.prevZ=a,a=i;r=n}a.nextZ=null,c*=2}while(o>1)}(i)}(t,n,i,a);for(var s,l,c=t;t.prev!==t.next;)if(s=t.prev,l=t.next,a?Vo(t,n,i,a):Uo(t))e.push(s.i/r),e.push(t.i/r),e.push(l.i/r),os(t),t=l.next,c=l.next;else if((t=l)===c){o?1===o?jo(t=Ho(No(t),e,r),e,r,n,i,a,2):2===o&&qo(t,e,r,n,i,a):jo(No(t),e,r,n,i,a,1);break}}}function Uo(t){var e=t.prev,r=t,n=t.next;if(Qo(e,r,n)>=0)return!1;for(var i=t.next.next;i!==t.prev;){if(Jo(e.x,e.y,r.x,r.y,n.x,n.y,i.x,i.y)&&Qo(i.prev,i,i.next)>=0)return!1;i=i.next}return!0}function Vo(t,e,r,n){var i=t.prev,a=t,o=t.next;if(Qo(i,a,o)>=0)return!1;for(var s=i.xa.x?i.x>o.x?i.x:o.x:a.x>o.x?a.x:o.x,u=i.y>a.y?i.y>o.y?i.y:o.y:a.y>o.y?a.y:o.y,f=Xo(s,l,e,r,n),h=Xo(c,u,e,r,n),p=t.prevZ,d=t.nextZ;p&&p.z>=f&&d&&d.z<=h;){if(p!==t.prev&&p!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&Qo(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,d!==t.prev&&d!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,d.x,d.y)&&Qo(d.prev,d,d.next)>=0)return!1;d=d.nextZ}for(;p&&p.z>=f;){if(p!==t.prev&&p!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&Qo(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;d&&d.z<=h;){if(d!==t.prev&&d!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,d.x,d.y)&&Qo(d.prev,d,d.next)>=0)return!1;d=d.nextZ}return!0}function Ho(t,e,r){var n=t;do{var i=n.prev,a=n.next.next;!$o(i,a)&&ts(i,n,n.next,a)&&ns(i,a)&&ns(a,i)&&(e.push(i.i/r),e.push(n.i/r),e.push(a.i/r),os(n),os(n.next),n=t=a),n=n.next}while(n!==t);return No(n)}function qo(t,e,r,n,i,a){var o=t;do{for(var s=o.next.next;s!==o.prev;){if(o.i!==s.i&&Ko(o,s)){var l=is(o,s);return o=No(o,o.next),l=No(l,l.next),jo(o,e,r,n,i,a),void jo(l,e,r,n,i,a)}s=s.next}o=o.next}while(o!==t)}function Go(t,e){return t.x-e.x}function Yo(t,e){if(e=function(t,e){var r,n=e,i=t.x,a=t.y,o=-1/0;do{if(a<=n.y&&a>=n.next.y&&n.next.y!==n.y){var s=n.x+(a-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(s<=i&&s>o){if(o=s,s===i){if(a===n.y)return n;if(a===n.next.y)return n.next}r=n.x=n.x&&n.x>=u&&i!==n.x&&Jo(ar.x||n.x===r.x&&Wo(r,n)))&&(r=n,h=l)),n=n.next}while(n!==c);return r}(t,e)){var r=is(e,t);No(e,e.next),No(r,r.next)}}function Wo(t,e){return Qo(t.prev,t,e.prev)<0&&Qo(e.next,t,t.next)<0}function Xo(t,e,r,n,i){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-r)*i)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function Zo(t){var e=t,r=t;do{(e.x=0&&(t-o)*(n-s)-(r-o)*(e-s)>=0&&(r-o)*(a-s)-(i-o)*(n-s)>=0}function Ko(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){var r=t;do{if(r.i!==t.i&&r.next.i!==t.i&&r.i!==e.i&&r.next.i!==e.i&&ts(r,r.next,t,e))return!0;r=r.next}while(r!==t);return!1}(t,e)&&(ns(t,e)&&ns(e,t)&&function(t,e){var r=t,n=!1,i=(t.x+e.x)/2,a=(t.y+e.y)/2;do{r.y>a!=r.next.y>a&&r.next.y!==r.y&&i<(r.next.x-r.x)*(a-r.y)/(r.next.y-r.y)+r.x&&(n=!n),r=r.next}while(r!==t);return n}(t,e)&&(Qo(t.prev,t,e.prev)||Qo(t,e.prev,e))||$o(t,e)&&Qo(t.prev,t,t.next)>0&&Qo(e.prev,e,e.next)>0)}function Qo(t,e,r){return(e.y-t.y)*(r.x-e.x)-(e.x-t.x)*(r.y-e.y)}function $o(t,e){return t.x===e.x&&t.y===e.y}function ts(t,e,r,n){var i=rs(Qo(t,e,r)),a=rs(Qo(t,e,n)),o=rs(Qo(r,n,t)),s=rs(Qo(r,n,e));return i!==a&&o!==s||(!(0!==i||!es(t,r,e))||(!(0!==a||!es(t,n,e))||(!(0!==o||!es(r,t,n))||!(0!==s||!es(r,e,n)))))}function es(t,e,r){return e.x<=Math.max(t.x,r.x)&&e.x>=Math.min(t.x,r.x)&&e.y<=Math.max(t.y,r.y)&&e.y>=Math.min(t.y,r.y)}function rs(t){return t>0?1:t<0?-1:0}function ns(t,e){return Qo(t.prev,t,t.next)<0?Qo(t,e,t.next)>=0&&Qo(t,t.prev,e)>=0:Qo(t,e,t.prev)<0||Qo(t,t.next,e)<0}function is(t,e){var r=new ss(t.i,t.x,t.y),n=new ss(e.i,e.x,e.y),i=t.next,a=e.prev;return t.next=e,e.prev=t,r.next=i,i.prev=r,n.next=r,r.prev=n,a.next=n,n.prev=a,n}function as(t,e,r,n){var i=new ss(t,e,r);return n?(i.next=n.next,i.prev=n,n.next.prev=i,n.next=i):(i.prev=i,i.next=i),i}function os(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function ss(t,e,r){this.i=t,this.x=e,this.y=r,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}function ls(t,e,r,n){for(var i=0,a=e,o=r-n;an;){if(i-n>600){var o=i-n+1,s=r-n+1,l=Math.log(o),c=.5*Math.exp(2*l/3),u=.5*Math.sqrt(l*c*(o-c)/o)*(s-o/2<0?-1:1),f=Math.max(n,Math.floor(r-s*c/o+u)),h=Math.min(i,Math.floor(r+(o-s)*c/o+u));t(e,r,f,h,a)}var p=e[r],d=n,m=i;for(us(e,n,r),a(e[i],p)>0&&us(e,n,i);d0;)m--}0===a(e[n],p)?us(e,n,m):(m++,us(e,m,i)),m<=r&&(n=m+1),r<=m&&(i=m-1)}}(t,e,r||0,n||t.length-1,i||fs)}function us(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function fs(t,e){return te?1:0}function hs(t,e){var r=t.length;if(r<=1)return[t];for(var n,i,a=[],o=0;o1)for(var l=0;l0&&(n+=t[i-1].length,r.holes.push(n))}return r},Do.default=Ro;var gs=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.patternFeatures=[],this.layoutVertexArray=new zi,this.indexArray=new Yi,this.indexArray2=new Qi,this.programConfigurations=new Ua(zo,t.layers,t.zoom),this.segments=new pa,this.segments2=new pa,this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};gs.prototype.populate=function(t,e,r){this.hasPattern=ds("fill",this.layers,e);for(var n=this.layers[0].layout.get("fill-sort-key"),i=[],a=0,o=t;a>3}if(a--,1===n||2===n)o+=t.readSVarint(),s+=t.readSVarint(),1===n&&(e&&l.push(e),e=[]),e.push(new i(o,s));else{if(7!==n)throw new Error("unknown command "+n);e&&e.push(e[0].clone())}}return e&&l.push(e),l},ws.prototype.bbox=function(){var t=this._pbf;t.pos=this._geometry;for(var e=t.readVarint()+t.pos,r=1,n=0,i=0,a=0,o=1/0,s=-1/0,l=1/0,c=-1/0;t.pos>3}if(n--,1===r||2===r)(i+=t.readSVarint())s&&(s=i),(a+=t.readSVarint())c&&(c=a);else if(7!==r)throw new Error("unknown command "+r)}return[o,l,s,c]},ws.prototype.toGeoJSON=function(t,e,r){var n,i,a=this.extent*Math.pow(2,r),o=this.extent*t,s=this.extent*e,l=this.loadGeometry(),c=ws.types[this.type];function u(t){for(var e=0;e>3;e=1===n?t.readString():2===n?t.readFloat():3===n?t.readDouble():4===n?t.readVarint64():5===n?t.readVarint():6===n?t.readSVarint():7===n?t.readBoolean():null}return e}(r))}function Es(t,e,r){if(3===t){var n=new As(r,r.readVarint()+r.pos);n.length&&(e[n.name]=n)}}Ms.prototype.feature=function(t){if(t<0||t>=this._features.length)throw new Error("feature index out of bounds");this._pbf.pos=this._features[t];var e=this._pbf.readVarint()+this._pbf.pos;return new _s(this._pbf,e,this.extent,this._keys,this._values)};var Ls={VectorTile:function(t,e){this.layers=t.readFields(Es,{},e)},VectorTileFeature:_s,VectorTileLayer:As},Cs=Ls.VectorTileFeature.types,Ps=Math.pow(2,13);function Is(t,e,r,n,i,a,o,s){t.emplaceBack(e,r,2*Math.floor(n*Ps)+o,i*Ps*2,a*Ps*2,Math.round(s))}var Os=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.layoutVertexArray=new Ri,this.indexArray=new Yi,this.programConfigurations=new Ua(bs,t.layers,t.zoom),this.segments=new pa,this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};function zs(t,e){return t.x===e.x&&(t.x<0||t.x>8192)||t.y===e.y&&(t.y<0||t.y>8192)}function Ds(t){return t.every((function(t){return t.x<0}))||t.every((function(t){return t.x>8192}))||t.every((function(t){return t.y<0}))||t.every((function(t){return t.y>8192}))}Os.prototype.populate=function(t,e,r){this.features=[],this.hasPattern=ds("fill-extrusion",this.layers,e);for(var n=0,i=t;n=1){var y=d[g-1];if(!zs(v,y)){f.vertexLength+4>pa.MAX_VERTEX_ARRAY_LENGTH&&(f=this.segments.prepareSegment(4,this.layoutVertexArray,this.indexArray));var x=v.sub(y)._perp()._unit(),b=y.dist(v);m+b>32768&&(m=0),Is(this.layoutVertexArray,v.x,v.y,x.x,x.y,0,0,m),Is(this.layoutVertexArray,v.x,v.y,x.x,x.y,0,1,m),m+=b,Is(this.layoutVertexArray,y.x,y.y,x.x,x.y,0,0,m),Is(this.layoutVertexArray,y.x,y.y,x.x,x.y,0,1,m);var _=f.vertexLength;this.indexArray.emplaceBack(_,_+2,_+1),this.indexArray.emplaceBack(_+1,_+2,_+3),f.vertexLength+=4,f.primitiveLength+=2}}}}if(f.vertexLength+l>pa.MAX_VERTEX_ARRAY_LENGTH&&(f=this.segments.prepareSegment(l,this.layoutVertexArray,this.indexArray)),"Polygon"===Cs[t.type]){for(var w=[],T=[],k=f.vertexLength,A=0,M=s;A=2&&t[l-1].equals(t[l-2]);)l--;for(var c=0;c0;if(T&&v>c){var A=u.dist(p);if(A>2*f){var M=u.sub(u.sub(p)._mult(f/A)._round());this.updateDistance(p,M),this.addCurrentVertex(M,m,0,0,h),p=M}}var S=p&&d,E=S?r:s?"butt":n;if(S&&"round"===E&&(_i&&(E="bevel"),"bevel"===E&&(_>2&&(E="flipbevel"),_100)y=g.mult(-1);else{var L=_*m.add(g).mag()/m.sub(g).mag();y._perp()._mult(L*(k?-1:1))}this.addCurrentVertex(u,y,0,0,h),this.addCurrentVertex(u,y.mult(-1),0,0,h)}else if("bevel"===E||"fakeround"===E){var C=-Math.sqrt(_*_-1),P=k?C:0,I=k?0:C;if(p&&this.addCurrentVertex(u,m,P,I,h),"fakeround"===E)for(var O=Math.round(180*w/Math.PI/20),z=1;z2*f){var j=u.add(d.sub(u)._mult(f/N)._round());this.updateDistance(u,j),this.addCurrentVertex(j,g,0,0,h),u=j}}}}},qs.prototype.addCurrentVertex=function(t,e,r,n,i,a){void 0===a&&(a=!1);var o=e.x+e.y*r,s=e.y-e.x*r,l=-e.x+e.y*n,c=-e.y-e.x*n;this.addHalfVertex(t,o,s,a,!1,r,i),this.addHalfVertex(t,l,c,a,!0,-n,i),this.distance>Hs/2&&0===this.totalDistance&&(this.distance=0,this.addCurrentVertex(t,e,r,n,i,a))},qs.prototype.addHalfVertex=function(t,e,r,n,i,a,o){var s=t.x,l=t.y,c=.5*this.scaledDistance;this.layoutVertexArray.emplaceBack((s<<1)+(n?1:0),(l<<1)+(i?1:0),Math.round(63*e)+128,Math.round(63*r)+128,1+(0===a?0:a<0?-1:1)|(63&c)<<2,c>>6);var u=o.vertexLength++;this.e1>=0&&this.e2>=0&&(this.indexArray.emplaceBack(this.e1,this.e2,u),o.primitiveLength++),i?this.e2=u:this.e1=u},qs.prototype.updateScaledDistance=function(){this.scaledDistance=this.totalDistance>0?(this.clipStart+(this.clipEnd-this.clipStart)*this.distance/this.totalDistance)*(Hs-1):this.distance},qs.prototype.updateDistance=function(t,e){this.distance+=t.dist(e),this.updateScaledDistance()},Nn("LineBucket",qs,{omit:["layers","patternFeatures"]});var Gs=new Si({"line-cap":new wi(Lt.layout_line["line-cap"]),"line-join":new Ti(Lt.layout_line["line-join"]),"line-miter-limit":new wi(Lt.layout_line["line-miter-limit"]),"line-round-limit":new wi(Lt.layout_line["line-round-limit"]),"line-sort-key":new Ti(Lt.layout_line["line-sort-key"])}),Ys={paint:new Si({"line-opacity":new Ti(Lt.paint_line["line-opacity"]),"line-color":new Ti(Lt.paint_line["line-color"]),"line-translate":new wi(Lt.paint_line["line-translate"]),"line-translate-anchor":new wi(Lt.paint_line["line-translate-anchor"]),"line-width":new Ti(Lt.paint_line["line-width"]),"line-gap-width":new Ti(Lt.paint_line["line-gap-width"]),"line-offset":new Ti(Lt.paint_line["line-offset"]),"line-blur":new Ti(Lt.paint_line["line-blur"]),"line-dasharray":new Ai(Lt.paint_line["line-dasharray"]),"line-pattern":new ki(Lt.paint_line["line-pattern"]),"line-gradient":new Mi(Lt.paint_line["line-gradient"])}),layout:Gs},Ws=new(function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.possiblyEvaluate=function(e,r){return r=new pi(Math.floor(r.zoom),{now:r.now,fadeDuration:r.fadeDuration,zoomHistory:r.zoomHistory,transition:r.transition}),t.prototype.possiblyEvaluate.call(this,e,r)},e.prototype.evaluate=function(e,r,n,i){return r=u({},r,{zoom:Math.floor(r.zoom)}),t.prototype.evaluate.call(this,e,r,n,i)},e}(Ti))(Ys.paint.properties["line-width"].specification);Ws.useIntegerZoom=!0;var Xs=function(t){function e(e){t.call(this,e,Ys)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._handleSpecialPaintPropertyUpdate=function(t){"line-gradient"===t&&this._updateGradient()},e.prototype._updateGradient=function(){var t=this._transitionablePaint._values["line-gradient"].value.expression;this.gradient=Co(t,"lineProgress"),this.gradientTexture=null},e.prototype.recalculate=function(e,r){t.prototype.recalculate.call(this,e,r),this.paint._values["line-floorwidth"]=Ws.possiblyEvaluate(this._transitioningPaint._values["line-width"].value,e)},e.prototype.createBucket=function(t){return new qs(t)},e.prototype.queryRadius=function(t){var e=t,r=Zs(oo("line-width",this,e),oo("line-gap-width",this,e)),n=oo("line-offset",this,e);return r/2+Math.abs(n)+so(this.paint.get("line-translate"))},e.prototype.queryIntersectsFeature=function(t,e,r,n,a,o,s){var l=lo(t,this.paint.get("line-translate"),this.paint.get("line-translate-anchor"),o.angle,s),c=s/2*Zs(this.paint.get("line-width").evaluate(e,r),this.paint.get("line-gap-width").evaluate(e,r)),u=this.paint.get("line-offset").evaluate(e,r);return u&&(n=function(t,e){for(var r=[],n=new i(0,0),a=0;a=3)for(var a=0;a0?e+2*t:t}var Js=Ii([{name:"a_pos_offset",components:4,type:"Int16"},{name:"a_data",components:4,type:"Uint16"},{name:"a_pixeloffset",components:4,type:"Int16"}],4),Ks=Ii([{name:"a_projected_pos",components:3,type:"Float32"}],4),Qs=(Ii([{name:"a_fade_opacity",components:1,type:"Uint32"}],4),Ii([{name:"a_placed",components:2,type:"Uint8"},{name:"a_shift",components:2,type:"Float32"}])),$s=(Ii([{type:"Int16",name:"anchorPointX"},{type:"Int16",name:"anchorPointY"},{type:"Int16",name:"x1"},{type:"Int16",name:"y1"},{type:"Int16",name:"x2"},{type:"Int16",name:"y2"},{type:"Uint32",name:"featureIndex"},{type:"Uint16",name:"sourceLayerIndex"},{type:"Uint16",name:"bucketIndex"}]),Ii([{name:"a_pos",components:2,type:"Int16"},{name:"a_anchor_pos",components:2,type:"Int16"},{name:"a_extrude",components:2,type:"Int16"}],4)),tl=Ii([{name:"a_pos",components:2,type:"Float32"},{name:"a_radius",components:1,type:"Float32"},{name:"a_flags",components:2,type:"Int16"}],4);Ii([{name:"triangle",components:3,type:"Uint16"}]),Ii([{type:"Int16",name:"anchorX"},{type:"Int16",name:"anchorY"},{type:"Uint16",name:"glyphStartIndex"},{type:"Uint16",name:"numGlyphs"},{type:"Uint32",name:"vertexStartIndex"},{type:"Uint32",name:"lineStartIndex"},{type:"Uint32",name:"lineLength"},{type:"Uint16",name:"segment"},{type:"Uint16",name:"lowerSize"},{type:"Uint16",name:"upperSize"},{type:"Float32",name:"lineOffsetX"},{type:"Float32",name:"lineOffsetY"},{type:"Uint8",name:"writingMode"},{type:"Uint8",name:"placedOrientation"},{type:"Uint8",name:"hidden"},{type:"Uint32",name:"crossTileID"},{type:"Int16",name:"associatedIconIndex"}]),Ii([{type:"Int16",name:"anchorX"},{type:"Int16",name:"anchorY"},{type:"Int16",name:"rightJustifiedTextSymbolIndex"},{type:"Int16",name:"centerJustifiedTextSymbolIndex"},{type:"Int16",name:"leftJustifiedTextSymbolIndex"},{type:"Int16",name:"verticalPlacedTextSymbolIndex"},{type:"Int16",name:"placedIconSymbolIndex"},{type:"Int16",name:"verticalPlacedIconSymbolIndex"},{type:"Uint16",name:"key"},{type:"Uint16",name:"textBoxStartIndex"},{type:"Uint16",name:"textBoxEndIndex"},{type:"Uint16",name:"verticalTextBoxStartIndex"},{type:"Uint16",name:"verticalTextBoxEndIndex"},{type:"Uint16",name:"iconBoxStartIndex"},{type:"Uint16",name:"iconBoxEndIndex"},{type:"Uint16",name:"verticalIconBoxStartIndex"},{type:"Uint16",name:"verticalIconBoxEndIndex"},{type:"Uint16",name:"featureIndex"},{type:"Uint16",name:"numHorizontalGlyphVertices"},{type:"Uint16",name:"numVerticalGlyphVertices"},{type:"Uint16",name:"numIconVertices"},{type:"Uint16",name:"numVerticalIconVertices"},{type:"Uint16",name:"useRuntimeCollisionCircles"},{type:"Uint32",name:"crossTileID"},{type:"Float32",name:"textBoxScale"},{type:"Float32",components:2,name:"textOffset"},{type:"Float32",name:"collisionCircleDiameter"}]),Ii([{type:"Float32",name:"offsetX"}]),Ii([{type:"Int16",name:"x"},{type:"Int16",name:"y"},{type:"Int16",name:"tileUnitDistanceFromAnchor"}]);function el(t,e,r){return t.sections.forEach((function(t){t.text=function(t,e,r){var n=e.layout.get("text-transform").evaluate(r,{});return"uppercase"===n?t=t.toLocaleUpperCase():"lowercase"===n&&(t=t.toLocaleLowerCase()),hi.applyArabicShaping&&(t=hi.applyArabicShaping(t)),t}(t.text,e,r)})),t}var rl={"!":"\ufe15","#":"\uff03",$:"\uff04","%":"\uff05","&":"\uff06","(":"\ufe35",")":"\ufe36","*":"\uff0a","+":"\uff0b",",":"\ufe10","-":"\ufe32",".":"\u30fb","/":"\uff0f",":":"\ufe13",";":"\ufe14","<":"\ufe3f","=":"\uff1d",">":"\ufe40","?":"\ufe16","@":"\uff20","[":"\ufe47","\\":"\uff3c","]":"\ufe48","^":"\uff3e",_:"\ufe33","`":"\uff40","{":"\ufe37","|":"\u2015","}":"\ufe38","~":"\uff5e","\xa2":"\uffe0","\xa3":"\uffe1","\xa5":"\uffe5","\xa6":"\uffe4","\xac":"\uffe2","\xaf":"\uffe3","\u2013":"\ufe32","\u2014":"\ufe31","\u2018":"\ufe43","\u2019":"\ufe44","\u201c":"\ufe41","\u201d":"\ufe42","\u2026":"\ufe19","\u2027":"\u30fb","\u20a9":"\uffe6","\u3001":"\ufe11","\u3002":"\ufe12","\u3008":"\ufe3f","\u3009":"\ufe40","\u300a":"\ufe3d","\u300b":"\ufe3e","\u300c":"\ufe41","\u300d":"\ufe42","\u300e":"\ufe43","\u300f":"\ufe44","\u3010":"\ufe3b","\u3011":"\ufe3c","\u3014":"\ufe39","\u3015":"\ufe3a","\u3016":"\ufe17","\u3017":"\ufe18","\uff01":"\ufe15","\uff08":"\ufe35","\uff09":"\ufe36","\uff0c":"\ufe10","\uff0d":"\ufe32","\uff0e":"\u30fb","\uff1a":"\ufe13","\uff1b":"\ufe14","\uff1c":"\ufe3f","\uff1e":"\ufe40","\uff1f":"\ufe16","\uff3b":"\ufe47","\uff3d":"\ufe48","\uff3f":"\ufe33","\uff5b":"\ufe37","\uff5c":"\u2015","\uff5d":"\ufe38","\uff5f":"\ufe35","\uff60":"\ufe36","\uff61":"\ufe12","\uff62":"\ufe41","\uff63":"\ufe42"};var nl=function(t,e,r,n,i){var a,o,s=8*i-n-1,l=(1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},il=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m},al=ol;function ol(t){this.buf=ArrayBuffer.isView&&ArrayBuffer.isView(t)?t:new Uint8Array(t||0),this.pos=0,this.type=0,this.length=this.buf.length}ol.Varint=0,ol.Fixed64=1,ol.Bytes=2,ol.Fixed32=5;var sl="undefined"==typeof TextDecoder?null:new TextDecoder("utf8");function ll(t){return t.type===ol.Bytes?t.readVarint()+t.pos:t.pos+1}function cl(t,e,r){return r?4294967296*e+(t>>>0):4294967296*(e>>>0)+(t>>>0)}function ul(t,e,r){var n=e<=16383?1:e<=2097151?2:e<=268435455?3:Math.floor(Math.log(e)/(7*Math.LN2));r.realloc(n);for(var i=r.pos-1;i>=t;i--)r.buf[i+n]=r.buf[i]}function fl(t,e){for(var r=0;r>>8,t[r+2]=e>>>16,t[r+3]=e>>>24}function wl(t,e){return(t[e]|t[e+1]<<8|t[e+2]<<16)+(t[e+3]<<24)}ol.prototype={destroy:function(){this.buf=null},readFields:function(t,e,r){for(r=r||this.length;this.pos>3,a=this.pos;this.type=7&n,t(i,e,this),this.pos===a&&this.skip(n)}return e},readMessage:function(t,e){return this.readFields(t,e,this.readVarint()+this.pos)},readFixed32:function(){var t=bl(this.buf,this.pos);return this.pos+=4,t},readSFixed32:function(){var t=wl(this.buf,this.pos);return this.pos+=4,t},readFixed64:function(){var t=bl(this.buf,this.pos)+4294967296*bl(this.buf,this.pos+4);return this.pos+=8,t},readSFixed64:function(){var t=bl(this.buf,this.pos)+4294967296*wl(this.buf,this.pos+4);return this.pos+=8,t},readFloat:function(){var t=nl(this.buf,this.pos,!0,23,4);return this.pos+=4,t},readDouble:function(){var t=nl(this.buf,this.pos,!0,52,8);return this.pos+=8,t},readVarint:function(t){var e,r,n=this.buf;return e=127&(r=n[this.pos++]),r<128?e:(e|=(127&(r=n[this.pos++]))<<7,r<128?e:(e|=(127&(r=n[this.pos++]))<<14,r<128?e:(e|=(127&(r=n[this.pos++]))<<21,r<128?e:function(t,e,r){var n,i,a=r.buf;if(i=a[r.pos++],n=(112&i)>>4,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<3,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<10,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<17,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<24,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(1&i)<<31,i<128)return cl(t,n,e);throw new Error("Expected varint not more than 10 bytes")}(e|=(15&(r=n[this.pos]))<<28,t,this))))},readVarint64:function(){return this.readVarint(!0)},readSVarint:function(){var t=this.readVarint();return t%2==1?(t+1)/-2:t/2},readBoolean:function(){return Boolean(this.readVarint())},readString:function(){var t=this.readVarint()+this.pos,e=this.pos;return this.pos=t,t-e>=12&&sl?function(t,e,r){return sl.decode(t.subarray(e,r))}(this.buf,e,t):function(t,e,r){var n="",i=e;for(;i239?4:l>223?3:l>191?2:1;if(i+u>r)break;1===u?l<128&&(c=l):2===u?128==(192&(a=t[i+1]))&&(c=(31&l)<<6|63&a)<=127&&(c=null):3===u?(a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&((c=(15&l)<<12|(63&a)<<6|63&o)<=2047||c>=55296&&c<=57343)&&(c=null)):4===u&&(a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&((c=(15&l)<<18|(63&a)<<12|(63&o)<<6|63&s)<=65535||c>=1114112)&&(c=null)),null===c?(c=65533,u=1):c>65535&&(c-=65536,n+=String.fromCharCode(c>>>10&1023|55296),c=56320|1023&c),n+=String.fromCharCode(c),i+=u}return n}(this.buf,e,t)},readBytes:function(){var t=this.readVarint()+this.pos,e=this.buf.subarray(this.pos,t);return this.pos=t,e},readPackedVarint:function(t,e){if(this.type!==ol.Bytes)return t.push(this.readVarint(e));var r=ll(this);for(t=t||[];this.pos127;);else if(e===ol.Bytes)this.pos=this.readVarint()+this.pos;else if(e===ol.Fixed32)this.pos+=4;else{if(e!==ol.Fixed64)throw new Error("Unimplemented type: "+e);this.pos+=8}},writeTag:function(t,e){this.writeVarint(t<<3|e)},realloc:function(t){for(var e=this.length||16;e268435455||t<0?function(t,e){var r,n;t>=0?(r=t%4294967296|0,n=t/4294967296|0):(n=~(-t/4294967296),4294967295^(r=~(-t%4294967296))?r=r+1|0:(r=0,n=n+1|0));if(t>=0x10000000000000000||t<-0x10000000000000000)throw new Error("Given varint doesn't fit into 10 bytes");e.realloc(10),function(t,e,r){r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos]=127&t}(r,0,e),function(t,e){var r=(7&t)<<4;if(e.buf[e.pos++]|=r|((t>>>=3)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;e.buf[e.pos++]=127&t}(n,e)}(t,this):(this.realloc(4),this.buf[this.pos++]=127&t|(t>127?128:0),t<=127||(this.buf[this.pos++]=127&(t>>>=7)|(t>127?128:0),t<=127||(this.buf[this.pos++]=127&(t>>>=7)|(t>127?128:0),t<=127||(this.buf[this.pos++]=t>>>7&127))))},writeSVarint:function(t){this.writeVarint(t<0?2*-t-1:2*t)},writeBoolean:function(t){this.writeVarint(Boolean(t))},writeString:function(t){t=String(t),this.realloc(4*t.length),this.pos++;var e=this.pos;this.pos=function(t,e,r){for(var n,i,a=0;a55295&&n<57344){if(!i){n>56319||a+1===e.length?(t[r++]=239,t[r++]=191,t[r++]=189):i=n;continue}if(n<56320){t[r++]=239,t[r++]=191,t[r++]=189,i=n;continue}n=i-55296<<10|n-56320|65536,i=null}else i&&(t[r++]=239,t[r++]=191,t[r++]=189,i=null);n<128?t[r++]=n:(n<2048?t[r++]=n>>6|192:(n<65536?t[r++]=n>>12|224:(t[r++]=n>>18|240,t[r++]=n>>12&63|128),t[r++]=n>>6&63|128),t[r++]=63&n|128)}return r}(this.buf,t,this.pos);var r=this.pos-e;r>=128&&ul(e,r,this),this.pos=e-1,this.writeVarint(r),this.pos+=r},writeFloat:function(t){this.realloc(4),il(this.buf,t,this.pos,!0,23,4),this.pos+=4},writeDouble:function(t){this.realloc(8),il(this.buf,t,this.pos,!0,52,8),this.pos+=8},writeBytes:function(t){var e=t.length;this.writeVarint(e),this.realloc(e);for(var r=0;r=128&&ul(r,n,this),this.pos=r-1,this.writeVarint(n),this.pos+=n},writeMessage:function(t,e,r){this.writeTag(t,ol.Bytes),this.writeRawMessage(e,r)},writePackedVarint:function(t,e){e.length&&this.writeMessage(t,fl,e)},writePackedSVarint:function(t,e){e.length&&this.writeMessage(t,hl,e)},writePackedBoolean:function(t,e){e.length&&this.writeMessage(t,ml,e)},writePackedFloat:function(t,e){e.length&&this.writeMessage(t,pl,e)},writePackedDouble:function(t,e){e.length&&this.writeMessage(t,dl,e)},writePackedFixed32:function(t,e){e.length&&this.writeMessage(t,gl,e)},writePackedSFixed32:function(t,e){e.length&&this.writeMessage(t,vl,e)},writePackedFixed64:function(t,e){e.length&&this.writeMessage(t,yl,e)},writePackedSFixed64:function(t,e){e.length&&this.writeMessage(t,xl,e)},writeBytesField:function(t,e){this.writeTag(t,ol.Bytes),this.writeBytes(e)},writeFixed32Field:function(t,e){this.writeTag(t,ol.Fixed32),this.writeFixed32(e)},writeSFixed32Field:function(t,e){this.writeTag(t,ol.Fixed32),this.writeSFixed32(e)},writeFixed64Field:function(t,e){this.writeTag(t,ol.Fixed64),this.writeFixed64(e)},writeSFixed64Field:function(t,e){this.writeTag(t,ol.Fixed64),this.writeSFixed64(e)},writeVarintField:function(t,e){this.writeTag(t,ol.Varint),this.writeVarint(e)},writeSVarintField:function(t,e){this.writeTag(t,ol.Varint),this.writeSVarint(e)},writeStringField:function(t,e){this.writeTag(t,ol.Bytes),this.writeString(e)},writeFloatField:function(t,e){this.writeTag(t,ol.Fixed32),this.writeFloat(e)},writeDoubleField:function(t,e){this.writeTag(t,ol.Fixed64),this.writeDouble(e)},writeBooleanField:function(t,e){this.writeVarintField(t,Boolean(e))}};function Tl(t,e,r){1===t&&r.readMessage(kl,e)}function kl(t,e,r){if(3===t){var n=r.readMessage(Al,{}),i=n.id,a=n.bitmap,o=n.width,s=n.height,l=n.left,c=n.top,u=n.advance;e.push({id:i,bitmap:new So({width:o+6,height:s+6},a),metrics:{width:o,height:s,left:l,top:c,advance:u}})}}function Al(t,e,r){1===t?e.id=r.readVarint():2===t?e.bitmap=r.readBytes():3===t?e.width=r.readVarint():4===t?e.height=r.readVarint():5===t?e.left=r.readSVarint():6===t?e.top=r.readSVarint():7===t&&(e.advance=r.readVarint())}function Ml(t){for(var e=0,r=0,n=0,i=t;n=0;h--){var p=o[h];if(!(f.w>p.w||f.h>p.h)){if(f.x=p.x,f.y=p.y,l=Math.max(l,f.y+f.h),s=Math.max(s,f.x+f.w),f.w===p.w&&f.h===p.h){var d=o.pop();h0&&N>A&&(A=N)}else{var j=r[S.fontStack],U=j&&j[L];if(U&&U.rect)I=U.rect,P=U.metrics;else{var V=e[S.fontStack],H=V&&V[L];if(!H)continue;P=H.metrics}C=24*(_-S.scale)}D?(t.verticalizable=!0,k.push({glyph:L,imageName:O,x:h,y:p+C,vertical:D,scale:S.scale,fontStack:S.fontStack,sectionIndex:E,metrics:P,rect:I}),h+=z*S.scale+c):(k.push({glyph:L,imageName:O,x:h,y:p+C,vertical:D,scale:S.scale,fontStack:S.fontStack,sectionIndex:E,metrics:P,rect:I}),h+=P.advance*S.scale+c)}if(0!==k.length){var q=h-c;d=Math.max(q,d),Vl(k,0,k.length-1,g,A)}h=0;var G=a*_+A;T.lineOffset=Math.max(A,w),p+=G,m=Math.max(G,m),++v}else p+=a,++v}var Y;var W=p- -17,X=Ul(o),Z=X.horizontalAlign,J=X.verticalAlign;(function(t,e,r,n,i,a,o,s,l){var c=(e-r)*i,u=0;u=a!==o?-s*n- -17:(-n*l+.5)*o;for(var f=0,h=t;f=0&&n>=t&&zl[this.text.charCodeAt(n)];n--)r--;this.text=this.text.substring(t,r),this.sectionIndex=this.sectionIndex.slice(t,r)},Il.prototype.substring=function(t,e){var r=new Il;return r.text=this.text.substring(t,e),r.sectionIndex=this.sectionIndex.slice(t,e),r.sections=this.sections,r},Il.prototype.toString=function(){return this.text},Il.prototype.getMaxScale=function(){var t=this;return this.sectionIndex.reduce((function(e,r){return Math.max(e,t.sections[r].scale)}),0)},Il.prototype.addTextSection=function(t,e){this.text+=t.text,this.sections.push(Pl.forText(t.scale,t.fontStack||e));for(var r=this.sections.length-1,n=0;n=63743?null:++this.imageSectionID:(this.imageSectionID=57344,this.imageSectionID)};var zl={9:!0,10:!0,11:!0,12:!0,13:!0,32:!0},Dl={};function Rl(t,e,r,n,i,a){if(e.imageName){var o=n[e.imageName];return o?o.displaySize[0]*e.scale*24/a+i:0}var s=r[e.fontStack],l=s&&s[t];return l?l.metrics.advance*e.scale+i:0}function Fl(t,e,r,n){var i=Math.pow(t-e,2);return n?t=0,f=0,h=0;h-r/2;){if(--o<0)return!1;s-=t[o].dist(a),a=t[o]}s+=t[o].dist(t[o+1]),o++;for(var l=[],c=0;sn;)c-=l.shift().angleDelta;if(c>i)return!1;o++,s+=f.dist(h)}return!0}function Jl(t){for(var e=0,r=0;rc){var d=(c-l)/p,m=qe(f.x,h.x,d),g=qe(f.y,h.y,d),v=new ql(m,g,h.angleTo(f),u);return v._round(),!o||Zl(t,v,s,o,e)?v:void 0}l+=p}}function tc(t,e,r,n,i,a,o,s,l){var c=Kl(n,a,o),u=Ql(n,i),f=u*o,h=0===t[0].x||t[0].x===l||0===t[0].y||t[0].y===l;return e-f=0&&_=0&&w=0&&p+u<=f){var T=new ql(_,w,x,m);T._round(),i&&!Zl(e,T,o,i,a)||d.push(T)}}h+=y}l||d.length||s||(d=t(e,h/2,n,i,a,o,s,!0,c));return d}(t,h?e/2*s%e:(u/2+2*a)*o*s%e,e,c,r,f,h,!1,l)}function ec(t,e,r,n,a){for(var o=[],s=0;s=n&&h.x>=n||(f.x>=n?f=new i(n,f.y+(h.y-f.y)*((n-f.x)/(h.x-f.x)))._round():h.x>=n&&(h=new i(n,f.y+(h.y-f.y)*((n-f.x)/(h.x-f.x)))._round()),f.y>=a&&h.y>=a||(f.y>=a?f=new i(f.x+(h.x-f.x)*((a-f.y)/(h.y-f.y)),a)._round():h.y>=a&&(h=new i(f.x+(h.x-f.x)*((a-f.y)/(h.y-f.y)),a)._round()),c&&f.equals(c[c.length-1])||(c=[f],o.push(c)),c.push(h)))))}return o}function rc(t,e,r,n){var a=[],o=t.image,s=o.pixelRatio,l=o.paddedRect.w-2,c=o.paddedRect.h-2,u=t.right-t.left,f=t.bottom-t.top,h=o.stretchX||[[0,l]],p=o.stretchY||[[0,c]],d=function(t,e){return t+e[1]-e[0]},m=h.reduce(d,0),g=p.reduce(d,0),v=l-m,y=c-g,x=0,b=m,_=0,w=g,T=0,k=v,A=0,M=y;if(o.content&&n){var S=o.content;x=nc(h,0,S[0]),_=nc(p,0,S[1]),b=nc(h,S[0],S[2]),w=nc(p,S[1],S[3]),T=S[0]-x,A=S[1]-_,k=S[2]-S[0]-b,M=S[3]-S[1]-w}var E=function(n,a,l,c){var h=ac(n.stretch-x,b,u,t.left),p=oc(n.fixed-T,k,n.stretch,m),d=ac(a.stretch-_,w,f,t.top),v=oc(a.fixed-A,M,a.stretch,g),y=ac(l.stretch-x,b,u,t.left),S=oc(l.fixed-T,k,l.stretch,m),E=ac(c.stretch-_,w,f,t.top),L=oc(c.fixed-A,M,c.stretch,g),C=new i(h,d),P=new i(y,d),I=new i(y,E),O=new i(h,E),z=new i(p/s,v/s),D=new i(S/s,L/s),R=e*Math.PI/180;if(R){var F=Math.sin(R),B=Math.cos(R),N=[B,-F,F,B];C._matMult(N),P._matMult(N),O._matMult(N),I._matMult(N)}var j=n.stretch+n.fixed,U=l.stretch+l.fixed,V=a.stretch+a.fixed,H=c.stretch+c.fixed;return{tl:C,tr:P,bl:O,br:I,tex:{x:o.paddedRect.x+1+j,y:o.paddedRect.y+1+V,w:U-j,h:H-V},writingMode:void 0,glyphOffset:[0,0],sectionIndex:0,pixelOffsetTL:z,pixelOffsetBR:D,minFontScaleX:k/s/u,minFontScaleY:M/s/f,isSDF:r}};if(n&&(o.stretchX||o.stretchY))for(var L=ic(h,v,m),C=ic(p,y,g),P=0;P0&&(d=Math.max(10,d),this.circleDiameter=d)}else{var m=o.top*s-l,g=o.bottom*s+l,v=o.left*s-l,y=o.right*s+l,x=o.collisionPadding;if(x&&(v-=x[0]*s,m-=x[1]*s,y+=x[2]*s,g+=x[3]*s),u){var b=new i(v,m),_=new i(y,m),w=new i(v,g),T=new i(y,g),k=u*Math.PI/180;b._rotate(k),_._rotate(k),w._rotate(k),T._rotate(k),v=Math.min(b.x,_.x,w.x,T.x),y=Math.max(b.x,_.x,w.x,T.x),m=Math.min(b.y,_.y,w.y,T.y),g=Math.max(b.y,_.y,w.y,T.y)}t.emplaceBack(e.x,e.y,v,m,y,g,r,n,a)}this.boxEndIndex=t.length},lc=function(t,e){if(void 0===t&&(t=[]),void 0===e&&(e=cc),this.data=t,this.length=this.data.length,this.compare=e,this.length>0)for(var r=(this.length>>1)-1;r>=0;r--)this._down(r)};function cc(t,e){return te?1:0}function uc(t,e,r){void 0===e&&(e=1),void 0===r&&(r=!1);for(var n=1/0,a=1/0,o=-1/0,s=-1/0,l=t[0],c=0;co)&&(o=u.x),(!c||u.y>s)&&(s=u.y)}var f=o-n,h=s-a,p=Math.min(f,h),d=p/2,m=new lc([],fc);if(0===p)return new i(n,a);for(var g=n;gy.d||!y.d)&&(y=b,r&&console.log("found best %d after %d probes",Math.round(1e4*b.d)/1e4,x)),b.max-y.d<=e||(d=b.h/2,m.push(new hc(b.p.x-d,b.p.y-d,d,t)),m.push(new hc(b.p.x+d,b.p.y-d,d,t)),m.push(new hc(b.p.x-d,b.p.y+d,d,t)),m.push(new hc(b.p.x+d,b.p.y+d,d,t)),x+=4)}return r&&(console.log("num probes: "+x),console.log("best distance: "+y.d)),y.p}function fc(t,e){return e.max-t.max}function hc(t,e,r,n){this.p=new i(t,e),this.h=r,this.d=function(t,e){for(var r=!1,n=1/0,i=0;it.y!=u.y>t.y&&t.x<(u.x-c.x)*(t.y-c.y)/(u.y-c.y)+c.x&&(r=!r),n=Math.min(n,ro(t,c,u))}return(r?1:-1)*Math.sqrt(n)}(this.p,n),this.max=this.d+this.h*Math.SQRT2}lc.prototype.push=function(t){this.data.push(t),this.length++,this._up(this.length-1)},lc.prototype.pop=function(){if(0!==this.length){var t=this.data[0],e=this.data.pop();return this.length--,this.length>0&&(this.data[0]=e,this._down(0)),t}},lc.prototype.peek=function(){return this.data[0]},lc.prototype._up=function(t){for(var e=this.data,r=this.compare,n=e[t];t>0;){var i=t-1>>1,a=e[i];if(r(n,a)>=0)break;e[t]=a,t=i}e[t]=n},lc.prototype._down=function(t){for(var e=this.data,r=this.compare,n=this.length>>1,i=e[t];t=0)break;e[t]=o,t=a}e[t]=i};var pc=Number.POSITIVE_INFINITY;function dc(t,e){return e[1]!==pc?function(t,e,r){var n=0,i=0;switch(e=Math.abs(e),r=Math.abs(r),t){case"top-right":case"top-left":case"top":i=r-7;break;case"bottom-right":case"bottom-left":case"bottom":i=7-r}switch(t){case"top-right":case"bottom-right":case"right":n=-e;break;case"top-left":case"bottom-left":case"left":n=e}return[n,i]}(t,e[0],e[1]):function(t,e){var r=0,n=0;e<0&&(e=0);var i=e/Math.sqrt(2);switch(t){case"top-right":case"top-left":n=i-7;break;case"bottom-right":case"bottom-left":n=7-i;break;case"bottom":n=7-e;break;case"top":n=e-7}switch(t){case"top-right":case"bottom-right":r=-i;break;case"top-left":case"bottom-left":r=i;break;case"left":r=e;break;case"right":r=-e}return[r,n]}(t,e[0])}function mc(t){switch(t){case"right":case"top-right":case"bottom-right":return"right";case"left":case"top-left":case"bottom-left":return"left"}return"center"}function gc(t,e,r,n,a,o,s,l,c,u,f,h,p,d,m){var g=function(t,e,r,n,a,o,s,l){for(var c=n.layout.get("text-rotate").evaluate(o,{})*Math.PI/180,u=[],f=0,h=e.positionedLines;f32640&&_(t.layerIds[0]+': Value for "text-size" is >= 255. Reduce your "text-size".'):"composite"===v.kind&&((y=[128*d.compositeTextSizes[0].evaluate(s,{},m),128*d.compositeTextSizes[1].evaluate(s,{},m)])[0]>32640||y[1]>32640)&&_(t.layerIds[0]+': Value for "text-size" is >= 255. Reduce your "text-size".'),t.addSymbols(t.text,g,y,l,o,s,u,e,c.lineStartIndex,c.lineLength,p,m);for(var x=0,b=f;x=0;o--)if(n.dist(a[o])0)&&("constant"!==a.value.kind||a.value.value.length>0),c="constant"!==s.value.kind||!!s.value.value||Object.keys(s.parameters).length>0,u=i.get("symbol-sort-key");if(this.features=[],l||c){for(var f=e.iconDependencies,h=e.glyphDependencies,p=e.availableImages,d=new pi(this.zoom),m=0,g=t;m=0;for(var O=0,z=k.sections;O=0;s--)a[s]={x:e[s].x,y:e[s].y,tileUnitDistanceFromAnchor:i},s>0&&(i+=e[s-1].dist(e[s]));for(var l=0;l0},Mc.prototype.hasIconData=function(){return this.icon.segments.get().length>0},Mc.prototype.hasDebugData=function(){return this.textCollisionBox&&this.iconCollisionBox},Mc.prototype.hasTextCollisionBoxData=function(){return this.hasDebugData()&&this.textCollisionBox.segments.get().length>0},Mc.prototype.hasIconCollisionBoxData=function(){return this.hasDebugData()&&this.iconCollisionBox.segments.get().length>0},Mc.prototype.addIndicesForPlacedSymbol=function(t,e){for(var r=t.placedSymbolArray.get(e),n=r.vertexStartIndex+4*r.numGlyphs,i=r.vertexStartIndex;i1||this.icon.segments.get().length>1)){this.symbolInstanceIndexes=this.getSortedSymbolIndexes(t),this.sortedAngle=t,this.text.indexArray.clear(),this.icon.indexArray.clear(),this.featureSortOrder=[];for(var r=0,n=this.symbolInstanceIndexes;r=0&&n.indexOf(t)===r&&e.addIndicesForPlacedSymbol(e.text,t)})),a.verticalPlacedTextSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.text,a.verticalPlacedTextSymbolIndex),a.placedIconSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.icon,a.placedIconSymbolIndex),a.verticalPlacedIconSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.icon,a.verticalPlacedIconSymbolIndex)}this.text.indexBuffer&&this.text.indexBuffer.updateData(this.text.indexArray),this.icon.indexBuffer&&this.icon.indexBuffer.updateData(this.icon.indexArray)}},Nn("SymbolBucket",Mc,{omit:["layers","collisionBoxArray","features","compareText"]}),Mc.MAX_GLYPHS=65535,Mc.addDynamicAttributes=wc;var Sc=new Si({"symbol-placement":new wi(Lt.layout_symbol["symbol-placement"]),"symbol-spacing":new wi(Lt.layout_symbol["symbol-spacing"]),"symbol-avoid-edges":new wi(Lt.layout_symbol["symbol-avoid-edges"]),"symbol-sort-key":new Ti(Lt.layout_symbol["symbol-sort-key"]),"symbol-z-order":new wi(Lt.layout_symbol["symbol-z-order"]),"icon-allow-overlap":new wi(Lt.layout_symbol["icon-allow-overlap"]),"icon-ignore-placement":new wi(Lt.layout_symbol["icon-ignore-placement"]),"icon-optional":new wi(Lt.layout_symbol["icon-optional"]),"icon-rotation-alignment":new wi(Lt.layout_symbol["icon-rotation-alignment"]),"icon-size":new Ti(Lt.layout_symbol["icon-size"]),"icon-text-fit":new wi(Lt.layout_symbol["icon-text-fit"]),"icon-text-fit-padding":new wi(Lt.layout_symbol["icon-text-fit-padding"]),"icon-image":new Ti(Lt.layout_symbol["icon-image"]),"icon-rotate":new Ti(Lt.layout_symbol["icon-rotate"]),"icon-padding":new wi(Lt.layout_symbol["icon-padding"]),"icon-keep-upright":new wi(Lt.layout_symbol["icon-keep-upright"]),"icon-offset":new Ti(Lt.layout_symbol["icon-offset"]),"icon-anchor":new Ti(Lt.layout_symbol["icon-anchor"]),"icon-pitch-alignment":new wi(Lt.layout_symbol["icon-pitch-alignment"]),"text-pitch-alignment":new wi(Lt.layout_symbol["text-pitch-alignment"]),"text-rotation-alignment":new wi(Lt.layout_symbol["text-rotation-alignment"]),"text-field":new Ti(Lt.layout_symbol["text-field"]),"text-font":new Ti(Lt.layout_symbol["text-font"]),"text-size":new Ti(Lt.layout_symbol["text-size"]),"text-max-width":new Ti(Lt.layout_symbol["text-max-width"]),"text-line-height":new wi(Lt.layout_symbol["text-line-height"]),"text-letter-spacing":new Ti(Lt.layout_symbol["text-letter-spacing"]),"text-justify":new Ti(Lt.layout_symbol["text-justify"]),"text-radial-offset":new Ti(Lt.layout_symbol["text-radial-offset"]),"text-variable-anchor":new wi(Lt.layout_symbol["text-variable-anchor"]),"text-anchor":new Ti(Lt.layout_symbol["text-anchor"]),"text-max-angle":new wi(Lt.layout_symbol["text-max-angle"]),"text-writing-mode":new wi(Lt.layout_symbol["text-writing-mode"]),"text-rotate":new Ti(Lt.layout_symbol["text-rotate"]),"text-padding":new wi(Lt.layout_symbol["text-padding"]),"text-keep-upright":new wi(Lt.layout_symbol["text-keep-upright"]),"text-transform":new Ti(Lt.layout_symbol["text-transform"]),"text-offset":new Ti(Lt.layout_symbol["text-offset"]),"text-allow-overlap":new wi(Lt.layout_symbol["text-allow-overlap"]),"text-ignore-placement":new wi(Lt.layout_symbol["text-ignore-placement"]),"text-optional":new wi(Lt.layout_symbol["text-optional"])}),Ec={paint:new Si({"icon-opacity":new Ti(Lt.paint_symbol["icon-opacity"]),"icon-color":new Ti(Lt.paint_symbol["icon-color"]),"icon-halo-color":new Ti(Lt.paint_symbol["icon-halo-color"]),"icon-halo-width":new Ti(Lt.paint_symbol["icon-halo-width"]),"icon-halo-blur":new Ti(Lt.paint_symbol["icon-halo-blur"]),"icon-translate":new wi(Lt.paint_symbol["icon-translate"]),"icon-translate-anchor":new wi(Lt.paint_symbol["icon-translate-anchor"]),"text-opacity":new Ti(Lt.paint_symbol["text-opacity"]),"text-color":new Ti(Lt.paint_symbol["text-color"],{runtimeType:Ut,getOverride:function(t){return t.textColor},hasOverride:function(t){return!!t.textColor}}),"text-halo-color":new Ti(Lt.paint_symbol["text-halo-color"]),"text-halo-width":new Ti(Lt.paint_symbol["text-halo-width"]),"text-halo-blur":new Ti(Lt.paint_symbol["text-halo-blur"]),"text-translate":new wi(Lt.paint_symbol["text-translate"]),"text-translate-anchor":new wi(Lt.paint_symbol["text-translate-anchor"])}),layout:Sc},Lc=function(t){this.type=t.property.overrides?t.property.overrides.runtimeType:Ft,this.defaultValue=t};Lc.prototype.evaluate=function(t){if(t.formattedSection){var e=this.defaultValue.property.overrides;if(e&&e.hasOverride(t.formattedSection))return e.getOverride(t.formattedSection)}return t.feature&&t.featureState?this.defaultValue.evaluate(t.feature,t.featureState):this.defaultValue.property.specification.default},Lc.prototype.eachChild=function(t){this.defaultValue.isConstant()||t(this.defaultValue.value._styleExpression.expression)},Lc.prototype.outputDefined=function(){return!1},Lc.prototype.serialize=function(){return null},Nn("FormatSectionOverride",Lc,{omit:["defaultValue"]});var Cc=function(t){function e(e){t.call(this,e,Ec)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.recalculate=function(e,r){if(t.prototype.recalculate.call(this,e,r),"auto"===this.layout.get("icon-rotation-alignment")&&("point"!==this.layout.get("symbol-placement")?this.layout._values["icon-rotation-alignment"]="map":this.layout._values["icon-rotation-alignment"]="viewport"),"auto"===this.layout.get("text-rotation-alignment")&&("point"!==this.layout.get("symbol-placement")?this.layout._values["text-rotation-alignment"]="map":this.layout._values["text-rotation-alignment"]="viewport"),"auto"===this.layout.get("text-pitch-alignment")&&(this.layout._values["text-pitch-alignment"]=this.layout.get("text-rotation-alignment")),"auto"===this.layout.get("icon-pitch-alignment")&&(this.layout._values["icon-pitch-alignment"]=this.layout.get("icon-rotation-alignment")),"point"===this.layout.get("symbol-placement")){var n=this.layout.get("text-writing-mode");if(n){for(var i=[],a=0,o=n;a",targetMapId:n,sourceMapId:a.mapId})}}},qc.prototype.receive=function(t){var e=t.data,r=e.id;if(r&&(!e.targetMapId||this.mapId===e.targetMapId))if(""===e.type){delete this.tasks[r];var n=this.cancelCallbacks[r];delete this.cancelCallbacks[r],n&&n()}else k()||e.mustQueue?(this.tasks[r]=e,this.taskQueue.push(r),this.invoker.trigger()):this.processTask(r,e)},qc.prototype.process=function(){if(this.taskQueue.length){var t=this.taskQueue.shift(),e=this.tasks[t];delete this.tasks[t],this.taskQueue.length&&this.invoker.trigger(),e&&this.processTask(t,e)}},qc.prototype.processTask=function(t,e){var r=this;if(""===e.type){var n=this.callbacks[t];delete this.callbacks[t],n&&(e.error?n(qn(e.error)):n(null,qn(e.data)))}else{var i=!1,a=S(this.globalScope)?void 0:[],o=e.hasCallback?function(e,n){i=!0,delete r.cancelCallbacks[t],r.target.postMessage({id:t,type:"",sourceMapId:r.mapId,error:e?Hn(e):null,data:Hn(n,a)},a)}:function(t){i=!0},s=null,l=qn(e.data);if(this.parent[e.type])s=this.parent[e.type](e.sourceMapId,l,o);else if(this.parent.getWorkerSource){var c=e.type.split(".");s=this.parent.getWorkerSource(e.sourceMapId,c[0],l.source)[c[1]](l,o)}else o(new Error("Could not find function "+e.type));!i&&s&&s.cancel&&(this.cancelCallbacks[t]=s.cancel)}},qc.prototype.remove=function(){this.invoker.remove(),this.target.removeEventListener("message",this.receive,!1)};var Yc=function(t,e){t&&(e?this.setSouthWest(t).setNorthEast(e):4===t.length?this.setSouthWest([t[0],t[1]]).setNorthEast([t[2],t[3]]):this.setSouthWest(t[0]).setNorthEast(t[1]))};Yc.prototype.setNorthEast=function(t){return this._ne=t instanceof Wc?new Wc(t.lng,t.lat):Wc.convert(t),this},Yc.prototype.setSouthWest=function(t){return this._sw=t instanceof Wc?new Wc(t.lng,t.lat):Wc.convert(t),this},Yc.prototype.extend=function(t){var e,r,n=this._sw,i=this._ne;if(t instanceof Wc)e=t,r=t;else{if(!(t instanceof Yc)){if(Array.isArray(t)){if(4===t.length||t.every(Array.isArray)){var a=t;return this.extend(Yc.convert(a))}var o=t;return this.extend(Wc.convert(o))}return this}if(e=t._sw,r=t._ne,!e||!r)return this}return n||i?(n.lng=Math.min(e.lng,n.lng),n.lat=Math.min(e.lat,n.lat),i.lng=Math.max(r.lng,i.lng),i.lat=Math.max(r.lat,i.lat)):(this._sw=new Wc(e.lng,e.lat),this._ne=new Wc(r.lng,r.lat)),this},Yc.prototype.getCenter=function(){return new Wc((this._sw.lng+this._ne.lng)/2,(this._sw.lat+this._ne.lat)/2)},Yc.prototype.getSouthWest=function(){return this._sw},Yc.prototype.getNorthEast=function(){return this._ne},Yc.prototype.getNorthWest=function(){return new Wc(this.getWest(),this.getNorth())},Yc.prototype.getSouthEast=function(){return new Wc(this.getEast(),this.getSouth())},Yc.prototype.getWest=function(){return this._sw.lng},Yc.prototype.getSouth=function(){return this._sw.lat},Yc.prototype.getEast=function(){return this._ne.lng},Yc.prototype.getNorth=function(){return this._ne.lat},Yc.prototype.toArray=function(){return[this._sw.toArray(),this._ne.toArray()]},Yc.prototype.toString=function(){return"LngLatBounds("+this._sw.toString()+", "+this._ne.toString()+")"},Yc.prototype.isEmpty=function(){return!(this._sw&&this._ne)},Yc.prototype.contains=function(t){var e=Wc.convert(t),r=e.lng,n=e.lat,i=this._sw.lat<=n&&n<=this._ne.lat,a=this._sw.lng<=r&&r<=this._ne.lng;return this._sw.lng>this._ne.lng&&(a=this._sw.lng>=r&&r>=this._ne.lng),i&&a},Yc.convert=function(t){return!t||t instanceof Yc?t:new Yc(t)};var Wc=function(t,e){if(isNaN(t)||isNaN(e))throw new Error("Invalid LngLat object: ("+t+", "+e+")");if(this.lng=+t,this.lat=+e,this.lat>90||this.lat<-90)throw new Error("Invalid LngLat latitude value: must be between -90 and 90")};Wc.prototype.wrap=function(){return new Wc(c(this.lng,-180,180),this.lat)},Wc.prototype.toArray=function(){return[this.lng,this.lat]},Wc.prototype.toString=function(){return"LngLat("+this.lng+", "+this.lat+")"},Wc.prototype.distanceTo=function(t){var e=Math.PI/180,r=this.lat*e,n=t.lat*e,i=Math.sin(r)*Math.sin(n)+Math.cos(r)*Math.cos(n)*Math.cos((t.lng-this.lng)*e);return 6371008.8*Math.acos(Math.min(i,1))},Wc.prototype.toBounds=function(t){void 0===t&&(t=0);var e=360*t/40075017,r=e/Math.cos(Math.PI/180*this.lat);return new Yc(new Wc(this.lng-r,this.lat-e),new Wc(this.lng+r,this.lat+e))},Wc.convert=function(t){if(t instanceof Wc)return t;if(Array.isArray(t)&&(2===t.length||3===t.length))return new Wc(Number(t[0]),Number(t[1]));if(!Array.isArray(t)&&"object"==typeof t&&null!==t)return new Wc(Number("lng"in t?t.lng:t.lon),Number(t.lat));throw new Error("`LngLatLike` argument must be specified as a LngLat instance, an object {lng: , lat: }, an object {lon: , lat: }, or an array of [, ]")};var Xc=2*Math.PI*6371008.8;function Zc(t){return Xc*Math.cos(t*Math.PI/180)}function Jc(t){return(180+t)/360}function Kc(t){return(180-180/Math.PI*Math.log(Math.tan(Math.PI/4+t*Math.PI/360)))/360}function Qc(t,e){return t/Zc(e)}function $c(t){var e=180-360*t;return 360/Math.PI*Math.atan(Math.exp(e*Math.PI/180))-90}var tu=function(t,e,r){void 0===r&&(r=0),this.x=+t,this.y=+e,this.z=+r};tu.fromLngLat=function(t,e){void 0===e&&(e=0);var r=Wc.convert(t);return new tu(Jc(r.lng),Kc(r.lat),Qc(e,r.lat))},tu.prototype.toLngLat=function(){return new Wc(360*this.x-180,$c(this.y))},tu.prototype.toAltitude=function(){return t=this.z,e=this.y,t*Zc($c(e));var t,e},tu.prototype.meterInMercatorCoordinateUnits=function(){return 1/Xc*(t=$c(this.y),1/Math.cos(t*Math.PI/180));var t};var eu=function(t,e,r){this.z=t,this.x=e,this.y=r,this.key=iu(0,t,t,e,r)};eu.prototype.equals=function(t){return this.z===t.z&&this.x===t.x&&this.y===t.y},eu.prototype.url=function(t,e){var r,n,i,a,o,s=(r=this.x,n=this.y,i=this.z,a=Gc(256*r,256*(n=Math.pow(2,i)-n-1),i),o=Gc(256*(r+1),256*(n+1),i),a[0]+","+a[1]+","+o[0]+","+o[1]),l=function(t,e,r){for(var n,i="",a=t;a>0;a--)i+=(e&(n=1<this.canonical.z?new nu(t,this.wrap,this.canonical.z,this.canonical.x,this.canonical.y):new nu(t,this.wrap,t,this.canonical.x>>e,this.canonical.y>>e)},nu.prototype.calculateScaledKey=function(t,e){var r=this.canonical.z-t;return t>this.canonical.z?iu(this.wrap*+e,t,this.canonical.z,this.canonical.x,this.canonical.y):iu(this.wrap*+e,t,t,this.canonical.x>>r,this.canonical.y>>r)},nu.prototype.isChildOf=function(t){if(t.wrap!==this.wrap)return!1;var e=this.canonical.z-t.canonical.z;return 0===t.overscaledZ||t.overscaledZ>e&&t.canonical.y===this.canonical.y>>e},nu.prototype.children=function(t){if(this.overscaledZ>=t)return[new nu(this.overscaledZ+1,this.wrap,this.canonical.z,this.canonical.x,this.canonical.y)];var e=this.canonical.z+1,r=2*this.canonical.x,n=2*this.canonical.y;return[new nu(e,this.wrap,e,r,n),new nu(e,this.wrap,e,r+1,n),new nu(e,this.wrap,e,r,n+1),new nu(e,this.wrap,e,r+1,n+1)]},nu.prototype.isLessThan=function(t){return this.wrapt.wrap)&&(this.overscaledZt.overscaledZ)&&(this.canonical.xt.canonical.x)&&this.canonical.y=this.dim+1||e<-1||e>=this.dim+1)throw new RangeError("out of range source coordinates for DEM data");return(e+1)*this.stride+(t+1)},au.prototype._unpackMapbox=function(t,e,r){return(256*t*256+256*e+r)/10-1e4},au.prototype._unpackTerrarium=function(t,e,r){return 256*t+e+r/256-32768},au.prototype.getPixels=function(){return new Eo({width:this.stride,height:this.stride},new Uint8Array(this.data.buffer))},au.prototype.backfillBorder=function(t,e,r){if(this.dim!==t.dim)throw new Error("dem dimension mismatch");var n=e*this.dim,i=e*this.dim+this.dim,a=r*this.dim,o=r*this.dim+this.dim;switch(e){case-1:n=i-1;break;case 1:i=n+1}switch(r){case-1:a=o-1;break;case 1:o=a+1}for(var s=-e*this.dim,l=-r*this.dim,c=a;c=0&&u[3]>=0&&s.insert(o,u[0],u[1],u[2],u[3])}},uu.prototype.loadVTLayers=function(){return this.vtLayers||(this.vtLayers=new Ls.VectorTile(new al(this.rawTileData)).layers,this.sourceLayerCoder=new ou(this.vtLayers?Object.keys(this.vtLayers).sort():["_geojsonTileLayer"])),this.vtLayers},uu.prototype.query=function(t,e,r,n){var a=this;this.loadVTLayers();for(var o=t.params||{},s=8192/t.tileSize/t.scale,l=sn(o.filter),c=t.queryGeometry,u=t.queryPadding*s,f=hu(c),h=this.grid.query(f.minX-u,f.minY-u,f.maxX+u,f.maxY+u),p=hu(t.cameraQueryGeometry),d=this.grid3D.query(p.minX-u,p.minY-u,p.maxX+u,p.maxY+u,(function(e,r,n,a){return function(t,e,r,n,a){for(var o=0,s=t;o=l.x&&a>=l.y)return!0}var c=[new i(e,r),new i(e,a),new i(n,a),new i(n,r)];if(t.length>2)for(var u=0,f=c;u=0)return!0;return!1}(a,f)){var h=this.sourceLayerCoder.decode(r),p=this.vtLayers[h].feature(n);if(i.filter(new pi(this.tileID.overscaledZ),p))for(var d=this.getId(p,h),m=0;mn)i=!1;else if(e)if(this.expirationTimeot&&(t.getActor().send("enforceCacheSizeLimit",at),ht=0)},t.clamp=l,t.clearTileCache=function(t){var e=self.caches.delete("mapbox-tiles");t&&e.catch(t).then((function(){return t()}))},t.clipLine=ec,t.clone=function(t){var e=new fo(16);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[3],e[4]=t[4],e[5]=t[5],e[6]=t[6],e[7]=t[7],e[8]=t[8],e[9]=t[9],e[10]=t[10],e[11]=t[11],e[12]=t[12],e[13]=t[13],e[14]=t[14],e[15]=t[15],e},t.clone$1=x,t.clone$2=function(t){var e=new fo(3);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e},t.collisionCircleLayout=tl,t.config=F,t.create=function(){var t=new fo(16);return fo!=Float32Array&&(t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[11]=0,t[12]=0,t[13]=0,t[14]=0),t[0]=1,t[5]=1,t[10]=1,t[15]=1,t},t.create$1=function(){var t=new fo(9);return fo!=Float32Array&&(t[1]=0,t[2]=0,t[3]=0,t[5]=0,t[6]=0,t[7]=0),t[0]=1,t[4]=1,t[8]=1,t},t.create$2=function(){var t=new fo(4);return fo!=Float32Array&&(t[1]=0,t[2]=0),t[0]=1,t[3]=1,t},t.createCommonjsModule=e,t.createExpression=Wr,t.createLayout=Ii,t.createStyleLayer=function(t){return"custom"===t.type?new Dc(t):new Rc[t.type](t)},t.cross=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2];return t[0]=i*l-a*s,t[1]=a*o-n*l,t[2]=n*s-i*o,t},t.deepEqual=function t(e,r){if(Array.isArray(e)){if(!Array.isArray(r)||e.length!==r.length)return!1;for(var n=0;n0&&(a=1/Math.sqrt(a)),t[0]=e[0]*a,t[1]=e[1]*a,t[2]=e[2]*a,t},t.number=qe,t.offscreenCanvasSupported=pt,t.ortho=function(t,e,r,n,i,a,o){var s=1/(e-r),l=1/(n-i),c=1/(a-o);return t[0]=-2*s,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=-2*l,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=2*c,t[11]=0,t[12]=(e+r)*s,t[13]=(i+n)*l,t[14]=(o+a)*c,t[15]=1,t},t.parseGlyphPBF=function(t){return new al(t).readFields(Tl,[])},t.pbf=al,t.performSymbolLayout=function(t,e,r,n,i,a,o){t.createArrays();var s=512*t.overscaling;t.tilePixelRatio=8192/s,t.compareText={},t.iconsNeedLinear=!1;var l=t.layers[0].layout,c=t.layers[0]._unevaluatedLayout._values,u={};if("composite"===t.textSizeData.kind){var f=t.textSizeData,h=f.minZoom,p=f.maxZoom;u.compositeTextSizes=[c["text-size"].possiblyEvaluate(new pi(h),o),c["text-size"].possiblyEvaluate(new pi(p),o)]}if("composite"===t.iconSizeData.kind){var d=t.iconSizeData,m=d.minZoom,g=d.maxZoom;u.compositeIconSizes=[c["icon-size"].possiblyEvaluate(new pi(m),o),c["icon-size"].possiblyEvaluate(new pi(g),o)]}u.layoutTextSize=c["text-size"].possiblyEvaluate(new pi(t.zoom+1),o),u.layoutIconSize=c["icon-size"].possiblyEvaluate(new pi(t.zoom+1),o),u.textMaxSize=c["text-size"].possiblyEvaluate(new pi(18));for(var v=24*l.get("text-line-height"),y="map"===l.get("text-rotation-alignment")&&"point"!==l.get("symbol-placement"),x=l.get("text-keep-upright"),b=l.get("text-size"),w=function(){var a=k[T],s=l.get("text-font").evaluate(a,{},o).join(","),c=b.evaluate(a,{},o),f=u.layoutTextSize.evaluate(a,{},o),h=u.layoutIconSize.evaluate(a,{},o),p={horizontal:{},vertical:void 0},d=a.text,m=[0,0];if(d){var g=d.toString(),w=24*l.get("text-letter-spacing").evaluate(a,{},o),A=function(t){for(var e=0,r=t;e=8192||f.y<0||f.y>=8192||function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,w,T,k,A){var M,S,E,L,C,P=t.addToLineVertexArray(e,r),I=0,O=0,z=0,D=0,R=-1,F=-1,B={},N=ya(""),j=0,U=0;void 0===s._unevaluatedLayout.getValue("text-radial-offset")?(M=s.layout.get("text-offset").evaluate(b,{},k).map((function(t){return 24*t})),j=M[0],U=M[1]):(j=24*s.layout.get("text-radial-offset").evaluate(b,{},k),U=pc);if(t.allowVerticalPlacement&&n.vertical){var V=s.layout.get("text-rotate").evaluate(b,{},k)+90,H=n.vertical;L=new sc(l,e,c,u,f,H,h,p,d,V),o&&(C=new sc(l,e,c,u,f,o,g,v,d,V))}if(i){var q=s.layout.get("icon-rotate").evaluate(b,{}),G="none"!==s.layout.get("icon-text-fit"),Y=rc(i,q,T,G),W=o?rc(o,q,T,G):void 0;E=new sc(l,e,c,u,f,i,g,v,!1,q),I=4*Y.length;var X=t.iconSizeData,Z=null;"source"===X.kind?(Z=[128*s.layout.get("icon-size").evaluate(b,{})])[0]>32640&&_(t.layerIds[0]+': Value for "icon-size" is >= 255. Reduce your "icon-size".'):"composite"===X.kind&&((Z=[128*w.compositeIconSizes[0].evaluate(b,{},k),128*w.compositeIconSizes[1].evaluate(b,{},k)])[0]>32640||Z[1]>32640)&&_(t.layerIds[0]+': Value for "icon-size" is >= 255. Reduce your "icon-size".'),t.addSymbols(t.icon,Y,Z,x,y,b,!1,e,P.lineStartIndex,P.lineLength,-1,k),R=t.icon.placedSymbolArray.length-1,W&&(O=4*W.length,t.addSymbols(t.icon,W,Z,x,y,b,Cl.vertical,e,P.lineStartIndex,P.lineLength,-1,k),F=t.icon.placedSymbolArray.length-1)}for(var J in n.horizontal){var K=n.horizontal[J];if(!S){N=ya(K.text);var Q=s.layout.get("text-rotate").evaluate(b,{},k);S=new sc(l,e,c,u,f,K,h,p,d,Q)}var $=1===K.positionedLines.length;if(z+=gc(t,e,K,a,s,d,b,m,P,n.vertical?Cl.horizontal:Cl.horizontalOnly,$?Object.keys(n.horizontal):[J],B,R,w,k),$)break}n.vertical&&(D+=gc(t,e,n.vertical,a,s,d,b,m,P,Cl.vertical,["vertical"],B,F,w,k));var tt=S?S.boxStartIndex:t.collisionBoxArray.length,et=S?S.boxEndIndex:t.collisionBoxArray.length,rt=L?L.boxStartIndex:t.collisionBoxArray.length,nt=L?L.boxEndIndex:t.collisionBoxArray.length,it=E?E.boxStartIndex:t.collisionBoxArray.length,at=E?E.boxEndIndex:t.collisionBoxArray.length,ot=C?C.boxStartIndex:t.collisionBoxArray.length,st=C?C.boxEndIndex:t.collisionBoxArray.length,lt=-1,ct=function(t,e){return t&&t.circleDiameter?Math.max(t.circleDiameter,e):e};lt=ct(S,lt),lt=ct(L,lt),lt=ct(E,lt);var ut=(lt=ct(C,lt))>-1?1:0;ut&&(lt*=A/24);t.glyphOffsetArray.length>=Mc.MAX_GLYPHS&&_("Too many glyphs being rendered in a tile. See https://github.com/mapbox/mapbox-gl-js/issues/2907");void 0!==b.sortKey&&t.addToSortKeyRanges(t.symbolInstances.length,b.sortKey);t.symbolInstances.emplaceBack(e.x,e.y,B.right>=0?B.right:-1,B.center>=0?B.center:-1,B.left>=0?B.left:-1,B.vertical||-1,R,F,N,tt,et,rt,nt,it,at,ot,st,c,z,D,I,O,ut,0,h,j,U,lt)}(t,f,s,r,n,i,h,t.layers[0],t.collisionBoxArray,e.index,e.sourceLayerIndex,t.index,v,w,A,l,x,T,M,d,e,a,c,u,o)};if("line"===S)for(var P=0,I=ec(e.geometry,0,0,8192,8192);P1){var V=$l(U,k,r.vertical||m,n,24,y);V&&C(U,V)}}else if("Polygon"===e.type)for(var H=0,q=hs(e.geometry,0);H=E.maxzoom))if("none"!==E.visibility)o(S,this.zoom,n),(m[E.id]=E.createBucket({index:u.bucketLayerIDs.length,layers:S,zoom:this.zoom,pixelRatio:this.pixelRatio,overscaling:this.overscaling,collisionBoxArray:this.collisionBoxArray,sourceLayerIndex:b,sourceID:this.source})).populate(_,g,this.tileID.canonical),u.bucketLayerIDs.push(S.map((function(t){return t.id})))}}}var L=t.mapObject(g.glyphDependencies,(function(t){return Object.keys(t).map(Number)}));Object.keys(L).length?a.send("getGlyphs",{uid:this.uid,stacks:L},(function(t,e){f||(f=t,h=e,I.call(l))})):h={};var C=Object.keys(g.iconDependencies);C.length?a.send("getImages",{icons:C,source:this.source,tileID:this.tileID,type:"icons"},(function(t,e){f||(f=t,p=e,I.call(l))})):p={};var P=Object.keys(g.patternDependencies);function I(){if(f)return s(f);if(h&&p&&d){var e=new i(h),r=new t.ImageAtlas(p,d);for(var a in m){var l=m[a];l instanceof t.SymbolBucket?(o(l.layers,this.zoom,n),t.performSymbolLayout(l,h,e.positions,p,r.iconPositions,this.showCollisionBoxes,this.tileID.canonical)):l.hasPattern&&(l instanceof t.LineBucket||l instanceof t.FillBucket||l instanceof t.FillExtrusionBucket)&&(o(l.layers,this.zoom,n),l.addFeatures(g,this.tileID.canonical,r.patternPositions))}this.status="done",s(null,{buckets:t.values(m).filter((function(t){return!t.isEmpty()})),featureIndex:u,collisionBoxArray:this.collisionBoxArray,glyphAtlasImage:e.image,imageAtlas:r,glyphMap:this.returnDependencies?h:null,iconMap:this.returnDependencies?p:null,glyphPositions:this.returnDependencies?e.positions:null})}}P.length?a.send("getImages",{icons:P,source:this.source,tileID:this.tileID,type:"patterns"},(function(t,e){f||(f=t,d=e,I.call(l))})):d={},I.call(this)};var l=function(t,e,r,n){this.actor=t,this.layerIndex=e,this.availableImages=r,this.loadVectorData=n||s,this.loading={},this.loaded={}};l.prototype.loadTile=function(e,r){var n=this,i=e.uid;this.loading||(this.loading={});var o=!!(e&&e.request&&e.request.collectResourceTiming)&&new t.RequestPerformance(e.request),s=this.loading[i]=new a(e);s.abort=this.loadVectorData(e,(function(e,a){if(delete n.loading[i],e||!a)return s.status="done",n.loaded[i]=s,r(e);var l=a.rawData,c={};a.expires&&(c.expires=a.expires),a.cacheControl&&(c.cacheControl=a.cacheControl);var u={};if(o){var f=o.finish();f&&(u.resourceTiming=JSON.parse(JSON.stringify(f)))}s.vectorTile=a.vectorTile,s.parse(a.vectorTile,n.layerIndex,n.availableImages,n.actor,(function(e,n){if(e||!n)return r(e);r(null,t.extend({rawTileData:l.slice(0)},n,c,u))})),n.loaded=n.loaded||{},n.loaded[i]=s}))},l.prototype.reloadTile=function(t,e){var r=this,n=this.loaded,i=t.uid,a=this;if(n&&n[i]){var o=n[i];o.showCollisionBoxes=t.showCollisionBoxes;var s=function(t,n){var i=o.reloadCallback;i&&(delete o.reloadCallback,o.parse(o.vectorTile,a.layerIndex,r.availableImages,a.actor,i)),e(t,n)};"parsing"===o.status?o.reloadCallback=s:"done"===o.status&&(o.vectorTile?o.parse(o.vectorTile,this.layerIndex,this.availableImages,this.actor,s):s())}},l.prototype.abortTile=function(t,e){var r=this.loading,n=t.uid;r&&r[n]&&r[n].abort&&(r[n].abort(),delete r[n]),e()},l.prototype.removeTile=function(t,e){var r=this.loaded,n=t.uid;r&&r[n]&&delete r[n],e()};var c=t.window.ImageBitmap,u=function(){this.loaded={}};u.prototype.loadTile=function(e,r){var n=e.uid,i=e.encoding,a=e.rawImageData,o=c&&a instanceof c?this.getImageData(a):a,s=new t.DEMData(n,o,i);this.loaded=this.loaded||{},this.loaded[n]=s,r(null,s)},u.prototype.getImageData=function(e){this.offscreenCanvas&&this.offscreenCanvasContext||(this.offscreenCanvas=new OffscreenCanvas(e.width,e.height),this.offscreenCanvasContext=this.offscreenCanvas.getContext("2d")),this.offscreenCanvas.width=e.width,this.offscreenCanvas.height=e.height,this.offscreenCanvasContext.drawImage(e,0,0,e.width,e.height);var r=this.offscreenCanvasContext.getImageData(-1,-1,e.width+2,e.height+2);return this.offscreenCanvasContext.clearRect(0,0,this.offscreenCanvas.width,this.offscreenCanvas.height),new t.RGBAImage({width:r.width,height:r.height},r.data)},u.prototype.removeTile=function(t){var e=this.loaded,r=t.uid;e&&e[r]&&delete e[r]};var f=function t(e,r){var n,i=e&&e.type;if("FeatureCollection"===i)for(n=0;n=0!=!!e&&t.reverse()}var d=t.vectorTile.VectorTileFeature.prototype.toGeoJSON,m=function(e){this._feature=e,this.extent=t.EXTENT,this.type=e.type,this.properties=e.tags,"id"in e&&!isNaN(e.id)&&(this.id=parseInt(e.id,10))};m.prototype.loadGeometry=function(){if(1===this._feature.type){for(var e=[],r=0,n=this._feature.geometry;r>31}function P(t,e){for(var r=t.loadGeometry(),n=t.type,i=0,a=0,o=r.length,s=0;s>1;!function t(e,r,n,i,a,o){for(;a>i;){if(a-i>600){var s=a-i+1,l=n-i+1,c=Math.log(s),u=.5*Math.exp(2*c/3),f=.5*Math.sqrt(c*u*(s-u)/s)*(l-s/2<0?-1:1),h=Math.max(i,Math.floor(n-l*u/s+f)),p=Math.min(a,Math.floor(n+(s-l)*u/s+f));t(e,r,n,h,p,o)}var d=r[2*n+o],m=i,g=a;for(z(e,r,i,n),r[2*a+o]>d&&z(e,r,i,a);md;)g--}r[2*i+o]===d?z(e,r,i,g):(g++,z(e,r,g,a)),g<=n&&(i=g+1),n<=g&&(a=g-1)}}(t,e,o,n,i,a%2),O(t,e,r,n,o-1,a+1),O(t,e,r,o+1,i,a+1)}}function z(t,e,r,n){D(t,r,n),D(e,2*r,2*n),D(e,2*r+1,2*n+1)}function D(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function R(t,e,r,n){var i=t-r,a=e-n;return i*i+a*a}_.fromVectorTileJs=w,_.fromGeojsonVt=T,_.GeoJSONWrapper=k;var F=function(t){return t[0]},B=function(t){return t[1]},N=function(t,e,r,n,i){void 0===e&&(e=F),void 0===r&&(r=B),void 0===n&&(n=64),void 0===i&&(i=Float64Array),this.nodeSize=n,this.points=t;for(var a=t.length<65536?Uint16Array:Uint32Array,o=this.ids=new a(t.length),s=this.coords=new i(2*t.length),l=0;l=r&&s<=i&&l>=n&&l<=a&&u.push(t[d]);else{var m=Math.floor((p+h)/2);s=e[2*m],l=e[2*m+1],s>=r&&s<=i&&l>=n&&l<=a&&u.push(t[m]);var g=(f+1)%2;(0===f?r<=s:n<=l)&&(c.push(p),c.push(m-1),c.push(g)),(0===f?i>=s:a>=l)&&(c.push(m+1),c.push(h),c.push(g))}}return u}(this.ids,this.coords,t,e,r,n,this.nodeSize)},N.prototype.within=function(t,e,r){return function(t,e,r,n,i,a){for(var o=[0,t.length-1,0],s=[],l=i*i;o.length;){var c=o.pop(),u=o.pop(),f=o.pop();if(u-f<=a)for(var h=f;h<=u;h++)R(e[2*h],e[2*h+1],r,n)<=l&&s.push(t[h]);else{var p=Math.floor((f+u)/2),d=e[2*p],m=e[2*p+1];R(d,m,r,n)<=l&&s.push(t[p]);var g=(c+1)%2;(0===c?r-i<=d:n-i<=m)&&(o.push(f),o.push(p-1),o.push(g)),(0===c?r+i>=d:n+i>=m)&&(o.push(p+1),o.push(u),o.push(g))}}return s}(this.ids,this.coords,t,e,r,this.nodeSize)};var j={minZoom:0,maxZoom:16,radius:40,extent:512,nodeSize:64,log:!1,generateId:!1,reduce:null,map:function(t){return t}},U=function(t){this.options=X(Object.create(j),t),this.trees=new Array(this.options.maxZoom+1)};function V(t,e,r,n,i){return{x:t,y:e,zoom:1/0,id:r,parentId:-1,numPoints:n,properties:i}}function H(t,e){var r=t.geometry.coordinates,n=r[0],i=r[1];return{x:Y(n),y:W(i),zoom:1/0,index:e,parentId:-1}}function q(t){return{type:"Feature",id:t.id,properties:G(t),geometry:{type:"Point",coordinates:[(n=t.x,360*(n-.5)),(e=t.y,r=(180-360*e)*Math.PI/180,360*Math.atan(Math.exp(r))/Math.PI-90)]}};var e,r,n}function G(t){var e=t.numPoints,r=e>=1e4?Math.round(e/1e3)+"k":e>=1e3?Math.round(e/100)/10+"k":e;return X(X({},t.properties),{cluster:!0,cluster_id:t.id,point_count:e,point_count_abbreviated:r})}function Y(t){return t/360+.5}function W(t){var e=Math.sin(t*Math.PI/180),r=.5-.25*Math.log((1+e)/(1-e))/Math.PI;return r<0?0:r>1?1:r}function X(t,e){for(var r in e)t[r]=e[r];return t}function Z(t){return t.x}function J(t){return t.y}function K(t,e,r,n,i,a){var o=i-r,s=a-n;if(0!==o||0!==s){var l=((t-r)*o+(e-n)*s)/(o*o+s*s);l>1?(r=i,n=a):l>0&&(r+=o*l,n+=s*l)}return(o=t-r)*o+(s=e-n)*s}function Q(t,e,r,n){var i={id:void 0===t?null:t,type:e,geometry:r,tags:n,minX:1/0,minY:1/0,maxX:-1/0,maxY:-1/0};return function(t){var e=t.geometry,r=t.type;if("Point"===r||"MultiPoint"===r||"LineString"===r)$(t,e);else if("Polygon"===r||"MultiLineString"===r)for(var n=0;n0&&(o+=n?(i*c-l*a)/2:Math.sqrt(Math.pow(l-i,2)+Math.pow(c-a,2))),i=l,a=c}var u=e.length-3;e[2]=1,function t(e,r,n,i){for(var a,o=i,s=n-r>>1,l=n-r,c=e[r],u=e[r+1],f=e[n],h=e[n+1],p=r+3;po)a=p,o=d;else if(d===o){var m=Math.abs(p-s);mi&&(a-r>3&&t(e,r,a,i),e[a+2]=o,n-a>3&&t(e,a,n,i))}(e,0,u,r),e[u+2]=1,e.size=Math.abs(o),e.start=0,e.end=e.size}function nt(t,e,r,n){for(var i=0;i1?1:r}function ot(t,e,r,n,i,a,o,s){if(n/=e,a>=(r/=e)&&o=n)return null;for(var l=[],c=0;c=r&&d=n)){var m=[];if("Point"===h||"MultiPoint"===h)st(f,m,r,n,i);else if("LineString"===h)lt(f,m,r,n,i,!1,s.lineMetrics);else if("MultiLineString"===h)ut(f,m,r,n,i,!1);else if("Polygon"===h)ut(f,m,r,n,i,!0);else if("MultiPolygon"===h)for(var g=0;g=r&&o<=n&&(e.push(t[a]),e.push(t[a+1]),e.push(t[a+2]))}}function lt(t,e,r,n,i,a,o){for(var s,l,c=ct(t),u=0===i?ht:pt,f=t.start,h=0;hr&&(l=u(c,p,d,g,v,r),o&&(c.start=f+s*l)):y>n?x=r&&(l=u(c,p,d,g,v,r),b=!0),x>n&&y<=n&&(l=u(c,p,d,g,v,n),b=!0),!a&&b&&(o&&(c.end=f+s*l),e.push(c),c=ct(t)),o&&(f+=s)}var _=t.length-3;p=t[_],d=t[_+1],m=t[_+2],(y=0===i?p:d)>=r&&y<=n&&ft(c,p,d,m),_=c.length-3,a&&_>=3&&(c[_]!==c[0]||c[_+1]!==c[1])&&ft(c,c[0],c[1],c[2]),c.length&&e.push(c)}function ct(t){var e=[];return e.size=t.size,e.start=t.start,e.end=t.end,e}function ut(t,e,r,n,i,a){for(var o=0;oo.maxX&&(o.maxX=u),f>o.maxY&&(o.maxY=f)}return o}function xt(t,e,r,n){var i=e.geometry,a=e.type,o=[];if("Point"===a||"MultiPoint"===a)for(var s=0;s0&&e.size<(i?o:n))r.numPoints+=e.length/3;else{for(var s=[],l=0;lo)&&(r.numSimplified++,s.push(e[l]),s.push(e[l+1])),r.numPoints++;i&&function(t,e){for(var r=0,n=0,i=t.length,a=i-2;n0===e)for(n=0,i=t.length;n24)throw new Error("maxZoom should be in the 0-24 range");if(e.promoteId&&e.generateId)throw new Error("promoteId and generateId cannot be used together.");var n=function(t,e){var r=[];if("FeatureCollection"===t.type)for(var n=0;n=n;c--){var u=+Date.now();s=this._cluster(s,c),this.trees[c]=new N(s,Z,J,a,Float32Array),r&&console.log("z%d: %d clusters in %dms",c,s.length,+Date.now()-u)}return r&&console.timeEnd("total time"),this},U.prototype.getClusters=function(t,e){var r=((t[0]+180)%360+360)%360-180,n=Math.max(-90,Math.min(90,t[1])),i=180===t[2]?180:((t[2]+180)%360+360)%360-180,a=Math.max(-90,Math.min(90,t[3]));if(t[2]-t[0]>=360)r=-180,i=180;else if(r>i){var o=this.getClusters([r,n,180,a],e),s=this.getClusters([-180,n,i,a],e);return o.concat(s)}for(var l=this.trees[this._limitZoom(e)],c=[],u=0,f=l.range(Y(r),W(a),Y(i),W(n));u1?this._map(c,!0):null,g=(l<<5)+(e+1)+this.points.length,v=0,y=f;v>5},U.prototype._getOriginZoom=function(t){return(t-this.points.length)%32},U.prototype._map=function(t,e){if(t.numPoints)return e?X({},t.properties):t.properties;var r=this.points[t.index].properties,n=this.options.map(r);return e&&n===r?X({},n):n},_t.prototype.options={maxZoom:14,indexMaxZoom:5,indexMaxPoints:1e5,tolerance:3,extent:4096,buffer:64,lineMetrics:!1,promoteId:null,generateId:!1,debug:0},_t.prototype.splitTile=function(t,e,r,n,i,a,o){for(var s=[t,e,r,n],l=this.options,c=l.debug;s.length;){n=s.pop(),r=s.pop(),e=s.pop(),t=s.pop();var u=1<1&&console.time("creation"),h=this.tiles[f]=yt(t,e,r,n,l),this.tileCoords.push({z:e,x:r,y:n}),c)){c>1&&(console.log("tile z%d-%d-%d (features: %d, points: %d, simplified: %d)",e,r,n,h.numFeatures,h.numPoints,h.numSimplified),console.timeEnd("creation"));var p="z"+e;this.stats[p]=(this.stats[p]||0)+1,this.total++}if(h.source=t,i){if(e===l.maxZoom||e===i)continue;var d=1<1&&console.time("clipping");var m,g,v,y,x,b,_=.5*l.buffer/l.extent,w=.5-_,T=.5+_,k=1+_;m=g=v=y=null,x=ot(t,u,r-_,r+T,0,h.minX,h.maxX,l),b=ot(t,u,r+w,r+k,0,h.minX,h.maxX,l),t=null,x&&(m=ot(x,u,n-_,n+T,1,h.minY,h.maxY,l),g=ot(x,u,n+w,n+k,1,h.minY,h.maxY,l),x=null),b&&(v=ot(b,u,n-_,n+T,1,h.minY,h.maxY,l),y=ot(b,u,n+w,n+k,1,h.minY,h.maxY,l),b=null),c>1&&console.timeEnd("clipping"),s.push(m||[],e+1,2*r,2*n),s.push(g||[],e+1,2*r,2*n+1),s.push(v||[],e+1,2*r+1,2*n),s.push(y||[],e+1,2*r+1,2*n+1)}}},_t.prototype.getTile=function(t,e,r){var n=this.options,i=n.extent,a=n.debug;if(t<0||t>24)return null;var o=1<1&&console.log("drilling down to z%d-%d-%d",t,e,r);for(var l,c=t,u=e,f=r;!l&&c>0;)c--,u=Math.floor(u/2),f=Math.floor(f/2),l=this.tiles[wt(c,u,f)];return l&&l.source?(a>1&&console.log("found parent tile z%d-%d-%d",c,u,f),a>1&&console.time("drilling down"),this.splitTile(l.source,c,u,f,t,e,r),a>1&&console.timeEnd("drilling down"),this.tiles[s]?gt(this.tiles[s],i):null):null};var kt=function(e){function r(t,r,n,i){e.call(this,t,r,n,Tt),i&&(this.loadGeoJSON=i)}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.loadData=function(t,e){this._pendingCallback&&this._pendingCallback(null,{abandoned:!0}),this._pendingCallback=e,this._pendingLoadDataParams=t,this._state&&"Idle"!==this._state?this._state="NeedsLoadData":(this._state="Coalescing",this._loadData())},r.prototype._loadData=function(){var e=this;if(this._pendingCallback&&this._pendingLoadDataParams){var r=this._pendingCallback,n=this._pendingLoadDataParams;delete this._pendingCallback,delete this._pendingLoadDataParams;var i=!!(n&&n.request&&n.request.collectResourceTiming)&&new t.RequestPerformance(n.request);this.loadGeoJSON(n,(function(a,o){if(a||!o)return r(a);if("object"!=typeof o)return r(new Error("Input data given to '"+n.source+"' is not a valid GeoJSON object."));f(o,!0);try{e._geoJSONIndex=n.cluster?new U(function(e){var r=e.superclusterOptions,n=e.clusterProperties;if(!n||!r)return r;for(var i={},a={},o={accumulated:null,zoom:0},s={properties:null},l=Object.keys(n),c=0,u=l;c=0?0:e.button},r.remove=function(t){t.parentNode&&t.parentNode.removeChild(t)};var h=function(e){function r(){e.call(this),this.images={},this.updatedImages={},this.callbackDispatchedThisFrame={},this.loaded=!1,this.requestors=[],this.patterns={},this.atlasImage=new t.RGBAImage({width:1,height:1}),this.dirty=!0}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.isLoaded=function(){return this.loaded},r.prototype.setLoaded=function(t){if(this.loaded!==t&&(this.loaded=t,t)){for(var e=0,r=this.requestors;e=0?1.2:1))}function v(t,e,r,n,i,a,o){for(var s=0;s65535)e(new Error("glyphs > 65535 not supported"));else if(a.ranges[s])e(null,{stack:r,id:i,glyph:o});else{var l=a.requests[s];l||(l=a.requests[s]=[],x.loadGlyphRange(r,s,n.url,n.requestManager,(function(t,e){if(e){for(var r in e)n._doesCharSupportLocalGlyph(+r)||(a.glyphs[+r]=e[+r]);a.ranges[s]=!0}for(var i=0,o=l;i1&&(l=t[++s]);var u=Math.abs(c-l.left),f=Math.abs(c-l.right),h=Math.min(u,f),p=void 0,d=i/r*(n+1);if(l.isDash){var m=n-Math.abs(d);p=Math.sqrt(h*h+m*m)}else p=n-Math.sqrt(h*h+d*d);this.data[o+c]=Math.max(0,Math.min(255,p+128))}},T.prototype.addRegularDash=function(t){for(var e=t.length-1;e>=0;--e){var r=t[e],n=t[e+1];r.zeroLength?t.splice(e,1):n&&n.isDash===r.isDash&&(n.left=r.left,t.splice(e,1))}var i=t[0],a=t[t.length-1];i.isDash===a.isDash&&(i.left=a.left-this.width,a.right=i.right+this.width);for(var o=this.width*this.nextRow,s=0,l=t[s],c=0;c1&&(l=t[++s]);var u=Math.abs(c-l.left),f=Math.abs(c-l.right),h=Math.min(u,f),p=l.isDash?h:-h;this.data[o+c]=Math.max(0,Math.min(255,p+128))}},T.prototype.addDash=function(e,r){var n=r?7:0,i=2*n+1;if(this.nextRow+i>this.height)return t.warnOnce("LineAtlas out of space"),null;for(var a=0,o=0;o=n&&e.x=i&&e.y0&&(l[new t.OverscaledTileID(e.overscaledZ,a,r.z,i,r.y-1).key]={backfilled:!1},l[new t.OverscaledTileID(e.overscaledZ,e.wrap,r.z,r.x,r.y-1).key]={backfilled:!1},l[new t.OverscaledTileID(e.overscaledZ,s,r.z,o,r.y-1).key]={backfilled:!1}),r.y+10&&(n.resourceTiming=e._resourceTiming,e._resourceTiming=[]),e.fire(new t.Event("data",n))}}))},r.prototype.onAdd=function(t){this.map=t,this.load()},r.prototype.setData=function(e){var r=this;return this._data=e,this.fire(new t.Event("dataloading",{dataType:"source"})),this._updateWorkerData((function(e){if(e)r.fire(new t.ErrorEvent(e));else{var n={dataType:"source",sourceDataType:"content"};r._collectResourceTiming&&r._resourceTiming&&r._resourceTiming.length>0&&(n.resourceTiming=r._resourceTiming,r._resourceTiming=[]),r.fire(new t.Event("data",n))}})),this},r.prototype.getClusterExpansionZoom=function(t,e){return this.actor.send("geojson.getClusterExpansionZoom",{clusterId:t,source:this.id},e),this},r.prototype.getClusterChildren=function(t,e){return this.actor.send("geojson.getClusterChildren",{clusterId:t,source:this.id},e),this},r.prototype.getClusterLeaves=function(t,e,r,n){return this.actor.send("geojson.getClusterLeaves",{source:this.id,clusterId:t,limit:e,offset:r},n),this},r.prototype._updateWorkerData=function(e){var r=this;this._loaded=!1;var n=t.extend({},this.workerOptions),i=this._data;"string"==typeof i?(n.request=this.map._requestManager.transformRequest(t.browser.resolveURL(i),t.ResourceType.Source),n.request.collectResourceTiming=this._collectResourceTiming):n.data=JSON.stringify(i),this.actor.send(this.type+".loadData",n,(function(t,i){r._removed||i&&i.abandoned||(r._loaded=!0,i&&i.resourceTiming&&i.resourceTiming[r.id]&&(r._resourceTiming=i.resourceTiming[r.id].slice(0)),r.actor.send(r.type+".coalesce",{source:n.source},null),e(t))}))},r.prototype.loaded=function(){return this._loaded},r.prototype.loadTile=function(e,r){var n=this,i=e.actor?"reloadTile":"loadTile";e.actor=this.actor;var a={type:this.type,uid:e.uid,tileID:e.tileID,zoom:e.tileID.overscaledZ,maxZoom:this.maxzoom,tileSize:this.tileSize,source:this.id,pixelRatio:t.browser.devicePixelRatio,showCollisionBoxes:this.map.showCollisionBoxes,promoteId:this.promoteId};e.request=this.actor.send(i,a,(function(t,a){return delete e.request,e.unloadVectorData(),e.aborted?r(null):t?r(t):(e.loadVectorData(a,n.map.painter,"reloadTile"===i),r(null))}))},r.prototype.abortTile=function(t){t.request&&(t.request.cancel(),delete t.request),t.aborted=!0},r.prototype.unloadTile=function(t){t.unloadVectorData(),this.actor.send("removeTile",{uid:t.uid,type:this.type,source:this.id})},r.prototype.onRemove=function(){this._removed=!0,this.actor.send("removeSource",{type:this.type,source:this.id})},r.prototype.serialize=function(){return t.extend({},this._options,{type:this.type,data:this._data})},r.prototype.hasTransition=function(){return!1},r}(t.Evented),P=t.createLayout([{name:"a_pos",type:"Int16",components:2},{name:"a_texture_pos",type:"Int16",components:2}]),I=function(e){function r(t,r,n,i){e.call(this),this.id=t,this.dispatcher=n,this.coordinates=r.coordinates,this.type="image",this.minzoom=0,this.maxzoom=22,this.tileSize=512,this.tiles={},this._loaded=!1,this.setEventedParent(i),this.options=r}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.load=function(e,r){var n=this;this._loaded=!1,this.fire(new t.Event("dataloading",{dataType:"source"})),this.url=this.options.url,t.getImage(this.map._requestManager.transformRequest(this.url,t.ResourceType.Image),(function(i,a){n._loaded=!0,i?n.fire(new t.ErrorEvent(i)):a&&(n.image=a,e&&(n.coordinates=e),r&&r(),n._finishLoading())}))},r.prototype.loaded=function(){return this._loaded},r.prototype.updateImage=function(t){var e=this;return this.image&&t.url?(this.options.url=t.url,this.load(t.coordinates,(function(){e.texture=null})),this):this},r.prototype._finishLoading=function(){this.map&&(this.setCoordinates(this.coordinates),this.fire(new t.Event("data",{dataType:"source",sourceDataType:"metadata"})))},r.prototype.onAdd=function(t){this.map=t,this.load()},r.prototype.setCoordinates=function(e){var r=this;this.coordinates=e;var n=e.map(t.MercatorCoordinate.fromLngLat);this.tileID=function(e){for(var r=1/0,n=1/0,i=-1/0,a=-1/0,o=0,s=e;or.end(0)?this.fire(new t.ErrorEvent(new t.ValidationError("sources."+this.id,null,"Playback for this video can be set only between the "+r.start(0)+" and "+r.end(0)+"-second mark."))):this.video.currentTime=e}},r.prototype.getVideo=function(){return this.video},r.prototype.onAdd=function(t){this.map||(this.map=t,this.load(),this.video&&(this.video.play(),this.setCoordinates(this.coordinates)))},r.prototype.prepare=function(){if(!(0===Object.keys(this.tiles).length||this.video.readyState<2)){var e=this.map.painter.context,r=e.gl;for(var n in this.boundsBuffer||(this.boundsBuffer=e.createVertexBuffer(this._boundsArray,P.members)),this.boundsSegments||(this.boundsSegments=t.SegmentVector.simpleSegment(0,0,4,2)),this.texture?this.video.paused||(this.texture.bind(r.LINEAR,r.CLAMP_TO_EDGE),r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,this.video)):(this.texture=new t.Texture(e,this.video,r.RGBA),this.texture.bind(r.LINEAR,r.CLAMP_TO_EDGE)),this.tiles){var i=this.tiles[n];"loaded"!==i.state&&(i.state="loaded",i.texture=this.texture)}}},r.prototype.serialize=function(){return{type:"video",urls:this.urls,coordinates:this.coordinates}},r.prototype.hasTransition=function(){return this.video&&!this.video.paused},r}(I),z=function(e){function r(r,n,i,a){e.call(this,r,n,i,a),n.coordinates?Array.isArray(n.coordinates)&&4===n.coordinates.length&&!n.coordinates.some((function(t){return!Array.isArray(t)||2!==t.length||t.some((function(t){return"number"!=typeof t}))}))||this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'"coordinates" property must be an array of 4 longitude/latitude array pairs'))):this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'missing required property "coordinates"'))),n.animate&&"boolean"!=typeof n.animate&&this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'optional "animate" property must be a boolean value'))),n.canvas?"string"==typeof n.canvas||n.canvas instanceof t.window.HTMLCanvasElement||this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'"canvas" must be either a string representing the ID of the canvas element from which to read, or an HTMLCanvasElement instance'))):this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'missing required property "canvas"'))),this.options=n,this.animate=void 0===n.animate||n.animate}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.load=function(){this._loaded=!0,this.canvas||(this.canvas=this.options.canvas instanceof t.window.HTMLCanvasElement?this.options.canvas:t.window.document.getElementById(this.options.canvas)),this.width=this.canvas.width,this.height=this.canvas.height,this._hasInvalidDimensions()?this.fire(new t.ErrorEvent(new Error("Canvas dimensions cannot be less than or equal to zero."))):(this.play=function(){this._playing=!0,this.map.triggerRepaint()},this.pause=function(){this._playing&&(this.prepare(),this._playing=!1)},this._finishLoading())},r.prototype.getCanvas=function(){return this.canvas},r.prototype.onAdd=function(t){this.map=t,this.load(),this.canvas&&this.animate&&this.play()},r.prototype.onRemove=function(){this.pause()},r.prototype.prepare=function(){var e=!1;if(this.canvas.width!==this.width&&(this.width=this.canvas.width,e=!0),this.canvas.height!==this.height&&(this.height=this.canvas.height,e=!0),!this._hasInvalidDimensions()&&0!==Object.keys(this.tiles).length){var r=this.map.painter.context,n=r.gl;for(var i in this.boundsBuffer||(this.boundsBuffer=r.createVertexBuffer(this._boundsArray,P.members)),this.boundsSegments||(this.boundsSegments=t.SegmentVector.simpleSegment(0,0,4,2)),this.texture?(e||this._playing)&&this.texture.update(this.canvas,{premultiply:!0}):this.texture=new t.Texture(r,this.canvas,n.RGBA,{premultiply:!0}),this.tiles){var a=this.tiles[i];"loaded"!==a.state&&(a.state="loaded",a.texture=this.texture)}}},r.prototype.serialize=function(){return{type:"canvas",coordinates:this.coordinates}},r.prototype.hasTransition=function(){return this._playing},r.prototype._hasInvalidDimensions=function(){for(var t=0,e=[this.canvas.width,this.canvas.height];tthis.max){var o=this._getAndRemoveByKey(this.order[0]);o&&this.onRemove(o)}return this},N.prototype.has=function(t){return t.wrapped().key in this.data},N.prototype.getAndRemove=function(t){return this.has(t)?this._getAndRemoveByKey(t.wrapped().key):null},N.prototype._getAndRemoveByKey=function(t){var e=this.data[t].shift();return e.timeout&&clearTimeout(e.timeout),0===this.data[t].length&&delete this.data[t],this.order.splice(this.order.indexOf(t),1),e.value},N.prototype.getByKey=function(t){var e=this.data[t];return e?e[0].value:null},N.prototype.get=function(t){return this.has(t)?this.data[t.wrapped().key][0].value:null},N.prototype.remove=function(t,e){if(!this.has(t))return this;var r=t.wrapped().key,n=void 0===e?0:this.data[r].indexOf(e),i=this.data[r][n];return this.data[r].splice(n,1),i.timeout&&clearTimeout(i.timeout),0===this.data[r].length&&delete this.data[r],this.onRemove(i.value),this.order.splice(this.order.indexOf(r),1),this},N.prototype.setMaxSize=function(t){for(this.max=t;this.order.length>this.max;){var e=this._getAndRemoveByKey(this.order[0]);e&&this.onRemove(e)}return this},N.prototype.filter=function(t){var e=[];for(var r in this.data)for(var n=0,i=this.data[r];n1||(Math.abs(r)>1&&(1===Math.abs(r+i)?r+=i:1===Math.abs(r-i)&&(r-=i)),e.dem&&t.dem&&(t.dem.backfillBorder(e.dem,r,n),t.neighboringTiles&&t.neighboringTiles[a]&&(t.neighboringTiles[a].backfilled=!0)))}},r.prototype.getTile=function(t){return this.getTileByID(t.key)},r.prototype.getTileByID=function(t){return this._tiles[t]},r.prototype._retainLoadedChildren=function(t,e,r,n){for(var i in this._tiles){var a=this._tiles[i];if(!(n[i]||!a.hasData()||a.tileID.overscaledZ<=e||a.tileID.overscaledZ>r)){for(var o=a.tileID;a&&a.tileID.overscaledZ>e+1;){var s=a.tileID.scaledTo(a.tileID.overscaledZ-1);(a=this._tiles[s.key])&&a.hasData()&&(o=s)}for(var l=o;l.overscaledZ>e;)if(t[(l=l.scaledTo(l.overscaledZ-1)).key]){n[o.key]=o;break}}}},r.prototype.findLoadedParent=function(t,e){if(t.key in this._loadedParentTiles){var r=this._loadedParentTiles[t.key];return r&&r.tileID.overscaledZ>=e?r:null}for(var n=t.overscaledZ-1;n>=e;n--){var i=t.scaledTo(n),a=this._getLoadedTile(i);if(a)return a}},r.prototype._getLoadedTile=function(t){var e=this._tiles[t.key];return e&&e.hasData()?e:this._cache.getByKey(t.wrapped().key)},r.prototype.updateCacheSize=function(t){var e=(Math.ceil(t.width/this._source.tileSize)+1)*(Math.ceil(t.height/this._source.tileSize)+1),r=Math.floor(5*e),n="number"==typeof this._maxTileCacheSize?Math.min(this._maxTileCacheSize,r):r;this._cache.setMaxSize(n)},r.prototype.handleWrapJump=function(t){var e=(t-(void 0===this._prevLng?t:this._prevLng))/360,r=Math.round(e);if(this._prevLng=t,r){var n={};for(var i in this._tiles){var a=this._tiles[i];a.tileID=a.tileID.unwrapTo(a.tileID.wrap+r),n[a.tileID.key]=a}for(var o in this._tiles=n,this._timers)clearTimeout(this._timers[o]),delete this._timers[o];for(var s in this._tiles){var l=this._tiles[s];this._setTileReloadTimer(s,l)}}},r.prototype.update=function(e){var n=this;if(this.transform=e,this._sourceLoaded&&!this._paused){var i;this.updateCacheSize(e),this.handleWrapJump(this.transform.center.lng),this._coveredTiles={},this.used?this._source.tileID?i=e.getVisibleUnwrappedCoordinates(this._source.tileID).map((function(e){return new t.OverscaledTileID(e.canonical.z,e.wrap,e.canonical.z,e.canonical.x,e.canonical.y)})):(i=e.coveringTiles({tileSize:this._source.tileSize,minzoom:this._source.minzoom,maxzoom:this._source.maxzoom,roundZoom:this._source.roundZoom,reparseOverscaled:this._source.reparseOverscaled}),this._source.hasTile&&(i=i.filter((function(t){return n._source.hasTile(t)})))):i=[];var a=e.coveringZoomLevel(this._source),o=Math.max(a-r.maxOverzooming,this._source.minzoom),s=Math.max(a+r.maxUnderzooming,this._source.minzoom),l=this._updateRetainedTiles(i,a);if(It(this._source.type)){for(var c={},u={},f=0,h=Object.keys(l);fthis._source.maxzoom){var g=d.children(this._source.maxzoom)[0],v=this.getTile(g);if(v&&v.hasData()){n[g.key]=g;continue}}else{var y=d.children(this._source.maxzoom);if(n[y[0].key]&&n[y[1].key]&&n[y[2].key]&&n[y[3].key])continue}for(var x=m.wasRequested(),b=d.overscaledZ-1;b>=a;--b){var _=d.scaledTo(b);if(i[_.key])break;if(i[_.key]=!0,!(m=this.getTile(_))&&x&&(m=this._addTile(_)),m&&(n[_.key]=_,x=m.wasRequested(),m.hasData()))break}}}return n},r.prototype._updateLoadedParentTileCache=function(){for(var t in this._loadedParentTiles={},this._tiles){for(var e=[],r=void 0,n=this._tiles[t].tileID;n.overscaledZ>0;){if(n.key in this._loadedParentTiles){r=this._loadedParentTiles[n.key];break}e.push(n.key);var i=n.scaledTo(n.overscaledZ-1);if(r=this._getLoadedTile(i))break;n=i}for(var a=0,o=e;a0||(e.hasData()&&"reloading"!==e.state?this._cache.add(e.tileID,e,e.getExpiryTimeout()):(e.aborted=!0,this._abortTile(e),this._unloadTile(e))))},r.prototype.clearTiles=function(){for(var t in this._shouldReloadOnResume=!1,this._paused=!1,this._tiles)this._removeTile(t);this._cache.reset()},r.prototype.tilesIn=function(e,r,n){var i=this,a=[],o=this.transform;if(!o)return a;for(var s=n?o.getCameraQueryGeometry(e):e,l=e.map((function(t){return o.pointCoordinate(t)})),c=s.map((function(t){return o.pointCoordinate(t)})),u=this.getIds(),f=1/0,h=1/0,p=-1/0,d=-1/0,m=0,g=c;m=0&&v[1].y+g>=0){var y=l.map((function(t){return s.getTilePoint(t)})),x=c.map((function(t){return s.getTilePoint(t)}));a.push({tile:n,tileID:s,queryGeometry:y,cameraQueryGeometry:x,scale:m})}}},x=0;x=t.browser.now())return!0}return!1},r.prototype.setFeatureState=function(t,e,r){t=t||"_geojsonTileLayer",this._state.updateState(t,e,r)},r.prototype.removeFeatureState=function(t,e,r){t=t||"_geojsonTileLayer",this._state.removeFeatureState(t,e,r)},r.prototype.getFeatureState=function(t,e){return t=t||"_geojsonTileLayer",this._state.getState(t,e)},r.prototype.setDependencies=function(t,e,r){var n=this._tiles[t];n&&n.setDependencies(e,r)},r.prototype.reloadTilesForDependencies=function(t,e){for(var r in this._tiles){this._tiles[r].hasDependency(t,e)&&this._reloadTile(r,"reloading")}this._cache.filter((function(r){return!r.hasDependency(t,e)}))},r}(t.Evented);function Pt(t,e){var r=Math.abs(2*t.wrap)-+(t.wrap<0),n=Math.abs(2*e.wrap)-+(e.wrap<0);return t.overscaledZ-e.overscaledZ||n-r||e.canonical.y-t.canonical.y||e.canonical.x-t.canonical.x}function It(t){return"raster"===t||"image"===t||"video"===t}function Ot(){return new t.window.Worker(Zi.workerUrl)}Ct.maxOverzooming=10,Ct.maxUnderzooming=3;var zt="mapboxgl_preloaded_worker_pool",Dt=function(){this.active={}};Dt.prototype.acquire=function(t){if(!this.workers)for(this.workers=[];this.workers.length0?(i-o)/s:0;return this.points[a].mult(1-l).add(this.points[r].mult(l))};var Kt=function(t,e,r){var n=this.boxCells=[],i=this.circleCells=[];this.xCellCount=Math.ceil(t/r),this.yCellCount=Math.ceil(e/r);for(var a=0;a=-e[0]&&r<=e[0]&&n>=-e[1]&&n<=e[1]}function ne(e,r,n,i,a,o,s,l){var c=i?e.textSizeData:e.iconSizeData,u=t.evaluateSizeForZoom(c,n.transform.zoom),f=[256/n.width*2+1,256/n.height*2+1],h=i?e.text.dynamicLayoutVertexArray:e.icon.dynamicLayoutVertexArray;h.clear();for(var p=e.lineVertexArray,d=i?e.text.placedSymbolArray:e.icon.placedSymbolArray,m=n.transform.width/n.transform.height,g=!1,v=0;vMath.abs(n.x-r.x)*i)return{useVertical:!0};return(e===t.WritingMode.vertical?r.yn.x)?{needsFlipping:!0}:null}function oe(e,r,n,i,a,o,s,l,c,u,f,h,p,d){var m,g=r/24,v=e.lineOffsetX*g,y=e.lineOffsetY*g;if(e.numGlyphs>1){var x=e.glyphStartIndex+e.numGlyphs,b=e.lineStartIndex,_=e.lineStartIndex+e.lineLength,w=ie(g,l,v,y,n,f,h,e,c,o,p);if(!w)return{notEnoughRoom:!0};var T=te(w.first.point,s).point,k=te(w.last.point,s).point;if(i&&!n){var A=ae(e.writingMode,T,k,d);if(A)return A}m=[w.first];for(var M=e.glyphStartIndex+1;M0?C.point:se(h,L,S,1,a),I=ae(e.writingMode,S,P,d);if(I)return I}var O=le(g*l.getoffsetX(e.glyphStartIndex),v,y,n,f,h,e.segment,e.lineStartIndex,e.lineStartIndex+e.lineLength,c,o,p);if(!O)return{notEnoughRoom:!0};m=[O]}for(var z=0,D=m;z0?1:-1,m=0;i&&(d*=-1,m=Math.PI),d<0&&(m+=Math.PI);for(var g=d>0?l+s:l+s+1,v=a,y=a,x=0,b=0,_=Math.abs(p),w=[];x+b<=_;){if((g+=d)=c)return null;if(y=v,w.push(v),void 0===(v=h[g])){var T=new t.Point(u.getx(g),u.gety(g)),k=te(T,f);if(k.signedDistanceFromCamera>0)v=h[g]=k.point;else{var A=g-d;v=se(0===x?o:new t.Point(u.getx(A),u.gety(A)),T,y,_-x+1,f)}}x+=b,b=y.dist(v)}var M=(_-x)/b,S=v.sub(y),E=S.mult(M)._add(y);E._add(S._unit()._perp()._mult(n*d));var L=m+Math.atan2(v.y-y.y,v.x-y.x);return w.push(E),{point:E,angle:L,path:w}}Kt.prototype.keysLength=function(){return this.boxKeys.length+this.circleKeys.length},Kt.prototype.insert=function(t,e,r,n,i){this._forEachCell(e,r,n,i,this._insertBoxCell,this.boxUid++),this.boxKeys.push(t),this.bboxes.push(e),this.bboxes.push(r),this.bboxes.push(n),this.bboxes.push(i)},Kt.prototype.insertCircle=function(t,e,r,n){this._forEachCell(e-n,r-n,e+n,r+n,this._insertCircleCell,this.circleUid++),this.circleKeys.push(t),this.circles.push(e),this.circles.push(r),this.circles.push(n)},Kt.prototype._insertBoxCell=function(t,e,r,n,i,a){this.boxCells[i].push(a)},Kt.prototype._insertCircleCell=function(t,e,r,n,i,a){this.circleCells[i].push(a)},Kt.prototype._query=function(t,e,r,n,i,a){if(r<0||t>this.width||n<0||e>this.height)return!i&&[];var o=[];if(t<=0&&e<=0&&this.width<=r&&this.height<=n){if(i)return!0;for(var s=0;s0:o},Kt.prototype._queryCircle=function(t,e,r,n,i){var a=t-r,o=t+r,s=e-r,l=e+r;if(o<0||a>this.width||l<0||s>this.height)return!n&&[];var c=[],u={hitTest:n,circle:{x:t,y:e,radius:r},seenUids:{box:{},circle:{}}};return this._forEachCell(a,s,o,l,this._queryCellCircle,c,u,i),n?c.length>0:c},Kt.prototype.query=function(t,e,r,n,i){return this._query(t,e,r,n,!1,i)},Kt.prototype.hitTest=function(t,e,r,n,i){return this._query(t,e,r,n,!0,i)},Kt.prototype.hitTestCircle=function(t,e,r,n){return this._queryCircle(t,e,r,!0,n)},Kt.prototype._queryCell=function(t,e,r,n,i,a,o,s){var l=o.seenUids,c=this.boxCells[i];if(null!==c)for(var u=this.bboxes,f=0,h=c;f=u[d+0]&&n>=u[d+1]&&(!s||s(this.boxKeys[p]))){if(o.hitTest)return a.push(!0),!0;a.push({key:this.boxKeys[p],x1:u[d],y1:u[d+1],x2:u[d+2],y2:u[d+3]})}}}var m=this.circleCells[i];if(null!==m)for(var g=this.circles,v=0,y=m;vo*o+s*s},Kt.prototype._circleAndRectCollide=function(t,e,r,n,i,a,o){var s=(a-n)/2,l=Math.abs(t-(n+s));if(l>s+r)return!1;var c=(o-i)/2,u=Math.abs(e-(i+c));if(u>c+r)return!1;if(l<=s||u<=c)return!0;var f=l-s,h=u-c;return f*f+h*h<=r*r};var ce=new Float32Array([-1/0,-1/0,0,-1/0,-1/0,0,-1/0,-1/0,0,-1/0,-1/0,0]);function ue(t,e){for(var r=0;r=1;P--)C.push(E.path[P]);for(var I=1;I0){for(var R=C[0].clone(),F=C[0].clone(),B=1;B=A.x&&F.x<=M.x&&R.y>=A.y&&F.y<=M.y?[C]:F.xM.x||F.yM.y?[]:t.clipLine([C],A.x,A.y,M.x,M.y)}for(var N=0,j=D;N=this.screenRightBoundary||n<100||e>this.screenBottomBoundary},he.prototype.isInsideGrid=function(t,e,r,n){return r>=0&&t=0&&e0)return this.prevPlacement&&this.prevPlacement.variableOffsets[f.crossTileID]&&this.prevPlacement.placements[f.crossTileID]&&this.prevPlacement.placements[f.crossTileID].text&&(m=this.prevPlacement.variableOffsets[f.crossTileID].anchor),this.variableOffsets[f.crossTileID]={textOffset:g,width:r,height:n,anchor:t,textBoxScale:i,prevAnchor:m},this.markUsedJustification(h,t,f,p),h.allowVerticalPlacement&&(this.markUsedOrientation(h,p,f),this.placedOrientations[f.crossTileID]=p),{shift:v,placedGlyphBoxes:y}},we.prototype.placeLayerBucketPart=function(e,r,n){var i=this,a=e.parameters,o=a.bucket,s=a.layout,l=a.posMatrix,c=a.textLabelPlaneMatrix,u=a.labelToScreenMatrix,f=a.textPixelRatio,h=a.holdingForFade,p=a.collisionBoxArray,d=a.partiallyEvaluatedTextSize,m=a.collisionGroup,g=s.get("text-optional"),v=s.get("icon-optional"),y=s.get("text-allow-overlap"),x=s.get("icon-allow-overlap"),b="map"===s.get("text-rotation-alignment"),_="map"===s.get("text-pitch-alignment"),w="none"!==s.get("icon-text-fit"),T="viewport-y"===s.get("symbol-z-order"),k=y&&(x||!o.hasIconData()||v),A=x&&(y||!o.hasTextData()||g);!o.collisionArrays&&p&&o.deserializeCollisionBoxes(p);var M=function(e,a){if(!r[e.crossTileID])if(h)i.placements[e.crossTileID]=new ge(!1,!1,!1);else{var p,T=!1,M=!1,S=!0,E=null,L={box:null,offscreen:null},C={box:null,offscreen:null},P=null,I=null,O=0,z=0,D=0;a.textFeatureIndex?O=a.textFeatureIndex:e.useRuntimeCollisionCircles&&(O=e.featureIndex),a.verticalTextFeatureIndex&&(z=a.verticalTextFeatureIndex);var R=a.textBox;if(R){var F=function(r){var n=t.WritingMode.horizontal;if(o.allowVerticalPlacement&&!r&&i.prevPlacement){var a=i.prevPlacement.placedOrientations[e.crossTileID];a&&(i.placedOrientations[e.crossTileID]=a,n=a,i.markUsedOrientation(o,n,e))}return n},B=function(r,n){if(o.allowVerticalPlacement&&e.numVerticalGlyphVertices>0&&a.verticalTextBox)for(var i=0,s=o.writingModes;i0&&(N=N.filter((function(t){return t!==j.anchor}))).unshift(j.anchor)}var U=function(t,r,n){for(var a=t.x2-t.x1,s=t.y2-t.y1,c=e.textBoxScale,u=w&&!x?r:null,h={box:[],offscreen:!1},p=y?2*N.length:N.length,d=0;d=N.length,k=i.attemptAnchorPlacement(g,t,a,s,c,b,_,f,l,m,v,e,o,n,u);if(k&&(h=k.placedGlyphBoxes)&&h.box&&h.box.length){T=!0,E=k.shift;break}}return h};B((function(){return U(R,a.iconBox,t.WritingMode.horizontal)}),(function(){var r=a.verticalTextBox,n=L&&L.box&&L.box.length;return o.allowVerticalPlacement&&!n&&e.numVerticalGlyphVertices>0&&r?U(r,a.verticalIconBox,t.WritingMode.vertical):{box:null,offscreen:null}})),L&&(T=L.box,S=L.offscreen);var V=F(L&&L.box);if(!T&&i.prevPlacement){var H=i.prevPlacement.variableOffsets[e.crossTileID];H&&(i.variableOffsets[e.crossTileID]=H,i.markUsedJustification(o,H.anchor,e,V))}}else{var q=function(t,r){var n=i.collisionIndex.placeCollisionBox(t,y,f,l,m.predicate);return n&&n.box&&n.box.length&&(i.markUsedOrientation(o,r,e),i.placedOrientations[e.crossTileID]=r),n};B((function(){return q(R,t.WritingMode.horizontal)}),(function(){var r=a.verticalTextBox;return o.allowVerticalPlacement&&e.numVerticalGlyphVertices>0&&r?q(r,t.WritingMode.vertical):{box:null,offscreen:null}})),F(L&&L.box&&L.box.length)}}if(T=(p=L)&&p.box&&p.box.length>0,S=p&&p.offscreen,e.useRuntimeCollisionCircles){var G=o.text.placedSymbolArray.get(e.centerJustifiedTextSymbolIndex),Y=t.evaluateSizeForFeature(o.textSizeData,d,G),W=s.get("text-padding"),X=e.collisionCircleDiameter;P=i.collisionIndex.placeCollisionCircles(y,G,o.lineVertexArray,o.glyphOffsetArray,Y,l,c,u,n,_,m.predicate,X,W),T=y||P.circles.length>0&&!P.collisionDetected,S=S&&P.offscreen}if(a.iconFeatureIndex&&(D=a.iconFeatureIndex),a.iconBox){var Z=function(t){var e=w&&E?_e(t,E.x,E.y,b,_,i.transform.angle):t;return i.collisionIndex.placeCollisionBox(e,x,f,l,m.predicate)};M=C&&C.box&&C.box.length&&a.verticalIconBox?(I=Z(a.verticalIconBox)).box.length>0:(I=Z(a.iconBox)).box.length>0,S=S&&I.offscreen}var J=g||0===e.numHorizontalGlyphVertices&&0===e.numVerticalGlyphVertices,K=v||0===e.numIconVertices;if(J||K?K?J||(M=M&&T):T=M&&T:M=T=M&&T,T&&p&&p.box&&(C&&C.box&&z?i.collisionIndex.insertCollisionBox(p.box,s.get("text-ignore-placement"),o.bucketInstanceId,z,m.ID):i.collisionIndex.insertCollisionBox(p.box,s.get("text-ignore-placement"),o.bucketInstanceId,O,m.ID)),M&&I&&i.collisionIndex.insertCollisionBox(I.box,s.get("icon-ignore-placement"),o.bucketInstanceId,D,m.ID),P&&(T&&i.collisionIndex.insertCollisionCircles(P.circles,s.get("text-ignore-placement"),o.bucketInstanceId,O,m.ID),n)){var Q=o.bucketInstanceId,$=i.collisionCircleArrays[Q];void 0===$&&($=i.collisionCircleArrays[Q]=new ve);for(var tt=0;tt=0;--E){var L=S[E];M(o.symbolInstances.get(L),o.collisionArrays[L])}else for(var C=e.symbolInstanceStart;C=0&&(e.text.placedSymbolArray.get(c).crossTileID=a>=0&&c!==a?0:n.crossTileID)}},we.prototype.markUsedOrientation=function(e,r,n){for(var i=r===t.WritingMode.horizontal||r===t.WritingMode.horizontalOnly?r:0,a=r===t.WritingMode.vertical?r:0,o=0,s=[n.leftJustifiedTextSymbolIndex,n.centerJustifiedTextSymbolIndex,n.rightJustifiedTextSymbolIndex];o0||l>0,x=a.numIconVertices>0,b=i.placedOrientations[a.crossTileID],_=b===t.WritingMode.vertical,w=b===t.WritingMode.horizontal||b===t.WritingMode.horizontalOnly;if(y){var T=Pe(v.text),k=_?Ie:T;d(e.text,s,k);var A=w?Ie:T;d(e.text,l,A);var M=v.text.isHidden();[a.rightJustifiedTextSymbolIndex,a.centerJustifiedTextSymbolIndex,a.leftJustifiedTextSymbolIndex].forEach((function(t){t>=0&&(e.text.placedSymbolArray.get(t).hidden=M||_?1:0)})),a.verticalPlacedTextSymbolIndex>=0&&(e.text.placedSymbolArray.get(a.verticalPlacedTextSymbolIndex).hidden=M||w?1:0);var S=i.variableOffsets[a.crossTileID];S&&i.markUsedJustification(e,S.anchor,a,b);var E=i.placedOrientations[a.crossTileID];E&&(i.markUsedJustification(e,"left",a,E),i.markUsedOrientation(e,E,a))}if(x){var L=Pe(v.icon),C=!(h&&a.verticalPlacedIconSymbolIndex&&_);if(a.placedIconSymbolIndex>=0){var P=C?L:Ie;d(e.icon,a.numIconVertices,P),e.icon.placedSymbolArray.get(a.placedIconSymbolIndex).hidden=v.icon.isHidden()}if(a.verticalPlacedIconSymbolIndex>=0){var I=C?Ie:L;d(e.icon,a.numVerticalIconVertices,I),e.icon.placedSymbolArray.get(a.verticalPlacedIconSymbolIndex).hidden=v.icon.isHidden()}}if(e.hasIconCollisionBoxData()||e.hasTextCollisionBoxData()){var O=e.collisionArrays[n];if(O){var z=new t.Point(0,0);if(O.textBox||O.verticalTextBox){var D=!0;if(c){var R=i.variableOffsets[m];R?(z=be(R.anchor,R.width,R.height,R.textOffset,R.textBoxScale),u&&z._rotate(f?i.transform.angle:-i.transform.angle)):D=!1}O.textBox&&Te(e.textCollisionBox.collisionVertexArray,v.text.placed,!D||_,z.x,z.y),O.verticalTextBox&&Te(e.textCollisionBox.collisionVertexArray,v.text.placed,!D||w,z.x,z.y)}var F=Boolean(!w&&O.verticalIconBox);O.iconBox&&Te(e.iconCollisionBox.collisionVertexArray,v.icon.placed,F,h?z.x:0,h?z.y:0),O.verticalIconBox&&Te(e.iconCollisionBox.collisionVertexArray,v.icon.placed,!F,h?z.x:0,h?z.y:0)}}},g=0;gt},we.prototype.setStale=function(){this.stale=!0};var ke=Math.pow(2,25),Ae=Math.pow(2,24),Me=Math.pow(2,17),Se=Math.pow(2,16),Ee=Math.pow(2,9),Le=Math.pow(2,8),Ce=Math.pow(2,1);function Pe(t){if(0===t.opacity&&!t.placed)return 0;if(1===t.opacity&&t.placed)return 4294967295;var e=t.placed?1:0,r=Math.floor(127*t.opacity);return r*ke+e*Ae+r*Me+e*Se+r*Ee+e*Le+r*Ce+e}var Ie=0,Oe=function(t){this._sortAcrossTiles="viewport-y"!==t.layout.get("symbol-z-order")&&void 0!==t.layout.get("symbol-sort-key").constantOr(1),this._currentTileIndex=0,this._currentPartIndex=0,this._seenCrossTileIDs={},this._bucketParts=[]};Oe.prototype.continuePlacement=function(t,e,r,n,i){for(var a=this._bucketParts;this._currentTileIndex2};this._currentPlacementIndex>=0;){var s=r[e[this._currentPlacementIndex]],l=this.placement.collisionIndex.transform.zoom;if("symbol"===s.type&&(!s.minzoom||s.minzoom<=l)&&(!s.maxzoom||s.maxzoom>l)){if(this._inProgressLayer||(this._inProgressLayer=new Oe(s)),this._inProgressLayer.continuePlacement(n[s.source],this.placement,this._showCollisionBoxes,s,o))return;delete this._inProgressLayer}this._currentPlacementIndex--}this._done=!0},ze.prototype.commit=function(t){return this.placement.commit(t),this.placement};var De=512/t.EXTENT/2,Re=function(t,e,r){this.tileID=t,this.indexedSymbolInstances={},this.bucketInstanceId=r;for(var n=0;nt.overscaledZ)for(var s in o){var l=o[s];l.tileID.isChildOf(t)&&l.findMatches(e.symbolInstances,t,i)}else{var c=o[t.scaledTo(Number(a)).key];c&&c.findMatches(e.symbolInstances,t,i)}}for(var u=0;u1?"@2x":"",l=t.getJSON(r.transformRequest(r.normalizeSpriteURL(e,s,".json"),t.ResourceType.SpriteJSON),(function(t,e){l=null,o||(o=t,i=e,u())})),c=t.getImage(r.transformRequest(r.normalizeSpriteURL(e,s,".png"),t.ResourceType.SpriteImage),(function(t,e){c=null,o||(o=t,a=e,u())}));function u(){if(o)n(o);else if(i&&a){var e=t.browser.getImageData(a),r={};for(var s in i){var l=i[s],c=l.width,u=l.height,f=l.x,h=l.y,p=l.sdf,d=l.pixelRatio,m=l.stretchX,g=l.stretchY,v=l.content,y=new t.RGBAImage({width:c,height:u});t.RGBAImage.copy(e,y,{x:f,y:h},{x:0,y:0},{width:c,height:u}),r[s]={data:y,pixelRatio:d,sdf:p,stretchX:m,stretchY:g,content:v}}n(null,r)}}return{cancel:function(){l&&(l.cancel(),l=null),c&&(c.cancel(),c=null)}}}(e,this.map._requestManager,(function(e,n){if(r._spriteRequest=null,e)r.fire(new t.ErrorEvent(e));else if(n)for(var i in n)r.imageManager.addImage(i,n[i]);r.imageManager.setLoaded(!0),r._availableImages=r.imageManager.listImages(),r.dispatcher.broadcast("setImages",r._availableImages),r.fire(new t.Event("data",{dataType:"style"}))}))},r.prototype._validateLayer=function(e){var r=this.sourceCaches[e.source];if(r){var n=e.sourceLayer;if(n){var i=r.getSource();("geojson"===i.type||i.vectorLayerIds&&-1===i.vectorLayerIds.indexOf(n))&&this.fire(new t.ErrorEvent(new Error('Source layer "'+n+'" does not exist on source "'+i.id+'" as specified by style layer "'+e.id+'"')))}}},r.prototype.loaded=function(){if(!this._loaded)return!1;if(Object.keys(this._updatedSources).length)return!1;for(var t in this.sourceCaches)if(!this.sourceCaches[t].loaded())return!1;return!!this.imageManager.isLoaded()},r.prototype._serializeLayers=function(t){for(var e=[],r=0,n=t;r0)throw new Error("Unimplemented: "+i.map((function(t){return t.command})).join(", ")+".");return n.forEach((function(t){"setTransition"!==t.command&&r[t.command].apply(r,t.args)})),this.stylesheet=e,!0},r.prototype.addImage=function(e,r){if(this.getImage(e))return this.fire(new t.ErrorEvent(new Error("An image with this name already exists.")));this.imageManager.addImage(e,r),this._availableImages=this.imageManager.listImages(),this._changedImages[e]=!0,this._changed=!0,this.fire(new t.Event("data",{dataType:"style"}))},r.prototype.updateImage=function(t,e){this.imageManager.updateImage(t,e)},r.prototype.getImage=function(t){return this.imageManager.getImage(t)},r.prototype.removeImage=function(e){if(!this.getImage(e))return this.fire(new t.ErrorEvent(new Error("No image with this name exists.")));this.imageManager.removeImage(e),this._availableImages=this.imageManager.listImages(),this._changedImages[e]=!0,this._changed=!0,this.fire(new t.Event("data",{dataType:"style"}))},r.prototype.listImages=function(){return this._checkLoaded(),this.imageManager.listImages()},r.prototype.addSource=function(e,r,n){var i=this;if(void 0===n&&(n={}),this._checkLoaded(),void 0!==this.sourceCaches[e])throw new Error("There is already a source with this ID");if(!r.type)throw new Error("The type property must be defined, but the only the following properties were given: "+Object.keys(r).join(", ")+".");if(!(["vector","raster","geojson","video","image"].indexOf(r.type)>=0)||!this._validate(t.validateStyle.source,"sources."+e,r,null,n)){this.map&&this.map._collectResourceTiming&&(r.collectResourceTiming=!0);var a=this.sourceCaches[e]=new Ct(e,r,this.dispatcher);a.style=this,a.setEventedParent(this,(function(){return{isSourceLoaded:i.loaded(),source:a.serialize(),sourceId:e}})),a.onAdd(this.map),this._changed=!0}},r.prototype.removeSource=function(e){if(this._checkLoaded(),void 0===this.sourceCaches[e])throw new Error("There is no source with this ID");for(var r in this._layers)if(this._layers[r].source===e)return this.fire(new t.ErrorEvent(new Error('Source "'+e+'" cannot be removed while layer "'+r+'" is using it.')));var n=this.sourceCaches[e];delete this.sourceCaches[e],delete this._updatedSources[e],n.fire(new t.Event("data",{sourceDataType:"metadata",dataType:"source",sourceId:e})),n.setEventedParent(null),n.clearTiles(),n.onRemove&&n.onRemove(this.map),this._changed=!0},r.prototype.setGeoJSONSourceData=function(t,e){this._checkLoaded(),this.sourceCaches[t].getSource().setData(e),this._changed=!0},r.prototype.getSource=function(t){return this.sourceCaches[t]&&this.sourceCaches[t].getSource()},r.prototype.addLayer=function(e,r,n){void 0===n&&(n={}),this._checkLoaded();var i=e.id;if(this.getLayer(i))this.fire(new t.ErrorEvent(new Error('Layer with id "'+i+'" already exists on this map')));else{var a;if("custom"===e.type){if(je(this,t.validateCustomStyleLayer(e)))return;a=t.createStyleLayer(e)}else{if("object"==typeof e.source&&(this.addSource(i,e.source),e=t.clone$1(e),e=t.extend(e,{source:i})),this._validate(t.validateStyle.layer,"layers."+i,e,{arrayIndex:-1},n))return;a=t.createStyleLayer(e),this._validateLayer(a),a.setEventedParent(this,{layer:{id:i}}),this._serializedLayers[a.id]=a.serialize()}var o=r?this._order.indexOf(r):this._order.length;if(r&&-1===o)this.fire(new t.ErrorEvent(new Error('Layer with id "'+r+'" does not exist on this map.')));else{if(this._order.splice(o,0,i),this._layerOrderChanged=!0,this._layers[i]=a,this._removedLayers[i]&&a.source&&"custom"!==a.type){var s=this._removedLayers[i];delete this._removedLayers[i],s.type!==a.type?this._updatedSources[a.source]="clear":(this._updatedSources[a.source]="reload",this.sourceCaches[a.source].pause())}this._updateLayer(a),a.onAdd&&a.onAdd(this.map)}}},r.prototype.moveLayer=function(e,r){if(this._checkLoaded(),this._changed=!0,this._layers[e]){if(e!==r){var n=this._order.indexOf(e);this._order.splice(n,1);var i=r?this._order.indexOf(r):this._order.length;r&&-1===i?this.fire(new t.ErrorEvent(new Error('Layer with id "'+r+'" does not exist on this map.'))):(this._order.splice(i,0,e),this._layerOrderChanged=!0)}}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be moved.")))},r.prototype.removeLayer=function(e){this._checkLoaded();var r=this._layers[e];if(r){r.setEventedParent(null);var n=this._order.indexOf(e);this._order.splice(n,1),this._layerOrderChanged=!0,this._changed=!0,this._removedLayers[e]=r,delete this._layers[e],delete this._serializedLayers[e],delete this._updatedLayers[e],delete this._updatedPaintProps[e],r.onRemove&&r.onRemove(this.map)}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be removed.")))},r.prototype.getLayer=function(t){return this._layers[t]},r.prototype.hasLayer=function(t){return t in this._layers},r.prototype.setLayerZoomRange=function(e,r,n){this._checkLoaded();var i=this.getLayer(e);i?i.minzoom===r&&i.maxzoom===n||(null!=r&&(i.minzoom=r),null!=n&&(i.maxzoom=n),this._updateLayer(i)):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot have zoom extent.")))},r.prototype.setFilter=function(e,r,n){void 0===n&&(n={}),this._checkLoaded();var i=this.getLayer(e);if(i){if(!t.deepEqual(i.filter,r))return null==r?(i.filter=void 0,void this._updateLayer(i)):void(this._validate(t.validateStyle.filter,"layers."+i.id+".filter",r,null,n)||(i.filter=t.clone$1(r),this._updateLayer(i)))}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be filtered.")))},r.prototype.getFilter=function(e){return t.clone$1(this.getLayer(e).filter)},r.prototype.setLayoutProperty=function(e,r,n,i){void 0===i&&(i={}),this._checkLoaded();var a=this.getLayer(e);a?t.deepEqual(a.getLayoutProperty(r),n)||(a.setLayoutProperty(r,n,i),this._updateLayer(a)):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be styled.")))},r.prototype.getLayoutProperty=function(e,r){var n=this.getLayer(e);if(n)return n.getLayoutProperty(r);this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style.")))},r.prototype.setPaintProperty=function(e,r,n,i){void 0===i&&(i={}),this._checkLoaded();var a=this.getLayer(e);a?t.deepEqual(a.getPaintProperty(r),n)||(a.setPaintProperty(r,n,i)&&this._updateLayer(a),this._changed=!0,this._updatedPaintProps[e]=!0):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be styled.")))},r.prototype.getPaintProperty=function(t,e){return this.getLayer(t).getPaintProperty(e)},r.prototype.setFeatureState=function(e,r){this._checkLoaded();var n=e.source,i=e.sourceLayer,a=this.sourceCaches[n];if(void 0!==a){var o=a.getSource().type;"geojson"===o&&i?this.fire(new t.ErrorEvent(new Error("GeoJSON sources cannot have a sourceLayer parameter."))):"vector"!==o||i?(void 0===e.id&&this.fire(new t.ErrorEvent(new Error("The feature id parameter must be provided."))),a.setFeatureState(i,e.id,r)):this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+n+"' does not exist in the map's style.")))},r.prototype.removeFeatureState=function(e,r){this._checkLoaded();var n=e.source,i=this.sourceCaches[n];if(void 0!==i){var a=i.getSource().type,o="vector"===a?e.sourceLayer:void 0;"vector"!==a||o?r&&"string"!=typeof e.id&&"number"!=typeof e.id?this.fire(new t.ErrorEvent(new Error("A feature id is requred to remove its specific state property."))):i.removeFeatureState(o,e.id,r):this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+n+"' does not exist in the map's style.")))},r.prototype.getFeatureState=function(e){this._checkLoaded();var r=e.source,n=e.sourceLayer,i=this.sourceCaches[r];if(void 0!==i){if("vector"!==i.getSource().type||n)return void 0===e.id&&this.fire(new t.ErrorEvent(new Error("The feature id parameter must be provided."))),i.getFeatureState(n,e.id);this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+r+"' does not exist in the map's style.")))},r.prototype.getTransition=function(){return t.extend({duration:300,delay:0},this.stylesheet&&this.stylesheet.transition)},r.prototype.serialize=function(){return t.filterObject({version:this.stylesheet.version,name:this.stylesheet.name,metadata:this.stylesheet.metadata,light:this.stylesheet.light,center:this.stylesheet.center,zoom:this.stylesheet.zoom,bearing:this.stylesheet.bearing,pitch:this.stylesheet.pitch,sprite:this.stylesheet.sprite,glyphs:this.stylesheet.glyphs,transition:this.stylesheet.transition,sources:t.mapObject(this.sourceCaches,(function(t){return t.serialize()})),layers:this._serializeLayers(this._order)},(function(t){return void 0!==t}))},r.prototype._updateLayer=function(t){this._updatedLayers[t.id]=!0,t.source&&!this._updatedSources[t.source]&&"raster"!==this.sourceCaches[t.source].getSource().type&&(this._updatedSources[t.source]="reload",this.sourceCaches[t.source].pause()),this._changed=!0},r.prototype._flattenAndSortRenderedFeatures=function(t){for(var e=this,r=function(t){return"fill-extrusion"===e._layers[t].type},n={},i=[],a=this._order.length-1;a>=0;a--){var o=this._order[a];if(r(o)){n[o]=a;for(var s=0,l=t;s=0;d--){var m=this._order[d];if(r(m))for(var g=i.length-1;g>=0;g--){var v=i[g].feature;if(n[v.layer.id] 0.5) {gl_FragColor=vec4(0.0,0.0,1.0,0.5)*alpha;}if (v_notUsed > 0.5) {gl_FragColor*=.1;}}","attribute vec2 a_pos;attribute vec2 a_anchor_pos;attribute vec2 a_extrude;attribute vec2 a_placed;attribute vec2 a_shift;uniform mat4 u_matrix;uniform vec2 u_extrude_scale;uniform float u_camera_to_center_distance;varying float v_placed;varying float v_notUsed;void main() {vec4 projectedPoint=u_matrix*vec4(a_anchor_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float collision_perspective_ratio=clamp(0.5+0.5*(u_camera_to_center_distance/camera_to_anchor_distance),0.0,4.0);gl_Position=u_matrix*vec4(a_pos,0.0,1.0);gl_Position.xy+=(a_extrude+a_shift)*u_extrude_scale*gl_Position.w*collision_perspective_ratio;v_placed=a_placed.x;v_notUsed=a_placed.y;}"),tr=yr("varying float v_radius;varying vec2 v_extrude;varying float v_perspective_ratio;varying float v_collision;void main() {float alpha=0.5*min(v_perspective_ratio,1.0);float stroke_radius=0.9*max(v_perspective_ratio,1.0);float distance_to_center=length(v_extrude);float distance_to_edge=abs(distance_to_center-v_radius);float opacity_t=smoothstep(-stroke_radius,0.0,-distance_to_edge);vec4 color=mix(vec4(0.0,0.0,1.0,0.5),vec4(1.0,0.0,0.0,1.0),v_collision);gl_FragColor=color*alpha*opacity_t;}","attribute vec2 a_pos;attribute float a_radius;attribute vec2 a_flags;uniform mat4 u_matrix;uniform mat4 u_inv_matrix;uniform vec2 u_viewport_size;uniform float u_camera_to_center_distance;varying float v_radius;varying vec2 v_extrude;varying float v_perspective_ratio;varying float v_collision;vec3 toTilePosition(vec2 screenPos) {vec4 rayStart=u_inv_matrix*vec4(screenPos,-1.0,1.0);vec4 rayEnd =u_inv_matrix*vec4(screenPos, 1.0,1.0);rayStart.xyz/=rayStart.w;rayEnd.xyz /=rayEnd.w;highp float t=(0.0-rayStart.z)/(rayEnd.z-rayStart.z);return mix(rayStart.xyz,rayEnd.xyz,t);}void main() {vec2 quadCenterPos=a_pos;float radius=a_radius;float collision=a_flags.x;float vertexIdx=a_flags.y;vec2 quadVertexOffset=vec2(mix(-1.0,1.0,float(vertexIdx >=2.0)),mix(-1.0,1.0,float(vertexIdx >=1.0 && vertexIdx <=2.0)));vec2 quadVertexExtent=quadVertexOffset*radius;vec3 tilePos=toTilePosition(quadCenterPos);vec4 clipPos=u_matrix*vec4(tilePos,1.0);highp float camera_to_anchor_distance=clipPos.w;highp float collision_perspective_ratio=clamp(0.5+0.5*(u_camera_to_center_distance/camera_to_anchor_distance),0.0,4.0);float padding_factor=1.2;v_radius=radius;v_extrude=quadVertexExtent*padding_factor;v_perspective_ratio=collision_perspective_ratio;v_collision=collision;gl_Position=vec4(clipPos.xyz/clipPos.w,1.0)+vec4(quadVertexExtent*padding_factor/u_viewport_size*2.0,0.0,0.0);}"),er=yr("uniform highp vec4 u_color;uniform sampler2D u_overlay;varying vec2 v_uv;void main() {vec4 overlay_color=texture2D(u_overlay,v_uv);gl_FragColor=mix(u_color,overlay_color,overlay_color.a);}","attribute vec2 a_pos;varying vec2 v_uv;uniform mat4 u_matrix;uniform float u_overlay_scale;void main() {v_uv=a_pos/8192.0;gl_Position=u_matrix*vec4(a_pos*u_overlay_scale,0,1);}"),rr=yr("#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float opacity\ngl_FragColor=color*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","attribute vec2 a_pos;uniform mat4 u_matrix;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float opacity\ngl_Position=u_matrix*vec4(a_pos,0,1);}"),nr=yr("varying vec2 v_pos;\n#pragma mapbox: define highp vec4 outline_color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 outline_color\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_pos-gl_FragCoord.xy);float alpha=1.0-smoothstep(0.0,1.0,dist);gl_FragColor=outline_color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","attribute vec2 a_pos;uniform mat4 u_matrix;uniform vec2 u_world;varying vec2 v_pos;\n#pragma mapbox: define highp vec4 outline_color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 outline_color\n#pragma mapbox: initialize lowp float opacity\ngl_Position=u_matrix*vec4(a_pos,0,1);v_pos=(gl_Position.xy/gl_Position.w+1.0)/2.0*u_world;}"),ir=yr("uniform vec2 u_texsize;uniform sampler2D u_image;uniform float u_fade;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec2 v_pos;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);float dist=length(v_pos-gl_FragCoord.xy);float alpha=1.0-smoothstep(0.0,1.0,dist);gl_FragColor=mix(color1,color2,u_fade)*alpha*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_world;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform vec3 u_scale;attribute vec2 a_pos;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec2 v_pos;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;gl_Position=u_matrix*vec4(a_pos,0,1);vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileRatio,a_pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileRatio,a_pos);v_pos=(gl_Position.xy/gl_Position.w+1.0)/2.0*u_world;}"),ar=yr("uniform vec2 u_texsize;uniform float u_fade;uniform sampler2D u_image;varying vec2 v_pos_a;varying vec2 v_pos_b;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);gl_FragColor=mix(color1,color2,u_fade)*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform vec3 u_scale;attribute vec2 a_pos;varying vec2 v_pos_a;varying vec2 v_pos_b;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileZoomRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;gl_Position=u_matrix*vec4(a_pos,0,1);v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileZoomRatio,a_pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileZoomRatio,a_pos);}"),or=yr("varying vec4 v_color;void main() {gl_FragColor=v_color;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec3 u_lightcolor;uniform lowp vec3 u_lightpos;uniform lowp float u_lightintensity;uniform float u_vertical_gradient;uniform lowp float u_opacity;attribute vec2 a_pos;attribute vec4 a_normal_ed;varying vec4 v_color;\n#pragma mapbox: define highp float base\n#pragma mapbox: define highp float height\n#pragma mapbox: define highp vec4 color\nvoid main() {\n#pragma mapbox: initialize highp float base\n#pragma mapbox: initialize highp float height\n#pragma mapbox: initialize highp vec4 color\nvec3 normal=a_normal_ed.xyz;base=max(0.0,base);height=max(0.0,height);float t=mod(normal.x,2.0);gl_Position=u_matrix*vec4(a_pos,t > 0.0 ? height : base,1);float colorvalue=color.r*0.2126+color.g*0.7152+color.b*0.0722;v_color=vec4(0.0,0.0,0.0,1.0);vec4 ambientlight=vec4(0.03,0.03,0.03,1.0);color+=ambientlight;float directional=clamp(dot(normal/16384.0,u_lightpos),0.0,1.0);directional=mix((1.0-u_lightintensity),max((1.0-colorvalue+u_lightintensity),1.0),directional);if (normal.y !=0.0) {directional*=((1.0-u_vertical_gradient)+(u_vertical_gradient*clamp((t+base)*pow(height/150.0,0.5),mix(0.7,0.98,1.0-u_lightintensity),1.0)));}v_color.r+=clamp(color.r*directional*u_lightcolor.r,mix(0.0,0.3,1.0-u_lightcolor.r),1.0);v_color.g+=clamp(color.g*directional*u_lightcolor.g,mix(0.0,0.3,1.0-u_lightcolor.g),1.0);v_color.b+=clamp(color.b*directional*u_lightcolor.b,mix(0.0,0.3,1.0-u_lightcolor.b),1.0);v_color*=u_opacity;}"),sr=yr("uniform vec2 u_texsize;uniform float u_fade;uniform sampler2D u_image;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec4 v_lighting;\n#pragma mapbox: define lowp float base\n#pragma mapbox: define lowp float height\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float base\n#pragma mapbox: initialize lowp float height\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);vec4 mixedColor=mix(color1,color2,u_fade);gl_FragColor=mixedColor*v_lighting;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform float u_height_factor;uniform vec3 u_scale;uniform float u_vertical_gradient;uniform lowp float u_opacity;uniform vec3 u_lightcolor;uniform lowp vec3 u_lightpos;uniform lowp float u_lightintensity;attribute vec2 a_pos;attribute vec4 a_normal_ed;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec4 v_lighting;\n#pragma mapbox: define lowp float base\n#pragma mapbox: define lowp float height\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float base\n#pragma mapbox: initialize lowp float height\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec3 normal=a_normal_ed.xyz;float edgedistance=a_normal_ed.w;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;base=max(0.0,base);height=max(0.0,height);float t=mod(normal.x,2.0);float z=t > 0.0 ? height : base;gl_Position=u_matrix*vec4(a_pos,z,1);vec2 pos=normal.x==1.0 && normal.y==0.0 && normal.z==16384.0\n? a_pos\n: vec2(edgedistance,z*u_height_factor);v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileRatio,pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileRatio,pos);v_lighting=vec4(0.0,0.0,0.0,1.0);float directional=clamp(dot(normal/16383.0,u_lightpos),0.0,1.0);directional=mix((1.0-u_lightintensity),max((0.5+u_lightintensity),1.0),directional);if (normal.y !=0.0) {directional*=((1.0-u_vertical_gradient)+(u_vertical_gradient*clamp((t+base)*pow(height/150.0,0.5),mix(0.7,0.98,1.0-u_lightintensity),1.0)));}v_lighting.rgb+=clamp(directional*u_lightcolor,mix(vec3(0.0),vec3(0.3),1.0-u_lightcolor),vec3(1.0));v_lighting*=u_opacity;}"),lr=yr("#ifdef GL_ES\nprecision highp float;\n#endif\nuniform sampler2D u_image;varying vec2 v_pos;uniform vec2 u_dimension;uniform float u_zoom;uniform float u_maxzoom;uniform vec4 u_unpack;float getElevation(vec2 coord,float bias) {vec4 data=texture2D(u_image,coord)*255.0;data.a=-1.0;return dot(data,u_unpack)/4.0;}void main() {vec2 epsilon=1.0/u_dimension;float a=getElevation(v_pos+vec2(-epsilon.x,-epsilon.y),0.0);float b=getElevation(v_pos+vec2(0,-epsilon.y),0.0);float c=getElevation(v_pos+vec2(epsilon.x,-epsilon.y),0.0);float d=getElevation(v_pos+vec2(-epsilon.x,0),0.0);float e=getElevation(v_pos,0.0);float f=getElevation(v_pos+vec2(epsilon.x,0),0.0);float g=getElevation(v_pos+vec2(-epsilon.x,epsilon.y),0.0);float h=getElevation(v_pos+vec2(0,epsilon.y),0.0);float i=getElevation(v_pos+vec2(epsilon.x,epsilon.y),0.0);float exaggeration=u_zoom < 2.0 ? 0.4 : u_zoom < 4.5 ? 0.35 : 0.3;vec2 deriv=vec2((c+f+f+i)-(a+d+d+g),(g+h+h+i)-(a+b+b+c))/ pow(2.0,(u_zoom-u_maxzoom)*exaggeration+19.2562-u_zoom);gl_FragColor=clamp(vec4(deriv.x/2.0+0.5,deriv.y/2.0+0.5,1.0,1.0),0.0,1.0);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_dimension;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);highp vec2 epsilon=1.0/u_dimension;float scale=(u_dimension.x-2.0)/u_dimension.x;v_pos=(a_texture_pos/8192.0)*scale+epsilon;}"),cr=yr("uniform sampler2D u_image;varying vec2 v_pos;uniform vec2 u_latrange;uniform vec2 u_light;uniform vec4 u_shadow;uniform vec4 u_highlight;uniform vec4 u_accent;\n#define PI 3.141592653589793\nvoid main() {vec4 pixel=texture2D(u_image,v_pos);vec2 deriv=((pixel.rg*2.0)-1.0);float scaleFactor=cos(radians((u_latrange[0]-u_latrange[1])*(1.0-v_pos.y)+u_latrange[1]));float slope=atan(1.25*length(deriv)/scaleFactor);float aspect=deriv.x !=0.0 ? atan(deriv.y,-deriv.x) : PI/2.0*(deriv.y > 0.0 ? 1.0 :-1.0);float intensity=u_light.x;float azimuth=u_light.y+PI;float base=1.875-intensity*1.75;float maxValue=0.5*PI;float scaledSlope=intensity !=0.5 ? ((pow(base,slope)-1.0)/(pow(base,maxValue)-1.0))*maxValue : slope;float accent=cos(scaledSlope);vec4 accent_color=(1.0-accent)*u_accent*clamp(intensity*2.0,0.0,1.0);float shade=abs(mod((aspect+azimuth)/PI+0.5,2.0)-1.0);vec4 shade_color=mix(u_shadow,u_highlight,shade)*sin(scaledSlope)*clamp(intensity*2.0,0.0,1.0);gl_FragColor=accent_color*(1.0-shade_color.a)+shade_color;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);v_pos=a_texture_pos/8192.0;}"),ur=yr("uniform lowp float u_device_pixel_ratio;varying vec2 v_width2;varying vec2 v_normal;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform vec2 u_units_to_pixels;uniform lowp float u_device_pixel_ratio;varying vec2 v_normal;varying vec2 v_width2;varying float v_gamma_scale;varying highp float v_linesofar;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;v_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*2.0;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_width2=vec2(outset,inset);}"),fr=yr("uniform lowp float u_device_pixel_ratio;uniform sampler2D u_image;varying vec2 v_width2;varying vec2 v_normal;varying float v_gamma_scale;varying highp float v_lineprogress;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);vec4 color=texture2D(u_image,vec2(v_lineprogress,0.5));gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define MAX_LINE_DISTANCE 32767.0\n#define scale 0.015873016\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;uniform vec2 u_units_to_pixels;varying vec2 v_normal;varying vec2 v_width2;varying float v_gamma_scale;varying highp float v_lineprogress;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;v_lineprogress=(floor(a_data.z/4.0)+a_data.w*64.0)*2.0/MAX_LINE_DISTANCE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_width2=vec2(outset,inset);}"),hr=yr("uniform lowp float u_device_pixel_ratio;uniform vec2 u_texsize;uniform float u_fade;uniform mediump vec3 u_scale;uniform sampler2D u_image;varying vec2 v_normal;varying vec2 v_width2;varying float v_linesofar;varying float v_gamma_scale;varying float v_width;\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileZoomRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;vec2 pattern_size_a=vec2(display_size_a.x*fromScale/tileZoomRatio,display_size_a.y);vec2 pattern_size_b=vec2(display_size_b.x*toScale/tileZoomRatio,display_size_b.y);float aspect_a=display_size_a.y/v_width;float aspect_b=display_size_b.y/v_width;float dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);float x_a=mod(v_linesofar/pattern_size_a.x*aspect_a,1.0);float x_b=mod(v_linesofar/pattern_size_b.x*aspect_b,1.0);float y=0.5*v_normal.y+0.5;vec2 texel_size=1.0/u_texsize;vec2 pos_a=mix(pattern_tl_a*texel_size-texel_size,pattern_br_a*texel_size+texel_size,vec2(x_a,y));vec2 pos_b=mix(pattern_tl_b*texel_size-texel_size,pattern_br_b*texel_size+texel_size,vec2(x_b,y));vec4 color=mix(texture2D(u_image,pos_a),texture2D(u_image,pos_b),u_fade);gl_FragColor=color*alpha*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\n#define LINE_DISTANCE_SCALE 2.0\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform vec2 u_units_to_pixels;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;varying vec2 v_normal;varying vec2 v_width2;varying float v_linesofar;varying float v_gamma_scale;varying float v_width;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;float a_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*LINE_DISTANCE_SCALE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_linesofar=a_linesofar;v_width2=vec2(outset,inset);v_width=floorwidth;}"),pr=yr("uniform lowp float u_device_pixel_ratio;uniform sampler2D u_image;uniform float u_sdfgamma;uniform float u_mix;varying vec2 v_normal;varying vec2 v_width2;varying vec2 v_tex_a;varying vec2 v_tex_b;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);float sdfdist_a=texture2D(u_image,v_tex_a).a;float sdfdist_b=texture2D(u_image,v_tex_b).a;float sdfdist=mix(sdfdist_a,sdfdist_b,u_mix);alpha*=smoothstep(0.5-u_sdfgamma/floorwidth,0.5+u_sdfgamma/floorwidth,sdfdist);gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\n#define LINE_DISTANCE_SCALE 2.0\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;uniform vec2 u_patternscale_a;uniform float u_tex_y_a;uniform vec2 u_patternscale_b;uniform float u_tex_y_b;uniform vec2 u_units_to_pixels;varying vec2 v_normal;varying vec2 v_width2;varying vec2 v_tex_a;varying vec2 v_tex_b;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;float a_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*LINE_DISTANCE_SCALE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_tex_a=vec2(a_linesofar*u_patternscale_a.x/floorwidth,normal.y*u_patternscale_a.y+u_tex_y_a);v_tex_b=vec2(a_linesofar*u_patternscale_b.x/floorwidth,normal.y*u_patternscale_b.y+u_tex_y_b);v_width2=vec2(outset,inset);}"),dr=yr("uniform float u_fade_t;uniform float u_opacity;uniform sampler2D u_image0;uniform sampler2D u_image1;varying vec2 v_pos0;varying vec2 v_pos1;uniform float u_brightness_low;uniform float u_brightness_high;uniform float u_saturation_factor;uniform float u_contrast_factor;uniform vec3 u_spin_weights;void main() {vec4 color0=texture2D(u_image0,v_pos0);vec4 color1=texture2D(u_image1,v_pos1);if (color0.a > 0.0) {color0.rgb=color0.rgb/color0.a;}if (color1.a > 0.0) {color1.rgb=color1.rgb/color1.a;}vec4 color=mix(color0,color1,u_fade_t);color.a*=u_opacity;vec3 rgb=color.rgb;rgb=vec3(dot(rgb,u_spin_weights.xyz),dot(rgb,u_spin_weights.zxy),dot(rgb,u_spin_weights.yzx));float average=(color.r+color.g+color.b)/3.0;rgb+=(average-rgb)*u_saturation_factor;rgb=(rgb-0.5)*u_contrast_factor+0.5;vec3 u_high_vec=vec3(u_brightness_low,u_brightness_low,u_brightness_low);vec3 u_low_vec=vec3(u_brightness_high,u_brightness_high,u_brightness_high);gl_FragColor=vec4(mix(u_high_vec,u_low_vec,rgb)*color.a,color.a);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_tl_parent;uniform float u_scale_parent;uniform float u_buffer_scale;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos0;varying vec2 v_pos1;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);v_pos0=(((a_texture_pos/8192.0)-0.5)/u_buffer_scale )+0.5;v_pos1=(v_pos0*u_scale_parent)+u_tl_parent;}"),mr=yr("uniform sampler2D u_texture;varying vec2 v_tex;varying float v_fade_opacity;\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\nlowp float alpha=opacity*v_fade_opacity;gl_FragColor=texture2D(u_texture,v_tex)*alpha;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec4 a_pixeloffset;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform highp float u_camera_to_center_distance;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform float u_fade_change;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform vec2 u_texsize;varying vec2 v_tex;varying float v_fade_opacity;\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);vec2 a_pxoffset=a_pixeloffset.xy;vec2 a_minFontScale=a_pixeloffset.zw/256.0;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=u_is_text ? size/24.0 : size;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*max(a_minFontScale,fontScale)+a_pxoffset/16.0),0.0,1.0);v_tex=a_tex/u_texsize;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;v_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));}"),gr=yr("#define SDF_PX 8.0\nuniform bool u_is_halo;uniform sampler2D u_texture;uniform highp float u_gamma_scale;uniform lowp float u_device_pixel_ratio;uniform bool u_is_text;varying vec2 v_data0;varying vec3 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nfloat EDGE_GAMMA=0.105/u_device_pixel_ratio;vec2 tex=v_data0.xy;float gamma_scale=v_data1.x;float size=v_data1.y;float fade_opacity=v_data1[2];float fontScale=u_is_text ? size/24.0 : size;lowp vec4 color=fill_color;highp float gamma=EDGE_GAMMA/(fontScale*u_gamma_scale);lowp float buff=(256.0-64.0)/256.0;if (u_is_halo) {color=halo_color;gamma=(halo_blur*1.19/SDF_PX+EDGE_GAMMA)/(fontScale*u_gamma_scale);buff=(6.0-halo_width/fontScale)/SDF_PX;}lowp float dist=texture2D(u_texture,tex).a;highp float gamma_scaled=gamma*gamma_scale;highp float alpha=smoothstep(buff-gamma_scaled,buff+gamma_scaled,dist);gl_FragColor=color*(alpha*opacity*fade_opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec4 a_pixeloffset;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform highp float u_camera_to_center_distance;uniform float u_fade_change;uniform vec2 u_texsize;varying vec2 v_data0;varying vec3 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);vec2 a_pxoffset=a_pixeloffset.xy;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=u_is_text ? size/24.0 : size;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*fontScale+a_pxoffset),0.0,1.0);float gamma_scale=gl_Position.w;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;float interpolated_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));v_data0=a_tex/u_texsize;v_data1=vec3(gamma_scale,size,interpolated_fade_opacity);}"),vr=yr("#define SDF_PX 8.0\n#define SDF 1.0\n#define ICON 0.0\nuniform bool u_is_halo;uniform sampler2D u_texture;uniform sampler2D u_texture_icon;uniform highp float u_gamma_scale;uniform lowp float u_device_pixel_ratio;varying vec4 v_data0;varying vec4 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nfloat fade_opacity=v_data1[2];if (v_data1.w==ICON) {vec2 tex_icon=v_data0.zw;lowp float alpha=opacity*fade_opacity;gl_FragColor=texture2D(u_texture_icon,tex_icon)*alpha;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\nreturn;}vec2 tex=v_data0.xy;float EDGE_GAMMA=0.105/u_device_pixel_ratio;float gamma_scale=v_data1.x;float size=v_data1.y;float fontScale=size/24.0;lowp vec4 color=fill_color;highp float gamma=EDGE_GAMMA/(fontScale*u_gamma_scale);lowp float buff=(256.0-64.0)/256.0;if (u_is_halo) {color=halo_color;gamma=(halo_blur*1.19/SDF_PX+EDGE_GAMMA)/(fontScale*u_gamma_scale);buff=(6.0-halo_width/fontScale)/SDF_PX;}lowp float dist=texture2D(u_texture,tex).a;highp float gamma_scaled=gamma*gamma_scale;highp float alpha=smoothstep(buff-gamma_scaled,buff+gamma_scaled,dist);gl_FragColor=color*(alpha*opacity*fade_opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform highp float u_camera_to_center_distance;uniform float u_fade_change;uniform vec2 u_texsize;uniform vec2 u_texsize_icon;varying vec4 v_data0;varying vec4 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);float is_sdf=a_size[0]-2.0*a_size_min;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=size/24.0;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*fontScale),0.0,1.0);float gamma_scale=gl_Position.w;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;float interpolated_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));v_data0.xy=a_tex/u_texsize;v_data0.zw=a_tex/u_texsize_icon;v_data1=vec4(gamma_scale,size,interpolated_fade_opacity,is_sdf);}");function yr(t,e){var r=/#pragma mapbox: ([\w]+) ([\w]+) ([\w]+) ([\w]+)/g,n={};return{fragmentSource:t=t.replace(r,(function(t,e,r,i,a){return n[a]=!0,"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nvarying "+r+" "+i+" "+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"\n#ifdef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n"})),vertexSource:e=e.replace(r,(function(t,e,r,i,a){var o="float"===i?"vec2":"vec4",s=a.match(/color/)?"color":o;return n[a]?"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nuniform lowp float u_"+a+"_t;\nattribute "+r+" "+o+" a_"+a+";\nvarying "+r+" "+i+" "+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"vec4"===s?"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+a+" = a_"+a+";\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+a+" = unpack_mix_"+s+"(a_"+a+", u_"+a+"_t);\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nuniform lowp float u_"+a+"_t;\nattribute "+r+" "+o+" a_"+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"vec4"===s?"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = a_"+a+";\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = unpack_mix_"+s+"(a_"+a+", u_"+a+"_t);\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n"}))}}var xr=Object.freeze({__proto__:null,prelude:Ye,background:We,backgroundPattern:Xe,circle:Ze,clippingMask:Je,heatmap:Ke,heatmapTexture:Qe,collisionBox:$e,collisionCircle:tr,debug:er,fill:rr,fillOutline:nr,fillOutlinePattern:ir,fillPattern:ar,fillExtrusion:or,fillExtrusionPattern:sr,hillshadePrepare:lr,hillshade:cr,line:ur,lineGradient:fr,linePattern:hr,lineSDF:pr,raster:dr,symbolIcon:mr,symbolSDF:gr,symbolTextAndIcon:vr}),br=function(){this.boundProgram=null,this.boundLayoutVertexBuffer=null,this.boundPaintVertexBuffers=[],this.boundIndexBuffer=null,this.boundVertexOffset=null,this.boundDynamicVertexBuffer=null,this.vao=null};br.prototype.bind=function(t,e,r,n,i,a,o,s){this.context=t;for(var l=this.boundPaintVertexBuffers.length!==n.length,c=0;!l&&c>16,s>>16],u_pixel_coord_lower:[65535&o,65535&s]}}_r.prototype.draw=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m){var g,v=t.gl;if(!this.failedToCreate){for(var y in t.program.set(this.program),t.setDepthMode(r),t.setStencilMode(n),t.setColorMode(i),t.setCullFace(a),this.fixedUniforms)this.fixedUniforms[y].set(o[y]);p&&p.setUniforms(t,this.binderUniforms,f,{zoom:h});for(var x=(g={},g[v.LINES]=2,g[v.TRIANGLES]=3,g[v.LINE_STRIP]=1,g)[e],b=0,_=u.get();b<_.length;b+=1){var w=_[b],T=w.vaos||(w.vaos={});(T[s]||(T[s]=new br)).bind(t,this,l,p?p.getPaintVertexBuffers():[],c,w.vertexOffset,d,m),v.drawElements(e,w.primitiveLength*x,v.UNSIGNED_SHORT,w.primitiveOffset*x*2)}}};var Tr=function(e,r,n,i){var a=r.style.light,o=a.properties.get("position"),s=[o.x,o.y,o.z],l=t.create$1();"viewport"===a.properties.get("anchor")&&t.fromRotation(l,-r.transform.angle),t.transformMat3(s,s,l);var c=a.properties.get("color");return{u_matrix:e,u_lightpos:s,u_lightintensity:a.properties.get("intensity"),u_lightcolor:[c.r,c.g,c.b],u_vertical_gradient:+n,u_opacity:i}},kr=function(e,r,n,i,a,o,s){return t.extend(Tr(e,r,n,i),wr(o,r,s),{u_height_factor:-Math.pow(2,a.overscaledZ)/s.tileSize/8})},Ar=function(t){return{u_matrix:t}},Mr=function(e,r,n,i){return t.extend(Ar(e),wr(n,r,i))},Sr=function(t,e){return{u_matrix:t,u_world:e}},Er=function(e,r,n,i,a){return t.extend(Mr(e,r,n,i),{u_world:a})},Lr=function(e,r,n,i){var a,o,s=e.transform;if("map"===i.paint.get("circle-pitch-alignment")){var l=pe(n,1,s.zoom);a=!0,o=[l,l]}else a=!1,o=s.pixelsToGLUnits;return{u_camera_to_center_distance:s.cameraToCenterDistance,u_scale_with_map:+("map"===i.paint.get("circle-pitch-scale")),u_matrix:e.translatePosMatrix(r.posMatrix,n,i.paint.get("circle-translate"),i.paint.get("circle-translate-anchor")),u_pitch_with_map:+a,u_device_pixel_ratio:t.browser.devicePixelRatio,u_extrude_scale:o}},Cr=function(t,e,r){var n=pe(r,1,e.zoom),i=Math.pow(2,e.zoom-r.tileID.overscaledZ),a=r.tileID.overscaleFactor();return{u_matrix:t,u_camera_to_center_distance:e.cameraToCenterDistance,u_pixels_to_tile_units:n,u_extrude_scale:[e.pixelsToGLUnits[0]/(n*i),e.pixelsToGLUnits[1]/(n*i)],u_overscale_factor:a}},Pr=function(t,e,r){return{u_matrix:t,u_inv_matrix:e,u_camera_to_center_distance:r.cameraToCenterDistance,u_viewport_size:[r.width,r.height]}},Ir=function(t,e,r){return void 0===r&&(r=1),{u_matrix:t,u_color:e,u_overlay:0,u_overlay_scale:r}},Or=function(t){return{u_matrix:t}},zr=function(t,e,r,n){return{u_matrix:t,u_extrude_scale:pe(e,1,r),u_intensity:n}};function Dr(e,r){var n=Math.pow(2,r.canonical.z),i=r.canonical.y;return[new t.MercatorCoordinate(0,i/n).toLngLat().lat,new t.MercatorCoordinate(0,(i+1)/n).toLngLat().lat]}var Rr=function(e,r,n){var i=e.transform;return{u_matrix:Ur(e,r,n),u_ratio:1/pe(r,1,i.zoom),u_device_pixel_ratio:t.browser.devicePixelRatio,u_units_to_pixels:[1/i.pixelsToGLUnits[0],1/i.pixelsToGLUnits[1]]}},Fr=function(e,r,n){return t.extend(Rr(e,r,n),{u_image:0})},Br=function(e,r,n,i){var a=e.transform,o=jr(r,a);return{u_matrix:Ur(e,r,n),u_texsize:r.imageAtlasTexture.size,u_ratio:1/pe(r,1,a.zoom),u_device_pixel_ratio:t.browser.devicePixelRatio,u_image:0,u_scale:[o,i.fromScale,i.toScale],u_fade:i.t,u_units_to_pixels:[1/a.pixelsToGLUnits[0],1/a.pixelsToGLUnits[1]]}},Nr=function(e,r,n,i,a){var o=e.transform,s=e.lineAtlas,l=jr(r,o),c="round"===n.layout.get("line-cap"),u=s.getDash(i.from,c),f=s.getDash(i.to,c),h=u.width*a.fromScale,p=f.width*a.toScale;return t.extend(Rr(e,r,n),{u_patternscale_a:[l/h,-u.height/2],u_patternscale_b:[l/p,-f.height/2],u_sdfgamma:s.width/(256*Math.min(h,p)*t.browser.devicePixelRatio)/2,u_image:0,u_tex_y_a:u.y,u_tex_y_b:f.y,u_mix:a.t})};function jr(t,e){return 1/pe(t,1,e.tileZoom)}function Ur(t,e,r){return t.translatePosMatrix(e.tileID.posMatrix,e,r.paint.get("line-translate"),r.paint.get("line-translate-anchor"))}var Vr=function(t,e,r,n,i){return{u_matrix:t,u_tl_parent:e,u_scale_parent:r,u_buffer_scale:1,u_fade_t:n.mix,u_opacity:n.opacity*i.paint.get("raster-opacity"),u_image0:0,u_image1:1,u_brightness_low:i.paint.get("raster-brightness-min"),u_brightness_high:i.paint.get("raster-brightness-max"),u_saturation_factor:(o=i.paint.get("raster-saturation"),o>0?1-1/(1.001-o):-o),u_contrast_factor:(a=i.paint.get("raster-contrast"),a>0?1/(1-a):1+a),u_spin_weights:Hr(i.paint.get("raster-hue-rotate"))};var a,o};function Hr(t){t*=Math.PI/180;var e=Math.sin(t),r=Math.cos(t);return[(2*r+1)/3,(-Math.sqrt(3)*e-r+1)/3,(Math.sqrt(3)*e-r+1)/3]}var qr,Gr=function(t,e,r,n,i,a,o,s,l,c){var u=i.transform;return{u_is_size_zoom_constant:+("constant"===t||"source"===t),u_is_size_feature_constant:+("constant"===t||"camera"===t),u_size_t:e?e.uSizeT:0,u_size:e?e.uSize:0,u_camera_to_center_distance:u.cameraToCenterDistance,u_pitch:u.pitch/360*2*Math.PI,u_rotate_symbol:+r,u_aspect_ratio:u.width/u.height,u_fade_change:i.options.fadeDuration?i.symbolFadeChange:1,u_matrix:a,u_label_plane_matrix:o,u_coord_matrix:s,u_is_text:+l,u_pitch_with_map:+n,u_texsize:c,u_texture:0}},Yr=function(e,r,n,i,a,o,s,l,c,u,f){var h=a.transform;return t.extend(Gr(e,r,n,i,a,o,s,l,c,u),{u_gamma_scale:i?Math.cos(h._pitch)*h.cameraToCenterDistance:1,u_device_pixel_ratio:t.browser.devicePixelRatio,u_is_halo:+f})},Wr=function(e,r,n,i,a,o,s,l,c,u){return t.extend(Yr(e,r,n,i,a,o,s,l,!0,c,!0),{u_texsize_icon:u,u_texture_icon:1})},Xr=function(t,e,r){return{u_matrix:t,u_opacity:e,u_color:r}},Zr=function(e,r,n,i,a,o){return t.extend(function(t,e,r,n){var i=r.imageManager.getPattern(t.from.toString()),a=r.imageManager.getPattern(t.to.toString()),o=r.imageManager.getPixelSize(),s=o.width,l=o.height,c=Math.pow(2,n.tileID.overscaledZ),u=n.tileSize*Math.pow(2,r.transform.tileZoom)/c,f=u*(n.tileID.canonical.x+n.tileID.wrap*c),h=u*n.tileID.canonical.y;return{u_image:0,u_pattern_tl_a:i.tl,u_pattern_br_a:i.br,u_pattern_tl_b:a.tl,u_pattern_br_b:a.br,u_texsize:[s,l],u_mix:e.t,u_pattern_size_a:i.displaySize,u_pattern_size_b:a.displaySize,u_scale_a:e.fromScale,u_scale_b:e.toScale,u_tile_units_to_pixels:1/pe(n,1,r.transform.tileZoom),u_pixel_coord_upper:[f>>16,h>>16],u_pixel_coord_lower:[65535&f,65535&h]}}(i,o,n,a),{u_matrix:e,u_opacity:r})},Jr={fillExtrusion:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_lightpos:new t.Uniform3f(e,r.u_lightpos),u_lightintensity:new t.Uniform1f(e,r.u_lightintensity),u_lightcolor:new t.Uniform3f(e,r.u_lightcolor),u_vertical_gradient:new t.Uniform1f(e,r.u_vertical_gradient),u_opacity:new t.Uniform1f(e,r.u_opacity)}},fillExtrusionPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_lightpos:new t.Uniform3f(e,r.u_lightpos),u_lightintensity:new t.Uniform1f(e,r.u_lightintensity),u_lightcolor:new t.Uniform3f(e,r.u_lightcolor),u_vertical_gradient:new t.Uniform1f(e,r.u_vertical_gradient),u_height_factor:new t.Uniform1f(e,r.u_height_factor),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade),u_opacity:new t.Uniform1f(e,r.u_opacity)}},fill:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},fillPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},fillOutline:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world)}},fillOutlinePattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},circle:function(e,r){return{u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_scale_with_map:new t.Uniform1i(e,r.u_scale_with_map),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_extrude_scale:new t.Uniform2f(e,r.u_extrude_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},collisionBox:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pixels_to_tile_units:new t.Uniform1f(e,r.u_pixels_to_tile_units),u_extrude_scale:new t.Uniform2f(e,r.u_extrude_scale),u_overscale_factor:new t.Uniform1f(e,r.u_overscale_factor)}},collisionCircle:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_inv_matrix:new t.UniformMatrix4f(e,r.u_inv_matrix),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_viewport_size:new t.Uniform2f(e,r.u_viewport_size)}},debug:function(e,r){return{u_color:new t.UniformColor(e,r.u_color),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_overlay:new t.Uniform1i(e,r.u_overlay),u_overlay_scale:new t.Uniform1f(e,r.u_overlay_scale)}},clippingMask:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},heatmap:function(e,r){return{u_extrude_scale:new t.Uniform1f(e,r.u_extrude_scale),u_intensity:new t.Uniform1f(e,r.u_intensity),u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},heatmapTexture:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world),u_image:new t.Uniform1i(e,r.u_image),u_color_ramp:new t.Uniform1i(e,r.u_color_ramp),u_opacity:new t.Uniform1f(e,r.u_opacity)}},hillshade:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_latrange:new t.Uniform2f(e,r.u_latrange),u_light:new t.Uniform2f(e,r.u_light),u_shadow:new t.UniformColor(e,r.u_shadow),u_highlight:new t.UniformColor(e,r.u_highlight),u_accent:new t.UniformColor(e,r.u_accent)}},hillshadePrepare:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_dimension:new t.Uniform2f(e,r.u_dimension),u_zoom:new t.Uniform1f(e,r.u_zoom),u_maxzoom:new t.Uniform1f(e,r.u_maxzoom),u_unpack:new t.Uniform4f(e,r.u_unpack)}},line:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels)}},lineGradient:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_image:new t.Uniform1i(e,r.u_image)}},linePattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_texsize:new t.Uniform2f(e,r.u_texsize),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_image:new t.Uniform1i(e,r.u_image),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},lineSDF:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_patternscale_a:new t.Uniform2f(e,r.u_patternscale_a),u_patternscale_b:new t.Uniform2f(e,r.u_patternscale_b),u_sdfgamma:new t.Uniform1f(e,r.u_sdfgamma),u_image:new t.Uniform1i(e,r.u_image),u_tex_y_a:new t.Uniform1f(e,r.u_tex_y_a),u_tex_y_b:new t.Uniform1f(e,r.u_tex_y_b),u_mix:new t.Uniform1f(e,r.u_mix)}},raster:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_tl_parent:new t.Uniform2f(e,r.u_tl_parent),u_scale_parent:new t.Uniform1f(e,r.u_scale_parent),u_buffer_scale:new t.Uniform1f(e,r.u_buffer_scale),u_fade_t:new t.Uniform1f(e,r.u_fade_t),u_opacity:new t.Uniform1f(e,r.u_opacity),u_image0:new t.Uniform1i(e,r.u_image0),u_image1:new t.Uniform1i(e,r.u_image1),u_brightness_low:new t.Uniform1f(e,r.u_brightness_low),u_brightness_high:new t.Uniform1f(e,r.u_brightness_high),u_saturation_factor:new t.Uniform1f(e,r.u_saturation_factor),u_contrast_factor:new t.Uniform1f(e,r.u_contrast_factor),u_spin_weights:new t.Uniform3f(e,r.u_spin_weights)}},symbolIcon:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texture:new t.Uniform1i(e,r.u_texture)}},symbolSDF:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texture:new t.Uniform1i(e,r.u_texture),u_gamma_scale:new t.Uniform1f(e,r.u_gamma_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_is_halo:new t.Uniform1i(e,r.u_is_halo)}},symbolTextAndIcon:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texsize_icon:new t.Uniform2f(e,r.u_texsize_icon),u_texture:new t.Uniform1i(e,r.u_texture),u_texture_icon:new t.Uniform1i(e,r.u_texture_icon),u_gamma_scale:new t.Uniform1f(e,r.u_gamma_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_is_halo:new t.Uniform1i(e,r.u_is_halo)}},background:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_opacity:new t.Uniform1f(e,r.u_opacity),u_color:new t.UniformColor(e,r.u_color)}},backgroundPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_opacity:new t.Uniform1f(e,r.u_opacity),u_image:new t.Uniform1i(e,r.u_image),u_pattern_tl_a:new t.Uniform2f(e,r.u_pattern_tl_a),u_pattern_br_a:new t.Uniform2f(e,r.u_pattern_br_a),u_pattern_tl_b:new t.Uniform2f(e,r.u_pattern_tl_b),u_pattern_br_b:new t.Uniform2f(e,r.u_pattern_br_b),u_texsize:new t.Uniform2f(e,r.u_texsize),u_mix:new t.Uniform1f(e,r.u_mix),u_pattern_size_a:new t.Uniform2f(e,r.u_pattern_size_a),u_pattern_size_b:new t.Uniform2f(e,r.u_pattern_size_b),u_scale_a:new t.Uniform1f(e,r.u_scale_a),u_scale_b:new t.Uniform1f(e,r.u_scale_b),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_tile_units_to_pixels:new t.Uniform1f(e,r.u_tile_units_to_pixels)}}};function Kr(e,r,n,i,a,o,s){for(var l=e.context,c=l.gl,u=e.useProgram("collisionBox"),f=[],h=0,p=0,d=0;d0){var _=t.create(),w=y;t.mul(_,v.placementInvProjMatrix,e.transform.glCoordMatrix),t.mul(_,_,v.placementViewportMatrix),f.push({circleArray:b,circleOffset:p,transform:w,invTransform:_}),p=h+=b.length/4}x&&u.draw(l,c.LINES,At.disabled,Mt.disabled,e.colorModeForRenderPass(),Et.disabled,Cr(y,e.transform,g),n.id,x.layoutVertexBuffer,x.indexBuffer,x.segments,null,e.transform.zoom,null,null,x.collisionVertexBuffer)}}if(s&&f.length){var T=e.useProgram("collisionCircle"),k=new t.StructArrayLayout2f1f2i16;k.resize(4*h),k._trim();for(var A=0,M=0,S=f;M=0&&(m[v.associatedIconIndex]={shiftedAnchor:S,angle:E})}else ue(v.numGlyphs,p)}if(f){d.clear();for(var C=e.icon.placedSymbolArray,P=0;P0){var s=t.browser.now(),l=(s-e.timeAdded)/o,c=r?(s-r.timeAdded)/o:-1,u=n.getSource(),f=a.coveringZoomLevel({tileSize:u.tileSize,roundZoom:u.roundZoom}),h=!r||Math.abs(r.tileID.overscaledZ-f)>Math.abs(e.tileID.overscaledZ-f),p=h&&e.refreshedUponExpiration?1:t.clamp(h?l:1-c,0,1);return e.refreshedUponExpiration&&l>=1&&(e.refreshedUponExpiration=!1),r?{opacity:1,mix:1-p}:{opacity:p,mix:0}}return{opacity:1,mix:0}}var un=new t.Color(1,0,0,1),fn=new t.Color(0,1,0,1),hn=new t.Color(0,0,1,1),pn=new t.Color(1,0,1,1),dn=new t.Color(0,1,1,1);function mn(t){var e=t.transform.padding;gn(t,t.transform.height-(e.top||0),3,un),gn(t,e.bottom||0,3,fn),vn(t,e.left||0,3,hn),vn(t,t.transform.width-(e.right||0),3,pn);var r=t.transform.centerPoint;!function(t,e,r,n){yn(t,e-1,r-10,2,20,n),yn(t,e-10,r-1,20,2,n)}(t,r.x,t.transform.height-r.y,dn)}function gn(t,e,r,n){yn(t,0,e+r/2,t.transform.width,r,n)}function vn(t,e,r,n){yn(t,e-r/2,0,r,t.transform.height,n)}function yn(e,r,n,i,a,o){var s=e.context,l=s.gl;l.enable(l.SCISSOR_TEST),l.scissor(r*t.browser.devicePixelRatio,n*t.browser.devicePixelRatio,i*t.browser.devicePixelRatio,a*t.browser.devicePixelRatio),s.clear({color:o}),l.disable(l.SCISSOR_TEST)}function xn(e,r,n){var i=e.context,a=i.gl,o=n.posMatrix,s=e.useProgram("debug"),l=At.disabled,c=Mt.disabled,u=e.colorModeForRenderPass();i.activeTexture.set(a.TEXTURE0),e.emptyTexture.bind(a.LINEAR,a.CLAMP_TO_EDGE),s.draw(i,a.LINE_STRIP,l,c,u,Et.disabled,Ir(o,t.Color.red),"$debug",e.debugBuffer,e.tileBorderIndexBuffer,e.debugSegments);var f=r.getTileByID(n.key).latestRawTileData,h=f&&f.byteLength||0,p=Math.floor(h/1024),d=r.getTile(n).tileSize,m=512/Math.min(d,512)*(n.overscaledZ/e.transform.zoom)*.5,g=n.canonical.toString();n.overscaledZ!==n.canonical.z&&(g+=" => "+n.overscaledZ),function(t,e){t.initDebugOverlayCanvas();var r=t.debugOverlayCanvas,n=t.context.gl,i=t.debugOverlayCanvas.getContext("2d");i.clearRect(0,0,r.width,r.height),i.shadowColor="white",i.shadowBlur=2,i.lineWidth=1.5,i.strokeStyle="white",i.textBaseline="top",i.font="bold 36px Open Sans, sans-serif",i.fillText(e,5,5),i.strokeText(e,5,5),t.debugOverlayTexture.update(r),t.debugOverlayTexture.bind(n.LINEAR,n.CLAMP_TO_EDGE)}(e,g+" "+p+"kb"),s.draw(i,a.TRIANGLES,l,c,St.alphaBlended,Et.disabled,Ir(o,t.Color.transparent,m),"$debug",e.debugBuffer,e.quadTriangleIndexBuffer,e.debugSegments)}var bn={symbol:function(e,r,n,i,a){if("translucent"===e.renderPass){var o=Mt.disabled,s=e.colorModeForRenderPass();n.layout.get("text-variable-anchor")&&function(e,r,n,i,a,o,s){for(var l=r.transform,c="map"===a,u="map"===o,f=0,h=e;f256&&this.clearStencil(),r.setColorMode(St.disabled),r.setDepthMode(At.disabled);var i=this.useProgram("clippingMask");this._tileClippingMaskIDs={};for(var a=0,o=e;a256&&this.clearStencil();var t=this.nextStencilID++,e=this.context.gl;return new Mt({func:e.NOTEQUAL,mask:255},t,255,e.KEEP,e.KEEP,e.REPLACE)},_n.prototype.stencilModeForClipping=function(t){var e=this.context.gl;return new Mt({func:e.EQUAL,mask:255},this._tileClippingMaskIDs[t.key],0,e.KEEP,e.KEEP,e.REPLACE)},_n.prototype.stencilConfigForOverlap=function(t){var e,r=this.context.gl,n=t.sort((function(t,e){return e.overscaledZ-t.overscaledZ})),i=n[n.length-1].overscaledZ,a=n[0].overscaledZ-i+1;if(a>1){this.currentStencilSource=void 0,this.nextStencilID+a>256&&this.clearStencil();for(var o={},s=0;s=0;this.currentLayer--){var w=this.style._layers[i[this.currentLayer]],T=a[w.source],k=u[w.source];this._renderTileClippingMasks(w,k),this.renderLayer(this,T,w,k)}for(this.renderPass="translucent",this.currentLayer=0;this.currentLayer0?e.pop():null},_n.prototype.isPatternMissing=function(t){if(!t)return!1;if(!t.from||!t.to)return!0;var e=this.imageManager.getPattern(t.from.toString()),r=this.imageManager.getPattern(t.to.toString());return!e||!r},_n.prototype.useProgram=function(t,e){this.cache=this.cache||{};var r=""+t+(e?e.cacheKey:"")+(this._showOverdrawInspector?"/overdraw":"");return this.cache[r]||(this.cache[r]=new _r(this.context,xr[t],e,Jr[t],this._showOverdrawInspector)),this.cache[r]},_n.prototype.setCustomLayerDefaults=function(){this.context.unbindVAO(),this.context.cullFace.setDefault(),this.context.activeTexture.setDefault(),this.context.pixelStoreUnpack.setDefault(),this.context.pixelStoreUnpackPremultiplyAlpha.setDefault(),this.context.pixelStoreUnpackFlipY.setDefault()},_n.prototype.setBaseState=function(){var t=this.context.gl;this.context.cullFace.set(!1),this.context.viewport.set([0,0,this.width,this.height]),this.context.blendEquation.set(t.FUNC_ADD)},_n.prototype.initDebugOverlayCanvas=function(){if(null==this.debugOverlayCanvas){this.debugOverlayCanvas=t.window.document.createElement("canvas"),this.debugOverlayCanvas.width=512,this.debugOverlayCanvas.height=512;var e=this.context.gl;this.debugOverlayTexture=new t.Texture(this.context,this.debugOverlayCanvas,e.RGBA)}},_n.prototype.destroy=function(){this.emptyTexture.destroy(),this.debugOverlayTexture&&this.debugOverlayTexture.destroy()};var wn=function(t,e){this.points=t,this.planes=e};wn.fromInvProjectionMatrix=function(e,r,n){var i=Math.pow(2,n),a=[[-1,1,-1,1],[1,1,-1,1],[1,-1,-1,1],[-1,-1,-1,1],[-1,1,1,1],[1,1,1,1],[1,-1,1,1],[-1,-1,1,1]].map((function(r){return t.transformMat4([],r,e)})).map((function(e){return t.scale$1([],e,1/e[3]/r*i)})),o=[[0,1,2],[6,5,4],[0,3,7],[2,1,5],[3,2,6],[0,4,5]].map((function(e){var r=t.sub([],a[e[0]],a[e[1]]),n=t.sub([],a[e[2]],a[e[1]]),i=t.normalize([],t.cross([],r,n)),o=-t.dot(i,a[e[1]]);return i.concat(o)}));return new wn(a,o)};var Tn=function(e,r){this.min=e,this.max=r,this.center=t.scale$2([],t.add([],this.min,this.max),.5)};Tn.prototype.quadrant=function(e){for(var r=[e%2==0,e<2],n=t.clone$2(this.min),i=t.clone$2(this.max),a=0;a=0;if(0===o)return 0;o!==r.length&&(n=!1)}if(n)return 2;for(var l=0;l<3;l++){for(var c=Number.MAX_VALUE,u=-Number.MAX_VALUE,f=0;fthis.max[l]-this.min[l])return 0}return 1};var kn=function(t,e,r,n){if(void 0===t&&(t=0),void 0===e&&(e=0),void 0===r&&(r=0),void 0===n&&(n=0),isNaN(t)||t<0||isNaN(e)||e<0||isNaN(r)||r<0||isNaN(n)||n<0)throw new Error("Invalid value for edge-insets, top, bottom, left and right must all be numbers");this.top=t,this.bottom=e,this.left=r,this.right=n};kn.prototype.interpolate=function(e,r,n){return null!=r.top&&null!=e.top&&(this.top=t.number(e.top,r.top,n)),null!=r.bottom&&null!=e.bottom&&(this.bottom=t.number(e.bottom,r.bottom,n)),null!=r.left&&null!=e.left&&(this.left=t.number(e.left,r.left,n)),null!=r.right&&null!=e.right&&(this.right=t.number(e.right,r.right,n)),this},kn.prototype.getCenter=function(e,r){var n=t.clamp((this.left+e-this.right)/2,0,e),i=t.clamp((this.top+r-this.bottom)/2,0,r);return new t.Point(n,i)},kn.prototype.equals=function(t){return this.top===t.top&&this.bottom===t.bottom&&this.left===t.left&&this.right===t.right},kn.prototype.clone=function(){return new kn(this.top,this.bottom,this.left,this.right)},kn.prototype.toJSON=function(){return{top:this.top,bottom:this.bottom,left:this.left,right:this.right}};var An=function(e,r,n,i,a){this.tileSize=512,this.maxValidLatitude=85.051129,this._renderWorldCopies=void 0===a||a,this._minZoom=e||0,this._maxZoom=r||22,this._minPitch=null==n?0:n,this._maxPitch=null==i?60:i,this.setMaxBounds(),this.width=0,this.height=0,this._center=new t.LngLat(0,0),this.zoom=0,this.angle=0,this._fov=.6435011087932844,this._pitch=0,this._unmodified=!0,this._edgeInsets=new kn,this._posMatrixCache={},this._alignedPosMatrixCache={}},Mn={minZoom:{configurable:!0},maxZoom:{configurable:!0},minPitch:{configurable:!0},maxPitch:{configurable:!0},renderWorldCopies:{configurable:!0},worldSize:{configurable:!0},centerOffset:{configurable:!0},size:{configurable:!0},bearing:{configurable:!0},pitch:{configurable:!0},fov:{configurable:!0},zoom:{configurable:!0},center:{configurable:!0},padding:{configurable:!0},centerPoint:{configurable:!0},unmodified:{configurable:!0},point:{configurable:!0}};An.prototype.clone=function(){var t=new An(this._minZoom,this._maxZoom,this._minPitch,this.maxPitch,this._renderWorldCopies);return t.tileSize=this.tileSize,t.latRange=this.latRange,t.width=this.width,t.height=this.height,t._center=this._center,t.zoom=this.zoom,t.angle=this.angle,t._fov=this._fov,t._pitch=this._pitch,t._unmodified=this._unmodified,t._edgeInsets=this._edgeInsets.clone(),t._calcMatrices(),t},Mn.minZoom.get=function(){return this._minZoom},Mn.minZoom.set=function(t){this._minZoom!==t&&(this._minZoom=t,this.zoom=Math.max(this.zoom,t))},Mn.maxZoom.get=function(){return this._maxZoom},Mn.maxZoom.set=function(t){this._maxZoom!==t&&(this._maxZoom=t,this.zoom=Math.min(this.zoom,t))},Mn.minPitch.get=function(){return this._minPitch},Mn.minPitch.set=function(t){this._minPitch!==t&&(this._minPitch=t,this.pitch=Math.max(this.pitch,t))},Mn.maxPitch.get=function(){return this._maxPitch},Mn.maxPitch.set=function(t){this._maxPitch!==t&&(this._maxPitch=t,this.pitch=Math.min(this.pitch,t))},Mn.renderWorldCopies.get=function(){return this._renderWorldCopies},Mn.renderWorldCopies.set=function(t){void 0===t?t=!0:null===t&&(t=!1),this._renderWorldCopies=t},Mn.worldSize.get=function(){return this.tileSize*this.scale},Mn.centerOffset.get=function(){return this.centerPoint._sub(this.size._div(2))},Mn.size.get=function(){return new t.Point(this.width,this.height)},Mn.bearing.get=function(){return-this.angle/Math.PI*180},Mn.bearing.set=function(e){var r=-t.wrap(e,-180,180)*Math.PI/180;this.angle!==r&&(this._unmodified=!1,this.angle=r,this._calcMatrices(),this.rotationMatrix=t.create$2(),t.rotate(this.rotationMatrix,this.rotationMatrix,this.angle))},Mn.pitch.get=function(){return this._pitch/Math.PI*180},Mn.pitch.set=function(e){var r=t.clamp(e,this.minPitch,this.maxPitch)/180*Math.PI;this._pitch!==r&&(this._unmodified=!1,this._pitch=r,this._calcMatrices())},Mn.fov.get=function(){return this._fov/Math.PI*180},Mn.fov.set=function(t){t=Math.max(.01,Math.min(60,t)),this._fov!==t&&(this._unmodified=!1,this._fov=t/180*Math.PI,this._calcMatrices())},Mn.zoom.get=function(){return this._zoom},Mn.zoom.set=function(t){var e=Math.min(Math.max(t,this.minZoom),this.maxZoom);this._zoom!==e&&(this._unmodified=!1,this._zoom=e,this.scale=this.zoomScale(e),this.tileZoom=Math.floor(e),this.zoomFraction=e-this.tileZoom,this._constrain(),this._calcMatrices())},Mn.center.get=function(){return this._center},Mn.center.set=function(t){t.lat===this._center.lat&&t.lng===this._center.lng||(this._unmodified=!1,this._center=t,this._constrain(),this._calcMatrices())},Mn.padding.get=function(){return this._edgeInsets.toJSON()},Mn.padding.set=function(t){this._edgeInsets.equals(t)||(this._unmodified=!1,this._edgeInsets.interpolate(this._edgeInsets,t,1),this._calcMatrices())},Mn.centerPoint.get=function(){return this._edgeInsets.getCenter(this.width,this.height)},An.prototype.isPaddingEqual=function(t){return this._edgeInsets.equals(t)},An.prototype.interpolatePadding=function(t,e,r){this._unmodified=!1,this._edgeInsets.interpolate(t,e,r),this._constrain(),this._calcMatrices()},An.prototype.coveringZoomLevel=function(t){var e=(t.roundZoom?Math.round:Math.floor)(this.zoom+this.scaleZoom(this.tileSize/t.tileSize));return Math.max(0,e)},An.prototype.getVisibleUnwrappedCoordinates=function(e){var r=[new t.UnwrappedTileID(0,e)];if(this._renderWorldCopies)for(var n=this.pointCoordinate(new t.Point(0,0)),i=this.pointCoordinate(new t.Point(this.width,0)),a=this.pointCoordinate(new t.Point(this.width,this.height)),o=this.pointCoordinate(new t.Point(0,this.height)),s=Math.floor(Math.min(n.x,i.x,a.x,o.x)),l=Math.floor(Math.max(n.x,i.x,a.x,o.x)),c=s-1;c<=l+1;c++)0!==c&&r.push(new t.UnwrappedTileID(c,e));return r},An.prototype.coveringTiles=function(e){var r=this.coveringZoomLevel(e),n=r;if(void 0!==e.minzoom&&re.maxzoom&&(r=e.maxzoom);var i=t.MercatorCoordinate.fromLngLat(this.center),a=Math.pow(2,r),o=[a*i.x,a*i.y,0],s=wn.fromInvProjectionMatrix(this.invProjMatrix,this.worldSize,r),l=e.minzoom||0;this.pitch<=60&&this._edgeInsets.top<.1&&(l=r);var c=function(t){return{aabb:new Tn([t*a,0,0],[(t+1)*a,a,0]),zoom:0,x:0,y:0,wrap:t,fullyVisible:!1}},u=[],f=[],h=r,p=e.reparseOverscaled?n:r;if(this._renderWorldCopies)for(var d=1;d<=3;d++)u.push(c(-d)),u.push(c(d));for(u.push(c(0));u.length>0;){var m=u.pop(),g=m.x,v=m.y,y=m.fullyVisible;if(!y){var x=m.aabb.intersects(s);if(0===x)continue;y=2===x}var b=m.aabb.distanceX(o),_=m.aabb.distanceY(o),w=Math.max(Math.abs(b),Math.abs(_)),T=3+(1<T&&m.zoom>=l)f.push({tileID:new t.OverscaledTileID(m.zoom===h?p:m.zoom,m.wrap,m.zoom,g,v),distanceSq:t.sqrLen([o[0]-.5-g,o[1]-.5-v])});else for(var k=0;k<4;k++){var A=(g<<1)+k%2,M=(v<<1)+(k>>1);u.push({aabb:m.aabb.quadrant(k),zoom:m.zoom+1,x:A,y:M,wrap:m.wrap,fullyVisible:y})}}return f.sort((function(t,e){return t.distanceSq-e.distanceSq})).map((function(t){return t.tileID}))},An.prototype.resize=function(t,e){this.width=t,this.height=e,this.pixelsToGLUnits=[2/t,-2/e],this._constrain(),this._calcMatrices()},Mn.unmodified.get=function(){return this._unmodified},An.prototype.zoomScale=function(t){return Math.pow(2,t)},An.prototype.scaleZoom=function(t){return Math.log(t)/Math.LN2},An.prototype.project=function(e){var r=t.clamp(e.lat,-this.maxValidLatitude,this.maxValidLatitude);return new t.Point(t.mercatorXfromLng(e.lng)*this.worldSize,t.mercatorYfromLat(r)*this.worldSize)},An.prototype.unproject=function(e){return new t.MercatorCoordinate(e.x/this.worldSize,e.y/this.worldSize).toLngLat()},Mn.point.get=function(){return this.project(this.center)},An.prototype.setLocationAtPoint=function(e,r){var n=this.pointCoordinate(r),i=this.pointCoordinate(this.centerPoint),a=this.locationCoordinate(e),o=new t.MercatorCoordinate(a.x-(n.x-i.x),a.y-(n.y-i.y));this.center=this.coordinateLocation(o),this._renderWorldCopies&&(this.center=this.center.wrap())},An.prototype.locationPoint=function(t){return this.coordinatePoint(this.locationCoordinate(t))},An.prototype.pointLocation=function(t){return this.coordinateLocation(this.pointCoordinate(t))},An.prototype.locationCoordinate=function(e){return t.MercatorCoordinate.fromLngLat(e)},An.prototype.coordinateLocation=function(t){return t.toLngLat()},An.prototype.pointCoordinate=function(e){var r=[e.x,e.y,0,1],n=[e.x,e.y,1,1];t.transformMat4(r,r,this.pixelMatrixInverse),t.transformMat4(n,n,this.pixelMatrixInverse);var i=r[3],a=n[3],o=r[0]/i,s=n[0]/a,l=r[1]/i,c=n[1]/a,u=r[2]/i,f=n[2]/a,h=u===f?0:(0-u)/(f-u);return new t.MercatorCoordinate(t.number(o,s,h)/this.worldSize,t.number(l,c,h)/this.worldSize)},An.prototype.coordinatePoint=function(e){var r=[e.x*this.worldSize,e.y*this.worldSize,0,1];return t.transformMat4(r,r,this.pixelMatrix),new t.Point(r[0]/r[3],r[1]/r[3])},An.prototype.getBounds=function(){return(new t.LngLatBounds).extend(this.pointLocation(new t.Point(0,0))).extend(this.pointLocation(new t.Point(this.width,0))).extend(this.pointLocation(new t.Point(this.width,this.height))).extend(this.pointLocation(new t.Point(0,this.height)))},An.prototype.getMaxBounds=function(){return this.latRange&&2===this.latRange.length&&this.lngRange&&2===this.lngRange.length?new t.LngLatBounds([this.lngRange[0],this.latRange[0]],[this.lngRange[1],this.latRange[1]]):null},An.prototype.setMaxBounds=function(t){t?(this.lngRange=[t.getWest(),t.getEast()],this.latRange=[t.getSouth(),t.getNorth()],this._constrain()):(this.lngRange=null,this.latRange=[-this.maxValidLatitude,this.maxValidLatitude])},An.prototype.calculatePosMatrix=function(e,r){void 0===r&&(r=!1);var n=e.key,i=r?this._alignedPosMatrixCache:this._posMatrixCache;if(i[n])return i[n];var a=e.canonical,o=this.worldSize/this.zoomScale(a.z),s=a.x+Math.pow(2,a.z)*e.wrap,l=t.identity(new Float64Array(16));return t.translate(l,l,[s*o,a.y*o,0]),t.scale(l,l,[o/t.EXTENT,o/t.EXTENT,1]),t.multiply(l,r?this.alignedProjMatrix:this.projMatrix,l),i[n]=new Float32Array(l),i[n]},An.prototype.customLayerMatrix=function(){return this.mercatorMatrix.slice()},An.prototype._constrain=function(){if(this.center&&this.width&&this.height&&!this._constraining){this._constraining=!0;var e,r,n,i,a=-90,o=90,s=-180,l=180,c=this.size,u=this._unmodified;if(this.latRange){var f=this.latRange;a=t.mercatorYfromLat(f[1])*this.worldSize,e=(o=t.mercatorYfromLat(f[0])*this.worldSize)-ao&&(i=o-g)}if(this.lngRange){var v=p.x,y=c.x/2;v-yl&&(n=l-y)}void 0===n&&void 0===i||(this.center=this.unproject(new t.Point(void 0!==n?n:p.x,void 0!==i?i:p.y))),this._unmodified=u,this._constraining=!1}},An.prototype._calcMatrices=function(){if(this.height){var e=this._fov/2,r=this.centerOffset;this.cameraToCenterDistance=.5/Math.tan(e)*this.height;var n=Math.PI/2+this._pitch,i=this._fov*(.5+r.y/this.height),a=Math.sin(i)*this.cameraToCenterDistance/Math.sin(t.clamp(Math.PI-n-i,.01,Math.PI-.01)),o=this.point,s=o.x,l=o.y,c=1.01*(Math.cos(Math.PI/2-this._pitch)*a+this.cameraToCenterDistance),u=this.height/50,f=new Float64Array(16);t.perspective(f,this._fov,this.width/this.height,u,c),f[8]=2*-r.x/this.width,f[9]=2*r.y/this.height,t.scale(f,f,[1,-1,1]),t.translate(f,f,[0,0,-this.cameraToCenterDistance]),t.rotateX(f,f,this._pitch),t.rotateZ(f,f,this.angle),t.translate(f,f,[-s,-l,0]),this.mercatorMatrix=t.scale([],f,[this.worldSize,this.worldSize,this.worldSize]),t.scale(f,f,[1,1,t.mercatorZfromAltitude(1,this.center.lat)*this.worldSize,1]),this.projMatrix=f,this.invProjMatrix=t.invert([],this.projMatrix);var h=this.width%2/2,p=this.height%2/2,d=Math.cos(this.angle),m=Math.sin(this.angle),g=s-Math.round(s)+d*h+m*p,v=l-Math.round(l)+d*p+m*h,y=new Float64Array(f);if(t.translate(y,y,[g>.5?g-1:g,v>.5?v-1:v,0]),this.alignedProjMatrix=y,f=t.create(),t.scale(f,f,[this.width/2,-this.height/2,1]),t.translate(f,f,[1,-1,0]),this.labelPlaneMatrix=f,f=t.create(),t.scale(f,f,[1,-1,1]),t.translate(f,f,[-1,-1,0]),t.scale(f,f,[2/this.width,2/this.height,1]),this.glCoordMatrix=f,this.pixelMatrix=t.multiply(new Float64Array(16),this.labelPlaneMatrix,this.projMatrix),!(f=t.invert(new Float64Array(16),this.pixelMatrix)))throw new Error("failed to invert matrix");this.pixelMatrixInverse=f,this._posMatrixCache={},this._alignedPosMatrixCache={}}},An.prototype.maxPitchScaleFactor=function(){if(!this.pixelMatrixInverse)return 1;var e=this.pointCoordinate(new t.Point(0,0)),r=[e.x*this.worldSize,e.y*this.worldSize,0,1];return t.transformMat4(r,r,this.pixelMatrix)[3]/this.cameraToCenterDistance},An.prototype.getCameraPoint=function(){var e=this._pitch,r=Math.tan(e)*(this.cameraToCenterDistance||1);return this.centerPoint.add(new t.Point(0,r))},An.prototype.getCameraQueryGeometry=function(e){var r=this.getCameraPoint();if(1===e.length)return[e[0],r];for(var n=r.x,i=r.y,a=r.x,o=r.y,s=0,l=e;s=3&&!t.some((function(t){return isNaN(t)}))){var e=this._map.dragRotate.isEnabled()&&this._map.touchZoomRotate.isEnabled()?+(t[3]||0):this._map.getBearing();return this._map.jumpTo({center:[+t[2],+t[1]],zoom:+t[0],bearing:e,pitch:+(t[4]||0)}),!0}return!1},Sn.prototype._updateHashUnthrottled=function(){var e=this.getHashString();try{t.window.history.replaceState(t.window.history.state,"",e)}catch(t){}};var En={linearity:.3,easing:t.bezier(0,0,.3,1)},Ln=t.extend({deceleration:2500,maxSpeed:1400},En),Cn=t.extend({deceleration:20,maxSpeed:1400},En),Pn=t.extend({deceleration:1e3,maxSpeed:360},En),In=t.extend({deceleration:1e3,maxSpeed:90},En),On=function(t){this._map=t,this.clear()};function zn(t,e){(!t.duration||t.duration0&&r-e[0].time>160;)e.shift()},On.prototype._onMoveEnd=function(e){if(this._drainInertiaBuffer(),!(this._inertiaBuffer.length<2)){for(var r={zoom:0,bearing:0,pitch:0,pan:new t.Point(0,0),pinchAround:void 0,around:void 0},n=0,i=this._inertiaBuffer;n=this._clickTolerance||this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.dblclick=function(t){return this._firePreventable(new Rn(t.type,this._map,t))},Nn.prototype.mouseover=function(t){this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.mouseout=function(t){this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.touchstart=function(t){return this._firePreventable(new Fn(t.type,this._map,t))},Nn.prototype.touchmove=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype.touchend=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype.touchcancel=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype._firePreventable=function(t){if(this._map.fire(t),t.defaultPrevented)return{}},Nn.prototype.isEnabled=function(){return!0},Nn.prototype.isActive=function(){return!1},Nn.prototype.enable=function(){},Nn.prototype.disable=function(){};var jn=function(t){this._map=t};jn.prototype.reset=function(){this._delayContextMenu=!1,delete this._contextMenuEvent},jn.prototype.mousemove=function(t){this._map.fire(new Rn(t.type,this._map,t))},jn.prototype.mousedown=function(){this._delayContextMenu=!0},jn.prototype.mouseup=function(){this._delayContextMenu=!1,this._contextMenuEvent&&(this._map.fire(new Rn("contextmenu",this._map,this._contextMenuEvent)),delete this._contextMenuEvent)},jn.prototype.contextmenu=function(t){this._delayContextMenu?this._contextMenuEvent=t:this._map.fire(new Rn(t.type,this._map,t)),this._map.listens("contextmenu")&&t.preventDefault()},jn.prototype.isEnabled=function(){return!0},jn.prototype.isActive=function(){return!1},jn.prototype.enable=function(){},jn.prototype.disable=function(){};var Un=function(t,e){this._map=t,this._el=t.getCanvasContainer(),this._container=t.getContainer(),this._clickTolerance=e.clickTolerance||1};function Vn(t,e){for(var r={},n=0;nthis.numTouches)&&(this.aborted=!0),this.aborted||(void 0===this.startTime&&(this.startTime=e.timeStamp),n.length===this.numTouches&&(this.centroid=function(e){for(var r=new t.Point(0,0),n=0,i=e;n30)&&(this.aborted=!0)}}},Hn.prototype.touchend=function(t,e,r){if((!this.centroid||t.timeStamp-this.startTime>500)&&(this.aborted=!0),0===r.length){var n=!this.aborted&&this.centroid;if(this.reset(),n)return n}};var qn=function(t){this.singleTap=new Hn(t),this.numTaps=t.numTaps,this.reset()};qn.prototype.reset=function(){this.lastTime=1/0,delete this.lastTap,this.count=0,this.singleTap.reset()},qn.prototype.touchstart=function(t,e,r){this.singleTap.touchstart(t,e,r)},qn.prototype.touchmove=function(t,e,r){this.singleTap.touchmove(t,e,r)},qn.prototype.touchend=function(t,e,r){var n=this.singleTap.touchend(t,e,r);if(n){var i=t.timeStamp-this.lastTime<500,a=!this.lastTap||this.lastTap.dist(n)<30;if(i&&a||this.reset(),this.count++,this.lastTime=t.timeStamp,this.lastTap=n,this.count===this.numTaps)return this.reset(),n}};var Gn=function(){this._zoomIn=new qn({numTouches:1,numTaps:2}),this._zoomOut=new qn({numTouches:2,numTaps:1}),this.reset()};Gn.prototype.reset=function(){this._active=!1,this._zoomIn.reset(),this._zoomOut.reset()},Gn.prototype.touchstart=function(t,e,r){this._zoomIn.touchstart(t,e,r),this._zoomOut.touchstart(t,e,r)},Gn.prototype.touchmove=function(t,e,r){this._zoomIn.touchmove(t,e,r),this._zoomOut.touchmove(t,e,r)},Gn.prototype.touchend=function(t,e,r){var n=this,i=this._zoomIn.touchend(t,e,r),a=this._zoomOut.touchend(t,e,r);return i?(this._active=!0,t.preventDefault(),setTimeout((function(){return n.reset()}),0),{cameraAnimation:function(e){return e.easeTo({duration:300,zoom:e.getZoom()+1,around:e.unproject(i)},{originalEvent:t})}}):a?(this._active=!0,t.preventDefault(),setTimeout((function(){return n.reset()}),0),{cameraAnimation:function(e){return e.easeTo({duration:300,zoom:e.getZoom()-1,around:e.unproject(a)},{originalEvent:t})}}):void 0},Gn.prototype.touchcancel=function(){this.reset()},Gn.prototype.enable=function(){this._enabled=!0},Gn.prototype.disable=function(){this._enabled=!1,this.reset()},Gn.prototype.isEnabled=function(){return this._enabled},Gn.prototype.isActive=function(){return this._active};var Yn=function(t){this.reset(),this._clickTolerance=t.clickTolerance||1};Yn.prototype.reset=function(){this._active=!1,this._moved=!1,delete this._lastPoint,delete this._eventButton},Yn.prototype._correctButton=function(t,e){return!1},Yn.prototype._move=function(t,e){return{}},Yn.prototype.mousedown=function(t,e){if(!this._lastPoint){var n=r.mouseButton(t);this._correctButton(t,n)&&(this._lastPoint=e,this._eventButton=n)}},Yn.prototype.mousemoveWindow=function(t,e){var r=this._lastPoint;if(r&&(t.preventDefault(),this._moved||!(e.dist(r)0&&(this._active=!0);var i=Vn(n,r),a=new t.Point(0,0),o=new t.Point(0,0),s=0;for(var l in i){var c=i[l],u=this._touches[l];u&&(a._add(c),o._add(c.sub(u)),s++,i[l]=c)}if(this._touches=i,!(sMath.abs(t.x)}var ii=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.reset=function(){t.prototype.reset.call(this),this._valid=void 0,delete this._firstMove,delete this._lastPoints},e.prototype._start=function(t){this._lastPoints=t,ni(t[0].sub(t[1]))&&(this._valid=!1)},e.prototype._move=function(t,e,r){var n=t[0].sub(this._lastPoints[0]),i=t[1].sub(this._lastPoints[1]);if(this._valid=this.gestureBeginsVertically(n,i,r.timeStamp),this._valid){this._lastPoints=t,this._active=!0;return{pitchDelta:-.5*((n.y+i.y)/2)}}},e.prototype.gestureBeginsVertically=function(t,e,r){if(void 0!==this._valid)return this._valid;var n=t.mag()>=2,i=e.mag()>=2;if(n||i){if(!n||!i)return void 0===this._firstMove&&(this._firstMove=r),r-this._firstMove<100&&void 0;var a=t.y>0==e.y>0;return ni(t)&&ni(e)&&a}},e}(Kn),ai={panStep:100,bearingStep:15,pitchStep:10},oi=function(){var t=ai;this._panStep=t.panStep,this._bearingStep=t.bearingStep,this._pitchStep=t.pitchStep};function si(t){return t*(2-t)}oi.prototype.reset=function(){this._active=!1},oi.prototype.keydown=function(t){var e=this;if(!(t.altKey||t.ctrlKey||t.metaKey)){var r=0,n=0,i=0,a=0,o=0;switch(t.keyCode){case 61:case 107:case 171:case 187:r=1;break;case 189:case 109:case 173:r=-1;break;case 37:t.shiftKey?n=-1:(t.preventDefault(),a=-1);break;case 39:t.shiftKey?n=1:(t.preventDefault(),a=1);break;case 38:t.shiftKey?i=1:(t.preventDefault(),o=-1);break;case 40:t.shiftKey?i=-1:(t.preventDefault(),o=1);break;default:return}return{cameraAnimation:function(s){var l=s.getZoom();s.easeTo({duration:300,easeId:"keyboardHandler",easing:si,zoom:r?Math.round(l)+r*(t.shiftKey?2:1):l,bearing:s.getBearing()+n*e._bearingStep,pitch:s.getPitch()+i*e._pitchStep,offset:[-a*e._panStep,-o*e._panStep],center:s.getCenter()},{originalEvent:t})}}}},oi.prototype.enable=function(){this._enabled=!0},oi.prototype.disable=function(){this._enabled=!1,this.reset()},oi.prototype.isEnabled=function(){return this._enabled},oi.prototype.isActive=function(){return this._active};var li=function(e,r){this._map=e,this._el=e.getCanvasContainer(),this._handler=r,this._delta=0,this._defaultZoomRate=.01,this._wheelZoomRate=1/450,t.bindAll(["_onWheel","_onTimeout","_onScrollFrame","_onScrollFinished"],this)};li.prototype.setZoomRate=function(t){this._defaultZoomRate=t},li.prototype.setWheelZoomRate=function(t){this._wheelZoomRate=t},li.prototype.isEnabled=function(){return!!this._enabled},li.prototype.isActive=function(){return!!this._active||void 0!==this._finishTimeout},li.prototype.isZooming=function(){return!!this._zooming},li.prototype.enable=function(t){this.isEnabled()||(this._enabled=!0,this._aroundCenter=t&&"center"===t.around)},li.prototype.disable=function(){this.isEnabled()&&(this._enabled=!1)},li.prototype.wheel=function(e){if(this.isEnabled()){var r=e.deltaMode===t.window.WheelEvent.DOM_DELTA_LINE?40*e.deltaY:e.deltaY,n=t.browser.now(),i=n-(this._lastWheelEventTime||0);this._lastWheelEventTime=n,0!==r&&r%4.000244140625==0?this._type="wheel":0!==r&&Math.abs(r)<4?this._type="trackpad":i>400?(this._type=null,this._lastValue=r,this._timeout=setTimeout(this._onTimeout,40,e)):this._type||(this._type=Math.abs(i*r)<200?"trackpad":"wheel",this._timeout&&(clearTimeout(this._timeout),this._timeout=null,r+=this._lastValue)),e.shiftKey&&r&&(r/=4),this._type&&(this._lastWheelEvent=e,this._delta-=r,this._active||this._start(e)),e.preventDefault()}},li.prototype._onTimeout=function(t){this._type="wheel",this._delta-=this._lastValue,this._active||this._start(t)},li.prototype._start=function(e){if(this._delta){this._frameId&&(this._frameId=null),this._active=!0,this.isZooming()||(this._zooming=!0),this._finishTimeout&&(clearTimeout(this._finishTimeout),delete this._finishTimeout);var n=r.mousePos(this._el,e);this._around=t.LngLat.convert(this._aroundCenter?this._map.getCenter():this._map.unproject(n)),this._aroundPoint=this._map.transform.locationPoint(this._around),this._frameId||(this._frameId=!0,this._handler._triggerRenderFrame())}},li.prototype.renderFrame=function(){return this._onScrollFrame()},li.prototype._onScrollFrame=function(){var e=this;if(this._frameId&&(this._frameId=null,this.isActive())){var r=this._map.transform;if(0!==this._delta){var n="wheel"===this._type&&Math.abs(this._delta)>4.000244140625?this._wheelZoomRate:this._defaultZoomRate,i=2/(1+Math.exp(-Math.abs(this._delta*n)));this._delta<0&&0!==i&&(i=1/i);var a="number"==typeof this._targetZoom?r.zoomScale(this._targetZoom):r.scale;this._targetZoom=Math.min(r.maxZoom,Math.max(r.minZoom,r.scaleZoom(a*i))),"wheel"===this._type&&(this._startZoom=r.zoom,this._easing=this._smoothOutEasing(200)),this._delta=0}var o,s="number"==typeof this._targetZoom?this._targetZoom:r.zoom,l=this._startZoom,c=this._easing,u=!1;if("wheel"===this._type&&l&&c){var f=Math.min((t.browser.now()-this._lastWheelEventTime)/200,1),h=c(f);o=t.number(l,s,h),f<1?this._frameId||(this._frameId=!0):u=!0}else o=s,u=!0;return this._active=!0,u&&(this._active=!1,this._finishTimeout=setTimeout((function(){e._zooming=!1,e._handler._triggerRenderFrame(),delete e._targetZoom,delete e._finishTimeout}),200)),{noInertia:!0,needsRenderFrame:!u,zoomDelta:o-r.zoom,around:this._aroundPoint,originalEvent:this._lastWheelEvent}}},li.prototype._smoothOutEasing=function(e){var r=t.ease;if(this._prevEase){var n=this._prevEase,i=(t.browser.now()-n.start)/n.duration,a=n.easing(i+.01)-n.easing(i),o=.27/Math.sqrt(a*a+1e-4)*.01,s=Math.sqrt(.0729-o*o);r=t.bezier(o,s,.25,1)}return this._prevEase={start:t.browser.now(),duration:e,easing:r},r},li.prototype.reset=function(){this._active=!1};var ci=function(t,e){this._clickZoom=t,this._tapZoom=e};ci.prototype.enable=function(){this._clickZoom.enable(),this._tapZoom.enable()},ci.prototype.disable=function(){this._clickZoom.disable(),this._tapZoom.disable()},ci.prototype.isEnabled=function(){return this._clickZoom.isEnabled()&&this._tapZoom.isEnabled()},ci.prototype.isActive=function(){return this._clickZoom.isActive()||this._tapZoom.isActive()};var ui=function(){this.reset()};ui.prototype.reset=function(){this._active=!1},ui.prototype.dblclick=function(t,e){return t.preventDefault(),{cameraAnimation:function(r){r.easeTo({duration:300,zoom:r.getZoom()+(t.shiftKey?-1:1),around:r.unproject(e)},{originalEvent:t})}}},ui.prototype.enable=function(){this._enabled=!0},ui.prototype.disable=function(){this._enabled=!1,this.reset()},ui.prototype.isEnabled=function(){return this._enabled},ui.prototype.isActive=function(){return this._active};var fi=function(){this._tap=new qn({numTouches:1,numTaps:1}),this.reset()};fi.prototype.reset=function(){this._active=!1,delete this._swipePoint,delete this._swipeTouch,delete this._tapTime,this._tap.reset()},fi.prototype.touchstart=function(t,e,r){this._swipePoint||(this._tapTime&&t.timeStamp-this._tapTime>500&&this.reset(),this._tapTime?r.length>0&&(this._swipePoint=e[0],this._swipeTouch=r[0].identifier):this._tap.touchstart(t,e,r))},fi.prototype.touchmove=function(t,e,r){if(this._tapTime){if(this._swipePoint){if(r[0].identifier!==this._swipeTouch)return;var n=e[0],i=n.y-this._swipePoint.y;return this._swipePoint=n,t.preventDefault(),this._active=!0,{zoomDelta:i/128}}}else this._tap.touchmove(t,e,r)},fi.prototype.touchend=function(t,e,r){this._tapTime?this._swipePoint&&0===r.length&&this.reset():this._tap.touchend(t,e,r)&&(this._tapTime=t.timeStamp)},fi.prototype.touchcancel=function(){this.reset()},fi.prototype.enable=function(){this._enabled=!0},fi.prototype.disable=function(){this._enabled=!1,this.reset()},fi.prototype.isEnabled=function(){return this._enabled},fi.prototype.isActive=function(){return this._active};var hi=function(t,e,r){this._el=t,this._mousePan=e,this._touchPan=r};hi.prototype.enable=function(t){this._inertiaOptions=t||{},this._mousePan.enable(),this._touchPan.enable(),this._el.classList.add("mapboxgl-touch-drag-pan")},hi.prototype.disable=function(){this._mousePan.disable(),this._touchPan.disable(),this._el.classList.remove("mapboxgl-touch-drag-pan")},hi.prototype.isEnabled=function(){return this._mousePan.isEnabled()&&this._touchPan.isEnabled()},hi.prototype.isActive=function(){return this._mousePan.isActive()||this._touchPan.isActive()};var pi=function(t,e,r){this._pitchWithRotate=t.pitchWithRotate,this._mouseRotate=e,this._mousePitch=r};pi.prototype.enable=function(){this._mouseRotate.enable(),this._pitchWithRotate&&this._mousePitch.enable()},pi.prototype.disable=function(){this._mouseRotate.disable(),this._mousePitch.disable()},pi.prototype.isEnabled=function(){return this._mouseRotate.isEnabled()&&(!this._pitchWithRotate||this._mousePitch.isEnabled())},pi.prototype.isActive=function(){return this._mouseRotate.isActive()||this._mousePitch.isActive()};var di=function(t,e,r,n){this._el=t,this._touchZoom=e,this._touchRotate=r,this._tapDragZoom=n,this._rotationDisabled=!1,this._enabled=!0};di.prototype.enable=function(t){this._touchZoom.enable(t),this._rotationDisabled||this._touchRotate.enable(t),this._tapDragZoom.enable(),this._el.classList.add("mapboxgl-touch-zoom-rotate")},di.prototype.disable=function(){this._touchZoom.disable(),this._touchRotate.disable(),this._tapDragZoom.disable(),this._el.classList.remove("mapboxgl-touch-zoom-rotate")},di.prototype.isEnabled=function(){return this._touchZoom.isEnabled()&&(this._rotationDisabled||this._touchRotate.isEnabled())&&this._tapDragZoom.isEnabled()},di.prototype.isActive=function(){return this._touchZoom.isActive()||this._touchRotate.isActive()||this._tapDragZoom.isActive()},di.prototype.disableRotation=function(){this._rotationDisabled=!0,this._touchRotate.disable()},di.prototype.enableRotation=function(){this._rotationDisabled=!1,this._touchZoom.isEnabled()&&this._touchRotate.enable()};var mi=function(t){return t.zoom||t.drag||t.pitch||t.rotate},gi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e}(t.Event);function vi(t){return t.panDelta&&t.panDelta.mag()||t.zoomDelta||t.bearingDelta||t.pitchDelta}var yi=function(e,n){this._map=e,this._el=this._map.getCanvasContainer(),this._handlers=[],this._handlersById={},this._changes=[],this._inertia=new On(e),this._bearingSnap=n.bearingSnap,this._previousActiveHandlers={},this._eventsInProgress={},this._addDefaultHandlers(n),t.bindAll(["handleEvent","handleWindowEvent"],this);var i=this._el;this._listeners=[[i,"touchstart",{passive:!1}],[i,"touchmove",{passive:!1}],[i,"touchend",void 0],[i,"touchcancel",void 0],[i,"mousedown",void 0],[i,"mousemove",void 0],[i,"mouseup",void 0],[t.window.document,"mousemove",{capture:!0}],[t.window.document,"mouseup",void 0],[i,"mouseover",void 0],[i,"mouseout",void 0],[i,"dblclick",void 0],[i,"click",void 0],[i,"keydown",{capture:!1}],[i,"keyup",void 0],[i,"wheel",{passive:!1}],[i,"contextmenu",void 0],[t.window,"blur",void 0]];for(var a=0,o=this._listeners;aa?Math.min(2,_):Math.max(.5,_),w=Math.pow(g,1-e),T=i.unproject(x.add(b.mult(e*w)).mult(m));i.setLocationAtPoint(i.renderWorldCopies?T.wrap():T,d)}n._fireMoveEvents(r)}),(function(t){n._afterEase(r,t)}),e),this},r.prototype._prepareEase=function(e,r,n){void 0===n&&(n={}),this._moving=!0,r||n.moving||this.fire(new t.Event("movestart",e)),this._zooming&&!n.zooming&&this.fire(new t.Event("zoomstart",e)),this._rotating&&!n.rotating&&this.fire(new t.Event("rotatestart",e)),this._pitching&&!n.pitching&&this.fire(new t.Event("pitchstart",e))},r.prototype._fireMoveEvents=function(e){this.fire(new t.Event("move",e)),this._zooming&&this.fire(new t.Event("zoom",e)),this._rotating&&this.fire(new t.Event("rotate",e)),this._pitching&&this.fire(new t.Event("pitch",e))},r.prototype._afterEase=function(e,r){if(!this._easeId||!r||this._easeId!==r){delete this._easeId;var n=this._zooming,i=this._rotating,a=this._pitching;this._moving=!1,this._zooming=!1,this._rotating=!1,this._pitching=!1,this._padding=!1,n&&this.fire(new t.Event("zoomend",e)),i&&this.fire(new t.Event("rotateend",e)),a&&this.fire(new t.Event("pitchend",e)),this.fire(new t.Event("moveend",e))}},r.prototype.flyTo=function(e,r){var n=this;if(!e.essential&&t.browser.prefersReducedMotion){var i=t.pick(e,["center","zoom","bearing","pitch","around"]);return this.jumpTo(i,r)}this.stop(),e=t.extend({offset:[0,0],speed:1.2,curve:1.42,easing:t.ease},e);var a=this.transform,o=this.getZoom(),s=this.getBearing(),l=this.getPitch(),c=this.getPadding(),u="zoom"in e?t.clamp(+e.zoom,a.minZoom,a.maxZoom):o,f="bearing"in e?this._normalizeBearing(e.bearing,s):s,h="pitch"in e?+e.pitch:l,p="padding"in e?e.padding:a.padding,d=a.zoomScale(u-o),m=t.Point.convert(e.offset),g=a.centerPoint.add(m),v=a.pointLocation(g),y=t.LngLat.convert(e.center||v);this._normalizeCenter(y);var x=a.project(v),b=a.project(y).sub(x),_=e.curve,w=Math.max(a.width,a.height),T=w/d,k=b.mag();if("minZoom"in e){var A=t.clamp(Math.min(e.minZoom,o,u),a.minZoom,a.maxZoom),M=w/a.zoomScale(A-o);_=Math.sqrt(M/k*2)}var S=_*_;function E(t){var e=(T*T-w*w+(t?-1:1)*S*S*k*k)/(2*(t?T:w)*S*k);return Math.log(Math.sqrt(e*e+1)-e)}function L(t){return(Math.exp(t)-Math.exp(-t))/2}function C(t){return(Math.exp(t)+Math.exp(-t))/2}var P=E(0),I=function(t){return C(P)/C(P+_*t)},O=function(t){return w*((C(P)*(L(e=P+_*t)/C(e))-L(P))/S)/k;var e},z=(E(1)-P)/_;if(Math.abs(k)<1e-6||!isFinite(z)){if(Math.abs(w-T)<1e-6)return this.easeTo(e,r);var D=Te.maxDuration&&(e.duration=0),this._zooming=!0,this._rotating=s!==f,this._pitching=h!==l,this._padding=!a.isPaddingEqual(p),this._prepareEase(r,!1),this._ease((function(e){var i=e*z,d=1/I(i);a.zoom=1===e?u:o+a.scaleZoom(d),n._rotating&&(a.bearing=t.number(s,f,e)),n._pitching&&(a.pitch=t.number(l,h,e)),n._padding&&(a.interpolatePadding(c,p,e),g=a.centerPoint.add(m));var v=1===e?y:a.unproject(x.add(b.mult(O(i))).mult(d));a.setLocationAtPoint(a.renderWorldCopies?v.wrap():v,g),n._fireMoveEvents(r)}),(function(){return n._afterEase(r)}),e),this},r.prototype.isEasing=function(){return!!this._easeFrameId},r.prototype.stop=function(){return this._stop()},r.prototype._stop=function(t,e){if(this._easeFrameId&&(this._cancelRenderFrame(this._easeFrameId),delete this._easeFrameId,delete this._onEaseFrame),this._onEaseEnd){var r=this._onEaseEnd;delete this._onEaseEnd,r.call(this,e)}if(!t){var n=this.handlers;n&&n.stop()}return this},r.prototype._ease=function(e,r,n){!1===n.animate||0===n.duration?(e(1),r()):(this._easeStart=t.browser.now(),this._easeOptions=n,this._onEaseFrame=e,this._onEaseEnd=r,this._easeFrameId=this._requestRenderFrame(this._renderFrameCallback))},r.prototype._renderFrameCallback=function(){var e=Math.min((t.browser.now()-this._easeStart)/this._easeOptions.duration,1);this._onEaseFrame(this._easeOptions.easing(e)),e<1?this._easeFrameId=this._requestRenderFrame(this._renderFrameCallback):this.stop()},r.prototype._normalizeBearing=function(e,r){e=t.wrap(e,-180,180);var n=Math.abs(e-r);return Math.abs(e-360-r)180?-360:r<-180?360:0}},r}(t.Evented),bi=function(e){void 0===e&&(e={}),this.options=e,t.bindAll(["_updateEditLink","_updateData","_updateCompact"],this)};bi.prototype.getDefaultPosition=function(){return"bottom-right"},bi.prototype.onAdd=function(t){var e=this.options&&this.options.compact;return this._map=t,this._container=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-attrib"),this._innerContainer=r.create("div","mapboxgl-ctrl-attrib-inner",this._container),e&&this._container.classList.add("mapboxgl-compact"),this._updateAttributions(),this._updateEditLink(),this._map.on("styledata",this._updateData),this._map.on("sourcedata",this._updateData),this._map.on("moveend",this._updateEditLink),void 0===e&&(this._map.on("resize",this._updateCompact),this._updateCompact()),this._container},bi.prototype.onRemove=function(){r.remove(this._container),this._map.off("styledata",this._updateData),this._map.off("sourcedata",this._updateData),this._map.off("moveend",this._updateEditLink),this._map.off("resize",this._updateCompact),this._map=void 0,this._attribHTML=void 0},bi.prototype._updateEditLink=function(){var e=this._editLink;e||(e=this._editLink=this._container.querySelector(".mapbox-improve-map"));var r=[{key:"owner",value:this.styleOwner},{key:"id",value:this.styleId},{key:"access_token",value:this._map._requestManager._customAccessToken||t.config.ACCESS_TOKEN}];if(e){var n=r.reduce((function(t,e,n){return e.value&&(t+=e.key+"="+e.value+(n=0)return!1;return!0}))).join(" | ");o!==this._attribHTML&&(this._attribHTML=o,t.length?(this._innerContainer.innerHTML=o,this._container.classList.remove("mapboxgl-attrib-empty")):this._container.classList.add("mapboxgl-attrib-empty"),this._editLink=null)}},bi.prototype._updateCompact=function(){this._map.getCanvasContainer().offsetWidth<=640?this._container.classList.add("mapboxgl-compact"):this._container.classList.remove("mapboxgl-compact")};var _i=function(){t.bindAll(["_updateLogo"],this),t.bindAll(["_updateCompact"],this)};_i.prototype.onAdd=function(t){this._map=t,this._container=r.create("div","mapboxgl-ctrl");var e=r.create("a","mapboxgl-ctrl-logo");return e.target="_blank",e.rel="noopener nofollow",e.href="https://www.mapbox.com/",e.setAttribute("aria-label",this._map._getUIString("LogoControl.Title")),e.setAttribute("rel","noopener nofollow"),this._container.appendChild(e),this._container.style.display="none",this._map.on("sourcedata",this._updateLogo),this._updateLogo(),this._map.on("resize",this._updateCompact),this._updateCompact(),this._container},_i.prototype.onRemove=function(){r.remove(this._container),this._map.off("sourcedata",this._updateLogo),this._map.off("resize",this._updateCompact)},_i.prototype.getDefaultPosition=function(){return"bottom-left"},_i.prototype._updateLogo=function(t){t&&"metadata"!==t.sourceDataType||(this._container.style.display=this._logoRequired()?"block":"none")},_i.prototype._logoRequired=function(){if(this._map.style){var t=this._map.style.sourceCaches;for(var e in t){if(t[e].getSource().mapbox_logo)return!0}return!1}},_i.prototype._updateCompact=function(){var t=this._container.children;if(t.length){var e=t[0];this._map.getCanvasContainer().offsetWidth<250?e.classList.add("mapboxgl-compact"):e.classList.remove("mapboxgl-compact")}};var wi=function(){this._queue=[],this._id=0,this._cleared=!1,this._currentlyRunning=!1};wi.prototype.add=function(t){var e=++this._id;return this._queue.push({callback:t,id:e,cancelled:!1}),e},wi.prototype.remove=function(t){for(var e=this._currentlyRunning,r=0,n=e?this._queue.concat(e):this._queue;re.maxZoom)throw new Error("maxZoom must be greater than or equal to minZoom");if(null!=e.minPitch&&null!=e.maxPitch&&e.minPitch>e.maxPitch)throw new Error("maxPitch must be greater than or equal to minPitch");if(null!=e.minPitch&&e.minPitch<0)throw new Error("minPitch must be greater than or equal to 0");if(null!=e.maxPitch&&e.maxPitch>60)throw new Error("maxPitch must be less than or equal to 60");var i=new An(e.minZoom,e.maxZoom,e.minPitch,e.maxPitch,e.renderWorldCopies);if(n.call(this,i,e),this._interactive=e.interactive,this._maxTileCacheSize=e.maxTileCacheSize,this._failIfMajorPerformanceCaveat=e.failIfMajorPerformanceCaveat,this._preserveDrawingBuffer=e.preserveDrawingBuffer,this._antialias=e.antialias,this._trackResize=e.trackResize,this._bearingSnap=e.bearingSnap,this._refreshExpiredTiles=e.refreshExpiredTiles,this._fadeDuration=e.fadeDuration,this._crossSourceCollisions=e.crossSourceCollisions,this._crossFadingFactor=1,this._collectResourceTiming=e.collectResourceTiming,this._renderTaskQueue=new wi,this._controls=[],this._mapId=t.uniqueId(),this._locale=t.extend({},Ti,e.locale),this._requestManager=new t.RequestManager(e.transformRequest,e.accessToken),"string"==typeof e.container){if(this._container=t.window.document.getElementById(e.container),!this._container)throw new Error("Container '"+e.container+"' not found.")}else{if(!(e.container instanceof Ai))throw new Error("Invalid type: 'container' must be a String or HTMLElement.");this._container=e.container}if(e.maxBounds&&this.setMaxBounds(e.maxBounds),t.bindAll(["_onWindowOnline","_onWindowResize","_contextLost","_contextRestored"],this),this._setupContainer(),this._setupPainter(),void 0===this.painter)throw new Error("Failed to initialize WebGL.");this.on("move",(function(){return r._update(!1)})),this.on("moveend",(function(){return r._update(!1)})),this.on("zoom",(function(){return r._update(!0)})),void 0!==t.window&&(t.window.addEventListener("online",this._onWindowOnline,!1),t.window.addEventListener("resize",this._onWindowResize,!1)),this.handlers=new yi(this,e);var a="string"==typeof e.hash&&e.hash||void 0;this._hash=e.hash&&new Sn(a).addTo(this),this._hash&&this._hash._onHashChange()||(this.jumpTo({center:e.center,zoom:e.zoom,bearing:e.bearing,pitch:e.pitch}),e.bounds&&(this.resize(),this.fitBounds(e.bounds,t.extend({},e.fitBoundsOptions,{duration:0})))),this.resize(),this._localIdeographFontFamily=e.localIdeographFontFamily,e.style&&this.setStyle(e.style,{localIdeographFontFamily:e.localIdeographFontFamily}),e.attributionControl&&this.addControl(new bi({customAttribution:e.customAttribution})),this.addControl(new _i,e.logoPosition),this.on("style.load",(function(){r.transform.unmodified&&r.jumpTo(r.style.stylesheet)})),this.on("data",(function(e){r._update("style"===e.dataType),r.fire(new t.Event(e.dataType+"data",e))})),this.on("dataloading",(function(e){r.fire(new t.Event(e.dataType+"dataloading",e))}))}n&&(i.__proto__=n),i.prototype=Object.create(n&&n.prototype),i.prototype.constructor=i;var a={showTileBoundaries:{configurable:!0},showPadding:{configurable:!0},showCollisionBoxes:{configurable:!0},showOverdrawInspector:{configurable:!0},repaint:{configurable:!0},vertices:{configurable:!0},version:{configurable:!0}};return i.prototype._getMapId=function(){return this._mapId},i.prototype.addControl=function(e,r){if(void 0===r&&e.getDefaultPosition&&(r=e.getDefaultPosition()),void 0===r&&(r="top-right"),!e||!e.onAdd)return this.fire(new t.ErrorEvent(new Error("Invalid argument to map.addControl(). Argument must be a control with onAdd and onRemove methods.")));var n=e.onAdd(this);this._controls.push(e);var i=this._controlPositions[r];return-1!==r.indexOf("bottom")?i.insertBefore(n,i.firstChild):i.appendChild(n),this},i.prototype.removeControl=function(e){if(!e||!e.onRemove)return this.fire(new t.ErrorEvent(new Error("Invalid argument to map.removeControl(). Argument must be a control with onAdd and onRemove methods.")));var r=this._controls.indexOf(e);return r>-1&&this._controls.splice(r,1),e.onRemove(this),this},i.prototype.resize=function(e){var r=this._containerDimensions(),n=r[0],i=r[1];this._resizeCanvas(n,i),this.transform.resize(n,i),this.painter.resize(n,i);var a=!this._moving;return a&&(this.stop(),this.fire(new t.Event("movestart",e)).fire(new t.Event("move",e))),this.fire(new t.Event("resize",e)),a&&this.fire(new t.Event("moveend",e)),this},i.prototype.getBounds=function(){return this.transform.getBounds()},i.prototype.getMaxBounds=function(){return this.transform.getMaxBounds()},i.prototype.setMaxBounds=function(e){return this.transform.setMaxBounds(t.LngLatBounds.convert(e)),this._update()},i.prototype.setMinZoom=function(t){if((t=null==t?-2:t)>=-2&&t<=this.transform.maxZoom)return this.transform.minZoom=t,this._update(),this.getZoom()=this.transform.minZoom)return this.transform.maxZoom=t,this._update(),this.getZoom()>t&&this.setZoom(t),this;throw new Error("maxZoom must be greater than the current minZoom")},i.prototype.getMaxZoom=function(){return this.transform.maxZoom},i.prototype.setMinPitch=function(t){if((t=null==t?0:t)<0)throw new Error("minPitch must be greater than or equal to 0");if(t>=0&&t<=this.transform.maxPitch)return this.transform.minPitch=t,this._update(),this.getPitch()60)throw new Error("maxPitch must be less than or equal to 60");if(t>=this.transform.minPitch)return this.transform.maxPitch=t,this._update(),this.getPitch()>t&&this.setPitch(t),this;throw new Error("maxPitch must be greater than the current minPitch")},i.prototype.getMaxPitch=function(){return this.transform.maxPitch},i.prototype.getRenderWorldCopies=function(){return this.transform.renderWorldCopies},i.prototype.setRenderWorldCopies=function(t){return this.transform.renderWorldCopies=t,this._update()},i.prototype.project=function(e){return this.transform.locationPoint(t.LngLat.convert(e))},i.prototype.unproject=function(e){return this.transform.pointLocation(t.Point.convert(e))},i.prototype.isMoving=function(){return this._moving||this.handlers.isMoving()},i.prototype.isZooming=function(){return this._zooming||this.handlers.isZooming()},i.prototype.isRotating=function(){return this._rotating||this.handlers.isRotating()},i.prototype._createDelegatedListener=function(t,e,r){var n,i=this;if("mouseenter"===t||"mouseover"===t){var a=!1;return{layer:e,listener:r,delegates:{mousemove:function(n){var o=i.getLayer(e)?i.queryRenderedFeatures(n.point,{layers:[e]}):[];o.length?a||(a=!0,r.call(i,new Rn(t,i,n.originalEvent,{features:o}))):a=!1},mouseout:function(){a=!1}}}}if("mouseleave"===t||"mouseout"===t){var o=!1;return{layer:e,listener:r,delegates:{mousemove:function(n){(i.getLayer(e)?i.queryRenderedFeatures(n.point,{layers:[e]}):[]).length?o=!0:o&&(o=!1,r.call(i,new Rn(t,i,n.originalEvent)))},mouseout:function(e){o&&(o=!1,r.call(i,new Rn(t,i,e.originalEvent)))}}}}return{layer:e,listener:r,delegates:(n={},n[t]=function(t){var n=i.getLayer(e)?i.queryRenderedFeatures(t.point,{layers:[e]}):[];n.length&&(t.features=n,r.call(i,t),delete t.features)},n)}},i.prototype.on=function(t,e,r){if(void 0===r)return n.prototype.on.call(this,t,e);var i=this._createDelegatedListener(t,e,r);for(var a in this._delegatedListeners=this._delegatedListeners||{},this._delegatedListeners[t]=this._delegatedListeners[t]||[],this._delegatedListeners[t].push(i),i.delegates)this.on(a,i.delegates[a]);return this},i.prototype.once=function(t,e,r){if(void 0===r)return n.prototype.once.call(this,t,e);var i=this._createDelegatedListener(t,e,r);for(var a in i.delegates)this.once(a,i.delegates[a]);return this},i.prototype.off=function(t,e,r){var i=this;if(void 0===r)return n.prototype.off.call(this,t,e);return this._delegatedListeners&&this._delegatedListeners[t]&&function(n){for(var a=n[t],o=0;o180;){var s=n.locationPoint(e);if(s.x>=0&&s.y>=0&&s.x<=n.width&&s.y<=n.height)break;e.lng>n.center.lng?e.lng-=360:e.lng+=360}return e}Ii.prototype.down=function(t,e){this.mouseRotate.mousedown(t,e),this.mousePitch&&this.mousePitch.mousedown(t,e),r.disableDrag()},Ii.prototype.move=function(t,e){var r=this.map,n=this.mouseRotate.mousemoveWindow(t,e);if(n&&n.bearingDelta&&r.setBearing(r.getBearing()+n.bearingDelta),this.mousePitch){var i=this.mousePitch.mousemoveWindow(t,e);i&&i.pitchDelta&&r.setPitch(r.getPitch()+i.pitchDelta)}},Ii.prototype.off=function(){var t=this.element;r.removeEventListener(t,"mousedown",this.mousedown),r.removeEventListener(t,"touchstart",this.touchstart,{passive:!1}),r.removeEventListener(t,"touchmove",this.touchmove),r.removeEventListener(t,"touchend",this.touchend),r.removeEventListener(t,"touchcancel",this.reset),this.offTemp()},Ii.prototype.offTemp=function(){r.enableDrag(),r.removeEventListener(t.window,"mousemove",this.mousemove),r.removeEventListener(t.window,"mouseup",this.mouseup)},Ii.prototype.mousedown=function(e){this.down(t.extend({},e,{ctrlKey:!0,preventDefault:function(){return e.preventDefault()}}),r.mousePos(this.element,e)),r.addEventListener(t.window,"mousemove",this.mousemove),r.addEventListener(t.window,"mouseup",this.mouseup)},Ii.prototype.mousemove=function(t){this.move(t,r.mousePos(this.element,t))},Ii.prototype.mouseup=function(t){this.mouseRotate.mouseupWindow(t),this.mousePitch&&this.mousePitch.mouseupWindow(t),this.offTemp()},Ii.prototype.touchstart=function(t){1!==t.targetTouches.length?this.reset():(this._startPos=this._lastPos=r.touchPos(this.element,t.targetTouches)[0],this.down({type:"mousedown",button:0,ctrlKey:!0,preventDefault:function(){return t.preventDefault()}},this._startPos))},Ii.prototype.touchmove=function(t){1!==t.targetTouches.length?this.reset():(this._lastPos=r.touchPos(this.element,t.targetTouches)[0],this.move({preventDefault:function(){return t.preventDefault()}},this._lastPos))},Ii.prototype.touchend=function(t){0===t.targetTouches.length&&this._startPos&&this._lastPos&&this._startPos.dist(this._lastPos)e.getEast()||r.latitudee.getNorth())},n.prototype._setErrorState=function(){switch(this._watchState){case"WAITING_ACTIVE":this._watchState="ACTIVE_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error");break;case"ACTIVE_LOCK":this._watchState="ACTIVE_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting");break;case"BACKGROUND":this._watchState="BACKGROUND_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting")}},n.prototype._onSuccess=function(e){if(this._map){if(this._isOutOfMapMaxBounds(e))return this._setErrorState(),this.fire(new t.Event("outofmaxbounds",e)),this._updateMarker(),void this._finish();if(this.options.trackUserLocation)switch(this._lastKnownPosition=e,this._watchState){case"WAITING_ACTIVE":case"ACTIVE_LOCK":case"ACTIVE_ERROR":this._watchState="ACTIVE_LOCK",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"BACKGROUND":case"BACKGROUND_ERROR":this._watchState="BACKGROUND",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background")}this.options.showUserLocation&&"OFF"!==this._watchState&&this._updateMarker(e),this.options.trackUserLocation&&"ACTIVE_LOCK"!==this._watchState||this._updateCamera(e),this.options.showUserLocation&&this._dotElement.classList.remove("mapboxgl-user-location-dot-stale"),this.fire(new t.Event("geolocate",e)),this._finish()}},n.prototype._updateCamera=function(e){var r=new t.LngLat(e.coords.longitude,e.coords.latitude),n=e.coords.accuracy,i=this._map.getBearing(),a=t.extend({bearing:i},this.options.fitBoundsOptions);this._map.fitBounds(r.toBounds(n),a,{geolocateSource:!0})},n.prototype._updateMarker=function(e){if(e){var r=new t.LngLat(e.coords.longitude,e.coords.latitude);this._accuracyCircleMarker.setLngLat(r).addTo(this._map),this._userLocationDotMarker.setLngLat(r).addTo(this._map),this._accuracy=e.coords.accuracy,this.options.showUserLocation&&this.options.showAccuracyCircle&&this._updateCircleRadius()}else this._userLocationDotMarker.remove(),this._accuracyCircleMarker.remove()},n.prototype._updateCircleRadius=function(){var t=this._map._container.clientHeight/2,e=this._map.unproject([0,t]),r=this._map.unproject([1,t]),n=e.distanceTo(r),i=Math.ceil(2*this._accuracy/n);this._circleElement.style.width=i+"px",this._circleElement.style.height=i+"px"},n.prototype._onZoom=function(){this.options.showUserLocation&&this.options.showAccuracyCircle&&this._updateCircleRadius()},n.prototype._onError=function(e){if(this._map){if(this.options.trackUserLocation)if(1===e.code){this._watchState="OFF",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.disabled=!0;var r=this._map._getUIString("GeolocateControl.LocationNotAvailable");this._geolocateButton.title=r,this._geolocateButton.setAttribute("aria-label",r),void 0!==this._geolocationWatchID&&this._clearWatch()}else{if(3===e.code&&ji)return;this._setErrorState()}"OFF"!==this._watchState&&this.options.showUserLocation&&this._dotElement.classList.add("mapboxgl-user-location-dot-stale"),this.fire(new t.Event("error",e)),this._finish()}},n.prototype._finish=function(){this._timeoutId&&clearTimeout(this._timeoutId),this._timeoutId=void 0},n.prototype._setupUI=function(e){var n=this;if(this._container.addEventListener("contextmenu",(function(t){return t.preventDefault()})),this._geolocateButton=r.create("button","mapboxgl-ctrl-geolocate",this._container),r.create("span","mapboxgl-ctrl-icon",this._geolocateButton).setAttribute("aria-hidden",!0),this._geolocateButton.type="button",!1===e){t.warnOnce("Geolocation support is not available so the GeolocateControl will be disabled.");var i=this._map._getUIString("GeolocateControl.LocationNotAvailable");this._geolocateButton.disabled=!0,this._geolocateButton.title=i,this._geolocateButton.setAttribute("aria-label",i)}else{var a=this._map._getUIString("GeolocateControl.FindMyLocation");this._geolocateButton.title=a,this._geolocateButton.setAttribute("aria-label",a)}this.options.trackUserLocation&&(this._geolocateButton.setAttribute("aria-pressed","false"),this._watchState="OFF"),this.options.showUserLocation&&(this._dotElement=r.create("div","mapboxgl-user-location-dot"),this._userLocationDotMarker=new Fi(this._dotElement),this._circleElement=r.create("div","mapboxgl-user-location-accuracy-circle"),this._accuracyCircleMarker=new Fi({element:this._circleElement,pitchAlignment:"map"}),this.options.trackUserLocation&&(this._watchState="OFF"),this._map.on("zoom",this._onZoom)),this._geolocateButton.addEventListener("click",this.trigger.bind(this)),this._setup=!0,this.options.trackUserLocation&&this._map.on("movestart",(function(e){var r=e.originalEvent&&"resize"===e.originalEvent.type;e.geolocateSource||"ACTIVE_LOCK"!==n._watchState||r||(n._watchState="BACKGROUND",n._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background"),n._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),n.fire(new t.Event("trackuserlocationend")))}))},n.prototype.trigger=function(){if(!this._setup)return t.warnOnce("Geolocate control triggered before added to a map"),!1;if(this.options.trackUserLocation){switch(this._watchState){case"OFF":this._watchState="WAITING_ACTIVE",this.fire(new t.Event("trackuserlocationstart"));break;case"WAITING_ACTIVE":case"ACTIVE_LOCK":case"ACTIVE_ERROR":case"BACKGROUND_ERROR":Ni--,ji=!1,this._watchState="OFF",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this.fire(new t.Event("trackuserlocationend"));break;case"BACKGROUND":this._watchState="ACTIVE_LOCK",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._lastKnownPosition&&this._updateCamera(this._lastKnownPosition),this.fire(new t.Event("trackuserlocationstart"))}switch(this._watchState){case"WAITING_ACTIVE":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"ACTIVE_LOCK":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"ACTIVE_ERROR":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error");break;case"BACKGROUND":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background");break;case"BACKGROUND_ERROR":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background-error")}if("OFF"===this._watchState&&void 0!==this._geolocationWatchID)this._clearWatch();else if(void 0===this._geolocationWatchID){var e;this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.setAttribute("aria-pressed","true"),++Ni>1?(e={maximumAge:6e5,timeout:0},ji=!0):(e=this.options.positionOptions,ji=!1),this._geolocationWatchID=t.window.navigator.geolocation.watchPosition(this._onSuccess,this._onError,e)}}else t.window.navigator.geolocation.getCurrentPosition(this._onSuccess,this._onError,this.options.positionOptions),this._timeoutId=setTimeout(this._finish,1e4);return!0},n.prototype._clearWatch=function(){t.window.navigator.geolocation.clearWatch(this._geolocationWatchID),this._geolocationWatchID=void 0,this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.setAttribute("aria-pressed","false"),this.options.showUserLocation&&this._updateMarker(null)},n}(t.Evented),Vi={maxWidth:100,unit:"metric"},Hi=function(e){this.options=t.extend({},Vi,e),t.bindAll(["_onMove","setUnit"],this)};function qi(t,e,r){var n=r&&r.maxWidth||100,i=t._container.clientHeight/2,a=t.unproject([0,i]),o=t.unproject([n,i]),s=a.distanceTo(o);if(r&&"imperial"===r.unit){var l=3.2808*s;if(l>5280)Gi(e,n,l/5280,t._getUIString("ScaleControl.Miles"));else Gi(e,n,l,t._getUIString("ScaleControl.Feet"))}else if(r&&"nautical"===r.unit){Gi(e,n,s/1852,t._getUIString("ScaleControl.NauticalMiles"))}else s>=1e3?Gi(e,n,s/1e3,t._getUIString("ScaleControl.Kilometers")):Gi(e,n,s,t._getUIString("ScaleControl.Meters"))}function Gi(t,e,r,n){var i,a,o,s=(i=r,a=Math.pow(10,(""+Math.floor(i)).length-1),o=(o=i/a)>=10?10:o>=5?5:o>=3?3:o>=2?2:o>=1?1:function(t){var e=Math.pow(10,Math.ceil(-Math.log(t)/Math.LN10));return Math.round(t*e)/e}(o),a*o),l=s/r;t.style.width=e*l+"px",t.innerHTML=s+" "+n}Hi.prototype.getDefaultPosition=function(){return"bottom-left"},Hi.prototype._onMove=function(){qi(this._map,this._container,this.options)},Hi.prototype.onAdd=function(t){return this._map=t,this._container=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-scale",t.getContainer()),this._map.on("move",this._onMove),this._onMove(),this._container},Hi.prototype.onRemove=function(){r.remove(this._container),this._map.off("move",this._onMove),this._map=void 0},Hi.prototype.setUnit=function(t){this.options.unit=t,qi(this._map,this._container,this.options)};var Yi=function(e){this._fullscreen=!1,e&&e.container&&(e.container instanceof t.window.HTMLElement?this._container=e.container:t.warnOnce("Full screen control 'container' must be a DOM element.")),t.bindAll(["_onClickFullscreen","_changeIcon"],this),"onfullscreenchange"in t.window.document?this._fullscreenchange="fullscreenchange":"onmozfullscreenchange"in t.window.document?this._fullscreenchange="mozfullscreenchange":"onwebkitfullscreenchange"in t.window.document?this._fullscreenchange="webkitfullscreenchange":"onmsfullscreenchange"in t.window.document&&(this._fullscreenchange="MSFullscreenChange")};Yi.prototype.onAdd=function(e){return this._map=e,this._container||(this._container=this._map.getContainer()),this._controlContainer=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-group"),this._checkFullscreenSupport()?this._setupUI():(this._controlContainer.style.display="none",t.warnOnce("This device does not support fullscreen mode.")),this._controlContainer},Yi.prototype.onRemove=function(){r.remove(this._controlContainer),this._map=null,t.window.document.removeEventListener(this._fullscreenchange,this._changeIcon)},Yi.prototype._checkFullscreenSupport=function(){return!!(t.window.document.fullscreenEnabled||t.window.document.mozFullScreenEnabled||t.window.document.msFullscreenEnabled||t.window.document.webkitFullscreenEnabled)},Yi.prototype._setupUI=function(){var e=this._fullscreenButton=r.create("button","mapboxgl-ctrl-fullscreen",this._controlContainer);r.create("span","mapboxgl-ctrl-icon",e).setAttribute("aria-hidden",!0),e.type="button",this._updateTitle(),this._fullscreenButton.addEventListener("click",this._onClickFullscreen),t.window.document.addEventListener(this._fullscreenchange,this._changeIcon)},Yi.prototype._updateTitle=function(){var t=this._getTitle();this._fullscreenButton.setAttribute("aria-label",t),this._fullscreenButton.title=t},Yi.prototype._getTitle=function(){return this._map._getUIString(this._isFullscreen()?"FullscreenControl.Exit":"FullscreenControl.Enter")},Yi.prototype._isFullscreen=function(){return this._fullscreen},Yi.prototype._changeIcon=function(){(t.window.document.fullscreenElement||t.window.document.mozFullScreenElement||t.window.document.webkitFullscreenElement||t.window.document.msFullscreenElement)===this._container!==this._fullscreen&&(this._fullscreen=!this._fullscreen,this._fullscreenButton.classList.toggle("mapboxgl-ctrl-shrink"),this._fullscreenButton.classList.toggle("mapboxgl-ctrl-fullscreen"),this._updateTitle())},Yi.prototype._onClickFullscreen=function(){this._isFullscreen()?t.window.document.exitFullscreen?t.window.document.exitFullscreen():t.window.document.mozCancelFullScreen?t.window.document.mozCancelFullScreen():t.window.document.msExitFullscreen?t.window.document.msExitFullscreen():t.window.document.webkitCancelFullScreen&&t.window.document.webkitCancelFullScreen():this._container.requestFullscreen?this._container.requestFullscreen():this._container.mozRequestFullScreen?this._container.mozRequestFullScreen():this._container.msRequestFullscreen?this._container.msRequestFullscreen():this._container.webkitRequestFullscreen&&this._container.webkitRequestFullscreen()};var Wi={closeButton:!0,closeOnClick:!0,className:"",maxWidth:"240px"},Xi=function(e){function n(r){e.call(this),this.options=t.extend(Object.create(Wi),r),t.bindAll(["_update","_onClose","remove","_onMouseMove","_onMouseUp","_onDrag"],this)}return e&&(n.__proto__=e),n.prototype=Object.create(e&&e.prototype),n.prototype.constructor=n,n.prototype.addTo=function(e){return this._map&&this.remove(),this._map=e,this.options.closeOnClick&&this._map.on("click",this._onClose),this.options.closeOnMove&&this._map.on("move",this._onClose),this._map.on("remove",this.remove),this._update(),this._trackPointer?(this._map.on("mousemove",this._onMouseMove),this._map.on("mouseup",this._onMouseUp),this._container&&this._container.classList.add("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.add("mapboxgl-track-pointer")):this._map.on("move",this._update),this.fire(new t.Event("open")),this},n.prototype.isOpen=function(){return!!this._map},n.prototype.remove=function(){return this._content&&r.remove(this._content),this._container&&(r.remove(this._container),delete this._container),this._map&&(this._map.off("move",this._update),this._map.off("move",this._onClose),this._map.off("click",this._onClose),this._map.off("remove",this.remove),this._map.off("mousemove",this._onMouseMove),this._map.off("mouseup",this._onMouseUp),this._map.off("drag",this._onDrag),delete this._map),this.fire(new t.Event("close")),this},n.prototype.getLngLat=function(){return this._lngLat},n.prototype.setLngLat=function(e){return this._lngLat=t.LngLat.convert(e),this._pos=null,this._trackPointer=!1,this._update(),this._map&&(this._map.on("move",this._update),this._map.off("mousemove",this._onMouseMove),this._container&&this._container.classList.remove("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.remove("mapboxgl-track-pointer")),this},n.prototype.trackPointer=function(){return this._trackPointer=!0,this._pos=null,this._update(),this._map&&(this._map.off("move",this._update),this._map.on("mousemove",this._onMouseMove),this._map.on("drag",this._onDrag),this._container&&this._container.classList.add("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.add("mapboxgl-track-pointer")),this},n.prototype.getElement=function(){return this._container},n.prototype.setText=function(e){return this.setDOMContent(t.window.document.createTextNode(e))},n.prototype.setHTML=function(e){var r,n=t.window.document.createDocumentFragment(),i=t.window.document.createElement("body");for(i.innerHTML=e;r=i.firstChild;)n.appendChild(r);return this.setDOMContent(n)},n.prototype.getMaxWidth=function(){return this._container&&this._container.style.maxWidth},n.prototype.setMaxWidth=function(t){return this.options.maxWidth=t,this._update(),this},n.prototype.setDOMContent=function(t){return this._createContent(),this._content.appendChild(t),this._update(),this},n.prototype.addClassName=function(t){this._container&&this._container.classList.add(t)},n.prototype.removeClassName=function(t){this._container&&this._container.classList.remove(t)},n.prototype.toggleClassName=function(t){if(this._container)return this._container.classList.toggle(t)},n.prototype._createContent=function(){this._content&&r.remove(this._content),this._content=r.create("div","mapboxgl-popup-content",this._container),this.options.closeButton&&(this._closeButton=r.create("button","mapboxgl-popup-close-button",this._content),this._closeButton.type="button",this._closeButton.setAttribute("aria-label","Close popup"),this._closeButton.innerHTML="×",this._closeButton.addEventListener("click",this._onClose))},n.prototype._onMouseUp=function(t){this._update(t.point)},n.prototype._onMouseMove=function(t){this._update(t.point)},n.prototype._onDrag=function(t){this._update(t.point)},n.prototype._update=function(e){var n=this,i=this._lngLat||this._trackPointer;if(this._map&&i&&this._content&&(this._container||(this._container=r.create("div","mapboxgl-popup",this._map.getContainer()),this._tip=r.create("div","mapboxgl-popup-tip",this._container),this._container.appendChild(this._content),this.options.className&&this.options.className.split(" ").forEach((function(t){return n._container.classList.add(t)})),this._trackPointer&&this._container.classList.add("mapboxgl-popup-track-pointer")),this.options.maxWidth&&this._container.style.maxWidth!==this.options.maxWidth&&(this._container.style.maxWidth=this.options.maxWidth),this._map.transform.renderWorldCopies&&!this._trackPointer&&(this._lngLat=Oi(this._lngLat,this._pos,this._map.transform)),!this._trackPointer||e)){var a=this._pos=this._trackPointer&&e?e:this._map.project(this._lngLat),o=this.options.anchor,s=function e(r){if(r){if("number"==typeof r){var n=Math.round(Math.sqrt(.5*Math.pow(r,2)));return{center:new t.Point(0,0),top:new t.Point(0,r),"top-left":new t.Point(n,n),"top-right":new t.Point(-n,n),bottom:new t.Point(0,-r),"bottom-left":new t.Point(n,-n),"bottom-right":new t.Point(-n,-n),left:new t.Point(r,0),right:new t.Point(-r,0)}}if(r instanceof t.Point||Array.isArray(r)){var i=t.Point.convert(r);return{center:i,top:i,"top-left":i,"top-right":i,bottom:i,"bottom-left":i,"bottom-right":i,left:i,right:i}}return{center:t.Point.convert(r.center||[0,0]),top:t.Point.convert(r.top||[0,0]),"top-left":t.Point.convert(r["top-left"]||[0,0]),"top-right":t.Point.convert(r["top-right"]||[0,0]),bottom:t.Point.convert(r.bottom||[0,0]),"bottom-left":t.Point.convert(r["bottom-left"]||[0,0]),"bottom-right":t.Point.convert(r["bottom-right"]||[0,0]),left:t.Point.convert(r.left||[0,0]),right:t.Point.convert(r.right||[0,0])}}return e(new t.Point(0,0))}(this.options.offset);if(!o){var l,c=this._container.offsetWidth,u=this._container.offsetHeight;l=a.y+s.bottom.ythis._map.transform.height-u?["bottom"]:[],a.xthis._map.transform.width-c/2&&l.push("right"),o=0===l.length?"bottom":l.join("-")}var f=a.add(s[o]).round();r.setTransform(this._container,zi[o]+" translate("+f.x+"px,"+f.y+"px)"),Di(this._container,o,"popup")}},n.prototype._onClose=function(){this.remove()},n}(t.Evented);var Zi={version:t.version,supported:e,setRTLTextPlugin:t.setRTLTextPlugin,getRTLTextPluginStatus:t.getRTLTextPluginStatus,Map:Ei,NavigationControl:Pi,GeolocateControl:Ui,AttributionControl:bi,ScaleControl:Hi,FullscreenControl:Yi,Popup:Xi,Marker:Fi,Style:qe,LngLat:t.LngLat,LngLatBounds:t.LngLatBounds,Point:t.Point,MercatorCoordinate:t.MercatorCoordinate,Evented:t.Evented,config:t.config,prewarm:function(){Bt().acquire(zt)},clearPrewarmedResources:function(){var t=Rt;t&&(t.isPreloaded()&&1===t.numActive()?(t.release(zt),Rt=null):console.warn("Could not clear WebWorkers since there are active Map instances that still reference it. The pre-warmed WebWorker pool can only be cleared when all map instances have been removed with map.remove()"))},get accessToken(){return t.config.ACCESS_TOKEN},set accessToken(e){t.config.ACCESS_TOKEN=e},get baseApiUrl(){return t.config.API_URL},set baseApiUrl(e){t.config.API_URL=e},get workerCount(){return Dt.workerCount},set workerCount(t){Dt.workerCount=t},get maxParallelImageRequests(){return t.config.MAX_PARALLEL_IMAGE_REQUESTS},set maxParallelImageRequests(e){t.config.MAX_PARALLEL_IMAGE_REQUESTS=e},clearStorage:function(e){t.clearTileCache(e)},workerUrl:""};return Zi})),r}))},{}],235:[function(t,e,r){"use strict";e.exports=Math.log2||function(t){return Math.log(t)*Math.LOG2E}},{}],236:[function(t,e,r){"use strict";e.exports=function(t,e){e||(e=t,t=window);var r=0,i=0,a=0,o={shift:!1,alt:!1,control:!1,meta:!1},s=!1;function l(t){var e=!1;return"altKey"in t&&(e=e||t.altKey!==o.alt,o.alt=!!t.altKey),"shiftKey"in t&&(e=e||t.shiftKey!==o.shift,o.shift=!!t.shiftKey),"ctrlKey"in t&&(e=e||t.ctrlKey!==o.control,o.control=!!t.ctrlKey),"metaKey"in t&&(e=e||t.metaKey!==o.meta,o.meta=!!t.metaKey),e}function c(t,s){var c=n.x(s),u=n.y(s);"buttons"in s&&(t=0|s.buttons),(t!==r||c!==i||u!==a||l(s))&&(r=0|t,i=c||0,a=u||0,e&&e(r,i,a,o))}function u(t){c(0,t)}function f(){(r||i||a||o.shift||o.alt||o.meta||o.control)&&(i=a=0,r=0,o.shift=o.alt=o.control=o.meta=!1,e&&e(0,0,0,o))}function h(t){l(t)&&e&&e(r,i,a,o)}function p(t){0===n.buttons(t)?c(0,t):c(r,t)}function d(t){c(r|n.buttons(t),t)}function m(t){c(r&~n.buttons(t),t)}function g(){s||(s=!0,t.addEventListener("mousemove",p),t.addEventListener("mousedown",d),t.addEventListener("mouseup",m),t.addEventListener("mouseleave",u),t.addEventListener("mouseenter",u),t.addEventListener("mouseout",u),t.addEventListener("mouseover",u),t.addEventListener("blur",f),t.addEventListener("keyup",h),t.addEventListener("keydown",h),t.addEventListener("keypress",h),t!==window&&(window.addEventListener("blur",f),window.addEventListener("keyup",h),window.addEventListener("keydown",h),window.addEventListener("keypress",h)))}g();var v={element:t};return Object.defineProperties(v,{enabled:{get:function(){return s},set:function(e){e?g():function(){if(!s)return;s=!1,t.removeEventListener("mousemove",p),t.removeEventListener("mousedown",d),t.removeEventListener("mouseup",m),t.removeEventListener("mouseleave",u),t.removeEventListener("mouseenter",u),t.removeEventListener("mouseout",u),t.removeEventListener("mouseover",u),t.removeEventListener("blur",f),t.removeEventListener("keyup",h),t.removeEventListener("keydown",h),t.removeEventListener("keypress",h),t!==window&&(window.removeEventListener("blur",f),window.removeEventListener("keyup",h),window.removeEventListener("keydown",h),window.removeEventListener("keypress",h))}()},enumerable:!0},buttons:{get:function(){return r},enumerable:!0},x:{get:function(){return i},enumerable:!0},y:{get:function(){return a},enumerable:!0},mods:{get:function(){return o},enumerable:!0}}),v};var n=t("mouse-event")},{"mouse-event":238}],237:[function(t,e,r){var n={left:0,top:0};e.exports=function(t,e,r){e=e||t.currentTarget||t.srcElement,Array.isArray(r)||(r=[0,0]);var i=t.clientX||0,a=t.clientY||0,o=(s=e,s===window||s===document||s===document.body?n:s.getBoundingClientRect());var s;return r[0]=i-o.left,r[1]=a-o.top,r}},{}],238:[function(t,e,r){"use strict";function n(t){return t.target||t.srcElement||window}r.buttons=function(t){if("object"==typeof t){if("buttons"in t)return t.buttons;if("which"in t){if(2===(e=t.which))return 4;if(3===e)return 2;if(e>0)return 1<=0)return 1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},r.write=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m}},{}],428:[function(t,e,r){"use strict";e.exports=function(t,e){var r=t.length;if(0===r)throw new Error("Must have at least d+1 points");var i=t[0].length;if(r<=i)throw new Error("Must input at least d+1 points");var o=t.slice(0,i+1),s=n.apply(void 0,o);if(0===s)throw new Error("Input not in general position");for(var l=new Array(i+1),u=0;u<=i;++u)l[u]=u;s<0&&(l[0]=1,l[1]=0);var f=new a(l,new Array(i+1),!1),h=f.adjacent,p=new Array(i+2);for(u=0;u<=i;++u){for(var d=l.slice(),m=0;m<=i;++m)m===u&&(d[m]=-1);var g=d[0];d[0]=d[1],d[1]=g;var v=new a(d,new Array(i+1),!0);h[u]=v,p[u]=v}p[i+1]=f;for(u=0;u<=i;++u){d=h[u].vertices;var y=h[u].adjacent;for(m=0;m<=i;++m){var x=d[m];if(x<0)y[m]=f;else for(var b=0;b<=i;++b)h[b].vertices.indexOf(x)<0&&(y[m]=h[b])}}var _=new c(i,o,p),w=!!e;for(u=i+1;u0;)for(var s=(t=o.pop()).adjacent,l=0;l<=r;++l){var c=s[l];if(c.boundary&&!(c.lastVisited<=-n)){for(var u=c.vertices,f=0;f<=r;++f){var h=u[f];i[f]=h<0?e:a[h]}var p=this.orient();if(p>0)return c;c.lastVisited=-n,0===p&&o.push(c)}}return null},u.walk=function(t,e){var r=this.vertices.length-1,n=this.dimension,i=this.vertices,a=this.tuple,o=e?this.interior.length*Math.random()|0:this.interior.length-1,s=this.interior[o];t:for(;!s.boundary;){for(var l=s.vertices,c=s.adjacent,u=0;u<=n;++u)a[u]=i[l[u]];s.lastVisited=r;for(u=0;u<=n;++u){var f=c[u];if(!(f.lastVisited>=r)){var h=a[u];a[u]=t;var p=this.orient();if(a[u]=h,p<0){s=f;continue t}f.boundary?f.lastVisited=-r:f.lastVisited=r}}return}return s},u.addPeaks=function(t,e){var r=this.vertices.length-1,n=this.dimension,i=this.vertices,l=this.tuple,c=this.interior,u=this.simplices,f=[e];e.lastVisited=r,e.vertices[e.vertices.indexOf(-1)]=r,e.boundary=!1,c.push(e);for(var h=[];f.length>0;){var p=(e=f.pop()).vertices,d=e.adjacent,m=p.indexOf(r);if(!(m<0))for(var g=0;g<=n;++g)if(g!==m){var v=d[g];if(v.boundary&&!(v.lastVisited>=r)){var y=v.vertices;if(v.lastVisited!==-r){for(var x=0,b=0;b<=n;++b)y[b]<0?(x=b,l[b]=t):l[b]=i[y[b]];if(this.orient()>0){y[x]=r,v.boundary=!1,c.push(v),f.push(v),v.lastVisited=r;continue}v.lastVisited=-r}var _=v.adjacent,w=p.slice(),T=d.slice(),k=new a(w,T,!0);u.push(k);var A=_.indexOf(e);if(!(A<0)){_[A]=k,T[m]=v,w[g]=-1,T[g]=e,d[g]=k,k.flip();for(b=0;b<=n;++b){var M=w[b];if(!(M<0||M===r)){for(var S=new Array(n-1),E=0,L=0;L<=n;++L){var C=w[L];C<0||L===b||(S[E++]=C)}h.push(new o(S,k,b))}}}}}}h.sort(s);for(g=0;g+1=0?o[l++]=s[u]:c=1&u;if(c===(1&t)){var f=o[0];o[0]=o[1],o[1]=f}e.push(o)}}return e}},{"robust-orientation":524,"simplicial-complex":534}],429:[function(t,e,r){"function"==typeof Object.create?e.exports=function(t,e){e&&(t.super_=e,t.prototype=Object.create(e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}}))}:e.exports=function(t,e){if(e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}}},{}],430:[function(t,e,r){"use strict";var n=t("binary-search-bounds");function i(t,e,r,n,i){this.mid=t,this.left=e,this.right=r,this.leftPoints=n,this.rightPoints=i,this.count=(e?e.count:0)+(r?r.count:0)+n.length}e.exports=function(t){if(!t||0===t.length)return new v(null);return new v(g(t))};var a=i.prototype;function o(t,e){t.mid=e.mid,t.left=e.left,t.right=e.right,t.leftPoints=e.leftPoints,t.rightPoints=e.rightPoints,t.count=e.count}function s(t,e){var r=g(e);t.mid=r.mid,t.left=r.left,t.right=r.right,t.leftPoints=r.leftPoints,t.rightPoints=r.rightPoints,t.count=r.count}function l(t,e){var r=t.intervals([]);r.push(e),s(t,r)}function c(t,e){var r=t.intervals([]),n=r.indexOf(e);return n<0?0:(r.splice(n,1),s(t,r),1)}function u(t,e,r){for(var n=0;n=0&&t[n][1]>=e;--n){var i=r(t[n]);if(i)return i}}function h(t,e){for(var r=0;r>1],a=[],o=[],s=[];for(r=0;r3*(e+1)?l(this,t):this.left.insert(t):this.left=g([t]);else if(t[0]>this.mid)this.right?4*(this.right.count+1)>3*(e+1)?l(this,t):this.right.insert(t):this.right=g([t]);else{var r=n.ge(this.leftPoints,t,d),i=n.ge(this.rightPoints,t,m);this.leftPoints.splice(r,0,t),this.rightPoints.splice(i,0,t)}},a.remove=function(t){var e=this.count-this.leftPoints;if(t[1]3*(e-1)?c(this,t):2===(s=this.left.remove(t))?(this.left=null,this.count-=1,1):(1===s&&(this.count-=1),s):0;if(t[0]>this.mid)return this.right?4*(this.left?this.left.count:0)>3*(e-1)?c(this,t):2===(s=this.right.remove(t))?(this.right=null,this.count-=1,1):(1===s&&(this.count-=1),s):0;if(1===this.count)return this.leftPoints[0]===t?2:0;if(1===this.leftPoints.length&&this.leftPoints[0]===t){if(this.left&&this.right){for(var r=this,i=this.left;i.right;)r=i,i=i.right;if(r===this)i.right=this.right;else{var a=this.left,s=this.right;r.count-=i.count,r.right=i.left,i.left=a,i.right=s}o(this,i),this.count=(this.left?this.left.count:0)+(this.right?this.right.count:0)+this.leftPoints.length}else this.left?o(this,this.left):o(this,this.right);return 1}for(a=n.ge(this.leftPoints,t,d);athis.mid){var r;if(this.right)if(r=this.right.queryPoint(t,e))return r;return f(this.rightPoints,t,e)}return h(this.leftPoints,e)},a.queryInterval=function(t,e,r){var n;if(tthis.mid&&this.right&&(n=this.right.queryInterval(t,e,r)))return n;return ethis.mid?f(this.rightPoints,t,r):h(this.leftPoints,r)};var y=v.prototype;y.insert=function(t){this.root?this.root.insert(t):this.root=new i(t[0],null,null,[t],[t])},y.remove=function(t){if(this.root){var e=this.root.remove(t);return 2===e&&(this.root=null),0!==e}return!1},y.queryPoint=function(t,e){if(this.root)return this.root.queryPoint(t,e)},y.queryInterval=function(t,e,r){if(t<=e&&this.root)return this.root.queryInterval(t,e,r)},Object.defineProperty(y,"count",{get:function(){return this.root?this.root.count:0}}),Object.defineProperty(y,"intervals",{get:function(){return this.root?this.root.intervals([]):[]}})},{"binary-search-bounds":100}],431:[function(t,e,r){"use strict";e.exports=function(t){for(var e=new Array(t),r=0;r + * @license MIT + */ +e.exports=function(t){return null!=t&&(n(t)||function(t){return"function"==typeof t.readFloatLE&&"function"==typeof t.slice&&n(t.slice(0,0))}(t)||!!t._isBuffer)}},{}],434:[function(t,e,r){"use strict";e.exports="undefined"!=typeof navigator&&(/MSIE/.test(navigator.userAgent)||/Trident\//.test(navigator.appVersion))},{}],435:[function(t,e,r){"use strict";e.exports=a,e.exports.isMobile=a,e.exports.default=a;var n=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i,i=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino|android|ipad|playbook|silk/i;function a(t){t||(t={});var e=t.ua;if(e||"undefined"==typeof navigator||(e=navigator.userAgent),e&&e.headers&&"string"==typeof e.headers["user-agent"]&&(e=e.headers["user-agent"]),"string"!=typeof e)return!1;var r=t.tablet?i.test(e):n.test(e);return!r&&t.tablet&&t.featureDetect&&navigator&&navigator.maxTouchPoints>1&&-1!==e.indexOf("Macintosh")&&-1!==e.indexOf("Safari")&&(r=!0),r}},{}],436:[function(t,e,r){"use strict";e.exports=function(t){var e=typeof t;return null!==t&&("object"===e||"function"===e)}},{}],437:[function(t,e,r){"use strict";var n=Object.prototype.toString;e.exports=function(t){var e;return"[object Object]"===n.call(t)&&(null===(e=Object.getPrototypeOf(t))||e===Object.getPrototypeOf({}))}},{}],438:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=t.length,n=0;n13)&&32!==e&&133!==e&&160!==e&&5760!==e&&6158!==e&&(e<8192||e>8205)&&8232!==e&&8233!==e&&8239!==e&&8287!==e&&8288!==e&&12288!==e&&65279!==e)return!1;return!0}},{}],439:[function(t,e,r){"use strict";e.exports=function(t){return"string"==typeof t&&(t=t.trim(),!!(/^[mzlhvcsqta]\s*[-+.0-9][^mlhvzcsqta]+/i.test(t)&&/[\dz]$/i.test(t)&&t.length>4))}},{}],440:[function(t,e,r){e.exports=function(t,e,r){return t*(1-r)+e*r}},{}],441:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?e.exports=n():(t=t||self).mapboxgl=n()}(this,(function(){"use strict";var t,e,r;function n(n,i){if(t)if(e){var a="var sharedChunk = {}; ("+t+")(sharedChunk); ("+e+")(sharedChunk);",o={};t(o),(r=i(o)).workerUrl=window.URL.createObjectURL(new Blob([a],{type:"text/javascript"}))}else e=i;else t=i}return n(0,(function(t){function e(t,e){return t(e={exports:{}},e.exports),e.exports}var r=n;function n(t,e,r,n){this.cx=3*t,this.bx=3*(r-t)-this.cx,this.ax=1-this.cx-this.bx,this.cy=3*e,this.by=3*(n-e)-this.cy,this.ay=1-this.cy-this.by,this.p1x=t,this.p1y=n,this.p2x=r,this.p2y=n}n.prototype.sampleCurveX=function(t){return((this.ax*t+this.bx)*t+this.cx)*t},n.prototype.sampleCurveY=function(t){return((this.ay*t+this.by)*t+this.cy)*t},n.prototype.sampleCurveDerivativeX=function(t){return(3*this.ax*t+2*this.bx)*t+this.cx},n.prototype.solveCurveX=function(t,e){var r,n,i,a,o;for(void 0===e&&(e=1e-6),i=t,o=0;o<8;o++){if(a=this.sampleCurveX(i)-t,Math.abs(a)(n=1))return n;for(;ra?r=i:n=i,i=.5*(n-r)+r}return i},n.prototype.solve=function(t,e){return this.sampleCurveY(this.solveCurveX(t,e))};var i=a;function a(t,e){this.x=t,this.y=e}function o(t,e,n,i){var a=new r(t,e,n,i);return function(t){return a.solve(t)}}a.prototype={clone:function(){return new a(this.x,this.y)},add:function(t){return this.clone()._add(t)},sub:function(t){return this.clone()._sub(t)},multByPoint:function(t){return this.clone()._multByPoint(t)},divByPoint:function(t){return this.clone()._divByPoint(t)},mult:function(t){return this.clone()._mult(t)},div:function(t){return this.clone()._div(t)},rotate:function(t){return this.clone()._rotate(t)},rotateAround:function(t,e){return this.clone()._rotateAround(t,e)},matMult:function(t){return this.clone()._matMult(t)},unit:function(){return this.clone()._unit()},perp:function(){return this.clone()._perp()},round:function(){return this.clone()._round()},mag:function(){return Math.sqrt(this.x*this.x+this.y*this.y)},equals:function(t){return this.x===t.x&&this.y===t.y},dist:function(t){return Math.sqrt(this.distSqr(t))},distSqr:function(t){var e=t.x-this.x,r=t.y-this.y;return e*e+r*r},angle:function(){return Math.atan2(this.y,this.x)},angleTo:function(t){return Math.atan2(this.y-t.y,this.x-t.x)},angleWith:function(t){return this.angleWithSep(t.x,t.y)},angleWithSep:function(t,e){return Math.atan2(this.x*e-this.y*t,this.x*t+this.y*e)},_matMult:function(t){var e=t[0]*this.x+t[1]*this.y,r=t[2]*this.x+t[3]*this.y;return this.x=e,this.y=r,this},_add:function(t){return this.x+=t.x,this.y+=t.y,this},_sub:function(t){return this.x-=t.x,this.y-=t.y,this},_mult:function(t){return this.x*=t,this.y*=t,this},_div:function(t){return this.x/=t,this.y/=t,this},_multByPoint:function(t){return this.x*=t.x,this.y*=t.y,this},_divByPoint:function(t){return this.x/=t.x,this.y/=t.y,this},_unit:function(){return this._div(this.mag()),this},_perp:function(){var t=this.y;return this.y=this.x,this.x=-t,this},_rotate:function(t){var e=Math.cos(t),r=Math.sin(t),n=e*this.x-r*this.y,i=r*this.x+e*this.y;return this.x=n,this.y=i,this},_rotateAround:function(t,e){var r=Math.cos(t),n=Math.sin(t),i=e.x+r*(this.x-e.x)-n*(this.y-e.y),a=e.y+n*(this.x-e.x)+r*(this.y-e.y);return this.x=i,this.y=a,this},_round:function(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this}},a.convert=function(t){return t instanceof a?t:Array.isArray(t)?new a(t[0],t[1]):t};var s=o(.25,.1,.25,1);function l(t,e,r){return Math.min(r,Math.max(e,t))}function c(t,e,r){var n=r-e,i=((t-e)%n+n)%n+e;return i===e?r:i}function u(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];for(var n=0,i=e;n>e/4).toString(16):([1e7]+-[1e3]+-4e3+-8e3+-1e11).replace(/[018]/g,t)}()}function d(t){return!!t&&/^[0-9a-f]{8}-[0-9a-f]{4}-[4][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$/i.test(t)}function m(t,e){t.forEach((function(t){e[t]&&(e[t]=e[t].bind(e))}))}function g(t,e){return-1!==t.indexOf(e,t.length-e.length)}function v(t,e,r){var n={};for(var i in t)n[i]=e.call(r||this,t[i],i,t);return n}function y(t,e,r){var n={};for(var i in t)e.call(r||this,t[i],i,t)&&(n[i]=t[i]);return n}function x(t){return Array.isArray(t)?t.map(x):"object"==typeof t&&t?v(t,x):t}var b={};function _(t){b[t]||("undefined"!=typeof console&&console.warn(t),b[t]=!0)}function w(t,e,r){return(r.y-t.y)*(e.x-t.x)>(e.y-t.y)*(r.x-t.x)}function T(t){for(var e=0,r=0,n=t.length,i=n-1,a=void 0,o=void 0;r@\,;\:\\"\/\[\]\?\=\{\}\x7F]+)(?:\=(?:([^\x00-\x20\(\)<>@\,;\:\\"\/\[\]\?\=\{\}\x7F]+)|(?:\"((?:[^"\\]|\\.)*)\")))?/g,(function(t,r,n,i){var a=n||i;return e[r]=!a||a.toLowerCase(),""})),e["max-age"]){var r=parseInt(e["max-age"],10);isNaN(r)?delete e["max-age"]:e["max-age"]=r}return e}var M=null;function S(t){if(null==M){var e=t.navigator?t.navigator.userAgent:null;M=!!t.safari||!(!e||!(/\b(iPad|iPhone|iPod)\b/.test(e)||e.match("Safari")&&!e.match("Chrome")))}return M}function E(t){try{var e=self[t];return e.setItem("_mapbox_test_",1),e.removeItem("_mapbox_test_"),!0}catch(t){return!1}}var L,C,P,I,O=self.performance&&self.performance.now?self.performance.now.bind(self.performance):Date.now.bind(Date),z=self.requestAnimationFrame||self.mozRequestAnimationFrame||self.webkitRequestAnimationFrame||self.msRequestAnimationFrame,D=self.cancelAnimationFrame||self.mozCancelAnimationFrame||self.webkitCancelAnimationFrame||self.msCancelAnimationFrame,R={now:O,frame:function(t){var e=z(t);return{cancel:function(){return D(e)}}},getImageData:function(t,e){void 0===e&&(e=0);var r=self.document.createElement("canvas"),n=r.getContext("2d");if(!n)throw new Error("failed to create canvas 2d context");return r.width=t.width,r.height=t.height,n.drawImage(t,0,0,t.width,t.height),n.getImageData(-e,-e,t.width+2*e,t.height+2*e)},resolveURL:function(t){return L||(L=self.document.createElement("a")),L.href=t,L.href},hardwareConcurrency:self.navigator.hardwareConcurrency||4,get devicePixelRatio(){return self.devicePixelRatio},get prefersReducedMotion(){return!!self.matchMedia&&(null==C&&(C=self.matchMedia("(prefers-reduced-motion: reduce)")),C.matches)}},F={API_URL:"https://api.mapbox.com",get EVENTS_URL(){return this.API_URL?0===this.API_URL.indexOf("https://api.mapbox.cn")?"https://events.mapbox.cn/events/v2":0===this.API_URL.indexOf("https://api.mapbox.com")?"https://events.mapbox.com/events/v2":null:null},FEEDBACK_URL:"https://apps.mapbox.com/feedback",REQUIRE_ACCESS_TOKEN:!0,ACCESS_TOKEN:null,MAX_PARALLEL_IMAGE_REQUESTS:16},B={supported:!1,testSupport:function(t){if(N||!I)return;j?U(t):P=t}},N=!1,j=!1;function U(t){var e=t.createTexture();t.bindTexture(t.TEXTURE_2D,e);try{if(t.texImage2D(t.TEXTURE_2D,0,t.RGBA,t.RGBA,t.UNSIGNED_BYTE,I),t.isContextLost())return;B.supported=!0}catch(t){}t.deleteTexture(e),N=!0}self.document&&((I=self.document.createElement("img")).onload=function(){P&&U(P),P=null,j=!0},I.onerror=function(){N=!0,P=null},I.src="");var V="01";var H=function(t,e){this._transformRequestFn=t,this._customAccessToken=e,this._createSkuToken()};function q(t){return 0===t.indexOf("mapbox:")}H.prototype._createSkuToken=function(){var t=function(){for(var t="",e=0;e<10;e++)t+="0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"[Math.floor(62*Math.random())];return{token:["1",V,t].join(""),tokenExpiresAt:Date.now()+432e5}}();this._skuToken=t.token,this._skuTokenExpiresAt=t.tokenExpiresAt},H.prototype._isSkuTokenExpired=function(){return Date.now()>this._skuTokenExpiresAt},H.prototype.transformRequest=function(t,e){return this._transformRequestFn&&this._transformRequestFn(t,e)||{url:t}},H.prototype.normalizeStyleURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/styles/v1"+r.path,this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeGlyphsURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/fonts/v1"+r.path,this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeSourceURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/v4/"+r.authority+".json",r.params.push("secure"),this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeSpriteURL=function(t,e,r,n){var i=X(t);return q(t)?(i.path="/styles/v1"+i.path+"/sprite"+e+r,this._makeAPIURL(i,this._customAccessToken||n)):(i.path+=""+e+r,Z(i))},H.prototype.normalizeTileURL=function(t,e){if(this._isSkuTokenExpired()&&this._createSkuToken(),t&&!q(t))return t;var r=X(t),n=R.devicePixelRatio>=2||512===e?"@2x":"",i=B.supported?".webp":"$1";r.path=r.path.replace(/(\.(png|jpg)\d*)(?=$)/,""+n+i),r.path=r.path.replace(/^.+\/v4\//,"/"),r.path="/v4"+r.path;var a=this._customAccessToken||function(t){for(var e=0,r=t;e=1&&self.localStorage.setItem(e,JSON.stringify(this.eventData))}catch(t){_("Unable to write to LocalStorage")}},K.prototype.processRequests=function(t){},K.prototype.postEvent=function(t,e,r,n){var i=this;if(F.EVENTS_URL){var a=X(F.EVENTS_URL);a.params.push("access_token="+(n||F.ACCESS_TOKEN||""));var o={event:this.type,created:new Date(t).toISOString(),sdkIdentifier:"mapbox-gl-js",sdkVersion:"1.10.1",skuId:V,userId:this.anonId},s=e?u(o,e):o,l={url:Z(a),headers:{"Content-Type":"text/plain"},body:JSON.stringify([s])};this.pendingRequest=bt(l,(function(t){i.pendingRequest=null,r(t),i.saveEventData(),i.processRequests(n)}))}},K.prototype.queueRequest=function(t,e){this.queue.push(t),this.processRequests(e)};var Q,$,tt=function(t){function e(){t.call(this,"map.load"),this.success={},this.skuToken=""}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.postMapLoadEvent=function(t,e,r,n){this.skuToken=r,(F.EVENTS_URL&&n||F.ACCESS_TOKEN&&Array.isArray(t)&&t.some((function(t){return q(t)||Y(t)})))&&this.queueRequest({id:e,timestamp:Date.now()},n)},e.prototype.processRequests=function(t){var e=this;if(!this.pendingRequest&&0!==this.queue.length){var r=this.queue.shift(),n=r.id,i=r.timestamp;n&&this.success[n]||(this.anonId||this.fetchEventData(),d(this.anonId)||(this.anonId=p()),this.postEvent(i,{skuToken:this.skuToken},(function(t){t||n&&(e.success[n]=!0)}),t))}},e}(K),et=new(function(t){function e(e){t.call(this,"appUserTurnstile"),this._customAccessToken=e}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.postTurnstileEvent=function(t,e){F.EVENTS_URL&&F.ACCESS_TOKEN&&Array.isArray(t)&&t.some((function(t){return q(t)||Y(t)}))&&this.queueRequest(Date.now(),e)},e.prototype.processRequests=function(t){var e=this;if(!this.pendingRequest&&0!==this.queue.length){this.anonId&&this.eventData.lastSuccess&&this.eventData.tokenU||this.fetchEventData();var r=J(F.ACCESS_TOKEN),n=r?r.u:F.ACCESS_TOKEN,i=n!==this.eventData.tokenU;d(this.anonId)||(this.anonId=p(),i=!0);var a=this.queue.shift();if(this.eventData.lastSuccess){var o=new Date(this.eventData.lastSuccess),s=new Date(a),l=(a-this.eventData.lastSuccess)/864e5;i=i||l>=1||l<-1||o.getDate()!==s.getDate()}else i=!0;if(!i)return this.processRequests();this.postEvent(a,{"enabled.telemetry":!1},(function(t){t||(e.eventData.lastSuccess=a,e.eventData.tokenU=n)}),t)}},e}(K)),rt=et.postTurnstileEvent.bind(et),nt=new tt,it=nt.postMapLoadEvent.bind(nt),at=500,ot=50;function st(){self.caches&&!Q&&(Q=self.caches.open("mapbox-tiles"))}function lt(t,e,r){if(st(),Q){var n={status:e.status,statusText:e.statusText,headers:new self.Headers};e.headers.forEach((function(t,e){return n.headers.set(e,t)}));var i=A(e.headers.get("Cache-Control")||"");if(!i["no-store"])i["max-age"]&&n.headers.set("Expires",new Date(r+1e3*i["max-age"]).toUTCString()),new Date(n.headers.get("Expires")).getTime()-r<42e4||function(t,e){if(void 0===$)try{new Response(new ReadableStream),$=!0}catch(t){$=!1}$?e(t.body):t.blob().then(e)}(e,(function(e){var r=new self.Response(e,n);st(),Q&&Q.then((function(e){return e.put(ct(t.url),r)})).catch((function(t){return _(t.message)}))}))}}function ct(t){var e=t.indexOf("?");return e<0?t:t.slice(0,e)}function ut(t,e){if(st(),!Q)return e(null);var r=ct(t.url);Q.then((function(t){t.match(r).then((function(n){var i=function(t){if(!t)return!1;var e=new Date(t.headers.get("Expires")||0),r=A(t.headers.get("Cache-Control")||"");return e>Date.now()&&!r["no-cache"]}(n);t.delete(r),i&&t.put(r,n.clone()),e(null,n,i)})).catch(e)})).catch(e)}var ft,ht=1/0;function pt(){return null==ft&&(ft=self.OffscreenCanvas&&new self.OffscreenCanvas(1,1).getContext("2d")&&"function"==typeof self.createImageBitmap),ft}var dt={Unknown:"Unknown",Style:"Style",Source:"Source",Tile:"Tile",Glyphs:"Glyphs",SpriteImage:"SpriteImage",SpriteJSON:"SpriteJSON",Image:"Image"};"function"==typeof Object.freeze&&Object.freeze(dt);var mt=function(t){function e(e,r,n){401===r&&Y(n)&&(e+=": you may have provided an invalid Mapbox access token. See https://www.mapbox.com/api-documentation/#access-tokens-and-token-scopes"),t.call(this,e),this.status=r,this.url=n,this.name=this.constructor.name,this.message=e}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.toString=function(){return this.name+": "+this.message+" ("+this.status+"): "+this.url},e}(Error),gt=k()?function(){return self.worker&&self.worker.referrer}:function(){return("blob:"===self.location.protocol?self.parent:self).location.href};function vt(t,e){var r,n=new self.AbortController,i=new self.Request(t.url,{method:t.method||"GET",body:t.body,credentials:t.credentials,headers:t.headers,referrer:gt(),signal:n.signal}),a=!1,o=!1,s=(r=i.url).indexOf("sku=")>0&&Y(r);"json"===t.type&&i.headers.set("Accept","application/json");var l=function(r,n,a){if(!o){if(r&&"SecurityError"!==r.message&&_(r),n&&a)return c(n);var l=Date.now();self.fetch(i).then((function(r){if(r.ok){var n=s?r.clone():null;return c(r,n,l)}return e(new mt(r.statusText,r.status,t.url))})).catch((function(t){20!==t.code&&e(new Error(t.message))}))}},c=function(r,n,s){("arrayBuffer"===t.type?r.arrayBuffer():"json"===t.type?r.json():r.text()).then((function(t){o||(n&&s&<(i,n,s),a=!0,e(null,t,r.headers.get("Cache-Control"),r.headers.get("Expires")))})).catch((function(t){o||e(new Error(t.message))}))};return s?ut(i,l):l(null,null),{cancel:function(){o=!0,a||n.abort()}}}var yt=function(t,e){if(r=t.url,!(/^file:/.test(r)||/^file:/.test(gt())&&!/^\w+:/.test(r))){if(self.fetch&&self.Request&&self.AbortController&&self.Request.prototype.hasOwnProperty("signal"))return vt(t,e);if(k()&&self.worker&&self.worker.actor){return self.worker.actor.send("getResource",t,e,void 0,!0)}}var r;return function(t,e){var r=new self.XMLHttpRequest;for(var n in r.open(t.method||"GET",t.url,!0),"arrayBuffer"===t.type&&(r.responseType="arraybuffer"),t.headers)r.setRequestHeader(n,t.headers[n]);return"json"===t.type&&(r.responseType="text",r.setRequestHeader("Accept","application/json")),r.withCredentials="include"===t.credentials,r.onerror=function(){e(new Error(r.statusText))},r.onload=function(){if((r.status>=200&&r.status<300||0===r.status)&&null!==r.response){var n=r.response;if("json"===t.type)try{n=JSON.parse(r.response)}catch(t){return e(t)}e(null,n,r.getResponseHeader("Cache-Control"),r.getResponseHeader("Expires"))}else e(new mt(r.statusText,r.status,t.url))},r.send(t.body),{cancel:function(){return r.abort()}}}(t,e)},xt=function(t,e){return yt(u(t,{type:"arrayBuffer"}),e)},bt=function(t,e){return yt(u(t,{method:"POST"}),e)};var _t,wt;_t=[],wt=0;var Tt=function(t,e){if(B.supported&&(t.headers||(t.headers={}),t.headers.accept="image/webp,*/*"),wt>=F.MAX_PARALLEL_IMAGE_REQUESTS){var r={requestParameters:t,callback:e,cancelled:!1,cancel:function(){this.cancelled=!0}};return _t.push(r),r}wt++;var n=!1,i=function(){if(!n)for(n=!0,wt--;_t.length&&wt0||this._oneTimeListeners&&this._oneTimeListeners[t]&&this._oneTimeListeners[t].length>0||this._eventedParent&&this._eventedParent.listens(t)},Et.prototype.setEventedParent=function(t,e){return this._eventedParent=t,this._eventedParentData=e,this};var Lt={$version:8,$root:{version:{required:!0,type:"enum",values:[8]},name:{type:"string"},metadata:{type:"*"},center:{type:"array",value:"number"},zoom:{type:"number"},bearing:{type:"number",default:0,period:360,units:"degrees"},pitch:{type:"number",default:0,units:"degrees"},light:{type:"light"},sources:{required:!0,type:"sources"},sprite:{type:"string"},glyphs:{type:"string"},transition:{type:"transition"},layers:{required:!0,type:"array",value:"layer"}},sources:{"*":{type:"source"}},source:["source_vector","source_raster","source_raster_dem","source_geojson","source_video","source_image"],source_vector:{type:{required:!0,type:"enum",values:{vector:{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},scheme:{type:"enum",values:{xyz:{},tms:{}},default:"xyz"},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},attribution:{type:"string"},promoteId:{type:"promoteId"},"*":{type:"*"}},source_raster:{type:{required:!0,type:"enum",values:{raster:{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},tileSize:{type:"number",default:512,units:"pixels"},scheme:{type:"enum",values:{xyz:{},tms:{}},default:"xyz"},attribution:{type:"string"},"*":{type:"*"}},source_raster_dem:{type:{required:!0,type:"enum",values:{"raster-dem":{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},tileSize:{type:"number",default:512,units:"pixels"},attribution:{type:"string"},encoding:{type:"enum",values:{terrarium:{},mapbox:{}},default:"mapbox"},"*":{type:"*"}},source_geojson:{type:{required:!0,type:"enum",values:{geojson:{}}},data:{type:"*"},maxzoom:{type:"number",default:18},attribution:{type:"string"},buffer:{type:"number",default:128,maximum:512,minimum:0},tolerance:{type:"number",default:.375},cluster:{type:"boolean",default:!1},clusterRadius:{type:"number",default:50,minimum:0},clusterMaxZoom:{type:"number"},clusterProperties:{type:"*"},lineMetrics:{type:"boolean",default:!1},generateId:{type:"boolean",default:!1},promoteId:{type:"promoteId"}},source_video:{type:{required:!0,type:"enum",values:{video:{}}},urls:{required:!0,type:"array",value:"string"},coordinates:{required:!0,type:"array",length:4,value:{type:"array",length:2,value:"number"}}},source_image:{type:{required:!0,type:"enum",values:{image:{}}},url:{required:!0,type:"string"},coordinates:{required:!0,type:"array",length:4,value:{type:"array",length:2,value:"number"}}},layer:{id:{type:"string",required:!0},type:{type:"enum",values:{fill:{},line:{},symbol:{},circle:{},heatmap:{},"fill-extrusion":{},raster:{},hillshade:{},background:{}},required:!0},metadata:{type:"*"},source:{type:"string"},"source-layer":{type:"string"},minzoom:{type:"number",minimum:0,maximum:24},maxzoom:{type:"number",minimum:0,maximum:24},filter:{type:"filter"},layout:{type:"layout"},paint:{type:"paint"}},layout:["layout_fill","layout_line","layout_circle","layout_heatmap","layout_fill-extrusion","layout_symbol","layout_raster","layout_hillshade","layout_background"],layout_background:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_fill:{"fill-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_circle:{"circle-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_heatmap:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},"layout_fill-extrusion":{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_line:{"line-cap":{type:"enum",values:{butt:{},round:{},square:{}},default:"butt",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"line-join":{type:"enum",values:{bevel:{},round:{},miter:{}},default:"miter",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"line-miter-limit":{type:"number",default:2,requires:[{"line-join":"miter"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-round-limit":{type:"number",default:1.05,requires:[{"line-join":"round"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_symbol:{"symbol-placement":{type:"enum",values:{point:{},line:{},"line-center":{}},default:"point",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"symbol-spacing":{type:"number",default:250,minimum:1,units:"pixels",requires:[{"symbol-placement":"line"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"symbol-avoid-edges":{type:"boolean",default:!1,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"symbol-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"symbol-z-order":{type:"enum",values:{auto:{},"viewport-y":{},source:{}},default:"auto",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-allow-overlap":{type:"boolean",default:!1,requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-ignore-placement":{type:"boolean",default:!1,requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-optional":{type:"boolean",default:!1,requires:["icon-image","text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-rotation-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-size":{type:"number",default:1,minimum:0,units:"factor of the original icon size",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-text-fit":{type:"enum",values:{none:{},width:{},height:{},both:{}},default:"none",requires:["icon-image","text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-text-fit-padding":{type:"array",value:"number",length:4,default:[0,0,0,0],units:"pixels",requires:["icon-image","text-field",{"icon-text-fit":["both","width","height"]}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-image":{type:"resolvedImage",tokens:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-rotate":{type:"number",default:0,period:360,units:"degrees",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-padding":{type:"number",default:2,minimum:0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-keep-upright":{type:"boolean",default:!1,requires:["icon-image",{"icon-rotation-alignment":"map"},{"symbol-placement":["line","line-center"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-offset":{type:"array",value:"number",length:2,default:[0,0],requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-anchor":{type:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},default:"center",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-pitch-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-pitch-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-rotation-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-field":{type:"formatted",default:"",tokens:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-font":{type:"array",value:"string",default:["Open Sans Regular","Arial Unicode MS Regular"],requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-size":{type:"number",default:16,minimum:0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-max-width":{type:"number",default:10,minimum:0,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-line-height":{type:"number",default:1.2,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-letter-spacing":{type:"number",default:0,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-justify":{type:"enum",values:{auto:{},left:{},center:{},right:{}},default:"center",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-radial-offset":{type:"number",units:"ems",default:0,requires:["text-field"],"property-type":"data-driven",expression:{interpolated:!0,parameters:["zoom","feature"]}},"text-variable-anchor":{type:"array",value:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},requires:["text-field",{"symbol-placement":["point"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-anchor":{type:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},default:"center",requires:["text-field",{"!":"text-variable-anchor"}],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-max-angle":{type:"number",default:45,units:"degrees",requires:["text-field",{"symbol-placement":["line","line-center"]}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-writing-mode":{type:"array",value:"enum",values:{horizontal:{},vertical:{}},requires:["text-field",{"symbol-placement":["point"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-rotate":{type:"number",default:0,period:360,units:"degrees",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-padding":{type:"number",default:2,minimum:0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-keep-upright":{type:"boolean",default:!0,requires:["text-field",{"text-rotation-alignment":"map"},{"symbol-placement":["line","line-center"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-transform":{type:"enum",values:{none:{},uppercase:{},lowercase:{}},default:"none",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-offset":{type:"array",value:"number",units:"ems",length:2,default:[0,0],requires:["text-field",{"!":"text-radial-offset"}],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-allow-overlap":{type:"boolean",default:!1,requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-ignore-placement":{type:"boolean",default:!1,requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-optional":{type:"boolean",default:!1,requires:["text-field","icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_raster:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_hillshade:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},filter:{type:"array",value:"*"},filter_operator:{type:"enum",values:{"==":{},"!=":{},">":{},">=":{},"<":{},"<=":{},in:{},"!in":{},all:{},any:{},none:{},has:{},"!has":{},within:{}}},geometry_type:{type:"enum",values:{Point:{},LineString:{},Polygon:{}}},function:{expression:{type:"expression"},stops:{type:"array",value:"function_stop"},base:{type:"number",default:1,minimum:0},property:{type:"string",default:"$zoom"},type:{type:"enum",values:{identity:{},exponential:{},interval:{},categorical:{}},default:"exponential"},colorSpace:{type:"enum",values:{rgb:{},lab:{},hcl:{}},default:"rgb"},default:{type:"*",required:!1}},function_stop:{type:"array",minimum:0,maximum:24,value:["number","color"],length:2},expression:{type:"array",value:"*",minimum:1},expression_name:{type:"enum",values:{let:{group:"Variable binding"},var:{group:"Variable binding"},literal:{group:"Types"},array:{group:"Types"},at:{group:"Lookup"},in:{group:"Lookup"},"index-of":{group:"Lookup"},slice:{group:"Lookup"},case:{group:"Decision"},match:{group:"Decision"},coalesce:{group:"Decision"},step:{group:"Ramps, scales, curves"},interpolate:{group:"Ramps, scales, curves"},"interpolate-hcl":{group:"Ramps, scales, curves"},"interpolate-lab":{group:"Ramps, scales, curves"},ln2:{group:"Math"},pi:{group:"Math"},e:{group:"Math"},typeof:{group:"Types"},string:{group:"Types"},number:{group:"Types"},boolean:{group:"Types"},object:{group:"Types"},collator:{group:"Types"},format:{group:"Types"},image:{group:"Types"},"number-format":{group:"Types"},"to-string":{group:"Types"},"to-number":{group:"Types"},"to-boolean":{group:"Types"},"to-rgba":{group:"Color"},"to-color":{group:"Types"},rgb:{group:"Color"},rgba:{group:"Color"},get:{group:"Lookup"},has:{group:"Lookup"},length:{group:"Lookup"},properties:{group:"Feature data"},"feature-state":{group:"Feature data"},"geometry-type":{group:"Feature data"},id:{group:"Feature data"},zoom:{group:"Zoom"},"heatmap-density":{group:"Heatmap"},"line-progress":{group:"Feature data"},accumulated:{group:"Feature data"},"+":{group:"Math"},"*":{group:"Math"},"-":{group:"Math"},"/":{group:"Math"},"%":{group:"Math"},"^":{group:"Math"},sqrt:{group:"Math"},log10:{group:"Math"},ln:{group:"Math"},log2:{group:"Math"},sin:{group:"Math"},cos:{group:"Math"},tan:{group:"Math"},asin:{group:"Math"},acos:{group:"Math"},atan:{group:"Math"},min:{group:"Math"},max:{group:"Math"},round:{group:"Math"},abs:{group:"Math"},ceil:{group:"Math"},floor:{group:"Math"},distance:{group:"Math"},"==":{group:"Decision"},"!=":{group:"Decision"},">":{group:"Decision"},"<":{group:"Decision"},">=":{group:"Decision"},"<=":{group:"Decision"},all:{group:"Decision"},any:{group:"Decision"},"!":{group:"Decision"},within:{group:"Decision"},"is-supported-script":{group:"String"},upcase:{group:"String"},downcase:{group:"String"},concat:{group:"String"},"resolved-locale":{group:"String"}}},light:{anchor:{type:"enum",default:"viewport",values:{map:{},viewport:{}},"property-type":"data-constant",transition:!1,expression:{interpolated:!1,parameters:["zoom"]}},position:{type:"array",default:[1.15,210,30],length:3,value:"number","property-type":"data-constant",transition:!0,expression:{interpolated:!0,parameters:["zoom"]}},color:{type:"color","property-type":"data-constant",default:"#ffffff",expression:{interpolated:!0,parameters:["zoom"]},transition:!0},intensity:{type:"number","property-type":"data-constant",default:.5,minimum:0,maximum:1,expression:{interpolated:!0,parameters:["zoom"]},transition:!0}},paint:["paint_fill","paint_line","paint_circle","paint_heatmap","paint_fill-extrusion","paint_symbol","paint_raster","paint_hillshade","paint_background"],paint_fill:{"fill-antialias":{type:"boolean",default:!0,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"fill-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-outline-color":{type:"color",transition:!0,requires:[{"!":"fill-pattern"},{"fill-antialias":!0}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["fill-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"}},"paint_fill-extrusion":{"fill-extrusion-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"fill-extrusion-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["fill-extrusion-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"},"fill-extrusion-height":{type:"number",default:0,minimum:0,units:"meters",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-base":{type:"number",default:0,minimum:0,units:"meters",transition:!0,requires:["fill-extrusion-height"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-vertical-gradient":{type:"boolean",default:!0,transition:!1,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"}},paint_line:{"line-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"line-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["line-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"line-width":{type:"number",default:1,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-gap-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-offset":{type:"number",default:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-dasharray":{type:"array",value:"number",minimum:0,transition:!0,units:"line widths",requires:[{"!":"line-pattern"}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"cross-faded"},"line-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"},"line-gradient":{type:"color",transition:!1,requires:[{"!":"line-dasharray"},{"!":"line-pattern"},{source:"geojson",has:{lineMetrics:!0}}],expression:{interpolated:!0,parameters:["line-progress"]},"property-type":"color-ramp"}},paint_circle:{"circle-radius":{type:"number",default:5,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-blur":{type:"number",default:0,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"circle-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["circle-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-pitch-scale":{type:"enum",values:{map:{},viewport:{}},default:"map",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-pitch-alignment":{type:"enum",values:{map:{},viewport:{}},default:"viewport",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-stroke-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-stroke-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-stroke-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"}},paint_heatmap:{"heatmap-radius":{type:"number",default:30,minimum:1,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"heatmap-weight":{type:"number",default:1,minimum:0,transition:!1,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"heatmap-intensity":{type:"number",default:1,minimum:0,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"heatmap-color":{type:"color",default:["interpolate",["linear"],["heatmap-density"],0,"rgba(0, 0, 255, 0)",.1,"royalblue",.3,"cyan",.5,"lime",.7,"yellow",1,"red"],transition:!1,expression:{interpolated:!0,parameters:["heatmap-density"]},"property-type":"color-ramp"},"heatmap-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_symbol:{"icon-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-color":{type:"color",default:"#000000",transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-color":{type:"color",default:"rgba(0, 0, 0, 0)",transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["icon-image","icon-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-color":{type:"color",default:"#000000",transition:!0,overridable:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-color":{type:"color",default:"rgba(0, 0, 0, 0)",transition:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["text-field","text-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"}},paint_raster:{"raster-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-hue-rotate":{type:"number",default:0,period:360,transition:!0,units:"degrees",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-brightness-min":{type:"number",default:0,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-brightness-max":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-saturation":{type:"number",default:0,minimum:-1,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-contrast":{type:"number",default:0,minimum:-1,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-resampling":{type:"enum",values:{linear:{},nearest:{}},default:"linear",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"raster-fade-duration":{type:"number",default:300,minimum:0,transition:!1,units:"milliseconds",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_hillshade:{"hillshade-illumination-direction":{type:"number",default:335,minimum:0,maximum:359,transition:!1,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-illumination-anchor":{type:"enum",values:{map:{},viewport:{}},default:"viewport",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-exaggeration":{type:"number",default:.5,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-shadow-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-highlight-color":{type:"color",default:"#FFFFFF",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-accent-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_background:{"background-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"background-pattern"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"background-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"cross-faded"},"background-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},transition:{duration:{type:"number",default:300,minimum:0,units:"milliseconds"},delay:{type:"number",default:0,minimum:0,units:"milliseconds"}},"property-type":{"data-driven":{type:"property-type"},"cross-faded":{type:"property-type"},"cross-faded-data-driven":{type:"property-type"},"color-ramp":{type:"property-type"},"data-constant":{type:"property-type"},constant:{type:"property-type"}},promoteId:{"*":{type:"string"}}},Ct=function(t,e,r,n){this.message=(t?t+": ":"")+r,n&&(this.identifier=n),null!=e&&e.__line__&&(this.line=e.__line__)};function Pt(t){var e=t.key,r=t.value;return r?[new Ct(e,r,"constants have been deprecated as of v8")]:[]}function It(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];for(var n=0,i=e;n":"value"===t.itemType.kind?"array":"array<"+e+">"}return t.kind}var Zt=[Ft,Bt,Nt,jt,Ut,Gt,Vt,Wt(Ht),Yt];function Jt(t,e){if("error"===e.kind)return null;if("array"===t.kind){if("array"===e.kind&&(0===e.N&&"value"===e.itemType.kind||!Jt(t.itemType,e.itemType))&&("number"!=typeof t.N||t.N===e.N))return null}else{if(t.kind===e.kind)return null;if("value"===t.kind)for(var r=0,n=Zt;r255?255:t}function i(t){return t<0?0:t>1?1:t}function a(t){return"%"===t[t.length-1]?n(parseFloat(t)/100*255):n(parseInt(t))}function o(t){return"%"===t[t.length-1]?i(parseFloat(t)/100):i(parseFloat(t))}function s(t,e,r){return r<0?r+=1:r>1&&(r-=1),6*r<1?t+(e-t)*r*6:2*r<1?e:3*r<2?t+(e-t)*(2/3-r)*6:t}try{e.parseCSSColor=function(t){var e,i=t.replace(/ /g,"").toLowerCase();if(i in r)return r[i].slice();if("#"===i[0])return 4===i.length?(e=parseInt(i.substr(1),16))>=0&&e<=4095?[(3840&e)>>4|(3840&e)>>8,240&e|(240&e)>>4,15&e|(15&e)<<4,1]:null:7===i.length&&(e=parseInt(i.substr(1),16))>=0&&e<=16777215?[(16711680&e)>>16,(65280&e)>>8,255&e,1]:null;var l=i.indexOf("("),c=i.indexOf(")");if(-1!==l&&c+1===i.length){var u=i.substr(0,l),f=i.substr(l+1,c-(l+1)).split(","),h=1;switch(u){case"rgba":if(4!==f.length)return null;h=o(f.pop());case"rgb":return 3!==f.length?null:[a(f[0]),a(f[1]),a(f[2]),h];case"hsla":if(4!==f.length)return null;h=o(f.pop());case"hsl":if(3!==f.length)return null;var p=(parseFloat(f[0])%360+360)%360/360,d=o(f[1]),m=o(f[2]),g=m<=.5?m*(d+1):m+d-m*d,v=2*m-g;return[n(255*s(v,g,p+1/3)),n(255*s(v,g,p)),n(255*s(v,g,p-1/3)),h];default:return null}}return null}}catch(t){}})).parseCSSColor,te=function(t,e,r,n){void 0===n&&(n=1),this.r=t,this.g=e,this.b=r,this.a=n};te.parse=function(t){if(t){if(t instanceof te)return t;if("string"==typeof t){var e=$t(t);if(e)return new te(e[0]/255*e[3],e[1]/255*e[3],e[2]/255*e[3],e[3])}}},te.prototype.toString=function(){var t=this.toArray(),e=t[0],r=t[1],n=t[2],i=t[3];return"rgba("+Math.round(e)+","+Math.round(r)+","+Math.round(n)+","+i+")"},te.prototype.toArray=function(){var t=this.r,e=this.g,r=this.b,n=this.a;return 0===n?[0,0,0,0]:[255*t/n,255*e/n,255*r/n,n]},te.black=new te(0,0,0,1),te.white=new te(1,1,1,1),te.transparent=new te(0,0,0,0),te.red=new te(1,0,0,1);var ee=function(t,e,r){this.sensitivity=t?e?"variant":"case":e?"accent":"base",this.locale=r,this.collator=new Intl.Collator(this.locale?this.locale:[],{sensitivity:this.sensitivity,usage:"search"})};ee.prototype.compare=function(t,e){return this.collator.compare(t,e)},ee.prototype.resolvedLocale=function(){return new Intl.Collator(this.locale?this.locale:[]).resolvedOptions().locale};var re=function(t,e,r,n,i){this.text=t,this.image=e,this.scale=r,this.fontStack=n,this.textColor=i},ne=function(t){this.sections=t};ne.fromString=function(t){return new ne([new re(t,null,null,null,null)])},ne.prototype.isEmpty=function(){return 0===this.sections.length||!this.sections.some((function(t){return 0!==t.text.length||t.image&&0!==t.image.name.length}))},ne.factory=function(t){return t instanceof ne?t:ne.fromString(t)},ne.prototype.toString=function(){return 0===this.sections.length?"":this.sections.map((function(t){return t.text})).join("")},ne.prototype.serialize=function(){for(var t=["format"],e=0,r=this.sections;e=0&&t<=255&&"number"==typeof e&&e>=0&&e<=255&&"number"==typeof r&&r>=0&&r<=255?void 0===n||"number"==typeof n&&n>=0&&n<=1?null:"Invalid rgba value ["+[t,e,r,n].join(", ")+"]: 'a' must be between 0 and 1.":"Invalid rgba value ["+("number"==typeof n?[t,e,r,n]:[t,e,r]).join(", ")+"]: 'r', 'g', and 'b' must be between 0 and 255."}function oe(t){if(null===t)return!0;if("string"==typeof t)return!0;if("boolean"==typeof t)return!0;if("number"==typeof t)return!0;if(t instanceof te)return!0;if(t instanceof ee)return!0;if(t instanceof ne)return!0;if(t instanceof ie)return!0;if(Array.isArray(t)){for(var e=0,r=t;e2){var s=t[1];if("string"!=typeof s||!(s in fe)||"object"===s)return e.error('The item type argument of "array" must be one of string, number, boolean',1);a=fe[s],n++}else a=Ht;if(t.length>3){if(null!==t[2]&&("number"!=typeof t[2]||t[2]<0||t[2]!==Math.floor(t[2])))return e.error('The length argument to "array" must be a positive integer literal',2);o=t[2],n++}r=Wt(a,o)}else r=fe[i];for(var l=[];n1)&&e.push(n)}}return e.concat(this.args.map((function(t){return t.serialize()})))};var pe=function(t){this.type=Gt,this.sections=t};pe.parse=function(t,e){if(t.length<2)return e.error("Expected at least one argument.");var r=t[1];if(!Array.isArray(r)&&"object"==typeof r)return e.error("First argument must be an image or text section.");for(var n=[],i=!1,a=1;a<=t.length-1;++a){var o=t[a];if(i&&"object"==typeof o&&!Array.isArray(o)){i=!1;var s=null;if(o["font-scale"]&&!(s=e.parse(o["font-scale"],1,Bt)))return null;var l=null;if(o["text-font"]&&!(l=e.parse(o["text-font"],1,Wt(Nt))))return null;var c=null;if(o["text-color"]&&!(c=e.parse(o["text-color"],1,Ut)))return null;var u=n[n.length-1];u.scale=s,u.font=l,u.textColor=c}else{var f=e.parse(t[a],1,Ht);if(!f)return null;var h=f.type.kind;if("string"!==h&&"value"!==h&&"null"!==h&&"resolvedImage"!==h)return e.error("Formatted text type must be 'string', 'value', 'image' or 'null'.");i=!0,n.push({content:f,scale:null,font:null,textColor:null})}}return new pe(n)},pe.prototype.evaluate=function(t){return new ne(this.sections.map((function(e){var r=e.content.evaluate(t);return se(r)===Yt?new re("",r,null,null,null):new re(le(r),null,e.scale?e.scale.evaluate(t):null,e.font?e.font.evaluate(t).join(","):null,e.textColor?e.textColor.evaluate(t):null)})))},pe.prototype.eachChild=function(t){for(var e=0,r=this.sections;e-1),r},de.prototype.eachChild=function(t){t(this.input)},de.prototype.outputDefined=function(){return!1},de.prototype.serialize=function(){return["image",this.input.serialize()]};var me={"to-boolean":jt,"to-color":Ut,"to-number":Bt,"to-string":Nt},ge=function(t,e){this.type=t,this.args=e};ge.parse=function(t,e){if(t.length<2)return e.error("Expected at least one argument.");var r=t[0];if(("to-boolean"===r||"to-string"===r)&&2!==t.length)return e.error("Expected one argument.");for(var n=me[r],i=[],a=1;a4?"Invalid rbga value "+JSON.stringify(e)+": expected an array containing either three or four numeric values.":ae(e[0],e[1],e[2],e[3])))return new te(e[0]/255,e[1]/255,e[2]/255,e[3])}throw new ue(r||"Could not parse color from value '"+("string"==typeof e?e:String(JSON.stringify(e)))+"'")}if("number"===this.type.kind){for(var o=null,s=0,l=this.args;s=e[2])&&(!(t[1]<=e[1])&&!(t[3]>=e[3])))}function Te(t,e){var r,n=(180+t[0])/360,i=(r=t[1],(180-180/Math.PI*Math.log(Math.tan(Math.PI/4+r*Math.PI/360)))/360),a=Math.pow(2,e.z);return[Math.round(n*a*8192),Math.round(i*a*8192)]}function ke(t,e,r){return e[1]>t[1]!=r[1]>t[1]&&t[0]<(r[0]-e[0])*(t[1]-e[1])/(r[1]-e[1])+e[0]}function Ae(t,e){for(var r,n,i,a,o,s,l,c=!1,u=0,f=e.length;u0&&f<0||u<0&&f>0}function Ee(t,e,r){for(var n=0,i=r;nr[2]){var i=.5*n,a=t[0]-r[0]>i?-n:r[0]-t[0]>i?n:0;0===a&&(a=t[0]-r[2]>i?-n:r[2]-t[0]>i?n:0),t[0]+=a}_e(e,t)}function ze(t,e,r,n){for(var i=8192*Math.pow(2,n.z),a=[8192*n.x,8192*n.y],o=[],s=0,l=t;s=0)return!1;var r=!0;return t.eachChild((function(t){r&&!Ne(t,e)&&(r=!1)})),r}Re.parse=function(t,e){if(2!==t.length)return e.error("'within' expression requires exactly one argument, but found "+(t.length-1)+" instead.");if(oe(t[1])){var r=t[1];if("FeatureCollection"===r.type)for(var n=0;ne))throw new ue("Input is not a number.");o=s-1}return 0}Ue.prototype.parse=function(t,e,r,n,i){return void 0===i&&(i={}),e?this.concat(e,r,n)._parse(t,i):this._parse(t,i)},Ue.prototype._parse=function(t,e){function r(t,e,r){return"assert"===r?new he(e,[t]):"coerce"===r?new ge(e,[t]):t}if(null!==t&&"string"!=typeof t&&"boolean"!=typeof t&&"number"!=typeof t||(t=["literal",t]),Array.isArray(t)){if(0===t.length)return this.error('Expected an array with at least one element. If you wanted a literal array, use ["literal", []].');var n=t[0];if("string"!=typeof n)return this.error("Expression name must be a string, but found "+typeof n+' instead. If you wanted a literal array, use ["literal", [...]].',0),null;var i=this.registry[n];if(i){var a=i.parse(t,this);if(!a)return null;if(this.expectedType){var o=this.expectedType,s=a.type;if("string"!==o.kind&&"number"!==o.kind&&"boolean"!==o.kind&&"object"!==o.kind&&"array"!==o.kind||"value"!==s.kind)if("color"!==o.kind&&"formatted"!==o.kind&&"resolvedImage"!==o.kind||"value"!==s.kind&&"string"!==s.kind){if(this.checkSubtype(o,s))return null}else a=r(a,o,e.typeAnnotation||"coerce");else a=r(a,o,e.typeAnnotation||"assert")}if(!(a instanceof ce)&&"resolvedImage"!==a.type.kind&&function t(e){if(e instanceof je)return t(e.boundExpression);if(e instanceof xe&&"error"===e.name)return!1;if(e instanceof be)return!1;if(e instanceof Re)return!1;var r=e instanceof ge||e instanceof he,n=!0;if(e.eachChild((function(e){n=r?n&&t(e):n&&e instanceof ce})),!n)return!1;return Fe(e)&&Ne(e,["zoom","heatmap-density","line-progress","accumulated","is-supported-script"])}(a)){var l=new ye;try{a=new ce(a.type,a.evaluate(l))}catch(t){return this.error(t.message),null}}return a}return this.error('Unknown expression "'+n+'". If you wanted a literal array, use ["literal", [...]].',0)}return void 0===t?this.error("'undefined' value invalid. Use null instead."):"object"==typeof t?this.error('Bare objects invalid. Use ["literal", {...}] instead.'):this.error("Expected an array, but found "+typeof t+" instead.")},Ue.prototype.concat=function(t,e,r){var n="number"==typeof t?this.path.concat(t):this.path,i=r?this.scope.concat(r):this.scope;return new Ue(this.registry,n,e||null,i,this.errors)},Ue.prototype.error=function(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];var n=""+this.key+e.map((function(t){return"["+t+"]"})).join("");this.errors.push(new Dt(n,t))},Ue.prototype.checkSubtype=function(t,e){var r=Jt(t,e);return r&&this.error(r),r};var He=function(t,e,r){this.type=t,this.input=e,this.labels=[],this.outputs=[];for(var n=0,i=r;n=o)return e.error('Input/output pairs for "step" expressions must be arranged with input values in strictly ascending order.',l);var u=e.parse(s,c,i);if(!u)return null;i=i||u.type,n.push([o,u])}return new He(i,r,n)},He.prototype.evaluate=function(t){var e=this.labels,r=this.outputs;if(1===e.length)return r[0].evaluate(t);var n=this.input.evaluate(t);if(n<=e[0])return r[0].evaluate(t);var i=e.length;return n>=e[i-1]?r[i-1].evaluate(t):r[Ve(e,n)].evaluate(t)},He.prototype.eachChild=function(t){t(this.input);for(var e=0,r=this.outputs;e0&&t.push(this.labels[e]),t.push(this.outputs[e].serialize());return t};var Ge=Object.freeze({__proto__:null,number:qe,color:function(t,e,r){return new te(qe(t.r,e.r,r),qe(t.g,e.g,r),qe(t.b,e.b,r),qe(t.a,e.a,r))},array:function(t,e,r){return t.map((function(t,n){return qe(t,e[n],r)}))}}),Ye=6/29,We=3*Ye*Ye,Xe=Math.PI/180,Ze=180/Math.PI;function Je(t){return t>.008856451679035631?Math.pow(t,1/3):t/We+4/29}function Ke(t){return t>Ye?t*t*t:We*(t-4/29)}function Qe(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function $e(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function tr(t){var e=$e(t.r),r=$e(t.g),n=$e(t.b),i=Je((.4124564*e+.3575761*r+.1804375*n)/.95047),a=Je((.2126729*e+.7151522*r+.072175*n)/1);return{l:116*a-16,a:500*(i-a),b:200*(a-Je((.0193339*e+.119192*r+.9503041*n)/1.08883)),alpha:t.a}}function er(t){var e=(t.l+16)/116,r=isNaN(t.a)?e:e+t.a/500,n=isNaN(t.b)?e:e-t.b/200;return e=1*Ke(e),r=.95047*Ke(r),n=1.08883*Ke(n),new te(Qe(3.2404542*r-1.5371385*e-.4985314*n),Qe(-.969266*r+1.8760108*e+.041556*n),Qe(.0556434*r-.2040259*e+1.0572252*n),t.alpha)}function rr(t,e,r){var n=e-t;return t+r*(n>180||n<-180?n-360*Math.round(n/360):n)}var nr={forward:tr,reverse:er,interpolate:function(t,e,r){return{l:qe(t.l,e.l,r),a:qe(t.a,e.a,r),b:qe(t.b,e.b,r),alpha:qe(t.alpha,e.alpha,r)}}},ir={forward:function(t){var e=tr(t),r=e.l,n=e.a,i=e.b,a=Math.atan2(i,n)*Ze;return{h:a<0?a+360:a,c:Math.sqrt(n*n+i*i),l:r,alpha:t.a}},reverse:function(t){var e=t.h*Xe,r=t.c;return er({l:t.l,a:Math.cos(e)*r,b:Math.sin(e)*r,alpha:t.alpha})},interpolate:function(t,e,r){return{h:rr(t.h,e.h,r),c:qe(t.c,e.c,r),l:qe(t.l,e.l,r),alpha:qe(t.alpha,e.alpha,r)}}},ar=Object.freeze({__proto__:null,lab:nr,hcl:ir}),or=function(t,e,r,n,i){this.type=t,this.operator=e,this.interpolation=r,this.input=n,this.labels=[],this.outputs=[];for(var a=0,o=i;a1})))return e.error("Cubic bezier interpolation requires four numeric arguments with values between 0 and 1.",1);n={name:"cubic-bezier",controlPoints:s}}if(t.length-1<4)return e.error("Expected at least 4 arguments, but found only "+(t.length-1)+".");if((t.length-1)%2!=0)return e.error("Expected an even number of arguments.");if(!(i=e.parse(i,2,Bt)))return null;var l=[],c=null;"interpolate-hcl"===r||"interpolate-lab"===r?c=Ut:e.expectedType&&"value"!==e.expectedType.kind&&(c=e.expectedType);for(var u=0;u=f)return e.error('Input/output pairs for "interpolate" expressions must be arranged with input values in strictly ascending order.',p);var m=e.parse(h,d,c);if(!m)return null;c=c||m.type,l.push([f,m])}return"number"===c.kind||"color"===c.kind||"array"===c.kind&&"number"===c.itemType.kind&&"number"==typeof c.N?new or(c,r,n,i,l):e.error("Type "+Xt(c)+" is not interpolatable.")},or.prototype.evaluate=function(t){var e=this.labels,r=this.outputs;if(1===e.length)return r[0].evaluate(t);var n=this.input.evaluate(t);if(n<=e[0])return r[0].evaluate(t);var i=e.length;if(n>=e[i-1])return r[i-1].evaluate(t);var a=Ve(e,n),o=e[a],s=e[a+1],l=or.interpolationFactor(this.interpolation,n,o,s),c=r[a].evaluate(t),u=r[a+1].evaluate(t);return"interpolate"===this.operator?Ge[this.type.kind.toLowerCase()](c,u,l):"interpolate-hcl"===this.operator?ir.reverse(ir.interpolate(ir.forward(c),ir.forward(u),l)):nr.reverse(nr.interpolate(nr.forward(c),nr.forward(u),l))},or.prototype.eachChild=function(t){t(this.input);for(var e=0,r=this.outputs;e=r.length)throw new ue("Array index out of bounds: "+e+" > "+(r.length-1)+".");if(e!==Math.floor(e))throw new ue("Array index must be an integer, but found "+e+" instead.");return r[e]},ur.prototype.eachChild=function(t){t(this.index),t(this.input)},ur.prototype.outputDefined=function(){return!1},ur.prototype.serialize=function(){return["at",this.index.serialize(),this.input.serialize()]};var fr=function(t,e){this.type=jt,this.needle=t,this.haystack=e};fr.parse=function(t,e){if(3!==t.length)return e.error("Expected 2 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Ht);return r&&n?Kt(r.type,[jt,Nt,Bt,Ft,Ht])?new fr(r,n):e.error("Expected first argument to be of type boolean, string, number or null, but found "+Xt(r.type)+" instead"):null},fr.prototype.evaluate=function(t){var e=this.needle.evaluate(t),r=this.haystack.evaluate(t);if(!r)return!1;if(!Qt(e,["boolean","string","number","null"]))throw new ue("Expected first argument to be of type boolean, string, number or null, but found "+Xt(se(e))+" instead.");if(!Qt(r,["string","array"]))throw new ue("Expected second argument to be of type array or string, but found "+Xt(se(r))+" instead.");return r.indexOf(e)>=0},fr.prototype.eachChild=function(t){t(this.needle),t(this.haystack)},fr.prototype.outputDefined=function(){return!0},fr.prototype.serialize=function(){return["in",this.needle.serialize(),this.haystack.serialize()]};var hr=function(t,e,r){this.type=Bt,this.needle=t,this.haystack=e,this.fromIndex=r};hr.parse=function(t,e){if(t.length<=2||t.length>=5)return e.error("Expected 3 or 4 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Ht);if(!r||!n)return null;if(!Kt(r.type,[jt,Nt,Bt,Ft,Ht]))return e.error("Expected first argument to be of type boolean, string, number or null, but found "+Xt(r.type)+" instead");if(4===t.length){var i=e.parse(t[3],3,Bt);return i?new hr(r,n,i):null}return new hr(r,n)},hr.prototype.evaluate=function(t){var e=this.needle.evaluate(t),r=this.haystack.evaluate(t);if(!Qt(e,["boolean","string","number","null"]))throw new ue("Expected first argument to be of type boolean, string, number or null, but found "+Xt(se(e))+" instead.");if(!Qt(r,["string","array"]))throw new ue("Expected second argument to be of type array or string, but found "+Xt(se(r))+" instead.");if(this.fromIndex){var n=this.fromIndex.evaluate(t);return r.indexOf(e,n)}return r.indexOf(e)},hr.prototype.eachChild=function(t){t(this.needle),t(this.haystack),this.fromIndex&&t(this.fromIndex)},hr.prototype.outputDefined=function(){return!1},hr.prototype.serialize=function(){if(null!=this.fromIndex&&void 0!==this.fromIndex){var t=this.fromIndex.serialize();return["index-of",this.needle.serialize(),this.haystack.serialize(),t]}return["index-of",this.needle.serialize(),this.haystack.serialize()]};var pr=function(t,e,r,n,i,a){this.inputType=t,this.type=e,this.input=r,this.cases=n,this.outputs=i,this.otherwise=a};pr.parse=function(t,e){if(t.length<5)return e.error("Expected at least 4 arguments, but found only "+(t.length-1)+".");if(t.length%2!=1)return e.error("Expected an even number of arguments.");var r,n;e.expectedType&&"value"!==e.expectedType.kind&&(n=e.expectedType);for(var i={},a=[],o=2;oNumber.MAX_SAFE_INTEGER)return c.error("Branch labels must be integers no larger than "+Number.MAX_SAFE_INTEGER+".");if("number"==typeof h&&Math.floor(h)!==h)return c.error("Numeric branch labels must be integer values.");if(r){if(c.checkSubtype(r,se(h)))return null}else r=se(h);if(void 0!==i[String(h)])return c.error("Branch labels must be unique.");i[String(h)]=a.length}var p=e.parse(l,o,n);if(!p)return null;n=n||p.type,a.push(p)}var d=e.parse(t[1],1,Ht);if(!d)return null;var m=e.parse(t[t.length-1],t.length-1,n);return m?"value"!==d.type.kind&&e.concat(1).checkSubtype(r,d.type)?null:new pr(r,n,d,i,a,m):null},pr.prototype.evaluate=function(t){var e=this.input.evaluate(t);return(se(e)===this.inputType&&this.outputs[this.cases[e]]||this.otherwise).evaluate(t)},pr.prototype.eachChild=function(t){t(this.input),this.outputs.forEach(t),t(this.otherwise)},pr.prototype.outputDefined=function(){return this.outputs.every((function(t){return t.outputDefined()}))&&this.otherwise.outputDefined()},pr.prototype.serialize=function(){for(var t=this,e=["match",this.input.serialize()],r=[],n={},i=0,a=Object.keys(this.cases).sort();i=5)return e.error("Expected 3 or 4 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Bt);if(!r||!n)return null;if(!Kt(r.type,[Wt(Ht),Nt,Ht]))return e.error("Expected first argument to be of type array or string, but found "+Xt(r.type)+" instead");if(4===t.length){var i=e.parse(t[3],3,Bt);return i?new mr(r.type,r,n,i):null}return new mr(r.type,r,n)},mr.prototype.evaluate=function(t){var e=this.input.evaluate(t),r=this.beginIndex.evaluate(t);if(!Qt(e,["string","array"]))throw new ue("Expected first argument to be of type array or string, but found "+Xt(se(e))+" instead.");if(this.endIndex){var n=this.endIndex.evaluate(t);return e.slice(r,n)}return e.slice(r)},mr.prototype.eachChild=function(t){t(this.input),t(this.beginIndex),this.endIndex&&t(this.endIndex)},mr.prototype.outputDefined=function(){return!1},mr.prototype.serialize=function(){if(null!=this.endIndex&&void 0!==this.endIndex){var t=this.endIndex.serialize();return["slice",this.input.serialize(),this.beginIndex.serialize(),t]}return["slice",this.input.serialize(),this.beginIndex.serialize()]};var xr=yr("==",(function(t,e,r){return e===r}),vr),br=yr("!=",(function(t,e,r){return e!==r}),(function(t,e,r,n){return!vr(0,e,r,n)})),_r=yr("<",(function(t,e,r){return e",(function(t,e,r){return e>r}),(function(t,e,r,n){return n.compare(e,r)>0})),Tr=yr("<=",(function(t,e,r){return e<=r}),(function(t,e,r,n){return n.compare(e,r)<=0})),kr=yr(">=",(function(t,e,r){return e>=r}),(function(t,e,r,n){return n.compare(e,r)>=0})),Ar=function(t,e,r,n,i){this.type=Nt,this.number=t,this.locale=e,this.currency=r,this.minFractionDigits=n,this.maxFractionDigits=i};Ar.parse=function(t,e){if(3!==t.length)return e.error("Expected two arguments.");var r=e.parse(t[1],1,Bt);if(!r)return null;var n=t[2];if("object"!=typeof n||Array.isArray(n))return e.error("NumberFormat options argument must be an object.");var i=null;if(n.locale&&!(i=e.parse(n.locale,1,Nt)))return null;var a=null;if(n.currency&&!(a=e.parse(n.currency,1,Nt)))return null;var o=null;if(n["min-fraction-digits"]&&!(o=e.parse(n["min-fraction-digits"],1,Bt)))return null;var s=null;return n["max-fraction-digits"]&&!(s=e.parse(n["max-fraction-digits"],1,Bt))?null:new Ar(r,i,a,o,s)},Ar.prototype.evaluate=function(t){return new Intl.NumberFormat(this.locale?this.locale.evaluate(t):[],{style:this.currency?"currency":"decimal",currency:this.currency?this.currency.evaluate(t):void 0,minimumFractionDigits:this.minFractionDigits?this.minFractionDigits.evaluate(t):void 0,maximumFractionDigits:this.maxFractionDigits?this.maxFractionDigits.evaluate(t):void 0}).format(this.number.evaluate(t))},Ar.prototype.eachChild=function(t){t(this.number),this.locale&&t(this.locale),this.currency&&t(this.currency),this.minFractionDigits&&t(this.minFractionDigits),this.maxFractionDigits&&t(this.maxFractionDigits)},Ar.prototype.outputDefined=function(){return!1},Ar.prototype.serialize=function(){var t={};return this.locale&&(t.locale=this.locale.serialize()),this.currency&&(t.currency=this.currency.serialize()),this.minFractionDigits&&(t["min-fraction-digits"]=this.minFractionDigits.serialize()),this.maxFractionDigits&&(t["max-fraction-digits"]=this.maxFractionDigits.serialize()),["number-format",this.number.serialize(),t]};var Mr=function(t){this.type=Bt,this.input=t};Mr.parse=function(t,e){if(2!==t.length)return e.error("Expected 1 argument, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1);return r?"array"!==r.type.kind&&"string"!==r.type.kind&&"value"!==r.type.kind?e.error("Expected argument of type string or array, but found "+Xt(r.type)+" instead."):new Mr(r):null},Mr.prototype.evaluate=function(t){var e=this.input.evaluate(t);if("string"==typeof e)return e.length;if(Array.isArray(e))return e.length;throw new ue("Expected value to be of type string or array, but found "+Xt(se(e))+" instead.")},Mr.prototype.eachChild=function(t){t(this.input)},Mr.prototype.outputDefined=function(){return!1},Mr.prototype.serialize=function(){var t=["length"];return this.eachChild((function(e){t.push(e.serialize())})),t};var Sr={"==":xr,"!=":br,">":wr,"<":_r,">=":kr,"<=":Tr,array:he,at:ur,boolean:he,case:dr,coalesce:lr,collator:be,format:pe,image:de,in:fr,"index-of":hr,interpolate:or,"interpolate-hcl":or,"interpolate-lab":or,length:Mr,let:cr,literal:ce,match:pr,number:he,"number-format":Ar,object:he,slice:mr,step:He,string:he,"to-boolean":ge,"to-color":ge,"to-number":ge,"to-string":ge,var:je,within:Re};function Er(t,e){var r=e[0],n=e[1],i=e[2],a=e[3];r=r.evaluate(t),n=n.evaluate(t),i=i.evaluate(t);var o=a?a.evaluate(t):1,s=ae(r,n,i,o);if(s)throw new ue(s);return new te(r/255*o,n/255*o,i/255*o,o)}function Lr(t,e){return t in e}function Cr(t,e){var r=e[t];return void 0===r?null:r}function Pr(t){return{type:t}}function Ir(t){return{result:"success",value:t}}function Or(t){return{result:"error",value:t}}function zr(t){return"data-driven"===t["property-type"]||"cross-faded-data-driven"===t["property-type"]}function Dr(t){return!!t.expression&&t.expression.parameters.indexOf("zoom")>-1}function Rr(t){return!!t.expression&&t.expression.interpolated}function Fr(t){return t instanceof Number?"number":t instanceof String?"string":t instanceof Boolean?"boolean":Array.isArray(t)?"array":null===t?"null":typeof t}function Br(t){return"object"==typeof t&&null!==t&&!Array.isArray(t)}function Nr(t){return t}function jr(t,e,r){return void 0!==t?t:void 0!==e?e:void 0!==r?r:void 0}function Ur(t,e,r,n,i){return jr(typeof r===i?n[r]:void 0,t.default,e.default)}function Vr(t,e,r){if("number"!==Fr(r))return jr(t.default,e.default);var n=t.stops.length;if(1===n)return t.stops[0][1];if(r<=t.stops[0][0])return t.stops[0][1];if(r>=t.stops[n-1][0])return t.stops[n-1][1];var i=Ve(t.stops.map((function(t){return t[0]})),r);return t.stops[i][1]}function Hr(t,e,r){var n=void 0!==t.base?t.base:1;if("number"!==Fr(r))return jr(t.default,e.default);var i=t.stops.length;if(1===i)return t.stops[0][1];if(r<=t.stops[0][0])return t.stops[0][1];if(r>=t.stops[i-1][0])return t.stops[i-1][1];var a=Ve(t.stops.map((function(t){return t[0]})),r),o=function(t,e,r,n){var i=n-r,a=t-r;return 0===i?0:1===e?a/i:(Math.pow(e,a)-1)/(Math.pow(e,i)-1)}(r,n,t.stops[a][0],t.stops[a+1][0]),s=t.stops[a][1],l=t.stops[a+1][1],c=Ge[e.type]||Nr;if(t.colorSpace&&"rgb"!==t.colorSpace){var u=ar[t.colorSpace];c=function(t,e){return u.reverse(u.interpolate(u.forward(t),u.forward(e),o))}}return"function"==typeof s.evaluate?{evaluate:function(){for(var t=[],e=arguments.length;e--;)t[e]=arguments[e];var r=s.evaluate.apply(void 0,t),n=l.evaluate.apply(void 0,t);if(void 0!==r&&void 0!==n)return c(r,n,o)}}:c(s,l,o)}function qr(t,e,r){return"color"===e.type?r=te.parse(r):"formatted"===e.type?r=ne.fromString(r.toString()):"resolvedImage"===e.type?r=ie.fromString(r.toString()):Fr(r)===e.type||"enum"===e.type&&e.values[r]||(r=void 0),jr(r,t.default,e.default)}xe.register(Sr,{error:[{kind:"error"},[Nt],function(t,e){var r=e[0];throw new ue(r.evaluate(t))}],typeof:[Nt,[Ht],function(t,e){return Xt(se(e[0].evaluate(t)))}],"to-rgba":[Wt(Bt,4),[Ut],function(t,e){return e[0].evaluate(t).toArray()}],rgb:[Ut,[Bt,Bt,Bt],Er],rgba:[Ut,[Bt,Bt,Bt,Bt],Er],has:{type:jt,overloads:[[[Nt],function(t,e){return Lr(e[0].evaluate(t),t.properties())}],[[Nt,Vt],function(t,e){var r=e[0],n=e[1];return Lr(r.evaluate(t),n.evaluate(t))}]]},get:{type:Ht,overloads:[[[Nt],function(t,e){return Cr(e[0].evaluate(t),t.properties())}],[[Nt,Vt],function(t,e){var r=e[0],n=e[1];return Cr(r.evaluate(t),n.evaluate(t))}]]},"feature-state":[Ht,[Nt],function(t,e){return Cr(e[0].evaluate(t),t.featureState||{})}],properties:[Vt,[],function(t){return t.properties()}],"geometry-type":[Nt,[],function(t){return t.geometryType()}],id:[Ht,[],function(t){return t.id()}],zoom:[Bt,[],function(t){return t.globals.zoom}],"heatmap-density":[Bt,[],function(t){return t.globals.heatmapDensity||0}],"line-progress":[Bt,[],function(t){return t.globals.lineProgress||0}],accumulated:[Ht,[],function(t){return void 0===t.globals.accumulated?null:t.globals.accumulated}],"+":[Bt,Pr(Bt),function(t,e){for(var r=0,n=0,i=e;n":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i>a}],"filter-id->":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n>i}],"filter-<=":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i<=a}],"filter-id-<=":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n<=i}],"filter->=":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i>=a}],"filter-id->=":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n>=i}],"filter-has":[jt,[Ht],function(t,e){return e[0].value in t.properties()}],"filter-has-id":[jt,[],function(t){return null!==t.id()&&void 0!==t.id()}],"filter-type-in":[jt,[Wt(Nt)],function(t,e){return e[0].value.indexOf(t.geometryType())>=0}],"filter-id-in":[jt,[Wt(Ht)],function(t,e){return e[0].value.indexOf(t.id())>=0}],"filter-in-small":[jt,[Nt,Wt(Ht)],function(t,e){var r=e[0];return e[1].value.indexOf(t.properties()[r.value])>=0}],"filter-in-large":[jt,[Nt,Wt(Ht)],function(t,e){var r=e[0],n=e[1];return function(t,e,r,n){for(;r<=n;){var i=r+n>>1;if(e[i]===t)return!0;e[i]>t?n=i-1:r=i+1}return!1}(t.properties()[r.value],n.value,0,n.value.length-1)}],all:{type:jt,overloads:[[[jt,jt],function(t,e){var r=e[0],n=e[1];return r.evaluate(t)&&n.evaluate(t)}],[Pr(jt),function(t,e){for(var r=0,n=e;r0&&"string"==typeof t[0]&&t[0]in Sr}function Wr(t,e){var r=new Ue(Sr,[],e?function(t){var e={color:Ut,string:Nt,number:Bt,enum:Nt,boolean:jt,formatted:Gt,resolvedImage:Yt};if("array"===t.type)return Wt(e[t.value]||Ht,t.length);return e[t.type]}(e):void 0),n=r.parse(t,void 0,void 0,void 0,e&&"string"===e.type?{typeAnnotation:"coerce"}:void 0);return n?Ir(new Gr(n,e)):Or(r.errors)}Gr.prototype.evaluateWithoutErrorHandling=function(t,e,r,n,i,a){return this._evaluator.globals=t,this._evaluator.feature=e,this._evaluator.featureState=r,this._evaluator.canonical=n,this._evaluator.availableImages=i||null,this._evaluator.formattedSection=a,this.expression.evaluate(this._evaluator)},Gr.prototype.evaluate=function(t,e,r,n,i,a){this._evaluator.globals=t,this._evaluator.feature=e||null,this._evaluator.featureState=r||null,this._evaluator.canonical=n,this._evaluator.availableImages=i||null,this._evaluator.formattedSection=a||null;try{var o=this.expression.evaluate(this._evaluator);if(null==o||"number"==typeof o&&o!=o)return this._defaultValue;if(this._enumValues&&!(o in this._enumValues))throw new ue("Expected value to be one of "+Object.keys(this._enumValues).map((function(t){return JSON.stringify(t)})).join(", ")+", but found "+JSON.stringify(o)+" instead.");return o}catch(t){return this._warningHistory[t.message]||(this._warningHistory[t.message]=!0,"undefined"!=typeof console&&console.warn(t.message)),this._defaultValue}};var Xr=function(t,e){this.kind=t,this._styleExpression=e,this.isStateDependent="constant"!==t&&!Be(e.expression)};Xr.prototype.evaluateWithoutErrorHandling=function(t,e,r,n,i,a){return this._styleExpression.evaluateWithoutErrorHandling(t,e,r,n,i,a)},Xr.prototype.evaluate=function(t,e,r,n,i,a){return this._styleExpression.evaluate(t,e,r,n,i,a)};var Zr=function(t,e,r,n){this.kind=t,this.zoomStops=r,this._styleExpression=e,this.isStateDependent="camera"!==t&&!Be(e.expression),this.interpolationType=n};function Jr(t,e){if("error"===(t=Wr(t,e)).result)return t;var r=t.value.expression,n=Fe(r);if(!n&&!zr(e))return Or([new Dt("","data expressions not supported")]);var i=Ne(r,["zoom"]);if(!i&&!Dr(e))return Or([new Dt("","zoom expressions not supported")]);var a=function t(e){var r=null;if(e instanceof cr)r=t(e.result);else if(e instanceof lr)for(var n=0,i=e.args;nn.maximum?[new Ct(e,r,r+" is greater than the maximum value "+n.maximum)]:[]}function en(t){var e,r,n,i=t.valueSpec,a=Ot(t.value.type),o={},s="categorical"!==a&&void 0===t.value.property,l=!s,c="array"===Fr(t.value.stops)&&"array"===Fr(t.value.stops[0])&&"object"===Fr(t.value.stops[0][0]),u=Qr({key:t.key,value:t.value,valueSpec:t.styleSpec.function,style:t.style,styleSpec:t.styleSpec,objectElementValidators:{stops:function(t){if("identity"===a)return[new Ct(t.key,t.value,'identity function may not have a "stops" property')];var e=[],r=t.value;e=e.concat($r({key:t.key,value:r,valueSpec:t.valueSpec,style:t.style,styleSpec:t.styleSpec,arrayElementValidator:f})),"array"===Fr(r)&&0===r.length&&e.push(new Ct(t.key,r,"array must have at least one stop"));return e},default:function(t){return kn({key:t.key,value:t.value,valueSpec:i,style:t.style,styleSpec:t.styleSpec})}}});return"identity"===a&&s&&u.push(new Ct(t.key,t.value,'missing required property "property"')),"identity"===a||t.value.stops||u.push(new Ct(t.key,t.value,'missing required property "stops"')),"exponential"===a&&t.valueSpec.expression&&!Rr(t.valueSpec)&&u.push(new Ct(t.key,t.value,"exponential functions not supported")),t.styleSpec.$version>=8&&(l&&!zr(t.valueSpec)?u.push(new Ct(t.key,t.value,"property functions not supported")):s&&!Dr(t.valueSpec)&&u.push(new Ct(t.key,t.value,"zoom functions not supported"))),"categorical"!==a&&!c||void 0!==t.value.property||u.push(new Ct(t.key,t.value,'"property" property is required')),u;function f(t){var e=[],a=t.value,s=t.key;if("array"!==Fr(a))return[new Ct(s,a,"array expected, "+Fr(a)+" found")];if(2!==a.length)return[new Ct(s,a,"array length 2 expected, length "+a.length+" found")];if(c){if("object"!==Fr(a[0]))return[new Ct(s,a,"object expected, "+Fr(a[0])+" found")];if(void 0===a[0].zoom)return[new Ct(s,a,"object stop key must have zoom")];if(void 0===a[0].value)return[new Ct(s,a,"object stop key must have value")];if(n&&n>Ot(a[0].zoom))return[new Ct(s,a[0].zoom,"stop zoom values must appear in ascending order")];Ot(a[0].zoom)!==n&&(n=Ot(a[0].zoom),r=void 0,o={}),e=e.concat(Qr({key:s+"[0]",value:a[0],valueSpec:{zoom:{}},style:t.style,styleSpec:t.styleSpec,objectElementValidators:{zoom:tn,value:h}}))}else e=e.concat(h({key:s+"[0]",value:a[0],valueSpec:{},style:t.style,styleSpec:t.styleSpec},a));return Yr(zt(a[1]))?e.concat([new Ct(s+"[1]",a[1],"expressions are not allowed in function stops.")]):e.concat(kn({key:s+"[1]",value:a[1],valueSpec:i,style:t.style,styleSpec:t.styleSpec}))}function h(t,n){var s=Fr(t.value),l=Ot(t.value),c=null!==t.value?t.value:n;if(e){if(s!==e)return[new Ct(t.key,c,s+" stop domain type must match previous stop domain type "+e)]}else e=s;if("number"!==s&&"string"!==s&&"boolean"!==s)return[new Ct(t.key,c,"stop domain value must be a number, string, or boolean")];if("number"!==s&&"categorical"!==a){var u="number expected, "+s+" found";return zr(i)&&void 0===a&&(u+='\nIf you intended to use a categorical function, specify `"type": "categorical"`.'),[new Ct(t.key,c,u)]}return"categorical"!==a||"number"!==s||isFinite(l)&&Math.floor(l)===l?"categorical"!==a&&"number"===s&&void 0!==r&&l=2&&"$id"!==t[1]&&"$type"!==t[1];case"in":return t.length>=3&&("string"!=typeof t[1]||Array.isArray(t[2]));case"!in":case"!has":case"none":return!1;case"==":case"!=":case">":case">=":case"<":case"<=":return 3!==t.length||Array.isArray(t[1])||Array.isArray(t[2]);case"any":case"all":for(var e=0,r=t.slice(1);ee?1:0}function cn(t){if(!t)return!0;var e,r=t[0];return t.length<=1?"any"!==r:"=="===r?un(t[1],t[2],"=="):"!="===r?pn(un(t[1],t[2],"==")):"<"===r||">"===r||"<="===r||">="===r?un(t[1],t[2],r):"any"===r?(e=t.slice(1),["any"].concat(e.map(cn))):"all"===r?["all"].concat(t.slice(1).map(cn)):"none"===r?["all"].concat(t.slice(1).map(cn).map(pn)):"in"===r?fn(t[1],t.slice(2)):"!in"===r?pn(fn(t[1],t.slice(2))):"has"===r?hn(t[1]):"!has"===r?pn(hn(t[1])):"within"!==r||t}function un(t,e,r){switch(t){case"$type":return["filter-type-"+r,e];case"$id":return["filter-id-"+r,e];default:return["filter-"+r,t,e]}}function fn(t,e){if(0===e.length)return!1;switch(t){case"$type":return["filter-type-in",["literal",e]];case"$id":return["filter-id-in",["literal",e]];default:return e.length>200&&!e.some((function(t){return typeof t!=typeof e[0]}))?["filter-in-large",t,["literal",e.sort(ln)]]:["filter-in-small",t,["literal",e]]}}function hn(t){switch(t){case"$type":return!0;case"$id":return["filter-has-id"];default:return["filter-has",t]}}function pn(t){return["!",t]}function dn(t){return an(zt(t.value))?rn(It({},t,{expressionContext:"filter",valueSpec:{value:"boolean"}})):function t(e){var r=e.value,n=e.key;if("array"!==Fr(r))return[new Ct(n,r,"array expected, "+Fr(r)+" found")];var i,a=e.styleSpec,o=[];if(r.length<1)return[new Ct(n,r,"filter array must have at least 1 element")];switch(o=o.concat(nn({key:n+"[0]",value:r[0],valueSpec:a.filter_operator,style:e.style,styleSpec:e.styleSpec})),Ot(r[0])){case"<":case"<=":case">":case">=":r.length>=2&&"$type"===Ot(r[1])&&o.push(new Ct(n,r,'"$type" cannot be use with operator "'+r[0]+'"'));case"==":case"!=":3!==r.length&&o.push(new Ct(n,r,'filter array for operator "'+r[0]+'" must have 3 elements'));case"in":case"!in":r.length>=2&&"string"!==(i=Fr(r[1]))&&o.push(new Ct(n+"[1]",r[1],"string expected, "+i+" found"));for(var s=2;s=u[p+0]&&n>=u[p+1])?(o[h]=!0,a.push(c[h])):o[h]=!1}}},Dn.prototype._forEachCell=function(t,e,r,n,i,a,o,s){for(var l=this._convertToCellCoord(t),c=this._convertToCellCoord(e),u=this._convertToCellCoord(r),f=this._convertToCellCoord(n),h=l;h<=u;h++)for(var p=c;p<=f;p++){var d=this.d*p+h;if((!s||s(this._convertFromCellCoord(h),this._convertFromCellCoord(p),this._convertFromCellCoord(h+1),this._convertFromCellCoord(p+1)))&&i.call(this,t,e,r,n,d,a,o,s))return}},Dn.prototype._convertFromCellCoord=function(t){return(t-this.padding)/this.scale},Dn.prototype._convertToCellCoord=function(t){return Math.max(0,Math.min(this.d-1,Math.floor(t*this.scale)+this.padding))},Dn.prototype.toArrayBuffer=function(){if(this.arrayBuffer)return this.arrayBuffer;for(var t=this.cells,e=3+this.cells.length+1+1,r=0,n=0;n=0)){var f=t[u];c[u]=Bn[l].shallow.indexOf(u)>=0?f:Hn(f,e)}t instanceof Error&&(c.message=t.message)}if(c.$name)throw new Error("$name property is reserved for worker serialization logic.");return"Object"!==l&&(c.$name=l),c}throw new Error("can't serialize object of type "+typeof t)}function qn(t){if(null==t||"boolean"==typeof t||"number"==typeof t||"string"==typeof t||t instanceof Boolean||t instanceof Number||t instanceof String||t instanceof Date||t instanceof RegExp||Un(t)||Vn(t)||ArrayBuffer.isView(t)||t instanceof Rn)return t;if(Array.isArray(t))return t.map(qn);if("object"==typeof t){var e=t.$name||"Object",r=Bn[e].klass;if(!r)throw new Error("can't deserialize unregistered class "+e);if(r.deserialize)return r.deserialize(t);for(var n=Object.create(r.prototype),i=0,a=Object.keys(t);i=0?s:qn(s)}}return n}throw new Error("can't deserialize object of type "+typeof t)}var Gn=function(){this.first=!0};Gn.prototype.update=function(t,e){var r=Math.floor(t);return this.first?(this.first=!1,this.lastIntegerZoom=r,this.lastIntegerZoomTime=0,this.lastZoom=t,this.lastFloorZoom=r,!0):(this.lastFloorZoom>r?(this.lastIntegerZoom=r+1,this.lastIntegerZoomTime=e):this.lastFloorZoom=128&&t<=255},Arabic:function(t){return t>=1536&&t<=1791},"Arabic Supplement":function(t){return t>=1872&&t<=1919},"Arabic Extended-A":function(t){return t>=2208&&t<=2303},"Hangul Jamo":function(t){return t>=4352&&t<=4607},"Unified Canadian Aboriginal Syllabics":function(t){return t>=5120&&t<=5759},Khmer:function(t){return t>=6016&&t<=6143},"Unified Canadian Aboriginal Syllabics Extended":function(t){return t>=6320&&t<=6399},"General Punctuation":function(t){return t>=8192&&t<=8303},"Letterlike Symbols":function(t){return t>=8448&&t<=8527},"Number Forms":function(t){return t>=8528&&t<=8591},"Miscellaneous Technical":function(t){return t>=8960&&t<=9215},"Control Pictures":function(t){return t>=9216&&t<=9279},"Optical Character Recognition":function(t){return t>=9280&&t<=9311},"Enclosed Alphanumerics":function(t){return t>=9312&&t<=9471},"Geometric Shapes":function(t){return t>=9632&&t<=9727},"Miscellaneous Symbols":function(t){return t>=9728&&t<=9983},"Miscellaneous Symbols and Arrows":function(t){return t>=11008&&t<=11263},"CJK Radicals Supplement":function(t){return t>=11904&&t<=12031},"Kangxi Radicals":function(t){return t>=12032&&t<=12255},"Ideographic Description Characters":function(t){return t>=12272&&t<=12287},"CJK Symbols and Punctuation":function(t){return t>=12288&&t<=12351},Hiragana:function(t){return t>=12352&&t<=12447},Katakana:function(t){return t>=12448&&t<=12543},Bopomofo:function(t){return t>=12544&&t<=12591},"Hangul Compatibility Jamo":function(t){return t>=12592&&t<=12687},Kanbun:function(t){return t>=12688&&t<=12703},"Bopomofo Extended":function(t){return t>=12704&&t<=12735},"CJK Strokes":function(t){return t>=12736&&t<=12783},"Katakana Phonetic Extensions":function(t){return t>=12784&&t<=12799},"Enclosed CJK Letters and Months":function(t){return t>=12800&&t<=13055},"CJK Compatibility":function(t){return t>=13056&&t<=13311},"CJK Unified Ideographs Extension A":function(t){return t>=13312&&t<=19903},"Yijing Hexagram Symbols":function(t){return t>=19904&&t<=19967},"CJK Unified Ideographs":function(t){return t>=19968&&t<=40959},"Yi Syllables":function(t){return t>=40960&&t<=42127},"Yi Radicals":function(t){return t>=42128&&t<=42191},"Hangul Jamo Extended-A":function(t){return t>=43360&&t<=43391},"Hangul Syllables":function(t){return t>=44032&&t<=55215},"Hangul Jamo Extended-B":function(t){return t>=55216&&t<=55295},"Private Use Area":function(t){return t>=57344&&t<=63743},"CJK Compatibility Ideographs":function(t){return t>=63744&&t<=64255},"Arabic Presentation Forms-A":function(t){return t>=64336&&t<=65023},"Vertical Forms":function(t){return t>=65040&&t<=65055},"CJK Compatibility Forms":function(t){return t>=65072&&t<=65103},"Small Form Variants":function(t){return t>=65104&&t<=65135},"Arabic Presentation Forms-B":function(t){return t>=65136&&t<=65279},"Halfwidth and Fullwidth Forms":function(t){return t>=65280&&t<=65519}};function Wn(t){for(var e=0,r=t;e=65097&&t<=65103)||(!!Yn["CJK Compatibility Ideographs"](t)||(!!Yn["CJK Compatibility"](t)||(!!Yn["CJK Radicals Supplement"](t)||(!!Yn["CJK Strokes"](t)||(!(!Yn["CJK Symbols and Punctuation"](t)||t>=12296&&t<=12305||t>=12308&&t<=12319||12336===t)||(!!Yn["CJK Unified Ideographs Extension A"](t)||(!!Yn["CJK Unified Ideographs"](t)||(!!Yn["Enclosed CJK Letters and Months"](t)||(!!Yn["Hangul Compatibility Jamo"](t)||(!!Yn["Hangul Jamo Extended-A"](t)||(!!Yn["Hangul Jamo Extended-B"](t)||(!!Yn["Hangul Jamo"](t)||(!!Yn["Hangul Syllables"](t)||(!!Yn.Hiragana(t)||(!!Yn["Ideographic Description Characters"](t)||(!!Yn.Kanbun(t)||(!!Yn["Kangxi Radicals"](t)||(!!Yn["Katakana Phonetic Extensions"](t)||(!(!Yn.Katakana(t)||12540===t)||(!(!Yn["Halfwidth and Fullwidth Forms"](t)||65288===t||65289===t||65293===t||t>=65306&&t<=65310||65339===t||65341===t||65343===t||t>=65371&&t<=65503||65507===t||t>=65512&&t<=65519)||(!(!Yn["Small Form Variants"](t)||t>=65112&&t<=65118||t>=65123&&t<=65126)||(!!Yn["Unified Canadian Aboriginal Syllabics"](t)||(!!Yn["Unified Canadian Aboriginal Syllabics Extended"](t)||(!!Yn["Vertical Forms"](t)||(!!Yn["Yijing Hexagram Symbols"](t)||(!!Yn["Yi Syllables"](t)||!!Yn["Yi Radicals"](t))))))))))))))))))))))))))))))}function Jn(t){return!(Zn(t)||function(t){return!(!Yn["Latin-1 Supplement"](t)||167!==t&&169!==t&&174!==t&&177!==t&&188!==t&&189!==t&&190!==t&&215!==t&&247!==t)||(!(!Yn["General Punctuation"](t)||8214!==t&&8224!==t&&8225!==t&&8240!==t&&8241!==t&&8251!==t&&8252!==t&&8258!==t&&8263!==t&&8264!==t&&8265!==t&&8273!==t)||(!!Yn["Letterlike Symbols"](t)||(!!Yn["Number Forms"](t)||(!(!Yn["Miscellaneous Technical"](t)||!(t>=8960&&t<=8967||t>=8972&&t<=8991||t>=8996&&t<=9e3||9003===t||t>=9085&&t<=9114||t>=9150&&t<=9165||9167===t||t>=9169&&t<=9179||t>=9186&&t<=9215))||(!(!Yn["Control Pictures"](t)||9251===t)||(!!Yn["Optical Character Recognition"](t)||(!!Yn["Enclosed Alphanumerics"](t)||(!!Yn["Geometric Shapes"](t)||(!(!Yn["Miscellaneous Symbols"](t)||t>=9754&&t<=9759)||(!(!Yn["Miscellaneous Symbols and Arrows"](t)||!(t>=11026&&t<=11055||t>=11088&&t<=11097||t>=11192&&t<=11243))||(!!Yn["CJK Symbols and Punctuation"](t)||(!!Yn.Katakana(t)||(!!Yn["Private Use Area"](t)||(!!Yn["CJK Compatibility Forms"](t)||(!!Yn["Small Form Variants"](t)||(!!Yn["Halfwidth and Fullwidth Forms"](t)||(8734===t||8756===t||8757===t||t>=9984&&t<=10087||t>=10102&&t<=10131||65532===t||65533===t)))))))))))))))))}(t))}function Kn(t){return t>=1424&&t<=2303||Yn["Arabic Presentation Forms-A"](t)||Yn["Arabic Presentation Forms-B"](t)}function Qn(t,e){return!(!e&&Kn(t))&&!(t>=2304&&t<=3583||t>=3840&&t<=4255||Yn.Khmer(t))}function $n(t){for(var e=0,r=t;e-1&&(ai=ni),ii&&ii(t)};function li(){ci.fire(new Mt("pluginStateChange",{pluginStatus:ai,pluginURL:oi}))}var ci=new Et,ui=function(){return ai},fi=function(){if(ai!==ti||!oi)throw new Error("rtl-text-plugin cannot be downloaded unless a pluginURL is specified");ai=ei,li(),oi&&xt({url:oi},(function(t){t?si(t):(ai=ri,li())}))},hi={applyArabicShaping:null,processBidirectionalText:null,processStyledBidirectionalText:null,isLoaded:function(){return ai===ri||null!=hi.applyArabicShaping},isLoading:function(){return ai===ei},setState:function(t){ai=t.pluginStatus,oi=t.pluginURL},isParsed:function(){return null!=hi.applyArabicShaping&&null!=hi.processBidirectionalText&&null!=hi.processStyledBidirectionalText},getPluginURL:function(){return oi}},pi=function(t,e){this.zoom=t,e?(this.now=e.now,this.fadeDuration=e.fadeDuration,this.zoomHistory=e.zoomHistory,this.transition=e.transition):(this.now=0,this.fadeDuration=0,this.zoomHistory=new Gn,this.transition={})};pi.prototype.isSupportedScript=function(t){return function(t,e){for(var r=0,n=t;rthis.zoomHistory.lastIntegerZoom?{fromScale:2,toScale:1,t:e+(1-e)*r}:{fromScale:.5,toScale:1,t:1-(1-r)*e}};var di=function(t,e){this.property=t,this.value=e,this.expression=function(t,e){if(Br(t))return new Kr(t,e);if(Yr(t)){var r=Jr(t,e);if("error"===r.result)throw new Error(r.value.map((function(t){return t.key+": "+t.message})).join(", "));return r.value}var n=t;return"string"==typeof t&&"color"===e.type&&(n=te.parse(t)),{kind:"constant",evaluate:function(){return n}}}(void 0===e?t.specification.default:e,t.specification)};di.prototype.isDataDriven=function(){return"source"===this.expression.kind||"composite"===this.expression.kind},di.prototype.possiblyEvaluate=function(t,e,r){return this.property.possiblyEvaluate(this,t,e,r)};var mi=function(t){this.property=t,this.value=new di(t,void 0)};mi.prototype.transitioned=function(t,e){return new vi(this.property,this.value,e,u({},t.transition,this.transition),t.now)},mi.prototype.untransitioned=function(){return new vi(this.property,this.value,null,{},0)};var gi=function(t){this._properties=t,this._values=Object.create(t.defaultTransitionablePropertyValues)};gi.prototype.getValue=function(t){return x(this._values[t].value.value)},gi.prototype.setValue=function(t,e){this._values.hasOwnProperty(t)||(this._values[t]=new mi(this._values[t].property)),this._values[t].value=new di(this._values[t].property,null===e?void 0:x(e))},gi.prototype.getTransition=function(t){return x(this._values[t].transition)},gi.prototype.setTransition=function(t,e){this._values.hasOwnProperty(t)||(this._values[t]=new mi(this._values[t].property)),this._values[t].transition=x(e)||void 0},gi.prototype.serialize=function(){for(var t={},e=0,r=Object.keys(this._values);ethis.end)return this.prior=null,i;if(this.value.isDataDriven())return this.prior=null,i;if(n=1)return 1;var e=t*t,r=e*t;return 4*(t<.5?r:3*(t-e)+r-.75)}(o))}return i};var yi=function(t){this._properties=t,this._values=Object.create(t.defaultTransitioningPropertyValues)};yi.prototype.possiblyEvaluate=function(t,e,r){for(var n=new _i(this._properties),i=0,a=Object.keys(this._values);in.zoomHistory.lastIntegerZoom?{from:t,to:e}:{from:r,to:e}},e.prototype.interpolate=function(t){return t},e}(Ti),Ai=function(t){this.specification=t};Ai.prototype.possiblyEvaluate=function(t,e,r,n){if(void 0!==t.value){if("constant"===t.expression.kind){var i=t.expression.evaluate(e,null,{},r,n);return this._calculate(i,i,i,e)}return this._calculate(t.expression.evaluate(new pi(Math.floor(e.zoom-1),e)),t.expression.evaluate(new pi(Math.floor(e.zoom),e)),t.expression.evaluate(new pi(Math.floor(e.zoom+1),e)),e)}},Ai.prototype._calculate=function(t,e,r,n){return n.zoom>n.zoomHistory.lastIntegerZoom?{from:t,to:e}:{from:r,to:e}},Ai.prototype.interpolate=function(t){return t};var Mi=function(t){this.specification=t};Mi.prototype.possiblyEvaluate=function(t,e,r,n){return!!t.expression.evaluate(e,null,{},r,n)},Mi.prototype.interpolate=function(){return!1};var Si=function(t){for(var e in this.properties=t,this.defaultPropertyValues={},this.defaultTransitionablePropertyValues={},this.defaultTransitioningPropertyValues={},this.defaultPossiblyEvaluatedValues={},this.overridableProperties=[],t){var r=t[e];r.specification.overridable&&this.overridableProperties.push(e);var n=this.defaultPropertyValues[e]=new di(r,void 0),i=this.defaultTransitionablePropertyValues[e]=new mi(r);this.defaultTransitioningPropertyValues[e]=i.untransitioned(),this.defaultPossiblyEvaluatedValues[e]=n.possiblyEvaluate({})}};Nn("DataDrivenProperty",Ti),Nn("DataConstantProperty",wi),Nn("CrossFadedDataDrivenProperty",ki),Nn("CrossFadedProperty",Ai),Nn("ColorRampProperty",Mi);var Ei=function(t){function e(e,r){if(t.call(this),this.id=e.id,this.type=e.type,this._featureFilter={filter:function(){return!0},needGeometry:!1},"custom"!==e.type&&(e=e,this.metadata=e.metadata,this.minzoom=e.minzoom,this.maxzoom=e.maxzoom,"background"!==e.type&&(this.source=e.source,this.sourceLayer=e["source-layer"],this.filter=e.filter),r.layout&&(this._unevaluatedLayout=new xi(r.layout)),r.paint)){for(var n in this._transitionablePaint=new gi(r.paint),e.paint)this.setPaintProperty(n,e.paint[n],{validate:!1});for(var i in e.layout)this.setLayoutProperty(i,e.layout[i],{validate:!1});this._transitioningPaint=this._transitionablePaint.untransitioned(),this.paint=new _i(r.paint)}}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getCrossfadeParameters=function(){return this._crossfadeParameters},e.prototype.getLayoutProperty=function(t){return"visibility"===t?this.visibility:this._unevaluatedLayout.getValue(t)},e.prototype.setLayoutProperty=function(t,e,r){if(void 0===r&&(r={}),null!=e){var n="layers."+this.id+".layout."+t;if(this._validate(In,n,t,e,r))return}"visibility"!==t?this._unevaluatedLayout.setValue(t,e):this.visibility=e},e.prototype.getPaintProperty=function(t){return g(t,"-transition")?this._transitionablePaint.getTransition(t.slice(0,-"-transition".length)):this._transitionablePaint.getValue(t)},e.prototype.setPaintProperty=function(t,e,r){if(void 0===r&&(r={}),null!=e){var n="layers."+this.id+".paint."+t;if(this._validate(Pn,n,t,e,r))return!1}if(g(t,"-transition"))return this._transitionablePaint.setTransition(t.slice(0,-"-transition".length),e||void 0),!1;var i=this._transitionablePaint._values[t],a="cross-faded-data-driven"===i.property.specification["property-type"],o=i.value.isDataDriven(),s=i.value;this._transitionablePaint.setValue(t,e),this._handleSpecialPaintPropertyUpdate(t);var l=this._transitionablePaint._values[t].value;return l.isDataDriven()||o||a||this._handleOverridablePaintPropertyUpdate(t,s,l)},e.prototype._handleSpecialPaintPropertyUpdate=function(t){},e.prototype._handleOverridablePaintPropertyUpdate=function(t,e,r){return!1},e.prototype.isHidden=function(t){return!!(this.minzoom&&t=this.maxzoom)||"none"===this.visibility)},e.prototype.updateTransitions=function(t){this._transitioningPaint=this._transitionablePaint.transitioned(t,this._transitioningPaint)},e.prototype.hasTransition=function(){return this._transitioningPaint.hasTransition()},e.prototype.recalculate=function(t,e){t.getCrossfadeParameters&&(this._crossfadeParameters=t.getCrossfadeParameters()),this._unevaluatedLayout&&(this.layout=this._unevaluatedLayout.possiblyEvaluate(t,void 0,e)),this.paint=this._transitioningPaint.possiblyEvaluate(t,void 0,e)},e.prototype.serialize=function(){var t={id:this.id,type:this.type,source:this.source,"source-layer":this.sourceLayer,metadata:this.metadata,minzoom:this.minzoom,maxzoom:this.maxzoom,filter:this.filter,layout:this._unevaluatedLayout&&this._unevaluatedLayout.serialize(),paint:this._transitionablePaint&&this._transitionablePaint.serialize()};return this.visibility&&(t.layout=t.layout||{},t.layout.visibility=this.visibility),y(t,(function(t,e){return!(void 0===t||"layout"===e&&!Object.keys(t).length||"paint"===e&&!Object.keys(t).length)}))},e.prototype._validate=function(t,e,r,n,i){return void 0===i&&(i={}),(!i||!1!==i.validate)&&On(this,t.call(Ln,{key:e,layerType:this.type,objectKey:r,value:n,styleSpec:Lt,style:{glyphs:!0,sprite:!0}}))},e.prototype.is3D=function(){return!1},e.prototype.isTileClipped=function(){return!1},e.prototype.hasOffscreenPass=function(){return!1},e.prototype.resize=function(){},e.prototype.isStateDependent=function(){for(var t in this.paint._values){var e=this.paint.get(t);if(e instanceof bi&&zr(e.property.specification)&&(("source"===e.value.kind||"composite"===e.value.kind)&&e.value.isStateDependent))return!0}return!1},e}(Et),Li={Int8:Int8Array,Uint8:Uint8Array,Int16:Int16Array,Uint16:Uint16Array,Int32:Int32Array,Uint32:Uint32Array,Float32:Float32Array},Ci=function(t,e){this._structArray=t,this._pos1=e*this.size,this._pos2=this._pos1/2,this._pos4=this._pos1/4,this._pos8=this._pos1/8},Pi=function(){this.isTransferred=!1,this.capacity=-1,this.resize(0)};function Ii(t,e){void 0===e&&(e=1);var r=0,n=0;return{members:t.map((function(t){var i,a=(i=t.type,Li[i].BYTES_PER_ELEMENT),o=r=Oi(r,Math.max(e,a)),s=t.components||1;return n=Math.max(n,a),r+=a*s,{name:t.name,type:t.type,components:s,offset:o}})),size:Oi(r,Math.max(n,e)),alignment:e}}function Oi(t,e){return Math.ceil(t/e)*e}Pi.serialize=function(t,e){return t._trim(),e&&(t.isTransferred=!0,e.push(t.arrayBuffer)),{length:t.length,arrayBuffer:t.arrayBuffer}},Pi.deserialize=function(t){var e=Object.create(this.prototype);return e.arrayBuffer=t.arrayBuffer,e.length=t.length,e.capacity=t.arrayBuffer.byteLength/e.bytesPerElement,e._refreshViews(),e},Pi.prototype._trim=function(){this.length!==this.capacity&&(this.capacity=this.length,this.arrayBuffer=this.arrayBuffer.slice(0,this.length*this.bytesPerElement),this._refreshViews())},Pi.prototype.clear=function(){this.length=0},Pi.prototype.resize=function(t){this.reserve(t),this.length=t},Pi.prototype.reserve=function(t){if(t>this.capacity){this.capacity=Math.max(t,Math.floor(5*this.capacity),128),this.arrayBuffer=new ArrayBuffer(this.capacity*this.bytesPerElement);var e=this.uint8;this._refreshViews(),e&&this.uint8.set(e)}},Pi.prototype._refreshViews=function(){throw new Error("_refreshViews() must be implemented by each concrete StructArray layout")};var zi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.int16[n+0]=e,this.int16[n+1]=r,t},e}(Pi);zi.prototype.bytesPerElement=4,Nn("StructArrayLayout2i4",zi);var Di=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=4*t;return this.int16[a+0]=e,this.int16[a+1]=r,this.int16[a+2]=n,this.int16[a+3]=i,t},e}(Pi);Di.prototype.bytesPerElement=8,Nn("StructArrayLayout4i8",Di);var Ri=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=6*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.int16[s+2]=n,this.int16[s+3]=i,this.int16[s+4]=a,this.int16[s+5]=o,t},e}(Pi);Ri.prototype.bytesPerElement=12,Nn("StructArrayLayout2i4i12",Ri);var Fi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=4*t,l=8*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.uint8[l+4]=n,this.uint8[l+5]=i,this.uint8[l+6]=a,this.uint8[l+7]=o,t},e}(Pi);Fi.prototype.bytesPerElement=8,Nn("StructArrayLayout2i4ub8",Fi);var Bi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c){var u=this.length;return this.resize(u+1),this.emplace(u,t,e,r,n,i,a,o,s,l,c)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u){var f=9*t,h=18*t;return this.uint16[f+0]=e,this.uint16[f+1]=r,this.uint16[f+2]=n,this.uint16[f+3]=i,this.uint16[f+4]=a,this.uint16[f+5]=o,this.uint16[f+6]=s,this.uint16[f+7]=l,this.uint8[h+16]=c,this.uint8[h+17]=u,t},e}(Pi);Bi.prototype.bytesPerElement=18,Nn("StructArrayLayout8ui2ub18",Bi);var Ni=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f){var h=this.length;return this.resize(h+1),this.emplace(h,t,e,r,n,i,a,o,s,l,c,u,f)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h){var p=12*t;return this.int16[p+0]=e,this.int16[p+1]=r,this.int16[p+2]=n,this.int16[p+3]=i,this.uint16[p+4]=a,this.uint16[p+5]=o,this.uint16[p+6]=s,this.uint16[p+7]=l,this.int16[p+8]=c,this.int16[p+9]=u,this.int16[p+10]=f,this.int16[p+11]=h,t},e}(Pi);Ni.prototype.bytesPerElement=24,Nn("StructArrayLayout4i4ui4i24",Ni);var ji=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.float32[i+0]=e,this.float32[i+1]=r,this.float32[i+2]=n,t},e}(Pi);ji.prototype.bytesPerElement=12,Nn("StructArrayLayout3f12",ji);var Ui=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.uint32[r+0]=e,t},e}(Pi);Ui.prototype.bytesPerElement=4,Nn("StructArrayLayout1ul4",Ui);var Vi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l){var c=this.length;return this.resize(c+1),this.emplace(c,t,e,r,n,i,a,o,s,l)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c){var u=10*t,f=5*t;return this.int16[u+0]=e,this.int16[u+1]=r,this.int16[u+2]=n,this.int16[u+3]=i,this.int16[u+4]=a,this.int16[u+5]=o,this.uint32[f+3]=s,this.uint16[u+8]=l,this.uint16[u+9]=c,t},e}(Pi);Vi.prototype.bytesPerElement=20,Nn("StructArrayLayout6i1ul2ui20",Vi);var Hi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=6*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.int16[s+2]=n,this.int16[s+3]=i,this.int16[s+4]=a,this.int16[s+5]=o,t},e}(Pi);Hi.prototype.bytesPerElement=12,Nn("StructArrayLayout2i2i2i12",Hi);var qi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i){var a=this.length;return this.resize(a+1),this.emplace(a,t,e,r,n,i)},e.prototype.emplace=function(t,e,r,n,i,a){var o=4*t,s=8*t;return this.float32[o+0]=e,this.float32[o+1]=r,this.float32[o+2]=n,this.int16[s+6]=i,this.int16[s+7]=a,t},e}(Pi);qi.prototype.bytesPerElement=16,Nn("StructArrayLayout2f1f2i16",qi);var Gi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=12*t,o=3*t;return this.uint8[a+0]=e,this.uint8[a+1]=r,this.float32[o+1]=n,this.float32[o+2]=i,t},e}(Pi);Gi.prototype.bytesPerElement=12,Nn("StructArrayLayout2ub2f12",Gi);var Yi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.uint16[i+0]=e,this.uint16[i+1]=r,this.uint16[i+2]=n,t},e}(Pi);Yi.prototype.bytesPerElement=6,Nn("StructArrayLayout3ui6",Yi);var Wi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g){var v=this.length;return this.resize(v+1),this.emplace(v,t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v){var y=24*t,x=12*t,b=48*t;return this.int16[y+0]=e,this.int16[y+1]=r,this.uint16[y+2]=n,this.uint16[y+3]=i,this.uint32[x+2]=a,this.uint32[x+3]=o,this.uint32[x+4]=s,this.uint16[y+10]=l,this.uint16[y+11]=c,this.uint16[y+12]=u,this.float32[x+7]=f,this.float32[x+8]=h,this.uint8[b+36]=p,this.uint8[b+37]=d,this.uint8[b+38]=m,this.uint32[x+10]=g,this.int16[y+22]=v,t},e}(Pi);Wi.prototype.bytesPerElement=48,Nn("StructArrayLayout2i2ui3ul3ui2f3ub1ul1i48",Wi);var Xi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S){var E=this.length;return this.resize(E+1),this.emplace(E,t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S,E){var L=34*t,C=17*t;return this.int16[L+0]=e,this.int16[L+1]=r,this.int16[L+2]=n,this.int16[L+3]=i,this.int16[L+4]=a,this.int16[L+5]=o,this.int16[L+6]=s,this.int16[L+7]=l,this.uint16[L+8]=c,this.uint16[L+9]=u,this.uint16[L+10]=f,this.uint16[L+11]=h,this.uint16[L+12]=p,this.uint16[L+13]=d,this.uint16[L+14]=m,this.uint16[L+15]=g,this.uint16[L+16]=v,this.uint16[L+17]=y,this.uint16[L+18]=x,this.uint16[L+19]=b,this.uint16[L+20]=_,this.uint16[L+21]=w,this.uint16[L+22]=T,this.uint32[C+12]=k,this.float32[C+13]=A,this.float32[C+14]=M,this.float32[C+15]=S,this.float32[C+16]=E,t},e}(Pi);Xi.prototype.bytesPerElement=68,Nn("StructArrayLayout8i15ui1ul4f68",Xi);var Zi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.float32[r+0]=e,t},e}(Pi);Zi.prototype.bytesPerElement=4,Nn("StructArrayLayout1f4",Zi);var Ji=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.int16[i+0]=e,this.int16[i+1]=r,this.int16[i+2]=n,t},e}(Pi);Ji.prototype.bytesPerElement=6,Nn("StructArrayLayout3i6",Ji);var Ki=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=2*t,a=4*t;return this.uint32[i+0]=e,this.uint16[a+2]=r,this.uint16[a+3]=n,t},e}(Pi);Ki.prototype.bytesPerElement=8,Nn("StructArrayLayout1ul2ui8",Ki);var Qi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.uint16[n+0]=e,this.uint16[n+1]=r,t},e}(Pi);Qi.prototype.bytesPerElement=4,Nn("StructArrayLayout2ui4",Qi);var $i=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.uint16[r+0]=e,t},e}(Pi);$i.prototype.bytesPerElement=2,Nn("StructArrayLayout1ui2",$i);var ta=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.float32[n+0]=e,this.float32[n+1]=r,t},e}(Pi);ta.prototype.bytesPerElement=8,Nn("StructArrayLayout2f8",ta);var ea=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=4*t;return this.float32[a+0]=e,this.float32[a+1]=r,this.float32[a+2]=n,this.float32[a+3]=i,t},e}(Pi);ea.prototype.bytesPerElement=16,Nn("StructArrayLayout4f16",ea);var ra=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorPointX:{configurable:!0},anchorPointY:{configurable:!0},x1:{configurable:!0},y1:{configurable:!0},x2:{configurable:!0},y2:{configurable:!0},featureIndex:{configurable:!0},sourceLayerIndex:{configurable:!0},bucketIndex:{configurable:!0},anchorPoint:{configurable:!0}};return r.anchorPointX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorPointY.get=function(){return this._structArray.int16[this._pos2+1]},r.x1.get=function(){return this._structArray.int16[this._pos2+2]},r.y1.get=function(){return this._structArray.int16[this._pos2+3]},r.x2.get=function(){return this._structArray.int16[this._pos2+4]},r.y2.get=function(){return this._structArray.int16[this._pos2+5]},r.featureIndex.get=function(){return this._structArray.uint32[this._pos4+3]},r.sourceLayerIndex.get=function(){return this._structArray.uint16[this._pos2+8]},r.bucketIndex.get=function(){return this._structArray.uint16[this._pos2+9]},r.anchorPoint.get=function(){return new i(this.anchorPointX,this.anchorPointY)},Object.defineProperties(e.prototype,r),e}(Ci);ra.prototype.size=20;var na=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ra(this,t)},e}(Vi);Nn("CollisionBoxArray",na);var ia=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorX:{configurable:!0},anchorY:{configurable:!0},glyphStartIndex:{configurable:!0},numGlyphs:{configurable:!0},vertexStartIndex:{configurable:!0},lineStartIndex:{configurable:!0},lineLength:{configurable:!0},segment:{configurable:!0},lowerSize:{configurable:!0},upperSize:{configurable:!0},lineOffsetX:{configurable:!0},lineOffsetY:{configurable:!0},writingMode:{configurable:!0},placedOrientation:{configurable:!0},hidden:{configurable:!0},crossTileID:{configurable:!0},associatedIconIndex:{configurable:!0}};return r.anchorX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorY.get=function(){return this._structArray.int16[this._pos2+1]},r.glyphStartIndex.get=function(){return this._structArray.uint16[this._pos2+2]},r.numGlyphs.get=function(){return this._structArray.uint16[this._pos2+3]},r.vertexStartIndex.get=function(){return this._structArray.uint32[this._pos4+2]},r.lineStartIndex.get=function(){return this._structArray.uint32[this._pos4+3]},r.lineLength.get=function(){return this._structArray.uint32[this._pos4+4]},r.segment.get=function(){return this._structArray.uint16[this._pos2+10]},r.lowerSize.get=function(){return this._structArray.uint16[this._pos2+11]},r.upperSize.get=function(){return this._structArray.uint16[this._pos2+12]},r.lineOffsetX.get=function(){return this._structArray.float32[this._pos4+7]},r.lineOffsetY.get=function(){return this._structArray.float32[this._pos4+8]},r.writingMode.get=function(){return this._structArray.uint8[this._pos1+36]},r.placedOrientation.get=function(){return this._structArray.uint8[this._pos1+37]},r.placedOrientation.set=function(t){this._structArray.uint8[this._pos1+37]=t},r.hidden.get=function(){return this._structArray.uint8[this._pos1+38]},r.hidden.set=function(t){this._structArray.uint8[this._pos1+38]=t},r.crossTileID.get=function(){return this._structArray.uint32[this._pos4+10]},r.crossTileID.set=function(t){this._structArray.uint32[this._pos4+10]=t},r.associatedIconIndex.get=function(){return this._structArray.int16[this._pos2+22]},Object.defineProperties(e.prototype,r),e}(Ci);ia.prototype.size=48;var aa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ia(this,t)},e}(Wi);Nn("PlacedSymbolArray",aa);var oa=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorX:{configurable:!0},anchorY:{configurable:!0},rightJustifiedTextSymbolIndex:{configurable:!0},centerJustifiedTextSymbolIndex:{configurable:!0},leftJustifiedTextSymbolIndex:{configurable:!0},verticalPlacedTextSymbolIndex:{configurable:!0},placedIconSymbolIndex:{configurable:!0},verticalPlacedIconSymbolIndex:{configurable:!0},key:{configurable:!0},textBoxStartIndex:{configurable:!0},textBoxEndIndex:{configurable:!0},verticalTextBoxStartIndex:{configurable:!0},verticalTextBoxEndIndex:{configurable:!0},iconBoxStartIndex:{configurable:!0},iconBoxEndIndex:{configurable:!0},verticalIconBoxStartIndex:{configurable:!0},verticalIconBoxEndIndex:{configurable:!0},featureIndex:{configurable:!0},numHorizontalGlyphVertices:{configurable:!0},numVerticalGlyphVertices:{configurable:!0},numIconVertices:{configurable:!0},numVerticalIconVertices:{configurable:!0},useRuntimeCollisionCircles:{configurable:!0},crossTileID:{configurable:!0},textBoxScale:{configurable:!0},textOffset0:{configurable:!0},textOffset1:{configurable:!0},collisionCircleDiameter:{configurable:!0}};return r.anchorX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorY.get=function(){return this._structArray.int16[this._pos2+1]},r.rightJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+2]},r.centerJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+3]},r.leftJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+4]},r.verticalPlacedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+5]},r.placedIconSymbolIndex.get=function(){return this._structArray.int16[this._pos2+6]},r.verticalPlacedIconSymbolIndex.get=function(){return this._structArray.int16[this._pos2+7]},r.key.get=function(){return this._structArray.uint16[this._pos2+8]},r.textBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+9]},r.textBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+10]},r.verticalTextBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+11]},r.verticalTextBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+12]},r.iconBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+13]},r.iconBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+14]},r.verticalIconBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+15]},r.verticalIconBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+16]},r.featureIndex.get=function(){return this._structArray.uint16[this._pos2+17]},r.numHorizontalGlyphVertices.get=function(){return this._structArray.uint16[this._pos2+18]},r.numVerticalGlyphVertices.get=function(){return this._structArray.uint16[this._pos2+19]},r.numIconVertices.get=function(){return this._structArray.uint16[this._pos2+20]},r.numVerticalIconVertices.get=function(){return this._structArray.uint16[this._pos2+21]},r.useRuntimeCollisionCircles.get=function(){return this._structArray.uint16[this._pos2+22]},r.crossTileID.get=function(){return this._structArray.uint32[this._pos4+12]},r.crossTileID.set=function(t){this._structArray.uint32[this._pos4+12]=t},r.textBoxScale.get=function(){return this._structArray.float32[this._pos4+13]},r.textOffset0.get=function(){return this._structArray.float32[this._pos4+14]},r.textOffset1.get=function(){return this._structArray.float32[this._pos4+15]},r.collisionCircleDiameter.get=function(){return this._structArray.float32[this._pos4+16]},Object.defineProperties(e.prototype,r),e}(Ci);oa.prototype.size=68;var sa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new oa(this,t)},e}(Xi);Nn("SymbolInstanceArray",sa);var la=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getoffsetX=function(t){return this.float32[1*t+0]},e}(Zi);Nn("GlyphOffsetArray",la);var ca=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getx=function(t){return this.int16[3*t+0]},e.prototype.gety=function(t){return this.int16[3*t+1]},e.prototype.gettileUnitDistanceFromAnchor=function(t){return this.int16[3*t+2]},e}(Ji);Nn("SymbolLineVertexArray",ca);var ua=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={featureIndex:{configurable:!0},sourceLayerIndex:{configurable:!0},bucketIndex:{configurable:!0}};return r.featureIndex.get=function(){return this._structArray.uint32[this._pos4+0]},r.sourceLayerIndex.get=function(){return this._structArray.uint16[this._pos2+2]},r.bucketIndex.get=function(){return this._structArray.uint16[this._pos2+3]},Object.defineProperties(e.prototype,r),e}(Ci);ua.prototype.size=8;var fa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ua(this,t)},e}(Ki);Nn("FeatureIndexArray",fa);var ha=Ii([{name:"a_pos",components:2,type:"Int16"}],4).members,pa=function(t){void 0===t&&(t=[]),this.segments=t};function da(t,e){return 256*(t=l(Math.floor(t),0,255))+(e=l(Math.floor(e),0,255))}pa.prototype.prepareSegment=function(t,e,r,n){var i=this.segments[this.segments.length-1];return t>pa.MAX_VERTEX_ARRAY_LENGTH&&_("Max vertices per segment is "+pa.MAX_VERTEX_ARRAY_LENGTH+": bucket requested "+t),(!i||i.vertexLength+t>pa.MAX_VERTEX_ARRAY_LENGTH||i.sortKey!==n)&&(i={vertexOffset:e.length,primitiveOffset:r.length,vertexLength:0,primitiveLength:0},void 0!==n&&(i.sortKey=n),this.segments.push(i)),i},pa.prototype.get=function(){return this.segments},pa.prototype.destroy=function(){for(var t=0,e=this.segments;t>>16)*o&65535)<<16)&4294967295)<<15|l>>>17))*s+(((l>>>16)*s&65535)<<16)&4294967295)<<13|i>>>19))+((5*(i>>>16)&65535)<<16)&4294967295))+((58964+(a>>>16)&65535)<<16);switch(l=0,r){case 3:l^=(255&t.charCodeAt(c+2))<<16;case 2:l^=(255&t.charCodeAt(c+1))<<8;case 1:i^=l=(65535&(l=(l=(65535&(l^=255&t.charCodeAt(c)))*o+(((l>>>16)*o&65535)<<16)&4294967295)<<15|l>>>17))*s+(((l>>>16)*s&65535)<<16)&4294967295}return i^=t.length,i=2246822507*(65535&(i^=i>>>16))+((2246822507*(i>>>16)&65535)<<16)&4294967295,i=3266489909*(65535&(i^=i>>>13))+((3266489909*(i>>>16)&65535)<<16)&4294967295,(i^=i>>>16)>>>0}})),va=e((function(t){t.exports=function(t,e){for(var r,n=t.length,i=e^n,a=0;n>=4;)r=1540483477*(65535&(r=255&t.charCodeAt(a)|(255&t.charCodeAt(++a))<<8|(255&t.charCodeAt(++a))<<16|(255&t.charCodeAt(++a))<<24))+((1540483477*(r>>>16)&65535)<<16),i=1540483477*(65535&i)+((1540483477*(i>>>16)&65535)<<16)^(r=1540483477*(65535&(r^=r>>>24))+((1540483477*(r>>>16)&65535)<<16)),n-=4,++a;switch(n){case 3:i^=(255&t.charCodeAt(a+2))<<16;case 2:i^=(255&t.charCodeAt(a+1))<<8;case 1:i=1540483477*(65535&(i^=255&t.charCodeAt(a)))+((1540483477*(i>>>16)&65535)<<16)}return i=1540483477*(65535&(i^=i>>>13))+((1540483477*(i>>>16)&65535)<<16),(i^=i>>>15)>>>0}})),ya=ga,xa=ga,ba=va;ya.murmur3=xa,ya.murmur2=ba;var _a=function(){this.ids=[],this.positions=[],this.indexed=!1};_a.prototype.add=function(t,e,r,n){this.ids.push(Ta(t)),this.positions.push(e,r,n)},_a.prototype.getPositions=function(t){for(var e=Ta(t),r=0,n=this.ids.length-1;r>1;this.ids[i]>=e?n=i:r=i+1}for(var a=[];this.ids[r]===e;){var o=this.positions[3*r],s=this.positions[3*r+1],l=this.positions[3*r+2];a.push({index:o,start:s,end:l}),r++}return a},_a.serialize=function(t,e){var r=new Float64Array(t.ids),n=new Uint32Array(t.positions);return function t(e,r,n,i){for(;n>1],o=n-1,s=i+1;;){do{o++}while(e[o]a);if(o>=s)break;ka(e,o,s),ka(r,3*o,3*s),ka(r,3*o+1,3*s+1),ka(r,3*o+2,3*s+2)}s-nGa.max||o.yGa.max)&&(_("Geometry exceeds allowed extent, reduce your vector tile buffer size"),o.x=l(o.x,Ga.min,Ga.max),o.y=l(o.y,Ga.min,Ga.max))}return r}function Wa(t,e,r,n,i){t.emplaceBack(2*e+(n+1)/2,2*r+(i+1)/2)}var Xa=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.layoutVertexArray=new zi,this.indexArray=new Yi,this.segments=new pa,this.programConfigurations=new Ua(ha,t.layers,t.zoom),this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};function Za(t,e){for(var r=0;r1){if($a(t,e))return!0;for(var n=0;n1?t.distSqr(r):t.distSqr(r.sub(e)._mult(i)._add(e))}function no(t,e){for(var r,n,i,a=!1,o=0;oe.y!=i.y>e.y&&e.x<(i.x-n.x)*(e.y-n.y)/(i.y-n.y)+n.x&&(a=!a);return a}function io(t,e){for(var r=!1,n=0,i=t.length-1;ne.y!=o.y>e.y&&e.x<(o.x-a.x)*(e.y-a.y)/(o.y-a.y)+a.x&&(r=!r)}return r}function ao(t,e,r){var n=r[0],i=r[2];if(t.xi.x&&e.x>i.x||t.yi.y&&e.y>i.y)return!1;var a=w(t,e,r[0]);return a!==w(t,e,r[1])||a!==w(t,e,r[2])||a!==w(t,e,r[3])}function oo(t,e,r){var n=e.paint.get(t).value;return"constant"===n.kind?n.value:r.programConfigurations.get(e.id).getMaxValue(t)}function so(t){return Math.sqrt(t[0]*t[0]+t[1]*t[1])}function lo(t,e,r,n,a){if(!e[0]&&!e[1])return t;var o=i.convert(e)._mult(a);"viewport"===r&&o._rotate(-n);for(var s=[],l=0;l=8192||u<0||u>=8192)){var f=this.segments.prepareSegment(4,this.layoutVertexArray,this.indexArray,t.sortKey),h=f.vertexLength;Wa(this.layoutVertexArray,c,u,-1,-1),Wa(this.layoutVertexArray,c,u,1,-1),Wa(this.layoutVertexArray,c,u,1,1),Wa(this.layoutVertexArray,c,u,-1,1),this.indexArray.emplaceBack(h,h+1,h+2),this.indexArray.emplaceBack(h,h+3,h+2),f.vertexLength+=4,f.primitiveLength+=2}}this.programConfigurations.populatePaintArrays(this.layoutVertexArray.length,t,r,{},n)},Nn("CircleBucket",Xa,{omit:["layers"]});var co=new Si({"circle-sort-key":new Ti(Lt.layout_circle["circle-sort-key"])}),uo={paint:new Si({"circle-radius":new Ti(Lt.paint_circle["circle-radius"]),"circle-color":new Ti(Lt.paint_circle["circle-color"]),"circle-blur":new Ti(Lt.paint_circle["circle-blur"]),"circle-opacity":new Ti(Lt.paint_circle["circle-opacity"]),"circle-translate":new wi(Lt.paint_circle["circle-translate"]),"circle-translate-anchor":new wi(Lt.paint_circle["circle-translate-anchor"]),"circle-pitch-scale":new wi(Lt.paint_circle["circle-pitch-scale"]),"circle-pitch-alignment":new wi(Lt.paint_circle["circle-pitch-alignment"]),"circle-stroke-width":new Ti(Lt.paint_circle["circle-stroke-width"]),"circle-stroke-color":new Ti(Lt.paint_circle["circle-stroke-color"]),"circle-stroke-opacity":new Ti(Lt.paint_circle["circle-stroke-opacity"])}),layout:co},fo="undefined"!=typeof Float32Array?Float32Array:Array;function ho(t){return t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=1,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=1,t[11]=0,t[12]=0,t[13]=0,t[14]=0,t[15]=1,t}function po(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3],s=e[4],l=e[5],c=e[6],u=e[7],f=e[8],h=e[9],p=e[10],d=e[11],m=e[12],g=e[13],v=e[14],y=e[15],x=r[0],b=r[1],_=r[2],w=r[3];return t[0]=x*n+b*s+_*f+w*m,t[1]=x*i+b*l+_*h+w*g,t[2]=x*a+b*c+_*p+w*v,t[3]=x*o+b*u+_*d+w*y,x=r[4],b=r[5],_=r[6],w=r[7],t[4]=x*n+b*s+_*f+w*m,t[5]=x*i+b*l+_*h+w*g,t[6]=x*a+b*c+_*p+w*v,t[7]=x*o+b*u+_*d+w*y,x=r[8],b=r[9],_=r[10],w=r[11],t[8]=x*n+b*s+_*f+w*m,t[9]=x*i+b*l+_*h+w*g,t[10]=x*a+b*c+_*p+w*v,t[11]=x*o+b*u+_*d+w*y,x=r[12],b=r[13],_=r[14],w=r[15],t[12]=x*n+b*s+_*f+w*m,t[13]=x*i+b*l+_*h+w*g,t[14]=x*a+b*c+_*p+w*v,t[15]=x*o+b*u+_*d+w*y,t}Math.hypot||(Math.hypot=function(){for(var t=arguments,e=0,r=arguments.length;r--;)e+=t[r]*t[r];return Math.sqrt(e)});var mo=po;var go,vo,yo=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t};go=new fo(3),fo!=Float32Array&&(go[0]=0,go[1]=0,go[2]=0),vo=go;function xo(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3];return t[0]=r[0]*n+r[4]*i+r[8]*a+r[12]*o,t[1]=r[1]*n+r[5]*i+r[9]*a+r[13]*o,t[2]=r[2]*n+r[6]*i+r[10]*a+r[14]*o,t[3]=r[3]*n+r[7]*i+r[11]*a+r[15]*o,t}!function(){var t=function(){var t=new fo(4);return fo!=Float32Array&&(t[0]=0,t[1]=0,t[2]=0,t[3]=0),t}()}();var bo=function(t){var e=t[0],r=t[1];return e*e+r*r},_o=(function(){var t=function(){var t=new fo(2);return fo!=Float32Array&&(t[0]=0,t[1]=0),t}()}(),function(t){function e(e){t.call(this,e,uo)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.createBucket=function(t){return new Xa(t)},e.prototype.queryRadius=function(t){var e=t;return oo("circle-radius",this,e)+oo("circle-stroke-width",this,e)+so(this.paint.get("circle-translate"))},e.prototype.queryIntersectsFeature=function(t,e,r,n,i,a,o,s){for(var l=lo(t,this.paint.get("circle-translate"),this.paint.get("circle-translate-anchor"),a.angle,o),c=this.paint.get("circle-radius").evaluate(e,r)+this.paint.get("circle-stroke-width").evaluate(e,r),u="map"===this.paint.get("circle-pitch-alignment"),f=u?l:function(t,e){return t.map((function(t){return wo(t,e)}))}(l,s),h=u?c*o:c,p=0,d=n;pt.width||i.height>t.height||r.x>t.width-i.width||r.y>t.height-i.height)throw new RangeError("out of range source coordinates for image copy");if(i.width>e.width||i.height>e.height||n.x>e.width-i.width||n.y>e.height-i.height)throw new RangeError("out of range destination coordinates for image copy");for(var o=t.data,s=e.data,l=0;l80*r){n=a=t[0],i=o=t[1];for(var d=r;da&&(a=s),l>o&&(o=l);c=0!==(c=Math.max(a-n,o-i))?1/c:0}return jo(h,p,r,n,i,c),p}function Bo(t,e,r,n,i){var a,o;if(i===ls(t,e,r,n)>0)for(a=e;a=e;a-=n)o=as(a,t[a],t[a+1],o);return o&&$o(o,o.next)&&(os(o),o=o.next),o}function No(t,e){if(!t)return t;e||(e=t);var r,n=t;do{if(r=!1,n.steiner||!$o(n,n.next)&&0!==Qo(n.prev,n,n.next))n=n.next;else{if(os(n),(n=e=n.prev)===n.next)break;r=!0}}while(r||n!==e);return e}function jo(t,e,r,n,i,a,o){if(t){!o&&a&&function(t,e,r,n){var i=t;do{null===i.z&&(i.z=Xo(i.x,i.y,e,r,n)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==t);i.prevZ.nextZ=null,i.prevZ=null,function(t){var e,r,n,i,a,o,s,l,c=1;do{for(r=t,t=null,a=null,o=0;r;){for(o++,n=r,s=0,e=0;e0||l>0&&n;)0!==s&&(0===l||!n||r.z<=n.z)?(i=r,r=r.nextZ,s--):(i=n,n=n.nextZ,l--),a?a.nextZ=i:t=i,i.prevZ=a,a=i;r=n}a.nextZ=null,c*=2}while(o>1)}(i)}(t,n,i,a);for(var s,l,c=t;t.prev!==t.next;)if(s=t.prev,l=t.next,a?Vo(t,n,i,a):Uo(t))e.push(s.i/r),e.push(t.i/r),e.push(l.i/r),os(t),t=l.next,c=l.next;else if((t=l)===c){o?1===o?jo(t=Ho(No(t),e,r),e,r,n,i,a,2):2===o&&qo(t,e,r,n,i,a):jo(No(t),e,r,n,i,a,1);break}}}function Uo(t){var e=t.prev,r=t,n=t.next;if(Qo(e,r,n)>=0)return!1;for(var i=t.next.next;i!==t.prev;){if(Jo(e.x,e.y,r.x,r.y,n.x,n.y,i.x,i.y)&&Qo(i.prev,i,i.next)>=0)return!1;i=i.next}return!0}function Vo(t,e,r,n){var i=t.prev,a=t,o=t.next;if(Qo(i,a,o)>=0)return!1;for(var s=i.xa.x?i.x>o.x?i.x:o.x:a.x>o.x?a.x:o.x,u=i.y>a.y?i.y>o.y?i.y:o.y:a.y>o.y?a.y:o.y,f=Xo(s,l,e,r,n),h=Xo(c,u,e,r,n),p=t.prevZ,d=t.nextZ;p&&p.z>=f&&d&&d.z<=h;){if(p!==t.prev&&p!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&Qo(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,d!==t.prev&&d!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,d.x,d.y)&&Qo(d.prev,d,d.next)>=0)return!1;d=d.nextZ}for(;p&&p.z>=f;){if(p!==t.prev&&p!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&Qo(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;d&&d.z<=h;){if(d!==t.prev&&d!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,d.x,d.y)&&Qo(d.prev,d,d.next)>=0)return!1;d=d.nextZ}return!0}function Ho(t,e,r){var n=t;do{var i=n.prev,a=n.next.next;!$o(i,a)&&ts(i,n,n.next,a)&&ns(i,a)&&ns(a,i)&&(e.push(i.i/r),e.push(n.i/r),e.push(a.i/r),os(n),os(n.next),n=t=a),n=n.next}while(n!==t);return No(n)}function qo(t,e,r,n,i,a){var o=t;do{for(var s=o.next.next;s!==o.prev;){if(o.i!==s.i&&Ko(o,s)){var l=is(o,s);return o=No(o,o.next),l=No(l,l.next),jo(o,e,r,n,i,a),void jo(l,e,r,n,i,a)}s=s.next}o=o.next}while(o!==t)}function Go(t,e){return t.x-e.x}function Yo(t,e){if(e=function(t,e){var r,n=e,i=t.x,a=t.y,o=-1/0;do{if(a<=n.y&&a>=n.next.y&&n.next.y!==n.y){var s=n.x+(a-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(s<=i&&s>o){if(o=s,s===i){if(a===n.y)return n;if(a===n.next.y)return n.next}r=n.x=n.x&&n.x>=u&&i!==n.x&&Jo(ar.x||n.x===r.x&&Wo(r,n)))&&(r=n,h=l)),n=n.next}while(n!==c);return r}(t,e)){var r=is(e,t);No(e,e.next),No(r,r.next)}}function Wo(t,e){return Qo(t.prev,t,e.prev)<0&&Qo(e.next,t,t.next)<0}function Xo(t,e,r,n,i){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-r)*i)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function Zo(t){var e=t,r=t;do{(e.x=0&&(t-o)*(n-s)-(r-o)*(e-s)>=0&&(r-o)*(a-s)-(i-o)*(n-s)>=0}function Ko(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){var r=t;do{if(r.i!==t.i&&r.next.i!==t.i&&r.i!==e.i&&r.next.i!==e.i&&ts(r,r.next,t,e))return!0;r=r.next}while(r!==t);return!1}(t,e)&&(ns(t,e)&&ns(e,t)&&function(t,e){var r=t,n=!1,i=(t.x+e.x)/2,a=(t.y+e.y)/2;do{r.y>a!=r.next.y>a&&r.next.y!==r.y&&i<(r.next.x-r.x)*(a-r.y)/(r.next.y-r.y)+r.x&&(n=!n),r=r.next}while(r!==t);return n}(t,e)&&(Qo(t.prev,t,e.prev)||Qo(t,e.prev,e))||$o(t,e)&&Qo(t.prev,t,t.next)>0&&Qo(e.prev,e,e.next)>0)}function Qo(t,e,r){return(e.y-t.y)*(r.x-e.x)-(e.x-t.x)*(r.y-e.y)}function $o(t,e){return t.x===e.x&&t.y===e.y}function ts(t,e,r,n){var i=rs(Qo(t,e,r)),a=rs(Qo(t,e,n)),o=rs(Qo(r,n,t)),s=rs(Qo(r,n,e));return i!==a&&o!==s||(!(0!==i||!es(t,r,e))||(!(0!==a||!es(t,n,e))||(!(0!==o||!es(r,t,n))||!(0!==s||!es(r,e,n)))))}function es(t,e,r){return e.x<=Math.max(t.x,r.x)&&e.x>=Math.min(t.x,r.x)&&e.y<=Math.max(t.y,r.y)&&e.y>=Math.min(t.y,r.y)}function rs(t){return t>0?1:t<0?-1:0}function ns(t,e){return Qo(t.prev,t,t.next)<0?Qo(t,e,t.next)>=0&&Qo(t,t.prev,e)>=0:Qo(t,e,t.prev)<0||Qo(t,t.next,e)<0}function is(t,e){var r=new ss(t.i,t.x,t.y),n=new ss(e.i,e.x,e.y),i=t.next,a=e.prev;return t.next=e,e.prev=t,r.next=i,i.prev=r,n.next=r,r.prev=n,a.next=n,n.prev=a,n}function as(t,e,r,n){var i=new ss(t,e,r);return n?(i.next=n.next,i.prev=n,n.next.prev=i,n.next=i):(i.prev=i,i.next=i),i}function os(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function ss(t,e,r){this.i=t,this.x=e,this.y=r,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}function ls(t,e,r,n){for(var i=0,a=e,o=r-n;an;){if(i-n>600){var o=i-n+1,s=r-n+1,l=Math.log(o),c=.5*Math.exp(2*l/3),u=.5*Math.sqrt(l*c*(o-c)/o)*(s-o/2<0?-1:1),f=Math.max(n,Math.floor(r-s*c/o+u)),h=Math.min(i,Math.floor(r+(o-s)*c/o+u));t(e,r,f,h,a)}var p=e[r],d=n,m=i;for(us(e,n,r),a(e[i],p)>0&&us(e,n,i);d0;)m--}0===a(e[n],p)?us(e,n,m):(m++,us(e,m,i)),m<=r&&(n=m+1),r<=m&&(i=m-1)}}(t,e,r||0,n||t.length-1,i||fs)}function us(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function fs(t,e){return te?1:0}function hs(t,e){var r=t.length;if(r<=1)return[t];for(var n,i,a=[],o=0;o1)for(var l=0;l0&&(n+=t[i-1].length,r.holes.push(n))}return r},Do.default=Ro;var gs=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.patternFeatures=[],this.layoutVertexArray=new zi,this.indexArray=new Yi,this.indexArray2=new Qi,this.programConfigurations=new Ua(zo,t.layers,t.zoom),this.segments=new pa,this.segments2=new pa,this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};gs.prototype.populate=function(t,e,r){this.hasPattern=ds("fill",this.layers,e);for(var n=this.layers[0].layout.get("fill-sort-key"),i=[],a=0,o=t;a>3}if(a--,1===n||2===n)o+=t.readSVarint(),s+=t.readSVarint(),1===n&&(e&&l.push(e),e=[]),e.push(new i(o,s));else{if(7!==n)throw new Error("unknown command "+n);e&&e.push(e[0].clone())}}return e&&l.push(e),l},ws.prototype.bbox=function(){var t=this._pbf;t.pos=this._geometry;for(var e=t.readVarint()+t.pos,r=1,n=0,i=0,a=0,o=1/0,s=-1/0,l=1/0,c=-1/0;t.pos>3}if(n--,1===r||2===r)(i+=t.readSVarint())s&&(s=i),(a+=t.readSVarint())c&&(c=a);else if(7!==r)throw new Error("unknown command "+r)}return[o,l,s,c]},ws.prototype.toGeoJSON=function(t,e,r){var n,i,a=this.extent*Math.pow(2,r),o=this.extent*t,s=this.extent*e,l=this.loadGeometry(),c=ws.types[this.type];function u(t){for(var e=0;e>3;e=1===n?t.readString():2===n?t.readFloat():3===n?t.readDouble():4===n?t.readVarint64():5===n?t.readVarint():6===n?t.readSVarint():7===n?t.readBoolean():null}return e}(r))}function Es(t,e,r){if(3===t){var n=new As(r,r.readVarint()+r.pos);n.length&&(e[n.name]=n)}}Ms.prototype.feature=function(t){if(t<0||t>=this._features.length)throw new Error("feature index out of bounds");this._pbf.pos=this._features[t];var e=this._pbf.readVarint()+this._pbf.pos;return new _s(this._pbf,e,this.extent,this._keys,this._values)};var Ls={VectorTile:function(t,e){this.layers=t.readFields(Es,{},e)},VectorTileFeature:_s,VectorTileLayer:As},Cs=Ls.VectorTileFeature.types,Ps=Math.pow(2,13);function Is(t,e,r,n,i,a,o,s){t.emplaceBack(e,r,2*Math.floor(n*Ps)+o,i*Ps*2,a*Ps*2,Math.round(s))}var Os=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.layoutVertexArray=new Ri,this.indexArray=new Yi,this.programConfigurations=new Ua(bs,t.layers,t.zoom),this.segments=new pa,this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};function zs(t,e){return t.x===e.x&&(t.x<0||t.x>8192)||t.y===e.y&&(t.y<0||t.y>8192)}function Ds(t){return t.every((function(t){return t.x<0}))||t.every((function(t){return t.x>8192}))||t.every((function(t){return t.y<0}))||t.every((function(t){return t.y>8192}))}Os.prototype.populate=function(t,e,r){this.features=[],this.hasPattern=ds("fill-extrusion",this.layers,e);for(var n=0,i=t;n=1){var y=d[g-1];if(!zs(v,y)){f.vertexLength+4>pa.MAX_VERTEX_ARRAY_LENGTH&&(f=this.segments.prepareSegment(4,this.layoutVertexArray,this.indexArray));var x=v.sub(y)._perp()._unit(),b=y.dist(v);m+b>32768&&(m=0),Is(this.layoutVertexArray,v.x,v.y,x.x,x.y,0,0,m),Is(this.layoutVertexArray,v.x,v.y,x.x,x.y,0,1,m),m+=b,Is(this.layoutVertexArray,y.x,y.y,x.x,x.y,0,0,m),Is(this.layoutVertexArray,y.x,y.y,x.x,x.y,0,1,m);var _=f.vertexLength;this.indexArray.emplaceBack(_,_+2,_+1),this.indexArray.emplaceBack(_+1,_+2,_+3),f.vertexLength+=4,f.primitiveLength+=2}}}}if(f.vertexLength+l>pa.MAX_VERTEX_ARRAY_LENGTH&&(f=this.segments.prepareSegment(l,this.layoutVertexArray,this.indexArray)),"Polygon"===Cs[t.type]){for(var w=[],T=[],k=f.vertexLength,A=0,M=s;A=2&&t[l-1].equals(t[l-2]);)l--;for(var c=0;c0;if(T&&v>c){var A=u.dist(p);if(A>2*f){var M=u.sub(u.sub(p)._mult(f/A)._round());this.updateDistance(p,M),this.addCurrentVertex(M,m,0,0,h),p=M}}var S=p&&d,E=S?r:s?"butt":n;if(S&&"round"===E&&(_i&&(E="bevel"),"bevel"===E&&(_>2&&(E="flipbevel"),_100)y=g.mult(-1);else{var L=_*m.add(g).mag()/m.sub(g).mag();y._perp()._mult(L*(k?-1:1))}this.addCurrentVertex(u,y,0,0,h),this.addCurrentVertex(u,y.mult(-1),0,0,h)}else if("bevel"===E||"fakeround"===E){var C=-Math.sqrt(_*_-1),P=k?C:0,I=k?0:C;if(p&&this.addCurrentVertex(u,m,P,I,h),"fakeround"===E)for(var O=Math.round(180*w/Math.PI/20),z=1;z2*f){var j=u.add(d.sub(u)._mult(f/N)._round());this.updateDistance(u,j),this.addCurrentVertex(j,g,0,0,h),u=j}}}}},qs.prototype.addCurrentVertex=function(t,e,r,n,i,a){void 0===a&&(a=!1);var o=e.x+e.y*r,s=e.y-e.x*r,l=-e.x+e.y*n,c=-e.y-e.x*n;this.addHalfVertex(t,o,s,a,!1,r,i),this.addHalfVertex(t,l,c,a,!0,-n,i),this.distance>Hs/2&&0===this.totalDistance&&(this.distance=0,this.addCurrentVertex(t,e,r,n,i,a))},qs.prototype.addHalfVertex=function(t,e,r,n,i,a,o){var s=t.x,l=t.y,c=.5*this.scaledDistance;this.layoutVertexArray.emplaceBack((s<<1)+(n?1:0),(l<<1)+(i?1:0),Math.round(63*e)+128,Math.round(63*r)+128,1+(0===a?0:a<0?-1:1)|(63&c)<<2,c>>6);var u=o.vertexLength++;this.e1>=0&&this.e2>=0&&(this.indexArray.emplaceBack(this.e1,this.e2,u),o.primitiveLength++),i?this.e2=u:this.e1=u},qs.prototype.updateScaledDistance=function(){this.scaledDistance=this.totalDistance>0?(this.clipStart+(this.clipEnd-this.clipStart)*this.distance/this.totalDistance)*(Hs-1):this.distance},qs.prototype.updateDistance=function(t,e){this.distance+=t.dist(e),this.updateScaledDistance()},Nn("LineBucket",qs,{omit:["layers","patternFeatures"]});var Gs=new Si({"line-cap":new wi(Lt.layout_line["line-cap"]),"line-join":new Ti(Lt.layout_line["line-join"]),"line-miter-limit":new wi(Lt.layout_line["line-miter-limit"]),"line-round-limit":new wi(Lt.layout_line["line-round-limit"]),"line-sort-key":new Ti(Lt.layout_line["line-sort-key"])}),Ys={paint:new Si({"line-opacity":new Ti(Lt.paint_line["line-opacity"]),"line-color":new Ti(Lt.paint_line["line-color"]),"line-translate":new wi(Lt.paint_line["line-translate"]),"line-translate-anchor":new wi(Lt.paint_line["line-translate-anchor"]),"line-width":new Ti(Lt.paint_line["line-width"]),"line-gap-width":new Ti(Lt.paint_line["line-gap-width"]),"line-offset":new Ti(Lt.paint_line["line-offset"]),"line-blur":new Ti(Lt.paint_line["line-blur"]),"line-dasharray":new Ai(Lt.paint_line["line-dasharray"]),"line-pattern":new ki(Lt.paint_line["line-pattern"]),"line-gradient":new Mi(Lt.paint_line["line-gradient"])}),layout:Gs},Ws=new(function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.possiblyEvaluate=function(e,r){return r=new pi(Math.floor(r.zoom),{now:r.now,fadeDuration:r.fadeDuration,zoomHistory:r.zoomHistory,transition:r.transition}),t.prototype.possiblyEvaluate.call(this,e,r)},e.prototype.evaluate=function(e,r,n,i){return r=u({},r,{zoom:Math.floor(r.zoom)}),t.prototype.evaluate.call(this,e,r,n,i)},e}(Ti))(Ys.paint.properties["line-width"].specification);Ws.useIntegerZoom=!0;var Xs=function(t){function e(e){t.call(this,e,Ys)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._handleSpecialPaintPropertyUpdate=function(t){"line-gradient"===t&&this._updateGradient()},e.prototype._updateGradient=function(){var t=this._transitionablePaint._values["line-gradient"].value.expression;this.gradient=Co(t,"lineProgress"),this.gradientTexture=null},e.prototype.recalculate=function(e,r){t.prototype.recalculate.call(this,e,r),this.paint._values["line-floorwidth"]=Ws.possiblyEvaluate(this._transitioningPaint._values["line-width"].value,e)},e.prototype.createBucket=function(t){return new qs(t)},e.prototype.queryRadius=function(t){var e=t,r=Zs(oo("line-width",this,e),oo("line-gap-width",this,e)),n=oo("line-offset",this,e);return r/2+Math.abs(n)+so(this.paint.get("line-translate"))},e.prototype.queryIntersectsFeature=function(t,e,r,n,a,o,s){var l=lo(t,this.paint.get("line-translate"),this.paint.get("line-translate-anchor"),o.angle,s),c=s/2*Zs(this.paint.get("line-width").evaluate(e,r),this.paint.get("line-gap-width").evaluate(e,r)),u=this.paint.get("line-offset").evaluate(e,r);return u&&(n=function(t,e){for(var r=[],n=new i(0,0),a=0;a=3)for(var a=0;a0?e+2*t:t}var Js=Ii([{name:"a_pos_offset",components:4,type:"Int16"},{name:"a_data",components:4,type:"Uint16"},{name:"a_pixeloffset",components:4,type:"Int16"}],4),Ks=Ii([{name:"a_projected_pos",components:3,type:"Float32"}],4),Qs=(Ii([{name:"a_fade_opacity",components:1,type:"Uint32"}],4),Ii([{name:"a_placed",components:2,type:"Uint8"},{name:"a_shift",components:2,type:"Float32"}])),$s=(Ii([{type:"Int16",name:"anchorPointX"},{type:"Int16",name:"anchorPointY"},{type:"Int16",name:"x1"},{type:"Int16",name:"y1"},{type:"Int16",name:"x2"},{type:"Int16",name:"y2"},{type:"Uint32",name:"featureIndex"},{type:"Uint16",name:"sourceLayerIndex"},{type:"Uint16",name:"bucketIndex"}]),Ii([{name:"a_pos",components:2,type:"Int16"},{name:"a_anchor_pos",components:2,type:"Int16"},{name:"a_extrude",components:2,type:"Int16"}],4)),tl=Ii([{name:"a_pos",components:2,type:"Float32"},{name:"a_radius",components:1,type:"Float32"},{name:"a_flags",components:2,type:"Int16"}],4);Ii([{name:"triangle",components:3,type:"Uint16"}]),Ii([{type:"Int16",name:"anchorX"},{type:"Int16",name:"anchorY"},{type:"Uint16",name:"glyphStartIndex"},{type:"Uint16",name:"numGlyphs"},{type:"Uint32",name:"vertexStartIndex"},{type:"Uint32",name:"lineStartIndex"},{type:"Uint32",name:"lineLength"},{type:"Uint16",name:"segment"},{type:"Uint16",name:"lowerSize"},{type:"Uint16",name:"upperSize"},{type:"Float32",name:"lineOffsetX"},{type:"Float32",name:"lineOffsetY"},{type:"Uint8",name:"writingMode"},{type:"Uint8",name:"placedOrientation"},{type:"Uint8",name:"hidden"},{type:"Uint32",name:"crossTileID"},{type:"Int16",name:"associatedIconIndex"}]),Ii([{type:"Int16",name:"anchorX"},{type:"Int16",name:"anchorY"},{type:"Int16",name:"rightJustifiedTextSymbolIndex"},{type:"Int16",name:"centerJustifiedTextSymbolIndex"},{type:"Int16",name:"leftJustifiedTextSymbolIndex"},{type:"Int16",name:"verticalPlacedTextSymbolIndex"},{type:"Int16",name:"placedIconSymbolIndex"},{type:"Int16",name:"verticalPlacedIconSymbolIndex"},{type:"Uint16",name:"key"},{type:"Uint16",name:"textBoxStartIndex"},{type:"Uint16",name:"textBoxEndIndex"},{type:"Uint16",name:"verticalTextBoxStartIndex"},{type:"Uint16",name:"verticalTextBoxEndIndex"},{type:"Uint16",name:"iconBoxStartIndex"},{type:"Uint16",name:"iconBoxEndIndex"},{type:"Uint16",name:"verticalIconBoxStartIndex"},{type:"Uint16",name:"verticalIconBoxEndIndex"},{type:"Uint16",name:"featureIndex"},{type:"Uint16",name:"numHorizontalGlyphVertices"},{type:"Uint16",name:"numVerticalGlyphVertices"},{type:"Uint16",name:"numIconVertices"},{type:"Uint16",name:"numVerticalIconVertices"},{type:"Uint16",name:"useRuntimeCollisionCircles"},{type:"Uint32",name:"crossTileID"},{type:"Float32",name:"textBoxScale"},{type:"Float32",components:2,name:"textOffset"},{type:"Float32",name:"collisionCircleDiameter"}]),Ii([{type:"Float32",name:"offsetX"}]),Ii([{type:"Int16",name:"x"},{type:"Int16",name:"y"},{type:"Int16",name:"tileUnitDistanceFromAnchor"}]);function el(t,e,r){return t.sections.forEach((function(t){t.text=function(t,e,r){var n=e.layout.get("text-transform").evaluate(r,{});return"uppercase"===n?t=t.toLocaleUpperCase():"lowercase"===n&&(t=t.toLocaleLowerCase()),hi.applyArabicShaping&&(t=hi.applyArabicShaping(t)),t}(t.text,e,r)})),t}var rl={"!":"\ufe15","#":"\uff03",$:"\uff04","%":"\uff05","&":"\uff06","(":"\ufe35",")":"\ufe36","*":"\uff0a","+":"\uff0b",",":"\ufe10","-":"\ufe32",".":"\u30fb","/":"\uff0f",":":"\ufe13",";":"\ufe14","<":"\ufe3f","=":"\uff1d",">":"\ufe40","?":"\ufe16","@":"\uff20","[":"\ufe47","\\":"\uff3c","]":"\ufe48","^":"\uff3e",_:"\ufe33","`":"\uff40","{":"\ufe37","|":"\u2015","}":"\ufe38","~":"\uff5e","\xa2":"\uffe0","\xa3":"\uffe1","\xa5":"\uffe5","\xa6":"\uffe4","\xac":"\uffe2","\xaf":"\uffe3","\u2013":"\ufe32","\u2014":"\ufe31","\u2018":"\ufe43","\u2019":"\ufe44","\u201c":"\ufe41","\u201d":"\ufe42","\u2026":"\ufe19","\u2027":"\u30fb","\u20a9":"\uffe6","\u3001":"\ufe11","\u3002":"\ufe12","\u3008":"\ufe3f","\u3009":"\ufe40","\u300a":"\ufe3d","\u300b":"\ufe3e","\u300c":"\ufe41","\u300d":"\ufe42","\u300e":"\ufe43","\u300f":"\ufe44","\u3010":"\ufe3b","\u3011":"\ufe3c","\u3014":"\ufe39","\u3015":"\ufe3a","\u3016":"\ufe17","\u3017":"\ufe18","\uff01":"\ufe15","\uff08":"\ufe35","\uff09":"\ufe36","\uff0c":"\ufe10","\uff0d":"\ufe32","\uff0e":"\u30fb","\uff1a":"\ufe13","\uff1b":"\ufe14","\uff1c":"\ufe3f","\uff1e":"\ufe40","\uff1f":"\ufe16","\uff3b":"\ufe47","\uff3d":"\ufe48","\uff3f":"\ufe33","\uff5b":"\ufe37","\uff5c":"\u2015","\uff5d":"\ufe38","\uff5f":"\ufe35","\uff60":"\ufe36","\uff61":"\ufe12","\uff62":"\ufe41","\uff63":"\ufe42"};var nl=function(t,e,r,n,i){var a,o,s=8*i-n-1,l=(1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},il=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m},al=ol;function ol(t){this.buf=ArrayBuffer.isView&&ArrayBuffer.isView(t)?t:new Uint8Array(t||0),this.pos=0,this.type=0,this.length=this.buf.length}ol.Varint=0,ol.Fixed64=1,ol.Bytes=2,ol.Fixed32=5;var sl="undefined"==typeof TextDecoder?null:new TextDecoder("utf8");function ll(t){return t.type===ol.Bytes?t.readVarint()+t.pos:t.pos+1}function cl(t,e,r){return r?4294967296*e+(t>>>0):4294967296*(e>>>0)+(t>>>0)}function ul(t,e,r){var n=e<=16383?1:e<=2097151?2:e<=268435455?3:Math.floor(Math.log(e)/(7*Math.LN2));r.realloc(n);for(var i=r.pos-1;i>=t;i--)r.buf[i+n]=r.buf[i]}function fl(t,e){for(var r=0;r>>8,t[r+2]=e>>>16,t[r+3]=e>>>24}function wl(t,e){return(t[e]|t[e+1]<<8|t[e+2]<<16)+(t[e+3]<<24)}ol.prototype={destroy:function(){this.buf=null},readFields:function(t,e,r){for(r=r||this.length;this.pos>3,a=this.pos;this.type=7&n,t(i,e,this),this.pos===a&&this.skip(n)}return e},readMessage:function(t,e){return this.readFields(t,e,this.readVarint()+this.pos)},readFixed32:function(){var t=bl(this.buf,this.pos);return this.pos+=4,t},readSFixed32:function(){var t=wl(this.buf,this.pos);return this.pos+=4,t},readFixed64:function(){var t=bl(this.buf,this.pos)+4294967296*bl(this.buf,this.pos+4);return this.pos+=8,t},readSFixed64:function(){var t=bl(this.buf,this.pos)+4294967296*wl(this.buf,this.pos+4);return this.pos+=8,t},readFloat:function(){var t=nl(this.buf,this.pos,!0,23,4);return this.pos+=4,t},readDouble:function(){var t=nl(this.buf,this.pos,!0,52,8);return this.pos+=8,t},readVarint:function(t){var e,r,n=this.buf;return e=127&(r=n[this.pos++]),r<128?e:(e|=(127&(r=n[this.pos++]))<<7,r<128?e:(e|=(127&(r=n[this.pos++]))<<14,r<128?e:(e|=(127&(r=n[this.pos++]))<<21,r<128?e:function(t,e,r){var n,i,a=r.buf;if(i=a[r.pos++],n=(112&i)>>4,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<3,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<10,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<17,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<24,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(1&i)<<31,i<128)return cl(t,n,e);throw new Error("Expected varint not more than 10 bytes")}(e|=(15&(r=n[this.pos]))<<28,t,this))))},readVarint64:function(){return this.readVarint(!0)},readSVarint:function(){var t=this.readVarint();return t%2==1?(t+1)/-2:t/2},readBoolean:function(){return Boolean(this.readVarint())},readString:function(){var t=this.readVarint()+this.pos,e=this.pos;return this.pos=t,t-e>=12&&sl?function(t,e,r){return sl.decode(t.subarray(e,r))}(this.buf,e,t):function(t,e,r){var n="",i=e;for(;i239?4:l>223?3:l>191?2:1;if(i+u>r)break;1===u?l<128&&(c=l):2===u?128==(192&(a=t[i+1]))&&(c=(31&l)<<6|63&a)<=127&&(c=null):3===u?(a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&((c=(15&l)<<12|(63&a)<<6|63&o)<=2047||c>=55296&&c<=57343)&&(c=null)):4===u&&(a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&((c=(15&l)<<18|(63&a)<<12|(63&o)<<6|63&s)<=65535||c>=1114112)&&(c=null)),null===c?(c=65533,u=1):c>65535&&(c-=65536,n+=String.fromCharCode(c>>>10&1023|55296),c=56320|1023&c),n+=String.fromCharCode(c),i+=u}return n}(this.buf,e,t)},readBytes:function(){var t=this.readVarint()+this.pos,e=this.buf.subarray(this.pos,t);return this.pos=t,e},readPackedVarint:function(t,e){if(this.type!==ol.Bytes)return t.push(this.readVarint(e));var r=ll(this);for(t=t||[];this.pos127;);else if(e===ol.Bytes)this.pos=this.readVarint()+this.pos;else if(e===ol.Fixed32)this.pos+=4;else{if(e!==ol.Fixed64)throw new Error("Unimplemented type: "+e);this.pos+=8}},writeTag:function(t,e){this.writeVarint(t<<3|e)},realloc:function(t){for(var e=this.length||16;e268435455||t<0?function(t,e){var r,n;t>=0?(r=t%4294967296|0,n=t/4294967296|0):(n=~(-t/4294967296),4294967295^(r=~(-t%4294967296))?r=r+1|0:(r=0,n=n+1|0));if(t>=0x10000000000000000||t<-0x10000000000000000)throw new Error("Given varint doesn't fit into 10 bytes");e.realloc(10),function(t,e,r){r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos]=127&t}(r,0,e),function(t,e){var r=(7&t)<<4;if(e.buf[e.pos++]|=r|((t>>>=3)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;e.buf[e.pos++]=127&t}(n,e)}(t,this):(this.realloc(4),this.buf[this.pos++]=127&t|(t>127?128:0),t<=127||(this.buf[this.pos++]=127&(t>>>=7)|(t>127?128:0),t<=127||(this.buf[this.pos++]=127&(t>>>=7)|(t>127?128:0),t<=127||(this.buf[this.pos++]=t>>>7&127))))},writeSVarint:function(t){this.writeVarint(t<0?2*-t-1:2*t)},writeBoolean:function(t){this.writeVarint(Boolean(t))},writeString:function(t){t=String(t),this.realloc(4*t.length),this.pos++;var e=this.pos;this.pos=function(t,e,r){for(var n,i,a=0;a55295&&n<57344){if(!i){n>56319||a+1===e.length?(t[r++]=239,t[r++]=191,t[r++]=189):i=n;continue}if(n<56320){t[r++]=239,t[r++]=191,t[r++]=189,i=n;continue}n=i-55296<<10|n-56320|65536,i=null}else i&&(t[r++]=239,t[r++]=191,t[r++]=189,i=null);n<128?t[r++]=n:(n<2048?t[r++]=n>>6|192:(n<65536?t[r++]=n>>12|224:(t[r++]=n>>18|240,t[r++]=n>>12&63|128),t[r++]=n>>6&63|128),t[r++]=63&n|128)}return r}(this.buf,t,this.pos);var r=this.pos-e;r>=128&&ul(e,r,this),this.pos=e-1,this.writeVarint(r),this.pos+=r},writeFloat:function(t){this.realloc(4),il(this.buf,t,this.pos,!0,23,4),this.pos+=4},writeDouble:function(t){this.realloc(8),il(this.buf,t,this.pos,!0,52,8),this.pos+=8},writeBytes:function(t){var e=t.length;this.writeVarint(e),this.realloc(e);for(var r=0;r=128&&ul(r,n,this),this.pos=r-1,this.writeVarint(n),this.pos+=n},writeMessage:function(t,e,r){this.writeTag(t,ol.Bytes),this.writeRawMessage(e,r)},writePackedVarint:function(t,e){e.length&&this.writeMessage(t,fl,e)},writePackedSVarint:function(t,e){e.length&&this.writeMessage(t,hl,e)},writePackedBoolean:function(t,e){e.length&&this.writeMessage(t,ml,e)},writePackedFloat:function(t,e){e.length&&this.writeMessage(t,pl,e)},writePackedDouble:function(t,e){e.length&&this.writeMessage(t,dl,e)},writePackedFixed32:function(t,e){e.length&&this.writeMessage(t,gl,e)},writePackedSFixed32:function(t,e){e.length&&this.writeMessage(t,vl,e)},writePackedFixed64:function(t,e){e.length&&this.writeMessage(t,yl,e)},writePackedSFixed64:function(t,e){e.length&&this.writeMessage(t,xl,e)},writeBytesField:function(t,e){this.writeTag(t,ol.Bytes),this.writeBytes(e)},writeFixed32Field:function(t,e){this.writeTag(t,ol.Fixed32),this.writeFixed32(e)},writeSFixed32Field:function(t,e){this.writeTag(t,ol.Fixed32),this.writeSFixed32(e)},writeFixed64Field:function(t,e){this.writeTag(t,ol.Fixed64),this.writeFixed64(e)},writeSFixed64Field:function(t,e){this.writeTag(t,ol.Fixed64),this.writeSFixed64(e)},writeVarintField:function(t,e){this.writeTag(t,ol.Varint),this.writeVarint(e)},writeSVarintField:function(t,e){this.writeTag(t,ol.Varint),this.writeSVarint(e)},writeStringField:function(t,e){this.writeTag(t,ol.Bytes),this.writeString(e)},writeFloatField:function(t,e){this.writeTag(t,ol.Fixed32),this.writeFloat(e)},writeDoubleField:function(t,e){this.writeTag(t,ol.Fixed64),this.writeDouble(e)},writeBooleanField:function(t,e){this.writeVarintField(t,Boolean(e))}};function Tl(t,e,r){1===t&&r.readMessage(kl,e)}function kl(t,e,r){if(3===t){var n=r.readMessage(Al,{}),i=n.id,a=n.bitmap,o=n.width,s=n.height,l=n.left,c=n.top,u=n.advance;e.push({id:i,bitmap:new So({width:o+6,height:s+6},a),metrics:{width:o,height:s,left:l,top:c,advance:u}})}}function Al(t,e,r){1===t?e.id=r.readVarint():2===t?e.bitmap=r.readBytes():3===t?e.width=r.readVarint():4===t?e.height=r.readVarint():5===t?e.left=r.readSVarint():6===t?e.top=r.readSVarint():7===t&&(e.advance=r.readVarint())}function Ml(t){for(var e=0,r=0,n=0,i=t;n=0;h--){var p=o[h];if(!(f.w>p.w||f.h>p.h)){if(f.x=p.x,f.y=p.y,l=Math.max(l,f.y+f.h),s=Math.max(s,f.x+f.w),f.w===p.w&&f.h===p.h){var d=o.pop();h0&&N>A&&(A=N)}else{var j=r[S.fontStack],U=j&&j[L];if(U&&U.rect)I=U.rect,P=U.metrics;else{var V=e[S.fontStack],H=V&&V[L];if(!H)continue;P=H.metrics}C=24*(_-S.scale)}D?(t.verticalizable=!0,k.push({glyph:L,imageName:O,x:h,y:p+C,vertical:D,scale:S.scale,fontStack:S.fontStack,sectionIndex:E,metrics:P,rect:I}),h+=z*S.scale+c):(k.push({glyph:L,imageName:O,x:h,y:p+C,vertical:D,scale:S.scale,fontStack:S.fontStack,sectionIndex:E,metrics:P,rect:I}),h+=P.advance*S.scale+c)}if(0!==k.length){var q=h-c;d=Math.max(q,d),Vl(k,0,k.length-1,g,A)}h=0;var G=a*_+A;T.lineOffset=Math.max(A,w),p+=G,m=Math.max(G,m),++v}else p+=a,++v}var Y;var W=p- -17,X=Ul(o),Z=X.horizontalAlign,J=X.verticalAlign;(function(t,e,r,n,i,a,o,s,l){var c=(e-r)*i,u=0;u=a!==o?-s*n- -17:(-n*l+.5)*o;for(var f=0,h=t;f=0&&n>=t&&zl[this.text.charCodeAt(n)];n--)r--;this.text=this.text.substring(t,r),this.sectionIndex=this.sectionIndex.slice(t,r)},Il.prototype.substring=function(t,e){var r=new Il;return r.text=this.text.substring(t,e),r.sectionIndex=this.sectionIndex.slice(t,e),r.sections=this.sections,r},Il.prototype.toString=function(){return this.text},Il.prototype.getMaxScale=function(){var t=this;return this.sectionIndex.reduce((function(e,r){return Math.max(e,t.sections[r].scale)}),0)},Il.prototype.addTextSection=function(t,e){this.text+=t.text,this.sections.push(Pl.forText(t.scale,t.fontStack||e));for(var r=this.sections.length-1,n=0;n=63743?null:++this.imageSectionID:(this.imageSectionID=57344,this.imageSectionID)};var zl={9:!0,10:!0,11:!0,12:!0,13:!0,32:!0},Dl={};function Rl(t,e,r,n,i,a){if(e.imageName){var o=n[e.imageName];return o?o.displaySize[0]*e.scale*24/a+i:0}var s=r[e.fontStack],l=s&&s[t];return l?l.metrics.advance*e.scale+i:0}function Fl(t,e,r,n){var i=Math.pow(t-e,2);return n?t=0,f=0,h=0;h-r/2;){if(--o<0)return!1;s-=t[o].dist(a),a=t[o]}s+=t[o].dist(t[o+1]),o++;for(var l=[],c=0;sn;)c-=l.shift().angleDelta;if(c>i)return!1;o++,s+=f.dist(h)}return!0}function Jl(t){for(var e=0,r=0;rc){var d=(c-l)/p,m=qe(f.x,h.x,d),g=qe(f.y,h.y,d),v=new ql(m,g,h.angleTo(f),u);return v._round(),!o||Zl(t,v,s,o,e)?v:void 0}l+=p}}function tc(t,e,r,n,i,a,o,s,l){var c=Kl(n,a,o),u=Ql(n,i),f=u*o,h=0===t[0].x||t[0].x===l||0===t[0].y||t[0].y===l;return e-f=0&&_=0&&w=0&&p+u<=f){var T=new ql(_,w,x,m);T._round(),i&&!Zl(e,T,o,i,a)||d.push(T)}}h+=y}l||d.length||s||(d=t(e,h/2,n,i,a,o,s,!0,c));return d}(t,h?e/2*s%e:(u/2+2*a)*o*s%e,e,c,r,f,h,!1,l)}function ec(t,e,r,n,a){for(var o=[],s=0;s=n&&h.x>=n||(f.x>=n?f=new i(n,f.y+(h.y-f.y)*((n-f.x)/(h.x-f.x)))._round():h.x>=n&&(h=new i(n,f.y+(h.y-f.y)*((n-f.x)/(h.x-f.x)))._round()),f.y>=a&&h.y>=a||(f.y>=a?f=new i(f.x+(h.x-f.x)*((a-f.y)/(h.y-f.y)),a)._round():h.y>=a&&(h=new i(f.x+(h.x-f.x)*((a-f.y)/(h.y-f.y)),a)._round()),c&&f.equals(c[c.length-1])||(c=[f],o.push(c)),c.push(h)))))}return o}function rc(t,e,r,n){var a=[],o=t.image,s=o.pixelRatio,l=o.paddedRect.w-2,c=o.paddedRect.h-2,u=t.right-t.left,f=t.bottom-t.top,h=o.stretchX||[[0,l]],p=o.stretchY||[[0,c]],d=function(t,e){return t+e[1]-e[0]},m=h.reduce(d,0),g=p.reduce(d,0),v=l-m,y=c-g,x=0,b=m,_=0,w=g,T=0,k=v,A=0,M=y;if(o.content&&n){var S=o.content;x=nc(h,0,S[0]),_=nc(p,0,S[1]),b=nc(h,S[0],S[2]),w=nc(p,S[1],S[3]),T=S[0]-x,A=S[1]-_,k=S[2]-S[0]-b,M=S[3]-S[1]-w}var E=function(n,a,l,c){var h=ac(n.stretch-x,b,u,t.left),p=oc(n.fixed-T,k,n.stretch,m),d=ac(a.stretch-_,w,f,t.top),v=oc(a.fixed-A,M,a.stretch,g),y=ac(l.stretch-x,b,u,t.left),S=oc(l.fixed-T,k,l.stretch,m),E=ac(c.stretch-_,w,f,t.top),L=oc(c.fixed-A,M,c.stretch,g),C=new i(h,d),P=new i(y,d),I=new i(y,E),O=new i(h,E),z=new i(p/s,v/s),D=new i(S/s,L/s),R=e*Math.PI/180;if(R){var F=Math.sin(R),B=Math.cos(R),N=[B,-F,F,B];C._matMult(N),P._matMult(N),O._matMult(N),I._matMult(N)}var j=n.stretch+n.fixed,U=l.stretch+l.fixed,V=a.stretch+a.fixed,H=c.stretch+c.fixed;return{tl:C,tr:P,bl:O,br:I,tex:{x:o.paddedRect.x+1+j,y:o.paddedRect.y+1+V,w:U-j,h:H-V},writingMode:void 0,glyphOffset:[0,0],sectionIndex:0,pixelOffsetTL:z,pixelOffsetBR:D,minFontScaleX:k/s/u,minFontScaleY:M/s/f,isSDF:r}};if(n&&(o.stretchX||o.stretchY))for(var L=ic(h,v,m),C=ic(p,y,g),P=0;P0&&(d=Math.max(10,d),this.circleDiameter=d)}else{var m=o.top*s-l,g=o.bottom*s+l,v=o.left*s-l,y=o.right*s+l,x=o.collisionPadding;if(x&&(v-=x[0]*s,m-=x[1]*s,y+=x[2]*s,g+=x[3]*s),u){var b=new i(v,m),_=new i(y,m),w=new i(v,g),T=new i(y,g),k=u*Math.PI/180;b._rotate(k),_._rotate(k),w._rotate(k),T._rotate(k),v=Math.min(b.x,_.x,w.x,T.x),y=Math.max(b.x,_.x,w.x,T.x),m=Math.min(b.y,_.y,w.y,T.y),g=Math.max(b.y,_.y,w.y,T.y)}t.emplaceBack(e.x,e.y,v,m,y,g,r,n,a)}this.boxEndIndex=t.length},lc=function(t,e){if(void 0===t&&(t=[]),void 0===e&&(e=cc),this.data=t,this.length=this.data.length,this.compare=e,this.length>0)for(var r=(this.length>>1)-1;r>=0;r--)this._down(r)};function cc(t,e){return te?1:0}function uc(t,e,r){void 0===e&&(e=1),void 0===r&&(r=!1);for(var n=1/0,a=1/0,o=-1/0,s=-1/0,l=t[0],c=0;co)&&(o=u.x),(!c||u.y>s)&&(s=u.y)}var f=o-n,h=s-a,p=Math.min(f,h),d=p/2,m=new lc([],fc);if(0===p)return new i(n,a);for(var g=n;gy.d||!y.d)&&(y=b,r&&console.log("found best %d after %d probes",Math.round(1e4*b.d)/1e4,x)),b.max-y.d<=e||(d=b.h/2,m.push(new hc(b.p.x-d,b.p.y-d,d,t)),m.push(new hc(b.p.x+d,b.p.y-d,d,t)),m.push(new hc(b.p.x-d,b.p.y+d,d,t)),m.push(new hc(b.p.x+d,b.p.y+d,d,t)),x+=4)}return r&&(console.log("num probes: "+x),console.log("best distance: "+y.d)),y.p}function fc(t,e){return e.max-t.max}function hc(t,e,r,n){this.p=new i(t,e),this.h=r,this.d=function(t,e){for(var r=!1,n=1/0,i=0;it.y!=u.y>t.y&&t.x<(u.x-c.x)*(t.y-c.y)/(u.y-c.y)+c.x&&(r=!r),n=Math.min(n,ro(t,c,u))}return(r?1:-1)*Math.sqrt(n)}(this.p,n),this.max=this.d+this.h*Math.SQRT2}lc.prototype.push=function(t){this.data.push(t),this.length++,this._up(this.length-1)},lc.prototype.pop=function(){if(0!==this.length){var t=this.data[0],e=this.data.pop();return this.length--,this.length>0&&(this.data[0]=e,this._down(0)),t}},lc.prototype.peek=function(){return this.data[0]},lc.prototype._up=function(t){for(var e=this.data,r=this.compare,n=e[t];t>0;){var i=t-1>>1,a=e[i];if(r(n,a)>=0)break;e[t]=a,t=i}e[t]=n},lc.prototype._down=function(t){for(var e=this.data,r=this.compare,n=this.length>>1,i=e[t];t=0)break;e[t]=o,t=a}e[t]=i};var pc=Number.POSITIVE_INFINITY;function dc(t,e){return e[1]!==pc?function(t,e,r){var n=0,i=0;switch(e=Math.abs(e),r=Math.abs(r),t){case"top-right":case"top-left":case"top":i=r-7;break;case"bottom-right":case"bottom-left":case"bottom":i=7-r}switch(t){case"top-right":case"bottom-right":case"right":n=-e;break;case"top-left":case"bottom-left":case"left":n=e}return[n,i]}(t,e[0],e[1]):function(t,e){var r=0,n=0;e<0&&(e=0);var i=e/Math.sqrt(2);switch(t){case"top-right":case"top-left":n=i-7;break;case"bottom-right":case"bottom-left":n=7-i;break;case"bottom":n=7-e;break;case"top":n=e-7}switch(t){case"top-right":case"bottom-right":r=-i;break;case"top-left":case"bottom-left":r=i;break;case"left":r=e;break;case"right":r=-e}return[r,n]}(t,e[0])}function mc(t){switch(t){case"right":case"top-right":case"bottom-right":return"right";case"left":case"top-left":case"bottom-left":return"left"}return"center"}function gc(t,e,r,n,a,o,s,l,c,u,f,h,p,d,m){var g=function(t,e,r,n,a,o,s,l){for(var c=n.layout.get("text-rotate").evaluate(o,{})*Math.PI/180,u=[],f=0,h=e.positionedLines;f32640&&_(t.layerIds[0]+': Value for "text-size" is >= 255. Reduce your "text-size".'):"composite"===v.kind&&((y=[128*d.compositeTextSizes[0].evaluate(s,{},m),128*d.compositeTextSizes[1].evaluate(s,{},m)])[0]>32640||y[1]>32640)&&_(t.layerIds[0]+': Value for "text-size" is >= 255. Reduce your "text-size".'),t.addSymbols(t.text,g,y,l,o,s,u,e,c.lineStartIndex,c.lineLength,p,m);for(var x=0,b=f;x=0;o--)if(n.dist(a[o])0)&&("constant"!==a.value.kind||a.value.value.length>0),c="constant"!==s.value.kind||!!s.value.value||Object.keys(s.parameters).length>0,u=i.get("symbol-sort-key");if(this.features=[],l||c){for(var f=e.iconDependencies,h=e.glyphDependencies,p=e.availableImages,d=new pi(this.zoom),m=0,g=t;m=0;for(var O=0,z=k.sections;O=0;s--)a[s]={x:e[s].x,y:e[s].y,tileUnitDistanceFromAnchor:i},s>0&&(i+=e[s-1].dist(e[s]));for(var l=0;l0},Mc.prototype.hasIconData=function(){return this.icon.segments.get().length>0},Mc.prototype.hasDebugData=function(){return this.textCollisionBox&&this.iconCollisionBox},Mc.prototype.hasTextCollisionBoxData=function(){return this.hasDebugData()&&this.textCollisionBox.segments.get().length>0},Mc.prototype.hasIconCollisionBoxData=function(){return this.hasDebugData()&&this.iconCollisionBox.segments.get().length>0},Mc.prototype.addIndicesForPlacedSymbol=function(t,e){for(var r=t.placedSymbolArray.get(e),n=r.vertexStartIndex+4*r.numGlyphs,i=r.vertexStartIndex;i1||this.icon.segments.get().length>1)){this.symbolInstanceIndexes=this.getSortedSymbolIndexes(t),this.sortedAngle=t,this.text.indexArray.clear(),this.icon.indexArray.clear(),this.featureSortOrder=[];for(var r=0,n=this.symbolInstanceIndexes;r=0&&n.indexOf(t)===r&&e.addIndicesForPlacedSymbol(e.text,t)})),a.verticalPlacedTextSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.text,a.verticalPlacedTextSymbolIndex),a.placedIconSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.icon,a.placedIconSymbolIndex),a.verticalPlacedIconSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.icon,a.verticalPlacedIconSymbolIndex)}this.text.indexBuffer&&this.text.indexBuffer.updateData(this.text.indexArray),this.icon.indexBuffer&&this.icon.indexBuffer.updateData(this.icon.indexArray)}},Nn("SymbolBucket",Mc,{omit:["layers","collisionBoxArray","features","compareText"]}),Mc.MAX_GLYPHS=65535,Mc.addDynamicAttributes=wc;var Sc=new Si({"symbol-placement":new wi(Lt.layout_symbol["symbol-placement"]),"symbol-spacing":new wi(Lt.layout_symbol["symbol-spacing"]),"symbol-avoid-edges":new wi(Lt.layout_symbol["symbol-avoid-edges"]),"symbol-sort-key":new Ti(Lt.layout_symbol["symbol-sort-key"]),"symbol-z-order":new wi(Lt.layout_symbol["symbol-z-order"]),"icon-allow-overlap":new wi(Lt.layout_symbol["icon-allow-overlap"]),"icon-ignore-placement":new wi(Lt.layout_symbol["icon-ignore-placement"]),"icon-optional":new wi(Lt.layout_symbol["icon-optional"]),"icon-rotation-alignment":new wi(Lt.layout_symbol["icon-rotation-alignment"]),"icon-size":new Ti(Lt.layout_symbol["icon-size"]),"icon-text-fit":new wi(Lt.layout_symbol["icon-text-fit"]),"icon-text-fit-padding":new wi(Lt.layout_symbol["icon-text-fit-padding"]),"icon-image":new Ti(Lt.layout_symbol["icon-image"]),"icon-rotate":new Ti(Lt.layout_symbol["icon-rotate"]),"icon-padding":new wi(Lt.layout_symbol["icon-padding"]),"icon-keep-upright":new wi(Lt.layout_symbol["icon-keep-upright"]),"icon-offset":new Ti(Lt.layout_symbol["icon-offset"]),"icon-anchor":new Ti(Lt.layout_symbol["icon-anchor"]),"icon-pitch-alignment":new wi(Lt.layout_symbol["icon-pitch-alignment"]),"text-pitch-alignment":new wi(Lt.layout_symbol["text-pitch-alignment"]),"text-rotation-alignment":new wi(Lt.layout_symbol["text-rotation-alignment"]),"text-field":new Ti(Lt.layout_symbol["text-field"]),"text-font":new Ti(Lt.layout_symbol["text-font"]),"text-size":new Ti(Lt.layout_symbol["text-size"]),"text-max-width":new Ti(Lt.layout_symbol["text-max-width"]),"text-line-height":new wi(Lt.layout_symbol["text-line-height"]),"text-letter-spacing":new Ti(Lt.layout_symbol["text-letter-spacing"]),"text-justify":new Ti(Lt.layout_symbol["text-justify"]),"text-radial-offset":new Ti(Lt.layout_symbol["text-radial-offset"]),"text-variable-anchor":new wi(Lt.layout_symbol["text-variable-anchor"]),"text-anchor":new Ti(Lt.layout_symbol["text-anchor"]),"text-max-angle":new wi(Lt.layout_symbol["text-max-angle"]),"text-writing-mode":new wi(Lt.layout_symbol["text-writing-mode"]),"text-rotate":new Ti(Lt.layout_symbol["text-rotate"]),"text-padding":new wi(Lt.layout_symbol["text-padding"]),"text-keep-upright":new wi(Lt.layout_symbol["text-keep-upright"]),"text-transform":new Ti(Lt.layout_symbol["text-transform"]),"text-offset":new Ti(Lt.layout_symbol["text-offset"]),"text-allow-overlap":new wi(Lt.layout_symbol["text-allow-overlap"]),"text-ignore-placement":new wi(Lt.layout_symbol["text-ignore-placement"]),"text-optional":new wi(Lt.layout_symbol["text-optional"])}),Ec={paint:new Si({"icon-opacity":new Ti(Lt.paint_symbol["icon-opacity"]),"icon-color":new Ti(Lt.paint_symbol["icon-color"]),"icon-halo-color":new Ti(Lt.paint_symbol["icon-halo-color"]),"icon-halo-width":new Ti(Lt.paint_symbol["icon-halo-width"]),"icon-halo-blur":new Ti(Lt.paint_symbol["icon-halo-blur"]),"icon-translate":new wi(Lt.paint_symbol["icon-translate"]),"icon-translate-anchor":new wi(Lt.paint_symbol["icon-translate-anchor"]),"text-opacity":new Ti(Lt.paint_symbol["text-opacity"]),"text-color":new Ti(Lt.paint_symbol["text-color"],{runtimeType:Ut,getOverride:function(t){return t.textColor},hasOverride:function(t){return!!t.textColor}}),"text-halo-color":new Ti(Lt.paint_symbol["text-halo-color"]),"text-halo-width":new Ti(Lt.paint_symbol["text-halo-width"]),"text-halo-blur":new Ti(Lt.paint_symbol["text-halo-blur"]),"text-translate":new wi(Lt.paint_symbol["text-translate"]),"text-translate-anchor":new wi(Lt.paint_symbol["text-translate-anchor"])}),layout:Sc},Lc=function(t){this.type=t.property.overrides?t.property.overrides.runtimeType:Ft,this.defaultValue=t};Lc.prototype.evaluate=function(t){if(t.formattedSection){var e=this.defaultValue.property.overrides;if(e&&e.hasOverride(t.formattedSection))return e.getOverride(t.formattedSection)}return t.feature&&t.featureState?this.defaultValue.evaluate(t.feature,t.featureState):this.defaultValue.property.specification.default},Lc.prototype.eachChild=function(t){this.defaultValue.isConstant()||t(this.defaultValue.value._styleExpression.expression)},Lc.prototype.outputDefined=function(){return!1},Lc.prototype.serialize=function(){return null},Nn("FormatSectionOverride",Lc,{omit:["defaultValue"]});var Cc=function(t){function e(e){t.call(this,e,Ec)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.recalculate=function(e,r){if(t.prototype.recalculate.call(this,e,r),"auto"===this.layout.get("icon-rotation-alignment")&&("point"!==this.layout.get("symbol-placement")?this.layout._values["icon-rotation-alignment"]="map":this.layout._values["icon-rotation-alignment"]="viewport"),"auto"===this.layout.get("text-rotation-alignment")&&("point"!==this.layout.get("symbol-placement")?this.layout._values["text-rotation-alignment"]="map":this.layout._values["text-rotation-alignment"]="viewport"),"auto"===this.layout.get("text-pitch-alignment")&&(this.layout._values["text-pitch-alignment"]=this.layout.get("text-rotation-alignment")),"auto"===this.layout.get("icon-pitch-alignment")&&(this.layout._values["icon-pitch-alignment"]=this.layout.get("icon-rotation-alignment")),"point"===this.layout.get("symbol-placement")){var n=this.layout.get("text-writing-mode");if(n){for(var i=[],a=0,o=n;a",targetMapId:n,sourceMapId:a.mapId})}}},qc.prototype.receive=function(t){var e=t.data,r=e.id;if(r&&(!e.targetMapId||this.mapId===e.targetMapId))if(""===e.type){delete this.tasks[r];var n=this.cancelCallbacks[r];delete this.cancelCallbacks[r],n&&n()}else k()||e.mustQueue?(this.tasks[r]=e,this.taskQueue.push(r),this.invoker.trigger()):this.processTask(r,e)},qc.prototype.process=function(){if(this.taskQueue.length){var t=this.taskQueue.shift(),e=this.tasks[t];delete this.tasks[t],this.taskQueue.length&&this.invoker.trigger(),e&&this.processTask(t,e)}},qc.prototype.processTask=function(t,e){var r=this;if(""===e.type){var n=this.callbacks[t];delete this.callbacks[t],n&&(e.error?n(qn(e.error)):n(null,qn(e.data)))}else{var i=!1,a=S(this.globalScope)?void 0:[],o=e.hasCallback?function(e,n){i=!0,delete r.cancelCallbacks[t],r.target.postMessage({id:t,type:"",sourceMapId:r.mapId,error:e?Hn(e):null,data:Hn(n,a)},a)}:function(t){i=!0},s=null,l=qn(e.data);if(this.parent[e.type])s=this.parent[e.type](e.sourceMapId,l,o);else if(this.parent.getWorkerSource){var c=e.type.split(".");s=this.parent.getWorkerSource(e.sourceMapId,c[0],l.source)[c[1]](l,o)}else o(new Error("Could not find function "+e.type));!i&&s&&s.cancel&&(this.cancelCallbacks[t]=s.cancel)}},qc.prototype.remove=function(){this.invoker.remove(),this.target.removeEventListener("message",this.receive,!1)};var Yc=function(t,e){t&&(e?this.setSouthWest(t).setNorthEast(e):4===t.length?this.setSouthWest([t[0],t[1]]).setNorthEast([t[2],t[3]]):this.setSouthWest(t[0]).setNorthEast(t[1]))};Yc.prototype.setNorthEast=function(t){return this._ne=t instanceof Wc?new Wc(t.lng,t.lat):Wc.convert(t),this},Yc.prototype.setSouthWest=function(t){return this._sw=t instanceof Wc?new Wc(t.lng,t.lat):Wc.convert(t),this},Yc.prototype.extend=function(t){var e,r,n=this._sw,i=this._ne;if(t instanceof Wc)e=t,r=t;else{if(!(t instanceof Yc)){if(Array.isArray(t)){if(4===t.length||t.every(Array.isArray)){var a=t;return this.extend(Yc.convert(a))}var o=t;return this.extend(Wc.convert(o))}return this}if(e=t._sw,r=t._ne,!e||!r)return this}return n||i?(n.lng=Math.min(e.lng,n.lng),n.lat=Math.min(e.lat,n.lat),i.lng=Math.max(r.lng,i.lng),i.lat=Math.max(r.lat,i.lat)):(this._sw=new Wc(e.lng,e.lat),this._ne=new Wc(r.lng,r.lat)),this},Yc.prototype.getCenter=function(){return new Wc((this._sw.lng+this._ne.lng)/2,(this._sw.lat+this._ne.lat)/2)},Yc.prototype.getSouthWest=function(){return this._sw},Yc.prototype.getNorthEast=function(){return this._ne},Yc.prototype.getNorthWest=function(){return new Wc(this.getWest(),this.getNorth())},Yc.prototype.getSouthEast=function(){return new Wc(this.getEast(),this.getSouth())},Yc.prototype.getWest=function(){return this._sw.lng},Yc.prototype.getSouth=function(){return this._sw.lat},Yc.prototype.getEast=function(){return this._ne.lng},Yc.prototype.getNorth=function(){return this._ne.lat},Yc.prototype.toArray=function(){return[this._sw.toArray(),this._ne.toArray()]},Yc.prototype.toString=function(){return"LngLatBounds("+this._sw.toString()+", "+this._ne.toString()+")"},Yc.prototype.isEmpty=function(){return!(this._sw&&this._ne)},Yc.prototype.contains=function(t){var e=Wc.convert(t),r=e.lng,n=e.lat,i=this._sw.lat<=n&&n<=this._ne.lat,a=this._sw.lng<=r&&r<=this._ne.lng;return this._sw.lng>this._ne.lng&&(a=this._sw.lng>=r&&r>=this._ne.lng),i&&a},Yc.convert=function(t){return!t||t instanceof Yc?t:new Yc(t)};var Wc=function(t,e){if(isNaN(t)||isNaN(e))throw new Error("Invalid LngLat object: ("+t+", "+e+")");if(this.lng=+t,this.lat=+e,this.lat>90||this.lat<-90)throw new Error("Invalid LngLat latitude value: must be between -90 and 90")};Wc.prototype.wrap=function(){return new Wc(c(this.lng,-180,180),this.lat)},Wc.prototype.toArray=function(){return[this.lng,this.lat]},Wc.prototype.toString=function(){return"LngLat("+this.lng+", "+this.lat+")"},Wc.prototype.distanceTo=function(t){var e=Math.PI/180,r=this.lat*e,n=t.lat*e,i=Math.sin(r)*Math.sin(n)+Math.cos(r)*Math.cos(n)*Math.cos((t.lng-this.lng)*e);return 6371008.8*Math.acos(Math.min(i,1))},Wc.prototype.toBounds=function(t){void 0===t&&(t=0);var e=360*t/40075017,r=e/Math.cos(Math.PI/180*this.lat);return new Yc(new Wc(this.lng-r,this.lat-e),new Wc(this.lng+r,this.lat+e))},Wc.convert=function(t){if(t instanceof Wc)return t;if(Array.isArray(t)&&(2===t.length||3===t.length))return new Wc(Number(t[0]),Number(t[1]));if(!Array.isArray(t)&&"object"==typeof t&&null!==t)return new Wc(Number("lng"in t?t.lng:t.lon),Number(t.lat));throw new Error("`LngLatLike` argument must be specified as a LngLat instance, an object {lng: , lat: }, an object {lon: , lat: }, or an array of [, ]")};var Xc=2*Math.PI*6371008.8;function Zc(t){return Xc*Math.cos(t*Math.PI/180)}function Jc(t){return(180+t)/360}function Kc(t){return(180-180/Math.PI*Math.log(Math.tan(Math.PI/4+t*Math.PI/360)))/360}function Qc(t,e){return t/Zc(e)}function $c(t){var e=180-360*t;return 360/Math.PI*Math.atan(Math.exp(e*Math.PI/180))-90}var tu=function(t,e,r){void 0===r&&(r=0),this.x=+t,this.y=+e,this.z=+r};tu.fromLngLat=function(t,e){void 0===e&&(e=0);var r=Wc.convert(t);return new tu(Jc(r.lng),Kc(r.lat),Qc(e,r.lat))},tu.prototype.toLngLat=function(){return new Wc(360*this.x-180,$c(this.y))},tu.prototype.toAltitude=function(){return t=this.z,e=this.y,t*Zc($c(e));var t,e},tu.prototype.meterInMercatorCoordinateUnits=function(){return 1/Xc*(t=$c(this.y),1/Math.cos(t*Math.PI/180));var t};var eu=function(t,e,r){this.z=t,this.x=e,this.y=r,this.key=iu(0,t,t,e,r)};eu.prototype.equals=function(t){return this.z===t.z&&this.x===t.x&&this.y===t.y},eu.prototype.url=function(t,e){var r,n,i,a,o,s=(r=this.x,n=this.y,i=this.z,a=Gc(256*r,256*(n=Math.pow(2,i)-n-1),i),o=Gc(256*(r+1),256*(n+1),i),a[0]+","+a[1]+","+o[0]+","+o[1]),l=function(t,e,r){for(var n,i="",a=t;a>0;a--)i+=(e&(n=1<this.canonical.z?new nu(t,this.wrap,this.canonical.z,this.canonical.x,this.canonical.y):new nu(t,this.wrap,t,this.canonical.x>>e,this.canonical.y>>e)},nu.prototype.calculateScaledKey=function(t,e){var r=this.canonical.z-t;return t>this.canonical.z?iu(this.wrap*+e,t,this.canonical.z,this.canonical.x,this.canonical.y):iu(this.wrap*+e,t,t,this.canonical.x>>r,this.canonical.y>>r)},nu.prototype.isChildOf=function(t){if(t.wrap!==this.wrap)return!1;var e=this.canonical.z-t.canonical.z;return 0===t.overscaledZ||t.overscaledZ>e&&t.canonical.y===this.canonical.y>>e},nu.prototype.children=function(t){if(this.overscaledZ>=t)return[new nu(this.overscaledZ+1,this.wrap,this.canonical.z,this.canonical.x,this.canonical.y)];var e=this.canonical.z+1,r=2*this.canonical.x,n=2*this.canonical.y;return[new nu(e,this.wrap,e,r,n),new nu(e,this.wrap,e,r+1,n),new nu(e,this.wrap,e,r,n+1),new nu(e,this.wrap,e,r+1,n+1)]},nu.prototype.isLessThan=function(t){return this.wrapt.wrap)&&(this.overscaledZt.overscaledZ)&&(this.canonical.xt.canonical.x)&&this.canonical.y=this.dim+1||e<-1||e>=this.dim+1)throw new RangeError("out of range source coordinates for DEM data");return(e+1)*this.stride+(t+1)},au.prototype._unpackMapbox=function(t,e,r){return(256*t*256+256*e+r)/10-1e4},au.prototype._unpackTerrarium=function(t,e,r){return 256*t+e+r/256-32768},au.prototype.getPixels=function(){return new Eo({width:this.stride,height:this.stride},new Uint8Array(this.data.buffer))},au.prototype.backfillBorder=function(t,e,r){if(this.dim!==t.dim)throw new Error("dem dimension mismatch");var n=e*this.dim,i=e*this.dim+this.dim,a=r*this.dim,o=r*this.dim+this.dim;switch(e){case-1:n=i-1;break;case 1:i=n+1}switch(r){case-1:a=o-1;break;case 1:o=a+1}for(var s=-e*this.dim,l=-r*this.dim,c=a;c=0&&u[3]>=0&&s.insert(o,u[0],u[1],u[2],u[3])}},uu.prototype.loadVTLayers=function(){return this.vtLayers||(this.vtLayers=new Ls.VectorTile(new al(this.rawTileData)).layers,this.sourceLayerCoder=new ou(this.vtLayers?Object.keys(this.vtLayers).sort():["_geojsonTileLayer"])),this.vtLayers},uu.prototype.query=function(t,e,r,n){var a=this;this.loadVTLayers();for(var o=t.params||{},s=8192/t.tileSize/t.scale,l=sn(o.filter),c=t.queryGeometry,u=t.queryPadding*s,f=hu(c),h=this.grid.query(f.minX-u,f.minY-u,f.maxX+u,f.maxY+u),p=hu(t.cameraQueryGeometry),d=this.grid3D.query(p.minX-u,p.minY-u,p.maxX+u,p.maxY+u,(function(e,r,n,a){return function(t,e,r,n,a){for(var o=0,s=t;o=l.x&&a>=l.y)return!0}var c=[new i(e,r),new i(e,a),new i(n,a),new i(n,r)];if(t.length>2)for(var u=0,f=c;u=0)return!0;return!1}(a,f)){var h=this.sourceLayerCoder.decode(r),p=this.vtLayers[h].feature(n);if(i.filter(new pi(this.tileID.overscaledZ),p))for(var d=this.getId(p,h),m=0;mn)i=!1;else if(e)if(this.expirationTimeot&&(t.getActor().send("enforceCacheSizeLimit",at),ht=0)},t.clamp=l,t.clearTileCache=function(t){var e=self.caches.delete("mapbox-tiles");t&&e.catch(t).then((function(){return t()}))},t.clipLine=ec,t.clone=function(t){var e=new fo(16);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[3],e[4]=t[4],e[5]=t[5],e[6]=t[6],e[7]=t[7],e[8]=t[8],e[9]=t[9],e[10]=t[10],e[11]=t[11],e[12]=t[12],e[13]=t[13],e[14]=t[14],e[15]=t[15],e},t.clone$1=x,t.clone$2=function(t){var e=new fo(3);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e},t.collisionCircleLayout=tl,t.config=F,t.create=function(){var t=new fo(16);return fo!=Float32Array&&(t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[11]=0,t[12]=0,t[13]=0,t[14]=0),t[0]=1,t[5]=1,t[10]=1,t[15]=1,t},t.create$1=function(){var t=new fo(9);return fo!=Float32Array&&(t[1]=0,t[2]=0,t[3]=0,t[5]=0,t[6]=0,t[7]=0),t[0]=1,t[4]=1,t[8]=1,t},t.create$2=function(){var t=new fo(4);return fo!=Float32Array&&(t[1]=0,t[2]=0),t[0]=1,t[3]=1,t},t.createCommonjsModule=e,t.createExpression=Wr,t.createLayout=Ii,t.createStyleLayer=function(t){return"custom"===t.type?new Dc(t):new Rc[t.type](t)},t.cross=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2];return t[0]=i*l-a*s,t[1]=a*o-n*l,t[2]=n*s-i*o,t},t.deepEqual=function t(e,r){if(Array.isArray(e)){if(!Array.isArray(r)||e.length!==r.length)return!1;for(var n=0;n0&&(a=1/Math.sqrt(a)),t[0]=e[0]*a,t[1]=e[1]*a,t[2]=e[2]*a,t},t.number=qe,t.offscreenCanvasSupported=pt,t.ortho=function(t,e,r,n,i,a,o){var s=1/(e-r),l=1/(n-i),c=1/(a-o);return t[0]=-2*s,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=-2*l,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=2*c,t[11]=0,t[12]=(e+r)*s,t[13]=(i+n)*l,t[14]=(o+a)*c,t[15]=1,t},t.parseGlyphPBF=function(t){return new al(t).readFields(Tl,[])},t.pbf=al,t.performSymbolLayout=function(t,e,r,n,i,a,o){t.createArrays();var s=512*t.overscaling;t.tilePixelRatio=8192/s,t.compareText={},t.iconsNeedLinear=!1;var l=t.layers[0].layout,c=t.layers[0]._unevaluatedLayout._values,u={};if("composite"===t.textSizeData.kind){var f=t.textSizeData,h=f.minZoom,p=f.maxZoom;u.compositeTextSizes=[c["text-size"].possiblyEvaluate(new pi(h),o),c["text-size"].possiblyEvaluate(new pi(p),o)]}if("composite"===t.iconSizeData.kind){var d=t.iconSizeData,m=d.minZoom,g=d.maxZoom;u.compositeIconSizes=[c["icon-size"].possiblyEvaluate(new pi(m),o),c["icon-size"].possiblyEvaluate(new pi(g),o)]}u.layoutTextSize=c["text-size"].possiblyEvaluate(new pi(t.zoom+1),o),u.layoutIconSize=c["icon-size"].possiblyEvaluate(new pi(t.zoom+1),o),u.textMaxSize=c["text-size"].possiblyEvaluate(new pi(18));for(var v=24*l.get("text-line-height"),y="map"===l.get("text-rotation-alignment")&&"point"!==l.get("symbol-placement"),x=l.get("text-keep-upright"),b=l.get("text-size"),w=function(){var a=k[T],s=l.get("text-font").evaluate(a,{},o).join(","),c=b.evaluate(a,{},o),f=u.layoutTextSize.evaluate(a,{},o),h=u.layoutIconSize.evaluate(a,{},o),p={horizontal:{},vertical:void 0},d=a.text,m=[0,0];if(d){var g=d.toString(),w=24*l.get("text-letter-spacing").evaluate(a,{},o),A=function(t){for(var e=0,r=t;e=8192||f.y<0||f.y>=8192||function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,w,T,k,A){var M,S,E,L,C,P=t.addToLineVertexArray(e,r),I=0,O=0,z=0,D=0,R=-1,F=-1,B={},N=ya(""),j=0,U=0;void 0===s._unevaluatedLayout.getValue("text-radial-offset")?(M=s.layout.get("text-offset").evaluate(b,{},k).map((function(t){return 24*t})),j=M[0],U=M[1]):(j=24*s.layout.get("text-radial-offset").evaluate(b,{},k),U=pc);if(t.allowVerticalPlacement&&n.vertical){var V=s.layout.get("text-rotate").evaluate(b,{},k)+90,H=n.vertical;L=new sc(l,e,c,u,f,H,h,p,d,V),o&&(C=new sc(l,e,c,u,f,o,g,v,d,V))}if(i){var q=s.layout.get("icon-rotate").evaluate(b,{}),G="none"!==s.layout.get("icon-text-fit"),Y=rc(i,q,T,G),W=o?rc(o,q,T,G):void 0;E=new sc(l,e,c,u,f,i,g,v,!1,q),I=4*Y.length;var X=t.iconSizeData,Z=null;"source"===X.kind?(Z=[128*s.layout.get("icon-size").evaluate(b,{})])[0]>32640&&_(t.layerIds[0]+': Value for "icon-size" is >= 255. Reduce your "icon-size".'):"composite"===X.kind&&((Z=[128*w.compositeIconSizes[0].evaluate(b,{},k),128*w.compositeIconSizes[1].evaluate(b,{},k)])[0]>32640||Z[1]>32640)&&_(t.layerIds[0]+': Value for "icon-size" is >= 255. Reduce your "icon-size".'),t.addSymbols(t.icon,Y,Z,x,y,b,!1,e,P.lineStartIndex,P.lineLength,-1,k),R=t.icon.placedSymbolArray.length-1,W&&(O=4*W.length,t.addSymbols(t.icon,W,Z,x,y,b,Cl.vertical,e,P.lineStartIndex,P.lineLength,-1,k),F=t.icon.placedSymbolArray.length-1)}for(var J in n.horizontal){var K=n.horizontal[J];if(!S){N=ya(K.text);var Q=s.layout.get("text-rotate").evaluate(b,{},k);S=new sc(l,e,c,u,f,K,h,p,d,Q)}var $=1===K.positionedLines.length;if(z+=gc(t,e,K,a,s,d,b,m,P,n.vertical?Cl.horizontal:Cl.horizontalOnly,$?Object.keys(n.horizontal):[J],B,R,w,k),$)break}n.vertical&&(D+=gc(t,e,n.vertical,a,s,d,b,m,P,Cl.vertical,["vertical"],B,F,w,k));var tt=S?S.boxStartIndex:t.collisionBoxArray.length,et=S?S.boxEndIndex:t.collisionBoxArray.length,rt=L?L.boxStartIndex:t.collisionBoxArray.length,nt=L?L.boxEndIndex:t.collisionBoxArray.length,it=E?E.boxStartIndex:t.collisionBoxArray.length,at=E?E.boxEndIndex:t.collisionBoxArray.length,ot=C?C.boxStartIndex:t.collisionBoxArray.length,st=C?C.boxEndIndex:t.collisionBoxArray.length,lt=-1,ct=function(t,e){return t&&t.circleDiameter?Math.max(t.circleDiameter,e):e};lt=ct(S,lt),lt=ct(L,lt),lt=ct(E,lt);var ut=(lt=ct(C,lt))>-1?1:0;ut&&(lt*=A/24);t.glyphOffsetArray.length>=Mc.MAX_GLYPHS&&_("Too many glyphs being rendered in a tile. See https://github.com/mapbox/mapbox-gl-js/issues/2907");void 0!==b.sortKey&&t.addToSortKeyRanges(t.symbolInstances.length,b.sortKey);t.symbolInstances.emplaceBack(e.x,e.y,B.right>=0?B.right:-1,B.center>=0?B.center:-1,B.left>=0?B.left:-1,B.vertical||-1,R,F,N,tt,et,rt,nt,it,at,ot,st,c,z,D,I,O,ut,0,h,j,U,lt)}(t,f,s,r,n,i,h,t.layers[0],t.collisionBoxArray,e.index,e.sourceLayerIndex,t.index,v,w,A,l,x,T,M,d,e,a,c,u,o)};if("line"===S)for(var P=0,I=ec(e.geometry,0,0,8192,8192);P1){var V=$l(U,k,r.vertical||m,n,24,y);V&&C(U,V)}}else if("Polygon"===e.type)for(var H=0,q=hs(e.geometry,0);H=E.maxzoom))if("none"!==E.visibility)o(S,this.zoom,n),(m[E.id]=E.createBucket({index:u.bucketLayerIDs.length,layers:S,zoom:this.zoom,pixelRatio:this.pixelRatio,overscaling:this.overscaling,collisionBoxArray:this.collisionBoxArray,sourceLayerIndex:b,sourceID:this.source})).populate(_,g,this.tileID.canonical),u.bucketLayerIDs.push(S.map((function(t){return t.id})))}}}var L=t.mapObject(g.glyphDependencies,(function(t){return Object.keys(t).map(Number)}));Object.keys(L).length?a.send("getGlyphs",{uid:this.uid,stacks:L},(function(t,e){f||(f=t,h=e,I.call(l))})):h={};var C=Object.keys(g.iconDependencies);C.length?a.send("getImages",{icons:C,source:this.source,tileID:this.tileID,type:"icons"},(function(t,e){f||(f=t,p=e,I.call(l))})):p={};var P=Object.keys(g.patternDependencies);function I(){if(f)return s(f);if(h&&p&&d){var e=new i(h),r=new t.ImageAtlas(p,d);for(var a in m){var l=m[a];l instanceof t.SymbolBucket?(o(l.layers,this.zoom,n),t.performSymbolLayout(l,h,e.positions,p,r.iconPositions,this.showCollisionBoxes,this.tileID.canonical)):l.hasPattern&&(l instanceof t.LineBucket||l instanceof t.FillBucket||l instanceof t.FillExtrusionBucket)&&(o(l.layers,this.zoom,n),l.addFeatures(g,this.tileID.canonical,r.patternPositions))}this.status="done",s(null,{buckets:t.values(m).filter((function(t){return!t.isEmpty()})),featureIndex:u,collisionBoxArray:this.collisionBoxArray,glyphAtlasImage:e.image,imageAtlas:r,glyphMap:this.returnDependencies?h:null,iconMap:this.returnDependencies?p:null,glyphPositions:this.returnDependencies?e.positions:null})}}P.length?a.send("getImages",{icons:P,source:this.source,tileID:this.tileID,type:"patterns"},(function(t,e){f||(f=t,d=e,I.call(l))})):d={},I.call(this)};var l=function(t,e,r,n){this.actor=t,this.layerIndex=e,this.availableImages=r,this.loadVectorData=n||s,this.loading={},this.loaded={}};l.prototype.loadTile=function(e,r){var n=this,i=e.uid;this.loading||(this.loading={});var o=!!(e&&e.request&&e.request.collectResourceTiming)&&new t.RequestPerformance(e.request),s=this.loading[i]=new a(e);s.abort=this.loadVectorData(e,(function(e,a){if(delete n.loading[i],e||!a)return s.status="done",n.loaded[i]=s,r(e);var l=a.rawData,c={};a.expires&&(c.expires=a.expires),a.cacheControl&&(c.cacheControl=a.cacheControl);var u={};if(o){var f=o.finish();f&&(u.resourceTiming=JSON.parse(JSON.stringify(f)))}s.vectorTile=a.vectorTile,s.parse(a.vectorTile,n.layerIndex,n.availableImages,n.actor,(function(e,n){if(e||!n)return r(e);r(null,t.extend({rawTileData:l.slice(0)},n,c,u))})),n.loaded=n.loaded||{},n.loaded[i]=s}))},l.prototype.reloadTile=function(t,e){var r=this,n=this.loaded,i=t.uid,a=this;if(n&&n[i]){var o=n[i];o.showCollisionBoxes=t.showCollisionBoxes;var s=function(t,n){var i=o.reloadCallback;i&&(delete o.reloadCallback,o.parse(o.vectorTile,a.layerIndex,r.availableImages,a.actor,i)),e(t,n)};"parsing"===o.status?o.reloadCallback=s:"done"===o.status&&(o.vectorTile?o.parse(o.vectorTile,this.layerIndex,this.availableImages,this.actor,s):s())}},l.prototype.abortTile=function(t,e){var r=this.loading,n=t.uid;r&&r[n]&&r[n].abort&&(r[n].abort(),delete r[n]),e()},l.prototype.removeTile=function(t,e){var r=this.loaded,n=t.uid;r&&r[n]&&delete r[n],e()};var c=t.window.ImageBitmap,u=function(){this.loaded={}};u.prototype.loadTile=function(e,r){var n=e.uid,i=e.encoding,a=e.rawImageData,o=c&&a instanceof c?this.getImageData(a):a,s=new t.DEMData(n,o,i);this.loaded=this.loaded||{},this.loaded[n]=s,r(null,s)},u.prototype.getImageData=function(e){this.offscreenCanvas&&this.offscreenCanvasContext||(this.offscreenCanvas=new OffscreenCanvas(e.width,e.height),this.offscreenCanvasContext=this.offscreenCanvas.getContext("2d")),this.offscreenCanvas.width=e.width,this.offscreenCanvas.height=e.height,this.offscreenCanvasContext.drawImage(e,0,0,e.width,e.height);var r=this.offscreenCanvasContext.getImageData(-1,-1,e.width+2,e.height+2);return this.offscreenCanvasContext.clearRect(0,0,this.offscreenCanvas.width,this.offscreenCanvas.height),new t.RGBAImage({width:r.width,height:r.height},r.data)},u.prototype.removeTile=function(t){var e=this.loaded,r=t.uid;e&&e[r]&&delete e[r]};var f=function t(e,r){var n,i=e&&e.type;if("FeatureCollection"===i)for(n=0;n=0!=!!e&&t.reverse()}var d=t.vectorTile.VectorTileFeature.prototype.toGeoJSON,m=function(e){this._feature=e,this.extent=t.EXTENT,this.type=e.type,this.properties=e.tags,"id"in e&&!isNaN(e.id)&&(this.id=parseInt(e.id,10))};m.prototype.loadGeometry=function(){if(1===this._feature.type){for(var e=[],r=0,n=this._feature.geometry;r>31}function P(t,e){for(var r=t.loadGeometry(),n=t.type,i=0,a=0,o=r.length,s=0;s>1;!function t(e,r,n,i,a,o){for(;a>i;){if(a-i>600){var s=a-i+1,l=n-i+1,c=Math.log(s),u=.5*Math.exp(2*c/3),f=.5*Math.sqrt(c*u*(s-u)/s)*(l-s/2<0?-1:1),h=Math.max(i,Math.floor(n-l*u/s+f)),p=Math.min(a,Math.floor(n+(s-l)*u/s+f));t(e,r,n,h,p,o)}var d=r[2*n+o],m=i,g=a;for(z(e,r,i,n),r[2*a+o]>d&&z(e,r,i,a);md;)g--}r[2*i+o]===d?z(e,r,i,g):(g++,z(e,r,g,a)),g<=n&&(i=g+1),n<=g&&(a=g-1)}}(t,e,o,n,i,a%2),O(t,e,r,n,o-1,a+1),O(t,e,r,o+1,i,a+1)}}function z(t,e,r,n){D(t,r,n),D(e,2*r,2*n),D(e,2*r+1,2*n+1)}function D(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function R(t,e,r,n){var i=t-r,a=e-n;return i*i+a*a}_.fromVectorTileJs=w,_.fromGeojsonVt=T,_.GeoJSONWrapper=k;var F=function(t){return t[0]},B=function(t){return t[1]},N=function(t,e,r,n,i){void 0===e&&(e=F),void 0===r&&(r=B),void 0===n&&(n=64),void 0===i&&(i=Float64Array),this.nodeSize=n,this.points=t;for(var a=t.length<65536?Uint16Array:Uint32Array,o=this.ids=new a(t.length),s=this.coords=new i(2*t.length),l=0;l=r&&s<=i&&l>=n&&l<=a&&u.push(t[d]);else{var m=Math.floor((p+h)/2);s=e[2*m],l=e[2*m+1],s>=r&&s<=i&&l>=n&&l<=a&&u.push(t[m]);var g=(f+1)%2;(0===f?r<=s:n<=l)&&(c.push(p),c.push(m-1),c.push(g)),(0===f?i>=s:a>=l)&&(c.push(m+1),c.push(h),c.push(g))}}return u}(this.ids,this.coords,t,e,r,n,this.nodeSize)},N.prototype.within=function(t,e,r){return function(t,e,r,n,i,a){for(var o=[0,t.length-1,0],s=[],l=i*i;o.length;){var c=o.pop(),u=o.pop(),f=o.pop();if(u-f<=a)for(var h=f;h<=u;h++)R(e[2*h],e[2*h+1],r,n)<=l&&s.push(t[h]);else{var p=Math.floor((f+u)/2),d=e[2*p],m=e[2*p+1];R(d,m,r,n)<=l&&s.push(t[p]);var g=(c+1)%2;(0===c?r-i<=d:n-i<=m)&&(o.push(f),o.push(p-1),o.push(g)),(0===c?r+i>=d:n+i>=m)&&(o.push(p+1),o.push(u),o.push(g))}}return s}(this.ids,this.coords,t,e,r,this.nodeSize)};var j={minZoom:0,maxZoom:16,radius:40,extent:512,nodeSize:64,log:!1,generateId:!1,reduce:null,map:function(t){return t}},U=function(t){this.options=X(Object.create(j),t),this.trees=new Array(this.options.maxZoom+1)};function V(t,e,r,n,i){return{x:t,y:e,zoom:1/0,id:r,parentId:-1,numPoints:n,properties:i}}function H(t,e){var r=t.geometry.coordinates,n=r[0],i=r[1];return{x:Y(n),y:W(i),zoom:1/0,index:e,parentId:-1}}function q(t){return{type:"Feature",id:t.id,properties:G(t),geometry:{type:"Point",coordinates:[(n=t.x,360*(n-.5)),(e=t.y,r=(180-360*e)*Math.PI/180,360*Math.atan(Math.exp(r))/Math.PI-90)]}};var e,r,n}function G(t){var e=t.numPoints,r=e>=1e4?Math.round(e/1e3)+"k":e>=1e3?Math.round(e/100)/10+"k":e;return X(X({},t.properties),{cluster:!0,cluster_id:t.id,point_count:e,point_count_abbreviated:r})}function Y(t){return t/360+.5}function W(t){var e=Math.sin(t*Math.PI/180),r=.5-.25*Math.log((1+e)/(1-e))/Math.PI;return r<0?0:r>1?1:r}function X(t,e){for(var r in e)t[r]=e[r];return t}function Z(t){return t.x}function J(t){return t.y}function K(t,e,r,n,i,a){var o=i-r,s=a-n;if(0!==o||0!==s){var l=((t-r)*o+(e-n)*s)/(o*o+s*s);l>1?(r=i,n=a):l>0&&(r+=o*l,n+=s*l)}return(o=t-r)*o+(s=e-n)*s}function Q(t,e,r,n){var i={id:void 0===t?null:t,type:e,geometry:r,tags:n,minX:1/0,minY:1/0,maxX:-1/0,maxY:-1/0};return function(t){var e=t.geometry,r=t.type;if("Point"===r||"MultiPoint"===r||"LineString"===r)$(t,e);else if("Polygon"===r||"MultiLineString"===r)for(var n=0;n0&&(o+=n?(i*c-l*a)/2:Math.sqrt(Math.pow(l-i,2)+Math.pow(c-a,2))),i=l,a=c}var u=e.length-3;e[2]=1,function t(e,r,n,i){for(var a,o=i,s=n-r>>1,l=n-r,c=e[r],u=e[r+1],f=e[n],h=e[n+1],p=r+3;po)a=p,o=d;else if(d===o){var m=Math.abs(p-s);mi&&(a-r>3&&t(e,r,a,i),e[a+2]=o,n-a>3&&t(e,a,n,i))}(e,0,u,r),e[u+2]=1,e.size=Math.abs(o),e.start=0,e.end=e.size}function nt(t,e,r,n){for(var i=0;i1?1:r}function ot(t,e,r,n,i,a,o,s){if(n/=e,a>=(r/=e)&&o=n)return null;for(var l=[],c=0;c=r&&d=n)){var m=[];if("Point"===h||"MultiPoint"===h)st(f,m,r,n,i);else if("LineString"===h)lt(f,m,r,n,i,!1,s.lineMetrics);else if("MultiLineString"===h)ut(f,m,r,n,i,!1);else if("Polygon"===h)ut(f,m,r,n,i,!0);else if("MultiPolygon"===h)for(var g=0;g=r&&o<=n&&(e.push(t[a]),e.push(t[a+1]),e.push(t[a+2]))}}function lt(t,e,r,n,i,a,o){for(var s,l,c=ct(t),u=0===i?ht:pt,f=t.start,h=0;hr&&(l=u(c,p,d,g,v,r),o&&(c.start=f+s*l)):y>n?x=r&&(l=u(c,p,d,g,v,r),b=!0),x>n&&y<=n&&(l=u(c,p,d,g,v,n),b=!0),!a&&b&&(o&&(c.end=f+s*l),e.push(c),c=ct(t)),o&&(f+=s)}var _=t.length-3;p=t[_],d=t[_+1],m=t[_+2],(y=0===i?p:d)>=r&&y<=n&&ft(c,p,d,m),_=c.length-3,a&&_>=3&&(c[_]!==c[0]||c[_+1]!==c[1])&&ft(c,c[0],c[1],c[2]),c.length&&e.push(c)}function ct(t){var e=[];return e.size=t.size,e.start=t.start,e.end=t.end,e}function ut(t,e,r,n,i,a){for(var o=0;oo.maxX&&(o.maxX=u),f>o.maxY&&(o.maxY=f)}return o}function xt(t,e,r,n){var i=e.geometry,a=e.type,o=[];if("Point"===a||"MultiPoint"===a)for(var s=0;s0&&e.size<(i?o:n))r.numPoints+=e.length/3;else{for(var s=[],l=0;lo)&&(r.numSimplified++,s.push(e[l]),s.push(e[l+1])),r.numPoints++;i&&function(t,e){for(var r=0,n=0,i=t.length,a=i-2;n0===e)for(n=0,i=t.length;n24)throw new Error("maxZoom should be in the 0-24 range");if(e.promoteId&&e.generateId)throw new Error("promoteId and generateId cannot be used together.");var n=function(t,e){var r=[];if("FeatureCollection"===t.type)for(var n=0;n=n;c--){var u=+Date.now();s=this._cluster(s,c),this.trees[c]=new N(s,Z,J,a,Float32Array),r&&console.log("z%d: %d clusters in %dms",c,s.length,+Date.now()-u)}return r&&console.timeEnd("total time"),this},U.prototype.getClusters=function(t,e){var r=((t[0]+180)%360+360)%360-180,n=Math.max(-90,Math.min(90,t[1])),i=180===t[2]?180:((t[2]+180)%360+360)%360-180,a=Math.max(-90,Math.min(90,t[3]));if(t[2]-t[0]>=360)r=-180,i=180;else if(r>i){var o=this.getClusters([r,n,180,a],e),s=this.getClusters([-180,n,i,a],e);return o.concat(s)}for(var l=this.trees[this._limitZoom(e)],c=[],u=0,f=l.range(Y(r),W(a),Y(i),W(n));u1?this._map(c,!0):null,g=(l<<5)+(e+1)+this.points.length,v=0,y=f;v>5},U.prototype._getOriginZoom=function(t){return(t-this.points.length)%32},U.prototype._map=function(t,e){if(t.numPoints)return e?X({},t.properties):t.properties;var r=this.points[t.index].properties,n=this.options.map(r);return e&&n===r?X({},n):n},_t.prototype.options={maxZoom:14,indexMaxZoom:5,indexMaxPoints:1e5,tolerance:3,extent:4096,buffer:64,lineMetrics:!1,promoteId:null,generateId:!1,debug:0},_t.prototype.splitTile=function(t,e,r,n,i,a,o){for(var s=[t,e,r,n],l=this.options,c=l.debug;s.length;){n=s.pop(),r=s.pop(),e=s.pop(),t=s.pop();var u=1<1&&console.time("creation"),h=this.tiles[f]=yt(t,e,r,n,l),this.tileCoords.push({z:e,x:r,y:n}),c)){c>1&&(console.log("tile z%d-%d-%d (features: %d, points: %d, simplified: %d)",e,r,n,h.numFeatures,h.numPoints,h.numSimplified),console.timeEnd("creation"));var p="z"+e;this.stats[p]=(this.stats[p]||0)+1,this.total++}if(h.source=t,i){if(e===l.maxZoom||e===i)continue;var d=1<1&&console.time("clipping");var m,g,v,y,x,b,_=.5*l.buffer/l.extent,w=.5-_,T=.5+_,k=1+_;m=g=v=y=null,x=ot(t,u,r-_,r+T,0,h.minX,h.maxX,l),b=ot(t,u,r+w,r+k,0,h.minX,h.maxX,l),t=null,x&&(m=ot(x,u,n-_,n+T,1,h.minY,h.maxY,l),g=ot(x,u,n+w,n+k,1,h.minY,h.maxY,l),x=null),b&&(v=ot(b,u,n-_,n+T,1,h.minY,h.maxY,l),y=ot(b,u,n+w,n+k,1,h.minY,h.maxY,l),b=null),c>1&&console.timeEnd("clipping"),s.push(m||[],e+1,2*r,2*n),s.push(g||[],e+1,2*r,2*n+1),s.push(v||[],e+1,2*r+1,2*n),s.push(y||[],e+1,2*r+1,2*n+1)}}},_t.prototype.getTile=function(t,e,r){var n=this.options,i=n.extent,a=n.debug;if(t<0||t>24)return null;var o=1<1&&console.log("drilling down to z%d-%d-%d",t,e,r);for(var l,c=t,u=e,f=r;!l&&c>0;)c--,u=Math.floor(u/2),f=Math.floor(f/2),l=this.tiles[wt(c,u,f)];return l&&l.source?(a>1&&console.log("found parent tile z%d-%d-%d",c,u,f),a>1&&console.time("drilling down"),this.splitTile(l.source,c,u,f,t,e,r),a>1&&console.timeEnd("drilling down"),this.tiles[s]?gt(this.tiles[s],i):null):null};var kt=function(e){function r(t,r,n,i){e.call(this,t,r,n,Tt),i&&(this.loadGeoJSON=i)}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.loadData=function(t,e){this._pendingCallback&&this._pendingCallback(null,{abandoned:!0}),this._pendingCallback=e,this._pendingLoadDataParams=t,this._state&&"Idle"!==this._state?this._state="NeedsLoadData":(this._state="Coalescing",this._loadData())},r.prototype._loadData=function(){var e=this;if(this._pendingCallback&&this._pendingLoadDataParams){var r=this._pendingCallback,n=this._pendingLoadDataParams;delete this._pendingCallback,delete this._pendingLoadDataParams;var i=!!(n&&n.request&&n.request.collectResourceTiming)&&new t.RequestPerformance(n.request);this.loadGeoJSON(n,(function(a,o){if(a||!o)return r(a);if("object"!=typeof o)return r(new Error("Input data given to '"+n.source+"' is not a valid GeoJSON object."));f(o,!0);try{e._geoJSONIndex=n.cluster?new U(function(e){var r=e.superclusterOptions,n=e.clusterProperties;if(!n||!r)return r;for(var i={},a={},o={accumulated:null,zoom:0},s={properties:null},l=Object.keys(n),c=0,u=l;c=0?0:e.button},r.remove=function(t){t.parentNode&&t.parentNode.removeChild(t)};var h=function(e){function r(){e.call(this),this.images={},this.updatedImages={},this.callbackDispatchedThisFrame={},this.loaded=!1,this.requestors=[],this.patterns={},this.atlasImage=new t.RGBAImage({width:1,height:1}),this.dirty=!0}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.isLoaded=function(){return this.loaded},r.prototype.setLoaded=function(t){if(this.loaded!==t&&(this.loaded=t,t)){for(var e=0,r=this.requestors;e=0?1.2:1))}function v(t,e,r,n,i,a,o){for(var s=0;s65535)e(new Error("glyphs > 65535 not supported"));else if(a.ranges[s])e(null,{stack:r,id:i,glyph:o});else{var l=a.requests[s];l||(l=a.requests[s]=[],x.loadGlyphRange(r,s,n.url,n.requestManager,(function(t,e){if(e){for(var r in e)n._doesCharSupportLocalGlyph(+r)||(a.glyphs[+r]=e[+r]);a.ranges[s]=!0}for(var i=0,o=l;i1&&(l=t[++s]);var u=Math.abs(c-l.left),f=Math.abs(c-l.right),h=Math.min(u,f),p=void 0,d=i/r*(n+1);if(l.isDash){var m=n-Math.abs(d);p=Math.sqrt(h*h+m*m)}else p=n-Math.sqrt(h*h+d*d);this.data[o+c]=Math.max(0,Math.min(255,p+128))}},T.prototype.addRegularDash=function(t){for(var e=t.length-1;e>=0;--e){var r=t[e],n=t[e+1];r.zeroLength?t.splice(e,1):n&&n.isDash===r.isDash&&(n.left=r.left,t.splice(e,1))}var i=t[0],a=t[t.length-1];i.isDash===a.isDash&&(i.left=a.left-this.width,a.right=i.right+this.width);for(var o=this.width*this.nextRow,s=0,l=t[s],c=0;c1&&(l=t[++s]);var u=Math.abs(c-l.left),f=Math.abs(c-l.right),h=Math.min(u,f),p=l.isDash?h:-h;this.data[o+c]=Math.max(0,Math.min(255,p+128))}},T.prototype.addDash=function(e,r){var n=r?7:0,i=2*n+1;if(this.nextRow+i>this.height)return t.warnOnce("LineAtlas out of space"),null;for(var a=0,o=0;o=n&&e.x=i&&e.y0&&(l[new t.OverscaledTileID(e.overscaledZ,a,r.z,i,r.y-1).key]={backfilled:!1},l[new t.OverscaledTileID(e.overscaledZ,e.wrap,r.z,r.x,r.y-1).key]={backfilled:!1},l[new t.OverscaledTileID(e.overscaledZ,s,r.z,o,r.y-1).key]={backfilled:!1}),r.y+10&&(n.resourceTiming=e._resourceTiming,e._resourceTiming=[]),e.fire(new t.Event("data",n))}}))},r.prototype.onAdd=function(t){this.map=t,this.load()},r.prototype.setData=function(e){var r=this;return this._data=e,this.fire(new t.Event("dataloading",{dataType:"source"})),this._updateWorkerData((function(e){if(e)r.fire(new t.ErrorEvent(e));else{var n={dataType:"source",sourceDataType:"content"};r._collectResourceTiming&&r._resourceTiming&&r._resourceTiming.length>0&&(n.resourceTiming=r._resourceTiming,r._resourceTiming=[]),r.fire(new t.Event("data",n))}})),this},r.prototype.getClusterExpansionZoom=function(t,e){return this.actor.send("geojson.getClusterExpansionZoom",{clusterId:t,source:this.id},e),this},r.prototype.getClusterChildren=function(t,e){return this.actor.send("geojson.getClusterChildren",{clusterId:t,source:this.id},e),this},r.prototype.getClusterLeaves=function(t,e,r,n){return this.actor.send("geojson.getClusterLeaves",{source:this.id,clusterId:t,limit:e,offset:r},n),this},r.prototype._updateWorkerData=function(e){var r=this;this._loaded=!1;var n=t.extend({},this.workerOptions),i=this._data;"string"==typeof i?(n.request=this.map._requestManager.transformRequest(t.browser.resolveURL(i),t.ResourceType.Source),n.request.collectResourceTiming=this._collectResourceTiming):n.data=JSON.stringify(i),this.actor.send(this.type+".loadData",n,(function(t,i){r._removed||i&&i.abandoned||(r._loaded=!0,i&&i.resourceTiming&&i.resourceTiming[r.id]&&(r._resourceTiming=i.resourceTiming[r.id].slice(0)),r.actor.send(r.type+".coalesce",{source:n.source},null),e(t))}))},r.prototype.loaded=function(){return this._loaded},r.prototype.loadTile=function(e,r){var n=this,i=e.actor?"reloadTile":"loadTile";e.actor=this.actor;var a={type:this.type,uid:e.uid,tileID:e.tileID,zoom:e.tileID.overscaledZ,maxZoom:this.maxzoom,tileSize:this.tileSize,source:this.id,pixelRatio:t.browser.devicePixelRatio,showCollisionBoxes:this.map.showCollisionBoxes,promoteId:this.promoteId};e.request=this.actor.send(i,a,(function(t,a){return delete e.request,e.unloadVectorData(),e.aborted?r(null):t?r(t):(e.loadVectorData(a,n.map.painter,"reloadTile"===i),r(null))}))},r.prototype.abortTile=function(t){t.request&&(t.request.cancel(),delete t.request),t.aborted=!0},r.prototype.unloadTile=function(t){t.unloadVectorData(),this.actor.send("removeTile",{uid:t.uid,type:this.type,source:this.id})},r.prototype.onRemove=function(){this._removed=!0,this.actor.send("removeSource",{type:this.type,source:this.id})},r.prototype.serialize=function(){return t.extend({},this._options,{type:this.type,data:this._data})},r.prototype.hasTransition=function(){return!1},r}(t.Evented),P=t.createLayout([{name:"a_pos",type:"Int16",components:2},{name:"a_texture_pos",type:"Int16",components:2}]),I=function(e){function r(t,r,n,i){e.call(this),this.id=t,this.dispatcher=n,this.coordinates=r.coordinates,this.type="image",this.minzoom=0,this.maxzoom=22,this.tileSize=512,this.tiles={},this._loaded=!1,this.setEventedParent(i),this.options=r}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.load=function(e,r){var n=this;this._loaded=!1,this.fire(new t.Event("dataloading",{dataType:"source"})),this.url=this.options.url,t.getImage(this.map._requestManager.transformRequest(this.url,t.ResourceType.Image),(function(i,a){n._loaded=!0,i?n.fire(new t.ErrorEvent(i)):a&&(n.image=a,e&&(n.coordinates=e),r&&r(),n._finishLoading())}))},r.prototype.loaded=function(){return this._loaded},r.prototype.updateImage=function(t){var e=this;return this.image&&t.url?(this.options.url=t.url,this.load(t.coordinates,(function(){e.texture=null})),this):this},r.prototype._finishLoading=function(){this.map&&(this.setCoordinates(this.coordinates),this.fire(new t.Event("data",{dataType:"source",sourceDataType:"metadata"})))},r.prototype.onAdd=function(t){this.map=t,this.load()},r.prototype.setCoordinates=function(e){var r=this;this.coordinates=e;var n=e.map(t.MercatorCoordinate.fromLngLat);this.tileID=function(e){for(var r=1/0,n=1/0,i=-1/0,a=-1/0,o=0,s=e;or.end(0)?this.fire(new t.ErrorEvent(new t.ValidationError("sources."+this.id,null,"Playback for this video can be set only between the "+r.start(0)+" and "+r.end(0)+"-second mark."))):this.video.currentTime=e}},r.prototype.getVideo=function(){return this.video},r.prototype.onAdd=function(t){this.map||(this.map=t,this.load(),this.video&&(this.video.play(),this.setCoordinates(this.coordinates)))},r.prototype.prepare=function(){if(!(0===Object.keys(this.tiles).length||this.video.readyState<2)){var e=this.map.painter.context,r=e.gl;for(var n in this.boundsBuffer||(this.boundsBuffer=e.createVertexBuffer(this._boundsArray,P.members)),this.boundsSegments||(this.boundsSegments=t.SegmentVector.simpleSegment(0,0,4,2)),this.texture?this.video.paused||(this.texture.bind(r.LINEAR,r.CLAMP_TO_EDGE),r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,this.video)):(this.texture=new t.Texture(e,this.video,r.RGBA),this.texture.bind(r.LINEAR,r.CLAMP_TO_EDGE)),this.tiles){var i=this.tiles[n];"loaded"!==i.state&&(i.state="loaded",i.texture=this.texture)}}},r.prototype.serialize=function(){return{type:"video",urls:this.urls,coordinates:this.coordinates}},r.prototype.hasTransition=function(){return this.video&&!this.video.paused},r}(I),z=function(e){function r(r,n,i,a){e.call(this,r,n,i,a),n.coordinates?Array.isArray(n.coordinates)&&4===n.coordinates.length&&!n.coordinates.some((function(t){return!Array.isArray(t)||2!==t.length||t.some((function(t){return"number"!=typeof t}))}))||this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'"coordinates" property must be an array of 4 longitude/latitude array pairs'))):this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'missing required property "coordinates"'))),n.animate&&"boolean"!=typeof n.animate&&this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'optional "animate" property must be a boolean value'))),n.canvas?"string"==typeof n.canvas||n.canvas instanceof t.window.HTMLCanvasElement||this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'"canvas" must be either a string representing the ID of the canvas element from which to read, or an HTMLCanvasElement instance'))):this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'missing required property "canvas"'))),this.options=n,this.animate=void 0===n.animate||n.animate}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.load=function(){this._loaded=!0,this.canvas||(this.canvas=this.options.canvas instanceof t.window.HTMLCanvasElement?this.options.canvas:t.window.document.getElementById(this.options.canvas)),this.width=this.canvas.width,this.height=this.canvas.height,this._hasInvalidDimensions()?this.fire(new t.ErrorEvent(new Error("Canvas dimensions cannot be less than or equal to zero."))):(this.play=function(){this._playing=!0,this.map.triggerRepaint()},this.pause=function(){this._playing&&(this.prepare(),this._playing=!1)},this._finishLoading())},r.prototype.getCanvas=function(){return this.canvas},r.prototype.onAdd=function(t){this.map=t,this.load(),this.canvas&&this.animate&&this.play()},r.prototype.onRemove=function(){this.pause()},r.prototype.prepare=function(){var e=!1;if(this.canvas.width!==this.width&&(this.width=this.canvas.width,e=!0),this.canvas.height!==this.height&&(this.height=this.canvas.height,e=!0),!this._hasInvalidDimensions()&&0!==Object.keys(this.tiles).length){var r=this.map.painter.context,n=r.gl;for(var i in this.boundsBuffer||(this.boundsBuffer=r.createVertexBuffer(this._boundsArray,P.members)),this.boundsSegments||(this.boundsSegments=t.SegmentVector.simpleSegment(0,0,4,2)),this.texture?(e||this._playing)&&this.texture.update(this.canvas,{premultiply:!0}):this.texture=new t.Texture(r,this.canvas,n.RGBA,{premultiply:!0}),this.tiles){var a=this.tiles[i];"loaded"!==a.state&&(a.state="loaded",a.texture=this.texture)}}},r.prototype.serialize=function(){return{type:"canvas",coordinates:this.coordinates}},r.prototype.hasTransition=function(){return this._playing},r.prototype._hasInvalidDimensions=function(){for(var t=0,e=[this.canvas.width,this.canvas.height];tthis.max){var o=this._getAndRemoveByKey(this.order[0]);o&&this.onRemove(o)}return this},N.prototype.has=function(t){return t.wrapped().key in this.data},N.prototype.getAndRemove=function(t){return this.has(t)?this._getAndRemoveByKey(t.wrapped().key):null},N.prototype._getAndRemoveByKey=function(t){var e=this.data[t].shift();return e.timeout&&clearTimeout(e.timeout),0===this.data[t].length&&delete this.data[t],this.order.splice(this.order.indexOf(t),1),e.value},N.prototype.getByKey=function(t){var e=this.data[t];return e?e[0].value:null},N.prototype.get=function(t){return this.has(t)?this.data[t.wrapped().key][0].value:null},N.prototype.remove=function(t,e){if(!this.has(t))return this;var r=t.wrapped().key,n=void 0===e?0:this.data[r].indexOf(e),i=this.data[r][n];return this.data[r].splice(n,1),i.timeout&&clearTimeout(i.timeout),0===this.data[r].length&&delete this.data[r],this.onRemove(i.value),this.order.splice(this.order.indexOf(r),1),this},N.prototype.setMaxSize=function(t){for(this.max=t;this.order.length>this.max;){var e=this._getAndRemoveByKey(this.order[0]);e&&this.onRemove(e)}return this},N.prototype.filter=function(t){var e=[];for(var r in this.data)for(var n=0,i=this.data[r];n1||(Math.abs(r)>1&&(1===Math.abs(r+i)?r+=i:1===Math.abs(r-i)&&(r-=i)),e.dem&&t.dem&&(t.dem.backfillBorder(e.dem,r,n),t.neighboringTiles&&t.neighboringTiles[a]&&(t.neighboringTiles[a].backfilled=!0)))}},r.prototype.getTile=function(t){return this.getTileByID(t.key)},r.prototype.getTileByID=function(t){return this._tiles[t]},r.prototype._retainLoadedChildren=function(t,e,r,n){for(var i in this._tiles){var a=this._tiles[i];if(!(n[i]||!a.hasData()||a.tileID.overscaledZ<=e||a.tileID.overscaledZ>r)){for(var o=a.tileID;a&&a.tileID.overscaledZ>e+1;){var s=a.tileID.scaledTo(a.tileID.overscaledZ-1);(a=this._tiles[s.key])&&a.hasData()&&(o=s)}for(var l=o;l.overscaledZ>e;)if(t[(l=l.scaledTo(l.overscaledZ-1)).key]){n[o.key]=o;break}}}},r.prototype.findLoadedParent=function(t,e){if(t.key in this._loadedParentTiles){var r=this._loadedParentTiles[t.key];return r&&r.tileID.overscaledZ>=e?r:null}for(var n=t.overscaledZ-1;n>=e;n--){var i=t.scaledTo(n),a=this._getLoadedTile(i);if(a)return a}},r.prototype._getLoadedTile=function(t){var e=this._tiles[t.key];return e&&e.hasData()?e:this._cache.getByKey(t.wrapped().key)},r.prototype.updateCacheSize=function(t){var e=(Math.ceil(t.width/this._source.tileSize)+1)*(Math.ceil(t.height/this._source.tileSize)+1),r=Math.floor(5*e),n="number"==typeof this._maxTileCacheSize?Math.min(this._maxTileCacheSize,r):r;this._cache.setMaxSize(n)},r.prototype.handleWrapJump=function(t){var e=(t-(void 0===this._prevLng?t:this._prevLng))/360,r=Math.round(e);if(this._prevLng=t,r){var n={};for(var i in this._tiles){var a=this._tiles[i];a.tileID=a.tileID.unwrapTo(a.tileID.wrap+r),n[a.tileID.key]=a}for(var o in this._tiles=n,this._timers)clearTimeout(this._timers[o]),delete this._timers[o];for(var s in this._tiles){var l=this._tiles[s];this._setTileReloadTimer(s,l)}}},r.prototype.update=function(e){var n=this;if(this.transform=e,this._sourceLoaded&&!this._paused){var i;this.updateCacheSize(e),this.handleWrapJump(this.transform.center.lng),this._coveredTiles={},this.used?this._source.tileID?i=e.getVisibleUnwrappedCoordinates(this._source.tileID).map((function(e){return new t.OverscaledTileID(e.canonical.z,e.wrap,e.canonical.z,e.canonical.x,e.canonical.y)})):(i=e.coveringTiles({tileSize:this._source.tileSize,minzoom:this._source.minzoom,maxzoom:this._source.maxzoom,roundZoom:this._source.roundZoom,reparseOverscaled:this._source.reparseOverscaled}),this._source.hasTile&&(i=i.filter((function(t){return n._source.hasTile(t)})))):i=[];var a=e.coveringZoomLevel(this._source),o=Math.max(a-r.maxOverzooming,this._source.minzoom),s=Math.max(a+r.maxUnderzooming,this._source.minzoom),l=this._updateRetainedTiles(i,a);if(It(this._source.type)){for(var c={},u={},f=0,h=Object.keys(l);fthis._source.maxzoom){var g=d.children(this._source.maxzoom)[0],v=this.getTile(g);if(v&&v.hasData()){n[g.key]=g;continue}}else{var y=d.children(this._source.maxzoom);if(n[y[0].key]&&n[y[1].key]&&n[y[2].key]&&n[y[3].key])continue}for(var x=m.wasRequested(),b=d.overscaledZ-1;b>=a;--b){var _=d.scaledTo(b);if(i[_.key])break;if(i[_.key]=!0,!(m=this.getTile(_))&&x&&(m=this._addTile(_)),m&&(n[_.key]=_,x=m.wasRequested(),m.hasData()))break}}}return n},r.prototype._updateLoadedParentTileCache=function(){for(var t in this._loadedParentTiles={},this._tiles){for(var e=[],r=void 0,n=this._tiles[t].tileID;n.overscaledZ>0;){if(n.key in this._loadedParentTiles){r=this._loadedParentTiles[n.key];break}e.push(n.key);var i=n.scaledTo(n.overscaledZ-1);if(r=this._getLoadedTile(i))break;n=i}for(var a=0,o=e;a0||(e.hasData()&&"reloading"!==e.state?this._cache.add(e.tileID,e,e.getExpiryTimeout()):(e.aborted=!0,this._abortTile(e),this._unloadTile(e))))},r.prototype.clearTiles=function(){for(var t in this._shouldReloadOnResume=!1,this._paused=!1,this._tiles)this._removeTile(t);this._cache.reset()},r.prototype.tilesIn=function(e,r,n){var i=this,a=[],o=this.transform;if(!o)return a;for(var s=n?o.getCameraQueryGeometry(e):e,l=e.map((function(t){return o.pointCoordinate(t)})),c=s.map((function(t){return o.pointCoordinate(t)})),u=this.getIds(),f=1/0,h=1/0,p=-1/0,d=-1/0,m=0,g=c;m=0&&v[1].y+g>=0){var y=l.map((function(t){return s.getTilePoint(t)})),x=c.map((function(t){return s.getTilePoint(t)}));a.push({tile:n,tileID:s,queryGeometry:y,cameraQueryGeometry:x,scale:m})}}},x=0;x=t.browser.now())return!0}return!1},r.prototype.setFeatureState=function(t,e,r){t=t||"_geojsonTileLayer",this._state.updateState(t,e,r)},r.prototype.removeFeatureState=function(t,e,r){t=t||"_geojsonTileLayer",this._state.removeFeatureState(t,e,r)},r.prototype.getFeatureState=function(t,e){return t=t||"_geojsonTileLayer",this._state.getState(t,e)},r.prototype.setDependencies=function(t,e,r){var n=this._tiles[t];n&&n.setDependencies(e,r)},r.prototype.reloadTilesForDependencies=function(t,e){for(var r in this._tiles){this._tiles[r].hasDependency(t,e)&&this._reloadTile(r,"reloading")}this._cache.filter((function(r){return!r.hasDependency(t,e)}))},r}(t.Evented);function Pt(t,e){var r=Math.abs(2*t.wrap)-+(t.wrap<0),n=Math.abs(2*e.wrap)-+(e.wrap<0);return t.overscaledZ-e.overscaledZ||n-r||e.canonical.y-t.canonical.y||e.canonical.x-t.canonical.x}function It(t){return"raster"===t||"image"===t||"video"===t}function Ot(){return new t.window.Worker(Zi.workerUrl)}Ct.maxOverzooming=10,Ct.maxUnderzooming=3;var zt="mapboxgl_preloaded_worker_pool",Dt=function(){this.active={}};Dt.prototype.acquire=function(t){if(!this.workers)for(this.workers=[];this.workers.length0?(i-o)/s:0;return this.points[a].mult(1-l).add(this.points[r].mult(l))};var Kt=function(t,e,r){var n=this.boxCells=[],i=this.circleCells=[];this.xCellCount=Math.ceil(t/r),this.yCellCount=Math.ceil(e/r);for(var a=0;a=-e[0]&&r<=e[0]&&n>=-e[1]&&n<=e[1]}function ne(e,r,n,i,a,o,s,l){var c=i?e.textSizeData:e.iconSizeData,u=t.evaluateSizeForZoom(c,n.transform.zoom),f=[256/n.width*2+1,256/n.height*2+1],h=i?e.text.dynamicLayoutVertexArray:e.icon.dynamicLayoutVertexArray;h.clear();for(var p=e.lineVertexArray,d=i?e.text.placedSymbolArray:e.icon.placedSymbolArray,m=n.transform.width/n.transform.height,g=!1,v=0;vMath.abs(n.x-r.x)*i)return{useVertical:!0};return(e===t.WritingMode.vertical?r.yn.x)?{needsFlipping:!0}:null}function oe(e,r,n,i,a,o,s,l,c,u,f,h,p,d){var m,g=r/24,v=e.lineOffsetX*g,y=e.lineOffsetY*g;if(e.numGlyphs>1){var x=e.glyphStartIndex+e.numGlyphs,b=e.lineStartIndex,_=e.lineStartIndex+e.lineLength,w=ie(g,l,v,y,n,f,h,e,c,o,p);if(!w)return{notEnoughRoom:!0};var T=te(w.first.point,s).point,k=te(w.last.point,s).point;if(i&&!n){var A=ae(e.writingMode,T,k,d);if(A)return A}m=[w.first];for(var M=e.glyphStartIndex+1;M0?C.point:se(h,L,S,1,a),I=ae(e.writingMode,S,P,d);if(I)return I}var O=le(g*l.getoffsetX(e.glyphStartIndex),v,y,n,f,h,e.segment,e.lineStartIndex,e.lineStartIndex+e.lineLength,c,o,p);if(!O)return{notEnoughRoom:!0};m=[O]}for(var z=0,D=m;z0?1:-1,m=0;i&&(d*=-1,m=Math.PI),d<0&&(m+=Math.PI);for(var g=d>0?l+s:l+s+1,v=a,y=a,x=0,b=0,_=Math.abs(p),w=[];x+b<=_;){if((g+=d)=c)return null;if(y=v,w.push(v),void 0===(v=h[g])){var T=new t.Point(u.getx(g),u.gety(g)),k=te(T,f);if(k.signedDistanceFromCamera>0)v=h[g]=k.point;else{var A=g-d;v=se(0===x?o:new t.Point(u.getx(A),u.gety(A)),T,y,_-x+1,f)}}x+=b,b=y.dist(v)}var M=(_-x)/b,S=v.sub(y),E=S.mult(M)._add(y);E._add(S._unit()._perp()._mult(n*d));var L=m+Math.atan2(v.y-y.y,v.x-y.x);return w.push(E),{point:E,angle:L,path:w}}Kt.prototype.keysLength=function(){return this.boxKeys.length+this.circleKeys.length},Kt.prototype.insert=function(t,e,r,n,i){this._forEachCell(e,r,n,i,this._insertBoxCell,this.boxUid++),this.boxKeys.push(t),this.bboxes.push(e),this.bboxes.push(r),this.bboxes.push(n),this.bboxes.push(i)},Kt.prototype.insertCircle=function(t,e,r,n){this._forEachCell(e-n,r-n,e+n,r+n,this._insertCircleCell,this.circleUid++),this.circleKeys.push(t),this.circles.push(e),this.circles.push(r),this.circles.push(n)},Kt.prototype._insertBoxCell=function(t,e,r,n,i,a){this.boxCells[i].push(a)},Kt.prototype._insertCircleCell=function(t,e,r,n,i,a){this.circleCells[i].push(a)},Kt.prototype._query=function(t,e,r,n,i,a){if(r<0||t>this.width||n<0||e>this.height)return!i&&[];var o=[];if(t<=0&&e<=0&&this.width<=r&&this.height<=n){if(i)return!0;for(var s=0;s0:o},Kt.prototype._queryCircle=function(t,e,r,n,i){var a=t-r,o=t+r,s=e-r,l=e+r;if(o<0||a>this.width||l<0||s>this.height)return!n&&[];var c=[],u={hitTest:n,circle:{x:t,y:e,radius:r},seenUids:{box:{},circle:{}}};return this._forEachCell(a,s,o,l,this._queryCellCircle,c,u,i),n?c.length>0:c},Kt.prototype.query=function(t,e,r,n,i){return this._query(t,e,r,n,!1,i)},Kt.prototype.hitTest=function(t,e,r,n,i){return this._query(t,e,r,n,!0,i)},Kt.prototype.hitTestCircle=function(t,e,r,n){return this._queryCircle(t,e,r,!0,n)},Kt.prototype._queryCell=function(t,e,r,n,i,a,o,s){var l=o.seenUids,c=this.boxCells[i];if(null!==c)for(var u=this.bboxes,f=0,h=c;f=u[d+0]&&n>=u[d+1]&&(!s||s(this.boxKeys[p]))){if(o.hitTest)return a.push(!0),!0;a.push({key:this.boxKeys[p],x1:u[d],y1:u[d+1],x2:u[d+2],y2:u[d+3]})}}}var m=this.circleCells[i];if(null!==m)for(var g=this.circles,v=0,y=m;vo*o+s*s},Kt.prototype._circleAndRectCollide=function(t,e,r,n,i,a,o){var s=(a-n)/2,l=Math.abs(t-(n+s));if(l>s+r)return!1;var c=(o-i)/2,u=Math.abs(e-(i+c));if(u>c+r)return!1;if(l<=s||u<=c)return!0;var f=l-s,h=u-c;return f*f+h*h<=r*r};var ce=new Float32Array([-1/0,-1/0,0,-1/0,-1/0,0,-1/0,-1/0,0,-1/0,-1/0,0]);function ue(t,e){for(var r=0;r=1;P--)C.push(E.path[P]);for(var I=1;I0){for(var R=C[0].clone(),F=C[0].clone(),B=1;B=A.x&&F.x<=M.x&&R.y>=A.y&&F.y<=M.y?[C]:F.xM.x||F.yM.y?[]:t.clipLine([C],A.x,A.y,M.x,M.y)}for(var N=0,j=D;N=this.screenRightBoundary||n<100||e>this.screenBottomBoundary},he.prototype.isInsideGrid=function(t,e,r,n){return r>=0&&t=0&&e0)return this.prevPlacement&&this.prevPlacement.variableOffsets[f.crossTileID]&&this.prevPlacement.placements[f.crossTileID]&&this.prevPlacement.placements[f.crossTileID].text&&(m=this.prevPlacement.variableOffsets[f.crossTileID].anchor),this.variableOffsets[f.crossTileID]={textOffset:g,width:r,height:n,anchor:t,textBoxScale:i,prevAnchor:m},this.markUsedJustification(h,t,f,p),h.allowVerticalPlacement&&(this.markUsedOrientation(h,p,f),this.placedOrientations[f.crossTileID]=p),{shift:v,placedGlyphBoxes:y}},we.prototype.placeLayerBucketPart=function(e,r,n){var i=this,a=e.parameters,o=a.bucket,s=a.layout,l=a.posMatrix,c=a.textLabelPlaneMatrix,u=a.labelToScreenMatrix,f=a.textPixelRatio,h=a.holdingForFade,p=a.collisionBoxArray,d=a.partiallyEvaluatedTextSize,m=a.collisionGroup,g=s.get("text-optional"),v=s.get("icon-optional"),y=s.get("text-allow-overlap"),x=s.get("icon-allow-overlap"),b="map"===s.get("text-rotation-alignment"),_="map"===s.get("text-pitch-alignment"),w="none"!==s.get("icon-text-fit"),T="viewport-y"===s.get("symbol-z-order"),k=y&&(x||!o.hasIconData()||v),A=x&&(y||!o.hasTextData()||g);!o.collisionArrays&&p&&o.deserializeCollisionBoxes(p);var M=function(e,a){if(!r[e.crossTileID])if(h)i.placements[e.crossTileID]=new ge(!1,!1,!1);else{var p,T=!1,M=!1,S=!0,E=null,L={box:null,offscreen:null},C={box:null,offscreen:null},P=null,I=null,O=0,z=0,D=0;a.textFeatureIndex?O=a.textFeatureIndex:e.useRuntimeCollisionCircles&&(O=e.featureIndex),a.verticalTextFeatureIndex&&(z=a.verticalTextFeatureIndex);var R=a.textBox;if(R){var F=function(r){var n=t.WritingMode.horizontal;if(o.allowVerticalPlacement&&!r&&i.prevPlacement){var a=i.prevPlacement.placedOrientations[e.crossTileID];a&&(i.placedOrientations[e.crossTileID]=a,n=a,i.markUsedOrientation(o,n,e))}return n},B=function(r,n){if(o.allowVerticalPlacement&&e.numVerticalGlyphVertices>0&&a.verticalTextBox)for(var i=0,s=o.writingModes;i0&&(N=N.filter((function(t){return t!==j.anchor}))).unshift(j.anchor)}var U=function(t,r,n){for(var a=t.x2-t.x1,s=t.y2-t.y1,c=e.textBoxScale,u=w&&!x?r:null,h={box:[],offscreen:!1},p=y?2*N.length:N.length,d=0;d=N.length,k=i.attemptAnchorPlacement(g,t,a,s,c,b,_,f,l,m,v,e,o,n,u);if(k&&(h=k.placedGlyphBoxes)&&h.box&&h.box.length){T=!0,E=k.shift;break}}return h};B((function(){return U(R,a.iconBox,t.WritingMode.horizontal)}),(function(){var r=a.verticalTextBox,n=L&&L.box&&L.box.length;return o.allowVerticalPlacement&&!n&&e.numVerticalGlyphVertices>0&&r?U(r,a.verticalIconBox,t.WritingMode.vertical):{box:null,offscreen:null}})),L&&(T=L.box,S=L.offscreen);var V=F(L&&L.box);if(!T&&i.prevPlacement){var H=i.prevPlacement.variableOffsets[e.crossTileID];H&&(i.variableOffsets[e.crossTileID]=H,i.markUsedJustification(o,H.anchor,e,V))}}else{var q=function(t,r){var n=i.collisionIndex.placeCollisionBox(t,y,f,l,m.predicate);return n&&n.box&&n.box.length&&(i.markUsedOrientation(o,r,e),i.placedOrientations[e.crossTileID]=r),n};B((function(){return q(R,t.WritingMode.horizontal)}),(function(){var r=a.verticalTextBox;return o.allowVerticalPlacement&&e.numVerticalGlyphVertices>0&&r?q(r,t.WritingMode.vertical):{box:null,offscreen:null}})),F(L&&L.box&&L.box.length)}}if(T=(p=L)&&p.box&&p.box.length>0,S=p&&p.offscreen,e.useRuntimeCollisionCircles){var G=o.text.placedSymbolArray.get(e.centerJustifiedTextSymbolIndex),Y=t.evaluateSizeForFeature(o.textSizeData,d,G),W=s.get("text-padding"),X=e.collisionCircleDiameter;P=i.collisionIndex.placeCollisionCircles(y,G,o.lineVertexArray,o.glyphOffsetArray,Y,l,c,u,n,_,m.predicate,X,W),T=y||P.circles.length>0&&!P.collisionDetected,S=S&&P.offscreen}if(a.iconFeatureIndex&&(D=a.iconFeatureIndex),a.iconBox){var Z=function(t){var e=w&&E?_e(t,E.x,E.y,b,_,i.transform.angle):t;return i.collisionIndex.placeCollisionBox(e,x,f,l,m.predicate)};M=C&&C.box&&C.box.length&&a.verticalIconBox?(I=Z(a.verticalIconBox)).box.length>0:(I=Z(a.iconBox)).box.length>0,S=S&&I.offscreen}var J=g||0===e.numHorizontalGlyphVertices&&0===e.numVerticalGlyphVertices,K=v||0===e.numIconVertices;if(J||K?K?J||(M=M&&T):T=M&&T:M=T=M&&T,T&&p&&p.box&&(C&&C.box&&z?i.collisionIndex.insertCollisionBox(p.box,s.get("text-ignore-placement"),o.bucketInstanceId,z,m.ID):i.collisionIndex.insertCollisionBox(p.box,s.get("text-ignore-placement"),o.bucketInstanceId,O,m.ID)),M&&I&&i.collisionIndex.insertCollisionBox(I.box,s.get("icon-ignore-placement"),o.bucketInstanceId,D,m.ID),P&&(T&&i.collisionIndex.insertCollisionCircles(P.circles,s.get("text-ignore-placement"),o.bucketInstanceId,O,m.ID),n)){var Q=o.bucketInstanceId,$=i.collisionCircleArrays[Q];void 0===$&&($=i.collisionCircleArrays[Q]=new ve);for(var tt=0;tt=0;--E){var L=S[E];M(o.symbolInstances.get(L),o.collisionArrays[L])}else for(var C=e.symbolInstanceStart;C=0&&(e.text.placedSymbolArray.get(c).crossTileID=a>=0&&c!==a?0:n.crossTileID)}},we.prototype.markUsedOrientation=function(e,r,n){for(var i=r===t.WritingMode.horizontal||r===t.WritingMode.horizontalOnly?r:0,a=r===t.WritingMode.vertical?r:0,o=0,s=[n.leftJustifiedTextSymbolIndex,n.centerJustifiedTextSymbolIndex,n.rightJustifiedTextSymbolIndex];o0||l>0,x=a.numIconVertices>0,b=i.placedOrientations[a.crossTileID],_=b===t.WritingMode.vertical,w=b===t.WritingMode.horizontal||b===t.WritingMode.horizontalOnly;if(y){var T=Pe(v.text),k=_?Ie:T;d(e.text,s,k);var A=w?Ie:T;d(e.text,l,A);var M=v.text.isHidden();[a.rightJustifiedTextSymbolIndex,a.centerJustifiedTextSymbolIndex,a.leftJustifiedTextSymbolIndex].forEach((function(t){t>=0&&(e.text.placedSymbolArray.get(t).hidden=M||_?1:0)})),a.verticalPlacedTextSymbolIndex>=0&&(e.text.placedSymbolArray.get(a.verticalPlacedTextSymbolIndex).hidden=M||w?1:0);var S=i.variableOffsets[a.crossTileID];S&&i.markUsedJustification(e,S.anchor,a,b);var E=i.placedOrientations[a.crossTileID];E&&(i.markUsedJustification(e,"left",a,E),i.markUsedOrientation(e,E,a))}if(x){var L=Pe(v.icon),C=!(h&&a.verticalPlacedIconSymbolIndex&&_);if(a.placedIconSymbolIndex>=0){var P=C?L:Ie;d(e.icon,a.numIconVertices,P),e.icon.placedSymbolArray.get(a.placedIconSymbolIndex).hidden=v.icon.isHidden()}if(a.verticalPlacedIconSymbolIndex>=0){var I=C?Ie:L;d(e.icon,a.numVerticalIconVertices,I),e.icon.placedSymbolArray.get(a.verticalPlacedIconSymbolIndex).hidden=v.icon.isHidden()}}if(e.hasIconCollisionBoxData()||e.hasTextCollisionBoxData()){var O=e.collisionArrays[n];if(O){var z=new t.Point(0,0);if(O.textBox||O.verticalTextBox){var D=!0;if(c){var R=i.variableOffsets[m];R?(z=be(R.anchor,R.width,R.height,R.textOffset,R.textBoxScale),u&&z._rotate(f?i.transform.angle:-i.transform.angle)):D=!1}O.textBox&&Te(e.textCollisionBox.collisionVertexArray,v.text.placed,!D||_,z.x,z.y),O.verticalTextBox&&Te(e.textCollisionBox.collisionVertexArray,v.text.placed,!D||w,z.x,z.y)}var F=Boolean(!w&&O.verticalIconBox);O.iconBox&&Te(e.iconCollisionBox.collisionVertexArray,v.icon.placed,F,h?z.x:0,h?z.y:0),O.verticalIconBox&&Te(e.iconCollisionBox.collisionVertexArray,v.icon.placed,!F,h?z.x:0,h?z.y:0)}}},g=0;gt},we.prototype.setStale=function(){this.stale=!0};var ke=Math.pow(2,25),Ae=Math.pow(2,24),Me=Math.pow(2,17),Se=Math.pow(2,16),Ee=Math.pow(2,9),Le=Math.pow(2,8),Ce=Math.pow(2,1);function Pe(t){if(0===t.opacity&&!t.placed)return 0;if(1===t.opacity&&t.placed)return 4294967295;var e=t.placed?1:0,r=Math.floor(127*t.opacity);return r*ke+e*Ae+r*Me+e*Se+r*Ee+e*Le+r*Ce+e}var Ie=0,Oe=function(t){this._sortAcrossTiles="viewport-y"!==t.layout.get("symbol-z-order")&&void 0!==t.layout.get("symbol-sort-key").constantOr(1),this._currentTileIndex=0,this._currentPartIndex=0,this._seenCrossTileIDs={},this._bucketParts=[]};Oe.prototype.continuePlacement=function(t,e,r,n,i){for(var a=this._bucketParts;this._currentTileIndex2};this._currentPlacementIndex>=0;){var s=r[e[this._currentPlacementIndex]],l=this.placement.collisionIndex.transform.zoom;if("symbol"===s.type&&(!s.minzoom||s.minzoom<=l)&&(!s.maxzoom||s.maxzoom>l)){if(this._inProgressLayer||(this._inProgressLayer=new Oe(s)),this._inProgressLayer.continuePlacement(n[s.source],this.placement,this._showCollisionBoxes,s,o))return;delete this._inProgressLayer}this._currentPlacementIndex--}this._done=!0},ze.prototype.commit=function(t){return this.placement.commit(t),this.placement};var De=512/t.EXTENT/2,Re=function(t,e,r){this.tileID=t,this.indexedSymbolInstances={},this.bucketInstanceId=r;for(var n=0;nt.overscaledZ)for(var s in o){var l=o[s];l.tileID.isChildOf(t)&&l.findMatches(e.symbolInstances,t,i)}else{var c=o[t.scaledTo(Number(a)).key];c&&c.findMatches(e.symbolInstances,t,i)}}for(var u=0;u1?"@2x":"",l=t.getJSON(r.transformRequest(r.normalizeSpriteURL(e,s,".json"),t.ResourceType.SpriteJSON),(function(t,e){l=null,o||(o=t,i=e,u())})),c=t.getImage(r.transformRequest(r.normalizeSpriteURL(e,s,".png"),t.ResourceType.SpriteImage),(function(t,e){c=null,o||(o=t,a=e,u())}));function u(){if(o)n(o);else if(i&&a){var e=t.browser.getImageData(a),r={};for(var s in i){var l=i[s],c=l.width,u=l.height,f=l.x,h=l.y,p=l.sdf,d=l.pixelRatio,m=l.stretchX,g=l.stretchY,v=l.content,y=new t.RGBAImage({width:c,height:u});t.RGBAImage.copy(e,y,{x:f,y:h},{x:0,y:0},{width:c,height:u}),r[s]={data:y,pixelRatio:d,sdf:p,stretchX:m,stretchY:g,content:v}}n(null,r)}}return{cancel:function(){l&&(l.cancel(),l=null),c&&(c.cancel(),c=null)}}}(e,this.map._requestManager,(function(e,n){if(r._spriteRequest=null,e)r.fire(new t.ErrorEvent(e));else if(n)for(var i in n)r.imageManager.addImage(i,n[i]);r.imageManager.setLoaded(!0),r._availableImages=r.imageManager.listImages(),r.dispatcher.broadcast("setImages",r._availableImages),r.fire(new t.Event("data",{dataType:"style"}))}))},r.prototype._validateLayer=function(e){var r=this.sourceCaches[e.source];if(r){var n=e.sourceLayer;if(n){var i=r.getSource();("geojson"===i.type||i.vectorLayerIds&&-1===i.vectorLayerIds.indexOf(n))&&this.fire(new t.ErrorEvent(new Error('Source layer "'+n+'" does not exist on source "'+i.id+'" as specified by style layer "'+e.id+'"')))}}},r.prototype.loaded=function(){if(!this._loaded)return!1;if(Object.keys(this._updatedSources).length)return!1;for(var t in this.sourceCaches)if(!this.sourceCaches[t].loaded())return!1;return!!this.imageManager.isLoaded()},r.prototype._serializeLayers=function(t){for(var e=[],r=0,n=t;r0)throw new Error("Unimplemented: "+i.map((function(t){return t.command})).join(", ")+".");return n.forEach((function(t){"setTransition"!==t.command&&r[t.command].apply(r,t.args)})),this.stylesheet=e,!0},r.prototype.addImage=function(e,r){if(this.getImage(e))return this.fire(new t.ErrorEvent(new Error("An image with this name already exists.")));this.imageManager.addImage(e,r),this._availableImages=this.imageManager.listImages(),this._changedImages[e]=!0,this._changed=!0,this.fire(new t.Event("data",{dataType:"style"}))},r.prototype.updateImage=function(t,e){this.imageManager.updateImage(t,e)},r.prototype.getImage=function(t){return this.imageManager.getImage(t)},r.prototype.removeImage=function(e){if(!this.getImage(e))return this.fire(new t.ErrorEvent(new Error("No image with this name exists.")));this.imageManager.removeImage(e),this._availableImages=this.imageManager.listImages(),this._changedImages[e]=!0,this._changed=!0,this.fire(new t.Event("data",{dataType:"style"}))},r.prototype.listImages=function(){return this._checkLoaded(),this.imageManager.listImages()},r.prototype.addSource=function(e,r,n){var i=this;if(void 0===n&&(n={}),this._checkLoaded(),void 0!==this.sourceCaches[e])throw new Error("There is already a source with this ID");if(!r.type)throw new Error("The type property must be defined, but the only the following properties were given: "+Object.keys(r).join(", ")+".");if(!(["vector","raster","geojson","video","image"].indexOf(r.type)>=0)||!this._validate(t.validateStyle.source,"sources."+e,r,null,n)){this.map&&this.map._collectResourceTiming&&(r.collectResourceTiming=!0);var a=this.sourceCaches[e]=new Ct(e,r,this.dispatcher);a.style=this,a.setEventedParent(this,(function(){return{isSourceLoaded:i.loaded(),source:a.serialize(),sourceId:e}})),a.onAdd(this.map),this._changed=!0}},r.prototype.removeSource=function(e){if(this._checkLoaded(),void 0===this.sourceCaches[e])throw new Error("There is no source with this ID");for(var r in this._layers)if(this._layers[r].source===e)return this.fire(new t.ErrorEvent(new Error('Source "'+e+'" cannot be removed while layer "'+r+'" is using it.')));var n=this.sourceCaches[e];delete this.sourceCaches[e],delete this._updatedSources[e],n.fire(new t.Event("data",{sourceDataType:"metadata",dataType:"source",sourceId:e})),n.setEventedParent(null),n.clearTiles(),n.onRemove&&n.onRemove(this.map),this._changed=!0},r.prototype.setGeoJSONSourceData=function(t,e){this._checkLoaded(),this.sourceCaches[t].getSource().setData(e),this._changed=!0},r.prototype.getSource=function(t){return this.sourceCaches[t]&&this.sourceCaches[t].getSource()},r.prototype.addLayer=function(e,r,n){void 0===n&&(n={}),this._checkLoaded();var i=e.id;if(this.getLayer(i))this.fire(new t.ErrorEvent(new Error('Layer with id "'+i+'" already exists on this map')));else{var a;if("custom"===e.type){if(je(this,t.validateCustomStyleLayer(e)))return;a=t.createStyleLayer(e)}else{if("object"==typeof e.source&&(this.addSource(i,e.source),e=t.clone$1(e),e=t.extend(e,{source:i})),this._validate(t.validateStyle.layer,"layers."+i,e,{arrayIndex:-1},n))return;a=t.createStyleLayer(e),this._validateLayer(a),a.setEventedParent(this,{layer:{id:i}}),this._serializedLayers[a.id]=a.serialize()}var o=r?this._order.indexOf(r):this._order.length;if(r&&-1===o)this.fire(new t.ErrorEvent(new Error('Layer with id "'+r+'" does not exist on this map.')));else{if(this._order.splice(o,0,i),this._layerOrderChanged=!0,this._layers[i]=a,this._removedLayers[i]&&a.source&&"custom"!==a.type){var s=this._removedLayers[i];delete this._removedLayers[i],s.type!==a.type?this._updatedSources[a.source]="clear":(this._updatedSources[a.source]="reload",this.sourceCaches[a.source].pause())}this._updateLayer(a),a.onAdd&&a.onAdd(this.map)}}},r.prototype.moveLayer=function(e,r){if(this._checkLoaded(),this._changed=!0,this._layers[e]){if(e!==r){var n=this._order.indexOf(e);this._order.splice(n,1);var i=r?this._order.indexOf(r):this._order.length;r&&-1===i?this.fire(new t.ErrorEvent(new Error('Layer with id "'+r+'" does not exist on this map.'))):(this._order.splice(i,0,e),this._layerOrderChanged=!0)}}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be moved.")))},r.prototype.removeLayer=function(e){this._checkLoaded();var r=this._layers[e];if(r){r.setEventedParent(null);var n=this._order.indexOf(e);this._order.splice(n,1),this._layerOrderChanged=!0,this._changed=!0,this._removedLayers[e]=r,delete this._layers[e],delete this._serializedLayers[e],delete this._updatedLayers[e],delete this._updatedPaintProps[e],r.onRemove&&r.onRemove(this.map)}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be removed.")))},r.prototype.getLayer=function(t){return this._layers[t]},r.prototype.hasLayer=function(t){return t in this._layers},r.prototype.setLayerZoomRange=function(e,r,n){this._checkLoaded();var i=this.getLayer(e);i?i.minzoom===r&&i.maxzoom===n||(null!=r&&(i.minzoom=r),null!=n&&(i.maxzoom=n),this._updateLayer(i)):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot have zoom extent.")))},r.prototype.setFilter=function(e,r,n){void 0===n&&(n={}),this._checkLoaded();var i=this.getLayer(e);if(i){if(!t.deepEqual(i.filter,r))return null==r?(i.filter=void 0,void this._updateLayer(i)):void(this._validate(t.validateStyle.filter,"layers."+i.id+".filter",r,null,n)||(i.filter=t.clone$1(r),this._updateLayer(i)))}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be filtered.")))},r.prototype.getFilter=function(e){return t.clone$1(this.getLayer(e).filter)},r.prototype.setLayoutProperty=function(e,r,n,i){void 0===i&&(i={}),this._checkLoaded();var a=this.getLayer(e);a?t.deepEqual(a.getLayoutProperty(r),n)||(a.setLayoutProperty(r,n,i),this._updateLayer(a)):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be styled.")))},r.prototype.getLayoutProperty=function(e,r){var n=this.getLayer(e);if(n)return n.getLayoutProperty(r);this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style.")))},r.prototype.setPaintProperty=function(e,r,n,i){void 0===i&&(i={}),this._checkLoaded();var a=this.getLayer(e);a?t.deepEqual(a.getPaintProperty(r),n)||(a.setPaintProperty(r,n,i)&&this._updateLayer(a),this._changed=!0,this._updatedPaintProps[e]=!0):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be styled.")))},r.prototype.getPaintProperty=function(t,e){return this.getLayer(t).getPaintProperty(e)},r.prototype.setFeatureState=function(e,r){this._checkLoaded();var n=e.source,i=e.sourceLayer,a=this.sourceCaches[n];if(void 0!==a){var o=a.getSource().type;"geojson"===o&&i?this.fire(new t.ErrorEvent(new Error("GeoJSON sources cannot have a sourceLayer parameter."))):"vector"!==o||i?(void 0===e.id&&this.fire(new t.ErrorEvent(new Error("The feature id parameter must be provided."))),a.setFeatureState(i,e.id,r)):this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+n+"' does not exist in the map's style.")))},r.prototype.removeFeatureState=function(e,r){this._checkLoaded();var n=e.source,i=this.sourceCaches[n];if(void 0!==i){var a=i.getSource().type,o="vector"===a?e.sourceLayer:void 0;"vector"!==a||o?r&&"string"!=typeof e.id&&"number"!=typeof e.id?this.fire(new t.ErrorEvent(new Error("A feature id is requred to remove its specific state property."))):i.removeFeatureState(o,e.id,r):this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+n+"' does not exist in the map's style.")))},r.prototype.getFeatureState=function(e){this._checkLoaded();var r=e.source,n=e.sourceLayer,i=this.sourceCaches[r];if(void 0!==i){if("vector"!==i.getSource().type||n)return void 0===e.id&&this.fire(new t.ErrorEvent(new Error("The feature id parameter must be provided."))),i.getFeatureState(n,e.id);this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+r+"' does not exist in the map's style.")))},r.prototype.getTransition=function(){return t.extend({duration:300,delay:0},this.stylesheet&&this.stylesheet.transition)},r.prototype.serialize=function(){return t.filterObject({version:this.stylesheet.version,name:this.stylesheet.name,metadata:this.stylesheet.metadata,light:this.stylesheet.light,center:this.stylesheet.center,zoom:this.stylesheet.zoom,bearing:this.stylesheet.bearing,pitch:this.stylesheet.pitch,sprite:this.stylesheet.sprite,glyphs:this.stylesheet.glyphs,transition:this.stylesheet.transition,sources:t.mapObject(this.sourceCaches,(function(t){return t.serialize()})),layers:this._serializeLayers(this._order)},(function(t){return void 0!==t}))},r.prototype._updateLayer=function(t){this._updatedLayers[t.id]=!0,t.source&&!this._updatedSources[t.source]&&"raster"!==this.sourceCaches[t.source].getSource().type&&(this._updatedSources[t.source]="reload",this.sourceCaches[t.source].pause()),this._changed=!0},r.prototype._flattenAndSortRenderedFeatures=function(t){for(var e=this,r=function(t){return"fill-extrusion"===e._layers[t].type},n={},i=[],a=this._order.length-1;a>=0;a--){var o=this._order[a];if(r(o)){n[o]=a;for(var s=0,l=t;s=0;d--){var m=this._order[d];if(r(m))for(var g=i.length-1;g>=0;g--){var v=i[g].feature;if(n[v.layer.id] 0.5) {gl_FragColor=vec4(0.0,0.0,1.0,0.5)*alpha;}if (v_notUsed > 0.5) {gl_FragColor*=.1;}}","attribute vec2 a_pos;attribute vec2 a_anchor_pos;attribute vec2 a_extrude;attribute vec2 a_placed;attribute vec2 a_shift;uniform mat4 u_matrix;uniform vec2 u_extrude_scale;uniform float u_camera_to_center_distance;varying float v_placed;varying float v_notUsed;void main() {vec4 projectedPoint=u_matrix*vec4(a_anchor_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float collision_perspective_ratio=clamp(0.5+0.5*(u_camera_to_center_distance/camera_to_anchor_distance),0.0,4.0);gl_Position=u_matrix*vec4(a_pos,0.0,1.0);gl_Position.xy+=(a_extrude+a_shift)*u_extrude_scale*gl_Position.w*collision_perspective_ratio;v_placed=a_placed.x;v_notUsed=a_placed.y;}"),tr=yr("varying float v_radius;varying vec2 v_extrude;varying float v_perspective_ratio;varying float v_collision;void main() {float alpha=0.5*min(v_perspective_ratio,1.0);float stroke_radius=0.9*max(v_perspective_ratio,1.0);float distance_to_center=length(v_extrude);float distance_to_edge=abs(distance_to_center-v_radius);float opacity_t=smoothstep(-stroke_radius,0.0,-distance_to_edge);vec4 color=mix(vec4(0.0,0.0,1.0,0.5),vec4(1.0,0.0,0.0,1.0),v_collision);gl_FragColor=color*alpha*opacity_t;}","attribute vec2 a_pos;attribute float a_radius;attribute vec2 a_flags;uniform mat4 u_matrix;uniform mat4 u_inv_matrix;uniform vec2 u_viewport_size;uniform float u_camera_to_center_distance;varying float v_radius;varying vec2 v_extrude;varying float v_perspective_ratio;varying float v_collision;vec3 toTilePosition(vec2 screenPos) {vec4 rayStart=u_inv_matrix*vec4(screenPos,-1.0,1.0);vec4 rayEnd =u_inv_matrix*vec4(screenPos, 1.0,1.0);rayStart.xyz/=rayStart.w;rayEnd.xyz /=rayEnd.w;highp float t=(0.0-rayStart.z)/(rayEnd.z-rayStart.z);return mix(rayStart.xyz,rayEnd.xyz,t);}void main() {vec2 quadCenterPos=a_pos;float radius=a_radius;float collision=a_flags.x;float vertexIdx=a_flags.y;vec2 quadVertexOffset=vec2(mix(-1.0,1.0,float(vertexIdx >=2.0)),mix(-1.0,1.0,float(vertexIdx >=1.0 && vertexIdx <=2.0)));vec2 quadVertexExtent=quadVertexOffset*radius;vec3 tilePos=toTilePosition(quadCenterPos);vec4 clipPos=u_matrix*vec4(tilePos,1.0);highp float camera_to_anchor_distance=clipPos.w;highp float collision_perspective_ratio=clamp(0.5+0.5*(u_camera_to_center_distance/camera_to_anchor_distance),0.0,4.0);float padding_factor=1.2;v_radius=radius;v_extrude=quadVertexExtent*padding_factor;v_perspective_ratio=collision_perspective_ratio;v_collision=collision;gl_Position=vec4(clipPos.xyz/clipPos.w,1.0)+vec4(quadVertexExtent*padding_factor/u_viewport_size*2.0,0.0,0.0);}"),er=yr("uniform highp vec4 u_color;uniform sampler2D u_overlay;varying vec2 v_uv;void main() {vec4 overlay_color=texture2D(u_overlay,v_uv);gl_FragColor=mix(u_color,overlay_color,overlay_color.a);}","attribute vec2 a_pos;varying vec2 v_uv;uniform mat4 u_matrix;uniform float u_overlay_scale;void main() {v_uv=a_pos/8192.0;gl_Position=u_matrix*vec4(a_pos*u_overlay_scale,0,1);}"),rr=yr("#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float opacity\ngl_FragColor=color*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","attribute vec2 a_pos;uniform mat4 u_matrix;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float opacity\ngl_Position=u_matrix*vec4(a_pos,0,1);}"),nr=yr("varying vec2 v_pos;\n#pragma mapbox: define highp vec4 outline_color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 outline_color\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_pos-gl_FragCoord.xy);float alpha=1.0-smoothstep(0.0,1.0,dist);gl_FragColor=outline_color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","attribute vec2 a_pos;uniform mat4 u_matrix;uniform vec2 u_world;varying vec2 v_pos;\n#pragma mapbox: define highp vec4 outline_color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 outline_color\n#pragma mapbox: initialize lowp float opacity\ngl_Position=u_matrix*vec4(a_pos,0,1);v_pos=(gl_Position.xy/gl_Position.w+1.0)/2.0*u_world;}"),ir=yr("uniform vec2 u_texsize;uniform sampler2D u_image;uniform float u_fade;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec2 v_pos;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);float dist=length(v_pos-gl_FragCoord.xy);float alpha=1.0-smoothstep(0.0,1.0,dist);gl_FragColor=mix(color1,color2,u_fade)*alpha*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_world;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform vec3 u_scale;attribute vec2 a_pos;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec2 v_pos;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;gl_Position=u_matrix*vec4(a_pos,0,1);vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileRatio,a_pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileRatio,a_pos);v_pos=(gl_Position.xy/gl_Position.w+1.0)/2.0*u_world;}"),ar=yr("uniform vec2 u_texsize;uniform float u_fade;uniform sampler2D u_image;varying vec2 v_pos_a;varying vec2 v_pos_b;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);gl_FragColor=mix(color1,color2,u_fade)*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform vec3 u_scale;attribute vec2 a_pos;varying vec2 v_pos_a;varying vec2 v_pos_b;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileZoomRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;gl_Position=u_matrix*vec4(a_pos,0,1);v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileZoomRatio,a_pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileZoomRatio,a_pos);}"),or=yr("varying vec4 v_color;void main() {gl_FragColor=v_color;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec3 u_lightcolor;uniform lowp vec3 u_lightpos;uniform lowp float u_lightintensity;uniform float u_vertical_gradient;uniform lowp float u_opacity;attribute vec2 a_pos;attribute vec4 a_normal_ed;varying vec4 v_color;\n#pragma mapbox: define highp float base\n#pragma mapbox: define highp float height\n#pragma mapbox: define highp vec4 color\nvoid main() {\n#pragma mapbox: initialize highp float base\n#pragma mapbox: initialize highp float height\n#pragma mapbox: initialize highp vec4 color\nvec3 normal=a_normal_ed.xyz;base=max(0.0,base);height=max(0.0,height);float t=mod(normal.x,2.0);gl_Position=u_matrix*vec4(a_pos,t > 0.0 ? height : base,1);float colorvalue=color.r*0.2126+color.g*0.7152+color.b*0.0722;v_color=vec4(0.0,0.0,0.0,1.0);vec4 ambientlight=vec4(0.03,0.03,0.03,1.0);color+=ambientlight;float directional=clamp(dot(normal/16384.0,u_lightpos),0.0,1.0);directional=mix((1.0-u_lightintensity),max((1.0-colorvalue+u_lightintensity),1.0),directional);if (normal.y !=0.0) {directional*=((1.0-u_vertical_gradient)+(u_vertical_gradient*clamp((t+base)*pow(height/150.0,0.5),mix(0.7,0.98,1.0-u_lightintensity),1.0)));}v_color.r+=clamp(color.r*directional*u_lightcolor.r,mix(0.0,0.3,1.0-u_lightcolor.r),1.0);v_color.g+=clamp(color.g*directional*u_lightcolor.g,mix(0.0,0.3,1.0-u_lightcolor.g),1.0);v_color.b+=clamp(color.b*directional*u_lightcolor.b,mix(0.0,0.3,1.0-u_lightcolor.b),1.0);v_color*=u_opacity;}"),sr=yr("uniform vec2 u_texsize;uniform float u_fade;uniform sampler2D u_image;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec4 v_lighting;\n#pragma mapbox: define lowp float base\n#pragma mapbox: define lowp float height\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float base\n#pragma mapbox: initialize lowp float height\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);vec4 mixedColor=mix(color1,color2,u_fade);gl_FragColor=mixedColor*v_lighting;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform float u_height_factor;uniform vec3 u_scale;uniform float u_vertical_gradient;uniform lowp float u_opacity;uniform vec3 u_lightcolor;uniform lowp vec3 u_lightpos;uniform lowp float u_lightintensity;attribute vec2 a_pos;attribute vec4 a_normal_ed;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec4 v_lighting;\n#pragma mapbox: define lowp float base\n#pragma mapbox: define lowp float height\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float base\n#pragma mapbox: initialize lowp float height\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec3 normal=a_normal_ed.xyz;float edgedistance=a_normal_ed.w;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;base=max(0.0,base);height=max(0.0,height);float t=mod(normal.x,2.0);float z=t > 0.0 ? height : base;gl_Position=u_matrix*vec4(a_pos,z,1);vec2 pos=normal.x==1.0 && normal.y==0.0 && normal.z==16384.0\n? a_pos\n: vec2(edgedistance,z*u_height_factor);v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileRatio,pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileRatio,pos);v_lighting=vec4(0.0,0.0,0.0,1.0);float directional=clamp(dot(normal/16383.0,u_lightpos),0.0,1.0);directional=mix((1.0-u_lightintensity),max((0.5+u_lightintensity),1.0),directional);if (normal.y !=0.0) {directional*=((1.0-u_vertical_gradient)+(u_vertical_gradient*clamp((t+base)*pow(height/150.0,0.5),mix(0.7,0.98,1.0-u_lightintensity),1.0)));}v_lighting.rgb+=clamp(directional*u_lightcolor,mix(vec3(0.0),vec3(0.3),1.0-u_lightcolor),vec3(1.0));v_lighting*=u_opacity;}"),lr=yr("#ifdef GL_ES\nprecision highp float;\n#endif\nuniform sampler2D u_image;varying vec2 v_pos;uniform vec2 u_dimension;uniform float u_zoom;uniform float u_maxzoom;uniform vec4 u_unpack;float getElevation(vec2 coord,float bias) {vec4 data=texture2D(u_image,coord)*255.0;data.a=-1.0;return dot(data,u_unpack)/4.0;}void main() {vec2 epsilon=1.0/u_dimension;float a=getElevation(v_pos+vec2(-epsilon.x,-epsilon.y),0.0);float b=getElevation(v_pos+vec2(0,-epsilon.y),0.0);float c=getElevation(v_pos+vec2(epsilon.x,-epsilon.y),0.0);float d=getElevation(v_pos+vec2(-epsilon.x,0),0.0);float e=getElevation(v_pos,0.0);float f=getElevation(v_pos+vec2(epsilon.x,0),0.0);float g=getElevation(v_pos+vec2(-epsilon.x,epsilon.y),0.0);float h=getElevation(v_pos+vec2(0,epsilon.y),0.0);float i=getElevation(v_pos+vec2(epsilon.x,epsilon.y),0.0);float exaggeration=u_zoom < 2.0 ? 0.4 : u_zoom < 4.5 ? 0.35 : 0.3;vec2 deriv=vec2((c+f+f+i)-(a+d+d+g),(g+h+h+i)-(a+b+b+c))/ pow(2.0,(u_zoom-u_maxzoom)*exaggeration+19.2562-u_zoom);gl_FragColor=clamp(vec4(deriv.x/2.0+0.5,deriv.y/2.0+0.5,1.0,1.0),0.0,1.0);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_dimension;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);highp vec2 epsilon=1.0/u_dimension;float scale=(u_dimension.x-2.0)/u_dimension.x;v_pos=(a_texture_pos/8192.0)*scale+epsilon;}"),cr=yr("uniform sampler2D u_image;varying vec2 v_pos;uniform vec2 u_latrange;uniform vec2 u_light;uniform vec4 u_shadow;uniform vec4 u_highlight;uniform vec4 u_accent;\n#define PI 3.141592653589793\nvoid main() {vec4 pixel=texture2D(u_image,v_pos);vec2 deriv=((pixel.rg*2.0)-1.0);float scaleFactor=cos(radians((u_latrange[0]-u_latrange[1])*(1.0-v_pos.y)+u_latrange[1]));float slope=atan(1.25*length(deriv)/scaleFactor);float aspect=deriv.x !=0.0 ? atan(deriv.y,-deriv.x) : PI/2.0*(deriv.y > 0.0 ? 1.0 :-1.0);float intensity=u_light.x;float azimuth=u_light.y+PI;float base=1.875-intensity*1.75;float maxValue=0.5*PI;float scaledSlope=intensity !=0.5 ? ((pow(base,slope)-1.0)/(pow(base,maxValue)-1.0))*maxValue : slope;float accent=cos(scaledSlope);vec4 accent_color=(1.0-accent)*u_accent*clamp(intensity*2.0,0.0,1.0);float shade=abs(mod((aspect+azimuth)/PI+0.5,2.0)-1.0);vec4 shade_color=mix(u_shadow,u_highlight,shade)*sin(scaledSlope)*clamp(intensity*2.0,0.0,1.0);gl_FragColor=accent_color*(1.0-shade_color.a)+shade_color;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);v_pos=a_texture_pos/8192.0;}"),ur=yr("uniform lowp float u_device_pixel_ratio;varying vec2 v_width2;varying vec2 v_normal;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform vec2 u_units_to_pixels;uniform lowp float u_device_pixel_ratio;varying vec2 v_normal;varying vec2 v_width2;varying float v_gamma_scale;varying highp float v_linesofar;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;v_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*2.0;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_width2=vec2(outset,inset);}"),fr=yr("uniform lowp float u_device_pixel_ratio;uniform sampler2D u_image;varying vec2 v_width2;varying vec2 v_normal;varying float v_gamma_scale;varying highp float v_lineprogress;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);vec4 color=texture2D(u_image,vec2(v_lineprogress,0.5));gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define MAX_LINE_DISTANCE 32767.0\n#define scale 0.015873016\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;uniform vec2 u_units_to_pixels;varying vec2 v_normal;varying vec2 v_width2;varying float v_gamma_scale;varying highp float v_lineprogress;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;v_lineprogress=(floor(a_data.z/4.0)+a_data.w*64.0)*2.0/MAX_LINE_DISTANCE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_width2=vec2(outset,inset);}"),hr=yr("uniform lowp float u_device_pixel_ratio;uniform vec2 u_texsize;uniform float u_fade;uniform mediump vec3 u_scale;uniform sampler2D u_image;varying vec2 v_normal;varying vec2 v_width2;varying float v_linesofar;varying float v_gamma_scale;varying float v_width;\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileZoomRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;vec2 pattern_size_a=vec2(display_size_a.x*fromScale/tileZoomRatio,display_size_a.y);vec2 pattern_size_b=vec2(display_size_b.x*toScale/tileZoomRatio,display_size_b.y);float aspect_a=display_size_a.y/v_width;float aspect_b=display_size_b.y/v_width;float dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);float x_a=mod(v_linesofar/pattern_size_a.x*aspect_a,1.0);float x_b=mod(v_linesofar/pattern_size_b.x*aspect_b,1.0);float y=0.5*v_normal.y+0.5;vec2 texel_size=1.0/u_texsize;vec2 pos_a=mix(pattern_tl_a*texel_size-texel_size,pattern_br_a*texel_size+texel_size,vec2(x_a,y));vec2 pos_b=mix(pattern_tl_b*texel_size-texel_size,pattern_br_b*texel_size+texel_size,vec2(x_b,y));vec4 color=mix(texture2D(u_image,pos_a),texture2D(u_image,pos_b),u_fade);gl_FragColor=color*alpha*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\n#define LINE_DISTANCE_SCALE 2.0\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform vec2 u_units_to_pixels;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;varying vec2 v_normal;varying vec2 v_width2;varying float v_linesofar;varying float v_gamma_scale;varying float v_width;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;float a_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*LINE_DISTANCE_SCALE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_linesofar=a_linesofar;v_width2=vec2(outset,inset);v_width=floorwidth;}"),pr=yr("uniform lowp float u_device_pixel_ratio;uniform sampler2D u_image;uniform float u_sdfgamma;uniform float u_mix;varying vec2 v_normal;varying vec2 v_width2;varying vec2 v_tex_a;varying vec2 v_tex_b;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);float sdfdist_a=texture2D(u_image,v_tex_a).a;float sdfdist_b=texture2D(u_image,v_tex_b).a;float sdfdist=mix(sdfdist_a,sdfdist_b,u_mix);alpha*=smoothstep(0.5-u_sdfgamma/floorwidth,0.5+u_sdfgamma/floorwidth,sdfdist);gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\n#define LINE_DISTANCE_SCALE 2.0\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;uniform vec2 u_patternscale_a;uniform float u_tex_y_a;uniform vec2 u_patternscale_b;uniform float u_tex_y_b;uniform vec2 u_units_to_pixels;varying vec2 v_normal;varying vec2 v_width2;varying vec2 v_tex_a;varying vec2 v_tex_b;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;float a_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*LINE_DISTANCE_SCALE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_tex_a=vec2(a_linesofar*u_patternscale_a.x/floorwidth,normal.y*u_patternscale_a.y+u_tex_y_a);v_tex_b=vec2(a_linesofar*u_patternscale_b.x/floorwidth,normal.y*u_patternscale_b.y+u_tex_y_b);v_width2=vec2(outset,inset);}"),dr=yr("uniform float u_fade_t;uniform float u_opacity;uniform sampler2D u_image0;uniform sampler2D u_image1;varying vec2 v_pos0;varying vec2 v_pos1;uniform float u_brightness_low;uniform float u_brightness_high;uniform float u_saturation_factor;uniform float u_contrast_factor;uniform vec3 u_spin_weights;void main() {vec4 color0=texture2D(u_image0,v_pos0);vec4 color1=texture2D(u_image1,v_pos1);if (color0.a > 0.0) {color0.rgb=color0.rgb/color0.a;}if (color1.a > 0.0) {color1.rgb=color1.rgb/color1.a;}vec4 color=mix(color0,color1,u_fade_t);color.a*=u_opacity;vec3 rgb=color.rgb;rgb=vec3(dot(rgb,u_spin_weights.xyz),dot(rgb,u_spin_weights.zxy),dot(rgb,u_spin_weights.yzx));float average=(color.r+color.g+color.b)/3.0;rgb+=(average-rgb)*u_saturation_factor;rgb=(rgb-0.5)*u_contrast_factor+0.5;vec3 u_high_vec=vec3(u_brightness_low,u_brightness_low,u_brightness_low);vec3 u_low_vec=vec3(u_brightness_high,u_brightness_high,u_brightness_high);gl_FragColor=vec4(mix(u_high_vec,u_low_vec,rgb)*color.a,color.a);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_tl_parent;uniform float u_scale_parent;uniform float u_buffer_scale;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos0;varying vec2 v_pos1;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);v_pos0=(((a_texture_pos/8192.0)-0.5)/u_buffer_scale )+0.5;v_pos1=(v_pos0*u_scale_parent)+u_tl_parent;}"),mr=yr("uniform sampler2D u_texture;varying vec2 v_tex;varying float v_fade_opacity;\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\nlowp float alpha=opacity*v_fade_opacity;gl_FragColor=texture2D(u_texture,v_tex)*alpha;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec4 a_pixeloffset;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform highp float u_camera_to_center_distance;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform float u_fade_change;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform vec2 u_texsize;varying vec2 v_tex;varying float v_fade_opacity;\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);vec2 a_pxoffset=a_pixeloffset.xy;vec2 a_minFontScale=a_pixeloffset.zw/256.0;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=u_is_text ? size/24.0 : size;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*max(a_minFontScale,fontScale)+a_pxoffset/16.0),0.0,1.0);v_tex=a_tex/u_texsize;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;v_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));}"),gr=yr("#define SDF_PX 8.0\nuniform bool u_is_halo;uniform sampler2D u_texture;uniform highp float u_gamma_scale;uniform lowp float u_device_pixel_ratio;uniform bool u_is_text;varying vec2 v_data0;varying vec3 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nfloat EDGE_GAMMA=0.105/u_device_pixel_ratio;vec2 tex=v_data0.xy;float gamma_scale=v_data1.x;float size=v_data1.y;float fade_opacity=v_data1[2];float fontScale=u_is_text ? size/24.0 : size;lowp vec4 color=fill_color;highp float gamma=EDGE_GAMMA/(fontScale*u_gamma_scale);lowp float buff=(256.0-64.0)/256.0;if (u_is_halo) {color=halo_color;gamma=(halo_blur*1.19/SDF_PX+EDGE_GAMMA)/(fontScale*u_gamma_scale);buff=(6.0-halo_width/fontScale)/SDF_PX;}lowp float dist=texture2D(u_texture,tex).a;highp float gamma_scaled=gamma*gamma_scale;highp float alpha=smoothstep(buff-gamma_scaled,buff+gamma_scaled,dist);gl_FragColor=color*(alpha*opacity*fade_opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec4 a_pixeloffset;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform highp float u_camera_to_center_distance;uniform float u_fade_change;uniform vec2 u_texsize;varying vec2 v_data0;varying vec3 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);vec2 a_pxoffset=a_pixeloffset.xy;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=u_is_text ? size/24.0 : size;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*fontScale+a_pxoffset),0.0,1.0);float gamma_scale=gl_Position.w;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;float interpolated_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));v_data0=a_tex/u_texsize;v_data1=vec3(gamma_scale,size,interpolated_fade_opacity);}"),vr=yr("#define SDF_PX 8.0\n#define SDF 1.0\n#define ICON 0.0\nuniform bool u_is_halo;uniform sampler2D u_texture;uniform sampler2D u_texture_icon;uniform highp float u_gamma_scale;uniform lowp float u_device_pixel_ratio;varying vec4 v_data0;varying vec4 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nfloat fade_opacity=v_data1[2];if (v_data1.w==ICON) {vec2 tex_icon=v_data0.zw;lowp float alpha=opacity*fade_opacity;gl_FragColor=texture2D(u_texture_icon,tex_icon)*alpha;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\nreturn;}vec2 tex=v_data0.xy;float EDGE_GAMMA=0.105/u_device_pixel_ratio;float gamma_scale=v_data1.x;float size=v_data1.y;float fontScale=size/24.0;lowp vec4 color=fill_color;highp float gamma=EDGE_GAMMA/(fontScale*u_gamma_scale);lowp float buff=(256.0-64.0)/256.0;if (u_is_halo) {color=halo_color;gamma=(halo_blur*1.19/SDF_PX+EDGE_GAMMA)/(fontScale*u_gamma_scale);buff=(6.0-halo_width/fontScale)/SDF_PX;}lowp float dist=texture2D(u_texture,tex).a;highp float gamma_scaled=gamma*gamma_scale;highp float alpha=smoothstep(buff-gamma_scaled,buff+gamma_scaled,dist);gl_FragColor=color*(alpha*opacity*fade_opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform highp float u_camera_to_center_distance;uniform float u_fade_change;uniform vec2 u_texsize;uniform vec2 u_texsize_icon;varying vec4 v_data0;varying vec4 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);float is_sdf=a_size[0]-2.0*a_size_min;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=size/24.0;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*fontScale),0.0,1.0);float gamma_scale=gl_Position.w;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;float interpolated_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));v_data0.xy=a_tex/u_texsize;v_data0.zw=a_tex/u_texsize_icon;v_data1=vec4(gamma_scale,size,interpolated_fade_opacity,is_sdf);}");function yr(t,e){var r=/#pragma mapbox: ([\w]+) ([\w]+) ([\w]+) ([\w]+)/g,n={};return{fragmentSource:t=t.replace(r,(function(t,e,r,i,a){return n[a]=!0,"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nvarying "+r+" "+i+" "+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"\n#ifdef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n"})),vertexSource:e=e.replace(r,(function(t,e,r,i,a){var o="float"===i?"vec2":"vec4",s=a.match(/color/)?"color":o;return n[a]?"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nuniform lowp float u_"+a+"_t;\nattribute "+r+" "+o+" a_"+a+";\nvarying "+r+" "+i+" "+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"vec4"===s?"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+a+" = a_"+a+";\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+a+" = unpack_mix_"+s+"(a_"+a+", u_"+a+"_t);\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nuniform lowp float u_"+a+"_t;\nattribute "+r+" "+o+" a_"+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"vec4"===s?"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = a_"+a+";\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = unpack_mix_"+s+"(a_"+a+", u_"+a+"_t);\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n"}))}}var xr=Object.freeze({__proto__:null,prelude:Ye,background:We,backgroundPattern:Xe,circle:Ze,clippingMask:Je,heatmap:Ke,heatmapTexture:Qe,collisionBox:$e,collisionCircle:tr,debug:er,fill:rr,fillOutline:nr,fillOutlinePattern:ir,fillPattern:ar,fillExtrusion:or,fillExtrusionPattern:sr,hillshadePrepare:lr,hillshade:cr,line:ur,lineGradient:fr,linePattern:hr,lineSDF:pr,raster:dr,symbolIcon:mr,symbolSDF:gr,symbolTextAndIcon:vr}),br=function(){this.boundProgram=null,this.boundLayoutVertexBuffer=null,this.boundPaintVertexBuffers=[],this.boundIndexBuffer=null,this.boundVertexOffset=null,this.boundDynamicVertexBuffer=null,this.vao=null};br.prototype.bind=function(t,e,r,n,i,a,o,s){this.context=t;for(var l=this.boundPaintVertexBuffers.length!==n.length,c=0;!l&&c>16,s>>16],u_pixel_coord_lower:[65535&o,65535&s]}}_r.prototype.draw=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m){var g,v=t.gl;if(!this.failedToCreate){for(var y in t.program.set(this.program),t.setDepthMode(r),t.setStencilMode(n),t.setColorMode(i),t.setCullFace(a),this.fixedUniforms)this.fixedUniforms[y].set(o[y]);p&&p.setUniforms(t,this.binderUniforms,f,{zoom:h});for(var x=(g={},g[v.LINES]=2,g[v.TRIANGLES]=3,g[v.LINE_STRIP]=1,g)[e],b=0,_=u.get();b<_.length;b+=1){var w=_[b],T=w.vaos||(w.vaos={});(T[s]||(T[s]=new br)).bind(t,this,l,p?p.getPaintVertexBuffers():[],c,w.vertexOffset,d,m),v.drawElements(e,w.primitiveLength*x,v.UNSIGNED_SHORT,w.primitiveOffset*x*2)}}};var Tr=function(e,r,n,i){var a=r.style.light,o=a.properties.get("position"),s=[o.x,o.y,o.z],l=t.create$1();"viewport"===a.properties.get("anchor")&&t.fromRotation(l,-r.transform.angle),t.transformMat3(s,s,l);var c=a.properties.get("color");return{u_matrix:e,u_lightpos:s,u_lightintensity:a.properties.get("intensity"),u_lightcolor:[c.r,c.g,c.b],u_vertical_gradient:+n,u_opacity:i}},kr=function(e,r,n,i,a,o,s){return t.extend(Tr(e,r,n,i),wr(o,r,s),{u_height_factor:-Math.pow(2,a.overscaledZ)/s.tileSize/8})},Ar=function(t){return{u_matrix:t}},Mr=function(e,r,n,i){return t.extend(Ar(e),wr(n,r,i))},Sr=function(t,e){return{u_matrix:t,u_world:e}},Er=function(e,r,n,i,a){return t.extend(Mr(e,r,n,i),{u_world:a})},Lr=function(e,r,n,i){var a,o,s=e.transform;if("map"===i.paint.get("circle-pitch-alignment")){var l=pe(n,1,s.zoom);a=!0,o=[l,l]}else a=!1,o=s.pixelsToGLUnits;return{u_camera_to_center_distance:s.cameraToCenterDistance,u_scale_with_map:+("map"===i.paint.get("circle-pitch-scale")),u_matrix:e.translatePosMatrix(r.posMatrix,n,i.paint.get("circle-translate"),i.paint.get("circle-translate-anchor")),u_pitch_with_map:+a,u_device_pixel_ratio:t.browser.devicePixelRatio,u_extrude_scale:o}},Cr=function(t,e,r){var n=pe(r,1,e.zoom),i=Math.pow(2,e.zoom-r.tileID.overscaledZ),a=r.tileID.overscaleFactor();return{u_matrix:t,u_camera_to_center_distance:e.cameraToCenterDistance,u_pixels_to_tile_units:n,u_extrude_scale:[e.pixelsToGLUnits[0]/(n*i),e.pixelsToGLUnits[1]/(n*i)],u_overscale_factor:a}},Pr=function(t,e,r){return{u_matrix:t,u_inv_matrix:e,u_camera_to_center_distance:r.cameraToCenterDistance,u_viewport_size:[r.width,r.height]}},Ir=function(t,e,r){return void 0===r&&(r=1),{u_matrix:t,u_color:e,u_overlay:0,u_overlay_scale:r}},Or=function(t){return{u_matrix:t}},zr=function(t,e,r,n){return{u_matrix:t,u_extrude_scale:pe(e,1,r),u_intensity:n}};function Dr(e,r){var n=Math.pow(2,r.canonical.z),i=r.canonical.y;return[new t.MercatorCoordinate(0,i/n).toLngLat().lat,new t.MercatorCoordinate(0,(i+1)/n).toLngLat().lat]}var Rr=function(e,r,n){var i=e.transform;return{u_matrix:Ur(e,r,n),u_ratio:1/pe(r,1,i.zoom),u_device_pixel_ratio:t.browser.devicePixelRatio,u_units_to_pixels:[1/i.pixelsToGLUnits[0],1/i.pixelsToGLUnits[1]]}},Fr=function(e,r,n){return t.extend(Rr(e,r,n),{u_image:0})},Br=function(e,r,n,i){var a=e.transform,o=jr(r,a);return{u_matrix:Ur(e,r,n),u_texsize:r.imageAtlasTexture.size,u_ratio:1/pe(r,1,a.zoom),u_device_pixel_ratio:t.browser.devicePixelRatio,u_image:0,u_scale:[o,i.fromScale,i.toScale],u_fade:i.t,u_units_to_pixels:[1/a.pixelsToGLUnits[0],1/a.pixelsToGLUnits[1]]}},Nr=function(e,r,n,i,a){var o=e.transform,s=e.lineAtlas,l=jr(r,o),c="round"===n.layout.get("line-cap"),u=s.getDash(i.from,c),f=s.getDash(i.to,c),h=u.width*a.fromScale,p=f.width*a.toScale;return t.extend(Rr(e,r,n),{u_patternscale_a:[l/h,-u.height/2],u_patternscale_b:[l/p,-f.height/2],u_sdfgamma:s.width/(256*Math.min(h,p)*t.browser.devicePixelRatio)/2,u_image:0,u_tex_y_a:u.y,u_tex_y_b:f.y,u_mix:a.t})};function jr(t,e){return 1/pe(t,1,e.tileZoom)}function Ur(t,e,r){return t.translatePosMatrix(e.tileID.posMatrix,e,r.paint.get("line-translate"),r.paint.get("line-translate-anchor"))}var Vr=function(t,e,r,n,i){return{u_matrix:t,u_tl_parent:e,u_scale_parent:r,u_buffer_scale:1,u_fade_t:n.mix,u_opacity:n.opacity*i.paint.get("raster-opacity"),u_image0:0,u_image1:1,u_brightness_low:i.paint.get("raster-brightness-min"),u_brightness_high:i.paint.get("raster-brightness-max"),u_saturation_factor:(o=i.paint.get("raster-saturation"),o>0?1-1/(1.001-o):-o),u_contrast_factor:(a=i.paint.get("raster-contrast"),a>0?1/(1-a):1+a),u_spin_weights:Hr(i.paint.get("raster-hue-rotate"))};var a,o};function Hr(t){t*=Math.PI/180;var e=Math.sin(t),r=Math.cos(t);return[(2*r+1)/3,(-Math.sqrt(3)*e-r+1)/3,(Math.sqrt(3)*e-r+1)/3]}var qr,Gr=function(t,e,r,n,i,a,o,s,l,c){var u=i.transform;return{u_is_size_zoom_constant:+("constant"===t||"source"===t),u_is_size_feature_constant:+("constant"===t||"camera"===t),u_size_t:e?e.uSizeT:0,u_size:e?e.uSize:0,u_camera_to_center_distance:u.cameraToCenterDistance,u_pitch:u.pitch/360*2*Math.PI,u_rotate_symbol:+r,u_aspect_ratio:u.width/u.height,u_fade_change:i.options.fadeDuration?i.symbolFadeChange:1,u_matrix:a,u_label_plane_matrix:o,u_coord_matrix:s,u_is_text:+l,u_pitch_with_map:+n,u_texsize:c,u_texture:0}},Yr=function(e,r,n,i,a,o,s,l,c,u,f){var h=a.transform;return t.extend(Gr(e,r,n,i,a,o,s,l,c,u),{u_gamma_scale:i?Math.cos(h._pitch)*h.cameraToCenterDistance:1,u_device_pixel_ratio:t.browser.devicePixelRatio,u_is_halo:+f})},Wr=function(e,r,n,i,a,o,s,l,c,u){return t.extend(Yr(e,r,n,i,a,o,s,l,!0,c,!0),{u_texsize_icon:u,u_texture_icon:1})},Xr=function(t,e,r){return{u_matrix:t,u_opacity:e,u_color:r}},Zr=function(e,r,n,i,a,o){return t.extend(function(t,e,r,n){var i=r.imageManager.getPattern(t.from.toString()),a=r.imageManager.getPattern(t.to.toString()),o=r.imageManager.getPixelSize(),s=o.width,l=o.height,c=Math.pow(2,n.tileID.overscaledZ),u=n.tileSize*Math.pow(2,r.transform.tileZoom)/c,f=u*(n.tileID.canonical.x+n.tileID.wrap*c),h=u*n.tileID.canonical.y;return{u_image:0,u_pattern_tl_a:i.tl,u_pattern_br_a:i.br,u_pattern_tl_b:a.tl,u_pattern_br_b:a.br,u_texsize:[s,l],u_mix:e.t,u_pattern_size_a:i.displaySize,u_pattern_size_b:a.displaySize,u_scale_a:e.fromScale,u_scale_b:e.toScale,u_tile_units_to_pixels:1/pe(n,1,r.transform.tileZoom),u_pixel_coord_upper:[f>>16,h>>16],u_pixel_coord_lower:[65535&f,65535&h]}}(i,o,n,a),{u_matrix:e,u_opacity:r})},Jr={fillExtrusion:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_lightpos:new t.Uniform3f(e,r.u_lightpos),u_lightintensity:new t.Uniform1f(e,r.u_lightintensity),u_lightcolor:new t.Uniform3f(e,r.u_lightcolor),u_vertical_gradient:new t.Uniform1f(e,r.u_vertical_gradient),u_opacity:new t.Uniform1f(e,r.u_opacity)}},fillExtrusionPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_lightpos:new t.Uniform3f(e,r.u_lightpos),u_lightintensity:new t.Uniform1f(e,r.u_lightintensity),u_lightcolor:new t.Uniform3f(e,r.u_lightcolor),u_vertical_gradient:new t.Uniform1f(e,r.u_vertical_gradient),u_height_factor:new t.Uniform1f(e,r.u_height_factor),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade),u_opacity:new t.Uniform1f(e,r.u_opacity)}},fill:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},fillPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},fillOutline:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world)}},fillOutlinePattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},circle:function(e,r){return{u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_scale_with_map:new t.Uniform1i(e,r.u_scale_with_map),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_extrude_scale:new t.Uniform2f(e,r.u_extrude_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},collisionBox:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pixels_to_tile_units:new t.Uniform1f(e,r.u_pixels_to_tile_units),u_extrude_scale:new t.Uniform2f(e,r.u_extrude_scale),u_overscale_factor:new t.Uniform1f(e,r.u_overscale_factor)}},collisionCircle:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_inv_matrix:new t.UniformMatrix4f(e,r.u_inv_matrix),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_viewport_size:new t.Uniform2f(e,r.u_viewport_size)}},debug:function(e,r){return{u_color:new t.UniformColor(e,r.u_color),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_overlay:new t.Uniform1i(e,r.u_overlay),u_overlay_scale:new t.Uniform1f(e,r.u_overlay_scale)}},clippingMask:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},heatmap:function(e,r){return{u_extrude_scale:new t.Uniform1f(e,r.u_extrude_scale),u_intensity:new t.Uniform1f(e,r.u_intensity),u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},heatmapTexture:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world),u_image:new t.Uniform1i(e,r.u_image),u_color_ramp:new t.Uniform1i(e,r.u_color_ramp),u_opacity:new t.Uniform1f(e,r.u_opacity)}},hillshade:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_latrange:new t.Uniform2f(e,r.u_latrange),u_light:new t.Uniform2f(e,r.u_light),u_shadow:new t.UniformColor(e,r.u_shadow),u_highlight:new t.UniformColor(e,r.u_highlight),u_accent:new t.UniformColor(e,r.u_accent)}},hillshadePrepare:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_dimension:new t.Uniform2f(e,r.u_dimension),u_zoom:new t.Uniform1f(e,r.u_zoom),u_maxzoom:new t.Uniform1f(e,r.u_maxzoom),u_unpack:new t.Uniform4f(e,r.u_unpack)}},line:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels)}},lineGradient:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_image:new t.Uniform1i(e,r.u_image)}},linePattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_texsize:new t.Uniform2f(e,r.u_texsize),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_image:new t.Uniform1i(e,r.u_image),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},lineSDF:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_patternscale_a:new t.Uniform2f(e,r.u_patternscale_a),u_patternscale_b:new t.Uniform2f(e,r.u_patternscale_b),u_sdfgamma:new t.Uniform1f(e,r.u_sdfgamma),u_image:new t.Uniform1i(e,r.u_image),u_tex_y_a:new t.Uniform1f(e,r.u_tex_y_a),u_tex_y_b:new t.Uniform1f(e,r.u_tex_y_b),u_mix:new t.Uniform1f(e,r.u_mix)}},raster:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_tl_parent:new t.Uniform2f(e,r.u_tl_parent),u_scale_parent:new t.Uniform1f(e,r.u_scale_parent),u_buffer_scale:new t.Uniform1f(e,r.u_buffer_scale),u_fade_t:new t.Uniform1f(e,r.u_fade_t),u_opacity:new t.Uniform1f(e,r.u_opacity),u_image0:new t.Uniform1i(e,r.u_image0),u_image1:new t.Uniform1i(e,r.u_image1),u_brightness_low:new t.Uniform1f(e,r.u_brightness_low),u_brightness_high:new t.Uniform1f(e,r.u_brightness_high),u_saturation_factor:new t.Uniform1f(e,r.u_saturation_factor),u_contrast_factor:new t.Uniform1f(e,r.u_contrast_factor),u_spin_weights:new t.Uniform3f(e,r.u_spin_weights)}},symbolIcon:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texture:new t.Uniform1i(e,r.u_texture)}},symbolSDF:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texture:new t.Uniform1i(e,r.u_texture),u_gamma_scale:new t.Uniform1f(e,r.u_gamma_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_is_halo:new t.Uniform1i(e,r.u_is_halo)}},symbolTextAndIcon:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texsize_icon:new t.Uniform2f(e,r.u_texsize_icon),u_texture:new t.Uniform1i(e,r.u_texture),u_texture_icon:new t.Uniform1i(e,r.u_texture_icon),u_gamma_scale:new t.Uniform1f(e,r.u_gamma_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_is_halo:new t.Uniform1i(e,r.u_is_halo)}},background:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_opacity:new t.Uniform1f(e,r.u_opacity),u_color:new t.UniformColor(e,r.u_color)}},backgroundPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_opacity:new t.Uniform1f(e,r.u_opacity),u_image:new t.Uniform1i(e,r.u_image),u_pattern_tl_a:new t.Uniform2f(e,r.u_pattern_tl_a),u_pattern_br_a:new t.Uniform2f(e,r.u_pattern_br_a),u_pattern_tl_b:new t.Uniform2f(e,r.u_pattern_tl_b),u_pattern_br_b:new t.Uniform2f(e,r.u_pattern_br_b),u_texsize:new t.Uniform2f(e,r.u_texsize),u_mix:new t.Uniform1f(e,r.u_mix),u_pattern_size_a:new t.Uniform2f(e,r.u_pattern_size_a),u_pattern_size_b:new t.Uniform2f(e,r.u_pattern_size_b),u_scale_a:new t.Uniform1f(e,r.u_scale_a),u_scale_b:new t.Uniform1f(e,r.u_scale_b),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_tile_units_to_pixels:new t.Uniform1f(e,r.u_tile_units_to_pixels)}}};function Kr(e,r,n,i,a,o,s){for(var l=e.context,c=l.gl,u=e.useProgram("collisionBox"),f=[],h=0,p=0,d=0;d0){var _=t.create(),w=y;t.mul(_,v.placementInvProjMatrix,e.transform.glCoordMatrix),t.mul(_,_,v.placementViewportMatrix),f.push({circleArray:b,circleOffset:p,transform:w,invTransform:_}),p=h+=b.length/4}x&&u.draw(l,c.LINES,At.disabled,Mt.disabled,e.colorModeForRenderPass(),Et.disabled,Cr(y,e.transform,g),n.id,x.layoutVertexBuffer,x.indexBuffer,x.segments,null,e.transform.zoom,null,null,x.collisionVertexBuffer)}}if(s&&f.length){var T=e.useProgram("collisionCircle"),k=new t.StructArrayLayout2f1f2i16;k.resize(4*h),k._trim();for(var A=0,M=0,S=f;M=0&&(m[v.associatedIconIndex]={shiftedAnchor:S,angle:E})}else ue(v.numGlyphs,p)}if(f){d.clear();for(var C=e.icon.placedSymbolArray,P=0;P0){var s=t.browser.now(),l=(s-e.timeAdded)/o,c=r?(s-r.timeAdded)/o:-1,u=n.getSource(),f=a.coveringZoomLevel({tileSize:u.tileSize,roundZoom:u.roundZoom}),h=!r||Math.abs(r.tileID.overscaledZ-f)>Math.abs(e.tileID.overscaledZ-f),p=h&&e.refreshedUponExpiration?1:t.clamp(h?l:1-c,0,1);return e.refreshedUponExpiration&&l>=1&&(e.refreshedUponExpiration=!1),r?{opacity:1,mix:1-p}:{opacity:p,mix:0}}return{opacity:1,mix:0}}var un=new t.Color(1,0,0,1),fn=new t.Color(0,1,0,1),hn=new t.Color(0,0,1,1),pn=new t.Color(1,0,1,1),dn=new t.Color(0,1,1,1);function mn(t){var e=t.transform.padding;gn(t,t.transform.height-(e.top||0),3,un),gn(t,e.bottom||0,3,fn),vn(t,e.left||0,3,hn),vn(t,t.transform.width-(e.right||0),3,pn);var r=t.transform.centerPoint;!function(t,e,r,n){yn(t,e-1,r-10,2,20,n),yn(t,e-10,r-1,20,2,n)}(t,r.x,t.transform.height-r.y,dn)}function gn(t,e,r,n){yn(t,0,e+r/2,t.transform.width,r,n)}function vn(t,e,r,n){yn(t,e-r/2,0,r,t.transform.height,n)}function yn(e,r,n,i,a,o){var s=e.context,l=s.gl;l.enable(l.SCISSOR_TEST),l.scissor(r*t.browser.devicePixelRatio,n*t.browser.devicePixelRatio,i*t.browser.devicePixelRatio,a*t.browser.devicePixelRatio),s.clear({color:o}),l.disable(l.SCISSOR_TEST)}function xn(e,r,n){var i=e.context,a=i.gl,o=n.posMatrix,s=e.useProgram("debug"),l=At.disabled,c=Mt.disabled,u=e.colorModeForRenderPass();i.activeTexture.set(a.TEXTURE0),e.emptyTexture.bind(a.LINEAR,a.CLAMP_TO_EDGE),s.draw(i,a.LINE_STRIP,l,c,u,Et.disabled,Ir(o,t.Color.red),"$debug",e.debugBuffer,e.tileBorderIndexBuffer,e.debugSegments);var f=r.getTileByID(n.key).latestRawTileData,h=f&&f.byteLength||0,p=Math.floor(h/1024),d=r.getTile(n).tileSize,m=512/Math.min(d,512)*(n.overscaledZ/e.transform.zoom)*.5,g=n.canonical.toString();n.overscaledZ!==n.canonical.z&&(g+=" => "+n.overscaledZ),function(t,e){t.initDebugOverlayCanvas();var r=t.debugOverlayCanvas,n=t.context.gl,i=t.debugOverlayCanvas.getContext("2d");i.clearRect(0,0,r.width,r.height),i.shadowColor="white",i.shadowBlur=2,i.lineWidth=1.5,i.strokeStyle="white",i.textBaseline="top",i.font="bold 36px Open Sans, sans-serif",i.fillText(e,5,5),i.strokeText(e,5,5),t.debugOverlayTexture.update(r),t.debugOverlayTexture.bind(n.LINEAR,n.CLAMP_TO_EDGE)}(e,g+" "+p+"kb"),s.draw(i,a.TRIANGLES,l,c,St.alphaBlended,Et.disabled,Ir(o,t.Color.transparent,m),"$debug",e.debugBuffer,e.quadTriangleIndexBuffer,e.debugSegments)}var bn={symbol:function(e,r,n,i,a){if("translucent"===e.renderPass){var o=Mt.disabled,s=e.colorModeForRenderPass();n.layout.get("text-variable-anchor")&&function(e,r,n,i,a,o,s){for(var l=r.transform,c="map"===a,u="map"===o,f=0,h=e;f256&&this.clearStencil(),r.setColorMode(St.disabled),r.setDepthMode(At.disabled);var i=this.useProgram("clippingMask");this._tileClippingMaskIDs={};for(var a=0,o=e;a256&&this.clearStencil();var t=this.nextStencilID++,e=this.context.gl;return new Mt({func:e.NOTEQUAL,mask:255},t,255,e.KEEP,e.KEEP,e.REPLACE)},_n.prototype.stencilModeForClipping=function(t){var e=this.context.gl;return new Mt({func:e.EQUAL,mask:255},this._tileClippingMaskIDs[t.key],0,e.KEEP,e.KEEP,e.REPLACE)},_n.prototype.stencilConfigForOverlap=function(t){var e,r=this.context.gl,n=t.sort((function(t,e){return e.overscaledZ-t.overscaledZ})),i=n[n.length-1].overscaledZ,a=n[0].overscaledZ-i+1;if(a>1){this.currentStencilSource=void 0,this.nextStencilID+a>256&&this.clearStencil();for(var o={},s=0;s=0;this.currentLayer--){var w=this.style._layers[i[this.currentLayer]],T=a[w.source],k=u[w.source];this._renderTileClippingMasks(w,k),this.renderLayer(this,T,w,k)}for(this.renderPass="translucent",this.currentLayer=0;this.currentLayer0?e.pop():null},_n.prototype.isPatternMissing=function(t){if(!t)return!1;if(!t.from||!t.to)return!0;var e=this.imageManager.getPattern(t.from.toString()),r=this.imageManager.getPattern(t.to.toString());return!e||!r},_n.prototype.useProgram=function(t,e){this.cache=this.cache||{};var r=""+t+(e?e.cacheKey:"")+(this._showOverdrawInspector?"/overdraw":"");return this.cache[r]||(this.cache[r]=new _r(this.context,xr[t],e,Jr[t],this._showOverdrawInspector)),this.cache[r]},_n.prototype.setCustomLayerDefaults=function(){this.context.unbindVAO(),this.context.cullFace.setDefault(),this.context.activeTexture.setDefault(),this.context.pixelStoreUnpack.setDefault(),this.context.pixelStoreUnpackPremultiplyAlpha.setDefault(),this.context.pixelStoreUnpackFlipY.setDefault()},_n.prototype.setBaseState=function(){var t=this.context.gl;this.context.cullFace.set(!1),this.context.viewport.set([0,0,this.width,this.height]),this.context.blendEquation.set(t.FUNC_ADD)},_n.prototype.initDebugOverlayCanvas=function(){if(null==this.debugOverlayCanvas){this.debugOverlayCanvas=t.window.document.createElement("canvas"),this.debugOverlayCanvas.width=512,this.debugOverlayCanvas.height=512;var e=this.context.gl;this.debugOverlayTexture=new t.Texture(this.context,this.debugOverlayCanvas,e.RGBA)}},_n.prototype.destroy=function(){this.emptyTexture.destroy(),this.debugOverlayTexture&&this.debugOverlayTexture.destroy()};var wn=function(t,e){this.points=t,this.planes=e};wn.fromInvProjectionMatrix=function(e,r,n){var i=Math.pow(2,n),a=[[-1,1,-1,1],[1,1,-1,1],[1,-1,-1,1],[-1,-1,-1,1],[-1,1,1,1],[1,1,1,1],[1,-1,1,1],[-1,-1,1,1]].map((function(r){return t.transformMat4([],r,e)})).map((function(e){return t.scale$1([],e,1/e[3]/r*i)})),o=[[0,1,2],[6,5,4],[0,3,7],[2,1,5],[3,2,6],[0,4,5]].map((function(e){var r=t.sub([],a[e[0]],a[e[1]]),n=t.sub([],a[e[2]],a[e[1]]),i=t.normalize([],t.cross([],r,n)),o=-t.dot(i,a[e[1]]);return i.concat(o)}));return new wn(a,o)};var Tn=function(e,r){this.min=e,this.max=r,this.center=t.scale$2([],t.add([],this.min,this.max),.5)};Tn.prototype.quadrant=function(e){for(var r=[e%2==0,e<2],n=t.clone$2(this.min),i=t.clone$2(this.max),a=0;a=0;if(0===o)return 0;o!==r.length&&(n=!1)}if(n)return 2;for(var l=0;l<3;l++){for(var c=Number.MAX_VALUE,u=-Number.MAX_VALUE,f=0;fthis.max[l]-this.min[l])return 0}return 1};var kn=function(t,e,r,n){if(void 0===t&&(t=0),void 0===e&&(e=0),void 0===r&&(r=0),void 0===n&&(n=0),isNaN(t)||t<0||isNaN(e)||e<0||isNaN(r)||r<0||isNaN(n)||n<0)throw new Error("Invalid value for edge-insets, top, bottom, left and right must all be numbers");this.top=t,this.bottom=e,this.left=r,this.right=n};kn.prototype.interpolate=function(e,r,n){return null!=r.top&&null!=e.top&&(this.top=t.number(e.top,r.top,n)),null!=r.bottom&&null!=e.bottom&&(this.bottom=t.number(e.bottom,r.bottom,n)),null!=r.left&&null!=e.left&&(this.left=t.number(e.left,r.left,n)),null!=r.right&&null!=e.right&&(this.right=t.number(e.right,r.right,n)),this},kn.prototype.getCenter=function(e,r){var n=t.clamp((this.left+e-this.right)/2,0,e),i=t.clamp((this.top+r-this.bottom)/2,0,r);return new t.Point(n,i)},kn.prototype.equals=function(t){return this.top===t.top&&this.bottom===t.bottom&&this.left===t.left&&this.right===t.right},kn.prototype.clone=function(){return new kn(this.top,this.bottom,this.left,this.right)},kn.prototype.toJSON=function(){return{top:this.top,bottom:this.bottom,left:this.left,right:this.right}};var An=function(e,r,n,i,a){this.tileSize=512,this.maxValidLatitude=85.051129,this._renderWorldCopies=void 0===a||a,this._minZoom=e||0,this._maxZoom=r||22,this._minPitch=null==n?0:n,this._maxPitch=null==i?60:i,this.setMaxBounds(),this.width=0,this.height=0,this._center=new t.LngLat(0,0),this.zoom=0,this.angle=0,this._fov=.6435011087932844,this._pitch=0,this._unmodified=!0,this._edgeInsets=new kn,this._posMatrixCache={},this._alignedPosMatrixCache={}},Mn={minZoom:{configurable:!0},maxZoom:{configurable:!0},minPitch:{configurable:!0},maxPitch:{configurable:!0},renderWorldCopies:{configurable:!0},worldSize:{configurable:!0},centerOffset:{configurable:!0},size:{configurable:!0},bearing:{configurable:!0},pitch:{configurable:!0},fov:{configurable:!0},zoom:{configurable:!0},center:{configurable:!0},padding:{configurable:!0},centerPoint:{configurable:!0},unmodified:{configurable:!0},point:{configurable:!0}};An.prototype.clone=function(){var t=new An(this._minZoom,this._maxZoom,this._minPitch,this.maxPitch,this._renderWorldCopies);return t.tileSize=this.tileSize,t.latRange=this.latRange,t.width=this.width,t.height=this.height,t._center=this._center,t.zoom=this.zoom,t.angle=this.angle,t._fov=this._fov,t._pitch=this._pitch,t._unmodified=this._unmodified,t._edgeInsets=this._edgeInsets.clone(),t._calcMatrices(),t},Mn.minZoom.get=function(){return this._minZoom},Mn.minZoom.set=function(t){this._minZoom!==t&&(this._minZoom=t,this.zoom=Math.max(this.zoom,t))},Mn.maxZoom.get=function(){return this._maxZoom},Mn.maxZoom.set=function(t){this._maxZoom!==t&&(this._maxZoom=t,this.zoom=Math.min(this.zoom,t))},Mn.minPitch.get=function(){return this._minPitch},Mn.minPitch.set=function(t){this._minPitch!==t&&(this._minPitch=t,this.pitch=Math.max(this.pitch,t))},Mn.maxPitch.get=function(){return this._maxPitch},Mn.maxPitch.set=function(t){this._maxPitch!==t&&(this._maxPitch=t,this.pitch=Math.min(this.pitch,t))},Mn.renderWorldCopies.get=function(){return this._renderWorldCopies},Mn.renderWorldCopies.set=function(t){void 0===t?t=!0:null===t&&(t=!1),this._renderWorldCopies=t},Mn.worldSize.get=function(){return this.tileSize*this.scale},Mn.centerOffset.get=function(){return this.centerPoint._sub(this.size._div(2))},Mn.size.get=function(){return new t.Point(this.width,this.height)},Mn.bearing.get=function(){return-this.angle/Math.PI*180},Mn.bearing.set=function(e){var r=-t.wrap(e,-180,180)*Math.PI/180;this.angle!==r&&(this._unmodified=!1,this.angle=r,this._calcMatrices(),this.rotationMatrix=t.create$2(),t.rotate(this.rotationMatrix,this.rotationMatrix,this.angle))},Mn.pitch.get=function(){return this._pitch/Math.PI*180},Mn.pitch.set=function(e){var r=t.clamp(e,this.minPitch,this.maxPitch)/180*Math.PI;this._pitch!==r&&(this._unmodified=!1,this._pitch=r,this._calcMatrices())},Mn.fov.get=function(){return this._fov/Math.PI*180},Mn.fov.set=function(t){t=Math.max(.01,Math.min(60,t)),this._fov!==t&&(this._unmodified=!1,this._fov=t/180*Math.PI,this._calcMatrices())},Mn.zoom.get=function(){return this._zoom},Mn.zoom.set=function(t){var e=Math.min(Math.max(t,this.minZoom),this.maxZoom);this._zoom!==e&&(this._unmodified=!1,this._zoom=e,this.scale=this.zoomScale(e),this.tileZoom=Math.floor(e),this.zoomFraction=e-this.tileZoom,this._constrain(),this._calcMatrices())},Mn.center.get=function(){return this._center},Mn.center.set=function(t){t.lat===this._center.lat&&t.lng===this._center.lng||(this._unmodified=!1,this._center=t,this._constrain(),this._calcMatrices())},Mn.padding.get=function(){return this._edgeInsets.toJSON()},Mn.padding.set=function(t){this._edgeInsets.equals(t)||(this._unmodified=!1,this._edgeInsets.interpolate(this._edgeInsets,t,1),this._calcMatrices())},Mn.centerPoint.get=function(){return this._edgeInsets.getCenter(this.width,this.height)},An.prototype.isPaddingEqual=function(t){return this._edgeInsets.equals(t)},An.prototype.interpolatePadding=function(t,e,r){this._unmodified=!1,this._edgeInsets.interpolate(t,e,r),this._constrain(),this._calcMatrices()},An.prototype.coveringZoomLevel=function(t){var e=(t.roundZoom?Math.round:Math.floor)(this.zoom+this.scaleZoom(this.tileSize/t.tileSize));return Math.max(0,e)},An.prototype.getVisibleUnwrappedCoordinates=function(e){var r=[new t.UnwrappedTileID(0,e)];if(this._renderWorldCopies)for(var n=this.pointCoordinate(new t.Point(0,0)),i=this.pointCoordinate(new t.Point(this.width,0)),a=this.pointCoordinate(new t.Point(this.width,this.height)),o=this.pointCoordinate(new t.Point(0,this.height)),s=Math.floor(Math.min(n.x,i.x,a.x,o.x)),l=Math.floor(Math.max(n.x,i.x,a.x,o.x)),c=s-1;c<=l+1;c++)0!==c&&r.push(new t.UnwrappedTileID(c,e));return r},An.prototype.coveringTiles=function(e){var r=this.coveringZoomLevel(e),n=r;if(void 0!==e.minzoom&&re.maxzoom&&(r=e.maxzoom);var i=t.MercatorCoordinate.fromLngLat(this.center),a=Math.pow(2,r),o=[a*i.x,a*i.y,0],s=wn.fromInvProjectionMatrix(this.invProjMatrix,this.worldSize,r),l=e.minzoom||0;this.pitch<=60&&this._edgeInsets.top<.1&&(l=r);var c=function(t){return{aabb:new Tn([t*a,0,0],[(t+1)*a,a,0]),zoom:0,x:0,y:0,wrap:t,fullyVisible:!1}},u=[],f=[],h=r,p=e.reparseOverscaled?n:r;if(this._renderWorldCopies)for(var d=1;d<=3;d++)u.push(c(-d)),u.push(c(d));for(u.push(c(0));u.length>0;){var m=u.pop(),g=m.x,v=m.y,y=m.fullyVisible;if(!y){var x=m.aabb.intersects(s);if(0===x)continue;y=2===x}var b=m.aabb.distanceX(o),_=m.aabb.distanceY(o),w=Math.max(Math.abs(b),Math.abs(_)),T=3+(1<T&&m.zoom>=l)f.push({tileID:new t.OverscaledTileID(m.zoom===h?p:m.zoom,m.wrap,m.zoom,g,v),distanceSq:t.sqrLen([o[0]-.5-g,o[1]-.5-v])});else for(var k=0;k<4;k++){var A=(g<<1)+k%2,M=(v<<1)+(k>>1);u.push({aabb:m.aabb.quadrant(k),zoom:m.zoom+1,x:A,y:M,wrap:m.wrap,fullyVisible:y})}}return f.sort((function(t,e){return t.distanceSq-e.distanceSq})).map((function(t){return t.tileID}))},An.prototype.resize=function(t,e){this.width=t,this.height=e,this.pixelsToGLUnits=[2/t,-2/e],this._constrain(),this._calcMatrices()},Mn.unmodified.get=function(){return this._unmodified},An.prototype.zoomScale=function(t){return Math.pow(2,t)},An.prototype.scaleZoom=function(t){return Math.log(t)/Math.LN2},An.prototype.project=function(e){var r=t.clamp(e.lat,-this.maxValidLatitude,this.maxValidLatitude);return new t.Point(t.mercatorXfromLng(e.lng)*this.worldSize,t.mercatorYfromLat(r)*this.worldSize)},An.prototype.unproject=function(e){return new t.MercatorCoordinate(e.x/this.worldSize,e.y/this.worldSize).toLngLat()},Mn.point.get=function(){return this.project(this.center)},An.prototype.setLocationAtPoint=function(e,r){var n=this.pointCoordinate(r),i=this.pointCoordinate(this.centerPoint),a=this.locationCoordinate(e),o=new t.MercatorCoordinate(a.x-(n.x-i.x),a.y-(n.y-i.y));this.center=this.coordinateLocation(o),this._renderWorldCopies&&(this.center=this.center.wrap())},An.prototype.locationPoint=function(t){return this.coordinatePoint(this.locationCoordinate(t))},An.prototype.pointLocation=function(t){return this.coordinateLocation(this.pointCoordinate(t))},An.prototype.locationCoordinate=function(e){return t.MercatorCoordinate.fromLngLat(e)},An.prototype.coordinateLocation=function(t){return t.toLngLat()},An.prototype.pointCoordinate=function(e){var r=[e.x,e.y,0,1],n=[e.x,e.y,1,1];t.transformMat4(r,r,this.pixelMatrixInverse),t.transformMat4(n,n,this.pixelMatrixInverse);var i=r[3],a=n[3],o=r[0]/i,s=n[0]/a,l=r[1]/i,c=n[1]/a,u=r[2]/i,f=n[2]/a,h=u===f?0:(0-u)/(f-u);return new t.MercatorCoordinate(t.number(o,s,h)/this.worldSize,t.number(l,c,h)/this.worldSize)},An.prototype.coordinatePoint=function(e){var r=[e.x*this.worldSize,e.y*this.worldSize,0,1];return t.transformMat4(r,r,this.pixelMatrix),new t.Point(r[0]/r[3],r[1]/r[3])},An.prototype.getBounds=function(){return(new t.LngLatBounds).extend(this.pointLocation(new t.Point(0,0))).extend(this.pointLocation(new t.Point(this.width,0))).extend(this.pointLocation(new t.Point(this.width,this.height))).extend(this.pointLocation(new t.Point(0,this.height)))},An.prototype.getMaxBounds=function(){return this.latRange&&2===this.latRange.length&&this.lngRange&&2===this.lngRange.length?new t.LngLatBounds([this.lngRange[0],this.latRange[0]],[this.lngRange[1],this.latRange[1]]):null},An.prototype.setMaxBounds=function(t){t?(this.lngRange=[t.getWest(),t.getEast()],this.latRange=[t.getSouth(),t.getNorth()],this._constrain()):(this.lngRange=null,this.latRange=[-this.maxValidLatitude,this.maxValidLatitude])},An.prototype.calculatePosMatrix=function(e,r){void 0===r&&(r=!1);var n=e.key,i=r?this._alignedPosMatrixCache:this._posMatrixCache;if(i[n])return i[n];var a=e.canonical,o=this.worldSize/this.zoomScale(a.z),s=a.x+Math.pow(2,a.z)*e.wrap,l=t.identity(new Float64Array(16));return t.translate(l,l,[s*o,a.y*o,0]),t.scale(l,l,[o/t.EXTENT,o/t.EXTENT,1]),t.multiply(l,r?this.alignedProjMatrix:this.projMatrix,l),i[n]=new Float32Array(l),i[n]},An.prototype.customLayerMatrix=function(){return this.mercatorMatrix.slice()},An.prototype._constrain=function(){if(this.center&&this.width&&this.height&&!this._constraining){this._constraining=!0;var e,r,n,i,a=-90,o=90,s=-180,l=180,c=this.size,u=this._unmodified;if(this.latRange){var f=this.latRange;a=t.mercatorYfromLat(f[1])*this.worldSize,e=(o=t.mercatorYfromLat(f[0])*this.worldSize)-ao&&(i=o-g)}if(this.lngRange){var v=p.x,y=c.x/2;v-yl&&(n=l-y)}void 0===n&&void 0===i||(this.center=this.unproject(new t.Point(void 0!==n?n:p.x,void 0!==i?i:p.y))),this._unmodified=u,this._constraining=!1}},An.prototype._calcMatrices=function(){if(this.height){var e=this._fov/2,r=this.centerOffset;this.cameraToCenterDistance=.5/Math.tan(e)*this.height;var n=Math.PI/2+this._pitch,i=this._fov*(.5+r.y/this.height),a=Math.sin(i)*this.cameraToCenterDistance/Math.sin(t.clamp(Math.PI-n-i,.01,Math.PI-.01)),o=this.point,s=o.x,l=o.y,c=1.01*(Math.cos(Math.PI/2-this._pitch)*a+this.cameraToCenterDistance),u=this.height/50,f=new Float64Array(16);t.perspective(f,this._fov,this.width/this.height,u,c),f[8]=2*-r.x/this.width,f[9]=2*r.y/this.height,t.scale(f,f,[1,-1,1]),t.translate(f,f,[0,0,-this.cameraToCenterDistance]),t.rotateX(f,f,this._pitch),t.rotateZ(f,f,this.angle),t.translate(f,f,[-s,-l,0]),this.mercatorMatrix=t.scale([],f,[this.worldSize,this.worldSize,this.worldSize]),t.scale(f,f,[1,1,t.mercatorZfromAltitude(1,this.center.lat)*this.worldSize,1]),this.projMatrix=f,this.invProjMatrix=t.invert([],this.projMatrix);var h=this.width%2/2,p=this.height%2/2,d=Math.cos(this.angle),m=Math.sin(this.angle),g=s-Math.round(s)+d*h+m*p,v=l-Math.round(l)+d*p+m*h,y=new Float64Array(f);if(t.translate(y,y,[g>.5?g-1:g,v>.5?v-1:v,0]),this.alignedProjMatrix=y,f=t.create(),t.scale(f,f,[this.width/2,-this.height/2,1]),t.translate(f,f,[1,-1,0]),this.labelPlaneMatrix=f,f=t.create(),t.scale(f,f,[1,-1,1]),t.translate(f,f,[-1,-1,0]),t.scale(f,f,[2/this.width,2/this.height,1]),this.glCoordMatrix=f,this.pixelMatrix=t.multiply(new Float64Array(16),this.labelPlaneMatrix,this.projMatrix),!(f=t.invert(new Float64Array(16),this.pixelMatrix)))throw new Error("failed to invert matrix");this.pixelMatrixInverse=f,this._posMatrixCache={},this._alignedPosMatrixCache={}}},An.prototype.maxPitchScaleFactor=function(){if(!this.pixelMatrixInverse)return 1;var e=this.pointCoordinate(new t.Point(0,0)),r=[e.x*this.worldSize,e.y*this.worldSize,0,1];return t.transformMat4(r,r,this.pixelMatrix)[3]/this.cameraToCenterDistance},An.prototype.getCameraPoint=function(){var e=this._pitch,r=Math.tan(e)*(this.cameraToCenterDistance||1);return this.centerPoint.add(new t.Point(0,r))},An.prototype.getCameraQueryGeometry=function(e){var r=this.getCameraPoint();if(1===e.length)return[e[0],r];for(var n=r.x,i=r.y,a=r.x,o=r.y,s=0,l=e;s=3&&!t.some((function(t){return isNaN(t)}))){var e=this._map.dragRotate.isEnabled()&&this._map.touchZoomRotate.isEnabled()?+(t[3]||0):this._map.getBearing();return this._map.jumpTo({center:[+t[2],+t[1]],zoom:+t[0],bearing:e,pitch:+(t[4]||0)}),!0}return!1},Sn.prototype._updateHashUnthrottled=function(){var e=this.getHashString();try{t.window.history.replaceState(t.window.history.state,"",e)}catch(t){}};var En={linearity:.3,easing:t.bezier(0,0,.3,1)},Ln=t.extend({deceleration:2500,maxSpeed:1400},En),Cn=t.extend({deceleration:20,maxSpeed:1400},En),Pn=t.extend({deceleration:1e3,maxSpeed:360},En),In=t.extend({deceleration:1e3,maxSpeed:90},En),On=function(t){this._map=t,this.clear()};function zn(t,e){(!t.duration||t.duration0&&r-e[0].time>160;)e.shift()},On.prototype._onMoveEnd=function(e){if(this._drainInertiaBuffer(),!(this._inertiaBuffer.length<2)){for(var r={zoom:0,bearing:0,pitch:0,pan:new t.Point(0,0),pinchAround:void 0,around:void 0},n=0,i=this._inertiaBuffer;n=this._clickTolerance||this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.dblclick=function(t){return this._firePreventable(new Rn(t.type,this._map,t))},Nn.prototype.mouseover=function(t){this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.mouseout=function(t){this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.touchstart=function(t){return this._firePreventable(new Fn(t.type,this._map,t))},Nn.prototype.touchmove=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype.touchend=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype.touchcancel=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype._firePreventable=function(t){if(this._map.fire(t),t.defaultPrevented)return{}},Nn.prototype.isEnabled=function(){return!0},Nn.prototype.isActive=function(){return!1},Nn.prototype.enable=function(){},Nn.prototype.disable=function(){};var jn=function(t){this._map=t};jn.prototype.reset=function(){this._delayContextMenu=!1,delete this._contextMenuEvent},jn.prototype.mousemove=function(t){this._map.fire(new Rn(t.type,this._map,t))},jn.prototype.mousedown=function(){this._delayContextMenu=!0},jn.prototype.mouseup=function(){this._delayContextMenu=!1,this._contextMenuEvent&&(this._map.fire(new Rn("contextmenu",this._map,this._contextMenuEvent)),delete this._contextMenuEvent)},jn.prototype.contextmenu=function(t){this._delayContextMenu?this._contextMenuEvent=t:this._map.fire(new Rn(t.type,this._map,t)),this._map.listens("contextmenu")&&t.preventDefault()},jn.prototype.isEnabled=function(){return!0},jn.prototype.isActive=function(){return!1},jn.prototype.enable=function(){},jn.prototype.disable=function(){};var Un=function(t,e){this._map=t,this._el=t.getCanvasContainer(),this._container=t.getContainer(),this._clickTolerance=e.clickTolerance||1};function Vn(t,e){for(var r={},n=0;nthis.numTouches)&&(this.aborted=!0),this.aborted||(void 0===this.startTime&&(this.startTime=e.timeStamp),n.length===this.numTouches&&(this.centroid=function(e){for(var r=new t.Point(0,0),n=0,i=e;n30)&&(this.aborted=!0)}}},Hn.prototype.touchend=function(t,e,r){if((!this.centroid||t.timeStamp-this.startTime>500)&&(this.aborted=!0),0===r.length){var n=!this.aborted&&this.centroid;if(this.reset(),n)return n}};var qn=function(t){this.singleTap=new Hn(t),this.numTaps=t.numTaps,this.reset()};qn.prototype.reset=function(){this.lastTime=1/0,delete this.lastTap,this.count=0,this.singleTap.reset()},qn.prototype.touchstart=function(t,e,r){this.singleTap.touchstart(t,e,r)},qn.prototype.touchmove=function(t,e,r){this.singleTap.touchmove(t,e,r)},qn.prototype.touchend=function(t,e,r){var n=this.singleTap.touchend(t,e,r);if(n){var i=t.timeStamp-this.lastTime<500,a=!this.lastTap||this.lastTap.dist(n)<30;if(i&&a||this.reset(),this.count++,this.lastTime=t.timeStamp,this.lastTap=n,this.count===this.numTaps)return this.reset(),n}};var Gn=function(){this._zoomIn=new qn({numTouches:1,numTaps:2}),this._zoomOut=new qn({numTouches:2,numTaps:1}),this.reset()};Gn.prototype.reset=function(){this._active=!1,this._zoomIn.reset(),this._zoomOut.reset()},Gn.prototype.touchstart=function(t,e,r){this._zoomIn.touchstart(t,e,r),this._zoomOut.touchstart(t,e,r)},Gn.prototype.touchmove=function(t,e,r){this._zoomIn.touchmove(t,e,r),this._zoomOut.touchmove(t,e,r)},Gn.prototype.touchend=function(t,e,r){var n=this,i=this._zoomIn.touchend(t,e,r),a=this._zoomOut.touchend(t,e,r);return i?(this._active=!0,t.preventDefault(),setTimeout((function(){return n.reset()}),0),{cameraAnimation:function(e){return e.easeTo({duration:300,zoom:e.getZoom()+1,around:e.unproject(i)},{originalEvent:t})}}):a?(this._active=!0,t.preventDefault(),setTimeout((function(){return n.reset()}),0),{cameraAnimation:function(e){return e.easeTo({duration:300,zoom:e.getZoom()-1,around:e.unproject(a)},{originalEvent:t})}}):void 0},Gn.prototype.touchcancel=function(){this.reset()},Gn.prototype.enable=function(){this._enabled=!0},Gn.prototype.disable=function(){this._enabled=!1,this.reset()},Gn.prototype.isEnabled=function(){return this._enabled},Gn.prototype.isActive=function(){return this._active};var Yn=function(t){this.reset(),this._clickTolerance=t.clickTolerance||1};Yn.prototype.reset=function(){this._active=!1,this._moved=!1,delete this._lastPoint,delete this._eventButton},Yn.prototype._correctButton=function(t,e){return!1},Yn.prototype._move=function(t,e){return{}},Yn.prototype.mousedown=function(t,e){if(!this._lastPoint){var n=r.mouseButton(t);this._correctButton(t,n)&&(this._lastPoint=e,this._eventButton=n)}},Yn.prototype.mousemoveWindow=function(t,e){var r=this._lastPoint;if(r&&(t.preventDefault(),this._moved||!(e.dist(r)0&&(this._active=!0);var i=Vn(n,r),a=new t.Point(0,0),o=new t.Point(0,0),s=0;for(var l in i){var c=i[l],u=this._touches[l];u&&(a._add(c),o._add(c.sub(u)),s++,i[l]=c)}if(this._touches=i,!(sMath.abs(t.x)}var ii=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.reset=function(){t.prototype.reset.call(this),this._valid=void 0,delete this._firstMove,delete this._lastPoints},e.prototype._start=function(t){this._lastPoints=t,ni(t[0].sub(t[1]))&&(this._valid=!1)},e.prototype._move=function(t,e,r){var n=t[0].sub(this._lastPoints[0]),i=t[1].sub(this._lastPoints[1]);if(this._valid=this.gestureBeginsVertically(n,i,r.timeStamp),this._valid){this._lastPoints=t,this._active=!0;return{pitchDelta:-.5*((n.y+i.y)/2)}}},e.prototype.gestureBeginsVertically=function(t,e,r){if(void 0!==this._valid)return this._valid;var n=t.mag()>=2,i=e.mag()>=2;if(n||i){if(!n||!i)return void 0===this._firstMove&&(this._firstMove=r),r-this._firstMove<100&&void 0;var a=t.y>0==e.y>0;return ni(t)&&ni(e)&&a}},e}(Kn),ai={panStep:100,bearingStep:15,pitchStep:10},oi=function(){var t=ai;this._panStep=t.panStep,this._bearingStep=t.bearingStep,this._pitchStep=t.pitchStep};function si(t){return t*(2-t)}oi.prototype.reset=function(){this._active=!1},oi.prototype.keydown=function(t){var e=this;if(!(t.altKey||t.ctrlKey||t.metaKey)){var r=0,n=0,i=0,a=0,o=0;switch(t.keyCode){case 61:case 107:case 171:case 187:r=1;break;case 189:case 109:case 173:r=-1;break;case 37:t.shiftKey?n=-1:(t.preventDefault(),a=-1);break;case 39:t.shiftKey?n=1:(t.preventDefault(),a=1);break;case 38:t.shiftKey?i=1:(t.preventDefault(),o=-1);break;case 40:t.shiftKey?i=-1:(t.preventDefault(),o=1);break;default:return}return{cameraAnimation:function(s){var l=s.getZoom();s.easeTo({duration:300,easeId:"keyboardHandler",easing:si,zoom:r?Math.round(l)+r*(t.shiftKey?2:1):l,bearing:s.getBearing()+n*e._bearingStep,pitch:s.getPitch()+i*e._pitchStep,offset:[-a*e._panStep,-o*e._panStep],center:s.getCenter()},{originalEvent:t})}}}},oi.prototype.enable=function(){this._enabled=!0},oi.prototype.disable=function(){this._enabled=!1,this.reset()},oi.prototype.isEnabled=function(){return this._enabled},oi.prototype.isActive=function(){return this._active};var li=function(e,r){this._map=e,this._el=e.getCanvasContainer(),this._handler=r,this._delta=0,this._defaultZoomRate=.01,this._wheelZoomRate=1/450,t.bindAll(["_onWheel","_onTimeout","_onScrollFrame","_onScrollFinished"],this)};li.prototype.setZoomRate=function(t){this._defaultZoomRate=t},li.prototype.setWheelZoomRate=function(t){this._wheelZoomRate=t},li.prototype.isEnabled=function(){return!!this._enabled},li.prototype.isActive=function(){return!!this._active||void 0!==this._finishTimeout},li.prototype.isZooming=function(){return!!this._zooming},li.prototype.enable=function(t){this.isEnabled()||(this._enabled=!0,this._aroundCenter=t&&"center"===t.around)},li.prototype.disable=function(){this.isEnabled()&&(this._enabled=!1)},li.prototype.wheel=function(e){if(this.isEnabled()){var r=e.deltaMode===t.window.WheelEvent.DOM_DELTA_LINE?40*e.deltaY:e.deltaY,n=t.browser.now(),i=n-(this._lastWheelEventTime||0);this._lastWheelEventTime=n,0!==r&&r%4.000244140625==0?this._type="wheel":0!==r&&Math.abs(r)<4?this._type="trackpad":i>400?(this._type=null,this._lastValue=r,this._timeout=setTimeout(this._onTimeout,40,e)):this._type||(this._type=Math.abs(i*r)<200?"trackpad":"wheel",this._timeout&&(clearTimeout(this._timeout),this._timeout=null,r+=this._lastValue)),e.shiftKey&&r&&(r/=4),this._type&&(this._lastWheelEvent=e,this._delta-=r,this._active||this._start(e)),e.preventDefault()}},li.prototype._onTimeout=function(t){this._type="wheel",this._delta-=this._lastValue,this._active||this._start(t)},li.prototype._start=function(e){if(this._delta){this._frameId&&(this._frameId=null),this._active=!0,this.isZooming()||(this._zooming=!0),this._finishTimeout&&(clearTimeout(this._finishTimeout),delete this._finishTimeout);var n=r.mousePos(this._el,e);this._around=t.LngLat.convert(this._aroundCenter?this._map.getCenter():this._map.unproject(n)),this._aroundPoint=this._map.transform.locationPoint(this._around),this._frameId||(this._frameId=!0,this._handler._triggerRenderFrame())}},li.prototype.renderFrame=function(){return this._onScrollFrame()},li.prototype._onScrollFrame=function(){var e=this;if(this._frameId&&(this._frameId=null,this.isActive())){var r=this._map.transform;if(0!==this._delta){var n="wheel"===this._type&&Math.abs(this._delta)>4.000244140625?this._wheelZoomRate:this._defaultZoomRate,i=2/(1+Math.exp(-Math.abs(this._delta*n)));this._delta<0&&0!==i&&(i=1/i);var a="number"==typeof this._targetZoom?r.zoomScale(this._targetZoom):r.scale;this._targetZoom=Math.min(r.maxZoom,Math.max(r.minZoom,r.scaleZoom(a*i))),"wheel"===this._type&&(this._startZoom=r.zoom,this._easing=this._smoothOutEasing(200)),this._delta=0}var o,s="number"==typeof this._targetZoom?this._targetZoom:r.zoom,l=this._startZoom,c=this._easing,u=!1;if("wheel"===this._type&&l&&c){var f=Math.min((t.browser.now()-this._lastWheelEventTime)/200,1),h=c(f);o=t.number(l,s,h),f<1?this._frameId||(this._frameId=!0):u=!0}else o=s,u=!0;return this._active=!0,u&&(this._active=!1,this._finishTimeout=setTimeout((function(){e._zooming=!1,e._handler._triggerRenderFrame(),delete e._targetZoom,delete e._finishTimeout}),200)),{noInertia:!0,needsRenderFrame:!u,zoomDelta:o-r.zoom,around:this._aroundPoint,originalEvent:this._lastWheelEvent}}},li.prototype._smoothOutEasing=function(e){var r=t.ease;if(this._prevEase){var n=this._prevEase,i=(t.browser.now()-n.start)/n.duration,a=n.easing(i+.01)-n.easing(i),o=.27/Math.sqrt(a*a+1e-4)*.01,s=Math.sqrt(.0729-o*o);r=t.bezier(o,s,.25,1)}return this._prevEase={start:t.browser.now(),duration:e,easing:r},r},li.prototype.reset=function(){this._active=!1};var ci=function(t,e){this._clickZoom=t,this._tapZoom=e};ci.prototype.enable=function(){this._clickZoom.enable(),this._tapZoom.enable()},ci.prototype.disable=function(){this._clickZoom.disable(),this._tapZoom.disable()},ci.prototype.isEnabled=function(){return this._clickZoom.isEnabled()&&this._tapZoom.isEnabled()},ci.prototype.isActive=function(){return this._clickZoom.isActive()||this._tapZoom.isActive()};var ui=function(){this.reset()};ui.prototype.reset=function(){this._active=!1},ui.prototype.dblclick=function(t,e){return t.preventDefault(),{cameraAnimation:function(r){r.easeTo({duration:300,zoom:r.getZoom()+(t.shiftKey?-1:1),around:r.unproject(e)},{originalEvent:t})}}},ui.prototype.enable=function(){this._enabled=!0},ui.prototype.disable=function(){this._enabled=!1,this.reset()},ui.prototype.isEnabled=function(){return this._enabled},ui.prototype.isActive=function(){return this._active};var fi=function(){this._tap=new qn({numTouches:1,numTaps:1}),this.reset()};fi.prototype.reset=function(){this._active=!1,delete this._swipePoint,delete this._swipeTouch,delete this._tapTime,this._tap.reset()},fi.prototype.touchstart=function(t,e,r){this._swipePoint||(this._tapTime&&t.timeStamp-this._tapTime>500&&this.reset(),this._tapTime?r.length>0&&(this._swipePoint=e[0],this._swipeTouch=r[0].identifier):this._tap.touchstart(t,e,r))},fi.prototype.touchmove=function(t,e,r){if(this._tapTime){if(this._swipePoint){if(r[0].identifier!==this._swipeTouch)return;var n=e[0],i=n.y-this._swipePoint.y;return this._swipePoint=n,t.preventDefault(),this._active=!0,{zoomDelta:i/128}}}else this._tap.touchmove(t,e,r)},fi.prototype.touchend=function(t,e,r){this._tapTime?this._swipePoint&&0===r.length&&this.reset():this._tap.touchend(t,e,r)&&(this._tapTime=t.timeStamp)},fi.prototype.touchcancel=function(){this.reset()},fi.prototype.enable=function(){this._enabled=!0},fi.prototype.disable=function(){this._enabled=!1,this.reset()},fi.prototype.isEnabled=function(){return this._enabled},fi.prototype.isActive=function(){return this._active};var hi=function(t,e,r){this._el=t,this._mousePan=e,this._touchPan=r};hi.prototype.enable=function(t){this._inertiaOptions=t||{},this._mousePan.enable(),this._touchPan.enable(),this._el.classList.add("mapboxgl-touch-drag-pan")},hi.prototype.disable=function(){this._mousePan.disable(),this._touchPan.disable(),this._el.classList.remove("mapboxgl-touch-drag-pan")},hi.prototype.isEnabled=function(){return this._mousePan.isEnabled()&&this._touchPan.isEnabled()},hi.prototype.isActive=function(){return this._mousePan.isActive()||this._touchPan.isActive()};var pi=function(t,e,r){this._pitchWithRotate=t.pitchWithRotate,this._mouseRotate=e,this._mousePitch=r};pi.prototype.enable=function(){this._mouseRotate.enable(),this._pitchWithRotate&&this._mousePitch.enable()},pi.prototype.disable=function(){this._mouseRotate.disable(),this._mousePitch.disable()},pi.prototype.isEnabled=function(){return this._mouseRotate.isEnabled()&&(!this._pitchWithRotate||this._mousePitch.isEnabled())},pi.prototype.isActive=function(){return this._mouseRotate.isActive()||this._mousePitch.isActive()};var di=function(t,e,r,n){this._el=t,this._touchZoom=e,this._touchRotate=r,this._tapDragZoom=n,this._rotationDisabled=!1,this._enabled=!0};di.prototype.enable=function(t){this._touchZoom.enable(t),this._rotationDisabled||this._touchRotate.enable(t),this._tapDragZoom.enable(),this._el.classList.add("mapboxgl-touch-zoom-rotate")},di.prototype.disable=function(){this._touchZoom.disable(),this._touchRotate.disable(),this._tapDragZoom.disable(),this._el.classList.remove("mapboxgl-touch-zoom-rotate")},di.prototype.isEnabled=function(){return this._touchZoom.isEnabled()&&(this._rotationDisabled||this._touchRotate.isEnabled())&&this._tapDragZoom.isEnabled()},di.prototype.isActive=function(){return this._touchZoom.isActive()||this._touchRotate.isActive()||this._tapDragZoom.isActive()},di.prototype.disableRotation=function(){this._rotationDisabled=!0,this._touchRotate.disable()},di.prototype.enableRotation=function(){this._rotationDisabled=!1,this._touchZoom.isEnabled()&&this._touchRotate.enable()};var mi=function(t){return t.zoom||t.drag||t.pitch||t.rotate},gi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e}(t.Event);function vi(t){return t.panDelta&&t.panDelta.mag()||t.zoomDelta||t.bearingDelta||t.pitchDelta}var yi=function(e,n){this._map=e,this._el=this._map.getCanvasContainer(),this._handlers=[],this._handlersById={},this._changes=[],this._inertia=new On(e),this._bearingSnap=n.bearingSnap,this._previousActiveHandlers={},this._eventsInProgress={},this._addDefaultHandlers(n),t.bindAll(["handleEvent","handleWindowEvent"],this);var i=this._el;this._listeners=[[i,"touchstart",{passive:!1}],[i,"touchmove",{passive:!1}],[i,"touchend",void 0],[i,"touchcancel",void 0],[i,"mousedown",void 0],[i,"mousemove",void 0],[i,"mouseup",void 0],[t.window.document,"mousemove",{capture:!0}],[t.window.document,"mouseup",void 0],[i,"mouseover",void 0],[i,"mouseout",void 0],[i,"dblclick",void 0],[i,"click",void 0],[i,"keydown",{capture:!1}],[i,"keyup",void 0],[i,"wheel",{passive:!1}],[i,"contextmenu",void 0],[t.window,"blur",void 0]];for(var a=0,o=this._listeners;aa?Math.min(2,_):Math.max(.5,_),w=Math.pow(g,1-e),T=i.unproject(x.add(b.mult(e*w)).mult(m));i.setLocationAtPoint(i.renderWorldCopies?T.wrap():T,d)}n._fireMoveEvents(r)}),(function(t){n._afterEase(r,t)}),e),this},r.prototype._prepareEase=function(e,r,n){void 0===n&&(n={}),this._moving=!0,r||n.moving||this.fire(new t.Event("movestart",e)),this._zooming&&!n.zooming&&this.fire(new t.Event("zoomstart",e)),this._rotating&&!n.rotating&&this.fire(new t.Event("rotatestart",e)),this._pitching&&!n.pitching&&this.fire(new t.Event("pitchstart",e))},r.prototype._fireMoveEvents=function(e){this.fire(new t.Event("move",e)),this._zooming&&this.fire(new t.Event("zoom",e)),this._rotating&&this.fire(new t.Event("rotate",e)),this._pitching&&this.fire(new t.Event("pitch",e))},r.prototype._afterEase=function(e,r){if(!this._easeId||!r||this._easeId!==r){delete this._easeId;var n=this._zooming,i=this._rotating,a=this._pitching;this._moving=!1,this._zooming=!1,this._rotating=!1,this._pitching=!1,this._padding=!1,n&&this.fire(new t.Event("zoomend",e)),i&&this.fire(new t.Event("rotateend",e)),a&&this.fire(new t.Event("pitchend",e)),this.fire(new t.Event("moveend",e))}},r.prototype.flyTo=function(e,r){var n=this;if(!e.essential&&t.browser.prefersReducedMotion){var i=t.pick(e,["center","zoom","bearing","pitch","around"]);return this.jumpTo(i,r)}this.stop(),e=t.extend({offset:[0,0],speed:1.2,curve:1.42,easing:t.ease},e);var a=this.transform,o=this.getZoom(),s=this.getBearing(),l=this.getPitch(),c=this.getPadding(),u="zoom"in e?t.clamp(+e.zoom,a.minZoom,a.maxZoom):o,f="bearing"in e?this._normalizeBearing(e.bearing,s):s,h="pitch"in e?+e.pitch:l,p="padding"in e?e.padding:a.padding,d=a.zoomScale(u-o),m=t.Point.convert(e.offset),g=a.centerPoint.add(m),v=a.pointLocation(g),y=t.LngLat.convert(e.center||v);this._normalizeCenter(y);var x=a.project(v),b=a.project(y).sub(x),_=e.curve,w=Math.max(a.width,a.height),T=w/d,k=b.mag();if("minZoom"in e){var A=t.clamp(Math.min(e.minZoom,o,u),a.minZoom,a.maxZoom),M=w/a.zoomScale(A-o);_=Math.sqrt(M/k*2)}var S=_*_;function E(t){var e=(T*T-w*w+(t?-1:1)*S*S*k*k)/(2*(t?T:w)*S*k);return Math.log(Math.sqrt(e*e+1)-e)}function L(t){return(Math.exp(t)-Math.exp(-t))/2}function C(t){return(Math.exp(t)+Math.exp(-t))/2}var P=E(0),I=function(t){return C(P)/C(P+_*t)},O=function(t){return w*((C(P)*(L(e=P+_*t)/C(e))-L(P))/S)/k;var e},z=(E(1)-P)/_;if(Math.abs(k)<1e-6||!isFinite(z)){if(Math.abs(w-T)<1e-6)return this.easeTo(e,r);var D=Te.maxDuration&&(e.duration=0),this._zooming=!0,this._rotating=s!==f,this._pitching=h!==l,this._padding=!a.isPaddingEqual(p),this._prepareEase(r,!1),this._ease((function(e){var i=e*z,d=1/I(i);a.zoom=1===e?u:o+a.scaleZoom(d),n._rotating&&(a.bearing=t.number(s,f,e)),n._pitching&&(a.pitch=t.number(l,h,e)),n._padding&&(a.interpolatePadding(c,p,e),g=a.centerPoint.add(m));var v=1===e?y:a.unproject(x.add(b.mult(O(i))).mult(d));a.setLocationAtPoint(a.renderWorldCopies?v.wrap():v,g),n._fireMoveEvents(r)}),(function(){return n._afterEase(r)}),e),this},r.prototype.isEasing=function(){return!!this._easeFrameId},r.prototype.stop=function(){return this._stop()},r.prototype._stop=function(t,e){if(this._easeFrameId&&(this._cancelRenderFrame(this._easeFrameId),delete this._easeFrameId,delete this._onEaseFrame),this._onEaseEnd){var r=this._onEaseEnd;delete this._onEaseEnd,r.call(this,e)}if(!t){var n=this.handlers;n&&n.stop()}return this},r.prototype._ease=function(e,r,n){!1===n.animate||0===n.duration?(e(1),r()):(this._easeStart=t.browser.now(),this._easeOptions=n,this._onEaseFrame=e,this._onEaseEnd=r,this._easeFrameId=this._requestRenderFrame(this._renderFrameCallback))},r.prototype._renderFrameCallback=function(){var e=Math.min((t.browser.now()-this._easeStart)/this._easeOptions.duration,1);this._onEaseFrame(this._easeOptions.easing(e)),e<1?this._easeFrameId=this._requestRenderFrame(this._renderFrameCallback):this.stop()},r.prototype._normalizeBearing=function(e,r){e=t.wrap(e,-180,180);var n=Math.abs(e-r);return Math.abs(e-360-r)180?-360:r<-180?360:0}},r}(t.Evented),bi=function(e){void 0===e&&(e={}),this.options=e,t.bindAll(["_updateEditLink","_updateData","_updateCompact"],this)};bi.prototype.getDefaultPosition=function(){return"bottom-right"},bi.prototype.onAdd=function(t){var e=this.options&&this.options.compact;return this._map=t,this._container=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-attrib"),this._innerContainer=r.create("div","mapboxgl-ctrl-attrib-inner",this._container),e&&this._container.classList.add("mapboxgl-compact"),this._updateAttributions(),this._updateEditLink(),this._map.on("styledata",this._updateData),this._map.on("sourcedata",this._updateData),this._map.on("moveend",this._updateEditLink),void 0===e&&(this._map.on("resize",this._updateCompact),this._updateCompact()),this._container},bi.prototype.onRemove=function(){r.remove(this._container),this._map.off("styledata",this._updateData),this._map.off("sourcedata",this._updateData),this._map.off("moveend",this._updateEditLink),this._map.off("resize",this._updateCompact),this._map=void 0,this._attribHTML=void 0},bi.prototype._updateEditLink=function(){var e=this._editLink;e||(e=this._editLink=this._container.querySelector(".mapbox-improve-map"));var r=[{key:"owner",value:this.styleOwner},{key:"id",value:this.styleId},{key:"access_token",value:this._map._requestManager._customAccessToken||t.config.ACCESS_TOKEN}];if(e){var n=r.reduce((function(t,e,n){return e.value&&(t+=e.key+"="+e.value+(n=0)return!1;return!0}))).join(" | ");o!==this._attribHTML&&(this._attribHTML=o,t.length?(this._innerContainer.innerHTML=o,this._container.classList.remove("mapboxgl-attrib-empty")):this._container.classList.add("mapboxgl-attrib-empty"),this._editLink=null)}},bi.prototype._updateCompact=function(){this._map.getCanvasContainer().offsetWidth<=640?this._container.classList.add("mapboxgl-compact"):this._container.classList.remove("mapboxgl-compact")};var _i=function(){t.bindAll(["_updateLogo"],this),t.bindAll(["_updateCompact"],this)};_i.prototype.onAdd=function(t){this._map=t,this._container=r.create("div","mapboxgl-ctrl");var e=r.create("a","mapboxgl-ctrl-logo");return e.target="_blank",e.rel="noopener nofollow",e.href="https://www.mapbox.com/",e.setAttribute("aria-label",this._map._getUIString("LogoControl.Title")),e.setAttribute("rel","noopener nofollow"),this._container.appendChild(e),this._container.style.display="none",this._map.on("sourcedata",this._updateLogo),this._updateLogo(),this._map.on("resize",this._updateCompact),this._updateCompact(),this._container},_i.prototype.onRemove=function(){r.remove(this._container),this._map.off("sourcedata",this._updateLogo),this._map.off("resize",this._updateCompact)},_i.prototype.getDefaultPosition=function(){return"bottom-left"},_i.prototype._updateLogo=function(t){t&&"metadata"!==t.sourceDataType||(this._container.style.display=this._logoRequired()?"block":"none")},_i.prototype._logoRequired=function(){if(this._map.style){var t=this._map.style.sourceCaches;for(var e in t){if(t[e].getSource().mapbox_logo)return!0}return!1}},_i.prototype._updateCompact=function(){var t=this._container.children;if(t.length){var e=t[0];this._map.getCanvasContainer().offsetWidth<250?e.classList.add("mapboxgl-compact"):e.classList.remove("mapboxgl-compact")}};var wi=function(){this._queue=[],this._id=0,this._cleared=!1,this._currentlyRunning=!1};wi.prototype.add=function(t){var e=++this._id;return this._queue.push({callback:t,id:e,cancelled:!1}),e},wi.prototype.remove=function(t){for(var e=this._currentlyRunning,r=0,n=e?this._queue.concat(e):this._queue;re.maxZoom)throw new Error("maxZoom must be greater than or equal to minZoom");if(null!=e.minPitch&&null!=e.maxPitch&&e.minPitch>e.maxPitch)throw new Error("maxPitch must be greater than or equal to minPitch");if(null!=e.minPitch&&e.minPitch<0)throw new Error("minPitch must be greater than or equal to 0");if(null!=e.maxPitch&&e.maxPitch>60)throw new Error("maxPitch must be less than or equal to 60");var i=new An(e.minZoom,e.maxZoom,e.minPitch,e.maxPitch,e.renderWorldCopies);if(n.call(this,i,e),this._interactive=e.interactive,this._maxTileCacheSize=e.maxTileCacheSize,this._failIfMajorPerformanceCaveat=e.failIfMajorPerformanceCaveat,this._preserveDrawingBuffer=e.preserveDrawingBuffer,this._antialias=e.antialias,this._trackResize=e.trackResize,this._bearingSnap=e.bearingSnap,this._refreshExpiredTiles=e.refreshExpiredTiles,this._fadeDuration=e.fadeDuration,this._crossSourceCollisions=e.crossSourceCollisions,this._crossFadingFactor=1,this._collectResourceTiming=e.collectResourceTiming,this._renderTaskQueue=new wi,this._controls=[],this._mapId=t.uniqueId(),this._locale=t.extend({},Ti,e.locale),this._requestManager=new t.RequestManager(e.transformRequest,e.accessToken),"string"==typeof e.container){if(this._container=t.window.document.getElementById(e.container),!this._container)throw new Error("Container '"+e.container+"' not found.")}else{if(!(e.container instanceof Ai))throw new Error("Invalid type: 'container' must be a String or HTMLElement.");this._container=e.container}if(e.maxBounds&&this.setMaxBounds(e.maxBounds),t.bindAll(["_onWindowOnline","_onWindowResize","_contextLost","_contextRestored"],this),this._setupContainer(),this._setupPainter(),void 0===this.painter)throw new Error("Failed to initialize WebGL.");this.on("move",(function(){return r._update(!1)})),this.on("moveend",(function(){return r._update(!1)})),this.on("zoom",(function(){return r._update(!0)})),void 0!==t.window&&(t.window.addEventListener("online",this._onWindowOnline,!1),t.window.addEventListener("resize",this._onWindowResize,!1)),this.handlers=new yi(this,e);var a="string"==typeof e.hash&&e.hash||void 0;this._hash=e.hash&&new Sn(a).addTo(this),this._hash&&this._hash._onHashChange()||(this.jumpTo({center:e.center,zoom:e.zoom,bearing:e.bearing,pitch:e.pitch}),e.bounds&&(this.resize(),this.fitBounds(e.bounds,t.extend({},e.fitBoundsOptions,{duration:0})))),this.resize(),this._localIdeographFontFamily=e.localIdeographFontFamily,e.style&&this.setStyle(e.style,{localIdeographFontFamily:e.localIdeographFontFamily}),e.attributionControl&&this.addControl(new bi({customAttribution:e.customAttribution})),this.addControl(new _i,e.logoPosition),this.on("style.load",(function(){r.transform.unmodified&&r.jumpTo(r.style.stylesheet)})),this.on("data",(function(e){r._update("style"===e.dataType),r.fire(new t.Event(e.dataType+"data",e))})),this.on("dataloading",(function(e){r.fire(new t.Event(e.dataType+"dataloading",e))}))}n&&(i.__proto__=n),i.prototype=Object.create(n&&n.prototype),i.prototype.constructor=i;var a={showTileBoundaries:{configurable:!0},showPadding:{configurable:!0},showCollisionBoxes:{configurable:!0},showOverdrawInspector:{configurable:!0},repaint:{configurable:!0},vertices:{configurable:!0},version:{configurable:!0}};return i.prototype._getMapId=function(){return this._mapId},i.prototype.addControl=function(e,r){if(void 0===r&&e.getDefaultPosition&&(r=e.getDefaultPosition()),void 0===r&&(r="top-right"),!e||!e.onAdd)return this.fire(new t.ErrorEvent(new Error("Invalid argument to map.addControl(). Argument must be a control with onAdd and onRemove methods.")));var n=e.onAdd(this);this._controls.push(e);var i=this._controlPositions[r];return-1!==r.indexOf("bottom")?i.insertBefore(n,i.firstChild):i.appendChild(n),this},i.prototype.removeControl=function(e){if(!e||!e.onRemove)return this.fire(new t.ErrorEvent(new Error("Invalid argument to map.removeControl(). Argument must be a control with onAdd and onRemove methods.")));var r=this._controls.indexOf(e);return r>-1&&this._controls.splice(r,1),e.onRemove(this),this},i.prototype.resize=function(e){var r=this._containerDimensions(),n=r[0],i=r[1];this._resizeCanvas(n,i),this.transform.resize(n,i),this.painter.resize(n,i);var a=!this._moving;return a&&(this.stop(),this.fire(new t.Event("movestart",e)).fire(new t.Event("move",e))),this.fire(new t.Event("resize",e)),a&&this.fire(new t.Event("moveend",e)),this},i.prototype.getBounds=function(){return this.transform.getBounds()},i.prototype.getMaxBounds=function(){return this.transform.getMaxBounds()},i.prototype.setMaxBounds=function(e){return this.transform.setMaxBounds(t.LngLatBounds.convert(e)),this._update()},i.prototype.setMinZoom=function(t){if((t=null==t?-2:t)>=-2&&t<=this.transform.maxZoom)return this.transform.minZoom=t,this._update(),this.getZoom()=this.transform.minZoom)return this.transform.maxZoom=t,this._update(),this.getZoom()>t&&this.setZoom(t),this;throw new Error("maxZoom must be greater than the current minZoom")},i.prototype.getMaxZoom=function(){return this.transform.maxZoom},i.prototype.setMinPitch=function(t){if((t=null==t?0:t)<0)throw new Error("minPitch must be greater than or equal to 0");if(t>=0&&t<=this.transform.maxPitch)return this.transform.minPitch=t,this._update(),this.getPitch()60)throw new Error("maxPitch must be less than or equal to 60");if(t>=this.transform.minPitch)return this.transform.maxPitch=t,this._update(),this.getPitch()>t&&this.setPitch(t),this;throw new Error("maxPitch must be greater than the current minPitch")},i.prototype.getMaxPitch=function(){return this.transform.maxPitch},i.prototype.getRenderWorldCopies=function(){return this.transform.renderWorldCopies},i.prototype.setRenderWorldCopies=function(t){return this.transform.renderWorldCopies=t,this._update()},i.prototype.project=function(e){return this.transform.locationPoint(t.LngLat.convert(e))},i.prototype.unproject=function(e){return this.transform.pointLocation(t.Point.convert(e))},i.prototype.isMoving=function(){return this._moving||this.handlers.isMoving()},i.prototype.isZooming=function(){return this._zooming||this.handlers.isZooming()},i.prototype.isRotating=function(){return this._rotating||this.handlers.isRotating()},i.prototype._createDelegatedListener=function(t,e,r){var n,i=this;if("mouseenter"===t||"mouseover"===t){var a=!1;return{layer:e,listener:r,delegates:{mousemove:function(n){var o=i.getLayer(e)?i.queryRenderedFeatures(n.point,{layers:[e]}):[];o.length?a||(a=!0,r.call(i,new Rn(t,i,n.originalEvent,{features:o}))):a=!1},mouseout:function(){a=!1}}}}if("mouseleave"===t||"mouseout"===t){var o=!1;return{layer:e,listener:r,delegates:{mousemove:function(n){(i.getLayer(e)?i.queryRenderedFeatures(n.point,{layers:[e]}):[]).length?o=!0:o&&(o=!1,r.call(i,new Rn(t,i,n.originalEvent)))},mouseout:function(e){o&&(o=!1,r.call(i,new Rn(t,i,e.originalEvent)))}}}}return{layer:e,listener:r,delegates:(n={},n[t]=function(t){var n=i.getLayer(e)?i.queryRenderedFeatures(t.point,{layers:[e]}):[];n.length&&(t.features=n,r.call(i,t),delete t.features)},n)}},i.prototype.on=function(t,e,r){if(void 0===r)return n.prototype.on.call(this,t,e);var i=this._createDelegatedListener(t,e,r);for(var a in this._delegatedListeners=this._delegatedListeners||{},this._delegatedListeners[t]=this._delegatedListeners[t]||[],this._delegatedListeners[t].push(i),i.delegates)this.on(a,i.delegates[a]);return this},i.prototype.once=function(t,e,r){if(void 0===r)return n.prototype.once.call(this,t,e);var i=this._createDelegatedListener(t,e,r);for(var a in i.delegates)this.once(a,i.delegates[a]);return this},i.prototype.off=function(t,e,r){var i=this;if(void 0===r)return n.prototype.off.call(this,t,e);return this._delegatedListeners&&this._delegatedListeners[t]&&function(n){for(var a=n[t],o=0;o180;){var s=n.locationPoint(e);if(s.x>=0&&s.y>=0&&s.x<=n.width&&s.y<=n.height)break;e.lng>n.center.lng?e.lng-=360:e.lng+=360}return e}Ii.prototype.down=function(t,e){this.mouseRotate.mousedown(t,e),this.mousePitch&&this.mousePitch.mousedown(t,e),r.disableDrag()},Ii.prototype.move=function(t,e){var r=this.map,n=this.mouseRotate.mousemoveWindow(t,e);if(n&&n.bearingDelta&&r.setBearing(r.getBearing()+n.bearingDelta),this.mousePitch){var i=this.mousePitch.mousemoveWindow(t,e);i&&i.pitchDelta&&r.setPitch(r.getPitch()+i.pitchDelta)}},Ii.prototype.off=function(){var t=this.element;r.removeEventListener(t,"mousedown",this.mousedown),r.removeEventListener(t,"touchstart",this.touchstart,{passive:!1}),r.removeEventListener(t,"touchmove",this.touchmove),r.removeEventListener(t,"touchend",this.touchend),r.removeEventListener(t,"touchcancel",this.reset),this.offTemp()},Ii.prototype.offTemp=function(){r.enableDrag(),r.removeEventListener(t.window,"mousemove",this.mousemove),r.removeEventListener(t.window,"mouseup",this.mouseup)},Ii.prototype.mousedown=function(e){this.down(t.extend({},e,{ctrlKey:!0,preventDefault:function(){return e.preventDefault()}}),r.mousePos(this.element,e)),r.addEventListener(t.window,"mousemove",this.mousemove),r.addEventListener(t.window,"mouseup",this.mouseup)},Ii.prototype.mousemove=function(t){this.move(t,r.mousePos(this.element,t))},Ii.prototype.mouseup=function(t){this.mouseRotate.mouseupWindow(t),this.mousePitch&&this.mousePitch.mouseupWindow(t),this.offTemp()},Ii.prototype.touchstart=function(t){1!==t.targetTouches.length?this.reset():(this._startPos=this._lastPos=r.touchPos(this.element,t.targetTouches)[0],this.down({type:"mousedown",button:0,ctrlKey:!0,preventDefault:function(){return t.preventDefault()}},this._startPos))},Ii.prototype.touchmove=function(t){1!==t.targetTouches.length?this.reset():(this._lastPos=r.touchPos(this.element,t.targetTouches)[0],this.move({preventDefault:function(){return t.preventDefault()}},this._lastPos))},Ii.prototype.touchend=function(t){0===t.targetTouches.length&&this._startPos&&this._lastPos&&this._startPos.dist(this._lastPos)e.getEast()||r.latitudee.getNorth())},n.prototype._setErrorState=function(){switch(this._watchState){case"WAITING_ACTIVE":this._watchState="ACTIVE_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error");break;case"ACTIVE_LOCK":this._watchState="ACTIVE_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting");break;case"BACKGROUND":this._watchState="BACKGROUND_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting")}},n.prototype._onSuccess=function(e){if(this._map){if(this._isOutOfMapMaxBounds(e))return this._setErrorState(),this.fire(new t.Event("outofmaxbounds",e)),this._updateMarker(),void this._finish();if(this.options.trackUserLocation)switch(this._lastKnownPosition=e,this._watchState){case"WAITING_ACTIVE":case"ACTIVE_LOCK":case"ACTIVE_ERROR":this._watchState="ACTIVE_LOCK",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"BACKGROUND":case"BACKGROUND_ERROR":this._watchState="BACKGROUND",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background")}this.options.showUserLocation&&"OFF"!==this._watchState&&this._updateMarker(e),this.options.trackUserLocation&&"ACTIVE_LOCK"!==this._watchState||this._updateCamera(e),this.options.showUserLocation&&this._dotElement.classList.remove("mapboxgl-user-location-dot-stale"),this.fire(new t.Event("geolocate",e)),this._finish()}},n.prototype._updateCamera=function(e){var r=new t.LngLat(e.coords.longitude,e.coords.latitude),n=e.coords.accuracy,i=this._map.getBearing(),a=t.extend({bearing:i},this.options.fitBoundsOptions);this._map.fitBounds(r.toBounds(n),a,{geolocateSource:!0})},n.prototype._updateMarker=function(e){if(e){var r=new t.LngLat(e.coords.longitude,e.coords.latitude);this._accuracyCircleMarker.setLngLat(r).addTo(this._map),this._userLocationDotMarker.setLngLat(r).addTo(this._map),this._accuracy=e.coords.accuracy,this.options.showUserLocation&&this.options.showAccuracyCircle&&this._updateCircleRadius()}else this._userLocationDotMarker.remove(),this._accuracyCircleMarker.remove()},n.prototype._updateCircleRadius=function(){var t=this._map._container.clientHeight/2,e=this._map.unproject([0,t]),r=this._map.unproject([1,t]),n=e.distanceTo(r),i=Math.ceil(2*this._accuracy/n);this._circleElement.style.width=i+"px",this._circleElement.style.height=i+"px"},n.prototype._onZoom=function(){this.options.showUserLocation&&this.options.showAccuracyCircle&&this._updateCircleRadius()},n.prototype._onError=function(e){if(this._map){if(this.options.trackUserLocation)if(1===e.code){this._watchState="OFF",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.disabled=!0;var r=this._map._getUIString("GeolocateControl.LocationNotAvailable");this._geolocateButton.title=r,this._geolocateButton.setAttribute("aria-label",r),void 0!==this._geolocationWatchID&&this._clearWatch()}else{if(3===e.code&&ji)return;this._setErrorState()}"OFF"!==this._watchState&&this.options.showUserLocation&&this._dotElement.classList.add("mapboxgl-user-location-dot-stale"),this.fire(new t.Event("error",e)),this._finish()}},n.prototype._finish=function(){this._timeoutId&&clearTimeout(this._timeoutId),this._timeoutId=void 0},n.prototype._setupUI=function(e){var n=this;if(this._container.addEventListener("contextmenu",(function(t){return t.preventDefault()})),this._geolocateButton=r.create("button","mapboxgl-ctrl-geolocate",this._container),r.create("span","mapboxgl-ctrl-icon",this._geolocateButton).setAttribute("aria-hidden",!0),this._geolocateButton.type="button",!1===e){t.warnOnce("Geolocation support is not available so the GeolocateControl will be disabled.");var i=this._map._getUIString("GeolocateControl.LocationNotAvailable");this._geolocateButton.disabled=!0,this._geolocateButton.title=i,this._geolocateButton.setAttribute("aria-label",i)}else{var a=this._map._getUIString("GeolocateControl.FindMyLocation");this._geolocateButton.title=a,this._geolocateButton.setAttribute("aria-label",a)}this.options.trackUserLocation&&(this._geolocateButton.setAttribute("aria-pressed","false"),this._watchState="OFF"),this.options.showUserLocation&&(this._dotElement=r.create("div","mapboxgl-user-location-dot"),this._userLocationDotMarker=new Fi(this._dotElement),this._circleElement=r.create("div","mapboxgl-user-location-accuracy-circle"),this._accuracyCircleMarker=new Fi({element:this._circleElement,pitchAlignment:"map"}),this.options.trackUserLocation&&(this._watchState="OFF"),this._map.on("zoom",this._onZoom)),this._geolocateButton.addEventListener("click",this.trigger.bind(this)),this._setup=!0,this.options.trackUserLocation&&this._map.on("movestart",(function(e){var r=e.originalEvent&&"resize"===e.originalEvent.type;e.geolocateSource||"ACTIVE_LOCK"!==n._watchState||r||(n._watchState="BACKGROUND",n._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background"),n._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),n.fire(new t.Event("trackuserlocationend")))}))},n.prototype.trigger=function(){if(!this._setup)return t.warnOnce("Geolocate control triggered before added to a map"),!1;if(this.options.trackUserLocation){switch(this._watchState){case"OFF":this._watchState="WAITING_ACTIVE",this.fire(new t.Event("trackuserlocationstart"));break;case"WAITING_ACTIVE":case"ACTIVE_LOCK":case"ACTIVE_ERROR":case"BACKGROUND_ERROR":Ni--,ji=!1,this._watchState="OFF",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this.fire(new t.Event("trackuserlocationend"));break;case"BACKGROUND":this._watchState="ACTIVE_LOCK",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._lastKnownPosition&&this._updateCamera(this._lastKnownPosition),this.fire(new t.Event("trackuserlocationstart"))}switch(this._watchState){case"WAITING_ACTIVE":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"ACTIVE_LOCK":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"ACTIVE_ERROR":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error");break;case"BACKGROUND":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background");break;case"BACKGROUND_ERROR":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background-error")}if("OFF"===this._watchState&&void 0!==this._geolocationWatchID)this._clearWatch();else if(void 0===this._geolocationWatchID){var e;this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.setAttribute("aria-pressed","true"),++Ni>1?(e={maximumAge:6e5,timeout:0},ji=!0):(e=this.options.positionOptions,ji=!1),this._geolocationWatchID=t.window.navigator.geolocation.watchPosition(this._onSuccess,this._onError,e)}}else t.window.navigator.geolocation.getCurrentPosition(this._onSuccess,this._onError,this.options.positionOptions),this._timeoutId=setTimeout(this._finish,1e4);return!0},n.prototype._clearWatch=function(){t.window.navigator.geolocation.clearWatch(this._geolocationWatchID),this._geolocationWatchID=void 0,this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.setAttribute("aria-pressed","false"),this.options.showUserLocation&&this._updateMarker(null)},n}(t.Evented),Vi={maxWidth:100,unit:"metric"},Hi=function(e){this.options=t.extend({},Vi,e),t.bindAll(["_onMove","setUnit"],this)};function qi(t,e,r){var n=r&&r.maxWidth||100,i=t._container.clientHeight/2,a=t.unproject([0,i]),o=t.unproject([n,i]),s=a.distanceTo(o);if(r&&"imperial"===r.unit){var l=3.2808*s;if(l>5280)Gi(e,n,l/5280,t._getUIString("ScaleControl.Miles"));else Gi(e,n,l,t._getUIString("ScaleControl.Feet"))}else if(r&&"nautical"===r.unit){Gi(e,n,s/1852,t._getUIString("ScaleControl.NauticalMiles"))}else s>=1e3?Gi(e,n,s/1e3,t._getUIString("ScaleControl.Kilometers")):Gi(e,n,s,t._getUIString("ScaleControl.Meters"))}function Gi(t,e,r,n){var i,a,o,s=(i=r,a=Math.pow(10,(""+Math.floor(i)).length-1),o=(o=i/a)>=10?10:o>=5?5:o>=3?3:o>=2?2:o>=1?1:function(t){var e=Math.pow(10,Math.ceil(-Math.log(t)/Math.LN10));return Math.round(t*e)/e}(o),a*o),l=s/r;t.style.width=e*l+"px",t.innerHTML=s+" "+n}Hi.prototype.getDefaultPosition=function(){return"bottom-left"},Hi.prototype._onMove=function(){qi(this._map,this._container,this.options)},Hi.prototype.onAdd=function(t){return this._map=t,this._container=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-scale",t.getContainer()),this._map.on("move",this._onMove),this._onMove(),this._container},Hi.prototype.onRemove=function(){r.remove(this._container),this._map.off("move",this._onMove),this._map=void 0},Hi.prototype.setUnit=function(t){this.options.unit=t,qi(this._map,this._container,this.options)};var Yi=function(e){this._fullscreen=!1,e&&e.container&&(e.container instanceof t.window.HTMLElement?this._container=e.container:t.warnOnce("Full screen control 'container' must be a DOM element.")),t.bindAll(["_onClickFullscreen","_changeIcon"],this),"onfullscreenchange"in t.window.document?this._fullscreenchange="fullscreenchange":"onmozfullscreenchange"in t.window.document?this._fullscreenchange="mozfullscreenchange":"onwebkitfullscreenchange"in t.window.document?this._fullscreenchange="webkitfullscreenchange":"onmsfullscreenchange"in t.window.document&&(this._fullscreenchange="MSFullscreenChange")};Yi.prototype.onAdd=function(e){return this._map=e,this._container||(this._container=this._map.getContainer()),this._controlContainer=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-group"),this._checkFullscreenSupport()?this._setupUI():(this._controlContainer.style.display="none",t.warnOnce("This device does not support fullscreen mode.")),this._controlContainer},Yi.prototype.onRemove=function(){r.remove(this._controlContainer),this._map=null,t.window.document.removeEventListener(this._fullscreenchange,this._changeIcon)},Yi.prototype._checkFullscreenSupport=function(){return!!(t.window.document.fullscreenEnabled||t.window.document.mozFullScreenEnabled||t.window.document.msFullscreenEnabled||t.window.document.webkitFullscreenEnabled)},Yi.prototype._setupUI=function(){var e=this._fullscreenButton=r.create("button","mapboxgl-ctrl-fullscreen",this._controlContainer);r.create("span","mapboxgl-ctrl-icon",e).setAttribute("aria-hidden",!0),e.type="button",this._updateTitle(),this._fullscreenButton.addEventListener("click",this._onClickFullscreen),t.window.document.addEventListener(this._fullscreenchange,this._changeIcon)},Yi.prototype._updateTitle=function(){var t=this._getTitle();this._fullscreenButton.setAttribute("aria-label",t),this._fullscreenButton.title=t},Yi.prototype._getTitle=function(){return this._map._getUIString(this._isFullscreen()?"FullscreenControl.Exit":"FullscreenControl.Enter")},Yi.prototype._isFullscreen=function(){return this._fullscreen},Yi.prototype._changeIcon=function(){(t.window.document.fullscreenElement||t.window.document.mozFullScreenElement||t.window.document.webkitFullscreenElement||t.window.document.msFullscreenElement)===this._container!==this._fullscreen&&(this._fullscreen=!this._fullscreen,this._fullscreenButton.classList.toggle("mapboxgl-ctrl-shrink"),this._fullscreenButton.classList.toggle("mapboxgl-ctrl-fullscreen"),this._updateTitle())},Yi.prototype._onClickFullscreen=function(){this._isFullscreen()?t.window.document.exitFullscreen?t.window.document.exitFullscreen():t.window.document.mozCancelFullScreen?t.window.document.mozCancelFullScreen():t.window.document.msExitFullscreen?t.window.document.msExitFullscreen():t.window.document.webkitCancelFullScreen&&t.window.document.webkitCancelFullScreen():this._container.requestFullscreen?this._container.requestFullscreen():this._container.mozRequestFullScreen?this._container.mozRequestFullScreen():this._container.msRequestFullscreen?this._container.msRequestFullscreen():this._container.webkitRequestFullscreen&&this._container.webkitRequestFullscreen()};var Wi={closeButton:!0,closeOnClick:!0,className:"",maxWidth:"240px"},Xi=function(e){function n(r){e.call(this),this.options=t.extend(Object.create(Wi),r),t.bindAll(["_update","_onClose","remove","_onMouseMove","_onMouseUp","_onDrag"],this)}return e&&(n.__proto__=e),n.prototype=Object.create(e&&e.prototype),n.prototype.constructor=n,n.prototype.addTo=function(e){return this._map&&this.remove(),this._map=e,this.options.closeOnClick&&this._map.on("click",this._onClose),this.options.closeOnMove&&this._map.on("move",this._onClose),this._map.on("remove",this.remove),this._update(),this._trackPointer?(this._map.on("mousemove",this._onMouseMove),this._map.on("mouseup",this._onMouseUp),this._container&&this._container.classList.add("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.add("mapboxgl-track-pointer")):this._map.on("move",this._update),this.fire(new t.Event("open")),this},n.prototype.isOpen=function(){return!!this._map},n.prototype.remove=function(){return this._content&&r.remove(this._content),this._container&&(r.remove(this._container),delete this._container),this._map&&(this._map.off("move",this._update),this._map.off("move",this._onClose),this._map.off("click",this._onClose),this._map.off("remove",this.remove),this._map.off("mousemove",this._onMouseMove),this._map.off("mouseup",this._onMouseUp),this._map.off("drag",this._onDrag),delete this._map),this.fire(new t.Event("close")),this},n.prototype.getLngLat=function(){return this._lngLat},n.prototype.setLngLat=function(e){return this._lngLat=t.LngLat.convert(e),this._pos=null,this._trackPointer=!1,this._update(),this._map&&(this._map.on("move",this._update),this._map.off("mousemove",this._onMouseMove),this._container&&this._container.classList.remove("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.remove("mapboxgl-track-pointer")),this},n.prototype.trackPointer=function(){return this._trackPointer=!0,this._pos=null,this._update(),this._map&&(this._map.off("move",this._update),this._map.on("mousemove",this._onMouseMove),this._map.on("drag",this._onDrag),this._container&&this._container.classList.add("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.add("mapboxgl-track-pointer")),this},n.prototype.getElement=function(){return this._container},n.prototype.setText=function(e){return this.setDOMContent(t.window.document.createTextNode(e))},n.prototype.setHTML=function(e){var r,n=t.window.document.createDocumentFragment(),i=t.window.document.createElement("body");for(i.innerHTML=e;r=i.firstChild;)n.appendChild(r);return this.setDOMContent(n)},n.prototype.getMaxWidth=function(){return this._container&&this._container.style.maxWidth},n.prototype.setMaxWidth=function(t){return this.options.maxWidth=t,this._update(),this},n.prototype.setDOMContent=function(t){return this._createContent(),this._content.appendChild(t),this._update(),this},n.prototype.addClassName=function(t){this._container&&this._container.classList.add(t)},n.prototype.removeClassName=function(t){this._container&&this._container.classList.remove(t)},n.prototype.toggleClassName=function(t){if(this._container)return this._container.classList.toggle(t)},n.prototype._createContent=function(){this._content&&r.remove(this._content),this._content=r.create("div","mapboxgl-popup-content",this._container),this.options.closeButton&&(this._closeButton=r.create("button","mapboxgl-popup-close-button",this._content),this._closeButton.type="button",this._closeButton.setAttribute("aria-label","Close popup"),this._closeButton.innerHTML="×",this._closeButton.addEventListener("click",this._onClose))},n.prototype._onMouseUp=function(t){this._update(t.point)},n.prototype._onMouseMove=function(t){this._update(t.point)},n.prototype._onDrag=function(t){this._update(t.point)},n.prototype._update=function(e){var n=this,i=this._lngLat||this._trackPointer;if(this._map&&i&&this._content&&(this._container||(this._container=r.create("div","mapboxgl-popup",this._map.getContainer()),this._tip=r.create("div","mapboxgl-popup-tip",this._container),this._container.appendChild(this._content),this.options.className&&this.options.className.split(" ").forEach((function(t){return n._container.classList.add(t)})),this._trackPointer&&this._container.classList.add("mapboxgl-popup-track-pointer")),this.options.maxWidth&&this._container.style.maxWidth!==this.options.maxWidth&&(this._container.style.maxWidth=this.options.maxWidth),this._map.transform.renderWorldCopies&&!this._trackPointer&&(this._lngLat=Oi(this._lngLat,this._pos,this._map.transform)),!this._trackPointer||e)){var a=this._pos=this._trackPointer&&e?e:this._map.project(this._lngLat),o=this.options.anchor,s=function e(r){if(r){if("number"==typeof r){var n=Math.round(Math.sqrt(.5*Math.pow(r,2)));return{center:new t.Point(0,0),top:new t.Point(0,r),"top-left":new t.Point(n,n),"top-right":new t.Point(-n,n),bottom:new t.Point(0,-r),"bottom-left":new t.Point(n,-n),"bottom-right":new t.Point(-n,-n),left:new t.Point(r,0),right:new t.Point(-r,0)}}if(r instanceof t.Point||Array.isArray(r)){var i=t.Point.convert(r);return{center:i,top:i,"top-left":i,"top-right":i,bottom:i,"bottom-left":i,"bottom-right":i,left:i,right:i}}return{center:t.Point.convert(r.center||[0,0]),top:t.Point.convert(r.top||[0,0]),"top-left":t.Point.convert(r["top-left"]||[0,0]),"top-right":t.Point.convert(r["top-right"]||[0,0]),bottom:t.Point.convert(r.bottom||[0,0]),"bottom-left":t.Point.convert(r["bottom-left"]||[0,0]),"bottom-right":t.Point.convert(r["bottom-right"]||[0,0]),left:t.Point.convert(r.left||[0,0]),right:t.Point.convert(r.right||[0,0])}}return e(new t.Point(0,0))}(this.options.offset);if(!o){var l,c=this._container.offsetWidth,u=this._container.offsetHeight;l=a.y+s.bottom.ythis._map.transform.height-u?["bottom"]:[],a.xthis._map.transform.width-c/2&&l.push("right"),o=0===l.length?"bottom":l.join("-")}var f=a.add(s[o]).round();r.setTransform(this._container,zi[o]+" translate("+f.x+"px,"+f.y+"px)"),Di(this._container,o,"popup")}},n.prototype._onClose=function(){this.remove()},n}(t.Evented);var Zi={version:t.version,supported:e,setRTLTextPlugin:t.setRTLTextPlugin,getRTLTextPluginStatus:t.getRTLTextPluginStatus,Map:Ei,NavigationControl:Pi,GeolocateControl:Ui,AttributionControl:bi,ScaleControl:Hi,FullscreenControl:Yi,Popup:Xi,Marker:Fi,Style:qe,LngLat:t.LngLat,LngLatBounds:t.LngLatBounds,Point:t.Point,MercatorCoordinate:t.MercatorCoordinate,Evented:t.Evented,config:t.config,prewarm:function(){Bt().acquire(zt)},clearPrewarmedResources:function(){var t=Rt;t&&(t.isPreloaded()&&1===t.numActive()?(t.release(zt),Rt=null):console.warn("Could not clear WebWorkers since there are active Map instances that still reference it. The pre-warmed WebWorker pool can only be cleared when all map instances have been removed with map.remove()"))},get accessToken(){return t.config.ACCESS_TOKEN},set accessToken(e){t.config.ACCESS_TOKEN=e},get baseApiUrl(){return t.config.API_URL},set baseApiUrl(e){t.config.API_URL=e},get workerCount(){return Dt.workerCount},set workerCount(t){Dt.workerCount=t},get maxParallelImageRequests(){return t.config.MAX_PARALLEL_IMAGE_REQUESTS},set maxParallelImageRequests(e){t.config.MAX_PARALLEL_IMAGE_REQUESTS=e},clearStorage:function(e){t.clearTileCache(e)},workerUrl:""};return Zi})),r}))},{}],442:[function(t,e,r){var n=t("./normalize"),i=t("gl-mat4/create"),a=t("gl-mat4/clone"),o=t("gl-mat4/determinant"),s=t("gl-mat4/invert"),l=t("gl-mat4/transpose"),c={length:t("gl-vec3/length"),normalize:t("gl-vec3/normalize"),dot:t("gl-vec3/dot"),cross:t("gl-vec3/cross")},u=i(),f=i(),h=[0,0,0,0],p=[[0,0,0],[0,0,0],[0,0,0]],d=[0,0,0];function m(t,e,r,n,i){t[0]=e[0]*n+r[0]*i,t[1]=e[1]*n+r[1]*i,t[2]=e[2]*n+r[2]*i}e.exports=function(t,e,r,i,g,v){if(e||(e=[0,0,0]),r||(r=[0,0,0]),i||(i=[0,0,0]),g||(g=[0,0,0,1]),v||(v=[0,0,0,1]),!n(u,t))return!1;if(a(f,u),f[3]=0,f[7]=0,f[11]=0,f[15]=1,Math.abs(o(f)<1e-8))return!1;var y,x,b,_,w,T,k,A=u[3],M=u[7],S=u[11],E=u[12],L=u[13],C=u[14],P=u[15];if(0!==A||0!==M||0!==S){if(h[0]=A,h[1]=M,h[2]=S,h[3]=P,!s(f,f))return!1;l(f,f),y=g,b=f,_=(x=h)[0],w=x[1],T=x[2],k=x[3],y[0]=b[0]*_+b[4]*w+b[8]*T+b[12]*k,y[1]=b[1]*_+b[5]*w+b[9]*T+b[13]*k,y[2]=b[2]*_+b[6]*w+b[10]*T+b[14]*k,y[3]=b[3]*_+b[7]*w+b[11]*T+b[15]*k}else g[0]=g[1]=g[2]=0,g[3]=1;if(e[0]=E,e[1]=L,e[2]=C,function(t,e){t[0][0]=e[0],t[0][1]=e[1],t[0][2]=e[2],t[1][0]=e[4],t[1][1]=e[5],t[1][2]=e[6],t[2][0]=e[8],t[2][1]=e[9],t[2][2]=e[10]}(p,u),r[0]=c.length(p[0]),c.normalize(p[0],p[0]),i[0]=c.dot(p[0],p[1]),m(p[1],p[1],p[0],1,-i[0]),r[1]=c.length(p[1]),c.normalize(p[1],p[1]),i[0]/=r[1],i[1]=c.dot(p[0],p[2]),m(p[2],p[2],p[0],1,-i[1]),i[2]=c.dot(p[1],p[2]),m(p[2],p[2],p[1],1,-i[2]),r[2]=c.length(p[2]),c.normalize(p[2],p[2]),i[1]/=r[2],i[2]/=r[2],c.cross(d,p[1],p[2]),c.dot(p[0],d)<0)for(var I=0;I<3;I++)r[I]*=-1,p[I][0]*=-1,p[I][1]*=-1,p[I][2]*=-1;return v[0]=.5*Math.sqrt(Math.max(1+p[0][0]-p[1][1]-p[2][2],0)),v[1]=.5*Math.sqrt(Math.max(1-p[0][0]+p[1][1]-p[2][2],0)),v[2]=.5*Math.sqrt(Math.max(1-p[0][0]-p[1][1]+p[2][2],0)),v[3]=.5*Math.sqrt(Math.max(1+p[0][0]+p[1][1]+p[2][2],0)),p[2][1]>p[1][2]&&(v[0]=-v[0]),p[0][2]>p[2][0]&&(v[1]=-v[1]),p[1][0]>p[0][1]&&(v[2]=-v[2]),!0}},{"./normalize":443,"gl-mat4/clone":272,"gl-mat4/create":274,"gl-mat4/determinant":275,"gl-mat4/invert":287,"gl-mat4/transpose":300,"gl-vec3/cross":350,"gl-vec3/dot":355,"gl-vec3/length":365,"gl-vec3/normalize":372}],443:[function(t,e,r){e.exports=function(t,e){var r=e[15];if(0===r)return!1;for(var n=1/r,i=0;i<16;i++)t[i]=e[i]*n;return!0}},{}],444:[function(t,e,r){var n=t("gl-vec3/lerp"),i=t("mat4-recompose"),a=t("mat4-decompose"),o=t("gl-mat4/determinant"),s=t("quat-slerp"),l=f(),c=f(),u=f();function f(){return{translate:h(),scale:h(1),skew:h(),perspective:[0,0,0,1],quaternion:[0,0,0,1]}}function h(t){return[t||0,t||0,t||0]}e.exports=function(t,e,r,f){if(0===o(e)||0===o(r))return!1;var h=a(e,l.translate,l.scale,l.skew,l.perspective,l.quaternion),p=a(r,c.translate,c.scale,c.skew,c.perspective,c.quaternion);return!(!h||!p)&&(n(u.translate,l.translate,c.translate,f),n(u.skew,l.skew,c.skew,f),n(u.scale,l.scale,c.scale,f),n(u.perspective,l.perspective,c.perspective,f),s(u.quaternion,l.quaternion,c.quaternion,f),i(t,u.translate,u.scale,u.skew,u.perspective,u.quaternion),!0)}},{"gl-mat4/determinant":275,"gl-vec3/lerp":366,"mat4-decompose":442,"mat4-recompose":445,"quat-slerp":505}],445:[function(t,e,r){var n={identity:t("gl-mat4/identity"),translate:t("gl-mat4/translate"),multiply:t("gl-mat4/multiply"),create:t("gl-mat4/create"),scale:t("gl-mat4/scale"),fromRotationTranslation:t("gl-mat4/fromRotationTranslation")},i=(n.create(),n.create());e.exports=function(t,e,r,a,o,s){return n.identity(t),n.fromRotationTranslation(t,s,e),t[3]=o[0],t[7]=o[1],t[11]=o[2],t[15]=o[3],n.identity(i),0!==a[2]&&(i[9]=a[2],n.multiply(t,t,i)),0!==a[1]&&(i[9]=0,i[8]=a[1],n.multiply(t,t,i)),0!==a[0]&&(i[8]=0,i[4]=a[0],n.multiply(t,t,i)),n.scale(t,t,r),t}},{"gl-mat4/create":274,"gl-mat4/fromRotationTranslation":278,"gl-mat4/identity":285,"gl-mat4/multiply":289,"gl-mat4/scale":297,"gl-mat4/translate":299}],446:[function(t,e,r){"use strict";e.exports=Math.log2||function(t){return Math.log(t)*Math.LOG2E}},{}],447:[function(t,e,r){"use strict";var n=t("binary-search-bounds"),i=t("mat4-interpolate"),a=t("gl-mat4/invert"),o=t("gl-mat4/rotateX"),s=t("gl-mat4/rotateY"),l=t("gl-mat4/rotateZ"),c=t("gl-mat4/lookAt"),u=t("gl-mat4/translate"),f=(t("gl-mat4/scale"),t("gl-vec3/normalize")),h=[0,0,0];function p(t){this._components=t.slice(),this._time=[0],this.prevMatrix=t.slice(),this.nextMatrix=t.slice(),this.computedMatrix=t.slice(),this.computedInverse=t.slice(),this.computedEye=[0,0,0],this.computedUp=[0,0,0],this.computedCenter=[0,0,0],this.computedRadius=[0],this._limits=[-1/0,1/0]}e.exports=function(t){return new p((t=t||{}).matrix||[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1])};var d=p.prototype;d.recalcMatrix=function(t){var e=this._time,r=n.le(e,t),o=this.computedMatrix;if(!(r<0)){var s=this._components;if(r===e.length-1)for(var l=16*r,c=0;c<16;++c)o[c]=s[l++];else{var u=e[r+1]-e[r],h=(l=16*r,this.prevMatrix),p=!0;for(c=0;c<16;++c)h[c]=s[l++];var d=this.nextMatrix;for(c=0;c<16;++c)d[c]=s[l++],p=p&&h[c]===d[c];if(u<1e-6||p)for(c=0;c<16;++c)o[c]=h[c];else i(o,h,d,(t-e[r])/u)}var m=this.computedUp;m[0]=o[1],m[1]=o[5],m[2]=o[9],f(m,m);var g=this.computedInverse;a(g,o);var v=this.computedEye,y=g[15];v[0]=g[12]/y,v[1]=g[13]/y,v[2]=g[14]/y;var x=this.computedCenter,b=Math.exp(this.computedRadius[0]);for(c=0;c<3;++c)x[c]=v[c]-o[2+4*c]*b}},d.idle=function(t){if(!(t1&&n(t[o[u-2]],t[o[u-1]],c)<=0;)u-=1,o.pop();for(o.push(l),u=s.length;u>1&&n(t[s[u-2]],t[s[u-1]],c)>=0;)u-=1,s.pop();s.push(l)}r=new Array(s.length+o.length-2);for(var f=0,h=(i=0,o.length);i0;--p)r[f++]=s[p];return r};var n=t("robust-orientation")[3]},{"robust-orientation":524}],449:[function(t,e,r){"use strict";e.exports=function(t,e){e||(e=t,t=window);var r=0,i=0,a=0,o={shift:!1,alt:!1,control:!1,meta:!1},s=!1;function l(t){var e=!1;return"altKey"in t&&(e=e||t.altKey!==o.alt,o.alt=!!t.altKey),"shiftKey"in t&&(e=e||t.shiftKey!==o.shift,o.shift=!!t.shiftKey),"ctrlKey"in t&&(e=e||t.ctrlKey!==o.control,o.control=!!t.ctrlKey),"metaKey"in t&&(e=e||t.metaKey!==o.meta,o.meta=!!t.metaKey),e}function c(t,s){var c=n.x(s),u=n.y(s);"buttons"in s&&(t=0|s.buttons),(t!==r||c!==i||u!==a||l(s))&&(r=0|t,i=c||0,a=u||0,e&&e(r,i,a,o))}function u(t){c(0,t)}function f(){(r||i||a||o.shift||o.alt||o.meta||o.control)&&(i=a=0,r=0,o.shift=o.alt=o.control=o.meta=!1,e&&e(0,0,0,o))}function h(t){l(t)&&e&&e(r,i,a,o)}function p(t){0===n.buttons(t)?c(0,t):c(r,t)}function d(t){c(r|n.buttons(t),t)}function m(t){c(r&~n.buttons(t),t)}function g(){s||(s=!0,t.addEventListener("mousemove",p),t.addEventListener("mousedown",d),t.addEventListener("mouseup",m),t.addEventListener("mouseleave",u),t.addEventListener("mouseenter",u),t.addEventListener("mouseout",u),t.addEventListener("mouseover",u),t.addEventListener("blur",f),t.addEventListener("keyup",h),t.addEventListener("keydown",h),t.addEventListener("keypress",h),t!==window&&(window.addEventListener("blur",f),window.addEventListener("keyup",h),window.addEventListener("keydown",h),window.addEventListener("keypress",h)))}g();var v={element:t};return Object.defineProperties(v,{enabled:{get:function(){return s},set:function(e){e?g():function(){if(!s)return;s=!1,t.removeEventListener("mousemove",p),t.removeEventListener("mousedown",d),t.removeEventListener("mouseup",m),t.removeEventListener("mouseleave",u),t.removeEventListener("mouseenter",u),t.removeEventListener("mouseout",u),t.removeEventListener("mouseover",u),t.removeEventListener("blur",f),t.removeEventListener("keyup",h),t.removeEventListener("keydown",h),t.removeEventListener("keypress",h),t!==window&&(window.removeEventListener("blur",f),window.removeEventListener("keyup",h),window.removeEventListener("keydown",h),window.removeEventListener("keypress",h))}()},enumerable:!0},buttons:{get:function(){return r},enumerable:!0},x:{get:function(){return i},enumerable:!0},y:{get:function(){return a},enumerable:!0},mods:{get:function(){return o},enumerable:!0}}),v};var n=t("mouse-event")},{"mouse-event":451}],450:[function(t,e,r){var n={left:0,top:0};e.exports=function(t,e,r){e=e||t.currentTarget||t.srcElement,Array.isArray(r)||(r=[0,0]);var i=t.clientX||0,a=t.clientY||0,o=(s=e,s===window||s===document||s===document.body?n:s.getBoundingClientRect());var s;return r[0]=i-o.left,r[1]=a-o.top,r}},{}],451:[function(t,e,r){"use strict";function n(t){return t.target||t.srcElement||window}r.buttons=function(t){if("object"==typeof t){if("buttons"in t)return t.buttons;if("which"in t){if(2===(e=t.which))return 4;if(3===e)return 2;if(e>0)return 1<=0)return 1<0&&o(l,r))}catch(t){f.call(new p(r),t)}}}function f(t){var e=this;e.triggered||(e.triggered=!0,e.def&&(e=e.def),e.msg=t,e.state=2,e.chain.length>0&&o(l,e))}function h(t,e,r,n){for(var i=0;i1&&(r*=v=Math.sqrt(v),a*=v);var y=r*r,x=a*a,b=(c==u?-1:1)*Math.sqrt(Math.abs((y*x-y*g*g-x*m*m)/(y*g*g+x*m*m)));b==1/0&&(b=1);var _=b*r*g/a+(t+f)/2,w=b*-a*m/r+(e+h)/2,T=Math.asin(((e-w)/a).toFixed(9)),k=Math.asin(((h-w)/a).toFixed(9));(T=t<_?n-T:T)<0&&(T=2*n+T),(k=f<_?n-k:k)<0&&(k=2*n+k),u&&T>k&&(T-=2*n),!u&&k>T&&(k-=2*n)}if(Math.abs(k-T)>i){var A=k,M=f,S=h;k=T+i*(u&&k>T?1:-1);var E=s(f=_+r*Math.cos(k),h=w+a*Math.sin(k),r,a,o,0,u,M,S,[k,A,_,w])}var L=Math.tan((k-T)/4),C=4/3*r*L,P=4/3*a*L,I=[2*t-(t+C*Math.sin(T)),2*e-(e-P*Math.cos(T)),f+C*Math.sin(k),h-P*Math.cos(k),f,h];if(p)return I;E&&(I=I.concat(E));for(var O=0;O7&&(r.push(v.splice(0,7)),v.unshift("C"));break;case"S":var x=p,b=d;"C"!=e&&"S"!=e||(x+=x-n,b+=b-i),v=["C",x,b,v[1],v[2],v[3],v[4]];break;case"T":"Q"==e||"T"==e?(f=2*p-f,h=2*d-h):(f=p,h=d),v=o(p,d,f,h,v[1],v[2]);break;case"Q":f=v[1],h=v[2],v=o(p,d,v[1],v[2],v[3],v[4]);break;case"L":v=a(p,d,v[1],v[2]);break;case"H":v=a(p,d,v[1],d);break;case"V":v=a(p,d,p,v[1]);break;case"Z":v=a(p,d,l,u)}e=y,p=v[v.length-2],d=v[v.length-1],v.length>4?(n=v[v.length-4],i=v[v.length-3]):(n=p,i=d),r.push(v)}return r}},{}],242:[function(t,e,r){ +!function(t,r,n){r[t]=r[t]||n(),void 0!==e&&e.exports&&(e.exports=r[t])}("Promise",void 0!==t?t:this,(function(){"use strict";var t,e,n,i=Object.prototype.toString,a=void 0!==r?function(t){return r(t)}:setTimeout;try{Object.defineProperty({},"x",{}),t=function(t,e,r,n){return Object.defineProperty(t,e,{value:r,writable:!0,configurable:!1!==n})}}catch(e){t=function(t,e,r){return t[e]=r,t}}function o(t,r){n.add(t,r),e||(e=a(n.drain))}function s(t){var e,r=typeof t;return null==t||"object"!=r&&"function"!=r||(e=t.then),"function"==typeof e&&e}function l(){for(var t=0;t0&&o(l,r))}catch(t){f.call(new p(r),t)}}}function f(t){var e=this;e.triggered||(e.triggered=!0,e.def&&(e=e.def),e.msg=t,e.state=2,e.chain.length>0&&o(l,e))}function h(t,e,r,n){for(var i=0;i 0");"function"!=typeof t.vertex&&e("Must specify vertex creation function");"function"!=typeof t.cell&&e("Must specify cell creation function");"function"!=typeof t.phase&&e("Must specify phase function");for(var s=t.getters||[],l=new Array(a),c=0;c=0?l[c]=!0:l[c]=!1;return function(t,e,r,a,o,s){var l=[s,o].join(",");return(0,i[l])(t,e,r,n.mallocUint32,n.freeUint32)}(t.vertex,t.cell,t.phase,0,r,l)};var i={"false,0,1":function(t,e,r,n,i){return function(a,o,s,l){var c,u=0|a.shape[0],f=0|a.shape[1],h=a.data,p=0|a.offset,d=0|a.stride[0],m=0|a.stride[1],g=p,v=0|-d,y=0,x=0|-m,b=0,_=-d-m|0,w=0,T=0|d,k=m-d*u|0,A=0,M=0,S=0,E=2*u|0,L=n(E),C=n(E),P=0,I=0,O=-1,z=-1,D=0,R=0|-u,F=0|u,B=0,N=-u-1|0,j=u-1|0,U=0,V=0,H=0;for(A=0;A0){if(M=1,L[P++]=r(h[g],o,s,l),g+=T,u>0)for(A=1,c=h[g],I=L[P]=r(c,o,s,l),D=L[P+O],B=L[P+R],U=L[P+N],I===D&&I===B&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,D,B,U,o,s,l),V=C[P]=S++),P+=1,g+=T,A=2;A0)for(A=1,c=h[g],I=L[P]=r(c,o,s,l),D=L[P+O],B=L[P+R],U=L[P+N],I===D&&I===B&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,D,B,U,o,s,l),V=C[P]=S++,U!==B&&e(C[P+R],V,b,w,B,U,o,s,l)),P+=1,g+=T,A=2;A0){if(A=1,L[P++]=r(h[g],o,s,l),g+=T,f>0)for(M=1,c=h[g],I=L[P]=r(c,o,s,l),B=L[P+R],D=L[P+O],U=L[P+N],I===B&&I===D&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,B,D,U,o,s,l),V=C[P]=S++),P+=1,g+=T,M=2;M0)for(M=1,c=h[g],I=L[P]=r(c,o,s,l),B=L[P+R],D=L[P+O],U=L[P+N],I===B&&I===D&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,B,D,U,o,s,l),V=C[P]=S++,U!==B&&e(C[P+R],V,w,y,U,B,o,s,l)),P+=1,g+=T,M=2;M2&&a[1]>2&&n(i.pick(-1,-1).lo(1,1).hi(a[0]-2,a[1]-2),t.pick(-1,-1,0).lo(1,1).hi(a[0]-2,a[1]-2),t.pick(-1,-1,1).lo(1,1).hi(a[0]-2,a[1]-2)),a[1]>2&&(r(i.pick(0,-1).lo(1).hi(a[1]-2),t.pick(0,-1,1).lo(1).hi(a[1]-2)),e(t.pick(0,-1,0).lo(1).hi(a[1]-2))),a[1]>2&&(r(i.pick(a[0]-1,-1).lo(1).hi(a[1]-2),t.pick(a[0]-1,-1,1).lo(1).hi(a[1]-2)),e(t.pick(a[0]-1,-1,0).lo(1).hi(a[1]-2))),a[0]>2&&(r(i.pick(-1,0).lo(1).hi(a[0]-2),t.pick(-1,0,0).lo(1).hi(a[0]-2)),e(t.pick(-1,0,1).lo(1).hi(a[0]-2))),a[0]>2&&(r(i.pick(-1,a[1]-1).lo(1).hi(a[0]-2),t.pick(-1,a[1]-1,0).lo(1).hi(a[0]-2)),e(t.pick(-1,a[1]-1,1).lo(1).hi(a[0]-2))),t.set(0,0,0,0),t.set(0,0,1,0),t.set(a[0]-1,0,0,0),t.set(a[0]-1,0,1,0),t.set(0,a[1]-1,0,0),t.set(0,a[1]-1,1,0),t.set(a[0]-1,a[1]-1,0,0),t.set(a[0]-1,a[1]-1,1,0),t}}e.exports=function(t,e,r){return Array.isArray(r)||(r=n(e.dimension,"string"==typeof r?r:"clamp")),0===e.size?t:0===e.dimension?(t.set(0),t):function(t){var e=t.join();if(a=u[e])return a;for(var r=t.length,n=[f,h],i=1;i<=r;++i)n.push(p(i));var a=d.apply(void 0,n);return u[e]=a,a}(r)(t,e)}},{dup:177}],456:[function(t,e,r){"use strict";function n(t,e){var r=Math.floor(e),n=e-r,i=0<=r&&r0;){x<64?(l=x,x=0):(l=64,x-=64);for(var b=0|t[1];b>0;){b<64?(c=b,b=0):(c=64,b-=64),n=v+x*f+b*h,o=y+x*d+b*m;var _=0,w=0,T=0,k=p,A=f-u*p,M=h-l*f,S=g,E=d-u*g,L=m-l*d;for(T=0;T0;){m<64?(l=m,m=0):(l=64,m-=64);for(var g=0|t[0];g>0;){g<64?(s=g,g=0):(s=64,g-=64),n=p+m*u+g*c,o=d+m*h+g*f;var v=0,y=0,x=u,b=c-l*u,_=h,w=f-l*h;for(y=0;y0;){y<64?(c=y,y=0):(c=64,y-=64);for(var x=0|t[0];x>0;){x<64?(s=x,x=0):(s=64,x-=64);for(var b=0|t[1];b>0;){b<64?(l=b,b=0):(l=64,b-=64),n=g+y*h+x*u+b*f,o=v+y*m+x*p+b*d;var _=0,w=0,T=0,k=h,A=u-c*h,M=f-s*u,S=m,E=p-c*m,L=d-s*p;for(T=0;Tr;){v=0,y=m-o;e:for(g=0;gb)break e;y+=f,v+=h}for(v=m,y=m-o,g=0;g>1,q=H-j,G=H+j,Y=U,W=q,X=H,Z=G,J=V,K=i+1,Q=a-1,$=!0,tt=0,et=0,rt=0,nt=f,it=e(nt),at=e(nt);A=l*Y,M=l*W,N=s;t:for(k=0;k0){g=Y,Y=W,W=g;break t}if(rt<0)break t;N+=p}A=l*Z,M=l*J,N=s;t:for(k=0;k0){g=Z,Z=J,J=g;break t}if(rt<0)break t;N+=p}A=l*Y,M=l*X,N=s;t:for(k=0;k0){g=Y,Y=X,X=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*X,N=s;t:for(k=0;k0){g=W,W=X,X=g;break t}if(rt<0)break t;N+=p}A=l*Y,M=l*Z,N=s;t:for(k=0;k0){g=Y,Y=Z,Z=g;break t}if(rt<0)break t;N+=p}A=l*X,M=l*Z,N=s;t:for(k=0;k0){g=X,X=Z,Z=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*J,N=s;t:for(k=0;k0){g=W,W=J,J=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*X,N=s;t:for(k=0;k0){g=W,W=X,X=g;break t}if(rt<0)break t;N+=p}A=l*Z,M=l*J,N=s;t:for(k=0;k0){g=Z,Z=J,J=g;break t}if(rt<0)break t;N+=p}for(A=l*Y,M=l*W,S=l*X,E=l*Z,L=l*J,C=l*U,P=l*H,I=l*V,B=0,N=s,k=0;k0)){if(rt<0){for(A=l*b,M=l*K,S=l*Q,N=s,k=0;k0)for(;;){_=s+Q*l,B=0;t:for(k=0;k0)){_=s+Q*l,B=0;t:for(k=0;kV){t:for(;;){for(_=s+K*l,B=0,N=s,k=0;k1&&n?s(r,n[0],n[1]):s(r)}(t,e,l);return n(l,c)}},{"typedarray-pool":590}],461:[function(t,e,r){"use strict";var n=t("./lib/compile_sort.js"),i={};e.exports=function(t){var e=t.order,r=t.dtype,a=[e,r].join(":"),o=i[a];return o||(i[a]=o=n(e,r)),o(t),t}},{"./lib/compile_sort.js":460}],462:[function(t,e,r){var n=t("is-buffer"),i="undefined"!=typeof Float64Array;function a(t,e){return t[0]-e[0]}function o(){var t,e=this.stride,r=new Array(e.length);for(t=0;t=0&&(e+=a*(r=0|t),i-=r),new n(this.data,i,a,e)},i.step=function(t){var e=this.shape[0],r=this.stride[0],i=this.offset,a=0,o=Math.ceil;return"number"==typeof t&&((a=0|t)<0?(i+=r*(e-1),e=o(-e/a)):e=o(e/a),r*=a),new n(this.data,e,r,i)},i.transpose=function(t){t=void 0===t?0:0|t;var e=this.shape,r=this.stride;return new n(this.data,e[t],r[t],this.offset)},i.pick=function(t){var r=[],n=[],i=this.offset;return"number"==typeof t&&t>=0?i=i+this.stride[0]*t|0:(r.push(this.shape[0]),n.push(this.stride[0])),(0,e[r.length+1])(this.data,r,n,i)},function(t,e,r,i){return new n(t,e[0],r[0],i)}},2:function(t,e,r){function n(t,e,r,n,i,a){this.data=t,this.shape=[e,r],this.stride=[n,i],this.offset=0|a}var i=n.prototype;return i.dtype=t,i.dimension=2,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]}}),Object.defineProperty(i,"order",{get:function(){return Math.abs(this.stride[0])>Math.abs(this.stride[1])?[1,0]:[0,1]}}),i.set=function(e,r,n){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r,n):this.data[this.offset+this.stride[0]*e+this.stride[1]*r]=n},i.get=function(e,r){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r):this.data[this.offset+this.stride[0]*e+this.stride[1]*r]},i.index=function(t,e){return this.offset+this.stride[0]*t+this.stride[1]*e},i.hi=function(t,e){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,this.stride[0],this.stride[1],this.offset)},i.lo=function(t,e){var r=this.offset,i=0,a=this.shape[0],o=this.shape[1],s=this.stride[0],l=this.stride[1];return"number"==typeof t&&t>=0&&(r+=s*(i=0|t),a-=i),"number"==typeof e&&e>=0&&(r+=l*(i=0|e),o-=i),new n(this.data,a,o,s,l,r)},i.step=function(t,e){var r=this.shape[0],i=this.shape[1],a=this.stride[0],o=this.stride[1],s=this.offset,l=0,c=Math.ceil;return"number"==typeof t&&((l=0|t)<0?(s+=a*(r-1),r=c(-r/l)):r=c(r/l),a*=l),"number"==typeof e&&((l=0|e)<0?(s+=o*(i-1),i=c(-i/l)):i=c(i/l),o*=l),new n(this.data,r,i,a,o,s)},i.transpose=function(t,e){t=void 0===t?0:0|t,e=void 0===e?1:0|e;var r=this.shape,i=this.stride;return new n(this.data,r[t],r[e],i[t],i[e],this.offset)},i.pick=function(t,r){var n=[],i=[],a=this.offset;return"number"==typeof t&&t>=0?a=a+this.stride[0]*t|0:(n.push(this.shape[0]),i.push(this.stride[0])),"number"==typeof r&&r>=0?a=a+this.stride[1]*r|0:(n.push(this.shape[1]),i.push(this.stride[1])),(0,e[n.length+1])(this.data,n,i,a)},function(t,e,r,i){return new n(t,e[0],e[1],r[0],r[1],i)}},3:function(t,e,r){function n(t,e,r,n,i,a,o,s){this.data=t,this.shape=[e,r,n],this.stride=[i,a,o],this.offset=0|s}var i=n.prototype;return i.dtype=t,i.dimension=3,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]}}),Object.defineProperty(i,"order",{get:function(){var t=Math.abs(this.stride[0]),e=Math.abs(this.stride[1]),r=Math.abs(this.stride[2]);return t>e?e>r?[2,1,0]:t>r?[1,2,0]:[1,0,2]:t>r?[2,0,1]:r>e?[0,1,2]:[0,2,1]}}),i.set=function(e,r,n,i){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n,i):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n]=i},i.get=function(e,r,n){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n]},i.index=function(t,e,r){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r},i.hi=function(t,e,r){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,this.stride[0],this.stride[1],this.stride[2],this.offset)},i.lo=function(t,e,r){var i=this.offset,a=0,o=this.shape[0],s=this.shape[1],l=this.shape[2],c=this.stride[0],u=this.stride[1],f=this.stride[2];return"number"==typeof t&&t>=0&&(i+=c*(a=0|t),o-=a),"number"==typeof e&&e>=0&&(i+=u*(a=0|e),s-=a),"number"==typeof r&&r>=0&&(i+=f*(a=0|r),l-=a),new n(this.data,o,s,l,c,u,f,i)},i.step=function(t,e,r){var i=this.shape[0],a=this.shape[1],o=this.shape[2],s=this.stride[0],l=this.stride[1],c=this.stride[2],u=this.offset,f=0,h=Math.ceil;return"number"==typeof t&&((f=0|t)<0?(u+=s*(i-1),i=h(-i/f)):i=h(i/f),s*=f),"number"==typeof e&&((f=0|e)<0?(u+=l*(a-1),a=h(-a/f)):a=h(a/f),l*=f),"number"==typeof r&&((f=0|r)<0?(u+=c*(o-1),o=h(-o/f)):o=h(o/f),c*=f),new n(this.data,i,a,o,s,l,c,u)},i.transpose=function(t,e,r){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r;var i=this.shape,a=this.stride;return new n(this.data,i[t],i[e],i[r],a[t],a[e],a[r],this.offset)},i.pick=function(t,r,n){var i=[],a=[],o=this.offset;return"number"==typeof t&&t>=0?o=o+this.stride[0]*t|0:(i.push(this.shape[0]),a.push(this.stride[0])),"number"==typeof r&&r>=0?o=o+this.stride[1]*r|0:(i.push(this.shape[1]),a.push(this.stride[1])),"number"==typeof n&&n>=0?o=o+this.stride[2]*n|0:(i.push(this.shape[2]),a.push(this.stride[2])),(0,e[i.length+1])(this.data,i,a,o)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],r[0],r[1],r[2],i)}},4:function(t,e,r){function n(t,e,r,n,i,a,o,s,l,c){this.data=t,this.shape=[e,r,n,i],this.stride=[a,o,s,l],this.offset=0|c}var i=n.prototype;return i.dtype=t,i.dimension=4,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]*this.shape[3]}}),Object.defineProperty(i,"order",{get:r}),i.set=function(e,r,n,i,a){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i,a):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i]=a},i.get=function(e,r,n,i){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i]},i.index=function(t,e,r,n){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r+this.stride[3]*n},i.hi=function(t,e,r,i){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,"number"!=typeof i||i<0?this.shape[3]:0|i,this.stride[0],this.stride[1],this.stride[2],this.stride[3],this.offset)},i.lo=function(t,e,r,i){var a=this.offset,o=0,s=this.shape[0],l=this.shape[1],c=this.shape[2],u=this.shape[3],f=this.stride[0],h=this.stride[1],p=this.stride[2],d=this.stride[3];return"number"==typeof t&&t>=0&&(a+=f*(o=0|t),s-=o),"number"==typeof e&&e>=0&&(a+=h*(o=0|e),l-=o),"number"==typeof r&&r>=0&&(a+=p*(o=0|r),c-=o),"number"==typeof i&&i>=0&&(a+=d*(o=0|i),u-=o),new n(this.data,s,l,c,u,f,h,p,d,a)},i.step=function(t,e,r,i){var a=this.shape[0],o=this.shape[1],s=this.shape[2],l=this.shape[3],c=this.stride[0],u=this.stride[1],f=this.stride[2],h=this.stride[3],p=this.offset,d=0,m=Math.ceil;return"number"==typeof t&&((d=0|t)<0?(p+=c*(a-1),a=m(-a/d)):a=m(a/d),c*=d),"number"==typeof e&&((d=0|e)<0?(p+=u*(o-1),o=m(-o/d)):o=m(o/d),u*=d),"number"==typeof r&&((d=0|r)<0?(p+=f*(s-1),s=m(-s/d)):s=m(s/d),f*=d),"number"==typeof i&&((d=0|i)<0?(p+=h*(l-1),l=m(-l/d)):l=m(l/d),h*=d),new n(this.data,a,o,s,l,c,u,f,h,p)},i.transpose=function(t,e,r,i){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r,i=void 0===i?3:0|i;var a=this.shape,o=this.stride;return new n(this.data,a[t],a[e],a[r],a[i],o[t],o[e],o[r],o[i],this.offset)},i.pick=function(t,r,n,i){var a=[],o=[],s=this.offset;return"number"==typeof t&&t>=0?s=s+this.stride[0]*t|0:(a.push(this.shape[0]),o.push(this.stride[0])),"number"==typeof r&&r>=0?s=s+this.stride[1]*r|0:(a.push(this.shape[1]),o.push(this.stride[1])),"number"==typeof n&&n>=0?s=s+this.stride[2]*n|0:(a.push(this.shape[2]),o.push(this.stride[2])),"number"==typeof i&&i>=0?s=s+this.stride[3]*i|0:(a.push(this.shape[3]),o.push(this.stride[3])),(0,e[a.length+1])(this.data,a,o,s)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],e[3],r[0],r[1],r[2],r[3],i)}},5:function(t,e,r){function n(t,e,r,n,i,a,o,s,l,c,u,f){this.data=t,this.shape=[e,r,n,i,a],this.stride=[o,s,l,c,u],this.offset=0|f}var i=n.prototype;return i.dtype=t,i.dimension=5,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]*this.shape[3]*this.shape[4]}}),Object.defineProperty(i,"order",{get:r}),i.set=function(e,r,n,i,a,o){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a,o):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a]=o},i.get=function(e,r,n,i,a){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a]},i.index=function(t,e,r,n,i){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r+this.stride[3]*n+this.stride[4]*i},i.hi=function(t,e,r,i,a){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,"number"!=typeof i||i<0?this.shape[3]:0|i,"number"!=typeof a||a<0?this.shape[4]:0|a,this.stride[0],this.stride[1],this.stride[2],this.stride[3],this.stride[4],this.offset)},i.lo=function(t,e,r,i,a){var o=this.offset,s=0,l=this.shape[0],c=this.shape[1],u=this.shape[2],f=this.shape[3],h=this.shape[4],p=this.stride[0],d=this.stride[1],m=this.stride[2],g=this.stride[3],v=this.stride[4];return"number"==typeof t&&t>=0&&(o+=p*(s=0|t),l-=s),"number"==typeof e&&e>=0&&(o+=d*(s=0|e),c-=s),"number"==typeof r&&r>=0&&(o+=m*(s=0|r),u-=s),"number"==typeof i&&i>=0&&(o+=g*(s=0|i),f-=s),"number"==typeof a&&a>=0&&(o+=v*(s=0|a),h-=s),new n(this.data,l,c,u,f,h,p,d,m,g,v,o)},i.step=function(t,e,r,i,a){var o=this.shape[0],s=this.shape[1],l=this.shape[2],c=this.shape[3],u=this.shape[4],f=this.stride[0],h=this.stride[1],p=this.stride[2],d=this.stride[3],m=this.stride[4],g=this.offset,v=0,y=Math.ceil;return"number"==typeof t&&((v=0|t)<0?(g+=f*(o-1),o=y(-o/v)):o=y(o/v),f*=v),"number"==typeof e&&((v=0|e)<0?(g+=h*(s-1),s=y(-s/v)):s=y(s/v),h*=v),"number"==typeof r&&((v=0|r)<0?(g+=p*(l-1),l=y(-l/v)):l=y(l/v),p*=v),"number"==typeof i&&((v=0|i)<0?(g+=d*(c-1),c=y(-c/v)):c=y(c/v),d*=v),"number"==typeof a&&((v=0|a)<0?(g+=m*(u-1),u=y(-u/v)):u=y(u/v),m*=v),new n(this.data,o,s,l,c,u,f,h,p,d,m,g)},i.transpose=function(t,e,r,i,a){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r,i=void 0===i?3:0|i,a=void 0===a?4:0|a;var o=this.shape,s=this.stride;return new n(this.data,o[t],o[e],o[r],o[i],o[a],s[t],s[e],s[r],s[i],s[a],this.offset)},i.pick=function(t,r,n,i,a){var o=[],s=[],l=this.offset;return"number"==typeof t&&t>=0?l=l+this.stride[0]*t|0:(o.push(this.shape[0]),s.push(this.stride[0])),"number"==typeof r&&r>=0?l=l+this.stride[1]*r|0:(o.push(this.shape[1]),s.push(this.stride[1])),"number"==typeof n&&n>=0?l=l+this.stride[2]*n|0:(o.push(this.shape[2]),s.push(this.stride[2])),"number"==typeof i&&i>=0?l=l+this.stride[3]*i|0:(o.push(this.shape[3]),s.push(this.stride[3])),"number"==typeof a&&a>=0?l=l+this.stride[4]*a|0:(o.push(this.shape[4]),s.push(this.stride[4])),(0,e[o.length+1])(this.data,o,s,l)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],e[3],e[4],r[0],r[1],r[2],r[3],r[4],i)}}};function l(t,e){var r=-1===e?"T":String(e),n=s[r];return-1===e?n(t):0===e?n(t,c[t][0]):n(t,c[t],o)}var c={generic:[],buffer:[],array:[],float32:[],float64:[],int8:[],int16:[],int32:[],uint8_clamped:[],uint8:[],uint16:[],uint32:[],bigint64:[],biguint64:[]};e.exports=function(t,e,r,a){if(void 0===t)return(0,c.array[0])([]);"number"==typeof t&&(t=[t]),void 0===e&&(e=[t.length]);var o=e.length;if(void 0===r){r=new Array(o);for(var s=o-1,u=1;s>=0;--s)r[s]=u,u*=e[s]}if(void 0===a){a=0;for(s=0;st==t>0?a===-1>>>0?(r+=1,a=0):a+=1:0===a?(a=-1>>>0,r-=1):a-=1;return n.pack(a,r)}},{"double-bits":174}],464:[function(t,e,r){var n=Math.PI,i=c(120);function a(t,e,r,n){return["C",t,e,r,n,r,n]}function o(t,e,r,n,i,a){return["C",t/3+2/3*r,e/3+2/3*n,i/3+2/3*r,a/3+2/3*n,i,a]}function s(t,e,r,a,o,c,u,f,h,p){if(p)T=p[0],k=p[1],_=p[2],w=p[3];else{var d=l(t,e,-o);t=d.x,e=d.y;var m=(t-(f=(d=l(f,h,-o)).x))/2,g=(e-(h=d.y))/2,v=m*m/(r*r)+g*g/(a*a);v>1&&(r*=v=Math.sqrt(v),a*=v);var y=r*r,x=a*a,b=(c==u?-1:1)*Math.sqrt(Math.abs((y*x-y*g*g-x*m*m)/(y*g*g+x*m*m)));b==1/0&&(b=1);var _=b*r*g/a+(t+f)/2,w=b*-a*m/r+(e+h)/2,T=Math.asin(((e-w)/a).toFixed(9)),k=Math.asin(((h-w)/a).toFixed(9));(T=t<_?n-T:T)<0&&(T=2*n+T),(k=f<_?n-k:k)<0&&(k=2*n+k),u&&T>k&&(T-=2*n),!u&&k>T&&(k-=2*n)}if(Math.abs(k-T)>i){var A=k,M=f,S=h;k=T+i*(u&&k>T?1:-1);var E=s(f=_+r*Math.cos(k),h=w+a*Math.sin(k),r,a,o,0,u,M,S,[k,A,_,w])}var L=Math.tan((k-T)/4),C=4/3*r*L,P=4/3*a*L,I=[2*t-(t+C*Math.sin(T)),2*e-(e-P*Math.cos(T)),f+C*Math.sin(k),h-P*Math.cos(k),f,h];if(p)return I;E&&(I=I.concat(E));for(var O=0;O7&&(r.push(v.splice(0,7)),v.unshift("C"));break;case"S":var x=p,b=d;"C"!=e&&"S"!=e||(x+=x-n,b+=b-i),v=["C",x,b,v[1],v[2],v[3],v[4]];break;case"T":"Q"==e||"T"==e?(f=2*p-f,h=2*d-h):(f=p,h=d),v=o(p,d,f,h,v[1],v[2]);break;case"Q":f=v[1],h=v[2],v=o(p,d,v[1],v[2],v[3],v[4]);break;case"L":v=a(p,d,v[1],v[2]);break;case"H":v=a(p,d,v[1],d);break;case"V":v=a(p,d,p,v[1]);break;case"Z":v=a(p,d,l,u)}e=y,p=v[v.length-2],d=v[v.length-1],v.length>4?(n=v[v.length-4],i=v[v.length-3]):(n=p,i=d),r.push(v)}return r}},{}],465:[function(t,e,r){r.vertexNormals=function(t,e,r){for(var n=e.length,i=new Array(n),a=void 0===r?1e-6:r,o=0;oa){var b=i[c],_=1/Math.sqrt(g*y);for(x=0;x<3;++x){var w=(x+1)%3,T=(x+2)%3;b[x]+=_*(v[w]*m[T]-v[T]*m[w])}}}for(o=0;oa)for(_=1/Math.sqrt(k),x=0;x<3;++x)b[x]*=_;else for(x=0;x<3;++x)b[x]=0}return i},r.faceNormals=function(t,e,r){for(var n=t.length,i=new Array(n),a=void 0===r?1e-6:r,o=0;oa?1/Math.sqrt(p):0;for(c=0;c<3;++c)h[c]*=p;i[o]=h}return i}},{}],466:[function(t,e,r){ /* object-assign (c) Sindre Sorhus @license MIT */ -"use strict";var n=Object.getOwnPropertySymbols,i=Object.prototype.hasOwnProperty,a=Object.prototype.propertyIsEnumerable;function o(t){if(null==t)throw new TypeError("Object.assign cannot be called with null or undefined");return Object(t)}e.exports=function(){try{if(!Object.assign)return!1;var t=new String("abc");if(t[5]="de","5"===Object.getOwnPropertyNames(t)[0])return!1;for(var e={},r=0;r<10;r++)e["_"+String.fromCharCode(r)]=r;if("0123456789"!==Object.getOwnPropertyNames(e).map((function(t){return e[t]})).join(""))return!1;var n={};return"abcdefghijklmnopqrst".split("").forEach((function(t){n[t]=t})),"abcdefghijklmnopqrst"===Object.keys(Object.assign({},n)).join("")}catch(t){return!1}}()?Object.assign:function(t,e){for(var r,s,l=o(t),c=1;c1e4)throw Error("References have circular dependency. Please, check them.");r[n]=t})),n=n.reverse(),r=r.map((function(e){return n.forEach((function(r){e=e.replace(new RegExp("(\\"+i+r+"\\"+i+")","g"),t[0]+"$1"+t[1])})),e}))}));var o=new RegExp("\\"+i+"([0-9]+)\\"+i);return a?r:function t(e,r,n){for(var i,a=[],s=0;i=o.exec(e);){if(s++>1e4)throw Error("Circular references in parenthesis");a.push(e.slice(0,i.index)),a.push(t(r[i[1]],r)),e=e.slice(i.index+i[0].length)}return a.push(e),a}(r[0],r)}function i(t,e){if(e&&e.flat){var r,n=e&&e.escape||"___",i=t[0];if(!i)return"";for(var a=new RegExp("\\"+n+"([0-9]+)\\"+n),o=0;i!=r;){if(o++>1e4)throw Error("Circular references in "+t);r=i,i=i.replace(a,s)}return i}return t.reduce((function t(e,r){return Array.isArray(r)&&(r=r.reduce(t,"")),e+r}),"");function s(e,r){if(null==t[r])throw Error("Reference "+r+"is undefined");return t[r]}}function a(t,e){return Array.isArray(t)?i(t,e):n(t,e)}a.parse=n,a.stringify=i,e.exports=a},{}],244:[function(t,e,r){"use strict";var n=t("pick-by-alias");e.exports=function(t){var e;arguments.length>1&&(t=arguments);"string"==typeof t?t=t.split(/\s/).map(parseFloat):"number"==typeof t&&(t=[t]);t.length&&"number"==typeof t[0]?e=1===t.length?{width:t[0],height:t[0],x:0,y:0}:2===t.length?{width:t[0],height:t[1],x:0,y:0}:{x:t[0],y:t[1],width:t[2]-t[0]||0,height:t[3]-t[1]||0}:t&&(t=n(t,{left:"x l left Left",top:"y t top Top",width:"w width W Width",height:"h height W Width",bottom:"b bottom Bottom",right:"r right Right"}),e={x:t.left||0,y:t.top||0},null==t.width?t.right?e.width=t.right-e.x:e.width=0:e.width=t.width,null==t.height?t.bottom?e.height=t.bottom-e.y:e.height=0:e.height=t.height);return e}},{"pick-by-alias":248}],245:[function(t,e,r){e.exports=function(t){var e=[];return t.replace(i,(function(t,r,i){var o=r.toLowerCase();for(i=function(t){var e=t.match(a);return e?e.map(Number):[]}(i),"m"==o&&i.length>2&&(e.push([r].concat(i.splice(0,2))),o="l",r="m"==r?"l":"L");;){if(i.length==n[o])return i.unshift(r),e.push(i);if(i.length=-t},pointBetween:function(e,r,n){var i=e[1]-r[1],a=n[0]-r[0],o=e[0]-r[0],s=n[1]-r[1],l=o*a+i*s;return!(l-t)},pointsSameX:function(e,r){return Math.abs(e[0]-r[0])t!=o-i>t&&(a-c)*(i-u)/(o-u)+c-n>t&&(s=!s),a=c,o=u}return s}};return e}},{}],252:[function(t,e,r){var n={toPolygon:function(t,e){function r(e){if(e.length<=0)return t.segments({inverted:!1,regions:[]});function r(e){var r=e.slice(0,e.length-1);return t.segments({inverted:!1,regions:[r]})}for(var n=r(e[0]),i=1;i0}))}function u(t,n){var i=t.seg,a=n.seg,o=i.start,s=i.end,c=a.start,u=a.end;r&&r.checkIntersection(i,a);var f=e.linesIntersect(o,s,c,u);if(!1===f){if(!e.pointsCollinear(o,s,c))return!1;if(e.pointsSame(o,u)||e.pointsSame(s,c))return!1;var h=e.pointsSame(o,c),p=e.pointsSame(s,u);if(h&&p)return n;var d=!h&&e.pointBetween(o,c,u),m=!p&&e.pointBetween(s,c,u);if(h)return m?l(n,s):l(t,u),n;d&&(p||(m?l(n,s):l(t,u)),l(n,o))}else 0===f.alongA&&(-1===f.alongB?l(t,c):0===f.alongB?l(t,f.pt):1===f.alongB&&l(t,u)),0===f.alongB&&(-1===f.alongA?l(n,o):0===f.alongA?l(n,f.pt):1===f.alongA&&l(n,s));return!1}for(var f=[];!a.isEmpty();){var h=a.getHead();if(r&&r.vert(h.pt[0]),h.isStart){r&&r.segmentNew(h.seg,h.primary);var p=c(h),d=p.before?p.before.ev:null,m=p.after?p.after.ev:null;function g(){if(d){var t=u(h,d);if(t)return t}return!!m&&u(h,m)}r&&r.tempStatus(h.seg,!!d&&d.seg,!!m&&m.seg);var v,y=g();if(y){var x;if(t)(x=null===h.seg.myFill.below||h.seg.myFill.above!==h.seg.myFill.below)&&(y.seg.myFill.above=!y.seg.myFill.above);else y.seg.otherFill=h.seg.myFill;r&&r.segmentUpdate(y.seg),h.other.remove(),h.remove()}if(a.getHead()!==h){r&&r.rewind(h.seg);continue}if(t)x=null===h.seg.myFill.below||h.seg.myFill.above!==h.seg.myFill.below,h.seg.myFill.below=m?m.seg.myFill.above:i,h.seg.myFill.above=x?!h.seg.myFill.below:h.seg.myFill.below;else if(null===h.seg.otherFill)v=m?h.primary===m.primary?m.seg.otherFill.above:m.seg.myFill.above:h.primary?o:i,h.seg.otherFill={above:v,below:v};r&&r.status(h.seg,!!d&&d.seg,!!m&&m.seg),h.other.status=p.insert(n.node({ev:h}))}else{var b=h.status;if(null===b)throw new Error("PolyBool: Zero-length segment detected; your epsilon is probably too small or too large");if(s.exists(b.prev)&&s.exists(b.next)&&u(b.prev.ev,b.next.ev),r&&r.statusRemove(b.ev.seg),b.remove(),!h.primary){var _=h.seg.myFill;h.seg.myFill=h.seg.otherFill,h.seg.otherFill=_}f.push(h.seg)}a.getHead().remove()}return r&&r.done(),f}return t?{addRegion:function(t){for(var n,i,a,o=t[t.length-1],l=0;l0&&!this.aborted;){var r=this.ifds_to_read.shift();r.offset&&this.scan_ifd(r.id,r.offset,t)}},a.prototype.read_uint16=function(t){var e=this.input;if(t+2>e.length)throw n("unexpected EOF","EBADDATA");return this.big_endian?256*e[t]+e[t+1]:e[t]+256*e[t+1]},a.prototype.read_uint32=function(t){var e=this.input;if(t+4>e.length)throw n("unexpected EOF","EBADDATA");return this.big_endian?16777216*e[t]+65536*e[t+1]+256*e[t+2]+e[t+3]:e[t]+256*e[t+1]+65536*e[t+2]+16777216*e[t+3]},a.prototype.is_subifd_link=function(t,e){return 0===t&&34665===e||0===t&&34853===e||34665===t&&40965===e},a.prototype.exif_format_length=function(t){switch(t){case 1:case 2:case 6:case 7:return 1;case 3:case 8:return 2;case 4:case 9:case 11:return 4;case 5:case 10:case 12:return 8;default:return 0}},a.prototype.exif_format_read=function(t,e){var r;switch(t){case 1:case 2:return r=this.input[e];case 6:return(r=this.input[e])|33554430*(128&r);case 3:return r=this.read_uint16(e);case 8:return(r=this.read_uint16(e))|131070*(32768&r);case 4:return r=this.read_uint32(e);case 9:return 0|(r=this.read_uint32(e));case 5:case 10:case 11:case 12:case 7:default:return null}},a.prototype.scan_ifd=function(t,e,r){var a=this.read_uint16(e);e+=2;for(var o=0;othis.input.length)throw n("unexpected EOF","EBADDATA");for(var d=[],m=h,g=0;g0&&(this.ifds_to_read.push({id:s,offset:d[0]}),p=!0),!1===r({is_big_endian:this.big_endian,ifd:t,tag:s,format:l,count:c,entry_offset:e+this.start,data_length:f,data_offset:h+this.start,value:d,is_subifd_link:p}))return void(this.aborted=!0);e+=12}0===t&&this.ifds_to_read.push({id:1,offset:this.read_uint32(e)})},e.exports.ExifParser=a,e.exports.get_orientation=function(t){var e=0;try{return new a(t,0,t.length).each((function(t){if(0===t.ifd&&274===t.tag&&Array.isArray(t.value))return e=t.value[0],!1})),e}catch(t){return-1}}},{}],259:[function(t,e,r){"use strict";var n=t("./common").readUInt16BE,i=t("./common").readUInt32BE;function a(t,e){if(t.length<4+e)return null;var r=i(t,e);return t.length>4&15,i=15&t[4],a=t[5]>>4&15,o=n(t,6),l=8,c=0;ce.width||t.width===e.width&&t.height>e.height?t:e})),i=r.reduce((function(t,e){return t.height>e.height||t.height===e.height&&t.width>e.width?t:e})),n.width>i.height||n.width===i.height&&n.height>i.width?n:i),s=1;e.transforms.forEach((function(t){var e={1:6,2:5,3:8,4:7,5:4,6:3,7:2,8:1},r={1:4,2:3,3:2,4:1,5:6,6:5,7:8,8:7};if("imir"===t.type&&(s=0===t.value?r[s]:e[s=e[s=r[s]]]),"irot"===t.type)for(var n=0;n1&&(h.variants=f.variants),f.orientation&&(h.orientation=f.orientation),f.exif_location&&f.exif_location.offset+f.exif_location.length<=t.length){var p=a(t,f.exif_location.offset),d=t.slice(f.exif_location.offset+p+4,f.exif_location.offset+f.exif_location.length),m=s.get_orientation(d);m>0&&(h.orientation=m)}return h}}}}}}},{"../common":257,"../exif_utils":258,"../miaf_utils":259}],261:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt16LE,o=n("BM");e.exports=function(t){if(!(t.length<26)&&i(t,0,o))return{width:a(t,18),height:a(t,22),type:"bmp",mime:"image/bmp",wUnits:"px",hUnits:"px"}}},{"../common":257}],262:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt16LE,o=n("GIF87a"),s=n("GIF89a");e.exports=function(t){if(!(t.length<10)&&(i(t,0,o)||i(t,0,s)))return{width:a(t,6),height:a(t,8),type:"gif",mime:"image/gif",wUnits:"px",hUnits:"px"}}},{"../common":257}],263:[function(t,e,r){"use strict";var n=t("../common").readUInt16LE;e.exports=function(t){var e=n(t,0),r=n(t,2),i=n(t,4);if(0===e&&1===r&&i){for(var a=[],o={width:0,height:0},s=0;so.width||c>o.height)&&(o=u)}return{width:o.width,height:o.height,variants:a,type:"ico",mime:"image/x-icon",wUnits:"px",hUnits:"px"}}}},{"../common":257}],264:[function(t,e,r){"use strict";var n=t("../common").readUInt16BE,i=t("../common").str2arr,a=t("../common").sliceEq,o=t("../exif_utils"),s=i("Exif\0\0");e.exports=function(t){if(!(t.length<2)&&255===t[0]&&216===t[1]&&255===t[2])for(var e=2;;){for(;;){if(t.length-e<2)return;if(255===t[e++])break}for(var r,i,l=t[e++];255===l;)l=t[e++];if(208<=l&&l<=217||1===l)r=0;else{if(!(192<=l&&l<=254))return;if(t.length-e<2)return;r=n(t,e)-2,e+=2}if(217===l||218===l)return;if(225===l&&r>=10&&a(t,e,s)&&(i=o.get_orientation(t.slice(e+6,e+r))),r>=5&&192<=l&&l<=207&&196!==l&&200!==l&&204!==l){if(t.length-e0&&(c.orientation=i),c}e+=r}}},{"../common":257,"../exif_utils":258}],265:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt32BE,o=n("\x89PNG\r\n\x1a\n"),s=n("IHDR");e.exports=function(t){if(!(t.length<24)&&i(t,0,o)&&i(t,12,s))return{width:a(t,16),height:a(t,20),type:"png",mime:"image/png",wUnits:"px",hUnits:"px"}}},{"../common":257}],266:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt32BE,o=n("8BPS\0\x01");e.exports=function(t){if(!(t.length<22)&&i(t,0,o))return{width:a(t,18),height:a(t,14),type:"psd",mime:"image/vnd.adobe.photoshop",wUnits:"px",hUnits:"px"}}},{"../common":257}],267:[function(t,e,r){"use strict";function n(t){return"number"==typeof t&&isFinite(t)&&t>0}var i=/<[-_.:a-zA-Z0-9][^>]*>/,a=/^<([-_.:a-zA-Z0-9]+:)?svg\s/,o=/[^-]\bwidth="([^%]+?)"|[^-]\bwidth='([^%]+?)'/,s=/\bheight="([^%]+?)"|\bheight='([^%]+?)'/,l=/\bview[bB]ox="(.+?)"|\bview[bB]ox='(.+?)'/,c=/in$|mm$|cm$|pt$|pc$|px$|em$|ex$/;function u(t){return c.test(t)?t.match(c)[0]:"px"}e.exports=function(t){if(function(t){var e,r=0,n=t.length;for(239===t[0]&&187===t[1]&&191===t[2]&&(r=3);r>14&16383),type:"webp",mime:"image/webp",wUnits:"px",hUnits:"px"}}}function h(t,e){return{width:1+(t[e+6]<<16|t[e+5]<<8|t[e+4]),height:1+(t[e+9]<t.length)){for(;e+8=10?r=r||u(t,e+8):"VP8L"===p&&d>=9?r=r||f(t,e+8):"VP8X"===p&&d>=10?r=r||h(t,e+8):"EXIF"===p&&(n=s.get_orientation(t.slice(e+8,e+8+d)),e=1/0),e+=8+d}else e++;if(r)return n>0&&(r.orientation=n),r}}}},{"../common":257,"../exif_utils":258}],270:[function(t,e,r){"use strict";e.exports={avif:t("./parse_sync/avif"),bmp:t("./parse_sync/bmp"),gif:t("./parse_sync/gif"),ico:t("./parse_sync/ico"),jpeg:t("./parse_sync/jpeg"),png:t("./parse_sync/png"),psd:t("./parse_sync/psd"),svg:t("./parse_sync/svg"),tiff:t("./parse_sync/tiff"),webp:t("./parse_sync/webp")}},{"./parse_sync/avif":260,"./parse_sync/bmp":261,"./parse_sync/gif":262,"./parse_sync/ico":263,"./parse_sync/jpeg":264,"./parse_sync/png":265,"./parse_sync/psd":266,"./parse_sync/svg":267,"./parse_sync/tiff":268,"./parse_sync/webp":269}],271:[function(t,e,r){"use strict";var n=t("./lib/parsers_sync");e.exports=function(t){return function(t){for(var e=Object.keys(n),r=0;r1)for(var r=1;r1&&(t.scaleRatio=[t.scale[0]*t.viewport.width,t.scale[1]*t.viewport.height],r(t),t.after&&t.after(t))}function T(t){if(t){null!=t.length?"number"==typeof t[0]&&(t=[{positions:t}]):Array.isArray(t)||(t=[t]);var e=0,r=0;if(b.groups=x=t.map((function(t,c){var u=x[c];return t?("function"==typeof t?t={after:t}:"number"==typeof t[0]&&(t={positions:t}),t=o(t,{color:"color colors fill",capSize:"capSize cap capsize cap-size",lineWidth:"lineWidth line-width width line thickness",opacity:"opacity alpha",range:"range dataBox",viewport:"viewport viewBox",errors:"errors error",positions:"positions position data points"}),u||(x[c]=u={id:c,scale:null,translate:null,scaleFract:null,translateFract:null,draw:!0},t=s({},y,t)),a(u,t,[{lineWidth:function(t){return.5*+t},capSize:function(t){return.5*+t},opacity:parseFloat,errors:function(t){return t=l(t),r+=t.length,t},positions:function(t,r){return t=l(t,"float64"),r.count=Math.floor(t.length/2),r.bounds=n(t,2),r.offset=e,e+=r.count,t}},{color:function(t,e){var r=e.count;if(t||(t="transparent"),!Array.isArray(t)||"number"==typeof t[0]){var n=t;t=Array(r);for(var a=0;a 0. && baClipping < length(normalWidth * endBotJoin)) {\n\t\t//handle miter clipping\n\t\tbTopCoord -= normalWidth * endTopJoin;\n\t\tbTopCoord += normalize(endTopJoin * normalWidth) * baClipping;\n\t}\n\n\tif (nextReverse) {\n\t\t//make join rectangular\n\t\tvec2 miterShift = normalWidth * endJoinDirection * miterLimit * .5;\n\t\tfloat normalAdjust = 1. - min(miterLimit / endMiterRatio, 1.);\n\t\tbBotCoord = bCoord + miterShift - normalAdjust * normalWidth * currNormal * .5;\n\t\tbTopCoord = bCoord + miterShift + normalAdjust * normalWidth * currNormal * .5;\n\t}\n\telse if (!prevReverse && abClipping > 0. && abClipping < length(normalWidth * startBotJoin)) {\n\t\t//handle miter clipping\n\t\taBotCoord -= normalWidth * startBotJoin;\n\t\taBotCoord += normalize(startBotJoin * normalWidth) * abClipping;\n\t}\n\n\tvec2 aTopPosition = (aTopCoord) * adjustedScale + translate;\n\tvec2 aBotPosition = (aBotCoord) * adjustedScale + translate;\n\n\tvec2 bTopPosition = (bTopCoord) * adjustedScale + translate;\n\tvec2 bBotPosition = (bBotCoord) * adjustedScale + translate;\n\n\t//position is normalized 0..1 coord on the screen\n\tvec2 position = (aTopPosition * lineTop + aBotPosition * lineBot) * lineStart + (bTopPosition * lineTop + bBotPosition * lineBot) * lineEnd;\n\n\tstartCoord = aCoord * scaleRatio + translate * viewport.zw + viewport.xy;\n\tendCoord = bCoord * scaleRatio + translate * viewport.zw + viewport.xy;\n\n\tgl_Position = vec4(position * 2.0 - 1.0, depth, 1);\n\n\tenableStartMiter = step(dot(currTangent, prevTangent), .5);\n\tenableEndMiter = step(dot(currTangent, nextTangent), .5);\n\n\t//bevel miter cutoffs\n\tif (miterMode == 1.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tvec2 startMiterWidth = vec2(startJoinDirection) * thickness * miterLimit * .5;\n\t\t\tstartCutoff = vec4(aCoord, aCoord);\n\t\t\tstartCutoff.zw += vec2(-startJoinDirection.y, startJoinDirection.x) / scaleRatio;\n\t\t\tstartCutoff = startCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tstartCutoff += viewport.xyxy;\n\t\t\tstartCutoff += startMiterWidth.xyxy;\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tvec2 endMiterWidth = vec2(endJoinDirection) * thickness * miterLimit * .5;\n\t\t\tendCutoff = vec4(bCoord, bCoord);\n\t\t\tendCutoff.zw += vec2(-endJoinDirection.y, endJoinDirection.x) / scaleRatio;\n\t\t\tendCutoff = endCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tendCutoff += viewport.xyxy;\n\t\t\tendCutoff += endMiterWidth.xyxy;\n\t\t}\n\t}\n\n\t//round miter cutoffs\n\telse if (miterMode == 2.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tvec2 startMiterWidth = vec2(startJoinDirection) * thickness * abs(dot(startJoinDirection, currNormal)) * .5;\n\t\t\tstartCutoff = vec4(aCoord, aCoord);\n\t\t\tstartCutoff.zw += vec2(-startJoinDirection.y, startJoinDirection.x) / scaleRatio;\n\t\t\tstartCutoff = startCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tstartCutoff += viewport.xyxy;\n\t\t\tstartCutoff += startMiterWidth.xyxy;\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tvec2 endMiterWidth = vec2(endJoinDirection) * thickness * abs(dot(endJoinDirection, currNormal)) * .5;\n\t\t\tendCutoff = vec4(bCoord, bCoord);\n\t\t\tendCutoff.zw += vec2(-endJoinDirection.y, endJoinDirection.x) / scaleRatio;\n\t\t\tendCutoff = endCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tendCutoff += viewport.xyxy;\n\t\t\tendCutoff += endMiterWidth.xyxy;\n\t\t}\n\t}\n}\n"]),frag:o(["precision highp float;\n#define GLSLIFY 1\n\nuniform float dashLength, pixelRatio, thickness, opacity, id, miterMode;\nuniform sampler2D dashTexture;\n\nvarying vec4 fragColor;\nvarying vec2 tangent;\nvarying vec4 startCutoff, endCutoff;\nvarying vec2 startCoord, endCoord;\nvarying float enableStartMiter, enableEndMiter;\n\nfloat distToLine(vec2 p, vec2 a, vec2 b) {\n\tvec2 diff = b - a;\n\tvec2 perp = normalize(vec2(-diff.y, diff.x));\n\treturn dot(p - a, perp);\n}\n\nvoid main() {\n\tfloat alpha = 1., distToStart, distToEnd;\n\tfloat cutoff = thickness * .5;\n\n\t//bevel miter\n\tif (miterMode == 1.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tdistToStart = distToLine(gl_FragCoord.xy, startCutoff.xy, startCutoff.zw);\n\t\t\tif (distToStart < -1.) {\n\t\t\t\tdiscard;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\talpha *= min(max(distToStart + 1., 0.), 1.);\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tdistToEnd = distToLine(gl_FragCoord.xy, endCutoff.xy, endCutoff.zw);\n\t\t\tif (distToEnd < -1.) {\n\t\t\t\tdiscard;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\talpha *= min(max(distToEnd + 1., 0.), 1.);\n\t\t}\n\t}\n\n\t// round miter\n\telse if (miterMode == 2.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tdistToStart = distToLine(gl_FragCoord.xy, startCutoff.xy, startCutoff.zw);\n\t\t\tif (distToStart < 0.) {\n\t\t\t\tfloat radius = length(gl_FragCoord.xy - startCoord);\n\n\t\t\t\tif(radius > cutoff + .5) {\n\t\t\t\t\tdiscard;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\talpha -= smoothstep(cutoff - .5, cutoff + .5, radius);\n\t\t\t}\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tdistToEnd = distToLine(gl_FragCoord.xy, endCutoff.xy, endCutoff.zw);\n\t\t\tif (distToEnd < 0.) {\n\t\t\t\tfloat radius = length(gl_FragCoord.xy - endCoord);\n\n\t\t\t\tif(radius > cutoff + .5) {\n\t\t\t\t\tdiscard;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\talpha -= smoothstep(cutoff - .5, cutoff + .5, radius);\n\t\t\t}\n\t\t}\n\t}\n\n\tfloat t = fract(dot(tangent, gl_FragCoord.xy) / dashLength) * .5 + .25;\n\tfloat dash = texture2D(dashTexture, vec2(t, .5)).r;\n\n\tgl_FragColor = fragColor;\n\tgl_FragColor.a *= alpha * opacity * dash;\n}\n"]),attributes:{lineEnd:{buffer:r,divisor:0,stride:8,offset:0},lineTop:{buffer:r,divisor:0,stride:8,offset:4},aColor:{buffer:t.prop("colorBuffer"),stride:4,offset:0,divisor:1},bColor:{buffer:t.prop("colorBuffer"),stride:4,offset:4,divisor:1},prevCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:0,divisor:1},aCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:8,divisor:1},bCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:16,divisor:1},nextCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:24,divisor:1}}},n))}catch(t){e=i}return{fill:t({primitive:"triangle",elements:function(t,e){return e.triangles},offset:0,vert:o(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec2 position, positionFract;\n\nuniform vec4 color;\nuniform vec2 scale, scaleFract, translate, translateFract;\nuniform float pixelRatio, id;\nuniform vec4 viewport;\nuniform float opacity;\n\nvarying vec4 fragColor;\n\nconst float MAX_LINES = 256.;\n\nvoid main() {\n\tfloat depth = (MAX_LINES - 4. - id) / (MAX_LINES);\n\n\tvec2 position = position * scale + translate\n + positionFract * scale + translateFract\n + position * scaleFract\n + positionFract * scaleFract;\n\n\tgl_Position = vec4(position * 2.0 - 1.0, depth, 1);\n\n\tfragColor = color / 255.;\n\tfragColor.a *= opacity;\n}\n"]),frag:o(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nvoid main() {\n\tgl_FragColor = fragColor;\n}\n"]),uniforms:{scale:t.prop("scale"),color:t.prop("fill"),scaleFract:t.prop("scaleFract"),translateFract:t.prop("translateFract"),translate:t.prop("translate"),opacity:t.prop("opacity"),pixelRatio:t.context("pixelRatio"),id:t.prop("id"),viewport:function(t,e){return[e.viewport.x,e.viewport.y,t.viewportWidth,t.viewportHeight]}},attributes:{position:{buffer:t.prop("positionBuffer"),stride:8,offset:8},positionFract:{buffer:t.prop("positionFractBuffer"),stride:8,offset:8}},blend:n.blend,depth:{enable:!1},scissor:n.scissor,stencil:n.stencil,viewport:n.viewport}),rect:i,miter:e}},v.defaults={dashes:null,join:"miter",miterLimit:1,thickness:10,cap:"square",color:"black",opacity:1,overlay:!1,viewport:null,range:null,close:!1,fill:null},v.prototype.render=function(){for(var t,e=[],r=arguments.length;r--;)e[r]=arguments[r];e.length&&(t=this).update.apply(t,e),this.draw()},v.prototype.draw=function(){for(var t=this,e=[],r=arguments.length;r--;)e[r]=arguments[r];return(e.length?e:this.passes).forEach((function(e,r){var n;if(e&&Array.isArray(e))return(n=t).draw.apply(n,e);"number"==typeof e&&(e=t.passes[e]),e&&e.count>1&&e.opacity&&(t.regl._refresh(),e.fill&&e.triangles&&e.triangles.length>2&&t.shaders.fill(e),e.thickness&&(e.scale[0]*e.viewport.width>v.precisionThreshold||e.scale[1]*e.viewport.height>v.precisionThreshold||"rect"===e.join||!e.join&&(e.thickness<=2||e.count>=v.maxPoints)?t.shaders.rect(e):t.shaders.miter(e)))})),this},v.prototype.update=function(t){var e=this;if(t){null!=t.length?"number"==typeof t[0]&&(t=[{positions:t}]):Array.isArray(t)||(t=[t]);var r=this.regl,o=this.gl;if(t.forEach((function(t,f){var d=e.passes[f];if(void 0!==t)if(null!==t){if("number"==typeof t[0]&&(t={positions:t}),t=s(t,{positions:"positions points data coords",thickness:"thickness lineWidth lineWidths line-width linewidth width stroke-width strokewidth strokeWidth",join:"lineJoin linejoin join type mode",miterLimit:"miterlimit miterLimit",dashes:"dash dashes dasharray dash-array dashArray",color:"color colour stroke colors colours stroke-color strokeColor",fill:"fill fill-color fillColor",opacity:"alpha opacity",overlay:"overlay crease overlap intersect",close:"closed close closed-path closePath",range:"range dataBox",viewport:"viewport viewBox",hole:"holes hole hollow",splitNull:"splitNull"}),d||(e.passes[f]=d={id:f,scale:null,scaleFract:null,translate:null,translateFract:null,count:0,hole:[],depth:0,dashLength:1,dashTexture:r.texture({channels:1,data:new Uint8Array([255]),width:1,height:1,mag:"linear",min:"linear"}),colorBuffer:r.buffer({usage:"dynamic",type:"uint8",data:new Uint8Array}),positionBuffer:r.buffer({usage:"dynamic",type:"float",data:new Uint8Array}),positionFractBuffer:r.buffer({usage:"dynamic",type:"float",data:new Uint8Array})},t=a({},v.defaults,t)),null!=t.thickness&&(d.thickness=parseFloat(t.thickness)),null!=t.opacity&&(d.opacity=parseFloat(t.opacity)),null!=t.miterLimit&&(d.miterLimit=parseFloat(t.miterLimit)),null!=t.overlay&&(d.overlay=!!t.overlay,f=D}));(I=I.slice(0,R)).push(D)}for(var F=function(t){var e=k.slice(2*z,2*I[t]).concat(D?k.slice(2*D):[]),r=(d.hole||[]).map((function(e){return e-D+(I[t]-z)})),n=c(e,r);n=n.map((function(e){return e+z+(e+zt.length)&&(e=t.length);for(var r=0,n=new Array(e);r 1.0 + delta) {\n\t\tdiscard;\n\t}\n\n\talpha -= smoothstep(1.0 - delta, 1.0 + delta, radius);\n\n\tfloat borderRadius = fragBorderRadius;\n\tfloat ratio = smoothstep(borderRadius - delta, borderRadius + delta, radius);\n\tvec4 color = mix(fragColor, fragBorderColor, ratio);\n\tcolor.a *= alpha * opacity;\n\tgl_FragColor = color;\n}\n"]),l.vert=h(["precision highp float;\n#define GLSLIFY 1\n\nattribute float x, y, xFract, yFract;\nattribute float size, borderSize;\nattribute vec4 colorId, borderColorId;\nattribute float isActive;\n\nuniform bool constPointSize;\nuniform float pixelRatio;\nuniform vec2 paletteSize, scale, scaleFract, translate, translateFract;\nuniform sampler2D paletteTexture;\n\nconst float maxSize = 100.;\n\nvarying vec4 fragColor, fragBorderColor;\nvarying float fragBorderRadius, fragWidth;\n\nfloat pointSizeScale = (constPointSize) ? 2. : pixelRatio;\n\nbool isDirect = (paletteSize.x < 1.);\n\nvec4 getColor(vec4 id) {\n return isDirect ? id / 255. : texture2D(paletteTexture,\n vec2(\n (id.x + .5) / paletteSize.x,\n (id.y + .5) / paletteSize.y\n )\n );\n}\n\nvoid main() {\n // ignore inactive points\n if (isActive == 0.) return;\n\n vec2 position = vec2(x, y);\n vec2 positionFract = vec2(xFract, yFract);\n\n vec4 color = getColor(colorId);\n vec4 borderColor = getColor(borderColorId);\n\n float size = size * maxSize / 255.;\n float borderSize = borderSize * maxSize / 255.;\n\n gl_PointSize = (size + borderSize) * pointSizeScale;\n\n vec2 pos = (position + translate) * scale\n + (positionFract + translateFract) * scale\n + (position + translate) * scaleFract\n + (positionFract + translateFract) * scaleFract;\n\n gl_Position = vec4(pos * 2. - 1., 0., 1.);\n\n fragBorderRadius = 1. - 2. * borderSize / (size + borderSize);\n fragColor = color;\n fragBorderColor = borderColor.a == 0. || borderSize == 0. ? vec4(color.rgb, 0.) : borderColor;\n fragWidth = 1. / gl_PointSize;\n}\n"]),g&&(l.frag=l.frag.replace("smoothstep","smoothStep"),s.frag=s.frag.replace("smoothstep","smoothStep")),this.drawCircle=t(l)}b.defaults={color:"black",borderColor:"transparent",borderSize:0,size:12,opacity:1,marker:void 0,viewport:null,range:null,pixelSize:null,count:0,offset:0,bounds:null,positions:[],snap:1e4},b.prototype.render=function(){return arguments.length&&this.update.apply(this,arguments),this.draw(),this},b.prototype.draw=function(){for(var t=this,e=arguments.length,r=new Array(e),n=0;nn)?e.tree=u(t,{bounds:f}):n&&n.length&&(e.tree=n),e.tree){var h={primitive:"points",usage:"static",data:e.tree,type:"uint32"};e.elements?e.elements(h):e.elements=o.elements(h)}var p=v.float32(t);return i({data:p,usage:"dynamic"}),a({data:v.fract32(t,p),usage:"dynamic"}),s({data:new Uint8Array(c),type:"uint8",usage:"stream"}),t}},{marker:function(e,r,n){var i=r.activation;if(i.forEach((function(t){return t&&t.destroy&&t.destroy()})),i.length=0,e&&"number"!=typeof e[0]){for(var a=[],s=0,l=Math.min(e.length,r.count);s=0)return a;if(t instanceof Uint8Array||t instanceof Uint8ClampedArray)e=t;else{e=new Uint8Array(t.length);for(var o=0,s=t.length;o4*n&&(this.tooManyColors=!0),this.updatePalette(r),1===i.length?i[0]:i},b.prototype.updatePalette=function(t){if(!this.tooManyColors){var e=this.maxColors,r=this.paletteTexture,n=Math.ceil(.25*t.length/e);if(n>1)for(var i=.25*(t=t.slice()).length%e;i2?(s[0],s[2],n=s[1],i=s[3]):s.length?(n=s[0],i=s[1]):(s.x,n=s.y,s.x+s.width,i=s.y+s.height),l.length>2?(a=l[0],o=l[2],l[1],l[3]):l.length?(a=l[0],o=l[1]):(a=l.x,l.y,o=l.x+l.width,l.y+l.height),[a,n,o,i]}function p(t){if("number"==typeof t)return[t,t,t,t];if(2===t.length)return[t[0],t[1],t[0],t[1]];var e=l(t);return[e.x,e.y,e.x+e.width,e.y+e.height]}e.exports=u,u.prototype.render=function(){for(var t,e=this,r=[],n=arguments.length;n--;)r[n]=arguments[n];return r.length&&(t=this).update.apply(t,r),this.regl.attributes.preserveDrawingBuffer?this.draw():(this.dirty?null==this.planned&&(this.planned=o((function(){e.draw(),e.dirty=!0,e.planned=null}))):(this.draw(),this.dirty=!0,o((function(){e.dirty=!1}))),this)},u.prototype.update=function(){for(var t,e=[],r=arguments.length;r--;)e[r]=arguments[r];if(e.length){for(var n=0;nk))&&(s.lower||!(T>>=e))<<3,(e|=r=(15<(t>>>=r))<<2)|(r=(3<(t>>>=r))<<1)|t>>>r>>1}function s(){function t(t){t:{for(var e=16;268435456>=e;e*=16)if(t<=e){t=e;break t}t=0}return 0<(e=r[o(t)>>2]).length?e.pop():new ArrayBuffer(t)}function e(t){r[o(t.byteLength)>>2].push(t)}var r=a(8,(function(){return[]}));return{alloc:t,free:e,allocType:function(e,r){var n=null;switch(e){case 5120:n=new Int8Array(t(r),0,r);break;case 5121:n=new Uint8Array(t(r),0,r);break;case 5122:n=new Int16Array(t(2*r),0,r);break;case 5123:n=new Uint16Array(t(2*r),0,r);break;case 5124:n=new Int32Array(t(4*r),0,r);break;case 5125:n=new Uint32Array(t(4*r),0,r);break;case 5126:n=new Float32Array(t(4*r),0,r);break;default:return null}return n.length!==r?n.subarray(0,r):n},freeType:function(t){e(t.buffer)}}}function l(t){return!!t&&"object"==typeof t&&Array.isArray(t.shape)&&Array.isArray(t.stride)&&"number"==typeof t.offset&&t.shape.length===t.stride.length&&(Array.isArray(t.data)||J(t.data))}function c(t,e,r,n,i,a){for(var o=0;o(i=s)&&(i=n.buffer.byteLength,5123===f?i>>=1:5125===f&&(i>>=2)),n.vertCount=i,i=o,0>o&&(i=4,1===(o=n.buffer.dimension)&&(i=0),2===o&&(i=1),3===o&&(i=4)),n.primType=i}function o(t){n.elementsCount--,delete s[t.id],t.buffer.destroy(),t.buffer=null}var s={},c=0,u={uint8:5121,uint16:5123};e.oes_element_index_uint&&(u.uint32=5125),i.prototype.bind=function(){this.buffer.bind()};var f=[];return{create:function(t,e){function s(t){if(t)if("number"==typeof t)c(t),f.primType=4,f.vertCount=0|t,f.type=5121;else{var e=null,r=35044,n=-1,i=-1,o=0,h=0;Array.isArray(t)||J(t)||l(t)?e=t:("data"in t&&(e=t.data),"usage"in t&&(r=et[t.usage]),"primitive"in t&&(n=at[t.primitive]),"count"in t&&(i=0|t.count),"type"in t&&(h=u[t.type]),"length"in t?o=0|t.length:(o=i,5123===h||5122===h?o*=2:5125!==h&&5124!==h||(o*=4))),a(f,e,r,n,i,o,h)}else c(),f.primType=4,f.vertCount=0,f.type=5121;return s}var c=r.create(null,34963,!0),f=new i(c._buffer);return n.elementsCount++,s(t),s._reglType="elements",s._elements=f,s.subdata=function(t,e){return c.subdata(t,e),s},s.destroy=function(){o(f)},s},createStream:function(t){var e=f.pop();return e||(e=new i(r.create(null,34963,!0,!1)._buffer)),a(e,t,35040,-1,-1,0,0),e},destroyStream:function(t){f.push(t)},getElements:function(t){return"function"==typeof t&&t._elements instanceof i?t._elements:null},clear:function(){K(s).forEach(o)}}}function m(t){for(var e=X.allocType(5123,t.length),r=0;r>>31<<15,i=(a<<1>>>24)-127,a=a>>13&1023;e[r]=-24>i?n:-14>i?n+(a+1024>>-14-i):15>=i,r.height>>=i,p(r,n[i]),t.mipmask|=1<e;++e)t.images[e]=null;return t}function C(t){for(var e=t.images,r=0;re){for(var r=0;r=--this.refCount&&F(this)}}),o.profile&&(a.getTotalTextureSize=function(){var t=0;return Object.keys(yt).forEach((function(e){t+=yt[e].stats.size})),t}),{create2D:function(e,r){function n(t,e){var r=i.texInfo;P.call(r);var a=L();return"number"==typeof t?M(a,0|t,"number"==typeof e?0|e:0|t):t?(I(r,t),S(a,t)):M(a,1,1),r.genMipmaps&&(a.mipmask=(a.width<<1)-1),i.mipmask=a.mipmask,c(i,a),i.internalformat=a.internalformat,n.width=a.width,n.height=a.height,D(i),E(a,3553),O(r,3553),R(),C(a),o.profile&&(i.stats.size=T(i.internalformat,i.type,a.width,a.height,r.genMipmaps,!1)),n.format=tt[i.internalformat],n.type=et[i.type],n.mag=rt[r.magFilter],n.min=nt[r.minFilter],n.wrapS=it[r.wrapS],n.wrapT=it[r.wrapT],n}var i=new z(3553);return yt[i.id]=i,a.textureCount++,n(e,r),n.subimage=function(t,e,r,a){e|=0,r|=0,a|=0;var o=v();return c(o,i),o.width=0,o.height=0,p(o,t),o.width=o.width||(i.width>>a)-e,o.height=o.height||(i.height>>a)-r,D(i),d(o,3553,e,r,a),R(),k(o),n},n.resize=function(e,r){var a=0|e,s=0|r||a;if(a===i.width&&s===i.height)return n;n.width=i.width=a,n.height=i.height=s,D(i);for(var l=0;i.mipmask>>l;++l){var c=a>>l,u=s>>l;if(!c||!u)break;t.texImage2D(3553,l,i.format,c,u,0,i.format,i.type,null)}return R(),o.profile&&(i.stats.size=T(i.internalformat,i.type,a,s,!1,!1)),n},n._reglType="texture2d",n._texture=i,o.profile&&(n.stats=i.stats),n.destroy=function(){i.decRef()},n},createCube:function(e,r,n,i,s,l){function f(t,e,r,n,i,a){var s,l=h.texInfo;for(P.call(l),s=0;6>s;++s)m[s]=L();if("number"!=typeof t&&t){if("object"==typeof t)if(e)S(m[0],t),S(m[1],e),S(m[2],r),S(m[3],n),S(m[4],i),S(m[5],a);else if(I(l,t),u(h,t),"faces"in t)for(t=t.faces,s=0;6>s;++s)c(m[s],h),S(m[s],t[s]);else for(s=0;6>s;++s)S(m[s],t)}else for(t=0|t||1,s=0;6>s;++s)M(m[s],t,t);for(c(h,m[0]),h.mipmask=l.genMipmaps?(m[0].width<<1)-1:m[0].mipmask,h.internalformat=m[0].internalformat,f.width=m[0].width,f.height=m[0].height,D(h),s=0;6>s;++s)E(m[s],34069+s);for(O(l,34067),R(),o.profile&&(h.stats.size=T(h.internalformat,h.type,f.width,f.height,l.genMipmaps,!0)),f.format=tt[h.internalformat],f.type=et[h.type],f.mag=rt[l.magFilter],f.min=nt[l.minFilter],f.wrapS=it[l.wrapS],f.wrapT=it[l.wrapT],s=0;6>s;++s)C(m[s]);return f}var h=new z(34067);yt[h.id]=h,a.cubeCount++;var m=Array(6);return f(e,r,n,i,s,l),f.subimage=function(t,e,r,n,i){r|=0,n|=0,i|=0;var a=v();return c(a,h),a.width=0,a.height=0,p(a,e),a.width=a.width||(h.width>>i)-r,a.height=a.height||(h.height>>i)-n,D(h),d(a,34069+t,r,n,i),R(),k(a),f},f.resize=function(e){if((e|=0)!==h.width){f.width=h.width=e,f.height=h.height=e,D(h);for(var r=0;6>r;++r)for(var n=0;h.mipmask>>n;++n)t.texImage2D(34069+r,n,h.format,e>>n,e>>n,0,h.format,h.type,null);return R(),o.profile&&(h.stats.size=T(h.internalformat,h.type,f.width,f.height,!1,!0)),f}},f._reglType="textureCube",f._texture=h,o.profile&&(f.stats=h.stats),f.destroy=function(){h.decRef()},f},clear:function(){for(var e=0;er;++r)if(0!=(e.mipmask&1<>r,e.height>>r,0,e.internalformat,e.type,null);else for(var n=0;6>n;++n)t.texImage2D(34069+n,r,e.internalformat,e.width>>r,e.height>>r,0,e.internalformat,e.type,null);O(e.texInfo,e.target)}))},refresh:function(){for(var e=0;ei;++i){for(c=0;ct;++t)r[t].resize(n);return e.width=e.height=n,e},_reglType:"framebufferCube",destroy:function(){r.forEach((function(t){t.destroy()}))}})},clear:function(){K(k).forEach(g)},restore:function(){x.cur=null,x.next=null,x.dirty=!0,K(k).forEach((function(e){e.framebuffer=t.createFramebuffer(),v(e)}))}})}function M(){this.w=this.z=this.y=this.x=this.state=0,this.buffer=null,this.size=0,this.normalized=!1,this.type=5126,this.divisor=this.stride=this.offset=0}function S(t,e,r,n,i,a,o){function s(){this.id=++f,this.attributes=[],this.elements=null,this.ownsElements=!1,this.offset=this.count=0,this.instances=-1,this.primitive=4;var t=e.oes_vertex_array_object;this.vao=t?t.createVertexArrayOES():null,h[this.id]=this,this.buffers=[]}var c=r.maxAttributes,u=Array(c);for(r=0;r=h.byteLength?c.subdata(h):(c.destroy(),r.buffers[s]=null)),r.buffers[s]||(c=r.buffers[s]=i.create(u,34962,!1,!0)),f.buffer=i.getBuffer(c),f.size=0|f.buffer.dimension,f.normalized=!1,f.type=f.buffer.dtype,f.offset=0,f.stride=0,f.divisor=0,f.state=1,t[s]=1;else i.getBuffer(u)?(f.buffer=i.getBuffer(u),f.size=0|f.buffer.dimension,f.normalized=!1,f.type=f.buffer.dtype,f.offset=0,f.stride=0,f.divisor=0,f.state=1):i.getBuffer(u.buffer)?(f.buffer=i.getBuffer(u.buffer),f.size=0|(+u.size||f.buffer.dimension),f.normalized=!!u.normalized||!1,f.type="type"in u?tt[u.type]:f.buffer.dtype,f.offset=0|(u.offset||0),f.stride=0|(u.stride||0),f.divisor=0|(u.divisor||0),f.state=1):"x"in u&&(f.x=+u.x||0,f.y=+u.y||0,f.z=+u.z||0,f.w=+u.w||0,f.state=2)}for(c=0;ct&&(t=e.stats.uniformsCount)})),t},r.getMaxAttributesCount=function(){var t=0;return h.forEach((function(e){e.stats.attributesCount>t&&(t=e.stats.attributesCount)})),t}),{clear:function(){var e=t.deleteShader.bind(t);K(c).forEach(e),c={},K(u).forEach(e),u={},h.forEach((function(e){t.deleteProgram(e.program)})),h.length=0,f={},r.shaderCount=0},program:function(e,n,i,a){var o=f[n];o||(o=f[n]={});var p=o[e];if(p&&(p.refCount++,!a))return p;var d=new s(n,e);return r.shaderCount++,l(d,i,a),p||(o[e]=d),h.push(d),H(d,{destroy:function(){if(d.refCount--,0>=d.refCount){t.deleteProgram(d.program);var e=h.indexOf(d);h.splice(e,1),r.shaderCount--}0>=o[d.vertId].refCount&&(t.deleteShader(u[d.vertId]),delete u[d.vertId],delete f[d.fragId][d.vertId]),Object.keys(f[d.fragId]).length||(t.deleteShader(c[d.fragId]),delete c[d.fragId],delete f[d.fragId])}})},restore:function(){c={},u={};for(var t=0;t>>e|t<<32-e}function P(t,e){var r=(65535&t)+(65535&e);return(t>>16)+(e>>16)+(r>>16)<<16|65535&r}function I(t){return Array.prototype.slice.call(t)}function O(t){return I(t).join("")}function z(t){function e(){var t=[],e=[];return H((function(){t.push.apply(t,I(arguments))}),{def:function(){var r="v"+i++;return e.push(r),0>>4&15)+"0123456789abcdef".charAt(15&e);return r}(function(t){for(var e=Array(t.length>>2),r=0;r>5]|=(255&t.charCodeAt(r/8))<<24-r%32;var n,i,a,o,s,l,c,u,f,h,p,d=8*t.length;for(t=[1779033703,-1150833019,1013904242,-1521486534,1359893119,-1694144372,528734635,1541459225],r=Array(64),e[d>>5]|=128<<24-d%32,e[15+(d+64>>9<<4)]=d,u=0;uf;f++){var m;if(16>f)r[f]=e[f+u];else h=f,p=P(p=C(p=r[f-2],17)^C(p,19)^p>>>10,r[f-7]),m=C(m=r[f-15],7)^C(m,18)^m>>>3,r[h]=P(P(p,m),r[f-16]);h=P(P(P(P(c,h=C(h=o,6)^C(h,11)^C(h,25)),o&s^~o&l),kt[f]),r[f]),p=P(c=C(c=d,2)^C(c,13)^C(c,22),d&n^d&i^n&i),c=l,l=s,s=o,o=P(a,h),a=i,i=n,n=d,d=P(h,p)}t[0]=P(d,t[0]),t[1]=P(n,t[1]),t[2]=P(i,t[2]),t[3]=P(a,t[3]),t[4]=P(o,t[4]),t[5]=P(s,t[5]),t[6]=P(l,t[6]),t[7]=P(c,t[7])}for(e="",r=0;r<32*t.length;r+=8)e+=String.fromCharCode(t[r>>5]>>>24-r%32&255);return e}(function(t){for(var e,r,n="",i=-1;++i=e&&56320<=r&&57343>=r&&(e=65536+((1023&e)<<10)+(1023&r),i++),127>=e?n+=String.fromCharCode(e):2047>=e?n+=String.fromCharCode(192|e>>>6&31,128|63&e):65535>=e?n+=String.fromCharCode(224|e>>>12&15,128|e>>>6&63,128|63&e):2097151>=e&&(n+=String.fromCharCode(240|e>>>18&7,128|e>>>12&63,128|e>>>6&63,128|63&e));return n}(r))),n[e])?n[e].apply(null,o):(r=Function.apply(null,a.concat(r)),n&&(n[e]=r),r.apply(null,o))}}}function D(t){return Array.isArray(t)||J(t)||l(t)}function R(t){return t.sort((function(t,e){return"viewport"===t?-1:"viewport"===e?1:t"+e+"?"+i+".constant["+e+"]:0;"})).join(""),"}}else{","if(",s,"(",i,".buffer)){",u,"=",a,".createStream(",34962,",",i,".buffer);","}else{",u,"=",a,".getBuffer(",i,".buffer);","}",f,'="type" in ',i,"?",o.glTypes,"[",i,".type]:",u,".dtype;",l.normalized,"=!!",i,".normalized;"),n("size"),n("offset"),n("stride"),n("divisor"),r("}}"),r.exit("if(",l.isStream,"){",a,".destroyStream(",u,");","}"),l}))})),o}function M(t,e,n,i,o){function s(t){var e=c[t];e&&(h[t]=e)}var l=function(t,e){if("string"==typeof(r=t.static).frag&&"string"==typeof r.vert){if(0>1)",s],");")}function e(){r(l,".drawArraysInstancedANGLE(",[d,m,g,s],");")}p&&"null"!==p?y?t():(r("if(",p,"){"),t(),r("}else{"),e(),r("}")):e()}function o(){function t(){r(u+".drawElements("+[d,g,v,m+"<<(("+v+"-5121)>>1)"]+");")}function e(){r(u+".drawArrays("+[d,m,g]+");")}p&&"null"!==p?y?t():(r("if(",p,"){"),t(),r("}else{"),e(),r("}")):e()}var s,l,c=t.shared,u=c.gl,f=c.draw,h=n.draw,p=function(){var i=h.elements,a=e;return i?((i.contextDep&&n.contextDynamic||i.propDep)&&(a=r),i=i.append(t,a),h.elementsActive&&a("if("+i+")"+u+".bindBuffer(34963,"+i+".buffer.buffer);")):(i=a.def(),a(i,"=",f,".","elements",";","if(",i,"){",u,".bindBuffer(",34963,",",i,".buffer.buffer);}","else if(",c.vao,".currentVAO){",i,"=",t.shared.elements+".getElements("+c.vao,".currentVAO.elements);",rt?"":"if("+i+")"+u+".bindBuffer(34963,"+i+".buffer.buffer);","}")),i}(),d=i("primitive"),m=i("offset"),g=function(){var i=h.count,a=e;return i?((i.contextDep&&n.contextDynamic||i.propDep)&&(a=r),i=i.append(t,a)):i=a.def(f,".","count"),i}();if("number"==typeof g){if(0===g)return}else r("if(",g,"){"),r.exit("}");$&&(s=i("instances"),l=t.instancing);var v=p+".type",y=h.elements&&B(h.elements)&&!h.vaoActive;$&&("number"!=typeof s||0<=s)?"string"==typeof s?(r("if(",s,">0){"),a(),r("}else if(",s,"<0){"),o(),r("}")):a():o()}function q(t,e,r,n,i){return i=(e=_()).proc("body",i),$&&(e.instancing=i.def(e.shared.extensions,".angle_instanced_arrays")),t(e,i,r,n),e.compile().body}function Y(t,e,r,n){P(t,e),r.useVAO?r.drawVAO?e(t.shared.vao,".setVAO(",r.drawVAO.append(t,e),");"):e(t.shared.vao,".setVAO(",t.shared.vao,".targetVAO);"):(e(t.shared.vao,".setVAO(null);"),O(t,e,r,n.attributes,(function(){return!0}))),U(t,e,r,n.uniforms,(function(){return!0}),!1),V(t,e,e,r)}function W(t,e,r,n){function i(){return!0}t.batchId="a1",P(t,e),O(t,e,r,n.attributes,i),U(t,e,r,n.uniforms,i,!1),V(t,e,e,r)}function X(t,e,r,n){function i(t){return t.contextDep&&o||t.propDep}function a(t){return!i(t)}P(t,e);var o=r.contextDep,s=e.def(),l=e.def();t.shared.props=l,t.batchId=s;var c=t.scope(),u=t.scope();e(c.entry,"for(",s,"=0;",s,"<","a1",";++",s,"){",l,"=","a0","[",s,"];",u,"}",c.exit),r.needsContext&&S(t,u,r.context),r.needsFramebuffer&&E(t,u,r.framebuffer),C(t,u,r.state,i),r.profile&&i(r.profile)&&I(t,u,r,!1,!0),n?(r.useVAO?r.drawVAO?i(r.drawVAO)?u(t.shared.vao,".setVAO(",r.drawVAO.append(t,u),");"):c(t.shared.vao,".setVAO(",r.drawVAO.append(t,c),");"):c(t.shared.vao,".setVAO(",t.shared.vao,".targetVAO);"):(c(t.shared.vao,".setVAO(null);"),O(t,c,r,n.attributes,a),O(t,u,r,n.attributes,i)),U(t,c,r,n.uniforms,a,!1),U(t,u,r,n.uniforms,i,!0),V(t,c,u,r)):(e=t.global.def("{}"),n=r.shader.progVar.append(t,u),l=u.def(n,".id"),c=u.def(e,"[",l,"]"),u(t.shared.gl,".useProgram(",n,".program);","if(!",c,"){",c,"=",e,"[",l,"]=",t.link((function(e){return q(W,t,r,e,2)})),"(",n,");}",c,".call(this,a0[",s,"],",s,");"))}function Z(t,r){function n(e){var n=r.shader[e];n&&(n=n.append(t,i),isNaN(n)?i.set(a.shader,"."+e,n):i.set(a.shader,"."+e,t.link(n,{stable:!0})))}var i=t.proc("scope",3);t.batchId="a2";var a=t.shared,o=a.current;if(S(t,i,r.context),r.framebuffer&&r.framebuffer.append(t,i),R(Object.keys(r.state)).forEach((function(e){var n=r.state[e],o=n.append(t,i);g(o)?o.forEach((function(r,n){isNaN(r)?i.set(t.next[e],"["+n+"]",r):i.set(t.next[e],"["+n+"]",t.link(r,{stable:!0}))})):B(n)?i.set(a.next,"."+e,t.link(o,{stable:!0})):i.set(a.next,"."+e,o)})),I(t,i,r,!0,!0),["elements","offset","count","instances","primitive"].forEach((function(e){var n=r.draw[e];n&&(n=n.append(t,i),isNaN(n)?i.set(a.draw,"."+e,n):i.set(a.draw,"."+e,t.link(n),{stable:!0}))})),Object.keys(r.uniforms).forEach((function(n){var o=r.uniforms[n].append(t,i);Array.isArray(o)&&(o="["+o.map((function(e){return isNaN(e)?e:t.link(e,{stable:!0})}))+"]"),i.set(a.uniforms,"["+t.link(e.id(n),{stable:!0})+"]",o)})),Object.keys(r.attributes).forEach((function(e){var n=r.attributes[e].append(t,i),a=t.scopeAttrib(e);Object.keys(new K).forEach((function(t){i.set(a,"."+t,n[t])}))})),r.scopeVAO){var s=r.scopeVAO.append(t,i);isNaN(s)?i.set(a.vao,".targetVAO",s):i.set(a.vao,".targetVAO",t.link(s,{stable:!0}))}n("vert"),n("frag"),0=--this.refCount&&o(this)},i.profile&&(n.getTotalRenderbufferSize=function(){var t=0;return Object.keys(u).forEach((function(e){t+=u[e].stats.size})),t}),{create:function(e,r){function o(e,r){var n=0,a=0,u=32854;if("object"==typeof e&&e?("shape"in e?(n=0|(a=e.shape)[0],a=0|a[1]):("radius"in e&&(n=a=0|e.radius),"width"in e&&(n=0|e.width),"height"in e&&(a=0|e.height)),"format"in e&&(u=s[e.format])):"number"==typeof e?(n=0|e,a="number"==typeof r?0|r:n):e||(n=a=1),n!==c.width||a!==c.height||u!==c.format)return o.width=c.width=n,o.height=c.height=a,c.format=u,t.bindRenderbuffer(36161,c.renderbuffer),t.renderbufferStorage(36161,u,n,a),i.profile&&(c.stats.size=bt[c.format]*c.width*c.height),o.format=l[c.format],o}var c=new a(t.createRenderbuffer());return u[c.id]=c,n.renderbufferCount++,o(e,r),o.resize=function(e,r){var n=0|e,a=0|r||n;return n===c.width&&a===c.height||(o.width=c.width=n,o.height=c.height=a,t.bindRenderbuffer(36161,c.renderbuffer),t.renderbufferStorage(36161,c.format,n,a),i.profile&&(c.stats.size=bt[c.format]*c.width*c.height)),o},o._reglType="renderbuffer",o._renderbuffer=c,i.profile&&(o.stats=c.stats),o.destroy=function(){c.decRef()},o},clear:function(){K(u).forEach(o)},restore:function(){K(u).forEach((function(e){e.renderbuffer=t.createRenderbuffer(),t.bindRenderbuffer(36161,e.renderbuffer),t.renderbufferStorage(36161,e.format,e.width,e.height)})),t.bindRenderbuffer(36161,null)}}},wt=[];wt[6408]=4,wt[6407]=3;var Tt=[];Tt[5121]=1,Tt[5126]=4,Tt[36193]=2;var kt=[1116352408,1899447441,-1245643825,-373957723,961987163,1508970993,-1841331548,-1424204075,-670586216,310598401,607225278,1426881987,1925078388,-2132889090,-1680079193,-1046744716,-459576895,-272742522,264347078,604807628,770255983,1249150122,1555081692,1996064986,-1740746414,-1473132947,-1341970488,-1084653625,-958395405,-710438585,113926993,338241895,666307205,773529912,1294757372,1396182291,1695183700,1986661051,-2117940946,-1838011259,-1564481375,-1474664885,-1035236496,-949202525,-778901479,-694614492,-200395387,275423344,430227734,506948616,659060556,883997877,958139571,1322822218,1537002063,1747873779,1955562222,2024104815,-2067236844,-1933114872,-1866530822,-1538233109,-1090935817,-965641998],At=["x","y","z","w"],Mt="blend.func blend.equation stencil.func stencil.opFront stencil.opBack sample.coverage viewport scissor.box polygonOffset.offset".split(" "),St={0:0,1:1,zero:0,one:1,"src color":768,"one minus src color":769,"src alpha":770,"one minus src alpha":771,"dst color":774,"one minus dst color":775,"dst alpha":772,"one minus dst alpha":773,"constant color":32769,"one minus constant color":32770,"constant alpha":32771,"one minus constant alpha":32772,"src alpha saturate":776},Et={never:512,less:513,"<":513,equal:514,"=":514,"==":514,"===":514,lequal:515,"<=":515,greater:516,">":516,notequal:517,"!=":517,"!==":517,gequal:518,">=":518,always:519},Lt={0:0,zero:0,keep:7680,replace:7681,increment:7682,decrement:7683,"increment wrap":34055,"decrement wrap":34056,invert:5386},Ct={cw:2304,ccw:2305},Pt=new F(!1,!1,!1,(function(){}));return function(t){function e(){if(0===K.length)T&&T.update(),et=null;else{et=Y.next(e),f();for(var t=K.length-1;0<=t;--t){var r=K[t];r&&r(I,null,0)}g.flush(),T&&T.update()}}function r(){!et&&0=K.length&&n()}}}}function u(){var t=X.viewport,e=X.scissor_box;t[0]=t[1]=e[0]=e[1]=0,I.viewportWidth=I.framebufferWidth=I.drawingBufferWidth=t[2]=e[2]=g.drawingBufferWidth,I.viewportHeight=I.framebufferHeight=I.drawingBufferHeight=t[3]=e[3]=g.drawingBufferHeight}function f(){I.tick+=1,I.time=m(),u(),q.procs.poll()}function h(){B.refresh(),u(),q.procs.refresh(),T&&T.update()}function m(){return(W()-M)/1e3}if(!(t=i(t)))return null;var g=t.gl,v=g.getContextAttributes();g.isContextLost();var y=function(t,e){function r(e){var r;e=e.toLowerCase();try{r=n[e]=t.getExtension(e)}catch(t){}return!!r}for(var n={},i=0;ie;++e)rt(H({framebuffer:t.framebuffer.faces[e]},t),l);else rt(t,l);else l(0,t)},prop:G.define.bind(null,1),context:G.define.bind(null,2),this:G.define.bind(null,3),draw:s({}),buffer:function(t){return z.create(t,34962,!1,!1)},elements:function(t){return D.create(t,!1)},texture:B.create2D,cube:B.createCube,renderbuffer:N.create,framebuffer:j.create,framebufferCube:j.createCube,vao:R.createVAO,attributes:v,frame:c,on:function(t,e){var r;switch(t){case"frame":return c(e);case"lost":r=Q;break;case"restore":r=$;break;case"destroy":r=tt}return r.push(e),{cancel:function(){for(var t=0;t */ -var n=t("buffer"),i=n.Buffer;function a(t,e){for(var r in t)e[r]=t[r]}function o(t,e,r){return i(t,e,r)}i.from&&i.alloc&&i.allocUnsafe&&i.allocUnsafeSlow?e.exports=n:(a(n,r),r.Buffer=o),o.prototype=Object.create(i.prototype),a(i,o),o.from=function(t,e,r){if("number"==typeof t)throw new TypeError("Argument must not be a number");return i(t,e,r)},o.alloc=function(t,e,r){if("number"!=typeof t)throw new TypeError("Argument must be a number");var n=i(t);return void 0!==e?"string"==typeof r?n.fill(e,r):n.fill(e):n.fill(0),n},o.allocUnsafe=function(t){if("number"!=typeof t)throw new TypeError("Argument must be a number");return i(t)},o.allocUnsafeSlow=function(t){if("number"!=typeof t)throw new TypeError("Argument must be a number");return n.SlowBuffer(t)}},{buffer:80}],280:[function(t,e,r){e.exports=i;var n=t("events").EventEmitter;function i(){n.call(this)}t("inherits")(i,n),i.Readable=t("readable-stream/lib/_stream_readable.js"),i.Writable=t("readable-stream/lib/_stream_writable.js"),i.Duplex=t("readable-stream/lib/_stream_duplex.js"),i.Transform=t("readable-stream/lib/_stream_transform.js"),i.PassThrough=t("readable-stream/lib/_stream_passthrough.js"),i.finished=t("readable-stream/lib/internal/streams/end-of-stream.js"),i.pipeline=t("readable-stream/lib/internal/streams/pipeline.js"),i.Stream=i,i.prototype.pipe=function(t,e){var r=this;function i(e){t.writable&&!1===t.write(e)&&r.pause&&r.pause()}function a(){r.readable&&r.resume&&r.resume()}r.on("data",i),t.on("drain",a),t._isStdio||e&&!1===e.end||(r.on("end",s),r.on("close",l));var o=!1;function s(){o||(o=!0,t.end())}function l(){o||(o=!0,"function"==typeof t.destroy&&t.destroy())}function c(t){if(u(),0===n.listenerCount(this,"error"))throw t}function u(){r.removeListener("data",i),t.removeListener("drain",a),r.removeListener("end",s),r.removeListener("close",l),r.removeListener("error",c),t.removeListener("error",c),r.removeListener("end",u),r.removeListener("close",u),t.removeListener("close",u)}return r.on("error",c),t.on("error",c),r.on("end",u),r.on("close",u),t.on("close",u),t.emit("pipe",r),t}},{events:181,inherits:226,"readable-stream/lib/_stream_duplex.js":282,"readable-stream/lib/_stream_passthrough.js":283,"readable-stream/lib/_stream_readable.js":284,"readable-stream/lib/_stream_transform.js":285,"readable-stream/lib/_stream_writable.js":286,"readable-stream/lib/internal/streams/end-of-stream.js":290,"readable-stream/lib/internal/streams/pipeline.js":292}],281:[function(t,e,r){"use strict";var n={};function i(t,e,r){r||(r=Error);var i=function(t){var r,n;function i(r,n,i){return t.call(this,function(t,r,n){return"string"==typeof e?e:e(t,r,n)}(r,n,i))||this}return n=t,(r=i).prototype=Object.create(n.prototype),r.prototype.constructor=r,r.__proto__=n,i}(r);i.prototype.name=r.name,i.prototype.code=t,n[t]=i}function a(t,e){if(Array.isArray(t)){var r=t.length;return t=t.map((function(t){return String(t)})),r>2?"one of ".concat(e," ").concat(t.slice(0,r-1).join(", "),", or ")+t[r-1]:2===r?"one of ".concat(e," ").concat(t[0]," or ").concat(t[1]):"of ".concat(e," ").concat(t[0])}return"of ".concat(e," ").concat(String(t))}i("ERR_INVALID_OPT_VALUE",(function(t,e){return'The value "'+e+'" is invalid for option "'+t+'"'}),TypeError),i("ERR_INVALID_ARG_TYPE",(function(t,e,r){var n,i,o,s;if("string"==typeof e&&(i="not ",e.substr(!o||o<0?0:+o,i.length)===i)?(n="must not be",e=e.replace(/^not /,"")):n="must be",function(t,e,r){return(void 0===r||r>t.length)&&(r=t.length),t.substring(r-e.length,r)===e}(t," argument"))s="The ".concat(t," ").concat(n," ").concat(a(e,"type"));else{var l=function(t,e,r){return"number"!=typeof r&&(r=0),!(r+e.length>t.length)&&-1!==t.indexOf(e,r)}(t,".")?"property":"argument";s='The "'.concat(t,'" ').concat(l," ").concat(n," ").concat(a(e,"type"))}return s+=". Received type ".concat(typeof r)}),TypeError),i("ERR_STREAM_PUSH_AFTER_EOF","stream.push() after EOF"),i("ERR_METHOD_NOT_IMPLEMENTED",(function(t){return"The "+t+" method is not implemented"})),i("ERR_STREAM_PREMATURE_CLOSE","Premature close"),i("ERR_STREAM_DESTROYED",(function(t){return"Cannot call "+t+" after a stream was destroyed"})),i("ERR_MULTIPLE_CALLBACK","Callback called multiple times"),i("ERR_STREAM_CANNOT_PIPE","Cannot pipe, not readable"),i("ERR_STREAM_WRITE_AFTER_END","write after end"),i("ERR_STREAM_NULL_VALUES","May not write null values to stream",TypeError),i("ERR_UNKNOWN_ENCODING",(function(t){return"Unknown encoding: "+t}),TypeError),i("ERR_STREAM_UNSHIFT_AFTER_END_EVENT","stream.unshift() after end event"),e.exports.codes=n},{}],282:[function(t,e,r){(function(r){(function(){"use strict";var n=Object.keys||function(t){var e=[];for(var r in t)e.push(r);return e};e.exports=c;var i=t("./_stream_readable"),a=t("./_stream_writable");t("inherits")(c,i);for(var o=n(a.prototype),s=0;s0)if("string"==typeof e||o.objectMode||Object.getPrototypeOf(e)===s.prototype||(e=function(t){return s.from(t)}(e)),n)o.endEmitted?w(t,new _):S(t,o,e,!0);else if(o.ended)w(t,new x);else{if(o.destroyed)return!1;o.reading=!1,o.decoder&&!r?(e=o.decoder.write(e),o.objectMode||0!==e.length?S(t,o,e,!1):P(t,o)):S(t,o,e,!1)}else n||(o.reading=!1,P(t,o));return!o.ended&&(o.lengthe.highWaterMark&&(e.highWaterMark=function(t){return t>=1073741824?t=1073741824:(t--,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,t|=t>>>16,t++),t}(t)),t<=e.length?t:e.ended?e.length:(e.needReadable=!0,0))}function L(t){var e=t._readableState;c("emitReadable",e.needReadable,e.emittedReadable),e.needReadable=!1,e.emittedReadable||(c("emitReadable",e.flowing),e.emittedReadable=!0,r.nextTick(C,t))}function C(t){var e=t._readableState;c("emitReadable_",e.destroyed,e.length,e.ended),e.destroyed||!e.length&&!e.ended||(t.emit("readable"),e.emittedReadable=!1),e.needReadable=!e.flowing&&!e.ended&&e.length<=e.highWaterMark,R(t)}function P(t,e){e.readingMore||(e.readingMore=!0,r.nextTick(I,t,e))}function I(t,e){for(;!e.reading&&!e.ended&&(e.length0,e.resumeScheduled&&!e.paused?e.flowing=!0:t.listenerCount("data")>0&&t.resume()}function z(t){c("readable nexttick read 0"),t.read(0)}function D(t,e){c("resume",e.reading),e.reading||t.read(0),e.resumeScheduled=!1,t.emit("resume"),R(t),e.flowing&&!e.reading&&t.read(0)}function R(t){var e=t._readableState;for(c("flow",e.flowing);e.flowing&&null!==t.read(););}function F(t,e){return 0===e.length?null:(e.objectMode?r=e.buffer.shift():!t||t>=e.length?(r=e.decoder?e.buffer.join(""):1===e.buffer.length?e.buffer.first():e.buffer.concat(e.length),e.buffer.clear()):r=e.buffer.consume(t,e.decoder),r);var r}function B(t){var e=t._readableState;c("endReadable",e.endEmitted),e.endEmitted||(e.ended=!0,r.nextTick(N,e,t))}function N(t,e){if(c("endReadableNT",t.endEmitted,t.length),!t.endEmitted&&0===t.length&&(t.endEmitted=!0,e.readable=!1,e.emit("end"),t.autoDestroy)){var r=e._writableState;(!r||r.autoDestroy&&r.finished)&&e.destroy()}}function j(t,e){for(var r=0,n=t.length;r=e.highWaterMark:e.length>0)||e.ended))return c("read: emitReadable",e.length,e.ended),0===e.length&&e.ended?B(this):L(this),null;if(0===(t=E(t,e))&&e.ended)return 0===e.length&&B(this),null;var n,i=e.needReadable;return c("need readable",i),(0===e.length||e.length-t0?F(t,e):null)?(e.needReadable=e.length<=e.highWaterMark,t=0):(e.length-=t,e.awaitDrain=0),0===e.length&&(e.ended||(e.needReadable=!0),r!==t&&e.ended&&B(this)),null!==n&&this.emit("data",n),n},A.prototype._read=function(t){w(this,new b("_read()"))},A.prototype.pipe=function(t,e){var n=this,i=this._readableState;switch(i.pipesCount){case 0:i.pipes=t;break;case 1:i.pipes=[i.pipes,t];break;default:i.pipes.push(t)}i.pipesCount+=1,c("pipe count=%d opts=%j",i.pipesCount,e);var o=(!e||!1!==e.end)&&t!==r.stdout&&t!==r.stderr?l:g;function s(e,r){c("onunpipe"),e===n&&r&&!1===r.hasUnpiped&&(r.hasUnpiped=!0,c("cleanup"),t.removeListener("close",d),t.removeListener("finish",m),t.removeListener("drain",u),t.removeListener("error",p),t.removeListener("unpipe",s),n.removeListener("end",l),n.removeListener("end",g),n.removeListener("data",h),f=!0,!i.awaitDrain||t._writableState&&!t._writableState.needDrain||u())}function l(){c("onend"),t.end()}i.endEmitted?r.nextTick(o):n.once("end",o),t.on("unpipe",s);var u=function(t){return function(){var e=t._readableState;c("pipeOnDrain",e.awaitDrain),e.awaitDrain&&e.awaitDrain--,0===e.awaitDrain&&a(t,"data")&&(e.flowing=!0,R(t))}}(n);t.on("drain",u);var f=!1;function h(e){c("ondata");var r=t.write(e);c("dest.write",r),!1===r&&((1===i.pipesCount&&i.pipes===t||i.pipesCount>1&&-1!==j(i.pipes,t))&&!f&&(c("false write response, pause",i.awaitDrain),i.awaitDrain++),n.pause())}function p(e){c("onerror",e),g(),t.removeListener("error",p),0===a(t,"error")&&w(t,e)}function d(){t.removeListener("finish",m),g()}function m(){c("onfinish"),t.removeListener("close",d),g()}function g(){c("unpipe"),n.unpipe(t)}return n.on("data",h),function(t,e,r){if("function"==typeof t.prependListener)return t.prependListener(e,r);t._events&&t._events[e]?Array.isArray(t._events[e])?t._events[e].unshift(r):t._events[e]=[r,t._events[e]]:t.on(e,r)}(t,"error",p),t.once("close",d),t.once("finish",m),t.emit("pipe",n),i.flowing||(c("pipe resume"),n.resume()),t},A.prototype.unpipe=function(t){var e=this._readableState,r={hasUnpiped:!1};if(0===e.pipesCount)return this;if(1===e.pipesCount)return t&&t!==e.pipes||(t||(t=e.pipes),e.pipes=null,e.pipesCount=0,e.flowing=!1,t&&t.emit("unpipe",this,r)),this;if(!t){var n=e.pipes,i=e.pipesCount;e.pipes=null,e.pipesCount=0,e.flowing=!1;for(var a=0;a0,!1!==i.flowing&&this.resume()):"readable"===t&&(i.endEmitted||i.readableListening||(i.readableListening=i.needReadable=!0,i.flowing=!1,i.emittedReadable=!1,c("on readable",i.length,i.reading),i.length?L(this):i.reading||r.nextTick(z,this))),n},A.prototype.addListener=A.prototype.on,A.prototype.removeListener=function(t,e){var n=o.prototype.removeListener.call(this,t,e);return"readable"===t&&r.nextTick(O,this),n},A.prototype.removeAllListeners=function(t){var e=o.prototype.removeAllListeners.apply(this,arguments);return"readable"!==t&&void 0!==t||r.nextTick(O,this),e},A.prototype.resume=function(){var t=this._readableState;return t.flowing||(c("resume"),t.flowing=!t.readableListening,function(t,e){e.resumeScheduled||(e.resumeScheduled=!0,r.nextTick(D,t,e))}(this,t)),t.paused=!1,this},A.prototype.pause=function(){return c("call pause flowing=%j",this._readableState.flowing),!1!==this._readableState.flowing&&(c("pause"),this._readableState.flowing=!1,this.emit("pause")),this._readableState.paused=!0,this},A.prototype.wrap=function(t){var e=this,r=this._readableState,n=!1;for(var i in t.on("end",(function(){if(c("wrapped end"),r.decoder&&!r.ended){var t=r.decoder.end();t&&t.length&&e.push(t)}e.push(null)})),t.on("data",(function(i){(c("wrapped data"),r.decoder&&(i=r.decoder.write(i)),r.objectMode&&null==i)||(r.objectMode||i&&i.length)&&(e.push(i)||(n=!0,t.pause()))})),t)void 0===this[i]&&"function"==typeof t[i]&&(this[i]=function(e){return function(){return t[e].apply(t,arguments)}}(i));for(var a=0;a-1))throw new _(t);return this._writableState.defaultEncoding=t,this},Object.defineProperty(A.prototype,"writableBuffer",{enumerable:!1,get:function(){return this._writableState&&this._writableState.getBuffer()}}),Object.defineProperty(A.prototype,"writableHighWaterMark",{enumerable:!1,get:function(){return this._writableState.highWaterMark}}),A.prototype._write=function(t,e,r){r(new m("_write()"))},A.prototype._writev=null,A.prototype.end=function(t,e,n){var i=this._writableState;return"function"==typeof t?(n=t,t=null,e=null):"function"==typeof e&&(n=e,e=null),null!=t&&this.write(t,e),i.corked&&(i.corked=1,this.uncork()),i.ending||function(t,e,n){e.ending=!0,P(t,e),n&&(e.finished?r.nextTick(n):t.once("finish",n));e.ended=!0,t.writable=!1}(this,i,n),this},Object.defineProperty(A.prototype,"writableLength",{enumerable:!1,get:function(){return this._writableState.length}}),Object.defineProperty(A.prototype,"destroyed",{enumerable:!1,get:function(){return void 0!==this._writableState&&this._writableState.destroyed},set:function(t){this._writableState&&(this._writableState.destroyed=t)}}),A.prototype.destroy=f.destroy,A.prototype._undestroy=f.undestroy,A.prototype._destroy=function(t,e){e(t)}}).call(this)}).call(this,t("_process"),"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"../errors":281,"./_stream_duplex":282,"./internal/streams/destroy":289,"./internal/streams/state":293,"./internal/streams/stream":294,_process:272,buffer:80,inherits:226,"util-deprecate":325}],287:[function(t,e,r){(function(r){(function(){"use strict";var n;function i(t,e,r){return e in t?Object.defineProperty(t,e,{value:r,enumerable:!0,configurable:!0,writable:!0}):t[e]=r,t}var a=t("./end-of-stream"),o=Symbol("lastResolve"),s=Symbol("lastReject"),l=Symbol("error"),c=Symbol("ended"),u=Symbol("lastPromise"),f=Symbol("handlePromise"),h=Symbol("stream");function p(t,e){return{value:t,done:e}}function d(t){var e=t[o];if(null!==e){var r=t[h].read();null!==r&&(t[u]=null,t[o]=null,t[s]=null,e(p(r,!1)))}}function m(t){r.nextTick(d,t)}var g=Object.getPrototypeOf((function(){})),v=Object.setPrototypeOf((i(n={get stream(){return this[h]},next:function(){var t=this,e=this[l];if(null!==e)return Promise.reject(e);if(this[c])return Promise.resolve(p(void 0,!0));if(this[h].destroyed)return new Promise((function(e,n){r.nextTick((function(){t[l]?n(t[l]):e(p(void 0,!0))}))}));var n,i=this[u];if(i)n=new Promise(function(t,e){return function(r,n){t.then((function(){e[c]?r(p(void 0,!0)):e[f](r,n)}),n)}}(i,this));else{var a=this[h].read();if(null!==a)return Promise.resolve(p(a,!1));n=new Promise(this[f])}return this[u]=n,n}},Symbol.asyncIterator,(function(){return this})),i(n,"return",(function(){var t=this;return new Promise((function(e,r){t[h].destroy(null,(function(t){t?r(t):e(p(void 0,!0))}))}))})),n),g);e.exports=function(t){var e,r=Object.create(v,(i(e={},h,{value:t,writable:!0}),i(e,o,{value:null,writable:!0}),i(e,s,{value:null,writable:!0}),i(e,l,{value:null,writable:!0}),i(e,c,{value:t._readableState.endEmitted,writable:!0}),i(e,f,{value:function(t,e){var n=r[h].read();n?(r[u]=null,r[o]=null,r[s]=null,t(p(n,!1))):(r[o]=t,r[s]=e)},writable:!0}),e));return r[u]=null,a(t,(function(t){if(t&&"ERR_STREAM_PREMATURE_CLOSE"!==t.code){var e=r[s];return null!==e&&(r[u]=null,r[o]=null,r[s]=null,e(t)),void(r[l]=t)}var n=r[o];null!==n&&(r[u]=null,r[o]=null,r[s]=null,n(p(void 0,!0))),r[c]=!0})),t.on("readable",m.bind(null,r)),r}}).call(this)}).call(this,t("_process"))},{"./end-of-stream":290,_process:272}],288:[function(t,e,r){"use strict";function n(t,e){var r=Object.keys(t);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(t);e&&(n=n.filter((function(e){return Object.getOwnPropertyDescriptor(t,e).enumerable}))),r.push.apply(r,n)}return r}function i(t,e,r){return e in t?Object.defineProperty(t,e,{value:r,enumerable:!0,configurable:!0,writable:!0}):t[e]=r,t}function a(t,e){for(var r=0;r0?this.tail.next=e:this.head=e,this.tail=e,++this.length}},{key:"unshift",value:function(t){var e={data:t,next:this.head};0===this.length&&(this.tail=e),this.head=e,++this.length}},{key:"shift",value:function(){if(0!==this.length){var t=this.head.data;return 1===this.length?this.head=this.tail=null:this.head=this.head.next,--this.length,t}}},{key:"clear",value:function(){this.head=this.tail=null,this.length=0}},{key:"join",value:function(t){if(0===this.length)return"";for(var e=this.head,r=""+e.data;e=e.next;)r+=t+e.data;return r}},{key:"concat",value:function(t){if(0===this.length)return o.alloc(0);for(var e,r,n,i=o.allocUnsafe(t>>>0),a=this.head,s=0;a;)e=a.data,r=i,n=s,o.prototype.copy.call(e,r,n),s+=a.data.length,a=a.next;return i}},{key:"consume",value:function(t,e){var r;return ti.length?i.length:t;if(a===i.length?n+=i:n+=i.slice(0,t),0==(t-=a)){a===i.length?(++r,e.next?this.head=e.next:this.head=this.tail=null):(this.head=e,e.data=i.slice(a));break}++r}return this.length-=r,n}},{key:"_getBuffer",value:function(t){var e=o.allocUnsafe(t),r=this.head,n=1;for(r.data.copy(e),t-=r.data.length;r=r.next;){var i=r.data,a=t>i.length?i.length:t;if(i.copy(e,e.length-t,0,a),0==(t-=a)){a===i.length?(++n,r.next?this.head=r.next:this.head=this.tail=null):(this.head=r,r.data=i.slice(a));break}++n}return this.length-=n,e}},{key:l,value:function(t,e){return s(this,function(t){for(var e=1;e0,(function(t){n||(n=t),t&&o.forEach(c),a||(o.forEach(c),i(n))}))}));return e.reduce(u)}},{"../../../errors":281,"./end-of-stream":290}],293:[function(t,e,r){"use strict";var n=t("../../../errors").codes.ERR_INVALID_OPT_VALUE;e.exports={getHighWaterMark:function(t,e,r,i){var a=function(t,e,r){return null!=t.highWaterMark?t.highWaterMark:e?t[r]:null}(e,i,r);if(null!=a){if(!isFinite(a)||Math.floor(a)!==a||a<0)throw new n(i?r:"highWaterMark",a);return Math.floor(a)}return t.objectMode?16:16384}}},{"../../../errors":281}],294:[function(t,e,r){e.exports=t("events").EventEmitter},{events:181}],295:[function(t,e,r){(function(r,n){(function(){var r=t("assert"),i=t("debug")("stream-parser");e.exports=function(t){var e=t&&"function"==typeof t._transform,r=t&&"function"==typeof t._write;if(!e&&!r)throw new Error("must pass a Writable or Transform stream in");i("extending Parser into stream"),t._bytes=o,t._skipBytes=s,e&&(t._passthrough=l);e?t._transform=u:t._write=c};function a(t){i("initializing parser stream"),t._parserBytesLeft=0,t._parserBuffers=[],t._parserBuffered=0,t._parserState=-1,t._parserCallback=null,"function"==typeof t.push&&(t._parserOutput=t.push.bind(t)),t._parserInit=!0}function o(t,e){r(!this._parserCallback,'there is already a "callback" set!'),r(isFinite(t)&&t>0,'can only buffer a finite number of bytes > 0, got "'+t+'"'),this._parserInit||a(this),i("buffering %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=0}function s(t,e){r(!this._parserCallback,'there is already a "callback" set!'),r(t>0,'can only skip > 0 bytes, got "'+t+'"'),this._parserInit||a(this),i("skipping %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=1}function l(t,e){r(!this._parserCallback,'There is already a "callback" set!'),r(t>0,'can only pass through > 0 bytes, got "'+t+'"'),this._parserInit||a(this),i("passing through %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=2}function c(t,e,r){this._parserInit||a(this),i("write(%o bytes)",t.length),"function"==typeof e&&(r=e),h(this,t,null,r)}function u(t,e,r){this._parserInit||a(this),i("transform(%o bytes)",t.length),"function"!=typeof e&&(e=this._parserOutput),h(this,t,e,r)}function f(t,e,r,a){if(t._parserBytesLeft-=e.length,i("%o bytes left for stream piece",t._parserBytesLeft),0===t._parserState?(t._parserBuffers.push(e),t._parserBuffered+=e.length):2===t._parserState&&r(e),0!==t._parserBytesLeft)return a;var o=t._parserCallback;if(o&&0===t._parserState&&t._parserBuffers.length>1&&(e=n.concat(t._parserBuffers,t._parserBuffered)),0!==t._parserState&&(e=null),t._parserCallback=null,t._parserBuffered=0,t._parserState=-1,t._parserBuffers.splice(0),o){var s=[];e&&s.push(e),r&&s.push(r);var l=o.length>s.length;l&&s.push(p(a));var c=o.apply(t,s);if(!l||a===c)return a}}var h=p((function t(e,r,n,i){return e._parserBytesLeft<=0?i(new Error("got data but not currently parsing anything")):r.length<=e._parserBytesLeft?function(){return f(e,r,n,i)}:function(){var a=r.slice(0,e._parserBytesLeft);return f(e,a,n,(function(o){return o?i(o):r.length>a.length?function(){return t(e,r.slice(a.length),n,i)}:void 0}))}}));function p(t){return function(){for(var e=t.apply(this,arguments);"function"==typeof e;)e=e();return e}}}).call(this)}).call(this,t("_process"),t("buffer").Buffer)},{_process:272,assert:71,buffer:80,debug:296}],296:[function(t,e,r){(function(n){(function(){function i(){var t;try{t=r.storage.debug}catch(t){}return!t&&void 0!==n&&"env"in n&&(t=n.env.DEBUG),t}(r=e.exports=t("./debug")).log=function(){return"object"==typeof console&&console.log&&Function.prototype.apply.call(console.log,console,arguments)},r.formatArgs=function(t){var e=this.useColors;if(t[0]=(e?"%c":"")+this.namespace+(e?" %c":" ")+t[0]+(e?"%c ":" ")+"+"+r.humanize(this.diff),!e)return;var n="color: "+this.color;t.splice(1,0,n,"color: inherit");var i=0,a=0;t[0].replace(/%[a-zA-Z%]/g,(function(t){"%%"!==t&&(i++,"%c"===t&&(a=i))})),t.splice(a,0,n)},r.save=function(t){try{null==t?r.storage.removeItem("debug"):r.storage.debug=t}catch(t){}},r.load=i,r.useColors=function(){if("undefined"!=typeof window&&window.process&&"renderer"===window.process.type)return!0;return"undefined"!=typeof document&&document.documentElement&&document.documentElement.style&&document.documentElement.style.WebkitAppearance||"undefined"!=typeof window&&window.console&&(window.console.firebug||window.console.exception&&window.console.table)||"undefined"!=typeof navigator&&navigator.userAgent&&navigator.userAgent.toLowerCase().match(/firefox\/(\d+)/)&&parseInt(RegExp.$1,10)>=31||"undefined"!=typeof navigator&&navigator.userAgent&&navigator.userAgent.toLowerCase().match(/applewebkit\/(\d+)/)},r.storage="undefined"!=typeof chrome&&void 0!==chrome.storage?chrome.storage.local:function(){try{return window.localStorage}catch(t){}}(),r.colors=["lightseagreen","forestgreen","goldenrod","dodgerblue","darkorchid","crimson"],r.formatters.j=function(t){try{return JSON.stringify(t)}catch(t){return"[UnexpectedJSONParseError]: "+t.message}},r.enable(i())}).call(this)}).call(this,t("_process"))},{"./debug":297,_process:272}],297:[function(t,e,r){var n;function i(t){function e(){if(e.enabled){var t=e,i=+new Date,a=i-(n||i);t.diff=a,t.prev=n,t.curr=i,n=i;for(var o=new Array(arguments.length),s=0;s0)return function(t){if((t=String(t)).length>100)return;var e=/^((?:\d+)?\.?\d+) *(milliseconds?|msecs?|ms|seconds?|secs?|s|minutes?|mins?|m|hours?|hrs?|h|days?|d|years?|yrs?|y)?$/i.exec(t);if(!e)return;var r=parseFloat(e[1]);switch((e[2]||"ms").toLowerCase()){case"years":case"year":case"yrs":case"yr":case"y":return 315576e5*r;case"days":case"day":case"d":return r*o;case"hours":case"hour":case"hrs":case"hr":case"h":return r*a;case"minutes":case"minute":case"mins":case"min":case"m":return r*i;case"seconds":case"second":case"secs":case"sec":case"s":return r*n;case"milliseconds":case"millisecond":case"msecs":case"msec":case"ms":return r;default:return}}(t);if("number"===l&&!1===isNaN(t))return e.long?s(r=t,o,"day")||s(r,a,"hour")||s(r,i,"minute")||s(r,n,"second")||r+" ms":function(t){if(t>=o)return Math.round(t/o)+"d";if(t>=a)return Math.round(t/a)+"h";if(t>=i)return Math.round(t/i)+"m";if(t>=n)return Math.round(t/n)+"s";return t+"ms"}(t);throw new Error("val is not a non-empty string or a valid number. val="+JSON.stringify(t))}},{}],299:[function(t,e,r){"use strict";var n=t("parenthesis");e.exports=function(t,e,r){if(null==t)throw Error("First argument should be a string");if(null==e)throw Error("Separator should be a string or a RegExp");r?("string"==typeof r||Array.isArray(r))&&(r={ignore:r}):r={},null==r.escape&&(r.escape=!0),null==r.ignore?r.ignore=["[]","()","{}","<>",'""',"''","``","\u201c\u201d","\xab\xbb"]:("string"==typeof r.ignore&&(r.ignore=[r.ignore]),r.ignore=r.ignore.map((function(t){return 1===t.length&&(t+=t),t})));var i=n.parse(t,{flat:!0,brackets:r.ignore}),a=i[0].split(e);if(r.escape){for(var o=[],s=0;s>5==6?2:t>>4==14?3:t>>3==30?4:t>>6==2?-1:-2}function s(t){var e=this.lastTotal-this.lastNeed,r=function(t,e,r){if(128!=(192&e[0]))return t.lastNeed=0,"\ufffd";if(t.lastNeed>1&&e.length>1){if(128!=(192&e[1]))return t.lastNeed=1,"\ufffd";if(t.lastNeed>2&&e.length>2&&128!=(192&e[2]))return t.lastNeed=2,"\ufffd"}}(this,t);return void 0!==r?r:this.lastNeed<=t.length?(t.copy(this.lastChar,e,0,this.lastNeed),this.lastChar.toString(this.encoding,0,this.lastTotal)):(t.copy(this.lastChar,e,0,t.length),void(this.lastNeed-=t.length))}function l(t,e){if((t.length-e)%2==0){var r=t.toString("utf16le",e);if(r){var n=r.charCodeAt(r.length-1);if(n>=55296&&n<=56319)return this.lastNeed=2,this.lastTotal=4,this.lastChar[0]=t[t.length-2],this.lastChar[1]=t[t.length-1],r.slice(0,-1)}return r}return this.lastNeed=1,this.lastTotal=2,this.lastChar[0]=t[t.length-1],t.toString("utf16le",e,t.length-1)}function c(t){var e=t&&t.length?this.write(t):"";if(this.lastNeed){var r=this.lastTotal-this.lastNeed;return e+this.lastChar.toString("utf16le",0,r)}return e}function u(t,e){var r=(t.length-e)%3;return 0===r?t.toString("base64",e):(this.lastNeed=3-r,this.lastTotal=3,1===r?this.lastChar[0]=t[t.length-1]:(this.lastChar[0]=t[t.length-2],this.lastChar[1]=t[t.length-1]),t.toString("base64",e,t.length-r))}function f(t){var e=t&&t.length?this.write(t):"";return this.lastNeed?e+this.lastChar.toString("base64",0,3-this.lastNeed):e}function h(t){return t.toString(this.encoding)}function p(t){return t&&t.length?this.write(t):""}r.StringDecoder=a,a.prototype.write=function(t){if(0===t.length)return"";var e,r;if(this.lastNeed){if(void 0===(e=this.fillLast(t)))return"";r=this.lastNeed,this.lastNeed=0}else r=0;return r=0)return i>0&&(t.lastNeed=i-1),i;if(--n=0)return i>0&&(t.lastNeed=i-2),i;if(--n=0)return i>0&&(2===i?i=0:t.lastNeed=i-3),i;return 0}(this,t,e);if(!this.lastNeed)return t.toString("utf8",e);this.lastTotal=r;var n=t.length-(r-this.lastNeed);return t.copy(this.lastChar,0,n),t.toString("utf8",e,n)},a.prototype.fillLast=function(t){if(this.lastNeed<=t.length)return t.copy(this.lastChar,this.lastTotal-this.lastNeed,0,this.lastNeed),this.lastChar.toString(this.encoding,0,this.lastTotal);t.copy(this.lastChar,this.lastTotal-this.lastNeed,0,t.length),this.lastNeed-=t.length}},{"safe-buffer":279}],301:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.length,r=new Array(e),n=new Array(e),i=new Array(e),a=new Array(e),o=new Array(e),s=new Array(e),l=0;l0;){e=c[c.length-1];var p=t[e];if(a[e]=0&&s[e].push(o[m])}a[e]=d}else{if(n[e]===r[e]){var g=[],v=[],y=0;for(d=l.length-1;d>=0;--d){var x=l[d];if(i[x]=!1,g.push(x),v.push(s[x]),y+=s[x].length,o[x]=f.length,x===e){l.length=d;break}}f.push(g);var b=new Array(y);for(d=0;d1&&(i=1),i<-1&&(i=-1),(t*n-e*r<0?-1:1)*Math.acos(i)};r.default=function(t){var e=t.px,r=t.py,l=t.cx,c=t.cy,u=t.rx,f=t.ry,h=t.xAxisRotation,p=void 0===h?0:h,d=t.largeArcFlag,m=void 0===d?0:d,g=t.sweepFlag,v=void 0===g?0:g,y=[];if(0===u||0===f)return[];var x=Math.sin(p*i/360),b=Math.cos(p*i/360),_=b*(e-l)/2+x*(r-c)/2,w=-x*(e-l)/2+b*(r-c)/2;if(0===_&&0===w)return[];u=Math.abs(u),f=Math.abs(f);var T=Math.pow(_,2)/Math.pow(u,2)+Math.pow(w,2)/Math.pow(f,2);T>1&&(u*=Math.sqrt(T),f*=Math.sqrt(T));var k=function(t,e,r,n,a,o,l,c,u,f,h,p){var d=Math.pow(a,2),m=Math.pow(o,2),g=Math.pow(h,2),v=Math.pow(p,2),y=d*m-d*v-m*g;y<0&&(y=0),y/=d*v+m*g;var x=(y=Math.sqrt(y)*(l===c?-1:1))*a/o*p,b=y*-o/a*h,_=f*x-u*b+(t+r)/2,w=u*x+f*b+(e+n)/2,T=(h-x)/a,k=(p-b)/o,A=(-h-x)/a,M=(-p-b)/o,S=s(1,0,T,k),E=s(T,k,A,M);return 0===c&&E>0&&(E-=i),1===c&&E<0&&(E+=i),[_,w,S,E]}(e,r,l,c,u,f,m,v,x,b,_,w),A=n(k,4),M=A[0],S=A[1],E=A[2],L=A[3],C=Math.abs(L)/(i/4);Math.abs(1-C)<1e-7&&(C=1);var P=Math.max(Math.ceil(C),1);L/=P;for(var I=0;Ie[2]&&(e[2]=l[c+0]),l[c+1]>e[3]&&(e[3]=l[c+1]);return e}},{"abs-svg-path":66,"is-svg-path":233,"normalize-svg-path":304,"parse-svg-path":245}],304:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=[],o=0,s=0,l=0,c=0,u=null,f=null,h=0,p=0,d=0,m=t.length;d4?(o=g[g.length-4],s=g[g.length-3]):(o=h,s=p),r.push(g)}return r};var n=t("svg-arc-to-cubic-bezier");function i(t,e,r,n){return["C",t,e,r,n,r,n]}function a(t,e,r,n,i,a){return["C",t/3+2/3*r,e/3+2/3*n,i/3+2/3*r,a/3+2/3*n,i,a]}},{"svg-arc-to-cubic-bezier":302}],305:[function(t,e,r){"use strict";var n,i=t("svg-path-bounds"),a=t("parse-svg-path"),o=t("draw-svg-path"),s=t("is-svg-path"),l=t("bitmap-sdf"),c=document.createElement("canvas"),u=c.getContext("2d");e.exports=function(t,e){if(!s(t))throw Error("Argument should be valid svg path string");e||(e={});var r,f;e.shape?(r=e.shape[0],f=e.shape[1]):(r=c.width=e.w||e.width||200,f=c.height=e.h||e.height||200);var h=Math.min(r,f),p=e.stroke||0,d=e.viewbox||e.viewBox||i(t),m=[r/(d[2]-d[0]),f/(d[3]-d[1])],g=Math.min(m[0]||0,m[1]||0)/2;u.fillStyle="black",u.fillRect(0,0,r,f),u.fillStyle="white",p&&("number"!=typeof p&&(p=1),u.strokeStyle=p>0?"white":"black",u.lineWidth=Math.abs(p));if(u.translate(.5*r,.5*f),u.scale(g,g),function(){if(null!=n)return n;var t=document.createElement("canvas").getContext("2d");if(t.canvas.width=t.canvas.height=1,!window.Path2D)return n=!1;var e=new Path2D("M0,0h1v1h-1v-1Z");t.fillStyle="black",t.fill(e);var r=t.getImageData(0,0,1,1);return n=r&&r.data&&255===r.data[3]}()){var v=new Path2D(t);u.fill(v),p&&u.stroke(v)}else{var y=a(t);o(u,y),u.fill(),p&&u.stroke()}return u.setTransform(1,0,0,1,0,0),l(u,{cutoff:null!=e.cutoff?e.cutoff:.5,radius:null!=e.radius?e.radius:.5*h})}},{"bitmap-sdf":78,"draw-svg-path":120,"is-svg-path":233,"parse-svg-path":245,"svg-path-bounds":303}],306:[function(t,e,r){(function(e,n){(function(){var i=t("process/browser.js").nextTick,a=Function.prototype.apply,o=Array.prototype.slice,s={},l=0;function c(t,e){this._id=t,this._clearFn=e}r.setTimeout=function(){return new c(a.call(setTimeout,window,arguments),clearTimeout)},r.setInterval=function(){return new c(a.call(setInterval,window,arguments),clearInterval)},r.clearTimeout=r.clearInterval=function(t){t.close()},c.prototype.unref=c.prototype.ref=function(){},c.prototype.close=function(){this._clearFn.call(window,this._id)},r.enroll=function(t,e){clearTimeout(t._idleTimeoutId),t._idleTimeout=e},r.unenroll=function(t){clearTimeout(t._idleTimeoutId),t._idleTimeout=-1},r._unrefActive=r.active=function(t){clearTimeout(t._idleTimeoutId);var e=t._idleTimeout;e>=0&&(t._idleTimeoutId=setTimeout((function(){t._onTimeout&&t._onTimeout()}),e))},r.setImmediate="function"==typeof e?e:function(t){var e=l++,n=!(arguments.length<2)&&o.call(arguments,1);return s[e]=!0,i((function(){s[e]&&(n?t.apply(null,n):t.call(null),r.clearImmediate(e))})),e},r.clearImmediate="function"==typeof n?n:function(t){delete s[t]}}).call(this)}).call(this,t("timers").setImmediate,t("timers").clearImmediate)},{"process/browser.js":272,timers:306}],307:[function(t,e,r){!function(t){var r=/^\s+/,n=/\s+$/,i=0,a=t.round,o=t.min,s=t.max,l=t.random;function c(e,l){if(l=l||{},(e=e||"")instanceof c)return e;if(!(this instanceof c))return new c(e,l);var u=function(e){var i={r:0,g:0,b:0},a=1,l=null,c=null,u=null,f=!1,h=!1;"string"==typeof e&&(e=function(t){t=t.replace(r,"").replace(n,"").toLowerCase();var e,i=!1;if(S[t])t=S[t],i=!0;else if("transparent"==t)return{r:0,g:0,b:0,a:0,format:"name"};if(e=j.rgb.exec(t))return{r:e[1],g:e[2],b:e[3]};if(e=j.rgba.exec(t))return{r:e[1],g:e[2],b:e[3],a:e[4]};if(e=j.hsl.exec(t))return{h:e[1],s:e[2],l:e[3]};if(e=j.hsla.exec(t))return{h:e[1],s:e[2],l:e[3],a:e[4]};if(e=j.hsv.exec(t))return{h:e[1],s:e[2],v:e[3]};if(e=j.hsva.exec(t))return{h:e[1],s:e[2],v:e[3],a:e[4]};if(e=j.hex8.exec(t))return{r:I(e[1]),g:I(e[2]),b:I(e[3]),a:R(e[4]),format:i?"name":"hex8"};if(e=j.hex6.exec(t))return{r:I(e[1]),g:I(e[2]),b:I(e[3]),format:i?"name":"hex"};if(e=j.hex4.exec(t))return{r:I(e[1]+""+e[1]),g:I(e[2]+""+e[2]),b:I(e[3]+""+e[3]),a:R(e[4]+""+e[4]),format:i?"name":"hex8"};if(e=j.hex3.exec(t))return{r:I(e[1]+""+e[1]),g:I(e[2]+""+e[2]),b:I(e[3]+""+e[3]),format:i?"name":"hex"};return!1}(e));"object"==typeof e&&(U(e.r)&&U(e.g)&&U(e.b)?(p=e.r,d=e.g,m=e.b,i={r:255*C(p,255),g:255*C(d,255),b:255*C(m,255)},f=!0,h="%"===String(e.r).substr(-1)?"prgb":"rgb"):U(e.h)&&U(e.s)&&U(e.v)?(l=z(e.s),c=z(e.v),i=function(e,r,n){e=6*C(e,360),r=C(r,100),n=C(n,100);var i=t.floor(e),a=e-i,o=n*(1-r),s=n*(1-a*r),l=n*(1-(1-a)*r),c=i%6;return{r:255*[n,s,o,o,l,n][c],g:255*[l,n,n,s,o,o][c],b:255*[o,o,l,n,n,s][c]}}(e.h,l,c),f=!0,h="hsv"):U(e.h)&&U(e.s)&&U(e.l)&&(l=z(e.s),u=z(e.l),i=function(t,e,r){var n,i,a;function o(t,e,r){return r<0&&(r+=1),r>1&&(r-=1),r<1/6?t+6*(e-t)*r:r<.5?e:r<2/3?t+(e-t)*(2/3-r)*6:t}if(t=C(t,360),e=C(e,100),r=C(r,100),0===e)n=i=a=r;else{var s=r<.5?r*(1+e):r+e-r*e,l=2*r-s;n=o(l,s,t+1/3),i=o(l,s,t),a=o(l,s,t-1/3)}return{r:255*n,g:255*i,b:255*a}}(e.h,l,u),f=!0,h="hsl"),e.hasOwnProperty("a")&&(a=e.a));var p,d,m;return a=L(a),{ok:f,format:e.format||h,r:o(255,s(i.r,0)),g:o(255,s(i.g,0)),b:o(255,s(i.b,0)),a:a}}(e);this._originalInput=e,this._r=u.r,this._g=u.g,this._b=u.b,this._a=u.a,this._roundA=a(100*this._a)/100,this._format=l.format||u.format,this._gradientType=l.gradientType,this._r<1&&(this._r=a(this._r)),this._g<1&&(this._g=a(this._g)),this._b<1&&(this._b=a(this._b)),this._ok=u.ok,this._tc_id=i++}function u(t,e,r){t=C(t,255),e=C(e,255),r=C(r,255);var n,i,a=s(t,e,r),l=o(t,e,r),c=(a+l)/2;if(a==l)n=i=0;else{var u=a-l;switch(i=c>.5?u/(2-a-l):u/(a+l),a){case t:n=(e-r)/u+(e>1)+720)%360;--e;)n.h=(n.h+i)%360,a.push(c(n));return a}function M(t,e){e=e||6;for(var r=c(t).toHsv(),n=r.h,i=r.s,a=r.v,o=[],s=1/e;e--;)o.push(c({h:n,s:i,v:a})),a=(a+s)%1;return o}c.prototype={isDark:function(){return this.getBrightness()<128},isLight:function(){return!this.isDark()},isValid:function(){return this._ok},getOriginalInput:function(){return this._originalInput},getFormat:function(){return this._format},getAlpha:function(){return this._a},getBrightness:function(){var t=this.toRgb();return(299*t.r+587*t.g+114*t.b)/1e3},getLuminance:function(){var e,r,n,i=this.toRgb();return e=i.r/255,r=i.g/255,n=i.b/255,.2126*(e<=.03928?e/12.92:t.pow((e+.055)/1.055,2.4))+.7152*(r<=.03928?r/12.92:t.pow((r+.055)/1.055,2.4))+.0722*(n<=.03928?n/12.92:t.pow((n+.055)/1.055,2.4))},setAlpha:function(t){return this._a=L(t),this._roundA=a(100*this._a)/100,this},toHsv:function(){var t=f(this._r,this._g,this._b);return{h:360*t.h,s:t.s,v:t.v,a:this._a}},toHsvString:function(){var t=f(this._r,this._g,this._b),e=a(360*t.h),r=a(100*t.s),n=a(100*t.v);return 1==this._a?"hsv("+e+", "+r+"%, "+n+"%)":"hsva("+e+", "+r+"%, "+n+"%, "+this._roundA+")"},toHsl:function(){var t=u(this._r,this._g,this._b);return{h:360*t.h,s:t.s,l:t.l,a:this._a}},toHslString:function(){var t=u(this._r,this._g,this._b),e=a(360*t.h),r=a(100*t.s),n=a(100*t.l);return 1==this._a?"hsl("+e+", "+r+"%, "+n+"%)":"hsla("+e+", "+r+"%, "+n+"%, "+this._roundA+")"},toHex:function(t){return h(this._r,this._g,this._b,t)},toHexString:function(t){return"#"+this.toHex(t)},toHex8:function(t){return function(t,e,r,n,i){var o=[O(a(t).toString(16)),O(a(e).toString(16)),O(a(r).toString(16)),O(D(n))];if(i&&o[0].charAt(0)==o[0].charAt(1)&&o[1].charAt(0)==o[1].charAt(1)&&o[2].charAt(0)==o[2].charAt(1)&&o[3].charAt(0)==o[3].charAt(1))return o[0].charAt(0)+o[1].charAt(0)+o[2].charAt(0)+o[3].charAt(0);return o.join("")}(this._r,this._g,this._b,this._a,t)},toHex8String:function(t){return"#"+this.toHex8(t)},toRgb:function(){return{r:a(this._r),g:a(this._g),b:a(this._b),a:this._a}},toRgbString:function(){return 1==this._a?"rgb("+a(this._r)+", "+a(this._g)+", "+a(this._b)+")":"rgba("+a(this._r)+", "+a(this._g)+", "+a(this._b)+", "+this._roundA+")"},toPercentageRgb:function(){return{r:a(100*C(this._r,255))+"%",g:a(100*C(this._g,255))+"%",b:a(100*C(this._b,255))+"%",a:this._a}},toPercentageRgbString:function(){return 1==this._a?"rgb("+a(100*C(this._r,255))+"%, "+a(100*C(this._g,255))+"%, "+a(100*C(this._b,255))+"%)":"rgba("+a(100*C(this._r,255))+"%, "+a(100*C(this._g,255))+"%, "+a(100*C(this._b,255))+"%, "+this._roundA+")"},toName:function(){return 0===this._a?"transparent":!(this._a<1)&&(E[h(this._r,this._g,this._b,!0)]||!1)},toFilter:function(t){var e="#"+p(this._r,this._g,this._b,this._a),r=e,n=this._gradientType?"GradientType = 1, ":"";if(t){var i=c(t);r="#"+p(i._r,i._g,i._b,i._a)}return"progid:DXImageTransform.Microsoft.gradient("+n+"startColorstr="+e+",endColorstr="+r+")"},toString:function(t){var e=!!t;t=t||this._format;var r=!1,n=this._a<1&&this._a>=0;return e||!n||"hex"!==t&&"hex6"!==t&&"hex3"!==t&&"hex4"!==t&&"hex8"!==t&&"name"!==t?("rgb"===t&&(r=this.toRgbString()),"prgb"===t&&(r=this.toPercentageRgbString()),"hex"!==t&&"hex6"!==t||(r=this.toHexString()),"hex3"===t&&(r=this.toHexString(!0)),"hex4"===t&&(r=this.toHex8String(!0)),"hex8"===t&&(r=this.toHex8String()),"name"===t&&(r=this.toName()),"hsl"===t&&(r=this.toHslString()),"hsv"===t&&(r=this.toHsvString()),r||this.toHexString()):"name"===t&&0===this._a?this.toName():this.toRgbString()},clone:function(){return c(this.toString())},_applyModification:function(t,e){var r=t.apply(null,[this].concat([].slice.call(e)));return this._r=r._r,this._g=r._g,this._b=r._b,this.setAlpha(r._a),this},lighten:function(){return this._applyModification(v,arguments)},brighten:function(){return this._applyModification(y,arguments)},darken:function(){return this._applyModification(x,arguments)},desaturate:function(){return this._applyModification(d,arguments)},saturate:function(){return this._applyModification(m,arguments)},greyscale:function(){return this._applyModification(g,arguments)},spin:function(){return this._applyModification(b,arguments)},_applyCombination:function(t,e){return t.apply(null,[this].concat([].slice.call(e)))},analogous:function(){return this._applyCombination(A,arguments)},complement:function(){return this._applyCombination(_,arguments)},monochromatic:function(){return this._applyCombination(M,arguments)},splitcomplement:function(){return this._applyCombination(k,arguments)},triad:function(){return this._applyCombination(w,arguments)},tetrad:function(){return this._applyCombination(T,arguments)}},c.fromRatio=function(t,e){if("object"==typeof t){var r={};for(var n in t)t.hasOwnProperty(n)&&(r[n]="a"===n?t[n]:z(t[n]));t=r}return c(t,e)},c.equals=function(t,e){return!(!t||!e)&&c(t).toRgbString()==c(e).toRgbString()},c.random=function(){return c.fromRatio({r:l(),g:l(),b:l()})},c.mix=function(t,e,r){r=0===r?0:r||50;var n=c(t).toRgb(),i=c(e).toRgb(),a=r/100;return c({r:(i.r-n.r)*a+n.r,g:(i.g-n.g)*a+n.g,b:(i.b-n.b)*a+n.b,a:(i.a-n.a)*a+n.a})},c.readability=function(e,r){var n=c(e),i=c(r);return(t.max(n.getLuminance(),i.getLuminance())+.05)/(t.min(n.getLuminance(),i.getLuminance())+.05)},c.isReadable=function(t,e,r){var n,i,a=c.readability(t,e);switch(i=!1,(n=function(t){var e,r;e=((t=t||{level:"AA",size:"small"}).level||"AA").toUpperCase(),r=(t.size||"small").toLowerCase(),"AA"!==e&&"AAA"!==e&&(e="AA");"small"!==r&&"large"!==r&&(r="small");return{level:e,size:r}}(r)).level+n.size){case"AAsmall":case"AAAlarge":i=a>=4.5;break;case"AAlarge":i=a>=3;break;case"AAAsmall":i=a>=7}return i},c.mostReadable=function(t,e,r){var n,i,a,o,s=null,l=0;i=(r=r||{}).includeFallbackColors,a=r.level,o=r.size;for(var u=0;ul&&(l=n,s=c(e[u]));return c.isReadable(t,s,{level:a,size:o})||!i?s:(r.includeFallbackColors=!1,c.mostReadable(t,["#fff","#000"],r))};var S=c.names={aliceblue:"f0f8ff",antiquewhite:"faebd7",aqua:"0ff",aquamarine:"7fffd4",azure:"f0ffff",beige:"f5f5dc",bisque:"ffe4c4",black:"000",blanchedalmond:"ffebcd",blue:"00f",blueviolet:"8a2be2",brown:"a52a2a",burlywood:"deb887",burntsienna:"ea7e5d",cadetblue:"5f9ea0",chartreuse:"7fff00",chocolate:"d2691e",coral:"ff7f50",cornflowerblue:"6495ed",cornsilk:"fff8dc",crimson:"dc143c",cyan:"0ff",darkblue:"00008b",darkcyan:"008b8b",darkgoldenrod:"b8860b",darkgray:"a9a9a9",darkgreen:"006400",darkgrey:"a9a9a9",darkkhaki:"bdb76b",darkmagenta:"8b008b",darkolivegreen:"556b2f",darkorange:"ff8c00",darkorchid:"9932cc",darkred:"8b0000",darksalmon:"e9967a",darkseagreen:"8fbc8f",darkslateblue:"483d8b",darkslategray:"2f4f4f",darkslategrey:"2f4f4f",darkturquoise:"00ced1",darkviolet:"9400d3",deeppink:"ff1493",deepskyblue:"00bfff",dimgray:"696969",dimgrey:"696969",dodgerblue:"1e90ff",firebrick:"b22222",floralwhite:"fffaf0",forestgreen:"228b22",fuchsia:"f0f",gainsboro:"dcdcdc",ghostwhite:"f8f8ff",gold:"ffd700",goldenrod:"daa520",gray:"808080",green:"008000",greenyellow:"adff2f",grey:"808080",honeydew:"f0fff0",hotpink:"ff69b4",indianred:"cd5c5c",indigo:"4b0082",ivory:"fffff0",khaki:"f0e68c",lavender:"e6e6fa",lavenderblush:"fff0f5",lawngreen:"7cfc00",lemonchiffon:"fffacd",lightblue:"add8e6",lightcoral:"f08080",lightcyan:"e0ffff",lightgoldenrodyellow:"fafad2",lightgray:"d3d3d3",lightgreen:"90ee90",lightgrey:"d3d3d3",lightpink:"ffb6c1",lightsalmon:"ffa07a",lightseagreen:"20b2aa",lightskyblue:"87cefa",lightslategray:"789",lightslategrey:"789",lightsteelblue:"b0c4de",lightyellow:"ffffe0",lime:"0f0",limegreen:"32cd32",linen:"faf0e6",magenta:"f0f",maroon:"800000",mediumaquamarine:"66cdaa",mediumblue:"0000cd",mediumorchid:"ba55d3",mediumpurple:"9370db",mediumseagreen:"3cb371",mediumslateblue:"7b68ee",mediumspringgreen:"00fa9a",mediumturquoise:"48d1cc",mediumvioletred:"c71585",midnightblue:"191970",mintcream:"f5fffa",mistyrose:"ffe4e1",moccasin:"ffe4b5",navajowhite:"ffdead",navy:"000080",oldlace:"fdf5e6",olive:"808000",olivedrab:"6b8e23",orange:"ffa500",orangered:"ff4500",orchid:"da70d6",palegoldenrod:"eee8aa",palegreen:"98fb98",paleturquoise:"afeeee",palevioletred:"db7093",papayawhip:"ffefd5",peachpuff:"ffdab9",peru:"cd853f",pink:"ffc0cb",plum:"dda0dd",powderblue:"b0e0e6",purple:"800080",rebeccapurple:"663399",red:"f00",rosybrown:"bc8f8f",royalblue:"4169e1",saddlebrown:"8b4513",salmon:"fa8072",sandybrown:"f4a460",seagreen:"2e8b57",seashell:"fff5ee",sienna:"a0522d",silver:"c0c0c0",skyblue:"87ceeb",slateblue:"6a5acd",slategray:"708090",slategrey:"708090",snow:"fffafa",springgreen:"00ff7f",steelblue:"4682b4",tan:"d2b48c",teal:"008080",thistle:"d8bfd8",tomato:"ff6347",turquoise:"40e0d0",violet:"ee82ee",wheat:"f5deb3",white:"fff",whitesmoke:"f5f5f5",yellow:"ff0",yellowgreen:"9acd32"},E=c.hexNames=function(t){var e={};for(var r in t)t.hasOwnProperty(r)&&(e[t[r]]=r);return e}(S);function L(t){return t=parseFloat(t),(isNaN(t)||t<0||t>1)&&(t=1),t}function C(e,r){(function(t){return"string"==typeof t&&-1!=t.indexOf(".")&&1===parseFloat(t)})(e)&&(e="100%");var n=function(t){return"string"==typeof t&&-1!=t.indexOf("%")}(e);return e=o(r,s(0,parseFloat(e))),n&&(e=parseInt(e*r,10)/100),t.abs(e-r)<1e-6?1:e%r/parseFloat(r)}function P(t){return o(1,s(0,t))}function I(t){return parseInt(t,16)}function O(t){return 1==t.length?"0"+t:""+t}function z(t){return t<=1&&(t=100*t+"%"),t}function D(e){return t.round(255*parseFloat(e)).toString(16)}function R(t){return I(t)/255}var F,B,N,j=(B="[\\s|\\(]+("+(F="(?:[-\\+]?\\d*\\.\\d+%?)|(?:[-\\+]?\\d+%?)")+")[,|\\s]+("+F+")[,|\\s]+("+F+")\\s*\\)?",N="[\\s|\\(]+("+F+")[,|\\s]+("+F+")[,|\\s]+("+F+")[,|\\s]+("+F+")\\s*\\)?",{CSS_UNIT:new RegExp(F),rgb:new RegExp("rgb"+B),rgba:new RegExp("rgba"+N),hsl:new RegExp("hsl"+B),hsla:new RegExp("hsla"+N),hsv:new RegExp("hsv"+B),hsva:new RegExp("hsva"+N),hex3:/^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,hex6:/^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/,hex4:/^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,hex8:/^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/});function U(t){return!!j.CSS_UNIT.exec(t)}void 0!==e&&e.exports?e.exports=c:window.tinycolor=c}(Math)},{}],308:[function(t,e,r){"use strict";e.exports=i,e.exports.float32=e.exports.float=i,e.exports.fract32=e.exports.fract=function(t,e){if(t.length){if(t instanceof Float32Array)return new Float32Array(t.length);e instanceof Float32Array||(e=i(t));for(var r=0,n=e.length;ro&&(o=t[0]),t[1]s&&(s=t[1])}function c(t){switch(t.type){case"GeometryCollection":t.geometries.forEach(c);break;case"Point":l(t.coordinates);break;case"MultiPoint":t.coordinates.forEach(l)}}for(e in t.arcs.forEach((function(t){for(var e,r=-1,l=t.length;++ro&&(o=e[0]),e[1]s&&(s=e[1])})),t.objects)c(t.objects[e]);return[i,a,o,s]}function i(t,e){var r=e.id,n=e.bbox,i=null==e.properties?{}:e.properties,o=a(t,e);return null==r&&null==n?{type:"Feature",properties:i,geometry:o}:null==n?{type:"Feature",id:r,properties:i,geometry:o}:{type:"Feature",id:r,bbox:n,properties:i,geometry:o}}function a(t,e){var n=r(t.transform),i=t.arcs;function a(t,e){e.length&&e.pop();for(var r=i[t<0?~t:t],a=0,o=r.length;a1)n=l(t,e,r);else for(i=0,n=new Array(a=t.arcs.length);i1)for(var a,s,c=1,u=l(i[0]);cu&&(s=i[0],i[0]=i[c],i[c]=s,u=a);return i})).filter((function(t){return t.length>0}))}}function u(t,e){for(var r=0,n=t.length;r>>1;t[i]=2))throw new Error("n must be \u22652");var r,i=(l=t.bbox||n(t))[0],a=l[1],o=l[2],s=l[3];e={scale:[o-i?(o-i)/(r-1):1,s-a?(s-a)/(r-1):1],translate:[i,a]}}var l,c,u=f(e),h=t.objects,p={};function d(t){return u(t)}function m(t){var e;switch(t.type){case"GeometryCollection":e={type:"GeometryCollection",geometries:t.geometries.map(m)};break;case"Point":e={type:"Point",coordinates:d(t.coordinates)};break;case"MultiPoint":e={type:"MultiPoint",coordinates:t.coordinates.map(d)};break;default:return t}return null!=t.id&&(e.id=t.id),null!=t.bbox&&(e.bbox=t.bbox),null!=t.properties&&(e.properties=t.properties),e}for(c in h)p[c]=m(h[c]);return{type:"Topology",bbox:l,transform:e,objects:p,arcs:t.arcs.map((function(t){var e,r=0,n=1,i=t.length,a=new Array(i);for(a[0]=u(t[0],0);++r":(e.length>100&&(e=e.slice(0,99)+"\u2026"),e=e.replace(i,(function(t){switch(t){case"\n":return"\\n";case"\r":return"\\r";case"\u2028":return"\\u2028";case"\u2029":return"\\u2029";default:throw new Error("Unexpected character")}})))}},{"./safe-to-string":313}],315:[function(t,e,r){"use strict";var n=t("../value/is"),i={object:!0,function:!0,undefined:!0};e.exports=function(t){return!!n(t)&&hasOwnProperty.call(i,typeof t)}},{"../value/is":321}],316:[function(t,e,r){"use strict";var n=t("../lib/resolve-exception"),i=t("./is");e.exports=function(t){return i(t)?t:n(t,"%v is not a plain function",arguments[1])}},{"../lib/resolve-exception":312,"./is":317}],317:[function(t,e,r){"use strict";var n=t("../function/is"),i=/^\s*class[\s{/}]/,a=Function.prototype.toString;e.exports=function(t){return!!n(t)&&!i.test(a.call(t))}},{"../function/is":311}],318:[function(t,e,r){"use strict";var n=t("../object/is");e.exports=function(t){if(!n(t))return!1;try{return!!t.constructor&&t.constructor.prototype===t}catch(t){return!1}}},{"../object/is":315}],319:[function(t,e,r){"use strict";var n=t("../value/is"),i=t("../object/is"),a=Object.prototype.toString;e.exports=function(t){if(!n(t))return null;if(i(t)){var e=t.toString;if("function"!=typeof e)return null;if(e===a)return null}try{return""+t}catch(t){return null}}},{"../object/is":315,"../value/is":321}],320:[function(t,e,r){"use strict";var n=t("../lib/resolve-exception"),i=t("./is");e.exports=function(t){return i(t)?t:n(t,"Cannot use %v",arguments[1])}},{"../lib/resolve-exception":312,"./is":321}],321:[function(t,e,r){"use strict";e.exports=function(t){return null!=t}},{}],322:[function(t,e,r){(function(e){(function(){"use strict";var n=t("bit-twiddle"),i=t("dup"),a=t("buffer").Buffer;e.__TYPEDARRAY_POOL||(e.__TYPEDARRAY_POOL={UINT8:i([32,0]),UINT16:i([32,0]),UINT32:i([32,0]),BIGUINT64:i([32,0]),INT8:i([32,0]),INT16:i([32,0]),INT32:i([32,0]),BIGINT64:i([32,0]),FLOAT:i([32,0]),DOUBLE:i([32,0]),DATA:i([32,0]),UINT8C:i([32,0]),BUFFER:i([32,0])});var o="undefined"!=typeof Uint8ClampedArray,s="undefined"!=typeof BigUint64Array,l="undefined"!=typeof BigInt64Array,c=e.__TYPEDARRAY_POOL;c.UINT8C||(c.UINT8C=i([32,0])),c.BIGUINT64||(c.BIGUINT64=i([32,0])),c.BIGINT64||(c.BIGINT64=i([32,0])),c.BUFFER||(c.BUFFER=i([32,0]));var u=c.DATA,f=c.BUFFER;function h(t){if(t){var e=t.length||t.byteLength,r=n.log2(e);u[r].push(t)}}function p(t){t=n.nextPow2(t);var e=n.log2(t),r=u[e];return r.length>0?r.pop():new ArrayBuffer(t)}function d(t){return new Uint8Array(p(t),0,t)}function m(t){return new Uint16Array(p(2*t),0,t)}function g(t){return new Uint32Array(p(4*t),0,t)}function v(t){return new Int8Array(p(t),0,t)}function y(t){return new Int16Array(p(2*t),0,t)}function x(t){return new Int32Array(p(4*t),0,t)}function b(t){return new Float32Array(p(4*t),0,t)}function _(t){return new Float64Array(p(8*t),0,t)}function w(t){return o?new Uint8ClampedArray(p(t),0,t):d(t)}function T(t){return s?new BigUint64Array(p(8*t),0,t):null}function k(t){return l?new BigInt64Array(p(8*t),0,t):null}function A(t){return new DataView(p(t),0,t)}function M(t){t=n.nextPow2(t);var e=n.log2(t),r=f[e];return r.length>0?r.pop():new a(t)}r.free=function(t){if(a.isBuffer(t))f[n.log2(t.length)].push(t);else{if("[object ArrayBuffer]"!==Object.prototype.toString.call(t)&&(t=t.buffer),!t)return;var e=t.length||t.byteLength,r=0|n.log2(e);u[r].push(t)}},r.freeUint8=r.freeUint16=r.freeUint32=r.freeBigUint64=r.freeInt8=r.freeInt16=r.freeInt32=r.freeBigInt64=r.freeFloat32=r.freeFloat=r.freeFloat64=r.freeDouble=r.freeUint8Clamped=r.freeDataView=function(t){h(t.buffer)},r.freeArrayBuffer=h,r.freeBuffer=function(t){f[n.log2(t.length)].push(t)},r.malloc=function(t,e){if(void 0===e||"arraybuffer"===e)return p(t);switch(e){case"uint8":return d(t);case"uint16":return m(t);case"uint32":return g(t);case"int8":return v(t);case"int16":return y(t);case"int32":return x(t);case"float":case"float32":return b(t);case"double":case"float64":return _(t);case"uint8_clamped":return w(t);case"bigint64":return k(t);case"biguint64":return T(t);case"buffer":return M(t);case"data":case"dataview":return A(t);default:return null}return null},r.mallocArrayBuffer=p,r.mallocUint8=d,r.mallocUint16=m,r.mallocUint32=g,r.mallocInt8=v,r.mallocInt16=y,r.mallocInt32=x,r.mallocFloat32=r.mallocFloat=b,r.mallocFloat64=r.mallocDouble=_,r.mallocUint8Clamped=w,r.mallocBigUint64=T,r.mallocBigInt64=k,r.mallocDataView=A,r.mallocBuffer=M,r.clearCache=function(){for(var t=0;t<32;++t)c.UINT8[t].length=0,c.UINT16[t].length=0,c.UINT32[t].length=0,c.INT8[t].length=0,c.INT16[t].length=0,c.INT32[t].length=0,c.FLOAT[t].length=0,c.DOUBLE[t].length=0,c.BIGUINT64[t].length=0,c.BIGINT64[t].length=0,c.UINT8C[t].length=0,u[t].length=0,f[t].length=0}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"bit-twiddle":77,buffer:80,dup:122}],323:[function(t,e,r){var n=/[\'\"]/;e.exports=function(t){return t?(n.test(t.charAt(0))&&(t=t.substr(1)),n.test(t.charAt(t.length-1))&&(t=t.substr(0,t.length-1)),t):""}},{}],324:[function(t,e,r){"use strict";e.exports=function(t,e,r){Array.isArray(r)||(r=[].slice.call(arguments,2));for(var n=0,i=r.length;n2111)throw e.replace(/\{0\}/,this.local.name);return t},toMonthIndex:function(t,e,r){var i=this.intercalaryMonth(t);if(r&&e!==i||e<1||e>12)throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return i?!r&&e<=i?e-1:e:e-1},toChineseMonth:function(t,e){t.year&&(e=(t=t.year()).month());var r=this.intercalaryMonth(t);if(e<0||e>(r?12:11))throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return r?e>13},isIntercalaryMonth:function(t,e){t.year&&(e=(t=t.year()).month());var r=this.intercalaryMonth(t);return!!r&&r===e},leapYear:function(t){return 0!==this.intercalaryMonth(t)},weekOfYear:function(t,e,r){var i,o=this._validateYear(t,n.local.invalidyear),s=h[o-h[0]],l=s>>9&4095,c=s>>5&15,u=31&s;(i=a.newDate(l,c,u)).add(4-(i.dayOfWeek()||7),"d");var f=this.toJD(t,e,r)-i.toJD();return 1+Math.floor(f/7)},monthsInYear:function(t){return this.leapYear(t)?13:12},daysInMonth:function(t,e){t.year&&(e=t.month(),t=t.year()),t=this._validateYear(t);var r=f[t-f[0]];if(e>(r>>13?12:11))throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return r&1<<12-e?30:29},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,s,r,n.local.invalidDate);t=this._validateYear(i.year()),e=i.month(),r=i.day();var o=this.isIntercalaryMonth(t,e),s=this.toChineseMonth(t,e),l=function(t,e,r,n,i){var a,o,s;if("object"==typeof t)o=t,a=e||{};else{var l;if(!("number"==typeof t&&t>=1888&&t<=2111))throw new Error("Lunar year outside range 1888-2111");if(!("number"==typeof e&&e>=1&&e<=12))throw new Error("Lunar month outside range 1 - 12");if(!("number"==typeof r&&r>=1&&r<=30))throw new Error("Lunar day outside range 1 - 30");"object"==typeof n?(l=!1,a=n):(l=!!n,a=i||{}),o={year:t,month:e,day:r,isIntercalary:l}}s=o.day-1;var c,u=f[o.year-f[0]],p=u>>13;c=p&&(o.month>p||o.isIntercalary)?o.month:o.month-1;for(var d=0;d>9&4095,(m>>5&15)-1,(31&m)+s);return a.year=g.getFullYear(),a.month=1+g.getMonth(),a.day=g.getDate(),a}(t,s,r,o);return a.toJD(l.year,l.month,l.day)},fromJD:function(t){var e=a.fromJD(t),r=function(t,e,r,n){var i,a;if("object"==typeof t)i=t,a=e||{};else{if(!("number"==typeof t&&t>=1888&&t<=2111))throw new Error("Solar year outside range 1888-2111");if(!("number"==typeof e&&e>=1&&e<=12))throw new Error("Solar month outside range 1 - 12");if(!("number"==typeof r&&r>=1&&r<=31))throw new Error("Solar day outside range 1 - 31");i={year:t,month:e,day:r},a=n||{}}var o=h[i.year-h[0]],s=i.year<<9|i.month<<5|i.day;a.year=s>=o?i.year:i.year-1,o=h[a.year-h[0]];var l,c=new Date(o>>9&4095,(o>>5&15)-1,31&o),u=new Date(i.year,i.month-1,i.day);l=Math.round((u-c)/864e5);var p,d=f[a.year-f[0]];for(p=0;p<13;p++){var m=d&1<<12-p?30:29;if(l>13;!g||p=2&&n<=6},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return{century:o[Math.floor((i.year()-1)/100)+1]||""}},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year()+(i.year()<0?1:0),e=i.month(),(r=i.day())+(e>1?16:0)+(e>2?32*(e-2):0)+400*(t-1)+this.jdEpoch-1},fromJD:function(t){t=Math.floor(t+.5)-Math.floor(this.jdEpoch)-1;var e=Math.floor(t/400)+1;t-=400*(e-1),t+=t>15?16:0;var r=Math.floor(t/32)+1,n=t-32*(r-1)+1;return this.newDate(e<=0?e-1:e,r,n)}});var o={20:"Fruitbat",21:"Anchovy"};n.calendars.discworld=a},{"../main":341,"object-assign":242}],330:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Ethiopian",jdEpoch:1724220.5,daysPerMonth:[30,30,30,30,30,30,30,30,30,30,30,30,5],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Ethiopian",epochs:["BEE","EE"],monthNames:["Meskerem","Tikemet","Hidar","Tahesas","Tir","Yekatit","Megabit","Miazia","Genbot","Sene","Hamle","Nehase","Pagume"],monthNamesShort:["Mes","Tik","Hid","Tah","Tir","Yek","Meg","Mia","Gen","Sen","Ham","Neh","Pag"],dayNames:["Ehud","Segno","Maksegno","Irob","Hamus","Arb","Kidame"],dayNamesShort:["Ehu","Seg","Mak","Iro","Ham","Arb","Kid"],dayNamesMin:["Eh","Se","Ma","Ir","Ha","Ar","Ki"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return(t=e.year()+(e.year()<0?1:0))%4==3||t%4==-1},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear||n.regionalOptions[""].invalidYear),13},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(13===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return(t=i.year())<0&&t++,i.day()+30*(i.month()-1)+365*(t-1)+Math.floor(t/4)+this.jdEpoch-1},fromJD:function(t){var e=Math.floor(t)+.5-this.jdEpoch,r=Math.floor((e-Math.floor((e+366)/1461))/365)+1;r<=0&&r--,e=Math.floor(t)+.5-this.newDate(r,1,1).toJD();var n=Math.floor(e/30)+1,i=e-30*(n-1)+1;return this.newDate(r,n,i)}}),n.calendars.ethiopian=a},{"../main":341,"object-assign":242}],331:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}function o(t,e){return t-e*Math.floor(t/e)}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Hebrew",jdEpoch:347995.5,daysPerMonth:[30,29,30,29,30,29,30,29,30,29,30,29,29],hasYearZero:!1,minMonth:1,firstMonth:7,minDay:1,regionalOptions:{"":{name:"Hebrew",epochs:["BAM","AM"],monthNames:["Nisan","Iyar","Sivan","Tammuz","Av","Elul","Tishrei","Cheshvan","Kislev","Tevet","Shevat","Adar","Adar II"],monthNamesShort:["Nis","Iya","Siv","Tam","Av","Elu","Tis","Che","Kis","Tev","She","Ada","Ad2"],dayNames:["Yom Rishon","Yom Sheni","Yom Shlishi","Yom Revi'i","Yom Chamishi","Yom Shishi","Yom Shabbat"],dayNamesShort:["Ris","She","Shl","Rev","Cha","Shi","Sha"],dayNamesMin:["Ri","She","Shl","Re","Ch","Shi","Sha"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return this._leapYear(e.year())},_leapYear:function(t){return o(7*(t=t<0?t+1:t)+1,19)<7},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),this._leapYear(t.year?t.year():t)?13:12},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){return t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year(),this.toJD(-1===t?1:t+1,7,1)-this.toJD(t,7,1)},daysInMonth:function(t,e){return t.year&&(e=t.month(),t=t.year()),this._validate(t,e,this.minDay,n.local.invalidMonth),12===e&&this.leapYear(t)||8===e&&5===o(this.daysInYear(t),10)?30:9===e&&3===o(this.daysInYear(t),10)?29:this.daysPerMonth[e-1]},weekDay:function(t,e,r){return 6!==this.dayOfWeek(t,e,r)},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return{yearType:(this.leapYear(i)?"embolismic":"common")+" "+["deficient","regular","complete"][this.daysInYear(i)%10-3]}},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=t<=0?t+1:t,o=this.jdEpoch+this._delay1(a)+this._delay2(a)+r+1;if(e<7){for(var s=7;s<=this.monthsInYear(t);s++)o+=this.daysInMonth(t,s);for(s=1;s=this.toJD(-1===e?1:e+1,7,1);)e++;for(var r=tthis.toJD(e,r,this.daysInMonth(e,r));)r++;var n=t-this.toJD(e,r,1)+1;return this.newDate(e,r,n)}}),n.calendars.hebrew=a},{"../main":341,"object-assign":242}],332:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Islamic",jdEpoch:1948439.5,daysPerMonth:[30,29,30,29,30,29,30,29,30,29,30,29],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Islamic",epochs:["BH","AH"],monthNames:["Muharram","Safar","Rabi' al-awwal","Rabi' al-thani","Jumada al-awwal","Jumada al-thani","Rajab","Sha'aban","Ramadan","Shawwal","Dhu al-Qi'dah","Dhu al-Hijjah"],monthNamesShort:["Muh","Saf","Rab1","Rab2","Jum1","Jum2","Raj","Sha'","Ram","Shaw","DhuQ","DhuH"],dayNames:["Yawm al-ahad","Yawm al-ithnayn","Yawm ath-thulaathaa'","Yawm al-arbi'aa'","Yawm al-kham\u012bs","Yawm al-jum'a","Yawm as-sabt"],dayNamesShort:["Aha","Ith","Thu","Arb","Kha","Jum","Sab"],dayNamesMin:["Ah","It","Th","Ar","Kh","Ju","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:6,isRTL:!1}},leapYear:function(t){return(11*this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year()+14)%30<11},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){return this.leapYear(t)?355:354},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year(),e=i.month(),t=t<=0?t+1:t,(r=i.day())+Math.ceil(29.5*(e-1))+354*(t-1)+Math.floor((3+11*t)/30)+this.jdEpoch-1},fromJD:function(t){t=Math.floor(t)+.5;var e=Math.floor((30*(t-this.jdEpoch)+10646)/10631);e=e<=0?e-1:e;var r=Math.min(12,Math.ceil((t-29-this.toJD(e,1,1))/29.5)+1),n=t-this.toJD(e,r,1)+1;return this.newDate(e,r,n)}}),n.calendars.islamic=a},{"../main":341,"object-assign":242}],333:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Julian",jdEpoch:1721423.5,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Julian",epochs:["BC","AD"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"mm/dd/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return(t=e.year()<0?e.year()+1:e.year())%4==0},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(4-(n.dayOfWeek()||7),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year(),e=i.month(),r=i.day(),t<0&&t++,e<=2&&(t--,e+=12),Math.floor(365.25*(t+4716))+Math.floor(30.6001*(e+1))+r-1524.5},fromJD:function(t){var e=Math.floor(t+.5)+1524,r=Math.floor((e-122.1)/365.25),n=Math.floor(365.25*r),i=Math.floor((e-n)/30.6001),a=i-Math.floor(i<14?1:13),o=r-Math.floor(a>2?4716:4715),s=e-n-Math.floor(30.6001*i);return o<=0&&o--,this.newDate(o,a,s)}}),n.calendars.julian=a},{"../main":341,"object-assign":242}],334:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}function o(t,e){return t-e*Math.floor(t/e)}function s(t,e){return o(t-1,e)+1}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Mayan",jdEpoch:584282.5,hasYearZero:!0,minMonth:0,firstMonth:0,minDay:0,regionalOptions:{"":{name:"Mayan",epochs:["",""],monthNames:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17"],monthNamesShort:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17"],dayNames:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],dayNamesShort:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],dayNamesMin:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],digits:null,dateFormat:"YYYY.m.d",firstDay:0,isRTL:!1,haabMonths:["Pop","Uo","Zip","Zotz","Tzec","Xul","Yaxkin","Mol","Chen","Yax","Zac","Ceh","Mac","Kankin","Muan","Pax","Kayab","Cumku","Uayeb"],tzolkinMonths:["Imix","Ik","Akbal","Kan","Chicchan","Cimi","Manik","Lamat","Muluc","Oc","Chuen","Eb","Ben","Ix","Men","Cib","Caban","Etznab","Cauac","Ahau"]}},leapYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),!1},formatYear:function(t){t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year();var e=Math.floor(t/400);return t%=400,t+=t<0?400:0,e+"."+Math.floor(t/20)+"."+t%20},forYear:function(t){if((t=t.split(".")).length<3)throw"Invalid Mayan year";for(var e=0,r=0;r19||r>0&&n<0)throw"Invalid Mayan year";e=20*e+n}return e},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),18},weekOfYear:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate),0},daysInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),360},daysInMonth:function(t,e){return this._validate(t,e,this.minDay,n.local.invalidMonth),20},daysInWeek:function(){return 5},dayOfWeek:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate).day()},weekDay:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate),!0},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate).toJD(),a=this._toHaab(i),o=this._toTzolkin(i);return{haabMonthName:this.local.haabMonths[a[0]-1],haabMonth:a[0],haabDay:a[1],tzolkinDayName:this.local.tzolkinMonths[o[0]-1],tzolkinDay:o[0],tzolkinTrecena:o[1]}},_toHaab:function(t){var e=o((t-=this.jdEpoch)+8+340,365);return[Math.floor(e/20)+1,o(e,20)]},_toTzolkin:function(t){return[s((t-=this.jdEpoch)+20,20),s(t+4,13)]},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return i.day()+20*i.month()+360*i.year()+this.jdEpoch},fromJD:function(t){t=Math.floor(t)+.5-this.jdEpoch;var e=Math.floor(t/360);t%=360,t+=t<0?360:0;var r=Math.floor(t/20),n=t%20;return this.newDate(e,r,n)}}),n.calendars.mayan=a},{"../main":341,"object-assign":242}],335:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar;var o=n.instance("gregorian");i(a.prototype,{name:"Nanakshahi",jdEpoch:2257673.5,daysPerMonth:[31,31,31,31,31,30,30,30,30,30,30,30],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Nanakshahi",epochs:["BN","AN"],monthNames:["Chet","Vaisakh","Jeth","Harh","Sawan","Bhadon","Assu","Katak","Maghar","Poh","Magh","Phagun"],monthNamesShort:["Che","Vai","Jet","Har","Saw","Bha","Ass","Kat","Mgr","Poh","Mgh","Pha"],dayNames:["Somvaar","Mangalvar","Budhvaar","Veervaar","Shukarvaar","Sanicharvaar","Etvaar"],dayNamesShort:["Som","Mangal","Budh","Veer","Shukar","Sanichar","Et"],dayNamesMin:["So","Ma","Bu","Ve","Sh","Sa","Et"],digits:null,dateFormat:"dd-mm-yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear||n.regionalOptions[""].invalidYear);return o.leapYear(e.year()+(e.year()<1?1:0)+1469)},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(1-(n.dayOfWeek()||7),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidMonth);(t=i.year())<0&&t++;for(var a=i.day(),s=1;s=this.toJD(e+1,1,1);)e++;for(var r=t-Math.floor(this.toJD(e,1,1)+.5)+1,n=1;r>this.daysInMonth(e,n);)r-=this.daysInMonth(e,n),n++;return this.newDate(e,n,r)}}),n.calendars.nanakshahi=a},{"../main":341,"object-assign":242}],336:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Nepali",jdEpoch:1700709.5,daysPerMonth:[31,31,32,32,31,30,30,29,30,29,30,30],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,daysPerYear:365,regionalOptions:{"":{name:"Nepali",epochs:["BBS","ABS"],monthNames:["Baisakh","Jestha","Ashadh","Shrawan","Bhadra","Ashwin","Kartik","Mangsir","Paush","Mangh","Falgun","Chaitra"],monthNamesShort:["Bai","Je","As","Shra","Bha","Ash","Kar","Mang","Pau","Ma","Fal","Chai"],dayNames:["Aaitabaar","Sombaar","Manglbaar","Budhabaar","Bihibaar","Shukrabaar","Shanibaar"],dayNamesShort:["Aaita","Som","Mangl","Budha","Bihi","Shukra","Shani"],dayNamesMin:["Aai","So","Man","Bu","Bi","Shu","Sha"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:1,isRTL:!1}},leapYear:function(t){return this.daysInYear(t)!==this.daysPerYear},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){if(t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year(),void 0===this.NEPALI_CALENDAR_DATA[t])return this.daysPerYear;for(var e=0,r=this.minMonth;r<=12;r++)e+=this.NEPALI_CALENDAR_DATA[t][r];return e},daysInMonth:function(t,e){return t.year&&(e=t.month(),t=t.year()),this._validate(t,e,this.minDay,n.local.invalidMonth),void 0===this.NEPALI_CALENDAR_DATA[t]?this.daysPerMonth[e-1]:this.NEPALI_CALENDAR_DATA[t][e]},weekDay:function(t,e,r){return 6!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=n.instance(),o=0,s=e,l=t;this._createMissingCalendarData(t);var c=t-(s>9||9===s&&r>=this.NEPALI_CALENDAR_DATA[l][0]?56:57);for(9!==e&&(o=r,s--);9!==s;)s<=0&&(s=12,l--),o+=this.NEPALI_CALENDAR_DATA[l][s],s--;return 9===e?(o+=r-this.NEPALI_CALENDAR_DATA[l][0])<0&&(o+=a.daysInYear(c)):o+=this.NEPALI_CALENDAR_DATA[l][9]-this.NEPALI_CALENDAR_DATA[l][0],a.newDate(c,1,1).add(o,"d").toJD()},fromJD:function(t){var e=n.instance().fromJD(t),r=e.year(),i=e.dayOfYear(),a=r+56;this._createMissingCalendarData(a);for(var o=9,s=this.NEPALI_CALENDAR_DATA[a][0],l=this.NEPALI_CALENDAR_DATA[a][o]-s+1;i>l;)++o>12&&(o=1,a++),l+=this.NEPALI_CALENDAR_DATA[a][o];var c=this.NEPALI_CALENDAR_DATA[a][o]-(l-i);return this.newDate(a,o,c)},_createMissingCalendarData:function(t){var e=this.daysPerMonth.slice(0);e.unshift(17);for(var r=t-1;r0?474:473))%2820+474+38)%2816<682},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-(n.dayOfWeek()+1)%7,"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=t-(t>=0?474:473),s=474+o(a,2820);return r+(e<=7?31*(e-1):30*(e-1)+6)+Math.floor((682*s-110)/2816)+365*(s-1)+1029983*Math.floor(a/2820)+this.jdEpoch-1},fromJD:function(t){var e=(t=Math.floor(t)+.5)-this.toJD(475,1,1),r=Math.floor(e/1029983),n=o(e,1029983),i=2820;if(1029982!==n){var a=Math.floor(n/366),s=o(n,366);i=Math.floor((2134*a+2816*s+2815)/1028522)+a+1}var l=i+2820*r+474;l=l<=0?l-1:l;var c=t-this.toJD(l,1,1)+1,u=c<=186?Math.ceil(c/31):Math.ceil((c-6)/30),f=t-this.toJD(l,u,1)+1;return this.newDate(l,u,f)}}),n.calendars.persian=a,n.calendars.jalali=a},{"../main":341,"object-assign":242}],338:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Taiwan",jdEpoch:2419402.5,yearsOffset:1911,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Taiwan",epochs:["BROC","ROC"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:1,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(e.year());return a.leapYear(t)},weekOfYear:function(t,e,r){var i=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(i.year());return a.weekOfYear(t,i.month(),i.day())},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=this._t2gYear(i.year());return a.toJD(t,i.month(),i.day())},fromJD:function(t){var e=a.fromJD(t),r=this._g2tYear(e.year());return this.newDate(r,e.month(),e.day())},_t2gYear:function(t){return t+this.yearsOffset+(t>=-this.yearsOffset&&t<=-1?1:0)},_g2tYear:function(t){return t-this.yearsOffset-(t>=1&&t<=this.yearsOffset?1:0)}}),n.calendars.taiwan=o},{"../main":341,"object-assign":242}],339:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Thai",jdEpoch:1523098.5,yearsOffset:543,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Thai",epochs:["BBE","BE"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(e.year());return a.leapYear(t)},weekOfYear:function(t,e,r){var i=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(i.year());return a.weekOfYear(t,i.month(),i.day())},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=this._t2gYear(i.year());return a.toJD(t,i.month(),i.day())},fromJD:function(t){var e=a.fromJD(t),r=this._g2tYear(e.year());return this.newDate(r,e.month(),e.day())},_t2gYear:function(t){return t-this.yearsOffset-(t>=1&&t<=this.yearsOffset?1:0)},_g2tYear:function(t){return t+this.yearsOffset+(t>=-this.yearsOffset&&t<=-1?1:0)}}),n.calendars.thai=o},{"../main":341,"object-assign":242}],340:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"UmmAlQura",hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Umm al-Qura",epochs:["BH","AH"],monthNames:["Al-Muharram","Safar","Rabi' al-awwal","Rabi' Al-Thani","Jumada Al-Awwal","Jumada Al-Thani","Rajab","Sha'aban","Ramadan","Shawwal","Dhu al-Qi'dah","Dhu al-Hijjah"],monthNamesShort:["Muh","Saf","Rab1","Rab2","Jum1","Jum2","Raj","Sha'","Ram","Shaw","DhuQ","DhuH"],dayNames:["Yawm al-Ahad","Yawm al-Ithnain","Yawm al-Thal\u0101th\u0101\u2019","Yawm al-Arba\u2018\u0101\u2019","Yawm al-Kham\u012bs","Yawm al-Jum\u2018a","Yawm al-Sabt"],dayNamesMin:["Ah","Ith","Th","Ar","Kh","Ju","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:6,isRTL:!0}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return 355===this.daysInYear(e.year())},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){for(var e=0,r=1;r<=12;r++)e+=this.daysInMonth(t,r);return e},daysInMonth:function(t,e){for(var r=this._validate(t,e,this.minDay,n.local.invalidMonth).toJD()-24e5+.5,i=0,a=0;ar)return o[i]-o[i-1];i++}return 30},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate),a=12*(i.year()-1)+i.month()-15292;return i.day()+o[a-1]-1+24e5-.5},fromJD:function(t){for(var e=t-24e5+.5,r=0,n=0;ne);n++)r++;var i=r+15292,a=Math.floor((i-1)/12),s=a+1,l=i-12*a,c=e-o[r-1]+1;return this.newDate(s,l,c)},isValid:function(t,e,r){var i=n.baseCalendar.prototype.isValid.apply(this,arguments);return i&&(i=(t=null!=t.year?t.year:t)>=1276&&t<=1500),i},_validate:function(t,e,r,i){var a=n.baseCalendar.prototype._validate.apply(this,arguments);if(a.year<1276||a.year>1500)throw i.replace(/\{0\}/,this.local.name);return a}}),n.calendars.ummalqura=a;var o=[20,50,79,109,138,168,197,227,256,286,315,345,374,404,433,463,492,522,551,581,611,641,670,700,729,759,788,818,847,877,906,936,965,995,1024,1054,1083,1113,1142,1172,1201,1231,1260,1290,1320,1350,1379,1409,1438,1468,1497,1527,1556,1586,1615,1645,1674,1704,1733,1763,1792,1822,1851,1881,1910,1940,1969,1999,2028,2058,2087,2117,2146,2176,2205,2235,2264,2294,2323,2353,2383,2413,2442,2472,2501,2531,2560,2590,2619,2649,2678,2708,2737,2767,2796,2826,2855,2885,2914,2944,2973,3003,3032,3062,3091,3121,3150,3180,3209,3239,3268,3298,3327,3357,3386,3416,3446,3476,3505,3535,3564,3594,3623,3653,3682,3712,3741,3771,3800,3830,3859,3889,3918,3948,3977,4007,4036,4066,4095,4125,4155,4185,4214,4244,4273,4303,4332,4362,4391,4421,4450,4480,4509,4539,4568,4598,4627,4657,4686,4716,4745,4775,4804,4834,4863,4893,4922,4952,4981,5011,5040,5070,5099,5129,5158,5188,5218,5248,5277,5307,5336,5366,5395,5425,5454,5484,5513,5543,5572,5602,5631,5661,5690,5720,5749,5779,5808,5838,5867,5897,5926,5956,5985,6015,6044,6074,6103,6133,6162,6192,6221,6251,6281,6311,6340,6370,6399,6429,6458,6488,6517,6547,6576,6606,6635,6665,6694,6724,6753,6783,6812,6842,6871,6901,6930,6960,6989,7019,7048,7078,7107,7137,7166,7196,7225,7255,7284,7314,7344,7374,7403,7433,7462,7492,7521,7551,7580,7610,7639,7669,7698,7728,7757,7787,7816,7846,7875,7905,7934,7964,7993,8023,8053,8083,8112,8142,8171,8201,8230,8260,8289,8319,8348,8378,8407,8437,8466,8496,8525,8555,8584,8614,8643,8673,8702,8732,8761,8791,8821,8850,8880,8909,8938,8968,8997,9027,9056,9086,9115,9145,9175,9205,9234,9264,9293,9322,9352,9381,9410,9440,9470,9499,9529,9559,9589,9618,9648,9677,9706,9736,9765,9794,9824,9853,9883,9913,9943,9972,10002,10032,10061,10090,10120,10149,10178,10208,10237,10267,10297,10326,10356,10386,10415,10445,10474,10504,10533,10562,10592,10621,10651,10680,10710,10740,10770,10799,10829,10858,10888,10917,10947,10976,11005,11035,11064,11094,11124,11153,11183,11213,11242,11272,11301,11331,11360,11389,11419,11448,11478,11507,11537,11567,11596,11626,11655,11685,11715,11744,11774,11803,11832,11862,11891,11921,11950,11980,12010,12039,12069,12099,12128,12158,12187,12216,12246,12275,12304,12334,12364,12393,12423,12453,12483,12512,12542,12571,12600,12630,12659,12688,12718,12747,12777,12807,12837,12866,12896,12926,12955,12984,13014,13043,13072,13102,13131,13161,13191,13220,13250,13280,13310,13339,13368,13398,13427,13456,13486,13515,13545,13574,13604,13634,13664,13693,13723,13752,13782,13811,13840,13870,13899,13929,13958,13988,14018,14047,14077,14107,14136,14166,14195,14224,14254,14283,14313,14342,14372,14401,14431,14461,14490,14520,14550,14579,14609,14638,14667,14697,14726,14756,14785,14815,14844,14874,14904,14933,14963,14993,15021,15051,15081,15110,15140,15169,15199,15228,15258,15287,15317,15347,15377,15406,15436,15465,15494,15524,15553,15582,15612,15641,15671,15701,15731,15760,15790,15820,15849,15878,15908,15937,15966,15996,16025,16055,16085,16114,16144,16174,16204,16233,16262,16292,16321,16350,16380,16409,16439,16468,16498,16528,16558,16587,16617,16646,16676,16705,16734,16764,16793,16823,16852,16882,16912,16941,16971,17001,17030,17060,17089,17118,17148,17177,17207,17236,17266,17295,17325,17355,17384,17414,17444,17473,17502,17532,17561,17591,17620,17650,17679,17709,17738,17768,17798,17827,17857,17886,17916,17945,17975,18004,18034,18063,18093,18122,18152,18181,18211,18241,18270,18300,18330,18359,18388,18418,18447,18476,18506,18535,18565,18595,18625,18654,18684,18714,18743,18772,18802,18831,18860,18890,18919,18949,18979,19008,19038,19068,19098,19127,19156,19186,19215,19244,19274,19303,19333,19362,19392,19422,19452,19481,19511,19540,19570,19599,19628,19658,19687,19717,19746,19776,19806,19836,19865,19895,19924,19954,19983,20012,20042,20071,20101,20130,20160,20190,20219,20249,20279,20308,20338,20367,20396,20426,20455,20485,20514,20544,20573,20603,20633,20662,20692,20721,20751,20780,20810,20839,20869,20898,20928,20957,20987,21016,21046,21076,21105,21135,21164,21194,21223,21253,21282,21312,21341,21371,21400,21430,21459,21489,21519,21548,21578,21607,21637,21666,21696,21725,21754,21784,21813,21843,21873,21902,21932,21962,21991,22021,22050,22080,22109,22138,22168,22197,22227,22256,22286,22316,22346,22375,22405,22434,22464,22493,22522,22552,22581,22611,22640,22670,22700,22730,22759,22789,22818,22848,22877,22906,22936,22965,22994,23024,23054,23083,23113,23143,23173,23202,23232,23261,23290,23320,23349,23379,23408,23438,23467,23497,23527,23556,23586,23616,23645,23674,23704,23733,23763,23792,23822,23851,23881,23910,23940,23970,23999,24029,24058,24088,24117,24147,24176,24206,24235,24265,24294,24324,24353,24383,24413,24442,24472,24501,24531,24560,24590,24619,24648,24678,24707,24737,24767,24796,24826,24856,24885,24915,24944,24974,25003,25032,25062,25091,25121,25150,25180,25210,25240,25269,25299,25328,25358,25387,25416,25446,25475,25505,25534,25564,25594,25624,25653,25683,25712,25742,25771,25800,25830,25859,25888,25918,25948,25977,26007,26037,26067,26096,26126,26155,26184,26214,26243,26272,26302,26332,26361,26391,26421,26451,26480,26510,26539,26568,26598,26627,26656,26686,26715,26745,26775,26805,26834,26864,26893,26923,26952,26982,27011,27041,27070,27099,27129,27159,27188,27218,27248,27277,27307,27336,27366,27395,27425,27454,27484,27513,27542,27572,27602,27631,27661,27691,27720,27750,27779,27809,27838,27868,27897,27926,27956,27985,28015,28045,28074,28104,28134,28163,28193,28222,28252,28281,28310,28340,28369,28399,28428,28458,28488,28517,28547,28577,28607,28636,28665,28695,28724,28754,28783,28813,28843,28872,28901,28931,28960,28990,29019,29049,29078,29108,29137,29167,29196,29226,29255,29285,29315,29345,29375,29404,29434,29463,29492,29522,29551,29580,29610,29640,29669,29699,29729,29759,29788,29818,29847,29876,29906,29935,29964,29994,30023,30053,30082,30112,30141,30171,30200,30230,30259,30289,30318,30348,30378,30408,30437,30467,30496,30526,30555,30585,30614,30644,30673,30703,30732,30762,30791,30821,30850,30880,30909,30939,30968,30998,31027,31057,31086,31116,31145,31175,31204,31234,31263,31293,31322,31352,31381,31411,31441,31471,31500,31530,31559,31589,31618,31648,31676,31706,31736,31766,31795,31825,31854,31884,31913,31943,31972,32002,32031,32061,32090,32120,32150,32180,32209,32239,32268,32298,32327,32357,32386,32416,32445,32475,32504,32534,32563,32593,32622,32652,32681,32711,32740,32770,32799,32829,32858,32888,32917,32947,32976,33006,33035,33065,33094,33124,33153,33183,33213,33243,33272,33302,33331,33361,33390,33420,33450,33479,33509,33539,33568,33598,33627,33657,33686,33716,33745,33775,33804,33834,33863,33893,33922,33952,33981,34011,34040,34069,34099,34128,34158,34187,34217,34247,34277,34306,34336,34365,34395,34424,34454,34483,34512,34542,34571,34601,34631,34660,34690,34719,34749,34778,34808,34837,34867,34896,34926,34955,34985,35015,35044,35074,35103,35133,35162,35192,35222,35251,35280,35310,35340,35370,35399,35429,35458,35488,35517,35547,35576,35605,35635,35665,35694,35723,35753,35782,35811,35841,35871,35901,35930,35960,35989,36019,36048,36078,36107,36136,36166,36195,36225,36254,36284,36314,36343,36373,36403,36433,36462,36492,36521,36551,36580,36610,36639,36669,36698,36728,36757,36786,36816,36845,36875,36904,36934,36963,36993,37022,37052,37081,37111,37141,37170,37200,37229,37259,37288,37318,37347,37377,37406,37436,37465,37495,37524,37554,37584,37613,37643,37672,37701,37731,37760,37790,37819,37849,37878,37908,37938,37967,37997,38027,38056,38085,38115,38144,38174,38203,38233,38262,38292,38322,38351,38381,38410,38440,38469,38499,38528,38558,38587,38617,38646,38676,38705,38735,38764,38794,38823,38853,38882,38912,38941,38971,39001,39030,39059,39089,39118,39148,39178,39208,39237,39267,39297,39326,39355,39385,39414,39444,39473,39503,39532,39562,39592,39621,39650,39680,39709,39739,39768,39798,39827,39857,39886,39916,39946,39975,40005,40035,40064,40094,40123,40153,40182,40212,40241,40271,40300,40330,40359,40389,40418,40448,40477,40507,40536,40566,40595,40625,40655,40685,40714,40744,40773,40803,40832,40862,40892,40921,40951,40980,41009,41039,41068,41098,41127,41157,41186,41216,41245,41275,41304,41334,41364,41393,41422,41452,41481,41511,41540,41570,41599,41629,41658,41688,41718,41748,41777,41807,41836,41865,41894,41924,41953,41983,42012,42042,42072,42102,42131,42161,42190,42220,42249,42279,42308,42337,42367,42397,42426,42456,42485,42515,42545,42574,42604,42633,42662,42692,42721,42751,42780,42810,42839,42869,42899,42929,42958,42988,43017,43046,43076,43105,43135,43164,43194,43223,43253,43283,43312,43342,43371,43401,43430,43460,43489,43519,43548,43578,43607,43637,43666,43696,43726,43755,43785,43814,43844,43873,43903,43932,43962,43991,44021,44050,44080,44109,44139,44169,44198,44228,44258,44287,44317,44346,44375,44405,44434,44464,44493,44523,44553,44582,44612,44641,44671,44700,44730,44759,44788,44818,44847,44877,44906,44936,44966,44996,45025,45055,45084,45114,45143,45172,45202,45231,45261,45290,45320,45350,45380,45409,45439,45468,45498,45527,45556,45586,45615,45644,45674,45704,45733,45763,45793,45823,45852,45882,45911,45940,45970,45999,46028,46058,46088,46117,46147,46177,46206,46236,46265,46295,46324,46354,46383,46413,46442,46472,46501,46531,46560,46590,46620,46649,46679,46708,46738,46767,46797,46826,46856,46885,46915,46944,46974,47003,47033,47063,47092,47122,47151,47181,47210,47240,47269,47298,47328,47357,47387,47417,47446,47476,47506,47535,47565,47594,47624,47653,47682,47712,47741,47771,47800,47830,47860,47890,47919,47949,47978,48008,48037,48066,48096,48125,48155,48184,48214,48244,48273,48303,48333,48362,48392,48421,48450,48480,48509,48538,48568,48598,48627,48657,48687,48717,48746,48776,48805,48834,48864,48893,48922,48952,48982,49011,49041,49071,49100,49130,49160,49189,49218,49248,49277,49306,49336,49365,49395,49425,49455,49484,49514,49543,49573,49602,49632,49661,49690,49720,49749,49779,49809,49838,49868,49898,49927,49957,49986,50016,50045,50075,50104,50133,50163,50192,50222,50252,50281,50311,50340,50370,50400,50429,50459,50488,50518,50547,50576,50606,50635,50665,50694,50724,50754,50784,50813,50843,50872,50902,50931,50960,50990,51019,51049,51078,51108,51138,51167,51197,51227,51256,51286,51315,51345,51374,51403,51433,51462,51492,51522,51552,51582,51611,51641,51670,51699,51729,51758,51787,51816,51846,51876,51906,51936,51965,51995,52025,52054,52083,52113,52142,52171,52200,52230,52260,52290,52319,52349,52379,52408,52438,52467,52497,52526,52555,52585,52614,52644,52673,52703,52733,52762,52792,52822,52851,52881,52910,52939,52969,52998,53028,53057,53087,53116,53146,53176,53205,53235,53264,53294,53324,53353,53383,53412,53441,53471,53500,53530,53559,53589,53619,53648,53678,53708,53737,53767,53796,53825,53855,53884,53913,53943,53973,54003,54032,54062,54092,54121,54151,54180,54209,54239,54268,54297,54327,54357,54387,54416,54446,54476,54505,54535,54564,54593,54623,54652,54681,54711,54741,54770,54800,54830,54859,54889,54919,54948,54977,55007,55036,55066,55095,55125,55154,55184,55213,55243,55273,55302,55332,55361,55391,55420,55450,55479,55508,55538,55567,55597,55627,55657,55686,55716,55745,55775,55804,55834,55863,55892,55922,55951,55981,56011,56040,56070,56100,56129,56159,56188,56218,56247,56276,56306,56335,56365,56394,56424,56454,56483,56513,56543,56572,56601,56631,56660,56690,56719,56749,56778,56808,56837,56867,56897,56926,56956,56985,57015,57044,57074,57103,57133,57162,57192,57221,57251,57280,57310,57340,57369,57399,57429,57458,57487,57517,57546,57576,57605,57634,57664,57694,57723,57753,57783,57813,57842,57871,57901,57930,57959,57989,58018,58048,58077,58107,58137,58167,58196,58226,58255,58285,58314,58343,58373,58402,58432,58461,58491,58521,58551,58580,58610,58639,58669,58698,58727,58757,58786,58816,58845,58875,58905,58934,58964,58994,59023,59053,59082,59111,59141,59170,59200,59229,59259,59288,59318,59348,59377,59407,59436,59466,59495,59525,59554,59584,59613,59643,59672,59702,59731,59761,59791,59820,59850,59879,59909,59939,59968,59997,60027,60056,60086,60115,60145,60174,60204,60234,60264,60293,60323,60352,60381,60411,60440,60469,60499,60528,60558,60588,60618,60648,60677,60707,60736,60765,60795,60824,60853,60883,60912,60942,60972,61002,61031,61061,61090,61120,61149,61179,61208,61237,61267,61296,61326,61356,61385,61415,61445,61474,61504,61533,61563,61592,61621,61651,61680,61710,61739,61769,61799,61828,61858,61888,61917,61947,61976,62006,62035,62064,62094,62123,62153,62182,62212,62242,62271,62301,62331,62360,62390,62419,62448,62478,62507,62537,62566,62596,62625,62655,62685,62715,62744,62774,62803,62832,62862,62891,62921,62950,62980,63009,63039,63069,63099,63128,63157,63187,63216,63246,63275,63305,63334,63363,63393,63423,63453,63482,63512,63541,63571,63600,63630,63659,63689,63718,63747,63777,63807,63836,63866,63895,63925,63955,63984,64014,64043,64073,64102,64131,64161,64190,64220,64249,64279,64309,64339,64368,64398,64427,64457,64486,64515,64545,64574,64603,64633,64663,64692,64722,64752,64782,64811,64841,64870,64899,64929,64958,64987,65017,65047,65076,65106,65136,65166,65195,65225,65254,65283,65313,65342,65371,65401,65431,65460,65490,65520,65549,65579,65608,65638,65667,65697,65726,65755,65785,65815,65844,65874,65903,65933,65963,65992,66022,66051,66081,66110,66140,66169,66199,66228,66258,66287,66317,66346,66376,66405,66435,66465,66494,66524,66553,66583,66612,66641,66671,66700,66730,66760,66789,66819,66849,66878,66908,66937,66967,66996,67025,67055,67084,67114,67143,67173,67203,67233,67262,67292,67321,67351,67380,67409,67439,67468,67497,67527,67557,67587,67617,67646,67676,67705,67735,67764,67793,67823,67852,67882,67911,67941,67971,68e3,68030,68060,68089,68119,68148,68177,68207,68236,68266,68295,68325,68354,68384,68414,68443,68473,68502,68532,68561,68591,68620,68650,68679,68708,68738,68768,68797,68827,68857,68886,68916,68946,68975,69004,69034,69063,69092,69122,69152,69181,69211,69240,69270,69300,69330,69359,69388,69418,69447,69476,69506,69535,69565,69595,69624,69654,69684,69713,69743,69772,69802,69831,69861,69890,69919,69949,69978,70008,70038,70067,70097,70126,70156,70186,70215,70245,70274,70303,70333,70362,70392,70421,70451,70481,70510,70540,70570,70599,70629,70658,70687,70717,70746,70776,70805,70835,70864,70894,70924,70954,70983,71013,71042,71071,71101,71130,71159,71189,71218,71248,71278,71308,71337,71367,71397,71426,71455,71485,71514,71543,71573,71602,71632,71662,71691,71721,71751,71781,71810,71839,71869,71898,71927,71957,71986,72016,72046,72075,72105,72135,72164,72194,72223,72253,72282,72311,72341,72370,72400,72429,72459,72489,72518,72548,72577,72607,72637,72666,72695,72725,72754,72784,72813,72843,72872,72902,72931,72961,72991,73020,73050,73080,73109,73139,73168,73197,73227,73256,73286,73315,73345,73375,73404,73434,73464,73493,73523,73552,73581,73611,73640,73669,73699,73729,73758,73788,73818,73848,73877,73907,73936,73965,73995,74024,74053,74083,74113,74142,74172,74202,74231,74261,74291,74320,74349,74379,74408,74437,74467,74497,74526,74556,74586,74615,74645,74675,74704,74733,74763,74792,74822,74851,74881,74910,74940,74969,74999,75029,75058,75088,75117,75147,75176,75206,75235,75264,75294,75323,75353,75383,75412,75442,75472,75501,75531,75560,75590,75619,75648,75678,75707,75737,75766,75796,75826,75856,75885,75915,75944,75974,76003,76032,76062,76091,76121,76150,76180,76210,76239,76269,76299,76328,76358,76387,76416,76446,76475,76505,76534,76564,76593,76623,76653,76682,76712,76741,76771,76801,76830,76859,76889,76918,76948,76977,77007,77036,77066,77096,77125,77155,77185,77214,77243,77273,77302,77332,77361,77390,77420,77450,77479,77509,77539,77569,77598,77627,77657,77686,77715,77745,77774,77804,77833,77863,77893,77923,77952,77982,78011,78041,78070,78099,78129,78158,78188,78217,78247,78277,78307,78336,78366,78395,78425,78454,78483,78513,78542,78572,78601,78631,78661,78690,78720,78750,78779,78808,78838,78867,78897,78926,78956,78985,79015,79044,79074,79104,79133,79163,79192,79222,79251,79281,79310,79340,79369,79399,79428,79458,79487,79517,79546,79576,79606,79635,79665,79695,79724,79753,79783,79812,79841,79871,79900,79930,79960,79990]},{"../main":341,"object-assign":242}],341:[function(t,e,r){var n=t("object-assign");function i(){this.regionalOptions=[],this.regionalOptions[""]={invalidCalendar:"Calendar {0} not found",invalidDate:"Invalid {0} date",invalidMonth:"Invalid {0} month",invalidYear:"Invalid {0} year",differentCalendars:"Cannot mix {0} and {1} dates"},this.local=this.regionalOptions[""],this.calendars={},this._localCals={}}function a(t,e,r,n){if(this._calendar=t,this._year=e,this._month=r,this._day=n,0===this._calendar._validateLevel&&!this._calendar.isValid(this._year,this._month,this._day))throw(c.local.invalidDate||c.regionalOptions[""].invalidDate).replace(/\{0\}/,this._calendar.local.name)}function o(t,e){return"000000".substring(0,e-(t=""+t).length)+t}function s(){this.shortYearCutoff="+10"}function l(t){this.local=this.regionalOptions[t]||this.regionalOptions[""]}n(i.prototype,{instance:function(t,e){t=(t||"gregorian").toLowerCase(),e=e||"";var r=this._localCals[t+"-"+e];if(!r&&this.calendars[t]&&(r=new this.calendars[t](e),this._localCals[t+"-"+e]=r),!r)throw(this.local.invalidCalendar||this.regionalOptions[""].invalidCalendar).replace(/\{0\}/,t);return r},newDate:function(t,e,r,n,i){return(n=(null!=t&&t.year?t.calendar():"string"==typeof n?this.instance(n,i):n)||this.instance()).newDate(t,e,r)},substituteDigits:function(t){return function(e){return(e+"").replace(/[0-9]/g,(function(e){return t[e]}))}},substituteChineseDigits:function(t,e){return function(r){for(var n="",i=0;r>0;){var a=r%10;n=(0===a?"":t[a]+e[i])+n,i++,r=Math.floor(r/10)}return 0===n.indexOf(t[1]+e[1])&&(n=n.substr(1)),n||t[0]}}}),n(a.prototype,{newDate:function(t,e,r){return this._calendar.newDate(null==t?this:t,e,r)},year:function(t){return 0===arguments.length?this._year:this.set(t,"y")},month:function(t){return 0===arguments.length?this._month:this.set(t,"m")},day:function(t){return 0===arguments.length?this._day:this.set(t,"d")},date:function(t,e,r){if(!this._calendar.isValid(t,e,r))throw(c.local.invalidDate||c.regionalOptions[""].invalidDate).replace(/\{0\}/,this._calendar.local.name);return this._year=t,this._month=e,this._day=r,this},leapYear:function(){return this._calendar.leapYear(this)},epoch:function(){return this._calendar.epoch(this)},formatYear:function(){return this._calendar.formatYear(this)},monthOfYear:function(){return this._calendar.monthOfYear(this)},weekOfYear:function(){return this._calendar.weekOfYear(this)},daysInYear:function(){return this._calendar.daysInYear(this)},dayOfYear:function(){return this._calendar.dayOfYear(this)},daysInMonth:function(){return this._calendar.daysInMonth(this)},dayOfWeek:function(){return this._calendar.dayOfWeek(this)},weekDay:function(){return this._calendar.weekDay(this)},extraInfo:function(){return this._calendar.extraInfo(this)},add:function(t,e){return this._calendar.add(this,t,e)},set:function(t,e){return this._calendar.set(this,t,e)},compareTo:function(t){if(this._calendar.name!==t._calendar.name)throw(c.local.differentCalendars||c.regionalOptions[""].differentCalendars).replace(/\{0\}/,this._calendar.local.name).replace(/\{1\}/,t._calendar.local.name);var e=this._year!==t._year?this._year-t._year:this._month!==t._month?this.monthOfYear()-t.monthOfYear():this._day-t._day;return 0===e?0:e<0?-1:1},calendar:function(){return this._calendar},toJD:function(){return this._calendar.toJD(this)},fromJD:function(t){return this._calendar.fromJD(t)},toJSDate:function(){return this._calendar.toJSDate(this)},fromJSDate:function(t){return this._calendar.fromJSDate(t)},toString:function(){return(this.year()<0?"-":"")+o(Math.abs(this.year()),4)+"-"+o(this.month(),2)+"-"+o(this.day(),2)}}),n(s.prototype,{_validateLevel:0,newDate:function(t,e,r){return null==t?this.today():(t.year&&(this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),r=t.day(),e=t.month(),t=t.year()),new a(this,t,e,r))},today:function(){return this.fromJSDate(new Date)},epoch:function(t){return this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear).year()<0?this.local.epochs[0]:this.local.epochs[1]},formatYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear);return(e.year()<0?"-":"")+o(Math.abs(e.year()),4)},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear),12},monthOfYear:function(t,e){var r=this._validate(t,e,this.minDay,c.local.invalidMonth||c.regionalOptions[""].invalidMonth);return(r.month()+this.monthsInYear(r)-this.firstMonth)%this.monthsInYear(r)+this.minMonth},fromMonthOfYear:function(t,e){var r=(e+this.firstMonth-2*this.minMonth)%this.monthsInYear(t)+this.minMonth;return this._validate(t,r,this.minDay,c.local.invalidMonth||c.regionalOptions[""].invalidMonth),r},daysInYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear);return this.leapYear(e)?366:365},dayOfYear:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate);return n.toJD()-this.newDate(n.year(),this.fromMonthOfYear(n.year(),this.minMonth),this.minDay).toJD()+1},daysInWeek:function(){return 7},dayOfWeek:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate);return(Math.floor(this.toJD(n))+2)%this.daysInWeek()},extraInfo:function(t,e,r){return this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),{}},add:function(t,e,r){return this._validate(t,this.minMonth,this.minDay,c.local.invalidDate||c.regionalOptions[""].invalidDate),this._correctAdd(t,this._add(t,e,r),e,r)},_add:function(t,e,r){if(this._validateLevel++,"d"===r||"w"===r){var n=t.toJD()+e*("w"===r?this.daysInWeek():1),i=t.calendar().fromJD(n);return this._validateLevel--,[i.year(),i.month(),i.day()]}try{var a=t.year()+("y"===r?e:0),o=t.monthOfYear()+("m"===r?e:0);i=t.day();"y"===r?(t.month()!==this.fromMonthOfYear(a,o)&&(o=this.newDate(a,t.month(),this.minDay).monthOfYear()),o=Math.min(o,this.monthsInYear(a)),i=Math.min(i,this.daysInMonth(a,this.fromMonthOfYear(a,o)))):"m"===r&&(!function(t){for(;oe-1+t.minMonth;)a++,o-=e,e=t.monthsInYear(a)}(this),i=Math.min(i,this.daysInMonth(a,this.fromMonthOfYear(a,o))));var s=[a,this.fromMonthOfYear(a,o),i];return this._validateLevel--,s}catch(t){throw this._validateLevel--,t}},_correctAdd:function(t,e,r,n){if(!(this.hasYearZero||"y"!==n&&"m"!==n||0!==e[0]&&t.year()>0==e[0]>0)){var i={y:[1,1,"y"],m:[1,this.monthsInYear(-1),"m"],w:[this.daysInWeek(),this.daysInYear(-1),"d"],d:[1,this.daysInYear(-1),"d"]}[n],a=r<0?-1:1;e=this._add(t,r*i[0]+a*i[1],i[2])}return t.date(e[0],e[1],e[2])},set:function(t,e,r){this._validate(t,this.minMonth,this.minDay,c.local.invalidDate||c.regionalOptions[""].invalidDate);var n="y"===r?e:t.year(),i="m"===r?e:t.month(),a="d"===r?e:t.day();return"y"!==r&&"m"!==r||(a=Math.min(a,this.daysInMonth(n,i))),t.date(n,i,a)},isValid:function(t,e,r){this._validateLevel++;var n=this.hasYearZero||0!==t;if(n){var i=this.newDate(t,e,this.minDay);n=e>=this.minMonth&&e-this.minMonth=this.minDay&&r-this.minDay13.5?13:1),c=i-(l>2.5?4716:4715);return c<=0&&c--,this.newDate(c,l,s)},toJSDate:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),i=new Date(n.year(),n.month()-1,n.day());return i.setHours(0),i.setMinutes(0),i.setSeconds(0),i.setMilliseconds(0),i.setHours(i.getHours()>12?i.getHours()+2:0),i},fromJSDate:function(t){return this.newDate(t.getFullYear(),t.getMonth()+1,t.getDate())}});var c=e.exports=new i;c.cdate=a,c.baseCalendar=s,c.calendars.gregorian=l},{"object-assign":242}],342:[function(t,e,r){var n=t("object-assign"),i=t("./main");n(i.regionalOptions[""],{invalidArguments:"Invalid arguments",invalidFormat:"Cannot format a date from another calendar",missingNumberAt:"Missing number at position {0}",unknownNameAt:"Unknown name at position {0}",unexpectedLiteralAt:"Unexpected literal at position {0}",unexpectedText:"Additional text found at end"}),i.local=i.regionalOptions[""],n(i.cdate.prototype,{formatDate:function(t,e){return"string"!=typeof t&&(e=t,t=""),this._calendar.formatDate(t||"",this,e)}}),n(i.baseCalendar.prototype,{UNIX_EPOCH:i.instance().newDate(1970,1,1).toJD(),SECS_PER_DAY:86400,TICKS_EPOCH:i.instance().jdEpoch,TICKS_PER_DAY:864e9,ATOM:"yyyy-mm-dd",COOKIE:"D, dd M yyyy",FULL:"DD, MM d, yyyy",ISO_8601:"yyyy-mm-dd",JULIAN:"J",RFC_822:"D, d M yy",RFC_850:"DD, dd-M-yy",RFC_1036:"D, d M yy",RFC_1123:"D, d M yyyy",RFC_2822:"D, d M yyyy",RSS:"D, d M yy",TICKS:"!",TIMESTAMP:"@",W3C:"yyyy-mm-dd",formatDate:function(t,e,r){if("string"!=typeof t&&(r=e,e=t,t=""),!e)return"";if(e.calendar()!==this)throw i.local.invalidFormat||i.regionalOptions[""].invalidFormat;t=t||this.local.dateFormat;for(var n,a,o,s,l=(r=r||{}).dayNamesShort||this.local.dayNamesShort,c=r.dayNames||this.local.dayNames,u=r.monthNumbers||this.local.monthNumbers,f=r.monthNamesShort||this.local.monthNamesShort,h=r.monthNames||this.local.monthNames,p=(r.calculateWeek||this.local.calculateWeek,function(e,r){for(var n=1;w+n1}),d=function(t,e,r,n){var i=""+e;if(p(t,n))for(;i.length1},x=function(t,r){var n=y(t,r),a=[2,3,n?4:2,n?4:2,10,11,20]["oyYJ@!".indexOf(t)+1],o=new RegExp("^-?\\d{1,"+a+"}"),s=e.substring(A).match(o);if(!s)throw(i.local.missingNumberAt||i.regionalOptions[""].missingNumberAt).replace(/\{0\}/,A);return A+=s[0].length,parseInt(s[0],10)},b=this,_=function(){if("function"==typeof l){y("m");var t=l.call(b,e.substring(A));return A+=t.length,t}return x("m")},w=function(t,r,n,a){for(var o=y(t,a)?n:r,s=0;s-1){p=1,d=m;for(var E=this.daysInMonth(h,p);d>E;E=this.daysInMonth(h,p))p++,d-=E}return f>-1?this.fromJD(f):this.newDate(h,p,d)},determineDate:function(t,e,r,n,i){r&&"object"!=typeof r&&(i=n,n=r,r=null),"string"!=typeof n&&(i=n,n="");var a=this;return e=e?e.newDate():null,t=null==t?e:"string"==typeof t?function(t){try{return a.parseDate(n,t,i)}catch(t){}for(var e=((t=t.toLowerCase()).match(/^c/)&&r?r.newDate():null)||a.today(),o=/([+-]?[0-9]+)\s*(d|w|m|y)?/g,s=o.exec(t);s;)e.add(parseInt(s[1],10),s[2]||"d"),s=o.exec(t);return e}(t):"number"==typeof t?isNaN(t)||t===1/0||t===-1/0?e:a.today().add(t,"d"):a.newDate(t)}})},{"./main":341,"object-assign":242}],343:[function(t,e,r){"use strict";e.exports=[{path:"",backoff:0},{path:"M-2.4,-3V3L0.6,0Z",backoff:.6},{path:"M-3.7,-2.5V2.5L1.3,0Z",backoff:1.3},{path:"M-4.45,-3L-1.65,-0.2V0.2L-4.45,3L1.55,0Z",backoff:1.55},{path:"M-2.2,-2.2L-0.2,-0.2V0.2L-2.2,2.2L-1.4,3L1.6,0L-1.4,-3Z",backoff:1.6},{path:"M-4.4,-2.1L-0.6,-0.2V0.2L-4.4,2.1L-4,3L2,0L-4,-3Z",backoff:2},{path:"M2,0A2,2 0 1,1 0,-2A2,2 0 0,1 2,0Z",backoff:0,noRotate:!0},{path:"M2,2V-2H-2V2Z",backoff:0,noRotate:!0}]},{}],344:[function(t,e,r){"use strict";var n=t("./arrow_paths"),i=t("../../plots/font_attributes"),a=t("../../plots/cartesian/constants"),o=t("../../plot_api/plot_template").templatedArray;t("../../constants/axis_placeable_objects");e.exports=o("annotation",{visible:{valType:"boolean",dflt:!0,editType:"calc+arraydraw"},text:{valType:"string",editType:"calc+arraydraw"},textangle:{valType:"angle",dflt:0,editType:"calc+arraydraw"},font:i({editType:"calc+arraydraw",colorEditType:"arraydraw"}),width:{valType:"number",min:1,dflt:null,editType:"calc+arraydraw"},height:{valType:"number",min:1,dflt:null,editType:"calc+arraydraw"},opacity:{valType:"number",min:0,max:1,dflt:1,editType:"arraydraw"},align:{valType:"enumerated",values:["left","center","right"],dflt:"center",editType:"arraydraw"},valign:{valType:"enumerated",values:["top","middle","bottom"],dflt:"middle",editType:"arraydraw"},bgcolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"arraydraw"},bordercolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"arraydraw"},borderpad:{valType:"number",min:0,dflt:1,editType:"calc+arraydraw"},borderwidth:{valType:"number",min:0,dflt:1,editType:"calc+arraydraw"},showarrow:{valType:"boolean",dflt:!0,editType:"calc+arraydraw"},arrowcolor:{valType:"color",editType:"arraydraw"},arrowhead:{valType:"integer",min:0,max:n.length,dflt:1,editType:"arraydraw"},startarrowhead:{valType:"integer",min:0,max:n.length,dflt:1,editType:"arraydraw"},arrowside:{valType:"flaglist",flags:["end","start"],extras:["none"],dflt:"end",editType:"arraydraw"},arrowsize:{valType:"number",min:.3,dflt:1,editType:"calc+arraydraw"},startarrowsize:{valType:"number",min:.3,dflt:1,editType:"calc+arraydraw"},arrowwidth:{valType:"number",min:.1,editType:"calc+arraydraw"},standoff:{valType:"number",min:0,dflt:0,editType:"calc+arraydraw"},startstandoff:{valType:"number",min:0,dflt:0,editType:"calc+arraydraw"},ax:{valType:"any",editType:"calc+arraydraw"},ay:{valType:"any",editType:"calc+arraydraw"},axref:{valType:"enumerated",dflt:"pixel",values:["pixel",a.idRegex.x.toString()],editType:"calc"},ayref:{valType:"enumerated",dflt:"pixel",values:["pixel",a.idRegex.y.toString()],editType:"calc"},xref:{valType:"enumerated",values:["paper",a.idRegex.x.toString()],editType:"calc"},x:{valType:"any",editType:"calc+arraydraw"},xanchor:{valType:"enumerated",values:["auto","left","center","right"],dflt:"auto",editType:"calc+arraydraw"},xshift:{valType:"number",dflt:0,editType:"calc+arraydraw"},yref:{valType:"enumerated",values:["paper",a.idRegex.y.toString()],editType:"calc"},y:{valType:"any",editType:"calc+arraydraw"},yanchor:{valType:"enumerated",values:["auto","top","middle","bottom"],dflt:"auto",editType:"calc+arraydraw"},yshift:{valType:"number",dflt:0,editType:"calc+arraydraw"},clicktoshow:{valType:"enumerated",values:[!1,"onoff","onout"],dflt:!1,editType:"arraydraw"},xclick:{valType:"any",editType:"arraydraw"},yclick:{valType:"any",editType:"arraydraw"},hovertext:{valType:"string",editType:"arraydraw"},hoverlabel:{bgcolor:{valType:"color",editType:"arraydraw"},bordercolor:{valType:"color",editType:"arraydraw"},font:i({editType:"arraydraw"}),editType:"arraydraw"},captureevents:{valType:"boolean",editType:"arraydraw"},editType:"calc",_deprecated:{ref:{valType:"string",editType:"calc"}}})},{"../../constants/axis_placeable_objects":467,"../../plot_api/plot_template":538,"../../plots/cartesian/constants":556,"../../plots/font_attributes":580,"./arrow_paths":343}],345:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/cartesian/axes"),a=t("./draw").draw;function o(t){var e=t._fullLayout;n.filterVisible(e.annotations).forEach((function(e){var r=i.getFromId(t,e.xref),n=i.getFromId(t,e.yref),a=i.getRefType(e.xref),o=i.getRefType(e.yref);e._extremes={},"range"===a&&s(e,r),"range"===o&&s(e,n)}))}function s(t,e){var r,n=e._id,a=n.charAt(0),o=t[a],s=t["a"+a],l=t[a+"ref"],c=t["a"+a+"ref"],u=t["_"+a+"padplus"],f=t["_"+a+"padminus"],h={x:1,y:-1}[a]*t[a+"shift"],p=3*t.arrowsize*t.arrowwidth||0,d=p+h,m=p-h,g=3*t.startarrowsize*t.arrowwidth||0,v=g+h,y=g-h;if(c===l){var x=i.findExtremes(e,[e.r2c(o)],{ppadplus:d,ppadminus:m}),b=i.findExtremes(e,[e.r2c(s)],{ppadplus:Math.max(u,v),ppadminus:Math.max(f,y)});r={min:[x.min[0],b.min[0]],max:[x.max[0],b.max[0]]}}else v=s?v+s:v,y=s?y-s:y,r=i.findExtremes(e,[e.r2c(o)],{ppadplus:Math.max(u,d,v),ppadminus:Math.max(f,m,y)});t._extremes[n]=r}e.exports=function(t){var e=t._fullLayout;if(n.filterVisible(e.annotations).length&&t._fullData.length)return n.syncOrAsync([a,o],t)}},{"../../lib":498,"../../plots/cartesian/axes":549,"./draw":350}],346:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("../../plot_api/plot_template").arrayEditor;function o(t,e){var r,n,i,a,o,l,c,u=t._fullLayout.annotations,f=[],h=[],p=[],d=(e||[]).length;for(r=0;r0||r.explicitOff.length>0},onClick:function(t,e){var r,s,l=o(t,e),c=l.on,u=l.off.concat(l.explicitOff),f={},h=t._fullLayout.annotations;if(!c.length&&!u.length)return;for(r=0;r2/3?"right":"center"),{center:0,middle:0,left:.5,bottom:-.5,right:-.5,top:.5}[e]}for(var W=!1,X=["x","y"],Z=0;Z1)&&(nt===rt?((pt=it.r2fraction(e["a"+et]))<0||pt>1)&&(W=!0):W=!0),J=it._offset+it.r2p(e[et]),$=.5}else{var dt="domain"===ht;"x"===et?(Q=e[et],J=dt?it._offset+it._length*Q:J=T.l+T.w*Q):(Q=1-e[et],J=dt?it._offset+it._length*Q:J=T.t+T.h*Q),$=e.showarrow?.5:Q}if(e.showarrow){ft.head=J;var mt=e["a"+et];if(tt=ot*q(.5,e.xanchor)-st*q(.5,e.yanchor),nt===rt){var gt=l.getRefType(nt);"domain"===gt?("y"===et&&(mt=1-mt),ft.tail=it._offset+it._length*mt):"paper"===gt?"y"===et?(mt=1-mt,ft.tail=T.t+T.h*mt):ft.tail=T.l+T.w*mt:ft.tail=it._offset+it.r2p(mt),K=tt}else ft.tail=J+mt,K=tt+mt;ft.text=ft.tail+tt;var vt=w["x"===et?"width":"height"];if("paper"===rt&&(ft.head=o.constrain(ft.head,1,vt-1)),"pixel"===nt){var yt=-Math.max(ft.tail-3,ft.text),xt=Math.min(ft.tail+3,ft.text)-vt;yt>0?(ft.tail+=yt,ft.text+=yt):xt>0&&(ft.tail-=xt,ft.text-=xt)}ft.tail+=ut,ft.head+=ut}else K=tt=lt*q($,ct),ft.text=J+tt;ft.text+=ut,tt+=ut,K+=ut,e["_"+et+"padplus"]=lt/2+K,e["_"+et+"padminus"]=lt/2-K,e["_"+et+"size"]=lt,e["_"+et+"shift"]=tt}if(W)R.remove();else{var bt=0,_t=0;if("left"!==e.align&&(bt=(A-b)*("center"===e.align?.5:1)),"top"!==e.valign&&(_t=(D-_)*("middle"===e.valign?.5:1)),f)n.select("svg").attr({x:N+bt-1,y:N+_t}).call(u.setClipUrl,U?L:null,t);else{var wt=N+_t-m.top,Tt=N+bt-m.left;G.call(h.positionText,Tt,wt).call(u.setClipUrl,U?L:null,t)}V.select("rect").call(u.setRect,N,N,A,D),j.call(u.setRect,F/2,F/2,B-F,H-F),R.call(u.setTranslate,Math.round(C.x.text-B/2),Math.round(C.y.text-H/2)),O.attr({transform:"rotate("+P+","+C.x.text+","+C.y.text+")"});var kt,At=function(r,n){I.selectAll(".annotation-arrow-g").remove();var l=C.x.head,f=C.y.head,h=C.x.tail+r,p=C.y.tail+n,m=C.x.text+r,b=C.y.text+n,_=o.rotationXYMatrix(P,m,b),w=o.apply2DTransform(_),A=o.apply2DTransform2(_),L=+j.attr("width"),z=+j.attr("height"),D=m-.5*L,F=D+L,B=b-.5*z,N=B+z,U=[[D,B,D,N],[D,N,F,N],[F,N,F,B],[F,B,D,B]].map(A);if(!U.reduce((function(t,e){return t^!!o.segmentsIntersect(l,f,l+1e6,f+1e6,e[0],e[1],e[2],e[3])}),!1)){U.forEach((function(t){var e=o.segmentsIntersect(h,p,l,f,t[0],t[1],t[2],t[3]);e&&(h=e.x,p=e.y)}));var V=e.arrowwidth,H=e.arrowcolor,q=e.arrowside,G=I.append("g").style({opacity:c.opacity(H)}).classed("annotation-arrow-g",!0),Y=G.append("path").attr("d","M"+h+","+p+"L"+l+","+f).style("stroke-width",V+"px").call(c.stroke,c.rgb(H));if(g(Y,q,e),k.annotationPosition&&Y.node().parentNode&&!a){var W=l,X=f;if(e.standoff){var Z=Math.sqrt(Math.pow(l-h,2)+Math.pow(f-p,2));W+=e.standoff*(h-l)/Z,X+=e.standoff*(p-f)/Z}var J,K,Q=G.append("path").classed("annotation-arrow",!0).classed("anndrag",!0).classed("cursor-move",!0).attr({d:"M3,3H-3V-3H3ZM0,0L"+(h-W)+","+(p-X),transform:s(W,X)}).style("stroke-width",V+6+"px").call(c.stroke,"rgba(0,0,0,0)").call(c.fill,"rgba(0,0,0,0)");d.init({element:Q.node(),gd:t,prepFn:function(){var t=u.getTranslate(R);J=t.x,K=t.y,v&&v.autorange&&M(v._name+".autorange",!0),x&&x.autorange&&M(x._name+".autorange",!0)},moveFn:function(t,r){var n=w(J,K),i=n[0]+t,a=n[1]+r;R.call(u.setTranslate,i,a),S("x",y(v,t,"x",T,e)),S("y",y(x,r,"y",T,e)),e.axref===e.xref&&S("ax",y(v,t,"ax",T,e)),e.ayref===e.yref&&S("ay",y(x,r,"ay",T,e)),G.attr("transform",s(t,r)),O.attr({transform:"rotate("+P+","+i+","+a+")"})},doneFn:function(){i.call("_guiRelayout",t,E());var e=document.querySelector(".js-notes-box-panel");e&&e.redraw(e.selectedObj)}})}}};if(e.showarrow&&At(0,0),z)d.init({element:R.node(),gd:t,prepFn:function(){kt=O.attr("transform")},moveFn:function(t,r){var n="pointer";if(e.showarrow)e.axref===e.xref?S("ax",y(v,t,"ax",T,e)):S("ax",e.ax+t),e.ayref===e.yref?S("ay",y(x,r,"ay",T.w,e)):S("ay",e.ay+r),At(t,r);else{if(a)return;var i,o;if(v)i=y(v,t,"x",T,e);else{var l=e._xsize/T.w,c=e.x+(e._xshift-e.xshift)/T.w-l/2;i=d.align(c+t/T.w,l,0,1,e.xanchor)}if(x)o=y(x,r,"y",T,e);else{var u=e._ysize/T.h,f=e.y-(e._yshift+e.yshift)/T.h-u/2;o=d.align(f-r/T.h,u,0,1,e.yanchor)}S("x",i),S("y",o),v&&x||(n=d.getCursor(v?.5:i,x?.5:o,e.xanchor,e.yanchor))}O.attr({transform:s(t,r)+kt}),p(R,n)},clickFn:function(r,n){e.captureevents&&t.emit("plotly_clickannotation",Y(n))},doneFn:function(){p(R),i.call("_guiRelayout",t,E());var e=document.querySelector(".js-notes-box-panel");e&&e.redraw(e.selectedObj)}})}}}e.exports={draw:function(t){var e=t._fullLayout;e._infolayer.selectAll(".annotation").remove();for(var r=0;r=0,x=e.indexOf("end")>=0,b=d.backoff*g+r.standoff,_=m.backoff*v+r.startstandoff;if("line"===p.nodeName){o={x:+t.attr("x1"),y:+t.attr("y1")},u={x:+t.attr("x2"),y:+t.attr("y2")};var w=o.x-u.x,T=o.y-u.y;if(h=(f=Math.atan2(T,w))+Math.PI,b&&_&&b+_>Math.sqrt(w*w+T*T))return void z();if(b){if(b*b>w*w+T*T)return void z();var k=b*Math.cos(f),A=b*Math.sin(f);u.x+=k,u.y+=A,t.attr({x2:u.x,y2:u.y})}if(_){if(_*_>w*w+T*T)return void z();var M=_*Math.cos(f),S=_*Math.sin(f);o.x-=M,o.y-=S,t.attr({x1:o.x,y1:o.y})}}else if("path"===p.nodeName){var E=p.getTotalLength(),L="";if(E1){c=!0;break}}c?t.fullLayout._infolayer.select(".annotation-"+t.id+'[data-index="'+s+'"]').remove():(l._pdata=i(t.glplot.cameraParams,[e.xaxis.r2l(l.x)*r[0],e.yaxis.r2l(l.y)*r[1],e.zaxis.r2l(l.z)*r[2]]),n(t.graphDiv,l,s,t.id,l._xa,l._ya))}}},{"../../plots/gl3d/project":602,"../annotations/draw":350}],357:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib");e.exports={moduleType:"component",name:"annotations3d",schema:{subplots:{scene:{annotations:t("./attributes")}}},layoutAttributes:t("./attributes"),handleDefaults:t("./defaults"),includeBasePlot:function(t,e){var r=n.subplotsRegistry.gl3d;if(!r)return;for(var a=r.attrRegex,o=Object.keys(t),s=0;s=0))return t;if(3===o)n[o]>1&&(n[o]=1);else if(n[o]>=1)return t}var s=Math.round(255*n[0])+", "+Math.round(255*n[1])+", "+Math.round(255*n[2]);return a?"rgba("+s+", "+n[3]+")":"rgb("+s+")"}o.tinyRGB=function(t){var e=t.toRgb();return"rgb("+Math.round(e.r)+", "+Math.round(e.g)+", "+Math.round(e.b)+")"},o.rgb=function(t){return o.tinyRGB(n(t))},o.opacity=function(t){return t?n(t).getAlpha():0},o.addOpacity=function(t,e){var r=n(t).toRgb();return"rgba("+Math.round(r.r)+", "+Math.round(r.g)+", "+Math.round(r.b)+", "+e+")"},o.combine=function(t,e){var r=n(t).toRgb();if(1===r.a)return n(t).toRgbString();var i=n(e||c).toRgb(),a=1===i.a?i:{r:255*(1-i.a)+i.r*i.a,g:255*(1-i.a)+i.g*i.a,b:255*(1-i.a)+i.b*i.a},o={r:a.r*(1-r.a)+r.r*r.a,g:a.g*(1-r.a)+r.g*r.a,b:a.b*(1-r.a)+r.b*r.a};return n(o).toRgbString()},o.contrast=function(t,e,r){var i=n(t);return 1!==i.getAlpha()&&(i=n(o.combine(t,c))),(i.isDark()?e?i.lighten(e):c:r?i.darken(r):l).toString()},o.stroke=function(t,e){var r=n(e);t.style({stroke:o.tinyRGB(r),"stroke-opacity":r.getAlpha()})},o.fill=function(t,e){var r=n(e);t.style({fill:o.tinyRGB(r),"fill-opacity":r.getAlpha()})},o.clean=function(t){if(t&&"object"==typeof t){var e,r,n,i,s=Object.keys(t);for(e=0;e0?n>=l:n<=l));i++)n>u&&n0?n>=l:n<=l));i++)n>r[0]&&n1){var ct=Math.pow(10,Math.floor(Math.log(lt)/Math.LN10));ot*=ct*c.roundUp(lt/ct,[2,5,10]),(Math.abs(q.start)/q.size+1e-6)%1<2e-6&&(it.tick0=0)}it.dtick=ot}it.domain=o?[rt+I/R.h,rt+K-I/R.h]:[rt+P/R.w,rt+K-P/R.w],it.setScale(),t.attr("transform",u(Math.round(R.l),Math.round(R.t)));var ut,ft=t.select("."+A.cbtitleunshift).attr("transform",u(-Math.round(R.l),-Math.round(R.t))),ht=it.ticklabelposition,pt=it.title.font.size,dt=t.select("."+A.cbaxis),mt=0,gt=0;function vt(n,i){var a={propContainer:it,propName:e._propPrefix+"title",traceIndex:e._traceIndex,_meta:e._meta,placeholder:D._dfltTitle.colorbar,containerGroup:t.select("."+A.cbtitle)},o="h"===n.charAt(0)?n.substr(1):"h"+n;t.selectAll("."+o+",."+o+"-math-group").remove(),m.draw(r,n,f(a,i||{}))}return c.syncOrAsync([a.previousPromises,function(){var t,e;(o&&at||!o&&!at)&&("top"===j&&(t=P+R.l+R.w*O,e=I+R.t+R.h*(1-rt-K)+3+.75*pt),"bottom"===j&&(t=P+R.l+R.w*O,e=I+R.t+R.h*(1-rt)-3-.25*pt),"right"===j&&(e=I+R.t+R.h*z+3+.75*pt,t=P+R.l+R.w*rt),vt(it._id+"title",{attributes:{x:t,y:e,"text-anchor":o?"start":"middle"}}))},function(){if(!o&&!at||o&&at){var a,l=t.select("."+A.cbtitle),f=l.select("text"),h=[-M/2,M/2],d=l.select(".h"+it._id+"title-math-group").node(),m=15.6;if(f.node()&&(m=parseInt(f.node().style.fontSize,10)*w),d?(a=p.bBox(d),gt=a.width,(mt=a.height)>m&&(h[1]-=(mt-m)/2)):f.node()&&!f.classed(A.jsPlaceholder)&&(a=p.bBox(f.node()),gt=a.width,mt=a.height),o){if(mt){if(mt+=5,"top"===j)it.domain[1]-=mt/R.h,h[1]*=-1;else{it.domain[0]+=mt/R.h;var v=g.lineCount(f);h[1]+=(1-v)*m}l.attr("transform",u(h[0],h[1])),it.setScale()}}else gt&&("right"===j&&(it.domain[0]+=(gt+pt/2)/R.w),l.attr("transform",u(h[0],h[1])),it.setScale())}t.selectAll("."+A.cbfills+",."+A.cblines).attr("transform",o?u(0,Math.round(R.h*(1-it.domain[1]))):u(Math.round(R.w*it.domain[0]),0)),dt.attr("transform",o?u(0,Math.round(-R.t)):u(Math.round(-R.l),0));var y=t.select("."+A.cbfills).selectAll("rect."+A.cbfill).attr("style","").data(Y);y.enter().append("rect").classed(A.cbfill,!0).style("stroke","none"),y.exit().remove();var x=U.map(it.c2p).map(Math.round).sort((function(t,e){return t-e}));y.each((function(t,a){var s=[0===a?U[0]:(Y[a]+Y[a-1])/2,a===Y.length-1?U[1]:(Y[a]+Y[a+1])/2].map(it.c2p).map(Math.round);o&&(s[1]=c.constrain(s[1]+(s[1]>s[0])?1:-1,x[0],x[1]));var l=n.select(this).attr(o?"x":"y",Q).attr(o?"y":"x",n.min(s)).attr(o?"width":"height",Math.max(X,2)).attr(o?"height":"width",Math.max(n.max(s)-n.min(s),2));if(e._fillgradient)p.gradient(l,r,e._id,o?"vertical":"horizontalreversed",e._fillgradient,"fill");else{var u=H(t).replace("e-","");l.attr("fill",i(u).toHexString())}}));var b=t.select("."+A.cblines).selectAll("path."+A.cbline).data(B.color&&B.width?W:[]);b.enter().append("path").classed(A.cbline,!0),b.exit().remove(),b.each((function(t){var e=Q,r=Math.round(it.c2p(t))+B.width/2%1;n.select(this).attr("d","M"+(o?e+","+r:r+","+e)+(o?"h":"v")+X).call(p.lineGroupStyle,B.width,V(t),B.dash)})),dt.selectAll("g."+it._id+"tick,path").remove();var _=Q+X+(M||0)/2-("outside"===e.ticks?1:0),T=s.calcTicks(it),k=s.getTickSigns(it)[2];return s.drawTicks(r,it,{vals:"inside"===it.ticks?s.clipEnds(it,T):T,layer:dt,path:s.makeTickPath(it,_,k),transFn:s.makeTransTickFn(it)}),s.drawLabels(r,it,{vals:T,layer:dt,transFn:s.makeTransTickLabelFn(it),labelFns:s.makeLabelFns(it,_)})},function(){if(o&&!at||!o&&at){var t,i,a=it.position||0,s=it._offset+it._length/2;if("right"===j)i=s,t=R.l+R.w*a+10+pt*(it.showticklabels?1:.5);else if(t=s,"bottom"===j&&(i=R.t+R.h*a+10+(-1===ht.indexOf("inside")?it.tickfont.size:0)+("intside"!==it.ticks&&e.ticklen||0)),"top"===j){var l=N.text.split("
").length;i=R.t+R.h*a+10-X-w*pt*l}vt((o?"h":"v")+it._id+"title",{avoid:{selection:n.select(r).selectAll("g."+it._id+"tick"),side:j,offsetTop:o?0:R.t,offsetLeft:o?R.l:0,maxShift:o?D.width:D.height},attributes:{x:t,y:i,"text-anchor":"middle"},transform:{rotate:o?-90:0,offset:0}})}},a.previousPromises,function(){var n,s=X+M/2;-1===ht.indexOf("inside")&&(n=p.bBox(dt.node()),s+=o?n.width:n.height),ut=ft.select("text");var c=0,f=o&&"top"===j,m=!o&&"right"===j,g=0;if(ut.node()&&!ut.classed(A.jsPlaceholder)){var y,x=ft.select(".h"+it._id+"title-math-group").node();x&&(o&&at||!o&&!at)?(c=(n=p.bBox(x)).width,y=n.height):(c=(n=p.bBox(ft.node())).right-R.l-(o?Q:nt),y=n.bottom-R.t-(o?nt:Q),o||"top"!==j||(s+=n.height,g=n.height)),m&&(ut.attr("transform",u(c/2+pt/2,0)),c*=2),s=Math.max(s,o?c:y)}var b=2*(o?P:I)+s+S+M/2,w=0;!o&&N.text&&"bottom"===C&&z<=0&&(b+=w=b/2,g+=w),D._hColorbarMoveTitle=w,D._hColorbarMoveCBTitle=g;var F=S+M;t.select("."+A.cbbg).attr("x",(o?Q:nt)-F/2-(o?P:0)).attr("y",(o?nt:Q)-(o?J:I+g-w)).attr(o?"width":"height",Math.max(b-w,2)).attr(o?"height":"width",Math.max(J+F,2)).call(d.fill,E).call(d.stroke,e.bordercolor).style("stroke-width",S);var B=m?Math.max(c-10,0):0;if(t.selectAll("."+A.cboutline).attr("x",(o?Q:nt+P)+B).attr("y",(o?nt+I-J:Q)+(f?mt:0)).attr(o?"width":"height",Math.max(X,2)).attr(o?"height":"width",Math.max(J-(o?2*I+mt:2*P+B),2)).call(d.stroke,e.outlinecolor).style({fill:"none","stroke-width":M}),t.attr("transform",u(R.l-(o?$*b:0),R.t-(o?0:(1-tt)*b-g))),!o&&(S||i(E).getAlpha()&&!i.equals(D.paper_bgcolor,E))){var U=dt.selectAll("text"),V=U[0].length,H=t.select("."+A.cbbg).node(),q=p.bBox(H),G=p.getTranslate(t);U.each((function(t,e){var r=V-1;if(0===e||e===r){var n,i=p.bBox(this),a=p.getTranslate(this);if(e===r){var o=i.right+a.x;(n=q.right+G.x+nt-S-2+O-o)>0&&(n=0)}else if(0===e){var s=i.left+a.x;(n=q.left+G.x+nt+S+2-s)<0&&(n=0)}n&&(V<3?this.setAttribute("transform","translate("+n+",0) "+this.getAttribute("transform")):this.setAttribute("visibility","hidden"))}}))}var Y={},W=T[L],Z=k[L],K=T[C],et=k[C],rt=b-X;o?("pixels"===h?(Y.y=z,Y.t=J*K,Y.b=J*et):(Y.t=Y.b=0,Y.yt=z+l*K,Y.yb=z-l*et),"pixels"===_?(Y.x=O,Y.l=b*W,Y.r=b*Z):(Y.l=rt*W,Y.r=rt*Z,Y.xl=O-v*W,Y.xr=O+v*Z)):("pixels"===h?(Y.x=O,Y.l=J*W,Y.r=J*Z):(Y.l=Y.r=0,Y.xl=O+l*W,Y.xr=O-l*Z),"pixels"===_?(Y.y=1-z,Y.t=b*K,Y.b=b*et):(Y.t=rt*K,Y.b=rt*et,Y.yt=z-v*K,Y.yb=z+v*et)),a.autoMargin(r,e._id,Y)}],r)}(r,e,t);v&&v.then&&(t._promises||[]).push(v),t._context.edits.colorbarPosition&&function(t,e,r){var n,i,a,s="v"===e.orientation,c=r._fullLayout._size;l.init({element:t.node(),gd:r,prepFn:function(){n=t.attr("transform"),h(t)},moveFn:function(r,o){t.attr("transform",n+u(r,o)),i=l.align((s?e._uFrac:e._vFrac)+r/c.w,s?e._thickFrac:e._lenFrac,0,1,e.xanchor),a=l.align((s?e._vFrac:1-e._uFrac)-o/c.h,s?e._lenFrac:e._thickFrac,0,1,e.yanchor);var f=l.getCursor(i,a,e.xanchor,e.yanchor);h(t,f)},doneFn:function(){if(h(t),void 0!==i&&void 0!==a){var n={};n[e._propPrefix+"x"]=i,n[e._propPrefix+"y"]=a,void 0!==e._traceIndex?o.call("_guiRestyle",r,n,e._traceIndex):o.call("_guiRelayout",r,n)}}})}(r,e,t)})),e.exit().each((function(e){a.autoMargin(t,e._id)})).remove(),e.order()}}},{"../../constants/alignment":466,"../../lib":498,"../../lib/extend":488,"../../lib/setcursor":519,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"../../plots/cartesian/axis_defaults":551,"../../plots/cartesian/layout_attributes":564,"../../plots/cartesian/position_defaults":567,"../../plots/plots":614,"../../registry":633,"../color":361,"../colorscale/helpers":372,"../dragelement":380,"../drawing":383,"../titles":459,"./constants":363,"@plotly/d3":58,tinycolor2:307}],366:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t){return n.isPlainObject(t.colorbar)}},{"../../lib":498}],367:[function(t,e,r){"use strict";e.exports={moduleType:"component",name:"colorbar",attributes:t("./attributes"),supplyDefaults:t("./defaults"),draw:t("./draw").draw,hasColorbar:t("./has_colorbar")}},{"./attributes":362,"./defaults":364,"./draw":365,"./has_colorbar":366}],368:[function(t,e,r){"use strict";var n=t("../colorbar/attributes"),i=t("../../lib/regex").counter,a=t("../../lib/sort_object_keys"),o=t("./scales.js").scales;a(o);function s(t){return"`"+t+"`"}e.exports=function(t,e){t=t||"";var r,a=(e=e||{}).cLetter||"c",l=("onlyIfNumerical"in e?e.onlyIfNumerical:Boolean(t),"noScale"in e?e.noScale:"marker.line"===t),c="showScaleDflt"in e?e.showScaleDflt:"z"===a,u="string"==typeof e.colorscaleDflt?o[e.colorscaleDflt]:null,f=e.editTypeOverride||"",h=t?t+".":"";"colorAttr"in e?(r=e.colorAttr,e.colorAttr):s(h+(r={z:"z",c:"color"}[a]));var p=a+"auto",d=a+"min",m=a+"max",g=a+"mid",v=(s(h+p),s(h+d),s(h+m),{});v[d]=v[m]=void 0;var y={};y[p]=!1;var x={};return"color"===r&&(x.color={valType:"color",arrayOk:!0,editType:f||"style"},e.anim&&(x.color.anim=!0)),x[p]={valType:"boolean",dflt:!0,editType:"calc",impliedEdits:v},x[d]={valType:"number",dflt:null,editType:f||"plot",impliedEdits:y},x[m]={valType:"number",dflt:null,editType:f||"plot",impliedEdits:y},x[g]={valType:"number",dflt:null,editType:"calc",impliedEdits:v},x.colorscale={valType:"colorscale",editType:"calc",dflt:u,impliedEdits:{autocolorscale:!1}},x.autocolorscale={valType:"boolean",dflt:!1!==e.autoColorDflt,editType:"calc",impliedEdits:{colorscale:void 0}},x.reversescale={valType:"boolean",dflt:!1,editType:"plot"},l||(x.showscale={valType:"boolean",dflt:c,editType:"calc"},x.colorbar=n),e.noColorAxis||(x.coloraxis={valType:"subplotid",regex:i("coloraxis"),dflt:null,editType:"calc"}),x}},{"../../lib/regex":515,"../../lib/sort_object_keys":521,"../colorbar/attributes":362,"./scales.js":376}],369:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../lib"),a=t("./helpers").extractOpts;e.exports=function(t,e,r){var o,s=t._fullLayout,l=r.vals,c=r.containerStr,u=c?i.nestedProperty(e,c).get():e,f=a(u),h=!1!==f.auto,p=f.min,d=f.max,m=f.mid,g=function(){return i.aggNums(Math.min,null,l)},v=function(){return i.aggNums(Math.max,null,l)};(void 0===p?p=g():h&&(p=u._colorAx&&n(p)?Math.min(p,g()):g()),void 0===d?d=v():h&&(d=u._colorAx&&n(d)?Math.max(d,v()):v()),h&&void 0!==m&&(d-m>m-p?p=m-(d-m):d-m=0?s.colorscale.sequential:s.colorscale.sequentialminus,f._sync("colorscale",o))}},{"../../lib":498,"./helpers":372,"fast-isnumeric":185}],370:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./helpers").hasColorscale,a=t("./helpers").extractOpts;e.exports=function(t,e){function r(t,e){var r=t["_"+e];void 0!==r&&(t[e]=r)}function o(t,i){var o=i.container?n.nestedProperty(t,i.container).get():t;if(o)if(o.coloraxis)o._colorAx=e[o.coloraxis];else{var s=a(o),l=s.auto;(l||void 0===s.min)&&r(o,i.min),(l||void 0===s.max)&&r(o,i.max),s.autocolorscale&&r(o,"colorscale")}}for(var s=0;s=0;n--,i++){var a=t[n];r[i]=[1-a[0],a[1]]}return r}function d(t,e){e=e||{};for(var r=t.domain,o=t.range,l=o.length,c=new Array(l),u=0;u4/3-s?o:s}},{}],378:[function(t,e,r){"use strict";var n=t("../../lib"),i=[["sw-resize","s-resize","se-resize"],["w-resize","move","e-resize"],["nw-resize","n-resize","ne-resize"]];e.exports=function(t,e,r,a){return t="left"===r?0:"center"===r?1:"right"===r?2:n.constrain(Math.floor(3*t),0,2),e="bottom"===a?0:"middle"===a?1:"top"===a?2:n.constrain(Math.floor(3*e),0,2),i[e][t]}},{"../../lib":498}],379:[function(t,e,r){"use strict";r.selectMode=function(t){return"lasso"===t||"select"===t},r.drawMode=function(t){return"drawclosedpath"===t||"drawopenpath"===t||"drawline"===t||"drawrect"===t||"drawcircle"===t},r.openMode=function(t){return"drawline"===t||"drawopenpath"===t},r.rectMode=function(t){return"select"===t||"drawline"===t||"drawrect"===t||"drawcircle"===t},r.freeMode=function(t){return"lasso"===t||"drawclosedpath"===t||"drawopenpath"===t},r.selectingOrDrawing=function(t){return r.freeMode(t)||r.rectMode(t)}},{}],380:[function(t,e,r){"use strict";var n=t("mouse-event-offset"),i=t("has-hover"),a=t("has-passive-events"),o=t("../../lib").removeElement,s=t("../../plots/cartesian/constants"),l=e.exports={};l.align=t("./align"),l.getCursor=t("./cursor");var c=t("./unhover");function u(){var t=document.createElement("div");t.className="dragcover";var e=t.style;return e.position="fixed",e.left=0,e.right=0,e.top=0,e.bottom=0,e.zIndex=999999999,e.background="none",document.body.appendChild(t),t}function f(t){return n(t.changedTouches?t.changedTouches[0]:t,document.body)}l.unhover=c.wrapped,l.unhoverRaw=c.raw,l.init=function(t){var e,r,n,c,h,p,d,m,g=t.gd,v=1,y=g._context.doubleClickDelay,x=t.element;g._mouseDownTime||(g._mouseDownTime=0),x.style.pointerEvents="all",x.onmousedown=_,a?(x._ontouchstart&&x.removeEventListener("touchstart",x._ontouchstart),x._ontouchstart=_,x.addEventListener("touchstart",_,{passive:!1})):x.ontouchstart=_;var b=t.clampFn||function(t,e,r){return Math.abs(t)y&&(v=Math.max(v-1,1)),g._dragged)t.doneFn&&t.doneFn();else if(t.clickFn&&t.clickFn(v,p),!m){var r;try{r=new MouseEvent("click",e)}catch(t){var n=f(e);(r=document.createEvent("MouseEvents")).initMouseEvent("click",e.bubbles,e.cancelable,e.view,e.detail,e.screenX,e.screenY,n[0],n[1],e.ctrlKey,e.altKey,e.shiftKey,e.metaKey,e.button,e.relatedTarget)}d.dispatchEvent(r)}g._dragging=!1,g._dragged=!1}else g._dragged=!1}},l.coverSlip=u},{"../../lib":498,"../../plots/cartesian/constants":556,"./align":377,"./cursor":378,"./unhover":381,"has-hover":223,"has-passive-events":224,"mouse-event-offset":237}],381:[function(t,e,r){"use strict";var n=t("../../lib/events"),i=t("../../lib/throttle"),a=t("../../lib/dom").getGraphDiv,o=t("../fx/constants"),s=e.exports={};s.wrapped=function(t,e,r){(t=a(t))._fullLayout&&i.clear(t._fullLayout._uid+o.HOVERID),s.raw(t,e,r)},s.raw=function(t,e){var r=t._fullLayout,i=t._hoverdata;e||(e={}),e.target&&!t._dragged&&!1===n.triggerHandler(t,"plotly_beforehover",e)||(r._hoverlayer.selectAll("g").remove(),r._hoverlayer.selectAll("line").remove(),r._hoverlayer.selectAll("circle").remove(),t._hoverdata=void 0,e.target&&i&&t.emit("plotly_unhover",{event:e,points:i}))}},{"../../lib/dom":486,"../../lib/events":487,"../../lib/throttle":525,"../fx/constants":395}],382:[function(t,e,r){"use strict";r.dash={valType:"string",values:["solid","dot","dash","longdash","dashdot","longdashdot"],dflt:"solid",editType:"style"},r.pattern={shape:{valType:"enumerated",values:["","/","\\","x","-","|","+","."],dflt:"",arrayOk:!0,editType:"style"},fillmode:{valType:"enumerated",values:["replace","overlay"],dflt:"replace",editType:"style"},bgcolor:{valType:"color",arrayOk:!0,editType:"style"},fgcolor:{valType:"color",arrayOk:!0,editType:"style"},fgopacity:{valType:"number",editType:"style",min:0,max:1},size:{valType:"number",min:0,dflt:8,arrayOk:!0,editType:"style"},solidity:{valType:"number",min:0,max:1,dflt:.3,arrayOk:!0,editType:"style"},editType:"style"}},{}],383:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.numberFormat,o=t("fast-isnumeric"),s=t("tinycolor2"),l=t("../../registry"),c=t("../color"),u=t("../colorscale"),f=i.strTranslate,h=t("../../lib/svg_text_utils"),p=t("../../constants/xmlns_namespaces"),d=t("../../constants/alignment").LINE_SPACING,m=t("../../constants/interactions").DESELECTDIM,g=t("../../traces/scatter/subtypes"),v=t("../../traces/scatter/make_bubble_size_func"),y=t("../../components/fx/helpers").appendArrayPointValue,x=e.exports={};function b(t,e,r){var n=e.fillpattern,i=n&&x.getPatternAttr(n.shape,0,"");if(i){var a=x.getPatternAttr(n.bgcolor,0,null),o=x.getPatternAttr(n.fgcolor,0,null),s=n.fgopacity,l=x.getPatternAttr(n.size,0,8),u=x.getPatternAttr(n.solidity,0,.3),f=e.uid;x.pattern(t,"point",r,f,i,l,u,void 0,n.fillmode,a,o,s)}else e.fillcolor&&t.call(c.fill,e.fillcolor)}x.font=function(t,e,r,n){i.isPlainObject(e)&&(n=e.color,r=e.size,e=e.family),e&&t.style("font-family",e),r+1&&t.style("font-size",r+"px"),n&&t.call(c.fill,n)},x.setPosition=function(t,e,r){t.attr("x",e).attr("y",r)},x.setSize=function(t,e,r){t.attr("width",e).attr("height",r)},x.setRect=function(t,e,r,n,i){t.call(x.setPosition,e,r).call(x.setSize,n,i)},x.translatePoint=function(t,e,r,n){var i=r.c2p(t.x),a=n.c2p(t.y);return!!(o(i)&&o(a)&&e.node())&&("text"===e.node().nodeName?e.attr("x",i).attr("y",a):e.attr("transform",f(i,a)),!0)},x.translatePoints=function(t,e,r){t.each((function(t){var i=n.select(this);x.translatePoint(t,i,e,r)}))},x.hideOutsideRangePoint=function(t,e,r,n,i,a){e.attr("display",r.isPtWithinRange(t,i)&&n.isPtWithinRange(t,a)?null:"none")},x.hideOutsideRangePoints=function(t,e){if(e._hasClipOnAxisFalse){var r=e.xaxis,i=e.yaxis;t.each((function(e){var a=e[0].trace,o=a.xcalendar,s=a.ycalendar,c=l.traceIs(a,"bar-like")?".bartext":".point,.textpoint";t.selectAll(c).each((function(t){x.hideOutsideRangePoint(t,n.select(this),r,i,o,s)}))}))}},x.crispRound=function(t,e,r){return e&&o(e)?t._context.staticPlot?e:e<1?1:Math.round(e):r||0},x.singleLineStyle=function(t,e,r,n,i){e.style("fill","none");var a=(((t||[])[0]||{}).trace||{}).line||{},o=r||a.width||0,s=i||a.dash||"";c.stroke(e,n||a.color),x.dashLine(e,s,o)},x.lineGroupStyle=function(t,e,r,i){t.style("fill","none").each((function(t){var a=(((t||[])[0]||{}).trace||{}).line||{},o=e||a.width||0,s=i||a.dash||"";n.select(this).call(c.stroke,r||a.color).call(x.dashLine,s,o)}))},x.dashLine=function(t,e,r){r=+r||0,e=x.dashStyle(e,r),t.style({"stroke-dasharray":e,"stroke-width":r+"px"})},x.dashStyle=function(t,e){e=+e||1;var r=Math.max(e,3);return"solid"===t?t="":"dot"===t?t=r+"px,"+r+"px":"dash"===t?t=3*r+"px,"+3*r+"px":"longdash"===t?t=5*r+"px,"+5*r+"px":"dashdot"===t?t=3*r+"px,"+r+"px,"+r+"px,"+r+"px":"longdashdot"===t&&(t=5*r+"px,"+2*r+"px,"+r+"px,"+2*r+"px"),t},x.singleFillStyle=function(t,e){var r=n.select(t.node());b(t,((r.data()[0]||[])[0]||{}).trace||{},e)},x.fillGroupStyle=function(t,e){t.style("stroke-width",0).each((function(t){var r=n.select(this);t[0].trace&&b(r,t[0].trace,e)}))};var _=t("./symbol_defs");x.symbolNames=[],x.symbolFuncs=[],x.symbolNeedLines={},x.symbolNoDot={},x.symbolNoFill={},x.symbolList=[],Object.keys(_).forEach((function(t){var e=_[t],r=e.n;x.symbolList.push(r,String(r),t,r+100,String(r+100),t+"-open"),x.symbolNames[r]=t,x.symbolFuncs[r]=e.f,e.needLine&&(x.symbolNeedLines[r]=!0),e.noDot?x.symbolNoDot[r]=!0:x.symbolList.push(r+200,String(r+200),t+"-dot",r+300,String(r+300),t+"-open-dot"),e.noFill&&(x.symbolNoFill[r]=!0)}));var w=x.symbolNames.length;function T(t,e){var r=t%100;return x.symbolFuncs[r](e)+(t>=200?"M0,0.5L0.5,0L0,-0.5L-0.5,0Z":"")}x.symbolNumber=function(t){if(o(t))t=+t;else if("string"==typeof t){var e=0;t.indexOf("-open")>0&&(e=100,t=t.replace("-open","")),t.indexOf("-dot")>0&&(e+=200,t=t.replace("-dot","")),(t=x.symbolNames.indexOf(t))>=0&&(t+=e)}return t%100>=w||t>=400?0:Math.floor(Math.max(t,0))};var k={x1:1,x2:0,y1:0,y2:0},A={x1:0,x2:0,y1:1,y2:0},M=a("~f"),S={radial:{node:"radialGradient"},radialreversed:{node:"radialGradient",reversed:!0},horizontal:{node:"linearGradient",attrs:k},horizontalreversed:{node:"linearGradient",attrs:k,reversed:!0},vertical:{node:"linearGradient",attrs:A},verticalreversed:{node:"linearGradient",attrs:A,reversed:!0}};x.gradient=function(t,e,r,a,o,l){for(var u=o.length,f=S[a],h=new Array(u),p=0;p=100,e.attr("d",T(u,l))}var f,h,p,d=!1;if(t.so)p=s.outlierwidth,h=s.outliercolor,f=o.outliercolor;else{var m=(s||{}).width;p=(t.mlw+1||m+1||(t.trace?(t.trace.marker.line||{}).width:0)+1)-1||0,h="mlc"in t?t.mlcc=n.lineScale(t.mlc):i.isArrayOrTypedArray(s.color)?c.defaultLine:s.color,i.isArrayOrTypedArray(o.color)&&(f=c.defaultLine,d=!0),f="mc"in t?t.mcc=n.markerScale(t.mc):o.color||"rgba(0,0,0,0)",n.selectedColorFn&&(f=n.selectedColorFn(t))}if(t.om)e.call(c.stroke,f).style({"stroke-width":(p||1)+"px",fill:"none"});else{e.style("stroke-width",(t.isBlank?0:p)+"px");var g=o.gradient,v=t.mgt;v?d=!0:v=g&&g.type,i.isArrayOrTypedArray(v)&&(v=v[0],S[v]||(v=0));var y=o.pattern,b=y&&x.getPatternAttr(y.shape,t.i,"");if(v&&"none"!==v){var _=t.mgc;_?d=!0:_=g.color;var w=r.uid;d&&(w+="-"+t.i),x.gradient(e,a,w,v,[[0,_],[1,f]],"fill")}else if(b){var k=x.getPatternAttr(y.bgcolor,t.i,null),A=x.getPatternAttr(y.fgcolor,t.i,null),M=y.fgopacity,E=x.getPatternAttr(y.size,t.i,8),L=x.getPatternAttr(y.solidity,t.i,.3),C=t.mcc||i.isArrayOrTypedArray(y.shape)||i.isArrayOrTypedArray(y.bgcolor)||i.isArrayOrTypedArray(y.size)||i.isArrayOrTypedArray(y.solidity),P=r.uid;C&&(P+="-"+t.i),x.pattern(e,"point",a,P,b,E,L,t.mcc,y.fillmode,k,A,M)}else c.fill(e,f);p&&c.stroke(e,h)}},x.makePointStyleFns=function(t){var e={},r=t.marker;return e.markerScale=x.tryColorscale(r,""),e.lineScale=x.tryColorscale(r,"line"),l.traceIs(t,"symbols")&&(e.ms2mrc=g.isBubble(t)?v(t):function(){return(r.size||6)/2}),t.selectedpoints&&i.extendFlat(e,x.makeSelectedPointStyleFns(t)),e},x.makeSelectedPointStyleFns=function(t){var e={},r=t.selected||{},n=t.unselected||{},a=t.marker||{},o=r.marker||{},s=n.marker||{},c=a.opacity,u=o.opacity,f=s.opacity,h=void 0!==u,p=void 0!==f;(i.isArrayOrTypedArray(c)||h||p)&&(e.selectedOpacityFn=function(t){var e=void 0===t.mo?a.opacity:t.mo;return t.selected?h?u:e:p?f:m*e});var d=a.color,g=o.color,v=s.color;(g||v)&&(e.selectedColorFn=function(t){var e=t.mcc||d;return t.selected?g||e:v||e});var y=a.size,x=o.size,b=s.size,_=void 0!==x,w=void 0!==b;return l.traceIs(t,"symbols")&&(_||w)&&(e.selectedSizeFn=function(t){var e=t.mrc||y/2;return t.selected?_?x/2:e:w?b/2:e}),e},x.makeSelectedTextStyleFns=function(t){var e={},r=t.selected||{},n=t.unselected||{},i=t.textfont||{},a=r.textfont||{},o=n.textfont||{},s=i.color,l=a.color,u=o.color;return e.selectedTextColorFn=function(t){var e=t.tc||s;return t.selected?l||e:u||(l?e:c.addOpacity(e,m))},e},x.selectedPointStyle=function(t,e){if(t.size()&&e.selectedpoints){var r=x.makeSelectedPointStyleFns(e),i=e.marker||{},a=[];r.selectedOpacityFn&&a.push((function(t,e){t.style("opacity",r.selectedOpacityFn(e))})),r.selectedColorFn&&a.push((function(t,e){c.fill(t,r.selectedColorFn(e))})),r.selectedSizeFn&&a.push((function(t,e){var n=e.mx||i.symbol||0,a=r.selectedSizeFn(e);t.attr("d",T(x.symbolNumber(n),a)),e.mrc2=a})),a.length&&t.each((function(t){for(var e=n.select(this),r=0;r0?r:0}x.textPointStyle=function(t,e,r){if(t.size()){var a;if(e.selectedpoints){var o=x.makeSelectedTextStyleFns(e);a=o.selectedTextColorFn}var s=e.texttemplate,l=r._fullLayout;t.each((function(t){var o=n.select(this),c=s?i.extractOption(t,e,"txt","texttemplate"):i.extractOption(t,e,"tx","text");if(c||0===c){if(s){var u=e._module.formatLabels,f=u?u(t,e,l):{},p={};y(p,e,t.i);var d=e._meta||{};c=i.texttemplateString(c,f,l._d3locale,p,t,d)}var m=t.tp||e.textposition,g=C(t,e),v=a?a(t):t.tc||e.textfont.color;o.call(x.font,t.tf||e.textfont.family,g,v).text(c).call(h.convertToTspans,r).call(L,m,g,t.mrc)}else o.remove()}))}},x.selectedTextStyle=function(t,e){if(t.size()&&e.selectedpoints){var r=x.makeSelectedTextStyleFns(e);t.each((function(t){var i=n.select(this),a=r.selectedTextColorFn(t),o=t.tp||e.textposition,s=C(t,e);c.fill(i,a);var u=l.traceIs(e,"bar-like");L(i,o,s,t.mrc2||t.mrc,u)}))}};function P(t,e,r,i){var a=t[0]-e[0],o=t[1]-e[1],s=r[0]-e[0],l=r[1]-e[1],c=Math.pow(a*a+o*o,.25),u=Math.pow(s*s+l*l,.25),f=(u*u*a-c*c*s)*i,h=(u*u*o-c*c*l)*i,p=3*u*(c+u),d=3*c*(c+u);return[[n.round(e[0]+(p&&f/p),2),n.round(e[1]+(p&&h/p),2)],[n.round(e[0]-(d&&f/d),2),n.round(e[1]-(d&&h/d),2)]]}x.smoothopen=function(t,e){if(t.length<3)return"M"+t.join("L");var r,n="M"+t[0],i=[];for(r=1;r=1e4&&(x.savedBBoxes={},z=0),r&&(x.savedBBoxes[r]=g),z++,i.extendFlat({},g)},x.setClipUrl=function(t,e,r){t.attr("clip-path",R(e,r))},x.getTranslate=function(t){var e=(t[t.attr?"attr":"getAttribute"]("transform")||"").replace(/.*\btranslate\((-?\d*\.?\d*)[^-\d]*(-?\d*\.?\d*)[^\d].*/,(function(t,e,r){return[e,r].join(" ")})).split(" ");return{x:+e[0]||0,y:+e[1]||0}},x.setTranslate=function(t,e,r){var n=t.attr?"attr":"getAttribute",i=t.attr?"attr":"setAttribute",a=t[n]("transform")||"";return e=e||0,r=r||0,a=a.replace(/(\btranslate\(.*?\);?)/,"").trim(),a=(a+=f(e,r)).trim(),t[i]("transform",a),a},x.getScale=function(t){var e=(t[t.attr?"attr":"getAttribute"]("transform")||"").replace(/.*\bscale\((\d*\.?\d*)[^\d]*(\d*\.?\d*)[^\d].*/,(function(t,e,r){return[e,r].join(" ")})).split(" ");return{x:+e[0]||1,y:+e[1]||1}},x.setScale=function(t,e,r){var n=t.attr?"attr":"getAttribute",i=t.attr?"attr":"setAttribute",a=t[n]("transform")||"";return e=e||1,r=r||1,a=a.replace(/(\bscale\(.*?\);?)/,"").trim(),a=(a+="scale("+e+","+r+")").trim(),t[i]("transform",a),a};var F=/\s*sc.*/;x.setPointGroupScale=function(t,e,r){if(e=e||1,r=r||1,t){var n=1===e&&1===r?"":"scale("+e+","+r+")";t.each((function(){var t=(this.getAttribute("transform")||"").replace(F,"");t=(t+=n).trim(),this.setAttribute("transform",t)}))}};var B=/translate\([^)]*\)\s*$/;x.setTextPointsScale=function(t,e,r){t&&t.each((function(){var t,i=n.select(this),a=i.select("text");if(a.node()){var o=parseFloat(a.attr("x")||0),s=parseFloat(a.attr("y")||0),l=(i.attr("transform")||"").match(B);t=1===e&&1===r?[]:[f(o,s),"scale("+e+","+r+")",f(-o,-s)],l&&t.push(l),i.attr("transform",t.join(""))}}))}},{"../../components/fx/helpers":397,"../../constants/alignment":466,"../../constants/interactions":473,"../../constants/xmlns_namespaces":475,"../../lib":498,"../../lib/svg_text_utils":524,"../../registry":633,"../../traces/scatter/make_bubble_size_func":939,"../../traces/scatter/subtypes":947,"../color":361,"../colorscale":373,"./symbol_defs":384,"@plotly/d3":58,"fast-isnumeric":185,tinycolor2:307}],384:[function(t,e,r){"use strict";var n=t("@plotly/d3");e.exports={circle:{n:0,f:function(t){var e=n.round(t,2);return"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"}},square:{n:1,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"}},diamond:{n:2,f:function(t){var e=n.round(1.3*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"Z"}},cross:{n:3,f:function(t){var e=n.round(.4*t,2),r=n.round(1.2*t,2);return"M"+r+","+e+"H"+e+"V"+r+"H-"+e+"V"+e+"H-"+r+"V-"+e+"H-"+e+"V-"+r+"H"+e+"V-"+e+"H"+r+"Z"}},x:{n:4,f:function(t){var e=n.round(.8*t/Math.sqrt(2),2),r="l"+e+","+e,i="l"+e+",-"+e,a="l-"+e+",-"+e,o="l-"+e+","+e;return"M0,"+e+r+i+a+i+a+o+a+o+r+o+r+"Z"}},"triangle-up":{n:5,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+e+","+n.round(t/2,2)+"H"+e+"L0,-"+n.round(t,2)+"Z"}},"triangle-down":{n:6,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+e+",-"+n.round(t/2,2)+"H"+e+"L0,"+n.round(t,2)+"Z"}},"triangle-left":{n:7,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M"+n.round(t/2,2)+",-"+e+"V"+e+"L-"+n.round(t,2)+",0Z"}},"triangle-right":{n:8,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+n.round(t/2,2)+",-"+e+"V"+e+"L"+n.round(t,2)+",0Z"}},"triangle-ne":{n:9,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M-"+r+",-"+e+"H"+e+"V"+r+"Z"}},"triangle-se":{n:10,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M"+e+",-"+r+"V"+e+"H-"+r+"Z"}},"triangle-sw":{n:11,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M"+r+","+e+"H-"+e+"V-"+r+"Z"}},"triangle-nw":{n:12,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M-"+e+","+r+"V-"+e+"H"+r+"Z"}},pentagon:{n:13,f:function(t){var e=n.round(.951*t,2),r=n.round(.588*t,2),i=n.round(-t,2),a=n.round(-.309*t,2);return"M"+e+","+a+"L"+r+","+n.round(.809*t,2)+"H-"+r+"L-"+e+","+a+"L0,"+i+"Z"}},hexagon:{n:14,f:function(t){var e=n.round(t,2),r=n.round(t/2,2),i=n.round(t*Math.sqrt(3)/2,2);return"M"+i+",-"+r+"V"+r+"L0,"+e+"L-"+i+","+r+"V-"+r+"L0,-"+e+"Z"}},hexagon2:{n:15,f:function(t){var e=n.round(t,2),r=n.round(t/2,2),i=n.round(t*Math.sqrt(3)/2,2);return"M-"+r+","+i+"H"+r+"L"+e+",0L"+r+",-"+i+"H-"+r+"L-"+e+",0Z"}},octagon:{n:16,f:function(t){var e=n.round(.924*t,2),r=n.round(.383*t,2);return"M-"+r+",-"+e+"H"+r+"L"+e+",-"+r+"V"+r+"L"+r+","+e+"H-"+r+"L-"+e+","+r+"V-"+r+"Z"}},star:{n:17,f:function(t){var e=1.4*t,r=n.round(.225*e,2),i=n.round(.951*e,2),a=n.round(.363*e,2),o=n.round(.588*e,2),s=n.round(-e,2),l=n.round(-.309*e,2),c=n.round(.118*e,2),u=n.round(.809*e,2);return"M"+r+","+l+"H"+i+"L"+a+","+c+"L"+o+","+u+"L0,"+n.round(.382*e,2)+"L-"+o+","+u+"L-"+a+","+c+"L-"+i+","+l+"H-"+r+"L0,"+s+"Z"}},hexagram:{n:18,f:function(t){var e=n.round(.66*t,2),r=n.round(.38*t,2),i=n.round(.76*t,2);return"M-"+i+",0l-"+r+",-"+e+"h"+i+"l"+r+",-"+e+"l"+r+","+e+"h"+i+"l-"+r+","+e+"l"+r+","+e+"h-"+i+"l-"+r+","+e+"l-"+r+",-"+e+"h-"+i+"Z"}},"star-triangle-up":{n:19,f:function(t){var e=n.round(t*Math.sqrt(3)*.8,2),r=n.round(.8*t,2),i=n.round(1.6*t,2),a=n.round(4*t,2),o="A "+a+","+a+" 0 0 1 ";return"M-"+e+","+r+o+e+","+r+o+"0,-"+i+o+"-"+e+","+r+"Z"}},"star-triangle-down":{n:20,f:function(t){var e=n.round(t*Math.sqrt(3)*.8,2),r=n.round(.8*t,2),i=n.round(1.6*t,2),a=n.round(4*t,2),o="A "+a+","+a+" 0 0 1 ";return"M"+e+",-"+r+o+"-"+e+",-"+r+o+"0,"+i+o+e+",-"+r+"Z"}},"star-square":{n:21,f:function(t){var e=n.round(1.1*t,2),r=n.round(2*t,2),i="A "+r+","+r+" 0 0 1 ";return"M-"+e+",-"+e+i+"-"+e+","+e+i+e+","+e+i+e+",-"+e+i+"-"+e+",-"+e+"Z"}},"star-diamond":{n:22,f:function(t){var e=n.round(1.4*t,2),r=n.round(1.9*t,2),i="A "+r+","+r+" 0 0 1 ";return"M-"+e+",0"+i+"0,"+e+i+e+",0"+i+"0,-"+e+i+"-"+e+",0Z"}},"diamond-tall":{n:23,f:function(t){var e=n.round(.7*t,2),r=n.round(1.4*t,2);return"M0,"+r+"L"+e+",0L0,-"+r+"L-"+e+",0Z"}},"diamond-wide":{n:24,f:function(t){var e=n.round(1.4*t,2),r=n.round(.7*t,2);return"M0,"+r+"L"+e+",0L0,-"+r+"L-"+e+",0Z"}},hourglass:{n:25,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"H-"+e+"L"+e+",-"+e+"H-"+e+"Z"},noDot:!0},bowtie:{n:26,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"V-"+e+"L-"+e+","+e+"V-"+e+"Z"},noDot:!0},"circle-cross":{n:27,f:function(t){var e=n.round(t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"},needLine:!0,noDot:!0},"circle-x":{n:28,f:function(t){var e=n.round(t,2),r=n.round(t/Math.sqrt(2),2);return"M"+r+","+r+"L-"+r+",-"+r+"M"+r+",-"+r+"L-"+r+","+r+"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"},needLine:!0,noDot:!0},"square-cross":{n:29,f:function(t){var e=n.round(t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"},needLine:!0,noDot:!0},"square-x":{n:30,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e+"M"+e+",-"+e+"L-"+e+","+e+"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"},needLine:!0,noDot:!0},"diamond-cross":{n:31,f:function(t){var e=n.round(1.3*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"ZM0,-"+e+"V"+e+"M-"+e+",0H"+e},needLine:!0,noDot:!0},"diamond-x":{n:32,f:function(t){var e=n.round(1.3*t,2),r=n.round(.65*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"ZM-"+r+",-"+r+"L"+r+","+r+"M-"+r+","+r+"L"+r+",-"+r},needLine:!0,noDot:!0},"cross-thin":{n:33,f:function(t){var e=n.round(1.4*t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e},needLine:!0,noDot:!0,noFill:!0},"x-thin":{n:34,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e+"M"+e+",-"+e+"L-"+e+","+e},needLine:!0,noDot:!0,noFill:!0},asterisk:{n:35,f:function(t){var e=n.round(1.2*t,2),r=n.round(.85*t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+r+","+r+"L-"+r+",-"+r+"M"+r+",-"+r+"L-"+r+","+r},needLine:!0,noDot:!0,noFill:!0},hash:{n:36,f:function(t){var e=n.round(t/2,2),r=n.round(t,2);return"M"+e+","+r+"V-"+r+"m-"+r+",0V"+r+"M"+r+","+e+"H-"+r+"m0,-"+r+"H"+r},needLine:!0,noFill:!0},"y-up":{n:37,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+e+","+i+"L0,0M"+e+","+i+"L0,0M0,-"+r+"L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-down":{n:38,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+e+",-"+i+"L0,0M"+e+",-"+i+"L0,0M0,"+r+"L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-left":{n:39,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M"+i+","+e+"L0,0M"+i+",-"+e+"L0,0M-"+r+",0L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-right":{n:40,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+i+","+e+"L0,0M-"+i+",-"+e+"L0,0M"+r+",0L0,0"},needLine:!0,noDot:!0,noFill:!0},"line-ew":{n:41,f:function(t){var e=n.round(1.4*t,2);return"M"+e+",0H-"+e},needLine:!0,noDot:!0,noFill:!0},"line-ns":{n:42,f:function(t){var e=n.round(1.4*t,2);return"M0,"+e+"V-"+e},needLine:!0,noDot:!0,noFill:!0},"line-ne":{n:43,f:function(t){var e=n.round(t,2);return"M"+e+",-"+e+"L-"+e+","+e},needLine:!0,noDot:!0,noFill:!0},"line-nw":{n:44,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e},needLine:!0,noDot:!0,noFill:!0},"arrow-up":{n:45,f:function(t){var e=n.round(t,2);return"M0,0L-"+e+","+n.round(2*t,2)+"H"+e+"Z"},noDot:!0},"arrow-down":{n:46,f:function(t){var e=n.round(t,2);return"M0,0L-"+e+",-"+n.round(2*t,2)+"H"+e+"Z"},noDot:!0},"arrow-left":{n:47,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,0L"+e+",-"+r+"V"+r+"Z"},noDot:!0},"arrow-right":{n:48,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,0L-"+e+",-"+r+"V"+r+"Z"},noDot:!0},"arrow-bar-up":{n:49,f:function(t){var e=n.round(t,2);return"M-"+e+",0H"+e+"M0,0L-"+e+","+n.round(2*t,2)+"H"+e+"Z"},needLine:!0,noDot:!0},"arrow-bar-down":{n:50,f:function(t){var e=n.round(t,2);return"M-"+e+",0H"+e+"M0,0L-"+e+",-"+n.round(2*t,2)+"H"+e+"Z"},needLine:!0,noDot:!0},"arrow-bar-left":{n:51,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,-"+r+"V"+r+"M0,0L"+e+",-"+r+"V"+r+"Z"},needLine:!0,noDot:!0},"arrow-bar-right":{n:52,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,-"+r+"V"+r+"M0,0L-"+e+",-"+r+"V"+r+"Z"},needLine:!0,noDot:!0}}},{"@plotly/d3":58}],385:[function(t,e,r){"use strict";e.exports={visible:{valType:"boolean",editType:"calc"},type:{valType:"enumerated",values:["percent","constant","sqrt","data"],editType:"calc"},symmetric:{valType:"boolean",editType:"calc"},array:{valType:"data_array",editType:"calc"},arrayminus:{valType:"data_array",editType:"calc"},value:{valType:"number",min:0,dflt:10,editType:"calc"},valueminus:{valType:"number",min:0,dflt:10,editType:"calc"},traceref:{valType:"integer",min:0,dflt:0,editType:"style"},tracerefminus:{valType:"integer",min:0,dflt:0,editType:"style"},copy_ystyle:{valType:"boolean",editType:"plot"},copy_zstyle:{valType:"boolean",editType:"style"},color:{valType:"color",editType:"style"},thickness:{valType:"number",min:0,dflt:2,editType:"style"},width:{valType:"number",min:0,editType:"plot"},editType:"calc",_deprecated:{opacity:{valType:"number",editType:"style"}}}},{}],386:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../registry"),a=t("../../plots/cartesian/axes"),o=t("../../lib"),s=t("./compute_error");function l(t,e,r,i){var l=e["error_"+i]||{},c=[];if(l.visible&&-1!==["linear","log"].indexOf(r.type)){for(var u=s(l),f=0;f0;e.each((function(e){var f,h=e[0].trace,p=h.error_x||{},d=h.error_y||{};h.ids&&(f=function(t){return t.id});var m=o.hasMarkers(h)&&h.marker.maxdisplayed>0;d.visible||p.visible||(e=[]);var g=n.select(this).selectAll("g.errorbar").data(e,f);if(g.exit().remove(),e.length){p.visible||g.selectAll("path.xerror").remove(),d.visible||g.selectAll("path.yerror").remove(),g.style("opacity",1);var v=g.enter().append("g").classed("errorbar",!0);u&&v.style("opacity",0).transition().duration(s.duration).style("opacity",1),a.setClipUrl(g,r.layerClipId,t),g.each((function(t){var e=n.select(this),r=function(t,e,r){var n={x:e.c2p(t.x),y:r.c2p(t.y)};void 0!==t.yh&&(n.yh=r.c2p(t.yh),n.ys=r.c2p(t.ys),i(n.ys)||(n.noYS=!0,n.ys=r.c2p(t.ys,!0)));void 0!==t.xh&&(n.xh=e.c2p(t.xh),n.xs=e.c2p(t.xs),i(n.xs)||(n.noXS=!0,n.xs=e.c2p(t.xs,!0)));return n}(t,l,c);if(!m||t.vis){var a,o=e.select("path.yerror");if(d.visible&&i(r.x)&&i(r.yh)&&i(r.ys)){var f=d.width;a="M"+(r.x-f)+","+r.yh+"h"+2*f+"m-"+f+",0V"+r.ys,r.noYS||(a+="m-"+f+",0h"+2*f),!o.size()?o=e.append("path").style("vector-effect","non-scaling-stroke").classed("yerror",!0):u&&(o=o.transition().duration(s.duration).ease(s.easing)),o.attr("d",a)}else o.remove();var h=e.select("path.xerror");if(p.visible&&i(r.y)&&i(r.xh)&&i(r.xs)){var g=(p.copy_ystyle?d:p).width;a="M"+r.xh+","+(r.y-g)+"v"+2*g+"m0,-"+g+"H"+r.xs,r.noXS||(a+="m0,-"+g+"v"+2*g),!h.size()?h=e.append("path").style("vector-effect","non-scaling-stroke").classed("xerror",!0):u&&(h=h.transition().duration(s.duration).ease(s.easing)),h.attr("d",a)}else h.remove()}}))}}))}},{"../../traces/scatter/subtypes":947,"../drawing":383,"@plotly/d3":58,"fast-isnumeric":185}],391:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../color");e.exports=function(t){t.each((function(t){var e=t[0].trace,r=e.error_y||{},a=e.error_x||{},o=n.select(this);o.selectAll("path.yerror").style("stroke-width",r.thickness+"px").call(i.stroke,r.color),a.copy_ystyle&&(a=r),o.selectAll("path.xerror").style("stroke-width",a.thickness+"px").call(i.stroke,a.color)}))}},{"../color":361,"@plotly/d3":58}],392:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("./layout_attributes").hoverlabel,a=t("../../lib/extend").extendFlat;e.exports={hoverlabel:{bgcolor:a({},i.bgcolor,{arrayOk:!0}),bordercolor:a({},i.bordercolor,{arrayOk:!0}),font:n({arrayOk:!0,editType:"none"}),align:a({},i.align,{arrayOk:!0}),namelength:a({},i.namelength,{arrayOk:!0}),editType:"none"}}},{"../../lib/extend":488,"../../plots/font_attributes":580,"./layout_attributes":402}],393:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry");function a(t,e,r,i){i=i||n.identity,Array.isArray(t)&&(e[0][r]=i(t))}e.exports=function(t){var e=t.calcdata,r=t._fullLayout;function o(t){return function(e){return n.coerceHoverinfo({hoverinfo:e},{_module:t._module},r)}}for(var s=0;s=0&&r.index_[0]._length||ot<0||ot>w[0]._length)return d.unhoverRaw(t,e)}if(e.pointerX=at+_[0]._offset,e.pointerY=ot+w[0]._offset,V="xval"in e?v.flat(l,e.xval):v.p2c(_,at),H="yval"in e?v.flat(l,e.yval):v.p2c(w,ot),!i(V[0])||!i(H[0]))return o.warn("Fx.hover failed",e,t),d.unhoverRaw(t,e)}var ct=1/0;function ut(t,r){for(G=0;Gtt&&(et.splice(0,tt),ct=et[0].distance),y&&0!==B&&0===et.length){$.distance=B,$.index=!1;var f=W._module.hoverPoints($,K,Q,"closest",{hoverLayer:u._hoverlayer});if(f&&(f=f.filter((function(t){return t.spikeDistance<=B}))),f&&f.length){var h,d=f.filter((function(t){return t.xa.showspikes&&"hovered data"!==t.xa.spikesnap}));if(d.length){var m=d[0];i(m.x0)&&i(m.y0)&&(h=ht(m),(!nt.vLinePoint||nt.vLinePoint.spikeDistance>h.spikeDistance)&&(nt.vLinePoint=h))}var g=f.filter((function(t){return t.ya.showspikes&&"hovered data"!==t.ya.spikesnap}));if(g.length){var x=g[0];i(x.x0)&&i(x.y0)&&(h=ht(x),(!nt.hLinePoint||nt.hLinePoint.spikeDistance>h.spikeDistance)&&(nt.hLinePoint=h))}}}}}function ft(t,e,r){for(var n,i=null,a=1/0,o=0;o0&&Math.abs(t.distance)Tt-1;Mt--)Ct(et[Mt]);et=St,gt()}var Pt=t._hoverdata,It=[],Ot=j(t),zt=U(t);for(q=0;q1||et.length>1)||"closest"===P&&it&&et.length>1,Wt=p.combine(u.plot_bgcolor||p.background,u.paper_bgcolor),Xt=I(et,{gd:t,hovermode:P,rotateLabels:Yt,bgColor:Wt,container:u._hoverlayer,outerContainer:u._paper.node(),commonLabelOpts:u.hoverlabel,hoverdistance:u.hoverdistance});v.isUnifiedHover(P)||(!function(t,e,r){var n,i,a,o,s,l,c,u=0,f=1,h=t.size(),p=new Array(h),d=0;function m(t){var e=t[0],r=t[t.length-1];if(i=e.pmin-e.pos-e.dp+e.size,a=r.pos+r.dp+r.size-e.pmax,i>.01){for(s=t.length-1;s>=0;s--)t[s].dp+=i;n=!1}if(!(a<.01)){if(i<-.01){for(s=t.length-1;s>=0;s--)t[s].dp-=a;n=!1}if(n){var c=0;for(o=0;oe.pmax&&c++;for(o=t.length-1;o>=0&&!(c<=0);o--)(l=t[o]).pos>e.pmax-1&&(l.del=!0,c--);for(o=0;o=0;s--)t[s].dp-=a;for(o=t.length-1;o>=0&&!(c<=0);o--)(l=t[o]).pos+l.dp+l.size>e.pmax&&(l.del=!0,c--)}}}t.each((function(t){var n=t[e],i="x"===n._id.charAt(0),a=n.range;0===d&&a&&a[0]>a[1]!==i&&(f=-1),p[d++]=[{datum:t,traceIndex:t.trace.index,dp:0,pos:t.pos,posref:t.posref,size:t.by*(i?T:1)/2,pmin:0,pmax:i?r.width:r.height}]})),p.sort((function(t,e){return t[0].posref-e[0].posref||f*(e[0].traceIndex-t[0].traceIndex)}));for(;!n&&u<=h;){for(u++,n=!0,o=0;o.01&&y.pmin===x.pmin&&y.pmax===x.pmax){for(s=v.length-1;s>=0;s--)v[s].dp+=i;for(g.push.apply(g,v),p.splice(o+1,1),c=0,s=g.length-1;s>=0;s--)c+=g[s].dp;for(a=c/g.length,s=g.length-1;s>=0;s--)g[s].dp-=a;n=!1}else o++}p.forEach(m)}for(o=p.length-1;o>=0;o--){var b=p[o];for(s=b.length-1;s>=0;s--){var _=b[s],w=_.datum;w.offset=_.dp,w.del=_.del}}}(Xt,Yt?"xa":"ya",u),z(Xt,Yt,u._invScaleX,u._invScaleY));if(s&&s.tagName){var Zt=g.getComponentMethod("annotations","hasClickToShow")(t,It);f(n.select(s),Zt?"pointer":"")}if(!s||a||!function(t,e,r){if(!r||r.length!==t._hoverdata.length)return!0;for(var n=r.length-1;n>=0;n--){var i=r[n],a=t._hoverdata[n];if(i.curveNumber!==a.curveNumber||String(i.pointNumber)!==String(a.pointNumber)||String(i.pointNumbers)!==String(a.pointNumbers))return!0}return!1}(t,0,Pt))return;Pt&&t.emit("plotly_unhover",{event:e,points:Pt});t.emit("plotly_hover",{event:e,points:t._hoverdata,xaxes:_,yaxes:w,xvals:V,yvals:H})}(t,e,r,a,s)}))},r.loneHover=function(t,e){var r=!0;Array.isArray(t)||(r=!1,t=[t]);var i=e.gd,a=j(i),o=U(i),s=I(t.map((function(t){var r=t._x0||t.x0||t.x||0,n=t._x1||t.x1||t.x||0,s=t._y0||t.y0||t.y||0,l=t._y1||t.y1||t.y||0,c=t.eventData;if(c){var u=Math.min(r,n),f=Math.max(r,n),h=Math.min(s,l),d=Math.max(s,l),m=t.trace;if(g.traceIs(m,"gl3d")){var v=i._fullLayout[m.scene]._scene.container,y=v.offsetLeft,x=v.offsetTop;u+=y,f+=y,h+=x,d+=x}c.bbox={x0:u+o,x1:f+o,y0:h+a,y1:d+a},e.inOut_bbox&&e.inOut_bbox.push(c.bbox)}else c=!1;return{color:t.color||p.defaultLine,x0:t.x0||t.x||0,x1:t.x1||t.x||0,y0:t.y0||t.y||0,y1:t.y1||t.y||0,xLabel:t.xLabel,yLabel:t.yLabel,zLabel:t.zLabel,text:t.text,name:t.name,idealAlign:t.idealAlign,borderColor:t.borderColor,fontFamily:t.fontFamily,fontSize:t.fontSize,fontColor:t.fontColor,nameLength:t.nameLength,textAlign:t.textAlign,trace:t.trace||{index:0,hoverinfo:""},xa:{_offset:0},ya:{_offset:0},index:0,hovertemplate:t.hovertemplate||!1,hovertemplateLabels:t.hovertemplateLabels||!1,eventData:c}})),{gd:i,hovermode:"closest",rotateLabels:!1,bgColor:e.bgColor||p.background,container:n.select(e.container),outerContainer:e.outerContainer||e.container}),l=0,c=0;return s.sort((function(t,e){return t.y0-e.y0})).each((function(t,r){var n=t.y0-t.by/2;t.offset=n-5([\s\S]*)<\/extra>/;function I(t,e){var r=e.gd,i=r._fullLayout,a=e.hovermode,c=e.rotateLabels,f=e.bgColor,d=e.container,m=e.outerContainer,w=e.commonLabelOpts||{};if(0===t.length)return[[]];var T=e.fontFamily||y.HOVERFONT,k=e.fontSize||y.HOVERFONTSIZE,A=t[0],E=A.xa,L=A.ya,P=a.charAt(0),I=A[P+"Label"],z=V(r,m),D=z.top,R=z.width,F=z.height,B=void 0!==I&&A.distance<=e.hoverdistance&&("x"===a||"y"===a);if(B){var N,j,U=!0;for(N=0;Ni.width-b?(g=i.width-b,e.attr("d","M"+(b-M)+",0L"+b+","+x+M+"v"+x+(2*S+y.height)+"H-"+b+"V"+x+M+"H"+(b-2*M)+"Z")):e.attr("d","M0,0L"+M+","+x+M+"H"+(S+y.width/2)+"v"+x+(2*S+y.height)+"H-"+(S+y.width/2)+"V"+x+M+"H-"+M+"Z")}else{var _,C,P;"right"===L.side?(_="start",C=1,P="",g=E._offset+E._length):(_="end",C=-1,P="-",g=E._offset),v=L._offset+(A.y0+A.y1)/2,l.attr("text-anchor",_),e.attr("d","M0,0L"+P+M+","+M+"V"+(S+y.height/2)+"h"+P+(2*S+y.width)+"V-"+(S+y.height/2)+"H"+P+M+"V-"+M+"Z");var O,z=y.height/2,R=D-y.top-z,F="clip"+i._uid+"commonlabel"+L._id;if(g=0?at:ot+ct=0?ot:vt+ct=0?nt:it+ut=0?it:yt+ut=0,"top"!==t.idealAlign&&G||!Y?G?(z+=j/2,t.anchor="start"):t.anchor="middle":(z-=j/2,t.anchor="end");else if(t.pos=z,G=P+N/2+W<=R,Y=P-N/2-W>=0,"left"!==t.idealAlign&&G||!Y)if(G)P+=N/2,t.anchor="start";else{t.anchor="middle";var X=W/2,Z=P+X-R,J=P-X;Z>0&&(P-=Z),J<0&&(P+=-J)}else P-=N/2,t.anchor="end";w.attr("text-anchor",t.anchor),E&&A.attr("text-anchor",t.anchor),e.attr("transform",s(P,z)+(c?l(_):""))})),xt}function O(t,e,r,n,i,a){var s="",l="";void 0!==t.nameOverride&&(t.name=t.nameOverride),t.name&&(t.trace._meta&&(t.name=o.templateString(t.name,t.trace._meta)),s=B(t.name,t.nameLength));var c=r.charAt(0),u="x"===c?"y":"x";void 0!==t.zLabel?(void 0!==t.xLabel&&(l+="x: "+t.xLabel+"
"),void 0!==t.yLabel&&(l+="y: "+t.yLabel+"
"),"choropleth"!==t.trace.type&&"choroplethmapbox"!==t.trace.type&&(l+=(l?"z: ":"")+t.zLabel)):e&&t[c+"Label"]===i?l=t[u+"Label"]||"":void 0===t.xLabel?void 0!==t.yLabel&&"scattercarpet"!==t.trace.type&&(l=t.yLabel):l=void 0===t.yLabel?t.xLabel:"("+t.xLabel+", "+t.yLabel+")",!t.text&&0!==t.text||Array.isArray(t.text)||(l+=(l?"
":"")+t.text),void 0!==t.extraText&&(l+=(l?"
":"")+t.extraText),a&&""===l&&!t.hovertemplate&&(""===s&&a.remove(),l=s);var f=t.hovertemplate||!1;if(f){var h=t.hovertemplateLabels||t;t[c+"Label"]!==i&&(h[c+"other"]=h[c+"Val"],h[c+"otherLabel"]=h[c+"Label"]),l=(l=o.hovertemplateString(f,h,n._d3locale,t.eventData[0]||{},t.trace._meta)).replace(P,(function(e,r){return s=B(r,t.nameLength),""}))}return[l,s]}function z(t,e,r,i){var a=function(t){return t*r},o=function(t){return t*i};t.each((function(t){var r=n.select(this);if(t.del)return r.remove();var i=r.select("text.nums"),s=t.anchor,l="end"===s?-1:1,c={start:1,end:-1,middle:0}[s],f=c*(M+S),p=f+c*(t.txwidth+S),d=0,m=t.offset,g="middle"===s;g&&(f-=t.tx2width/2,p+=t.txwidth/2+S),e&&(m*=-A,d=t.offset*k),r.select("path").attr("d",g?"M-"+a(t.bx/2+t.tx2width/2)+","+o(m-t.by/2)+"h"+a(t.bx)+"v"+o(t.by)+"h-"+a(t.bx)+"Z":"M0,0L"+a(l*M+d)+","+o(M+m)+"v"+o(t.by/2-M)+"h"+a(l*t.bx)+"v-"+o(t.by)+"H"+a(l*M+d)+"V"+o(m-M)+"Z");var v=d+f,y=m+t.ty0-t.by/2+S,x=t.textAlign||"auto";"auto"!==x&&("left"===x&&"start"!==s?(i.attr("text-anchor","start"),v=g?-t.bx/2-t.tx2width/2+S:-t.bx-S):"right"===x&&"end"!==s&&(i.attr("text-anchor","end"),v=g?t.bx/2-t.tx2width/2-S:t.bx+S)),i.call(u.positionText,a(v),o(y)),t.tx2width&&(r.select("text.name").call(u.positionText,a(p+c*S+d),o(m+t.ty0-t.by/2+S)),r.select("rect").call(h.setRect,a(p+(c-1)*t.tx2width/2+d),o(m-t.by/2-1),a(t.tx2width),o(t.by+2)))}))}function D(t,e){var r=t.index,n=t.trace||{},a=t.cd[0],s=t.cd[r]||{};function l(t){return t||i(t)&&0===t}var c=Array.isArray(r)?function(t,e){var i=o.castOption(a,r,t);return l(i)?i:o.extractOption({},n,"",e)}:function(t,e){return o.extractOption(s,n,t,e)};function u(e,r,n){var i=c(r,n);l(i)&&(t[e]=i)}if(u("hoverinfo","hi","hoverinfo"),u("bgcolor","hbg","hoverlabel.bgcolor"),u("borderColor","hbc","hoverlabel.bordercolor"),u("fontFamily","htf","hoverlabel.font.family"),u("fontSize","hts","hoverlabel.font.size"),u("fontColor","htc","hoverlabel.font.color"),u("nameLength","hnl","hoverlabel.namelength"),u("textAlign","hta","hoverlabel.align"),t.posref="y"===e||"closest"===e&&"h"===n.orientation?t.xa._offset+(t.x0+t.x1)/2:t.ya._offset+(t.y0+t.y1)/2,t.x0=o.constrain(t.x0,0,t.xa._length),t.x1=o.constrain(t.x1,0,t.xa._length),t.y0=o.constrain(t.y0,0,t.ya._length),t.y1=o.constrain(t.y1,0,t.ya._length),void 0!==t.xLabelVal&&(t.xLabel="xLabel"in t?t.xLabel:m.hoverLabelText(t.xa,t.xLabelVal,n.xhoverformat),t.xVal=t.xa.c2d(t.xLabelVal)),void 0!==t.yLabelVal&&(t.yLabel="yLabel"in t?t.yLabel:m.hoverLabelText(t.ya,t.yLabelVal,n.yhoverformat),t.yVal=t.ya.c2d(t.yLabelVal)),void 0!==t.zLabelVal&&void 0===t.zLabel&&(t.zLabel=String(t.zLabelVal)),!(isNaN(t.xerr)||"log"===t.xa.type&&t.xerr<=0)){var f=m.tickText(t.xa,t.xa.c2l(t.xerr),"hover").text;void 0!==t.xerrneg?t.xLabel+=" +"+f+" / -"+m.tickText(t.xa,t.xa.c2l(t.xerrneg),"hover").text:t.xLabel+=" \xb1 "+f,"x"===e&&(t.distance+=1)}if(!(isNaN(t.yerr)||"log"===t.ya.type&&t.yerr<=0)){var h=m.tickText(t.ya,t.ya.c2l(t.yerr),"hover").text;void 0!==t.yerrneg?t.yLabel+=" +"+h+" / -"+m.tickText(t.ya,t.ya.c2l(t.yerrneg),"hover").text:t.yLabel+=" \xb1 "+h,"y"===e&&(t.distance+=1)}var p=t.hoverinfo||t.trace.hoverinfo;return p&&"all"!==p&&(-1===(p=Array.isArray(p)?p:p.split("+")).indexOf("x")&&(t.xLabel=void 0),-1===p.indexOf("y")&&(t.yLabel=void 0),-1===p.indexOf("z")&&(t.zLabel=void 0),-1===p.indexOf("text")&&(t.text=void 0),-1===p.indexOf("name")&&(t.name=void 0)),t}function R(t,e,r){var n,i,o=r.container,s=r.fullLayout,l=s._size,c=r.event,u=!!e.hLinePoint,f=!!e.vLinePoint;if(o.selectAll(".spikeline").remove(),f||u){var d=p.combine(s.plot_bgcolor,s.paper_bgcolor);if(u){var g,v,y=e.hLinePoint;n=y&&y.xa,"cursor"===(i=y&&y.ya).spikesnap?(g=c.pointerX,v=c.pointerY):(g=n._offset+y.x,v=i._offset+y.y);var x,b,_=a.readability(y.color,d)<1.5?p.contrast(d):y.color,w=i.spikemode,T=i.spikethickness,k=i.spikecolor||_,A=m.getPxPosition(t,i);if(-1!==w.indexOf("toaxis")||-1!==w.indexOf("across")){if(-1!==w.indexOf("toaxis")&&(x=A,b=g),-1!==w.indexOf("across")){var M=i._counterDomainMin,S=i._counterDomainMax;"free"===i.anchor&&(M=Math.min(M,i.position),S=Math.max(S,i.position)),x=l.l+M*l.w,b=l.l+S*l.w}o.insert("line",":first-child").attr({x1:x,x2:b,y1:v,y2:v,"stroke-width":T,stroke:k,"stroke-dasharray":h.dashStyle(i.spikedash,T)}).classed("spikeline",!0).classed("crisp",!0),o.insert("line",":first-child").attr({x1:x,x2:b,y1:v,y2:v,"stroke-width":T+2,stroke:d}).classed("spikeline",!0).classed("crisp",!0)}-1!==w.indexOf("marker")&&o.insert("circle",":first-child").attr({cx:A+("right"!==i.side?T:-T),cy:v,r:T,fill:k}).classed("spikeline",!0)}if(f){var E,L,C=e.vLinePoint;n=C&&C.xa,i=C&&C.ya,"cursor"===n.spikesnap?(E=c.pointerX,L=c.pointerY):(E=n._offset+C.x,L=i._offset+C.y);var P,I,O=a.readability(C.color,d)<1.5?p.contrast(d):C.color,z=n.spikemode,D=n.spikethickness,R=n.spikecolor||O,F=m.getPxPosition(t,n);if(-1!==z.indexOf("toaxis")||-1!==z.indexOf("across")){if(-1!==z.indexOf("toaxis")&&(P=F,I=L),-1!==z.indexOf("across")){var B=n._counterDomainMin,N=n._counterDomainMax;"free"===n.anchor&&(B=Math.min(B,n.position),N=Math.max(N,n.position)),P=l.t+(1-N)*l.h,I=l.t+(1-B)*l.h}o.insert("line",":first-child").attr({x1:E,x2:E,y1:P,y2:I,"stroke-width":D,stroke:R,"stroke-dasharray":h.dashStyle(n.spikedash,D)}).classed("spikeline",!0).classed("crisp",!0),o.insert("line",":first-child").attr({x1:E,x2:E,y1:P,y2:I,"stroke-width":D+2,stroke:d}).classed("spikeline",!0).classed("crisp",!0)}-1!==z.indexOf("marker")&&o.insert("circle",":first-child").attr({cx:E,cy:F-("top"!==n.side?D:-D),r:D,fill:R}).classed("spikeline",!0)}}}function F(t,e){return!e||(e.vLinePoint!==t._spikepoints.vLinePoint||e.hLinePoint!==t._spikepoints.hLinePoint)}function B(t,e){return u.plainText(t||"",{len:e,allowedTags:["br","sub","sup","b","i","em"]})}function N(t,e,r){var n=e[t+"a"],i=e[t+"Val"],a=e.cd[0];if("category"===n.type)i=n._categoriesMap[i];else if("date"===n.type){var o=e.trace[t+"periodalignment"];if(o){var s=e.cd[e.index],l=s[t+"Start"];void 0===l&&(l=s[t]);var c=s[t+"End"];void 0===c&&(c=s[t]);var u=c-l;"end"===o?i+=u:"middle"===o&&(i+=u/2)}i=n.d2c(i)}return a&&a.t&&a.t.posLetter===n._id&&("group"!==r.boxmode&&"group"!==r.violinmode||(i+=a.t.dPos)),i}function j(t){return t.offsetTop+t.clientTop}function U(t){return t.offsetLeft+t.clientLeft}function V(t,e){var r=t._fullLayout,n=e.getBoundingClientRect(),i=n.x,a=n.y,s=i+n.width,l=a+n.height,c=o.apply3DTransform(r._invTransform)(i,a),u=o.apply3DTransform(r._invTransform)(s,l),f=c[0],h=c[1],p=u[0],d=u[1];return{x:f,y:h,width:p-f,height:d-h,top:Math.min(h,d),left:Math.min(f,p),right:Math.max(f,p),bottom:Math.max(h,d)}}},{"../../lib":498,"../../lib/events":487,"../../lib/override_cursor":509,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"../../registry":633,"../color":361,"../dragelement":380,"../drawing":383,"../legend/defaults":413,"../legend/draw":414,"./constants":395,"./helpers":397,"@plotly/d3":58,"fast-isnumeric":185,tinycolor2:307}],399:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../color"),a=t("./helpers").isUnifiedHover;e.exports=function(t,e,r,o){o=o||{};var s=e.legend;function l(t){o.font[t]||(o.font[t]=s?e.legend.font[t]:e.font[t])}e&&a(e.hovermode)&&(o.font||(o.font={}),l("size"),l("family"),l("color"),s?(o.bgcolor||(o.bgcolor=i.combine(e.legend.bgcolor,e.paper_bgcolor)),o.bordercolor||(o.bordercolor=e.legend.bordercolor)):o.bgcolor||(o.bgcolor=e.paper_bgcolor)),r("hoverlabel.bgcolor",o.bgcolor),r("hoverlabel.bordercolor",o.bordercolor),r("hoverlabel.namelength",o.namelength),n.coerceFont(r,"hoverlabel.font",o.font),r("hoverlabel.align",o.align)}},{"../../lib":498,"../color":361,"./helpers":397}],400:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return void 0!==e[r]?e[r]:n.coerce(t,e,i,r,a)}return r("clickmode"),r("hovermode")}},{"../../lib":498,"./layout_attributes":402}],401:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../dragelement"),o=t("./helpers"),s=t("./layout_attributes"),l=t("./hover");e.exports={moduleType:"component",name:"fx",constants:t("./constants"),schema:{layout:s},attributes:t("./attributes"),layoutAttributes:s,supplyLayoutGlobalDefaults:t("./layout_global_defaults"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),getDistanceFunction:o.getDistanceFunction,getClosest:o.getClosest,inbox:o.inbox,quadrature:o.quadrature,appendArrayPointValue:o.appendArrayPointValue,castHoverOption:function(t,e,r){return i.castOption(t,e,"hoverlabel."+r)},castHoverinfo:function(t,e,r){return i.castOption(t,r,"hoverinfo",(function(r){return i.coerceHoverinfo({hoverinfo:r},{_module:t._module},e)}))},hover:l.hover,unhover:a.unhover,loneHover:l.loneHover,loneUnhover:function(t){var e=i.isD3Selection(t)?t:n.select(t);e.selectAll("g.hovertext").remove(),e.selectAll(".spikeline").remove()},click:t("./click")}},{"../../lib":498,"../dragelement":380,"./attributes":392,"./calc":393,"./click":394,"./constants":395,"./defaults":396,"./helpers":397,"./hover":398,"./layout_attributes":402,"./layout_defaults":403,"./layout_global_defaults":404,"@plotly/d3":58}],402:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../plots/font_attributes"),a=i({editType:"none"});a.family.dflt=n.HOVERFONT,a.size.dflt=n.HOVERFONTSIZE,e.exports={clickmode:{valType:"flaglist",flags:["event","select"],dflt:"event",editType:"plot",extras:["none"]},dragmode:{valType:"enumerated",values:["zoom","pan","select","lasso","drawclosedpath","drawopenpath","drawline","drawrect","drawcircle","orbit","turntable",!1],dflt:"zoom",editType:"modebar"},hovermode:{valType:"enumerated",values:["x","y","closest",!1,"x unified","y unified"],dflt:"closest",editType:"modebar"},hoverdistance:{valType:"integer",min:-1,dflt:20,editType:"none"},spikedistance:{valType:"integer",min:-1,dflt:-1,editType:"none"},hoverlabel:{bgcolor:{valType:"color",editType:"none"},bordercolor:{valType:"color",editType:"none"},font:a,grouptitlefont:i({editType:"none"}),align:{valType:"enumerated",values:["left","right","auto"],dflt:"auto",editType:"none"},namelength:{valType:"integer",min:-1,dflt:15,editType:"none"},editType:"none"},selectdirection:{valType:"enumerated",values:["h","v","d","any"],dflt:"any",editType:"none"}}},{"../../plots/font_attributes":580,"./constants":395}],403:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes"),a=t("./hovermode_defaults"),o=t("./hoverlabel_defaults");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}a(t,e)&&(r("hoverdistance"),r("spikedistance")),"select"===r("dragmode")&&r("selectdirection");var s=e._has("mapbox"),l=e._has("geo"),c=e._basePlotModules.length;"zoom"===e.dragmode&&((s||l)&&1===c||s&&l&&2===c)&&(e.dragmode="pan"),o(t,e,r),n.coerceFont(r,"hoverlabel.grouptitlefont",e.hoverlabel.font)}},{"../../lib":498,"./hoverlabel_defaults":399,"./hovermode_defaults":400,"./layout_attributes":402}],404:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./hoverlabel_defaults"),a=t("./layout_attributes");e.exports=function(t,e){i(t,e,(function(r,i){return n.coerce(t,e,a,r,i)}))}},{"../../lib":498,"./hoverlabel_defaults":399,"./layout_attributes":402}],405:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../lib/regex").counter,a=t("../../plots/domain").attributes,o=t("../../plots/cartesian/constants").idRegex,s=t("../../plot_api/plot_template"),l={rows:{valType:"integer",min:1,editType:"plot"},roworder:{valType:"enumerated",values:["top to bottom","bottom to top"],dflt:"top to bottom",editType:"plot"},columns:{valType:"integer",min:1,editType:"plot"},subplots:{valType:"info_array",freeLength:!0,dimensions:2,items:{valType:"enumerated",values:[i("xy").toString(),""],editType:"plot"},editType:"plot"},xaxes:{valType:"info_array",freeLength:!0,items:{valType:"enumerated",values:[o.x.toString(),""],editType:"plot"},editType:"plot"},yaxes:{valType:"info_array",freeLength:!0,items:{valType:"enumerated",values:[o.y.toString(),""],editType:"plot"},editType:"plot"},pattern:{valType:"enumerated",values:["independent","coupled"],dflt:"coupled",editType:"plot"},xgap:{valType:"number",min:0,max:1,editType:"plot"},ygap:{valType:"number",min:0,max:1,editType:"plot"},domain:a({name:"grid",editType:"plot",noGridCell:!0},{}),xside:{valType:"enumerated",values:["bottom","bottom plot","top plot","top"],dflt:"bottom plot",editType:"plot"},yside:{valType:"enumerated",values:["left","left plot","right plot","right"],dflt:"left plot",editType:"plot"},editType:"plot"};function c(t,e,r){var n=e[r+"axes"],i=Object.keys((t._splomAxes||{})[r]||{});return Array.isArray(n)?n:i.length?i:void 0}function u(t,e,r,n,i,a){var o=e(t+"gap",r),s=e("domain."+t);e(t+"side",n);for(var l=new Array(i),c=s[0],u=(s[1]-c)/(i-o),f=u*(1-o),h=0;h1){if(!h&&!p&&!d)"independent"===k("pattern")&&(h=!0);g._hasSubplotGrid=h;var x,b,_="top to bottom"===k("roworder"),w=h?.2:.1,T=h?.3:.1;m&&e._splomGridDflt&&(x=e._splomGridDflt.xside,b=e._splomGridDflt.yside),g._domains={x:u("x",k,w,x,y),y:u("y",k,T,b,v,_)}}else delete e.grid}function k(t,e){return n.coerce(r,g,l,t,e)}},contentDefaults:function(t,e){var r=e.grid;if(r&&r._domains){var n,i,a,o,s,l,u,h=t.grid||{},p=e._subplots,d=r._hasSubplotGrid,m=r.rows,g=r.columns,v="independent"===r.pattern,y=r._axisMap={};if(d){var x=h.subplots||[];l=r.subplots=new Array(m);var b=1;for(n=0;n1);if(!1===_&&(e.legend=void 0),(!1!==_||f.uirevision)&&(p("uirevision",e.uirevision),!1!==_)){p("bgcolor",e.paper_bgcolor),p("bordercolor"),p("borderwidth");var w,T,k,A=i.coerceFont(p,"font",e.font),M="h"===p("orientation");if(M?(w=0,n.getComponentMethod("rangeslider","isVisible")(t.xaxis)?(T=1.1,k="bottom"):(T=-.1,k="top")):(w=1.02,T=1,k="auto"),p("traceorder",x),c.isGrouped(e.legend)&&p("tracegroupgap"),p("itemsizing"),p("itemwidth"),p("itemclick"),p("itemdoubleclick"),p("groupclick"),p("x",w),p("xanchor"),p("y",T),p("yanchor",k),p("valign"),i.noneOrAll(f,h,["x","y"]),p("title.text")){p("title.side",M?"left":"top");var S=i.extendFlat({},A,{size:i.bigFont(A.size)});i.coerceFont(p,"title.font",S)}}}},{"../../lib":498,"../../plot_api/plot_template":538,"../../plots/attributes":545,"../../plots/layout_attributes":605,"../../registry":633,"./attributes":411,"./helpers":417}],414:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../plots/plots"),o=t("../../registry"),s=t("../../lib/events"),l=t("../dragelement"),c=t("../drawing"),u=t("../color"),f=t("../../lib/svg_text_utils"),h=t("./handle_click"),p=t("./constants"),d=t("../../constants/alignment"),m=d.LINE_SPACING,g=d.FROM_TL,v=d.FROM_BR,y=t("./get_legend_data"),x=t("./style"),b=t("./helpers");function _(t,e,r,n,i){var a=r.data()[0][0].trace,l={event:i,node:r.node(),curveNumber:a.index,expandedIndex:a._expandedIndex,data:t.data,layout:t.layout,frames:t._transitionData._frames,config:t._context,fullData:t._fullData,fullLayout:t._fullLayout};if(a._group&&(l.group=a._group),o.traceIs(a,"pie-like")&&(l.label=r.datum()[0].label),!1!==s.triggerHandler(t,"plotly_legendclick",l))if(1===n)e._clickTimeout=setTimeout((function(){t._fullLayout&&h(r,t,n)}),t._context.doubleClickDelay);else if(2===n){e._clickTimeout&&clearTimeout(e._clickTimeout),t._legendMouseDownTime=0,!1!==s.triggerHandler(t,"plotly_legenddoubleclick",l)&&h(r,t,n)}}function w(t,e,r){var n,a,s=t.data()[0][0],l=s.trace,u=o.traceIs(l,"pie-like"),h=!r._inHover&&e._context.edits.legendText&&!u,d=r._maxNameLength;s.groupTitle?(n=s.groupTitle.text,a=s.groupTitle.font):(a=r.font,r.entries?n=s.text:(n=u?s.label:l.name,l._meta&&(n=i.templateString(n,l._meta))));var m=i.ensureSingle(t,"text","legendtext");m.attr("text-anchor","start").call(c.font,a).text(h?T(n,d):n);var g=r.itemwidth+2*p.itemGap;f.positionText(m,g,0),h?m.call(f.makeEditable,{gd:e,text:n}).call(A,t,e,r).on("edit",(function(n){this.text(T(n,d)).call(A,t,e,r);var a=s.trace._fullInput||{},c={};if(o.hasTransform(a,"groupby")){var u=o.getTransformIndices(a,"groupby"),f=u[u.length-1],h=i.keyedContainer(a,"transforms["+f+"].styles","target","value.name");h.set(s.trace._group,n),c=h.constructUpdate()}else c.name=n;return o.call("_guiRestyle",e,c,l.index)})):A(m,t,e,r)}function T(t,e){var r=Math.max(4,e);if(t&&t.trim().length>=r/2)return t;for(var n=r-(t=t||"").length;n>0;n--)t+=" ";return t}function k(t,e){var r,a=e._context.doubleClickDelay,o=1,s=i.ensureSingle(t,"rect","legendtoggle",(function(t){e._context.staticPlot||t.style("cursor","pointer").attr("pointer-events","all"),t.call(u.fill,"rgba(0,0,0,0)")}));e._context.staticPlot||(s.on("mousedown",(function(){(r=(new Date).getTime())-e._legendMouseDownTimea&&(o=Math.max(o-1,1)),_(e,r,t,o,n.event)}})))}function A(t,e,r,n,i){n._inHover&&t.attr("data-notex",!0),f.convertToTspans(t,r,(function(){!function(t,e,r,n){var i=t.data()[0][0];if(!r._inHover&&i&&!i.trace.showlegend)return void t.remove();var a=t.select("g[class*=math-group]"),o=a.node();r||(r=e._fullLayout.legend);var s,l=r.borderwidth;s=1===n?r.title.font:i.groupTitle?i.groupTitle.font:r.font;var u,h,d=s.size*m;if(o){var g=c.bBox(o);u=g.height,h=g.width,1===n?c.setTranslate(a,l,l+.75*u):c.setTranslate(a,0,.25*u)}else{var v=t.select(1===n?".legendtitletext":".legendtext"),y=f.lineCount(v),x=v.node();if(u=d*y,h=x?c.bBox(x).width:0,1===n)"left"===r.title.side&&(h+=2*p.itemGap),f.positionText(v,l+p.titlePad,l+d);else{var b=2*p.itemGap+r.itemwidth;i.groupTitle&&(b=p.itemGap,h-=r.itemwidth),f.positionText(v,b,-d*((y-1)/2-.3))}}1===n?(r._titleWidth=h,r._titleHeight=u):(i.lineHeight=d,i.height=Math.max(u,16)+3,i.width=h)}(e,r,n,i)}))}function M(t){return i.isRightAnchor(t)?"right":i.isCenterAnchor(t)?"center":"left"}function S(t){return i.isBottomAnchor(t)?"bottom":i.isMiddleAnchor(t)?"middle":"top"}e.exports=function(t,e){return e||(e=t._fullLayout.legend||{}),function(t,e){var r,s,f=t._fullLayout,h="legend"+f._uid,d=e._inHover;d?(r=e.layer,h+="-hover"):r=f._infolayer;if(!r)return;t._legendMouseDownTime||(t._legendMouseDownTime=0);if(d){if(!e.entries)return;s=y(e.entries,e)}else{if(!t.calcdata)return;s=f.showlegend&&y(t.calcdata,e)}var m=f.hiddenlabels||[];if(!(d||f.showlegend&&s.length))return r.selectAll(".legend").remove(),f._topdefs.select("#"+h).remove(),a.autoMargin(t,"legend");var T=i.ensureSingle(r,"g","legend",(function(t){d||t.attr("pointer-events","all")})),E=i.ensureSingleById(f._topdefs,"clipPath",h,(function(t){t.append("rect")})),L=i.ensureSingle(T,"rect","bg",(function(t){t.attr("shape-rendering","crispEdges")}));L.call(u.stroke,e.bordercolor).call(u.fill,e.bgcolor).style("stroke-width",e.borderwidth+"px");var C=i.ensureSingle(T,"g","scrollbox"),P=e.title;if(e._titleWidth=0,e._titleHeight=0,P.text){var I=i.ensureSingle(C,"text","legendtitletext");I.attr("text-anchor","start").call(c.font,P.font).text(P.text),A(I,C,t,e,1)}else C.selectAll(".legendtitletext").remove();var O=i.ensureSingle(T,"rect","scrollbar",(function(t){t.attr(p.scrollBarEnterAttrs).call(u.fill,p.scrollBarColor)})),z=C.selectAll("g.groups").data(s);z.enter().append("g").attr("class","groups"),z.exit().remove();var D=z.selectAll("g.traces").data(i.identity);D.enter().append("g").attr("class","traces"),D.exit().remove(),D.style("opacity",(function(t){var e=t[0].trace;return o.traceIs(e,"pie-like")?-1!==m.indexOf(t[0].label)?.5:1:"legendonly"===e.visible?.5:1})).each((function(){n.select(this).call(w,t,e)})).call(x,t,e).each((function(){d||n.select(this).call(k,t)})),i.syncOrAsync([a.previousPromises,function(){return function(t,e,r,i){var a=t._fullLayout;i||(i=a.legend);var o=a._size,s=b.isVertical(i),l=b.isGrouped(i),u=i.borderwidth,f=2*u,h=p.itemGap,d=i.itemwidth+2*h,m=2*(u+h),g=S(i),v=i.y<0||0===i.y&&"top"===g,y=i.y>1||1===i.y&&"bottom"===g,x=i.tracegroupgap;i._maxHeight=Math.max(v||y?a.height/2:o.h,30);var _=0;i._width=0,i._height=0;var w=function(t){var e=0,r=0,n=t.title.side;n&&(-1!==n.indexOf("left")&&(e=t._titleWidth),-1!==n.indexOf("top")&&(r=t._titleHeight));return[e,r]}(i);if(s)r.each((function(t){var e=t[0].height;c.setTranslate(this,u+w[0],u+w[1]+i._height+e/2+h),i._height+=e,i._width=Math.max(i._width,t[0].width)})),_=d+i._width,i._width+=h+d+f,i._height+=m,l&&(e.each((function(t,e){c.setTranslate(this,0,e*i.tracegroupgap)})),i._height+=(i._lgroupsLength-1)*i.tracegroupgap);else{var T=M(i),k=i.x<0||0===i.x&&"right"===T,A=i.x>1||1===i.x&&"left"===T,E=y||v,L=a.width/2;i._maxWidth=Math.max(k?E&&"left"===T?o.l+o.w:L:A?E&&"right"===T?o.r+o.w:L:o.w,2*d);var C=0,P=0;r.each((function(t){var e=t[0].width+d;C=Math.max(C,e),P+=e})),_=null;var I=0;if(l){var O=0,z=0,D=0;e.each((function(){var t=0,e=0;n.select(this).selectAll("g.traces").each((function(r){var n=r[0].width,i=r[0].height;c.setTranslate(this,w[0],w[1]+u+h+i/2+e),e+=i,t=Math.max(t,d+n)}));var r=t+h;z>0&&r+u+z>i._maxWidth?(I=Math.max(I,z),z=0,D+=O+x,O=e):O=Math.max(O,e),c.setTranslate(this,z,D),z+=r})),i._width=Math.max(I,z)+u,i._height=D+O+m}else{var R=r.size(),F=P+f+(R-1)*h=i._maxWidth&&(I=Math.max(I,U),N=0,j+=B,i._height+=B,B=0),c.setTranslate(this,w[0]+u+N,w[1]+u+j+e/2+h),U=N+r+h,N+=n,B=Math.max(B,e)})),F?(i._width=N+f,i._height=B+m):(i._width=Math.max(I,U)+f,i._height+=B+m)}}i._width=Math.ceil(Math.max(i._width+w[0],i._titleWidth+2*(u+p.titlePad))),i._height=Math.ceil(Math.max(i._height+w[1],i._titleHeight+2*(u+p.itemGap))),i._effHeight=Math.min(i._height,i._maxHeight);var V=t._context.edits,H=V.legendText||V.legendPosition;r.each((function(t){var e=n.select(this).select(".legendtoggle"),r=t[0].height,i=H?d:_||d+t[0].width;s||(i+=h/2),c.setRect(e,0,-r/2,i,r)}))}(t,z,D,e)},function(){var s,u,m,y,x=f._size,b=e.borderwidth;if(!d){if(function(t){var e=t._fullLayout.legend,r=M(e),n=S(e);return a.autoMargin(t,"legend",{x:e.x,y:e.y,l:e._width*g[r],r:e._width*v[r],b:e._effHeight*v[n],t:e._effHeight*g[n]})}(t))return;var w=x.l+x.w*e.x-g[M(e)]*e._width,k=x.t+x.h*(1-e.y)-g[S(e)]*e._effHeight;if(f.margin.autoexpand){var A=w,P=k;w=i.constrain(w,0,f.width-e._width),k=i.constrain(k,0,f.height-e._effHeight),w!==A&&i.log("Constrain legend.x to make legend fit inside graph"),k!==P&&i.log("Constrain legend.y to make legend fit inside graph")}c.setTranslate(T,w,k)}if(O.on(".drag",null),T.on("wheel",null),d||e._height<=e._maxHeight||t._context.staticPlot){var I=e._effHeight;d&&(I=e._height),L.attr({width:e._width-b,height:I-b,x:b/2,y:b/2}),c.setTranslate(C,0,0),E.select("rect").attr({width:e._width-2*b,height:I-2*b,x:b,y:b}),c.setClipUrl(C,h,t),c.setRect(O,0,0,0,0),delete e._scrollY}else{var z,D,R,F=Math.max(p.scrollBarMinHeight,e._effHeight*e._effHeight/e._height),B=e._effHeight-F-2*p.scrollBarMargin,N=e._height-e._effHeight,j=B/N,U=Math.min(e._scrollY||0,N);L.attr({width:e._width-2*b+p.scrollBarWidth+p.scrollBarMargin,height:e._effHeight-b,x:b/2,y:b/2}),E.select("rect").attr({width:e._width-2*b+p.scrollBarWidth+p.scrollBarMargin,height:e._effHeight-2*b,x:b,y:b+U}),c.setClipUrl(C,h,t),q(U,F,j),T.on("wheel",(function(){q(U=i.constrain(e._scrollY+n.event.deltaY/B*N,0,N),F,j),0!==U&&U!==N&&n.event.preventDefault()}));var V=n.behavior.drag().on("dragstart",(function(){var t=n.event.sourceEvent;z="touchstart"===t.type?t.changedTouches[0].clientY:t.clientY,R=U})).on("drag",(function(){var t=n.event.sourceEvent;2===t.buttons||t.ctrlKey||(D="touchmove"===t.type?t.changedTouches[0].clientY:t.clientY,q(U=function(t,e,r){var n=(r-e)/j+t;return i.constrain(n,0,N)}(R,z,D),F,j))}));O.call(V);var H=n.behavior.drag().on("dragstart",(function(){var t=n.event.sourceEvent;"touchstart"===t.type&&(z=t.changedTouches[0].clientY,R=U)})).on("drag",(function(){var t=n.event.sourceEvent;"touchmove"===t.type&&(D=t.changedTouches[0].clientY,q(U=function(t,e,r){var n=(e-r)/j+t;return i.constrain(n,0,N)}(R,z,D),F,j))}));C.call(H)}function q(r,n,i){e._scrollY=t._fullLayout.legend._scrollY=r,c.setTranslate(C,0,-r),c.setRect(O,e._width,p.scrollBarMargin+r*i,p.scrollBarWidth,n),E.select("rect").attr("y",b+r)}t._context.edits.legendPosition&&(T.classed("cursor-move",!0),l.init({element:T.node(),gd:t,prepFn:function(){var t=c.getTranslate(T);m=t.x,y=t.y},moveFn:function(t,r){var n=m+t,i=y+r;c.setTranslate(T,n,i),s=l.align(n,0,x.l,x.l+x.w,e.xanchor),u=l.align(i,0,x.t+x.h,x.t,e.yanchor)},doneFn:function(){void 0!==s&&void 0!==u&&o.call("_guiRelayout",t,{"legend.x":s,"legend.y":u})},clickFn:function(e,n){var i=r.selectAll("g.traces").filter((function(){var t=this.getBoundingClientRect();return n.clientX>=t.left&&n.clientX<=t.right&&n.clientY>=t.top&&n.clientY<=t.bottom}));i.size()>0&&_(t,T,i,e,n)}}))}],t)}(t,e)}},{"../../constants/alignment":466,"../../lib":498,"../../lib/events":487,"../../lib/svg_text_utils":524,"../../plots/plots":614,"../../registry":633,"../color":361,"../dragelement":380,"../drawing":383,"./constants":412,"./get_legend_data":415,"./handle_click":416,"./helpers":417,"./style":419,"@plotly/d3":58}],415:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("./helpers");e.exports=function(t,e){var r,a,o=e._inHover,s=i.isGrouped(e),l=i.isReversed(e),c={},u=[],f=!1,h={},p=0,d=0;function m(t,r){if(""!==t&&i.isGrouped(e))-1===u.indexOf(t)?(u.push(t),f=!0,c[t]=[r]):c[t].push(r);else{var n="~~i"+p;u.push(n),c[n]=[r],p++}}for(r=0;rA&&(k=A)}w[r][0]._groupMinRank=k,w[r][0]._preGroupSort=r}var M=function(t,e){return t.trace.legendrank-e.trace.legendrank||t._preSort-e._preSort};for(w.forEach((function(t,e){t[0]._preGroupSort=e})),w.sort((function(t,e){return t[0]._groupMinRank-e[0]._groupMinRank||t[0]._preGroupSort-e[0]._preGroupSort})),r=0;rr?r:t}e.exports=function(t,e,r){var v=e._fullLayout;r||(r=v.legend);var y="constant"===r.itemsizing,x=r.itemwidth,b=(x+2*p.itemGap)/2,_=o(b,0),w=function(t,e,r,n){var i;if(t+1)i=t;else{if(!(e&&e.width>0))return 0;i=e.width}return y?n:Math.min(i,r)};function T(t,a,o){var u=t[0].trace,f=u.marker||{},h=f.line||{},p=o?u.visible&&u.type===o:i.traceIs(u,"bar"),d=n.select(a).select("g.legendpoints").selectAll("path.legend"+o).data(p?[t]:[]);d.enter().append("path").classed("legend"+o,!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),d.exit().remove(),d.each((function(t){var i=n.select(this),a=t[0],o=w(a.mlw,f.line,5,2);i.style("stroke-width",o+"px");var p=a.mcc;if(!r._inHover&&"mc"in a){var d=c(f),m=d.mid;void 0===m&&(m=(d.max+d.min)/2),p=s.tryColorscale(f,"")(m)}var v=p||a.mc||f.color,y=f.pattern,x=y&&s.getPatternAttr(y.shape,0,"");if(x){var b=s.getPatternAttr(y.bgcolor,0,null),_=s.getPatternAttr(y.fgcolor,0,null),T=y.fgopacity,k=g(y.size,8,10),A=g(y.solidity,.5,1),M="legend-"+u.uid;i.call(s.pattern,"legend",e,M,x,k,A,p,y.fillmode,b,_,T)}else i.call(l.fill,v);o&&l.stroke(i,a.mlc||h.color)}))}function k(t,e,r){var o=t[0],s=o.trace,l=r?s.visible&&s.type===r:i.traceIs(s,r),c=n.select(e).select("g.legendpoints").selectAll("path.legend"+r).data(l?[t]:[]);if(c.enter().append("path").classed("legend"+r,!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),c.exit().remove(),c.size()){var u=(s.marker||{}).line,p=w(h(u.width,o.pts),u,5,2),d=a.minExtend(s,{marker:{line:{width:p}}});d.marker.line.color=u.color;var m=a.minExtend(o,{trace:d});f(c,m,d)}}t.each((function(t){var e=n.select(this),i=a.ensureSingle(e,"g","layers");i.style("opacity",t[0].trace.opacity);var s=r.valign,l=t[0].lineHeight,c=t[0].height;if("middle"!==s&&l&&c){var u={top:1,bottom:-1}[s]*(.5*(l-c+3));i.attr("transform",o(0,u))}else i.attr("transform",null);i.selectAll("g.legendfill").data([t]).enter().append("g").classed("legendfill",!0),i.selectAll("g.legendlines").data([t]).enter().append("g").classed("legendlines",!0);var f=i.selectAll("g.legendsymbols").data([t]);f.enter().append("g").classed("legendsymbols",!0),f.selectAll("g.legendpoints").data([t]).enter().append("g").classed("legendpoints",!0)})).each((function(t){var r,i=t[0].trace,o=[];if(i.visible)switch(i.type){case"histogram2d":case"heatmap":o=[["M-15,-2V4H15V-2Z"]],r=!0;break;case"choropleth":case"choroplethmapbox":o=[["M-6,-6V6H6V-6Z"]],r=!0;break;case"densitymapbox":o=[["M-6,0 a6,6 0 1,0 12,0 a 6,6 0 1,0 -12,0"]],r="radial";break;case"cone":o=[["M-6,2 A2,2 0 0,0 -6,6 V6L6,4Z"],["M-6,-6 A2,2 0 0,0 -6,-2 L6,-4Z"],["M-6,-2 A2,2 0 0,0 -6,2 L6,0Z"]],r=!1;break;case"streamtube":o=[["M-6,2 A2,2 0 0,0 -6,6 H6 A2,2 0 0,1 6,2 Z"],["M-6,-6 A2,2 0 0,0 -6,-2 H6 A2,2 0 0,1 6,-6 Z"],["M-6,-2 A2,2 0 0,0 -6,2 H6 A2,2 0 0,1 6,-2 Z"]],r=!1;break;case"surface":o=[["M-6,-6 A2,3 0 0,0 -6,0 H6 A2,3 0 0,1 6,-6 Z"],["M-6,1 A2,3 0 0,1 -6,6 H6 A2,3 0 0,0 6,0 Z"]],r=!0;break;case"mesh3d":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6H6L0,6Z"]],r=!1;break;case"volume":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6H6L0,6Z"]],r=!0;break;case"isosurface":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6 A12,24 0 0,0 6,-6 L0,6Z"]],r=!1}var u=n.select(this).select("g.legendpoints").selectAll("path.legend3dandfriends").data(o);u.enter().append("path").classed("legend3dandfriends",!0).attr("transform",_).style("stroke-miterlimit",1),u.exit().remove(),u.each((function(t,o){var u,f=n.select(this),h=c(i),p=h.colorscale,m=h.reversescale;if(p){if(!r){var g=p.length;u=0===o?p[m?g-1:0][1]:1===o?p[m?0:g-1][1]:p[Math.floor((g-1)/2)][1]}}else{var v=i.vertexcolor||i.facecolor||i.color;u=a.isArrayOrTypedArray(v)?v[o]||v[0]:v}f.attr("d",t[0]),u?f.call(l.fill,u):f.call((function(t){if(t.size()){var n="legendfill-"+i.uid;s.gradient(t,e,n,d(m,"radial"===r),p,"fill")}}))}))})).each((function(t){var e=t[0].trace,r="waterfall"===e.type;if(t[0]._distinct&&r){var i=t[0].trace[t[0].dir].marker;return t[0].mc=i.color,t[0].mlw=i.line.width,t[0].mlc=i.line.color,T(t,this,"waterfall")}var a=[];e.visible&&r&&(a=t[0].hasTotals?[["increasing","M-6,-6V6H0Z"],["totals","M6,6H0L-6,-6H-0Z"],["decreasing","M6,6V-6H0Z"]]:[["increasing","M-6,-6V6H6Z"],["decreasing","M6,6V-6H-6Z"]]);var o=n.select(this).select("g.legendpoints").selectAll("path.legendwaterfall").data(a);o.enter().append("path").classed("legendwaterfall",!0).attr("transform",_).style("stroke-miterlimit",1),o.exit().remove(),o.each((function(t){var r=n.select(this),i=e[t[0]].marker,a=w(void 0,i.line,5,2);r.attr("d",t[1]).style("stroke-width",a+"px").call(l.fill,i.color),a&&r.call(l.stroke,i.line.color)}))})).each((function(t){T(t,this,"funnel")})).each((function(t){T(t,this)})).each((function(t){var r=t[0].trace,o=n.select(this).select("g.legendpoints").selectAll("path.legendbox").data(r.visible&&i.traceIs(r,"box-violin")?[t]:[]);o.enter().append("path").classed("legendbox",!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),o.exit().remove(),o.each((function(){var t=n.select(this);if("all"!==r.boxpoints&&"all"!==r.points||0!==l.opacity(r.fillcolor)||0!==l.opacity((r.line||{}).color)){var i=w(void 0,r.line,5,2);t.style("stroke-width",i+"px").call(l.fill,r.fillcolor),i&&l.stroke(t,r.line.color)}else{var c=a.minExtend(r,{marker:{size:y?12:a.constrain(r.marker.size,2,16),sizeref:1,sizemin:1,sizemode:"diameter"}});o.call(s.pointStyle,c,e)}}))})).each((function(t){k(t,this,"funnelarea")})).each((function(t){k(t,this,"pie")})).each((function(t){var r,i,o=m(t),l=o.showFill,f=o.showLine,h=o.showGradientLine,p=o.showGradientFill,g=o.anyFill,v=o.anyLine,y=t[0],b=y.trace,_=c(b),T=_.colorscale,k=_.reversescale,A=u.hasMarkers(b)||!g?"M5,0":v?"M5,-2":"M5,-3",M=n.select(this),S=M.select(".legendfill").selectAll("path").data(l||p?[t]:[]);if(S.enter().append("path").classed("js-fill",!0),S.exit().remove(),S.attr("d",A+"h"+x+"v6h-"+x+"z").call((function(t){if(t.size())if(l)s.fillGroupStyle(t,e);else{var r="legendfill-"+b.uid;s.gradient(t,e,r,d(k),T,"fill")}})),f||h){var E=w(void 0,b.line,10,5);i=a.minExtend(b,{line:{width:E}}),r=[a.minExtend(y,{trace:i})]}var L=M.select(".legendlines").selectAll("path").data(f||h?[r]:[]);L.enter().append("path").classed("js-line",!0),L.exit().remove(),L.attr("d",A+(h?"l"+x+",0.0001":"h"+x)).call(f?s.lineGroupStyle:function(t){if(t.size()){var r="legendline-"+b.uid;s.lineGroupStyle(t),s.gradient(t,e,r,d(k),T,"stroke")}})})).each((function(t){var r,i,o=m(t),l=o.anyFill,c=o.anyLine,f=o.showLine,h=o.showMarker,p=t[0],d=p.trace,g=!h&&!c&&!l&&u.hasText(d);function v(t,e,r,n){var i=a.nestedProperty(d,t).get(),o=a.isArrayOrTypedArray(i)&&e?e(i):i;if(y&&o&&void 0!==n&&(o=n),r){if(or[1])return r[1]}return o}function x(t){return p._distinct&&p.index&&t[p.index]?t[p.index]:t[0]}if(h||g||f){var b={},w={};if(h){b.mc=v("marker.color",x),b.mx=v("marker.symbol",x),b.mo=v("marker.opacity",a.mean,[.2,1]),b.mlc=v("marker.line.color",x),b.mlw=v("marker.line.width",a.mean,[0,5],2),w.marker={sizeref:1,sizemin:1,sizemode:"diameter"};var T=v("marker.size",a.mean,[2,16],12);b.ms=T,w.marker.size=T}f&&(w.line={width:v("line.width",x,[0,10],5)}),g&&(b.tx="Aa",b.tp=v("textposition",x),b.ts=10,b.tc=v("textfont.color",x),b.tf=v("textfont.family",x)),r=[a.minExtend(p,b)],(i=a.minExtend(d,w)).selectedpoints=null,i.texttemplate=null}var k=n.select(this).select("g.legendpoints"),A=k.selectAll("path.scatterpts").data(h?r:[]);A.enter().insert("path",":first-child").classed("scatterpts",!0).attr("transform",_),A.exit().remove(),A.call(s.pointStyle,i,e),h&&(r[0].mrc=3);var M=k.selectAll("g.pointtext").data(g?r:[]);M.enter().append("g").classed("pointtext",!0).append("text").attr("transform",_),M.exit().remove(),M.selectAll("text").call(s.textPointStyle,i,e)})).each((function(t){var e=t[0].trace,r=n.select(this).select("g.legendpoints").selectAll("path.legendcandle").data(e.visible&&"candlestick"===e.type?[t,t]:[]);r.enter().append("path").classed("legendcandle",!0).attr("d",(function(t,e){return e?"M-15,0H-8M-8,6V-6H8Z":"M15,0H8M8,-6V6H-8Z"})).attr("transform",_).style("stroke-miterlimit",1),r.exit().remove(),r.each((function(t,r){var i=n.select(this),a=e[r?"increasing":"decreasing"],o=w(void 0,a.line,5,2);i.style("stroke-width",o+"px").call(l.fill,a.fillcolor),o&&l.stroke(i,a.line.color)}))})).each((function(t){var e=t[0].trace,r=n.select(this).select("g.legendpoints").selectAll("path.legendohlc").data(e.visible&&"ohlc"===e.type?[t,t]:[]);r.enter().append("path").classed("legendohlc",!0).attr("d",(function(t,e){return e?"M-15,0H0M-8,-6V0":"M15,0H0M8,6V0"})).attr("transform",_).style("stroke-miterlimit",1),r.exit().remove(),r.each((function(t,r){var i=n.select(this),a=e[r?"increasing":"decreasing"],o=w(void 0,a.line,5,2);i.style("fill","none").call(s.dashLine,a.line.dash,o),o&&l.stroke(i,a.line.color)}))}))}},{"../../lib":498,"../../registry":633,"../../traces/pie/helpers":901,"../../traces/pie/style_one":907,"../../traces/scatter/subtypes":947,"../color":361,"../colorscale/helpers":372,"../drawing":383,"./constants":412,"@plotly/d3":58}],420:[function(t,e,r){"use strict";t("./constants");e.exports={editType:"modebar",orientation:{valType:"enumerated",values:["v","h"],dflt:"h",editType:"modebar"},bgcolor:{valType:"color",editType:"modebar"},color:{valType:"color",editType:"modebar"},activecolor:{valType:"color",editType:"modebar"},uirevision:{valType:"any",editType:"none"},add:{valType:"string",arrayOk:!0,dflt:"",editType:"modebar"},remove:{valType:"string",arrayOk:!0,dflt:"",editType:"modebar"}}},{"./constants":422}],421:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../plots/plots"),a=t("../../plots/cartesian/axis_ids"),o=t("../../fonts/ploticon"),s=t("../shapes/draw").eraseActiveShape,l=t("../../lib"),c=l._,u=e.exports={};function f(t,e){var r,i,o=e.currentTarget,s=o.getAttribute("data-attr"),l=o.getAttribute("data-val")||!0,c=t._fullLayout,u={},f=a.list(t,null,!0),h=c._cartesianSpikesEnabled;if("zoom"===s){var p,d="in"===l?.5:2,m=(1+d)/2,g=(1-d)/2;for(i=0;i1?(I=["toggleHover"],O=["resetViews"]):v?(P=["zoomInGeo","zoomOutGeo"],I=["hoverClosestGeo"],O=["resetGeo"]):g?(I=["hoverClosest3d"],O=["resetCameraDefault3d","resetCameraLastSave3d"]):w?(P=["zoomInMapbox","zoomOutMapbox"],I=["toggleHover"],O=["resetViewMapbox"]):b?I=["hoverClosestGl2d"]:y?I=["hoverClosestPie"]:A?(I=["hoverClosestCartesian","hoverCompareCartesian"],O=["resetViewSankey"]):I=["toggleHover"];m&&(I=["toggleSpikelines","hoverClosestCartesian","hoverCompareCartesian"]);(function(t){for(var e=0;e0)){var m=function(t,e,r){for(var n=r.filter((function(r){return e[r].anchor===t._id})),i=0,a=0;a=n.max)e=F[r+1];else if(t=n.pmax)e=F[r+1];else if(t0?h+c:c;return{ppad:c,ppadplus:u?d:m,ppadminus:u?m:d}}return{ppad:c}}function u(t,e,r,n,i){var s="category"===t.type||"multicategory"===t.type?t.r2c:t.d2c;if(void 0!==e)return[s(e),s(r)];if(n){var l,c,u,f,h=1/0,p=-1/0,d=n.match(a.segmentRE);for("date"===t.type&&(s=o.decodeDate(s)),l=0;lp&&(p=f)));return p>=h?[h,p]:void 0}}e.exports=function(t){var e=t._fullLayout,r=n.filterVisible(e.shapes);if(r.length&&t._fullData.length)for(var o=0;oy?(k=f,E="y0",A=y,L="y1"):(k=y,E="y1",A=f,L="y0");Z(n),Q(s,r),function(t,e,r){var n=e.xref,i=e.yref,o=a.getFromId(r,n),s=a.getFromId(r,i),l="";"paper"===n||o.autorange||(l+=n);"paper"===i||s.autorange||(l+=i);u.setClipUrl(t,l?"clip"+r._fullLayout._uid+l:null,r)}(e,r,t),X.moveFn="move"===O?J:K,X.altKey=n.altKey},doneFn:function(){if(v(t))return;p(e),$(s),b(e,t,r),n.call("_guiRelayout",t,l.getUpdateObj())},clickFn:function(){if(v(t))return;$(s)}};function Z(r){if(v(t))O=null;else if(R)O="path"===r.target.tagName?"move":"start-point"===r.target.attributes["data-line-point"].value?"resize-over-start-point":"resize-over-end-point";else{var n=X.element.getBoundingClientRect(),i=n.right-n.left,a=n.bottom-n.top,o=r.clientX-n.left,s=r.clientY-n.top,l=!F&&i>10&&a>10&&!r.shiftKey?h.getCursor(o/i,1-s/a):"move";p(e,l),O=l.split("-")[0]}}function J(n,i){if("path"===r.type){var a=function(t){return t},o=a,l=a;z?B("xanchor",r.xanchor=G(x+n)):(o=function(t){return G(H(t)+n)},N&&"date"===N.type&&(o=m.encodeDate(o))),D?B("yanchor",r.yanchor=Y(T+i)):(l=function(t){return Y(q(t)+i)},U&&"date"===U.type&&(l=m.encodeDate(l))),B("path",r.path=w(I,o,l))}else z?B("xanchor",r.xanchor=G(x+n)):(B("x0",r.x0=G(c+n)),B("x1",r.x1=G(g+n))),D?B("yanchor",r.yanchor=Y(T+i)):(B("y0",r.y0=Y(f+i)),B("y1",r.y1=Y(y+i)));e.attr("d",_(t,r)),Q(s,r)}function K(n,i){if(F){var a=function(t){return t},o=a,l=a;z?B("xanchor",r.xanchor=G(x+n)):(o=function(t){return G(H(t)+n)},N&&"date"===N.type&&(o=m.encodeDate(o))),D?B("yanchor",r.yanchor=Y(T+i)):(l=function(t){return Y(q(t)+i)},U&&"date"===U.type&&(l=m.encodeDate(l))),B("path",r.path=w(I,o,l))}else if(R){if("resize-over-start-point"===O){var u=c+n,h=D?f-i:f+i;B("x0",r.x0=z?u:G(u)),B("y0",r.y0=D?h:Y(h))}else if("resize-over-end-point"===O){var p=g+n,d=D?y-i:y+i;B("x1",r.x1=z?p:G(p)),B("y1",r.y1=D?d:Y(d))}}else{var v=function(t){return-1!==O.indexOf(t)},b=v("n"),j=v("s"),V=v("w"),W=v("e"),X=b?k+i:k,Z=j?A+i:A,J=V?M+n:M,K=W?S+n:S;D&&(b&&(X=k-i),j&&(Z=A-i)),(!D&&Z-X>10||D&&X-Z>10)&&(B(E,r[E]=D?X:Y(X)),B(L,r[L]=D?Z:Y(Z))),K-J>10&&(B(C,r[C]=z?J:G(J)),B(P,r[P]=z?K:G(K)))}e.attr("d",_(t,r)),Q(s,r)}function Q(t,e){(z||D)&&function(){var r="path"!==e.type,n=t.selectAll(".visual-cue").data([0]);n.enter().append("path").attr({fill:"#fff","fill-rule":"evenodd",stroke:"#000","stroke-width":1}).classed("visual-cue",!0);var a=H(z?e.xanchor:i.midRange(r?[e.x0,e.x1]:m.extractPathCoords(e.path,d.paramIsX))),o=q(D?e.yanchor:i.midRange(r?[e.y0,e.y1]:m.extractPathCoords(e.path,d.paramIsY)));if(a=m.roundPositionForSharpStrokeRendering(a,1),o=m.roundPositionForSharpStrokeRendering(o,1),z&&D){var s="M"+(a-1-1)+","+(o-1-1)+"h-8v2h8 v8h2v-8 h8v-2h-8 v-8h-2 Z";n.attr("d",s)}else if(z){var l="M"+(a-1-1)+","+(o-9-1)+"v18 h2 v-18 Z";n.attr("d",l)}else{var c="M"+(a-9-1)+","+(o-1-1)+"h18 v2 h-18 Z";n.attr("d",c)}}()}function $(t){t.selectAll(".visual-cue").remove()}h.init(X),W.node().onmousemove=Z}(t,z,l,e,r,O):!0===l.editable&&z.style("pointer-events",P||c.opacity(S)*M<=.5?"stroke":"all");z.node().addEventListener("click",(function(){return function(t,e){if(!y(t))return;var r=+e.node().getAttribute("data-index");if(r>=0){if(r===t._fullLayout._activeShapeIndex)return void T(t);t._fullLayout._activeShapeIndex=r,t._fullLayout._deactivateShape=T,g(t)}}(t,z)}))}}function b(t,e,r){var n=(r.xref+r.yref).replace(/paper/g,"").replace(/[xyz][1-9]* *domain/g,"");u.setClipUrl(t,n?"clip"+e._fullLayout._uid+n:null,e)}function _(t,e){var r,n,o,s,l,c,u,f,h=e.type,p=a.getRefType(e.xref),g=a.getRefType(e.yref),v=a.getFromId(t,e.xref),y=a.getFromId(t,e.yref),x=t._fullLayout._size;if(v?"domain"===p?n=function(t){return v._offset+v._length*t}:(r=m.shapePositionToRange(v),n=function(t){return v._offset+v.r2p(r(t,!0))}):n=function(t){return x.l+x.w*t},y?"domain"===g?s=function(t){return y._offset+y._length*(1-t)}:(o=m.shapePositionToRange(y),s=function(t){return y._offset+y.r2p(o(t,!0))}):s=function(t){return x.t+x.h*(1-t)},"path"===h)return v&&"date"===v.type&&(n=m.decodeDate(n)),y&&"date"===y.type&&(s=m.decodeDate(s)),function(t,e,r){var n=t.path,a=t.xsizemode,o=t.ysizemode,s=t.xanchor,l=t.yanchor;return n.replace(d.segmentRE,(function(t){var n=0,c=t.charAt(0),u=d.paramIsX[c],f=d.paramIsY[c],h=d.numParams[c],p=t.substr(1).replace(d.paramRE,(function(t){return u[n]?t="pixel"===a?e(s)+Number(t):e(t):f[n]&&(t="pixel"===o?r(l)-Number(t):r(t)),++n>h&&(t="X"),t}));return n>h&&(p=p.replace(/[\s,]*X.*/,""),i.log("Ignoring extra params in segment "+t)),c+p}))}(e,n,s);if("pixel"===e.xsizemode){var b=n(e.xanchor);l=b+e.x0,c=b+e.x1}else l=n(e.x0),c=n(e.x1);if("pixel"===e.ysizemode){var _=s(e.yanchor);u=_-e.y0,f=_-e.y1}else u=s(e.y0),f=s(e.y1);if("line"===h)return"M"+l+","+u+"L"+c+","+f;if("rect"===h)return"M"+l+","+u+"H"+c+"V"+f+"H"+l+"Z";var w=(l+c)/2,T=(u+f)/2,k=Math.abs(w-l),A=Math.abs(T-u),M="A"+k+","+A,S=w+k+","+T;return"M"+S+M+" 0 1,1 "+(w+","+(T-A))+M+" 0 0,1 "+S+"Z"}function w(t,e,r){return t.replace(d.segmentRE,(function(t){var n=0,i=t.charAt(0),a=d.paramIsX[i],o=d.paramIsY[i],s=d.numParams[i];return i+t.substr(1).replace(d.paramRE,(function(t){return n>=s||(a[n]?t=e(t):o[n]&&(t=r(t)),n++),t}))}))}function T(t){y(t)&&(t._fullLayout._activeShapeIndex>=0&&(l(t),delete t._fullLayout._activeShapeIndex,g(t)))}e.exports={draw:g,drawOne:x,eraseActiveShape:function(t){if(!y(t))return;l(t);var e=t._fullLayout._activeShapeIndex,r=(t.layout||{}).shapes||[];if(e=0&&f(v),r.attr("d",m(e)),A&&!h)&&(k=function(t,e){for(var r=0;r1&&(2!==t.length||"Z"!==t[1][0])&&(0===T&&(t[0][0]="M"),e[w]=t,y(),x())}}()}}function I(t,r){!function(t,r){if(e.length)for(var n=0;n0&&l0&&(s=s.transition().duration(e.transition.duration).ease(e.transition.easing)),s.attr("transform",l(o-.5*f.gripWidth,e._dims.currentValueTotalHeight))}}function E(t,e){var r=t._dims;return r.inputAreaStart+f.stepInset+(r.inputAreaLength-2*f.stepInset)*Math.min(1,Math.max(0,e))}function L(t,e){var r=t._dims;return Math.min(1,Math.max(0,(e-f.stepInset-r.inputAreaStart)/(r.inputAreaLength-2*f.stepInset-2*r.inputAreaStart)))}function C(t,e,r){var n=r._dims,i=s.ensureSingle(t,"rect",f.railTouchRectClass,(function(n){n.call(A,e,t,r).style("pointer-events","all")}));i.attr({width:n.inputAreaLength,height:Math.max(n.inputAreaWidth,f.tickOffset+r.ticklen+n.labelHeight)}).call(a.fill,r.bgcolor).attr("opacity",0),o.setTranslate(i,0,n.currentValueTotalHeight)}function P(t,e){var r=e._dims,n=r.inputAreaLength-2*f.railInset,i=s.ensureSingle(t,"rect",f.railRectClass);i.attr({width:n,height:f.railWidth,rx:f.railRadius,ry:f.railRadius,"shape-rendering":"crispEdges"}).call(a.stroke,e.bordercolor).call(a.fill,e.bgcolor).style("stroke-width",e.borderwidth+"px"),o.setTranslate(i,f.railInset,.5*(r.inputAreaWidth-f.railWidth)+r.currentValueTotalHeight)}e.exports=function(t){var e=t._fullLayout,r=function(t,e){for(var r=t[f.name],n=[],i=0;i0?[0]:[]);function s(e){e._commandObserver&&(e._commandObserver.remove(),delete e._commandObserver),i.autoMargin(t,g(e))}if(a.enter().append("g").classed(f.containerClassName,!0).style("cursor","ew-resize"),a.exit().each((function(){n.select(this).selectAll("g."+f.groupClassName).each(s)})).remove(),0!==r.length){var l=a.selectAll("g."+f.groupClassName).data(r,v);l.enter().append("g").classed(f.groupClassName,!0),l.exit().each(s).remove();for(var c=0;c0||h<0){var v={left:[-d,0],right:[d,0],top:[0,-d],bottom:[0,d]}[b.side];e.attr("transform",l(v[0],v[1]))}}}return R.call(F),O&&(E?R.on(".opacity",null):(A=0,M=!0,R.text(y).on("mouseover.opacity",(function(){n.select(this).transition().duration(h.SHOW_PLACEHOLDER).style("opacity",1)})).on("mouseout.opacity",(function(){n.select(this).transition().duration(h.HIDE_PLACEHOLDER).style("opacity",0)}))),R.call(f.makeEditable,{gd:t}).on("edit",(function(e){void 0!==x?o.call("_guiRestyle",t,v,e,x):o.call("_guiRelayout",t,v,e)})).on("cancel",(function(){this.text(this.attr("data-unformatted")).call(F)})).on("input",(function(t){this.text(t||" ").call(f.positionText,_.x,_.y)}))),R.classed("js-placeholder",M),T}}},{"../../constants/alignment":466,"../../constants/interactions":473,"../../lib":498,"../../lib/svg_text_utils":524,"../../plots/plots":614,"../../registry":633,"../color":361,"../drawing":383,"@plotly/d3":58,"fast-isnumeric":185}],460:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("../color/attributes"),a=t("../../lib/extend").extendFlat,o=t("../../plot_api/edit_types").overrideAll,s=t("../../plots/pad_attributes"),l=t("../../plot_api/plot_template").templatedArray,c=l("button",{visible:{valType:"boolean"},method:{valType:"enumerated",values:["restyle","relayout","animate","update","skip"],dflt:"restyle"},args:{valType:"info_array",freeLength:!0,items:[{valType:"any"},{valType:"any"},{valType:"any"}]},args2:{valType:"info_array",freeLength:!0,items:[{valType:"any"},{valType:"any"},{valType:"any"}]},label:{valType:"string",dflt:""},execute:{valType:"boolean",dflt:!0}});e.exports=o(l("updatemenu",{_arrayAttrRegexps:[/^updatemenus\[(0|[1-9][0-9]+)\]\.buttons/],visible:{valType:"boolean"},type:{valType:"enumerated",values:["dropdown","buttons"],dflt:"dropdown"},direction:{valType:"enumerated",values:["left","right","up","down"],dflt:"down"},active:{valType:"integer",min:-1,dflt:0},showactive:{valType:"boolean",dflt:!0},buttons:c,x:{valType:"number",min:-2,max:3,dflt:-.05},xanchor:{valType:"enumerated",values:["auto","left","center","right"],dflt:"right"},y:{valType:"number",min:-2,max:3,dflt:1},yanchor:{valType:"enumerated",values:["auto","top","middle","bottom"],dflt:"top"},pad:a(s({editType:"arraydraw"}),{}),font:n({}),bgcolor:{valType:"color"},bordercolor:{valType:"color",dflt:i.borderLine},borderwidth:{valType:"number",min:0,dflt:1,editType:"arraydraw"}}),"arraydraw","from-root")},{"../../lib/extend":488,"../../plot_api/edit_types":531,"../../plot_api/plot_template":538,"../../plots/font_attributes":580,"../../plots/pad_attributes":613,"../color/attributes":360}],461:[function(t,e,r){"use strict";e.exports={name:"updatemenus",containerClassName:"updatemenu-container",headerGroupClassName:"updatemenu-header-group",headerClassName:"updatemenu-header",headerArrowClassName:"updatemenu-header-arrow",dropdownButtonGroupClassName:"updatemenu-dropdown-button-group",dropdownButtonClassName:"updatemenu-dropdown-button",buttonClassName:"updatemenu-button",itemRectClassName:"updatemenu-item-rect",itemTextClassName:"updatemenu-item-text",menuIndexAttrName:"updatemenu-active-index",autoMarginIdRoot:"updatemenu-",blankHeaderOpts:{label:" "},minWidth:30,minHeight:30,textPadX:24,arrowPadX:16,rx:2,ry:2,textOffsetX:12,textOffsetY:3,arrowOffsetX:4,gapButtonHeader:5,gapButton:2,activeColor:"#F4FAFF",hoverColor:"#F4FAFF",arrowSymbol:{left:"\u25c4",right:"\u25ba",up:"\u25b2",down:"\u25bc"}}},{}],462:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/array_container_defaults"),a=t("./attributes"),o=t("./constants").name,s=a.buttons;function l(t,e,r){function o(r,i){return n.coerce(t,e,a,r,i)}o("visible",i(t,e,{name:"buttons",handleItemDefaults:c}).length>0)&&(o("active"),o("direction"),o("type"),o("showactive"),o("x"),o("y"),n.noneOrAll(t,e,["x","y"]),o("xanchor"),o("yanchor"),o("pad.t"),o("pad.r"),o("pad.b"),o("pad.l"),n.coerceFont(o,"font",r.font),o("bgcolor",r.paper_bgcolor),o("bordercolor"),o("borderwidth"))}function c(t,e){function r(r,i){return n.coerce(t,e,s,r,i)}r("visible","skip"===t.method||Array.isArray(t.args))&&(r("method"),r("args"),r("args2"),r("label"),r("execute"))}e.exports=function(t,e){i(t,e,{name:o,handleItemDefaults:l})}},{"../../lib":498,"../../plots/array_container_defaults":544,"./attributes":460,"./constants":461}],463:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../plots/plots"),a=t("../color"),o=t("../drawing"),s=t("../../lib"),l=t("../../lib/svg_text_utils"),c=t("../../plot_api/plot_template").arrayEditor,u=t("../../constants/alignment").LINE_SPACING,f=t("./constants"),h=t("./scrollbox");function p(t){return t._index}function d(t,e){return+t.attr(f.menuIndexAttrName)===e._index}function m(t,e,r,n,i,a,o,s){e.active=o,c(t.layout,f.name,e).applyUpdate("active",o),"buttons"===e.type?v(t,n,null,null,e):"dropdown"===e.type&&(i.attr(f.menuIndexAttrName,"-1"),g(t,n,i,a,e),s||v(t,n,i,a,e))}function g(t,e,r,n,i){var a=s.ensureSingle(e,"g",f.headerClassName,(function(t){t.style("pointer-events","all")})),l=i._dims,c=i.active,u=i.buttons[c]||f.blankHeaderOpts,h={y:i.pad.t,yPad:0,x:i.pad.l,xPad:0,index:0},p={width:l.headerWidth,height:l.headerHeight};a.call(y,i,u,t).call(M,i,h,p),s.ensureSingle(e,"text",f.headerArrowClassName,(function(t){t.attr("text-anchor","end").call(o.font,i.font).text(f.arrowSymbol[i.direction])})).attr({x:l.headerWidth-f.arrowOffsetX+i.pad.l,y:l.headerHeight/2+f.textOffsetY+i.pad.t}),a.on("click",(function(){r.call(S,String(d(r,i)?-1:i._index)),v(t,e,r,n,i)})),a.on("mouseover",(function(){a.call(w)})),a.on("mouseout",(function(){a.call(T,i)})),o.setTranslate(e,l.lx,l.ly)}function v(t,e,r,a,o){r||(r=e).attr("pointer-events","all");var l=function(t){return-1==+t.attr(f.menuIndexAttrName)}(r)&&"buttons"!==o.type?[]:o.buttons,c="dropdown"===o.type?f.dropdownButtonClassName:f.buttonClassName,u=r.selectAll("g."+c).data(s.filterVisible(l)),h=u.enter().append("g").classed(c,!0),p=u.exit();"dropdown"===o.type?(h.attr("opacity","0").transition().attr("opacity","1"),p.transition().attr("opacity","0").remove()):p.remove();var d=0,g=0,v=o._dims,x=-1!==["up","down"].indexOf(o.direction);"dropdown"===o.type&&(x?g=v.headerHeight+f.gapButtonHeader:d=v.headerWidth+f.gapButtonHeader),"dropdown"===o.type&&"up"===o.direction&&(g=-f.gapButtonHeader+f.gapButton-v.openHeight),"dropdown"===o.type&&"left"===o.direction&&(d=-f.gapButtonHeader+f.gapButton-v.openWidth);var b={x:v.lx+d+o.pad.l,y:v.ly+g+o.pad.t,yPad:f.gapButton,xPad:f.gapButton,index:0},k={l:b.x+o.borderwidth,t:b.y+o.borderwidth};u.each((function(s,l){var c=n.select(this);c.call(y,o,s,t).call(M,o,b),c.on("click",(function(){n.event.defaultPrevented||(s.execute&&(s.args2&&o.active===l?(m(t,o,0,e,r,a,-1),i.executeAPICommand(t,s.method,s.args2)):(m(t,o,0,e,r,a,l),i.executeAPICommand(t,s.method,s.args))),t.emit("plotly_buttonclicked",{menu:o,button:s,active:o.active}))})),c.on("mouseover",(function(){c.call(w)})),c.on("mouseout",(function(){c.call(T,o),u.call(_,o)}))})),u.call(_,o),x?(k.w=Math.max(v.openWidth,v.headerWidth),k.h=b.y-k.t):(k.w=b.x-k.l,k.h=Math.max(v.openHeight,v.headerHeight)),k.direction=o.direction,a&&(u.size()?function(t,e,r,n,i,a){var o,s,l,c=i.direction,u="up"===c||"down"===c,h=i._dims,p=i.active;if(u)for(s=0,l=0;l0?[0]:[]);if(o.enter().append("g").classed(f.containerClassName,!0).style("cursor","pointer"),o.exit().each((function(){n.select(this).selectAll("g."+f.headerGroupClassName).each(a)})).remove(),0!==r.length){var l=o.selectAll("g."+f.headerGroupClassName).data(r,p);l.enter().append("g").classed(f.headerGroupClassName,!0);for(var c=s.ensureSingle(o,"g",f.dropdownButtonGroupClassName,(function(t){t.style("pointer-events","all")})),u=0;uw,A=s.barLength+2*s.barPad,M=s.barWidth+2*s.barPad,S=d,E=g+v;E+M>c&&(E=c-M);var L=this.container.selectAll("rect.scrollbar-horizontal").data(k?[0]:[]);L.exit().on(".drag",null).remove(),L.enter().append("rect").classed("scrollbar-horizontal",!0).call(i.fill,s.barColor),k?(this.hbar=L.attr({rx:s.barRadius,ry:s.barRadius,x:S,y:E,width:A,height:M}),this._hbarXMin=S+A/2,this._hbarTranslateMax=w-A):(delete this.hbar,delete this._hbarXMin,delete this._hbarTranslateMax);var C=v>T,P=s.barWidth+2*s.barPad,I=s.barLength+2*s.barPad,O=d+m,z=g;O+P>l&&(O=l-P);var D=this.container.selectAll("rect.scrollbar-vertical").data(C?[0]:[]);D.exit().on(".drag",null).remove(),D.enter().append("rect").classed("scrollbar-vertical",!0).call(i.fill,s.barColor),C?(this.vbar=D.attr({rx:s.barRadius,ry:s.barRadius,x:O,y:z,width:P,height:I}),this._vbarYMin=z+I/2,this._vbarTranslateMax=T-I):(delete this.vbar,delete this._vbarYMin,delete this._vbarTranslateMax);var R=this.id,F=u-.5,B=C?f+P+.5:f+.5,N=h-.5,j=k?p+M+.5:p+.5,U=o._topdefs.selectAll("#"+R).data(k||C?[0]:[]);if(U.exit().remove(),U.enter().append("clipPath").attr("id",R).append("rect"),k||C?(this._clipRect=U.select("rect").attr({x:Math.floor(F),y:Math.floor(N),width:Math.ceil(B)-Math.floor(F),height:Math.ceil(j)-Math.floor(N)}),this.container.call(a.setClipUrl,R,this.gd),this.bg.attr({x:d,y:g,width:m,height:v})):(this.bg.attr({width:0,height:0}),this.container.on("wheel",null).on(".drag",null).call(a.setClipUrl,null),delete this._clipRect),k||C){var V=n.behavior.drag().on("dragstart",(function(){n.event.sourceEvent.preventDefault()})).on("drag",this._onBoxDrag.bind(this));this.container.on("wheel",null).on("wheel",this._onBoxWheel.bind(this)).on(".drag",null).call(V);var H=n.behavior.drag().on("dragstart",(function(){n.event.sourceEvent.preventDefault(),n.event.sourceEvent.stopPropagation()})).on("drag",this._onBarDrag.bind(this));k&&this.hbar.on(".drag",null).call(H),C&&this.vbar.on(".drag",null).call(H)}this.setTranslate(e,r)},s.prototype.disable=function(){(this.hbar||this.vbar)&&(this.bg.attr({width:0,height:0}),this.container.on("wheel",null).on(".drag",null).call(a.setClipUrl,null),delete this._clipRect),this.hbar&&(this.hbar.on(".drag",null),this.hbar.remove(),delete this.hbar,delete this._hbarXMin,delete this._hbarTranslateMax),this.vbar&&(this.vbar.on(".drag",null),this.vbar.remove(),delete this.vbar,delete this._vbarYMin,delete this._vbarTranslateMax)},s.prototype._onBoxDrag=function(){var t=this.translateX,e=this.translateY;this.hbar&&(t-=n.event.dx),this.vbar&&(e-=n.event.dy),this.setTranslate(t,e)},s.prototype._onBoxWheel=function(){var t=this.translateX,e=this.translateY;this.hbar&&(t+=n.event.deltaY),this.vbar&&(e+=n.event.deltaY),this.setTranslate(t,e)},s.prototype._onBarDrag=function(){var t=this.translateX,e=this.translateY;if(this.hbar){var r=t+this._hbarXMin,i=r+this._hbarTranslateMax;t=(o.constrain(n.event.x,r,i)-r)/(i-r)*(this.position.w-this._box.w)}if(this.vbar){var a=e+this._vbarYMin,s=a+this._vbarTranslateMax;e=(o.constrain(n.event.y,a,s)-a)/(s-a)*(this.position.h-this._box.h)}this.setTranslate(t,e)},s.prototype.setTranslate=function(t,e){var r=this.position.w-this._box.w,n=this.position.h-this._box.h;if(t=o.constrain(t||0,0,r),e=o.constrain(e||0,0,n),this.translateX=t,this.translateY=e,this.container.call(a.setTranslate,this._box.l-this.position.l-t,this._box.t-this.position.t-e),this._clipRect&&this._clipRect.attr({x:Math.floor(this.position.l+t-.5),y:Math.floor(this.position.t+e-.5)}),this.hbar){var i=t/r;this.hbar.call(a.setTranslate,t+i*this._hbarTranslateMax,e)}if(this.vbar){var s=e/n;this.vbar.call(a.setTranslate,t,e+s*this._vbarTranslateMax)}}},{"../../lib":498,"../color":361,"../drawing":383,"@plotly/d3":58}],466:[function(t,e,r){"use strict";e.exports={FROM_BL:{left:0,center:.5,right:1,bottom:0,middle:.5,top:1},FROM_TL:{left:0,center:.5,right:1,bottom:1,middle:.5,top:0},FROM_BR:{left:1,center:.5,right:0,bottom:0,middle:.5,top:1},LINE_SPACING:1.3,CAP_SHIFT:.7,MID_SHIFT:.35,OPPOSITE_SIDE:{left:"right",right:"left",top:"bottom",bottom:"top"}}},{}],467:[function(t,e,r){"use strict";e.exports={axisRefDescription:function(t,e,r){return["If set to a",t,"axis id (e.g. *"+t+"* or","*"+t+"2*), the `"+t+"` position refers to a",t,"coordinate. If set to *paper*, the `"+t+"`","position refers to the distance from the",e,"of the plotting","area in normalized coordinates where *0* (*1*) corresponds to the",e,"("+r+"). If set to a",t,"axis ID followed by","*domain* (separated by a space), the position behaves like for","*paper*, but refers to the distance in fractions of the domain","length from the",e,"of the domain of that axis: e.g.,","*"+t+"2 domain* refers to the domain of the second",t," axis and a",t,"position of 0.5 refers to the","point between the",e,"and the",r,"of the domain of the","second",t,"axis."].join(" ")}}},{}],468:[function(t,e,r){"use strict";e.exports={INCREASING:{COLOR:"#3D9970",SYMBOL:"\u25b2"},DECREASING:{COLOR:"#FF4136",SYMBOL:"\u25bc"}}},{}],469:[function(t,e,r){"use strict";e.exports={FORMAT_LINK:"https://github.com/d3/d3-format/tree/v1.4.5#d3-format",DATE_FORMAT_LINK:"https://github.com/d3/d3-time-format/tree/v2.2.3#locale_format"}},{}],470:[function(t,e,r){"use strict";e.exports={COMPARISON_OPS:["=","!=","<",">=",">","<="],COMPARISON_OPS2:["=","<",">=",">","<="],INTERVAL_OPS:["[]","()","[)","(]","][",")(","](",")["],SET_OPS:["{}","}{"],CONSTRAINT_REDUCTION:{"=":"=","<":"<","<=":"<",">":">",">=":">","[]":"[]","()":"[]","[)":"[]","(]":"[]","][":"][",")(":"][","](":"][",")[":"]["}}},{}],471:[function(t,e,r){"use strict";e.exports={solid:[[],0],dot:[[.5,1],200],dash:[[.5,1],50],longdash:[[.5,1],10],dashdot:[[.5,.625,.875,1],50],longdashdot:[[.5,.7,.8,1],10]}},{}],472:[function(t,e,r){"use strict";e.exports={circle:"\u25cf","circle-open":"\u25cb",square:"\u25a0","square-open":"\u25a1",diamond:"\u25c6","diamond-open":"\u25c7",cross:"+",x:"\u274c"}},{}],473:[function(t,e,r){"use strict";e.exports={SHOW_PLACEHOLDER:100,HIDE_PLACEHOLDER:1e3,DESELECTDIM:.2}},{}],474:[function(t,e,r){"use strict";e.exports={BADNUM:void 0,FP_SAFE:1e-4*Number.MAX_VALUE,ONEMAXYEAR:316224e5,ONEAVGYEAR:315576e5,ONEMINYEAR:31536e6,ONEMAXQUARTER:79488e5,ONEAVGQUARTER:78894e5,ONEMINQUARTER:76896e5,ONEMAXMONTH:26784e5,ONEAVGMONTH:26298e5,ONEMINMONTH:24192e5,ONEWEEK:6048e5,ONEDAY:864e5,ONEHOUR:36e5,ONEMIN:6e4,ONESEC:1e3,EPOCHJD:2440587.5,ALMOST_EQUAL:.999999,LOG_CLIP:10,MINUS_SIGN:"\u2212"}},{}],475:[function(t,e,r){"use strict";r.xmlns="http://www.w3.org/2000/xmlns/",r.svg="http://www.w3.org/2000/svg",r.xlink="http://www.w3.org/1999/xlink",r.svgAttrs={xmlns:r.svg,"xmlns:xlink":r.xlink}},{}],476:[function(t,e,r){"use strict";r.version=t("./version").version,t("native-promise-only"),t("../build/plotcss");for(var n=t("./registry"),i=r.register=n.register,a=t("./plot_api"),o=Object.keys(a),s=0;splotly-logomark"}}},{}],478:[function(t,e,r){"use strict";r.isLeftAnchor=function(t){return"left"===t.xanchor||"auto"===t.xanchor&&t.x<=1/3},r.isCenterAnchor=function(t){return"center"===t.xanchor||"auto"===t.xanchor&&t.x>1/3&&t.x<2/3},r.isRightAnchor=function(t){return"right"===t.xanchor||"auto"===t.xanchor&&t.x>=2/3},r.isTopAnchor=function(t){return"top"===t.yanchor||"auto"===t.yanchor&&t.y>=2/3},r.isMiddleAnchor=function(t){return"middle"===t.yanchor||"auto"===t.yanchor&&t.y>1/3&&t.y<2/3},r.isBottomAnchor=function(t){return"bottom"===t.yanchor||"auto"===t.yanchor&&t.y<=1/3}},{}],479:[function(t,e,r){"use strict";var n=t("./mod"),i=n.mod,a=n.modHalf,o=Math.PI,s=2*o;function l(t){return Math.abs(t[1]-t[0])>s-1e-14}function c(t,e){return a(e-t,s)}function u(t,e){if(l(e))return!0;var r,n;e[0](n=i(n,s))&&(n+=s);var a=i(t,s),o=a+s;return a>=r&&a<=n||o>=r&&o<=n}function f(t,e,r,n,i,a,c){i=i||0,a=a||0;var u,f,h,p,d,m=l([r,n]);function g(t,e){return[t*Math.cos(e)+i,a-t*Math.sin(e)]}m?(u=0,f=o,h=s):r=i&&t<=a);var i,a},pathArc:function(t,e,r,n,i){return f(null,t,e,r,n,i,0)},pathSector:function(t,e,r,n,i){return f(null,t,e,r,n,i,1)},pathAnnulus:function(t,e,r,n,i,a){return f(t,e,r,n,i,a,1)}}},{"./mod":505}],480:[function(t,e,r){"use strict";var n=Array.isArray,i="undefined"!=typeof ArrayBuffer&&ArrayBuffer.isView?ArrayBuffer:{isView:function(){return!1}},a="undefined"==typeof DataView?function(){}:DataView;function o(t){return i.isView(t)&&!(t instanceof a)}function s(t){return n(t)||o(t)}function l(t,e,r){if(s(t)){if(s(t[0])){for(var n=r,i=0;ii.max?e.set(r):e.set(+t)}},integer:{coerceFunction:function(t,e,r,i){t%1||!n(t)||void 0!==i.min&&ti.max?e.set(r):e.set(+t)}},string:{coerceFunction:function(t,e,r,n){if("string"!=typeof t){var i="number"==typeof t;!0!==n.strict&&i?e.set(String(t)):e.set(r)}else n.noBlank&&!t?e.set(r):e.set(t)}},color:{coerceFunction:function(t,e,r){i(t).isValid()?e.set(t):e.set(r)}},colorlist:{coerceFunction:function(t,e,r){Array.isArray(t)&&t.length&&t.every((function(t){return i(t).isValid()}))?e.set(t):e.set(r)}},colorscale:{coerceFunction:function(t,e,r){e.set(o.get(t,r))}},angle:{coerceFunction:function(t,e,r){"auto"===t?e.set("auto"):n(t)?e.set(f(+t,360)):e.set(r)}},subplotid:{coerceFunction:function(t,e,r,n){var i=n.regex||u(r);"string"==typeof t&&i.test(t)?e.set(t):e.set(r)},validateFunction:function(t,e){var r=e.dflt;return t===r||"string"==typeof t&&!!u(r).test(t)}},flaglist:{coerceFunction:function(t,e,r,n){if("string"==typeof t)if(-1===(n.extras||[]).indexOf(t)){for(var i=t.split("+"),a=0;a=n&&t<=i?t:u}if("string"!=typeof t&&"number"!=typeof t)return u;t=String(t);var c=_(e),v=t.charAt(0);!c||"G"!==v&&"g"!==v||(t=t.substr(1),e="");var w=c&&"chinese"===e.substr(0,7),T=t.match(w?x:y);if(!T)return u;var k=T[1],A=T[3]||"1",M=Number(T[5]||1),S=Number(T[7]||0),E=Number(T[9]||0),L=Number(T[11]||0);if(c){if(2===k.length)return u;var C;k=Number(k);try{var P=g.getComponentMethod("calendars","getCal")(e);if(w){var I="i"===A.charAt(A.length-1);A=parseInt(A,10),C=P.newDate(k,P.toMonthIndex(k,A,I),M)}else C=P.newDate(k,Number(A),M)}catch(t){return u}return C?(C.toJD()-m)*f+S*h+E*p+L*d:u}k=2===k.length?(Number(k)+2e3-b)%100+b:Number(k),A-=1;var O=new Date(Date.UTC(2e3,A,M,S,E));return O.setUTCFullYear(k),O.getUTCMonth()!==A||O.getUTCDate()!==M?u:O.getTime()+L*d},n=r.MIN_MS=r.dateTime2ms("-9999"),i=r.MAX_MS=r.dateTime2ms("9999-12-31 23:59:59.9999"),r.isDateTime=function(t,e){return r.dateTime2ms(t,e)!==u};var T=90*f,k=3*h,A=5*p;function M(t,e,r,n,i){if((e||r||n||i)&&(t+=" "+w(e,2)+":"+w(r,2),(n||i)&&(t+=":"+w(n,2),i))){for(var a=4;i%10==0;)a-=1,i/=10;t+="."+w(i,a)}return t}r.ms2DateTime=function(t,e,r){if("number"!=typeof t||!(t>=n&&t<=i))return u;e||(e=0);var a,o,s,c,y,x,b=Math.floor(10*l(t+.05,1)),w=Math.round(t-b/10);if(_(r)){var S=Math.floor(w/f)+m,E=Math.floor(l(t,f));try{a=g.getComponentMethod("calendars","getCal")(r).fromJD(S).formatDate("yyyy-mm-dd")}catch(t){a=v("G%Y-%m-%d")(new Date(w))}if("-"===a.charAt(0))for(;a.length<11;)a="-0"+a.substr(1);else for(;a.length<10;)a="0"+a;o=e=n+f&&t<=i-f))return u;var e=Math.floor(10*l(t+.05,1)),r=new Date(Math.round(t-e/10));return M(a("%Y-%m-%d")(r),r.getHours(),r.getMinutes(),r.getSeconds(),10*r.getUTCMilliseconds()+e)},r.cleanDate=function(t,e,n){if(t===u)return e;if(r.isJSDate(t)||"number"==typeof t&&isFinite(t)){if(_(n))return s.error("JS Dates and milliseconds are incompatible with world calendars",t),e;if(!(t=r.ms2DateTimeLocal(+t))&&void 0!==e)return e}else if(!r.isDateTime(t,n))return s.error("unrecognized date",t),e;return t};var S=/%\d?f/g,E=/%h/g,L={1:"1",2:"1",3:"2",4:"2"};function C(t,e,r,n){t=t.replace(S,(function(t){var r=Math.min(+t.charAt(1)||6,6);return(e/1e3%1+2).toFixed(r).substr(2).replace(/0+$/,"")||"0"}));var i=new Date(Math.floor(e+.05));if(t=t.replace(E,(function(){return L[r("%q")(i)]})),_(n))try{t=g.getComponentMethod("calendars","worldCalFmt")(t,e,n)}catch(t){return"Invalid"}return r(t)(i)}var P=[59,59.9,59.99,59.999,59.9999];r.formatDate=function(t,e,r,n,i,a){if(i=_(i)&&i,!e)if("y"===r)e=a.year;else if("m"===r)e=a.month;else{if("d"!==r)return function(t,e){var r=l(t+.05,f),n=w(Math.floor(r/h),2)+":"+w(l(Math.floor(r/p),60),2);if("M"!==e){o(e)||(e=0);var i=(100+Math.min(l(t/d,60),P[e])).toFixed(e).substr(1);e>0&&(i=i.replace(/0+$/,"").replace(/[\.]$/,"")),n+=":"+i}return n}(t,r)+"\n"+C(a.dayMonthYear,t,n,i);e=a.dayMonth+"\n"+a.year}return C(e,t,n,i)};var I=3*f;r.incrementMonth=function(t,e,r){r=_(r)&&r;var n=l(t,f);if(t=Math.round(t-n),r)try{var i=Math.round(t/f)+m,a=g.getComponentMethod("calendars","getCal")(r),o=a.fromJD(i);return e%12?a.add(o,e,"m"):a.add(o,e/12,"y"),(o.toJD()-m)*f+n}catch(e){s.error("invalid ms "+t+" in calendar "+r)}var c=new Date(t+I);return c.setUTCMonth(c.getUTCMonth()+e)+n-I},r.findExactDates=function(t,e){for(var r,n,i=0,a=0,s=0,l=0,c=_(e)&&g.getComponentMethod("calendars","getCal")(e),u=0;u0&&t[e+1][0]<0)return e;return null}switch(e="RUS"===s||"FJI"===s?function(t){var e;if(null===c(t))e=t;else for(e=new Array(t.length),i=0;ie?r[n++]=[t[i][0]+360,t[i][1]]:i===e?(r[n++]=t[i],r[n++]=[t[i][0],-90]):r[n++]=t[i];var a=h.tester(r);a.pts.pop(),l.push(a)}:function(t){l.push(h.tester(t))},a.type){case"MultiPolygon":for(r=0;ri&&(i=c,e=l)}else e=r;return o.default(e).geometry.coordinates}(u),n.fIn=t,n.fOut=u,s.push(u)}else c.log(["Location",n.loc,"does not have a valid GeoJSON geometry.","Traces with locationmode *geojson-id* only support","*Polygon* and *MultiPolygon* geometries."].join(" "))}delete i[r]}switch(r.type){case"FeatureCollection":var h=r.features;for(n=0;n100?(clearInterval(a),n("Unexpected error while fetching from "+t)):void i++}),50)}))}for(var o=0;o0&&(r.push(i),i=[])}return i.length>0&&r.push(i),r},r.makeLine=function(t){return 1===t.length?{type:"LineString",coordinates:t[0]}:{type:"MultiLineString",coordinates:t}},r.makePolygon=function(t){if(1===t.length)return{type:"Polygon",coordinates:t};for(var e=new Array(t.length),r=0;r1||m<0||m>1?null:{x:t+l*m,y:e+f*m}}function l(t,e,r,n,i){var a=n*t+i*e;if(a<0)return n*n+i*i;if(a>r){var o=n-t,s=i-e;return o*o+s*s}var l=n*e-i*t;return l*l/r}r.segmentsIntersect=s,r.segmentDistance=function(t,e,r,n,i,a,o,c){if(s(t,e,r,n,i,a,o,c))return 0;var u=r-t,f=n-e,h=o-i,p=c-a,d=u*u+f*f,m=h*h+p*p,g=Math.min(l(u,f,d,i-t,a-e),l(u,f,d,o-t,c-e),l(h,p,m,t-i,e-a),l(h,p,m,r-i,n-a));return Math.sqrt(g)},r.getTextLocation=function(t,e,r,s){if(t===i&&s===a||(n={},i=t,a=s),n[r])return n[r];var l=t.getPointAtLength(o(r-s/2,e)),c=t.getPointAtLength(o(r+s/2,e)),u=Math.atan((c.y-l.y)/(c.x-l.x)),f=t.getPointAtLength(o(r,e)),h={x:(4*f.x+l.x+c.x)/6,y:(4*f.y+l.y+c.y)/6,theta:u};return n[r]=h,h},r.clearLocationCache=function(){i=null},r.getVisibleSegment=function(t,e,r){var n,i,a=e.left,o=e.right,s=e.top,l=e.bottom,c=0,u=t.getTotalLength(),f=u;function h(e){var r=t.getPointAtLength(e);0===e?n=r:e===u&&(i=r);var c=r.xo?r.x-o:0,f=r.yl?r.y-l:0;return Math.sqrt(c*c+f*f)}for(var p=h(c);p;){if((c+=p+r)>f)return;p=h(c)}for(p=h(f);p;){if(c>(f-=p+r))return;p=h(f)}return{min:c,max:f,len:f-c,total:u,isClosed:0===c&&f===u&&Math.abs(n.x-i.x)<.1&&Math.abs(n.y-i.y)<.1}},r.findPointOnPath=function(t,e,r,n){for(var i,a,o,s=(n=n||{}).pathLength||t.getTotalLength(),l=n.tolerance||.001,c=n.iterationLimit||30,u=t.getPointAtLength(0)[r]>t.getPointAtLength(s)[r]?-1:1,f=0,h=0,p=s;f0?p=i:h=i,f++}return a}},{"./mod":505}],494:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("tinycolor2"),a=t("color-normalize"),o=t("../components/colorscale"),s=t("../components/color/attributes").defaultLine,l=t("./array").isArrayOrTypedArray,c=a(s);function u(t,e){var r=t;return r[3]*=e,r}function f(t){if(n(t))return c;var e=a(t);return e.length?e:c}function h(t){return n(t)?t:1}e.exports={formatColor:function(t,e,r){var n,i,s,p,d,m=t.color,g=l(m),v=l(e),y=o.extractOpts(t),x=[];if(n=void 0!==y.colorscale?o.makeColorScaleFuncFromTrace(t):f,i=g?function(t,e){return void 0===t[e]?c:a(n(t[e]))}:f,s=v?function(t,e){return void 0===t[e]?1:h(t[e])}:h,g||v)for(var b=0;b1?(r*t+r*e)/r:t+e,i=String(n).length;if(i>16){var a=String(e).length;if(i>=String(t).length+a){var o=parseFloat(n).toPrecision(12);-1===o.indexOf("e+")&&(n=+o)}}return n}},{}],498:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-time-format").utcFormat,a=t("d3-format").format,o=t("fast-isnumeric"),s=t("../constants/numerical"),l=s.FP_SAFE,c=-l,u=s.BADNUM,f=e.exports={};f.adjustFormat=function(t){return!t||/^\d[.]\df/.test(t)||/[.]\d%/.test(t)?t:"0.f"===t?"~f":/^\d%/.test(t)?"~%":/^\ds/.test(t)?"~s":!/^[~,.0$]/.test(t)&&/[&fps]/.test(t)?"~"+t:t};var h={};f.warnBadFormat=function(t){var e=String(t);h[e]||(h[e]=1,f.warn('encountered bad format: "'+e+'"'))},f.noFormat=function(t){return String(t)},f.numberFormat=function(t){var e;try{e=a(f.adjustFormat(t))}catch(e){return f.warnBadFormat(t),f.noFormat}return e},f.nestedProperty=t("./nested_property"),f.keyedContainer=t("./keyed_container"),f.relativeAttr=t("./relative_attr"),f.isPlainObject=t("./is_plain_object"),f.toLogRange=t("./to_log_range"),f.relinkPrivateKeys=t("./relink_private");var p=t("./array");f.isTypedArray=p.isTypedArray,f.isArrayOrTypedArray=p.isArrayOrTypedArray,f.isArray1D=p.isArray1D,f.ensureArray=p.ensureArray,f.concat=p.concat,f.maxRowLength=p.maxRowLength,f.minRowLength=p.minRowLength;var d=t("./mod");f.mod=d.mod,f.modHalf=d.modHalf;var m=t("./coerce");f.valObjectMeta=m.valObjectMeta,f.coerce=m.coerce,f.coerce2=m.coerce2,f.coerceFont=m.coerceFont,f.coercePattern=m.coercePattern,f.coerceHoverinfo=m.coerceHoverinfo,f.coerceSelectionMarkerOpacity=m.coerceSelectionMarkerOpacity,f.validate=m.validate;var g=t("./dates");f.dateTime2ms=g.dateTime2ms,f.isDateTime=g.isDateTime,f.ms2DateTime=g.ms2DateTime,f.ms2DateTimeLocal=g.ms2DateTimeLocal,f.cleanDate=g.cleanDate,f.isJSDate=g.isJSDate,f.formatDate=g.formatDate,f.incrementMonth=g.incrementMonth,f.dateTick0=g.dateTick0,f.dfltRange=g.dfltRange,f.findExactDates=g.findExactDates,f.MIN_MS=g.MIN_MS,f.MAX_MS=g.MAX_MS;var v=t("./search");f.findBin=v.findBin,f.sorterAsc=v.sorterAsc,f.sorterDes=v.sorterDes,f.distinctVals=v.distinctVals,f.roundUp=v.roundUp,f.sort=v.sort,f.findIndexOfMin=v.findIndexOfMin,f.sortObjectKeys=t("./sort_object_keys");var y=t("./stats");f.aggNums=y.aggNums,f.len=y.len,f.mean=y.mean,f.median=y.median,f.midRange=y.midRange,f.variance=y.variance,f.stdev=y.stdev,f.interp=y.interp;var x=t("./matrix");f.init2dArray=x.init2dArray,f.transposeRagged=x.transposeRagged,f.dot=x.dot,f.translationMatrix=x.translationMatrix,f.rotationMatrix=x.rotationMatrix,f.rotationXYMatrix=x.rotationXYMatrix,f.apply3DTransform=x.apply3DTransform,f.apply2DTransform=x.apply2DTransform,f.apply2DTransform2=x.apply2DTransform2,f.convertCssMatrix=x.convertCssMatrix,f.inverseTransformMatrix=x.inverseTransformMatrix;var b=t("./angles");f.deg2rad=b.deg2rad,f.rad2deg=b.rad2deg,f.angleDelta=b.angleDelta,f.angleDist=b.angleDist,f.isFullCircle=b.isFullCircle,f.isAngleInsideSector=b.isAngleInsideSector,f.isPtInsideSector=b.isPtInsideSector,f.pathArc=b.pathArc,f.pathSector=b.pathSector,f.pathAnnulus=b.pathAnnulus;var _=t("./anchor_utils");f.isLeftAnchor=_.isLeftAnchor,f.isCenterAnchor=_.isCenterAnchor,f.isRightAnchor=_.isRightAnchor,f.isTopAnchor=_.isTopAnchor,f.isMiddleAnchor=_.isMiddleAnchor,f.isBottomAnchor=_.isBottomAnchor;var w=t("./geometry2d");f.segmentsIntersect=w.segmentsIntersect,f.segmentDistance=w.segmentDistance,f.getTextLocation=w.getTextLocation,f.clearLocationCache=w.clearLocationCache,f.getVisibleSegment=w.getVisibleSegment,f.findPointOnPath=w.findPointOnPath;var T=t("./extend");f.extendFlat=T.extendFlat,f.extendDeep=T.extendDeep,f.extendDeepAll=T.extendDeepAll,f.extendDeepNoArrays=T.extendDeepNoArrays;var k=t("./loggers");f.log=k.log,f.warn=k.warn,f.error=k.error;var A=t("./regex");f.counterRegex=A.counter;var M=t("./throttle");f.throttle=M.throttle,f.throttleDone=M.done,f.clearThrottle=M.clear;var S=t("./dom");function E(t){var e={};for(var r in t)for(var n=t[r],i=0;il||t=e)&&(o(t)&&t>=0&&t%1==0)},f.noop=t("./noop"),f.identity=t("./identity"),f.repeat=function(t,e){for(var r=new Array(e),n=0;nr?Math.max(r,Math.min(e,t)):Math.max(e,Math.min(r,t))},f.bBoxIntersect=function(t,e,r){return r=r||0,t.left<=e.right+r&&e.left<=t.right+r&&t.top<=e.bottom+r&&e.top<=t.bottom+r},f.simpleMap=function(t,e,r,n,i){for(var a=t.length,o=new Array(a),s=0;s=Math.pow(2,r)?i>10?(f.warn("randstr failed uniqueness"),l):t(e,r,n,(i||0)+1):l},f.OptionControl=function(t,e){t||(t={}),e||(e="opt");var r={optionList:[],_newoption:function(n){n[e]=t,r[n.name]=n,r.optionList.push(n)}};return r["_"+e]=t,r},f.smooth=function(t,e){if((e=Math.round(e)||0)<2)return t;var r,n,i,a,o=t.length,s=2*o,l=2*e-1,c=new Array(l),u=new Array(o);for(r=0;r=s&&(i-=s*Math.floor(i/s)),i<0?i=-1-i:i>=o&&(i=s-1-i),a+=t[i]*c[n];u[r]=a}return u},f.syncOrAsync=function(t,e,r){var n;function i(){return f.syncOrAsync(t,e,r)}for(;t.length;)if((n=(0,t.splice(0,1)[0])(e))&&n.then)return n.then(i);return r&&r(e)},f.stripTrailingSlash=function(t){return"/"===t.substr(-1)?t.substr(0,t.length-1):t},f.noneOrAll=function(t,e,r){if(t){var n,i=!1,a=!0;for(n=0;n0?e:0}))},f.fillArray=function(t,e,r,n){if(n=n||f.identity,f.isArrayOrTypedArray(t))for(var i=0;i1?i+o[1]:"";if(a&&(o.length>1||s.length>4||r))for(;n.test(s);)s=s.replace(n,"$1"+a+"$2");return s+l},f.TEMPLATE_STRING_REGEX=/%{([^\s%{}:]*)([:|\|][^}]*)?}/g;var z=/^\w*$/;f.templateString=function(t,e){var r={};return t.replace(f.TEMPLATE_STRING_REGEX,(function(t,n){var i;return z.test(n)?i=e[n]:(r[n]=r[n]||f.nestedProperty(e,n).get,i=r[n]()),f.isValidTextValue(i)?i:""}))};var D={max:10,count:0,name:"hovertemplate"};f.hovertemplateString=function(){return B.apply(D,arguments)};var R={max:10,count:0,name:"texttemplate"};f.texttemplateString=function(){return B.apply(R,arguments)};var F=/^[:|\|]/;function B(t,e,r){var n=this,a=arguments;e||(e={});var o={};return t.replace(f.TEMPLATE_STRING_REGEX,(function(t,s,l){var c,u,h,p="_xother"===s||"_yother"===s,d="_xother_"===s||"_yother_"===s,m="xother_"===s||"yother_"===s,g="xother"===s||"yother"===s||p||m||d,v=s;if((p||d)&&(v=v.substring(1)),(m||d)&&(v=v.substring(0,v.length-1)),g){if(void 0===(c=e[v]))return""}else for(h=3;h=48&&o<=57,c=s>=48&&s<=57;if(l&&(n=10*n+o-48),c&&(i=10*i+s-48),!l||!c){if(n!==i)return n-i;if(o!==s)return o-s}}return i-n};var N=2e9;f.seedPseudoRandom=function(){N=2e9},f.pseudoRandom=function(){var t=N;return N=(69069*N+1)%4294967296,Math.abs(N-t)<429496729?f.pseudoRandom():N/4294967296},f.fillText=function(t,e,r){var n=Array.isArray(r)?function(t){r.push(t)}:function(t){r.text=t},i=f.extractOption(t,e,"htx","hovertext");if(f.isValidTextValue(i))return n(i);var a=f.extractOption(t,e,"tx","text");return f.isValidTextValue(a)?n(a):void 0},f.isValidTextValue=function(t){return t||0===t},f.formatPercent=function(t,e){e=e||0;for(var r=(Math.round(100*t*Math.pow(10,e))*Math.pow(.1,e)).toFixed(e)+"%",n=0;n1&&(c=1):c=0,f.strTranslate(i-c*(r+o),a-c*(n+s))+f.strScale(c)+(l?"rotate("+l+(e?"":" "+r+" "+n)+")":"")},f.ensureUniformFontSize=function(t,e){var r=f.extendFlat({},e);return r.size=Math.max(e.size,t._fullLayout.uniformtext.minsize||0),r},f.join2=function(t,e,r){var n=t.length;return n>1?t.slice(0,-1).join(e)+r+t[n-1]:t.join(e)},f.bigFont=function(t){return Math.round(1.2*t)};var j=f.getFirefoxVersion(),U=null!==j&&j<86;f.getPositionFromD3Event=function(){return U?[n.event.layerX,n.event.layerY]:[n.event.offsetX,n.event.offsetY]}},{"../constants/numerical":474,"./anchor_utils":478,"./angles":479,"./array":480,"./clean_number":481,"./clear_responsive":483,"./coerce":484,"./dates":485,"./dom":486,"./extend":488,"./filter_unique":489,"./filter_visible":490,"./geometry2d":493,"./identity":496,"./increment":497,"./is_plain_object":499,"./keyed_container":500,"./localize":501,"./loggers":502,"./make_trace_groups":503,"./matrix":504,"./mod":505,"./nested_property":506,"./noop":507,"./notifier":508,"./preserve_drawing_buffer":512,"./push_unique":513,"./regex":515,"./relative_attr":516,"./relink_private":517,"./search":518,"./sort_object_keys":521,"./stats":522,"./throttle":525,"./to_log_range":526,"@plotly/d3":58,"d3-format":107,"d3-time-format":115,"fast-isnumeric":185}],499:[function(t,e,r){"use strict";e.exports=function(t){return window&&window.process&&window.process.versions?"[object Object]"===Object.prototype.toString.call(t):"[object Object]"===Object.prototype.toString.call(t)&&Object.getPrototypeOf(t).hasOwnProperty("hasOwnProperty")}},{}],500:[function(t,e,r){"use strict";var n=t("./nested_property"),i=/^\w*$/;e.exports=function(t,e,r,a){var o,s,l;r=r||"name",a=a||"value";var c={};e&&e.length?(l=n(t,e),s=l.get()):s=t,e=e||"";var u={};if(s)for(o=0;o2)return c[e]=2|c[e],h.set(t,null);if(f){for(o=e;o1){var e=["LOG:"];for(t=0;t1){var r=[];for(t=0;t"),"long")}},a.warn=function(){var t;if(n.logging>0){var e=["WARN:"];for(t=0;t0){var r=[];for(t=0;t"),"stick")}},a.error=function(){var t;if(n.logging>0){var e=["ERROR:"];for(t=0;t0){var r=[];for(t=0;t"),"stick")}}},{"../plot_api/plot_config":536,"./notifier":508}],503:[function(t,e,r){"use strict";var n=t("@plotly/d3");e.exports=function(t,e,r){var i=t.selectAll("g."+r.replace(/\s/g,".")).data(e,(function(t){return t[0].trace.uid}));i.exit().remove(),i.enter().append("g").attr("class",r),i.order();var a=t.classed("rangeplot")?"nodeRangePlot3":"node3";return i.each((function(t){t[0][a]=n.select(this)})),i}},{"@plotly/d3":58}],504:[function(t,e,r){"use strict";var n=t("gl-mat4");r.init2dArray=function(t,e){for(var r=new Array(t),n=0;ne/2?t-Math.round(t/e)*e:t}}},{}],506:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./array").isArrayOrTypedArray;function a(t,e){return function(){var r,n,o,s,l,c=t;for(s=0;s/g),l=0;la||c===i||cs)&&(!e||!l(t))}:function(t,e){var l=t[0],c=t[1];if(l===i||la||c===i||cs)return!1;var u,f,h,p,d,m=r.length,g=r[0][0],v=r[0][1],y=0;for(u=1;uMath.max(f,g)||c>Math.max(h,v)))if(cu||Math.abs(n(o,h))>i)return!0;return!1},a.filter=function(t,e){var r=[t[0]],n=0,i=0;function o(o){t.push(o);var s=r.length,l=n;r.splice(i+1);for(var c=l+1;c1&&o(t.pop());return{addPt:o,raw:t,filtered:r}}},{"../constants/numerical":474,"./matrix":504}],511:[function(t,e,r){(function(r){(function(){"use strict";var n=t("./show_no_webgl_msg"),i=t("regl");e.exports=function(t,e,a){var o=t._fullLayout,s=!0;return o._glcanvas.each((function(n){if(n.regl)n.regl.preloadCachedCode(a);else if(!n.pick||o._has("parcoords")){try{n.regl=i({canvas:this,attributes:{antialias:!n.pick,preserveDrawingBuffer:!0},pixelRatio:t._context.plotGlPixelRatio||r.devicePixelRatio,extensions:e||[],cachedCode:a||{}})}catch(t){s=!1}n.regl||(s=!1),s&&this.addEventListener("webglcontextlost",(function(e){t&&t.emit&&t.emit("plotly_webglcontextlost",{event:e,layer:n.key})}),!1)}})),s||n({container:o._glcontainer.node()}),s}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./show_no_webgl_msg":520,regl:278}],512:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("is-mobile");e.exports=function(t){var e;if("string"!=typeof(e=t&&t.hasOwnProperty("userAgent")?t.userAgent:function(){var t;"undefined"!=typeof navigator&&(t=navigator.userAgent);t&&t.headers&&"string"==typeof t.headers["user-agent"]&&(t=t.headers["user-agent"]);return t}()))return!0;var r=i({ua:{headers:{"user-agent":e}},tablet:!0,featureDetect:!1});if(!r)for(var a=e.split(" "),o=1;o-1;s--){var l=a[s];if("Version/"===l.substr(0,8)){var c=l.substr(8).split(".")[0];if(n(c)&&(c=+c),c>=13)return!0}}}return r}},{"fast-isnumeric":185,"is-mobile":229}],513:[function(t,e,r){"use strict";e.exports=function(t,e){if(e instanceof RegExp){for(var r=e.toString(),n=0;ni.queueLength&&(t.undoQueue.queue.shift(),t.undoQueue.index--))},startSequence:function(t){t.undoQueue=t.undoQueue||{index:0,queue:[],sequence:!1},t.undoQueue.sequence=!0,t.undoQueue.beginSequence=!0},stopSequence:function(t){t.undoQueue=t.undoQueue||{index:0,queue:[],sequence:!1},t.undoQueue.sequence=!1,t.undoQueue.beginSequence=!1},undo:function(t){var e,r;if(!(void 0===t.undoQueue||isNaN(t.undoQueue.index)||t.undoQueue.index<=0)){for(t.undoQueue.index--,e=t.undoQueue.queue[t.undoQueue.index],t.undoQueue.inSequence=!0,r=0;r=t.undoQueue.queue.length)){for(e=t.undoQueue.queue[t.undoQueue.index],t.undoQueue.inSequence=!0,r=0;re}function u(t,e){return t>=e}r.findBin=function(t,e,r){if(n(e.start))return r?Math.ceil((t-e.start)/e.size-1e-9)-1:Math.floor((t-e.start)/e.size+1e-9);var a,o,f=0,h=e.length,p=0,d=h>1?(e[h-1]-e[0])/(h-1):1;for(o=d>=0?r?s:l:r?u:c,t+=1e-9*d*(r?-1:1)*(d>=0?1:-1);f90&&i.log("Long binary search..."),f-1},r.sorterAsc=function(t,e){return t-e},r.sorterDes=function(t,e){return e-t},r.distinctVals=function(t){var e,n=t.slice();for(n.sort(r.sorterAsc),e=n.length-1;e>-1&&n[e]===o;e--);for(var i,a=n[e]-n[0]||1,s=a/(e||1)/1e4,l=[],c=0;c<=e;c++){var u=n[c],f=u-i;void 0===i?(l.push(u),i=u):f>s&&(a=Math.min(a,f),l.push(u),i=u)}return{vals:l,minDiff:a}},r.roundUp=function(t,e,r){for(var n,i=0,a=e.length-1,o=0,s=r?0:1,l=r?1:0,c=r?Math.ceil:Math.floor;i0&&(n=1),r&&n)return t.sort(e)}return n?t:t.reverse()},r.findIndexOfMin=function(t,e){e=e||a;for(var r,n=1/0,i=0;ia.length)&&(o=a.length),n(e)||(e=!1),i(a[0])){for(l=new Array(o),s=0;st.length-1)return t[t.length-1];var r=e%1;return r*t[Math.ceil(e)]+(1-r)*t[Math.floor(e)]}},{"./array":480,"fast-isnumeric":185}],523:[function(t,e,r){"use strict";var n=t("color-normalize");e.exports=function(t){return t?n(t):[0,0,0,1]}},{"color-normalize":84}],524:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../lib"),a=i.strTranslate,o=t("../constants/xmlns_namespaces"),s=t("../constants/alignment").LINE_SPACING,l=/([^$]*)([$]+[^$]*[$]+)([^$]*)/;r.convertToTspans=function(t,e,m){var M=t.text(),S=!t.attr("data-notex")&&e&&e._context.typesetMath&&"undefined"!=typeof MathJax&&M.match(l),C=n.select(t.node().parentNode);if(!C.empty()){var P=t.attr("class")?t.attr("class").split(" ")[0]:"text";return P+="-math",C.selectAll("svg."+P).remove(),C.selectAll("g."+P+"-group").remove(),t.style("display",null).attr({"data-unformatted":M,"data-math":"N"}),S?(e&&e._promises||[]).push(new Promise((function(e){t.style("display","none");var r=parseInt(t.node().style.fontSize,10),o={fontSize:r};!function(t,e,r){var a,o,s,l,h=parseInt((MathJax.version||"").split(".")[0]);if(2!==h&&3!==h)return void i.warn("No MathJax version:",MathJax.version);var p=function(){var r="math-output-"+i.randstr({},64),a=(l=n.select("body").append("div").attr({id:r}).style({visibility:"hidden",position:"absolute","font-size":e.fontSize+"px"}).text(t.replace(c,"\\lt ").replace(u,"\\gt "))).node();return 2===h?MathJax.Hub.Typeset(a):MathJax.typeset([a])},d=function(){var e=l.select(2===h?".MathJax_SVG":".MathJax"),a=!e.empty()&&l.select("svg").node();if(a){var o,s=a.getBoundingClientRect();o=2===h?n.select("body").select("#MathJax_SVG_glyphs"):e.select("defs"),r(e,o,s)}else i.log("There was an error in the tex syntax.",t),r();l.remove()};2===h?MathJax.Hub.Queue((function(){return o=i.extendDeepAll({},MathJax.Hub.config),s=MathJax.Hub.processSectionDelay,void 0!==MathJax.Hub.processSectionDelay&&(MathJax.Hub.processSectionDelay=0),MathJax.Hub.Config({messageStyle:"none",tex2jax:{inlineMath:f},displayAlign:"left"})}),(function(){if("SVG"!==(a=MathJax.Hub.config.menuSettings.renderer))return MathJax.Hub.setRenderer("SVG")}),p,d,(function(){if("SVG"!==a)return MathJax.Hub.setRenderer(a)}),(function(){return void 0!==s&&(MathJax.Hub.processSectionDelay=s),MathJax.Hub.Config(o)})):3===h&&(o=i.extendDeepAll({},MathJax.config),MathJax.config.tex||(MathJax.config.tex={}),MathJax.config.tex.inlineMath=f,"svg"!==(a=MathJax.config.startup.output)&&(MathJax.config.startup.output="svg"),MathJax.startup.defaultReady(),MathJax.startup.promise.then((function(){p(),d(),"svg"!==a&&(MathJax.config.startup.output=a),MathJax.config=o})))}(S[2],o,(function(n,i,o){C.selectAll("svg."+P).remove(),C.selectAll("g."+P+"-group").remove();var s=n&&n.select("svg");if(!s||!s.node())return I(),void e();var l=C.append("g").classed(P+"-group",!0).attr({"pointer-events":"none","data-unformatted":M,"data-math":"Y"});l.node().appendChild(s.node()),i&&i.node()&&s.node().insertBefore(i.node().cloneNode(!0),s.node().firstChild);var c=o.width,u=o.height;s.attr({class:P,height:u,preserveAspectRatio:"xMinYMin meet"}).style({overflow:"visible","pointer-events":"none"});var f=t.node().style.fill||"black",h=s.select("g");h.attr({fill:f,stroke:f});var p=h.node().getBoundingClientRect(),d=p.width,g=p.height;(d>c||g>u)&&(s.style("overflow","hidden"),d=(p=s.node().getBoundingClientRect()).width,g=p.height);var v=+t.attr("x"),y=+t.attr("y"),x=-(r||t.node().getBoundingClientRect().height)/4;if("y"===P[0])l.attr({transform:"rotate("+[-90,v,y]+")"+a(-d/2,x-g/2)});else if("l"===P[0])y=x-g/2;else if("a"===P[0]&&0!==P.indexOf("atitle"))v=0,y=x;else{var b=t.attr("text-anchor");v-=d*("middle"===b?.5:"end"===b?1:0),y=y+x-g/2}s.attr({x:v,y:y}),m&&m.call(t,l),e(l)}))}))):I(),t}function I(){C.empty()||(P=t.attr("class")+"-math",C.select("svg."+P).remove()),t.text("").style("white-space","pre"),function(t,e){e=e.replace(g," ");var r,a=!1,l=[],c=-1;function u(){c++;var e=document.createElementNS(o.svg,"tspan");n.select(e).attr({class:"line",dy:c*s+"em"}),t.appendChild(e),r=e;var i=l;if(l=[{node:e}],i.length>1)for(var a=1;a doesnt match end tag <"+t+">. Pretending it did match.",e),r=l[l.length-1].node}else i.log("Ignoring unexpected end tag .",e)}x.test(e)?u():(r=t,l=[{node:t}]);for(var S=e.split(v),C=0;C|>|>)/g;var f=[["$","$"],["\\(","\\)"]];var h={sup:"font-size:70%",sub:"font-size:70%",b:"font-weight:bold",i:"font-style:italic",a:"cursor:pointer",span:"",em:"font-style:italic;font-weight:bold"},p={sub:"0.3em",sup:"-0.6em"},d={sub:"-0.21em",sup:"0.42em"},m=["http:","https:","mailto:","",void 0,":"],g=r.NEWLINES=/(\r\n?|\n)/g,v=/(<[^<>]*>)/,y=/<(\/?)([^ >]*)(\s+(.*))?>/i,x=//i;r.BR_TAG_ALL=//gi;var b=/(^|[\s"'])style\s*=\s*("([^"]*);?"|'([^']*);?')/i,_=/(^|[\s"'])href\s*=\s*("([^"]*)"|'([^']*)')/i,w=/(^|[\s"'])target\s*=\s*("([^"\s]*)"|'([^'\s]*)')/i,T=/(^|[\s"'])popup\s*=\s*("([\w=,]*)"|'([\w=,]*)')/i;function k(t,e){if(!t)return null;var r=t.match(e),n=r&&(r[3]||r[4]);return n&&E(n)}var A=/(^|;)\s*color:/;r.plainText=function(t,e){for(var r=void 0!==(e=e||{}).len&&-1!==e.len?e.len:1/0,n=void 0!==e.allowedTags?e.allowedTags:["br"],i="...".length,a=t.split(v),o=[],s="",l=0,c=0;ci?o.push(u.substr(0,d-i)+"..."):o.push(u.substr(0,d));break}s=""}}return o.join("")};var M={mu:"\u03bc",amp:"&",lt:"<",gt:">",nbsp:"\xa0",times:"\xd7",plusmn:"\xb1",deg:"\xb0"},S=/&(#\d+|#x[\da-fA-F]+|[a-z]+);/g;function E(t){return t.replace(S,(function(t,e){return("#"===e.charAt(0)?function(t){if(t>1114111)return;var e=String.fromCodePoint;if(e)return e(t);var r=String.fromCharCode;return t<=65535?r(t):r(55232+(t>>10),t%1024+56320)}("x"===e.charAt(1)?parseInt(e.substr(2),16):parseInt(e.substr(1),10)):M[e])||t}))}function L(t){var e=encodeURI(decodeURI(t)),r=document.createElement("a"),n=document.createElement("a");r.href=t,n.href=e;var i=r.protocol,a=n.protocol;return-1!==m.indexOf(i)&&-1!==m.indexOf(a)?e:""}function C(t,e,r){var n,a,o,s=r.horizontalAlign,l=r.verticalAlign||"top",c=t.node().getBoundingClientRect(),u=e.node().getBoundingClientRect();return a="bottom"===l?function(){return c.bottom-n.height}:"middle"===l?function(){return c.top+(c.height-n.height)/2}:function(){return c.top},o="right"===s?function(){return c.right-n.width}:"center"===s?function(){return c.left+(c.width-n.width)/2}:function(){return c.left},function(){n=this.node().getBoundingClientRect();var t=o()-u.left,e=a()-u.top,s=r.gd||{};if(r.gd){s._fullLayout._calcInverseTransform(s);var l=i.apply3DTransform(s._fullLayout._invTransform)(t,e);t=l[0],e=l[1]}return this.style({top:e+"px",left:t+"px","z-index":1e3}),this}}r.convertEntities=E,r.sanitizeHTML=function(t){t=t.replace(g," ");for(var e=document.createElement("p"),r=e,i=[],a=t.split(v),o=0;oa.ts+e?l():a.timer=setTimeout((function(){l(),a.timer=null}),e)},r.done=function(t){var e=n[t];return e&&e.timer?new Promise((function(t){var r=e.onDone;e.onDone=function(){r&&r(),t(),e.onDone=null}})):Promise.resolve()},r.clear=function(t){if(t)i(n[t]),delete n[t];else for(var e in n)r.clear(e)}},{}],526:[function(t,e,r){"use strict";var n=t("fast-isnumeric");e.exports=function(t,e){if(t>0)return Math.log(t)/Math.LN10;var r=Math.log(Math.min(e[0],e[1]))/Math.LN10;return n(r)||(r=Math.log(Math.max(e[0],e[1]))/Math.LN10-6),r}},{"fast-isnumeric":185}],527:[function(t,e,r){"use strict";var n=e.exports={},i=t("../plots/geo/constants").locationmodeToLayer,a=t("topojson-client").feature;n.getTopojsonName=function(t){return[t.scope.replace(/ /g,"-"),"_",t.resolution.toString(),"m"].join("")},n.getTopojsonPath=function(t,e){return t+e+".json"},n.getTopojsonFeatures=function(t,e){var r=i[t.locationmode],n=e.objects[r];return a(e,n).features}},{"../plots/geo/constants":582,"topojson-client":310}],528:[function(t,e,r){"use strict";e.exports={moduleType:"locale",name:"en-US",dictionary:{"Click to enter Colorscale title":"Click to enter Colorscale title"},format:{date:"%m/%d/%Y"}}},{}],529:[function(t,e,r){"use strict";e.exports={moduleType:"locale",name:"en",dictionary:{"Click to enter Colorscale title":"Click to enter Colourscale title"},format:{days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],periods:["AM","PM"],dateTime:"%a %b %e %X %Y",date:"%d/%m/%Y",time:"%H:%M:%S",decimal:".",thousands:",",grouping:[3],currency:["$",""],year:"%Y",month:"%b %Y",dayMonth:"%b %-d",dayMonthYear:"%b %-d, %Y"}}},{}],530:[function(t,e,r){"use strict";var n=t("../registry");e.exports=function(t){for(var e,r,i=n.layoutArrayContainers,a=n.layoutArrayRegexes,o=t.split("[")[0],s=0;s0&&o.log("Clearing previous rejected promises from queue."),t._promises=[]},r.cleanLayout=function(t){var e,n;t||(t={}),t.xaxis1&&(t.xaxis||(t.xaxis=t.xaxis1),delete t.xaxis1),t.yaxis1&&(t.yaxis||(t.yaxis=t.yaxis1),delete t.yaxis1),t.scene1&&(t.scene||(t.scene=t.scene1),delete t.scene1);var a=(s.subplotsRegistry.cartesian||{}).attrRegex,l=(s.subplotsRegistry.polar||{}).attrRegex,f=(s.subplotsRegistry.ternary||{}).attrRegex,h=(s.subplotsRegistry.gl3d||{}).attrRegex,m=Object.keys(t);for(e=0;e3?(O.x=1.02,O.xanchor="left"):O.x<-2&&(O.x=-.02,O.xanchor="right"),O.y>3?(O.y=1.02,O.yanchor="bottom"):O.y<-2&&(O.y=-.02,O.yanchor="top")),d(t),"rotate"===t.dragmode&&(t.dragmode="orbit"),c.clean(t),t.template&&t.template.layout&&r.cleanLayout(t.template.layout),t},r.cleanData=function(t){for(var e=0;e0)return t.substr(0,e)}r.hasParent=function(t,e){for(var r=b(e);r;){if(r in t)return!0;r=b(r)}return!1};var _=["x","y","z"];r.clearAxisTypes=function(t,e,r){for(var n=0;n1&&a.warn("Full array edits are incompatible with other edits",f);var y=r[""][""];if(c(y))e.set(null);else{if(!Array.isArray(y))return a.warn("Unrecognized full array edit value",f,y),!0;e.set(y)}return!m&&(h(g,v),p(t),!0)}var x,b,_,w,T,k,A,M,S=Object.keys(r).map(Number).sort(o),E=e.get(),L=E||[],C=u(v,f).get(),P=[],I=-1,O=L.length;for(x=0;xL.length-(A?0:1))a.warn("index out of range",f,_);else if(void 0!==k)T.length>1&&a.warn("Insertion & removal are incompatible with edits to the same index.",f,_),c(k)?P.push(_):A?("add"===k&&(k={}),L.splice(_,0,k),C&&C.splice(_,0,{})):a.warn("Unrecognized full object edit value",f,_,k),-1===I&&(I=_);else for(b=0;b=0;x--)L.splice(P[x],1),C&&C.splice(P[x],1);if(L.length?E||e.set(L):e.set(null),m)return!1;if(h(g,v),d!==i){var z;if(-1===I)z=S;else{for(O=Math.max(L.length,O),z=[],x=0;x=I);x++)z.push(_);for(x=I;x=t.data.length||i<-t.data.length)throw new Error(r+" must be valid indices for gd.data.");if(e.indexOf(i,n+1)>-1||i>=0&&e.indexOf(-t.data.length+i)>-1||i<0&&e.indexOf(t.data.length+i)>-1)throw new Error("each index in "+r+" must be unique.")}}function I(t,e,r){if(!Array.isArray(t.data))throw new Error("gd.data must be an array.");if(void 0===e)throw new Error("currentIndices is a required argument.");if(Array.isArray(e)||(e=[e]),P(t,e,"currentIndices"),void 0===r||Array.isArray(r)||(r=[r]),void 0!==r&&P(t,r,"newIndices"),void 0!==r&&e.length!==r.length)throw new Error("current and new indices must be of equal length.")}function O(t,e,r,n,a){!function(t,e,r,n){var i=o.isPlainObject(n);if(!Array.isArray(t.data))throw new Error("gd.data must be an array");if(!o.isPlainObject(e))throw new Error("update must be a key:value object");if(void 0===r)throw new Error("indices must be an integer or array of integers");for(var a in P(t,r,"indices"),e){if(!Array.isArray(e[a])||e[a].length!==r.length)throw new Error("attribute "+a+" must be an array of length equal to indices array length");if(i&&(!(a in n)||!Array.isArray(n[a])||n[a].length!==e[a].length))throw new Error("when maxPoints is set as a key:value object it must contain a 1:1 corrispondence with the keys and number of traces in the update object")}}(t,e,r,n);for(var l=function(t,e,r,n){var a,l,c,u,f,h=o.isPlainObject(n),p=[];for(var d in Array.isArray(r)||(r=[r]),r=C(r,t.data.length-1),e)for(var m=0;m-1&&-1===r.indexOf("grouptitlefont")?l(r,r.replace("titlefont","title.font")):r.indexOf("titleposition")>-1?l(r,r.replace("titleposition","title.position")):r.indexOf("titleside")>-1?l(r,r.replace("titleside","title.side")):r.indexOf("titleoffset")>-1&&l(r,r.replace("titleoffset","title.offset")):l(r,r.replace("title","title.text"));function l(e,r){t[r]=t[e],delete t[e]}}function U(t,e,r){t=o.getGraphDiv(t),_.clearPromiseQueue(t);var n={};if("string"==typeof e)n[e]=r;else{if(!o.isPlainObject(e))return o.warn("Relayout fail.",e,r),Promise.reject();n=o.extendFlat({},e)}Object.keys(n).length&&(t.changed=!0);var i=W(t,n),a=i.flags;a.calc&&(t.calcdata=void 0);var s=[h.previousPromises];a.layoutReplot?s.push(w.layoutReplot):Object.keys(n).length&&(V(t,a,i)||h.supplyDefaults(t),a.legend&&s.push(w.doLegend),a.layoutstyle&&s.push(w.layoutStyles),a.axrange&&H(s,i.rangesAltered),a.ticks&&s.push(w.doTicksRelayout),a.modebar&&s.push(w.doModeBar),a.camera&&s.push(w.doCamera),a.colorbars&&s.push(w.doColorBars),s.push(M)),s.push(h.rehover,h.redrag),c.add(t,U,[t,i.undoit],U,[t,i.redoit]);var l=o.syncOrAsync(s,t);return l&&l.then||(l=Promise.resolve(t)),l.then((function(){return t.emit("plotly_relayout",i.eventData),t}))}function V(t,e,r){var n=t._fullLayout;if(!e.axrange)return!1;for(var i in e)if("axrange"!==i&&e[i])return!1;for(var a in r.rangesAltered){var o=p.id2name(a),s=t.layout[o],l=n[o];if(l.autorange=s.autorange,s.range&&(l.range=s.range.slice()),l.cleanRange(),l._matchGroup)for(var c in l._matchGroup)if(c!==a){var u=n[p.id2name(c)];u.autorange=l.autorange,u.range=l.range.slice(),u._input.range=l.range.slice()}}return!0}function H(t,e){var r=e?function(t){var r=[],n=!0;for(var i in e){var a=p.getFromId(t,i);if(r.push(i),-1!==(a.ticklabelposition||"").indexOf("inside")&&a._anchorAxis&&r.push(a._anchorAxis._id),a._matchGroup)for(var o in a._matchGroup)e[o]||r.push(o);a.automargin&&(n=!1)}return p.draw(t,r,{skipTitle:n})}:function(t){return p.draw(t,"redraw")};t.push(y,w.doAutoRangeAndConstraints,r,w.drawData,w.finalDraw)}var q=/^[xyz]axis[0-9]*\.range(\[[0|1]\])?$/,G=/^[xyz]axis[0-9]*\.autorange$/,Y=/^[xyz]axis[0-9]*\.domain(\[[0|1]\])?$/;function W(t,e){var r,n,i,a=t.layout,l=t._fullLayout,c=l._guiEditing,h=F(l._preGUI,c),d=Object.keys(e),m=p.list(t),g=o.extendDeepAll({},e),v={};for(j(e),d=Object.keys(e),n=0;n0&&"string"!=typeof O.parts[D];)D--;var B=O.parts[D],N=O.parts[D-1]+"."+B,U=O.parts.slice(0,D).join("."),V=s(t.layout,U).get(),H=s(l,U).get(),W=O.get();if(void 0!==z){M[I]=z,S[I]="reverse"===B?z:R(W);var Z=f.getLayoutValObject(l,O.parts);if(Z&&Z.impliedEdits&&null!==z)for(var J in Z.impliedEdits)E(o.relativeAttr(I,J),Z.impliedEdits[J]);if(-1!==["width","height"].indexOf(I))if(z){E("autosize",null);var K="height"===I?"width":"height";E(K,l[K])}else l[I]=t._initialAutoSize[I];else if("autosize"===I)E("width",z?null:l.width),E("height",z?null:l.height);else if(N.match(q))P(N),s(l,U+"._inputRange").set(null);else if(N.match(G)){P(N),s(l,U+"._inputRange").set(null);var Q=s(l,U).get();Q._inputDomain&&(Q._input.domain=Q._inputDomain.slice())}else N.match(Y)&&s(l,U+"._inputDomain").set(null);if("type"===B){L=V;var $="linear"===H.type&&"log"===z,tt="log"===H.type&&"linear"===z;if($||tt){if(L&&L.range)if(H.autorange)$&&(L.range=L.range[1]>L.range[0]?[1,2]:[2,1]);else{var et=L.range[0],rt=L.range[1];$?(et<=0&&rt<=0&&E(U+".autorange",!0),et<=0?et=rt/1e6:rt<=0&&(rt=et/1e6),E(U+".range[0]",Math.log(et)/Math.LN10),E(U+".range[1]",Math.log(rt)/Math.LN10)):(E(U+".range[0]",Math.pow(10,et)),E(U+".range[1]",Math.pow(10,rt)))}else E(U+".autorange",!0);Array.isArray(l._subplots.polar)&&l._subplots.polar.length&&l[O.parts[0]]&&"radialaxis"===O.parts[1]&&delete l[O.parts[0]]._subplot.viewInitial["radialaxis.range"],u.getComponentMethod("annotations","convertCoords")(t,H,z,E),u.getComponentMethod("images","convertCoords")(t,H,z,E)}else E(U+".autorange",!0),E(U+".range",null);s(l,U+"._inputRange").set(null)}else if(B.match(k)){var nt=s(l,I).get(),it=(z||{}).type;it&&"-"!==it||(it="linear"),u.getComponentMethod("annotations","convertCoords")(t,nt,it,E),u.getComponentMethod("images","convertCoords")(t,nt,it,E)}var at=b.containerArrayMatch(I);if(at){r=at.array,n=at.index;var ot=at.property,st=Z||{editType:"calc"};""!==n&&""===ot&&(b.isAddVal(z)?S[I]=null:b.isRemoveVal(z)?S[I]=(s(a,r).get()||[])[n]:o.warn("unrecognized full object value",e)),T.update(A,st),v[r]||(v[r]={});var lt=v[r][n];lt||(lt=v[r][n]={}),lt[ot]=z,delete e[I]}else"reverse"===B?(V.range?V.range.reverse():(E(U+".autorange",!0),V.range=[1,0]),H.autorange?A.calc=!0:A.plot=!0):(l._has("scatter-like")&&l._has("regl")&&"dragmode"===I&&("lasso"===z||"select"===z)&&"lasso"!==W&&"select"!==W||l._has("gl2d")?A.plot=!0:Z?T.update(A,Z):A.calc=!0,O.set(z))}}for(r in v){b.applyContainerArrayChanges(t,h(a,r),v[r],A,h)||(A.plot=!0)}for(var ct in C){var ut=(L=p.getFromId(t,ct))&&L._constraintGroup;if(ut)for(var ft in A.calc=!0,ut)C[ft]||(p.getFromId(t,ft)._constraintShrinkable=!0)}return(X(t)||e.height||e.width)&&(A.plot=!0),(A.plot||A.calc)&&(A.layoutReplot=!0),{flags:A,rangesAltered:C,undoit:S,redoit:M,eventData:g}}function X(t){var e=t._fullLayout,r=e.width,n=e.height;return t.layout.autosize&&h.plotAutoSize(t,t.layout,e),e.width!==r||e.height!==n}function Z(t,e,n,i){t=o.getGraphDiv(t),_.clearPromiseQueue(t),o.isPlainObject(e)||(e={}),o.isPlainObject(n)||(n={}),Object.keys(e).length&&(t.changed=!0),Object.keys(n).length&&(t.changed=!0);var a=_.coerceTraceIndices(t,i),s=N(t,o.extendFlat({},e),a),l=s.flags,u=W(t,o.extendFlat({},n)),f=u.flags;(l.calc||f.calc)&&(t.calcdata=void 0),l.clearAxisTypes&&_.clearAxisTypes(t,a,n);var p=[];f.layoutReplot?p.push(w.layoutReplot):l.fullReplot?p.push(r._doPlot):(p.push(h.previousPromises),V(t,f,u)||h.supplyDefaults(t),l.style&&p.push(w.doTraceStyle),(l.colorbars||f.colorbars)&&p.push(w.doColorBars),f.legend&&p.push(w.doLegend),f.layoutstyle&&p.push(w.layoutStyles),f.axrange&&H(p,u.rangesAltered),f.ticks&&p.push(w.doTicksRelayout),f.modebar&&p.push(w.doModeBar),f.camera&&p.push(w.doCamera),p.push(M)),p.push(h.rehover,h.redrag),c.add(t,Z,[t,s.undoit,u.undoit,s.traces],Z,[t,s.redoit,u.redoit,s.traces]);var d=o.syncOrAsync(p,t);return d&&d.then||(d=Promise.resolve(t)),d.then((function(){return t.emit("plotly_update",{data:s.eventData,layout:u.eventData}),t}))}function J(t){return function(e){e._fullLayout._guiEditing=!0;var r=t.apply(null,arguments);return e._fullLayout._guiEditing=!1,r}}var K=[{pattern:/^hiddenlabels/,attr:"legend.uirevision"},{pattern:/^((x|y)axis\d*)\.((auto)?range|title\.text)/},{pattern:/axis\d*\.showspikes$/,attr:"modebar.uirevision"},{pattern:/(hover|drag)mode$/,attr:"modebar.uirevision"},{pattern:/^(scene\d*)\.camera/},{pattern:/^(geo\d*)\.(projection|center|fitbounds)/},{pattern:/^(ternary\d*\.[abc]axis)\.(min|title\.text)$/},{pattern:/^(polar\d*\.radialaxis)\.((auto)?range|angle|title\.text)/},{pattern:/^(polar\d*\.angularaxis)\.rotation/},{pattern:/^(mapbox\d*)\.(center|zoom|bearing|pitch)/},{pattern:/^legend\.(x|y)$/,attr:"editrevision"},{pattern:/^(shapes|annotations)/,attr:"editrevision"},{pattern:/^title\.text$/,attr:"editrevision"}],Q=[{pattern:/^selectedpoints$/,attr:"selectionrevision"},{pattern:/(^|value\.)visible$/,attr:"legend.uirevision"},{pattern:/^dimensions\[\d+\]\.constraintrange/},{pattern:/^node\.(x|y|groups)/},{pattern:/^level$/},{pattern:/(^|value\.)name$/},{pattern:/colorbar\.title\.text$/},{pattern:/colorbar\.(x|y)$/,attr:"editrevision"}];function $(t,e){for(var r=0;r1;)if(n.pop(),void 0!==(r=s(e,n.join(".")+".uirevision").get()))return r;return e.uirevision}function et(t,e){for(var r=0;r=i.length?i[0]:i[t]:i}function l(t){return Array.isArray(a)?t>=a.length?a[0]:a[t]:a}function c(t,e){var r=0;return function(){if(t&&++r===e)return t()}}return void 0===n._frameWaitingCnt&&(n._frameWaitingCnt=0),new Promise((function(a,u){function f(){n._currentFrame&&n._currentFrame.onComplete&&n._currentFrame.onComplete();var e=n._currentFrame=n._frameQueue.shift();if(e){var r=e.name?e.name.toString():null;t._fullLayout._currentFrame=r,n._lastFrameAt=Date.now(),n._timeToNext=e.frameOpts.duration,h.transition(t,e.frame.data,e.frame.layout,_.coerceTraceIndices(t,e.frame.traces),e.frameOpts,e.transitionOpts).then((function(){e.onComplete&&e.onComplete()})),t.emit("plotly_animatingframe",{name:r,frame:e.frame,animation:{frame:e.frameOpts,transition:e.transitionOpts}})}else t.emit("plotly_animated"),window.cancelAnimationFrame(n._animationRaf),n._animationRaf=null}function p(){t.emit("plotly_animating"),n._lastFrameAt=-1/0,n._timeToNext=0,n._runningTransitions=0,n._currentFrame=null;var e=function(){n._animationRaf=window.requestAnimationFrame(e),Date.now()-n._lastFrameAt>n._timeToNext&&f()};e()}var d,m,g=0;function v(t){return Array.isArray(i)?g>=i.length?t.transitionOpts=i[g]:t.transitionOpts=i[0]:t.transitionOpts=i,g++,t}var y=[],x=null==e,b=Array.isArray(e);if(!x&&!b&&o.isPlainObject(e))y.push({type:"object",data:v(o.extendFlat({},e))});else if(x||-1!==["string","number"].indexOf(typeof e))for(d=0;d0&&kk)&&A.push(m);y=A}}y.length>0?function(e){if(0!==e.length){for(var i=0;i=0;n--)if(o.isPlainObject(e[n])){var m=e[n].name,g=(u[m]||d[m]||{}).name,v=e[n].name,y=u[g]||d[g];g&&v&&"number"==typeof v&&y&&A<5&&(A++,o.warn('addFrames: overwriting frame "'+(u[g]||d[g]).name+'" with a frame whose name of type "number" also equates to "'+g+'". This is valid but may potentially lead to unexpected behavior since all plotly.js frame names are stored internally as strings.'),5===A&&o.warn("addFrames: This API call has yielded too many of these warnings. For the rest of this call, further warnings about numeric frame names will be suppressed.")),d[m]={name:m},p.push({frame:h.supplyFrameDefaults(e[n]),index:r&&void 0!==r[n]&&null!==r[n]?r[n]:f+n})}p.sort((function(t,e){return t.index>e.index?-1:t.index=0;n--){if("number"==typeof(i=p[n].frame).name&&o.warn("Warning: addFrames accepts frames with numeric names, but the numbers areimplicitly cast to strings"),!i.name)for(;u[i.name="frame "+t._transitionData._counter++];);if(u[i.name]){for(a=0;a=0;r--)n=e[r],a.push({type:"delete",index:n}),s.unshift({type:"insert",index:n,value:i[n]});var l=h.modifyFrames,u=h.modifyFrames,f=[t,s],p=[t,a];return c&&c.add(t,l,f,u,p),h.modifyFrames(t,a)},r.addTraces=function t(e,n,i){e=o.getGraphDiv(e);var a,s,l=[],u=r.deleteTraces,f=t,h=[e,l],p=[e,n];for(function(t,e,r){var n,i;if(!Array.isArray(t.data))throw new Error("gd.data must be an array.");if(void 0===e)throw new Error("traces must be defined.");for(Array.isArray(e)||(e=[e]),n=0;n=0&&r=0&&r=a.length)return!1;if(2===t.dimensions){if(r++,e.length===r)return t;var o=e[r];if(!y(o))return!1;t=a[i][o]}else t=a[i]}else t=a}}return t}function y(t){return t===Math.round(t)&&t>=0}function x(){var t,e,r={};for(t in f(r,o),n.subplotsRegistry){if((e=n.subplotsRegistry[t]).layoutAttributes)if(Array.isArray(e.attr))for(var i=0;i=l.length)return!1;i=(r=(n.transformsRegistry[l[c].type]||{}).attributes)&&r[e[2]],s=3}else{var u=t._module;if(u||(u=(n.modules[t.type||a.type.dflt]||{})._module),!u)return!1;if(!(i=(r=u.attributes)&&r[o])){var f=u.basePlotModule;f&&f.attributes&&(i=f.attributes[o])}i||(i=a[o])}return v(i,e,s)},r.getLayoutValObject=function(t,e){return v(function(t,e){var r,i,a,s,l=t._basePlotModules;if(l){var c;for(r=0;r=i&&(r._input||{})._templateitemname;o&&(a=i);var s,l=e+"["+a+"]";function c(){s={},o&&(s[l]={},s[l].templateitemname=o)}function u(t,e){o?n.nestedProperty(s[l],t).set(e):s[l+"."+t]=e}function f(){var t=s;return c(),t}return c(),{modifyBase:function(t,e){s[t]=e},modifyItem:u,getUpdateObj:f,applyUpdate:function(e,r){e&&u(e,r);var i=f();for(var a in i)n.nestedProperty(t,a).set(i[a])}}}},{"../lib":498,"../plots/attributes":545}],539:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../registry"),a=t("../plots/plots"),o=t("../lib"),s=t("../lib/clear_gl_canvases"),l=t("../components/color"),c=t("../components/drawing"),u=t("../components/titles"),f=t("../components/modebar"),h=t("../plots/cartesian/axes"),p=t("../constants/alignment"),d=t("../plots/cartesian/constraints"),m=d.enforce,g=d.clean,v=t("../plots/cartesian/autorange").doAutoRange;function y(t,e,r){for(var n=0;n=t[1]||i[1]<=t[0])&&(a[0]e[0]))return!0}return!1}function x(t){var e,i,s,u,d,m,g=t._fullLayout,v=g._size,x=v.p,_=h.list(t,"",!0);if(g._paperdiv.style({width:t._context.responsive&&g.autosize&&!t._context._hasZeroWidth&&!t.layout.width?"100%":g.width+"px",height:t._context.responsive&&g.autosize&&!t._context._hasZeroHeight&&!t.layout.height?"100%":g.height+"px"}).selectAll(".main-svg").call(c.setSize,g.width,g.height),t._context.setBackground(t,g.paper_bgcolor),r.drawMainTitle(t),f.manage(t),!g._has("cartesian"))return a.previousPromises(t);function T(t,e,r){var n=t._lw/2;return"x"===t._id.charAt(0)?e?"top"===r?e._offset-x-n:e._offset+e._length+x+n:v.t+v.h*(1-(t.position||0))+n%1:e?"right"===r?e._offset+e._length+x+n:e._offset-x-n:v.l+v.w*(t.position||0)+n%1}for(e=0;e<_.length;e++){var k=(u=_[e])._anchorAxis;u._linepositions={},u._lw=c.crispRound(t,u.linewidth,1),u._mainLinePosition=T(u,k,u.side),u._mainMirrorPosition=u.mirror&&k?T(u,k,p.OPPOSITE_SIDE[u.side]):null}var A=[],M=[],S=[],E=1===l.opacity(g.paper_bgcolor)&&1===l.opacity(g.plot_bgcolor)&&g.paper_bgcolor===g.plot_bgcolor;for(i in g._plots)if((s=g._plots[i]).mainplot)s.bg&&s.bg.remove(),s.bg=void 0;else{var L=s.xaxis.domain,C=s.yaxis.domain,P=s.plotgroup;if(y(L,C,S)){var I=P.node(),O=s.bg=o.ensureSingle(P,"rect","bg");I.insertBefore(O.node(),I.childNodes[0]),M.push(i)}else P.select("rect.bg").remove(),S.push([L,C]),E||(A.push(i),M.push(i))}var z,D,R,F,B,N,j,U,V,H,q,G,Y,W=g._bgLayer.selectAll(".bg").data(A);for(W.enter().append("rect").classed("bg",!0),W.exit().remove(),W.each((function(t){g._plots[t].bg=n.select(this)})),e=0;eT?u.push({code:"unused",traceType:y,templateCount:w,dataCount:T}):T>w&&u.push({code:"reused",traceType:y,templateCount:w,dataCount:T})}}else u.push({code:"data"});if(function t(e,r){for(var n in e)if("_"!==n.charAt(0)){var a=e[n],o=m(e,n,r);i(a)?(Array.isArray(e)&&!1===a._template&&a.templateitemname&&u.push({code:"missing",path:o,templateitemname:a.templateitemname}),t(a,o)):Array.isArray(a)&&g(a)&&t(a,o)}}({data:p,layout:h},""),u.length)return u.map(v)}},{"../lib":498,"../plots/attributes":545,"../plots/plots":614,"./plot_config":536,"./plot_schema":537,"./plot_template":538}],541:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./plot_api"),a=t("../plots/plots"),o=t("../lib"),s=t("../snapshot/helpers"),l=t("../snapshot/tosvg"),c=t("../snapshot/svgtoimg"),u=t("../version").version,f={format:{valType:"enumerated",values:["png","jpeg","webp","svg","full-json"],dflt:"png"},width:{valType:"number",min:1},height:{valType:"number",min:1},scale:{valType:"number",min:0,dflt:1},setBackground:{valType:"any",dflt:!1},imageDataOnly:{valType:"boolean",dflt:!1}};e.exports=function(t,e){var r,h,p,d;function m(t){return!(t in e)||o.validate(e[t],f[t])}if(e=e||{},o.isPlainObject(t)?(r=t.data||[],h=t.layout||{},p=t.config||{},d={}):(t=o.getGraphDiv(t),r=o.extendDeep([],t.data),h=o.extendDeep({},t.layout),p=t._context,d=t._fullLayout||{}),!m("width")&&null!==e.width||!m("height")&&null!==e.height)throw new Error("Height and width should be pixel values.");if(!m("format"))throw new Error("Export format is not "+o.join2(f.format.values,", "," or ")+".");var g={};function v(t,r){return o.coerce(e,g,f,t,r)}var y=v("format"),x=v("width"),b=v("height"),_=v("scale"),w=v("setBackground"),T=v("imageDataOnly"),k=document.createElement("div");k.style.position="absolute",k.style.left="-5000px",document.body.appendChild(k);var A=o.extendFlat({},h);x?A.width=x:null===e.width&&n(d.width)&&(A.width=d.width),b?A.height=b:null===e.height&&n(d.height)&&(A.height=d.height);var M=o.extendFlat({},p,{_exportedPlot:!0,staticPlot:!0,setBackground:w}),S=s.getRedrawFunc(k);function E(){return new Promise((function(t){setTimeout(t,s.getDelay(k._fullLayout))}))}function L(){return new Promise((function(t,e){var r=l(k,y,_),n=k._fullLayout.width,f=k._fullLayout.height;function h(){i.purge(k),document.body.removeChild(k)}if("full-json"===y){var p=a.graphJson(k,!1,"keepdata","object",!0,!0);return p.version=u,p=JSON.stringify(p),h(),t(T?p:s.encodeJSON(p))}if(h(),"svg"===y)return t(T?r:s.encodeSVG(r));var d=document.createElement("canvas");d.id=o.randstr(),c({format:y,width:n,height:f,scale:_,canvas:d,svg:r,promise:!0}).then(t).catch(e)}))}return new Promise((function(t,e){i.newPlot(k,r,A,M).then(S).then(E).then(L).then((function(e){t(function(t){return T?t.replace(s.IMAGE_URL_PREFIX,""):t}(e))})).catch((function(t){e(t)}))}))}},{"../lib":498,"../plots/plots":614,"../snapshot/helpers":637,"../snapshot/svgtoimg":639,"../snapshot/tosvg":641,"../version":1118,"./plot_api":535,"fast-isnumeric":185}],542:[function(t,e,r){"use strict";var n=t("../lib"),i=t("../plots/plots"),a=t("./plot_schema"),o=t("./plot_config").dfltConfig,s=n.isPlainObject,l=Array.isArray,c=n.isArrayOrTypedArray;function u(t,e,r,i,a,o){o=o||[];for(var f=Object.keys(t),h=0;hx.length&&i.push(d("unused",a,v.concat(x.length)));var A,M,S,E,L,C=x.length,P=Array.isArray(k);if(P&&(C=Math.min(C,k.length)),2===b.dimensions)for(M=0;Mx[M].length&&i.push(d("unused",a,v.concat(M,x[M].length)));var I=x[M].length;for(A=0;A<(P?Math.min(I,k[M].length):I);A++)S=P?k[M][A]:k,E=y[M][A],L=x[M][A],n.validate(E,S)?L!==E&&L!==+E&&i.push(d("dynamic",a,v.concat(M,A),E,L)):i.push(d("value",a,v.concat(M,A),E))}else i.push(d("array",a,v.concat(M),y[M]));else for(M=0;M1&&p.push(d("object","layout"))),i.supplyDefaults(m);for(var g=m._fullData,v=r.length,y=0;y0&&Math.round(f)===f))return{vals:i};c=f}for(var h=e.calendar,p="start"===l,d="end"===l,m=t[r+"period0"],g=a(m,h)||0,v=[],y=[],x=[],b=i.length,_=0;_A;)k=o(k,-c,h);for(;k<=A;)k=o(k,c,h);T=o(k,-c,h)}else{for(k=g+(w=Math.round((A-g)/u))*u;k>A;)k-=u;for(;k<=A;)k+=u;T=k-u}v[_]=p?T:d?k:(T+k)/2,y[_]=T,x[_]=k}return{vals:v,starts:y,ends:x}}},{"../../constants/numerical":474,"../../lib":498,"fast-isnumeric":185}],547:[function(t,e,r){"use strict";e.exports={xaxis:{valType:"subplotid",dflt:"x",editType:"calc+clearAxisTypes"},yaxis:{valType:"subplotid",dflt:"y",editType:"calc+clearAxisTypes"}}},{}],548:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("fast-isnumeric"),a=t("../../lib"),o=t("../../constants/numerical").FP_SAFE,s=t("../../registry"),l=t("../../components/drawing"),c=t("./axis_ids"),u=c.getFromId,f=c.isLinked;function h(t,e){var r,n,i=[],o=t._fullLayout,s=d(o,e,0),l=d(o,e,1),c=m(t,e),u=c.min,f=c.max;if(0===u.length||0===f.length)return a.simpleMap(e.range,e.r2l);var h=u[0].val,g=f[0].val;for(r=1;r0&&((T=E-s(x)-l(b))>L?k/T>C&&(_=x,w=b,C=k/T):k/E>C&&(_={val:x.val,nopad:1},w={val:b.val,nopad:1},C=k/E));if(h===g){var P=h-1,I=h+1;if(M)if(0===h)i=[0,1];else{var O=(h>0?f:u).reduce((function(t,e){return Math.max(t,l(e))}),0),z=h/(1-Math.min(.5,O/E));i=h>0?[0,z]:[z,0]}else i=S?[Math.max(0,P),Math.max(1,I)]:[P,I]}else M?(_.val>=0&&(_={val:0,nopad:1}),w.val<=0&&(w={val:0,nopad:1})):S&&(_.val-C*s(_)<0&&(_={val:0,nopad:1}),w.val<=0&&(w={val:1,nopad:1})),C=(w.val-_.val-p(e,x.val,b.val))/(E-s(_)-l(w)),i=[_.val-C*s(_),w.val+C*l(w)];return v&&i.reverse(),a.simpleMap(i,e.l2r||Number)}function p(t,e,r){var n=0;if(t.rangebreaks)for(var i=t.locateBreaks(e,r),a=0;a0?r.ppadplus:r.ppadminus)||r.ppad||0),S=A((t._m>0?r.ppadminus:r.ppadplus)||r.ppad||0),E=A(r.vpadplus||r.vpad),L=A(r.vpadminus||r.vpad);if(!T){if(h=1/0,p=-1/0,w)for(n=0;n0&&(h=a),a>p&&a-o&&(h=a),a>p&&a=I;n--)P(n);return{min:d,max:m,opts:r}},concatExtremes:m};function m(t,e,r){var n,i,a,o=e._id,s=t._fullData,l=t._fullLayout,c=[],f=[];function h(t,e){for(n=0;n=r&&(c.extrapad||!o)){s=!1;break}i(e,c.val)&&c.pad<=r&&(o||!c.extrapad)&&(t.splice(l,1),l--)}if(s){var u=a&&0===e;t.push({val:e,pad:u?0:r,extrapad:!u&&o})}}function x(t){return i(t)&&Math.abs(t)=e}},{"../../components/drawing":383,"../../constants/numerical":474,"../../lib":498,"../../registry":633,"./axis_ids":553,"@plotly/d3":58,"fast-isnumeric":185}],549:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("fast-isnumeric"),a=t("../../plots/plots"),o=t("../../registry"),s=t("../../lib"),l=s.strTranslate,c=t("../../lib/svg_text_utils"),u=t("../../components/titles"),f=t("../../components/color"),h=t("../../components/drawing"),p=t("./layout_attributes"),d=t("./clean_ticks"),m=t("../../constants/numerical"),g=m.ONEMAXYEAR,v=m.ONEAVGYEAR,y=m.ONEMINYEAR,x=m.ONEMAXQUARTER,b=m.ONEAVGQUARTER,_=m.ONEMINQUARTER,w=m.ONEMAXMONTH,T=m.ONEAVGMONTH,k=m.ONEMINMONTH,A=m.ONEWEEK,M=m.ONEDAY,S=M/2,E=m.ONEHOUR,L=m.ONEMIN,C=m.ONESEC,P=m.MINUS_SIGN,I=m.BADNUM,O={K:"zeroline"},z={K:"gridline",L:"path"},D={K:"tick",L:"path"},R={K:"tick",L:"text"},F=t("../../constants/alignment"),B=F.MID_SHIFT,N=F.CAP_SHIFT,j=F.LINE_SPACING,U=F.OPPOSITE_SIDE,V=e.exports={};V.setConvert=t("./set_convert");var H=t("./axis_autotype"),q=t("./axis_ids"),G=q.idSort,Y=q.isLinked;V.id2name=q.id2name,V.name2id=q.name2id,V.cleanId=q.cleanId,V.list=q.list,V.listIds=q.listIds,V.getFromId=q.getFromId,V.getFromTrace=q.getFromTrace;var W=t("./autorange");V.getAutoRange=W.getAutoRange,V.findExtremes=W.findExtremes;function X(t){var e=1e-4*(t[1]-t[0]);return[t[0]-e,t[1]+e]}V.coerceRef=function(t,e,r,n,i,a){var o=n.charAt(n.length-1),l=r._fullLayout._subplots[o+"axis"],c=n+"ref",u={};return i||(i=l[0]||("string"==typeof a?a:a[0])),a||(a=i),l=l.concat(l.map((function(t){return t+" domain"}))),u[c]={valType:"enumerated",values:l.concat(a?"string"==typeof a?[a]:a:[]),dflt:i},s.coerce(t,e,u,c)},V.getRefType=function(t){return void 0===t?t:"paper"===t?"paper":"pixel"===t?"pixel":/( domain)$/.test(t)?"domain":"range"},V.coercePosition=function(t,e,r,n,i,a){var o,l;if("range"!==V.getRefType(n))o=s.ensureNumber,l=r(i,a);else{var c=V.getFromId(e,n);l=r(i,a=c.fraction2r(a)),o=c.cleanPos}t[i]=o(l)},V.cleanPosition=function(t,e,r){return("paper"===r||"pixel"===r?s.ensureNumber:V.getFromId(e,r).cleanPos)(t)},V.redrawComponents=function(t,e){e=e||V.listIds(t);var r=t._fullLayout;function n(n,i,a,s){for(var l=o.getComponentMethod(n,i),c={},u=0;u2e-6||((r-t._forceTick0)/t._minDtick%1+1.000001)%1>2e-6)&&(t._minDtick=0)):t._minDtick=0},V.saveRangeInitial=function(t,e){for(var r=V.list(t,"",!0),n=!1,i=0;i.3*h||u(n)||u(a))){var p=r.dtick/2;t+=t+p.8){var o=Number(r.substr(1));a.exactYears>.8&&o%12==0?t=V.tickIncrement(t,"M6","reverse")+1.5*M:a.exactMonths>.8?t=V.tickIncrement(t,"M1","reverse")+15.5*M:t-=S;var l=V.tickIncrement(t,r);if(l<=n)return l}return t}(y,t,v,c,a)),g=y,0;g<=u;)g=V.tickIncrement(g,v,!1,a);return{start:e.c2r(y,0,a),end:e.c2r(g,0,a),size:v,_dataSpan:u-c}},V.prepTicks=function(t,e){var r=s.simpleMap(t.range,t.r2l,void 0,void 0,e);if(t._dtickInit=t.dtick,t._tick0Init=t.tick0,"auto"===t.tickmode||!t.dtick){var n,a=t.nticks;a||("category"===t.type||"multicategory"===t.type?(n=t.tickfont?s.bigFont(t.tickfont.size||12):15,a=t._length/n):(n="y"===t._id.charAt(0)?40:80,a=s.constrain(t._length/n,4,9)+1),"radialaxis"===t._name&&(a*=2)),"array"===t.tickmode&&(a*=100),t._roughDTick=Math.abs(r[1]-r[0])/a,V.autoTicks(t,t._roughDTick),t._minDtick>0&&t.dtick<2*t._minDtick&&(t.dtick=t._minDtick,t.tick0=t.l2r(t._forceTick0))}"period"===t.ticklabelmode&&function(t){var e;function r(){return!(i(t.dtick)||"M"!==t.dtick.charAt(0))}var n=r(),a=V.getTickFormat(t);if(a){var o=t._dtickInit!==t.dtick;/%[fLQsSMX]/.test(a)||(/%[HI]/.test(a)?(e=E,o&&!n&&t.dticka&&f=o:d<=o;d=V.tickIncrement(d,t.dtick,l,t.calendar)){if(R++,t.rangebreaks&&!l){if(d=u)break}if(P.length>C||d===O)break;O=d;var F=!1;h&&d!==(0|d)&&(F=!0);var B={minor:F,value:d};L>1&&R%L&&(B.skipLabel=!0),P.push(B)}if(p&&function(t,e,r){for(var n=0;n0?(a=n-1,o=n):(a=n,o=n);var s,l=t[a].value,c=t[o].value,u=Math.abs(c-l),f=r||u,h=0;f>=y?h=u>=y&&u<=g?u:v:r===b&&f>=_?h=u>=_&&u<=x?u:b:f>=k?h=u>=k&&u<=w?u:T:r===A&&f>=A?h=A:f>=M?h=M:r===S&&f>=S?h=S:r===E&&f>=E&&(h=E),h>=u&&(h=u,s=!0);var p=i+h;if(e.rangebreaks&&h>0){for(var d=0,m=0;m<84;m++){var L=(m+.5)/84;e.maskBreaks(i*(1-L)+L*p)!==I&&d++}(h*=d/84)||(t[n].drop=!0),s&&u>A&&(h=u)}(h>0||0===n)&&(t[n].periodX=i+h/2)}}(P,t,t._definedDelta),t.rangebreaks){var N="y"===t._id.charAt(0),j=1;"auto"===t.tickmode&&(j=t.tickfont?t.tickfont.size:12);var U=NaN;for(z=P.length-1;z>-1;z--)if(P[z].drop)P.splice(z,1);else{P[z].value=Mt(P[z].value,t);var H=t.c2p(P[z].value);(N?U>H-j:Uu||Gu&&(q.periodX=u),G10||"01-01"!==n.substr(5)?t._tickround="d":t._tickround=+e.substr(1)%12==0?"y":"m";else if(e>=M&&a<=10||e>=15*M)t._tickround="d";else if(e>=L&&a<=16||e>=E)t._tickround="M";else if(e>=C&&a<=19||e>=L)t._tickround="S";else{var o=t.l2r(r+e).replace(/^-/,"").length;t._tickround=Math.max(a,o)-20,t._tickround<0&&(t._tickround=4)}}else if(i(e)||"L"===e.charAt(0)){var s=t.range.map(t.r2d||Number);i(e)||(e=Number(e.substr(1))),t._tickround=2-Math.floor(Math.log(e)/Math.LN10+.01);var l=Math.max(Math.abs(s[0]),Math.abs(s[1])),c=Math.floor(Math.log(l)/Math.LN10+.01),u=void 0===t.minexponent?3:t.minexponent;Math.abs(c)>u&&(ut(t.exponentformat)&&!ft(c)?t._tickexponent=3*Math.round((c-1)/3):t._tickexponent=c)}else t._tickround=null}function lt(t,e,r){var n=t.tickfont||{};return{x:e,dx:0,dy:0,text:r||"",fontSize:n.size,font:n.family,fontColor:n.color}}V.autoTicks=function(t,e){var r;function n(t){return Math.pow(t,Math.floor(Math.log(e)/Math.LN10))}if("date"===t.type){t.tick0=s.dateTick0(t.calendar,0);var a=2*e;if(a>v)e/=v,r=n(10),t.dtick="M"+12*ot(e,r,$);else if(a>T)e/=T,t.dtick="M"+ot(e,1,tt);else if(a>M){t.dtick=ot(e,M,t._hasDayOfWeekBreaks?[1,2,7,14]:rt);var o=V.getTickFormat(t),l="period"===t.ticklabelmode;l&&(t._rawTick0=t.tick0),/%[uVW]/.test(o)?t.tick0=s.dateTick0(t.calendar,2):t.tick0=s.dateTick0(t.calendar,1),l&&(t._dowTick0=t.tick0)}else a>E?t.dtick=ot(e,E,tt):a>L?t.dtick=ot(e,L,et):a>C?t.dtick=ot(e,C,et):(r=n(10),t.dtick=ot(e,r,$))}else if("log"===t.type){t.tick0=0;var c=s.simpleMap(t.range,t.r2l);if(e>.7)t.dtick=Math.ceil(e);else if(Math.abs(c[1]-c[0])<1){var u=1.5*Math.abs((c[1]-c[0])/e);e=Math.abs(Math.pow(10,c[1])-Math.pow(10,c[0]))/u,r=n(10),t.dtick="L"+ot(e,r,$)}else t.dtick=e>.3?"D2":"D1"}else"category"===t.type||"multicategory"===t.type?(t.tick0=0,t.dtick=Math.ceil(Math.max(e,1))):At(t)?(t.tick0=0,r=1,t.dtick=ot(e,r,at)):(t.tick0=0,r=n(10),t.dtick=ot(e,r,$));if(0===t.dtick&&(t.dtick=1),!i(t.dtick)&&"string"!=typeof t.dtick){var f=t.dtick;throw t.dtick=1,"ax.dtick error: "+String(f)}},V.tickIncrement=function(t,e,r,a){var o=r?-1:1;if(i(e))return s.increment(t,o*e);var l=e.charAt(0),c=o*Number(e.substr(1));if("M"===l)return s.incrementMonth(t,c,a);if("L"===l)return Math.log(Math.pow(10,t)+c)/Math.LN10;if("D"===l){var u="D2"===e?it:nt,f=t+.01*o,h=s.roundUp(s.mod(f,1),u,r);return Math.floor(f)+Math.log(n.round(Math.pow(10,h),1))/Math.LN10}throw"unrecognized dtick "+String(e)},V.tickFirst=function(t,e){var r=t.r2l||Number,a=s.simpleMap(t.range,r,void 0,void 0,e),o=a[1] ")}else t._prevDateHead=l,c+="
"+l;e.text=c}(t,o,r,c):"log"===u?function(t,e,r,n,a){var o=t.dtick,l=e.x,c=t.tickformat,u="string"==typeof o&&o.charAt(0);"never"===a&&(a="");n&&"L"!==u&&(o="L3",u="L");if(c||"L"===u)e.text=ht(Math.pow(10,l),t,a,n);else if(i(o)||"D"===u&&s.mod(l+.01,1)<.1){var f=Math.round(l),h=Math.abs(f),p=t.exponentformat;"power"===p||ut(p)&&ft(f)?(e.text=0===f?1:1===f?"10":"10"+(f>1?"":P)+h+"",e.fontSize*=1.25):("e"===p||"E"===p)&&h>2?e.text="1"+p+(f>0?"+":P)+h:(e.text=ht(Math.pow(10,l),t,"","fakehover"),"D1"===o&&"y"===t._id.charAt(0)&&(e.dy-=e.fontSize/6))}else{if("D"!==u)throw"unrecognized dtick "+String(o);e.text=String(Math.round(Math.pow(10,s.mod(l,1)))),e.fontSize*=.75}if("D1"===t.dtick){var d=String(e.text).charAt(0);"0"!==d&&"1"!==d||("y"===t._id.charAt(0)?e.dx-=e.fontSize/4:(e.dy+=e.fontSize/2,e.dx+=(t.range[1]>t.range[0]?1:-1)*e.fontSize*(l<0?.5:.25)))}}(t,o,0,c,m):"category"===u?function(t,e){var r=t._categories[Math.round(e.x)];void 0===r&&(r="");e.text=String(r)}(t,o):"multicategory"===u?function(t,e,r){var n=Math.round(e.x),i=t._categories[n]||[],a=void 0===i[1]?"":String(i[1]),o=void 0===i[0]?"":String(i[0]);r?e.text=o+" - "+a:(e.text=a,e.text2=o)}(t,o,r):At(t)?function(t,e,r,n,i){if("radians"!==t.thetaunit||r)e.text=ht(e.x,t,i,n);else{var a=e.x/180;if(0===a)e.text="0";else{var o=function(t){function e(t,e){return Math.abs(t-e)<=1e-6}var r=function(t){for(var r=1;!e(Math.round(t*r)/r,t);)r*=10;return r}(t),n=t*r,i=Math.abs(function t(r,n){return e(n,0)?r:t(n,r%n)}(n,r));return[Math.round(n/i),Math.round(r/i)]}(a);if(o[1]>=100)e.text=ht(s.deg2rad(e.x),t,i,n);else{var l=e.x<0;1===o[1]?1===o[0]?e.text="\u03c0":e.text=o[0]+"\u03c0":e.text=["",o[0],"","\u2044","",o[1],"","\u03c0"].join(""),l&&(e.text=P+e.text)}}}}(t,o,r,c,m):function(t,e,r,n,i){"never"===i?i="":"all"===t.showexponent&&Math.abs(e.x/t.dtick)<1e-6&&(i="hide");e.text=ht(e.x,t,i,n)}(t,o,0,c,m),n||(t.tickprefix&&!d(t.showtickprefix)&&(o.text=t.tickprefix+o.text),t.ticksuffix&&!d(t.showticksuffix)&&(o.text+=t.ticksuffix)),"boundaries"===t.tickson||t.showdividers){var g=function(e){var r=t.l2p(e);return r>=0&&r<=t._length?e:null};o.xbnd=[g(o.x-.5),g(o.x+t.dtick-.5)]}return o},V.hoverLabelText=function(t,e,r){r&&(t=s.extendFlat({},t,{hoverformat:r}));var n=Array.isArray(e)?e[0]:e,i=Array.isArray(e)?e[1]:void 0;if(void 0!==i&&i!==n)return V.hoverLabelText(t,n,r)+" - "+V.hoverLabelText(t,i,r);var a="log"===t.type&&n<=0,o=V.tickText(t,t.c2l(a?-n:n),"hover").text;return a?0===n?"0":P+o:o};var ct=["f","p","n","\u03bc","m","","k","M","G","T"];function ut(t){return"SI"===t||"B"===t}function ft(t){return t>14||t<-15}function ht(t,e,r,n){var a=t<0,o=e._tickround,l=r||e.exponentformat||"B",c=e._tickexponent,u=V.getTickFormat(e),f=e.separatethousands;if(n){var h={exponentformat:l,minexponent:e.minexponent,dtick:"none"===e.showexponent?e.dtick:i(t)&&Math.abs(t)||1,range:"none"===e.showexponent?e.range.map(e.r2d):[0,t||1]};st(h),o=(Number(h._tickround)||0)+4,c=h._tickexponent,e.hoverformat&&(u=e.hoverformat)}if(u)return e._numFormat(u)(t).replace(/-/g,P);var p,d=Math.pow(10,-o)/2;if("none"===l&&(c=0),(t=Math.abs(t))"+p+"":"B"===l&&9===c?t+="B":ut(l)&&(t+=ct[c/3+5]));return a?P+t:t}function pt(t,e){for(var r=[],n={},i=0;i1&&r=i.min&&t=0,a=u(t,e[1])<=0;return(r||i)&&(n||a)}if(t.tickformatstops&&t.tickformatstops.length>0)switch(t.type){case"date":case"linear":for(e=0;e=o(i)))){r=n;break}break;case"log":for(e=0;e0?r.bottom-f:0,h)))),e.automargin){n={x:0,y:0,r:0,l:0,t:0,b:0};var p=[0,1];if("x"===d){if("b"===l?n[l]=e._depth:(n[l]=e._depth=Math.max(r.width>0?f-r.top:0,h),p.reverse()),r.width>0){var g=r.right-(e._offset+e._length);g>0&&(n.xr=1,n.r=g);var v=e._offset-r.left;v>0&&(n.xl=0,n.l=v)}}else if("l"===l?n[l]=e._depth=Math.max(r.height>0?f-r.left:0,h):(n[l]=e._depth=Math.max(r.height>0?r.right-f:0,h),p.reverse()),r.height>0){var y=r.bottom-(e._offset+e._length);y>0&&(n.yb=0,n.b=y);var x=e._offset-r.top;x>0&&(n.yt=1,n.t=x)}n[m]="free"===e.anchor?e.position:e._anchorAxis.domain[p[0]],e.title.text!==c._dfltTitle[d]&&(n[l]+=gt(e)+(e.title.standoff||0)),e.mirror&&"free"!==e.anchor&&((i={x:0,y:0,r:0,l:0,t:0,b:0})[u]=e.linewidth,e.mirror&&!0!==e.mirror&&(i[u]+=h),!0===e.mirror||"ticks"===e.mirror?i[m]=e._anchorAxis.domain[p[1]]:"all"!==e.mirror&&"allticks"!==e.mirror||(i[m]=[e._counterDomainMin,e._counterDomainMax][p[1]]))}K&&(s=o.getComponentMethod("rangeslider","autoMarginOpts")(t,e)),a.autoMargin(t,xt(e),n),a.autoMargin(t,bt(e),i),a.autoMargin(t,_t(e),s)})),r.skipTitle||K&&"bottom"===e.side||Z.push((function(){return function(t,e){var r,n=t._fullLayout,i=e._id,a=i.charAt(0),o=e.title.font.size;if(e.title.hasOwnProperty("standoff"))r=e._depth+e.title.standoff+gt(e);else{var s=St(e);if("multicategory"===e.type)r=e._depth;else{var l=1.5*o;s&&(l=.5*o,"outside"===e.ticks&&(l+=e.ticklen)),r=10+l+(e.linewidth?e.linewidth-1:0)}s||(r+="x"===a?"top"===e.side?o*(e.showticklabels?1:0):o*(e.showticklabels?1.5:.5):"right"===e.side?o*(e.showticklabels?1:.5):o*(e.showticklabels?.5:0))}var c,f,p,d,m=V.getPxPosition(t,e);"x"===a?(f=e._offset+e._length/2,p="top"===e.side?m-r:m+r):(p=e._offset+e._length/2,f="right"===e.side?m+r:m-r,c={rotate:"-90",offset:0});if("multicategory"!==e.type){var g=e._selections[e._id+"tick"];if(d={selection:g,side:e.side},g&&g.node()&&g.node().parentNode){var v=h.getTranslate(g.node().parentNode);d.offsetLeft=v.x,d.offsetTop=v.y}e.title.hasOwnProperty("standoff")&&(d.pad=0)}return u.draw(t,i+"title",{propContainer:e,propName:e._name+".title.text",placeholder:n._dfltTitle[a],avoid:d,transform:c,attributes:{x:f,y:p,"text-anchor":"middle"}})}(t,e)})),s.syncOrAsync(Z)}}function Q(t){var r=p+(t||"tick");return w[r]||(w[r]=function(t,e){var r,n,i,a;t._selections[e].size()?(r=1/0,n=-1/0,i=1/0,a=-1/0,t._selections[e].each((function(){var t=yt(this),e=h.bBox(t.node().parentNode);r=Math.min(r,e.top),n=Math.max(n,e.bottom),i=Math.min(i,e.left),a=Math.max(a,e.right)}))):(r=0,n=0,i=0,a=0);return{top:r,bottom:n,left:i,right:a,height:n-r,width:a-i}}(e,r)),w[r]}},V.getTickSigns=function(t){var e=t._id.charAt(0),r={x:"top",y:"right"}[e],n=t.side===r?1:-1,i=[-1,1,n,-n];return"inside"!==t.ticks==("x"===e)&&(i=i.map((function(t){return-t}))),t.side&&i.push({l:-1,t:-1,r:1,b:1}[t.side.charAt(0)]),i},V.makeTransTickFn=function(t){return"x"===t._id.charAt(0)?function(e){return l(t._offset+t.l2p(e.x),0)}:function(e){return l(0,t._offset+t.l2p(e.x))}},V.makeTransTickLabelFn=function(t){var e=function(t){var e=t.ticklabelposition||"",r=function(t){return-1!==e.indexOf(t)},n=r("top"),i=r("left"),a=r("right"),o=r("bottom"),s=r("inside"),l=o||i||n||a;if(!l&&!s)return[0,0];var c=t.side,u=l?(t.tickwidth||0)/2:0,f=3,h=t.tickfont?t.tickfont.size:12;(o||n)&&(u+=h*N,f+=(t.linewidth||0)/2);(i||a)&&(u+=(t.linewidth||0)/2,f+=3);s&&"top"===c&&(f-=h*(1-N));(i||n)&&(u=-u);"bottom"!==c&&"right"!==c||(f=-f);return[l?u:0,s?f:0]}(t),r=e[0],n=e[1];return"x"===t._id.charAt(0)?function(e){return l(r+t._offset+t.l2p(dt(e)),n)}:function(e){return l(n,r+t._offset+t.l2p(dt(e)))}},V.makeTickPath=function(t,e,r,n){n=void 0!==n?n:t.ticklen;var i=t._id.charAt(0),a=(t.linewidth||1)/2;return"x"===i?"M0,"+(e+a*r)+"v"+n*r:"M"+(e+a*r)+",0h"+n*r},V.makeLabelFns=function(t,e,r){var n=t.ticklabelposition||"",a=function(t){return-1!==n.indexOf(t)},o=a("top"),l=a("left"),c=a("right"),u=a("bottom")||l||o||c,f=a("inside"),h="inside"===n&&"inside"===t.ticks||!f&&"outside"===t.ticks&&"boundaries"!==t.tickson,p=0,d=0,m=h?t.ticklen:0;if(f?m*=-1:u&&(m=0),h&&(p+=m,r)){var g=s.deg2rad(r);p=m*Math.cos(g)+1,d=m*Math.sin(g)}t.showticklabels&&(h||t.showline)&&(p+=.2*t.tickfont.size);var v,y,x,b,_,w={labelStandoff:p+=(t.linewidth||1)/2*(f?-1:1),labelShift:d},T=0,k=t.side,A=t._id.charAt(0),M=t.tickangle;if("x"===A)b=(_=!f&&"bottom"===k||f&&"top"===k)?1:-1,f&&(b*=-1),v=d*b,y=e+p*b,x=_?1:-.2,90===Math.abs(M)&&(f?x+=B:x=-90===M&&"bottom"===k?N:90===M&&"top"===k?B:.5,T=B/2*(M/90)),w.xFn=function(t){return t.dx+v+T*t.fontSize},w.yFn=function(t){return t.dy+y+t.fontSize*x},w.anchorFn=function(t,e){if(u){if(l)return"end";if(c)return"start"}return i(e)&&0!==e&&180!==e?e*b<0!==f?"end":"start":"middle"},w.heightFn=function(e,r,n){return r<-60||r>60?-.5*n:"top"===t.side!==f?-n:0};else if("y"===A){if(b=(_=!f&&"left"===k||f&&"right"===k)?1:-1,f&&(b*=-1),v=p,y=d*b,x=0,f||90!==Math.abs(M)||(x=-90===M&&"left"===k||90===M&&"right"===k?N:.5),f){var S=i(M)?+M:0;if(0!==S){var E=s.deg2rad(S);T=Math.abs(Math.sin(E))*N*b,x=0}}w.xFn=function(t){return t.dx+e-(v+t.fontSize*x)*b+T*t.fontSize},w.yFn=function(t){return t.dy+y+t.fontSize*B},w.anchorFn=function(t,e){return i(e)&&90===Math.abs(e)?"middle":_?"end":"start"},w.heightFn=function(e,r,n){return"right"===t.side&&(r*=-1),r<-30?-n:r<30?-.5*n:0}}return w},V.drawTicks=function(t,e,r){r=r||{};var n=e._id+"tick",i=r.vals;"period"===e.ticklabelmode&&(i=i.slice()).shift();var a=r.layer.selectAll("path."+n).data(e.ticks?i:[],mt);a.exit().remove(),a.enter().append("path").classed(n,1).classed("ticks",1).classed("crisp",!1!==r.crisp).call(f.stroke,e.tickcolor).style("stroke-width",h.crispRound(t,e.tickwidth,1)+"px").attr("d",r.path).style("display",null),Et(e,[D]),a.attr("transform",r.transFn)},V.drawGrid=function(t,e,r){r=r||{};var n=e._id+"grid",i=r.vals,a=r.counterAxis;if(!1===e.showgrid)i=[];else if(a&&V.shouldShowZeroLine(t,e,a))for(var o="array"===e.tickmode,s=0;sp||a.leftp||a.top+(e.tickangle?0:t.fontSize/4)e["_visibleLabelMin_"+r._id]?l.style("display","none"):"tick"!==t.K||i||l.style("display",null)}))}))}))}))},x(v,g+1?g:m);var b=null;e._selections&&(e._selections[f]=v);var _=[function(){return y.length&&Promise.all(y)}];e.automargin&&a._redrawFromAutoMarginCount&&90===g?(b=90,_.push((function(){x(v,g)}))):_.push((function(){if(x(v,m),p.length&&"x"===u&&!i(m)&&("log"!==e.type||"D"!==String(e.dtick).charAt(0))){b=0;var t,n=0,a=[];if(v.each((function(t){n=Math.max(n,t.fontSize);var r=e.l2p(t.x),i=yt(this),o=h.bBox(i.node());a.push({top:0,bottom:10,height:10,left:r-o.width/2,right:r+o.width/2+2,width:o.width+2})})),"boundaries"!==e.tickson&&!e.showdividers||r.secondary){var o=p.length,l=Math.abs((p[o-1].x-p[0].x)*e._m)/(o-1),c=e.ticklabelposition||"",f=function(t){return-1!==c.indexOf(t)},d=f("top"),g=f("left"),y=f("right"),_=f("bottom")||g||d||y?(e.tickwidth||0)+6:0,w=l<2.5*n||"multicategory"===e.type||"realaxis"===e._name;for(t=0;t1)for(n=1;n2*o}(i,e))return"date";var g="strict"!==r.autotypenumbers;return function(t,e){for(var r=t.length,n=f(r),i=0,o=0,s={},u=0;u2*i}(i,g)?"category":function(t,e){for(var r=t.length,n=0;n=2){var l,c,u="";if(2===o.length)for(l=0;l<2;l++)if(c=x(o[l])){u=m;break}var f=i("pattern",u);if(f===m)for(l=0;l<2;l++)(c=x(o[l]))&&(e.bounds[l]=o[l]=c-1);if(f)for(l=0;l<2;l++)switch(c=o[l],f){case m:if(!n(c))return void(e.enabled=!1);if((c=+c)!==Math.floor(c)||c<0||c>=7)return void(e.enabled=!1);e.bounds[l]=o[l]=c;break;case g:if(!n(c))return void(e.enabled=!1);if((c=+c)<0||c>24)return void(e.enabled=!1);e.bounds[l]=o[l]=c}if(!1===r.autorange){var h=r.range;if(h[0]h[1])return void(e.enabled=!1)}else if(o[0]>h[0]&&o[1]n?1:-1:+(t.substr(1)||1)-+(e.substr(1)||1)},r.ref2id=function(t){return!!/^[xyz]/.test(t)&&t.split(" ")[0]},r.isLinked=function(t,e){return a(e,t._axisMatchGroups)||a(e,t._axisConstraintGroups)}},{"../../registry":633,"./constants":556}],554:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){if("category"===e.type){var i,a=t.categoryarray,o=Array.isArray(a)&&a.length>0;o&&(i="array");var s,l=r("categoryorder",i);"array"===l&&(s=r("categoryarray")),o||"array"!==l||(l=e.categoryorder="trace"),"trace"===l?e._initialCategories=[]:"array"===l?e._initialCategories=s.slice():(s=function(t,e){var r,n,i,a=e.dataAttr||t._id.charAt(0),o={};if(e.axData)r=e.axData;else for(r=[],n=0;nn?i.substr(n):a.substr(r))+o:i+a+t*e:o}function g(t,e){for(var r=e._size,n=r.h/r.w,i={},a=Object.keys(t),o=0;oc*x)||T)for(r=0;rO&&FP&&(P=F);h/=(P-C)/(2*I),C=l.l2r(C),P=l.l2r(P),l.range=l._input.range=S=0?Math.min(t,.9):1/(1/Math.max(t,-.3)+3.222))}function N(t,e,r,n,i){return t.append("path").attr("class","zoombox").style({fill:e>.2?"rgba(0,0,0,0)":"rgba(255,255,255,0)","stroke-width":0}).attr("transform",c(r,n)).attr("d",i+"Z")}function j(t,e,r){return t.append("path").attr("class","zoombox-corners").style({fill:f.background,stroke:f.defaultLine,"stroke-width":1,opacity:0}).attr("transform",c(e,r)).attr("d","M0,0Z")}function U(t,e,r,n,i,a){t.attr("d",n+"M"+r.l+","+r.t+"v"+r.h+"h"+r.w+"v-"+r.h+"h-"+r.w+"Z"),V(t,e,i,a)}function V(t,e,r,n){r||(t.transition().style("fill",n>.2?"rgba(0,0,0,0.4)":"rgba(255,255,255,0.3)").duration(200),e.transition().style("opacity",1).duration(200))}function H(t){n.select(t).selectAll(".zoombox,.js-zoombox-backdrop,.js-zoombox-menu,.zoombox-corners").remove()}function q(t){I&&t.data&&t._context.showTips&&(i.notifier(i._(t,"Double-click to zoom back out"),"long"),I=!1)}function G(t){var e=Math.floor(Math.min(t.b-t.t,t.r-t.l,P)/2);return"M"+(t.l-3.5)+","+(t.t-.5+e)+"h3v"+-e+"h"+e+"v-3h-"+(e+3)+"ZM"+(t.r+3.5)+","+(t.t-.5+e)+"h-3v"+-e+"h"+-e+"v-3h"+(e+3)+"ZM"+(t.r+3.5)+","+(t.b+.5-e)+"h-3v"+e+"h"+-e+"v3h"+(e+3)+"ZM"+(t.l-3.5)+","+(t.b+.5-e)+"h3v"+e+"h"+e+"v3h-"+(e+3)+"Z"}function Y(t,e,r,n,a){for(var o,s,l,c,u=!1,f={},h={},p=(a||{}).xaHash,d=(a||{}).yaHash,m=0;m=0)i._fullLayout._deactivateShape(i);else{var o=i._fullLayout.clickmode;if(H(i),2!==t||vt||qt(),gt)o.indexOf("select")>-1&&S(r,i,J,K,e.id,Pt),o.indexOf("event")>-1&&p.click(i,r,e.id);else if(1===t&&vt){var s=m?O:I,c="s"===m||"w"===v?0:1,f=s._name+".range["+c+"]",h=function(t,e){var r,n=t.range[e],i=Math.abs(n-t.range[1-e]);return"date"===t.type?n:"log"===t.type?(r=Math.ceil(Math.max(0,-Math.log(i)/Math.LN10))+3,a("."+r+"g")(Math.pow(10,n))):(r=Math.floor(Math.log(Math.abs(n))/Math.LN10)-Math.floor(Math.log(i)/Math.LN10)+4,a("."+String(r)+"g")(n))}(s,c),d="left",g="middle";if(s.fixedrange)return;m?(g="n"===m?"top":"bottom","right"===s.side&&(d="right")):"e"===v&&(d="right"),i._context.showAxisRangeEntryBoxes&&n.select(bt).call(u.makeEditable,{gd:i,immediate:!0,background:i._fullLayout.paper_bgcolor,text:String(h),fill:s.tickfont?s.tickfont.color:"#444",horizontalAlign:d,verticalAlign:g}).on("edit",(function(t){var e=s.d2r(t);void 0!==e&&l.call("_guiRelayout",i,f,e)}))}}}function zt(e,r){if(t._transitioningWithDuration)return!1;var n=Math.max(0,Math.min(tt,pt*e+_t)),i=Math.max(0,Math.min(et,dt*r+wt)),a=Math.abs(n-_t),o=Math.abs(i-wt);function s(){St="",Tt.r=Tt.l,Tt.t=Tt.b,Lt.attr("d","M0,0Z")}if(Tt.l=Math.min(_t,n),Tt.r=Math.max(_t,n),Tt.t=Math.min(wt,i),Tt.b=Math.max(wt,i),rt.isSubplotConstrained)a>P||o>P?(St="xy",a/tt>o/et?(o=a*et/tt,wt>i?Tt.t=wt-o:Tt.b=wt+o):(a=o*tt/et,_t>n?Tt.l=_t-a:Tt.r=_t+a),Lt.attr("d",G(Tt))):s();else if(nt.isSubplotConstrained)if(a>P||o>P){St="xy";var l=Math.min(Tt.l/tt,(et-Tt.b)/et),c=Math.max(Tt.r/tt,(et-Tt.t)/et);Tt.l=l*tt,Tt.r=c*tt,Tt.b=(1-l)*et,Tt.t=(1-c)*et,Lt.attr("d",G(Tt))}else s();else!at||o0){var u;if(nt.isSubplotConstrained||!it&&1===at.length){for(u=0;um[1]-1/4096&&(e.domain=s),i.noneOrAll(t.domain,e.domain,s)}return r("layer"),e}},{"../../lib":498,"fast-isnumeric":185}],568:[function(t,e,r){"use strict";var n=t("./show_dflt");e.exports=function(t,e,r,i,a){a||(a={});var o=a.tickSuffixDflt,s=n(t);r("tickprefix")&&r("showtickprefix",s),r("ticksuffix",o)&&r("showticksuffix",s)}},{"./show_dflt":572}],569:[function(t,e,r){"use strict";var n=t("../../constants/alignment").FROM_BL;e.exports=function(t,e,r){void 0===r&&(r=n[t.constraintoward||"center"]);var i=[t.r2l(t.range[0]),t.r2l(t.range[1])],a=i[0]+(i[1]-i[0])*r;t.range=t._input.range=[t.l2r(a+(i[0]-a)*e),t.l2r(a+(i[1]-a)*e)],t.setScale()}},{"../../constants/alignment":466}],570:[function(t,e,r){"use strict";var n=t("polybooljs"),i=t("../../registry"),a=t("../../components/drawing").dashStyle,o=t("../../components/color"),s=t("../../components/fx"),l=t("../../components/fx/helpers").makeEventData,c=t("../../components/dragelement/helpers"),u=c.freeMode,f=c.rectMode,h=c.drawMode,p=c.openMode,d=c.selectMode,m=t("../../components/shapes/draw_newshape/display_outlines"),g=t("../../components/shapes/draw_newshape/helpers").handleEllipse,v=t("../../components/shapes/draw_newshape/newshapes"),y=t("../../lib"),x=t("../../lib/polygon"),b=t("../../lib/throttle"),_=t("./axis_ids").getFromId,w=t("../../lib/clear_gl_canvases"),T=t("../../plot_api/subroutines").redrawReglTraces,k=t("./constants"),A=k.MINSELECT,M=x.filter,S=x.tester,E=t("./handle_outline").clearSelect,L=t("./helpers"),C=L.p2r,P=L.axValue,I=L.getTransform;function O(t,e,r,n,i,a,o){var s,l,c,u,f,h,d,g,v,y=e._hoverdata,x=e._fullLayout.clickmode.indexOf("event")>-1,b=[];if(function(t){return t&&Array.isArray(t)&&!0!==t[0].hoverOnBox}(y)){F(t,e,a);var _=function(t,e){var r,n,i=t[0],a=-1,o=[];for(n=0;n0?function(t,e){var r,n,i,a=[];for(i=0;i0&&a.push(r);if(1===a.length&&a[0]===e.searchInfo&&(n=e.searchInfo.cd[0].trace).selectedpoints.length===e.pointNumbers.length){for(i=0;i1)return!1;if((i+=r.selectedpoints.length)>1)return!1}return 1===i}(s)&&(h=j(_))){for(o&&o.remove(),v=0;v=0&&n._fullLayout._deactivateShape(n),h(e)){var a=n._fullLayout._zoomlayer.selectAll(".select-outline-"+r.id);if(a&&n._fullLayout._drawing){var o=v(a,t);o&&i.call("_guiRelayout",n,{shapes:o}),n._fullLayout._drawing=!1}}r.selection={},r.selection.selectionDefs=t.selectionDefs=[],r.selection.mergedPolygons=t.mergedPolygons=[]}function N(t,e,r,n){var i,a,o,s=[],l=e.map((function(t){return t._id})),c=r.map((function(t){return t._id}));for(o=0;o0?n[0]:r;return!!e.selectedpoints&&e.selectedpoints.indexOf(i)>-1}function U(t,e,r){var n,a,o,s;for(n=0;n=0)L._fullLayout._deactivateShape(L);else if(!_){var r=z.clickmode;b.done(mt).then((function(){if(b.clear(mt),2===t){for(ft.remove(),$=0;$-1&&O(e,L,i.xaxes,i.yaxes,i.subplot,i,ft),"event"===r&&L.emit("plotly_selected",void 0);s.click(L,e)})).catch(y.error)}},i.doneFn=function(){dt.remove(),b.done(mt).then((function(){b.clear(mt),i.gd.emit("plotly_selected",et),Q&&i.selectionDefs&&(Q.subtract=ut,i.selectionDefs.push(Q),i.mergedPolygons.length=0,[].push.apply(i.mergedPolygons,K)),i.doneFnCompleted&&i.doneFnCompleted(gt)})).catch(y.error),_&&B(i)}},clearSelect:E,clearSelectionsCache:B,selectOnClick:O}},{"../../components/color":361,"../../components/dragelement/helpers":379,"../../components/drawing":383,"../../components/fx":401,"../../components/fx/helpers":397,"../../components/shapes/draw_newshape/display_outlines":449,"../../components/shapes/draw_newshape/helpers":450,"../../components/shapes/draw_newshape/newshapes":451,"../../lib":498,"../../lib/clear_gl_canvases":482,"../../lib/polygon":510,"../../lib/throttle":525,"../../plot_api/subroutines":539,"../../registry":633,"./axis_ids":553,"./constants":556,"./handle_outline":560,"./helpers":561,polybooljs:249}],571:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-time-format").utcFormat,a=t("../../lib"),o=a.numberFormat,s=t("fast-isnumeric"),l=a.cleanNumber,c=a.ms2DateTime,u=a.dateTime2ms,f=a.ensureNumber,h=a.isArrayOrTypedArray,p=t("../../constants/numerical"),d=p.FP_SAFE,m=p.BADNUM,g=p.LOG_CLIP,v=p.ONEWEEK,y=p.ONEDAY,x=p.ONEHOUR,b=p.ONEMIN,_=p.ONESEC,w=t("./axis_ids"),T=t("./constants"),k=T.HOUR_PATTERN,A=T.WEEKDAY_PATTERN;function M(t){return Math.pow(10,t)}function S(t){return null!=t}e.exports=function(t,e){e=e||{};var r=t._id||"x",p=r.charAt(0);function E(e,r){if(e>0)return Math.log(e)/Math.LN10;if(e<=0&&r&&t.range&&2===t.range.length){var n=t.range[0],i=t.range[1];return.5*(n+i-2*g*Math.abs(n-i))}return m}function L(e,r,n,i){if((i||{}).msUTC&&s(e))return+e;var o=u(e,n||t.calendar);if(o===m){if(!s(e))return m;e=+e;var l=Math.floor(10*a.mod(e+.05,1)),c=Math.round(e-l/10);o=u(new Date(c))+l/10}return o}function C(e,r,n){return c(e,r,n||t.calendar)}function P(e){return t._categories[Math.round(e)]}function I(e){if(S(e)){if(void 0===t._categoriesMap&&(t._categoriesMap={}),void 0!==t._categoriesMap[e])return t._categoriesMap[e];t._categories.push("number"==typeof e?String(e):e);var r=t._categories.length-1;return t._categoriesMap[e]=r,r}return m}function O(e){if(t._categoriesMap)return t._categoriesMap[e]}function z(t){var e=O(t);return void 0!==e?e:s(t)?+t:void 0}function D(t){return s(t)?+t:O(t)}function R(t,e,r){return n.round(r+e*t,2)}function F(t,e,r){return(t-r)/e}var B=function(e){return s(e)?R(e,t._m,t._b):m},N=function(e){return F(e,t._m,t._b)};if(t.rangebreaks){var j="y"===p;B=function(e){if(!s(e))return m;var r=t._rangebreaks.length;if(!r)return R(e,t._m,t._b);var n=j;t.range[0]>t.range[1]&&(n=!n);for(var i=n?-1:1,a=i*e,o=0,l=0;lu)){o=a<(c+u)/2?l:l+1;break}o=l+1}var f=t._B[o]||0;return isFinite(f)?R(e,t._m2,f):0},N=function(e){var r=t._rangebreaks.length;if(!r)return F(e,t._m,t._b);for(var n=0,i=0;it._rangebreaks[i].pmax&&(n=i+1);return F(e,t._m2,t._B[n])}}t.c2l="log"===t.type?E:f,t.l2c="log"===t.type?M:f,t.l2p=B,t.p2l=N,t.c2p="log"===t.type?function(t,e){return B(E(t,e))}:B,t.p2c="log"===t.type?function(t){return M(N(t))}:N,-1!==["linear","-"].indexOf(t.type)?(t.d2r=t.r2d=t.d2c=t.r2c=t.d2l=t.r2l=l,t.c2d=t.c2r=t.l2d=t.l2r=f,t.d2p=t.r2p=function(e){return t.l2p(l(e))},t.p2d=t.p2r=N,t.cleanPos=f):"log"===t.type?(t.d2r=t.d2l=function(t,e){return E(l(t),e)},t.r2d=t.r2c=function(t){return M(l(t))},t.d2c=t.r2l=l,t.c2d=t.l2r=f,t.c2r=E,t.l2d=M,t.d2p=function(e,r){return t.l2p(t.d2r(e,r))},t.p2d=function(t){return M(N(t))},t.r2p=function(e){return t.l2p(l(e))},t.p2r=N,t.cleanPos=f):"date"===t.type?(t.d2r=t.r2d=a.identity,t.d2c=t.r2c=t.d2l=t.r2l=L,t.c2d=t.c2r=t.l2d=t.l2r=C,t.d2p=t.r2p=function(e,r,n){return t.l2p(L(e,0,n))},t.p2d=t.p2r=function(t,e,r){return C(N(t),e,r)},t.cleanPos=function(e){return a.cleanDate(e,m,t.calendar)}):"category"===t.type?(t.d2c=t.d2l=I,t.r2d=t.c2d=t.l2d=P,t.d2r=t.d2l_noadd=z,t.r2c=function(e){var r=D(e);return void 0!==r?r:t.fraction2r(.5)},t.l2r=t.c2r=f,t.r2l=D,t.d2p=function(e){return t.l2p(t.r2c(e))},t.p2d=function(t){return P(N(t))},t.r2p=t.d2p,t.p2r=N,t.cleanPos=function(t){return"string"==typeof t&&""!==t?t:f(t)}):"multicategory"===t.type&&(t.r2d=t.c2d=t.l2d=P,t.d2r=t.d2l_noadd=z,t.r2c=function(e){var r=z(e);return void 0!==r?r:t.fraction2r(.5)},t.r2c_just_indices=O,t.l2r=t.c2r=f,t.r2l=z,t.d2p=function(e){return t.l2p(t.r2c(e))},t.p2d=function(t){return P(N(t))},t.r2p=t.d2p,t.p2r=N,t.cleanPos=function(t){return Array.isArray(t)||"string"==typeof t&&""!==t?t:f(t)},t.setupMultiCategory=function(n){var i,o,s=t._traceIndices,l=t._matchGroup;if(l&&0===t._categories.length)for(var c in l)if(c!==r){var u=e[w.id2name(c)];s=s.concat(u._traceIndices)}var f=[[0,{}],[0,{}]],d=[];for(i=0;id&&(o[n]=d),o[0]===o[1]){var c=Math.max(1,Math.abs(1e-6*o[0]));o[0]-=c,o[1]+=c}}else a.nestedProperty(t,e).set(i)},t.setScale=function(r){var n=e._size;if(t.overlaying){var i=w.getFromId({_fullLayout:e},t.overlaying);t.domain=i.domain}var a=r&&t._r?"_r":"range",o=t.calendar;t.cleanRange(a);var s,l,c=t.r2l(t[a][0],o),u=t.r2l(t[a][1],o),f="y"===p;if((f?(t._offset=n.t+(1-t.domain[1])*n.h,t._length=n.h*(t.domain[1]-t.domain[0]),t._m=t._length/(c-u),t._b=-t._m*u):(t._offset=n.l+t.domain[0]*n.w,t._length=n.w*(t.domain[1]-t.domain[0]),t._m=t._length/(u-c),t._b=-t._m*c),t._rangebreaks=[],t._lBreaks=0,t._m2=0,t._B=[],t.rangebreaks)&&(t._rangebreaks=t.locateBreaks(Math.min(c,u),Math.max(c,u)),t._rangebreaks.length)){for(s=0;su&&(h=!h),h&&t._rangebreaks.reverse();var d=h?-1:1;for(t._m2=d*t._length/(Math.abs(u-c)-t._lBreaks),t._B.push(-t._m2*(f?u:c)),s=0;si&&(i+=7,oi&&(i+=24,o=n&&o=n&&e=s.min&&(ts.max&&(s.max=n),i=!1)}i&&c.push({min:t,max:n})}};for(n=0;nr.duration?(!function(){for(var r={},n=0;n rect").call(o.setTranslate,0,0).call(o.setScale,1,1),t.plot.call(o.setTranslate,e._offset,r._offset).call(o.setScale,1,1);var n=t.plot.selectAll(".scatterlayer .trace");n.selectAll(".point").call(o.setPointGroupScale,1,1),n.selectAll(".textpoint").call(o.setTextPointsScale,1,1),n.call(o.hideOutsideRangePoints,t)}function g(e,r){var n=e.plotinfo,i=n.xaxis,l=n.yaxis,c=i._length,u=l._length,f=!!e.xr1,h=!!e.yr1,p=[];if(f){var d=a.simpleMap(e.xr0,i.r2l),m=a.simpleMap(e.xr1,i.r2l),g=d[1]-d[0],v=m[1]-m[0];p[0]=(d[0]*(1-r)+r*m[0]-d[0])/(d[1]-d[0])*c,p[2]=c*(1-r+r*v/g),i.range[0]=i.l2r(d[0]*(1-r)+r*m[0]),i.range[1]=i.l2r(d[1]*(1-r)+r*m[1])}else p[0]=0,p[2]=c;if(h){var y=a.simpleMap(e.yr0,l.r2l),x=a.simpleMap(e.yr1,l.r2l),b=y[1]-y[0],_=x[1]-x[0];p[1]=(y[1]*(1-r)+r*x[1]-y[1])/(y[0]-y[1])*u,p[3]=u*(1-r+r*_/b),l.range[0]=i.l2r(y[0]*(1-r)+r*x[0]),l.range[1]=l.l2r(y[1]*(1-r)+r*x[1])}else p[1]=0,p[3]=u;s.drawOne(t,i,{skipTitle:!0}),s.drawOne(t,l,{skipTitle:!0}),s.redrawComponents(t,[i._id,l._id]);var w=f?c/p[2]:1,T=h?u/p[3]:1,k=f?p[0]:0,A=h?p[1]:0,M=f?p[0]/p[2]*c:0,S=h?p[1]/p[3]*u:0,E=i._offset-M,L=l._offset-S;n.clipRect.call(o.setTranslate,k,A).call(o.setScale,1/w,1/T),n.plot.call(o.setTranslate,E,L).call(o.setScale,w,T),o.setPointGroupScale(n.zoomScalePts,1/w,1/T),o.setTextPointsScale(n.zoomScaleTxt,1/w,1/T)}s.redrawComponents(t)}},{"../../components/drawing":383,"../../lib":498,"../../registry":633,"./axes":549,"@plotly/d3":58}],577:[function(t,e,r){"use strict";var n=t("../../registry").traceIs,i=t("./axis_autotype");function a(t){return{v:"x",h:"y"}[t.orientation||"v"]}function o(t,e){var r=a(t),i=n(t,"box-violin"),o=n(t._fullInput||{},"candlestick");return i&&!o&&e===r&&void 0===t[r]&&void 0===t[r+"0"]}e.exports=function(t,e,r,s){r("autotypenumbers",s.autotypenumbersDflt),"-"===r("type",(s.splomStash||{}).type)&&(!function(t,e){if("-"!==t.type)return;var r,s=t._id,l=s.charAt(0);-1!==s.indexOf("scene")&&(s=l);var c=function(t,e,r){for(var n=0;n0&&(i["_"+r+"axes"]||{})[e])return i;if((i[r+"axis"]||r)===e){if(o(i,r))return i;if((i[r]||[]).length||i[r+"0"])return i}}}(e,s,l);if(!c)return;if("histogram"===c.type&&l==={v:"y",h:"x"}[c.orientation||"v"])return void(t.type="linear");var u=l+"calendar",f=c[u],h={noMultiCategory:!n(c,"cartesian")||n(c,"noMultiCategory")};"box"===c.type&&c._hasPreCompStats&&l==={h:"x",v:"y"}[c.orientation||"v"]&&(h.noMultiCategory=!0);if(h.autotypenumbers=t.autotypenumbers,o(c,l)){var p=a(c),d=[];for(r=0;r0?".":"")+a;i.isPlainObject(o)?l(o,e,s,n+1):e(s,a,o)}}))}r.manageCommandObserver=function(t,e,n,o){var s={},l=!0;e&&e._commandObserver&&(s=e._commandObserver),s.cache||(s.cache={}),s.lookupTable={};var c=r.hasSimpleAPICommandBindings(t,n,s.lookupTable);if(e&&e._commandObserver){if(c)return s;if(e._commandObserver.remove)return e._commandObserver.remove(),e._commandObserver=null,s}if(c){a(t,c,s.cache),s.check=function(){if(l){var e=a(t,c,s.cache);return e.changed&&o&&void 0!==s.lookupTable[e.value]&&(s.disable(),Promise.resolve(o({value:e.value,type:c.type,prop:c.prop,traces:c.traces,index:s.lookupTable[e.value]})).then(s.enable,s.enable)),e.changed}};for(var u=["plotly_relayout","plotly_redraw","plotly_restyle","plotly_update","plotly_animatingframe","plotly_afterplot"],f=0;f0&&i<0&&(i+=360);var s=(i-n)/4;return{type:"Polygon",coordinates:[[[n,a],[n,o],[n+s,o],[n+2*s,o],[n+3*s,o],[i,o],[i,a],[i-s,a],[i-2*s,a],[i-3*s,a],[n,a]]]}}e.exports=function(t){return new M(t)},S.plot=function(t,e,r){var n=this,i=e[this.id],a=[],o=!1;for(var s in w.layerNameToAdjective)if("frame"!==s&&i["show"+s]){o=!0;break}for(var l=0;l0&&a._module.calcGeoJSON(i,e)}if(!this.updateProjection(t,e)){this.viewInitial&&this.scope===r.scope||this.saveViewInitial(r),this.scope=r.scope,this.updateBaseLayers(e,r),this.updateDims(e,r),this.updateFx(e,r),d.generalUpdatePerTraceModule(this.graphDiv,this,t,r);var o=this.layers.frontplot.select(".scatterlayer");this.dataPoints.point=o.selectAll(".point"),this.dataPoints.text=o.selectAll("text"),this.dataPaths.line=o.selectAll(".js-line");var s=this.layers.backplot.select(".choroplethlayer");this.dataPaths.choropleth=s.selectAll("path"),this.render()}},S.updateProjection=function(t,e){var r=this.graphDiv,n=e[this.id],l=e._size,u=n.domain,f=n.projection,h=n.lonaxis,p=n.lataxis,d=h._ax,m=p._ax,v=this.projection=function(t){var e=t.projection,r=e.type,n=w.projNames[r];n="geo"+c.titleCase(n);for(var l=(i[n]||s[n])(),u=t._isSatellite?180*Math.acos(1/e.distance)/Math.PI:t._isClipped?w.lonaxisSpan[r]/2:null,f=["center","rotate","parallels","clipExtent"],h=function(t){return t?l:[]},p=0;pu*Math.PI/180}return!1},l.getPath=function(){return a().projection(l)},l.getBounds=function(t){return l.getPath().bounds(t)},l.precision(w.precision),t._isSatellite&&l.tilt(e.tilt).distance(e.distance);u&&l.clipAngle(u-w.clipPad);return l}(n),y=[[l.l+l.w*u.x[0],l.t+l.h*(1-u.y[1])],[l.l+l.w*u.x[1],l.t+l.h*(1-u.y[0])]],x=n.center||{},b=f.rotation||{},_=h.range||[],T=p.range||[];if(n.fitbounds){d._length=y[1][0]-y[0][0],m._length=y[1][1]-y[0][1],d.range=g(r,d),m.range=g(r,m);var k=(d.range[0]+d.range[1])/2,A=(m.range[0]+m.range[1])/2;if(n._isScoped)x={lon:k,lat:A};else if(n._isClipped){x={lon:k,lat:A},b={lon:k,lat:A,roll:b.roll};var M=f.type,S=w.lonaxisSpan[M]/2||180,L=w.lataxisSpan[M]/2||90;_=[k-S,k+S],T=[A-L,A+L]}else x={lon:k,lat:A},b={lon:k,lat:b.lat,roll:b.roll}}v.center([x.lon-b.lon,x.lat-b.lat]).rotate([-b.lon,-b.lat,b.roll]).parallels(f.parallels);var C=E(_,T);v.fitExtent(y,C);var P=this.bounds=v.getBounds(C),I=this.fitScale=v.scale(),O=v.translate();if(n.fitbounds){var z=v.getBounds(E(d.range,m.range)),D=Math.min((P[1][0]-P[0][0])/(z[1][0]-z[0][0]),(P[1][1]-P[0][1])/(z[1][1]-z[0][1]));isFinite(D)?v.scale(D*I):c.warn("Something went wrong during"+this.id+"fitbounds computations.")}else v.scale(f.scale*I);var R=this.midPt=[(P[0][0]+P[1][0])/2,(P[0][1]+P[1][1])/2];if(v.translate([O[0]+(R[0]-O[0]),O[1]+(R[1]-O[1])]).clipExtent(P),n._isAlbersUsa){var F=v([x.lon,x.lat]),B=v.translate();v.translate([B[0]-(F[0]-B[0]),B[1]-(F[1]-B[1])])}},S.updateBaseLayers=function(t,e){var r=this,i=r.topojson,a=r.layers,o=r.basePaths;function s(t){return"lonaxis"===t||"lataxis"===t}function l(t){return Boolean(w.lineLayers[t])}function c(t){return Boolean(w.fillLayers[t])}var u=(this.hasChoropleth?w.layersForChoropleth:w.layers).filter((function(t){return l(t)||c(t)?e["show"+t]:!s(t)||e[t].showgrid})),p=r.framework.selectAll(".layer").data(u,String);p.exit().each((function(t){delete a[t],delete o[t],n.select(this).remove()})),p.enter().append("g").attr("class",(function(t){return"layer "+t})).each((function(t){var e=a[t]=n.select(this);"bg"===t?r.bgRect=e.append("rect").style("pointer-events","all"):s(t)?o[t]=e.append("path").style("fill","none"):"backplot"===t?e.append("g").classed("choroplethlayer",!0):"frontplot"===t?e.append("g").classed("scatterlayer",!0):l(t)?o[t]=e.append("path").style("fill","none").style("stroke-miterlimit",2):c(t)&&(o[t]=e.append("path").style("stroke","none"))})),p.order(),p.each((function(r){var n=o[r],a=w.layerNameToAdjective[r];"frame"===r?n.datum(w.sphereSVG):l(r)||c(r)?n.datum(A(i,i.objects[r])):s(r)&&n.datum(function(t,e,r){var n,i,a,o=e[t],s=w.scopeDefaults[e.scope];"lonaxis"===t?(n=s.lonaxisRange,i=s.lataxisRange,a=function(t,e){return[t,e]}):"lataxis"===t&&(n=s.lataxisRange,i=s.lonaxisRange,a=function(t,e){return[e,t]});var l={type:"linear",range:[n[0],n[1]-1e-6],tick0:o.tick0,dtick:o.dtick};m.setConvert(l,r);var c=m.calcTicks(l);e.isScoped||"lonaxis"!==t||c.pop();for(var u=c.length,f=new Array(u),h=0;h-1&&b(n.event,i,[r.xaxis],[r.yaxis],r.id,f),s.indexOf("event")>-1&&p.click(i,n.event))}))}function h(t){return r.projection.invert([t[0]+r.xaxis._offset,t[1]+r.yaxis._offset])}},S.makeFramework=function(){var t=this,e=t.graphDiv,r=e._fullLayout,i="clip"+r._uid+t.id;t.clipDef=r._clips.append("clipPath").attr("id",i),t.clipRect=t.clipDef.append("rect"),t.framework=n.select(t.container).append("g").attr("class","geo "+t.id).call(h.setClipUrl,i,e),t.project=function(e){var r=t.projection(e);return r?[r[0]-t.xaxis._offset,r[1]-t.yaxis._offset]:[null,null]},t.xaxis={_id:"x",c2p:function(e){return t.project(e)[0]}},t.yaxis={_id:"y",c2p:function(e){return t.project(e)[1]}},t.mockAxis={type:"linear",showexponent:"all",exponentformat:"B"},m.setConvert(t.mockAxis,r)},S.saveViewInitial=function(t){var e,r=t.center||{},n=t.projection,i=n.rotation||{};this.viewInitial={fitbounds:t.fitbounds,"projection.scale":n.scale},e=t._isScoped?{"center.lon":r.lon,"center.lat":r.lat}:t._isClipped?{"projection.rotation.lon":i.lon,"projection.rotation.lat":i.lat}:{"center.lon":r.lon,"center.lat":r.lat,"projection.rotation.lon":i.lon},c.extendFlat(this.viewInitial,e)},S.render=function(){var t,e=this.projection,r=e.getPath();function n(t){var r=e(t.lonlat);return r?u(r[0],r[1]):null}function i(t){return e.isLonLatOverEdges(t.lonlat)?"none":null}for(t in this.basePaths)this.basePaths[t].attr("d",r);for(t in this.dataPaths)this.dataPaths[t].attr("d",(function(t){return r(t.geojson)}));for(t in this.dataPoints)this.dataPoints[t].attr("display",i).attr("transform",n)}},{"../../components/color":361,"../../components/dragelement":380,"../../components/drawing":383,"../../components/fx":401,"../../lib":498,"../../lib/geo_location_utils":491,"../../lib/topojson_utils":527,"../../registry":633,"../cartesian/autorange":548,"../cartesian/axes":549,"../cartesian/select":570,"../plots":614,"./constants":582,"./zoom":587,"@plotly/d3":58,"d3-geo":109,"d3-geo-projection":108,"topojson-client":310}],584:[function(t,e,r){"use strict";var n=t("../../plots/get_data").getSubplotCalcData,i=t("../../lib").counterRegex,a=t("./geo"),o="geo",s=i(o),l={};l.geo={valType:"subplotid",dflt:o,editType:"calc"},e.exports={attr:o,name:o,idRoot:o,idRegex:s,attrRegex:s,attributes:l,layoutAttributes:t("./layout_attributes"),supplyLayoutDefaults:t("./layout_defaults"),plot:function(t){for(var e=t._fullLayout,r=t.calcdata,i=e._subplots.geo,s=0;s0&&P<0&&(P+=360);var I,O,z,D=(C+P)/2;if(!p){var R=d?f.projRotate:[D,0,0];I=r("projection.rotation.lon",R[0]),r("projection.rotation.lat",R[1]),r("projection.rotation.roll",R[2]),r("showcoastlines",!d&&x)&&(r("coastlinecolor"),r("coastlinewidth")),r("showocean",!!x&&void 0)&&r("oceancolor")}(p?(O=-96.6,z=38.7):(O=d?D:I,z=(L[0]+L[1])/2),r("center.lon",O),r("center.lat",z),m&&(r("projection.tilt"),r("projection.distance")),g)&&r("projection.parallels",f.projParallels||[0,60]);r("projection.scale"),r("showland",!!x&&void 0)&&r("landcolor"),r("showlakes",!!x&&void 0)&&r("lakecolor"),r("showrivers",!!x&&void 0)&&(r("rivercolor"),r("riverwidth")),r("showcountries",d&&"usa"!==u&&x)&&(r("countrycolor"),r("countrywidth")),("usa"===u||"north america"===u&&50===c)&&(r("showsubunits",x),r("subunitcolor"),r("subunitwidth")),d||r("showframe",x)&&(r("framecolor"),r("framewidth")),r("bgcolor"),r("fitbounds")&&(delete e.projection.scale,d?(delete e.center.lon,delete e.center.lat):v?(delete e.center.lon,delete e.center.lat,delete e.projection.rotation.lon,delete e.projection.rotation.lat,delete e.lonaxis.range,delete e.lataxis.range):(delete e.center.lon,delete e.center.lat,delete e.projection.rotation.lon))}e.exports=function(t,e,r){i(t,e,r,{type:"geo",attributes:s,handleDefaults:c,fullData:r,partition:"y"})}},{"../../lib":498,"../get_data":588,"../subplot_defaults":627,"./constants":582,"./layout_attributes":585}],587:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../registry"),o=Math.PI/180,s=180/Math.PI,l={cursor:"pointer"},c={cursor:"auto"};function u(t,e){return n.behavior.zoom().translate(e.translate()).scale(e.scale())}function f(t,e,r){var n=t.id,o=t.graphDiv,s=o.layout,l=s[n],c=o._fullLayout,u=c[n],f={},h={};function p(t,e){f[n+"."+t]=i.nestedProperty(l,t).get(),a.call("_storeDirectGUIEdit",s,c._preGUI,f);var r=i.nestedProperty(u,t);r.get()!==e&&(r.set(e),i.nestedProperty(l,t).set(e),h[n+"."+t]=e)}r(p),p("projection.scale",e.scale()/t.fitScale),p("fitbounds",!1),o.emit("plotly_relayout",h)}function h(t,e){var r=u(0,e);function i(r){var n=e.invert(t.midPt);r("center.lon",n[0]),r("center.lat",n[1])}return r.on("zoomstart",(function(){n.select(this).style(l)})).on("zoom",(function(){e.scale(n.event.scale).translate(n.event.translate),t.render();var r=e.invert(t.midPt);t.graphDiv.emit("plotly_relayouting",{"geo.projection.scale":e.scale()/t.fitScale,"geo.center.lon":r[0],"geo.center.lat":r[1]})})).on("zoomend",(function(){n.select(this).style(c),f(t,e,i)})),r}function p(t,e){var r,i,a,o,s,h,p,d,m,g=u(0,e);function v(t){return e.invert(t)}function y(r){var n=e.rotate(),i=e.invert(t.midPt);r("projection.rotation.lon",-n[0]),r("center.lon",i[0]),r("center.lat",i[1])}return g.on("zoomstart",(function(){n.select(this).style(l),r=n.mouse(this),i=e.rotate(),a=e.translate(),o=i,s=v(r)})).on("zoom",(function(){if(h=n.mouse(this),function(t){var r=v(t);if(!r)return!0;var n=e(r);return Math.abs(n[0]-t[0])>2||Math.abs(n[1]-t[1])>2}(r))return g.scale(e.scale()),void g.translate(e.translate());e.scale(n.event.scale),e.translate([a[0],n.event.translate[1]]),s?v(h)&&(d=v(h),p=[o[0]+(d[0]-s[0]),i[1],i[2]],e.rotate(p),o=p):s=v(r=h),m=!0,t.render();var l=e.rotate(),c=e.invert(t.midPt);t.graphDiv.emit("plotly_relayouting",{"geo.projection.scale":e.scale()/t.fitScale,"geo.center.lon":c[0],"geo.center.lat":c[1],"geo.projection.rotation.lon":-l[0]})})).on("zoomend",(function(){n.select(this).style(c),m&&f(t,e,y)})),g}function d(t,e){var r,i={r:e.rotate(),k:e.scale()},a=u(0,e),o=function(t){var e=0,r=arguments.length,i=[];for(;++ed?(a=(f>0?90:-90)-p,i=0):(a=Math.asin(f/d)*s-p,i=Math.sqrt(d*d-f*f));var m=180-a-2*p,g=(Math.atan2(h,u)-Math.atan2(c,i))*s,v=(Math.atan2(h,u)-Math.atan2(c,-i))*s;return b(r[0],r[1],a,g)<=b(r[0],r[1],m,v)?[a,g,r[2]]:[m,v,r[2]]}function b(t,e,r,n){var i=_(r-t),a=_(n-e);return Math.sqrt(i*i+a*a)}function _(t){return(t%360+540)%360-180}function w(t,e,r){var n=r*o,i=t.slice(),a=0===e?1:0,s=2===e?1:2,l=Math.cos(n),c=Math.sin(n);return i[a]=t[a]*l-t[s]*c,i[s]=t[s]*l+t[a]*c,i}function T(t){return[Math.atan2(2*(t[0]*t[1]+t[2]*t[3]),1-2*(t[1]*t[1]+t[2]*t[2]))*s,Math.asin(Math.max(-1,Math.min(1,2*(t[0]*t[2]-t[3]*t[1]))))*s,Math.atan2(2*(t[0]*t[3]+t[1]*t[2]),1-2*(t[2]*t[2]+t[3]*t[3]))*s]}function k(t,e){for(var r=0,n=0,i=t.length;nMath.abs(s)?(c.boxEnd[1]=c.boxStart[1]+Math.abs(a)*_*(s>=0?1:-1),c.boxEnd[1]l[3]&&(c.boxEnd[1]=l[3],c.boxEnd[0]=c.boxStart[0]+(l[3]-c.boxStart[1])/Math.abs(_))):(c.boxEnd[0]=c.boxStart[0]+Math.abs(s)/_*(a>=0?1:-1),c.boxEnd[0]l[2]&&(c.boxEnd[0]=l[2],c.boxEnd[1]=c.boxStart[1]+(l[2]-c.boxStart[0])*Math.abs(_)))}}else c.boxEnabled?(a=c.boxStart[0]!==c.boxEnd[0],s=c.boxStart[1]!==c.boxEnd[1],a||s?(a&&(g(0,c.boxStart[0],c.boxEnd[0]),t.xaxis.autorange=!1),s&&(g(1,c.boxStart[1],c.boxEnd[1]),t.yaxis.autorange=!1),t.relayoutCallback()):t.glplot.setDirty(),c.boxEnabled=!1,c.boxInited=!1):c.boxInited&&(c.boxInited=!1);break;case"pan":c.boxEnabled=!1,c.boxInited=!1,e?(c.panning||(c.dragStart[0]=n,c.dragStart[1]=i),Math.abs(c.dragStart[0]-n).999&&(m="turntable"):m="turntable")}else m="turntable";r("dragmode",m),r("hovermode",n.getDfltFromLayout("hovermode"))}e.exports=function(t,e,r){var i=e._basePlotModules.length>1;o(t,e,r,{type:"gl3d",attributes:l,handleDefaults:u,fullLayout:e,font:e.font,fullData:r,getDfltFromLayout:function(e){if(!i)return n.validate(t[e],l[e])?t[e]:void 0},autotypenumbersDflt:e.autotypenumbers,paper_bgcolor:e.paper_bgcolor,calendar:e.calendar})}},{"../../../components/color":361,"../../../lib":498,"../../../registry":633,"../../get_data":588,"../../subplot_defaults":627,"./axis_defaults":596,"./layout_attributes":599}],599:[function(t,e,r){"use strict";var n=t("./axis_attributes"),i=t("../../domain").attributes,a=t("../../../lib/extend").extendFlat,o=t("../../../lib").counterRegex;function s(t,e,r){return{x:{valType:"number",dflt:t,editType:"camera"},y:{valType:"number",dflt:e,editType:"camera"},z:{valType:"number",dflt:r,editType:"camera"},editType:"camera"}}e.exports={_arrayAttrRegexps:[o("scene",".annotations",!0)],bgcolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"plot"},camera:{up:a(s(0,0,1),{}),center:a(s(0,0,0),{}),eye:a(s(1.25,1.25,1.25),{}),projection:{type:{valType:"enumerated",values:["perspective","orthographic"],dflt:"perspective",editType:"calc"},editType:"calc"},editType:"camera"},domain:i({name:"scene",editType:"plot"}),aspectmode:{valType:"enumerated",values:["auto","cube","data","manual"],dflt:"auto",editType:"plot",impliedEdits:{"aspectratio.x":void 0,"aspectratio.y":void 0,"aspectratio.z":void 0}},aspectratio:{x:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},y:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},z:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},editType:"plot",impliedEdits:{aspectmode:"manual"}},xaxis:n,yaxis:n,zaxis:n,dragmode:{valType:"enumerated",values:["orbit","turntable","zoom","pan",!1],editType:"plot"},hovermode:{valType:"enumerated",values:["closest",!1],dflt:"closest",editType:"modebar"},uirevision:{valType:"any",editType:"none"},editType:"plot",_deprecated:{cameraposition:{valType:"info_array",editType:"camera"}}}},{"../../../lib":498,"../../../lib/extend":488,"../../domain":579,"./axis_attributes":595}],600:[function(t,e,r){"use strict";var n=t("../../../lib/str2rgbarray"),i=["xaxis","yaxis","zaxis"];function a(){this.enabled=[!0,!0,!0],this.colors=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.drawSides=[!0,!0,!0],this.lineWidth=[1,1,1]}a.prototype.merge=function(t){for(var e=0;e<3;++e){var r=t[i[e]];r.visible?(this.enabled[e]=r.showspikes,this.colors[e]=n(r.spikecolor),this.drawSides[e]=r.spikesides,this.lineWidth[e]=r.spikethickness):(this.enabled[e]=!1,this.drawSides[e]=!1)}},e.exports=function(t){var e=new a;return e.merge(t),e}},{"../../../lib/str2rgbarray":523}],601:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.axesOptions,r=t.glplot.axesPixels,s=t.fullSceneLayout,l=[[],[],[]],c=0;c<3;++c){var u=s[a[c]];if(u._length=(r[c].hi-r[c].lo)*r[c].pixelsPerDataUnit/t.dataScale[c],Math.abs(u._length)===1/0||isNaN(u._length))l[c]=[];else{u._input_range=u.range.slice(),u.range[0]=r[c].lo/t.dataScale[c],u.range[1]=r[c].hi/t.dataScale[c],u._m=1/(t.dataScale[c]*r[c].pixelsPerDataUnit),u.range[0]===u.range[1]&&(u.range[0]-=1,u.range[1]+=1);var f=u.tickmode;if("auto"===u.tickmode){u.tickmode="linear";var h=u.nticks||i.constrain(u._length/40,4,9);n.autoTicks(u,Math.abs(u.range[1]-u.range[0])/h)}for(var p=n.calcTicks(u,{msUTC:!0}),d=0;d/g," "));l[c]=p,u.tickmode=f}}e.ticks=l;for(c=0;c<3;++c){o[c]=.5*(t.glplot.bounds[0][c]+t.glplot.bounds[1][c]);for(d=0;d<2;++d)e.bounds[d][c]=t.glplot.bounds[d][c]}t.contourLevels=function(t){for(var e=new Array(3),r=0;r<3;++r){for(var n=t[r],i=new Array(n.length),a=0;ar.deltaY?1.1:1/1.1,a=t.glplot.getAspectratio();t.glplot.setAspectratio({x:n*a.x,y:n*a.y,z:n*a.z})}i(t)}}),!!c&&{passive:!1}),t.glplot.canvas.addEventListener("mousemove",(function(){if(!1!==t.fullSceneLayout.dragmode&&0!==t.camera.mouseListener.buttons){var e=n();t.graphDiv.emit("plotly_relayouting",e)}})),t.staticMode||t.glplot.canvas.addEventListener("webglcontextlost",(function(r){e&&e.emit&&e.emit("plotly_webglcontextlost",{event:r,layer:t.id})}),!1)),t.glplot.oncontextloss=function(){t.recoverContext()},t.glplot.onrender=function(){t.render()},!0},w.render=function(){var t,e=this,r=e.graphDiv,n=e.svgContainer,i=e.container.getBoundingClientRect();r._fullLayout._calcInverseTransform(r);var a=r._fullLayout._invScaleX,o=r._fullLayout._invScaleY,s=i.width*a,l=i.height*o;n.setAttributeNS(null,"viewBox","0 0 "+s+" "+l),n.setAttributeNS(null,"width",s),n.setAttributeNS(null,"height",l),b(e),e.glplot.axes.update(e.axesOptions);for(var c=Object.keys(e.traces),u=null,h=e.glplot.selection,m=0;m")):"isosurface"===t.type||"volume"===t.type?(T.valueLabel=p.hoverLabelText(e._mockAxis,e._mockAxis.d2l(h.traceCoordinate[3]),t.valuehoverformat),S.push("value: "+T.valueLabel),h.textLabel&&S.push(h.textLabel),x=S.join("
")):x=h.textLabel;var E={x:h.traceCoordinate[0],y:h.traceCoordinate[1],z:h.traceCoordinate[2],data:_._input,fullData:_,curveNumber:_.index,pointNumber:w};d.appendArrayPointValue(E,_,w),t._module.eventData&&(E=_._module.eventData(E,h,_,{},w));var L={points:[E]};if(e.fullSceneLayout.hovermode){var C=[];d.loneHover({trace:_,x:(.5+.5*y[0]/y[3])*s,y:(.5-.5*y[1]/y[3])*l,xLabel:T.xLabel,yLabel:T.yLabel,zLabel:T.zLabel,text:x,name:u.name,color:d.castHoverOption(_,w,"bgcolor")||u.color,borderColor:d.castHoverOption(_,w,"bordercolor"),fontFamily:d.castHoverOption(_,w,"font.family"),fontSize:d.castHoverOption(_,w,"font.size"),fontColor:d.castHoverOption(_,w,"font.color"),nameLength:d.castHoverOption(_,w,"namelength"),textAlign:d.castHoverOption(_,w,"align"),hovertemplate:f.castOption(_,w,"hovertemplate"),hovertemplateLabels:f.extendFlat({},E,T),eventData:[E]},{container:n,gd:r,inOut_bbox:C}),E.bbox=C[0]}h.buttons&&h.distance<5?r.emit("plotly_click",L):r.emit("plotly_hover",L),this.oldEventData=L}else d.loneUnhover(n),this.oldEventData&&r.emit("plotly_unhover",this.oldEventData),this.oldEventData=void 0;e.drawAnnotations(e)},w.recoverContext=function(){var t=this;t.glplot.dispose();var e=function(){t.glplot.gl.isContextLost()?requestAnimationFrame(e):t.initializeGLPlot()?t.plot.apply(t,t.plotArgs):f.error("Catastrophic and unrecoverable WebGL error. Context lost.")};requestAnimationFrame(e)};var k=["xaxis","yaxis","zaxis"];function A(t,e,r){for(var n=t.fullSceneLayout,i=0;i<3;i++){var a=k[i],o=a.charAt(0),s=n[a],l=e[o],c=e[o+"calendar"],u=e["_"+o+"length"];if(f.isArrayOrTypedArray(l))for(var h,p=0;p<(u||l.length);p++)if(f.isArrayOrTypedArray(l[p]))for(var d=0;dg[1][a])g[0][a]=-1,g[1][a]=1;else{var L=g[1][a]-g[0][a];g[0][a]-=L/32,g[1][a]+=L/32}if("reversed"===s.autorange){var C=g[0][a];g[0][a]=g[1][a],g[1][a]=C}}else{var P=s.range;g[0][a]=s.r2l(P[0]),g[1][a]=s.r2l(P[1])}g[0][a]===g[1][a]&&(g[0][a]-=1,g[1][a]+=1),v[a]=g[1][a]-g[0][a],this.glplot.setBounds(a,{min:g[0][a]*h[a],max:g[1][a]*h[a]})}var I=c.aspectmode;if("cube"===I)d=[1,1,1];else if("manual"===I){var O=c.aspectratio;d=[O.x,O.y,O.z]}else{if("auto"!==I&&"data"!==I)throw new Error("scene.js aspectRatio was not one of the enumerated types");var z=[1,1,1];for(a=0;a<3;++a){var D=y[l=(s=c[k[a]]).type];z[a]=Math.pow(D.acc,1/D.count)/h[a]}d="data"===I||Math.max.apply(null,z)/Math.min.apply(null,z)<=4?z:[1,1,1]}c.aspectratio.x=u.aspectratio.x=d[0],c.aspectratio.y=u.aspectratio.y=d[1],c.aspectratio.z=u.aspectratio.z=d[2],this.glplot.setAspectratio(c.aspectratio),this.viewInitial.aspectratio||(this.viewInitial.aspectratio={x:c.aspectratio.x,y:c.aspectratio.y,z:c.aspectratio.z}),this.viewInitial.aspectmode||(this.viewInitial.aspectmode=c.aspectmode);var R=c.domain||null,F=e._size||null;if(R&&F){var B=this.container.style;B.position="absolute",B.left=F.l+R.x[0]*F.w+"px",B.top=F.t+(1-R.y[1])*F.h+"px",B.width=F.w*(R.x[1]-R.x[0])+"px",B.height=F.h*(R.y[1]-R.y[0])+"px"}this.glplot.redraw()}},w.destroy=function(){this.glplot&&(this.camera.mouseListener.enabled=!1,this.container.removeEventListener("wheel",this.camera.wheelListener),this.camera=null,this.glplot.dispose(),this.container.parentNode.removeChild(this.container),this.glplot=null)},w.getCamera=function(){var t;return this.camera.view.recalcMatrix(this.camera.view.lastT()),{up:{x:(t=this.camera).up[0],y:t.up[1],z:t.up[2]},center:{x:t.center[0],y:t.center[1],z:t.center[2]},eye:{x:t.eye[0],y:t.eye[1],z:t.eye[2]},projection:{type:!0===t._ortho?"orthographic":"perspective"}}},w.setViewport=function(t){var e,r=t.camera;this.camera.lookAt.apply(this,[[(e=r).eye.x,e.eye.y,e.eye.z],[e.center.x,e.center.y,e.center.z],[e.up.x,e.up.y,e.up.z]]),this.glplot.setAspectratio(t.aspectratio),"orthographic"===r.projection.type!==this.camera._ortho&&(this.glplot.redraw(),this.glplot.clearRGBA(),this.glplot.dispose(),this.initializeGLPlot())},w.isCameraChanged=function(t){var e=this.getCamera(),r=f.nestedProperty(t,this.id+".camera").get();function n(t,e,r,n){var i=["up","center","eye"],a=["x","y","z"];return e[i[r]]&&t[i[r]][a[n]]===e[i[r]][a[n]]}var i=!1;if(void 0===r)i=!0;else{for(var a=0;a<3;a++)for(var o=0;o<3;o++)if(!n(e,r,a,o)){i=!0;break}(!r.projection||e.projection&&e.projection.type!==r.projection.type)&&(i=!0)}return i},w.isAspectChanged=function(t){var e=this.glplot.getAspectratio(),r=f.nestedProperty(t,this.id+".aspectratio").get();return void 0===r||r.x!==e.x||r.y!==e.y||r.z!==e.z},w.saveLayout=function(t){var e,r,n,i,a,o,s=this.fullLayout,l=this.isCameraChanged(t),c=this.isAspectChanged(t),h=l||c;if(h){var p={};if(l&&(e=this.getCamera(),n=(r=f.nestedProperty(t,this.id+".camera")).get(),p[this.id+".camera"]=n),c&&(i=this.glplot.getAspectratio(),o=(a=f.nestedProperty(t,this.id+".aspectratio")).get(),p[this.id+".aspectratio"]=o),u.call("_storeDirectGUIEdit",t,s._preGUI,p),l)r.set(e),f.nestedProperty(s,this.id+".camera").set(e);if(c)a.set(i),f.nestedProperty(s,this.id+".aspectratio").set(i),this.glplot.redraw()}return h},w.updateFx=function(t,e){var r=this.camera;if(r)if("orbit"===t)r.mode="orbit",r.keyBindingMode="rotate";else if("turntable"===t){r.up=[0,0,1],r.mode="turntable",r.keyBindingMode="rotate";var n=this.graphDiv,i=n._fullLayout,a=this.fullSceneLayout.camera,o=a.up.x,s=a.up.y,l=a.up.z;if(l/Math.sqrt(o*o+s*s+l*l)<.999){var c=this.id+".camera.up",h={x:0,y:0,z:1},p={};p[c]=h;var d=n.layout;u.call("_storeDirectGUIEdit",d,i._preGUI,p),a.up=h,f.nestedProperty(d,c).set(h)}}else r.keyBindingMode=t;this.fullSceneLayout.hovermode=e},w.toImage=function(t){t||(t="png"),this.staticMode&&this.container.appendChild(n),this.glplot.redraw();var e=this.glplot.gl,r=e.drawingBufferWidth,i=e.drawingBufferHeight;e.bindFramebuffer(e.FRAMEBUFFER,null);var a=new Uint8Array(r*i*4);e.readPixels(0,0,r,i,e.RGBA,e.UNSIGNED_BYTE,a),function(t,e,r){for(var n=0,i=r-1;n0)for(var s=255/o,l=0;l<3;++l)t[a+l]=Math.min(s*t[a+l],255)}}(a,r,i);var o=document.createElement("canvas");o.width=r,o.height=i;var s,l=o.getContext("2d"),c=l.createImageData(r,i);switch(c.data.set(a),l.putImageData(c,0,0),t){case"jpeg":s=o.toDataURL("image/jpeg");break;case"webp":s=o.toDataURL("image/webp");break;default:s=o.toDataURL("image/png")}return this.staticMode&&this.container.removeChild(n),s},w.setConvert=function(){for(var t=0;t<3;t++){var e=this.fullSceneLayout[k[t]];p.setConvert(e,this.fullLayout),e.setScale=f.noop}},w.make4thDimension=function(){var t=this.graphDiv._fullLayout;this._mockAxis={type:"linear",showexponent:"all",exponentformat:"B"},p.setConvert(this._mockAxis,t)},e.exports=_},{"../../../stackgl_modules":1119,"../../components/fx":401,"../../lib":498,"../../lib/show_no_webgl_msg":520,"../../lib/str2rgbarray":523,"../../plots/cartesian/axes":549,"../../registry":633,"./layout/convert":597,"./layout/spikes":600,"./layout/tick_marks":601,"./project":602,"has-passive-events":224,"webgl-context":326}],604:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){n=n||t.length;for(var i=new Array(n),a=0;aOpenStreetMap contributors',a=['\xa9 Carto',i].join(" "),o=['Map tiles by Stamen Design','under CC BY 3.0',"|",'Data by OpenStreetMap contributors','under ODbL'].join(" "),s={"open-street-map":{id:"osm",version:8,sources:{"plotly-osm-tiles":{type:"raster",attribution:i,tiles:["https://a.tile.openstreetmap.org/{z}/{x}/{y}.png","https://b.tile.openstreetmap.org/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-osm-tiles",type:"raster",source:"plotly-osm-tiles",minzoom:0,maxzoom:22}]},"white-bg":{id:"white-bg",version:8,sources:{},layers:[{id:"white-bg",type:"background",paint:{"background-color":"#FFFFFF"},minzoom:0,maxzoom:22}]},"carto-positron":{id:"carto-positron",version:8,sources:{"plotly-carto-positron":{type:"raster",attribution:a,tiles:["https://cartodb-basemaps-c.global.ssl.fastly.net/light_all/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-carto-positron",type:"raster",source:"plotly-carto-positron",minzoom:0,maxzoom:22}]},"carto-darkmatter":{id:"carto-darkmatter",version:8,sources:{"plotly-carto-darkmatter":{type:"raster",attribution:a,tiles:["https://cartodb-basemaps-c.global.ssl.fastly.net/dark_all/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-carto-darkmatter",type:"raster",source:"plotly-carto-darkmatter",minzoom:0,maxzoom:22}]},"stamen-terrain":{id:"stamen-terrain",version:8,sources:{"plotly-stamen-terrain":{type:"raster",attribution:o,tiles:["https://stamen-tiles.a.ssl.fastly.net/terrain/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-terrain",type:"raster",source:"plotly-stamen-terrain",minzoom:0,maxzoom:22}]},"stamen-toner":{id:"stamen-toner",version:8,sources:{"plotly-stamen-toner":{type:"raster",attribution:o,tiles:["https://stamen-tiles.a.ssl.fastly.net/toner/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-toner",type:"raster",source:"plotly-stamen-toner",minzoom:0,maxzoom:22}]},"stamen-watercolor":{id:"stamen-watercolor",version:8,sources:{"plotly-stamen-watercolor":{type:"raster",attribution:['Map tiles by Stamen Design','under CC BY 3.0',"|",'Data by OpenStreetMap contributors','under CC BY SA'].join(" "),tiles:["https://stamen-tiles.a.ssl.fastly.net/watercolor/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-watercolor",type:"raster",source:"plotly-stamen-watercolor",minzoom:0,maxzoom:22}]}},l=n(s);e.exports={requiredVersion:"1.10.1",styleUrlPrefix:"mapbox://styles/mapbox/",styleUrlSuffix:"v9",styleValuesMapbox:["basic","streets","outdoors","light","dark","satellite","satellite-streets"],styleValueDflt:"basic",stylesNonMapbox:s,styleValuesNonMapbox:l,traceLayerPrefix:"plotly-trace-layer-",layoutLayerPrefix:"plotly-layout-layer-",wrongVersionErrorMsg:["Your custom plotly.js bundle is not using the correct mapbox-gl version","Please install mapbox-gl@1.10.1."].join("\n"),noAccessTokenErrorMsg:["Missing Mapbox access token.","Mapbox trace type require a Mapbox access token to be registered.","For example:"," Plotly.newPlot(gd, data, layout, { mapboxAccessToken: 'my-access-token' });","More info here: https://www.mapbox.com/help/define-access-token/"].join("\n"),missingStyleErrorMsg:["No valid mapbox style found, please set `mapbox.style` to one of:",l.join(", "),"or register a Mapbox access token to use a Mapbox-served style."].join("\n"),multipleTokensErrorMsg:["Set multiple mapbox access token across different mapbox subplot,","using first token found as mapbox-gl does not allow multipleaccess tokens on the same page."].join("\n"),mapOnErrorMsg:"Mapbox error.",mapboxLogo:{path0:"m 10.5,1.24 c -5.11,0 -9.25,4.15 -9.25,9.25 0,5.1 4.15,9.25 9.25,9.25 5.1,0 9.25,-4.15 9.25,-9.25 0,-5.11 -4.14,-9.25 -9.25,-9.25 z m 4.39,11.53 c -1.93,1.93 -4.78,2.31 -6.7,2.31 -0.7,0 -1.41,-0.05 -2.1,-0.16 0,0 -1.02,-5.64 2.14,-8.81 0.83,-0.83 1.95,-1.28 3.13,-1.28 1.27,0 2.49,0.51 3.39,1.42 1.84,1.84 1.89,4.75 0.14,6.52 z",path1:"M 10.5,-0.01 C 4.7,-0.01 0,4.7 0,10.49 c 0,5.79 4.7,10.5 10.5,10.5 5.8,0 10.5,-4.7 10.5,-10.5 C 20.99,4.7 16.3,-0.01 10.5,-0.01 Z m 0,19.75 c -5.11,0 -9.25,-4.15 -9.25,-9.25 0,-5.1 4.14,-9.26 9.25,-9.26 5.11,0 9.25,4.15 9.25,9.25 0,5.13 -4.14,9.26 -9.25,9.26 z",path2:"M 14.74,6.25 C 12.9,4.41 9.98,4.35 8.23,6.1 5.07,9.27 6.09,14.91 6.09,14.91 c 0,0 5.64,1.02 8.81,-2.14 C 16.64,11 16.59,8.09 14.74,6.25 Z m -2.27,4.09 -0.91,1.87 -0.9,-1.87 -1.86,-0.91 1.86,-0.9 0.9,-1.87 0.91,1.87 1.86,0.9 z",polygon:"11.56,12.21 10.66,10.34 8.8,9.43 10.66,8.53 11.56,6.66 12.47,8.53 14.33,9.43 12.47,10.34"},styleRules:{map:"overflow:hidden;position:relative;","missing-css":"display:none;",canary:"background-color:salmon;","ctrl-bottom-left":"position: absolute; pointer-events: none; z-index: 2; bottom: 0; left: 0;","ctrl-bottom-right":"position: absolute; pointer-events: none; z-index: 2; right: 0; bottom: 0;",ctrl:"clear: both; pointer-events: auto; transform: translate(0, 0);","ctrl-attrib.mapboxgl-compact .mapboxgl-ctrl-attrib-inner":"display: none;","ctrl-attrib.mapboxgl-compact:hover .mapboxgl-ctrl-attrib-inner":"display: block; margin-top:2px","ctrl-attrib.mapboxgl-compact:hover":"padding: 2px 24px 2px 4px; visibility: visible; margin-top: 6px;","ctrl-attrib.mapboxgl-compact::after":'content: ""; cursor: pointer; position: absolute; background-image: url(\'data:image/svg+xml;charset=utf-8,%3Csvg viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"%3E %3Cpath fill="%23333333" fill-rule="evenodd" d="M4,10a6,6 0 1,0 12,0a6,6 0 1,0 -12,0 M9,7a1,1 0 1,0 2,0a1,1 0 1,0 -2,0 M9,10a1,1 0 1,1 2,0l0,3a1,1 0 1,1 -2,0"/%3E %3C/svg%3E\'); background-color: rgba(255, 255, 255, 0.5); width: 24px; height: 24px; box-sizing: border-box; border-radius: 12px;',"ctrl-attrib.mapboxgl-compact":"min-height: 20px; padding: 0; margin: 10px; position: relative; background-color: #fff; border-radius: 3px 12px 12px 3px;","ctrl-bottom-right > .mapboxgl-ctrl-attrib.mapboxgl-compact::after":"bottom: 0; right: 0","ctrl-bottom-left > .mapboxgl-ctrl-attrib.mapboxgl-compact::after":"bottom: 0; left: 0","ctrl-bottom-left .mapboxgl-ctrl":"margin: 0 0 10px 10px; float: left;","ctrl-bottom-right .mapboxgl-ctrl":"margin: 0 10px 10px 0; float: right;","ctrl-attrib":"color: rgba(0, 0, 0, 0.75); text-decoration: none; font-size: 12px","ctrl-attrib a":"color: rgba(0, 0, 0, 0.75); text-decoration: none; font-size: 12px","ctrl-attrib a:hover":"color: inherit; text-decoration: underline;","ctrl-attrib .mapbox-improve-map":"font-weight: bold; margin-left: 2px;","attrib-empty":"display: none;","ctrl-logo":'display:block; width: 21px; height: 21px; background-image: url(\'data:image/svg+xml;charset=utf-8,%3C?xml version="1.0" encoding="utf-8"?%3E %3Csvg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 21 21" style="enable-background:new 0 0 21 21;" xml:space="preserve"%3E%3Cg transform="translate(0,0.01)"%3E%3Cpath d="m 10.5,1.24 c -5.11,0 -9.25,4.15 -9.25,9.25 0,5.1 4.15,9.25 9.25,9.25 5.1,0 9.25,-4.15 9.25,-9.25 0,-5.11 -4.14,-9.25 -9.25,-9.25 z m 4.39,11.53 c -1.93,1.93 -4.78,2.31 -6.7,2.31 -0.7,0 -1.41,-0.05 -2.1,-0.16 0,0 -1.02,-5.64 2.14,-8.81 0.83,-0.83 1.95,-1.28 3.13,-1.28 1.27,0 2.49,0.51 3.39,1.42 1.84,1.84 1.89,4.75 0.14,6.52 z" style="opacity:0.9;fill:%23ffffff;enable-background:new" class="st0"/%3E%3Cpath d="M 10.5,-0.01 C 4.7,-0.01 0,4.7 0,10.49 c 0,5.79 4.7,10.5 10.5,10.5 5.8,0 10.5,-4.7 10.5,-10.5 C 20.99,4.7 16.3,-0.01 10.5,-0.01 Z m 0,19.75 c -5.11,0 -9.25,-4.15 -9.25,-9.25 0,-5.1 4.14,-9.26 9.25,-9.26 5.11,0 9.25,4.15 9.25,9.25 0,5.13 -4.14,9.26 -9.25,9.26 z" style="opacity:0.35;enable-background:new" class="st1"/%3E%3Cpath d="M 14.74,6.25 C 12.9,4.41 9.98,4.35 8.23,6.1 5.07,9.27 6.09,14.91 6.09,14.91 c 0,0 5.64,1.02 8.81,-2.14 C 16.64,11 16.59,8.09 14.74,6.25 Z m -2.27,4.09 -0.91,1.87 -0.9,-1.87 -1.86,-0.91 1.86,-0.9 0.9,-1.87 0.91,1.87 1.86,0.9 z" style="opacity:0.35;enable-background:new" class="st1"/%3E%3Cpolygon points="11.56,12.21 10.66,10.34 8.8,9.43 10.66,8.53 11.56,6.66 12.47,8.53 14.33,9.43 12.47,10.34 " style="opacity:0.9;fill:%23ffffff;enable-background:new" class="st0"/%3E%3C/g%3E%3C/svg%3E\')'}}},{"../../lib/sort_object_keys":521}],607:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){var r=t.split(" "),i=r[0],a=r[1],o=n.isArrayOrTypedArray(e)?n.mean(e):e,s=.5+o/100,l=1.5+o/100,c=["",""],u=[0,0];switch(i){case"top":c[0]="top",u[1]=-l;break;case"bottom":c[0]="bottom",u[1]=l}switch(a){case"left":c[1]="right",u[0]=-s;break;case"right":c[1]="left",u[0]=s}return{anchor:c[0]&&c[1]?c.join("-"):c[0]?c[0]:c[1]?c[1]:"center",offset:u}}},{"../../lib":498}],608:[function(t,e,r){"use strict";var n=t("mapbox-gl/dist/mapbox-gl-unminified"),i=t("../../lib"),a=i.strTranslate,o=i.strScale,s=t("../../plots/get_data").getSubplotCalcData,l=t("../../constants/xmlns_namespaces"),c=t("@plotly/d3"),u=t("../../components/drawing"),f=t("../../lib/svg_text_utils"),h=t("./mapbox"),p=r.constants=t("./constants");function d(t){return"string"==typeof t&&(-1!==p.styleValuesMapbox.indexOf(t)||0===t.indexOf("mapbox://"))}r.name="mapbox",r.attr="subplot",r.idRoot="mapbox",r.idRegex=r.attrRegex=i.counterRegex("mapbox"),r.attributes={subplot:{valType:"subplotid",dflt:"mapbox",editType:"calc"}},r.layoutAttributes=t("./layout_attributes"),r.supplyLayoutDefaults=t("./layout_defaults"),r.plot=function(t){var e=t._fullLayout,r=t.calcdata,a=e._subplots.mapbox;if(n.version!==p.requiredVersion)throw new Error(p.wrongVersionErrorMsg);var o=function(t,e){var r=t._fullLayout;if(""===t._context.mapboxAccessToken)return"";for(var n=[],a=[],o=!1,s=!1,l=0;l1&&i.warn(p.multipleTokensErrorMsg),n[0]):(a.length&&i.log(["Listed mapbox access token(s)",a.join(","),"but did not use a Mapbox map style, ignoring token(s)."].join(" ")),"")}(t,a);n.accessToken=o;for(var l=0;l_/2){var w=v.split("|").join("
");x.text(w).attr("data-unformatted",w).call(f.convertToTspans,t),b=u.bBox(x.node())}x.attr("transform",a(-3,8-b.height)),y.insert("rect",".static-attribution").attr({x:-b.width-6,y:-b.height-3,width:b.width+6,height:b.height+3,fill:"rgba(255, 255, 255, 0.75)"});var T=1;b.width+6>_&&(T=_/(b.width+6));var k=[n.l+n.w*h.x[1],n.t+n.h*(1-h.y[0])];y.attr("transform",a(k[0],k[1])+o(T))}},r.updateFx=function(t){for(var e=t._fullLayout,r=e._subplots.mapbox,n=0;n0){for(var r=0;r0}function u(t){var e={},r={};switch(t.type){case"circle":n.extendFlat(r,{"circle-radius":t.circle.radius,"circle-color":t.color,"circle-opacity":t.opacity});break;case"line":n.extendFlat(r,{"line-width":t.line.width,"line-color":t.color,"line-opacity":t.opacity,"line-dasharray":t.line.dash});break;case"fill":n.extendFlat(r,{"fill-color":t.color,"fill-outline-color":t.fill.outlinecolor,"fill-opacity":t.opacity});break;case"symbol":var i=t.symbol,o=a(i.textposition,i.iconsize);n.extendFlat(e,{"icon-image":i.icon+"-15","icon-size":i.iconsize/10,"text-field":i.text,"text-size":i.textfont.size,"text-anchor":o.anchor,"text-offset":o.offset,"symbol-placement":i.placement}),n.extendFlat(r,{"icon-color":t.color,"text-color":i.textfont.color,"text-opacity":t.opacity});break;case"raster":n.extendFlat(r,{"raster-fade-duration":0,"raster-opacity":t.opacity})}return{layout:e,paint:r}}l.update=function(t){this.visible?this.needsNewImage(t)?this.updateImage(t):this.needsNewSource(t)?(this.removeLayer(),this.updateSource(t),this.updateLayer(t)):this.needsNewLayer(t)?this.updateLayer(t):this.updateStyle(t):(this.updateSource(t),this.updateLayer(t)),this.visible=c(t)},l.needsNewImage=function(t){return this.subplot.map.getSource(this.idSource)&&"image"===this.sourceType&&"image"===t.sourcetype&&(this.source!==t.source||JSON.stringify(this.coordinates)!==JSON.stringify(t.coordinates))},l.needsNewSource=function(t){return this.sourceType!==t.sourcetype||JSON.stringify(this.source)!==JSON.stringify(t.source)||this.layerType!==t.type},l.needsNewLayer=function(t){return this.layerType!==t.type||this.below!==this.subplot.belowLookup["layout-"+this.index]},l.lookupBelow=function(){return this.subplot.belowLookup["layout-"+this.index]},l.updateImage=function(t){this.subplot.map.getSource(this.idSource).updateImage({url:t.source,coordinates:t.coordinates});var e=this.findFollowingMapboxLayerId(this.lookupBelow());null!==e&&this.subplot.map.moveLayer(this.idLayer,e)},l.updateSource=function(t){var e=this.subplot.map;if(e.getSource(this.idSource)&&e.removeSource(this.idSource),this.sourceType=t.sourcetype,this.source=t.source,c(t)){var r=function(t){var e,r=t.sourcetype,n=t.source,a={type:r};"geojson"===r?e="data":"vector"===r?e="string"==typeof n?"url":"tiles":"raster"===r?(e="tiles",a.tileSize=256):"image"===r&&(e="url",a.coordinates=t.coordinates);a[e]=n,t.sourceattribution&&(a.attribution=i(t.sourceattribution));return a}(t);e.addSource(this.idSource,r)}},l.findFollowingMapboxLayerId=function(t){if("traces"===t)for(var e=this.subplot.getMapLayers(),r=0;r1)for(r=0;r-1&&v(e.originalEvent,n,[r.xaxis],[r.yaxis],r.id,t),i.indexOf("event")>-1&&c.click(n,e.originalEvent)}}},_.updateFx=function(t){var e=this,r=e.map,n=e.gd;if(!e.isStatic){var a,o=t.dragmode;a=f(o)?function(t,r){(t.range={})[e.id]=[c([r.xmin,r.ymin]),c([r.xmax,r.ymax])]}:function(t,r,n){(t.lassoPoints={})[e.id]=n.filtered.map(c)};var s=e.dragOptions;e.dragOptions=i.extendDeep(s||{},{dragmode:t.dragmode,element:e.div,gd:n,plotinfo:{id:e.id,domain:t[e.id].domain,xaxis:e.xaxis,yaxis:e.yaxis,fillRangeItems:a},xaxes:[e.xaxis],yaxes:[e.yaxis],subplot:e.id}),r.off("click",e.onClickInPanHandler),p(o)||h(o)?(r.dragPan.disable(),r.on("zoomstart",e.clearSelect),e.dragOptions.prepFn=function(t,r,n){d(t,r,n,e.dragOptions,o)},l.init(e.dragOptions)):(r.dragPan.enable(),r.off("zoomstart",e.clearSelect),e.div.onmousedown=null,e.onClickInPanHandler=e.onClickInPanFn(e.dragOptions),r.on("click",e.onClickInPanHandler))}function c(t){var r=e.map.unproject(t);return[r.lng,r.lat]}},_.updateFramework=function(t){var e=t[this.id].domain,r=t._size,n=this.div.style;n.width=r.w*(e.x[1]-e.x[0])+"px",n.height=r.h*(e.y[1]-e.y[0])+"px",n.left=r.l+e.x[0]*r.w+"px",n.top=r.t+(1-e.y[1])*r.h+"px",this.xaxis._offset=r.l+e.x[0]*r.w,this.xaxis._length=r.w*(e.x[1]-e.x[0]),this.yaxis._offset=r.t+(1-e.y[1])*r.h,this.yaxis._length=r.h*(e.y[1]-e.y[0])},_.updateLayers=function(t){var e,r=t[this.id].layers,n=this.layerList;if(r.length!==n.length){for(e=0;e=e.width-20?(a["text-anchor"]="start",a.x=5):(a["text-anchor"]="end",a.x=e._paper.attr("width")-7),r.attr(a);var o=r.select(".js-link-to-tool"),s=r.select(".js-link-spacer"),l=r.select(".js-sourcelinks");t._context.showSources&&t._context.showSources(t),t._context.showLink&&function(t,e){e.text("");var r=e.append("a").attr({"xlink:xlink:href":"#",class:"link--impt link--embedview","font-weight":"bold"}).text(t._context.linkText+" "+String.fromCharCode(187));if(t._context.sendData)r.on("click",(function(){b.sendDataToCloud(t)}));else{var n=window.location.pathname.split("/"),i=window.location.search;r.attr({"xlink:xlink:show":"new","xlink:xlink:href":"/"+n[2].split(".")[0]+"/"+n[1]+i})}}(t,o),s.text(o.text()&&l.text()?" - ":"")}},b.sendDataToCloud=function(t){var e=(window.PLOTLYENV||{}).BASE_URL||t._context.plotlyServerURL;if(e){t.emit("plotly_beforeexport");var r=n.select(t).append("div").attr("id","hiddenform").style("display","none"),i=r.append("form").attr({action:e+"/external",method:"post",target:"_blank"});return i.append("input").attr({type:"text",name:"data"}).node().value=b.graphJson(t,!1,"keepdata"),i.node().submit(),r.remove(),t.emit("plotly_afterexport"),!1}};var T=["days","shortDays","months","shortMonths","periods","dateTime","date","time","decimal","thousands","grouping","currency"],k=["year","month","dayMonth","dayMonthYear"];function A(t,e){var r=t._context.locale;r||(r="en-US");var n=!1,i={};function a(t){for(var r=!0,a=0;a1&&z.length>1){for(s.getComponentMethod("grid","sizeDefaults")(c,l),o=0;o15&&z.length>15&&0===l.shapes.length&&0===l.images.length,b.linkSubplots(h,l,f,n),b.cleanPlot(h,l,f,n);var N=!(!n._has||!n._has("gl2d")),j=!(!l._has||!l._has("gl2d")),U=!(!n._has||!n._has("cartesian"))||N,V=!(!l._has||!l._has("cartesian"))||j;U&&!V?n._bgLayer.remove():V&&!U&&(l._shouldCreateBgLayer=!0),n._zoomlayer&&!t._dragging&&d({_fullLayout:n}),function(t,e){var r,n=[];e.meta&&(r=e._meta={meta:e.meta,layout:{meta:e.meta}});for(var i=0;i0){var f=1-2*s;n=Math.round(f*n),i=Math.round(f*i)}}var h=b.layoutAttributes.width.min,p=b.layoutAttributes.height.min;n1,m=!e.height&&Math.abs(r.height-i)>1;(m||d)&&(d&&(r.width=n),m&&(r.height=i)),t._initialAutoSize||(t._initialAutoSize={width:n,height:i}),b.sanitizeMargins(r)},b.supplyLayoutModuleDefaults=function(t,e,r,n){var i,a,o,l=s.componentsRegistry,c=e._basePlotModules,f=s.subplotsRegistry.cartesian;for(i in l)(o=l[i]).includeBasePlot&&o.includeBasePlot(t,e);for(var h in c.length||c.push(f),e._has("cartesian")&&(s.getComponentMethod("grid","contentDefaults")(t,e),f.finalizeSubplots(t,e)),e._subplots)e._subplots[h].sort(u.subplotSort);for(a=0;a1&&(r.l/=m,r.r/=m)}if(f){var g=(r.t+r.b)/f;g>1&&(r.t/=g,r.b/=g)}var v=void 0!==r.xl?r.xl:r.x,y=void 0!==r.xr?r.xr:r.x,x=void 0!==r.yt?r.yt:r.y,_=void 0!==r.yb?r.yb:r.y;h[e]={l:{val:v,size:r.l+d},r:{val:y,size:r.r+d},b:{val:_,size:r.b+d},t:{val:x,size:r.t+d}},p[e]=1}else delete h[e],delete p[e];if(!n._replotting)return b.doAutoMargin(t)}},b.doAutoMargin=function(t){var e=t._fullLayout,r=e.width,n=e.height;e._size||(e._size={}),C(e);var i=e._size,a=e.margin,l=u.extendFlat({},i),c=a.l,f=a.r,h=a.t,d=a.b,m=e._pushmargin,g=e._pushmarginIds;if(!1!==e.margin.autoexpand){for(var v in m)g[v]||delete m[v];for(var y in m.base={l:{val:0,size:c},r:{val:1,size:f},t:{val:1,size:h},b:{val:0,size:d}},m){var x=m[y].l||{},_=m[y].b||{},w=x.val,T=x.size,k=_.val,A=_.size;for(var M in m){if(o(T)&&m[M].r){var S=m[M].r.val,E=m[M].r.size;if(S>w){var L=(T*S+(E-r)*w)/(S-w),P=(E*(1-w)+(T-r)*(1-S))/(S-w);L+P>c+f&&(c=L,f=P)}}if(o(A)&&m[M].t){var I=m[M].t.val,O=m[M].t.size;if(I>k){var z=(A*I+(O-n)*k)/(I-k),D=(O*(1-k)+(A-n)*(1-I))/(I-k);z+D>d+h&&(d=z,h=D)}}}}}var R=u.constrain(r-a.l-a.r,2,64),F=u.constrain(n-a.t-a.b,2,64),B=Math.max(0,r-R),N=Math.max(0,n-F);if(B){var j=(c+f)/B;j>1&&(c/=j,f/=j)}if(N){var U=(d+h)/N;U>1&&(d/=U,h/=U)}if(i.l=Math.round(c),i.r=Math.round(f),i.t=Math.round(h),i.b=Math.round(d),i.p=Math.round(a.pad),i.w=Math.round(r)-i.l-i.r,i.h=Math.round(n)-i.t-i.b,!e._replotting&&b.didMarginChange(l,i)){"_redrawFromAutoMarginCount"in e?e._redrawFromAutoMarginCount++:e._redrawFromAutoMarginCount=1;var V=3*(1+Object.keys(g).length);if(e._redrawFromAutoMarginCount0&&(t._transitioningWithDuration=!0),t._transitionData._interruptCallbacks.push((function(){n=!0})),r.redraw&&t._transitionData._interruptCallbacks.push((function(){return s.call("redraw",t)})),t._transitionData._interruptCallbacks.push((function(){t.emit("plotly_transitioninterrupted",[])}));var a=0,o=0;function l(){return a++,function(){o++,n||o!==a||function(e){if(!t._transitionData)return;(function(t){if(t)for(;t.length;)t.shift()})(t._transitionData._interruptCallbacks),Promise.resolve().then((function(){if(r.redraw)return s.call("redraw",t)})).then((function(){t._transitioning=!1,t._transitioningWithDuration=!1,t.emit("plotly_transitioned",[])})).then(e)}(i)}}r.runFn(l),setTimeout(l())}))}],a=u.syncOrAsync(i,t);return a&&a.then||(a=Promise.resolve()),a.then((function(){return t}))}b.didMarginChange=function(t,e){for(var r=0;r1)return!0}return!1},b.graphJson=function(t,e,r,n,i,a){(i&&e&&!t._fullData||i&&!e&&!t._fullLayout)&&b.supplyDefaults(t);var o=i?t._fullData:t.data,s=i?t._fullLayout:t.layout,l=(t._transitionData||{})._frames;function c(t,e){if("function"==typeof t)return e?"_function_":null;if(u.isPlainObject(t)){var n,i={};return Object.keys(t).sort().forEach((function(a){if(-1===["_","["].indexOf(a.charAt(0)))if("function"!=typeof t[a]){if("keepdata"===r){if("src"===a.substr(a.length-3))return}else if("keepstream"===r){if("string"==typeof(n=t[a+"src"])&&n.indexOf(":")>0&&!u.isPlainObject(t.stream))return}else if("keepall"!==r&&"string"==typeof(n=t[a+"src"])&&n.indexOf(":")>0)return;i[a]=c(t[a],e)}else e&&(i[a]="_function")})),i}return Array.isArray(t)?t.map((function(t){return c(t,e)})):u.isTypedArray(t)?u.simpleMap(t,u.identity):u.isJSDate(t)?u.ms2DateTimeLocal(+t):t}var f={data:(o||[]).map((function(t){var r=c(t);return e&&delete r.fit,r}))};if(!e&&(f.layout=c(s),i)){var h=s._size;f.layout.computed={margin:{b:h.b,l:h.l,r:h.r,t:h.t}}}return l&&(f.frames=c(l)),a&&(f.config=c(t._context,!0)),"object"===n?f:JSON.stringify(f)},b.modifyFrames=function(t,e){var r,n,i,a=t._transitionData._frames,o=t._transitionData._frameHash;for(r=0;r=0;a--)if(s[a].enabled){r._indexToPoints=s[a]._indexToPoints;break}n&&n.calc&&(o=n.calc(t,r))}Array.isArray(o)&&o[0]||(o=[{x:h,y:h}]),o[0].t||(o[0].t={}),o[0].trace=r,d[e]=o}}for(z(o,c,f),i=0;i1e-10?t:0}function h(t,e,r){e=e||0,r=r||0;for(var n=t.length,i=new Array(n),a=0;a0?r:1/0})),i=n.mod(r+1,e.length);return[e[r],e[i]]},findIntersectionXY:c,findXYatLength:function(t,e,r,n){var i=-e*r,a=e*e+1,o=2*(e*i-r),s=i*i+r*r-t*t,l=Math.sqrt(o*o-4*a*s),c=(-o+l)/(2*a),u=(-o-l)/(2*a);return[[c,e*c+i+n],[u,e*u+i+n]]},clampTiny:f,pathPolygon:function(t,e,r,n,i,a){return"M"+h(u(t,e,r,n),i,a).join("L")},pathPolygonAnnulus:function(t,e,r,n,i,a,o){var s,l;t=90||s>90&&l>=450?1:u<=0&&h<=0?0:Math.max(u,h);e=s<=180&&l>=180||s>180&&l>=540?-1:c>=0&&f>=0?0:Math.min(c,f);r=s<=270&&l>=270||s>270&&l>=630?-1:u>=0&&h>=0?0:Math.min(u,h);n=l>=360?1:c<=0&&f<=0?0:Math.max(c,f);return[e,r,n,i]}(p),b=x[2]-x[0],_=x[3]-x[1],w=h/f,T=Math.abs(_/b);w>T?(d=f,y=(h-(m=f*T))/n.h/2,g=[o[0],o[1]],v=[s[0]+y,s[1]-y]):(m=h,y=(f-(d=h/T))/n.w/2,g=[o[0]+y,o[1]-y],v=[s[0],s[1]]),this.xLength2=d,this.yLength2=m,this.xDomain2=g,this.yDomain2=v;var k,A=this.xOffset2=n.l+n.w*g[0],M=this.yOffset2=n.t+n.h*(1-v[1]),S=this.radius=d/b,E=this.innerRadius=this.getHole(e)*S,L=this.cx=A-S*x[0],C=this.cy=M+S*x[3],P=this.cxx=L-A,I=this.cyy=C-M,O=i.side;"counterclockwise"===O?(k=O,O="top"):"clockwise"===O&&(k=O,O="bottom"),this.radialAxis=this.mockAxis(t,e,i,{_id:"x",side:O,_trueSide:k,domain:[E/n.w,S/n.w]}),this.angularAxis=this.mockAxis(t,e,a,{side:"right",domain:[0,Math.PI],autorange:!1}),this.doAutoRange(t,e),this.updateAngularAxis(t,e),this.updateRadialAxis(t,e),this.updateRadialAxisTitle(t,e),this.xaxis=this.mockCartesianAxis(t,e,{_id:"x",domain:g}),this.yaxis=this.mockCartesianAxis(t,e,{_id:"y",domain:v});var z=this.pathSubplot();this.clipPaths.forTraces.select("path").attr("d",z).attr("transform",l(P,I)),r.frontplot.attr("transform",l(A,M)).call(u.setClipUrl,this._hasClipOnAxisFalse?null:this.clipIds.forTraces,this.gd),r.bg.attr("d",z).attr("transform",l(L,C)).call(c.fill,e.bgcolor)},N.mockAxis=function(t,e,r,n){var i=o.extendFlat({},r,n);return d(i,e,t),i},N.mockCartesianAxis=function(t,e,r){var n=this,i=n.isSmith,a=r._id,s=o.extendFlat({type:"linear"},r);p(s,t);var l={x:[0,2],y:[1,3]};return s.setRange=function(){var t=n.sectorBBox,r=l[a],i=n.radialAxis._rl,o=(i[1]-i[0])/(1-n.getHole(e));s.range=[t[r[0]]*o,t[r[1]]*o]},s.isPtWithinRange="x"!==a||i?function(){return!0}:function(t){return n.isPtInside(t)},s.setRange(),s.setScale(),s},N.doAutoRange=function(t,e){var r=this.gd,n=this.radialAxis,i=this.getRadial(e);m(r,n);var a=n.range;i.range=a.slice(),i._input.range=a.slice(),n._rl=[n.r2l(a[0],null,"gregorian"),n.r2l(a[1],null,"gregorian")]},N.updateRadialAxis=function(t,e){var r=this,n=r.gd,i=r.layers,a=r.radius,u=r.innerRadius,f=r.cx,p=r.cy,d=r.getRadial(e),m=D(r.getSector(e)[0],360),g=r.radialAxis,v=u90&&m<=270&&(g.tickangle=180);var x=y?function(t){var e=O(r,C([t.x,0]));return l(e[0]-f,e[1]-p)}:function(t){return l(g.l2p(t.x)+u,0)},b=y?function(t){return I(r,t.x,-1/0,1/0)}:function(t){return r.pathArc(g.r2p(t.x)+u)},_=j(d);if(r.radialTickLayout!==_&&(i["radial-axis"].selectAll(".xtick").remove(),r.radialTickLayout=_),v){g.setScale();var w=0,T=y?(g.tickvals||[]).filter((function(t){return t>=0})).map((function(t){return h.tickText(g,t,!0,!1)})):h.calcTicks(g),k=y?T:h.clipEnds(g,T),A=h.getTickSigns(g)[2];y&&(("top"===g.ticks&&"bottom"===g.side||"bottom"===g.ticks&&"top"===g.side)&&(A=-A),"top"===g.ticks&&"top"===g.side&&(w=-g.ticklen),"bottom"===g.ticks&&"bottom"===g.side&&(w=g.ticklen)),h.drawTicks(n,g,{vals:T,layer:i["radial-axis"],path:h.makeTickPath(g,0,A),transFn:x,crisp:!1}),h.drawGrid(n,g,{vals:k,layer:i["radial-grid"],path:b,transFn:o.noop,crisp:!1}),h.drawLabels(n,g,{vals:T,layer:i["radial-axis"],transFn:x,labelFns:h.makeLabelFns(g,w)})}var M=r.radialAxisAngle=r.vangles?F(U(R(d.angle),r.vangles)):d.angle,S=l(f,p),E=S+s(-M);V(i["radial-axis"],v&&(d.showticklabels||d.ticks),{transform:E}),V(i["radial-grid"],v&&d.showgrid,{transform:y?"":S}),V(i["radial-line"].select("line"),v&&d.showline,{x1:y?-a:u,y1:0,x2:a,y2:0,transform:E}).attr("stroke-width",d.linewidth).call(c.stroke,d.linecolor)},N.updateRadialAxisTitle=function(t,e,r){if(!this.isSmith){var n=this.gd,i=this.radius,a=this.cx,o=this.cy,s=this.getRadial(e),l=this.id+"title",c=0;if(s.title){var f=u.bBox(this.layers["radial-axis"].node()).height,h=s.title.font.size,p=s.side;c="top"===p?h:"counterclockwise"===p?-(f+.4*h):f+.8*h}var d=void 0!==r?r:this.radialAxisAngle,m=R(d),g=Math.cos(m),v=Math.sin(m),y=a+i/2*g+c*v,b=o-i/2*v+c*g;this.layers["radial-axis-title"]=x.draw(n,l,{propContainer:s,propName:this.id+".radialaxis.title",placeholder:z(n,"Click to enter radial axis title"),attributes:{x:y,y:b,"text-anchor":"middle"},transform:{rotate:-d}})}},N.updateAngularAxis=function(t,e){var r=this,n=r.gd,i=r.layers,a=r.radius,u=r.innerRadius,f=r.cx,p=r.cy,d=r.getAngular(e),m=r.angularAxis,g=r.isSmith;g||(r.fillViewInitialKey("angularaxis.rotation",d.rotation),m.setGeometry(),m.setScale());var v=g?function(t){var e=O(r,C([0,t.x]));return Math.atan2(e[0]-f,e[1]-p)-Math.PI/2}:function(t){return m.t2g(t.x)};"linear"===m.type&&"radians"===m.thetaunit&&(m.tick0=F(m.tick0),m.dtick=F(m.dtick));var y=function(t){return l(f+a*Math.cos(t),p-a*Math.sin(t))},x=g?function(t){var e=O(r,C([0,t.x]));return l(e[0],e[1])}:function(t){return y(v(t))},b=g?function(t){var e=O(r,C([0,t.x])),n=Math.atan2(e[0]-f,e[1]-p)-Math.PI/2;return l(e[0],e[1])+s(-F(n))}:function(t){var e=v(t);return y(e)+s(-F(e))},_=g?function(t){return P(r,t.x,0,1/0)}:function(t){var e=v(t),r=Math.cos(e),n=Math.sin(e);return"M"+[f+u*r,p-u*n]+"L"+[f+a*r,p-a*n]},w=h.makeLabelFns(m,0).labelStandoff,T={xFn:function(t){var e=v(t);return Math.cos(e)*w},yFn:function(t){var e=v(t),r=Math.sin(e)>0?.2:1;return-Math.sin(e)*(w+t.fontSize*r)+Math.abs(Math.cos(e))*(t.fontSize*M)},anchorFn:function(t){var e=v(t),r=Math.cos(e);return Math.abs(r)<.1?"middle":r>0?"start":"end"},heightFn:function(t,e,r){var n=v(t);return-.5*(1+Math.sin(n))*r}},k=j(d);r.angularTickLayout!==k&&(i["angular-axis"].selectAll("."+m._id+"tick").remove(),r.angularTickLayout=k);var A,S=g?[1/0].concat(m.tickvals||[]).map((function(t){return h.tickText(m,t,!0,!1)})):h.calcTicks(m);if(g&&(S[0].text="\u221e",S[0].fontSize*=1.75),"linear"===e.gridshape?(A=S.map(v),o.angleDelta(A[0],A[1])<0&&(A=A.slice().reverse())):A=null,r.vangles=A,"category"===m.type&&(S=S.filter((function(t){return o.isAngleInsideSector(v(t),r.sectorInRad)}))),m.visible){var E="inside"===m.ticks?-1:1,L=(m.linewidth||1)/2;h.drawTicks(n,m,{vals:S,layer:i["angular-axis"],path:"M"+E*L+",0h"+E*m.ticklen,transFn:b,crisp:!1}),h.drawGrid(n,m,{vals:S,layer:i["angular-grid"],path:_,transFn:o.noop,crisp:!1}),h.drawLabels(n,m,{vals:S,layer:i["angular-axis"],repositionOnUpdate:!0,transFn:x,labelFns:T})}V(i["angular-line"].select("path"),d.showline,{d:r.pathSubplot(),transform:l(f,p)}).attr("stroke-width",d.linewidth).call(c.stroke,d.linecolor)},N.updateFx=function(t,e){this.gd._context.staticPlot||(!this.isSmith&&(this.updateAngularDrag(t),this.updateRadialDrag(t,e,0),this.updateRadialDrag(t,e,1)),this.updateHoverAndMainDrag(t))},N.updateHoverAndMainDrag=function(t){var e,r,s=this,c=s.isSmith,u=s.gd,f=s.layers,h=t._zoomlayer,p=S.MINZOOM,d=S.OFFEDGE,m=s.radius,x=s.innerRadius,T=s.cx,k=s.cy,A=s.cxx,M=s.cyy,L=s.sectorInRad,C=s.vangles,P=s.radialAxis,I=E.clampTiny,O=E.findXYatLength,z=E.findEnclosingVertexAngles,D=S.cornerHalfWidth,R=S.cornerLen/2,F=g.makeDragger(f,"path","maindrag","crosshair");n.select(F).attr("d",s.pathSubplot()).attr("transform",l(T,k)),F.onmousemove=function(t){y.hover(u,t,s.id),u._fullLayout._lasthover=F,u._fullLayout._hoversubplot=s.id},F.onmouseout=function(t){u._dragging||v.unhover(u,t)};var B,N,j,U,V,H,q,G,Y,W={element:F,gd:u,subplot:s.id,plotinfo:{id:s.id,xaxis:s.xaxis,yaxis:s.yaxis},xaxes:[s.xaxis],yaxes:[s.yaxis]};function X(t,e){return Math.sqrt(t*t+e*e)}function Z(t,e){return X(t-A,e-M)}function J(t,e){return Math.atan2(M-e,t-A)}function K(t,e){return[t*Math.cos(e),t*Math.sin(-e)]}function Q(t,e){if(0===t)return s.pathSector(2*D);var r=R/t,n=e-r,i=e+r,a=Math.max(0,Math.min(t,m)),o=a-D,l=a+D;return"M"+K(o,n)+"A"+[o,o]+" 0,0,0 "+K(o,i)+"L"+K(l,i)+"A"+[l,l]+" 0,0,1 "+K(l,n)+"Z"}function $(t,e,r){if(0===t)return s.pathSector(2*D);var n,i,a=K(t,e),o=K(t,r),l=I((a[0]+o[0])/2),c=I((a[1]+o[1])/2);if(l&&c){var u=c/l,f=-1/u,h=O(D,u,l,c);n=O(R,f,h[0][0],h[0][1]),i=O(R,f,h[1][0],h[1][1])}else{var p,d;c?(p=R,d=D):(p=D,d=R),n=[[l-p,c-d],[l+p,c-d]],i=[[l-p,c+d],[l+p,c+d]]}return"M"+n.join("L")+"L"+i.reverse().join("L")+"Z"}function tt(t,e){return e=Math.max(Math.min(e,m),x),tp?(t-1&&1===t&&_(e,u,[s.xaxis],[s.yaxis],s.id,W),r.indexOf("event")>-1&&y.click(u,e,s.id)}W.prepFn=function(t,n,a){var l=u._fullLayout.dragmode,f=F.getBoundingClientRect();u._fullLayout._calcInverseTransform(u);var p=u._fullLayout._invTransform;e=u._fullLayout._invScaleX,r=u._fullLayout._invScaleY;var d=o.apply3DTransform(p)(n-f.left,a-f.top);if(B=d[0],N=d[1],C){var v=E.findPolygonOffset(m,L[0],L[1],C);B+=A+v[0],N+=M+v[1]}switch(l){case"zoom":W.clickFn=st,c||(W.moveFn=C?it:rt,W.doneFn=at,function(){j=null,U=null,V=s.pathSubplot(),H=!1;var t=u._fullLayout[s.id];q=i(t.bgcolor).getLuminance(),(G=g.makeZoombox(h,q,T,k,V)).attr("fill-rule","evenodd"),Y=g.makeCorners(h,T,k),w(u)}());break;case"select":case"lasso":b(t,n,a,W,l)}},v.init(W)},N.updateRadialDrag=function(t,e,r){var i=this,c=i.gd,u=i.layers,f=i.radius,h=i.innerRadius,p=i.cx,d=i.cy,m=i.radialAxis,y=S.radialDragBoxSize,x=y/2;if(m.visible){var b,_,T,M=R(i.radialAxisAngle),E=m._rl,L=E[0],C=E[1],P=E[r],I=.75*(E[1]-E[0])/(1-i.getHole(e))/f;r?(b=p+(f+x)*Math.cos(M),_=d-(f+x)*Math.sin(M),T="radialdrag"):(b=p+(h-x)*Math.cos(M),_=d-(h-x)*Math.sin(M),T="radialdrag-inner");var O,z,D,B=g.makeRectDragger(u,T,"crosshair",-x,-x,y,y),N={element:B,gd:c};V(n.select(B),m.visible&&h0==(r?D>L:Dn?function(t){return t<=0}:function(t){return t>=0};t.c2g=function(r){var n=t.c2l(r)-e;return(s(n)?n:0)+o},t.g2c=function(r){return t.l2c(r+e-o)},t.g2p=function(t){return t*a},t.c2p=function(e){return t.g2p(t.c2g(e))}}}(t,e);break;case"angularaxis":!function(t,e){var r=t.type;if("linear"===r){var i=t.d2c,s=t.c2d;t.d2c=function(t,e){return function(t,e){return"degrees"===e?a(t):t}(i(t),e)},t.c2d=function(t,e){return s(function(t,e){return"degrees"===e?o(t):t}(t,e))}}t.makeCalcdata=function(e,i){var a,o,s=e[i],l=e._length,c=function(r){return t.d2c(r,e.thetaunit)};if(s){if(n.isTypedArray(s)&&"linear"===r){if(l===s.length)return s;if(s.subarray)return s.subarray(0,l)}for(a=new Array(l),o=0;o0?1:0}function i(t){var e=t[0],r=t[1];if(!isFinite(e)||!isFinite(r))return[1,0];var n=(e+1)*(e+1)+r*r;return[(e*e+r*r-1)/n,2*r/n]}function a(t,e){var r=e[0],n=e[1];return[r*t.radius+t.cx,-n*t.radius+t.cy]}function o(t,e){return e*t.radius}e.exports={smith:i,reactanceArc:function(t,e,r,n){var s=a(t,i([r,e])),l=s[0],c=s[1],u=a(t,i([n,e])),f=u[0],h=u[1];if(0===e)return["M"+l+","+c,"L"+f+","+h].join(" ");var p=o(t,1/Math.abs(e));return["M"+l+","+c,"A"+p+","+p+" 0 0,"+(e<0?1:0)+" "+f+","+h].join(" ")},resistanceArc:function(t,e,r,s){var l=o(t,1/(e+1)),c=a(t,i([e,r])),u=c[0],f=c[1],h=a(t,i([e,s])),p=h[0],d=h[1];if(n(r)!==n(s)){var m=a(t,i([e,0]));return["M"+u+","+f,"A"+l+","+l+" 0 0,"+(00){for(var n=[],i=0;i=u&&(h.min=0,d.min=0,g.min=0,t.aaxis&&delete t.aaxis.min,t.baxis&&delete t.baxis.min,t.caxis&&delete t.caxis.min)}function m(t,e,r,n){var i=h[e._name];function o(r,n){return a.coerce(t,e,i,r,n)}o("uirevision",n.uirevision),e.type="linear";var p=o("color"),d=p!==i.color.dflt?p:r.font.color,m=e._name.charAt(0).toUpperCase(),g="Component "+m,v=o("title.text",g);e._hovertitle=v===g?v:m,a.coerceFont(o,"title.font",{family:r.font.family,size:a.bigFont(r.font.size),color:d}),o("min"),u(t,e,o,"linear"),l(t,e,o,"linear"),s(t,e,o,"linear"),c(t,e,o,{outerTicks:!0}),o("showticklabels")&&(a.coerceFont(o,"tickfont",{family:r.font.family,size:r.font.size,color:d}),o("tickangle"),o("tickformat")),f(t,e,o,{dfltColor:p,bgColor:r.bgColor,blend:60,showLine:!0,showGrid:!0,noZeroLine:!0,attributes:i}),o("hoverformat"),o("layer")}e.exports=function(t,e,r){o(t,e,r,{type:"ternary",attributes:h,handleDefaults:d,font:e.font,paper_bgcolor:e.paper_bgcolor})}},{"../../components/color":361,"../../lib":498,"../../plot_api/plot_template":538,"../cartesian/line_grid_defaults":566,"../cartesian/prefix_suffix_defaults":568,"../cartesian/tick_label_defaults":573,"../cartesian/tick_mark_defaults":574,"../cartesian/tick_value_defaults":575,"../subplot_defaults":627,"./layout_attributes":630}],632:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("tinycolor2"),a=t("../../registry"),o=t("../../lib"),s=o.strTranslate,l=o._,c=t("../../components/color"),u=t("../../components/drawing"),f=t("../cartesian/set_convert"),h=t("../../lib/extend").extendFlat,p=t("../plots"),d=t("../cartesian/axes"),m=t("../../components/dragelement"),g=t("../../components/fx"),v=t("../../components/dragelement/helpers"),y=v.freeMode,x=v.rectMode,b=t("../../components/titles"),_=t("../cartesian/select").prepSelect,w=t("../cartesian/select").selectOnClick,T=t("../cartesian/select").clearSelect,k=t("../cartesian/select").clearSelectionsCache,A=t("../cartesian/constants");function M(t,e){this.id=t.id,this.graphDiv=t.graphDiv,this.init(e),this.makeFramework(e),this.aTickLayout=null,this.bTickLayout=null,this.cTickLayout=null}e.exports=M;var S=M.prototype;S.init=function(t){this.container=t._ternarylayer,this.defs=t._defs,this.layoutId=t._uid,this.traceHash={},this.layers={}},S.plot=function(t,e){var r=e[this.id],n=e._size;this._hasClipOnAxisFalse=!1;for(var i=0;iE*b?i=(a=b)*E:a=(i=x)/E,o=v*i/x,l=y*a/b,r=e.l+e.w*m-i/2,n=e.t+e.h*(1-g)-a/2,p.x0=r,p.y0=n,p.w=i,p.h=a,p.sum=_,p.xaxis={type:"linear",range:[w+2*k-_,_-w-2*T],domain:[m-o/2,m+o/2],_id:"x"},f(p.xaxis,p.graphDiv._fullLayout),p.xaxis.setScale(),p.xaxis.isPtWithinRange=function(t){return t.a>=p.aaxis.range[0]&&t.a<=p.aaxis.range[1]&&t.b>=p.baxis.range[1]&&t.b<=p.baxis.range[0]&&t.c>=p.caxis.range[1]&&t.c<=p.caxis.range[0]},p.yaxis={type:"linear",range:[w,_-T-k],domain:[g-l/2,g+l/2],_id:"y"},f(p.yaxis,p.graphDiv._fullLayout),p.yaxis.setScale(),p.yaxis.isPtWithinRange=function(){return!0};var A=p.yaxis.domain[0],M=p.aaxis=h({},t.aaxis,{range:[w,_-T-k],side:"left",tickangle:(+t.aaxis.tickangle||0)-30,domain:[A,A+l*E],anchor:"free",position:0,_id:"y",_length:i});f(M,p.graphDiv._fullLayout),M.setScale();var S=p.baxis=h({},t.baxis,{range:[_-w-k,T],side:"bottom",domain:p.xaxis.domain,anchor:"free",position:0,_id:"x",_length:i});f(S,p.graphDiv._fullLayout),S.setScale();var L=p.caxis=h({},t.caxis,{range:[_-w-T,k],side:"right",tickangle:(+t.caxis.tickangle||0)+30,domain:[A,A+l*E],anchor:"free",position:0,_id:"y",_length:i});f(L,p.graphDiv._fullLayout),L.setScale();var C="M"+r+","+(n+a)+"h"+i+"l-"+i/2+",-"+a+"Z";p.clipDef.select("path").attr("d",C),p.layers.plotbg.select("path").attr("d",C);var P="M0,"+a+"h"+i+"l-"+i/2+",-"+a+"Z";p.clipDefRelative.select("path").attr("d",P);var I=s(r,n);p.plotContainer.selectAll(".scatterlayer,.maplayer").attr("transform",I),p.clipDefRelative.select("path").attr("transform",null);var O=s(r-S._offset,n+a);p.layers.baxis.attr("transform",O),p.layers.bgrid.attr("transform",O);var z=s(r+i/2,n)+"rotate(30)"+s(0,-M._offset);p.layers.aaxis.attr("transform",z),p.layers.agrid.attr("transform",z);var D=s(r+i/2,n)+"rotate(-30)"+s(0,-L._offset);p.layers.caxis.attr("transform",D),p.layers.cgrid.attr("transform",D),p.drawAxes(!0),p.layers.aline.select("path").attr("d",M.showline?"M"+r+","+(n+a)+"l"+i/2+",-"+a:"M0,0").call(c.stroke,M.linecolor||"#000").style("stroke-width",(M.linewidth||0)+"px"),p.layers.bline.select("path").attr("d",S.showline?"M"+r+","+(n+a)+"h"+i:"M0,0").call(c.stroke,S.linecolor||"#000").style("stroke-width",(S.linewidth||0)+"px"),p.layers.cline.select("path").attr("d",L.showline?"M"+(r+i/2)+","+n+"l"+i/2+","+a:"M0,0").call(c.stroke,L.linecolor||"#000").style("stroke-width",(L.linewidth||0)+"px"),p.graphDiv._context.staticPlot||p.initInteractions(),u.setClipUrl(p.layers.frontplot,p._hasClipOnAxisFalse?null:p.clipId,p.graphDiv)},S.drawAxes=function(t){var e=this.graphDiv,r=this.id.substr(7)+"title",n=this.layers,i=this.aaxis,a=this.baxis,o=this.caxis;if(this.drawAx(i),this.drawAx(a),this.drawAx(o),t){var s=Math.max(i.showticklabels?i.tickfont.size/2:0,(o.showticklabels?.75*o.tickfont.size:0)+("outside"===o.ticks?.87*o.ticklen:0)),c=(a.showticklabels?a.tickfont.size:0)+("outside"===a.ticks?a.ticklen:0)+3;n["a-title"]=b.draw(e,"a"+r,{propContainer:i,propName:this.id+".aaxis.title",placeholder:l(e,"Click to enter Component A title"),attributes:{x:this.x0+this.w/2,y:this.y0-i.title.font.size/3-s,"text-anchor":"middle"}}),n["b-title"]=b.draw(e,"b"+r,{propContainer:a,propName:this.id+".baxis.title",placeholder:l(e,"Click to enter Component B title"),attributes:{x:this.x0-c,y:this.y0+this.h+.83*a.title.font.size+c,"text-anchor":"middle"}}),n["c-title"]=b.draw(e,"c"+r,{propContainer:o,propName:this.id+".caxis.title",placeholder:l(e,"Click to enter Component C title"),attributes:{x:this.x0+this.w+c,y:this.y0+this.h+.83*o.title.font.size+c,"text-anchor":"middle"}})}},S.drawAx=function(t){var e,r=this.graphDiv,n=t._name,i=n.charAt(0),a=t._id,s=this.layers[n],l=i+"tickLayout",c=(e=t).ticks+String(e.ticklen)+String(e.showticklabels);this[l]!==c&&(s.selectAll("."+a+"tick").remove(),this[l]=c),t.setScale();var u=d.calcTicks(t),f=d.clipEnds(t,u),h=d.makeTransTickFn(t),p=d.getTickSigns(t)[2],m=o.deg2rad(30),g=p*(t.linewidth||1)/2,v=p*t.ticklen,y=this.w,x=this.h,b="b"===i?"M0,"+g+"l"+Math.sin(m)*v+","+Math.cos(m)*v:"M"+g+",0l"+Math.cos(m)*v+","+-Math.sin(m)*v,_={a:"M0,0l"+x+",-"+y/2,b:"M0,0l-"+y/2+",-"+x,c:"M0,0l-"+x+","+y/2}[i];d.drawTicks(r,t,{vals:"inside"===t.ticks?f:u,layer:s,path:b,transFn:h,crisp:!1}),d.drawGrid(r,t,{vals:f,layer:this.layers[i+"grid"],path:_,transFn:h,crisp:!1}),d.drawLabels(r,t,{vals:u,layer:s,transFn:h,labelFns:d.makeLabelFns(t,0,30)})};var L=A.MINZOOM/2+.87,C="m-0.87,.5h"+L+"v3h-"+(L+5.2)+"l"+(L/2+2.6)+",-"+(.87*L+4.5)+"l2.6,1.5l-"+L/2+","+.87*L+"Z",P="m0.87,.5h-"+L+"v3h"+(L+5.2)+"l-"+(L/2+2.6)+",-"+(.87*L+4.5)+"l-2.6,1.5l"+L/2+","+.87*L+"Z",I="m0,1l"+L/2+","+.87*L+"l2.6,-1.5l-"+(L/2+2.6)+",-"+(.87*L+4.5)+"l-"+(L/2+2.6)+","+(.87*L+4.5)+"l2.6,1.5l"+L/2+",-"+.87*L+"Z",O=!0;function z(t){n.select(t).selectAll(".zoombox,.js-zoombox-backdrop,.js-zoombox-menu,.zoombox-corners").remove()}S.clearSelect=function(){k(this.dragOptions),T(this.dragOptions.gd)},S.initInteractions=function(){var t,e,r,n,f,h,p,d,v,b,T,k,M=this,S=M.layers.plotbg.select("path").node(),L=M.graphDiv,D=L._fullLayout._zoomlayer;function R(t){var e={};return e[M.id+".aaxis.min"]=t.a,e[M.id+".baxis.min"]=t.b,e[M.id+".caxis.min"]=t.c,e}function F(t,e){var r=L._fullLayout.clickmode;z(L),2===t&&(L.emit("plotly_doubleclick",null),a.call("_guiRelayout",L,R({a:0,b:0,c:0}))),r.indexOf("select")>-1&&1===t&&w(e,L,[M.xaxis],[M.yaxis],M.id,M.dragOptions),r.indexOf("event")>-1&&g.click(L,e,M.id)}function B(t,e){return 1-e/M.h}function N(t,e){return 1-(t+(M.h-e)/Math.sqrt(3))/M.w}function j(t,e){return(t-(M.h-e)/Math.sqrt(3))/M.w}function U(i,a){var o=r+i*t,s=n+a*e,l=Math.max(0,Math.min(1,B(0,n),B(0,s))),c=Math.max(0,Math.min(1,N(r,n),N(o,s))),u=Math.max(0,Math.min(1,j(r,n),j(o,s))),m=(l/2+u)*M.w,g=(1-l/2-c)*M.w,y=(m+g)/2,x=g-m,_=(1-l)*M.h,w=_-x/E;x.2?"rgba(0,0,0,0.4)":"rgba(255,255,255,0.3)").duration(200),k.transition().style("opacity",1).duration(200),b=!0),L.emit("plotly_relayouting",R(p))}function V(){z(L),p!==f&&(a.call("_guiRelayout",L,R(p)),O&&L.data&&L._context.showTips&&(o.notifier(l(L,"Double-click to zoom back out"),"long"),O=!1))}function H(t,e){var r=t/M.xaxis._m,n=e/M.yaxis._m,i=[(p={a:f.a-n,b:f.b+(r+n)/2,c:f.c-(r-n)/2}).a,p.b,p.c].sort(o.sorterAsc),a=i.indexOf(p.a),l=i.indexOf(p.b),c=i.indexOf(p.c);i[0]<0&&(i[1]+i[0]/2<0?(i[2]+=i[0]+i[1],i[0]=i[1]=0):(i[2]+=i[0]/2,i[1]+=i[0]/2,i[0]=0),p={a:i[a],b:i[l],c:i[c]},e=(f.a-p.a)*M.yaxis._m,t=(f.c-p.c-f.b+p.b)*M.xaxis._m);var h=s(M.x0+t,M.y0+e);M.plotContainer.selectAll(".scatterlayer,.maplayer").attr("transform",h);var d=s(-t,-e);M.clipDefRelative.select("path").attr("transform",d),M.aaxis.range=[p.a,M.sum-p.b-p.c],M.baxis.range=[M.sum-p.a-p.c,p.b],M.caxis.range=[M.sum-p.a-p.b,p.c],M.drawAxes(!1),M._hasClipOnAxisFalse&&M.plotContainer.select(".scatterlayer").selectAll(".trace").call(u.hideOutsideRangePoints,M),L.emit("plotly_relayouting",R(p))}function q(){a.call("_guiRelayout",L,R(p))}this.dragOptions={element:S,gd:L,plotinfo:{id:M.id,domain:L._fullLayout[M.id].domain,xaxis:M.xaxis,yaxis:M.yaxis},subplot:M.id,prepFn:function(a,l,u){M.dragOptions.xaxes=[M.xaxis],M.dragOptions.yaxes=[M.yaxis],t=L._fullLayout._invScaleX,e=L._fullLayout._invScaleY;var m=M.dragOptions.dragmode=L._fullLayout.dragmode;y(m)?M.dragOptions.minDrag=1:M.dragOptions.minDrag=void 0,"zoom"===m?(M.dragOptions.moveFn=U,M.dragOptions.clickFn=F,M.dragOptions.doneFn=V,function(t,e,a){var l=S.getBoundingClientRect();r=e-l.left,n=a-l.top,L._fullLayout._calcInverseTransform(L);var u=L._fullLayout._invTransform,m=o.apply3DTransform(u)(r,n);r=m[0],n=m[1],f={a:M.aaxis.range[0],b:M.baxis.range[1],c:M.caxis.range[1]},p=f,h=M.aaxis.range[1]-f.a,d=i(M.graphDiv._fullLayout[M.id].bgcolor).getLuminance(),v="M0,"+M.h+"L"+M.w/2+", 0L"+M.w+","+M.h+"Z",b=!1,T=D.append("path").attr("class","zoombox").attr("transform",s(M.x0,M.y0)).style({fill:d>.2?"rgba(0,0,0,0)":"rgba(255,255,255,0)","stroke-width":0}).attr("d",v),k=D.append("path").attr("class","zoombox-corners").attr("transform",s(M.x0,M.y0)).style({fill:c.background,stroke:c.defaultLine,"stroke-width":1,opacity:0}).attr("d","M0,0Z"),M.clearSelect(L)}(0,l,u)):"pan"===m?(M.dragOptions.moveFn=H,M.dragOptions.clickFn=F,M.dragOptions.doneFn=q,f={a:M.aaxis.range[0],b:M.baxis.range[1],c:M.caxis.range[1]},p=f,M.clearSelect(L)):(x(m)||y(m))&&_(a,l,u,M.dragOptions,m)}},S.onmousemove=function(t){g.hover(L,t,M.id),L._fullLayout._lasthover=S,L._fullLayout._hoversubplot=M.id},S.onmouseout=function(t){L._dragging||m.unhover(L,t)},m.init(this.dragOptions)}},{"../../components/color":361,"../../components/dragelement":380,"../../components/dragelement/helpers":379,"../../components/drawing":383,"../../components/fx":401,"../../components/titles":459,"../../lib":498,"../../lib/extend":488,"../../registry":633,"../cartesian/axes":549,"../cartesian/constants":556,"../cartesian/select":570,"../cartesian/set_convert":571,"../plots":614,"@plotly/d3":58,tinycolor2:307}],633:[function(t,e,r){"use strict";var n=t("./lib/loggers"),i=t("./lib/noop"),a=t("./lib/push_unique"),o=t("./lib/is_plain_object"),s=t("./lib/dom").addStyleRule,l=t("./lib/extend"),c=t("./plots/attributes"),u=t("./plots/layout_attributes"),f=l.extendFlat,h=l.extendDeepAll;function p(t){var e=t.name,i=t.categories,a=t.meta;if(r.modules[e])n.log("Type "+e+" already registered");else{r.subplotsRegistry[t.basePlotModule.name]||function(t){var e=t.name;if(r.subplotsRegistry[e])return void n.log("Plot type "+e+" already registered.");for(var i in v(t),r.subplotsRegistry[e]=t,r.componentsRegistry)b(i,t.name)}(t.basePlotModule);for(var o={},l=0;l-1&&(f[p[r]].title={text:""});for(r=0;r")?"":e.html(t).text()}));return e.remove(),r}(_),_=(_=_.replace(/&(?!\w+;|\#[0-9]+;| \#x[0-9A-F]+;)/g,"&")).replace(c,"'"),i.isIE()&&(_=(_=(_=_.replace(/"/gi,"'")).replace(/(\('#)([^']*)('\))/gi,'("#$2")')).replace(/(\\')/gi,'"')),_}},{"../components/color":361,"../components/drawing":383,"../constants/xmlns_namespaces":475,"../lib":498,"@plotly/d3":58}],642:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){for(var r=0;rf+c||!n(u))}for(var p=0;pa))return e}return void 0!==r?r:t.dflt},r.coerceColor=function(t,e,r){return i(e).isValid()?e:void 0!==r?r:t.dflt},r.coerceEnumerated=function(t,e,r){return t.coerceNumber&&(e=+e),-1!==t.values.indexOf(e)?e:void 0!==r?r:t.dflt},r.getValue=function(t,e){var r;return Array.isArray(t)?e0?e+=r:u<0&&(e-=r)}return e}function z(t){var e=u,r=t.b,i=O(t);return n.inbox(r-e,i-e,_+(i-e)/(i-r)-1)}var D=t[f+"a"],R=t[h+"a"];m=Math.abs(D.r2c(D.range[1])-D.r2c(D.range[0]));var F=n.getDistanceFunction(i,p,d,(function(t){return(p(t)+d(t))/2}));if(n.getClosest(g,F,t),!1!==t.index&&g[t.index].p!==c){k||(L=function(t){return Math.min(A(t),t.p-y.bargroupwidth/2)},C=function(t){return Math.max(M(t),t.p+y.bargroupwidth/2)});var B=g[t.index],N=v.base?B.b+B.s:B.s;t[h+"0"]=t[h+"1"]=R.c2p(B[h],!0),t[h+"LabelVal"]=N;var j=y.extents[y.extents.round(B.p)];t[f+"0"]=D.c2p(x?L(B):j[0],!0),t[f+"1"]=D.c2p(x?C(B):j[1],!0);var U=void 0!==B.orig_p;return t[f+"LabelVal"]=U?B.orig_p:B.p,t.labelLabel=l(D,t[f+"LabelVal"],v[f+"hoverformat"]),t.valueLabel=l(R,t[h+"LabelVal"],v[h+"hoverformat"]),t.baseLabel=l(R,B.b,v[h+"hoverformat"]),t.spikeDistance=(function(t){var e=u,r=t.b,i=O(t);return n.inbox(r-e,i-e,w+(i-e)/(i-r)-1)}(B)+function(t){return P(A(t),M(t),w)}(B))/2,t[f+"Spike"]=D.c2p(B.p,!0),o(B,v,t),t.hovertemplate=v.hovertemplate,t}}function f(t,e){var r=e.mcc||t.marker.color,n=e.mlcc||t.marker.line.color,i=s(t,e);return a.opacity(r)?r:a.opacity(n)&&i?n:void 0}e.exports={hoverPoints:function(t,e,r,n,a){var o=u(t,e,r,n,a);if(o){var s=o.cd,l=s[0].trace,c=s[o.index];return o.color=f(l,c),i.getComponentMethod("errorbars","hoverInfo")(c,l,o),[o]}},hoverOnBars:u,getTraceColor:f}},{"../../components/color":361,"../../components/fx":401,"../../constants/numerical":474,"../../lib":498,"../../plots/cartesian/axes":549,"../../registry":633,"./helpers":649}],651:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc").crossTraceCalc,colorbar:t("../scatter/marker_colorbar"),arraysToCalcdata:t("./arrays_to_calcdata"),plot:t("./plot").plot,style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"bar",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","bar","oriented","errorBarsOK","showLegend","zoomScale"],animatable:!0,meta:{}}},{"../../plots/cartesian":563,"../scatter/marker_colorbar":940,"./arrays_to_calcdata":642,"./attributes":643,"./calc":644,"./cross_trace_calc":646,"./defaults":647,"./event_data":648,"./hover":650,"./layout_attributes":652,"./layout_defaults":653,"./plot":654,"./select":655,"./style":657}],652:[function(t,e,r){"use strict";e.exports={barmode:{valType:"enumerated",values:["stack","group","overlay","relative"],dflt:"group",editType:"calc"},barnorm:{valType:"enumerated",values:["","fraction","percent"],dflt:"",editType:"calc"},bargap:{valType:"number",min:0,max:1,editType:"calc"},bargroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],653:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../plots/cartesian/axes"),a=t("../../lib"),o=t("./layout_attributes");e.exports=function(t,e,r){function s(r,n){return a.coerce(t,e,o,r,n)}for(var l=!1,c=!1,u=!1,f={},h=s("barmode"),p=0;p0}function S(t){return"auto"===t?0:t}function E(t,e){var r=Math.PI/180*e,n=Math.abs(Math.sin(r)),i=Math.abs(Math.cos(r));return{x:t.width*i+t.height*n,y:t.width*n+t.height*i}}function L(t,e,r,n,i,a){var o=!!a.isHorizontal,s=!!a.constrained,l=a.angle||0,c=a.anchor||"end",u="end"===c,f="start"===c,h=((a.leftToRight||0)+1)/2,p=1-h,d=i.width,m=i.height,g=Math.abs(e-t),v=Math.abs(n-r),y=g>2*_&&v>2*_?_:0;g-=2*y,v-=2*y;var x=S(l);"auto"!==l||d<=g&&m<=v||!(d>g||m>v)||(d>v||m>g)&&d.01?q:function(t,e,r){return r&&t===e?t:Math.abs(t-e)>=2?q(t):t>e?Math.ceil(t):Math.floor(t)};B=G(B,N,D),N=G(N,B,D),j=G(j,U,!D),U=G(U,j,!D)}var Y=A(a.ensureSingle(I,"path"),P,g,v);if(Y.style("vector-effect","non-scaling-stroke").attr("d",isNaN((N-B)*(U-j))||V&&t._context.staticPlot?"M0,0Z":"M"+B+","+j+"V"+U+"H"+N+"V"+j+"Z").call(l.setClipUrl,e.layerClipId,t),!P.uniformtext.mode&&R){var W=l.makePointStyleFns(f);l.singlePointStyle(c,Y,f,W,t)}!function(t,e,r,n,i,s,c,f,p,g,v){var w,T=e.xaxis,M=e.yaxis,C=t._fullLayout;function P(e,r,n){return a.ensureSingle(e,"text").text(r).attr({class:"bartext bartext-"+w,"text-anchor":"middle","data-notex":1}).call(l.font,n).call(o.convertToTspans,t)}var I=n[0].trace,O="h"===I.orientation,z=function(t,e,r,n,i){var o,s=e[0].trace;o=s.texttemplate?function(t,e,r,n,i){var o=e[0].trace,s=a.castOption(o,r,"texttemplate");if(!s)return"";var l,c,f,h,p="histogram"===o.type,d="waterfall"===o.type,m="funnel"===o.type,g="h"===o.orientation;g?(l="y",c=i,f="x",h=n):(l="x",c=n,f="y",h=i);function v(t){return u(h,h.c2l(t),!0).text}var y=e[r],x={};x.label=y.p,x.labelLabel=x[l+"Label"]=(_=y.p,u(c,c.c2l(_),!0).text);var _;var w=a.castOption(o,y.i,"text");(0===w||w)&&(x.text=w);x.value=y.s,x.valueLabel=x[f+"Label"]=v(y.s);var T={};b(T,o,y.i),(p||void 0===T.x)&&(T.x=g?x.value:x.label);(p||void 0===T.y)&&(T.y=g?x.label:x.value);(p||void 0===T.xLabel)&&(T.xLabel=g?x.valueLabel:x.labelLabel);(p||void 0===T.yLabel)&&(T.yLabel=g?x.labelLabel:x.valueLabel);d&&(x.delta=+y.rawS||y.s,x.deltaLabel=v(x.delta),x.final=y.v,x.finalLabel=v(x.final),x.initial=x.final-x.delta,x.initialLabel=v(x.initial));m&&(x.value=y.s,x.valueLabel=v(x.value),x.percentInitial=y.begR,x.percentInitialLabel=a.formatPercent(y.begR),x.percentPrevious=y.difR,x.percentPreviousLabel=a.formatPercent(y.difR),x.percentTotal=y.sumR,x.percenTotalLabel=a.formatPercent(y.sumR));var k=a.castOption(o,y.i,"customdata");k&&(x.customdata=k);return a.texttemplateString(s,x,t._d3locale,T,x,o._meta||{})}(t,e,r,n,i):s.textinfo?function(t,e,r,n){var i=t[0].trace,o="h"===i.orientation,s="waterfall"===i.type,l="funnel"===i.type;function c(t){return u(o?r:n,+t,!0).text}var f,h=i.textinfo,p=t[e],d=h.split("+"),m=[],g=function(t){return-1!==d.indexOf(t)};g("label")&&m.push((v=t[e].p,u(o?n:r,v,!0).text));var v;g("text")&&(0===(f=a.castOption(i,p.i,"text"))||f)&&m.push(f);if(s){var y=+p.rawS||p.s,x=p.v,b=x-y;g("initial")&&m.push(c(b)),g("delta")&&m.push(c(y)),g("final")&&m.push(c(x))}if(l){g("value")&&m.push(c(p.s));var _=0;g("percent initial")&&_++,g("percent previous")&&_++,g("percent total")&&_++;var w=_>1;g("percent initial")&&(f=a.formatPercent(p.begR),w&&(f+=" of initial"),m.push(f)),g("percent previous")&&(f=a.formatPercent(p.difR),w&&(f+=" of previous"),m.push(f)),g("percent total")&&(f=a.formatPercent(p.sumR),w&&(f+=" of total"),m.push(f))}return m.join("
")}(e,r,n,i):m.getValue(s.text,r);return m.coerceString(y,o)}(C,n,i,T,M);w=function(t,e){var r=m.getValue(t.textposition,e);return m.coerceEnumerated(x,r)}(I,i);var D="stack"===g.mode||"relative"===g.mode,R=n[i],F=!D||R._outmost;if(!z||"none"===w||(R.isBlank||s===c||f===p)&&("auto"===w||"inside"===w))return void r.select("text").remove();var B=C.font,N=d.getBarColor(n[i],I),j=d.getInsideTextFont(I,i,B,N),U=d.getOutsideTextFont(I,i,B),V=r.datum();O?"log"===T.type&&V.s0<=0&&(s=T.range[0]=G*(Z/Y):Z>=Y*(X/G);G>0&&Y>0&&(J||K||Q)?w="inside":(w="outside",H.remove(),H=null)}else w="inside";if(!H){W=a.ensureUniformFontSize(t,"outside"===w?U:j);var $=(H=P(r,z,W)).attr("transform");if(H.attr("transform",""),q=l.bBox(H.node()),G=q.width,Y=q.height,H.attr("transform",$),G<=0||Y<=0)return void H.remove()}var tt,et,rt=I.textangle;"outside"===w?(et="both"===I.constraintext||"outside"===I.constraintext,tt=function(t,e,r,n,i,a){var o,s=!!a.isHorizontal,l=!!a.constrained,c=a.angle||0,u=i.width,f=i.height,h=Math.abs(e-t),p=Math.abs(n-r);o=s?p>2*_?_:0:h>2*_?_:0;var d=1;l&&(d=s?Math.min(1,p/f):Math.min(1,h/u));var m=S(c),g=E(i,m),v=(s?g.x:g.y)/2,y=(i.left+i.right)/2,x=(i.top+i.bottom)/2,b=(t+e)/2,w=(r+n)/2,T=0,A=0,M=s?k(e,t):k(r,n);s?(b=e-M*o,T=M*v):(w=n+M*o,A=-M*v);return{textX:y,textY:x,targetX:b,targetY:w,anchorX:T,anchorY:A,scale:d,rotate:m}}(s,c,f,p,q,{isHorizontal:O,constrained:et,angle:rt})):(et="both"===I.constraintext||"inside"===I.constraintext,tt=L(s,c,f,p,q,{isHorizontal:O,constrained:et,angle:rt,anchor:I.insidetextanchor}));tt.fontSize=W.size,h("histogram"===I.type?"bar":I.type,tt,C),R.transform=tt,A(H,C,g,v).attr("transform",a.getTextTransform(tt))}(t,e,I,r,p,B,N,j,U,g,v),e.layerClipId&&l.hideOutsideRangePoint(c,I.select("text"),w,C,f.xcalendar,f.ycalendar)}));var j=!1===f.cliponaxis;l.setClipUrl(c,j?null:e.layerClipId,t)}));c.getComponentMethod("errorbars","plot")(t,I,e,g)},toMoveInsideBar:L}},{"../../components/color":361,"../../components/drawing":383,"../../components/fx/helpers":397,"../../lib":498,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"../../registry":633,"./attributes":643,"./constants":645,"./helpers":649,"./style":657,"./uniform_text":659,"@plotly/d3":58,"fast-isnumeric":185}],655:[function(t,e,r){"use strict";function n(t,e,r,n,i){var a=e.c2p(n?t.s0:t.p0,!0),o=e.c2p(n?t.s1:t.p1,!0),s=r.c2p(n?t.p0:t.s0,!0),l=r.c2p(n?t.p1:t.s1,!0);return i?[(a+o)/2,(s+l)/2]:n?[o,(s+l)/2]:[(a+o)/2,l]}e.exports=function(t,e){var r,i=t.cd,a=t.xaxis,o=t.yaxis,s=i[0].trace,l="funnel"===s.type,c="h"===s.orientation,u=[];if(!1===e)for(r=0;r1||0===i.bargap&&0===i.bargroupgap&&!t[0].trace.marker.line.width)&&n.select(this).attr("shape-rendering","crispEdges")})),e.selectAll("g.points").each((function(e){d(n.select(this),e[0].trace,t)})),s.getComponentMethod("errorbars","style")(e)},styleTextPoints:m,styleOnSelect:function(t,e,r){var i=e[0].trace;i.selectedpoints?function(t,e,r){a.selectedPointStyle(t.selectAll("path"),e),function(t,e,r){t.each((function(t){var i,s=n.select(this);if(t.selected){i=o.ensureUniformFontSize(r,g(s,t,e,r));var l=e.selected.textfont&&e.selected.textfont.color;l&&(i.color=l),a.font(s,i)}else a.selectedTextStyle(s,e)}))}(t.selectAll("text"),e,r)}(r,i,t):(d(r,i,t),s.getComponentMethod("errorbars","style")(r))},getInsideTextFont:y,getOutsideTextFont:x,getBarColor:_,resizeText:l}},{"../../components/color":361,"../../components/drawing":383,"../../lib":498,"../../registry":633,"./attributes":643,"./helpers":649,"./uniform_text":659,"@plotly/d3":58}],658:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults"),o=t("../../lib").coercePattern;e.exports=function(t,e,r,s,l){var c=r("marker.color",s),u=i(t,"marker");u&&a(t,e,l,r,{prefix:"marker.",cLetter:"c"}),r("marker.line.color",n.defaultLine),i(t,"marker.line")&&a(t,e,l,r,{prefix:"marker.line.",cLetter:"c"}),r("marker.line.width"),r("marker.opacity"),o(r,"marker.pattern",c,u),r("selected.marker.color"),r("unselected.marker.color")}},{"../../components/color":361,"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"../../lib":498}],659:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib");function a(t){return"_"+t+"Text_minsize"}e.exports={recordMinTextSize:function(t,e,r){if(r.uniformtext.mode){var n=a(t),i=r.uniformtext.minsize,o=e.scale*e.fontSize;e.hide=oh.range[1]&&(x+=Math.PI);if(n.getClosest(c,(function(t){return m(y,x,[t.rp0,t.rp1],[t.thetag0,t.thetag1],d)?g+Math.min(1,Math.abs(t.thetag1-t.thetag0)/v)-1+(t.rp1-y)/(t.rp1-t.rp0)-1:1/0}),t),!1!==t.index){var b=c[t.index];t.x0=t.x1=b.ct[0],t.y0=t.y1=b.ct[1];var _=i.extendFlat({},b,{r:b.s,theta:b.p});return o(b,u,t),s(_,u,f,t),t.hovertemplate=u.hovertemplate,t.color=a(u,b),t.xLabelVal=t.yLabelVal=void 0,b.s<0&&(t.idealAlign="left"),[t]}}},{"../../components/fx":401,"../../lib":498,"../../plots/polar/helpers":616,"../bar/hover":650,"../scatterpolar/hover":1001}],664:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"barpolar",basePlotModule:t("../../plots/polar"),categories:["polar","bar","showLegend"],attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("../scatterpolar/format_labels"),style:t("../bar/style").style,styleOnSelect:t("../bar/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../bar/select"),meta:{}}},{"../../plots/polar":617,"../bar/select":655,"../bar/style":657,"../scatter/marker_colorbar":940,"../scatterpolar/format_labels":1e3,"./attributes":660,"./calc":661,"./defaults":662,"./hover":663,"./layout_attributes":665,"./layout_defaults":666,"./plot":667}],665:[function(t,e,r){"use strict";e.exports={barmode:{valType:"enumerated",values:["stack","overlay"],dflt:"stack",editType:"calc"},bargap:{valType:"number",dflt:.1,min:0,max:1,editType:"calc"}}},{}],666:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a,o={};function s(r,o){return n.coerce(t[a]||{},e[a],i,r,o)}for(var l=0;l0?(c=o,u=l):(c=l,u=o);var f=[s.findEnclosingVertexAngles(c,t.vangles)[0],(c+u)/2,s.findEnclosingVertexAngles(u,t.vangles)[1]];return s.pathPolygonAnnulus(n,i,c,u,f,e,r)};return function(t,n,i,o){return a.pathAnnulus(t,n,i,o,e,r)}}(e),p=e.layers.frontplot.select("g.barlayer");a.makeTraceGroups(p,r,"trace bars").each((function(){var r=n.select(this),s=a.ensureSingle(r,"g","points").selectAll("g.point").data(a.identity);s.enter().append("g").style("vector-effect","non-scaling-stroke").style("stroke-miterlimit",2).classed("point",!0),s.exit().remove(),s.each((function(t){var e,r=n.select(this),o=t.rp0=u.c2p(t.s0),s=t.rp1=u.c2p(t.s1),p=t.thetag0=f.c2g(t.p0),d=t.thetag1=f.c2g(t.p1);if(i(o)&&i(s)&&i(p)&&i(d)&&o!==s&&p!==d){var m=u.c2g(t.s1),g=(p+d)/2;t.ct=[l.c2p(m*Math.cos(g)),c.c2p(m*Math.sin(g))],e=h(o,s,p,d)}else e="M0,0Z";a.ensureSingle(r,"path").attr("d",e)})),o.setClipUrl(r,e._hasClipOnAxisFalse?e.clipIds.forTraces:null,t)}))}},{"../../components/drawing":383,"../../lib":498,"../../plots/polar/helpers":616,"@plotly/d3":58,"fast-isnumeric":185}],668:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../bar/attributes"),a=t("../../components/color/attributes"),o=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../lib/extend").extendFlat,c=n.marker,u=c.line;e.exports={y:{valType:"data_array",editType:"calc+clearAxisTypes"},x:{valType:"data_array",editType:"calc+clearAxisTypes"},x0:{valType:"any",editType:"calc+clearAxisTypes"},y0:{valType:"any",editType:"calc+clearAxisTypes"},dx:{valType:"number",editType:"calc"},dy:{valType:"number",editType:"calc"},xperiod:n.xperiod,yperiod:n.yperiod,xperiod0:n.xperiod0,yperiod0:n.yperiod0,xperiodalignment:n.xperiodalignment,yperiodalignment:n.yperiodalignment,xhoverformat:o("x"),yhoverformat:o("y"),name:{valType:"string",editType:"calc+clearAxisTypes"},q1:{valType:"data_array",editType:"calc+clearAxisTypes"},median:{valType:"data_array",editType:"calc+clearAxisTypes"},q3:{valType:"data_array",editType:"calc+clearAxisTypes"},lowerfence:{valType:"data_array",editType:"calc"},upperfence:{valType:"data_array",editType:"calc"},notched:{valType:"boolean",editType:"calc"},notchwidth:{valType:"number",min:0,max:.5,dflt:.25,editType:"calc"},notchspan:{valType:"data_array",editType:"calc"},boxpoints:{valType:"enumerated",values:["all","outliers","suspectedoutliers",!1],editType:"calc"},jitter:{valType:"number",min:0,max:1,editType:"calc"},pointpos:{valType:"number",min:-2,max:2,editType:"calc"},boxmean:{valType:"enumerated",values:[!0,"sd",!1],editType:"calc"},mean:{valType:"data_array",editType:"calc"},sd:{valType:"data_array",editType:"calc"},orientation:{valType:"enumerated",values:["v","h"],editType:"calc+clearAxisTypes"},quartilemethod:{valType:"enumerated",values:["linear","exclusive","inclusive"],dflt:"linear",editType:"calc"},width:{valType:"number",min:0,dflt:0,editType:"calc"},marker:{outliercolor:{valType:"color",dflt:"rgba(0, 0, 0, 0)",editType:"style"},symbol:l({},c.symbol,{arrayOk:!1,editType:"plot"}),opacity:l({},c.opacity,{arrayOk:!1,dflt:1,editType:"style"}),size:l({},c.size,{arrayOk:!1,editType:"calc"}),color:l({},c.color,{arrayOk:!1,editType:"style"}),line:{color:l({},u.color,{arrayOk:!1,dflt:a.defaultLine,editType:"style"}),width:l({},u.width,{arrayOk:!1,dflt:0,editType:"style"}),outliercolor:{valType:"color",editType:"style"},outlierwidth:{valType:"number",min:0,dflt:1,editType:"style"},editType:"style"},editType:"plot"},line:{color:{valType:"color",editType:"style"},width:{valType:"number",min:0,dflt:2,editType:"style"},editType:"plot"},fillcolor:n.fillcolor,whiskerwidth:{valType:"number",min:0,max:1,dflt:.5,editType:"calc"},offsetgroup:i.offsetgroup,alignmentgroup:i.alignmentgroup,selected:{marker:n.selected.marker,editType:"style"},unselected:{marker:n.unselected.marker,editType:"style"},text:l({},n.text,{}),hovertext:l({},n.hovertext,{}),hovertemplate:s({}),hoveron:{valType:"flaglist",flags:["boxes","points"],dflt:"boxes+points",editType:"style"}}},{"../../components/color/attributes":360,"../../lib/extend":488,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628,"../bar/attributes":643,"../scatter/attributes":922}],669:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../plots/cartesian/axes"),a=t("../../plots/cartesian/align_period"),o=t("../../lib"),s=t("../../constants/numerical").BADNUM,l=o._;e.exports=function(t,e){var r,c,y,x,b,_,w,T=t._fullLayout,k=i.getFromId(t,e.xaxis||"x"),A=i.getFromId(t,e.yaxis||"y"),M=[],S="violin"===e.type?"_numViolins":"_numBoxes";"h"===e.orientation?(y=k,x="x",b=A,_="y",w=!!e.yperiodalignment):(y=A,x="y",b=k,_="x",w=!!e.xperiodalignment);var E,L,C,P,I,O,z=function(t,e,r,i){var s,l=e+"0"in t,c="d"+e in t;if(e in t||l&&c){var u=r.makeCalcdata(t,e);return[a(t,r,e,u).vals,u]}s=l?t[e+"0"]:"name"in t&&("category"===r.type||n(t.name)&&-1!==["linear","log"].indexOf(r.type)||o.isDateTime(t.name)&&"date"===r.type)?t.name:i;for(var f="multicategory"===r.type?r.r2c_just_indices(s):r.d2c(s,0,t[e+"calendar"]),h=t._length,p=new Array(h),d=0;dE.uf};if(e._hasPreCompStats){var U=e[x],V=function(t){return y.d2c((e[t]||[])[r])},H=1/0,q=-1/0;for(r=0;r=E.q1&&E.q3>=E.med){var Y=V("lowerfence");E.lf=Y!==s&&Y<=E.q1?Y:p(E,C,P);var W=V("upperfence");E.uf=W!==s&&W>=E.q3?W:d(E,C,P);var X=V("mean");E.mean=X!==s?X:P?o.mean(C,P):(E.q1+E.q3)/2;var Z=V("sd");E.sd=X!==s&&Z>=0?Z:P?o.stdev(C,P,E.mean):E.q3-E.q1,E.lo=m(E),E.uo=g(E);var J=V("notchspan");J=J!==s&&J>0?J:v(E,P),E.ln=E.med-J,E.un=E.med+J;var K=E.lf,Q=E.uf;e.boxpoints&&C.length&&(K=Math.min(K,C[0]),Q=Math.max(Q,C[P-1])),e.notched&&(K=Math.min(K,E.ln),Q=Math.max(Q,E.un)),E.min=K,E.max=Q}else{var $;o.warn(["Invalid input - make sure that q1 <= median <= q3","q1 = "+E.q1,"median = "+E.med,"q3 = "+E.q3].join("\n")),$=E.med!==s?E.med:E.q1!==s?E.q3!==s?(E.q1+E.q3)/2:E.q1:E.q3!==s?E.q3:0,E.med=$,E.q1=E.q3=$,E.lf=E.uf=$,E.mean=E.sd=$,E.ln=E.un=$,E.min=E.max=$}H=Math.min(H,E.min),q=Math.max(q,E.max),E.pts2=L.filter(j),M.push(E)}}e._extremes[y._id]=i.findExtremes(y,[H,q],{padded:!0})}else{var tt=y.makeCalcdata(e,x),et=function(t,e){for(var r=t.length,n=new Array(r+1),i=0;i=0&&it0){var ut,ft;if((E={}).pos=E[_]=B[r],L=E.pts=nt[r].sort(f),P=(C=E[x]=L.map(h)).length,E.min=C[0],E.max=C[P-1],E.mean=o.mean(C,P),E.sd=o.stdev(C,P,E.mean),E.med=o.interp(C,.5),P%2&&(lt||ct))lt?(ut=C.slice(0,P/2),ft=C.slice(P/2+1)):ct&&(ut=C.slice(0,P/2+1),ft=C.slice(P/2)),E.q1=o.interp(ut,.5),E.q3=o.interp(ft,.5);else E.q1=o.interp(C,.25),E.q3=o.interp(C,.75);E.lf=p(E,C,P),E.uf=d(E,C,P),E.lo=m(E),E.uo=g(E);var ht=v(E,P);E.ln=E.med-ht,E.un=E.med+ht,at=Math.min(at,E.ln),ot=Math.max(ot,E.un),E.pts2=L.filter(j),M.push(E)}e._extremes[y._id]=i.findExtremes(y,e.notched?tt.concat([at,ot]):tt,{padded:!0})}return function(t,e){if(o.isArrayOrTypedArray(e.selectedpoints))for(var r=0;r0?(M[0].t={num:T[S],dPos:N,posLetter:_,valLetter:x,labels:{med:l(t,"median:"),min:l(t,"min:"),q1:l(t,"q1:"),q3:l(t,"q3:"),max:l(t,"max:"),mean:"sd"===e.boxmean?l(t,"mean \xb1 \u03c3:"):l(t,"mean:"),lf:l(t,"lower fence:"),uf:l(t,"upper fence:")}},T[S]++,M):[{t:{empty:!0}}]};var c={text:"tx",hovertext:"htx"};function u(t,e,r){for(var n in c)o.isArrayOrTypedArray(e[n])&&(Array.isArray(r)?o.isArrayOrTypedArray(e[n][r[0]])&&(t[c[n]]=e[n][r[0]][r[1]]):t[c[n]]=e[n][r])}function f(t,e){return t.v-e.v}function h(t){return t.v}function p(t,e,r){return 0===r?t.q1:Math.min(t.q1,e[Math.min(o.findBin(2.5*t.q1-1.5*t.q3,e,!0)+1,r-1)])}function d(t,e,r){return 0===r?t.q3:Math.max(t.q3,e[Math.max(o.findBin(2.5*t.q3-1.5*t.q1,e),0)])}function m(t){return 4*t.q1-3*t.q3}function g(t){return 4*t.q3-3*t.q1}function v(t,e){return 0===e?0:1.57*(t.q3-t.q1)/Math.sqrt(e)}},{"../../constants/numerical":474,"../../lib":498,"../../plots/cartesian/align_period":546,"../../plots/cartesian/axes":549,"fast-isnumeric":185}],670:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib"),a=t("../../plots/cartesian/constraints").getAxisGroup,o=["v","h"];function s(t,e,r,o){var s,l,c,u=e.calcdata,f=e._fullLayout,h=o._id,p=h.charAt(0),d=[],m=0;for(s=0;s1,b=1-f[t+"gap"],_=1-f[t+"groupgap"];for(s=0;s0){var q=E.pointpos,G=E.jitter,Y=E.marker.size/2,W=0;q+G>=0&&((W=V*(q+G))>M?(H=!0,j=Y,B=W):W>R&&(j=Y,B=M)),W<=M&&(B=M);var X=0;q-G<=0&&((X=-V*(q-G))>S?(H=!0,U=Y,N=X):X>F&&(U=Y,N=S)),X<=S&&(N=S)}else B=M,N=S;var Z=new Array(c.length);for(l=0;l0?(g="v",v=x>0?Math.min(_,b):Math.min(b)):x>0?(g="h",v=Math.min(_)):v=0;if(v){e._length=v;var S=r("orientation",g);e._hasPreCompStats?"v"===S&&0===x?(r("x0",0),r("dx",1)):"h"===S&&0===y&&(r("y0",0),r("dy",1)):"v"===S&&0===x?r("x0"):"h"===S&&0===y&&r("y0"),i.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x","y"],a)}else e.visible=!1}function f(t,e,r,i){var a=i.prefix,o=n.coerce2(t,e,c,"marker.outliercolor"),s=r("marker.line.outliercolor"),l="outliers";e._hasPreCompStats?l="all":(o||s)&&(l="suspectedoutliers");var u=r(a+"points",l);u?(r("jitter","all"===u?.3:0),r("pointpos","all"===u?-1.5:0),r("marker.symbol"),r("marker.opacity"),r("marker.size"),r("marker.color",e.line.color),r("marker.line.color"),r("marker.line.width"),"suspectedoutliers"===u&&(r("marker.line.outliercolor",e.marker.color),r("marker.line.outlierwidth")),r("selected.marker.color"),r("unselected.marker.color"),r("selected.marker.size"),r("unselected.marker.size"),r("text"),r("hovertext")):delete e.marker;var f=r("hoveron");"all"!==f&&-1===f.indexOf("points")||r("hovertemplate"),n.coerceSelectionMarkerOpacity(e,r)}e.exports={supplyDefaults:function(t,e,r,i){function s(r,i){return n.coerce(t,e,c,r,i)}if(u(t,e,s,i),!1!==e.visible){o(t,e,i,s),s("xhoverformat"),s("yhoverformat");var l=e._hasPreCompStats;l&&(s("lowerfence"),s("upperfence")),s("line.color",(t.marker||{}).color||r),s("line.width"),s("fillcolor",a.addOpacity(e.line.color,.5));var h=!1;if(l){var p=s("mean"),d=s("sd");p&&p.length&&(h=!0,d&&d.length&&(h="sd"))}s("boxmean",h),s("whiskerwidth"),s("width"),s("quartilemethod");var m=!1;if(l){var g=s("notchspan");g&&g.length&&(m=!0)}else n.validate(t.notchwidth,c.notchwidth)&&(m=!0);s("notched",m)&&s("notchwidth"),f(t,e,s,{prefix:"box"})}},crossTraceDefaults:function(t,e){var r,i;function a(t){return n.coerce(i._input,i,c,t)}for(var o=0;ot.lo&&(x.so=!0)}return a}));h.enter().append("path").classed("point",!0),h.exit().remove(),h.call(a.translatePoints,o,s)}function l(t,e,r,a){var o,s,l=e.val,c=e.pos,u=!!c.rangebreaks,f=a.bPos,h=a.bPosPxOffset||0,p=r.boxmean||(r.meanline||{}).visible;Array.isArray(a.bdPos)?(o=a.bdPos[0],s=a.bdPos[1]):(o=a.bdPos,s=a.bdPos);var d=t.selectAll("path.mean").data("box"===r.type&&r.boxmean||"violin"===r.type&&r.box.visible&&r.meanline.visible?i.identity:[]);d.enter().append("path").attr("class","mean").style({fill:"none","vector-effect":"non-scaling-stroke"}),d.exit().remove(),d.each((function(t){var e=c.c2l(t.pos+f,!0),i=c.l2p(e-o)+h,a=c.l2p(e+s)+h,d=u?(i+a)/2:c.l2p(e)+h,m=l.c2p(t.mean,!0),g=l.c2p(t.mean-t.sd,!0),v=l.c2p(t.mean+t.sd,!0);"h"===r.orientation?n.select(this).attr("d","M"+m+","+i+"V"+a+("sd"===p?"m0,0L"+g+","+d+"L"+m+","+i+"L"+v+","+d+"Z":"")):n.select(this).attr("d","M"+i+","+m+"H"+a+("sd"===p?"m0,0L"+d+","+g+"L"+i+","+m+"L"+d+","+v+"Z":""))}))}e.exports={plot:function(t,e,r,a){var c=e.xaxis,u=e.yaxis;i.makeTraceGroups(a,r,"trace boxes").each((function(t){var e,r,i=n.select(this),a=t[0],f=a.t,h=a.trace;(f.wdPos=f.bdPos*h.whiskerwidth,!0!==h.visible||f.empty)?i.remove():("h"===h.orientation?(e=u,r=c):(e=c,r=u),o(i,{pos:e,val:r},h,f),s(i,{x:c,y:u},h,f),l(i,{pos:e,val:r},h,f))}))},plotBoxAndWhiskers:o,plotPoints:s,plotBoxMean:l}},{"../../components/drawing":383,"../../lib":498,"@plotly/d3":58}],678:[function(t,e,r){"use strict";e.exports=function(t,e){var r,n,i=t.cd,a=t.xaxis,o=t.yaxis,s=[];if(!1===e)for(r=0;r=10)return null;for(var i=1/0,a=-1/0,o=e.length,s=0;s0?Math.floor:Math.ceil,I=L>0?Math.ceil:Math.floor,O=L>0?Math.min:Math.max,z=L>0?Math.max:Math.min,D=P(S+C),R=I(E-C),F=[[f=M(S)]];for(a=D;a*L=0;i--)a[u-i]=t[f][i],o[u-i]=e[f][i];for(s.push({x:a,y:o,bicubic:l}),i=f,a=[],o=[];i>=0;i--)a[f-i]=t[i][0],o[f-i]=e[i][0];return s.push({x:a,y:o,bicubic:c}),s}},{}],692:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib/extend").extendFlat;e.exports=function(t,e,r){var a,o,s,l,c,u,f,h,p,d,m,g,v,y,x=t["_"+e],b=t[e+"axis"],_=b._gridlines=[],w=b._minorgridlines=[],T=b._boundarylines=[],k=t["_"+r],A=t[r+"axis"];"array"===b.tickmode&&(b.tickvals=x.slice());var M=t._xctrl,S=t._yctrl,E=M[0].length,L=M.length,C=t._a.length,P=t._b.length;n.prepTicks(b),"array"===b.tickmode&&delete b.tickvals;var I=b.smoothing?3:1;function O(n){var i,a,o,s,l,c,u,f,p,d,m,g,v=[],y=[],x={};if("b"===e)for(a=t.b2j(n),o=Math.floor(Math.max(0,Math.min(P-2,a))),s=a-o,x.length=P,x.crossLength=C,x.xy=function(e){return t.evalxy([],e,a)},x.dxy=function(e,r){return t.dxydi([],e,o,r,s)},i=0;i0&&(p=t.dxydi([],i-1,o,0,s),v.push(l[0]+p[0]/3),y.push(l[1]+p[1]/3),d=t.dxydi([],i-1,o,1,s),v.push(f[0]-d[0]/3),y.push(f[1]-d[1]/3)),v.push(f[0]),y.push(f[1]),l=f;else for(i=t.a2i(n),c=Math.floor(Math.max(0,Math.min(C-2,i))),u=i-c,x.length=C,x.crossLength=P,x.xy=function(e){return t.evalxy([],i,e)},x.dxy=function(e,r){return t.dxydj([],c,e,u,r)},a=0;a0&&(m=t.dxydj([],c,a-1,u,0),v.push(l[0]+m[0]/3),y.push(l[1]+m[1]/3),g=t.dxydj([],c,a-1,u,1),v.push(f[0]-g[0]/3),y.push(f[1]-g[1]/3)),v.push(f[0]),y.push(f[1]),l=f;return x.axisLetter=e,x.axis=b,x.crossAxis=A,x.value=n,x.constvar=r,x.index=h,x.x=v,x.y=y,x.smoothing=A.smoothing,x}function z(n){var i,a,o,s,l,c=[],u=[],f={};if(f.length=x.length,f.crossLength=k.length,"b"===e)for(o=Math.max(0,Math.min(P-2,n)),l=Math.min(1,Math.max(0,n-o)),f.xy=function(e){return t.evalxy([],e,n)},f.dxy=function(e,r){return t.dxydi([],e,o,r,l)},i=0;ix.length-1||_.push(i(z(o),{color:b.gridcolor,width:b.gridwidth}));for(h=u;hx.length-1||m<0||m>x.length-1))for(g=x[s],v=x[m],a=0;ax[x.length-1]||w.push(i(O(d),{color:b.minorgridcolor,width:b.minorgridwidth}));b.startline&&T.push(i(z(0),{color:b.startlinecolor,width:b.startlinewidth})),b.endline&&T.push(i(z(x.length-1),{color:b.endlinecolor,width:b.endlinewidth}))}else{for(l=5e-15,u=(c=[Math.floor((x[x.length-1]-b.tick0)/b.dtick*(1+l)),Math.ceil((x[0]-b.tick0)/b.dtick/(1+l))].sort((function(t,e){return t-e})))[0],f=c[1],h=u;h<=f;h++)p=b.tick0+b.dtick*h,_.push(i(O(p),{color:b.gridcolor,width:b.gridwidth}));for(h=u-1;hx[x.length-1]||w.push(i(O(d),{color:b.minorgridcolor,width:b.minorgridwidth}));b.startline&&T.push(i(O(x[0]),{color:b.startlinecolor,width:b.startlinewidth})),b.endline&&T.push(i(O(x[x.length-1]),{color:b.endlinecolor,width:b.endlinewidth}))}}},{"../../lib/extend":488,"../../plots/cartesian/axes":549}],693:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib/extend").extendFlat;e.exports=function(t,e){var r,a,o,s=e._labels=[],l=e._gridlines;for(r=0;re.length&&(t=t.slice(0,e.length)):t=[],i=0;i90&&(p-=180,l=-l),{angle:p,flip:l,p:t.c2p(n,e,r),offsetMultplier:c}}},{}],707:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("./map_1d_array"),o=t("./makepath"),s=t("./orient_text"),l=t("../../lib/svg_text_utils"),c=t("../../lib"),u=c.strRotate,f=c.strTranslate,h=t("../../constants/alignment");function p(t,e,r,i,s,l){var c="const-"+s+"-lines",u=r.selectAll("."+c).data(l);u.enter().append("path").classed(c,!0).style("vector-effect","non-scaling-stroke"),u.each((function(r){var i=r,s=i.x,l=i.y,c=a([],s,t.c2p),u=a([],l,e.c2p),f="M"+o(c,u,i.smoothing);n.select(this).attr("d",f).style("stroke-width",i.width).style("stroke",i.color).style("fill","none")})),u.exit().remove()}function d(t,e,r,a,o,c,h,p){var d=c.selectAll("text."+p).data(h);d.enter().append("text").classed(p,!0);var m=0,g={};return d.each((function(o,c){var h;if("auto"===o.axis.tickangle)h=s(a,e,r,o.xy,o.dxy);else{var p=(o.axis.tickangle+180)*Math.PI/180;h=s(a,e,r,o.xy,[Math.cos(p),Math.sin(p)])}c||(g={angle:h.angle,flip:h.flip});var d=(o.endAnchor?-1:1)*h.flip,v=n.select(this).attr({"text-anchor":d>0?"start":"end","data-notex":1}).call(i.font,o.font).text(o.text).call(l.convertToTspans,t),y=i.bBox(this);v.attr("transform",f(h.p[0],h.p[1])+u(h.angle)+f(o.axis.labelpadding*d,.3*y.height)),m=Math.max(m,y.width+o.axis.labelpadding)})),d.exit().remove(),g.maxExtent=m,g}e.exports=function(t,e,r,i){var l=e.xaxis,u=e.yaxis,f=t._fullLayout._clips;c.makeTraceGroups(i,r,"trace").each((function(e){var r=n.select(this),i=e[0],h=i.trace,m=h.aaxis,g=h.baxis,y=c.ensureSingle(r,"g","minorlayer"),x=c.ensureSingle(r,"g","majorlayer"),b=c.ensureSingle(r,"g","boundarylayer"),_=c.ensureSingle(r,"g","labellayer");r.style("opacity",h.opacity),p(l,u,x,m,"a",m._gridlines),p(l,u,x,g,"b",g._gridlines),p(l,u,y,m,"a",m._minorgridlines),p(l,u,y,g,"b",g._minorgridlines),p(l,u,b,m,"a-boundary",m._boundarylines),p(l,u,b,g,"b-boundary",g._boundarylines);var w=d(t,l,u,h,i,_,m._labels,"a-label"),T=d(t,l,u,h,i,_,g._labels,"b-label");!function(t,e,r,n,i,a,o,l){var u,f,h,p,d=c.aggNums(Math.min,null,r.a),m=c.aggNums(Math.max,null,r.a),g=c.aggNums(Math.min,null,r.b),y=c.aggNums(Math.max,null,r.b);u=.5*(d+m),f=g,h=r.ab2xy(u,f,!0),p=r.dxyda_rough(u,f),void 0===o.angle&&c.extendFlat(o,s(r,i,a,h,r.dxydb_rough(u,f)));v(t,e,r,n,h,p,r.aaxis,i,a,o,"a-title"),u=d,f=.5*(g+y),h=r.ab2xy(u,f,!0),p=r.dxydb_rough(u,f),void 0===l.angle&&c.extendFlat(l,s(r,i,a,h,r.dxyda_rough(u,f)));v(t,e,r,n,h,p,r.baxis,i,a,l,"b-title")}(t,_,h,i,l,u,w,T),function(t,e,r,n,i){var s,l,u,f,h=r.select("#"+t._clipPathId);h.size()||(h=r.append("clipPath").classed("carpetclip",!0));var p=c.ensureSingle(h,"path","carpetboundary"),d=e.clipsegments,m=[];for(f=0;f90&&y<270,b=n.select(this);b.text(h.title.text).call(l.convertToTspans,t),x&&(_=(-l.lineCount(b)+g)*m*a-_),b.attr("transform",f(e.p[0],e.p[1])+u(e.angle)+f(0,_)).attr("text-anchor","middle").call(i.font,h.title.font)})),b.exit().remove()}},{"../../components/drawing":383,"../../constants/alignment":466,"../../lib":498,"../../lib/svg_text_utils":524,"./makepath":704,"./map_1d_array":705,"./orient_text":706,"@plotly/d3":58}],708:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../lib/search").findBin,a=t("./compute_control_points"),o=t("./create_spline_evaluator"),s=t("./create_i_derivative_evaluator"),l=t("./create_j_derivative_evaluator");e.exports=function(t){var e=t._a,r=t._b,c=e.length,u=r.length,f=t.aaxis,h=t.baxis,p=e[0],d=e[c-1],m=r[0],g=r[u-1],v=e[e.length-1]-e[0],y=r[r.length-1]-r[0],x=v*n.RELATIVE_CULL_TOLERANCE,b=y*n.RELATIVE_CULL_TOLERANCE;p-=x,d+=x,m-=b,g+=b,t.isVisible=function(t,e){return t>p&&tm&&ed||eg},t.setScale=function(){var e=t._x,r=t._y,n=a(t._xctrl,t._yctrl,e,r,f.smoothing,h.smoothing);t._xctrl=n[0],t._yctrl=n[1],t.evalxy=o([t._xctrl,t._yctrl],c,u,f.smoothing,h.smoothing),t.dxydi=s([t._xctrl,t._yctrl],f.smoothing,h.smoothing),t.dxydj=l([t._xctrl,t._yctrl],f.smoothing,h.smoothing)},t.i2a=function(t){var r=Math.max(0,Math.floor(t[0]),c-2),n=t[0]-r;return(1-n)*e[r]+n*e[r+1]},t.j2b=function(t){var e=Math.max(0,Math.floor(t[1]),c-2),n=t[1]-e;return(1-n)*r[e]+n*r[e+1]},t.ij2ab=function(e){return[t.i2a(e[0]),t.j2b(e[1])]},t.a2i=function(t){var r=Math.max(0,Math.min(i(t,e),c-2)),n=e[r],a=e[r+1];return Math.max(0,Math.min(c-1,r+(t-n)/(a-n)))},t.b2j=function(t){var e=Math.max(0,Math.min(i(t,r),u-2)),n=r[e],a=r[e+1];return Math.max(0,Math.min(u-1,e+(t-n)/(a-n)))},t.ab2ij=function(e){return[t.a2i(e[0]),t.b2j(e[1])]},t.i2c=function(e,r){return t.evalxy([],e,r)},t.ab2xy=function(n,i,a){if(!a&&(ne[c-1]|ir[u-1]))return[!1,!1];var o=t.a2i(n),s=t.b2j(i),l=t.evalxy([],o,s);if(a){var f,h,p,d,m=0,g=0,v=[];ne[c-1]?(f=c-2,h=1,m=(n-e[c-1])/(e[c-1]-e[c-2])):h=o-(f=Math.max(0,Math.min(c-2,Math.floor(o)))),ir[u-1]?(p=u-2,d=1,g=(i-r[u-1])/(r[u-1]-r[u-2])):d=s-(p=Math.max(0,Math.min(u-2,Math.floor(s)))),m&&(t.dxydi(v,f,p,h,d),l[0]+=v[0]*m,l[1]+=v[1]*m),g&&(t.dxydj(v,f,p,h,d),l[0]+=v[0]*g,l[1]+=v[1]*g)}return l},t.c2p=function(t,e,r){return[e.c2p(t[0]),r.c2p(t[1])]},t.p2x=function(t,e,r){return[e.p2c(t[0]),r.p2c(t[1])]},t.dadi=function(t){var r=Math.max(0,Math.min(e.length-2,t));return e[r+1]-e[r]},t.dbdj=function(t){var e=Math.max(0,Math.min(r.length-2,t));return r[e+1]-r[e]},t.dxyda=function(e,r,n,i){var a=t.dxydi(null,e,r,n,i),o=t.dadi(e,n);return[a[0]/o,a[1]/o]},t.dxydb=function(e,r,n,i){var a=t.dxydj(null,e,r,n,i),o=t.dbdj(r,i);return[a[0]/o,a[1]/o]},t.dxyda_rough=function(e,r,n){var i=v*(n||.1),a=t.ab2xy(e+i,r,!0),o=t.ab2xy(e-i,r,!0);return[.5*(a[0]-o[0])/i,.5*(a[1]-o[1])/i]},t.dxydb_rough=function(e,r,n){var i=y*(n||.1),a=t.ab2xy(e,r+i,!0),o=t.ab2xy(e,r-i,!0);return[.5*(a[0]-o[0])/i,.5*(a[1]-o[1])/i]},t.dpdx=function(t){return t._m},t.dpdy=function(t){return t._m}}},{"../../lib/search":518,"./compute_control_points":696,"./constants":697,"./create_i_derivative_evaluator":698,"./create_j_derivative_evaluator":699,"./create_spline_evaluator":700}],709:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e,r){var i,a,o,s=[],l=[],c=t[0].length,u=t.length;function f(e,r){var n,i=0,a=0;return e>0&&void 0!==(n=t[r][e-1])&&(a++,i+=n),e0&&void 0!==(n=t[r-1][e])&&(a++,i+=n),r0&&a0&&i1e-5);return n.log("Smoother converged to",k,"after",A,"iterations"),t}},{"../../lib":498}],710:[function(t,e,r){"use strict";var n=t("../../lib").isArray1D;e.exports=function(t,e,r){var i=r("x"),a=i&&i.length,o=r("y"),s=o&&o.length;if(!a&&!s)return!1;if(e._cheater=!i,a&&!n(i)||s&&!n(o))e._length=null;else{var l=a?i.length:1/0;s&&(l=Math.min(l,o.length)),e.a&&e.a.length&&(l=Math.min(l,e.a.length)),e.b&&e.b.length&&(l=Math.min(l,e.b.length)),e._length=l}return!0}},{"../../lib":498}],711:[function(t,e,r){"use strict";var n=t("../../plots/template_attributes").hovertemplateAttrs,i=t("../scattergeo/attributes"),a=t("../../components/colorscale/attributes"),o=t("../../plots/attributes"),s=t("../../components/color/attributes").defaultLine,l=t("../../lib/extend").extendFlat,c=i.marker.line;e.exports=l({locations:{valType:"data_array",editType:"calc"},locationmode:i.locationmode,z:{valType:"data_array",editType:"calc"},geojson:l({},i.geojson,{}),featureidkey:i.featureidkey,text:l({},i.text,{}),hovertext:l({},i.hovertext,{}),marker:{line:{color:l({},c.color,{dflt:s}),width:l({},c.width,{dflt:1}),editType:"calc"},opacity:{valType:"number",arrayOk:!0,min:0,max:1,dflt:1,editType:"style"},editType:"calc"},selected:{marker:{opacity:i.selected.marker.opacity,editType:"plot"},editType:"plot"},unselected:{marker:{opacity:i.unselected.marker.opacity,editType:"plot"},editType:"plot"},hoverinfo:l({},o.hoverinfo,{editType:"calc",flags:["location","z","text","name"]}),hovertemplate:n(),showlegend:l({},o.showlegend,{dflt:!1})},a("",{cLetter:"z",editTypeOverride:"calc"}))},{"../../components/color/attributes":360,"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/template_attributes":628,"../scattergeo/attributes":964}],712:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../constants/numerical").BADNUM,a=t("../../components/colorscale/calc"),o=t("../scatter/arrays_to_calcdata"),s=t("../scatter/calc_selection");function l(t){return t&&"string"==typeof t}e.exports=function(t,e){var r,c=e._length,u=new Array(c);r=e.geojson?function(t){return l(t)||n(t)}:l;for(var f=0;f")}(t,f,o),[t]}},{"../../lib":498,"../../plots/cartesian/axes":549,"./attributes":711}],716:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../heatmap/colorbar"),calc:t("./calc"),calcGeoJSON:t("./plot").calcGeoJSON,plot:t("./plot").plot,style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"choropleth",basePlotModule:t("../../plots/geo"),categories:["geo","noOpacity","showLegend"],meta:{}}},{"../../plots/geo":584,"../heatmap/colorbar":790,"./attributes":711,"./calc":712,"./defaults":713,"./event_data":714,"./hover":715,"./plot":717,"./select":718,"./style":719}],717:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../lib/geo_location_utils"),o=t("../../lib/topojson_utils").getTopojsonFeatures,s=t("../../plots/cartesian/autorange").findExtremes,l=t("./style").style;e.exports={calcGeoJSON:function(t,e){for(var r=t[0].trace,n=e[r.geo],i=n._subplot,l=r.locationmode,c=r._length,u="geojson-id"===l?a.extractTraceFeature(t):o(r,i.topojson),f=[],h=[],p=0;p=0;n--){var i=r[n].id;if("string"==typeof i&&0===i.indexOf("water"))for(var a=n+1;a=0;r--)t.removeLayer(e[r][1])},s.dispose=function(){var t=this.subplot.map;this._removeLayers(),t.removeSource(this.sourceId)},e.exports=function(t,e){var r=e[0].trace,i=new o(t,r.uid),a=i.sourceId,s=n(e),l=i.below=t.belowLookup["trace-"+r.uid];return t.map.addSource(a,{type:"geojson",data:s.geojson}),i._addLayers(s,l),e[0].trace._glTrace=i,i}},{"../../plots/mapbox/constants":606,"./convert":721}],725:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../mesh3d/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c={x:{valType:"data_array",editType:"calc+clearAxisTypes"},y:{valType:"data_array",editType:"calc+clearAxisTypes"},z:{valType:"data_array",editType:"calc+clearAxisTypes"},u:{valType:"data_array",editType:"calc"},v:{valType:"data_array",editType:"calc"},w:{valType:"data_array",editType:"calc"},sizemode:{valType:"enumerated",values:["scaled","absolute"],editType:"calc",dflt:"scaled"},sizeref:{valType:"number",editType:"calc",min:0},anchor:{valType:"enumerated",editType:"calc",values:["tip","tail","cm","center"],dflt:"cm"},text:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertemplate:a({editType:"calc"},{keys:["norm"]}),uhoverformat:i("u",1),vhoverformat:i("v",1),whoverformat:i("w",1),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),showlegend:l({},s.showlegend,{dflt:!1})};l(c,n("",{colorAttr:"u/v/w norm",showScaleDflt:!0,editTypeOverride:"calc"}));["opacity","lightposition","lighting"].forEach((function(t){c[t]=o[t]})),c.hoverinfo=l({},s.hoverinfo,{editType:"calc",flags:["x","y","z","u","v","w","norm","text","name"],dflt:"x+y+z+norm+text+name"}),c.transforms=void 0,e.exports=c},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628,"../mesh3d/attributes":862}],726:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){for(var r=e.u,i=e.v,a=e.w,o=Math.min(e.x.length,e.y.length,e.z.length,r.length,i.length,a.length),s=-1/0,l=1/0,c=0;co.level||o.starts.length&&a===o.level)}break;case"constraint":if(n.prefixBoundary=!1,n.edgepaths.length)return;var s=n.x.length,l=n.y.length,c=-1/0,u=1/0;for(r=0;r":p>c&&(n.prefixBoundary=!0);break;case"<":(pc||n.starts.length&&h===u)&&(n.prefixBoundary=!0);break;case"][":f=Math.min(p[0],p[1]),h=Math.max(p[0],p[1]),fc&&(n.prefixBoundary=!0)}}}},{}],733:[function(t,e,r){"use strict";var n=t("../../components/colorscale"),i=t("./make_color_map"),a=t("./end_plus");e.exports={min:"zmin",max:"zmax",calc:function(t,e,r){var o=e.contours,s=e.line,l=o.size||1,c=o.coloring,u=i(e,{isColorbar:!0});if("heatmap"===c){var f=n.extractOpts(e);r._fillgradient=f.reversescale?n.flipScale(f.colorscale):f.colorscale,r._zrange=[f.min,f.max]}else"fill"===c&&(r._fillcolor=u);r._line={color:"lines"===c?u:s.color,width:!1!==o.showlines?s.width:0,dash:s.dash},r._levels={start:o.start,end:a(o),size:l}}}},{"../../components/colorscale":373,"./end_plus":741,"./make_color_map":746}],734:[function(t,e,r){"use strict";e.exports={BOTTOMSTART:[1,9,13,104,713],TOPSTART:[4,6,7,104,713],LEFTSTART:[8,12,14,208,1114],RIGHTSTART:[2,3,11,208,1114],NEWDELTA:[null,[-1,0],[0,-1],[-1,0],[1,0],null,[0,-1],[-1,0],[0,1],[0,1],null,[0,1],[1,0],[1,0],[0,-1]],CHOOSESADDLE:{104:[4,1],208:[2,8],713:[7,13],1114:[11,14]},SADDLEREMAINDER:{1:4,2:8,4:1,7:13,8:2,11:14,13:7,14:11},LABELDISTANCE:2,LABELINCREASE:10,LABELMIN:3,LABELMAX:10,LABELOPTIMIZER:{EDGECOST:1,ANGLECOST:1,NEIGHBORCOST:5,SAMELEVELFACTOR:10,SAMELEVELDISTANCE:5,MAXCOST:100,INITIALSEARCHPOINTS:10,ITERATIONS:5}}},{}],735:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./label_defaults"),a=t("../../components/color"),o=a.addOpacity,s=a.opacity,l=t("../../constants/filter_ops"),c=l.CONSTRAINT_REDUCTION,u=l.COMPARISON_OPS2;e.exports=function(t,e,r,a,l,f){var h,p,d,m=e.contours,g=r("contours.operation");(m._operation=c[g],function(t,e){var r;-1===u.indexOf(e.operation)?(t("contours.value",[0,1]),Array.isArray(e.value)?e.value.length>2?e.value=e.value.slice(2):0===e.length?e.value=[0,1]:e.length<2?(r=parseFloat(e.value[0]),e.value=[r,r+1]):e.value=[parseFloat(e.value[0]),parseFloat(e.value[1])]:n(e.value)&&(r=parseFloat(e.value),e.value=[r,r+1])):(t("contours.value",0),n(e.value)||(Array.isArray(e.value)?e.value=parseFloat(e.value[0]):e.value=0))}(r,m),"="===g?h=m.showlines=!0:(h=r("contours.showlines"),d=r("fillcolor",o((t.line||{}).color||l,.5))),h)&&(p=r("line.color",d&&s(d)?o(e.fillcolor,1):l),r("line.width",2),r("line.dash"));r("line.smoothing"),i(r,a,p,f)}},{"../../components/color":361,"../../constants/filter_ops":470,"./label_defaults":745,"fast-isnumeric":185}],736:[function(t,e,r){"use strict";var n=t("../../constants/filter_ops"),i=t("fast-isnumeric");function a(t,e){var r,a=Array.isArray(e);function o(t){return i(t)?+t:null}return-1!==n.COMPARISON_OPS2.indexOf(t)?r=o(a?e[0]:e):-1!==n.INTERVAL_OPS.indexOf(t)?r=a?[o(e[0]),o(e[1])]:[o(e),o(e)]:-1!==n.SET_OPS.indexOf(t)&&(r=a?e.map(o):[o(e)]),r}function o(t){return function(e){e=a(t,e);var r=Math.min(e[0],e[1]),n=Math.max(e[0],e[1]);return{start:r,end:n,size:n-r}}}function s(t){return function(e){return{start:e=a(t,e),end:1/0,size:1/0}}}e.exports={"[]":o("[]"),"][":o("]["),">":s(">"),"<":s("<"),"=":s("=")}},{"../../constants/filter_ops":470,"fast-isnumeric":185}],737:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){var i=n("contours.start"),a=n("contours.end"),o=!1===i||!1===a,s=r("contours.size");!(o?e.autocontour=!0:r("autocontour",!1))&&s||r("ncontours")}},{}],738:[function(t,e,r){"use strict";var n=t("../../lib");function i(t){return n.extendFlat({},t,{edgepaths:n.extendDeep([],t.edgepaths),paths:n.extendDeep([],t.paths),starts:n.extendDeep([],t.starts)})}e.exports=function(t,e){var r,a,o,s=function(t){return t.reverse()},l=function(t){return t};switch(e){case"=":case"<":return t;case">":for(1!==t.length&&n.warn("Contour data invalid for the specified inequality operation."),a=t[0],r=0;r1e3){n.warn("Too many contours, clipping at 1000",t);break}return l}},{"../../lib":498,"./constraint_mapping":736,"./end_plus":741}],741:[function(t,e,r){"use strict";e.exports=function(t){return t.end+t.size/1e6}},{}],742:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./constants");function a(t,e,r,n){return Math.abs(t[0]-e[0])20&&e?208===t||1114===t?n=0===r[0]?1:-1:a=0===r[1]?1:-1:-1!==i.BOTTOMSTART.indexOf(t)?a=1:-1!==i.LEFTSTART.indexOf(t)?n=1:-1!==i.TOPSTART.indexOf(t)?a=-1:n=-1;return[n,a]}(f,r,e),p=[s(t,e,[-h[0],-h[1]])],d=t.z.length,m=t.z[0].length,g=e.slice(),v=h.slice();for(c=0;c<1e4;c++){if(f>20?(f=i.CHOOSESADDLE[f][(h[0]||h[1])<0?0:1],t.crossings[u]=i.SADDLEREMAINDER[f]):delete t.crossings[u],!(h=i.NEWDELTA[f])){n.log("Found bad marching index:",f,e,t.level);break}p.push(s(t,e,h)),e[0]+=h[0],e[1]+=h[1],u=e.join(","),a(p[p.length-1],p[p.length-2],o,l)&&p.pop();var y=h[0]&&(e[0]<0||e[0]>m-2)||h[1]&&(e[1]<0||e[1]>d-2);if(e[0]===g[0]&&e[1]===g[1]&&h[0]===v[0]&&h[1]===v[1]||r&&y)break;f=t.crossings[u]}1e4===c&&n.log("Infinite loop in contour?");var x,b,_,w,T,k,A,M,S,E,L,C,P,I,O,z=a(p[0],p[p.length-1],o,l),D=0,R=.2*t.smoothing,F=[],B=0;for(c=1;c=B;c--)if((x=F[c])=B&&x+F[b]M&&S--,t.edgepaths[S]=L.concat(p,E));break}V||(t.edgepaths[M]=p.concat(E))}for(M=0;Mt?0:1)+(e[0][1]>t?0:2)+(e[1][1]>t?0:4)+(e[1][0]>t?0:8);return 5===r||10===r?t>(e[0][0]+e[0][1]+e[1][0]+e[1][1])/4?5===r?713:1114:5===r?104:208:15===r?0:r}e.exports=function(t){var e,r,a,o,s,l,c,u,f,h=t[0].z,p=h.length,d=h[0].length,m=2===p||2===d;for(r=0;r=0&&(n=y,s=l):Math.abs(r[1]-n[1])<.01?Math.abs(r[1]-y[1])<.01&&(y[0]-r[0])*(n[0]-y[0])>=0&&(n=y,s=l):i.log("endpt to newendpt is not vert. or horz.",r,n,y)}if(r=n,s>=0)break;f+="L"+n}if(s===t.edgepaths.length){i.log("unclosed perimeter path");break}h=s,(d=-1===p.indexOf(h))&&(h=p[0],f+="Z")}for(h=0;hn.center?n.right-s:s-n.left)/(u+Math.abs(Math.sin(c)*o)),p=(l>n.middle?n.bottom-l:l-n.top)/(Math.abs(f)+Math.cos(c)*o);if(h<1||p<1)return 1/0;var d=v.EDGECOST*(1/(h-1)+1/(p-1));d+=v.ANGLECOST*c*c;for(var m=s-u,g=l-f,y=s+u,x=l+f,b=0;b2*v.MAXCOST)break;p&&(s/=2),l=(o=c-s/2)+1.5*s}if(h<=v.MAXCOST)return u},r.addLabelData=function(t,e,r,n){var i=e.fontSize,a=e.width+i/3,o=Math.max(0,e.height-i/3),s=t.x,l=t.y,c=t.theta,u=Math.sin(c),f=Math.cos(c),h=function(t,e){return[s+t*f-e*u,l+t*u+e*f]},p=[h(-a/2,-o/2),h(-a/2,o/2),h(a/2,o/2),h(a/2,-o/2)];r.push({text:e.text,x:s,y:l,dy:e.dy,theta:c,level:e.level,width:a,height:o}),n.push(p)},r.drawLabels=function(t,e,r,a,o){var l=t.selectAll("text").data(e,(function(t){return t.text+","+t.x+","+t.y+","+t.theta}));if(l.exit().remove(),l.enter().append("text").attr({"data-notex":1,"text-anchor":"middle"}).each((function(t){var e=t.x+Math.sin(t.theta)*t.dy,i=t.y-Math.cos(t.theta)*t.dy;n.select(this).text(t.text).attr({x:e,y:i,transform:"rotate("+180*t.theta/Math.PI+" "+e+" "+i+")"}).call(s.convertToTspans,r)})),o){for(var c="",u=0;ur.end&&(r.start=r.end=(r.start+r.end)/2),t._input.contours||(t._input.contours={}),i.extendFlat(t._input.contours,{start:r.start,end:r.end,size:r.size}),t._input.autocontour=!0}else if("constraint"!==r.type){var c,u=r.start,f=r.end,h=t._input.contours;if(u>f&&(r.start=h.start=f,f=r.end=h.end=u,u=r.start),!(r.size>0))c=u===f?1:a(u,f,t.ncontours).dtick,h.size=r.size=c}}},{"../../lib":498,"../../plots/cartesian/axes":549}],750:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("../heatmap/style"),o=t("./make_color_map");e.exports=function(t){var e=n.select(t).selectAll("g.contour");e.style("opacity",(function(t){return t[0].trace.opacity})),e.each((function(t){var e=n.select(this),r=t[0].trace,a=r.contours,s=r.line,l=a.size||1,c=a.start,u="constraint"===a.type,f=!u&&"lines"===a.coloring,h=!u&&"fill"===a.coloring,p=f||h?o(r):null;e.selectAll("g.contourlevel").each((function(t){n.select(this).selectAll("path").call(i.lineGroupStyle,s.width,f?p(t.level):s.color,s.dash)}));var d=a.labelfont;if(e.selectAll("g.contourlabels text").each((function(t){i.font(n.select(this),{family:d.family,size:d.size,color:d.color||(f?p(t.level):s.color)})})),u)e.selectAll("g.contourfill path").style("fill",r.fillcolor);else if(h){var m;e.selectAll("g.contourfill path").style("fill",(function(t){return void 0===m&&(m=t.level),p(t.level+.5*l)})),void 0===m&&(m=c),e.selectAll("g.contourbg path").style("fill",p(m-.5*l))}})),a(t)}},{"../../components/drawing":383,"../heatmap/style":800,"./make_color_map":746,"@plotly/d3":58}],751:[function(t,e,r){"use strict";var n=t("../../components/colorscale/defaults"),i=t("./label_defaults");e.exports=function(t,e,r,a,o){var s,l=r("contours.coloring"),c="";"fill"===l&&(s=r("contours.showlines")),!1!==s&&("lines"!==l&&(c=r("line.color","#000")),r("line.width",.5),r("line.dash")),"none"!==l&&(!0!==t.showlegend&&(e.showlegend=!1),e._dfltShowLegend=!1,n(t,e,a,r,{prefix:"",cLetter:"z"})),r("line.smoothing"),i(r,a,c,o)}},{"../../components/colorscale/defaults":371,"./label_defaults":745}],752:[function(t,e,r){"use strict";var n=t("../heatmap/attributes"),i=t("../contour/attributes"),a=t("../../components/colorscale/attributes"),o=t("../../lib/extend").extendFlat,s=i.contours;e.exports=o({carpet:{valType:"string",editType:"calc"},z:n.z,a:n.x,a0:n.x0,da:n.dx,b:n.y,b0:n.y0,db:n.dy,text:n.text,hovertext:n.hovertext,transpose:n.transpose,atype:n.xtype,btype:n.ytype,fillcolor:i.fillcolor,autocontour:i.autocontour,ncontours:i.ncontours,contours:{type:s.type,start:s.start,end:s.end,size:s.size,coloring:{valType:"enumerated",values:["fill","lines","none"],dflt:"fill",editType:"calc"},showlines:s.showlines,showlabels:s.showlabels,labelfont:s.labelfont,labelformat:s.labelformat,operation:s.operation,value:s.value,editType:"calc",impliedEdits:{autocontour:!1}},line:{color:i.line.color,width:i.line.width,dash:i.line.dash,smoothing:i.line.smoothing,editType:"plot"},transforms:void 0},a("",{cLetter:"z",autoColorDflt:!1}))},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../contour/attributes":730,"../heatmap/attributes":787}],753:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc"),i=t("../../lib"),a=t("../heatmap/convert_column_xyz"),o=t("../heatmap/clean_2d_array"),s=t("../heatmap/interp2d"),l=t("../heatmap/find_empties"),c=t("../heatmap/make_bound_array"),u=t("./defaults"),f=t("../carpet/lookup_carpetid"),h=t("../contour/set_contours");e.exports=function(t,e){var r=e._carpetTrace=f(t,e);if(r&&r.visible&&"legendonly"!==r.visible){if(!e.a||!e.b){var p=t.data[r.index],d=t.data[e.index];d.a||(d.a=p.a),d.b||(d.b=p.b),u(d,e,e._defaultColor,t._fullLayout)}var m=function(t,e){var r,u,f,h,p,d,m,g=e._carpetTrace,v=g.aaxis,y=g.baxis;v._minDtick=0,y._minDtick=0,i.isArray1D(e.z)&&a(e,v,y,"a","b",["z"]);r=e._a=e._a||e.a,h=e._b=e._b||e.b,r=r?v.makeCalcdata(e,"_a"):[],h=h?y.makeCalcdata(e,"_b"):[],u=e.a0||0,f=e.da||1,p=e.b0||0,d=e.db||1,m=e._z=o(e._z||e.z,e.transpose),e._emptypoints=l(m),s(m,e._emptypoints);var x=i.maxRowLength(m),b="scaled"===e.xtype?"":r,_=c(e,b,u,f,x,v),w="scaled"===e.ytype?"":h,T=c(e,w,p,d,m.length,y),k={a:_,b:T,z:m};"levels"===e.contours.type&&"none"!==e.contours.coloring&&n(t,e,{vals:m,containerStr:"",cLetter:"z"});return[k]}(t,e);return h(e,e._z),m}}},{"../../components/colorscale/calc":369,"../../lib":498,"../carpet/lookup_carpetid":703,"../contour/set_contours":749,"../heatmap/clean_2d_array":789,"../heatmap/convert_column_xyz":791,"../heatmap/find_empties":793,"../heatmap/interp2d":796,"../heatmap/make_bound_array":798,"./defaults":754}],754:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../heatmap/xyz_defaults"),a=t("./attributes"),o=t("../contour/constraint_defaults"),s=t("../contour/contours_defaults"),l=t("../contour/style_defaults");e.exports=function(t,e,r,c){function u(r,i){return n.coerce(t,e,a,r,i)}if(u("carpet"),t.a&&t.b){if(!i(t,e,u,c,"a","b"))return void(e.visible=!1);u("text"),"constraint"===u("contours.type")?o(t,e,u,c,r,{hasHover:!1}):(s(t,e,u,(function(r){return n.coerce2(t,e,a,r)})),l(t,e,u,c,{hasHover:!1}))}else e._defaultColor=r,e._length=null}},{"../../lib":498,"../contour/constraint_defaults":735,"../contour/contours_defaults":737,"../contour/style_defaults":751,"../heatmap/xyz_defaults":802,"./attributes":752}],755:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../contour/colorbar"),calc:t("./calc"),plot:t("./plot"),style:t("../contour/style"),moduleType:"trace",name:"contourcarpet",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","carpet","contour","symbols","showLegend","hasLines","carpetDependent","noHover","noSortingByValue"],meta:{}}},{"../../plots/cartesian":563,"../contour/colorbar":733,"../contour/style":750,"./attributes":752,"./calc":753,"./defaults":754,"./plot":756}],756:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../carpet/map_1d_array"),a=t("../carpet/makepath"),o=t("../../components/drawing"),s=t("../../lib"),l=t("../contour/make_crossings"),c=t("../contour/find_all_paths"),u=t("../contour/plot"),f=t("../contour/constants"),h=t("../contour/convert_to_constraints"),p=t("../contour/empty_pathinfo"),d=t("../contour/close_boundaries"),m=t("../carpet/lookup_carpetid"),g=t("../carpet/axis_aligned_line");function v(t,e,r){var n=t.getPointAtLength(e),i=t.getPointAtLength(r),a=i.x-n.x,o=i.y-n.y,s=Math.sqrt(a*a+o*o);return[a/s,o/s]}function y(t){var e=Math.sqrt(t[0]*t[0]+t[1]*t[1]);return[t[0]/e,t[1]/e]}function x(t,e){var r=Math.abs(t[0]*e[0]+t[1]*e[1]);return Math.sqrt(1-r*r)/r}e.exports=function(t,e,r,b){var _=e.xaxis,w=e.yaxis;s.makeTraceGroups(b,r,"contour").each((function(r){var b=n.select(this),T=r[0],k=T.trace,A=k._carpetTrace=m(t,k),M=t.calcdata[A.index][0];if(A.visible&&"legendonly"!==A.visible){var S=T.a,E=T.b,L=k.contours,C=p(L,e,T),P="constraint"===L.type,I=L._operation,O=P?"="===I?"lines":"fill":L.coloring,z=[[S[0],E[E.length-1]],[S[S.length-1],E[E.length-1]],[S[S.length-1],E[0]],[S[0],E[0]]];l(C);var D=1e-8*(S[S.length-1]-S[0]),R=1e-8*(E[E.length-1]-E[0]);c(C,D,R);var F,B,N,j,U=C;"constraint"===L.type&&(U=h(C,I)),function(t,e){var r,n,i,a,o,s,l,c,u;for(r=0;r=0;j--)F=M.clipsegments[j],B=i([],F.x,_.c2p),N=i([],F.y,w.c2p),B.reverse(),N.reverse(),V.push(a(B,N,F.bicubic));var H="M"+V.join("L")+"Z";!function(t,e,r,n,o,l){var c,u,f,h,p=s.ensureSingle(t,"g","contourbg").selectAll("path").data("fill"!==l||o?[]:[0]);p.enter().append("path"),p.exit().remove();var d=[];for(h=0;h=0&&(h=L,d=m):Math.abs(f[1]-h[1])=0&&(h=L,d=m):s.log("endpt to newendpt is not vert. or horz.",f,h,L)}if(d>=0)break;y+=S(f,h),f=h}if(d===e.edgepaths.length){s.log("unclosed perimeter path");break}u=d,(b=-1===x.indexOf(u))&&(u=x[0],y+=S(f,h)+"Z",f=null)}for(u=0;ug&&(n.max=g);n.len=n.max-n.min}(this,r,t,n,c,e.height),!(n.len<(e.width+e.height)*f.LABELMIN)))for(var i=Math.min(Math.ceil(n.len/I),f.LABELMAX),a=0;a0?+p[u]:0),f.push({type:"Feature",geometry:{type:"Point",coordinates:v},properties:y})}}var b=o.extractOpts(e),_=b.reversescale?o.flipScale(b.colorscale):b.colorscale,w=_[0][1],T=["interpolate",["linear"],["heatmap-density"],0,a.opacity(w)<1?w:a.addOpacity(w,0)];for(u=1;u<_.length;u++)T.push(_[u][0],_[u][1]);var k=["interpolate",["linear"],["get","z"],b.min,0,b.max,1];return i.extendFlat(c.heatmap.paint,{"heatmap-weight":d?k:1/(b.max-b.min),"heatmap-color":T,"heatmap-radius":m?{type:"identity",property:"r"}:e.radius,"heatmap-opacity":e.opacity}),c.geojson={type:"FeatureCollection",features:f},c.heatmap.layout.visibility="visible",c}},{"../../components/color":361,"../../components/colorscale":373,"../../constants/numerical":474,"../../lib":498,"../../lib/geojson_utils":492,"fast-isnumeric":185}],760:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../components/colorscale/defaults"),a=t("./attributes");e.exports=function(t,e,r,o){function s(r,i){return n.coerce(t,e,a,r,i)}var l=s("lon")||[],c=s("lat")||[],u=Math.min(l.length,c.length);u?(e._length=u,s("z"),s("radius"),s("below"),s("text"),s("hovertext"),s("hovertemplate"),i(t,e,o,s,{prefix:"",cLetter:"z"})):e.visible=!1}},{"../../components/colorscale/defaults":371,"../../lib":498,"./attributes":757}],761:[function(t,e,r){"use strict";e.exports=function(t,e){return t.lon=e.lon,t.lat=e.lat,t.z=e.z,t}},{}],762:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../scattermapbox/hover").hoverPoints,a=t("../scattermapbox/hover").getExtraText;e.exports=function(t,e,r){var o=i(t,e,r);if(o){var s=o[0],l=s.cd,c=l[0].trace,u=l[s.index];if(delete s.color,"z"in u){var f=s.subplot.mockAxis;s.z=u.z,s.zLabel=n.tickText(f,f.c2l(u.z),"hover").text}return s.extraText=a(c,u,l[0].t.labels),[s]}}},{"../../plots/cartesian/axes":549,"../scattermapbox/hover":993}],763:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../heatmap/colorbar"),formatLabels:t("../scattermapbox/format_labels"),calc:t("./calc"),plot:t("./plot"),hoverPoints:t("./hover"),eventData:t("./event_data"),getBelow:function(t,e){for(var r=e.getMapLayers(),n=0;n=0;r--)t.removeLayer(e[r][1])},o.dispose=function(){var t=this.subplot.map;this._removeLayers(),t.removeSource(this.sourceId)},e.exports=function(t,e){var r=e[0].trace,i=new a(t,r.uid),o=i.sourceId,s=n(e),l=i.below=t.belowLookup["trace-"+r.uid];return t.map.addSource(o,{type:"geojson",data:s.geojson}),i._addLayers(s,l),i}},{"../../plots/mapbox/constants":606,"./convert":759}],765:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){for(var r=0;r"),l.color=function(t,e){var r=t.marker,i=e.mc||r.color,a=e.mlc||r.line.color,o=e.mlw||r.line.width;if(n(i))return i;if(n(a)&&o)return a}(u,h),[l]}}},{"../../components/color":361,"../../lib":498,"../bar/hover":650}],773:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style").style,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("../bar/select"),moduleType:"trace",name:"funnel",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","oriented","showLegend","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"../bar/select":655,"./attributes":766,"./calc":767,"./cross_trace_calc":769,"./defaults":770,"./event_data":771,"./hover":772,"./layout_attributes":774,"./layout_defaults":775,"./plot":776,"./style":777}],774:[function(t,e,r){"use strict";e.exports={funnelmode:{valType:"enumerated",values:["stack","group","overlay"],dflt:"stack",editType:"calc"},funnelgap:{valType:"number",min:0,max:1,editType:"calc"},funnelgroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],775:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a=!1;function o(r,a){return n.coerce(t,e,i,r,a)}for(var s=0;s path").each((function(t){if(!t.isBlank){var e=s.marker;n.select(this).call(a.fill,t.mc||e.color).call(a.stroke,t.mlc||e.line.color).call(i.dashLine,e.line.dash,t.mlw||e.line.width).style("opacity",s.selectedpoints&&!t.selected?o:1)}})),c(r,s,t),r.selectAll(".regions").each((function(){n.select(this).selectAll("path").style("stroke-width",0).call(a.fill,s.connector.fillcolor)})),r.selectAll(".lines").each((function(){var t=s.connector.line;i.lineGroupStyle(n.select(this).selectAll("path"),t.width,t.color,t.dash)}))}))}}},{"../../components/color":361,"../../components/drawing":383,"../../constants/interactions":473,"../bar/style":657,"../bar/uniform_text":659,"@plotly/d3":58}],778:[function(t,e,r){"use strict";var n=t("../pie/attributes"),i=t("../../plots/attributes"),a=t("../../plots/domain").attributes,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../plots/template_attributes").texttemplateAttrs,l=t("../../lib/extend").extendFlat;e.exports={labels:n.labels,label0:n.label0,dlabel:n.dlabel,values:n.values,marker:{colors:n.marker.colors,line:{color:l({},n.marker.line.color,{dflt:null}),width:l({},n.marker.line.width,{dflt:1}),editType:"calc"},editType:"calc"},text:n.text,hovertext:n.hovertext,scalegroup:l({},n.scalegroup,{}),textinfo:l({},n.textinfo,{flags:["label","text","value","percent"]}),texttemplate:s({editType:"plot"},{keys:["label","color","value","text","percent"]}),hoverinfo:l({},i.hoverinfo,{flags:["label","text","value","percent","name"]}),hovertemplate:o({},{keys:["label","color","value","text","percent"]}),textposition:l({},n.textposition,{values:["inside","none"],dflt:"inside"}),textfont:n.textfont,insidetextfont:n.insidetextfont,title:{text:n.title.text,font:n.title.font,position:l({},n.title.position,{values:["top left","top center","top right"],dflt:"top center"}),editType:"plot"},domain:a({name:"funnelarea",trace:!0,editType:"calc"}),aspectratio:{valType:"number",min:0,dflt:1,editType:"plot"},baseratio:{valType:"number",min:0,max:1,dflt:.333,editType:"plot"}}},{"../../lib/extend":488,"../../plots/attributes":545,"../../plots/domain":579,"../../plots/template_attributes":628,"../pie/attributes":896}],779:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="funnelarea",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":614}],780:[function(t,e,r){"use strict";var n=t("../pie/calc");e.exports={calc:function(t,e){return n.calc(t,e)},crossTraceCalc:function(t){n.crossTraceCalc(t,{type:"funnelarea"})}}},{"../pie/calc":898}],781:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../plots/domain").defaults,o=t("../bar/defaults").handleText,s=t("../pie/defaults").handleLabelsAndValues;e.exports=function(t,e,r,l){function c(r,a){return n.coerce(t,e,i,r,a)}var u=c("labels"),f=c("values"),h=s(u,f),p=h.len;if(e._hasLabels=h.hasLabels,e._hasValues=h.hasValues,!e._hasLabels&&e._hasValues&&(c("label0"),c("dlabel")),p){e._length=p,c("marker.line.width")&&c("marker.line.color",l.paper_bgcolor),c("marker.colors"),c("scalegroup");var d,m=c("text"),g=c("texttemplate");if(g||(d=c("textinfo",Array.isArray(m)?"text+percent":"percent")),c("hovertext"),c("hovertemplate"),g||d&&"none"!==d){var v=c("textposition");o(t,e,l,c,v,{moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1})}a(e,l,c),c("title.text")&&(c("title.position"),n.coerceFont(c,"title.font",l.font)),c("aspectratio"),c("baseratio")}else e.visible=!1}},{"../../lib":498,"../../plots/domain":579,"../bar/defaults":647,"../pie/defaults":899,"./attributes":778}],782:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"funnelarea",basePlotModule:t("./base_plot"),categories:["pie-like","funnelarea","showLegend"],attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),style:t("./style"),styleOne:t("../pie/style_one"),meta:{}}},{"../pie/style_one":907,"./attributes":778,"./base_plot":779,"./calc":780,"./defaults":781,"./layout_attributes":783,"./layout_defaults":784,"./plot":785,"./style":786}],783:[function(t,e,r){"use strict";var n=t("../pie/layout_attributes").hiddenlabels;e.exports={hiddenlabels:n,funnelareacolorway:{valType:"colorlist",editType:"calc"},extendfunnelareacolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{"../pie/layout_attributes":903}],784:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("hiddenlabels"),r("funnelareacolorway",e.colorway),r("extendfunnelareacolors")}},{"../../lib":498,"./layout_attributes":783}],785:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("../../lib"),o=a.strScale,s=a.strTranslate,l=t("../../lib/svg_text_utils"),c=t("../bar/plot").toMoveInsideBar,u=t("../bar/uniform_text"),f=u.recordMinTextSize,h=u.clearMinTextSize,p=t("../pie/helpers"),d=t("../pie/plot"),m=d.attachFxHandlers,g=d.determineInsideTextFont,v=d.layoutAreas,y=d.prerenderTitles,x=d.positionTitleOutside,b=d.formatSliceLabel;function _(t,e){return"l"+(e[0]-t[0])+","+(e[1]-t[1])}e.exports=function(t,e){var r=t._fullLayout;h("funnelarea",r),y(e,t),v(e,r._size),a.makeTraceGroups(r._funnelarealayer,e,"trace").each((function(e){var u=n.select(this),h=e[0],d=h.trace;!function(t){if(!t.length)return;var e=t[0],r=e.trace,n=r.aspectratio,i=r.baseratio;i>.999&&(i=.999);var a,o=Math.pow(i,2),s=e.vTotal,l=s,c=s*o/(1-o)/s;function u(){var t,e={x:t=Math.sqrt(c),y:-t};return[e.x,e.y]}var f,h,p=[];for(p.push(u()),f=t.length-1;f>-1;f--)if(!(h=t[f]).hidden){var d=h.v/l;c+=d,p.push(u())}var m=1/0,g=-1/0;for(f=0;f-1;f--)if(!(h=t[f]).hidden){var A=p[k+=1][0],M=p[k][1];h.TL=[-A,M],h.TR=[A,M],h.BL=w,h.BR=T,h.pxmid=(S=h.TR,E=h.BR,[.5*(S[0]+E[0]),.5*(S[1]+E[1])]),w=h.TL,T=h.TR}var S,E}(e),u.each((function(){var u=n.select(this).selectAll("g.slice").data(e);u.enter().append("g").classed("slice",!0),u.exit().remove(),u.each((function(o,s){if(o.hidden)n.select(this).selectAll("path,g").remove();else{o.pointNumber=o.i,o.curveNumber=d.index;var u=h.cx,v=h.cy,y=n.select(this),x=y.selectAll("path.surface").data([o]);x.enter().append("path").classed("surface",!0).style({"pointer-events":"all"}),y.call(m,t,e);var w="M"+(u+o.TR[0])+","+(v+o.TR[1])+_(o.TR,o.BR)+_(o.BR,o.BL)+_(o.BL,o.TL)+"Z";x.attr("d",w),b(t,o,h);var T=p.castOption(d.textposition,o.pts),k=y.selectAll("g.slicetext").data(o.text&&"none"!==T?[0]:[]);k.enter().append("g").classed("slicetext",!0),k.exit().remove(),k.each((function(){var h=a.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),p=a.ensureUniformFontSize(t,g(d,o,r.font));h.text(o.text).attr({class:"slicetext",transform:"","text-anchor":"middle"}).call(i.font,p).call(l.convertToTspans,t);var m,y,x,b=i.bBox(h.node()),_=Math.min(o.BL[1],o.BR[1])+v,w=Math.max(o.TL[1],o.TR[1])+v;y=Math.max(o.TL[0],o.BL[0])+u,x=Math.min(o.TR[0],o.BR[0])+u,(m=c(y,x,_,w,b,{isHorizontal:!0,constrained:!0,angle:0,anchor:"middle"})).fontSize=p.size,f(d.type,m,r),e[s].transform=m,h.attr("transform",a.getTextTransform(m))}))}}));var v=n.select(this).selectAll("g.titletext").data(d.title.text?[0]:[]);v.enter().append("g").classed("titletext",!0),v.exit().remove(),v.each((function(){var e=a.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),c=d.title.text;d._meta&&(c=a.templateString(c,d._meta)),e.text(c).attr({class:"titletext",transform:"","text-anchor":"middle"}).call(i.font,d.title.font).call(l.convertToTspans,t);var u=x(h,r._size);e.attr("transform",s(u.x,u.y)+o(Math.min(1,u.scale))+s(u.tx,u.ty))}))}))}))}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../bar/plot":654,"../bar/uniform_text":659,"../pie/helpers":901,"../pie/plot":905,"@plotly/d3":58}],786:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../pie/style_one"),a=t("../bar/uniform_text").resizeText;e.exports=function(t){var e=t._fullLayout._funnelarealayer.selectAll(".trace");a(t,e,"funnelarea"),e.each((function(t){var e=t[0].trace,r=n.select(this);r.style({opacity:e.opacity}),r.selectAll("path.surface").each((function(t){n.select(this).call(i,t,e)}))}))}},{"../bar/uniform_text":659,"../pie/style_one":907,"@plotly/d3":58}],787:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../plots/attributes"),a=t("../../plots/font_attributes"),o=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../plots/template_attributes").texttemplateAttrs,c=t("../../components/colorscale/attributes"),u=t("../../lib/extend").extendFlat;e.exports=u({z:{valType:"data_array",editType:"calc"},x:u({},n.x,{impliedEdits:{xtype:"array"}}),x0:u({},n.x0,{impliedEdits:{xtype:"scaled"}}),dx:u({},n.dx,{impliedEdits:{xtype:"scaled"}}),y:u({},n.y,{impliedEdits:{ytype:"array"}}),y0:u({},n.y0,{impliedEdits:{ytype:"scaled"}}),dy:u({},n.dy,{impliedEdits:{ytype:"scaled"}}),xperiod:u({},n.xperiod,{impliedEdits:{xtype:"scaled"}}),yperiod:u({},n.yperiod,{impliedEdits:{ytype:"scaled"}}),xperiod0:u({},n.xperiod0,{impliedEdits:{xtype:"scaled"}}),yperiod0:u({},n.yperiod0,{impliedEdits:{ytype:"scaled"}}),xperiodalignment:u({},n.xperiodalignment,{impliedEdits:{xtype:"scaled"}}),yperiodalignment:u({},n.yperiodalignment,{impliedEdits:{ytype:"scaled"}}),text:{valType:"data_array",editType:"calc"},hovertext:{valType:"data_array",editType:"calc"},transpose:{valType:"boolean",dflt:!1,editType:"calc"},xtype:{valType:"enumerated",values:["array","scaled"],editType:"calc+clearAxisTypes"},ytype:{valType:"enumerated",values:["array","scaled"],editType:"calc+clearAxisTypes"},zsmooth:{valType:"enumerated",values:["fast","best",!1],dflt:!1,editType:"calc"},hoverongaps:{valType:"boolean",dflt:!0,editType:"none"},connectgaps:{valType:"boolean",editType:"calc"},xgap:{valType:"number",dflt:0,min:0,editType:"plot"},ygap:{valType:"number",dflt:0,min:0,editType:"plot"},xhoverformat:o("x"),yhoverformat:o("y"),zhoverformat:o("z",1),hovertemplate:s(),texttemplate:l({arrayOk:!1,editType:"plot"},{keys:["x","y","z","text"]}),textfont:a({editType:"plot",autoSize:!0,autoColor:!0,colorEditType:"style"}),showlegend:u({},i.showlegend,{dflt:!1})},{transforms:void 0},c("",{cLetter:"z",autoColorDflt:!1}))},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/font_attributes":580,"../../plots/template_attributes":628,"../scatter/attributes":922}],788:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib"),a=t("../../plots/cartesian/axes"),o=t("../../plots/cartesian/align_period"),s=t("../histogram2d/calc"),l=t("../../components/colorscale/calc"),c=t("./convert_column_xyz"),u=t("./clean_2d_array"),f=t("./interp2d"),h=t("./find_empties"),p=t("./make_bound_array"),d=t("../../constants/numerical").BADNUM;function m(t){for(var e=[],r=t.length,n=0;nD){O("x scale is not linear");break}}if(x.length&&"fast"===P){var R=(x[x.length-1]-x[0])/(x.length-1),F=Math.abs(R/100);for(k=0;kF){O("y scale is not linear");break}}}var B=i.maxRowLength(T),N="scaled"===e.xtype?"":r,j=p(e,N,g,v,B,M),U="scaled"===e.ytype?"":x,V=p(e,U,b,_,T.length,S);C||(e._extremes[M._id]=a.findExtremes(M,j),e._extremes[S._id]=a.findExtremes(S,V));var H={x:j,y:V,z:T,text:e._text||e.text,hovertext:e._hovertext||e.hovertext};if(e.xperiodalignment&&y&&(H.orig_x=y),e.yperiodalignment&&w&&(H.orig_y=w),N&&N.length===j.length-1&&(H.xCenter=N),U&&U.length===V.length-1&&(H.yCenter=U),L&&(H.xRanges=A.xRanges,H.yRanges=A.yRanges,H.pts=A.pts),E||l(t,e,{vals:T,cLetter:"z"}),E&&e.contours&&"heatmap"===e.contours.coloring){var q={type:"contour"===e.type?"heatmap":"histogram2d",xcalendar:e.xcalendar,ycalendar:e.ycalendar};H.xfill=p(q,N,g,v,B,M),H.yfill=p(q,U,b,_,T.length,S)}return[H]}},{"../../components/colorscale/calc":369,"../../constants/numerical":474,"../../lib":498,"../../plots/cartesian/align_period":546,"../../plots/cartesian/axes":549,"../../registry":633,"../histogram2d/calc":821,"./clean_2d_array":789,"./convert_column_xyz":791,"./find_empties":793,"./interp2d":796,"./make_bound_array":798}],789:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../lib"),a=t("../../constants/numerical").BADNUM;e.exports=function(t,e,r,o){var s,l,c,u,f,h;function p(t){if(n(t))return+t}if(e&&e.transpose){for(s=0,f=0;f=0;o--)(s=((f[[(r=(a=h[o])[0])-1,i=a[1]]]||m)[2]+(f[[r+1,i]]||m)[2]+(f[[r,i-1]]||m)[2]+(f[[r,i+1]]||m)[2])/20)&&(l[a]=[r,i,s],h.splice(o,1),c=!0);if(!c)throw"findEmpties iterated with no new neighbors";for(a in l)f[a]=l[a],u.push(l[a])}return u.sort((function(t,e){return e[2]-t[2]}))}},{"../../lib":498}],794:[function(t,e,r){"use strict";var n=t("../../components/fx"),i=t("../../lib"),a=t("../../plots/cartesian/axes"),o=t("../../components/colorscale").extractOpts;e.exports=function(t,e,r,s,l){l||(l={});var c,u,f,h,p=l.isContour,d=t.cd[0],m=d.trace,g=t.xa,v=t.ya,y=d.x,x=d.y,b=d.z,_=d.xCenter,w=d.yCenter,T=d.zmask,k=m.zhoverformat,A=y,M=x;if(!1!==t.index){try{f=Math.round(t.index[1]),h=Math.round(t.index[0])}catch(e){return void i.error("Error hovering on heatmap, pointNumber must be [row,col], found:",t.index)}if(f<0||f>=b[0].length||h<0||h>b.length)return}else{if(n.inbox(e-y[0],e-y[y.length-1],0)>0||n.inbox(r-x[0],r-x[x.length-1],0)>0)return;if(p){var S;for(A=[2*y[0]-y[1]],S=1;Sm&&(v=Math.max(v,Math.abs(t[a][o]-d)/(g-m))))}return v}e.exports=function(t,e){var r,i=1;for(o(t,e),r=0;r.01;r++)i=o(t,e,a(i));return i>.01&&n.log("interp2d didn't converge quickly",i),t}},{"../../lib":498}],797:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){t("texttemplate");var r=n.extendFlat({},e.font,{color:"auto",size:"auto"});n.coerceFont(t,"textfont",r)}},{"../../lib":498}],798:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib").isArrayOrTypedArray;e.exports=function(t,e,r,a,o,s){var l,c,u,f=[],h=n.traceIs(t,"contour"),p=n.traceIs(t,"histogram"),d=n.traceIs(t,"gl2d");if(i(e)&&e.length>1&&!p&&"category"!==s.type){var m=e.length;if(!(m<=o))return h?e.slice(0,o):e.slice(0,o+1);if(h||d)f=e.slice(0,o);else if(1===o)f=[e[0]-.5,e[0]+.5];else{for(f=[1.5*e[0]-.5*e[1]],u=1;u0;)_=w.c2p(R[S]),S--;for(_0;)M=T.c2p(F[S]),S--;if(MGt||Gt>T._length))for(E=Ut;EWt||Wt>w._length)){var Xt=u({x:Yt,y:qt},I,t._fullLayout);Xt.x=Yt,Xt.y=qt;var Zt=P.z[S][E];void 0===Zt?(Xt.z="",Xt.zLabel=""):(Xt.z=Zt,Xt.zLabel=s.tickText(Ft,Zt,"hover").text);var Jt=P.text&&P.text[S]&&P.text[S][E];void 0!==Jt&&!1!==Jt||(Jt=""),Xt.text=Jt;var Kt=l.texttemplateString(Dt,Xt,t._fullLayout._d3locale,Xt,I._meta||{});if(Kt){var Qt=Kt.split("
"),$t=Qt.length,te=0;for(L=0;L<$t;L++)te=Math.max(te,Qt[L].length);Ht.push({l:$t,c:te,t:Kt,x:Wt,y:Gt,z:Zt})}}}}var ee=I.textfont,re=ee.family,ne=ee.size,ie=t._fullLayout.font.size;if(!ne||"auto"===ne){var ae=1/0,oe=1/0,se=0,le=0;for(L=0;L0&&(a=!0);for(var l=0;la){var o=a-r[t];return r[t]=a,o}}return 0},max:function(t,e,r,i){var a=i[e];if(n(a)){if(a=Number(a),!n(r[t]))return r[t]=a,a;if(r[t]c?t>o?t>1.1*i?i:t>1.1*a?a:o:t>s?s:t>l?l:c:Math.pow(10,Math.floor(Math.log(t)/Math.LN10))}function p(t,e,r,n,a,s){if(n&&t>o){var l=d(e,a,s),c=d(r,a,s),u=t===i?0:1;return l[u]!==c[u]}return Math.floor(r/t)-Math.floor(e/t)>.1}function d(t,e,r){var n=e.c2d(t,i,r).split("-");return""===n[0]&&(n.unshift(),n[0]="-"+n[0]),n}e.exports=function(t,e,r,n,a){var s,l,c=-1.1*e,h=-.1*e,p=t-h,d=r[0],m=r[1],g=Math.min(f(d+h,d+p,n,a),f(m+h,m+p,n,a)),v=Math.min(f(d+c,d+h,n,a),f(m+c,m+h,n,a));if(g>v&&vo){var y=s===i?1:6,x=s===i?"M12":"M1";return function(e,r){var o=n.c2d(e,i,a),s=o.indexOf("-",y);s>0&&(o=o.substr(0,s));var c=n.d2c(o,0,a);if(cr.r2l(B)&&(j=o.tickIncrement(j,b.size,!0,p)),z.start=r.l2r(j),F||i.nestedProperty(e,v+".start").set(z.start)}var U=b.end,V=r.r2l(O.end),H=void 0!==V;if((b.endFound||H)&&V!==r.r2l(U)){var q=H?V:i.aggNums(Math.max,null,d);z.end=r.l2r(q),H||i.nestedProperty(e,v+".start").set(z.end)}var G="autobin"+s;return!1===e._input[G]&&(e._input[v]=i.extendFlat({},e[v]||{}),delete e._input[G],delete e[G]),[z,d]}e.exports={calc:function(t,e){var r,a,p,d,m=[],g=[],v="h"===e.orientation,y=o.getFromId(t,v?e.yaxis:e.xaxis),x=v?"y":"x",b={x:"y",y:"x"}[x],_=e[x+"calendar"],w=e.cumulative,T=h(t,e,y,x),k=T[0],A=T[1],M="string"==typeof k.size,S=[],E=M?S:k,L=[],C=[],P=[],I=0,O=e.histnorm,z=e.histfunc,D=-1!==O.indexOf("density");w.enabled&&D&&(O=O.replace(/ ?density$/,""),D=!1);var R,F="max"===z||"min"===z?null:0,B=l.count,N=c[O],j=!1,U=function(t){return y.r2c(t,0,_)};for(i.isArrayOrTypedArray(e[b])&&"count"!==z&&(R=e[b],j="avg"===z,B=l[z]),r=U(k.start),p=U(k.end)+(r-o.tickIncrement(r,k.size,!1,_))/1e6;r=0&&d=0;n--)s(n);else if("increasing"===e){for(n=1;n=0;n--)t[n]+=t[n+1];"exclude"===r&&(t.push(0),t.shift())}}(g,w.direction,w.currentbin);var K=Math.min(m.length,g.length),Q=[],$=0,tt=K-1;for(r=0;r=$;r--)if(g[r]){tt=r;break}for(r=$;r<=tt;r++)if(n(m[r])&&n(g[r])){var et={p:m[r],s:g[r],b:0};w.enabled||(et.pts=P[r],Y?et.ph0=et.ph1=P[r].length?A[P[r][0]]:m[r]:(e._computePh=!0,et.ph0=q(S[r]),et.ph1=q(S[r+1],!0))),Q.push(et)}return 1===Q.length&&(Q[0].width1=o.tickIncrement(Q[0].p,k.size,!1,_)-Q[0].p),s(Q,e),i.isArrayOrTypedArray(e.selectedpoints)&&i.tagSelected(Q,e,Z),Q},calcAllAutoBins:h}},{"../../lib":498,"../../plots/cartesian/axes":549,"../../registry":633,"../bar/arrays_to_calcdata":642,"./average":808,"./bin_functions":810,"./bin_label_vals":811,"./norm_functions":819,"fast-isnumeric":185}],813:[function(t,e,r){"use strict";e.exports={eventDataKeys:["binNumber"]}},{}],814:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/cartesian/axis_ids"),a=t("../../registry").traceIs,o=t("../bar/defaults").handleGroupingDefaults,s=n.nestedProperty,l=t("../../plots/cartesian/constraints").getAxisGroup,c=[{aStr:{x:"xbins.start",y:"ybins.start"},name:"start"},{aStr:{x:"xbins.end",y:"ybins.end"},name:"end"},{aStr:{x:"xbins.size",y:"ybins.size"},name:"size"},{aStr:{x:"nbinsx",y:"nbinsy"},name:"nbins"}],u=["x","y"];e.exports=function(t,e){var r,f,h,p,d,m,g,v=e._histogramBinOpts={},y=[],x={},b=[];function _(t,e){return n.coerce(r._input,r,r._module.attributes,t,e)}function w(t){return"v"===t.orientation?"x":"y"}function T(t,r,a){var o=t.uid+"__"+a;r||(r=o);var s=function(t,r){return i.getFromTrace({_fullLayout:e},t,r).type}(t,a),l=t[a+"calendar"]||"",c=v[r],u=!0;c&&(s===c.axType&&l===c.calendar?(u=!1,c.traces.push(t),c.dirs.push(a)):(r=o,s!==c.axType&&n.warn(["Attempted to group the bins of trace",t.index,"set on a","type:"+s,"axis","with bins on","type:"+c.axType,"axis."].join(" ")),l!==c.calendar&&n.warn(["Attempted to group the bins of trace",t.index,"set with a",l,"calendar","with bins",c.calendar?"on a "+c.calendar+" calendar":"w/o a set calendar"].join(" ")))),u&&(v[r]={traces:[t],dirs:[a],axType:s,calendar:t[a+"calendar"]||""}),t["_"+a+"bingroup"]=r}for(d=0;dS&&T.splice(S,T.length-S),M.length>S&&M.splice(S,M.length-S);var E=[],L=[],C=[],P="string"==typeof w.size,I="string"==typeof A.size,O=[],z=[],D=P?O:w,R=I?z:A,F=0,B=[],N=[],j=e.histnorm,U=e.histfunc,V=-1!==j.indexOf("density"),H="max"===U||"min"===U?null:0,q=a.count,G=o[j],Y=!1,W=[],X=[],Z="z"in e?e.z:"marker"in e&&Array.isArray(e.marker.color)?e.marker.color:"";Z&&"count"!==U&&(Y="avg"===U,q=a[U]);var J=w.size,K=x(w.start),Q=x(w.end)+(K-i.tickIncrement(K,J,!1,v))/1e6;for(r=K;r=0&&p=0&&d-1,flipY:E.tiling.flip.indexOf("y")>-1,orientation:E.tiling.orientation,pad:{inner:E.tiling.pad},maxDepth:E._maxDepth}).descendants(),O=1/0,z=-1/0;I.forEach((function(t){var e=t.depth;e>=E._maxDepth?(t.x0=t.x1=(t.x0+t.x1)/2,t.y0=t.y1=(t.y0+t.y1)/2):(O=Math.min(O,e),z=Math.max(z,e))})),p=p.data(I,u.getPtId),E._maxVisibleLayers=isFinite(z)?z-O+1:0,p.enter().append("g").classed("slice",!0),T(p,!1,{},[m,g],x),p.order();var D=null;if(w&&M){var R=u.getPtId(M);p.each((function(t){null===D&&u.getPtId(t)===R&&(D={x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1})}))}var F=function(){return D||{x0:0,x1:m,y0:0,y1:g}},B=p;return w&&(B=B.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!0,hideOnLeaves:!1,isTransitioning:!1})}))),B.each((function(s){s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-E.tiling.pad),s._hoverY=y(P?s.y1-E.tiling.pad/2:s.y0+E.tiling.pad/2);var p=n.select(this),d=i.ensureSingle(p,"path","surface",(function(t){t.style("pointer-events","all")}));w?d.transition().attrTween("d",(function(t){var e=k(t,!1,F(),[m,g],{orientation:E.tiling.orientation,flipX:E.tiling.flip.indexOf("x")>-1,flipY:E.tiling.flip.indexOf("y")>-1});return function(t){return x(e(t))}})):d.attr("d",x),p.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{isTransitioning:t._transitioning}),d.call(l,s,E,{hovered:!1}),s.x0===s.x1||s.y0===s.y1?s._text="":s._text=h(s,r,E,e,S)||"";var T=i.ensureSingle(p,"g","slicetext"),M=i.ensureSingle(T,"text","",(function(t){t.attr("data-notex",1)})),I=i.ensureUniformFontSize(t,u.determineTextFont(E,s,S.font));M.text(s._text||" ").classed("slicetext",!0).attr("text-anchor",C?"end":L?"start":"middle").call(a.font,I).call(o.convertToTspans,t),s.textBB=a.bBox(M.node()),s.transform=b(s,{fontSize:I.size}),s.transform.fontSize=I.size,w?M.transition().attrTween("transform",(function(t){var e=A(t,!1,F(),[m,g]);return function(t){return _(e(t))}})):M.attr("transform",_(s))})),D}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../sunburst/fx":1049,"../sunburst/helpers":1050,"../sunburst/plot":1054,"../treemap/constants":1073,"./partition":837,"./style":839,"@plotly/d3":58}],834:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"icicle",basePlotModule:t("./base_plot"),categories:[],animatable:!0,attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),style:t("./style").style,colorbar:t("../scatter/marker_colorbar"),meta:{}}},{"../scatter/marker_colorbar":940,"./attributes":829,"./base_plot":830,"./calc":831,"./defaults":832,"./layout_attributes":835,"./layout_defaults":836,"./plot":838,"./style":839}],835:[function(t,e,r){"use strict";e.exports={iciclecolorway:{valType:"colorlist",editType:"calc"},extendiciclecolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{}],836:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("iciclecolorway",e.colorway),r("extendiciclecolors")}},{"../../lib":498,"./layout_attributes":835}],837:[function(t,e,r){"use strict";var n=t("d3-hierarchy"),i=t("../treemap/flip_tree");e.exports=function(t,e,r){var a=r.flipX,o=r.flipY,s="h"===r.orientation,l=r.maxDepth,c=e[0],u=e[1];l&&(c=(t.height+1)*e[0]/Math.min(t.height+1,l),u=(t.height+1)*e[1]/Math.min(t.height+1,l));var f=n.partition().padding(r.pad.inner).size(s?[e[1],c]:[e[0],u])(t);return(s||a||o)&&i(f,e,{swapXY:s,flipX:a,flipY:o}),f}},{"../treemap/flip_tree":1078,"d3-hierarchy":110}],838:[function(t,e,r){"use strict";var n=t("../treemap/draw"),i=t("./draw_descendants");e.exports=function(t,e,r,a){return n(t,e,r,a,{type:"icicle",drawDescendants:i})}},{"../treemap/draw":1075,"./draw_descendants":833}],839:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../bar/uniform_text").resizeText;function s(t,e,r){var n=e.data.data,o=!e.children,s=n.i,l=a.castOption(r,s,"marker.line.color")||i.defaultLine,c=a.castOption(r,s,"marker.line.width")||0;t.style("stroke-width",c).call(i.fill,n.color).call(i.stroke,l).style("opacity",o?r.leaf.opacity:null)}e.exports={style:function(t){var e=t._fullLayout._iciclelayer.selectAll(".trace");o(t,e,"icicle"),e.each((function(t){var e=n.select(this),r=t[0].trace;e.style("opacity",r.opacity),e.selectAll("path.surface").each((function(t){n.select(this).call(s,t,r)}))}))},styleOne:s}},{"../../components/color":361,"../../lib":498,"../bar/uniform_text":659,"@plotly/d3":58}],840:[function(t,e,r){"use strict";for(var n=t("../../plots/attributes"),i=t("../../plots/template_attributes").hovertemplateAttrs,a=t("../../lib/extend").extendFlat,o=t("./constants").colormodel,s=["rgb","rgba","rgba256","hsl","hsla"],l=[],c=[],u=0;u0||n.inbox(r-o.y0,r-(o.y0+o.h*s.dy),0)>0)){var u,f=Math.floor((e-o.x0)/s.dx),h=Math.floor(Math.abs(r-o.y0)/s.dy);if(s._hasZ?u=o.z[h][f]:s._hasSource&&(u=s._canvas.el.getContext("2d").getImageData(f,h,1,1).data),u){var p,d=o.hi||s.hoverinfo;if(d){var m=d.split("+");-1!==m.indexOf("all")&&(m=["color"]),-1!==m.indexOf("color")&&(p=!0)}var g,v=a.colormodel[s.colormodel],y=v.colormodel||s.colormodel,x=y.length,b=s._scaler(u),_=v.suffix,w=[];(s.hovertemplate||p)&&(w.push("["+[b[0]+_[0],b[1]+_[1],b[2]+_[2]].join(", ")),4===x&&w.push(", "+b[3]+_[3]),w.push("]"),w=w.join(""),t.extraText=y.toUpperCase()+": "+w),Array.isArray(s.hovertext)&&Array.isArray(s.hovertext[h])?g=s.hovertext[h][f]:Array.isArray(s.text)&&Array.isArray(s.text[h])&&(g=s.text[h][f]);var T=c.c2p(o.y0+(h+.5)*s.dy),k=o.x0+(f+.5)*s.dx,A=o.y0+(h+.5)*s.dy,M="["+u.slice(0,s.colormodel.length).join(", ")+"]";return[i.extendFlat(t,{index:[h,f],x0:l.c2p(o.x0+f*s.dx),x1:l.c2p(o.x0+(f+1)*s.dx),y0:T,y1:T,color:b,xVal:k,xLabelVal:k,yVal:A,yLabelVal:A,zLabelVal:M,text:g,hovertemplateLabels:{zLabel:M,colorLabel:w,"color[0]Label":b[0]+_[0],"color[1]Label":b[1]+_[1],"color[2]Label":b[2]+_[2],"color[3]Label":b[3]+_[3]}})]}}}},{"../../components/fx":401,"../../lib":498,"./constants":842}],847:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),style:t("./style"),hoverPoints:t("./hover"),eventData:t("./event_data"),moduleType:"trace",name:"image",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","2dMap","noSortingByValue"],animatable:!1,meta:{}}},{"../../plots/cartesian":563,"./attributes":840,"./calc":841,"./defaults":843,"./event_data":844,"./hover":846,"./plot":848,"./style":849}],848:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.strTranslate,o=t("../../constants/xmlns_namespaces"),s=t("./constants"),l=i.isIOS()||i.isSafari()||i.isIE();e.exports=function(t,e,r,c){var u=e.xaxis,f=e.yaxis,h=!(l||t._context._exportedPlot);i.makeTraceGroups(c,r,"im").each((function(e){var r=n.select(this),l=e[0],c=l.trace,p=("fast"===c.zsmooth||!1===c.zsmooth&&h)&&!c._hasZ&&c._hasSource&&"linear"===u.type&&"linear"===f.type;c._realImage=p;var d,m,g,v,y,x,b=l.z,_=l.x0,w=l.y0,T=l.w,k=l.h,A=c.dx,M=c.dy;for(x=0;void 0===d&&x0;)m=u.c2p(_+x*A),x--;for(x=0;void 0===v&&x0;)y=f.c2p(w+x*M),x--;if(mI[0];if(O||z){var D=d+S/2,R=v+E/2;C+="transform:"+a(D+"px",R+"px")+"scale("+(O?-1:1)+","+(z?-1:1)+")"+a(-D+"px",-R+"px")+";"}}L.attr("style",C);var F=new Promise((function(t){if(c._hasZ)t();else if(c._hasSource)if(c._canvas&&c._canvas.el.width===T&&c._canvas.el.height===k&&c._canvas.source===c.source)t();else{var e=document.createElement("canvas");e.width=T,e.height=k;var r=e.getContext("2d");c._image=c._image||new Image;var n=c._image;n.onload=function(){r.drawImage(n,0,0),c._canvas={el:e,source:c.source},t()},n.setAttribute("src",c.source)}})).then((function(){var t;if(c._hasZ)t=B((function(t,e){return b[e][t]})).toDataURL("image/png");else if(c._hasSource)if(p)t=c.source;else{var e=c._canvas.el.getContext("2d").getImageData(0,0,T,k).data;t=B((function(t,r){var n=4*(r*T+t);return[e[n],e[n+1],e[n+2],e[n+3]]})).toDataURL("image/png")}L.attr({"xlink:href":t,height:E,width:S,x:d,y:v})}));t._promises.push(F)}function B(t){var e=document.createElement("canvas");e.width=S,e.height=E;var r,n=e.getContext("2d"),a=function(t){return i.constrain(Math.round(u.c2p(_+t*A)-d),0,S)},o=function(t){return i.constrain(Math.round(f.c2p(w+t*M)-v),0,E)},h=s.colormodel[c.colormodel],p=h.colormodel||c.colormodel,m=h.fmt;for(x=0;x0}function T(t){t.each((function(t){y.stroke(n.select(this),t.line.color)})).each((function(t){y.fill(n.select(this),t.color)})).style("stroke-width",(function(t){return t.line.width}))}function k(t,e,r){var n=t._fullLayout,i=o.extendFlat({type:"linear",ticks:"outside",range:r,showline:!0},e),a={type:"linear",_id:"x"+e._id},s={letter:"x",font:n.font,noHover:!0,noTickson:!0};function l(t,e){return o.coerce(i,a,v,t,e)}return m(i,a,l,s,n),g(i,a,l,s),a}function A(t,e,r){return[Math.min(e/t.width,r/t.height),t,e+"x"+r]}function M(t,e,r,i){var a=document.createElementNS("http://www.w3.org/2000/svg","text"),o=n.select(a);return o.text(t).attr("x",0).attr("y",0).attr("text-anchor",r).attr("data-unformatted",t).call(p.convertToTspans,i).call(f.font,e),f.bBox(o.node())}function S(t,e,r,n,i,a){var s="_cache"+e;t[s]&&t[s].key===i||(t[s]={key:i,value:r});var l=o.aggNums(a,null,[t[s].value,n],2);return t[s].value=l,l}e.exports=function(t,e,r,m){var g,v=t._fullLayout;w(r)&&m&&(g=m()),o.makeTraceGroups(v._indicatorlayer,e,"trace").each((function(e){var m,E,L,C,P,I=e[0].trace,O=n.select(this),z=I._hasGauge,D=I._isAngular,R=I._isBullet,F=I.domain,B={w:v._size.w*(F.x[1]-F.x[0]),h:v._size.h*(F.y[1]-F.y[0]),l:v._size.l+v._size.w*F.x[0],r:v._size.r+v._size.w*(1-F.x[1]),t:v._size.t+v._size.h*(1-F.y[1]),b:v._size.b+v._size.h*F.y[0]},N=B.l+B.w/2,j=B.t+B.h/2,U=Math.min(B.w/2,B.h),V=h.innerRadius*U,H=I.align||"center";if(E=j,z){if(D&&(m=N,E=j+U/2,L=function(t){return function(t,e){var r=Math.sqrt(t.width/2*(t.width/2)+t.height*t.height);return[e/r,t,e]}(t,.9*V)}),R){var q=h.bulletPadding,G=1-h.bulletNumberDomainSize+q;m=B.l+(G+(1-G)*b[H])*B.w,L=function(t){return A(t,(h.bulletNumberDomainSize-q)*B.w,B.h)}}}else m=B.l+b[H]*B.w,L=function(t){return A(t,B.w,B.h)};!function(t,e,r,i){var c,u,h,m=r[0].trace,g=i.numbersX,v=i.numbersY,T=m.align||"center",A=x[T],E=i.transitionOpts,L=i.onComplete,C=o.ensureSingle(e,"g","numbers"),P=[];m._hasNumber&&P.push("number");m._hasDelta&&(P.push("delta"),"left"===m.delta.position&&P.reverse());var I=C.selectAll("text").data(P);function O(e,r,n,i){if(!e.match("s")||n>=0==i>=0||r(n).slice(-1).match(_)||r(i).slice(-1).match(_))return r;var a=e.slice().replace("s","f").replace(/\d+/,(function(t){return parseInt(t)-1})),o=k(t,{tickformat:a});return function(t){return Math.abs(t)<1?d.tickText(o,t).text:r(t)}}I.enter().append("text"),I.attr("text-anchor",(function(){return A})).attr("class",(function(t){return t})).attr("x",null).attr("y",null).attr("dx",null).attr("dy",null),I.exit().remove();var z,D=m.mode+m.align;m._hasDelta&&(z=function(){var e=k(t,{tickformat:m.delta.valueformat},m._range);e.setScale(),d.prepTicks(e);var i=function(t){return d.tickText(e,t).text},o=function(t){return m.delta.relative?t.relativeDelta:t.delta},s=function(t,e){return 0===t||"number"!=typeof t||isNaN(t)?"-":(t>0?m.delta.increasing.symbol:m.delta.decreasing.symbol)+e(t)},l=function(t){return t.delta>=0?m.delta.increasing.color:m.delta.decreasing.color};void 0===m._deltaLastValue&&(m._deltaLastValue=o(r[0]));var c=C.select("text.delta");function h(){c.text(s(o(r[0]),i)).call(y.fill,l(r[0])).call(p.convertToTspans,t)}return c.call(f.font,m.delta.font).call(y.fill,l({delta:m._deltaLastValue})),w(E)?c.transition().duration(E.duration).ease(E.easing).tween("text",(function(){var t=n.select(this),e=o(r[0]),c=m._deltaLastValue,u=O(m.delta.valueformat,i,c,e),f=a(c,e);return m._deltaLastValue=e,function(e){t.text(s(f(e),u)),t.call(y.fill,l({delta:f(e)}))}})).each("end",(function(){h(),L&&L()})).each("interrupt",(function(){h(),L&&L()})):h(),u=M(s(o(r[0]),i),m.delta.font,A,t),c}(),D+=m.delta.position+m.delta.font.size+m.delta.font.family+m.delta.valueformat,D+=m.delta.increasing.symbol+m.delta.decreasing.symbol,h=u);m._hasNumber&&(!function(){var e=k(t,{tickformat:m.number.valueformat},m._range);e.setScale(),d.prepTicks(e);var i=function(t){return d.tickText(e,t).text},o=m.number.suffix,s=m.number.prefix,l=C.select("text.number");function u(){var e="number"==typeof r[0].y?s+i(r[0].y)+o:"-";l.text(e).call(f.font,m.number.font).call(p.convertToTspans,t)}w(E)?l.transition().duration(E.duration).ease(E.easing).each("end",(function(){u(),L&&L()})).each("interrupt",(function(){u(),L&&L()})).attrTween("text",(function(){var t=n.select(this),e=a(r[0].lastY,r[0].y);m._lastValue=r[0].y;var l=O(m.number.valueformat,i,r[0].lastY,r[0].y);return function(r){t.text(s+l(e(r))+o)}})):u(),c=M(s+i(r[0].y)+o,m.number.font,A,t)}(),D+=m.number.font.size+m.number.font.family+m.number.valueformat+m.number.suffix+m.number.prefix,h=c);if(m._hasDelta&&m._hasNumber){var R,F,B=[(c.left+c.right)/2,(c.top+c.bottom)/2],N=[(u.left+u.right)/2,(u.top+u.bottom)/2],j=.75*m.delta.font.size;"left"===m.delta.position&&(R=S(m,"deltaPos",0,-1*(c.width*b[m.align]+u.width*(1-b[m.align])+j),D,Math.min),F=B[1]-N[1],h={width:c.width+u.width+j,height:Math.max(c.height,u.height),left:u.left+R,right:c.right,top:Math.min(c.top,u.top+F),bottom:Math.max(c.bottom,u.bottom+F)}),"right"===m.delta.position&&(R=S(m,"deltaPos",0,c.width*(1-b[m.align])+u.width*b[m.align]+j,D,Math.max),F=B[1]-N[1],h={width:c.width+u.width+j,height:Math.max(c.height,u.height),left:c.left,right:u.right+R,top:Math.min(c.top,u.top+F),bottom:Math.max(c.bottom,u.bottom+F)}),"bottom"===m.delta.position&&(R=null,F=u.height,h={width:Math.max(c.width,u.width),height:c.height+u.height,left:Math.min(c.left,u.left),right:Math.max(c.right,u.right),top:c.bottom-c.height,bottom:c.bottom+u.height}),"top"===m.delta.position&&(R=null,F=c.top,h={width:Math.max(c.width,u.width),height:c.height+u.height,left:Math.min(c.left,u.left),right:Math.max(c.right,u.right),top:c.bottom-c.height-u.height,bottom:c.bottom}),z.attr({dx:R,dy:F})}(m._hasNumber||m._hasDelta)&&C.attr("transform",(function(){var t=i.numbersScaler(h);D+=t[2];var e,r=S(m,"numbersScale",1,t[0],D,Math.min);m._scaleNumbers||(r=1),e=m._isAngular?v-r*h.bottom:v-r*(h.top+h.bottom)/2,m._numbersTop=r*h.top+e;var n=h[T];"center"===T&&(n=(h.left+h.right)/2);var a=g-r*n;return a=S(m,"numbersTranslate",0,a,D,Math.max),l(a,e)+s(r)}))}(t,O,e,{numbersX:m,numbersY:E,numbersScaler:L,transitionOpts:r,onComplete:g}),z&&(C={range:I.gauge.axis.range,color:I.gauge.bgcolor,line:{color:I.gauge.bordercolor,width:0},thickness:1},P={range:I.gauge.axis.range,color:"rgba(0, 0, 0, 0)",line:{color:I.gauge.bordercolor,width:I.gauge.borderwidth},thickness:1});var Y=O.selectAll("g.angular").data(D?e:[]);Y.exit().remove();var W=O.selectAll("g.angularaxis").data(D?e:[]);W.exit().remove(),D&&function(t,e,r,a){var o,s,f,h,p=r[0].trace,m=a.size,g=a.radius,v=a.innerRadius,y=a.gaugeBg,x=a.gaugeOutline,b=[m.l+m.w/2,m.t+m.h/2+g/2],_=a.gauge,A=a.layer,M=a.transitionOpts,S=a.onComplete,E=Math.PI/2;function L(t){var e=p.gauge.axis.range[0],r=(t-e)/(p.gauge.axis.range[1]-e)*Math.PI-E;return r<-E?-E:r>E?E:r}function C(t){return n.svg.arc().innerRadius((v+g)/2-t/2*(g-v)).outerRadius((v+g)/2+t/2*(g-v)).startAngle(-E)}function P(t){t.attr("d",(function(t){return C(t.thickness).startAngle(L(t.range[0])).endAngle(L(t.range[1]))()}))}_.enter().append("g").classed("angular",!0),_.attr("transform",l(b[0],b[1])),A.enter().append("g").classed("angularaxis",!0).classed("crisp",!0),A.selectAll("g.xangularaxistick,path,text").remove(),(o=k(t,p.gauge.axis)).type="linear",o.range=p.gauge.axis.range,o._id="xangularaxis",o.ticklabeloverflow="allow",o.setScale();var I=function(t){return(o.range[0]-t.x)/(o.range[1]-o.range[0])*Math.PI+Math.PI},O={},z=d.makeLabelFns(o,0).labelStandoff;O.xFn=function(t){var e=I(t);return Math.cos(e)*z},O.yFn=function(t){var e=I(t),r=Math.sin(e)>0?.2:1;return-Math.sin(e)*(z+t.fontSize*r)+Math.abs(Math.cos(e))*(t.fontSize*u)},O.anchorFn=function(t){var e=I(t),r=Math.cos(e);return Math.abs(r)<.1?"middle":r>0?"start":"end"},O.heightFn=function(t,e,r){var n=I(t);return-.5*(1+Math.sin(n))*r};var D=function(t){return l(b[0]+g*Math.cos(t),b[1]-g*Math.sin(t))};f=function(t){return D(I(t))};if(s=d.calcTicks(o),h=d.getTickSigns(o)[2],o.visible){h="inside"===o.ticks?-1:1;var R=(o.linewidth||1)/2;d.drawTicks(t,o,{vals:s,layer:A,path:"M"+h*R+",0h"+h*o.ticklen,transFn:function(t){var e=I(t);return D(e)+"rotate("+-c(e)+")"}}),d.drawLabels(t,o,{vals:s,layer:A,transFn:f,labelFns:O})}var F=[y].concat(p.gauge.steps),B=_.selectAll("g.bg-arc").data(F);B.enter().append("g").classed("bg-arc",!0).append("path"),B.select("path").call(P).call(T),B.exit().remove();var N=C(p.gauge.bar.thickness),j=_.selectAll("g.value-arc").data([p.gauge.bar]);j.enter().append("g").classed("value-arc",!0).append("path");var U=j.select("path");w(M)?(U.transition().duration(M.duration).ease(M.easing).each("end",(function(){S&&S()})).each("interrupt",(function(){S&&S()})).attrTween("d",(V=N,H=L(r[0].lastY),q=L(r[0].y),function(){var t=i(H,q);return function(e){return V.endAngle(t(e))()}})),p._lastValue=r[0].y):U.attr("d","number"==typeof r[0].y?N.endAngle(L(r[0].y)):"M0,0Z");var V,H,q;U.call(T),j.exit().remove(),F=[];var G=p.gauge.threshold.value;(G||0===G)&&F.push({range:[G,G],color:p.gauge.threshold.color,line:{color:p.gauge.threshold.line.color,width:p.gauge.threshold.line.width},thickness:p.gauge.threshold.thickness});var Y=_.selectAll("g.threshold-arc").data(F);Y.enter().append("g").classed("threshold-arc",!0).append("path"),Y.select("path").call(P).call(T),Y.exit().remove();var W=_.selectAll("g.gauge-outline").data([x]);W.enter().append("g").classed("gauge-outline",!0).append("path"),W.select("path").call(P).call(T),W.exit().remove()}(t,0,e,{radius:U,innerRadius:V,gauge:Y,layer:W,size:B,gaugeBg:C,gaugeOutline:P,transitionOpts:r,onComplete:g});var X=O.selectAll("g.bullet").data(R?e:[]);X.exit().remove();var Z=O.selectAll("g.bulletaxis").data(R?e:[]);Z.exit().remove(),R&&function(t,e,r,n){var i,a,o,s,c,u=r[0].trace,f=n.gauge,p=n.layer,m=n.gaugeBg,g=n.gaugeOutline,v=n.size,x=u.domain,b=n.transitionOpts,_=n.onComplete;f.enter().append("g").classed("bullet",!0),f.attr("transform",l(v.l,v.t)),p.enter().append("g").classed("bulletaxis",!0).classed("crisp",!0),p.selectAll("g.xbulletaxistick,path,text").remove();var A=v.h,M=u.gauge.bar.thickness*A,S=x.x[0],E=x.x[0]+(x.x[1]-x.x[0])*(u._hasNumber||u._hasDelta?1-h.bulletNumberDomainSize:1);(i=k(t,u.gauge.axis))._id="xbulletaxis",i.domain=[S,E],i.setScale(),a=d.calcTicks(i),o=d.makeTransTickFn(i),s=d.getTickSigns(i)[2],c=v.t+v.h,i.visible&&(d.drawTicks(t,i,{vals:"inside"===i.ticks?d.clipEnds(i,a):a,layer:p,path:d.makeTickPath(i,c,s),transFn:o}),d.drawLabels(t,i,{vals:a,layer:p,transFn:o,labelFns:d.makeLabelFns(i,c)}));function L(t){t.attr("width",(function(t){return Math.max(0,i.c2p(t.range[1])-i.c2p(t.range[0]))})).attr("x",(function(t){return i.c2p(t.range[0])})).attr("y",(function(t){return.5*(1-t.thickness)*A})).attr("height",(function(t){return t.thickness*A}))}var C=[m].concat(u.gauge.steps),P=f.selectAll("g.bg-bullet").data(C);P.enter().append("g").classed("bg-bullet",!0).append("rect"),P.select("rect").call(L).call(T),P.exit().remove();var I=f.selectAll("g.value-bullet").data([u.gauge.bar]);I.enter().append("g").classed("value-bullet",!0).append("rect"),I.select("rect").attr("height",M).attr("y",(A-M)/2).call(T),w(b)?I.select("rect").transition().duration(b.duration).ease(b.easing).each("end",(function(){_&&_()})).each("interrupt",(function(){_&&_()})).attr("width",Math.max(0,i.c2p(Math.min(u.gauge.axis.range[1],r[0].y)))):I.select("rect").attr("width","number"==typeof r[0].y?Math.max(0,i.c2p(Math.min(u.gauge.axis.range[1],r[0].y))):0);I.exit().remove();var O=r.filter((function(){return u.gauge.threshold.value||0===u.gauge.threshold.value})),z=f.selectAll("g.threshold-bullet").data(O);z.enter().append("g").classed("threshold-bullet",!0).append("line"),z.select("line").attr("x1",i.c2p(u.gauge.threshold.value)).attr("x2",i.c2p(u.gauge.threshold.value)).attr("y1",(1-u.gauge.threshold.thickness)/2*A).attr("y2",(1-(1-u.gauge.threshold.thickness)/2)*A).call(y.stroke,u.gauge.threshold.line.color).style("stroke-width",u.gauge.threshold.line.width),z.exit().remove();var D=f.selectAll("g.gauge-outline").data([g]);D.enter().append("g").classed("gauge-outline",!0).append("rect"),D.select("rect").call(L).call(T),D.exit().remove()}(t,0,e,{gauge:X,layer:Z,size:B,gaugeBg:C,gaugeOutline:P,transitionOpts:r,onComplete:g});var J=O.selectAll("text.title").data(e);J.exit().remove(),J.enter().append("text").classed("title",!0),J.attr("text-anchor",(function(){return R?x.right:x[I.title.align]})).text(I.title.text).call(f.font,I.title.font).call(p.convertToTspans,t),J.attr("transform",(function(){var t,e=B.l+B.w*b[I.title.align],r=h.titlePadding,n=f.bBox(J.node());if(z){if(D)if(I.gauge.axis.visible)t=f.bBox(W.node()).top-r-n.bottom;else t=B.t+B.h/2-U/2-n.bottom-r;R&&(t=E-(n.top+n.bottom)/2,e=B.l-h.bulletPadding*B.w)}else t=I._numbersTop-r-n.bottom;return l(e,t)}))}))}},{"../../components/color":361,"../../components/drawing":383,"../../constants/alignment":466,"../../lib":498,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"../../plots/cartesian/axis_defaults":551,"../../plots/cartesian/layout_attributes":564,"../../plots/cartesian/position_defaults":567,"./constants":853,"@plotly/d3":58,"d3-interpolate":111}],857:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../mesh3d/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c=t("../../plot_api/edit_types").overrideAll;var u=e.exports=c(l({x:{valType:"data_array"},y:{valType:"data_array"},z:{valType:"data_array"},value:{valType:"data_array"},isomin:{valType:"number"},isomax:{valType:"number"},surface:{show:{valType:"boolean",dflt:!0},count:{valType:"integer",dflt:2,min:1},fill:{valType:"number",min:0,max:1,dflt:1},pattern:{valType:"flaglist",flags:["A","B","C","D","E"],extras:["all","odd","even"],dflt:"all"}},spaceframe:{show:{valType:"boolean",dflt:!1},fill:{valType:"number",min:0,max:1,dflt:.15}},slices:{x:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}},y:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}},z:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}}},caps:{x:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}},y:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}},z:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}}},text:{valType:"string",dflt:"",arrayOk:!0},hovertext:{valType:"string",dflt:"",arrayOk:!0},hovertemplate:a(),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),valuehoverformat:i("value",1),showlegend:l({},s.showlegend,{dflt:!1})},n("",{colorAttr:"`value`",showScaleDflt:!0,editTypeOverride:"calc"}),{opacity:o.opacity,lightposition:o.lightposition,lighting:o.lighting,flatshading:o.flatshading,contour:o.contour,hoverinfo:l({},s.hoverinfo)}),"calc","nested");u.flatshading.dflt=!0,u.lighting.facenormalsepsilon.dflt=0,u.x.editType=u.y.editType=u.z.editType=u.value.editType="calc+clearAxisTypes",u.transforms=void 0},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plot_api/edit_types":531,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628,"../mesh3d/attributes":862}],858:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc"),i=t("../streamtube/calc").processGrid,a=t("../streamtube/calc").filter;e.exports=function(t,e){e._len=Math.min(e.x.length,e.y.length,e.z.length,e.value.length),e._x=a(e.x,e._len),e._y=a(e.y,e._len),e._z=a(e.z,e._len),e._value=a(e.value,e._len);var r=i(e);e._gridFill=r.fill,e._Xs=r.Xs,e._Ys=r.Ys,e._Zs=r.Zs,e._len=r.len;for(var o=1/0,s=-1/0,l=0;l0;r--){var n=Math.min(e[r],e[r-1]),i=Math.max(e[r],e[r-1]);if(i>n&&n-1}function R(t,e){return null===t?e:t}function F(e,r,n){C();var i,a,o,l=[r],c=[n];if(s>=1)l=[r],c=[n];else if(s>0){var u=function(t,e){var r=t[0],n=t[1],i=t[2],a=function(t,e,r){for(var n=[],i=0;i-1?n[p]:L(d,m,v);h[p]=x>-1?x:I(d,m,v,R(e,y))}i=h[0],a=h[1],o=h[2],t._meshI.push(i),t._meshJ.push(a),t._meshK.push(o),++g}}function B(t,e,r,n){var i=t[3];in&&(i=n);for(var a=(t[3]-i)/(t[3]-e[3]+1e-9),o=[],s=0;s<4;s++)o[s]=(1-a)*t[s]+a*e[s];return o}function N(t,e,r){return t>=e&&t<=r}function j(t){var e=.001*(E-S);return t>=S-e&&t<=E+e}function U(e){for(var r=[],n=0;n<4;n++){var i=e[n];r.push([t._x[i],t._y[i],t._z[i],t._value[i]])}return r}function V(t,e,r,n,i,a){a||(a=1),r=[-1,-1,-1];var o=!1,s=[N(e[0][3],n,i),N(e[1][3],n,i),N(e[2][3],n,i)];if(!s[0]&&!s[1]&&!s[2])return!1;var l=function(t,e,r){return j(e[0][3])&&j(e[1][3])&&j(e[2][3])?(F(t,e,r),!0):a<3&&V(t,e,r,S,E,++a)};if(s[0]&&s[1]&&s[2])return l(t,e,r)||o;var c=!1;return[[0,1,2],[2,0,1],[1,2,0]].forEach((function(a){if(s[a[0]]&&s[a[1]]&&!s[a[2]]){var u=e[a[0]],f=e[a[1]],h=e[a[2]],p=B(h,u,n,i),d=B(h,f,n,i);o=l(t,[d,p,u],[-1,-1,r[a[0]]])||o,o=l(t,[u,f,d],[r[a[0]],r[a[1]],-1])||o,c=!0}})),c||[[0,1,2],[1,2,0],[2,0,1]].forEach((function(a){if(s[a[0]]&&!s[a[1]]&&!s[a[2]]){var u=e[a[0]],f=e[a[1]],h=e[a[2]],p=B(f,u,n,i),d=B(h,u,n,i);o=l(t,[d,p,u],[-1,-1,r[a[0]]])||o,c=!0}})),o}function H(t,e,r,n){var i=!1,a=U(e),o=[N(a[0][3],r,n),N(a[1][3],r,n),N(a[2][3],r,n),N(a[3][3],r,n)];if(!(o[0]||o[1]||o[2]||o[3]))return i;if(o[0]&&o[1]&&o[2]&&o[3])return m&&(i=function(t,e,r){var n=function(n,i,a){F(t,[e[n],e[i],e[a]],[r[n],r[i],r[a]])};n(0,1,2),n(3,0,1),n(2,3,0),n(1,2,3)}(t,a,e)||i),i;var s=!1;return[[0,1,2,3],[3,0,1,2],[2,3,0,1],[1,2,3,0]].forEach((function(l){if(o[l[0]]&&o[l[1]]&&o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]];if(m)i=F(t,[c,u,f],[e[l[0]],e[l[1]],e[l[2]]])||i;else{var p=B(h,c,r,n),d=B(h,u,r,n),g=B(h,f,r,n);i=F(null,[p,d,g],[-1,-1,-1])||i}s=!0}})),s?i:([[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2],[0,2,3,1],[1,3,2,0]].forEach((function(l){if(o[l[0]]&&o[l[1]]&&!o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]],p=B(f,c,r,n),d=B(f,u,r,n),g=B(h,u,r,n),v=B(h,c,r,n);m?(i=F(t,[c,v,p],[e[l[0]],-1,-1])||i,i=F(t,[u,d,g],[e[l[1]],-1,-1])||i):i=function(t,e,r){var n=function(n,i,a){F(t,[e[n],e[i],e[a]],[r[n],r[i],r[a]])};n(0,1,2),n(2,3,0)}(null,[p,d,g,v],[-1,-1,-1,-1])||i,s=!0}})),s||[[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2]].forEach((function(l){if(o[l[0]]&&!o[l[1]]&&!o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]],p=B(u,c,r,n),d=B(f,c,r,n),g=B(h,c,r,n);m?(i=F(t,[c,p,d],[e[l[0]],-1,-1])||i,i=F(t,[c,d,g],[e[l[0]],-1,-1])||i,i=F(t,[c,g,p],[e[l[0]],-1,-1])||i):i=F(null,[p,d,g],[-1,-1,-1])||i,s=!0}})),i)}function q(t,e,r,n,i,a,o,s,l,c,u){var f=!1;return d&&(D(t,"A")&&(f=H(null,[e,r,n,a],c,u)||f),D(t,"B")&&(f=H(null,[r,n,i,l],c,u)||f),D(t,"C")&&(f=H(null,[r,a,o,l],c,u)||f),D(t,"D")&&(f=H(null,[n,a,s,l],c,u)||f),D(t,"E")&&(f=H(null,[r,n,a,l],c,u)||f)),m&&(f=H(t,[r,n,a,l],c,u)||f),f}function G(t,e,r,n,i,a,o,s){return[!0===s[0]||V(t,U([e,r,n]),[e,r,n],a,o),!0===s[1]||V(t,U([n,i,e]),[n,i,e],a,o)]}function Y(t,e,r,n,i,a,o,s,l){return s?G(t,e,r,i,n,a,o,l):G(t,r,i,n,e,a,o,l)}function W(t,e,r,n,i,a,o){var s,l,c,u,f=!1,h=function(){f=V(t,[s,l,c],[-1,-1,-1],i,a)||f,f=V(t,[c,u,s],[-1,-1,-1],i,a)||f},p=o[0],d=o[1],m=o[2];return p&&(s=O(U([k(e,r-0,n-0)])[0],U([k(e-1,r-0,n-0)])[0],p),l=O(U([k(e,r-0,n-1)])[0],U([k(e-1,r-0,n-1)])[0],p),c=O(U([k(e,r-1,n-1)])[0],U([k(e-1,r-1,n-1)])[0],p),u=O(U([k(e,r-1,n-0)])[0],U([k(e-1,r-1,n-0)])[0],p),h()),d&&(s=O(U([k(e-0,r,n-0)])[0],U([k(e-0,r-1,n-0)])[0],d),l=O(U([k(e-0,r,n-1)])[0],U([k(e-0,r-1,n-1)])[0],d),c=O(U([k(e-1,r,n-1)])[0],U([k(e-1,r-1,n-1)])[0],d),u=O(U([k(e-1,r,n-0)])[0],U([k(e-1,r-1,n-0)])[0],d),h()),m&&(s=O(U([k(e-0,r-0,n)])[0],U([k(e-0,r-0,n-1)])[0],m),l=O(U([k(e-0,r-1,n)])[0],U([k(e-0,r-1,n-1)])[0],m),c=O(U([k(e-1,r-1,n)])[0],U([k(e-1,r-1,n-1)])[0],m),u=O(U([k(e-1,r-0,n)])[0],U([k(e-1,r-0,n-1)])[0],m),h()),f}function X(t,e,r,n,i,a,o,s,l,c,u,f){var h=t;return f?(d&&"even"===t&&(h=null),q(h,e,r,n,i,a,o,s,l,c,u)):(d&&"odd"===t&&(h=null),q(h,l,s,o,a,i,n,r,e,c,u))}function Z(t,e,r,n,i){for(var a=[],o=0,s=0;sMath.abs(d-M)?[A,d]:[d,M];$(e,T[0],T[1])}}var L=[[Math.min(S,M),Math.max(S,M)],[Math.min(A,E),Math.max(A,E)]];["x","y","z"].forEach((function(e){for(var r=[],n=0;n0&&(u.push(p.id),"x"===e?f.push([p.distRatio,0,0]):"y"===e?f.push([0,p.distRatio,0]):f.push([0,0,p.distRatio]))}else c=nt(1,"x"===e?b-1:"y"===e?_-1:w-1);u.length>0&&(r[i]="x"===e?tt(null,u,a,o,f,r[i]):"y"===e?et(null,u,a,o,f,r[i]):rt(null,u,a,o,f,r[i]),i++),c.length>0&&(r[i]="x"===e?Z(null,c,a,o,r[i]):"y"===e?J(null,c,a,o,r[i]):K(null,c,a,o,r[i]),i++)}var d=t.caps[e];d.show&&d.fill&&(z(d.fill),r[i]="x"===e?Z(null,[0,b-1],a,o,r[i]):"y"===e?J(null,[0,_-1],a,o,r[i]):K(null,[0,w-1],a,o,r[i]),i++)}})),0===g&&P(),t._meshX=n,t._meshY=i,t._meshZ=a,t._meshIntensity=o,t._Xs=v,t._Ys=y,t._Zs=x}(),t}e.exports={findNearestOnAxis:l,generateIsoMeshes:h,createIsosurfaceTrace:function(t,e){var r=t.glplot.gl,i=n({gl:r}),a=new c(t,i,e.uid);return i._trace=a,a.update(e),t.glplot.add(i),a}}},{"../../../stackgl_modules":1119,"../../components/colorscale":373,"../../lib/gl_format_color":494,"../../lib/str2rgbarray":523,"../../plots/gl3d/zip3":604}],860:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./attributes"),o=t("../../components/colorscale/defaults");function s(t,e,r,n,a){var s=a("isomin"),l=a("isomax");null!=l&&null!=s&&s>l&&(e.isomin=null,e.isomax=null);var c=a("x"),u=a("y"),f=a("z"),h=a("value");c&&c.length&&u&&u.length&&f&&f.length&&h&&h.length?(i.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x","y","z"],n),a("valuehoverformat"),["x","y","z"].forEach((function(t){a(t+"hoverformat");var e="caps."+t;a(e+".show")&&a(e+".fill");var r="slices."+t;a(r+".show")&&(a(r+".fill"),a(r+".locations"))})),a("spaceframe.show")&&a("spaceframe.fill"),a("surface.show")&&(a("surface.count"),a("surface.fill"),a("surface.pattern")),a("contour.show")&&(a("contour.color"),a("contour.width")),["text","hovertext","hovertemplate","lighting.ambient","lighting.diffuse","lighting.specular","lighting.roughness","lighting.fresnel","lighting.vertexnormalsepsilon","lighting.facenormalsepsilon","lightposition.x","lightposition.y","lightposition.z","flatshading","opacity"].forEach((function(t){a(t)})),o(t,e,n,a,{prefix:"",cLetter:"c"}),e._length=null):e.visible=!1}e.exports={supplyDefaults:function(t,e,r,i){s(t,e,r,i,(function(r,i){return n.coerce(t,e,a,r,i)}))},supplyIsoDefaults:s}},{"../../components/colorscale/defaults":371,"../../lib":498,"../../registry":633,"./attributes":857}],861:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults").supplyDefaults,calc:t("./calc"),colorbar:{min:"cmin",max:"cmax"},plot:t("./convert").createIsosurfaceTrace,moduleType:"trace",name:"isosurface",basePlotModule:t("../../plots/gl3d"),categories:["gl3d","showLegend"],meta:{}}},{"../../plots/gl3d":593,"./attributes":857,"./calc":858,"./convert":859,"./defaults":860}],862:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../surface/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat;e.exports=l({x:{valType:"data_array",editType:"calc+clearAxisTypes"},y:{valType:"data_array",editType:"calc+clearAxisTypes"},z:{valType:"data_array",editType:"calc+clearAxisTypes"},i:{valType:"data_array",editType:"calc"},j:{valType:"data_array",editType:"calc"},k:{valType:"data_array",editType:"calc"},text:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertemplate:a({editType:"calc"}),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),delaunayaxis:{valType:"enumerated",values:["x","y","z"],dflt:"z",editType:"calc"},alphahull:{valType:"number",dflt:-1,editType:"calc"},intensity:{valType:"data_array",editType:"calc"},intensitymode:{valType:"enumerated",values:["vertex","cell"],dflt:"vertex",editType:"calc"},color:{valType:"color",editType:"calc"},vertexcolor:{valType:"data_array",editType:"calc"},facecolor:{valType:"data_array",editType:"calc"},transforms:void 0},n("",{colorAttr:"`intensity`",showScaleDflt:!0,editTypeOverride:"calc"}),{opacity:o.opacity,flatshading:{valType:"boolean",dflt:!1,editType:"calc"},contour:{show:l({},o.contours.x.show,{}),color:o.contours.x.color,width:o.contours.x.width,editType:"calc"},lightposition:{x:l({},o.lightposition.x,{dflt:1e5}),y:l({},o.lightposition.y,{dflt:1e5}),z:l({},o.lightposition.z,{dflt:0}),editType:"calc"},lighting:l({vertexnormalsepsilon:{valType:"number",min:0,max:1,dflt:1e-12,editType:"calc"},facenormalsepsilon:{valType:"number",min:0,max:1,dflt:1e-6,editType:"calc"},editType:"calc"},o.lighting),hoverinfo:l({},s.hoverinfo,{editType:"calc"}),showlegend:l({},s.showlegend,{dflt:!1})})},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628,"../surface/attributes":1056}],863:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){e.intensity&&n(t,e,{vals:e.intensity,containerStr:"",cLetter:"c"})}},{"../../components/colorscale/calc":369}],864:[function(t,e,r){"use strict";var n=t("../../../stackgl_modules").gl_mesh3d,i=t("../../../stackgl_modules").delaunay_triangulate,a=t("../../../stackgl_modules").alpha_shape,o=t("../../../stackgl_modules").convex_hull,s=t("../../lib/gl_format_color").parseColorScale,l=t("../../lib/str2rgbarray"),c=t("../../components/colorscale").extractOpts,u=t("../../plots/gl3d/zip3");function f(t,e,r){this.scene=t,this.uid=r,this.mesh=e,this.name="",this.color="#fff",this.data=null,this.showContour=!1}var h=f.prototype;function p(t){for(var e=[],r=t.length,n=0;n=e-.5)return!1;return!0}h.handlePick=function(t){if(t.object===this.mesh){var e=t.index=t.data.index;t.data._cellCenter?t.traceCoordinate=t.data.dataCoordinate:t.traceCoordinate=[this.data.x[e],this.data.y[e],this.data.z[e]];var r=this.data.hovertext||this.data.text;return Array.isArray(r)&&void 0!==r[e]?t.textLabel=r[e]:r&&(t.textLabel=r),!0}},h.update=function(t){var e=this.scene,r=e.fullSceneLayout;this.data=t;var n,f=t.x.length,h=u(d(r.xaxis,t.x,e.dataScale[0],t.xcalendar),d(r.yaxis,t.y,e.dataScale[1],t.ycalendar),d(r.zaxis,t.z,e.dataScale[2],t.zcalendar));if(t.i&&t.j&&t.k){if(t.i.length!==t.j.length||t.j.length!==t.k.length||!g(t.i,f)||!g(t.j,f)||!g(t.k,f))return;n=u(m(t.i),m(t.j),m(t.k))}else n=0===t.alphahull?o(h):t.alphahull>0?a(t.alphahull,h):function(t,e){for(var r=["x","y","z"].indexOf(t),n=[],a=e.length,o=0;ov):g=A>w,v=A;var M=c(w,T,k,A);M.pos=_,M.yc=(w+A)/2,M.i=b,M.dir=g?"increasing":"decreasing",M.x=M.pos,M.y=[k,T],y&&(M.orig_p=r[b]),d&&(M.tx=e.text[b]),m&&(M.htx=e.hovertext[b]),x.push(M)}else x.push({pos:_,empty:!0})}return e._extremes[l._id]=a.findExtremes(l,n.concat(h,f),{padded:!0}),x.length&&(x[0].t={labels:{open:i(t,"open:")+" ",high:i(t,"high:")+" ",low:i(t,"low:")+" ",close:i(t,"close:")+" "}}),x}e.exports={calc:function(t,e){var r=a.getFromId(t,e.xaxis),i=a.getFromId(t,e.yaxis),s=function(t,e,r){var i=r._minDiff;if(!i){var a,s=t._fullData,l=[];for(i=1/0,a=0;a"+c.labels[x]+n.hoverLabelText(s,b,l.yhoverformat):((y=i.extendFlat({},h)).y0=y.y1=_,y.yLabelVal=b,y.yLabel=c.labels[x]+n.hoverLabelText(s,b,l.yhoverformat),y.name="",f.push(y),g[b]=y)}return f}function h(t,e,r,i){var a=t.cd,o=t.ya,l=a[0].trace,f=a[0].t,h=u(t,e,r,i);if(!h)return[];var p=a[h.index],d=h.index=p.i,m=p.dir;function g(t){return f.labels[t]+n.hoverLabelText(o,l[t][d],l.yhoverformat)}var v=p.hi||l.hoverinfo,y=v.split("+"),x="all"===v,b=x||-1!==y.indexOf("y"),_=x||-1!==y.indexOf("text"),w=b?[g("open"),g("high"),g("low"),g("close")+" "+c[m]]:[];return _&&s(p,l,w),h.extraText=w.join("
"),h.y0=h.y1=o.c2p(p.yc,!0),[h]}e.exports={hoverPoints:function(t,e,r,n){return t.cd[0].trace.hoverlabel.split?f(t,e,r,n):h(t,e,r,n)},hoverSplit:f,hoverOnPoints:h}},{"../../components/color":361,"../../components/fx":401,"../../constants/delta.js":468,"../../lib":498,"../../plots/cartesian/axes":549}],871:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"ohlc",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","showLegend"],meta:{},attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc").calc,plot:t("./plot"),style:t("./style"),hoverPoints:t("./hover").hoverPoints,selectPoints:t("./select")}},{"../../plots/cartesian":563,"./attributes":867,"./calc":868,"./defaults":869,"./hover":870,"./plot":873,"./select":874,"./style":875}],872:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib");e.exports=function(t,e,r,a){var o=r("x"),s=r("open"),l=r("high"),c=r("low"),u=r("close");if(r("hoverlabel.split"),n.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x"],a),s&&l&&c&&u){var f=Math.min(s.length,l.length,c.length,u.length);return o&&(f=Math.min(f,i.minRowLength(o))),e._length=f,f}}},{"../../lib":498,"../../registry":633}],873:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib");e.exports=function(t,e,r,a){var o=e.yaxis,s=e.xaxis,l=!!s.rangebreaks;i.makeTraceGroups(a,r,"trace ohlc").each((function(t){var e=n.select(this),r=t[0],a=r.t;if(!0!==r.trace.visible||a.empty)e.remove();else{var c=a.tickLen,u=e.selectAll("path").data(i.identity);u.enter().append("path"),u.exit().remove(),u.attr("d",(function(t){if(t.empty)return"M0,0Z";var e=s.c2p(t.pos-c,!0),r=s.c2p(t.pos+c,!0),n=l?(e+r)/2:s.c2p(t.pos,!0);return"M"+e+","+o.c2p(t.o,!0)+"H"+n+"M"+n+","+o.c2p(t.h,!0)+"V"+o.c2p(t.l,!0)+"M"+r+","+o.c2p(t.c,!0)+"H"+n}))}}))}},{"../../lib":498,"@plotly/d3":58}],874:[function(t,e,r){"use strict";e.exports=function(t,e){var r,n=t.cd,i=t.xaxis,a=t.yaxis,o=[],s=n[0].t.bPos||0;if(!1===e)for(r=0;r=t.length)return!1;if(void 0!==e[t[r]])return!1;e[t[r]]=!0}return!0}(t.map((function(t){return t.displayindex}))))for(e=0;e0;c&&(o="array");var u=r("categoryorder",o);"array"===u?(r("categoryarray"),r("ticktext")):(delete t.categoryarray,delete t.ticktext),c||"array"!==u||(e.categoryorder="trace")}}e.exports=function(t,e,r,f){function h(r,i){return n.coerce(t,e,l,r,i)}var p=s(t,e,{name:"dimensions",handleItemDefaults:u}),d=function(t,e,r,o,s){s("line.shape"),s("line.hovertemplate");var l=s("line.color",o.colorway[0]);if(i(t,"line")&&n.isArrayOrTypedArray(l)){if(l.length)return s("line.colorscale"),a(t,e,o,s,{prefix:"line.",cLetter:"c"}),l.length;e.line.color=r}return 1/0}(t,e,r,f,h);o(e,f,h),Array.isArray(p)&&p.length||(e.visible=!1),c(e,p,"values",d),h("hoveron"),h("hovertemplate"),h("arrangement"),h("bundlecolors"),h("sortpaths"),h("counts");var m={family:f.font.family,size:Math.round(f.font.size),color:f.font.color};n.coerceFont(h,"labelfont",m);var g={family:f.font.family,size:Math.round(f.font.size/1.2),color:f.font.color};n.coerceFont(h,"tickfont",g)}},{"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"../../lib":498,"../../plots/array_container_defaults":544,"../../plots/domain":579,"../parcoords/merge_length":893,"./attributes":876}],880:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),colorbar:{container:"line",min:"cmin",max:"cmax"},moduleType:"trace",name:"parcats",basePlotModule:t("./base_plot"),categories:["noOpacity"],meta:{}}},{"./attributes":876,"./base_plot":877,"./calc":878,"./defaults":879,"./plot":882}],881:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-interpolate").interpolateNumber,a=t("../../plot_api/plot_api"),o=t("../../components/fx"),s=t("../../lib"),l=s.strTranslate,c=t("../../components/drawing"),u=t("tinycolor2"),f=t("../../lib/svg_text_utils");function h(t,e,r,i){var a=t.map(F.bind(0,e,r)),o=i.selectAll("g.parcatslayer").data([null]);o.enter().append("g").attr("class","parcatslayer").style("pointer-events","all");var u=o.selectAll("g.trace.parcats").data(a,p),h=u.enter().append("g").attr("class","trace parcats");u.attr("transform",(function(t){return l(t.x,t.y)})),h.append("g").attr("class","paths");var y=u.select("g.paths").selectAll("path.path").data((function(t){return t.paths}),p);y.attr("fill",(function(t){return t.model.color}));var x=y.enter().append("path").attr("class","path").attr("stroke-opacity",0).attr("fill",(function(t){return t.model.color})).attr("fill-opacity",0);_(x),y.attr("d",(function(t){return t.svgD})),x.empty()||y.sort(m),y.exit().remove(),y.on("mouseover",g).on("mouseout",v).on("click",b),h.append("g").attr("class","dimensions");var w=u.select("g.dimensions").selectAll("g.dimension").data((function(t){return t.dimensions}),p);w.enter().append("g").attr("class","dimension"),w.attr("transform",(function(t){return l(t.x,0)})),w.exit().remove();var A=w.selectAll("g.category").data((function(t){return t.categories}),p),M=A.enter().append("g").attr("class","category");A.attr("transform",(function(t){return l(0,t.y)})),M.append("rect").attr("class","catrect").attr("pointer-events","none"),A.select("rect.catrect").attr("fill","none").attr("width",(function(t){return t.width})).attr("height",(function(t){return t.height})),T(M);var S=A.selectAll("rect.bandrect").data((function(t){return t.bands}),p);S.each((function(){s.raiseToTop(this)})),S.attr("fill",(function(t){return t.color}));var E=S.enter().append("rect").attr("class","bandrect").attr("stroke-opacity",0).attr("fill",(function(t){return t.color})).attr("fill-opacity",0);S.attr("fill",(function(t){return t.color})).attr("width",(function(t){return t.width})).attr("height",(function(t){return t.height})).attr("y",(function(t){return t.y})).attr("cursor",(function(t){return"fixed"===t.parcatsViewModel.arrangement?"default":"perpendicular"===t.parcatsViewModel.arrangement?"ns-resize":"move"})),k(E),S.exit().remove(),M.append("text").attr("class","catlabel").attr("pointer-events","none");var z=e._fullLayout.paper_bgcolor;A.select("text.catlabel").attr("text-anchor",(function(t){return d(t)?"start":"end"})).attr("alignment-baseline","middle").style("text-shadow",f.makeTextShadow(z)).style("fill","rgb(0, 0, 0)").attr("x",(function(t){return d(t)?t.width+5:-5})).attr("y",(function(t){return t.height/2})).text((function(t){return t.model.categoryLabel})).each((function(t){c.font(n.select(this),t.parcatsViewModel.categorylabelfont),f.convertToTspans(n.select(this),e)})),M.append("text").attr("class","dimlabel"),A.select("text.dimlabel").attr("text-anchor","middle").attr("alignment-baseline","baseline").attr("cursor",(function(t){return"fixed"===t.parcatsViewModel.arrangement?"default":"ew-resize"})).attr("x",(function(t){return t.width/2})).attr("y",-5).text((function(t,e){return 0===e?t.parcatsViewModel.model.dimensions[t.model.dimensionInd].dimensionLabel:null})).each((function(t){c.font(n.select(this),t.parcatsViewModel.labelfont)})),A.selectAll("rect.bandrect").on("mouseover",L).on("mouseout",C),A.exit().remove(),w.call(n.behavior.drag().origin((function(t){return{x:t.x,y:0}})).on("dragstart",P).on("drag",I).on("dragend",O)),u.each((function(t){t.traceSelection=n.select(this),t.pathSelection=n.select(this).selectAll("g.paths").selectAll("path.path"),t.dimensionSelection=n.select(this).selectAll("g.dimensions").selectAll("g.dimension")})),u.exit().remove()}function p(t){return t.key}function d(t){var e=t.parcatsViewModel.dimensions.length,r=t.parcatsViewModel.dimensions[e-1].model.dimensionInd;return t.model.dimensionInd===r}function m(t,e){return t.model.rawColor>e.model.rawColor?1:t.model.rawColor"),L=n.mouse(f)[0];o.loneHover({trace:h,x:b-d.left+m.left,y:_-d.top+m.top,text:E,color:t.model.color,borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontSize:10,fontColor:T,idealAlign:L1&&h.displayInd===f.dimensions.length-1?(i=c.left,a="left"):(i=c.left+c.width,a="right");var m=u.model.count,g=u.model.categoryLabel,v=m/u.parcatsViewModel.model.count,y={countLabel:m,categoryLabel:g,probabilityLabel:v.toFixed(3)},x=[];-1!==u.parcatsViewModel.hoverinfoItems.indexOf("count")&&x.push(["Count:",y.countLabel].join(" ")),-1!==u.parcatsViewModel.hoverinfoItems.indexOf("probability")&&x.push(["P("+y.categoryLabel+"):",y.probabilityLabel].join(" "));var b=x.join("
");return{trace:p,x:o*(i-e.left),y:s*(d-e.top),text:b,color:"lightgray",borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontSize:12,fontColor:"black",idealAlign:a,hovertemplate:p.hovertemplate,hovertemplateLabels:y,eventData:[{data:p._input,fullData:p,count:m,category:g,probability:v}]}}function L(t){if(!t.parcatsViewModel.dragDimension&&-1===t.parcatsViewModel.hoverinfoItems.indexOf("skip")){if(n.mouse(this)[1]<-1)return;var e,r=t.parcatsViewModel.graphDiv,i=r._fullLayout,a=i._paperdiv.node().getBoundingClientRect(),l=t.parcatsViewModel.hoveron;if("color"===l?(!function(t){var e=n.select(t).datum(),r=A(e);w(r),r.each((function(){s.raiseToTop(this)})),n.select(t.parentNode).selectAll("rect.bandrect").filter((function(t){return t.color===e.color})).each((function(){s.raiseToTop(this),n.select(this).attr("stroke","black").attr("stroke-width",1.5)}))}(this),S(this,"plotly_hover",n.event)):(!function(t){n.select(t.parentNode).selectAll("rect.bandrect").each((function(t){var e=A(t);w(e),e.each((function(){s.raiseToTop(this)}))})),n.select(t.parentNode).select("rect.catrect").attr("stroke","black").attr("stroke-width",2.5)}(this),M(this,"plotly_hover",n.event)),-1===t.parcatsViewModel.hoverinfoItems.indexOf("none"))"category"===l?e=E(r,a,this):"color"===l?e=function(t,e,r){t._fullLayout._calcInverseTransform(t);var i,a,o=t._fullLayout._invScaleX,s=t._fullLayout._invScaleY,l=r.getBoundingClientRect(),c=n.select(r).datum(),f=c.categoryViewModel,h=f.parcatsViewModel,p=h.model.dimensions[f.model.dimensionInd],d=h.trace,m=l.y+l.height/2;h.dimensions.length>1&&p.displayInd===h.dimensions.length-1?(i=l.left,a="left"):(i=l.left+l.width,a="right");var g=f.model.categoryLabel,v=c.parcatsViewModel.model.count,y=0;c.categoryViewModel.bands.forEach((function(t){t.color===c.color&&(y+=t.count)}));var x=f.model.count,b=0;h.pathSelection.each((function(t){t.model.color===c.color&&(b+=t.model.count)}));var _=y/v,w=y/b,T=y/x,k={countLabel:v,categoryLabel:g,probabilityLabel:_.toFixed(3)},A=[];-1!==f.parcatsViewModel.hoverinfoItems.indexOf("count")&&A.push(["Count:",k.countLabel].join(" ")),-1!==f.parcatsViewModel.hoverinfoItems.indexOf("probability")&&(A.push("P(color \u2229 "+g+"): "+k.probabilityLabel),A.push("P("+g+" | color): "+w.toFixed(3)),A.push("P(color | "+g+"): "+T.toFixed(3)));var M=A.join("
"),S=u.mostReadable(c.color,["black","white"]);return{trace:d,x:o*(i-e.left),y:s*(m-e.top),text:M,color:c.color,borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontColor:S,fontSize:10,idealAlign:a,hovertemplate:d.hovertemplate,hovertemplateLabels:k,eventData:[{data:d._input,fullData:d,category:g,count:v,probability:_,categorycount:x,colorcount:b,bandcolorcount:y}]}}(r,a,this):"dimension"===l&&(e=function(t,e,r){var i=[];return n.select(r.parentNode.parentNode).selectAll("g.category").select("rect.catrect").each((function(){i.push(E(t,e,this))})),i}(r,a,this)),e&&o.loneHover(e,{container:i._hoverlayer.node(),outerContainer:i._paper.node(),gd:r})}}function C(t){var e=t.parcatsViewModel;if(!e.dragDimension&&(_(e.pathSelection),T(e.dimensionSelection.selectAll("g.category")),k(e.dimensionSelection.selectAll("g.category").selectAll("rect.bandrect")),o.loneUnhover(e.graphDiv._fullLayout._hoverlayer.node()),e.pathSelection.sort(m),-1===e.hoverinfoItems.indexOf("skip"))){"color"===t.parcatsViewModel.hoveron?S(this,"plotly_unhover",n.event):M(this,"plotly_unhover",n.event)}}function P(t){"fixed"!==t.parcatsViewModel.arrangement&&(t.dragDimensionDisplayInd=t.model.displayInd,t.initialDragDimensionDisplayInds=t.parcatsViewModel.model.dimensions.map((function(t){return t.displayInd})),t.dragHasMoved=!1,t.dragCategoryDisplayInd=null,n.select(this).selectAll("g.category").select("rect.catrect").each((function(e){var r=n.mouse(this)[0],i=n.mouse(this)[1];-2<=r&&r<=e.width+2&&-2<=i&&i<=e.height+2&&(t.dragCategoryDisplayInd=e.model.displayInd,t.initialDragCategoryDisplayInds=t.model.categories.map((function(t){return t.displayInd})),e.model.dragY=e.y,s.raiseToTop(this.parentNode),n.select(this.parentNode).selectAll("rect.bandrect").each((function(e){e.yf.y+f.height/2&&(o.model.displayInd=f.model.displayInd,f.model.displayInd=l),t.dragCategoryDisplayInd=o.model.displayInd}if(null===t.dragCategoryDisplayInd||"freeform"===t.parcatsViewModel.arrangement){a.model.dragX=n.event.x;var h=t.parcatsViewModel.dimensions[r],p=t.parcatsViewModel.dimensions[i];void 0!==h&&a.model.dragXp.x&&(a.model.displayInd=p.model.displayInd,p.model.displayInd=t.dragDimensionDisplayInd),t.dragDimensionDisplayInd=a.model.displayInd}j(t.parcatsViewModel),N(t.parcatsViewModel),R(t.parcatsViewModel),D(t.parcatsViewModel)}}function O(t){if("fixed"!==t.parcatsViewModel.arrangement&&null!==t.dragDimensionDisplayInd){n.select(this).selectAll("text").attr("font-weight","normal");var e={},r=z(t.parcatsViewModel),i=t.parcatsViewModel.model.dimensions.map((function(t){return t.displayInd})),o=t.initialDragDimensionDisplayInds.some((function(t,e){return t!==i[e]}));o&&i.forEach((function(r,n){var i=t.parcatsViewModel.model.dimensions[n].containerInd;e["dimensions["+i+"].displayindex"]=r}));var s=!1;if(null!==t.dragCategoryDisplayInd){var l=t.model.categories.map((function(t){return t.displayInd}));if(s=t.initialDragCategoryDisplayInds.some((function(t,e){return t!==l[e]}))){var c=t.model.categories.slice().sort((function(t,e){return t.displayInd-e.displayInd})),u=c.map((function(t){return t.categoryValue})),f=c.map((function(t){return t.categoryLabel}));e["dimensions["+t.model.containerInd+"].categoryarray"]=[u],e["dimensions["+t.model.containerInd+"].ticktext"]=[f],e["dimensions["+t.model.containerInd+"].categoryorder"]="array"}}if(-1===t.parcatsViewModel.hoverinfoItems.indexOf("skip")&&!t.dragHasMoved&&t.potentialClickBand&&("color"===t.parcatsViewModel.hoveron?S(t.potentialClickBand,"plotly_click",n.event.sourceEvent):M(t.potentialClickBand,"plotly_click",n.event.sourceEvent)),t.model.dragX=null,null!==t.dragCategoryDisplayInd)t.parcatsViewModel.dimensions[t.dragDimensionDisplayInd].categories[t.dragCategoryDisplayInd].model.dragY=null,t.dragCategoryDisplayInd=null;t.dragDimensionDisplayInd=null,t.parcatsViewModel.dragDimension=null,t.dragHasMoved=null,t.potentialClickBand=null,j(t.parcatsViewModel),N(t.parcatsViewModel),n.transition().duration(300).ease("cubic-in-out").each((function(){R(t.parcatsViewModel,!0),D(t.parcatsViewModel,!0)})).each("end",(function(){(o||s)&&a.restyle(t.parcatsViewModel.graphDiv,e,[r])}))}}function z(t){for(var e,r=t.graphDiv._fullData,n=0;n=0;s--)u+="C"+c[s]+","+(e[s+1]+n)+" "+l[s]+","+(e[s]+n)+" "+(t[s]+r[s])+","+(e[s]+n),u+="l-"+r[s]+",0 ";return u+="Z"}function N(t){var e=t.dimensions,r=t.model,n=e.map((function(t){return t.categories.map((function(t){return t.y}))})),i=t.model.dimensions.map((function(t){return t.categories.map((function(t){return t.displayInd}))})),a=t.model.dimensions.map((function(t){return t.displayInd})),o=t.dimensions.map((function(t){return t.model.dimensionInd})),s=e.map((function(t){return t.x})),l=e.map((function(t){return t.width})),c=[];for(var u in r.paths)r.paths.hasOwnProperty(u)&&c.push(r.paths[u]);function f(t){var e=t.categoryInds.map((function(t,e){return i[e][t]}));return o.map((function(t){return e[t]}))}c.sort((function(e,r){var n=f(e),i=f(r);return"backward"===t.sortpaths&&(n.reverse(),i.reverse()),n.push(e.valueInds[0]),i.push(r.valueInds[0]),t.bundlecolors&&(n.unshift(e.rawColor),i.unshift(r.rawColor)),ni?1:0}));for(var h=new Array(c.length),p=e[0].model.count,d=e[0].categories.map((function(t){return t.height})).reduce((function(t,e){return t+e})),m=0;m0?d*(v.count/p):0;for(var y,x=new Array(n.length),b=0;b1?(t.width-80-16)/(n-1):0)*i;var a,o,s,l,c,u=[],f=t.model.maxCats,h=e.categories.length,p=e.count,d=t.height-8*(f-1),m=8*(f-h)/2,g=e.categories.map((function(t){return{displayInd:t.displayInd,categoryInd:t.categoryInd}}));for(g.sort((function(t,e){return t.displayInd-e.displayInd})),c=0;c0?o.count/p*d:0,s={key:o.valueInds[0],model:o,width:16,height:a,y:null!==o.dragY?o.dragY:m,bands:[],parcatsViewModel:t},m=m+a+8,u.push(s);return{key:e.dimensionInd,x:null!==e.dragX?e.dragX:r,y:0,width:16,model:e,categories:u,parcatsViewModel:t,dragCategoryDisplayInd:null,dragDimensionDisplayInd:null,initialDragDimensionDisplayInds:null,initialDragCategoryDisplayInds:null,dragHasMoved:null,potentialClickBand:null}}e.exports=function(t,e,r,n){h(r,t,n,e)}},{"../../components/drawing":383,"../../components/fx":401,"../../lib":498,"../../lib/svg_text_utils":524,"../../plot_api/plot_api":535,"@plotly/d3":58,"d3-interpolate":111,tinycolor2:307}],882:[function(t,e,r){"use strict";var n=t("./parcats");e.exports=function(t,e,r,i){var a=t._fullLayout,o=a._paper,s=a._size;n(t,o,e,{width:s.w,height:s.h,margin:{t:s.t,r:s.r,b:s.b,l:s.l}},r,i)}},{"./parcats":881}],883:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/layout_attributes"),a=t("../../plots/font_attributes"),o=t("../../plots/domain").attributes,s=t("../../lib/extend").extendFlat,l=t("../../plot_api/plot_template").templatedArray;e.exports={domain:o({name:"parcoords",trace:!0,editType:"plot"}),labelangle:{valType:"angle",dflt:0,editType:"plot"},labelside:{valType:"enumerated",values:["top","bottom"],dflt:"top",editType:"plot"},labelfont:a({editType:"plot"}),tickfont:a({editType:"plot"}),rangefont:a({editType:"plot"}),dimensions:l("dimension",{label:{valType:"string",editType:"plot"},tickvals:s({},i.tickvals,{editType:"plot"}),ticktext:s({},i.ticktext,{editType:"plot"}),tickformat:s({},i.tickformat,{editType:"plot"}),visible:{valType:"boolean",dflt:!0,editType:"plot"},range:{valType:"info_array",items:[{valType:"number",editType:"plot"},{valType:"number",editType:"plot"}],editType:"plot"},constraintrange:{valType:"info_array",freeLength:!0,dimensions:"1-2",items:[{valType:"any",editType:"plot"},{valType:"any",editType:"plot"}],editType:"plot"},multiselect:{valType:"boolean",dflt:!0,editType:"plot"},values:{valType:"data_array",editType:"calc"},editType:"calc"}),line:s({editType:"calc"},n("line",{colorscaleDflt:"Viridis",autoColorDflt:!1,editTypeOverride:"calc"}))}},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plot_api/plot_template":538,"../../plots/cartesian/layout_attributes":564,"../../plots/domain":579,"../../plots/font_attributes":580}],884:[function(t,e,r){"use strict";var n=t("./constants"),i=t("@plotly/d3"),a=t("../../lib/gup").keyFun,o=t("../../lib/gup").repeat,s=t("../../lib").sorterAsc,l=t("../../lib").strTranslate,c=n.bar.snapRatio;function u(t,e){return t*(1-c)+e*c}var f=n.bar.snapClose;function h(t,e){return t*(1-f)+e*f}function p(t,e,r,n){if(function(t,e){for(var r=0;r=e[r][0]&&t<=e[r][1])return!0;return!1}(r,n))return r;var i=t?-1:1,a=0,o=e.length-1;if(i<0){var s=a;a=o,o=s}for(var l=e[a],c=l,f=a;i*fe){h=r;break}}if(a=u,isNaN(a)&&(a=isNaN(f)||isNaN(h)?isNaN(f)?h:f:e-c[f][1]t[1]+r||e=.9*t[1]+.1*t[0]?"n":e<=.9*t[0]+.1*t[1]?"s":"ns"}(d,e);m&&(o.interval=l[a],o.intervalPix=d,o.region=m)}}if(t.ordinal&&!o.region){var g=t.unitTickvals,y=t.unitToPaddedPx.invert(e);for(r=0;r=x[0]&&y<=x[1]){o.clickableOrdinalRange=x;break}}}return o}function w(t,e){i.event.sourceEvent.stopPropagation();var r=e.height-i.mouse(t)[1]-2*n.verticalPadding,a=e.brush.svgBrush;a.wasDragged=!0,a._dragging=!0,a.grabbingBar?a.newExtent=[r-a.grabPoint,r+a.barLength-a.grabPoint].map(e.unitToPaddedPx.invert):a.newExtent=[a.startExtent,e.unitToPaddedPx.invert(r)].sort(s),e.brush.filterSpecified=!0,a.extent=a.stayingIntervals.concat([a.newExtent]),a.brushCallback(e),b(t.parentNode)}function T(t,e){var r=_(e,e.height-i.mouse(t)[1]-2*n.verticalPadding),a="crosshair";r.clickableOrdinalRange?a="pointer":r.region&&(a=r.region+"-resize"),i.select(document.body).style("cursor",a)}function k(t){t.on("mousemove",(function(t){i.event.preventDefault(),t.parent.inBrushDrag||T(this,t)})).on("mouseleave",(function(t){t.parent.inBrushDrag||y()})).call(i.behavior.drag().on("dragstart",(function(t){!function(t,e){i.event.sourceEvent.stopPropagation();var r=e.height-i.mouse(t)[1]-2*n.verticalPadding,a=e.unitToPaddedPx.invert(r),o=e.brush,s=_(e,r),l=s.interval,c=o.svgBrush;if(c.wasDragged=!1,c.grabbingBar="ns"===s.region,c.grabbingBar){var u=l.map(e.unitToPaddedPx);c.grabPoint=r-u[0]-n.verticalPadding,c.barLength=u[1]-u[0]}c.clickableOrdinalRange=s.clickableOrdinalRange,c.stayingIntervals=e.multiselect&&o.filterSpecified?o.filter.getConsolidated():[],l&&(c.stayingIntervals=c.stayingIntervals.filter((function(t){return t[0]!==l[0]&&t[1]!==l[1]}))),c.startExtent=s.region?l["s"===s.region?1:0]:a,e.parent.inBrushDrag=!0,c.brushStartCallback()}(this,t)})).on("drag",(function(t){w(this,t)})).on("dragend",(function(t){!function(t,e){var r=e.brush,n=r.filter,a=r.svgBrush;a._dragging||(T(t,e),w(t,e),e.brush.svgBrush.wasDragged=!1),a._dragging=!1,i.event.sourceEvent.stopPropagation();var o=a.grabbingBar;if(a.grabbingBar=!1,a.grabLocation=void 0,e.parent.inBrushDrag=!1,y(),!a.wasDragged)return a.wasDragged=void 0,a.clickableOrdinalRange?r.filterSpecified&&e.multiselect?a.extent.push(a.clickableOrdinalRange):(a.extent=[a.clickableOrdinalRange],r.filterSpecified=!0):o?(a.extent=a.stayingIntervals,0===a.extent.length&&M(r)):M(r),a.brushCallback(e),b(t.parentNode),void a.brushEndCallback(r.filterSpecified?n.getConsolidated():[]);var s=function(){n.set(n.getConsolidated())};if(e.ordinal){var l=e.unitTickvals;l[l.length-1]a.newExtent[0];a.extent=a.stayingIntervals.concat(c?[a.newExtent]:[]),a.extent.length||M(r),a.brushCallback(e),c?b(t.parentNode,s):(s(),b(t.parentNode))}else s();a.brushEndCallback(r.filterSpecified?n.getConsolidated():[])}(this,t)})))}function A(t,e){return t[0]-e[0]}function M(t){t.filterSpecified=!1,t.svgBrush.extent=[[-1/0,1/0]]}function S(t){for(var e,r=t.slice(),n=[],i=r.shift();i;){for(e=i.slice();(i=r.shift())&&i[0]<=e[1];)e[1]=Math.max(e[1],i[1]);n.push(e)}return 1===n.length&&n[0][0]>n[0][1]&&(n=[]),n}e.exports={makeBrush:function(t,e,r,n,i,a){var o,l=function(){var t,e,r=[];return{set:function(n){1===(r=n.map((function(t){return t.slice().sort(s)})).sort(A)).length&&r[0][0]===-1/0&&r[0][1]===1/0&&(r=[[0,-1]]),t=S(r),e=r.reduce((function(t,e){return[Math.min(t[0],e[0]),Math.max(t[1],e[1])]}),[1/0,-1/0])},get:function(){return r.slice()},getConsolidated:function(){return t},getBounds:function(){return e}}}();return l.set(r),{filter:l,filterSpecified:e,svgBrush:{extent:[],brushStartCallback:n,brushCallback:(o=i,function(t){var e=t.brush,r=function(t){return t.svgBrush.extent.map((function(t){return t.slice()}))}(e).slice();e.filter.set(r),o()}),brushEndCallback:a}}},ensureAxisBrush:function(t,e){var r=t.selectAll("."+n.cn.axisBrush).data(o,a);r.enter().append("g").classed(n.cn.axisBrush,!0),function(t,e){var r=t.selectAll(".background").data(o);r.enter().append("rect").classed("background",!0).call(d).call(m).style("pointer-events","auto").attr("transform",l(0,n.verticalPadding)),r.call(k).attr("height",(function(t){return t.height-n.verticalPadding}));var i=t.selectAll(".highlight-shadow").data(o);i.enter().append("line").classed("highlight-shadow",!0).attr("x",-n.bar.width/2).attr("stroke-width",n.bar.width+n.bar.strokeWidth).attr("stroke",e).attr("opacity",n.bar.strokeOpacity).attr("stroke-linecap","butt"),i.attr("y1",(function(t){return t.height})).call(x);var a=t.selectAll(".highlight").data(o);a.enter().append("line").classed("highlight",!0).attr("x",-n.bar.width/2).attr("stroke-width",n.bar.width-n.bar.strokeWidth).attr("stroke",n.bar.fillColor).attr("opacity",n.bar.fillOpacity).attr("stroke-linecap","butt"),a.attr("y1",(function(t){return t.height})).call(x)}(r,e)},cleanRanges:function(t,e){if(Array.isArray(t[0])?(t=t.map((function(t){return t.sort(s)})),t=e.multiselect?S(t.sort(A)):[t[0]]):t=[t.sort(s)],e.tickvals){var r=e.tickvals.slice().sort(s);if(!(t=t.map((function(t){var e=[p(0,r,t[0],[]),p(1,r,t[1],[])];if(e[1]>e[0])return e})).filter((function(t){return t}))).length)return}return t.length>1?t:t[0]}}},{"../../lib":498,"../../lib/gup":495,"./constants":888,"@plotly/d3":58}],885:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),colorbar:{container:"line",min:"cmin",max:"cmax"},moduleType:"trace",name:"parcoords",basePlotModule:t("./base_plot"),categories:["gl","regl","noOpacity","noHover"],meta:{}}},{"./attributes":883,"./base_plot":886,"./calc":887,"./defaults":889}],886:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../plots/get_data").getModuleCalcData,a=t("./plot"),o=t("../../constants/xmlns_namespaces");r.name="parcoords",r.plot=function(t){var e=i(t.calcdata,"parcoords")[0];e.length&&a(t,e)},r.clean=function(t,e,r,n){var i=n._has&&n._has("parcoords"),a=e._has&&e._has("parcoords");i&&!a&&(n._paperdiv.selectAll(".parcoords").remove(),n._glimages.selectAll("*").remove())},r.toSVG=function(t){var e=t._fullLayout._glimages,r=n.select(t).selectAll(".svg-container");r.filter((function(t,e){return e===r.size()-1})).selectAll(".gl-canvas-context, .gl-canvas-focus").each((function(){var t=this.toDataURL("image/png");e.append("svg:image").attr({xmlns:o.svg,"xlink:href":t,preserveAspectRatio:"none",x:0,y:0,width:this.style.width,height:this.style.height})})),window.setTimeout((function(){n.selectAll("#filterBarPattern").attr("id","filterBarPattern")}),60)}},{"../../constants/xmlns_namespaces":475,"../../plots/get_data":588,"./plot":895,"@plotly/d3":58}],887:[function(t,e,r){"use strict";var n=t("../../lib").isArrayOrTypedArray,i=t("../../components/colorscale"),a=t("../../lib/gup").wrap;e.exports=function(t,e){var r,o;return i.hasColorscale(e,"line")&&n(e.line.color)?(r=e.line.color,o=i.extractOpts(e.line).colorscale,i.calc(t,e,{vals:r,containerStr:"line",cLetter:"c"})):(r=function(t){for(var e=new Array(t),r=0;rf&&(n.log("parcoords traces support up to "+f+" dimensions at the moment"),d.splice(f));var m=s(t,e,{name:"dimensions",layout:l,handleItemDefaults:p}),g=function(t,e,r,o,s){var l=s("line.color",r);if(i(t,"line")&&n.isArrayOrTypedArray(l)){if(l.length)return s("line.colorscale"),a(t,e,o,s,{prefix:"line.",cLetter:"c"}),l.length;e.line.color=r}return 1/0}(t,e,r,l,u);o(e,l,u),Array.isArray(m)&&m.length||(e.visible=!1),h(e,m,"values",g);var v={family:l.font.family,size:Math.round(l.font.size/1.2),color:l.font.color};n.coerceFont(u,"labelfont",v),n.coerceFont(u,"tickfont",v),n.coerceFont(u,"rangefont",v),u("labelangle"),u("labelside")}},{"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"../../lib":498,"../../plots/array_container_defaults":544,"../../plots/cartesian/axes":549,"../../plots/domain":579,"./attributes":883,"./axisbrush":884,"./constants":888,"./merge_length":893}],890:[function(t,e,r){"use strict";var n=t("../../lib").isTypedArray;r.convertTypedArray=function(t){return n(t)?Array.prototype.slice.call(t):t},r.isOrdinal=function(t){return!!t.tickvals},r.isVisible=function(t){return t.visible||!("visible"in t)}},{"../../lib":498}],891:[function(t,e,r){"use strict";var n=t("./base_index");n.plot=t("./plot"),e.exports=n},{"./base_index":885,"./plot":895}],892:[function(t,e,r){"use strict";var n=t("glslify"),i=n(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nattribute vec4 p01_04, p05_08, p09_12, p13_16,\n p17_20, p21_24, p25_28, p29_32,\n p33_36, p37_40, p41_44, p45_48,\n p49_52, p53_56, p57_60, colors;\n\nuniform mat4 dim0A, dim1A, dim0B, dim1B, dim0C, dim1C, dim0D, dim1D,\n loA, hiA, loB, hiB, loC, hiC, loD, hiD;\n\nuniform vec2 resolution, viewBoxPos, viewBoxSize;\nuniform float maskHeight;\nuniform float drwLayer; // 0: context, 1: focus, 2: pick\nuniform vec4 contextColor;\nuniform sampler2D maskTexture, palette;\n\nbool isPick = (drwLayer > 1.5);\nbool isContext = (drwLayer < 0.5);\n\nconst vec4 ZEROS = vec4(0.0, 0.0, 0.0, 0.0);\nconst vec4 UNITS = vec4(1.0, 1.0, 1.0, 1.0);\n\nfloat val(mat4 p, mat4 v) {\n return dot(matrixCompMult(p, v) * UNITS, UNITS);\n}\n\nfloat axisY(float ratio, mat4 A, mat4 B, mat4 C, mat4 D) {\n float y1 = val(A, dim0A) + val(B, dim0B) + val(C, dim0C) + val(D, dim0D);\n float y2 = val(A, dim1A) + val(B, dim1B) + val(C, dim1C) + val(D, dim1D);\n return y1 * (1.0 - ratio) + y2 * ratio;\n}\n\nint iMod(int a, int b) {\n return a - b * (a / b);\n}\n\nbool fOutside(float p, float lo, float hi) {\n return (lo < hi) && (lo > p || p > hi);\n}\n\nbool vOutside(vec4 p, vec4 lo, vec4 hi) {\n return (\n fOutside(p[0], lo[0], hi[0]) ||\n fOutside(p[1], lo[1], hi[1]) ||\n fOutside(p[2], lo[2], hi[2]) ||\n fOutside(p[3], lo[3], hi[3])\n );\n}\n\nbool mOutside(mat4 p, mat4 lo, mat4 hi) {\n return (\n vOutside(p[0], lo[0], hi[0]) ||\n vOutside(p[1], lo[1], hi[1]) ||\n vOutside(p[2], lo[2], hi[2]) ||\n vOutside(p[3], lo[3], hi[3])\n );\n}\n\nbool outsideBoundingBox(mat4 A, mat4 B, mat4 C, mat4 D) {\n return mOutside(A, loA, hiA) ||\n mOutside(B, loB, hiB) ||\n mOutside(C, loC, hiC) ||\n mOutside(D, loD, hiD);\n}\n\nbool outsideRasterMask(mat4 A, mat4 B, mat4 C, mat4 D) {\n mat4 pnts[4];\n pnts[0] = A;\n pnts[1] = B;\n pnts[2] = C;\n pnts[3] = D;\n\n for(int i = 0; i < 4; ++i) {\n for(int j = 0; j < 4; ++j) {\n for(int k = 0; k < 4; ++k) {\n if(0 == iMod(\n int(255.0 * texture2D(maskTexture,\n vec2(\n (float(i * 2 + j / 2) + 0.5) / 8.0,\n (pnts[i][j][k] * (maskHeight - 1.0) + 1.0) / maskHeight\n ))[3]\n ) / int(pow(2.0, float(iMod(j * 4 + k, 8)))),\n 2\n )) return true;\n }\n }\n }\n return false;\n}\n\nvec4 position(bool isContext, float v, mat4 A, mat4 B, mat4 C, mat4 D) {\n float x = 0.5 * sign(v) + 0.5;\n float y = axisY(x, A, B, C, D);\n float z = 1.0 - abs(v);\n\n z += isContext ? 0.0 : 2.0 * float(\n outsideBoundingBox(A, B, C, D) ||\n outsideRasterMask(A, B, C, D)\n );\n\n return vec4(\n 2.0 * (vec2(x, y) * viewBoxSize + viewBoxPos) / resolution - 1.0,\n z,\n 1.0\n );\n}\n\nvoid main() {\n mat4 A = mat4(p01_04, p05_08, p09_12, p13_16);\n mat4 B = mat4(p17_20, p21_24, p25_28, p29_32);\n mat4 C = mat4(p33_36, p37_40, p41_44, p45_48);\n mat4 D = mat4(p49_52, p53_56, p57_60, ZEROS);\n\n float v = colors[3];\n\n gl_Position = position(isContext, v, A, B, C, D);\n\n fragColor =\n isContext ? vec4(contextColor) :\n isPick ? vec4(colors.rgb, 1.0) : texture2D(palette, vec2(abs(v), 0.5));\n}\n"]),a=n(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nvoid main() {\n gl_FragColor = fragColor;\n}\n"]),o=t("./constants").maxDimensionCount,s=t("../../lib"),l=new Uint8Array(4),c=new Uint8Array(4),u={shape:[256,1],format:"rgba",type:"uint8",mag:"nearest",min:"nearest"};function f(t,e,r,n,i){var a=t._gl;a.enable(a.SCISSOR_TEST),a.scissor(e,r,n,i),t.clear({color:[0,0,0,0],depth:1})}function h(t,e,r,n,i,a){var o=a.key;r.drawCompleted||(!function(t){t.read({x:0,y:0,width:1,height:1,data:l})}(t),r.drawCompleted=!0),function s(l){var c=Math.min(n,i-l*n);0===l&&(window.cancelAnimationFrame(r.currentRafs[o]),delete r.currentRafs[o],f(t,a.scissorX,a.scissorY,a.scissorWidth,a.viewBoxSize[1])),r.clearOnly||(a.count=2*c,a.offset=2*l*n,e(a),l*n+c>>8*e)%256/255}function m(t,e,r){for(var n=new Array(8*e),i=0,a=0;au&&(u=t[i].dim1.canvasX,o=i);0===s&&f(T,0,0,r.canvasWidth,r.canvasHeight);var p=function(t){var e,r,n,i=[[],[]];for(n=0;n<64;n++){var a=!t&&no._length&&(S=S.slice(0,o._length));var L,C=o.tickvals;function P(t,e){return{val:t,text:L[e]}}function I(t,e){return t.val-e.val}if(Array.isArray(C)&&C.length){L=o.ticktext,Array.isArray(L)&&L.length?L.length>C.length?L=L.slice(0,C.length):C.length>L.length&&(C=C.slice(0,L.length)):L=C.map(a(o.tickformat));for(var O=1;O=r||l>=i)return;var c=t.lineLayer.readPixel(s,i-1-l),u=0!==c[3],f=u?c[2]+256*(c[1]+256*c[0]):null,h={x:s,y:l,clientX:e.clientX,clientY:e.clientY,dataIndex:t.model.key,curveNumber:f};f!==B&&(u?a.hover(h):a.unhover&&a.unhover(h),B=f)}})),F.style("opacity",(function(t){return t.pick?0:1})),h.style("background","rgba(255, 255, 255, 0)");var N=h.selectAll("."+y.cn.parcoords).data(R,d);N.exit().remove(),N.enter().append("g").classed(y.cn.parcoords,!0).style("shape-rendering","crispEdges").style("pointer-events","none"),N.attr("transform",(function(t){return c(t.model.translateX,t.model.translateY)}));var j=N.selectAll("."+y.cn.parcoordsControlView).data(m,d);j.enter().append("g").classed(y.cn.parcoordsControlView,!0),j.attr("transform",(function(t){return c(t.model.pad.l,t.model.pad.t)}));var U=j.selectAll("."+y.cn.yAxis).data((function(t){return t.dimensions}),d);U.enter().append("g").classed(y.cn.yAxis,!0),j.each((function(t){O(U,t,_)})),F.each((function(t){if(t.viewModel){!t.lineLayer||a?t.lineLayer=b(this,t):t.lineLayer.update(t),(t.key||0===t.key)&&(t.viewModel[t.key]=t.lineLayer);var e=!t.context||a;t.lineLayer.render(t.viewModel.panels,e)}})),U.attr("transform",(function(t){return c(t.xScale(t.xIndex),0)})),U.call(n.behavior.drag().origin((function(t){return t})).on("drag",(function(t){var e=t.parent;S.linePickActive(!1),t.x=Math.max(-y.overdrag,Math.min(t.model.width+y.overdrag,n.event.x)),t.canvasX=t.x*t.model.canvasPixelRatio,U.sort((function(t,e){return t.x-e.x})).each((function(e,r){e.xIndex=r,e.x=t===e?e.x:e.xScale(e.xIndex),e.canvasX=e.x*e.model.canvasPixelRatio})),O(U,e,_),U.filter((function(e){return 0!==Math.abs(t.xIndex-e.xIndex)})).attr("transform",(function(t){return c(t.xScale(t.xIndex),0)})),n.select(this).attr("transform",c(t.x,0)),U.each((function(r,n,i){i===t.parent.key&&(e.dimensions[n]=r)})),e.contextLayer&&e.contextLayer.render(e.panels,!1,!E(e)),e.focusLayer.render&&e.focusLayer.render(e.panels)})).on("dragend",(function(t){var e=t.parent;t.x=t.xScale(t.xIndex),t.canvasX=t.x*t.model.canvasPixelRatio,O(U,e,_),n.select(this).attr("transform",(function(t){return c(t.x,0)})),e.contextLayer&&e.contextLayer.render(e.panels,!1,!E(e)),e.focusLayer&&e.focusLayer.render(e.panels),e.pickLayer&&e.pickLayer.render(e.panels,!0),S.linePickActive(!0),a&&a.axesMoved&&a.axesMoved(e.key,e.dimensions.map((function(t){return t.crossfilterDimensionIndex})))}))),U.exit().remove();var V=U.selectAll("."+y.cn.axisOverlays).data(m,d);V.enter().append("g").classed(y.cn.axisOverlays,!0),V.selectAll("."+y.cn.axis).remove();var H=V.selectAll("."+y.cn.axis).data(m,d);H.enter().append("g").classed(y.cn.axis,!0),H.each((function(t){var e=t.model.height/t.model.tickDistance,r=t.domainScale,i=r.domain();n.select(this).call(n.svg.axis().orient("left").tickSize(4).outerTickSize(2).ticks(e,t.tickFormat).tickValues(t.ordinal?i:null).tickFormat((function(e){return v.isOrdinal(t)?e:z(t.model.dimensions[t.visibleIndex],e)})).scale(r)),f.font(H.selectAll("text"),t.model.tickFont)})),H.selectAll(".domain, .tick>line").attr("fill","none").attr("stroke","black").attr("stroke-opacity",.25).attr("stroke-width","1px"),H.selectAll("text").style("text-shadow",u.makeTextShadow(T)).style("cursor","default");var q=V.selectAll("."+y.cn.axisHeading).data(m,d);q.enter().append("g").classed(y.cn.axisHeading,!0);var G=q.selectAll("."+y.cn.axisTitle).data(m,d);G.enter().append("text").classed(y.cn.axisTitle,!0).attr("text-anchor","middle").style("cursor","ew-resize").style("pointer-events","auto"),G.text((function(t){return t.label})).each((function(e){var r=n.select(this);f.font(r,e.model.labelFont),u.convertToTspans(r,t)})).attr("transform",(function(t){var e=I(t.model.labelAngle,t.model.labelSide),r=y.axisTitleOffset;return(e.dir>0?"":c(0,2*r+t.model.height))+l(e.degrees)+c(-r*e.dx,-r*e.dy)})).attr("text-anchor",(function(t){var e=I(t.model.labelAngle,t.model.labelSide);return 2*Math.abs(e.dx)>Math.abs(e.dy)?e.dir*e.dx<0?"start":"end":"middle"}));var Y=V.selectAll("."+y.cn.axisExtent).data(m,d);Y.enter().append("g").classed(y.cn.axisExtent,!0);var W=Y.selectAll("."+y.cn.axisExtentTop).data(m,d);W.enter().append("g").classed(y.cn.axisExtentTop,!0),W.attr("transform",c(0,-y.axisExtentOffset));var X=W.selectAll("."+y.cn.axisExtentTopText).data(m,d);X.enter().append("text").classed(y.cn.axisExtentTopText,!0).call(P),X.text((function(t){return D(t,!0)})).each((function(t){f.font(n.select(this),t.model.rangeFont)}));var Z=Y.selectAll("."+y.cn.axisExtentBottom).data(m,d);Z.enter().append("g").classed(y.cn.axisExtentBottom,!0),Z.attr("transform",(function(t){return c(0,t.model.height+y.axisExtentOffset)}));var J=Z.selectAll("."+y.cn.axisExtentBottomText).data(m,d);J.enter().append("text").classed(y.cn.axisExtentBottomText,!0).attr("dy","0.75em").call(P),J.text((function(t){return D(t,!1)})).each((function(t){f.font(n.select(this),t.model.rangeFont)})),x.ensureAxisBrush(V,T)}},{"../../components/colorscale":373,"../../components/drawing":383,"../../lib":498,"../../lib/gup":495,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"./axisbrush":884,"./constants":888,"./helpers":890,"./lines":892,"@plotly/d3":58,"color-rgba":86}],895:[function(t,e,r){"use strict";var n=t("./parcoords"),i=t("../../lib/prepare_regl"),a=t("./helpers").isVisible,o={};function s(t,e,r){var n=e.indexOf(r),i=t.indexOf(n);return-1===i&&(i+=e.length),i}(e.exports=function(t,e){var r=t._fullLayout;if(i(t,[],o)){var l={},c={},u={},f={},h=r._size;e.forEach((function(e,r){var n=e[0].trace;u[r]=n.index;var i=f[r]=n._fullInput.index;l[r]=t.data[i].dimensions,c[r]=t.data[i].dimensions.slice()}));n(t,e,{width:h.w,height:h.h,margin:{t:h.t,r:h.r,b:h.b,l:h.l}},{filterChanged:function(e,n,i){var a=c[e][n],o=i.map((function(t){return t.slice()})),s="dimensions["+n+"].constraintrange",l=r._tracePreGUI[t._fullData[u[e]]._fullInput.uid];if(void 0===l[s]){var h=a.constraintrange;l[s]=h||null}var p=t._fullData[u[e]].dimensions[n];o.length?(1===o.length&&(o=o[0]),a.constraintrange=o,p.constraintrange=o.slice(),o=[o]):(delete a.constraintrange,delete p.constraintrange,o=null);var d={};d[s]=o,t.emit("plotly_restyle",[d,[f[e]]])},hover:function(e){t.emit("plotly_hover",e)},unhover:function(e){t.emit("plotly_unhover",e)},axesMoved:function(e,r){var n=function(t,e){return function(r,n){return s(t,e,r)-s(t,e,n)}}(r,c[e].filter(a));l[e].sort(n),c[e].filter((function(t){return!a(t)})).sort((function(t){return c[e].indexOf(t)})).forEach((function(t){l[e].splice(l[e].indexOf(t),1),l[e].splice(c[e].indexOf(t),0,t)})),t.emit("plotly_restyle",[{dimensions:[l[e]]},[f[e]]])}})}}).reglPrecompiled=o},{"../../lib/prepare_regl":511,"./helpers":890,"./parcoords":894}],896:[function(t,e,r){"use strict";var n=t("../../plots/attributes"),i=t("../../plots/domain").attributes,a=t("../../plots/font_attributes"),o=t("../../components/color/attributes"),s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../plots/template_attributes").texttemplateAttrs,c=t("../../lib/extend").extendFlat,u=a({editType:"plot",arrayOk:!0,colorEditType:"plot"});e.exports={labels:{valType:"data_array",editType:"calc"},label0:{valType:"number",dflt:0,editType:"calc"},dlabel:{valType:"number",dflt:1,editType:"calc"},values:{valType:"data_array",editType:"calc"},marker:{colors:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:o.defaultLine,arrayOk:!0,editType:"style"},width:{valType:"number",min:0,dflt:0,arrayOk:!0,editType:"style"},editType:"calc"},editType:"calc"},text:{valType:"data_array",editType:"plot"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"style"},scalegroup:{valType:"string",dflt:"",editType:"calc"},textinfo:{valType:"flaglist",flags:["label","text","value","percent"],extras:["none"],editType:"calc"},hoverinfo:c({},n.hoverinfo,{flags:["label","text","value","percent","name"]}),hovertemplate:s({},{keys:["label","color","value","percent","text"]}),texttemplate:l({editType:"plot"},{keys:["label","color","value","percent","text"]}),textposition:{valType:"enumerated",values:["inside","outside","auto","none"],dflt:"auto",arrayOk:!0,editType:"plot"},textfont:c({},u,{}),insidetextorientation:{valType:"enumerated",values:["horizontal","radial","tangential","auto"],dflt:"auto",editType:"plot"},insidetextfont:c({},u,{}),outsidetextfont:c({},u,{}),automargin:{valType:"boolean",dflt:!1,editType:"plot"},title:{text:{valType:"string",dflt:"",editType:"plot"},font:c({},u,{}),position:{valType:"enumerated",values:["top left","top center","top right","middle center","bottom left","bottom center","bottom right"],editType:"plot"},editType:"plot"},domain:i({name:"pie",trace:!0,editType:"calc"}),hole:{valType:"number",min:0,max:1,dflt:0,editType:"calc"},sort:{valType:"boolean",dflt:!0,editType:"calc"},direction:{valType:"enumerated",values:["clockwise","counterclockwise"],dflt:"counterclockwise",editType:"calc"},rotation:{valType:"number",min:-360,max:360,dflt:0,editType:"calc"},pull:{valType:"number",min:0,max:1,dflt:0,arrayOk:!0,editType:"calc"},_deprecated:{title:{valType:"string",dflt:"",editType:"calc"},titlefont:c({},u,{}),titleposition:{valType:"enumerated",values:["top left","top center","top right","middle center","bottom left","bottom center","bottom right"],editType:"calc"}}}},{"../../components/color/attributes":360,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/domain":579,"../../plots/font_attributes":580,"../../plots/template_attributes":628}],897:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="pie",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":614}],898:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("tinycolor2"),a=t("../../components/color"),o={};function s(t){return function(e,r){return!!e&&(!!(e=i(e)).isValid()&&(e=a.addOpacity(e,e.getAlpha()),t[r]||(t[r]=e),e))}}function l(t,e){var r,n=JSON.stringify(t),a=e[n];if(!a){for(a=t.slice(),r=0;r=0})),("funnelarea"===e.type?v:e.sort)&&a.sort((function(t,e){return e.v-t.v})),a[0]&&(a[0].vTotal=g),a},crossTraceCalc:function(t,e){var r=(e||{}).type;r||(r="pie");var n=t._fullLayout,i=t.calcdata,a=n[r+"colorway"],s=n["_"+r+"colormap"];n["extend"+r+"colors"]&&(a=l(a,o));for(var c=0,u=0;u0){s=!0;break}}s||(o=0)}return{hasLabels:r,hasValues:a,len:o}}e.exports={handleLabelsAndValues:l,supplyDefaults:function(t,e,r,n){function c(r,n){return i.coerce(t,e,a,r,n)}var u=l(c("labels"),c("values")),f=u.len;if(e._hasLabels=u.hasLabels,e._hasValues=u.hasValues,!e._hasLabels&&e._hasValues&&(c("label0"),c("dlabel")),f){e._length=f,c("marker.line.width")&&c("marker.line.color"),c("marker.colors"),c("scalegroup");var h,p=c("text"),d=c("texttemplate");if(d||(h=c("textinfo",Array.isArray(p)?"text+percent":"percent")),c("hovertext"),c("hovertemplate"),d||h&&"none"!==h){var m=c("textposition");s(t,e,n,c,m,{moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1}),(Array.isArray(m)||"auto"===m||"outside"===m)&&c("automargin"),("inside"===m||"auto"===m||Array.isArray(m))&&c("insidetextorientation")}o(e,n,c);var g=c("hole");if(c("title.text")){var v=c("title.position",g?"middle center":"top center");g||"middle center"!==v||(e.title.position="top center"),i.coerceFont(c,"title.font",n.font)}c("sort"),c("direction"),c("rotation"),c("pull")}else e.visible=!1}}},{"../../lib":498,"../../plots/domain":579,"../bar/defaults":647,"./attributes":896,"fast-isnumeric":185}],900:[function(t,e,r){"use strict";var n=t("../../components/fx/helpers").appendArrayMultiPointValues;e.exports=function(t,e){var r={curveNumber:e.index,pointNumbers:t.pts,data:e._input,fullData:e,label:t.label,color:t.color,value:t.v,percent:t.percent,text:t.text,bbox:t.bbox,v:t.v};return 1===t.pts.length&&(r.pointNumber=r.i=t.pts[0]),n(r,e,t.pts),"funnelarea"===e.type&&(delete r.v,delete r.i),r}},{"../../components/fx/helpers":397}],901:[function(t,e,r){"use strict";var n=t("../../lib");function i(t){return-1!==t.indexOf("e")?t.replace(/[.]?0+e/,"e"):-1!==t.indexOf(".")?t.replace(/[.]?0+$/,""):t}r.formatPiePercent=function(t,e){var r=i((100*t).toPrecision(3));return n.numSeparate(r,e)+"%"},r.formatPieValue=function(t,e){var r=i(t.toPrecision(10));return n.numSeparate(r,e)},r.getFirstFilled=function(t,e){if(Array.isArray(t))for(var r=0;r"),name:f.hovertemplate||-1!==h.indexOf("name")?f.name:void 0,idealAlign:t.pxmid[0]<0?"left":"right",color:g.castOption(_.bgcolor,t.pts)||t.color,borderColor:g.castOption(_.bordercolor,t.pts),fontFamily:g.castOption(w.family,t.pts),fontSize:g.castOption(w.size,t.pts),fontColor:g.castOption(w.color,t.pts),nameLength:g.castOption(_.namelength,t.pts),textAlign:g.castOption(_.align,t.pts),hovertemplate:g.castOption(f.hovertemplate,t.pts),hovertemplateLabels:t,eventData:[v(t,f)]},{container:r._hoverlayer.node(),outerContainer:r._paper.node(),gd:e,inOut_bbox:T}),t.bbox=T[0],c._hasHoverLabel=!0}c._hasHoverEvent=!0,e.emit("plotly_hover",{points:[v(t,f)],event:n.event})}})),t.on("mouseout",(function(t){var r=e._fullLayout,i=e._fullData[c.index],o=n.select(this).datum();c._hasHoverEvent&&(t.originalEvent=n.event,e.emit("plotly_unhover",{points:[v(o,i)],event:n.event}),c._hasHoverEvent=!1),c._hasHoverLabel&&(a.loneUnhover(r._hoverlayer.node()),c._hasHoverLabel=!1)})),t.on("click",(function(t){var r=e._fullLayout,i=e._fullData[c.index];e._dragging||!1===r.hovermode||(e._hoverdata=[v(t,i)],a.click(e,n.event))}))}function b(t,e,r){var n=g.castOption(t.insidetextfont.color,e.pts);!n&&t._input.textfont&&(n=g.castOption(t._input.textfont.color,e.pts));var i=g.castOption(t.insidetextfont.family,e.pts)||g.castOption(t.textfont.family,e.pts)||r.family,a=g.castOption(t.insidetextfont.size,e.pts)||g.castOption(t.textfont.size,e.pts)||r.size;return{color:n||o.contrast(e.color),family:i,size:a}}function _(t,e){for(var r,n,i=0;ie&&e>n||r=-4;g-=2)v(Math.PI*g,"tan");for(g=4;g>=-4;g-=2)v(Math.PI*(g+1),"tan")}if(f||p){for(g=4;g>=-4;g-=2)v(Math.PI*(g+1.5),"rad");for(g=4;g>=-4;g-=2)v(Math.PI*(g+.5),"rad")}}if(s||d||f){var y=Math.sqrt(t.width*t.width+t.height*t.height);if((a={scale:i*n*2/y,rCenter:1-i,rotate:0}).textPosAngle=(e.startangle+e.stopangle)/2,a.scale>=1)return a;m.push(a)}(d||p)&&((a=T(t,n,o,l,c)).textPosAngle=(e.startangle+e.stopangle)/2,m.push(a)),(d||h)&&((a=k(t,n,o,l,c)).textPosAngle=(e.startangle+e.stopangle)/2,m.push(a));for(var x=0,b=0,_=0;_=1)break}return m[x]}function T(t,e,r,n,i){e=Math.max(0,e-2*m);var a=t.width/t.height,o=S(a,n,e,r);return{scale:2*o/t.height,rCenter:A(a,o/e),rotate:M(i)}}function k(t,e,r,n,i){e=Math.max(0,e-2*m);var a=t.height/t.width,o=S(a,n,e,r);return{scale:2*o/t.width,rCenter:A(a,o/e),rotate:M(i+Math.PI/2)}}function A(t,e){return Math.cos(e)-t*e}function M(t){return(180/Math.PI*t+720)%180-90}function S(t,e,r,n){var i=t+1/(2*Math.tan(e));return r*Math.min(1/(Math.sqrt(i*i+.5)+i),n/(Math.sqrt(t*t+n/2)+t))}function E(t,e){return t.v!==e.vTotal||e.trace.hole?Math.min(1/(1+1/Math.sin(t.halfangle)),t.ring/2):1}function L(t,e){var r=e.pxmid[0],n=e.pxmid[1],i=t.width/2,a=t.height/2;return r<0&&(i*=-1),n<0&&(a*=-1),{scale:1,rCenter:1,rotate:0,x:i+Math.abs(a)*(i>0?1:-1)/2,y:a/(1+r*r/(n*n)),outside:!0}}function C(t,e){var r,n,i,a=t.trace,o={x:t.cx,y:t.cy},s={tx:0,ty:0};s.ty+=a.title.font.size,i=I(a),-1!==a.title.position.indexOf("top")?(o.y-=(1+i)*t.r,s.ty-=t.titleBox.height):-1!==a.title.position.indexOf("bottom")&&(o.y+=(1+i)*t.r);var l,c,u=(l=t.r,c=t.trace.aspectratio,l/(void 0===c?1:c)),f=e.w*(a.domain.x[1]-a.domain.x[0])/2;return-1!==a.title.position.indexOf("left")?(f+=u,o.x-=(1+i)*u,s.tx+=t.titleBox.width/2):-1!==a.title.position.indexOf("center")?f*=2:-1!==a.title.position.indexOf("right")&&(f+=u,o.x+=(1+i)*u,s.tx-=t.titleBox.width/2),r=f/t.titleBox.width,n=P(t,e)/t.titleBox.height,{x:o.x,y:o.y,scale:Math.min(r,n),tx:s.tx,ty:s.ty}}function P(t,e){var r=t.trace,n=e.h*(r.domain.y[1]-r.domain.y[0]);return Math.min(t.titleBox.height,n/2)}function I(t){var e,r=t.pull;if(!r)return 0;if(Array.isArray(r))for(r=0,e=0;er&&(r=t.pull[e]);return r}function O(t,e){for(var r=[],n=0;n1?(c=r.r,u=c/i.aspectratio):(u=r.r,c=u*i.aspectratio),c*=(1+i.baseratio)/2,l=c*u}o=Math.min(o,l/r.vTotal)}for(n=0;n")}if(a){var x=l.castOption(i,e.i,"texttemplate");if(x){var b=function(t){return{label:t.label,value:t.v,valueLabel:g.formatPieValue(t.v,n.separators),percent:t.v/r.vTotal,percentLabel:g.formatPiePercent(t.v/r.vTotal,n.separators),color:t.color,text:t.text,customdata:l.castOption(i,t.i,"customdata")}}(e),_=g.getFirstFilled(i.text,e.pts);(y(_)||""===_)&&(b.text=_),e.text=l.texttemplateString(x,b,t._fullLayout._d3locale,b,i._meta||{})}else e.text=""}}function R(t,e){var r=t.rotate*Math.PI/180,n=Math.cos(r),i=Math.sin(r),a=(e.left+e.right)/2,o=(e.top+e.bottom)/2;t.textX=a*n-o*i,t.textY=a*i+o*n,t.noCenter=!0}e.exports={plot:function(t,e){var r=t._fullLayout,a=r._size;d("pie",r),_(e,t),O(e,a);var h=l.makeTraceGroups(r._pielayer,e,"trace").each((function(e){var h=n.select(this),d=e[0],m=d.trace;!function(t){var e,r,n,i=t[0],a=i.r,o=i.trace,s=g.getRotationAngle(o.rotation),l=2*Math.PI/i.vTotal,c="px0",u="px1";if("counterclockwise"===o.direction){for(e=0;ei.vTotal/2?1:0,r.halfangle=Math.PI*Math.min(r.v/i.vTotal,.5),r.ring=1-o.hole,r.rInscribed=E(r,i))}(e),h.attr("stroke-linejoin","round"),h.each((function(){var v=n.select(this).selectAll("g.slice").data(e);v.enter().append("g").classed("slice",!0),v.exit().remove();var y=[[[],[]],[[],[]]],_=!1;v.each((function(i,a){if(i.hidden)n.select(this).selectAll("path,g").remove();else{i.pointNumber=i.i,i.curveNumber=m.index,y[i.pxmid[1]<0?0:1][i.pxmid[0]<0?0:1].push(i);var o=d.cx,c=d.cy,u=n.select(this),h=u.selectAll("path.surface").data([i]);if(h.enter().append("path").classed("surface",!0).style({"pointer-events":"all"}),u.call(x,t,e),m.pull){var v=+g.castOption(m.pull,i.pts)||0;v>0&&(o+=v*i.pxmid[0],c+=v*i.pxmid[1])}i.cxFinal=o,i.cyFinal=c;var T=m.hole;if(i.v===d.vTotal){var k="M"+(o+i.px0[0])+","+(c+i.px0[1])+C(i.px0,i.pxmid,!0,1)+C(i.pxmid,i.px0,!0,1)+"Z";T?h.attr("d","M"+(o+T*i.px0[0])+","+(c+T*i.px0[1])+C(i.px0,i.pxmid,!1,T)+C(i.pxmid,i.px0,!1,T)+"Z"+k):h.attr("d",k)}else{var A=C(i.px0,i.px1,!0,1);if(T){var M=1-T;h.attr("d","M"+(o+T*i.px1[0])+","+(c+T*i.px1[1])+C(i.px1,i.px0,!1,T)+"l"+M*i.px0[0]+","+M*i.px0[1]+A+"Z")}else h.attr("d","M"+o+","+c+"l"+i.px0[0]+","+i.px0[1]+A+"Z")}D(t,i,d);var S=g.castOption(m.textposition,i.pts),E=u.selectAll("g.slicetext").data(i.text&&"none"!==S?[0]:[]);E.enter().append("g").classed("slicetext",!0),E.exit().remove(),E.each((function(){var u=l.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),h=l.ensureUniformFontSize(t,"outside"===S?function(t,e,r){var n=g.castOption(t.outsidetextfont.color,e.pts)||g.castOption(t.textfont.color,e.pts)||r.color,i=g.castOption(t.outsidetextfont.family,e.pts)||g.castOption(t.textfont.family,e.pts)||r.family,a=g.castOption(t.outsidetextfont.size,e.pts)||g.castOption(t.textfont.size,e.pts)||r.size;return{color:n,family:i,size:a}}(m,i,r.font):b(m,i,r.font));u.text(i.text).attr({class:"slicetext",transform:"","text-anchor":"middle"}).call(s.font,h).call(f.convertToTspans,t);var v,y=s.bBox(u.node());if("outside"===S)v=L(y,i);else if(v=w(y,i,d),"auto"===S&&v.scale<1){var x=l.ensureUniformFontSize(t,m.outsidetextfont);u.call(s.font,x),v=L(y=s.bBox(u.node()),i)}var T=v.textPosAngle,k=void 0===T?i.pxmid:z(d.r,T);if(v.targetX=o+k[0]*v.rCenter+(v.x||0),v.targetY=c+k[1]*v.rCenter+(v.y||0),R(v,y),v.outside){var A=v.targetY;i.yLabelMin=A-y.height/2,i.yLabelMid=A,i.yLabelMax=A+y.height/2,i.labelExtraX=0,i.labelExtraY=0,_=!0}v.fontSize=h.size,p(m.type,v,r),e[a].transform=v,u.attr("transform",l.getTextTransform(v))}))}function C(t,e,r,n){var a=n*(e[0]-t[0]),o=n*(e[1]-t[1]);return"a"+n*d.r+","+n*d.r+" 0 "+i.largeArc+(r?" 1 ":" 0 ")+a+","+o}}));var T=n.select(this).selectAll("g.titletext").data(m.title.text?[0]:[]);if(T.enter().append("g").classed("titletext",!0),T.exit().remove(),T.each((function(){var e,r=l.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),i=m.title.text;m._meta&&(i=l.templateString(i,m._meta)),r.text(i).attr({class:"titletext",transform:"","text-anchor":"middle"}).call(s.font,m.title.font).call(f.convertToTspans,t),e="middle center"===m.title.position?function(t){var e=Math.sqrt(t.titleBox.width*t.titleBox.width+t.titleBox.height*t.titleBox.height);return{x:t.cx,y:t.cy,scale:t.trace.hole*t.r*2/e,tx:0,ty:-t.titleBox.height/2+t.trace.title.font.size}}(d):C(d,a),r.attr("transform",u(e.x,e.y)+c(Math.min(1,e.scale))+u(e.tx,e.ty))})),_&&function(t,e){var r,n,i,a,o,s,l,c,u,f,h,p,d;function m(t,e){return t.pxmid[1]-e.pxmid[1]}function v(t,e){return e.pxmid[1]-t.pxmid[1]}function y(t,r){r||(r={});var i,c,u,h,p=r.labelExtraY+(n?r.yLabelMax:r.yLabelMin),d=n?t.yLabelMin:t.yLabelMax,m=n?t.yLabelMax:t.yLabelMin,v=t.cyFinal+o(t.px0[1],t.px1[1]),y=p-d;if(y*l>0&&(t.labelExtraY=y),Array.isArray(e.pull))for(c=0;c=(g.castOption(e.pull,u.pts)||0)||((t.pxmid[1]-u.pxmid[1])*l>0?(y=u.cyFinal+o(u.px0[1],u.px1[1])-d-t.labelExtraY)*l>0&&(t.labelExtraY+=y):(m+t.labelExtraY-v)*l>0&&(i=3*s*Math.abs(c-f.indexOf(t)),(h=u.cxFinal+a(u.px0[0],u.px1[0])+i-(t.cxFinal+t.pxmid[0])-t.labelExtraX)*s>0&&(t.labelExtraX+=h)))}for(n=0;n<2;n++)for(i=n?m:v,o=n?Math.max:Math.min,l=n?1:-1,r=0;r<2;r++){for(a=r?Math.max:Math.min,s=r?1:-1,(c=t[n][r]).sort(i),u=t[1-n][r],f=u.concat(c),p=[],h=0;hMath.abs(f)?s+="l"+f*t.pxmid[0]/t.pxmid[1]+","+f+"H"+(a+t.labelExtraX+c):s+="l"+t.labelExtraX+","+u+"v"+(f-u)+"h"+c}else s+="V"+(t.yLabelMid+t.labelExtraY)+"h"+c;l.ensureSingle(r,"path","textline").call(o.stroke,e.outsidetextfont.color).attr({"stroke-width":Math.min(2,e.outsidetextfont.size/8),d:s,fill:"none"})}else r.select("path.textline").remove()}))}(v,m),_&&m.automargin){var k=s.bBox(h.node()),A=m.domain,M=a.w*(A.x[1]-A.x[0]),S=a.h*(A.y[1]-A.y[0]),E=(.5*M-d.r)/a.w,P=(.5*S-d.r)/a.h;i.autoMargin(t,"pie."+m.uid+".automargin",{xl:A.x[0]-E,xr:A.x[1]+E,yb:A.y[0]-P,yt:A.y[1]+P,l:Math.max(d.cx-d.r-k.left,0),r:Math.max(k.right-(d.cx+d.r),0),b:Math.max(k.bottom-(d.cy+d.r),0),t:Math.max(d.cy-d.r-k.top,0),pad:5})}}))}));setTimeout((function(){h.selectAll("tspan").each((function(){var t=n.select(this);t.attr("dy")&&t.attr("dy",t.attr("dy"))}))}),0)},formatSliceLabel:D,transformInsideText:w,determineInsideTextFont:b,positionTitleOutside:C,prerenderTitles:_,layoutAreas:O,attachFxHandlers:x,computeTransform:R}},{"../../components/color":361,"../../components/drawing":383,"../../components/fx":401,"../../lib":498,"../../lib/svg_text_utils":524,"../../plots/plots":614,"../bar/constants":645,"../bar/uniform_text":659,"./event_data":900,"./helpers":901,"@plotly/d3":58}],906:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("./style_one"),a=t("../bar/uniform_text").resizeText;e.exports=function(t){var e=t._fullLayout._pielayer.selectAll(".trace");a(t,e,"pie"),e.each((function(t){var e=t[0].trace,r=n.select(this);r.style({opacity:e.opacity}),r.selectAll("path.surface").each((function(t){n.select(this).call(i,t,e)}))}))}},{"../bar/uniform_text":659,"./style_one":907,"@plotly/d3":58}],907:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("./helpers").castOption;e.exports=function(t,e,r){var a=r.marker.line,o=i(a.color,e.pts)||n.defaultLine,s=i(a.width,e.pts)||0;t.style("stroke-width",s).call(n.fill,e.color).call(n.stroke,o)}},{"../../components/color":361,"./helpers":901}],908:[function(t,e,r){"use strict";var n=t("../scatter/attributes");e.exports={x:n.x,y:n.y,xy:{valType:"data_array",editType:"calc"},indices:{valType:"data_array",editType:"calc"},xbounds:{valType:"data_array",editType:"calc"},ybounds:{valType:"data_array",editType:"calc"},text:n.text,marker:{color:{valType:"color",arrayOk:!1,editType:"calc"},opacity:{valType:"number",min:0,max:1,dflt:1,arrayOk:!1,editType:"calc"},blend:{valType:"boolean",dflt:null,editType:"calc"},sizemin:{valType:"number",min:.1,max:2,dflt:.5,editType:"calc"},sizemax:{valType:"number",min:.1,dflt:20,editType:"calc"},border:{color:{valType:"color",arrayOk:!1,editType:"calc"},arearatio:{valType:"number",min:0,max:1,dflt:0,editType:"calc"},editType:"calc"},editType:"calc"},transforms:void 0}},{"../scatter/attributes":922}],909:[function(t,e,r){"use strict";var n=t("../../../stackgl_modules").gl_pointcloud2d,i=t("../../lib/str2rgbarray"),a=t("../../plots/cartesian/autorange").findExtremes,o=t("../scatter/get_trace_color");function s(t,e){this.scene=t,this.uid=e,this.type="pointcloud",this.pickXData=[],this.pickYData=[],this.xData=[],this.yData=[],this.textLabels=[],this.color="rgb(0, 0, 0)",this.name="",this.hoverinfo="all",this.idToIndex=new Int32Array(0),this.bounds=[0,0,0,0],this.pointcloudOptions={positions:new Float32Array(0),idToIndex:this.idToIndex,sizemin:.5,sizemax:12,color:[0,0,0,1],areaRatio:1,borderColor:[0,0,0,1]},this.pointcloud=n(t.glplot,this.pointcloudOptions),this.pointcloud._trace=this}var l=s.prototype;l.handlePick=function(t){var e=this.idToIndex[t.pointId];return{trace:this,dataCoord:t.dataCoord,traceCoord:this.pickXYData?[this.pickXYData[2*e],this.pickXYData[2*e+1]]:[this.pickXData[e],this.pickYData[e]],textLabel:Array.isArray(this.textLabels)?this.textLabels[e]:this.textLabels,color:this.color,name:this.name,pointIndex:e,hoverinfo:this.hoverinfo}},l.update=function(t){this.index=t.index,this.textLabels=t.text,this.name=t.name,this.hoverinfo=t.hoverinfo,this.bounds=[1/0,1/0,-1/0,-1/0],this.updateFast(t),this.color=o(t,{})},l.updateFast=function(t){var e,r,n,o,s,l,c=this.xData=this.pickXData=t.x,u=this.yData=this.pickYData=t.y,f=this.pickXYData=t.xy,h=t.xbounds&&t.ybounds,p=t.indices,d=this.bounds;if(f){if(n=f,e=f.length>>>1,h)d[0]=t.xbounds[0],d[2]=t.xbounds[1],d[1]=t.ybounds[0],d[3]=t.ybounds[1];else for(l=0;ld[2]&&(d[2]=o),sd[3]&&(d[3]=s);if(p)r=p;else for(r=new Int32Array(e),l=0;ld[2]&&(d[2]=o),sd[3]&&(d[3]=s);this.idToIndex=r,this.pointcloudOptions.idToIndex=r,this.pointcloudOptions.positions=n;var m=i(t.marker.color),g=i(t.marker.border.color),v=t.opacity*t.marker.opacity;m[3]*=v,this.pointcloudOptions.color=m;var y=t.marker.blend;if(null===y){y=c.length<100||u.length<100}this.pointcloudOptions.blend=y,g[3]*=v,this.pointcloudOptions.borderColor=g;var x=t.marker.sizemin,b=Math.max(t.marker.sizemax,t.marker.sizemin);this.pointcloudOptions.sizeMin=x,this.pointcloudOptions.sizeMax=b,this.pointcloudOptions.areaRatio=t.marker.border.arearatio,this.pointcloud.update(this.pointcloudOptions);var _=this.scene.xaxis,w=this.scene.yaxis,T=b/2||.5;t._extremes[_._id]=a(_,[d[0],d[2]],{ppad:T}),t._extremes[w._id]=a(w,[d[1],d[3]],{ppad:T})},l.dispose=function(){this.pointcloud.dispose()},e.exports=function(t,e){var r=new s(t,e.uid);return r.update(e),r}},{"../../../stackgl_modules":1119,"../../lib/str2rgbarray":523,"../../plots/cartesian/autorange":548,"../scatter/get_trace_color":932}],910:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes");e.exports=function(t,e,r){function a(r,a){return n.coerce(t,e,i,r,a)}a("x"),a("y"),a("xbounds"),a("ybounds"),t.xy&&t.xy instanceof Float32Array&&(e.xy=t.xy),t.indices&&t.indices instanceof Int32Array&&(e.indices=t.indices),a("text"),a("marker.color",r),a("marker.opacity"),a("marker.blend"),a("marker.sizemin"),a("marker.sizemax"),a("marker.border.color",r),a("marker.border.arearatio"),e._length=null}},{"../../lib":498,"./attributes":908}],911:[function(t,e,r){"use strict";["*pointcloud* trace is deprecated!","Please consider switching to the *scattergl* trace type."].join(" ");e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("../scatter3d/calc"),plot:t("./convert"),moduleType:"trace",name:"pointcloud",basePlotModule:t("../../plots/gl2d"),categories:["gl","gl2d","showLegend"],meta:{}}},{"../../plots/gl2d":591,"../scatter3d/calc":951,"./attributes":908,"./convert":909,"./defaults":910}],912:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("../../plots/attributes"),a=t("../../components/color/attributes"),o=t("../../components/fx/attributes"),s=t("../../plots/domain").attributes,l=t("../../plots/template_attributes").hovertemplateAttrs,c=t("../../components/colorscale/attributes"),u=t("../../plot_api/plot_template").templatedArray,f=t("../../plots/cartesian/axis_format_attributes").descriptionOnlyNumbers,h=t("../../lib/extend").extendFlat,p=t("../../plot_api/edit_types").overrideAll;(e.exports=p({hoverinfo:h({},i.hoverinfo,{flags:[],arrayOk:!1}),hoverlabel:o.hoverlabel,domain:s({name:"sankey",trace:!0}),orientation:{valType:"enumerated",values:["v","h"],dflt:"h"},valueformat:{valType:"string",dflt:".3s",description:f("value")},valuesuffix:{valType:"string",dflt:""},arrangement:{valType:"enumerated",values:["snap","perpendicular","freeform","fixed"],dflt:"snap"},textfont:n({}),customdata:void 0,node:{label:{valType:"data_array",dflt:[]},groups:{valType:"info_array",impliedEdits:{x:[],y:[]},dimensions:2,freeLength:!0,dflt:[],items:{valType:"number",editType:"calc"}},x:{valType:"data_array",dflt:[]},y:{valType:"data_array",dflt:[]},color:{valType:"color",arrayOk:!0},customdata:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:a.defaultLine,arrayOk:!0},width:{valType:"number",min:0,dflt:.5,arrayOk:!0}},pad:{valType:"number",arrayOk:!1,min:0,dflt:20},thickness:{valType:"number",arrayOk:!1,min:1,dflt:20},hoverinfo:{valType:"enumerated",values:["all","none","skip"],dflt:"all"},hoverlabel:o.hoverlabel,hovertemplate:l({},{keys:["value","label"]})},link:{label:{valType:"data_array",dflt:[]},color:{valType:"color",arrayOk:!0},customdata:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:a.defaultLine,arrayOk:!0},width:{valType:"number",min:0,dflt:0,arrayOk:!0}},source:{valType:"data_array",dflt:[]},target:{valType:"data_array",dflt:[]},value:{valType:"data_array",dflt:[]},hoverinfo:{valType:"enumerated",values:["all","none","skip"],dflt:"all"},hoverlabel:o.hoverlabel,hovertemplate:l({},{keys:["value","label"]}),colorscales:u("concentrationscales",{editType:"calc",label:{valType:"string",editType:"calc",dflt:""},cmax:{valType:"number",editType:"calc",dflt:1},cmin:{valType:"number",editType:"calc",dflt:0},colorscale:h(c().colorscale,{dflt:[[0,"white"],[1,"black"]]})})}},"calc","nested")).transforms=void 0},{"../../components/color/attributes":360,"../../components/colorscale/attributes":368,"../../components/fx/attributes":392,"../../lib/extend":488,"../../plot_api/edit_types":531,"../../plot_api/plot_template":538,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/domain":579,"../../plots/font_attributes":580,"../../plots/template_attributes":628}],913:[function(t,e,r){"use strict";var n=t("../../plot_api/edit_types").overrideAll,i=t("../../plots/get_data").getModuleCalcData,a=t("./plot"),o=t("../../components/fx/layout_attributes"),s=t("../../lib/setcursor"),l=t("../../components/dragelement"),c=t("../../plots/cartesian/select").prepSelect,u=t("../../lib"),f=t("../../registry");function h(t,e){var r=t._fullData[e],n=t._fullLayout,i=n.dragmode,a="pan"===n.dragmode?"move":"crosshair",o=r._bgRect;if("pan"!==i&&"zoom"!==i){s(o,a);var h={_id:"x",c2p:u.identity,_offset:r._sankey.translateX,_length:r._sankey.width},p={_id:"y",c2p:u.identity,_offset:r._sankey.translateY,_length:r._sankey.height},d={gd:t,element:o.node(),plotinfo:{id:e,xaxis:h,yaxis:p,fillRangeItems:u.noop},subplot:e,xaxes:[h],yaxes:[p],doneFnCompleted:function(r){var n,i=t._fullData[e],a=i.node.groups.slice(),o=[];function s(t){for(var e=i._sankey.graph.nodes,r=0;ry&&(y=a.source[e]),a.target[e]>y&&(y=a.target[e]);var x,b=y+1;t.node._count=b;var _=t.node.groups,w={};for(e=0;e<_.length;e++){var T=_[e];for(x=0;x0&&s(E,b)&&s(L,b)&&(!w.hasOwnProperty(E)||!w.hasOwnProperty(L)||w[E]!==w[L])){w.hasOwnProperty(L)&&(L=w[L]),w.hasOwnProperty(E)&&(E=w[E]),L=+L,h[E=+E]=h[L]=!0;var C="";a.label&&a.label[e]&&(C=a.label[e]);var P=null;C&&p.hasOwnProperty(C)&&(P=p[C]),c.push({pointNumber:e,label:C,color:u?a.color[e]:a.color,customdata:f?a.customdata[e]:a.customdata,concentrationscale:P,source:E,target:L,value:+S}),M.source.push(E),M.target.push(L)}}var I=b+_.length,O=o(r.color),z=o(r.customdata),D=[];for(e=0;eb-1,childrenNodes:[],pointNumber:e,label:R,color:O?r.color[e]:r.color,customdata:z?r.customdata[e]:r.customdata})}var F=!1;return function(t,e,r){for(var a=i.init2dArray(t,0),o=0;o1}))}(I,M.source,M.target)&&(F=!0),{circular:F,links:c,nodes:D,groups:_,groupLookup:w}}e.exports=function(t,e){var r=c(e);return a({circular:r.circular,_nodes:r.nodes,_links:r.links,_groups:r.groups,_groupLookup:r.groupLookup})}},{"../../components/colorscale":373,"../../lib":498,"../../lib/gup":495,"strongly-connected-components":301}],915:[function(t,e,r){"use strict";e.exports={nodeTextOffsetHorizontal:4,nodeTextOffsetVertical:3,nodePadAcross:10,sankeyIterations:50,forceIterations:5,forceTicksPerFrame:10,duration:500,ease:"linear",cn:{sankey:"sankey",sankeyLinks:"sankey-links",sankeyLink:"sankey-link",sankeyNodeSet:"sankey-node-set",sankeyNode:"sankey-node",nodeRect:"node-rect",nodeLabel:"node-label"}}},{}],916:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../components/color"),o=t("tinycolor2"),s=t("../../plots/domain").defaults,l=t("../../components/fx/hoverlabel_defaults"),c=t("../../plot_api/plot_template"),u=t("../../plots/array_container_defaults");function f(t,e){function r(r,a){return n.coerce(t,e,i.link.colorscales,r,a)}r("label"),r("cmin"),r("cmax"),r("colorscale")}e.exports=function(t,e,r,h){function p(r,a){return n.coerce(t,e,i,r,a)}var d=n.extendDeep(h.hoverlabel,t.hoverlabel),m=t.node,g=c.newContainer(e,"node");function v(t,e){return n.coerce(m,g,i.node,t,e)}v("label"),v("groups"),v("x"),v("y"),v("pad"),v("thickness"),v("line.color"),v("line.width"),v("hoverinfo",t.hoverinfo),l(m,g,v,d),v("hovertemplate");var y=h.colorway;v("color",g.label.map((function(t,e){return a.addOpacity(function(t){return y[t%y.length]}(e),.8)}))),v("customdata");var x=t.link||{},b=c.newContainer(e,"link");function _(t,e){return n.coerce(x,b,i.link,t,e)}_("label"),_("source"),_("target"),_("value"),_("line.color"),_("line.width"),_("hoverinfo",t.hoverinfo),l(x,b,_,d),_("hovertemplate");var w,T=o(h.paper_bgcolor).getLuminance()<.333?"rgba(255, 255, 255, 0.6)":"rgba(0, 0, 0, 0.2)";_("color",n.repeat(T,b.value.length)),_("customdata"),u(x,b,{name:"colorscales",handleItemDefaults:f}),s(e,h,p),p("orientation"),p("valueformat"),p("valuesuffix"),g.x.length&&g.y.length&&(w="freeform"),p("arrangement",w),n.coerceFont(p,"textfont",n.extendFlat({},h.font)),e._length=null}},{"../../components/color":361,"../../components/fx/hoverlabel_defaults":399,"../../lib":498,"../../plot_api/plot_template":538,"../../plots/array_container_defaults":544,"../../plots/domain":579,"./attributes":912,tinycolor2:307}],917:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),moduleType:"trace",name:"sankey",basePlotModule:t("./base_plot"),selectPoints:t("./select.js"),categories:["noOpacity"],meta:{}}},{"./attributes":912,"./base_plot":913,"./calc":914,"./defaults":916,"./plot":918,"./select.js":920}],918:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.numberFormat,o=t("./render"),s=t("../../components/fx"),l=t("../../components/color"),c=t("./constants").cn,u=i._;function f(t){return""!==t}function h(t,e){return t.filter((function(t){return t.key===e.traceId}))}function p(t,e){n.select(t).select("path").style("fill-opacity",e),n.select(t).select("rect").style("fill-opacity",e)}function d(t){n.select(t).select("text.name").style("fill","black")}function m(t){return function(e){return-1!==t.node.sourceLinks.indexOf(e.link)||-1!==t.node.targetLinks.indexOf(e.link)}}function g(t){return function(e){return-1!==e.node.sourceLinks.indexOf(t.link)||-1!==e.node.targetLinks.indexOf(t.link)}}function v(t,e,r){e&&r&&h(r,e).selectAll("."+c.sankeyLink).filter(m(e)).call(x.bind(0,e,r,!1))}function y(t,e,r){e&&r&&h(r,e).selectAll("."+c.sankeyLink).filter(m(e)).call(b.bind(0,e,r,!1))}function x(t,e,r,n){var i=n.datum().link.label;n.style("fill-opacity",(function(t){if(!t.link.concentrationscale)return.4})),i&&h(e,t).selectAll("."+c.sankeyLink).filter((function(t){return t.link.label===i})).style("fill-opacity",(function(t){if(!t.link.concentrationscale)return.4})),r&&h(e,t).selectAll("."+c.sankeyNode).filter(g(t)).call(v)}function b(t,e,r,n){var i=n.datum().link.label;n.style("fill-opacity",(function(t){return t.tinyColorAlpha})),i&&h(e,t).selectAll("."+c.sankeyLink).filter((function(t){return t.link.label===i})).style("fill-opacity",(function(t){return t.tinyColorAlpha})),r&&h(e,t).selectAll(c.sankeyNode).filter(g(t)).call(y)}function _(t,e){var r=t.hoverlabel||{},n=i.nestedProperty(r,e).get();return!Array.isArray(n)&&n}e.exports=function(t,e){for(var r=t._fullLayout,i=r._paper,h=r._size,m=0;m"),color:_(o,"bgcolor")||l.addOpacity(m.color,1),borderColor:_(o,"bordercolor"),fontFamily:_(o,"font.family"),fontSize:_(o,"font.size"),fontColor:_(o,"font.color"),nameLength:_(o,"namelength"),textAlign:_(o,"align"),idealAlign:n.event.x"),color:_(o,"bgcolor")||i.tinyColorHue,borderColor:_(o,"bordercolor"),fontFamily:_(o,"font.family"),fontSize:_(o,"font.size"),fontColor:_(o,"font.color"),nameLength:_(o,"namelength"),textAlign:_(o,"align"),idealAlign:"left",hovertemplate:o.hovertemplate,hovertemplateLabels:y,eventData:[i.node]},{container:r._hoverlayer.node(),outerContainer:r._paper.node(),gd:t});p(w,.85),d(w)}}},unhover:function(e,i,a){!1!==t._fullLayout.hovermode&&(n.select(e).call(y,i,a),"skip"!==i.node.trace.node.hoverinfo&&(i.node.fullData=i.node.trace,t.emit("plotly_unhover",{event:n.event,points:[i.node]})),s.loneUnhover(r._hoverlayer.node()))},select:function(e,r,i){var a=r.node;a.originalEvent=n.event,t._hoverdata=[a],n.select(e).call(y,r,i),s.click(t,{target:!0})}}})}},{"../../components/color":361,"../../components/fx":401,"../../lib":498,"./constants":915,"./render":919,"@plotly/d3":58}],919:[function(t,e,r){"use strict";var n=t("d3-force"),i=t("d3-interpolate").interpolateNumber,a=t("@plotly/d3"),o=t("@plotly/d3-sankey"),s=t("@plotly/d3-sankey-circular"),l=t("./constants"),c=t("tinycolor2"),u=t("../../components/color"),f=t("../../components/drawing"),h=t("../../lib"),p=h.strTranslate,d=h.strRotate,m=t("../../lib/gup"),g=m.keyFun,v=m.repeat,y=m.unwrap,x=t("../../lib/svg_text_utils"),b=t("../../registry"),_=t("../../constants/alignment"),w=_.CAP_SHIFT,T=_.LINE_SPACING;function k(t,e,r){var n,i=y(e),a=i.trace,u=a.domain,f="h"===a.orientation,p=a.node.pad,d=a.node.thickness,m=t.width*(u.x[1]-u.x[0]),g=t.height*(u.y[1]-u.y[0]),v=i._nodes,x=i._links,b=i.circular;(n=b?s.sankeyCircular().circularLinkGap(0):o.sankey()).iterations(l.sankeyIterations).size(f?[m,g]:[g,m]).nodeWidth(d).nodePadding(p).nodeId((function(t){return t.pointNumber})).nodes(v).links(x);var _,w,T,k=n();for(var A in n.nodePadding()=i||(r=i-e.y0)>1e-6&&(e.y0+=r,e.y1+=r),i=e.y1+p}))}(function(t){var e,r,n=t.map((function(t,e){return{x0:t.x0,index:e}})).sort((function(t,e){return t.x0-e.x0})),i=[],a=-1,o=-1/0;for(_=0;_o+d&&(a+=1,e=s.x0),o=s.x0,i[a]||(i[a]=[]),i[a].push(s),r=e-s.x0,s.x0+=r,s.x1+=r}return i}(v=k.nodes));n.update(k)}return{circular:b,key:r,trace:a,guid:h.randstr(),horizontal:f,width:m,height:g,nodePad:a.node.pad,nodeLineColor:a.node.line.color,nodeLineWidth:a.node.line.width,linkLineColor:a.link.line.color,linkLineWidth:a.link.line.width,valueFormat:a.valueformat,valueSuffix:a.valuesuffix,textFont:a.textfont,translateX:u.x[0]*t.width+t.margin.l,translateY:t.height-u.y[1]*t.height+t.margin.t,dragParallel:f?g:m,dragPerpendicular:f?m:g,arrangement:a.arrangement,sankey:n,graph:k,forceLayouts:{},interactionState:{dragInProgress:!1,hovered:!1}}}function A(t,e,r){var n=c(e.color),i=e.source.label+"|"+e.target.label+"__"+r;return e.trace=t.trace,e.curveNumber=t.trace.index,{circular:t.circular,key:i,traceId:t.key,pointNumber:e.pointNumber,link:e,tinyColorHue:u.tinyRGB(n),tinyColorAlpha:n.getAlpha(),linkPath:M,linkLineColor:t.linkLineColor,linkLineWidth:t.linkLineWidth,valueFormat:t.valueFormat,valueSuffix:t.valueSuffix,sankey:t.sankey,parent:t,interactionState:t.interactionState,flow:e.flow}}function M(){return function(t){if(t.link.circular)return e=t.link,r=e.width/2,n=e.circularPathData,"top"===e.circularLinkType?"M "+n.targetX+" "+(n.targetY+r)+" L"+n.rightInnerExtent+" "+(n.targetY+r)+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightSmallArcRadius+r)+" 0 0 1 "+(n.rightFullExtent-r)+" "+(n.targetY-n.rightSmallArcRadius)+"L"+(n.rightFullExtent-r)+" "+n.verticalRightInnerExtent+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightLargeArcRadius+r)+" 0 0 1 "+n.rightInnerExtent+" "+(n.verticalFullExtent-r)+"L"+n.leftInnerExtent+" "+(n.verticalFullExtent-r)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftLargeArcRadius+r)+" 0 0 1 "+(n.leftFullExtent+r)+" "+n.verticalLeftInnerExtent+"L"+(n.leftFullExtent+r)+" "+(n.sourceY-n.leftSmallArcRadius)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftSmallArcRadius+r)+" 0 0 1 "+n.leftInnerExtent+" "+(n.sourceY+r)+"L"+n.sourceX+" "+(n.sourceY+r)+"L"+n.sourceX+" "+(n.sourceY-r)+"L"+n.leftInnerExtent+" "+(n.sourceY-r)+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftSmallArcRadius-r)+" 0 0 0 "+(n.leftFullExtent-r)+" "+(n.sourceY-n.leftSmallArcRadius)+"L"+(n.leftFullExtent-r)+" "+n.verticalLeftInnerExtent+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftLargeArcRadius-r)+" 0 0 0 "+n.leftInnerExtent+" "+(n.verticalFullExtent+r)+"L"+n.rightInnerExtent+" "+(n.verticalFullExtent+r)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightLargeArcRadius-r)+" 0 0 0 "+(n.rightFullExtent+r)+" "+n.verticalRightInnerExtent+"L"+(n.rightFullExtent+r)+" "+(n.targetY-n.rightSmallArcRadius)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightSmallArcRadius-r)+" 0 0 0 "+n.rightInnerExtent+" "+(n.targetY-r)+"L"+n.targetX+" "+(n.targetY-r)+"Z":"M "+n.targetX+" "+(n.targetY-r)+" L"+n.rightInnerExtent+" "+(n.targetY-r)+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightSmallArcRadius+r)+" 0 0 0 "+(n.rightFullExtent-r)+" "+(n.targetY+n.rightSmallArcRadius)+"L"+(n.rightFullExtent-r)+" "+n.verticalRightInnerExtent+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightLargeArcRadius+r)+" 0 0 0 "+n.rightInnerExtent+" "+(n.verticalFullExtent+r)+"L"+n.leftInnerExtent+" "+(n.verticalFullExtent+r)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftLargeArcRadius+r)+" 0 0 0 "+(n.leftFullExtent+r)+" "+n.verticalLeftInnerExtent+"L"+(n.leftFullExtent+r)+" "+(n.sourceY+n.leftSmallArcRadius)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftSmallArcRadius+r)+" 0 0 0 "+n.leftInnerExtent+" "+(n.sourceY-r)+"L"+n.sourceX+" "+(n.sourceY-r)+"L"+n.sourceX+" "+(n.sourceY+r)+"L"+n.leftInnerExtent+" "+(n.sourceY+r)+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftSmallArcRadius-r)+" 0 0 1 "+(n.leftFullExtent-r)+" "+(n.sourceY+n.leftSmallArcRadius)+"L"+(n.leftFullExtent-r)+" "+n.verticalLeftInnerExtent+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftLargeArcRadius-r)+" 0 0 1 "+n.leftInnerExtent+" "+(n.verticalFullExtent-r)+"L"+n.rightInnerExtent+" "+(n.verticalFullExtent-r)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightLargeArcRadius-r)+" 0 0 1 "+(n.rightFullExtent+r)+" "+n.verticalRightInnerExtent+"L"+(n.rightFullExtent+r)+" "+(n.targetY+n.rightSmallArcRadius)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightSmallArcRadius-r)+" 0 0 1 "+n.rightInnerExtent+" "+(n.targetY+r)+"L"+n.targetX+" "+(n.targetY+r)+"Z";var e,r,n,a=t.link.source.x1,o=t.link.target.x0,s=i(a,o),l=s(.5),c=s(.5),u=t.link.y0-t.link.width/2,f=t.link.y0+t.link.width/2,h=t.link.y1-t.link.width/2,p=t.link.y1+t.link.width/2;return"M"+a+","+u+"C"+l+","+u+" "+c+","+h+" "+o+","+h+"L"+o+","+p+"C"+c+","+p+" "+l+","+f+" "+a+","+f+"Z"}}function S(t,e){var r=c(e.color),n=l.nodePadAcross,i=t.nodePad/2;e.dx=e.x1-e.x0,e.dy=e.y1-e.y0;var a=e.dx,o=Math.max(.5,e.dy),s="node_"+e.pointNumber;return e.group&&(s=h.randstr()),e.trace=t.trace,e.curveNumber=t.trace.index,{index:e.pointNumber,key:s,partOfGroup:e.partOfGroup||!1,group:e.group,traceId:t.key,trace:t.trace,node:e,nodePad:t.nodePad,nodeLineColor:t.nodeLineColor,nodeLineWidth:t.nodeLineWidth,textFont:t.textFont,size:t.horizontal?t.height:t.width,visibleWidth:Math.ceil(a),visibleHeight:o,zoneX:-n,zoneY:-i,zoneWidth:a+2*n,zoneHeight:o+2*i,labelY:t.horizontal?e.dy/2+1:e.dx/2+1,left:1===e.originalLayer,sizeAcross:t.width,forceLayouts:t.forceLayouts,horizontal:t.horizontal,darkBackground:r.getBrightness()<=128,tinyColorHue:u.tinyRGB(r),tinyColorAlpha:r.getAlpha(),valueFormat:t.valueFormat,valueSuffix:t.valueSuffix,sankey:t.sankey,graph:t.graph,arrangement:t.arrangement,uniqueNodeLabelPathId:[t.guid,t.key,s].join("_"),interactionState:t.interactionState,figure:t}}function E(t){t.attr("transform",(function(t){return p(t.node.x0.toFixed(3),t.node.y0.toFixed(3))}))}function L(t){t.call(E)}function C(t,e){t.call(L),e.attr("d",M())}function P(t){t.attr("width",(function(t){return t.node.x1-t.node.x0})).attr("height",(function(t){return t.visibleHeight}))}function I(t){return t.link.width>1||t.linkLineWidth>0}function O(t){return p(t.translateX,t.translateY)+(t.horizontal?"matrix(1 0 0 1 0 0)":"matrix(0 1 1 0 0 0)")}function z(t,e,r){t.on(".basic",null).on("mouseover.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.hover(this,t,e),t.interactionState.hovered=[this,t])})).on("mousemove.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.follow(this,t),t.interactionState.hovered=[this,t])})).on("mouseout.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.unhover(this,t,e),t.interactionState.hovered=!1)})).on("click.basic",(function(t){t.interactionState.hovered&&(r.unhover(this,t,e),t.interactionState.hovered=!1),t.interactionState.dragInProgress||t.partOfGroup||r.select(this,t,e)}))}function D(t,e,r,i){var o=a.behavior.drag().origin((function(t){return{x:t.node.x0+t.visibleWidth/2,y:t.node.y0+t.visibleHeight/2}})).on("dragstart",(function(a){if("fixed"!==a.arrangement&&(h.ensureSingle(i._fullLayout._infolayer,"g","dragcover",(function(t){i._fullLayout._dragCover=t})),h.raiseToTop(this),a.interactionState.dragInProgress=a.node,F(a.node),a.interactionState.hovered&&(r.nodeEvents.unhover.apply(0,a.interactionState.hovered),a.interactionState.hovered=!1),"snap"===a.arrangement)){var o=a.traceId+"|"+a.key;a.forceLayouts[o]?a.forceLayouts[o].alpha(1):function(t,e,r,i){!function(t){for(var e=0;e0&&n.forceLayouts[e].alpha(0)}}(0,e,a,r)).stop()}(0,o,a),function(t,e,r,n,i){window.requestAnimationFrame((function a(){var o;for(o=0;o0)window.requestAnimationFrame(a);else{var s=r.node.originalX;r.node.x0=s-r.visibleWidth/2,r.node.x1=s+r.visibleWidth/2,R(r,i)}}))}(t,e,a,o,i)}})).on("drag",(function(r){if("fixed"!==r.arrangement){var n=a.event.x,i=a.event.y;"snap"===r.arrangement?(r.node.x0=n-r.visibleWidth/2,r.node.x1=n+r.visibleWidth/2,r.node.y0=i-r.visibleHeight/2,r.node.y1=i+r.visibleHeight/2):("freeform"===r.arrangement&&(r.node.x0=n-r.visibleWidth/2,r.node.x1=n+r.visibleWidth/2),i=Math.max(0,Math.min(r.size-r.visibleHeight/2,i)),r.node.y0=i-r.visibleHeight/2,r.node.y1=i+r.visibleHeight/2),F(r.node),"snap"!==r.arrangement&&(r.sankey.update(r.graph),C(t.filter(B(r)),e))}})).on("dragend",(function(t){if("fixed"!==t.arrangement){t.interactionState.dragInProgress=!1;for(var e=0;el&&C[v].gap;)v--;for(x=C[v].s,m=C.length-1;m>v;m--)C[m].s=x;for(;lM[u]&&u=0;i--){var a=t[i];if("scatter"===a.type&&a.xaxis===r.xaxis&&a.yaxis===r.yaxis){a.opacity=void 0;break}}}}}},{}],929:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./attributes"),o=t("./constants"),s=t("./subtypes"),l=t("./xy_defaults"),c=t("./period_defaults"),u=t("./stack_defaults"),f=t("./marker_defaults"),h=t("./line_defaults"),p=t("./line_shape_defaults"),d=t("./text_defaults"),m=t("./fillcolor_defaults"),g=t("../../lib").coercePattern;e.exports=function(t,e,r,v){function y(r,i){return n.coerce(t,e,a,r,i)}var x=l(t,e,v,y);if(x||(e.visible=!1),e.visible){c(t,e,v,y),y("xhoverformat"),y("yhoverformat");var b=u(t,e,v,y),_=!b&&x=Math.min(e,r)&&d<=Math.max(e,r)?0:1/0}var n=Math.max(3,t.mrc||0),i=1-1/n,a=Math.abs(h.c2p(t.x)-d);return a=Math.min(e,r)&&m<=Math.max(e,r)?0:1/0}var n=Math.max(3,t.mrc||0),i=1-1/n,a=Math.abs(p.c2p(t.y)-m);return aW!=(N=z[I][1])>=W&&(R=z[I-1][0],F=z[I][0],N-B&&(D=R+(F-R)*(W-B)/(N-B),H=Math.min(H,D),q=Math.max(q,D)));H=Math.max(H,0),q=Math.min(q,h._length);var X=s.defaultLine;return s.opacity(f.fillcolor)?X=f.fillcolor:s.opacity((f.line||{}).color)&&(X=f.line.color),n.extendFlat(t,{distance:t.maxHoverDistance,x0:H,x1:q,y0:W,y1:W,color:X,hovertemplate:!1}),delete t.index,f.text&&!Array.isArray(f.text)?t.text=String(f.text):t.text=f.name,[t]}}}},{"../../components/color":361,"../../components/fx":401,"../../lib":498,"../../registry":633,"./get_trace_color":932}],934:[function(t,e,r){"use strict";var n=t("./subtypes");e.exports={hasLines:n.hasLines,hasMarkers:n.hasMarkers,hasText:n.hasText,isBubble:n.isBubble,attributes:t("./attributes"),supplyDefaults:t("./defaults"),crossTraceDefaults:t("./cross_trace_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./cross_trace_calc"),arraysToCalcdata:t("./arrays_to_calcdata"),plot:t("./plot"),colorbar:t("./marker_colorbar"),formatLabels:t("./format_labels"),style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("./select"),animatable:!0,moduleType:"trace",name:"scatter",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","symbols","errorBarsOK","showLegend","scatter-like","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"./arrays_to_calcdata":921,"./attributes":922,"./calc":923,"./cross_trace_calc":927,"./cross_trace_defaults":928,"./defaults":929,"./format_labels":931,"./hover":933,"./marker_colorbar":940,"./plot":943,"./select":944,"./style":946,"./subtypes":947}],935:[function(t,e,r){"use strict";var n=t("../../lib").isArrayOrTypedArray,i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults");e.exports=function(t,e,r,o,s,l){var c=(t.marker||{}).color;(s("line.color",r),i(t,"line"))?a(t,e,o,s,{prefix:"line.",cLetter:"c"}):s("line.color",!n(c)&&c||r);s("line.width"),(l||{}).noDash||s("line.dash")}},{"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"../../lib":498}],936:[function(t,e,r){"use strict";var n=t("../../constants/numerical"),i=n.BADNUM,a=n.LOG_CLIP,o=a+.5,s=a-.5,l=t("../../lib"),c=l.segmentsIntersect,u=l.constrain,f=t("./constants");e.exports=function(t,e){var r,n,a,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S=e.xaxis,E=e.yaxis,L="log"===S.type,C="log"===E.type,P=S._length,I=E._length,O=e.connectGaps,z=e.baseTolerance,D=e.shape,R="linear"===D,F=e.fill&&"none"!==e.fill,B=[],N=f.minTolerance,j=t.length,U=new Array(j),V=0;function H(r){var n=t[r];if(!n)return!1;var a=e.linearized?S.l2p(n.x):S.c2p(n.x),l=e.linearized?E.l2p(n.y):E.c2p(n.y);if(a===i){if(L&&(a=S.c2p(n.x,!0)),a===i)return!1;C&&l===i&&(a*=Math.abs(S._m*I*(S._m>0?o:s)/(E._m*P*(E._m>0?o:s)))),a*=1e3}if(l===i){if(C&&(l=E.c2p(n.y,!0)),l===i)return!1;l*=1e3}return[a,l]}function q(t,e,r,n){var i=r-t,a=n-e,o=.5-t,s=.5-e,l=i*i+a*a,c=i*o+a*s;if(c>0&&crt||t[1]it)return[u(t[0],et,rt),u(t[1],nt,it)]}function st(t,e){return t[0]===e[0]&&(t[0]===et||t[0]===rt)||(t[1]===e[1]&&(t[1]===nt||t[1]===it)||void 0)}function lt(t,e,r){return function(n,i){var a=ot(n),o=ot(i),s=[];if(a&&o&&st(a,o))return s;a&&s.push(a),o&&s.push(o);var c=2*l.constrain((n[t]+i[t])/2,e,r)-((a||n)[t]+(o||i)[t]);c&&((a&&o?c>0==a[t]>o[t]?a:o:a||o)[t]+=c);return s}}function ct(t){var e=t[0],r=t[1],n=e===U[V-1][0],i=r===U[V-1][1];if(!n||!i)if(V>1){var a=e===U[V-2][0],o=r===U[V-2][1];n&&(e===et||e===rt)&&a?o?V--:U[V-1]=t:i&&(r===nt||r===it)&&o?a?V--:U[V-1]=t:U[V++]=t}else U[V++]=t}function ut(t){U[V-1][0]!==t[0]&&U[V-1][1]!==t[1]&&ct([Z,J]),ct(t),K=null,Z=J=0}function ft(t){if(A=t[0]/P,M=t[1]/I,W=t[0]rt?rt:0,X=t[1]it?it:0,W||X){if(V)if(K){var e=$(K,t);e.length>1&&(ut(e[0]),U[V++]=e[1])}else Q=$(U[V-1],t)[0],U[V++]=Q;else U[V++]=[W||t[0],X||t[1]];var r=U[V-1];W&&X&&(r[0]!==W||r[1]!==X)?(K&&(Z!==W&&J!==X?ct(Z&&J?(n=K,a=(i=t)[0]-n[0],o=(i[1]-n[1])/a,(n[1]*i[0]-i[1]*n[0])/a>0?[o>0?et:rt,it]:[o>0?rt:et,nt]):[Z||W,J||X]):Z&&J&&ct([Z,J])),ct([W,X])):Z-W&&J-X&&ct([W||Z,X||J]),K=t,Z=W,J=X}else K&&ut($(K,t)[0]),U[V++]=t;var n,i,a,o}for("linear"===D||"spline"===D?$=function(t,e){for(var r=[],n=0,i=0;i<4;i++){var a=at[i],o=c(t[0],t[1],e[0],e[1],a[0],a[1],a[2],a[3]);o&&(!n||Math.abs(o.x-r[0][0])>1||Math.abs(o.y-r[0][1])>1)&&(o=[o.x,o.y],n&&Y(o,t)G(d,ht))break;a=d,(_=v[0]*g[0]+v[1]*g[1])>x?(x=_,h=d,m=!1):_=t.length||!d)break;ft(d),n=d}}else ft(h)}K&&ct([Z||K[0],J||K[1]]),B.push(U.slice(0,V))}return B}},{"../../constants/numerical":474,"../../lib":498,"./constants":926}],937:[function(t,e,r){"use strict";e.exports=function(t,e,r){"spline"===r("line.shape")&&r("line.smoothing")}},{}],938:[function(t,e,r){"use strict";var n={tonextx:1,tonexty:1,tonext:1};e.exports=function(t,e,r){var i,a,o,s,l,c={},u=!1,f=-1,h=0,p=-1;for(a=0;a=0?l=p:(l=p=h,h++),l0?Math.max(r,a):0}}},{"fast-isnumeric":185}],940:[function(t,e,r){"use strict";e.exports={container:"marker",min:"cmin",max:"cmax"}},{}],941:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults"),o=t("./subtypes");e.exports=function(t,e,r,s,l,c){var u=o.isBubble(t),f=(t.line||{}).color;(c=c||{},f&&(r=f),l("marker.symbol"),l("marker.opacity",u?.7:1),l("marker.size"),l("marker.color",r),i(t,"marker")&&a(t,e,s,l,{prefix:"marker.",cLetter:"c"}),c.noSelect||(l("selected.marker.color"),l("unselected.marker.color"),l("selected.marker.size"),l("unselected.marker.size")),c.noLine||(l("marker.line.color",f&&!Array.isArray(f)&&e.marker.color!==f?f:u?n.background:n.defaultLine),i(t,"marker.line")&&a(t,e,s,l,{prefix:"marker.line.",cLetter:"c"}),l("marker.line.width",u?1:0)),u&&(l("marker.sizeref"),l("marker.sizemin"),l("marker.sizemode")),c.gradient)&&("none"!==l("marker.gradient.type")&&l("marker.gradient.color"))}},{"../../components/color":361,"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"./subtypes":947}],942:[function(t,e,r){"use strict";var n=t("../../lib").dateTick0,i=t("../../constants/numerical").ONEWEEK;function a(t,e){return n(e,t%i==0?1:0)}e.exports=function(t,e,r,n,i){if(i||(i={x:!0,y:!0}),i.x){var o=n("xperiod");o&&(n("xperiod0",a(o,e.xcalendar)),n("xperiodalignment"))}if(i.y){var s=n("yperiod");s&&(n("yperiod0",a(s,e.ycalendar)),n("yperiodalignment"))}}},{"../../constants/numerical":474,"../../lib":498}],943:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../registry"),a=t("../../lib"),o=a.ensureSingle,s=a.identity,l=t("../../components/drawing"),c=t("./subtypes"),u=t("./line_points"),f=t("./link_traces"),h=t("../../lib/polygon").tester;function p(t,e,r,f,p,d,m){var g;!function(t,e,r,i,o){var s=r.xaxis,l=r.yaxis,u=n.extent(a.simpleMap(s.range,s.r2c)),f=n.extent(a.simpleMap(l.range,l.r2c)),h=i[0].trace;if(!c.hasMarkers(h))return;var p=h.marker.maxdisplayed;if(0===p)return;var d=i.filter((function(t){return t.x>=u[0]&&t.x<=u[1]&&t.y>=f[0]&&t.y<=f[1]})),m=Math.ceil(d.length/p),g=0;o.forEach((function(t,r){var n=t[0].trace;c.hasMarkers(n)&&n.marker.maxdisplayed>0&&r0;function y(t){return v?t.transition():t}var x=r.xaxis,b=r.yaxis,_=f[0].trace,w=_.line,T=n.select(d),k=o(T,"g","errorbars"),A=o(T,"g","lines"),M=o(T,"g","points"),S=o(T,"g","text");if(i.getComponentMethod("errorbars","plot")(t,k,r,m),!0===_.visible){var E,L;y(T).style("opacity",_.opacity);var C=_.fill.charAt(_.fill.length-1);"x"!==C&&"y"!==C&&(C=""),f[0][r.isRangePlot?"nodeRangePlot3":"node3"]=T;var P,I,O="",z=[],D=_._prevtrace;D&&(O=D._prevRevpath||"",L=D._nextFill,z=D._polygons);var R,F,B,N,j,U,V,H="",q="",G=[],Y=a.noop;if(E=_._ownFill,c.hasLines(_)||"none"!==_.fill){for(L&&L.datum(f),-1!==["hv","vh","hvh","vhv"].indexOf(w.shape)?(R=l.steps(w.shape),F=l.steps(w.shape.split("").reverse().join(""))):R=F="spline"===w.shape?function(t){var e=t[t.length-1];return t.length>1&&t[0][0]===e[0]&&t[0][1]===e[1]?l.smoothclosed(t.slice(1),w.smoothing):l.smoothopen(t,w.smoothing)}:function(t){return"M"+t.join("L")},B=function(t){return F(t.reverse())},G=u(f,{xaxis:x,yaxis:b,connectGaps:_.connectgaps,baseTolerance:Math.max(w.width||1,3)/4,shape:w.shape,simplify:w.simplify,fill:_.fill}),V=_._polygons=new Array(G.length),g=0;g1){var r=n.select(this);if(r.datum(f),t)y(r.style("opacity",0).attr("d",P).call(l.lineGroupStyle)).style("opacity",1);else{var i=y(r);i.attr("d",P),l.singleLineStyle(f,i)}}}}}var W=A.selectAll(".js-line").data(G);y(W.exit()).style("opacity",0).remove(),W.each(Y(!1)),W.enter().append("path").classed("js-line",!0).style("vector-effect","non-scaling-stroke").call(l.lineGroupStyle).each(Y(!0)),l.setClipUrl(W,r.layerClipId,t),G.length?(E?(E.datum(f),N&&U&&(C?("y"===C?N[1]=U[1]=b.c2p(0,!0):"x"===C&&(N[0]=U[0]=x.c2p(0,!0)),y(E).attr("d","M"+U+"L"+N+"L"+H.substr(1)).call(l.singleFillStyle,t)):y(E).attr("d",H+"Z").call(l.singleFillStyle,t))):L&&("tonext"===_.fill.substr(0,6)&&H&&O?("tonext"===_.fill?y(L).attr("d",H+"Z"+O+"Z").call(l.singleFillStyle,t):y(L).attr("d",H+"L"+O.substr(1)+"Z").call(l.singleFillStyle,t),_._polygons=_._polygons.concat(z)):(Z(L),_._polygons=null)),_._prevRevpath=q,_._prevPolygons=V):(E?Z(E):L&&Z(L),_._polygons=_._prevRevpath=_._prevPolygons=null),M.datum(f),S.datum(f),function(e,i,a){var o,u=a[0].trace,f=c.hasMarkers(u),h=c.hasText(u),p=tt(u),d=et,m=et;if(f||h){var g=s,_=u.stackgroup,w=_&&"infer zero"===t._fullLayout._scatterStackOpts[x._id+b._id][_].stackgaps;u.marker.maxdisplayed||u._needsCull?g=w?K:J:_&&!w&&(g=Q),f&&(d=g),h&&(m=g)}var T,k=(o=e.selectAll("path.point").data(d,p)).enter().append("path").classed("point",!0);v&&k.call(l.pointStyle,u,t).call(l.translatePoints,x,b).style("opacity",0).transition().style("opacity",1),o.order(),f&&(T=l.makePointStyleFns(u)),o.each((function(e){var i=n.select(this),a=y(i);l.translatePoint(e,a,x,b)?(l.singlePointStyle(e,a,u,T,t),r.layerClipId&&l.hideOutsideRangePoint(e,a,x,b,u.xcalendar,u.ycalendar),u.customdata&&i.classed("plotly-customdata",null!==e.data&&void 0!==e.data)):a.remove()})),v?o.exit().transition().style("opacity",0).remove():o.exit().remove(),(o=i.selectAll("g").data(m,p)).enter().append("g").classed("textpoint",!0).append("text"),o.order(),o.each((function(t){var e=n.select(this),i=y(e.select("text"));l.translatePoint(t,i,x,b)?r.layerClipId&&l.hideOutsideRangePoint(t,e,x,b,u.xcalendar,u.ycalendar):e.remove()})),o.selectAll("text").call(l.textPointStyle,u,t).each((function(t){var e=x.c2p(t.x),r=b.c2p(t.y);n.select(this).selectAll("tspan.line").each((function(){y(n.select(this)).attr({x:e,y:r})}))})),o.exit().remove()}(M,S,f);var X=!1===_.cliponaxis?null:r.layerClipId;l.setClipUrl(M,X,t),l.setClipUrl(S,X,t)}function Z(t){y(t).attr("d","M0,0Z")}function J(t){return t.filter((function(t){return!t.gap&&t.vis}))}function K(t){return t.filter((function(t){return t.vis}))}function Q(t){return t.filter((function(t){return!t.gap}))}function $(t){return t.id}function tt(t){if(t.ids)return $}function et(){return!1}}e.exports=function(t,e,r,i,a,c){var u,h,d=!a,m=!!a&&a.duration>0,g=f(t,e,r);((u=i.selectAll("g.trace").data(g,(function(t){return t[0].trace.uid}))).enter().append("g").attr("class",(function(t){return"trace scatter trace"+t[0].trace.uid})).style("stroke-miterlimit",2),u.order(),function(t,e,r){e.each((function(e){var i=o(n.select(this),"g","fills");l.setClipUrl(i,r.layerClipId,t);var a=e[0].trace,c=[];a._ownfill&&c.push("_ownFill"),a._nexttrace&&c.push("_nextFill");var u=i.selectAll("g").data(c,s);u.enter().append("g"),u.exit().each((function(t){a[t]=null})).remove(),u.order().each((function(t){a[t]=o(n.select(this),"path","js-fill")}))}))}(t,u,e),m)?(c&&(h=c()),n.transition().duration(a.duration).ease(a.easing).each("end",(function(){h&&h()})).each("interrupt",(function(){h&&h()})).each((function(){i.selectAll("g.trace").each((function(r,n){p(t,n,e,r,g,this,a)}))}))):u.each((function(r,n){p(t,n,e,r,g,this,a)}));d&&u.exit().remove(),i.selectAll("path:not([d])").remove()}},{"../../components/drawing":383,"../../lib":498,"../../lib/polygon":510,"../../registry":633,"./line_points":936,"./link_traces":938,"./subtypes":947,"@plotly/d3":58}],944:[function(t,e,r){"use strict";var n=t("./subtypes");e.exports=function(t,e){var r,i,a,o,s=t.cd,l=t.xaxis,c=t.yaxis,u=[],f=s[0].trace;if(!n.hasMarkers(f)&&!n.hasText(f))return[];if(!1===e)for(r=0;r0){var h=i.c2l(u);i._lowerLogErrorBound||(i._lowerLogErrorBound=h),i._lowerErrorBound=Math.min(i._lowerLogErrorBound,h)}}else o[s]=[-l[0]*r,l[1]*r]}return o}e.exports=function(t,e,r){var n=[i(t.x,t.error_x,e[0],r.xaxis),i(t.y,t.error_y,e[1],r.yaxis),i(t.z,t.error_z,e[2],r.zaxis)],a=function(t){for(var e=0;e-1?-1:t.indexOf("right")>-1?1:0}function b(t){return null==t?0:t.indexOf("top")>-1?-1:t.indexOf("bottom")>-1?1:0}function _(t,e){return e(4*t)}function w(t){return p[t]}function T(t,e,r,n,i){var a=null;if(l.isArrayOrTypedArray(t)){a=[];for(var o=0;o=0){var m=function(t,e,r){var n,i=(r+1)%3,a=(r+2)%3,o=[],l=[];for(n=0;n=0&&f("surfacecolor",h||p);for(var d=["x","y","z"],m=0;m<3;++m){var g="projection."+d[m];f(g+".show")&&(f(g+".opacity"),f(g+".scale"))}var v=n.getComponentMethod("errorbars","supplyDefaults");v(t,e,h||p||r,{axis:"z"}),v(t,e,h||p||r,{axis:"y",inherit:"z"}),v(t,e,h||p||r,{axis:"x",inherit:"z"})}else e.visible=!1}},{"../../lib":498,"../../registry":633,"../scatter/line_defaults":935,"../scatter/marker_defaults":941,"../scatter/subtypes":947,"../scatter/text_defaults":948,"./attributes":950}],955:[function(t,e,r){"use strict";e.exports={plot:t("./convert"),attributes:t("./attributes"),markerSymbols:t("../../constants/gl3d_markers"),supplyDefaults:t("./defaults"),colorbar:[{container:"marker",min:"cmin",max:"cmax"},{container:"line",min:"cmin",max:"cmax"}],calc:t("./calc"),moduleType:"trace",name:"scatter3d",basePlotModule:t("../../plots/gl3d"),categories:["gl3d","symbols","showLegend","scatter-like"],meta:{}}},{"../../constants/gl3d_markers":472,"../../plots/gl3d":593,"./attributes":950,"./calc":951,"./convert":953,"./defaults":954}],956:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../plots/attributes"),a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../../plots/template_attributes").texttemplateAttrs,s=t("../../components/colorscale/attributes"),l=t("../../lib/extend").extendFlat,c=n.marker,u=n.line,f=c.line;e.exports={carpet:{valType:"string",editType:"calc"},a:{valType:"data_array",editType:"calc"},b:{valType:"data_array",editType:"calc"},mode:l({},n.mode,{dflt:"markers"}),text:l({},n.text,{}),texttemplate:o({editType:"plot"},{keys:["a","b","text"]}),hovertext:l({},n.hovertext,{}),line:{color:u.color,width:u.width,dash:u.dash,shape:l({},u.shape,{values:["linear","spline"]}),smoothing:u.smoothing,editType:"calc"},connectgaps:n.connectgaps,fill:l({},n.fill,{values:["none","toself","tonext"],dflt:"none"}),fillcolor:n.fillcolor,marker:l({symbol:c.symbol,opacity:c.opacity,maxdisplayed:c.maxdisplayed,size:c.size,sizeref:c.sizeref,sizemin:c.sizemin,sizemode:c.sizemode,line:l({width:f.width,editType:"calc"},s("marker.line")),gradient:c.gradient,editType:"calc"},s("marker")),textfont:n.textfont,textposition:n.textposition,selected:n.selected,unselected:n.unselected,hoverinfo:l({},i.hoverinfo,{flags:["a","b","text","name"]}),hoveron:n.hoveron,hovertemplate:a()}},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/template_attributes":628,"../scatter/attributes":922}],957:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../scatter/colorscale_calc"),a=t("../scatter/arrays_to_calcdata"),o=t("../scatter/calc_selection"),s=t("../scatter/calc").calcMarkerSize,l=t("../carpet/lookup_carpetid");e.exports=function(t,e){var r=e._carpetTrace=l(t,e);if(r&&r.visible&&"legendonly"!==r.visible){var c;e.xaxis=r.xaxis,e.yaxis=r.yaxis;var u,f,h=e._length,p=new Array(h),d=!1;for(c=0;c")}return o}function y(t,e){var r;r=t.labelprefix&&t.labelprefix.length>0?t.labelprefix.replace(/ = $/,""):t._hovertitle,g.push(r+": "+e.toFixed(3)+t.labelsuffix)}}},{"../../lib":498,"../scatter/hover":933}],962:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../scatter/select"),eventData:t("./event_data"),moduleType:"trace",name:"scattercarpet",basePlotModule:t("../../plots/cartesian"),categories:["svg","carpet","symbols","showLegend","carpetDependent","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"../scatter/marker_colorbar":940,"../scatter/select":944,"../scatter/style":946,"./attributes":956,"./calc":957,"./defaults":958,"./event_data":959,"./format_labels":960,"./hover":961,"./plot":963}],963:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../plots/cartesian/axes"),a=t("../../components/drawing");e.exports=function(t,e,r,o){var s,l,c,u=r[0][0].carpet,f={xaxis:i.getFromId(t,u.xaxis||"x"),yaxis:i.getFromId(t,u.yaxis||"y"),plot:e.plot};for(n(t,f,r,o),s=0;s")}(c,m,t,l[0].t.labels),t.hovertemplate=c.hovertemplate,[t]}}},{"../../components/fx":401,"../../constants/numerical":474,"../../lib":498,"../scatter/get_trace_color":932,"./attributes":964}],970:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),calcGeoJSON:t("./plot").calcGeoJSON,plot:t("./plot").plot,style:t("./style"),styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"scattergeo",basePlotModule:t("../../plots/geo"),categories:["geo","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/geo":584,"../scatter/marker_colorbar":940,"../scatter/style":946,"./attributes":964,"./calc":965,"./defaults":966,"./event_data":967,"./format_labels":968,"./hover":969,"./plot":971,"./select":972,"./style":973}],971:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../lib/topojson_utils").getTopojsonFeatures,o=t("../../lib/geojson_utils"),s=t("../../lib/geo_location_utils"),l=t("../../plots/cartesian/autorange").findExtremes,c=t("../../constants/numerical").BADNUM,u=t("../scatter/calc").calcMarkerSize,f=t("../scatter/subtypes"),h=t("./style");e.exports={calcGeoJSON:function(t,e){var r,n,i=t[0].trace,o=e[i.geo],f=o._subplot,h=i._length;if(Array.isArray(i.locations)){var p=i.locationmode,d="geojson-id"===p?s.extractTraceFeature(t):a(i,f.topojson);for(r=0;r=g,w=2*b,T={},k=l.makeCalcdata(e,"x"),A=y.makeCalcdata(e,"y"),M=s(e,l,"x",k),S=s(e,y,"y",A),E=M.vals,L=S.vals;e._x=E,e._y=L,e.xperiodalignment&&(e._origX=k,e._xStarts=M.starts,e._xEnds=M.ends),e.yperiodalignment&&(e._origY=A,e._yStarts=S.starts,e._yEnds=S.ends);var C=new Array(w),P=new Array(b);for(r=0;r1&&i.extendFlat(s.line,p.linePositions(t,r,n));if(s.errorX||s.errorY){var l=p.errorBarPositions(t,r,n,a,o);s.errorX&&i.extendFlat(s.errorX,l.x),s.errorY&&i.extendFlat(s.errorY,l.y)}s.text&&(i.extendFlat(s.text,{positions:n},p.textPosition(t,r,s.text,s.marker)),i.extendFlat(s.textSel,{positions:n},p.textPosition(t,r,s.text,s.markerSel)),i.extendFlat(s.textUnsel,{positions:n},p.textPosition(t,r,s.text,s.markerUnsel)));return s}(t,0,e,C,E,L),z=d(t,x);return f(o,e),_?O.marker&&(I=O.marker.sizeAvg||Math.max(O.marker.size,3)):I=c(e,b),u(t,e,l,y,E,L,I),O.errorX&&v(e,l,O.errorX),O.errorY&&v(e,y,O.errorY),O.fill&&!z.fill2d&&(z.fill2d=!0),O.marker&&!z.scatter2d&&(z.scatter2d=!0),O.line&&!z.line2d&&(z.line2d=!0),!O.errorX&&!O.errorY||z.error2d||(z.error2d=!0),O.text&&!z.glText&&(z.glText=!0),O.marker&&(O.marker.snap=b),z.lineOptions.push(O.line),z.errorXOptions.push(O.errorX),z.errorYOptions.push(O.errorY),z.fillOptions.push(O.fill),z.markerOptions.push(O.marker),z.markerSelectedOptions.push(O.markerSel),z.markerUnselectedOptions.push(O.markerUnsel),z.textOptions.push(O.text),z.textSelectedOptions.push(O.textSel),z.textUnselectedOptions.push(O.textUnsel),z.selectBatch.push([]),z.unselectBatch.push([]),T._scene=z,T.index=z.count,T.x=E,T.y=L,T.positions=C,z.count++,[{x:!1,y:!1,t:T,trace:e}]}},{"../../constants/numerical":474,"../../lib":498,"../../plots/cartesian/align_period":546,"../../plots/cartesian/autorange":548,"../../plots/cartesian/axis_ids":553,"../scatter/calc":923,"../scatter/colorscale_calc":925,"./constants":977,"./convert":978,"./scene_update":986,"@plotly/point-cluster":59}],977:[function(t,e,r){"use strict";e.exports={TOO_MANY_POINTS:1e5,SYMBOL_SDF_SIZE:200,SYMBOL_SIZE:20,SYMBOL_STROKE:1,DOT_RE:/-dot/,OPEN_RE:/-open/,DASHES:{solid:[1],dot:[1,1],dash:[4,1],longdash:[8,1],dashdot:[4,1,1,1],longdashdot:[8,1,1,1]}}},{}],978:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("svg-path-sdf"),a=t("color-normalize"),o=t("../../registry"),s=t("../../lib"),l=t("../../components/drawing"),c=t("../../plots/cartesian/axis_ids"),u=t("../../lib/gl_format_color").formatColor,f=t("../scatter/subtypes"),h=t("../scatter/make_bubble_size_func"),p=t("./helpers"),d=t("./constants"),m=t("../../constants/interactions").DESELECTDIM,g={start:1,left:1,end:-1,right:-1,middle:0,center:0,bottom:1,top:-1},v=t("../../components/fx/helpers").appendArrayPointValue;function y(t,e){var r,i=t._fullLayout,a=e._length,o=e.textfont,l=e.textposition,c=Array.isArray(l)?l:[l],u=o.color,f=o.size,h=o.family,p={},d=t._context.plotGlPixelRatio,m=e.texttemplate;if(m){p.text=[];var g=i._d3locale,y=Array.isArray(m),x=y?Math.min(m.length,a):a,b=y?function(t){return m[t]}:function(){return m};for(r=0;rd.TOO_MANY_POINTS||f.hasMarkers(e)?"rect":"round";if(c&&e.connectgaps){var h=n[0],p=n[1];for(i=0;i1?l[i]:l[0]:l,d=Array.isArray(c)?c.length>1?c[i]:c[0]:c,m=g[p],v=g[d],y=u?u/.8+1:0,x=-v*y-.5*v;o.offset[i]=[m*y/h,x/h]}}return o}}},{"../../components/drawing":383,"../../components/fx/helpers":397,"../../constants/interactions":473,"../../lib":498,"../../lib/gl_format_color":494,"../../plots/cartesian/axis_ids":553,"../../registry":633,"../scatter/make_bubble_size_func":939,"../scatter/subtypes":947,"./constants":977,"./helpers":982,"color-normalize":84,"fast-isnumeric":185,"svg-path-sdf":305}],979:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./helpers"),o=t("./attributes"),s=t("../scatter/constants"),l=t("../scatter/subtypes"),c=t("../scatter/xy_defaults"),u=t("../scatter/period_defaults"),f=t("../scatter/marker_defaults"),h=t("../scatter/line_defaults"),p=t("../scatter/fillcolor_defaults"),d=t("../scatter/text_defaults");e.exports=function(t,e,r,m){function g(r,i){return n.coerce(t,e,o,r,i)}var v=!!t.marker&&a.isOpenSymbol(t.marker.symbol),y=l.isBubble(t),x=c(t,e,m,g);if(x){u(t,e,m,g),g("xhoverformat"),g("yhoverformat");var b=x100},r.isDotSymbol=function(t){return"string"==typeof t?n.DOT_RE.test(t):t>200}},{"./constants":977}],983:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib"),a=t("../scatter/get_trace_color");function o(t,e,r,o){var s=t.xa,l=t.ya,c=t.distance,u=t.dxy,f=t.index,h={pointNumber:f,x:e[f],y:r[f]};h.tx=Array.isArray(o.text)?o.text[f]:o.text,h.htx=Array.isArray(o.hovertext)?o.hovertext[f]:o.hovertext,h.data=Array.isArray(o.customdata)?o.customdata[f]:o.customdata,h.tp=Array.isArray(o.textposition)?o.textposition[f]:o.textposition;var p=o.textfont;p&&(h.ts=i.isArrayOrTypedArray(p.size)?p.size[f]:p.size,h.tc=Array.isArray(p.color)?p.color[f]:p.color,h.tf=Array.isArray(p.family)?p.family[f]:p.family);var d=o.marker;d&&(h.ms=i.isArrayOrTypedArray(d.size)?d.size[f]:d.size,h.mo=i.isArrayOrTypedArray(d.opacity)?d.opacity[f]:d.opacity,h.mx=i.isArrayOrTypedArray(d.symbol)?d.symbol[f]:d.symbol,h.mc=i.isArrayOrTypedArray(d.color)?d.color[f]:d.color);var m=d&&d.line;m&&(h.mlc=Array.isArray(m.color)?m.color[f]:m.color,h.mlw=i.isArrayOrTypedArray(m.width)?m.width[f]:m.width);var g=d&&d.gradient;g&&"none"!==g.type&&(h.mgt=Array.isArray(g.type)?g.type[f]:g.type,h.mgc=Array.isArray(g.color)?g.color[f]:g.color);var v=s.c2p(h.x,!0),y=l.c2p(h.y,!0),x=h.mrc||1,b=o.hoverlabel;b&&(h.hbg=Array.isArray(b.bgcolor)?b.bgcolor[f]:b.bgcolor,h.hbc=Array.isArray(b.bordercolor)?b.bordercolor[f]:b.bordercolor,h.hts=i.isArrayOrTypedArray(b.font.size)?b.font.size[f]:b.font.size,h.htc=Array.isArray(b.font.color)?b.font.color[f]:b.font.color,h.htf=Array.isArray(b.font.family)?b.font.family[f]:b.font.family,h.hnl=i.isArrayOrTypedArray(b.namelength)?b.namelength[f]:b.namelength);var _=o.hoverinfo;_&&(h.hi=Array.isArray(_)?_[f]:_);var w=o.hovertemplate;w&&(h.ht=Array.isArray(w)?w[f]:w);var T={};T[t.index]=h;var k=o._origX,A=o._origY,M=i.extendFlat({},t,{color:a(o,h),x0:v-x,x1:v+x,xLabelVal:k?k[f]:h.x,y0:y-x,y1:y+x,yLabelVal:A?A[f]:h.y,cd:T,distance:c,spikeDistance:u,hovertemplate:h.ht});return h.htx?M.text=h.htx:h.tx?M.text=h.tx:o.text&&(M.text=o.text),i.fillText(h,o,M),n.getComponentMethod("errorbars","hoverInfo")(h,o,M),M}e.exports={hoverPoints:function(t,e,r,n){var i,a,s,l,c,u,f,h,p,d,m=t.cd,g=m[0].t,v=m[0].trace,y=t.xa,x=t.ya,b=g.x,_=g.y,w=y.c2p(e),T=x.c2p(r),k=t.distance;if(g.tree){var A=y.p2c(w-k),M=y.p2c(w+k),S=x.p2c(T-k),E=x.p2c(T+k);i="x"===n?g.tree.range(Math.min(A,M),Math.min(x._rl[0],x._rl[1]),Math.max(A,M),Math.max(x._rl[0],x._rl[1])):g.tree.range(Math.min(A,M),Math.min(S,E),Math.max(A,M),Math.max(S,E))}else i=g.ids;var L=k;if("x"===n){var C=!!v.xperiodalignment,P=!!v.yperiodalignment;for(u=0;u=Math.min(I,O)&&w<=Math.max(I,O)?0:1/0}if(f=Math.min(z,D)&&T<=Math.max(z,D)?0:1/0}d=Math.sqrt(f*f+h*h),s=i[u]}}}else for(u=i.length-1;u>-1;u--)l=b[a=i[u]],c=_[a],f=y.c2p(l)-w,h=x.c2p(c)-T,(p=Math.sqrt(f*f+h*h))y.glText.length){var T=_-y.glText.length;for(m=0;mr&&(isNaN(e[n])||isNaN(e[n+1]));)n-=2;t.positions=e.slice(r,n+2)}return t})),y.line2d.update(y.lineOptions)),y.error2d){var A=(y.errorXOptions||[]).concat(y.errorYOptions||[]);y.error2d.update(A)}y.scatter2d&&y.scatter2d.update(y.markerOptions),y.fillOrder=s.repeat(null,_),y.fill2d&&(y.fillOptions=y.fillOptions.map((function(t,e){var n=r[e];if(t&&n&&n[0]&&n[0].trace){var i,a,o=n[0],s=o.trace,l=o.t,c=y.lineOptions[e],u=[];s._ownfill&&u.push(e),s._nexttrace&&u.push(e+1),u.length&&(y.fillOrder[e]=u);var f,h,p=[],d=c&&c.positions||l.positions;if("tozeroy"===s.fill){for(f=0;ff&&isNaN(d[h+1]);)h-=2;0!==d[f+1]&&(p=[d[f],0]),p=p.concat(d.slice(f,h+2)),0!==d[h+1]&&(p=p.concat([d[h],0]))}else if("tozerox"===s.fill){for(f=0;ff&&isNaN(d[h]);)h-=2;0!==d[f]&&(p=[0,d[f+1]]),p=p.concat(d.slice(f,h+2)),0!==d[h]&&(p=p.concat([0,d[h+1]]))}else if("toself"===s.fill||"tonext"===s.fill){for(p=[],i=0,t.splitNull=!0,a=0;a-1;for(m=0;m<_;m++){var L=r[m][0],C=L.trace,P=L.t,I=P.index,O=C._length,z=P.x,D=P.y;if(C.selectedpoints||S||E){if(S||(S=!0),C.selectedpoints){var R=y.selectBatch[I]=s.selIndices2selPoints(C),F={};for(g=0;g")}function u(t){return t+"\xb0"}}e.exports={hoverPoints:function(t,e,r){var o=t.cd,c=o[0].trace,u=t.xa,f=t.ya,h=t.subplot,p=360*(e>=0?Math.floor((e+180)/360):Math.ceil((e-180)/360)),d=e-p;if(n.getClosest(o,(function(t){var e=t.lonlat;if(e[0]===s)return 1/0;var n=i.modHalf(e[0],360),a=e[1],o=h.project([n,a]),l=o.x-u.c2p([d,a]),c=o.y-f.c2p([n,r]),p=Math.max(3,t.mrc||0);return Math.max(Math.sqrt(l*l+c*c)-p,1-3/p)}),t),!1!==t.index){var m=o[t.index],g=m.lonlat,v=[i.modHalf(g[0],360)+p,g[1]],y=u.c2p(v),x=f.c2p(v),b=m.mrc||1;t.x0=y-b,t.x1=y+b,t.y0=x-b,t.y1=x+b;var _={};_[c.subplot]={_subplot:h};var w=c._module.formatLabels(m,c,_);return t.lonLabel=w.lonLabel,t.latLabel=w.latLabel,t.color=a(c,m),t.extraText=l(c,m,o[0].t.labels),t.hovertemplate=c.hovertemplate,[t]}},getExtraText:l}},{"../../components/fx":401,"../../constants/numerical":474,"../../lib":498,"../scatter/get_trace_color":932}],994:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("../scattergeo/calc"),plot:t("./plot"),hoverPoints:t("./hover").hoverPoints,eventData:t("./event_data"),selectPoints:t("./select"),styleOnSelect:function(t,e){e&&e[0].trace._glTrace.update(e)},moduleType:"trace",name:"scattermapbox",basePlotModule:t("../../plots/mapbox"),categories:["mapbox","gl","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/mapbox":608,"../scatter/marker_colorbar":940,"../scattergeo/calc":965,"./attributes":988,"./defaults":990,"./event_data":991,"./format_labels":992,"./hover":993,"./plot":995,"./select":996}],995:[function(t,e,r){"use strict";var n=t("./convert"),i=t("../../plots/mapbox/constants").traceLayerPrefix,a=["fill","line","circle","symbol"];function o(t,e){this.type="scattermapbox",this.subplot=t,this.uid=e,this.sourceIds={fill:"source-"+e+"-fill",line:"source-"+e+"-line",circle:"source-"+e+"-circle",symbol:"source-"+e+"-symbol"},this.layerIds={fill:i+e+"-fill",line:i+e+"-line",circle:i+e+"-circle",symbol:i+e+"-symbol"},this.below=null}var s=o.prototype;s.addSource=function(t,e){this.subplot.map.addSource(this.sourceIds[t],{type:"geojson",data:e.geojson})},s.setSourceData=function(t,e){this.subplot.map.getSource(this.sourceIds[t]).setData(e.geojson)},s.addLayer=function(t,e,r){this.subplot.addLayer({type:t,id:this.layerIds[t],source:this.sourceIds[t],layout:e.layout,paint:e.paint},r)},s.update=function(t){var e,r,i,o=this.subplot,s=o.map,l=n(o.gd,t),c=o.belowLookup["trace-"+this.uid];if(c!==this.below){for(e=a.length-1;e>=0;e--)r=a[e],s.removeLayer(this.layerIds[r]);for(e=0;e=0;e--){var r=a[e];t.removeLayer(this.layerIds[r]),t.removeSource(this.sourceIds[r])}},e.exports=function(t,e){for(var r=e[0].trace,i=new o(t,r.uid),s=n(t.gd,e),l=i.below=t.belowLookup["trace-"+r.uid],c=0;c")}}e.exports={hoverPoints:function(t,e,r,a){var o=n(t,e,r,a);if(o&&!1!==o[0].index){var s=o[0];if(void 0===s.index)return o;var l=t.subplot,c=s.cd[s.index],u=s.trace;if(l.isPtInside(c))return s.xLabelVal=void 0,s.yLabelVal=void 0,i(c,u,l,s),s.hovertemplate=u.hovertemplate,o}},makeHoverPointText:i}},{"../scatter/hover":933}],1002:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"scatterpolar",basePlotModule:t("../../plots/polar"),categories:["polar","symbols","showLegend","scatter-like"],attributes:t("./attributes"),supplyDefaults:t("./defaults").supplyDefaults,colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,selectPoints:t("../scatter/select"),meta:{}}},{"../../plots/polar":617,"../scatter/marker_colorbar":940,"../scatter/select":944,"../scatter/style":946,"./attributes":997,"./calc":998,"./defaults":999,"./format_labels":1e3,"./hover":1001,"./plot":1003}],1003:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../constants/numerical").BADNUM;e.exports=function(t,e,r){for(var a=e.layers.frontplot.select("g.scatterlayer"),o={xaxis:e.xaxis,yaxis:e.yaxis,plot:e.framework,layerClipId:e._hasClipOnAxisFalse?e.clipIds.forTraces:null},s=e.radialAxis,l=e.angularAxis,c=0;c=c&&(y.marker.cluster=d.tree),y.marker&&(y.markerSel.positions=y.markerUnsel.positions=y.marker.positions=_),y.line&&_.length>1&&l.extendFlat(y.line,s.linePositions(t,p,_)),y.text&&(l.extendFlat(y.text,{positions:_},s.textPosition(t,p,y.text,y.marker)),l.extendFlat(y.textSel,{positions:_},s.textPosition(t,p,y.text,y.markerSel)),l.extendFlat(y.textUnsel,{positions:_},s.textPosition(t,p,y.text,y.markerUnsel))),y.fill&&!h.fill2d&&(h.fill2d=!0),y.marker&&!h.scatter2d&&(h.scatter2d=!0),y.line&&!h.line2d&&(h.line2d=!0),y.text&&!h.glText&&(h.glText=!0),h.lineOptions.push(y.line),h.fillOptions.push(y.fill),h.markerOptions.push(y.marker),h.markerSelectedOptions.push(y.markerSel),h.markerUnselectedOptions.push(y.markerUnsel),h.textOptions.push(y.text),h.textSelectedOptions.push(y.textSel),h.textUnselectedOptions.push(y.textUnsel),h.selectBatch.push([]),h.unselectBatch.push([]),d.x=w,d.y=T,d.rawx=w,d.rawy=T,d.r=g,d.theta=v,d.positions=_,d._scene=h,d.index=h.count,h.count++}})),a(t,e,r)}},e.exports.reglPrecompiled={}},{"../../lib":498,"../scattergl/constants":977,"../scattergl/convert":978,"../scattergl/plot":985,"../scattergl/scene_update":986,"@plotly/point-cluster":59,"fast-isnumeric":185}],1012:[function(t,e,r){"use strict";var n=t("../../plots/template_attributes").hovertemplateAttrs,i=t("../../plots/template_attributes").texttemplateAttrs,a=t("../../lib/extend").extendFlat,o=t("../scatter/attributes"),s=t("../../plots/attributes"),l=o.line;e.exports={mode:o.mode,real:{valType:"data_array",editType:"calc+clearAxisTypes"},imag:{valType:"data_array",editType:"calc+clearAxisTypes"},text:o.text,texttemplate:i({editType:"plot"},{keys:["real","imag","text"]}),hovertext:o.hovertext,line:{color:l.color,width:l.width,dash:l.dash,shape:a({},l.shape,{values:["linear","spline"]}),smoothing:l.smoothing,editType:"calc"},connectgaps:o.connectgaps,marker:o.marker,cliponaxis:a({},o.cliponaxis,{dflt:!1}),textposition:o.textposition,textfont:o.textfont,fill:a({},o.fill,{values:["none","toself","tonext"],dflt:"none"}),fillcolor:o.fillcolor,hoverinfo:a({},s.hoverinfo,{flags:["real","imag","text","name"]}),hoveron:o.hoveron,hovertemplate:n(),selected:o.selected,unselected:o.unselected}},{"../../lib/extend":488,"../../plots/attributes":545,"../../plots/template_attributes":628,"../scatter/attributes":922}],1013:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../constants/numerical").BADNUM,a=t("../scatter/colorscale_calc"),o=t("../scatter/arrays_to_calcdata"),s=t("../scatter/calc_selection"),l=t("../scatter/calc").calcMarkerSize;e.exports=function(t,e){for(var r=t._fullLayout,c=e.subplot,u=r[c].realaxis,f=r[c].imaginaryaxis,h=u.makeCalcdata(e,"real"),p=f.makeCalcdata(e,"imag"),d=e._length,m=new Array(d),g=0;g")}}e.exports={hoverPoints:function(t,e,r,a){var o=n(t,e,r,a);if(o&&!1!==o[0].index){var s=o[0];if(void 0===s.index)return o;var l=t.subplot,c=s.cd[s.index],u=s.trace;if(l.isPtInside(c))return s.xLabelVal=void 0,s.yLabelVal=void 0,i(c,u,l,s),s.hovertemplate=u.hovertemplate,o}},makeHoverPointText:i}},{"../scatter/hover":933}],1017:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"scattersmith",basePlotModule:t("../../plots/smith"),categories:["smith","symbols","showLegend","scatter-like"],attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,selectPoints:t("../scatter/select"),meta:{}}},{"../../plots/smith":624,"../scatter/marker_colorbar":940,"../scatter/select":944,"../scatter/style":946,"./attributes":1012,"./calc":1013,"./defaults":1014,"./format_labels":1015,"./hover":1016,"./plot":1018}],1018:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../constants/numerical").BADNUM,a=t("../../plots/smith/helpers").smith;e.exports=function(t,e,r){for(var o=e.layers.frontplot.select("g.scatterlayer"),s={xaxis:e.xaxis,yaxis:e.yaxis,plot:e.framework,layerClipId:e._hasClipOnAxisFalse?e.clipIds.forTraces:null},l=0;l"),o.hovertemplate=h.hovertemplate,a}function x(t,e){v.push(t._hovertitle+": "+e)}}},{"../scatter/hover":933}],1025:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../scatter/select"),eventData:t("./event_data"),moduleType:"trace",name:"scatterternary",basePlotModule:t("../../plots/ternary"),categories:["ternary","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/ternary":629,"../scatter/marker_colorbar":940,"../scatter/select":944,"../scatter/style":946,"./attributes":1019,"./calc":1020,"./defaults":1021,"./event_data":1022,"./format_labels":1023,"./hover":1024,"./plot":1026}],1026:[function(t,e,r){"use strict";var n=t("../scatter/plot");e.exports=function(t,e,r){var i=e.plotContainer;i.select(".scatterlayer").selectAll("*").remove();var a={xaxis:e.xaxis,yaxis:e.yaxis,plot:i,layerClipId:e._hasClipOnAxisFalse?e.clipIdRelative:null},o=e.layers.frontplot.select("g.scatterlayer");n(t,a,r,o)}},{"../scatter/plot":943}],1027:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../components/colorscale/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../scattergl/attributes"),l=t("../../plots/cartesian/constants").idRegex,c=t("../../plot_api/plot_template").templatedArray,u=t("../../lib/extend").extendFlat,f=n.marker,h=f.line,p=u(i("marker.line",{editTypeOverride:"calc"}),{width:u({},h.width,{editType:"calc"}),editType:"calc"}),d=u(i("marker"),{symbol:f.symbol,size:u({},f.size,{editType:"markerSize"}),sizeref:f.sizeref,sizemin:f.sizemin,sizemode:f.sizemode,opacity:f.opacity,colorbar:f.colorbar,line:p,editType:"calc"});function m(t){return{valType:"info_array",freeLength:!0,editType:"calc",items:{valType:"subplotid",regex:l[t],editType:"plot"}}}d.color.editType=d.cmin.editType=d.cmax.editType="style",e.exports={dimensions:c("dimension",{visible:{valType:"boolean",dflt:!0,editType:"calc"},label:{valType:"string",editType:"calc"},values:{valType:"data_array",editType:"calc+clearAxisTypes"},axis:{type:{valType:"enumerated",values:["linear","log","date","category"],editType:"calc+clearAxisTypes"},matches:{valType:"boolean",dflt:!1,editType:"calc"},editType:"calc+clearAxisTypes"},editType:"calc+clearAxisTypes"}),text:u({},s.text,{}),hovertext:u({},s.hovertext,{}),hovertemplate:o(),xhoverformat:a("x"),yhoverformat:a("y"),marker:d,xaxes:m("x"),yaxes:m("y"),diagonal:{visible:{valType:"boolean",dflt:!0,editType:"calc"},editType:"calc"},showupperhalf:{valType:"boolean",dflt:!0,editType:"calc"},showlowerhalf:{valType:"boolean",dflt:!0,editType:"calc"},selected:{marker:s.selected.marker,editType:"calc"},unselected:{marker:s.unselected.marker,editType:"calc"},opacity:s.opacity}},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plot_api/plot_template":538,"../../plots/cartesian/axis_format_attributes":552,"../../plots/cartesian/constants":556,"../../plots/template_attributes":628,"../scatter/attributes":922,"../scattergl/attributes":974}],1028:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../components/grid");e.exports={moduleType:"trace",name:"splom",categories:["gl","regl","cartesian","symbols","showLegend","scatter-like"],attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),calc:t("./calc"),plot:t("./plot"),hoverPoints:t("./hover").hoverPoints,selectPoints:t("./select"),editStyle:t("./edit_style"),meta:{}},n.register(i)},{"../../components/grid":405,"../../registry":633,"../scatter/marker_colorbar":940,"./attributes":1027,"./calc":1030,"./defaults":1031,"./edit_style":1032,"./hover":1034,"./plot":1036,"./select":1038}],1029:[function(t,e,r){"use strict";var n=t("regl-line2d"),i=t("../../registry"),a=t("../../lib/prepare_regl"),o=t("../../plots/get_data").getModuleCalcData,s=t("../../plots/cartesian"),l=t("../../plots/cartesian/axis_ids").getFromId,c=t("../../plots/cartesian/axes").shouldShowZeroLine,u={};function f(t,e,r){for(var n=r.matrixOptions.data.length,i=e._visibleDims,a=r.viewOpts.ranges=new Array(n),o=0;oh?b.sizeAvg||Math.max(b.size,3):a(e,x),p=0;pa&&l||i-1,P=!0;if(o(x)||!!p.selectedpoints||C){var I=p._length;if(p.selectedpoints){m.selectBatch=p.selectedpoints;var O=p.selectedpoints,z={};for(l=0;l1&&(u=m[y-1],h=g[y-1],d=v[y-1]),e=0;eu?"-":"+")+"x")).replace("y",(f>h?"-":"+")+"y")).replace("z",(p>d?"-":"+")+"z");var L=function(){y=0,M=[],S=[],E=[]};(!y||y2?t.slice(1,e-1):2===e?[(t[0]+t[1])/2]:t}function p(t){var e=t.length;return 1===e?[.5,.5]:[t[1]-t[0],t[e-1]-t[e-2]]}function d(t,e){var r=t.fullSceneLayout,i=t.dataScale,u=e._len,f={};function d(t,e){var n=r[e],o=i[c[e]];return a.simpleMap(t,(function(t){return n.d2l(t)*o}))}if(f.vectors=l(d(e._u,"xaxis"),d(e._v,"yaxis"),d(e._w,"zaxis"),u),!u)return{positions:[],cells:[]};var m=d(e._Xs,"xaxis"),g=d(e._Ys,"yaxis"),v=d(e._Zs,"zaxis");if(f.meshgrid=[m,g,v],f.gridFill=e._gridFill,e._slen)f.startingPositions=l(d(e._startsX,"xaxis"),d(e._startsY,"yaxis"),d(e._startsZ,"zaxis"));else{for(var y=g[0],x=h(m),b=h(v),_=new Array(x.length*b.length),w=0,T=0;T=0};v?(r=Math.min(g.length,x.length),l=function(t){return A(g[t])&&M(t)},f=function(t){return String(g[t])}):(r=Math.min(y.length,x.length),l=function(t){return A(y[t])&&M(t)},f=function(t){return String(y[t])}),_&&(r=Math.min(r,b.length));for(var S=0;S1){for(var P=a.randstr(),I=0;I"),name:A||z("name")?y.name:void 0,color:k("hoverlabel.bgcolor")||x.color,borderColor:k("hoverlabel.bordercolor"),fontFamily:k("hoverlabel.font.family"),fontSize:k("hoverlabel.font.size"),fontColor:k("hoverlabel.font.color"),nameLength:k("hoverlabel.namelength"),textAlign:k("hoverlabel.align"),hovertemplate:A,hovertemplateLabels:P,eventData:l};g&&(F.x0=E-i.rInscribed*i.rpx1,F.x1=E+i.rInscribed*i.rpx1,F.idealAlign=i.pxmid[0]<0?"left":"right"),v&&(F.x=E,F.idealAlign=E<0?"left":"right");var B=[];o.loneHover(F,{container:a._hoverlayer.node(),outerContainer:a._paper.node(),gd:r,inOut_bbox:B}),l[0].bbox=B[0],d._hasHoverLabel=!0}if(v){var N=t.select("path.surface");h.styleOne(N,i,y,{hovered:!0})}d._hasHoverEvent=!0,r.emit("plotly_hover",{points:l||[f(i,y,h.eventDataKeys)],event:n.event})}})),t.on("mouseout",(function(e){var i=r._fullLayout,a=r._fullData[d.index],s=n.select(this).datum();if(d._hasHoverEvent&&(e.originalEvent=n.event,r.emit("plotly_unhover",{points:[f(s,a,h.eventDataKeys)],event:n.event}),d._hasHoverEvent=!1),d._hasHoverLabel&&(o.loneUnhover(i._hoverlayer.node()),d._hasHoverLabel=!1),v){var l=t.select("path.surface");h.styleOne(l,s,a,{hovered:!1})}})),t.on("click",(function(t){var e=r._fullLayout,a=r._fullData[d.index],s=g&&(c.isHierarchyRoot(t)||c.isLeaf(t)),u=c.getPtId(t),p=c.isEntry(t)?c.findEntryWithChild(m,u):c.findEntryWithLevel(m,u),v=c.getPtId(p),y={points:[f(t,a,h.eventDataKeys)],event:n.event};s||(y.nextLevel=v);var x=l.triggerHandler(r,"plotly_"+d.type+"click",y);if(!1!==x&&e.hovermode&&(r._hoverdata=[f(t,a,h.eventDataKeys)],o.click(r,n.event)),!s&&!1!==x&&!r._dragging&&!r._transitioning){i.call("_storeDirectGUIEdit",a,e._tracePreGUI[a.uid],{level:a.level});var b={data:[{level:v}],traces:[d.index]},_={frame:{redraw:!1,duration:h.transitionTime},transition:{duration:h.transitionTime,easing:h.transitionEasing},mode:"immediate",fromcurrent:!0};o.loneUnhover(e._hoverlayer.node()),i.call("animate",r,b,_)}}))}},{"../../components/fx":401,"../../components/fx/helpers":397,"../../lib":498,"../../lib/events":487,"../../registry":633,"../pie/helpers":901,"./helpers":1050,"@plotly/d3":58}],1050:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../components/color"),a=t("../../lib/setcursor"),o=t("../pie/helpers");function s(t){return t.data.data.pid}r.findEntryWithLevel=function(t,e){var n;return e&&t.eachAfter((function(t){if(r.getPtId(t)===e)return n=t.copy()})),n||t},r.findEntryWithChild=function(t,e){var n;return t.eachAfter((function(t){for(var i=t.children||[],a=0;a0)},r.getMaxDepth=function(t){return t.maxdepth>=0?t.maxdepth:1/0},r.isHeader=function(t,e){return!(r.isLeaf(t)||t.depth===e._maxDepth-1)},r.getParent=function(t,e){return r.findEntryWithLevel(t,s(e))},r.listPath=function(t,e){var n=t.parent;if(!n)return[];var i=e?[n.data[e]]:[n];return r.listPath(n,e).concat(i)},r.getPath=function(t){return r.listPath(t,"label").join("/")+"/"},r.formatValue=o.formatPieValue,r.formatPercent=function(t,e){var r=n.formatPercent(t,0);return"0%"===r&&(r=o.formatPiePercent(t,e)),r}},{"../../components/color":361,"../../lib":498,"../../lib/setcursor":519,"../pie/helpers":901}],1051:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"sunburst",basePlotModule:t("./base_plot"),categories:[],animatable:!0,attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot").plot,style:t("./style").style,colorbar:t("../scatter/marker_colorbar"),meta:{}}},{"../scatter/marker_colorbar":940,"./attributes":1044,"./base_plot":1045,"./calc":1046,"./defaults":1048,"./layout_attributes":1052,"./layout_defaults":1053,"./plot":1054,"./style":1055}],1052:[function(t,e,r){"use strict";e.exports={sunburstcolorway:{valType:"colorlist",editType:"calc"},extendsunburstcolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{}],1053:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("sunburstcolorway",e.colorway),r("extendsunburstcolors")}},{"../../lib":498,"./layout_attributes":1052}],1054:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-hierarchy"),a=t("d3-interpolate").interpolate,o=t("../../components/drawing"),s=t("../../lib"),l=t("../../lib/svg_text_utils"),c=t("../bar/uniform_text"),u=c.recordMinTextSize,f=c.clearMinTextSize,h=t("../pie/plot"),p=t("../pie/helpers").getRotationAngle,d=h.computeTransform,m=h.transformInsideText,g=t("./style").styleOne,v=t("../bar/style").resizeText,y=t("./fx"),x=t("./constants"),b=t("./helpers");function _(t,e,c,f){var h=t._fullLayout,v=!h.uniformtext.mode&&b.hasTransition(f),_=n.select(c).selectAll("g.slice"),T=e[0],k=T.trace,A=T.hierarchy,M=b.findEntryWithLevel(A,k.level),S=b.getMaxDepth(k),E=h._size,L=k.domain,C=E.w*(L.x[1]-L.x[0]),P=E.h*(L.y[1]-L.y[0]),I=.5*Math.min(C,P),O=T.cx=E.l+E.w*(L.x[1]+L.x[0])/2,z=T.cy=E.t+E.h*(1-L.y[0])-P/2;if(!M)return _.remove();var D=null,R={};v&&_.each((function(t){R[b.getPtId(t)]={rpx0:t.rpx0,rpx1:t.rpx1,x0:t.x0,x1:t.x1,transform:t.transform},!D&&b.isEntry(t)&&(D=t)}));var F=function(t){return i.partition().size([2*Math.PI,t.height+1])(t)}(M).descendants(),B=M.height+1,N=0,j=S;T.hasMultipleRoots&&b.isHierarchyRoot(M)&&(F=F.slice(1),B-=1,N=1,j+=1),F=F.filter((function(t){return t.y1<=j}));var U=p(k.rotation);U&&F.forEach((function(t){t.x0+=U,t.x1+=U}));var V=Math.min(B,S),H=function(t){return(t-N)/V*I},q=function(t,e){return[t*Math.cos(e),-t*Math.sin(e)]},G=function(t){return s.pathAnnulus(t.rpx0,t.rpx1,t.x0,t.x1,O,z)},Y=function(t){return O+w(t)[0]*(t.transform.rCenter||0)+(t.transform.x||0)},W=function(t){return z+w(t)[1]*(t.transform.rCenter||0)+(t.transform.y||0)};(_=_.data(F,b.getPtId)).enter().append("g").classed("slice",!0),v?_.exit().transition().each((function(){var t=n.select(this);t.select("path.surface").transition().attrTween("d",(function(t){var e=function(t){var e,r=b.getPtId(t),n=R[r],i=R[b.getPtId(M)];if(i){var o=(t.x1>i.x1?2*Math.PI:0)+U;e=t.rpx1X?2*Math.PI:0)+U;e={x0:i,x1:i}}else e={rpx0:I,rpx1:I},s.extendFlat(e,K(t));else e={rpx0:0,rpx1:0};else e={x0:U,x1:U};return a(e,n)}(t);return function(t){return G(e(t))}})):f.attr("d",G),c.call(y,M,t,e,{eventDataKeys:x.eventDataKeys,transitionTime:x.CLICK_TRANSITION_TIME,transitionEasing:x.CLICK_TRANSITION_EASING}).call(b.setSliceCursor,t,{hideOnRoot:!0,hideOnLeaves:!0,isTransitioning:t._transitioning}),f.call(g,i,k);var p=s.ensureSingle(c,"g","slicetext"),_=s.ensureSingle(p,"text","",(function(t){t.attr("data-notex",1)})),w=s.ensureUniformFontSize(t,b.determineTextFont(k,i,h.font));_.text(r.formatSliceLabel(i,M,k,e,h)).classed("slicetext",!0).attr("text-anchor","middle").call(o.font,w).call(l.convertToTspans,t);var A=o.bBox(_.node());i.transform=m(A,i,T),i.transform.targetX=Y(i),i.transform.targetY=W(i);var S=function(t,e){var r=t.transform;return d(r,e),r.fontSize=w.size,u(k.type,r,h),s.getTextTransform(r)};v?_.transition().attrTween("transform",(function(t){var e=function(t){var e,r=R[b.getPtId(t)],n=t.transform;if(r)e=r;else if(e={rpx1:t.rpx1,transform:{textPosAngle:n.textPosAngle,scale:0,rotate:n.rotate,rCenter:n.rCenter,x:n.x,y:n.y}},D)if(t.parent)if(X){var i=t.x1>X?2*Math.PI:0;e.x0=e.x1=i}else s.extendFlat(e,K(t));else e.x0=e.x1=U;else e.x0=e.x1=U;var o=a(e.transform.textPosAngle,t.transform.textPosAngle),l=a(e.rpx1,t.rpx1),c=a(e.x0,t.x0),f=a(e.x1,t.x1),p=a(e.transform.scale,n.scale),d=a(e.transform.rotate,n.rotate),m=0===n.rCenter?3:0===e.transform.rCenter?1/3:1,g=a(e.transform.rCenter,n.rCenter);return function(t){var e=l(t),r=c(t),i=f(t),a=function(t){return g(Math.pow(t,m))}(t),s={pxmid:q(e,(r+i)/2),rpx1:e,transform:{textPosAngle:o(t),rCenter:a,x:n.x,y:n.y}};return u(k.type,n,h),{transform:{targetX:Y(s),targetY:W(s),scale:p(t),rotate:d(t),rCenter:a}}}}(t);return function(t){return S(e(t),A)}})):_.attr("transform",S(i,A))}))}function w(t){return e=t.rpx1,r=t.transform.textPosAngle,[e*Math.sin(r),-e*Math.cos(r)];var e,r}r.plot=function(t,e,r,i){var a,o,s=t._fullLayout,l=s._sunburstlayer,c=!r,u=!s.uniformtext.mode&&b.hasTransition(r);(f("sunburst",s),(a=l.selectAll("g.trace.sunburst").data(e,(function(t){return t[0].trace.uid}))).enter().append("g").classed("trace",!0).classed("sunburst",!0).attr("stroke-linejoin","round"),a.order(),u)?(i&&(o=i()),n.transition().duration(r.duration).ease(r.easing).each("end",(function(){o&&o()})).each("interrupt",(function(){o&&o()})).each((function(){l.selectAll("g.trace").each((function(e){_(t,e,this,r)}))}))):(a.each((function(e){_(t,e,this,r)})),s.uniformtext.mode&&v(t,s._sunburstlayer.selectAll(".trace"),"sunburst"));c&&a.exit().remove()},r.formatSliceLabel=function(t,e,r,n,i){var a=r.texttemplate,o=r.textinfo;if(!(a||o&&"none"!==o))return"";var l=i.separators,c=n[0],u=t.data.data,f=c.hierarchy,h=b.isHierarchyRoot(t),p=b.getParent(f,t),d=b.getValue(t);if(!a){var m,g=o.split("+"),v=function(t){return-1!==g.indexOf(t)},y=[];if(v("label")&&u.label&&y.push(u.label),u.hasOwnProperty("v")&&v("value")&&y.push(b.formatValue(u.v,l)),!h){v("current path")&&y.push(b.getPath(t.data));var x=0;v("percent parent")&&x++,v("percent entry")&&x++,v("percent root")&&x++;var _=x>1;if(x){var w,T=function(t){m=b.formatPercent(w,l),_&&(m+=" of "+t),y.push(m)};v("percent parent")&&!h&&(w=d/b.getValue(p),T("parent")),v("percent entry")&&(w=d/b.getValue(e),T("entry")),v("percent root")&&(w=d/b.getValue(f),T("root"))}}return v("text")&&(m=s.castOption(r,u.i,"text"),s.isValidTextValue(m)&&y.push(m)),y.join("
")}var k=s.castOption(r,u.i,"texttemplate");if(!k)return"";var A={};u.label&&(A.label=u.label),u.hasOwnProperty("v")&&(A.value=u.v,A.valueLabel=b.formatValue(u.v,l)),A.currentPath=b.getPath(t.data),h||(A.percentParent=d/b.getValue(p),A.percentParentLabel=b.formatPercent(A.percentParent,l),A.parent=b.getPtLabel(p)),A.percentEntry=d/b.getValue(e),A.percentEntryLabel=b.formatPercent(A.percentEntry,l),A.entry=b.getPtLabel(e),A.percentRoot=d/b.getValue(f),A.percentRootLabel=b.formatPercent(A.percentRoot,l),A.root=b.getPtLabel(f),u.hasOwnProperty("color")&&(A.color=u.color);var M=s.castOption(r,u.i,"text");return(s.isValidTextValue(M)||""===M)&&(A.text=M),A.customdata=s.castOption(r,u.i,"customdata"),s.texttemplateString(k,A,i._d3locale,A,r._meta||{})}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../bar/style":657,"../bar/uniform_text":659,"../pie/helpers":901,"../pie/plot":905,"./constants":1047,"./fx":1049,"./helpers":1050,"./style":1055,"@plotly/d3":58,"d3-hierarchy":110,"d3-interpolate":111}],1055:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../bar/uniform_text").resizeText;function s(t,e,r){var n=e.data.data,o=!e.children,s=n.i,l=a.castOption(r,s,"marker.line.color")||i.defaultLine,c=a.castOption(r,s,"marker.line.width")||0;t.style("stroke-width",c).call(i.fill,n.color).call(i.stroke,l).style("opacity",o?r.leaf.opacity:null)}e.exports={style:function(t){var e=t._fullLayout._sunburstlayer.selectAll(".trace");o(t,e,"sunburst"),e.each((function(t){var e=n.select(this),r=t[0].trace;e.style("opacity",r.opacity),e.selectAll("path.surface").each((function(t){n.select(this).call(s,t,r)}))}))},styleOne:s}},{"../../components/color":361,"../../lib":498,"../bar/uniform_text":659,"@plotly/d3":58}],1056:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c=t("../../plot_api/edit_types").overrideAll;function u(t){return{show:{valType:"boolean",dflt:!1},start:{valType:"number",dflt:null,editType:"plot"},end:{valType:"number",dflt:null,editType:"plot"},size:{valType:"number",dflt:null,min:0,editType:"plot"},project:{x:{valType:"boolean",dflt:!1},y:{valType:"boolean",dflt:!1},z:{valType:"boolean",dflt:!1}},color:{valType:"color",dflt:n.defaultLine},usecolormap:{valType:"boolean",dflt:!1},width:{valType:"number",min:1,max:16,dflt:2},highlight:{valType:"boolean",dflt:!0},highlightcolor:{valType:"color",dflt:n.defaultLine},highlightwidth:{valType:"number",min:1,max:16,dflt:2}}}var f=e.exports=c(l({z:{valType:"data_array"},x:{valType:"data_array"},y:{valType:"data_array"},text:{valType:"string",dflt:"",arrayOk:!0},hovertext:{valType:"string",dflt:"",arrayOk:!0},hovertemplate:o(),xhoverformat:a("x"),yhoverformat:a("y"),zhoverformat:a("z"),connectgaps:{valType:"boolean",dflt:!1,editType:"calc"},surfacecolor:{valType:"data_array"}},i("",{colorAttr:"z or surfacecolor",showScaleDflt:!0,autoColorDflt:!1,editTypeOverride:"calc"}),{contours:{x:u(),y:u(),z:u()},hidesurface:{valType:"boolean",dflt:!1},lightposition:{x:{valType:"number",min:-1e5,max:1e5,dflt:10},y:{valType:"number",min:-1e5,max:1e5,dflt:1e4},z:{valType:"number",min:-1e5,max:1e5,dflt:0}},lighting:{ambient:{valType:"number",min:0,max:1,dflt:.8},diffuse:{valType:"number",min:0,max:1,dflt:.8},specular:{valType:"number",min:0,max:2,dflt:.05},roughness:{valType:"number",min:0,max:1,dflt:.5},fresnel:{valType:"number",min:0,max:5,dflt:.2}},opacity:{valType:"number",min:0,max:1,dflt:1},opacityscale:{valType:"any",editType:"calc"},_deprecated:{zauto:l({},i.zauto,{}),zmin:l({},i.zmin,{}),zmax:l({},i.zmax,{})},hoverinfo:l({},s.hoverinfo),showlegend:l({},s.showlegend,{dflt:!1})}),"calc","nested");f.x.editType=f.y.editType=f.z.editType="calc+clearAxisTypes",f.transforms=void 0},{"../../components/color":361,"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plot_api/edit_types":531,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628}],1057:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){e.surfacecolor?n(t,e,{vals:e.surfacecolor,containerStr:"",cLetter:"c"}):n(t,e,{vals:e.z,containerStr:"",cLetter:"c"})}},{"../../components/colorscale/calc":369}],1058:[function(t,e,r){"use strict";var n=t("../../../stackgl_modules").gl_surface3d,i=t("../../../stackgl_modules").ndarray,a=t("../../../stackgl_modules").ndarray_linear_interpolate.d2,o=t("../heatmap/interp2d"),s=t("../heatmap/find_empties"),l=t("../../lib").isArrayOrTypedArray,c=t("../../lib/gl_format_color").parseColorScale,u=t("../../lib/str2rgbarray"),f=t("../../components/colorscale").extractOpts;function h(t,e,r){this.scene=t,this.uid=r,this.surface=e,this.data=null,this.showContour=[!1,!1,!1],this.contourStart=[null,null,null],this.contourEnd=[null,null,null],this.contourSize=[0,0,0],this.minValues=[1/0,1/0,1/0],this.maxValues=[-1/0,-1/0,-1/0],this.dataScaleX=1,this.dataScaleY=1,this.refineData=!0,this.objectOffset=[0,0,0]}var p=h.prototype;p.getXat=function(t,e,r,n){var i=l(this.data.x)?l(this.data.x[0])?this.data.x[e][t]:this.data.x[t]:t;return void 0===r?i:n.d2l(i,0,r)},p.getYat=function(t,e,r,n){var i=l(this.data.y)?l(this.data.y[0])?this.data.y[e][t]:this.data.y[e]:e;return void 0===r?i:n.d2l(i,0,r)},p.getZat=function(t,e,r,n){var i=this.data.z[e][t];return null===i&&this.data.connectgaps&&this.data._interpolatedZ&&(i=this.data._interpolatedZ[e][t]),void 0===r?i:n.d2l(i,0,r)},p.handlePick=function(t){if(t.object===this.surface){var e=(t.data.index[0]-1)/this.dataScaleX-1,r=(t.data.index[1]-1)/this.dataScaleY-1,n=Math.max(Math.min(Math.round(e),this.data.z[0].length-1),0),i=Math.max(Math.min(Math.round(r),this.data._ylength-1),0);t.index=[n,i],t.traceCoordinate=[this.getXat(n,i),this.getYat(n,i),this.getZat(n,i)],t.dataCoordinate=[this.getXat(n,i,this.data.xcalendar,this.scene.fullSceneLayout.xaxis),this.getYat(n,i,this.data.ycalendar,this.scene.fullSceneLayout.yaxis),this.getZat(n,i,this.data.zcalendar,this.scene.fullSceneLayout.zaxis)];for(var a=0;a<3;a++){var o=t.dataCoordinate[a];null!=o&&(t.dataCoordinate[a]*=this.scene.dataScale[a])}var s=this.data.hovertext||this.data.text;return Array.isArray(s)&&s[i]&&void 0!==s[i][n]?t.textLabel=s[i][n]:t.textLabel=s||"",t.data.dataCoordinate=t.dataCoordinate.slice(),this.surface.highlight(t.data),this.scene.glplot.spikes.position=t.dataCoordinate,!0}};var d=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999];function m(t,e){if(t0){r=d[n];break}return r}function y(t,e){if(!(t<1||e<1)){for(var r=g(t),n=g(e),i=1,a=0;a_;)r--,r/=v(r),++r1?n:1},p.refineCoords=function(t){for(var e=this.dataScaleX,r=this.dataScaleY,n=t[0].shape[0],a=t[0].shape[1],o=0|Math.floor(t[0].shape[0]*e+1),s=0|Math.floor(t[0].shape[1]*r+1),l=1+n+1,c=1+a+1,u=i(new Float32Array(l*c),[l,c]),f=[1/e,0,0,0,1/r,0,0,0,1],h=0;h0&&null!==this.contourStart[t]&&null!==this.contourEnd[t]&&this.contourEnd[t]>this.contourStart[t]))for(i[t]=!0,e=this.contourStart[t];ea&&(this.minValues[e]=a),this.maxValues[e]",maxDimensionCount:60,overdrag:45,releaseTransitionDuration:120,releaseTransitionEase:"cubic-out",scrollbarCaptureWidth:18,scrollbarHideDelay:1e3,scrollbarHideDuration:1e3,scrollbarOffset:5,scrollbarWidth:8,transitionDuration:100,transitionEase:"cubic-out",uplift:5,wrapSpacer:" ",wrapSplitCharacter:" ",cn:{table:"table",tableControlView:"table-control-view",scrollBackground:"scroll-background",yColumn:"y-column",columnBlock:"column-block",scrollAreaClip:"scroll-area-clip",scrollAreaClipRect:"scroll-area-clip-rect",columnBoundary:"column-boundary",columnBoundaryClippath:"column-boundary-clippath",columnBoundaryRect:"column-boundary-rect",columnCells:"column-cells",columnCell:"column-cell",cellRect:"cell-rect",cellText:"cell-text",cellTextHolder:"cell-text-holder",scrollbarKit:"scrollbar-kit",scrollbar:"scrollbar",scrollbarSlider:"scrollbar-slider",scrollbarGlyph:"scrollbar-glyph",scrollbarCaptureZone:"scrollbar-capture-zone"}}},{}],1065:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../lib/extend").extendFlat,a=t("fast-isnumeric");function o(t){if(Array.isArray(t)){for(var e=0,r=0;r=e||c===t.length-1)&&(n[i]=o,o.key=l++,o.firstRowIndex=s,o.lastRowIndex=c,o={firstRowIndex:null,lastRowIndex:null,rows:[]},i+=a,s=c+1,a=0);return n}e.exports=function(t,e){var r=l(e.cells.values),p=function(t){return t.slice(e.header.values.length,t.length)},d=l(e.header.values);d.length&&!d[0].length&&(d[0]=[""],d=l(d));var m=d.concat(p(r).map((function(){return c((d[0]||[""]).length)}))),g=e.domain,v=Math.floor(t._fullLayout._size.w*(g.x[1]-g.x[0])),y=Math.floor(t._fullLayout._size.h*(g.y[1]-g.y[0])),x=e.header.values.length?m[0].map((function(){return e.header.height})):[n.emptyHeaderHeight],b=r.length?r[0].map((function(){return e.cells.height})):[],_=x.reduce(s,0),w=h(b,y-_+n.uplift),T=f(h(x,_),[]),k=f(w,T),A={},M=e._fullInput.columnorder.concat(p(r.map((function(t,e){return e})))),S=m.map((function(t,r){var n=Array.isArray(e.columnwidth)?e.columnwidth[Math.min(r,e.columnwidth.length-1)]:e.columnwidth;return a(n)?Number(n):1})),E=S.reduce(s,0);S=S.map((function(t){return t/E*v}));var L=Math.max(o(e.header.line.width),o(e.cells.line.width)),C={key:e.uid+t._context.staticPlot,translateX:g.x[0]*t._fullLayout._size.w,translateY:t._fullLayout._size.h*(1-g.y[1]),size:t._fullLayout._size,width:v,maxLineWidth:L,height:y,columnOrder:M,groupHeight:y,rowBlocks:k,headerRowBlocks:T,scrollY:0,cells:i({},e.cells,{values:r}),headerCells:i({},e.header,{values:m}),gdColumns:m.map((function(t){return t[0]})),gdColumnsOriginalOrder:m.map((function(t){return t[0]})),prevPages:[0,0],scrollbarState:{scrollbarScrollInProgress:!1},columns:m.map((function(t,e){var r=A[t];return A[t]=(r||0)+1,{key:t+"__"+A[t],label:t,specIndex:e,xIndex:M[e],xScale:u,x:void 0,calcdata:void 0,columnWidth:S[e]}}))};return C.columns.forEach((function(t){t.calcdata=C,t.x=u(t)})),C}},{"../../lib/extend":488,"./constants":1064,"fast-isnumeric":185}],1066:[function(t,e,r){"use strict";var n=t("../../lib/extend").extendFlat;r.splitToPanels=function(t){var e=[0,0],r=n({},t,{key:"header",type:"header",page:0,prevPages:e,currentRepaint:[null,null],dragHandle:!0,values:t.calcdata.headerCells.values[t.specIndex],rowBlocks:t.calcdata.headerRowBlocks,calcdata:n({},t.calcdata,{cells:t.calcdata.headerCells})});return[n({},t,{key:"cells1",type:"cells",page:0,prevPages:e,currentRepaint:[null,null],dragHandle:!1,values:t.calcdata.cells.values[t.specIndex],rowBlocks:t.calcdata.rowBlocks}),n({},t,{key:"cells2",type:"cells",page:1,prevPages:e,currentRepaint:[null,null],dragHandle:!1,values:t.calcdata.cells.values[t.specIndex],rowBlocks:t.calcdata.rowBlocks}),r]},r.splitToCells=function(t){var e=function(t){var e=t.rowBlocks[t.page],r=e?e.rows[0].rowIndex:0,n=e?r+e.rows.length:0;return[r,n]}(t);return(t.values||[]).slice(e[0],e[1]).map((function(r,n){return{keyWithinBlock:n+("string"==typeof r&&r.match(/[<$&> ]/)?"_keybuster_"+Math.random():""),key:e[0]+n,column:t,calcdata:t.calcdata,page:t.page,rowBlocks:t.rowBlocks,value:r}}))}},{"../../lib/extend":488}],1067:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../plots/domain").defaults;e.exports=function(t,e,r,o){function s(r,a){return n.coerce(t,e,i,r,a)}a(e,o,s),s("columnwidth"),s("header.values"),s("header.format"),s("header.align"),s("header.prefix"),s("header.suffix"),s("header.height"),s("header.line.width"),s("header.line.color"),s("header.fill.color"),n.coerceFont(s,"header.font",n.extendFlat({},o.font)),function(t,e){for(var r=t.columnorder||[],n=t.header.values.length,i=r.slice(0,n),a=i.slice().sort((function(t,e){return t-e})),o=i.map((function(t){return a.indexOf(t)})),s=o.length;s/i),l=!o||s;t.mayHaveMarkup=o&&i.match(/[<&>]/);var c,u="string"==typeof(c=i)&&c.match(n.latexCheck);t.latex=u;var f,h,p=u?"":T(t.calcdata.cells.prefix,e,r)||"",d=u?"":T(t.calcdata.cells.suffix,e,r)||"",m=u?null:T(t.calcdata.cells.format,e,r)||null,g=p+(m?a(m)(t.value):t.value)+d;if(t.wrappingNeeded=!t.wrapped&&!l&&!u&&(f=w(g)),t.cellHeightMayIncrease=s||u||t.mayHaveMarkup||(void 0===f?w(g):f),t.needsConvertToTspans=t.mayHaveMarkup||t.wrappingNeeded||t.latex,t.wrappingNeeded){var v=(" "===n.wrapSplitCharacter?g.replace(/i&&n.push(a),i+=l}return n}(i,l,s);1===c.length&&(c[0]===i.length-1?c.unshift(c[0]-1):c.push(c[0]+1)),c[0]%2&&c.reverse(),e.each((function(t,e){t.page=c[e],t.scrollY=l})),e.attr("transform",(function(t){var e=D(t.rowBlocks,t.page)-t.scrollY;return u(0,e)})),t&&(C(t,r,e,c,n.prevPages,n,0),C(t,r,e,c,n.prevPages,n,1),x(r,t))}}function L(t,e,r,a){return function(o){var s=o.calcdata?o.calcdata:o,l=e.filter((function(t){return s.key===t.key})),c=r||s.scrollbarState.dragMultiplier,u=s.scrollY;s.scrollY=void 0===a?s.scrollY+c*i.event.dy:a;var f=l.selectAll("."+n.cn.yColumn).selectAll("."+n.cn.columnBlock).filter(A);return E(t,f,l),s.scrollY===u}}function C(t,e,r,n,i,a,o){n[o]!==i[o]&&(clearTimeout(a.currentRepaint[o]),a.currentRepaint[o]=setTimeout((function(){var a=r.filter((function(t,e){return e===o&&n[e]!==i[e]}));b(t,e,a,r),i[o]=n[o]})))}function P(t,e,r,a){return function(){var o=i.select(e.parentNode);o.each((function(t){var e=t.fragments;o.selectAll("tspan.line").each((function(t,r){e[r].width=this.getComputedTextLength()}));var r,i,a=e[e.length-1].width,s=e.slice(0,-1),l=[],c=0,u=t.column.columnWidth-2*n.cellPad;for(t.value="";s.length;)c+(i=(r=s.shift()).width+a)>u&&(t.value+=l.join(n.wrapSpacer)+n.lineBreaker,l=[],c=0),l.push(r.text),c+=i;c&&(t.value+=l.join(n.wrapSpacer)),t.wrapped=!0})),o.selectAll("tspan.line").remove(),_(o.select("."+n.cn.cellText),r,t,a),i.select(e.parentNode.parentNode).call(z)}}function I(t,e,r,a,o){return function(){if(!o.settledY){var s=i.select(e.parentNode),l=B(o),c=o.key-l.firstRowIndex,f=l.rows[c].rowHeight,h=o.cellHeightMayIncrease?e.parentNode.getBoundingClientRect().height+2*n.cellPad:f,p=Math.max(h,f);p-l.rows[c].rowHeight&&(l.rows[c].rowHeight=p,t.selectAll("."+n.cn.columnCell).call(z),E(null,t.filter(A),0),x(r,a,!0)),s.attr("transform",(function(){var t=this.parentNode.getBoundingClientRect(),e=i.select(this.parentNode).select("."+n.cn.cellRect).node().getBoundingClientRect(),r=this.transform.baseVal.consolidate(),a=e.top-t.top+(r?r.matrix.f:n.cellPad);return u(O(o,i.select(this.parentNode).select("."+n.cn.cellTextHolder).node().getBoundingClientRect().width),a)})),o.settledY=!0}}}function O(t,e){switch(t.align){case"left":return n.cellPad;case"right":return t.column.columnWidth-(e||0)-n.cellPad;case"center":return(t.column.columnWidth-(e||0))/2;default:return n.cellPad}}function z(t){t.attr("transform",(function(t){var e=t.rowBlocks[0].auxiliaryBlocks.reduce((function(t,e){return t+R(e,1/0)}),0),r=R(B(t),t.key);return u(0,r+e)})).selectAll("."+n.cn.cellRect).attr("height",(function(t){return(e=B(t),r=t.key,e.rows[r-e.firstRowIndex]).rowHeight;var e,r}))}function D(t,e){for(var r=0,n=e-1;n>=0;n--)r+=F(t[n]);return r}function R(t,e){for(var r=0,n=0;n","<","|","/","\\"],dflt:">",editType:"plot"},thickness:{valType:"number",min:12,editType:"plot"},textfont:u({},s.textfont,{}),editType:"calc"},text:s.text,textinfo:l.textinfo,texttemplate:i({editType:"plot"},{keys:c.eventDataKeys.concat(["label","value"])}),hovertext:s.hovertext,hoverinfo:l.hoverinfo,hovertemplate:n({},{keys:c.eventDataKeys}),textfont:s.textfont,insidetextfont:s.insidetextfont,outsidetextfont:u({},s.outsidetextfont,{}),textposition:{valType:"enumerated",values:["top left","top center","top right","middle left","middle center","middle right","bottom left","bottom center","bottom right"],dflt:"top left",editType:"plot"},sort:s.sort,root:l.root,domain:o({name:"treemap",trace:!0,editType:"calc"})}},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/domain":579,"../../plots/template_attributes":628,"../pie/attributes":896,"../sunburst/attributes":1044,"./constants":1073}],1071:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="treemap",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":614}],1072:[function(t,e,r){"use strict";var n=t("../sunburst/calc");r.calc=function(t,e){return n.calc(t,e)},r.crossTraceCalc=function(t){return n._runCrossTraceCalc("treemap",t)}},{"../sunburst/calc":1046}],1073:[function(t,e,r){"use strict";e.exports={CLICK_TRANSITION_TIME:750,CLICK_TRANSITION_EASING:"poly",eventDataKeys:["currentPath","root","entry","percentRoot","percentEntry","percentParent"],gapWithPathbar:1}},{}],1074:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../components/color"),o=t("../../plots/domain").defaults,s=t("../bar/defaults").handleText,l=t("../bar/constants").TEXTPAD,c=t("../../components/colorscale"),u=c.hasColorscale,f=c.handleDefaults;e.exports=function(t,e,r,c){function h(r,a){return n.coerce(t,e,i,r,a)}var p=h("labels"),d=h("parents");if(p&&p.length&&d&&d.length){var m=h("values");m&&m.length?h("branchvalues"):h("count"),h("level"),h("maxdepth"),"squarify"===h("tiling.packing")&&h("tiling.squarifyratio"),h("tiling.flip"),h("tiling.pad");var g=h("text");h("texttemplate"),e.texttemplate||h("textinfo",Array.isArray(g)?"text+label":"label"),h("hovertext"),h("hovertemplate");var v=h("pathbar.visible");s(t,e,c,h,"auto",{hasPathbar:v,moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1}),h("textposition");var y=-1!==e.textposition.indexOf("bottom");h("marker.line.width")&&h("marker.line.color",c.paper_bgcolor);var x=h("marker.colors");(e._hasColorscale=u(t,"marker","colors")||(t.marker||{}).coloraxis)?f(t,e,c,h,{prefix:"marker.",cLetter:"c"}):h("marker.depthfade",!(x||[]).length);var b=2*e.textfont.size;h("marker.pad.t",y?b/4:b),h("marker.pad.l",b/4),h("marker.pad.r",b/4),h("marker.pad.b",y?b:b/4),e._hovered={marker:{line:{width:2,color:a.contrast(c.paper_bgcolor)}}},v&&(h("pathbar.thickness",e.pathbar.textfont.size+2*l),h("pathbar.side"),h("pathbar.edgeshape")),h("sort"),h("root.color"),o(e,c,h),e._length=null}else e.visible=!1}},{"../../components/color":361,"../../components/colorscale":373,"../../lib":498,"../../plots/domain":579,"../bar/constants":645,"../bar/defaults":647,"./attributes":1070}],1075:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../sunburst/helpers"),a=t("../bar/uniform_text").clearMinTextSize,o=t("../bar/style").resizeText,s=t("./plot_one");e.exports=function(t,e,r,l,c){var u,f,h=c.type,p=c.drawDescendants,d=t._fullLayout,m=d["_"+h+"layer"],g=!r;(a(h,d),(u=m.selectAll("g.trace."+h).data(e,(function(t){return t[0].trace.uid}))).enter().append("g").classed("trace",!0).classed(h,!0),u.order(),!d.uniformtext.mode&&i.hasTransition(r))?(l&&(f=l()),n.transition().duration(r.duration).ease(r.easing).each("end",(function(){f&&f()})).each("interrupt",(function(){f&&f()})).each((function(){m.selectAll("g.trace").each((function(e){s(t,e,this,r,p)}))}))):(u.each((function(e){s(t,e,this,r,p)})),d.uniformtext.mode&&o(t,m.selectAll(".trace"),h));g&&u.exit().remove()}},{"../bar/style":657,"../bar/uniform_text":659,"../sunburst/helpers":1050,"./plot_one":1084,"@plotly/d3":58}],1076:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../../lib/svg_text_utils"),s=t("./partition"),l=t("./style").styleOne,c=t("./constants"),u=t("../sunburst/helpers"),f=t("../sunburst/fx");e.exports=function(t,e,r,h,p){var d=p.barDifY,m=p.width,g=p.height,v=p.viewX,y=p.viewY,x=p.pathSlice,b=p.toMoveInsideSlice,_=p.strTransform,w=p.hasTransition,T=p.handleSlicesExit,k=p.makeUpdateSliceInterpolator,A=p.makeUpdateTextInterpolator,M={},S=t._fullLayout,E=e[0],L=E.trace,C=E.hierarchy,P=m/L._entryDepth,I=u.listPath(r.data,"id"),O=s(C.copy(),[m,g],{packing:"dice",pad:{inner:0,top:0,left:0,right:0,bottom:0}}).descendants();(O=O.filter((function(t){var e=I.indexOf(t.data.id);return-1!==e&&(t.x0=P*e,t.x1=P*(e+1),t.y0=d,t.y1=d+g,t.onPathbar=!0,!0)}))).reverse(),(h=h.data(O,u.getPtId)).enter().append("g").classed("pathbar",!0),T(h,!0,M,[m,g],x),h.order();var z=h;w&&(z=z.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!1,hideOnLeaves:!1,isTransitioning:!1})}))),z.each((function(s){s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-Math.min(m,g)/2),s._hoverY=y(s.y1-g/2);var h=n.select(this),p=i.ensureSingle(h,"path","surface",(function(t){t.style("pointer-events","all")}));w?p.transition().attrTween("d",(function(t){var e=k(t,!0,M,[m,g]);return function(t){return x(e(t))}})):p.attr("d",x),h.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{hideOnRoot:!1,hideOnLeaves:!1,isTransitioning:t._transitioning}),p.call(l,s,L,{hovered:!1}),s._text=(u.getPtLabel(s)||"").split("
").join(" ")||"";var d=i.ensureSingle(h,"g","slicetext"),T=i.ensureSingle(d,"text","",(function(t){t.attr("data-notex",1)})),E=i.ensureUniformFontSize(t,u.determineTextFont(L,s,S.font,{onPathbar:!0}));T.text(s._text||" ").classed("slicetext",!0).attr("text-anchor","start").call(a.font,E).call(o.convertToTspans,t),s.textBB=a.bBox(T.node()),s.transform=b(s,{fontSize:E.size,onPathbar:!0}),s.transform.fontSize=E.size,w?T.transition().attrTween("transform",(function(t){var e=A(t,!0,M,[m,g]);return function(t){return _(e(t))}})):T.attr("transform",_(s))}))}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../sunburst/fx":1049,"../sunburst/helpers":1050,"./constants":1073,"./partition":1082,"./style":1085,"@plotly/d3":58}],1077:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../../lib/svg_text_utils"),s=t("./partition"),l=t("./style").styleOne,c=t("./constants"),u=t("../sunburst/helpers"),f=t("../sunburst/fx"),h=t("../sunburst/plot").formatSliceLabel;e.exports=function(t,e,r,p,d){var m=d.width,g=d.height,v=d.viewX,y=d.viewY,x=d.pathSlice,b=d.toMoveInsideSlice,_=d.strTransform,w=d.hasTransition,T=d.handleSlicesExit,k=d.makeUpdateSliceInterpolator,A=d.makeUpdateTextInterpolator,M=d.prevEntry,S=t._fullLayout,E=e[0].trace,L=-1!==E.textposition.indexOf("left"),C=-1!==E.textposition.indexOf("right"),P=-1!==E.textposition.indexOf("bottom"),I=!P&&!E.marker.pad.t||P&&!E.marker.pad.b,O=s(r,[m,g],{packing:E.tiling.packing,squarifyratio:E.tiling.squarifyratio,flipX:E.tiling.flip.indexOf("x")>-1,flipY:E.tiling.flip.indexOf("y")>-1,pad:{inner:E.tiling.pad,top:E.marker.pad.t,left:E.marker.pad.l,right:E.marker.pad.r,bottom:E.marker.pad.b}}).descendants(),z=1/0,D=-1/0;O.forEach((function(t){var e=t.depth;e>=E._maxDepth?(t.x0=t.x1=(t.x0+t.x1)/2,t.y0=t.y1=(t.y0+t.y1)/2):(z=Math.min(z,e),D=Math.max(D,e))})),p=p.data(O,u.getPtId),E._maxVisibleLayers=isFinite(D)?D-z+1:0,p.enter().append("g").classed("slice",!0),T(p,!1,{},[m,g],x),p.order();var R=null;if(w&&M){var F=u.getPtId(M);p.each((function(t){null===R&&u.getPtId(t)===F&&(R={x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1})}))}var B=function(){return R||{x0:0,x1:m,y0:0,y1:g}},N=p;return w&&(N=N.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!0,hideOnLeaves:!1,isTransitioning:!1})}))),N.each((function(s){var p=u.isHeader(s,E);s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-E.marker.pad.r),s._hoverY=y(P?s.y1-E.marker.pad.b/2:s.y0+E.marker.pad.t/2);var d=n.select(this),T=i.ensureSingle(d,"path","surface",(function(t){t.style("pointer-events","all")}));w?T.transition().attrTween("d",(function(t){var e=k(t,!1,B(),[m,g]);return function(t){return x(e(t))}})):T.attr("d",x),d.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{isTransitioning:t._transitioning}),T.call(l,s,E,{hovered:!1}),s.x0===s.x1||s.y0===s.y1?s._text="":s._text=p?I?"":u.getPtLabel(s)||"":h(s,r,E,e,S)||"";var M=i.ensureSingle(d,"g","slicetext"),O=i.ensureSingle(M,"text","",(function(t){t.attr("data-notex",1)})),z=i.ensureUniformFontSize(t,u.determineTextFont(E,s,S.font));O.text(s._text||" ").classed("slicetext",!0).attr("text-anchor",C?"end":L||p?"start":"middle").call(a.font,z).call(o.convertToTspans,t),s.textBB=a.bBox(O.node()),s.transform=b(s,{fontSize:z.size,isHeader:p}),s.transform.fontSize=z.size,w?O.transition().attrTween("transform",(function(t){var e=A(t,!1,B(),[m,g]);return function(t){return _(e(t))}})):O.attr("transform",_(s))})),R}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../sunburst/fx":1049,"../sunburst/helpers":1050,"../sunburst/plot":1054,"./constants":1073,"./partition":1082,"./style":1085,"@plotly/d3":58}],1078:[function(t,e,r){"use strict";e.exports=function t(e,r,n){var i;n.swapXY&&(i=e.x0,e.x0=e.y0,e.y0=i,i=e.x1,e.x1=e.y1,e.y1=i),n.flipX&&(i=e.x0,e.x0=r[0]-e.x1,e.x1=r[0]-i),n.flipY&&(i=e.y0,e.y0=r[1]-e.y1,e.y1=r[1]-i);var a=e.children;if(a)for(var o=0;o-1?C+O:-(I+O):0,D={x0:P,x1:P,y0:z,y1:z+I},R=function(t,e,r){var n=v.tiling.pad,i=function(t){return t-n<=e.x0},a=function(t){return t+n>=e.x1},o=function(t){return t-n<=e.y0},s=function(t){return t+n>=e.y1};return t.x0===e.x0&&t.x1===e.x1&&t.y0===e.y0&&t.y1===e.y1?{x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1}:{x0:i(t.x0-n)?0:a(t.x0-n)?r[0]:t.x0,x1:i(t.x1+n)?0:a(t.x1+n)?r[0]:t.x1,y0:o(t.y0-n)?0:s(t.y0-n)?r[1]:t.y0,y1:o(t.y1+n)?0:s(t.y1+n)?r[1]:t.y1}},F=null,B={},N={},j=null,U=function(t,e){return e?B[h(t)]:N[h(t)]},V=function(t,e,r,n){if(e)return B[h(x)]||D;var i=N[v.level]||r;return function(t){return t.data.depth-b.data.depth=(n-=(y?g:g.r)-s)){var x=(r+n)/2;r=x,n=x}var b;f?i<(b=a-(y?g:g.b))&&b"===tt?(l.x-=a,c.x-=a,u.x-=a,f.x-=a):"/"===tt?(u.x-=a,f.x-=a,o.x-=a/2,s.x-=a/2):"\\"===tt?(l.x-=a,c.x-=a,o.x-=a/2,s.x-=a/2):"<"===tt&&(o.x-=a,s.x-=a),$(l),$(f),$(o),$(c),$(u),$(s),"M"+K(l.x,l.y)+"L"+K(c.x,c.y)+"L"+K(s.x,s.y)+"L"+K(u.x,u.y)+"L"+K(f.x,f.y)+"L"+K(o.x,o.y)+"Z"},toMoveInsideSlice:et,makeUpdateSliceInterpolator:nt,makeUpdateTextInterpolator:it,handleSlicesExit:at,hasTransition:A,strTransform:ot}):w.remove()}},{"../../lib":498,"../bar/constants":645,"../bar/plot":654,"../bar/uniform_text":659,"../sunburst/helpers":1050,"./constants":1073,"./draw_ancestors":1076,"@plotly/d3":58,"d3-interpolate":111}],1085:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../sunburst/helpers"),s=t("../bar/uniform_text").resizeText;function l(t,e,r,n){var s,l,c=(n||{}).hovered,u=e.data.data,f=u.i,h=u.color,p=o.isHierarchyRoot(e),d=1;if(c)s=r._hovered.marker.line.color,l=r._hovered.marker.line.width;else if(p&&h===r.root.color)d=100,s="rgba(0,0,0,0)",l=0;else if(s=a.castOption(r,f,"marker.line.color")||i.defaultLine,l=a.castOption(r,f,"marker.line.width")||0,!r._hasColorscale&&!e.onPathbar){var m=r.marker.depthfade;if(m){var g,v=i.combine(i.addOpacity(r._backgroundColor,.75),h);if(!0===m){var y=o.getMaxDepth(r);g=isFinite(y)?o.isLeaf(e)?0:r._maxVisibleLayers-(e.data.depth-r._entryDepth):e.data.height+1}else g=e.data.depth-r._entryDepth,r._atRootLevel||g++;if(g>0)for(var x=0;x0){var x,b,_,w,T,k=t.xa,A=t.ya;"h"===p.orientation?(T=e,x="y",_=A,b="x",w=k):(T=r,x="x",_=k,b="y",w=A);var M=h[t.index];if(T>=M.span[0]&&T<=M.span[1]){var S=n.extendFlat({},t),E=w.c2p(T,!0),L=o.getKdeValue(M,p,T),C=o.getPositionOnKdePath(M,p,E),P=_._offset,I=_._length;S[x+"0"]=C[0],S[x+"1"]=C[1],S[b+"0"]=S[b+"1"]=E,S[b+"Label"]=b+": "+i.hoverLabelText(w,T,p[b+"hoverformat"])+", "+h[0].t.labels.kde+" "+L.toFixed(3),S.spikeDistance=y[0].spikeDistance;var O=x+"Spike";S[O]=y[0][O],y[0].spikeDistance=void 0,y[0][O]=void 0,S.hovertemplate=!1,v.push(S),(u={stroke:t.color})[x+"1"]=n.constrain(P+C[0],P,P+I),u[x+"2"]=n.constrain(P+C[1],P,P+I),u[b+"1"]=u[b+"2"]=w._offset+E}}m&&(v=v.concat(y))}-1!==d.indexOf("points")&&(c=a.hoverOnPoints(t,e,r));var z=f.selectAll(".violinline-"+p.uid).data(u?[0]:[]);return z.enter().append("line").classed("violinline-"+p.uid,!0).attr("stroke-width",1.5),z.exit().remove(),z.attr(u),"closest"===s?c?[c]:v:c?(v.push(c),v):v}},{"../../lib":498,"../../plots/cartesian/axes":549,"../box/hover":673,"./helpers":1090}],1092:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),crossTraceDefaults:t("../box/defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style"),styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../box/select"),moduleType:"trace",name:"violin",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","symbols","oriented","box-violin","showLegend","violinLayout","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"../box/defaults":671,"../box/select":678,"../scatter/style":946,"./attributes":1086,"./calc":1087,"./cross_trace_calc":1088,"./defaults":1089,"./hover":1091,"./layout_attributes":1093,"./layout_defaults":1094,"./plot":1095,"./style":1096}],1093:[function(t,e,r){"use strict";var n=t("../box/layout_attributes"),i=t("../../lib").extendFlat;e.exports={violinmode:i({},n.boxmode,{}),violingap:i({},n.boxgap,{}),violingroupgap:i({},n.boxgroupgap,{})}},{"../../lib":498,"../box/layout_attributes":675}],1094:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes"),a=t("../box/layout_defaults");e.exports=function(t,e,r){a._supply(t,e,r,(function(r,a){return n.coerce(t,e,i,r,a)}),"violin")}},{"../../lib":498,"../box/layout_defaults":676,"./layout_attributes":1093}],1095:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../box/plot"),s=t("../scatter/line_points"),l=t("./helpers");e.exports=function(t,e,r,c){var u=t._fullLayout,f=e.xaxis,h=e.yaxis;function p(t){var e=s(t,{xaxis:f,yaxis:h,connectGaps:!0,baseTolerance:.75,shape:"spline",simplify:!0,linearized:!0});return a.smoothopen(e[0],1)}i.makeTraceGroups(c,r,"trace violins").each((function(t){var r=n.select(this),a=t[0],s=a.t,c=a.trace;if(!0!==c.visible||s.empty)r.remove();else{var d=s.bPos,m=s.bdPos,g=e[s.valLetter+"axis"],v=e[s.posLetter+"axis"],y="both"===c.side,x=y||"positive"===c.side,b=y||"negative"===c.side,_=r.selectAll("path.violin").data(i.identity);_.enter().append("path").style("vector-effect","non-scaling-stroke").attr("class","violin"),_.exit().remove(),_.each((function(t){var e,r,i,a,o,l,f,h,_=n.select(this),w=t.density,T=w.length,k=v.c2l(t.pos+d,!0),A=v.l2p(k);if(c.width)e=s.maxKDE/m;else{var M=u._violinScaleGroupStats[c.scalegroup];e="count"===c.scalemode?M.maxKDE/m*(M.maxCount/t.pts.length):M.maxKDE/m}if(x){for(f=new Array(T),o=0;o")),u.color=function(t,e){var r=t[e.dir].marker,n=r.color,a=r.line.color,o=r.line.width;if(i(n))return n;if(i(a)&&o)return a}(h,g),[u]}function k(t){return n(m,t,h[d+"hoverformat"])}}},{"../../components/color":361,"../../constants/delta.js":468,"../../plots/cartesian/axes":549,"../bar/hover":650}],1108:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style").style,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("../bar/select"),moduleType:"trace",name:"waterfall",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","oriented","showLegend","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"../bar/select":655,"./attributes":1101,"./calc":1102,"./cross_trace_calc":1104,"./defaults":1105,"./event_data":1106,"./hover":1107,"./layout_attributes":1109,"./layout_defaults":1110,"./plot":1111,"./style":1112}],1109:[function(t,e,r){"use strict";e.exports={waterfallmode:{valType:"enumerated",values:["group","overlay"],dflt:"group",editType:"calc"},waterfallgap:{valType:"number",min:0,max:1,editType:"calc"},waterfallgroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],1110:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a=!1;function o(r,a){return n.coerce(t,e,i,r,a)}for(var s=0;s0&&(g+=h?"M"+f[0]+","+d[1]+"V"+d[0]:"M"+f[1]+","+d[0]+"H"+f[0]),"between"!==p&&(r.isSum||s path").each((function(t){if(!t.isBlank){var e=s[t.dir].marker;n.select(this).call(a.fill,e.color).call(a.stroke,e.line.color).call(i.dashLine,e.line.dash,e.line.width).style("opacity",s.selectedpoints&&!t.selected?o:1)}})),c(r,s,t),r.selectAll(".lines").each((function(){var t=s.connector.line;i.lineGroupStyle(n.select(this).selectAll("path"),t.width,t.color,t.dash)}))}))}}},{"../../components/color":361,"../../components/drawing":383,"../../constants/interactions":473,"../bar/style":657,"../bar/uniform_text":659,"@plotly/d3":58}],1113:[function(t,e,r){"use strict";var n=t("../plots/cartesian/axes"),i=t("../lib"),a=t("../plot_api/plot_schema"),o=t("./helpers").pointsAccessorFunction,s=t("../constants/numerical").BADNUM;r.moduleType="transform",r.name="aggregate";var l=r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},groups:{valType:"string",strict:!0,noBlank:!0,arrayOk:!0,dflt:"x",editType:"calc"},aggregations:{_isLinkedToArray:"aggregation",target:{valType:"string",editType:"calc"},func:{valType:"enumerated",values:["count","sum","avg","median","mode","rms","stddev","min","max","first","last","change","range"],dflt:"first",editType:"calc"},funcmode:{valType:"enumerated",values:["sample","population"],dflt:"sample",editType:"calc"},enabled:{valType:"boolean",dflt:!0,editType:"calc"},editType:"calc"},editType:"calc"},c=l.aggregations;function u(t,e,r,a){if(a.enabled){for(var o=a.target,l=i.nestedProperty(e,o),c=l.get(),u=function(t,e){var r=t.func,n=e.d2c,a=e.c2d;switch(r){case"count":return f;case"first":return h;case"last":return p;case"sum":return function(t,e){for(var r=0,i=0;ii&&(i=u,o=c)}}return i?a(o):s};case"rms":return function(t,e){for(var r=0,i=0,o=0;o":return function(t){return h(t)>s};case">=":return function(t){return h(t)>=s};case"[]":return function(t){var e=h(t);return e>=s[0]&&e<=s[1]};case"()":return function(t){var e=h(t);return e>s[0]&&e=s[0]&&es[0]&&e<=s[1]};case"][":return function(t){var e=h(t);return e<=s[0]||e>=s[1]};case")(":return function(t){var e=h(t);return es[1]};case"](":return function(t){var e=h(t);return e<=s[0]||e>s[1]};case")[":return function(t){var e=h(t);return e=s[1]};case"{}":return function(t){return-1!==s.indexOf(h(t))};case"}{":return function(t){return-1===s.indexOf(h(t))}}}(r,a.getDataToCoordFunc(t,e,s,i),h),x={},b={},_=0;d?(g=function(t){x[t.astr]=n.extendDeep([],t.get()),t.set(new Array(f))},v=function(t,e){var r=x[t.astr][e];t.get()[e]=r}):(g=function(t){x[t.astr]=n.extendDeep([],t.get()),t.set([])},v=function(t,e){var r=x[t.astr][e];t.get().push(r)}),k(g);for(var w=o(e.transforms,r),T=0;T1?"%{group} (%{trace})":"%{group}");var l=t.styles,c=o.styles=[];if(l)for(a=0;a0?o-4:o;for(r=0;r>16&255,l[u++]=e>>8&255,l[u++]=255&e;2===s&&(e=i[t.charCodeAt(r)]<<2|i[t.charCodeAt(r+1)]>>4,l[u++]=255&e);1===s&&(e=i[t.charCodeAt(r)]<<10|i[t.charCodeAt(r+1)]<<4|i[t.charCodeAt(r+2)]>>2,l[u++]=e>>8&255,l[u++]=255&e);return l},r.fromByteArray=function(t){for(var e,r=t.length,i=r%3,a=[],o=0,s=r-i;os?s:o+16383));1===i?(e=t[r-1],a.push(n[e>>2]+n[e<<4&63]+"==")):2===i&&(e=(t[r-2]<<8)+t[r-1],a.push(n[e>>10]+n[e>>4&63]+n[e<<2&63]+"="));return a.join("")};for(var n=[],i=[],a="undefined"!=typeof Uint8Array?Uint8Array:Array,o="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",s=0,l=o.length;s0)throw new Error("Invalid string. Length must be a multiple of 4");var r=t.indexOf("=");return-1===r&&(r=e),[r,r===e?0:4-r%4]}function u(t,e,r){for(var i,a,o=[],s=e;s>18&63]+n[a>>12&63]+n[a>>6&63]+n[63&a]);return o.join("")}i["-".charCodeAt(0)]=62,i["_".charCodeAt(0)]=63},{}],2:[function(t,e,r){},{}],3:[function(t,e,r){(function(e){(function(){ -/*! - * The buffer module from node.js, for the browser. - * - * @author Feross Aboukhadijeh - * @license MIT - */ -"use strict";var e=t("base64-js"),n=t("ieee754");r.Buffer=a,r.SlowBuffer=function(t){+t!=t&&(t=0);return a.alloc(+t)},r.INSPECT_MAX_BYTES=50;function i(t){if(t>2147483647)throw new RangeError('The value "'+t+'" is invalid for option "size"');var e=new Uint8Array(t);return e.__proto__=a.prototype,e}function a(t,e,r){if("number"==typeof t){if("string"==typeof e)throw new TypeError('The "string" argument must be of type string. Received type number');return l(t)}return o(t,e,r)}function o(t,e,r){if("string"==typeof t)return function(t,e){"string"==typeof e&&""!==e||(e="utf8");if(!a.isEncoding(e))throw new TypeError("Unknown encoding: "+e);var r=0|f(t,e),n=i(r),o=n.write(t,e);o!==r&&(n=n.slice(0,o));return n}(t,e);if(ArrayBuffer.isView(t))return c(t);if(null==t)throw TypeError("The first argument must be one of type string, Buffer, ArrayBuffer, Array, or Array-like Object. Received type "+typeof t);if(B(t,ArrayBuffer)||t&&B(t.buffer,ArrayBuffer))return function(t,e,r){if(e<0||t.byteLength=2147483647)throw new RangeError("Attempt to allocate Buffer larger than maximum size: 0x"+2147483647..toString(16)+" bytes");return 0|t}function f(t,e){if(a.isBuffer(t))return t.length;if(ArrayBuffer.isView(t)||B(t,ArrayBuffer))return t.byteLength;if("string"!=typeof t)throw new TypeError('The "string" argument must be one of type string, Buffer, or ArrayBuffer. Received type '+typeof t);var r=t.length,n=arguments.length>2&&!0===arguments[2];if(!n&&0===r)return 0;for(var i=!1;;)switch(e){case"ascii":case"latin1":case"binary":return r;case"utf8":case"utf-8":return D(t).length;case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return 2*r;case"hex":return r>>>1;case"base64":return R(t).length;default:if(i)return n?-1:D(t).length;e=(""+e).toLowerCase(),i=!0}}function h(t,e,r){var n=!1;if((void 0===e||e<0)&&(e=0),e>this.length)return"";if((void 0===r||r>this.length)&&(r=this.length),r<=0)return"";if((r>>>=0)<=(e>>>=0))return"";for(t||(t="utf8");;)switch(t){case"hex":return M(this,e,r);case"utf8":case"utf-8":return T(this,e,r);case"ascii":return k(this,e,r);case"latin1":case"binary":return A(this,e,r);case"base64":return w(this,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return S(this,e,r);default:if(n)throw new TypeError("Unknown encoding: "+t);t=(t+"").toLowerCase(),n=!0}}function p(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function d(t,e,r,n,i){if(0===t.length)return-1;if("string"==typeof r?(n=r,r=0):r>2147483647?r=2147483647:r<-2147483648&&(r=-2147483648),N(r=+r)&&(r=i?0:t.length-1),r<0&&(r=t.length+r),r>=t.length){if(i)return-1;r=t.length-1}else if(r<0){if(!i)return-1;r=0}if("string"==typeof e&&(e=a.from(e,n)),a.isBuffer(e))return 0===e.length?-1:m(t,e,r,n,i);if("number"==typeof e)return e&=255,"function"==typeof Uint8Array.prototype.indexOf?i?Uint8Array.prototype.indexOf.call(t,e,r):Uint8Array.prototype.lastIndexOf.call(t,e,r):m(t,[e],r,n,i);throw new TypeError("val must be string, number or Buffer")}function m(t,e,r,n,i){var a,o=1,s=t.length,l=e.length;if(void 0!==n&&("ucs2"===(n=String(n).toLowerCase())||"ucs-2"===n||"utf16le"===n||"utf-16le"===n)){if(t.length<2||e.length<2)return-1;o=2,s/=2,l/=2,r/=2}function c(t,e){return 1===o?t[e]:t.readUInt16BE(e*o)}if(i){var u=-1;for(a=r;as&&(r=s-l),a=r;a>=0;a--){for(var f=!0,h=0;hi&&(n=i):n=i;var a=e.length;n>a/2&&(n=a/2);for(var o=0;o>8,i=r%256,a.push(i),a.push(n);return a}(e,t.length-r),t,r,n)}function w(t,r,n){return 0===r&&n===t.length?e.fromByteArray(t):e.fromByteArray(t.slice(r,n))}function T(t,e,r){r=Math.min(t.length,r);for(var n=[],i=e;i239?4:c>223?3:c>191?2:1;if(i+f<=r)switch(f){case 1:c<128&&(u=c);break;case 2:128==(192&(a=t[i+1]))&&(l=(31&c)<<6|63&a)>127&&(u=l);break;case 3:a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&(l=(15&c)<<12|(63&a)<<6|63&o)>2047&&(l<55296||l>57343)&&(u=l);break;case 4:a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&(l=(15&c)<<18|(63&a)<<12|(63&o)<<6|63&s)>65535&&l<1114112&&(u=l)}null===u?(u=65533,f=1):u>65535&&(u-=65536,n.push(u>>>10&1023|55296),u=56320|1023&u),n.push(u),i+=f}return function(t){var e=t.length;if(e<=4096)return String.fromCharCode.apply(String,t);var r="",n=0;for(;ne&&(t+=" ... "),""},a.prototype.compare=function(t,e,r,n,i){if(B(t,Uint8Array)&&(t=a.from(t,t.offset,t.byteLength)),!a.isBuffer(t))throw new TypeError('The "target" argument must be one of type Buffer or Uint8Array. Received type '+typeof t);if(void 0===e&&(e=0),void 0===r&&(r=t?t.length:0),void 0===n&&(n=0),void 0===i&&(i=this.length),e<0||r>t.length||n<0||i>this.length)throw new RangeError("out of range index");if(n>=i&&e>=r)return 0;if(n>=i)return-1;if(e>=r)return 1;if(this===t)return 0;for(var o=(i>>>=0)-(n>>>=0),s=(r>>>=0)-(e>>>=0),l=Math.min(o,s),c=this.slice(n,i),u=t.slice(e,r),f=0;f>>=0,isFinite(r)?(r>>>=0,void 0===n&&(n="utf8")):(n=r,r=void 0)}var i=this.length-e;if((void 0===r||r>i)&&(r=i),t.length>0&&(r<0||e<0)||e>this.length)throw new RangeError("Attempt to write outside buffer bounds");n||(n="utf8");for(var a=!1;;)switch(n){case"hex":return g(this,t,e,r);case"utf8":case"utf-8":return v(this,t,e,r);case"ascii":return y(this,t,e,r);case"latin1":case"binary":return x(this,t,e,r);case"base64":return b(this,t,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return _(this,t,e,r);default:if(a)throw new TypeError("Unknown encoding: "+n);n=(""+n).toLowerCase(),a=!0}},a.prototype.toJSON=function(){return{type:"Buffer",data:Array.prototype.slice.call(this._arr||this,0)}};function k(t,e,r){var n="";r=Math.min(t.length,r);for(var i=e;in)&&(r=n);for(var i="",a=e;ar)throw new RangeError("Trying to access beyond buffer length")}function L(t,e,r,n,i,o){if(!a.isBuffer(t))throw new TypeError('"buffer" argument must be a Buffer instance');if(e>i||et.length)throw new RangeError("Index out of range")}function C(t,e,r,n,i,a){if(r+n>t.length)throw new RangeError("Index out of range");if(r<0)throw new RangeError("Index out of range")}function P(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,4),n.write(t,e,r,i,23,4),r+4}function I(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,8),n.write(t,e,r,i,52,8),r+8}a.prototype.slice=function(t,e){var r=this.length;(t=~~t)<0?(t+=r)<0&&(t=0):t>r&&(t=r),(e=void 0===e?r:~~e)<0?(e+=r)<0&&(e=0):e>r&&(e=r),e>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t+--e],i=1;e>0&&(i*=256);)n+=this[t+--e]*i;return n},a.prototype.readUInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),this[t]},a.prototype.readUInt16LE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]|this[t+1]<<8},a.prototype.readUInt16BE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]<<8|this[t+1]},a.prototype.readUInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),(this[t]|this[t+1]<<8|this[t+2]<<16)+16777216*this[t+3]},a.prototype.readUInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),16777216*this[t]+(this[t+1]<<16|this[t+2]<<8|this[t+3])},a.prototype.readIntLE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a=(i*=128)&&(n-=Math.pow(2,8*e)),n},a.prototype.readIntBE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=e,i=1,a=this[t+--n];n>0&&(i*=256);)a+=this[t+--n]*i;return a>=(i*=128)&&(a-=Math.pow(2,8*e)),a},a.prototype.readInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),128&this[t]?-1*(255-this[t]+1):this[t]},a.prototype.readInt16LE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t]|this[t+1]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt16BE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t+1]|this[t]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]|this[t+1]<<8|this[t+2]<<16|this[t+3]<<24},a.prototype.readInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]<<24|this[t+1]<<16|this[t+2]<<8|this[t+3]},a.prototype.readFloatLE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!0,23,4)},a.prototype.readFloatBE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!1,23,4)},a.prototype.readDoubleLE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!0,52,8)},a.prototype.readDoubleBE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!1,52,8)},a.prototype.writeUIntLE=function(t,e,r,n){(t=+t,e>>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=1,a=0;for(this[e]=255&t;++a>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=r-1,a=1;for(this[e+i]=255&t;--i>=0&&(a*=256);)this[e+i]=t/a&255;return e+r},a.prototype.writeUInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,255,0),this[e]=255&t,e+1},a.prototype.writeUInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeUInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeUInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e+3]=t>>>24,this[e+2]=t>>>16,this[e+1]=t>>>8,this[e]=255&t,e+4},a.prototype.writeUInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeIntLE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=0,o=1,s=0;for(this[e]=255&t;++a>0)-s&255;return e+r},a.prototype.writeIntBE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=r-1,o=1,s=0;for(this[e+a]=255&t;--a>=0&&(o*=256);)t<0&&0===s&&0!==this[e+a+1]&&(s=1),this[e+a]=(t/o>>0)-s&255;return e+r},a.prototype.writeInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,127,-128),t<0&&(t=255+t+1),this[e]=255&t,e+1},a.prototype.writeInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),this[e]=255&t,this[e+1]=t>>>8,this[e+2]=t>>>16,this[e+3]=t>>>24,e+4},a.prototype.writeInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),t<0&&(t=4294967295+t+1),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeFloatLE=function(t,e,r){return P(this,t,e,!0,r)},a.prototype.writeFloatBE=function(t,e,r){return P(this,t,e,!1,r)},a.prototype.writeDoubleLE=function(t,e,r){return I(this,t,e,!0,r)},a.prototype.writeDoubleBE=function(t,e,r){return I(this,t,e,!1,r)},a.prototype.copy=function(t,e,r,n){if(!a.isBuffer(t))throw new TypeError("argument should be a Buffer");if(r||(r=0),n||0===n||(n=this.length),e>=t.length&&(e=t.length),e||(e=0),n>0&&n=this.length)throw new RangeError("Index out of range");if(n<0)throw new RangeError("sourceEnd out of bounds");n>this.length&&(n=this.length),t.length-e=0;--o)t[o+e]=this[o+r];else Uint8Array.prototype.set.call(t,this.subarray(r,n),e);return i},a.prototype.fill=function(t,e,r,n){if("string"==typeof t){if("string"==typeof e?(n=e,e=0,r=this.length):"string"==typeof r&&(n=r,r=this.length),void 0!==n&&"string"!=typeof n)throw new TypeError("encoding must be a string");if("string"==typeof n&&!a.isEncoding(n))throw new TypeError("Unknown encoding: "+n);if(1===t.length){var i=t.charCodeAt(0);("utf8"===n&&i<128||"latin1"===n)&&(t=i)}}else"number"==typeof t&&(t&=255);if(e<0||this.length>>=0,r=void 0===r?this.length:r>>>0,t||(t=0),"number"==typeof t)for(o=e;o55295&&r<57344){if(!i){if(r>56319){(e-=3)>-1&&a.push(239,191,189);continue}if(o+1===n){(e-=3)>-1&&a.push(239,191,189);continue}i=r;continue}if(r<56320){(e-=3)>-1&&a.push(239,191,189),i=r;continue}r=65536+(i-55296<<10|r-56320)}else i&&(e-=3)>-1&&a.push(239,191,189);if(i=null,r<128){if((e-=1)<0)break;a.push(r)}else if(r<2048){if((e-=2)<0)break;a.push(r>>6|192,63&r|128)}else if(r<65536){if((e-=3)<0)break;a.push(r>>12|224,r>>6&63|128,63&r|128)}else{if(!(r<1114112))throw new Error("Invalid code point");if((e-=4)<0)break;a.push(r>>18|240,r>>12&63|128,r>>6&63|128,63&r|128)}}return a}function R(t){return e.toByteArray(function(t){if((t=(t=t.split("=")[0]).trim().replace(O,"")).length<2)return"";for(;t.length%4!=0;)t+="=";return t}(t))}function F(t,e,r,n){for(var i=0;i=e.length||i>=t.length);++i)e[i+r]=t[i];return i}function B(t,e){return t instanceof e||null!=t&&null!=t.constructor&&null!=t.constructor.name&&t.constructor.name===e.name}function N(t){return t!=t}}).call(this)}).call(this,t("buffer").Buffer)},{"base64-js":1,buffer:3,ieee754:4}],4:[function(t,e,r){r.read=function(t,e,r,n,i){var a,o,s=8*i-n-1,l=(1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},r.write=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m}},{}],5:[function(t,e,r){var n,i,a=e.exports={};function o(){throw new Error("setTimeout has not been defined")}function s(){throw new Error("clearTimeout has not been defined")}function l(t){if(n===setTimeout)return setTimeout(t,0);if((n===o||!n)&&setTimeout)return n=setTimeout,setTimeout(t,0);try{return n(t,0)}catch(e){try{return n.call(null,t,0)}catch(e){return n.call(this,t,0)}}}!function(){try{n="function"==typeof setTimeout?setTimeout:o}catch(t){n=o}try{i="function"==typeof clearTimeout?clearTimeout:s}catch(t){i=s}}();var c,u=[],f=!1,h=-1;function p(){f&&c&&(f=!1,c.length?u=c.concat(u):h=-1,u.length&&d())}function d(){if(!f){var t=l(p);f=!0;for(var e=u.length;e;){for(c=u,u=[];++h1)for(var r=1;r0?c=c.ushln(f):f<0&&(u=u.ushln(-f));return s(c,u)}},{"./div":17,"./is-rat":19,"./lib/is-bn":23,"./lib/num-to-bn":24,"./lib/rationalize":25,"./lib/str-to-bn":26}],19:[function(t,e,r){"use strict";var n=t("./lib/is-bn");e.exports=function(t){return Array.isArray(t)&&2===t.length&&n(t[0])&&n(t[1])}},{"./lib/is-bn":23}],20:[function(t,e,r){"use strict";var n=t("bn.js");e.exports=function(t){return t.cmp(new n(0))}},{"bn.js":33}],21:[function(t,e,r){"use strict";var n=t("./bn-sign");e.exports=function(t){var e=t.length,r=t.words,i=0;if(1===e)i=r[0];else if(2===e)i=r[0]+67108864*r[1];else for(var a=0;a20)return 52;return r+32}},{"bit-twiddle":32,"double-bits":64}],23:[function(t,e,r){"use strict";t("bn.js");e.exports=function(t){return t&&"object"==typeof t&&Boolean(t.words)}},{"bn.js":33}],24:[function(t,e,r){"use strict";var n=t("bn.js"),i=t("double-bits");e.exports=function(t){var e=i.exponent(t);return e<52?new n(t):new n(t*Math.pow(2,52-e)).ushln(e-52)}},{"bn.js":33,"double-bits":64}],25:[function(t,e,r){"use strict";var n=t("./num-to-bn"),i=t("./bn-sign");e.exports=function(t,e){var r=i(t),a=i(e);if(0===r)return[n(0),n(1)];if(0===a)return[n(0),n(0)];a<0&&(t=t.neg(),e=e.neg());var o=t.gcd(e);if(o.cmpn(1))return[t.div(o),e.div(o)];return[t,e]}},{"./bn-sign":20,"./num-to-bn":24}],26:[function(t,e,r){"use strict";var n=t("bn.js");e.exports=function(t){return new n(t)}},{"bn.js":33}],27:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[0]),t[1].mul(e[1]))}},{"./lib/rationalize":25}],28:[function(t,e,r){"use strict";var n=t("./lib/bn-sign");e.exports=function(t){return n(t[0])*n(t[1])}},{"./lib/bn-sign":20}],29:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[1]).sub(t[1].mul(e[0])),t[1].mul(e[1]))}},{"./lib/rationalize":25}],30:[function(t,e,r){"use strict";var n=t("./lib/bn-to-num"),i=t("./lib/ctz");e.exports=function(t){var e=t[0],r=t[1];if(0===e.cmpn(0))return 0;var a=e.abs().divmod(r.abs()),o=a.div,s=n(o),l=a.mod,c=e.negative!==r.negative?-1:1;if(0===l.cmpn(0))return c*s;if(s){var u=i(s)+4,f=n(l.ushln(u).divRound(r));return c*(s+f*Math.pow(2,-u))}var h=r.bitLength()-l.bitLength()+53;f=n(l.ushln(h).divRound(r));return h<1023?c*f*Math.pow(2,-h):(f*=Math.pow(2,-1023),c*f*Math.pow(2,1023-h))}},{"./lib/bn-to-num":21,"./lib/ctz":22}],31:[function(t,e,r){"use strict";function n(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>=0?(a=o,i=o-1):n=o+1}return a}function i(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>0?(a=o,i=o-1):n=o+1}return a}function a(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<0?(a=o,n=o+1):i=o-1}return a}function o(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<=0?(a=o,n=o+1):i=o-1}return a}function s(t,e,r,n,i){for(;n<=i;){var a=n+i>>>1,o=t[a],s=void 0!==r?r(o,e):o-e;if(0===s)return a;s<=0?n=a+1:i=a-1}return-1}function l(t,e,r,n,i,a){return"function"==typeof r?a(t,e,r,void 0===n?0:0|n,void 0===i?t.length-1:0|i):a(t,e,void 0,void 0===r?0:0|r,void 0===n?t.length-1:0|n)}e.exports={ge:function(t,e,r,i,a){return l(t,e,r,i,a,n)},gt:function(t,e,r,n,a){return l(t,e,r,n,a,i)},lt:function(t,e,r,n,i){return l(t,e,r,n,i,a)},le:function(t,e,r,n,i){return l(t,e,r,n,i,o)},eq:function(t,e,r,n,i){return l(t,e,r,n,i,s)}}},{}],32:[function(t,e,r){"use strict";function n(t){var e=32;return(t&=-t)&&e--,65535&t&&(e-=16),16711935&t&&(e-=8),252645135&t&&(e-=4),858993459&t&&(e-=2),1431655765&t&&(e-=1),e}r.INT_BITS=32,r.INT_MAX=2147483647,r.INT_MIN=-1<<31,r.sign=function(t){return(t>0)-(t<0)},r.abs=function(t){var e=t>>31;return(t^e)-e},r.min=function(t,e){return e^(t^e)&-(t65535)<<4,e|=r=((t>>>=e)>255)<<3,e|=r=((t>>>=r)>15)<<2,(e|=r=((t>>>=r)>3)<<1)|(t>>>=r)>>1},r.log10=function(t){return t>=1e9?9:t>=1e8?8:t>=1e7?7:t>=1e6?6:t>=1e5?5:t>=1e4?4:t>=1e3?3:t>=100?2:t>=10?1:0},r.popCount=function(t){return 16843009*((t=(858993459&(t-=t>>>1&1431655765))+(t>>>2&858993459))+(t>>>4)&252645135)>>>24},r.countTrailingZeros=n,r.nextPow2=function(t){return t+=0===t,--t,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)+1},r.prevPow2=function(t){return t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)-(t>>>1)},r.parity=function(t){return t^=t>>>16,t^=t>>>8,t^=t>>>4,27030>>>(t&=15)&1};var i=new Array(256);!function(t){for(var e=0;e<256;++e){var r=e,n=e,i=7;for(r>>>=1;r;r>>>=1)n<<=1,n|=1&r,--i;t[e]=n<>>8&255]<<16|i[t>>>16&255]<<8|i[t>>>24&255]},r.interleave2=function(t,e){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t&=65535)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e&=65535)|e<<8))|e<<4))|e<<2))|e<<1))<<1},r.deinterleave2=function(t,e){return(t=65535&((t=16711935&((t=252645135&((t=858993459&((t=t>>>e&1431655765)|t>>>1))|t>>>2))|t>>>4))|t>>>16))<<16>>16},r.interleave3=function(t,e,r){return t=1227133513&((t=3272356035&((t=251719695&((t=4278190335&((t&=1023)|t<<16))|t<<8))|t<<4))|t<<2),(t|=(e=1227133513&((e=3272356035&((e=251719695&((e=4278190335&((e&=1023)|e<<16))|e<<8))|e<<4))|e<<2))<<1)|(r=1227133513&((r=3272356035&((r=251719695&((r=4278190335&((r&=1023)|r<<16))|r<<8))|r<<4))|r<<2))<<2},r.deinterleave3=function(t,e){return(t=1023&((t=4278190335&((t=251719695&((t=3272356035&((t=t>>>e&1227133513)|t>>>2))|t>>>4))|t>>>8))|t>>>16))<<22>>22},r.nextCombination=function(t){var e=t|t-1;return e+1|(~e&-~e)-1>>>n(t)+1}},{}],33:[function(t,e,r){!function(e,r){"use strict";function n(t,e){if(!t)throw new Error(e||"Assertion failed")}function i(t,e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}function a(t,e,r){if(a.isBN(t))return t;this.negative=0,this.words=null,this.length=0,this.red=null,null!==t&&("le"!==e&&"be"!==e||(r=e,e=10),this._init(t||0,e||10,r||"be"))}var o;"object"==typeof e?e.exports=a:r.BN=a,a.BN=a,a.wordSize=26;try{o="undefined"!=typeof window&&void 0!==window.Buffer?window.Buffer:t("buffer").Buffer}catch(t){}function s(t,e){var r=t.charCodeAt(e);return r>=65&&r<=70?r-55:r>=97&&r<=102?r-87:r-48&15}function l(t,e,r){var n=s(t,r);return r-1>=e&&(n|=s(t,r-1)<<4),n}function c(t,e,r,n){for(var i=0,a=Math.min(t.length,r),o=e;o=49?s-49+10:s>=17?s-17+10:s}return i}a.isBN=function(t){return t instanceof a||null!==t&&"object"==typeof t&&t.constructor.wordSize===a.wordSize&&Array.isArray(t.words)},a.max=function(t,e){return t.cmp(e)>0?t:e},a.min=function(t,e){return t.cmp(e)<0?t:e},a.prototype._init=function(t,e,r){if("number"==typeof t)return this._initNumber(t,e,r);if("object"==typeof t)return this._initArray(t,e,r);"hex"===e&&(e=16),n(e===(0|e)&&e>=2&&e<=36);var i=0;"-"===(t=t.toString().replace(/\s+/g,""))[0]&&(i++,this.negative=1),i=0;i-=3)o=t[i]|t[i-1]<<8|t[i-2]<<16,this.words[a]|=o<>>26-s&67108863,(s+=24)>=26&&(s-=26,a++);else if("le"===r)for(i=0,a=0;i>>26-s&67108863,(s+=24)>=26&&(s-=26,a++);return this.strip()},a.prototype._parseHex=function(t,e,r){this.length=Math.ceil((t.length-e)/6),this.words=new Array(this.length);for(var n=0;n=e;n-=2)i=l(t,e,n)<=18?(a-=18,o+=1,this.words[o]|=i>>>26):a+=8;else for(n=(t.length-e)%2==0?e+1:e;n=18?(a-=18,o+=1,this.words[o]|=i>>>26):a+=8;this.strip()},a.prototype._parseBase=function(t,e,r){this.words=[0],this.length=1;for(var n=0,i=1;i<=67108863;i*=e)n++;n--,i=i/e|0;for(var a=t.length-r,o=a%n,s=Math.min(a,a-o)+r,l=0,u=r;u1&&0===this.words[this.length-1];)this.length--;return this._normSign()},a.prototype._normSign=function(){return 1===this.length&&0===this.words[0]&&(this.negative=0),this},a.prototype.inspect=function(){return(this.red?""};var u=["","0","00","000","0000","00000","000000","0000000","00000000","000000000","0000000000","00000000000","000000000000","0000000000000","00000000000000","000000000000000","0000000000000000","00000000000000000","000000000000000000","0000000000000000000","00000000000000000000","000000000000000000000","0000000000000000000000","00000000000000000000000","000000000000000000000000","0000000000000000000000000"],f=[0,0,25,16,12,11,10,9,8,8,7,7,7,7,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5],h=[0,0,33554432,43046721,16777216,48828125,60466176,40353607,16777216,43046721,1e7,19487171,35831808,62748517,7529536,11390625,16777216,24137569,34012224,47045881,64e6,4084101,5153632,6436343,7962624,9765625,11881376,14348907,17210368,20511149,243e5,28629151,33554432,39135393,45435424,52521875,60466176];function p(t,e,r){r.negative=e.negative^t.negative;var n=t.length+e.length|0;r.length=n,n=n-1|0;var i=0|t.words[0],a=0|e.words[0],o=i*a,s=67108863&o,l=o/67108864|0;r.words[0]=s;for(var c=1;c>>26,f=67108863&l,h=Math.min(c,e.length-1),p=Math.max(0,c-t.length+1);p<=h;p++){var d=c-p|0;u+=(o=(i=0|t.words[d])*(a=0|e.words[p])+f)/67108864|0,f=67108863&o}r.words[c]=0|f,l=0|u}return 0!==l?r.words[c]=0|l:r.length--,r.strip()}a.prototype.toString=function(t,e){var r;if(e=0|e||1,16===(t=t||10)||"hex"===t){r="";for(var i=0,a=0,o=0;o>>24-i&16777215)||o!==this.length-1?u[6-l.length]+l+r:l+r,(i+=2)>=26&&(i-=26,o--)}for(0!==a&&(r=a.toString(16)+r);r.length%e!=0;)r="0"+r;return 0!==this.negative&&(r="-"+r),r}if(t===(0|t)&&t>=2&&t<=36){var c=f[t],p=h[t];r="";var d=this.clone();for(d.negative=0;!d.isZero();){var m=d.modn(p).toString(t);r=(d=d.idivn(p)).isZero()?m+r:u[c-m.length]+m+r}for(this.isZero()&&(r="0"+r);r.length%e!=0;)r="0"+r;return 0!==this.negative&&(r="-"+r),r}n(!1,"Base should be between 2 and 36")},a.prototype.toNumber=function(){var t=this.words[0];return 2===this.length?t+=67108864*this.words[1]:3===this.length&&1===this.words[2]?t+=4503599627370496+67108864*this.words[1]:this.length>2&&n(!1,"Number can only safely store up to 53 bits"),0!==this.negative?-t:t},a.prototype.toJSON=function(){return this.toString(16)},a.prototype.toBuffer=function(t,e){return n(void 0!==o),this.toArrayLike(o,t,e)},a.prototype.toArray=function(t,e){return this.toArrayLike(Array,t,e)},a.prototype.toArrayLike=function(t,e,r){var i=this.byteLength(),a=r||Math.max(1,i);n(i<=a,"byte array longer than desired length"),n(a>0,"Requested array length <= 0"),this.strip();var o,s,l="le"===e,c=new t(a),u=this.clone();if(l){for(s=0;!u.isZero();s++)o=u.andln(255),u.iushrn(8),c[s]=o;for(;s=4096&&(r+=13,e>>>=13),e>=64&&(r+=7,e>>>=7),e>=8&&(r+=4,e>>>=4),e>=2&&(r+=2,e>>>=2),r+e},a.prototype._zeroBits=function(t){if(0===t)return 26;var e=t,r=0;return 0==(8191&e)&&(r+=13,e>>>=13),0==(127&e)&&(r+=7,e>>>=7),0==(15&e)&&(r+=4,e>>>=4),0==(3&e)&&(r+=2,e>>>=2),0==(1&e)&&r++,r},a.prototype.bitLength=function(){var t=this.words[this.length-1],e=this._countBits(t);return 26*(this.length-1)+e},a.prototype.zeroBits=function(){if(this.isZero())return 0;for(var t=0,e=0;et.length?this.clone().ior(t):t.clone().ior(this)},a.prototype.uor=function(t){return this.length>t.length?this.clone().iuor(t):t.clone().iuor(this)},a.prototype.iuand=function(t){var e;e=this.length>t.length?t:this;for(var r=0;rt.length?this.clone().iand(t):t.clone().iand(this)},a.prototype.uand=function(t){return this.length>t.length?this.clone().iuand(t):t.clone().iuand(this)},a.prototype.iuxor=function(t){var e,r;this.length>t.length?(e=this,r=t):(e=t,r=this);for(var n=0;nt.length?this.clone().ixor(t):t.clone().ixor(this)},a.prototype.uxor=function(t){return this.length>t.length?this.clone().iuxor(t):t.clone().iuxor(this)},a.prototype.inotn=function(t){n("number"==typeof t&&t>=0);var e=0|Math.ceil(t/26),r=t%26;this._expand(e),r>0&&e--;for(var i=0;i0&&(this.words[i]=~this.words[i]&67108863>>26-r),this.strip()},a.prototype.notn=function(t){return this.clone().inotn(t)},a.prototype.setn=function(t,e){n("number"==typeof t&&t>=0);var r=t/26|0,i=t%26;return this._expand(r+1),this.words[r]=e?this.words[r]|1<t.length?(r=this,n=t):(r=t,n=this);for(var i=0,a=0;a>>26;for(;0!==i&&a>>26;if(this.length=r.length,0!==i)this.words[this.length]=i,this.length++;else if(r!==this)for(;at.length?this.clone().iadd(t):t.clone().iadd(this)},a.prototype.isub=function(t){if(0!==t.negative){t.negative=0;var e=this.iadd(t);return t.negative=1,e._normSign()}if(0!==this.negative)return this.negative=0,this.iadd(t),this.negative=1,this._normSign();var r,n,i=this.cmp(t);if(0===i)return this.negative=0,this.length=1,this.words[0]=0,this;i>0?(r=this,n=t):(r=t,n=this);for(var a=0,o=0;o>26,this.words[o]=67108863&e;for(;0!==a&&o>26,this.words[o]=67108863&e;if(0===a&&o>>13,p=0|o[1],d=8191&p,m=p>>>13,g=0|o[2],v=8191&g,y=g>>>13,x=0|o[3],b=8191&x,_=x>>>13,w=0|o[4],T=8191&w,k=w>>>13,A=0|o[5],M=8191&A,S=A>>>13,E=0|o[6],L=8191&E,C=E>>>13,P=0|o[7],I=8191&P,O=P>>>13,z=0|o[8],D=8191&z,R=z>>>13,F=0|o[9],B=8191&F,N=F>>>13,j=0|s[0],U=8191&j,V=j>>>13,H=0|s[1],q=8191&H,G=H>>>13,Y=0|s[2],W=8191&Y,X=Y>>>13,Z=0|s[3],J=8191&Z,K=Z>>>13,Q=0|s[4],$=8191&Q,tt=Q>>>13,et=0|s[5],rt=8191&et,nt=et>>>13,it=0|s[6],at=8191&it,ot=it>>>13,st=0|s[7],lt=8191&st,ct=st>>>13,ut=0|s[8],ft=8191&ut,ht=ut>>>13,pt=0|s[9],dt=8191&pt,mt=pt>>>13;r.negative=t.negative^e.negative,r.length=19;var gt=(c+(n=Math.imul(f,U))|0)+((8191&(i=(i=Math.imul(f,V))+Math.imul(h,U)|0))<<13)|0;c=((a=Math.imul(h,V))+(i>>>13)|0)+(gt>>>26)|0,gt&=67108863,n=Math.imul(d,U),i=(i=Math.imul(d,V))+Math.imul(m,U)|0,a=Math.imul(m,V);var vt=(c+(n=n+Math.imul(f,q)|0)|0)+((8191&(i=(i=i+Math.imul(f,G)|0)+Math.imul(h,q)|0))<<13)|0;c=((a=a+Math.imul(h,G)|0)+(i>>>13)|0)+(vt>>>26)|0,vt&=67108863,n=Math.imul(v,U),i=(i=Math.imul(v,V))+Math.imul(y,U)|0,a=Math.imul(y,V),n=n+Math.imul(d,q)|0,i=(i=i+Math.imul(d,G)|0)+Math.imul(m,q)|0,a=a+Math.imul(m,G)|0;var yt=(c+(n=n+Math.imul(f,W)|0)|0)+((8191&(i=(i=i+Math.imul(f,X)|0)+Math.imul(h,W)|0))<<13)|0;c=((a=a+Math.imul(h,X)|0)+(i>>>13)|0)+(yt>>>26)|0,yt&=67108863,n=Math.imul(b,U),i=(i=Math.imul(b,V))+Math.imul(_,U)|0,a=Math.imul(_,V),n=n+Math.imul(v,q)|0,i=(i=i+Math.imul(v,G)|0)+Math.imul(y,q)|0,a=a+Math.imul(y,G)|0,n=n+Math.imul(d,W)|0,i=(i=i+Math.imul(d,X)|0)+Math.imul(m,W)|0,a=a+Math.imul(m,X)|0;var xt=(c+(n=n+Math.imul(f,J)|0)|0)+((8191&(i=(i=i+Math.imul(f,K)|0)+Math.imul(h,J)|0))<<13)|0;c=((a=a+Math.imul(h,K)|0)+(i>>>13)|0)+(xt>>>26)|0,xt&=67108863,n=Math.imul(T,U),i=(i=Math.imul(T,V))+Math.imul(k,U)|0,a=Math.imul(k,V),n=n+Math.imul(b,q)|0,i=(i=i+Math.imul(b,G)|0)+Math.imul(_,q)|0,a=a+Math.imul(_,G)|0,n=n+Math.imul(v,W)|0,i=(i=i+Math.imul(v,X)|0)+Math.imul(y,W)|0,a=a+Math.imul(y,X)|0,n=n+Math.imul(d,J)|0,i=(i=i+Math.imul(d,K)|0)+Math.imul(m,J)|0,a=a+Math.imul(m,K)|0;var bt=(c+(n=n+Math.imul(f,$)|0)|0)+((8191&(i=(i=i+Math.imul(f,tt)|0)+Math.imul(h,$)|0))<<13)|0;c=((a=a+Math.imul(h,tt)|0)+(i>>>13)|0)+(bt>>>26)|0,bt&=67108863,n=Math.imul(M,U),i=(i=Math.imul(M,V))+Math.imul(S,U)|0,a=Math.imul(S,V),n=n+Math.imul(T,q)|0,i=(i=i+Math.imul(T,G)|0)+Math.imul(k,q)|0,a=a+Math.imul(k,G)|0,n=n+Math.imul(b,W)|0,i=(i=i+Math.imul(b,X)|0)+Math.imul(_,W)|0,a=a+Math.imul(_,X)|0,n=n+Math.imul(v,J)|0,i=(i=i+Math.imul(v,K)|0)+Math.imul(y,J)|0,a=a+Math.imul(y,K)|0,n=n+Math.imul(d,$)|0,i=(i=i+Math.imul(d,tt)|0)+Math.imul(m,$)|0,a=a+Math.imul(m,tt)|0;var _t=(c+(n=n+Math.imul(f,rt)|0)|0)+((8191&(i=(i=i+Math.imul(f,nt)|0)+Math.imul(h,rt)|0))<<13)|0;c=((a=a+Math.imul(h,nt)|0)+(i>>>13)|0)+(_t>>>26)|0,_t&=67108863,n=Math.imul(L,U),i=(i=Math.imul(L,V))+Math.imul(C,U)|0,a=Math.imul(C,V),n=n+Math.imul(M,q)|0,i=(i=i+Math.imul(M,G)|0)+Math.imul(S,q)|0,a=a+Math.imul(S,G)|0,n=n+Math.imul(T,W)|0,i=(i=i+Math.imul(T,X)|0)+Math.imul(k,W)|0,a=a+Math.imul(k,X)|0,n=n+Math.imul(b,J)|0,i=(i=i+Math.imul(b,K)|0)+Math.imul(_,J)|0,a=a+Math.imul(_,K)|0,n=n+Math.imul(v,$)|0,i=(i=i+Math.imul(v,tt)|0)+Math.imul(y,$)|0,a=a+Math.imul(y,tt)|0,n=n+Math.imul(d,rt)|0,i=(i=i+Math.imul(d,nt)|0)+Math.imul(m,rt)|0,a=a+Math.imul(m,nt)|0;var wt=(c+(n=n+Math.imul(f,at)|0)|0)+((8191&(i=(i=i+Math.imul(f,ot)|0)+Math.imul(h,at)|0))<<13)|0;c=((a=a+Math.imul(h,ot)|0)+(i>>>13)|0)+(wt>>>26)|0,wt&=67108863,n=Math.imul(I,U),i=(i=Math.imul(I,V))+Math.imul(O,U)|0,a=Math.imul(O,V),n=n+Math.imul(L,q)|0,i=(i=i+Math.imul(L,G)|0)+Math.imul(C,q)|0,a=a+Math.imul(C,G)|0,n=n+Math.imul(M,W)|0,i=(i=i+Math.imul(M,X)|0)+Math.imul(S,W)|0,a=a+Math.imul(S,X)|0,n=n+Math.imul(T,J)|0,i=(i=i+Math.imul(T,K)|0)+Math.imul(k,J)|0,a=a+Math.imul(k,K)|0,n=n+Math.imul(b,$)|0,i=(i=i+Math.imul(b,tt)|0)+Math.imul(_,$)|0,a=a+Math.imul(_,tt)|0,n=n+Math.imul(v,rt)|0,i=(i=i+Math.imul(v,nt)|0)+Math.imul(y,rt)|0,a=a+Math.imul(y,nt)|0,n=n+Math.imul(d,at)|0,i=(i=i+Math.imul(d,ot)|0)+Math.imul(m,at)|0,a=a+Math.imul(m,ot)|0;var Tt=(c+(n=n+Math.imul(f,lt)|0)|0)+((8191&(i=(i=i+Math.imul(f,ct)|0)+Math.imul(h,lt)|0))<<13)|0;c=((a=a+Math.imul(h,ct)|0)+(i>>>13)|0)+(Tt>>>26)|0,Tt&=67108863,n=Math.imul(D,U),i=(i=Math.imul(D,V))+Math.imul(R,U)|0,a=Math.imul(R,V),n=n+Math.imul(I,q)|0,i=(i=i+Math.imul(I,G)|0)+Math.imul(O,q)|0,a=a+Math.imul(O,G)|0,n=n+Math.imul(L,W)|0,i=(i=i+Math.imul(L,X)|0)+Math.imul(C,W)|0,a=a+Math.imul(C,X)|0,n=n+Math.imul(M,J)|0,i=(i=i+Math.imul(M,K)|0)+Math.imul(S,J)|0,a=a+Math.imul(S,K)|0,n=n+Math.imul(T,$)|0,i=(i=i+Math.imul(T,tt)|0)+Math.imul(k,$)|0,a=a+Math.imul(k,tt)|0,n=n+Math.imul(b,rt)|0,i=(i=i+Math.imul(b,nt)|0)+Math.imul(_,rt)|0,a=a+Math.imul(_,nt)|0,n=n+Math.imul(v,at)|0,i=(i=i+Math.imul(v,ot)|0)+Math.imul(y,at)|0,a=a+Math.imul(y,ot)|0,n=n+Math.imul(d,lt)|0,i=(i=i+Math.imul(d,ct)|0)+Math.imul(m,lt)|0,a=a+Math.imul(m,ct)|0;var kt=(c+(n=n+Math.imul(f,ft)|0)|0)+((8191&(i=(i=i+Math.imul(f,ht)|0)+Math.imul(h,ft)|0))<<13)|0;c=((a=a+Math.imul(h,ht)|0)+(i>>>13)|0)+(kt>>>26)|0,kt&=67108863,n=Math.imul(B,U),i=(i=Math.imul(B,V))+Math.imul(N,U)|0,a=Math.imul(N,V),n=n+Math.imul(D,q)|0,i=(i=i+Math.imul(D,G)|0)+Math.imul(R,q)|0,a=a+Math.imul(R,G)|0,n=n+Math.imul(I,W)|0,i=(i=i+Math.imul(I,X)|0)+Math.imul(O,W)|0,a=a+Math.imul(O,X)|0,n=n+Math.imul(L,J)|0,i=(i=i+Math.imul(L,K)|0)+Math.imul(C,J)|0,a=a+Math.imul(C,K)|0,n=n+Math.imul(M,$)|0,i=(i=i+Math.imul(M,tt)|0)+Math.imul(S,$)|0,a=a+Math.imul(S,tt)|0,n=n+Math.imul(T,rt)|0,i=(i=i+Math.imul(T,nt)|0)+Math.imul(k,rt)|0,a=a+Math.imul(k,nt)|0,n=n+Math.imul(b,at)|0,i=(i=i+Math.imul(b,ot)|0)+Math.imul(_,at)|0,a=a+Math.imul(_,ot)|0,n=n+Math.imul(v,lt)|0,i=(i=i+Math.imul(v,ct)|0)+Math.imul(y,lt)|0,a=a+Math.imul(y,ct)|0,n=n+Math.imul(d,ft)|0,i=(i=i+Math.imul(d,ht)|0)+Math.imul(m,ft)|0,a=a+Math.imul(m,ht)|0;var At=(c+(n=n+Math.imul(f,dt)|0)|0)+((8191&(i=(i=i+Math.imul(f,mt)|0)+Math.imul(h,dt)|0))<<13)|0;c=((a=a+Math.imul(h,mt)|0)+(i>>>13)|0)+(At>>>26)|0,At&=67108863,n=Math.imul(B,q),i=(i=Math.imul(B,G))+Math.imul(N,q)|0,a=Math.imul(N,G),n=n+Math.imul(D,W)|0,i=(i=i+Math.imul(D,X)|0)+Math.imul(R,W)|0,a=a+Math.imul(R,X)|0,n=n+Math.imul(I,J)|0,i=(i=i+Math.imul(I,K)|0)+Math.imul(O,J)|0,a=a+Math.imul(O,K)|0,n=n+Math.imul(L,$)|0,i=(i=i+Math.imul(L,tt)|0)+Math.imul(C,$)|0,a=a+Math.imul(C,tt)|0,n=n+Math.imul(M,rt)|0,i=(i=i+Math.imul(M,nt)|0)+Math.imul(S,rt)|0,a=a+Math.imul(S,nt)|0,n=n+Math.imul(T,at)|0,i=(i=i+Math.imul(T,ot)|0)+Math.imul(k,at)|0,a=a+Math.imul(k,ot)|0,n=n+Math.imul(b,lt)|0,i=(i=i+Math.imul(b,ct)|0)+Math.imul(_,lt)|0,a=a+Math.imul(_,ct)|0,n=n+Math.imul(v,ft)|0,i=(i=i+Math.imul(v,ht)|0)+Math.imul(y,ft)|0,a=a+Math.imul(y,ht)|0;var Mt=(c+(n=n+Math.imul(d,dt)|0)|0)+((8191&(i=(i=i+Math.imul(d,mt)|0)+Math.imul(m,dt)|0))<<13)|0;c=((a=a+Math.imul(m,mt)|0)+(i>>>13)|0)+(Mt>>>26)|0,Mt&=67108863,n=Math.imul(B,W),i=(i=Math.imul(B,X))+Math.imul(N,W)|0,a=Math.imul(N,X),n=n+Math.imul(D,J)|0,i=(i=i+Math.imul(D,K)|0)+Math.imul(R,J)|0,a=a+Math.imul(R,K)|0,n=n+Math.imul(I,$)|0,i=(i=i+Math.imul(I,tt)|0)+Math.imul(O,$)|0,a=a+Math.imul(O,tt)|0,n=n+Math.imul(L,rt)|0,i=(i=i+Math.imul(L,nt)|0)+Math.imul(C,rt)|0,a=a+Math.imul(C,nt)|0,n=n+Math.imul(M,at)|0,i=(i=i+Math.imul(M,ot)|0)+Math.imul(S,at)|0,a=a+Math.imul(S,ot)|0,n=n+Math.imul(T,lt)|0,i=(i=i+Math.imul(T,ct)|0)+Math.imul(k,lt)|0,a=a+Math.imul(k,ct)|0,n=n+Math.imul(b,ft)|0,i=(i=i+Math.imul(b,ht)|0)+Math.imul(_,ft)|0,a=a+Math.imul(_,ht)|0;var St=(c+(n=n+Math.imul(v,dt)|0)|0)+((8191&(i=(i=i+Math.imul(v,mt)|0)+Math.imul(y,dt)|0))<<13)|0;c=((a=a+Math.imul(y,mt)|0)+(i>>>13)|0)+(St>>>26)|0,St&=67108863,n=Math.imul(B,J),i=(i=Math.imul(B,K))+Math.imul(N,J)|0,a=Math.imul(N,K),n=n+Math.imul(D,$)|0,i=(i=i+Math.imul(D,tt)|0)+Math.imul(R,$)|0,a=a+Math.imul(R,tt)|0,n=n+Math.imul(I,rt)|0,i=(i=i+Math.imul(I,nt)|0)+Math.imul(O,rt)|0,a=a+Math.imul(O,nt)|0,n=n+Math.imul(L,at)|0,i=(i=i+Math.imul(L,ot)|0)+Math.imul(C,at)|0,a=a+Math.imul(C,ot)|0,n=n+Math.imul(M,lt)|0,i=(i=i+Math.imul(M,ct)|0)+Math.imul(S,lt)|0,a=a+Math.imul(S,ct)|0,n=n+Math.imul(T,ft)|0,i=(i=i+Math.imul(T,ht)|0)+Math.imul(k,ft)|0,a=a+Math.imul(k,ht)|0;var Et=(c+(n=n+Math.imul(b,dt)|0)|0)+((8191&(i=(i=i+Math.imul(b,mt)|0)+Math.imul(_,dt)|0))<<13)|0;c=((a=a+Math.imul(_,mt)|0)+(i>>>13)|0)+(Et>>>26)|0,Et&=67108863,n=Math.imul(B,$),i=(i=Math.imul(B,tt))+Math.imul(N,$)|0,a=Math.imul(N,tt),n=n+Math.imul(D,rt)|0,i=(i=i+Math.imul(D,nt)|0)+Math.imul(R,rt)|0,a=a+Math.imul(R,nt)|0,n=n+Math.imul(I,at)|0,i=(i=i+Math.imul(I,ot)|0)+Math.imul(O,at)|0,a=a+Math.imul(O,ot)|0,n=n+Math.imul(L,lt)|0,i=(i=i+Math.imul(L,ct)|0)+Math.imul(C,lt)|0,a=a+Math.imul(C,ct)|0,n=n+Math.imul(M,ft)|0,i=(i=i+Math.imul(M,ht)|0)+Math.imul(S,ft)|0,a=a+Math.imul(S,ht)|0;var Lt=(c+(n=n+Math.imul(T,dt)|0)|0)+((8191&(i=(i=i+Math.imul(T,mt)|0)+Math.imul(k,dt)|0))<<13)|0;c=((a=a+Math.imul(k,mt)|0)+(i>>>13)|0)+(Lt>>>26)|0,Lt&=67108863,n=Math.imul(B,rt),i=(i=Math.imul(B,nt))+Math.imul(N,rt)|0,a=Math.imul(N,nt),n=n+Math.imul(D,at)|0,i=(i=i+Math.imul(D,ot)|0)+Math.imul(R,at)|0,a=a+Math.imul(R,ot)|0,n=n+Math.imul(I,lt)|0,i=(i=i+Math.imul(I,ct)|0)+Math.imul(O,lt)|0,a=a+Math.imul(O,ct)|0,n=n+Math.imul(L,ft)|0,i=(i=i+Math.imul(L,ht)|0)+Math.imul(C,ft)|0,a=a+Math.imul(C,ht)|0;var Ct=(c+(n=n+Math.imul(M,dt)|0)|0)+((8191&(i=(i=i+Math.imul(M,mt)|0)+Math.imul(S,dt)|0))<<13)|0;c=((a=a+Math.imul(S,mt)|0)+(i>>>13)|0)+(Ct>>>26)|0,Ct&=67108863,n=Math.imul(B,at),i=(i=Math.imul(B,ot))+Math.imul(N,at)|0,a=Math.imul(N,ot),n=n+Math.imul(D,lt)|0,i=(i=i+Math.imul(D,ct)|0)+Math.imul(R,lt)|0,a=a+Math.imul(R,ct)|0,n=n+Math.imul(I,ft)|0,i=(i=i+Math.imul(I,ht)|0)+Math.imul(O,ft)|0,a=a+Math.imul(O,ht)|0;var Pt=(c+(n=n+Math.imul(L,dt)|0)|0)+((8191&(i=(i=i+Math.imul(L,mt)|0)+Math.imul(C,dt)|0))<<13)|0;c=((a=a+Math.imul(C,mt)|0)+(i>>>13)|0)+(Pt>>>26)|0,Pt&=67108863,n=Math.imul(B,lt),i=(i=Math.imul(B,ct))+Math.imul(N,lt)|0,a=Math.imul(N,ct),n=n+Math.imul(D,ft)|0,i=(i=i+Math.imul(D,ht)|0)+Math.imul(R,ft)|0,a=a+Math.imul(R,ht)|0;var It=(c+(n=n+Math.imul(I,dt)|0)|0)+((8191&(i=(i=i+Math.imul(I,mt)|0)+Math.imul(O,dt)|0))<<13)|0;c=((a=a+Math.imul(O,mt)|0)+(i>>>13)|0)+(It>>>26)|0,It&=67108863,n=Math.imul(B,ft),i=(i=Math.imul(B,ht))+Math.imul(N,ft)|0,a=Math.imul(N,ht);var Ot=(c+(n=n+Math.imul(D,dt)|0)|0)+((8191&(i=(i=i+Math.imul(D,mt)|0)+Math.imul(R,dt)|0))<<13)|0;c=((a=a+Math.imul(R,mt)|0)+(i>>>13)|0)+(Ot>>>26)|0,Ot&=67108863;var zt=(c+(n=Math.imul(B,dt))|0)+((8191&(i=(i=Math.imul(B,mt))+Math.imul(N,dt)|0))<<13)|0;return c=((a=Math.imul(N,mt))+(i>>>13)|0)+(zt>>>26)|0,zt&=67108863,l[0]=gt,l[1]=vt,l[2]=yt,l[3]=xt,l[4]=bt,l[5]=_t,l[6]=wt,l[7]=Tt,l[8]=kt,l[9]=At,l[10]=Mt,l[11]=St,l[12]=Et,l[13]=Lt,l[14]=Ct,l[15]=Pt,l[16]=It,l[17]=Ot,l[18]=zt,0!==c&&(l[19]=c,r.length++),r};function m(t,e,r){return(new g).mulp(t,e,r)}function g(t,e){this.x=t,this.y=e}Math.imul||(d=p),a.prototype.mulTo=function(t,e){var r=this.length+t.length;return 10===this.length&&10===t.length?d(this,t,e):r<63?p(this,t,e):r<1024?function(t,e,r){r.negative=e.negative^t.negative,r.length=t.length+e.length;for(var n=0,i=0,a=0;a>>26)|0)>>>26,o&=67108863}r.words[a]=s,n=o,o=i}return 0!==n?r.words[a]=n:r.length--,r.strip()}(this,t,e):m(this,t,e)},g.prototype.makeRBT=function(t){for(var e=new Array(t),r=a.prototype._countBits(t)-1,n=0;n>=1;return n},g.prototype.permute=function(t,e,r,n,i,a){for(var o=0;o>>=1)i++;return 1<>>=13,r[2*o+1]=8191&a,a>>>=13;for(o=2*e;o>=26,e+=i/67108864|0,e+=a>>>26,this.words[r]=67108863&a}return 0!==e&&(this.words[r]=e,this.length++),this},a.prototype.muln=function(t){return this.clone().imuln(t)},a.prototype.sqr=function(){return this.mul(this)},a.prototype.isqr=function(){return this.imul(this.clone())},a.prototype.pow=function(t){var e=function(t){for(var e=new Array(t.bitLength()),r=0;r>>i}return e}(t);if(0===e.length)return new a(1);for(var r=this,n=0;n=0);var e,r=t%26,i=(t-r)/26,a=67108863>>>26-r<<26-r;if(0!==r){var o=0;for(e=0;e>>26-r}o&&(this.words[e]=o,this.length++)}if(0!==i){for(e=this.length-1;e>=0;e--)this.words[e+i]=this.words[e];for(e=0;e=0),i=e?(e-e%26)/26:0;var a=t%26,o=Math.min((t-a)/26,this.length),s=67108863^67108863>>>a<o)for(this.length-=o,c=0;c=0&&(0!==u||c>=i);c--){var f=0|this.words[c];this.words[c]=u<<26-a|f>>>a,u=f&s}return l&&0!==u&&(l.words[l.length++]=u),0===this.length&&(this.words[0]=0,this.length=1),this.strip()},a.prototype.ishrn=function(t,e,r){return n(0===this.negative),this.iushrn(t,e,r)},a.prototype.shln=function(t){return this.clone().ishln(t)},a.prototype.ushln=function(t){return this.clone().iushln(t)},a.prototype.shrn=function(t){return this.clone().ishrn(t)},a.prototype.ushrn=function(t){return this.clone().iushrn(t)},a.prototype.testn=function(t){n("number"==typeof t&&t>=0);var e=t%26,r=(t-e)/26,i=1<=0);var e=t%26,r=(t-e)/26;if(n(0===this.negative,"imaskn works only with positive numbers"),this.length<=r)return this;if(0!==e&&r++,this.length=Math.min(r,this.length),0!==e){var i=67108863^67108863>>>e<=67108864;e++)this.words[e]-=67108864,e===this.length-1?this.words[e+1]=1:this.words[e+1]++;return this.length=Math.max(this.length,e+1),this},a.prototype.isubn=function(t){if(n("number"==typeof t),n(t<67108864),t<0)return this.iaddn(-t);if(0!==this.negative)return this.negative=0,this.iaddn(t),this.negative=1,this;if(this.words[0]-=t,1===this.length&&this.words[0]<0)this.words[0]=-this.words[0],this.negative=1;else for(var e=0;e>26)-(l/67108864|0),this.words[i+r]=67108863&a}for(;i>26,this.words[i+r]=67108863&a;if(0===s)return this.strip();for(n(-1===s),s=0,i=0;i>26,this.words[i]=67108863&a;return this.negative=1,this.strip()},a.prototype._wordDiv=function(t,e){var r=(this.length,t.length),n=this.clone(),i=t,o=0|i.words[i.length-1];0!==(r=26-this._countBits(o))&&(i=i.ushln(r),n.iushln(r),o=0|i.words[i.length-1]);var s,l=n.length-i.length;if("mod"!==e){(s=new a(null)).length=l+1,s.words=new Array(s.length);for(var c=0;c=0;f--){var h=67108864*(0|n.words[i.length+f])+(0|n.words[i.length+f-1]);for(h=Math.min(h/o|0,67108863),n._ishlnsubmul(i,h,f);0!==n.negative;)h--,n.negative=0,n._ishlnsubmul(i,1,f),n.isZero()||(n.negative^=1);s&&(s.words[f]=h)}return s&&s.strip(),n.strip(),"div"!==e&&0!==r&&n.iushrn(r),{div:s||null,mod:n}},a.prototype.divmod=function(t,e,r){return n(!t.isZero()),this.isZero()?{div:new a(0),mod:new a(0)}:0!==this.negative&&0===t.negative?(s=this.neg().divmod(t,e),"mod"!==e&&(i=s.div.neg()),"div"!==e&&(o=s.mod.neg(),r&&0!==o.negative&&o.iadd(t)),{div:i,mod:o}):0===this.negative&&0!==t.negative?(s=this.divmod(t.neg(),e),"mod"!==e&&(i=s.div.neg()),{div:i,mod:s.mod}):0!=(this.negative&t.negative)?(s=this.neg().divmod(t.neg(),e),"div"!==e&&(o=s.mod.neg(),r&&0!==o.negative&&o.isub(t)),{div:s.div,mod:o}):t.length>this.length||this.cmp(t)<0?{div:new a(0),mod:this}:1===t.length?"div"===e?{div:this.divn(t.words[0]),mod:null}:"mod"===e?{div:null,mod:new a(this.modn(t.words[0]))}:{div:this.divn(t.words[0]),mod:new a(this.modn(t.words[0]))}:this._wordDiv(t,e);var i,o,s},a.prototype.div=function(t){return this.divmod(t,"div",!1).div},a.prototype.mod=function(t){return this.divmod(t,"mod",!1).mod},a.prototype.umod=function(t){return this.divmod(t,"mod",!0).mod},a.prototype.divRound=function(t){var e=this.divmod(t);if(e.mod.isZero())return e.div;var r=0!==e.div.negative?e.mod.isub(t):e.mod,n=t.ushrn(1),i=t.andln(1),a=r.cmp(n);return a<0||1===i&&0===a?e.div:0!==e.div.negative?e.div.isubn(1):e.div.iaddn(1)},a.prototype.modn=function(t){n(t<=67108863);for(var e=(1<<26)%t,r=0,i=this.length-1;i>=0;i--)r=(e*r+(0|this.words[i]))%t;return r},a.prototype.idivn=function(t){n(t<=67108863);for(var e=0,r=this.length-1;r>=0;r--){var i=(0|this.words[r])+67108864*e;this.words[r]=i/t|0,e=i%t}return this.strip()},a.prototype.divn=function(t){return this.clone().idivn(t)},a.prototype.egcd=function(t){n(0===t.negative),n(!t.isZero());var e=this,r=t.clone();e=0!==e.negative?e.umod(t):e.clone();for(var i=new a(1),o=new a(0),s=new a(0),l=new a(1),c=0;e.isEven()&&r.isEven();)e.iushrn(1),r.iushrn(1),++c;for(var u=r.clone(),f=e.clone();!e.isZero();){for(var h=0,p=1;0==(e.words[0]&p)&&h<26;++h,p<<=1);if(h>0)for(e.iushrn(h);h-- >0;)(i.isOdd()||o.isOdd())&&(i.iadd(u),o.isub(f)),i.iushrn(1),o.iushrn(1);for(var d=0,m=1;0==(r.words[0]&m)&&d<26;++d,m<<=1);if(d>0)for(r.iushrn(d);d-- >0;)(s.isOdd()||l.isOdd())&&(s.iadd(u),l.isub(f)),s.iushrn(1),l.iushrn(1);e.cmp(r)>=0?(e.isub(r),i.isub(s),o.isub(l)):(r.isub(e),s.isub(i),l.isub(o))}return{a:s,b:l,gcd:r.iushln(c)}},a.prototype._invmp=function(t){n(0===t.negative),n(!t.isZero());var e=this,r=t.clone();e=0!==e.negative?e.umod(t):e.clone();for(var i,o=new a(1),s=new a(0),l=r.clone();e.cmpn(1)>0&&r.cmpn(1)>0;){for(var c=0,u=1;0==(e.words[0]&u)&&c<26;++c,u<<=1);if(c>0)for(e.iushrn(c);c-- >0;)o.isOdd()&&o.iadd(l),o.iushrn(1);for(var f=0,h=1;0==(r.words[0]&h)&&f<26;++f,h<<=1);if(f>0)for(r.iushrn(f);f-- >0;)s.isOdd()&&s.iadd(l),s.iushrn(1);e.cmp(r)>=0?(e.isub(r),o.isub(s)):(r.isub(e),s.isub(o))}return(i=0===e.cmpn(1)?o:s).cmpn(0)<0&&i.iadd(t),i},a.prototype.gcd=function(t){if(this.isZero())return t.abs();if(t.isZero())return this.abs();var e=this.clone(),r=t.clone();e.negative=0,r.negative=0;for(var n=0;e.isEven()&&r.isEven();n++)e.iushrn(1),r.iushrn(1);for(;;){for(;e.isEven();)e.iushrn(1);for(;r.isEven();)r.iushrn(1);var i=e.cmp(r);if(i<0){var a=e;e=r,r=a}else if(0===i||0===r.cmpn(1))break;e.isub(r)}return r.iushln(n)},a.prototype.invm=function(t){return this.egcd(t).a.umod(t)},a.prototype.isEven=function(){return 0==(1&this.words[0])},a.prototype.isOdd=function(){return 1==(1&this.words[0])},a.prototype.andln=function(t){return this.words[0]&t},a.prototype.bincn=function(t){n("number"==typeof t);var e=t%26,r=(t-e)/26,i=1<>>26,s&=67108863,this.words[o]=s}return 0!==a&&(this.words[o]=a,this.length++),this},a.prototype.isZero=function(){return 1===this.length&&0===this.words[0]},a.prototype.cmpn=function(t){var e,r=t<0;if(0!==this.negative&&!r)return-1;if(0===this.negative&&r)return 1;if(this.strip(),this.length>1)e=1;else{r&&(t=-t),n(t<=67108863,"Number is too big");var i=0|this.words[0];e=i===t?0:it.length)return 1;if(this.length=0;r--){var n=0|this.words[r],i=0|t.words[r];if(n!==i){ni&&(e=1);break}}return e},a.prototype.gtn=function(t){return 1===this.cmpn(t)},a.prototype.gt=function(t){return 1===this.cmp(t)},a.prototype.gten=function(t){return this.cmpn(t)>=0},a.prototype.gte=function(t){return this.cmp(t)>=0},a.prototype.ltn=function(t){return-1===this.cmpn(t)},a.prototype.lt=function(t){return-1===this.cmp(t)},a.prototype.lten=function(t){return this.cmpn(t)<=0},a.prototype.lte=function(t){return this.cmp(t)<=0},a.prototype.eqn=function(t){return 0===this.cmpn(t)},a.prototype.eq=function(t){return 0===this.cmp(t)},a.red=function(t){return new T(t)},a.prototype.toRed=function(t){return n(!this.red,"Already a number in reduction context"),n(0===this.negative,"red works only with positives"),t.convertTo(this)._forceRed(t)},a.prototype.fromRed=function(){return n(this.red,"fromRed works only with numbers in reduction context"),this.red.convertFrom(this)},a.prototype._forceRed=function(t){return this.red=t,this},a.prototype.forceRed=function(t){return n(!this.red,"Already a number in reduction context"),this._forceRed(t)},a.prototype.redAdd=function(t){return n(this.red,"redAdd works only with red numbers"),this.red.add(this,t)},a.prototype.redIAdd=function(t){return n(this.red,"redIAdd works only with red numbers"),this.red.iadd(this,t)},a.prototype.redSub=function(t){return n(this.red,"redSub works only with red numbers"),this.red.sub(this,t)},a.prototype.redISub=function(t){return n(this.red,"redISub works only with red numbers"),this.red.isub(this,t)},a.prototype.redShl=function(t){return n(this.red,"redShl works only with red numbers"),this.red.shl(this,t)},a.prototype.redMul=function(t){return n(this.red,"redMul works only with red numbers"),this.red._verify2(this,t),this.red.mul(this,t)},a.prototype.redIMul=function(t){return n(this.red,"redMul works only with red numbers"),this.red._verify2(this,t),this.red.imul(this,t)},a.prototype.redSqr=function(){return n(this.red,"redSqr works only with red numbers"),this.red._verify1(this),this.red.sqr(this)},a.prototype.redISqr=function(){return n(this.red,"redISqr works only with red numbers"),this.red._verify1(this),this.red.isqr(this)},a.prototype.redSqrt=function(){return n(this.red,"redSqrt works only with red numbers"),this.red._verify1(this),this.red.sqrt(this)},a.prototype.redInvm=function(){return n(this.red,"redInvm works only with red numbers"),this.red._verify1(this),this.red.invm(this)},a.prototype.redNeg=function(){return n(this.red,"redNeg works only with red numbers"),this.red._verify1(this),this.red.neg(this)},a.prototype.redPow=function(t){return n(this.red&&!t.red,"redPow(normalNum)"),this.red._verify1(this),this.red.pow(this,t)};var v={k256:null,p224:null,p192:null,p25519:null};function y(t,e){this.name=t,this.p=new a(e,16),this.n=this.p.bitLength(),this.k=new a(1).iushln(this.n).isub(this.p),this.tmp=this._tmp()}function x(){y.call(this,"k256","ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f")}function b(){y.call(this,"p224","ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001")}function _(){y.call(this,"p192","ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff")}function w(){y.call(this,"25519","7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed")}function T(t){if("string"==typeof t){var e=a._prime(t);this.m=e.p,this.prime=e}else n(t.gtn(1),"modulus must be greater than 1"),this.m=t,this.prime=null}function k(t){T.call(this,t),this.shift=this.m.bitLength(),this.shift%26!=0&&(this.shift+=26-this.shift%26),this.r=new a(1).iushln(this.shift),this.r2=this.imod(this.r.sqr()),this.rinv=this.r._invmp(this.m),this.minv=this.rinv.mul(this.r).isubn(1).div(this.m),this.minv=this.minv.umod(this.r),this.minv=this.r.sub(this.minv)}y.prototype._tmp=function(){var t=new a(null);return t.words=new Array(Math.ceil(this.n/13)),t},y.prototype.ireduce=function(t){var e,r=t;do{this.split(r,this.tmp),e=(r=(r=this.imulK(r)).iadd(this.tmp)).bitLength()}while(e>this.n);var n=e0?r.isub(this.p):void 0!==r.strip?r.strip():r._strip(),r},y.prototype.split=function(t,e){t.iushrn(this.n,0,e)},y.prototype.imulK=function(t){return t.imul(this.k)},i(x,y),x.prototype.split=function(t,e){for(var r=Math.min(t.length,9),n=0;n>>22,i=a}i>>>=22,t.words[n-10]=i,0===i&&t.length>10?t.length-=10:t.length-=9},x.prototype.imulK=function(t){t.words[t.length]=0,t.words[t.length+1]=0,t.length+=2;for(var e=0,r=0;r>>=26,t.words[r]=i,e=n}return 0!==e&&(t.words[t.length++]=e),t},a._prime=function(t){if(v[t])return v[t];var e;if("k256"===t)e=new x;else if("p224"===t)e=new b;else if("p192"===t)e=new _;else{if("p25519"!==t)throw new Error("Unknown prime "+t);e=new w}return v[t]=e,e},T.prototype._verify1=function(t){n(0===t.negative,"red works only with positives"),n(t.red,"red works only with red numbers")},T.prototype._verify2=function(t,e){n(0==(t.negative|e.negative),"red works only with positives"),n(t.red&&t.red===e.red,"red works only with red numbers")},T.prototype.imod=function(t){return this.prime?this.prime.ireduce(t)._forceRed(this):t.umod(this.m)._forceRed(this)},T.prototype.neg=function(t){return t.isZero()?t.clone():this.m.sub(t)._forceRed(this)},T.prototype.add=function(t,e){this._verify2(t,e);var r=t.add(e);return r.cmp(this.m)>=0&&r.isub(this.m),r._forceRed(this)},T.prototype.iadd=function(t,e){this._verify2(t,e);var r=t.iadd(e);return r.cmp(this.m)>=0&&r.isub(this.m),r},T.prototype.sub=function(t,e){this._verify2(t,e);var r=t.sub(e);return r.cmpn(0)<0&&r.iadd(this.m),r._forceRed(this)},T.prototype.isub=function(t,e){this._verify2(t,e);var r=t.isub(e);return r.cmpn(0)<0&&r.iadd(this.m),r},T.prototype.shl=function(t,e){return this._verify1(t),this.imod(t.ushln(e))},T.prototype.imul=function(t,e){return this._verify2(t,e),this.imod(t.imul(e))},T.prototype.mul=function(t,e){return this._verify2(t,e),this.imod(t.mul(e))},T.prototype.isqr=function(t){return this.imul(t,t.clone())},T.prototype.sqr=function(t){return this.mul(t,t)},T.prototype.sqrt=function(t){if(t.isZero())return t.clone();var e=this.m.andln(3);if(n(e%2==1),3===e){var r=this.m.add(new a(1)).iushrn(2);return this.pow(t,r)}for(var i=this.m.subn(1),o=0;!i.isZero()&&0===i.andln(1);)o++,i.iushrn(1);n(!i.isZero());var s=new a(1).toRed(this),l=s.redNeg(),c=this.m.subn(1).iushrn(1),u=this.m.bitLength();for(u=new a(2*u*u).toRed(this);0!==this.pow(u,c).cmp(l);)u.redIAdd(l);for(var f=this.pow(u,i),h=this.pow(t,i.addn(1).iushrn(1)),p=this.pow(t,i),d=o;0!==p.cmp(s);){for(var m=p,g=0;0!==m.cmp(s);g++)m=m.redSqr();n(g=0;n--){for(var c=e.words[n],u=l-1;u>=0;u--){var f=c>>u&1;i!==r[0]&&(i=this.sqr(i)),0!==f||0!==o?(o<<=1,o|=f,(4===++s||0===n&&0===u)&&(i=this.mul(i,r[o]),s=0,o=0)):s=0}l=26}return i},T.prototype.convertTo=function(t){var e=t.umod(this.m);return e===t?e.clone():e},T.prototype.convertFrom=function(t){var e=t.clone();return e.red=null,e},a.mont=function(t){return new k(t)},i(k,T),k.prototype.convertTo=function(t){return this.imod(t.ushln(this.shift))},k.prototype.convertFrom=function(t){var e=this.imod(t.mul(this.rinv));return e.red=null,e},k.prototype.imul=function(t,e){if(t.isZero()||e.isZero())return t.words[0]=0,t.length=1,t;var r=t.imul(e),n=r.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m),i=r.isub(n).iushrn(this.shift),a=i;return i.cmp(this.m)>=0?a=i.isub(this.m):i.cmpn(0)<0&&(a=i.iadd(this.m)),a._forceRed(this)},k.prototype.mul=function(t,e){if(t.isZero()||e.isZero())return new a(0)._forceRed(this);var r=t.mul(e),n=r.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m),i=r.isub(n).iushrn(this.shift),o=i;return i.cmp(this.m)>=0?o=i.isub(this.m):i.cmpn(0)<0&&(o=i.iadd(this.m)),o._forceRed(this)},k.prototype.invm=function(t){return this.imod(t._invmp(this.m).mul(this.r2))._forceRed(this)}}(void 0===e||e,this)},{buffer:2}],34:[function(t,e,r){"use strict";e.exports=function(t){var e,r,n,i=t.length,a=0;for(e=0;e>>1;if(!(u<=0)){var f,h=i.mallocDouble(2*u*s),p=i.mallocInt32(s);if((s=l(t,u,h,p))>0){if(1===u&&n)a.init(s),f=a.sweepComplete(u,r,0,s,h,p,0,s,h,p);else{var d=i.mallocDouble(2*u*c),m=i.mallocInt32(c);(c=l(e,u,d,m))>0&&(a.init(s+c),f=1===u?a.sweepBipartite(u,r,0,s,h,p,0,c,d,m):o(u,r,n,s,h,p,c,d,m),i.free(d),i.free(m))}i.free(h),i.free(p)}return f}}}function u(t,e){n.push([t,e])}function f(t){return n=[],c(t,t,u,!0),n}function h(t,e){return n=[],c(t,e,u,!1),n}},{"./lib/intersect":37,"./lib/sweep":41,"typedarray-pool":308}],36:[function(t,e,r){"use strict";function n(t){return t?function(t,e,r,n,i,a,o,s,l,c,u){return i-n>l-s?function(t,e,r,n,i,a,o,s,l,c,u){for(var f=2*t,h=n,p=f*n;hc-l?n?function(t,e,r,n,i,a,o,s,l,c,u){for(var f=2*t,h=n,p=f*n;h0;){var L=6*(S-=1),C=v[L],P=v[L+1],I=v[L+2],O=v[L+3],z=v[L+4],D=v[L+5],R=2*S,F=y[R],B=y[R+1],N=1&D,j=!!(16&D),U=u,V=w,H=k,q=A;if(N&&(U=k,V=A,H=u,q=w),!(2&D&&(I=p(t,C,P,I,U,V,B),P>=I)||4&D&&(P=d(t,C,P,I,U,V,F))>=I)){var G=I-P,Y=z-O;if(j){if(t*G*(G+Y)<1<<22){if(void 0!==(M=l.scanComplete(t,C,e,P,I,U,V,O,z,H,q)))return M;continue}}else{if(t*Math.min(G,Y)<128){if(void 0!==(M=o(t,C,e,N,P,I,U,V,O,z,H,q)))return M;continue}if(t*G*Y<1<<22){if(void 0!==(M=l.scanBipartite(t,C,e,N,P,I,U,V,O,z,H,q)))return M;continue}}var W=f(t,C,P,I,U,V,F,B);if(P=p0)&&!(p1>=hi)"),h=u("lo===p0"),p=u("lo>>1,f=2*t,h=u,p=o[f*u+e];for(;l=y?(h=v,p=y):g>=b?(h=m,p=g):(h=x,p=b):y>=b?(h=v,p=y):b>=g?(h=m,p=g):(h=x,p=b);for(var _=f*(c-1),w=f*h,T=0;Tr&&i[f+e]>c;--u,f-=o){for(var h=f,p=f+o,d=0;dh;++h,l+=s){if(i[l+f]===o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"loh;++h,l+=s){if(i[l+f]p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"lo<=p0":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=t+e,h=r;n>h;++h,l+=s){if(i[l+f]<=o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"hi<=p0":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=t+e,h=r;n>h;++h,l+=s){if(i[l+f]<=o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"lop;++p,l+=s){var d=i[l+f],m=i[l+h];if(dg;++g){var v=i[l+g];i[l+g]=i[c],i[c++]=v}var y=a[p];a[p]=a[u],a[u++]=y}}return u},"lo<=p0&&p0<=hi":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=e,h=t+e,p=r;n>p;++p,l+=s){var d=i[l+f],m=i[l+h];if(d<=o&&o<=m)if(u===p)u+=1,c+=s;else{for(var g=0;s>g;++g){var v=i[l+g];i[l+g]=i[c],i[c++]=v}var y=a[p];a[p]=a[u],a[u++]=y}}return u},"!(lo>=p0)&&!(p1>=hi)":function(t,e,r,n,i,a,o,s){for(var l=2*t,c=l*r,u=c,f=r,h=e,p=t+e,d=r;n>d;++d,c+=l){var m=i[c+h],g=i[c+p];if(!(m>=o||s>=g))if(f===d)f+=1,u+=l;else{for(var v=0;l>v;++v){var y=i[c+v];i[c+v]=i[u],i[u++]=y}var x=a[d];a[d]=a[f],a[f++]=x}}return f}}},{}],40:[function(t,e,r){"use strict";e.exports=function(t,e){e<=128?n(0,e-1,t):function t(e,r,u){var f=(r-e+1)/6|0,h=e+f,p=r-f,d=e+r>>1,m=d-f,g=d+f,v=h,y=m,x=d,b=g,_=p,w=e+1,T=r-1,k=0;l(v,y,u)&&(k=v,v=y,y=k);l(b,_,u)&&(k=b,b=_,_=k);l(v,x,u)&&(k=v,v=x,x=k);l(y,x,u)&&(k=y,y=x,x=k);l(v,b,u)&&(k=v,v=b,b=k);l(x,b,u)&&(k=x,x=b,b=k);l(y,_,u)&&(k=y,y=_,_=k);l(y,x,u)&&(k=y,y=x,x=k);l(b,_,u)&&(k=b,b=_,_=k);for(var A=u[2*y],M=u[2*y+1],S=u[2*b],E=u[2*b+1],L=2*v,C=2*x,P=2*_,I=2*h,O=2*d,z=2*p,D=0;D<2;++D){var R=u[L+D],F=u[C+D],B=u[P+D];u[I+D]=R,u[O+D]=F,u[z+D]=B}a(m,e,u),a(g,r,u);for(var N=w;N<=T;++N)if(c(N,A,M,u))N!==w&&i(N,w,u),++w;else if(!c(N,S,E,u))for(;;){if(c(T,S,E,u)){c(T,A,M,u)?(o(N,w,T,u),++w,--T):(i(N,T,u),--T);break}if(--Tt;){var c=r[l-2],u=r[l-1];if(cr[e+1])}function c(t,e,r,n){var i=n[t*=2];return i>>1;a(h,M);var S=0,E=0;for(w=0;w=1<<28)p(l,c,E--,L=L-(1<<28)|0);else if(L>=0)p(o,s,S--,L);else if(L<=-(1<<28)){L=-L-(1<<28)|0;for(var C=0;C>>1;a(h,E);var L=0,C=0,P=0;for(k=0;k>1==h[2*k+3]>>1&&(O=2,k+=1),I<0){for(var z=-(I>>1)-1,D=0;D>1)-1;0===O?p(o,s,L--,z):1===O?p(l,c,C--,z):2===O&&p(u,f,P--,z)}}},scanBipartite:function(t,e,r,n,i,l,c,u,f,m,g,v){var y=0,x=2*t,b=e,_=e+t,w=1,T=1;n?T=1<<28:w=1<<28;for(var k=i;k>>1;a(h,E);var L=0;for(k=0;k=1<<28?(P=!n,A-=1<<28):(P=!!n,A-=1),P)d(o,s,L++,A);else{var I=v[A],O=x*A,z=g[O+e+1],D=g[O+e+1+t];t:for(var R=0;R>>1;a(h,w);var T=0;for(y=0;y=1<<28)o[T++]=x-(1<<28);else{var A=p[x-=1],M=m*x,S=f[M+e+1],E=f[M+e+1+t];t:for(var L=0;L=0;--L)if(o[L]===x){for(O=L+1;O0;){for(var p=r.pop(),d=(s=r.pop(),u=-1,f=-1,l=o[s],1);d=0||(e.flip(s,p),i(t,e,r,u,s,f),i(t,e,r,s,f,u),i(t,e,r,f,p,u),i(t,e,r,p,u,f)))}}},{"binary-search-bounds":31,"robust-in-sphere":282}],44:[function(t,e,r){"use strict";var n,i=t("binary-search-bounds");function a(t,e,r,n,i,a,o){this.cells=t,this.neighbor=e,this.flags=n,this.constraint=r,this.active=i,this.next=a,this.boundary=o}function o(t,e){return t[0]-e[0]||t[1]-e[1]||t[2]-e[2]}e.exports=function(t,e,r){var n=function(t,e){for(var r=t.cells(),n=r.length,i=0;i0||l.length>0;){for(;s.length>0;){var p=s.pop();if(c[p]!==-i){c[p]=i;u[p];for(var d=0;d<3;++d){var m=h[3*p+d];m>=0&&0===c[m]&&(f[3*p+d]?l.push(m):(s.push(m),c[m]=i))}}}var g=l;l=s,s=g,l.length=0,i=-i}var v=function(t,e,r){for(var n=0,i=0;i1&&i(r[h[p-2]],r[h[p-1]],a)>0;)t.push([h[p-1],h[p-2],o]),p-=1;h.length=p,h.push(o);var d=f.upperIds;for(p=d.length;p>1&&i(r[d[p-2]],r[d[p-1]],a)<0;)t.push([d[p-2],d[p-1],o]),p-=1;d.length=p,d.push(o)}}function u(t,e){var r;return(r=t.a[0]d[0]&&i.push(new o(d,p,2,l),new o(p,d,1,l))}i.sort(s);for(var m=i[0].a[0]-(1+Math.abs(i[0].a[0]))*Math.pow(2,-52),g=[new a([m,1],[m,0],-1,[],[],[],[])],v=[],y=(l=0,i.length);l=0}}(),a.removeTriangle=function(t,e,r){var n=this.stars;o(n[t],e,r),o(n[e],r,t),o(n[r],t,e)},a.addTriangle=function(t,e,r){var n=this.stars;n[t].push(e,r),n[e].push(r,t),n[r].push(t,e)},a.opposite=function(t,e){for(var r=this.stars[e],n=1,i=r.length;ne[2]?1:0)}function v(t,e,r){if(0!==t.length){if(e)for(var n=0;n=0;--a){var x=e[u=(S=n[a])[0]],b=x[0],_=x[1],w=t[b],T=t[_];if((w[0]-T[0]||w[1]-T[1])<0){var k=b;b=_,_=k}x[0]=b;var A,M=x[1]=S[1];for(i&&(A=x[2]);a>0&&n[a-1][0]===u;){var S,E=(S=n[--a])[1];i?e.push([M,E,A]):e.push([M,E]),M=E}i?e.push([M,_,A]):e.push([M,_])}return h}(t,e,h,g,r));return v(e,y,r),!!y||(h.length>0||g.length>0)}},{"./lib/rat-seg-intersect":51,"big-rat":18,"big-rat/cmp":16,"big-rat/to-float":30,"box-intersect":35,nextafter:260,"rat-vec":273,"robust-segment-intersect":287,"union-find":309}],51:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){var a=s(e,t),f=s(n,r),h=u(a,f);if(0===o(h))return null;var p=s(t,r),d=u(f,p),m=i(d,h),g=c(a,m);return l(t,g)};var n=t("big-rat/mul"),i=t("big-rat/div"),a=t("big-rat/sub"),o=t("big-rat/sign"),s=t("rat-vec/sub"),l=t("rat-vec/add"),c=t("rat-vec/muls");function u(t,e){return a(n(t[0],e[1]),n(t[1],e[0]))}},{"big-rat/div":17,"big-rat/mul":27,"big-rat/sign":28,"big-rat/sub":29,"rat-vec/add":272,"rat-vec/muls":274,"rat-vec/sub":275}],52:[function(t,e,r){e.exports={jet:[{index:0,rgb:[0,0,131]},{index:.125,rgb:[0,60,170]},{index:.375,rgb:[5,255,255]},{index:.625,rgb:[255,255,0]},{index:.875,rgb:[250,0,0]},{index:1,rgb:[128,0,0]}],hsv:[{index:0,rgb:[255,0,0]},{index:.169,rgb:[253,255,2]},{index:.173,rgb:[247,255,2]},{index:.337,rgb:[0,252,4]},{index:.341,rgb:[0,252,10]},{index:.506,rgb:[1,249,255]},{index:.671,rgb:[2,0,253]},{index:.675,rgb:[8,0,253]},{index:.839,rgb:[255,0,251]},{index:.843,rgb:[255,0,245]},{index:1,rgb:[255,0,6]}],hot:[{index:0,rgb:[0,0,0]},{index:.3,rgb:[230,0,0]},{index:.6,rgb:[255,210,0]},{index:1,rgb:[255,255,255]}],spring:[{index:0,rgb:[255,0,255]},{index:1,rgb:[255,255,0]}],summer:[{index:0,rgb:[0,128,102]},{index:1,rgb:[255,255,102]}],autumn:[{index:0,rgb:[255,0,0]},{index:1,rgb:[255,255,0]}],winter:[{index:0,rgb:[0,0,255]},{index:1,rgb:[0,255,128]}],bone:[{index:0,rgb:[0,0,0]},{index:.376,rgb:[84,84,116]},{index:.753,rgb:[169,200,200]},{index:1,rgb:[255,255,255]}],copper:[{index:0,rgb:[0,0,0]},{index:.804,rgb:[255,160,102]},{index:1,rgb:[255,199,127]}],greys:[{index:0,rgb:[0,0,0]},{index:1,rgb:[255,255,255]}],yignbu:[{index:0,rgb:[8,29,88]},{index:.125,rgb:[37,52,148]},{index:.25,rgb:[34,94,168]},{index:.375,rgb:[29,145,192]},{index:.5,rgb:[65,182,196]},{index:.625,rgb:[127,205,187]},{index:.75,rgb:[199,233,180]},{index:.875,rgb:[237,248,217]},{index:1,rgb:[255,255,217]}],greens:[{index:0,rgb:[0,68,27]},{index:.125,rgb:[0,109,44]},{index:.25,rgb:[35,139,69]},{index:.375,rgb:[65,171,93]},{index:.5,rgb:[116,196,118]},{index:.625,rgb:[161,217,155]},{index:.75,rgb:[199,233,192]},{index:.875,rgb:[229,245,224]},{index:1,rgb:[247,252,245]}],yiorrd:[{index:0,rgb:[128,0,38]},{index:.125,rgb:[189,0,38]},{index:.25,rgb:[227,26,28]},{index:.375,rgb:[252,78,42]},{index:.5,rgb:[253,141,60]},{index:.625,rgb:[254,178,76]},{index:.75,rgb:[254,217,118]},{index:.875,rgb:[255,237,160]},{index:1,rgb:[255,255,204]}],bluered:[{index:0,rgb:[0,0,255]},{index:1,rgb:[255,0,0]}],rdbu:[{index:0,rgb:[5,10,172]},{index:.35,rgb:[106,137,247]},{index:.5,rgb:[190,190,190]},{index:.6,rgb:[220,170,132]},{index:.7,rgb:[230,145,90]},{index:1,rgb:[178,10,28]}],picnic:[{index:0,rgb:[0,0,255]},{index:.1,rgb:[51,153,255]},{index:.2,rgb:[102,204,255]},{index:.3,rgb:[153,204,255]},{index:.4,rgb:[204,204,255]},{index:.5,rgb:[255,255,255]},{index:.6,rgb:[255,204,255]},{index:.7,rgb:[255,153,255]},{index:.8,rgb:[255,102,204]},{index:.9,rgb:[255,102,102]},{index:1,rgb:[255,0,0]}],rainbow:[{index:0,rgb:[150,0,90]},{index:.125,rgb:[0,0,200]},{index:.25,rgb:[0,25,255]},{index:.375,rgb:[0,152,255]},{index:.5,rgb:[44,255,150]},{index:.625,rgb:[151,255,0]},{index:.75,rgb:[255,234,0]},{index:.875,rgb:[255,111,0]},{index:1,rgb:[255,0,0]}],portland:[{index:0,rgb:[12,51,131]},{index:.25,rgb:[10,136,186]},{index:.5,rgb:[242,211,56]},{index:.75,rgb:[242,143,56]},{index:1,rgb:[217,30,30]}],blackbody:[{index:0,rgb:[0,0,0]},{index:.2,rgb:[230,0,0]},{index:.4,rgb:[230,210,0]},{index:.7,rgb:[255,255,255]},{index:1,rgb:[160,200,255]}],earth:[{index:0,rgb:[0,0,130]},{index:.1,rgb:[0,180,180]},{index:.2,rgb:[40,210,40]},{index:.4,rgb:[230,230,50]},{index:.6,rgb:[120,70,20]},{index:1,rgb:[255,255,255]}],electric:[{index:0,rgb:[0,0,0]},{index:.15,rgb:[30,0,100]},{index:.4,rgb:[120,0,100]},{index:.6,rgb:[160,90,0]},{index:.8,rgb:[230,200,0]},{index:1,rgb:[255,250,220]}],alpha:[{index:0,rgb:[255,255,255,0]},{index:1,rgb:[255,255,255,1]}],viridis:[{index:0,rgb:[68,1,84]},{index:.13,rgb:[71,44,122]},{index:.25,rgb:[59,81,139]},{index:.38,rgb:[44,113,142]},{index:.5,rgb:[33,144,141]},{index:.63,rgb:[39,173,129]},{index:.75,rgb:[92,200,99]},{index:.88,rgb:[170,220,50]},{index:1,rgb:[253,231,37]}],inferno:[{index:0,rgb:[0,0,4]},{index:.13,rgb:[31,12,72]},{index:.25,rgb:[85,15,109]},{index:.38,rgb:[136,34,106]},{index:.5,rgb:[186,54,85]},{index:.63,rgb:[227,89,51]},{index:.75,rgb:[249,140,10]},{index:.88,rgb:[249,201,50]},{index:1,rgb:[252,255,164]}],magma:[{index:0,rgb:[0,0,4]},{index:.13,rgb:[28,16,68]},{index:.25,rgb:[79,18,123]},{index:.38,rgb:[129,37,129]},{index:.5,rgb:[181,54,122]},{index:.63,rgb:[229,80,100]},{index:.75,rgb:[251,135,97]},{index:.88,rgb:[254,194,135]},{index:1,rgb:[252,253,191]}],plasma:[{index:0,rgb:[13,8,135]},{index:.13,rgb:[75,3,161]},{index:.25,rgb:[125,3,168]},{index:.38,rgb:[168,34,150]},{index:.5,rgb:[203,70,121]},{index:.63,rgb:[229,107,93]},{index:.75,rgb:[248,148,65]},{index:.88,rgb:[253,195,40]},{index:1,rgb:[240,249,33]}],warm:[{index:0,rgb:[125,0,179]},{index:.13,rgb:[172,0,187]},{index:.25,rgb:[219,0,170]},{index:.38,rgb:[255,0,130]},{index:.5,rgb:[255,63,74]},{index:.63,rgb:[255,123,0]},{index:.75,rgb:[234,176,0]},{index:.88,rgb:[190,228,0]},{index:1,rgb:[147,255,0]}],cool:[{index:0,rgb:[125,0,179]},{index:.13,rgb:[116,0,218]},{index:.25,rgb:[98,74,237]},{index:.38,rgb:[68,146,231]},{index:.5,rgb:[0,204,197]},{index:.63,rgb:[0,247,146]},{index:.75,rgb:[0,255,88]},{index:.88,rgb:[40,255,8]},{index:1,rgb:[147,255,0]}],"rainbow-soft":[{index:0,rgb:[125,0,179]},{index:.1,rgb:[199,0,180]},{index:.2,rgb:[255,0,121]},{index:.3,rgb:[255,108,0]},{index:.4,rgb:[222,194,0]},{index:.5,rgb:[150,255,0]},{index:.6,rgb:[0,255,55]},{index:.7,rgb:[0,246,150]},{index:.8,rgb:[50,167,222]},{index:.9,rgb:[103,51,235]},{index:1,rgb:[124,0,186]}],bathymetry:[{index:0,rgb:[40,26,44]},{index:.13,rgb:[59,49,90]},{index:.25,rgb:[64,76,139]},{index:.38,rgb:[63,110,151]},{index:.5,rgb:[72,142,158]},{index:.63,rgb:[85,174,163]},{index:.75,rgb:[120,206,163]},{index:.88,rgb:[187,230,172]},{index:1,rgb:[253,254,204]}],cdom:[{index:0,rgb:[47,15,62]},{index:.13,rgb:[87,23,86]},{index:.25,rgb:[130,28,99]},{index:.38,rgb:[171,41,96]},{index:.5,rgb:[206,67,86]},{index:.63,rgb:[230,106,84]},{index:.75,rgb:[242,149,103]},{index:.88,rgb:[249,193,135]},{index:1,rgb:[254,237,176]}],chlorophyll:[{index:0,rgb:[18,36,20]},{index:.13,rgb:[25,63,41]},{index:.25,rgb:[24,91,59]},{index:.38,rgb:[13,119,72]},{index:.5,rgb:[18,148,80]},{index:.63,rgb:[80,173,89]},{index:.75,rgb:[132,196,122]},{index:.88,rgb:[175,221,162]},{index:1,rgb:[215,249,208]}],density:[{index:0,rgb:[54,14,36]},{index:.13,rgb:[89,23,80]},{index:.25,rgb:[110,45,132]},{index:.38,rgb:[120,77,178]},{index:.5,rgb:[120,113,213]},{index:.63,rgb:[115,151,228]},{index:.75,rgb:[134,185,227]},{index:.88,rgb:[177,214,227]},{index:1,rgb:[230,241,241]}],"freesurface-blue":[{index:0,rgb:[30,4,110]},{index:.13,rgb:[47,14,176]},{index:.25,rgb:[41,45,236]},{index:.38,rgb:[25,99,212]},{index:.5,rgb:[68,131,200]},{index:.63,rgb:[114,156,197]},{index:.75,rgb:[157,181,203]},{index:.88,rgb:[200,208,216]},{index:1,rgb:[241,237,236]}],"freesurface-red":[{index:0,rgb:[60,9,18]},{index:.13,rgb:[100,17,27]},{index:.25,rgb:[142,20,29]},{index:.38,rgb:[177,43,27]},{index:.5,rgb:[192,87,63]},{index:.63,rgb:[205,125,105]},{index:.75,rgb:[216,162,148]},{index:.88,rgb:[227,199,193]},{index:1,rgb:[241,237,236]}],oxygen:[{index:0,rgb:[64,5,5]},{index:.13,rgb:[106,6,15]},{index:.25,rgb:[144,26,7]},{index:.38,rgb:[168,64,3]},{index:.5,rgb:[188,100,4]},{index:.63,rgb:[206,136,11]},{index:.75,rgb:[220,174,25]},{index:.88,rgb:[231,215,44]},{index:1,rgb:[248,254,105]}],par:[{index:0,rgb:[51,20,24]},{index:.13,rgb:[90,32,35]},{index:.25,rgb:[129,44,34]},{index:.38,rgb:[159,68,25]},{index:.5,rgb:[182,99,19]},{index:.63,rgb:[199,134,22]},{index:.75,rgb:[212,171,35]},{index:.88,rgb:[221,210,54]},{index:1,rgb:[225,253,75]}],phase:[{index:0,rgb:[145,105,18]},{index:.13,rgb:[184,71,38]},{index:.25,rgb:[186,58,115]},{index:.38,rgb:[160,71,185]},{index:.5,rgb:[110,97,218]},{index:.63,rgb:[50,123,164]},{index:.75,rgb:[31,131,110]},{index:.88,rgb:[77,129,34]},{index:1,rgb:[145,105,18]}],salinity:[{index:0,rgb:[42,24,108]},{index:.13,rgb:[33,50,162]},{index:.25,rgb:[15,90,145]},{index:.38,rgb:[40,118,137]},{index:.5,rgb:[59,146,135]},{index:.63,rgb:[79,175,126]},{index:.75,rgb:[120,203,104]},{index:.88,rgb:[193,221,100]},{index:1,rgb:[253,239,154]}],temperature:[{index:0,rgb:[4,35,51]},{index:.13,rgb:[23,51,122]},{index:.25,rgb:[85,59,157]},{index:.38,rgb:[129,79,143]},{index:.5,rgb:[175,95,130]},{index:.63,rgb:[222,112,101]},{index:.75,rgb:[249,146,66]},{index:.88,rgb:[249,196,65]},{index:1,rgb:[232,250,91]}],turbidity:[{index:0,rgb:[34,31,27]},{index:.13,rgb:[65,50,41]},{index:.25,rgb:[98,69,52]},{index:.38,rgb:[131,89,57]},{index:.5,rgb:[161,112,59]},{index:.63,rgb:[185,140,66]},{index:.75,rgb:[202,174,88]},{index:.88,rgb:[216,209,126]},{index:1,rgb:[233,246,171]}],"velocity-blue":[{index:0,rgb:[17,32,64]},{index:.13,rgb:[35,52,116]},{index:.25,rgb:[29,81,156]},{index:.38,rgb:[31,113,162]},{index:.5,rgb:[50,144,169]},{index:.63,rgb:[87,173,176]},{index:.75,rgb:[149,196,189]},{index:.88,rgb:[203,221,211]},{index:1,rgb:[254,251,230]}],"velocity-green":[{index:0,rgb:[23,35,19]},{index:.13,rgb:[24,64,38]},{index:.25,rgb:[11,95,45]},{index:.38,rgb:[39,123,35]},{index:.5,rgb:[95,146,12]},{index:.63,rgb:[152,165,18]},{index:.75,rgb:[201,186,69]},{index:.88,rgb:[233,216,137]},{index:1,rgb:[255,253,205]}],cubehelix:[{index:0,rgb:[0,0,0]},{index:.07,rgb:[22,5,59]},{index:.13,rgb:[60,4,105]},{index:.2,rgb:[109,1,135]},{index:.27,rgb:[161,0,147]},{index:.33,rgb:[210,2,142]},{index:.4,rgb:[251,11,123]},{index:.47,rgb:[255,29,97]},{index:.53,rgb:[255,54,69]},{index:.6,rgb:[255,85,46]},{index:.67,rgb:[255,120,34]},{index:.73,rgb:[255,157,37]},{index:.8,rgb:[241,191,57]},{index:.87,rgb:[224,220,93]},{index:.93,rgb:[218,241,142]},{index:1,rgb:[227,253,198]}]}},{}],53:[function(t,e,r){"use strict";var n=t("./colorScale"),i=t("lerp");function a(t){return[t[0]/255,t[1]/255,t[2]/255,t[3]]}function o(t){for(var e,r="#",n=0;n<3;++n)r+=("00"+(e=(e=t[n]).toString(16))).substr(e.length);return r}function s(t){return"rgba("+t.join(",")+")"}e.exports=function(t){var e,r,l,c,u,f,h,p,d,m;t||(t={});p=(t.nshades||72)-1,h=t.format||"hex",(f=t.colormap)||(f="jet");if("string"==typeof f){if(f=f.toLowerCase(),!n[f])throw Error(f+" not a supported colorscale");u=n[f]}else{if(!Array.isArray(f))throw Error("unsupported colormap option",f);u=f.slice()}if(u.length>p+1)throw new Error(f+" map requires nshades to be at least size "+u.length);d=Array.isArray(t.alpha)?2!==t.alpha.length?[1,1]:t.alpha.slice():"number"==typeof t.alpha?[t.alpha,t.alpha]:[1,1];e=u.map((function(t){return Math.round(t.index*p)})),d[0]=Math.min(Math.max(d[0],0),1),d[1]=Math.min(Math.max(d[1],0),1);var g=u.map((function(t,e){var r=u[e].index,n=u[e].rgb.slice();return 4===n.length&&n[3]>=0&&n[3]<=1||(n[3]=d[0]+(d[1]-d[0])*r),n})),v=[];for(m=0;m0||l(t,e,a)?-1:1:0===s?c>0||l(t,e,r)?1:-1:i(c-s)}var h=n(t,e,r);return h>0?o>0&&n(t,e,a)>0?1:-1:h<0?o>0||n(t,e,a)>0?1:-1:n(t,e,a)>0||l(t,e,r)?1:-1};var n=t("robust-orientation"),i=t("signum"),a=t("two-sum"),o=t("robust-product"),s=t("robust-sum");function l(t,e,r){var n=a(t[0],-e[0]),i=a(t[1],-e[1]),l=a(r[0],-e[0]),c=a(r[1],-e[1]),u=s(o(n,l),o(i,c));return u[u.length-1]>=0}},{"robust-orientation":284,"robust-product":285,"robust-sum":289,signum:55,"two-sum":307}],55:[function(t,e,r){"use strict";e.exports=function(t){return t<0?-1:t>0?1:0}},{}],56:[function(t,e,r){e.exports=function(t,e){var r=t.length,a=t.length-e.length;if(a)return a;switch(r){case 0:return 0;case 1:return t[0]-e[0];case 2:return t[0]+t[1]-e[0]-e[1]||n(t[0],t[1])-n(e[0],e[1]);case 3:var o=t[0]+t[1],s=e[0]+e[1];if(a=o+t[2]-(s+e[2]))return a;var l=n(t[0],t[1]),c=n(e[0],e[1]);return n(l,t[2])-n(c,e[2])||n(l+t[2],o)-n(c+e[2],s);case 4:var u=t[0],f=t[1],h=t[2],p=t[3],d=e[0],m=e[1],g=e[2],v=e[3];return u+f+h+p-(d+m+g+v)||n(u,f,h,p)-n(d,m,g,v,d)||n(u+f,u+h,u+p,f+h,f+p,h+p)-n(d+m,d+g,d+v,m+g,m+v,g+v)||n(u+f+h,u+f+p,u+h+p,f+h+p)-n(d+m+g,d+m+v,d+g+v,m+g+v);default:for(var y=t.slice().sort(i),x=e.slice().sort(i),b=0;bt[r][0]&&(r=n);return er?[[r],[e]]:[[e]]}},{}],60:[function(t,e,r){"use strict";e.exports=function(t){var e=n(t),r=e.length;if(r<=2)return[];for(var i=new Array(r),a=e[r-1],o=0;o=e[l]&&(s+=1);a[o]=s}}return t}(n(a,!0),r)}};var n=t("incremental-convex-hull"),i=t("affine-hull")},{"affine-hull":10,"incremental-convex-hull":233}],62:[function(t,e,r){"use strict";e.exports=function(t,e,r,n,i,a){var o=i-1,s=i*i,l=o*o,c=(1+2*i)*l,u=i*l,f=s*(3-2*i),h=s*o;if(t.length){a||(a=new Array(t.length));for(var p=t.length-1;p>=0;--p)a[p]=c*t[p]+u*e[p]+f*r[p]+h*n[p];return a}return c*t+u*e+f*r+h*n},e.exports.derivative=function(t,e,r,n,i,a){var o=6*i*i-6*i,s=3*i*i-4*i+1,l=-6*i*i+6*i,c=3*i*i-2*i;if(t.length){a||(a=new Array(t.length));for(var u=t.length-1;u>=0;--u)a[u]=o*t[u]+s*e[u]+l*r[u]+c*n[u];return a}return o*t+s*e+l*r[u]+c*n}},{}],63:[function(t,e,r){"use strict";var n=t("incremental-convex-hull"),i=t("uniq");function a(t,e){this.point=t,this.index=e}function o(t,e){for(var r=t.point,n=e.point,i=r.length,a=0;a=2)return!1;t[r]=n}return!0})):_.filter((function(t){for(var e=0;e<=s;++e){var r=v[t[e]];if(r<0)return!1;t[e]=r}return!0}));if(1&s)for(u=0;u<_.length;++u){h=(b=_[u])[0];b[0]=b[1],b[1]=h}return _}},{"incremental-convex-hull":233,uniq:310}],64:[function(t,e,r){(function(t){(function(){var r=!1;if("undefined"!=typeof Float64Array){var n=new Float64Array(1),i=new Uint32Array(n.buffer);if(n[0]=1,r=!0,1072693248===i[1]){e.exports=function(t){return n[0]=t,[i[0],i[1]]},e.exports.pack=function(t,e){return i[0]=t,i[1]=e,n[0]},e.exports.lo=function(t){return n[0]=t,i[0]},e.exports.hi=function(t){return n[0]=t,i[1]}}else if(1072693248===i[0]){e.exports=function(t){return n[0]=t,[i[1],i[0]]},e.exports.pack=function(t,e){return i[1]=t,i[0]=e,n[0]},e.exports.lo=function(t){return n[0]=t,i[1]},e.exports.hi=function(t){return n[0]=t,i[0]}}else r=!1}if(!r){var a=new t(8);e.exports=function(t){return a.writeDoubleLE(t,0,!0),[a.readUInt32LE(0,!0),a.readUInt32LE(4,!0)]},e.exports.pack=function(t,e){return a.writeUInt32LE(t,0,!0),a.writeUInt32LE(e,4,!0),a.readDoubleLE(0,!0)},e.exports.lo=function(t){return a.writeDoubleLE(t,0,!0),a.readUInt32LE(0,!0)},e.exports.hi=function(t){return a.writeDoubleLE(t,0,!0),a.readUInt32LE(4,!0)}}e.exports.sign=function(t){return e.exports.hi(t)>>>31},e.exports.exponent=function(t){return(e.exports.hi(t)<<1>>>21)-1023},e.exports.fraction=function(t){var r=e.exports.lo(t),n=e.exports.hi(t),i=1048575&n;return 2146435072&n&&(i+=1<<20),[r,i]},e.exports.denormalized=function(t){return!(2146435072&e.exports.hi(t))}}).call(this)}).call(this,t("buffer").Buffer)},{buffer:3}],65:[function(t,e,r){"use strict";e.exports=function(t,e){switch(void 0===e&&(e=0),typeof t){case"number":if(t>0)return function(t,e){var r,n;for(r=new Array(t),n=0;n=r-1){h=l.length-1;var d=t-e[r-1];for(p=0;p=r-1)for(var u=s.length-1,f=(e[r-1],0);f=0;--r)if(t[--e])return!1;return!0},s.jump=function(t){var e=this.lastT(),r=this.dimension;if(!(t0;--f)n.push(a(l[f-1],c[f-1],arguments[f])),i.push(0)}},s.push=function(t){var e=this.lastT(),r=this.dimension;if(!(t1e-6?1/s:0;this._time.push(t);for(var h=r;h>0;--h){var p=a(c[h-1],u[h-1],arguments[h]);n.push(p),i.push((p-n[o++])*f)}}},s.set=function(t){var e=this.dimension;if(!(t0;--l)r.push(a(o[l-1],s[l-1],arguments[l])),n.push(0)}},s.move=function(t){var e=this.lastT(),r=this.dimension;if(!(t<=e||arguments.length!==r+1)){var n=this._state,i=this._velocity,o=n.length-this.dimension,s=this.bounds,l=s[0],c=s[1],u=t-e,f=u>1e-6?1/u:0;this._time.push(t);for(var h=r;h>0;--h){var p=arguments[h];n.push(a(l[h-1],c[h-1],n[o++]+p)),i.push(p*f)}}},s.idle=function(t){var e=this.lastT();if(!(t=0;--f)n.push(a(l[f],c[f],n[o]+u*i[o])),i.push(0),o+=1}}},{"binary-search-bounds":31,"cubic-hermite":62}],69:[function(t,e,r){"use strict";e.exports=function(t){return new s(t||m,null)};function n(t,e,r,n,i,a){this._color=t,this.key=e,this.value=r,this.left=n,this.right=i,this._count=a}function i(t){return new n(t._color,t.key,t.value,t.left,t.right,t._count)}function a(t,e){return new n(t,e.key,e.value,e.left,e.right,e._count)}function o(t){t._count=1+(t.left?t.left._count:0)+(t.right?t.right._count:0)}function s(t,e){this._compare=t,this.root=e}var l=s.prototype;function c(t,e){var r;if(e.left&&(r=c(t,e.left)))return r;return(r=t(e.key,e.value))||(e.right?c(t,e.right):void 0)}function u(t,e,r,n){if(e(t,n.key)<=0){var i;if(n.left)if(i=u(t,e,r,n.left))return i;if(i=r(n.key,n.value))return i}if(n.right)return u(t,e,r,n.right)}function f(t,e,r,n,i){var a,o=r(t,i.key),s=r(e,i.key);if(o<=0){if(i.left&&(a=f(t,e,r,n,i.left)))return a;if(s>0&&(a=n(i.key,i.value)))return a}if(s>0&&i.right)return f(t,e,r,n,i.right)}function h(t,e){this.tree=t,this._stack=e}Object.defineProperty(l,"keys",{get:function(){var t=[];return this.forEach((function(e,r){t.push(e)})),t}}),Object.defineProperty(l,"values",{get:function(){var t=[];return this.forEach((function(e,r){t.push(r)})),t}}),Object.defineProperty(l,"length",{get:function(){return this.root?this.root._count:0}}),l.insert=function(t,e){for(var r=this._compare,i=this.root,l=[],c=[];i;){var u=r(t,i.key);l.push(i),c.push(u),i=u<=0?i.left:i.right}l.push(new n(0,t,e,null,null,1));for(var f=l.length-2;f>=0;--f){i=l[f];c[f]<=0?l[f]=new n(i._color,i.key,i.value,l[f+1],i.right,i._count+1):l[f]=new n(i._color,i.key,i.value,i.left,l[f+1],i._count+1)}for(f=l.length-1;f>1;--f){var h=l[f-1];i=l[f];if(1===h._color||1===i._color)break;var p=l[f-2];if(p.left===h)if(h.left===i){if(!(d=p.right)||0!==d._color){if(p._color=0,p.left=h.right,h._color=1,h.right=p,l[f-2]=h,l[f-1]=i,o(p),o(h),f>=3)(m=l[f-3]).left===p?m.left=h:m.right=h;break}h._color=1,p.right=a(1,d),p._color=0,f-=1}else{if(!(d=p.right)||0!==d._color){if(h.right=i.left,p._color=0,p.left=i.right,i._color=1,i.left=h,i.right=p,l[f-2]=i,l[f-1]=h,o(p),o(h),o(i),f>=3)(m=l[f-3]).left===p?m.left=i:m.right=i;break}h._color=1,p.right=a(1,d),p._color=0,f-=1}else if(h.right===i){if(!(d=p.left)||0!==d._color){if(p._color=0,p.right=h.left,h._color=1,h.left=p,l[f-2]=h,l[f-1]=i,o(p),o(h),f>=3)(m=l[f-3]).right===p?m.right=h:m.left=h;break}h._color=1,p.left=a(1,d),p._color=0,f-=1}else{var d;if(!(d=p.left)||0!==d._color){var m;if(h.left=i.right,p._color=0,p.right=i.left,i._color=1,i.right=h,i.left=p,l[f-2]=i,l[f-1]=h,o(p),o(h),o(i),f>=3)(m=l[f-3]).right===p?m.right=i:m.left=i;break}h._color=1,p.left=a(1,d),p._color=0,f-=1}}return l[0]._color=1,new s(r,l[0])},l.forEach=function(t,e,r){if(this.root)switch(arguments.length){case 1:return c(t,this.root);case 2:return u(e,this._compare,t,this.root);case 3:if(this._compare(e,r)>=0)return;return f(e,r,this._compare,t,this.root)}},Object.defineProperty(l,"begin",{get:function(){for(var t=[],e=this.root;e;)t.push(e),e=e.left;return new h(this,t)}}),Object.defineProperty(l,"end",{get:function(){for(var t=[],e=this.root;e;)t.push(e),e=e.right;return new h(this,t)}}),l.at=function(t){if(t<0)return new h(this,[]);for(var e=this.root,r=[];;){if(r.push(e),e.left){if(t=e.right._count)break;e=e.right}return new h(this,[])},l.ge=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a<=0&&(i=n.length),r=a<=0?r.left:r.right}return n.length=i,new h(this,n)},l.gt=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a<0&&(i=n.length),r=a<0?r.left:r.right}return n.length=i,new h(this,n)},l.lt=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a>0&&(i=n.length),r=a<=0?r.left:r.right}return n.length=i,new h(this,n)},l.le=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a>=0&&(i=n.length),r=a<0?r.left:r.right}return n.length=i,new h(this,n)},l.find=function(t){for(var e=this._compare,r=this.root,n=[];r;){var i=e(t,r.key);if(n.push(r),0===i)return new h(this,n);r=i<=0?r.left:r.right}return new h(this,[])},l.remove=function(t){var e=this.find(t);return e?e.remove():this},l.get=function(t){for(var e=this._compare,r=this.root;r;){var n=e(t,r.key);if(0===n)return r.value;r=n<=0?r.left:r.right}};var p=h.prototype;function d(t,e){t.key=e.key,t.value=e.value,t.left=e.left,t.right=e.right,t._color=e._color,t._count=e._count}function m(t,e){return te?1:0}Object.defineProperty(p,"valid",{get:function(){return this._stack.length>0}}),Object.defineProperty(p,"node",{get:function(){return this._stack.length>0?this._stack[this._stack.length-1]:null},enumerable:!0}),p.clone=function(){return new h(this.tree,this._stack.slice())},p.remove=function(){var t=this._stack;if(0===t.length)return this.tree;var e=new Array(t.length),r=t[t.length-1];e[e.length-1]=new n(r._color,r.key,r.value,r.left,r.right,r._count);for(var l=t.length-2;l>=0;--l){(r=t[l]).left===t[l+1]?e[l]=new n(r._color,r.key,r.value,e[l+1],r.right,r._count):e[l]=new n(r._color,r.key,r.value,r.left,e[l+1],r._count)}if((r=e[e.length-1]).left&&r.right){var c=e.length;for(r=r.left;r.right;)e.push(r),r=r.right;var u=e[c-1];e.push(new n(r._color,u.key,u.value,r.left,r.right,r._count)),e[c-1].key=r.key,e[c-1].value=r.value;for(l=e.length-2;l>=c;--l)r=e[l],e[l]=new n(r._color,r.key,r.value,r.left,e[l+1],r._count);e[c-1].left=e[c]}if(0===(r=e[e.length-1])._color){var f=e[e.length-2];f.left===r?f.left=null:f.right===r&&(f.right=null),e.pop();for(l=0;l=0;--l){if(e=t[l],0===l)return void(e._color=1);if((r=t[l-1]).left===e){if((n=r.right).right&&0===n.right._color){if(s=(n=r.right=i(n)).right=i(n.right),r.right=n.left,n.left=r,n.right=s,n._color=r._color,e._color=1,r._color=1,s._color=1,o(r),o(n),l>1)(c=t[l-2]).left===r?c.left=n:c.right=n;return void(t[l-1]=n)}if(n.left&&0===n.left._color){if(s=(n=r.right=i(n)).left=i(n.left),r.right=s.left,n.left=s.right,s.left=r,s.right=n,s._color=r._color,r._color=1,n._color=1,e._color=1,o(r),o(n),o(s),l>1)(c=t[l-2]).left===r?c.left=s:c.right=s;return void(t[l-1]=s)}if(1===n._color){if(0===r._color)return r._color=1,void(r.right=a(0,n));r.right=a(0,n);continue}n=i(n),r.right=n.left,n.left=r,n._color=r._color,r._color=0,o(r),o(n),l>1&&((c=t[l-2]).left===r?c.left=n:c.right=n),t[l-1]=n,t[l]=r,l+11)(c=t[l-2]).right===r?c.right=n:c.left=n;return void(t[l-1]=n)}if(n.right&&0===n.right._color){if(s=(n=r.left=i(n)).right=i(n.right),r.left=s.right,n.right=s.left,s.right=r,s.left=n,s._color=r._color,r._color=1,n._color=1,e._color=1,o(r),o(n),o(s),l>1)(c=t[l-2]).right===r?c.right=s:c.left=s;return void(t[l-1]=s)}if(1===n._color){if(0===r._color)return r._color=1,void(r.left=a(0,n));r.left=a(0,n);continue}var c;n=i(n),r.left=n.right,n.right=r,n._color=r._color,r._color=0,o(r),o(n),l>1&&((c=t[l-2]).right===r?c.right=n:c.left=n),t[l-1]=n,t[l]=r,l+10)return this._stack[this._stack.length-1].key},enumerable:!0}),Object.defineProperty(p,"value",{get:function(){if(this._stack.length>0)return this._stack[this._stack.length-1].value},enumerable:!0}),Object.defineProperty(p,"index",{get:function(){var t=0,e=this._stack;if(0===e.length){var r=this.tree.root;return r?r._count:0}e[e.length-1].left&&(t=e[e.length-1].left._count);for(var n=e.length-2;n>=0;--n)e[n+1]===e[n].right&&(++t,e[n].left&&(t+=e[n].left._count));return t},enumerable:!0}),p.next=function(){var t=this._stack;if(0!==t.length){var e=t[t.length-1];if(e.right)for(e=e.right;e;)t.push(e),e=e.left;else for(t.pop();t.length>0&&t[t.length-1].right===e;)e=t[t.length-1],t.pop()}},Object.defineProperty(p,"hasNext",{get:function(){var t=this._stack;if(0===t.length)return!1;if(t[t.length-1].right)return!0;for(var e=t.length-1;e>0;--e)if(t[e-1].left===t[e])return!0;return!1}}),p.update=function(t){var e=this._stack;if(0===e.length)throw new Error("Can't update empty node!");var r=new Array(e.length),i=e[e.length-1];r[r.length-1]=new n(i._color,i.key,t,i.left,i.right,i._count);for(var a=e.length-2;a>=0;--a)(i=e[a]).left===e[a+1]?r[a]=new n(i._color,i.key,i.value,r[a+1],i.right,i._count):r[a]=new n(i._color,i.key,i.value,i.left,r[a+1],i._count);return new s(this.tree._compare,r[0])},p.prev=function(){var t=this._stack;if(0!==t.length){var e=t[t.length-1];if(e.left)for(e=e.left;e;)t.push(e),e=e.right;else for(t.pop();t.length>0&&t[t.length-1].left===e;)e=t[t.length-1],t.pop()}},Object.defineProperty(p,"hasPrev",{get:function(){var t=this._stack;if(0===t.length)return!1;if(t[t.length-1].left)return!0;for(var e=t.length-1;e>0;--e)if(t[e-1].right===t[e])return!0;return!1}})},{}],70:[function(t,e,r){"use strict";e.exports=function(t,e){var r=new u(t);return r.update(e),r};var n=t("./lib/text.js"),i=t("./lib/lines.js"),a=t("./lib/background.js"),o=t("./lib/cube.js"),s=t("./lib/ticks.js"),l=new Float32Array([1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]);function c(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t}function u(t){this.gl=t,this.pixelRatio=1,this.bounds=[[-10,-10,-10],[10,10,10]],this.ticks=[[],[],[]],this.autoTicks=!0,this.tickSpacing=[1,1,1],this.tickEnable=[!0,!0,!0],this.tickFont=["sans-serif","sans-serif","sans-serif"],this.tickSize=[12,12,12],this.tickAngle=[0,0,0],this.tickAlign=["auto","auto","auto"],this.tickColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.tickPad=[10,10,10],this.lastCubeProps={cubeEdges:[0,0,0],axis:[0,0,0]},this.labels=["x","y","z"],this.labelEnable=[!0,!0,!0],this.labelFont="sans-serif",this.labelSize=[20,20,20],this.labelAngle=[0,0,0],this.labelAlign=["auto","auto","auto"],this.labelColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.labelPad=[10,10,10],this.lineEnable=[!0,!0,!0],this.lineMirror=[!1,!1,!1],this.lineWidth=[1,1,1],this.lineColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.lineTickEnable=[!0,!0,!0],this.lineTickMirror=[!1,!1,!1],this.lineTickLength=[0,0,0],this.lineTickWidth=[1,1,1],this.lineTickColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.gridEnable=[!0,!0,!0],this.gridWidth=[1,1,1],this.gridColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.zeroEnable=[!0,!0,!0],this.zeroLineColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.zeroLineWidth=[2,2,2],this.backgroundEnable=[!1,!1,!1],this.backgroundColor=[[.8,.8,.8,.5],[.8,.8,.8,.5],[.8,.8,.8,.5]],this._firstInit=!0,this._text=null,this._lines=null,this._background=a(t)}var f=u.prototype;function h(){this.primalOffset=[0,0,0],this.primalMinor=[0,0,0],this.mirrorOffset=[0,0,0],this.mirrorMinor=[0,0,0]}f.update=function(t){function e(e,r,n){if(n in t){var i,a=t[n],o=this[n];(e?Array.isArray(a)&&Array.isArray(a[0]):Array.isArray(a))?this[n]=i=[r(a[0]),r(a[1]),r(a[2])]:this[n]=i=[r(a),r(a),r(a)];for(var s=0;s<3;++s)if(i[s]!==o[s])return!0}return!1}t=t||{};var r,a=e.bind(this,!1,Number),o=e.bind(this,!1,Boolean),l=e.bind(this,!1,String),c=e.bind(this,!0,(function(t){if(Array.isArray(t)){if(3===t.length)return[+t[0],+t[1],+t[2],1];if(4===t.length)return[+t[0],+t[1],+t[2],+t[3]]}return[0,0,0,1]})),u=!1,f=!1;if("bounds"in t)for(var h=t.bounds,p=0;p<2;++p)for(var d=0;d<3;++d)h[p][d]!==this.bounds[p][d]&&(f=!0),this.bounds[p][d]=h[p][d];if("ticks"in t){r=t.ticks,u=!0,this.autoTicks=!1;for(p=0;p<3;++p)this.tickSpacing[p]=0}else a("tickSpacing")&&(this.autoTicks=!0,f=!0);if(this._firstInit&&("ticks"in t||"tickSpacing"in t||(this.autoTicks=!0),f=!0,u=!0,this._firstInit=!1),f&&this.autoTicks&&(r=s.create(this.bounds,this.tickSpacing),u=!0),u){for(p=0;p<3;++p)r[p].sort((function(t,e){return t.x-e.x}));s.equal(r,this.ticks)?u=!1:this.ticks=r}o("tickEnable"),l("tickFont")&&(u=!0),a("tickSize"),a("tickAngle"),a("tickPad"),c("tickColor");var m=l("labels");l("labelFont")&&(m=!0),o("labelEnable"),a("labelSize"),a("labelPad"),c("labelColor"),o("lineEnable"),o("lineMirror"),a("lineWidth"),c("lineColor"),o("lineTickEnable"),o("lineTickMirror"),a("lineTickLength"),a("lineTickWidth"),c("lineTickColor"),o("gridEnable"),a("gridWidth"),c("gridColor"),o("zeroEnable"),c("zeroLineColor"),a("zeroLineWidth"),o("backgroundEnable"),c("backgroundColor"),this._text?this._text&&(m||u)&&this._text.update(this.bounds,this.labels,this.labelFont,this.ticks,this.tickFont):this._text=n(this.gl,this.bounds,this.labels,this.labelFont,this.ticks,this.tickFont),this._lines&&u&&(this._lines.dispose(),this._lines=null),this._lines||(this._lines=i(this.gl,this.bounds,this.ticks))};var p=[new h,new h,new h];function d(t,e,r,n,i){for(var a=t.primalOffset,o=t.primalMinor,s=t.mirrorOffset,l=t.mirrorMinor,c=n[e],u=0;u<3;++u)if(e!==u){var f=a,h=s,p=o,d=l;c&1<0?(p[u]=-1,d[u]=0):(p[u]=0,d[u]=1)}}var m=[0,0,0],g={model:l,view:l,projection:l,_ortho:!1};f.isOpaque=function(){return!0},f.isTransparent=function(){return!1},f.drawTransparent=function(t){};var v=[0,0,0],y=[0,0,0],x=[0,0,0];f.draw=function(t){t=t||g;for(var e=this.gl,r=t.model||l,n=t.view||l,i=t.projection||l,a=this.bounds,s=t._ortho||!1,u=o(r,n,i,a,s),f=u.cubeEdges,h=u.axis,b=n[12],_=n[13],w=n[14],T=n[15],k=(s?2:1)*this.pixelRatio*(i[3]*b+i[7]*_+i[11]*w+i[15]*T)/e.drawingBufferHeight,A=0;A<3;++A)this.lastCubeProps.cubeEdges[A]=f[A],this.lastCubeProps.axis[A]=h[A];var M=p;for(A=0;A<3;++A)d(p[A],A,this.bounds,f,h);e=this.gl;var S,E=m;for(A=0;A<3;++A)this.backgroundEnable[A]?E[A]=h[A]:E[A]=0;this._background.draw(r,n,i,a,E,this.backgroundColor),this._lines.bind(r,n,i,this);for(A=0;A<3;++A){var L=[0,0,0];h[A]>0?L[A]=a[1][A]:L[A]=a[0][A];for(var C=0;C<2;++C){var P=(A+1+C)%3,I=(A+1+(1^C))%3;this.gridEnable[P]&&this._lines.drawGrid(P,I,this.bounds,L,this.gridColor[P],this.gridWidth[P]*this.pixelRatio)}for(C=0;C<2;++C){P=(A+1+C)%3,I=(A+1+(1^C))%3;this.zeroEnable[I]&&Math.min(a[0][I],a[1][I])<=0&&Math.max(a[0][I],a[1][I])>=0&&this._lines.drawZero(P,I,this.bounds,L,this.zeroLineColor[I],this.zeroLineWidth[I]*this.pixelRatio)}}for(A=0;A<3;++A){this.lineEnable[A]&&this._lines.drawAxisLine(A,this.bounds,M[A].primalOffset,this.lineColor[A],this.lineWidth[A]*this.pixelRatio),this.lineMirror[A]&&this._lines.drawAxisLine(A,this.bounds,M[A].mirrorOffset,this.lineColor[A],this.lineWidth[A]*this.pixelRatio);var O=c(v,M[A].primalMinor),z=c(y,M[A].mirrorMinor),D=this.lineTickLength;for(C=0;C<3;++C){var R=k/r[5*C];O[C]*=D[C]*R,z[C]*=D[C]*R}this.lineTickEnable[A]&&this._lines.drawAxisTicks(A,M[A].primalOffset,O,this.lineTickColor[A],this.lineTickWidth[A]*this.pixelRatio),this.lineTickMirror[A]&&this._lines.drawAxisTicks(A,M[A].mirrorOffset,z,this.lineTickColor[A],this.lineTickWidth[A]*this.pixelRatio)}this._lines.unbind(),this._text.bind(r,n,i,this.pixelRatio);var F,B;function N(t){(B=[0,0,0])[t]=1}function j(t,e,r){var n=(t+1)%3,i=(t+2)%3,a=e[n],o=e[i],s=r[n],l=r[i];a>0&&l>0||a>0&&l<0||a<0&&l>0||a<0&&l<0?N(n):(o>0&&s>0||o>0&&s<0||o<0&&s>0||o<0&&s<0)&&N(i)}for(A=0;A<3;++A){var U=M[A].primalMinor,V=M[A].mirrorMinor,H=c(x,M[A].primalOffset);for(C=0;C<3;++C)this.lineTickEnable[A]&&(H[C]+=k*U[C]*Math.max(this.lineTickLength[C],0)/r[5*C]);var q=[0,0,0];if(q[A]=1,this.tickEnable[A]){-3600===this.tickAngle[A]?(this.tickAngle[A]=0,this.tickAlign[A]="auto"):this.tickAlign[A]=-1,F=1,"auto"===(S=[this.tickAlign[A],.5,F])[0]?S[0]=0:S[0]=parseInt(""+S[0]),B=[0,0,0],j(A,U,V);for(C=0;C<3;++C)H[C]+=k*U[C]*this.tickPad[C]/r[5*C];this._text.drawTicks(A,this.tickSize[A],this.tickAngle[A],H,this.tickColor[A],q,B,S)}if(this.labelEnable[A]){F=0,B=[0,0,0],this.labels[A].length>4&&(N(A),F=1),"auto"===(S=[this.labelAlign[A],.5,F])[0]?S[0]=0:S[0]=parseInt(""+S[0]);for(C=0;C<3;++C)H[C]+=k*U[C]*this.labelPad[C]/r[5*C];H[A]+=.5*(a[0][A]+a[1][A]),this._text.drawLabel(A,this.labelSize[A],this.labelAngle[A],H,this.labelColor[A],[0,0,0],B,S)}}this._text.unbind()},f.dispose=function(){this._text.dispose(),this._lines.dispose(),this._background.dispose(),this._lines=null,this._text=null,this._background=null,this.gl=null}},{"./lib/background.js":71,"./lib/cube.js":72,"./lib/lines.js":73,"./lib/text.js":75,"./lib/ticks.js":76}],71:[function(t,e,r){"use strict";e.exports=function(t){for(var e=[],r=[],s=0,l=0;l<3;++l)for(var c=(l+1)%3,u=(l+2)%3,f=[0,0,0],h=[0,0,0],p=-1;p<=1;p+=2){r.push(s,s+2,s+1,s+1,s+2,s+3),f[l]=p,h[l]=p;for(var d=-1;d<=1;d+=2){f[c]=d;for(var m=-1;m<=1;m+=2)f[u]=m,e.push(f[0],f[1],f[2],h[0],h[1],h[2]),s+=1}var g=c;c=u,u=g}var v=n(t,new Float32Array(e)),y=n(t,new Uint16Array(r),t.ELEMENT_ARRAY_BUFFER),x=i(t,[{buffer:v,type:t.FLOAT,size:3,offset:0,stride:24},{buffer:v,type:t.FLOAT,size:3,offset:12,stride:24}],y),b=a(t);return b.attributes.position.location=0,b.attributes.normal.location=1,new o(t,v,x,b)};var n=t("gl-buffer"),i=t("gl-vao"),a=t("./shaders").bg;function o(t,e,r,n){this.gl=t,this.buffer=e,this.vao=r,this.shader=n}var s=o.prototype;s.draw=function(t,e,r,n,i,a){for(var o=!1,s=0;s<3;++s)o=o||i[s];if(o){var l=this.gl;l.enable(l.POLYGON_OFFSET_FILL),l.polygonOffset(1,2),this.shader.bind(),this.shader.uniforms={model:t,view:e,projection:r,bounds:n,enable:i,colors:a},this.vao.bind(),this.vao.draw(this.gl.TRIANGLES,36),this.vao.unbind(),l.disable(l.POLYGON_OFFSET_FILL)}},s.dispose=function(){this.vao.dispose(),this.buffer.dispose(),this.shader.dispose()}},{"./shaders":74,"gl-buffer":78,"gl-vao":150}],72:[function(t,e,r){"use strict";e.exports=function(t,e,r,a,p){i(s,e,t),i(s,r,s);for(var y=0,x=0;x<2;++x){u[2]=a[x][2];for(var b=0;b<2;++b){u[1]=a[b][1];for(var _=0;_<2;++_)u[0]=a[_][0],h(l[y],u,s),y+=1}}var w=-1;for(x=0;x<8;++x){for(var T=l[x][3],k=0;k<3;++k)c[x][k]=l[x][k]/T;p&&(c[x][2]*=-1),T<0&&(w<0||c[x][2]E&&(w|=1<E&&(w|=1<c[x][1])&&(R=x);var F=-1;for(x=0;x<3;++x){if((N=R^1<c[B][0]&&(B=N)}var j=m;j[0]=j[1]=j[2]=0,j[n.log2(F^R)]=R&F,j[n.log2(R^B)]=R&B;var U=7^B;U===w||U===D?(U=7^F,j[n.log2(B^U)]=U&B):j[n.log2(F^U)]=U&F;var V=g,H=w;for(A=0;A<3;++A)V[A]=H&1< HALF_PI) && (b <= ONE_AND_HALF_PI)) ?\n b - PI :\n b;\n}\n\nfloat look_horizontal_or_vertical(float a, float ratio) {\n // ratio controls the ratio between being horizontal to (vertical + horizontal)\n // if ratio is set to 0.5 then it is 50%, 50%.\n // when using a higher ratio e.g. 0.75 the result would\n // likely be more horizontal than vertical.\n\n float b = positive_angle(a);\n\n return\n (b < ( ratio) * HALF_PI) ? 0.0 :\n (b < (2.0 - ratio) * HALF_PI) ? -HALF_PI :\n (b < (2.0 + ratio) * HALF_PI) ? 0.0 :\n (b < (4.0 - ratio) * HALF_PI) ? HALF_PI :\n 0.0;\n}\n\nfloat roundTo(float a, float b) {\n return float(b * floor((a + 0.5 * b) / b));\n}\n\nfloat look_round_n_directions(float a, int n) {\n float b = positive_angle(a);\n float div = TWO_PI / float(n);\n float c = roundTo(b, div);\n return look_upwards(c);\n}\n\nfloat applyAlignOption(float rawAngle, float delta) {\n return\n (option > 2) ? look_round_n_directions(rawAngle + delta, option) : // option 3-n: round to n directions\n (option == 2) ? look_horizontal_or_vertical(rawAngle + delta, hv_ratio) : // horizontal or vertical\n (option == 1) ? rawAngle + delta : // use free angle, and flip to align with one direction of the axis\n (option == 0) ? look_upwards(rawAngle) : // use free angle, and stay upwards\n (option ==-1) ? 0.0 : // useful for backward compatibility, all texts remains horizontal\n rawAngle; // otherwise return back raw input angle\n}\n\nbool isAxisTitle = (axis.x == 0.0) &&\n (axis.y == 0.0) &&\n (axis.z == 0.0);\n\nvoid main() {\n //Compute world offset\n float axisDistance = position.z;\n vec3 dataPosition = axisDistance * axis + offset;\n\n float beta = angle; // i.e. user defined attributes for each tick\n\n float axisAngle;\n float clipAngle;\n float flip;\n\n if (enableAlign) {\n axisAngle = (isAxisTitle) ? HALF_PI :\n computeViewAngle(dataPosition, dataPosition + axis);\n clipAngle = computeViewAngle(dataPosition, dataPosition + alignDir);\n\n axisAngle += (sin(axisAngle) < 0.0) ? PI : 0.0;\n clipAngle += (sin(clipAngle) < 0.0) ? PI : 0.0;\n\n flip = (dot(vec2(cos(axisAngle), sin(axisAngle)),\n vec2(sin(clipAngle),-cos(clipAngle))) > 0.0) ? 1.0 : 0.0;\n\n beta += applyAlignOption(clipAngle, flip * PI);\n }\n\n //Compute plane offset\n vec2 planeCoord = position.xy * pixelScale;\n\n mat2 planeXform = scale * mat2(\n cos(beta), sin(beta),\n -sin(beta), cos(beta)\n );\n\n vec2 viewOffset = 2.0 * planeXform * planeCoord / resolution;\n\n //Compute clip position\n vec3 clipPosition = project(dataPosition);\n\n //Apply text offset in clip coordinates\n clipPosition += vec3(viewOffset, 0.0);\n\n //Done\n gl_Position = vec4(clipPosition, 1.0);\n}"]),l=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec4 color;\nvoid main() {\n gl_FragColor = color;\n}"]);r.text=function(t){return i(t,s,l,null,[{name:"position",type:"vec3"}])};var c=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec3 normal;\n\nuniform mat4 model, view, projection;\nuniform vec3 enable;\nuniform vec3 bounds[2];\n\nvarying vec3 colorChannel;\n\nvoid main() {\n\n vec3 signAxis = sign(bounds[1] - bounds[0]);\n\n vec3 realNormal = signAxis * normal;\n\n if(dot(realNormal, enable) > 0.0) {\n vec3 minRange = min(bounds[0], bounds[1]);\n vec3 maxRange = max(bounds[0], bounds[1]);\n vec3 nPosition = mix(minRange, maxRange, 0.5 * (position + 1.0));\n gl_Position = projection * view * model * vec4(nPosition, 1.0);\n } else {\n gl_Position = vec4(0,0,0,0);\n }\n\n colorChannel = abs(realNormal);\n}"]),u=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec4 colors[3];\n\nvarying vec3 colorChannel;\n\nvoid main() {\n gl_FragColor = colorChannel.x * colors[0] +\n colorChannel.y * colors[1] +\n colorChannel.z * colors[2];\n}"]);r.bg=function(t){return i(t,c,u,null,[{name:"position",type:"vec3"},{name:"normal",type:"vec3"}])}},{"gl-shader":132,glslify:231}],75:[function(t,e,r){(function(r){(function(){"use strict";e.exports=function(t,e,r,a,s,l){var u=n(t),f=i(t,[{buffer:u,size:3}]),h=o(t);h.attributes.position.location=0;var p=new c(t,h,u,f);return p.update(e,r,a,s,l),p};var n=t("gl-buffer"),i=t("gl-vao"),a=t("vectorize-text"),o=t("./shaders").text,s=window||r.global||{},l=s.__TEXT_CACHE||{};s.__TEXT_CACHE={};function c(t,e,r,n){this.gl=t,this.shader=e,this.buffer=r,this.vao=n,this.tickOffset=this.tickCount=this.labelOffset=this.labelCount=null}var u=c.prototype,f=[0,0];u.bind=function(t,e,r,n){this.vao.bind(),this.shader.bind();var i=this.shader.uniforms;i.model=t,i.view=e,i.projection=r,i.pixelScale=n,f[0]=this.gl.drawingBufferWidth,f[1]=this.gl.drawingBufferHeight,this.shader.uniforms.resolution=f},u.unbind=function(){this.vao.unbind()},u.update=function(t,e,r,n,i){var o=[];function s(t,e,r,n,i,s){var c=l[r];c||(c=l[r]={});var u=c[e];u||(u=c[e]=function(t,e){try{return a(t,e)}catch(e){return console.warn('error vectorizing text:"'+t+'" error:',e),{cells:[],positions:[]}}}(e,{triangles:!0,font:r,textAlign:"center",textBaseline:"middle",lineSpacing:i,styletags:s}));for(var f=(n||12)/12,h=u.positions,p=u.cells,d=0,m=p.length;d=0;--v){var y=h[g[v]];o.push(f*y[0],-f*y[1],t)}}for(var c=[0,0,0],u=[0,0,0],f=[0,0,0],h=[0,0,0],p={breaklines:!0,bolds:!0,italics:!0,subscripts:!0,superscripts:!0},d=0;d<3;++d){f[d]=o.length/3|0,s(.5*(t[0][d]+t[1][d]),e[d],r[d],12,1.25,p),h[d]=(o.length/3|0)-f[d],c[d]=o.length/3|0;for(var m=0;m=0&&(i=r.length-n-1);var a=Math.pow(10,i),o=Math.round(t*e*a),s=o+"";if(s.indexOf("e")>=0)return s;var l=o/a,c=o%a;o<0?(l=0|-Math.ceil(l),c=0|-c):(l=0|Math.floor(l),c|=0);var u=""+l;if(o<0&&(u="-"+u),i){for(var f=""+c;f.length=t[0][i];--o)a.push({x:o*e[i],text:n(e[i],o)});r.push(a)}return r},r.equal=function(t,e){for(var r=0;r<3;++r){if(t[r].length!==e[r].length)return!1;for(var n=0;nr)throw new Error("gl-buffer: If resizing buffer, must not specify offset");return t.bufferSubData(e,a,i),r}function u(t,e){for(var r=n.malloc(t.length,e),i=t.length,a=0;a=0;--n){if(e[n]!==r)return!1;r*=t[n]}return!0}(t.shape,t.stride))0===t.offset&&t.data.length===t.shape[0]?this.length=c(this.gl,this.type,this.length,this.usage,t.data,e):this.length=c(this.gl,this.type,this.length,this.usage,t.data.subarray(t.offset,t.shape[0]),e);else{var s=n.malloc(t.size,r),l=a(s,t.shape);i.assign(l,t),this.length=c(this.gl,this.type,this.length,this.usage,e<0?s:s.subarray(0,t.size),e),n.free(s)}}else if(Array.isArray(t)){var f;f=this.type===this.gl.ELEMENT_ARRAY_BUFFER?u(t,"uint16"):u(t,"float32"),this.length=c(this.gl,this.type,this.length,this.usage,e<0?f:f.subarray(0,t.length),e),n.free(f)}else if("object"==typeof t&&"number"==typeof t.length)this.length=c(this.gl,this.type,this.length,this.usage,t,e);else{if("number"!=typeof t&&void 0!==t)throw new Error("gl-buffer: Invalid data type");if(e>=0)throw new Error("gl-buffer: Cannot specify offset when resizing buffer");(t|=0)<=0&&(t=1),this.gl.bufferData(this.type,0|t,this.usage),this.length=t}},e.exports=function(t,e,r,n){if(r=r||t.ARRAY_BUFFER,n=n||t.DYNAMIC_DRAW,r!==t.ARRAY_BUFFER&&r!==t.ELEMENT_ARRAY_BUFFER)throw new Error("gl-buffer: Invalid type for webgl buffer, must be either gl.ARRAY_BUFFER or gl.ELEMENT_ARRAY_BUFFER");if(n!==t.DYNAMIC_DRAW&&n!==t.STATIC_DRAW&&n!==t.STREAM_DRAW)throw new Error("gl-buffer: Invalid usage for buffer, must be either gl.DYNAMIC_DRAW, gl.STATIC_DRAW or gl.STREAM_DRAW");var i=t.createBuffer(),a=new s(t,r,i,0,n);return a.update(e),a}},{ndarray:259,"ndarray-ops":254,"typedarray-pool":308}],79:[function(t,e,r){"use strict";var n=t("gl-vec3");e.exports=function(t,e){var r=t.positions,i=t.vectors,a={positions:[],vertexIntensity:[],vertexIntensityBounds:t.vertexIntensityBounds,vectors:[],cells:[],coneOffset:t.coneOffset,colormap:t.colormap};if(0===t.positions.length)return e&&(e[0]=[0,0,0],e[1]=[0,0,0]),a;for(var o=0,s=1/0,l=-1/0,c=1/0,u=-1/0,f=1/0,h=-1/0,p=null,d=null,m=[],g=1/0,v=!1,y=0;yo&&(o=n.length(b)),y){var _=2*n.distance(p,x)/(n.length(d)+n.length(b));_?(g=Math.min(g,_),v=!1):v=!0}v||(p=x,d=b),m.push(b)}var w=[s,c,f],T=[l,u,h];e&&(e[0]=w,e[1]=T),0===o&&(o=1);var k=1/o;isFinite(g)||(g=1),a.vectorScale=g;var A=t.coneSize||.5;t.absoluteConeSize&&(A=t.absoluteConeSize*k),a.coneScale=A;y=0;for(var M=0;y=1},p.isTransparent=function(){return this.opacity<1},p.pickSlots=1,p.setPickBase=function(t){this.pickId=t},p.update=function(t){t=t||{};var e=this.gl;this.dirty=!0,"lightPosition"in t&&(this.lightPosition=t.lightPosition),"opacity"in t&&(this.opacity=t.opacity),"ambient"in t&&(this.ambientLight=t.ambient),"diffuse"in t&&(this.diffuseLight=t.diffuse),"specular"in t&&(this.specularLight=t.specular),"roughness"in t&&(this.roughness=t.roughness),"fresnel"in t&&(this.fresnel=t.fresnel),void 0!==t.tubeScale&&(this.tubeScale=t.tubeScale),void 0!==t.vectorScale&&(this.vectorScale=t.vectorScale),void 0!==t.coneScale&&(this.coneScale=t.coneScale),void 0!==t.coneOffset&&(this.coneOffset=t.coneOffset),t.colormap&&(this.texture.shape=[256,256],this.texture.minFilter=e.LINEAR_MIPMAP_LINEAR,this.texture.magFilter=e.LINEAR,this.texture.setPixels(function(t){for(var e=u({colormap:t,nshades:256,format:"rgba"}),r=new Uint8Array(1024),n=0;n<256;++n){for(var i=e[n],a=0;a<3;++a)r[4*n+a]=i[a];r[4*n+3]=255*i[3]}return c(r,[256,256,4],[4,0,1])}(t.colormap)),this.texture.generateMipmap());var r=t.cells,n=t.positions,i=t.vectors;if(n&&r&&i){var a=[],o=[],s=[],l=[],f=[];this.cells=r,this.positions=n,this.vectors=i;var h=t.meshColor||[1,1,1,1],p=t.vertexIntensity,d=1/0,m=-1/0;if(p)if(t.vertexIntensityBounds)d=+t.vertexIntensityBounds[0],m=+t.vertexIntensityBounds[1];else for(var g=0;g0){var m=this.triShader;m.bind(),m.uniforms=c,this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind()}},p.drawPick=function(t){t=t||{};for(var e=this.gl,r=t.model||f,n=t.view||f,i=t.projection||f,a=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],o=0;o<3;++o)a[0][o]=Math.max(a[0][o],this.clipBounds[0][o]),a[1][o]=Math.min(a[1][o],this.clipBounds[1][o]);this._model=[].slice.call(r),this._view=[].slice.call(n),this._projection=[].slice.call(i),this._resolution=[e.drawingBufferWidth,e.drawingBufferHeight];var s={model:r,view:n,projection:i,clipBounds:a,tubeScale:this.tubeScale,vectorScale:this.vectorScale,coneScale:this.coneScale,coneOffset:this.coneOffset,pickId:this.pickId/255},l=this.pickShader;l.bind(),l.uniforms=s,this.triangleCount>0&&(this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind())},p.pick=function(t){if(!t)return null;if(t.id!==this.pickId)return null;var e=t.value[0]+256*t.value[1]+65536*t.value[2],r=this.cells[e],n=this.positions[r[1]].slice(0,3),i={position:n,dataCoordinate:n,index:Math.floor(r[1]/48)};return"cone"===this.traceType?i.index=Math.floor(r[1]/48):"streamtube"===this.traceType&&(i.intensity=this.intensity[r[1]],i.velocity=this.vectors[r[1]].slice(0,3),i.divergence=this.vectors[r[1]][3],i.index=e),i},p.dispose=function(){this.texture.dispose(),this.triShader.dispose(),this.pickShader.dispose(),this.triangleVAO.dispose(),this.trianglePositions.dispose(),this.triangleVectors.dispose(),this.triangleColors.dispose(),this.triangleUVs.dispose(),this.triangleIds.dispose()},e.exports=function(t,e,r){var n=r.shaders;1===arguments.length&&(t=(e=t).gl);var s=d(t,n),l=m(t,n),u=o(t,c(new Uint8Array([255,255,255,255]),[1,1,4]));u.generateMipmap(),u.minFilter=t.LINEAR_MIPMAP_LINEAR,u.magFilter=t.LINEAR;var f=i(t),p=i(t),g=i(t),v=i(t),y=i(t),x=a(t,[{buffer:f,type:t.FLOAT,size:4},{buffer:y,type:t.UNSIGNED_BYTE,size:4,normalized:!0},{buffer:g,type:t.FLOAT,size:4},{buffer:v,type:t.FLOAT,size:2},{buffer:p,type:t.FLOAT,size:4}]),b=new h(t,u,s,l,f,p,y,g,v,x,r.traceType||"cone");return b.update(e),b}},{colormap:53,"gl-buffer":78,"gl-mat4/invert":98,"gl-mat4/multiply":100,"gl-shader":132,"gl-texture2d":146,"gl-vao":150,ndarray:259}],81:[function(t,e,r){var n=t("glslify"),i=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the cone vertex and normal at the given index.\n//\n// The returned vertex is for a cone with its top at origin and height of 1.0,\n// pointing in the direction of the vector attribute.\n//\n// Each cone is made up of a top vertex, a center base vertex and base perimeter vertices.\n// These vertices are used to make up the triangles of the cone by the following:\n// segment + 0 top vertex\n// segment + 1 perimeter vertex a+1\n// segment + 2 perimeter vertex a\n// segment + 3 center base vertex\n// segment + 4 perimeter vertex a\n// segment + 5 perimeter vertex a+1\n// Where segment is the number of the radial segment * 6 and a is the angle at that radial segment.\n// To go from index to segment, floor(index / 6)\n// To go from segment to angle, 2*pi * (segment/segmentCount)\n// To go from index to segment index, index - (segment*6)\n//\nvec3 getConePosition(vec3 d, float rawIndex, float coneOffset, out vec3 normal) {\n\n const float segmentCount = 8.0;\n\n float index = rawIndex - floor(rawIndex /\n (segmentCount * 6.0)) *\n (segmentCount * 6.0);\n\n float segment = floor(0.001 + index/6.0);\n float segmentIndex = index - (segment*6.0);\n\n normal = -normalize(d);\n\n if (segmentIndex > 2.99 && segmentIndex < 3.01) {\n return mix(vec3(0.0), -d, coneOffset);\n }\n\n float nextAngle = (\n (segmentIndex > 0.99 && segmentIndex < 1.01) ||\n (segmentIndex > 4.99 && segmentIndex < 5.01)\n ) ? 1.0 : 0.0;\n float angle = 2.0 * 3.14159 * ((segment + nextAngle) / segmentCount);\n\n vec3 v1 = mix(d, vec3(0.0), coneOffset);\n vec3 v2 = v1 - d;\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d)*0.25;\n vec3 y = v * sin(angle) * length(d)*0.25;\n vec3 v3 = v2 + x + y;\n if (segmentIndex < 3.0) {\n vec3 tx = u * sin(angle);\n vec3 ty = v * -cos(angle);\n vec3 tangent = tx + ty;\n normal = normalize(cross(v3 - v1, tangent));\n }\n\n if (segmentIndex == 0.0) {\n return mix(d, vec3(0.0), coneOffset);\n }\n return v3;\n}\n\nattribute vec3 vector;\nattribute vec4 color, position;\nattribute vec2 uv;\n\nuniform float vectorScale, coneScale, coneOffset;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 eyePosition, lightPosition;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n // Scale the vector magnitude to stay constant with\n // model & view changes.\n vec3 normal;\n vec3 XYZ = getConePosition(mat3(model) * ((vectorScale * coneScale) * vector), position.w, coneOffset, normal);\n vec4 conePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * conePosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n // vec4 m_position = model * vec4(conePosition, 1.0);\n vec4 t_position = view * conePosition;\n gl_Position = projection * t_position;\n\n f_color = color;\n f_data = conePosition.xyz;\n f_position = position.xyz;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform sampler2D texture;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = f_color * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * opacity;\n}\n"]),o=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the cone vertex and normal at the given index.\n//\n// The returned vertex is for a cone with its top at origin and height of 1.0,\n// pointing in the direction of the vector attribute.\n//\n// Each cone is made up of a top vertex, a center base vertex and base perimeter vertices.\n// These vertices are used to make up the triangles of the cone by the following:\n// segment + 0 top vertex\n// segment + 1 perimeter vertex a+1\n// segment + 2 perimeter vertex a\n// segment + 3 center base vertex\n// segment + 4 perimeter vertex a\n// segment + 5 perimeter vertex a+1\n// Where segment is the number of the radial segment * 6 and a is the angle at that radial segment.\n// To go from index to segment, floor(index / 6)\n// To go from segment to angle, 2*pi * (segment/segmentCount)\n// To go from index to segment index, index - (segment*6)\n//\nvec3 getConePosition(vec3 d, float rawIndex, float coneOffset, out vec3 normal) {\n\n const float segmentCount = 8.0;\n\n float index = rawIndex - floor(rawIndex /\n (segmentCount * 6.0)) *\n (segmentCount * 6.0);\n\n float segment = floor(0.001 + index/6.0);\n float segmentIndex = index - (segment*6.0);\n\n normal = -normalize(d);\n\n if (segmentIndex > 2.99 && segmentIndex < 3.01) {\n return mix(vec3(0.0), -d, coneOffset);\n }\n\n float nextAngle = (\n (segmentIndex > 0.99 && segmentIndex < 1.01) ||\n (segmentIndex > 4.99 && segmentIndex < 5.01)\n ) ? 1.0 : 0.0;\n float angle = 2.0 * 3.14159 * ((segment + nextAngle) / segmentCount);\n\n vec3 v1 = mix(d, vec3(0.0), coneOffset);\n vec3 v2 = v1 - d;\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d)*0.25;\n vec3 y = v * sin(angle) * length(d)*0.25;\n vec3 v3 = v2 + x + y;\n if (segmentIndex < 3.0) {\n vec3 tx = u * sin(angle);\n vec3 ty = v * -cos(angle);\n vec3 tangent = tx + ty;\n normal = normalize(cross(v3 - v1, tangent));\n }\n\n if (segmentIndex == 0.0) {\n return mix(d, vec3(0.0), coneOffset);\n }\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform float vectorScale, coneScale, coneOffset;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n vec3 normal;\n vec3 XYZ = getConePosition(mat3(model) * ((vectorScale * coneScale) * vector.xyz), position.w, coneOffset, normal);\n vec4 conePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n gl_Position = projection * view * conePosition;\n f_id = id;\n f_position = position.xyz;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec4"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"vector",type:"vec3"}]},r.pickShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec4"},{name:"id",type:"vec4"},{name:"vector",type:"vec3"}]}},{glslify:231}],82:[function(t,e,r){e.exports={0:"NONE",1:"ONE",2:"LINE_LOOP",3:"LINE_STRIP",4:"TRIANGLES",5:"TRIANGLE_STRIP",6:"TRIANGLE_FAN",256:"DEPTH_BUFFER_BIT",512:"NEVER",513:"LESS",514:"EQUAL",515:"LEQUAL",516:"GREATER",517:"NOTEQUAL",518:"GEQUAL",519:"ALWAYS",768:"SRC_COLOR",769:"ONE_MINUS_SRC_COLOR",770:"SRC_ALPHA",771:"ONE_MINUS_SRC_ALPHA",772:"DST_ALPHA",773:"ONE_MINUS_DST_ALPHA",774:"DST_COLOR",775:"ONE_MINUS_DST_COLOR",776:"SRC_ALPHA_SATURATE",1024:"STENCIL_BUFFER_BIT",1028:"FRONT",1029:"BACK",1032:"FRONT_AND_BACK",1280:"INVALID_ENUM",1281:"INVALID_VALUE",1282:"INVALID_OPERATION",1285:"OUT_OF_MEMORY",1286:"INVALID_FRAMEBUFFER_OPERATION",2304:"CW",2305:"CCW",2849:"LINE_WIDTH",2884:"CULL_FACE",2885:"CULL_FACE_MODE",2886:"FRONT_FACE",2928:"DEPTH_RANGE",2929:"DEPTH_TEST",2930:"DEPTH_WRITEMASK",2931:"DEPTH_CLEAR_VALUE",2932:"DEPTH_FUNC",2960:"STENCIL_TEST",2961:"STENCIL_CLEAR_VALUE",2962:"STENCIL_FUNC",2963:"STENCIL_VALUE_MASK",2964:"STENCIL_FAIL",2965:"STENCIL_PASS_DEPTH_FAIL",2966:"STENCIL_PASS_DEPTH_PASS",2967:"STENCIL_REF",2968:"STENCIL_WRITEMASK",2978:"VIEWPORT",3024:"DITHER",3042:"BLEND",3088:"SCISSOR_BOX",3089:"SCISSOR_TEST",3106:"COLOR_CLEAR_VALUE",3107:"COLOR_WRITEMASK",3317:"UNPACK_ALIGNMENT",3333:"PACK_ALIGNMENT",3379:"MAX_TEXTURE_SIZE",3386:"MAX_VIEWPORT_DIMS",3408:"SUBPIXEL_BITS",3410:"RED_BITS",3411:"GREEN_BITS",3412:"BLUE_BITS",3413:"ALPHA_BITS",3414:"DEPTH_BITS",3415:"STENCIL_BITS",3553:"TEXTURE_2D",4352:"DONT_CARE",4353:"FASTEST",4354:"NICEST",5120:"BYTE",5121:"UNSIGNED_BYTE",5122:"SHORT",5123:"UNSIGNED_SHORT",5124:"INT",5125:"UNSIGNED_INT",5126:"FLOAT",5386:"INVERT",5890:"TEXTURE",6401:"STENCIL_INDEX",6402:"DEPTH_COMPONENT",6406:"ALPHA",6407:"RGB",6408:"RGBA",6409:"LUMINANCE",6410:"LUMINANCE_ALPHA",7680:"KEEP",7681:"REPLACE",7682:"INCR",7683:"DECR",7936:"VENDOR",7937:"RENDERER",7938:"VERSION",9728:"NEAREST",9729:"LINEAR",9984:"NEAREST_MIPMAP_NEAREST",9985:"LINEAR_MIPMAP_NEAREST",9986:"NEAREST_MIPMAP_LINEAR",9987:"LINEAR_MIPMAP_LINEAR",10240:"TEXTURE_MAG_FILTER",10241:"TEXTURE_MIN_FILTER",10242:"TEXTURE_WRAP_S",10243:"TEXTURE_WRAP_T",10497:"REPEAT",10752:"POLYGON_OFFSET_UNITS",16384:"COLOR_BUFFER_BIT",32769:"CONSTANT_COLOR",32770:"ONE_MINUS_CONSTANT_COLOR",32771:"CONSTANT_ALPHA",32772:"ONE_MINUS_CONSTANT_ALPHA",32773:"BLEND_COLOR",32774:"FUNC_ADD",32777:"BLEND_EQUATION_RGB",32778:"FUNC_SUBTRACT",32779:"FUNC_REVERSE_SUBTRACT",32819:"UNSIGNED_SHORT_4_4_4_4",32820:"UNSIGNED_SHORT_5_5_5_1",32823:"POLYGON_OFFSET_FILL",32824:"POLYGON_OFFSET_FACTOR",32854:"RGBA4",32855:"RGB5_A1",32873:"TEXTURE_BINDING_2D",32926:"SAMPLE_ALPHA_TO_COVERAGE",32928:"SAMPLE_COVERAGE",32936:"SAMPLE_BUFFERS",32937:"SAMPLES",32938:"SAMPLE_COVERAGE_VALUE",32939:"SAMPLE_COVERAGE_INVERT",32968:"BLEND_DST_RGB",32969:"BLEND_SRC_RGB",32970:"BLEND_DST_ALPHA",32971:"BLEND_SRC_ALPHA",33071:"CLAMP_TO_EDGE",33170:"GENERATE_MIPMAP_HINT",33189:"DEPTH_COMPONENT16",33306:"DEPTH_STENCIL_ATTACHMENT",33635:"UNSIGNED_SHORT_5_6_5",33648:"MIRRORED_REPEAT",33901:"ALIASED_POINT_SIZE_RANGE",33902:"ALIASED_LINE_WIDTH_RANGE",33984:"TEXTURE0",33985:"TEXTURE1",33986:"TEXTURE2",33987:"TEXTURE3",33988:"TEXTURE4",33989:"TEXTURE5",33990:"TEXTURE6",33991:"TEXTURE7",33992:"TEXTURE8",33993:"TEXTURE9",33994:"TEXTURE10",33995:"TEXTURE11",33996:"TEXTURE12",33997:"TEXTURE13",33998:"TEXTURE14",33999:"TEXTURE15",34e3:"TEXTURE16",34001:"TEXTURE17",34002:"TEXTURE18",34003:"TEXTURE19",34004:"TEXTURE20",34005:"TEXTURE21",34006:"TEXTURE22",34007:"TEXTURE23",34008:"TEXTURE24",34009:"TEXTURE25",34010:"TEXTURE26",34011:"TEXTURE27",34012:"TEXTURE28",34013:"TEXTURE29",34014:"TEXTURE30",34015:"TEXTURE31",34016:"ACTIVE_TEXTURE",34024:"MAX_RENDERBUFFER_SIZE",34041:"DEPTH_STENCIL",34055:"INCR_WRAP",34056:"DECR_WRAP",34067:"TEXTURE_CUBE_MAP",34068:"TEXTURE_BINDING_CUBE_MAP",34069:"TEXTURE_CUBE_MAP_POSITIVE_X",34070:"TEXTURE_CUBE_MAP_NEGATIVE_X",34071:"TEXTURE_CUBE_MAP_POSITIVE_Y",34072:"TEXTURE_CUBE_MAP_NEGATIVE_Y",34073:"TEXTURE_CUBE_MAP_POSITIVE_Z",34074:"TEXTURE_CUBE_MAP_NEGATIVE_Z",34076:"MAX_CUBE_MAP_TEXTURE_SIZE",34338:"VERTEX_ATTRIB_ARRAY_ENABLED",34339:"VERTEX_ATTRIB_ARRAY_SIZE",34340:"VERTEX_ATTRIB_ARRAY_STRIDE",34341:"VERTEX_ATTRIB_ARRAY_TYPE",34342:"CURRENT_VERTEX_ATTRIB",34373:"VERTEX_ATTRIB_ARRAY_POINTER",34466:"NUM_COMPRESSED_TEXTURE_FORMATS",34467:"COMPRESSED_TEXTURE_FORMATS",34660:"BUFFER_SIZE",34661:"BUFFER_USAGE",34816:"STENCIL_BACK_FUNC",34817:"STENCIL_BACK_FAIL",34818:"STENCIL_BACK_PASS_DEPTH_FAIL",34819:"STENCIL_BACK_PASS_DEPTH_PASS",34877:"BLEND_EQUATION_ALPHA",34921:"MAX_VERTEX_ATTRIBS",34922:"VERTEX_ATTRIB_ARRAY_NORMALIZED",34930:"MAX_TEXTURE_IMAGE_UNITS",34962:"ARRAY_BUFFER",34963:"ELEMENT_ARRAY_BUFFER",34964:"ARRAY_BUFFER_BINDING",34965:"ELEMENT_ARRAY_BUFFER_BINDING",34975:"VERTEX_ATTRIB_ARRAY_BUFFER_BINDING",35040:"STREAM_DRAW",35044:"STATIC_DRAW",35048:"DYNAMIC_DRAW",35632:"FRAGMENT_SHADER",35633:"VERTEX_SHADER",35660:"MAX_VERTEX_TEXTURE_IMAGE_UNITS",35661:"MAX_COMBINED_TEXTURE_IMAGE_UNITS",35663:"SHADER_TYPE",35664:"FLOAT_VEC2",35665:"FLOAT_VEC3",35666:"FLOAT_VEC4",35667:"INT_VEC2",35668:"INT_VEC3",35669:"INT_VEC4",35670:"BOOL",35671:"BOOL_VEC2",35672:"BOOL_VEC3",35673:"BOOL_VEC4",35674:"FLOAT_MAT2",35675:"FLOAT_MAT3",35676:"FLOAT_MAT4",35678:"SAMPLER_2D",35680:"SAMPLER_CUBE",35712:"DELETE_STATUS",35713:"COMPILE_STATUS",35714:"LINK_STATUS",35715:"VALIDATE_STATUS",35716:"INFO_LOG_LENGTH",35717:"ATTACHED_SHADERS",35718:"ACTIVE_UNIFORMS",35719:"ACTIVE_UNIFORM_MAX_LENGTH",35720:"SHADER_SOURCE_LENGTH",35721:"ACTIVE_ATTRIBUTES",35722:"ACTIVE_ATTRIBUTE_MAX_LENGTH",35724:"SHADING_LANGUAGE_VERSION",35725:"CURRENT_PROGRAM",36003:"STENCIL_BACK_REF",36004:"STENCIL_BACK_VALUE_MASK",36005:"STENCIL_BACK_WRITEMASK",36006:"FRAMEBUFFER_BINDING",36007:"RENDERBUFFER_BINDING",36048:"FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE",36049:"FRAMEBUFFER_ATTACHMENT_OBJECT_NAME",36050:"FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL",36051:"FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE",36053:"FRAMEBUFFER_COMPLETE",36054:"FRAMEBUFFER_INCOMPLETE_ATTACHMENT",36055:"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT",36057:"FRAMEBUFFER_INCOMPLETE_DIMENSIONS",36061:"FRAMEBUFFER_UNSUPPORTED",36064:"COLOR_ATTACHMENT0",36096:"DEPTH_ATTACHMENT",36128:"STENCIL_ATTACHMENT",36160:"FRAMEBUFFER",36161:"RENDERBUFFER",36162:"RENDERBUFFER_WIDTH",36163:"RENDERBUFFER_HEIGHT",36164:"RENDERBUFFER_INTERNAL_FORMAT",36168:"STENCIL_INDEX8",36176:"RENDERBUFFER_RED_SIZE",36177:"RENDERBUFFER_GREEN_SIZE",36178:"RENDERBUFFER_BLUE_SIZE",36179:"RENDERBUFFER_ALPHA_SIZE",36180:"RENDERBUFFER_DEPTH_SIZE",36181:"RENDERBUFFER_STENCIL_SIZE",36194:"RGB565",36336:"LOW_FLOAT",36337:"MEDIUM_FLOAT",36338:"HIGH_FLOAT",36339:"LOW_INT",36340:"MEDIUM_INT",36341:"HIGH_INT",36346:"SHADER_COMPILER",36347:"MAX_VERTEX_UNIFORM_VECTORS",36348:"MAX_VARYING_VECTORS",36349:"MAX_FRAGMENT_UNIFORM_VECTORS",37440:"UNPACK_FLIP_Y_WEBGL",37441:"UNPACK_PREMULTIPLY_ALPHA_WEBGL",37442:"CONTEXT_LOST_WEBGL",37443:"UNPACK_COLORSPACE_CONVERSION_WEBGL",37444:"BROWSER_DEFAULT_WEBGL"}},{}],83:[function(t,e,r){var n=t("./1.0/numbers");e.exports=function(t){return n[t]}},{"./1.0/numbers":82}],84:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl,r=n(e),o=i(e,[{buffer:r,type:e.FLOAT,size:3,offset:0,stride:40},{buffer:r,type:e.FLOAT,size:4,offset:12,stride:40},{buffer:r,type:e.FLOAT,size:3,offset:28,stride:40}]),l=a(e);l.attributes.position.location=0,l.attributes.color.location=1,l.attributes.offset.location=2;var c=new s(e,r,o,l);return c.update(t),c};var n=t("gl-buffer"),i=t("gl-vao"),a=t("./shaders/index"),o=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function s(t,e,r,n){this.gl=t,this.shader=n,this.buffer=e,this.vao=r,this.pixelRatio=1,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.lineWidth=[1,1,1],this.capSize=[10,10,10],this.lineCount=[0,0,0],this.lineOffset=[0,0,0],this.opacity=1,this.hasAlpha=!1}var l=s.prototype;function c(t,e){for(var r=0;r<3;++r)t[0][r]=Math.min(t[0][r],e[r]),t[1][r]=Math.max(t[1][r],e[r])}l.isOpaque=function(){return!this.hasAlpha},l.isTransparent=function(){return this.hasAlpha},l.drawTransparent=l.draw=function(t){var e=this.gl,r=this.shader.uniforms;this.shader.bind();var n=r.view=t.view||o,i=r.projection=t.projection||o;r.model=t.model||o,r.clipBounds=this.clipBounds,r.opacity=this.opacity;var a=n[12],s=n[13],l=n[14],c=n[15],u=(t._ortho||!1?2:1)*this.pixelRatio*(i[3]*a+i[7]*s+i[11]*l+i[15]*c)/e.drawingBufferHeight;this.vao.bind();for(var f=0;f<3;++f)e.lineWidth(this.lineWidth[f]*this.pixelRatio),r.capSize=this.capSize[f]*u,this.lineCount[f]&&e.drawArrays(e.LINES,this.lineOffset[f],this.lineCount[f]);this.vao.unbind()};var u=function(){for(var t=new Array(3),e=0;e<3;++e){for(var r=[],n=1;n<=2;++n)for(var i=-1;i<=1;i+=2){var a=[0,0,0];a[(n+e)%3]=i,r.push(a)}t[e]=r}return t}();function f(t,e,r,n){for(var i=u[n],a=0;a0)(m=u.slice())[s]+=p[1][s],i.push(u[0],u[1],u[2],d[0],d[1],d[2],d[3],0,0,0,m[0],m[1],m[2],d[0],d[1],d[2],d[3],0,0,0),c(this.bounds,m),o+=2+f(i,m,d,s)}}this.lineCount[s]=o-this.lineOffset[s]}this.buffer.update(i)}},l.dispose=function(){this.shader.dispose(),this.buffer.dispose(),this.vao.dispose()}},{"./shaders/index":85,"gl-buffer":78,"gl-vao":150}],85:[function(t,e,r){"use strict";var n=t("glslify"),i=t("gl-shader"),a=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position, offset;\nattribute vec4 color;\nuniform mat4 model, view, projection;\nuniform float capSize;\nvarying vec4 fragColor;\nvarying vec3 fragPosition;\n\nvoid main() {\n vec4 worldPosition = model * vec4(position, 1.0);\n worldPosition = (worldPosition / worldPosition.w) + vec4(capSize * offset, 0.0);\n gl_Position = projection * view * worldPosition;\n fragColor = color;\n fragPosition = position;\n}"]),o=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float opacity;\nvarying vec3 fragPosition;\nvarying vec4 fragColor;\n\nvoid main() {\n if (\n outOfRange(clipBounds[0], clipBounds[1], fragPosition) ||\n fragColor.a * opacity == 0.\n ) discard;\n\n gl_FragColor = opacity * fragColor;\n}"]);e.exports=function(t){return i(t,a,o,null,[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"offset",type:"vec3"}])}},{"gl-shader":132,glslify:231}],86:[function(t,e,r){"use strict";var n=t("gl-texture2d");e.exports=function(t,e,r,n){i||(i=t.FRAMEBUFFER_UNSUPPORTED,a=t.FRAMEBUFFER_INCOMPLETE_ATTACHMENT,o=t.FRAMEBUFFER_INCOMPLETE_DIMENSIONS,s=t.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT);var c=t.getExtension("WEBGL_draw_buffers");!l&&c&&function(t,e){var r=t.getParameter(e.MAX_COLOR_ATTACHMENTS_WEBGL);l=new Array(r+1);for(var n=0;n<=r;++n){for(var i=new Array(r),a=0;au||r<0||r>u)throw new Error("gl-fbo: Parameters are too large for FBO");var f=1;if("color"in(n=n||{})){if((f=Math.max(0|n.color,0))<0)throw new Error("gl-fbo: Must specify a nonnegative number of colors");if(f>1){if(!c)throw new Error("gl-fbo: Multiple draw buffer extension not supported");if(f>t.getParameter(c.MAX_COLOR_ATTACHMENTS_WEBGL))throw new Error("gl-fbo: Context does not support "+f+" draw buffers")}}var h=t.UNSIGNED_BYTE,p=t.getExtension("OES_texture_float");if(n.float&&f>0){if(!p)throw new Error("gl-fbo: Context does not support floating point textures");h=t.FLOAT}else n.preferFloat&&f>0&&p&&(h=t.FLOAT);var m=!0;"depth"in n&&(m=!!n.depth);var g=!1;"stencil"in n&&(g=!!n.stencil);return new d(t,e,r,h,f,m,g,c)};var i,a,o,s,l=null;function c(t){return[t.getParameter(t.FRAMEBUFFER_BINDING),t.getParameter(t.RENDERBUFFER_BINDING),t.getParameter(t.TEXTURE_BINDING_2D)]}function u(t,e){t.bindFramebuffer(t.FRAMEBUFFER,e[0]),t.bindRenderbuffer(t.RENDERBUFFER,e[1]),t.bindTexture(t.TEXTURE_2D,e[2])}function f(t){switch(t){case i:throw new Error("gl-fbo: Framebuffer unsupported");case a:throw new Error("gl-fbo: Framebuffer incomplete attachment");case o:throw new Error("gl-fbo: Framebuffer incomplete dimensions");case s:throw new Error("gl-fbo: Framebuffer incomplete missing attachment");default:throw new Error("gl-fbo: Framebuffer failed for unspecified reason")}}function h(t,e,r,i,a,o){if(!i)return null;var s=n(t,e,r,a,i);return s.magFilter=t.NEAREST,s.minFilter=t.NEAREST,s.mipSamples=1,s.bind(),t.framebufferTexture2D(t.FRAMEBUFFER,o,t.TEXTURE_2D,s.handle,0),s}function p(t,e,r,n,i){var a=t.createRenderbuffer();return t.bindRenderbuffer(t.RENDERBUFFER,a),t.renderbufferStorage(t.RENDERBUFFER,n,e,r),t.framebufferRenderbuffer(t.FRAMEBUFFER,i,t.RENDERBUFFER,a),a}function d(t,e,r,n,i,a,o,s){this.gl=t,this._shape=[0|e,0|r],this._destroyed=!1,this._ext=s,this.color=new Array(i);for(var d=0;d1&&s.drawBuffersWEBGL(l[o]);var y=r.getExtension("WEBGL_depth_texture");y?d?t.depth=h(r,i,a,y.UNSIGNED_INT_24_8_WEBGL,r.DEPTH_STENCIL,r.DEPTH_STENCIL_ATTACHMENT):m&&(t.depth=h(r,i,a,r.UNSIGNED_SHORT,r.DEPTH_COMPONENT,r.DEPTH_ATTACHMENT)):m&&d?t._depth_rb=p(r,i,a,r.DEPTH_STENCIL,r.DEPTH_STENCIL_ATTACHMENT):m?t._depth_rb=p(r,i,a,r.DEPTH_COMPONENT16,r.DEPTH_ATTACHMENT):d&&(t._depth_rb=p(r,i,a,r.STENCIL_INDEX,r.STENCIL_ATTACHMENT));var x=r.checkFramebufferStatus(r.FRAMEBUFFER);if(x!==r.FRAMEBUFFER_COMPLETE){t._destroyed=!0,r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteFramebuffer(t.handle),t.handle=null,t.depth&&(t.depth.dispose(),t.depth=null),t._depth_rb&&(r.deleteRenderbuffer(t._depth_rb),t._depth_rb=null);for(v=0;vi||r<0||r>i)throw new Error("gl-fbo: Can't resize FBO, invalid dimensions");t._shape[0]=e,t._shape[1]=r;for(var a=c(n),o=0;o>8*p&255;this.pickOffset=r,i.bind();var d=i.uniforms;d.viewTransform=t,d.pickOffset=e,d.shape=this.shape;var m=i.attributes;return this.positionBuffer.bind(),m.position.pointer(),this.weightBuffer.bind(),m.weight.pointer(s.UNSIGNED_BYTE,!1),this.idBuffer.bind(),m.pickId.pointer(s.UNSIGNED_BYTE,!1),s.drawArrays(s.TRIANGLES,0,o),r+this.shape[0]*this.shape[1]}}}(),f.pick=function(t,e,r){var n=this.pickOffset,i=this.shape[0]*this.shape[1];if(r=n+i)return null;var a=r-n,o=this.xData,s=this.yData;return{object:this,pointId:a,dataCoord:[o[a%this.shape[0]],s[a/this.shape[0]|0]]}},f.update=function(t){var e=(t=t||{}).shape||[0,0],r=t.x||i(e[0]),o=t.y||i(e[1]),s=t.z||new Float32Array(e[0]*e[1]),l=!1!==t.zsmooth;this.xData=r,this.yData=o;var c,u,f,p,d=t.colorLevels||[0],m=t.colorValues||[0,0,0,1],g=d.length,v=this.bounds;l?(c=v[0]=r[0],u=v[1]=o[0],f=v[2]=r[r.length-1],p=v[3]=o[o.length-1]):(c=v[0]=r[0]+(r[1]-r[0])/2,u=v[1]=o[0]+(o[1]-o[0])/2,f=v[2]=r[r.length-1]+(r[r.length-1]-r[r.length-2])/2,p=v[3]=o[o.length-1]+(o[o.length-1]-o[o.length-2])/2);var y=1/(f-c),x=1/(p-u),b=e[0],_=e[1];this.shape=[b,_];var w=(l?(b-1)*(_-1):b*_)*(h.length>>>1);this.numVertices=w;for(var T=a.mallocUint8(4*w),k=a.mallocFloat32(2*w),A=a.mallocUint8(2*w),M=a.mallocUint32(w),S=0,E=l?b-1:b,L=l?_-1:_,C=0;C max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform sampler2D dashTexture;\nuniform float dashScale;\nuniform float opacity;\n\nvarying vec3 worldPosition;\nvarying float pixelArcLength;\nvarying vec4 fragColor;\n\nvoid main() {\n if (\n outOfRange(clipBounds[0], clipBounds[1], worldPosition) ||\n fragColor.a * opacity == 0.\n ) discard;\n\n float dashWeight = texture2D(dashTexture, vec2(dashScale * pixelArcLength, 0)).r;\n if(dashWeight < 0.5) {\n discard;\n }\n gl_FragColor = fragColor * opacity;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\n#define FLOAT_MAX 1.70141184e38\n#define FLOAT_MIN 1.17549435e-38\n\n// https://github.com/mikolalysenko/glsl-read-float/blob/master/index.glsl\nvec4 packFloat(float v) {\n float av = abs(v);\n\n //Handle special cases\n if(av < FLOAT_MIN) {\n return vec4(0.0, 0.0, 0.0, 0.0);\n } else if(v > FLOAT_MAX) {\n return vec4(127.0, 128.0, 0.0, 0.0) / 255.0;\n } else if(v < -FLOAT_MAX) {\n return vec4(255.0, 128.0, 0.0, 0.0) / 255.0;\n }\n\n vec4 c = vec4(0,0,0,0);\n\n //Compute exponent and mantissa\n float e = floor(log2(av));\n float m = av * pow(2.0, -e) - 1.0;\n\n //Unpack mantissa\n c[1] = floor(128.0 * m);\n m -= c[1] / 128.0;\n c[2] = floor(32768.0 * m);\n m -= c[2] / 32768.0;\n c[3] = floor(8388608.0 * m);\n\n //Unpack exponent\n float ebias = e + 127.0;\n c[0] = floor(ebias / 2.0);\n ebias -= c[0] * 2.0;\n c[1] += floor(ebias) * 128.0;\n\n //Unpack sign bit\n c[0] += 128.0 * step(0.0, -v);\n\n //Scale back to range\n return c / 255.0;\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform float pickId;\nuniform vec3 clipBounds[2];\n\nvarying vec3 worldPosition;\nvarying float pixelArcLength;\nvarying vec4 fragColor;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], worldPosition)) discard;\n\n gl_FragColor = vec4(pickId/255.0, packFloat(pixelArcLength).xyz);\n}"]),l=[{name:"position",type:"vec3"},{name:"nextPosition",type:"vec3"},{name:"arcLength",type:"float"},{name:"lineWidth",type:"float"},{name:"color",type:"vec4"}];r.createShader=function(t){return i(t,a,o,null,l)},r.createPickShader=function(t){return i(t,a,s,null,l)}},{"gl-shader":132,glslify:231}],91:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl||t.scene&&t.scene.gl,r=f(e);r.attributes.position.location=0,r.attributes.nextPosition.location=1,r.attributes.arcLength.location=2,r.attributes.lineWidth.location=3,r.attributes.color.location=4;var o=h(e);o.attributes.position.location=0,o.attributes.nextPosition.location=1,o.attributes.arcLength.location=2,o.attributes.lineWidth.location=3,o.attributes.color.location=4;for(var s=n(e),l=i(e,[{buffer:s,size:3,offset:0,stride:48},{buffer:s,size:3,offset:12,stride:48},{buffer:s,size:1,offset:24,stride:48},{buffer:s,size:1,offset:28,stride:48},{buffer:s,size:4,offset:32,stride:48}]),u=c(new Array(1024),[256,1,4]),p=0;p<1024;++p)u.data[p]=255;var d=a(e,u);d.wrap=e.REPEAT;var m=new v(e,r,o,s,l,d);return m.update(t),m};var n=t("gl-buffer"),i=t("gl-vao"),a=t("gl-texture2d"),o=new Uint8Array(4),s=new Float32Array(o.buffer);var l=t("binary-search-bounds"),c=t("ndarray"),u=t("./lib/shaders"),f=u.createShader,h=u.createPickShader,p=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function d(t,e){for(var r=0,n=0;n<3;++n){var i=t[n]-e[n];r+=i*i}return Math.sqrt(r)}function m(t){for(var e=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],r=0;r<3;++r)e[0][r]=Math.max(t[0][r],e[0][r]),e[1][r]=Math.min(t[1][r],e[1][r]);return e}function g(t,e,r,n){this.arcLength=t,this.position=e,this.index=r,this.dataCoordinate=n}function v(t,e,r,n,i,a){this.gl=t,this.shader=e,this.pickShader=r,this.buffer=n,this.vao=i,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.points=[],this.arcLength=[],this.vertexCount=0,this.bounds=[[0,0,0],[0,0,0]],this.pickId=0,this.lineWidth=1,this.texture=a,this.dashScale=1,this.opacity=1,this.hasAlpha=!1,this.dirty=!0,this.pixelRatio=1}var y=v.prototype;y.isTransparent=function(){return this.hasAlpha},y.isOpaque=function(){return!this.hasAlpha},y.pickSlots=1,y.setPickBase=function(t){this.pickId=t},y.drawTransparent=y.draw=function(t){if(this.vertexCount){var e=this.gl,r=this.shader,n=this.vao;r.bind(),r.uniforms={model:t.model||p,view:t.view||p,projection:t.projection||p,clipBounds:m(this.clipBounds),dashTexture:this.texture.bind(),dashScale:this.dashScale/this.arcLength[this.arcLength.length-1],opacity:this.opacity,screenShape:[e.drawingBufferWidth,e.drawingBufferHeight],pixelRatio:this.pixelRatio},n.bind(),n.draw(e.TRIANGLE_STRIP,this.vertexCount),n.unbind()}},y.drawPick=function(t){if(this.vertexCount){var e=this.gl,r=this.pickShader,n=this.vao;r.bind(),r.uniforms={model:t.model||p,view:t.view||p,projection:t.projection||p,pickId:this.pickId,clipBounds:m(this.clipBounds),screenShape:[e.drawingBufferWidth,e.drawingBufferHeight],pixelRatio:this.pixelRatio},n.bind(),n.draw(e.TRIANGLE_STRIP,this.vertexCount),n.unbind()}},y.update=function(t){var e,r;this.dirty=!0;var n=!!t.connectGaps;"dashScale"in t&&(this.dashScale=t.dashScale),this.hasAlpha=!1,"opacity"in t&&(this.opacity=+t.opacity,this.opacity<1&&(this.hasAlpha=!0));var i=[],a=[],o=[],s=0,u=0,f=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],h=t.position||t.positions;if(h){var p=t.color||t.colors||[0,0,0,1],m=t.lineWidth||1,g=!1;t:for(e=1;e0){for(var w=0;w<24;++w)i.push(i[i.length-12]);u+=2,g=!0}continue t}f[0][r]=Math.min(f[0][r],b[r],_[r]),f[1][r]=Math.max(f[1][r],b[r],_[r])}Array.isArray(p[0])?(v=p.length>e-1?p[e-1]:p.length>0?p[p.length-1]:[0,0,0,1],y=p.length>e?p[e]:p.length>0?p[p.length-1]:[0,0,0,1]):v=y=p,3===v.length&&(v=[v[0],v[1],v[2],1]),3===y.length&&(y=[y[0],y[1],y[2],1]),!this.hasAlpha&&v[3]<1&&(this.hasAlpha=!0),x=Array.isArray(m)?m.length>e-1?m[e-1]:m.length>0?m[m.length-1]:[0,0,0,1]:m;var T=s;if(s+=d(b,_),g){for(r=0;r<2;++r)i.push(b[0],b[1],b[2],_[0],_[1],_[2],T,x,v[0],v[1],v[2],v[3]);u+=2,g=!1}i.push(b[0],b[1],b[2],_[0],_[1],_[2],T,x,v[0],v[1],v[2],v[3],b[0],b[1],b[2],_[0],_[1],_[2],T,-x,v[0],v[1],v[2],v[3],_[0],_[1],_[2],b[0],b[1],b[2],s,-x,y[0],y[1],y[2],y[3],_[0],_[1],_[2],b[0],b[1],b[2],s,x,y[0],y[1],y[2],y[3]),u+=4}}if(this.buffer.update(i),a.push(s),o.push(h[h.length-1].slice()),this.bounds=f,this.vertexCount=u,this.points=o,this.arcLength=a,"dashes"in t){var k=t.dashes.slice();for(k.unshift(0),e=1;e1.0001)return null;v+=g[f]}if(Math.abs(v-1)>.001)return null;return[h,s(t,g),g]}},{barycentric:14,"polytope-closest-point/lib/closest_point_2d.js":270}],111:[function(t,e,r){var n=t("glslify"),i=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position, normal;\nattribute vec4 color;\nattribute vec2 uv;\n\nuniform mat4 model\n , view\n , projection\n , inverseModel;\nuniform vec3 eyePosition\n , lightPosition;\n\nvarying vec3 f_normal\n , f_lightDirection\n , f_eyeDirection\n , f_data;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvec4 project(vec3 p) {\n return projection * view * model * vec4(p, 1.0);\n}\n\nvoid main() {\n gl_Position = project(position);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * vec4(position , 1.0);\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n f_color = color;\n f_data = position;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\n//#pragma glslify: beckmann = require(glsl-specular-beckmann) // used in gl-surface3d\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness\n , fresnel\n , kambient\n , kdiffuse\n , kspecular;\nuniform sampler2D texture;\n\nvarying vec3 f_normal\n , f_lightDirection\n , f_eyeDirection\n , f_data;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (f_color.a == 0.0 ||\n outOfRange(clipBounds[0], clipBounds[1], f_data)\n ) discard;\n\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n //float specular = max(0.0, beckmann(L, V, N, roughness)); // used in gl-surface3d\n\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = vec4(f_color.rgb, 1.0) * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * f_color.a;\n}\n"]),o=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 uv;\n\nuniform mat4 model, view, projection;\n\nvarying vec4 f_color;\nvarying vec3 f_data;\nvarying vec2 f_uv;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n f_color = color;\n f_data = position;\n f_uv = uv;\n}"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform sampler2D texture;\nuniform float opacity;\n\nvarying vec4 f_color;\nvarying vec3 f_data;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_data)) discard;\n\n gl_FragColor = f_color * texture2D(texture, f_uv) * opacity;\n}"]),l=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 uv;\nattribute float pointSize;\n\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0.0, 0.0 ,0.0 ,0.0);\n } else {\n gl_Position = projection * view * model * vec4(position, 1.0);\n }\n gl_PointSize = pointSize;\n f_color = color;\n f_uv = uv;\n}"]),c=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform sampler2D texture;\nuniform float opacity;\n\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n vec2 pointR = gl_PointCoord.xy - vec2(0.5, 0.5);\n if(dot(pointR, pointR) > 0.25) {\n discard;\n }\n gl_FragColor = f_color * texture2D(texture, f_uv) * opacity;\n}"]),u=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n f_id = id;\n f_position = position;\n}"]),f=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]),h=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute float pointSize;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n } else {\n gl_Position = projection * view * model * vec4(position, 1.0);\n gl_PointSize = pointSize;\n }\n f_id = id;\n f_position = position;\n}"]),p=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\n\nuniform mat4 model, view, projection;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n}"]),d=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec3 contourColor;\n\nvoid main() {\n gl_FragColor = vec4(contourColor, 1.0);\n}\n"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec3"},{name:"normal",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"}]},r.wireShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"}]},r.pointShader={vertex:l,fragment:c,attributes:[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"pointSize",type:"float"}]},r.pickShader={vertex:u,fragment:f,attributes:[{name:"position",type:"vec3"},{name:"id",type:"vec4"}]},r.pointPickShader={vertex:h,fragment:f,attributes:[{name:"position",type:"vec3"},{name:"pointSize",type:"float"},{name:"id",type:"vec4"}]},r.contourShader={vertex:p,fragment:d,attributes:[{name:"position",type:"vec3"}]}},{glslify:231}],112:[function(t,e,r){"use strict";var n=t("gl-shader"),i=t("gl-buffer"),a=t("gl-vao"),o=t("gl-texture2d"),s=t("normals"),l=t("gl-mat4/multiply"),c=t("gl-mat4/invert"),u=t("ndarray"),f=t("colormap"),h=t("simplicial-complex-contour"),p=t("typedarray-pool"),d=t("./lib/shaders"),m=t("./lib/closest-point"),g=d.meshShader,v=d.wireShader,y=d.pointShader,x=d.pickShader,b=d.pointPickShader,_=d.contourShader,w=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function T(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,T,k,A,M,S){this.gl=t,this.pixelRatio=1,this.cells=[],this.positions=[],this.intensity=[],this.texture=e,this.dirty=!0,this.triShader=r,this.lineShader=n,this.pointShader=i,this.pickShader=a,this.pointPickShader=o,this.contourShader=s,this.trianglePositions=l,this.triangleColors=u,this.triangleNormals=h,this.triangleUVs=f,this.triangleIds=c,this.triangleVAO=p,this.triangleCount=0,this.lineWidth=1,this.edgePositions=d,this.edgeColors=g,this.edgeUVs=v,this.edgeIds=m,this.edgeVAO=y,this.edgeCount=0,this.pointPositions=x,this.pointColors=_,this.pointUVs=T,this.pointSizes=k,this.pointIds=b,this.pointVAO=A,this.pointCount=0,this.contourLineWidth=1,this.contourPositions=M,this.contourVAO=S,this.contourCount=0,this.contourColor=[0,0,0],this.contourEnable=!0,this.pickVertex=!0,this.pickId=1,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.lightPosition=[1e5,1e5,0],this.ambientLight=.8,this.diffuseLight=.8,this.specularLight=2,this.roughness=.5,this.fresnel=1.5,this.opacity=1,this.hasAlpha=!1,this.opacityscale=!1,this._model=w,this._view=w,this._projection=w,this._resolution=[1,1]}var k=T.prototype;function A(t,e){if(!e)return 1;if(!e.length)return 1;for(var r=0;rt&&r>0){var n=(e[r][0]-t)/(e[r][0]-e[r-1][0]);return e[r][1]*(1-n)+n*e[r-1][1]}}return 1}function M(t){var e=n(t,g.vertex,g.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e.attributes.normal.location=4,e}function S(t){var e=n(t,v.vertex,v.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e}function E(t){var e=n(t,y.vertex,y.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e.attributes.pointSize.location=4,e}function L(t){var e=n(t,x.vertex,x.fragment);return e.attributes.position.location=0,e.attributes.id.location=1,e}function C(t){var e=n(t,b.vertex,b.fragment);return e.attributes.position.location=0,e.attributes.id.location=1,e.attributes.pointSize.location=4,e}function P(t){var e=n(t,_.vertex,_.fragment);return e.attributes.position.location=0,e}k.isOpaque=function(){return!this.hasAlpha},k.isTransparent=function(){return this.hasAlpha},k.pickSlots=1,k.setPickBase=function(t){this.pickId=t},k.highlight=function(t){if(t&&this.contourEnable){for(var e=h(this.cells,this.intensity,t.intensity),r=e.cells,n=e.vertexIds,i=e.vertexWeights,a=r.length,o=p.mallocFloat32(6*a),s=0,l=0;l0&&((f=this.triShader).bind(),f.uniforms=s,this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind());this.edgeCount>0&&this.lineWidth>0&&((f=this.lineShader).bind(),f.uniforms=s,this.edgeVAO.bind(),e.lineWidth(this.lineWidth*this.pixelRatio),e.drawArrays(e.LINES,0,2*this.edgeCount),this.edgeVAO.unbind());this.pointCount>0&&((f=this.pointShader).bind(),f.uniforms=s,this.pointVAO.bind(),e.drawArrays(e.POINTS,0,this.pointCount),this.pointVAO.unbind());this.contourEnable&&this.contourCount>0&&this.contourLineWidth>0&&((f=this.contourShader).bind(),f.uniforms=s,this.contourVAO.bind(),e.drawArrays(e.LINES,0,this.contourCount),this.contourVAO.unbind())},k.drawPick=function(t){t=t||{};for(var e=this.gl,r=t.model||w,n=t.view||w,i=t.projection||w,a=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],o=0;o<3;++o)a[0][o]=Math.max(a[0][o],this.clipBounds[0][o]),a[1][o]=Math.min(a[1][o],this.clipBounds[1][o]);this._model=[].slice.call(r),this._view=[].slice.call(n),this._projection=[].slice.call(i),this._resolution=[e.drawingBufferWidth,e.drawingBufferHeight];var s,l={model:r,view:n,projection:i,clipBounds:a,pickId:this.pickId/255};((s=this.pickShader).bind(),s.uniforms=l,this.triangleCount>0&&(this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind()),this.edgeCount>0&&(this.edgeVAO.bind(),e.lineWidth(this.lineWidth*this.pixelRatio),e.drawArrays(e.LINES,0,2*this.edgeCount),this.edgeVAO.unbind()),this.pointCount>0)&&((s=this.pointPickShader).bind(),s.uniforms=l,this.pointVAO.bind(),e.drawArrays(e.POINTS,0,this.pointCount),this.pointVAO.unbind())},k.pick=function(t){if(!t)return null;if(t.id!==this.pickId)return null;for(var e=t.value[0]+256*t.value[1]+65536*t.value[2],r=this.cells[e],n=this.positions,i=new Array(r.length),a=0;ai[k]&&(r.uniforms.dataAxis=c,r.uniforms.screenOffset=u,r.uniforms.color=g[t],r.uniforms.angle=v[t],a.drawArrays(a.TRIANGLES,i[k],i[A]-i[k]))),y[t]&&T&&(u[1^t]-=M*p*x[t],r.uniforms.dataAxis=f,r.uniforms.screenOffset=u,r.uniforms.color=b[t],r.uniforms.angle=_[t],a.drawArrays(a.TRIANGLES,w,T)),u[1^t]=M*s[2+(1^t)]-1,d[t+2]&&(u[1^t]+=M*p*m[t+2],ki[k]&&(r.uniforms.dataAxis=c,r.uniforms.screenOffset=u,r.uniforms.color=g[t+2],r.uniforms.angle=v[t+2],a.drawArrays(a.TRIANGLES,i[k],i[A]-i[k]))),y[t+2]&&T&&(u[1^t]+=M*p*x[t+2],r.uniforms.dataAxis=f,r.uniforms.screenOffset=u,r.uniforms.color=b[t+2],r.uniforms.angle=_[t+2],a.drawArrays(a.TRIANGLES,w,T))}),m.drawTitle=function(){var t=[0,0],e=[0,0];return function(){var r=this.plot,n=this.shader,i=r.gl,a=r.screenBox,o=r.titleCenter,s=r.titleAngle,l=r.titleColor,c=r.pixelRatio;if(this.titleCount){for(var u=0;u<2;++u)e[u]=2*(o[u]*c-a[u])/(a[2+u]-a[u])-1;n.bind(),n.uniforms.dataAxis=t,n.uniforms.screenOffset=e,n.uniforms.angle=s,n.uniforms.color=l,i.drawArrays(i.TRIANGLES,this.titleOffset,this.titleCount)}}}(),m.bind=(h=[0,0],p=[0,0],d=[0,0],function(){var t=this.plot,e=this.shader,r=t._tickBounds,n=t.dataBox,i=t.screenBox,a=t.viewBox;e.bind();for(var o=0;o<2;++o){var s=r[o],l=r[o+2]-s,c=.5*(n[o+2]+n[o]),u=n[o+2]-n[o],f=a[o],m=a[o+2]-f,g=i[o],v=i[o+2]-g;p[o]=2*l/u*m/v,h[o]=2*(s-c)/u*m/v}d[1]=2*t.pixelRatio/(i[3]-i[1]),d[0]=d[1]*(i[3]-i[1])/(i[2]-i[0]),e.uniforms.dataScale=p,e.uniforms.dataShift=h,e.uniforms.textScale=d,this.vbo.bind(),e.attributes.textCoordinate.pointer()}),m.update=function(t){var e,r,n,i,o,s=[],l=t.ticks,c=t.bounds;for(o=0;o<2;++o){var u=[Math.floor(s.length/3)],f=[-1/0],h=l[o];for(e=0;e=0){var m=e[d]-n[d]*(e[d+2]-e[d])/(n[d+2]-n[d]);0===d?o.drawLine(m,e[1],m,e[3],p[d],h[d]):o.drawLine(e[0],m,e[2],m,p[d],h[d])}}for(d=0;d=0;--t)this.objects[t].dispose();this.objects.length=0;for(t=this.overlays.length-1;t>=0;--t)this.overlays[t].dispose();this.overlays.length=0,this.gl=null},c.addObject=function(t){this.objects.indexOf(t)<0&&(this.objects.push(t),this.setDirty())},c.removeObject=function(t){for(var e=this.objects,r=0;rMath.abs(e))c.rotate(a,0,0,-t*r*Math.PI*d.rotateSpeed/window.innerWidth);else if(!d._ortho){var o=-d.zoomSpeed*i*e/window.innerHeight*(a-c.lastT())/20;c.pan(a,0,0,f*(Math.exp(o)-1))}}}),!0)},d.enableMouseListeners(),d};var n=t("right-now"),i=t("3d-view"),a=t("mouse-change"),o=t("mouse-wheel"),s=t("mouse-event-offset"),l=t("has-passive-events")},{"3d-view":7,"has-passive-events":232,"mouse-change":247,"mouse-event-offset":248,"mouse-wheel":250,"right-now":278}],120:[function(t,e,r){var n=t("glslify"),i=t("gl-shader"),a=n(["precision mediump float;\n#define GLSLIFY 1\nattribute vec2 position;\nvarying vec2 uv;\nvoid main() {\n uv = position;\n gl_Position = vec4(position, 0, 1);\n}"]),o=n(["precision mediump float;\n#define GLSLIFY 1\n\nuniform sampler2D accumBuffer;\nvarying vec2 uv;\n\nvoid main() {\n vec4 accum = texture2D(accumBuffer, 0.5 * (uv + 1.0));\n gl_FragColor = min(vec4(1,1,1,1), accum);\n}"]);e.exports=function(t){return i(t,a,o,null,[{name:"position",type:"vec2"}])}},{"gl-shader":132,glslify:231}],121:[function(t,e,r){"use strict";var n=t("./camera.js"),i=t("gl-axes3d"),a=t("gl-axes3d/properties"),o=t("gl-spikes3d"),s=t("gl-select-static"),l=t("gl-fbo"),c=t("a-big-triangle"),u=t("mouse-change"),f=t("gl-mat4/perspective"),h=t("gl-mat4/ortho"),p=t("./lib/shader"),d=t("is-mobile")({tablet:!0,featureDetect:!0});function m(){this.mouse=[-1,-1],this.screen=null,this.distance=1/0,this.index=null,this.dataCoordinate=null,this.dataPosition=null,this.object=null,this.data=null}function g(t){var e=Math.round(Math.log(Math.abs(t))/Math.log(10));if(e<0){var r=Math.round(Math.pow(10,-e));return Math.ceil(t*r)/r}if(e>0){r=Math.round(Math.pow(10,e));return Math.ceil(t/r)*r}return Math.ceil(t)}function v(t){return"boolean"!=typeof t||t}e.exports={createScene:function(t){(t=t||{}).camera=t.camera||{};var e=t.canvas;if(!e){if(e=document.createElement("canvas"),t.container)t.container.appendChild(e);else document.body.appendChild(e)}var r=t.gl;r||(t.glOptions&&(d=!!t.glOptions.preserveDrawingBuffer),r=function(t,e){var r=null;try{(r=t.getContext("webgl",e))||(r=t.getContext("experimental-webgl",e))}catch(t){return null}return r}(e,t.glOptions||{premultipliedAlpha:!0,antialias:!0,preserveDrawingBuffer:d}));if(!r)throw new Error("webgl not supported");var y=t.bounds||[[-10,-10,-10],[10,10,10]],x=new m,b=l(r,r.drawingBufferWidth,r.drawingBufferHeight,{preferFloat:!d}),_=p(r),w=t.cameraObject&&!0===t.cameraObject._ortho||t.camera.projection&&"orthographic"===t.camera.projection.type||!1,T={eye:t.camera.eye||[2,0,0],center:t.camera.center||[0,0,0],up:t.camera.up||[0,1,0],zoomMin:t.camera.zoomMax||.1,zoomMax:t.camera.zoomMin||100,mode:t.camera.mode||"turntable",_ortho:w},k=t.axes||{},A=i(r,k);A.enable=!k.disable;var M=t.spikes||{},S=o(r,M),E=[],L=[],C=[],P=[],I=!0,O=!0,z=new Array(16),D=new Array(16),R={view:null,projection:z,model:D,_ortho:!1},F=(O=!0,[r.drawingBufferWidth,r.drawingBufferHeight]),B=t.cameraObject||n(e,T),N={gl:r,contextLost:!1,pixelRatio:t.pixelRatio||1,canvas:e,selection:x,camera:B,axes:A,axesPixels:null,spikes:S,bounds:y,objects:E,shape:F,aspect:t.aspectRatio||[1,1,1],pickRadius:t.pickRadius||10,zNear:t.zNear||.01,zFar:t.zFar||1e3,fovy:t.fovy||Math.PI/4,clearColor:t.clearColor||[0,0,0,0],autoResize:v(t.autoResize),autoBounds:v(t.autoBounds),autoScale:!!t.autoScale,autoCenter:v(t.autoCenter),clipToBounds:v(t.clipToBounds),snapToData:!!t.snapToData,onselect:t.onselect||null,onrender:t.onrender||null,onclick:t.onclick||null,cameraParams:R,oncontextloss:null,mouseListener:null,_stopped:!1,getAspectratio:function(){return{x:this.aspect[0],y:this.aspect[1],z:this.aspect[2]}},setAspectratio:function(t){this.aspect[0]=t.x,this.aspect[1]=t.y,this.aspect[2]=t.z,O=!0},setBounds:function(t,e){this.bounds[0][t]=e.min,this.bounds[1][t]=e.max},setClearColor:function(t){this.clearColor=t},clearRGBA:function(){this.gl.clearColor(this.clearColor[0],this.clearColor[1],this.clearColor[2],this.clearColor[3]),this.gl.clear(this.gl.COLOR_BUFFER_BIT|this.gl.DEPTH_BUFFER_BIT)}},j=[r.drawingBufferWidth/N.pixelRatio|0,r.drawingBufferHeight/N.pixelRatio|0];function U(){if(!N._stopped&&N.autoResize){var t=e.parentNode,r=1,n=1;t&&t!==document.body?(r=t.clientWidth,n=t.clientHeight):(r=window.innerWidth,n=window.innerHeight);var i=0|Math.ceil(r*N.pixelRatio),a=0|Math.ceil(n*N.pixelRatio);if(i!==e.width||a!==e.height){e.width=i,e.height=a;var o=e.style;o.position=o.position||"absolute",o.left="0px",o.top="0px",o.width=r+"px",o.height=n+"px",I=!0}}}N.autoResize&&U();function V(){for(var t=E.length,e=P.length,n=0;n0&&0===C[e-1];)C.pop(),P.pop().dispose()}function H(){if(N.contextLost)return!0;r.isContextLost()&&(N.contextLost=!0,N.mouseListener.enabled=!1,N.selection.object=null,N.oncontextloss&&N.oncontextloss())}window.addEventListener("resize",U),N.update=function(t){N._stopped||(t=t||{},I=!0,O=!0)},N.add=function(t){N._stopped||(t.axes=A,E.push(t),L.push(-1),I=!0,O=!0,V())},N.remove=function(t){if(!N._stopped){var e=E.indexOf(t);e<0||(E.splice(e,1),L.pop(),I=!0,O=!0,V())}},N.dispose=function(){if(!N._stopped&&(N._stopped=!0,window.removeEventListener("resize",U),e.removeEventListener("webglcontextlost",H),N.mouseListener.enabled=!1,!N.contextLost)){A.dispose(),S.dispose();for(var t=0;tx.distance)continue;for(var c=0;c 1.0) {\n discard;\n }\n baseColor = mix(borderColor, color, step(radius, centerFraction));\n gl_FragColor = vec4(baseColor.rgb * baseColor.a, baseColor.a);\n }\n}\n"]),r.pickVertex=n(["precision mediump float;\n#define GLSLIFY 1\n\nattribute vec2 position;\nattribute vec4 pickId;\n\nuniform mat3 matrix;\nuniform float pointSize;\nuniform vec4 pickOffset;\n\nvarying vec4 fragId;\n\nvoid main() {\n vec3 hgPosition = matrix * vec3(position, 1);\n gl_Position = vec4(hgPosition.xy, 0, hgPosition.z);\n gl_PointSize = pointSize;\n\n vec4 id = pickId + pickOffset;\n id.y += floor(id.x / 256.0);\n id.x -= floor(id.x / 256.0) * 256.0;\n\n id.z += floor(id.y / 256.0);\n id.y -= floor(id.y / 256.0) * 256.0;\n\n id.w += floor(id.z / 256.0);\n id.z -= floor(id.z / 256.0) * 256.0;\n\n fragId = id;\n}\n"]),r.pickFragment=n(["precision mediump float;\n#define GLSLIFY 1\n\nvarying vec4 fragId;\n\nvoid main() {\n float radius = length(2.0 * gl_PointCoord.xy - 1.0);\n if(radius > 1.0) {\n discard;\n }\n gl_FragColor = fragId / 255.0;\n}\n"])},{glslify:231}],123:[function(t,e,r){"use strict";var n=t("gl-shader"),i=t("gl-buffer"),a=t("typedarray-pool"),o=t("./lib/shader");function s(t,e,r,n,i){this.plot=t,this.offsetBuffer=e,this.pickBuffer=r,this.shader=n,this.pickShader=i,this.sizeMin=.5,this.sizeMinCap=2,this.sizeMax=20,this.areaRatio=1,this.pointCount=0,this.color=[1,0,0,1],this.borderColor=[0,0,0,1],this.blend=!1,this.pickOffset=0,this.points=null}e.exports=function(t,e){var r=t.gl,a=i(r),l=i(r),c=n(r,o.pointVertex,o.pointFragment),u=n(r,o.pickVertex,o.pickFragment),f=new s(t,a,l,c,u);return f.update(e),t.addObject(f),f};var l,c,u=s.prototype;u.dispose=function(){this.shader.dispose(),this.pickShader.dispose(),this.offsetBuffer.dispose(),this.pickBuffer.dispose(),this.plot.removeObject(this)},u.update=function(t){var e;function r(e,r){return e in t?t[e]:r}t=t||{},this.sizeMin=r("sizeMin",.5),this.sizeMax=r("sizeMax",20),this.color=r("color",[1,0,0,1]).slice(),this.areaRatio=r("areaRatio",1),this.borderColor=r("borderColor",[0,0,0,1]).slice(),this.blend=r("blend",!1);var n=t.positions.length>>>1,i=t.positions instanceof Float32Array,o=t.idToIndex instanceof Int32Array&&t.idToIndex.length>=n,s=t.positions,l=i?s:a.mallocFloat32(s.length),c=o?t.idToIndex:a.mallocInt32(n);if(i||l.set(s),!o)for(l.set(s),e=0;e>>1;for(r=0;r=e[0]&&a<=e[2]&&o>=e[1]&&o<=e[3]&&n++}return n}(this.points,i),u=this.plot.pickPixelRatio*Math.max(Math.min(this.sizeMinCap,this.sizeMin),Math.min(this.sizeMax,this.sizeMax/Math.pow(s,.33333)));l[0]=2/a,l[4]=2/o,l[6]=-2*i[0]/a-1,l[7]=-2*i[1]/o-1,this.offsetBuffer.bind(),r.bind(),r.attributes.position.pointer(),r.uniforms.matrix=l,r.uniforms.color=this.color,r.uniforms.borderColor=this.borderColor,r.uniforms.pointCloud=u<5,r.uniforms.pointSize=u,r.uniforms.centerFraction=Math.min(1,Math.max(0,Math.sqrt(1-this.areaRatio))),e&&(c[0]=255&t,c[1]=t>>8&255,c[2]=t>>16&255,c[3]=t>>24&255,this.pickBuffer.bind(),r.attributes.pickId.pointer(n.UNSIGNED_BYTE),r.uniforms.pickOffset=c,this.pickOffset=t);var f=n.getParameter(n.BLEND),h=n.getParameter(n.DITHER);return f&&!this.blend&&n.disable(n.BLEND),h&&n.disable(n.DITHER),n.drawArrays(n.POINTS,0,this.pointCount),f&&!this.blend&&n.enable(n.BLEND),h&&n.enable(n.DITHER),t+this.pointCount}),u.draw=u.unifiedDraw,u.drawPick=u.unifiedDraw,u.pick=function(t,e,r){var n=this.pickOffset,i=this.pointCount;if(r=n+i)return null;var a=r-n,o=this.points;return{object:this,pointId:a,dataCoord:[o[2*a],o[2*a+1]]}}},{"./lib/shader":122,"gl-buffer":78,"gl-shader":132,"typedarray-pool":308}],124:[function(t,e,r){e.exports=function(t,e,r,n){var i,a,o,s,l,c=e[0],u=e[1],f=e[2],h=e[3],p=r[0],d=r[1],m=r[2],g=r[3];(a=c*p+u*d+f*m+h*g)<0&&(a=-a,p=-p,d=-d,m=-m,g=-g);1-a>1e-6?(i=Math.acos(a),o=Math.sin(i),s=Math.sin((1-n)*i)/o,l=Math.sin(n*i)/o):(s=1-n,l=n);return t[0]=s*c+l*p,t[1]=s*u+l*d,t[2]=s*f+l*m,t[3]=s*h+l*g,t}},{}],125:[function(t,e,r){"use strict";e.exports=function(t){return t||0===t?t.toString():""}},{}],126:[function(t,e,r){"use strict";var n=t("vectorize-text");e.exports=function(t,e,r){var a=i[e];a||(a=i[e]={});if(t in a)return a[t];var o={textAlign:"center",textBaseline:"middle",lineHeight:1,font:e,lineSpacing:1.25,styletags:{breaklines:!0,bolds:!0,italics:!0,subscripts:!0,superscripts:!0},triangles:!0},s=n(t,o);o.triangles=!1;var l,c,u=n(t,o);if(r&&1!==r){for(l=0;l max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform vec4 highlightId;\nuniform float highlightScale;\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float scale = 1.0;\n if(distance(highlightId, id) < 0.0001) {\n scale = highlightScale;\n }\n\n vec4 worldPosition = model * vec4(position, 1);\n vec4 viewPosition = view * worldPosition;\n viewPosition = viewPosition / viewPosition.w;\n vec4 clipPosition = projection * (viewPosition + scale * vec4(glyph.x, -glyph.y, 0, 0));\n\n gl_Position = clipPosition;\n interpColor = color;\n pickId = id;\n dataCoordinate = position;\n }\n}"]),o=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform vec2 screenSize;\nuniform vec3 clipBounds[2];\nuniform float highlightScale, pixelRatio;\nuniform vec4 highlightId;\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float scale = pixelRatio;\n if(distance(highlightId.bgr, id.bgr) < 0.001) {\n scale *= highlightScale;\n }\n\n vec4 worldPosition = model * vec4(position, 1.0);\n vec4 viewPosition = view * worldPosition;\n vec4 clipPosition = projection * viewPosition;\n clipPosition /= clipPosition.w;\n\n gl_Position = clipPosition + vec4(screenSize * scale * vec2(glyph.x, -glyph.y), 0.0, 0.0);\n interpColor = color;\n pickId = id;\n dataCoordinate = position;\n }\n}"]),s=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform float highlightScale;\nuniform vec4 highlightId;\nuniform vec3 axes[2];\nuniform mat4 model, view, projection;\nuniform vec2 screenSize;\nuniform vec3 clipBounds[2];\nuniform float scale, pixelRatio;\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float lscale = pixelRatio * scale;\n if(distance(highlightId, id) < 0.0001) {\n lscale *= highlightScale;\n }\n\n vec4 clipCenter = projection * view * model * vec4(position, 1);\n vec3 dataPosition = position + 0.5*lscale*(axes[0] * glyph.x + axes[1] * glyph.y) * clipCenter.w * screenSize.y;\n vec4 clipPosition = projection * view * model * vec4(dataPosition, 1);\n\n gl_Position = clipPosition;\n interpColor = color;\n pickId = id;\n dataCoordinate = dataPosition;\n }\n}\n"]),l=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 fragClipBounds[2];\nuniform float opacity;\n\nvarying vec4 interpColor;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (\n outOfRange(fragClipBounds[0], fragClipBounds[1], dataCoordinate) ||\n interpColor.a * opacity == 0.\n ) discard;\n gl_FragColor = interpColor * opacity;\n}\n"]),c=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 fragClipBounds[2];\nuniform float pickGroup;\n\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(fragClipBounds[0], fragClipBounds[1], dataCoordinate)) discard;\n\n gl_FragColor = vec4(pickGroup, pickId.bgr);\n}"]),u=[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"glyph",type:"vec2"},{name:"id",type:"vec4"}],f={vertex:a,fragment:l,attributes:u},h={vertex:o,fragment:l,attributes:u},p={vertex:s,fragment:l,attributes:u},d={vertex:a,fragment:c,attributes:u},m={vertex:o,fragment:c,attributes:u},g={vertex:s,fragment:c,attributes:u};function v(t,e){var r=n(t,e),i=r.attributes;return i.position.location=0,i.color.location=1,i.glyph.location=2,i.id.location=3,r}r.createPerspective=function(t){return v(t,f)},r.createOrtho=function(t){return v(t,h)},r.createProject=function(t){return v(t,p)},r.createPickPerspective=function(t){return v(t,d)},r.createPickOrtho=function(t){return v(t,m)},r.createPickProject=function(t){return v(t,g)}},{"gl-shader":132,glslify:231}],128:[function(t,e,r){"use strict";var n=t("is-string-blank"),i=t("gl-buffer"),a=t("gl-vao"),o=t("typedarray-pool"),s=t("gl-mat4/multiply"),l=t("./lib/shaders"),c=t("./lib/glyphs"),u=t("./lib/get-simple-string"),f=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function h(t,e){var r=t[0],n=t[1],i=t[2],a=t[3];return t[0]=e[0]*r+e[4]*n+e[8]*i+e[12]*a,t[1]=e[1]*r+e[5]*n+e[9]*i+e[13]*a,t[2]=e[2]*r+e[6]*n+e[10]*i+e[14]*a,t[3]=e[3]*r+e[7]*n+e[11]*i+e[15]*a,t}function p(t,e,r,n){return h(n,n),h(n,n),h(n,n)}function d(t,e){this.index=t,this.dataCoordinate=this.position=e}function m(t){return!0===t||t>1?1:t}function g(t,e,r,n,i,a,o,s,l,c,u,f){this.gl=t,this.pixelRatio=1,this.shader=e,this.orthoShader=r,this.projectShader=n,this.pointBuffer=i,this.colorBuffer=a,this.glyphBuffer=o,this.idBuffer=s,this.vao=l,this.vertexCount=0,this.lineVertexCount=0,this.opacity=1,this.hasAlpha=!1,this.lineWidth=0,this.projectScale=[2/3,2/3,2/3],this.projectOpacity=[1,1,1],this.projectHasAlpha=!1,this.pickId=0,this.pickPerspectiveShader=c,this.pickOrthoShader=u,this.pickProjectShader=f,this.points=[],this._selectResult=new d(0,[0,0,0]),this.useOrtho=!0,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.axesProject=[!0,!0,!0],this.axesBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.highlightId=[1,1,1,1],this.highlightScale=2,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.dirty=!0}e.exports=function(t){var e=t.gl,r=l.createPerspective(e),n=l.createOrtho(e),o=l.createProject(e),s=l.createPickPerspective(e),c=l.createPickOrtho(e),u=l.createPickProject(e),f=i(e),h=i(e),p=i(e),d=i(e),m=a(e,[{buffer:f,size:3,type:e.FLOAT},{buffer:h,size:4,type:e.FLOAT},{buffer:p,size:2,type:e.FLOAT},{buffer:d,size:4,type:e.UNSIGNED_BYTE,normalized:!0}]),v=new g(e,r,n,o,f,h,p,d,m,s,c,u);return v.update(t),v};var v=g.prototype;v.pickSlots=1,v.setPickBase=function(t){this.pickId=t},v.isTransparent=function(){if(this.hasAlpha)return!0;for(var t=0;t<3;++t)if(this.axesProject[t]&&this.projectHasAlpha)return!0;return!1},v.isOpaque=function(){if(!this.hasAlpha)return!0;for(var t=0;t<3;++t)if(this.axesProject[t]&&!this.projectHasAlpha)return!0;return!1};var y=[0,0],x=[0,0,0],b=[0,0,0],_=[0,0,0,1],w=[0,0,0,1],T=f.slice(),k=[0,0,0],A=[[0,0,0],[0,0,0]];function M(t){return t[0]=t[1]=t[2]=0,t}function S(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=1,t}function E(t,e,r,n){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[r]=n,t}function L(t,e,r,n){var i,a=e.axesProject,o=e.gl,l=t.uniforms,c=r.model||f,u=r.view||f,h=r.projection||f,d=e.axesBounds,m=function(t){for(var e=A,r=0;r<2;++r)for(var n=0;n<3;++n)e[r][n]=Math.max(Math.min(t[r][n],1e8),-1e8);return e}(e.clipBounds);i=e.axes&&e.axes.lastCubeProps?e.axes.lastCubeProps.axis:[1,1,1],y[0]=2/o.drawingBufferWidth,y[1]=2/o.drawingBufferHeight,t.bind(),l.view=u,l.projection=h,l.screenSize=y,l.highlightId=e.highlightId,l.highlightScale=e.highlightScale,l.clipBounds=m,l.pickGroup=e.pickId/255,l.pixelRatio=n;for(var g=0;g<3;++g)if(a[g]){l.scale=e.projectScale[g],l.opacity=e.projectOpacity[g];for(var v=T,L=0;L<16;++L)v[L]=0;for(L=0;L<4;++L)v[5*L]=1;v[5*g]=0,i[g]<0?v[12+g]=d[0][g]:v[12+g]=d[1][g],s(v,c,v),l.model=v;var C=(g+1)%3,P=(g+2)%3,I=M(x),O=M(b);I[C]=1,O[P]=1;var z=p(0,0,0,S(_,I)),D=p(0,0,0,S(w,O));if(Math.abs(z[1])>Math.abs(D[1])){var R=z;z=D,D=R,R=I,I=O,O=R;var F=C;C=P,P=F}z[0]<0&&(I[C]=-1),D[1]>0&&(O[P]=-1);var B=0,N=0;for(L=0;L<4;++L)B+=Math.pow(c[4*C+L],2),N+=Math.pow(c[4*P+L],2);I[C]/=Math.sqrt(B),O[P]/=Math.sqrt(N),l.axes[0]=I,l.axes[1]=O,l.fragClipBounds[0]=E(k,m[0],g,-1e8),l.fragClipBounds[1]=E(k,m[1],g,1e8),e.vao.bind(),e.vao.draw(o.TRIANGLES,e.vertexCount),e.lineWidth>0&&(o.lineWidth(e.lineWidth*n),e.vao.draw(o.LINES,e.lineVertexCount,e.vertexCount)),e.vao.unbind()}}var C=[[-1e8,-1e8,-1e8],[1e8,1e8,1e8]];function P(t,e,r,n,i,a,o){var s=r.gl;if((a===r.projectHasAlpha||o)&&L(e,r,n,i),a===r.hasAlpha||o){t.bind();var l=t.uniforms;l.model=n.model||f,l.view=n.view||f,l.projection=n.projection||f,y[0]=2/s.drawingBufferWidth,y[1]=2/s.drawingBufferHeight,l.screenSize=y,l.highlightId=r.highlightId,l.highlightScale=r.highlightScale,l.fragClipBounds=C,l.clipBounds=r.axes.bounds,l.opacity=r.opacity,l.pickGroup=r.pickId/255,l.pixelRatio=i,r.vao.bind(),r.vao.draw(s.TRIANGLES,r.vertexCount),r.lineWidth>0&&(s.lineWidth(r.lineWidth*i),r.vao.draw(s.LINES,r.lineVertexCount,r.vertexCount)),r.vao.unbind()}}function I(t,e,r,i){var a;a=Array.isArray(t)?e=this.pointCount||e<0)return null;var r=this.points[e],n=this._selectResult;n.index=e;for(var i=0;i<3;++i)n.position[i]=n.dataCoordinate[i]=r[i];return n},v.highlight=function(t){if(t){var e=t.index,r=255&e,n=e>>8&255,i=e>>16&255;this.highlightId=[r/255,n/255,i/255,0]}else this.highlightId=[1,1,1,1]},v.update=function(t){if("perspective"in(t=t||{})&&(this.useOrtho=!t.perspective),"orthographic"in t&&(this.useOrtho=!!t.orthographic),"lineWidth"in t&&(this.lineWidth=t.lineWidth),"project"in t)if(Array.isArray(t.project))this.axesProject=t.project;else{var e=!!t.project;this.axesProject=[e,e,e]}if("projectScale"in t)if(Array.isArray(t.projectScale))this.projectScale=t.projectScale.slice();else{var r=+t.projectScale;this.projectScale=[r,r,r]}if(this.projectHasAlpha=!1,"projectOpacity"in t){if(Array.isArray(t.projectOpacity))this.projectOpacity=t.projectOpacity.slice();else{r=+t.projectOpacity;this.projectOpacity=[r,r,r]}for(var n=0;n<3;++n)this.projectOpacity[n]=m(this.projectOpacity[n]),this.projectOpacity[n]<1&&(this.projectHasAlpha=!0)}this.hasAlpha=!1,"opacity"in t&&(this.opacity=m(t.opacity),this.opacity<1&&(this.hasAlpha=!0)),this.dirty=!0;var i,a,s=t.position,l=t.font||"normal",c=t.alignment||[0,0];if(2===c.length)i=c[0],a=c[1];else{i=[],a=[];for(n=0;n0){var O=0,z=x,D=[0,0,0,1],R=[0,0,0,1],F=Array.isArray(p)&&Array.isArray(p[0]),B=Array.isArray(v)&&Array.isArray(v[0]);t:for(n=0;n<_;++n){y+=1;for(w=s[n],T=0;T<3;++T){if(isNaN(w[T])||!isFinite(w[T]))continue t;f[T]=Math.max(f[T],w[T]),u[T]=Math.min(u[T],w[T])}k=(N=I(h,n,l,this.pixelRatio)).mesh,A=N.lines,M=N.bounds;var N,j=N.visible;if(j)if(Array.isArray(p)){if(3===(U=F?n0?1-M[0][0]:Y<0?1+M[1][0]:1,W*=W>0?1-M[0][1]:W<0?1+M[1][1]:1],Z=k.cells||[],J=k.positions||[];for(T=0;T0){var v=r*u;o.drawBox(f-v,h-v,p+v,h+v,a),o.drawBox(f-v,d-v,p+v,d+v,a),o.drawBox(f-v,h-v,f+v,d+v,a),o.drawBox(p-v,h-v,p+v,d+v,a)}}}},s.update=function(t){t=t||{},this.innerFill=!!t.innerFill,this.outerFill=!!t.outerFill,this.innerColor=(t.innerColor||[0,0,0,.5]).slice(),this.outerColor=(t.outerColor||[0,0,0,.5]).slice(),this.borderColor=(t.borderColor||[0,0,0,1]).slice(),this.borderWidth=t.borderWidth||0,this.selectBox=(t.selectBox||this.selectBox).slice()},s.dispose=function(){this.boxBuffer.dispose(),this.boxShader.dispose(),this.plot.removeOverlay(this)}},{"./lib/shaders":129,"gl-buffer":78,"gl-shader":132}],131:[function(t,e,r){"use strict";e.exports=function(t,e){var r=e[0],a=e[1],o=n(t,r,a,{}),s=i.mallocUint8(r*a*4);return new l(t,o,s)};var n=t("gl-fbo"),i=t("typedarray-pool"),a=t("ndarray"),o=t("bit-twiddle").nextPow2;function s(t,e,r,n,i){this.coord=[t,e],this.id=r,this.value=n,this.distance=i}function l(t,e,r){this.gl=t,this.fbo=e,this.buffer=r,this._readTimeout=null;var n=this;this._readCallback=function(){n.gl&&(e.bind(),t.readPixels(0,0,e.shape[0],e.shape[1],t.RGBA,t.UNSIGNED_BYTE,n.buffer),n._readTimeout=null)}}var c=l.prototype;Object.defineProperty(c,"shape",{get:function(){return this.gl?this.fbo.shape.slice():[0,0]},set:function(t){if(this.gl){this.fbo.shape=t;var e=this.fbo.shape[0],r=this.fbo.shape[1];if(r*e*4>this.buffer.length){i.free(this.buffer);for(var n=this.buffer=i.mallocUint8(o(r*e*4)),a=0;ar)for(t=r;te)for(t=e;t=0){for(var T=0|w.type.charAt(w.type.length-1),k=new Array(T),A=0;A=0;)M+=1;_[y]=M}var S=new Array(r.length);function E(){h.program=o.program(p,h._vref,h._fref,b,_);for(var t=0;t=0){if((d=h.charCodeAt(h.length-1)-48)<2||d>4)throw new n("","Invalid data type for attribute "+f+": "+h);s(t,e,p[0],i,d,a,f)}else{if(!(h.indexOf("mat")>=0))throw new n("","Unknown data type for attribute "+f+": "+h);var d;if((d=h.charCodeAt(h.length-1)-48)<2||d>4)throw new n("","Invalid data type for attribute "+f+": "+h);l(t,e,p,i,d,a,f)}}}return a};var n=t("./GLError");function i(t,e,r,n,i,a){this._gl=t,this._wrapper=e,this._index=r,this._locations=n,this._dimension=i,this._constFunc=a}var a=i.prototype;a.pointer=function(t,e,r,n){var i=this._gl,a=this._locations[this._index];i.vertexAttribPointer(a,this._dimension,t||i.FLOAT,!!e,r||0,n||0),i.enableVertexAttribArray(a)},a.set=function(t,e,r,n){return this._constFunc(this._locations[this._index],t,e,r,n)},Object.defineProperty(a,"location",{get:function(){return this._locations[this._index]},set:function(t){return t!==this._locations[this._index]&&(this._locations[this._index]=0|t,this._wrapper.program=null),0|t}});var o=[function(t,e,r){return void 0===r.length?t.vertexAttrib1f(e,r):t.vertexAttrib1fv(e,r)},function(t,e,r,n){return void 0===r.length?t.vertexAttrib2f(e,r,n):t.vertexAttrib2fv(e,r)},function(t,e,r,n,i){return void 0===r.length?t.vertexAttrib3f(e,r,n,i):t.vertexAttrib3fv(e,r)},function(t,e,r,n,i,a){return void 0===r.length?t.vertexAttrib4f(e,r,n,i,a):t.vertexAttrib4fv(e,r)}];function s(t,e,r,n,a,s,l){var c=o[a],u=new i(t,e,r,n,a,c);Object.defineProperty(s,l,{set:function(e){return t.disableVertexAttribArray(n[r]),c(t,n[r],e),e},get:function(){return u},enumerable:!0})}function l(t,e,r,n,i,a,o){for(var l=new Array(i),c=new Array(i),u=0;u4)throw new i("","Invalid uniform dimension type for matrix "+name+": "+v);t["uniformMatrix"+g+"fv"](s[u],!1,f);break}throw new i("","Unknown uniform data type for "+name+": "+v)}if((g=v.charCodeAt(v.length-1)-48)<2||g>4)throw new i("","Invalid data type");switch(v.charAt(0)){case"b":case"i":t["uniform"+g+"iv"](s[u],f);break;case"v":t["uniform"+g+"fv"](s[u],f);break;default:throw new i("","Unrecognized data type for vector "+name+": "+v)}}}}}}function c(t,e,n){if("object"==typeof n){var c=u(n);Object.defineProperty(t,e,{get:a(c),set:l(n),enumerable:!0,configurable:!1})}else s[n]?Object.defineProperty(t,e,{get:(f=n,function(t,e,r){return t.getUniform(e.program,r[f])}),set:l(n),enumerable:!0,configurable:!1}):t[e]=function(t){switch(t){case"bool":return!1;case"int":case"sampler2D":case"samplerCube":case"float":return 0;default:var e=t.indexOf("vec");if(0<=e&&e<=1&&t.length===4+e){if((r=t.charCodeAt(t.length-1)-48)<2||r>4)throw new i("","Invalid data type");return"b"===t.charAt(0)?o(r,!1):o(r,0)}if(0===t.indexOf("mat")&&4===t.length){var r;if((r=t.charCodeAt(t.length-1)-48)<2||r>4)throw new i("","Invalid uniform dimension type for matrix "+name+": "+t);return o(r*r,0)}throw new i("","Unknown uniform data type for "+name+": "+t)}}(r[n].type);var f}function u(t){var e;if(Array.isArray(t)){e=new Array(t.length);for(var r=0;r1){s[0]in a||(a[s[0]]=[]),a=a[s[0]];for(var l=1;l1)for(var l=0;l 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the tube vertex and normal at the given index.\n//\n// The returned vertex is for a tube ring with its center at origin, radius of length(d), pointing in the direction of d.\n//\n// Each tube segment is made up of a ring of vertices.\n// These vertices are used to make up the triangles of the tube by connecting them together in the vertex array.\n// The indexes of tube segments run from 0 to 8.\n//\nvec3 getTubePosition(vec3 d, float index, out vec3 normal) {\n float segmentCount = 8.0;\n\n float angle = 2.0 * 3.14159 * (index / segmentCount);\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d);\n vec3 y = v * sin(angle) * length(d);\n vec3 v3 = x + y;\n\n normal = normalize(v3);\n\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 color, position;\nattribute vec2 uv;\n\nuniform float vectorScale, tubeScale;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 eyePosition, lightPosition;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n // Scale the vector magnitude to stay constant with\n // model & view changes.\n vec3 normal;\n vec3 XYZ = getTubePosition(mat3(model) * (tubeScale * vector.w * normalize(vector.xyz)), position.w, normal);\n vec4 tubePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * tubePosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n // vec4 m_position = model * vec4(tubePosition, 1.0);\n vec4 t_position = view * tubePosition;\n gl_Position = projection * t_position;\n\n f_color = color;\n f_data = tubePosition.xyz;\n f_position = position.xyz;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform sampler2D texture;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = f_color * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * opacity;\n}\n"]),o=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the tube vertex and normal at the given index.\n//\n// The returned vertex is for a tube ring with its center at origin, radius of length(d), pointing in the direction of d.\n//\n// Each tube segment is made up of a ring of vertices.\n// These vertices are used to make up the triangles of the tube by connecting them together in the vertex array.\n// The indexes of tube segments run from 0 to 8.\n//\nvec3 getTubePosition(vec3 d, float index, out vec3 normal) {\n float segmentCount = 8.0;\n\n float angle = 2.0 * 3.14159 * (index / segmentCount);\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d);\n vec3 y = v * sin(angle) * length(d);\n vec3 v3 = x + y;\n\n normal = normalize(v3);\n\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform float tubeScale;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n vec3 normal;\n vec3 XYZ = getTubePosition(mat3(model) * (tubeScale * vector.w * normalize(vector.xyz)), position.w, normal);\n vec4 tubePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n gl_Position = projection * view * tubePosition;\n f_id = id;\n f_position = position.xyz;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec4"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"vector",type:"vec4"}]},r.pickShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec4"},{name:"id",type:"vec4"},{name:"vector",type:"vec4"}]}},{glslify:231}],143:[function(t,e,r){"use strict";var n=t("gl-vec3"),i=t("gl-vec4"),a=["xyz","xzy","yxz","yzx","zxy","zyx"],o=function(t,e,r,a){for(var o=0,s=0;s0)for(T=0;T<8;T++){var k=(T+1)%8;c.push(h[T],p[T],p[k],p[k],h[k],h[T]),f.push(y,v,v,v,y,y),d.push(m,g,g,g,m,m);var A=c.length;u.push([A-6,A-5,A-4],[A-3,A-2,A-1])}var M=h;h=p,p=M;var S=y;y=v,v=S;var E=m;m=g,g=E}return{positions:c,cells:u,vectors:f,vertexIntensity:d}}(t,r,a,o)})),f=[],h=[],p=[],d=[];for(s=0;se)return r-1}return r},l=function(t,e,r){return tr?r:t},c=function(t){var e=1/0;t.sort((function(t,e){return t-e}));for(var r=t.length,n=1;nf-1||y>h-1||x>p-1)return n.create();var b,_,w,T,k,A,M=a[0][d],S=a[0][v],E=a[1][m],L=a[1][y],C=a[2][g],P=(o-M)/(S-M),I=(c-E)/(L-E),O=(u-C)/(a[2][x]-C);switch(isFinite(P)||(P=.5),isFinite(I)||(I=.5),isFinite(O)||(O=.5),r.reversedX&&(d=f-1-d,v=f-1-v),r.reversedY&&(m=h-1-m,y=h-1-y),r.reversedZ&&(g=p-1-g,x=p-1-x),r.filled){case 5:k=g,A=x,w=m*p,T=y*p,b=d*p*h,_=v*p*h;break;case 4:k=g,A=x,b=d*p,_=v*p,w=m*p*f,T=y*p*f;break;case 3:w=m,T=y,k=g*h,A=x*h,b=d*h*p,_=v*h*p;break;case 2:w=m,T=y,b=d*h,_=v*h,k=g*h*f,A=x*h*f;break;case 1:b=d,_=v,k=g*f,A=x*f,w=m*f*p,T=y*f*p;break;default:b=d,_=v,w=m*f,T=y*f,k=g*f*h,A=x*f*h}var z=i[b+w+k],D=i[b+w+A],R=i[b+T+k],F=i[b+T+A],B=i[_+w+k],N=i[_+w+A],j=i[_+T+k],U=i[_+T+A],V=n.create(),H=n.create(),q=n.create(),G=n.create();n.lerp(V,z,B,P),n.lerp(H,D,N,P),n.lerp(q,R,j,P),n.lerp(G,F,U,P);var Y=n.create(),W=n.create();n.lerp(Y,V,q,I),n.lerp(W,H,G,I);var X=n.create();return n.lerp(X,Y,W,O),X}(e,t,p)},m=t.getDivergence||function(t,e){var r=n.create(),i=1e-4;n.add(r,t,[i,0,0]);var a=d(r);n.subtract(a,a,e),n.scale(a,a,1/i),n.add(r,t,[0,i,0]);var o=d(r);n.subtract(o,o,e),n.scale(o,o,1/i),n.add(r,t,[0,0,i]);var s=d(r);return n.subtract(s,s,e),n.scale(s,s,1/i),n.add(r,a,o),n.add(r,r,s),r},g=[],v=e[0][0],y=e[0][1],x=e[0][2],b=e[1][0],_=e[1][1],w=e[1][2],T=function(t){var e=t[0],r=t[1],n=t[2];return!(eb||r_||nw)},k=10*n.distance(e[0],e[1])/i,A=k*k,M=1,S=0,E=r.length;E>1&&(M=function(t){for(var e=[],r=[],n=[],i={},a={},o={},s=t.length,l=0;lS&&(S=F),D.push(F),g.push({points:P,velocities:I,divergences:D});for(var B=0;B<100*i&&P.lengthA&&n.scale(N,N,k/Math.sqrt(j)),n.add(N,N,C),O=d(N),n.squaredDistance(z,N)-A>-1e-4*A){P.push(N),z=N,I.push(O);R=m(N,O),F=n.length(R);isFinite(F)&&F>S&&(S=F),D.push(F)}C=N}}var U=o(g,t.colormap,S,M);return f?U.tubeScale=f:(0===S&&(S=1),U.tubeScale=.5*u*M/S),U};var u=t("./lib/shaders"),f=t("gl-cone3d").createMesh;e.exports.createTubeMesh=function(t,e){return f(t,e,{shaders:u,traceType:"streamtube"})}},{"./lib/shaders":142,"gl-cone3d":79,"gl-vec3":169,"gl-vec4":205}],144:[function(t,e,r){var n=t("gl-shader"),i=t("glslify"),a=i(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec4 uv;\nattribute vec3 f;\nattribute vec3 normal;\n\nuniform vec3 objectOffset;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 lightPosition, eyePosition;\nuniform sampler2D colormap;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n vec3 localCoordinate = vec3(uv.zw, f.x);\n worldCoordinate = objectOffset + localCoordinate;\n vec4 worldPosition = model * vec4(worldCoordinate, 1.0);\n vec4 clipPosition = projection * view * worldPosition;\n gl_Position = clipPosition;\n kill = f.y;\n value = f.z;\n planeCoordinate = uv.xy;\n\n vColor = texture2D(colormap, vec2(value, value));\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * worldPosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n lightDirection = lightPosition - cameraCoordinate.xyz;\n eyeDirection = eyePosition - cameraCoordinate.xyz;\n surfaceNormal = normalize((vec4(normal,0) * inverseModel).xyz);\n}\n"]),o=i(["precision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat beckmannSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness) {\n return beckmannDistribution(dot(surfaceNormal, normalize(lightDirection + viewDirection)), roughness);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 lowerBound, upperBound;\nuniform float contourTint;\nuniform vec4 contourColor;\nuniform sampler2D colormap;\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform float vertexColor;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n if (\n kill > 0.0 ||\n vColor.a == 0.0 ||\n outOfRange(clipBounds[0], clipBounds[1], worldCoordinate)\n ) discard;\n\n vec3 N = normalize(surfaceNormal);\n vec3 V = normalize(eyeDirection);\n vec3 L = normalize(lightDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = max(beckmannSpecular(L, V, N, roughness), 0.);\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n //decide how to interpolate color \u2014 in vertex or in fragment\n vec4 surfaceColor =\n step(vertexColor, .5) * texture2D(colormap, vec2(value, value)) +\n step(.5, vertexColor) * vColor;\n\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = mix(litColor, contourColor, contourTint) * opacity;\n}\n"]),s=i(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec4 uv;\nattribute float f;\n\nuniform vec3 objectOffset;\nuniform mat3 permutation;\nuniform mat4 model, view, projection;\nuniform float height, zOffset;\nuniform sampler2D colormap;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n vec3 dataCoordinate = permutation * vec3(uv.xy, height);\n worldCoordinate = objectOffset + dataCoordinate;\n vec4 worldPosition = model * vec4(worldCoordinate, 1.0);\n\n vec4 clipPosition = projection * view * worldPosition;\n clipPosition.z += zOffset;\n\n gl_Position = clipPosition;\n value = f + objectOffset.z;\n kill = -1.0;\n planeCoordinate = uv.zw;\n\n vColor = texture2D(colormap, vec2(value, value));\n\n //Don't do lighting for contours\n surfaceNormal = vec3(1,0,0);\n eyeDirection = vec3(0,1,0);\n lightDirection = vec3(0,0,1);\n}\n"]),l=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec2 shape;\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 surfaceNormal;\n\nvec2 splitFloat(float v) {\n float vh = 255.0 * v;\n float upper = floor(vh);\n float lower = fract(vh);\n return vec2(upper / 255.0, floor(lower * 16.0) / 16.0);\n}\n\nvoid main() {\n if ((kill > 0.0) ||\n (outOfRange(clipBounds[0], clipBounds[1], worldCoordinate))) discard;\n\n vec2 ux = splitFloat(planeCoordinate.x / shape.x);\n vec2 uy = splitFloat(planeCoordinate.y / shape.y);\n gl_FragColor = vec4(pickId, ux.x, uy.x, ux.y + (uy.y/16.0));\n}\n"]);r.createShader=function(t){var e=n(t,a,o,null,[{name:"uv",type:"vec4"},{name:"f",type:"vec3"},{name:"normal",type:"vec3"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e.attributes.normal.location=2,e},r.createPickShader=function(t){var e=n(t,a,l,null,[{name:"uv",type:"vec4"},{name:"f",type:"vec3"},{name:"normal",type:"vec3"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e.attributes.normal.location=2,e},r.createContourShader=function(t){var e=n(t,s,o,null,[{name:"uv",type:"vec4"},{name:"f",type:"float"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e},r.createPickContourShader=function(t){var e=n(t,s,l,null,[{name:"uv",type:"vec4"},{name:"f",type:"float"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e}},{"gl-shader":132,glslify:231}],145:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl,r=y(e),n=b(e),s=x(e),l=_(e),c=i(e),u=a(e,[{buffer:c,size:4,stride:40,offset:0},{buffer:c,size:3,stride:40,offset:16},{buffer:c,size:3,stride:40,offset:28}]),f=i(e),h=a(e,[{buffer:f,size:4,stride:20,offset:0},{buffer:f,size:1,stride:20,offset:16}]),p=i(e),d=a(e,[{buffer:p,size:2,type:e.FLOAT}]),m=o(e,1,256,e.RGBA,e.UNSIGNED_BYTE);m.minFilter=e.LINEAR,m.magFilter=e.LINEAR;var g=new M(e,[0,0],[[0,0,0],[0,0,0]],r,n,c,u,m,s,l,f,h,p,d,[0,0,0]),v={levels:[[],[],[]]};for(var w in t)v[w]=t[w];return v.colormap=v.colormap||"jet",g.update(v),g};var n=t("bit-twiddle"),i=t("gl-buffer"),a=t("gl-vao"),o=t("gl-texture2d"),s=t("typedarray-pool"),l=t("colormap"),c=t("ndarray-ops"),u=t("ndarray-pack"),f=t("ndarray"),h=t("surface-nets"),p=t("gl-mat4/multiply"),d=t("gl-mat4/invert"),m=t("binary-search-bounds"),g=t("ndarray-gradient"),v=t("./lib/shaders"),y=v.createShader,x=v.createContourShader,b=v.createPickShader,_=v.createPickContourShader,w=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],T=[[0,0],[0,1],[1,0],[1,1],[1,0],[0,1]],k=[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]];function A(t,e,r,n,i){this.position=t,this.index=e,this.uv=r,this.level=n,this.dataCoordinate=i}!function(){for(var t=0;t<3;++t){var e=k[t],r=(t+2)%3;e[(t+1)%3+0]=1,e[r+3]=1,e[t+6]=1}}();function M(t,e,r,n,i,a,o,l,c,u,h,p,d,m,g){this.gl=t,this.shape=e,this.bounds=r,this.objectOffset=g,this.intensityBounds=[],this._shader=n,this._pickShader=i,this._coordinateBuffer=a,this._vao=o,this._colorMap=l,this._contourShader=c,this._contourPickShader=u,this._contourBuffer=h,this._contourVAO=p,this._contourOffsets=[[],[],[]],this._contourCounts=[[],[],[]],this._vertexCount=0,this._pickResult=new A([0,0,0],[0,0],[0,0],[0,0,0],[0,0,0]),this._dynamicBuffer=d,this._dynamicVAO=m,this._dynamicOffsets=[0,0,0],this._dynamicCounts=[0,0,0],this.contourWidth=[1,1,1],this.contourLevels=[[1],[1],[1]],this.contourTint=[0,0,0],this.contourColor=[[.5,.5,.5,1],[.5,.5,.5,1],[.5,.5,.5,1]],this.showContour=!0,this.showSurface=!0,this.enableHighlight=[!0,!0,!0],this.highlightColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.highlightTint=[1,1,1],this.highlightLevel=[-1,-1,-1],this.enableDynamic=[!0,!0,!0],this.dynamicLevel=[NaN,NaN,NaN],this.dynamicColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.dynamicTint=[1,1,1],this.dynamicWidth=[1,1,1],this.axesBounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.surfaceProject=[!1,!1,!1],this.contourProject=[[!1,!1,!1],[!1,!1,!1],[!1,!1,!1]],this.colorBounds=[!1,!1],this._field=[f(s.mallocFloat(1024),[0,0]),f(s.mallocFloat(1024),[0,0]),f(s.mallocFloat(1024),[0,0])],this.pickId=1,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.snapToData=!1,this.pixelRatio=1,this.opacity=1,this.lightPosition=[10,1e4,0],this.ambientLight=.8,this.diffuseLight=.8,this.specularLight=2,this.roughness=.5,this.fresnel=1.5,this.vertexColor=0,this.dirty=!0}var S=M.prototype;S.genColormap=function(t,e){var r=!1,n=u([l({colormap:t,nshades:256,format:"rgba"}).map((function(t,n){var i=e?function(t,e){if(!e)return 1;if(!e.length)return 1;for(var r=0;rt&&r>0){var n=(e[r][0]-t)/(e[r][0]-e[r-1][0]);return e[r][1]*(1-n)+n*e[r-1][1]}}return 1}(n/255,e):t[3];return i<1&&(r=!0),[t[0],t[1],t[2],255*i]}))]);return c.divseq(n,255),this.hasAlphaScale=r,n},S.isTransparent=function(){return this.opacity<1||this.hasAlphaScale},S.isOpaque=function(){return!this.isTransparent()},S.pickSlots=1,S.setPickBase=function(t){this.pickId=t};var E=[0,0,0],L={showSurface:!1,showContour:!1,projections:[w.slice(),w.slice(),w.slice()],clipBounds:[[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]]]};function C(t,e){var r,n,i,a=e.axes&&e.axes.lastCubeProps.axis||E,o=e.showSurface,s=e.showContour;for(r=0;r<3;++r)for(o=o||e.surfaceProject[r],n=0;n<3;++n)s=s||e.contourProject[r][n];for(r=0;r<3;++r){var l=L.projections[r];for(n=0;n<16;++n)l[n]=0;for(n=0;n<4;++n)l[5*n]=1;l[5*r]=0,l[12+r]=e.axesBounds[+(a[r]>0)][r],p(l,t.model,l);var c=L.clipBounds[r];for(i=0;i<2;++i)for(n=0;n<3;++n)c[i][n]=t.clipBounds[i][n];c[0][r]=-1e8,c[1][r]=1e8}return L.showSurface=o,L.showContour=s,L}var P={model:w,view:w,projection:w,inverseModel:w.slice(),lowerBound:[0,0,0],upperBound:[0,0,0],colorMap:0,clipBounds:[[0,0,0],[0,0,0]],height:0,contourTint:0,contourColor:[0,0,0,1],permutation:[1,0,0,0,1,0,0,0,1],zOffset:-1e-4,objectOffset:[0,0,0],kambient:1,kdiffuse:1,kspecular:1,lightPosition:[1e3,1e3,1e3],eyePosition:[0,0,0],roughness:1,fresnel:1,opacity:1,vertexColor:0},I=w.slice(),O=[1,0,0,0,1,0,0,0,1];function z(t,e){t=t||{};var r=this.gl;r.disable(r.CULL_FACE),this._colorMap.bind(0);var n=P;n.model=t.model||w,n.view=t.view||w,n.projection=t.projection||w,n.lowerBound=[this.bounds[0][0],this.bounds[0][1],this.colorBounds[0]||this.bounds[0][2]],n.upperBound=[this.bounds[1][0],this.bounds[1][1],this.colorBounds[1]||this.bounds[1][2]],n.objectOffset=this.objectOffset,n.contourColor=this.contourColor[0],n.inverseModel=d(n.inverseModel,n.model);for(var i=0;i<2;++i)for(var a=n.clipBounds[i],o=0;o<3;++o)a[o]=Math.min(Math.max(this.clipBounds[i][o],-1e8),1e8);n.kambient=this.ambientLight,n.kdiffuse=this.diffuseLight,n.kspecular=this.specularLight,n.roughness=this.roughness,n.fresnel=this.fresnel,n.opacity=this.opacity,n.height=0,n.permutation=O,n.vertexColor=this.vertexColor;var s=I;for(p(s,n.view,n.model),p(s,n.projection,s),d(s,s),i=0;i<3;++i)n.eyePosition[i]=s[12+i]/s[15];var l=s[15];for(i=0;i<3;++i)l+=this.lightPosition[i]*s[4*i+3];for(i=0;i<3;++i){var c=s[12+i];for(o=0;o<3;++o)c+=s[4*o+i]*this.lightPosition[o];n.lightPosition[i]=c/l}var u=C(n,this);if(u.showSurface){for(this._shader.bind(),this._shader.uniforms=n,this._vao.bind(),this.showSurface&&this._vertexCount&&this._vao.draw(r.TRIANGLES,this._vertexCount),i=0;i<3;++i)this.surfaceProject[i]&&this.vertexCount&&(this._shader.uniforms.model=u.projections[i],this._shader.uniforms.clipBounds=u.clipBounds[i],this._vao.draw(r.TRIANGLES,this._vertexCount));this._vao.unbind()}if(u.showContour){var f=this._contourShader;n.kambient=1,n.kdiffuse=0,n.kspecular=0,n.opacity=1,f.bind(),f.uniforms=n;var h=this._contourVAO;for(h.bind(),i=0;i<3;++i)for(f.uniforms.permutation=k[i],r.lineWidth(this.contourWidth[i]*this.pixelRatio),o=0;o>4)/16)/255,i=Math.floor(n),a=n-i,o=e[1]*(t.value[1]+(15&t.value[2])/16)/255,s=Math.floor(o),l=o-s;i+=1,s+=1;var c=r.position;c[0]=c[1]=c[2]=0;for(var u=0;u<2;++u)for(var f=u?a:1-a,h=0;h<2;++h)for(var p=i+u,d=s+h,g=f*(h?l:1-l),v=0;v<3;++v)c[v]+=this._field[v].get(p,d)*g;for(var y=this._pickResult.level,x=0;x<3;++x)if(y[x]=m.le(this.contourLevels[x],c[x]),y[x]<0)this.contourLevels[x].length>0&&(y[x]=0);else if(y[x]Math.abs(_-c[x])&&(y[x]+=1)}for(r.index[0]=a<.5?i:i+1,r.index[1]=l<.5?s:s+1,r.uv[0]=n/e[0],r.uv[1]=o/e[1],v=0;v<3;++v)r.dataCoordinate[v]=this._field[v].get(r.index[0],r.index[1]);return r},S.padField=function(t,e){var r=e.shape.slice(),n=t.shape.slice();c.assign(t.lo(1,1).hi(r[0],r[1]),e),c.assign(t.lo(1).hi(r[0],1),e.hi(r[0],1)),c.assign(t.lo(1,n[1]-1).hi(r[0],1),e.lo(0,r[1]-1).hi(r[0],1)),c.assign(t.lo(0,1).hi(1,r[1]),e.hi(1)),c.assign(t.lo(n[0]-1,1).hi(1,r[1]),e.lo(r[0]-1)),t.set(0,0,e.get(0,0)),t.set(0,n[1]-1,e.get(0,r[1]-1)),t.set(n[0]-1,0,e.get(r[0]-1,0)),t.set(n[0]-1,n[1]-1,e.get(r[0]-1,r[1]-1))},S.update=function(t){t=t||{},this.objectOffset=t.objectOffset||this.objectOffset,this.dirty=!0,"contourWidth"in t&&(this.contourWidth=R(t.contourWidth,Number)),"showContour"in t&&(this.showContour=R(t.showContour,Boolean)),"showSurface"in t&&(this.showSurface=!!t.showSurface),"contourTint"in t&&(this.contourTint=R(t.contourTint,Boolean)),"contourColor"in t&&(this.contourColor=B(t.contourColor)),"contourProject"in t&&(this.contourProject=R(t.contourProject,(function(t){return R(t,Boolean)}))),"surfaceProject"in t&&(this.surfaceProject=t.surfaceProject),"dynamicColor"in t&&(this.dynamicColor=B(t.dynamicColor)),"dynamicTint"in t&&(this.dynamicTint=R(t.dynamicTint,Number)),"dynamicWidth"in t&&(this.dynamicWidth=R(t.dynamicWidth,Number)),"opacity"in t&&(this.opacity=t.opacity),"opacityscale"in t&&(this.opacityscale=t.opacityscale),"colorBounds"in t&&(this.colorBounds=t.colorBounds),"vertexColor"in t&&(this.vertexColor=t.vertexColor?1:0),"colormap"in t&&this._colorMap.setPixels(this.genColormap(t.colormap,this.opacityscale));var e=t.field||t.coords&&t.coords[2]||null,r=!1;if(e||(e=this._field[2].shape[0]||this._field[2].shape[2]?this._field[2].lo(1,1).hi(this._field[2].shape[0]-2,this._field[2].shape[1]-2):this._field[2].hi(0,0)),"field"in t||"coords"in t){var i=(e.shape[0]+2)*(e.shape[1]+2);i>this._field[2].data.length&&(s.freeFloat(this._field[2].data),this._field[2].data=s.mallocFloat(n.nextPow2(i))),this._field[2]=f(this._field[2].data,[e.shape[0]+2,e.shape[1]+2]),this.padField(this._field[2],e),this.shape=e.shape.slice();for(var a=this.shape,o=0;o<2;++o)this._field[2].size>this._field[o].data.length&&(s.freeFloat(this._field[o].data),this._field[o].data=s.mallocFloat(this._field[2].size)),this._field[o]=f(this._field[o].data,[a[0]+2,a[1]+2]);if(t.coords){var l=t.coords;if(!Array.isArray(l)||3!==l.length)throw new Error("gl-surface: invalid coordinates for x/y");for(o=0;o<2;++o){var c=l[o];for(v=0;v<2;++v)if(c.shape[v]!==a[v])throw new Error("gl-surface: coords have incorrect shape");this.padField(this._field[o],c)}}else if(t.ticks){var u=t.ticks;if(!Array.isArray(u)||2!==u.length)throw new Error("gl-surface: invalid ticks");for(o=0;o<2;++o){var p=u[o];if((Array.isArray(p)||p.length)&&(p=f(p)),p.shape[0]!==a[o])throw new Error("gl-surface: invalid tick length");var d=f(p.data,a);d.stride[o]=p.stride[0],d.stride[1^o]=0,this.padField(this._field[o],d)}}else{for(o=0;o<2;++o){var m=[0,0];m[o]=1,this._field[o]=f(this._field[o].data,[a[0]+2,a[1]+2],m,0)}this._field[0].set(0,0,0);for(var v=0;v0){for(var xt=0;xt<5;++xt)Q.pop();U-=1}continue t}Q.push(nt[0],nt[1],ot[0],ot[1],nt[2]),U+=1}}rt.push(U)}this._contourOffsets[$]=et,this._contourCounts[$]=rt}var bt=s.mallocFloat(Q.length);for(o=0;oi||r<0||r>i)throw new Error("gl-texture2d: Invalid texture size");return t._shape=[e,r],t.bind(),n.texImage2D(n.TEXTURE_2D,0,t.format,e,r,0,t.format,t.type,null),t._mipLevels=[0],t}function p(t,e,r,n,i,a){this.gl=t,this.handle=e,this.format=i,this.type=a,this._shape=[r,n],this._mipLevels=[0],this._magFilter=t.NEAREST,this._minFilter=t.NEAREST,this._wrapS=t.CLAMP_TO_EDGE,this._wrapT=t.CLAMP_TO_EDGE,this._anisoSamples=1;var o=this,s=[this._wrapS,this._wrapT];Object.defineProperties(s,[{get:function(){return o._wrapS},set:function(t){return o.wrapS=t}},{get:function(){return o._wrapT},set:function(t){return o.wrapT=t}}]),this._wrapVector=s;var l=[this._shape[0],this._shape[1]];Object.defineProperties(l,[{get:function(){return o._shape[0]},set:function(t){return o.width=t}},{get:function(){return o._shape[1]},set:function(t){return o.height=t}}]),this._shapeVector=l}var d=p.prototype;function m(t,e){return 3===t.length?1===e[2]&&e[1]===t[0]*t[2]&&e[0]===t[2]:1===e[0]&&e[1]===t[0]}function g(t){var e=t.createTexture();return t.bindTexture(t.TEXTURE_2D,e),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_MIN_FILTER,t.NEAREST),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_MAG_FILTER,t.NEAREST),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_WRAP_S,t.CLAMP_TO_EDGE),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_WRAP_T,t.CLAMP_TO_EDGE),e}function v(t,e,r,n,i){var a=t.getParameter(t.MAX_TEXTURE_SIZE);if(e<0||e>a||r<0||r>a)throw new Error("gl-texture2d: Invalid texture shape");if(i===t.FLOAT&&!t.getExtension("OES_texture_float"))throw new Error("gl-texture2d: Floating point textures not supported on this platform");var o=g(t);return t.texImage2D(t.TEXTURE_2D,0,n,e,r,0,n,i,null),new p(t,o,e,r,n,i)}function y(t,e,r,n,i,a){var o=g(t);return t.texImage2D(t.TEXTURE_2D,0,i,i,a,e),new p(t,o,r,n,i,a)}function x(t,e){var r=e.dtype,o=e.shape.slice(),s=t.getParameter(t.MAX_TEXTURE_SIZE);if(o[0]<0||o[0]>s||o[1]<0||o[1]>s)throw new Error("gl-texture2d: Invalid texture size");var l=m(o,e.stride.slice()),c=0;"float32"===r?c=t.FLOAT:"float64"===r?(c=t.FLOAT,l=!1,r="float32"):"uint8"===r?c=t.UNSIGNED_BYTE:(c=t.UNSIGNED_BYTE,l=!1,r="uint8");var u,h,d=0;if(2===o.length)d=t.LUMINANCE,o=[o[0],o[1],1],e=n(e.data,o,[e.stride[0],e.stride[1],1],e.offset);else{if(3!==o.length)throw new Error("gl-texture2d: Invalid shape for texture");if(1===o[2])d=t.ALPHA;else if(2===o[2])d=t.LUMINANCE_ALPHA;else if(3===o[2])d=t.RGB;else{if(4!==o[2])throw new Error("gl-texture2d: Invalid shape for pixel coords");d=t.RGBA}}c!==t.FLOAT||t.getExtension("OES_texture_float")||(c=t.UNSIGNED_BYTE,l=!1);var v=e.size;if(l)u=0===e.offset&&e.data.length===v?e.data:e.data.subarray(e.offset,e.offset+v);else{var y=[o[2],o[2]*o[0],1];h=a.malloc(v,r);var x=n(h,o,y,0);"float32"!==r&&"float64"!==r||c!==t.UNSIGNED_BYTE?i.assign(x,e):f(x,e),u=h.subarray(0,v)}var b=g(t);return t.texImage2D(t.TEXTURE_2D,0,d,o[0],o[1],0,d,c,u),l||a.free(h),new p(t,b,o[0],o[1],d,c)}Object.defineProperties(d,{minFilter:{get:function(){return this._minFilter},set:function(t){this.bind();var e=this.gl;if(this.type===e.FLOAT&&o.indexOf(t)>=0&&(e.getExtension("OES_texture_float_linear")||(t=e.NEAREST)),s.indexOf(t)<0)throw new Error("gl-texture2d: Unknown filter mode "+t);return e.texParameteri(e.TEXTURE_2D,e.TEXTURE_MIN_FILTER,t),this._minFilter=t}},magFilter:{get:function(){return this._magFilter},set:function(t){this.bind();var e=this.gl;if(this.type===e.FLOAT&&o.indexOf(t)>=0&&(e.getExtension("OES_texture_float_linear")||(t=e.NEAREST)),s.indexOf(t)<0)throw new Error("gl-texture2d: Unknown filter mode "+t);return e.texParameteri(e.TEXTURE_2D,e.TEXTURE_MAG_FILTER,t),this._magFilter=t}},mipSamples:{get:function(){return this._anisoSamples},set:function(t){var e=this._anisoSamples;if(this._anisoSamples=0|Math.max(t,1),e!==this._anisoSamples){var r=this.gl.getExtension("EXT_texture_filter_anisotropic");r&&this.gl.texParameterf(this.gl.TEXTURE_2D,r.TEXTURE_MAX_ANISOTROPY_EXT,this._anisoSamples)}return this._anisoSamples}},wrapS:{get:function(){return this._wrapS},set:function(t){if(this.bind(),l.indexOf(t)<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);return this.gl.texParameteri(this.gl.TEXTURE_2D,this.gl.TEXTURE_WRAP_S,t),this._wrapS=t}},wrapT:{get:function(){return this._wrapT},set:function(t){if(this.bind(),l.indexOf(t)<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);return this.gl.texParameteri(this.gl.TEXTURE_2D,this.gl.TEXTURE_WRAP_T,t),this._wrapT=t}},wrap:{get:function(){return this._wrapVector},set:function(t){if(Array.isArray(t)||(t=[t,t]),2!==t.length)throw new Error("gl-texture2d: Must specify wrap mode for rows and columns");for(var e=0;e<2;++e)if(l.indexOf(t[e])<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);this._wrapS=t[0],this._wrapT=t[1];var r=this.gl;return this.bind(),r.texParameteri(r.TEXTURE_2D,r.TEXTURE_WRAP_S,this._wrapS),r.texParameteri(r.TEXTURE_2D,r.TEXTURE_WRAP_T,this._wrapT),t}},shape:{get:function(){return this._shapeVector},set:function(t){if(Array.isArray(t)){if(2!==t.length)throw new Error("gl-texture2d: Invalid texture shape")}else t=[0|t,0|t];return h(this,0|t[0],0|t[1]),[0|t[0],0|t[1]]}},width:{get:function(){return this._shape[0]},set:function(t){return h(this,t|=0,this._shape[1]),t}},height:{get:function(){return this._shape[1]},set:function(t){return t|=0,h(this,this._shape[0],t),t}}}),d.bind=function(t){var e=this.gl;return void 0!==t&&e.activeTexture(e.TEXTURE0+(0|t)),e.bindTexture(e.TEXTURE_2D,this.handle),void 0!==t?0|t:e.getParameter(e.ACTIVE_TEXTURE)-e.TEXTURE0},d.dispose=function(){this.gl.deleteTexture(this.handle)},d.generateMipmap=function(){this.bind(),this.gl.generateMipmap(this.gl.TEXTURE_2D);for(var t=Math.min(this._shape[0],this._shape[1]),e=0;t>0;++e,t>>>=1)this._mipLevels.indexOf(e)<0&&this._mipLevels.push(e)},d.setPixels=function(t,e,r,o){var s=this.gl;this.bind(),Array.isArray(e)?(o=r,r=0|e[1],e=0|e[0]):(e=e||0,r=r||0),o=o||0;var l=u(t)?t:t.raw;if(l){this._mipLevels.indexOf(o)<0?(s.texImage2D(s.TEXTURE_2D,0,this.format,this.format,this.type,l),this._mipLevels.push(o)):s.texSubImage2D(s.TEXTURE_2D,o,e,r,this.format,this.type,l)}else{if(!(t.shape&&t.stride&&t.data))throw new Error("gl-texture2d: Unsupported data type");if(t.shape.length<2||e+t.shape[1]>this._shape[1]>>>o||r+t.shape[0]>this._shape[0]>>>o||e<0||r<0)throw new Error("gl-texture2d: Texture dimensions are out of bounds");!function(t,e,r,o,s,l,c,u){var h=u.dtype,p=u.shape.slice();if(p.length<2||p.length>3)throw new Error("gl-texture2d: Invalid ndarray, must be 2d or 3d");var d=0,g=0,v=m(p,u.stride.slice());"float32"===h?d=t.FLOAT:"float64"===h?(d=t.FLOAT,v=!1,h="float32"):"uint8"===h?d=t.UNSIGNED_BYTE:(d=t.UNSIGNED_BYTE,v=!1,h="uint8");if(2===p.length)g=t.LUMINANCE,p=[p[0],p[1],1],u=n(u.data,p,[u.stride[0],u.stride[1],1],u.offset);else{if(3!==p.length)throw new Error("gl-texture2d: Invalid shape for texture");if(1===p[2])g=t.ALPHA;else if(2===p[2])g=t.LUMINANCE_ALPHA;else if(3===p[2])g=t.RGB;else{if(4!==p[2])throw new Error("gl-texture2d: Invalid shape for pixel coords");g=t.RGBA}p[2]}g!==t.LUMINANCE&&g!==t.ALPHA||s!==t.LUMINANCE&&s!==t.ALPHA||(g=s);if(g!==s)throw new Error("gl-texture2d: Incompatible texture format for setPixels");var y=u.size,x=c.indexOf(o)<0;x&&c.push(o);if(d===l&&v)0===u.offset&&u.data.length===y?x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,u.data):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,u.data):x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,u.data.subarray(u.offset,u.offset+y)):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,u.data.subarray(u.offset,u.offset+y));else{var b;b=l===t.FLOAT?a.mallocFloat32(y):a.mallocUint8(y);var _=n(b,p,[p[2],p[2]*p[0],1]);d===t.FLOAT&&l===t.UNSIGNED_BYTE?f(_,u):i.assign(_,u),x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,b.subarray(0,y)):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,b.subarray(0,y)),l===t.FLOAT?a.freeFloat32(b):a.freeUint8(b)}}(s,e,r,o,this.format,this.type,this._mipLevels,t)}}},{ndarray:259,"ndarray-ops":254,"typedarray-pool":308}],147:[function(t,e,r){"use strict";e.exports=function(t,e,r){e?e.bind():t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null);var n=0|t.getParameter(t.MAX_VERTEX_ATTRIBS);if(r){if(r.length>n)throw new Error("gl-vao: Too many vertex attributes");for(var i=0;i1?0:Math.acos(s)};var n=t("./fromValues"),i=t("./normalize"),a=t("./dot")},{"./dot":162,"./fromValues":168,"./normalize":179}],153:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.ceil(e[0]),t[1]=Math.ceil(e[1]),t[2]=Math.ceil(e[2]),t}},{}],154:[function(t,e,r){e.exports=function(t){var e=new Float32Array(3);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e}},{}],155:[function(t,e,r){e.exports=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t}},{}],156:[function(t,e,r){e.exports=function(){var t=new Float32Array(3);return t[0]=0,t[1]=0,t[2]=0,t}},{}],157:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2];return t[0]=i*l-a*s,t[1]=a*o-n*l,t[2]=n*s-i*o,t}},{}],158:[function(t,e,r){e.exports=t("./distance")},{"./distance":159}],159:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2];return Math.sqrt(r*r+n*n+i*i)}},{}],160:[function(t,e,r){e.exports=t("./divide")},{"./divide":161}],161:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]/r[0],t[1]=e[1]/r[1],t[2]=e[2]/r[2],t}},{}],162:[function(t,e,r){e.exports=function(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}},{}],163:[function(t,e,r){e.exports=1e-6},{}],164:[function(t,e,r){e.exports=function(t,e){var r=t[0],i=t[1],a=t[2],o=e[0],s=e[1],l=e[2];return Math.abs(r-o)<=n*Math.max(1,Math.abs(r),Math.abs(o))&&Math.abs(i-s)<=n*Math.max(1,Math.abs(i),Math.abs(s))&&Math.abs(a-l)<=n*Math.max(1,Math.abs(a),Math.abs(l))};var n=t("./epsilon")},{"./epsilon":163}],165:[function(t,e,r){e.exports=function(t,e){return t[0]===e[0]&&t[1]===e[1]&&t[2]===e[2]}},{}],166:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.floor(e[0]),t[1]=Math.floor(e[1]),t[2]=Math.floor(e[2]),t}},{}],167:[function(t,e,r){e.exports=function(t,e,r,i,a,o){var s,l;e||(e=3);r||(r=0);l=i?Math.min(i*e+r,t.length):t.length;for(s=r;s0&&(a=1/Math.sqrt(a),t[0]=e[0]*a,t[1]=e[1]*a,t[2]=e[2]*a);return t}},{}],180:[function(t,e,r){e.exports=function(t,e){e=e||1;var r=2*Math.random()*Math.PI,n=2*Math.random()-1,i=Math.sqrt(1-n*n)*e;return t[0]=Math.cos(r)*i,t[1]=Math.sin(r)*i,t[2]=n*e,t}},{}],181:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[1],a=r[2],o=e[1]-i,s=e[2]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=e[0],t[1]=i+o*c-s*l,t[2]=a+o*l+s*c,t}},{}],182:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[0],a=r[2],o=e[0]-i,s=e[2]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=i+s*l+o*c,t[1]=e[1],t[2]=a+s*c-o*l,t}},{}],183:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[0],a=r[1],o=e[0]-i,s=e[1]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=i+o*c-s*l,t[1]=a+o*l+s*c,t[2]=e[2],t}},{}],184:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.round(e[0]),t[1]=Math.round(e[1]),t[2]=Math.round(e[2]),t}},{}],185:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r,t[1]=e[1]*r,t[2]=e[2]*r,t}},{}],186:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e[0]+r[0]*n,t[1]=e[1]+r[1]*n,t[2]=e[2]+r[2]*n,t}},{}],187:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e,t[1]=r,t[2]=n,t}},{}],188:[function(t,e,r){e.exports=t("./squaredDistance")},{"./squaredDistance":190}],189:[function(t,e,r){e.exports=t("./squaredLength")},{"./squaredLength":191}],190:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2];return r*r+n*n+i*i}},{}],191:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2];return e*e+r*r+n*n}},{}],192:[function(t,e,r){e.exports=t("./subtract")},{"./subtract":193}],193:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t}},{}],194:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2];return t[0]=n*r[0]+i*r[3]+a*r[6],t[1]=n*r[1]+i*r[4]+a*r[7],t[2]=n*r[2]+i*r[5]+a*r[8],t}},{}],195:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[3]*n+r[7]*i+r[11]*a+r[15];return o=o||1,t[0]=(r[0]*n+r[4]*i+r[8]*a+r[12])/o,t[1]=(r[1]*n+r[5]*i+r[9]*a+r[13])/o,t[2]=(r[2]*n+r[6]*i+r[10]*a+r[14])/o,t}},{}],196:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2],c=r[3],u=c*n+s*a-l*i,f=c*i+l*n-o*a,h=c*a+o*i-s*n,p=-o*n-s*i-l*a;return t[0]=u*c+p*-o+f*-l-h*-s,t[1]=f*c+p*-s+h*-o-u*-l,t[2]=h*c+p*-l+u*-s-f*-o,t}},{}],197:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]+r[0],t[1]=e[1]+r[1],t[2]=e[2]+r[2],t[3]=e[3]+r[3],t}},{}],198:[function(t,e,r){e.exports=function(t){var e=new Float32Array(4);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[3],e}},{}],199:[function(t,e,r){e.exports=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=e[3],t}},{}],200:[function(t,e,r){e.exports=function(){var t=new Float32Array(4);return t[0]=0,t[1]=0,t[2]=0,t[3]=0,t}},{}],201:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2],a=e[3]-t[3];return Math.sqrt(r*r+n*n+i*i+a*a)}},{}],202:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]/r[0],t[1]=e[1]/r[1],t[2]=e[2]/r[2],t[3]=e[3]/r[3],t}},{}],203:[function(t,e,r){e.exports=function(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]+t[3]*e[3]}},{}],204:[function(t,e,r){e.exports=function(t,e,r,n){var i=new Float32Array(4);return i[0]=t,i[1]=e,i[2]=r,i[3]=n,i}},{}],205:[function(t,e,r){e.exports={create:t("./create"),clone:t("./clone"),fromValues:t("./fromValues"),copy:t("./copy"),set:t("./set"),add:t("./add"),subtract:t("./subtract"),multiply:t("./multiply"),divide:t("./divide"),min:t("./min"),max:t("./max"),scale:t("./scale"),scaleAndAdd:t("./scaleAndAdd"),distance:t("./distance"),squaredDistance:t("./squaredDistance"),length:t("./length"),squaredLength:t("./squaredLength"),negate:t("./negate"),inverse:t("./inverse"),normalize:t("./normalize"),dot:t("./dot"),lerp:t("./lerp"),random:t("./random"),transformMat4:t("./transformMat4"),transformQuat:t("./transformQuat")}},{"./add":197,"./clone":198,"./copy":199,"./create":200,"./distance":201,"./divide":202,"./dot":203,"./fromValues":204,"./inverse":206,"./length":207,"./lerp":208,"./max":209,"./min":210,"./multiply":211,"./negate":212,"./normalize":213,"./random":214,"./scale":215,"./scaleAndAdd":216,"./set":217,"./squaredDistance":218,"./squaredLength":219,"./subtract":220,"./transformMat4":221,"./transformQuat":222}],206:[function(t,e,r){e.exports=function(t,e){return t[0]=1/e[0],t[1]=1/e[1],t[2]=1/e[2],t[3]=1/e[3],t}},{}],207:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2],i=t[3];return Math.sqrt(e*e+r*r+n*n+i*i)}},{}],208:[function(t,e,r){e.exports=function(t,e,r,n){var i=e[0],a=e[1],o=e[2],s=e[3];return t[0]=i+n*(r[0]-i),t[1]=a+n*(r[1]-a),t[2]=o+n*(r[2]-o),t[3]=s+n*(r[3]-s),t}},{}],209:[function(t,e,r){e.exports=function(t,e,r){return t[0]=Math.max(e[0],r[0]),t[1]=Math.max(e[1],r[1]),t[2]=Math.max(e[2],r[2]),t[3]=Math.max(e[3],r[3]),t}},{}],210:[function(t,e,r){e.exports=function(t,e,r){return t[0]=Math.min(e[0],r[0]),t[1]=Math.min(e[1],r[1]),t[2]=Math.min(e[2],r[2]),t[3]=Math.min(e[3],r[3]),t}},{}],211:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r[0],t[1]=e[1]*r[1],t[2]=e[2]*r[2],t[3]=e[3]*r[3],t}},{}],212:[function(t,e,r){e.exports=function(t,e){return t[0]=-e[0],t[1]=-e[1],t[2]=-e[2],t[3]=-e[3],t}},{}],213:[function(t,e,r){e.exports=function(t,e){var r=e[0],n=e[1],i=e[2],a=e[3],o=r*r+n*n+i*i+a*a;o>0&&(o=1/Math.sqrt(o),t[0]=r*o,t[1]=n*o,t[2]=i*o,t[3]=a*o);return t}},{}],214:[function(t,e,r){var n=t("./normalize"),i=t("./scale");e.exports=function(t,e){return e=e||1,t[0]=Math.random(),t[1]=Math.random(),t[2]=Math.random(),t[3]=Math.random(),n(t,t),i(t,t,e),t}},{"./normalize":213,"./scale":215}],215:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r,t[1]=e[1]*r,t[2]=e[2]*r,t[3]=e[3]*r,t}},{}],216:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e[0]+r[0]*n,t[1]=e[1]+r[1]*n,t[2]=e[2]+r[2]*n,t[3]=e[3]+r[3]*n,t}},{}],217:[function(t,e,r){e.exports=function(t,e,r,n,i){return t[0]=e,t[1]=r,t[2]=n,t[3]=i,t}},{}],218:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2],a=e[3]-t[3];return r*r+n*n+i*i+a*a}},{}],219:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2],i=t[3];return e*e+r*r+n*n+i*i}},{}],220:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t[3]=e[3]-r[3],t}},{}],221:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3];return t[0]=r[0]*n+r[4]*i+r[8]*a+r[12]*o,t[1]=r[1]*n+r[5]*i+r[9]*a+r[13]*o,t[2]=r[2]*n+r[6]*i+r[10]*a+r[14]*o,t[3]=r[3]*n+r[7]*i+r[11]*a+r[15]*o,t}},{}],222:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2],c=r[3],u=c*n+s*a-l*i,f=c*i+l*n-o*a,h=c*a+o*i-s*n,p=-o*n-s*i-l*a;return t[0]=u*c+p*-o+f*-l-h*-s,t[1]=f*c+p*-s+h*-o-u*-l,t[2]=h*c+p*-l+u*-s-f*-o,t[3]=e[3],t}},{}],223:[function(t,e,r){var n=t("glsl-tokenizer"),i=t("atob-lite");e.exports=function(t){for(var e=Array.isArray(t)?t:n(t),r=0;r0)continue;r=t.slice(0,1).join("")}return A(r),v+=r.length,(p=p.slice(r.length)).length}}function I(){return/[^a-fA-F0-9]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function O(){return"."===e||/[eE]/.test(e)?(p.push(e),h=5,r=e,u+1):"x"===e&&1===p.length&&"0"===p[0]?(h=11,p.push(e),r=e,u+1):/[^\d]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function z(){return"f"===e&&(p.push(e),r=e,u+=1),/[eE]/.test(e)?(p.push(e),r=e,u+1):("-"!==e&&"+"!==e||!/[eE]/.test(r))&&/[^\d]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function D(){if(/[^\d\w_]/.test(e)){var t=p.join("");return h=k[t]?8:T[t]?7:6,A(p.join("")),h=999,u}return p.push(e),r=e,u+1}};var n=t("./lib/literals"),i=t("./lib/operators"),a=t("./lib/builtins"),o=t("./lib/literals-300es"),s=t("./lib/builtins-300es"),l=["block-comment","line-comment","preprocessor","operator","integer","float","ident","builtin","keyword","whitespace","eof","integer"]},{"./lib/builtins":226,"./lib/builtins-300es":225,"./lib/literals":228,"./lib/literals-300es":227,"./lib/operators":229}],225:[function(t,e,r){var n=t("./builtins");n=n.slice().filter((function(t){return!/^(gl\_|texture)/.test(t)})),e.exports=n.concat(["gl_VertexID","gl_InstanceID","gl_Position","gl_PointSize","gl_FragCoord","gl_FrontFacing","gl_FragDepth","gl_PointCoord","gl_MaxVertexAttribs","gl_MaxVertexUniformVectors","gl_MaxVertexOutputVectors","gl_MaxFragmentInputVectors","gl_MaxVertexTextureImageUnits","gl_MaxCombinedTextureImageUnits","gl_MaxTextureImageUnits","gl_MaxFragmentUniformVectors","gl_MaxDrawBuffers","gl_MinProgramTexelOffset","gl_MaxProgramTexelOffset","gl_DepthRangeParameters","gl_DepthRange","trunc","round","roundEven","isnan","isinf","floatBitsToInt","floatBitsToUint","intBitsToFloat","uintBitsToFloat","packSnorm2x16","unpackSnorm2x16","packUnorm2x16","unpackUnorm2x16","packHalf2x16","unpackHalf2x16","outerProduct","transpose","determinant","inverse","texture","textureSize","textureProj","textureLod","textureOffset","texelFetch","texelFetchOffset","textureProjOffset","textureLodOffset","textureProjLod","textureProjLodOffset","textureGrad","textureGradOffset","textureProjGrad","textureProjGradOffset"])},{"./builtins":226}],226:[function(t,e,r){e.exports=["abs","acos","all","any","asin","atan","ceil","clamp","cos","cross","dFdx","dFdy","degrees","distance","dot","equal","exp","exp2","faceforward","floor","fract","gl_BackColor","gl_BackLightModelProduct","gl_BackLightProduct","gl_BackMaterial","gl_BackSecondaryColor","gl_ClipPlane","gl_ClipVertex","gl_Color","gl_DepthRange","gl_DepthRangeParameters","gl_EyePlaneQ","gl_EyePlaneR","gl_EyePlaneS","gl_EyePlaneT","gl_Fog","gl_FogCoord","gl_FogFragCoord","gl_FogParameters","gl_FragColor","gl_FragCoord","gl_FragData","gl_FragDepth","gl_FragDepthEXT","gl_FrontColor","gl_FrontFacing","gl_FrontLightModelProduct","gl_FrontLightProduct","gl_FrontMaterial","gl_FrontSecondaryColor","gl_LightModel","gl_LightModelParameters","gl_LightModelProducts","gl_LightProducts","gl_LightSource","gl_LightSourceParameters","gl_MaterialParameters","gl_MaxClipPlanes","gl_MaxCombinedTextureImageUnits","gl_MaxDrawBuffers","gl_MaxFragmentUniformComponents","gl_MaxLights","gl_MaxTextureCoords","gl_MaxTextureImageUnits","gl_MaxTextureUnits","gl_MaxVaryingFloats","gl_MaxVertexAttribs","gl_MaxVertexTextureImageUnits","gl_MaxVertexUniformComponents","gl_ModelViewMatrix","gl_ModelViewMatrixInverse","gl_ModelViewMatrixInverseTranspose","gl_ModelViewMatrixTranspose","gl_ModelViewProjectionMatrix","gl_ModelViewProjectionMatrixInverse","gl_ModelViewProjectionMatrixInverseTranspose","gl_ModelViewProjectionMatrixTranspose","gl_MultiTexCoord0","gl_MultiTexCoord1","gl_MultiTexCoord2","gl_MultiTexCoord3","gl_MultiTexCoord4","gl_MultiTexCoord5","gl_MultiTexCoord6","gl_MultiTexCoord7","gl_Normal","gl_NormalMatrix","gl_NormalScale","gl_ObjectPlaneQ","gl_ObjectPlaneR","gl_ObjectPlaneS","gl_ObjectPlaneT","gl_Point","gl_PointCoord","gl_PointParameters","gl_PointSize","gl_Position","gl_ProjectionMatrix","gl_ProjectionMatrixInverse","gl_ProjectionMatrixInverseTranspose","gl_ProjectionMatrixTranspose","gl_SecondaryColor","gl_TexCoord","gl_TextureEnvColor","gl_TextureMatrix","gl_TextureMatrixInverse","gl_TextureMatrixInverseTranspose","gl_TextureMatrixTranspose","gl_Vertex","greaterThan","greaterThanEqual","inversesqrt","length","lessThan","lessThanEqual","log","log2","matrixCompMult","max","min","mix","mod","normalize","not","notEqual","pow","radians","reflect","refract","sign","sin","smoothstep","sqrt","step","tan","texture2D","texture2DLod","texture2DProj","texture2DProjLod","textureCube","textureCubeLod","texture2DLodEXT","texture2DProjLodEXT","textureCubeLodEXT","texture2DGradEXT","texture2DProjGradEXT","textureCubeGradEXT"]},{}],227:[function(t,e,r){var n=t("./literals");e.exports=n.slice().concat(["layout","centroid","smooth","case","mat2x2","mat2x3","mat2x4","mat3x2","mat3x3","mat3x4","mat4x2","mat4x3","mat4x4","uvec2","uvec3","uvec4","samplerCubeShadow","sampler2DArray","sampler2DArrayShadow","isampler2D","isampler3D","isamplerCube","isampler2DArray","usampler2D","usampler3D","usamplerCube","usampler2DArray","coherent","restrict","readonly","writeonly","resource","atomic_uint","noperspective","patch","sample","subroutine","common","partition","active","filter","image1D","image2D","image3D","imageCube","iimage1D","iimage2D","iimage3D","iimageCube","uimage1D","uimage2D","uimage3D","uimageCube","image1DArray","image2DArray","iimage1DArray","iimage2DArray","uimage1DArray","uimage2DArray","image1DShadow","image2DShadow","image1DArrayShadow","image2DArrayShadow","imageBuffer","iimageBuffer","uimageBuffer","sampler1DArray","sampler1DArrayShadow","isampler1D","isampler1DArray","usampler1D","usampler1DArray","isampler2DRect","usampler2DRect","samplerBuffer","isamplerBuffer","usamplerBuffer","sampler2DMS","isampler2DMS","usampler2DMS","sampler2DMSArray","isampler2DMSArray","usampler2DMSArray"])},{"./literals":228}],228:[function(t,e,r){e.exports=["precision","highp","mediump","lowp","attribute","const","uniform","varying","break","continue","do","for","while","if","else","in","out","inout","float","int","uint","void","bool","true","false","discard","return","mat2","mat3","mat4","vec2","vec3","vec4","ivec2","ivec3","ivec4","bvec2","bvec3","bvec4","sampler1D","sampler2D","sampler3D","samplerCube","sampler1DShadow","sampler2DShadow","struct","asm","class","union","enum","typedef","template","this","packed","goto","switch","default","inline","noinline","volatile","public","static","extern","external","interface","long","short","double","half","fixed","unsigned","input","output","hvec2","hvec3","hvec4","dvec2","dvec3","dvec4","fvec2","fvec3","fvec4","sampler2DRect","sampler3DRect","sampler2DRectShadow","sizeof","cast","namespace","using"]},{}],229:[function(t,e,r){e.exports=["<<=",">>=","++","--","<<",">>","<=",">=","==","!=","&&","||","+=","-=","*=","/=","%=","&=","^^","^=","|=","(",")","[","]",".","!","~","*","/","%","+","-","<",">","&","^","|","?",":","=",",",";","{","}"]},{}],230:[function(t,e,r){var n=t("./index");e.exports=function(t,e){var r=n(e),i=[];return i=(i=i.concat(r(t))).concat(r(null))}},{"./index":224}],231:[function(t,e,r){e.exports=function(t){"string"==typeof t&&(t=[t]);for(var e=[].slice.call(arguments,1),r=[],n=0;n0;)for(var s=(t=o.pop()).adjacent,l=0;l<=r;++l){var c=s[l];if(c.boundary&&!(c.lastVisited<=-n)){for(var u=c.vertices,f=0;f<=r;++f){var h=u[f];i[f]=h<0?e:a[h]}var p=this.orient();if(p>0)return c;c.lastVisited=-n,0===p&&o.push(c)}}return null},u.walk=function(t,e){var r=this.vertices.length-1,n=this.dimension,i=this.vertices,a=this.tuple,o=e?this.interior.length*Math.random()|0:this.interior.length-1,s=this.interior[o];t:for(;!s.boundary;){for(var l=s.vertices,c=s.adjacent,u=0;u<=n;++u)a[u]=i[l[u]];s.lastVisited=r;for(u=0;u<=n;++u){var f=c[u];if(!(f.lastVisited>=r)){var h=a[u];a[u]=t;var p=this.orient();if(a[u]=h,p<0){s=f;continue t}f.boundary?f.lastVisited=-r:f.lastVisited=r}}return}return s},u.addPeaks=function(t,e){var r=this.vertices.length-1,n=this.dimension,i=this.vertices,l=this.tuple,c=this.interior,u=this.simplices,f=[e];e.lastVisited=r,e.vertices[e.vertices.indexOf(-1)]=r,e.boundary=!1,c.push(e);for(var h=[];f.length>0;){var p=(e=f.pop()).vertices,d=e.adjacent,m=p.indexOf(r);if(!(m<0))for(var g=0;g<=n;++g)if(g!==m){var v=d[g];if(v.boundary&&!(v.lastVisited>=r)){var y=v.vertices;if(v.lastVisited!==-r){for(var x=0,b=0;b<=n;++b)y[b]<0?(x=b,l[b]=t):l[b]=i[y[b]];if(this.orient()>0){y[x]=r,v.boundary=!1,c.push(v),f.push(v),v.lastVisited=r;continue}v.lastVisited=-r}var _=v.adjacent,w=p.slice(),T=d.slice(),k=new a(w,T,!0);u.push(k);var A=_.indexOf(e);if(!(A<0)){_[A]=k,T[m]=v,w[g]=-1,T[g]=e,d[g]=k,k.flip();for(b=0;b<=n;++b){var M=w[b];if(!(M<0||M===r)){for(var S=new Array(n-1),E=0,L=0;L<=n;++L){var C=w[L];C<0||L===b||(S[E++]=C)}h.push(new o(S,k,b))}}}}}}h.sort(s);for(g=0;g+1=0?o[l++]=s[u]:c=1&u;if(c===(1&t)){var f=o[0];o[0]=o[1],o[1]=f}e.push(o)}}return e}},{"robust-orientation":284,"simplicial-complex":293}],234:[function(t,e,r){"use strict";var n=t("binary-search-bounds");function i(t,e,r,n,i){this.mid=t,this.left=e,this.right=r,this.leftPoints=n,this.rightPoints=i,this.count=(e?e.count:0)+(r?r.count:0)+n.length}e.exports=function(t){if(!t||0===t.length)return new v(null);return new v(g(t))};var a=i.prototype;function o(t,e){t.mid=e.mid,t.left=e.left,t.right=e.right,t.leftPoints=e.leftPoints,t.rightPoints=e.rightPoints,t.count=e.count}function s(t,e){var r=g(e);t.mid=r.mid,t.left=r.left,t.right=r.right,t.leftPoints=r.leftPoints,t.rightPoints=r.rightPoints,t.count=r.count}function l(t,e){var r=t.intervals([]);r.push(e),s(t,r)}function c(t,e){var r=t.intervals([]),n=r.indexOf(e);return n<0?0:(r.splice(n,1),s(t,r),1)}function u(t,e,r){for(var n=0;n=0&&t[n][1]>=e;--n){var i=r(t[n]);if(i)return i}}function h(t,e){for(var r=0;r>1],a=[],o=[],s=[];for(r=0;r3*(e+1)?l(this,t):this.left.insert(t):this.left=g([t]);else if(t[0]>this.mid)this.right?4*(this.right.count+1)>3*(e+1)?l(this,t):this.right.insert(t):this.right=g([t]);else{var r=n.ge(this.leftPoints,t,d),i=n.ge(this.rightPoints,t,m);this.leftPoints.splice(r,0,t),this.rightPoints.splice(i,0,t)}},a.remove=function(t){var e=this.count-this.leftPoints;if(t[1]3*(e-1)?c(this,t):2===(s=this.left.remove(t))?(this.left=null,this.count-=1,1):(1===s&&(this.count-=1),s):0;if(t[0]>this.mid)return this.right?4*(this.left?this.left.count:0)>3*(e-1)?c(this,t):2===(s=this.right.remove(t))?(this.right=null,this.count-=1,1):(1===s&&(this.count-=1),s):0;if(1===this.count)return this.leftPoints[0]===t?2:0;if(1===this.leftPoints.length&&this.leftPoints[0]===t){if(this.left&&this.right){for(var r=this,i=this.left;i.right;)r=i,i=i.right;if(r===this)i.right=this.right;else{var a=this.left,s=this.right;r.count-=i.count,r.right=i.left,i.left=a,i.right=s}o(this,i),this.count=(this.left?this.left.count:0)+(this.right?this.right.count:0)+this.leftPoints.length}else this.left?o(this,this.left):o(this,this.right);return 1}for(a=n.ge(this.leftPoints,t,d);athis.mid){var r;if(this.right)if(r=this.right.queryPoint(t,e))return r;return f(this.rightPoints,t,e)}return h(this.leftPoints,e)},a.queryInterval=function(t,e,r){var n;if(tthis.mid&&this.right&&(n=this.right.queryInterval(t,e,r)))return n;return ethis.mid?f(this.rightPoints,t,r):h(this.leftPoints,r)};var y=v.prototype;y.insert=function(t){this.root?this.root.insert(t):this.root=new i(t[0],null,null,[t],[t])},y.remove=function(t){if(this.root){var e=this.root.remove(t);return 2===e&&(this.root=null),0!==e}return!1},y.queryPoint=function(t,e){if(this.root)return this.root.queryPoint(t,e)},y.queryInterval=function(t,e,r){if(t<=e&&this.root)return this.root.queryInterval(t,e,r)},Object.defineProperty(y,"count",{get:function(){return this.root?this.root.count:0}}),Object.defineProperty(y,"intervals",{get:function(){return this.root?this.root.intervals([]):[]}})},{"binary-search-bounds":31}],235:[function(t,e,r){"use strict";e.exports=function(t){for(var e=new Array(t),r=0;r - * @license MIT - */ -e.exports=function(t){return null!=t&&(n(t)||function(t){return"function"==typeof t.readFloatLE&&"function"==typeof t.slice&&n(t.slice(0,0))}(t)||!!t._isBuffer)}},{}],238:[function(t,e,r){"use strict";e.exports=a,e.exports.isMobile=a,e.exports.default=a;var n=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i,i=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino|android|ipad|playbook|silk/i;function a(t){t||(t={});var e=t.ua;if(e||"undefined"==typeof navigator||(e=navigator.userAgent),e&&e.headers&&"string"==typeof e.headers["user-agent"]&&(e=e.headers["user-agent"]),"string"!=typeof e)return!1;var r=t.tablet?i.test(e):n.test(e);return!r&&t.tablet&&t.featureDetect&&navigator&&navigator.maxTouchPoints>1&&-1!==e.indexOf("Macintosh")&&-1!==e.indexOf("Safari")&&(r=!0),r}},{}],239:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=t.length,n=0;n13)&&32!==e&&133!==e&&160!==e&&5760!==e&&6158!==e&&(e<8192||e>8205)&&8232!==e&&8233!==e&&8239!==e&&8287!==e&&8288!==e&&12288!==e&&65279!==e)return!1;return!0}},{}],240:[function(t,e,r){e.exports=function(t,e,r){return t*(1-r)+e*r}},{}],241:[function(t,e,r){var n=t("./normalize"),i=t("gl-mat4/create"),a=t("gl-mat4/clone"),o=t("gl-mat4/determinant"),s=t("gl-mat4/invert"),l=t("gl-mat4/transpose"),c={length:t("gl-vec3/length"),normalize:t("gl-vec3/normalize"),dot:t("gl-vec3/dot"),cross:t("gl-vec3/cross")},u=i(),f=i(),h=[0,0,0,0],p=[[0,0,0],[0,0,0],[0,0,0]],d=[0,0,0];function m(t,e,r,n,i){t[0]=e[0]*n+r[0]*i,t[1]=e[1]*n+r[1]*i,t[2]=e[2]*n+r[2]*i}e.exports=function(t,e,r,i,g,v){if(e||(e=[0,0,0]),r||(r=[0,0,0]),i||(i=[0,0,0]),g||(g=[0,0,0,1]),v||(v=[0,0,0,1]),!n(u,t))return!1;if(a(f,u),f[3]=0,f[7]=0,f[11]=0,f[15]=1,Math.abs(o(f)<1e-8))return!1;var y,x,b,_,w,T,k,A=u[3],M=u[7],S=u[11],E=u[12],L=u[13],C=u[14],P=u[15];if(0!==A||0!==M||0!==S){if(h[0]=A,h[1]=M,h[2]=S,h[3]=P,!s(f,f))return!1;l(f,f),y=g,b=f,_=(x=h)[0],w=x[1],T=x[2],k=x[3],y[0]=b[0]*_+b[4]*w+b[8]*T+b[12]*k,y[1]=b[1]*_+b[5]*w+b[9]*T+b[13]*k,y[2]=b[2]*_+b[6]*w+b[10]*T+b[14]*k,y[3]=b[3]*_+b[7]*w+b[11]*T+b[15]*k}else g[0]=g[1]=g[2]=0,g[3]=1;if(e[0]=E,e[1]=L,e[2]=C,function(t,e){t[0][0]=e[0],t[0][1]=e[1],t[0][2]=e[2],t[1][0]=e[4],t[1][1]=e[5],t[1][2]=e[6],t[2][0]=e[8],t[2][1]=e[9],t[2][2]=e[10]}(p,u),r[0]=c.length(p[0]),c.normalize(p[0],p[0]),i[0]=c.dot(p[0],p[1]),m(p[1],p[1],p[0],1,-i[0]),r[1]=c.length(p[1]),c.normalize(p[1],p[1]),i[0]/=r[1],i[1]=c.dot(p[0],p[2]),m(p[2],p[2],p[0],1,-i[1]),i[2]=c.dot(p[1],p[2]),m(p[2],p[2],p[1],1,-i[2]),r[2]=c.length(p[2]),c.normalize(p[2],p[2]),i[1]/=r[2],i[2]/=r[2],c.cross(d,p[1],p[2]),c.dot(p[0],d)<0)for(var I=0;I<3;I++)r[I]*=-1,p[I][0]*=-1,p[I][1]*=-1,p[I][2]*=-1;return v[0]=.5*Math.sqrt(Math.max(1+p[0][0]-p[1][1]-p[2][2],0)),v[1]=.5*Math.sqrt(Math.max(1-p[0][0]+p[1][1]-p[2][2],0)),v[2]=.5*Math.sqrt(Math.max(1-p[0][0]-p[1][1]+p[2][2],0)),v[3]=.5*Math.sqrt(Math.max(1+p[0][0]+p[1][1]+p[2][2],0)),p[2][1]>p[1][2]&&(v[0]=-v[0]),p[0][2]>p[2][0]&&(v[1]=-v[1]),p[1][0]>p[0][1]&&(v[2]=-v[2]),!0}},{"./normalize":242,"gl-mat4/clone":92,"gl-mat4/create":93,"gl-mat4/determinant":94,"gl-mat4/invert":98,"gl-mat4/transpose":109,"gl-vec3/cross":157,"gl-vec3/dot":162,"gl-vec3/length":172,"gl-vec3/normalize":179}],242:[function(t,e,r){e.exports=function(t,e){var r=e[15];if(0===r)return!1;for(var n=1/r,i=0;i<16;i++)t[i]=e[i]*n;return!0}},{}],243:[function(t,e,r){var n=t("gl-vec3/lerp"),i=t("mat4-recompose"),a=t("mat4-decompose"),o=t("gl-mat4/determinant"),s=t("quat-slerp"),l=f(),c=f(),u=f();function f(){return{translate:h(),scale:h(1),skew:h(),perspective:[0,0,0,1],quaternion:[0,0,0,1]}}function h(t){return[t||0,t||0,t||0]}e.exports=function(t,e,r,f){if(0===o(e)||0===o(r))return!1;var h=a(e,l.translate,l.scale,l.skew,l.perspective,l.quaternion),p=a(r,c.translate,c.scale,c.skew,c.perspective,c.quaternion);return!(!h||!p)&&(n(u.translate,l.translate,c.translate,f),n(u.skew,l.skew,c.skew,f),n(u.scale,l.scale,c.scale,f),n(u.perspective,l.perspective,c.perspective,f),s(u.quaternion,l.quaternion,c.quaternion,f),i(t,u.translate,u.scale,u.skew,u.perspective,u.quaternion),!0)}},{"gl-mat4/determinant":94,"gl-vec3/lerp":173,"mat4-decompose":241,"mat4-recompose":244,"quat-slerp":271}],244:[function(t,e,r){var n={identity:t("gl-mat4/identity"),translate:t("gl-mat4/translate"),multiply:t("gl-mat4/multiply"),create:t("gl-mat4/create"),scale:t("gl-mat4/scale"),fromRotationTranslation:t("gl-mat4/fromRotationTranslation")},i=(n.create(),n.create());e.exports=function(t,e,r,a,o,s){return n.identity(t),n.fromRotationTranslation(t,s,e),t[3]=o[0],t[7]=o[1],t[11]=o[2],t[15]=o[3],n.identity(i),0!==a[2]&&(i[9]=a[2],n.multiply(t,t,i)),0!==a[1]&&(i[9]=0,i[8]=a[1],n.multiply(t,t,i)),0!==a[0]&&(i[8]=0,i[4]=a[0],n.multiply(t,t,i)),n.scale(t,t,r),t}},{"gl-mat4/create":93,"gl-mat4/fromRotationTranslation":96,"gl-mat4/identity":97,"gl-mat4/multiply":100,"gl-mat4/scale":107,"gl-mat4/translate":108}],245:[function(t,e,r){"use strict";var n=t("binary-search-bounds"),i=t("mat4-interpolate"),a=t("gl-mat4/invert"),o=t("gl-mat4/rotateX"),s=t("gl-mat4/rotateY"),l=t("gl-mat4/rotateZ"),c=t("gl-mat4/lookAt"),u=t("gl-mat4/translate"),f=(t("gl-mat4/scale"),t("gl-vec3/normalize")),h=[0,0,0];function p(t){this._components=t.slice(),this._time=[0],this.prevMatrix=t.slice(),this.nextMatrix=t.slice(),this.computedMatrix=t.slice(),this.computedInverse=t.slice(),this.computedEye=[0,0,0],this.computedUp=[0,0,0],this.computedCenter=[0,0,0],this.computedRadius=[0],this._limits=[-1/0,1/0]}e.exports=function(t){return new p((t=t||{}).matrix||[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1])};var d=p.prototype;d.recalcMatrix=function(t){var e=this._time,r=n.le(e,t),o=this.computedMatrix;if(!(r<0)){var s=this._components;if(r===e.length-1)for(var l=16*r,c=0;c<16;++c)o[c]=s[l++];else{var u=e[r+1]-e[r],h=(l=16*r,this.prevMatrix),p=!0;for(c=0;c<16;++c)h[c]=s[l++];var d=this.nextMatrix;for(c=0;c<16;++c)d[c]=s[l++],p=p&&h[c]===d[c];if(u<1e-6||p)for(c=0;c<16;++c)o[c]=h[c];else i(o,h,d,(t-e[r])/u)}var m=this.computedUp;m[0]=o[1],m[1]=o[5],m[2]=o[9],f(m,m);var g=this.computedInverse;a(g,o);var v=this.computedEye,y=g[15];v[0]=g[12]/y,v[1]=g[13]/y,v[2]=g[14]/y;var x=this.computedCenter,b=Math.exp(this.computedRadius[0]);for(c=0;c<3;++c)x[c]=v[c]-o[2+4*c]*b}},d.idle=function(t){if(!(t1&&n(t[o[u-2]],t[o[u-1]],c)<=0;)u-=1,o.pop();for(o.push(l),u=s.length;u>1&&n(t[s[u-2]],t[s[u-1]],c)>=0;)u-=1,s.pop();s.push(l)}r=new Array(s.length+o.length-2);for(var f=0,h=(i=0,o.length);i0;--p)r[f++]=s[p];return r};var n=t("robust-orientation")[3]},{"robust-orientation":284}],247:[function(t,e,r){"use strict";e.exports=function(t,e){e||(e=t,t=window);var r=0,i=0,a=0,o={shift:!1,alt:!1,control:!1,meta:!1},s=!1;function l(t){var e=!1;return"altKey"in t&&(e=e||t.altKey!==o.alt,o.alt=!!t.altKey),"shiftKey"in t&&(e=e||t.shiftKey!==o.shift,o.shift=!!t.shiftKey),"ctrlKey"in t&&(e=e||t.ctrlKey!==o.control,o.control=!!t.ctrlKey),"metaKey"in t&&(e=e||t.metaKey!==o.meta,o.meta=!!t.metaKey),e}function c(t,s){var c=n.x(s),u=n.y(s);"buttons"in s&&(t=0|s.buttons),(t!==r||c!==i||u!==a||l(s))&&(r=0|t,i=c||0,a=u||0,e&&e(r,i,a,o))}function u(t){c(0,t)}function f(){(r||i||a||o.shift||o.alt||o.meta||o.control)&&(i=a=0,r=0,o.shift=o.alt=o.control=o.meta=!1,e&&e(0,0,0,o))}function h(t){l(t)&&e&&e(r,i,a,o)}function p(t){0===n.buttons(t)?c(0,t):c(r,t)}function d(t){c(r|n.buttons(t),t)}function m(t){c(r&~n.buttons(t),t)}function g(){s||(s=!0,t.addEventListener("mousemove",p),t.addEventListener("mousedown",d),t.addEventListener("mouseup",m),t.addEventListener("mouseleave",u),t.addEventListener("mouseenter",u),t.addEventListener("mouseout",u),t.addEventListener("mouseover",u),t.addEventListener("blur",f),t.addEventListener("keyup",h),t.addEventListener("keydown",h),t.addEventListener("keypress",h),t!==window&&(window.addEventListener("blur",f),window.addEventListener("keyup",h),window.addEventListener("keydown",h),window.addEventListener("keypress",h)))}g();var v={element:t};return Object.defineProperties(v,{enabled:{get:function(){return s},set:function(e){e?g():function(){if(!s)return;s=!1,t.removeEventListener("mousemove",p),t.removeEventListener("mousedown",d),t.removeEventListener("mouseup",m),t.removeEventListener("mouseleave",u),t.removeEventListener("mouseenter",u),t.removeEventListener("mouseout",u),t.removeEventListener("mouseover",u),t.removeEventListener("blur",f),t.removeEventListener("keyup",h),t.removeEventListener("keydown",h),t.removeEventListener("keypress",h),t!==window&&(window.removeEventListener("blur",f),window.removeEventListener("keyup",h),window.removeEventListener("keydown",h),window.removeEventListener("keypress",h))}()},enumerable:!0},buttons:{get:function(){return r},enumerable:!0},x:{get:function(){return i},enumerable:!0},y:{get:function(){return a},enumerable:!0},mods:{get:function(){return o},enumerable:!0}}),v};var n=t("mouse-event")},{"mouse-event":249}],248:[function(t,e,r){var n={left:0,top:0};e.exports=function(t,e,r){e=e||t.currentTarget||t.srcElement,Array.isArray(r)||(r=[0,0]);var i=t.clientX||0,a=t.clientY||0,o=(s=e,s===window||s===document||s===document.body?n:s.getBoundingClientRect());var s;return r[0]=i-o.left,r[1]=a-o.top,r}},{}],249:[function(t,e,r){"use strict";function n(t){return t.target||t.srcElement||window}r.buttons=function(t){if("object"==typeof t){if("buttons"in t)return t.buttons;if("which"in t){if(2===(e=t.which))return 4;if(3===e)return 2;if(e>0)return 1<=0)return 1< 0");"function"!=typeof t.vertex&&e("Must specify vertex creation function");"function"!=typeof t.cell&&e("Must specify cell creation function");"function"!=typeof t.phase&&e("Must specify phase function");for(var s=t.getters||[],l=new Array(a),c=0;c=0?l[c]=!0:l[c]=!1;return function(t,e,r,a,o,s){var l=[s,o].join(",");return(0,i[l])(t,e,r,n.mallocUint32,n.freeUint32)}(t.vertex,t.cell,t.phase,0,r,l)};var i={"false,0,1":function(t,e,r,n,i){return function(a,o,s,l){var c,u=0|a.shape[0],f=0|a.shape[1],h=a.data,p=0|a.offset,d=0|a.stride[0],m=0|a.stride[1],g=p,v=0|-d,y=0,x=0|-m,b=0,_=-d-m|0,w=0,T=0|d,k=m-d*u|0,A=0,M=0,S=0,E=2*u|0,L=n(E),C=n(E),P=0,I=0,O=-1,z=-1,D=0,R=0|-u,F=0|u,B=0,N=-u-1|0,j=u-1|0,U=0,V=0,H=0;for(A=0;A0){if(M=1,L[P++]=r(h[g],o,s,l),g+=T,u>0)for(A=1,c=h[g],I=L[P]=r(c,o,s,l),D=L[P+O],B=L[P+R],U=L[P+N],I===D&&I===B&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,D,B,U,o,s,l),V=C[P]=S++),P+=1,g+=T,A=2;A0)for(A=1,c=h[g],I=L[P]=r(c,o,s,l),D=L[P+O],B=L[P+R],U=L[P+N],I===D&&I===B&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,D,B,U,o,s,l),V=C[P]=S++,U!==B&&e(C[P+R],V,b,w,B,U,o,s,l)),P+=1,g+=T,A=2;A0){if(A=1,L[P++]=r(h[g],o,s,l),g+=T,f>0)for(M=1,c=h[g],I=L[P]=r(c,o,s,l),B=L[P+R],D=L[P+O],U=L[P+N],I===B&&I===D&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,B,D,U,o,s,l),V=C[P]=S++),P+=1,g+=T,M=2;M0)for(M=1,c=h[g],I=L[P]=r(c,o,s,l),B=L[P+R],D=L[P+O],U=L[P+N],I===B&&I===D&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,B,D,U,o,s,l),V=C[P]=S++,U!==B&&e(C[P+R],V,w,y,U,B,o,s,l)),P+=1,g+=T,M=2;M2&&a[1]>2&&n(i.pick(-1,-1).lo(1,1).hi(a[0]-2,a[1]-2),t.pick(-1,-1,0).lo(1,1).hi(a[0]-2,a[1]-2),t.pick(-1,-1,1).lo(1,1).hi(a[0]-2,a[1]-2)),a[1]>2&&(r(i.pick(0,-1).lo(1).hi(a[1]-2),t.pick(0,-1,1).lo(1).hi(a[1]-2)),e(t.pick(0,-1,0).lo(1).hi(a[1]-2))),a[1]>2&&(r(i.pick(a[0]-1,-1).lo(1).hi(a[1]-2),t.pick(a[0]-1,-1,1).lo(1).hi(a[1]-2)),e(t.pick(a[0]-1,-1,0).lo(1).hi(a[1]-2))),a[0]>2&&(r(i.pick(-1,0).lo(1).hi(a[0]-2),t.pick(-1,0,0).lo(1).hi(a[0]-2)),e(t.pick(-1,0,1).lo(1).hi(a[0]-2))),a[0]>2&&(r(i.pick(-1,a[1]-1).lo(1).hi(a[0]-2),t.pick(-1,a[1]-1,0).lo(1).hi(a[0]-2)),e(t.pick(-1,a[1]-1,1).lo(1).hi(a[0]-2))),t.set(0,0,0,0),t.set(0,0,1,0),t.set(a[0]-1,0,0,0),t.set(a[0]-1,0,1,0),t.set(0,a[1]-1,0,0),t.set(0,a[1]-1,1,0),t.set(a[0]-1,a[1]-1,0,0),t.set(a[0]-1,a[1]-1,1,0),t}}e.exports=function(t,e,r){return Array.isArray(r)||(r=n(e.dimension,"string"==typeof r?r:"clamp")),0===e.size?t:0===e.dimension?(t.set(0),t):function(t){var e=t.join();if(a=u[e])return a;for(var r=t.length,n=[f,h],i=1;i<=r;++i)n.push(p(i));var a=d.apply(void 0,n);return u[e]=a,a}(r)(t,e)}},{dup:65}],253:[function(t,e,r){"use strict";function n(t,e){var r=Math.floor(e),n=e-r,i=0<=r&&r0;){x<64?(l=x,x=0):(l=64,x-=64);for(var b=0|t[1];b>0;){b<64?(c=b,b=0):(c=64,b-=64),n=v+x*f+b*h,o=y+x*d+b*m;var _=0,w=0,T=0,k=p,A=f-u*p,M=h-l*f,S=g,E=d-u*g,L=m-l*d;for(T=0;T0;){m<64?(l=m,m=0):(l=64,m-=64);for(var g=0|t[0];g>0;){g<64?(s=g,g=0):(s=64,g-=64),n=p+m*u+g*c,o=d+m*h+g*f;var v=0,y=0,x=u,b=c-l*u,_=h,w=f-l*h;for(y=0;y0;){y<64?(c=y,y=0):(c=64,y-=64);for(var x=0|t[0];x>0;){x<64?(s=x,x=0):(s=64,x-=64);for(var b=0|t[1];b>0;){b<64?(l=b,b=0):(l=64,b-=64),n=g+y*h+x*u+b*f,o=v+y*m+x*p+b*d;var _=0,w=0,T=0,k=h,A=u-c*h,M=f-s*u,S=m,E=p-c*m,L=d-s*p;for(T=0;Tr;){v=0,y=m-o;e:for(g=0;gb)break e;y+=f,v+=h}for(v=m,y=m-o,g=0;g>1,q=H-j,G=H+j,Y=U,W=q,X=H,Z=G,J=V,K=i+1,Q=a-1,$=!0,tt=0,et=0,rt=0,nt=f,it=e(nt),at=e(nt);A=l*Y,M=l*W,N=s;t:for(k=0;k0){g=Y,Y=W,W=g;break t}if(rt<0)break t;N+=p}A=l*Z,M=l*J,N=s;t:for(k=0;k0){g=Z,Z=J,J=g;break t}if(rt<0)break t;N+=p}A=l*Y,M=l*X,N=s;t:for(k=0;k0){g=Y,Y=X,X=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*X,N=s;t:for(k=0;k0){g=W,W=X,X=g;break t}if(rt<0)break t;N+=p}A=l*Y,M=l*Z,N=s;t:for(k=0;k0){g=Y,Y=Z,Z=g;break t}if(rt<0)break t;N+=p}A=l*X,M=l*Z,N=s;t:for(k=0;k0){g=X,X=Z,Z=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*J,N=s;t:for(k=0;k0){g=W,W=J,J=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*X,N=s;t:for(k=0;k0){g=W,W=X,X=g;break t}if(rt<0)break t;N+=p}A=l*Z,M=l*J,N=s;t:for(k=0;k0){g=Z,Z=J,J=g;break t}if(rt<0)break t;N+=p}for(A=l*Y,M=l*W,S=l*X,E=l*Z,L=l*J,C=l*U,P=l*H,I=l*V,B=0,N=s,k=0;k0)){if(rt<0){for(A=l*b,M=l*K,S=l*Q,N=s,k=0;k0)for(;;){_=s+Q*l,B=0;t:for(k=0;k0)){_=s+Q*l,B=0;t:for(k=0;kV){t:for(;;){for(_=s+K*l,B=0,N=s,k=0;k1&&n?s(r,n[0],n[1]):s(r)}(t,e,l);return n(l,c)}},{"typedarray-pool":308}],258:[function(t,e,r){"use strict";var n=t("./lib/compile_sort.js"),i={};e.exports=function(t){var e=t.order,r=t.dtype,a=[e,r].join(":"),o=i[a];return o||(i[a]=o=n(e,r)),o(t),t}},{"./lib/compile_sort.js":257}],259:[function(t,e,r){var n=t("is-buffer"),i="undefined"!=typeof Float64Array;function a(t,e){return t[0]-e[0]}function o(){var t,e=this.stride,r=new Array(e.length);for(t=0;t=0&&(e+=a*(r=0|t),i-=r),new n(this.data,i,a,e)},i.step=function(t){var e=this.shape[0],r=this.stride[0],i=this.offset,a=0,o=Math.ceil;return"number"==typeof t&&((a=0|t)<0?(i+=r*(e-1),e=o(-e/a)):e=o(e/a),r*=a),new n(this.data,e,r,i)},i.transpose=function(t){t=void 0===t?0:0|t;var e=this.shape,r=this.stride;return new n(this.data,e[t],r[t],this.offset)},i.pick=function(t){var r=[],n=[],i=this.offset;return"number"==typeof t&&t>=0?i=i+this.stride[0]*t|0:(r.push(this.shape[0]),n.push(this.stride[0])),(0,e[r.length+1])(this.data,r,n,i)},function(t,e,r,i){return new n(t,e[0],r[0],i)}},2:function(t,e,r){function n(t,e,r,n,i,a){this.data=t,this.shape=[e,r],this.stride=[n,i],this.offset=0|a}var i=n.prototype;return i.dtype=t,i.dimension=2,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]}}),Object.defineProperty(i,"order",{get:function(){return Math.abs(this.stride[0])>Math.abs(this.stride[1])?[1,0]:[0,1]}}),i.set=function(e,r,n){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r,n):this.data[this.offset+this.stride[0]*e+this.stride[1]*r]=n},i.get=function(e,r){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r):this.data[this.offset+this.stride[0]*e+this.stride[1]*r]},i.index=function(t,e){return this.offset+this.stride[0]*t+this.stride[1]*e},i.hi=function(t,e){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,this.stride[0],this.stride[1],this.offset)},i.lo=function(t,e){var r=this.offset,i=0,a=this.shape[0],o=this.shape[1],s=this.stride[0],l=this.stride[1];return"number"==typeof t&&t>=0&&(r+=s*(i=0|t),a-=i),"number"==typeof e&&e>=0&&(r+=l*(i=0|e),o-=i),new n(this.data,a,o,s,l,r)},i.step=function(t,e){var r=this.shape[0],i=this.shape[1],a=this.stride[0],o=this.stride[1],s=this.offset,l=0,c=Math.ceil;return"number"==typeof t&&((l=0|t)<0?(s+=a*(r-1),r=c(-r/l)):r=c(r/l),a*=l),"number"==typeof e&&((l=0|e)<0?(s+=o*(i-1),i=c(-i/l)):i=c(i/l),o*=l),new n(this.data,r,i,a,o,s)},i.transpose=function(t,e){t=void 0===t?0:0|t,e=void 0===e?1:0|e;var r=this.shape,i=this.stride;return new n(this.data,r[t],r[e],i[t],i[e],this.offset)},i.pick=function(t,r){var n=[],i=[],a=this.offset;return"number"==typeof t&&t>=0?a=a+this.stride[0]*t|0:(n.push(this.shape[0]),i.push(this.stride[0])),"number"==typeof r&&r>=0?a=a+this.stride[1]*r|0:(n.push(this.shape[1]),i.push(this.stride[1])),(0,e[n.length+1])(this.data,n,i,a)},function(t,e,r,i){return new n(t,e[0],e[1],r[0],r[1],i)}},3:function(t,e,r){function n(t,e,r,n,i,a,o,s){this.data=t,this.shape=[e,r,n],this.stride=[i,a,o],this.offset=0|s}var i=n.prototype;return i.dtype=t,i.dimension=3,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]}}),Object.defineProperty(i,"order",{get:function(){var t=Math.abs(this.stride[0]),e=Math.abs(this.stride[1]),r=Math.abs(this.stride[2]);return t>e?e>r?[2,1,0]:t>r?[1,2,0]:[1,0,2]:t>r?[2,0,1]:r>e?[0,1,2]:[0,2,1]}}),i.set=function(e,r,n,i){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n,i):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n]=i},i.get=function(e,r,n){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n]},i.index=function(t,e,r){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r},i.hi=function(t,e,r){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,this.stride[0],this.stride[1],this.stride[2],this.offset)},i.lo=function(t,e,r){var i=this.offset,a=0,o=this.shape[0],s=this.shape[1],l=this.shape[2],c=this.stride[0],u=this.stride[1],f=this.stride[2];return"number"==typeof t&&t>=0&&(i+=c*(a=0|t),o-=a),"number"==typeof e&&e>=0&&(i+=u*(a=0|e),s-=a),"number"==typeof r&&r>=0&&(i+=f*(a=0|r),l-=a),new n(this.data,o,s,l,c,u,f,i)},i.step=function(t,e,r){var i=this.shape[0],a=this.shape[1],o=this.shape[2],s=this.stride[0],l=this.stride[1],c=this.stride[2],u=this.offset,f=0,h=Math.ceil;return"number"==typeof t&&((f=0|t)<0?(u+=s*(i-1),i=h(-i/f)):i=h(i/f),s*=f),"number"==typeof e&&((f=0|e)<0?(u+=l*(a-1),a=h(-a/f)):a=h(a/f),l*=f),"number"==typeof r&&((f=0|r)<0?(u+=c*(o-1),o=h(-o/f)):o=h(o/f),c*=f),new n(this.data,i,a,o,s,l,c,u)},i.transpose=function(t,e,r){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r;var i=this.shape,a=this.stride;return new n(this.data,i[t],i[e],i[r],a[t],a[e],a[r],this.offset)},i.pick=function(t,r,n){var i=[],a=[],o=this.offset;return"number"==typeof t&&t>=0?o=o+this.stride[0]*t|0:(i.push(this.shape[0]),a.push(this.stride[0])),"number"==typeof r&&r>=0?o=o+this.stride[1]*r|0:(i.push(this.shape[1]),a.push(this.stride[1])),"number"==typeof n&&n>=0?o=o+this.stride[2]*n|0:(i.push(this.shape[2]),a.push(this.stride[2])),(0,e[i.length+1])(this.data,i,a,o)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],r[0],r[1],r[2],i)}},4:function(t,e,r){function n(t,e,r,n,i,a,o,s,l,c){this.data=t,this.shape=[e,r,n,i],this.stride=[a,o,s,l],this.offset=0|c}var i=n.prototype;return i.dtype=t,i.dimension=4,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]*this.shape[3]}}),Object.defineProperty(i,"order",{get:r}),i.set=function(e,r,n,i,a){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i,a):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i]=a},i.get=function(e,r,n,i){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i]},i.index=function(t,e,r,n){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r+this.stride[3]*n},i.hi=function(t,e,r,i){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,"number"!=typeof i||i<0?this.shape[3]:0|i,this.stride[0],this.stride[1],this.stride[2],this.stride[3],this.offset)},i.lo=function(t,e,r,i){var a=this.offset,o=0,s=this.shape[0],l=this.shape[1],c=this.shape[2],u=this.shape[3],f=this.stride[0],h=this.stride[1],p=this.stride[2],d=this.stride[3];return"number"==typeof t&&t>=0&&(a+=f*(o=0|t),s-=o),"number"==typeof e&&e>=0&&(a+=h*(o=0|e),l-=o),"number"==typeof r&&r>=0&&(a+=p*(o=0|r),c-=o),"number"==typeof i&&i>=0&&(a+=d*(o=0|i),u-=o),new n(this.data,s,l,c,u,f,h,p,d,a)},i.step=function(t,e,r,i){var a=this.shape[0],o=this.shape[1],s=this.shape[2],l=this.shape[3],c=this.stride[0],u=this.stride[1],f=this.stride[2],h=this.stride[3],p=this.offset,d=0,m=Math.ceil;return"number"==typeof t&&((d=0|t)<0?(p+=c*(a-1),a=m(-a/d)):a=m(a/d),c*=d),"number"==typeof e&&((d=0|e)<0?(p+=u*(o-1),o=m(-o/d)):o=m(o/d),u*=d),"number"==typeof r&&((d=0|r)<0?(p+=f*(s-1),s=m(-s/d)):s=m(s/d),f*=d),"number"==typeof i&&((d=0|i)<0?(p+=h*(l-1),l=m(-l/d)):l=m(l/d),h*=d),new n(this.data,a,o,s,l,c,u,f,h,p)},i.transpose=function(t,e,r,i){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r,i=void 0===i?3:0|i;var a=this.shape,o=this.stride;return new n(this.data,a[t],a[e],a[r],a[i],o[t],o[e],o[r],o[i],this.offset)},i.pick=function(t,r,n,i){var a=[],o=[],s=this.offset;return"number"==typeof t&&t>=0?s=s+this.stride[0]*t|0:(a.push(this.shape[0]),o.push(this.stride[0])),"number"==typeof r&&r>=0?s=s+this.stride[1]*r|0:(a.push(this.shape[1]),o.push(this.stride[1])),"number"==typeof n&&n>=0?s=s+this.stride[2]*n|0:(a.push(this.shape[2]),o.push(this.stride[2])),"number"==typeof i&&i>=0?s=s+this.stride[3]*i|0:(a.push(this.shape[3]),o.push(this.stride[3])),(0,e[a.length+1])(this.data,a,o,s)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],e[3],r[0],r[1],r[2],r[3],i)}},5:function(t,e,r){function n(t,e,r,n,i,a,o,s,l,c,u,f){this.data=t,this.shape=[e,r,n,i,a],this.stride=[o,s,l,c,u],this.offset=0|f}var i=n.prototype;return i.dtype=t,i.dimension=5,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]*this.shape[3]*this.shape[4]}}),Object.defineProperty(i,"order",{get:r}),i.set=function(e,r,n,i,a,o){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a,o):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a]=o},i.get=function(e,r,n,i,a){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a]},i.index=function(t,e,r,n,i){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r+this.stride[3]*n+this.stride[4]*i},i.hi=function(t,e,r,i,a){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,"number"!=typeof i||i<0?this.shape[3]:0|i,"number"!=typeof a||a<0?this.shape[4]:0|a,this.stride[0],this.stride[1],this.stride[2],this.stride[3],this.stride[4],this.offset)},i.lo=function(t,e,r,i,a){var o=this.offset,s=0,l=this.shape[0],c=this.shape[1],u=this.shape[2],f=this.shape[3],h=this.shape[4],p=this.stride[0],d=this.stride[1],m=this.stride[2],g=this.stride[3],v=this.stride[4];return"number"==typeof t&&t>=0&&(o+=p*(s=0|t),l-=s),"number"==typeof e&&e>=0&&(o+=d*(s=0|e),c-=s),"number"==typeof r&&r>=0&&(o+=m*(s=0|r),u-=s),"number"==typeof i&&i>=0&&(o+=g*(s=0|i),f-=s),"number"==typeof a&&a>=0&&(o+=v*(s=0|a),h-=s),new n(this.data,l,c,u,f,h,p,d,m,g,v,o)},i.step=function(t,e,r,i,a){var o=this.shape[0],s=this.shape[1],l=this.shape[2],c=this.shape[3],u=this.shape[4],f=this.stride[0],h=this.stride[1],p=this.stride[2],d=this.stride[3],m=this.stride[4],g=this.offset,v=0,y=Math.ceil;return"number"==typeof t&&((v=0|t)<0?(g+=f*(o-1),o=y(-o/v)):o=y(o/v),f*=v),"number"==typeof e&&((v=0|e)<0?(g+=h*(s-1),s=y(-s/v)):s=y(s/v),h*=v),"number"==typeof r&&((v=0|r)<0?(g+=p*(l-1),l=y(-l/v)):l=y(l/v),p*=v),"number"==typeof i&&((v=0|i)<0?(g+=d*(c-1),c=y(-c/v)):c=y(c/v),d*=v),"number"==typeof a&&((v=0|a)<0?(g+=m*(u-1),u=y(-u/v)):u=y(u/v),m*=v),new n(this.data,o,s,l,c,u,f,h,p,d,m,g)},i.transpose=function(t,e,r,i,a){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r,i=void 0===i?3:0|i,a=void 0===a?4:0|a;var o=this.shape,s=this.stride;return new n(this.data,o[t],o[e],o[r],o[i],o[a],s[t],s[e],s[r],s[i],s[a],this.offset)},i.pick=function(t,r,n,i,a){var o=[],s=[],l=this.offset;return"number"==typeof t&&t>=0?l=l+this.stride[0]*t|0:(o.push(this.shape[0]),s.push(this.stride[0])),"number"==typeof r&&r>=0?l=l+this.stride[1]*r|0:(o.push(this.shape[1]),s.push(this.stride[1])),"number"==typeof n&&n>=0?l=l+this.stride[2]*n|0:(o.push(this.shape[2]),s.push(this.stride[2])),"number"==typeof i&&i>=0?l=l+this.stride[3]*i|0:(o.push(this.shape[3]),s.push(this.stride[3])),"number"==typeof a&&a>=0?l=l+this.stride[4]*a|0:(o.push(this.shape[4]),s.push(this.stride[4])),(0,e[o.length+1])(this.data,o,s,l)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],e[3],e[4],r[0],r[1],r[2],r[3],r[4],i)}}};function l(t,e){var r=-1===e?"T":String(e),n=s[r];return-1===e?n(t):0===e?n(t,c[t][0]):n(t,c[t],o)}var c={generic:[],buffer:[],array:[],float32:[],float64:[],int8:[],int16:[],int32:[],uint8_clamped:[],uint8:[],uint16:[],uint32:[],bigint64:[],biguint64:[]};e.exports=function(t,e,r,a){if(void 0===t)return(0,c.array[0])([]);"number"==typeof t&&(t=[t]),void 0===e&&(e=[t.length]);var o=e.length;if(void 0===r){r=new Array(o);for(var s=o-1,u=1;s>=0;--s)r[s]=u,u*=e[s]}if(void 0===a){a=0;for(s=0;st==t>0?a===-1>>>0?(r+=1,a=0):a+=1:0===a?(a=-1>>>0,r-=1):a-=1;return n.pack(a,r)}},{"double-bits":64}],261:[function(t,e,r){r.vertexNormals=function(t,e,r){for(var n=e.length,i=new Array(n),a=void 0===r?1e-6:r,o=0;oa){var b=i[c],_=1/Math.sqrt(g*y);for(x=0;x<3;++x){var w=(x+1)%3,T=(x+2)%3;b[x]+=_*(v[w]*m[T]-v[T]*m[w])}}}for(o=0;oa)for(_=1/Math.sqrt(k),x=0;x<3;++x)b[x]*=_;else for(x=0;x<3;++x)b[x]=0}return i},r.faceNormals=function(t,e,r){for(var n=t.length,i=new Array(n),a=void 0===r?1e-6:r,o=0;oa?1/Math.sqrt(p):0;for(c=0;c<3;++c)h[c]*=p;i[o]=h}return i}},{}],262:[function(t,e,r){"use strict";e.exports=function(t,e,r,n,i,a,o,s,l,c){var u=e+a+c;if(f>0){var f=Math.sqrt(u+1);t[0]=.5*(o-l)/f,t[1]=.5*(s-n)/f,t[2]=.5*(r-a)/f,t[3]=.5*f}else{var h=Math.max(e,a,c);f=Math.sqrt(2*h-u+1);e>=h?(t[0]=.5*f,t[1]=.5*(i+r)/f,t[2]=.5*(s+n)/f,t[3]=.5*(o-l)/f):a>=h?(t[0]=.5*(r+i)/f,t[1]=.5*f,t[2]=.5*(l+o)/f,t[3]=.5*(s-n)/f):(t[0]=.5*(n+s)/f,t[1]=.5*(o+l)/f,t[2]=.5*f,t[3]=.5*(r-i)/f)}return t}},{}],263:[function(t,e,r){"use strict";e.exports=function(t){var e=(t=t||{}).center||[0,0,0],r=t.rotation||[0,0,0,1],n=t.radius||1;e=[].slice.call(e,0,3),u(r=[].slice.call(r,0,4),r);var i=new f(r,e,Math.log(n));i.setDistanceLimits(t.zoomMin,t.zoomMax),("eye"in t||"up"in t)&&i.lookAt(0,t.eye,t.center,t.up);return i};var n=t("filtered-vector"),i=t("gl-mat4/lookAt"),a=t("gl-mat4/fromQuat"),o=t("gl-mat4/invert"),s=t("./lib/quatFromFrame");function l(t,e,r){return Math.sqrt(Math.pow(t,2)+Math.pow(e,2)+Math.pow(r,2))}function c(t,e,r,n){return Math.sqrt(Math.pow(t,2)+Math.pow(e,2)+Math.pow(r,2)+Math.pow(n,2))}function u(t,e){var r=e[0],n=e[1],i=e[2],a=e[3],o=c(r,n,i,a);o>1e-6?(t[0]=r/o,t[1]=n/o,t[2]=i/o,t[3]=a/o):(t[0]=t[1]=t[2]=0,t[3]=1)}function f(t,e,r){this.radius=n([r]),this.center=n(e),this.rotation=n(t),this.computedRadius=this.radius.curve(0),this.computedCenter=this.center.curve(0),this.computedRotation=this.rotation.curve(0),this.computedUp=[.1,0,0],this.computedEye=[.1,0,0],this.computedMatrix=[.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],this.recalcMatrix(0)}var h=f.prototype;h.lastT=function(){return Math.max(this.radius.lastT(),this.center.lastT(),this.rotation.lastT())},h.recalcMatrix=function(t){this.radius.curve(t),this.center.curve(t),this.rotation.curve(t);var e=this.computedRotation;u(e,e);var r=this.computedMatrix;a(r,e);var n=this.computedCenter,i=this.computedEye,o=this.computedUp,s=Math.exp(this.computedRadius[0]);i[0]=n[0]+s*r[2],i[1]=n[1]+s*r[6],i[2]=n[2]+s*r[10],o[0]=r[1],o[1]=r[5],o[2]=r[9];for(var l=0;l<3;++l){for(var c=0,f=0;f<3;++f)c+=r[l+4*f]*i[f];r[12+l]=-c}},h.getMatrix=function(t,e){this.recalcMatrix(t);var r=this.computedMatrix;if(e){for(var n=0;n<16;++n)e[n]=r[n];return e}return r},h.idle=function(t){this.center.idle(t),this.radius.idle(t),this.rotation.idle(t)},h.flush=function(t){this.center.flush(t),this.radius.flush(t),this.rotation.flush(t)},h.pan=function(t,e,r,n){e=e||0,r=r||0,n=n||0,this.recalcMatrix(t);var i=this.computedMatrix,a=i[1],o=i[5],s=i[9],c=l(a,o,s);a/=c,o/=c,s/=c;var u=i[0],f=i[4],h=i[8],p=u*a+f*o+h*s,d=l(u-=a*p,f-=o*p,h-=s*p);u/=d,f/=d,h/=d;var m=i[2],g=i[6],v=i[10],y=m*a+g*o+v*s,x=m*u+g*f+v*h,b=l(m-=y*a+x*u,g-=y*o+x*f,v-=y*s+x*h);m/=b,g/=b,v/=b;var _=u*e+a*r,w=f*e+o*r,T=h*e+s*r;this.center.move(t,_,w,T);var k=Math.exp(this.computedRadius[0]);k=Math.max(1e-4,k+n),this.radius.set(t,Math.log(k))},h.rotate=function(t,e,r,n){this.recalcMatrix(t),e=e||0,r=r||0;var i=this.computedMatrix,a=i[0],o=i[4],s=i[8],u=i[1],f=i[5],h=i[9],p=i[2],d=i[6],m=i[10],g=e*a+r*u,v=e*o+r*f,y=e*s+r*h,x=-(d*y-m*v),b=-(m*g-p*y),_=-(p*v-d*g),w=Math.sqrt(Math.max(0,1-Math.pow(x,2)-Math.pow(b,2)-Math.pow(_,2))),T=c(x,b,_,w);T>1e-6?(x/=T,b/=T,_/=T,w/=T):(x=b=_=0,w=1);var k=this.computedRotation,A=k[0],M=k[1],S=k[2],E=k[3],L=A*w+E*x+M*_-S*b,C=M*w+E*b+S*x-A*_,P=S*w+E*_+A*b-M*x,I=E*w-A*x-M*b-S*_;if(n){x=p,b=d,_=m;var O=Math.sin(n)/l(x,b,_);x*=O,b*=O,_*=O,I=I*(w=Math.cos(e))-(L=L*w+I*x+C*_-P*b)*x-(C=C*w+I*b+P*x-L*_)*b-(P=P*w+I*_+L*b-C*x)*_}var z=c(L,C,P,I);z>1e-6?(L/=z,C/=z,P/=z,I/=z):(L=C=P=0,I=1),this.rotation.set(t,L,C,P,I)},h.lookAt=function(t,e,r,n){this.recalcMatrix(t),r=r||this.computedCenter,e=e||this.computedEye,n=n||this.computedUp;var a=this.computedMatrix;i(a,e,r,n);var o=this.computedRotation;s(o,a[0],a[1],a[2],a[4],a[5],a[6],a[8],a[9],a[10]),u(o,o),this.rotation.set(t,o[0],o[1],o[2],o[3]);for(var l=0,c=0;c<3;++c)l+=Math.pow(r[c]-e[c],2);this.radius.set(t,.5*Math.log(Math.max(l,1e-6))),this.center.set(t,r[0],r[1],r[2])},h.translate=function(t,e,r,n){this.center.move(t,e||0,r||0,n||0)},h.setMatrix=function(t,e){var r=this.computedRotation;s(r,e[0],e[1],e[2],e[4],e[5],e[6],e[8],e[9],e[10]),u(r,r),this.rotation.set(t,r[0],r[1],r[2],r[3]);var n=this.computedMatrix;o(n,e);var i=n[15];if(Math.abs(i)>1e-6){var a=n[12]/i,l=n[13]/i,c=n[14]/i;this.recalcMatrix(t);var f=Math.exp(this.computedRadius[0]);this.center.set(t,a-n[2]*f,l-n[6]*f,c-n[10]*f),this.radius.idle(t)}else this.center.idle(t),this.radius.idle(t)},h.setDistance=function(t,e){e>0&&this.radius.set(t,Math.log(e))},h.setDistanceLimits=function(t,e){t=t>0?Math.log(t):-1/0,e=e>0?Math.log(e):1/0,e=Math.max(e,t),this.radius.bounds[0][0]=t,this.radius.bounds[1][0]=e},h.getDistanceLimits=function(t){var e=this.radius.bounds;return t?(t[0]=Math.exp(e[0][0]),t[1]=Math.exp(e[1][0]),t):[Math.exp(e[0][0]),Math.exp(e[1][0])]},h.toJSON=function(){return this.recalcMatrix(this.lastT()),{center:this.computedCenter.slice(),rotation:this.computedRotation.slice(),distance:Math.log(this.computedRadius[0]),zoomMin:this.radius.bounds[0][0],zoomMax:this.radius.bounds[1][0]}},h.fromJSON=function(t){var e=this.lastT(),r=t.center;r&&this.center.set(e,r[0],r[1],r[2]);var n=t.rotation;n&&this.rotation.set(e,n[0],n[1],n[2],n[3]);var i=t.distance;i&&i>0&&this.radius.set(e,Math.log(i)),this.setDistanceLimits(t.zoomMin,t.zoomMax)}},{"./lib/quatFromFrame":262,"filtered-vector":68,"gl-mat4/fromQuat":95,"gl-mat4/invert":98,"gl-mat4/lookAt":99}],264:[function(t,e,r){ +"use strict";var n=Object.getOwnPropertySymbols,i=Object.prototype.hasOwnProperty,a=Object.prototype.propertyIsEnumerable;function o(t){if(null==t)throw new TypeError("Object.assign cannot be called with null or undefined");return Object(t)}e.exports=function(){try{if(!Object.assign)return!1;var t=new String("abc");if(t[5]="de","5"===Object.getOwnPropertyNames(t)[0])return!1;for(var e={},r=0;r<10;r++)e["_"+String.fromCharCode(r)]=r;if("0123456789"!==Object.getOwnPropertyNames(e).map((function(t){return e[t]})).join(""))return!1;var n={};return"abcdefghijklmnopqrst".split("").forEach((function(t){n[t]=t})),"abcdefghijklmnopqrst"===Object.keys(Object.assign({},n)).join("")}catch(t){return!1}}()?Object.assign:function(t,e){for(var r,s,l=o(t),c=1;c0){var f=Math.sqrt(u+1);t[0]=.5*(o-l)/f,t[1]=.5*(s-n)/f,t[2]=.5*(r-a)/f,t[3]=.5*f}else{var h=Math.max(e,a,c);f=Math.sqrt(2*h-u+1);e>=h?(t[0]=.5*f,t[1]=.5*(i+r)/f,t[2]=.5*(s+n)/f,t[3]=.5*(o-l)/f):a>=h?(t[0]=.5*(r+i)/f,t[1]=.5*f,t[2]=.5*(l+o)/f,t[3]=.5*(s-n)/f):(t[0]=.5*(n+s)/f,t[1]=.5*(o+l)/f,t[2]=.5*f,t[3]=.5*(r-i)/f)}return t}},{}],468:[function(t,e,r){"use strict";e.exports=function(t){var e=(t=t||{}).center||[0,0,0],r=t.rotation||[0,0,0,1],n=t.radius||1;e=[].slice.call(e,0,3),u(r=[].slice.call(r,0,4),r);var i=new f(r,e,Math.log(n));i.setDistanceLimits(t.zoomMin,t.zoomMax),("eye"in t||"up"in t)&&i.lookAt(0,t.eye,t.center,t.up);return i};var n=t("filtered-vector"),i=t("gl-mat4/lookAt"),a=t("gl-mat4/fromQuat"),o=t("gl-mat4/invert"),s=t("./lib/quatFromFrame");function l(t,e,r){return Math.sqrt(Math.pow(t,2)+Math.pow(e,2)+Math.pow(r,2))}function c(t,e,r,n){return Math.sqrt(Math.pow(t,2)+Math.pow(e,2)+Math.pow(r,2)+Math.pow(n,2))}function u(t,e){var r=e[0],n=e[1],i=e[2],a=e[3],o=c(r,n,i,a);o>1e-6?(t[0]=r/o,t[1]=n/o,t[2]=i/o,t[3]=a/o):(t[0]=t[1]=t[2]=0,t[3]=1)}function f(t,e,r){this.radius=n([r]),this.center=n(e),this.rotation=n(t),this.computedRadius=this.radius.curve(0),this.computedCenter=this.center.curve(0),this.computedRotation=this.rotation.curve(0),this.computedUp=[.1,0,0],this.computedEye=[.1,0,0],this.computedMatrix=[.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],this.recalcMatrix(0)}var h=f.prototype;h.lastT=function(){return Math.max(this.radius.lastT(),this.center.lastT(),this.rotation.lastT())},h.recalcMatrix=function(t){this.radius.curve(t),this.center.curve(t),this.rotation.curve(t);var e=this.computedRotation;u(e,e);var r=this.computedMatrix;a(r,e);var n=this.computedCenter,i=this.computedEye,o=this.computedUp,s=Math.exp(this.computedRadius[0]);i[0]=n[0]+s*r[2],i[1]=n[1]+s*r[6],i[2]=n[2]+s*r[10],o[0]=r[1],o[1]=r[5],o[2]=r[9];for(var l=0;l<3;++l){for(var c=0,f=0;f<3;++f)c+=r[l+4*f]*i[f];r[12+l]=-c}},h.getMatrix=function(t,e){this.recalcMatrix(t);var r=this.computedMatrix;if(e){for(var n=0;n<16;++n)e[n]=r[n];return e}return r},h.idle=function(t){this.center.idle(t),this.radius.idle(t),this.rotation.idle(t)},h.flush=function(t){this.center.flush(t),this.radius.flush(t),this.rotation.flush(t)},h.pan=function(t,e,r,n){e=e||0,r=r||0,n=n||0,this.recalcMatrix(t);var i=this.computedMatrix,a=i[1],o=i[5],s=i[9],c=l(a,o,s);a/=c,o/=c,s/=c;var u=i[0],f=i[4],h=i[8],p=u*a+f*o+h*s,d=l(u-=a*p,f-=o*p,h-=s*p);u/=d,f/=d,h/=d;var m=i[2],g=i[6],v=i[10],y=m*a+g*o+v*s,x=m*u+g*f+v*h,b=l(m-=y*a+x*u,g-=y*o+x*f,v-=y*s+x*h);m/=b,g/=b,v/=b;var _=u*e+a*r,w=f*e+o*r,T=h*e+s*r;this.center.move(t,_,w,T);var k=Math.exp(this.computedRadius[0]);k=Math.max(1e-4,k+n),this.radius.set(t,Math.log(k))},h.rotate=function(t,e,r,n){this.recalcMatrix(t),e=e||0,r=r||0;var i=this.computedMatrix,a=i[0],o=i[4],s=i[8],u=i[1],f=i[5],h=i[9],p=i[2],d=i[6],m=i[10],g=e*a+r*u,v=e*o+r*f,y=e*s+r*h,x=-(d*y-m*v),b=-(m*g-p*y),_=-(p*v-d*g),w=Math.sqrt(Math.max(0,1-Math.pow(x,2)-Math.pow(b,2)-Math.pow(_,2))),T=c(x,b,_,w);T>1e-6?(x/=T,b/=T,_/=T,w/=T):(x=b=_=0,w=1);var k=this.computedRotation,A=k[0],M=k[1],S=k[2],E=k[3],L=A*w+E*x+M*_-S*b,C=M*w+E*b+S*x-A*_,P=S*w+E*_+A*b-M*x,I=E*w-A*x-M*b-S*_;if(n){x=p,b=d,_=m;var O=Math.sin(n)/l(x,b,_);x*=O,b*=O,_*=O,I=I*(w=Math.cos(e))-(L=L*w+I*x+C*_-P*b)*x-(C=C*w+I*b+P*x-L*_)*b-(P=P*w+I*_+L*b-C*x)*_}var z=c(L,C,P,I);z>1e-6?(L/=z,C/=z,P/=z,I/=z):(L=C=P=0,I=1),this.rotation.set(t,L,C,P,I)},h.lookAt=function(t,e,r,n){this.recalcMatrix(t),r=r||this.computedCenter,e=e||this.computedEye,n=n||this.computedUp;var a=this.computedMatrix;i(a,e,r,n);var o=this.computedRotation;s(o,a[0],a[1],a[2],a[4],a[5],a[6],a[8],a[9],a[10]),u(o,o),this.rotation.set(t,o[0],o[1],o[2],o[3]);for(var l=0,c=0;c<3;++c)l+=Math.pow(r[c]-e[c],2);this.radius.set(t,.5*Math.log(Math.max(l,1e-6))),this.center.set(t,r[0],r[1],r[2])},h.translate=function(t,e,r,n){this.center.move(t,e||0,r||0,n||0)},h.setMatrix=function(t,e){var r=this.computedRotation;s(r,e[0],e[1],e[2],e[4],e[5],e[6],e[8],e[9],e[10]),u(r,r),this.rotation.set(t,r[0],r[1],r[2],r[3]);var n=this.computedMatrix;o(n,e);var i=n[15];if(Math.abs(i)>1e-6){var a=n[12]/i,l=n[13]/i,c=n[14]/i;this.recalcMatrix(t);var f=Math.exp(this.computedRadius[0]);this.center.set(t,a-n[2]*f,l-n[6]*f,c-n[10]*f),this.radius.idle(t)}else this.center.idle(t),this.radius.idle(t)},h.setDistance=function(t,e){e>0&&this.radius.set(t,Math.log(e))},h.setDistanceLimits=function(t,e){t=t>0?Math.log(t):-1/0,e=e>0?Math.log(e):1/0,e=Math.max(e,t),this.radius.bounds[0][0]=t,this.radius.bounds[1][0]=e},h.getDistanceLimits=function(t){var e=this.radius.bounds;return t?(t[0]=Math.exp(e[0][0]),t[1]=Math.exp(e[1][0]),t):[Math.exp(e[0][0]),Math.exp(e[1][0])]},h.toJSON=function(){return this.recalcMatrix(this.lastT()),{center:this.computedCenter.slice(),rotation:this.computedRotation.slice(),distance:Math.log(this.computedRadius[0]),zoomMin:this.radius.bounds[0][0],zoomMax:this.radius.bounds[1][0]}},h.fromJSON=function(t){var e=this.lastT(),r=t.center;r&&this.center.set(e,r[0],r[1],r[2]);var n=t.rotation;n&&this.rotation.set(e,n[0],n[1],n[2],n[3]);var i=t.distance;i&&i>0&&this.radius.set(e,Math.log(i)),this.setDistanceLimits(t.zoomMin,t.zoomMax)}},{"./lib/quatFromFrame":467,"filtered-vector":243,"gl-mat4/fromQuat":276,"gl-mat4/invert":287,"gl-mat4/lookAt":288}],469:[function(t,e,r){ /*! * pad-left * * Copyright (c) 2014-2015, Jon Schlinkert. * Licensed under the MIT license. */ -"use strict";var n=t("repeat-string");e.exports=function(t,e,r){return n(r=void 0!==r?r+"":" ",e)+t}},{"repeat-string":277}],265:[function(t,e,r){e.exports=function(t,e){e||(e=[0,""]),t=String(t);var r=parseFloat(t,10);return e[0]=r,e[1]=t.match(/[\d.\-\+]*\s*(.*)/)[1]||"",e}},{}],266:[function(t,e,r){"use strict";e.exports=function(t,e){for(var r=0|e.length,i=t.length,a=[new Array(r),new Array(r)],o=0;o0){o=a[u][r][0],l=u;break}s=o[1^l];for(var f=0;f<2;++f)for(var h=a[f][r],p=0;p0&&(o=d,s=m,l=f)}return i||o&&c(o,l),s}function f(t,r){var i=a[r][t][0],o=[t];c(i,r);for(var s=i[1^r];;){for(;s!==t;)o.push(s),s=u(o[o.length-2],s,!1);if(a[0][t].length+a[1][t].length===0)break;var l=o[o.length-1],f=t,h=o[1],p=u(l,f,!0);if(n(e[l],e[f],e[h],e[p])<0)break;o.push(t),s=u(l,f)}return o}function h(t,e){return e[1]===e[e.length-1]}for(o=0;o0;){a[0][o].length;var m=f(o,p);h(0,m)?d.push.apply(d,m):(d.length>0&&l.push(d),d=m)}d.length>0&&l.push(d)}return l};var n=t("compare-angle")},{"compare-angle":54}],267:[function(t,e,r){"use strict";e.exports=function(t,e){for(var r=n(t,e.length),i=new Array(e.length),a=new Array(e.length),o=[],s=0;s0;){var c=o.pop();i[c]=!1;var u=r[c];for(s=0;s0}))).length,g=new Array(m),v=new Array(m);for(p=0;p0;){var B=R.pop(),N=E[B];l(N,(function(t,e){return t-e}));var j,U=N.length,V=F[B];if(0===V){var H=d[B];j=[H]}for(p=0;p=0))if(F[q]=1^V,R.push(q),0===V)D(H=d[q])||(H.reverse(),j.push(H))}0===V&&r.push(j)}return r};var n=t("edges-to-adjacency-list"),i=t("planar-dual"),a=t("point-in-big-polygon"),o=t("two-product"),s=t("robust-sum"),l=t("uniq"),c=t("./lib/trim-leaves");function u(t,e){for(var r=new Array(t),n=0;n0&&e[i]===r[0]))return 1;a=t[i-1]}for(var s=1;a;){var l=a.key,c=n(r,l[0],l[1]);if(l[0][0]0))return 0;s=-1,a=a.right}else if(c>0)a=a.left;else{if(!(c<0))return 0;s=1,a=a.right}}return s}}(v.slabs,v.coordinates);return 0===a.length?y:function(t,e){return function(r){return t(r[0],r[1])?0:e(r)}}(l(a),y)};var n=t("robust-orientation")[3],i=t("slab-decomposition"),a=t("interval-tree-1d"),o=t("binary-search-bounds");function s(){return!0}function l(t){for(var e={},r=0;r=c?(k=1,y=c+2*h+d):y=h*(k=-h/c)+d):(k=0,p>=0?(A=0,y=d):-p>=f?(A=1,y=f+2*p+d):y=p*(A=-p/f)+d);else if(A<0)A=0,h>=0?(k=0,y=d):-h>=c?(k=1,y=c+2*h+d):y=h*(k=-h/c)+d;else{var M=1/T;y=(k*=M)*(c*k+u*(A*=M)+2*h)+A*(u*k+f*A+2*p)+d}else k<0?(b=f+p)>(x=u+h)?(_=b-x)>=(w=c-2*u+f)?(k=1,A=0,y=c+2*h+d):y=(k=_/w)*(c*k+u*(A=1-k)+2*h)+A*(u*k+f*A+2*p)+d:(k=0,b<=0?(A=1,y=f+2*p+d):p>=0?(A=0,y=d):y=p*(A=-p/f)+d):A<0?(b=c+h)>(x=u+p)?(_=b-x)>=(w=c-2*u+f)?(A=1,k=0,y=f+2*p+d):y=(k=1-(A=_/w))*(c*k+u*A+2*h)+A*(u*k+f*A+2*p)+d:(A=0,b<=0?(k=1,y=c+2*h+d):h>=0?(k=0,y=d):y=h*(k=-h/c)+d):(_=f+p-u-h)<=0?(k=0,A=1,y=f+2*p+d):_>=(w=c-2*u+f)?(k=1,A=0,y=c+2*h+d):y=(k=_/w)*(c*k+u*(A=1-k)+2*h)+A*(u*k+f*A+2*p)+d;var S=1-k-A;for(l=0;l0){var c=t[r-1];if(0===n(s,c)&&a(c)!==l){r-=1;continue}}t[r++]=s}}return t.length=r,t}},{"cell-orientation":47,"compare-cell":56,"compare-oriented-cell":57}],277:[function(t,e,r){ +"use strict";var n=t("repeat-string");e.exports=function(t,e,r){return n(r=void 0!==r?r+"":" ",e)+t}},{"repeat-string":517}],470:[function(t,e,r){"use strict";function n(t,e){if("string"!=typeof t)return[t];var r=[t];"string"==typeof e||Array.isArray(e)?e={brackets:e}:e||(e={});var n=e.brackets?Array.isArray(e.brackets)?e.brackets:[e.brackets]:["{}","[]","()"],i=e.escape||"___",a=!!e.flat;n.forEach((function(t){var e=new RegExp(["\\",t[0],"[^\\",t[0],"\\",t[1],"]*\\",t[1]].join("")),n=[];function a(e,a,o){var s=r.push(e.slice(t[0].length,-t[1].length))-1;return n.push(s),i+s+i}r.forEach((function(t,n){for(var i,o=0;t!=i;)if(i=t,t=t.replace(e,a),o++>1e4)throw Error("References have circular dependency. Please, check them.");r[n]=t})),n=n.reverse(),r=r.map((function(e){return n.forEach((function(r){e=e.replace(new RegExp("(\\"+i+r+"\\"+i+")","g"),t[0]+"$1"+t[1])})),e}))}));var o=new RegExp("\\"+i+"([0-9]+)\\"+i);return a?r:function t(e,r,n){for(var i,a=[],s=0;i=o.exec(e);){if(s++>1e4)throw Error("Circular references in parenthesis");a.push(e.slice(0,i.index)),a.push(t(r[i[1]],r)),e=e.slice(i.index+i[0].length)}return a.push(e),a}(r[0],r)}function i(t,e){if(e&&e.flat){var r,n=e&&e.escape||"___",i=t[0];if(!i)return"";for(var a=new RegExp("\\"+n+"([0-9]+)\\"+n),o=0;i!=r;){if(o++>1e4)throw Error("Circular references in "+t);r=i,i=i.replace(a,s)}return i}return t.reduce((function t(e,r){return Array.isArray(r)&&(r=r.reduce(t,"")),e+r}),"");function s(e,r){if(null==t[r])throw Error("Reference "+r+"is undefined");return t[r]}}function a(t,e){return Array.isArray(t)?i(t,e):n(t,e)}a.parse=n,a.stringify=i,e.exports=a},{}],471:[function(t,e,r){"use strict";var n=t("pick-by-alias");e.exports=function(t){var e;arguments.length>1&&(t=arguments);"string"==typeof t?t=t.split(/\s/).map(parseFloat):"number"==typeof t&&(t=[t]);t.length&&"number"==typeof t[0]?e=1===t.length?{width:t[0],height:t[0],x:0,y:0}:2===t.length?{width:t[0],height:t[1],x:0,y:0}:{x:t[0],y:t[1],width:t[2]-t[0]||0,height:t[3]-t[1]||0}:t&&(t=n(t,{left:"x l left Left",top:"y t top Top",width:"w width W Width",height:"h height W Width",bottom:"b bottom Bottom",right:"r right Right"}),e={x:t.left||0,y:t.top||0},null==t.width?t.right?e.width=t.right-e.x:e.width=0:e.width=t.width,null==t.height?t.bottom?e.height=t.bottom-e.y:e.height=0:e.height=t.height);return e}},{"pick-by-alias":475}],472:[function(t,e,r){e.exports=function(t){var e=[];return t.replace(i,(function(t,r,i){var o=r.toLowerCase();for(i=function(t){var e=t.match(a);return e?e.map(Number):[]}(i),"m"==o&&i.length>2&&(e.push([r].concat(i.splice(0,2))),o="l",r="m"==r?"l":"L");;){if(i.length==n[o])return i.unshift(r),e.push(i);if(i.length0){o=a[u][r][0],l=u;break}s=o[1^l];for(var f=0;f<2;++f)for(var h=a[f][r],p=0;p0&&(o=d,s=m,l=f)}return i||o&&c(o,l),s}function f(t,r){var i=a[r][t][0],o=[t];c(i,r);for(var s=i[1^r];;){for(;s!==t;)o.push(s),s=u(o[o.length-2],s,!1);if(a[0][t].length+a[1][t].length===0)break;var l=o[o.length-1],f=t,h=o[1],p=u(l,f,!0);if(n(e[l],e[f],e[h],e[p])<0)break;o.push(t),s=u(l,f)}return o}function h(t,e){return e[1]===e[e.length-1]}for(o=0;o0;){a[0][o].length;var m=f(o,p);h(0,m)?d.push.apply(d,m):(d.length>0&&l.push(d),d=m)}d.length>0&&l.push(d)}return l};var n=t("compare-angle")},{"compare-angle":133}],477:[function(t,e,r){"use strict";e.exports=function(t,e){for(var r=n(t,e.length),i=new Array(e.length),a=new Array(e.length),o=[],s=0;s0;){var c=o.pop();i[c]=!1;var u=r[c];for(s=0;s0}))).length,g=new Array(m),v=new Array(m);for(p=0;p0;){var B=R.pop(),N=E[B];l(N,(function(t,e){return t-e}));var j,U=N.length,V=F[B];if(0===V){var H=d[B];j=[H]}for(p=0;p=0))if(F[q]=1^V,R.push(q),0===V)D(H=d[q])||(H.reverse(),j.push(H))}0===V&&r.push(j)}return r};var n=t("edges-to-adjacency-list"),i=t("planar-dual"),a=t("point-in-big-polygon"),o=t("two-product"),s=t("robust-sum"),l=t("uniq"),c=t("./lib/trim-leaves");function u(t,e){for(var r=new Array(t),n=0;n0&&e[i]===r[0]))return 1;a=t[i-1]}for(var s=1;a;){var l=a.key,c=n(r,l[0],l[1]);if(l[0][0]0))return 0;s=-1,a=a.right}else if(c>0)a=a.left;else{if(!(c<0))return 0;s=1,a=a.right}}return s}}(v.slabs,v.coordinates);return 0===a.length?y:function(t,e){return function(r){return t(r[0],r[1])?0:e(r)}}(l(a),y)};var n=t("robust-orientation")[3],i=t("slab-decomposition"),a=t("interval-tree-1d"),o=t("binary-search-bounds");function s(){return!0}function l(t){for(var e={},r=0;r=-t},pointBetween:function(e,r,n){var i=e[1]-r[1],a=n[0]-r[0],o=e[0]-r[0],s=n[1]-r[1],l=o*a+i*s;return!(l-t)},pointsSameX:function(e,r){return Math.abs(e[0]-r[0])t!=o-i>t&&(a-c)*(i-u)/(o-u)+c-n>t&&(s=!s),a=c,o=u}return s}};return e}},{}],483:[function(t,e,r){var n={toPolygon:function(t,e){function r(e){if(e.length<=0)return t.segments({inverted:!1,regions:[]});function r(e){var r=e.slice(0,e.length-1);return t.segments({inverted:!1,regions:[r]})}for(var n=r(e[0]),i=1;i0}))}function u(t,n){var i=t.seg,a=n.seg,o=i.start,s=i.end,c=a.start,u=a.end;r&&r.checkIntersection(i,a);var f=e.linesIntersect(o,s,c,u);if(!1===f){if(!e.pointsCollinear(o,s,c))return!1;if(e.pointsSame(o,u)||e.pointsSame(s,c))return!1;var h=e.pointsSame(o,c),p=e.pointsSame(s,u);if(h&&p)return n;var d=!h&&e.pointBetween(o,c,u),m=!p&&e.pointBetween(s,c,u);if(h)return m?l(n,s):l(t,u),n;d&&(p||(m?l(n,s):l(t,u)),l(n,o))}else 0===f.alongA&&(-1===f.alongB?l(t,c):0===f.alongB?l(t,f.pt):1===f.alongB&&l(t,u)),0===f.alongB&&(-1===f.alongA?l(n,o):0===f.alongA?l(n,f.pt):1===f.alongA&&l(n,s));return!1}for(var f=[];!a.isEmpty();){var h=a.getHead();if(r&&r.vert(h.pt[0]),h.isStart){r&&r.segmentNew(h.seg,h.primary);var p=c(h),d=p.before?p.before.ev:null,m=p.after?p.after.ev:null;function g(){if(d){var t=u(h,d);if(t)return t}return!!m&&u(h,m)}r&&r.tempStatus(h.seg,!!d&&d.seg,!!m&&m.seg);var v,y=g();if(y){var x;if(t)(x=null===h.seg.myFill.below||h.seg.myFill.above!==h.seg.myFill.below)&&(y.seg.myFill.above=!y.seg.myFill.above);else y.seg.otherFill=h.seg.myFill;r&&r.segmentUpdate(y.seg),h.other.remove(),h.remove()}if(a.getHead()!==h){r&&r.rewind(h.seg);continue}if(t)x=null===h.seg.myFill.below||h.seg.myFill.above!==h.seg.myFill.below,h.seg.myFill.below=m?m.seg.myFill.above:i,h.seg.myFill.above=x?!h.seg.myFill.below:h.seg.myFill.below;else if(null===h.seg.otherFill)v=m?h.primary===m.primary?m.seg.otherFill.above:m.seg.myFill.above:h.primary?o:i,h.seg.otherFill={above:v,below:v};r&&r.status(h.seg,!!d&&d.seg,!!m&&m.seg),h.other.status=p.insert(n.node({ev:h}))}else{var b=h.status;if(null===b)throw new Error("PolyBool: Zero-length segment detected; your epsilon is probably too small or too large");if(s.exists(b.prev)&&s.exists(b.next)&&u(b.prev.ev,b.next.ev),r&&r.statusRemove(b.ev.seg),b.remove(),!h.primary){var _=h.seg.myFill;h.seg.myFill=h.seg.otherFill,h.seg.otherFill=_}f.push(h.seg)}a.getHead().remove()}return r&&r.done(),f}return t?{addRegion:function(t){for(var n,i,a,o=t[t.length-1],l=0;l=c?(k=1,y=c+2*h+d):y=h*(k=-h/c)+d):(k=0,p>=0?(A=0,y=d):-p>=f?(A=1,y=f+2*p+d):y=p*(A=-p/f)+d);else if(A<0)A=0,h>=0?(k=0,y=d):-h>=c?(k=1,y=c+2*h+d):y=h*(k=-h/c)+d;else{var M=1/T;y=(k*=M)*(c*k+u*(A*=M)+2*h)+A*(u*k+f*A+2*p)+d}else k<0?(b=f+p)>(x=u+h)?(_=b-x)>=(w=c-2*u+f)?(k=1,A=0,y=c+2*h+d):y=(k=_/w)*(c*k+u*(A=1-k)+2*h)+A*(u*k+f*A+2*p)+d:(k=0,b<=0?(A=1,y=f+2*p+d):p>=0?(A=0,y=d):y=p*(A=-p/f)+d):A<0?(b=c+h)>(x=u+p)?(_=b-x)>=(w=c-2*u+f)?(A=1,k=0,y=f+2*p+d):y=(k=1-(A=_/w))*(c*k+u*A+2*h)+A*(u*k+f*A+2*p)+d:(A=0,b<=0?(k=1,y=c+2*h+d):h>=0?(k=0,y=d):y=h*(k=-h/c)+d):(_=f+p-u-h)<=0?(k=0,A=1,y=f+2*p+d):_>=(w=c-2*u+f)?(k=1,A=0,y=c+2*h+d):y=(k=_/w)*(c*k+u*(A=1-k)+2*h)+A*(u*k+f*A+2*p)+d;var S=1-k-A;for(l=0;l0&&!this.aborted;){var r=this.ifds_to_read.shift();r.offset&&this.scan_ifd(r.id,r.offset,t)}},a.prototype.read_uint16=function(t){var e=this.input;if(t+2>e.length)throw n("unexpected EOF","EBADDATA");return this.big_endian?256*e[t]+e[t+1]:e[t]+256*e[t+1]},a.prototype.read_uint32=function(t){var e=this.input;if(t+4>e.length)throw n("unexpected EOF","EBADDATA");return this.big_endian?16777216*e[t]+65536*e[t+1]+256*e[t+2]+e[t+3]:e[t]+256*e[t+1]+65536*e[t+2]+16777216*e[t+3]},a.prototype.is_subifd_link=function(t,e){return 0===t&&34665===e||0===t&&34853===e||34665===t&&40965===e},a.prototype.exif_format_length=function(t){switch(t){case 1:case 2:case 6:case 7:return 1;case 3:case 8:return 2;case 4:case 9:case 11:return 4;case 5:case 10:case 12:return 8;default:return 0}},a.prototype.exif_format_read=function(t,e){var r;switch(t){case 1:case 2:return r=this.input[e];case 6:return(r=this.input[e])|33554430*(128&r);case 3:return r=this.read_uint16(e);case 8:return(r=this.read_uint16(e))|131070*(32768&r);case 4:return r=this.read_uint32(e);case 9:return 0|(r=this.read_uint32(e));case 5:case 10:case 11:case 12:case 7:default:return null}},a.prototype.scan_ifd=function(t,e,r){var a=this.read_uint16(e);e+=2;for(var o=0;othis.input.length)throw n("unexpected EOF","EBADDATA");for(var d=[],m=h,g=0;g0&&(this.ifds_to_read.push({id:s,offset:d[0]}),p=!0),!1===r({is_big_endian:this.big_endian,ifd:t,tag:s,format:l,count:c,entry_offset:e+this.start,data_length:f,data_offset:h+this.start,value:d,is_subifd_link:p}))return void(this.aborted=!0);e+=12}0===t&&this.ifds_to_read.push({id:1,offset:this.read_uint32(e)})},e.exports.ExifParser=a,e.exports.get_orientation=function(t){var e=0;try{return new a(t,0,t.length).each((function(t){if(0===t.ifd&&274===t.tag&&Array.isArray(t.value))return e=t.value[0],!1})),e}catch(t){return-1}}},{}],491:[function(t,e,r){"use strict";var n=t("./common").readUInt16BE,i=t("./common").readUInt32BE;function a(t,e){if(t.length<4+e)return null;var r=i(t,e);return t.length>4&15,i=15&t[4],a=t[5]>>4&15,o=n(t,6),l=8,c=0;ce.width||t.width===e.width&&t.height>e.height?t:e})),i=r.reduce((function(t,e){return t.height>e.height||t.height===e.height&&t.width>e.width?t:e})),n.width>i.height||n.width===i.height&&n.height>i.width?n:i),s=1;e.transforms.forEach((function(t){var e={1:6,2:5,3:8,4:7,5:4,6:3,7:2,8:1},r={1:4,2:3,3:2,4:1,5:6,6:5,7:8,8:7};if("imir"===t.type&&(s=0===t.value?r[s]:e[s=e[s=r[s]]]),"irot"===t.type)for(var n=0;n1&&(h.variants=f.variants),f.orientation&&(h.orientation=f.orientation),f.exif_location&&f.exif_location.offset+f.exif_location.length<=t.length){var p=a(t,f.exif_location.offset),d=t.slice(f.exif_location.offset+p+4,f.exif_location.offset+f.exif_location.length),m=s.get_orientation(d);m>0&&(h.orientation=m)}return h}}}}}}},{"../common":489,"../exif_utils":490,"../miaf_utils":491}],493:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt16LE,o=n("BM");e.exports=function(t){if(!(t.length<26)&&i(t,0,o))return{width:a(t,18),height:a(t,22),type:"bmp",mime:"image/bmp",wUnits:"px",hUnits:"px"}}},{"../common":489}],494:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt16LE,o=n("GIF87a"),s=n("GIF89a");e.exports=function(t){if(!(t.length<10)&&(i(t,0,o)||i(t,0,s)))return{width:a(t,6),height:a(t,8),type:"gif",mime:"image/gif",wUnits:"px",hUnits:"px"}}},{"../common":489}],495:[function(t,e,r){"use strict";var n=t("../common").readUInt16LE;e.exports=function(t){var e=n(t,0),r=n(t,2),i=n(t,4);if(0===e&&1===r&&i){for(var a=[],o={width:0,height:0},s=0;so.width||c>o.height)&&(o=u)}return{width:o.width,height:o.height,variants:a,type:"ico",mime:"image/x-icon",wUnits:"px",hUnits:"px"}}}},{"../common":489}],496:[function(t,e,r){"use strict";var n=t("../common").readUInt16BE,i=t("../common").str2arr,a=t("../common").sliceEq,o=t("../exif_utils"),s=i("Exif\0\0");e.exports=function(t){if(!(t.length<2)&&255===t[0]&&216===t[1])for(var e=2;;){if(t.length-e<2)return;if(255!==t[e++])return;for(var r,i,l=t[e++];255===l;)l=t[e++];if(208<=l&&l<=217||1===l)r=0;else{if(!(192<=l&&l<=254))return;if(t.length-e<2)return;r=n(t,e)-2,e+=2}if(217===l||218===l)return;if(225===l&&r>=10&&a(t,e,s)&&(i=o.get_orientation(t.slice(e+6,e+r))),r>=5&&192<=l&&l<=207&&196!==l&&200!==l&&204!==l){if(t.length-e0&&(c.orientation=i),c}e+=r}}},{"../common":489,"../exif_utils":490}],497:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt32BE,o=n("\x89PNG\r\n\x1a\n"),s=n("IHDR");e.exports=function(t){if(!(t.length<24)&&i(t,0,o)&&i(t,12,s))return{width:a(t,16),height:a(t,20),type:"png",mime:"image/png",wUnits:"px",hUnits:"px"}}},{"../common":489}],498:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt32BE,o=n("8BPS\0\x01");e.exports=function(t){if(!(t.length<22)&&i(t,0,o))return{width:a(t,18),height:a(t,14),type:"psd",mime:"image/vnd.adobe.photoshop",wUnits:"px",hUnits:"px"}}},{"../common":489}],499:[function(t,e,r){"use strict";function n(t){return"number"==typeof t&&isFinite(t)&&t>0}var i=/<[-_.:a-zA-Z0-9][^>]*>/,a=/^<([-_.:a-zA-Z0-9]+:)?svg\s/,o=/[^-]\bwidth="([^%]+?)"|[^-]\bwidth='([^%]+?)'/,s=/\bheight="([^%]+?)"|\bheight='([^%]+?)'/,l=/\bview[bB]ox="(.+?)"|\bview[bB]ox='(.+?)'/,c=/in$|mm$|cm$|pt$|pc$|px$|em$|ex$/;function u(t){return c.test(t)?t.match(c)[0]:"px"}e.exports=function(t){if(function(t){var e,r=0,n=t.length;for(239===t[0]&&187===t[1]&&191===t[2]&&(r=3);r>14&16383),type:"webp",mime:"image/webp",wUnits:"px",hUnits:"px"}}}function h(t,e){return{width:1+(t[e+6]<<16|t[e+5]<<8|t[e+4]),height:1+(t[e+9]<t.length)){for(;e+8=10?r=r||u(t,e+8):"VP8L"===p&&d>=9?r=r||f(t,e+8):"VP8X"===p&&d>=10?r=r||h(t,e+8):"EXIF"===p&&(n=s.get_orientation(t.slice(e+8,e+8+d)),e=1/0),e+=8+d}else e++;if(r)return n>0&&(r.orientation=n),r}}}},{"../common":489,"../exif_utils":490}],502:[function(t,e,r){"use strict";e.exports={avif:t("./parse_sync/avif"),bmp:t("./parse_sync/bmp"),gif:t("./parse_sync/gif"),ico:t("./parse_sync/ico"),jpeg:t("./parse_sync/jpeg"),png:t("./parse_sync/png"),psd:t("./parse_sync/psd"),svg:t("./parse_sync/svg"),tiff:t("./parse_sync/tiff"),webp:t("./parse_sync/webp")}},{"./parse_sync/avif":492,"./parse_sync/bmp":493,"./parse_sync/gif":494,"./parse_sync/ico":495,"./parse_sync/jpeg":496,"./parse_sync/png":497,"./parse_sync/psd":498,"./parse_sync/svg":499,"./parse_sync/tiff":500,"./parse_sync/webp":501}],503:[function(t,e,r){"use strict";var n=t("./lib/parsers_sync");e.exports=function(t){return function(t){for(var e=Object.keys(n),r=0;r1)for(var r=1;r0){var c=t[r-1];if(0===n(s,c)&&a(c)!==l){r-=1;continue}}t[r++]=s}}return t.length=r,t}},{"cell-orientation":118,"compare-cell":135,"compare-oriented-cell":136}],512:[function(t,e,r){"use strict";var n=t("array-bounds"),i=t("color-normalize"),a=t("update-diff"),o=t("pick-by-alias"),s=t("object-assign"),l=t("flatten-vertex-data"),c=t("to-float32"),u=c.float32,f=c.fract32;e.exports=function(t,e){"function"==typeof t?(e||(e={}),e.regl=t):e=t;e.length&&(e.positions=e);if(!(t=e.regl).hasExtension("ANGLE_instanced_arrays"))throw Error("regl-error2d: `ANGLE_instanced_arrays` extension should be enabled");var r,c,p,d,m,g,v=t._gl,y={color:"black",capSize:5,lineWidth:1,opacity:1,viewport:null,range:null,offset:0,count:0,bounds:null,positions:[],errors:[]},x=[];return d=t.buffer({usage:"dynamic",type:"uint8",data:new Uint8Array(0)}),c=t.buffer({usage:"dynamic",type:"float",data:new Uint8Array(0)}),p=t.buffer({usage:"dynamic",type:"float",data:new Uint8Array(0)}),m=t.buffer({usage:"dynamic",type:"float",data:new Uint8Array(0)}),g=t.buffer({usage:"static",type:"float",data:h}),T(e),r=t({vert:"\n\t\tprecision highp float;\n\n\t\tattribute vec2 position, positionFract;\n\t\tattribute vec4 error;\n\t\tattribute vec4 color;\n\n\t\tattribute vec2 direction, lineOffset, capOffset;\n\n\t\tuniform vec4 viewport;\n\t\tuniform float lineWidth, capSize;\n\t\tuniform vec2 scale, scaleFract, translate, translateFract;\n\n\t\tvarying vec4 fragColor;\n\n\t\tvoid main() {\n\t\t\tfragColor = color / 255.;\n\n\t\t\tvec2 pixelOffset = lineWidth * lineOffset + (capSize + lineWidth) * capOffset;\n\n\t\t\tvec2 dxy = -step(.5, direction.xy) * error.xz + step(direction.xy, vec2(-.5)) * error.yw;\n\n\t\t\tvec2 position = position + dxy;\n\n\t\t\tvec2 pos = (position + translate) * scale\n\t\t\t\t+ (positionFract + translateFract) * scale\n\t\t\t\t+ (position + translate) * scaleFract\n\t\t\t\t+ (positionFract + translateFract) * scaleFract;\n\n\t\t\tpos += pixelOffset / viewport.zw;\n\n\t\t\tgl_Position = vec4(pos * 2. - 1., 0, 1);\n\t\t}\n\t\t",frag:"\n\t\tprecision highp float;\n\n\t\tvarying vec4 fragColor;\n\n\t\tuniform float opacity;\n\n\t\tvoid main() {\n\t\t\tgl_FragColor = fragColor;\n\t\t\tgl_FragColor.a *= opacity;\n\t\t}\n\t\t",uniforms:{range:t.prop("range"),lineWidth:t.prop("lineWidth"),capSize:t.prop("capSize"),opacity:t.prop("opacity"),scale:t.prop("scale"),translate:t.prop("translate"),scaleFract:t.prop("scaleFract"),translateFract:t.prop("translateFract"),viewport:function(t,e){return[e.viewport.x,e.viewport.y,t.viewportWidth,t.viewportHeight]}},attributes:{color:{buffer:d,offset:function(t,e){return 4*e.offset},divisor:1},position:{buffer:c,offset:function(t,e){return 8*e.offset},divisor:1},positionFract:{buffer:p,offset:function(t,e){return 8*e.offset},divisor:1},error:{buffer:m,offset:function(t,e){return 16*e.offset},divisor:1},direction:{buffer:g,stride:24,offset:0},lineOffset:{buffer:g,stride:24,offset:8},capOffset:{buffer:g,stride:24,offset:16}},primitive:"triangles",blend:{enable:!0,color:[0,0,0,0],equation:{rgb:"add",alpha:"add"},func:{srcRGB:"src alpha",dstRGB:"one minus src alpha",srcAlpha:"one minus dst alpha",dstAlpha:"one"}},depth:{enable:!1},scissor:{enable:!0,box:t.prop("viewport")},viewport:t.prop("viewport"),stencil:!1,instances:t.prop("count"),count:h.length}),s(b,{update:T,draw:_,destroy:k,regl:t,gl:v,canvas:v.canvas,groups:x}),b;function b(t){t?T(t):null===t&&k(),_()}function _(e){if("number"==typeof e)return w(e);e&&!Array.isArray(e)&&(e=[e]),t._refresh(),x.forEach((function(t,r){t&&(e&&(e[r]?t.draw=!0:t.draw=!1),t.draw?w(r):t.draw=!0)}))}function w(t){"number"==typeof t&&(t=x[t]),null!=t&&t&&t.count&&t.color&&t.opacity&&t.positions&&t.positions.length>1&&(t.scaleRatio=[t.scale[0]*t.viewport.width,t.scale[1]*t.viewport.height],r(t),t.after&&t.after(t))}function T(t){if(t){null!=t.length?"number"==typeof t[0]&&(t=[{positions:t}]):Array.isArray(t)||(t=[t]);var e=0,r=0;if(b.groups=x=t.map((function(t,c){var u=x[c];return t?("function"==typeof t?t={after:t}:"number"==typeof t[0]&&(t={positions:t}),t=o(t,{color:"color colors fill",capSize:"capSize cap capsize cap-size",lineWidth:"lineWidth line-width width line thickness",opacity:"opacity alpha",range:"range dataBox",viewport:"viewport viewBox",errors:"errors error",positions:"positions position data points"}),u||(x[c]=u={id:c,scale:null,translate:null,scaleFract:null,translateFract:null,draw:!0},t=s({},y,t)),a(u,t,[{lineWidth:function(t){return.5*+t},capSize:function(t){return.5*+t},opacity:parseFloat,errors:function(t){return t=l(t),r+=t.length,t},positions:function(t,r){return t=l(t,"float64"),r.count=Math.floor(t.length/2),r.bounds=n(t,2),r.offset=e,e+=r.count,t}},{color:function(t,e){var r=e.count;if(t||(t="transparent"),!Array.isArray(t)||"number"==typeof t[0]){var n=t;t=Array(r);for(var a=0;a 0. && baClipping < length(normalWidth * endBotJoin)) {\n\t\t//handle miter clipping\n\t\tbTopCoord -= normalWidth * endTopJoin;\n\t\tbTopCoord += normalize(endTopJoin * normalWidth) * baClipping;\n\t}\n\n\tif (nextReverse) {\n\t\t//make join rectangular\n\t\tvec2 miterShift = normalWidth * endJoinDirection * miterLimit * .5;\n\t\tfloat normalAdjust = 1. - min(miterLimit / endMiterRatio, 1.);\n\t\tbBotCoord = bCoord + miterShift - normalAdjust * normalWidth * currNormal * .5;\n\t\tbTopCoord = bCoord + miterShift + normalAdjust * normalWidth * currNormal * .5;\n\t}\n\telse if (!prevReverse && abClipping > 0. && abClipping < length(normalWidth * startBotJoin)) {\n\t\t//handle miter clipping\n\t\taBotCoord -= normalWidth * startBotJoin;\n\t\taBotCoord += normalize(startBotJoin * normalWidth) * abClipping;\n\t}\n\n\tvec2 aTopPosition = (aTopCoord) * adjustedScale + translate;\n\tvec2 aBotPosition = (aBotCoord) * adjustedScale + translate;\n\n\tvec2 bTopPosition = (bTopCoord) * adjustedScale + translate;\n\tvec2 bBotPosition = (bBotCoord) * adjustedScale + translate;\n\n\t//position is normalized 0..1 coord on the screen\n\tvec2 position = (aTopPosition * lineTop + aBotPosition * lineBot) * lineStart + (bTopPosition * lineTop + bBotPosition * lineBot) * lineEnd;\n\n\tstartCoord = aCoord * scaleRatio + translate * viewport.zw + viewport.xy;\n\tendCoord = bCoord * scaleRatio + translate * viewport.zw + viewport.xy;\n\n\tgl_Position = vec4(position * 2.0 - 1.0, depth, 1);\n\n\tenableStartMiter = step(dot(currTangent, prevTangent), .5);\n\tenableEndMiter = step(dot(currTangent, nextTangent), .5);\n\n\t//bevel miter cutoffs\n\tif (miterMode == 1.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tvec2 startMiterWidth = vec2(startJoinDirection) * thickness * miterLimit * .5;\n\t\t\tstartCutoff = vec4(aCoord, aCoord);\n\t\t\tstartCutoff.zw += vec2(-startJoinDirection.y, startJoinDirection.x) / scaleRatio;\n\t\t\tstartCutoff = startCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tstartCutoff += viewport.xyxy;\n\t\t\tstartCutoff += startMiterWidth.xyxy;\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tvec2 endMiterWidth = vec2(endJoinDirection) * thickness * miterLimit * .5;\n\t\t\tendCutoff = vec4(bCoord, bCoord);\n\t\t\tendCutoff.zw += vec2(-endJoinDirection.y, endJoinDirection.x) / scaleRatio;\n\t\t\tendCutoff = endCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tendCutoff += viewport.xyxy;\n\t\t\tendCutoff += endMiterWidth.xyxy;\n\t\t}\n\t}\n\n\t//round miter cutoffs\n\telse if (miterMode == 2.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tvec2 startMiterWidth = vec2(startJoinDirection) * thickness * abs(dot(startJoinDirection, currNormal)) * .5;\n\t\t\tstartCutoff = vec4(aCoord, aCoord);\n\t\t\tstartCutoff.zw += vec2(-startJoinDirection.y, startJoinDirection.x) / scaleRatio;\n\t\t\tstartCutoff = startCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tstartCutoff += viewport.xyxy;\n\t\t\tstartCutoff += startMiterWidth.xyxy;\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tvec2 endMiterWidth = vec2(endJoinDirection) * thickness * abs(dot(endJoinDirection, currNormal)) * .5;\n\t\t\tendCutoff = vec4(bCoord, bCoord);\n\t\t\tendCutoff.zw += vec2(-endJoinDirection.y, endJoinDirection.x) / scaleRatio;\n\t\t\tendCutoff = endCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tendCutoff += viewport.xyxy;\n\t\t\tendCutoff += endMiterWidth.xyxy;\n\t\t}\n\t}\n}\n"]),frag:o(["precision highp float;\n#define GLSLIFY 1\n\nuniform float dashLength, pixelRatio, thickness, opacity, id, miterMode;\nuniform sampler2D dashTexture;\n\nvarying vec4 fragColor;\nvarying vec2 tangent;\nvarying vec4 startCutoff, endCutoff;\nvarying vec2 startCoord, endCoord;\nvarying float enableStartMiter, enableEndMiter;\n\nfloat distToLine(vec2 p, vec2 a, vec2 b) {\n\tvec2 diff = b - a;\n\tvec2 perp = normalize(vec2(-diff.y, diff.x));\n\treturn dot(p - a, perp);\n}\n\nvoid main() {\n\tfloat alpha = 1., distToStart, distToEnd;\n\tfloat cutoff = thickness * .5;\n\n\t//bevel miter\n\tif (miterMode == 1.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tdistToStart = distToLine(gl_FragCoord.xy, startCutoff.xy, startCutoff.zw);\n\t\t\tif (distToStart < -1.) {\n\t\t\t\tdiscard;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\talpha *= min(max(distToStart + 1., 0.), 1.);\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tdistToEnd = distToLine(gl_FragCoord.xy, endCutoff.xy, endCutoff.zw);\n\t\t\tif (distToEnd < -1.) {\n\t\t\t\tdiscard;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\talpha *= min(max(distToEnd + 1., 0.), 1.);\n\t\t}\n\t}\n\n\t// round miter\n\telse if (miterMode == 2.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tdistToStart = distToLine(gl_FragCoord.xy, startCutoff.xy, startCutoff.zw);\n\t\t\tif (distToStart < 0.) {\n\t\t\t\tfloat radius = length(gl_FragCoord.xy - startCoord);\n\n\t\t\t\tif(radius > cutoff + .5) {\n\t\t\t\t\tdiscard;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\talpha -= smoothstep(cutoff - .5, cutoff + .5, radius);\n\t\t\t}\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tdistToEnd = distToLine(gl_FragCoord.xy, endCutoff.xy, endCutoff.zw);\n\t\t\tif (distToEnd < 0.) {\n\t\t\t\tfloat radius = length(gl_FragCoord.xy - endCoord);\n\n\t\t\t\tif(radius > cutoff + .5) {\n\t\t\t\t\tdiscard;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\talpha -= smoothstep(cutoff - .5, cutoff + .5, radius);\n\t\t\t}\n\t\t}\n\t}\n\n\tfloat t = fract(dot(tangent, gl_FragCoord.xy) / dashLength) * .5 + .25;\n\tfloat dash = texture2D(dashTexture, vec2(t, .5)).r;\n\n\tgl_FragColor = fragColor;\n\tgl_FragColor.a *= alpha * opacity * dash;\n}\n"]),attributes:{lineEnd:{buffer:r,divisor:0,stride:8,offset:0},lineTop:{buffer:r,divisor:0,stride:8,offset:4},aColor:{buffer:t.prop("colorBuffer"),stride:4,offset:0,divisor:1},bColor:{buffer:t.prop("colorBuffer"),stride:4,offset:4,divisor:1},prevCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:0,divisor:1},aCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:8,divisor:1},bCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:16,divisor:1},nextCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:24,divisor:1}}},n))}catch(t){e=i}return{fill:t({primitive:"triangle",elements:function(t,e){return e.triangles},offset:0,vert:o(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec2 position, positionFract;\n\nuniform vec4 color;\nuniform vec2 scale, scaleFract, translate, translateFract;\nuniform float pixelRatio, id;\nuniform vec4 viewport;\nuniform float opacity;\n\nvarying vec4 fragColor;\n\nconst float MAX_LINES = 256.;\n\nvoid main() {\n\tfloat depth = (MAX_LINES - 4. - id) / (MAX_LINES);\n\n\tvec2 position = position * scale + translate\n + positionFract * scale + translateFract\n + position * scaleFract\n + positionFract * scaleFract;\n\n\tgl_Position = vec4(position * 2.0 - 1.0, depth, 1);\n\n\tfragColor = color / 255.;\n\tfragColor.a *= opacity;\n}\n"]),frag:o(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nvoid main() {\n\tgl_FragColor = fragColor;\n}\n"]),uniforms:{scale:t.prop("scale"),color:t.prop("fill"),scaleFract:t.prop("scaleFract"),translateFract:t.prop("translateFract"),translate:t.prop("translate"),opacity:t.prop("opacity"),pixelRatio:t.context("pixelRatio"),id:t.prop("id"),viewport:function(t,e){return[e.viewport.x,e.viewport.y,t.viewportWidth,t.viewportHeight]}},attributes:{position:{buffer:t.prop("positionBuffer"),stride:8,offset:8},positionFract:{buffer:t.prop("positionFractBuffer"),stride:8,offset:8}},blend:n.blend,depth:{enable:!1},scissor:n.scissor,stencil:n.stencil,viewport:n.viewport}),rect:i,miter:e}},v.defaults={dashes:null,join:"miter",miterLimit:1,thickness:10,cap:"square",color:"black",opacity:1,overlay:!1,viewport:null,range:null,close:!1,fill:null},v.prototype.render=function(){for(var t,e=[],r=arguments.length;r--;)e[r]=arguments[r];e.length&&(t=this).update.apply(t,e),this.draw()},v.prototype.draw=function(){for(var t=this,e=[],r=arguments.length;r--;)e[r]=arguments[r];return(e.length?e:this.passes).forEach((function(e,r){var n;if(e&&Array.isArray(e))return(n=t).draw.apply(n,e);"number"==typeof e&&(e=t.passes[e]),e&&e.count>1&&e.opacity&&(t.regl._refresh(),e.fill&&e.triangles&&e.triangles.length>2&&t.shaders.fill(e),e.thickness&&(e.scale[0]*e.viewport.width>v.precisionThreshold||e.scale[1]*e.viewport.height>v.precisionThreshold||"rect"===e.join||!e.join&&(e.thickness<=2||e.count>=v.maxPoints)?t.shaders.rect(e):t.shaders.miter(e)))})),this},v.prototype.update=function(t){var e=this;if(t){null!=t.length?"number"==typeof t[0]&&(t=[{positions:t}]):Array.isArray(t)||(t=[t]);var r=this.regl,o=this.gl;if(t.forEach((function(t,f){var d=e.passes[f];if(void 0!==t)if(null!==t){if("number"==typeof t[0]&&(t={positions:t}),t=s(t,{positions:"positions points data coords",thickness:"thickness lineWidth lineWidths line-width linewidth width stroke-width strokewidth strokeWidth",join:"lineJoin linejoin join type mode",miterLimit:"miterlimit miterLimit",dashes:"dash dashes dasharray dash-array dashArray",color:"color colour stroke colors colours stroke-color strokeColor",fill:"fill fill-color fillColor",opacity:"alpha opacity",overlay:"overlay crease overlap intersect",close:"closed close closed-path closePath",range:"range dataBox",viewport:"viewport viewBox",hole:"holes hole hollow",splitNull:"splitNull"}),d||(e.passes[f]=d={id:f,scale:null,scaleFract:null,translate:null,translateFract:null,count:0,hole:[],depth:0,dashLength:1,dashTexture:r.texture({channels:1,data:new Uint8Array([255]),width:1,height:1,mag:"linear",min:"linear"}),colorBuffer:r.buffer({usage:"dynamic",type:"uint8",data:new Uint8Array}),positionBuffer:r.buffer({usage:"dynamic",type:"float",data:new Uint8Array}),positionFractBuffer:r.buffer({usage:"dynamic",type:"float",data:new Uint8Array})},t=a({},v.defaults,t)),null!=t.thickness&&(d.thickness=parseFloat(t.thickness)),null!=t.opacity&&(d.opacity=parseFloat(t.opacity)),null!=t.miterLimit&&(d.miterLimit=parseFloat(t.miterLimit)),null!=t.overlay&&(d.overlay=!!t.overlay,f=D}));(I=I.slice(0,R)).push(D)}for(var F=function(t){var e=k.slice(2*z,2*I[t]).concat(D?k.slice(2*D):[]),r=(d.hole||[]).map((function(e){return e-D+(I[t]-z)})),n=c(e,r);n=n.map((function(e){return e+z+(e+zt.length)&&(e=t.length);for(var r=0,n=new Array(e);r 1.0 + delta) {\n\t\tdiscard;\n\t}\n\n\talpha -= smoothstep(1.0 - delta, 1.0 + delta, radius);\n\n\tfloat borderRadius = fragBorderRadius;\n\tfloat ratio = smoothstep(borderRadius - delta, borderRadius + delta, radius);\n\tvec4 color = mix(fragColor, fragBorderColor, ratio);\n\tcolor.a *= alpha * opacity;\n\tgl_FragColor = color;\n}\n"]),l.vert=h(["precision highp float;\n#define GLSLIFY 1\n\nattribute float x, y, xFract, yFract;\nattribute float size, borderSize;\nattribute vec4 colorId, borderColorId;\nattribute float isActive;\n\nuniform bool constPointSize;\nuniform float pixelRatio;\nuniform vec2 paletteSize, scale, scaleFract, translate, translateFract;\nuniform sampler2D paletteTexture;\n\nconst float maxSize = 100.;\n\nvarying vec4 fragColor, fragBorderColor;\nvarying float fragBorderRadius, fragWidth;\n\nfloat pointSizeScale = (constPointSize) ? 2. : pixelRatio;\n\nbool isDirect = (paletteSize.x < 1.);\n\nvec4 getColor(vec4 id) {\n return isDirect ? id / 255. : texture2D(paletteTexture,\n vec2(\n (id.x + .5) / paletteSize.x,\n (id.y + .5) / paletteSize.y\n )\n );\n}\n\nvoid main() {\n // ignore inactive points\n if (isActive == 0.) return;\n\n vec2 position = vec2(x, y);\n vec2 positionFract = vec2(xFract, yFract);\n\n vec4 color = getColor(colorId);\n vec4 borderColor = getColor(borderColorId);\n\n float size = size * maxSize / 255.;\n float borderSize = borderSize * maxSize / 255.;\n\n gl_PointSize = (size + borderSize) * pointSizeScale;\n\n vec2 pos = (position + translate) * scale\n + (positionFract + translateFract) * scale\n + (position + translate) * scaleFract\n + (positionFract + translateFract) * scaleFract;\n\n gl_Position = vec4(pos * 2. - 1., 0., 1.);\n\n fragBorderRadius = 1. - 2. * borderSize / (size + borderSize);\n fragColor = color;\n fragBorderColor = borderColor.a == 0. || borderSize == 0. ? vec4(color.rgb, 0.) : borderColor;\n fragWidth = 1. / gl_PointSize;\n}\n"]),g&&(l.frag=l.frag.replace("smoothstep","smoothStep"),s.frag=s.frag.replace("smoothstep","smoothStep")),this.drawCircle=t(l)}b.defaults={color:"black",borderColor:"transparent",borderSize:0,size:12,opacity:1,marker:void 0,viewport:null,range:null,pixelSize:null,count:0,offset:0,bounds:null,positions:[],snap:1e4},b.prototype.render=function(){return arguments.length&&this.update.apply(this,arguments),this.draw(),this},b.prototype.draw=function(){for(var t=this,e=arguments.length,r=new Array(e),n=0;nn)?e.tree=u(t,{bounds:f}):n&&n.length&&(e.tree=n),e.tree){var h={primitive:"points",usage:"static",data:e.tree,type:"uint32"};e.elements?e.elements(h):e.elements=o.elements(h)}var p=v.float32(t);return i({data:p,usage:"dynamic"}),a({data:v.fract32(t,p),usage:"dynamic"}),s({data:new Uint8Array(c),type:"uint8",usage:"stream"}),t}},{marker:function(e,r,n){var i=r.activation;if(i.forEach((function(t){return t&&t.destroy&&t.destroy()})),i.length=0,e&&"number"!=typeof e[0]){for(var a=[],s=0,l=Math.min(e.length,r.count);s=0)return a;if(t instanceof Uint8Array||t instanceof Uint8ClampedArray)e=t;else{e=new Uint8Array(t.length);for(var o=0,s=t.length;o4*n&&(this.tooManyColors=!0),this.updatePalette(r),1===i.length?i[0]:i},b.prototype.updatePalette=function(t){if(!this.tooManyColors){var e=this.maxColors,r=this.paletteTexture,n=Math.ceil(.25*t.length/e);if(n>1)for(var i=.25*(t=t.slice()).length%e;i2?(s[0],s[2],n=s[1],i=s[3]):s.length?(n=s[0],i=s[1]):(s.x,n=s.y,s.x+s.width,i=s.y+s.height),l.length>2?(a=l[0],o=l[2],l[1],l[3]):l.length?(a=l[0],o=l[1]):(a=l.x,l.y,o=l.x+l.width,l.y+l.height),[a,n,o,i]}function p(t){if("number"==typeof t)return[t,t,t,t];if(2===t.length)return[t[0],t[1],t[0],t[1]];var e=l(t);return[e.x,e.y,e.x+e.width,e.y+e.height]}e.exports=u,u.prototype.render=function(){for(var t,e=this,r=[],n=arguments.length;n--;)r[n]=arguments[n];return r.length&&(t=this).update.apply(t,r),this.regl.attributes.preserveDrawingBuffer?this.draw():(this.dirty?null==this.planned&&(this.planned=o((function(){e.draw(),e.dirty=!0,e.planned=null}))):(this.draw(),this.dirty=!0,o((function(){e.dirty=!1}))),this)},u.prototype.update=function(){for(var t,e=[],r=arguments.length;r--;)e[r]=arguments[r];if(e.length){for(var n=0;nk))&&(s.lower||!(T>>=e))<<3,(e|=r=(15<(t>>>=r))<<2)|(r=(3<(t>>>=r))<<1)|t>>>r>>1}function s(){function t(t){t:{for(var e=16;268435456>=e;e*=16)if(t<=e){t=e;break t}t=0}return 0<(e=r[o(t)>>2]).length?e.pop():new ArrayBuffer(t)}function e(t){r[o(t.byteLength)>>2].push(t)}var r=a(8,(function(){return[]}));return{alloc:t,free:e,allocType:function(e,r){var n=null;switch(e){case 5120:n=new Int8Array(t(r),0,r);break;case 5121:n=new Uint8Array(t(r),0,r);break;case 5122:n=new Int16Array(t(2*r),0,r);break;case 5123:n=new Uint16Array(t(2*r),0,r);break;case 5124:n=new Int32Array(t(4*r),0,r);break;case 5125:n=new Uint32Array(t(4*r),0,r);break;case 5126:n=new Float32Array(t(4*r),0,r);break;default:return null}return n.length!==r?n.subarray(0,r):n},freeType:function(t){e(t.buffer)}}}function l(t){return!!t&&"object"==typeof t&&Array.isArray(t.shape)&&Array.isArray(t.stride)&&"number"==typeof t.offset&&t.shape.length===t.stride.length&&(Array.isArray(t.data)||W(t.data))}function c(t,e,r,n,i,a){for(var o=0;o(i=s)&&(i=n.buffer.byteLength,5123===f?i>>=1:5125===f&&(i>>=2)),n.vertCount=i,i=o,0>o&&(i=4,1===(o=n.buffer.dimension)&&(i=0),2===o&&(i=1),3===o&&(i=4)),n.primType=i}function o(t){n.elementsCount--,delete s[t.id],t.buffer.destroy(),t.buffer=null}var s={},c=0,u={uint8:5121,uint16:5123};e.oes_element_index_uint&&(u.uint32=5125),i.prototype.bind=function(){this.buffer.bind()};var f=[];return{create:function(t,e){function s(t){if(t)if("number"==typeof t)c(t),f.primType=4,f.vertCount=0|t,f.type=5121;else{var e=null,r=35044,n=-1,i=-1,o=0,h=0;Array.isArray(t)||W(t)||l(t)?e=t:("data"in t&&(e=t.data),"usage"in t&&(r=Q[t.usage]),"primitive"in t&&(n=rt[t.primitive]),"count"in t&&(i=0|t.count),"type"in t&&(h=u[t.type]),"length"in t?o=0|t.length:(o=i,5123===h||5122===h?o*=2:5125!==h&&5124!==h||(o*=4))),a(f,e,r,n,i,o,h)}else c(),f.primType=4,f.vertCount=0,f.type=5121;return s}var c=r.create(null,34963,!0),f=new i(c._buffer);return n.elementsCount++,s(t),s._reglType="elements",s._elements=f,s.subdata=function(t,e){return c.subdata(t,e),s},s.destroy=function(){o(f)},s},createStream:function(t){var e=f.pop();return e||(e=new i(r.create(null,34963,!0,!1)._buffer)),a(e,t,35040,-1,-1,0,0),e},destroyStream:function(t){f.push(t)},getElements:function(t){return"function"==typeof t&&t._elements instanceof i?t._elements:null},clear:function(){X(s).forEach(o)}}}function m(t){for(var e=G.allocType(5123,t.length),r=0;r>>31<<15,i=(a<<1>>>24)-127,a=a>>13&1023;e[r]=-24>i?n:-14>i?n+(a+1024>>-14-i):15>=i,r.height>>=i,p(r,n[i]),t.mipmask|=1<e;++e)t.images[e]=null;return t}function C(t){for(var e=t.images,r=0;re){for(var r=0;r=--this.refCount&&F(this)}}),o.profile&&(a.getTotalTextureSize=function(){var t=0;return Object.keys(yt).forEach((function(e){t+=yt[e].stats.size})),t}),{create2D:function(e,r){function n(t,e){var r=i.texInfo;P.call(r);var a=L();return"number"==typeof t?M(a,0|t,"number"==typeof e?0|e:0|t):t?(I(r,t),S(a,t)):M(a,1,1),r.genMipmaps&&(a.mipmask=(a.width<<1)-1),i.mipmask=a.mipmask,c(i,a),i.internalformat=a.internalformat,n.width=a.width,n.height=a.height,D(i),E(a,3553),O(r,3553),R(),C(a),o.profile&&(i.stats.size=T(i.internalformat,i.type,a.width,a.height,r.genMipmaps,!1)),n.format=tt[i.internalformat],n.type=et[i.type],n.mag=rt[r.magFilter],n.min=nt[r.minFilter],n.wrapS=it[r.wrapS],n.wrapT=it[r.wrapT],n}var i=new z(3553);return yt[i.id]=i,a.textureCount++,n(e,r),n.subimage=function(t,e,r,a){e|=0,r|=0,a|=0;var o=v();return c(o,i),o.width=0,o.height=0,p(o,t),o.width=o.width||(i.width>>a)-e,o.height=o.height||(i.height>>a)-r,D(i),d(o,3553,e,r,a),R(),k(o),n},n.resize=function(e,r){var a=0|e,s=0|r||a;if(a===i.width&&s===i.height)return n;n.width=i.width=a,n.height=i.height=s,D(i);for(var l=0;i.mipmask>>l;++l){var c=a>>l,u=s>>l;if(!c||!u)break;t.texImage2D(3553,l,i.format,c,u,0,i.format,i.type,null)}return R(),o.profile&&(i.stats.size=T(i.internalformat,i.type,a,s,!1,!1)),n},n._reglType="texture2d",n._texture=i,o.profile&&(n.stats=i.stats),n.destroy=function(){i.decRef()},n},createCube:function(e,r,n,i,s,l){function f(t,e,r,n,i,a){var s,l=h.texInfo;for(P.call(l),s=0;6>s;++s)m[s]=L();if("number"!=typeof t&&t){if("object"==typeof t)if(e)S(m[0],t),S(m[1],e),S(m[2],r),S(m[3],n),S(m[4],i),S(m[5],a);else if(I(l,t),u(h,t),"faces"in t)for(t=t.faces,s=0;6>s;++s)c(m[s],h),S(m[s],t[s]);else for(s=0;6>s;++s)S(m[s],t)}else for(t=0|t||1,s=0;6>s;++s)M(m[s],t,t);for(c(h,m[0]),h.mipmask=l.genMipmaps?(m[0].width<<1)-1:m[0].mipmask,h.internalformat=m[0].internalformat,f.width=m[0].width,f.height=m[0].height,D(h),s=0;6>s;++s)E(m[s],34069+s);for(O(l,34067),R(),o.profile&&(h.stats.size=T(h.internalformat,h.type,f.width,f.height,l.genMipmaps,!0)),f.format=tt[h.internalformat],f.type=et[h.type],f.mag=rt[l.magFilter],f.min=nt[l.minFilter],f.wrapS=it[l.wrapS],f.wrapT=it[l.wrapT],s=0;6>s;++s)C(m[s]);return f}var h=new z(34067);yt[h.id]=h,a.cubeCount++;var m=Array(6);return f(e,r,n,i,s,l),f.subimage=function(t,e,r,n,i){r|=0,n|=0,i|=0;var a=v();return c(a,h),a.width=0,a.height=0,p(a,e),a.width=a.width||(h.width>>i)-r,a.height=a.height||(h.height>>i)-n,D(h),d(a,34069+t,r,n,i),R(),k(a),f},f.resize=function(e){if((e|=0)!==h.width){f.width=h.width=e,f.height=h.height=e,D(h);for(var r=0;6>r;++r)for(var n=0;h.mipmask>>n;++n)t.texImage2D(34069+r,n,h.format,e>>n,e>>n,0,h.format,h.type,null);return R(),o.profile&&(h.stats.size=T(h.internalformat,h.type,f.width,f.height,!1,!0)),f}},f._reglType="textureCube",f._texture=h,o.profile&&(f.stats=h.stats),f.destroy=function(){h.decRef()},f},clear:function(){for(var e=0;er;++r)if(0!=(e.mipmask&1<>r,e.height>>r,0,e.internalformat,e.type,null);else for(var n=0;6>n;++n)t.texImage2D(34069+n,r,e.internalformat,e.width>>r,e.height>>r,0,e.internalformat,e.type,null);O(e.texInfo,e.target)}))},refresh:function(){for(var e=0;ei;++i){for(c=0;ct;++t)r[t].resize(n);return e.width=e.height=n,e},_reglType:"framebufferCube",destroy:function(){r.forEach((function(t){t.destroy()}))}})},clear:function(){X(k).forEach(g)},restore:function(){x.cur=null,x.next=null,x.dirty=!0,X(k).forEach((function(e){e.framebuffer=t.createFramebuffer(),v(e)}))}})}function M(){this.w=this.z=this.y=this.x=this.state=0,this.buffer=null,this.size=0,this.normalized=!1,this.type=5126,this.divisor=this.stride=this.offset=0}function S(t,e,r,n,i,a,o){function s(){this.id=++f,this.attributes=[],this.elements=null,this.ownsElements=!1,this.offset=this.count=0,this.instances=-1,this.primitive=4;var t=e.oes_vertex_array_object;this.vao=t?t.createVertexArrayOES():null,h[this.id]=this,this.buffers=[]}var c=r.maxAttributes,u=Array(c);for(r=0;r=h.byteLength?c.subdata(h):(c.destroy(),r.buffers[s]=null)),r.buffers[s]||(c=r.buffers[s]=i.create(u,34962,!1,!0)),f.buffer=i.getBuffer(c),f.size=0|f.buffer.dimension,f.normalized=!1,f.type=f.buffer.dtype,f.offset=0,f.stride=0,f.divisor=0,f.state=1,t[s]=1;else i.getBuffer(u)?(f.buffer=i.getBuffer(u),f.size=0|f.buffer.dimension,f.normalized=!1,f.type=f.buffer.dtype,f.offset=0,f.stride=0,f.divisor=0,f.state=1):i.getBuffer(u.buffer)?(f.buffer=i.getBuffer(u.buffer),f.size=0|(+u.size||f.buffer.dimension),f.normalized=!!u.normalized||!1,f.type="type"in u?K[u.type]:f.buffer.dtype,f.offset=0|(u.offset||0),f.stride=0|(u.stride||0),f.divisor=0|(u.divisor||0),f.state=1):"x"in u&&(f.x=+u.x||0,f.y=+u.y||0,f.z=+u.z||0,f.w=+u.w||0,f.state=2)}for(c=0;ct&&(t=e.stats.uniformsCount)})),t},r.getMaxAttributesCount=function(){var t=0;return h.forEach((function(e){e.stats.attributesCount>t&&(t=e.stats.attributesCount)})),t}),{clear:function(){var e=t.deleteShader.bind(t);X(c).forEach(e),c={},X(u).forEach(e),u={},h.forEach((function(e){t.deleteProgram(e.program)})),h.length=0,f={},r.shaderCount=0},program:function(e,n,i,a){var o=f[n];o||(o=f[n]={});var p=o[e];if(p&&(p.refCount++,!a))return p;var d=new s(n,e);return r.shaderCount++,l(d,i,a),p||(o[e]=d),h.push(d),j(d,{destroy:function(){if(d.refCount--,0>=d.refCount){t.deleteProgram(d.program);var e=h.indexOf(d);h.splice(e,1),r.shaderCount--}0>=o[d.vertId].refCount&&(t.deleteShader(u[d.vertId]),delete u[d.vertId],delete f[d.fragId][d.vertId]),Object.keys(f[d.fragId]).length||(t.deleteShader(c[d.fragId]),delete c[d.fragId],delete f[d.fragId])}})},restore:function(){c={},u={};for(var t=0;t"+e+"?"+i+".constant["+e+"]:0;"})).join(""),"}}else{","if(",s,"(",i,".buffer)){",u,"=",a,".createStream(",34962,",",i,".buffer);","}else{",u,"=",a,".getBuffer(",i,".buffer);","}",f,'="type" in ',i,"?",o.glTypes,"[",i,".type]:",u,".dtype;",l.normalized,"=!!",i,".normalized;"),n("size"),n("offset"),n("stride"),n("divisor"),r("}}"),r.exit("if(",l.isStream,"){",a,".destroyStream(",u,");","}"),l}))})),o}function A(t,e,n,i,o){function s(t){var e=c[t];e&&(h[t]=e)}var l=function(t,e){if("string"==typeof(r=t.static).frag&&"string"==typeof r.vert){if(0>1)",s],");")}function e(){r(l,".drawArraysInstancedANGLE(",[d,m,g,s],");")}p&&"null"!==p?y?t():(r("if(",p,"){"),t(),r("}else{"),e(),r("}")):e()}function o(){function t(){r(u+".drawElements("+[d,g,v,m+"<<(("+v+"-5121)>>1)"]+");")}function e(){r(u+".drawArrays("+[d,m,g]+");")}p&&"null"!==p?y?t():(r("if(",p,"){"),t(),r("}else{"),e(),r("}")):e()}var s,l,c=t.shared,u=c.gl,f=c.draw,h=n.draw,p=function(){var i=h.elements,a=e;return i?((i.contextDep&&n.contextDynamic||i.propDep)&&(a=r),i=i.append(t,a),h.elementsActive&&a("if("+i+")"+u+".bindBuffer(34963,"+i+".buffer.buffer);")):(i=a.def(),a(i,"=",f,".","elements",";","if(",i,"){",u,".bindBuffer(",34963,",",i,".buffer.buffer);}","else if(",c.vao,".currentVAO){",i,"=",t.shared.elements+".getElements("+c.vao,".currentVAO.elements);",nt?"":"if("+i+")"+u+".bindBuffer(34963,"+i+".buffer.buffer);","}")),i}(),d=i("primitive"),m=i("offset"),g=function(){var i=h.count,a=e;return i?((i.contextDep&&n.contextDynamic||i.propDep)&&(a=r),i=i.append(t,a)):i=a.def(f,".","count"),i}();if("number"==typeof g){if(0===g)return}else r("if(",g,"){"),r.exit("}");tt&&(s=i("instances"),l=t.instancing);var v=p+".type",y=h.elements&&D(h.elements)&&!h.vaoActive;tt&&("number"!=typeof s||0<=s)?"string"==typeof s?(r("if(",s,">0){"),a(),r("}else if(",s,"<0){"),o(),r("}")):a():o()}function G(t,e,r,n,i){return i=(e=b()).proc("body",i),tt&&(e.instancing=i.def(e.shared.extensions,".angle_instanced_arrays")),t(e,i,r,n),e.compile().body}function Y(t,e,r,n){B(t,e),r.useVAO?r.drawVAO?e(t.shared.vao,".setVAO(",r.drawVAO.append(t,e),");"):e(t.shared.vao,".setVAO(",t.shared.vao,".targetVAO);"):(e(t.shared.vao,".setVAO(null);"),U(t,e,r,n.attributes,(function(){return!0}))),H(t,e,r,n.uniforms,(function(){return!0}),!1),q(t,e,e,r)}function W(t,e,r,n){function i(){return!0}t.batchId="a1",B(t,e),U(t,e,r,n.attributes,i),H(t,e,r,n.uniforms,i,!1),q(t,e,e,r)}function X(t,e,r,n){function i(t){return t.contextDep&&o||t.propDep}function a(t){return!i(t)}B(t,e);var o=r.contextDep,s=e.def(),l=e.def();t.shared.props=l,t.batchId=s;var c=t.scope(),u=t.scope();e(c.entry,"for(",s,"=0;",s,"<","a1",";++",s,"){",l,"=","a0","[",s,"];",u,"}",c.exit),r.needsContext&&M(t,u,r.context),r.needsFramebuffer&&S(t,u,r.framebuffer),L(t,u,r.state,i),r.profile&&i(r.profile)&&N(t,u,r,!1,!0),n?(r.useVAO?r.drawVAO?i(r.drawVAO)?u(t.shared.vao,".setVAO(",r.drawVAO.append(t,u),");"):c(t.shared.vao,".setVAO(",r.drawVAO.append(t,c),");"):c(t.shared.vao,".setVAO(",t.shared.vao,".targetVAO);"):(c(t.shared.vao,".setVAO(null);"),U(t,c,r,n.attributes,a),U(t,u,r,n.attributes,i)),H(t,c,r,n.uniforms,a,!1),H(t,u,r,n.uniforms,i,!0),q(t,c,u,r)):(e=t.global.def("{}"),n=r.shader.progVar.append(t,u),l=u.def(n,".id"),c=u.def(e,"[",l,"]"),u(t.shared.gl,".useProgram(",n,".program);","if(!",c,"){",c,"=",e,"[",l,"]=",t.link((function(e){return G(W,t,r,e,2)})),"(",n,");}",c,".call(this,a0[",s,"],",s,");"))}function Z(t,r){function n(e){var n=r.shader[e];n&&i.set(a.shader,"."+e,n.append(t,i))}var i=t.proc("scope",3);t.batchId="a2";var a=t.shared,o=a.current;M(t,i,r.context),r.framebuffer&&r.framebuffer.append(t,i),O(Object.keys(r.state)).forEach((function(e){var n=r.state[e].append(t,i);g(n)?n.forEach((function(r,n){i.set(t.next[e],"["+n+"]",r)})):i.set(a.next,"."+e,n)})),N(t,i,r,!0,!0),["elements","offset","count","instances","primitive"].forEach((function(e){var n=r.draw[e];n&&i.set(a.draw,"."+e,""+n.append(t,i))})),Object.keys(r.uniforms).forEach((function(n){var o=r.uniforms[n].append(t,i);Array.isArray(o)&&(o="["+o.join()+"]"),i.set(a.uniforms,"["+e.id(n)+"]",o)})),Object.keys(r.attributes).forEach((function(e){var n=r.attributes[e].append(t,i),a=t.scopeAttrib(e);Object.keys(new Q).forEach((function(t){i.set(a,"."+t,n[t])}))})),r.scopeVAO&&i.set(a.vao,".targetVAO",r.scopeVAO.append(t,i)),n("vert"),n("frag"),0=--this.refCount&&o(this)},i.profile&&(n.getTotalRenderbufferSize=function(){var t=0;return Object.keys(u).forEach((function(e){t+=u[e].stats.size})),t}),{create:function(e,r){function o(e,r){var n=0,a=0,u=32854;if("object"==typeof e&&e?("shape"in e?(n=0|(a=e.shape)[0],a=0|a[1]):("radius"in e&&(n=a=0|e.radius),"width"in e&&(n=0|e.width),"height"in e&&(a=0|e.height)),"format"in e&&(u=s[e.format])):"number"==typeof e?(n=0|e,a="number"==typeof r?0|r:n):e||(n=a=1),n!==c.width||a!==c.height||u!==c.format)return o.width=c.width=n,o.height=c.height=a,c.format=u,t.bindRenderbuffer(36161,c.renderbuffer),t.renderbufferStorage(36161,u,n,a),i.profile&&(c.stats.size=vt[c.format]*c.width*c.height),o.format=l[c.format],o}var c=new a(t.createRenderbuffer());return u[c.id]=c,n.renderbufferCount++,o(e,r),o.resize=function(e,r){var n=0|e,a=0|r||n;return n===c.width&&a===c.height||(o.width=c.width=n,o.height=c.height=a,t.bindRenderbuffer(36161,c.renderbuffer),t.renderbufferStorage(36161,c.format,n,a),i.profile&&(c.stats.size=vt[c.format]*c.width*c.height)),o},o._reglType="renderbuffer",o._renderbuffer=c,i.profile&&(o.stats=c.stats),o.destroy=function(){c.decRef()},o},clear:function(){X(u).forEach(o)},restore:function(){X(u).forEach((function(e){e.renderbuffer=t.createRenderbuffer(),t.bindRenderbuffer(36161,e.renderbuffer),t.renderbufferStorage(36161,e.format,e.width,e.height)})),t.bindRenderbuffer(36161,null)}}},xt=[];xt[6408]=4,xt[6407]=3;var bt=[];bt[5121]=1,bt[5126]=4,bt[36193]=2;var _t=["x","y","z","w"],wt="blend.func blend.equation stencil.func stencil.opFront stencil.opBack sample.coverage viewport scissor.box polygonOffset.offset".split(" "),Tt={0:0,1:1,zero:0,one:1,"src color":768,"one minus src color":769,"src alpha":770,"one minus src alpha":771,"dst color":774,"one minus dst color":775,"dst alpha":772,"one minus dst alpha":773,"constant color":32769,"one minus constant color":32770,"constant alpha":32771,"one minus constant alpha":32772,"src alpha saturate":776},kt={never:512,less:513,"<":513,equal:514,"=":514,"==":514,"===":514,lequal:515,"<=":515,greater:516,">":516,notequal:517,"!=":517,"!==":517,gequal:518,">=":518,always:519},At={0:0,zero:0,keep:7680,replace:7681,increment:7682,decrement:7683,"increment wrap":34055,"decrement wrap":34056,invert:5386},Mt={cw:2304,ccw:2305},St=new z(!1,!1,!1,(function(){}));return function(t){function e(){if(0===J.length)w&&w.update(),tt=null;else{tt=H.next(e),f();for(var t=J.length-1;0<=t;--t){var r=J[t];r&&r(P,null,0)}g.flush(),w&&w.update()}}function r(){!tt&&0=J.length&&n()}}}}function u(){var t=X.viewport,e=X.scissor_box;t[0]=t[1]=e[0]=e[1]=0,P.viewportWidth=P.framebufferWidth=P.drawingBufferWidth=t[2]=e[2]=g.drawingBufferWidth,P.viewportHeight=P.framebufferHeight=P.drawingBufferHeight=t[3]=e[3]=g.drawingBufferHeight}function f(){P.tick+=1,P.time=m(),u(),W.procs.poll()}function h(){F.refresh(),u(),W.procs.refresh(),w&&w.update()}function m(){return(q()-T)/1e3}if(!(t=i(t)))return null;var g=t.gl,v=g.getContextAttributes();g.isContextLost();var y=function(t,e){function r(e){var r;e=e.toLowerCase();try{r=n[e]=t.getExtension(e)}catch(t){}return!!r}for(var n={},i=0;ie;++e)et(j({framebuffer:t.framebuffer.faces[e]},t),l);else et(t,l);else l(0,t)},prop:V.define.bind(null,1),context:V.define.bind(null,2),this:V.define.bind(null,3),draw:s({}),buffer:function(t){return O.create(t,34962,!1,!1)},elements:function(t){return z.create(t,!1)},texture:F.create2D,cube:F.createCube,renderbuffer:U.create,framebuffer:G.create,framebufferCube:G.createCube,vao:D.createVAO,attributes:v,frame:c,on:function(t,e){var r;switch(t){case"frame":return c(e);case"lost":r=K;break;case"restore":r=Q;break;case"destroy":r=$}return r.push(e),{cancel:function(){for(var t=0;t * * Copyright (c) 2014-2015, Jon Schlinkert. * Licensed under the MIT License. */ -"use strict";var n,i="";e.exports=function(t,e){if("string"!=typeof t)throw new TypeError("expected a string");if(1===e)return t;if(2===e)return t+t;var r=t.length*e;if(n!==t||void 0===n)n=t,i="";else if(i.length>=r)return i.substr(0,r);for(;r>i.length&&e>1;)1&e&&(i+=t),e>>=1,t+=t;return i=(i+=t).substr(0,r)}},{}],278:[function(t,e,r){(function(t){(function(){e.exports=t.performance&&t.performance.now?function(){return performance.now()}:Date.now||function(){return+new Date}}).call(this)}).call(this,void 0!==n?n:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{}],279:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.length,r=t[t.length-1],n=e,i=e-2;i>=0;--i){var a=r,o=t[i];(l=o-((r=a+o)-a))&&(t[--n]=r,r=l)}var s=0;for(i=n;i0){if(a<=0)return o;n=i+a}else{if(!(i<0))return o;if(a>=0)return o;n=-(i+a)}var s=33306690738754716e-32*n;return o>=s||o<=-s?o:f(t,e,r)},function(t,e,r,n){var i=t[0]-n[0],a=e[0]-n[0],o=r[0]-n[0],s=t[1]-n[1],l=e[1]-n[1],c=r[1]-n[1],u=t[2]-n[2],f=e[2]-n[2],p=r[2]-n[2],d=a*c,m=o*l,g=o*s,v=i*c,y=i*l,x=a*s,b=u*(d-m)+f*(g-v)+p*(y-x),_=7771561172376103e-31*((Math.abs(d)+Math.abs(m))*Math.abs(u)+(Math.abs(g)+Math.abs(v))*Math.abs(f)+(Math.abs(y)+Math.abs(x))*Math.abs(p));return b>_||-b>_?b:h(t,e,r,n)}];function d(t){var e=p[t.length];return e||(e=p[t.length]=u(t.length)),e.apply(void 0,t)}function m(t,e,r,n,i,a,o){return function(e,r,s,l,c){switch(arguments.length){case 0:case 1:return 0;case 2:return n(e,r);case 3:return i(e,r,s);case 4:return a(e,r,s,l);case 5:return o(e,r,s,l,c)}for(var u=new Array(arguments.length),f=0;f0&&o>0||a<0&&o<0)return!1;var s=n(r,t,e),l=n(i,t,e);if(s>0&&l>0||s<0&&l<0)return!1;if(0===a&&0===o&&0===s&&0===l)return function(t,e,r,n){for(var i=0;i<2;++i){var a=t[i],o=e[i],s=Math.min(a,o),l=Math.max(a,o),c=r[i],u=n[i],f=Math.min(c,u);if(Math.max(c,u)=n?(i=f,(l+=1)=n?(i=f,(l+=1)>1,c=e[2*l+1];if(c===a)return l;a>1,c=e[2*l+1];if(c===a)return l;a>1,c=e[2*l+1];if(c===a)return l;a>1,s=a(t[o],e);s<=0?(0===s&&(i=o),r=o+1):s>0&&(n=o-1)}return i}function u(t,e){for(var r=new Array(t.length),i=0,o=r.length;i=t.length||0!==a(t[g],s)););}return r}function f(t,e){if(e<0)return[];for(var r=[],i=(1<>>u&1&&c.push(i[u]);e.push(c)}return s(e)},r.skeleton=f,r.boundary=function(t){for(var e=[],r=0,n=t.length;r>1:(t>>1)-1}function x(t){for(var e=v(t);;){var r=e,n=2*t+1,i=2*(t+1),a=t;if(n0;){var r=y(t);if(r>=0)if(e0){var t=k[0];return g(0,M-1),M-=1,x(0),t}return-1}function w(t,e){var r=k[t];return c[r]===e?t:(c[r]=-1/0,b(t),_(),c[r]=e,b((M+=1)-1))}function T(t){if(!u[t]){u[t]=!0;var e=s[t],r=l[t];s[r]>=0&&(s[r]=e),l[e]>=0&&(l[e]=r),A[e]>=0&&w(A[e],m(e)),A[r]>=0&&w(A[r],m(r))}}var k=[],A=new Array(a);for(f=0;f>1;f>=0;--f)x(f);for(;;){var S=_();if(S<0||c[S]>r)break;T(S)}var E=[];for(f=0;f=0&&r>=0&&e!==r){var n=A[e],i=A[r];n!==i&&C.push([n,i])}})),i.unique(i.normalize(C)),{positions:E,edges:C}};var n=t("robust-orientation"),i=t("simplicial-complex")},{"robust-orientation":284,"simplicial-complex":295}],298:[function(t,e,r){"use strict";e.exports=function(t,e){var r,a,o,s;if(e[0][0]e[1][0]))return i(e,t);r=e[1],a=e[0]}if(t[0][0]t[1][0]))return-i(t,e);o=t[1],s=t[0]}var l=n(r,a,s),c=n(r,a,o);if(l<0){if(c<=0)return l}else if(l>0){if(c>=0)return l}else if(c)return c;if(l=n(s,o,a),c=n(s,o,r),l<0){if(c<=0)return l}else if(l>0){if(c>=0)return l}else if(c)return c;return a[0]-s[0]};var n=t("robust-orientation");function i(t,e){var r,i,a,o;if(e[0][0]e[1][0])){var s=Math.min(t[0][1],t[1][1]),l=Math.max(t[0][1],t[1][1]),c=Math.min(e[0][1],e[1][1]),u=Math.max(e[0][1],e[1][1]);return lu?s-u:l-u}r=e[1],i=e[0]}t[0][1]0)if(e[0]!==o[1][0])r=t,t=t.right;else{if(l=c(t.right,e))return l;t=t.left}else{if(e[0]!==o[1][0])return t;var l;if(l=c(t.right,e))return l;t=t.left}}return r}function u(t,e,r,n){this.y=t,this.index=e,this.start=r,this.closed=n}function f(t,e,r,n){this.x=t,this.segment=e,this.create=r,this.index=n}s.prototype.castUp=function(t){var e=n.le(this.coordinates,t[0]);if(e<0)return-1;this.slabs[e];var r=c(this.slabs[e],t),i=-1;if(r&&(i=r.value),this.coordinates[e]===t[0]){var s=null;if(r&&(s=r.key),e>0){var u=c(this.slabs[e-1],t);u&&(s?o(u.key,s)>0&&(s=u.key,i=u.value):(i=u.value,s=u.key))}var f=this.horizontal[e];if(f.length>0){var h=n.ge(f,t[1],l);if(h=f.length)return i;p=f[h]}}if(p.start)if(s){var d=a(s[0],s[1],[t[0],p.y]);s[0][0]>s[1][0]&&(d=-d),d>0&&(i=p.index)}else i=p.index;else p.y!==t[1]&&(i=p.index)}}}return i}},{"./lib/order-segments":298,"binary-search-bounds":31,"functional-red-black-tree":69,"robust-orientation":284}],300:[function(t,e,r){"use strict";var n=t("robust-dot-product"),i=t("robust-sum");function a(t,e){var r=i(n(t,e),[e[e.length-1]]);return r[r.length-1]}function o(t,e,r,n){var i=-e/(n-e);i<0?i=0:i>1&&(i=1);for(var a=1-i,o=t.length,s=new Array(o),l=0;l0||i>0&&u<0){var f=o(s,u,l,i);r.push(f),n.push(f.slice())}u<0?n.push(l.slice()):u>0?r.push(l.slice()):(r.push(l.slice()),n.push(l.slice())),i=u}return{positive:r,negative:n}},e.exports.positive=function(t,e){for(var r=[],n=a(t[t.length-1],e),i=t[t.length-1],s=t[0],l=0;l0||n>0&&c<0)&&r.push(o(i,c,s,n)),c>=0&&r.push(s.slice()),n=c}return r},e.exports.negative=function(t,e){for(var r=[],n=a(t[t.length-1],e),i=t[t.length-1],s=t[0],l=0;l0||n>0&&c<0)&&r.push(o(i,c,s,n)),c<=0&&r.push(s.slice()),n=c}return r}},{"robust-dot-product":281,"robust-sum":289}],301:[function(t,e,r){!function(){"use strict";var t={not_string:/[^s]/,not_bool:/[^t]/,not_type:/[^T]/,not_primitive:/[^v]/,number:/[diefg]/,numeric_arg:/[bcdiefguxX]/,json:/[j]/,not_json:/[^j]/,text:/^[^\x25]+/,modulo:/^\x25{2}/,placeholder:/^\x25(?:([1-9]\d*)\$|\(([^)]+)\))?(\+)?(0|'[^$])?(-)?(\d+)?(?:\.(\d+))?([b-gijostTuvxX])/,key:/^([a-z_][a-z_\d]*)/i,key_access:/^\.([a-z_][a-z_\d]*)/i,index_access:/^\[(\d+)\]/,sign:/^[+-]/};function e(t){return i(o(t),arguments)}function n(t,r){return e.apply(null,[t].concat(r||[]))}function i(r,n){var i,a,o,s,l,c,u,f,h,p=1,d=r.length,m="";for(a=0;a=0),s.type){case"b":i=parseInt(i,10).toString(2);break;case"c":i=String.fromCharCode(parseInt(i,10));break;case"d":case"i":i=parseInt(i,10);break;case"j":i=JSON.stringify(i,null,s.width?parseInt(s.width):0);break;case"e":i=s.precision?parseFloat(i).toExponential(s.precision):parseFloat(i).toExponential();break;case"f":i=s.precision?parseFloat(i).toFixed(s.precision):parseFloat(i);break;case"g":i=s.precision?String(Number(i.toPrecision(s.precision))):parseFloat(i);break;case"o":i=(parseInt(i,10)>>>0).toString(8);break;case"s":i=String(i),i=s.precision?i.substring(0,s.precision):i;break;case"t":i=String(!!i),i=s.precision?i.substring(0,s.precision):i;break;case"T":i=Object.prototype.toString.call(i).slice(8,-1).toLowerCase(),i=s.precision?i.substring(0,s.precision):i;break;case"u":i=parseInt(i,10)>>>0;break;case"v":i=i.valueOf(),i=s.precision?i.substring(0,s.precision):i;break;case"x":i=(parseInt(i,10)>>>0).toString(16);break;case"X":i=(parseInt(i,10)>>>0).toString(16).toUpperCase()}t.json.test(s.type)?m+=i:(!t.number.test(s.type)||f&&!s.sign?h="":(h=f?"+":"-",i=i.toString().replace(t.sign,"")),c=s.pad_char?"0"===s.pad_char?"0":s.pad_char.charAt(1):" ",u=s.width-(h+i).length,l=s.width&&u>0?c.repeat(u):"",m+=s.align?h+i+l:"0"===c?h+l+i:l+h+i)}return m}var a=Object.create(null);function o(e){if(a[e])return a[e];for(var r,n=e,i=[],o=0;n;){if(null!==(r=t.text.exec(n)))i.push(r[0]);else if(null!==(r=t.modulo.exec(n)))i.push("%");else{if(null===(r=t.placeholder.exec(n)))throw new SyntaxError("[sprintf] unexpected placeholder");if(r[2]){o|=1;var s=[],l=r[2],c=[];if(null===(c=t.key.exec(l)))throw new SyntaxError("[sprintf] failed to parse named argument key");for(s.push(c[1]);""!==(l=l.substring(c[0].length));)if(null!==(c=t.key_access.exec(l)))s.push(c[1]);else{if(null===(c=t.index_access.exec(l)))throw new SyntaxError("[sprintf] failed to parse named argument key");s.push(c[1])}r[2]=s}else o|=2;if(3===o)throw new Error("[sprintf] mixing positional and named placeholders is not (yet) supported");i.push({placeholder:r[0],param_no:r[1],keys:r[2],sign:r[3],pad_char:r[4],align:r[5],width:r[6],precision:r[7],type:r[8]})}n=n.substring(r[0].length)}return a[e]=i}void 0!==r&&(r.sprintf=e,r.vsprintf=n),"undefined"!=typeof window&&(window.sprintf=e,window.vsprintf=n)}()},{}],302:[function(t,e,r){"use strict";e.exports=function(t,e){if(t.dimension<=0)return{positions:[],cells:[]};if(1===t.dimension)return function(t,e){for(var r=i(t,e),n=r.length,a=new Array(n),o=new Array(n),s=0;sn|0},vertex:function(t,e,r,n,i,a,o,s,l,c,u,f,h){var p=(o<<0)+(s<<1)+(l<<2)+(c<<3)|0;if(0!==p&&15!==p)switch(p){case 0:u.push([t-.5,e-.5]);break;case 1:u.push([t-.25-.25*(n+r-2*h)/(r-n),e-.25-.25*(i+r-2*h)/(r-i)]);break;case 2:u.push([t-.75-.25*(-n-r+2*h)/(n-r),e-.25-.25*(a+n-2*h)/(n-a)]);break;case 3:u.push([t-.5,e-.5-.5*(i+r+a+n-4*h)/(r-i+n-a)]);break;case 4:u.push([t-.25-.25*(a+i-2*h)/(i-a),e-.75-.25*(-i-r+2*h)/(i-r)]);break;case 5:u.push([t-.5-.5*(n+r+a+i-4*h)/(r-n+i-a),e-.5]);break;case 6:u.push([t-.5-.25*(-n-r+a+i)/(n-r+i-a),e-.5-.25*(-i-r+a+n)/(i-r+n-a)]);break;case 7:u.push([t-.75-.25*(a+i-2*h)/(i-a),e-.75-.25*(a+n-2*h)/(n-a)]);break;case 8:u.push([t-.75-.25*(-a-i+2*h)/(a-i),e-.75-.25*(-a-n+2*h)/(a-n)]);break;case 9:u.push([t-.5-.25*(n+r+-a-i)/(r-n+a-i),e-.5-.25*(i+r+-a-n)/(r-i+a-n)]);break;case 10:u.push([t-.5-.5*(-n-r-a-i+4*h)/(n-r+a-i),e-.5]);break;case 11:u.push([t-.25-.25*(-a-i+2*h)/(a-i),e-.75-.25*(i+r-2*h)/(r-i)]);break;case 12:u.push([t-.5,e-.5-.5*(-i-r-a-n+4*h)/(i-r+a-n)]);break;case 13:u.push([t-.75-.25*(n+r-2*h)/(r-n),e-.25-.25*(-a-n+2*h)/(a-n)]);break;case 14:u.push([t-.25-.25*(-n-r+2*h)/(n-r),e-.25-.25*(-i-r+2*h)/(i-r)]);break;case 15:u.push([t-.5,e-.5])}},cell:function(t,e,r,n,i,a,o,s,l){i?s.push([t,e]):s.push([e,t])}});return function(t,e){var r=[],i=[];return n(t,r,i,e),{positions:r,cells:i}}}};var o={}},{"ndarray-extract-contour":251,"zero-crossings":318}],303:[function(t,e,r){(function(r){(function(){"use strict";e.exports=function t(e,r,i){i=i||{};var o=a[e];o||(o=a[e]={" ":{data:new Float32Array(0),shape:.2}});var s=o[r];if(!s)if(r.length<=1||!/\d/.test(r))s=o[r]=function(t){for(var e=t.cells,r=t.positions,n=new Float32Array(6*e.length),i=0,a=0,o=0;o0&&(f+=.02);var p=new Float32Array(u),d=0,m=-.5*f;for(h=0;hMath.max(r,n)?i[2]=1:r>Math.max(e,n)?i[0]=1:i[1]=1;for(var a=0,o=0,l=0;l<3;++l)a+=t[l]*t[l],o+=i[l]*t[l];for(l=0;l<3;++l)i[l]-=o/a*t[l];return s(i,i),i}function h(t,e,r,i,a,o,s,l){this.center=n(r),this.up=n(i),this.right=n(a),this.radius=n([o]),this.angle=n([s,l]),this.angle.bounds=[[-1/0,-Math.PI/2],[1/0,Math.PI/2]],this.setDistanceLimits(t,e),this.computedCenter=this.center.curve(0),this.computedUp=this.up.curve(0),this.computedRight=this.right.curve(0),this.computedRadius=this.radius.curve(0),this.computedAngle=this.angle.curve(0),this.computedToward=[0,0,0],this.computedEye=[0,0,0],this.computedMatrix=new Array(16);for(var c=0;c<16;++c)this.computedMatrix[c]=.5;this.recalcMatrix(0)}var p=h.prototype;p.setDistanceLimits=function(t,e){t=t>0?Math.log(t):-1/0,e=e>0?Math.log(e):1/0,e=Math.max(e,t),this.radius.bounds[0][0]=t,this.radius.bounds[1][0]=e},p.getDistanceLimits=function(t){var e=this.radius.bounds[0];return t?(t[0]=Math.exp(e[0][0]),t[1]=Math.exp(e[1][0]),t):[Math.exp(e[0][0]),Math.exp(e[1][0])]},p.recalcMatrix=function(t){this.center.curve(t),this.up.curve(t),this.right.curve(t),this.radius.curve(t),this.angle.curve(t);for(var e=this.computedUp,r=this.computedRight,n=0,i=0,a=0;a<3;++a)i+=e[a]*r[a],n+=e[a]*e[a];var l=Math.sqrt(n),u=0;for(a=0;a<3;++a)r[a]-=e[a]*i/n,u+=r[a]*r[a],e[a]/=l;var f=Math.sqrt(u);for(a=0;a<3;++a)r[a]/=f;var h=this.computedToward;o(h,e,r),s(h,h);var p=Math.exp(this.computedRadius[0]),d=this.computedAngle[0],m=this.computedAngle[1],g=Math.cos(d),v=Math.sin(d),y=Math.cos(m),x=Math.sin(m),b=this.computedCenter,_=g*y,w=v*y,T=x,k=-g*x,A=-v*x,M=y,S=this.computedEye,E=this.computedMatrix;for(a=0;a<3;++a){var L=_*r[a]+w*h[a]+T*e[a];E[4*a+1]=k*r[a]+A*h[a]+M*e[a],E[4*a+2]=L,E[4*a+3]=0}var C=E[1],P=E[5],I=E[9],O=E[2],z=E[6],D=E[10],R=P*D-I*z,F=I*O-C*D,B=C*z-P*O,N=c(R,F,B);R/=N,F/=N,B/=N,E[0]=R,E[4]=F,E[8]=B;for(a=0;a<3;++a)S[a]=b[a]+E[2+4*a]*p;for(a=0;a<3;++a){u=0;for(var j=0;j<3;++j)u+=E[a+4*j]*S[j];E[12+a]=-u}E[15]=1},p.getMatrix=function(t,e){this.recalcMatrix(t);var r=this.computedMatrix;if(e){for(var n=0;n<16;++n)e[n]=r[n];return e}return r};var d=[0,0,0];p.rotate=function(t,e,r,n){if(this.angle.move(t,e,r),n){this.recalcMatrix(t);var i=this.computedMatrix;d[0]=i[2],d[1]=i[6],d[2]=i[10];for(var o=this.computedUp,s=this.computedRight,l=this.computedToward,c=0;c<3;++c)i[4*c]=o[c],i[4*c+1]=s[c],i[4*c+2]=l[c];a(i,i,n,d);for(c=0;c<3;++c)o[c]=i[4*c],s[c]=i[4*c+1];this.up.set(t,o[0],o[1],o[2]),this.right.set(t,s[0],s[1],s[2])}},p.pan=function(t,e,r,n){e=e||0,r=r||0,n=n||0,this.recalcMatrix(t);var i=this.computedMatrix,a=(Math.exp(this.computedRadius[0]),i[1]),o=i[5],s=i[9],l=c(a,o,s);a/=l,o/=l,s/=l;var u=i[0],f=i[4],h=i[8],p=u*a+f*o+h*s,d=c(u-=a*p,f-=o*p,h-=s*p),m=(u/=d)*e+a*r,g=(f/=d)*e+o*r,v=(h/=d)*e+s*r;this.center.move(t,m,g,v);var y=Math.exp(this.computedRadius[0]);y=Math.max(1e-4,y+n),this.radius.set(t,Math.log(y))},p.translate=function(t,e,r,n){this.center.move(t,e||0,r||0,n||0)},p.setMatrix=function(t,e,r,n){var a=1;"number"==typeof r&&(a=0|r),(a<0||a>3)&&(a=1);var o=(a+2)%3;e||(this.recalcMatrix(t),e=this.computedMatrix);var s=e[a],l=e[a+4],f=e[a+8];if(n){var h=Math.abs(s),p=Math.abs(l),d=Math.abs(f),m=Math.max(h,p,d);h===m?(s=s<0?-1:1,l=f=0):d===m?(f=f<0?-1:1,s=l=0):(l=l<0?-1:1,s=f=0)}else{var g=c(s,l,f);s/=g,l/=g,f/=g}var v,y,x=e[o],b=e[o+4],_=e[o+8],w=x*s+b*l+_*f,T=c(x-=s*w,b-=l*w,_-=f*w),k=l*(_/=T)-f*(b/=T),A=f*(x/=T)-s*_,M=s*b-l*x,S=c(k,A,M);if(k/=S,A/=S,M/=S,this.center.jump(t,q,G,Y),this.radius.idle(t),this.up.jump(t,s,l,f),this.right.jump(t,x,b,_),2===a){var E=e[1],L=e[5],C=e[9],P=E*x+L*b+C*_,I=E*k+L*A+C*M;v=R<0?-Math.PI/2:Math.PI/2,y=Math.atan2(I,P)}else{var O=e[2],z=e[6],D=e[10],R=O*s+z*l+D*f,F=O*x+z*b+D*_,B=O*k+z*A+D*M;v=Math.asin(u(R)),y=Math.atan2(B,F)}this.angle.jump(t,y,v),this.recalcMatrix(t);var N=e[2],j=e[6],U=e[10],V=this.computedMatrix;i(V,e);var H=V[15],q=V[12]/H,G=V[13]/H,Y=V[14]/H,W=Math.exp(this.computedRadius[0]);this.center.jump(t,q-N*W,G-j*W,Y-U*W)},p.lastT=function(){return Math.max(this.center.lastT(),this.up.lastT(),this.right.lastT(),this.radius.lastT(),this.angle.lastT())},p.idle=function(t){this.center.idle(t),this.up.idle(t),this.right.idle(t),this.radius.idle(t),this.angle.idle(t)},p.flush=function(t){this.center.flush(t),this.up.flush(t),this.right.flush(t),this.radius.flush(t),this.angle.flush(t)},p.setDistance=function(t,e){e>0&&this.radius.set(t,Math.log(e))},p.lookAt=function(t,e,r,n){this.recalcMatrix(t),e=e||this.computedEye,r=r||this.computedCenter;var i=(n=n||this.computedUp)[0],a=n[1],o=n[2],s=c(i,a,o);if(!(s<1e-6)){i/=s,a/=s,o/=s;var l=e[0]-r[0],f=e[1]-r[1],h=e[2]-r[2],p=c(l,f,h);if(!(p<1e-6)){l/=p,f/=p,h/=p;var d=this.computedRight,m=d[0],g=d[1],v=d[2],y=i*m+a*g+o*v,x=c(m-=y*i,g-=y*a,v-=y*o);if(!(x<.01&&(x=c(m=a*h-o*f,g=o*l-i*h,v=i*f-a*l))<1e-6)){m/=x,g/=x,v/=x,this.up.set(t,i,a,o),this.right.set(t,m,g,v),this.center.set(t,r[0],r[1],r[2]),this.radius.set(t,Math.log(p));var b=a*v-o*g,_=o*m-i*v,w=i*g-a*m,T=c(b,_,w),k=i*l+a*f+o*h,A=m*l+g*f+v*h,M=(b/=T)*l+(_/=T)*f+(w/=T)*h,S=Math.asin(u(k)),E=Math.atan2(M,A),L=this.angle._state,C=L[L.length-1],P=L[L.length-2];C%=2*Math.PI;var I=Math.abs(C+2*Math.PI-E),O=Math.abs(C-E),z=Math.abs(C-2*Math.PI-E);I0?r.pop():new ArrayBuffer(t)}function d(t){return new Uint8Array(p(t),0,t)}function m(t){return new Uint16Array(p(2*t),0,t)}function g(t){return new Uint32Array(p(4*t),0,t)}function v(t){return new Int8Array(p(t),0,t)}function y(t){return new Int16Array(p(2*t),0,t)}function x(t){return new Int32Array(p(4*t),0,t)}function b(t){return new Float32Array(p(4*t),0,t)}function _(t){return new Float64Array(p(8*t),0,t)}function w(t){return o?new Uint8ClampedArray(p(t),0,t):d(t)}function T(t){return s?new BigUint64Array(p(8*t),0,t):null}function k(t){return l?new BigInt64Array(p(8*t),0,t):null}function A(t){return new DataView(p(t),0,t)}function M(t){t=n.nextPow2(t);var e=n.log2(t),r=f[e];return r.length>0?r.pop():new a(t)}r.free=function(t){if(a.isBuffer(t))f[n.log2(t.length)].push(t);else{if("[object ArrayBuffer]"!==Object.prototype.toString.call(t)&&(t=t.buffer),!t)return;var e=t.length||t.byteLength,r=0|n.log2(e);u[r].push(t)}},r.freeUint8=r.freeUint16=r.freeUint32=r.freeBigUint64=r.freeInt8=r.freeInt16=r.freeInt32=r.freeBigInt64=r.freeFloat32=r.freeFloat=r.freeFloat64=r.freeDouble=r.freeUint8Clamped=r.freeDataView=function(t){h(t.buffer)},r.freeArrayBuffer=h,r.freeBuffer=function(t){f[n.log2(t.length)].push(t)},r.malloc=function(t,e){if(void 0===e||"arraybuffer"===e)return p(t);switch(e){case"uint8":return d(t);case"uint16":return m(t);case"uint32":return g(t);case"int8":return v(t);case"int16":return y(t);case"int32":return x(t);case"float":case"float32":return b(t);case"double":case"float64":return _(t);case"uint8_clamped":return w(t);case"bigint64":return k(t);case"biguint64":return T(t);case"buffer":return M(t);case"data":case"dataview":return A(t);default:return null}return null},r.mallocArrayBuffer=p,r.mallocUint8=d,r.mallocUint16=m,r.mallocUint32=g,r.mallocInt8=v,r.mallocInt16=y,r.mallocInt32=x,r.mallocFloat32=r.mallocFloat=b,r.mallocFloat64=r.mallocDouble=_,r.mallocUint8Clamped=w,r.mallocBigUint64=T,r.mallocBigInt64=k,r.mallocDataView=A,r.mallocBuffer=M,r.clearCache=function(){for(var t=0;t<32;++t)c.UINT8[t].length=0,c.UINT16[t].length=0,c.UINT32[t].length=0,c.INT8[t].length=0,c.INT16[t].length=0,c.INT32[t].length=0,c.FLOAT[t].length=0,c.DOUBLE[t].length=0,c.BIGUINT64[t].length=0,c.BIGINT64[t].length=0,c.UINT8C[t].length=0,u[t].length=0,f[t].length=0}}).call(this)}).call(this,void 0!==n?n:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"bit-twiddle":32,buffer:3,dup:65}],309:[function(t,e,r){"use strict";function n(t){this.roots=new Array(t),this.ranks=new Array(t);for(var e=0;e0&&(a=n.size),n.lineSpacing&&n.lineSpacing>0&&(o=n.lineSpacing),n.styletags&&n.styletags.breaklines&&(s.breaklines=!!n.styletags.breaklines),n.styletags&&n.styletags.bolds&&(s.bolds=!!n.styletags.bolds),n.styletags&&n.styletags.italics&&(s.italics=!!n.styletags.italics),n.styletags&&n.styletags.subscripts&&(s.subscripts=!!n.styletags.subscripts),n.styletags&&n.styletags.superscripts&&(s.superscripts=!!n.styletags.superscripts));return r.font=[n.fontStyle,n.fontVariant,n.fontWeight,a+"px",n.font].filter((function(t){return t})).join(" "),r.textAlign="start",r.textBaseline="alphabetic",r.direction="ltr",h(function(t,e,r,n,a,o){r=r.replace(/\n/g,""),r=!0===o.breaklines?r.replace(/\/g,"\n"):r.replace(/\/g," ");var s="",l=[];for(p=0;p-1?parseInt(t[1+i]):0,l=a>-1?parseInt(r[1+a]):0;s!==l&&(n=n.replace(S(),"?px "),g*=Math.pow(.75,l-s),n=n.replace("?px ",S())),m+=.25*x*(l-s)}if(!0===o.superscripts){var c=t.indexOf("+"),u=r.indexOf("+"),f=c>-1?parseInt(t[1+c]):0,h=u>-1?parseInt(r[1+u]):0;f!==h&&(n=n.replace(S(),"?px "),g*=Math.pow(.75,h-f),n=n.replace("?px ",S())),m-=.25*x*(h-f)}if(!0===o.bolds){var p=t.indexOf("b|")>-1,d=r.indexOf("b|")>-1;!p&&d&&(n=v?n.replace("italic ","italic bold "):"bold "+n),p&&!d&&(n=n.replace("bold ",""))}if(!0===o.italics){var v=t.indexOf("i|")>-1,y=r.indexOf("i|")>-1;!v&&y&&(n="italic "+n),v&&!y&&(n=n.replace("italic ",""))}e.font=n}for(h=0;h",a="",o=i.length,s=a.length,l="+"===e[0]||"-"===e[0],c=0,u=-s;c>-1&&-1!==(c=r.indexOf(i,c))&&-1!==(u=r.indexOf(a,c+o))&&!(u<=c);){for(var f=c;f=u)n[f]=null,r=r.substr(0,f)+" "+r.substr(f+1);else if(null!==n[f]){var h=n[f].indexOf(e[0]);-1===h?n[f]+=e:l&&(n[f]=n[f].substr(0,h+1)+(1+parseInt(n[f][h+1]))+n[f].substr(h+2))}var p=c+o,d=r.substr(p,u-p).indexOf(i);c=-1!==d?d:u+s}return n}function u(t,e){var r=n(t,128);return e?a(r.cells,r.positions,.25):{edges:r.cells,positions:r.positions}}function f(t,e,r,n){var i=u(t,n),a=function(t,e,r){for(var n=e.textAlign||"start",i=e.textBaseline||"alphabetic",a=[1<<30,1<<30],o=[0,0],s=t.length,l=0;l=0?e[a]:i}))},has___:{value:y((function(e){var n=v(e);return n?r in n:t.indexOf(e)>=0}))},set___:{value:y((function(n,i){var a,o=v(n);return o?o[r]=i:(a=t.indexOf(n))>=0?e[a]=i:(a=t.length,e[a]=i,t[a]=n),this}))},delete___:{value:y((function(n){var i,a,o=v(n);return o?r in o&&delete o[r]:!((i=t.indexOf(n))<0)&&(a=t.length-1,t[i]=void 0,e[i]=e[a],t[i]=t[a],t.length=a,e.length=a,!0)}))}})};d.prototype=Object.create(Object.prototype,{get:{value:function(t,e){return this.get___(t,e)},writable:!0,configurable:!0},has:{value:function(t){return this.has___(t)},writable:!0,configurable:!0},set:{value:function(t,e){return this.set___(t,e)},writable:!0,configurable:!0},delete:{value:function(t){return this.delete___(t)},writable:!0,configurable:!0}}),"function"==typeof r?function(){function n(){this instanceof d||x();var e,n=new r,i=void 0,a=!1;return e=t?function(t,e){return n.set(t,e),n.has(t)||(i||(i=new d),i.set(t,e)),this}:function(t,e){if(a)try{n.set(t,e)}catch(r){i||(i=new d),i.set___(t,e)}else n.set(t,e);return this},Object.create(d.prototype,{get___:{value:y((function(t,e){return i?n.has(t)?n.get(t):i.get___(t,e):n.get(t,e)}))},has___:{value:y((function(t){return n.has(t)||!!i&&i.has___(t)}))},set___:{value:y(e)},delete___:{value:y((function(t){var e=!!n.delete(t);return i&&i.delete___(t)||e}))},permitHostObjects___:{value:y((function(t){if(t!==m)throw new Error("bogus call to permitHostObjects___");a=!0}))}})}t&&"undefined"!=typeof Proxy&&(Proxy=void 0),n.prototype=d.prototype,e.exports=n,Object.defineProperty(WeakMap.prototype,"constructor",{value:WeakMap,enumerable:!1,configurable:!0,writable:!0})}():("undefined"!=typeof Proxy&&(Proxy=void 0),e.exports=d)}function m(t){t.permitHostObjects___&&t.permitHostObjects___(m)}function g(t){return!("weakmap:"==t.substr(0,"weakmap:".length)&&"___"===t.substr(t.length-3))}function v(t){if(t!==Object(t))throw new TypeError("Not an object: "+t);var e=t[l];if(e&&e.key===t)return e;if(s(t)){e={key:t};try{return o(t,l,{value:e,writable:!1,enumerable:!1,configurable:!1}),e}catch(t){return}}}function y(t){return t.prototype=null,Object.freeze(t)}function x(){h||"undefined"==typeof console||(h=!0,console.warn("WeakMap should be invoked as new WeakMap(), not WeakMap(). This will be an error in the future."))}}()},{}],314:[function(t,e,r){var n=t("./hidden-store.js");e.exports=function(){var t={};return function(e){if(("object"!=typeof e||null===e)&&"function"!=typeof e)throw new Error("Weakmap-shim: Key must be object");var r=e.valueOf(t);return r&&r.identity===t?r:n(e,t)}}},{"./hidden-store.js":315}],315:[function(t,e,r){e.exports=function(t,e){var r={identity:e},n=t.valueOf;return Object.defineProperty(t,"valueOf",{value:function(t){return t!==e?n.apply(this,arguments):r},writable:!0}),r}},{}],316:[function(t,e,r){var n=t("./create-store.js");e.exports=function(){var t=n();return{get:function(e,r){var n=t(e);return n.hasOwnProperty("value")?n.value:r},set:function(e,r){return t(e).value=r,this},has:function(e){return"value"in t(e)},delete:function(e){return delete t(e).value}}}},{"./create-store.js":314}],317:[function(t,e,r){"use strict";var n,i=function(){return function(t,e,r,n,i,a){var o=t[0],s=r[0],l=[0],c=s;n|=0;var u=0,f=s;for(u=0;u=0!=p>=0&&i.push(l[0]+.5+.5*(h+p)/(h-p)),n+=f,++l[0]}}};e.exports=(n={funcName:{funcName:"zeroCrossings"}.funcName},function(t){var e={};return function(r,n,i){var a=r.dtype,o=r.order,s=[a,o.join()].join(),l=e[s];return l||(e[s]=l=t([a,o])),l(r.shape.slice(0),r.data,r.stride,0|r.offset,n,i)}}(i.bind(void 0,n)))},{}],318:[function(t,e,r){"use strict";e.exports=function(t,e){var r=[];return e=+e||0,n(t.hi(t.shape[0]-1),r,e),r};var n=t("./lib/zc-core")},{"./lib/zc-core":317}]},{},[6])(6)}))}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{}]},{},[27])(27)})); \ No newline at end of file +"use strict";var n,i="";e.exports=function(t,e){if("string"!=typeof t)throw new TypeError("expected a string");if(1===e)return t;if(2===e)return t+t;var r=t.length*e;if(n!==t||void 0===n)n=t,i="";else if(i.length>=r)return i.substr(0,r);for(;r>i.length&&e>1;)1&e&&(i+=t),e>>=1,t+=t;return i=(i+=t).substr(0,r)}},{}],518:[function(t,e,r){(function(t){(function(){e.exports=t.performance&&t.performance.now?function(){return performance.now()}:Date.now||function(){return+new Date}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{}],519:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.length,r=t[t.length-1],n=e,i=e-2;i>=0;--i){var a=r,o=t[i];(l=o-((r=a+o)-a))&&(t[--n]=r,r=l)}var s=0;for(i=n;i0){if(a<=0)return o;n=i+a}else{if(!(i<0))return o;if(a>=0)return o;n=-(i+a)}var s=33306690738754716e-32*n;return o>=s||o<=-s?o:f(t,e,r)},function(t,e,r,n){var i=t[0]-n[0],a=e[0]-n[0],o=r[0]-n[0],s=t[1]-n[1],l=e[1]-n[1],c=r[1]-n[1],u=t[2]-n[2],f=e[2]-n[2],p=r[2]-n[2],d=a*c,m=o*l,g=o*s,v=i*c,y=i*l,x=a*s,b=u*(d-m)+f*(g-v)+p*(y-x),_=7771561172376103e-31*((Math.abs(d)+Math.abs(m))*Math.abs(u)+(Math.abs(g)+Math.abs(v))*Math.abs(f)+(Math.abs(y)+Math.abs(x))*Math.abs(p));return b>_||-b>_?b:h(t,e,r,n)}];function d(t){var e=p[t.length];return e||(e=p[t.length]=u(t.length)),e.apply(void 0,t)}function m(t,e,r,n,i,a,o){return function(e,r,s,l,c){switch(arguments.length){case 0:case 1:return 0;case 2:return n(e,r);case 3:return i(e,r,s);case 4:return a(e,r,s,l);case 5:return o(e,r,s,l,c)}for(var u=new Array(arguments.length),f=0;f0&&o>0||a<0&&o<0)return!1;var s=n(r,t,e),l=n(i,t,e);if(s>0&&l>0||s<0&&l<0)return!1;if(0===a&&0===o&&0===s&&0===l)return function(t,e,r,n){for(var i=0;i<2;++i){var a=t[i],o=e[i],s=Math.min(a,o),l=Math.max(a,o),c=r[i],u=n[i],f=Math.min(c,u);if(Math.max(c,u)=n?(i=f,(l+=1)=n?(i=f,(l+=1) */ +var n=t("buffer"),i=n.Buffer;function a(t,e){for(var r in t)e[r]=t[r]}function o(t,e,r){return i(t,e,r)}i.from&&i.alloc&&i.allocUnsafe&&i.allocUnsafeSlow?e.exports=n:(a(n,r),r.Buffer=o),o.prototype=Object.create(i.prototype),a(i,o),o.from=function(t,e,r){if("number"==typeof t)throw new TypeError("Argument must not be a number");return i(t,e,r)},o.alloc=function(t,e,r){if("number"!=typeof t)throw new TypeError("Argument must be a number");var n=i(t);return void 0!==e?"string"==typeof r?n.fill(e,r):n.fill(e):n.fill(0),n},o.allocUnsafe=function(t){if("number"!=typeof t)throw new TypeError("Argument must be a number");return i(t)},o.allocUnsafeSlow=function(t){if("number"!=typeof t)throw new TypeError("Argument must be a number");return n.SlowBuffer(t)}},{buffer:112}],531:[function(t,e,r){"use strict";e.exports=function(t){return i(n(t))};var n=t("boundary-cells"),i=t("reduce-simplicial-complex")},{"boundary-cells":103,"reduce-simplicial-complex":511}],532:[function(t,e,r){"use strict";e.exports=function(t,e,r,s){r=r||0,void 0===s&&(s=function(t){for(var e=t.length,r=0,n=0;n>1,c=e[2*l+1];if(c===a)return l;a>1,c=e[2*l+1];if(c===a)return l;a>1,c=e[2*l+1];if(c===a)return l;a>1,s=a(t[o],e);s<=0?(0===s&&(i=o),r=o+1):s>0&&(n=o-1)}return i}function u(t,e){for(var r=new Array(t.length),i=0,o=r.length;i=t.length||0!==a(t[g],s)););}return r}function f(t,e){if(e<0)return[];for(var r=[],i=(1<>>u&1&&c.push(i[u]);e.push(c)}return s(e)},r.skeleton=f,r.boundary=function(t){for(var e=[],r=0,n=t.length;r>1:(t>>1)-1}function x(t){for(var e=v(t);;){var r=e,n=2*t+1,i=2*(t+1),a=t;if(n0;){var r=y(t);if(r>=0)if(e0){var t=k[0];return g(0,M-1),M-=1,x(0),t}return-1}function w(t,e){var r=k[t];return c[r]===e?t:(c[r]=-1/0,b(t),_(),c[r]=e,b((M+=1)-1))}function T(t){if(!u[t]){u[t]=!0;var e=s[t],r=l[t];s[r]>=0&&(s[r]=e),l[e]>=0&&(l[e]=r),A[e]>=0&&w(A[e],m(e)),A[r]>=0&&w(A[r],m(r))}}var k=[],A=new Array(a);for(f=0;f>1;f>=0;--f)x(f);for(;;){var S=_();if(S<0||c[S]>r)break;T(S)}var E=[];for(f=0;f=0&&r>=0&&e!==r){var n=A[e],i=A[r];n!==i&&C.push([n,i])}})),i.unique(i.normalize(C)),{positions:E,edges:C}};var n=t("robust-orientation"),i=t("simplicial-complex")},{"robust-orientation":524,"simplicial-complex":536}],539:[function(t,e,r){"use strict";e.exports=function(t,e){var r,a,o,s;if(e[0][0]e[1][0]))return i(e,t);r=e[1],a=e[0]}if(t[0][0]t[1][0]))return-i(t,e);o=t[1],s=t[0]}var l=n(r,a,s),c=n(r,a,o);if(l<0){if(c<=0)return l}else if(l>0){if(c>=0)return l}else if(c)return c;if(l=n(s,o,a),c=n(s,o,r),l<0){if(c<=0)return l}else if(l>0){if(c>=0)return l}else if(c)return c;return a[0]-s[0]};var n=t("robust-orientation");function i(t,e){var r,i,a,o;if(e[0][0]e[1][0])){var s=Math.min(t[0][1],t[1][1]),l=Math.max(t[0][1],t[1][1]),c=Math.min(e[0][1],e[1][1]),u=Math.max(e[0][1],e[1][1]);return lu?s-u:l-u}r=e[1],i=e[0]}t[0][1]0)if(e[0]!==o[1][0])r=t,t=t.right;else{if(l=c(t.right,e))return l;t=t.left}else{if(e[0]!==o[1][0])return t;var l;if(l=c(t.right,e))return l;t=t.left}}return r}function u(t,e,r,n){this.y=t,this.index=e,this.start=r,this.closed=n}function f(t,e,r,n){this.x=t,this.segment=e,this.create=r,this.index=n}s.prototype.castUp=function(t){var e=n.le(this.coordinates,t[0]);if(e<0)return-1;this.slabs[e];var r=c(this.slabs[e],t),i=-1;if(r&&(i=r.value),this.coordinates[e]===t[0]){var s=null;if(r&&(s=r.key),e>0){var u=c(this.slabs[e-1],t);u&&(s?o(u.key,s)>0&&(s=u.key,i=u.value):(i=u.value,s=u.key))}var f=this.horizontal[e];if(f.length>0){var h=n.ge(f,t[1],l);if(h=f.length)return i;p=f[h]}}if(p.start)if(s){var d=a(s[0],s[1],[t[0],p.y]);s[0][0]>s[1][0]&&(d=-d),d>0&&(i=p.index)}else i=p.index;else p.y!==t[1]&&(i=p.index)}}}return i}},{"./lib/order-segments":539,"binary-search-bounds":100,"functional-red-black-tree":247,"robust-orientation":524}],541:[function(t,e,r){"use strict";var n=t("robust-dot-product"),i=t("robust-sum");function a(t,e){var r=i(n(t,e),[e[e.length-1]]);return r[r.length-1]}function o(t,e,r,n){var i=-e/(n-e);i<0?i=0:i>1&&(i=1);for(var a=1-i,o=t.length,s=new Array(o),l=0;l0||i>0&&u<0){var f=o(s,u,l,i);r.push(f),n.push(f.slice())}u<0?n.push(l.slice()):u>0?r.push(l.slice()):(r.push(l.slice()),n.push(l.slice())),i=u}return{positive:r,negative:n}},e.exports.positive=function(t,e){for(var r=[],n=a(t[t.length-1],e),i=t[t.length-1],s=t[0],l=0;l0||n>0&&c<0)&&r.push(o(i,c,s,n)),c>=0&&r.push(s.slice()),n=c}return r},e.exports.negative=function(t,e){for(var r=[],n=a(t[t.length-1],e),i=t[t.length-1],s=t[0],l=0;l0||n>0&&c<0)&&r.push(o(i,c,s,n)),c<=0&&r.push(s.slice()),n=c}return r}},{"robust-dot-product":521,"robust-sum":529}],542:[function(t,e,r){!function(){"use strict";var t={not_string:/[^s]/,not_bool:/[^t]/,not_type:/[^T]/,not_primitive:/[^v]/,number:/[diefg]/,numeric_arg:/[bcdiefguxX]/,json:/[j]/,not_json:/[^j]/,text:/^[^\x25]+/,modulo:/^\x25{2}/,placeholder:/^\x25(?:([1-9]\d*)\$|\(([^)]+)\))?(\+)?(0|'[^$])?(-)?(\d+)?(?:\.(\d+))?([b-gijostTuvxX])/,key:/^([a-z_][a-z_\d]*)/i,key_access:/^\.([a-z_][a-z_\d]*)/i,index_access:/^\[(\d+)\]/,sign:/^[+-]/};function e(t){return i(o(t),arguments)}function n(t,r){return e.apply(null,[t].concat(r||[]))}function i(r,n){var i,a,o,s,l,c,u,f,h,p=1,d=r.length,m="";for(a=0;a=0),s.type){case"b":i=parseInt(i,10).toString(2);break;case"c":i=String.fromCharCode(parseInt(i,10));break;case"d":case"i":i=parseInt(i,10);break;case"j":i=JSON.stringify(i,null,s.width?parseInt(s.width):0);break;case"e":i=s.precision?parseFloat(i).toExponential(s.precision):parseFloat(i).toExponential();break;case"f":i=s.precision?parseFloat(i).toFixed(s.precision):parseFloat(i);break;case"g":i=s.precision?String(Number(i.toPrecision(s.precision))):parseFloat(i);break;case"o":i=(parseInt(i,10)>>>0).toString(8);break;case"s":i=String(i),i=s.precision?i.substring(0,s.precision):i;break;case"t":i=String(!!i),i=s.precision?i.substring(0,s.precision):i;break;case"T":i=Object.prototype.toString.call(i).slice(8,-1).toLowerCase(),i=s.precision?i.substring(0,s.precision):i;break;case"u":i=parseInt(i,10)>>>0;break;case"v":i=i.valueOf(),i=s.precision?i.substring(0,s.precision):i;break;case"x":i=(parseInt(i,10)>>>0).toString(16);break;case"X":i=(parseInt(i,10)>>>0).toString(16).toUpperCase()}t.json.test(s.type)?m+=i:(!t.number.test(s.type)||f&&!s.sign?h="":(h=f?"+":"-",i=i.toString().replace(t.sign,"")),c=s.pad_char?"0"===s.pad_char?"0":s.pad_char.charAt(1):" ",u=s.width-(h+i).length,l=s.width&&u>0?c.repeat(u):"",m+=s.align?h+i+l:"0"===c?h+l+i:l+h+i)}return m}var a=Object.create(null);function o(e){if(a[e])return a[e];for(var r,n=e,i=[],o=0;n;){if(null!==(r=t.text.exec(n)))i.push(r[0]);else if(null!==(r=t.modulo.exec(n)))i.push("%");else{if(null===(r=t.placeholder.exec(n)))throw new SyntaxError("[sprintf] unexpected placeholder");if(r[2]){o|=1;var s=[],l=r[2],c=[];if(null===(c=t.key.exec(l)))throw new SyntaxError("[sprintf] failed to parse named argument key");for(s.push(c[1]);""!==(l=l.substring(c[0].length));)if(null!==(c=t.key_access.exec(l)))s.push(c[1]);else{if(null===(c=t.index_access.exec(l)))throw new SyntaxError("[sprintf] failed to parse named argument key");s.push(c[1])}r[2]=s}else o|=2;if(3===o)throw new Error("[sprintf] mixing positional and named placeholders is not (yet) supported");i.push({placeholder:r[0],param_no:r[1],keys:r[2],sign:r[3],pad_char:r[4],align:r[5],width:r[6],precision:r[7],type:r[8]})}n=n.substring(r[0].length)}return a[e]=i}void 0!==r&&(r.sprintf=e,r.vsprintf=n),"undefined"!=typeof window&&(window.sprintf=e,window.vsprintf=n)}()},{}],543:[function(t,e,r){e.exports=i;var n=t("events").EventEmitter;function i(){n.call(this)}t("inherits")(i,n),i.Readable=t("readable-stream/lib/_stream_readable.js"),i.Writable=t("readable-stream/lib/_stream_writable.js"),i.Duplex=t("readable-stream/lib/_stream_duplex.js"),i.Transform=t("readable-stream/lib/_stream_transform.js"),i.PassThrough=t("readable-stream/lib/_stream_passthrough.js"),i.finished=t("readable-stream/lib/internal/streams/end-of-stream.js"),i.pipeline=t("readable-stream/lib/internal/streams/pipeline.js"),i.Stream=i,i.prototype.pipe=function(t,e){var r=this;function i(e){t.writable&&!1===t.write(e)&&r.pause&&r.pause()}function a(){r.readable&&r.resume&&r.resume()}r.on("data",i),t.on("drain",a),t._isStdio||e&&!1===e.end||(r.on("end",s),r.on("close",l));var o=!1;function s(){o||(o=!0,t.end())}function l(){o||(o=!0,"function"==typeof t.destroy&&t.destroy())}function c(t){if(u(),0===n.listenerCount(this,"error"))throw t}function u(){r.removeListener("data",i),t.removeListener("drain",a),r.removeListener("end",s),r.removeListener("close",l),r.removeListener("error",c),t.removeListener("error",c),r.removeListener("end",u),r.removeListener("close",u),t.removeListener("close",u)}return r.on("error",c),t.on("error",c),r.on("end",u),r.on("close",u),t.on("close",u),t.emit("pipe",r),t}},{events:237,inherits:429,"readable-stream/lib/_stream_duplex.js":545,"readable-stream/lib/_stream_passthrough.js":546,"readable-stream/lib/_stream_readable.js":547,"readable-stream/lib/_stream_transform.js":548,"readable-stream/lib/_stream_writable.js":549,"readable-stream/lib/internal/streams/end-of-stream.js":553,"readable-stream/lib/internal/streams/pipeline.js":555}],544:[function(t,e,r){"use strict";var n={};function i(t,e,r){r||(r=Error);var i=function(t){var r,n;function i(r,n,i){return t.call(this,function(t,r,n){return"string"==typeof e?e:e(t,r,n)}(r,n,i))||this}return n=t,(r=i).prototype=Object.create(n.prototype),r.prototype.constructor=r,r.__proto__=n,i}(r);i.prototype.name=r.name,i.prototype.code=t,n[t]=i}function a(t,e){if(Array.isArray(t)){var r=t.length;return t=t.map((function(t){return String(t)})),r>2?"one of ".concat(e," ").concat(t.slice(0,r-1).join(", "),", or ")+t[r-1]:2===r?"one of ".concat(e," ").concat(t[0]," or ").concat(t[1]):"of ".concat(e," ").concat(t[0])}return"of ".concat(e," ").concat(String(t))}i("ERR_INVALID_OPT_VALUE",(function(t,e){return'The value "'+e+'" is invalid for option "'+t+'"'}),TypeError),i("ERR_INVALID_ARG_TYPE",(function(t,e,r){var n,i,o,s;if("string"==typeof e&&(i="not ",e.substr(!o||o<0?0:+o,i.length)===i)?(n="must not be",e=e.replace(/^not /,"")):n="must be",function(t,e,r){return(void 0===r||r>t.length)&&(r=t.length),t.substring(r-e.length,r)===e}(t," argument"))s="The ".concat(t," ").concat(n," ").concat(a(e,"type"));else{var l=function(t,e,r){return"number"!=typeof r&&(r=0),!(r+e.length>t.length)&&-1!==t.indexOf(e,r)}(t,".")?"property":"argument";s='The "'.concat(t,'" ').concat(l," ").concat(n," ").concat(a(e,"type"))}return s+=". Received type ".concat(typeof r)}),TypeError),i("ERR_STREAM_PUSH_AFTER_EOF","stream.push() after EOF"),i("ERR_METHOD_NOT_IMPLEMENTED",(function(t){return"The "+t+" method is not implemented"})),i("ERR_STREAM_PREMATURE_CLOSE","Premature close"),i("ERR_STREAM_DESTROYED",(function(t){return"Cannot call "+t+" after a stream was destroyed"})),i("ERR_MULTIPLE_CALLBACK","Callback called multiple times"),i("ERR_STREAM_CANNOT_PIPE","Cannot pipe, not readable"),i("ERR_STREAM_WRITE_AFTER_END","write after end"),i("ERR_STREAM_NULL_VALUES","May not write null values to stream",TypeError),i("ERR_UNKNOWN_ENCODING",(function(t){return"Unknown encoding: "+t}),TypeError),i("ERR_STREAM_UNSHIFT_AFTER_END_EVENT","stream.unshift() after end event"),e.exports.codes=n},{}],545:[function(t,e,r){(function(r){(function(){"use strict";var n=Object.keys||function(t){var e=[];for(var r in t)e.push(r);return e};e.exports=c;var i=t("./_stream_readable"),a=t("./_stream_writable");t("inherits")(c,i);for(var o=n(a.prototype),s=0;s0)if("string"==typeof e||o.objectMode||Object.getPrototypeOf(e)===s.prototype||(e=function(t){return s.from(t)}(e)),n)o.endEmitted?w(t,new _):S(t,o,e,!0);else if(o.ended)w(t,new x);else{if(o.destroyed)return!1;o.reading=!1,o.decoder&&!r?(e=o.decoder.write(e),o.objectMode||0!==e.length?S(t,o,e,!1):P(t,o)):S(t,o,e,!1)}else n||(o.reading=!1,P(t,o));return!o.ended&&(o.lengthe.highWaterMark&&(e.highWaterMark=function(t){return t>=1073741824?t=1073741824:(t--,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,t|=t>>>16,t++),t}(t)),t<=e.length?t:e.ended?e.length:(e.needReadable=!0,0))}function L(t){var e=t._readableState;c("emitReadable",e.needReadable,e.emittedReadable),e.needReadable=!1,e.emittedReadable||(c("emitReadable",e.flowing),e.emittedReadable=!0,r.nextTick(C,t))}function C(t){var e=t._readableState;c("emitReadable_",e.destroyed,e.length,e.ended),e.destroyed||!e.length&&!e.ended||(t.emit("readable"),e.emittedReadable=!1),e.needReadable=!e.flowing&&!e.ended&&e.length<=e.highWaterMark,R(t)}function P(t,e){e.readingMore||(e.readingMore=!0,r.nextTick(I,t,e))}function I(t,e){for(;!e.reading&&!e.ended&&(e.length0,e.resumeScheduled&&!e.paused?e.flowing=!0:t.listenerCount("data")>0&&t.resume()}function z(t){c("readable nexttick read 0"),t.read(0)}function D(t,e){c("resume",e.reading),e.reading||t.read(0),e.resumeScheduled=!1,t.emit("resume"),R(t),e.flowing&&!e.reading&&t.read(0)}function R(t){var e=t._readableState;for(c("flow",e.flowing);e.flowing&&null!==t.read(););}function F(t,e){return 0===e.length?null:(e.objectMode?r=e.buffer.shift():!t||t>=e.length?(r=e.decoder?e.buffer.join(""):1===e.buffer.length?e.buffer.first():e.buffer.concat(e.length),e.buffer.clear()):r=e.buffer.consume(t,e.decoder),r);var r}function B(t){var e=t._readableState;c("endReadable",e.endEmitted),e.endEmitted||(e.ended=!0,r.nextTick(N,e,t))}function N(t,e){if(c("endReadableNT",t.endEmitted,t.length),!t.endEmitted&&0===t.length&&(t.endEmitted=!0,e.readable=!1,e.emit("end"),t.autoDestroy)){var r=e._writableState;(!r||r.autoDestroy&&r.finished)&&e.destroy()}}function j(t,e){for(var r=0,n=t.length;r=e.highWaterMark:e.length>0)||e.ended))return c("read: emitReadable",e.length,e.ended),0===e.length&&e.ended?B(this):L(this),null;if(0===(t=E(t,e))&&e.ended)return 0===e.length&&B(this),null;var n,i=e.needReadable;return c("need readable",i),(0===e.length||e.length-t0?F(t,e):null)?(e.needReadable=e.length<=e.highWaterMark,t=0):(e.length-=t,e.awaitDrain=0),0===e.length&&(e.ended||(e.needReadable=!0),r!==t&&e.ended&&B(this)),null!==n&&this.emit("data",n),n},A.prototype._read=function(t){w(this,new b("_read()"))},A.prototype.pipe=function(t,e){var n=this,i=this._readableState;switch(i.pipesCount){case 0:i.pipes=t;break;case 1:i.pipes=[i.pipes,t];break;default:i.pipes.push(t)}i.pipesCount+=1,c("pipe count=%d opts=%j",i.pipesCount,e);var o=(!e||!1!==e.end)&&t!==r.stdout&&t!==r.stderr?l:g;function s(e,r){c("onunpipe"),e===n&&r&&!1===r.hasUnpiped&&(r.hasUnpiped=!0,c("cleanup"),t.removeListener("close",d),t.removeListener("finish",m),t.removeListener("drain",u),t.removeListener("error",p),t.removeListener("unpipe",s),n.removeListener("end",l),n.removeListener("end",g),n.removeListener("data",h),f=!0,!i.awaitDrain||t._writableState&&!t._writableState.needDrain||u())}function l(){c("onend"),t.end()}i.endEmitted?r.nextTick(o):n.once("end",o),t.on("unpipe",s);var u=function(t){return function(){var e=t._readableState;c("pipeOnDrain",e.awaitDrain),e.awaitDrain&&e.awaitDrain--,0===e.awaitDrain&&a(t,"data")&&(e.flowing=!0,R(t))}}(n);t.on("drain",u);var f=!1;function h(e){c("ondata");var r=t.write(e);c("dest.write",r),!1===r&&((1===i.pipesCount&&i.pipes===t||i.pipesCount>1&&-1!==j(i.pipes,t))&&!f&&(c("false write response, pause",i.awaitDrain),i.awaitDrain++),n.pause())}function p(e){c("onerror",e),g(),t.removeListener("error",p),0===a(t,"error")&&w(t,e)}function d(){t.removeListener("finish",m),g()}function m(){c("onfinish"),t.removeListener("close",d),g()}function g(){c("unpipe"),n.unpipe(t)}return n.on("data",h),function(t,e,r){if("function"==typeof t.prependListener)return t.prependListener(e,r);t._events&&t._events[e]?Array.isArray(t._events[e])?t._events[e].unshift(r):t._events[e]=[r,t._events[e]]:t.on(e,r)}(t,"error",p),t.once("close",d),t.once("finish",m),t.emit("pipe",n),i.flowing||(c("pipe resume"),n.resume()),t},A.prototype.unpipe=function(t){var e=this._readableState,r={hasUnpiped:!1};if(0===e.pipesCount)return this;if(1===e.pipesCount)return t&&t!==e.pipes||(t||(t=e.pipes),e.pipes=null,e.pipesCount=0,e.flowing=!1,t&&t.emit("unpipe",this,r)),this;if(!t){var n=e.pipes,i=e.pipesCount;e.pipes=null,e.pipesCount=0,e.flowing=!1;for(var a=0;a0,!1!==i.flowing&&this.resume()):"readable"===t&&(i.endEmitted||i.readableListening||(i.readableListening=i.needReadable=!0,i.flowing=!1,i.emittedReadable=!1,c("on readable",i.length,i.reading),i.length?L(this):i.reading||r.nextTick(z,this))),n},A.prototype.addListener=A.prototype.on,A.prototype.removeListener=function(t,e){var n=o.prototype.removeListener.call(this,t,e);return"readable"===t&&r.nextTick(O,this),n},A.prototype.removeAllListeners=function(t){var e=o.prototype.removeAllListeners.apply(this,arguments);return"readable"!==t&&void 0!==t||r.nextTick(O,this),e},A.prototype.resume=function(){var t=this._readableState;return t.flowing||(c("resume"),t.flowing=!t.readableListening,function(t,e){e.resumeScheduled||(e.resumeScheduled=!0,r.nextTick(D,t,e))}(this,t)),t.paused=!1,this},A.prototype.pause=function(){return c("call pause flowing=%j",this._readableState.flowing),!1!==this._readableState.flowing&&(c("pause"),this._readableState.flowing=!1,this.emit("pause")),this._readableState.paused=!0,this},A.prototype.wrap=function(t){var e=this,r=this._readableState,n=!1;for(var i in t.on("end",(function(){if(c("wrapped end"),r.decoder&&!r.ended){var t=r.decoder.end();t&&t.length&&e.push(t)}e.push(null)})),t.on("data",(function(i){(c("wrapped data"),r.decoder&&(i=r.decoder.write(i)),r.objectMode&&null==i)||(r.objectMode||i&&i.length)&&(e.push(i)||(n=!0,t.pause()))})),t)void 0===this[i]&&"function"==typeof t[i]&&(this[i]=function(e){return function(){return t[e].apply(t,arguments)}}(i));for(var a=0;a-1))throw new _(t);return this._writableState.defaultEncoding=t,this},Object.defineProperty(A.prototype,"writableBuffer",{enumerable:!1,get:function(){return this._writableState&&this._writableState.getBuffer()}}),Object.defineProperty(A.prototype,"writableHighWaterMark",{enumerable:!1,get:function(){return this._writableState.highWaterMark}}),A.prototype._write=function(t,e,r){r(new m("_write()"))},A.prototype._writev=null,A.prototype.end=function(t,e,n){var i=this._writableState;return"function"==typeof t?(n=t,t=null,e=null):"function"==typeof e&&(n=e,e=null),null!=t&&this.write(t,e),i.corked&&(i.corked=1,this.uncork()),i.ending||function(t,e,n){e.ending=!0,P(t,e),n&&(e.finished?r.nextTick(n):t.once("finish",n));e.ended=!0,t.writable=!1}(this,i,n),this},Object.defineProperty(A.prototype,"writableLength",{enumerable:!1,get:function(){return this._writableState.length}}),Object.defineProperty(A.prototype,"destroyed",{enumerable:!1,get:function(){return void 0!==this._writableState&&this._writableState.destroyed},set:function(t){this._writableState&&(this._writableState.destroyed=t)}}),A.prototype.destroy=f.destroy,A.prototype._undestroy=f.undestroy,A.prototype._destroy=function(t,e){e(t)}}).call(this)}).call(this,t("_process"),"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"../errors":544,"./_stream_duplex":545,"./internal/streams/destroy":552,"./internal/streams/state":556,"./internal/streams/stream":557,_process:504,buffer:112,inherits:429,"util-deprecate":595}],550:[function(t,e,r){(function(r){(function(){"use strict";var n;function i(t,e,r){return e in t?Object.defineProperty(t,e,{value:r,enumerable:!0,configurable:!0,writable:!0}):t[e]=r,t}var a=t("./end-of-stream"),o=Symbol("lastResolve"),s=Symbol("lastReject"),l=Symbol("error"),c=Symbol("ended"),u=Symbol("lastPromise"),f=Symbol("handlePromise"),h=Symbol("stream");function p(t,e){return{value:t,done:e}}function d(t){var e=t[o];if(null!==e){var r=t[h].read();null!==r&&(t[u]=null,t[o]=null,t[s]=null,e(p(r,!1)))}}function m(t){r.nextTick(d,t)}var g=Object.getPrototypeOf((function(){})),v=Object.setPrototypeOf((i(n={get stream(){return this[h]},next:function(){var t=this,e=this[l];if(null!==e)return Promise.reject(e);if(this[c])return Promise.resolve(p(void 0,!0));if(this[h].destroyed)return new Promise((function(e,n){r.nextTick((function(){t[l]?n(t[l]):e(p(void 0,!0))}))}));var n,i=this[u];if(i)n=new Promise(function(t,e){return function(r,n){t.then((function(){e[c]?r(p(void 0,!0)):e[f](r,n)}),n)}}(i,this));else{var a=this[h].read();if(null!==a)return Promise.resolve(p(a,!1));n=new Promise(this[f])}return this[u]=n,n}},Symbol.asyncIterator,(function(){return this})),i(n,"return",(function(){var t=this;return new Promise((function(e,r){t[h].destroy(null,(function(t){t?r(t):e(p(void 0,!0))}))}))})),n),g);e.exports=function(t){var e,r=Object.create(v,(i(e={},h,{value:t,writable:!0}),i(e,o,{value:null,writable:!0}),i(e,s,{value:null,writable:!0}),i(e,l,{value:null,writable:!0}),i(e,c,{value:t._readableState.endEmitted,writable:!0}),i(e,f,{value:function(t,e){var n=r[h].read();n?(r[u]=null,r[o]=null,r[s]=null,t(p(n,!1))):(r[o]=t,r[s]=e)},writable:!0}),e));return r[u]=null,a(t,(function(t){if(t&&"ERR_STREAM_PREMATURE_CLOSE"!==t.code){var e=r[s];return null!==e&&(r[u]=null,r[o]=null,r[s]=null,e(t)),void(r[l]=t)}var n=r[o];null!==n&&(r[u]=null,r[o]=null,r[s]=null,n(p(void 0,!0))),r[c]=!0})),t.on("readable",m.bind(null,r)),r}}).call(this)}).call(this,t("_process"))},{"./end-of-stream":553,_process:504}],551:[function(t,e,r){"use strict";function n(t,e){var r=Object.keys(t);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(t);e&&(n=n.filter((function(e){return Object.getOwnPropertyDescriptor(t,e).enumerable}))),r.push.apply(r,n)}return r}function i(t,e,r){return e in t?Object.defineProperty(t,e,{value:r,enumerable:!0,configurable:!0,writable:!0}):t[e]=r,t}function a(t,e){for(var r=0;r0?this.tail.next=e:this.head=e,this.tail=e,++this.length}},{key:"unshift",value:function(t){var e={data:t,next:this.head};0===this.length&&(this.tail=e),this.head=e,++this.length}},{key:"shift",value:function(){if(0!==this.length){var t=this.head.data;return 1===this.length?this.head=this.tail=null:this.head=this.head.next,--this.length,t}}},{key:"clear",value:function(){this.head=this.tail=null,this.length=0}},{key:"join",value:function(t){if(0===this.length)return"";for(var e=this.head,r=""+e.data;e=e.next;)r+=t+e.data;return r}},{key:"concat",value:function(t){if(0===this.length)return o.alloc(0);for(var e,r,n,i=o.allocUnsafe(t>>>0),a=this.head,s=0;a;)e=a.data,r=i,n=s,o.prototype.copy.call(e,r,n),s+=a.data.length,a=a.next;return i}},{key:"consume",value:function(t,e){var r;return ti.length?i.length:t;if(a===i.length?n+=i:n+=i.slice(0,t),0==(t-=a)){a===i.length?(++r,e.next?this.head=e.next:this.head=this.tail=null):(this.head=e,e.data=i.slice(a));break}++r}return this.length-=r,n}},{key:"_getBuffer",value:function(t){var e=o.allocUnsafe(t),r=this.head,n=1;for(r.data.copy(e),t-=r.data.length;r=r.next;){var i=r.data,a=t>i.length?i.length:t;if(i.copy(e,e.length-t,0,a),0==(t-=a)){a===i.length?(++n,r.next?this.head=r.next:this.head=this.tail=null):(this.head=r,r.data=i.slice(a));break}++n}return this.length-=n,e}},{key:l,value:function(t,e){return s(this,function(t){for(var e=1;e0,(function(t){n||(n=t),t&&o.forEach(c),a||(o.forEach(c),i(n))}))}));return e.reduce(u)}},{"../../../errors":544,"./end-of-stream":553}],556:[function(t,e,r){"use strict";var n=t("../../../errors").codes.ERR_INVALID_OPT_VALUE;e.exports={getHighWaterMark:function(t,e,r,i){var a=function(t,e,r){return null!=t.highWaterMark?t.highWaterMark:e?t[r]:null}(e,i,r);if(null!=a){if(!isFinite(a)||Math.floor(a)!==a||a<0)throw new n(i?r:"highWaterMark",a);return Math.floor(a)}return t.objectMode?16:16384}}},{"../../../errors":544}],557:[function(t,e,r){e.exports=t("events").EventEmitter},{events:237}],558:[function(t,e,r){(function(r,n){(function(){var r=t("assert"),i=t("debug")("stream-parser");e.exports=function(t){var e=t&&"function"==typeof t._transform,r=t&&"function"==typeof t._write;if(!e&&!r)throw new Error("must pass a Writable or Transform stream in");i("extending Parser into stream"),t._bytes=o,t._skipBytes=s,e&&(t._passthrough=l);e?t._transform=u:t._write=c};function a(t){i("initializing parser stream"),t._parserBytesLeft=0,t._parserBuffers=[],t._parserBuffered=0,t._parserState=-1,t._parserCallback=null,"function"==typeof t.push&&(t._parserOutput=t.push.bind(t)),t._parserInit=!0}function o(t,e){r(!this._parserCallback,'there is already a "callback" set!'),r(isFinite(t)&&t>0,'can only buffer a finite number of bytes > 0, got "'+t+'"'),this._parserInit||a(this),i("buffering %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=0}function s(t,e){r(!this._parserCallback,'there is already a "callback" set!'),r(t>0,'can only skip > 0 bytes, got "'+t+'"'),this._parserInit||a(this),i("skipping %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=1}function l(t,e){r(!this._parserCallback,'There is already a "callback" set!'),r(t>0,'can only pass through > 0 bytes, got "'+t+'"'),this._parserInit||a(this),i("passing through %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=2}function c(t,e,r){this._parserInit||a(this),i("write(%o bytes)",t.length),"function"==typeof e&&(r=e),h(this,t,null,r)}function u(t,e,r){this._parserInit||a(this),i("transform(%o bytes)",t.length),"function"!=typeof e&&(e=this._parserOutput),h(this,t,e,r)}function f(t,e,r,a){if(t._parserBytesLeft-=e.length,i("%o bytes left for stream piece",t._parserBytesLeft),0===t._parserState?(t._parserBuffers.push(e),t._parserBuffered+=e.length):2===t._parserState&&r(e),0!==t._parserBytesLeft)return a;var o=t._parserCallback;if(o&&0===t._parserState&&t._parserBuffers.length>1&&(e=n.concat(t._parserBuffers,t._parserBuffered)),0!==t._parserState&&(e=null),t._parserCallback=null,t._parserBuffered=0,t._parserState=-1,t._parserBuffers.splice(0),o){var s=[];e&&s.push(e),r&&s.push(r);var l=o.length>s.length;l&&s.push(p(a));var c=o.apply(t,s);if(!l||a===c)return a}}var h=p((function t(e,r,n,i){return e._parserBytesLeft<=0?i(new Error("got data but not currently parsing anything")):r.length<=e._parserBytesLeft?function(){return f(e,r,n,i)}:function(){var a=r.slice(0,e._parserBytesLeft);return f(e,a,n,(function(o){return o?i(o):r.length>a.length?function(){return t(e,r.slice(a.length),n,i)}:void 0}))}}));function p(t){return function(){for(var e=t.apply(this,arguments);"function"==typeof e;)e=e();return e}}}).call(this)}).call(this,t("_process"),t("buffer").Buffer)},{_process:504,assert:76,buffer:112,debug:559}],559:[function(t,e,r){(function(n){(function(){function i(){var t;try{t=r.storage.debug}catch(t){}return!t&&void 0!==n&&"env"in n&&(t=n.env.DEBUG),t}(r=e.exports=t("./debug")).log=function(){return"object"==typeof console&&console.log&&Function.prototype.apply.call(console.log,console,arguments)},r.formatArgs=function(t){var e=this.useColors;if(t[0]=(e?"%c":"")+this.namespace+(e?" %c":" ")+t[0]+(e?"%c ":" ")+"+"+r.humanize(this.diff),!e)return;var n="color: "+this.color;t.splice(1,0,n,"color: inherit");var i=0,a=0;t[0].replace(/%[a-zA-Z%]/g,(function(t){"%%"!==t&&(i++,"%c"===t&&(a=i))})),t.splice(a,0,n)},r.save=function(t){try{null==t?r.storage.removeItem("debug"):r.storage.debug=t}catch(t){}},r.load=i,r.useColors=function(){if("undefined"!=typeof window&&window.process&&"renderer"===window.process.type)return!0;return"undefined"!=typeof document&&document.documentElement&&document.documentElement.style&&document.documentElement.style.WebkitAppearance||"undefined"!=typeof window&&window.console&&(window.console.firebug||window.console.exception&&window.console.table)||"undefined"!=typeof navigator&&navigator.userAgent&&navigator.userAgent.toLowerCase().match(/firefox\/(\d+)/)&&parseInt(RegExp.$1,10)>=31||"undefined"!=typeof navigator&&navigator.userAgent&&navigator.userAgent.toLowerCase().match(/applewebkit\/(\d+)/)},r.storage="undefined"!=typeof chrome&&void 0!==chrome.storage?chrome.storage.local:function(){try{return window.localStorage}catch(t){}}(),r.colors=["lightseagreen","forestgreen","goldenrod","dodgerblue","darkorchid","crimson"],r.formatters.j=function(t){try{return JSON.stringify(t)}catch(t){return"[UnexpectedJSONParseError]: "+t.message}},r.enable(i())}).call(this)}).call(this,t("_process"))},{"./debug":560,_process:504}],560:[function(t,e,r){var n;function i(t){function e(){if(e.enabled){var t=e,i=+new Date,a=i-(n||i);t.diff=a,t.prev=n,t.curr=i,n=i;for(var o=new Array(arguments.length),s=0;s0)return function(t){if((t=String(t)).length>100)return;var e=/^((?:\d+)?\.?\d+) *(milliseconds?|msecs?|ms|seconds?|secs?|s|minutes?|mins?|m|hours?|hrs?|h|days?|d|years?|yrs?|y)?$/i.exec(t);if(!e)return;var r=parseFloat(e[1]);switch((e[2]||"ms").toLowerCase()){case"years":case"year":case"yrs":case"yr":case"y":return 315576e5*r;case"days":case"day":case"d":return r*o;case"hours":case"hour":case"hrs":case"hr":case"h":return r*a;case"minutes":case"minute":case"mins":case"min":case"m":return r*i;case"seconds":case"second":case"secs":case"sec":case"s":return r*n;case"milliseconds":case"millisecond":case"msecs":case"msec":case"ms":return r;default:return}}(t);if("number"===l&&!1===isNaN(t))return e.long?s(r=t,o,"day")||s(r,a,"hour")||s(r,i,"minute")||s(r,n,"second")||r+" ms":function(t){if(t>=o)return Math.round(t/o)+"d";if(t>=a)return Math.round(t/a)+"h";if(t>=i)return Math.round(t/i)+"m";if(t>=n)return Math.round(t/n)+"s";return t+"ms"}(t);throw new Error("val is not a non-empty string or a valid number. val="+JSON.stringify(t))}},{}],562:[function(t,e,r){"use strict";var n=t("parenthesis");e.exports=function(t,e,r){if(null==t)throw Error("First argument should be a string");if(null==e)throw Error("Separator should be a string or a RegExp");r?("string"==typeof r||Array.isArray(r))&&(r={ignore:r}):r={},null==r.escape&&(r.escape=!0),null==r.ignore?r.ignore=["[]","()","{}","<>",'""',"''","``","\u201c\u201d","\xab\xbb"]:("string"==typeof r.ignore&&(r.ignore=[r.ignore]),r.ignore=r.ignore.map((function(t){return 1===t.length&&(t+=t),t})));var i=n.parse(t,{flat:!0,brackets:r.ignore}),a=i[0].split(e);if(r.escape){for(var o=[],s=0;s>5==6?2:t>>4==14?3:t>>3==30?4:t>>6==2?-1:-2}function s(t){var e=this.lastTotal-this.lastNeed,r=function(t,e,r){if(128!=(192&e[0]))return t.lastNeed=0,"\ufffd";if(t.lastNeed>1&&e.length>1){if(128!=(192&e[1]))return t.lastNeed=1,"\ufffd";if(t.lastNeed>2&&e.length>2&&128!=(192&e[2]))return t.lastNeed=2,"\ufffd"}}(this,t);return void 0!==r?r:this.lastNeed<=t.length?(t.copy(this.lastChar,e,0,this.lastNeed),this.lastChar.toString(this.encoding,0,this.lastTotal)):(t.copy(this.lastChar,e,0,t.length),void(this.lastNeed-=t.length))}function l(t,e){if((t.length-e)%2==0){var r=t.toString("utf16le",e);if(r){var n=r.charCodeAt(r.length-1);if(n>=55296&&n<=56319)return this.lastNeed=2,this.lastTotal=4,this.lastChar[0]=t[t.length-2],this.lastChar[1]=t[t.length-1],r.slice(0,-1)}return r}return this.lastNeed=1,this.lastTotal=2,this.lastChar[0]=t[t.length-1],t.toString("utf16le",e,t.length-1)}function c(t){var e=t&&t.length?this.write(t):"";if(this.lastNeed){var r=this.lastTotal-this.lastNeed;return e+this.lastChar.toString("utf16le",0,r)}return e}function u(t,e){var r=(t.length-e)%3;return 0===r?t.toString("base64",e):(this.lastNeed=3-r,this.lastTotal=3,1===r?this.lastChar[0]=t[t.length-1]:(this.lastChar[0]=t[t.length-2],this.lastChar[1]=t[t.length-1]),t.toString("base64",e,t.length-r))}function f(t){var e=t&&t.length?this.write(t):"";return this.lastNeed?e+this.lastChar.toString("base64",0,3-this.lastNeed):e}function h(t){return t.toString(this.encoding)}function p(t){return t&&t.length?this.write(t):""}r.StringDecoder=a,a.prototype.write=function(t){if(0===t.length)return"";var e,r;if(this.lastNeed){if(void 0===(e=this.fillLast(t)))return"";r=this.lastNeed,this.lastNeed=0}else r=0;return r=0)return i>0&&(t.lastNeed=i-1),i;if(--n=0)return i>0&&(t.lastNeed=i-2),i;if(--n=0)return i>0&&(2===i?i=0:t.lastNeed=i-3),i;return 0}(this,t,e);if(!this.lastNeed)return t.toString("utf8",e);this.lastTotal=r;var n=t.length-(r-this.lastNeed);return t.copy(this.lastChar,0,n),t.toString("utf8",e,n)},a.prototype.fillLast=function(t){if(this.lastNeed<=t.length)return t.copy(this.lastChar,this.lastTotal-this.lastNeed,0,this.lastNeed),this.lastChar.toString(this.encoding,0,this.lastTotal);t.copy(this.lastChar,this.lastTotal-this.lastNeed,0,t.length),this.lastNeed-=t.length}},{"safe-buffer":530}],564:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.length,r=new Array(e),n=new Array(e),i=new Array(e),a=new Array(e),o=new Array(e),s=new Array(e),l=0;l0;){e=c[c.length-1];var p=t[e];if(a[e]=0&&s[e].push(o[m])}a[e]=d}else{if(n[e]===r[e]){var g=[],v=[],y=0;for(d=l.length-1;d>=0;--d){var x=l[d];if(i[x]=!1,g.push(x),v.push(s[x]),y+=s[x].length,o[x]=f.length,x===e){l.length=d;break}}f.push(g);var b=new Array(y);for(d=0;dn|0},vertex:function(t,e,r,n,i,a,o,s,l,c,u,f,h){var p=(o<<0)+(s<<1)+(l<<2)+(c<<3)|0;if(0!==p&&15!==p)switch(p){case 0:u.push([t-.5,e-.5]);break;case 1:u.push([t-.25-.25*(n+r-2*h)/(r-n),e-.25-.25*(i+r-2*h)/(r-i)]);break;case 2:u.push([t-.75-.25*(-n-r+2*h)/(n-r),e-.25-.25*(a+n-2*h)/(n-a)]);break;case 3:u.push([t-.5,e-.5-.5*(i+r+a+n-4*h)/(r-i+n-a)]);break;case 4:u.push([t-.25-.25*(a+i-2*h)/(i-a),e-.75-.25*(-i-r+2*h)/(i-r)]);break;case 5:u.push([t-.5-.5*(n+r+a+i-4*h)/(r-n+i-a),e-.5]);break;case 6:u.push([t-.5-.25*(-n-r+a+i)/(n-r+i-a),e-.5-.25*(-i-r+a+n)/(i-r+n-a)]);break;case 7:u.push([t-.75-.25*(a+i-2*h)/(i-a),e-.75-.25*(a+n-2*h)/(n-a)]);break;case 8:u.push([t-.75-.25*(-a-i+2*h)/(a-i),e-.75-.25*(-a-n+2*h)/(a-n)]);break;case 9:u.push([t-.5-.25*(n+r+-a-i)/(r-n+a-i),e-.5-.25*(i+r+-a-n)/(r-i+a-n)]);break;case 10:u.push([t-.5-.5*(-n-r-a-i+4*h)/(n-r+a-i),e-.5]);break;case 11:u.push([t-.25-.25*(-a-i+2*h)/(a-i),e-.75-.25*(i+r-2*h)/(r-i)]);break;case 12:u.push([t-.5,e-.5-.5*(-i-r-a-n+4*h)/(i-r+a-n)]);break;case 13:u.push([t-.75-.25*(n+r-2*h)/(r-n),e-.25-.25*(-a-n+2*h)/(a-n)]);break;case 14:u.push([t-.25-.25*(-n-r+2*h)/(n-r),e-.25-.25*(-i-r+2*h)/(i-r)]);break;case 15:u.push([t-.5,e-.5])}},cell:function(t,e,r,n,i,a,o,s,l){i?s.push([t,e]):s.push([e,t])}});return function(t,e){var r=[],i=[];return n(t,r,i,e),{positions:r,cells:i}}}};var o={}},{"ndarray-extract-contour":454,"zero-crossings":620}],566:[function(t,e,r){"use strict";Object.defineProperty(r,"__esModule",{value:!0});var n=function(t,e){if(Array.isArray(t))return t;if(Symbol.iterator in Object(t))return function(t,e){var r=[],n=!0,i=!1,a=void 0;try{for(var o,s=t[Symbol.iterator]();!(n=(o=s.next()).done)&&(r.push(o.value),!e||r.length!==e);n=!0);}catch(t){i=!0,a=t}finally{try{!n&&s.return&&s.return()}finally{if(i)throw a}}return r}(t,e);throw new TypeError("Invalid attempt to destructure non-iterable instance")},i=2*Math.PI,a=function(t,e,r,n,i,a,o){var s=t.x,l=t.y;return{x:n*(s*=e)-i*(l*=r)+a,y:i*s+n*l+o}},o=function(t,e){var r=1.5707963267948966===e?.551915024494:-1.5707963267948966===e?-.551915024494:4/3*Math.tan(e/4),n=Math.cos(t),i=Math.sin(t),a=Math.cos(t+e),o=Math.sin(t+e);return[{x:n-i*r,y:i+n*r},{x:a+o*r,y:o-a*r},{x:a,y:o}]},s=function(t,e,r,n){var i=t*r+e*n;return i>1&&(i=1),i<-1&&(i=-1),(t*n-e*r<0?-1:1)*Math.acos(i)};r.default=function(t){var e=t.px,r=t.py,l=t.cx,c=t.cy,u=t.rx,f=t.ry,h=t.xAxisRotation,p=void 0===h?0:h,d=t.largeArcFlag,m=void 0===d?0:d,g=t.sweepFlag,v=void 0===g?0:g,y=[];if(0===u||0===f)return[];var x=Math.sin(p*i/360),b=Math.cos(p*i/360),_=b*(e-l)/2+x*(r-c)/2,w=-x*(e-l)/2+b*(r-c)/2;if(0===_&&0===w)return[];u=Math.abs(u),f=Math.abs(f);var T=Math.pow(_,2)/Math.pow(u,2)+Math.pow(w,2)/Math.pow(f,2);T>1&&(u*=Math.sqrt(T),f*=Math.sqrt(T));var k=function(t,e,r,n,a,o,l,c,u,f,h,p){var d=Math.pow(a,2),m=Math.pow(o,2),g=Math.pow(h,2),v=Math.pow(p,2),y=d*m-d*v-m*g;y<0&&(y=0),y/=d*v+m*g;var x=(y=Math.sqrt(y)*(l===c?-1:1))*a/o*p,b=y*-o/a*h,_=f*x-u*b+(t+r)/2,w=u*x+f*b+(e+n)/2,T=(h-x)/a,k=(p-b)/o,A=(-h-x)/a,M=(-p-b)/o,S=s(1,0,T,k),E=s(T,k,A,M);return 0===c&&E>0&&(E-=i),1===c&&E<0&&(E+=i),[_,w,S,E]}(e,r,l,c,u,f,m,v,x,b,_,w),A=n(k,4),M=A[0],S=A[1],E=A[2],L=A[3],C=Math.abs(L)/(i/4);Math.abs(1-C)<1e-7&&(C=1);var P=Math.max(Math.ceil(C),1);L/=P;for(var I=0;Ie[2]&&(e[2]=l[c+0]),l[c+1]>e[3]&&(e[3]=l[c+1]);return e}},{"abs-svg-path":67,"is-svg-path":439,"normalize-svg-path":568,"parse-svg-path":472}],568:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=[],o=0,s=0,l=0,c=0,u=null,f=null,h=0,p=0,d=0,m=t.length;d4?(o=g[g.length-4],s=g[g.length-3]):(o=h,s=p),r.push(g)}return r};var n=t("svg-arc-to-cubic-bezier");function i(t,e,r,n){return["C",t,e,r,n,r,n]}function a(t,e,r,n,i,a){return["C",t/3+2/3*r,e/3+2/3*n,i/3+2/3*r,a/3+2/3*n,i,a]}},{"svg-arc-to-cubic-bezier":566}],569:[function(t,e,r){"use strict";var n,i=t("svg-path-bounds"),a=t("parse-svg-path"),o=t("draw-svg-path"),s=t("is-svg-path"),l=t("bitmap-sdf"),c=document.createElement("canvas"),u=c.getContext("2d");e.exports=function(t,e){if(!s(t))throw Error("Argument should be valid svg path string");e||(e={});var r,f;e.shape?(r=e.shape[0],f=e.shape[1]):(r=c.width=e.w||e.width||200,f=c.height=e.h||e.height||200);var h=Math.min(r,f),p=e.stroke||0,d=e.viewbox||e.viewBox||i(t),m=[r/(d[2]-d[0]),f/(d[3]-d[1])],g=Math.min(m[0]||0,m[1]||0)/2;u.fillStyle="black",u.fillRect(0,0,r,f),u.fillStyle="white",p&&("number"!=typeof p&&(p=1),u.strokeStyle=p>0?"white":"black",u.lineWidth=Math.abs(p));if(u.translate(.5*r,.5*f),u.scale(g,g),function(){if(null!=n)return n;var t=document.createElement("canvas").getContext("2d");if(t.canvas.width=t.canvas.height=1,!window.Path2D)return n=!1;var e=new Path2D("M0,0h1v1h-1v-1Z");t.fillStyle="black",t.fill(e);var r=t.getImageData(0,0,1,1);return n=r&&r.data&&255===r.data[3]}()){var v=new Path2D(t);u.fill(v),p&&u.stroke(v)}else{var y=a(t);o(u,y),u.fill(),p&&u.stroke()}return u.setTransform(1,0,0,1,0,0),l(u,{cutoff:null!=e.cutoff?e.cutoff:.5,radius:null!=e.radius?e.radius:.5*h})}},{"bitmap-sdf":102,"draw-svg-path":175,"is-svg-path":439,"parse-svg-path":472,"svg-path-bounds":567}],570:[function(t,e,r){(function(r){(function(){"use strict";e.exports=function t(e,r,i){i=i||{};var o=a[e];o||(o=a[e]={" ":{data:new Float32Array(0),shape:.2}});var s=o[r];if(!s)if(r.length<=1||!/\d/.test(r))s=o[r]=function(t){for(var e=t.cells,r=t.positions,n=new Float32Array(6*e.length),i=0,a=0,o=0;o0&&(f+=.02);var p=new Float32Array(u),d=0,m=-.5*f;for(h=0;h=0&&(t._idleTimeoutId=setTimeout((function(){t._onTimeout&&t._onTimeout()}),e))},r.setImmediate="function"==typeof e?e:function(t){var e=l++,n=!(arguments.length<2)&&o.call(arguments,1);return s[e]=!0,i((function(){s[e]&&(n?t.apply(null,n):t.call(null),r.clearImmediate(e))})),e},r.clearImmediate="function"==typeof n?n:function(t){delete s[t]}}).call(this)}).call(this,t("timers").setImmediate,t("timers").clearImmediate)},{"process/browser.js":504,timers:571}],572:[function(t,e,r){!function(t){var r=/^\s+/,n=/\s+$/,i=0,a=t.round,o=t.min,s=t.max,l=t.random;function c(e,l){if(l=l||{},(e=e||"")instanceof c)return e;if(!(this instanceof c))return new c(e,l);var u=function(e){var i={r:0,g:0,b:0},a=1,l=null,c=null,u=null,f=!1,h=!1;"string"==typeof e&&(e=function(t){t=t.replace(r,"").replace(n,"").toLowerCase();var e,i=!1;if(S[t])t=S[t],i=!0;else if("transparent"==t)return{r:0,g:0,b:0,a:0,format:"name"};if(e=j.rgb.exec(t))return{r:e[1],g:e[2],b:e[3]};if(e=j.rgba.exec(t))return{r:e[1],g:e[2],b:e[3],a:e[4]};if(e=j.hsl.exec(t))return{h:e[1],s:e[2],l:e[3]};if(e=j.hsla.exec(t))return{h:e[1],s:e[2],l:e[3],a:e[4]};if(e=j.hsv.exec(t))return{h:e[1],s:e[2],v:e[3]};if(e=j.hsva.exec(t))return{h:e[1],s:e[2],v:e[3],a:e[4]};if(e=j.hex8.exec(t))return{r:I(e[1]),g:I(e[2]),b:I(e[3]),a:R(e[4]),format:i?"name":"hex8"};if(e=j.hex6.exec(t))return{r:I(e[1]),g:I(e[2]),b:I(e[3]),format:i?"name":"hex"};if(e=j.hex4.exec(t))return{r:I(e[1]+""+e[1]),g:I(e[2]+""+e[2]),b:I(e[3]+""+e[3]),a:R(e[4]+""+e[4]),format:i?"name":"hex8"};if(e=j.hex3.exec(t))return{r:I(e[1]+""+e[1]),g:I(e[2]+""+e[2]),b:I(e[3]+""+e[3]),format:i?"name":"hex"};return!1}(e));"object"==typeof e&&(U(e.r)&&U(e.g)&&U(e.b)?(p=e.r,d=e.g,m=e.b,i={r:255*C(p,255),g:255*C(d,255),b:255*C(m,255)},f=!0,h="%"===String(e.r).substr(-1)?"prgb":"rgb"):U(e.h)&&U(e.s)&&U(e.v)?(l=z(e.s),c=z(e.v),i=function(e,r,n){e=6*C(e,360),r=C(r,100),n=C(n,100);var i=t.floor(e),a=e-i,o=n*(1-r),s=n*(1-a*r),l=n*(1-(1-a)*r),c=i%6;return{r:255*[n,s,o,o,l,n][c],g:255*[l,n,n,s,o,o][c],b:255*[o,o,l,n,n,s][c]}}(e.h,l,c),f=!0,h="hsv"):U(e.h)&&U(e.s)&&U(e.l)&&(l=z(e.s),u=z(e.l),i=function(t,e,r){var n,i,a;function o(t,e,r){return r<0&&(r+=1),r>1&&(r-=1),r<1/6?t+6*(e-t)*r:r<.5?e:r<2/3?t+(e-t)*(2/3-r)*6:t}if(t=C(t,360),e=C(e,100),r=C(r,100),0===e)n=i=a=r;else{var s=r<.5?r*(1+e):r+e-r*e,l=2*r-s;n=o(l,s,t+1/3),i=o(l,s,t),a=o(l,s,t-1/3)}return{r:255*n,g:255*i,b:255*a}}(e.h,l,u),f=!0,h="hsl"),e.hasOwnProperty("a")&&(a=e.a));var p,d,m;return a=L(a),{ok:f,format:e.format||h,r:o(255,s(i.r,0)),g:o(255,s(i.g,0)),b:o(255,s(i.b,0)),a:a}}(e);this._originalInput=e,this._r=u.r,this._g=u.g,this._b=u.b,this._a=u.a,this._roundA=a(100*this._a)/100,this._format=l.format||u.format,this._gradientType=l.gradientType,this._r<1&&(this._r=a(this._r)),this._g<1&&(this._g=a(this._g)),this._b<1&&(this._b=a(this._b)),this._ok=u.ok,this._tc_id=i++}function u(t,e,r){t=C(t,255),e=C(e,255),r=C(r,255);var n,i,a=s(t,e,r),l=o(t,e,r),c=(a+l)/2;if(a==l)n=i=0;else{var u=a-l;switch(i=c>.5?u/(2-a-l):u/(a+l),a){case t:n=(e-r)/u+(e>1)+720)%360;--e;)n.h=(n.h+i)%360,a.push(c(n));return a}function M(t,e){e=e||6;for(var r=c(t).toHsv(),n=r.h,i=r.s,a=r.v,o=[],s=1/e;e--;)o.push(c({h:n,s:i,v:a})),a=(a+s)%1;return o}c.prototype={isDark:function(){return this.getBrightness()<128},isLight:function(){return!this.isDark()},isValid:function(){return this._ok},getOriginalInput:function(){return this._originalInput},getFormat:function(){return this._format},getAlpha:function(){return this._a},getBrightness:function(){var t=this.toRgb();return(299*t.r+587*t.g+114*t.b)/1e3},getLuminance:function(){var e,r,n,i=this.toRgb();return e=i.r/255,r=i.g/255,n=i.b/255,.2126*(e<=.03928?e/12.92:t.pow((e+.055)/1.055,2.4))+.7152*(r<=.03928?r/12.92:t.pow((r+.055)/1.055,2.4))+.0722*(n<=.03928?n/12.92:t.pow((n+.055)/1.055,2.4))},setAlpha:function(t){return this._a=L(t),this._roundA=a(100*this._a)/100,this},toHsv:function(){var t=f(this._r,this._g,this._b);return{h:360*t.h,s:t.s,v:t.v,a:this._a}},toHsvString:function(){var t=f(this._r,this._g,this._b),e=a(360*t.h),r=a(100*t.s),n=a(100*t.v);return 1==this._a?"hsv("+e+", "+r+"%, "+n+"%)":"hsva("+e+", "+r+"%, "+n+"%, "+this._roundA+")"},toHsl:function(){var t=u(this._r,this._g,this._b);return{h:360*t.h,s:t.s,l:t.l,a:this._a}},toHslString:function(){var t=u(this._r,this._g,this._b),e=a(360*t.h),r=a(100*t.s),n=a(100*t.l);return 1==this._a?"hsl("+e+", "+r+"%, "+n+"%)":"hsla("+e+", "+r+"%, "+n+"%, "+this._roundA+")"},toHex:function(t){return h(this._r,this._g,this._b,t)},toHexString:function(t){return"#"+this.toHex(t)},toHex8:function(t){return function(t,e,r,n,i){var o=[O(a(t).toString(16)),O(a(e).toString(16)),O(a(r).toString(16)),O(D(n))];if(i&&o[0].charAt(0)==o[0].charAt(1)&&o[1].charAt(0)==o[1].charAt(1)&&o[2].charAt(0)==o[2].charAt(1)&&o[3].charAt(0)==o[3].charAt(1))return o[0].charAt(0)+o[1].charAt(0)+o[2].charAt(0)+o[3].charAt(0);return o.join("")}(this._r,this._g,this._b,this._a,t)},toHex8String:function(t){return"#"+this.toHex8(t)},toRgb:function(){return{r:a(this._r),g:a(this._g),b:a(this._b),a:this._a}},toRgbString:function(){return 1==this._a?"rgb("+a(this._r)+", "+a(this._g)+", "+a(this._b)+")":"rgba("+a(this._r)+", "+a(this._g)+", "+a(this._b)+", "+this._roundA+")"},toPercentageRgb:function(){return{r:a(100*C(this._r,255))+"%",g:a(100*C(this._g,255))+"%",b:a(100*C(this._b,255))+"%",a:this._a}},toPercentageRgbString:function(){return 1==this._a?"rgb("+a(100*C(this._r,255))+"%, "+a(100*C(this._g,255))+"%, "+a(100*C(this._b,255))+"%)":"rgba("+a(100*C(this._r,255))+"%, "+a(100*C(this._g,255))+"%, "+a(100*C(this._b,255))+"%, "+this._roundA+")"},toName:function(){return 0===this._a?"transparent":!(this._a<1)&&(E[h(this._r,this._g,this._b,!0)]||!1)},toFilter:function(t){var e="#"+p(this._r,this._g,this._b,this._a),r=e,n=this._gradientType?"GradientType = 1, ":"";if(t){var i=c(t);r="#"+p(i._r,i._g,i._b,i._a)}return"progid:DXImageTransform.Microsoft.gradient("+n+"startColorstr="+e+",endColorstr="+r+")"},toString:function(t){var e=!!t;t=t||this._format;var r=!1,n=this._a<1&&this._a>=0;return e||!n||"hex"!==t&&"hex6"!==t&&"hex3"!==t&&"hex4"!==t&&"hex8"!==t&&"name"!==t?("rgb"===t&&(r=this.toRgbString()),"prgb"===t&&(r=this.toPercentageRgbString()),"hex"!==t&&"hex6"!==t||(r=this.toHexString()),"hex3"===t&&(r=this.toHexString(!0)),"hex4"===t&&(r=this.toHex8String(!0)),"hex8"===t&&(r=this.toHex8String()),"name"===t&&(r=this.toName()),"hsl"===t&&(r=this.toHslString()),"hsv"===t&&(r=this.toHsvString()),r||this.toHexString()):"name"===t&&0===this._a?this.toName():this.toRgbString()},clone:function(){return c(this.toString())},_applyModification:function(t,e){var r=t.apply(null,[this].concat([].slice.call(e)));return this._r=r._r,this._g=r._g,this._b=r._b,this.setAlpha(r._a),this},lighten:function(){return this._applyModification(v,arguments)},brighten:function(){return this._applyModification(y,arguments)},darken:function(){return this._applyModification(x,arguments)},desaturate:function(){return this._applyModification(d,arguments)},saturate:function(){return this._applyModification(m,arguments)},greyscale:function(){return this._applyModification(g,arguments)},spin:function(){return this._applyModification(b,arguments)},_applyCombination:function(t,e){return t.apply(null,[this].concat([].slice.call(e)))},analogous:function(){return this._applyCombination(A,arguments)},complement:function(){return this._applyCombination(_,arguments)},monochromatic:function(){return this._applyCombination(M,arguments)},splitcomplement:function(){return this._applyCombination(k,arguments)},triad:function(){return this._applyCombination(w,arguments)},tetrad:function(){return this._applyCombination(T,arguments)}},c.fromRatio=function(t,e){if("object"==typeof t){var r={};for(var n in t)t.hasOwnProperty(n)&&(r[n]="a"===n?t[n]:z(t[n]));t=r}return c(t,e)},c.equals=function(t,e){return!(!t||!e)&&c(t).toRgbString()==c(e).toRgbString()},c.random=function(){return c.fromRatio({r:l(),g:l(),b:l()})},c.mix=function(t,e,r){r=0===r?0:r||50;var n=c(t).toRgb(),i=c(e).toRgb(),a=r/100;return c({r:(i.r-n.r)*a+n.r,g:(i.g-n.g)*a+n.g,b:(i.b-n.b)*a+n.b,a:(i.a-n.a)*a+n.a})},c.readability=function(e,r){var n=c(e),i=c(r);return(t.max(n.getLuminance(),i.getLuminance())+.05)/(t.min(n.getLuminance(),i.getLuminance())+.05)},c.isReadable=function(t,e,r){var n,i,a=c.readability(t,e);switch(i=!1,(n=function(t){var e,r;e=((t=t||{level:"AA",size:"small"}).level||"AA").toUpperCase(),r=(t.size||"small").toLowerCase(),"AA"!==e&&"AAA"!==e&&(e="AA");"small"!==r&&"large"!==r&&(r="small");return{level:e,size:r}}(r)).level+n.size){case"AAsmall":case"AAAlarge":i=a>=4.5;break;case"AAlarge":i=a>=3;break;case"AAAsmall":i=a>=7}return i},c.mostReadable=function(t,e,r){var n,i,a,o,s=null,l=0;i=(r=r||{}).includeFallbackColors,a=r.level,o=r.size;for(var u=0;ul&&(l=n,s=c(e[u]));return c.isReadable(t,s,{level:a,size:o})||!i?s:(r.includeFallbackColors=!1,c.mostReadable(t,["#fff","#000"],r))};var S=c.names={aliceblue:"f0f8ff",antiquewhite:"faebd7",aqua:"0ff",aquamarine:"7fffd4",azure:"f0ffff",beige:"f5f5dc",bisque:"ffe4c4",black:"000",blanchedalmond:"ffebcd",blue:"00f",blueviolet:"8a2be2",brown:"a52a2a",burlywood:"deb887",burntsienna:"ea7e5d",cadetblue:"5f9ea0",chartreuse:"7fff00",chocolate:"d2691e",coral:"ff7f50",cornflowerblue:"6495ed",cornsilk:"fff8dc",crimson:"dc143c",cyan:"0ff",darkblue:"00008b",darkcyan:"008b8b",darkgoldenrod:"b8860b",darkgray:"a9a9a9",darkgreen:"006400",darkgrey:"a9a9a9",darkkhaki:"bdb76b",darkmagenta:"8b008b",darkolivegreen:"556b2f",darkorange:"ff8c00",darkorchid:"9932cc",darkred:"8b0000",darksalmon:"e9967a",darkseagreen:"8fbc8f",darkslateblue:"483d8b",darkslategray:"2f4f4f",darkslategrey:"2f4f4f",darkturquoise:"00ced1",darkviolet:"9400d3",deeppink:"ff1493",deepskyblue:"00bfff",dimgray:"696969",dimgrey:"696969",dodgerblue:"1e90ff",firebrick:"b22222",floralwhite:"fffaf0",forestgreen:"228b22",fuchsia:"f0f",gainsboro:"dcdcdc",ghostwhite:"f8f8ff",gold:"ffd700",goldenrod:"daa520",gray:"808080",green:"008000",greenyellow:"adff2f",grey:"808080",honeydew:"f0fff0",hotpink:"ff69b4",indianred:"cd5c5c",indigo:"4b0082",ivory:"fffff0",khaki:"f0e68c",lavender:"e6e6fa",lavenderblush:"fff0f5",lawngreen:"7cfc00",lemonchiffon:"fffacd",lightblue:"add8e6",lightcoral:"f08080",lightcyan:"e0ffff",lightgoldenrodyellow:"fafad2",lightgray:"d3d3d3",lightgreen:"90ee90",lightgrey:"d3d3d3",lightpink:"ffb6c1",lightsalmon:"ffa07a",lightseagreen:"20b2aa",lightskyblue:"87cefa",lightslategray:"789",lightslategrey:"789",lightsteelblue:"b0c4de",lightyellow:"ffffe0",lime:"0f0",limegreen:"32cd32",linen:"faf0e6",magenta:"f0f",maroon:"800000",mediumaquamarine:"66cdaa",mediumblue:"0000cd",mediumorchid:"ba55d3",mediumpurple:"9370db",mediumseagreen:"3cb371",mediumslateblue:"7b68ee",mediumspringgreen:"00fa9a",mediumturquoise:"48d1cc",mediumvioletred:"c71585",midnightblue:"191970",mintcream:"f5fffa",mistyrose:"ffe4e1",moccasin:"ffe4b5",navajowhite:"ffdead",navy:"000080",oldlace:"fdf5e6",olive:"808000",olivedrab:"6b8e23",orange:"ffa500",orangered:"ff4500",orchid:"da70d6",palegoldenrod:"eee8aa",palegreen:"98fb98",paleturquoise:"afeeee",palevioletred:"db7093",papayawhip:"ffefd5",peachpuff:"ffdab9",peru:"cd853f",pink:"ffc0cb",plum:"dda0dd",powderblue:"b0e0e6",purple:"800080",rebeccapurple:"663399",red:"f00",rosybrown:"bc8f8f",royalblue:"4169e1",saddlebrown:"8b4513",salmon:"fa8072",sandybrown:"f4a460",seagreen:"2e8b57",seashell:"fff5ee",sienna:"a0522d",silver:"c0c0c0",skyblue:"87ceeb",slateblue:"6a5acd",slategray:"708090",slategrey:"708090",snow:"fffafa",springgreen:"00ff7f",steelblue:"4682b4",tan:"d2b48c",teal:"008080",thistle:"d8bfd8",tomato:"ff6347",turquoise:"40e0d0",violet:"ee82ee",wheat:"f5deb3",white:"fff",whitesmoke:"f5f5f5",yellow:"ff0",yellowgreen:"9acd32"},E=c.hexNames=function(t){var e={};for(var r in t)t.hasOwnProperty(r)&&(e[t[r]]=r);return e}(S);function L(t){return t=parseFloat(t),(isNaN(t)||t<0||t>1)&&(t=1),t}function C(e,r){(function(t){return"string"==typeof t&&-1!=t.indexOf(".")&&1===parseFloat(t)})(e)&&(e="100%");var n=function(t){return"string"==typeof t&&-1!=t.indexOf("%")}(e);return e=o(r,s(0,parseFloat(e))),n&&(e=parseInt(e*r,10)/100),t.abs(e-r)<1e-6?1:e%r/parseFloat(r)}function P(t){return o(1,s(0,t))}function I(t){return parseInt(t,16)}function O(t){return 1==t.length?"0"+t:""+t}function z(t){return t<=1&&(t=100*t+"%"),t}function D(e){return t.round(255*parseFloat(e)).toString(16)}function R(t){return I(t)/255}var F,B,N,j=(B="[\\s|\\(]+("+(F="(?:[-\\+]?\\d*\\.\\d+%?)|(?:[-\\+]?\\d+%?)")+")[,|\\s]+("+F+")[,|\\s]+("+F+")\\s*\\)?",N="[\\s|\\(]+("+F+")[,|\\s]+("+F+")[,|\\s]+("+F+")[,|\\s]+("+F+")\\s*\\)?",{CSS_UNIT:new RegExp(F),rgb:new RegExp("rgb"+B),rgba:new RegExp("rgba"+N),hsl:new RegExp("hsl"+B),hsla:new RegExp("hsla"+N),hsv:new RegExp("hsv"+B),hsva:new RegExp("hsva"+N),hex3:/^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,hex6:/^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/,hex4:/^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,hex8:/^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/});function U(t){return!!j.CSS_UNIT.exec(t)}void 0!==e&&e.exports?e.exports=c:window.tinycolor=c}(Math)},{}],573:[function(t,e,r){"use strict";e.exports=i,e.exports.float32=e.exports.float=i,e.exports.fract32=e.exports.fract=function(t,e){if(t.length){if(t instanceof Float32Array)return new Float32Array(t.length);e instanceof Float32Array||(e=i(t));for(var r=0,n=e.length;ro&&(o=t[0]),t[1]s&&(s=t[1])}function c(t){switch(t.type){case"GeometryCollection":t.geometries.forEach(c);break;case"Point":l(t.coordinates);break;case"MultiPoint":t.coordinates.forEach(l)}}for(e in t.arcs.forEach((function(t){for(var e,r=-1,l=t.length;++ro&&(o=e[0]),e[1]s&&(s=e[1])})),t.objects)c(t.objects[e]);return[i,a,o,s]}function i(t,e){var r=e.id,n=e.bbox,i=null==e.properties?{}:e.properties,o=a(t,e);return null==r&&null==n?{type:"Feature",properties:i,geometry:o}:null==n?{type:"Feature",id:r,properties:i,geometry:o}:{type:"Feature",id:r,bbox:n,properties:i,geometry:o}}function a(t,e){var n=r(t.transform),i=t.arcs;function a(t,e){e.length&&e.pop();for(var r=i[t<0?~t:t],a=0,o=r.length;a1)n=l(t,e,r);else for(i=0,n=new Array(a=t.arcs.length);i1)for(var a,s,c=1,u=l(i[0]);cu&&(s=i[0],i[0]=i[c],i[c]=s,u=a);return i})).filter((function(t){return t.length>0}))}}function u(t,e){for(var r=0,n=t.length;r>>1;t[i]=2))throw new Error("n must be \u22652");var r,i=(l=t.bbox||n(t))[0],a=l[1],o=l[2],s=l[3];e={scale:[o-i?(o-i)/(r-1):1,s-a?(s-a)/(r-1):1],translate:[i,a]}}var l,c,u=f(e),h=t.objects,p={};function d(t){return u(t)}function m(t){var e;switch(t.type){case"GeometryCollection":e={type:"GeometryCollection",geometries:t.geometries.map(m)};break;case"Point":e={type:"Point",coordinates:d(t.coordinates)};break;case"MultiPoint":e={type:"MultiPoint",coordinates:t.coordinates.map(d)};break;default:return t}return null!=t.id&&(e.id=t.id),null!=t.bbox&&(e.bbox=t.bbox),null!=t.properties&&(e.properties=t.properties),e}for(c in h)p[c]=m(h[c]);return{type:"Topology",bbox:l,transform:e,objects:p,arcs:t.arcs.map((function(t){var e,r=0,n=1,i=t.length,a=new Array(i);for(a[0]=u(t[0],0);++rMath.max(r,n)?i[2]=1:r>Math.max(e,n)?i[0]=1:i[1]=1;for(var a=0,o=0,l=0;l<3;++l)a+=t[l]*t[l],o+=i[l]*t[l];for(l=0;l<3;++l)i[l]-=o/a*t[l];return s(i,i),i}function h(t,e,r,i,a,o,s,l){this.center=n(r),this.up=n(i),this.right=n(a),this.radius=n([o]),this.angle=n([s,l]),this.angle.bounds=[[-1/0,-Math.PI/2],[1/0,Math.PI/2]],this.setDistanceLimits(t,e),this.computedCenter=this.center.curve(0),this.computedUp=this.up.curve(0),this.computedRight=this.right.curve(0),this.computedRadius=this.radius.curve(0),this.computedAngle=this.angle.curve(0),this.computedToward=[0,0,0],this.computedEye=[0,0,0],this.computedMatrix=new Array(16);for(var c=0;c<16;++c)this.computedMatrix[c]=.5;this.recalcMatrix(0)}var p=h.prototype;p.setDistanceLimits=function(t,e){t=t>0?Math.log(t):-1/0,e=e>0?Math.log(e):1/0,e=Math.max(e,t),this.radius.bounds[0][0]=t,this.radius.bounds[1][0]=e},p.getDistanceLimits=function(t){var e=this.radius.bounds[0];return t?(t[0]=Math.exp(e[0][0]),t[1]=Math.exp(e[1][0]),t):[Math.exp(e[0][0]),Math.exp(e[1][0])]},p.recalcMatrix=function(t){this.center.curve(t),this.up.curve(t),this.right.curve(t),this.radius.curve(t),this.angle.curve(t);for(var e=this.computedUp,r=this.computedRight,n=0,i=0,a=0;a<3;++a)i+=e[a]*r[a],n+=e[a]*e[a];var l=Math.sqrt(n),u=0;for(a=0;a<3;++a)r[a]-=e[a]*i/n,u+=r[a]*r[a],e[a]/=l;var f=Math.sqrt(u);for(a=0;a<3;++a)r[a]/=f;var h=this.computedToward;o(h,e,r),s(h,h);var p=Math.exp(this.computedRadius[0]),d=this.computedAngle[0],m=this.computedAngle[1],g=Math.cos(d),v=Math.sin(d),y=Math.cos(m),x=Math.sin(m),b=this.computedCenter,_=g*y,w=v*y,T=x,k=-g*x,A=-v*x,M=y,S=this.computedEye,E=this.computedMatrix;for(a=0;a<3;++a){var L=_*r[a]+w*h[a]+T*e[a];E[4*a+1]=k*r[a]+A*h[a]+M*e[a],E[4*a+2]=L,E[4*a+3]=0}var C=E[1],P=E[5],I=E[9],O=E[2],z=E[6],D=E[10],R=P*D-I*z,F=I*O-C*D,B=C*z-P*O,N=c(R,F,B);R/=N,F/=N,B/=N,E[0]=R,E[4]=F,E[8]=B;for(a=0;a<3;++a)S[a]=b[a]+E[2+4*a]*p;for(a=0;a<3;++a){u=0;for(var j=0;j<3;++j)u+=E[a+4*j]*S[j];E[12+a]=-u}E[15]=1},p.getMatrix=function(t,e){this.recalcMatrix(t);var r=this.computedMatrix;if(e){for(var n=0;n<16;++n)e[n]=r[n];return e}return r};var d=[0,0,0];p.rotate=function(t,e,r,n){if(this.angle.move(t,e,r),n){this.recalcMatrix(t);var i=this.computedMatrix;d[0]=i[2],d[1]=i[6],d[2]=i[10];for(var o=this.computedUp,s=this.computedRight,l=this.computedToward,c=0;c<3;++c)i[4*c]=o[c],i[4*c+1]=s[c],i[4*c+2]=l[c];a(i,i,n,d);for(c=0;c<3;++c)o[c]=i[4*c],s[c]=i[4*c+1];this.up.set(t,o[0],o[1],o[2]),this.right.set(t,s[0],s[1],s[2])}},p.pan=function(t,e,r,n){e=e||0,r=r||0,n=n||0,this.recalcMatrix(t);var i=this.computedMatrix,a=(Math.exp(this.computedRadius[0]),i[1]),o=i[5],s=i[9],l=c(a,o,s);a/=l,o/=l,s/=l;var u=i[0],f=i[4],h=i[8],p=u*a+f*o+h*s,d=c(u-=a*p,f-=o*p,h-=s*p),m=(u/=d)*e+a*r,g=(f/=d)*e+o*r,v=(h/=d)*e+s*r;this.center.move(t,m,g,v);var y=Math.exp(this.computedRadius[0]);y=Math.max(1e-4,y+n),this.radius.set(t,Math.log(y))},p.translate=function(t,e,r,n){this.center.move(t,e||0,r||0,n||0)},p.setMatrix=function(t,e,r,n){var a=1;"number"==typeof r&&(a=0|r),(a<0||a>3)&&(a=1);var o=(a+2)%3;e||(this.recalcMatrix(t),e=this.computedMatrix);var s=e[a],l=e[a+4],f=e[a+8];if(n){var h=Math.abs(s),p=Math.abs(l),d=Math.abs(f),m=Math.max(h,p,d);h===m?(s=s<0?-1:1,l=f=0):d===m?(f=f<0?-1:1,s=l=0):(l=l<0?-1:1,s=f=0)}else{var g=c(s,l,f);s/=g,l/=g,f/=g}var v,y,x=e[o],b=e[o+4],_=e[o+8],w=x*s+b*l+_*f,T=c(x-=s*w,b-=l*w,_-=f*w),k=l*(_/=T)-f*(b/=T),A=f*(x/=T)-s*_,M=s*b-l*x,S=c(k,A,M);if(k/=S,A/=S,M/=S,this.center.jump(t,q,G,Y),this.radius.idle(t),this.up.jump(t,s,l,f),this.right.jump(t,x,b,_),2===a){var E=e[1],L=e[5],C=e[9],P=E*x+L*b+C*_,I=E*k+L*A+C*M;v=R<0?-Math.PI/2:Math.PI/2,y=Math.atan2(I,P)}else{var O=e[2],z=e[6],D=e[10],R=O*s+z*l+D*f,F=O*x+z*b+D*_,B=O*k+z*A+D*M;v=Math.asin(u(R)),y=Math.atan2(B,F)}this.angle.jump(t,y,v),this.recalcMatrix(t);var N=e[2],j=e[6],U=e[10],V=this.computedMatrix;i(V,e);var H=V[15],q=V[12]/H,G=V[13]/H,Y=V[14]/H,W=Math.exp(this.computedRadius[0]);this.center.jump(t,q-N*W,G-j*W,Y-U*W)},p.lastT=function(){return Math.max(this.center.lastT(),this.up.lastT(),this.right.lastT(),this.radius.lastT(),this.angle.lastT())},p.idle=function(t){this.center.idle(t),this.up.idle(t),this.right.idle(t),this.radius.idle(t),this.angle.idle(t)},p.flush=function(t){this.center.flush(t),this.up.flush(t),this.right.flush(t),this.radius.flush(t),this.angle.flush(t)},p.setDistance=function(t,e){e>0&&this.radius.set(t,Math.log(e))},p.lookAt=function(t,e,r,n){this.recalcMatrix(t),e=e||this.computedEye,r=r||this.computedCenter;var i=(n=n||this.computedUp)[0],a=n[1],o=n[2],s=c(i,a,o);if(!(s<1e-6)){i/=s,a/=s,o/=s;var l=e[0]-r[0],f=e[1]-r[1],h=e[2]-r[2],p=c(l,f,h);if(!(p<1e-6)){l/=p,f/=p,h/=p;var d=this.computedRight,m=d[0],g=d[1],v=d[2],y=i*m+a*g+o*v,x=c(m-=y*i,g-=y*a,v-=y*o);if(!(x<.01&&(x=c(m=a*h-o*f,g=o*l-i*h,v=i*f-a*l))<1e-6)){m/=x,g/=x,v/=x,this.up.set(t,i,a,o),this.right.set(t,m,g,v),this.center.set(t,r[0],r[1],r[2]),this.radius.set(t,Math.log(p));var b=a*v-o*g,_=o*m-i*v,w=i*g-a*m,T=c(b,_,w),k=i*l+a*f+o*h,A=m*l+g*f+v*h,M=(b/=T)*l+(_/=T)*f+(w/=T)*h,S=Math.asin(u(k)),E=Math.atan2(M,A),L=this.angle._state,C=L[L.length-1],P=L[L.length-2];C%=2*Math.PI;var I=Math.abs(C+2*Math.PI-E),O=Math.abs(C-E),z=Math.abs(C-2*Math.PI-E);I":(e.length>100&&(e=e.slice(0,99)+"\u2026"),e=e.replace(i,(function(t){switch(t){case"\n":return"\\n";case"\r":return"\\r";case"\u2028":return"\\u2028";case"\u2029":return"\\u2029";default:throw new Error("Unexpected character")}})))}},{"./safe-to-string":581}],583:[function(t,e,r){"use strict";var n=t("../value/is"),i={object:!0,function:!0,undefined:!0};e.exports=function(t){return!!n(t)&&hasOwnProperty.call(i,typeof t)}},{"../value/is":589}],584:[function(t,e,r){"use strict";var n=t("../lib/resolve-exception"),i=t("./is");e.exports=function(t){return i(t)?t:n(t,"%v is not a plain function",arguments[1])}},{"../lib/resolve-exception":580,"./is":585}],585:[function(t,e,r){"use strict";var n=t("../function/is"),i=/^\s*class[\s{/}]/,a=Function.prototype.toString;e.exports=function(t){return!!n(t)&&!i.test(a.call(t))}},{"../function/is":579}],586:[function(t,e,r){"use strict";var n=t("../object/is");e.exports=function(t){if(!n(t))return!1;try{return!!t.constructor&&t.constructor.prototype===t}catch(t){return!1}}},{"../object/is":583}],587:[function(t,e,r){"use strict";var n=t("../value/is"),i=t("../object/is"),a=Object.prototype.toString;e.exports=function(t){if(!n(t))return null;if(i(t)){var e=t.toString;if("function"!=typeof e)return null;if(e===a)return null}try{return""+t}catch(t){return null}}},{"../object/is":583,"../value/is":589}],588:[function(t,e,r){"use strict";var n=t("../lib/resolve-exception"),i=t("./is");e.exports=function(t){return i(t)?t:n(t,"Cannot use %v",arguments[1])}},{"../lib/resolve-exception":580,"./is":589}],589:[function(t,e,r){"use strict";e.exports=function(t){return null!=t}},{}],590:[function(t,e,r){(function(e){(function(){"use strict";var n=t("bit-twiddle"),i=t("dup"),a=t("buffer").Buffer;e.__TYPEDARRAY_POOL||(e.__TYPEDARRAY_POOL={UINT8:i([32,0]),UINT16:i([32,0]),UINT32:i([32,0]),BIGUINT64:i([32,0]),INT8:i([32,0]),INT16:i([32,0]),INT32:i([32,0]),BIGINT64:i([32,0]),FLOAT:i([32,0]),DOUBLE:i([32,0]),DATA:i([32,0]),UINT8C:i([32,0]),BUFFER:i([32,0])});var o="undefined"!=typeof Uint8ClampedArray,s="undefined"!=typeof BigUint64Array,l="undefined"!=typeof BigInt64Array,c=e.__TYPEDARRAY_POOL;c.UINT8C||(c.UINT8C=i([32,0])),c.BIGUINT64||(c.BIGUINT64=i([32,0])),c.BIGINT64||(c.BIGINT64=i([32,0])),c.BUFFER||(c.BUFFER=i([32,0]));var u=c.DATA,f=c.BUFFER;function h(t){if(t){var e=t.length||t.byteLength,r=n.log2(e);u[r].push(t)}}function p(t){t=n.nextPow2(t);var e=n.log2(t),r=u[e];return r.length>0?r.pop():new ArrayBuffer(t)}function d(t){return new Uint8Array(p(t),0,t)}function m(t){return new Uint16Array(p(2*t),0,t)}function g(t){return new Uint32Array(p(4*t),0,t)}function v(t){return new Int8Array(p(t),0,t)}function y(t){return new Int16Array(p(2*t),0,t)}function x(t){return new Int32Array(p(4*t),0,t)}function b(t){return new Float32Array(p(4*t),0,t)}function _(t){return new Float64Array(p(8*t),0,t)}function w(t){return o?new Uint8ClampedArray(p(t),0,t):d(t)}function T(t){return s?new BigUint64Array(p(8*t),0,t):null}function k(t){return l?new BigInt64Array(p(8*t),0,t):null}function A(t){return new DataView(p(t),0,t)}function M(t){t=n.nextPow2(t);var e=n.log2(t),r=f[e];return r.length>0?r.pop():new a(t)}r.free=function(t){if(a.isBuffer(t))f[n.log2(t.length)].push(t);else{if("[object ArrayBuffer]"!==Object.prototype.toString.call(t)&&(t=t.buffer),!t)return;var e=t.length||t.byteLength,r=0|n.log2(e);u[r].push(t)}},r.freeUint8=r.freeUint16=r.freeUint32=r.freeBigUint64=r.freeInt8=r.freeInt16=r.freeInt32=r.freeBigInt64=r.freeFloat32=r.freeFloat=r.freeFloat64=r.freeDouble=r.freeUint8Clamped=r.freeDataView=function(t){h(t.buffer)},r.freeArrayBuffer=h,r.freeBuffer=function(t){f[n.log2(t.length)].push(t)},r.malloc=function(t,e){if(void 0===e||"arraybuffer"===e)return p(t);switch(e){case"uint8":return d(t);case"uint16":return m(t);case"uint32":return g(t);case"int8":return v(t);case"int16":return y(t);case"int32":return x(t);case"float":case"float32":return b(t);case"double":case"float64":return _(t);case"uint8_clamped":return w(t);case"bigint64":return k(t);case"biguint64":return T(t);case"buffer":return M(t);case"data":case"dataview":return A(t);default:return null}return null},r.mallocArrayBuffer=p,r.mallocUint8=d,r.mallocUint16=m,r.mallocUint32=g,r.mallocInt8=v,r.mallocInt16=y,r.mallocInt32=x,r.mallocFloat32=r.mallocFloat=b,r.mallocFloat64=r.mallocDouble=_,r.mallocUint8Clamped=w,r.mallocBigUint64=T,r.mallocBigInt64=k,r.mallocDataView=A,r.mallocBuffer=M,r.clearCache=function(){for(var t=0;t<32;++t)c.UINT8[t].length=0,c.UINT16[t].length=0,c.UINT32[t].length=0,c.INT8[t].length=0,c.INT16[t].length=0,c.INT32[t].length=0,c.FLOAT[t].length=0,c.DOUBLE[t].length=0,c.BIGUINT64[t].length=0,c.BIGINT64[t].length=0,c.UINT8C[t].length=0,u[t].length=0,f[t].length=0}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"bit-twiddle":101,buffer:112,dup:177}],591:[function(t,e,r){"use strict";function n(t){this.roots=new Array(t),this.ranks=new Array(t);for(var e=0;e0&&(a=n.size),n.lineSpacing&&n.lineSpacing>0&&(o=n.lineSpacing),n.styletags&&n.styletags.breaklines&&(s.breaklines=!!n.styletags.breaklines),n.styletags&&n.styletags.bolds&&(s.bolds=!!n.styletags.bolds),n.styletags&&n.styletags.italics&&(s.italics=!!n.styletags.italics),n.styletags&&n.styletags.subscripts&&(s.subscripts=!!n.styletags.subscripts),n.styletags&&n.styletags.superscripts&&(s.superscripts=!!n.styletags.superscripts));return r.font=[n.fontStyle,n.fontVariant,n.fontWeight,a+"px",n.font].filter((function(t){return t})).join(" "),r.textAlign="start",r.textBaseline="alphabetic",r.direction="ltr",h(function(t,e,r,n,a,o){r=r.replace(/\n/g,""),r=!0===o.breaklines?r.replace(/\/g,"\n"):r.replace(/\/g," ");var s="",l=[];for(p=0;p-1?parseInt(t[1+i]):0,l=a>-1?parseInt(r[1+a]):0;s!==l&&(n=n.replace(S(),"?px "),g*=Math.pow(.75,l-s),n=n.replace("?px ",S())),m+=.25*x*(l-s)}if(!0===o.superscripts){var c=t.indexOf("+"),u=r.indexOf("+"),f=c>-1?parseInt(t[1+c]):0,h=u>-1?parseInt(r[1+u]):0;f!==h&&(n=n.replace(S(),"?px "),g*=Math.pow(.75,h-f),n=n.replace("?px ",S())),m-=.25*x*(h-f)}if(!0===o.bolds){var p=t.indexOf("b|")>-1,d=r.indexOf("b|")>-1;!p&&d&&(n=v?n.replace("italic ","italic bold "):"bold "+n),p&&!d&&(n=n.replace("bold ",""))}if(!0===o.italics){var v=t.indexOf("i|")>-1,y=r.indexOf("i|")>-1;!v&&y&&(n="italic "+n),v&&!y&&(n=n.replace("italic ",""))}e.font=n}for(h=0;h",a="",o=i.length,s=a.length,l="+"===e[0]||"-"===e[0],c=0,u=-s;c>-1&&-1!==(c=r.indexOf(i,c))&&-1!==(u=r.indexOf(a,c+o))&&!(u<=c);){for(var f=c;f=u)n[f]=null,r=r.substr(0,f)+" "+r.substr(f+1);else if(null!==n[f]){var h=n[f].indexOf(e[0]);-1===h?n[f]+=e:l&&(n[f]=n[f].substr(0,h+1)+(1+parseInt(n[f][h+1]))+n[f].substr(h+2))}var p=c+o,d=r.substr(p,u-p).indexOf(i);c=-1!==d?d:u+s}return n}function u(t,e){var r=n(t,128);return e?a(r.cells,r.positions,.25):{edges:r.cells,positions:r.positions}}function f(t,e,r,n){var i=u(t,n),a=function(t,e,r){for(var n=e.textAlign||"start",i=e.textBaseline||"alphabetic",a=[1<<30,1<<30],o=[0,0],s=t.length,l=0;l=0?e[a]:i}))},has___:{value:y((function(e){var n=v(e);return n?r in n:t.indexOf(e)>=0}))},set___:{value:y((function(n,i){var a,o=v(n);return o?o[r]=i:(a=t.indexOf(n))>=0?e[a]=i:(a=t.length,e[a]=i,t[a]=n),this}))},delete___:{value:y((function(n){var i,a,o=v(n);return o?r in o&&delete o[r]:!((i=t.indexOf(n))<0)&&(a=t.length-1,t[i]=void 0,e[i]=e[a],t[i]=t[a],t.length=a,e.length=a,!0)}))}})};d.prototype=Object.create(Object.prototype,{get:{value:function(t,e){return this.get___(t,e)},writable:!0,configurable:!0},has:{value:function(t){return this.has___(t)},writable:!0,configurable:!0},set:{value:function(t,e){return this.set___(t,e)},writable:!0,configurable:!0},delete:{value:function(t){return this.delete___(t)},writable:!0,configurable:!0}}),"function"==typeof r?function(){function n(){this instanceof d||x();var e,n=new r,i=void 0,a=!1;return e=t?function(t,e){return n.set(t,e),n.has(t)||(i||(i=new d),i.set(t,e)),this}:function(t,e){if(a)try{n.set(t,e)}catch(r){i||(i=new d),i.set___(t,e)}else n.set(t,e);return this},Object.create(d.prototype,{get___:{value:y((function(t,e){return i?n.has(t)?n.get(t):i.get___(t,e):n.get(t,e)}))},has___:{value:y((function(t){return n.has(t)||!!i&&i.has___(t)}))},set___:{value:y(e)},delete___:{value:y((function(t){var e=!!n.delete(t);return i&&i.delete___(t)||e}))},permitHostObjects___:{value:y((function(t){if(t!==m)throw new Error("bogus call to permitHostObjects___");a=!0}))}})}t&&"undefined"!=typeof Proxy&&(Proxy=void 0),n.prototype=d.prototype,e.exports=n,Object.defineProperty(WeakMap.prototype,"constructor",{value:WeakMap,enumerable:!1,configurable:!0,writable:!0})}():("undefined"!=typeof Proxy&&(Proxy=void 0),e.exports=d)}function m(t){t.permitHostObjects___&&t.permitHostObjects___(m)}function g(t){return!("weakmap:"==t.substr(0,"weakmap:".length)&&"___"===t.substr(t.length-3))}function v(t){if(t!==Object(t))throw new TypeError("Not an object: "+t);var e=t[l];if(e&&e.key===t)return e;if(s(t)){e={key:t};try{return o(t,l,{value:e,writable:!1,enumerable:!1,configurable:!1}),e}catch(t){return}}}function y(t){return t.prototype=null,Object.freeze(t)}function x(){h||"undefined"==typeof console||(h=!0,console.warn("WeakMap should be invoked as new WeakMap(), not WeakMap(). This will be an error in the future."))}}()},{}],599:[function(t,e,r){var n=t("./hidden-store.js");e.exports=function(){var t={};return function(e){if(("object"!=typeof e||null===e)&&"function"!=typeof e)throw new Error("Weakmap-shim: Key must be object");var r=e.valueOf(t);return r&&r.identity===t?r:n(e,t)}}},{"./hidden-store.js":600}],600:[function(t,e,r){e.exports=function(t,e){var r={identity:e},n=t.valueOf;return Object.defineProperty(t,"valueOf",{value:function(t){return t!==e?n.apply(this,arguments):r},writable:!0}),r}},{}],601:[function(t,e,r){var n=t("./create-store.js");e.exports=function(){var t=n();return{get:function(e,r){var n=t(e);return n.hasOwnProperty("value")?n.value:r},set:function(e,r){return t(e).value=r,this},has:function(e){return"value"in t(e)},delete:function(e){return delete t(e).value}}}},{"./create-store.js":599}],602:[function(t,e,r){var n=t("get-canvas-context");e.exports=function(t){return n("webgl",t)}},{"get-canvas-context":248}],603:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Chinese",jdEpoch:1721425.5,hasYearZero:!1,minMonth:0,firstMonth:0,minDay:1,regionalOptions:{"":{name:"Chinese",epochs:["BEC","EC"],monthNumbers:function(t,e){if("string"==typeof t){var r=t.match(l);return r?r[0]:""}var n=this._validateYear(t),i=t.month(),a=""+this.toChineseMonth(n,i);return e&&a.length<2&&(a="0"+a),this.isIntercalaryMonth(n,i)&&(a+="i"),a},monthNames:function(t){if("string"==typeof t){var e=t.match(c);return e?e[0]:""}var r=this._validateYear(t),n=t.month(),i=["\u4e00\u6708","\u4e8c\u6708","\u4e09\u6708","\u56db\u6708","\u4e94\u6708","\u516d\u6708","\u4e03\u6708","\u516b\u6708","\u4e5d\u6708","\u5341\u6708","\u5341\u4e00\u6708","\u5341\u4e8c\u6708"][this.toChineseMonth(r,n)-1];return this.isIntercalaryMonth(r,n)&&(i="\u95f0"+i),i},monthNamesShort:function(t){if("string"==typeof t){var e=t.match(u);return e?e[0]:""}var r=this._validateYear(t),n=t.month(),i=["\u4e00","\u4e8c","\u4e09","\u56db","\u4e94","\u516d","\u4e03","\u516b","\u4e5d","\u5341","\u5341\u4e00","\u5341\u4e8c"][this.toChineseMonth(r,n)-1];return this.isIntercalaryMonth(r,n)&&(i="\u95f0"+i),i},parseMonth:function(t,e){t=this._validateYear(t);var r,n=parseInt(e);if(isNaN(n))"\u95f0"===e[0]&&(r=!0,e=e.substring(1)),"\u6708"===e[e.length-1]&&(e=e.substring(0,e.length-1)),n=1+["\u4e00","\u4e8c","\u4e09","\u56db","\u4e94","\u516d","\u4e03","\u516b","\u4e5d","\u5341","\u5341\u4e00","\u5341\u4e8c"].indexOf(e);else{var i=e[e.length-1];r="i"===i||"I"===i}return this.toMonthIndex(t,n,r)},dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:1,isRTL:!1}},_validateYear:function(t,e){if(t.year&&(t=t.year()),"number"!=typeof t||t<1888||t>2111)throw e.replace(/\{0\}/,this.local.name);return t},toMonthIndex:function(t,e,r){var i=this.intercalaryMonth(t);if(r&&e!==i||e<1||e>12)throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return i?!r&&e<=i?e-1:e:e-1},toChineseMonth:function(t,e){t.year&&(e=(t=t.year()).month());var r=this.intercalaryMonth(t);if(e<0||e>(r?12:11))throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return r?e>13},isIntercalaryMonth:function(t,e){t.year&&(e=(t=t.year()).month());var r=this.intercalaryMonth(t);return!!r&&r===e},leapYear:function(t){return 0!==this.intercalaryMonth(t)},weekOfYear:function(t,e,r){var i,o=this._validateYear(t,n.local.invalidyear),s=h[o-h[0]],l=s>>9&4095,c=s>>5&15,u=31&s;(i=a.newDate(l,c,u)).add(4-(i.dayOfWeek()||7),"d");var f=this.toJD(t,e,r)-i.toJD();return 1+Math.floor(f/7)},monthsInYear:function(t){return this.leapYear(t)?13:12},daysInMonth:function(t,e){t.year&&(e=t.month(),t=t.year()),t=this._validateYear(t);var r=f[t-f[0]];if(e>(r>>13?12:11))throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return r&1<<12-e?30:29},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,s,r,n.local.invalidDate);t=this._validateYear(i.year()),e=i.month(),r=i.day();var o=this.isIntercalaryMonth(t,e),s=this.toChineseMonth(t,e),l=function(t,e,r,n,i){var a,o,s;if("object"==typeof t)o=t,a=e||{};else{var l;if(!("number"==typeof t&&t>=1888&&t<=2111))throw new Error("Lunar year outside range 1888-2111");if(!("number"==typeof e&&e>=1&&e<=12))throw new Error("Lunar month outside range 1 - 12");if(!("number"==typeof r&&r>=1&&r<=30))throw new Error("Lunar day outside range 1 - 30");"object"==typeof n?(l=!1,a=n):(l=!!n,a=i||{}),o={year:t,month:e,day:r,isIntercalary:l}}s=o.day-1;var c,u=f[o.year-f[0]],p=u>>13;c=p&&(o.month>p||o.isIntercalary)?o.month:o.month-1;for(var d=0;d>9&4095,(m>>5&15)-1,(31&m)+s);return a.year=g.getFullYear(),a.month=1+g.getMonth(),a.day=g.getDate(),a}(t,s,r,o);return a.toJD(l.year,l.month,l.day)},fromJD:function(t){var e=a.fromJD(t),r=function(t,e,r,n){var i,a;if("object"==typeof t)i=t,a=e||{};else{if(!("number"==typeof t&&t>=1888&&t<=2111))throw new Error("Solar year outside range 1888-2111");if(!("number"==typeof e&&e>=1&&e<=12))throw new Error("Solar month outside range 1 - 12");if(!("number"==typeof r&&r>=1&&r<=31))throw new Error("Solar day outside range 1 - 31");i={year:t,month:e,day:r},a=n||{}}var o=h[i.year-h[0]],s=i.year<<9|i.month<<5|i.day;a.year=s>=o?i.year:i.year-1,o=h[a.year-h[0]];var l,c=new Date(o>>9&4095,(o>>5&15)-1,31&o),u=new Date(i.year,i.month-1,i.day);l=Math.round((u-c)/864e5);var p,d=f[a.year-f[0]];for(p=0;p<13;p++){var m=d&1<<12-p?30:29;if(l>13;!g||p=2&&n<=6},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return{century:o[Math.floor((i.year()-1)/100)+1]||""}},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year()+(i.year()<0?1:0),e=i.month(),(r=i.day())+(e>1?16:0)+(e>2?32*(e-2):0)+400*(t-1)+this.jdEpoch-1},fromJD:function(t){t=Math.floor(t+.5)-Math.floor(this.jdEpoch)-1;var e=Math.floor(t/400)+1;t-=400*(e-1),t+=t>15?16:0;var r=Math.floor(t/32)+1,n=t-32*(r-1)+1;return this.newDate(e<=0?e-1:e,r,n)}});var o={20:"Fruitbat",21:"Anchovy"};n.calendars.discworld=a},{"../main":617,"object-assign":466}],606:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Ethiopian",jdEpoch:1724220.5,daysPerMonth:[30,30,30,30,30,30,30,30,30,30,30,30,5],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Ethiopian",epochs:["BEE","EE"],monthNames:["Meskerem","Tikemet","Hidar","Tahesas","Tir","Yekatit","Megabit","Miazia","Genbot","Sene","Hamle","Nehase","Pagume"],monthNamesShort:["Mes","Tik","Hid","Tah","Tir","Yek","Meg","Mia","Gen","Sen","Ham","Neh","Pag"],dayNames:["Ehud","Segno","Maksegno","Irob","Hamus","Arb","Kidame"],dayNamesShort:["Ehu","Seg","Mak","Iro","Ham","Arb","Kid"],dayNamesMin:["Eh","Se","Ma","Ir","Ha","Ar","Ki"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return(t=e.year()+(e.year()<0?1:0))%4==3||t%4==-1},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear||n.regionalOptions[""].invalidYear),13},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(13===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return(t=i.year())<0&&t++,i.day()+30*(i.month()-1)+365*(t-1)+Math.floor(t/4)+this.jdEpoch-1},fromJD:function(t){var e=Math.floor(t)+.5-this.jdEpoch,r=Math.floor((e-Math.floor((e+366)/1461))/365)+1;r<=0&&r--,e=Math.floor(t)+.5-this.newDate(r,1,1).toJD();var n=Math.floor(e/30)+1,i=e-30*(n-1)+1;return this.newDate(r,n,i)}}),n.calendars.ethiopian=a},{"../main":617,"object-assign":466}],607:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}function o(t,e){return t-e*Math.floor(t/e)}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Hebrew",jdEpoch:347995.5,daysPerMonth:[30,29,30,29,30,29,30,29,30,29,30,29,29],hasYearZero:!1,minMonth:1,firstMonth:7,minDay:1,regionalOptions:{"":{name:"Hebrew",epochs:["BAM","AM"],monthNames:["Nisan","Iyar","Sivan","Tammuz","Av","Elul","Tishrei","Cheshvan","Kislev","Tevet","Shevat","Adar","Adar II"],monthNamesShort:["Nis","Iya","Siv","Tam","Av","Elu","Tis","Che","Kis","Tev","She","Ada","Ad2"],dayNames:["Yom Rishon","Yom Sheni","Yom Shlishi","Yom Revi'i","Yom Chamishi","Yom Shishi","Yom Shabbat"],dayNamesShort:["Ris","She","Shl","Rev","Cha","Shi","Sha"],dayNamesMin:["Ri","She","Shl","Re","Ch","Shi","Sha"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return this._leapYear(e.year())},_leapYear:function(t){return o(7*(t=t<0?t+1:t)+1,19)<7},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),this._leapYear(t.year?t.year():t)?13:12},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){return t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year(),this.toJD(-1===t?1:t+1,7,1)-this.toJD(t,7,1)},daysInMonth:function(t,e){return t.year&&(e=t.month(),t=t.year()),this._validate(t,e,this.minDay,n.local.invalidMonth),12===e&&this.leapYear(t)||8===e&&5===o(this.daysInYear(t),10)?30:9===e&&3===o(this.daysInYear(t),10)?29:this.daysPerMonth[e-1]},weekDay:function(t,e,r){return 6!==this.dayOfWeek(t,e,r)},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return{yearType:(this.leapYear(i)?"embolismic":"common")+" "+["deficient","regular","complete"][this.daysInYear(i)%10-3]}},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=t<=0?t+1:t,o=this.jdEpoch+this._delay1(a)+this._delay2(a)+r+1;if(e<7){for(var s=7;s<=this.monthsInYear(t);s++)o+=this.daysInMonth(t,s);for(s=1;s=this.toJD(-1===e?1:e+1,7,1);)e++;for(var r=tthis.toJD(e,r,this.daysInMonth(e,r));)r++;var n=t-this.toJD(e,r,1)+1;return this.newDate(e,r,n)}}),n.calendars.hebrew=a},{"../main":617,"object-assign":466}],608:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Islamic",jdEpoch:1948439.5,daysPerMonth:[30,29,30,29,30,29,30,29,30,29,30,29],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Islamic",epochs:["BH","AH"],monthNames:["Muharram","Safar","Rabi' al-awwal","Rabi' al-thani","Jumada al-awwal","Jumada al-thani","Rajab","Sha'aban","Ramadan","Shawwal","Dhu al-Qi'dah","Dhu al-Hijjah"],monthNamesShort:["Muh","Saf","Rab1","Rab2","Jum1","Jum2","Raj","Sha'","Ram","Shaw","DhuQ","DhuH"],dayNames:["Yawm al-ahad","Yawm al-ithnayn","Yawm ath-thulaathaa'","Yawm al-arbi'aa'","Yawm al-kham\u012bs","Yawm al-jum'a","Yawm as-sabt"],dayNamesShort:["Aha","Ith","Thu","Arb","Kha","Jum","Sab"],dayNamesMin:["Ah","It","Th","Ar","Kh","Ju","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:6,isRTL:!1}},leapYear:function(t){return(11*this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year()+14)%30<11},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){return this.leapYear(t)?355:354},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year(),e=i.month(),t=t<=0?t+1:t,(r=i.day())+Math.ceil(29.5*(e-1))+354*(t-1)+Math.floor((3+11*t)/30)+this.jdEpoch-1},fromJD:function(t){t=Math.floor(t)+.5;var e=Math.floor((30*(t-this.jdEpoch)+10646)/10631);e=e<=0?e-1:e;var r=Math.min(12,Math.ceil((t-29-this.toJD(e,1,1))/29.5)+1),n=t-this.toJD(e,r,1)+1;return this.newDate(e,r,n)}}),n.calendars.islamic=a},{"../main":617,"object-assign":466}],609:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Julian",jdEpoch:1721423.5,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Julian",epochs:["BC","AD"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"mm/dd/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return(t=e.year()<0?e.year()+1:e.year())%4==0},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(4-(n.dayOfWeek()||7),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year(),e=i.month(),r=i.day(),t<0&&t++,e<=2&&(t--,e+=12),Math.floor(365.25*(t+4716))+Math.floor(30.6001*(e+1))+r-1524.5},fromJD:function(t){var e=Math.floor(t+.5)+1524,r=Math.floor((e-122.1)/365.25),n=Math.floor(365.25*r),i=Math.floor((e-n)/30.6001),a=i-Math.floor(i<14?1:13),o=r-Math.floor(a>2?4716:4715),s=e-n-Math.floor(30.6001*i);return o<=0&&o--,this.newDate(o,a,s)}}),n.calendars.julian=a},{"../main":617,"object-assign":466}],610:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}function o(t,e){return t-e*Math.floor(t/e)}function s(t,e){return o(t-1,e)+1}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Mayan",jdEpoch:584282.5,hasYearZero:!0,minMonth:0,firstMonth:0,minDay:0,regionalOptions:{"":{name:"Mayan",epochs:["",""],monthNames:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17"],monthNamesShort:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17"],dayNames:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],dayNamesShort:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],dayNamesMin:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],digits:null,dateFormat:"YYYY.m.d",firstDay:0,isRTL:!1,haabMonths:["Pop","Uo","Zip","Zotz","Tzec","Xul","Yaxkin","Mol","Chen","Yax","Zac","Ceh","Mac","Kankin","Muan","Pax","Kayab","Cumku","Uayeb"],tzolkinMonths:["Imix","Ik","Akbal","Kan","Chicchan","Cimi","Manik","Lamat","Muluc","Oc","Chuen","Eb","Ben","Ix","Men","Cib","Caban","Etznab","Cauac","Ahau"]}},leapYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),!1},formatYear:function(t){t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year();var e=Math.floor(t/400);return t%=400,t+=t<0?400:0,e+"."+Math.floor(t/20)+"."+t%20},forYear:function(t){if((t=t.split(".")).length<3)throw"Invalid Mayan year";for(var e=0,r=0;r19||r>0&&n<0)throw"Invalid Mayan year";e=20*e+n}return e},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),18},weekOfYear:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate),0},daysInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),360},daysInMonth:function(t,e){return this._validate(t,e,this.minDay,n.local.invalidMonth),20},daysInWeek:function(){return 5},dayOfWeek:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate).day()},weekDay:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate),!0},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate).toJD(),a=this._toHaab(i),o=this._toTzolkin(i);return{haabMonthName:this.local.haabMonths[a[0]-1],haabMonth:a[0],haabDay:a[1],tzolkinDayName:this.local.tzolkinMonths[o[0]-1],tzolkinDay:o[0],tzolkinTrecena:o[1]}},_toHaab:function(t){var e=o((t-=this.jdEpoch)+8+340,365);return[Math.floor(e/20)+1,o(e,20)]},_toTzolkin:function(t){return[s((t-=this.jdEpoch)+20,20),s(t+4,13)]},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return i.day()+20*i.month()+360*i.year()+this.jdEpoch},fromJD:function(t){t=Math.floor(t)+.5-this.jdEpoch;var e=Math.floor(t/360);t%=360,t+=t<0?360:0;var r=Math.floor(t/20),n=t%20;return this.newDate(e,r,n)}}),n.calendars.mayan=a},{"../main":617,"object-assign":466}],611:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar;var o=n.instance("gregorian");i(a.prototype,{name:"Nanakshahi",jdEpoch:2257673.5,daysPerMonth:[31,31,31,31,31,30,30,30,30,30,30,30],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Nanakshahi",epochs:["BN","AN"],monthNames:["Chet","Vaisakh","Jeth","Harh","Sawan","Bhadon","Assu","Katak","Maghar","Poh","Magh","Phagun"],monthNamesShort:["Che","Vai","Jet","Har","Saw","Bha","Ass","Kat","Mgr","Poh","Mgh","Pha"],dayNames:["Somvaar","Mangalvar","Budhvaar","Veervaar","Shukarvaar","Sanicharvaar","Etvaar"],dayNamesShort:["Som","Mangal","Budh","Veer","Shukar","Sanichar","Et"],dayNamesMin:["So","Ma","Bu","Ve","Sh","Sa","Et"],digits:null,dateFormat:"dd-mm-yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear||n.regionalOptions[""].invalidYear);return o.leapYear(e.year()+(e.year()<1?1:0)+1469)},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(1-(n.dayOfWeek()||7),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidMonth);(t=i.year())<0&&t++;for(var a=i.day(),s=1;s=this.toJD(e+1,1,1);)e++;for(var r=t-Math.floor(this.toJD(e,1,1)+.5)+1,n=1;r>this.daysInMonth(e,n);)r-=this.daysInMonth(e,n),n++;return this.newDate(e,n,r)}}),n.calendars.nanakshahi=a},{"../main":617,"object-assign":466}],612:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Nepali",jdEpoch:1700709.5,daysPerMonth:[31,31,32,32,31,30,30,29,30,29,30,30],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,daysPerYear:365,regionalOptions:{"":{name:"Nepali",epochs:["BBS","ABS"],monthNames:["Baisakh","Jestha","Ashadh","Shrawan","Bhadra","Ashwin","Kartik","Mangsir","Paush","Mangh","Falgun","Chaitra"],monthNamesShort:["Bai","Je","As","Shra","Bha","Ash","Kar","Mang","Pau","Ma","Fal","Chai"],dayNames:["Aaitabaar","Sombaar","Manglbaar","Budhabaar","Bihibaar","Shukrabaar","Shanibaar"],dayNamesShort:["Aaita","Som","Mangl","Budha","Bihi","Shukra","Shani"],dayNamesMin:["Aai","So","Man","Bu","Bi","Shu","Sha"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:1,isRTL:!1}},leapYear:function(t){return this.daysInYear(t)!==this.daysPerYear},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){if(t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year(),void 0===this.NEPALI_CALENDAR_DATA[t])return this.daysPerYear;for(var e=0,r=this.minMonth;r<=12;r++)e+=this.NEPALI_CALENDAR_DATA[t][r];return e},daysInMonth:function(t,e){return t.year&&(e=t.month(),t=t.year()),this._validate(t,e,this.minDay,n.local.invalidMonth),void 0===this.NEPALI_CALENDAR_DATA[t]?this.daysPerMonth[e-1]:this.NEPALI_CALENDAR_DATA[t][e]},weekDay:function(t,e,r){return 6!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=n.instance(),o=0,s=e,l=t;this._createMissingCalendarData(t);var c=t-(s>9||9===s&&r>=this.NEPALI_CALENDAR_DATA[l][0]?56:57);for(9!==e&&(o=r,s--);9!==s;)s<=0&&(s=12,l--),o+=this.NEPALI_CALENDAR_DATA[l][s],s--;return 9===e?(o+=r-this.NEPALI_CALENDAR_DATA[l][0])<0&&(o+=a.daysInYear(c)):o+=this.NEPALI_CALENDAR_DATA[l][9]-this.NEPALI_CALENDAR_DATA[l][0],a.newDate(c,1,1).add(o,"d").toJD()},fromJD:function(t){var e=n.instance().fromJD(t),r=e.year(),i=e.dayOfYear(),a=r+56;this._createMissingCalendarData(a);for(var o=9,s=this.NEPALI_CALENDAR_DATA[a][0],l=this.NEPALI_CALENDAR_DATA[a][o]-s+1;i>l;)++o>12&&(o=1,a++),l+=this.NEPALI_CALENDAR_DATA[a][o];var c=this.NEPALI_CALENDAR_DATA[a][o]-(l-i);return this.newDate(a,o,c)},_createMissingCalendarData:function(t){var e=this.daysPerMonth.slice(0);e.unshift(17);for(var r=t-1;r0?474:473))%2820+474+38)%2816<682},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-(n.dayOfWeek()+1)%7,"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=t-(t>=0?474:473),s=474+o(a,2820);return r+(e<=7?31*(e-1):30*(e-1)+6)+Math.floor((682*s-110)/2816)+365*(s-1)+1029983*Math.floor(a/2820)+this.jdEpoch-1},fromJD:function(t){var e=(t=Math.floor(t)+.5)-this.toJD(475,1,1),r=Math.floor(e/1029983),n=o(e,1029983),i=2820;if(1029982!==n){var a=Math.floor(n/366),s=o(n,366);i=Math.floor((2134*a+2816*s+2815)/1028522)+a+1}var l=i+2820*r+474;l=l<=0?l-1:l;var c=t-this.toJD(l,1,1)+1,u=c<=186?Math.ceil(c/31):Math.ceil((c-6)/30),f=t-this.toJD(l,u,1)+1;return this.newDate(l,u,f)}}),n.calendars.persian=a,n.calendars.jalali=a},{"../main":617,"object-assign":466}],614:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Taiwan",jdEpoch:2419402.5,yearsOffset:1911,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Taiwan",epochs:["BROC","ROC"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:1,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(e.year());return a.leapYear(t)},weekOfYear:function(t,e,r){var i=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(i.year());return a.weekOfYear(t,i.month(),i.day())},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=this._t2gYear(i.year());return a.toJD(t,i.month(),i.day())},fromJD:function(t){var e=a.fromJD(t),r=this._g2tYear(e.year());return this.newDate(r,e.month(),e.day())},_t2gYear:function(t){return t+this.yearsOffset+(t>=-this.yearsOffset&&t<=-1?1:0)},_g2tYear:function(t){return t-this.yearsOffset-(t>=1&&t<=this.yearsOffset?1:0)}}),n.calendars.taiwan=o},{"../main":617,"object-assign":466}],615:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Thai",jdEpoch:1523098.5,yearsOffset:543,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Thai",epochs:["BBE","BE"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(e.year());return a.leapYear(t)},weekOfYear:function(t,e,r){var i=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(i.year());return a.weekOfYear(t,i.month(),i.day())},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=this._t2gYear(i.year());return a.toJD(t,i.month(),i.day())},fromJD:function(t){var e=a.fromJD(t),r=this._g2tYear(e.year());return this.newDate(r,e.month(),e.day())},_t2gYear:function(t){return t-this.yearsOffset-(t>=1&&t<=this.yearsOffset?1:0)},_g2tYear:function(t){return t+this.yearsOffset+(t>=-this.yearsOffset&&t<=-1?1:0)}}),n.calendars.thai=o},{"../main":617,"object-assign":466}],616:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"UmmAlQura",hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Umm al-Qura",epochs:["BH","AH"],monthNames:["Al-Muharram","Safar","Rabi' al-awwal","Rabi' Al-Thani","Jumada Al-Awwal","Jumada Al-Thani","Rajab","Sha'aban","Ramadan","Shawwal","Dhu al-Qi'dah","Dhu al-Hijjah"],monthNamesShort:["Muh","Saf","Rab1","Rab2","Jum1","Jum2","Raj","Sha'","Ram","Shaw","DhuQ","DhuH"],dayNames:["Yawm al-Ahad","Yawm al-Ithnain","Yawm al-Thal\u0101th\u0101\u2019","Yawm al-Arba\u2018\u0101\u2019","Yawm al-Kham\u012bs","Yawm al-Jum\u2018a","Yawm al-Sabt"],dayNamesMin:["Ah","Ith","Th","Ar","Kh","Ju","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:6,isRTL:!0}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return 355===this.daysInYear(e.year())},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){for(var e=0,r=1;r<=12;r++)e+=this.daysInMonth(t,r);return e},daysInMonth:function(t,e){for(var r=this._validate(t,e,this.minDay,n.local.invalidMonth).toJD()-24e5+.5,i=0,a=0;ar)return o[i]-o[i-1];i++}return 30},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate),a=12*(i.year()-1)+i.month()-15292;return i.day()+o[a-1]-1+24e5-.5},fromJD:function(t){for(var e=t-24e5+.5,r=0,n=0;ne);n++)r++;var i=r+15292,a=Math.floor((i-1)/12),s=a+1,l=i-12*a,c=e-o[r-1]+1;return this.newDate(s,l,c)},isValid:function(t,e,r){var i=n.baseCalendar.prototype.isValid.apply(this,arguments);return i&&(i=(t=null!=t.year?t.year:t)>=1276&&t<=1500),i},_validate:function(t,e,r,i){var a=n.baseCalendar.prototype._validate.apply(this,arguments);if(a.year<1276||a.year>1500)throw i.replace(/\{0\}/,this.local.name);return a}}),n.calendars.ummalqura=a;var o=[20,50,79,109,138,168,197,227,256,286,315,345,374,404,433,463,492,522,551,581,611,641,670,700,729,759,788,818,847,877,906,936,965,995,1024,1054,1083,1113,1142,1172,1201,1231,1260,1290,1320,1350,1379,1409,1438,1468,1497,1527,1556,1586,1615,1645,1674,1704,1733,1763,1792,1822,1851,1881,1910,1940,1969,1999,2028,2058,2087,2117,2146,2176,2205,2235,2264,2294,2323,2353,2383,2413,2442,2472,2501,2531,2560,2590,2619,2649,2678,2708,2737,2767,2796,2826,2855,2885,2914,2944,2973,3003,3032,3062,3091,3121,3150,3180,3209,3239,3268,3298,3327,3357,3386,3416,3446,3476,3505,3535,3564,3594,3623,3653,3682,3712,3741,3771,3800,3830,3859,3889,3918,3948,3977,4007,4036,4066,4095,4125,4155,4185,4214,4244,4273,4303,4332,4362,4391,4421,4450,4480,4509,4539,4568,4598,4627,4657,4686,4716,4745,4775,4804,4834,4863,4893,4922,4952,4981,5011,5040,5070,5099,5129,5158,5188,5218,5248,5277,5307,5336,5366,5395,5425,5454,5484,5513,5543,5572,5602,5631,5661,5690,5720,5749,5779,5808,5838,5867,5897,5926,5956,5985,6015,6044,6074,6103,6133,6162,6192,6221,6251,6281,6311,6340,6370,6399,6429,6458,6488,6517,6547,6576,6606,6635,6665,6694,6724,6753,6783,6812,6842,6871,6901,6930,6960,6989,7019,7048,7078,7107,7137,7166,7196,7225,7255,7284,7314,7344,7374,7403,7433,7462,7492,7521,7551,7580,7610,7639,7669,7698,7728,7757,7787,7816,7846,7875,7905,7934,7964,7993,8023,8053,8083,8112,8142,8171,8201,8230,8260,8289,8319,8348,8378,8407,8437,8466,8496,8525,8555,8584,8614,8643,8673,8702,8732,8761,8791,8821,8850,8880,8909,8938,8968,8997,9027,9056,9086,9115,9145,9175,9205,9234,9264,9293,9322,9352,9381,9410,9440,9470,9499,9529,9559,9589,9618,9648,9677,9706,9736,9765,9794,9824,9853,9883,9913,9943,9972,10002,10032,10061,10090,10120,10149,10178,10208,10237,10267,10297,10326,10356,10386,10415,10445,10474,10504,10533,10562,10592,10621,10651,10680,10710,10740,10770,10799,10829,10858,10888,10917,10947,10976,11005,11035,11064,11094,11124,11153,11183,11213,11242,11272,11301,11331,11360,11389,11419,11448,11478,11507,11537,11567,11596,11626,11655,11685,11715,11744,11774,11803,11832,11862,11891,11921,11950,11980,12010,12039,12069,12099,12128,12158,12187,12216,12246,12275,12304,12334,12364,12393,12423,12453,12483,12512,12542,12571,12600,12630,12659,12688,12718,12747,12777,12807,12837,12866,12896,12926,12955,12984,13014,13043,13072,13102,13131,13161,13191,13220,13250,13280,13310,13339,13368,13398,13427,13456,13486,13515,13545,13574,13604,13634,13664,13693,13723,13752,13782,13811,13840,13870,13899,13929,13958,13988,14018,14047,14077,14107,14136,14166,14195,14224,14254,14283,14313,14342,14372,14401,14431,14461,14490,14520,14550,14579,14609,14638,14667,14697,14726,14756,14785,14815,14844,14874,14904,14933,14963,14993,15021,15051,15081,15110,15140,15169,15199,15228,15258,15287,15317,15347,15377,15406,15436,15465,15494,15524,15553,15582,15612,15641,15671,15701,15731,15760,15790,15820,15849,15878,15908,15937,15966,15996,16025,16055,16085,16114,16144,16174,16204,16233,16262,16292,16321,16350,16380,16409,16439,16468,16498,16528,16558,16587,16617,16646,16676,16705,16734,16764,16793,16823,16852,16882,16912,16941,16971,17001,17030,17060,17089,17118,17148,17177,17207,17236,17266,17295,17325,17355,17384,17414,17444,17473,17502,17532,17561,17591,17620,17650,17679,17709,17738,17768,17798,17827,17857,17886,17916,17945,17975,18004,18034,18063,18093,18122,18152,18181,18211,18241,18270,18300,18330,18359,18388,18418,18447,18476,18506,18535,18565,18595,18625,18654,18684,18714,18743,18772,18802,18831,18860,18890,18919,18949,18979,19008,19038,19068,19098,19127,19156,19186,19215,19244,19274,19303,19333,19362,19392,19422,19452,19481,19511,19540,19570,19599,19628,19658,19687,19717,19746,19776,19806,19836,19865,19895,19924,19954,19983,20012,20042,20071,20101,20130,20160,20190,20219,20249,20279,20308,20338,20367,20396,20426,20455,20485,20514,20544,20573,20603,20633,20662,20692,20721,20751,20780,20810,20839,20869,20898,20928,20957,20987,21016,21046,21076,21105,21135,21164,21194,21223,21253,21282,21312,21341,21371,21400,21430,21459,21489,21519,21548,21578,21607,21637,21666,21696,21725,21754,21784,21813,21843,21873,21902,21932,21962,21991,22021,22050,22080,22109,22138,22168,22197,22227,22256,22286,22316,22346,22375,22405,22434,22464,22493,22522,22552,22581,22611,22640,22670,22700,22730,22759,22789,22818,22848,22877,22906,22936,22965,22994,23024,23054,23083,23113,23143,23173,23202,23232,23261,23290,23320,23349,23379,23408,23438,23467,23497,23527,23556,23586,23616,23645,23674,23704,23733,23763,23792,23822,23851,23881,23910,23940,23970,23999,24029,24058,24088,24117,24147,24176,24206,24235,24265,24294,24324,24353,24383,24413,24442,24472,24501,24531,24560,24590,24619,24648,24678,24707,24737,24767,24796,24826,24856,24885,24915,24944,24974,25003,25032,25062,25091,25121,25150,25180,25210,25240,25269,25299,25328,25358,25387,25416,25446,25475,25505,25534,25564,25594,25624,25653,25683,25712,25742,25771,25800,25830,25859,25888,25918,25948,25977,26007,26037,26067,26096,26126,26155,26184,26214,26243,26272,26302,26332,26361,26391,26421,26451,26480,26510,26539,26568,26598,26627,26656,26686,26715,26745,26775,26805,26834,26864,26893,26923,26952,26982,27011,27041,27070,27099,27129,27159,27188,27218,27248,27277,27307,27336,27366,27395,27425,27454,27484,27513,27542,27572,27602,27631,27661,27691,27720,27750,27779,27809,27838,27868,27897,27926,27956,27985,28015,28045,28074,28104,28134,28163,28193,28222,28252,28281,28310,28340,28369,28399,28428,28458,28488,28517,28547,28577,28607,28636,28665,28695,28724,28754,28783,28813,28843,28872,28901,28931,28960,28990,29019,29049,29078,29108,29137,29167,29196,29226,29255,29285,29315,29345,29375,29404,29434,29463,29492,29522,29551,29580,29610,29640,29669,29699,29729,29759,29788,29818,29847,29876,29906,29935,29964,29994,30023,30053,30082,30112,30141,30171,30200,30230,30259,30289,30318,30348,30378,30408,30437,30467,30496,30526,30555,30585,30614,30644,30673,30703,30732,30762,30791,30821,30850,30880,30909,30939,30968,30998,31027,31057,31086,31116,31145,31175,31204,31234,31263,31293,31322,31352,31381,31411,31441,31471,31500,31530,31559,31589,31618,31648,31676,31706,31736,31766,31795,31825,31854,31884,31913,31943,31972,32002,32031,32061,32090,32120,32150,32180,32209,32239,32268,32298,32327,32357,32386,32416,32445,32475,32504,32534,32563,32593,32622,32652,32681,32711,32740,32770,32799,32829,32858,32888,32917,32947,32976,33006,33035,33065,33094,33124,33153,33183,33213,33243,33272,33302,33331,33361,33390,33420,33450,33479,33509,33539,33568,33598,33627,33657,33686,33716,33745,33775,33804,33834,33863,33893,33922,33952,33981,34011,34040,34069,34099,34128,34158,34187,34217,34247,34277,34306,34336,34365,34395,34424,34454,34483,34512,34542,34571,34601,34631,34660,34690,34719,34749,34778,34808,34837,34867,34896,34926,34955,34985,35015,35044,35074,35103,35133,35162,35192,35222,35251,35280,35310,35340,35370,35399,35429,35458,35488,35517,35547,35576,35605,35635,35665,35694,35723,35753,35782,35811,35841,35871,35901,35930,35960,35989,36019,36048,36078,36107,36136,36166,36195,36225,36254,36284,36314,36343,36373,36403,36433,36462,36492,36521,36551,36580,36610,36639,36669,36698,36728,36757,36786,36816,36845,36875,36904,36934,36963,36993,37022,37052,37081,37111,37141,37170,37200,37229,37259,37288,37318,37347,37377,37406,37436,37465,37495,37524,37554,37584,37613,37643,37672,37701,37731,37760,37790,37819,37849,37878,37908,37938,37967,37997,38027,38056,38085,38115,38144,38174,38203,38233,38262,38292,38322,38351,38381,38410,38440,38469,38499,38528,38558,38587,38617,38646,38676,38705,38735,38764,38794,38823,38853,38882,38912,38941,38971,39001,39030,39059,39089,39118,39148,39178,39208,39237,39267,39297,39326,39355,39385,39414,39444,39473,39503,39532,39562,39592,39621,39650,39680,39709,39739,39768,39798,39827,39857,39886,39916,39946,39975,40005,40035,40064,40094,40123,40153,40182,40212,40241,40271,40300,40330,40359,40389,40418,40448,40477,40507,40536,40566,40595,40625,40655,40685,40714,40744,40773,40803,40832,40862,40892,40921,40951,40980,41009,41039,41068,41098,41127,41157,41186,41216,41245,41275,41304,41334,41364,41393,41422,41452,41481,41511,41540,41570,41599,41629,41658,41688,41718,41748,41777,41807,41836,41865,41894,41924,41953,41983,42012,42042,42072,42102,42131,42161,42190,42220,42249,42279,42308,42337,42367,42397,42426,42456,42485,42515,42545,42574,42604,42633,42662,42692,42721,42751,42780,42810,42839,42869,42899,42929,42958,42988,43017,43046,43076,43105,43135,43164,43194,43223,43253,43283,43312,43342,43371,43401,43430,43460,43489,43519,43548,43578,43607,43637,43666,43696,43726,43755,43785,43814,43844,43873,43903,43932,43962,43991,44021,44050,44080,44109,44139,44169,44198,44228,44258,44287,44317,44346,44375,44405,44434,44464,44493,44523,44553,44582,44612,44641,44671,44700,44730,44759,44788,44818,44847,44877,44906,44936,44966,44996,45025,45055,45084,45114,45143,45172,45202,45231,45261,45290,45320,45350,45380,45409,45439,45468,45498,45527,45556,45586,45615,45644,45674,45704,45733,45763,45793,45823,45852,45882,45911,45940,45970,45999,46028,46058,46088,46117,46147,46177,46206,46236,46265,46295,46324,46354,46383,46413,46442,46472,46501,46531,46560,46590,46620,46649,46679,46708,46738,46767,46797,46826,46856,46885,46915,46944,46974,47003,47033,47063,47092,47122,47151,47181,47210,47240,47269,47298,47328,47357,47387,47417,47446,47476,47506,47535,47565,47594,47624,47653,47682,47712,47741,47771,47800,47830,47860,47890,47919,47949,47978,48008,48037,48066,48096,48125,48155,48184,48214,48244,48273,48303,48333,48362,48392,48421,48450,48480,48509,48538,48568,48598,48627,48657,48687,48717,48746,48776,48805,48834,48864,48893,48922,48952,48982,49011,49041,49071,49100,49130,49160,49189,49218,49248,49277,49306,49336,49365,49395,49425,49455,49484,49514,49543,49573,49602,49632,49661,49690,49720,49749,49779,49809,49838,49868,49898,49927,49957,49986,50016,50045,50075,50104,50133,50163,50192,50222,50252,50281,50311,50340,50370,50400,50429,50459,50488,50518,50547,50576,50606,50635,50665,50694,50724,50754,50784,50813,50843,50872,50902,50931,50960,50990,51019,51049,51078,51108,51138,51167,51197,51227,51256,51286,51315,51345,51374,51403,51433,51462,51492,51522,51552,51582,51611,51641,51670,51699,51729,51758,51787,51816,51846,51876,51906,51936,51965,51995,52025,52054,52083,52113,52142,52171,52200,52230,52260,52290,52319,52349,52379,52408,52438,52467,52497,52526,52555,52585,52614,52644,52673,52703,52733,52762,52792,52822,52851,52881,52910,52939,52969,52998,53028,53057,53087,53116,53146,53176,53205,53235,53264,53294,53324,53353,53383,53412,53441,53471,53500,53530,53559,53589,53619,53648,53678,53708,53737,53767,53796,53825,53855,53884,53913,53943,53973,54003,54032,54062,54092,54121,54151,54180,54209,54239,54268,54297,54327,54357,54387,54416,54446,54476,54505,54535,54564,54593,54623,54652,54681,54711,54741,54770,54800,54830,54859,54889,54919,54948,54977,55007,55036,55066,55095,55125,55154,55184,55213,55243,55273,55302,55332,55361,55391,55420,55450,55479,55508,55538,55567,55597,55627,55657,55686,55716,55745,55775,55804,55834,55863,55892,55922,55951,55981,56011,56040,56070,56100,56129,56159,56188,56218,56247,56276,56306,56335,56365,56394,56424,56454,56483,56513,56543,56572,56601,56631,56660,56690,56719,56749,56778,56808,56837,56867,56897,56926,56956,56985,57015,57044,57074,57103,57133,57162,57192,57221,57251,57280,57310,57340,57369,57399,57429,57458,57487,57517,57546,57576,57605,57634,57664,57694,57723,57753,57783,57813,57842,57871,57901,57930,57959,57989,58018,58048,58077,58107,58137,58167,58196,58226,58255,58285,58314,58343,58373,58402,58432,58461,58491,58521,58551,58580,58610,58639,58669,58698,58727,58757,58786,58816,58845,58875,58905,58934,58964,58994,59023,59053,59082,59111,59141,59170,59200,59229,59259,59288,59318,59348,59377,59407,59436,59466,59495,59525,59554,59584,59613,59643,59672,59702,59731,59761,59791,59820,59850,59879,59909,59939,59968,59997,60027,60056,60086,60115,60145,60174,60204,60234,60264,60293,60323,60352,60381,60411,60440,60469,60499,60528,60558,60588,60618,60648,60677,60707,60736,60765,60795,60824,60853,60883,60912,60942,60972,61002,61031,61061,61090,61120,61149,61179,61208,61237,61267,61296,61326,61356,61385,61415,61445,61474,61504,61533,61563,61592,61621,61651,61680,61710,61739,61769,61799,61828,61858,61888,61917,61947,61976,62006,62035,62064,62094,62123,62153,62182,62212,62242,62271,62301,62331,62360,62390,62419,62448,62478,62507,62537,62566,62596,62625,62655,62685,62715,62744,62774,62803,62832,62862,62891,62921,62950,62980,63009,63039,63069,63099,63128,63157,63187,63216,63246,63275,63305,63334,63363,63393,63423,63453,63482,63512,63541,63571,63600,63630,63659,63689,63718,63747,63777,63807,63836,63866,63895,63925,63955,63984,64014,64043,64073,64102,64131,64161,64190,64220,64249,64279,64309,64339,64368,64398,64427,64457,64486,64515,64545,64574,64603,64633,64663,64692,64722,64752,64782,64811,64841,64870,64899,64929,64958,64987,65017,65047,65076,65106,65136,65166,65195,65225,65254,65283,65313,65342,65371,65401,65431,65460,65490,65520,65549,65579,65608,65638,65667,65697,65726,65755,65785,65815,65844,65874,65903,65933,65963,65992,66022,66051,66081,66110,66140,66169,66199,66228,66258,66287,66317,66346,66376,66405,66435,66465,66494,66524,66553,66583,66612,66641,66671,66700,66730,66760,66789,66819,66849,66878,66908,66937,66967,66996,67025,67055,67084,67114,67143,67173,67203,67233,67262,67292,67321,67351,67380,67409,67439,67468,67497,67527,67557,67587,67617,67646,67676,67705,67735,67764,67793,67823,67852,67882,67911,67941,67971,68e3,68030,68060,68089,68119,68148,68177,68207,68236,68266,68295,68325,68354,68384,68414,68443,68473,68502,68532,68561,68591,68620,68650,68679,68708,68738,68768,68797,68827,68857,68886,68916,68946,68975,69004,69034,69063,69092,69122,69152,69181,69211,69240,69270,69300,69330,69359,69388,69418,69447,69476,69506,69535,69565,69595,69624,69654,69684,69713,69743,69772,69802,69831,69861,69890,69919,69949,69978,70008,70038,70067,70097,70126,70156,70186,70215,70245,70274,70303,70333,70362,70392,70421,70451,70481,70510,70540,70570,70599,70629,70658,70687,70717,70746,70776,70805,70835,70864,70894,70924,70954,70983,71013,71042,71071,71101,71130,71159,71189,71218,71248,71278,71308,71337,71367,71397,71426,71455,71485,71514,71543,71573,71602,71632,71662,71691,71721,71751,71781,71810,71839,71869,71898,71927,71957,71986,72016,72046,72075,72105,72135,72164,72194,72223,72253,72282,72311,72341,72370,72400,72429,72459,72489,72518,72548,72577,72607,72637,72666,72695,72725,72754,72784,72813,72843,72872,72902,72931,72961,72991,73020,73050,73080,73109,73139,73168,73197,73227,73256,73286,73315,73345,73375,73404,73434,73464,73493,73523,73552,73581,73611,73640,73669,73699,73729,73758,73788,73818,73848,73877,73907,73936,73965,73995,74024,74053,74083,74113,74142,74172,74202,74231,74261,74291,74320,74349,74379,74408,74437,74467,74497,74526,74556,74586,74615,74645,74675,74704,74733,74763,74792,74822,74851,74881,74910,74940,74969,74999,75029,75058,75088,75117,75147,75176,75206,75235,75264,75294,75323,75353,75383,75412,75442,75472,75501,75531,75560,75590,75619,75648,75678,75707,75737,75766,75796,75826,75856,75885,75915,75944,75974,76003,76032,76062,76091,76121,76150,76180,76210,76239,76269,76299,76328,76358,76387,76416,76446,76475,76505,76534,76564,76593,76623,76653,76682,76712,76741,76771,76801,76830,76859,76889,76918,76948,76977,77007,77036,77066,77096,77125,77155,77185,77214,77243,77273,77302,77332,77361,77390,77420,77450,77479,77509,77539,77569,77598,77627,77657,77686,77715,77745,77774,77804,77833,77863,77893,77923,77952,77982,78011,78041,78070,78099,78129,78158,78188,78217,78247,78277,78307,78336,78366,78395,78425,78454,78483,78513,78542,78572,78601,78631,78661,78690,78720,78750,78779,78808,78838,78867,78897,78926,78956,78985,79015,79044,79074,79104,79133,79163,79192,79222,79251,79281,79310,79340,79369,79399,79428,79458,79487,79517,79546,79576,79606,79635,79665,79695,79724,79753,79783,79812,79841,79871,79900,79930,79960,79990]},{"../main":617,"object-assign":466}],617:[function(t,e,r){var n=t("object-assign");function i(){this.regionalOptions=[],this.regionalOptions[""]={invalidCalendar:"Calendar {0} not found",invalidDate:"Invalid {0} date",invalidMonth:"Invalid {0} month",invalidYear:"Invalid {0} year",differentCalendars:"Cannot mix {0} and {1} dates"},this.local=this.regionalOptions[""],this.calendars={},this._localCals={}}function a(t,e,r,n){if(this._calendar=t,this._year=e,this._month=r,this._day=n,0===this._calendar._validateLevel&&!this._calendar.isValid(this._year,this._month,this._day))throw(c.local.invalidDate||c.regionalOptions[""].invalidDate).replace(/\{0\}/,this._calendar.local.name)}function o(t,e){return"000000".substring(0,e-(t=""+t).length)+t}function s(){this.shortYearCutoff="+10"}function l(t){this.local=this.regionalOptions[t]||this.regionalOptions[""]}n(i.prototype,{instance:function(t,e){t=(t||"gregorian").toLowerCase(),e=e||"";var r=this._localCals[t+"-"+e];if(!r&&this.calendars[t]&&(r=new this.calendars[t](e),this._localCals[t+"-"+e]=r),!r)throw(this.local.invalidCalendar||this.regionalOptions[""].invalidCalendar).replace(/\{0\}/,t);return r},newDate:function(t,e,r,n,i){return(n=(null!=t&&t.year?t.calendar():"string"==typeof n?this.instance(n,i):n)||this.instance()).newDate(t,e,r)},substituteDigits:function(t){return function(e){return(e+"").replace(/[0-9]/g,(function(e){return t[e]}))}},substituteChineseDigits:function(t,e){return function(r){for(var n="",i=0;r>0;){var a=r%10;n=(0===a?"":t[a]+e[i])+n,i++,r=Math.floor(r/10)}return 0===n.indexOf(t[1]+e[1])&&(n=n.substr(1)),n||t[0]}}}),n(a.prototype,{newDate:function(t,e,r){return this._calendar.newDate(null==t?this:t,e,r)},year:function(t){return 0===arguments.length?this._year:this.set(t,"y")},month:function(t){return 0===arguments.length?this._month:this.set(t,"m")},day:function(t){return 0===arguments.length?this._day:this.set(t,"d")},date:function(t,e,r){if(!this._calendar.isValid(t,e,r))throw(c.local.invalidDate||c.regionalOptions[""].invalidDate).replace(/\{0\}/,this._calendar.local.name);return this._year=t,this._month=e,this._day=r,this},leapYear:function(){return this._calendar.leapYear(this)},epoch:function(){return this._calendar.epoch(this)},formatYear:function(){return this._calendar.formatYear(this)},monthOfYear:function(){return this._calendar.monthOfYear(this)},weekOfYear:function(){return this._calendar.weekOfYear(this)},daysInYear:function(){return this._calendar.daysInYear(this)},dayOfYear:function(){return this._calendar.dayOfYear(this)},daysInMonth:function(){return this._calendar.daysInMonth(this)},dayOfWeek:function(){return this._calendar.dayOfWeek(this)},weekDay:function(){return this._calendar.weekDay(this)},extraInfo:function(){return this._calendar.extraInfo(this)},add:function(t,e){return this._calendar.add(this,t,e)},set:function(t,e){return this._calendar.set(this,t,e)},compareTo:function(t){if(this._calendar.name!==t._calendar.name)throw(c.local.differentCalendars||c.regionalOptions[""].differentCalendars).replace(/\{0\}/,this._calendar.local.name).replace(/\{1\}/,t._calendar.local.name);var e=this._year!==t._year?this._year-t._year:this._month!==t._month?this.monthOfYear()-t.monthOfYear():this._day-t._day;return 0===e?0:e<0?-1:1},calendar:function(){return this._calendar},toJD:function(){return this._calendar.toJD(this)},fromJD:function(t){return this._calendar.fromJD(t)},toJSDate:function(){return this._calendar.toJSDate(this)},fromJSDate:function(t){return this._calendar.fromJSDate(t)},toString:function(){return(this.year()<0?"-":"")+o(Math.abs(this.year()),4)+"-"+o(this.month(),2)+"-"+o(this.day(),2)}}),n(s.prototype,{_validateLevel:0,newDate:function(t,e,r){return null==t?this.today():(t.year&&(this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),r=t.day(),e=t.month(),t=t.year()),new a(this,t,e,r))},today:function(){return this.fromJSDate(new Date)},epoch:function(t){return this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear).year()<0?this.local.epochs[0]:this.local.epochs[1]},formatYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear);return(e.year()<0?"-":"")+o(Math.abs(e.year()),4)},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear),12},monthOfYear:function(t,e){var r=this._validate(t,e,this.minDay,c.local.invalidMonth||c.regionalOptions[""].invalidMonth);return(r.month()+this.monthsInYear(r)-this.firstMonth)%this.monthsInYear(r)+this.minMonth},fromMonthOfYear:function(t,e){var r=(e+this.firstMonth-2*this.minMonth)%this.monthsInYear(t)+this.minMonth;return this._validate(t,r,this.minDay,c.local.invalidMonth||c.regionalOptions[""].invalidMonth),r},daysInYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear);return this.leapYear(e)?366:365},dayOfYear:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate);return n.toJD()-this.newDate(n.year(),this.fromMonthOfYear(n.year(),this.minMonth),this.minDay).toJD()+1},daysInWeek:function(){return 7},dayOfWeek:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate);return(Math.floor(this.toJD(n))+2)%this.daysInWeek()},extraInfo:function(t,e,r){return this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),{}},add:function(t,e,r){return this._validate(t,this.minMonth,this.minDay,c.local.invalidDate||c.regionalOptions[""].invalidDate),this._correctAdd(t,this._add(t,e,r),e,r)},_add:function(t,e,r){if(this._validateLevel++,"d"===r||"w"===r){var n=t.toJD()+e*("w"===r?this.daysInWeek():1),i=t.calendar().fromJD(n);return this._validateLevel--,[i.year(),i.month(),i.day()]}try{var a=t.year()+("y"===r?e:0),o=t.monthOfYear()+("m"===r?e:0);i=t.day();"y"===r?(t.month()!==this.fromMonthOfYear(a,o)&&(o=this.newDate(a,t.month(),this.minDay).monthOfYear()),o=Math.min(o,this.monthsInYear(a)),i=Math.min(i,this.daysInMonth(a,this.fromMonthOfYear(a,o)))):"m"===r&&(!function(t){for(;oe-1+t.minMonth;)a++,o-=e,e=t.monthsInYear(a)}(this),i=Math.min(i,this.daysInMonth(a,this.fromMonthOfYear(a,o))));var s=[a,this.fromMonthOfYear(a,o),i];return this._validateLevel--,s}catch(t){throw this._validateLevel--,t}},_correctAdd:function(t,e,r,n){if(!(this.hasYearZero||"y"!==n&&"m"!==n||0!==e[0]&&t.year()>0==e[0]>0)){var i={y:[1,1,"y"],m:[1,this.monthsInYear(-1),"m"],w:[this.daysInWeek(),this.daysInYear(-1),"d"],d:[1,this.daysInYear(-1),"d"]}[n],a=r<0?-1:1;e=this._add(t,r*i[0]+a*i[1],i[2])}return t.date(e[0],e[1],e[2])},set:function(t,e,r){this._validate(t,this.minMonth,this.minDay,c.local.invalidDate||c.regionalOptions[""].invalidDate);var n="y"===r?e:t.year(),i="m"===r?e:t.month(),a="d"===r?e:t.day();return"y"!==r&&"m"!==r||(a=Math.min(a,this.daysInMonth(n,i))),t.date(n,i,a)},isValid:function(t,e,r){this._validateLevel++;var n=this.hasYearZero||0!==t;if(n){var i=this.newDate(t,e,this.minDay);n=e>=this.minMonth&&e-this.minMonth=this.minDay&&r-this.minDay13.5?13:1),c=i-(l>2.5?4716:4715);return c<=0&&c--,this.newDate(c,l,s)},toJSDate:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),i=new Date(n.year(),n.month()-1,n.day());return i.setHours(0),i.setMinutes(0),i.setSeconds(0),i.setMilliseconds(0),i.setHours(i.getHours()>12?i.getHours()+2:0),i},fromJSDate:function(t){return this.newDate(t.getFullYear(),t.getMonth()+1,t.getDate())}});var c=e.exports=new i;c.cdate=a,c.baseCalendar=s,c.calendars.gregorian=l},{"object-assign":466}],618:[function(t,e,r){var n=t("object-assign"),i=t("./main");n(i.regionalOptions[""],{invalidArguments:"Invalid arguments",invalidFormat:"Cannot format a date from another calendar",missingNumberAt:"Missing number at position {0}",unknownNameAt:"Unknown name at position {0}",unexpectedLiteralAt:"Unexpected literal at position {0}",unexpectedText:"Additional text found at end"}),i.local=i.regionalOptions[""],n(i.cdate.prototype,{formatDate:function(t,e){return"string"!=typeof t&&(e=t,t=""),this._calendar.formatDate(t||"",this,e)}}),n(i.baseCalendar.prototype,{UNIX_EPOCH:i.instance().newDate(1970,1,1).toJD(),SECS_PER_DAY:86400,TICKS_EPOCH:i.instance().jdEpoch,TICKS_PER_DAY:864e9,ATOM:"yyyy-mm-dd",COOKIE:"D, dd M yyyy",FULL:"DD, MM d, yyyy",ISO_8601:"yyyy-mm-dd",JULIAN:"J",RFC_822:"D, d M yy",RFC_850:"DD, dd-M-yy",RFC_1036:"D, d M yy",RFC_1123:"D, d M yyyy",RFC_2822:"D, d M yyyy",RSS:"D, d M yy",TICKS:"!",TIMESTAMP:"@",W3C:"yyyy-mm-dd",formatDate:function(t,e,r){if("string"!=typeof t&&(r=e,e=t,t=""),!e)return"";if(e.calendar()!==this)throw i.local.invalidFormat||i.regionalOptions[""].invalidFormat;t=t||this.local.dateFormat;for(var n,a,o,s,l=(r=r||{}).dayNamesShort||this.local.dayNamesShort,c=r.dayNames||this.local.dayNames,u=r.monthNumbers||this.local.monthNumbers,f=r.monthNamesShort||this.local.monthNamesShort,h=r.monthNames||this.local.monthNames,p=(r.calculateWeek||this.local.calculateWeek,function(e,r){for(var n=1;w+n1}),d=function(t,e,r,n){var i=""+e;if(p(t,n))for(;i.length1},x=function(t,r){var n=y(t,r),a=[2,3,n?4:2,n?4:2,10,11,20]["oyYJ@!".indexOf(t)+1],o=new RegExp("^-?\\d{1,"+a+"}"),s=e.substring(A).match(o);if(!s)throw(i.local.missingNumberAt||i.regionalOptions[""].missingNumberAt).replace(/\{0\}/,A);return A+=s[0].length,parseInt(s[0],10)},b=this,_=function(){if("function"==typeof l){y("m");var t=l.call(b,e.substring(A));return A+=t.length,t}return x("m")},w=function(t,r,n,a){for(var o=y(t,a)?n:r,s=0;s-1){p=1,d=m;for(var E=this.daysInMonth(h,p);d>E;E=this.daysInMonth(h,p))p++,d-=E}return f>-1?this.fromJD(f):this.newDate(h,p,d)},determineDate:function(t,e,r,n,i){r&&"object"!=typeof r&&(i=n,n=r,r=null),"string"!=typeof n&&(i=n,n="");var a=this;return e=e?e.newDate():null,t=null==t?e:"string"==typeof t?function(t){try{return a.parseDate(n,t,i)}catch(t){}for(var e=((t=t.toLowerCase()).match(/^c/)&&r?r.newDate():null)||a.today(),o=/([+-]?[0-9]+)\s*(d|w|m|y)?/g,s=o.exec(t);s;)e.add(parseInt(s[1],10),s[2]||"d"),s=o.exec(t);return e}(t):"number"==typeof t?isNaN(t)||t===1/0||t===-1/0?e:a.today().add(t,"d"):a.newDate(t)}})},{"./main":617,"object-assign":466}],619:[function(t,e,r){"use strict";var n,i=function(){return function(t,e,r,n,i,a){var o=t[0],s=r[0],l=[0],c=s;n|=0;var u=0,f=s;for(u=0;u=0!=p>=0&&i.push(l[0]+.5+.5*(h+p)/(h-p)),n+=f,++l[0]}}};e.exports=(n={funcName:{funcName:"zeroCrossings"}.funcName},function(t){var e={};return function(r,n,i){var a=r.dtype,o=r.order,s=[a,o.join()].join(),l=e[s];return l||(e[s]=l=t([a,o])),l(r.shape.slice(0),r.data,r.stride,0|r.offset,n,i)}}(i.bind(void 0,n)))},{}],620:[function(t,e,r){"use strict";e.exports=function(t,e){var r=[];return e=+e||0,n(t.hi(t.shape[0]-1),r,e),r};var n=t("./lib/zc-core")},{"./lib/zc-core":619}],621:[function(t,e,r){"use strict";e.exports=[{path:"",backoff:0},{path:"M-2.4,-3V3L0.6,0Z",backoff:.6},{path:"M-3.7,-2.5V2.5L1.3,0Z",backoff:1.3},{path:"M-4.45,-3L-1.65,-0.2V0.2L-4.45,3L1.55,0Z",backoff:1.55},{path:"M-2.2,-2.2L-0.2,-0.2V0.2L-2.2,2.2L-1.4,3L1.6,0L-1.4,-3Z",backoff:1.6},{path:"M-4.4,-2.1L-0.6,-0.2V0.2L-4.4,2.1L-4,3L2,0L-4,-3Z",backoff:2},{path:"M2,0A2,2 0 1,1 0,-2A2,2 0 0,1 2,0Z",backoff:0,noRotate:!0},{path:"M2,2V-2H-2V2Z",backoff:0,noRotate:!0}]},{}],622:[function(t,e,r){"use strict";var n=t("./arrow_paths"),i=t("../../plots/font_attributes"),a=t("../../plots/cartesian/constants"),o=t("../../plot_api/plot_template").templatedArray;t("../../constants/axis_placeable_objects");e.exports=o("annotation",{visible:{valType:"boolean",dflt:!0,editType:"calc+arraydraw"},text:{valType:"string",editType:"calc+arraydraw"},textangle:{valType:"angle",dflt:0,editType:"calc+arraydraw"},font:i({editType:"calc+arraydraw",colorEditType:"arraydraw"}),width:{valType:"number",min:1,dflt:null,editType:"calc+arraydraw"},height:{valType:"number",min:1,dflt:null,editType:"calc+arraydraw"},opacity:{valType:"number",min:0,max:1,dflt:1,editType:"arraydraw"},align:{valType:"enumerated",values:["left","center","right"],dflt:"center",editType:"arraydraw"},valign:{valType:"enumerated",values:["top","middle","bottom"],dflt:"middle",editType:"arraydraw"},bgcolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"arraydraw"},bordercolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"arraydraw"},borderpad:{valType:"number",min:0,dflt:1,editType:"calc+arraydraw"},borderwidth:{valType:"number",min:0,dflt:1,editType:"calc+arraydraw"},showarrow:{valType:"boolean",dflt:!0,editType:"calc+arraydraw"},arrowcolor:{valType:"color",editType:"arraydraw"},arrowhead:{valType:"integer",min:0,max:n.length,dflt:1,editType:"arraydraw"},startarrowhead:{valType:"integer",min:0,max:n.length,dflt:1,editType:"arraydraw"},arrowside:{valType:"flaglist",flags:["end","start"],extras:["none"],dflt:"end",editType:"arraydraw"},arrowsize:{valType:"number",min:.3,dflt:1,editType:"calc+arraydraw"},startarrowsize:{valType:"number",min:.3,dflt:1,editType:"calc+arraydraw"},arrowwidth:{valType:"number",min:.1,editType:"calc+arraydraw"},standoff:{valType:"number",min:0,dflt:0,editType:"calc+arraydraw"},startstandoff:{valType:"number",min:0,dflt:0,editType:"calc+arraydraw"},ax:{valType:"any",editType:"calc+arraydraw"},ay:{valType:"any",editType:"calc+arraydraw"},axref:{valType:"enumerated",dflt:"pixel",values:["pixel",a.idRegex.x.toString()],editType:"calc"},ayref:{valType:"enumerated",dflt:"pixel",values:["pixel",a.idRegex.y.toString()],editType:"calc"},xref:{valType:"enumerated",values:["paper",a.idRegex.x.toString()],editType:"calc"},x:{valType:"any",editType:"calc+arraydraw"},xanchor:{valType:"enumerated",values:["auto","left","center","right"],dflt:"auto",editType:"calc+arraydraw"},xshift:{valType:"number",dflt:0,editType:"calc+arraydraw"},yref:{valType:"enumerated",values:["paper",a.idRegex.y.toString()],editType:"calc"},y:{valType:"any",editType:"calc+arraydraw"},yanchor:{valType:"enumerated",values:["auto","top","middle","bottom"],dflt:"auto",editType:"calc+arraydraw"},yshift:{valType:"number",dflt:0,editType:"calc+arraydraw"},clicktoshow:{valType:"enumerated",values:[!1,"onoff","onout"],dflt:!1,editType:"arraydraw"},xclick:{valType:"any",editType:"arraydraw"},yclick:{valType:"any",editType:"arraydraw"},hovertext:{valType:"string",editType:"arraydraw"},hoverlabel:{bgcolor:{valType:"color",editType:"arraydraw"},bordercolor:{valType:"color",editType:"arraydraw"},font:i({editType:"arraydraw"}),editType:"arraydraw"},captureevents:{valType:"boolean",editType:"arraydraw"},editType:"calc",_deprecated:{ref:{valType:"string",editType:"calc"}}})},{"../../constants/axis_placeable_objects":745,"../../plot_api/plot_template":816,"../../plots/cartesian/constants":834,"../../plots/font_attributes":856,"./arrow_paths":621}],623:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/cartesian/axes"),a=t("./draw").draw;function o(t){var e=t._fullLayout;n.filterVisible(e.annotations).forEach((function(e){var r=i.getFromId(t,e.xref),n=i.getFromId(t,e.yref),a=i.getRefType(e.xref),o=i.getRefType(e.yref);e._extremes={},"range"===a&&s(e,r),"range"===o&&s(e,n)}))}function s(t,e){var r,n=e._id,a=n.charAt(0),o=t[a],s=t["a"+a],l=t[a+"ref"],c=t["a"+a+"ref"],u=t["_"+a+"padplus"],f=t["_"+a+"padminus"],h={x:1,y:-1}[a]*t[a+"shift"],p=3*t.arrowsize*t.arrowwidth||0,d=p+h,m=p-h,g=3*t.startarrowsize*t.arrowwidth||0,v=g+h,y=g-h;if(c===l){var x=i.findExtremes(e,[e.r2c(o)],{ppadplus:d,ppadminus:m}),b=i.findExtremes(e,[e.r2c(s)],{ppadplus:Math.max(u,v),ppadminus:Math.max(f,y)});r={min:[x.min[0],b.min[0]],max:[x.max[0],b.max[0]]}}else v=s?v+s:v,y=s?y-s:y,r=i.findExtremes(e,[e.r2c(o)],{ppadplus:Math.max(u,d,v),ppadminus:Math.max(f,m,y)});t._extremes[n]=r}e.exports=function(t){var e=t._fullLayout;if(n.filterVisible(e.annotations).length&&t._fullData.length)return n.syncOrAsync([a,o],t)}},{"../../lib":776,"../../plots/cartesian/axes":827,"./draw":628}],624:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("../../plot_api/plot_template").arrayEditor;function o(t,e){var r,n,i,a,o,l,c,u=t._fullLayout.annotations,f=[],h=[],p=[],d=(e||[]).length;for(r=0;r0||r.explicitOff.length>0},onClick:function(t,e){var r,s,l=o(t,e),c=l.on,u=l.off.concat(l.explicitOff),f={},h=t._fullLayout.annotations;if(!c.length&&!u.length)return;for(r=0;r2/3?"right":"center"),{center:0,middle:0,left:.5,bottom:-.5,right:-.5,top:.5}[e]}for(var W=!1,X=["x","y"],Z=0;Z1)&&(nt===rt?((pt=it.r2fraction(e["a"+et]))<0||pt>1)&&(W=!0):W=!0),J=it._offset+it.r2p(e[et]),$=.5}else{var dt="domain"===ht;"x"===et?(Q=e[et],J=dt?it._offset+it._length*Q:J=T.l+T.w*Q):(Q=1-e[et],J=dt?it._offset+it._length*Q:J=T.t+T.h*Q),$=e.showarrow?.5:Q}if(e.showarrow){ft.head=J;var mt=e["a"+et];if(tt=ot*q(.5,e.xanchor)-st*q(.5,e.yanchor),nt===rt){var gt=l.getRefType(nt);"domain"===gt?("y"===et&&(mt=1-mt),ft.tail=it._offset+it._length*mt):"paper"===gt?"y"===et?(mt=1-mt,ft.tail=T.t+T.h*mt):ft.tail=T.l+T.w*mt:ft.tail=it._offset+it.r2p(mt),K=tt}else ft.tail=J+mt,K=tt+mt;ft.text=ft.tail+tt;var vt=w["x"===et?"width":"height"];if("paper"===rt&&(ft.head=o.constrain(ft.head,1,vt-1)),"pixel"===nt){var yt=-Math.max(ft.tail-3,ft.text),xt=Math.min(ft.tail+3,ft.text)-vt;yt>0?(ft.tail+=yt,ft.text+=yt):xt>0&&(ft.tail-=xt,ft.text-=xt)}ft.tail+=ut,ft.head+=ut}else K=tt=lt*q($,ct),ft.text=J+tt;ft.text+=ut,tt+=ut,K+=ut,e["_"+et+"padplus"]=lt/2+K,e["_"+et+"padminus"]=lt/2-K,e["_"+et+"size"]=lt,e["_"+et+"shift"]=tt}if(W)R.remove();else{var bt=0,_t=0;if("left"!==e.align&&(bt=(A-b)*("center"===e.align?.5:1)),"top"!==e.valign&&(_t=(D-_)*("middle"===e.valign?.5:1)),f)n.select("svg").attr({x:N+bt-1,y:N+_t}).call(u.setClipUrl,U?L:null,t);else{var wt=N+_t-m.top,Tt=N+bt-m.left;G.call(h.positionText,Tt,wt).call(u.setClipUrl,U?L:null,t)}V.select("rect").call(u.setRect,N,N,A,D),j.call(u.setRect,F/2,F/2,B-F,H-F),R.call(u.setTranslate,Math.round(C.x.text-B/2),Math.round(C.y.text-H/2)),O.attr({transform:"rotate("+P+","+C.x.text+","+C.y.text+")"});var kt,At=function(r,n){I.selectAll(".annotation-arrow-g").remove();var l=C.x.head,f=C.y.head,h=C.x.tail+r,p=C.y.tail+n,m=C.x.text+r,b=C.y.text+n,_=o.rotationXYMatrix(P,m,b),w=o.apply2DTransform(_),A=o.apply2DTransform2(_),L=+j.attr("width"),z=+j.attr("height"),D=m-.5*L,F=D+L,B=b-.5*z,N=B+z,U=[[D,B,D,N],[D,N,F,N],[F,N,F,B],[F,B,D,B]].map(A);if(!U.reduce((function(t,e){return t^!!o.segmentsIntersect(l,f,l+1e6,f+1e6,e[0],e[1],e[2],e[3])}),!1)){U.forEach((function(t){var e=o.segmentsIntersect(h,p,l,f,t[0],t[1],t[2],t[3]);e&&(h=e.x,p=e.y)}));var V=e.arrowwidth,H=e.arrowcolor,q=e.arrowside,G=I.append("g").style({opacity:c.opacity(H)}).classed("annotation-arrow-g",!0),Y=G.append("path").attr("d","M"+h+","+p+"L"+l+","+f).style("stroke-width",V+"px").call(c.stroke,c.rgb(H));if(g(Y,q,e),k.annotationPosition&&Y.node().parentNode&&!a){var W=l,X=f;if(e.standoff){var Z=Math.sqrt(Math.pow(l-h,2)+Math.pow(f-p,2));W+=e.standoff*(h-l)/Z,X+=e.standoff*(p-f)/Z}var J,K,Q=G.append("path").classed("annotation-arrow",!0).classed("anndrag",!0).classed("cursor-move",!0).attr({d:"M3,3H-3V-3H3ZM0,0L"+(h-W)+","+(p-X),transform:s(W,X)}).style("stroke-width",V+6+"px").call(c.stroke,"rgba(0,0,0,0)").call(c.fill,"rgba(0,0,0,0)");d.init({element:Q.node(),gd:t,prepFn:function(){var t=u.getTranslate(R);J=t.x,K=t.y,v&&v.autorange&&M(v._name+".autorange",!0),x&&x.autorange&&M(x._name+".autorange",!0)},moveFn:function(t,r){var n=w(J,K),i=n[0]+t,a=n[1]+r;R.call(u.setTranslate,i,a),S("x",y(v,t,"x",T,e)),S("y",y(x,r,"y",T,e)),e.axref===e.xref&&S("ax",y(v,t,"ax",T,e)),e.ayref===e.yref&&S("ay",y(x,r,"ay",T,e)),G.attr("transform",s(t,r)),O.attr({transform:"rotate("+P+","+i+","+a+")"})},doneFn:function(){i.call("_guiRelayout",t,E());var e=document.querySelector(".js-notes-box-panel");e&&e.redraw(e.selectedObj)}})}}};if(e.showarrow&&At(0,0),z)d.init({element:R.node(),gd:t,prepFn:function(){kt=O.attr("transform")},moveFn:function(t,r){var n="pointer";if(e.showarrow)e.axref===e.xref?S("ax",y(v,t,"ax",T,e)):S("ax",e.ax+t),e.ayref===e.yref?S("ay",y(x,r,"ay",T.w,e)):S("ay",e.ay+r),At(t,r);else{if(a)return;var i,o;if(v)i=y(v,t,"x",T,e);else{var l=e._xsize/T.w,c=e.x+(e._xshift-e.xshift)/T.w-l/2;i=d.align(c+t/T.w,l,0,1,e.xanchor)}if(x)o=y(x,r,"y",T,e);else{var u=e._ysize/T.h,f=e.y-(e._yshift+e.yshift)/T.h-u/2;o=d.align(f-r/T.h,u,0,1,e.yanchor)}S("x",i),S("y",o),v&&x||(n=d.getCursor(v?.5:i,x?.5:o,e.xanchor,e.yanchor))}O.attr({transform:s(t,r)+kt}),p(R,n)},clickFn:function(r,n){e.captureevents&&t.emit("plotly_clickannotation",Y(n))},doneFn:function(){p(R),i.call("_guiRelayout",t,E());var e=document.querySelector(".js-notes-box-panel");e&&e.redraw(e.selectedObj)}})}}}e.exports={draw:function(t){var e=t._fullLayout;e._infolayer.selectAll(".annotation").remove();for(var r=0;r=0,x=e.indexOf("end")>=0,b=d.backoff*g+r.standoff,_=m.backoff*v+r.startstandoff;if("line"===p.nodeName){o={x:+t.attr("x1"),y:+t.attr("y1")},u={x:+t.attr("x2"),y:+t.attr("y2")};var w=o.x-u.x,T=o.y-u.y;if(h=(f=Math.atan2(T,w))+Math.PI,b&&_&&b+_>Math.sqrt(w*w+T*T))return void z();if(b){if(b*b>w*w+T*T)return void z();var k=b*Math.cos(f),A=b*Math.sin(f);u.x+=k,u.y+=A,t.attr({x2:u.x,y2:u.y})}if(_){if(_*_>w*w+T*T)return void z();var M=_*Math.cos(f),S=_*Math.sin(f);o.x-=M,o.y-=S,t.attr({x1:o.x,y1:o.y})}}else if("path"===p.nodeName){var E=p.getTotalLength(),L="";if(E1){c=!0;break}}c?t.fullLayout._infolayer.select(".annotation-"+t.id+'[data-index="'+s+'"]').remove():(l._pdata=i(t.glplot.cameraParams,[e.xaxis.r2l(l.x)*r[0],e.yaxis.r2l(l.y)*r[1],e.zaxis.r2l(l.z)*r[2]]),n(t.graphDiv,l,s,t.id,l._xa,l._ya))}}},{"../../plots/gl3d/project":878,"../annotations/draw":628}],635:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib");e.exports={moduleType:"component",name:"annotations3d",schema:{subplots:{scene:{annotations:t("./attributes")}}},layoutAttributes:t("./attributes"),handleDefaults:t("./defaults"),includeBasePlot:function(t,e){var r=n.subplotsRegistry.gl3d;if(!r)return;for(var a=r.attrRegex,o=Object.keys(t),s=0;s=0))return t;if(3===o)n[o]>1&&(n[o]=1);else if(n[o]>=1)return t}var s=Math.round(255*n[0])+", "+Math.round(255*n[1])+", "+Math.round(255*n[2]);return a?"rgba("+s+", "+n[3]+")":"rgb("+s+")"}o.tinyRGB=function(t){var e=t.toRgb();return"rgb("+Math.round(e.r)+", "+Math.round(e.g)+", "+Math.round(e.b)+")"},o.rgb=function(t){return o.tinyRGB(n(t))},o.opacity=function(t){return t?n(t).getAlpha():0},o.addOpacity=function(t,e){var r=n(t).toRgb();return"rgba("+Math.round(r.r)+", "+Math.round(r.g)+", "+Math.round(r.b)+", "+e+")"},o.combine=function(t,e){var r=n(t).toRgb();if(1===r.a)return n(t).toRgbString();var i=n(e||c).toRgb(),a=1===i.a?i:{r:255*(1-i.a)+i.r*i.a,g:255*(1-i.a)+i.g*i.a,b:255*(1-i.a)+i.b*i.a},o={r:a.r*(1-r.a)+r.r*r.a,g:a.g*(1-r.a)+r.g*r.a,b:a.b*(1-r.a)+r.b*r.a};return n(o).toRgbString()},o.contrast=function(t,e,r){var i=n(t);return 1!==i.getAlpha()&&(i=n(o.combine(t,c))),(i.isDark()?e?i.lighten(e):c:r?i.darken(r):l).toString()},o.stroke=function(t,e){var r=n(e);t.style({stroke:o.tinyRGB(r),"stroke-opacity":r.getAlpha()})},o.fill=function(t,e){var r=n(e);t.style({fill:o.tinyRGB(r),"fill-opacity":r.getAlpha()})},o.clean=function(t){if(t&&"object"==typeof t){var e,r,n,i,s=Object.keys(t);for(e=0;e0?n>=l:n<=l));i++)n>u&&n0?n>=l:n<=l));i++)n>r[0]&&n1){var J=Math.pow(10,Math.floor(Math.log(Z)/Math.LN10));W*=J*c.roundUp(Z/J,[2,5,10]),(Math.abs(C.start)/C.size+1e-6)%1<2e-6&&(Y.tick0=0)}Y.dtick=W}Y.domain=[H+j,H+F-j],Y.setScale(),t.attr("transform",u(Math.round(l.l),Math.round(l.t)));var K,Q=t.select("."+A.cbtitleunshift).attr("transform",u(-Math.round(l.l),-Math.round(l.t))),$=t.select("."+A.cbaxis),tt=0;function et(n,i){var a={propContainer:Y,propName:e._propPrefix+"title",traceIndex:e._traceIndex,_meta:e._meta,placeholder:o._dfltTitle.colorbar,containerGroup:t.select("."+A.cbtitle)},s="h"===n.charAt(0)?n.substr(1):"h"+n;t.selectAll("."+s+",."+s+"-math-group").remove(),m.draw(r,n,f(a,i||{}))}return c.syncOrAsync([a.previousPromises,function(){if(-1!==["top","bottom"].indexOf(M)){var t,r=l.l+(e.x+B)*l.w,n=Y.title.font.size;t="top"===M?(1-(H+F-j))*l.h+l.t+3+.75*n:(1-(H+j))*l.h+l.t-3-.25*n,et(Y._id+"title",{attributes:{x:r,y:t,"text-anchor":"start"}})}},function(){if(-1!==["top","bottom"].indexOf(M)){var a=t.select("."+A.cbtitle),o=a.select("text"),f=[-e.outlinewidth/2,e.outlinewidth/2],h=a.select(".h"+Y._id+"title-math-group").node(),d=15.6;if(o.node()&&(d=parseInt(o.node().style.fontSize,10)*w),h?(tt=p.bBox(h).height)>d&&(f[1]-=(tt-d)/2):o.node()&&!o.classed(A.jsPlaceholder)&&(tt=p.bBox(o.node()).height),tt){if(tt+=5,"top"===M)Y.domain[1]-=tt/l.h,f[1]*=-1;else{Y.domain[0]+=tt/l.h;var m=g.lineCount(o);f[1]+=(1-m)*d}a.attr("transform",u(f[0],f[1])),Y.setScale()}}t.selectAll("."+A.cbfills+",."+A.cblines).attr("transform",u(0,Math.round(l.h*(1-Y.domain[1])))),$.attr("transform",u(0,Math.round(-l.t)));var y=t.select("."+A.cbfills).selectAll("rect."+A.cbfill).attr("style","").data(I);y.enter().append("rect").classed(A.cbfill,!0).style("stroke","none"),y.exit().remove();var x=S.map(Y.c2p).map(Math.round).sort((function(t,e){return t-e}));y.each((function(t,a){var o=[0===a?S[0]:(I[a]+I[a-1])/2,a===I.length-1?S[1]:(I[a]+I[a+1])/2].map(Y.c2p).map(Math.round);o[1]=c.constrain(o[1]+(o[1]>o[0])?1:-1,x[0],x[1]);var s=n.select(this).attr({x:U,width:Math.max(z,2),y:n.min(o),height:Math.max(n.max(o)-n.min(o),2)});if(e._fillgradient)p.gradient(s,r,e._id,"vertical",e._fillgradient,"fill");else{var l=L(t).replace("e-","");s.attr("fill",i(l).toHexString())}}));var b=t.select("."+A.cblines).selectAll("path."+A.cbline).data(v.color&&v.width?O:[]);b.enter().append("path").classed(A.cbline,!0),b.exit().remove(),b.each((function(t){n.select(this).attr("d","M"+U+","+(Math.round(Y.c2p(t))+v.width/2%1)+"h"+z).call(p.lineGroupStyle,v.width,E(t),v.dash)})),$.selectAll("g."+Y._id+"tick,path").remove();var _=U+z+(e.outlinewidth||0)/2-("outside"===e.ticks?1:0),T=s.calcTicks(Y),k=s.getTickSigns(Y)[2];return s.drawTicks(r,Y,{vals:"inside"===Y.ticks?s.clipEnds(Y,T):T,layer:$,path:s.makeTickPath(Y,_,k),transFn:s.makeTransTickFn(Y)}),s.drawLabels(r,Y,{vals:T,layer:$,transFn:s.makeTransTickLabelFn(Y),labelFns:s.makeLabelFns(Y,_)})},function(){if(-1===["top","bottom"].indexOf(M)){var t=Y.title.font.size,e=Y._offset+Y._length/2,i=l.l+(Y.position||0)*l.w+("right"===Y.side?10+t*(Y.showticklabels?1:.5):-10-t*(Y.showticklabels?.5:0));et("h"+Y._id+"title",{avoid:{selection:n.select(r).selectAll("g."+Y._id+"tick"),side:M,offsetLeft:l.l,offsetTop:0,maxShift:o.width},attributes:{x:i,y:e,"text-anchor":"middle"},transform:{rotate:"-90",offset:0}})}},a.previousPromises,function(){var n=z+e.outlinewidth/2;if(-1===Y.ticklabelposition.indexOf("inside")&&(n+=p.bBox($.node()).width),(K=Q.select("text")).node()&&!K.classed(A.jsPlaceholder)){var i,o=Q.select(".h"+Y._id+"title-math-group").node();i=o&&-1!==["top","bottom"].indexOf(M)?p.bBox(o).width:p.bBox(Q.node()).right-U-l.l,n=Math.max(n,i)}var s=2*e.xpad+n+e.borderwidth+e.outlinewidth/2,c=q-G;t.select("."+A.cbbg).attr({x:U-e.xpad-(e.borderwidth+e.outlinewidth)/2,y:G-N,width:Math.max(s,2),height:Math.max(c+2*N,2)}).call(d.fill,e.bgcolor).call(d.stroke,e.bordercolor).style("stroke-width",e.borderwidth),t.selectAll("."+A.cboutline).attr({x:U,y:G+e.ypad+("top"===M?tt:0),width:Math.max(z,2),height:Math.max(c-2*e.ypad-tt,2)}).call(d.stroke,e.outlinecolor).style({fill:"none","stroke-width":e.outlinewidth});var f=({center:.5,right:1}[e.xanchor]||0)*s;t.attr("transform",u(l.l-f,l.t));var h={},m=T[e.yanchor],g=k[e.yanchor];"pixels"===e.lenmode?(h.y=e.y,h.t=c*m,h.b=c*g):(h.t=h.b=0,h.yt=e.y+e.len*m,h.yb=e.y-e.len*g);var v=T[e.xanchor],y=k[e.xanchor];if("pixels"===e.thicknessmode)h.x=e.x,h.l=s*v,h.r=s*y;else{var x=s-z;h.l=x*v,h.r=x*y,h.xl=e.x-e.thickness*v,h.xr=e.x+e.thickness*y}a.autoMargin(r,e._id,h)}],r)}(r,e,t);v&&v.then&&(t._promises||[]).push(v),t._context.edits.colorbarPosition&&function(t,e,r){var n,i,a,s=r._fullLayout._size;l.init({element:t.node(),gd:r,prepFn:function(){n=t.attr("transform"),h(t)},moveFn:function(r,o){t.attr("transform",n+u(r,o)),i=l.align(e._xLeftFrac+r/s.w,e._thickFrac,0,1,e.xanchor),a=l.align(e._yBottomFrac-o/s.h,e._lenFrac,0,1,e.yanchor);var c=l.getCursor(i,a,e.xanchor,e.yanchor);h(t,c)},doneFn:function(){if(h(t),void 0!==i&&void 0!==a){var n={};n[e._propPrefix+"x"]=i,n[e._propPrefix+"y"]=a,void 0!==e._traceIndex?o.call("_guiRestyle",r,n,e._traceIndex):o.call("_guiRelayout",r,n)}}})}(r,e,t)})),e.exit().each((function(e){a.autoMargin(t,e._id)})).remove(),e.order()}}},{"../../constants/alignment":744,"../../lib":776,"../../lib/extend":766,"../../lib/setcursor":797,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"../../plots/cartesian/axis_defaults":829,"../../plots/cartesian/layout_attributes":842,"../../plots/cartesian/position_defaults":845,"../../plots/plots":890,"../../registry":904,"../color":639,"../colorscale/helpers":650,"../dragelement":658,"../drawing":661,"../titles":737,"./constants":641,"@plotly/d3":58,tinycolor2:572}],644:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t){return n.isPlainObject(t.colorbar)}},{"../../lib":776}],645:[function(t,e,r){"use strict";e.exports={moduleType:"component",name:"colorbar",attributes:t("./attributes"),supplyDefaults:t("./defaults"),draw:t("./draw").draw,hasColorbar:t("./has_colorbar")}},{"./attributes":640,"./defaults":642,"./draw":643,"./has_colorbar":644}],646:[function(t,e,r){"use strict";var n=t("../colorbar/attributes"),i=t("../../lib/regex").counter,a=t("../../lib/sort_object_keys"),o=t("./scales.js").scales;a(o);function s(t){return"`"+t+"`"}e.exports=function(t,e){t=t||"";var r,a=(e=e||{}).cLetter||"c",l=("onlyIfNumerical"in e?e.onlyIfNumerical:Boolean(t),"noScale"in e?e.noScale:"marker.line"===t),c="showScaleDflt"in e?e.showScaleDflt:"z"===a,u="string"==typeof e.colorscaleDflt?o[e.colorscaleDflt]:null,f=e.editTypeOverride||"",h=t?t+".":"";"colorAttr"in e?(r=e.colorAttr,e.colorAttr):s(h+(r={z:"z",c:"color"}[a]));var p=a+"auto",d=a+"min",m=a+"max",g=a+"mid",v=(s(h+p),s(h+d),s(h+m),{});v[d]=v[m]=void 0;var y={};y[p]=!1;var x={};return"color"===r&&(x.color={valType:"color",arrayOk:!0,editType:f||"style"},e.anim&&(x.color.anim=!0)),x[p]={valType:"boolean",dflt:!0,editType:"calc",impliedEdits:v},x[d]={valType:"number",dflt:null,editType:f||"plot",impliedEdits:y},x[m]={valType:"number",dflt:null,editType:f||"plot",impliedEdits:y},x[g]={valType:"number",dflt:null,editType:"calc",impliedEdits:v},x.colorscale={valType:"colorscale",editType:"calc",dflt:u,impliedEdits:{autocolorscale:!1}},x.autocolorscale={valType:"boolean",dflt:!1!==e.autoColorDflt,editType:"calc",impliedEdits:{colorscale:void 0}},x.reversescale={valType:"boolean",dflt:!1,editType:"plot"},l||(x.showscale={valType:"boolean",dflt:c,editType:"calc"},x.colorbar=n),e.noColorAxis||(x.coloraxis={valType:"subplotid",regex:i("coloraxis"),dflt:null,editType:"calc"}),x}},{"../../lib/regex":793,"../../lib/sort_object_keys":799,"../colorbar/attributes":640,"./scales.js":654}],647:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../lib"),a=t("./helpers").extractOpts;e.exports=function(t,e,r){var o,s=t._fullLayout,l=r.vals,c=r.containerStr,u=c?i.nestedProperty(e,c).get():e,f=a(u),h=!1!==f.auto,p=f.min,d=f.max,m=f.mid,g=function(){return i.aggNums(Math.min,null,l)},v=function(){return i.aggNums(Math.max,null,l)};(void 0===p?p=g():h&&(p=u._colorAx&&n(p)?Math.min(p,g()):g()),void 0===d?d=v():h&&(d=u._colorAx&&n(d)?Math.max(d,v()):v()),h&&void 0!==m&&(d-m>m-p?p=m-(d-m):d-m=0?s.colorscale.sequential:s.colorscale.sequentialminus,f._sync("colorscale",o))}},{"../../lib":776,"./helpers":650,"fast-isnumeric":242}],648:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./helpers").hasColorscale,a=t("./helpers").extractOpts;e.exports=function(t,e){function r(t,e){var r=t["_"+e];void 0!==r&&(t[e]=r)}function o(t,i){var o=i.container?n.nestedProperty(t,i.container).get():t;if(o)if(o.coloraxis)o._colorAx=e[o.coloraxis];else{var s=a(o),l=s.auto;(l||void 0===s.min)&&r(o,i.min),(l||void 0===s.max)&&r(o,i.max),s.autocolorscale&&r(o,"colorscale")}}for(var s=0;s=0;n--,i++){var a=t[n];r[i]=[1-a[0],a[1]]}return r}function d(t,e){e=e||{};for(var r=t.domain,o=t.range,l=o.length,c=new Array(l),u=0;u4/3-s?o:s}},{}],656:[function(t,e,r){"use strict";var n=t("../../lib"),i=[["sw-resize","s-resize","se-resize"],["w-resize","move","e-resize"],["nw-resize","n-resize","ne-resize"]];e.exports=function(t,e,r,a){return t="left"===r?0:"center"===r?1:"right"===r?2:n.constrain(Math.floor(3*t),0,2),e="bottom"===a?0:"middle"===a?1:"top"===a?2:n.constrain(Math.floor(3*e),0,2),i[e][t]}},{"../../lib":776}],657:[function(t,e,r){"use strict";r.selectMode=function(t){return"lasso"===t||"select"===t},r.drawMode=function(t){return"drawclosedpath"===t||"drawopenpath"===t||"drawline"===t||"drawrect"===t||"drawcircle"===t},r.openMode=function(t){return"drawline"===t||"drawopenpath"===t},r.rectMode=function(t){return"select"===t||"drawline"===t||"drawrect"===t||"drawcircle"===t},r.freeMode=function(t){return"lasso"===t||"drawclosedpath"===t||"drawopenpath"===t},r.selectingOrDrawing=function(t){return r.freeMode(t)||r.rectMode(t)}},{}],658:[function(t,e,r){"use strict";var n=t("mouse-event-offset"),i=t("has-hover"),a=t("has-passive-events"),o=t("../../lib").removeElement,s=t("../../plots/cartesian/constants"),l=e.exports={};l.align=t("./align"),l.getCursor=t("./cursor");var c=t("./unhover");function u(){var t=document.createElement("div");t.className="dragcover";var e=t.style;return e.position="fixed",e.left=0,e.right=0,e.top=0,e.bottom=0,e.zIndex=999999999,e.background="none",document.body.appendChild(t),t}function f(t){return n(t.changedTouches?t.changedTouches[0]:t,document.body)}l.unhover=c.wrapped,l.unhoverRaw=c.raw,l.init=function(t){var e,r,n,c,h,p,d,m,g=t.gd,v=1,y=g._context.doubleClickDelay,x=t.element;g._mouseDownTime||(g._mouseDownTime=0),x.style.pointerEvents="all",x.onmousedown=_,a?(x._ontouchstart&&x.removeEventListener("touchstart",x._ontouchstart),x._ontouchstart=_,x.addEventListener("touchstart",_,{passive:!1})):x.ontouchstart=_;var b=t.clampFn||function(t,e,r){return Math.abs(t)y&&(v=Math.max(v-1,1)),g._dragged)t.doneFn&&t.doneFn();else if(t.clickFn&&t.clickFn(v,p),!m){var r;try{r=new MouseEvent("click",e)}catch(t){var n=f(e);(r=document.createEvent("MouseEvents")).initMouseEvent("click",e.bubbles,e.cancelable,e.view,e.detail,e.screenX,e.screenY,n[0],n[1],e.ctrlKey,e.altKey,e.shiftKey,e.metaKey,e.button,e.relatedTarget)}d.dispatchEvent(r)}g._dragging=!1,g._dragged=!1}else g._dragged=!1}},l.coverSlip=u},{"../../lib":776,"../../plots/cartesian/constants":834,"./align":655,"./cursor":656,"./unhover":659,"has-hover":425,"has-passive-events":426,"mouse-event-offset":450}],659:[function(t,e,r){"use strict";var n=t("../../lib/events"),i=t("../../lib/throttle"),a=t("../../lib/dom").getGraphDiv,o=t("../fx/constants"),s=e.exports={};s.wrapped=function(t,e,r){(t=a(t))._fullLayout&&i.clear(t._fullLayout._uid+o.HOVERID),s.raw(t,e,r)},s.raw=function(t,e){var r=t._fullLayout,i=t._hoverdata;e||(e={}),e.target&&!t._dragged&&!1===n.triggerHandler(t,"plotly_beforehover",e)||(r._hoverlayer.selectAll("g").remove(),r._hoverlayer.selectAll("line").remove(),r._hoverlayer.selectAll("circle").remove(),t._hoverdata=void 0,e.target&&i&&t.emit("plotly_unhover",{event:e,points:i}))}},{"../../lib/dom":764,"../../lib/events":765,"../../lib/throttle":803,"../fx/constants":673}],660:[function(t,e,r){"use strict";r.dash={valType:"string",values:["solid","dot","dash","longdash","dashdot","longdashdot"],dflt:"solid",editType:"style"},r.pattern={shape:{valType:"enumerated",values:["","/","\\","x","-","|","+","."],dflt:"",arrayOk:!0,editType:"style"},fillmode:{valType:"enumerated",values:["replace","overlay"],dflt:"replace",editType:"style"},bgcolor:{valType:"color",arrayOk:!0,editType:"style"},fgcolor:{valType:"color",arrayOk:!0,editType:"style"},fgopacity:{valType:"number",editType:"style",min:0,max:1},size:{valType:"number",min:0,dflt:8,arrayOk:!0,editType:"style"},solidity:{valType:"number",min:0,max:1,dflt:.3,arrayOk:!0,editType:"style"},editType:"style"}},{}],661:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.numberFormat,o=t("fast-isnumeric"),s=t("tinycolor2"),l=t("../../registry"),c=t("../color"),u=t("../colorscale"),f=i.strTranslate,h=t("../../lib/svg_text_utils"),p=t("../../constants/xmlns_namespaces"),d=t("../../constants/alignment").LINE_SPACING,m=t("../../constants/interactions").DESELECTDIM,g=t("../../traces/scatter/subtypes"),v=t("../../traces/scatter/make_bubble_size_func"),y=t("../../components/fx/helpers").appendArrayPointValue,x=e.exports={};x.font=function(t,e,r,n){i.isPlainObject(e)&&(n=e.color,r=e.size,e=e.family),e&&t.style("font-family",e),r+1&&t.style("font-size",r+"px"),n&&t.call(c.fill,n)},x.setPosition=function(t,e,r){t.attr("x",e).attr("y",r)},x.setSize=function(t,e,r){t.attr("width",e).attr("height",r)},x.setRect=function(t,e,r,n,i){t.call(x.setPosition,e,r).call(x.setSize,n,i)},x.translatePoint=function(t,e,r,n){var i=r.c2p(t.x),a=n.c2p(t.y);return!!(o(i)&&o(a)&&e.node())&&("text"===e.node().nodeName?e.attr("x",i).attr("y",a):e.attr("transform",f(i,a)),!0)},x.translatePoints=function(t,e,r){t.each((function(t){var i=n.select(this);x.translatePoint(t,i,e,r)}))},x.hideOutsideRangePoint=function(t,e,r,n,i,a){e.attr("display",r.isPtWithinRange(t,i)&&n.isPtWithinRange(t,a)?null:"none")},x.hideOutsideRangePoints=function(t,e){if(e._hasClipOnAxisFalse){var r=e.xaxis,i=e.yaxis;t.each((function(e){var a=e[0].trace,o=a.xcalendar,s=a.ycalendar,c=l.traceIs(a,"bar-like")?".bartext":".point,.textpoint";t.selectAll(c).each((function(t){x.hideOutsideRangePoint(t,n.select(this),r,i,o,s)}))}))}},x.crispRound=function(t,e,r){return e&&o(e)?t._context.staticPlot?e:e<1?1:Math.round(e):r||0},x.singleLineStyle=function(t,e,r,n,i){e.style("fill","none");var a=(((t||[])[0]||{}).trace||{}).line||{},o=r||a.width||0,s=i||a.dash||"";c.stroke(e,n||a.color),x.dashLine(e,s,o)},x.lineGroupStyle=function(t,e,r,i){t.style("fill","none").each((function(t){var a=(((t||[])[0]||{}).trace||{}).line||{},o=e||a.width||0,s=i||a.dash||"";n.select(this).call(c.stroke,r||a.color).call(x.dashLine,s,o)}))},x.dashLine=function(t,e,r){r=+r||0,e=x.dashStyle(e,r),t.style({"stroke-dasharray":e,"stroke-width":r+"px"})},x.dashStyle=function(t,e){e=+e||1;var r=Math.max(e,3);return"solid"===t?t="":"dot"===t?t=r+"px,"+r+"px":"dash"===t?t=3*r+"px,"+3*r+"px":"longdash"===t?t=5*r+"px,"+5*r+"px":"dashdot"===t?t=3*r+"px,"+r+"px,"+r+"px,"+r+"px":"longdashdot"===t&&(t=5*r+"px,"+2*r+"px,"+r+"px,"+2*r+"px"),t},x.singleFillStyle=function(t){var e=(((n.select(t.node()).data()[0]||[])[0]||{}).trace||{}).fillcolor;e&&t.call(c.fill,e)},x.fillGroupStyle=function(t){t.style("stroke-width",0).each((function(t){var e=n.select(this);t[0].trace&&e.call(c.fill,t[0].trace.fillcolor)}))};var b=t("./symbol_defs");x.symbolNames=[],x.symbolFuncs=[],x.symbolNeedLines={},x.symbolNoDot={},x.symbolNoFill={},x.symbolList=[],Object.keys(b).forEach((function(t){var e=b[t],r=e.n;x.symbolList.push(r,String(r),t,r+100,String(r+100),t+"-open"),x.symbolNames[r]=t,x.symbolFuncs[r]=e.f,e.needLine&&(x.symbolNeedLines[r]=!0),e.noDot?x.symbolNoDot[r]=!0:x.symbolList.push(r+200,String(r+200),t+"-dot",r+300,String(r+300),t+"-open-dot"),e.noFill&&(x.symbolNoFill[r]=!0)}));var _=x.symbolNames.length;function w(t,e){var r=t%100;return x.symbolFuncs[r](e)+(t>=200?"M0,0.5L0.5,0L0,-0.5L-0.5,0Z":"")}x.symbolNumber=function(t){if(o(t))t=+t;else if("string"==typeof t){var e=0;t.indexOf("-open")>0&&(e=100,t=t.replace("-open","")),t.indexOf("-dot")>0&&(e+=200,t=t.replace("-dot","")),(t=x.symbolNames.indexOf(t))>=0&&(t+=e)}return t%100>=_||t>=400?0:Math.floor(Math.max(t,0))};var T={x1:1,x2:0,y1:0,y2:0},k={x1:0,x2:0,y1:1,y2:0},A=a("~f"),M={radial:{node:"radialGradient"},radialreversed:{node:"radialGradient",reversed:!0},horizontal:{node:"linearGradient",attrs:T},horizontalreversed:{node:"linearGradient",attrs:T,reversed:!0},vertical:{node:"linearGradient",attrs:k},verticalreversed:{node:"linearGradient",attrs:k,reversed:!0}};x.gradient=function(t,e,r,a,o,l){for(var u=o.length,f=M[a],h=new Array(u),p=0;p"+v(t);d._gradientUrlQueryParts[y]=1},x.pattern=function(t,e,r,a,o,s,l,u,f,h,p,d){var m="legend"===e;u&&("overlay"===f?(h=u,p=c.contrast(h)):(h=void 0,p=u));var g,v,y,x,b,_,w,T,k,A,M,S=r._fullLayout,E="p"+S._uid+"-"+a,L={};switch(o){case"/":g=s*Math.sqrt(2),v=s*Math.sqrt(2),_="path",L={d:y="M-"+g/4+","+v/4+"l"+g/2+",-"+v/2+"M0,"+v+"L"+g+",0M"+g/4*3+","+v/4*5+"l"+g/2+",-"+v/2,opacity:d,stroke:p,"stroke-width":(x=l*s)+"px"};break;case"\\":g=s*Math.sqrt(2),v=s*Math.sqrt(2),_="path",L={d:y="M"+g/4*3+",-"+v/4+"l"+g/2+","+v/2+"M0,0L"+g+","+v+"M-"+g/4+","+v/4*3+"l"+g/2+","+v/2,opacity:d,stroke:p,"stroke-width":(x=l*s)+"px"};break;case"x":g=s*Math.sqrt(2),v=s*Math.sqrt(2),y="M-"+g/4+","+v/4+"l"+g/2+",-"+v/2+"M0,"+v+"L"+g+",0M"+g/4*3+","+v/4*5+"l"+g/2+",-"+v/2+"M"+g/4*3+",-"+v/4+"l"+g/2+","+v/2+"M0,0L"+g+","+v+"M-"+g/4+","+v/4*3+"l"+g/2+","+v/2,x=s-s*Math.sqrt(1-l),_="path",L={d:y,opacity:d,stroke:p,"stroke-width":x+"px"};break;case"|":_="path",_="path",L={d:y="M"+(g=s)/2+",0L"+g/2+","+(v=s),opacity:d,stroke:p,"stroke-width":(x=l*s)+"px"};break;case"-":_="path",_="path",L={d:y="M0,"+(v=s)/2+"L"+(g=s)+","+v/2,opacity:d,stroke:p,"stroke-width":(x=l*s)+"px"};break;case"+":_="path",y="M"+(g=s)/2+",0L"+g/2+","+(v=s)+"M0,"+v/2+"L"+g+","+v/2,x=s-s*Math.sqrt(1-l),_="path",L={d:y,opacity:d,stroke:p,"stroke-width":x+"px"};break;case".":g=s,v=s,l.pattern_filled";S._patternUrlQueryParts[I]=1},x.initGradients=function(t){var e=t._fullLayout;i.ensureSingle(e._defs,"g","gradients").selectAll("linearGradient,radialGradient").remove(),e._gradientUrlQueryParts={}},x.initPatterns=function(t){var e=t._fullLayout;i.ensureSingle(e._defs,"g","patterns").selectAll("pattern").remove(),e._patternUrlQueryParts={}},x.getPatternAttr=function(t,e,r){return t&&i.isArrayOrTypedArray(t)?e=100,e.attr("d",w(u,l))}var f,h,p,d=!1;if(t.so)p=s.outlierwidth,h=s.outliercolor,f=o.outliercolor;else{var m=(s||{}).width;p=(t.mlw+1||m+1||(t.trace?(t.trace.marker.line||{}).width:0)+1)-1||0,h="mlc"in t?t.mlcc=n.lineScale(t.mlc):i.isArrayOrTypedArray(s.color)?c.defaultLine:s.color,i.isArrayOrTypedArray(o.color)&&(f=c.defaultLine,d=!0),f="mc"in t?t.mcc=n.markerScale(t.mc):o.color||"rgba(0,0,0,0)",n.selectedColorFn&&(f=n.selectedColorFn(t))}if(t.om)e.call(c.stroke,f).style({"stroke-width":(p||1)+"px",fill:"none"});else{e.style("stroke-width",(t.isBlank?0:p)+"px");var g=o.gradient,v=t.mgt;v?d=!0:v=g&&g.type,i.isArrayOrTypedArray(v)&&(v=v[0],M[v]||(v=0));var y=o.pattern,b=y&&x.getPatternAttr(y.shape,t.i,"");if(v&&"none"!==v){var _=t.mgc;_?d=!0:_=g.color;var T=r.uid;d&&(T+="-"+t.i),x.gradient(e,a,T,v,[[0,_],[1,f]],"fill")}else if(b){var k=x.getPatternAttr(y.bgcolor,t.i,null),A=x.getPatternAttr(y.fgcolor,t.i,null),S=y.fgopacity,E=x.getPatternAttr(y.size,t.i,8),L=x.getPatternAttr(y.solidity,t.i,.3),C=t.mcc||i.isArrayOrTypedArray(y.shape)||i.isArrayOrTypedArray(y.bgcolor)||i.isArrayOrTypedArray(y.size)||i.isArrayOrTypedArray(y.solidity),P=r.uid;C&&(P+="-"+t.i),x.pattern(e,"point",a,P,b,E,L,t.mcc,y.fillmode,k,A,S)}else c.fill(e,f);p&&c.stroke(e,h)}},x.makePointStyleFns=function(t){var e={},r=t.marker;return e.markerScale=x.tryColorscale(r,""),e.lineScale=x.tryColorscale(r,"line"),l.traceIs(t,"symbols")&&(e.ms2mrc=g.isBubble(t)?v(t):function(){return(r.size||6)/2}),t.selectedpoints&&i.extendFlat(e,x.makeSelectedPointStyleFns(t)),e},x.makeSelectedPointStyleFns=function(t){var e={},r=t.selected||{},n=t.unselected||{},a=t.marker||{},o=r.marker||{},s=n.marker||{},c=a.opacity,u=o.opacity,f=s.opacity,h=void 0!==u,p=void 0!==f;(i.isArrayOrTypedArray(c)||h||p)&&(e.selectedOpacityFn=function(t){var e=void 0===t.mo?a.opacity:t.mo;return t.selected?h?u:e:p?f:m*e});var d=a.color,g=o.color,v=s.color;(g||v)&&(e.selectedColorFn=function(t){var e=t.mcc||d;return t.selected?g||e:v||e});var y=a.size,x=o.size,b=s.size,_=void 0!==x,w=void 0!==b;return l.traceIs(t,"symbols")&&(_||w)&&(e.selectedSizeFn=function(t){var e=t.mrc||y/2;return t.selected?_?x/2:e:w?b/2:e}),e},x.makeSelectedTextStyleFns=function(t){var e={},r=t.selected||{},n=t.unselected||{},i=t.textfont||{},a=r.textfont||{},o=n.textfont||{},s=i.color,l=a.color,u=o.color;return e.selectedTextColorFn=function(t){var e=t.tc||s;return t.selected?l||e:u||(l?e:c.addOpacity(e,m))},e},x.selectedPointStyle=function(t,e){if(t.size()&&e.selectedpoints){var r=x.makeSelectedPointStyleFns(e),i=e.marker||{},a=[];r.selectedOpacityFn&&a.push((function(t,e){t.style("opacity",r.selectedOpacityFn(e))})),r.selectedColorFn&&a.push((function(t,e){c.fill(t,r.selectedColorFn(e))})),r.selectedSizeFn&&a.push((function(t,e){var n=e.mx||i.symbol||0,a=r.selectedSizeFn(e);t.attr("d",w(x.symbolNumber(n),a)),e.mrc2=a})),a.length&&t.each((function(t){for(var e=n.select(this),r=0;r0?r:0}x.textPointStyle=function(t,e,r){if(t.size()){var a;if(e.selectedpoints){var o=x.makeSelectedTextStyleFns(e);a=o.selectedTextColorFn}var s=e.texttemplate,l=r._fullLayout;t.each((function(t){var o=n.select(this),c=s?i.extractOption(t,e,"txt","texttemplate"):i.extractOption(t,e,"tx","text");if(c||0===c){if(s){var u=e._module.formatLabels,f=u?u(t,e,l):{},p={};y(p,e,t.i);var d=e._meta||{};c=i.texttemplateString(c,f,l._d3locale,p,t,d)}var m=t.tp||e.textposition,g=L(t,e),v=a?a(t):t.tc||e.textfont.color;o.call(x.font,t.tf||e.textfont.family,g,v).text(c).call(h.convertToTspans,r).call(E,m,g,t.mrc)}else o.remove()}))}},x.selectedTextStyle=function(t,e){if(t.size()&&e.selectedpoints){var r=x.makeSelectedTextStyleFns(e);t.each((function(t){var i=n.select(this),a=r.selectedTextColorFn(t),o=t.tp||e.textposition,s=L(t,e);c.fill(i,a),E(i,o,s,t.mrc2||t.mrc)}))}};function C(t,e,r,i){var a=t[0]-e[0],o=t[1]-e[1],s=r[0]-e[0],l=r[1]-e[1],c=Math.pow(a*a+o*o,.25),u=Math.pow(s*s+l*l,.25),f=(u*u*a-c*c*s)*i,h=(u*u*o-c*c*l)*i,p=3*u*(c+u),d=3*c*(c+u);return[[n.round(e[0]+(p&&f/p),2),n.round(e[1]+(p&&h/p),2)],[n.round(e[0]-(d&&f/d),2),n.round(e[1]-(d&&h/d),2)]]}x.smoothopen=function(t,e){if(t.length<3)return"M"+t.join("L");var r,n="M"+t[0],i=[];for(r=1;r=1e4&&(x.savedBBoxes={},O=0),r&&(x.savedBBoxes[r]=g),O++,i.extendFlat({},g)},x.setClipUrl=function(t,e,r){t.attr("clip-path",D(e,r))},x.getTranslate=function(t){var e=(t[t.attr?"attr":"getAttribute"]("transform")||"").replace(/.*\btranslate\((-?\d*\.?\d*)[^-\d]*(-?\d*\.?\d*)[^\d].*/,(function(t,e,r){return[e,r].join(" ")})).split(" ");return{x:+e[0]||0,y:+e[1]||0}},x.setTranslate=function(t,e,r){var n=t.attr?"attr":"getAttribute",i=t.attr?"attr":"setAttribute",a=t[n]("transform")||"";return e=e||0,r=r||0,a=a.replace(/(\btranslate\(.*?\);?)/,"").trim(),a=(a+=f(e,r)).trim(),t[i]("transform",a),a},x.getScale=function(t){var e=(t[t.attr?"attr":"getAttribute"]("transform")||"").replace(/.*\bscale\((\d*\.?\d*)[^\d]*(\d*\.?\d*)[^\d].*/,(function(t,e,r){return[e,r].join(" ")})).split(" ");return{x:+e[0]||1,y:+e[1]||1}},x.setScale=function(t,e,r){var n=t.attr?"attr":"getAttribute",i=t.attr?"attr":"setAttribute",a=t[n]("transform")||"";return e=e||1,r=r||1,a=a.replace(/(\bscale\(.*?\);?)/,"").trim(),a=(a+="scale("+e+","+r+")").trim(),t[i]("transform",a),a};var R=/\s*sc.*/;x.setPointGroupScale=function(t,e,r){if(e=e||1,r=r||1,t){var n=1===e&&1===r?"":"scale("+e+","+r+")";t.each((function(){var t=(this.getAttribute("transform")||"").replace(R,"");t=(t+=n).trim(),this.setAttribute("transform",t)}))}};var F=/translate\([^)]*\)\s*$/;x.setTextPointsScale=function(t,e,r){t&&t.each((function(){var t,i=n.select(this),a=i.select("text");if(a.node()){var o=parseFloat(a.attr("x")||0),s=parseFloat(a.attr("y")||0),l=(i.attr("transform")||"").match(F);t=1===e&&1===r?[]:[f(o,s),"scale("+e+","+r+")",f(-o,-s)],l&&t.push(l),i.attr("transform",t.join(""))}}))}},{"../../components/fx/helpers":675,"../../constants/alignment":744,"../../constants/interactions":751,"../../constants/xmlns_namespaces":753,"../../lib":776,"../../lib/svg_text_utils":802,"../../registry":904,"../../traces/scatter/make_bubble_size_func":1208,"../../traces/scatter/subtypes":1216,"../color":639,"../colorscale":651,"./symbol_defs":662,"@plotly/d3":58,"fast-isnumeric":242,tinycolor2:572}],662:[function(t,e,r){"use strict";var n=t("@plotly/d3");e.exports={circle:{n:0,f:function(t){var e=n.round(t,2);return"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"}},square:{n:1,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"}},diamond:{n:2,f:function(t){var e=n.round(1.3*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"Z"}},cross:{n:3,f:function(t){var e=n.round(.4*t,2),r=n.round(1.2*t,2);return"M"+r+","+e+"H"+e+"V"+r+"H-"+e+"V"+e+"H-"+r+"V-"+e+"H-"+e+"V-"+r+"H"+e+"V-"+e+"H"+r+"Z"}},x:{n:4,f:function(t){var e=n.round(.8*t/Math.sqrt(2),2),r="l"+e+","+e,i="l"+e+",-"+e,a="l-"+e+",-"+e,o="l-"+e+","+e;return"M0,"+e+r+i+a+i+a+o+a+o+r+o+r+"Z"}},"triangle-up":{n:5,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+e+","+n.round(t/2,2)+"H"+e+"L0,-"+n.round(t,2)+"Z"}},"triangle-down":{n:6,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+e+",-"+n.round(t/2,2)+"H"+e+"L0,"+n.round(t,2)+"Z"}},"triangle-left":{n:7,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M"+n.round(t/2,2)+",-"+e+"V"+e+"L-"+n.round(t,2)+",0Z"}},"triangle-right":{n:8,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+n.round(t/2,2)+",-"+e+"V"+e+"L"+n.round(t,2)+",0Z"}},"triangle-ne":{n:9,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M-"+r+",-"+e+"H"+e+"V"+r+"Z"}},"triangle-se":{n:10,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M"+e+",-"+r+"V"+e+"H-"+r+"Z"}},"triangle-sw":{n:11,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M"+r+","+e+"H-"+e+"V-"+r+"Z"}},"triangle-nw":{n:12,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M-"+e+","+r+"V-"+e+"H"+r+"Z"}},pentagon:{n:13,f:function(t){var e=n.round(.951*t,2),r=n.round(.588*t,2),i=n.round(-t,2),a=n.round(-.309*t,2);return"M"+e+","+a+"L"+r+","+n.round(.809*t,2)+"H-"+r+"L-"+e+","+a+"L0,"+i+"Z"}},hexagon:{n:14,f:function(t){var e=n.round(t,2),r=n.round(t/2,2),i=n.round(t*Math.sqrt(3)/2,2);return"M"+i+",-"+r+"V"+r+"L0,"+e+"L-"+i+","+r+"V-"+r+"L0,-"+e+"Z"}},hexagon2:{n:15,f:function(t){var e=n.round(t,2),r=n.round(t/2,2),i=n.round(t*Math.sqrt(3)/2,2);return"M-"+r+","+i+"H"+r+"L"+e+",0L"+r+",-"+i+"H-"+r+"L-"+e+",0Z"}},octagon:{n:16,f:function(t){var e=n.round(.924*t,2),r=n.round(.383*t,2);return"M-"+r+",-"+e+"H"+r+"L"+e+",-"+r+"V"+r+"L"+r+","+e+"H-"+r+"L-"+e+","+r+"V-"+r+"Z"}},star:{n:17,f:function(t){var e=1.4*t,r=n.round(.225*e,2),i=n.round(.951*e,2),a=n.round(.363*e,2),o=n.round(.588*e,2),s=n.round(-e,2),l=n.round(-.309*e,2),c=n.round(.118*e,2),u=n.round(.809*e,2);return"M"+r+","+l+"H"+i+"L"+a+","+c+"L"+o+","+u+"L0,"+n.round(.382*e,2)+"L-"+o+","+u+"L-"+a+","+c+"L-"+i+","+l+"H-"+r+"L0,"+s+"Z"}},hexagram:{n:18,f:function(t){var e=n.round(.66*t,2),r=n.round(.38*t,2),i=n.round(.76*t,2);return"M-"+i+",0l-"+r+",-"+e+"h"+i+"l"+r+",-"+e+"l"+r+","+e+"h"+i+"l-"+r+","+e+"l"+r+","+e+"h-"+i+"l-"+r+","+e+"l-"+r+",-"+e+"h-"+i+"Z"}},"star-triangle-up":{n:19,f:function(t){var e=n.round(t*Math.sqrt(3)*.8,2),r=n.round(.8*t,2),i=n.round(1.6*t,2),a=n.round(4*t,2),o="A "+a+","+a+" 0 0 1 ";return"M-"+e+","+r+o+e+","+r+o+"0,-"+i+o+"-"+e+","+r+"Z"}},"star-triangle-down":{n:20,f:function(t){var e=n.round(t*Math.sqrt(3)*.8,2),r=n.round(.8*t,2),i=n.round(1.6*t,2),a=n.round(4*t,2),o="A "+a+","+a+" 0 0 1 ";return"M"+e+",-"+r+o+"-"+e+",-"+r+o+"0,"+i+o+e+",-"+r+"Z"}},"star-square":{n:21,f:function(t){var e=n.round(1.1*t,2),r=n.round(2*t,2),i="A "+r+","+r+" 0 0 1 ";return"M-"+e+",-"+e+i+"-"+e+","+e+i+e+","+e+i+e+",-"+e+i+"-"+e+",-"+e+"Z"}},"star-diamond":{n:22,f:function(t){var e=n.round(1.4*t,2),r=n.round(1.9*t,2),i="A "+r+","+r+" 0 0 1 ";return"M-"+e+",0"+i+"0,"+e+i+e+",0"+i+"0,-"+e+i+"-"+e+",0Z"}},"diamond-tall":{n:23,f:function(t){var e=n.round(.7*t,2),r=n.round(1.4*t,2);return"M0,"+r+"L"+e+",0L0,-"+r+"L-"+e+",0Z"}},"diamond-wide":{n:24,f:function(t){var e=n.round(1.4*t,2),r=n.round(.7*t,2);return"M0,"+r+"L"+e+",0L0,-"+r+"L-"+e+",0Z"}},hourglass:{n:25,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"H-"+e+"L"+e+",-"+e+"H-"+e+"Z"},noDot:!0},bowtie:{n:26,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"V-"+e+"L-"+e+","+e+"V-"+e+"Z"},noDot:!0},"circle-cross":{n:27,f:function(t){var e=n.round(t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"},needLine:!0,noDot:!0},"circle-x":{n:28,f:function(t){var e=n.round(t,2),r=n.round(t/Math.sqrt(2),2);return"M"+r+","+r+"L-"+r+",-"+r+"M"+r+",-"+r+"L-"+r+","+r+"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"},needLine:!0,noDot:!0},"square-cross":{n:29,f:function(t){var e=n.round(t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"},needLine:!0,noDot:!0},"square-x":{n:30,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e+"M"+e+",-"+e+"L-"+e+","+e+"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"},needLine:!0,noDot:!0},"diamond-cross":{n:31,f:function(t){var e=n.round(1.3*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"ZM0,-"+e+"V"+e+"M-"+e+",0H"+e},needLine:!0,noDot:!0},"diamond-x":{n:32,f:function(t){var e=n.round(1.3*t,2),r=n.round(.65*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"ZM-"+r+",-"+r+"L"+r+","+r+"M-"+r+","+r+"L"+r+",-"+r},needLine:!0,noDot:!0},"cross-thin":{n:33,f:function(t){var e=n.round(1.4*t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e},needLine:!0,noDot:!0,noFill:!0},"x-thin":{n:34,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e+"M"+e+",-"+e+"L-"+e+","+e},needLine:!0,noDot:!0,noFill:!0},asterisk:{n:35,f:function(t){var e=n.round(1.2*t,2),r=n.round(.85*t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+r+","+r+"L-"+r+",-"+r+"M"+r+",-"+r+"L-"+r+","+r},needLine:!0,noDot:!0,noFill:!0},hash:{n:36,f:function(t){var e=n.round(t/2,2),r=n.round(t,2);return"M"+e+","+r+"V-"+r+"m-"+r+",0V"+r+"M"+r+","+e+"H-"+r+"m0,-"+r+"H"+r},needLine:!0,noFill:!0},"y-up":{n:37,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+e+","+i+"L0,0M"+e+","+i+"L0,0M0,-"+r+"L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-down":{n:38,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+e+",-"+i+"L0,0M"+e+",-"+i+"L0,0M0,"+r+"L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-left":{n:39,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M"+i+","+e+"L0,0M"+i+",-"+e+"L0,0M-"+r+",0L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-right":{n:40,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+i+","+e+"L0,0M-"+i+",-"+e+"L0,0M"+r+",0L0,0"},needLine:!0,noDot:!0,noFill:!0},"line-ew":{n:41,f:function(t){var e=n.round(1.4*t,2);return"M"+e+",0H-"+e},needLine:!0,noDot:!0,noFill:!0},"line-ns":{n:42,f:function(t){var e=n.round(1.4*t,2);return"M0,"+e+"V-"+e},needLine:!0,noDot:!0,noFill:!0},"line-ne":{n:43,f:function(t){var e=n.round(t,2);return"M"+e+",-"+e+"L-"+e+","+e},needLine:!0,noDot:!0,noFill:!0},"line-nw":{n:44,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e},needLine:!0,noDot:!0,noFill:!0},"arrow-up":{n:45,f:function(t){var e=n.round(t,2);return"M0,0L-"+e+","+n.round(2*t,2)+"H"+e+"Z"},noDot:!0},"arrow-down":{n:46,f:function(t){var e=n.round(t,2);return"M0,0L-"+e+",-"+n.round(2*t,2)+"H"+e+"Z"},noDot:!0},"arrow-left":{n:47,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,0L"+e+",-"+r+"V"+r+"Z"},noDot:!0},"arrow-right":{n:48,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,0L-"+e+",-"+r+"V"+r+"Z"},noDot:!0},"arrow-bar-up":{n:49,f:function(t){var e=n.round(t,2);return"M-"+e+",0H"+e+"M0,0L-"+e+","+n.round(2*t,2)+"H"+e+"Z"},needLine:!0,noDot:!0},"arrow-bar-down":{n:50,f:function(t){var e=n.round(t,2);return"M-"+e+",0H"+e+"M0,0L-"+e+",-"+n.round(2*t,2)+"H"+e+"Z"},needLine:!0,noDot:!0},"arrow-bar-left":{n:51,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,-"+r+"V"+r+"M0,0L"+e+",-"+r+"V"+r+"Z"},needLine:!0,noDot:!0},"arrow-bar-right":{n:52,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,-"+r+"V"+r+"M0,0L-"+e+",-"+r+"V"+r+"Z"},needLine:!0,noDot:!0}}},{"@plotly/d3":58}],663:[function(t,e,r){"use strict";e.exports={visible:{valType:"boolean",editType:"calc"},type:{valType:"enumerated",values:["percent","constant","sqrt","data"],editType:"calc"},symmetric:{valType:"boolean",editType:"calc"},array:{valType:"data_array",editType:"calc"},arrayminus:{valType:"data_array",editType:"calc"},value:{valType:"number",min:0,dflt:10,editType:"calc"},valueminus:{valType:"number",min:0,dflt:10,editType:"calc"},traceref:{valType:"integer",min:0,dflt:0,editType:"style"},tracerefminus:{valType:"integer",min:0,dflt:0,editType:"style"},copy_ystyle:{valType:"boolean",editType:"plot"},copy_zstyle:{valType:"boolean",editType:"style"},color:{valType:"color",editType:"style"},thickness:{valType:"number",min:0,dflt:2,editType:"style"},width:{valType:"number",min:0,editType:"plot"},editType:"calc",_deprecated:{opacity:{valType:"number",editType:"style"}}}},{}],664:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../registry"),a=t("../../plots/cartesian/axes"),o=t("../../lib"),s=t("./compute_error");function l(t,e,r,i){var l=e["error_"+i]||{},c=[];if(l.visible&&-1!==["linear","log"].indexOf(r.type)){for(var u=s(l),f=0;f0;e.each((function(e){var f,h=e[0].trace,p=h.error_x||{},d=h.error_y||{};h.ids&&(f=function(t){return t.id});var m=o.hasMarkers(h)&&h.marker.maxdisplayed>0;d.visible||p.visible||(e=[]);var g=n.select(this).selectAll("g.errorbar").data(e,f);if(g.exit().remove(),e.length){p.visible||g.selectAll("path.xerror").remove(),d.visible||g.selectAll("path.yerror").remove(),g.style("opacity",1);var v=g.enter().append("g").classed("errorbar",!0);u&&v.style("opacity",0).transition().duration(s.duration).style("opacity",1),a.setClipUrl(g,r.layerClipId,t),g.each((function(t){var e=n.select(this),r=function(t,e,r){var n={x:e.c2p(t.x),y:r.c2p(t.y)};void 0!==t.yh&&(n.yh=r.c2p(t.yh),n.ys=r.c2p(t.ys),i(n.ys)||(n.noYS=!0,n.ys=r.c2p(t.ys,!0)));void 0!==t.xh&&(n.xh=e.c2p(t.xh),n.xs=e.c2p(t.xs),i(n.xs)||(n.noXS=!0,n.xs=e.c2p(t.xs,!0)));return n}(t,l,c);if(!m||t.vis){var a,o=e.select("path.yerror");if(d.visible&&i(r.x)&&i(r.yh)&&i(r.ys)){var f=d.width;a="M"+(r.x-f)+","+r.yh+"h"+2*f+"m-"+f+",0V"+r.ys,r.noYS||(a+="m-"+f+",0h"+2*f),!o.size()?o=e.append("path").style("vector-effect","non-scaling-stroke").classed("yerror",!0):u&&(o=o.transition().duration(s.duration).ease(s.easing)),o.attr("d",a)}else o.remove();var h=e.select("path.xerror");if(p.visible&&i(r.y)&&i(r.xh)&&i(r.xs)){var g=(p.copy_ystyle?d:p).width;a="M"+r.xh+","+(r.y-g)+"v"+2*g+"m0,-"+g+"H"+r.xs,r.noXS||(a+="m0,-"+g+"v"+2*g),!h.size()?h=e.append("path").style("vector-effect","non-scaling-stroke").classed("xerror",!0):u&&(h=h.transition().duration(s.duration).ease(s.easing)),h.attr("d",a)}else h.remove()}}))}}))}},{"../../traces/scatter/subtypes":1216,"../drawing":661,"@plotly/d3":58,"fast-isnumeric":242}],669:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../color");e.exports=function(t){t.each((function(t){var e=t[0].trace,r=e.error_y||{},a=e.error_x||{},o=n.select(this);o.selectAll("path.yerror").style("stroke-width",r.thickness+"px").call(i.stroke,r.color),a.copy_ystyle&&(a=r),o.selectAll("path.xerror").style("stroke-width",a.thickness+"px").call(i.stroke,a.color)}))}},{"../color":639,"@plotly/d3":58}],670:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("./layout_attributes").hoverlabel,a=t("../../lib/extend").extendFlat;e.exports={hoverlabel:{bgcolor:a({},i.bgcolor,{arrayOk:!0}),bordercolor:a({},i.bordercolor,{arrayOk:!0}),font:n({arrayOk:!0,editType:"none"}),align:a({},i.align,{arrayOk:!0}),namelength:a({},i.namelength,{arrayOk:!0}),editType:"none"}}},{"../../lib/extend":766,"../../plots/font_attributes":856,"./layout_attributes":680}],671:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry");function a(t,e,r,i){i=i||n.identity,Array.isArray(t)&&(e[0][r]=i(t))}e.exports=function(t){var e=t.calcdata,r=t._fullLayout;function o(t){return function(e){return n.coerceHoverinfo({hoverinfo:e},{_module:t._module},r)}}for(var s=0;s=0&&r.indexb[0]._length||at<0||at>_[0]._length)return d.unhoverRaw(t,e)}if(e.pointerX=it+b[0]._offset,e.pointerY=at+_[0]._offset,B="xval"in e?v.flat(s,e.xval):v.p2c(b,it),V="yval"in e?v.flat(s,e.yval):v.p2c(_,at),!i(B[0])||!i(V[0]))return o.warn("Fx.hover failed",e,t),d.unhoverRaw(t,e)}var ct=1/0;function ut(t,r){for(q=0;q$&&(tt.splice(0,$),ct=tt[0].distance),m&&0!==O&&0===tt.length){Q.distance=O,Q.index=!1;var f=Y._module.hoverPoints(Q,J,K,"closest",{hoverLayer:l._hoverlayer});if(f&&(f=f.filter((function(t){return t.spikeDistance<=O}))),f&&f.length){var h,d=f.filter((function(t){return t.xa.showspikes&&"hovered data"!==t.xa.spikesnap}));if(d.length){var g=d[0];i(g.x0)&&i(g.y0)&&(h=ht(g),(!rt.vLinePoint||rt.vLinePoint.spikeDistance>h.spikeDistance)&&(rt.vLinePoint=h))}var y=f.filter((function(t){return t.ya.showspikes&&"hovered data"!==t.ya.spikesnap}));if(y.length){var x=y[0];i(x.x0)&&i(x.y0)&&(h=ht(x),(!rt.hLinePoint||rt.hLinePoint.spikeDistance>h.spikeDistance)&&(rt.hLinePoint=h))}}}}}function ft(t,e,r){for(var n,i=null,a=1/0,o=0;o0&&Math.abs(t.distance)Tt-1;Mt--)Ct(tt[Mt]);tt=St,gt()}var Pt=t._hoverdata,It=[],Ot=j(t),zt=U(t);for(H=0;H1||tt.length>1)||"closest"===S&&nt&&tt.length>1,Wt=p.combine(l.plot_bgcolor||p.background,l.paper_bgcolor),Xt=I(tt,{gd:t,hovermode:S,rotateLabels:Yt,bgColor:Wt,container:l._hoverlayer,outerContainer:l._paper.node(),commonLabelOpts:l.hoverlabel,hoverdistance:l.hoverdistance});v.isUnifiedHover(S)||(!function(t,e,r){var n,i,a,o,s,l,c,u=0,f=1,h=t.size(),p=new Array(h),d=0;function m(t){var e=t[0],r=t[t.length-1];if(i=e.pmin-e.pos-e.dp+e.size,a=r.pos+r.dp+r.size-e.pmax,i>.01){for(s=t.length-1;s>=0;s--)t[s].dp+=i;n=!1}if(!(a<.01)){if(i<-.01){for(s=t.length-1;s>=0;s--)t[s].dp-=a;n=!1}if(n){var c=0;for(o=0;oe.pmax&&c++;for(o=t.length-1;o>=0&&!(c<=0);o--)(l=t[o]).pos>e.pmax-1&&(l.del=!0,c--);for(o=0;o=0;s--)t[s].dp-=a;for(o=t.length-1;o>=0&&!(c<=0);o--)(l=t[o]).pos+l.dp+l.size>e.pmax&&(l.del=!0,c--)}}}t.each((function(t){var n=t[e],i="x"===n._id.charAt(0),a=n.range;0===d&&a&&a[0]>a[1]!==i&&(f=-1),p[d++]=[{datum:t,traceIndex:t.trace.index,dp:0,pos:t.pos,posref:t.posref,size:t.by*(i?T:1)/2,pmin:0,pmax:i?r.width:r.height}]})),p.sort((function(t,e){return t[0].posref-e[0].posref||f*(e[0].traceIndex-t[0].traceIndex)}));for(;!n&&u<=h;){for(u++,n=!0,o=0;o.01&&y.pmin===x.pmin&&y.pmax===x.pmax){for(s=v.length-1;s>=0;s--)v[s].dp+=i;for(g.push.apply(g,v),p.splice(o+1,1),c=0,s=g.length-1;s>=0;s--)c+=g[s].dp;for(a=c/g.length,s=g.length-1;s>=0;s--)g[s].dp-=a;n=!1}else o++}p.forEach(m)}for(o=p.length-1;o>=0;o--){var b=p[o];for(s=b.length-1;s>=0;s--){var _=b[s],w=_.datum;w.offset=_.dp,w.del=_.del}}}(Xt,Yt?"xa":"ya",l),z(Xt,Yt,l._invScaleX,l._invScaleY));if(e.target&&e.target.tagName){var Zt=g.getComponentMethod("annotations","hasClickToShow")(t,It);f(n.select(e.target),Zt?"pointer":"")}if(!e.target||a||!function(t,e,r){if(!r||r.length!==t._hoverdata.length)return!0;for(var n=r.length-1;n>=0;n--){var i=r[n],a=t._hoverdata[n];if(i.curveNumber!==a.curveNumber||String(i.pointNumber)!==String(a.pointNumber)||String(i.pointNumbers)!==String(a.pointNumbers))return!0}return!1}(t,0,Pt))return;Pt&&t.emit("plotly_unhover",{event:e,points:Pt});t.emit("plotly_hover",{event:e,points:t._hoverdata,xaxes:b,yaxes:_,xvals:B,yvals:V})}(t,e,r,a)}))},r.loneHover=function(t,e){var r=!0;Array.isArray(t)||(r=!1,t=[t]);var i=e.gd,a=j(i),o=U(i),s=I(t.map((function(t){var r=t._x0||t.x0||t.x||0,n=t._x1||t.x1||t.x||0,s=t._y0||t.y0||t.y||0,l=t._y1||t.y1||t.y||0,c=t.eventData;if(c){var u=Math.min(r,n),f=Math.max(r,n),h=Math.min(s,l),d=Math.max(s,l),m=t.trace;if(g.traceIs(m,"gl3d")){var v=i._fullLayout[m.scene]._scene.container,y=v.offsetLeft,x=v.offsetTop;u+=y,f+=y,h+=x,d+=x}c.bbox={x0:u+o,x1:f+o,y0:h+a,y1:d+a},e.inOut_bbox&&e.inOut_bbox.push(c.bbox)}else c=!1;return{color:t.color||p.defaultLine,x0:t.x0||t.x||0,x1:t.x1||t.x||0,y0:t.y0||t.y||0,y1:t.y1||t.y||0,xLabel:t.xLabel,yLabel:t.yLabel,zLabel:t.zLabel,text:t.text,name:t.name,idealAlign:t.idealAlign,borderColor:t.borderColor,fontFamily:t.fontFamily,fontSize:t.fontSize,fontColor:t.fontColor,nameLength:t.nameLength,textAlign:t.textAlign,trace:t.trace||{index:0,hoverinfo:""},xa:{_offset:0},ya:{_offset:0},index:0,hovertemplate:t.hovertemplate||!1,hovertemplateLabels:t.hovertemplateLabels||!1,eventData:c}})),{gd:i,hovermode:"closest",rotateLabels:!1,bgColor:e.bgColor||p.background,container:n.select(e.container),outerContainer:e.outerContainer||e.container}),l=0,c=0;return s.sort((function(t,e){return t.y0-e.y0})).each((function(t,r){var n=t.y0-t.by/2;t.offset=n-5([\s\S]*)<\/extra>/;function I(t,e){var r=e.gd,i=r._fullLayout,a=e.hovermode,c=e.rotateLabels,f=e.bgColor,d=e.container,m=e.outerContainer,w=e.commonLabelOpts||{},T=e.fontFamily||y.HOVERFONT,k=e.fontSize||y.HOVERFONTSIZE,A=t[0],E=A.xa,L=A.ya,P=a.charAt(0),I=A[P+"Label"],z=V(r,m),D=z.top,R=z.width,F=z.height,B=void 0!==I&&A.distance<=e.hoverdistance&&("x"===a||"y"===a);if(B){var N,j,U=!0;for(N=0;Ni.width-b?(g=i.width-b,e.attr("d","M"+(b-M)+",0L"+b+","+x+M+"v"+x+(2*S+y.height)+"H-"+b+"V"+x+M+"H"+(b-2*M)+"Z")):e.attr("d","M0,0L"+M+","+x+M+"H"+(S+y.width/2)+"v"+x+(2*S+y.height)+"H-"+(S+y.width/2)+"V"+x+M+"H-"+M+"Z")}else{var _,C,P;"right"===L.side?(_="start",C=1,P="",g=E._offset+E._length):(_="end",C=-1,P="-",g=E._offset),v=L._offset+(A.y0+A.y1)/2,l.attr("text-anchor",_),e.attr("d","M0,0L"+P+M+","+M+"V"+(S+y.height/2)+"h"+P+(2*S+y.width)+"V-"+(S+y.height/2)+"H"+P+M+"V-"+M+"Z");var O,z=y.height/2,R=D-y.top-z,F="clip"+i._uid+"commonlabel"+L._id;if(g=0?it:at+lt=0?at:gt+lt=0?rt:nt+ct=0?nt:vt+ct=0,"top"!==t.idealAlign&&G||!Y?G?(z+=j/2,t.anchor="start"):t.anchor="middle":(z-=j/2,t.anchor="end");else if(t.pos=z,G=P+N/2+W<=R,Y=P-N/2-W>=0,"left"!==t.idealAlign&&G||!Y)if(G)P+=N/2,t.anchor="start";else{t.anchor="middle";var X=W/2,Z=P+X-R,J=P-X;Z>0&&(P-=Z),J<0&&(P+=-J)}else P-=N/2,t.anchor="end";w.attr("text-anchor",t.anchor),E&&A.attr("text-anchor",t.anchor),e.attr("transform",s(P,z)+(c?l(_):""))})),yt}function O(t,e,r,n,i,a){var s="",l="";void 0!==t.nameOverride&&(t.name=t.nameOverride),t.name&&(t.trace._meta&&(t.name=o.templateString(t.name,t.trace._meta)),s=B(t.name,t.nameLength));var c=r.charAt(0),u="x"===c?"y":"x";void 0!==t.zLabel?(void 0!==t.xLabel&&(l+="x: "+t.xLabel+"
"),void 0!==t.yLabel&&(l+="y: "+t.yLabel+"
"),"choropleth"!==t.trace.type&&"choroplethmapbox"!==t.trace.type&&(l+=(l?"z: ":"")+t.zLabel)):e&&t[c+"Label"]===i?l=t[u+"Label"]||"":void 0===t.xLabel?void 0!==t.yLabel&&"scattercarpet"!==t.trace.type&&(l=t.yLabel):l=void 0===t.yLabel?t.xLabel:"("+t.xLabel+", "+t.yLabel+")",!t.text&&0!==t.text||Array.isArray(t.text)||(l+=(l?"
":"")+t.text),void 0!==t.extraText&&(l+=(l?"
":"")+t.extraText),a&&""===l&&!t.hovertemplate&&(""===s&&a.remove(),l=s);var f=t.hovertemplate||!1;if(f){var h=t.hovertemplateLabels||t;t[c+"Label"]!==i&&(h[c+"other"]=h[c+"Val"],h[c+"otherLabel"]=h[c+"Label"]),l=(l=o.hovertemplateString(f,h,n._d3locale,t.eventData[0]||{},t.trace._meta)).replace(P,(function(e,r){return s=B(r,t.nameLength),""}))}return[l,s]}function z(t,e,r,i){var a=function(t){return t*r},o=function(t){return t*i};t.each((function(t){var r=n.select(this);if(t.del)return r.remove();var i=r.select("text.nums"),s=t.anchor,l="end"===s?-1:1,c={start:1,end:-1,middle:0}[s],f=c*(M+S),p=f+c*(t.txwidth+S),d=0,m=t.offset,g="middle"===s;g&&(f-=t.tx2width/2,p+=t.txwidth/2+S),e&&(m*=-A,d=t.offset*k),r.select("path").attr("d",g?"M-"+a(t.bx/2+t.tx2width/2)+","+o(m-t.by/2)+"h"+a(t.bx)+"v"+o(t.by)+"h-"+a(t.bx)+"Z":"M0,0L"+a(l*M+d)+","+o(M+m)+"v"+o(t.by/2-M)+"h"+a(l*t.bx)+"v-"+o(t.by)+"H"+a(l*M+d)+"V"+o(m-M)+"Z");var v=d+f,y=m+t.ty0-t.by/2+S,x=t.textAlign||"auto";"auto"!==x&&("left"===x&&"start"!==s?(i.attr("text-anchor","start"),v=g?-t.bx/2-t.tx2width/2+S:-t.bx-S):"right"===x&&"end"!==s&&(i.attr("text-anchor","end"),v=g?t.bx/2-t.tx2width/2-S:t.bx+S)),i.call(u.positionText,a(v),o(y)),t.tx2width&&(r.select("text.name").call(u.positionText,a(p+c*S+d),o(m+t.ty0-t.by/2+S)),r.select("rect").call(h.setRect,a(p+(c-1)*t.tx2width/2+d),o(m-t.by/2-1),a(t.tx2width),o(t.by+2)))}))}function D(t,e){var r=t.index,n=t.trace||{},a=t.cd[0],s=t.cd[r]||{};function l(t){return t||i(t)&&0===t}var c=Array.isArray(r)?function(t,e){var i=o.castOption(a,r,t);return l(i)?i:o.extractOption({},n,"",e)}:function(t,e){return o.extractOption(s,n,t,e)};function u(e,r,n){var i=c(r,n);l(i)&&(t[e]=i)}if(u("hoverinfo","hi","hoverinfo"),u("bgcolor","hbg","hoverlabel.bgcolor"),u("borderColor","hbc","hoverlabel.bordercolor"),u("fontFamily","htf","hoverlabel.font.family"),u("fontSize","hts","hoverlabel.font.size"),u("fontColor","htc","hoverlabel.font.color"),u("nameLength","hnl","hoverlabel.namelength"),u("textAlign","hta","hoverlabel.align"),t.posref="y"===e||"closest"===e&&"h"===n.orientation?t.xa._offset+(t.x0+t.x1)/2:t.ya._offset+(t.y0+t.y1)/2,t.x0=o.constrain(t.x0,0,t.xa._length),t.x1=o.constrain(t.x1,0,t.xa._length),t.y0=o.constrain(t.y0,0,t.ya._length),t.y1=o.constrain(t.y1,0,t.ya._length),void 0!==t.xLabelVal&&(t.xLabel="xLabel"in t?t.xLabel:m.hoverLabelText(t.xa,t.xLabelVal,n.xhoverformat),t.xVal=t.xa.c2d(t.xLabelVal)),void 0!==t.yLabelVal&&(t.yLabel="yLabel"in t?t.yLabel:m.hoverLabelText(t.ya,t.yLabelVal,n.yhoverformat),t.yVal=t.ya.c2d(t.yLabelVal)),void 0!==t.zLabelVal&&void 0===t.zLabel&&(t.zLabel=String(t.zLabelVal)),!(isNaN(t.xerr)||"log"===t.xa.type&&t.xerr<=0)){var f=m.tickText(t.xa,t.xa.c2l(t.xerr),"hover").text;void 0!==t.xerrneg?t.xLabel+=" +"+f+" / -"+m.tickText(t.xa,t.xa.c2l(t.xerrneg),"hover").text:t.xLabel+=" \xb1 "+f,"x"===e&&(t.distance+=1)}if(!(isNaN(t.yerr)||"log"===t.ya.type&&t.yerr<=0)){var h=m.tickText(t.ya,t.ya.c2l(t.yerr),"hover").text;void 0!==t.yerrneg?t.yLabel+=" +"+h+" / -"+m.tickText(t.ya,t.ya.c2l(t.yerrneg),"hover").text:t.yLabel+=" \xb1 "+h,"y"===e&&(t.distance+=1)}var p=t.hoverinfo||t.trace.hoverinfo;return p&&"all"!==p&&(-1===(p=Array.isArray(p)?p:p.split("+")).indexOf("x")&&(t.xLabel=void 0),-1===p.indexOf("y")&&(t.yLabel=void 0),-1===p.indexOf("z")&&(t.zLabel=void 0),-1===p.indexOf("text")&&(t.text=void 0),-1===p.indexOf("name")&&(t.name=void 0)),t}function R(t,e,r){var n,i,o=r.container,s=r.fullLayout,l=s._size,c=r.event,u=!!e.hLinePoint,f=!!e.vLinePoint;if(o.selectAll(".spikeline").remove(),f||u){var d=p.combine(s.plot_bgcolor,s.paper_bgcolor);if(u){var g,v,y=e.hLinePoint;n=y&&y.xa,"cursor"===(i=y&&y.ya).spikesnap?(g=c.pointerX,v=c.pointerY):(g=n._offset+y.x,v=i._offset+y.y);var x,b,_=a.readability(y.color,d)<1.5?p.contrast(d):y.color,w=i.spikemode,T=i.spikethickness,k=i.spikecolor||_,A=m.getPxPosition(t,i);if(-1!==w.indexOf("toaxis")||-1!==w.indexOf("across")){if(-1!==w.indexOf("toaxis")&&(x=A,b=g),-1!==w.indexOf("across")){var M=i._counterDomainMin,S=i._counterDomainMax;"free"===i.anchor&&(M=Math.min(M,i.position),S=Math.max(S,i.position)),x=l.l+M*l.w,b=l.l+S*l.w}o.insert("line",":first-child").attr({x1:x,x2:b,y1:v,y2:v,"stroke-width":T,stroke:k,"stroke-dasharray":h.dashStyle(i.spikedash,T)}).classed("spikeline",!0).classed("crisp",!0),o.insert("line",":first-child").attr({x1:x,x2:b,y1:v,y2:v,"stroke-width":T+2,stroke:d}).classed("spikeline",!0).classed("crisp",!0)}-1!==w.indexOf("marker")&&o.insert("circle",":first-child").attr({cx:A+("right"!==i.side?T:-T),cy:v,r:T,fill:k}).classed("spikeline",!0)}if(f){var E,L,C=e.vLinePoint;n=C&&C.xa,i=C&&C.ya,"cursor"===n.spikesnap?(E=c.pointerX,L=c.pointerY):(E=n._offset+C.x,L=i._offset+C.y);var P,I,O=a.readability(C.color,d)<1.5?p.contrast(d):C.color,z=n.spikemode,D=n.spikethickness,R=n.spikecolor||O,F=m.getPxPosition(t,n);if(-1!==z.indexOf("toaxis")||-1!==z.indexOf("across")){if(-1!==z.indexOf("toaxis")&&(P=F,I=L),-1!==z.indexOf("across")){var B=n._counterDomainMin,N=n._counterDomainMax;"free"===n.anchor&&(B=Math.min(B,n.position),N=Math.max(N,n.position)),P=l.t+(1-N)*l.h,I=l.t+(1-B)*l.h}o.insert("line",":first-child").attr({x1:E,x2:E,y1:P,y2:I,"stroke-width":D,stroke:R,"stroke-dasharray":h.dashStyle(n.spikedash,D)}).classed("spikeline",!0).classed("crisp",!0),o.insert("line",":first-child").attr({x1:E,x2:E,y1:P,y2:I,"stroke-width":D+2,stroke:d}).classed("spikeline",!0).classed("crisp",!0)}-1!==z.indexOf("marker")&&o.insert("circle",":first-child").attr({cx:E,cy:F-("top"!==n.side?D:-D),r:D,fill:R}).classed("spikeline",!0)}}}function F(t,e){return!e||(e.vLinePoint!==t._spikepoints.vLinePoint||e.hLinePoint!==t._spikepoints.hLinePoint)}function B(t,e){return u.plainText(t||"",{len:e,allowedTags:["br","sub","sup","b","i","em"]})}function N(t,e,r){var n=e[t+"a"],i=e[t+"Val"],a=e.cd[0];if("category"===n.type)i=n._categoriesMap[i];else if("date"===n.type){var o=e.trace[t+"periodalignment"];if(o){var s=e.cd[e.index],l=s[t+"Start"];void 0===l&&(l=s[t]);var c=s[t+"End"];void 0===c&&(c=s[t]);var u=c-l;"end"===o?i+=u:"middle"===o&&(i+=u/2)}i=n.d2c(i)}return a&&a.t&&a.t.posLetter===n._id&&("group"!==r.boxmode&&"group"!==r.violinmode||(i+=a.t.dPos)),i}function j(t){return t.offsetTop+t.clientTop}function U(t){return t.offsetLeft+t.clientLeft}function V(t,e){var r=t._fullLayout,n=e.getBoundingClientRect(),i=n.x,a=n.y,s=i+n.width,l=a+n.height,c=o.apply3DTransform(r._invTransform)(i,a),u=o.apply3DTransform(r._invTransform)(s,l),f=c[0],h=c[1],p=u[0],d=u[1];return{x:f,y:h,width:p-f,height:d-h,top:Math.min(h,d),left:Math.min(f,p),right:Math.max(f,p),bottom:Math.max(h,d)}}},{"../../lib":776,"../../lib/events":765,"../../lib/override_cursor":787,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"../../registry":904,"../color":639,"../dragelement":658,"../drawing":661,"../legend/defaults":691,"../legend/draw":692,"./constants":673,"./helpers":675,"@plotly/d3":58,"fast-isnumeric":242,tinycolor2:572}],677:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../color"),a=t("./helpers").isUnifiedHover;e.exports=function(t,e,r,o){function s(t){o.font[t]||(o.font[t]=e.legend?e.legend.font[t]:e.font[t])}o=o||{},e&&a(e.hovermode)&&(o.font||(o.font={}),s("size"),s("family"),s("color"),e.legend?(o.bgcolor||(o.bgcolor=i.combine(e.legend.bgcolor,e.paper_bgcolor)),o.bordercolor||(o.bordercolor=e.legend.bordercolor)):o.bgcolor||(o.bgcolor=e.paper_bgcolor)),r("hoverlabel.bgcolor",o.bgcolor),r("hoverlabel.bordercolor",o.bordercolor),r("hoverlabel.namelength",o.namelength),n.coerceFont(r,"hoverlabel.font",o.font),r("hoverlabel.align",o.align)}},{"../../lib":776,"../color":639,"./helpers":675}],678:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return void 0!==e[r]?e[r]:n.coerce(t,e,i,r,a)}return r("clickmode"),r("hovermode")}},{"../../lib":776,"./layout_attributes":680}],679:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../dragelement"),o=t("./helpers"),s=t("./layout_attributes"),l=t("./hover");e.exports={moduleType:"component",name:"fx",constants:t("./constants"),schema:{layout:s},attributes:t("./attributes"),layoutAttributes:s,supplyLayoutGlobalDefaults:t("./layout_global_defaults"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),getDistanceFunction:o.getDistanceFunction,getClosest:o.getClosest,inbox:o.inbox,quadrature:o.quadrature,appendArrayPointValue:o.appendArrayPointValue,castHoverOption:function(t,e,r){return i.castOption(t,e,"hoverlabel."+r)},castHoverinfo:function(t,e,r){return i.castOption(t,r,"hoverinfo",(function(r){return i.coerceHoverinfo({hoverinfo:r},{_module:t._module},e)}))},hover:l.hover,unhover:a.unhover,loneHover:l.loneHover,loneUnhover:function(t){var e=i.isD3Selection(t)?t:n.select(t);e.selectAll("g.hovertext").remove(),e.selectAll(".spikeline").remove()},click:t("./click")}},{"../../lib":776,"../dragelement":658,"./attributes":670,"./calc":671,"./click":672,"./constants":673,"./defaults":674,"./helpers":675,"./hover":676,"./layout_attributes":680,"./layout_defaults":681,"./layout_global_defaults":682,"@plotly/d3":58}],680:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../plots/font_attributes")({editType:"none"});i.family.dflt=n.HOVERFONT,i.size.dflt=n.HOVERFONTSIZE,e.exports={clickmode:{valType:"flaglist",flags:["event","select"],dflt:"event",editType:"plot",extras:["none"]},dragmode:{valType:"enumerated",values:["zoom","pan","select","lasso","drawclosedpath","drawopenpath","drawline","drawrect","drawcircle","orbit","turntable",!1],dflt:"zoom",editType:"modebar"},hovermode:{valType:"enumerated",values:["x","y","closest",!1,"x unified","y unified"],dflt:"closest",editType:"modebar"},hoverdistance:{valType:"integer",min:-1,dflt:20,editType:"none"},spikedistance:{valType:"integer",min:-1,dflt:-1,editType:"none"},hoverlabel:{bgcolor:{valType:"color",editType:"none"},bordercolor:{valType:"color",editType:"none"},font:i,align:{valType:"enumerated",values:["left","right","auto"],dflt:"auto",editType:"none"},namelength:{valType:"integer",min:-1,dflt:15,editType:"none"},editType:"none"},selectdirection:{valType:"enumerated",values:["h","v","d","any"],dflt:"any",editType:"none"}}},{"../../plots/font_attributes":856,"./constants":673}],681:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes"),a=t("./hovermode_defaults"),o=t("./hoverlabel_defaults");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}a(t,e)&&(r("hoverdistance"),r("spikedistance")),"select"===r("dragmode")&&r("selectdirection");var s=e._has("mapbox"),l=e._has("geo"),c=e._basePlotModules.length;"zoom"===e.dragmode&&((s||l)&&1===c||s&&l&&2===c)&&(e.dragmode="pan"),o(t,e,r)}},{"../../lib":776,"./hoverlabel_defaults":677,"./hovermode_defaults":678,"./layout_attributes":680}],682:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./hoverlabel_defaults"),a=t("./layout_attributes");e.exports=function(t,e){i(t,e,(function(r,i){return n.coerce(t,e,a,r,i)}))}},{"../../lib":776,"./hoverlabel_defaults":677,"./layout_attributes":680}],683:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../lib/regex").counter,a=t("../../plots/domain").attributes,o=t("../../plots/cartesian/constants").idRegex,s=t("../../plot_api/plot_template"),l={rows:{valType:"integer",min:1,editType:"plot"},roworder:{valType:"enumerated",values:["top to bottom","bottom to top"],dflt:"top to bottom",editType:"plot"},columns:{valType:"integer",min:1,editType:"plot"},subplots:{valType:"info_array",freeLength:!0,dimensions:2,items:{valType:"enumerated",values:[i("xy").toString(),""],editType:"plot"},editType:"plot"},xaxes:{valType:"info_array",freeLength:!0,items:{valType:"enumerated",values:[o.x.toString(),""],editType:"plot"},editType:"plot"},yaxes:{valType:"info_array",freeLength:!0,items:{valType:"enumerated",values:[o.y.toString(),""],editType:"plot"},editType:"plot"},pattern:{valType:"enumerated",values:["independent","coupled"],dflt:"coupled",editType:"plot"},xgap:{valType:"number",min:0,max:1,editType:"plot"},ygap:{valType:"number",min:0,max:1,editType:"plot"},domain:a({name:"grid",editType:"plot",noGridCell:!0},{}),xside:{valType:"enumerated",values:["bottom","bottom plot","top plot","top"],dflt:"bottom plot",editType:"plot"},yside:{valType:"enumerated",values:["left","left plot","right plot","right"],dflt:"left plot",editType:"plot"},editType:"plot"};function c(t,e,r){var n=e[r+"axes"],i=Object.keys((t._splomAxes||{})[r]||{});return Array.isArray(n)?n:i.length?i:void 0}function u(t,e,r,n,i,a){var o=e(t+"gap",r),s=e("domain."+t);e(t+"side",n);for(var l=new Array(i),c=s[0],u=(s[1]-c)/(i-o),f=u*(1-o),h=0;h1){if(!h&&!p&&!d)"independent"===k("pattern")&&(h=!0);g._hasSubplotGrid=h;var x,b,_="top to bottom"===k("roworder"),w=h?.2:.1,T=h?.3:.1;m&&e._splomGridDflt&&(x=e._splomGridDflt.xside,b=e._splomGridDflt.yside),g._domains={x:u("x",k,w,x,y),y:u("y",k,T,b,v,_)}}else delete e.grid}function k(t,e){return n.coerce(r,g,l,t,e)}},contentDefaults:function(t,e){var r=e.grid;if(r&&r._domains){var n,i,a,o,s,l,u,h=t.grid||{},p=e._subplots,d=r._hasSubplotGrid,m=r.rows,g=r.columns,v="independent"===r.pattern,y=r._axisMap={};if(d){var x=h.subplots||[];l=r.subplots=new Array(m);var b=1;for(n=0;n1);if(!1!==m||c.uirevision){var g=a.newContainer(e,"legend");if(T("uirevision",e.uirevision),!1!==m){T("bgcolor",e.paper_bgcolor),T("bordercolor"),T("borderwidth");var v,y,x,b=i.coerceFont(T,"font",e.font),_="h"===T("orientation");if(_?(v=0,n.getComponentMethod("rangeslider","isVisible")(t.xaxis)?(y=1.1,x="bottom"):(y=-.1,x="top")):(v=1.02,y=1,x="auto"),T("traceorder",h),l.isGrouped(e.legend)&&T("tracegroupgap"),T("itemsizing"),T("itemwidth"),T("itemclick"),T("itemdoubleclick"),T("groupclick"),T("x",v),T("xanchor"),T("y",y),T("yanchor",x),T("valign"),i.noneOrAll(c,g,["x","y"]),T("title.text")){T("title.side",_?"left":"top");var w=i.extendFlat({},b,{size:i.bigFont(b.size)});i.coerceFont(T,"title.font",w)}}}function T(t,e){return i.coerce(c,g,o,t,e)}}},{"../../lib":776,"../../plot_api/plot_template":816,"../../plots/layout_attributes":881,"../../registry":904,"./attributes":689,"./helpers":695}],692:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../plots/plots"),o=t("../../registry"),s=t("../../lib/events"),l=t("../dragelement"),c=t("../drawing"),u=t("../color"),f=t("../../lib/svg_text_utils"),h=t("./handle_click"),p=t("./constants"),d=t("../../constants/alignment"),m=d.LINE_SPACING,g=d.FROM_TL,v=d.FROM_BR,y=t("./get_legend_data"),x=t("./style"),b=t("./helpers");function _(t,e,r,n,i){var a=r.data()[0][0].trace,l={event:i,node:r.node(),curveNumber:a.index,expandedIndex:a._expandedIndex,data:t.data,layout:t.layout,frames:t._transitionData._frames,config:t._context,fullData:t._fullData,fullLayout:t._fullLayout};if(a._group&&(l.group=a._group),o.traceIs(a,"pie-like")&&(l.label=r.datum()[0].label),!1!==s.triggerHandler(t,"plotly_legendclick",l))if(1===n)e._clickTimeout=setTimeout((function(){t._fullLayout&&h(r,t,n)}),t._context.doubleClickDelay);else if(2===n){e._clickTimeout&&clearTimeout(e._clickTimeout),t._legendMouseDownTime=0,!1!==s.triggerHandler(t,"plotly_legenddoubleclick",l)&&h(r,t,n)}}function w(t,e,r){var n,a,s=t.data()[0][0],l=s.trace,u=o.traceIs(l,"pie-like"),h=!r._inHover&&e._context.edits.legendText&&!u,d=r._maxNameLength;s.groupTitle?(n=s.groupTitle.text,a=s.groupTitle.font):(a=r.font,r.entries?n=s.text:(n=u?s.label:l.name,l._meta&&(n=i.templateString(n,l._meta))));var m=i.ensureSingle(t,"text","legendtext");m.attr("text-anchor","start").call(c.font,a).text(h?T(n,d):n);var g=r.itemwidth+2*p.itemGap;f.positionText(m,g,0),h?m.call(f.makeEditable,{gd:e,text:n}).call(A,t,e,r).on("edit",(function(n){this.text(T(n,d)).call(A,t,e,r);var a=s.trace._fullInput||{},c={};if(o.hasTransform(a,"groupby")){var u=o.getTransformIndices(a,"groupby"),f=u[u.length-1],h=i.keyedContainer(a,"transforms["+f+"].styles","target","value.name");h.set(s.trace._group,n),c=h.constructUpdate()}else c.name=n;return o.call("_guiRestyle",e,c,l.index)})):A(m,t,e,r)}function T(t,e){var r=Math.max(4,e);if(t&&t.trim().length>=r/2)return t;for(var n=r-(t=t||"").length;n>0;n--)t+=" ";return t}function k(t,e){var r,a=e._context.doubleClickDelay,o=1,s=i.ensureSingle(t,"rect","legendtoggle",(function(t){e._context.staticPlot||t.style("cursor","pointer").attr("pointer-events","all"),t.call(u.fill,"rgba(0,0,0,0)")}));e._context.staticPlot||(s.on("mousedown",(function(){(r=(new Date).getTime())-e._legendMouseDownTimea&&(o=Math.max(o-1,1)),_(e,r,t,o,n.event)}})))}function A(t,e,r,n,i){n._inHover&&t.attr("data-notex",!0),f.convertToTspans(t,r,(function(){!function(t,e,r,n){var i=t.data()[0][0];if(!r._inHover&&i&&!i.trace.showlegend)return void t.remove();var a=t.select("g[class*=math-group]"),o=a.node();r||(r=e._fullLayout.legend);var s,l=r.borderwidth;s=1===n?r.title.font:i.groupTitle?i.groupTitle.font:r.font;var u,h,d=s.size*m;if(o){var g=c.bBox(o);u=g.height,h=g.width,1===n?c.setTranslate(a,l,l+.75*u):c.setTranslate(a,0,.25*u)}else{var v=t.select(1===n?".legendtitletext":".legendtext"),y=f.lineCount(v),x=v.node();if(u=d*y,h=x?c.bBox(x).width:0,1===n)"left"===r.title.side&&(h+=2*p.itemGap),f.positionText(v,l+p.titlePad,l+d);else{var b=2*p.itemGap+r.itemwidth;i.groupTitle&&(b=p.itemGap,h-=r.itemwidth),f.positionText(v,b,-d*((y-1)/2-.3))}}1===n?(r._titleWidth=h,r._titleHeight=u):(i.lineHeight=d,i.height=Math.max(u,16)+3,i.width=h)}(e,r,n,i)}))}function M(t){return i.isRightAnchor(t)?"right":i.isCenterAnchor(t)?"center":"left"}function S(t){return i.isBottomAnchor(t)?"bottom":i.isMiddleAnchor(t)?"middle":"top"}e.exports=function(t,e){return e||(e=t._fullLayout.legend||{}),function(t,e){var r,s,f=t._fullLayout,h="legend"+f._uid,d=e._inHover;d?(r=e.layer,h+="-hover"):r=f._infolayer;if(!r)return;t._legendMouseDownTime||(t._legendMouseDownTime=0);if(d){if(!e.entries)return;s=y(e.entries,e)}else{if(!t.calcdata)return;s=f.showlegend&&y(t.calcdata,e)}var m=f.hiddenlabels||[];if(!(d||f.showlegend&&s.length))return r.selectAll(".legend").remove(),f._topdefs.select("#"+h).remove(),a.autoMargin(t,"legend");var T=i.ensureSingle(r,"g","legend",(function(t){d||t.attr("pointer-events","all")})),E=i.ensureSingleById(f._topdefs,"clipPath",h,(function(t){t.append("rect")})),L=i.ensureSingle(T,"rect","bg",(function(t){t.attr("shape-rendering","crispEdges")}));L.call(u.stroke,e.bordercolor).call(u.fill,e.bgcolor).style("stroke-width",e.borderwidth+"px");var C=i.ensureSingle(T,"g","scrollbox"),P=e.title;if(e._titleWidth=0,e._titleHeight=0,P.text){var I=i.ensureSingle(C,"text","legendtitletext");I.attr("text-anchor","start").call(c.font,P.font).text(P.text),A(I,C,t,e,1)}else C.selectAll(".legendtitletext").remove();var O=i.ensureSingle(T,"rect","scrollbar",(function(t){t.attr(p.scrollBarEnterAttrs).call(u.fill,p.scrollBarColor)})),z=C.selectAll("g.groups").data(s);z.enter().append("g").attr("class","groups"),z.exit().remove();var D=z.selectAll("g.traces").data(i.identity);D.enter().append("g").attr("class","traces"),D.exit().remove(),D.style("opacity",(function(t){var e=t[0].trace;return o.traceIs(e,"pie-like")?-1!==m.indexOf(t[0].label)?.5:1:"legendonly"===e.visible?.5:1})).each((function(){n.select(this).call(w,t,e)})).call(x,t,e).each((function(){d||n.select(this).call(k,t)})),i.syncOrAsync([a.previousPromises,function(){return function(t,e,r,i){var a=t._fullLayout;i||(i=a.legend);var o=a._size,s=b.isVertical(i),l=b.isGrouped(i),u=i.borderwidth,f=2*u,h=p.itemGap,d=i.itemwidth+2*h,m=2*(u+h),g=S(i),v=i.y<0||0===i.y&&"top"===g,y=i.y>1||1===i.y&&"bottom"===g,x=i.tracegroupgap;i._maxHeight=Math.max(v||y?a.height/2:o.h,30);var _=0;i._width=0,i._height=0;var w=function(t){var e=0,r=0,n=t.title.side;n&&(-1!==n.indexOf("left")&&(e=t._titleWidth),-1!==n.indexOf("top")&&(r=t._titleHeight));return[e,r]}(i);if(s)r.each((function(t){var e=t[0].height;c.setTranslate(this,u+w[0],u+w[1]+i._height+e/2+h),i._height+=e,i._width=Math.max(i._width,t[0].width)})),_=d+i._width,i._width+=h+d+f,i._height+=m,l&&(e.each((function(t,e){c.setTranslate(this,0,e*i.tracegroupgap)})),i._height+=(i._lgroupsLength-1)*i.tracegroupgap);else{var T=M(i),k=i.x<0||0===i.x&&"right"===T,A=i.x>1||1===i.x&&"left"===T,E=y||v,L=a.width/2;i._maxWidth=Math.max(k?E&&"left"===T?o.l+o.w:L:A?E&&"right"===T?o.r+o.w:L:o.w,2*d);var C=0,P=0;r.each((function(t){var e=t[0].width+d;C=Math.max(C,e),P+=e})),_=null;var I=0;if(l){var O=0,z=0,D=0;e.each((function(){var t=0,e=0;n.select(this).selectAll("g.traces").each((function(r){var n=r[0].height;c.setTranslate(this,w[0],w[1]+u+h+n/2+e),e+=n,t=Math.max(t,d+r[0].width)})),O=Math.max(O,e);var r=t+h;r+u+z>i._maxWidth&&(I=Math.max(I,z),z=0,D+=O+x,O=e),c.setTranslate(this,z,D),z+=r})),i._width=Math.max(I,z)+u,i._height=D+O+m}else{var R=r.size(),F=P+f+(R-1)*h=i._maxWidth&&(I=Math.max(I,U),N=0,j+=B,i._height+=B,B=0),c.setTranslate(this,w[0]+u+N,w[1]+u+j+e/2+h),U=N+r+h,N+=n,B=Math.max(B,e)})),F?(i._width=N+f,i._height=B+m):(i._width=Math.max(I,U)+f,i._height+=B+m)}}i._width=Math.ceil(Math.max(i._width+w[0],i._titleWidth+2*(u+p.titlePad))),i._height=Math.ceil(Math.max(i._height+w[1],i._titleHeight+2*(u+p.itemGap))),i._effHeight=Math.min(i._height,i._maxHeight);var V=t._context.edits,H=V.legendText||V.legendPosition;r.each((function(t){var e=n.select(this).select(".legendtoggle"),r=t[0].height,i=H?d:_||d+t[0].width;s||(i+=h/2),c.setRect(e,0,-r/2,i,r)}))}(t,z,D,e)},function(){if(d||!function(t){var e=t._fullLayout.legend,r=M(e),n=S(e);return a.autoMargin(t,"legend",{x:e.x,y:e.y,l:e._width*g[r],r:e._width*v[r],b:e._effHeight*v[n],t:e._effHeight*g[n]})}(t)){var s,u,m,y,x=f._size,b=e.borderwidth,w=x.l+x.w*e.x-g[M(e)]*e._width,k=x.t+x.h*(1-e.y)-g[S(e)]*e._effHeight;if(!d&&f.margin.autoexpand){var A=w,P=k;w=i.constrain(w,0,f.width-e._width),k=i.constrain(k,0,f.height-e._effHeight),w!==A&&i.log("Constrain legend.x to make legend fit inside graph"),k!==P&&i.log("Constrain legend.y to make legend fit inside graph")}if(d||c.setTranslate(T,w,k),O.on(".drag",null),T.on("wheel",null),d||e._height<=e._maxHeight||t._context.staticPlot){var I=e._effHeight;d&&(I=e._height),L.attr({width:e._width-b,height:I-b,x:b/2,y:b/2}),c.setTranslate(C,0,0),E.select("rect").attr({width:e._width-2*b,height:I-2*b,x:b,y:b}),c.setClipUrl(C,h,t),c.setRect(O,0,0,0,0),delete e._scrollY}else{var z,D,R,F=Math.max(p.scrollBarMinHeight,e._effHeight*e._effHeight/e._height),B=e._effHeight-F-2*p.scrollBarMargin,N=e._height-e._effHeight,j=B/N,U=Math.min(e._scrollY||0,N);L.attr({width:e._width-2*b+p.scrollBarWidth+p.scrollBarMargin,height:e._effHeight-b,x:b/2,y:b/2}),E.select("rect").attr({width:e._width-2*b+p.scrollBarWidth+p.scrollBarMargin,height:e._effHeight-2*b,x:b,y:b+U}),c.setClipUrl(C,h,t),q(U,F,j),T.on("wheel",(function(){q(U=i.constrain(e._scrollY+n.event.deltaY/B*N,0,N),F,j),0!==U&&U!==N&&n.event.preventDefault()}));var V=n.behavior.drag().on("dragstart",(function(){var t=n.event.sourceEvent;z="touchstart"===t.type?t.changedTouches[0].clientY:t.clientY,R=U})).on("drag",(function(){var t=n.event.sourceEvent;2===t.buttons||t.ctrlKey||(D="touchmove"===t.type?t.changedTouches[0].clientY:t.clientY,q(U=function(t,e,r){var n=(r-e)/j+t;return i.constrain(n,0,N)}(R,z,D),F,j))}));O.call(V);var H=n.behavior.drag().on("dragstart",(function(){var t=n.event.sourceEvent;"touchstart"===t.type&&(z=t.changedTouches[0].clientY,R=U)})).on("drag",(function(){var t=n.event.sourceEvent;"touchmove"===t.type&&(D=t.changedTouches[0].clientY,q(U=function(t,e,r){var n=(e-r)/j+t;return i.constrain(n,0,N)}(R,z,D),F,j))}));C.call(H)}if(t._context.edits.legendPosition)T.classed("cursor-move",!0),l.init({element:T.node(),gd:t,prepFn:function(){var t=c.getTranslate(T);m=t.x,y=t.y},moveFn:function(t,r){var n=m+t,i=y+r;c.setTranslate(T,n,i),s=l.align(n,0,x.l,x.l+x.w,e.xanchor),u=l.align(i,0,x.t+x.h,x.t,e.yanchor)},doneFn:function(){void 0!==s&&void 0!==u&&o.call("_guiRelayout",t,{"legend.x":s,"legend.y":u})},clickFn:function(e,n){var i=r.selectAll("g.traces").filter((function(){var t=this.getBoundingClientRect();return n.clientX>=t.left&&n.clientX<=t.right&&n.clientY>=t.top&&n.clientY<=t.bottom}));i.size()>0&&_(t,T,i,e,n)}})}function q(r,n,i){e._scrollY=t._fullLayout.legend._scrollY=r,c.setTranslate(C,0,-r),c.setRect(O,e._width,p.scrollBarMargin+r*i,p.scrollBarWidth,n),E.select("rect").attr("y",b+r)}}],t)}(t,e)}},{"../../constants/alignment":744,"../../lib":776,"../../lib/events":765,"../../lib/svg_text_utils":802,"../../plots/plots":890,"../../registry":904,"../color":639,"../dragelement":658,"../drawing":661,"./constants":690,"./get_legend_data":693,"./handle_click":694,"./helpers":695,"./style":697,"@plotly/d3":58}],693:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("./helpers");e.exports=function(t,e){var r,a,o=e._inHover,s=i.isGrouped(e),l=i.isReversed(e),c={},u=[],f=!1,h={},p=0,d=0;function m(t,r){if(""!==t&&i.isGrouped(e))-1===u.indexOf(t)?(u.push(t),f=!0,c[t]=[r]):c[t].push(r);else{var n="~~i"+p;u.push(n),c[n]=[r],p++}}for(r=0;rA&&(k=A)}w[r][0]._groupMinRank=k,w[r][0]._preGroupSort=r}var M=function(t,e){return t.trace.legendrank-e.trace.legendrank||t._preSort-e._preSort};for(w.forEach((function(t,e){t[0]._preGroupSort=e})),w.sort((function(t,e){return t[0]._groupMinRank-e[0]._groupMinRank||t[0]._preGroupSort-e[0]._preGroupSort})),r=0;rr?r:t}e.exports=function(t,e,r){var v=e._fullLayout;r||(r=v.legend);var y="constant"===r.itemsizing,x=r.itemwidth,b=(x+2*p.itemGap)/2,_=o(b,0),w=function(t,e,r,n){var i;if(t+1)i=t;else{if(!(e&&e.width>0))return 0;i=e.width}return y?n:Math.min(i,r)};function T(t,a,o){var u=t[0].trace,f=u.marker||{},h=f.line||{},p=o?u.visible&&u.type===o:i.traceIs(u,"bar"),d=n.select(a).select("g.legendpoints").selectAll("path.legend"+o).data(p?[t]:[]);d.enter().append("path").classed("legend"+o,!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),d.exit().remove(),d.each((function(t){var i=n.select(this),a=t[0],o=w(a.mlw,f.line,5,2);i.style("stroke-width",o+"px");var p=a.mcc;if(!r._inHover&&"mc"in a){var d=c(f),m=d.mid;void 0===m&&(m=(d.max+d.min)/2),p=s.tryColorscale(f,"")(m)}var v=p||a.mc||f.color,y=f.pattern,x=y&&s.getPatternAttr(y.shape,0,"");if(x){var b=s.getPatternAttr(y.bgcolor,0,null),_=s.getPatternAttr(y.fgcolor,0,null),T=y.fgopacity,k=g(y.size,8,10),A=g(y.solidity,.5,1),M="legend-"+u.uid;i.call(s.pattern,"legend",e,M,x,k,A,p,y.fillmode,b,_,T)}else i.call(l.fill,v);o&&l.stroke(i,a.mlc||h.color)}))}function k(t,e,r){var o=t[0],s=o.trace,l=r?s.visible&&s.type===r:i.traceIs(s,r),c=n.select(e).select("g.legendpoints").selectAll("path.legend"+r).data(l?[t]:[]);if(c.enter().append("path").classed("legend"+r,!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),c.exit().remove(),c.size()){var u=(s.marker||{}).line,p=w(h(u.width,o.pts),u,5,2),d=a.minExtend(s,{marker:{line:{width:p}}});d.marker.line.color=u.color;var m=a.minExtend(o,{trace:d});f(c,m,d)}}t.each((function(t){var e=n.select(this),i=a.ensureSingle(e,"g","layers");i.style("opacity",t[0].trace.opacity);var s=r.valign,l=t[0].lineHeight,c=t[0].height;if("middle"!==s&&l&&c){var u={top:1,bottom:-1}[s]*(.5*(l-c+3));i.attr("transform",o(0,u))}else i.attr("transform",null);i.selectAll("g.legendfill").data([t]).enter().append("g").classed("legendfill",!0),i.selectAll("g.legendlines").data([t]).enter().append("g").classed("legendlines",!0);var f=i.selectAll("g.legendsymbols").data([t]);f.enter().append("g").classed("legendsymbols",!0),f.selectAll("g.legendpoints").data([t]).enter().append("g").classed("legendpoints",!0)})).each((function(t){var r,i=t[0].trace,o=[];if(i.visible)switch(i.type){case"histogram2d":case"heatmap":o=[["M-15,-2V4H15V-2Z"]],r=!0;break;case"choropleth":case"choroplethmapbox":o=[["M-6,-6V6H6V-6Z"]],r=!0;break;case"densitymapbox":o=[["M-6,0 a6,6 0 1,0 12,0 a 6,6 0 1,0 -12,0"]],r="radial";break;case"cone":o=[["M-6,2 A2,2 0 0,0 -6,6 V6L6,4Z"],["M-6,-6 A2,2 0 0,0 -6,-2 L6,-4Z"],["M-6,-2 A2,2 0 0,0 -6,2 L6,0Z"]],r=!1;break;case"streamtube":o=[["M-6,2 A2,2 0 0,0 -6,6 H6 A2,2 0 0,1 6,2 Z"],["M-6,-6 A2,2 0 0,0 -6,-2 H6 A2,2 0 0,1 6,-6 Z"],["M-6,-2 A2,2 0 0,0 -6,2 H6 A2,2 0 0,1 6,-2 Z"]],r=!1;break;case"surface":o=[["M-6,-6 A2,3 0 0,0 -6,0 H6 A2,3 0 0,1 6,-6 Z"],["M-6,1 A2,3 0 0,1 -6,6 H6 A2,3 0 0,0 6,0 Z"]],r=!0;break;case"mesh3d":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6H6L0,6Z"]],r=!1;break;case"volume":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6H6L0,6Z"]],r=!0;break;case"isosurface":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6 A12,24 0 0,0 6,-6 L0,6Z"]],r=!1}var u=n.select(this).select("g.legendpoints").selectAll("path.legend3dandfriends").data(o);u.enter().append("path").classed("legend3dandfriends",!0).attr("transform",_).style("stroke-miterlimit",1),u.exit().remove(),u.each((function(t,o){var u,f=n.select(this),h=c(i),p=h.colorscale,m=h.reversescale;if(p){if(!r){var g=p.length;u=0===o?p[m?g-1:0][1]:1===o?p[m?0:g-1][1]:p[Math.floor((g-1)/2)][1]}}else{var v=i.vertexcolor||i.facecolor||i.color;u=a.isArrayOrTypedArray(v)?v[o]||v[0]:v}f.attr("d",t[0]),u?f.call(l.fill,u):f.call((function(t){if(t.size()){var n="legendfill-"+i.uid;s.gradient(t,e,n,d(m,"radial"===r),p,"fill")}}))}))})).each((function(t){var e=t[0].trace,r="waterfall"===e.type;if(t[0]._distinct&&r){var i=t[0].trace[t[0].dir].marker;return t[0].mc=i.color,t[0].mlw=i.line.width,t[0].mlc=i.line.color,T(t,this,"waterfall")}var a=[];e.visible&&r&&(a=t[0].hasTotals?[["increasing","M-6,-6V6H0Z"],["totals","M6,6H0L-6,-6H-0Z"],["decreasing","M6,6V-6H0Z"]]:[["increasing","M-6,-6V6H6Z"],["decreasing","M6,6V-6H-6Z"]]);var o=n.select(this).select("g.legendpoints").selectAll("path.legendwaterfall").data(a);o.enter().append("path").classed("legendwaterfall",!0).attr("transform",_).style("stroke-miterlimit",1),o.exit().remove(),o.each((function(t){var r=n.select(this),i=e[t[0]].marker,a=w(void 0,i.line,5,2);r.attr("d",t[1]).style("stroke-width",a+"px").call(l.fill,i.color),a&&r.call(l.stroke,i.line.color)}))})).each((function(t){T(t,this,"funnel")})).each((function(t){T(t,this)})).each((function(t){var r=t[0].trace,o=n.select(this).select("g.legendpoints").selectAll("path.legendbox").data(r.visible&&i.traceIs(r,"box-violin")?[t]:[]);o.enter().append("path").classed("legendbox",!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),o.exit().remove(),o.each((function(){var t=n.select(this);if("all"!==r.boxpoints&&"all"!==r.points||0!==l.opacity(r.fillcolor)||0!==l.opacity((r.line||{}).color)){var i=w(void 0,r.line,5,2);t.style("stroke-width",i+"px").call(l.fill,r.fillcolor),i&&l.stroke(t,r.line.color)}else{var c=a.minExtend(r,{marker:{size:y?12:a.constrain(r.marker.size,2,16),sizeref:1,sizemin:1,sizemode:"diameter"}});o.call(s.pointStyle,c,e)}}))})).each((function(t){k(t,this,"funnelarea")})).each((function(t){k(t,this,"pie")})).each((function(t){var r,i,o=m(t),l=o.showFill,f=o.showLine,h=o.showGradientLine,p=o.showGradientFill,g=o.anyFill,v=o.anyLine,y=t[0],b=y.trace,_=c(b),T=_.colorscale,k=_.reversescale,A=u.hasMarkers(b)||!g?"M5,0":v?"M5,-2":"M5,-3",M=n.select(this),S=M.select(".legendfill").selectAll("path").data(l||p?[t]:[]);if(S.enter().append("path").classed("js-fill",!0),S.exit().remove(),S.attr("d",A+"h"+x+"v6h-"+x+"z").call(l?s.fillGroupStyle:function(t){if(t.size()){var r="legendfill-"+b.uid;s.gradient(t,e,r,d(k),T,"fill")}}),f||h){var E=w(void 0,b.line,10,5);i=a.minExtend(b,{line:{width:E}}),r=[a.minExtend(y,{trace:i})]}var L=M.select(".legendlines").selectAll("path").data(f||h?[r]:[]);L.enter().append("path").classed("js-line",!0),L.exit().remove(),L.attr("d",A+(h?"l"+x+",0.0001":"h"+x)).call(f?s.lineGroupStyle:function(t){if(t.size()){var r="legendline-"+b.uid;s.lineGroupStyle(t),s.gradient(t,e,r,d(k),T,"stroke")}})})).each((function(t){var r,i,o=m(t),l=o.anyFill,c=o.anyLine,f=o.showLine,h=o.showMarker,p=t[0],d=p.trace,g=!h&&!c&&!l&&u.hasText(d);function v(t,e,r,n){var i=a.nestedProperty(d,t).get(),o=a.isArrayOrTypedArray(i)&&e?e(i):i;if(y&&o&&void 0!==n&&(o=n),r){if(or[1])return r[1]}return o}function x(t){return p._distinct&&p.index&&t[p.index]?t[p.index]:t[0]}if(h||g||f){var b={},w={};if(h){b.mc=v("marker.color",x),b.mx=v("marker.symbol",x),b.mo=v("marker.opacity",a.mean,[.2,1]),b.mlc=v("marker.line.color",x),b.mlw=v("marker.line.width",a.mean,[0,5],2),w.marker={sizeref:1,sizemin:1,sizemode:"diameter"};var T=v("marker.size",a.mean,[2,16],12);b.ms=T,w.marker.size=T}f&&(w.line={width:v("line.width",x,[0,10],5)}),g&&(b.tx="Aa",b.tp=v("textposition",x),b.ts=10,b.tc=v("textfont.color",x),b.tf=v("textfont.family",x)),r=[a.minExtend(p,b)],(i=a.minExtend(d,w)).selectedpoints=null,i.texttemplate=null}var k=n.select(this).select("g.legendpoints"),A=k.selectAll("path.scatterpts").data(h?r:[]);A.enter().insert("path",":first-child").classed("scatterpts",!0).attr("transform",_),A.exit().remove(),A.call(s.pointStyle,i,e),h&&(r[0].mrc=3);var M=k.selectAll("g.pointtext").data(g?r:[]);M.enter().append("g").classed("pointtext",!0).append("text").attr("transform",_),M.exit().remove(),M.selectAll("text").call(s.textPointStyle,i,e)})).each((function(t){var e=t[0].trace,r=n.select(this).select("g.legendpoints").selectAll("path.legendcandle").data(e.visible&&"candlestick"===e.type?[t,t]:[]);r.enter().append("path").classed("legendcandle",!0).attr("d",(function(t,e){return e?"M-15,0H-8M-8,6V-6H8Z":"M15,0H8M8,-6V6H-8Z"})).attr("transform",_).style("stroke-miterlimit",1),r.exit().remove(),r.each((function(t,r){var i=n.select(this),a=e[r?"increasing":"decreasing"],o=w(void 0,a.line,5,2);i.style("stroke-width",o+"px").call(l.fill,a.fillcolor),o&&l.stroke(i,a.line.color)}))})).each((function(t){var e=t[0].trace,r=n.select(this).select("g.legendpoints").selectAll("path.legendohlc").data(e.visible&&"ohlc"===e.type?[t,t]:[]);r.enter().append("path").classed("legendohlc",!0).attr("d",(function(t,e){return e?"M-15,0H0M-8,-6V0":"M15,0H0M8,6V0"})).attr("transform",_).style("stroke-miterlimit",1),r.exit().remove(),r.each((function(t,r){var i=n.select(this),a=e[r?"increasing":"decreasing"],o=w(void 0,a.line,5,2);i.style("fill","none").call(s.dashLine,a.line.dash,o),o&&l.stroke(i,a.line.color)}))}))}},{"../../lib":776,"../../registry":904,"../../traces/pie/helpers":1170,"../../traces/pie/style_one":1176,"../../traces/scatter/subtypes":1216,"../color":639,"../colorscale/helpers":650,"../drawing":661,"./constants":690,"@plotly/d3":58}],698:[function(t,e,r){"use strict";t("./constants");e.exports={editType:"modebar",orientation:{valType:"enumerated",values:["v","h"],dflt:"h",editType:"modebar"},bgcolor:{valType:"color",editType:"modebar"},color:{valType:"color",editType:"modebar"},activecolor:{valType:"color",editType:"modebar"},uirevision:{valType:"any",editType:"none"},add:{valType:"string",arrayOk:!0,dflt:"",editType:"modebar"},remove:{valType:"string",arrayOk:!0,dflt:"",editType:"modebar"}}},{"./constants":700}],699:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../plots/plots"),a=t("../../plots/cartesian/axis_ids"),o=t("../../fonts/ploticon"),s=t("../shapes/draw").eraseActiveShape,l=t("../../lib"),c=l._,u=e.exports={};function f(t,e){var r,i,o=e.currentTarget,s=o.getAttribute("data-attr"),l=o.getAttribute("data-val")||!0,c=t._fullLayout,u={},f=a.list(t,null,!0),h=c._cartesianSpikesEnabled;if("zoom"===s){var p,d="in"===l?.5:2,m=(1+d)/2,g=(1-d)/2;for(i=0;i1?(P=["toggleHover"],I=["resetViews"]):v?(C=["zoomInGeo","zoomOutGeo"],P=["hoverClosestGeo"],I=["resetGeo"]):g?(P=["hoverClosest3d"],I=["resetCameraDefault3d","resetCameraLastSave3d"]):w?(C=["zoomInMapbox","zoomOutMapbox"],P=["toggleHover"],I=["resetViewMapbox"]):b?P=["hoverClosestGl2d"]:y?P=["hoverClosestPie"]:k?(P=["hoverClosestCartesian","hoverCompareCartesian"],I=["resetViewSankey"]):P=["toggleHover"];m&&(P=["toggleSpikelines","hoverClosestCartesian","hoverCompareCartesian"]);(function(t){for(var e=0;e0)){var m=function(t,e,r){for(var n=r.filter((function(r){return e[r].anchor===t._id})),i=0,a=0;a=n.max)e=F[r+1];else if(t=n.pmax)e=F[r+1];else if(t0?h+c:c;return{ppad:c,ppadplus:u?d:m,ppadminus:u?m:d}}return{ppad:c}}function u(t,e,r,n,i){var s="category"===t.type||"multicategory"===t.type?t.r2c:t.d2c;if(void 0!==e)return[s(e),s(r)];if(n){var l,c,u,f,h=1/0,p=-1/0,d=n.match(a.segmentRE);for("date"===t.type&&(s=o.decodeDate(s)),l=0;lp&&(p=f)));return p>=h?[h,p]:void 0}}e.exports=function(t){var e=t._fullLayout,r=n.filterVisible(e.shapes);if(r.length&&t._fullData.length)for(var o=0;oy?(k=f,E="y0",A=y,L="y1"):(k=y,E="y1",A=f,L="y0");Z(n),Q(s,r),function(t,e,r){var n=e.xref,i=e.yref,o=a.getFromId(r,n),s=a.getFromId(r,i),l="";"paper"===n||o.autorange||(l+=n);"paper"===i||s.autorange||(l+=i);u.setClipUrl(t,l?"clip"+r._fullLayout._uid+l:null,r)}(e,r,t),X.moveFn="move"===O?J:K,X.altKey=n.altKey},doneFn:function(){if(v(t))return;p(e),$(s),b(e,t,r),n.call("_guiRelayout",t,l.getUpdateObj())},clickFn:function(){if(v(t))return;$(s)}};function Z(r){if(v(t))O=null;else if(R)O="path"===r.target.tagName?"move":"start-point"===r.target.attributes["data-line-point"].value?"resize-over-start-point":"resize-over-end-point";else{var n=X.element.getBoundingClientRect(),i=n.right-n.left,a=n.bottom-n.top,o=r.clientX-n.left,s=r.clientY-n.top,l=!F&&i>10&&a>10&&!r.shiftKey?h.getCursor(o/i,1-s/a):"move";p(e,l),O=l.split("-")[0]}}function J(n,i){if("path"===r.type){var a=function(t){return t},o=a,l=a;z?B("xanchor",r.xanchor=G(x+n)):(o=function(t){return G(H(t)+n)},N&&"date"===N.type&&(o=m.encodeDate(o))),D?B("yanchor",r.yanchor=Y(T+i)):(l=function(t){return Y(q(t)+i)},U&&"date"===U.type&&(l=m.encodeDate(l))),B("path",r.path=w(I,o,l))}else z?B("xanchor",r.xanchor=G(x+n)):(B("x0",r.x0=G(c+n)),B("x1",r.x1=G(g+n))),D?B("yanchor",r.yanchor=Y(T+i)):(B("y0",r.y0=Y(f+i)),B("y1",r.y1=Y(y+i)));e.attr("d",_(t,r)),Q(s,r)}function K(n,i){if(F){var a=function(t){return t},o=a,l=a;z?B("xanchor",r.xanchor=G(x+n)):(o=function(t){return G(H(t)+n)},N&&"date"===N.type&&(o=m.encodeDate(o))),D?B("yanchor",r.yanchor=Y(T+i)):(l=function(t){return Y(q(t)+i)},U&&"date"===U.type&&(l=m.encodeDate(l))),B("path",r.path=w(I,o,l))}else if(R){if("resize-over-start-point"===O){var u=c+n,h=D?f-i:f+i;B("x0",r.x0=z?u:G(u)),B("y0",r.y0=D?h:Y(h))}else if("resize-over-end-point"===O){var p=g+n,d=D?y-i:y+i;B("x1",r.x1=z?p:G(p)),B("y1",r.y1=D?d:Y(d))}}else{var v=function(t){return-1!==O.indexOf(t)},b=v("n"),j=v("s"),V=v("w"),W=v("e"),X=b?k+i:k,Z=j?A+i:A,J=V?M+n:M,K=W?S+n:S;D&&(b&&(X=k-i),j&&(Z=A-i)),(!D&&Z-X>10||D&&X-Z>10)&&(B(E,r[E]=D?X:Y(X)),B(L,r[L]=D?Z:Y(Z))),K-J>10&&(B(C,r[C]=z?J:G(J)),B(P,r[P]=z?K:G(K)))}e.attr("d",_(t,r)),Q(s,r)}function Q(t,e){(z||D)&&function(){var r="path"!==e.type,n=t.selectAll(".visual-cue").data([0]);n.enter().append("path").attr({fill:"#fff","fill-rule":"evenodd",stroke:"#000","stroke-width":1}).classed("visual-cue",!0);var a=H(z?e.xanchor:i.midRange(r?[e.x0,e.x1]:m.extractPathCoords(e.path,d.paramIsX))),o=q(D?e.yanchor:i.midRange(r?[e.y0,e.y1]:m.extractPathCoords(e.path,d.paramIsY)));if(a=m.roundPositionForSharpStrokeRendering(a,1),o=m.roundPositionForSharpStrokeRendering(o,1),z&&D){var s="M"+(a-1-1)+","+(o-1-1)+"h-8v2h8 v8h2v-8 h8v-2h-8 v-8h-2 Z";n.attr("d",s)}else if(z){var l="M"+(a-1-1)+","+(o-9-1)+"v18 h2 v-18 Z";n.attr("d",l)}else{var c="M"+(a-9-1)+","+(o-1-1)+"h18 v2 h-18 Z";n.attr("d",c)}}()}function $(t){t.selectAll(".visual-cue").remove()}h.init(X),W.node().onmousemove=Z}(t,z,l,e,r,O):!0===l.editable&&z.style("pointer-events",P||c.opacity(S)*M<=.5?"stroke":"all");z.node().addEventListener("click",(function(){return function(t,e){if(!y(t))return;var r=+e.node().getAttribute("data-index");if(r>=0){if(r===t._fullLayout._activeShapeIndex)return void T(t);t._fullLayout._activeShapeIndex=r,t._fullLayout._deactivateShape=T,g(t)}}(t,z)}))}}function b(t,e,r){var n=(r.xref+r.yref).replace(/paper/g,"").replace(/[xyz][1-9]* *domain/g,"");u.setClipUrl(t,n?"clip"+e._fullLayout._uid+n:null,e)}function _(t,e){var r,n,o,s,l,c,u,f,h=e.type,p=a.getRefType(e.xref),g=a.getRefType(e.yref),v=a.getFromId(t,e.xref),y=a.getFromId(t,e.yref),x=t._fullLayout._size;if(v?"domain"===p?n=function(t){return v._offset+v._length*t}:(r=m.shapePositionToRange(v),n=function(t){return v._offset+v.r2p(r(t,!0))}):n=function(t){return x.l+x.w*t},y?"domain"===g?s=function(t){return y._offset+y._length*(1-t)}:(o=m.shapePositionToRange(y),s=function(t){return y._offset+y.r2p(o(t,!0))}):s=function(t){return x.t+x.h*(1-t)},"path"===h)return v&&"date"===v.type&&(n=m.decodeDate(n)),y&&"date"===y.type&&(s=m.decodeDate(s)),function(t,e,r){var n=t.path,a=t.xsizemode,o=t.ysizemode,s=t.xanchor,l=t.yanchor;return n.replace(d.segmentRE,(function(t){var n=0,c=t.charAt(0),u=d.paramIsX[c],f=d.paramIsY[c],h=d.numParams[c],p=t.substr(1).replace(d.paramRE,(function(t){return u[n]?t="pixel"===a?e(s)+Number(t):e(t):f[n]&&(t="pixel"===o?r(l)-Number(t):r(t)),++n>h&&(t="X"),t}));return n>h&&(p=p.replace(/[\s,]*X.*/,""),i.log("Ignoring extra params in segment "+t)),c+p}))}(e,n,s);if("pixel"===e.xsizemode){var b=n(e.xanchor);l=b+e.x0,c=b+e.x1}else l=n(e.x0),c=n(e.x1);if("pixel"===e.ysizemode){var _=s(e.yanchor);u=_-e.y0,f=_-e.y1}else u=s(e.y0),f=s(e.y1);if("line"===h)return"M"+l+","+u+"L"+c+","+f;if("rect"===h)return"M"+l+","+u+"H"+c+"V"+f+"H"+l+"Z";var w=(l+c)/2,T=(u+f)/2,k=Math.abs(w-l),A=Math.abs(T-u),M="A"+k+","+A,S=w+k+","+T;return"M"+S+M+" 0 1,1 "+(w+","+(T-A))+M+" 0 0,1 "+S+"Z"}function w(t,e,r){return t.replace(d.segmentRE,(function(t){var n=0,i=t.charAt(0),a=d.paramIsX[i],o=d.paramIsY[i],s=d.numParams[i];return i+t.substr(1).replace(d.paramRE,(function(t){return n>=s||(a[n]?t=e(t):o[n]&&(t=r(t)),n++),t}))}))}function T(t){y(t)&&(t._fullLayout._activeShapeIndex>=0&&(l(t),delete t._fullLayout._activeShapeIndex,g(t)))}e.exports={draw:g,drawOne:x,eraseActiveShape:function(t){if(!y(t))return;l(t);var e=t._fullLayout._activeShapeIndex,r=(t.layout||{}).shapes||[];if(e=0&&f(v),r.attr("d",m(e)),A&&!h)&&(k=function(t,e){for(var r=0;r1&&(2!==t.length||"Z"!==t[1][0])&&(0===T&&(t[0][0]="M"),e[w]=t,y(),x())}}()}}function I(t,r){!function(t,r){if(e.length)for(var n=0;n0&&l0&&(s=s.transition().duration(e.transition.duration).ease(e.transition.easing)),s.attr("transform",l(o-.5*f.gripWidth,e._dims.currentValueTotalHeight))}}function E(t,e){var r=t._dims;return r.inputAreaStart+f.stepInset+(r.inputAreaLength-2*f.stepInset)*Math.min(1,Math.max(0,e))}function L(t,e){var r=t._dims;return Math.min(1,Math.max(0,(e-f.stepInset-r.inputAreaStart)/(r.inputAreaLength-2*f.stepInset-2*r.inputAreaStart)))}function C(t,e,r){var n=r._dims,i=s.ensureSingle(t,"rect",f.railTouchRectClass,(function(n){n.call(A,e,t,r).style("pointer-events","all")}));i.attr({width:n.inputAreaLength,height:Math.max(n.inputAreaWidth,f.tickOffset+r.ticklen+n.labelHeight)}).call(a.fill,r.bgcolor).attr("opacity",0),o.setTranslate(i,0,n.currentValueTotalHeight)}function P(t,e){var r=e._dims,n=r.inputAreaLength-2*f.railInset,i=s.ensureSingle(t,"rect",f.railRectClass);i.attr({width:n,height:f.railWidth,rx:f.railRadius,ry:f.railRadius,"shape-rendering":"crispEdges"}).call(a.stroke,e.bordercolor).call(a.fill,e.bgcolor).style("stroke-width",e.borderwidth+"px"),o.setTranslate(i,f.railInset,.5*(r.inputAreaWidth-f.railWidth)+r.currentValueTotalHeight)}e.exports=function(t){var e=t._fullLayout,r=function(t,e){for(var r=t[f.name],n=[],i=0;i0?[0]:[]);function s(e){e._commandObserver&&(e._commandObserver.remove(),delete e._commandObserver),i.autoMargin(t,g(e))}if(a.enter().append("g").classed(f.containerClassName,!0).style("cursor","ew-resize"),a.exit().each((function(){n.select(this).selectAll("g."+f.groupClassName).each(s)})).remove(),0!==r.length){var l=a.selectAll("g."+f.groupClassName).data(r,v);l.enter().append("g").classed(f.groupClassName,!0),l.exit().each(s).remove();for(var c=0;c0||h<0){var v={left:[-d,0],right:[d,0],top:[0,-d],bottom:[0,d]}[b.side];e.attr("transform",l(v[0],v[1]))}}}return D.call(R),O&&(E?D.on(".opacity",null):(A=0,M=!0,D.text(y).on("mouseover.opacity",(function(){n.select(this).transition().duration(h.SHOW_PLACEHOLDER).style("opacity",1)})).on("mouseout.opacity",(function(){n.select(this).transition().duration(h.HIDE_PLACEHOLDER).style("opacity",0)}))),D.call(f.makeEditable,{gd:t}).on("edit",(function(e){void 0!==x?o.call("_guiRestyle",t,v,e,x):o.call("_guiRelayout",t,v,e)})).on("cancel",(function(){this.text(this.attr("data-unformatted")).call(R)})).on("input",(function(t){this.text(t||" ").call(f.positionText,_.x,_.y)}))),D.classed("js-placeholder",M),T}}},{"../../constants/alignment":744,"../../constants/interactions":751,"../../lib":776,"../../lib/svg_text_utils":802,"../../plots/plots":890,"../../registry":904,"../color":639,"../drawing":661,"@plotly/d3":58,"fast-isnumeric":242}],738:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("../color/attributes"),a=t("../../lib/extend").extendFlat,o=t("../../plot_api/edit_types").overrideAll,s=t("../../plots/pad_attributes"),l=t("../../plot_api/plot_template").templatedArray,c=l("button",{visible:{valType:"boolean"},method:{valType:"enumerated",values:["restyle","relayout","animate","update","skip"],dflt:"restyle"},args:{valType:"info_array",freeLength:!0,items:[{valType:"any"},{valType:"any"},{valType:"any"}]},args2:{valType:"info_array",freeLength:!0,items:[{valType:"any"},{valType:"any"},{valType:"any"}]},label:{valType:"string",dflt:""},execute:{valType:"boolean",dflt:!0}});e.exports=o(l("updatemenu",{_arrayAttrRegexps:[/^updatemenus\[(0|[1-9][0-9]+)\]\.buttons/],visible:{valType:"boolean"},type:{valType:"enumerated",values:["dropdown","buttons"],dflt:"dropdown"},direction:{valType:"enumerated",values:["left","right","up","down"],dflt:"down"},active:{valType:"integer",min:-1,dflt:0},showactive:{valType:"boolean",dflt:!0},buttons:c,x:{valType:"number",min:-2,max:3,dflt:-.05},xanchor:{valType:"enumerated",values:["auto","left","center","right"],dflt:"right"},y:{valType:"number",min:-2,max:3,dflt:1},yanchor:{valType:"enumerated",values:["auto","top","middle","bottom"],dflt:"top"},pad:a(s({editType:"arraydraw"}),{}),font:n({}),bgcolor:{valType:"color"},bordercolor:{valType:"color",dflt:i.borderLine},borderwidth:{valType:"number",min:0,dflt:1,editType:"arraydraw"}}),"arraydraw","from-root")},{"../../lib/extend":766,"../../plot_api/edit_types":809,"../../plot_api/plot_template":816,"../../plots/font_attributes":856,"../../plots/pad_attributes":889,"../color/attributes":638}],739:[function(t,e,r){"use strict";e.exports={name:"updatemenus",containerClassName:"updatemenu-container",headerGroupClassName:"updatemenu-header-group",headerClassName:"updatemenu-header",headerArrowClassName:"updatemenu-header-arrow",dropdownButtonGroupClassName:"updatemenu-dropdown-button-group",dropdownButtonClassName:"updatemenu-dropdown-button",buttonClassName:"updatemenu-button",itemRectClassName:"updatemenu-item-rect",itemTextClassName:"updatemenu-item-text",menuIndexAttrName:"updatemenu-active-index",autoMarginIdRoot:"updatemenu-",blankHeaderOpts:{label:" "},minWidth:30,minHeight:30,textPadX:24,arrowPadX:16,rx:2,ry:2,textOffsetX:12,textOffsetY:3,arrowOffsetX:4,gapButtonHeader:5,gapButton:2,activeColor:"#F4FAFF",hoverColor:"#F4FAFF",arrowSymbol:{left:"\u25c4",right:"\u25ba",up:"\u25b2",down:"\u25bc"}}},{}],740:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/array_container_defaults"),a=t("./attributes"),o=t("./constants").name,s=a.buttons;function l(t,e,r){function o(r,i){return n.coerce(t,e,a,r,i)}o("visible",i(t,e,{name:"buttons",handleItemDefaults:c}).length>0)&&(o("active"),o("direction"),o("type"),o("showactive"),o("x"),o("y"),n.noneOrAll(t,e,["x","y"]),o("xanchor"),o("yanchor"),o("pad.t"),o("pad.r"),o("pad.b"),o("pad.l"),n.coerceFont(o,"font",r.font),o("bgcolor",r.paper_bgcolor),o("bordercolor"),o("borderwidth"))}function c(t,e){function r(r,i){return n.coerce(t,e,s,r,i)}r("visible","skip"===t.method||Array.isArray(t.args))&&(r("method"),r("args"),r("args2"),r("label"),r("execute"))}e.exports=function(t,e){i(t,e,{name:o,handleItemDefaults:l})}},{"../../lib":776,"../../plots/array_container_defaults":822,"./attributes":738,"./constants":739}],741:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../plots/plots"),a=t("../color"),o=t("../drawing"),s=t("../../lib"),l=t("../../lib/svg_text_utils"),c=t("../../plot_api/plot_template").arrayEditor,u=t("../../constants/alignment").LINE_SPACING,f=t("./constants"),h=t("./scrollbox");function p(t){return t._index}function d(t,e){return+t.attr(f.menuIndexAttrName)===e._index}function m(t,e,r,n,i,a,o,s){e.active=o,c(t.layout,f.name,e).applyUpdate("active",o),"buttons"===e.type?v(t,n,null,null,e):"dropdown"===e.type&&(i.attr(f.menuIndexAttrName,"-1"),g(t,n,i,a,e),s||v(t,n,i,a,e))}function g(t,e,r,n,i){var a=s.ensureSingle(e,"g",f.headerClassName,(function(t){t.style("pointer-events","all")})),l=i._dims,c=i.active,u=i.buttons[c]||f.blankHeaderOpts,h={y:i.pad.t,yPad:0,x:i.pad.l,xPad:0,index:0},p={width:l.headerWidth,height:l.headerHeight};a.call(y,i,u,t).call(M,i,h,p),s.ensureSingle(e,"text",f.headerArrowClassName,(function(t){t.attr("text-anchor","end").call(o.font,i.font).text(f.arrowSymbol[i.direction])})).attr({x:l.headerWidth-f.arrowOffsetX+i.pad.l,y:l.headerHeight/2+f.textOffsetY+i.pad.t}),a.on("click",(function(){r.call(S,String(d(r,i)?-1:i._index)),v(t,e,r,n,i)})),a.on("mouseover",(function(){a.call(w)})),a.on("mouseout",(function(){a.call(T,i)})),o.setTranslate(e,l.lx,l.ly)}function v(t,e,r,a,o){r||(r=e).attr("pointer-events","all");var l=function(t){return-1==+t.attr(f.menuIndexAttrName)}(r)&&"buttons"!==o.type?[]:o.buttons,c="dropdown"===o.type?f.dropdownButtonClassName:f.buttonClassName,u=r.selectAll("g."+c).data(s.filterVisible(l)),h=u.enter().append("g").classed(c,!0),p=u.exit();"dropdown"===o.type?(h.attr("opacity","0").transition().attr("opacity","1"),p.transition().attr("opacity","0").remove()):p.remove();var d=0,g=0,v=o._dims,x=-1!==["up","down"].indexOf(o.direction);"dropdown"===o.type&&(x?g=v.headerHeight+f.gapButtonHeader:d=v.headerWidth+f.gapButtonHeader),"dropdown"===o.type&&"up"===o.direction&&(g=-f.gapButtonHeader+f.gapButton-v.openHeight),"dropdown"===o.type&&"left"===o.direction&&(d=-f.gapButtonHeader+f.gapButton-v.openWidth);var b={x:v.lx+d+o.pad.l,y:v.ly+g+o.pad.t,yPad:f.gapButton,xPad:f.gapButton,index:0},k={l:b.x+o.borderwidth,t:b.y+o.borderwidth};u.each((function(s,l){var c=n.select(this);c.call(y,o,s,t).call(M,o,b),c.on("click",(function(){n.event.defaultPrevented||(s.execute&&(s.args2&&o.active===l?(m(t,o,0,e,r,a,-1),i.executeAPICommand(t,s.method,s.args2)):(m(t,o,0,e,r,a,l),i.executeAPICommand(t,s.method,s.args))),t.emit("plotly_buttonclicked",{menu:o,button:s,active:o.active}))})),c.on("mouseover",(function(){c.call(w)})),c.on("mouseout",(function(){c.call(T,o),u.call(_,o)}))})),u.call(_,o),x?(k.w=Math.max(v.openWidth,v.headerWidth),k.h=b.y-k.t):(k.w=b.x-k.l,k.h=Math.max(v.openHeight,v.headerHeight)),k.direction=o.direction,a&&(u.size()?function(t,e,r,n,i,a){var o,s,l,c=i.direction,u="up"===c||"down"===c,h=i._dims,p=i.active;if(u)for(s=0,l=0;l0?[0]:[]);if(o.enter().append("g").classed(f.containerClassName,!0).style("cursor","pointer"),o.exit().each((function(){n.select(this).selectAll("g."+f.headerGroupClassName).each(a)})).remove(),0!==r.length){var l=o.selectAll("g."+f.headerGroupClassName).data(r,p);l.enter().append("g").classed(f.headerGroupClassName,!0);for(var c=s.ensureSingle(o,"g",f.dropdownButtonGroupClassName,(function(t){t.style("pointer-events","all")})),u=0;uw,A=s.barLength+2*s.barPad,M=s.barWidth+2*s.barPad,S=d,E=g+v;E+M>c&&(E=c-M);var L=this.container.selectAll("rect.scrollbar-horizontal").data(k?[0]:[]);L.exit().on(".drag",null).remove(),L.enter().append("rect").classed("scrollbar-horizontal",!0).call(i.fill,s.barColor),k?(this.hbar=L.attr({rx:s.barRadius,ry:s.barRadius,x:S,y:E,width:A,height:M}),this._hbarXMin=S+A/2,this._hbarTranslateMax=w-A):(delete this.hbar,delete this._hbarXMin,delete this._hbarTranslateMax);var C=v>T,P=s.barWidth+2*s.barPad,I=s.barLength+2*s.barPad,O=d+m,z=g;O+P>l&&(O=l-P);var D=this.container.selectAll("rect.scrollbar-vertical").data(C?[0]:[]);D.exit().on(".drag",null).remove(),D.enter().append("rect").classed("scrollbar-vertical",!0).call(i.fill,s.barColor),C?(this.vbar=D.attr({rx:s.barRadius,ry:s.barRadius,x:O,y:z,width:P,height:I}),this._vbarYMin=z+I/2,this._vbarTranslateMax=T-I):(delete this.vbar,delete this._vbarYMin,delete this._vbarTranslateMax);var R=this.id,F=u-.5,B=C?f+P+.5:f+.5,N=h-.5,j=k?p+M+.5:p+.5,U=o._topdefs.selectAll("#"+R).data(k||C?[0]:[]);if(U.exit().remove(),U.enter().append("clipPath").attr("id",R).append("rect"),k||C?(this._clipRect=U.select("rect").attr({x:Math.floor(F),y:Math.floor(N),width:Math.ceil(B)-Math.floor(F),height:Math.ceil(j)-Math.floor(N)}),this.container.call(a.setClipUrl,R,this.gd),this.bg.attr({x:d,y:g,width:m,height:v})):(this.bg.attr({width:0,height:0}),this.container.on("wheel",null).on(".drag",null).call(a.setClipUrl,null),delete this._clipRect),k||C){var V=n.behavior.drag().on("dragstart",(function(){n.event.sourceEvent.preventDefault()})).on("drag",this._onBoxDrag.bind(this));this.container.on("wheel",null).on("wheel",this._onBoxWheel.bind(this)).on(".drag",null).call(V);var H=n.behavior.drag().on("dragstart",(function(){n.event.sourceEvent.preventDefault(),n.event.sourceEvent.stopPropagation()})).on("drag",this._onBarDrag.bind(this));k&&this.hbar.on(".drag",null).call(H),C&&this.vbar.on(".drag",null).call(H)}this.setTranslate(e,r)},s.prototype.disable=function(){(this.hbar||this.vbar)&&(this.bg.attr({width:0,height:0}),this.container.on("wheel",null).on(".drag",null).call(a.setClipUrl,null),delete this._clipRect),this.hbar&&(this.hbar.on(".drag",null),this.hbar.remove(),delete this.hbar,delete this._hbarXMin,delete this._hbarTranslateMax),this.vbar&&(this.vbar.on(".drag",null),this.vbar.remove(),delete this.vbar,delete this._vbarYMin,delete this._vbarTranslateMax)},s.prototype._onBoxDrag=function(){var t=this.translateX,e=this.translateY;this.hbar&&(t-=n.event.dx),this.vbar&&(e-=n.event.dy),this.setTranslate(t,e)},s.prototype._onBoxWheel=function(){var t=this.translateX,e=this.translateY;this.hbar&&(t+=n.event.deltaY),this.vbar&&(e+=n.event.deltaY),this.setTranslate(t,e)},s.prototype._onBarDrag=function(){var t=this.translateX,e=this.translateY;if(this.hbar){var r=t+this._hbarXMin,i=r+this._hbarTranslateMax;t=(o.constrain(n.event.x,r,i)-r)/(i-r)*(this.position.w-this._box.w)}if(this.vbar){var a=e+this._vbarYMin,s=a+this._vbarTranslateMax;e=(o.constrain(n.event.y,a,s)-a)/(s-a)*(this.position.h-this._box.h)}this.setTranslate(t,e)},s.prototype.setTranslate=function(t,e){var r=this.position.w-this._box.w,n=this.position.h-this._box.h;if(t=o.constrain(t||0,0,r),e=o.constrain(e||0,0,n),this.translateX=t,this.translateY=e,this.container.call(a.setTranslate,this._box.l-this.position.l-t,this._box.t-this.position.t-e),this._clipRect&&this._clipRect.attr({x:Math.floor(this.position.l+t-.5),y:Math.floor(this.position.t+e-.5)}),this.hbar){var i=t/r;this.hbar.call(a.setTranslate,t+i*this._hbarTranslateMax,e)}if(this.vbar){var s=e/n;this.vbar.call(a.setTranslate,t,e+s*this._vbarTranslateMax)}}},{"../../lib":776,"../color":639,"../drawing":661,"@plotly/d3":58}],744:[function(t,e,r){"use strict";e.exports={FROM_BL:{left:0,center:.5,right:1,bottom:0,middle:.5,top:1},FROM_TL:{left:0,center:.5,right:1,bottom:1,middle:.5,top:0},FROM_BR:{left:1,center:.5,right:0,bottom:0,middle:.5,top:1},LINE_SPACING:1.3,CAP_SHIFT:.7,MID_SHIFT:.35,OPPOSITE_SIDE:{left:"right",right:"left",top:"bottom",bottom:"top"}}},{}],745:[function(t,e,r){"use strict";e.exports={axisRefDescription:function(t,e,r){return["If set to a",t,"axis id (e.g. *"+t+"* or","*"+t+"2*), the `"+t+"` position refers to a",t,"coordinate. If set to *paper*, the `"+t+"`","position refers to the distance from the",e,"of the plotting","area in normalized coordinates where *0* (*1*) corresponds to the",e,"("+r+"). If set to a",t,"axis ID followed by","*domain* (separated by a space), the position behaves like for","*paper*, but refers to the distance in fractions of the domain","length from the",e,"of the domain of that axis: e.g.,","*"+t+"2 domain* refers to the domain of the second",t," axis and a",t,"position of 0.5 refers to the","point between the",e,"and the",r,"of the domain of the","second",t,"axis."].join(" ")}}},{}],746:[function(t,e,r){"use strict";e.exports={INCREASING:{COLOR:"#3D9970",SYMBOL:"\u25b2"},DECREASING:{COLOR:"#FF4136",SYMBOL:"\u25bc"}}},{}],747:[function(t,e,r){"use strict";e.exports={FORMAT_LINK:"https://github.com/d3/d3-format/tree/v1.4.5#d3-format",DATE_FORMAT_LINK:"https://github.com/d3/d3-time-format/tree/v2.2.3#locale_format"}},{}],748:[function(t,e,r){"use strict";e.exports={COMPARISON_OPS:["=","!=","<",">=",">","<="],COMPARISON_OPS2:["=","<",">=",">","<="],INTERVAL_OPS:["[]","()","[)","(]","][",")(","](",")["],SET_OPS:["{}","}{"],CONSTRAINT_REDUCTION:{"=":"=","<":"<","<=":"<",">":">",">=":">","[]":"[]","()":"[]","[)":"[]","(]":"[]","][":"][",")(":"][","](":"][",")[":"]["}}},{}],749:[function(t,e,r){"use strict";e.exports={solid:[[],0],dot:[[.5,1],200],dash:[[.5,1],50],longdash:[[.5,1],10],dashdot:[[.5,.625,.875,1],50],longdashdot:[[.5,.7,.8,1],10]}},{}],750:[function(t,e,r){"use strict";e.exports={circle:"\u25cf","circle-open":"\u25cb",square:"\u25a0","square-open":"\u25a1",diamond:"\u25c6","diamond-open":"\u25c7",cross:"+",x:"\u274c"}},{}],751:[function(t,e,r){"use strict";e.exports={SHOW_PLACEHOLDER:100,HIDE_PLACEHOLDER:1e3,DESELECTDIM:.2}},{}],752:[function(t,e,r){"use strict";e.exports={BADNUM:void 0,FP_SAFE:1e-4*Number.MAX_VALUE,ONEMAXYEAR:316224e5,ONEAVGYEAR:315576e5,ONEMINYEAR:31536e6,ONEMAXQUARTER:79488e5,ONEAVGQUARTER:78894e5,ONEMINQUARTER:76896e5,ONEMAXMONTH:26784e5,ONEAVGMONTH:26298e5,ONEMINMONTH:24192e5,ONEWEEK:6048e5,ONEDAY:864e5,ONEHOUR:36e5,ONEMIN:6e4,ONESEC:1e3,EPOCHJD:2440587.5,ALMOST_EQUAL:.999999,LOG_CLIP:10,MINUS_SIGN:"\u2212"}},{}],753:[function(t,e,r){"use strict";r.xmlns="http://www.w3.org/2000/xmlns/",r.svg="http://www.w3.org/2000/svg",r.xlink="http://www.w3.org/1999/xlink",r.svgAttrs={xmlns:r.svg,"xmlns:xlink":r.xlink}},{}],754:[function(t,e,r){"use strict";r.version=t("./version").version,t("native-promise-only"),t("../build/plotcss");for(var n=t("./registry"),i=r.register=n.register,a=t("./plot_api"),o=Object.keys(a),s=0;splotly-logomark"}}},{}],756:[function(t,e,r){"use strict";r.isLeftAnchor=function(t){return"left"===t.xanchor||"auto"===t.xanchor&&t.x<=1/3},r.isCenterAnchor=function(t){return"center"===t.xanchor||"auto"===t.xanchor&&t.x>1/3&&t.x<2/3},r.isRightAnchor=function(t){return"right"===t.xanchor||"auto"===t.xanchor&&t.x>=2/3},r.isTopAnchor=function(t){return"top"===t.yanchor||"auto"===t.yanchor&&t.y>=2/3},r.isMiddleAnchor=function(t){return"middle"===t.yanchor||"auto"===t.yanchor&&t.y>1/3&&t.y<2/3},r.isBottomAnchor=function(t){return"bottom"===t.yanchor||"auto"===t.yanchor&&t.y<=1/3}},{}],757:[function(t,e,r){"use strict";var n=t("./mod"),i=n.mod,a=n.modHalf,o=Math.PI,s=2*o;function l(t){return Math.abs(t[1]-t[0])>s-1e-14}function c(t,e){return a(e-t,s)}function u(t,e){if(l(e))return!0;var r,n;e[0](n=i(n,s))&&(n+=s);var a=i(t,s),o=a+s;return a>=r&&a<=n||o>=r&&o<=n}function f(t,e,r,n,i,a,c){i=i||0,a=a||0;var u,f,h,p,d,m=l([r,n]);function g(t,e){return[t*Math.cos(e)+i,a-t*Math.sin(e)]}m?(u=0,f=o,h=s):r=i&&t<=a);var i,a},pathArc:function(t,e,r,n,i){return f(null,t,e,r,n,i,0)},pathSector:function(t,e,r,n,i){return f(null,t,e,r,n,i,1)},pathAnnulus:function(t,e,r,n,i,a){return f(t,e,r,n,i,a,1)}}},{"./mod":783}],758:[function(t,e,r){"use strict";var n=Array.isArray,i="undefined"!=typeof ArrayBuffer&&ArrayBuffer.isView?ArrayBuffer:{isView:function(){return!1}},a="undefined"==typeof DataView?function(){}:DataView;function o(t){return i.isView(t)&&!(t instanceof a)}function s(t){return n(t)||o(t)}function l(t,e,r){if(s(t)){if(s(t[0])){for(var n=r,i=0;ii.max?e.set(r):e.set(+t)}},integer:{coerceFunction:function(t,e,r,i){t%1||!n(t)||void 0!==i.min&&ti.max?e.set(r):e.set(+t)}},string:{coerceFunction:function(t,e,r,n){if("string"!=typeof t){var i="number"==typeof t;!0!==n.strict&&i?e.set(String(t)):e.set(r)}else n.noBlank&&!t?e.set(r):e.set(t)}},color:{coerceFunction:function(t,e,r){i(t).isValid()?e.set(t):e.set(r)}},colorlist:{coerceFunction:function(t,e,r){Array.isArray(t)&&t.length&&t.every((function(t){return i(t).isValid()}))?e.set(t):e.set(r)}},colorscale:{coerceFunction:function(t,e,r){e.set(o.get(t,r))}},angle:{coerceFunction:function(t,e,r){"auto"===t?e.set("auto"):n(t)?e.set(f(+t,360)):e.set(r)}},subplotid:{coerceFunction:function(t,e,r,n){var i=n.regex||u(r);"string"==typeof t&&i.test(t)?e.set(t):e.set(r)},validateFunction:function(t,e){var r=e.dflt;return t===r||"string"==typeof t&&!!u(r).test(t)}},flaglist:{coerceFunction:function(t,e,r,n){if("string"==typeof t)if(-1===(n.extras||[]).indexOf(t)){for(var i=t.split("+"),a=0;a=n&&t<=i?t:u}if("string"!=typeof t&&"number"!=typeof t)return u;t=String(t);var c=_(e),v=t.charAt(0);!c||"G"!==v&&"g"!==v||(t=t.substr(1),e="");var w=c&&"chinese"===e.substr(0,7),T=t.match(w?x:y);if(!T)return u;var k=T[1],A=T[3]||"1",M=Number(T[5]||1),S=Number(T[7]||0),E=Number(T[9]||0),L=Number(T[11]||0);if(c){if(2===k.length)return u;var C;k=Number(k);try{var P=g.getComponentMethod("calendars","getCal")(e);if(w){var I="i"===A.charAt(A.length-1);A=parseInt(A,10),C=P.newDate(k,P.toMonthIndex(k,A,I),M)}else C=P.newDate(k,Number(A),M)}catch(t){return u}return C?(C.toJD()-m)*f+S*h+E*p+L*d:u}k=2===k.length?(Number(k)+2e3-b)%100+b:Number(k),A-=1;var O=new Date(Date.UTC(2e3,A,M,S,E));return O.setUTCFullYear(k),O.getUTCMonth()!==A||O.getUTCDate()!==M?u:O.getTime()+L*d},n=r.MIN_MS=r.dateTime2ms("-9999"),i=r.MAX_MS=r.dateTime2ms("9999-12-31 23:59:59.9999"),r.isDateTime=function(t,e){return r.dateTime2ms(t,e)!==u};var T=90*f,k=3*h,A=5*p;function M(t,e,r,n,i){if((e||r||n||i)&&(t+=" "+w(e,2)+":"+w(r,2),(n||i)&&(t+=":"+w(n,2),i))){for(var a=4;i%10==0;)a-=1,i/=10;t+="."+w(i,a)}return t}r.ms2DateTime=function(t,e,r){if("number"!=typeof t||!(t>=n&&t<=i))return u;e||(e=0);var a,o,s,c,y,x,b=Math.floor(10*l(t+.05,1)),w=Math.round(t-b/10);if(_(r)){var S=Math.floor(w/f)+m,E=Math.floor(l(t,f));try{a=g.getComponentMethod("calendars","getCal")(r).fromJD(S).formatDate("yyyy-mm-dd")}catch(t){a=v("G%Y-%m-%d")(new Date(w))}if("-"===a.charAt(0))for(;a.length<11;)a="-0"+a.substr(1);else for(;a.length<10;)a="0"+a;o=e=n+f&&t<=i-f))return u;var e=Math.floor(10*l(t+.05,1)),r=new Date(Math.round(t-e/10));return M(a("%Y-%m-%d")(r),r.getHours(),r.getMinutes(),r.getSeconds(),10*r.getUTCMilliseconds()+e)},r.cleanDate=function(t,e,n){if(t===u)return e;if(r.isJSDate(t)||"number"==typeof t&&isFinite(t)){if(_(n))return s.error("JS Dates and milliseconds are incompatible with world calendars",t),e;if(!(t=r.ms2DateTimeLocal(+t))&&void 0!==e)return e}else if(!r.isDateTime(t,n))return s.error("unrecognized date",t),e;return t};var S=/%\d?f/g,E=/%h/g,L={1:"1",2:"1",3:"2",4:"2"};function C(t,e,r,n){t=t.replace(S,(function(t){var r=Math.min(+t.charAt(1)||6,6);return(e/1e3%1+2).toFixed(r).substr(2).replace(/0+$/,"")||"0"}));var i=new Date(Math.floor(e+.05));if(t=t.replace(E,(function(){return L[r("%q")(i)]})),_(n))try{t=g.getComponentMethod("calendars","worldCalFmt")(t,e,n)}catch(t){return"Invalid"}return r(t)(i)}var P=[59,59.9,59.99,59.999,59.9999];r.formatDate=function(t,e,r,n,i,a){if(i=_(i)&&i,!e)if("y"===r)e=a.year;else if("m"===r)e=a.month;else{if("d"!==r)return function(t,e){var r=l(t+.05,f),n=w(Math.floor(r/h),2)+":"+w(l(Math.floor(r/p),60),2);if("M"!==e){o(e)||(e=0);var i=(100+Math.min(l(t/d,60),P[e])).toFixed(e).substr(1);e>0&&(i=i.replace(/0+$/,"").replace(/[\.]$/,"")),n+=":"+i}return n}(t,r)+"\n"+C(a.dayMonthYear,t,n,i);e=a.dayMonth+"\n"+a.year}return C(e,t,n,i)};var I=3*f;r.incrementMonth=function(t,e,r){r=_(r)&&r;var n=l(t,f);if(t=Math.round(t-n),r)try{var i=Math.round(t/f)+m,a=g.getComponentMethod("calendars","getCal")(r),o=a.fromJD(i);return e%12?a.add(o,e,"m"):a.add(o,e/12,"y"),(o.toJD()-m)*f+n}catch(e){s.error("invalid ms "+t+" in calendar "+r)}var c=new Date(t+I);return c.setUTCMonth(c.getUTCMonth()+e)+n-I},r.findExactDates=function(t,e){for(var r,n,i=0,a=0,s=0,l=0,c=_(e)&&g.getComponentMethod("calendars","getCal")(e),u=0;u0&&t[e+1][0]<0)return e;return null}switch(e="RUS"===s||"FJI"===s?function(t){var e;if(null===c(t))e=t;else for(e=new Array(t.length),i=0;ie?r[n++]=[t[i][0]+360,t[i][1]]:i===e?(r[n++]=t[i],r[n++]=[t[i][0],-90]):r[n++]=t[i];var a=h.tester(r);a.pts.pop(),l.push(a)}:function(t){l.push(h.tester(t))},a.type){case"MultiPolygon":for(r=0;ri&&(i=c,e=l)}else e=r;return o.default(e).geometry.coordinates}(u),n.fIn=t,n.fOut=u,s.push(u)}else c.log(["Location",n.loc,"does not have a valid GeoJSON geometry.","Traces with locationmode *geojson-id* only support","*Polygon* and *MultiPolygon* geometries."].join(" "))}delete i[r]}switch(r.type){case"FeatureCollection":var h=r.features;for(n=0;n100?(clearInterval(a),n("Unexpected error while fetching from "+t)):void i++}),50)}))}for(var o=0;o0&&(r.push(i),i=[])}return i.length>0&&r.push(i),r},r.makeLine=function(t){return 1===t.length?{type:"LineString",coordinates:t[0]}:{type:"MultiLineString",coordinates:t}},r.makePolygon=function(t){if(1===t.length)return{type:"Polygon",coordinates:t};for(var e=new Array(t.length),r=0;r1||m<0||m>1?null:{x:t+l*m,y:e+f*m}}function l(t,e,r,n,i){var a=n*t+i*e;if(a<0)return n*n+i*i;if(a>r){var o=n-t,s=i-e;return o*o+s*s}var l=n*e-i*t;return l*l/r}r.segmentsIntersect=s,r.segmentDistance=function(t,e,r,n,i,a,o,c){if(s(t,e,r,n,i,a,o,c))return 0;var u=r-t,f=n-e,h=o-i,p=c-a,d=u*u+f*f,m=h*h+p*p,g=Math.min(l(u,f,d,i-t,a-e),l(u,f,d,o-t,c-e),l(h,p,m,t-i,e-a),l(h,p,m,r-i,n-a));return Math.sqrt(g)},r.getTextLocation=function(t,e,r,s){if(t===i&&s===a||(n={},i=t,a=s),n[r])return n[r];var l=t.getPointAtLength(o(r-s/2,e)),c=t.getPointAtLength(o(r+s/2,e)),u=Math.atan((c.y-l.y)/(c.x-l.x)),f=t.getPointAtLength(o(r,e)),h={x:(4*f.x+l.x+c.x)/6,y:(4*f.y+l.y+c.y)/6,theta:u};return n[r]=h,h},r.clearLocationCache=function(){i=null},r.getVisibleSegment=function(t,e,r){var n,i,a=e.left,o=e.right,s=e.top,l=e.bottom,c=0,u=t.getTotalLength(),f=u;function h(e){var r=t.getPointAtLength(e);0===e?n=r:e===u&&(i=r);var c=r.xo?r.x-o:0,f=r.yl?r.y-l:0;return Math.sqrt(c*c+f*f)}for(var p=h(c);p;){if((c+=p+r)>f)return;p=h(c)}for(p=h(f);p;){if(c>(f-=p+r))return;p=h(f)}return{min:c,max:f,len:f-c,total:u,isClosed:0===c&&f===u&&Math.abs(n.x-i.x)<.1&&Math.abs(n.y-i.y)<.1}},r.findPointOnPath=function(t,e,r,n){for(var i,a,o,s=(n=n||{}).pathLength||t.getTotalLength(),l=n.tolerance||.001,c=n.iterationLimit||30,u=t.getPointAtLength(0)[r]>t.getPointAtLength(s)[r]?-1:1,f=0,h=0,p=s;f0?p=i:h=i,f++}return a}},{"./mod":783}],772:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("tinycolor2"),a=t("color-normalize"),o=t("../components/colorscale"),s=t("../components/color/attributes").defaultLine,l=t("./array").isArrayOrTypedArray,c=a(s);function u(t,e){var r=t;return r[3]*=e,r}function f(t){if(n(t))return c;var e=a(t);return e.length?e:c}function h(t){return n(t)?t:1}e.exports={formatColor:function(t,e,r){var n,i,s,p,d,m=t.color,g=l(m),v=l(e),y=o.extractOpts(t),x=[];if(n=void 0!==y.colorscale?o.makeColorScaleFuncFromTrace(t):f,i=g?function(t,e){return void 0===t[e]?c:a(n(t[e]))}:f,s=v?function(t,e){return void 0===t[e]?1:h(t[e])}:h,g||v)for(var b=0;b1?(r*t+r*e)/r:t+e,i=String(n).length;if(i>16){var a=String(e).length;if(i>=String(t).length+a){var o=parseFloat(n).toPrecision(12);-1===o.indexOf("e+")&&(n=+o)}}return n}},{}],776:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-time-format").utcFormat,a=t("d3-format").format,o=t("fast-isnumeric"),s=t("../constants/numerical"),l=s.FP_SAFE,c=-l,u=s.BADNUM,f=e.exports={};f.adjustFormat=function(t){return!t||/^\d[.]\df/.test(t)||/[.]\d%/.test(t)?t:"0.f"===t?"~f":/^\d%/.test(t)?"~%":/^\ds/.test(t)?"~s":!/^[~,.0$]/.test(t)&&/[&fps]/.test(t)?"~"+t:t};var h={};f.warnBadFormat=function(t){var e=String(t);h[e]||(h[e]=1,f.warn('encountered bad format: "'+e+'"'))},f.noFormat=function(t){return String(t)},f.numberFormat=function(t){var e;try{e=a(f.adjustFormat(t))}catch(e){return f.warnBadFormat(t),f.noFormat}return e},f.nestedProperty=t("./nested_property"),f.keyedContainer=t("./keyed_container"),f.relativeAttr=t("./relative_attr"),f.isPlainObject=t("./is_plain_object"),f.toLogRange=t("./to_log_range"),f.relinkPrivateKeys=t("./relink_private");var p=t("./array");f.isTypedArray=p.isTypedArray,f.isArrayOrTypedArray=p.isArrayOrTypedArray,f.isArray1D=p.isArray1D,f.ensureArray=p.ensureArray,f.concat=p.concat,f.maxRowLength=p.maxRowLength,f.minRowLength=p.minRowLength;var d=t("./mod");f.mod=d.mod,f.modHalf=d.modHalf;var m=t("./coerce");f.valObjectMeta=m.valObjectMeta,f.coerce=m.coerce,f.coerce2=m.coerce2,f.coerceFont=m.coerceFont,f.coercePattern=m.coercePattern,f.coerceHoverinfo=m.coerceHoverinfo,f.coerceSelectionMarkerOpacity=m.coerceSelectionMarkerOpacity,f.validate=m.validate;var g=t("./dates");f.dateTime2ms=g.dateTime2ms,f.isDateTime=g.isDateTime,f.ms2DateTime=g.ms2DateTime,f.ms2DateTimeLocal=g.ms2DateTimeLocal,f.cleanDate=g.cleanDate,f.isJSDate=g.isJSDate,f.formatDate=g.formatDate,f.incrementMonth=g.incrementMonth,f.dateTick0=g.dateTick0,f.dfltRange=g.dfltRange,f.findExactDates=g.findExactDates,f.MIN_MS=g.MIN_MS,f.MAX_MS=g.MAX_MS;var v=t("./search");f.findBin=v.findBin,f.sorterAsc=v.sorterAsc,f.sorterDes=v.sorterDes,f.distinctVals=v.distinctVals,f.roundUp=v.roundUp,f.sort=v.sort,f.findIndexOfMin=v.findIndexOfMin,f.sortObjectKeys=t("./sort_object_keys");var y=t("./stats");f.aggNums=y.aggNums,f.len=y.len,f.mean=y.mean,f.median=y.median,f.midRange=y.midRange,f.variance=y.variance,f.stdev=y.stdev,f.interp=y.interp;var x=t("./matrix");f.init2dArray=x.init2dArray,f.transposeRagged=x.transposeRagged,f.dot=x.dot,f.translationMatrix=x.translationMatrix,f.rotationMatrix=x.rotationMatrix,f.rotationXYMatrix=x.rotationXYMatrix,f.apply3DTransform=x.apply3DTransform,f.apply2DTransform=x.apply2DTransform,f.apply2DTransform2=x.apply2DTransform2,f.convertCssMatrix=x.convertCssMatrix,f.inverseTransformMatrix=x.inverseTransformMatrix;var b=t("./angles");f.deg2rad=b.deg2rad,f.rad2deg=b.rad2deg,f.angleDelta=b.angleDelta,f.angleDist=b.angleDist,f.isFullCircle=b.isFullCircle,f.isAngleInsideSector=b.isAngleInsideSector,f.isPtInsideSector=b.isPtInsideSector,f.pathArc=b.pathArc,f.pathSector=b.pathSector,f.pathAnnulus=b.pathAnnulus;var _=t("./anchor_utils");f.isLeftAnchor=_.isLeftAnchor,f.isCenterAnchor=_.isCenterAnchor,f.isRightAnchor=_.isRightAnchor,f.isTopAnchor=_.isTopAnchor,f.isMiddleAnchor=_.isMiddleAnchor,f.isBottomAnchor=_.isBottomAnchor;var w=t("./geometry2d");f.segmentsIntersect=w.segmentsIntersect,f.segmentDistance=w.segmentDistance,f.getTextLocation=w.getTextLocation,f.clearLocationCache=w.clearLocationCache,f.getVisibleSegment=w.getVisibleSegment,f.findPointOnPath=w.findPointOnPath;var T=t("./extend");f.extendFlat=T.extendFlat,f.extendDeep=T.extendDeep,f.extendDeepAll=T.extendDeepAll,f.extendDeepNoArrays=T.extendDeepNoArrays;var k=t("./loggers");f.log=k.log,f.warn=k.warn,f.error=k.error;var A=t("./regex");f.counterRegex=A.counter;var M=t("./throttle");f.throttle=M.throttle,f.throttleDone=M.done,f.clearThrottle=M.clear;var S=t("./dom");function E(t){var e={};for(var r in t)for(var n=t[r],i=0;il||t=e)&&(o(t)&&t>=0&&t%1==0)},f.noop=t("./noop"),f.identity=t("./identity"),f.repeat=function(t,e){for(var r=new Array(e),n=0;nr?Math.max(r,Math.min(e,t)):Math.max(e,Math.min(r,t))},f.bBoxIntersect=function(t,e,r){return r=r||0,t.left<=e.right+r&&e.left<=t.right+r&&t.top<=e.bottom+r&&e.top<=t.bottom+r},f.simpleMap=function(t,e,r,n,i){for(var a=t.length,o=new Array(a),s=0;s=Math.pow(2,r)?i>10?(f.warn("randstr failed uniqueness"),l):t(e,r,n,(i||0)+1):l},f.OptionControl=function(t,e){t||(t={}),e||(e="opt");var r={optionList:[],_newoption:function(n){n[e]=t,r[n.name]=n,r.optionList.push(n)}};return r["_"+e]=t,r},f.smooth=function(t,e){if((e=Math.round(e)||0)<2)return t;var r,n,i,a,o=t.length,s=2*o,l=2*e-1,c=new Array(l),u=new Array(o);for(r=0;r=s&&(i-=s*Math.floor(i/s)),i<0?i=-1-i:i>=o&&(i=s-1-i),a+=t[i]*c[n];u[r]=a}return u},f.syncOrAsync=function(t,e,r){var n;function i(){return f.syncOrAsync(t,e,r)}for(;t.length;)if((n=(0,t.splice(0,1)[0])(e))&&n.then)return n.then(i);return r&&r(e)},f.stripTrailingSlash=function(t){return"/"===t.substr(-1)?t.substr(0,t.length-1):t},f.noneOrAll=function(t,e,r){if(t){var n,i=!1,a=!0;for(n=0;n0?e:0}))},f.fillArray=function(t,e,r,n){if(n=n||f.identity,f.isArrayOrTypedArray(t))for(var i=0;i1?i+o[1]:"";if(a&&(o.length>1||s.length>4||r))for(;n.test(s);)s=s.replace(n,"$1"+a+"$2");return s+l},f.TEMPLATE_STRING_REGEX=/%{([^\s%{}:]*)([:|\|][^}]*)?}/g;var z=/^\w*$/;f.templateString=function(t,e){var r={};return t.replace(f.TEMPLATE_STRING_REGEX,(function(t,n){var i;return z.test(n)?i=e[n]:(r[n]=r[n]||f.nestedProperty(e,n).get,i=r[n]()),f.isValidTextValue(i)?i:""}))};var D={max:10,count:0,name:"hovertemplate"};f.hovertemplateString=function(){return B.apply(D,arguments)};var R={max:10,count:0,name:"texttemplate"};f.texttemplateString=function(){return B.apply(R,arguments)};var F=/^[:|\|]/;function B(t,e,r){var n=this,a=arguments;e||(e={});var o={};return t.replace(f.TEMPLATE_STRING_REGEX,(function(t,s,l){var c,u,h,p="_xother"===s||"_yother"===s,d="_xother_"===s||"_yother_"===s,m="xother_"===s||"yother_"===s,g="xother"===s||"yother"===s||p||m||d,v=s;if((p||d)&&(v=v.substring(1)),(m||d)&&(v=v.substring(0,v.length-1)),g){if(void 0===(c=e[v]))return""}else for(h=3;h=48&&o<=57,c=s>=48&&s<=57;if(l&&(n=10*n+o-48),c&&(i=10*i+s-48),!l||!c){if(n!==i)return n-i;if(o!==s)return o-s}}return i-n};var N=2e9;f.seedPseudoRandom=function(){N=2e9},f.pseudoRandom=function(){var t=N;return N=(69069*N+1)%4294967296,Math.abs(N-t)<429496729?f.pseudoRandom():N/4294967296},f.fillText=function(t,e,r){var n=Array.isArray(r)?function(t){r.push(t)}:function(t){r.text=t},i=f.extractOption(t,e,"htx","hovertext");if(f.isValidTextValue(i))return n(i);var a=f.extractOption(t,e,"tx","text");return f.isValidTextValue(a)?n(a):void 0},f.isValidTextValue=function(t){return t||0===t},f.formatPercent=function(t,e){e=e||0;for(var r=(Math.round(100*t*Math.pow(10,e))*Math.pow(.1,e)).toFixed(e)+"%",n=0;n1&&(c=1):c=0,f.strTranslate(i-c*(r+o),a-c*(n+s))+f.strScale(c)+(l?"rotate("+l+(e?"":" "+r+" "+n)+")":"")},f.ensureUniformFontSize=function(t,e){var r=f.extendFlat({},e);return r.size=Math.max(e.size,t._fullLayout.uniformtext.minsize||0),r},f.join2=function(t,e,r){var n=t.length;return n>1?t.slice(0,-1).join(e)+r+t[n-1]:t.join(e)},f.bigFont=function(t){return Math.round(1.2*t)};var j=f.getFirefoxVersion(),U=null!==j&&j<86;f.getPositionFromD3Event=function(){return U?[n.event.layerX,n.event.layerY]:[n.event.offsetX,n.event.offsetY]}},{"../constants/numerical":752,"./anchor_utils":756,"./angles":757,"./array":758,"./clean_number":759,"./clear_responsive":761,"./coerce":762,"./dates":763,"./dom":764,"./extend":766,"./filter_unique":767,"./filter_visible":768,"./geometry2d":771,"./identity":774,"./increment":775,"./is_plain_object":777,"./keyed_container":778,"./localize":779,"./loggers":780,"./make_trace_groups":781,"./matrix":782,"./mod":783,"./nested_property":784,"./noop":785,"./notifier":786,"./preserve_drawing_buffer":790,"./push_unique":791,"./regex":793,"./relative_attr":794,"./relink_private":795,"./search":796,"./sort_object_keys":799,"./stats":800,"./throttle":803,"./to_log_range":804,"@plotly/d3":58,"d3-format":160,"d3-time-format":168,"fast-isnumeric":242}],777:[function(t,e,r){"use strict";e.exports=function(t){return window&&window.process&&window.process.versions?"[object Object]"===Object.prototype.toString.call(t):"[object Object]"===Object.prototype.toString.call(t)&&Object.getPrototypeOf(t).hasOwnProperty("hasOwnProperty")}},{}],778:[function(t,e,r){"use strict";var n=t("./nested_property"),i=/^\w*$/;e.exports=function(t,e,r,a){var o,s,l;r=r||"name",a=a||"value";var c={};e&&e.length?(l=n(t,e),s=l.get()):s=t,e=e||"";var u={};if(s)for(o=0;o2)return c[e]=2|c[e],h.set(t,null);if(f){for(o=e;o1){var e=["LOG:"];for(t=0;t1){var r=[];for(t=0;t"),"long")}},a.warn=function(){var t;if(n.logging>0){var e=["WARN:"];for(t=0;t0){var r=[];for(t=0;t"),"stick")}},a.error=function(){var t;if(n.logging>0){var e=["ERROR:"];for(t=0;t0){var r=[];for(t=0;t"),"stick")}}},{"../plot_api/plot_config":814,"./notifier":786}],781:[function(t,e,r){"use strict";var n=t("@plotly/d3");e.exports=function(t,e,r){var i=t.selectAll("g."+r.replace(/\s/g,".")).data(e,(function(t){return t[0].trace.uid}));i.exit().remove(),i.enter().append("g").attr("class",r),i.order();var a=t.classed("rangeplot")?"nodeRangePlot3":"node3";return i.each((function(t){t[0][a]=n.select(this)})),i}},{"@plotly/d3":58}],782:[function(t,e,r){"use strict";var n=t("gl-mat4");r.init2dArray=function(t,e){for(var r=new Array(t),n=0;ne/2?t-Math.round(t/e)*e:t}}},{}],784:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./array").isArrayOrTypedArray;function a(t,e){return function(){var r,n,o,s,l,c=t;for(s=0;s/g),l=0;la||c===i||cs)&&(!e||!l(t))}:function(t,e){var l=t[0],c=t[1];if(l===i||la||c===i||cs)return!1;var u,f,h,p,d,m=r.length,g=r[0][0],v=r[0][1],y=0;for(u=1;uMath.max(f,g)||c>Math.max(h,v)))if(cu||Math.abs(n(o,h))>i)return!0;return!1},a.filter=function(t,e){var r=[t[0]],n=0,i=0;function o(o){t.push(o);var s=r.length,l=n;r.splice(i+1);for(var c=l+1;c1&&o(t.pop());return{addPt:o,raw:t,filtered:r}}},{"../constants/numerical":752,"./matrix":782}],789:[function(t,e,r){(function(r){(function(){"use strict";var n=t("./show_no_webgl_msg"),i=t("regl");e.exports=function(t,e){var a=t._fullLayout,o=!0;return a._glcanvas.each((function(n){if(!n.regl&&(!n.pick||a._has("parcoords"))){try{n.regl=i({canvas:this,attributes:{antialias:!n.pick,preserveDrawingBuffer:!0},pixelRatio:t._context.plotGlPixelRatio||r.devicePixelRatio,extensions:e||[]})}catch(t){o=!1}n.regl||(o=!1),o&&this.addEventListener("webglcontextlost",(function(e){t&&t.emit&&t.emit("plotly_webglcontextlost",{event:e,layer:n.key})}),!1)}})),o||n({container:a._glcontainer.node()}),o}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./show_no_webgl_msg":798,regl:516}],790:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("is-mobile");e.exports=function(t){var e;if("string"!=typeof(e=t&&t.hasOwnProperty("userAgent")?t.userAgent:function(){var t;"undefined"!=typeof navigator&&(t=navigator.userAgent);t&&t.headers&&"string"==typeof t.headers["user-agent"]&&(t=t.headers["user-agent"]);return t}()))return!0;var r=i({ua:{headers:{"user-agent":e}},tablet:!0,featureDetect:!1});if(!r)for(var a=e.split(" "),o=1;o-1;s--){var l=a[s];if("Version/"===l.substr(0,8)){var c=l.substr(8).split(".")[0];if(n(c)&&(c=+c),c>=13)return!0}}}return r}},{"fast-isnumeric":242,"is-mobile":435}],791:[function(t,e,r){"use strict";e.exports=function(t,e){if(e instanceof RegExp){for(var r=e.toString(),n=0;ni.queueLength&&(t.undoQueue.queue.shift(),t.undoQueue.index--))},startSequence:function(t){t.undoQueue=t.undoQueue||{index:0,queue:[],sequence:!1},t.undoQueue.sequence=!0,t.undoQueue.beginSequence=!0},stopSequence:function(t){t.undoQueue=t.undoQueue||{index:0,queue:[],sequence:!1},t.undoQueue.sequence=!1,t.undoQueue.beginSequence=!1},undo:function(t){var e,r;if(!(void 0===t.undoQueue||isNaN(t.undoQueue.index)||t.undoQueue.index<=0)){for(t.undoQueue.index--,e=t.undoQueue.queue[t.undoQueue.index],t.undoQueue.inSequence=!0,r=0;r=t.undoQueue.queue.length)){for(e=t.undoQueue.queue[t.undoQueue.index],t.undoQueue.inSequence=!0,r=0;re}function u(t,e){return t>=e}r.findBin=function(t,e,r){if(n(e.start))return r?Math.ceil((t-e.start)/e.size-1e-9)-1:Math.floor((t-e.start)/e.size+1e-9);var a,o,f=0,h=e.length,p=0,d=h>1?(e[h-1]-e[0])/(h-1):1;for(o=d>=0?r?s:l:r?u:c,t+=1e-9*d*(r?-1:1)*(d>=0?1:-1);f90&&i.log("Long binary search..."),f-1},r.sorterAsc=function(t,e){return t-e},r.sorterDes=function(t,e){return e-t},r.distinctVals=function(t){var e,n=t.slice();for(n.sort(r.sorterAsc),e=n.length-1;e>-1&&n[e]===o;e--);for(var i,a=n[e]-n[0]||1,s=a/(e||1)/1e4,l=[],c=0;c<=e;c++){var u=n[c],f=u-i;void 0===i?(l.push(u),i=u):f>s&&(a=Math.min(a,f),l.push(u),i=u)}return{vals:l,minDiff:a}},r.roundUp=function(t,e,r){for(var n,i=0,a=e.length-1,o=0,s=r?0:1,l=r?1:0,c=r?Math.ceil:Math.floor;i0&&(n=1),r&&n)return t.sort(e)}return n?t:t.reverse()},r.findIndexOfMin=function(t,e){e=e||a;for(var r,n=1/0,i=0;ia.length)&&(o=a.length),n(e)||(e=!1),i(a[0])){for(l=new Array(o),s=0;st.length-1)return t[t.length-1];var r=e%1;return r*t[Math.ceil(e)]+(1-r)*t[Math.floor(e)]}},{"./array":758,"fast-isnumeric":242}],801:[function(t,e,r){"use strict";var n=t("color-normalize");e.exports=function(t){return t?n(t):[0,0,0,1]}},{"color-normalize":126}],802:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../lib"),a=i.strTranslate,o=t("../constants/xmlns_namespaces"),s=t("../constants/alignment").LINE_SPACING;function l(t,e){return t.node().getBoundingClientRect()[e]}var c=/([^$]*)([$]+[^$]*[$]+)([^$]*)/;r.convertToTspans=function(t,e,m){var M=t.text(),S=!t.attr("data-notex")&&"undefined"!=typeof MathJax&&M.match(c),C=n.select(t.node().parentNode);if(!C.empty()){var P=t.attr("class")?t.attr("class").split(" ")[0]:"text";return P+="-math",C.selectAll("svg."+P).remove(),C.selectAll("g."+P+"-group").remove(),t.style("display",null).attr({"data-unformatted":M,"data-math":"N"}),S?(e&&e._promises||[]).push(new Promise((function(e){t.style("display","none");var r=parseInt(t.node().style.fontSize,10),o={fontSize:r};!function(t,e,r){var a,o,s,l;MathJax.Hub.Queue((function(){return o=i.extendDeepAll({},MathJax.Hub.config),s=MathJax.Hub.processSectionDelay,void 0!==MathJax.Hub.processSectionDelay&&(MathJax.Hub.processSectionDelay=0),MathJax.Hub.Config({messageStyle:"none",tex2jax:{inlineMath:[["$","$"],["\\(","\\)"]]},displayAlign:"left"})}),(function(){if("SVG"!==(a=MathJax.Hub.config.menuSettings.renderer))return MathJax.Hub.setRenderer("SVG")}),(function(){var r="math-output-"+i.randstr({},64);return l=n.select("body").append("div").attr({id:r}).style({visibility:"hidden",position:"absolute"}).style({"font-size":e.fontSize+"px"}).text(t.replace(u,"\\lt ").replace(f,"\\gt ")),MathJax.Hub.Typeset(l.node())}),(function(){var e=n.select("body").select("#MathJax_SVG_glyphs");if(l.select(".MathJax_SVG").empty()||!l.select("svg").node())i.log("There was an error in the tex syntax.",t),r();else{var o=l.select("svg").node().getBoundingClientRect();r(l.select(".MathJax_SVG"),e,o)}if(l.remove(),"SVG"!==a)return MathJax.Hub.setRenderer(a)}),(function(){return void 0!==s&&(MathJax.Hub.processSectionDelay=s),MathJax.Hub.Config(o)}))}(S[2],o,(function(n,i,o){C.selectAll("svg."+P).remove(),C.selectAll("g."+P+"-group").remove();var s=n&&n.select("svg");if(!s||!s.node())return I(),void e();var c=C.append("g").classed(P+"-group",!0).attr({"pointer-events":"none","data-unformatted":M,"data-math":"Y"});c.node().appendChild(s.node()),i&&i.node()&&s.node().insertBefore(i.node().cloneNode(!0),s.node().firstChild),s.attr({class:P,height:o.height,preserveAspectRatio:"xMinYMin meet"}).style({overflow:"visible","pointer-events":"none"});var u=t.node().style.fill||"black",f=s.select("g");f.attr({fill:u,stroke:u});var h=l(f,"width"),p=l(f,"height"),d=+t.attr("x")-h*{start:0,middle:.5,end:1}[t.attr("text-anchor")||"start"],g=-(r||l(t,"height"))/4;"y"===P[0]?(c.attr({transform:"rotate("+[-90,+t.attr("x"),+t.attr("y")]+")"+a(-h/2,g-p/2)}),s.attr({x:+t.attr("x"),y:+t.attr("y")})):"l"===P[0]?s.attr({x:t.attr("x"),y:g-p/2}):"a"===P[0]&&0!==P.indexOf("atitle")?s.attr({x:0,y:g}):s.attr({x:d,y:+t.attr("y")+g-p/2}),m&&m.call(t,c),e(c)}))}))):I(),t}function I(){C.empty()||(P=t.attr("class")+"-math",C.select("svg."+P).remove()),t.text("").style("white-space","pre"),function(t,e){e=e.replace(g," ");var r,a=!1,l=[],c=-1;function u(){c++;var e=document.createElementNS(o.svg,"tspan");n.select(e).attr({class:"line",dy:c*s+"em"}),t.appendChild(e),r=e;var i=l;if(l=[{node:e}],i.length>1)for(var a=1;a doesnt match end tag <"+t+">. Pretending it did match.",e),r=l[l.length-1].node}else i.log("Ignoring unexpected end tag .",e)}x.test(e)?u():(r=t,l=[{node:t}]);for(var S=e.split(v),C=0;C|>|>)/g;var h={sup:"font-size:70%",sub:"font-size:70%",b:"font-weight:bold",i:"font-style:italic",a:"cursor:pointer",span:"",em:"font-style:italic;font-weight:bold"},p={sub:"0.3em",sup:"-0.6em"},d={sub:"-0.21em",sup:"0.42em"},m=["http:","https:","mailto:","",void 0,":"],g=r.NEWLINES=/(\r\n?|\n)/g,v=/(<[^<>]*>)/,y=/<(\/?)([^ >]*)(\s+(.*))?>/i,x=//i;r.BR_TAG_ALL=//gi;var b=/(^|[\s"'])style\s*=\s*("([^"]*);?"|'([^']*);?')/i,_=/(^|[\s"'])href\s*=\s*("([^"]*)"|'([^']*)')/i,w=/(^|[\s"'])target\s*=\s*("([^"\s]*)"|'([^'\s]*)')/i,T=/(^|[\s"'])popup\s*=\s*("([\w=,]*)"|'([\w=,]*)')/i;function k(t,e){if(!t)return null;var r=t.match(e),n=r&&(r[3]||r[4]);return n&&E(n)}var A=/(^|;)\s*color:/;r.plainText=function(t,e){for(var r=void 0!==(e=e||{}).len&&-1!==e.len?e.len:1/0,n=void 0!==e.allowedTags?e.allowedTags:["br"],i="...".length,a=t.split(v),o=[],s="",l=0,c=0;ci?o.push(u.substr(0,d-i)+"..."):o.push(u.substr(0,d));break}s=""}}return o.join("")};var M={mu:"\u03bc",amp:"&",lt:"<",gt:">",nbsp:"\xa0",times:"\xd7",plusmn:"\xb1",deg:"\xb0"},S=/&(#\d+|#x[\da-fA-F]+|[a-z]+);/g;function E(t){return t.replace(S,(function(t,e){return("#"===e.charAt(0)?function(t){if(t>1114111)return;var e=String.fromCodePoint;if(e)return e(t);var r=String.fromCharCode;return t<=65535?r(t):r(55232+(t>>10),t%1024+56320)}("x"===e.charAt(1)?parseInt(e.substr(2),16):parseInt(e.substr(1),10)):M[e])||t}))}function L(t){var e=encodeURI(decodeURI(t)),r=document.createElement("a"),n=document.createElement("a");r.href=t,n.href=e;var i=r.protocol,a=n.protocol;return-1!==m.indexOf(i)&&-1!==m.indexOf(a)?e:""}function C(t,e,r){var n,a,o,s=r.horizontalAlign,l=r.verticalAlign||"top",c=t.node().getBoundingClientRect(),u=e.node().getBoundingClientRect();return a="bottom"===l?function(){return c.bottom-n.height}:"middle"===l?function(){return c.top+(c.height-n.height)/2}:function(){return c.top},o="right"===s?function(){return c.right-n.width}:"center"===s?function(){return c.left+(c.width-n.width)/2}:function(){return c.left},function(){n=this.node().getBoundingClientRect();var t=o()-u.left,e=a()-u.top,s=r.gd||{};if(r.gd){s._fullLayout._calcInverseTransform(s);var l=i.apply3DTransform(s._fullLayout._invTransform)(t,e);t=l[0],e=l[1]}return this.style({top:e+"px",left:t+"px","z-index":1e3}),this}}r.convertEntities=E,r.sanitizeHTML=function(t){t=t.replace(g," ");for(var e=document.createElement("p"),r=e,i=[],a=t.split(v),o=0;oa.ts+e?l():a.timer=setTimeout((function(){l(),a.timer=null}),e)},r.done=function(t){var e=n[t];return e&&e.timer?new Promise((function(t){var r=e.onDone;e.onDone=function(){r&&r(),t(),e.onDone=null}})):Promise.resolve()},r.clear=function(t){if(t)i(n[t]),delete n[t];else for(var e in n)r.clear(e)}},{}],804:[function(t,e,r){"use strict";var n=t("fast-isnumeric");e.exports=function(t,e){if(t>0)return Math.log(t)/Math.LN10;var r=Math.log(Math.min(e[0],e[1]))/Math.LN10;return n(r)||(r=Math.log(Math.max(e[0],e[1]))/Math.LN10-6),r}},{"fast-isnumeric":242}],805:[function(t,e,r){"use strict";var n=e.exports={},i=t("../plots/geo/constants").locationmodeToLayer,a=t("topojson-client").feature;n.getTopojsonName=function(t){return[t.scope.replace(/ /g,"-"),"_",t.resolution.toString(),"m"].join("")},n.getTopojsonPath=function(t,e){return t+e+".json"},n.getTopojsonFeatures=function(t,e){var r=i[t.locationmode],n=e.objects[r];return a(e,n).features}},{"../plots/geo/constants":858,"topojson-client":575}],806:[function(t,e,r){"use strict";e.exports={moduleType:"locale",name:"en-US",dictionary:{"Click to enter Colorscale title":"Click to enter Colorscale title"},format:{date:"%m/%d/%Y"}}},{}],807:[function(t,e,r){"use strict";e.exports={moduleType:"locale",name:"en",dictionary:{"Click to enter Colorscale title":"Click to enter Colourscale title"},format:{days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],periods:["AM","PM"],dateTime:"%a %b %e %X %Y",date:"%d/%m/%Y",time:"%H:%M:%S",decimal:".",thousands:",",grouping:[3],currency:["$",""],year:"%Y",month:"%b %Y",dayMonth:"%b %-d",dayMonthYear:"%b %-d, %Y"}}},{}],808:[function(t,e,r){"use strict";var n=t("../registry");e.exports=function(t){for(var e,r,i=n.layoutArrayContainers,a=n.layoutArrayRegexes,o=t.split("[")[0],s=0;s0&&o.log("Clearing previous rejected promises from queue."),t._promises=[]},r.cleanLayout=function(t){var e,n;t||(t={}),t.xaxis1&&(t.xaxis||(t.xaxis=t.xaxis1),delete t.xaxis1),t.yaxis1&&(t.yaxis||(t.yaxis=t.yaxis1),delete t.yaxis1),t.scene1&&(t.scene||(t.scene=t.scene1),delete t.scene1);var a=(s.subplotsRegistry.cartesian||{}).attrRegex,l=(s.subplotsRegistry.polar||{}).attrRegex,f=(s.subplotsRegistry.ternary||{}).attrRegex,h=(s.subplotsRegistry.gl3d||{}).attrRegex,m=Object.keys(t);for(e=0;e3?(O.x=1.02,O.xanchor="left"):O.x<-2&&(O.x=-.02,O.xanchor="right"),O.y>3?(O.y=1.02,O.yanchor="bottom"):O.y<-2&&(O.y=-.02,O.yanchor="top")),d(t),"rotate"===t.dragmode&&(t.dragmode="orbit"),c.clean(t),t.template&&t.template.layout&&r.cleanLayout(t.template.layout),t},r.cleanData=function(t){for(var e=0;e0)return t.substr(0,e)}r.hasParent=function(t,e){for(var r=b(e);r;){if(r in t)return!0;r=b(r)}return!1};var _=["x","y","z"];r.clearAxisTypes=function(t,e,r){for(var n=0;n1&&a.warn("Full array edits are incompatible with other edits",f);var y=r[""][""];if(c(y))e.set(null);else{if(!Array.isArray(y))return a.warn("Unrecognized full array edit value",f,y),!0;e.set(y)}return!m&&(h(g,v),p(t),!0)}var x,b,_,w,T,k,A,M,S=Object.keys(r).map(Number).sort(o),E=e.get(),L=E||[],C=u(v,f).get(),P=[],I=-1,O=L.length;for(x=0;xL.length-(A?0:1))a.warn("index out of range",f,_);else if(void 0!==k)T.length>1&&a.warn("Insertion & removal are incompatible with edits to the same index.",f,_),c(k)?P.push(_):A?("add"===k&&(k={}),L.splice(_,0,k),C&&C.splice(_,0,{})):a.warn("Unrecognized full object edit value",f,_,k),-1===I&&(I=_);else for(b=0;b=0;x--)L.splice(P[x],1),C&&C.splice(P[x],1);if(L.length?E||e.set(L):e.set(null),m)return!1;if(h(g,v),d!==i){var z;if(-1===I)z=S;else{for(O=Math.max(L.length,O),z=[],x=0;x=I);x++)z.push(_);for(x=I;x=t.data.length||i<-t.data.length)throw new Error(r+" must be valid indices for gd.data.");if(e.indexOf(i,n+1)>-1||i>=0&&e.indexOf(-t.data.length+i)>-1||i<0&&e.indexOf(t.data.length+i)>-1)throw new Error("each index in "+r+" must be unique.")}}function I(t,e,r){if(!Array.isArray(t.data))throw new Error("gd.data must be an array.");if(void 0===e)throw new Error("currentIndices is a required argument.");if(Array.isArray(e)||(e=[e]),P(t,e,"currentIndices"),void 0===r||Array.isArray(r)||(r=[r]),void 0!==r&&P(t,r,"newIndices"),void 0!==r&&e.length!==r.length)throw new Error("current and new indices must be of equal length.")}function O(t,e,r,n,a){!function(t,e,r,n){var i=o.isPlainObject(n);if(!Array.isArray(t.data))throw new Error("gd.data must be an array");if(!o.isPlainObject(e))throw new Error("update must be a key:value object");if(void 0===r)throw new Error("indices must be an integer or array of integers");for(var a in P(t,r,"indices"),e){if(!Array.isArray(e[a])||e[a].length!==r.length)throw new Error("attribute "+a+" must be an array of length equal to indices array length");if(i&&(!(a in n)||!Array.isArray(n[a])||n[a].length!==e[a].length))throw new Error("when maxPoints is set as a key:value object it must contain a 1:1 corrispondence with the keys and number of traces in the update object")}}(t,e,r,n);for(var l=function(t,e,r,n){var a,l,c,u,f,h=o.isPlainObject(n),p=[];for(var d in Array.isArray(r)||(r=[r]),r=C(r,t.data.length-1),e)for(var m=0;m-1?l(r,r.replace("titlefont","title.font")):r.indexOf("titleposition")>-1?l(r,r.replace("titleposition","title.position")):r.indexOf("titleside")>-1?l(r,r.replace("titleside","title.side")):r.indexOf("titleoffset")>-1&&l(r,r.replace("titleoffset","title.offset")):l(r,r.replace("title","title.text"));function l(e,r){t[r]=t[e],delete t[e]}}function U(t,e,r){t=o.getGraphDiv(t),_.clearPromiseQueue(t);var n={};if("string"==typeof e)n[e]=r;else{if(!o.isPlainObject(e))return o.warn("Relayout fail.",e,r),Promise.reject();n=o.extendFlat({},e)}Object.keys(n).length&&(t.changed=!0);var i=W(t,n),a=i.flags;a.calc&&(t.calcdata=void 0);var s=[h.previousPromises];a.layoutReplot?s.push(w.layoutReplot):Object.keys(n).length&&(V(t,a,i)||h.supplyDefaults(t),a.legend&&s.push(w.doLegend),a.layoutstyle&&s.push(w.layoutStyles),a.axrange&&H(s,i.rangesAltered),a.ticks&&s.push(w.doTicksRelayout),a.modebar&&s.push(w.doModeBar),a.camera&&s.push(w.doCamera),a.colorbars&&s.push(w.doColorBars),s.push(M)),s.push(h.rehover,h.redrag),c.add(t,U,[t,i.undoit],U,[t,i.redoit]);var l=o.syncOrAsync(s,t);return l&&l.then||(l=Promise.resolve(t)),l.then((function(){return t.emit("plotly_relayout",i.eventData),t}))}function V(t,e,r){var n=t._fullLayout;if(!e.axrange)return!1;for(var i in e)if("axrange"!==i&&e[i])return!1;for(var a in r.rangesAltered){var o=p.id2name(a),s=t.layout[o],l=n[o];if(l.autorange=s.autorange,s.range&&(l.range=s.range.slice()),l.cleanRange(),l._matchGroup)for(var c in l._matchGroup)if(c!==a){var u=n[p.id2name(c)];u.autorange=l.autorange,u.range=l.range.slice(),u._input.range=l.range.slice()}}return!0}function H(t,e){var r=e?function(t){var r=[],n=!0;for(var i in e){var a=p.getFromId(t,i);if(r.push(i),-1!==(a.ticklabelposition||"").indexOf("inside")&&a._anchorAxis&&r.push(a._anchorAxis._id),a._matchGroup)for(var o in a._matchGroup)e[o]||r.push(o);a.automargin&&(n=!1)}return p.draw(t,r,{skipTitle:n})}:function(t){return p.draw(t,"redraw")};t.push(y,w.doAutoRangeAndConstraints,r,w.drawData,w.finalDraw)}var q=/^[xyz]axis[0-9]*\.range(\[[0|1]\])?$/,G=/^[xyz]axis[0-9]*\.autorange$/,Y=/^[xyz]axis[0-9]*\.domain(\[[0|1]\])?$/;function W(t,e){var r,n,i,a=t.layout,l=t._fullLayout,c=l._guiEditing,h=F(l._preGUI,c),d=Object.keys(e),m=p.list(t),g=o.extendDeepAll({},e),v={};for(j(e),d=Object.keys(e),n=0;n0&&"string"!=typeof O.parts[D];)D--;var B=O.parts[D],N=O.parts[D-1]+"."+B,U=O.parts.slice(0,D).join("."),V=s(t.layout,U).get(),H=s(l,U).get(),W=O.get();if(void 0!==z){M[I]=z,S[I]="reverse"===B?z:R(W);var Z=f.getLayoutValObject(l,O.parts);if(Z&&Z.impliedEdits&&null!==z)for(var J in Z.impliedEdits)E(o.relativeAttr(I,J),Z.impliedEdits[J]);if(-1!==["width","height"].indexOf(I))if(z){E("autosize",null);var K="height"===I?"width":"height";E(K,l[K])}else l[I]=t._initialAutoSize[I];else if("autosize"===I)E("width",z?null:l.width),E("height",z?null:l.height);else if(N.match(q))P(N),s(l,U+"._inputRange").set(null);else if(N.match(G)){P(N),s(l,U+"._inputRange").set(null);var Q=s(l,U).get();Q._inputDomain&&(Q._input.domain=Q._inputDomain.slice())}else N.match(Y)&&s(l,U+"._inputDomain").set(null);if("type"===B){L=V;var $="linear"===H.type&&"log"===z,tt="log"===H.type&&"linear"===z;if($||tt){if(L&&L.range)if(H.autorange)$&&(L.range=L.range[1]>L.range[0]?[1,2]:[2,1]);else{var et=L.range[0],rt=L.range[1];$?(et<=0&&rt<=0&&E(U+".autorange",!0),et<=0?et=rt/1e6:rt<=0&&(rt=et/1e6),E(U+".range[0]",Math.log(et)/Math.LN10),E(U+".range[1]",Math.log(rt)/Math.LN10)):(E(U+".range[0]",Math.pow(10,et)),E(U+".range[1]",Math.pow(10,rt)))}else E(U+".autorange",!0);Array.isArray(l._subplots.polar)&&l._subplots.polar.length&&l[O.parts[0]]&&"radialaxis"===O.parts[1]&&delete l[O.parts[0]]._subplot.viewInitial["radialaxis.range"],u.getComponentMethod("annotations","convertCoords")(t,H,z,E),u.getComponentMethod("images","convertCoords")(t,H,z,E)}else E(U+".autorange",!0),E(U+".range",null);s(l,U+"._inputRange").set(null)}else if(B.match(k)){var nt=s(l,I).get(),it=(z||{}).type;it&&"-"!==it||(it="linear"),u.getComponentMethod("annotations","convertCoords")(t,nt,it,E),u.getComponentMethod("images","convertCoords")(t,nt,it,E)}var at=b.containerArrayMatch(I);if(at){r=at.array,n=at.index;var ot=at.property,st=Z||{editType:"calc"};""!==n&&""===ot&&(b.isAddVal(z)?S[I]=null:b.isRemoveVal(z)?S[I]=(s(a,r).get()||[])[n]:o.warn("unrecognized full object value",e)),T.update(A,st),v[r]||(v[r]={});var lt=v[r][n];lt||(lt=v[r][n]={}),lt[ot]=z,delete e[I]}else"reverse"===B?(V.range?V.range.reverse():(E(U+".autorange",!0),V.range=[1,0]),H.autorange?A.calc=!0:A.plot=!0):(l._has("scatter-like")&&l._has("regl")&&"dragmode"===I&&("lasso"===z||"select"===z)&&"lasso"!==W&&"select"!==W||l._has("gl2d")?A.plot=!0:Z?T.update(A,Z):A.calc=!0,O.set(z))}}for(r in v){b.applyContainerArrayChanges(t,h(a,r),v[r],A,h)||(A.plot=!0)}for(var ct in C){var ut=(L=p.getFromId(t,ct))&&L._constraintGroup;if(ut)for(var ft in A.calc=!0,ut)C[ft]||(p.getFromId(t,ft)._constraintShrinkable=!0)}return(X(t)||e.height||e.width)&&(A.plot=!0),(A.plot||A.calc)&&(A.layoutReplot=!0),{flags:A,rangesAltered:C,undoit:S,redoit:M,eventData:g}}function X(t){var e=t._fullLayout,r=e.width,n=e.height;return t.layout.autosize&&h.plotAutoSize(t,t.layout,e),e.width!==r||e.height!==n}function Z(t,e,n,i){t=o.getGraphDiv(t),_.clearPromiseQueue(t),o.isPlainObject(e)||(e={}),o.isPlainObject(n)||(n={}),Object.keys(e).length&&(t.changed=!0),Object.keys(n).length&&(t.changed=!0);var a=_.coerceTraceIndices(t,i),s=N(t,o.extendFlat({},e),a),l=s.flags,u=W(t,o.extendFlat({},n)),f=u.flags;(l.calc||f.calc)&&(t.calcdata=void 0),l.clearAxisTypes&&_.clearAxisTypes(t,a,n);var p=[];f.layoutReplot?p.push(w.layoutReplot):l.fullReplot?p.push(r._doPlot):(p.push(h.previousPromises),V(t,f,u)||h.supplyDefaults(t),l.style&&p.push(w.doTraceStyle),(l.colorbars||f.colorbars)&&p.push(w.doColorBars),f.legend&&p.push(w.doLegend),f.layoutstyle&&p.push(w.layoutStyles),f.axrange&&H(p,u.rangesAltered),f.ticks&&p.push(w.doTicksRelayout),f.modebar&&p.push(w.doModeBar),f.camera&&p.push(w.doCamera),p.push(M)),p.push(h.rehover,h.redrag),c.add(t,Z,[t,s.undoit,u.undoit,s.traces],Z,[t,s.redoit,u.redoit,s.traces]);var d=o.syncOrAsync(p,t);return d&&d.then||(d=Promise.resolve(t)),d.then((function(){return t.emit("plotly_update",{data:s.eventData,layout:u.eventData}),t}))}function J(t){return function(e){e._fullLayout._guiEditing=!0;var r=t.apply(null,arguments);return e._fullLayout._guiEditing=!1,r}}var K=[{pattern:/^hiddenlabels/,attr:"legend.uirevision"},{pattern:/^((x|y)axis\d*)\.((auto)?range|title\.text)/},{pattern:/axis\d*\.showspikes$/,attr:"modebar.uirevision"},{pattern:/(hover|drag)mode$/,attr:"modebar.uirevision"},{pattern:/^(scene\d*)\.camera/},{pattern:/^(geo\d*)\.(projection|center|fitbounds)/},{pattern:/^(ternary\d*\.[abc]axis)\.(min|title\.text)$/},{pattern:/^(polar\d*\.radialaxis)\.((auto)?range|angle|title\.text)/},{pattern:/^(polar\d*\.angularaxis)\.rotation/},{pattern:/^(mapbox\d*)\.(center|zoom|bearing|pitch)/},{pattern:/^legend\.(x|y)$/,attr:"editrevision"},{pattern:/^(shapes|annotations)/,attr:"editrevision"},{pattern:/^title\.text$/,attr:"editrevision"}],Q=[{pattern:/^selectedpoints$/,attr:"selectionrevision"},{pattern:/(^|value\.)visible$/,attr:"legend.uirevision"},{pattern:/^dimensions\[\d+\]\.constraintrange/},{pattern:/^node\.(x|y|groups)/},{pattern:/^level$/},{pattern:/(^|value\.)name$/},{pattern:/colorbar\.title\.text$/},{pattern:/colorbar\.(x|y)$/,attr:"editrevision"}];function $(t,e){for(var r=0;r1;)if(n.pop(),void 0!==(r=s(e,n.join(".")+".uirevision").get()))return r;return e.uirevision}function et(t,e){for(var r=0;r=i.length?i[0]:i[t]:i}function l(t){return Array.isArray(a)?t>=a.length?a[0]:a[t]:a}function c(t,e){var r=0;return function(){if(t&&++r===e)return t()}}return void 0===n._frameWaitingCnt&&(n._frameWaitingCnt=0),new Promise((function(a,u){function f(){n._currentFrame&&n._currentFrame.onComplete&&n._currentFrame.onComplete();var e=n._currentFrame=n._frameQueue.shift();if(e){var r=e.name?e.name.toString():null;t._fullLayout._currentFrame=r,n._lastFrameAt=Date.now(),n._timeToNext=e.frameOpts.duration,h.transition(t,e.frame.data,e.frame.layout,_.coerceTraceIndices(t,e.frame.traces),e.frameOpts,e.transitionOpts).then((function(){e.onComplete&&e.onComplete()})),t.emit("plotly_animatingframe",{name:r,frame:e.frame,animation:{frame:e.frameOpts,transition:e.transitionOpts}})}else t.emit("plotly_animated"),window.cancelAnimationFrame(n._animationRaf),n._animationRaf=null}function p(){t.emit("plotly_animating"),n._lastFrameAt=-1/0,n._timeToNext=0,n._runningTransitions=0,n._currentFrame=null;var e=function(){n._animationRaf=window.requestAnimationFrame(e),Date.now()-n._lastFrameAt>n._timeToNext&&f()};e()}var d,m,g=0;function v(t){return Array.isArray(i)?g>=i.length?t.transitionOpts=i[g]:t.transitionOpts=i[0]:t.transitionOpts=i,g++,t}var y=[],x=null==e,b=Array.isArray(e);if(!x&&!b&&o.isPlainObject(e))y.push({type:"object",data:v(o.extendFlat({},e))});else if(x||-1!==["string","number"].indexOf(typeof e))for(d=0;d0&&kk)&&A.push(m);y=A}}y.length>0?function(e){if(0!==e.length){for(var i=0;i=0;n--)if(o.isPlainObject(e[n])){var m=e[n].name,g=(u[m]||d[m]||{}).name,v=e[n].name,y=u[g]||d[g];g&&v&&"number"==typeof v&&y&&A<5&&(A++,o.warn('addFrames: overwriting frame "'+(u[g]||d[g]).name+'" with a frame whose name of type "number" also equates to "'+g+'". This is valid but may potentially lead to unexpected behavior since all plotly.js frame names are stored internally as strings.'),5===A&&o.warn("addFrames: This API call has yielded too many of these warnings. For the rest of this call, further warnings about numeric frame names will be suppressed.")),d[m]={name:m},p.push({frame:h.supplyFrameDefaults(e[n]),index:r&&void 0!==r[n]&&null!==r[n]?r[n]:f+n})}p.sort((function(t,e){return t.index>e.index?-1:t.index=0;n--){if("number"==typeof(i=p[n].frame).name&&o.warn("Warning: addFrames accepts frames with numeric names, but the numbers areimplicitly cast to strings"),!i.name)for(;u[i.name="frame "+t._transitionData._counter++];);if(u[i.name]){for(a=0;a=0;r--)n=e[r],a.push({type:"delete",index:n}),s.unshift({type:"insert",index:n,value:i[n]});var l=h.modifyFrames,u=h.modifyFrames,f=[t,s],p=[t,a];return c&&c.add(t,l,f,u,p),h.modifyFrames(t,a)},r.addTraces=function t(e,n,i){e=o.getGraphDiv(e);var a,s,l=[],u=r.deleteTraces,f=t,h=[e,l],p=[e,n];for(function(t,e,r){var n,i;if(!Array.isArray(t.data))throw new Error("gd.data must be an array.");if(void 0===e)throw new Error("traces must be defined.");for(Array.isArray(e)||(e=[e]),n=0;n=0&&r=0&&r=a.length)return!1;if(2===t.dimensions){if(r++,e.length===r)return t;var o=e[r];if(!y(o))return!1;t=a[i][o]}else t=a[i]}else t=a}}return t}function y(t){return t===Math.round(t)&&t>=0}function x(){var t,e,r={};for(t in f(r,o),n.subplotsRegistry){if((e=n.subplotsRegistry[t]).layoutAttributes)if(Array.isArray(e.attr))for(var i=0;i=l.length)return!1;i=(r=(n.transformsRegistry[l[c].type]||{}).attributes)&&r[e[2]],s=3}else{var u=t._module;if(u||(u=(n.modules[t.type||a.type.dflt]||{})._module),!u)return!1;if(!(i=(r=u.attributes)&&r[o])){var f=u.basePlotModule;f&&f.attributes&&(i=f.attributes[o])}i||(i=a[o])}return v(i,e,s)},r.getLayoutValObject=function(t,e){return v(function(t,e){var r,i,a,s,l=t._basePlotModules;if(l){var c;for(r=0;r=i&&(r._input||{})._templateitemname;o&&(a=i);var s,l=e+"["+a+"]";function c(){s={},o&&(s[l]={},s[l].templateitemname=o)}function u(t,e){o?n.nestedProperty(s[l],t).set(e):s[l+"."+t]=e}function f(){var t=s;return c(),t}return c(),{modifyBase:function(t,e){s[t]=e},modifyItem:u,getUpdateObj:f,applyUpdate:function(e,r){e&&u(e,r);var i=f();for(var a in i)n.nestedProperty(t,a).set(i[a])}}}},{"../lib":776,"../plots/attributes":823}],817:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../registry"),a=t("../plots/plots"),o=t("../lib"),s=t("../lib/clear_gl_canvases"),l=t("../components/color"),c=t("../components/drawing"),u=t("../components/titles"),f=t("../components/modebar"),h=t("../plots/cartesian/axes"),p=t("../constants/alignment"),d=t("../plots/cartesian/constraints"),m=d.enforce,g=d.clean,v=t("../plots/cartesian/autorange").doAutoRange;function y(t,e,r){for(var n=0;n=t[1]||i[1]<=t[0])&&(a[0]e[0]))return!0}return!1}function x(t){var e,i,s,u,d,m,g=t._fullLayout,v=g._size,x=v.p,_=h.list(t,"",!0);if(g._paperdiv.style({width:t._context.responsive&&g.autosize&&!t._context._hasZeroWidth&&!t.layout.width?"100%":g.width+"px",height:t._context.responsive&&g.autosize&&!t._context._hasZeroHeight&&!t.layout.height?"100%":g.height+"px"}).selectAll(".main-svg").call(c.setSize,g.width,g.height),t._context.setBackground(t,g.paper_bgcolor),r.drawMainTitle(t),f.manage(t),!g._has("cartesian"))return a.previousPromises(t);function T(t,e,r){var n=t._lw/2;return"x"===t._id.charAt(0)?e?"top"===r?e._offset-x-n:e._offset+e._length+x+n:v.t+v.h*(1-(t.position||0))+n%1:e?"right"===r?e._offset+e._length+x+n:e._offset-x-n:v.l+v.w*(t.position||0)+n%1}for(e=0;e<_.length;e++){var k=(u=_[e])._anchorAxis;u._linepositions={},u._lw=c.crispRound(t,u.linewidth,1),u._mainLinePosition=T(u,k,u.side),u._mainMirrorPosition=u.mirror&&k?T(u,k,p.OPPOSITE_SIDE[u.side]):null}var A=[],M=[],S=[],E=1===l.opacity(g.paper_bgcolor)&&1===l.opacity(g.plot_bgcolor)&&g.paper_bgcolor===g.plot_bgcolor;for(i in g._plots)if((s=g._plots[i]).mainplot)s.bg&&s.bg.remove(),s.bg=void 0;else{var L=s.xaxis.domain,C=s.yaxis.domain,P=s.plotgroup;if(y(L,C,S)){var I=P.node(),O=s.bg=o.ensureSingle(P,"rect","bg");I.insertBefore(O.node(),I.childNodes[0]),M.push(i)}else P.select("rect.bg").remove(),S.push([L,C]),E||(A.push(i),M.push(i))}var z,D,R,F,B,N,j,U,V,H,q,G,Y,W=g._bgLayer.selectAll(".bg").data(A);for(W.enter().append("rect").classed("bg",!0),W.exit().remove(),W.each((function(t){g._plots[t].bg=n.select(this)})),e=0;eT?u.push({code:"unused",traceType:y,templateCount:w,dataCount:T}):T>w&&u.push({code:"reused",traceType:y,templateCount:w,dataCount:T})}}else u.push({code:"data"});if(function t(e,r){for(var n in e)if("_"!==n.charAt(0)){var a=e[n],o=m(e,n,r);i(a)?(Array.isArray(e)&&!1===a._template&&a.templateitemname&&u.push({code:"missing",path:o,templateitemname:a.templateitemname}),t(a,o)):Array.isArray(a)&&g(a)&&t(a,o)}}({data:p,layout:h},""),u.length)return u.map(v)}},{"../lib":776,"../plots/attributes":823,"../plots/plots":890,"./plot_config":814,"./plot_schema":815,"./plot_template":816}],819:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./plot_api"),a=t("../plots/plots"),o=t("../lib"),s=t("../snapshot/helpers"),l=t("../snapshot/tosvg"),c=t("../snapshot/svgtoimg"),u=t("../version").version,f={format:{valType:"enumerated",values:["png","jpeg","webp","svg","full-json"],dflt:"png"},width:{valType:"number",min:1},height:{valType:"number",min:1},scale:{valType:"number",min:0,dflt:1},setBackground:{valType:"any",dflt:!1},imageDataOnly:{valType:"boolean",dflt:!1}};e.exports=function(t,e){var r,h,p,d;function m(t){return!(t in e)||o.validate(e[t],f[t])}if(e=e||{},o.isPlainObject(t)?(r=t.data||[],h=t.layout||{},p=t.config||{},d={}):(t=o.getGraphDiv(t),r=o.extendDeep([],t.data),h=o.extendDeep({},t.layout),p=t._context,d=t._fullLayout||{}),!m("width")&&null!==e.width||!m("height")&&null!==e.height)throw new Error("Height and width should be pixel values.");if(!m("format"))throw new Error("Export format is not "+o.join2(f.format.values,", "," or ")+".");var g={};function v(t,r){return o.coerce(e,g,f,t,r)}var y=v("format"),x=v("width"),b=v("height"),_=v("scale"),w=v("setBackground"),T=v("imageDataOnly"),k=document.createElement("div");k.style.position="absolute",k.style.left="-5000px",document.body.appendChild(k);var A=o.extendFlat({},h);x?A.width=x:null===e.width&&n(d.width)&&(A.width=d.width),b?A.height=b:null===e.height&&n(d.height)&&(A.height=d.height);var M=o.extendFlat({},p,{_exportedPlot:!0,staticPlot:!0,setBackground:w}),S=s.getRedrawFunc(k);function E(){return new Promise((function(t){setTimeout(t,s.getDelay(k._fullLayout))}))}function L(){return new Promise((function(t,e){var r=l(k,y,_),n=k._fullLayout.width,f=k._fullLayout.height;function h(){i.purge(k),document.body.removeChild(k)}if("full-json"===y){var p=a.graphJson(k,!1,"keepdata","object",!0,!0);return p.version=u,p=JSON.stringify(p),h(),t(T?p:s.encodeJSON(p))}if(h(),"svg"===y)return t(T?r:s.encodeSVG(r));var d=document.createElement("canvas");d.id=o.randstr(),c({format:y,width:n,height:f,scale:_,canvas:d,svg:r,promise:!0}).then(t).catch(e)}))}return new Promise((function(t,e){i.newPlot(k,r,A,M).then(S).then(E).then(L).then((function(e){t(function(t){return T?t.replace(s.IMAGE_URL_PREFIX,""):t}(e))})).catch((function(t){e(t)}))}))}},{"../lib":776,"../plots/plots":890,"../snapshot/helpers":908,"../snapshot/svgtoimg":910,"../snapshot/tosvg":912,"../version":1377,"./plot_api":813,"fast-isnumeric":242}],820:[function(t,e,r){"use strict";var n=t("../lib"),i=t("../plots/plots"),a=t("./plot_schema"),o=t("./plot_config").dfltConfig,s=n.isPlainObject,l=Array.isArray,c=n.isArrayOrTypedArray;function u(t,e,r,i,a,o){o=o||[];for(var f=Object.keys(t),h=0;hx.length&&i.push(d("unused",a,v.concat(x.length)));var A,M,S,E,L,C=x.length,P=Array.isArray(k);if(P&&(C=Math.min(C,k.length)),2===b.dimensions)for(M=0;Mx[M].length&&i.push(d("unused",a,v.concat(M,x[M].length)));var I=x[M].length;for(A=0;A<(P?Math.min(I,k[M].length):I);A++)S=P?k[M][A]:k,E=y[M][A],L=x[M][A],n.validate(E,S)?L!==E&&L!==+E&&i.push(d("dynamic",a,v.concat(M,A),E,L)):i.push(d("value",a,v.concat(M,A),E))}else i.push(d("array",a,v.concat(M),y[M]));else for(M=0;M1&&p.push(d("object","layout"))),i.supplyDefaults(m);for(var g=m._fullData,v=r.length,y=0;y0&&Math.round(f)===f))return{vals:i};c=f}for(var h=e.calendar,p="start"===l,d="end"===l,m=t[r+"period0"],g=a(m,h)||0,v=[],y=[],x=[],b=i.length,_=0;_A;)k=o(k,-c,h);for(;k<=A;)k=o(k,c,h);T=o(k,-c,h)}else{for(k=g+(w=Math.round((A-g)/u))*u;k>A;)k-=u;for(;k<=A;)k+=u;T=k-u}v[_]=p?T:d?k:(T+k)/2,y[_]=T,x[_]=k}return{vals:v,starts:y,ends:x}}},{"../../constants/numerical":752,"../../lib":776,"fast-isnumeric":242}],825:[function(t,e,r){"use strict";e.exports={xaxis:{valType:"subplotid",dflt:"x",editType:"calc+clearAxisTypes"},yaxis:{valType:"subplotid",dflt:"y",editType:"calc+clearAxisTypes"}}},{}],826:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("fast-isnumeric"),a=t("../../lib"),o=t("../../constants/numerical").FP_SAFE,s=t("../../registry"),l=t("../../components/drawing"),c=t("./axis_ids"),u=c.getFromId,f=c.isLinked;function h(t,e){var r,n,i=[],o=t._fullLayout,s=d(o,e,0),l=d(o,e,1),c=m(t,e),u=c.min,f=c.max;if(0===u.length||0===f.length)return a.simpleMap(e.range,e.r2l);var h=u[0].val,g=f[0].val;for(r=1;r0&&((T=E-s(x)-l(b))>L?k/T>C&&(_=x,w=b,C=k/T):k/E>C&&(_={val:x.val,nopad:1},w={val:b.val,nopad:1},C=k/E));if(h===g){var P=h-1,I=h+1;if(M)if(0===h)i=[0,1];else{var O=(h>0?f:u).reduce((function(t,e){return Math.max(t,l(e))}),0),z=h/(1-Math.min(.5,O/E));i=h>0?[0,z]:[z,0]}else i=S?[Math.max(0,P),Math.max(1,I)]:[P,I]}else M?(_.val>=0&&(_={val:0,nopad:1}),w.val<=0&&(w={val:0,nopad:1})):S&&(_.val-C*s(_)<0&&(_={val:0,nopad:1}),w.val<=0&&(w={val:1,nopad:1})),C=(w.val-_.val-p(e,x.val,b.val))/(E-s(_)-l(w)),i=[_.val-C*s(_),w.val+C*l(w)];return v&&i.reverse(),a.simpleMap(i,e.l2r||Number)}function p(t,e,r){var n=0;if(t.rangebreaks)for(var i=t.locateBreaks(e,r),a=0;a0?r.ppadplus:r.ppadminus)||r.ppad||0),S=A((t._m>0?r.ppadminus:r.ppadplus)||r.ppad||0),E=A(r.vpadplus||r.vpad),L=A(r.vpadminus||r.vpad);if(!T){if(h=1/0,p=-1/0,w)for(n=0;n0&&(h=a),a>p&&a-o&&(h=a),a>p&&a=I;n--)P(n);return{min:d,max:m,opts:r}},concatExtremes:m};function m(t,e,r){var n,i,a,o=e._id,s=t._fullData,l=t._fullLayout,c=[],f=[];function h(t,e){for(n=0;n=r&&(c.extrapad||!o)){s=!1;break}i(e,c.val)&&c.pad<=r&&(o||!c.extrapad)&&(t.splice(l,1),l--)}if(s){var u=a&&0===e;t.push({val:e,pad:u?0:r,extrapad:!u&&o})}}function x(t){return i(t)&&Math.abs(t)=e}},{"../../components/drawing":661,"../../constants/numerical":752,"../../lib":776,"../../registry":904,"./axis_ids":831,"@plotly/d3":58,"fast-isnumeric":242}],827:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("fast-isnumeric"),a=t("../../plots/plots"),o=t("../../registry"),s=t("../../lib"),l=s.strTranslate,c=t("../../lib/svg_text_utils"),u=t("../../components/titles"),f=t("../../components/color"),h=t("../../components/drawing"),p=t("./layout_attributes"),d=t("./clean_ticks"),m=t("../../constants/numerical"),g=m.ONEMAXYEAR,v=m.ONEAVGYEAR,y=m.ONEMINYEAR,x=m.ONEMAXQUARTER,b=m.ONEAVGQUARTER,_=m.ONEMINQUARTER,w=m.ONEMAXMONTH,T=m.ONEAVGMONTH,k=m.ONEMINMONTH,A=m.ONEWEEK,M=m.ONEDAY,S=M/2,E=m.ONEHOUR,L=m.ONEMIN,C=m.ONESEC,P=m.MINUS_SIGN,I=m.BADNUM,O={K:"zeroline"},z={K:"gridline",L:"path"},D={K:"tick",L:"path"},R={K:"tick",L:"text"},F=t("../../constants/alignment"),B=F.MID_SHIFT,N=F.CAP_SHIFT,j=F.LINE_SPACING,U=F.OPPOSITE_SIDE,V=e.exports={};V.setConvert=t("./set_convert");var H=t("./axis_autotype"),q=t("./axis_ids"),G=q.idSort,Y=q.isLinked;V.id2name=q.id2name,V.name2id=q.name2id,V.cleanId=q.cleanId,V.list=q.list,V.listIds=q.listIds,V.getFromId=q.getFromId,V.getFromTrace=q.getFromTrace;var W=t("./autorange");V.getAutoRange=W.getAutoRange,V.findExtremes=W.findExtremes;function X(t){var e=1e-4*(t[1]-t[0]);return[t[0]-e,t[1]+e]}V.coerceRef=function(t,e,r,n,i,a){var o=n.charAt(n.length-1),l=r._fullLayout._subplots[o+"axis"],c=n+"ref",u={};return i||(i=l[0]||("string"==typeof a?a:a[0])),a||(a=i),l=l.concat(l.map((function(t){return t+" domain"}))),u[c]={valType:"enumerated",values:l.concat(a?"string"==typeof a?[a]:a:[]),dflt:i},s.coerce(t,e,u,c)},V.getRefType=function(t){return void 0===t?t:"paper"===t?"paper":"pixel"===t?"pixel":/( domain)$/.test(t)?"domain":"range"},V.coercePosition=function(t,e,r,n,i,a){var o,l;if("range"!==V.getRefType(n))o=s.ensureNumber,l=r(i,a);else{var c=V.getFromId(e,n);l=r(i,a=c.fraction2r(a)),o=c.cleanPos}t[i]=o(l)},V.cleanPosition=function(t,e,r){return("paper"===r||"pixel"===r?s.ensureNumber:V.getFromId(e,r).cleanPos)(t)},V.redrawComponents=function(t,e){e=e||V.listIds(t);var r=t._fullLayout;function n(n,i,a,s){for(var l=o.getComponentMethod(n,i),c={},u=0;u2e-6||((r-t._forceTick0)/t._minDtick%1+1.000001)%1>2e-6)&&(t._minDtick=0)):t._minDtick=0},V.saveRangeInitial=function(t,e){for(var r=V.list(t,"",!0),n=!1,i=0;i.3*h||u(n)||u(a))){var p=r.dtick/2;t+=t+p.8){var o=Number(r.substr(1));a.exactYears>.8&&o%12==0?t=V.tickIncrement(t,"M6","reverse")+1.5*M:a.exactMonths>.8?t=V.tickIncrement(t,"M1","reverse")+15.5*M:t-=S;var l=V.tickIncrement(t,r);if(l<=n)return l}return t}(y,t,v,c,a)),g=y,0;g<=u;)g=V.tickIncrement(g,v,!1,a);return{start:e.c2r(y,0,a),end:e.c2r(g,0,a),size:v,_dataSpan:u-c}},V.prepTicks=function(t,e){var r=s.simpleMap(t.range,t.r2l,void 0,void 0,e);if(t._dtickInit=t.dtick,t._tick0Init=t.tick0,"auto"===t.tickmode||!t.dtick){var n,a=t.nticks;a||("category"===t.type||"multicategory"===t.type?(n=t.tickfont?s.bigFont(t.tickfont.size||12):15,a=t._length/n):(n="y"===t._id.charAt(0)?40:80,a=s.constrain(t._length/n,4,9)+1),"radialaxis"===t._name&&(a*=2)),"array"===t.tickmode&&(a*=100),t._roughDTick=Math.abs(r[1]-r[0])/a,V.autoTicks(t,t._roughDTick),t._minDtick>0&&t.dtick<2*t._minDtick&&(t.dtick=t._minDtick,t.tick0=t.l2r(t._forceTick0))}"period"===t.ticklabelmode&&function(t){var e;function r(){return!(i(t.dtick)||"M"!==t.dtick.charAt(0))}var n=r(),a=V.getTickFormat(t);if(a){var o=t._dtickInit!==t.dtick;/%[fLQsSMX]/.test(a)||(/%[HI]/.test(a)?(e=E,o&&!n&&t.dticka&&f=o:p<=o;p=V.tickIncrement(p,t.dtick,l,t.calendar)){if(t.rangebreaks&&!l){if(p=u)break}if(L.length>m||p===C)break;C=p;var P=!1;f&&p!==(0|p)&&(P=!0),L.push({minor:P,value:p})}if(h&&function(t,e,r){for(var n=0;n0?(a=n-1,o=n):(a=n,o=n);var s,l=t[a].value,c=t[o].value,u=Math.abs(c-l),f=r||u,h=0;f>=y?h=u>=y&&u<=g?u:v:r===b&&f>=_?h=u>=_&&u<=x?u:b:f>=k?h=u>=k&&u<=w?u:T:r===A&&f>=A?h=A:f>=M?h=M:r===S&&f>=S?h=S:r===E&&f>=E&&(h=E),h>=u&&(h=u,s=!0);var p=i+h;if(e.rangebreaks&&h>0){for(var d=0,m=0;m<84;m++){var L=(m+.5)/84;e.maskBreaks(i*(1-L)+L*p)!==I&&d++}(h*=d/84)||(t[n].drop=!0),s&&u>A&&(h=u)}(h>0||0===n)&&(t[n].periodX=i+h/2)}}(L,t,t._definedDelta),t.rangebreaks){var O="y"===t._id.charAt(0),z=1;"auto"===t.tickmode&&(z=t.tickfont?t.tickfont.size:12);var D=NaN;for(d=L.length-1;d>-1;d--)if(L[d].drop)L.splice(d,1);else{L[d].value=Mt(L[d].value,t);var R=t.c2p(L[d].value);(O?D>R-z:Du||Bu&&(F.periodX=u),B10||"01-01"!==n.substr(5)?t._tickround="d":t._tickround=+e.substr(1)%12==0?"y":"m";else if(e>=M&&a<=10||e>=15*M)t._tickround="d";else if(e>=L&&a<=16||e>=E)t._tickround="M";else if(e>=C&&a<=19||e>=L)t._tickround="S";else{var o=t.l2r(r+e).replace(/^-/,"").length;t._tickround=Math.max(a,o)-20,t._tickround<0&&(t._tickround=4)}}else if(i(e)||"L"===e.charAt(0)){var s=t.range.map(t.r2d||Number);i(e)||(e=Number(e.substr(1))),t._tickround=2-Math.floor(Math.log(e)/Math.LN10+.01);var l=Math.max(Math.abs(s[0]),Math.abs(s[1])),c=Math.floor(Math.log(l)/Math.LN10+.01),u=void 0===t.minexponent?3:t.minexponent;Math.abs(c)>u&&(ut(t.exponentformat)&&!ft(c)?t._tickexponent=3*Math.round((c-1)/3):t._tickexponent=c)}else t._tickround=null}function lt(t,e,r){var n=t.tickfont||{};return{x:e,dx:0,dy:0,text:r||"",fontSize:n.size,font:n.family,fontColor:n.color}}V.autoTicks=function(t,e){var r;function n(t){return Math.pow(t,Math.floor(Math.log(e)/Math.LN10))}if("date"===t.type){t.tick0=s.dateTick0(t.calendar,0);var a=2*e;if(a>v)e/=v,r=n(10),t.dtick="M"+12*ot(e,r,$);else if(a>T)e/=T,t.dtick="M"+ot(e,1,tt);else if(a>M){t.dtick=ot(e,M,t._hasDayOfWeekBreaks?[1,2,7,14]:rt);var o=V.getTickFormat(t),l="period"===t.ticklabelmode;l&&(t._rawTick0=t.tick0),/%[uVW]/.test(o)?t.tick0=s.dateTick0(t.calendar,2):t.tick0=s.dateTick0(t.calendar,1),l&&(t._dowTick0=t.tick0)}else a>E?t.dtick=ot(e,E,tt):a>L?t.dtick=ot(e,L,et):a>C?t.dtick=ot(e,C,et):(r=n(10),t.dtick=ot(e,r,$))}else if("log"===t.type){t.tick0=0;var c=s.simpleMap(t.range,t.r2l);if(e>.7)t.dtick=Math.ceil(e);else if(Math.abs(c[1]-c[0])<1){var u=1.5*Math.abs((c[1]-c[0])/e);e=Math.abs(Math.pow(10,c[1])-Math.pow(10,c[0]))/u,r=n(10),t.dtick="L"+ot(e,r,$)}else t.dtick=e>.3?"D2":"D1"}else"category"===t.type||"multicategory"===t.type?(t.tick0=0,t.dtick=Math.ceil(Math.max(e,1))):At(t)?(t.tick0=0,r=1,t.dtick=ot(e,r,at)):(t.tick0=0,r=n(10),t.dtick=ot(e,r,$));if(0===t.dtick&&(t.dtick=1),!i(t.dtick)&&"string"!=typeof t.dtick){var f=t.dtick;throw t.dtick=1,"ax.dtick error: "+String(f)}},V.tickIncrement=function(t,e,r,a){var o=r?-1:1;if(i(e))return s.increment(t,o*e);var l=e.charAt(0),c=o*Number(e.substr(1));if("M"===l)return s.incrementMonth(t,c,a);if("L"===l)return Math.log(Math.pow(10,t)+c)/Math.LN10;if("D"===l){var u="D2"===e?it:nt,f=t+.01*o,h=s.roundUp(s.mod(f,1),u,r);return Math.floor(f)+Math.log(n.round(Math.pow(10,h),1))/Math.LN10}throw"unrecognized dtick "+String(e)},V.tickFirst=function(t,e){var r=t.r2l||Number,a=s.simpleMap(t.range,r,void 0,void 0,e),o=a[1] ")}else t._prevDateHead=l,c+="
"+l;e.text=c}(t,o,r,c):"log"===u?function(t,e,r,n,a){var o=t.dtick,l=e.x,c=t.tickformat,u="string"==typeof o&&o.charAt(0);"never"===a&&(a="");n&&"L"!==u&&(o="L3",u="L");if(c||"L"===u)e.text=ht(Math.pow(10,l),t,a,n);else if(i(o)||"D"===u&&s.mod(l+.01,1)<.1){var f=Math.round(l),h=Math.abs(f),p=t.exponentformat;"power"===p||ut(p)&&ft(f)?(e.text=0===f?1:1===f?"10":"10"+(f>1?"":P)+h+"",e.fontSize*=1.25):("e"===p||"E"===p)&&h>2?e.text="1"+p+(f>0?"+":P)+h:(e.text=ht(Math.pow(10,l),t,"","fakehover"),"D1"===o&&"y"===t._id.charAt(0)&&(e.dy-=e.fontSize/6))}else{if("D"!==u)throw"unrecognized dtick "+String(o);e.text=String(Math.round(Math.pow(10,s.mod(l,1)))),e.fontSize*=.75}if("D1"===t.dtick){var d=String(e.text).charAt(0);"0"!==d&&"1"!==d||("y"===t._id.charAt(0)?e.dx-=e.fontSize/4:(e.dy+=e.fontSize/2,e.dx+=(t.range[1]>t.range[0]?1:-1)*e.fontSize*(l<0?.5:.25)))}}(t,o,0,c,m):"category"===u?function(t,e){var r=t._categories[Math.round(e.x)];void 0===r&&(r="");e.text=String(r)}(t,o):"multicategory"===u?function(t,e,r){var n=Math.round(e.x),i=t._categories[n]||[],a=void 0===i[1]?"":String(i[1]),o=void 0===i[0]?"":String(i[0]);r?e.text=o+" - "+a:(e.text=a,e.text2=o)}(t,o,r):At(t)?function(t,e,r,n,i){if("radians"!==t.thetaunit||r)e.text=ht(e.x,t,i,n);else{var a=e.x/180;if(0===a)e.text="0";else{var o=function(t){function e(t,e){return Math.abs(t-e)<=1e-6}var r=function(t){for(var r=1;!e(Math.round(t*r)/r,t);)r*=10;return r}(t),n=t*r,i=Math.abs(function t(r,n){return e(n,0)?r:t(n,r%n)}(n,r));return[Math.round(n/i),Math.round(r/i)]}(a);if(o[1]>=100)e.text=ht(s.deg2rad(e.x),t,i,n);else{var l=e.x<0;1===o[1]?1===o[0]?e.text="\u03c0":e.text=o[0]+"\u03c0":e.text=["",o[0],"","\u2044","",o[1],"","\u03c0"].join(""),l&&(e.text=P+e.text)}}}}(t,o,r,c,m):function(t,e,r,n,i){"never"===i?i="":"all"===t.showexponent&&Math.abs(e.x/t.dtick)<1e-6&&(i="hide");e.text=ht(e.x,t,i,n)}(t,o,0,c,m),n||(t.tickprefix&&!d(t.showtickprefix)&&(o.text=t.tickprefix+o.text),t.ticksuffix&&!d(t.showticksuffix)&&(o.text+=t.ticksuffix)),"boundaries"===t.tickson||t.showdividers){var g=function(e){var r=t.l2p(e);return r>=0&&r<=t._length?e:null};o.xbnd=[g(o.x-.5),g(o.x+t.dtick-.5)]}return o},V.hoverLabelText=function(t,e,r){r&&(t=s.extendFlat({},t,{hoverformat:r}));var n=Array.isArray(e)?e[0]:e,i=Array.isArray(e)?e[1]:void 0;if(void 0!==i&&i!==n)return V.hoverLabelText(t,n,r)+" - "+V.hoverLabelText(t,i,r);var a="log"===t.type&&n<=0,o=V.tickText(t,t.c2l(a?-n:n),"hover").text;return a?0===n?"0":P+o:o};var ct=["f","p","n","\u03bc","m","","k","M","G","T"];function ut(t){return"SI"===t||"B"===t}function ft(t){return t>14||t<-15}function ht(t,e,r,n){var a=t<0,o=e._tickround,l=r||e.exponentformat||"B",c=e._tickexponent,u=V.getTickFormat(e),f=e.separatethousands;if(n){var h={exponentformat:l,minexponent:e.minexponent,dtick:"none"===e.showexponent?e.dtick:i(t)&&Math.abs(t)||1,range:"none"===e.showexponent?e.range.map(e.r2d):[0,t||1]};st(h),o=(Number(h._tickround)||0)+4,c=h._tickexponent,e.hoverformat&&(u=e.hoverformat)}if(u)return e._numFormat(u)(t).replace(/-/g,P);var p,d=Math.pow(10,-o)/2;if("none"===l&&(c=0),(t=Math.abs(t))"+p+"":"B"===l&&9===c?t+="B":ut(l)&&(t+=ct[c/3+5]));return a?P+t:t}function pt(t,e){for(var r=[],n={},i=0;i1&&r=i.min&&t=0,a=u(t,e[1])<=0;return(r||i)&&(n||a)}if(t.tickformatstops&&t.tickformatstops.length>0)switch(t.type){case"date":case"linear":for(e=0;e=o(i)))){r=n;break}break;case"log":for(e=0;e0?r.bottom-f:0,h)))),e.automargin){n={x:0,y:0,r:0,l:0,t:0,b:0};var p=[0,1];if("x"===d){if("b"===l?n[l]=e._depth:(n[l]=e._depth=Math.max(r.width>0?f-r.top:0,h),p.reverse()),r.width>0){var g=r.right-(e._offset+e._length);g>0&&(n.xr=1,n.r=g);var v=e._offset-r.left;v>0&&(n.xl=0,n.l=v)}}else if("l"===l?n[l]=e._depth=Math.max(r.height>0?f-r.left:0,h):(n[l]=e._depth=Math.max(r.height>0?r.right-f:0,h),p.reverse()),r.height>0){var y=r.bottom-(e._offset+e._length);y>0&&(n.yb=0,n.b=y);var x=e._offset-r.top;x>0&&(n.yt=1,n.t=x)}n[m]="free"===e.anchor?e.position:e._anchorAxis.domain[p[0]],e.title.text!==c._dfltTitle[d]&&(n[l]+=gt(e)+(e.title.standoff||0)),e.mirror&&"free"!==e.anchor&&((i={x:0,y:0,r:0,l:0,t:0,b:0})[u]=e.linewidth,e.mirror&&!0!==e.mirror&&(i[u]+=h),!0===e.mirror||"ticks"===e.mirror?i[m]=e._anchorAxis.domain[p[1]]:"all"!==e.mirror&&"allticks"!==e.mirror||(i[m]=[e._counterDomainMin,e._counterDomainMax][p[1]]))}K&&(s=o.getComponentMethod("rangeslider","autoMarginOpts")(t,e)),a.autoMargin(t,xt(e),n),a.autoMargin(t,bt(e),i),a.autoMargin(t,_t(e),s)})),r.skipTitle||K&&"bottom"===e.side||Z.push((function(){return function(t,e){var r,n=t._fullLayout,i=e._id,a=i.charAt(0),o=e.title.font.size;if(e.title.hasOwnProperty("standoff"))r=e._depth+e.title.standoff+gt(e);else{var s=St(e);if("multicategory"===e.type)r=e._depth;else{var l=1.5*o;s&&(l=.5*o,"outside"===e.ticks&&(l+=e.ticklen)),r=10+l+(e.linewidth?e.linewidth-1:0)}s||(r+="x"===a?"top"===e.side?o*(e.showticklabels?1:0):o*(e.showticklabels?1.5:.5):"right"===e.side?o*(e.showticklabels?1:.5):o*(e.showticklabels?.5:0))}var c,f,p,d,m=V.getPxPosition(t,e);"x"===a?(f=e._offset+e._length/2,p="top"===e.side?m-r:m+r):(p=e._offset+e._length/2,f="right"===e.side?m+r:m-r,c={rotate:"-90",offset:0});if("multicategory"!==e.type){var g=e._selections[e._id+"tick"];if(d={selection:g,side:e.side},g&&g.node()&&g.node().parentNode){var v=h.getTranslate(g.node().parentNode);d.offsetLeft=v.x,d.offsetTop=v.y}e.title.hasOwnProperty("standoff")&&(d.pad=0)}return u.draw(t,i+"title",{propContainer:e,propName:e._name+".title.text",placeholder:n._dfltTitle[a],avoid:d,transform:c,attributes:{x:f,y:p,"text-anchor":"middle"}})}(t,e)})),s.syncOrAsync(Z)}}function Q(t){var r=p+(t||"tick");return w[r]||(w[r]=function(t,e){var r,n,i,a;t._selections[e].size()?(r=1/0,n=-1/0,i=1/0,a=-1/0,t._selections[e].each((function(){var t=yt(this),e=h.bBox(t.node().parentNode);r=Math.min(r,e.top),n=Math.max(n,e.bottom),i=Math.min(i,e.left),a=Math.max(a,e.right)}))):(r=0,n=0,i=0,a=0);return{top:r,bottom:n,left:i,right:a,height:n-r,width:a-i}}(e,r)),w[r]}},V.getTickSigns=function(t){var e=t._id.charAt(0),r={x:"top",y:"right"}[e],n=t.side===r?1:-1,i=[-1,1,n,-n];return"inside"!==t.ticks==("x"===e)&&(i=i.map((function(t){return-t}))),t.side&&i.push({l:-1,t:-1,r:1,b:1}[t.side.charAt(0)]),i},V.makeTransTickFn=function(t){return"x"===t._id.charAt(0)?function(e){return l(t._offset+t.l2p(e.x),0)}:function(e){return l(0,t._offset+t.l2p(e.x))}},V.makeTransTickLabelFn=function(t){var e=function(t){var e=t.ticklabelposition||"",r=function(t){return-1!==e.indexOf(t)},n=r("top"),i=r("left"),a=r("right"),o=r("bottom"),s=r("inside"),l=o||i||n||a;if(!l&&!s)return[0,0];var c=t.side,u=l?(t.tickwidth||0)/2:0,f=3,h=t.tickfont?t.tickfont.size:12;(o||n)&&(u+=h*N,f+=(t.linewidth||0)/2);(i||a)&&(u+=(t.linewidth||0)/2,f+=3);s&&"top"===c&&(f-=h*(1-N));(i||n)&&(u=-u);"bottom"!==c&&"right"!==c||(f=-f);return[l?u:0,s?f:0]}(t),r=e[0],n=e[1];return"x"===t._id.charAt(0)?function(e){return l(r+t._offset+t.l2p(dt(e)),n)}:function(e){return l(n,r+t._offset+t.l2p(dt(e)))}},V.makeTickPath=function(t,e,r,n){n=void 0!==n?n:t.ticklen;var i=t._id.charAt(0),a=(t.linewidth||1)/2;return"x"===i?"M0,"+(e+a*r)+"v"+n*r:"M"+(e+a*r)+",0h"+n*r},V.makeLabelFns=function(t,e,r){var n=t.ticklabelposition||"",a=function(t){return-1!==n.indexOf(t)},o=a("top"),l=a("left"),c=a("right"),u=a("bottom")||l||o||c,f=a("inside"),h="inside"===n&&"inside"===t.ticks||!f&&"outside"===t.ticks&&"boundaries"!==t.tickson,p=0,d=0,m=h?t.ticklen:0;if(f?m*=-1:u&&(m=0),h&&(p+=m,r)){var g=s.deg2rad(r);p=m*Math.cos(g)+1,d=m*Math.sin(g)}t.showticklabels&&(h||t.showline)&&(p+=.2*t.tickfont.size);var v,y,x,b,_,w={labelStandoff:p+=(t.linewidth||1)/2*(f?-1:1),labelShift:d},T=0,k=t.side,A=t._id.charAt(0),M=t.tickangle;if("x"===A)b=(_=!f&&"bottom"===k||f&&"top"===k)?1:-1,f&&(b*=-1),v=d*b,y=e+p*b,x=_?1:-.2,90===Math.abs(M)&&(f?x+=B:x=-90===M&&"bottom"===k?N:90===M&&"top"===k?B:.5,T=B/2*(M/90)),w.xFn=function(t){return t.dx+v+T*t.fontSize},w.yFn=function(t){return t.dy+y+t.fontSize*x},w.anchorFn=function(t,e){if(u){if(l)return"end";if(c)return"start"}return i(e)&&0!==e&&180!==e?e*b<0!==f?"end":"start":"middle"},w.heightFn=function(e,r,n){return r<-60||r>60?-.5*n:"top"===t.side!==f?-n:0};else if("y"===A){if(b=(_=!f&&"left"===k||f&&"right"===k)?1:-1,f&&(b*=-1),v=p,y=d*b,x=0,f||90!==Math.abs(M)||(x=-90===M&&"left"===k||90===M&&"right"===k?N:.5),f){var S=i(M)?+M:0;if(0!==S){var E=s.deg2rad(S);T=Math.abs(Math.sin(E))*N*b,x=0}}w.xFn=function(t){return t.dx+e-(v+t.fontSize*x)*b+T*t.fontSize},w.yFn=function(t){return t.dy+y+t.fontSize*B},w.anchorFn=function(t,e){return i(e)&&90===Math.abs(e)?"middle":_?"end":"start"},w.heightFn=function(e,r,n){return"right"===t.side&&(r*=-1),r<-30?-n:r<30?-.5*n:0}}return w},V.drawTicks=function(t,e,r){r=r||{};var n=e._id+"tick",i=r.vals;"period"===e.ticklabelmode&&(i=i.slice()).shift();var a=r.layer.selectAll("path."+n).data(e.ticks?i:[],mt);a.exit().remove(),a.enter().append("path").classed(n,1).classed("ticks",1).classed("crisp",!1!==r.crisp).call(f.stroke,e.tickcolor).style("stroke-width",h.crispRound(t,e.tickwidth,1)+"px").attr("d",r.path).style("display",null),Et(e,[D]),a.attr("transform",r.transFn)},V.drawGrid=function(t,e,r){r=r||{};var n=e._id+"grid",i=r.vals,a=r.counterAxis;if(!1===e.showgrid)i=[];else if(a&&V.shouldShowZeroLine(t,e,a))for(var o="array"===e.tickmode,s=0;sp||a.leftp||a.top+(e.tickangle?0:t.fontSize/4)e["_visibleLabelMin_"+r._id]?l.style("display","none"):"tick"!==t.K||i||l.style("display",null)}))}))}))}))},x(v,g+1?g:m);var b=null;e._selections&&(e._selections[f]=v);var _=[function(){return y.length&&Promise.all(y)}];e.automargin&&a._redrawFromAutoMarginCount&&90===g?(b=90,_.push((function(){x(v,g)}))):_.push((function(){if(x(v,m),p.length&&"x"===u&&!i(m)&&("log"!==e.type||"D"!==String(e.dtick).charAt(0))){b=0;var t,n=0,a=[];if(v.each((function(t){n=Math.max(n,t.fontSize);var r=e.l2p(t.x),i=yt(this),o=h.bBox(i.node());a.push({top:0,bottom:10,height:10,left:r-o.width/2,right:r+o.width/2+2,width:o.width+2})})),"boundaries"!==e.tickson&&!e.showdividers||r.secondary){var o=p.length,l=Math.abs((p[o-1].x-p[0].x)*e._m)/(o-1),c=e.ticklabelposition||"",f=function(t){return-1!==c.indexOf(t)},d=f("top"),g=f("left"),y=f("right"),_=f("bottom")||g||d||y?(e.tickwidth||0)+6:0,w=l<2.5*n||"multicategory"===e.type;for(t=0;t1)for(n=1;n2*o}(i,e))return"date";var g="strict"!==r.autotypenumbers;return function(t,e){for(var r=t.length,n=f(r),i=0,o=0,s={},u=0;u2*i}(i,g)?"category":function(t,e){for(var r=t.length,n=0;n=2){var l,c,u="";if(2===o.length)for(l=0;l<2;l++)if(c=y(o[l])){u=d;break}var f=i("pattern",u);if(f===d)for(l=0;l<2;l++)(c=y(o[l]))&&(e.bounds[l]=o[l]=c-1);if(f)for(l=0;l<2;l++)switch(c=o[l],f){case d:if(!n(c))return void(e.enabled=!1);if((c=+c)!==Math.floor(c)||c<0||c>=7)return void(e.enabled=!1);e.bounds[l]=o[l]=c;break;case m:if(!n(c))return void(e.enabled=!1);if((c=+c)<0||c>24)return void(e.enabled=!1);e.bounds[l]=o[l]=c}if(!1===r.autorange){var h=r.range;if(h[0]h[1])return void(e.enabled=!1)}else if(o[0]>h[0]&&o[1]n?1:-1:+(t.substr(1)||1)-+(e.substr(1)||1)},r.ref2id=function(t){return!!/^[xyz]/.test(t)&&t.split(" ")[0]},r.isLinked=function(t,e){return a(e,t._axisMatchGroups)||a(e,t._axisConstraintGroups)}},{"../../registry":904,"./constants":834}],832:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){if("category"===e.type){var i,a=t.categoryarray,o=Array.isArray(a)&&a.length>0;o&&(i="array");var s,l=r("categoryorder",i);"array"===l&&(s=r("categoryarray")),o||"array"!==l||(l=e.categoryorder="trace"),"trace"===l?e._initialCategories=[]:"array"===l?e._initialCategories=s.slice():(s=function(t,e){var r,n,i,a=e.dataAttr||t._id.charAt(0),o={};if(e.axData)r=e.axData;else for(r=[],n=0;nn?i.substr(n):a.substr(r))+o:i+a+t*e:o}function g(t,e){for(var r=e._size,n=r.h/r.w,i={},a=Object.keys(t),o=0;oc*x)||T)for(r=0;rO&&FP&&(P=F);h/=(P-C)/(2*I),C=l.l2r(C),P=l.l2r(P),l.range=l._input.range=S=0?Math.min(t,.9):1/(1/Math.max(t,-.3)+3.222))}function N(t,e,r,n,i){return t.append("path").attr("class","zoombox").style({fill:e>.2?"rgba(0,0,0,0)":"rgba(255,255,255,0)","stroke-width":0}).attr("transform",c(r,n)).attr("d",i+"Z")}function j(t,e,r){return t.append("path").attr("class","zoombox-corners").style({fill:f.background,stroke:f.defaultLine,"stroke-width":1,opacity:0}).attr("transform",c(e,r)).attr("d","M0,0Z")}function U(t,e,r,n,i,a){t.attr("d",n+"M"+r.l+","+r.t+"v"+r.h+"h"+r.w+"v-"+r.h+"h-"+r.w+"Z"),V(t,e,i,a)}function V(t,e,r,n){r||(t.transition().style("fill",n>.2?"rgba(0,0,0,0.4)":"rgba(255,255,255,0.3)").duration(200),e.transition().style("opacity",1).duration(200))}function H(t){n.select(t).selectAll(".zoombox,.js-zoombox-backdrop,.js-zoombox-menu,.zoombox-corners").remove()}function q(t){I&&t.data&&t._context.showTips&&(i.notifier(i._(t,"Double-click to zoom back out"),"long"),I=!1)}function G(t){var e=Math.floor(Math.min(t.b-t.t,t.r-t.l,P)/2);return"M"+(t.l-3.5)+","+(t.t-.5+e)+"h3v"+-e+"h"+e+"v-3h-"+(e+3)+"ZM"+(t.r+3.5)+","+(t.t-.5+e)+"h-3v"+-e+"h"+-e+"v-3h"+(e+3)+"ZM"+(t.r+3.5)+","+(t.b+.5-e)+"h-3v"+e+"h"+-e+"v3h"+(e+3)+"ZM"+(t.l-3.5)+","+(t.b+.5-e)+"h3v"+e+"h"+e+"v3h-"+(e+3)+"Z"}function Y(t,e,r,n,a){for(var o,s,l,c,u=!1,f={},h={},p=(a||{}).xaHash,d=(a||{}).yaHash,m=0;m=0)i._fullLayout._deactivateShape(i);else{var o=i._fullLayout.clickmode;if(H(i),2!==t||vt||qt(),gt)o.indexOf("select")>-1&&S(r,i,J,K,e.id,Pt),o.indexOf("event")>-1&&p.click(i,r,e.id);else if(1===t&&vt){var s=m?O:I,c="s"===m||"w"===v?0:1,f=s._name+".range["+c+"]",h=function(t,e){var r,n=t.range[e],i=Math.abs(n-t.range[1-e]);return"date"===t.type?n:"log"===t.type?(r=Math.ceil(Math.max(0,-Math.log(i)/Math.LN10))+3,a("."+r+"g")(Math.pow(10,n))):(r=Math.floor(Math.log(Math.abs(n))/Math.LN10)-Math.floor(Math.log(i)/Math.LN10)+4,a("."+String(r)+"g")(n))}(s,c),d="left",g="middle";if(s.fixedrange)return;m?(g="n"===m?"top":"bottom","right"===s.side&&(d="right")):"e"===v&&(d="right"),i._context.showAxisRangeEntryBoxes&&n.select(bt).call(u.makeEditable,{gd:i,immediate:!0,background:i._fullLayout.paper_bgcolor,text:String(h),fill:s.tickfont?s.tickfont.color:"#444",horizontalAlign:d,verticalAlign:g}).on("edit",(function(t){var e=s.d2r(t);void 0!==e&&l.call("_guiRelayout",i,f,e)}))}}}function zt(e,r){if(t._transitioningWithDuration)return!1;var n=Math.max(0,Math.min(tt,pt*e+_t)),i=Math.max(0,Math.min(et,dt*r+wt)),a=Math.abs(n-_t),o=Math.abs(i-wt);function s(){St="",Tt.r=Tt.l,Tt.t=Tt.b,Lt.attr("d","M0,0Z")}if(Tt.l=Math.min(_t,n),Tt.r=Math.max(_t,n),Tt.t=Math.min(wt,i),Tt.b=Math.max(wt,i),rt.isSubplotConstrained)a>P||o>P?(St="xy",a/tt>o/et?(o=a*et/tt,wt>i?Tt.t=wt-o:Tt.b=wt+o):(a=o*tt/et,_t>n?Tt.l=_t-a:Tt.r=_t+a),Lt.attr("d",G(Tt))):s();else if(nt.isSubplotConstrained)if(a>P||o>P){St="xy";var l=Math.min(Tt.l/tt,(et-Tt.b)/et),c=Math.max(Tt.r/tt,(et-Tt.t)/et);Tt.l=l*tt,Tt.r=c*tt,Tt.b=(1-l)*et,Tt.t=(1-c)*et,Lt.attr("d",G(Tt))}else s();else!at||o0){var u;if(nt.isSubplotConstrained||!it&&1===at.length){for(u=0;um[1]-1/4096&&(e.domain=s),i.noneOrAll(t.domain,e.domain,s)}return r("layer"),e}},{"../../lib":776,"fast-isnumeric":242}],846:[function(t,e,r){"use strict";var n=t("../../constants/alignment").FROM_BL;e.exports=function(t,e,r){void 0===r&&(r=n[t.constraintoward||"center"]);var i=[t.r2l(t.range[0]),t.r2l(t.range[1])],a=i[0]+(i[1]-i[0])*r;t.range=t._input.range=[t.l2r(a+(i[0]-a)*e),t.l2r(a+(i[1]-a)*e)],t.setScale()}},{"../../constants/alignment":744}],847:[function(t,e,r){"use strict";var n=t("polybooljs"),i=t("../../registry"),a=t("../../components/drawing").dashStyle,o=t("../../components/color"),s=t("../../components/fx"),l=t("../../components/fx/helpers").makeEventData,c=t("../../components/dragelement/helpers"),u=c.freeMode,f=c.rectMode,h=c.drawMode,p=c.openMode,d=c.selectMode,m=t("../../components/shapes/draw_newshape/display_outlines"),g=t("../../components/shapes/draw_newshape/helpers").handleEllipse,v=t("../../components/shapes/draw_newshape/newshapes"),y=t("../../lib"),x=t("../../lib/polygon"),b=t("../../lib/throttle"),_=t("./axis_ids").getFromId,w=t("../../lib/clear_gl_canvases"),T=t("../../plot_api/subroutines").redrawReglTraces,k=t("./constants"),A=k.MINSELECT,M=x.filter,S=x.tester,E=t("./handle_outline").clearSelect,L=t("./helpers"),C=L.p2r,P=L.axValue,I=L.getTransform;function O(t,e,r,n,i,a,o){var s,l,c,u,f,h,d,g,v,y=e._hoverdata,x=e._fullLayout.clickmode.indexOf("event")>-1,b=[];if(function(t){return t&&Array.isArray(t)&&!0!==t[0].hoverOnBox}(y)){F(t,e,a);var _=function(t,e){var r,n,i=t[0],a=-1,o=[];for(n=0;n0?function(t,e){var r,n,i,a=[];for(i=0;i0&&a.push(r);if(1===a.length&&a[0]===e.searchInfo&&(n=e.searchInfo.cd[0].trace).selectedpoints.length===e.pointNumbers.length){for(i=0;i1)return!1;if((i+=r.selectedpoints.length)>1)return!1}return 1===i}(s)&&(h=j(_))){for(o&&o.remove(),v=0;v=0&&n._fullLayout._deactivateShape(n),h(e)){var a=n._fullLayout._zoomlayer.selectAll(".select-outline-"+r.id);if(a&&n._fullLayout._drawing){var o=v(a,t);o&&i.call("_guiRelayout",n,{shapes:o}),n._fullLayout._drawing=!1}}r.selection={},r.selection.selectionDefs=t.selectionDefs=[],r.selection.mergedPolygons=t.mergedPolygons=[]}function N(t,e,r,n){var i,a,o,s=[],l=e.map((function(t){return t._id})),c=r.map((function(t){return t._id}));for(o=0;o0?n[0]:r;return!!e.selectedpoints&&e.selectedpoints.indexOf(i)>-1}function U(t,e,r){var n,a,o,s;for(n=0;n=0)L._fullLayout._deactivateShape(L);else if(!_){var r=z.clickmode;b.done(mt).then((function(){if(b.clear(mt),2===t){for(ft.remove(),$=0;$-1&&O(e,L,i.xaxes,i.yaxes,i.subplot,i,ft),"event"===r&&L.emit("plotly_selected",void 0);s.click(L,e)})).catch(y.error)}},i.doneFn=function(){dt.remove(),b.done(mt).then((function(){b.clear(mt),i.gd.emit("plotly_selected",et),Q&&i.selectionDefs&&(Q.subtract=ut,i.selectionDefs.push(Q),i.mergedPolygons.length=0,[].push.apply(i.mergedPolygons,K)),i.doneFnCompleted&&i.doneFnCompleted(gt)})).catch(y.error),_&&B(i)}},clearSelect:E,clearSelectionsCache:B,selectOnClick:O}},{"../../components/color":639,"../../components/dragelement/helpers":657,"../../components/drawing":661,"../../components/fx":679,"../../components/fx/helpers":675,"../../components/shapes/draw_newshape/display_outlines":727,"../../components/shapes/draw_newshape/helpers":728,"../../components/shapes/draw_newshape/newshapes":729,"../../lib":776,"../../lib/clear_gl_canvases":760,"../../lib/polygon":788,"../../lib/throttle":803,"../../plot_api/subroutines":817,"../../registry":904,"./axis_ids":831,"./constants":834,"./handle_outline":838,"./helpers":839,polybooljs:480}],848:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-time-format").utcFormat,a=t("../../lib"),o=a.numberFormat,s=t("fast-isnumeric"),l=a.cleanNumber,c=a.ms2DateTime,u=a.dateTime2ms,f=a.ensureNumber,h=a.isArrayOrTypedArray,p=t("../../constants/numerical"),d=p.FP_SAFE,m=p.BADNUM,g=p.LOG_CLIP,v=p.ONEWEEK,y=p.ONEDAY,x=p.ONEHOUR,b=p.ONEMIN,_=p.ONESEC,w=t("./axis_ids"),T=t("./constants"),k=T.HOUR_PATTERN,A=T.WEEKDAY_PATTERN;function M(t){return Math.pow(10,t)}function S(t){return null!=t}e.exports=function(t,e){e=e||{};var r=t._id||"x",p=r.charAt(0);function E(e,r){if(e>0)return Math.log(e)/Math.LN10;if(e<=0&&r&&t.range&&2===t.range.length){var n=t.range[0],i=t.range[1];return.5*(n+i-2*g*Math.abs(n-i))}return m}function L(e,r,n,i){if((i||{}).msUTC&&s(e))return+e;var o=u(e,n||t.calendar);if(o===m){if(!s(e))return m;e=+e;var l=Math.floor(10*a.mod(e+.05,1)),c=Math.round(e-l/10);o=u(new Date(c))+l/10}return o}function C(e,r,n){return c(e,r,n||t.calendar)}function P(e){return t._categories[Math.round(e)]}function I(e){if(S(e)){if(void 0===t._categoriesMap&&(t._categoriesMap={}),void 0!==t._categoriesMap[e])return t._categoriesMap[e];t._categories.push("number"==typeof e?String(e):e);var r=t._categories.length-1;return t._categoriesMap[e]=r,r}return m}function O(e){if(t._categoriesMap)return t._categoriesMap[e]}function z(t){var e=O(t);return void 0!==e?e:s(t)?+t:void 0}function D(t){return s(t)?+t:O(t)}function R(t,e,r){return n.round(r+e*t,2)}function F(t,e,r){return(t-r)/e}var B=function(e){return s(e)?R(e,t._m,t._b):m},N=function(e){return F(e,t._m,t._b)};if(t.rangebreaks){var j="y"===p;B=function(e){if(!s(e))return m;var r=t._rangebreaks.length;if(!r)return R(e,t._m,t._b);var n=j;t.range[0]>t.range[1]&&(n=!n);for(var i=n?-1:1,a=i*e,o=0,l=0;lu)){o=a<(c+u)/2?l:l+1;break}o=l+1}var f=t._B[o]||0;return isFinite(f)?R(e,t._m2,f):0},N=function(e){var r=t._rangebreaks.length;if(!r)return F(e,t._m,t._b);for(var n=0,i=0;it._rangebreaks[i].pmax&&(n=i+1);return F(e,t._m2,t._B[n])}}t.c2l="log"===t.type?E:f,t.l2c="log"===t.type?M:f,t.l2p=B,t.p2l=N,t.c2p="log"===t.type?function(t,e){return B(E(t,e))}:B,t.p2c="log"===t.type?function(t){return M(N(t))}:N,-1!==["linear","-"].indexOf(t.type)?(t.d2r=t.r2d=t.d2c=t.r2c=t.d2l=t.r2l=l,t.c2d=t.c2r=t.l2d=t.l2r=f,t.d2p=t.r2p=function(e){return t.l2p(l(e))},t.p2d=t.p2r=N,t.cleanPos=f):"log"===t.type?(t.d2r=t.d2l=function(t,e){return E(l(t),e)},t.r2d=t.r2c=function(t){return M(l(t))},t.d2c=t.r2l=l,t.c2d=t.l2r=f,t.c2r=E,t.l2d=M,t.d2p=function(e,r){return t.l2p(t.d2r(e,r))},t.p2d=function(t){return M(N(t))},t.r2p=function(e){return t.l2p(l(e))},t.p2r=N,t.cleanPos=f):"date"===t.type?(t.d2r=t.r2d=a.identity,t.d2c=t.r2c=t.d2l=t.r2l=L,t.c2d=t.c2r=t.l2d=t.l2r=C,t.d2p=t.r2p=function(e,r,n){return t.l2p(L(e,0,n))},t.p2d=t.p2r=function(t,e,r){return C(N(t),e,r)},t.cleanPos=function(e){return a.cleanDate(e,m,t.calendar)}):"category"===t.type?(t.d2c=t.d2l=I,t.r2d=t.c2d=t.l2d=P,t.d2r=t.d2l_noadd=z,t.r2c=function(e){var r=D(e);return void 0!==r?r:t.fraction2r(.5)},t.l2r=t.c2r=f,t.r2l=D,t.d2p=function(e){return t.l2p(t.r2c(e))},t.p2d=function(t){return P(N(t))},t.r2p=t.d2p,t.p2r=N,t.cleanPos=function(t){return"string"==typeof t&&""!==t?t:f(t)}):"multicategory"===t.type&&(t.r2d=t.c2d=t.l2d=P,t.d2r=t.d2l_noadd=z,t.r2c=function(e){var r=z(e);return void 0!==r?r:t.fraction2r(.5)},t.r2c_just_indices=O,t.l2r=t.c2r=f,t.r2l=z,t.d2p=function(e){return t.l2p(t.r2c(e))},t.p2d=function(t){return P(N(t))},t.r2p=t.d2p,t.p2r=N,t.cleanPos=function(t){return Array.isArray(t)||"string"==typeof t&&""!==t?t:f(t)},t.setupMultiCategory=function(n){var i,o,s=t._traceIndices,l=t._matchGroup;if(l&&0===t._categories.length)for(var c in l)if(c!==r){var u=e[w.id2name(c)];s=s.concat(u._traceIndices)}var f=[[0,{}],[0,{}]],d=[];for(i=0;id&&(o[n]=d),o[0]===o[1]){var c=Math.max(1,Math.abs(1e-6*o[0]));o[0]-=c,o[1]+=c}}else a.nestedProperty(t,e).set(i)},t.setScale=function(r){var n=e._size;if(t.overlaying){var i=w.getFromId({_fullLayout:e},t.overlaying);t.domain=i.domain}var a=r&&t._r?"_r":"range",o=t.calendar;t.cleanRange(a);var s,l,c=t.r2l(t[a][0],o),u=t.r2l(t[a][1],o),f="y"===p;if((f?(t._offset=n.t+(1-t.domain[1])*n.h,t._length=n.h*(t.domain[1]-t.domain[0]),t._m=t._length/(c-u),t._b=-t._m*u):(t._offset=n.l+t.domain[0]*n.w,t._length=n.w*(t.domain[1]-t.domain[0]),t._m=t._length/(u-c),t._b=-t._m*c),t._rangebreaks=[],t._lBreaks=0,t._m2=0,t._B=[],t.rangebreaks)&&(t._rangebreaks=t.locateBreaks(Math.min(c,u),Math.max(c,u)),t._rangebreaks.length)){for(s=0;su&&(h=!h),h&&t._rangebreaks.reverse();var d=h?-1:1;for(t._m2=d*t._length/(Math.abs(u-c)-t._lBreaks),t._B.push(-t._m2*(f?u:c)),s=0;si&&(i+=7,oi&&(i+=24,o=n&&o=n&&e=s.min&&(ts.max&&(s.max=n),i=!1)}i&&c.push({min:t,max:n})}};for(n=0;nr.duration?(!function(){for(var r={},n=0;n rect").call(o.setTranslate,0,0).call(o.setScale,1,1),t.plot.call(o.setTranslate,e._offset,r._offset).call(o.setScale,1,1);var n=t.plot.selectAll(".scatterlayer .trace");n.selectAll(".point").call(o.setPointGroupScale,1,1),n.selectAll(".textpoint").call(o.setTextPointsScale,1,1),n.call(o.hideOutsideRangePoints,t)}function g(e,r){var n=e.plotinfo,i=n.xaxis,l=n.yaxis,c=i._length,u=l._length,f=!!e.xr1,h=!!e.yr1,p=[];if(f){var d=a.simpleMap(e.xr0,i.r2l),m=a.simpleMap(e.xr1,i.r2l),g=d[1]-d[0],v=m[1]-m[0];p[0]=(d[0]*(1-r)+r*m[0]-d[0])/(d[1]-d[0])*c,p[2]=c*(1-r+r*v/g),i.range[0]=i.l2r(d[0]*(1-r)+r*m[0]),i.range[1]=i.l2r(d[1]*(1-r)+r*m[1])}else p[0]=0,p[2]=c;if(h){var y=a.simpleMap(e.yr0,l.r2l),x=a.simpleMap(e.yr1,l.r2l),b=y[1]-y[0],_=x[1]-x[0];p[1]=(y[1]*(1-r)+r*x[1]-y[1])/(y[0]-y[1])*u,p[3]=u*(1-r+r*_/b),l.range[0]=i.l2r(y[0]*(1-r)+r*x[0]),l.range[1]=l.l2r(y[1]*(1-r)+r*x[1])}else p[1]=0,p[3]=u;s.drawOne(t,i,{skipTitle:!0}),s.drawOne(t,l,{skipTitle:!0}),s.redrawComponents(t,[i._id,l._id]);var w=f?c/p[2]:1,T=h?u/p[3]:1,k=f?p[0]:0,A=h?p[1]:0,M=f?p[0]/p[2]*c:0,S=h?p[1]/p[3]*u:0,E=i._offset-M,L=l._offset-S;n.clipRect.call(o.setTranslate,k,A).call(o.setScale,1/w,1/T),n.plot.call(o.setTranslate,E,L).call(o.setScale,w,T),o.setPointGroupScale(n.zoomScalePts,1/w,1/T),o.setTextPointsScale(n.zoomScaleTxt,1/w,1/T)}s.redrawComponents(t)}},{"../../components/drawing":661,"../../lib":776,"../../registry":904,"./axes":827,"@plotly/d3":58}],853:[function(t,e,r){"use strict";var n=t("../../registry").traceIs,i=t("./axis_autotype");function a(t){return{v:"x",h:"y"}[t.orientation||"v"]}function o(t,e){var r=a(t),i=n(t,"box-violin"),o=n(t._fullInput||{},"candlestick");return i&&!o&&e===r&&void 0===t[r]&&void 0===t[r+"0"]}e.exports=function(t,e,r,s){r("autotypenumbers",s.autotypenumbersDflt),"-"===r("type",(s.splomStash||{}).type)&&(!function(t,e){if("-"!==t.type)return;var r,s=t._id,l=s.charAt(0);-1!==s.indexOf("scene")&&(s=l);var c=function(t,e,r){for(var n=0;n0&&(i["_"+r+"axes"]||{})[e])return i;if((i[r+"axis"]||r)===e){if(o(i,r))return i;if((i[r]||[]).length||i[r+"0"])return i}}}(e,s,l);if(!c)return;if("histogram"===c.type&&l==={v:"y",h:"x"}[c.orientation||"v"])return void(t.type="linear");var u=l+"calendar",f=c[u],h={noMultiCategory:!n(c,"cartesian")||n(c,"noMultiCategory")};"box"===c.type&&c._hasPreCompStats&&l==={h:"x",v:"y"}[c.orientation||"v"]&&(h.noMultiCategory=!0);if(h.autotypenumbers=t.autotypenumbers,o(c,l)){var p=a(c),d=[];for(r=0;r0?".":"")+a;i.isPlainObject(o)?l(o,e,s,n+1):e(s,a,o)}}))}r.manageCommandObserver=function(t,e,n,o){var s={},l=!0;e&&e._commandObserver&&(s=e._commandObserver),s.cache||(s.cache={}),s.lookupTable={};var c=r.hasSimpleAPICommandBindings(t,n,s.lookupTable);if(e&&e._commandObserver){if(c)return s;if(e._commandObserver.remove)return e._commandObserver.remove(),e._commandObserver=null,s}if(c){a(t,c,s.cache),s.check=function(){if(l){var e=a(t,c,s.cache);return e.changed&&o&&void 0!==s.lookupTable[e.value]&&(s.disable(),Promise.resolve(o({value:e.value,type:c.type,prop:c.prop,traces:c.traces,index:s.lookupTable[e.value]})).then(s.enable,s.enable)),e.changed}};for(var u=["plotly_relayout","plotly_redraw","plotly_restyle","plotly_update","plotly_animatingframe","plotly_afterplot"],f=0;f0&&i<0&&(i+=360);var s=(i-n)/4;return{type:"Polygon",coordinates:[[[n,a],[n,o],[n+s,o],[n+2*s,o],[n+3*s,o],[i,o],[i,a],[i-s,a],[i-2*s,a],[i-3*s,a],[n,a]]]}}e.exports=function(t){return new M(t)},S.plot=function(t,e,r){var n=this,i=e[this.id],a=[],o=!1;for(var s in w.layerNameToAdjective)if("frame"!==s&&i["show"+s]){o=!0;break}for(var l=0;l0&&a._module.calcGeoJSON(i,e)}if(!this.updateProjection(t,e)){this.viewInitial&&this.scope===r.scope||this.saveViewInitial(r),this.scope=r.scope,this.updateBaseLayers(e,r),this.updateDims(e,r),this.updateFx(e,r),d.generalUpdatePerTraceModule(this.graphDiv,this,t,r);var o=this.layers.frontplot.select(".scatterlayer");this.dataPoints.point=o.selectAll(".point"),this.dataPoints.text=o.selectAll("text"),this.dataPaths.line=o.selectAll(".js-line");var s=this.layers.backplot.select(".choroplethlayer");this.dataPaths.choropleth=s.selectAll("path"),this.render()}},S.updateProjection=function(t,e){var r=this.graphDiv,n=e[this.id],l=e._size,u=n.domain,f=n.projection,h=n.lonaxis,p=n.lataxis,d=h._ax,m=p._ax,v=this.projection=function(t){var e=t.projection,r=e.type,n=w.projNames[r];n="geo"+c.titleCase(n);for(var l=(i[n]||s[n])(),u=t._isSatellite?180*Math.acos(1/e.distance)/Math.PI:t._isClipped?w.lonaxisSpan[r]/2:null,f=["center","rotate","parallels","clipExtent"],h=function(t){return t?l:[]},p=0;pu*Math.PI/180}return!1},l.getPath=function(){return a().projection(l)},l.getBounds=function(t){return l.getPath().bounds(t)},l.precision(w.precision),t._isSatellite&&l.tilt(e.tilt).distance(e.distance);u&&l.clipAngle(u-w.clipPad);return l}(n),y=[[l.l+l.w*u.x[0],l.t+l.h*(1-u.y[1])],[l.l+l.w*u.x[1],l.t+l.h*(1-u.y[0])]],x=n.center||{},b=f.rotation||{},_=h.range||[],T=p.range||[];if(n.fitbounds){d._length=y[1][0]-y[0][0],m._length=y[1][1]-y[0][1],d.range=g(r,d),m.range=g(r,m);var k=(d.range[0]+d.range[1])/2,A=(m.range[0]+m.range[1])/2;if(n._isScoped)x={lon:k,lat:A};else if(n._isClipped){x={lon:k,lat:A},b={lon:k,lat:A,roll:b.roll};var M=f.type,S=w.lonaxisSpan[M]/2||180,L=w.lataxisSpan[M]/2||90;_=[k-S,k+S],T=[A-L,A+L]}else x={lon:k,lat:A},b={lon:k,lat:b.lat,roll:b.roll}}v.center([x.lon-b.lon,x.lat-b.lat]).rotate([-b.lon,-b.lat,b.roll]).parallels(f.parallels);var C=E(_,T);v.fitExtent(y,C);var P=this.bounds=v.getBounds(C),I=this.fitScale=v.scale(),O=v.translate();if(n.fitbounds){var z=v.getBounds(E(d.range,m.range)),D=Math.min((P[1][0]-P[0][0])/(z[1][0]-z[0][0]),(P[1][1]-P[0][1])/(z[1][1]-z[0][1]));isFinite(D)?v.scale(D*I):c.warn("Something went wrong during"+this.id+"fitbounds computations.")}else v.scale(f.scale*I);var R=this.midPt=[(P[0][0]+P[1][0])/2,(P[0][1]+P[1][1])/2];if(v.translate([O[0]+(R[0]-O[0]),O[1]+(R[1]-O[1])]).clipExtent(P),n._isAlbersUsa){var F=v([x.lon,x.lat]),B=v.translate();v.translate([B[0]-(F[0]-B[0]),B[1]-(F[1]-B[1])])}},S.updateBaseLayers=function(t,e){var r=this,i=r.topojson,a=r.layers,o=r.basePaths;function s(t){return"lonaxis"===t||"lataxis"===t}function l(t){return Boolean(w.lineLayers[t])}function c(t){return Boolean(w.fillLayers[t])}var u=(this.hasChoropleth?w.layersForChoropleth:w.layers).filter((function(t){return l(t)||c(t)?e["show"+t]:!s(t)||e[t].showgrid})),p=r.framework.selectAll(".layer").data(u,String);p.exit().each((function(t){delete a[t],delete o[t],n.select(this).remove()})),p.enter().append("g").attr("class",(function(t){return"layer "+t})).each((function(t){var e=a[t]=n.select(this);"bg"===t?r.bgRect=e.append("rect").style("pointer-events","all"):s(t)?o[t]=e.append("path").style("fill","none"):"backplot"===t?e.append("g").classed("choroplethlayer",!0):"frontplot"===t?e.append("g").classed("scatterlayer",!0):l(t)?o[t]=e.append("path").style("fill","none").style("stroke-miterlimit",2):c(t)&&(o[t]=e.append("path").style("stroke","none"))})),p.order(),p.each((function(r){var n=o[r],a=w.layerNameToAdjective[r];"frame"===r?n.datum(w.sphereSVG):l(r)||c(r)?n.datum(A(i,i.objects[r])):s(r)&&n.datum(function(t,e,r){var n,i,a,o=e[t],s=w.scopeDefaults[e.scope];"lonaxis"===t?(n=s.lonaxisRange,i=s.lataxisRange,a=function(t,e){return[t,e]}):"lataxis"===t&&(n=s.lataxisRange,i=s.lonaxisRange,a=function(t,e){return[e,t]});var l={type:"linear",range:[n[0],n[1]-1e-6],tick0:o.tick0,dtick:o.dtick};m.setConvert(l,r);var c=m.calcTicks(l);e.isScoped||"lonaxis"!==t||c.pop();for(var u=c.length,f=new Array(u),h=0;h-1&&b(n.event,i,[r.xaxis],[r.yaxis],r.id,f),s.indexOf("event")>-1&&p.click(i,n.event))}))}function h(t){return r.projection.invert([t[0]+r.xaxis._offset,t[1]+r.yaxis._offset])}},S.makeFramework=function(){var t=this,e=t.graphDiv,r=e._fullLayout,i="clip"+r._uid+t.id;t.clipDef=r._clips.append("clipPath").attr("id",i),t.clipRect=t.clipDef.append("rect"),t.framework=n.select(t.container).append("g").attr("class","geo "+t.id).call(h.setClipUrl,i,e),t.project=function(e){var r=t.projection(e);return r?[r[0]-t.xaxis._offset,r[1]-t.yaxis._offset]:[null,null]},t.xaxis={_id:"x",c2p:function(e){return t.project(e)[0]}},t.yaxis={_id:"y",c2p:function(e){return t.project(e)[1]}},t.mockAxis={type:"linear",showexponent:"all",exponentformat:"B"},m.setConvert(t.mockAxis,r)},S.saveViewInitial=function(t){var e,r=t.center||{},n=t.projection,i=n.rotation||{};this.viewInitial={fitbounds:t.fitbounds,"projection.scale":n.scale},e=t._isScoped?{"center.lon":r.lon,"center.lat":r.lat}:t._isClipped?{"projection.rotation.lon":i.lon,"projection.rotation.lat":i.lat}:{"center.lon":r.lon,"center.lat":r.lat,"projection.rotation.lon":i.lon},c.extendFlat(this.viewInitial,e)},S.render=function(){var t,e=this.projection,r=e.getPath();function n(t){var r=e(t.lonlat);return r?u(r[0],r[1]):null}function i(t){return e.isLonLatOverEdges(t.lonlat)?"none":null}for(t in this.basePaths)this.basePaths[t].attr("d",r);for(t in this.dataPaths)this.dataPaths[t].attr("d",(function(t){return r(t.geojson)}));for(t in this.dataPoints)this.dataPoints[t].attr("display",i).attr("transform",n)}},{"../../components/color":639,"../../components/dragelement":658,"../../components/drawing":661,"../../components/fx":679,"../../lib":776,"../../lib/geo_location_utils":769,"../../lib/topojson_utils":805,"../../registry":904,"../cartesian/autorange":826,"../cartesian/axes":827,"../cartesian/select":847,"../plots":890,"./constants":858,"./zoom":863,"@plotly/d3":58,"d3-geo":162,"d3-geo-projection":161,"topojson-client":575}],860:[function(t,e,r){"use strict";var n=t("../../plots/get_data").getSubplotCalcData,i=t("../../lib").counterRegex,a=t("./geo"),o="geo",s=i(o),l={};l.geo={valType:"subplotid",dflt:o,editType:"calc"},e.exports={attr:o,name:o,idRoot:o,idRegex:s,attrRegex:s,attributes:l,layoutAttributes:t("./layout_attributes"),supplyLayoutDefaults:t("./layout_defaults"),plot:function(t){for(var e=t._fullLayout,r=t.calcdata,i=e._subplots.geo,s=0;s0&&P<0&&(P+=360);var I,O,z,D=(C+P)/2;if(!p){var R=d?f.projRotate:[D,0,0];I=r("projection.rotation.lon",R[0]),r("projection.rotation.lat",R[1]),r("projection.rotation.roll",R[2]),r("showcoastlines",!d&&x)&&(r("coastlinecolor"),r("coastlinewidth")),r("showocean",!!x&&void 0)&&r("oceancolor")}(p?(O=-96.6,z=38.7):(O=d?D:I,z=(L[0]+L[1])/2),r("center.lon",O),r("center.lat",z),m&&(r("projection.tilt"),r("projection.distance")),g)&&r("projection.parallels",f.projParallels||[0,60]);r("projection.scale"),r("showland",!!x&&void 0)&&r("landcolor"),r("showlakes",!!x&&void 0)&&r("lakecolor"),r("showrivers",!!x&&void 0)&&(r("rivercolor"),r("riverwidth")),r("showcountries",d&&"usa"!==u&&x)&&(r("countrycolor"),r("countrywidth")),("usa"===u||"north america"===u&&50===c)&&(r("showsubunits",x),r("subunitcolor"),r("subunitwidth")),d||r("showframe",x)&&(r("framecolor"),r("framewidth")),r("bgcolor"),r("fitbounds")&&(delete e.projection.scale,d?(delete e.center.lon,delete e.center.lat):v?(delete e.center.lon,delete e.center.lat,delete e.projection.rotation.lon,delete e.projection.rotation.lat,delete e.lonaxis.range,delete e.lataxis.range):(delete e.center.lon,delete e.center.lat,delete e.projection.rotation.lon))}e.exports=function(t,e,r){i(t,e,r,{type:"geo",attributes:s,handleDefaults:c,fullData:r,partition:"y"})}},{"../../lib":776,"../get_data":864,"../subplot_defaults":898,"./constants":858,"./layout_attributes":861}],863:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../registry"),o=Math.PI/180,s=180/Math.PI,l={cursor:"pointer"},c={cursor:"auto"};function u(t,e){return n.behavior.zoom().translate(e.translate()).scale(e.scale())}function f(t,e,r){var n=t.id,o=t.graphDiv,s=o.layout,l=s[n],c=o._fullLayout,u=c[n],f={},h={};function p(t,e){f[n+"."+t]=i.nestedProperty(l,t).get(),a.call("_storeDirectGUIEdit",s,c._preGUI,f);var r=i.nestedProperty(u,t);r.get()!==e&&(r.set(e),i.nestedProperty(l,t).set(e),h[n+"."+t]=e)}r(p),p("projection.scale",e.scale()/t.fitScale),p("fitbounds",!1),o.emit("plotly_relayout",h)}function h(t,e){var r=u(0,e);function i(r){var n=e.invert(t.midPt);r("center.lon",n[0]),r("center.lat",n[1])}return r.on("zoomstart",(function(){n.select(this).style(l)})).on("zoom",(function(){e.scale(n.event.scale).translate(n.event.translate),t.render();var r=e.invert(t.midPt);t.graphDiv.emit("plotly_relayouting",{"geo.projection.scale":e.scale()/t.fitScale,"geo.center.lon":r[0],"geo.center.lat":r[1]})})).on("zoomend",(function(){n.select(this).style(c),f(t,e,i)})),r}function p(t,e){var r,i,a,o,s,h,p,d,m,g=u(0,e);function v(t){return e.invert(t)}function y(r){var n=e.rotate(),i=e.invert(t.midPt);r("projection.rotation.lon",-n[0]),r("center.lon",i[0]),r("center.lat",i[1])}return g.on("zoomstart",(function(){n.select(this).style(l),r=n.mouse(this),i=e.rotate(),a=e.translate(),o=i,s=v(r)})).on("zoom",(function(){if(h=n.mouse(this),function(t){var r=v(t);if(!r)return!0;var n=e(r);return Math.abs(n[0]-t[0])>2||Math.abs(n[1]-t[1])>2}(r))return g.scale(e.scale()),void g.translate(e.translate());e.scale(n.event.scale),e.translate([a[0],n.event.translate[1]]),s?v(h)&&(d=v(h),p=[o[0]+(d[0]-s[0]),i[1],i[2]],e.rotate(p),o=p):s=v(r=h),m=!0,t.render();var l=e.rotate(),c=e.invert(t.midPt);t.graphDiv.emit("plotly_relayouting",{"geo.projection.scale":e.scale()/t.fitScale,"geo.center.lon":c[0],"geo.center.lat":c[1],"geo.projection.rotation.lon":-l[0]})})).on("zoomend",(function(){n.select(this).style(c),m&&f(t,e,y)})),g}function d(t,e){var r,i={r:e.rotate(),k:e.scale()},a=u(0,e),o=function(t){var e=0,r=arguments.length,i=[];for(;++ed?(a=(f>0?90:-90)-p,i=0):(a=Math.asin(f/d)*s-p,i=Math.sqrt(d*d-f*f));var m=180-a-2*p,g=(Math.atan2(h,u)-Math.atan2(c,i))*s,v=(Math.atan2(h,u)-Math.atan2(c,-i))*s;return b(r[0],r[1],a,g)<=b(r[0],r[1],m,v)?[a,g,r[2]]:[m,v,r[2]]}function b(t,e,r,n){var i=_(r-t),a=_(n-e);return Math.sqrt(i*i+a*a)}function _(t){return(t%360+540)%360-180}function w(t,e,r){var n=r*o,i=t.slice(),a=0===e?1:0,s=2===e?1:2,l=Math.cos(n),c=Math.sin(n);return i[a]=t[a]*l-t[s]*c,i[s]=t[s]*l+t[a]*c,i}function T(t){return[Math.atan2(2*(t[0]*t[1]+t[2]*t[3]),1-2*(t[1]*t[1]+t[2]*t[2]))*s,Math.asin(Math.max(-1,Math.min(1,2*(t[0]*t[2]-t[3]*t[1]))))*s,Math.atan2(2*(t[0]*t[3]+t[1]*t[2]),1-2*(t[2]*t[2]+t[3]*t[3]))*s]}function k(t,e){for(var r=0,n=0,i=t.length;nMath.abs(s)?(c.boxEnd[1]=c.boxStart[1]+Math.abs(a)*_*(s>=0?1:-1),c.boxEnd[1]l[3]&&(c.boxEnd[1]=l[3],c.boxEnd[0]=c.boxStart[0]+(l[3]-c.boxStart[1])/Math.abs(_))):(c.boxEnd[0]=c.boxStart[0]+Math.abs(s)/_*(a>=0?1:-1),c.boxEnd[0]l[2]&&(c.boxEnd[0]=l[2],c.boxEnd[1]=c.boxStart[1]+(l[2]-c.boxStart[0])*Math.abs(_)))}}else c.boxEnabled?(a=c.boxStart[0]!==c.boxEnd[0],s=c.boxStart[1]!==c.boxEnd[1],a||s?(a&&(g(0,c.boxStart[0],c.boxEnd[0]),t.xaxis.autorange=!1),s&&(g(1,c.boxStart[1],c.boxEnd[1]),t.yaxis.autorange=!1),t.relayoutCallback()):t.glplot.setDirty(),c.boxEnabled=!1,c.boxInited=!1):c.boxInited&&(c.boxInited=!1);break;case"pan":c.boxEnabled=!1,c.boxInited=!1,e?(c.panning||(c.dragStart[0]=n,c.dragStart[1]=i),Math.abs(c.dragStart[0]-n).999&&(m="turntable"):m="turntable")}else m="turntable";r("dragmode",m),r("hovermode",n.getDfltFromLayout("hovermode"))}e.exports=function(t,e,r){var i=e._basePlotModules.length>1;o(t,e,r,{type:"gl3d",attributes:l,handleDefaults:u,fullLayout:e,font:e.font,fullData:r,getDfltFromLayout:function(e){if(!i)return n.validate(t[e],l[e])?t[e]:void 0},autotypenumbersDflt:e.autotypenumbers,paper_bgcolor:e.paper_bgcolor,calendar:e.calendar})}},{"../../../components/color":639,"../../../lib":776,"../../../registry":904,"../../get_data":864,"../../subplot_defaults":898,"./axis_defaults":872,"./layout_attributes":875}],875:[function(t,e,r){"use strict";var n=t("./axis_attributes"),i=t("../../domain").attributes,a=t("../../../lib/extend").extendFlat,o=t("../../../lib").counterRegex;function s(t,e,r){return{x:{valType:"number",dflt:t,editType:"camera"},y:{valType:"number",dflt:e,editType:"camera"},z:{valType:"number",dflt:r,editType:"camera"},editType:"camera"}}e.exports={_arrayAttrRegexps:[o("scene",".annotations",!0)],bgcolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"plot"},camera:{up:a(s(0,0,1),{}),center:a(s(0,0,0),{}),eye:a(s(1.25,1.25,1.25),{}),projection:{type:{valType:"enumerated",values:["perspective","orthographic"],dflt:"perspective",editType:"calc"},editType:"calc"},editType:"camera"},domain:i({name:"scene",editType:"plot"}),aspectmode:{valType:"enumerated",values:["auto","cube","data","manual"],dflt:"auto",editType:"plot",impliedEdits:{"aspectratio.x":void 0,"aspectratio.y":void 0,"aspectratio.z":void 0}},aspectratio:{x:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},y:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},z:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},editType:"plot",impliedEdits:{aspectmode:"manual"}},xaxis:n,yaxis:n,zaxis:n,dragmode:{valType:"enumerated",values:["orbit","turntable","zoom","pan",!1],editType:"plot"},hovermode:{valType:"enumerated",values:["closest",!1],dflt:"closest",editType:"modebar"},uirevision:{valType:"any",editType:"none"},editType:"plot",_deprecated:{cameraposition:{valType:"info_array",editType:"camera"}}}},{"../../../lib":776,"../../../lib/extend":766,"../../domain":855,"./axis_attributes":871}],876:[function(t,e,r){"use strict";var n=t("../../../lib/str2rgbarray"),i=["xaxis","yaxis","zaxis"];function a(){this.enabled=[!0,!0,!0],this.colors=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.drawSides=[!0,!0,!0],this.lineWidth=[1,1,1]}a.prototype.merge=function(t){for(var e=0;e<3;++e){var r=t[i[e]];r.visible?(this.enabled[e]=r.showspikes,this.colors[e]=n(r.spikecolor),this.drawSides[e]=r.spikesides,this.lineWidth[e]=r.spikethickness):(this.enabled[e]=!1,this.drawSides[e]=!1)}},e.exports=function(t){var e=new a;return e.merge(t),e}},{"../../../lib/str2rgbarray":801}],877:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.axesOptions,r=t.glplot.axesPixels,s=t.fullSceneLayout,l=[[],[],[]],c=0;c<3;++c){var u=s[a[c]];if(u._length=(r[c].hi-r[c].lo)*r[c].pixelsPerDataUnit/t.dataScale[c],Math.abs(u._length)===1/0||isNaN(u._length))l[c]=[];else{u._input_range=u.range.slice(),u.range[0]=r[c].lo/t.dataScale[c],u.range[1]=r[c].hi/t.dataScale[c],u._m=1/(t.dataScale[c]*r[c].pixelsPerDataUnit),u.range[0]===u.range[1]&&(u.range[0]-=1,u.range[1]+=1);var f=u.tickmode;if("auto"===u.tickmode){u.tickmode="linear";var h=u.nticks||i.constrain(u._length/40,4,9);n.autoTicks(u,Math.abs(u.range[1]-u.range[0])/h)}for(var p=n.calcTicks(u,{msUTC:!0}),d=0;d/g," "));l[c]=p,u.tickmode=f}}e.ticks=l;for(c=0;c<3;++c){o[c]=.5*(t.glplot.bounds[0][c]+t.glplot.bounds[1][c]);for(d=0;d<2;++d)e.bounds[d][c]=t.glplot.bounds[d][c]}t.contourLevels=function(t){for(var e=new Array(3),r=0;r<3;++r){for(var n=t[r],i=new Array(n.length),a=0;ar.deltaY?1.1:1/1.1,a=t.glplot.getAspectratio();t.glplot.setAspectratio({x:n*a.x,y:n*a.y,z:n*a.z})}i(t)}}),!!c&&{passive:!1}),t.glplot.canvas.addEventListener("mousemove",(function(){if(!1!==t.fullSceneLayout.dragmode&&0!==t.camera.mouseListener.buttons){var e=n();t.graphDiv.emit("plotly_relayouting",e)}})),t.staticMode||t.glplot.canvas.addEventListener("webglcontextlost",(function(r){e&&e.emit&&e.emit("plotly_webglcontextlost",{event:r,layer:t.id})}),!1)),t.glplot.oncontextloss=function(){t.recoverContext()},t.glplot.onrender=function(){t.render()},!0},w.render=function(){var t,e=this,r=e.graphDiv,n=e.svgContainer,i=e.container.getBoundingClientRect();r._fullLayout._calcInverseTransform(r);var a=r._fullLayout._invScaleX,o=r._fullLayout._invScaleY,s=i.width*a,l=i.height*o;n.setAttributeNS(null,"viewBox","0 0 "+s+" "+l),n.setAttributeNS(null,"width",s),n.setAttributeNS(null,"height",l),b(e),e.glplot.axes.update(e.axesOptions);for(var c,u=Object.keys(e.traces),h=null,m=e.glplot.selection,g=0;g")):"isosurface"===t.type||"volume"===t.type?(k.valueLabel=p.hoverLabelText(e._mockAxis,e._mockAxis.d2l(m.traceCoordinate[3]),t.valuehoverformat),E.push("value: "+k.valueLabel),m.textLabel&&E.push(m.textLabel),_=E.join("
")):_=m.textLabel;var L={x:m.traceCoordinate[0],y:m.traceCoordinate[1],z:m.traceCoordinate[2],data:w._input,fullData:w,curveNumber:w.index,pointNumber:T};d.appendArrayPointValue(L,w,T),t._module.eventData&&(L=w._module.eventData(L,m,w,{},T));var C={points:[L]};if(e.fullSceneLayout.hovermode){var P=[];d.loneHover({trace:w,x:(.5+.5*x[0]/x[3])*s,y:(.5-.5*x[1]/x[3])*l,xLabel:k.xLabel,yLabel:k.yLabel,zLabel:k.zLabel,text:_,name:h.name,color:d.castHoverOption(w,T,"bgcolor")||h.color,borderColor:d.castHoverOption(w,T,"bordercolor"),fontFamily:d.castHoverOption(w,T,"font.family"),fontSize:d.castHoverOption(w,T,"font.size"),fontColor:d.castHoverOption(w,T,"font.color"),nameLength:d.castHoverOption(w,T,"namelength"),textAlign:d.castHoverOption(w,T,"align"),hovertemplate:f.castOption(w,T,"hovertemplate"),hovertemplateLabels:f.extendFlat({},L,k),eventData:[L]},{container:n,gd:r,inOut_bbox:P}),L.bbox=P[0]}m.buttons&&m.distance<5?r.emit("plotly_click",C):r.emit("plotly_hover",C),c=C}else d.loneUnhover(n),r.emit("plotly_unhover",c);e.drawAnnotations(e)},w.recoverContext=function(){var t=this;t.glplot.dispose();var e=function(){t.glplot.gl.isContextLost()?requestAnimationFrame(e):t.initializeGLPlot()?t.plot.apply(t,t.plotArgs):f.error("Catastrophic and unrecoverable WebGL error. Context lost.")};requestAnimationFrame(e)};var k=["xaxis","yaxis","zaxis"];function A(t,e,r){for(var n=t.fullSceneLayout,i=0;i<3;i++){var a=k[i],o=a.charAt(0),s=n[a],l=e[o],c=e[o+"calendar"],u=e["_"+o+"length"];if(f.isArrayOrTypedArray(l))for(var h,p=0;p<(u||l.length);p++)if(f.isArrayOrTypedArray(l[p]))for(var d=0;dg[1][a])g[0][a]=-1,g[1][a]=1;else{var L=g[1][a]-g[0][a];g[0][a]-=L/32,g[1][a]+=L/32}if("reversed"===s.autorange){var C=g[0][a];g[0][a]=g[1][a],g[1][a]=C}}else{var P=s.range;g[0][a]=s.r2l(P[0]),g[1][a]=s.r2l(P[1])}g[0][a]===g[1][a]&&(g[0][a]-=1,g[1][a]+=1),v[a]=g[1][a]-g[0][a],this.glplot.setBounds(a,{min:g[0][a]*h[a],max:g[1][a]*h[a]})}var I=c.aspectmode;if("cube"===I)d=[1,1,1];else if("manual"===I){var O=c.aspectratio;d=[O.x,O.y,O.z]}else{if("auto"!==I&&"data"!==I)throw new Error("scene.js aspectRatio was not one of the enumerated types");var z=[1,1,1];for(a=0;a<3;++a){var D=y[l=(s=c[k[a]]).type];z[a]=Math.pow(D.acc,1/D.count)/h[a]}d="data"===I||Math.max.apply(null,z)/Math.min.apply(null,z)<=4?z:[1,1,1]}c.aspectratio.x=u.aspectratio.x=d[0],c.aspectratio.y=u.aspectratio.y=d[1],c.aspectratio.z=u.aspectratio.z=d[2],this.glplot.setAspectratio(c.aspectratio),this.viewInitial.aspectratio||(this.viewInitial.aspectratio={x:c.aspectratio.x,y:c.aspectratio.y,z:c.aspectratio.z}),this.viewInitial.aspectmode||(this.viewInitial.aspectmode=c.aspectmode);var R=c.domain||null,F=e._size||null;if(R&&F){var B=this.container.style;B.position="absolute",B.left=F.l+R.x[0]*F.w+"px",B.top=F.t+(1-R.y[1])*F.h+"px",B.width=F.w*(R.x[1]-R.x[0])+"px",B.height=F.h*(R.y[1]-R.y[0])+"px"}this.glplot.redraw()}},w.destroy=function(){this.glplot&&(this.camera.mouseListener.enabled=!1,this.container.removeEventListener("wheel",this.camera.wheelListener),this.camera=null,this.glplot.dispose(),this.container.parentNode.removeChild(this.container),this.glplot=null)},w.getCamera=function(){var t;return this.camera.view.recalcMatrix(this.camera.view.lastT()),{up:{x:(t=this.camera).up[0],y:t.up[1],z:t.up[2]},center:{x:t.center[0],y:t.center[1],z:t.center[2]},eye:{x:t.eye[0],y:t.eye[1],z:t.eye[2]},projection:{type:!0===t._ortho?"orthographic":"perspective"}}},w.setViewport=function(t){var e,r=t.camera;this.camera.lookAt.apply(this,[[(e=r).eye.x,e.eye.y,e.eye.z],[e.center.x,e.center.y,e.center.z],[e.up.x,e.up.y,e.up.z]]),this.glplot.setAspectratio(t.aspectratio),"orthographic"===r.projection.type!==this.camera._ortho&&(this.glplot.redraw(),this.glplot.clearRGBA(),this.glplot.dispose(),this.initializeGLPlot())},w.isCameraChanged=function(t){var e=this.getCamera(),r=f.nestedProperty(t,this.id+".camera").get();function n(t,e,r,n){var i=["up","center","eye"],a=["x","y","z"];return e[i[r]]&&t[i[r]][a[n]]===e[i[r]][a[n]]}var i=!1;if(void 0===r)i=!0;else{for(var a=0;a<3;a++)for(var o=0;o<3;o++)if(!n(e,r,a,o)){i=!0;break}(!r.projection||e.projection&&e.projection.type!==r.projection.type)&&(i=!0)}return i},w.isAspectChanged=function(t){var e=this.glplot.getAspectratio(),r=f.nestedProperty(t,this.id+".aspectratio").get();return void 0===r||r.x!==e.x||r.y!==e.y||r.z!==e.z},w.saveLayout=function(t){var e,r,n,i,a,o,s=this.fullLayout,l=this.isCameraChanged(t),c=this.isAspectChanged(t),h=l||c;if(h){var p={};if(l&&(e=this.getCamera(),n=(r=f.nestedProperty(t,this.id+".camera")).get(),p[this.id+".camera"]=n),c&&(i=this.glplot.getAspectratio(),o=(a=f.nestedProperty(t,this.id+".aspectratio")).get(),p[this.id+".aspectratio"]=o),u.call("_storeDirectGUIEdit",t,s._preGUI,p),l)r.set(e),f.nestedProperty(s,this.id+".camera").set(e);if(c)a.set(i),f.nestedProperty(s,this.id+".aspectratio").set(i),this.glplot.redraw()}return h},w.updateFx=function(t,e){var r=this.camera;if(r)if("orbit"===t)r.mode="orbit",r.keyBindingMode="rotate";else if("turntable"===t){r.up=[0,0,1],r.mode="turntable",r.keyBindingMode="rotate";var n=this.graphDiv,i=n._fullLayout,a=this.fullSceneLayout.camera,o=a.up.x,s=a.up.y,l=a.up.z;if(l/Math.sqrt(o*o+s*s+l*l)<.999){var c=this.id+".camera.up",h={x:0,y:0,z:1},p={};p[c]=h;var d=n.layout;u.call("_storeDirectGUIEdit",d,i._preGUI,p),a.up=h,f.nestedProperty(d,c).set(h)}}else r.keyBindingMode=t;this.fullSceneLayout.hovermode=e},w.toImage=function(t){t||(t="png"),this.staticMode&&this.container.appendChild(n),this.glplot.redraw();var e=this.glplot.gl,r=e.drawingBufferWidth,i=e.drawingBufferHeight;e.bindFramebuffer(e.FRAMEBUFFER,null);var a=new Uint8Array(r*i*4);e.readPixels(0,0,r,i,e.RGBA,e.UNSIGNED_BYTE,a),function(t,e,r){for(var n=0,i=r-1;n0)for(var s=255/o,l=0;l<3;++l)t[a+l]=Math.min(s*t[a+l],255)}}(a,r,i);var o=document.createElement("canvas");o.width=r,o.height=i;var s,l=o.getContext("2d"),c=l.createImageData(r,i);switch(c.data.set(a),l.putImageData(c,0,0),t){case"jpeg":s=o.toDataURL("image/jpeg");break;case"webp":s=o.toDataURL("image/webp");break;default:s=o.toDataURL("image/png")}return this.staticMode&&this.container.removeChild(n),s},w.setConvert=function(){for(var t=0;t<3;t++){var e=this.fullSceneLayout[k[t]];p.setConvert(e,this.fullLayout),e.setScale=f.noop}},w.make4thDimension=function(){var t=this.graphDiv._fullLayout;this._mockAxis={type:"linear",showexponent:"all",exponentformat:"B"},p.setConvert(this._mockAxis,t)},e.exports=_},{"../../components/fx":679,"../../lib":776,"../../lib/show_no_webgl_msg":798,"../../lib/str2rgbarray":801,"../../plots/cartesian/axes":827,"../../registry":904,"./layout/convert":873,"./layout/spikes":876,"./layout/tick_marks":877,"./project":878,"gl-plot3d":312,"has-passive-events":426,"webgl-context":602}],880:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){n=n||t.length;for(var i=new Array(n),a=0;aOpenStreetMap
contributors',a=['\xa9 Carto',i].join(" "),o=['Map tiles by Stamen Design','under CC BY 3.0',"|",'Data by OpenStreetMap contributors','under ODbL'].join(" "),s={"open-street-map":{id:"osm",version:8,sources:{"plotly-osm-tiles":{type:"raster",attribution:i,tiles:["https://a.tile.openstreetmap.org/{z}/{x}/{y}.png","https://b.tile.openstreetmap.org/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-osm-tiles",type:"raster",source:"plotly-osm-tiles",minzoom:0,maxzoom:22}]},"white-bg":{id:"white-bg",version:8,sources:{},layers:[{id:"white-bg",type:"background",paint:{"background-color":"#FFFFFF"},minzoom:0,maxzoom:22}]},"carto-positron":{id:"carto-positron",version:8,sources:{"plotly-carto-positron":{type:"raster",attribution:a,tiles:["https://cartodb-basemaps-c.global.ssl.fastly.net/light_all/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-carto-positron",type:"raster",source:"plotly-carto-positron",minzoom:0,maxzoom:22}]},"carto-darkmatter":{id:"carto-darkmatter",version:8,sources:{"plotly-carto-darkmatter":{type:"raster",attribution:a,tiles:["https://cartodb-basemaps-c.global.ssl.fastly.net/dark_all/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-carto-darkmatter",type:"raster",source:"plotly-carto-darkmatter",minzoom:0,maxzoom:22}]},"stamen-terrain":{id:"stamen-terrain",version:8,sources:{"plotly-stamen-terrain":{type:"raster",attribution:o,tiles:["https://stamen-tiles.a.ssl.fastly.net/terrain/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-terrain",type:"raster",source:"plotly-stamen-terrain",minzoom:0,maxzoom:22}]},"stamen-toner":{id:"stamen-toner",version:8,sources:{"plotly-stamen-toner":{type:"raster",attribution:o,tiles:["https://stamen-tiles.a.ssl.fastly.net/toner/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-toner",type:"raster",source:"plotly-stamen-toner",minzoom:0,maxzoom:22}]},"stamen-watercolor":{id:"stamen-watercolor",version:8,sources:{"plotly-stamen-watercolor":{type:"raster",attribution:['Map tiles by Stamen Design','under CC BY 3.0',"|",'Data by OpenStreetMap contributors','under CC BY SA'].join(" "),tiles:["https://stamen-tiles.a.ssl.fastly.net/watercolor/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-watercolor",type:"raster",source:"plotly-stamen-watercolor",minzoom:0,maxzoom:22}]}},l=n(s);e.exports={requiredVersion:"1.10.1",styleUrlPrefix:"mapbox://styles/mapbox/",styleUrlSuffix:"v9",styleValuesMapbox:["basic","streets","outdoors","light","dark","satellite","satellite-streets"],styleValueDflt:"basic",stylesNonMapbox:s,styleValuesNonMapbox:l,traceLayerPrefix:"plotly-trace-layer-",layoutLayerPrefix:"plotly-layout-layer-",wrongVersionErrorMsg:["Your custom plotly.js bundle is not using the correct mapbox-gl version","Please install mapbox-gl@1.10.1."].join("\n"),noAccessTokenErrorMsg:["Missing Mapbox access token.","Mapbox trace type require a Mapbox access token to be registered.","For example:"," Plotly.newPlot(gd, data, layout, { mapboxAccessToken: 'my-access-token' });","More info here: https://www.mapbox.com/help/define-access-token/"].join("\n"),missingStyleErrorMsg:["No valid mapbox style found, please set `mapbox.style` to one of:",l.join(", "),"or register a Mapbox access token to use a Mapbox-served style."].join("\n"),multipleTokensErrorMsg:["Set multiple mapbox access token across different mapbox subplot,","using first token found as mapbox-gl does not allow multipleaccess tokens on the same page."].join("\n"),mapOnErrorMsg:"Mapbox error.",mapboxLogo:{path0:"m 10.5,1.24 c -5.11,0 -9.25,4.15 -9.25,9.25 0,5.1 4.15,9.25 9.25,9.25 5.1,0 9.25,-4.15 9.25,-9.25 0,-5.11 -4.14,-9.25 -9.25,-9.25 z m 4.39,11.53 c -1.93,1.93 -4.78,2.31 -6.7,2.31 -0.7,0 -1.41,-0.05 -2.1,-0.16 0,0 -1.02,-5.64 2.14,-8.81 0.83,-0.83 1.95,-1.28 3.13,-1.28 1.27,0 2.49,0.51 3.39,1.42 1.84,1.84 1.89,4.75 0.14,6.52 z",path1:"M 10.5,-0.01 C 4.7,-0.01 0,4.7 0,10.49 c 0,5.79 4.7,10.5 10.5,10.5 5.8,0 10.5,-4.7 10.5,-10.5 C 20.99,4.7 16.3,-0.01 10.5,-0.01 Z m 0,19.75 c -5.11,0 -9.25,-4.15 -9.25,-9.25 0,-5.1 4.14,-9.26 9.25,-9.26 5.11,0 9.25,4.15 9.25,9.25 0,5.13 -4.14,9.26 -9.25,9.26 z",path2:"M 14.74,6.25 C 12.9,4.41 9.98,4.35 8.23,6.1 5.07,9.27 6.09,14.91 6.09,14.91 c 0,0 5.64,1.02 8.81,-2.14 C 16.64,11 16.59,8.09 14.74,6.25 Z m -2.27,4.09 -0.91,1.87 -0.9,-1.87 -1.86,-0.91 1.86,-0.9 0.9,-1.87 0.91,1.87 1.86,0.9 z",polygon:"11.56,12.21 10.66,10.34 8.8,9.43 10.66,8.53 11.56,6.66 12.47,8.53 14.33,9.43 12.47,10.34"},styleRules:{map:"overflow:hidden;position:relative;","missing-css":"display:none;",canary:"background-color:salmon;","ctrl-bottom-left":"position: absolute; pointer-events: none; z-index: 2; bottom: 0; left: 0;","ctrl-bottom-right":"position: absolute; pointer-events: none; z-index: 2; right: 0; bottom: 0;",ctrl:"clear: both; pointer-events: auto; transform: translate(0, 0);","ctrl-attrib.mapboxgl-compact .mapboxgl-ctrl-attrib-inner":"display: none;","ctrl-attrib.mapboxgl-compact:hover .mapboxgl-ctrl-attrib-inner":"display: block; margin-top:2px","ctrl-attrib.mapboxgl-compact:hover":"padding: 2px 24px 2px 4px; visibility: visible; margin-top: 6px;","ctrl-attrib.mapboxgl-compact::after":'content: ""; cursor: pointer; position: absolute; background-image: url(\'data:image/svg+xml;charset=utf-8,%3Csvg viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"%3E %3Cpath fill="%23333333" fill-rule="evenodd" d="M4,10a6,6 0 1,0 12,0a6,6 0 1,0 -12,0 M9,7a1,1 0 1,0 2,0a1,1 0 1,0 -2,0 M9,10a1,1 0 1,1 2,0l0,3a1,1 0 1,1 -2,0"/%3E %3C/svg%3E\'); background-color: rgba(255, 255, 255, 0.5); width: 24px; height: 24px; box-sizing: border-box; border-radius: 12px;',"ctrl-attrib.mapboxgl-compact":"min-height: 20px; padding: 0; margin: 10px; position: relative; background-color: #fff; border-radius: 3px 12px 12px 3px;","ctrl-bottom-right > .mapboxgl-ctrl-attrib.mapboxgl-compact::after":"bottom: 0; right: 0","ctrl-bottom-left > .mapboxgl-ctrl-attrib.mapboxgl-compact::after":"bottom: 0; left: 0","ctrl-bottom-left .mapboxgl-ctrl":"margin: 0 0 10px 10px; float: left;","ctrl-bottom-right .mapboxgl-ctrl":"margin: 0 10px 10px 0; float: right;","ctrl-attrib":"color: rgba(0, 0, 0, 0.75); text-decoration: none; font-size: 12px","ctrl-attrib a":"color: rgba(0, 0, 0, 0.75); text-decoration: none; font-size: 12px","ctrl-attrib a:hover":"color: inherit; text-decoration: underline;","ctrl-attrib .mapbox-improve-map":"font-weight: bold; margin-left: 2px;","attrib-empty":"display: none;","ctrl-logo":'display:block; width: 21px; height: 21px; background-image: url(\'data:image/svg+xml;charset=utf-8,%3C?xml version="1.0" encoding="utf-8"?%3E %3Csvg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 21 21" style="enable-background:new 0 0 21 21;" xml:space="preserve"%3E%3Cg transform="translate(0,0.01)"%3E%3Cpath d="m 10.5,1.24 c -5.11,0 -9.25,4.15 -9.25,9.25 0,5.1 4.15,9.25 9.25,9.25 5.1,0 9.25,-4.15 9.25,-9.25 0,-5.11 -4.14,-9.25 -9.25,-9.25 z m 4.39,11.53 c -1.93,1.93 -4.78,2.31 -6.7,2.31 -0.7,0 -1.41,-0.05 -2.1,-0.16 0,0 -1.02,-5.64 2.14,-8.81 0.83,-0.83 1.95,-1.28 3.13,-1.28 1.27,0 2.49,0.51 3.39,1.42 1.84,1.84 1.89,4.75 0.14,6.52 z" style="opacity:0.9;fill:%23ffffff;enable-background:new" class="st0"/%3E%3Cpath d="M 10.5,-0.01 C 4.7,-0.01 0,4.7 0,10.49 c 0,5.79 4.7,10.5 10.5,10.5 5.8,0 10.5,-4.7 10.5,-10.5 C 20.99,4.7 16.3,-0.01 10.5,-0.01 Z m 0,19.75 c -5.11,0 -9.25,-4.15 -9.25,-9.25 0,-5.1 4.14,-9.26 9.25,-9.26 5.11,0 9.25,4.15 9.25,9.25 0,5.13 -4.14,9.26 -9.25,9.26 z" style="opacity:0.35;enable-background:new" class="st1"/%3E%3Cpath d="M 14.74,6.25 C 12.9,4.41 9.98,4.35 8.23,6.1 5.07,9.27 6.09,14.91 6.09,14.91 c 0,0 5.64,1.02 8.81,-2.14 C 16.64,11 16.59,8.09 14.74,6.25 Z m -2.27,4.09 -0.91,1.87 -0.9,-1.87 -1.86,-0.91 1.86,-0.9 0.9,-1.87 0.91,1.87 1.86,0.9 z" style="opacity:0.35;enable-background:new" class="st1"/%3E%3Cpolygon points="11.56,12.21 10.66,10.34 8.8,9.43 10.66,8.53 11.56,6.66 12.47,8.53 14.33,9.43 12.47,10.34 " style="opacity:0.9;fill:%23ffffff;enable-background:new" class="st0"/%3E%3C/g%3E%3C/svg%3E\')'}}},{"../../lib/sort_object_keys":799}],883:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){var r=t.split(" "),i=r[0],a=r[1],o=n.isArrayOrTypedArray(e)?n.mean(e):e,s=.5+o/100,l=1.5+o/100,c=["",""],u=[0,0];switch(i){case"top":c[0]="top",u[1]=-l;break;case"bottom":c[0]="bottom",u[1]=l}switch(a){case"left":c[1]="right",u[0]=-s;break;case"right":c[1]="left",u[0]=s}return{anchor:c[0]&&c[1]?c.join("-"):c[0]?c[0]:c[1]?c[1]:"center",offset:u}}},{"../../lib":776}],884:[function(t,e,r){"use strict";var n=t("mapbox-gl/dist/mapbox-gl-unminified"),i=t("../../lib"),a=i.strTranslate,o=i.strScale,s=t("../../plots/get_data").getSubplotCalcData,l=t("../../constants/xmlns_namespaces"),c=t("@plotly/d3"),u=t("../../components/drawing"),f=t("../../lib/svg_text_utils"),h=t("./mapbox"),p=r.constants=t("./constants");function d(t){return"string"==typeof t&&(-1!==p.styleValuesMapbox.indexOf(t)||0===t.indexOf("mapbox://"))}r.name="mapbox",r.attr="subplot",r.idRoot="mapbox",r.idRegex=r.attrRegex=i.counterRegex("mapbox"),r.attributes={subplot:{valType:"subplotid",dflt:"mapbox",editType:"calc"}},r.layoutAttributes=t("./layout_attributes"),r.supplyLayoutDefaults=t("./layout_defaults"),r.plot=function(t){var e=t._fullLayout,r=t.calcdata,a=e._subplots.mapbox;if(n.version!==p.requiredVersion)throw new Error(p.wrongVersionErrorMsg);var o=function(t,e){var r=t._fullLayout;if(""===t._context.mapboxAccessToken)return"";for(var n=[],a=[],o=!1,s=!1,l=0;l1&&i.warn(p.multipleTokensErrorMsg),n[0]):(a.length&&i.log(["Listed mapbox access token(s)",a.join(","),"but did not use a Mapbox map style, ignoring token(s)."].join(" ")),"")}(t,a);n.accessToken=o;for(var l=0;l_/2){var w=v.split("|").join("
");x.text(w).attr("data-unformatted",w).call(f.convertToTspans,t),b=u.bBox(x.node())}x.attr("transform",a(-3,8-b.height)),y.insert("rect",".static-attribution").attr({x:-b.width-6,y:-b.height-3,width:b.width+6,height:b.height+3,fill:"rgba(255, 255, 255, 0.75)"});var T=1;b.width+6>_&&(T=_/(b.width+6));var k=[n.l+n.w*h.x[1],n.t+n.h*(1-h.y[0])];y.attr("transform",a(k[0],k[1])+o(T))}},r.updateFx=function(t){for(var e=t._fullLayout,r=e._subplots.mapbox,n=0;n0){for(var r=0;r0}function u(t){var e={},r={};switch(t.type){case"circle":n.extendFlat(r,{"circle-radius":t.circle.radius,"circle-color":t.color,"circle-opacity":t.opacity});break;case"line":n.extendFlat(r,{"line-width":t.line.width,"line-color":t.color,"line-opacity":t.opacity,"line-dasharray":t.line.dash});break;case"fill":n.extendFlat(r,{"fill-color":t.color,"fill-outline-color":t.fill.outlinecolor,"fill-opacity":t.opacity});break;case"symbol":var i=t.symbol,o=a(i.textposition,i.iconsize);n.extendFlat(e,{"icon-image":i.icon+"-15","icon-size":i.iconsize/10,"text-field":i.text,"text-size":i.textfont.size,"text-anchor":o.anchor,"text-offset":o.offset,"symbol-placement":i.placement}),n.extendFlat(r,{"icon-color":t.color,"text-color":i.textfont.color,"text-opacity":t.opacity});break;case"raster":n.extendFlat(r,{"raster-fade-duration":0,"raster-opacity":t.opacity})}return{layout:e,paint:r}}l.update=function(t){this.visible?this.needsNewImage(t)?this.updateImage(t):this.needsNewSource(t)?(this.removeLayer(),this.updateSource(t),this.updateLayer(t)):this.needsNewLayer(t)?this.updateLayer(t):this.updateStyle(t):(this.updateSource(t),this.updateLayer(t)),this.visible=c(t)},l.needsNewImage=function(t){return this.subplot.map.getSource(this.idSource)&&"image"===this.sourceType&&"image"===t.sourcetype&&(this.source!==t.source||JSON.stringify(this.coordinates)!==JSON.stringify(t.coordinates))},l.needsNewSource=function(t){return this.sourceType!==t.sourcetype||JSON.stringify(this.source)!==JSON.stringify(t.source)||this.layerType!==t.type},l.needsNewLayer=function(t){return this.layerType!==t.type||this.below!==this.subplot.belowLookup["layout-"+this.index]},l.lookupBelow=function(){return this.subplot.belowLookup["layout-"+this.index]},l.updateImage=function(t){this.subplot.map.getSource(this.idSource).updateImage({url:t.source,coordinates:t.coordinates});var e=this.findFollowingMapboxLayerId(this.lookupBelow());null!==e&&this.subplot.map.moveLayer(this.idLayer,e)},l.updateSource=function(t){var e=this.subplot.map;if(e.getSource(this.idSource)&&e.removeSource(this.idSource),this.sourceType=t.sourcetype,this.source=t.source,c(t)){var r=function(t){var e,r=t.sourcetype,n=t.source,a={type:r};"geojson"===r?e="data":"vector"===r?e="string"==typeof n?"url":"tiles":"raster"===r?(e="tiles",a.tileSize=256):"image"===r&&(e="url",a.coordinates=t.coordinates);a[e]=n,t.sourceattribution&&(a.attribution=i(t.sourceattribution));return a}(t);e.addSource(this.idSource,r)}},l.findFollowingMapboxLayerId=function(t){if("traces"===t)for(var e=this.subplot.getMapLayers(),r=0;r1)for(r=0;r-1&&v(e.originalEvent,n,[r.xaxis],[r.yaxis],r.id,t),i.indexOf("event")>-1&&c.click(n,e.originalEvent)}}},_.updateFx=function(t){var e=this,r=e.map,n=e.gd;if(!e.isStatic){var a,o=t.dragmode;a=f(o)?function(t,r){(t.range={})[e.id]=[c([r.xmin,r.ymin]),c([r.xmax,r.ymax])]}:function(t,r,n){(t.lassoPoints={})[e.id]=n.filtered.map(c)};var s=e.dragOptions;e.dragOptions=i.extendDeep(s||{},{dragmode:t.dragmode,element:e.div,gd:n,plotinfo:{id:e.id,domain:t[e.id].domain,xaxis:e.xaxis,yaxis:e.yaxis,fillRangeItems:a},xaxes:[e.xaxis],yaxes:[e.yaxis],subplot:e.id}),r.off("click",e.onClickInPanHandler),p(o)||h(o)?(r.dragPan.disable(),r.on("zoomstart",e.clearSelect),e.dragOptions.prepFn=function(t,r,n){d(t,r,n,e.dragOptions,o)},l.init(e.dragOptions)):(r.dragPan.enable(),r.off("zoomstart",e.clearSelect),e.div.onmousedown=null,e.onClickInPanHandler=e.onClickInPanFn(e.dragOptions),r.on("click",e.onClickInPanHandler))}function c(t){var r=e.map.unproject(t);return[r.lng,r.lat]}},_.updateFramework=function(t){var e=t[this.id].domain,r=t._size,n=this.div.style;n.width=r.w*(e.x[1]-e.x[0])+"px",n.height=r.h*(e.y[1]-e.y[0])+"px",n.left=r.l+e.x[0]*r.w+"px",n.top=r.t+(1-e.y[1])*r.h+"px",this.xaxis._offset=r.l+e.x[0]*r.w,this.xaxis._length=r.w*(e.x[1]-e.x[0]),this.yaxis._offset=r.t+(1-e.y[1])*r.h,this.yaxis._length=r.h*(e.y[1]-e.y[0])},_.updateLayers=function(t){var e,r=t[this.id].layers,n=this.layerList;if(r.length!==n.length){for(e=0;e=e.width-20?(a["text-anchor"]="start",a.x=5):(a["text-anchor"]="end",a.x=e._paper.attr("width")-7),r.attr(a);var o=r.select(".js-link-to-tool"),s=r.select(".js-link-spacer"),l=r.select(".js-sourcelinks");t._context.showSources&&t._context.showSources(t),t._context.showLink&&function(t,e){e.text("");var r=e.append("a").attr({"xlink:xlink:href":"#",class:"link--impt link--embedview","font-weight":"bold"}).text(t._context.linkText+" "+String.fromCharCode(187));if(t._context.sendData)r.on("click",(function(){b.sendDataToCloud(t)}));else{var n=window.location.pathname.split("/"),i=window.location.search;r.attr({"xlink:xlink:show":"new","xlink:xlink:href":"/"+n[2].split(".")[0]+"/"+n[1]+i})}}(t,o),s.text(o.text()&&l.text()?" - ":"")}},b.sendDataToCloud=function(t){var e=(window.PLOTLYENV||{}).BASE_URL||t._context.plotlyServerURL;if(e){t.emit("plotly_beforeexport");var r=n.select(t).append("div").attr("id","hiddenform").style("display","none"),i=r.append("form").attr({action:e+"/external",method:"post",target:"_blank"});return i.append("input").attr({type:"text",name:"data"}).node().value=b.graphJson(t,!1,"keepdata"),i.node().submit(),r.remove(),t.emit("plotly_afterexport"),!1}};var T=["days","shortDays","months","shortMonths","periods","dateTime","date","time","decimal","thousands","grouping","currency"],k=["year","month","dayMonth","dayMonthYear"];function A(t,e){var r=t._context.locale;r||(r="en-US");var n=!1,i={};function a(t){for(var r=!0,a=0;a1&&z.length>1){for(s.getComponentMethod("grid","sizeDefaults")(c,l),o=0;o15&&z.length>15&&0===l.shapes.length&&0===l.images.length,b.linkSubplots(h,l,f,n),b.cleanPlot(h,l,f,n);var N=!(!n._has||!n._has("gl2d")),j=!(!l._has||!l._has("gl2d")),U=!(!n._has||!n._has("cartesian"))||N,V=!(!l._has||!l._has("cartesian"))||j;U&&!V?n._bgLayer.remove():V&&!U&&(l._shouldCreateBgLayer=!0),n._zoomlayer&&!t._dragging&&d({_fullLayout:n}),function(t,e){var r,n=[];e.meta&&(r=e._meta={meta:e.meta,layout:{meta:e.meta}});for(var i=0;i0){var f=1-2*s;n=Math.round(f*n),i=Math.round(f*i)}}var h=b.layoutAttributes.width.min,p=b.layoutAttributes.height.min;n1,m=!e.height&&Math.abs(r.height-i)>1;(m||d)&&(d&&(r.width=n),m&&(r.height=i)),t._initialAutoSize||(t._initialAutoSize={width:n,height:i}),b.sanitizeMargins(r)},b.supplyLayoutModuleDefaults=function(t,e,r,n){var i,a,o,l=s.componentsRegistry,c=e._basePlotModules,f=s.subplotsRegistry.cartesian;for(i in l)(o=l[i]).includeBasePlot&&o.includeBasePlot(t,e);for(var h in c.length||c.push(f),e._has("cartesian")&&(s.getComponentMethod("grid","contentDefaults")(t,e),f.finalizeSubplots(t,e)),e._subplots)e._subplots[h].sort(u.subplotSort);for(a=0;a1&&(r.l/=m,r.r/=m)}if(f){var g=(r.t+r.b)/f;g>1&&(r.t/=g,r.b/=g)}var v=void 0!==r.xl?r.xl:r.x,y=void 0!==r.xr?r.xr:r.x,x=void 0!==r.yt?r.yt:r.y,_=void 0!==r.yb?r.yb:r.y;h[e]={l:{val:v,size:r.l+d},r:{val:y,size:r.r+d},b:{val:_,size:r.b+d},t:{val:x,size:r.t+d}},p[e]=1}else delete h[e],delete p[e];if(!n._replotting)return b.doAutoMargin(t)}},b.doAutoMargin=function(t){var e=t._fullLayout,r=e.width,n=e.height;e._size||(e._size={}),C(e);var i=e._size,a=e.margin,l=u.extendFlat({},i),c=a.l,f=a.r,h=a.t,d=a.b,m=e._pushmargin,g=e._pushmarginIds;if(!1!==e.margin.autoexpand){for(var v in m)g[v]||delete m[v];for(var y in m.base={l:{val:0,size:c},r:{val:1,size:f},t:{val:1,size:h},b:{val:0,size:d}},m){var x=m[y].l||{},_=m[y].b||{},w=x.val,T=x.size,k=_.val,A=_.size;for(var M in m){if(o(T)&&m[M].r){var S=m[M].r.val,E=m[M].r.size;if(S>w){var L=(T*S+(E-r)*w)/(S-w),P=(E*(1-w)+(T-r)*(1-S))/(S-w);L+P>c+f&&(c=L,f=P)}}if(o(A)&&m[M].t){var I=m[M].t.val,O=m[M].t.size;if(I>k){var z=(A*I+(O-n)*k)/(I-k),D=(O*(1-k)+(A-n)*(1-I))/(I-k);z+D>d+h&&(d=z,h=D)}}}}}var R=u.constrain(r-a.l-a.r,2,64),F=u.constrain(n-a.t-a.b,2,64),B=Math.max(0,r-R),N=Math.max(0,n-F);if(B){var j=(c+f)/B;j>1&&(c/=j,f/=j)}if(N){var U=(d+h)/N;U>1&&(d/=U,h/=U)}if(i.l=Math.round(c),i.r=Math.round(f),i.t=Math.round(h),i.b=Math.round(d),i.p=Math.round(a.pad),i.w=Math.round(r)-i.l-i.r,i.h=Math.round(n)-i.t-i.b,!e._replotting&&b.didMarginChange(l,i)){"_redrawFromAutoMarginCount"in e?e._redrawFromAutoMarginCount++:e._redrawFromAutoMarginCount=1;var V=3*(1+Object.keys(g).length);if(e._redrawFromAutoMarginCount0&&(t._transitioningWithDuration=!0),t._transitionData._interruptCallbacks.push((function(){n=!0})),r.redraw&&t._transitionData._interruptCallbacks.push((function(){return s.call("redraw",t)})),t._transitionData._interruptCallbacks.push((function(){t.emit("plotly_transitioninterrupted",[])}));var a=0,o=0;function l(){return a++,function(){o++,n||o!==a||function(e){if(!t._transitionData)return;(function(t){if(t)for(;t.length;)t.shift()})(t._transitionData._interruptCallbacks),Promise.resolve().then((function(){if(r.redraw)return s.call("redraw",t)})).then((function(){t._transitioning=!1,t._transitioningWithDuration=!1,t.emit("plotly_transitioned",[])})).then(e)}(i)}}r.runFn(l),setTimeout(l())}))}],a=u.syncOrAsync(i,t);return a&&a.then||(a=Promise.resolve()),a.then((function(){return t}))}b.didMarginChange=function(t,e){for(var r=0;r1)return!0}return!1},b.graphJson=function(t,e,r,n,i,a){(i&&e&&!t._fullData||i&&!e&&!t._fullLayout)&&b.supplyDefaults(t);var o=i?t._fullData:t.data,s=i?t._fullLayout:t.layout,l=(t._transitionData||{})._frames;function c(t,e){if("function"==typeof t)return e?"_function_":null;if(u.isPlainObject(t)){var n,i={};return Object.keys(t).sort().forEach((function(a){if(-1===["_","["].indexOf(a.charAt(0)))if("function"!=typeof t[a]){if("keepdata"===r){if("src"===a.substr(a.length-3))return}else if("keepstream"===r){if("string"==typeof(n=t[a+"src"])&&n.indexOf(":")>0&&!u.isPlainObject(t.stream))return}else if("keepall"!==r&&"string"==typeof(n=t[a+"src"])&&n.indexOf(":")>0)return;i[a]=c(t[a],e)}else e&&(i[a]="_function")})),i}return Array.isArray(t)?t.map((function(t){return c(t,e)})):u.isTypedArray(t)?u.simpleMap(t,u.identity):u.isJSDate(t)?u.ms2DateTimeLocal(+t):t}var f={data:(o||[]).map((function(t){var r=c(t);return e&&delete r.fit,r}))};if(!e&&(f.layout=c(s),i)){var h=s._size;f.layout.computed={margin:{b:h.b,l:h.l,r:h.r,t:h.t}}}return l&&(f.frames=c(l)),a&&(f.config=c(t._context,!0)),"object"===n?f:JSON.stringify(f)},b.modifyFrames=function(t,e){var r,n,i,a=t._transitionData._frames,o=t._transitionData._frameHash;for(r=0;r=0;a--)if(s[a].enabled){r._indexToPoints=s[a]._indexToPoints;break}n&&n.calc&&(o=n.calc(t,r))}Array.isArray(o)&&o[0]||(o=[{x:h,y:h}]),o[0].t||(o[0].t={}),o[0].trace=r,d[e]=o}}for(z(o,c,f),i=0;i1e-10?t:0}function h(t,e,r){e=e||0,r=r||0;for(var n=t.length,i=new Array(n),a=0;a0?r:1/0})),i=n.mod(r+1,e.length);return[e[r],e[i]]},findIntersectionXY:c,findXYatLength:function(t,e,r,n){var i=-e*r,a=e*e+1,o=2*(e*i-r),s=i*i+r*r-t*t,l=Math.sqrt(o*o-4*a*s),c=(-o+l)/(2*a),u=(-o-l)/(2*a);return[[c,e*c+i+n],[u,e*u+i+n]]},clampTiny:f,pathPolygon:function(t,e,r,n,i,a){return"M"+h(u(t,e,r,n),i,a).join("L")},pathPolygonAnnulus:function(t,e,r,n,i,a,o){var s,l;t=90||s>90&&l>=450?1:u<=0&&h<=0?0:Math.max(u,h);e=s<=180&&l>=180||s>180&&l>=540?-1:c>=0&&f>=0?0:Math.min(c,f);r=s<=270&&l>=270||s>270&&l>=630?-1:u>=0&&h>=0?0:Math.min(u,h);n=l>=360?1:c<=0&&f<=0?0:Math.max(c,f);return[e,r,n,i]}(p),b=x[2]-x[0],_=x[3]-x[1],w=h/f,T=Math.abs(_/b);w>T?(d=f,y=(h-(m=f*T))/n.h/2,g=[o[0],o[1]],v=[s[0]+y,s[1]-y]):(m=h,y=(f-(d=h/T))/n.w/2,g=[o[0]+y,o[1]-y],v=[s[0],s[1]]),this.xLength2=d,this.yLength2=m,this.xDomain2=g,this.yDomain2=v;var k=this.xOffset2=n.l+n.w*g[0],A=this.yOffset2=n.t+n.h*(1-v[1]),M=this.radius=d/b,S=this.innerRadius=e.hole*M,E=this.cx=k-M*x[0],L=this.cy=A+M*x[3],I=this.cxx=E-k,O=this.cyy=L-A;this.radialAxis=this.mockAxis(t,e,i,{_id:"x",side:{counterclockwise:"top",clockwise:"bottom"}[i.side],_realSide:i.side,domain:[S/n.w,M/n.w]}),this.angularAxis=this.mockAxis(t,e,a,{side:"right",domain:[0,Math.PI],autorange:!1}),this.doAutoRange(t,e),this.updateAngularAxis(t,e),this.updateRadialAxis(t,e),this.updateRadialAxisTitle(t,e),this.xaxis=this.mockCartesianAxis(t,e,{_id:"x",domain:g}),this.yaxis=this.mockCartesianAxis(t,e,{_id:"y",domain:v});var z=this.pathSubplot();this.clipPaths.forTraces.select("path").attr("d",z).attr("transform",l(I,O)),r.frontplot.attr("transform",l(k,A)).call(u.setClipUrl,this._hasClipOnAxisFalse?null:this.clipIds.forTraces,this.gd),r.bg.attr("d",z).attr("transform",l(E,L)).call(c.fill,e.bgcolor)},z.mockAxis=function(t,e,r,n){var i=o.extendFlat({},r,n);return d(i,e,t),i},z.mockCartesianAxis=function(t,e,r){var n=this,i=r._id,a=o.extendFlat({type:"linear"},r);p(a,t);var s={x:[0,2],y:[1,3]};return a.setRange=function(){var t=n.sectorBBox,r=s[i],o=n.radialAxis._rl,l=(o[1]-o[0])/(1-e.hole);a.range=[t[r[0]]*l,t[r[1]]*l]},a.isPtWithinRange="x"===i?function(t){return n.isPtInside(t)}:function(){return!0},a.setRange(),a.setScale(),a},z.doAutoRange=function(t,e){var r=this.gd,n=this.radialAxis,i=e.radialaxis;n.setScale(),m(r,n);var a=n.range;i.range=a.slice(),i._input.range=a.slice(),n._rl=[n.r2l(a[0],null,"gregorian"),n.r2l(a[1],null,"gregorian")]},z.updateRadialAxis=function(t,e){var r=this,n=r.gd,i=r.layers,a=r.radius,u=r.innerRadius,f=r.cx,p=r.cy,d=e.radialaxis,m=C(e.sector[0],360),g=r.radialAxis,v=u90&&m<=270&&(g.tickangle=180);var y=function(t){return l(g.l2p(t.x)+u,0)},x=D(d);if(r.radialTickLayout!==x&&(i["radial-axis"].selectAll(".xtick").remove(),r.radialTickLayout=x),v){g.setScale();var b=h.calcTicks(g),_=h.clipEnds(g,b),w=h.getTickSigns(g)[2];h.drawTicks(n,g,{vals:b,layer:i["radial-axis"],path:h.makeTickPath(g,0,w),transFn:y,crisp:!1}),h.drawGrid(n,g,{vals:_,layer:i["radial-grid"],path:function(t){return r.pathArc(g.r2p(t.x)+u)},transFn:o.noop,crisp:!1}),h.drawLabels(n,g,{vals:b,layer:i["radial-axis"],transFn:y,labelFns:h.makeLabelFns(g,0)})}var T=r.radialAxisAngle=r.vangles?I(R(P(d.angle),r.vangles)):d.angle,k=l(f,p),A=k+s(-T);F(i["radial-axis"],v&&(d.showticklabels||d.ticks),{transform:A}),F(i["radial-grid"],v&&d.showgrid,{transform:k}),F(i["radial-line"].select("line"),v&&d.showline,{x1:u,y1:0,x2:a,y2:0,transform:A}).attr("stroke-width",d.linewidth).call(c.stroke,d.linecolor)},z.updateRadialAxisTitle=function(t,e,r){var n=this.gd,i=this.radius,a=this.cx,o=this.cy,s=e.radialaxis,l=this.id+"title",c=void 0!==r?r:this.radialAxisAngle,f=P(c),h=Math.cos(f),p=Math.sin(f),d=0;if(s.title){var m=u.bBox(this.layers["radial-axis"].node()).height,g=s.title.font.size;d="counterclockwise"===s.side?-m-.4*g:m+.8*g}this.layers["radial-axis-title"]=x.draw(n,l,{propContainer:s,propName:this.id+".radialaxis.title",placeholder:L(n,"Click to enter radial axis title"),attributes:{x:a+i/2*h+d*p,y:o-i/2*p+d*h,"text-anchor":"middle"},transform:{rotate:-c}})},z.updateAngularAxis=function(t,e){var r=this,n=r.gd,i=r.layers,a=r.radius,u=r.innerRadius,f=r.cx,p=r.cy,d=e.angularaxis,m=r.angularAxis;r.fillViewInitialKey("angularaxis.rotation",d.rotation),m.setGeometry(),m.setScale();var g=function(t){return m.t2g(t.x)};"linear"===m.type&&"radians"===m.thetaunit&&(m.tick0=I(m.tick0),m.dtick=I(m.dtick));var v=function(t){return l(f+a*Math.cos(t),p-a*Math.sin(t))},y=h.makeLabelFns(m,0).labelStandoff,x={xFn:function(t){var e=g(t);return Math.cos(e)*y},yFn:function(t){var e=g(t),r=Math.sin(e)>0?.2:1;return-Math.sin(e)*(y+t.fontSize*r)+Math.abs(Math.cos(e))*(t.fontSize*M)},anchorFn:function(t){var e=g(t),r=Math.cos(e);return Math.abs(r)<.1?"middle":r>0?"start":"end"},heightFn:function(t,e,r){var n=g(t);return-.5*(1+Math.sin(n))*r}},b=D(d);r.angularTickLayout!==b&&(i["angular-axis"].selectAll("."+m._id+"tick").remove(),r.angularTickLayout=b);var _,w=h.calcTicks(m);if("linear"===e.gridshape?(_=w.map(g),o.angleDelta(_[0],_[1])<0&&(_=_.slice().reverse())):_=null,r.vangles=_,"category"===m.type&&(w=w.filter((function(t){return o.isAngleInsideSector(g(t),r.sectorInRad)}))),m.visible){var T="inside"===m.ticks?-1:1,k=(m.linewidth||1)/2;h.drawTicks(n,m,{vals:w,layer:i["angular-axis"],path:"M"+T*k+",0h"+T*m.ticklen,transFn:function(t){var e=g(t);return v(e)+s(-I(e))},crisp:!1}),h.drawGrid(n,m,{vals:w,layer:i["angular-grid"],path:function(t){var e=g(t),r=Math.cos(e),n=Math.sin(e);return"M"+[f+u*r,p-u*n]+"L"+[f+a*r,p-a*n]},transFn:o.noop,crisp:!1}),h.drawLabels(n,m,{vals:w,layer:i["angular-axis"],repositionOnUpdate:!0,transFn:function(t){return v(g(t))},labelFns:x})}F(i["angular-line"].select("path"),d.showline,{d:r.pathSubplot(),transform:l(f,p)}).attr("stroke-width",d.linewidth).call(c.stroke,d.linecolor)},z.updateFx=function(t,e){this.gd._context.staticPlot||(this.updateAngularDrag(t),this.updateRadialDrag(t,e,0),this.updateRadialDrag(t,e,1),this.updateMainDrag(t))},z.updateMainDrag=function(t){var e,r,s=this,c=s.gd,u=s.layers,f=t._zoomlayer,h=S.MINZOOM,p=S.OFFEDGE,d=s.radius,m=s.innerRadius,x=s.cx,T=s.cy,k=s.cxx,A=s.cyy,M=s.sectorInRad,L=s.vangles,C=s.radialAxis,P=E.clampTiny,I=E.findXYatLength,O=E.findEnclosingVertexAngles,z=S.cornerHalfWidth,D=S.cornerLen/2,R=g.makeDragger(u,"path","maindrag","crosshair");n.select(R).attr("d",s.pathSubplot()).attr("transform",l(x,T));var F,B,N,j,U,V,H,q,G,Y={element:R,gd:c,subplot:s.id,plotinfo:{id:s.id,xaxis:s.xaxis,yaxis:s.yaxis},xaxes:[s.xaxis],yaxes:[s.yaxis]};function W(t,e){return Math.sqrt(t*t+e*e)}function X(t,e){return W(t-k,e-A)}function Z(t,e){return Math.atan2(A-e,t-k)}function J(t,e){return[t*Math.cos(e),t*Math.sin(-e)]}function K(t,e){if(0===t)return s.pathSector(2*z);var r=D/t,n=e-r,i=e+r,a=Math.max(0,Math.min(t,d)),o=a-z,l=a+z;return"M"+J(o,n)+"A"+[o,o]+" 0,0,0 "+J(o,i)+"L"+J(l,i)+"A"+[l,l]+" 0,0,1 "+J(l,n)+"Z"}function Q(t,e,r){if(0===t)return s.pathSector(2*z);var n,i,a=J(t,e),o=J(t,r),l=P((a[0]+o[0])/2),c=P((a[1]+o[1])/2);if(l&&c){var u=c/l,f=-1/u,h=I(z,u,l,c);n=I(D,f,h[0][0],h[0][1]),i=I(D,f,h[1][0],h[1][1])}else{var p,d;c?(p=D,d=z):(p=z,d=D),n=[[l-p,c-d],[l+p,c-d]],i=[[l-p,c+d],[l+p,c+d]]}return"M"+n.join("L")+"L"+i.reverse().join("L")+"Z"}function $(t,e){return e=Math.max(Math.min(e,d),m),th?(t-1&&1===t&&_(e,c,[s.xaxis],[s.yaxis],s.id,Y),r.indexOf("event")>-1&&y.click(c,e,s.id)}Y.prepFn=function(t,n,a){var l=c._fullLayout.dragmode,u=R.getBoundingClientRect();c._fullLayout._calcInverseTransform(c);var h=c._fullLayout._invTransform;e=c._fullLayout._invScaleX,r=c._fullLayout._invScaleY;var p=o.apply3DTransform(h)(n-u.left,a-u.top);if(F=p[0],B=p[1],L){var m=E.findPolygonOffset(d,M[0],M[1],L);F+=k+m[0],B+=A+m[1]}switch(l){case"zoom":Y.moveFn=L?nt:et,Y.clickFn=ot,Y.doneFn=it,function(){N=null,j=null,U=s.pathSubplot(),V=!1;var t=c._fullLayout[s.id];H=i(t.bgcolor).getLuminance(),(q=g.makeZoombox(f,H,x,T,U)).attr("fill-rule","evenodd"),G=g.makeCorners(f,x,T),w(c)}();break;case"select":case"lasso":b(t,n,a,Y,l)}},R.onmousemove=function(t){y.hover(c,t,s.id),c._fullLayout._lasthover=R,c._fullLayout._hoversubplot=s.id},R.onmouseout=function(t){c._dragging||v.unhover(c,t)},v.init(Y)},z.updateRadialDrag=function(t,e,r){var i=this,c=i.gd,u=i.layers,f=i.radius,h=i.innerRadius,p=i.cx,d=i.cy,m=i.radialAxis,y=S.radialDragBoxSize,x=y/2;if(m.visible){var b,_,T,M=P(i.radialAxisAngle),E=m._rl,L=E[0],C=E[1],O=E[r],z=.75*(E[1]-E[0])/(1-e.hole)/f;r?(b=p+(f+x)*Math.cos(M),_=d-(f+x)*Math.sin(M),T="radialdrag"):(b=p+(h-x)*Math.cos(M),_=d-(h-x)*Math.sin(M),T="radialdrag-inner");var D,B,N,j=g.makeRectDragger(u,T,"crosshair",-x,-x,y,y),U={element:j,gd:c};F(n.select(j),m.visible&&h0==(r?N>L:Nn?function(t){return t<=0}:function(t){return t>=0};t.c2g=function(r){var n=t.c2l(r)-e;return(s(n)?n:0)+o},t.g2c=function(r){return t.l2c(r+e-o)},t.g2p=function(t){return t*a},t.c2p=function(e){return t.g2p(t.c2g(e))}}}(t,e);break;case"angularaxis":!function(t,e){var r=t.type;if("linear"===r){var i=t.d2c,s=t.c2d;t.d2c=function(t,e){return function(t,e){return"degrees"===e?a(t):t}(i(t),e)},t.c2d=function(t,e){return s(function(t,e){return"degrees"===e?o(t):t}(t,e))}}t.makeCalcdata=function(e,i){var a,o,s=e[i],l=e._length,c=function(r){return t.d2c(r,e.thetaunit)};if(s){if(n.isTypedArray(s)&&"linear"===r){if(l===s.length)return s;if(s.subarray)return s.subarray(0,l)}for(a=new Array(l),o=0;o0){for(var n=[],i=0;i=u&&(p.min=0,m.min=0,g.min=0,t.aaxis&&delete t.aaxis.min,t.baxis&&delete t.baxis.min,t.caxis&&delete t.caxis.min)}function d(t,e,r,n){var i=f[e._name];function o(r,n){return a.coerce(t,e,i,r,n)}o("uirevision",n.uirevision),e.type="linear";var h=o("color"),p=h!==i.color.dflt?h:r.font.color,d=e._name.charAt(0).toUpperCase(),m="Component "+d,g=o("title.text",m);e._hovertitle=g===m?g:d,a.coerceFont(o,"title.font",{family:r.font.family,size:a.bigFont(r.font.size),color:p}),o("min"),c(t,e,o,"linear"),s(t,e,o,"linear",{}),l(t,e,o,{outerTicks:!0}),o("showticklabels")&&(a.coerceFont(o,"tickfont",{family:r.font.family,size:r.font.size,color:p}),o("tickangle"),o("tickformat")),u(t,e,o,{dfltColor:h,bgColor:r.bgColor,blend:60,showLine:!0,showGrid:!0,noZeroLine:!0,attributes:i}),o("hoverformat"),o("layer")}e.exports=function(t,e,r){o(t,e,r,{type:"ternary",attributes:f,handleDefaults:p,font:e.font,paper_bgcolor:e.paper_bgcolor})}},{"../../components/color":639,"../../lib":776,"../../plot_api/plot_template":816,"../cartesian/line_grid_defaults":844,"../cartesian/tick_label_defaults":849,"../cartesian/tick_mark_defaults":850,"../cartesian/tick_value_defaults":851,"../subplot_defaults":898,"./layout_attributes":901}],903:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("tinycolor2"),a=t("../../registry"),o=t("../../lib"),s=o.strTranslate,l=o._,c=t("../../components/color"),u=t("../../components/drawing"),f=t("../cartesian/set_convert"),h=t("../../lib/extend").extendFlat,p=t("../plots"),d=t("../cartesian/axes"),m=t("../../components/dragelement"),g=t("../../components/fx"),v=t("../../components/dragelement/helpers"),y=v.freeMode,x=v.rectMode,b=t("../../components/titles"),_=t("../cartesian/select").prepSelect,w=t("../cartesian/select").selectOnClick,T=t("../cartesian/select").clearSelect,k=t("../cartesian/select").clearSelectionsCache,A=t("../cartesian/constants");function M(t,e){this.id=t.id,this.graphDiv=t.graphDiv,this.init(e),this.makeFramework(e),this.aTickLayout=null,this.bTickLayout=null,this.cTickLayout=null}e.exports=M;var S=M.prototype;S.init=function(t){this.container=t._ternarylayer,this.defs=t._defs,this.layoutId=t._uid,this.traceHash={},this.layers={}},S.plot=function(t,e){var r=e[this.id],n=e._size;this._hasClipOnAxisFalse=!1;for(var i=0;iE*b?i=(a=b)*E:a=(i=x)/E,o=v*i/x,l=y*a/b,r=e.l+e.w*m-i/2,n=e.t+e.h*(1-g)-a/2,p.x0=r,p.y0=n,p.w=i,p.h=a,p.sum=_,p.xaxis={type:"linear",range:[w+2*k-_,_-w-2*T],domain:[m-o/2,m+o/2],_id:"x"},f(p.xaxis,p.graphDiv._fullLayout),p.xaxis.setScale(),p.xaxis.isPtWithinRange=function(t){return t.a>=p.aaxis.range[0]&&t.a<=p.aaxis.range[1]&&t.b>=p.baxis.range[1]&&t.b<=p.baxis.range[0]&&t.c>=p.caxis.range[1]&&t.c<=p.caxis.range[0]},p.yaxis={type:"linear",range:[w,_-T-k],domain:[g-l/2,g+l/2],_id:"y"},f(p.yaxis,p.graphDiv._fullLayout),p.yaxis.setScale(),p.yaxis.isPtWithinRange=function(){return!0};var A=p.yaxis.domain[0],M=p.aaxis=h({},t.aaxis,{range:[w,_-T-k],side:"left",tickangle:(+t.aaxis.tickangle||0)-30,domain:[A,A+l*E],anchor:"free",position:0,_id:"y",_length:i});f(M,p.graphDiv._fullLayout),M.setScale();var S=p.baxis=h({},t.baxis,{range:[_-w-k,T],side:"bottom",domain:p.xaxis.domain,anchor:"free",position:0,_id:"x",_length:i});f(S,p.graphDiv._fullLayout),S.setScale();var L=p.caxis=h({},t.caxis,{range:[_-w-T,k],side:"right",tickangle:(+t.caxis.tickangle||0)+30,domain:[A,A+l*E],anchor:"free",position:0,_id:"y",_length:i});f(L,p.graphDiv._fullLayout),L.setScale();var C="M"+r+","+(n+a)+"h"+i+"l-"+i/2+",-"+a+"Z";p.clipDef.select("path").attr("d",C),p.layers.plotbg.select("path").attr("d",C);var P="M0,"+a+"h"+i+"l-"+i/2+",-"+a+"Z";p.clipDefRelative.select("path").attr("d",P);var I=s(r,n);p.plotContainer.selectAll(".scatterlayer,.maplayer").attr("transform",I),p.clipDefRelative.select("path").attr("transform",null);var O=s(r-S._offset,n+a);p.layers.baxis.attr("transform",O),p.layers.bgrid.attr("transform",O);var z=s(r+i/2,n)+"rotate(30)"+s(0,-M._offset);p.layers.aaxis.attr("transform",z),p.layers.agrid.attr("transform",z);var D=s(r+i/2,n)+"rotate(-30)"+s(0,-L._offset);p.layers.caxis.attr("transform",D),p.layers.cgrid.attr("transform",D),p.drawAxes(!0),p.layers.aline.select("path").attr("d",M.showline?"M"+r+","+(n+a)+"l"+i/2+",-"+a:"M0,0").call(c.stroke,M.linecolor||"#000").style("stroke-width",(M.linewidth||0)+"px"),p.layers.bline.select("path").attr("d",S.showline?"M"+r+","+(n+a)+"h"+i:"M0,0").call(c.stroke,S.linecolor||"#000").style("stroke-width",(S.linewidth||0)+"px"),p.layers.cline.select("path").attr("d",L.showline?"M"+(r+i/2)+","+n+"l"+i/2+","+a:"M0,0").call(c.stroke,L.linecolor||"#000").style("stroke-width",(L.linewidth||0)+"px"),p.graphDiv._context.staticPlot||p.initInteractions(),u.setClipUrl(p.layers.frontplot,p._hasClipOnAxisFalse?null:p.clipId,p.graphDiv)},S.drawAxes=function(t){var e=this.graphDiv,r=this.id.substr(7)+"title",n=this.layers,i=this.aaxis,a=this.baxis,o=this.caxis;if(this.drawAx(i),this.drawAx(a),this.drawAx(o),t){var s=Math.max(i.showticklabels?i.tickfont.size/2:0,(o.showticklabels?.75*o.tickfont.size:0)+("outside"===o.ticks?.87*o.ticklen:0)),c=(a.showticklabels?a.tickfont.size:0)+("outside"===a.ticks?a.ticklen:0)+3;n["a-title"]=b.draw(e,"a"+r,{propContainer:i,propName:this.id+".aaxis.title",placeholder:l(e,"Click to enter Component A title"),attributes:{x:this.x0+this.w/2,y:this.y0-i.title.font.size/3-s,"text-anchor":"middle"}}),n["b-title"]=b.draw(e,"b"+r,{propContainer:a,propName:this.id+".baxis.title",placeholder:l(e,"Click to enter Component B title"),attributes:{x:this.x0-c,y:this.y0+this.h+.83*a.title.font.size+c,"text-anchor":"middle"}}),n["c-title"]=b.draw(e,"c"+r,{propContainer:o,propName:this.id+".caxis.title",placeholder:l(e,"Click to enter Component C title"),attributes:{x:this.x0+this.w+c,y:this.y0+this.h+.83*o.title.font.size+c,"text-anchor":"middle"}})}},S.drawAx=function(t){var e,r=this.graphDiv,n=t._name,i=n.charAt(0),a=t._id,s=this.layers[n],l=i+"tickLayout",c=(e=t).ticks+String(e.ticklen)+String(e.showticklabels);this[l]!==c&&(s.selectAll("."+a+"tick").remove(),this[l]=c),t.setScale();var u=d.calcTicks(t),f=d.clipEnds(t,u),h=d.makeTransTickFn(t),p=d.getTickSigns(t)[2],m=o.deg2rad(30),g=p*(t.linewidth||1)/2,v=p*t.ticklen,y=this.w,x=this.h,b="b"===i?"M0,"+g+"l"+Math.sin(m)*v+","+Math.cos(m)*v:"M"+g+",0l"+Math.cos(m)*v+","+-Math.sin(m)*v,_={a:"M0,0l"+x+",-"+y/2,b:"M0,0l-"+y/2+",-"+x,c:"M0,0l-"+x+","+y/2}[i];d.drawTicks(r,t,{vals:"inside"===t.ticks?f:u,layer:s,path:b,transFn:h,crisp:!1}),d.drawGrid(r,t,{vals:f,layer:this.layers[i+"grid"],path:_,transFn:h,crisp:!1}),d.drawLabels(r,t,{vals:u,layer:s,transFn:h,labelFns:d.makeLabelFns(t,0,30)})};var L=A.MINZOOM/2+.87,C="m-0.87,.5h"+L+"v3h-"+(L+5.2)+"l"+(L/2+2.6)+",-"+(.87*L+4.5)+"l2.6,1.5l-"+L/2+","+.87*L+"Z",P="m0.87,.5h-"+L+"v3h"+(L+5.2)+"l-"+(L/2+2.6)+",-"+(.87*L+4.5)+"l-2.6,1.5l"+L/2+","+.87*L+"Z",I="m0,1l"+L/2+","+.87*L+"l2.6,-1.5l-"+(L/2+2.6)+",-"+(.87*L+4.5)+"l-"+(L/2+2.6)+","+(.87*L+4.5)+"l2.6,1.5l"+L/2+",-"+.87*L+"Z",O=!0;function z(t){n.select(t).selectAll(".zoombox,.js-zoombox-backdrop,.js-zoombox-menu,.zoombox-corners").remove()}S.clearSelect=function(){k(this.dragOptions),T(this.dragOptions.gd)},S.initInteractions=function(){var t,e,r,n,f,h,p,d,v,b,T,k,M=this,S=M.layers.plotbg.select("path").node(),L=M.graphDiv,D=L._fullLayout._zoomlayer;function R(t){var e={};return e[M.id+".aaxis.min"]=t.a,e[M.id+".baxis.min"]=t.b,e[M.id+".caxis.min"]=t.c,e}function F(t,e){var r=L._fullLayout.clickmode;z(L),2===t&&(L.emit("plotly_doubleclick",null),a.call("_guiRelayout",L,R({a:0,b:0,c:0}))),r.indexOf("select")>-1&&1===t&&w(e,L,[M.xaxis],[M.yaxis],M.id,M.dragOptions),r.indexOf("event")>-1&&g.click(L,e,M.id)}function B(t,e){return 1-e/M.h}function N(t,e){return 1-(t+(M.h-e)/Math.sqrt(3))/M.w}function j(t,e){return(t-(M.h-e)/Math.sqrt(3))/M.w}function U(i,a){var o=r+i*t,s=n+a*e,l=Math.max(0,Math.min(1,B(0,n),B(0,s))),c=Math.max(0,Math.min(1,N(r,n),N(o,s))),u=Math.max(0,Math.min(1,j(r,n),j(o,s))),m=(l/2+u)*M.w,g=(1-l/2-c)*M.w,y=(m+g)/2,x=g-m,_=(1-l)*M.h,w=_-x/E;x.2?"rgba(0,0,0,0.4)":"rgba(255,255,255,0.3)").duration(200),k.transition().style("opacity",1).duration(200),b=!0),L.emit("plotly_relayouting",R(p))}function V(){z(L),p!==f&&(a.call("_guiRelayout",L,R(p)),O&&L.data&&L._context.showTips&&(o.notifier(l(L,"Double-click to zoom back out"),"long"),O=!1))}function H(t,e){var r=t/M.xaxis._m,n=e/M.yaxis._m,i=[(p={a:f.a-n,b:f.b+(r+n)/2,c:f.c-(r-n)/2}).a,p.b,p.c].sort(o.sorterAsc),a=i.indexOf(p.a),l=i.indexOf(p.b),c=i.indexOf(p.c);i[0]<0&&(i[1]+i[0]/2<0?(i[2]+=i[0]+i[1],i[0]=i[1]=0):(i[2]+=i[0]/2,i[1]+=i[0]/2,i[0]=0),p={a:i[a],b:i[l],c:i[c]},e=(f.a-p.a)*M.yaxis._m,t=(f.c-p.c-f.b+p.b)*M.xaxis._m);var h=s(M.x0+t,M.y0+e);M.plotContainer.selectAll(".scatterlayer,.maplayer").attr("transform",h);var d=s(-t,-e);M.clipDefRelative.select("path").attr("transform",d),M.aaxis.range=[p.a,M.sum-p.b-p.c],M.baxis.range=[M.sum-p.a-p.c,p.b],M.caxis.range=[M.sum-p.a-p.b,p.c],M.drawAxes(!1),M._hasClipOnAxisFalse&&M.plotContainer.select(".scatterlayer").selectAll(".trace").call(u.hideOutsideRangePoints,M),L.emit("plotly_relayouting",R(p))}function q(){a.call("_guiRelayout",L,R(p))}this.dragOptions={element:S,gd:L,plotinfo:{id:M.id,domain:L._fullLayout[M.id].domain,xaxis:M.xaxis,yaxis:M.yaxis},subplot:M.id,prepFn:function(a,l,u){M.dragOptions.xaxes=[M.xaxis],M.dragOptions.yaxes=[M.yaxis],t=L._fullLayout._invScaleX,e=L._fullLayout._invScaleY;var m=M.dragOptions.dragmode=L._fullLayout.dragmode;y(m)?M.dragOptions.minDrag=1:M.dragOptions.minDrag=void 0,"zoom"===m?(M.dragOptions.moveFn=U,M.dragOptions.clickFn=F,M.dragOptions.doneFn=V,function(t,e,a){var l=S.getBoundingClientRect();r=e-l.left,n=a-l.top,L._fullLayout._calcInverseTransform(L);var u=L._fullLayout._invTransform,m=o.apply3DTransform(u)(r,n);r=m[0],n=m[1],f={a:M.aaxis.range[0],b:M.baxis.range[1],c:M.caxis.range[1]},p=f,h=M.aaxis.range[1]-f.a,d=i(M.graphDiv._fullLayout[M.id].bgcolor).getLuminance(),v="M0,"+M.h+"L"+M.w/2+", 0L"+M.w+","+M.h+"Z",b=!1,T=D.append("path").attr("class","zoombox").attr("transform",s(M.x0,M.y0)).style({fill:d>.2?"rgba(0,0,0,0)":"rgba(255,255,255,0)","stroke-width":0}).attr("d",v),k=D.append("path").attr("class","zoombox-corners").attr("transform",s(M.x0,M.y0)).style({fill:c.background,stroke:c.defaultLine,"stroke-width":1,opacity:0}).attr("d","M0,0Z"),M.clearSelect(L)}(0,l,u)):"pan"===m?(M.dragOptions.moveFn=H,M.dragOptions.clickFn=F,M.dragOptions.doneFn=q,f={a:M.aaxis.range[0],b:M.baxis.range[1],c:M.caxis.range[1]},p=f,M.clearSelect(L)):(x(m)||y(m))&&_(a,l,u,M.dragOptions,m)}},S.onmousemove=function(t){g.hover(L,t,M.id),L._fullLayout._lasthover=S,L._fullLayout._hoversubplot=M.id},S.onmouseout=function(t){L._dragging||m.unhover(L,t)},m.init(this.dragOptions)}},{"../../components/color":639,"../../components/dragelement":658,"../../components/dragelement/helpers":657,"../../components/drawing":661,"../../components/fx":679,"../../components/titles":737,"../../lib":776,"../../lib/extend":766,"../../registry":904,"../cartesian/axes":827,"../cartesian/constants":834,"../cartesian/select":847,"../cartesian/set_convert":848,"../plots":890,"@plotly/d3":58,tinycolor2:572}],904:[function(t,e,r){"use strict";var n=t("./lib/loggers"),i=t("./lib/noop"),a=t("./lib/push_unique"),o=t("./lib/is_plain_object"),s=t("./lib/dom").addStyleRule,l=t("./lib/extend"),c=t("./plots/attributes"),u=t("./plots/layout_attributes"),f=l.extendFlat,h=l.extendDeepAll;function p(t){var e=t.name,i=t.categories,a=t.meta;if(r.modules[e])n.log("Type "+e+" already registered");else{r.subplotsRegistry[t.basePlotModule.name]||function(t){var e=t.name;if(r.subplotsRegistry[e])return void n.log("Plot type "+e+" already registered.");for(var i in v(t),r.subplotsRegistry[e]=t,r.componentsRegistry)b(i,t.name)}(t.basePlotModule);for(var o={},l=0;l-1&&(f[p[r]].title={text:""});for(r=0;r")?"":e.html(t).text()}));return e.remove(),r}(T),T=(T=T.replace(/&(?!\w+;|\#[0-9]+;| \#x[0-9A-F]+;)/g,"&")).replace(c,"'"),i.isIE()&&(T=(T=(T=T.replace(/"/gi,"'")).replace(/(\('#)([^']*)('\))/gi,'("#$2")')).replace(/(\\')/gi,'"')),T}},{"../components/color":639,"../components/drawing":661,"../constants/xmlns_namespaces":753,"../lib":776,"@plotly/d3":58}],913:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){for(var r=0;rf+c||!n(u))}for(var p=0;pa))return e}return void 0!==r?r:t.dflt},r.coerceColor=function(t,e,r){return i(e).isValid()?e:void 0!==r?r:t.dflt},r.coerceEnumerated=function(t,e,r){return t.coerceNumber&&(e=+e),-1!==t.values.indexOf(e)?e:void 0!==r?r:t.dflt},r.getValue=function(t,e){var r;return Array.isArray(t)?e0?e+=r:u<0&&(e-=r)}return e}function z(t){var e=u,r=t.b,i=O(t);return n.inbox(r-e,i-e,_+(i-e)/(i-r)-1)}var D=t[f+"a"],R=t[h+"a"];m=Math.abs(D.r2c(D.range[1])-D.r2c(D.range[0]));var F=n.getDistanceFunction(i,p,d,(function(t){return(p(t)+d(t))/2}));if(n.getClosest(g,F,t),!1!==t.index&&g[t.index].p!==c){k||(L=function(t){return Math.min(A(t),t.p-y.bargroupwidth/2)},C=function(t){return Math.max(M(t),t.p+y.bargroupwidth/2)});var B=g[t.index],N=v.base?B.b+B.s:B.s;t[h+"0"]=t[h+"1"]=R.c2p(B[h],!0),t[h+"LabelVal"]=N;var j=y.extents[y.extents.round(B.p)];t[f+"0"]=D.c2p(x?L(B):j[0],!0),t[f+"1"]=D.c2p(x?C(B):j[1],!0);var U=void 0!==B.orig_p;return t[f+"LabelVal"]=U?B.orig_p:B.p,t.labelLabel=l(D,t[f+"LabelVal"],v[f+"hoverformat"]),t.valueLabel=l(R,t[h+"LabelVal"],v[h+"hoverformat"]),t.baseLabel=l(R,B.b,v[h+"hoverformat"]),t.spikeDistance=(function(t){var e=u,r=t.b,i=O(t);return n.inbox(r-e,i-e,w+(i-e)/(i-r)-1)}(B)+function(t){return P(A(t),M(t),w)}(B))/2,t[f+"Spike"]=D.c2p(B.p,!0),o(B,v,t),t.hovertemplate=v.hovertemplate,t}}function f(t,e){var r=e.mcc||t.marker.color,n=e.mlcc||t.marker.line.color,i=s(t,e);return a.opacity(r)?r:a.opacity(n)&&i?n:void 0}e.exports={hoverPoints:function(t,e,r,n,a){var o=u(t,e,r,n,a);if(o){var s=o.cd,l=s[0].trace,c=s[o.index];return o.color=f(l,c),i.getComponentMethod("errorbars","hoverInfo")(c,l,o),[o]}},hoverOnBars:u,getTraceColor:f}},{"../../components/color":639,"../../components/fx":679,"../../constants/numerical":752,"../../lib":776,"../../plots/cartesian/axes":827,"../../registry":904,"./helpers":920}],922:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc").crossTraceCalc,colorbar:t("../scatter/marker_colorbar"),arraysToCalcdata:t("./arrays_to_calcdata"),plot:t("./plot").plot,style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"bar",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","bar","oriented","errorBarsOK","showLegend","zoomScale"],animatable:!0,meta:{}}},{"../../plots/cartesian":841,"../scatter/marker_colorbar":1209,"./arrays_to_calcdata":913,"./attributes":914,"./calc":915,"./cross_trace_calc":917,"./defaults":918,"./event_data":919,"./hover":921,"./layout_attributes":923,"./layout_defaults":924,"./plot":925,"./select":926,"./style":928}],923:[function(t,e,r){"use strict";e.exports={barmode:{valType:"enumerated",values:["stack","group","overlay","relative"],dflt:"group",editType:"calc"},barnorm:{valType:"enumerated",values:["","fraction","percent"],dflt:"",editType:"calc"},bargap:{valType:"number",min:0,max:1,editType:"calc"},bargroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],924:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../plots/cartesian/axes"),a=t("../../lib"),o=t("./layout_attributes");e.exports=function(t,e,r){function s(r,n){return a.coerce(t,e,o,r,n)}for(var l=!1,c=!1,u=!1,f={},h=s("barmode"),p=0;p0}function S(t){return"auto"===t?0:t}function E(t,e){var r=Math.PI/180*e,n=Math.abs(Math.sin(r)),i=Math.abs(Math.cos(r));return{x:t.width*i+t.height*n,y:t.width*n+t.height*i}}function L(t,e,r,n,i,a){var o=!!a.isHorizontal,s=!!a.constrained,l=a.angle||0,c=a.anchor||"end",u="end"===c,f="start"===c,h=((a.leftToRight||0)+1)/2,p=1-h,d=i.width,m=i.height,g=Math.abs(e-t),v=Math.abs(n-r),y=g>2*_&&v>2*_?_:0;g-=2*y,v-=2*y;var x=S(l);"auto"!==l||d<=g&&m<=v||!(d>g||m>v)||(d>v||m>g)&&d.01?q:function(t,e,r){return r&&t===e?t:Math.abs(t-e)>=2?q(t):t>e?Math.ceil(t):Math.floor(t)};B=G(B,N,D),N=G(N,B,D),j=G(j,U,!D),U=G(U,j,!D)}var Y=A(a.ensureSingle(I,"path"),P,g,v);if(Y.style("vector-effect","non-scaling-stroke").attr("d",isNaN((N-B)*(U-j))||V&&t._context.staticPlot?"M0,0Z":"M"+B+","+j+"V"+U+"H"+N+"V"+j+"Z").call(l.setClipUrl,e.layerClipId,t),!P.uniformtext.mode&&R){var W=l.makePointStyleFns(f);l.singlePointStyle(c,Y,f,W,t)}!function(t,e,r,n,i,s,c,f,p,g,v){var w,T=e.xaxis,M=e.yaxis,C=t._fullLayout;function P(e,r,n){return a.ensureSingle(e,"text").text(r).attr({class:"bartext bartext-"+w,"text-anchor":"middle","data-notex":1}).call(l.font,n).call(o.convertToTspans,t)}var I=n[0].trace,O="h"===I.orientation,z=function(t,e,r,n,i){var o,s=e[0].trace;o=s.texttemplate?function(t,e,r,n,i){var o=e[0].trace,s=a.castOption(o,r,"texttemplate");if(!s)return"";var l,c,f,h,p="waterfall"===o.type,d="funnel"===o.type;"h"===o.orientation?(l="y",c=i,f="x",h=n):(l="x",c=n,f="y",h=i);function m(t){return u(h,h.c2l(t),!0).text}var g=e[r],v={};v.label=g.p,v.labelLabel=v[l+"Label"]=(y=g.p,u(c,c.c2l(y),!0).text);var y;var x=a.castOption(o,g.i,"text");(0===x||x)&&(v.text=x);v.value=g.s,v.valueLabel=v[f+"Label"]=m(g.s);var _={};b(_,o,g.i),p&&(v.delta=+g.rawS||g.s,v.deltaLabel=m(v.delta),v.final=g.v,v.finalLabel=m(v.final),v.initial=v.final-v.delta,v.initialLabel=m(v.initial));d&&(v.value=g.s,v.valueLabel=m(v.value),v.percentInitial=g.begR,v.percentInitialLabel=a.formatPercent(g.begR),v.percentPrevious=g.difR,v.percentPreviousLabel=a.formatPercent(g.difR),v.percentTotal=g.sumR,v.percenTotalLabel=a.formatPercent(g.sumR));var w=a.castOption(o,g.i,"customdata");w&&(v.customdata=w);return a.texttemplateString(s,v,t._d3locale,_,v,o._meta||{})}(t,e,r,n,i):s.textinfo?function(t,e,r,n){var i=t[0].trace,o="h"===i.orientation,s="waterfall"===i.type,l="funnel"===i.type;function c(t){return u(o?r:n,+t,!0).text}var f,h=i.textinfo,p=t[e],d=h.split("+"),m=[],g=function(t){return-1!==d.indexOf(t)};g("label")&&m.push((v=t[e].p,u(o?n:r,v,!0).text));var v;g("text")&&(0===(f=a.castOption(i,p.i,"text"))||f)&&m.push(f);if(s){var y=+p.rawS||p.s,x=p.v,b=x-y;g("initial")&&m.push(c(b)),g("delta")&&m.push(c(y)),g("final")&&m.push(c(x))}if(l){g("value")&&m.push(c(p.s));var _=0;g("percent initial")&&_++,g("percent previous")&&_++,g("percent total")&&_++;var w=_>1;g("percent initial")&&(f=a.formatPercent(p.begR),w&&(f+=" of initial"),m.push(f)),g("percent previous")&&(f=a.formatPercent(p.difR),w&&(f+=" of previous"),m.push(f)),g("percent total")&&(f=a.formatPercent(p.sumR),w&&(f+=" of total"),m.push(f))}return m.join("
")}(e,r,n,i):m.getValue(s.text,r);return m.coerceString(y,o)}(C,n,i,T,M);w=function(t,e){var r=m.getValue(t.textposition,e);return m.coerceEnumerated(x,r)}(I,i);var D="stack"===g.mode||"relative"===g.mode,R=n[i],F=!D||R._outmost;if(!z||"none"===w||(R.isBlank||s===c||f===p)&&("auto"===w||"inside"===w))return void r.select("text").remove();var B=C.font,N=d.getBarColor(n[i],I),j=d.getInsideTextFont(I,i,B,N),U=d.getOutsideTextFont(I,i,B),V=r.datum();O?"log"===T.type&&V.s0<=0&&(s=T.range[0]=G*(Z/Y):Z>=Y*(X/G);G>0&&Y>0&&(J||K||Q)?w="inside":(w="outside",H.remove(),H=null)}else w="inside";if(!H){W=a.ensureUniformFontSize(t,"outside"===w?U:j);var $=(H=P(r,z,W)).attr("transform");if(H.attr("transform",""),q=l.bBox(H.node()),G=q.width,Y=q.height,H.attr("transform",$),G<=0||Y<=0)return void H.remove()}var tt,et,rt=I.textangle;"outside"===w?(et="both"===I.constraintext||"outside"===I.constraintext,tt=function(t,e,r,n,i,a){var o,s=!!a.isHorizontal,l=!!a.constrained,c=a.angle||0,u=i.width,f=i.height,h=Math.abs(e-t),p=Math.abs(n-r);o=s?p>2*_?_:0:h>2*_?_:0;var d=1;l&&(d=s?Math.min(1,p/f):Math.min(1,h/u));var m=S(c),g=E(i,m),v=(s?g.x:g.y)/2,y=(i.left+i.right)/2,x=(i.top+i.bottom)/2,b=(t+e)/2,w=(r+n)/2,T=0,A=0,M=s?k(e,t):k(r,n);s?(b=e-M*o,T=M*v):(w=n+M*o,A=-M*v);return{textX:y,textY:x,targetX:b,targetY:w,anchorX:T,anchorY:A,scale:d,rotate:m}}(s,c,f,p,q,{isHorizontal:O,constrained:et,angle:rt})):(et="both"===I.constraintext||"inside"===I.constraintext,tt=L(s,c,f,p,q,{isHorizontal:O,constrained:et,angle:rt,anchor:I.insidetextanchor}));tt.fontSize=W.size,h(I.type,tt,C),R.transform=tt,A(H,C,g,v).attr("transform",a.getTextTransform(tt))}(t,e,I,r,p,B,N,j,U,g,v),e.layerClipId&&l.hideOutsideRangePoint(c,I.select("text"),w,C,f.xcalendar,f.ycalendar)}));var j=!1===f.cliponaxis;l.setClipUrl(c,j?null:e.layerClipId,t)}));c.getComponentMethod("errorbars","plot")(t,I,e,g)},toMoveInsideBar:L}},{"../../components/color":639,"../../components/drawing":661,"../../components/fx/helpers":675,"../../lib":776,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"../../registry":904,"./attributes":914,"./constants":916,"./helpers":920,"./style":928,"./uniform_text":930,"@plotly/d3":58,"fast-isnumeric":242}],926:[function(t,e,r){"use strict";function n(t,e,r,n,i){var a=e.c2p(n?t.s0:t.p0,!0),o=e.c2p(n?t.s1:t.p1,!0),s=r.c2p(n?t.p0:t.s0,!0),l=r.c2p(n?t.p1:t.s1,!0);return i?[(a+o)/2,(s+l)/2]:n?[o,(s+l)/2]:[(a+o)/2,l]}e.exports=function(t,e){var r,i=t.cd,a=t.xaxis,o=t.yaxis,s=i[0].trace,l="funnel"===s.type,c="h"===s.orientation,u=[];if(!1===e)for(r=0;r1||0===i.bargap&&0===i.bargroupgap&&!t[0].trace.marker.line.width)&&n.select(this).attr("shape-rendering","crispEdges")})),e.selectAll("g.points").each((function(e){d(n.select(this),e[0].trace,t)})),s.getComponentMethod("errorbars","style")(e)},styleTextPoints:m,styleOnSelect:function(t,e,r){var i=e[0].trace;i.selectedpoints?function(t,e,r){a.selectedPointStyle(t.selectAll("path"),e),function(t,e,r){t.each((function(t){var i,s=n.select(this);if(t.selected){i=o.ensureUniformFontSize(r,g(s,t,e,r));var l=e.selected.textfont&&e.selected.textfont.color;l&&(i.color=l),a.font(s,i)}else a.selectedTextStyle(s,e)}))}(t.selectAll("text"),e,r)}(r,i,t):(d(r,i,t),s.getComponentMethod("errorbars","style")(r))},getInsideTextFont:y,getOutsideTextFont:x,getBarColor:_,resizeText:l}},{"../../components/color":639,"../../components/drawing":661,"../../lib":776,"../../registry":904,"./attributes":914,"./helpers":920,"./uniform_text":930,"@plotly/d3":58}],929:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults"),o=t("../../lib").coercePattern;e.exports=function(t,e,r,s,l){var c=r("marker.color",s),u=i(t,"marker");u&&a(t,e,l,r,{prefix:"marker.",cLetter:"c"}),r("marker.line.color",n.defaultLine),i(t,"marker.line")&&a(t,e,l,r,{prefix:"marker.line.",cLetter:"c"}),r("marker.line.width"),r("marker.opacity"),o(r,"marker.pattern",c,u),r("selected.marker.color"),r("unselected.marker.color")}},{"../../components/color":639,"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"../../lib":776}],930:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib");function a(t){return"_"+t+"Text_minsize"}e.exports={recordMinTextSize:function(t,e,r){if(r.uniformtext.mode){var n=a(t),i=r.uniformtext.minsize,o=e.scale*e.fontSize;e.hide=oh.range[1]&&(x+=Math.PI);if(n.getClosest(c,(function(t){return m(y,x,[t.rp0,t.rp1],[t.thetag0,t.thetag1],d)?g+Math.min(1,Math.abs(t.thetag1-t.thetag0)/v)-1+(t.rp1-y)/(t.rp1-t.rp0)-1:1/0}),t),!1!==t.index){var b=c[t.index];t.x0=t.x1=b.ct[0],t.y0=t.y1=b.ct[1];var _=i.extendFlat({},b,{r:b.s,theta:b.p});return o(b,u,t),s(_,u,f,t),t.hovertemplate=u.hovertemplate,t.color=a(u,b),t.xLabelVal=t.yLabelVal=void 0,b.s<0&&(t.idealAlign="left"),[t]}}},{"../../components/fx":679,"../../lib":776,"../../plots/polar/helpers":892,"../bar/hover":921,"../scatterpolar/hover":1269}],935:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"barpolar",basePlotModule:t("../../plots/polar"),categories:["polar","bar","showLegend"],attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("../scatterpolar/format_labels"),style:t("../bar/style").style,styleOnSelect:t("../bar/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../bar/select"),meta:{}}},{"../../plots/polar":893,"../bar/select":926,"../bar/style":928,"../scatter/marker_colorbar":1209,"../scatterpolar/format_labels":1268,"./attributes":931,"./calc":932,"./defaults":933,"./hover":934,"./layout_attributes":936,"./layout_defaults":937,"./plot":938}],936:[function(t,e,r){"use strict";e.exports={barmode:{valType:"enumerated",values:["stack","overlay"],dflt:"stack",editType:"calc"},bargap:{valType:"number",dflt:.1,min:0,max:1,editType:"calc"}}},{}],937:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a,o={};function s(r,o){return n.coerce(t[a]||{},e[a],i,r,o)}for(var l=0;l0?(c=o,u=l):(c=l,u=o);var f=[s.findEnclosingVertexAngles(c,t.vangles)[0],(c+u)/2,s.findEnclosingVertexAngles(u,t.vangles)[1]];return s.pathPolygonAnnulus(n,i,c,u,f,e,r)};return function(t,n,i,o){return a.pathAnnulus(t,n,i,o,e,r)}}(e),p=e.layers.frontplot.select("g.barlayer");a.makeTraceGroups(p,r,"trace bars").each((function(){var r=n.select(this),s=a.ensureSingle(r,"g","points").selectAll("g.point").data(a.identity);s.enter().append("g").style("vector-effect","non-scaling-stroke").style("stroke-miterlimit",2).classed("point",!0),s.exit().remove(),s.each((function(t){var e,r=n.select(this),o=t.rp0=u.c2p(t.s0),s=t.rp1=u.c2p(t.s1),p=t.thetag0=f.c2g(t.p0),d=t.thetag1=f.c2g(t.p1);if(i(o)&&i(s)&&i(p)&&i(d)&&o!==s&&p!==d){var m=u.c2g(t.s1),g=(p+d)/2;t.ct=[l.c2p(m*Math.cos(g)),c.c2p(m*Math.sin(g))],e=h(o,s,p,d)}else e="M0,0Z";a.ensureSingle(r,"path").attr("d",e)})),o.setClipUrl(r,e._hasClipOnAxisFalse?e.clipIds.forTraces:null,t)}))}},{"../../components/drawing":661,"../../lib":776,"../../plots/polar/helpers":892,"@plotly/d3":58,"fast-isnumeric":242}],939:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../bar/attributes"),a=t("../../components/color/attributes"),o=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../lib/extend").extendFlat,c=n.marker,u=c.line;e.exports={y:{valType:"data_array",editType:"calc+clearAxisTypes"},x:{valType:"data_array",editType:"calc+clearAxisTypes"},x0:{valType:"any",editType:"calc+clearAxisTypes"},y0:{valType:"any",editType:"calc+clearAxisTypes"},dx:{valType:"number",editType:"calc"},dy:{valType:"number",editType:"calc"},xperiod:n.xperiod,yperiod:n.yperiod,xperiod0:n.xperiod0,yperiod0:n.yperiod0,xperiodalignment:n.xperiodalignment,yperiodalignment:n.yperiodalignment,xhoverformat:o("x"),yhoverformat:o("y"),name:{valType:"string",editType:"calc+clearAxisTypes"},q1:{valType:"data_array",editType:"calc+clearAxisTypes"},median:{valType:"data_array",editType:"calc+clearAxisTypes"},q3:{valType:"data_array",editType:"calc+clearAxisTypes"},lowerfence:{valType:"data_array",editType:"calc"},upperfence:{valType:"data_array",editType:"calc"},notched:{valType:"boolean",editType:"calc"},notchwidth:{valType:"number",min:0,max:.5,dflt:.25,editType:"calc"},notchspan:{valType:"data_array",editType:"calc"},boxpoints:{valType:"enumerated",values:["all","outliers","suspectedoutliers",!1],editType:"calc"},jitter:{valType:"number",min:0,max:1,editType:"calc"},pointpos:{valType:"number",min:-2,max:2,editType:"calc"},boxmean:{valType:"enumerated",values:[!0,"sd",!1],editType:"calc"},mean:{valType:"data_array",editType:"calc"},sd:{valType:"data_array",editType:"calc"},orientation:{valType:"enumerated",values:["v","h"],editType:"calc+clearAxisTypes"},quartilemethod:{valType:"enumerated",values:["linear","exclusive","inclusive"],dflt:"linear",editType:"calc"},width:{valType:"number",min:0,dflt:0,editType:"calc"},marker:{outliercolor:{valType:"color",dflt:"rgba(0, 0, 0, 0)",editType:"style"},symbol:l({},c.symbol,{arrayOk:!1,editType:"plot"}),opacity:l({},c.opacity,{arrayOk:!1,dflt:1,editType:"style"}),size:l({},c.size,{arrayOk:!1,editType:"calc"}),color:l({},c.color,{arrayOk:!1,editType:"style"}),line:{color:l({},u.color,{arrayOk:!1,dflt:a.defaultLine,editType:"style"}),width:l({},u.width,{arrayOk:!1,dflt:0,editType:"style"}),outliercolor:{valType:"color",editType:"style"},outlierwidth:{valType:"number",min:0,dflt:1,editType:"style"},editType:"style"},editType:"plot"},line:{color:{valType:"color",editType:"style"},width:{valType:"number",min:0,dflt:2,editType:"style"},editType:"plot"},fillcolor:n.fillcolor,whiskerwidth:{valType:"number",min:0,max:1,dflt:.5,editType:"calc"},offsetgroup:i.offsetgroup,alignmentgroup:i.alignmentgroup,selected:{marker:n.selected.marker,editType:"style"},unselected:{marker:n.unselected.marker,editType:"style"},text:l({},n.text,{}),hovertext:l({},n.hovertext,{}),hovertemplate:s({}),hoveron:{valType:"flaglist",flags:["boxes","points"],dflt:"boxes+points",editType:"style"}}},{"../../components/color/attributes":638,"../../lib/extend":766,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../bar/attributes":914,"../scatter/attributes":1191}],940:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../plots/cartesian/axes"),a=t("../../plots/cartesian/align_period"),o=t("../../lib"),s=t("../../constants/numerical").BADNUM,l=o._;e.exports=function(t,e){var r,c,y,x,b,_,w,T=t._fullLayout,k=i.getFromId(t,e.xaxis||"x"),A=i.getFromId(t,e.yaxis||"y"),M=[],S="violin"===e.type?"_numViolins":"_numBoxes";"h"===e.orientation?(y=k,x="x",b=A,_="y",w=!!e.yperiodalignment):(y=A,x="y",b=k,_="x",w=!!e.xperiodalignment);var E,L,C,P,I,O,z=function(t,e,r,i){var s,l=e+"0"in t,c="d"+e in t;if(e in t||l&&c){var u=r.makeCalcdata(t,e);return[a(t,r,e,u).vals,u]}s=l?t[e+"0"]:"name"in t&&("category"===r.type||n(t.name)&&-1!==["linear","log"].indexOf(r.type)||o.isDateTime(t.name)&&"date"===r.type)?t.name:i;for(var f="multicategory"===r.type?r.r2c_just_indices(s):r.d2c(s,0,t[e+"calendar"]),h=t._length,p=new Array(h),d=0;dE.uf};if(e._hasPreCompStats){var U=e[x],V=function(t){return y.d2c((e[t]||[])[r])},H=1/0,q=-1/0;for(r=0;r=E.q1&&E.q3>=E.med){var Y=V("lowerfence");E.lf=Y!==s&&Y<=E.q1?Y:p(E,C,P);var W=V("upperfence");E.uf=W!==s&&W>=E.q3?W:d(E,C,P);var X=V("mean");E.mean=X!==s?X:P?o.mean(C,P):(E.q1+E.q3)/2;var Z=V("sd");E.sd=X!==s&&Z>=0?Z:P?o.stdev(C,P,E.mean):E.q3-E.q1,E.lo=m(E),E.uo=g(E);var J=V("notchspan");J=J!==s&&J>0?J:v(E,P),E.ln=E.med-J,E.un=E.med+J;var K=E.lf,Q=E.uf;e.boxpoints&&C.length&&(K=Math.min(K,C[0]),Q=Math.max(Q,C[P-1])),e.notched&&(K=Math.min(K,E.ln),Q=Math.max(Q,E.un)),E.min=K,E.max=Q}else{var $;o.warn(["Invalid input - make sure that q1 <= median <= q3","q1 = "+E.q1,"median = "+E.med,"q3 = "+E.q3].join("\n")),$=E.med!==s?E.med:E.q1!==s?E.q3!==s?(E.q1+E.q3)/2:E.q1:E.q3!==s?E.q3:0,E.med=$,E.q1=E.q3=$,E.lf=E.uf=$,E.mean=E.sd=$,E.ln=E.un=$,E.min=E.max=$}H=Math.min(H,E.min),q=Math.max(q,E.max),E.pts2=L.filter(j),M.push(E)}}e._extremes[y._id]=i.findExtremes(y,[H,q],{padded:!0})}else{var tt=y.makeCalcdata(e,x),et=function(t,e){for(var r=t.length,n=new Array(r+1),i=0;i=0&&it0){var ut,ft;if((E={}).pos=E[_]=B[r],L=E.pts=nt[r].sort(f),P=(C=E[x]=L.map(h)).length,E.min=C[0],E.max=C[P-1],E.mean=o.mean(C,P),E.sd=o.stdev(C,P,E.mean),E.med=o.interp(C,.5),P%2&&(lt||ct))lt?(ut=C.slice(0,P/2),ft=C.slice(P/2+1)):ct&&(ut=C.slice(0,P/2+1),ft=C.slice(P/2)),E.q1=o.interp(ut,.5),E.q3=o.interp(ft,.5);else E.q1=o.interp(C,.25),E.q3=o.interp(C,.75);E.lf=p(E,C,P),E.uf=d(E,C,P),E.lo=m(E),E.uo=g(E);var ht=v(E,P);E.ln=E.med-ht,E.un=E.med+ht,at=Math.min(at,E.ln),ot=Math.max(ot,E.un),E.pts2=L.filter(j),M.push(E)}e._extremes[y._id]=i.findExtremes(y,e.notched?tt.concat([at,ot]):tt,{padded:!0})}return function(t,e){if(o.isArrayOrTypedArray(e.selectedpoints))for(var r=0;r0?(M[0].t={num:T[S],dPos:N,posLetter:_,valLetter:x,labels:{med:l(t,"median:"),min:l(t,"min:"),q1:l(t,"q1:"),q3:l(t,"q3:"),max:l(t,"max:"),mean:"sd"===e.boxmean?l(t,"mean \xb1 \u03c3:"):l(t,"mean:"),lf:l(t,"lower fence:"),uf:l(t,"upper fence:")}},T[S]++,M):[{t:{empty:!0}}]};var c={text:"tx",hovertext:"htx"};function u(t,e,r){for(var n in c)o.isArrayOrTypedArray(e[n])&&(Array.isArray(r)?o.isArrayOrTypedArray(e[n][r[0]])&&(t[c[n]]=e[n][r[0]][r[1]]):t[c[n]]=e[n][r])}function f(t,e){return t.v-e.v}function h(t){return t.v}function p(t,e,r){return 0===r?t.q1:Math.min(t.q1,e[Math.min(o.findBin(2.5*t.q1-1.5*t.q3,e,!0)+1,r-1)])}function d(t,e,r){return 0===r?t.q3:Math.max(t.q3,e[Math.max(o.findBin(2.5*t.q3-1.5*t.q1,e),0)])}function m(t){return 4*t.q1-3*t.q3}function g(t){return 4*t.q3-3*t.q1}function v(t,e){return 0===e?0:1.57*(t.q3-t.q1)/Math.sqrt(e)}},{"../../constants/numerical":752,"../../lib":776,"../../plots/cartesian/align_period":824,"../../plots/cartesian/axes":827,"fast-isnumeric":242}],941:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib"),a=t("../../plots/cartesian/constraints").getAxisGroup,o=["v","h"];function s(t,e,r,o){var s,l,c,u=e.calcdata,f=e._fullLayout,h=o._id,p=h.charAt(0),d=[],m=0;for(s=0;s1,b=1-f[t+"gap"],_=1-f[t+"groupgap"];for(s=0;s0){var q=E.pointpos,G=E.jitter,Y=E.marker.size/2,W=0;q+G>=0&&((W=V*(q+G))>M?(H=!0,j=Y,B=W):W>R&&(j=Y,B=M)),W<=M&&(B=M);var X=0;q-G<=0&&((X=-V*(q-G))>S?(H=!0,U=Y,N=X):X>F&&(U=Y,N=S)),X<=S&&(N=S)}else B=M,N=S;var Z=new Array(c.length);for(l=0;l0?(g="v",v=x>0?Math.min(_,b):Math.min(b)):x>0?(g="h",v=Math.min(_)):v=0;if(v){e._length=v;var S=r("orientation",g);e._hasPreCompStats?"v"===S&&0===x?(r("x0",0),r("dx",1)):"h"===S&&0===y&&(r("y0",0),r("dy",1)):"v"===S&&0===x?r("x0"):"h"===S&&0===y&&r("y0"),i.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x","y"],a)}else e.visible=!1}function f(t,e,r,i){var a=i.prefix,o=n.coerce2(t,e,c,"marker.outliercolor"),s=r("marker.line.outliercolor"),l="outliers";e._hasPreCompStats?l="all":(o||s)&&(l="suspectedoutliers");var u=r(a+"points",l);u?(r("jitter","all"===u?.3:0),r("pointpos","all"===u?-1.5:0),r("marker.symbol"),r("marker.opacity"),r("marker.size"),r("marker.color",e.line.color),r("marker.line.color"),r("marker.line.width"),"suspectedoutliers"===u&&(r("marker.line.outliercolor",e.marker.color),r("marker.line.outlierwidth")),r("selected.marker.color"),r("unselected.marker.color"),r("selected.marker.size"),r("unselected.marker.size"),r("text"),r("hovertext")):delete e.marker;var f=r("hoveron");"all"!==f&&-1===f.indexOf("points")||r("hovertemplate"),n.coerceSelectionMarkerOpacity(e,r)}e.exports={supplyDefaults:function(t,e,r,i){function s(r,i){return n.coerce(t,e,c,r,i)}if(u(t,e,s,i),!1!==e.visible){o(t,e,i,s),s("xhoverformat"),s("yhoverformat");var l=e._hasPreCompStats;l&&(s("lowerfence"),s("upperfence")),s("line.color",(t.marker||{}).color||r),s("line.width"),s("fillcolor",a.addOpacity(e.line.color,.5));var h=!1;if(l){var p=s("mean"),d=s("sd");p&&p.length&&(h=!0,d&&d.length&&(h="sd"))}s("boxmean",h),s("whiskerwidth"),s("width"),s("quartilemethod");var m=!1;if(l){var g=s("notchspan");g&&g.length&&(m=!0)}else n.validate(t.notchwidth,c.notchwidth)&&(m=!0);s("notched",m)&&s("notchwidth"),f(t,e,s,{prefix:"box"})}},crossTraceDefaults:function(t,e){var r,i;function a(t){return n.coerce(i._input,i,c,t)}for(var o=0;ot.lo&&(x.so=!0)}return a}));h.enter().append("path").classed("point",!0),h.exit().remove(),h.call(a.translatePoints,o,s)}function l(t,e,r,a){var o,s,l=e.val,c=e.pos,u=!!c.rangebreaks,f=a.bPos,h=a.bPosPxOffset||0,p=r.boxmean||(r.meanline||{}).visible;Array.isArray(a.bdPos)?(o=a.bdPos[0],s=a.bdPos[1]):(o=a.bdPos,s=a.bdPos);var d=t.selectAll("path.mean").data("box"===r.type&&r.boxmean||"violin"===r.type&&r.box.visible&&r.meanline.visible?i.identity:[]);d.enter().append("path").attr("class","mean").style({fill:"none","vector-effect":"non-scaling-stroke"}),d.exit().remove(),d.each((function(t){var e=c.c2l(t.pos+f,!0),i=c.l2p(e-o)+h,a=c.l2p(e+s)+h,d=u?(i+a)/2:c.l2p(e)+h,m=l.c2p(t.mean,!0),g=l.c2p(t.mean-t.sd,!0),v=l.c2p(t.mean+t.sd,!0);"h"===r.orientation?n.select(this).attr("d","M"+m+","+i+"V"+a+("sd"===p?"m0,0L"+g+","+d+"L"+m+","+i+"L"+v+","+d+"Z":"")):n.select(this).attr("d","M"+i+","+m+"H"+a+("sd"===p?"m0,0L"+d+","+g+"L"+i+","+m+"L"+d+","+v+"Z":""))}))}e.exports={plot:function(t,e,r,a){var c=e.xaxis,u=e.yaxis;i.makeTraceGroups(a,r,"trace boxes").each((function(t){var e,r,i=n.select(this),a=t[0],f=a.t,h=a.trace;(f.wdPos=f.bdPos*h.whiskerwidth,!0!==h.visible||f.empty)?i.remove():("h"===h.orientation?(e=u,r=c):(e=c,r=u),o(i,{pos:e,val:r},h,f),s(i,{x:c,y:u},h,f),l(i,{pos:e,val:r},h,f))}))},plotBoxAndWhiskers:o,plotPoints:s,plotBoxMean:l}},{"../../components/drawing":661,"../../lib":776,"@plotly/d3":58}],949:[function(t,e,r){"use strict";e.exports=function(t,e){var r,n,i=t.cd,a=t.xaxis,o=t.yaxis,s=[];if(!1===e)for(r=0;r=10)return null;for(var i=1/0,a=-1/0,o=e.length,s=0;s0?Math.floor:Math.ceil,I=L>0?Math.ceil:Math.floor,O=L>0?Math.min:Math.max,z=L>0?Math.max:Math.min,D=P(S+C),R=I(E-C),F=[[f=M(S)]];for(a=D;a*L=0;i--)a[u-i]=t[f][i],o[u-i]=e[f][i];for(s.push({x:a,y:o,bicubic:l}),i=f,a=[],o=[];i>=0;i--)a[f-i]=t[i][0],o[f-i]=e[i][0];return s.push({x:a,y:o,bicubic:c}),s}},{}],963:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib/extend").extendFlat;e.exports=function(t,e,r){var a,o,s,l,c,u,f,h,p,d,m,g,v,y,x=t["_"+e],b=t[e+"axis"],_=b._gridlines=[],w=b._minorgridlines=[],T=b._boundarylines=[],k=t["_"+r],A=t[r+"axis"];"array"===b.tickmode&&(b.tickvals=x.slice());var M=t._xctrl,S=t._yctrl,E=M[0].length,L=M.length,C=t._a.length,P=t._b.length;n.prepTicks(b),"array"===b.tickmode&&delete b.tickvals;var I=b.smoothing?3:1;function O(n){var i,a,o,s,l,c,u,f,p,d,m,g,v=[],y=[],x={};if("b"===e)for(a=t.b2j(n),o=Math.floor(Math.max(0,Math.min(P-2,a))),s=a-o,x.length=P,x.crossLength=C,x.xy=function(e){return t.evalxy([],e,a)},x.dxy=function(e,r){return t.dxydi([],e,o,r,s)},i=0;i0&&(p=t.dxydi([],i-1,o,0,s),v.push(l[0]+p[0]/3),y.push(l[1]+p[1]/3),d=t.dxydi([],i-1,o,1,s),v.push(f[0]-d[0]/3),y.push(f[1]-d[1]/3)),v.push(f[0]),y.push(f[1]),l=f;else for(i=t.a2i(n),c=Math.floor(Math.max(0,Math.min(C-2,i))),u=i-c,x.length=C,x.crossLength=P,x.xy=function(e){return t.evalxy([],i,e)},x.dxy=function(e,r){return t.dxydj([],c,e,u,r)},a=0;a0&&(m=t.dxydj([],c,a-1,u,0),v.push(l[0]+m[0]/3),y.push(l[1]+m[1]/3),g=t.dxydj([],c,a-1,u,1),v.push(f[0]-g[0]/3),y.push(f[1]-g[1]/3)),v.push(f[0]),y.push(f[1]),l=f;return x.axisLetter=e,x.axis=b,x.crossAxis=A,x.value=n,x.constvar=r,x.index=h,x.x=v,x.y=y,x.smoothing=A.smoothing,x}function z(n){var i,a,o,s,l,c=[],u=[],f={};if(f.length=x.length,f.crossLength=k.length,"b"===e)for(o=Math.max(0,Math.min(P-2,n)),l=Math.min(1,Math.max(0,n-o)),f.xy=function(e){return t.evalxy([],e,n)},f.dxy=function(e,r){return t.dxydi([],e,o,r,l)},i=0;ix.length-1||_.push(i(z(o),{color:b.gridcolor,width:b.gridwidth}));for(h=u;hx.length-1||m<0||m>x.length-1))for(g=x[s],v=x[m],a=0;ax[x.length-1]||w.push(i(O(d),{color:b.minorgridcolor,width:b.minorgridwidth}));b.startline&&T.push(i(z(0),{color:b.startlinecolor,width:b.startlinewidth})),b.endline&&T.push(i(z(x.length-1),{color:b.endlinecolor,width:b.endlinewidth}))}else{for(l=5e-15,u=(c=[Math.floor((x[x.length-1]-b.tick0)/b.dtick*(1+l)),Math.ceil((x[0]-b.tick0)/b.dtick/(1+l))].sort((function(t,e){return t-e})))[0],f=c[1],h=u;h<=f;h++)p=b.tick0+b.dtick*h,_.push(i(O(p),{color:b.gridcolor,width:b.gridwidth}));for(h=u-1;hx[x.length-1]||w.push(i(O(d),{color:b.minorgridcolor,width:b.minorgridwidth}));b.startline&&T.push(i(O(x[0]),{color:b.startlinecolor,width:b.startlinewidth})),b.endline&&T.push(i(O(x[x.length-1]),{color:b.endlinecolor,width:b.endlinewidth}))}}},{"../../lib/extend":766,"../../plots/cartesian/axes":827}],964:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib/extend").extendFlat;e.exports=function(t,e){var r,a,o,s=e._labels=[],l=e._gridlines;for(r=0;re.length&&(t=t.slice(0,e.length)):t=[],i=0;i90&&(p-=180,l=-l),{angle:p,flip:l,p:t.c2p(n,e,r),offsetMultplier:c}}},{}],978:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("./map_1d_array"),o=t("./makepath"),s=t("./orient_text"),l=t("../../lib/svg_text_utils"),c=t("../../lib"),u=c.strRotate,f=c.strTranslate,h=t("../../constants/alignment");function p(t,e,r,i,s,l){var c="const-"+s+"-lines",u=r.selectAll("."+c).data(l);u.enter().append("path").classed(c,!0).style("vector-effect","non-scaling-stroke"),u.each((function(r){var i=r,s=i.x,l=i.y,c=a([],s,t.c2p),u=a([],l,e.c2p),f="M"+o(c,u,i.smoothing);n.select(this).attr("d",f).style("stroke-width",i.width).style("stroke",i.color).style("fill","none")})),u.exit().remove()}function d(t,e,r,a,o,c,h,p){var d=c.selectAll("text."+p).data(h);d.enter().append("text").classed(p,!0);var m=0,g={};return d.each((function(o,c){var h;if("auto"===o.axis.tickangle)h=s(a,e,r,o.xy,o.dxy);else{var p=(o.axis.tickangle+180)*Math.PI/180;h=s(a,e,r,o.xy,[Math.cos(p),Math.sin(p)])}c||(g={angle:h.angle,flip:h.flip});var d=(o.endAnchor?-1:1)*h.flip,v=n.select(this).attr({"text-anchor":d>0?"start":"end","data-notex":1}).call(i.font,o.font).text(o.text).call(l.convertToTspans,t),y=i.bBox(this);v.attr("transform",f(h.p[0],h.p[1])+u(h.angle)+f(o.axis.labelpadding*d,.3*y.height)),m=Math.max(m,y.width+o.axis.labelpadding)})),d.exit().remove(),g.maxExtent=m,g}e.exports=function(t,e,r,i){var l=e.xaxis,u=e.yaxis,f=t._fullLayout._clips;c.makeTraceGroups(i,r,"trace").each((function(e){var r=n.select(this),i=e[0],h=i.trace,m=h.aaxis,g=h.baxis,y=c.ensureSingle(r,"g","minorlayer"),x=c.ensureSingle(r,"g","majorlayer"),b=c.ensureSingle(r,"g","boundarylayer"),_=c.ensureSingle(r,"g","labellayer");r.style("opacity",h.opacity),p(l,u,x,m,"a",m._gridlines),p(l,u,x,g,"b",g._gridlines),p(l,u,y,m,"a",m._minorgridlines),p(l,u,y,g,"b",g._minorgridlines),p(l,u,b,m,"a-boundary",m._boundarylines),p(l,u,b,g,"b-boundary",g._boundarylines);var w=d(t,l,u,h,i,_,m._labels,"a-label"),T=d(t,l,u,h,i,_,g._labels,"b-label");!function(t,e,r,n,i,a,o,l){var u,f,h,p,d=c.aggNums(Math.min,null,r.a),m=c.aggNums(Math.max,null,r.a),g=c.aggNums(Math.min,null,r.b),y=c.aggNums(Math.max,null,r.b);u=.5*(d+m),f=g,h=r.ab2xy(u,f,!0),p=r.dxyda_rough(u,f),void 0===o.angle&&c.extendFlat(o,s(r,i,a,h,r.dxydb_rough(u,f)));v(t,e,r,n,h,p,r.aaxis,i,a,o,"a-title"),u=d,f=.5*(g+y),h=r.ab2xy(u,f,!0),p=r.dxydb_rough(u,f),void 0===l.angle&&c.extendFlat(l,s(r,i,a,h,r.dxyda_rough(u,f)));v(t,e,r,n,h,p,r.baxis,i,a,l,"b-title")}(t,_,h,i,l,u,w,T),function(t,e,r,n,i){var s,l,u,f,h=r.select("#"+t._clipPathId);h.size()||(h=r.append("clipPath").classed("carpetclip",!0));var p=c.ensureSingle(h,"path","carpetboundary"),d=e.clipsegments,m=[];for(f=0;f90&&y<270,b=n.select(this);b.text(h.title.text).call(l.convertToTspans,t),x&&(_=(-l.lineCount(b)+g)*m*a-_),b.attr("transform",f(e.p[0],e.p[1])+u(e.angle)+f(0,_)).attr("text-anchor","middle").call(i.font,h.title.font)})),b.exit().remove()}},{"../../components/drawing":661,"../../constants/alignment":744,"../../lib":776,"../../lib/svg_text_utils":802,"./makepath":975,"./map_1d_array":976,"./orient_text":977,"@plotly/d3":58}],979:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../lib/search").findBin,a=t("./compute_control_points"),o=t("./create_spline_evaluator"),s=t("./create_i_derivative_evaluator"),l=t("./create_j_derivative_evaluator");e.exports=function(t){var e=t._a,r=t._b,c=e.length,u=r.length,f=t.aaxis,h=t.baxis,p=e[0],d=e[c-1],m=r[0],g=r[u-1],v=e[e.length-1]-e[0],y=r[r.length-1]-r[0],x=v*n.RELATIVE_CULL_TOLERANCE,b=y*n.RELATIVE_CULL_TOLERANCE;p-=x,d+=x,m-=b,g+=b,t.isVisible=function(t,e){return t>p&&tm&&ed||eg},t.setScale=function(){var e=t._x,r=t._y,n=a(t._xctrl,t._yctrl,e,r,f.smoothing,h.smoothing);t._xctrl=n[0],t._yctrl=n[1],t.evalxy=o([t._xctrl,t._yctrl],c,u,f.smoothing,h.smoothing),t.dxydi=s([t._xctrl,t._yctrl],f.smoothing,h.smoothing),t.dxydj=l([t._xctrl,t._yctrl],f.smoothing,h.smoothing)},t.i2a=function(t){var r=Math.max(0,Math.floor(t[0]),c-2),n=t[0]-r;return(1-n)*e[r]+n*e[r+1]},t.j2b=function(t){var e=Math.max(0,Math.floor(t[1]),c-2),n=t[1]-e;return(1-n)*r[e]+n*r[e+1]},t.ij2ab=function(e){return[t.i2a(e[0]),t.j2b(e[1])]},t.a2i=function(t){var r=Math.max(0,Math.min(i(t,e),c-2)),n=e[r],a=e[r+1];return Math.max(0,Math.min(c-1,r+(t-n)/(a-n)))},t.b2j=function(t){var e=Math.max(0,Math.min(i(t,r),u-2)),n=r[e],a=r[e+1];return Math.max(0,Math.min(u-1,e+(t-n)/(a-n)))},t.ab2ij=function(e){return[t.a2i(e[0]),t.b2j(e[1])]},t.i2c=function(e,r){return t.evalxy([],e,r)},t.ab2xy=function(n,i,a){if(!a&&(ne[c-1]|ir[u-1]))return[!1,!1];var o=t.a2i(n),s=t.b2j(i),l=t.evalxy([],o,s);if(a){var f,h,p,d,m=0,g=0,v=[];ne[c-1]?(f=c-2,h=1,m=(n-e[c-1])/(e[c-1]-e[c-2])):h=o-(f=Math.max(0,Math.min(c-2,Math.floor(o)))),ir[u-1]?(p=u-2,d=1,g=(i-r[u-1])/(r[u-1]-r[u-2])):d=s-(p=Math.max(0,Math.min(u-2,Math.floor(s)))),m&&(t.dxydi(v,f,p,h,d),l[0]+=v[0]*m,l[1]+=v[1]*m),g&&(t.dxydj(v,f,p,h,d),l[0]+=v[0]*g,l[1]+=v[1]*g)}return l},t.c2p=function(t,e,r){return[e.c2p(t[0]),r.c2p(t[1])]},t.p2x=function(t,e,r){return[e.p2c(t[0]),r.p2c(t[1])]},t.dadi=function(t){var r=Math.max(0,Math.min(e.length-2,t));return e[r+1]-e[r]},t.dbdj=function(t){var e=Math.max(0,Math.min(r.length-2,t));return r[e+1]-r[e]},t.dxyda=function(e,r,n,i){var a=t.dxydi(null,e,r,n,i),o=t.dadi(e,n);return[a[0]/o,a[1]/o]},t.dxydb=function(e,r,n,i){var a=t.dxydj(null,e,r,n,i),o=t.dbdj(r,i);return[a[0]/o,a[1]/o]},t.dxyda_rough=function(e,r,n){var i=v*(n||.1),a=t.ab2xy(e+i,r,!0),o=t.ab2xy(e-i,r,!0);return[.5*(a[0]-o[0])/i,.5*(a[1]-o[1])/i]},t.dxydb_rough=function(e,r,n){var i=y*(n||.1),a=t.ab2xy(e,r+i,!0),o=t.ab2xy(e,r-i,!0);return[.5*(a[0]-o[0])/i,.5*(a[1]-o[1])/i]},t.dpdx=function(t){return t._m},t.dpdy=function(t){return t._m}}},{"../../lib/search":796,"./compute_control_points":967,"./constants":968,"./create_i_derivative_evaluator":969,"./create_j_derivative_evaluator":970,"./create_spline_evaluator":971}],980:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e,r){var i,a,o,s=[],l=[],c=t[0].length,u=t.length;function f(e,r){var n,i=0,a=0;return e>0&&void 0!==(n=t[r][e-1])&&(a++,i+=n),e0&&void 0!==(n=t[r-1][e])&&(a++,i+=n),r0&&a0&&i1e-5);return n.log("Smoother converged to",k,"after",A,"iterations"),t}},{"../../lib":776}],981:[function(t,e,r){"use strict";var n=t("../../lib").isArray1D;e.exports=function(t,e,r){var i=r("x"),a=i&&i.length,o=r("y"),s=o&&o.length;if(!a&&!s)return!1;if(e._cheater=!i,a&&!n(i)||s&&!n(o))e._length=null;else{var l=a?i.length:1/0;s&&(l=Math.min(l,o.length)),e.a&&e.a.length&&(l=Math.min(l,e.a.length)),e.b&&e.b.length&&(l=Math.min(l,e.b.length)),e._length=l}return!0}},{"../../lib":776}],982:[function(t,e,r){"use strict";var n=t("../../plots/template_attributes").hovertemplateAttrs,i=t("../scattergeo/attributes"),a=t("../../components/colorscale/attributes"),o=t("../../plots/attributes"),s=t("../../components/color/attributes").defaultLine,l=t("../../lib/extend").extendFlat,c=i.marker.line;e.exports=l({locations:{valType:"data_array",editType:"calc"},locationmode:i.locationmode,z:{valType:"data_array",editType:"calc"},geojson:l({},i.geojson,{}),featureidkey:i.featureidkey,text:l({},i.text,{}),hovertext:l({},i.hovertext,{}),marker:{line:{color:l({},c.color,{dflt:s}),width:l({},c.width,{dflt:1}),editType:"calc"},opacity:{valType:"number",arrayOk:!0,min:0,max:1,dflt:1,editType:"style"},editType:"calc"},selected:{marker:{opacity:i.selected.marker.opacity,editType:"plot"},editType:"plot"},unselected:{marker:{opacity:i.unselected.marker.opacity,editType:"plot"},editType:"plot"},hoverinfo:l({},o.hoverinfo,{editType:"calc",flags:["location","z","text","name"]}),hovertemplate:n(),showlegend:l({},o.showlegend,{dflt:!1})},a("",{cLetter:"z",editTypeOverride:"calc"}))},{"../../components/color/attributes":638,"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/template_attributes":899,"../scattergeo/attributes":1233}],983:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../constants/numerical").BADNUM,a=t("../../components/colorscale/calc"),o=t("../scatter/arrays_to_calcdata"),s=t("../scatter/calc_selection");function l(t){return t&&"string"==typeof t}e.exports=function(t,e){var r,c=e._length,u=new Array(c);r=e.geojson?function(t){return l(t)||n(t)}:l;for(var f=0;f")}(t,f,o),[t]}},{"../../lib":776,"../../plots/cartesian/axes":827,"./attributes":982}],987:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../heatmap/colorbar"),calc:t("./calc"),calcGeoJSON:t("./plot").calcGeoJSON,plot:t("./plot").plot,style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"choropleth",basePlotModule:t("../../plots/geo"),categories:["geo","noOpacity","showLegend"],meta:{}}},{"../../plots/geo":860,"../heatmap/colorbar":1061,"./attributes":982,"./calc":983,"./defaults":984,"./event_data":985,"./hover":986,"./plot":988,"./select":989,"./style":990}],988:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../lib/geo_location_utils"),o=t("../../lib/topojson_utils").getTopojsonFeatures,s=t("../../plots/cartesian/autorange").findExtremes,l=t("./style").style;e.exports={calcGeoJSON:function(t,e){for(var r=t[0].trace,n=e[r.geo],i=n._subplot,l=r.locationmode,c=r._length,u="geojson-id"===l?a.extractTraceFeature(t):o(r,i.topojson),f=[],h=[],p=0;p=0;n--){var i=r[n].id;if("string"==typeof i&&0===i.indexOf("water"))for(var a=n+1;a=0;r--)t.removeLayer(e[r][1])},s.dispose=function(){var t=this.subplot.map;this._removeLayers(),t.removeSource(this.sourceId)},e.exports=function(t,e){var r=e[0].trace,i=new o(t,r.uid),a=i.sourceId,s=n(e),l=i.below=t.belowLookup["trace-"+r.uid];return t.map.addSource(a,{type:"geojson",data:s.geojson}),i._addLayers(s,l),e[0].trace._glTrace=i,i}},{"../../plots/mapbox/constants":882,"./convert":992}],996:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../mesh3d/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c={x:{valType:"data_array",editType:"calc+clearAxisTypes"},y:{valType:"data_array",editType:"calc+clearAxisTypes"},z:{valType:"data_array",editType:"calc+clearAxisTypes"},u:{valType:"data_array",editType:"calc"},v:{valType:"data_array",editType:"calc"},w:{valType:"data_array",editType:"calc"},sizemode:{valType:"enumerated",values:["scaled","absolute"],editType:"calc",dflt:"scaled"},sizeref:{valType:"number",editType:"calc",min:0},anchor:{valType:"enumerated",editType:"calc",values:["tip","tail","cm","center"],dflt:"cm"},text:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertemplate:a({editType:"calc"},{keys:["norm"]}),uhoverformat:i("u",1),vhoverformat:i("v",1),whoverformat:i("w",1),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),showlegend:l({},s.showlegend,{dflt:!1})};l(c,n("",{colorAttr:"u/v/w norm",showScaleDflt:!0,editTypeOverride:"calc"}));["opacity","lightposition","lighting"].forEach((function(t){c[t]=o[t]})),c.hoverinfo=l({},s.hoverinfo,{editType:"calc",flags:["x","y","z","u","v","w","norm","text","name"],dflt:"x+y+z+norm+text+name"}),c.transforms=void 0,e.exports=c},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../mesh3d/attributes":1132}],997:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){for(var r=e.u,i=e.v,a=e.w,o=Math.min(e.x.length,e.y.length,e.z.length,r.length,i.length,a.length),s=-1/0,l=1/0,c=0;co.level||o.starts.length&&a===o.level)}break;case"constraint":if(n.prefixBoundary=!1,n.edgepaths.length)return;var s=n.x.length,l=n.y.length,c=-1/0,u=1/0;for(r=0;r":p>c&&(n.prefixBoundary=!0);break;case"<":(pc||n.starts.length&&h===u)&&(n.prefixBoundary=!0);break;case"][":f=Math.min(p[0],p[1]),h=Math.max(p[0],p[1]),fc&&(n.prefixBoundary=!0)}}}},{}],1004:[function(t,e,r){"use strict";var n=t("../../components/colorscale"),i=t("./make_color_map"),a=t("./end_plus");e.exports={min:"zmin",max:"zmax",calc:function(t,e,r){var o=e.contours,s=e.line,l=o.size||1,c=o.coloring,u=i(e,{isColorbar:!0});if("heatmap"===c){var f=n.extractOpts(e);r._fillgradient=f.reversescale?n.flipScale(f.colorscale):f.colorscale,r._zrange=[f.min,f.max]}else"fill"===c&&(r._fillcolor=u);r._line={color:"lines"===c?u:s.color,width:!1!==o.showlines?s.width:0,dash:s.dash},r._levels={start:o.start,end:a(o),size:l}}}},{"../../components/colorscale":651,"./end_plus":1012,"./make_color_map":1017}],1005:[function(t,e,r){"use strict";e.exports={BOTTOMSTART:[1,9,13,104,713],TOPSTART:[4,6,7,104,713],LEFTSTART:[8,12,14,208,1114],RIGHTSTART:[2,3,11,208,1114],NEWDELTA:[null,[-1,0],[0,-1],[-1,0],[1,0],null,[0,-1],[-1,0],[0,1],[0,1],null,[0,1],[1,0],[1,0],[0,-1]],CHOOSESADDLE:{104:[4,1],208:[2,8],713:[7,13],1114:[11,14]},SADDLEREMAINDER:{1:4,2:8,4:1,7:13,8:2,11:14,13:7,14:11},LABELDISTANCE:2,LABELINCREASE:10,LABELMIN:3,LABELMAX:10,LABELOPTIMIZER:{EDGECOST:1,ANGLECOST:1,NEIGHBORCOST:5,SAMELEVELFACTOR:10,SAMELEVELDISTANCE:5,MAXCOST:100,INITIALSEARCHPOINTS:10,ITERATIONS:5}}},{}],1006:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./label_defaults"),a=t("../../components/color"),o=a.addOpacity,s=a.opacity,l=t("../../constants/filter_ops"),c=l.CONSTRAINT_REDUCTION,u=l.COMPARISON_OPS2;e.exports=function(t,e,r,a,l,f){var h,p,d,m=e.contours,g=r("contours.operation");(m._operation=c[g],function(t,e){var r;-1===u.indexOf(e.operation)?(t("contours.value",[0,1]),Array.isArray(e.value)?e.value.length>2?e.value=e.value.slice(2):0===e.length?e.value=[0,1]:e.length<2?(r=parseFloat(e.value[0]),e.value=[r,r+1]):e.value=[parseFloat(e.value[0]),parseFloat(e.value[1])]:n(e.value)&&(r=parseFloat(e.value),e.value=[r,r+1])):(t("contours.value",0),n(e.value)||(Array.isArray(e.value)?e.value=parseFloat(e.value[0]):e.value=0))}(r,m),"="===g?h=m.showlines=!0:(h=r("contours.showlines"),d=r("fillcolor",o((t.line||{}).color||l,.5))),h)&&(p=r("line.color",d&&s(d)?o(e.fillcolor,1):l),r("line.width",2),r("line.dash"));r("line.smoothing"),i(r,a,p,f)}},{"../../components/color":639,"../../constants/filter_ops":748,"./label_defaults":1016,"fast-isnumeric":242}],1007:[function(t,e,r){"use strict";var n=t("../../constants/filter_ops"),i=t("fast-isnumeric");function a(t,e){var r,a=Array.isArray(e);function o(t){return i(t)?+t:null}return-1!==n.COMPARISON_OPS2.indexOf(t)?r=o(a?e[0]:e):-1!==n.INTERVAL_OPS.indexOf(t)?r=a?[o(e[0]),o(e[1])]:[o(e),o(e)]:-1!==n.SET_OPS.indexOf(t)&&(r=a?e.map(o):[o(e)]),r}function o(t){return function(e){e=a(t,e);var r=Math.min(e[0],e[1]),n=Math.max(e[0],e[1]);return{start:r,end:n,size:n-r}}}function s(t){return function(e){return{start:e=a(t,e),end:1/0,size:1/0}}}e.exports={"[]":o("[]"),"][":o("]["),">":s(">"),"<":s("<"),"=":s("=")}},{"../../constants/filter_ops":748,"fast-isnumeric":242}],1008:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){var i=n("contours.start"),a=n("contours.end"),o=!1===i||!1===a,s=r("contours.size");!(o?e.autocontour=!0:r("autocontour",!1))&&s||r("ncontours")}},{}],1009:[function(t,e,r){"use strict";var n=t("../../lib");function i(t){return n.extendFlat({},t,{edgepaths:n.extendDeep([],t.edgepaths),paths:n.extendDeep([],t.paths),starts:n.extendDeep([],t.starts)})}e.exports=function(t,e){var r,a,o,s=function(t){return t.reverse()},l=function(t){return t};switch(e){case"=":case"<":return t;case">":for(1!==t.length&&n.warn("Contour data invalid for the specified inequality operation."),a=t[0],r=0;r1e3){n.warn("Too many contours, clipping at 1000",t);break}return l}},{"../../lib":776,"./constraint_mapping":1007,"./end_plus":1012}],1012:[function(t,e,r){"use strict";e.exports=function(t){return t.end+t.size/1e6}},{}],1013:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./constants");function a(t,e,r,n){return Math.abs(t[0]-e[0])20&&e?208===t||1114===t?n=0===r[0]?1:-1:a=0===r[1]?1:-1:-1!==i.BOTTOMSTART.indexOf(t)?a=1:-1!==i.LEFTSTART.indexOf(t)?n=1:-1!==i.TOPSTART.indexOf(t)?a=-1:n=-1;return[n,a]}(f,r,e),p=[s(t,e,[-h[0],-h[1]])],d=t.z.length,m=t.z[0].length,g=e.slice(),v=h.slice();for(c=0;c<1e4;c++){if(f>20?(f=i.CHOOSESADDLE[f][(h[0]||h[1])<0?0:1],t.crossings[u]=i.SADDLEREMAINDER[f]):delete t.crossings[u],!(h=i.NEWDELTA[f])){n.log("Found bad marching index:",f,e,t.level);break}p.push(s(t,e,h)),e[0]+=h[0],e[1]+=h[1],u=e.join(","),a(p[p.length-1],p[p.length-2],o,l)&&p.pop();var y=h[0]&&(e[0]<0||e[0]>m-2)||h[1]&&(e[1]<0||e[1]>d-2);if(e[0]===g[0]&&e[1]===g[1]&&h[0]===v[0]&&h[1]===v[1]||r&&y)break;f=t.crossings[u]}1e4===c&&n.log("Infinite loop in contour?");var x,b,_,w,T,k,A,M,S,E,L,C,P,I,O,z=a(p[0],p[p.length-1],o,l),D=0,R=.2*t.smoothing,F=[],B=0;for(c=1;c=B;c--)if((x=F[c])=B&&x+F[b]M&&S--,t.edgepaths[S]=L.concat(p,E));break}V||(t.edgepaths[M]=p.concat(E))}for(M=0;Mt?0:1)+(e[0][1]>t?0:2)+(e[1][1]>t?0:4)+(e[1][0]>t?0:8);return 5===r||10===r?t>(e[0][0]+e[0][1]+e[1][0]+e[1][1])/4?5===r?713:1114:5===r?104:208:15===r?0:r}e.exports=function(t){var e,r,a,o,s,l,c,u,f,h=t[0].z,p=h.length,d=h[0].length,m=2===p||2===d;for(r=0;r=0&&(n=y,s=l):Math.abs(r[1]-n[1])<.01?Math.abs(r[1]-y[1])<.01&&(y[0]-r[0])*(n[0]-y[0])>=0&&(n=y,s=l):i.log("endpt to newendpt is not vert. or horz.",r,n,y)}if(r=n,s>=0)break;f+="L"+n}if(s===t.edgepaths.length){i.log("unclosed perimeter path");break}h=s,(d=-1===p.indexOf(h))&&(h=p[0],f+="Z")}for(h=0;hn.center?n.right-s:s-n.left)/(u+Math.abs(Math.sin(c)*o)),p=(l>n.middle?n.bottom-l:l-n.top)/(Math.abs(f)+Math.cos(c)*o);if(h<1||p<1)return 1/0;var d=v.EDGECOST*(1/(h-1)+1/(p-1));d+=v.ANGLECOST*c*c;for(var m=s-u,g=l-f,y=s+u,x=l+f,b=0;b2*v.MAXCOST)break;p&&(s/=2),l=(o=c-s/2)+1.5*s}if(h<=v.MAXCOST)return u},r.addLabelData=function(t,e,r,n){var i=e.fontSize,a=e.width+i/3,o=Math.max(0,e.height-i/3),s=t.x,l=t.y,c=t.theta,u=Math.sin(c),f=Math.cos(c),h=function(t,e){return[s+t*f-e*u,l+t*u+e*f]},p=[h(-a/2,-o/2),h(-a/2,o/2),h(a/2,o/2),h(a/2,-o/2)];r.push({text:e.text,x:s,y:l,dy:e.dy,theta:c,level:e.level,width:a,height:o}),n.push(p)},r.drawLabels=function(t,e,r,a,o){var l=t.selectAll("text").data(e,(function(t){return t.text+","+t.x+","+t.y+","+t.theta}));if(l.exit().remove(),l.enter().append("text").attr({"data-notex":1,"text-anchor":"middle"}).each((function(t){var e=t.x+Math.sin(t.theta)*t.dy,i=t.y-Math.cos(t.theta)*t.dy;n.select(this).text(t.text).attr({x:e,y:i,transform:"rotate("+180*t.theta/Math.PI+" "+e+" "+i+")"}).call(s.convertToTspans,r)})),o){for(var c="",u=0;ur.end&&(r.start=r.end=(r.start+r.end)/2),t._input.contours||(t._input.contours={}),i.extendFlat(t._input.contours,{start:r.start,end:r.end,size:r.size}),t._input.autocontour=!0}else if("constraint"!==r.type){var c,u=r.start,f=r.end,h=t._input.contours;if(u>f&&(r.start=h.start=f,f=r.end=h.end=u,u=r.start),!(r.size>0))c=u===f?1:a(u,f,t.ncontours).dtick,h.size=r.size=c}}},{"../../lib":776,"../../plots/cartesian/axes":827}],1021:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("../heatmap/style"),o=t("./make_color_map");e.exports=function(t){var e=n.select(t).selectAll("g.contour");e.style("opacity",(function(t){return t[0].trace.opacity})),e.each((function(t){var e=n.select(this),r=t[0].trace,a=r.contours,s=r.line,l=a.size||1,c=a.start,u="constraint"===a.type,f=!u&&"lines"===a.coloring,h=!u&&"fill"===a.coloring,p=f||h?o(r):null;e.selectAll("g.contourlevel").each((function(t){n.select(this).selectAll("path").call(i.lineGroupStyle,s.width,f?p(t.level):s.color,s.dash)}));var d=a.labelfont;if(e.selectAll("g.contourlabels text").each((function(t){i.font(n.select(this),{family:d.family,size:d.size,color:d.color||(f?p(t.level):s.color)})})),u)e.selectAll("g.contourfill path").style("fill",r.fillcolor);else if(h){var m;e.selectAll("g.contourfill path").style("fill",(function(t){return void 0===m&&(m=t.level),p(t.level+.5*l)})),void 0===m&&(m=c),e.selectAll("g.contourbg path").style("fill",p(m-.5*l))}})),a(t)}},{"../../components/drawing":661,"../heatmap/style":1070,"./make_color_map":1017,"@plotly/d3":58}],1022:[function(t,e,r){"use strict";var n=t("../../components/colorscale/defaults"),i=t("./label_defaults");e.exports=function(t,e,r,a,o){var s,l=r("contours.coloring"),c="";"fill"===l&&(s=r("contours.showlines")),!1!==s&&("lines"!==l&&(c=r("line.color","#000")),r("line.width",.5),r("line.dash")),"none"!==l&&(!0!==t.showlegend&&(e.showlegend=!1),e._dfltShowLegend=!1,n(t,e,a,r,{prefix:"",cLetter:"z"})),r("line.smoothing"),i(r,a,c,o)}},{"../../components/colorscale/defaults":649,"./label_defaults":1016}],1023:[function(t,e,r){"use strict";var n=t("../heatmap/attributes"),i=t("../contour/attributes"),a=t("../../components/colorscale/attributes"),o=t("../../lib/extend").extendFlat,s=i.contours;e.exports=o({carpet:{valType:"string",editType:"calc"},z:n.z,a:n.x,a0:n.x0,da:n.dx,b:n.y,b0:n.y0,db:n.dy,text:n.text,hovertext:n.hovertext,transpose:n.transpose,atype:n.xtype,btype:n.ytype,fillcolor:i.fillcolor,autocontour:i.autocontour,ncontours:i.ncontours,contours:{type:s.type,start:s.start,end:s.end,size:s.size,coloring:{valType:"enumerated",values:["fill","lines","none"],dflt:"fill",editType:"calc"},showlines:s.showlines,showlabels:s.showlabels,labelfont:s.labelfont,labelformat:s.labelformat,operation:s.operation,value:s.value,editType:"calc",impliedEdits:{autocontour:!1}},line:{color:i.line.color,width:i.line.width,dash:i.line.dash,smoothing:i.line.smoothing,editType:"plot"},transforms:void 0},a("",{cLetter:"z",autoColorDflt:!1}))},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../contour/attributes":1001,"../heatmap/attributes":1058}],1024:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc"),i=t("../../lib"),a=t("../heatmap/convert_column_xyz"),o=t("../heatmap/clean_2d_array"),s=t("../heatmap/interp2d"),l=t("../heatmap/find_empties"),c=t("../heatmap/make_bound_array"),u=t("./defaults"),f=t("../carpet/lookup_carpetid"),h=t("../contour/set_contours");e.exports=function(t,e){var r=e._carpetTrace=f(t,e);if(r&&r.visible&&"legendonly"!==r.visible){if(!e.a||!e.b){var p=t.data[r.index],d=t.data[e.index];d.a||(d.a=p.a),d.b||(d.b=p.b),u(d,e,e._defaultColor,t._fullLayout)}var m=function(t,e){var r,u,f,h,p,d,m,g=e._carpetTrace,v=g.aaxis,y=g.baxis;v._minDtick=0,y._minDtick=0,i.isArray1D(e.z)&&a(e,v,y,"a","b",["z"]);r=e._a=e._a||e.a,h=e._b=e._b||e.b,r=r?v.makeCalcdata(e,"_a"):[],h=h?y.makeCalcdata(e,"_b"):[],u=e.a0||0,f=e.da||1,p=e.b0||0,d=e.db||1,m=e._z=o(e._z||e.z,e.transpose),e._emptypoints=l(m),s(m,e._emptypoints);var x=i.maxRowLength(m),b="scaled"===e.xtype?"":r,_=c(e,b,u,f,x,v),w="scaled"===e.ytype?"":h,T=c(e,w,p,d,m.length,y),k={a:_,b:T,z:m};"levels"===e.contours.type&&"none"!==e.contours.coloring&&n(t,e,{vals:m,containerStr:"",cLetter:"z"});return[k]}(t,e);return h(e,e._z),m}}},{"../../components/colorscale/calc":647,"../../lib":776,"../carpet/lookup_carpetid":974,"../contour/set_contours":1020,"../heatmap/clean_2d_array":1060,"../heatmap/convert_column_xyz":1062,"../heatmap/find_empties":1064,"../heatmap/interp2d":1067,"../heatmap/make_bound_array":1068,"./defaults":1025}],1025:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../heatmap/xyz_defaults"),a=t("./attributes"),o=t("../contour/constraint_defaults"),s=t("../contour/contours_defaults"),l=t("../contour/style_defaults");e.exports=function(t,e,r,c){function u(r,i){return n.coerce(t,e,a,r,i)}if(u("carpet"),t.a&&t.b){if(!i(t,e,u,c,"a","b"))return void(e.visible=!1);u("text"),"constraint"===u("contours.type")?o(t,e,u,c,r,{hasHover:!1}):(s(t,e,u,(function(r){return n.coerce2(t,e,a,r)})),l(t,e,u,c,{hasHover:!1}))}else e._defaultColor=r,e._length=null}},{"../../lib":776,"../contour/constraint_defaults":1006,"../contour/contours_defaults":1008,"../contour/style_defaults":1022,"../heatmap/xyz_defaults":1072,"./attributes":1023}],1026:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../contour/colorbar"),calc:t("./calc"),plot:t("./plot"),style:t("../contour/style"),moduleType:"trace",name:"contourcarpet",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","carpet","contour","symbols","showLegend","hasLines","carpetDependent","noHover","noSortingByValue"],meta:{}}},{"../../plots/cartesian":841,"../contour/colorbar":1004,"../contour/style":1021,"./attributes":1023,"./calc":1024,"./defaults":1025,"./plot":1027}],1027:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../carpet/map_1d_array"),a=t("../carpet/makepath"),o=t("../../components/drawing"),s=t("../../lib"),l=t("../contour/make_crossings"),c=t("../contour/find_all_paths"),u=t("../contour/plot"),f=t("../contour/constants"),h=t("../contour/convert_to_constraints"),p=t("../contour/empty_pathinfo"),d=t("../contour/close_boundaries"),m=t("../carpet/lookup_carpetid"),g=t("../carpet/axis_aligned_line");function v(t,e,r){var n=t.getPointAtLength(e),i=t.getPointAtLength(r),a=i.x-n.x,o=i.y-n.y,s=Math.sqrt(a*a+o*o);return[a/s,o/s]}function y(t){var e=Math.sqrt(t[0]*t[0]+t[1]*t[1]);return[t[0]/e,t[1]/e]}function x(t,e){var r=Math.abs(t[0]*e[0]+t[1]*e[1]);return Math.sqrt(1-r*r)/r}e.exports=function(t,e,r,b){var _=e.xaxis,w=e.yaxis;s.makeTraceGroups(b,r,"contour").each((function(r){var b=n.select(this),T=r[0],k=T.trace,A=k._carpetTrace=m(t,k),M=t.calcdata[A.index][0];if(A.visible&&"legendonly"!==A.visible){var S=T.a,E=T.b,L=k.contours,C=p(L,e,T),P="constraint"===L.type,I=L._operation,O=P?"="===I?"lines":"fill":L.coloring,z=[[S[0],E[E.length-1]],[S[S.length-1],E[E.length-1]],[S[S.length-1],E[0]],[S[0],E[0]]];l(C);var D=1e-8*(S[S.length-1]-S[0]),R=1e-8*(E[E.length-1]-E[0]);c(C,D,R);var F,B,N,j,U=C;"constraint"===L.type&&(U=h(C,I)),function(t,e){var r,n,i,a,o,s,l,c,u;for(r=0;r=0;j--)F=M.clipsegments[j],B=i([],F.x,_.c2p),N=i([],F.y,w.c2p),B.reverse(),N.reverse(),V.push(a(B,N,F.bicubic));var H="M"+V.join("L")+"Z";!function(t,e,r,n,o,l){var c,u,f,h,p=s.ensureSingle(t,"g","contourbg").selectAll("path").data("fill"!==l||o?[]:[0]);p.enter().append("path"),p.exit().remove();var d=[];for(h=0;h=0&&(h=L,d=m):Math.abs(f[1]-h[1])=0&&(h=L,d=m):s.log("endpt to newendpt is not vert. or horz.",f,h,L)}if(d>=0)break;y+=S(f,h),f=h}if(d===e.edgepaths.length){s.log("unclosed perimeter path");break}u=d,(b=-1===x.indexOf(u))&&(u=x[0],y+=S(f,h)+"Z",f=null)}for(u=0;ug&&(n.max=g);n.len=n.max-n.min}(this,r,t,n,c,e.height),!(n.len<(e.width+e.height)*f.LABELMIN)))for(var i=Math.min(Math.ceil(n.len/I),f.LABELMAX),a=0;a0?+p[u]:0),f.push({type:"Feature",geometry:{type:"Point",coordinates:v},properties:y})}}var b=o.extractOpts(e),_=b.reversescale?o.flipScale(b.colorscale):b.colorscale,w=_[0][1],T=["interpolate",["linear"],["heatmap-density"],0,a.opacity(w)<1?w:a.addOpacity(w,0)];for(u=1;u<_.length;u++)T.push(_[u][0],_[u][1]);var k=["interpolate",["linear"],["get","z"],b.min,0,b.max,1];return i.extendFlat(c.heatmap.paint,{"heatmap-weight":d?k:1/(b.max-b.min),"heatmap-color":T,"heatmap-radius":m?{type:"identity",property:"r"}:e.radius,"heatmap-opacity":e.opacity}),c.geojson={type:"FeatureCollection",features:f},c.heatmap.layout.visibility="visible",c}},{"../../components/color":639,"../../components/colorscale":651,"../../constants/numerical":752,"../../lib":776,"../../lib/geojson_utils":770,"fast-isnumeric":242}],1031:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../components/colorscale/defaults"),a=t("./attributes");e.exports=function(t,e,r,o){function s(r,i){return n.coerce(t,e,a,r,i)}var l=s("lon")||[],c=s("lat")||[],u=Math.min(l.length,c.length);u?(e._length=u,s("z"),s("radius"),s("below"),s("text"),s("hovertext"),s("hovertemplate"),i(t,e,o,s,{prefix:"",cLetter:"z"})):e.visible=!1}},{"../../components/colorscale/defaults":649,"../../lib":776,"./attributes":1028}],1032:[function(t,e,r){"use strict";e.exports=function(t,e){return t.lon=e.lon,t.lat=e.lat,t.z=e.z,t}},{}],1033:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../scattermapbox/hover").hoverPoints,a=t("../scattermapbox/hover").getExtraText;e.exports=function(t,e,r){var o=i(t,e,r);if(o){var s=o[0],l=s.cd,c=l[0].trace,u=l[s.index];if(delete s.color,"z"in u){var f=s.subplot.mockAxis;s.z=u.z,s.zLabel=n.tickText(f,f.c2l(u.z),"hover").text}return s.extraText=a(c,u,l[0].t.labels),[s]}}},{"../../plots/cartesian/axes":827,"../scattermapbox/hover":1261}],1034:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../heatmap/colorbar"),formatLabels:t("../scattermapbox/format_labels"),calc:t("./calc"),plot:t("./plot"),hoverPoints:t("./hover"),eventData:t("./event_data"),getBelow:function(t,e){for(var r=e.getMapLayers(),n=0;n=0;r--)t.removeLayer(e[r][1])},o.dispose=function(){var t=this.subplot.map;this._removeLayers(),t.removeSource(this.sourceId)},e.exports=function(t,e){var r=e[0].trace,i=new a(t,r.uid),o=i.sourceId,s=n(e),l=i.below=t.belowLookup["trace-"+r.uid];return t.map.addSource(o,{type:"geojson",data:s.geojson}),i._addLayers(s,l),i}},{"../../plots/mapbox/constants":882,"./convert":1030}],1036:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){for(var r=0;r"),l.color=function(t,e){var r=t.marker,i=e.mc||r.color,a=e.mlc||r.line.color,o=e.mlw||r.line.width;if(n(i))return i;if(n(a)&&o)return a}(u,h),[l]}}},{"../../components/color":639,"../../lib":776,"../bar/hover":921}],1044:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style").style,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("../bar/select"),moduleType:"trace",name:"funnel",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","oriented","showLegend","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"../bar/select":926,"./attributes":1037,"./calc":1038,"./cross_trace_calc":1040,"./defaults":1041,"./event_data":1042,"./hover":1043,"./layout_attributes":1045,"./layout_defaults":1046,"./plot":1047,"./style":1048}],1045:[function(t,e,r){"use strict";e.exports={funnelmode:{valType:"enumerated",values:["stack","group","overlay"],dflt:"stack",editType:"calc"},funnelgap:{valType:"number",min:0,max:1,editType:"calc"},funnelgroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],1046:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a=!1;function o(r,a){return n.coerce(t,e,i,r,a)}for(var s=0;s path").each((function(t){if(!t.isBlank){var e=s.marker;n.select(this).call(a.fill,t.mc||e.color).call(a.stroke,t.mlc||e.line.color).call(i.dashLine,e.line.dash,t.mlw||e.line.width).style("opacity",s.selectedpoints&&!t.selected?o:1)}})),c(r,s,t),r.selectAll(".regions").each((function(){n.select(this).selectAll("path").style("stroke-width",0).call(a.fill,s.connector.fillcolor)})),r.selectAll(".lines").each((function(){var t=s.connector.line;i.lineGroupStyle(n.select(this).selectAll("path"),t.width,t.color,t.dash)}))}))}}},{"../../components/color":639,"../../components/drawing":661,"../../constants/interactions":751,"../bar/style":928,"../bar/uniform_text":930,"@plotly/d3":58}],1049:[function(t,e,r){"use strict";var n=t("../pie/attributes"),i=t("../../plots/attributes"),a=t("../../plots/domain").attributes,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../plots/template_attributes").texttemplateAttrs,l=t("../../lib/extend").extendFlat;e.exports={labels:n.labels,label0:n.label0,dlabel:n.dlabel,values:n.values,marker:{colors:n.marker.colors,line:{color:l({},n.marker.line.color,{dflt:null}),width:l({},n.marker.line.width,{dflt:1}),editType:"calc"},editType:"calc"},text:n.text,hovertext:n.hovertext,scalegroup:l({},n.scalegroup,{}),textinfo:l({},n.textinfo,{flags:["label","text","value","percent"]}),texttemplate:s({editType:"plot"},{keys:["label","color","value","text","percent"]}),hoverinfo:l({},i.hoverinfo,{flags:["label","text","value","percent","name"]}),hovertemplate:o({},{keys:["label","color","value","text","percent"]}),textposition:l({},n.textposition,{values:["inside","none"],dflt:"inside"}),textfont:n.textfont,insidetextfont:n.insidetextfont,title:{text:n.title.text,font:n.title.font,position:l({},n.title.position,{values:["top left","top center","top right"],dflt:"top center"}),editType:"plot"},domain:a({name:"funnelarea",trace:!0,editType:"calc"}),aspectratio:{valType:"number",min:0,dflt:1,editType:"plot"},baseratio:{valType:"number",min:0,max:1,dflt:.333,editType:"plot"}}},{"../../lib/extend":766,"../../plots/attributes":823,"../../plots/domain":855,"../../plots/template_attributes":899,"../pie/attributes":1165}],1050:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="funnelarea",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":890}],1051:[function(t,e,r){"use strict";var n=t("../pie/calc");e.exports={calc:function(t,e){return n.calc(t,e)},crossTraceCalc:function(t){n.crossTraceCalc(t,{type:"funnelarea"})}}},{"../pie/calc":1167}],1052:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../plots/domain").defaults,o=t("../bar/defaults").handleText,s=t("../pie/defaults").handleLabelsAndValues;e.exports=function(t,e,r,l){function c(r,a){return n.coerce(t,e,i,r,a)}var u=c("labels"),f=c("values"),h=s(u,f),p=h.len;if(e._hasLabels=h.hasLabels,e._hasValues=h.hasValues,!e._hasLabels&&e._hasValues&&(c("label0"),c("dlabel")),p){e._length=p,c("marker.line.width")&&c("marker.line.color",l.paper_bgcolor),c("marker.colors"),c("scalegroup");var d,m=c("text"),g=c("texttemplate");if(g||(d=c("textinfo",Array.isArray(m)?"text+percent":"percent")),c("hovertext"),c("hovertemplate"),g||d&&"none"!==d){var v=c("textposition");o(t,e,l,c,v,{moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1})}a(e,l,c),c("title.text")&&(c("title.position"),n.coerceFont(c,"title.font",l.font)),c("aspectratio"),c("baseratio")}else e.visible=!1}},{"../../lib":776,"../../plots/domain":855,"../bar/defaults":918,"../pie/defaults":1168,"./attributes":1049}],1053:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"funnelarea",basePlotModule:t("./base_plot"),categories:["pie-like","funnelarea","showLegend"],attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),style:t("./style"),styleOne:t("../pie/style_one"),meta:{}}},{"../pie/style_one":1176,"./attributes":1049,"./base_plot":1050,"./calc":1051,"./defaults":1052,"./layout_attributes":1054,"./layout_defaults":1055,"./plot":1056,"./style":1057}],1054:[function(t,e,r){"use strict";var n=t("../pie/layout_attributes").hiddenlabels;e.exports={hiddenlabels:n,funnelareacolorway:{valType:"colorlist",editType:"calc"},extendfunnelareacolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{"../pie/layout_attributes":1172}],1055:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("hiddenlabels"),r("funnelareacolorway",e.colorway),r("extendfunnelareacolors")}},{"../../lib":776,"./layout_attributes":1054}],1056:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("../../lib"),o=a.strScale,s=a.strTranslate,l=t("../../lib/svg_text_utils"),c=t("../bar/plot").toMoveInsideBar,u=t("../bar/uniform_text"),f=u.recordMinTextSize,h=u.clearMinTextSize,p=t("../pie/helpers"),d=t("../pie/plot"),m=d.attachFxHandlers,g=d.determineInsideTextFont,v=d.layoutAreas,y=d.prerenderTitles,x=d.positionTitleOutside,b=d.formatSliceLabel;function _(t,e){return"l"+(e[0]-t[0])+","+(e[1]-t[1])}e.exports=function(t,e){var r=t._fullLayout;h("funnelarea",r),y(e,t),v(e,r._size),a.makeTraceGroups(r._funnelarealayer,e,"trace").each((function(e){var u=n.select(this),h=e[0],d=h.trace;!function(t){if(!t.length)return;var e=t[0],r=e.trace,n=r.aspectratio,i=r.baseratio;i>.999&&(i=.999);var a,o=Math.pow(i,2),s=e.vTotal,l=s,c=s*o/(1-o)/s;function u(){var t,e={x:t=Math.sqrt(c),y:-t};return[e.x,e.y]}var f,h,p=[];for(p.push(u()),f=t.length-1;f>-1;f--)if(!(h=t[f]).hidden){var d=h.v/l;c+=d,p.push(u())}var m=1/0,g=-1/0;for(f=0;f-1;f--)if(!(h=t[f]).hidden){var A=p[k+=1][0],M=p[k][1];h.TL=[-A,M],h.TR=[A,M],h.BL=w,h.BR=T,h.pxmid=(S=h.TR,E=h.BR,[.5*(S[0]+E[0]),.5*(S[1]+E[1])]),w=h.TL,T=h.TR}var S,E}(e),u.each((function(){var u=n.select(this).selectAll("g.slice").data(e);u.enter().append("g").classed("slice",!0),u.exit().remove(),u.each((function(o,s){if(o.hidden)n.select(this).selectAll("path,g").remove();else{o.pointNumber=o.i,o.curveNumber=d.index;var u=h.cx,v=h.cy,y=n.select(this),x=y.selectAll("path.surface").data([o]);x.enter().append("path").classed("surface",!0).style({"pointer-events":"all"}),y.call(m,t,e);var w="M"+(u+o.TR[0])+","+(v+o.TR[1])+_(o.TR,o.BR)+_(o.BR,o.BL)+_(o.BL,o.TL)+"Z";x.attr("d",w),b(t,o,h);var T=p.castOption(d.textposition,o.pts),k=y.selectAll("g.slicetext").data(o.text&&"none"!==T?[0]:[]);k.enter().append("g").classed("slicetext",!0),k.exit().remove(),k.each((function(){var h=a.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),p=a.ensureUniformFontSize(t,g(d,o,r.font));h.text(o.text).attr({class:"slicetext",transform:"","text-anchor":"middle"}).call(i.font,p).call(l.convertToTspans,t);var m,y,x,b=i.bBox(h.node()),_=Math.min(o.BL[1],o.BR[1])+v,w=Math.max(o.TL[1],o.TR[1])+v;y=Math.max(o.TL[0],o.BL[0])+u,x=Math.min(o.TR[0],o.BR[0])+u,(m=c(y,x,_,w,b,{isHorizontal:!0,constrained:!0,angle:0,anchor:"middle"})).fontSize=p.size,f(d.type,m,r),e[s].transform=m,h.attr("transform",a.getTextTransform(m))}))}}));var v=n.select(this).selectAll("g.titletext").data(d.title.text?[0]:[]);v.enter().append("g").classed("titletext",!0),v.exit().remove(),v.each((function(){var e=a.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),c=d.title.text;d._meta&&(c=a.templateString(c,d._meta)),e.text(c).attr({class:"titletext",transform:"","text-anchor":"middle"}).call(i.font,d.title.font).call(l.convertToTspans,t);var u=x(h,r._size);e.attr("transform",s(u.x,u.y)+o(Math.min(1,u.scale))+s(u.tx,u.ty))}))}))}))}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../bar/plot":925,"../bar/uniform_text":930,"../pie/helpers":1170,"../pie/plot":1174,"@plotly/d3":58}],1057:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../pie/style_one"),a=t("../bar/uniform_text").resizeText;e.exports=function(t){var e=t._fullLayout._funnelarealayer.selectAll(".trace");a(t,e,"funnelarea"),e.each((function(t){var e=t[0].trace,r=n.select(this);r.style({opacity:e.opacity}),r.selectAll("path.surface").each((function(t){n.select(this).call(i,t,e)}))}))}},{"../bar/uniform_text":930,"../pie/style_one":1176,"@plotly/d3":58}],1058:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../plots/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../components/colorscale/attributes"),l=t("../../lib/extend").extendFlat;e.exports=l({z:{valType:"data_array",editType:"calc"},x:l({},n.x,{impliedEdits:{xtype:"array"}}),x0:l({},n.x0,{impliedEdits:{xtype:"scaled"}}),dx:l({},n.dx,{impliedEdits:{xtype:"scaled"}}),y:l({},n.y,{impliedEdits:{ytype:"array"}}),y0:l({},n.y0,{impliedEdits:{ytype:"scaled"}}),dy:l({},n.dy,{impliedEdits:{ytype:"scaled"}}),xperiod:l({},n.xperiod,{impliedEdits:{xtype:"scaled"}}),yperiod:l({},n.yperiod,{impliedEdits:{ytype:"scaled"}}),xperiod0:l({},n.xperiod0,{impliedEdits:{xtype:"scaled"}}),yperiod0:l({},n.yperiod0,{impliedEdits:{ytype:"scaled"}}),xperiodalignment:l({},n.xperiodalignment,{impliedEdits:{xtype:"scaled"}}),yperiodalignment:l({},n.yperiodalignment,{impliedEdits:{ytype:"scaled"}}),text:{valType:"data_array",editType:"calc"},hovertext:{valType:"data_array",editType:"calc"},transpose:{valType:"boolean",dflt:!1,editType:"calc"},xtype:{valType:"enumerated",values:["array","scaled"],editType:"calc+clearAxisTypes"},ytype:{valType:"enumerated",values:["array","scaled"],editType:"calc+clearAxisTypes"},zsmooth:{valType:"enumerated",values:["fast","best",!1],dflt:!1,editType:"calc"},hoverongaps:{valType:"boolean",dflt:!0,editType:"none"},connectgaps:{valType:"boolean",editType:"calc"},xgap:{valType:"number",dflt:0,min:0,editType:"plot"},ygap:{valType:"number",dflt:0,min:0,editType:"plot"},xhoverformat:a("x"),yhoverformat:a("y"),zhoverformat:a("z",1),hovertemplate:o(),showlegend:l({},i.showlegend,{dflt:!1})},{transforms:void 0},s("",{cLetter:"z",autoColorDflt:!1}))},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../scatter/attributes":1191}],1059:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib"),a=t("../../plots/cartesian/axes"),o=t("../../plots/cartesian/align_period"),s=t("../histogram2d/calc"),l=t("../../components/colorscale/calc"),c=t("./convert_column_xyz"),u=t("./clean_2d_array"),f=t("./interp2d"),h=t("./find_empties"),p=t("./make_bound_array"),d=t("../../constants/numerical").BADNUM;function m(t){for(var e=[],r=t.length,n=0;nD){O("x scale is not linear");break}}if(x.length&&"fast"===P){var R=(x[x.length-1]-x[0])/(x.length-1),F=Math.abs(R/100);for(k=0;kF){O("y scale is not linear");break}}}var B=i.maxRowLength(T),N="scaled"===e.xtype?"":r,j=p(e,N,g,v,B,M),U="scaled"===e.ytype?"":x,V=p(e,U,b,_,T.length,S);C||(e._extremes[M._id]=a.findExtremes(M,j),e._extremes[S._id]=a.findExtremes(S,V));var H={x:j,y:V,z:T,text:e._text||e.text,hovertext:e._hovertext||e.hovertext};if(e.xperiodalignment&&y&&(H.orig_x=y),e.yperiodalignment&&w&&(H.orig_y=w),N&&N.length===j.length-1&&(H.xCenter=N),U&&U.length===V.length-1&&(H.yCenter=U),L&&(H.xRanges=A.xRanges,H.yRanges=A.yRanges,H.pts=A.pts),E||l(t,e,{vals:T,cLetter:"z"}),E&&e.contours&&"heatmap"===e.contours.coloring){var q={type:"contour"===e.type?"heatmap":"histogram2d",xcalendar:e.xcalendar,ycalendar:e.ycalendar};H.xfill=p(q,N,g,v,B,M),H.yfill=p(q,U,b,_,T.length,S)}return[H]}},{"../../components/colorscale/calc":647,"../../constants/numerical":752,"../../lib":776,"../../plots/cartesian/align_period":824,"../../plots/cartesian/axes":827,"../../registry":904,"../histogram2d/calc":1091,"./clean_2d_array":1060,"./convert_column_xyz":1062,"./find_empties":1064,"./interp2d":1067,"./make_bound_array":1068}],1060:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../lib"),a=t("../../constants/numerical").BADNUM;e.exports=function(t,e,r,o){var s,l,c,u,f,h;function p(t){if(n(t))return+t}if(e&&e.transpose){for(s=0,f=0;f=0;o--)(s=((f[[(r=(a=h[o])[0])-1,i=a[1]]]||m)[2]+(f[[r+1,i]]||m)[2]+(f[[r,i-1]]||m)[2]+(f[[r,i+1]]||m)[2])/20)&&(l[a]=[r,i,s],h.splice(o,1),c=!0);if(!c)throw"findEmpties iterated with no new neighbors";for(a in l)f[a]=l[a],u.push(l[a])}return u.sort((function(t,e){return e[2]-t[2]}))}},{"../../lib":776}],1065:[function(t,e,r){"use strict";var n=t("../../components/fx"),i=t("../../lib"),a=t("../../plots/cartesian/axes"),o=t("../../components/colorscale").extractOpts;e.exports=function(t,e,r,s,l){l||(l={});var c,u,f,h,p=l.isContour,d=t.cd[0],m=d.trace,g=t.xa,v=t.ya,y=d.x,x=d.y,b=d.z,_=d.xCenter,w=d.yCenter,T=d.zmask,k=m.zhoverformat,A=y,M=x;if(!1!==t.index){try{f=Math.round(t.index[1]),h=Math.round(t.index[0])}catch(e){return void i.error("Error hovering on heatmap, pointNumber must be [row,col], found:",t.index)}if(f<0||f>=b[0].length||h<0||h>b.length)return}else{if(n.inbox(e-y[0],e-y[y.length-1],0)>0||n.inbox(r-x[0],r-x[x.length-1],0)>0)return;if(p){var S;for(A=[2*y[0]-y[1]],S=1;Sm&&(v=Math.max(v,Math.abs(t[a][o]-d)/(g-m))))}return v}e.exports=function(t,e){var r,i=1;for(o(t,e),r=0;r.01;r++)i=o(t,e,a(i));return i>.01&&n.log("interp2d didn't converge quickly",i),t}},{"../../lib":776}],1068:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib").isArrayOrTypedArray;e.exports=function(t,e,r,a,o,s){var l,c,u,f=[],h=n.traceIs(t,"contour"),p=n.traceIs(t,"histogram"),d=n.traceIs(t,"gl2d");if(i(e)&&e.length>1&&!p&&"category"!==s.type){var m=e.length;if(!(m<=o))return h?e.slice(0,o):e.slice(0,o+1);if(h||d)f=e.slice(0,o);else if(1===o)f=[e[0]-.5,e[0]+.5];else{for(f=[1.5*e[0]-.5*e[1]],u=1;u0;)h=p.c2p(T[y]),y--;for(h0;)v=d.c2p(k[y]),y--;if(v0&&(a=!0);for(var l=0;la){var o=a-r[t];return r[t]=a,o}}return 0},max:function(t,e,r,i){var a=i[e];if(n(a)){if(a=Number(a),!n(r[t]))return r[t]=a,a;if(r[t]c?t>o?t>1.1*i?i:t>1.1*a?a:o:t>s?s:t>l?l:c:Math.pow(10,Math.floor(Math.log(t)/Math.LN10))}function p(t,e,r,n,a,s){if(n&&t>o){var l=d(e,a,s),c=d(r,a,s),u=t===i?0:1;return l[u]!==c[u]}return Math.floor(r/t)-Math.floor(e/t)>.1}function d(t,e,r){var n=e.c2d(t,i,r).split("-");return""===n[0]&&(n.unshift(),n[0]="-"+n[0]),n}e.exports=function(t,e,r,n,a){var s,l,c=-1.1*e,h=-.1*e,p=t-h,d=r[0],m=r[1],g=Math.min(f(d+h,d+p,n,a),f(m+h,m+p,n,a)),v=Math.min(f(d+c,d+h,n,a),f(m+c,m+h,n,a));if(g>v&&vo){var y=s===i?1:6,x=s===i?"M12":"M1";return function(e,r){var o=n.c2d(e,i,a),s=o.indexOf("-",y);s>0&&(o=o.substr(0,s));var c=n.d2c(o,0,a);if(cr.r2l(B)&&(j=o.tickIncrement(j,b.size,!0,p)),z.start=r.l2r(j),F||i.nestedProperty(e,v+".start").set(z.start)}var U=b.end,V=r.r2l(O.end),H=void 0!==V;if((b.endFound||H)&&V!==r.r2l(U)){var q=H?V:i.aggNums(Math.max,null,d);z.end=r.l2r(q),H||i.nestedProperty(e,v+".start").set(z.end)}var G="autobin"+s;return!1===e._input[G]&&(e._input[v]=i.extendFlat({},e[v]||{}),delete e._input[G],delete e[G]),[z,d]}e.exports={calc:function(t,e){var r,a,p,d,m=[],g=[],v=o.getFromId(t,"h"===e.orientation?e.yaxis:e.xaxis),y="h"===e.orientation?"y":"x",x={x:"y",y:"x"}[y],b=e[y+"calendar"],_=e.cumulative,w=h(t,e,v,y),T=w[0],k=w[1],A="string"==typeof T.size,M=[],S=A?M:T,E=[],L=[],C=[],P=0,I=e.histnorm,O=e.histfunc,z=-1!==I.indexOf("density");_.enabled&&z&&(I=I.replace(/ ?density$/,""),z=!1);var D,R="max"===O||"min"===O?null:0,F=l.count,B=c[I],N=!1,j=function(t){return v.r2c(t,0,b)};for(i.isArrayOrTypedArray(e[x])&&"count"!==O&&(D=e[x],N="avg"===O,F=l[O]),r=j(T.start),p=j(T.end)+(r-o.tickIncrement(r,T.size,!1,b))/1e6;r=0&&d=0;n--)s(n);else if("increasing"===e){for(n=1;n=0;n--)t[n]+=t[n+1];"exclude"===r&&(t.push(0),t.shift())}}(g,_.direction,_.currentbin);var J=Math.min(m.length,g.length),K=[],Q=0,$=J-1;for(r=0;r=Q;r--)if(g[r]){$=r;break}for(r=Q;r<=$;r++)if(n(m[r])&&n(g[r])){var tt={p:m[r],s:g[r],b:0};_.enabled||(tt.pts=C[r],G?tt.ph0=tt.ph1=C[r].length?k[C[r][0]]:m[r]:(e._computePh=!0,tt.ph0=H(M[r]),tt.ph1=H(M[r+1],!0))),K.push(tt)}return 1===K.length&&(K[0].width1=o.tickIncrement(K[0].p,T.size,!1,b)-K[0].p),s(K,e),i.isArrayOrTypedArray(e.selectedpoints)&&i.tagSelected(K,e,X),K},calcAllAutoBins:h}},{"../../lib":776,"../../plots/cartesian/axes":827,"../../registry":904,"../bar/arrays_to_calcdata":913,"./average":1078,"./bin_functions":1080,"./bin_label_vals":1081,"./norm_functions":1089,"fast-isnumeric":242}],1083:[function(t,e,r){"use strict";e.exports={eventDataKeys:["binNumber"]}},{}],1084:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/cartesian/axis_ids"),a=t("../../registry").traceIs,o=t("../bar/defaults").handleGroupingDefaults,s=n.nestedProperty,l=t("../../plots/cartesian/constraints").getAxisGroup,c=[{aStr:{x:"xbins.start",y:"ybins.start"},name:"start"},{aStr:{x:"xbins.end",y:"ybins.end"},name:"end"},{aStr:{x:"xbins.size",y:"ybins.size"},name:"size"},{aStr:{x:"nbinsx",y:"nbinsy"},name:"nbins"}],u=["x","y"];e.exports=function(t,e){var r,f,h,p,d,m,g,v=e._histogramBinOpts={},y=[],x={},b=[];function _(t,e){return n.coerce(r._input,r,r._module.attributes,t,e)}function w(t){return"v"===t.orientation?"x":"y"}function T(t,r,a){var o=t.uid+"__"+a;r||(r=o);var s=function(t,r){return i.getFromTrace({_fullLayout:e},t,r).type}(t,a),l=t[a+"calendar"]||"",c=v[r],u=!0;c&&(s===c.axType&&l===c.calendar?(u=!1,c.traces.push(t),c.dirs.push(a)):(r=o,s!==c.axType&&n.warn(["Attempted to group the bins of trace",t.index,"set on a","type:"+s,"axis","with bins on","type:"+c.axType,"axis."].join(" ")),l!==c.calendar&&n.warn(["Attempted to group the bins of trace",t.index,"set with a",l,"calendar","with bins",c.calendar?"on a "+c.calendar+" calendar":"w/o a set calendar"].join(" ")))),u&&(v[r]={traces:[t],dirs:[a],axType:s,calendar:t[a+"calendar"]||""}),t["_"+a+"bingroup"]=r}for(d=0;dS&&T.splice(S,T.length-S),M.length>S&&M.splice(S,M.length-S);var E=[],L=[],C=[],P="string"==typeof w.size,I="string"==typeof A.size,O=[],z=[],D=P?O:w,R=I?z:A,F=0,B=[],N=[],j=e.histnorm,U=e.histfunc,V=-1!==j.indexOf("density"),H="max"===U||"min"===U?null:0,q=a.count,G=o[j],Y=!1,W=[],X=[],Z="z"in e?e.z:"marker"in e&&Array.isArray(e.marker.color)?e.marker.color:"";Z&&"count"!==U&&(Y="avg"===U,q=a[U]);var J=w.size,K=x(w.start),Q=x(w.end)+(K-i.tickIncrement(K,J,!1,v))/1e6;for(r=K;r=0&&p=0&&d-1,flipY:E.tiling.flip.indexOf("y")>-1,orientation:E.tiling.orientation,pad:{inner:E.tiling.pad},maxDepth:E._maxDepth}).descendants(),O=1/0,z=-1/0;I.forEach((function(t){var e=t.depth;e>=E._maxDepth?(t.x0=t.x1=(t.x0+t.x1)/2,t.y0=t.y1=(t.y0+t.y1)/2):(O=Math.min(O,e),z=Math.max(z,e))})),p=p.data(I,u.getPtId),E._maxVisibleLayers=isFinite(z)?z-O+1:0,p.enter().append("g").classed("slice",!0),T(p,!1,{},[m,g],x),p.order();var D=null;if(w&&M){var R=u.getPtId(M);p.each((function(t){null===D&&u.getPtId(t)===R&&(D={x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1})}))}var F=function(){return D||{x0:0,x1:m,y0:0,y1:g}},B=p;return w&&(B=B.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!0,hideOnLeaves:!1,isTransitioning:!1})}))),B.each((function(s){s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-E.tiling.pad),s._hoverY=y(P?s.y1-E.tiling.pad/2:s.y0+E.tiling.pad/2);var p=n.select(this),d=i.ensureSingle(p,"path","surface",(function(t){t.style("pointer-events","all")}));w?d.transition().attrTween("d",(function(t){var e=k(t,!1,F(),[m,g],{orientation:E.tiling.orientation,flipX:E.tiling.flip.indexOf("x")>-1,flipY:E.tiling.flip.indexOf("y")>-1});return function(t){return x(e(t))}})):d.attr("d",x),p.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{isTransitioning:t._transitioning}),d.call(l,s,E,{hovered:!1}),s.x0===s.x1||s.y0===s.y1?s._text="":s._text=h(s,r,E,e,S)||"";var T=i.ensureSingle(p,"g","slicetext"),M=i.ensureSingle(T,"text","",(function(t){t.attr("data-notex",1)})),I=i.ensureUniformFontSize(t,u.determineTextFont(E,s,S.font));M.text(s._text||" ").classed("slicetext",!0).attr("text-anchor",C?"end":L?"start":"middle").call(a.font,I).call(o.convertToTspans,t),s.textBB=a.bBox(M.node()),s.transform=b(s,{fontSize:I.size}),s.transform.fontSize=I.size,w?M.transition().attrTween("transform",(function(t){var e=A(t,!1,F(),[m,g]);return function(t){return _(e(t))}})):M.attr("transform",_(s))})),D}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../sunburst/fx":1308,"../sunburst/helpers":1309,"../sunburst/plot":1313,"../treemap/constants":1332,"./partition":1107,"./style":1109,"@plotly/d3":58}],1104:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"icicle",basePlotModule:t("./base_plot"),categories:[],animatable:!0,attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),style:t("./style").style,colorbar:t("../scatter/marker_colorbar"),meta:{}}},{"../scatter/marker_colorbar":1209,"./attributes":1099,"./base_plot":1100,"./calc":1101,"./defaults":1102,"./layout_attributes":1105,"./layout_defaults":1106,"./plot":1108,"./style":1109}],1105:[function(t,e,r){"use strict";e.exports={iciclecolorway:{valType:"colorlist",editType:"calc"},extendiciclecolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{}],1106:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("iciclecolorway",e.colorway),r("extendiciclecolors")}},{"../../lib":776,"./layout_attributes":1105}],1107:[function(t,e,r){"use strict";var n=t("d3-hierarchy"),i=t("../treemap/flip_tree");e.exports=function(t,e,r){var a=r.flipX,o=r.flipY,s="h"===r.orientation,l=r.maxDepth,c=e[0],u=e[1];l&&(c=(t.height+1)*e[0]/Math.min(t.height+1,l),u=(t.height+1)*e[1]/Math.min(t.height+1,l));var f=n.partition().padding(r.pad.inner).size(s?[e[1],c]:[e[0],u])(t);return(s||a||o)&&i(f,e,{swapXY:s,flipX:a,flipY:o}),f}},{"../treemap/flip_tree":1337,"d3-hierarchy":163}],1108:[function(t,e,r){"use strict";var n=t("../treemap/draw"),i=t("./draw_descendants");e.exports=function(t,e,r,a){return n(t,e,r,a,{type:"icicle",drawDescendants:i})}},{"../treemap/draw":1334,"./draw_descendants":1103}],1109:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../bar/uniform_text").resizeText;function s(t,e,r){var n=e.data.data,o=!e.children,s=n.i,l=a.castOption(r,s,"marker.line.color")||i.defaultLine,c=a.castOption(r,s,"marker.line.width")||0;t.style("stroke-width",c).call(i.fill,n.color).call(i.stroke,l).style("opacity",o?r.leaf.opacity:null)}e.exports={style:function(t){var e=t._fullLayout._iciclelayer.selectAll(".trace");o(t,e,"icicle"),e.each((function(t){var e=n.select(this),r=t[0].trace;e.style("opacity",r.opacity),e.selectAll("path.surface").each((function(t){n.select(this).call(s,t,r)}))}))},styleOne:s}},{"../../components/color":639,"../../lib":776,"../bar/uniform_text":930,"@plotly/d3":58}],1110:[function(t,e,r){"use strict";for(var n=t("../../plots/attributes"),i=t("../../plots/template_attributes").hovertemplateAttrs,a=t("../../lib/extend").extendFlat,o=t("./constants").colormodel,s=["rgb","rgba","rgba256","hsl","hsla"],l=[],c=[],u=0;u0||n.inbox(r-o.y0,r-(o.y0+o.h*s.dy),0)>0)){var u,f=Math.floor((e-o.x0)/s.dx),h=Math.floor(Math.abs(r-o.y0)/s.dy);if(s._hasZ?u=o.z[h][f]:s._hasSource&&(u=s._canvas.el.getContext("2d").getImageData(f,h,1,1).data),u){var p,d=o.hi||s.hoverinfo;if(d){var m=d.split("+");-1!==m.indexOf("all")&&(m=["color"]),-1!==m.indexOf("color")&&(p=!0)}var g,v=a.colormodel[s.colormodel],y=v.colormodel||s.colormodel,x=y.length,b=s._scaler(u),_=v.suffix,w=[];(s.hovertemplate||p)&&(w.push("["+[b[0]+_[0],b[1]+_[1],b[2]+_[2]].join(", ")),4===x&&w.push(", "+b[3]+_[3]),w.push("]"),w=w.join(""),t.extraText=y.toUpperCase()+": "+w),Array.isArray(s.hovertext)&&Array.isArray(s.hovertext[h])?g=s.hovertext[h][f]:Array.isArray(s.text)&&Array.isArray(s.text[h])&&(g=s.text[h][f]);var T=c.c2p(o.y0+(h+.5)*s.dy),k=o.x0+(f+.5)*s.dx,A=o.y0+(h+.5)*s.dy,M="["+u.slice(0,s.colormodel.length).join(", ")+"]";return[i.extendFlat(t,{index:[h,f],x0:l.c2p(o.x0+f*s.dx),x1:l.c2p(o.x0+(f+1)*s.dx),y0:T,y1:T,color:b,xVal:k,xLabelVal:k,yVal:A,yLabelVal:A,zLabelVal:M,text:g,hovertemplateLabels:{zLabel:M,colorLabel:w,"color[0]Label":b[0]+_[0],"color[1]Label":b[1]+_[1],"color[2]Label":b[2]+_[2],"color[3]Label":b[3]+_[3]}})]}}}},{"../../components/fx":679,"../../lib":776,"./constants":1112}],1117:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),style:t("./style"),hoverPoints:t("./hover"),eventData:t("./event_data"),moduleType:"trace",name:"image",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","2dMap","noSortingByValue"],animatable:!1,meta:{}}},{"../../plots/cartesian":841,"./attributes":1110,"./calc":1111,"./defaults":1113,"./event_data":1114,"./hover":1116,"./plot":1118,"./style":1119}],1118:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.strTranslate,o=t("../../constants/xmlns_namespaces"),s=t("./constants"),l=i.isIOS()||i.isSafari()||i.isIE();e.exports=function(t,e,r,c){var u=e.xaxis,f=e.yaxis,h=!(l||t._context._exportedPlot);i.makeTraceGroups(c,r,"im").each((function(e){var r=n.select(this),l=e[0],c=l.trace,p=("fast"===c.zsmooth||!1===c.zsmooth&&h)&&!c._hasZ&&c._hasSource&&"linear"===u.type&&"linear"===f.type;c._realImage=p;var d,m,g,v,y,x,b=l.z,_=l.x0,w=l.y0,T=l.w,k=l.h,A=c.dx,M=c.dy;for(x=0;void 0===d&&x0;)m=u.c2p(_+x*A),x--;for(x=0;void 0===v&&x0;)y=f.c2p(w+x*M),x--;if(mI[0];if(O||z){var D=d+S/2,R=v+E/2;C+="transform:"+a(D+"px",R+"px")+"scale("+(O?-1:1)+","+(z?-1:1)+")"+a(-D+"px",-R+"px")+";"}}L.attr("style",C);var F=new Promise((function(t){if(c._hasZ)t();else if(c._hasSource)if(c._canvas&&c._canvas.el.width===T&&c._canvas.el.height===k&&c._canvas.source===c.source)t();else{var e=document.createElement("canvas");e.width=T,e.height=k;var r=e.getContext("2d");c._image=c._image||new Image;var n=c._image;n.onload=function(){r.drawImage(n,0,0),c._canvas={el:e,source:c.source},t()},n.setAttribute("src",c.source)}})).then((function(){var t;if(c._hasZ)t=B((function(t,e){return b[e][t]})).toDataURL("image/png");else if(c._hasSource)if(p)t=c.source;else{var e=c._canvas.el.getContext("2d").getImageData(0,0,T,k).data;t=B((function(t,r){var n=4*(r*T+t);return[e[n],e[n+1],e[n+2],e[n+3]]})).toDataURL("image/png")}L.attr({"xlink:href":t,height:E,width:S,x:d,y:v})}));t._promises.push(F)}function B(t){var e=document.createElement("canvas");e.width=S,e.height=E;var r,n=e.getContext("2d"),a=function(t){return i.constrain(Math.round(u.c2p(_+t*A)-d),0,S)},o=function(t){return i.constrain(Math.round(f.c2p(w+t*M)-v),0,E)},h=s.colormodel[c.colormodel],p=h.colormodel||c.colormodel,m=h.fmt;for(x=0;x0}function T(t){t.each((function(t){y.stroke(n.select(this),t.line.color)})).each((function(t){y.fill(n.select(this),t.color)})).style("stroke-width",(function(t){return t.line.width}))}function k(t,e,r){var n=t._fullLayout,i=o.extendFlat({type:"linear",ticks:"outside",range:r,showline:!0},e),a={type:"linear",_id:"x"+e._id},s={letter:"x",font:n.font,noHover:!0,noTickson:!0};function l(t,e){return o.coerce(i,a,v,t,e)}return m(i,a,l,s,n),g(i,a,l,s),a}function A(t,e,r){return[Math.min(e/t.width,r/t.height),t,e+"x"+r]}function M(t,e,r,i){var a=document.createElementNS("http://www.w3.org/2000/svg","text"),o=n.select(a);return o.text(t).attr("x",0).attr("y",0).attr("text-anchor",r).attr("data-unformatted",t).call(p.convertToTspans,i).call(f.font,e),f.bBox(o.node())}function S(t,e,r,n,i,a){var s="_cache"+e;t[s]&&t[s].key===i||(t[s]={key:i,value:r});var l=o.aggNums(a,null,[t[s].value,n],2);return t[s].value=l,l}e.exports=function(t,e,r,m){var g,v=t._fullLayout;w(r)&&m&&(g=m()),o.makeTraceGroups(v._indicatorlayer,e,"trace").each((function(e){var m,E,L,C,P,I=e[0].trace,O=n.select(this),z=I._hasGauge,D=I._isAngular,R=I._isBullet,F=I.domain,B={w:v._size.w*(F.x[1]-F.x[0]),h:v._size.h*(F.y[1]-F.y[0]),l:v._size.l+v._size.w*F.x[0],r:v._size.r+v._size.w*(1-F.x[1]),t:v._size.t+v._size.h*(1-F.y[1]),b:v._size.b+v._size.h*F.y[0]},N=B.l+B.w/2,j=B.t+B.h/2,U=Math.min(B.w/2,B.h),V=h.innerRadius*U,H=I.align||"center";if(E=j,z){if(D&&(m=N,E=j+U/2,L=function(t){return function(t,e){var r=Math.sqrt(t.width/2*(t.width/2)+t.height*t.height);return[e/r,t,e]}(t,.9*V)}),R){var q=h.bulletPadding,G=1-h.bulletNumberDomainSize+q;m=B.l+(G+(1-G)*b[H])*B.w,L=function(t){return A(t,(h.bulletNumberDomainSize-q)*B.w,B.h)}}}else m=B.l+b[H]*B.w,L=function(t){return A(t,B.w,B.h)};!function(t,e,r,i){var c,u,h,m=r[0].trace,g=i.numbersX,v=i.numbersY,T=m.align||"center",A=x[T],E=i.transitionOpts,L=i.onComplete,C=o.ensureSingle(e,"g","numbers"),P=[];m._hasNumber&&P.push("number");m._hasDelta&&(P.push("delta"),"left"===m.delta.position&&P.reverse());var I=C.selectAll("text").data(P);function O(e,r,n,i){if(!e.match("s")||n>=0==i>=0||r(n).slice(-1).match(_)||r(i).slice(-1).match(_))return r;var a=e.slice().replace("s","f").replace(/\d+/,(function(t){return parseInt(t)-1})),o=k(t,{tickformat:a});return function(t){return Math.abs(t)<1?d.tickText(o,t).text:r(t)}}I.enter().append("text"),I.attr("text-anchor",(function(){return A})).attr("class",(function(t){return t})).attr("x",null).attr("y",null).attr("dx",null).attr("dy",null),I.exit().remove();var z,D=m.mode+m.align;m._hasDelta&&(z=function(){var e=k(t,{tickformat:m.delta.valueformat},m._range);e.setScale(),d.prepTicks(e);var i=function(t){return d.tickText(e,t).text},o=function(t){return m.delta.relative?t.relativeDelta:t.delta},s=function(t,e){return 0===t||"number"!=typeof t||isNaN(t)?"-":(t>0?m.delta.increasing.symbol:m.delta.decreasing.symbol)+e(t)},l=function(t){return t.delta>=0?m.delta.increasing.color:m.delta.decreasing.color};void 0===m._deltaLastValue&&(m._deltaLastValue=o(r[0]));var c=C.select("text.delta");function h(){c.text(s(o(r[0]),i)).call(y.fill,l(r[0])).call(p.convertToTspans,t)}return c.call(f.font,m.delta.font).call(y.fill,l({delta:m._deltaLastValue})),w(E)?c.transition().duration(E.duration).ease(E.easing).tween("text",(function(){var t=n.select(this),e=o(r[0]),c=m._deltaLastValue,u=O(m.delta.valueformat,i,c,e),f=a(c,e);return m._deltaLastValue=e,function(e){t.text(s(f(e),u)),t.call(y.fill,l({delta:f(e)}))}})).each("end",(function(){h(),L&&L()})).each("interrupt",(function(){h(),L&&L()})):h(),u=M(s(o(r[0]),i),m.delta.font,A,t),c}(),D+=m.delta.position+m.delta.font.size+m.delta.font.family+m.delta.valueformat,D+=m.delta.increasing.symbol+m.delta.decreasing.symbol,h=u);m._hasNumber&&(!function(){var e=k(t,{tickformat:m.number.valueformat},m._range);e.setScale(),d.prepTicks(e);var i=function(t){return d.tickText(e,t).text},o=m.number.suffix,s=m.number.prefix,l=C.select("text.number");function u(){var e="number"==typeof r[0].y?s+i(r[0].y)+o:"-";l.text(e).call(f.font,m.number.font).call(p.convertToTspans,t)}w(E)?l.transition().duration(E.duration).ease(E.easing).each("end",(function(){u(),L&&L()})).each("interrupt",(function(){u(),L&&L()})).attrTween("text",(function(){var t=n.select(this),e=a(r[0].lastY,r[0].y);m._lastValue=r[0].y;var l=O(m.number.valueformat,i,r[0].lastY,r[0].y);return function(r){t.text(s+l(e(r))+o)}})):u(),c=M(s+i(r[0].y)+o,m.number.font,A,t)}(),D+=m.number.font.size+m.number.font.family+m.number.valueformat+m.number.suffix+m.number.prefix,h=c);if(m._hasDelta&&m._hasNumber){var R,F,B=[(c.left+c.right)/2,(c.top+c.bottom)/2],N=[(u.left+u.right)/2,(u.top+u.bottom)/2],j=.75*m.delta.font.size;"left"===m.delta.position&&(R=S(m,"deltaPos",0,-1*(c.width*b[m.align]+u.width*(1-b[m.align])+j),D,Math.min),F=B[1]-N[1],h={width:c.width+u.width+j,height:Math.max(c.height,u.height),left:u.left+R,right:c.right,top:Math.min(c.top,u.top+F),bottom:Math.max(c.bottom,u.bottom+F)}),"right"===m.delta.position&&(R=S(m,"deltaPos",0,c.width*(1-b[m.align])+u.width*b[m.align]+j,D,Math.max),F=B[1]-N[1],h={width:c.width+u.width+j,height:Math.max(c.height,u.height),left:c.left,right:u.right+R,top:Math.min(c.top,u.top+F),bottom:Math.max(c.bottom,u.bottom+F)}),"bottom"===m.delta.position&&(R=null,F=u.height,h={width:Math.max(c.width,u.width),height:c.height+u.height,left:Math.min(c.left,u.left),right:Math.max(c.right,u.right),top:c.bottom-c.height,bottom:c.bottom+u.height}),"top"===m.delta.position&&(R=null,F=c.top,h={width:Math.max(c.width,u.width),height:c.height+u.height,left:Math.min(c.left,u.left),right:Math.max(c.right,u.right),top:c.bottom-c.height-u.height,bottom:c.bottom}),z.attr({dx:R,dy:F})}(m._hasNumber||m._hasDelta)&&C.attr("transform",(function(){var t=i.numbersScaler(h);D+=t[2];var e,r=S(m,"numbersScale",1,t[0],D,Math.min);m._scaleNumbers||(r=1),e=m._isAngular?v-r*h.bottom:v-r*(h.top+h.bottom)/2,m._numbersTop=r*h.top+e;var n=h[T];"center"===T&&(n=(h.left+h.right)/2);var a=g-r*n;return a=S(m,"numbersTranslate",0,a,D,Math.max),l(a,e)+s(r)}))}(t,O,e,{numbersX:m,numbersY:E,numbersScaler:L,transitionOpts:r,onComplete:g}),z&&(C={range:I.gauge.axis.range,color:I.gauge.bgcolor,line:{color:I.gauge.bordercolor,width:0},thickness:1},P={range:I.gauge.axis.range,color:"rgba(0, 0, 0, 0)",line:{color:I.gauge.bordercolor,width:I.gauge.borderwidth},thickness:1});var Y=O.selectAll("g.angular").data(D?e:[]);Y.exit().remove();var W=O.selectAll("g.angularaxis").data(D?e:[]);W.exit().remove(),D&&function(t,e,r,a){var o,s,f,h,p=r[0].trace,m=a.size,g=a.radius,v=a.innerRadius,y=a.gaugeBg,x=a.gaugeOutline,b=[m.l+m.w/2,m.t+m.h/2+g/2],_=a.gauge,A=a.layer,M=a.transitionOpts,S=a.onComplete,E=Math.PI/2;function L(t){var e=p.gauge.axis.range[0],r=(t-e)/(p.gauge.axis.range[1]-e)*Math.PI-E;return r<-E?-E:r>E?E:r}function C(t){return n.svg.arc().innerRadius((v+g)/2-t/2*(g-v)).outerRadius((v+g)/2+t/2*(g-v)).startAngle(-E)}function P(t){t.attr("d",(function(t){return C(t.thickness).startAngle(L(t.range[0])).endAngle(L(t.range[1]))()}))}_.enter().append("g").classed("angular",!0),_.attr("transform",l(b[0],b[1])),A.enter().append("g").classed("angularaxis",!0).classed("crisp",!0),A.selectAll("g.xangularaxistick,path,text").remove(),(o=k(t,p.gauge.axis)).type="linear",o.range=p.gauge.axis.range,o._id="xangularaxis",o.ticklabeloverflow="allow",o.setScale();var I=function(t){return(o.range[0]-t.x)/(o.range[1]-o.range[0])*Math.PI+Math.PI},O={},z=d.makeLabelFns(o,0).labelStandoff;O.xFn=function(t){var e=I(t);return Math.cos(e)*z},O.yFn=function(t){var e=I(t),r=Math.sin(e)>0?.2:1;return-Math.sin(e)*(z+t.fontSize*r)+Math.abs(Math.cos(e))*(t.fontSize*u)},O.anchorFn=function(t){var e=I(t),r=Math.cos(e);return Math.abs(r)<.1?"middle":r>0?"start":"end"},O.heightFn=function(t,e,r){var n=I(t);return-.5*(1+Math.sin(n))*r};var D=function(t){return l(b[0]+g*Math.cos(t),b[1]-g*Math.sin(t))};f=function(t){return D(I(t))};if(s=d.calcTicks(o),h=d.getTickSigns(o)[2],o.visible){h="inside"===o.ticks?-1:1;var R=(o.linewidth||1)/2;d.drawTicks(t,o,{vals:s,layer:A,path:"M"+h*R+",0h"+h*o.ticklen,transFn:function(t){var e=I(t);return D(e)+"rotate("+-c(e)+")"}}),d.drawLabels(t,o,{vals:s,layer:A,transFn:f,labelFns:O})}var F=[y].concat(p.gauge.steps),B=_.selectAll("g.bg-arc").data(F);B.enter().append("g").classed("bg-arc",!0).append("path"),B.select("path").call(P).call(T),B.exit().remove();var N=C(p.gauge.bar.thickness),j=_.selectAll("g.value-arc").data([p.gauge.bar]);j.enter().append("g").classed("value-arc",!0).append("path");var U=j.select("path");w(M)?(U.transition().duration(M.duration).ease(M.easing).each("end",(function(){S&&S()})).each("interrupt",(function(){S&&S()})).attrTween("d",(V=N,H=L(r[0].lastY),q=L(r[0].y),function(){var t=i(H,q);return function(e){return V.endAngle(t(e))()}})),p._lastValue=r[0].y):U.attr("d","number"==typeof r[0].y?N.endAngle(L(r[0].y)):"M0,0Z");var V,H,q;U.call(T),j.exit().remove(),F=[];var G=p.gauge.threshold.value;(G||0===G)&&F.push({range:[G,G],color:p.gauge.threshold.color,line:{color:p.gauge.threshold.line.color,width:p.gauge.threshold.line.width},thickness:p.gauge.threshold.thickness});var Y=_.selectAll("g.threshold-arc").data(F);Y.enter().append("g").classed("threshold-arc",!0).append("path"),Y.select("path").call(P).call(T),Y.exit().remove();var W=_.selectAll("g.gauge-outline").data([x]);W.enter().append("g").classed("gauge-outline",!0).append("path"),W.select("path").call(P).call(T),W.exit().remove()}(t,0,e,{radius:U,innerRadius:V,gauge:Y,layer:W,size:B,gaugeBg:C,gaugeOutline:P,transitionOpts:r,onComplete:g});var X=O.selectAll("g.bullet").data(R?e:[]);X.exit().remove();var Z=O.selectAll("g.bulletaxis").data(R?e:[]);Z.exit().remove(),R&&function(t,e,r,n){var i,a,o,s,c,u=r[0].trace,f=n.gauge,p=n.layer,m=n.gaugeBg,g=n.gaugeOutline,v=n.size,x=u.domain,b=n.transitionOpts,_=n.onComplete;f.enter().append("g").classed("bullet",!0),f.attr("transform",l(v.l,v.t)),p.enter().append("g").classed("bulletaxis",!0).classed("crisp",!0),p.selectAll("g.xbulletaxistick,path,text").remove();var A=v.h,M=u.gauge.bar.thickness*A,S=x.x[0],E=x.x[0]+(x.x[1]-x.x[0])*(u._hasNumber||u._hasDelta?1-h.bulletNumberDomainSize:1);(i=k(t,u.gauge.axis))._id="xbulletaxis",i.domain=[S,E],i.setScale(),a=d.calcTicks(i),o=d.makeTransTickFn(i),s=d.getTickSigns(i)[2],c=v.t+v.h,i.visible&&(d.drawTicks(t,i,{vals:"inside"===i.ticks?d.clipEnds(i,a):a,layer:p,path:d.makeTickPath(i,c,s),transFn:o}),d.drawLabels(t,i,{vals:a,layer:p,transFn:o,labelFns:d.makeLabelFns(i,c)}));function L(t){t.attr("width",(function(t){return Math.max(0,i.c2p(t.range[1])-i.c2p(t.range[0]))})).attr("x",(function(t){return i.c2p(t.range[0])})).attr("y",(function(t){return.5*(1-t.thickness)*A})).attr("height",(function(t){return t.thickness*A}))}var C=[m].concat(u.gauge.steps),P=f.selectAll("g.bg-bullet").data(C);P.enter().append("g").classed("bg-bullet",!0).append("rect"),P.select("rect").call(L).call(T),P.exit().remove();var I=f.selectAll("g.value-bullet").data([u.gauge.bar]);I.enter().append("g").classed("value-bullet",!0).append("rect"),I.select("rect").attr("height",M).attr("y",(A-M)/2).call(T),w(b)?I.select("rect").transition().duration(b.duration).ease(b.easing).each("end",(function(){_&&_()})).each("interrupt",(function(){_&&_()})).attr("width",Math.max(0,i.c2p(Math.min(u.gauge.axis.range[1],r[0].y)))):I.select("rect").attr("width","number"==typeof r[0].y?Math.max(0,i.c2p(Math.min(u.gauge.axis.range[1],r[0].y))):0);I.exit().remove();var O=r.filter((function(){return u.gauge.threshold.value||0===u.gauge.threshold.value})),z=f.selectAll("g.threshold-bullet").data(O);z.enter().append("g").classed("threshold-bullet",!0).append("line"),z.select("line").attr("x1",i.c2p(u.gauge.threshold.value)).attr("x2",i.c2p(u.gauge.threshold.value)).attr("y1",(1-u.gauge.threshold.thickness)/2*A).attr("y2",(1-(1-u.gauge.threshold.thickness)/2)*A).call(y.stroke,u.gauge.threshold.line.color).style("stroke-width",u.gauge.threshold.line.width),z.exit().remove();var D=f.selectAll("g.gauge-outline").data([g]);D.enter().append("g").classed("gauge-outline",!0).append("rect"),D.select("rect").call(L).call(T),D.exit().remove()}(t,0,e,{gauge:X,layer:Z,size:B,gaugeBg:C,gaugeOutline:P,transitionOpts:r,onComplete:g});var J=O.selectAll("text.title").data(e);J.exit().remove(),J.enter().append("text").classed("title",!0),J.attr("text-anchor",(function(){return R?x.right:x[I.title.align]})).text(I.title.text).call(f.font,I.title.font).call(p.convertToTspans,t),J.attr("transform",(function(){var t,e=B.l+B.w*b[I.title.align],r=h.titlePadding,n=f.bBox(J.node());if(z){if(D)if(I.gauge.axis.visible)t=f.bBox(W.node()).top-r-n.bottom;else t=B.t+B.h/2-U/2-n.bottom-r;R&&(t=E-(n.top+n.bottom)/2,e=B.l-h.bulletPadding*B.w)}else t=I._numbersTop-r-n.bottom;return l(e,t)}))}))}},{"../../components/color":639,"../../components/drawing":661,"../../constants/alignment":744,"../../lib":776,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"../../plots/cartesian/axis_defaults":829,"../../plots/cartesian/layout_attributes":842,"../../plots/cartesian/position_defaults":845,"./constants":1123,"@plotly/d3":58,"d3-interpolate":164}],1127:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../mesh3d/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c=t("../../plot_api/edit_types").overrideAll;var u=e.exports=c(l({x:{valType:"data_array"},y:{valType:"data_array"},z:{valType:"data_array"},value:{valType:"data_array"},isomin:{valType:"number"},isomax:{valType:"number"},surface:{show:{valType:"boolean",dflt:!0},count:{valType:"integer",dflt:2,min:1},fill:{valType:"number",min:0,max:1,dflt:1},pattern:{valType:"flaglist",flags:["A","B","C","D","E"],extras:["all","odd","even"],dflt:"all"}},spaceframe:{show:{valType:"boolean",dflt:!1},fill:{valType:"number",min:0,max:1,dflt:.15}},slices:{x:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}},y:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}},z:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}}},caps:{x:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}},y:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}},z:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}}},text:{valType:"string",dflt:"",arrayOk:!0},hovertext:{valType:"string",dflt:"",arrayOk:!0},hovertemplate:a(),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),valuehoverformat:i("value",1),showlegend:l({},s.showlegend,{dflt:!1})},n("",{colorAttr:"`value`",showScaleDflt:!0,editTypeOverride:"calc"}),{opacity:o.opacity,lightposition:o.lightposition,lighting:o.lighting,flatshading:o.flatshading,contour:o.contour,hoverinfo:l({},s.hoverinfo)}),"calc","nested");u.flatshading.dflt=!0,u.lighting.facenormalsepsilon.dflt=0,u.x.editType=u.y.editType=u.z.editType=u.value.editType="calc+clearAxisTypes",u.transforms=void 0},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plot_api/edit_types":809,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../mesh3d/attributes":1132}],1128:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc"),i=t("../streamtube/calc").processGrid,a=t("../streamtube/calc").filter;e.exports=function(t,e){e._len=Math.min(e.x.length,e.y.length,e.z.length,e.value.length),e._x=a(e.x,e._len),e._y=a(e.y,e._len),e._z=a(e.z,e._len),e._value=a(e.value,e._len);var r=i(e);e._gridFill=r.fill,e._Xs=r.Xs,e._Ys=r.Ys,e._Zs=r.Zs,e._len=r.len;for(var o=1/0,s=-1/0,l=0;l0;r--){var n=Math.min(e[r],e[r-1]),i=Math.max(e[r],e[r-1]);if(i>n&&n-1}function R(t,e){return null===t?e:t}function F(e,r,n){C();var i,a,o,l=[r],c=[n];if(s>=1)l=[r],c=[n];else if(s>0){var u=function(t,e){var r=t[0],n=t[1],i=t[2],a=function(t,e,r){for(var n=[],i=0;i-1?n[p]:L(d,m,v);h[p]=x>-1?x:I(d,m,v,R(e,y))}i=h[0],a=h[1],o=h[2],t._meshI.push(i),t._meshJ.push(a),t._meshK.push(o),++g}}function B(t,e,r,n){var i=t[3];in&&(i=n);for(var a=(t[3]-i)/(t[3]-e[3]+1e-9),o=[],s=0;s<4;s++)o[s]=(1-a)*t[s]+a*e[s];return o}function N(t,e,r){return t>=e&&t<=r}function j(t){var e=.001*(E-S);return t>=S-e&&t<=E+e}function U(e){for(var r=[],n=0;n<4;n++){var i=e[n];r.push([t._x[i],t._y[i],t._z[i],t._value[i]])}return r}function V(t,e,r,n,i,a){a||(a=1),r=[-1,-1,-1];var o=!1,s=[N(e[0][3],n,i),N(e[1][3],n,i),N(e[2][3],n,i)];if(!s[0]&&!s[1]&&!s[2])return!1;var l=function(t,e,r){return j(e[0][3])&&j(e[1][3])&&j(e[2][3])?(F(t,e,r),!0):a<3&&V(t,e,r,S,E,++a)};if(s[0]&&s[1]&&s[2])return l(t,e,r)||o;var c=!1;return[[0,1,2],[2,0,1],[1,2,0]].forEach((function(a){if(s[a[0]]&&s[a[1]]&&!s[a[2]]){var u=e[a[0]],f=e[a[1]],h=e[a[2]],p=B(h,u,n,i),d=B(h,f,n,i);o=l(t,[d,p,u],[-1,-1,r[a[0]]])||o,o=l(t,[u,f,d],[r[a[0]],r[a[1]],-1])||o,c=!0}})),c||[[0,1,2],[1,2,0],[2,0,1]].forEach((function(a){if(s[a[0]]&&!s[a[1]]&&!s[a[2]]){var u=e[a[0]],f=e[a[1]],h=e[a[2]],p=B(f,u,n,i),d=B(h,u,n,i);o=l(t,[d,p,u],[-1,-1,r[a[0]]])||o,c=!0}})),o}function H(t,e,r,n){var i=!1,a=U(e),o=[N(a[0][3],r,n),N(a[1][3],r,n),N(a[2][3],r,n),N(a[3][3],r,n)];if(!(o[0]||o[1]||o[2]||o[3]))return i;if(o[0]&&o[1]&&o[2]&&o[3])return m&&(i=function(t,e,r){var n=function(n,i,a){F(t,[e[n],e[i],e[a]],[r[n],r[i],r[a]])};n(0,1,2),n(3,0,1),n(2,3,0),n(1,2,3)}(t,a,e)||i),i;var s=!1;return[[0,1,2,3],[3,0,1,2],[2,3,0,1],[1,2,3,0]].forEach((function(l){if(o[l[0]]&&o[l[1]]&&o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]];if(m)i=F(t,[c,u,f],[e[l[0]],e[l[1]],e[l[2]]])||i;else{var p=B(h,c,r,n),d=B(h,u,r,n),g=B(h,f,r,n);i=F(null,[p,d,g],[-1,-1,-1])||i}s=!0}})),s?i:([[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2],[0,2,3,1],[1,3,2,0]].forEach((function(l){if(o[l[0]]&&o[l[1]]&&!o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]],p=B(f,c,r,n),d=B(f,u,r,n),g=B(h,u,r,n),v=B(h,c,r,n);m?(i=F(t,[c,v,p],[e[l[0]],-1,-1])||i,i=F(t,[u,d,g],[e[l[1]],-1,-1])||i):i=function(t,e,r){var n=function(n,i,a){F(t,[e[n],e[i],e[a]],[r[n],r[i],r[a]])};n(0,1,2),n(2,3,0)}(null,[p,d,g,v],[-1,-1,-1,-1])||i,s=!0}})),s||[[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2]].forEach((function(l){if(o[l[0]]&&!o[l[1]]&&!o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]],p=B(u,c,r,n),d=B(f,c,r,n),g=B(h,c,r,n);m?(i=F(t,[c,p,d],[e[l[0]],-1,-1])||i,i=F(t,[c,d,g],[e[l[0]],-1,-1])||i,i=F(t,[c,g,p],[e[l[0]],-1,-1])||i):i=F(null,[p,d,g],[-1,-1,-1])||i,s=!0}})),i)}function q(t,e,r,n,i,a,o,s,l,c,u){var f=!1;return d&&(D(t,"A")&&(f=H(null,[e,r,n,a],c,u)||f),D(t,"B")&&(f=H(null,[r,n,i,l],c,u)||f),D(t,"C")&&(f=H(null,[r,a,o,l],c,u)||f),D(t,"D")&&(f=H(null,[n,a,s,l],c,u)||f),D(t,"E")&&(f=H(null,[r,n,a,l],c,u)||f)),m&&(f=H(t,[r,n,a,l],c,u)||f),f}function G(t,e,r,n,i,a,o,s){return[!0===s[0]||V(t,U([e,r,n]),[e,r,n],a,o),!0===s[1]||V(t,U([n,i,e]),[n,i,e],a,o)]}function Y(t,e,r,n,i,a,o,s,l){return s?G(t,e,r,i,n,a,o,l):G(t,r,i,n,e,a,o,l)}function W(t,e,r,n,i,a,o){var s,l,c,u,f=!1,h=function(){f=V(t,[s,l,c],[-1,-1,-1],i,a)||f,f=V(t,[c,u,s],[-1,-1,-1],i,a)||f},p=o[0],d=o[1],m=o[2];return p&&(s=O(U([k(e,r-0,n-0)])[0],U([k(e-1,r-0,n-0)])[0],p),l=O(U([k(e,r-0,n-1)])[0],U([k(e-1,r-0,n-1)])[0],p),c=O(U([k(e,r-1,n-1)])[0],U([k(e-1,r-1,n-1)])[0],p),u=O(U([k(e,r-1,n-0)])[0],U([k(e-1,r-1,n-0)])[0],p),h()),d&&(s=O(U([k(e-0,r,n-0)])[0],U([k(e-0,r-1,n-0)])[0],d),l=O(U([k(e-0,r,n-1)])[0],U([k(e-0,r-1,n-1)])[0],d),c=O(U([k(e-1,r,n-1)])[0],U([k(e-1,r-1,n-1)])[0],d),u=O(U([k(e-1,r,n-0)])[0],U([k(e-1,r-1,n-0)])[0],d),h()),m&&(s=O(U([k(e-0,r-0,n)])[0],U([k(e-0,r-0,n-1)])[0],m),l=O(U([k(e-0,r-1,n)])[0],U([k(e-0,r-1,n-1)])[0],m),c=O(U([k(e-1,r-1,n)])[0],U([k(e-1,r-1,n-1)])[0],m),u=O(U([k(e-1,r-0,n)])[0],U([k(e-1,r-0,n-1)])[0],m),h()),f}function X(t,e,r,n,i,a,o,s,l,c,u,f){var h=t;return f?(d&&"even"===t&&(h=null),q(h,e,r,n,i,a,o,s,l,c,u)):(d&&"odd"===t&&(h=null),q(h,l,s,o,a,i,n,r,e,c,u))}function Z(t,e,r,n,i){for(var a=[],o=0,s=0;sMath.abs(d-M)?[A,d]:[d,M];$(e,T[0],T[1])}}var L=[[Math.min(S,M),Math.max(S,M)],[Math.min(A,E),Math.max(A,E)]];["x","y","z"].forEach((function(e){for(var r=[],n=0;n0&&(u.push(p.id),"x"===e?f.push([p.distRatio,0,0]):"y"===e?f.push([0,p.distRatio,0]):f.push([0,0,p.distRatio]))}else c=nt(1,"x"===e?b-1:"y"===e?_-1:w-1);u.length>0&&(r[i]="x"===e?tt(null,u,a,o,f,r[i]):"y"===e?et(null,u,a,o,f,r[i]):rt(null,u,a,o,f,r[i]),i++),c.length>0&&(r[i]="x"===e?Z(null,c,a,o,r[i]):"y"===e?J(null,c,a,o,r[i]):K(null,c,a,o,r[i]),i++)}var d=t.caps[e];d.show&&d.fill&&(z(d.fill),r[i]="x"===e?Z(null,[0,b-1],a,o,r[i]):"y"===e?J(null,[0,_-1],a,o,r[i]):K(null,[0,w-1],a,o,r[i]),i++)}})),0===g&&P(),t._meshX=n,t._meshY=i,t._meshZ=a,t._meshIntensity=o,t._Xs=v,t._Ys=y,t._Zs=x}(),t}e.exports={findNearestOnAxis:l,generateIsoMeshes:h,createIsosurfaceTrace:function(t,e){var r=t.glplot.gl,i=n({gl:r}),a=new c(t,i,e.uid);return i._trace=a,a.update(e),t.glplot.add(i),a}}},{"../../components/colorscale":651,"../../lib/gl_format_color":772,"../../lib/str2rgbarray":801,"../../plots/gl3d/zip3":880,"gl-mesh3d":303}],1130:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./attributes"),o=t("../../components/colorscale/defaults");function s(t,e,r,n,a){var s=a("isomin"),l=a("isomax");null!=l&&null!=s&&s>l&&(e.isomin=null,e.isomax=null);var c=a("x"),u=a("y"),f=a("z"),h=a("value");c&&c.length&&u&&u.length&&f&&f.length&&h&&h.length?(i.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x","y","z"],n),a("valuehoverformat"),["x","y","z"].forEach((function(t){a(t+"hoverformat");var e="caps."+t;a(e+".show")&&a(e+".fill");var r="slices."+t;a(r+".show")&&(a(r+".fill"),a(r+".locations"))})),a("spaceframe.show")&&a("spaceframe.fill"),a("surface.show")&&(a("surface.count"),a("surface.fill"),a("surface.pattern")),a("contour.show")&&(a("contour.color"),a("contour.width")),["text","hovertext","hovertemplate","lighting.ambient","lighting.diffuse","lighting.specular","lighting.roughness","lighting.fresnel","lighting.vertexnormalsepsilon","lighting.facenormalsepsilon","lightposition.x","lightposition.y","lightposition.z","flatshading","opacity"].forEach((function(t){a(t)})),o(t,e,n,a,{prefix:"",cLetter:"c"}),e._length=null):e.visible=!1}e.exports={supplyDefaults:function(t,e,r,i){s(t,e,r,i,(function(r,i){return n.coerce(t,e,a,r,i)}))},supplyIsoDefaults:s}},{"../../components/colorscale/defaults":649,"../../lib":776,"../../registry":904,"./attributes":1127}],1131:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults").supplyDefaults,calc:t("./calc"),colorbar:{min:"cmin",max:"cmax"},plot:t("./convert").createIsosurfaceTrace,moduleType:"trace",name:"isosurface",basePlotModule:t("../../plots/gl3d"),categories:["gl3d","showLegend"],meta:{}}},{"../../plots/gl3d":869,"./attributes":1127,"./calc":1128,"./convert":1129,"./defaults":1130}],1132:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../surface/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat;e.exports=l({x:{valType:"data_array",editType:"calc+clearAxisTypes"},y:{valType:"data_array",editType:"calc+clearAxisTypes"},z:{valType:"data_array",editType:"calc+clearAxisTypes"},i:{valType:"data_array",editType:"calc"},j:{valType:"data_array",editType:"calc"},k:{valType:"data_array",editType:"calc"},text:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertemplate:a({editType:"calc"}),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),delaunayaxis:{valType:"enumerated",values:["x","y","z"],dflt:"z",editType:"calc"},alphahull:{valType:"number",dflt:-1,editType:"calc"},intensity:{valType:"data_array",editType:"calc"},intensitymode:{valType:"enumerated",values:["vertex","cell"],dflt:"vertex",editType:"calc"},color:{valType:"color",editType:"calc"},vertexcolor:{valType:"data_array",editType:"calc"},facecolor:{valType:"data_array",editType:"calc"},transforms:void 0},n("",{colorAttr:"`intensity`",showScaleDflt:!0,editTypeOverride:"calc"}),{opacity:o.opacity,flatshading:{valType:"boolean",dflt:!1,editType:"calc"},contour:{show:l({},o.contours.x.show,{}),color:o.contours.x.color,width:o.contours.x.width,editType:"calc"},lightposition:{x:l({},o.lightposition.x,{dflt:1e5}),y:l({},o.lightposition.y,{dflt:1e5}),z:l({},o.lightposition.z,{dflt:0}),editType:"calc"},lighting:l({vertexnormalsepsilon:{valType:"number",min:0,max:1,dflt:1e-12,editType:"calc"},facenormalsepsilon:{valType:"number",min:0,max:1,dflt:1e-6,editType:"calc"},editType:"calc"},o.lighting),hoverinfo:l({},s.hoverinfo,{editType:"calc"}),showlegend:l({},s.showlegend,{dflt:!1})})},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../surface/attributes":1315}],1133:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){e.intensity&&n(t,e,{vals:e.intensity,containerStr:"",cLetter:"c"})}},{"../../components/colorscale/calc":647}],1134:[function(t,e,r){"use strict";var n=t("gl-mesh3d"),i=t("delaunay-triangulate"),a=t("alpha-shape"),o=t("convex-hull"),s=t("../../lib/gl_format_color").parseColorScale,l=t("../../lib/str2rgbarray"),c=t("../../components/colorscale").extractOpts,u=t("../../plots/gl3d/zip3");function f(t,e,r){this.scene=t,this.uid=r,this.mesh=e,this.name="",this.color="#fff",this.data=null,this.showContour=!1}var h=f.prototype;function p(t){for(var e=[],r=t.length,n=0;n=e-.5)return!1;return!0}h.handlePick=function(t){if(t.object===this.mesh){var e=t.index=t.data.index;t.data._cellCenter?t.traceCoordinate=t.data.dataCoordinate:t.traceCoordinate=[this.data.x[e],this.data.y[e],this.data.z[e]];var r=this.data.hovertext||this.data.text;return Array.isArray(r)&&void 0!==r[e]?t.textLabel=r[e]:r&&(t.textLabel=r),!0}},h.update=function(t){var e=this.scene,r=e.fullSceneLayout;this.data=t;var n,f=t.x.length,h=u(d(r.xaxis,t.x,e.dataScale[0],t.xcalendar),d(r.yaxis,t.y,e.dataScale[1],t.ycalendar),d(r.zaxis,t.z,e.dataScale[2],t.zcalendar));if(t.i&&t.j&&t.k){if(t.i.length!==t.j.length||t.j.length!==t.k.length||!g(t.i,f)||!g(t.j,f)||!g(t.k,f))return;n=u(m(t.i),m(t.j),m(t.k))}else n=0===t.alphahull?o(h):t.alphahull>0?a(t.alphahull,h):function(t,e){for(var r=["x","y","z"].indexOf(t),n=[],a=e.length,o=0;ov):g=A>w,v=A;var M=c(w,T,k,A);M.pos=_,M.yc=(w+A)/2,M.i=b,M.dir=g?"increasing":"decreasing",M.x=M.pos,M.y=[k,T],y&&(M.orig_p=r[b]),d&&(M.tx=e.text[b]),m&&(M.htx=e.hovertext[b]),x.push(M)}else x.push({pos:_,empty:!0})}return e._extremes[l._id]=a.findExtremes(l,n.concat(h,f),{padded:!0}),x.length&&(x[0].t={labels:{open:i(t,"open:")+" ",high:i(t,"high:")+" ",low:i(t,"low:")+" ",close:i(t,"close:")+" "}}),x}e.exports={calc:function(t,e){var r=a.getFromId(t,e.xaxis),i=a.getFromId(t,e.yaxis),s=function(t,e,r){var i=r._minDiff;if(!i){var a,s=t._fullData,l=[];for(i=1/0,a=0;a"+c.labels[x]+n.hoverLabelText(s,b,l.yhoverformat):((y=i.extendFlat({},h)).y0=y.y1=_,y.yLabelVal=b,y.yLabel=c.labels[x]+n.hoverLabelText(s,b,l.yhoverformat),y.name="",f.push(y),g[b]=y)}return f}function h(t,e,r,i){var a=t.cd,o=t.ya,l=a[0].trace,f=a[0].t,h=u(t,e,r,i);if(!h)return[];var p=a[h.index],d=h.index=p.i,m=p.dir;function g(t){return f.labels[t]+n.hoverLabelText(o,l[t][d],l.yhoverformat)}var v=p.hi||l.hoverinfo,y=v.split("+"),x="all"===v,b=x||-1!==y.indexOf("y"),_=x||-1!==y.indexOf("text"),w=b?[g("open"),g("high"),g("low"),g("close")+" "+c[m]]:[];return _&&s(p,l,w),h.extraText=w.join("
"),h.y0=h.y1=o.c2p(p.yc,!0),[h]}e.exports={hoverPoints:function(t,e,r,n){return t.cd[0].trace.hoverlabel.split?f(t,e,r,n):h(t,e,r,n)},hoverSplit:f,hoverOnPoints:h}},{"../../components/color":639,"../../components/fx":679,"../../constants/delta.js":746,"../../lib":776,"../../plots/cartesian/axes":827}],1141:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"ohlc",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","showLegend"],meta:{},attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc").calc,plot:t("./plot"),style:t("./style"),hoverPoints:t("./hover").hoverPoints,selectPoints:t("./select")}},{"../../plots/cartesian":841,"./attributes":1137,"./calc":1138,"./defaults":1139,"./hover":1140,"./plot":1143,"./select":1144,"./style":1145}],1142:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib");e.exports=function(t,e,r,a){var o=r("x"),s=r("open"),l=r("high"),c=r("low"),u=r("close");if(r("hoverlabel.split"),n.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x"],a),s&&l&&c&&u){var f=Math.min(s.length,l.length,c.length,u.length);return o&&(f=Math.min(f,i.minRowLength(o))),e._length=f,f}}},{"../../lib":776,"../../registry":904}],1143:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib");e.exports=function(t,e,r,a){var o=e.yaxis,s=e.xaxis,l=!!s.rangebreaks;i.makeTraceGroups(a,r,"trace ohlc").each((function(t){var e=n.select(this),r=t[0],a=r.t;if(!0!==r.trace.visible||a.empty)e.remove();else{var c=a.tickLen,u=e.selectAll("path").data(i.identity);u.enter().append("path"),u.exit().remove(),u.attr("d",(function(t){if(t.empty)return"M0,0Z";var e=s.c2p(t.pos-c,!0),r=s.c2p(t.pos+c,!0),n=l?(e+r)/2:s.c2p(t.pos,!0);return"M"+e+","+o.c2p(t.o,!0)+"H"+n+"M"+n+","+o.c2p(t.h,!0)+"V"+o.c2p(t.l,!0)+"M"+r+","+o.c2p(t.c,!0)+"H"+n}))}}))}},{"../../lib":776,"@plotly/d3":58}],1144:[function(t,e,r){"use strict";e.exports=function(t,e){var r,n=t.cd,i=t.xaxis,a=t.yaxis,o=[],s=n[0].t.bPos||0;if(!1===e)for(r=0;r=t.length)return!1;if(void 0!==e[t[r]])return!1;e[t[r]]=!0}return!0}(t.map((function(t){return t.displayindex}))))for(e=0;e0;c&&(o="array");var u=r("categoryorder",o);"array"===u?(r("categoryarray"),r("ticktext")):(delete t.categoryarray,delete t.ticktext),c||"array"!==u||(e.categoryorder="trace")}}e.exports=function(t,e,r,f){function h(r,i){return n.coerce(t,e,l,r,i)}var p=s(t,e,{name:"dimensions",handleItemDefaults:u}),d=function(t,e,r,o,s){s("line.shape"),s("line.hovertemplate");var l=s("line.color",o.colorway[0]);if(i(t,"line")&&n.isArrayOrTypedArray(l)){if(l.length)return s("line.colorscale"),a(t,e,o,s,{prefix:"line.",cLetter:"c"}),l.length;e.line.color=r}return 1/0}(t,e,r,f,h);o(e,f,h),Array.isArray(p)&&p.length||(e.visible=!1),c(e,p,"values",d),h("hoveron"),h("hovertemplate"),h("arrangement"),h("bundlecolors"),h("sortpaths"),h("counts");var m={family:f.font.family,size:Math.round(f.font.size),color:f.font.color};n.coerceFont(h,"labelfont",m);var g={family:f.font.family,size:Math.round(f.font.size/1.2),color:f.font.color};n.coerceFont(h,"tickfont",g)}},{"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"../../lib":776,"../../plots/array_container_defaults":822,"../../plots/domain":855,"../parcoords/merge_length":1162,"./attributes":1146}],1150:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),colorbar:{container:"line",min:"cmin",max:"cmax"},moduleType:"trace",name:"parcats",basePlotModule:t("./base_plot"),categories:["noOpacity"],meta:{}}},{"./attributes":1146,"./base_plot":1147,"./calc":1148,"./defaults":1149,"./plot":1152}],1151:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-interpolate").interpolateNumber,a=t("../../plot_api/plot_api"),o=t("../../components/fx"),s=t("../../lib"),l=s.strTranslate,c=t("../../components/drawing"),u=t("tinycolor2"),f=t("../../lib/svg_text_utils");function h(t,e,r,i){var a=t.map(F.bind(0,e,r)),o=i.selectAll("g.parcatslayer").data([null]);o.enter().append("g").attr("class","parcatslayer").style("pointer-events","all");var u=o.selectAll("g.trace.parcats").data(a,p),h=u.enter().append("g").attr("class","trace parcats");u.attr("transform",(function(t){return l(t.x,t.y)})),h.append("g").attr("class","paths");var y=u.select("g.paths").selectAll("path.path").data((function(t){return t.paths}),p);y.attr("fill",(function(t){return t.model.color}));var x=y.enter().append("path").attr("class","path").attr("stroke-opacity",0).attr("fill",(function(t){return t.model.color})).attr("fill-opacity",0);_(x),y.attr("d",(function(t){return t.svgD})),x.empty()||y.sort(m),y.exit().remove(),y.on("mouseover",g).on("mouseout",v).on("click",b),h.append("g").attr("class","dimensions");var w=u.select("g.dimensions").selectAll("g.dimension").data((function(t){return t.dimensions}),p);w.enter().append("g").attr("class","dimension"),w.attr("transform",(function(t){return l(t.x,0)})),w.exit().remove();var A=w.selectAll("g.category").data((function(t){return t.categories}),p),M=A.enter().append("g").attr("class","category");A.attr("transform",(function(t){return l(0,t.y)})),M.append("rect").attr("class","catrect").attr("pointer-events","none"),A.select("rect.catrect").attr("fill","none").attr("width",(function(t){return t.width})).attr("height",(function(t){return t.height})),T(M);var S=A.selectAll("rect.bandrect").data((function(t){return t.bands}),p);S.each((function(){s.raiseToTop(this)})),S.attr("fill",(function(t){return t.color}));var E=S.enter().append("rect").attr("class","bandrect").attr("stroke-opacity",0).attr("fill",(function(t){return t.color})).attr("fill-opacity",0);S.attr("fill",(function(t){return t.color})).attr("width",(function(t){return t.width})).attr("height",(function(t){return t.height})).attr("y",(function(t){return t.y})).attr("cursor",(function(t){return"fixed"===t.parcatsViewModel.arrangement?"default":"perpendicular"===t.parcatsViewModel.arrangement?"ns-resize":"move"})),k(E),S.exit().remove(),M.append("text").attr("class","catlabel").attr("pointer-events","none");var z=e._fullLayout.paper_bgcolor;A.select("text.catlabel").attr("text-anchor",(function(t){return d(t)?"start":"end"})).attr("alignment-baseline","middle").style("text-shadow",f.makeTextShadow(z)).style("fill","rgb(0, 0, 0)").attr("x",(function(t){return d(t)?t.width+5:-5})).attr("y",(function(t){return t.height/2})).text((function(t){return t.model.categoryLabel})).each((function(t){c.font(n.select(this),t.parcatsViewModel.categorylabelfont),f.convertToTspans(n.select(this),e)})),M.append("text").attr("class","dimlabel"),A.select("text.dimlabel").attr("text-anchor","middle").attr("alignment-baseline","baseline").attr("cursor",(function(t){return"fixed"===t.parcatsViewModel.arrangement?"default":"ew-resize"})).attr("x",(function(t){return t.width/2})).attr("y",-5).text((function(t,e){return 0===e?t.parcatsViewModel.model.dimensions[t.model.dimensionInd].dimensionLabel:null})).each((function(t){c.font(n.select(this),t.parcatsViewModel.labelfont)})),A.selectAll("rect.bandrect").on("mouseover",L).on("mouseout",C),A.exit().remove(),w.call(n.behavior.drag().origin((function(t){return{x:t.x,y:0}})).on("dragstart",P).on("drag",I).on("dragend",O)),u.each((function(t){t.traceSelection=n.select(this),t.pathSelection=n.select(this).selectAll("g.paths").selectAll("path.path"),t.dimensionSelection=n.select(this).selectAll("g.dimensions").selectAll("g.dimension")})),u.exit().remove()}function p(t){return t.key}function d(t){var e=t.parcatsViewModel.dimensions.length,r=t.parcatsViewModel.dimensions[e-1].model.dimensionInd;return t.model.dimensionInd===r}function m(t,e){return t.model.rawColor>e.model.rawColor?1:t.model.rawColor"),L=n.mouse(f)[0];o.loneHover({trace:h,x:b-d.left+m.left,y:_-d.top+m.top,text:E,color:t.model.color,borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontSize:10,fontColor:T,idealAlign:L1&&h.displayInd===f.dimensions.length-1?(i=c.left,a="left"):(i=c.left+c.width,a="right");var m=u.model.count,g=u.model.categoryLabel,v=m/u.parcatsViewModel.model.count,y={countLabel:m,categoryLabel:g,probabilityLabel:v.toFixed(3)},x=[];-1!==u.parcatsViewModel.hoverinfoItems.indexOf("count")&&x.push(["Count:",y.countLabel].join(" ")),-1!==u.parcatsViewModel.hoverinfoItems.indexOf("probability")&&x.push(["P("+y.categoryLabel+"):",y.probabilityLabel].join(" "));var b=x.join("
");return{trace:p,x:o*(i-e.left),y:s*(d-e.top),text:b,color:"lightgray",borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontSize:12,fontColor:"black",idealAlign:a,hovertemplate:p.hovertemplate,hovertemplateLabels:y,eventData:[{data:p._input,fullData:p,count:m,category:g,probability:v}]}}function L(t){if(!t.parcatsViewModel.dragDimension&&-1===t.parcatsViewModel.hoverinfoItems.indexOf("skip")){if(n.mouse(this)[1]<-1)return;var e,r=t.parcatsViewModel.graphDiv,i=r._fullLayout,a=i._paperdiv.node().getBoundingClientRect(),l=t.parcatsViewModel.hoveron;if("color"===l?(!function(t){var e=n.select(t).datum(),r=A(e);w(r),r.each((function(){s.raiseToTop(this)})),n.select(t.parentNode).selectAll("rect.bandrect").filter((function(t){return t.color===e.color})).each((function(){s.raiseToTop(this),n.select(this).attr("stroke","black").attr("stroke-width",1.5)}))}(this),S(this,"plotly_hover",n.event)):(!function(t){n.select(t.parentNode).selectAll("rect.bandrect").each((function(t){var e=A(t);w(e),e.each((function(){s.raiseToTop(this)}))})),n.select(t.parentNode).select("rect.catrect").attr("stroke","black").attr("stroke-width",2.5)}(this),M(this,"plotly_hover",n.event)),-1===t.parcatsViewModel.hoverinfoItems.indexOf("none"))"category"===l?e=E(r,a,this):"color"===l?e=function(t,e,r){t._fullLayout._calcInverseTransform(t);var i,a,o=t._fullLayout._invScaleX,s=t._fullLayout._invScaleY,l=r.getBoundingClientRect(),c=n.select(r).datum(),f=c.categoryViewModel,h=f.parcatsViewModel,p=h.model.dimensions[f.model.dimensionInd],d=h.trace,m=l.y+l.height/2;h.dimensions.length>1&&p.displayInd===h.dimensions.length-1?(i=l.left,a="left"):(i=l.left+l.width,a="right");var g=f.model.categoryLabel,v=c.parcatsViewModel.model.count,y=0;c.categoryViewModel.bands.forEach((function(t){t.color===c.color&&(y+=t.count)}));var x=f.model.count,b=0;h.pathSelection.each((function(t){t.model.color===c.color&&(b+=t.model.count)}));var _=y/v,w=y/b,T=y/x,k={countLabel:v,categoryLabel:g,probabilityLabel:_.toFixed(3)},A=[];-1!==f.parcatsViewModel.hoverinfoItems.indexOf("count")&&A.push(["Count:",k.countLabel].join(" ")),-1!==f.parcatsViewModel.hoverinfoItems.indexOf("probability")&&(A.push("P(color \u2229 "+g+"): "+k.probabilityLabel),A.push("P("+g+" | color): "+w.toFixed(3)),A.push("P(color | "+g+"): "+T.toFixed(3)));var M=A.join("
"),S=u.mostReadable(c.color,["black","white"]);return{trace:d,x:o*(i-e.left),y:s*(m-e.top),text:M,color:c.color,borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontColor:S,fontSize:10,idealAlign:a,hovertemplate:d.hovertemplate,hovertemplateLabels:k,eventData:[{data:d._input,fullData:d,category:g,count:v,probability:_,categorycount:x,colorcount:b,bandcolorcount:y}]}}(r,a,this):"dimension"===l&&(e=function(t,e,r){var i=[];return n.select(r.parentNode.parentNode).selectAll("g.category").select("rect.catrect").each((function(){i.push(E(t,e,this))})),i}(r,a,this)),e&&o.loneHover(e,{container:i._hoverlayer.node(),outerContainer:i._paper.node(),gd:r})}}function C(t){var e=t.parcatsViewModel;if(!e.dragDimension&&(_(e.pathSelection),T(e.dimensionSelection.selectAll("g.category")),k(e.dimensionSelection.selectAll("g.category").selectAll("rect.bandrect")),o.loneUnhover(e.graphDiv._fullLayout._hoverlayer.node()),e.pathSelection.sort(m),-1===e.hoverinfoItems.indexOf("skip"))){"color"===t.parcatsViewModel.hoveron?S(this,"plotly_unhover",n.event):M(this,"plotly_unhover",n.event)}}function P(t){"fixed"!==t.parcatsViewModel.arrangement&&(t.dragDimensionDisplayInd=t.model.displayInd,t.initialDragDimensionDisplayInds=t.parcatsViewModel.model.dimensions.map((function(t){return t.displayInd})),t.dragHasMoved=!1,t.dragCategoryDisplayInd=null,n.select(this).selectAll("g.category").select("rect.catrect").each((function(e){var r=n.mouse(this)[0],i=n.mouse(this)[1];-2<=r&&r<=e.width+2&&-2<=i&&i<=e.height+2&&(t.dragCategoryDisplayInd=e.model.displayInd,t.initialDragCategoryDisplayInds=t.model.categories.map((function(t){return t.displayInd})),e.model.dragY=e.y,s.raiseToTop(this.parentNode),n.select(this.parentNode).selectAll("rect.bandrect").each((function(e){e.yf.y+f.height/2&&(o.model.displayInd=f.model.displayInd,f.model.displayInd=l),t.dragCategoryDisplayInd=o.model.displayInd}if(null===t.dragCategoryDisplayInd||"freeform"===t.parcatsViewModel.arrangement){a.model.dragX=n.event.x;var h=t.parcatsViewModel.dimensions[r],p=t.parcatsViewModel.dimensions[i];void 0!==h&&a.model.dragXp.x&&(a.model.displayInd=p.model.displayInd,p.model.displayInd=t.dragDimensionDisplayInd),t.dragDimensionDisplayInd=a.model.displayInd}j(t.parcatsViewModel),N(t.parcatsViewModel),R(t.parcatsViewModel),D(t.parcatsViewModel)}}function O(t){if("fixed"!==t.parcatsViewModel.arrangement&&null!==t.dragDimensionDisplayInd){n.select(this).selectAll("text").attr("font-weight","normal");var e={},r=z(t.parcatsViewModel),i=t.parcatsViewModel.model.dimensions.map((function(t){return t.displayInd})),o=t.initialDragDimensionDisplayInds.some((function(t,e){return t!==i[e]}));o&&i.forEach((function(r,n){var i=t.parcatsViewModel.model.dimensions[n].containerInd;e["dimensions["+i+"].displayindex"]=r}));var s=!1;if(null!==t.dragCategoryDisplayInd){var l=t.model.categories.map((function(t){return t.displayInd}));if(s=t.initialDragCategoryDisplayInds.some((function(t,e){return t!==l[e]}))){var c=t.model.categories.slice().sort((function(t,e){return t.displayInd-e.displayInd})),u=c.map((function(t){return t.categoryValue})),f=c.map((function(t){return t.categoryLabel}));e["dimensions["+t.model.containerInd+"].categoryarray"]=[u],e["dimensions["+t.model.containerInd+"].ticktext"]=[f],e["dimensions["+t.model.containerInd+"].categoryorder"]="array"}}if(-1===t.parcatsViewModel.hoverinfoItems.indexOf("skip")&&!t.dragHasMoved&&t.potentialClickBand&&("color"===t.parcatsViewModel.hoveron?S(t.potentialClickBand,"plotly_click",n.event.sourceEvent):M(t.potentialClickBand,"plotly_click",n.event.sourceEvent)),t.model.dragX=null,null!==t.dragCategoryDisplayInd)t.parcatsViewModel.dimensions[t.dragDimensionDisplayInd].categories[t.dragCategoryDisplayInd].model.dragY=null,t.dragCategoryDisplayInd=null;t.dragDimensionDisplayInd=null,t.parcatsViewModel.dragDimension=null,t.dragHasMoved=null,t.potentialClickBand=null,j(t.parcatsViewModel),N(t.parcatsViewModel),n.transition().duration(300).ease("cubic-in-out").each((function(){R(t.parcatsViewModel,!0),D(t.parcatsViewModel,!0)})).each("end",(function(){(o||s)&&a.restyle(t.parcatsViewModel.graphDiv,e,[r])}))}}function z(t){for(var e,r=t.graphDiv._fullData,n=0;n=0;s--)u+="C"+c[s]+","+(e[s+1]+n)+" "+l[s]+","+(e[s]+n)+" "+(t[s]+r[s])+","+(e[s]+n),u+="l-"+r[s]+",0 ";return u+="Z"}function N(t){var e=t.dimensions,r=t.model,n=e.map((function(t){return t.categories.map((function(t){return t.y}))})),i=t.model.dimensions.map((function(t){return t.categories.map((function(t){return t.displayInd}))})),a=t.model.dimensions.map((function(t){return t.displayInd})),o=t.dimensions.map((function(t){return t.model.dimensionInd})),s=e.map((function(t){return t.x})),l=e.map((function(t){return t.width})),c=[];for(var u in r.paths)r.paths.hasOwnProperty(u)&&c.push(r.paths[u]);function f(t){var e=t.categoryInds.map((function(t,e){return i[e][t]}));return o.map((function(t){return e[t]}))}c.sort((function(e,r){var n=f(e),i=f(r);return"backward"===t.sortpaths&&(n.reverse(),i.reverse()),n.push(e.valueInds[0]),i.push(r.valueInds[0]),t.bundlecolors&&(n.unshift(e.rawColor),i.unshift(r.rawColor)),ni?1:0}));for(var h=new Array(c.length),p=e[0].model.count,d=e[0].categories.map((function(t){return t.height})).reduce((function(t,e){return t+e})),m=0;m0?d*(v.count/p):0;for(var y,x=new Array(n.length),b=0;b1?(t.width-80-16)/(n-1):0)*i;var a,o,s,l,c,u=[],f=t.model.maxCats,h=e.categories.length,p=e.count,d=t.height-8*(f-1),m=8*(f-h)/2,g=e.categories.map((function(t){return{displayInd:t.displayInd,categoryInd:t.categoryInd}}));for(g.sort((function(t,e){return t.displayInd-e.displayInd})),c=0;c0?o.count/p*d:0,s={key:o.valueInds[0],model:o,width:16,height:a,y:null!==o.dragY?o.dragY:m,bands:[],parcatsViewModel:t},m=m+a+8,u.push(s);return{key:e.dimensionInd,x:null!==e.dragX?e.dragX:r,y:0,width:16,model:e,categories:u,parcatsViewModel:t,dragCategoryDisplayInd:null,dragDimensionDisplayInd:null,initialDragDimensionDisplayInds:null,initialDragCategoryDisplayInds:null,dragHasMoved:null,potentialClickBand:null}}e.exports=function(t,e,r,n){h(r,t,n,e)}},{"../../components/drawing":661,"../../components/fx":679,"../../lib":776,"../../lib/svg_text_utils":802,"../../plot_api/plot_api":813,"@plotly/d3":58,"d3-interpolate":164,tinycolor2:572}],1152:[function(t,e,r){"use strict";var n=t("./parcats");e.exports=function(t,e,r,i){var a=t._fullLayout,o=a._paper,s=a._size;n(t,o,e,{width:s.w,height:s.h,margin:{t:s.t,r:s.r,b:s.b,l:s.l}},r,i)}},{"./parcats":1151}],1153:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/layout_attributes"),a=t("../../plots/font_attributes"),o=t("../../plots/domain").attributes,s=t("../../lib/extend").extendFlat,l=t("../../plot_api/plot_template").templatedArray;e.exports={domain:o({name:"parcoords",trace:!0,editType:"plot"}),labelangle:{valType:"angle",dflt:0,editType:"plot"},labelside:{valType:"enumerated",values:["top","bottom"],dflt:"top",editType:"plot"},labelfont:a({editType:"plot"}),tickfont:a({editType:"plot"}),rangefont:a({editType:"plot"}),dimensions:l("dimension",{label:{valType:"string",editType:"plot"},tickvals:s({},i.tickvals,{editType:"plot"}),ticktext:s({},i.ticktext,{editType:"plot"}),tickformat:s({},i.tickformat,{editType:"plot"}),visible:{valType:"boolean",dflt:!0,editType:"plot"},range:{valType:"info_array",items:[{valType:"number",editType:"plot"},{valType:"number",editType:"plot"}],editType:"plot"},constraintrange:{valType:"info_array",freeLength:!0,dimensions:"1-2",items:[{valType:"any",editType:"plot"},{valType:"any",editType:"plot"}],editType:"plot"},multiselect:{valType:"boolean",dflt:!0,editType:"plot"},values:{valType:"data_array",editType:"calc"},editType:"calc"}),line:s({editType:"calc"},n("line",{colorscaleDflt:"Viridis",autoColorDflt:!1,editTypeOverride:"calc"}))}},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plot_api/plot_template":816,"../../plots/cartesian/layout_attributes":842,"../../plots/domain":855,"../../plots/font_attributes":856}],1154:[function(t,e,r){"use strict";var n=t("./constants"),i=t("@plotly/d3"),a=t("../../lib/gup").keyFun,o=t("../../lib/gup").repeat,s=t("../../lib").sorterAsc,l=t("../../lib").strTranslate,c=n.bar.snapRatio;function u(t,e){return t*(1-c)+e*c}var f=n.bar.snapClose;function h(t,e){return t*(1-f)+e*f}function p(t,e,r,n){if(function(t,e){for(var r=0;r=e[r][0]&&t<=e[r][1])return!0;return!1}(r,n))return r;var i=t?-1:1,a=0,o=e.length-1;if(i<0){var s=a;a=o,o=s}for(var l=e[a],c=l,f=a;i*fe){h=r;break}}if(a=u,isNaN(a)&&(a=isNaN(f)||isNaN(h)?isNaN(f)?h:f:e-c[f][1]t[1]+r||e=.9*t[1]+.1*t[0]?"n":e<=.9*t[0]+.1*t[1]?"s":"ns"}(d,e);m&&(o.interval=l[a],o.intervalPix=d,o.region=m)}}if(t.ordinal&&!o.region){var g=t.unitTickvals,y=t.unitToPaddedPx.invert(e);for(r=0;r=x[0]&&y<=x[1]){o.clickableOrdinalRange=x;break}}}return o}function w(t,e){i.event.sourceEvent.stopPropagation();var r=e.height-i.mouse(t)[1]-2*n.verticalPadding,a=e.brush.svgBrush;a.wasDragged=!0,a._dragging=!0,a.grabbingBar?a.newExtent=[r-a.grabPoint,r+a.barLength-a.grabPoint].map(e.unitToPaddedPx.invert):a.newExtent=[a.startExtent,e.unitToPaddedPx.invert(r)].sort(s),e.brush.filterSpecified=!0,a.extent=a.stayingIntervals.concat([a.newExtent]),a.brushCallback(e),b(t.parentNode)}function T(t,e){var r=_(e,e.height-i.mouse(t)[1]-2*n.verticalPadding),a="crosshair";r.clickableOrdinalRange?a="pointer":r.region&&(a=r.region+"-resize"),i.select(document.body).style("cursor",a)}function k(t){t.on("mousemove",(function(t){i.event.preventDefault(),t.parent.inBrushDrag||T(this,t)})).on("mouseleave",(function(t){t.parent.inBrushDrag||y()})).call(i.behavior.drag().on("dragstart",(function(t){!function(t,e){i.event.sourceEvent.stopPropagation();var r=e.height-i.mouse(t)[1]-2*n.verticalPadding,a=e.unitToPaddedPx.invert(r),o=e.brush,s=_(e,r),l=s.interval,c=o.svgBrush;if(c.wasDragged=!1,c.grabbingBar="ns"===s.region,c.grabbingBar){var u=l.map(e.unitToPaddedPx);c.grabPoint=r-u[0]-n.verticalPadding,c.barLength=u[1]-u[0]}c.clickableOrdinalRange=s.clickableOrdinalRange,c.stayingIntervals=e.multiselect&&o.filterSpecified?o.filter.getConsolidated():[],l&&(c.stayingIntervals=c.stayingIntervals.filter((function(t){return t[0]!==l[0]&&t[1]!==l[1]}))),c.startExtent=s.region?l["s"===s.region?1:0]:a,e.parent.inBrushDrag=!0,c.brushStartCallback()}(this,t)})).on("drag",(function(t){w(this,t)})).on("dragend",(function(t){!function(t,e){var r=e.brush,n=r.filter,a=r.svgBrush;a._dragging||(T(t,e),w(t,e),e.brush.svgBrush.wasDragged=!1),a._dragging=!1,i.event.sourceEvent.stopPropagation();var o=a.grabbingBar;if(a.grabbingBar=!1,a.grabLocation=void 0,e.parent.inBrushDrag=!1,y(),!a.wasDragged)return a.wasDragged=void 0,a.clickableOrdinalRange?r.filterSpecified&&e.multiselect?a.extent.push(a.clickableOrdinalRange):(a.extent=[a.clickableOrdinalRange],r.filterSpecified=!0):o?(a.extent=a.stayingIntervals,0===a.extent.length&&M(r)):M(r),a.brushCallback(e),b(t.parentNode),void a.brushEndCallback(r.filterSpecified?n.getConsolidated():[]);var s=function(){n.set(n.getConsolidated())};if(e.ordinal){var l=e.unitTickvals;l[l.length-1]a.newExtent[0];a.extent=a.stayingIntervals.concat(c?[a.newExtent]:[]),a.extent.length||M(r),a.brushCallback(e),c?b(t.parentNode,s):(s(),b(t.parentNode))}else s();a.brushEndCallback(r.filterSpecified?n.getConsolidated():[])}(this,t)})))}function A(t,e){return t[0]-e[0]}function M(t){t.filterSpecified=!1,t.svgBrush.extent=[[-1/0,1/0]]}function S(t){for(var e,r=t.slice(),n=[],i=r.shift();i;){for(e=i.slice();(i=r.shift())&&i[0]<=e[1];)e[1]=Math.max(e[1],i[1]);n.push(e)}return 1===n.length&&n[0][0]>n[0][1]&&(n=[]),n}e.exports={makeBrush:function(t,e,r,n,i,a){var o,l=function(){var t,e,r=[];return{set:function(n){1===(r=n.map((function(t){return t.slice().sort(s)})).sort(A)).length&&r[0][0]===-1/0&&r[0][1]===1/0&&(r=[[0,-1]]),t=S(r),e=r.reduce((function(t,e){return[Math.min(t[0],e[0]),Math.max(t[1],e[1])]}),[1/0,-1/0])},get:function(){return r.slice()},getConsolidated:function(){return t},getBounds:function(){return e}}}();return l.set(r),{filter:l,filterSpecified:e,svgBrush:{extent:[],brushStartCallback:n,brushCallback:(o=i,function(t){var e=t.brush,r=function(t){return t.svgBrush.extent.map((function(t){return t.slice()}))}(e).slice();e.filter.set(r),o()}),brushEndCallback:a}}},ensureAxisBrush:function(t,e){var r=t.selectAll("."+n.cn.axisBrush).data(o,a);r.enter().append("g").classed(n.cn.axisBrush,!0),function(t,e){var r=t.selectAll(".background").data(o);r.enter().append("rect").classed("background",!0).call(d).call(m).style("pointer-events","auto").attr("transform",l(0,n.verticalPadding)),r.call(k).attr("height",(function(t){return t.height-n.verticalPadding}));var i=t.selectAll(".highlight-shadow").data(o);i.enter().append("line").classed("highlight-shadow",!0).attr("x",-n.bar.width/2).attr("stroke-width",n.bar.width+n.bar.strokeWidth).attr("stroke",e).attr("opacity",n.bar.strokeOpacity).attr("stroke-linecap","butt"),i.attr("y1",(function(t){return t.height})).call(x);var a=t.selectAll(".highlight").data(o);a.enter().append("line").classed("highlight",!0).attr("x",-n.bar.width/2).attr("stroke-width",n.bar.width-n.bar.strokeWidth).attr("stroke",n.bar.fillColor).attr("opacity",n.bar.fillOpacity).attr("stroke-linecap","butt"),a.attr("y1",(function(t){return t.height})).call(x)}(r,e)},cleanRanges:function(t,e){if(Array.isArray(t[0])?(t=t.map((function(t){return t.sort(s)})),t=e.multiselect?S(t.sort(A)):[t[0]]):t=[t.sort(s)],e.tickvals){var r=e.tickvals.slice().sort(s);if(!(t=t.map((function(t){var e=[p(0,r,t[0],[]),p(1,r,t[1],[])];if(e[1]>e[0])return e})).filter((function(t){return t}))).length)return}return t.length>1?t:t[0]}}},{"../../lib":776,"../../lib/gup":773,"./constants":1157,"@plotly/d3":58}],1155:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../plots/get_data").getModuleCalcData,a=t("./plot"),o=t("../../constants/xmlns_namespaces");r.name="parcoords",r.plot=function(t){var e=i(t.calcdata,"parcoords")[0];e.length&&a(t,e)},r.clean=function(t,e,r,n){var i=n._has&&n._has("parcoords"),a=e._has&&e._has("parcoords");i&&!a&&(n._paperdiv.selectAll(".parcoords").remove(),n._glimages.selectAll("*").remove())},r.toSVG=function(t){var e=t._fullLayout._glimages,r=n.select(t).selectAll(".svg-container");r.filter((function(t,e){return e===r.size()-1})).selectAll(".gl-canvas-context, .gl-canvas-focus").each((function(){var t=this.toDataURL("image/png");e.append("svg:image").attr({xmlns:o.svg,"xlink:href":t,preserveAspectRatio:"none",x:0,y:0,width:this.style.width,height:this.style.height})})),window.setTimeout((function(){n.selectAll("#filterBarPattern").attr("id","filterBarPattern")}),60)}},{"../../constants/xmlns_namespaces":753,"../../plots/get_data":864,"./plot":1164,"@plotly/d3":58}],1156:[function(t,e,r){"use strict";var n=t("../../lib").isArrayOrTypedArray,i=t("../../components/colorscale"),a=t("../../lib/gup").wrap;e.exports=function(t,e){var r,o;return i.hasColorscale(e,"line")&&n(e.line.color)?(r=e.line.color,o=i.extractOpts(e.line).colorscale,i.calc(t,e,{vals:r,containerStr:"line",cLetter:"c"})):(r=function(t){for(var e=new Array(t),r=0;rf&&(n.log("parcoords traces support up to "+f+" dimensions at the moment"),d.splice(f));var m=s(t,e,{name:"dimensions",layout:l,handleItemDefaults:p}),g=function(t,e,r,o,s){var l=s("line.color",r);if(i(t,"line")&&n.isArrayOrTypedArray(l)){if(l.length)return s("line.colorscale"),a(t,e,o,s,{prefix:"line.",cLetter:"c"}),l.length;e.line.color=r}return 1/0}(t,e,r,l,u);o(e,l,u),Array.isArray(m)&&m.length||(e.visible=!1),h(e,m,"values",g);var v={family:l.font.family,size:Math.round(l.font.size/1.2),color:l.font.color};n.coerceFont(u,"labelfont",v),n.coerceFont(u,"tickfont",v),n.coerceFont(u,"rangefont",v),u("labelangle"),u("labelside")}},{"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"../../lib":776,"../../plots/array_container_defaults":822,"../../plots/cartesian/axes":827,"../../plots/domain":855,"./attributes":1153,"./axisbrush":1154,"./constants":1157,"./merge_length":1162}],1159:[function(t,e,r){"use strict";var n=t("../../lib").isTypedArray;r.convertTypedArray=function(t){return n(t)?Array.prototype.slice.call(t):t},r.isOrdinal=function(t){return!!t.tickvals},r.isVisible=function(t){return t.visible||!("visible"in t)}},{"../../lib":776}],1160:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),colorbar:{container:"line",min:"cmin",max:"cmax"},moduleType:"trace",name:"parcoords",basePlotModule:t("./base_plot"),categories:["gl","regl","noOpacity","noHover"],meta:{}}},{"./attributes":1153,"./base_plot":1155,"./calc":1156,"./defaults":1158,"./plot":1164}],1161:[function(t,e,r){"use strict";var n=t("glslify"),i=n(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nattribute vec4 p01_04, p05_08, p09_12, p13_16,\n p17_20, p21_24, p25_28, p29_32,\n p33_36, p37_40, p41_44, p45_48,\n p49_52, p53_56, p57_60, colors;\n\nuniform mat4 dim0A, dim1A, dim0B, dim1B, dim0C, dim1C, dim0D, dim1D,\n loA, hiA, loB, hiB, loC, hiC, loD, hiD;\n\nuniform vec2 resolution, viewBoxPos, viewBoxSize;\nuniform float maskHeight;\nuniform float drwLayer; // 0: context, 1: focus, 2: pick\nuniform vec4 contextColor;\nuniform sampler2D maskTexture, palette;\n\nbool isPick = (drwLayer > 1.5);\nbool isContext = (drwLayer < 0.5);\n\nconst vec4 ZEROS = vec4(0.0, 0.0, 0.0, 0.0);\nconst vec4 UNITS = vec4(1.0, 1.0, 1.0, 1.0);\n\nfloat val(mat4 p, mat4 v) {\n return dot(matrixCompMult(p, v) * UNITS, UNITS);\n}\n\nfloat axisY(float ratio, mat4 A, mat4 B, mat4 C, mat4 D) {\n float y1 = val(A, dim0A) + val(B, dim0B) + val(C, dim0C) + val(D, dim0D);\n float y2 = val(A, dim1A) + val(B, dim1B) + val(C, dim1C) + val(D, dim1D);\n return y1 * (1.0 - ratio) + y2 * ratio;\n}\n\nint iMod(int a, int b) {\n return a - b * (a / b);\n}\n\nbool fOutside(float p, float lo, float hi) {\n return (lo < hi) && (lo > p || p > hi);\n}\n\nbool vOutside(vec4 p, vec4 lo, vec4 hi) {\n return (\n fOutside(p[0], lo[0], hi[0]) ||\n fOutside(p[1], lo[1], hi[1]) ||\n fOutside(p[2], lo[2], hi[2]) ||\n fOutside(p[3], lo[3], hi[3])\n );\n}\n\nbool mOutside(mat4 p, mat4 lo, mat4 hi) {\n return (\n vOutside(p[0], lo[0], hi[0]) ||\n vOutside(p[1], lo[1], hi[1]) ||\n vOutside(p[2], lo[2], hi[2]) ||\n vOutside(p[3], lo[3], hi[3])\n );\n}\n\nbool outsideBoundingBox(mat4 A, mat4 B, mat4 C, mat4 D) {\n return mOutside(A, loA, hiA) ||\n mOutside(B, loB, hiB) ||\n mOutside(C, loC, hiC) ||\n mOutside(D, loD, hiD);\n}\n\nbool outsideRasterMask(mat4 A, mat4 B, mat4 C, mat4 D) {\n mat4 pnts[4];\n pnts[0] = A;\n pnts[1] = B;\n pnts[2] = C;\n pnts[3] = D;\n\n for(int i = 0; i < 4; ++i) {\n for(int j = 0; j < 4; ++j) {\n for(int k = 0; k < 4; ++k) {\n if(0 == iMod(\n int(255.0 * texture2D(maskTexture,\n vec2(\n (float(i * 2 + j / 2) + 0.5) / 8.0,\n (pnts[i][j][k] * (maskHeight - 1.0) + 1.0) / maskHeight\n ))[3]\n ) / int(pow(2.0, float(iMod(j * 4 + k, 8)))),\n 2\n )) return true;\n }\n }\n }\n return false;\n}\n\nvec4 position(bool isContext, float v, mat4 A, mat4 B, mat4 C, mat4 D) {\n float x = 0.5 * sign(v) + 0.5;\n float y = axisY(x, A, B, C, D);\n float z = 1.0 - abs(v);\n\n z += isContext ? 0.0 : 2.0 * float(\n outsideBoundingBox(A, B, C, D) ||\n outsideRasterMask(A, B, C, D)\n );\n\n return vec4(\n 2.0 * (vec2(x, y) * viewBoxSize + viewBoxPos) / resolution - 1.0,\n z,\n 1.0\n );\n}\n\nvoid main() {\n mat4 A = mat4(p01_04, p05_08, p09_12, p13_16);\n mat4 B = mat4(p17_20, p21_24, p25_28, p29_32);\n mat4 C = mat4(p33_36, p37_40, p41_44, p45_48);\n mat4 D = mat4(p49_52, p53_56, p57_60, ZEROS);\n\n float v = colors[3];\n\n gl_Position = position(isContext, v, A, B, C, D);\n\n fragColor =\n isContext ? vec4(contextColor) :\n isPick ? vec4(colors.rgb, 1.0) : texture2D(palette, vec2(abs(v), 0.5));\n}\n"]),a=n(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nvoid main() {\n gl_FragColor = fragColor;\n}\n"]),o=t("./constants").maxDimensionCount,s=t("../../lib"),l=new Uint8Array(4),c=new Uint8Array(4),u={shape:[256,1],format:"rgba",type:"uint8",mag:"nearest",min:"nearest"};function f(t,e,r,n,i){var a=t._gl;a.enable(a.SCISSOR_TEST),a.scissor(e,r,n,i),t.clear({color:[0,0,0,0],depth:1})}function h(t,e,r,n,i,a){var o=a.key;r.drawCompleted||(!function(t){t.read({x:0,y:0,width:1,height:1,data:l})}(t),r.drawCompleted=!0),function s(l){var c=Math.min(n,i-l*n);0===l&&(window.cancelAnimationFrame(r.currentRafs[o]),delete r.currentRafs[o],f(t,a.scissorX,a.scissorY,a.scissorWidth,a.viewBoxSize[1])),r.clearOnly||(a.count=2*c,a.offset=2*l*n,e(a),l*n+c>>8*e)%256/255}function m(t,e,r){for(var n=new Array(8*e),i=0,a=0;au&&(u=t[i].dim1.canvasX,o=i);0===s&&f(T,0,0,r.canvasWidth,r.canvasHeight);var p=function(t){var e,r,n,i=[[],[]];for(n=0;n<64;n++){var a=!t&&no._length&&(S=S.slice(0,o._length));var L,C=o.tickvals;function P(t,e){return{val:t,text:L[e]}}function I(t,e){return t.val-e.val}if(Array.isArray(C)&&C.length){L=o.ticktext,Array.isArray(L)&&L.length?L.length>C.length?L=L.slice(0,C.length):C.length>L.length&&(C=C.slice(0,L.length)):L=C.map(a(o.tickformat));for(var O=1;O=r||l>=i)return;var c=t.lineLayer.readPixel(s,i-1-l),u=0!==c[3],f=u?c[2]+256*(c[1]+256*c[0]):null,h={x:s,y:l,clientX:e.clientX,clientY:e.clientY,dataIndex:t.model.key,curveNumber:f};f!==B&&(u?a.hover(h):a.unhover&&a.unhover(h),B=f)}})),F.style("opacity",(function(t){return t.pick?0:1})),h.style("background","rgba(255, 255, 255, 0)");var N=h.selectAll("."+y.cn.parcoords).data(R,d);N.exit().remove(),N.enter().append("g").classed(y.cn.parcoords,!0).style("shape-rendering","crispEdges").style("pointer-events","none"),N.attr("transform",(function(t){return c(t.model.translateX,t.model.translateY)}));var j=N.selectAll("."+y.cn.parcoordsControlView).data(m,d);j.enter().append("g").classed(y.cn.parcoordsControlView,!0),j.attr("transform",(function(t){return c(t.model.pad.l,t.model.pad.t)}));var U=j.selectAll("."+y.cn.yAxis).data((function(t){return t.dimensions}),d);U.enter().append("g").classed(y.cn.yAxis,!0),j.each((function(t){O(U,t,_)})),F.each((function(t){if(t.viewModel){!t.lineLayer||a?t.lineLayer=b(this,t):t.lineLayer.update(t),(t.key||0===t.key)&&(t.viewModel[t.key]=t.lineLayer);var e=!t.context||a;t.lineLayer.render(t.viewModel.panels,e)}})),U.attr("transform",(function(t){return c(t.xScale(t.xIndex),0)})),U.call(n.behavior.drag().origin((function(t){return t})).on("drag",(function(t){var e=t.parent;S.linePickActive(!1),t.x=Math.max(-y.overdrag,Math.min(t.model.width+y.overdrag,n.event.x)),t.canvasX=t.x*t.model.canvasPixelRatio,U.sort((function(t,e){return t.x-e.x})).each((function(e,r){e.xIndex=r,e.x=t===e?e.x:e.xScale(e.xIndex),e.canvasX=e.x*e.model.canvasPixelRatio})),O(U,e,_),U.filter((function(e){return 0!==Math.abs(t.xIndex-e.xIndex)})).attr("transform",(function(t){return c(t.xScale(t.xIndex),0)})),n.select(this).attr("transform",c(t.x,0)),U.each((function(r,n,i){i===t.parent.key&&(e.dimensions[n]=r)})),e.contextLayer&&e.contextLayer.render(e.panels,!1,!E(e)),e.focusLayer.render&&e.focusLayer.render(e.panels)})).on("dragend",(function(t){var e=t.parent;t.x=t.xScale(t.xIndex),t.canvasX=t.x*t.model.canvasPixelRatio,O(U,e,_),n.select(this).attr("transform",(function(t){return c(t.x,0)})),e.contextLayer&&e.contextLayer.render(e.panels,!1,!E(e)),e.focusLayer&&e.focusLayer.render(e.panels),e.pickLayer&&e.pickLayer.render(e.panels,!0),S.linePickActive(!0),a&&a.axesMoved&&a.axesMoved(e.key,e.dimensions.map((function(t){return t.crossfilterDimensionIndex})))}))),U.exit().remove();var V=U.selectAll("."+y.cn.axisOverlays).data(m,d);V.enter().append("g").classed(y.cn.axisOverlays,!0),V.selectAll("."+y.cn.axis).remove();var H=V.selectAll("."+y.cn.axis).data(m,d);H.enter().append("g").classed(y.cn.axis,!0),H.each((function(t){var e=t.model.height/t.model.tickDistance,r=t.domainScale,i=r.domain();n.select(this).call(n.svg.axis().orient("left").tickSize(4).outerTickSize(2).ticks(e,t.tickFormat).tickValues(t.ordinal?i:null).tickFormat((function(e){return v.isOrdinal(t)?e:z(t.model.dimensions[t.visibleIndex],e)})).scale(r)),f.font(H.selectAll("text"),t.model.tickFont)})),H.selectAll(".domain, .tick>line").attr("fill","none").attr("stroke","black").attr("stroke-opacity",.25).attr("stroke-width","1px"),H.selectAll("text").style("text-shadow",u.makeTextShadow(T)).style("cursor","default");var q=V.selectAll("."+y.cn.axisHeading).data(m,d);q.enter().append("g").classed(y.cn.axisHeading,!0);var G=q.selectAll("."+y.cn.axisTitle).data(m,d);G.enter().append("text").classed(y.cn.axisTitle,!0).attr("text-anchor","middle").style("cursor","ew-resize").style("pointer-events","auto"),G.text((function(t){return t.label})).each((function(e){var r=n.select(this);f.font(r,e.model.labelFont),u.convertToTspans(r,t)})).attr("transform",(function(t){var e=I(t.model.labelAngle,t.model.labelSide),r=y.axisTitleOffset;return(e.dir>0?"":c(0,2*r+t.model.height))+l(e.degrees)+c(-r*e.dx,-r*e.dy)})).attr("text-anchor",(function(t){var e=I(t.model.labelAngle,t.model.labelSide);return 2*Math.abs(e.dx)>Math.abs(e.dy)?e.dir*e.dx<0?"start":"end":"middle"}));var Y=V.selectAll("."+y.cn.axisExtent).data(m,d);Y.enter().append("g").classed(y.cn.axisExtent,!0);var W=Y.selectAll("."+y.cn.axisExtentTop).data(m,d);W.enter().append("g").classed(y.cn.axisExtentTop,!0),W.attr("transform",c(0,-y.axisExtentOffset));var X=W.selectAll("."+y.cn.axisExtentTopText).data(m,d);X.enter().append("text").classed(y.cn.axisExtentTopText,!0).call(P),X.text((function(t){return D(t,!0)})).each((function(t){f.font(n.select(this),t.model.rangeFont)}));var Z=Y.selectAll("."+y.cn.axisExtentBottom).data(m,d);Z.enter().append("g").classed(y.cn.axisExtentBottom,!0),Z.attr("transform",(function(t){return c(0,t.model.height+y.axisExtentOffset)}));var J=Z.selectAll("."+y.cn.axisExtentBottomText).data(m,d);J.enter().append("text").classed(y.cn.axisExtentBottomText,!0).attr("dy","0.75em").call(P),J.text((function(t){return D(t,!1)})).each((function(t){f.font(n.select(this),t.model.rangeFont)})),x.ensureAxisBrush(V,T)}},{"../../components/colorscale":651,"../../components/drawing":661,"../../lib":776,"../../lib/gup":773,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"./axisbrush":1154,"./constants":1157,"./helpers":1159,"./lines":1161,"@plotly/d3":58,"color-rgba":128}],1164:[function(t,e,r){"use strict";var n=t("./parcoords"),i=t("../../lib/prepare_regl"),a=t("./helpers").isVisible;function o(t,e,r){var n=e.indexOf(r),i=t.indexOf(n);return-1===i&&(i+=e.length),i}e.exports=function(t,e){var r=t._fullLayout;if(i(t)){var s={},l={},c={},u={},f=r._size;e.forEach((function(e,r){var n=e[0].trace;c[r]=n.index;var i=u[r]=n._fullInput.index;s[r]=t.data[i].dimensions,l[r]=t.data[i].dimensions.slice()}));n(t,e,{width:f.w,height:f.h,margin:{t:f.t,r:f.r,b:f.b,l:f.l}},{filterChanged:function(e,n,i){var a=l[e][n],o=i.map((function(t){return t.slice()})),s="dimensions["+n+"].constraintrange",f=r._tracePreGUI[t._fullData[c[e]]._fullInput.uid];if(void 0===f[s]){var h=a.constraintrange;f[s]=h||null}var p=t._fullData[c[e]].dimensions[n];o.length?(1===o.length&&(o=o[0]),a.constraintrange=o,p.constraintrange=o.slice(),o=[o]):(delete a.constraintrange,delete p.constraintrange,o=null);var d={};d[s]=o,t.emit("plotly_restyle",[d,[u[e]]])},hover:function(e){t.emit("plotly_hover",e)},unhover:function(e){t.emit("plotly_unhover",e)},axesMoved:function(e,r){var n=function(t,e){return function(r,n){return o(t,e,r)-o(t,e,n)}}(r,l[e].filter(a));s[e].sort(n),l[e].filter((function(t){return!a(t)})).sort((function(t){return l[e].indexOf(t)})).forEach((function(t){s[e].splice(s[e].indexOf(t),1),s[e].splice(l[e].indexOf(t),0,t)})),t.emit("plotly_restyle",[{dimensions:[s[e]]},[u[e]]])}})}}},{"../../lib/prepare_regl":789,"./helpers":1159,"./parcoords":1163}],1165:[function(t,e,r){"use strict";var n=t("../../plots/attributes"),i=t("../../plots/domain").attributes,a=t("../../plots/font_attributes"),o=t("../../components/color/attributes"),s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../plots/template_attributes").texttemplateAttrs,c=t("../../lib/extend").extendFlat,u=a({editType:"plot",arrayOk:!0,colorEditType:"plot"});e.exports={labels:{valType:"data_array",editType:"calc"},label0:{valType:"number",dflt:0,editType:"calc"},dlabel:{valType:"number",dflt:1,editType:"calc"},values:{valType:"data_array",editType:"calc"},marker:{colors:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:o.defaultLine,arrayOk:!0,editType:"style"},width:{valType:"number",min:0,dflt:0,arrayOk:!0,editType:"style"},editType:"calc"},editType:"calc"},text:{valType:"data_array",editType:"plot"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"style"},scalegroup:{valType:"string",dflt:"",editType:"calc"},textinfo:{valType:"flaglist",flags:["label","text","value","percent"],extras:["none"],editType:"calc"},hoverinfo:c({},n.hoverinfo,{flags:["label","text","value","percent","name"]}),hovertemplate:s({},{keys:["label","color","value","percent","text"]}),texttemplate:l({editType:"plot"},{keys:["label","color","value","percent","text"]}),textposition:{valType:"enumerated",values:["inside","outside","auto","none"],dflt:"auto",arrayOk:!0,editType:"plot"},textfont:c({},u,{}),insidetextorientation:{valType:"enumerated",values:["horizontal","radial","tangential","auto"],dflt:"auto",editType:"plot"},insidetextfont:c({},u,{}),outsidetextfont:c({},u,{}),automargin:{valType:"boolean",dflt:!1,editType:"plot"},title:{text:{valType:"string",dflt:"",editType:"plot"},font:c({},u,{}),position:{valType:"enumerated",values:["top left","top center","top right","middle center","bottom left","bottom center","bottom right"],editType:"plot"},editType:"plot"},domain:i({name:"pie",trace:!0,editType:"calc"}),hole:{valType:"number",min:0,max:1,dflt:0,editType:"calc"},sort:{valType:"boolean",dflt:!0,editType:"calc"},direction:{valType:"enumerated",values:["clockwise","counterclockwise"],dflt:"counterclockwise",editType:"calc"},rotation:{valType:"number",min:-360,max:360,dflt:0,editType:"calc"},pull:{valType:"number",min:0,max:1,dflt:0,arrayOk:!0,editType:"calc"},_deprecated:{title:{valType:"string",dflt:"",editType:"calc"},titlefont:c({},u,{}),titleposition:{valType:"enumerated",values:["top left","top center","top right","middle center","bottom left","bottom center","bottom right"],editType:"calc"}}}},{"../../components/color/attributes":638,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/domain":855,"../../plots/font_attributes":856,"../../plots/template_attributes":899}],1166:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="pie",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":890}],1167:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("tinycolor2"),a=t("../../components/color"),o={};function s(t){return function(e,r){return!!e&&(!!(e=i(e)).isValid()&&(e=a.addOpacity(e,e.getAlpha()),t[r]||(t[r]=e),e))}}function l(t,e){var r,n=JSON.stringify(t),a=e[n];if(!a){for(a=t.slice(),r=0;r0){s=!0;break}}s||(o=0)}return{hasLabels:r,hasValues:a,len:o}}e.exports={handleLabelsAndValues:l,supplyDefaults:function(t,e,r,n){function c(r,n){return i.coerce(t,e,a,r,n)}var u=l(c("labels"),c("values")),f=u.len;if(e._hasLabels=u.hasLabels,e._hasValues=u.hasValues,!e._hasLabels&&e._hasValues&&(c("label0"),c("dlabel")),f){e._length=f,c("marker.line.width")&&c("marker.line.color"),c("marker.colors"),c("scalegroup");var h,p=c("text"),d=c("texttemplate");if(d||(h=c("textinfo",Array.isArray(p)?"text+percent":"percent")),c("hovertext"),c("hovertemplate"),d||h&&"none"!==h){var m=c("textposition");s(t,e,n,c,m,{moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1}),(Array.isArray(m)||"auto"===m||"outside"===m)&&c("automargin"),("inside"===m||"auto"===m||Array.isArray(m))&&c("insidetextorientation")}o(e,n,c);var g=c("hole");if(c("title.text")){var v=c("title.position",g?"middle center":"top center");g||"middle center"!==v||(e.title.position="top center"),i.coerceFont(c,"title.font",n.font)}c("sort"),c("direction"),c("rotation"),c("pull")}else e.visible=!1}}},{"../../lib":776,"../../plots/domain":855,"../bar/defaults":918,"./attributes":1165,"fast-isnumeric":242}],1169:[function(t,e,r){"use strict";var n=t("../../components/fx/helpers").appendArrayMultiPointValues;e.exports=function(t,e){var r={curveNumber:e.index,pointNumbers:t.pts,data:e._input,fullData:e,label:t.label,color:t.color,value:t.v,percent:t.percent,text:t.text,bbox:t.bbox,v:t.v};return 1===t.pts.length&&(r.pointNumber=r.i=t.pts[0]),n(r,e,t.pts),"funnelarea"===e.type&&(delete r.v,delete r.i),r}},{"../../components/fx/helpers":675}],1170:[function(t,e,r){"use strict";var n=t("../../lib");function i(t){return-1!==t.indexOf("e")?t.replace(/[.]?0+e/,"e"):-1!==t.indexOf(".")?t.replace(/[.]?0+$/,""):t}r.formatPiePercent=function(t,e){var r=i((100*t).toPrecision(3));return n.numSeparate(r,e)+"%"},r.formatPieValue=function(t,e){var r=i(t.toPrecision(10));return n.numSeparate(r,e)},r.getFirstFilled=function(t,e){if(Array.isArray(t))for(var r=0;r"),name:f.hovertemplate||-1!==h.indexOf("name")?f.name:void 0,idealAlign:t.pxmid[0]<0?"left":"right",color:g.castOption(_.bgcolor,t.pts)||t.color,borderColor:g.castOption(_.bordercolor,t.pts),fontFamily:g.castOption(w.family,t.pts),fontSize:g.castOption(w.size,t.pts),fontColor:g.castOption(w.color,t.pts),nameLength:g.castOption(_.namelength,t.pts),textAlign:g.castOption(_.align,t.pts),hovertemplate:g.castOption(f.hovertemplate,t.pts),hovertemplateLabels:t,eventData:[v(t,f)]},{container:r._hoverlayer.node(),outerContainer:r._paper.node(),gd:e,inOut_bbox:T}),t.bbox=T[0],c._hasHoverLabel=!0}c._hasHoverEvent=!0,e.emit("plotly_hover",{points:[v(t,f)],event:n.event})}})),t.on("mouseout",(function(t){var r=e._fullLayout,i=e._fullData[c.index],o=n.select(this).datum();c._hasHoverEvent&&(t.originalEvent=n.event,e.emit("plotly_unhover",{points:[v(o,i)],event:n.event}),c._hasHoverEvent=!1),c._hasHoverLabel&&(a.loneUnhover(r._hoverlayer.node()),c._hasHoverLabel=!1)})),t.on("click",(function(t){var r=e._fullLayout,i=e._fullData[c.index];e._dragging||!1===r.hovermode||(e._hoverdata=[v(t,i)],a.click(e,n.event))}))}function b(t,e,r){var n=g.castOption(t.insidetextfont.color,e.pts);!n&&t._input.textfont&&(n=g.castOption(t._input.textfont.color,e.pts));var i=g.castOption(t.insidetextfont.family,e.pts)||g.castOption(t.textfont.family,e.pts)||r.family,a=g.castOption(t.insidetextfont.size,e.pts)||g.castOption(t.textfont.size,e.pts)||r.size;return{color:n||o.contrast(e.color),family:i,size:a}}function _(t,e){for(var r,n,i=0;ie&&e>n||r=-4;g-=2)v(Math.PI*g,"tan");for(g=4;g>=-4;g-=2)v(Math.PI*(g+1),"tan")}if(f||p){for(g=4;g>=-4;g-=2)v(Math.PI*(g+1.5),"rad");for(g=4;g>=-4;g-=2)v(Math.PI*(g+.5),"rad")}}if(s||d||f){var y=Math.sqrt(t.width*t.width+t.height*t.height);if((a={scale:i*n*2/y,rCenter:1-i,rotate:0}).textPosAngle=(e.startangle+e.stopangle)/2,a.scale>=1)return a;m.push(a)}(d||p)&&((a=T(t,n,o,l,c)).textPosAngle=(e.startangle+e.stopangle)/2,m.push(a)),(d||h)&&((a=k(t,n,o,l,c)).textPosAngle=(e.startangle+e.stopangle)/2,m.push(a));for(var x=0,b=0,_=0;_=1)break}return m[x]}function T(t,e,r,n,i){e=Math.max(0,e-2*m);var a=t.width/t.height,o=S(a,n,e,r);return{scale:2*o/t.height,rCenter:A(a,o/e),rotate:M(i)}}function k(t,e,r,n,i){e=Math.max(0,e-2*m);var a=t.height/t.width,o=S(a,n,e,r);return{scale:2*o/t.width,rCenter:A(a,o/e),rotate:M(i+Math.PI/2)}}function A(t,e){return Math.cos(e)-t*e}function M(t){return(180/Math.PI*t+720)%180-90}function S(t,e,r,n){var i=t+1/(2*Math.tan(e));return r*Math.min(1/(Math.sqrt(i*i+.5)+i),n/(Math.sqrt(t*t+n/2)+t))}function E(t,e){return t.v!==e.vTotal||e.trace.hole?Math.min(1/(1+1/Math.sin(t.halfangle)),t.ring/2):1}function L(t,e){var r=e.pxmid[0],n=e.pxmid[1],i=t.width/2,a=t.height/2;return r<0&&(i*=-1),n<0&&(a*=-1),{scale:1,rCenter:1,rotate:0,x:i+Math.abs(a)*(i>0?1:-1)/2,y:a/(1+r*r/(n*n)),outside:!0}}function C(t,e){var r,n,i,a=t.trace,o={x:t.cx,y:t.cy},s={tx:0,ty:0};s.ty+=a.title.font.size,i=I(a),-1!==a.title.position.indexOf("top")?(o.y-=(1+i)*t.r,s.ty-=t.titleBox.height):-1!==a.title.position.indexOf("bottom")&&(o.y+=(1+i)*t.r);var l,c,u=(l=t.r,c=t.trace.aspectratio,l/(void 0===c?1:c)),f=e.w*(a.domain.x[1]-a.domain.x[0])/2;return-1!==a.title.position.indexOf("left")?(f+=u,o.x-=(1+i)*u,s.tx+=t.titleBox.width/2):-1!==a.title.position.indexOf("center")?f*=2:-1!==a.title.position.indexOf("right")&&(f+=u,o.x+=(1+i)*u,s.tx-=t.titleBox.width/2),r=f/t.titleBox.width,n=P(t,e)/t.titleBox.height,{x:o.x,y:o.y,scale:Math.min(r,n),tx:s.tx,ty:s.ty}}function P(t,e){var r=t.trace,n=e.h*(r.domain.y[1]-r.domain.y[0]);return Math.min(t.titleBox.height,n/2)}function I(t){var e,r=t.pull;if(!r)return 0;if(Array.isArray(r))for(r=0,e=0;er&&(r=t.pull[e]);return r}function O(t,e){for(var r=[],n=0;n1?(c=r.r,u=c/i.aspectratio):(u=r.r,c=u*i.aspectratio),c*=(1+i.baseratio)/2,l=c*u}o=Math.min(o,l/r.vTotal)}for(n=0;n")}if(a){var x=l.castOption(i,e.i,"texttemplate");if(x){var b=function(t){return{label:t.label,value:t.v,valueLabel:g.formatPieValue(t.v,n.separators),percent:t.v/r.vTotal,percentLabel:g.formatPiePercent(t.v/r.vTotal,n.separators),color:t.color,text:t.text,customdata:l.castOption(i,t.i,"customdata")}}(e),_=g.getFirstFilled(i.text,e.pts);(y(_)||""===_)&&(b.text=_),e.text=l.texttemplateString(x,b,t._fullLayout._d3locale,b,i._meta||{})}else e.text=""}}function R(t,e){var r=t.rotate*Math.PI/180,n=Math.cos(r),i=Math.sin(r),a=(e.left+e.right)/2,o=(e.top+e.bottom)/2;t.textX=a*n-o*i,t.textY=a*i+o*n,t.noCenter=!0}e.exports={plot:function(t,e){var r=t._fullLayout,a=r._size;d("pie",r),_(e,t),O(e,a);var h=l.makeTraceGroups(r._pielayer,e,"trace").each((function(e){var h=n.select(this),d=e[0],m=d.trace;!function(t){var e,r,n,i=t[0],a=i.r,o=i.trace,s=g.getRotationAngle(o.rotation),l=2*Math.PI/i.vTotal,c="px0",u="px1";if("counterclockwise"===o.direction){for(e=0;ei.vTotal/2?1:0,r.halfangle=Math.PI*Math.min(r.v/i.vTotal,.5),r.ring=1-o.hole,r.rInscribed=E(r,i))}(e),h.attr("stroke-linejoin","round"),h.each((function(){var v=n.select(this).selectAll("g.slice").data(e);v.enter().append("g").classed("slice",!0),v.exit().remove();var y=[[[],[]],[[],[]]],_=!1;v.each((function(i,a){if(i.hidden)n.select(this).selectAll("path,g").remove();else{i.pointNumber=i.i,i.curveNumber=m.index,y[i.pxmid[1]<0?0:1][i.pxmid[0]<0?0:1].push(i);var o=d.cx,c=d.cy,u=n.select(this),h=u.selectAll("path.surface").data([i]);if(h.enter().append("path").classed("surface",!0).style({"pointer-events":"all"}),u.call(x,t,e),m.pull){var v=+g.castOption(m.pull,i.pts)||0;v>0&&(o+=v*i.pxmid[0],c+=v*i.pxmid[1])}i.cxFinal=o,i.cyFinal=c;var T=m.hole;if(i.v===d.vTotal){var k="M"+(o+i.px0[0])+","+(c+i.px0[1])+C(i.px0,i.pxmid,!0,1)+C(i.pxmid,i.px0,!0,1)+"Z";T?h.attr("d","M"+(o+T*i.px0[0])+","+(c+T*i.px0[1])+C(i.px0,i.pxmid,!1,T)+C(i.pxmid,i.px0,!1,T)+"Z"+k):h.attr("d",k)}else{var A=C(i.px0,i.px1,!0,1);if(T){var M=1-T;h.attr("d","M"+(o+T*i.px1[0])+","+(c+T*i.px1[1])+C(i.px1,i.px0,!1,T)+"l"+M*i.px0[0]+","+M*i.px0[1]+A+"Z")}else h.attr("d","M"+o+","+c+"l"+i.px0[0]+","+i.px0[1]+A+"Z")}D(t,i,d);var S=g.castOption(m.textposition,i.pts),E=u.selectAll("g.slicetext").data(i.text&&"none"!==S?[0]:[]);E.enter().append("g").classed("slicetext",!0),E.exit().remove(),E.each((function(){var u=l.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),h=l.ensureUniformFontSize(t,"outside"===S?function(t,e,r){var n=g.castOption(t.outsidetextfont.color,e.pts)||g.castOption(t.textfont.color,e.pts)||r.color,i=g.castOption(t.outsidetextfont.family,e.pts)||g.castOption(t.textfont.family,e.pts)||r.family,a=g.castOption(t.outsidetextfont.size,e.pts)||g.castOption(t.textfont.size,e.pts)||r.size;return{color:n,family:i,size:a}}(m,i,r.font):b(m,i,r.font));u.text(i.text).attr({class:"slicetext",transform:"","text-anchor":"middle"}).call(s.font,h).call(f.convertToTspans,t);var v,y=s.bBox(u.node());if("outside"===S)v=L(y,i);else if(v=w(y,i,d),"auto"===S&&v.scale<1){var x=l.ensureUniformFontSize(t,m.outsidetextfont);u.call(s.font,x),v=L(y=s.bBox(u.node()),i)}var T=v.textPosAngle,k=void 0===T?i.pxmid:z(d.r,T);if(v.targetX=o+k[0]*v.rCenter+(v.x||0),v.targetY=c+k[1]*v.rCenter+(v.y||0),R(v,y),v.outside){var A=v.targetY;i.yLabelMin=A-y.height/2,i.yLabelMid=A,i.yLabelMax=A+y.height/2,i.labelExtraX=0,i.labelExtraY=0,_=!0}v.fontSize=h.size,p(m.type,v,r),e[a].transform=v,u.attr("transform",l.getTextTransform(v))}))}function C(t,e,r,n){var a=n*(e[0]-t[0]),o=n*(e[1]-t[1]);return"a"+n*d.r+","+n*d.r+" 0 "+i.largeArc+(r?" 1 ":" 0 ")+a+","+o}}));var T=n.select(this).selectAll("g.titletext").data(m.title.text?[0]:[]);if(T.enter().append("g").classed("titletext",!0),T.exit().remove(),T.each((function(){var e,r=l.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),i=m.title.text;m._meta&&(i=l.templateString(i,m._meta)),r.text(i).attr({class:"titletext",transform:"","text-anchor":"middle"}).call(s.font,m.title.font).call(f.convertToTspans,t),e="middle center"===m.title.position?function(t){var e=Math.sqrt(t.titleBox.width*t.titleBox.width+t.titleBox.height*t.titleBox.height);return{x:t.cx,y:t.cy,scale:t.trace.hole*t.r*2/e,tx:0,ty:-t.titleBox.height/2+t.trace.title.font.size}}(d):C(d,a),r.attr("transform",u(e.x,e.y)+c(Math.min(1,e.scale))+u(e.tx,e.ty))})),_&&function(t,e){var r,n,i,a,o,s,l,c,u,f,h,p,d;function m(t,e){return t.pxmid[1]-e.pxmid[1]}function v(t,e){return e.pxmid[1]-t.pxmid[1]}function y(t,r){r||(r={});var i,c,u,h,p=r.labelExtraY+(n?r.yLabelMax:r.yLabelMin),d=n?t.yLabelMin:t.yLabelMax,m=n?t.yLabelMax:t.yLabelMin,v=t.cyFinal+o(t.px0[1],t.px1[1]),y=p-d;if(y*l>0&&(t.labelExtraY=y),Array.isArray(e.pull))for(c=0;c=(g.castOption(e.pull,u.pts)||0)||((t.pxmid[1]-u.pxmid[1])*l>0?(y=u.cyFinal+o(u.px0[1],u.px1[1])-d-t.labelExtraY)*l>0&&(t.labelExtraY+=y):(m+t.labelExtraY-v)*l>0&&(i=3*s*Math.abs(c-f.indexOf(t)),(h=u.cxFinal+a(u.px0[0],u.px1[0])+i-(t.cxFinal+t.pxmid[0])-t.labelExtraX)*s>0&&(t.labelExtraX+=h)))}for(n=0;n<2;n++)for(i=n?m:v,o=n?Math.max:Math.min,l=n?1:-1,r=0;r<2;r++){for(a=r?Math.max:Math.min,s=r?1:-1,(c=t[n][r]).sort(i),u=t[1-n][r],f=u.concat(c),p=[],h=0;hMath.abs(f)?s+="l"+f*t.pxmid[0]/t.pxmid[1]+","+f+"H"+(a+t.labelExtraX+c):s+="l"+t.labelExtraX+","+u+"v"+(f-u)+"h"+c}else s+="V"+(t.yLabelMid+t.labelExtraY)+"h"+c;l.ensureSingle(r,"path","textline").call(o.stroke,e.outsidetextfont.color).attr({"stroke-width":Math.min(2,e.outsidetextfont.size/8),d:s,fill:"none"})}else r.select("path.textline").remove()}))}(v,m),_&&m.automargin){var k=s.bBox(h.node()),A=m.domain,M=a.w*(A.x[1]-A.x[0]),S=a.h*(A.y[1]-A.y[0]),E=(.5*M-d.r)/a.w,P=(.5*S-d.r)/a.h;i.autoMargin(t,"pie."+m.uid+".automargin",{xl:A.x[0]-E,xr:A.x[1]+E,yb:A.y[0]-P,yt:A.y[1]+P,l:Math.max(d.cx-d.r-k.left,0),r:Math.max(k.right-(d.cx+d.r),0),b:Math.max(k.bottom-(d.cy+d.r),0),t:Math.max(d.cy-d.r-k.top,0),pad:5})}}))}));setTimeout((function(){h.selectAll("tspan").each((function(){var t=n.select(this);t.attr("dy")&&t.attr("dy",t.attr("dy"))}))}),0)},formatSliceLabel:D,transformInsideText:w,determineInsideTextFont:b,positionTitleOutside:C,prerenderTitles:_,layoutAreas:O,attachFxHandlers:x,computeTransform:R}},{"../../components/color":639,"../../components/drawing":661,"../../components/fx":679,"../../lib":776,"../../lib/svg_text_utils":802,"../../plots/plots":890,"../bar/constants":916,"../bar/uniform_text":930,"./event_data":1169,"./helpers":1170,"@plotly/d3":58}],1175:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("./style_one"),a=t("../bar/uniform_text").resizeText;e.exports=function(t){var e=t._fullLayout._pielayer.selectAll(".trace");a(t,e,"pie"),e.each((function(t){var e=t[0].trace,r=n.select(this);r.style({opacity:e.opacity}),r.selectAll("path.surface").each((function(t){n.select(this).call(i,t,e)}))}))}},{"../bar/uniform_text":930,"./style_one":1176,"@plotly/d3":58}],1176:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("./helpers").castOption;e.exports=function(t,e,r){var a=r.marker.line,o=i(a.color,e.pts)||n.defaultLine,s=i(a.width,e.pts)||0;t.style("stroke-width",s).call(n.fill,e.color).call(n.stroke,o)}},{"../../components/color":639,"./helpers":1170}],1177:[function(t,e,r){"use strict";var n=t("../scatter/attributes");e.exports={x:n.x,y:n.y,xy:{valType:"data_array",editType:"calc"},indices:{valType:"data_array",editType:"calc"},xbounds:{valType:"data_array",editType:"calc"},ybounds:{valType:"data_array",editType:"calc"},text:n.text,marker:{color:{valType:"color",arrayOk:!1,editType:"calc"},opacity:{valType:"number",min:0,max:1,dflt:1,arrayOk:!1,editType:"calc"},blend:{valType:"boolean",dflt:null,editType:"calc"},sizemin:{valType:"number",min:.1,max:2,dflt:.5,editType:"calc"},sizemax:{valType:"number",min:.1,dflt:20,editType:"calc"},border:{color:{valType:"color",arrayOk:!1,editType:"calc"},arearatio:{valType:"number",min:0,max:1,dflt:0,editType:"calc"},editType:"calc"},editType:"calc"},transforms:void 0}},{"../scatter/attributes":1191}],1178:[function(t,e,r){"use strict";var n=t("gl-pointcloud2d"),i=t("../../lib/str2rgbarray"),a=t("../../plots/cartesian/autorange").findExtremes,o=t("../scatter/get_trace_color");function s(t,e){this.scene=t,this.uid=e,this.type="pointcloud",this.pickXData=[],this.pickYData=[],this.xData=[],this.yData=[],this.textLabels=[],this.color="rgb(0, 0, 0)",this.name="",this.hoverinfo="all",this.idToIndex=new Int32Array(0),this.bounds=[0,0,0,0],this.pointcloudOptions={positions:new Float32Array(0),idToIndex:this.idToIndex,sizemin:.5,sizemax:12,color:[0,0,0,1],areaRatio:1,borderColor:[0,0,0,1]},this.pointcloud=n(t.glplot,this.pointcloudOptions),this.pointcloud._trace=this}var l=s.prototype;l.handlePick=function(t){var e=this.idToIndex[t.pointId];return{trace:this,dataCoord:t.dataCoord,traceCoord:this.pickXYData?[this.pickXYData[2*e],this.pickXYData[2*e+1]]:[this.pickXData[e],this.pickYData[e]],textLabel:Array.isArray(this.textLabels)?this.textLabels[e]:this.textLabels,color:this.color,name:this.name,pointIndex:e,hoverinfo:this.hoverinfo}},l.update=function(t){this.index=t.index,this.textLabels=t.text,this.name=t.name,this.hoverinfo=t.hoverinfo,this.bounds=[1/0,1/0,-1/0,-1/0],this.updateFast(t),this.color=o(t,{})},l.updateFast=function(t){var e,r,n,o,s,l,c=this.xData=this.pickXData=t.x,u=this.yData=this.pickYData=t.y,f=this.pickXYData=t.xy,h=t.xbounds&&t.ybounds,p=t.indices,d=this.bounds;if(f){if(n=f,e=f.length>>>1,h)d[0]=t.xbounds[0],d[2]=t.xbounds[1],d[1]=t.ybounds[0],d[3]=t.ybounds[1];else for(l=0;ld[2]&&(d[2]=o),sd[3]&&(d[3]=s);if(p)r=p;else for(r=new Int32Array(e),l=0;ld[2]&&(d[2]=o),sd[3]&&(d[3]=s);this.idToIndex=r,this.pointcloudOptions.idToIndex=r,this.pointcloudOptions.positions=n;var m=i(t.marker.color),g=i(t.marker.border.color),v=t.opacity*t.marker.opacity;m[3]*=v,this.pointcloudOptions.color=m;var y=t.marker.blend;if(null===y){y=c.length<100||u.length<100}this.pointcloudOptions.blend=y,g[3]*=v,this.pointcloudOptions.borderColor=g;var x=t.marker.sizemin,b=Math.max(t.marker.sizemax,t.marker.sizemin);this.pointcloudOptions.sizeMin=x,this.pointcloudOptions.sizeMax=b,this.pointcloudOptions.areaRatio=t.marker.border.arearatio,this.pointcloud.update(this.pointcloudOptions);var _=this.scene.xaxis,w=this.scene.yaxis,T=b/2||.5;t._extremes[_._id]=a(_,[d[0],d[2]],{ppad:T}),t._extremes[w._id]=a(w,[d[1],d[3]],{ppad:T})},l.dispose=function(){this.pointcloud.dispose()},e.exports=function(t,e){var r=new s(t,e.uid);return r.update(e),r}},{"../../lib/str2rgbarray":801,"../../plots/cartesian/autorange":826,"../scatter/get_trace_color":1201,"gl-pointcloud2d":314}],1179:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes");e.exports=function(t,e,r){function a(r,a){return n.coerce(t,e,i,r,a)}a("x"),a("y"),a("xbounds"),a("ybounds"),t.xy&&t.xy instanceof Float32Array&&(e.xy=t.xy),t.indices&&t.indices instanceof Int32Array&&(e.indices=t.indices),a("text"),a("marker.color",r),a("marker.opacity"),a("marker.blend"),a("marker.sizemin"),a("marker.sizemax"),a("marker.border.color",r),a("marker.border.arearatio"),e._length=null}},{"../../lib":776,"./attributes":1177}],1180:[function(t,e,r){"use strict";["*pointcloud* trace is deprecated!","Please consider switching to the *scattergl* trace type."].join(" ");e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("../scatter3d/calc"),plot:t("./convert"),moduleType:"trace",name:"pointcloud",basePlotModule:t("../../plots/gl2d"),categories:["gl","gl2d","showLegend"],meta:{}}},{"../../plots/gl2d":867,"../scatter3d/calc":1220,"./attributes":1177,"./convert":1178,"./defaults":1179}],1181:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("../../plots/attributes"),a=t("../../components/color/attributes"),o=t("../../components/fx/attributes"),s=t("../../plots/domain").attributes,l=t("../../plots/template_attributes").hovertemplateAttrs,c=t("../../components/colorscale/attributes"),u=t("../../plot_api/plot_template").templatedArray,f=t("../../plots/cartesian/axis_format_attributes").descriptionOnlyNumbers,h=t("../../lib/extend").extendFlat,p=t("../../plot_api/edit_types").overrideAll;(e.exports=p({hoverinfo:h({},i.hoverinfo,{flags:[],arrayOk:!1}),hoverlabel:o.hoverlabel,domain:s({name:"sankey",trace:!0}),orientation:{valType:"enumerated",values:["v","h"],dflt:"h"},valueformat:{valType:"string",dflt:".3s",description:f("value")},valuesuffix:{valType:"string",dflt:""},arrangement:{valType:"enumerated",values:["snap","perpendicular","freeform","fixed"],dflt:"snap"},textfont:n({}),customdata:void 0,node:{label:{valType:"data_array",dflt:[]},groups:{valType:"info_array",impliedEdits:{x:[],y:[]},dimensions:2,freeLength:!0,dflt:[],items:{valType:"number",editType:"calc"}},x:{valType:"data_array",dflt:[]},y:{valType:"data_array",dflt:[]},color:{valType:"color",arrayOk:!0},customdata:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:a.defaultLine,arrayOk:!0},width:{valType:"number",min:0,dflt:.5,arrayOk:!0}},pad:{valType:"number",arrayOk:!1,min:0,dflt:20},thickness:{valType:"number",arrayOk:!1,min:1,dflt:20},hoverinfo:{valType:"enumerated",values:["all","none","skip"],dflt:"all"},hoverlabel:o.hoverlabel,hovertemplate:l({},{keys:["value","label"]})},link:{label:{valType:"data_array",dflt:[]},color:{valType:"color",arrayOk:!0},customdata:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:a.defaultLine,arrayOk:!0},width:{valType:"number",min:0,dflt:0,arrayOk:!0}},source:{valType:"data_array",dflt:[]},target:{valType:"data_array",dflt:[]},value:{valType:"data_array",dflt:[]},hoverinfo:{valType:"enumerated",values:["all","none","skip"],dflt:"all"},hoverlabel:o.hoverlabel,hovertemplate:l({},{keys:["value","label"]}),colorscales:u("concentrationscales",{editType:"calc",label:{valType:"string",editType:"calc",dflt:""},cmax:{valType:"number",editType:"calc",dflt:1},cmin:{valType:"number",editType:"calc",dflt:0},colorscale:h(c().colorscale,{dflt:[[0,"white"],[1,"black"]]})})}},"calc","nested")).transforms=void 0},{"../../components/color/attributes":638,"../../components/colorscale/attributes":646,"../../components/fx/attributes":670,"../../lib/extend":766,"../../plot_api/edit_types":809,"../../plot_api/plot_template":816,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/domain":855,"../../plots/font_attributes":856,"../../plots/template_attributes":899}],1182:[function(t,e,r){"use strict";var n=t("../../plot_api/edit_types").overrideAll,i=t("../../plots/get_data").getModuleCalcData,a=t("./plot"),o=t("../../components/fx/layout_attributes"),s=t("../../lib/setcursor"),l=t("../../components/dragelement"),c=t("../../plots/cartesian/select").prepSelect,u=t("../../lib"),f=t("../../registry");function h(t,e){var r=t._fullData[e],n=t._fullLayout,i=n.dragmode,a="pan"===n.dragmode?"move":"crosshair",o=r._bgRect;if("pan"!==i&&"zoom"!==i){s(o,a);var h={_id:"x",c2p:u.identity,_offset:r._sankey.translateX,_length:r._sankey.width},p={_id:"y",c2p:u.identity,_offset:r._sankey.translateY,_length:r._sankey.height},d={gd:t,element:o.node(),plotinfo:{id:e,xaxis:h,yaxis:p,fillRangeItems:u.noop},subplot:e,xaxes:[h],yaxes:[p],doneFnCompleted:function(r){var n,i=t._fullData[e],a=i.node.groups.slice(),o=[];function s(t){for(var e=i._sankey.graph.nodes,r=0;ry&&(y=a.source[e]),a.target[e]>y&&(y=a.target[e]);var x,b=y+1;t.node._count=b;var _=t.node.groups,w={};for(e=0;e<_.length;e++){var T=_[e];for(x=0;x0&&s(E,b)&&s(L,b)&&(!w.hasOwnProperty(E)||!w.hasOwnProperty(L)||w[E]!==w[L])){w.hasOwnProperty(L)&&(L=w[L]),w.hasOwnProperty(E)&&(E=w[E]),L=+L,h[E=+E]=h[L]=!0;var C="";a.label&&a.label[e]&&(C=a.label[e]);var P=null;C&&p.hasOwnProperty(C)&&(P=p[C]),c.push({pointNumber:e,label:C,color:u?a.color[e]:a.color,customdata:f?a.customdata[e]:a.customdata,concentrationscale:P,source:E,target:L,value:+S}),M.source.push(E),M.target.push(L)}}var I=b+_.length,O=o(r.color),z=o(r.customdata),D=[];for(e=0;eb-1,childrenNodes:[],pointNumber:e,label:R,color:O?r.color[e]:r.color,customdata:z?r.customdata[e]:r.customdata})}var F=!1;return function(t,e,r){for(var a=i.init2dArray(t,0),o=0;o1}))}(I,M.source,M.target)&&(F=!0),{circular:F,links:c,nodes:D,groups:_,groupLookup:w}}e.exports=function(t,e){var r=c(e);return a({circular:r.circular,_nodes:r.nodes,_links:r.links,_groups:r.groups,_groupLookup:r.groupLookup})}},{"../../components/colorscale":651,"../../lib":776,"../../lib/gup":773,"strongly-connected-components":564}],1184:[function(t,e,r){"use strict";e.exports={nodeTextOffsetHorizontal:4,nodeTextOffsetVertical:3,nodePadAcross:10,sankeyIterations:50,forceIterations:5,forceTicksPerFrame:10,duration:500,ease:"linear",cn:{sankey:"sankey",sankeyLinks:"sankey-links",sankeyLink:"sankey-link",sankeyNodeSet:"sankey-node-set",sankeyNode:"sankey-node",nodeRect:"node-rect",nodeLabel:"node-label"}}},{}],1185:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../components/color"),o=t("tinycolor2"),s=t("../../plots/domain").defaults,l=t("../../components/fx/hoverlabel_defaults"),c=t("../../plot_api/plot_template"),u=t("../../plots/array_container_defaults");function f(t,e){function r(r,a){return n.coerce(t,e,i.link.colorscales,r,a)}r("label"),r("cmin"),r("cmax"),r("colorscale")}e.exports=function(t,e,r,h){function p(r,a){return n.coerce(t,e,i,r,a)}var d=n.extendDeep(h.hoverlabel,t.hoverlabel),m=t.node,g=c.newContainer(e,"node");function v(t,e){return n.coerce(m,g,i.node,t,e)}v("label"),v("groups"),v("x"),v("y"),v("pad"),v("thickness"),v("line.color"),v("line.width"),v("hoverinfo",t.hoverinfo),l(m,g,v,d),v("hovertemplate");var y=h.colorway;v("color",g.label.map((function(t,e){return a.addOpacity(function(t){return y[t%y.length]}(e),.8)}))),v("customdata");var x=t.link||{},b=c.newContainer(e,"link");function _(t,e){return n.coerce(x,b,i.link,t,e)}_("label"),_("source"),_("target"),_("value"),_("line.color"),_("line.width"),_("hoverinfo",t.hoverinfo),l(x,b,_,d),_("hovertemplate");var w,T=o(h.paper_bgcolor).getLuminance()<.333?"rgba(255, 255, 255, 0.6)":"rgba(0, 0, 0, 0.2)";_("color",n.repeat(T,b.value.length)),_("customdata"),u(x,b,{name:"colorscales",handleItemDefaults:f}),s(e,h,p),p("orientation"),p("valueformat"),p("valuesuffix"),g.x.length&&g.y.length&&(w="freeform"),p("arrangement",w),n.coerceFont(p,"textfont",n.extendFlat({},h.font)),e._length=null}},{"../../components/color":639,"../../components/fx/hoverlabel_defaults":677,"../../lib":776,"../../plot_api/plot_template":816,"../../plots/array_container_defaults":822,"../../plots/domain":855,"./attributes":1181,tinycolor2:572}],1186:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),moduleType:"trace",name:"sankey",basePlotModule:t("./base_plot"),selectPoints:t("./select.js"),categories:["noOpacity"],meta:{}}},{"./attributes":1181,"./base_plot":1182,"./calc":1183,"./defaults":1185,"./plot":1187,"./select.js":1189}],1187:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.numberFormat,o=t("./render"),s=t("../../components/fx"),l=t("../../components/color"),c=t("./constants").cn,u=i._;function f(t){return""!==t}function h(t,e){return t.filter((function(t){return t.key===e.traceId}))}function p(t,e){n.select(t).select("path").style("fill-opacity",e),n.select(t).select("rect").style("fill-opacity",e)}function d(t){n.select(t).select("text.name").style("fill","black")}function m(t){return function(e){return-1!==t.node.sourceLinks.indexOf(e.link)||-1!==t.node.targetLinks.indexOf(e.link)}}function g(t){return function(e){return-1!==e.node.sourceLinks.indexOf(t.link)||-1!==e.node.targetLinks.indexOf(t.link)}}function v(t,e,r){e&&r&&h(r,e).selectAll("."+c.sankeyLink).filter(m(e)).call(x.bind(0,e,r,!1))}function y(t,e,r){e&&r&&h(r,e).selectAll("."+c.sankeyLink).filter(m(e)).call(b.bind(0,e,r,!1))}function x(t,e,r,n){var i=n.datum().link.label;n.style("fill-opacity",(function(t){if(!t.link.concentrationscale)return.4})),i&&h(e,t).selectAll("."+c.sankeyLink).filter((function(t){return t.link.label===i})).style("fill-opacity",(function(t){if(!t.link.concentrationscale)return.4})),r&&h(e,t).selectAll("."+c.sankeyNode).filter(g(t)).call(v)}function b(t,e,r,n){var i=n.datum().link.label;n.style("fill-opacity",(function(t){return t.tinyColorAlpha})),i&&h(e,t).selectAll("."+c.sankeyLink).filter((function(t){return t.link.label===i})).style("fill-opacity",(function(t){return t.tinyColorAlpha})),r&&h(e,t).selectAll(c.sankeyNode).filter(g(t)).call(y)}function _(t,e){var r=t.hoverlabel||{},n=i.nestedProperty(r,e).get();return!Array.isArray(n)&&n}e.exports=function(t,e){for(var r=t._fullLayout,i=r._paper,h=r._size,m=0;m"),color:_(o,"bgcolor")||l.addOpacity(m.color,1),borderColor:_(o,"bordercolor"),fontFamily:_(o,"font.family"),fontSize:_(o,"font.size"),fontColor:_(o,"font.color"),nameLength:_(o,"namelength"),textAlign:_(o,"align"),idealAlign:n.event.x"),color:_(o,"bgcolor")||i.tinyColorHue,borderColor:_(o,"bordercolor"),fontFamily:_(o,"font.family"),fontSize:_(o,"font.size"),fontColor:_(o,"font.color"),nameLength:_(o,"namelength"),textAlign:_(o,"align"),idealAlign:"left",hovertemplate:o.hovertemplate,hovertemplateLabels:y,eventData:[i.node]},{container:r._hoverlayer.node(),outerContainer:r._paper.node(),gd:t});p(w,.85),d(w)}}},unhover:function(e,i,a){!1!==t._fullLayout.hovermode&&(n.select(e).call(y,i,a),"skip"!==i.node.trace.node.hoverinfo&&(i.node.fullData=i.node.trace,t.emit("plotly_unhover",{event:n.event,points:[i.node]})),s.loneUnhover(r._hoverlayer.node()))},select:function(e,r,i){var a=r.node;a.originalEvent=n.event,t._hoverdata=[a],n.select(e).call(y,r,i),s.click(t,{target:!0})}}})}},{"../../components/color":639,"../../components/fx":679,"../../lib":776,"./constants":1184,"./render":1188,"@plotly/d3":58}],1188:[function(t,e,r){"use strict";var n=t("d3-force"),i=t("d3-interpolate").interpolateNumber,a=t("@plotly/d3"),o=t("@plotly/d3-sankey"),s=t("@plotly/d3-sankey-circular"),l=t("./constants"),c=t("tinycolor2"),u=t("../../components/color"),f=t("../../components/drawing"),h=t("../../lib"),p=h.strTranslate,d=h.strRotate,m=t("../../lib/gup"),g=m.keyFun,v=m.repeat,y=m.unwrap,x=t("../../lib/svg_text_utils"),b=t("../../registry"),_=t("../../constants/alignment"),w=_.CAP_SHIFT,T=_.LINE_SPACING;function k(t,e,r){var n,i=y(e),a=i.trace,u=a.domain,f="h"===a.orientation,p=a.node.pad,d=a.node.thickness,m=t.width*(u.x[1]-u.x[0]),g=t.height*(u.y[1]-u.y[0]),v=i._nodes,x=i._links,b=i.circular;(n=b?s.sankeyCircular().circularLinkGap(0):o.sankey()).iterations(l.sankeyIterations).size(f?[m,g]:[g,m]).nodeWidth(d).nodePadding(p).nodeId((function(t){return t.pointNumber})).nodes(v).links(x);var _,w,T,k=n();for(var A in n.nodePadding()=i||(r=i-e.y0)>1e-6&&(e.y0+=r,e.y1+=r),i=e.y1+p}))}(function(t){var e,r,n=t.map((function(t,e){return{x0:t.x0,index:e}})).sort((function(t,e){return t.x0-e.x0})),i=[],a=-1,o=-1/0;for(_=0;_o+d&&(a+=1,e=s.x0),o=s.x0,i[a]||(i[a]=[]),i[a].push(s),r=e-s.x0,s.x0+=r,s.x1+=r}return i}(v=k.nodes));n.update(k)}return{circular:b,key:r,trace:a,guid:h.randstr(),horizontal:f,width:m,height:g,nodePad:a.node.pad,nodeLineColor:a.node.line.color,nodeLineWidth:a.node.line.width,linkLineColor:a.link.line.color,linkLineWidth:a.link.line.width,valueFormat:a.valueformat,valueSuffix:a.valuesuffix,textFont:a.textfont,translateX:u.x[0]*t.width+t.margin.l,translateY:t.height-u.y[1]*t.height+t.margin.t,dragParallel:f?g:m,dragPerpendicular:f?m:g,arrangement:a.arrangement,sankey:n,graph:k,forceLayouts:{},interactionState:{dragInProgress:!1,hovered:!1}}}function A(t,e,r){var n=c(e.color),i=e.source.label+"|"+e.target.label+"__"+r;return e.trace=t.trace,e.curveNumber=t.trace.index,{circular:t.circular,key:i,traceId:t.key,pointNumber:e.pointNumber,link:e,tinyColorHue:u.tinyRGB(n),tinyColorAlpha:n.getAlpha(),linkPath:M,linkLineColor:t.linkLineColor,linkLineWidth:t.linkLineWidth,valueFormat:t.valueFormat,valueSuffix:t.valueSuffix,sankey:t.sankey,parent:t,interactionState:t.interactionState,flow:e.flow}}function M(){return function(t){if(t.link.circular)return e=t.link,r=e.width/2,n=e.circularPathData,"top"===e.circularLinkType?"M "+n.targetX+" "+(n.targetY+r)+" L"+n.rightInnerExtent+" "+(n.targetY+r)+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightSmallArcRadius+r)+" 0 0 1 "+(n.rightFullExtent-r)+" "+(n.targetY-n.rightSmallArcRadius)+"L"+(n.rightFullExtent-r)+" "+n.verticalRightInnerExtent+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightLargeArcRadius+r)+" 0 0 1 "+n.rightInnerExtent+" "+(n.verticalFullExtent-r)+"L"+n.leftInnerExtent+" "+(n.verticalFullExtent-r)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftLargeArcRadius+r)+" 0 0 1 "+(n.leftFullExtent+r)+" "+n.verticalLeftInnerExtent+"L"+(n.leftFullExtent+r)+" "+(n.sourceY-n.leftSmallArcRadius)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftSmallArcRadius+r)+" 0 0 1 "+n.leftInnerExtent+" "+(n.sourceY+r)+"L"+n.sourceX+" "+(n.sourceY+r)+"L"+n.sourceX+" "+(n.sourceY-r)+"L"+n.leftInnerExtent+" "+(n.sourceY-r)+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftSmallArcRadius-r)+" 0 0 0 "+(n.leftFullExtent-r)+" "+(n.sourceY-n.leftSmallArcRadius)+"L"+(n.leftFullExtent-r)+" "+n.verticalLeftInnerExtent+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftLargeArcRadius-r)+" 0 0 0 "+n.leftInnerExtent+" "+(n.verticalFullExtent+r)+"L"+n.rightInnerExtent+" "+(n.verticalFullExtent+r)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightLargeArcRadius-r)+" 0 0 0 "+(n.rightFullExtent+r)+" "+n.verticalRightInnerExtent+"L"+(n.rightFullExtent+r)+" "+(n.targetY-n.rightSmallArcRadius)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightSmallArcRadius-r)+" 0 0 0 "+n.rightInnerExtent+" "+(n.targetY-r)+"L"+n.targetX+" "+(n.targetY-r)+"Z":"M "+n.targetX+" "+(n.targetY-r)+" L"+n.rightInnerExtent+" "+(n.targetY-r)+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightSmallArcRadius+r)+" 0 0 0 "+(n.rightFullExtent-r)+" "+(n.targetY+n.rightSmallArcRadius)+"L"+(n.rightFullExtent-r)+" "+n.verticalRightInnerExtent+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightLargeArcRadius+r)+" 0 0 0 "+n.rightInnerExtent+" "+(n.verticalFullExtent+r)+"L"+n.leftInnerExtent+" "+(n.verticalFullExtent+r)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftLargeArcRadius+r)+" 0 0 0 "+(n.leftFullExtent+r)+" "+n.verticalLeftInnerExtent+"L"+(n.leftFullExtent+r)+" "+(n.sourceY+n.leftSmallArcRadius)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftSmallArcRadius+r)+" 0 0 0 "+n.leftInnerExtent+" "+(n.sourceY-r)+"L"+n.sourceX+" "+(n.sourceY-r)+"L"+n.sourceX+" "+(n.sourceY+r)+"L"+n.leftInnerExtent+" "+(n.sourceY+r)+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftSmallArcRadius-r)+" 0 0 1 "+(n.leftFullExtent-r)+" "+(n.sourceY+n.leftSmallArcRadius)+"L"+(n.leftFullExtent-r)+" "+n.verticalLeftInnerExtent+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftLargeArcRadius-r)+" 0 0 1 "+n.leftInnerExtent+" "+(n.verticalFullExtent-r)+"L"+n.rightInnerExtent+" "+(n.verticalFullExtent-r)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightLargeArcRadius-r)+" 0 0 1 "+(n.rightFullExtent+r)+" "+n.verticalRightInnerExtent+"L"+(n.rightFullExtent+r)+" "+(n.targetY+n.rightSmallArcRadius)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightSmallArcRadius-r)+" 0 0 1 "+n.rightInnerExtent+" "+(n.targetY+r)+"L"+n.targetX+" "+(n.targetY+r)+"Z";var e,r,n,a=t.link.source.x1,o=t.link.target.x0,s=i(a,o),l=s(.5),c=s(.5),u=t.link.y0-t.link.width/2,f=t.link.y0+t.link.width/2,h=t.link.y1-t.link.width/2,p=t.link.y1+t.link.width/2;return"M"+a+","+u+"C"+l+","+u+" "+c+","+h+" "+o+","+h+"L"+o+","+p+"C"+c+","+p+" "+l+","+f+" "+a+","+f+"Z"}}function S(t,e){var r=c(e.color),n=l.nodePadAcross,i=t.nodePad/2;e.dx=e.x1-e.x0,e.dy=e.y1-e.y0;var a=e.dx,o=Math.max(.5,e.dy),s="node_"+e.pointNumber;return e.group&&(s=h.randstr()),e.trace=t.trace,e.curveNumber=t.trace.index,{index:e.pointNumber,key:s,partOfGroup:e.partOfGroup||!1,group:e.group,traceId:t.key,trace:t.trace,node:e,nodePad:t.nodePad,nodeLineColor:t.nodeLineColor,nodeLineWidth:t.nodeLineWidth,textFont:t.textFont,size:t.horizontal?t.height:t.width,visibleWidth:Math.ceil(a),visibleHeight:o,zoneX:-n,zoneY:-i,zoneWidth:a+2*n,zoneHeight:o+2*i,labelY:t.horizontal?e.dy/2+1:e.dx/2+1,left:1===e.originalLayer,sizeAcross:t.width,forceLayouts:t.forceLayouts,horizontal:t.horizontal,darkBackground:r.getBrightness()<=128,tinyColorHue:u.tinyRGB(r),tinyColorAlpha:r.getAlpha(),valueFormat:t.valueFormat,valueSuffix:t.valueSuffix,sankey:t.sankey,graph:t.graph,arrangement:t.arrangement,uniqueNodeLabelPathId:[t.guid,t.key,s].join("_"),interactionState:t.interactionState,figure:t}}function E(t){t.attr("transform",(function(t){return p(t.node.x0.toFixed(3),t.node.y0.toFixed(3))}))}function L(t){t.call(E)}function C(t,e){t.call(L),e.attr("d",M())}function P(t){t.attr("width",(function(t){return t.node.x1-t.node.x0})).attr("height",(function(t){return t.visibleHeight}))}function I(t){return t.link.width>1||t.linkLineWidth>0}function O(t){return p(t.translateX,t.translateY)+(t.horizontal?"matrix(1 0 0 1 0 0)":"matrix(0 1 1 0 0 0)")}function z(t,e,r){t.on(".basic",null).on("mouseover.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.hover(this,t,e),t.interactionState.hovered=[this,t])})).on("mousemove.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.follow(this,t),t.interactionState.hovered=[this,t])})).on("mouseout.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.unhover(this,t,e),t.interactionState.hovered=!1)})).on("click.basic",(function(t){t.interactionState.hovered&&(r.unhover(this,t,e),t.interactionState.hovered=!1),t.interactionState.dragInProgress||t.partOfGroup||r.select(this,t,e)}))}function D(t,e,r,i){var o=a.behavior.drag().origin((function(t){return{x:t.node.x0+t.visibleWidth/2,y:t.node.y0+t.visibleHeight/2}})).on("dragstart",(function(a){if("fixed"!==a.arrangement&&(h.ensureSingle(i._fullLayout._infolayer,"g","dragcover",(function(t){i._fullLayout._dragCover=t})),h.raiseToTop(this),a.interactionState.dragInProgress=a.node,F(a.node),a.interactionState.hovered&&(r.nodeEvents.unhover.apply(0,a.interactionState.hovered),a.interactionState.hovered=!1),"snap"===a.arrangement)){var o=a.traceId+"|"+a.key;a.forceLayouts[o]?a.forceLayouts[o].alpha(1):function(t,e,r,i){!function(t){for(var e=0;e0&&n.forceLayouts[e].alpha(0)}}(0,e,a,r)).stop()}(0,o,a),function(t,e,r,n,i){window.requestAnimationFrame((function a(){var o;for(o=0;o0)window.requestAnimationFrame(a);else{var s=r.node.originalX;r.node.x0=s-r.visibleWidth/2,r.node.x1=s+r.visibleWidth/2,R(r,i)}}))}(t,e,a,o,i)}})).on("drag",(function(r){if("fixed"!==r.arrangement){var n=a.event.x,i=a.event.y;"snap"===r.arrangement?(r.node.x0=n-r.visibleWidth/2,r.node.x1=n+r.visibleWidth/2,r.node.y0=i-r.visibleHeight/2,r.node.y1=i+r.visibleHeight/2):("freeform"===r.arrangement&&(r.node.x0=n-r.visibleWidth/2,r.node.x1=n+r.visibleWidth/2),i=Math.max(0,Math.min(r.size-r.visibleHeight/2,i)),r.node.y0=i-r.visibleHeight/2,r.node.y1=i+r.visibleHeight/2),F(r.node),"snap"!==r.arrangement&&(r.sankey.update(r.graph),C(t.filter(B(r)),e))}})).on("dragend",(function(t){if("fixed"!==t.arrangement){t.interactionState.dragInProgress=!1;for(var e=0;el&&C[v].gap;)v--;for(x=C[v].s,m=C.length-1;m>v;m--)C[m].s=x;for(;lM[u]&&u=0;i--){var a=t[i];if("scatter"===a.type&&a.xaxis===r.xaxis&&a.yaxis===r.yaxis){a.opacity=void 0;break}}}}}},{}],1198:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./attributes"),o=t("./constants"),s=t("./subtypes"),l=t("./xy_defaults"),c=t("./period_defaults"),u=t("./stack_defaults"),f=t("./marker_defaults"),h=t("./line_defaults"),p=t("./line_shape_defaults"),d=t("./text_defaults"),m=t("./fillcolor_defaults");e.exports=function(t,e,r,g){function v(r,i){return n.coerce(t,e,a,r,i)}var y=l(t,e,g,v);if(y||(e.visible=!1),e.visible){c(t,e,g,v),v("xhoverformat"),v("yhoverformat");var x=u(t,e,g,v),b=!x&&y=Math.min(e,r)&&d<=Math.max(e,r)?0:1/0}var n=Math.max(3,t.mrc||0),i=1-1/n,a=Math.abs(h.c2p(t.x)-d);return a=Math.min(e,r)&&m<=Math.max(e,r)?0:1/0}var n=Math.max(3,t.mrc||0),i=1-1/n,a=Math.abs(p.c2p(t.y)-m);return aW!=(N=z[I][1])>=W&&(R=z[I-1][0],F=z[I][0],N-B&&(D=R+(F-R)*(W-B)/(N-B),H=Math.min(H,D),q=Math.max(q,D)));H=Math.max(H,0),q=Math.min(q,h._length);var X=s.defaultLine;return s.opacity(f.fillcolor)?X=f.fillcolor:s.opacity((f.line||{}).color)&&(X=f.line.color),n.extendFlat(t,{distance:t.maxHoverDistance,x0:H,x1:q,y0:W,y1:W,color:X,hovertemplate:!1}),delete t.index,f.text&&!Array.isArray(f.text)?t.text=String(f.text):t.text=f.name,[t]}}}},{"../../components/color":639,"../../components/fx":679,"../../lib":776,"../../registry":904,"./get_trace_color":1201}],1203:[function(t,e,r){"use strict";var n=t("./subtypes");e.exports={hasLines:n.hasLines,hasMarkers:n.hasMarkers,hasText:n.hasText,isBubble:n.isBubble,attributes:t("./attributes"),supplyDefaults:t("./defaults"),crossTraceDefaults:t("./cross_trace_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./cross_trace_calc"),arraysToCalcdata:t("./arrays_to_calcdata"),plot:t("./plot"),colorbar:t("./marker_colorbar"),formatLabels:t("./format_labels"),style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("./select"),animatable:!0,moduleType:"trace",name:"scatter",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","symbols","errorBarsOK","showLegend","scatter-like","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"./arrays_to_calcdata":1190,"./attributes":1191,"./calc":1192,"./cross_trace_calc":1196,"./cross_trace_defaults":1197,"./defaults":1198,"./format_labels":1200,"./hover":1202,"./marker_colorbar":1209,"./plot":1212,"./select":1213,"./style":1215,"./subtypes":1216}],1204:[function(t,e,r){"use strict";var n=t("../../lib").isArrayOrTypedArray,i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults");e.exports=function(t,e,r,o,s,l){var c=(t.marker||{}).color;(s("line.color",r),i(t,"line"))?a(t,e,o,s,{prefix:"line.",cLetter:"c"}):s("line.color",!n(c)&&c||r);s("line.width"),(l||{}).noDash||s("line.dash")}},{"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"../../lib":776}],1205:[function(t,e,r){"use strict";var n=t("../../constants/numerical"),i=n.BADNUM,a=n.LOG_CLIP,o=a+.5,s=a-.5,l=t("../../lib"),c=l.segmentsIntersect,u=l.constrain,f=t("./constants");e.exports=function(t,e){var r,n,a,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S=e.xaxis,E=e.yaxis,L="log"===S.type,C="log"===E.type,P=S._length,I=E._length,O=e.connectGaps,z=e.baseTolerance,D=e.shape,R="linear"===D,F=e.fill&&"none"!==e.fill,B=[],N=f.minTolerance,j=t.length,U=new Array(j),V=0;function H(r){var n=t[r];if(!n)return!1;var a=e.linearized?S.l2p(n.x):S.c2p(n.x),l=e.linearized?E.l2p(n.y):E.c2p(n.y);if(a===i){if(L&&(a=S.c2p(n.x,!0)),a===i)return!1;C&&l===i&&(a*=Math.abs(S._m*I*(S._m>0?o:s)/(E._m*P*(E._m>0?o:s)))),a*=1e3}if(l===i){if(C&&(l=E.c2p(n.y,!0)),l===i)return!1;l*=1e3}return[a,l]}function q(t,e,r,n){var i=r-t,a=n-e,o=.5-t,s=.5-e,l=i*i+a*a,c=i*o+a*s;if(c>0&&crt||t[1]it)return[u(t[0],et,rt),u(t[1],nt,it)]}function st(t,e){return t[0]===e[0]&&(t[0]===et||t[0]===rt)||(t[1]===e[1]&&(t[1]===nt||t[1]===it)||void 0)}function lt(t,e,r){return function(n,i){var a=ot(n),o=ot(i),s=[];if(a&&o&&st(a,o))return s;a&&s.push(a),o&&s.push(o);var c=2*l.constrain((n[t]+i[t])/2,e,r)-((a||n)[t]+(o||i)[t]);c&&((a&&o?c>0==a[t]>o[t]?a:o:a||o)[t]+=c);return s}}function ct(t){var e=t[0],r=t[1],n=e===U[V-1][0],i=r===U[V-1][1];if(!n||!i)if(V>1){var a=e===U[V-2][0],o=r===U[V-2][1];n&&(e===et||e===rt)&&a?o?V--:U[V-1]=t:i&&(r===nt||r===it)&&o?a?V--:U[V-1]=t:U[V++]=t}else U[V++]=t}function ut(t){U[V-1][0]!==t[0]&&U[V-1][1]!==t[1]&&ct([Z,J]),ct(t),K=null,Z=J=0}function ft(t){if(A=t[0]/P,M=t[1]/I,W=t[0]rt?rt:0,X=t[1]it?it:0,W||X){if(V)if(K){var e=$(K,t);e.length>1&&(ut(e[0]),U[V++]=e[1])}else Q=$(U[V-1],t)[0],U[V++]=Q;else U[V++]=[W||t[0],X||t[1]];var r=U[V-1];W&&X&&(r[0]!==W||r[1]!==X)?(K&&(Z!==W&&J!==X?ct(Z&&J?(n=K,a=(i=t)[0]-n[0],o=(i[1]-n[1])/a,(n[1]*i[0]-i[1]*n[0])/a>0?[o>0?et:rt,it]:[o>0?rt:et,nt]):[Z||W,J||X]):Z&&J&&ct([Z,J])),ct([W,X])):Z-W&&J-X&&ct([W||Z,X||J]),K=t,Z=W,J=X}else K&&ut($(K,t)[0]),U[V++]=t;var n,i,a,o}for("linear"===D||"spline"===D?$=function(t,e){for(var r=[],n=0,i=0;i<4;i++){var a=at[i],o=c(t[0],t[1],e[0],e[1],a[0],a[1],a[2],a[3]);o&&(!n||Math.abs(o.x-r[0][0])>1||Math.abs(o.y-r[0][1])>1)&&(o=[o.x,o.y],n&&Y(o,t)G(d,ht))break;a=d,(_=v[0]*g[0]+v[1]*g[1])>x?(x=_,h=d,m=!1):_=t.length||!d)break;ft(d),n=d}}else ft(h)}K&&ct([Z||K[0],J||K[1]]),B.push(U.slice(0,V))}return B}},{"../../constants/numerical":752,"../../lib":776,"./constants":1195}],1206:[function(t,e,r){"use strict";e.exports=function(t,e,r){"spline"===r("line.shape")&&r("line.smoothing")}},{}],1207:[function(t,e,r){"use strict";var n={tonextx:1,tonexty:1,tonext:1};e.exports=function(t,e,r){var i,a,o,s,l,c={},u=!1,f=-1,h=0,p=-1;for(a=0;a=0?l=p:(l=p=h,h++),l0?Math.max(r,a):0}}},{"fast-isnumeric":242}],1209:[function(t,e,r){"use strict";e.exports={container:"marker",min:"cmin",max:"cmax"}},{}],1210:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults"),o=t("./subtypes");e.exports=function(t,e,r,s,l,c){var u=o.isBubble(t),f=(t.line||{}).color;(c=c||{},f&&(r=f),l("marker.symbol"),l("marker.opacity",u?.7:1),l("marker.size"),l("marker.color",r),i(t,"marker")&&a(t,e,s,l,{prefix:"marker.",cLetter:"c"}),c.noSelect||(l("selected.marker.color"),l("unselected.marker.color"),l("selected.marker.size"),l("unselected.marker.size")),c.noLine||(l("marker.line.color",f&&!Array.isArray(f)&&e.marker.color!==f?f:u?n.background:n.defaultLine),i(t,"marker.line")&&a(t,e,s,l,{prefix:"marker.line.",cLetter:"c"}),l("marker.line.width",u?1:0)),u&&(l("marker.sizeref"),l("marker.sizemin"),l("marker.sizemode")),c.gradient)&&("none"!==l("marker.gradient.type")&&l("marker.gradient.color"))}},{"../../components/color":639,"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"./subtypes":1216}],1211:[function(t,e,r){"use strict";var n=t("../../lib").dateTick0,i=t("../../constants/numerical").ONEWEEK;function a(t,e){return n(e,t%i==0?1:0)}e.exports=function(t,e,r,n,i){if(i||(i={x:!0,y:!0}),i.x){var o=n("xperiod");o&&(n("xperiod0",a(o,e.xcalendar)),n("xperiodalignment"))}if(i.y){var s=n("yperiod");s&&(n("yperiod0",a(s,e.ycalendar)),n("yperiodalignment"))}}},{"../../constants/numerical":752,"../../lib":776}],1212:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../registry"),a=t("../../lib"),o=a.ensureSingle,s=a.identity,l=t("../../components/drawing"),c=t("./subtypes"),u=t("./line_points"),f=t("./link_traces"),h=t("../../lib/polygon").tester;function p(t,e,r,f,p,d,m){var g;!function(t,e,r,i,o){var s=r.xaxis,l=r.yaxis,u=n.extent(a.simpleMap(s.range,s.r2c)),f=n.extent(a.simpleMap(l.range,l.r2c)),h=i[0].trace;if(!c.hasMarkers(h))return;var p=h.marker.maxdisplayed;if(0===p)return;var d=i.filter((function(t){return t.x>=u[0]&&t.x<=u[1]&&t.y>=f[0]&&t.y<=f[1]})),m=Math.ceil(d.length/p),g=0;o.forEach((function(t,r){var n=t[0].trace;c.hasMarkers(n)&&n.marker.maxdisplayed>0&&r0;function y(t){return v?t.transition():t}var x=r.xaxis,b=r.yaxis,_=f[0].trace,w=_.line,T=n.select(d),k=o(T,"g","errorbars"),A=o(T,"g","lines"),M=o(T,"g","points"),S=o(T,"g","text");if(i.getComponentMethod("errorbars","plot")(t,k,r,m),!0===_.visible){var E,L;y(T).style("opacity",_.opacity);var C=_.fill.charAt(_.fill.length-1);"x"!==C&&"y"!==C&&(C=""),f[0][r.isRangePlot?"nodeRangePlot3":"node3"]=T;var P,I,O="",z=[],D=_._prevtrace;D&&(O=D._prevRevpath||"",L=D._nextFill,z=D._polygons);var R,F,B,N,j,U,V,H="",q="",G=[],Y=a.noop;if(E=_._ownFill,c.hasLines(_)||"none"!==_.fill){for(L&&L.datum(f),-1!==["hv","vh","hvh","vhv"].indexOf(w.shape)?(R=l.steps(w.shape),F=l.steps(w.shape.split("").reverse().join(""))):R=F="spline"===w.shape?function(t){var e=t[t.length-1];return t.length>1&&t[0][0]===e[0]&&t[0][1]===e[1]?l.smoothclosed(t.slice(1),w.smoothing):l.smoothopen(t,w.smoothing)}:function(t){return"M"+t.join("L")},B=function(t){return F(t.reverse())},G=u(f,{xaxis:x,yaxis:b,connectGaps:_.connectgaps,baseTolerance:Math.max(w.width||1,3)/4,shape:w.shape,simplify:w.simplify,fill:_.fill}),V=_._polygons=new Array(G.length),g=0;g1){var r=n.select(this);if(r.datum(f),t)y(r.style("opacity",0).attr("d",P).call(l.lineGroupStyle)).style("opacity",1);else{var i=y(r);i.attr("d",P),l.singleLineStyle(f,i)}}}}}var W=A.selectAll(".js-line").data(G);y(W.exit()).style("opacity",0).remove(),W.each(Y(!1)),W.enter().append("path").classed("js-line",!0).style("vector-effect","non-scaling-stroke").call(l.lineGroupStyle).each(Y(!0)),l.setClipUrl(W,r.layerClipId,t),G.length?(E?(E.datum(f),N&&U&&(C?("y"===C?N[1]=U[1]=b.c2p(0,!0):"x"===C&&(N[0]=U[0]=x.c2p(0,!0)),y(E).attr("d","M"+U+"L"+N+"L"+H.substr(1)).call(l.singleFillStyle)):y(E).attr("d",H+"Z").call(l.singleFillStyle))):L&&("tonext"===_.fill.substr(0,6)&&H&&O?("tonext"===_.fill?y(L).attr("d",H+"Z"+O+"Z").call(l.singleFillStyle):y(L).attr("d",H+"L"+O.substr(1)+"Z").call(l.singleFillStyle),_._polygons=_._polygons.concat(z)):(Z(L),_._polygons=null)),_._prevRevpath=q,_._prevPolygons=V):(E?Z(E):L&&Z(L),_._polygons=_._prevRevpath=_._prevPolygons=null),M.datum(f),S.datum(f),function(e,i,a){var o,u=a[0].trace,f=c.hasMarkers(u),h=c.hasText(u),p=tt(u),d=et,m=et;if(f||h){var g=s,_=u.stackgroup,w=_&&"infer zero"===t._fullLayout._scatterStackOpts[x._id+b._id][_].stackgaps;u.marker.maxdisplayed||u._needsCull?g=w?K:J:_&&!w&&(g=Q),f&&(d=g),h&&(m=g)}var T,k=(o=e.selectAll("path.point").data(d,p)).enter().append("path").classed("point",!0);v&&k.call(l.pointStyle,u,t).call(l.translatePoints,x,b).style("opacity",0).transition().style("opacity",1),o.order(),f&&(T=l.makePointStyleFns(u)),o.each((function(e){var i=n.select(this),a=y(i);l.translatePoint(e,a,x,b)?(l.singlePointStyle(e,a,u,T,t),r.layerClipId&&l.hideOutsideRangePoint(e,a,x,b,u.xcalendar,u.ycalendar),u.customdata&&i.classed("plotly-customdata",null!==e.data&&void 0!==e.data)):a.remove()})),v?o.exit().transition().style("opacity",0).remove():o.exit().remove(),(o=i.selectAll("g").data(m,p)).enter().append("g").classed("textpoint",!0).append("text"),o.order(),o.each((function(t){var e=n.select(this),i=y(e.select("text"));l.translatePoint(t,i,x,b)?r.layerClipId&&l.hideOutsideRangePoint(t,e,x,b,u.xcalendar,u.ycalendar):e.remove()})),o.selectAll("text").call(l.textPointStyle,u,t).each((function(t){var e=x.c2p(t.x),r=b.c2p(t.y);n.select(this).selectAll("tspan.line").each((function(){y(n.select(this)).attr({x:e,y:r})}))})),o.exit().remove()}(M,S,f);var X=!1===_.cliponaxis?null:r.layerClipId;l.setClipUrl(M,X,t),l.setClipUrl(S,X,t)}function Z(t){y(t).attr("d","M0,0Z")}function J(t){return t.filter((function(t){return!t.gap&&t.vis}))}function K(t){return t.filter((function(t){return t.vis}))}function Q(t){return t.filter((function(t){return!t.gap}))}function $(t){return t.id}function tt(t){if(t.ids)return $}function et(){return!1}}e.exports=function(t,e,r,i,a,c){var u,h,d=!a,m=!!a&&a.duration>0,g=f(t,e,r);((u=i.selectAll("g.trace").data(g,(function(t){return t[0].trace.uid}))).enter().append("g").attr("class",(function(t){return"trace scatter trace"+t[0].trace.uid})).style("stroke-miterlimit",2),u.order(),function(t,e,r){e.each((function(e){var i=o(n.select(this),"g","fills");l.setClipUrl(i,r.layerClipId,t);var a=e[0].trace,c=[];a._ownfill&&c.push("_ownFill"),a._nexttrace&&c.push("_nextFill");var u=i.selectAll("g").data(c,s);u.enter().append("g"),u.exit().each((function(t){a[t]=null})).remove(),u.order().each((function(t){a[t]=o(n.select(this),"path","js-fill")}))}))}(t,u,e),m)?(c&&(h=c()),n.transition().duration(a.duration).ease(a.easing).each("end",(function(){h&&h()})).each("interrupt",(function(){h&&h()})).each((function(){i.selectAll("g.trace").each((function(r,n){p(t,n,e,r,g,this,a)}))}))):u.each((function(r,n){p(t,n,e,r,g,this,a)}));d&&u.exit().remove(),i.selectAll("path:not([d])").remove()}},{"../../components/drawing":661,"../../lib":776,"../../lib/polygon":788,"../../registry":904,"./line_points":1205,"./link_traces":1207,"./subtypes":1216,"@plotly/d3":58}],1213:[function(t,e,r){"use strict";var n=t("./subtypes");e.exports=function(t,e){var r,i,a,o,s=t.cd,l=t.xaxis,c=t.yaxis,u=[],f=s[0].trace;if(!n.hasMarkers(f)&&!n.hasText(f))return[];if(!1===e)for(r=0;r0){var h=i.c2l(u);i._lowerLogErrorBound||(i._lowerLogErrorBound=h),i._lowerErrorBound=Math.min(i._lowerLogErrorBound,h)}}else o[s]=[-l[0]*r,l[1]*r]}return o}e.exports=function(t,e,r){var n=[i(t.x,t.error_x,e[0],r.xaxis),i(t.y,t.error_y,e[1],r.yaxis),i(t.z,t.error_z,e[2],r.zaxis)],a=function(t){for(var e=0;e-1?-1:t.indexOf("right")>-1?1:0}function b(t){return null==t?0:t.indexOf("top")>-1?-1:t.indexOf("bottom")>-1?1:0}function _(t,e){return e(4*t)}function w(t){return p[t]}function T(t,e,r,n,i){var a=null;if(l.isArrayOrTypedArray(t)){a=[];for(var o=0;o=0){var m=function(t,e,r){var n,i=(r+1)%3,a=(r+2)%3,o=[],l=[];for(n=0;n=0&&f("surfacecolor",h||p);for(var d=["x","y","z"],m=0;m<3;++m){var g="projection."+d[m];f(g+".show")&&(f(g+".opacity"),f(g+".scale"))}var v=n.getComponentMethod("errorbars","supplyDefaults");v(t,e,h||p||r,{axis:"z"}),v(t,e,h||p||r,{axis:"y",inherit:"z"}),v(t,e,h||p||r,{axis:"x",inherit:"z"})}else e.visible=!1}},{"../../lib":776,"../../registry":904,"../scatter/line_defaults":1204,"../scatter/marker_defaults":1210,"../scatter/subtypes":1216,"../scatter/text_defaults":1217,"./attributes":1219}],1224:[function(t,e,r){"use strict";e.exports={plot:t("./convert"),attributes:t("./attributes"),markerSymbols:t("../../constants/gl3d_markers"),supplyDefaults:t("./defaults"),colorbar:[{container:"marker",min:"cmin",max:"cmax"},{container:"line",min:"cmin",max:"cmax"}],calc:t("./calc"),moduleType:"trace",name:"scatter3d",basePlotModule:t("../../plots/gl3d"),categories:["gl3d","symbols","showLegend","scatter-like"],meta:{}}},{"../../constants/gl3d_markers":750,"../../plots/gl3d":869,"./attributes":1219,"./calc":1220,"./convert":1222,"./defaults":1223}],1225:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../plots/attributes"),a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../../plots/template_attributes").texttemplateAttrs,s=t("../../components/colorscale/attributes"),l=t("../../lib/extend").extendFlat,c=n.marker,u=n.line,f=c.line;e.exports={carpet:{valType:"string",editType:"calc"},a:{valType:"data_array",editType:"calc"},b:{valType:"data_array",editType:"calc"},mode:l({},n.mode,{dflt:"markers"}),text:l({},n.text,{}),texttemplate:o({editType:"plot"},{keys:["a","b","text"]}),hovertext:l({},n.hovertext,{}),line:{color:u.color,width:u.width,dash:u.dash,shape:l({},u.shape,{values:["linear","spline"]}),smoothing:u.smoothing,editType:"calc"},connectgaps:n.connectgaps,fill:l({},n.fill,{values:["none","toself","tonext"],dflt:"none"}),fillcolor:n.fillcolor,marker:l({symbol:c.symbol,opacity:c.opacity,maxdisplayed:c.maxdisplayed,size:c.size,sizeref:c.sizeref,sizemin:c.sizemin,sizemode:c.sizemode,line:l({width:f.width,editType:"calc"},s("marker.line")),gradient:c.gradient,editType:"calc"},s("marker")),textfont:n.textfont,textposition:n.textposition,selected:n.selected,unselected:n.unselected,hoverinfo:l({},i.hoverinfo,{flags:["a","b","text","name"]}),hoveron:n.hoveron,hovertemplate:a()}},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/template_attributes":899,"../scatter/attributes":1191}],1226:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../scatter/colorscale_calc"),a=t("../scatter/arrays_to_calcdata"),o=t("../scatter/calc_selection"),s=t("../scatter/calc").calcMarkerSize,l=t("../carpet/lookup_carpetid");e.exports=function(t,e){var r=e._carpetTrace=l(t,e);if(r&&r.visible&&"legendonly"!==r.visible){var c;e.xaxis=r.xaxis,e.yaxis=r.yaxis;var u,f,h=e._length,p=new Array(h),d=!1;for(c=0;c")}return o}function y(t,e){var r;r=t.labelprefix&&t.labelprefix.length>0?t.labelprefix.replace(/ = $/,""):t._hovertitle,g.push(r+": "+e.toFixed(3)+t.labelsuffix)}}},{"../../lib":776,"../scatter/hover":1202}],1231:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../scatter/select"),eventData:t("./event_data"),moduleType:"trace",name:"scattercarpet",basePlotModule:t("../../plots/cartesian"),categories:["svg","carpet","symbols","showLegend","carpetDependent","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"../scatter/marker_colorbar":1209,"../scatter/select":1213,"../scatter/style":1215,"./attributes":1225,"./calc":1226,"./defaults":1227,"./event_data":1228,"./format_labels":1229,"./hover":1230,"./plot":1232}],1232:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../plots/cartesian/axes"),a=t("../../components/drawing");e.exports=function(t,e,r,o){var s,l,c,u=r[0][0].carpet,f={xaxis:i.getFromId(t,u.xaxis||"x"),yaxis:i.getFromId(t,u.yaxis||"y"),plot:e.plot};for(n(t,f,r,o),s=0;s")}(c,m,t,l[0].t.labels),t.hovertemplate=c.hovertemplate,[t]}}},{"../../components/fx":679,"../../constants/numerical":752,"../../lib":776,"../scatter/get_trace_color":1201,"./attributes":1233}],1239:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),calcGeoJSON:t("./plot").calcGeoJSON,plot:t("./plot").plot,style:t("./style"),styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"scattergeo",basePlotModule:t("../../plots/geo"),categories:["geo","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/geo":860,"../scatter/marker_colorbar":1209,"../scatter/style":1215,"./attributes":1233,"./calc":1234,"./defaults":1235,"./event_data":1236,"./format_labels":1237,"./hover":1238,"./plot":1240,"./select":1241,"./style":1242}],1240:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../lib/topojson_utils").getTopojsonFeatures,o=t("../../lib/geojson_utils"),s=t("../../lib/geo_location_utils"),l=t("../../plots/cartesian/autorange").findExtremes,c=t("../../constants/numerical").BADNUM,u=t("../scatter/calc").calcMarkerSize,f=t("../scatter/subtypes"),h=t("./style");e.exports={calcGeoJSON:function(t,e){var r,n,i=t[0].trace,o=e[i.geo],f=o._subplot,h=i._length;if(Array.isArray(i.locations)){var p=i.locationmode,d="geojson-id"===p?s.extractTraceFeature(t):a(i,f.topojson);for(r=0;r=g,w=2*b,T={},k=l.makeCalcdata(e,"x"),A=y.makeCalcdata(e,"y"),M=s(e,l,"x",k),S=s(e,y,"y",A),E=M.vals,L=S.vals;e._x=E,e._y=L,e.xperiodalignment&&(e._origX=k,e._xStarts=M.starts,e._xEnds=M.ends),e.yperiodalignment&&(e._origY=A,e._yStarts=S.starts,e._yEnds=S.ends);var C=new Array(w),P=new Array(b);for(r=0;r1&&i.extendFlat(s.line,p.linePositions(t,r,n));if(s.errorX||s.errorY){var l=p.errorBarPositions(t,r,n,a,o);s.errorX&&i.extendFlat(s.errorX,l.x),s.errorY&&i.extendFlat(s.errorY,l.y)}s.text&&(i.extendFlat(s.text,{positions:n},p.textPosition(t,r,s.text,s.marker)),i.extendFlat(s.textSel,{positions:n},p.textPosition(t,r,s.text,s.markerSel)),i.extendFlat(s.textUnsel,{positions:n},p.textPosition(t,r,s.text,s.markerUnsel)));return s}(t,0,e,C,E,L),z=d(t,x);return f(o,e),_?O.marker&&(I=O.marker.sizeAvg||Math.max(O.marker.size,3)):I=c(e,b),u(t,e,l,y,E,L,I),O.errorX&&v(e,l,O.errorX),O.errorY&&v(e,y,O.errorY),O.fill&&!z.fill2d&&(z.fill2d=!0),O.marker&&!z.scatter2d&&(z.scatter2d=!0),O.line&&!z.line2d&&(z.line2d=!0),!O.errorX&&!O.errorY||z.error2d||(z.error2d=!0),O.text&&!z.glText&&(z.glText=!0),O.marker&&(O.marker.snap=b),z.lineOptions.push(O.line),z.errorXOptions.push(O.errorX),z.errorYOptions.push(O.errorY),z.fillOptions.push(O.fill),z.markerOptions.push(O.marker),z.markerSelectedOptions.push(O.markerSel),z.markerUnselectedOptions.push(O.markerUnsel),z.textOptions.push(O.text),z.textSelectedOptions.push(O.textSel),z.textUnselectedOptions.push(O.textUnsel),z.selectBatch.push([]),z.unselectBatch.push([]),T._scene=z,T.index=z.count,T.x=E,T.y=L,T.positions=C,z.count++,[{x:!1,y:!1,t:T,trace:e}]}},{"../../constants/numerical":752,"../../lib":776,"../../plots/cartesian/align_period":824,"../../plots/cartesian/autorange":826,"../../plots/cartesian/axis_ids":831,"../scatter/calc":1192,"../scatter/colorscale_calc":1194,"./constants":1245,"./convert":1246,"./scene_update":1254,"@plotly/point-cluster":59}],1245:[function(t,e,r){"use strict";e.exports={TOO_MANY_POINTS:1e5,SYMBOL_SDF_SIZE:200,SYMBOL_SIZE:20,SYMBOL_STROKE:1,DOT_RE:/-dot/,OPEN_RE:/-open/,DASHES:{solid:[1],dot:[1,1],dash:[4,1],longdash:[8,1],dashdot:[4,1,1,1],longdashdot:[8,1,1,1]}}},{}],1246:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("svg-path-sdf"),a=t("color-normalize"),o=t("../../registry"),s=t("../../lib"),l=t("../../components/drawing"),c=t("../../plots/cartesian/axis_ids"),u=t("../../lib/gl_format_color").formatColor,f=t("../scatter/subtypes"),h=t("../scatter/make_bubble_size_func"),p=t("./helpers"),d=t("./constants"),m=t("../../constants/interactions").DESELECTDIM,g={start:1,left:1,end:-1,right:-1,middle:0,center:0,bottom:1,top:-1},v=t("../../components/fx/helpers").appendArrayPointValue;function y(t,e){var r,i=t._fullLayout,a=e._length,o=e.textfont,l=e.textposition,c=Array.isArray(l)?l:[l],u=o.color,f=o.size,h=o.family,p={},d=t._context.plotGlPixelRatio,m=e.texttemplate;if(m){p.text=[];var g=i._d3locale,y=Array.isArray(m),x=y?Math.min(m.length,a):a,b=y?function(t){return m[t]}:function(){return m};for(r=0;rd.TOO_MANY_POINTS||f.hasMarkers(e)?"rect":"round";if(c&&e.connectgaps){var h=n[0],p=n[1];for(i=0;i1?l[i]:l[0]:l,d=Array.isArray(c)?c.length>1?c[i]:c[0]:c,m=g[p],v=g[d],y=u?u/.8+1:0,x=-v*y-.5*v;o.offset[i]=[m*y/h,x/h]}}return o}}},{"../../components/drawing":661,"../../components/fx/helpers":675,"../../constants/interactions":751,"../../lib":776,"../../lib/gl_format_color":772,"../../plots/cartesian/axis_ids":831,"../../registry":904,"../scatter/make_bubble_size_func":1208,"../scatter/subtypes":1216,"./constants":1245,"./helpers":1250,"color-normalize":126,"fast-isnumeric":242,"svg-path-sdf":569}],1247:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./helpers"),o=t("./attributes"),s=t("../scatter/constants"),l=t("../scatter/subtypes"),c=t("../scatter/xy_defaults"),u=t("../scatter/period_defaults"),f=t("../scatter/marker_defaults"),h=t("../scatter/line_defaults"),p=t("../scatter/fillcolor_defaults"),d=t("../scatter/text_defaults");e.exports=function(t,e,r,m){function g(r,i){return n.coerce(t,e,o,r,i)}var v=!!t.marker&&a.isOpenSymbol(t.marker.symbol),y=l.isBubble(t),x=c(t,e,m,g);if(x){u(t,e,m,g),g("xhoverformat"),g("yhoverformat");var b=x100},r.isDotSymbol=function(t){return"string"==typeof t?n.DOT_RE.test(t):t>200}},{"./constants":1245}],1251:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib"),a=t("../scatter/get_trace_color");function o(t,e,r,o){var s=t.xa,l=t.ya,c=t.distance,u=t.dxy,f=t.index,h={pointNumber:f,x:e[f],y:r[f]};h.tx=Array.isArray(o.text)?o.text[f]:o.text,h.htx=Array.isArray(o.hovertext)?o.hovertext[f]:o.hovertext,h.data=Array.isArray(o.customdata)?o.customdata[f]:o.customdata,h.tp=Array.isArray(o.textposition)?o.textposition[f]:o.textposition;var p=o.textfont;p&&(h.ts=i.isArrayOrTypedArray(p.size)?p.size[f]:p.size,h.tc=Array.isArray(p.color)?p.color[f]:p.color,h.tf=Array.isArray(p.family)?p.family[f]:p.family);var d=o.marker;d&&(h.ms=i.isArrayOrTypedArray(d.size)?d.size[f]:d.size,h.mo=i.isArrayOrTypedArray(d.opacity)?d.opacity[f]:d.opacity,h.mx=i.isArrayOrTypedArray(d.symbol)?d.symbol[f]:d.symbol,h.mc=i.isArrayOrTypedArray(d.color)?d.color[f]:d.color);var m=d&&d.line;m&&(h.mlc=Array.isArray(m.color)?m.color[f]:m.color,h.mlw=i.isArrayOrTypedArray(m.width)?m.width[f]:m.width);var g=d&&d.gradient;g&&"none"!==g.type&&(h.mgt=Array.isArray(g.type)?g.type[f]:g.type,h.mgc=Array.isArray(g.color)?g.color[f]:g.color);var v=s.c2p(h.x,!0),y=l.c2p(h.y,!0),x=h.mrc||1,b=o.hoverlabel;b&&(h.hbg=Array.isArray(b.bgcolor)?b.bgcolor[f]:b.bgcolor,h.hbc=Array.isArray(b.bordercolor)?b.bordercolor[f]:b.bordercolor,h.hts=i.isArrayOrTypedArray(b.font.size)?b.font.size[f]:b.font.size,h.htc=Array.isArray(b.font.color)?b.font.color[f]:b.font.color,h.htf=Array.isArray(b.font.family)?b.font.family[f]:b.font.family,h.hnl=i.isArrayOrTypedArray(b.namelength)?b.namelength[f]:b.namelength);var _=o.hoverinfo;_&&(h.hi=Array.isArray(_)?_[f]:_);var w=o.hovertemplate;w&&(h.ht=Array.isArray(w)?w[f]:w);var T={};T[t.index]=h;var k=o._origX,A=o._origY,M=i.extendFlat({},t,{color:a(o,h),x0:v-x,x1:v+x,xLabelVal:k?k[f]:h.x,y0:y-x,y1:y+x,yLabelVal:A?A[f]:h.y,cd:T,distance:c,spikeDistance:u,hovertemplate:h.ht});return h.htx?M.text=h.htx:h.tx?M.text=h.tx:o.text&&(M.text=o.text),i.fillText(h,o,M),n.getComponentMethod("errorbars","hoverInfo")(h,o,M),M}e.exports={hoverPoints:function(t,e,r,n){var i,a,s,l,c,u,f,h,p,d,m=t.cd,g=m[0].t,v=m[0].trace,y=t.xa,x=t.ya,b=g.x,_=g.y,w=y.c2p(e),T=x.c2p(r),k=t.distance;if(g.tree){var A=y.p2c(w-k),M=y.p2c(w+k),S=x.p2c(T-k),E=x.p2c(T+k);i="x"===n?g.tree.range(Math.min(A,M),Math.min(x._rl[0],x._rl[1]),Math.max(A,M),Math.max(x._rl[0],x._rl[1])):g.tree.range(Math.min(A,M),Math.min(S,E),Math.max(A,M),Math.max(S,E))}else i=g.ids;var L=k;if("x"===n){var C=!!v.xperiodalignment,P=!!v.yperiodalignment;for(u=0;u=Math.min(I,O)&&w<=Math.max(I,O)?0:1/0}if(f=Math.min(z,D)&&T<=Math.max(z,D)?0:1/0}d=Math.sqrt(f*f+h*h),s=i[u]}}}else for(u=i.length-1;u>-1;u--)l=b[a=i[u]],c=_[a],f=y.c2p(l)-w,h=x.c2p(c)-T,(p=Math.sqrt(f*f+h*h))v.glText.length){var w=b-v.glText.length;for(d=0;dr&&(isNaN(e[n])||isNaN(e[n+1]));)n-=2;t.positions=e.slice(r,n+2)}return t})),v.line2d.update(v.lineOptions)),v.error2d){var k=(v.errorXOptions||[]).concat(v.errorYOptions||[]);v.error2d.update(k)}v.scatter2d&&v.scatter2d.update(v.markerOptions),v.fillOrder=s.repeat(null,b),v.fill2d&&(v.fillOptions=v.fillOptions.map((function(t,e){var n=r[e];if(t&&n&&n[0]&&n[0].trace){var i,a,o=n[0],s=o.trace,l=o.t,c=v.lineOptions[e],u=[];s._ownfill&&u.push(e),s._nexttrace&&u.push(e+1),u.length&&(v.fillOrder[e]=u);var f,h,p=[],d=c&&c.positions||l.positions;if("tozeroy"===s.fill){for(f=0;ff&&isNaN(d[h+1]);)h-=2;0!==d[f+1]&&(p=[d[f],0]),p=p.concat(d.slice(f,h+2)),0!==d[h+1]&&(p=p.concat([d[h],0]))}else if("tozerox"===s.fill){for(f=0;ff&&isNaN(d[h]);)h-=2;0!==d[f]&&(p=[0,d[f+1]]),p=p.concat(d.slice(f,h+2)),0!==d[h]&&(p=p.concat([0,d[h+1]]))}else if("toself"===s.fill||"tonext"===s.fill){for(p=[],i=0,t.splitNull=!0,a=0;a-1;for(d=0;d")}function u(t){return t+"\xb0"}}e.exports={hoverPoints:function(t,e,r){var o=t.cd,c=o[0].trace,u=t.xa,f=t.ya,h=t.subplot,p=360*(e>=0?Math.floor((e+180)/360):Math.ceil((e-180)/360)),d=e-p;if(n.getClosest(o,(function(t){var e=t.lonlat;if(e[0]===s)return 1/0;var n=i.modHalf(e[0],360),a=e[1],o=h.project([n,a]),l=o.x-u.c2p([d,a]),c=o.y-f.c2p([n,r]),p=Math.max(3,t.mrc||0);return Math.max(Math.sqrt(l*l+c*c)-p,1-3/p)}),t),!1!==t.index){var m=o[t.index],g=m.lonlat,v=[i.modHalf(g[0],360)+p,g[1]],y=u.c2p(v),x=f.c2p(v),b=m.mrc||1;t.x0=y-b,t.x1=y+b,t.y0=x-b,t.y1=x+b;var _={};_[c.subplot]={_subplot:h};var w=c._module.formatLabels(m,c,_);return t.lonLabel=w.lonLabel,t.latLabel=w.latLabel,t.color=a(c,m),t.extraText=l(c,m,o[0].t.labels),t.hovertemplate=c.hovertemplate,[t]}},getExtraText:l}},{"../../components/fx":679,"../../constants/numerical":752,"../../lib":776,"../scatter/get_trace_color":1201}],1262:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("../scattergeo/calc"),plot:t("./plot"),hoverPoints:t("./hover").hoverPoints,eventData:t("./event_data"),selectPoints:t("./select"),styleOnSelect:function(t,e){e&&e[0].trace._glTrace.update(e)},moduleType:"trace",name:"scattermapbox",basePlotModule:t("../../plots/mapbox"),categories:["mapbox","gl","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/mapbox":884,"../scatter/marker_colorbar":1209,"../scattergeo/calc":1234,"./attributes":1256,"./defaults":1258,"./event_data":1259,"./format_labels":1260,"./hover":1261,"./plot":1263,"./select":1264}],1263:[function(t,e,r){"use strict";var n=t("./convert"),i=t("../../plots/mapbox/constants").traceLayerPrefix,a=["fill","line","circle","symbol"];function o(t,e){this.type="scattermapbox",this.subplot=t,this.uid=e,this.sourceIds={fill:"source-"+e+"-fill",line:"source-"+e+"-line",circle:"source-"+e+"-circle",symbol:"source-"+e+"-symbol"},this.layerIds={fill:i+e+"-fill",line:i+e+"-line",circle:i+e+"-circle",symbol:i+e+"-symbol"},this.below=null}var s=o.prototype;s.addSource=function(t,e){this.subplot.map.addSource(this.sourceIds[t],{type:"geojson",data:e.geojson})},s.setSourceData=function(t,e){this.subplot.map.getSource(this.sourceIds[t]).setData(e.geojson)},s.addLayer=function(t,e,r){this.subplot.addLayer({type:t,id:this.layerIds[t],source:this.sourceIds[t],layout:e.layout,paint:e.paint},r)},s.update=function(t){var e,r,i,o=this.subplot,s=o.map,l=n(o.gd,t),c=o.belowLookup["trace-"+this.uid];if(c!==this.below){for(e=a.length-1;e>=0;e--)r=a[e],s.removeLayer(this.layerIds[r]);for(e=0;e=0;e--){var r=a[e];t.removeLayer(this.layerIds[r]),t.removeSource(this.sourceIds[r])}},e.exports=function(t,e){for(var r=e[0].trace,i=new o(t,r.uid),s=n(t.gd,e),l=i.below=t.belowLookup["trace-"+r.uid],c=0;c")}}e.exports={hoverPoints:function(t,e,r,a){var o=n(t,e,r,a);if(o&&!1!==o[0].index){var s=o[0];if(void 0===s.index)return o;var l=t.subplot,c=s.cd[s.index],u=s.trace;if(l.isPtInside(c))return s.xLabelVal=void 0,s.yLabelVal=void 0,i(c,u,l,s),s.hovertemplate=u.hovertemplate,o}},makeHoverPointText:i}},{"../scatter/hover":1202}],1270:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"scatterpolar",basePlotModule:t("../../plots/polar"),categories:["polar","symbols","showLegend","scatter-like"],attributes:t("./attributes"),supplyDefaults:t("./defaults").supplyDefaults,colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,selectPoints:t("../scatter/select"),meta:{}}},{"../../plots/polar":893,"../scatter/marker_colorbar":1209,"../scatter/select":1213,"../scatter/style":1215,"./attributes":1265,"./calc":1266,"./defaults":1267,"./format_labels":1268,"./hover":1269,"./plot":1271}],1271:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../constants/numerical").BADNUM;e.exports=function(t,e,r){for(var a=e.layers.frontplot.select("g.scatterlayer"),o={xaxis:e.xaxis,yaxis:e.yaxis,plot:e.framework,layerClipId:e._hasClipOnAxisFalse?e.clipIds.forTraces:null},s=e.radialAxis,l=e.angularAxis,c=0;c=c&&(y.marker.cluster=d.tree),y.marker&&(y.markerSel.positions=y.markerUnsel.positions=y.marker.positions=_),y.line&&_.length>1&&l.extendFlat(y.line,s.linePositions(t,p,_)),y.text&&(l.extendFlat(y.text,{positions:_},s.textPosition(t,p,y.text,y.marker)),l.extendFlat(y.textSel,{positions:_},s.textPosition(t,p,y.text,y.markerSel)),l.extendFlat(y.textUnsel,{positions:_},s.textPosition(t,p,y.text,y.markerUnsel))),y.fill&&!h.fill2d&&(h.fill2d=!0),y.marker&&!h.scatter2d&&(h.scatter2d=!0),y.line&&!h.line2d&&(h.line2d=!0),y.text&&!h.glText&&(h.glText=!0),h.lineOptions.push(y.line),h.fillOptions.push(y.fill),h.markerOptions.push(y.marker),h.markerSelectedOptions.push(y.markerSel),h.markerUnselectedOptions.push(y.markerUnsel),h.textOptions.push(y.text),h.textSelectedOptions.push(y.textSel),h.textUnselectedOptions.push(y.textUnsel),h.selectBatch.push([]),h.unselectBatch.push([]),d.x=w,d.y=T,d.rawx=w,d.rawy=T,d.r=g,d.theta=v,d.positions=_,d._scene=h,d.index=h.count,h.count++}})),a(t,e,r)}}},{"../../lib":776,"../scattergl/constants":1245,"../scattergl/convert":1246,"../scattergl/plot":1253,"../scattergl/scene_update":1254,"@plotly/point-cluster":59,"fast-isnumeric":242}],1279:[function(t,e,r){"use strict";var n=t("../../plots/template_attributes").hovertemplateAttrs,i=t("../../plots/template_attributes").texttemplateAttrs,a=t("../scatter/attributes"),o=t("../../plots/attributes"),s=t("../../components/colorscale/attributes"),l=t("../../components/drawing/attributes").dash,c=t("../../lib/extend").extendFlat,u=a.marker,f=a.line,h=u.line;e.exports={a:{valType:"data_array",editType:"calc"},b:{valType:"data_array",editType:"calc"},c:{valType:"data_array",editType:"calc"},sum:{valType:"number",dflt:0,min:0,editType:"calc"},mode:c({},a.mode,{dflt:"markers"}),text:c({},a.text,{}),texttemplate:i({editType:"plot"},{keys:["a","b","c","text"]}),hovertext:c({},a.hovertext,{}),line:{color:f.color,width:f.width,dash:l,shape:c({},f.shape,{values:["linear","spline"]}),smoothing:f.smoothing,editType:"calc"},connectgaps:a.connectgaps,cliponaxis:a.cliponaxis,fill:c({},a.fill,{values:["none","toself","tonext"],dflt:"none"}),fillcolor:a.fillcolor,marker:c({symbol:u.symbol,opacity:u.opacity,maxdisplayed:u.maxdisplayed,size:u.size,sizeref:u.sizeref,sizemin:u.sizemin,sizemode:u.sizemode,line:c({width:h.width,editType:"calc"},s("marker.line")),gradient:u.gradient,editType:"calc"},s("marker")),textfont:a.textfont,textposition:a.textposition,selected:a.selected,unselected:a.unselected,hoverinfo:c({},o.hoverinfo,{flags:["a","b","c","text","name"]}),hoveron:a.hoveron,hovertemplate:n()}},{"../../components/colorscale/attributes":646,"../../components/drawing/attributes":660,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/template_attributes":899,"../scatter/attributes":1191}],1280:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../scatter/colorscale_calc"),a=t("../scatter/arrays_to_calcdata"),o=t("../scatter/calc_selection"),s=t("../scatter/calc").calcMarkerSize,l=["a","b","c"],c={a:["b","c"],b:["a","c"],c:["a","b"]};e.exports=function(t,e){var r,u,f,h,p,d,m=t._fullLayout[e.subplot].sum,g=e.sum||m,v={a:e.a,b:e.b,c:e.c};for(r=0;r"),o.hovertemplate=h.hovertemplate,a}function x(t,e){v.push(t._hovertitle+": "+e)}}},{"../scatter/hover":1202}],1285:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../scatter/select"),eventData:t("./event_data"),moduleType:"trace",name:"scatterternary",basePlotModule:t("../../plots/ternary"),categories:["ternary","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/ternary":900,"../scatter/marker_colorbar":1209,"../scatter/select":1213,"../scatter/style":1215,"./attributes":1279,"./calc":1280,"./defaults":1281,"./event_data":1282,"./format_labels":1283,"./hover":1284,"./plot":1286}],1286:[function(t,e,r){"use strict";var n=t("../scatter/plot");e.exports=function(t,e,r){var i=e.plotContainer;i.select(".scatterlayer").selectAll("*").remove();var a={xaxis:e.xaxis,yaxis:e.yaxis,plot:i,layerClipId:e._hasClipOnAxisFalse?e.clipIdRelative:null},o=e.layers.frontplot.select("g.scatterlayer");n(t,a,r,o)}},{"../scatter/plot":1212}],1287:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../components/colorscale/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../scattergl/attributes"),l=t("../../plots/cartesian/constants").idRegex,c=t("../../plot_api/plot_template").templatedArray,u=t("../../lib/extend").extendFlat,f=n.marker,h=f.line,p=u(i("marker.line",{editTypeOverride:"calc"}),{width:u({},h.width,{editType:"calc"}),editType:"calc"}),d=u(i("marker"),{symbol:f.symbol,size:u({},f.size,{editType:"markerSize"}),sizeref:f.sizeref,sizemin:f.sizemin,sizemode:f.sizemode,opacity:f.opacity,colorbar:f.colorbar,line:p,editType:"calc"});function m(t){return{valType:"info_array",freeLength:!0,editType:"calc",items:{valType:"subplotid",regex:l[t],editType:"plot"}}}d.color.editType=d.cmin.editType=d.cmax.editType="style",e.exports={dimensions:c("dimension",{visible:{valType:"boolean",dflt:!0,editType:"calc"},label:{valType:"string",editType:"calc"},values:{valType:"data_array",editType:"calc+clearAxisTypes"},axis:{type:{valType:"enumerated",values:["linear","log","date","category"],editType:"calc+clearAxisTypes"},matches:{valType:"boolean",dflt:!1,editType:"calc"},editType:"calc+clearAxisTypes"},editType:"calc+clearAxisTypes"}),text:u({},s.text,{}),hovertext:u({},s.hovertext,{}),hovertemplate:o(),xhoverformat:a("x"),yhoverformat:a("y"),marker:d,xaxes:m("x"),yaxes:m("y"),diagonal:{visible:{valType:"boolean",dflt:!0,editType:"calc"},editType:"calc"},showupperhalf:{valType:"boolean",dflt:!0,editType:"calc"},showlowerhalf:{valType:"boolean",dflt:!0,editType:"calc"},selected:{marker:s.selected.marker,editType:"calc"},unselected:{marker:s.unselected.marker,editType:"calc"},opacity:s.opacity}},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plot_api/plot_template":816,"../../plots/cartesian/axis_format_attributes":830,"../../plots/cartesian/constants":834,"../../plots/template_attributes":899,"../scatter/attributes":1191,"../scattergl/attributes":1243}],1288:[function(t,e,r){"use strict";var n=t("regl-line2d"),i=t("../../registry"),a=t("../../lib/prepare_regl"),o=t("../../plots/get_data").getModuleCalcData,s=t("../../plots/cartesian"),l=t("../../plots/cartesian/axis_ids").getFromId,c=t("../../plots/cartesian/axes").shouldShowZeroLine;function u(t,e,r){for(var n=r.matrixOptions.data.length,i=e._visibleDims,a=r.viewOpts.ranges=new Array(n),o=0;oh?b.sizeAvg||Math.max(b.size,3):a(e,x),p=0;pa&&l||i-1,P=!0;if(o(x)||!!p.selectedpoints||C){var I=p._length;if(p.selectedpoints){m.selectBatch=p.selectedpoints;var O=p.selectedpoints,z={};for(l=0;l1&&(u=m[y-1],h=g[y-1],d=v[y-1]),e=0;eu?"-":"+")+"x")).replace("y",(f>h?"-":"+")+"y")).replace("z",(p>d?"-":"+")+"z");var L=function(){y=0,M=[],S=[],E=[]};(!y||y2?t.slice(1,e-1):2===e?[(t[0]+t[1])/2]:t}function p(t){var e=t.length;return 1===e?[.5,.5]:[t[1]-t[0],t[e-1]-t[e-2]]}function d(t,e){var r=t.fullSceneLayout,i=t.dataScale,u=e._len,f={};function d(t,e){var n=r[e],o=i[c[e]];return a.simpleMap(t,(function(t){return n.d2l(t)*o}))}if(f.vectors=l(d(e._u,"xaxis"),d(e._v,"yaxis"),d(e._w,"zaxis"),u),!u)return{positions:[],cells:[]};var m=d(e._Xs,"xaxis"),g=d(e._Ys,"yaxis"),v=d(e._Zs,"zaxis");if(f.meshgrid=[m,g,v],f.gridFill=e._gridFill,e._slen)f.startingPositions=l(d(e._startsX,"xaxis"),d(e._startsY,"yaxis"),d(e._startsZ,"zaxis"));else{for(var y=g[0],x=h(m),b=h(v),_=new Array(x.length*b.length),w=0,T=0;T=0};v?(r=Math.min(g.length,x.length),l=function(t){return A(g[t])&&M(t)},f=function(t){return String(g[t])}):(r=Math.min(y.length,x.length),l=function(t){return A(y[t])&&M(t)},f=function(t){return String(y[t])}),_&&(r=Math.min(r,b.length));for(var S=0;S1){for(var P=a.randstr(),I=0;I"),name:A||z("name")?y.name:void 0,color:k("hoverlabel.bgcolor")||x.color,borderColor:k("hoverlabel.bordercolor"),fontFamily:k("hoverlabel.font.family"),fontSize:k("hoverlabel.font.size"),fontColor:k("hoverlabel.font.color"),nameLength:k("hoverlabel.namelength"),textAlign:k("hoverlabel.align"),hovertemplate:A,hovertemplateLabels:P,eventData:l};g&&(F.x0=E-i.rInscribed*i.rpx1,F.x1=E+i.rInscribed*i.rpx1,F.idealAlign=i.pxmid[0]<0?"left":"right"),v&&(F.x=E,F.idealAlign=E<0?"left":"right");var B=[];o.loneHover(F,{container:a._hoverlayer.node(),outerContainer:a._paper.node(),gd:r,inOut_bbox:B}),l[0].bbox=B[0],d._hasHoverLabel=!0}if(v){var N=t.select("path.surface");h.styleOne(N,i,y,{hovered:!0})}d._hasHoverEvent=!0,r.emit("plotly_hover",{points:l||[f(i,y,h.eventDataKeys)],event:n.event})}})),t.on("mouseout",(function(e){var i=r._fullLayout,a=r._fullData[d.index],s=n.select(this).datum();if(d._hasHoverEvent&&(e.originalEvent=n.event,r.emit("plotly_unhover",{points:[f(s,a,h.eventDataKeys)],event:n.event}),d._hasHoverEvent=!1),d._hasHoverLabel&&(o.loneUnhover(i._hoverlayer.node()),d._hasHoverLabel=!1),v){var l=t.select("path.surface");h.styleOne(l,s,a,{hovered:!1})}})),t.on("click",(function(t){var e=r._fullLayout,a=r._fullData[d.index],s=g&&(c.isHierarchyRoot(t)||c.isLeaf(t)),u=c.getPtId(t),p=c.isEntry(t)?c.findEntryWithChild(m,u):c.findEntryWithLevel(m,u),v=c.getPtId(p),y={points:[f(t,a,h.eventDataKeys)],event:n.event};s||(y.nextLevel=v);var x=l.triggerHandler(r,"plotly_"+d.type+"click",y);if(!1!==x&&e.hovermode&&(r._hoverdata=[f(t,a,h.eventDataKeys)],o.click(r,n.event)),!s&&!1!==x&&!r._dragging&&!r._transitioning){i.call("_storeDirectGUIEdit",a,e._tracePreGUI[a.uid],{level:a.level});var b={data:[{level:v}],traces:[d.index]},_={frame:{redraw:!1,duration:h.transitionTime},transition:{duration:h.transitionTime,easing:h.transitionEasing},mode:"immediate",fromcurrent:!0};o.loneUnhover(e._hoverlayer.node()),i.call("animate",r,b,_)}}))}},{"../../components/fx":679,"../../components/fx/helpers":675,"../../lib":776,"../../lib/events":765,"../../registry":904,"../pie/helpers":1170,"./helpers":1309,"@plotly/d3":58}],1309:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../components/color"),a=t("../../lib/setcursor"),o=t("../pie/helpers");function s(t){return t.data.data.pid}r.findEntryWithLevel=function(t,e){var n;return e&&t.eachAfter((function(t){if(r.getPtId(t)===e)return n=t.copy()})),n||t},r.findEntryWithChild=function(t,e){var n;return t.eachAfter((function(t){for(var i=t.children||[],a=0;a0)},r.getMaxDepth=function(t){return t.maxdepth>=0?t.maxdepth:1/0},r.isHeader=function(t,e){return!(r.isLeaf(t)||t.depth===e._maxDepth-1)},r.getParent=function(t,e){return r.findEntryWithLevel(t,s(e))},r.listPath=function(t,e){var n=t.parent;if(!n)return[];var i=e?[n.data[e]]:[n];return r.listPath(n,e).concat(i)},r.getPath=function(t){return r.listPath(t,"label").join("/")+"/"},r.formatValue=o.formatPieValue,r.formatPercent=function(t,e){var r=n.formatPercent(t,0);return"0%"===r&&(r=o.formatPiePercent(t,e)),r}},{"../../components/color":639,"../../lib":776,"../../lib/setcursor":797,"../pie/helpers":1170}],1310:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"sunburst",basePlotModule:t("./base_plot"),categories:[],animatable:!0,attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot").plot,style:t("./style").style,colorbar:t("../scatter/marker_colorbar"),meta:{}}},{"../scatter/marker_colorbar":1209,"./attributes":1303,"./base_plot":1304,"./calc":1305,"./defaults":1307,"./layout_attributes":1311,"./layout_defaults":1312,"./plot":1313,"./style":1314}],1311:[function(t,e,r){"use strict";e.exports={sunburstcolorway:{valType:"colorlist",editType:"calc"},extendsunburstcolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{}],1312:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("sunburstcolorway",e.colorway),r("extendsunburstcolors")}},{"../../lib":776,"./layout_attributes":1311}],1313:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-hierarchy"),a=t("d3-interpolate").interpolate,o=t("../../components/drawing"),s=t("../../lib"),l=t("../../lib/svg_text_utils"),c=t("../bar/uniform_text"),u=c.recordMinTextSize,f=c.clearMinTextSize,h=t("../pie/plot"),p=t("../pie/helpers").getRotationAngle,d=h.computeTransform,m=h.transformInsideText,g=t("./style").styleOne,v=t("../bar/style").resizeText,y=t("./fx"),x=t("./constants"),b=t("./helpers");function _(t,e,c,f){var h=t._fullLayout,v=!h.uniformtext.mode&&b.hasTransition(f),_=n.select(c).selectAll("g.slice"),T=e[0],k=T.trace,A=T.hierarchy,M=b.findEntryWithLevel(A,k.level),S=b.getMaxDepth(k),E=h._size,L=k.domain,C=E.w*(L.x[1]-L.x[0]),P=E.h*(L.y[1]-L.y[0]),I=.5*Math.min(C,P),O=T.cx=E.l+E.w*(L.x[1]+L.x[0])/2,z=T.cy=E.t+E.h*(1-L.y[0])-P/2;if(!M)return _.remove();var D=null,R={};v&&_.each((function(t){R[b.getPtId(t)]={rpx0:t.rpx0,rpx1:t.rpx1,x0:t.x0,x1:t.x1,transform:t.transform},!D&&b.isEntry(t)&&(D=t)}));var F=function(t){return i.partition().size([2*Math.PI,t.height+1])(t)}(M).descendants(),B=M.height+1,N=0,j=S;T.hasMultipleRoots&&b.isHierarchyRoot(M)&&(F=F.slice(1),B-=1,N=1,j+=1),F=F.filter((function(t){return t.y1<=j}));var U=p(k.rotation);U&&F.forEach((function(t){t.x0+=U,t.x1+=U}));var V=Math.min(B,S),H=function(t){return(t-N)/V*I},q=function(t,e){return[t*Math.cos(e),-t*Math.sin(e)]},G=function(t){return s.pathAnnulus(t.rpx0,t.rpx1,t.x0,t.x1,O,z)},Y=function(t){return O+w(t)[0]*(t.transform.rCenter||0)+(t.transform.x||0)},W=function(t){return z+w(t)[1]*(t.transform.rCenter||0)+(t.transform.y||0)};(_=_.data(F,b.getPtId)).enter().append("g").classed("slice",!0),v?_.exit().transition().each((function(){var t=n.select(this);t.select("path.surface").transition().attrTween("d",(function(t){var e=function(t){var e,r=b.getPtId(t),n=R[r],i=R[b.getPtId(M)];if(i){var o=(t.x1>i.x1?2*Math.PI:0)+U;e=t.rpx1X?2*Math.PI:0)+U;e={x0:i,x1:i}}else e={rpx0:I,rpx1:I},s.extendFlat(e,K(t));else e={rpx0:0,rpx1:0};else e={x0:U,x1:U};return a(e,n)}(t);return function(t){return G(e(t))}})):f.attr("d",G),c.call(y,M,t,e,{eventDataKeys:x.eventDataKeys,transitionTime:x.CLICK_TRANSITION_TIME,transitionEasing:x.CLICK_TRANSITION_EASING}).call(b.setSliceCursor,t,{hideOnRoot:!0,hideOnLeaves:!0,isTransitioning:t._transitioning}),f.call(g,i,k);var p=s.ensureSingle(c,"g","slicetext"),_=s.ensureSingle(p,"text","",(function(t){t.attr("data-notex",1)})),w=s.ensureUniformFontSize(t,b.determineTextFont(k,i,h.font));_.text(r.formatSliceLabel(i,M,k,e,h)).classed("slicetext",!0).attr("text-anchor","middle").call(o.font,w).call(l.convertToTspans,t);var A=o.bBox(_.node());i.transform=m(A,i,T),i.transform.targetX=Y(i),i.transform.targetY=W(i);var S=function(t,e){var r=t.transform;return d(r,e),r.fontSize=w.size,u(k.type,r,h),s.getTextTransform(r)};v?_.transition().attrTween("transform",(function(t){var e=function(t){var e,r=R[b.getPtId(t)],n=t.transform;if(r)e=r;else if(e={rpx1:t.rpx1,transform:{textPosAngle:n.textPosAngle,scale:0,rotate:n.rotate,rCenter:n.rCenter,x:n.x,y:n.y}},D)if(t.parent)if(X){var i=t.x1>X?2*Math.PI:0;e.x0=e.x1=i}else s.extendFlat(e,K(t));else e.x0=e.x1=U;else e.x0=e.x1=U;var o=a(e.transform.textPosAngle,t.transform.textPosAngle),l=a(e.rpx1,t.rpx1),c=a(e.x0,t.x0),f=a(e.x1,t.x1),p=a(e.transform.scale,n.scale),d=a(e.transform.rotate,n.rotate),m=0===n.rCenter?3:0===e.transform.rCenter?1/3:1,g=a(e.transform.rCenter,n.rCenter);return function(t){var e=l(t),r=c(t),i=f(t),a=function(t){return g(Math.pow(t,m))}(t),s={pxmid:q(e,(r+i)/2),rpx1:e,transform:{textPosAngle:o(t),rCenter:a,x:n.x,y:n.y}};return u(k.type,n,h),{transform:{targetX:Y(s),targetY:W(s),scale:p(t),rotate:d(t),rCenter:a}}}}(t);return function(t){return S(e(t),A)}})):_.attr("transform",S(i,A))}))}function w(t){return e=t.rpx1,r=t.transform.textPosAngle,[e*Math.sin(r),-e*Math.cos(r)];var e,r}r.plot=function(t,e,r,i){var a,o,s=t._fullLayout,l=s._sunburstlayer,c=!r,u=!s.uniformtext.mode&&b.hasTransition(r);(f("sunburst",s),(a=l.selectAll("g.trace.sunburst").data(e,(function(t){return t[0].trace.uid}))).enter().append("g").classed("trace",!0).classed("sunburst",!0).attr("stroke-linejoin","round"),a.order(),u)?(i&&(o=i()),n.transition().duration(r.duration).ease(r.easing).each("end",(function(){o&&o()})).each("interrupt",(function(){o&&o()})).each((function(){l.selectAll("g.trace").each((function(e){_(t,e,this,r)}))}))):(a.each((function(e){_(t,e,this,r)})),s.uniformtext.mode&&v(t,s._sunburstlayer.selectAll(".trace"),"sunburst"));c&&a.exit().remove()},r.formatSliceLabel=function(t,e,r,n,i){var a=r.texttemplate,o=r.textinfo;if(!(a||o&&"none"!==o))return"";var l=i.separators,c=n[0],u=t.data.data,f=c.hierarchy,h=b.isHierarchyRoot(t),p=b.getParent(f,t),d=b.getValue(t);if(!a){var m,g=o.split("+"),v=function(t){return-1!==g.indexOf(t)},y=[];if(v("label")&&u.label&&y.push(u.label),u.hasOwnProperty("v")&&v("value")&&y.push(b.formatValue(u.v,l)),!h){v("current path")&&y.push(b.getPath(t.data));var x=0;v("percent parent")&&x++,v("percent entry")&&x++,v("percent root")&&x++;var _=x>1;if(x){var w,T=function(t){m=b.formatPercent(w,l),_&&(m+=" of "+t),y.push(m)};v("percent parent")&&!h&&(w=d/b.getValue(p),T("parent")),v("percent entry")&&(w=d/b.getValue(e),T("entry")),v("percent root")&&(w=d/b.getValue(f),T("root"))}}return v("text")&&(m=s.castOption(r,u.i,"text"),s.isValidTextValue(m)&&y.push(m)),y.join("
")}var k=s.castOption(r,u.i,"texttemplate");if(!k)return"";var A={};u.label&&(A.label=u.label),u.hasOwnProperty("v")&&(A.value=u.v,A.valueLabel=b.formatValue(u.v,l)),A.currentPath=b.getPath(t.data),h||(A.percentParent=d/b.getValue(p),A.percentParentLabel=b.formatPercent(A.percentParent,l),A.parent=b.getPtLabel(p)),A.percentEntry=d/b.getValue(e),A.percentEntryLabel=b.formatPercent(A.percentEntry,l),A.entry=b.getPtLabel(e),A.percentRoot=d/b.getValue(f),A.percentRootLabel=b.formatPercent(A.percentRoot,l),A.root=b.getPtLabel(f),u.hasOwnProperty("color")&&(A.color=u.color);var M=s.castOption(r,u.i,"text");return(s.isValidTextValue(M)||""===M)&&(A.text=M),A.customdata=s.castOption(r,u.i,"customdata"),s.texttemplateString(k,A,i._d3locale,A,r._meta||{})}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../bar/style":928,"../bar/uniform_text":930,"../pie/helpers":1170,"../pie/plot":1174,"./constants":1306,"./fx":1308,"./helpers":1309,"./style":1314,"@plotly/d3":58,"d3-hierarchy":163,"d3-interpolate":164}],1314:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../bar/uniform_text").resizeText;function s(t,e,r){var n=e.data.data,o=!e.children,s=n.i,l=a.castOption(r,s,"marker.line.color")||i.defaultLine,c=a.castOption(r,s,"marker.line.width")||0;t.style("stroke-width",c).call(i.fill,n.color).call(i.stroke,l).style("opacity",o?r.leaf.opacity:null)}e.exports={style:function(t){var e=t._fullLayout._sunburstlayer.selectAll(".trace");o(t,e,"sunburst"),e.each((function(t){var e=n.select(this),r=t[0].trace;e.style("opacity",r.opacity),e.selectAll("path.surface").each((function(t){n.select(this).call(s,t,r)}))}))},styleOne:s}},{"../../components/color":639,"../../lib":776,"../bar/uniform_text":930,"@plotly/d3":58}],1315:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c=t("../../plot_api/edit_types").overrideAll;function u(t){return{show:{valType:"boolean",dflt:!1},start:{valType:"number",dflt:null,editType:"plot"},end:{valType:"number",dflt:null,editType:"plot"},size:{valType:"number",dflt:null,min:0,editType:"plot"},project:{x:{valType:"boolean",dflt:!1},y:{valType:"boolean",dflt:!1},z:{valType:"boolean",dflt:!1}},color:{valType:"color",dflt:n.defaultLine},usecolormap:{valType:"boolean",dflt:!1},width:{valType:"number",min:1,max:16,dflt:2},highlight:{valType:"boolean",dflt:!0},highlightcolor:{valType:"color",dflt:n.defaultLine},highlightwidth:{valType:"number",min:1,max:16,dflt:2}}}var f=e.exports=c(l({z:{valType:"data_array"},x:{valType:"data_array"},y:{valType:"data_array"},text:{valType:"string",dflt:"",arrayOk:!0},hovertext:{valType:"string",dflt:"",arrayOk:!0},hovertemplate:o(),xhoverformat:a("x"),yhoverformat:a("y"),zhoverformat:a("z"),connectgaps:{valType:"boolean",dflt:!1,editType:"calc"},surfacecolor:{valType:"data_array"}},i("",{colorAttr:"z or surfacecolor",showScaleDflt:!0,autoColorDflt:!1,editTypeOverride:"calc"}),{contours:{x:u(),y:u(),z:u()},hidesurface:{valType:"boolean",dflt:!1},lightposition:{x:{valType:"number",min:-1e5,max:1e5,dflt:10},y:{valType:"number",min:-1e5,max:1e5,dflt:1e4},z:{valType:"number",min:-1e5,max:1e5,dflt:0}},lighting:{ambient:{valType:"number",min:0,max:1,dflt:.8},diffuse:{valType:"number",min:0,max:1,dflt:.8},specular:{valType:"number",min:0,max:2,dflt:.05},roughness:{valType:"number",min:0,max:1,dflt:.5},fresnel:{valType:"number",min:0,max:5,dflt:.2}},opacity:{valType:"number",min:0,max:1,dflt:1},opacityscale:{valType:"any",editType:"calc"},_deprecated:{zauto:l({},i.zauto,{}),zmin:l({},i.zmin,{}),zmax:l({},i.zmax,{})},hoverinfo:l({},s.hoverinfo),showlegend:l({},s.showlegend,{dflt:!1})}),"calc","nested");f.x.editType=f.y.editType=f.z.editType="calc+clearAxisTypes",f.transforms=void 0},{"../../components/color":639,"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plot_api/edit_types":809,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899}],1316:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){e.surfacecolor?n(t,e,{vals:e.surfacecolor,containerStr:"",cLetter:"c"}):n(t,e,{vals:e.z,containerStr:"",cLetter:"c"})}},{"../../components/colorscale/calc":647}],1317:[function(t,e,r){"use strict";var n=t("gl-surface3d"),i=t("ndarray"),a=t("ndarray-linear-interpolate").d2,o=t("../heatmap/interp2d"),s=t("../heatmap/find_empties"),l=t("../../lib").isArrayOrTypedArray,c=t("../../lib/gl_format_color").parseColorScale,u=t("../../lib/str2rgbarray"),f=t("../../components/colorscale").extractOpts;function h(t,e,r){this.scene=t,this.uid=r,this.surface=e,this.data=null,this.showContour=[!1,!1,!1],this.contourStart=[null,null,null],this.contourEnd=[null,null,null],this.contourSize=[0,0,0],this.minValues=[1/0,1/0,1/0],this.maxValues=[-1/0,-1/0,-1/0],this.dataScaleX=1,this.dataScaleY=1,this.refineData=!0,this.objectOffset=[0,0,0]}var p=h.prototype;p.getXat=function(t,e,r,n){var i=l(this.data.x)?l(this.data.x[0])?this.data.x[e][t]:this.data.x[t]:t;return void 0===r?i:n.d2l(i,0,r)},p.getYat=function(t,e,r,n){var i=l(this.data.y)?l(this.data.y[0])?this.data.y[e][t]:this.data.y[e]:e;return void 0===r?i:n.d2l(i,0,r)},p.getZat=function(t,e,r,n){var i=this.data.z[e][t];return null===i&&this.data.connectgaps&&this.data._interpolatedZ&&(i=this.data._interpolatedZ[e][t]),void 0===r?i:n.d2l(i,0,r)},p.handlePick=function(t){if(t.object===this.surface){var e=(t.data.index[0]-1)/this.dataScaleX-1,r=(t.data.index[1]-1)/this.dataScaleY-1,n=Math.max(Math.min(Math.round(e),this.data.z[0].length-1),0),i=Math.max(Math.min(Math.round(r),this.data._ylength-1),0);t.index=[n,i],t.traceCoordinate=[this.getXat(n,i),this.getYat(n,i),this.getZat(n,i)],t.dataCoordinate=[this.getXat(n,i,this.data.xcalendar,this.scene.fullSceneLayout.xaxis),this.getYat(n,i,this.data.ycalendar,this.scene.fullSceneLayout.yaxis),this.getZat(n,i,this.data.zcalendar,this.scene.fullSceneLayout.zaxis)];for(var a=0;a<3;a++){var o=t.dataCoordinate[a];null!=o&&(t.dataCoordinate[a]*=this.scene.dataScale[a])}var s=this.data.hovertext||this.data.text;return Array.isArray(s)&&s[i]&&void 0!==s[i][n]?t.textLabel=s[i][n]:t.textLabel=s||"",t.data.dataCoordinate=t.dataCoordinate.slice(),this.surface.highlight(t.data),this.scene.glplot.spikes.position=t.dataCoordinate,!0}};var d=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999];function m(t,e){if(t0){r=d[n];break}return r}function y(t,e){if(!(t<1||e<1)){for(var r=g(t),n=g(e),i=1,a=0;a_;)r--,r/=v(r),++r1?n:1},p.refineCoords=function(t){for(var e=this.dataScaleX,r=this.dataScaleY,n=t[0].shape[0],a=t[0].shape[1],o=0|Math.floor(t[0].shape[0]*e+1),s=0|Math.floor(t[0].shape[1]*r+1),l=1+n+1,c=1+a+1,u=i(new Float32Array(l*c),[l,c]),f=[1/e,0,0,0,1/r,0,0,0,1],h=0;h0&&null!==this.contourStart[t]&&null!==this.contourEnd[t]&&this.contourEnd[t]>this.contourStart[t]))for(i[t]=!0,e=this.contourStart[t];ea&&(this.minValues[e]=a),this.maxValues[e]",maxDimensionCount:60,overdrag:45,releaseTransitionDuration:120,releaseTransitionEase:"cubic-out",scrollbarCaptureWidth:18,scrollbarHideDelay:1e3,scrollbarHideDuration:1e3,scrollbarOffset:5,scrollbarWidth:8,transitionDuration:100,transitionEase:"cubic-out",uplift:5,wrapSpacer:" ",wrapSplitCharacter:" ",cn:{table:"table",tableControlView:"table-control-view",scrollBackground:"scroll-background",yColumn:"y-column",columnBlock:"column-block",scrollAreaClip:"scroll-area-clip",scrollAreaClipRect:"scroll-area-clip-rect",columnBoundary:"column-boundary",columnBoundaryClippath:"column-boundary-clippath",columnBoundaryRect:"column-boundary-rect",columnCells:"column-cells",columnCell:"column-cell",cellRect:"cell-rect",cellText:"cell-text",cellTextHolder:"cell-text-holder",scrollbarKit:"scrollbar-kit",scrollbar:"scrollbar",scrollbarSlider:"scrollbar-slider",scrollbarGlyph:"scrollbar-glyph",scrollbarCaptureZone:"scrollbar-capture-zone"}}},{}],1324:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../lib/extend").extendFlat,a=t("fast-isnumeric");function o(t){if(Array.isArray(t)){for(var e=0,r=0;r=e||c===t.length-1)&&(n[i]=o,o.key=l++,o.firstRowIndex=s,o.lastRowIndex=c,o={firstRowIndex:null,lastRowIndex:null,rows:[]},i+=a,s=c+1,a=0);return n}e.exports=function(t,e){var r=l(e.cells.values),p=function(t){return t.slice(e.header.values.length,t.length)},d=l(e.header.values);d.length&&!d[0].length&&(d[0]=[""],d=l(d));var m=d.concat(p(r).map((function(){return c((d[0]||[""]).length)}))),g=e.domain,v=Math.floor(t._fullLayout._size.w*(g.x[1]-g.x[0])),y=Math.floor(t._fullLayout._size.h*(g.y[1]-g.y[0])),x=e.header.values.length?m[0].map((function(){return e.header.height})):[n.emptyHeaderHeight],b=r.length?r[0].map((function(){return e.cells.height})):[],_=x.reduce(s,0),w=h(b,y-_+n.uplift),T=f(h(x,_),[]),k=f(w,T),A={},M=e._fullInput.columnorder.concat(p(r.map((function(t,e){return e})))),S=m.map((function(t,r){var n=Array.isArray(e.columnwidth)?e.columnwidth[Math.min(r,e.columnwidth.length-1)]:e.columnwidth;return a(n)?Number(n):1})),E=S.reduce(s,0);S=S.map((function(t){return t/E*v}));var L=Math.max(o(e.header.line.width),o(e.cells.line.width)),C={key:e.uid+t._context.staticPlot,translateX:g.x[0]*t._fullLayout._size.w,translateY:t._fullLayout._size.h*(1-g.y[1]),size:t._fullLayout._size,width:v,maxLineWidth:L,height:y,columnOrder:M,groupHeight:y,rowBlocks:k,headerRowBlocks:T,scrollY:0,cells:i({},e.cells,{values:r}),headerCells:i({},e.header,{values:m}),gdColumns:m.map((function(t){return t[0]})),gdColumnsOriginalOrder:m.map((function(t){return t[0]})),prevPages:[0,0],scrollbarState:{scrollbarScrollInProgress:!1},columns:m.map((function(t,e){var r=A[t];return A[t]=(r||0)+1,{key:t+"__"+A[t],label:t,specIndex:e,xIndex:M[e],xScale:u,x:void 0,calcdata:void 0,columnWidth:S[e]}}))};return C.columns.forEach((function(t){t.calcdata=C,t.x=u(t)})),C}},{"../../lib/extend":766,"./constants":1323,"fast-isnumeric":242}],1325:[function(t,e,r){"use strict";var n=t("../../lib/extend").extendFlat;r.splitToPanels=function(t){var e=[0,0],r=n({},t,{key:"header",type:"header",page:0,prevPages:e,currentRepaint:[null,null],dragHandle:!0,values:t.calcdata.headerCells.values[t.specIndex],rowBlocks:t.calcdata.headerRowBlocks,calcdata:n({},t.calcdata,{cells:t.calcdata.headerCells})});return[n({},t,{key:"cells1",type:"cells",page:0,prevPages:e,currentRepaint:[null,null],dragHandle:!1,values:t.calcdata.cells.values[t.specIndex],rowBlocks:t.calcdata.rowBlocks}),n({},t,{key:"cells2",type:"cells",page:1,prevPages:e,currentRepaint:[null,null],dragHandle:!1,values:t.calcdata.cells.values[t.specIndex],rowBlocks:t.calcdata.rowBlocks}),r]},r.splitToCells=function(t){var e=function(t){var e=t.rowBlocks[t.page],r=e?e.rows[0].rowIndex:0,n=e?r+e.rows.length:0;return[r,n]}(t);return(t.values||[]).slice(e[0],e[1]).map((function(r,n){return{keyWithinBlock:n+("string"==typeof r&&r.match(/[<$&> ]/)?"_keybuster_"+Math.random():""),key:e[0]+n,column:t,calcdata:t.calcdata,page:t.page,rowBlocks:t.rowBlocks,value:r}}))}},{"../../lib/extend":766}],1326:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../plots/domain").defaults;e.exports=function(t,e,r,o){function s(r,a){return n.coerce(t,e,i,r,a)}a(e,o,s),s("columnwidth"),s("header.values"),s("header.format"),s("header.align"),s("header.prefix"),s("header.suffix"),s("header.height"),s("header.line.width"),s("header.line.color"),s("header.fill.color"),n.coerceFont(s,"header.font",n.extendFlat({},o.font)),function(t,e){for(var r=t.columnorder||[],n=t.header.values.length,i=r.slice(0,n),a=i.slice().sort((function(t,e){return t-e})),o=i.map((function(t){return a.indexOf(t)})),s=o.length;s/i),l=!o||s;t.mayHaveMarkup=o&&i.match(/[<&>]/);var c,u="string"==typeof(c=i)&&c.match(n.latexCheck);t.latex=u;var f,h,p=u?"":T(t.calcdata.cells.prefix,e,r)||"",d=u?"":T(t.calcdata.cells.suffix,e,r)||"",m=u?null:T(t.calcdata.cells.format,e,r)||null,g=p+(m?a(m)(t.value):t.value)+d;if(t.wrappingNeeded=!t.wrapped&&!l&&!u&&(f=w(g)),t.cellHeightMayIncrease=s||u||t.mayHaveMarkup||(void 0===f?w(g):f),t.needsConvertToTspans=t.mayHaveMarkup||t.wrappingNeeded||t.latex,t.wrappingNeeded){var v=(" "===n.wrapSplitCharacter?g.replace(/i&&n.push(a),i+=l}return n}(i,l,s);1===c.length&&(c[0]===i.length-1?c.unshift(c[0]-1):c.push(c[0]+1)),c[0]%2&&c.reverse(),e.each((function(t,e){t.page=c[e],t.scrollY=l})),e.attr("transform",(function(t){var e=D(t.rowBlocks,t.page)-t.scrollY;return u(0,e)})),t&&(C(t,r,e,c,n.prevPages,n,0),C(t,r,e,c,n.prevPages,n,1),x(r,t))}}function L(t,e,r,a){return function(o){var s=o.calcdata?o.calcdata:o,l=e.filter((function(t){return s.key===t.key})),c=r||s.scrollbarState.dragMultiplier,u=s.scrollY;s.scrollY=void 0===a?s.scrollY+c*i.event.dy:a;var f=l.selectAll("."+n.cn.yColumn).selectAll("."+n.cn.columnBlock).filter(A);return E(t,f,l),s.scrollY===u}}function C(t,e,r,n,i,a,o){n[o]!==i[o]&&(clearTimeout(a.currentRepaint[o]),a.currentRepaint[o]=setTimeout((function(){var a=r.filter((function(t,e){return e===o&&n[e]!==i[e]}));b(t,e,a,r),i[o]=n[o]})))}function P(t,e,r,a){return function(){var o=i.select(e.parentNode);o.each((function(t){var e=t.fragments;o.selectAll("tspan.line").each((function(t,r){e[r].width=this.getComputedTextLength()}));var r,i,a=e[e.length-1].width,s=e.slice(0,-1),l=[],c=0,u=t.column.columnWidth-2*n.cellPad;for(t.value="";s.length;)c+(i=(r=s.shift()).width+a)>u&&(t.value+=l.join(n.wrapSpacer)+n.lineBreaker,l=[],c=0),l.push(r.text),c+=i;c&&(t.value+=l.join(n.wrapSpacer)),t.wrapped=!0})),o.selectAll("tspan.line").remove(),_(o.select("."+n.cn.cellText),r,t,a),i.select(e.parentNode.parentNode).call(z)}}function I(t,e,r,a,o){return function(){if(!o.settledY){var s=i.select(e.parentNode),l=B(o),c=o.key-l.firstRowIndex,f=l.rows[c].rowHeight,h=o.cellHeightMayIncrease?e.parentNode.getBoundingClientRect().height+2*n.cellPad:f,p=Math.max(h,f);p-l.rows[c].rowHeight&&(l.rows[c].rowHeight=p,t.selectAll("."+n.cn.columnCell).call(z),E(null,t.filter(A),0),x(r,a,!0)),s.attr("transform",(function(){var t=this.parentNode.getBoundingClientRect(),e=i.select(this.parentNode).select("."+n.cn.cellRect).node().getBoundingClientRect(),r=this.transform.baseVal.consolidate(),a=e.top-t.top+(r?r.matrix.f:n.cellPad);return u(O(o,i.select(this.parentNode).select("."+n.cn.cellTextHolder).node().getBoundingClientRect().width),a)})),o.settledY=!0}}}function O(t,e){switch(t.align){case"left":return n.cellPad;case"right":return t.column.columnWidth-(e||0)-n.cellPad;case"center":return(t.column.columnWidth-(e||0))/2;default:return n.cellPad}}function z(t){t.attr("transform",(function(t){var e=t.rowBlocks[0].auxiliaryBlocks.reduce((function(t,e){return t+R(e,1/0)}),0),r=R(B(t),t.key);return u(0,r+e)})).selectAll("."+n.cn.cellRect).attr("height",(function(t){return(e=B(t),r=t.key,e.rows[r-e.firstRowIndex]).rowHeight;var e,r}))}function D(t,e){for(var r=0,n=e-1;n>=0;n--)r+=F(t[n]);return r}function R(t,e){for(var r=0,n=0;n","<","|","/","\\"],dflt:">",editType:"plot"},thickness:{valType:"number",min:12,editType:"plot"},textfont:u({},s.textfont,{}),editType:"calc"},text:s.text,textinfo:l.textinfo,texttemplate:i({editType:"plot"},{keys:c.eventDataKeys.concat(["label","value"])}),hovertext:s.hovertext,hoverinfo:l.hoverinfo,hovertemplate:n({},{keys:c.eventDataKeys}),textfont:s.textfont,insidetextfont:s.insidetextfont,outsidetextfont:u({},s.outsidetextfont,{}),textposition:{valType:"enumerated",values:["top left","top center","top right","middle left","middle center","middle right","bottom left","bottom center","bottom right"],dflt:"top left",editType:"plot"},sort:s.sort,root:l.root,domain:o({name:"treemap",trace:!0,editType:"calc"})}},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/domain":855,"../../plots/template_attributes":899,"../pie/attributes":1165,"../sunburst/attributes":1303,"./constants":1332}],1330:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="treemap",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":890}],1331:[function(t,e,r){"use strict";var n=t("../sunburst/calc");r.calc=function(t,e){return n.calc(t,e)},r.crossTraceCalc=function(t){return n._runCrossTraceCalc("treemap",t)}},{"../sunburst/calc":1305}],1332:[function(t,e,r){"use strict";e.exports={CLICK_TRANSITION_TIME:750,CLICK_TRANSITION_EASING:"poly",eventDataKeys:["currentPath","root","entry","percentRoot","percentEntry","percentParent"],gapWithPathbar:1}},{}],1333:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../components/color"),o=t("../../plots/domain").defaults,s=t("../bar/defaults").handleText,l=t("../bar/constants").TEXTPAD,c=t("../../components/colorscale"),u=c.hasColorscale,f=c.handleDefaults;e.exports=function(t,e,r,c){function h(r,a){return n.coerce(t,e,i,r,a)}var p=h("labels"),d=h("parents");if(p&&p.length&&d&&d.length){var m=h("values");m&&m.length?h("branchvalues"):h("count"),h("level"),h("maxdepth"),"squarify"===h("tiling.packing")&&h("tiling.squarifyratio"),h("tiling.flip"),h("tiling.pad");var g=h("text");h("texttemplate"),e.texttemplate||h("textinfo",Array.isArray(g)?"text+label":"label"),h("hovertext"),h("hovertemplate");var v=h("pathbar.visible");s(t,e,c,h,"auto",{hasPathbar:v,moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1}),h("textposition");var y=-1!==e.textposition.indexOf("bottom");h("marker.line.width")&&h("marker.line.color",c.paper_bgcolor);var x=h("marker.colors");(e._hasColorscale=u(t,"marker","colors")||(t.marker||{}).coloraxis)?f(t,e,c,h,{prefix:"marker.",cLetter:"c"}):h("marker.depthfade",!(x||[]).length);var b=2*e.textfont.size;h("marker.pad.t",y?b/4:b),h("marker.pad.l",b/4),h("marker.pad.r",b/4),h("marker.pad.b",y?b:b/4),e._hovered={marker:{line:{width:2,color:a.contrast(c.paper_bgcolor)}}},v&&(h("pathbar.thickness",e.pathbar.textfont.size+2*l),h("pathbar.side"),h("pathbar.edgeshape")),h("sort"),h("root.color"),o(e,c,h),e._length=null}else e.visible=!1}},{"../../components/color":639,"../../components/colorscale":651,"../../lib":776,"../../plots/domain":855,"../bar/constants":916,"../bar/defaults":918,"./attributes":1329}],1334:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../sunburst/helpers"),a=t("../bar/uniform_text").clearMinTextSize,o=t("../bar/style").resizeText,s=t("./plot_one");e.exports=function(t,e,r,l,c){var u,f,h=c.type,p=c.drawDescendants,d=t._fullLayout,m=d["_"+h+"layer"],g=!r;(a(h,d),(u=m.selectAll("g.trace."+h).data(e,(function(t){return t[0].trace.uid}))).enter().append("g").classed("trace",!0).classed(h,!0),u.order(),!d.uniformtext.mode&&i.hasTransition(r))?(l&&(f=l()),n.transition().duration(r.duration).ease(r.easing).each("end",(function(){f&&f()})).each("interrupt",(function(){f&&f()})).each((function(){m.selectAll("g.trace").each((function(e){s(t,e,this,r,p)}))}))):(u.each((function(e){s(t,e,this,r,p)})),d.uniformtext.mode&&o(t,m.selectAll(".trace"),h));g&&u.exit().remove()}},{"../bar/style":928,"../bar/uniform_text":930,"../sunburst/helpers":1309,"./plot_one":1343,"@plotly/d3":58}],1335:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../../lib/svg_text_utils"),s=t("./partition"),l=t("./style").styleOne,c=t("./constants"),u=t("../sunburst/helpers"),f=t("../sunburst/fx");e.exports=function(t,e,r,h,p){var d=p.barDifY,m=p.width,g=p.height,v=p.viewX,y=p.viewY,x=p.pathSlice,b=p.toMoveInsideSlice,_=p.strTransform,w=p.hasTransition,T=p.handleSlicesExit,k=p.makeUpdateSliceInterpolator,A=p.makeUpdateTextInterpolator,M={},S=t._fullLayout,E=e[0],L=E.trace,C=E.hierarchy,P=m/L._entryDepth,I=u.listPath(r.data,"id"),O=s(C.copy(),[m,g],{packing:"dice",pad:{inner:0,top:0,left:0,right:0,bottom:0}}).descendants();(O=O.filter((function(t){var e=I.indexOf(t.data.id);return-1!==e&&(t.x0=P*e,t.x1=P*(e+1),t.y0=d,t.y1=d+g,t.onPathbar=!0,!0)}))).reverse(),(h=h.data(O,u.getPtId)).enter().append("g").classed("pathbar",!0),T(h,!0,M,[m,g],x),h.order();var z=h;w&&(z=z.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!1,hideOnLeaves:!1,isTransitioning:!1})}))),z.each((function(s){s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-Math.min(m,g)/2),s._hoverY=y(s.y1-g/2);var h=n.select(this),p=i.ensureSingle(h,"path","surface",(function(t){t.style("pointer-events","all")}));w?p.transition().attrTween("d",(function(t){var e=k(t,!0,M,[m,g]);return function(t){return x(e(t))}})):p.attr("d",x),h.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{hideOnRoot:!1,hideOnLeaves:!1,isTransitioning:t._transitioning}),p.call(l,s,L,{hovered:!1}),s._text=(u.getPtLabel(s)||"").split("
").join(" ")||"";var d=i.ensureSingle(h,"g","slicetext"),T=i.ensureSingle(d,"text","",(function(t){t.attr("data-notex",1)})),E=i.ensureUniformFontSize(t,u.determineTextFont(L,s,S.font,{onPathbar:!0}));T.text(s._text||" ").classed("slicetext",!0).attr("text-anchor","start").call(a.font,E).call(o.convertToTspans,t),s.textBB=a.bBox(T.node()),s.transform=b(s,{fontSize:E.size,onPathbar:!0}),s.transform.fontSize=E.size,w?T.transition().attrTween("transform",(function(t){var e=A(t,!0,M,[m,g]);return function(t){return _(e(t))}})):T.attr("transform",_(s))}))}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../sunburst/fx":1308,"../sunburst/helpers":1309,"./constants":1332,"./partition":1341,"./style":1344,"@plotly/d3":58}],1336:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../../lib/svg_text_utils"),s=t("./partition"),l=t("./style").styleOne,c=t("./constants"),u=t("../sunburst/helpers"),f=t("../sunburst/fx"),h=t("../sunburst/plot").formatSliceLabel;e.exports=function(t,e,r,p,d){var m=d.width,g=d.height,v=d.viewX,y=d.viewY,x=d.pathSlice,b=d.toMoveInsideSlice,_=d.strTransform,w=d.hasTransition,T=d.handleSlicesExit,k=d.makeUpdateSliceInterpolator,A=d.makeUpdateTextInterpolator,M=d.prevEntry,S=t._fullLayout,E=e[0].trace,L=-1!==E.textposition.indexOf("left"),C=-1!==E.textposition.indexOf("right"),P=-1!==E.textposition.indexOf("bottom"),I=!P&&!E.marker.pad.t||P&&!E.marker.pad.b,O=s(r,[m,g],{packing:E.tiling.packing,squarifyratio:E.tiling.squarifyratio,flipX:E.tiling.flip.indexOf("x")>-1,flipY:E.tiling.flip.indexOf("y")>-1,pad:{inner:E.tiling.pad,top:E.marker.pad.t,left:E.marker.pad.l,right:E.marker.pad.r,bottom:E.marker.pad.b}}).descendants(),z=1/0,D=-1/0;O.forEach((function(t){var e=t.depth;e>=E._maxDepth?(t.x0=t.x1=(t.x0+t.x1)/2,t.y0=t.y1=(t.y0+t.y1)/2):(z=Math.min(z,e),D=Math.max(D,e))})),p=p.data(O,u.getPtId),E._maxVisibleLayers=isFinite(D)?D-z+1:0,p.enter().append("g").classed("slice",!0),T(p,!1,{},[m,g],x),p.order();var R=null;if(w&&M){var F=u.getPtId(M);p.each((function(t){null===R&&u.getPtId(t)===F&&(R={x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1})}))}var B=function(){return R||{x0:0,x1:m,y0:0,y1:g}},N=p;return w&&(N=N.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!0,hideOnLeaves:!1,isTransitioning:!1})}))),N.each((function(s){var p=u.isHeader(s,E);s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-E.marker.pad.r),s._hoverY=y(P?s.y1-E.marker.pad.b/2:s.y0+E.marker.pad.t/2);var d=n.select(this),T=i.ensureSingle(d,"path","surface",(function(t){t.style("pointer-events","all")}));w?T.transition().attrTween("d",(function(t){var e=k(t,!1,B(),[m,g]);return function(t){return x(e(t))}})):T.attr("d",x),d.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{isTransitioning:t._transitioning}),T.call(l,s,E,{hovered:!1}),s.x0===s.x1||s.y0===s.y1?s._text="":s._text=p?I?"":u.getPtLabel(s)||"":h(s,r,E,e,S)||"";var M=i.ensureSingle(d,"g","slicetext"),O=i.ensureSingle(M,"text","",(function(t){t.attr("data-notex",1)})),z=i.ensureUniformFontSize(t,u.determineTextFont(E,s,S.font));O.text(s._text||" ").classed("slicetext",!0).attr("text-anchor",C?"end":L||p?"start":"middle").call(a.font,z).call(o.convertToTspans,t),s.textBB=a.bBox(O.node()),s.transform=b(s,{fontSize:z.size,isHeader:p}),s.transform.fontSize=z.size,w?O.transition().attrTween("transform",(function(t){var e=A(t,!1,B(),[m,g]);return function(t){return _(e(t))}})):O.attr("transform",_(s))})),R}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../sunburst/fx":1308,"../sunburst/helpers":1309,"../sunburst/plot":1313,"./constants":1332,"./partition":1341,"./style":1344,"@plotly/d3":58}],1337:[function(t,e,r){"use strict";e.exports=function t(e,r,n){var i;n.swapXY&&(i=e.x0,e.x0=e.y0,e.y0=i,i=e.x1,e.x1=e.y1,e.y1=i),n.flipX&&(i=e.x0,e.x0=r[0]-e.x1,e.x1=r[0]-i),n.flipY&&(i=e.y0,e.y0=r[1]-e.y1,e.y1=r[1]-i);var a=e.children;if(a)for(var o=0;o-1?C+O:-(I+O):0,D={x0:P,x1:P,y0:z,y1:z+I},R=function(t,e,r){var n=v.tiling.pad,i=function(t){return t-n<=e.x0},a=function(t){return t+n>=e.x1},o=function(t){return t-n<=e.y0},s=function(t){return t+n>=e.y1};return t.x0===e.x0&&t.x1===e.x1&&t.y0===e.y0&&t.y1===e.y1?{x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1}:{x0:i(t.x0-n)?0:a(t.x0-n)?r[0]:t.x0,x1:i(t.x1+n)?0:a(t.x1+n)?r[0]:t.x1,y0:o(t.y0-n)?0:s(t.y0-n)?r[1]:t.y0,y1:o(t.y1+n)?0:s(t.y1+n)?r[1]:t.y1}},F=null,B={},N={},j=null,U=function(t,e){return e?B[h(t)]:N[h(t)]},V=function(t,e,r,n){if(e)return B[h(x)]||D;var i=N[v.level]||r;return function(t){return t.data.depth-b.data.depth=(n-=(y?g:g.r)-s)){var x=(r+n)/2;r=x,n=x}var b;f?i<(b=a-(y?g:g.b))&&b"===tt?(l.x-=a,c.x-=a,u.x-=a,f.x-=a):"/"===tt?(u.x-=a,f.x-=a,o.x-=a/2,s.x-=a/2):"\\"===tt?(l.x-=a,c.x-=a,o.x-=a/2,s.x-=a/2):"<"===tt&&(o.x-=a,s.x-=a),$(l),$(f),$(o),$(c),$(u),$(s),"M"+K(l.x,l.y)+"L"+K(c.x,c.y)+"L"+K(s.x,s.y)+"L"+K(u.x,u.y)+"L"+K(f.x,f.y)+"L"+K(o.x,o.y)+"Z"},toMoveInsideSlice:et,makeUpdateSliceInterpolator:nt,makeUpdateTextInterpolator:it,handleSlicesExit:at,hasTransition:A,strTransform:ot}):w.remove()}},{"../../lib":776,"../bar/constants":916,"../bar/plot":925,"../bar/uniform_text":930,"../sunburst/helpers":1309,"./constants":1332,"./draw_ancestors":1335,"@plotly/d3":58,"d3-interpolate":164}],1344:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../sunburst/helpers"),s=t("../bar/uniform_text").resizeText;function l(t,e,r,n){var s,l,c=(n||{}).hovered,u=e.data.data,f=u.i,h=u.color,p=o.isHierarchyRoot(e),d=1;if(c)s=r._hovered.marker.line.color,l=r._hovered.marker.line.width;else if(p&&h===r.root.color)d=100,s="rgba(0,0,0,0)",l=0;else if(s=a.castOption(r,f,"marker.line.color")||i.defaultLine,l=a.castOption(r,f,"marker.line.width")||0,!r._hasColorscale&&!e.onPathbar){var m=r.marker.depthfade;if(m){var g,v=i.combine(i.addOpacity(r._backgroundColor,.75),h);if(!0===m){var y=o.getMaxDepth(r);g=isFinite(y)?o.isLeaf(e)?0:r._maxVisibleLayers-(e.data.depth-r._entryDepth):e.data.height+1}else g=e.data.depth-r._entryDepth,r._atRootLevel||g++;if(g>0)for(var x=0;x0){var x,b,_,w,T,k=t.xa,A=t.ya;"h"===p.orientation?(T=e,x="y",_=A,b="x",w=k):(T=r,x="x",_=k,b="y",w=A);var M=h[t.index];if(T>=M.span[0]&&T<=M.span[1]){var S=n.extendFlat({},t),E=w.c2p(T,!0),L=o.getKdeValue(M,p,T),C=o.getPositionOnKdePath(M,p,E),P=_._offset,I=_._length;S[x+"0"]=C[0],S[x+"1"]=C[1],S[b+"0"]=S[b+"1"]=E,S[b+"Label"]=b+": "+i.hoverLabelText(w,T,p[b+"hoverformat"])+", "+h[0].t.labels.kde+" "+L.toFixed(3),S.spikeDistance=y[0].spikeDistance;var O=x+"Spike";S[O]=y[0][O],y[0].spikeDistance=void 0,y[0][O]=void 0,S.hovertemplate=!1,v.push(S),(u={stroke:t.color})[x+"1"]=n.constrain(P+C[0],P,P+I),u[x+"2"]=n.constrain(P+C[1],P,P+I),u[b+"1"]=u[b+"2"]=w._offset+E}}m&&(v=v.concat(y))}-1!==d.indexOf("points")&&(c=a.hoverOnPoints(t,e,r));var z=f.selectAll(".violinline-"+p.uid).data(u?[0]:[]);return z.enter().append("line").classed("violinline-"+p.uid,!0).attr("stroke-width",1.5),z.exit().remove(),z.attr(u),"closest"===s?c?[c]:v:c?(v.push(c),v):v}},{"../../lib":776,"../../plots/cartesian/axes":827,"../box/hover":944,"./helpers":1349}],1351:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),crossTraceDefaults:t("../box/defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style"),styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../box/select"),moduleType:"trace",name:"violin",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","symbols","oriented","box-violin","showLegend","violinLayout","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"../box/defaults":942,"../box/select":949,"../scatter/style":1215,"./attributes":1345,"./calc":1346,"./cross_trace_calc":1347,"./defaults":1348,"./hover":1350,"./layout_attributes":1352,"./layout_defaults":1353,"./plot":1354,"./style":1355}],1352:[function(t,e,r){"use strict";var n=t("../box/layout_attributes"),i=t("../../lib").extendFlat;e.exports={violinmode:i({},n.boxmode,{}),violingap:i({},n.boxgap,{}),violingroupgap:i({},n.boxgroupgap,{})}},{"../../lib":776,"../box/layout_attributes":946}],1353:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes"),a=t("../box/layout_defaults");e.exports=function(t,e,r){a._supply(t,e,r,(function(r,a){return n.coerce(t,e,i,r,a)}),"violin")}},{"../../lib":776,"../box/layout_defaults":947,"./layout_attributes":1352}],1354:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../box/plot"),s=t("../scatter/line_points"),l=t("./helpers");e.exports=function(t,e,r,c){var u=t._fullLayout,f=e.xaxis,h=e.yaxis;function p(t){var e=s(t,{xaxis:f,yaxis:h,connectGaps:!0,baseTolerance:.75,shape:"spline",simplify:!0,linearized:!0});return a.smoothopen(e[0],1)}i.makeTraceGroups(c,r,"trace violins").each((function(t){var r=n.select(this),a=t[0],s=a.t,c=a.trace;if(!0!==c.visible||s.empty)r.remove();else{var d=s.bPos,m=s.bdPos,g=e[s.valLetter+"axis"],v=e[s.posLetter+"axis"],y="both"===c.side,x=y||"positive"===c.side,b=y||"negative"===c.side,_=r.selectAll("path.violin").data(i.identity);_.enter().append("path").style("vector-effect","non-scaling-stroke").attr("class","violin"),_.exit().remove(),_.each((function(t){var e,r,i,a,o,l,f,h,_=n.select(this),w=t.density,T=w.length,k=v.c2l(t.pos+d,!0),A=v.l2p(k);if(c.width)e=s.maxKDE/m;else{var M=u._violinScaleGroupStats[c.scalegroup];e="count"===c.scalemode?M.maxKDE/m*(M.maxCount/t.pts.length):M.maxKDE/m}if(x){for(f=new Array(T),o=0;o")),u.color=function(t,e){var r=t[e.dir].marker,n=r.color,a=r.line.color,o=r.line.width;if(i(n))return n;if(i(a)&&o)return a}(h,g),[u]}function k(t){return n(m,t,h[d+"hoverformat"])}}},{"../../components/color":639,"../../constants/delta.js":746,"../../plots/cartesian/axes":827,"../bar/hover":921}],1367:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style").style,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("../bar/select"),moduleType:"trace",name:"waterfall",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","oriented","showLegend","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"../bar/select":926,"./attributes":1360,"./calc":1361,"./cross_trace_calc":1363,"./defaults":1364,"./event_data":1365,"./hover":1366,"./layout_attributes":1368,"./layout_defaults":1369,"./plot":1370,"./style":1371}],1368:[function(t,e,r){"use strict";e.exports={waterfallmode:{valType:"enumerated",values:["group","overlay"],dflt:"group",editType:"calc"},waterfallgap:{valType:"number",min:0,max:1,editType:"calc"},waterfallgroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],1369:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a=!1;function o(r,a){return n.coerce(t,e,i,r,a)}for(var s=0;s0&&(g+=h?"M"+f[0]+","+d[1]+"V"+d[0]:"M"+f[1]+","+d[0]+"H"+f[0]),"between"!==p&&(r.isSum||s path").each((function(t){if(!t.isBlank){var e=s[t.dir].marker;n.select(this).call(a.fill,e.color).call(a.stroke,e.line.color).call(i.dashLine,e.line.dash,e.line.width).style("opacity",s.selectedpoints&&!t.selected?o:1)}})),c(r,s,t),r.selectAll(".lines").each((function(){var t=s.connector.line;i.lineGroupStyle(n.select(this).selectAll("path"),t.width,t.color,t.dash)}))}))}}},{"../../components/color":639,"../../components/drawing":661,"../../constants/interactions":751,"../bar/style":928,"../bar/uniform_text":930,"@plotly/d3":58}],1372:[function(t,e,r){"use strict";var n=t("../plots/cartesian/axes"),i=t("../lib"),a=t("../plot_api/plot_schema"),o=t("./helpers").pointsAccessorFunction,s=t("../constants/numerical").BADNUM;r.moduleType="transform",r.name="aggregate";var l=r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},groups:{valType:"string",strict:!0,noBlank:!0,arrayOk:!0,dflt:"x",editType:"calc"},aggregations:{_isLinkedToArray:"aggregation",target:{valType:"string",editType:"calc"},func:{valType:"enumerated",values:["count","sum","avg","median","mode","rms","stddev","min","max","first","last","change","range"],dflt:"first",editType:"calc"},funcmode:{valType:"enumerated",values:["sample","population"],dflt:"sample",editType:"calc"},enabled:{valType:"boolean",dflt:!0,editType:"calc"},editType:"calc"},editType:"calc"},c=l.aggregations;function u(t,e,r,a){if(a.enabled){for(var o=a.target,l=i.nestedProperty(e,o),c=l.get(),u=function(t,e){var r=t.func,n=e.d2c,a=e.c2d;switch(r){case"count":return f;case"first":return h;case"last":return p;case"sum":return function(t,e){for(var r=0,i=0;ii&&(i=u,o=c)}}return i?a(o):s};case"rms":return function(t,e){for(var r=0,i=0,o=0;o":return function(t){return h(t)>s};case">=":return function(t){return h(t)>=s};case"[]":return function(t){var e=h(t);return e>=s[0]&&e<=s[1]};case"()":return function(t){var e=h(t);return e>s[0]&&e=s[0]&&es[0]&&e<=s[1]};case"][":return function(t){var e=h(t);return e<=s[0]||e>=s[1]};case")(":return function(t){var e=h(t);return es[1]};case"](":return function(t){var e=h(t);return e<=s[0]||e>s[1]};case")[":return function(t){var e=h(t);return e=s[1]};case"{}":return function(t){return-1!==s.indexOf(h(t))};case"}{":return function(t){return-1===s.indexOf(h(t))}}}(r,a.getDataToCoordFunc(t,e,s,i),h),x={},b={},_=0;d?(g=function(t){x[t.astr]=n.extendDeep([],t.get()),t.set(new Array(f))},v=function(t,e){var r=x[t.astr][e];t.get()[e]=r}):(g=function(t){x[t.astr]=n.extendDeep([],t.get()),t.set([])},v=function(t,e){var r=x[t.astr][e];t.get().push(r)}),k(g);for(var w=o(e.transforms,r),T=0;T1?"%{group} (%{trace})":"%{group}");var l=t.styles,c=o.styles=[];if(l)for(a=0;aTrue]\nRSolve[{x[t+1]\\[Equal]A x[t],x[0]\\[Equal]x0},x[t],t]\nPDF[NormalDistribution[0,1],x]\n```\n\nYou should see (a) $3x^2$, (b) a plot of a line, (c) ${{x[t]->A^t x0}}$, and (d) $\\frac{e^\\frac{-x^2}{2}}{\\sqrt{2\\pi }}$.\n\n#### Maxima installation:\n\nOn a Mac, install using the instructions [here](https://themaximalist.org/about/my-mac-os-installation/). For other file systems, download [here](https://sourceforge.net/projects/maxima/files/).\n\n#### Maxima testing\n\nWhen you first open Maxima, it will give you a choice of GUIs, chose wxMaxima. Once wxMaxima is launched type this command and hit return to see if it answers 4:\n\n``` maxima\n2+2;\n```\n\nIf it doesn't, then scan the installation document for the error that you run into.\n\nIf it does return 4, then type in and enter these commands:\n\n``` maxima\ndiff(x^3, x);\n\nwxplot2d (3*x, [x, 0, 2*%pi]);\n\nload(\"solve_rec\")$\nsolve_rec(x[t+1] = A*x[t], x[t], x[0]=x0);\n\nload(\"distrib\")$\npdf_normal(x,0,1);\n```\n\nYou should see (a) $3x^2$, (b) a plot of a line, (c) ${{x[t]->A^t x0}}$, and (d) $\\frac{e^\\frac{-x^2}{2}}{\\sqrt{2\\pi }}$.\n\n### Material\n\n| Mathematica | Maxima | PDF |\n|:----------------------:|:----------------------:|:----------------------:|\n| [Notebook](files/BIOS2_WorkshopMathematica.nb) | [Notebook](files/Bios2_WorkshopMaxima.wxmx) | Embeded below |\n| [Hints and solutions](files/BIOS2_WorkshopMathematicaSOLUTIONS.nb) | [Hints and solutions](files/Bios2_WorkshopMaximaSOLUTIONS.wxmx) | |\n| | | [Homework](files/Homework1.pdf) |\n| [Homework answers](files/HomeworkAnswers.nb) | | [Homework answers](files/HomeworkAnswers.pdf) |\n| [Guide](files/MathematicaGuide.nb) | [Guide](files/MaximaQuickReference.wxm) | |\n\n#### Follow along PDF\n\nThis PDF was generated from the Mathematica notebook linked above. It doesn't include dynamic plots, but it's a good alternative if you want to print out or have a quick reference at hand.\n\n\n\n

\n\n![Stability analysis of a recursion equation in a discrete-time model.](StabilityPictures.png)\n\n### Other resources\n\n- *An Introduction to Mathematical Modeling in Ecology and Evolution* [@otto2007biologist].\n\n- [Biomathematical modeling lecture notes](http://www.zoology.ubc.ca/~bio301/Bio301/Lectures.html).\n\n- [Mathematica labs UBC](http://www.zoology.ubc.ca/biomath/labs.htm).\n\n### Thanks\n\nNiki Love and Gil Henriques did a great job of translating the code into wxMaxima, with limited help from me. Thanks, Niki and Gil!!\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"markdown"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Mathematical Modeling in Ecology and Evolution","description":"This workshop will introduce participants to the logic behind modeling in biology, focusing on developing equations, finding equilibria, analyzing stability, and running simulations.Techniques will be illustrated with the software tools, Mathematica and Maxima. This workshop was held in two parts: January 14 and January 16, 2020.\n","categories":["Technical","EN"],"author":[{"name":"Sarah P. Otto","affiliation":"University of British Columbia"}],"base_url":"https://bios2.github.io/","bibliography":["citations.bib"],"image":"StabilityPictures.jpg","date":"2020-01-14","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Mathematical Modeling in Ecology and Evolution","markdown":{"yaml":{"title":"Mathematical Modeling in Ecology and Evolution","description":"This workshop will introduce participants to the logic behind modeling in biology, focusing on developing equations, finding equilibria, analyzing stability, and running simulations.Techniques will be illustrated with the software tools, Mathematica and Maxima. This workshop was held in two parts: January 14 and January 16, 2020.\n","categories":["Technical","EN"],"author":[{"name":"Sarah P. Otto","affiliation":"University of British Columbia"}],"base_url":"https://bios2.github.io/","bibliography":"citations.bib","image":"StabilityPictures.jpg","date":"2020-01-14","toc":true,"number-sections":true,"number-depth":1},"headingText":"Content","containsRefs":false,"markdown":"\n\nIn this workshop, I introduce various modelling techniques, using mostly ecological and evolutionary examples, with a focus on how computer software programs can help biologists analyze such models.\n\n\n**Part 1:** Classic one-variable models in ecology and evolution\\\n**Part 2:** Equilibria and their stability\\\n**Part 3:** Beyond equilibria\\\n**Part 4:** Example of building a model from scratch\\\n**Part 5:** Extending to models with more than one variable\\\n**Part 6:** Another example of building a model from scratch\n\n### Software\n\nIn my research, I primarily use Mathematica, which is a powerful software package to organize and conduct analytical modelling, but it is not free (at UBC, we have some licenses available). I will also show some example code and provide translation of most of what I present in a free software package called Maxima.\n\n#### Mathematica installation\n\nThere is a free trial version that you can use for 15 days, if you don't have a copy (click [here](http://www.wolfram.com/mathematica/trial/) to access), or you can buy a [student version](https://www.wolfram.com/mathematica/pricing/students/) online. If you want to make sure that all is working, copy the code below, put your cursor over each of the following lines and press enter (on some computers, \"enter\" is a separate button, on others, press \"shift\" and \"return\" at the same time):\n\n``` mathematica\nD[x^3,x]\nListPlot[Table[x, {x,1,10}],Joined->True]\nRSolve[{x[t+1]\\[Equal]A x[t],x[0]\\[Equal]x0},x[t],t]\nPDF[NormalDistribution[0,1],x]\n```\n\nYou should see (a) $3x^2$, (b) a plot of a line, (c) ${{x[t]->A^t x0}}$, and (d) $\\frac{e^\\frac{-x^2}{2}}{\\sqrt{2\\pi }}$.\n\n#### Maxima installation:\n\nOn a Mac, install using the instructions [here](https://themaximalist.org/about/my-mac-os-installation/). For other file systems, download [here](https://sourceforge.net/projects/maxima/files/).\n\n#### Maxima testing\n\nWhen you first open Maxima, it will give you a choice of GUIs, chose wxMaxima. Once wxMaxima is launched type this command and hit return to see if it answers 4:\n\n``` maxima\n2+2;\n```\n\nIf it doesn't, then scan the installation document for the error that you run into.\n\nIf it does return 4, then type in and enter these commands:\n\n``` maxima\ndiff(x^3, x);\n\nwxplot2d (3*x, [x, 0, 2*%pi]);\n\nload(\"solve_rec\")$\nsolve_rec(x[t+1] = A*x[t], x[t], x[0]=x0);\n\nload(\"distrib\")$\npdf_normal(x,0,1);\n```\n\nYou should see (a) $3x^2$, (b) a plot of a line, (c) ${{x[t]->A^t x0}}$, and (d) $\\frac{e^\\frac{-x^2}{2}}{\\sqrt{2\\pi }}$.\n\n### Material\n\n| Mathematica | Maxima | PDF |\n|:----------------------:|:----------------------:|:----------------------:|\n| [Notebook](files/BIOS2_WorkshopMathematica.nb) | [Notebook](files/Bios2_WorkshopMaxima.wxmx) | Embeded below |\n| [Hints and solutions](files/BIOS2_WorkshopMathematicaSOLUTIONS.nb) | [Hints and solutions](files/Bios2_WorkshopMaximaSOLUTIONS.wxmx) | |\n| | | [Homework](files/Homework1.pdf) |\n| [Homework answers](files/HomeworkAnswers.nb) | | [Homework answers](files/HomeworkAnswers.pdf) |\n| [Guide](files/MathematicaGuide.nb) | [Guide](files/MaximaQuickReference.wxm) | |\n\n#### Follow along PDF\n\nThis PDF was generated from the Mathematica notebook linked above. It doesn't include dynamic plots, but it's a good alternative if you want to print out or have a quick reference at hand.\n\n\n\n

\n\n![Stability analysis of a recursion equation in a discrete-time model.](StabilityPictures.png)\n\n### Other resources\n\n- *An Introduction to Mathematical Modeling in Ecology and Evolution* [@otto2007biologist].\n\n- [Biomathematical modeling lecture notes](http://www.zoology.ubc.ca/~bio301/Bio301/Lectures.html).\n\n- [Mathematica labs UBC](http://www.zoology.ubc.ca/biomath/labs.htm).\n\n### Thanks\n\nNiki Love and Gil Henriques did a great job of translating the code into wxMaxima, with limited help from me. Thanks, Niki and Gil!!\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"markdown"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Mathematical Modeling in Ecology and Evolution","description":"This workshop will introduce participants to the logic behind modeling in biology, focusing on developing equations, finding equilibria, analyzing stability, and running simulations.Techniques will be illustrated with the software tools, Mathematica and Maxima. This workshop was held in two parts: January 14 and January 16, 2020.\n","categories":["Technical","EN"],"author":[{"name":"Sarah P. Otto","affiliation":"University of British Columbia"}],"base_url":"https://bios2.github.io/","bibliography":["citations.bib"],"image":"StabilityPictures.jpg","date":"2020-01-14","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative/index.qmd.json b/.quarto/idx/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative/index.qmd.json index cb517ed..7f47d89 100644 --- a/.quarto/idx/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative/index.qmd.json +++ b/.quarto/idx/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative/index.qmd.json @@ -1 +1 @@ -{"title":"Sensibilisation aux réalités autochtones et recherche collaborative","markdown":{"yaml":{"title":"Sensibilisation aux réalités autochtones et recherche collaborative","description":"Série de deux webinaires sur la sensibilisation aux réalités autochtones et la recherche en collaboration avec les Autochtones, offert du 28 au 30 avril 2020 par Catherine-Alexandra Gagnon, PhD.\n","categories":["Transversal competencies","FR"],"author":[{"name":"Catherine-Alexandra Gagnon","affiliation":"Érébia - Cabinet-conseil en environnement"}],"bibliography":"citations.bib","base_url":"https://bios2.github.io/","image":"image.jpg","date":"2020-04-28","toc":true,"number-sections":true,"number-depth":1},"headingText":"Partie 1 - Sensibilisation aux réalités autochtones","containsRefs":false,"markdown":"\n\n\n### Objectifs de la formation :\n\n- Améliorer notre compréhension du passé et de ses impacts sur nos relations entre le avec les Peuples Autochtones.\n\n- Développer des notions et compétences afin d'agir contre les préjugés et le racisme.\n\n### Durant ce webinaire, nous allons: \n\n- Faire un survol des événements historiques importants et de leurs impacts à ce jour (Loi sur les Indiens, politiques d'assimilation, les pensionnats, etc.). \n\n- Acquérir des connaissances sur la terminologie autochtone.\n\n- Faire un survol de certains procès et contextes légaux et voir comment ils affectent notre travail en territoire autochtone.\n\n- Dans une optique de réconciliation, faire une prise de conscience des préjugés persistants et discuter de stratégies pour améliorer nos relations avec les communautés.\n\n# Partie 2 - Recherche en collaboration avec les communautés autochtones\n\n## Objectifs de la formation :\n\n- Entamer une réflexion collective envers nos pratiques de recherche et comment s'engager de manière significative avec les communautés autochtones.\n\n- Développer une meilleure compréhension des perceptions et attentes des communautés envers la recherche et les chercheurs.\n\n## Durant ce webminaire, nous allons: \n\n- Mieux comprendre la nécessité de prendre en compte les connaissances autochtones dans divers aspects de la gestion environnementale au Canada; \n\n- Discuter du désir des communauté d'avoir une présence accrue dans le milieu de la recherche : comment faire?\n\n- Aborder et débattre des différentes approches méthodologiques pour établir des ponts en les connaissances autochtones et scientifiques.\n\n# Ressources\n\n### Balados\n\n\n\n### Lectures, sites internet\n\n- Truth and Reconciliation Commission Reports\n\n- [Final Report: National Inquiry into Missing and Murdered Indigenous Women and Girls](https://www.rcaanc-cirnac.gc.ca/eng/1448633299414/1534526479029)\n\n- [Report of the Royal Commission on Aboriginal Peoples](https://www.bac-lac.gc.ca/eng/discover/aboriginal-heritage/royal-commission-aboriginal-peoples/Pages/final-report.aspx)\n\n- [Mythes et réalités sur les peuples autochtones](http://www.cdpdj.qc.ca/Publications/Mythes-Realites.pdf)\n\n- [Where are the children? Healing the legacy of the residential schools](http://wherearethechildren.ca/en/)\n\n- [Indigenous Canada (Coursera)](https://www.coursera.org/learn/indigenous-canada)\n\n- [\"Indigenous Writes\", by Chelsea Vowel](https://g.co/kgs/W8vAFY)\n\n- \"21 things you might not know about the Indian Act: Helping Canadians make reconciliation with Indigenous Peoples a reality.\"\n\n- [Northern Quebec: Issues, Spaces and Cultures (MOOC Université Laval)](https://www.ulaval.ca/en/academics/mooc-massive-open-online-courses/northern-quebec-issues-spaces-and-cultures)\n\n### Filmographie\n\n#### National Film Board of Canada\n\n- [Peuples autochtones au Canada (Premières Nations et Métis)](https://www.nfb.ca/subjects/indigenous-peoples-in-canada-first-nations-and-metis/)\n\n- [Indigenous Peoples in Canada (Inuit)](https://www.nfb.ca/subjects/indigenous-peoples-in-canada-inuit/)\n\n- [Wapikoni](http://www.wapikoni.ca)\n\n## Formatrice :\n\nCatherine-Alexandra Gagnon possède une expertise dans le travail collaboratif en milieux autochtones. Elle s'intéresse particulièrement à la mise en commun des savoirs locaux, autochtones et scientifiques. Elle détient un doctorat en Sciences de l'environnement et une maîtrise en Gestion de la faune de l'Université du Québec à Rimouski, un baccalauréat en biologie faunique de l'université McGill ainsi qu'un certificat en Études autochtones de l'université de Montréal. Durant ses études, elle a travaillé sur les connaissances locales et ancestrales des Aîné(e)s et chasseurs Inuit, Inuvialuit et Gwich'in du Nunavut, des Territoires du Nord-Ouest et du Yukon.\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"markdown"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Sensibilisation aux réalités autochtones et recherche collaborative","description":"Série de deux webinaires sur la sensibilisation aux réalités autochtones et la recherche en collaboration avec les Autochtones, offert du 28 au 30 avril 2020 par Catherine-Alexandra Gagnon, PhD.\n","categories":["Transversal competencies","FR"],"author":[{"name":"Catherine-Alexandra Gagnon","affiliation":"Érébia - Cabinet-conseil en environnement"}],"bibliography":["citations.bib"],"base_url":"https://bios2.github.io/","image":"image.jpg","date":"2020-04-28","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Sensibilisation aux réalités autochtones et recherche collaborative","markdown":{"yaml":{"title":"Sensibilisation aux réalités autochtones et recherche collaborative","description":"Série de deux webinaires sur la sensibilisation aux réalités autochtones et la recherche en collaboration avec les Autochtones, offert du 28 au 30 avril 2020 par Catherine-Alexandra Gagnon, PhD.\n","categories":["Transversal competencies","FR"],"author":"Dr Catherine-Alexandra Gagnon","bibliography":"citations.bib","base_url":"https://bios2.github.io/","image":"image.jpg","date":"2020-04-28","toc":true,"number-sections":true,"number-depth":1},"headingText":"Partie 1 - Sensibilisation aux réalités autochtones","containsRefs":false,"markdown":"\n\n\n### Objectifs de la formation :\n\n- Améliorer notre compréhension du passé et de ses impacts sur nos relations entre le avec les Peuples Autochtones.\n\n- Développer des notions et compétences afin d'agir contre les préjugés et le racisme.\n\n### Durant ce webminaire, nous allons: \n\n- Faire un survol des événements historiques importants et de leurs impacts à ce jour (Loi sur les Indiens, politiques d'assimilation, les pensionnats, etc.). \n\n- Acquérir des connaissances sur la terminologie autochtone.\n\n- Faire un survol de certains procès et contextes légaux et voir comment ils affectent notre travail en territoire autochtone.\n\n- Dans une optique de réconciliation, faire une prise de conscience des préjugés persistants et discuter de stratégies pour améliorer nos relations avec les communautés.\n\n# Partie 2 - Recherche en collaboration avec les communautés autochtones\n\n## Objectifs de la formation :\n\n- Entamer une réflexion collective envers nos pratiques de recherche et comment s'engager de manière significative avec les communautés autochtones.\n\n- Développer une meilleure compréhension des perceptions et attentes des communautés envers la recherche et les chercheurs.\n\n## Durant ce webminaire, nous allons: \n\n- Mieux comprendre la nécessité de prendre en compte les connaissances autochtones dans divers aspects de la gestion environnementale au Canada; \n\n- Discuter du désir des communauté d'avoir une présence accrue dans le milieu de la recherche : comment faire?\n\n- Aborder et débattre des différentes approches méthodologiques pour établir des ponts en les connaissances autochtones et scientifiques.\n\n# Ressources\n\n### Balados\n\n\n\n### Lectures, sites internet\n\n- Truth and Reconciliation Commission Reports\n\n- [Final Report: National Inquiry into Missing and Murdered Indigenous Women and Girls](https://www.rcaanc-cirnac.gc.ca/eng/1448633299414/1534526479029)\n\n- [Report of the Royal Commission on Aboriginal Peoples](https://www.bac-lac.gc.ca/eng/discover/aboriginal-heritage/royal-commission-aboriginal-peoples/Pages/final-report.aspx)\n\n- [Mythes et réalités sur les peuples autochtones](http://www.cdpdj.qc.ca/Publications/Mythes-Realites.pdf)\n\n- [Where are the children? Healing the legacy of the residential schools](http://wherearethechildren.ca/en/)\n\n- [Indigenous Canada (Coursera)](https://www.coursera.org/learn/indigenous-canada)\n\n- [\"Indigenous Writes\", by Chelsea Vowel](https://g.co/kgs/W8vAFY)\n\n- \"21 things you might not know about the Indian Act: Helping Canadians make reconciliation with Indigenous Peoples a reality.\"\n\n- [Northern Quebec: Issues, Spaces and Cultures (MOOC Université Laval)](https://www.ulaval.ca/en/academics/mooc-massive-open-online-courses/northern-quebec-issues-spaces-and-cultures)\n\n### Filmographie\n\n#### National Film Board of Canada\n\n- [Peuples autochtones au Canada (Premières Nations et Métis)](https://www.nfb.ca/subjects/indigenous-peoples-in-canada-first-nations-and-metis/)\n\n- [Indigenous Peoples in Canada (Inuit)](https://www.nfb.ca/subjects/indigenous-peoples-in-canada-inuit/)\n\n- [Wapikoni](http://www.wapikoni.ca)\n\n## Formatrice :\n\nCatherine-Alexandra Gagnon possède une expertise dans le travail collaboratif en milieux autochtones. Elle s'intéresse particulièrement à la mise en commun des savoirs locaux, autochtones et scientifiques. Elle détient un doctorat en Sciences de l'environnement et une maîtrise en Gestion de la faune de l'Université du Québec à Rimouski, un baccalauréat en biologie faunique de l'université McGill ainsi qu'un certificat en Études autochtones de l'université de Montréal. Durant ses études, elle a travaillé sur les connaissances locales et ancestrales des Aîné(e)s et chasseurs Inuit, Inuvialuit et Gwich'in du Nunavut, des Territoires du Nord-Ouest et du Yukon.\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"markdown"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Sensibilisation aux réalités autochtones et recherche collaborative","description":"Série de deux webinaires sur la sensibilisation aux réalités autochtones et la recherche en collaboration avec les Autochtones, offert du 28 au 30 avril 2020 par Catherine-Alexandra Gagnon, PhD.\n","categories":["Transversal competencies","FR"],"author":"Dr Catherine-Alexandra Gagnon","bibliography":["citations.bib"],"base_url":"https://bios2.github.io/","image":"image.jpg","date":"2020-04-28","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2020-06-15-science-communication/index.qmd.json b/.quarto/idx/posts/2020-06-15-science-communication/index.qmd.json index 0ede680..f2efdbb 100644 --- a/.quarto/idx/posts/2020-06-15-science-communication/index.qmd.json +++ b/.quarto/idx/posts/2020-06-15-science-communication/index.qmd.json @@ -1 +1 @@ -{"title":"Science Communication","markdown":{"yaml":{"title":"Science Communication","description":"Recordings, content and handouts from a 6-hour Science Communication workshop held over two days on 15 and 16 June 2020.\n","author":[{"name":"Gracielle Higino","affiliation":"Université de Montréal"},{"name":"Katherine Hébert","affiliation":"Université de Sherbrooke"}],"base_url":"https://bios2.github.io/","image":"image.jpg","categories":["Career","Fellow contributed","EN"],"date":"2020-06-15","toc":true,"number-sections":true,"number-depth":1},"headingText":"Day 1","containsRefs":false,"markdown":"\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(echo = FALSE)\n```\n\nThe objective of this training is to share and discuss the concepts and tools that contribute to effective science communication. The training is split into two sessions, which cover the basic concepts of effective science communication and how social media tools can be used to boost the signal of your research and extend your research network. Each training takes the form of a presentation interspersed with several short activity modules, where participants are invited to use the tools we will be discussing to kickstart their own science communication.\n\nThis training was given on June 1 and 2, 2020. You can view recordings of each session here:\n\n\n\n\n### Day 2\n\n\n\n## Session 1: The basics of science communication\n\n#### Objectives:\n\n1. Discuss what science communication (or SciComm) can be, and its potential role in boosting the signal of your research\n2. Make an overview of basic concepts and tools that you can use in any medium (blog posts, presentations, conversations, twitter, etc.) to do effective science communication\n\nDuring this session, we:\n\n1. Discuss the potential pitfalls of science communication (notably, diversity and inclusivity problems).\n2. Cover the basic concepts of science communication, including the Golden Circle method, the creation of personas, and storytelling techniques.\n3. Have short activities where participants can try to use some of the techniques we will be covering, such as filling in their own Golden Circle and explaining a blog post as a storyboard.\n\n\n\n\n\n





\n\n## Session 2: Social media as a science communication tool\n\n#### Objectives:\n\n1. Rethink the way we write about science by exploring the world of blog posts\n2. Clarify the mechanics of Twitter and how it can be used effectively for science communication\n\nDuring this session, we:\n\n1. Discuss how to create a story structure using titles and the flow of ideas in blog posts, especially when we are used to writing scientific articles\n2. Cover the basics of how Twitter works (retweets, threads, replies, hashtags, photo captions, etc.) and how to find helpful connections\n3. Have short activities where participants will be invited to write their own Twitter biographies and to create a Twitter thread explaining a project of their choice.\n\n\n\n\n\n



\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Science Communication","description":"Recordings, content and handouts from a 6-hour Science Communication workshop held over two days on 15 and 16 June 2020.\n","author":[{"name":"Gracielle Higino","affiliation":"Université de Montréal"},{"name":"Katherine Hébert","affiliation":"Université de Sherbrooke"}],"base_url":"https://bios2.github.io/","image":"image.jpg","categories":["Career","Fellow contributed","EN"],"date":"2020-06-15","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Science Communication","markdown":{"yaml":{"title":"Science Communication","description":"Recordings, content and handouts from a 6-hour Science Communication workshop held over two days on 15 and 16 June 2020.\n","author":[{"name":"Gracielle Higino"},{"name":"Katherine Hébert"}],"base_url":"https://bios2.github.io/","image":"image.jpg","categories":["Career","Fellow contributed","EN"],"date":"2020-06-15","toc":true,"number-sections":true,"number-depth":1},"headingText":"Day 1","containsRefs":false,"markdown":"\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(echo = FALSE)\n```\n\nThe objective of this training is to share and discuss the concepts and tools that contribute to effective science communication. The training is split into two sessions, which cover the basic concepts of effective science communication and how social media tools can be used to boost the signal of your research and extend your research network. Each training takes the form of a presentation interspersed with several short activity modules, where participants are invited to use the tools we will be discussing to kickstart their own science communication.\n\nThis training was given on June 1 and 2, 2020. You can view recordings of each session here:\n\n\n\n\n### Day 2\n\n\n\n## Session 1: The basics of science communication\n\n#### Objectives:\n\n1. Discuss what science communication (or SciComm) can be, and its potential role in boosting the signal of your research\n2. Make an overview of basic concepts and tools that you can use in any medium (blog posts, presentations, conversations, twitter, etc.) to do effective science communication\n\nDuring this session, we:\n\n1. Discuss the potential pitfalls of science communication (notably, diversity and inclusivity problems).\n2. Cover the basic concepts of science communication, including the Golden Circle method, the creation of personas, and storytelling techniques.\n3. Have short activities where participants can try to use some of the techniques we will be covering, such as filling in their own Golden Circle and explaining a blog post as a storyboard.\n\n\n\n\n\n





\n\n## Session 2: Social media as a science communication tool\n\n#### Objectives:\n\n1. Rethink the way we write about science by exploring the world of blog posts\n2. Clarify the mechanics of Twitter and how it can be used effectively for science communication\n\nDuring this session, we:\n\n1. Discuss how to create a story structure using titles and the flow of ideas in blog posts, especially when we are used to writing scientific articles\n2. Cover the basics of how Twitter works (retweets, threads, replies, hashtags, photo captions, etc.) and how to find helpful connections\n3. Have short activities where participants will be invited to write their own Twitter biographies and to create a Twitter thread explaining a project of their choice.\n\n\n\n\n\n



\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Science Communication","description":"Recordings, content and handouts from a 6-hour Science Communication workshop held over two days on 15 and 16 June 2020.\n","author":[{"name":"Gracielle Higino"},{"name":"Katherine Hébert"}],"base_url":"https://bios2.github.io/","image":"image.jpg","categories":["Career","Fellow contributed","EN"],"date":"2020-06-15","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2020-09-21-data-visualization/index.qmd.json b/.quarto/idx/posts/2020-09-21-data-visualization/index.qmd.json index 4fdd315..168c921 100644 --- a/.quarto/idx/posts/2020-09-21-data-visualization/index.qmd.json +++ b/.quarto/idx/posts/2020-09-21-data-visualization/index.qmd.json @@ -1 +1 @@ -{"title":"Data Visualization","markdown":{"yaml":{"title":"Data Visualization","description":"General principles of visualization and graphic design, and techniques of tailored visualization. This training was developed and delivered by Alex Arkilanian and Katherine Hébert on September 21st and 22nd, 2020.\n","author":[{"name":"Alex Arkilanian","affiliation":"McGill University"},{"name":"Katherine Hébert","affiliation":"Université de Sherbrooke"}],"categories":["Technical","Fellow contributed","EN"],"date":"09-21-2020","image":"image.jpg","toc":true,"number-sections":true,"number-depth":1,"format":{"html":{"code-fold":true,"code-summary":"Show code"}},"execute":{"cache":true,"warning":false,"message":false,"collapse":true}},"headingText":"Training material","containsRefs":false,"markdown":"\n\nWelcome!\n\nThis training covers the general principles of visualization and graphic design, and techniques of tailored visualization. More specifically, the objectives of the training are:\n\n- Make an overview of basic data visualization principles, including shapes, sizes, colours, and fonts.\n- Discuss how to choose the right visualization for your data, what you want to communicate, and who you want to communicate to.\n- Tools and principles to tailor visualizations, particularly in making interpretable, interactive, and honest visualizations.\n\n\n*Click on \"Show code\" to learn how to do each plot!*\n\n### Interactive examples\n\n```{r, echo = FALSE, results='hide'}\n# install packages if not installed already\nlist.of.packages <- c(\"ggplot2\", \"dplyr\", \"plotly\", \"lubridate\", \"htmlwidgets\", \"viridis\")\nnew.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,\"Package\"])]\nif(length(new.packages)) install.packages(new.packages)\n\nif(!(\"streamgraph\" %in% installed.packages())){\n devtools::install_github(\"hrbrmstr/streamgraph\", quiet = TRUE)}\n```\n\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(echo = FALSE, message=FALSE, warning=FALSE)\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(plotly) # interactive plots\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n```\n\n#### Streamgraph\n\n```{r streamgraph-plot}\n# Script to make a streamgraph of the top 10 most popular dog breeds in \n# New York City from 1999 to 2015\n\n# load libraries\nlibrary(lubridate) # dealing with dates\nlibrary(dplyr) # data manipulation\nlibrary(streamgraph) #devtools::install_github(\"hrbrmstr/streamgraph\")\nlibrary(htmlwidgets) # to save the widget!\n\n# load the dataset\n# more information about this dataset can be found here:\n# https://www.kaggle.com/smithaachar/nyc-dog-licensing-clean\nnyc_dogs <- read.csv(\"data/nyc_dogs.csv\")\n\n# convert birth year to date format (and keep only the year)\nnyc_dogs$AnimalBirthYear <- mdy_hms(nyc_dogs$AnimalBirthMonth) %>% year()\n\n# identify 10 most common dogs\ntopdogs <- nyc_dogs %>% count(BreedName) \ntopdogs <- topdogs[order(topdogs$n, decreasing = TRUE),]\n# keep 10 most common breeds (and remove last year of data which is incomplete)\ndf <- filter(nyc_dogs, BreedName %in% topdogs$BreedName[2:11] & AnimalBirthYear < 2016) %>% \n group_by(AnimalBirthYear) %>% \n count(BreedName) %>% ungroup()\n\n# get some nice colours from viridis (magma)\ncols <- viridis::viridis_pal(option = \"magma\")(length(unique(df$BreedName)))\n\n# make streamgraph!\npp <- streamgraph(df, \n key = BreedName, value = n, date = AnimalBirthYear, \n height=\"600px\", width=\"1000px\") %>%\n sg_legend(show=TRUE, label=\"names: \") %>%\n sg_fill_manual(values = cols) \n# saveWidget(pp, file=paste0(getwd(), \"/figures/dogs_streamgraph.html\"))\n\n# plot\npp\n```\n\n------------------------------------------------------------------------\n\n#### Interactive plot\n\n```{r interactive-plot, message=FALSE}\n# Script to generate plots to demonstrate how combinations of information dimensions\n# can become overwhelming and difficult to interpret.\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(plotly) # interactive plots\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\n# more info on this dataset: https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-07-28/readme.md\npenguins <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv') \n\n# get some nice colours from viridis (magma)\nsp_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n\n\n#### Day 1 ####\n\n# 1. Similarity\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, col = species), size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) # sets the colour scale we created above \nggsave(\"figures/penguins_similarity.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Proximity\n\ndf <- penguins %>% group_by(sex, species) %>% \n summarise(mean_mass = mean(body_mass_g, na.rm = TRUE)) %>% na.omit() \nggplot(df) +\n geom_bar(aes(y = mean_mass, x = species, fill = sex), \n position = \"dodge\", stat = \"identity\") +\n labs(x = \"Species\", y = \"Mean body mass (g)\", col = \"Sex\") + # labels\n scale_fill_manual(values = sp_cols) # sets the colour scale we created above\nggsave(\"figures/penguins_proximity.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Enclosure (Ellipses over a fake PCA)\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(size = 2.1, col = \"grey30\") +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"PCA1\", y = \"PCA2\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) + # sets the colour scale we created above\n theme(axis.text = element_blank(), axis.ticks = element_blank())\nggsave(\"figures/penguins_enclosure.png\", width = 6, height = 3, units = \"in\")\n\n# 4. Mismatched combination of principles\ntemp_palette <- rev(c(sp_cols, \"#1f78b4\", \"#33a02c\"))\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(aes(col = sex), size = 2.1) +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"?\") + # labels\n scale_color_manual(values = temp_palette) # sets the colour scale we created above\nggsave(\"figures/penguins_mismatchedgestalt.png\", width = 6, height = 3, units = \"in\")\n\n\n\n#### Day 2 ####\n\n# 1. Ineffective combinations: Luminance & shading -----------------------------\n\n# create the plot\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n col = species, # hue\n alpha = log(body_mass_g)), # luminance\n size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n col = \"Species\", alpha = \"Body mass (g)\") +\n scale_color_manual(values = sp_cols)\nggsave(\"figures/penguins_incompatible1.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Ineffective combinations: Sizes and shapes --------------------------------\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n shape = species, # shape\n size = log(body_mass_g)), alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\") \nggsave(\"figures/penguins_incompatible2.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Cognitive overload --------------------------------------------------------\n\n# get some nice colours from viridis (magma)\nsex_cols <- viridis::viridis_pal(option = \"magma\")(8)[c(3,6)]\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n shape = species, # dimension 3: shape\n size = log(body_mass_g), # dimension 4: size\n col = sex), # dimension 5: hue\n alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\", col = \"Sex\") +\n scale_color_manual(values = sex_cols)\nggsave(\"figures/penguins_5dimensions.png\", width = 7, height = 4, units = \"in\")\n\n\n# 4. Panels -------------------------------------------------------------------\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n col = log(body_mass_g)), # dimension 3: hue\n alpha = .7, size = 2) + \n facet_wrap(~ species) + # dimension 4: species!\n # this will create a separate panel for each species\n # note: this also automatically uses the same axes for all panels! If you want \n # axes to vary between panels, use the argument scales = \"free\"\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\nggsave(\"figures/penguins_dimensions_facets.png\", width = 7, height = 4, units = \"in\")\n\n\n# 5. Interactive ---------------------------------------------------------------\n\np <- na.omit(penguins) %>%\n ggplot(aes(y = bill_length_mm, \n x = bill_depth_mm, \n col = log(body_mass_g))) +\n geom_point(size = 2, alpha = .7) + \n facet_wrap(~ species) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\np <- ggplotly(p)\n#setwd(\"figures\")\nhtmlwidgets::saveWidget(as_widget(p), \"figures/penguins_interactive.html\")\np\n```\n\n### Example figures\n\n```{r animated.volcano}\n# Script to make animated plot of volcano eruptions over time\n\n# Load libraries:\nlibrary(dplyr) # data manipulation\nlibrary(ggplot2) # plotting\nlibrary(gganimate) # animation\nlibrary(gifski) # creating gifs\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# function to floor a year to the decade\nfloor_decade = function(value){return(value - value %% 10)}\n\n# read data \neruptions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-05-12/eruptions.csv')\n\n# select top 5 most frequently exploding volcanoes\ntemp <- group_by(eruptions, volcano_name) %>% tally() \ntemp <- temp[order(temp$n, decreasing = TRUE),]\n\n# make a time series dataset (number of eruptions per year)\neruptions$start_decade = floor_decade(eruptions$start_year)\n\n# filter dataset to subset we want to visualize\ndf <- eruptions %>% \n filter(between(start_decade, 1900, 2019)) %>%\n filter(volcano_name %in% temp$volcano_name[1:5]) %>%\n group_by(start_decade) %>%\n count(volcano_name) %>% ungroup()\n\n# plot!\np <- ggplot(df, aes(x = start_decade, y = n, fill = volcano_name)) +\n geom_area() +\n geom_vline(aes(xintercept = start_decade)) + # line that follows the current decade\n scale_fill_viridis_d(option = \"magma\", end = .8) +\n labs(x = \"\", y = \"Number of eruptions\", fill = \"Volcano\",\n title = 'Eruptions of the top 5 most frequently erupting volcanos worldwide') +\n # gganimate part: reveals each decade\n transition_reveal(start_decade) \nanimate(p, duration = 5, fps = 20, width = 800, height = 300, renderer = gifski_renderer())\n#anim_save(\"figures/volcano_eruptions.gif\")\n```\n\n```{r coffee.uncertainty}\n# Script to generate plots with various ways of representing uncertainty, based \n# Coffee & Code dataset from https://www.kaggle.com/devready/coffee-and-code/data\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(ggridges) # for density ridge plots\nlibrary(patchwork) # great package for \"patching\" plots together!\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\ndf <- read.csv(\"data/coffee_code.csv\")\n\n# set labels to be used in all plots\ncoffee_labels <- labs(title = \"Does coffee help programmers code?\",\n x = \"Coffee while coding\", \n y = \"Time spent coding \\n(hours/day)\") \n\n# the variable CodingWithoutCoffee is negative, which is harder to understand\n# (i.e. \"No\" means they drink coffee...). So, let's transform it into a more \n# intuitive variable!\ndf$CodingWithCoffee <- gsub(\"No\", \"Usually\", df$CodingWithoutCoffee)\ndf$CodingWithCoffee <- gsub(\"Yes\", \"Rarely\\n or never\", df$CodingWithCoffee)\n# convert to factor and set levels so they show up in a logical order\ndf$CodingWithCoffee <- factor(df$CodingWithCoffee,\n levels = c(\"Rarely\\n or never\", \n \"Sometimes\", \n \"Usually\"))\n\n# calculate summary statistics for the variable of choice\ndf_summary <- group_by(df, CodingWithCoffee) %>%\n summarise(\n # mean\n mean_codinghours = mean(CodingHours), \n # standard deviation\n sd_codinghours = sd(CodingHours), \n # standard error\n se_codinghours = sd(CodingHours)/sqrt(length(CodingHours)))\n\n\n# 1. Error bars (standard error) -----------------------------------------------\n\nggplot(df_summary) +\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours), \n width = .2) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(0,10)\nggsave(\"figures/coffee_errorbars.png\", width = 5, height = 3, units = \"in\")\n\n# 2. Boxplot -------------------------------------------------------------------\n\nggplot(df) +\n geom_boxplot(aes(x = CodingWithCoffee, y = CodingHours)) +\n coffee_labels\nggsave(\"figures/coffee_boxplot.png\", width = 5, height = 3, units = \"in\")\n\n\n# 3. Error bar demonstration ---------------------------------------------------\n\n# get some nice colours from viridis (magma)\nerror_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n# set labels to be used in the palette\nerror_labels = c(\"standard deviation\",\"95% confidence interval\",\"standard error\")\n\nggplot(df_summary) +\n # show the raw data\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n # standard deviation\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - sd_codinghours,\n ymax = mean_codinghours + sd_codinghours,\n col = \"SD\"), width = .2, lwd = 1) +\n # 95% confidence interval\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - 1.96*se_codinghours,\n ymax = mean_codinghours + 1.96*se_codinghours, \n col = \"CI\"), width = .2, lwd = 1) +\n # standard error\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours, \n col = \"SE\"), width = .2, lwd = 1) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(c(0,11)) +\n # manual palette/legend set-up!\n scale_colour_manual(name = \"Uncertainty metric\", \n values = c(SD = error_cols[1], \n CI = error_cols[2], \n SE = error_cols[3]),\n labels = error_labels) +\n theme(legend.position = \"top\")\nggsave(\"figures/coffee_bars_demo.png\", width = 7, height = 5, units = \"in\")\n\n\n# 4. Jitter plot with violin ---------------------------------------------------\n\nggplot() +\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n geom_violin(data = df, aes(x = CodingWithCoffee, \n y = CodingHours), alpha = 0) +\n geom_linerange(data = df_summary,\n aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours)) +\n geom_point(data = df_summary, \n aes(x = CodingWithCoffee, \n y = mean_codinghours), size = 3) +\n coffee_labels\nggsave(\"figures/coffee_violin_jitter.png\", width = 5, height = 3, units = \"in\")\n\n\n# 5. Density ridge plot --------------------------------------------------------\n\nggplot(df) + \n aes(y = CodingWithCoffee, x = CodingHours, fill = stat(x)) +\n geom_density_ridges_gradient(scale = 1.9, size = .2, rel_min_height = 0.005) +\n # colour palette (gradient according to CodingHours)\n scale_fill_viridis_c(option = \"magma\", direction = -1) +\n # remove legend - it's not necessary here!\n theme(legend.position = \"none\") +\n labs(title = coffee_labels$title, \n x = coffee_labels$y, \n y = \"Coffee \\nwhile coding\") + \n theme(axis.title.y = element_text(angle=0, hjust = 1, vjust = .9, \n margin = margin(t = 0, r = -50, b = 0, l = 0)))\nggsave(\"figures/coffee_density_ridges.png\", width = 5, height = 3, units = \"in\")\n\n# 6. Jitter vs. Rug plot ------------------------------------------------------------------\n\njitterplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_jitter(alpha = .2) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n coffee_labels + ylim(c(0,11)) + labs(x = \"Cups of coffee (per day)\")\n\nrugplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n geom_rug(position=\"jitter\", alpha = .7) + ylim(c(0,11)) +\n coffee_labels + labs(x = \"Cups of coffee (per day)\")\n\n# patch the two plots together\njitterplot + rugplot\n#ggsave(\"figures/coffee_jitter_vs_rugplot.png\", width = 10, height = 4, units = \"in\")\n\n```\n\n```{r densiplot}\n# Script to generate 95% confidence intervals of a generated random normal distribution\n# as an example in Day 2: Visualizing uncertainty.\n\n# load library\nlibrary(ggplot2)\nlibrary(magrittr)\nlibrary(dplyr)\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# set random seed\nset.seed(22)\n\n# generate population (random normal distribution)\ndf <- data.frame(\"value\" = rnorm(50, mean = 0, sd = 1))\n\n# descriptive stats for each distribution\ndesc_stats = df %>% \n summarise(mean_val = mean(value, na.rm = TRUE),\n se_val = sqrt(var(value)/length(value)))\n\n# build density plot!\np <- ggplot(data = df, aes(x = value, y = ..count..)) +\n geom_density(alpha = .2, lwd = .3) +\n xlim(c(min(df$value-1), max(df$value+1))) \n# extract plotted values\nbase_p <- ggplot_build(p)$data[[1]]\n# shade the 95% confidence interval\np + \n geom_area(data = subset(base_p, \n between(x, \n left = (desc_stats$mean_val - 1.96*desc_stats$se_val),\n right = (desc_stats$mean_val + 1.96*desc_stats$se_val))),\n aes(x = x, y = y), fill = \"cadetblue3\", alpha = .6) +\n # add vertical line to show population mean\n geom_vline(aes(xintercept = 0), lty = 2) +\n annotate(\"text\", x = 0.9, y = 19, label = \"True mean\", fontface = \"italic\") +\n # label axis!\n labs(x = \"Variable of interest\", y = \"\") \n#ggsave(\"figures/confidenceinterval_example.png\", width = 5, height = 3.5, units = \"in\")\n\n```\n\n### Annotated resource library\n\nThis is an annotated library of data visualization resources we used to build the BIOS² Data Visualization Training, as well as some bonus resources we didn't have the time to include. Feel free to save this page as a reference for your data visualization adventures!\n\n------------------------------------------------------------------------\n\n#### Books & articles\n\n[**Fundamentals of Data Visualization**](https://serialmentor.com/dataviz/)
A primer on making informative and compelling figures. This is the website for the book \"Fundamentals of Data Visualization\" by Claus O. Wilke, published by O'Reilly Media, Inc.\n\n[**Data Visualization: A practical introduction**](https://socviz.co/index.html#preface)
An accessible primer on how to create effective graphics from data using R (mainly ggplot). This book provides a hands-on introduction to the principles and practice of data visualization, explaining what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way.\n\n[**Data Science Design (Chapter 6: Visualizing Data)**](https://link.springer.com/content/pdf/10.1007%2F978-3-319-55444-0.pdf)
Covers the principles that make standard plot designs work, show how they can be misleading if not properly used, and develop a sense of when graphs might be lying, and how to construct better ones.\n\n[**Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods**](https://www.jstor.org/stable/2288400)
Cleveland, William S., and Robert McGill. \"Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods.\" Journal of the American Statistical Association, vol. 79, no. 387, 1984, pp. 531--554. JSTOR, www.jstor.org/stable/2288400. Accessed 9 Oct. 2020.\n\n[**Graphical Perception and Graphical Methods for Analyzing Scientific Data**](10.1126/science.229.4716.828)
Cleveland, William S., and Robert McGill. \"Graphical perception and graphical methods for analyzing scientific data.\" Science 229.4716 (1985): 828-833.\n\n[**From Static to Interactive: Transforming Data Visualization to Improve Transparency**](https://doi.org/10.1371/journal.pbio.1002484)
Weissgerber TL, Garovic VD, Savic M, Winham SJ, Milic NM (2016) designed an interactive line graph that demonstrates how dynamic alternatives to static graphics for small sample size studies allow for additional exploration of empirical datasets. This [simple, free, web-based tool](http://statistika.mfub.bg.ac.rs/interactive-graph/) demonstrates the overall concept and may promote widespread use of interactive graphics.\n\n[**Data visualization: ambiguity as a fellow traveler**](https://doi.org/10.1038/nmeth.2530)
Research that is being done about how to visualize uncertainty in data visualizations. Marx, V. Nat Methods 10, 613--615 (2013). \n\n[**Data visualization standards**](https://xdgov.github.io/data-design-standards/)
Collection of guidance and resources to help create better data visualizations with less effort.\n\n------------------------------------------------------------------------\n\n#### Design principles\n\n[**Gestalt Principles for Data Visualization: Similarity, Proximity & Enclosure**](http://emeeks.github.io/gestaltdataviz/section1.html)
Short visual guide to the Gestalt Principles.\n\n[**Why scientists need to be better at data visualization**](https://www.knowablemagazine.org/article/mind/2019/science-data-visualization?utm_campaign=2019-11-17)
A great overview of principles that could improve how we visualize scientific data and results.\n\n[**A collection of graphic pitfalls**](https://www.data-to-viz.com/caveats.html)
A collection of short articles about common issues with data visualizations that can mislead or obscure your message.\n\n------------------------------------------------------------------------\n\n#### Choosing a visualization\n\n[**Data Viz Project**](https://datavizproject.com/)
This is a great place to get inspiration and guidance about how to choose an appropriate visualization. There are many visualizations we are not used to seeing in ecology!\n\n[**From data to Viz \\| Find the graphic you need**](https://www.data-to-viz.com/)
Interactive tool to choose an appropriate visualization type for your data.\n\n------------------------------------------------------------------------\n\n#### Colour\n\n[**What to consider when choosing colors for data visualization**](https://blog.datawrapper.de/colors/)
A short, visual guide on things to keep in mind when using colour, such as when and how to use colour gradients, the colour grey, etc.\n\n[**ColorBrewer: Color Advice for Maps**](https://colorbrewer2.org/)
Tool to generate colour palettes for visualizations with colorblind-friendly options. You can also use these palettes in R using the [RColorBrewer](https://cran.r-project.org/web/packages/RColorBrewer/index.html) package, and the `scale_*_brewer()` (for discrete palettes) or `scale_*_distiller()` (for continuous palettes) functions in ggplot2.\n\n[**Color.review**](https://color.review/)
Tool to pick or verify colour palettes with high relative contrast between colours, to ensure your information is readable for everyone.\n\n[**Coblis --- Color Blindness Simulator**](https://www.color-blindness.com/coblis-color-blindness-simulator/)
Tool to upload an image and view it as they would appear to a colorblind person, with the option to simulate several color-vision deficiencies.\n\n[**500+ Named Colours with rgb and hex values**](http://cloford.com/resources/colours/500col.htm)
List of named colours along with their hex values.\n\n[**CartoDB/CartoColor**](https://github.com/CartoDB/cartocolor)
CARTOColors are a set of custom color palettes built on top of well-known standards for color use on maps, with next generation enhancements for the web and CARTO basemaps. Choose from a selection of sequential, diverging, or qualitative schemes for your next CARTO powered visualization using their [online module](https://carto.com/carto-colors/).\n\n------------------------------------------------------------------------\n\n#### Tools\n\n##### R\n\n[**The R Graph Gallery**](https://www.r-graph-gallery.com/index.html)
A collection of charts made with the R programming language. Hundreds of charts are displayed in several sections, always with their reproducible code available. The gallery makes a focus on the tidyverse and ggplot2.\n\n###### Base R {.unnumbered}\n\n[**Cheatsheet: Margins in base R**](https://www.r-graph-gallery.com/74-margin-and-oma-cheatsheet)
Edit your margins in base R to accommodate axis titles, legends, captions, etc.!\n\n[**Customizing tick marks in base R**](https://insileco.github.io/2020/08/29/custom-tick-marks-with-rs-base-graphics-system/)
Seems like a simple thing, but it can be so frustrating! This is a great post about customizing tick marks with base plot in R.\n\n[**Animations in R (for time series)**](https://insileco.github.io/2017/07/05/animations-in-r-time-series-of-erythemal-irradiance-in-the-st.-lawrence/)
If you want to use animations but don't want to use ggplot2, this demo might help you!\n\n###### ggplot2 {.unnumbered}\n\n[**Cheatsheet: ggplot2**](http://r-statistics.co/ggplot2-cheatsheet.html)
Cheatsheet for ggplot2 in R - anything you want to do is probably covered here!\n\n[**Coding Club tutorial: Data Viz Part 1 - Beautiful and informative data visualization**](https://ourcodingclub.github.io/tutorials/datavis/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**Coding Club tutorial: Data Viz Part 2 - Customizing your figures**](https://ourcodingclub.github.io/tutorials/data-vis-2/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**ggplot flipbook**](https://evamaerey.github.io/ggplot_flipbook/ggplot_flipbook_xaringan.html#1)
A flipbook-style demonstration that builds and customizes plots line by line using ggplot in R.\n\n[**gganimate: A Grammar of Animated Graphics**](https://github.com/thomasp85/gganimate)
Package to create animated graphics in R (with ggplot2).\n\n##### Python\n\n[**The Python Graph Gallery**](https://python-graph-gallery.com/)
This website displays hundreds of charts, always providing the reproducible python code.\n\n[**Python Tutorial: Intro to Matplotlib**](https://github.com/Randonnees-Datatrek/data-trek-2020/blob/master/Tutorials/Python_Tutorial/python_tutorial.ipynb)
Introduction to basic functionalities of the Python's library Matplotlib covering basic plots, plot attributes, subplots and plotting the `iris` dataset.\n\n[**The Art of Effective Visualization of Multi-dimensional Data**](https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57)
Covers both univariate (one-dimension) and multivariate (multi-dimensional) data visualization strategies using the Python machine learning ecosystem.\n\n##### Julia\n\n[**Julia Plots Gallery**](https://goropikari.github.io/PlotsGallery.jl/)
Display of various plots with reproducible code in Julia.\n\n[**Plots in Julia**](http://docs.juliaplots.org/latest/#Plots-powerful-convenience-for-visualization-in-Julia)
Documentation for the Plots package in Julia, including demonstrations for animated plots, and links to tutorials.\n\n[**Animations in Julia**](http://docs.juliaplots.org/latest/animations/)
How to start making animated plots in Julia.\n\n------------------------------------------------------------------------\n\n#### Customization\n\n[**Chart Studio**](https://plotly.com/chart-studio/)
Web editor to create interactive plots with plotly. You can download the image as .html, or static images, without coding the figure yourself.\n\n[**PhyloPic**](http://phylopic.org/)
Vector images of living organisms. This is great for ecologists who want to add silhouettes of their organisms onto their plots - search anything, and you will likely find it!\n\n[**Add icons on your R plot**](https://insileco.github.io/2017/05/23/add-icons-on-your-r-plot/)
Add special icons to your plot as a great way to customize it, and save space with labels!\n\n------------------------------------------------------------------------\n\n#### Inspiration (pretty things!)\n\n[**Information is Beautiful**](https://informationisbeautiful.net/visualizations/)
Collection of beautiful original visualizations about a variety of topics!\n\n[**TidyTuesday**](https://github.com/rfordatascience/tidytuesday)
A weekly data project aimed at the R ecosystem, where people wrangle and visualize data in loads of creative ways. Browse what people have created ([#TidyTuesday](https://twitter.com/search?q=%23TidyTuesday) on Twitter is great too!), and the visualizations that have inspired each week's theme.\n\n[**Wind currents on Earth**](https://earth.nullschool.net/)
Dynamic and interactive map of wind currents on Earth.\n\n[**A Day in the Life of Americans**](https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans/)
Dynamic visualisation of how Americans spend their time in an average day.\n\n[**2019: The Year in Visual Stories and Graphics**](https://www.nytimes.com/interactive/2019/12/30/us/2019-year-in-graphics.html)
Collection of the most popular visualizations by the New York Times in 2019.\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":true,"freeze":true,"echo":true,"output":true,"warning":false,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"message":false,"collapse":true,"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":true,"code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{"code-summary":"Show code"},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Data Visualization","description":"General principles of visualization and graphic design, and techniques of tailored visualization. This training was developed and delivered by Alex Arkilanian and Katherine Hébert on September 21st and 22nd, 2020.\n","author":[{"name":"Alex Arkilanian","affiliation":"McGill University"},{"name":"Katherine Hébert","affiliation":"Université de Sherbrooke"}],"categories":["Technical","Fellow contributed","EN"],"date":"09-21-2020","image":"image.jpg","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Data Visualization","markdown":{"yaml":{"title":"Data Visualization","description":"General principles of visualization and graphic design, and techniques of tailored visualization. This training was developed and delivered by Alex Arkilanian and Katherine Hébert on September 21st and 22nd, 2020.\n","author":["Alex Arkilanian","Katherine Hébert"],"categories":["Technical","Fellow contributed","EN"],"date":"09-21-2020","image":"image.jpg","toc":true,"number-sections":true,"number-depth":1,"format":{"html":{"code-fold":true,"code-summary":"Show code"}},"execute":{"cache":true,"warning":false,"message":false,"collapse":true}},"headingText":"Training material","containsRefs":false,"markdown":"\n\nWelcome!\n\nThis training covers the general principles of visualization and graphic design, and techniques of tailored visualization. More specifically, the objectives of the training are:\n\n- Make an overview of basic data visualization principles, including shapes, sizes, colours, and fonts.\n- Discuss how to choose the right visualization for your data, what you want to communicate, and who you want to communicate to.\n- Tools and principles to tailor visualizations, particularly in making interpretable, interactive, and honest visualizations.\n\n\n*Click on \"Show code\" to learn how to do each plot!*\n\n### Interactive examples\n\n```{r, echo = FALSE, results='hide'}\n# install packages if not installed already\nlist.of.packages <- c(\"ggplot2\", \"dplyr\", \"plotly\", \"lubridate\", \"htmlwidgets\", \"viridis\")\nnew.packages <- list.of.packages[!(list.of.packages %in% installed.packages()[,\"Package\"])]\nif(length(new.packages)) install.packages(new.packages)\n\nif(!(\"streamgraph\" %in% installed.packages())){\n devtools::install_github(\"hrbrmstr/streamgraph\", quiet = TRUE)}\n```\n\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(echo = FALSE, message=FALSE, warning=FALSE)\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(plotly) # interactive plots\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n```\n\n#### Streamgraph\n\n```{r streamgraph-plot}\n# Script to make a streamgraph of the top 10 most popular dog breeds in \n# New York City from 1999 to 2015\n\n# load libraries\nlibrary(lubridate) # dealing with dates\nlibrary(dplyr) # data manipulation\nlibrary(streamgraph) #devtools::install_github(\"hrbrmstr/streamgraph\")\nlibrary(htmlwidgets) # to save the widget!\n\n# load the dataset\n# more information about this dataset can be found here:\n# https://www.kaggle.com/smithaachar/nyc-dog-licensing-clean\nnyc_dogs <- read.csv(\"data/nyc_dogs.csv\")\n\n# convert birth year to date format (and keep only the year)\nnyc_dogs$AnimalBirthYear <- mdy_hms(nyc_dogs$AnimalBirthMonth) %>% year()\n\n# identify 10 most common dogs\ntopdogs <- nyc_dogs %>% count(BreedName) \ntopdogs <- topdogs[order(topdogs$n, decreasing = TRUE),]\n# keep 10 most common breeds (and remove last year of data which is incomplete)\ndf <- filter(nyc_dogs, BreedName %in% topdogs$BreedName[2:11] & AnimalBirthYear < 2016) %>% \n group_by(AnimalBirthYear) %>% \n count(BreedName) %>% ungroup()\n\n# get some nice colours from viridis (magma)\ncols <- viridis::viridis_pal(option = \"magma\")(length(unique(df$BreedName)))\n\n# make streamgraph!\npp <- streamgraph(df, \n key = BreedName, value = n, date = AnimalBirthYear, \n height=\"600px\", width=\"1000px\") %>%\n sg_legend(show=TRUE, label=\"names: \") %>%\n sg_fill_manual(values = cols) \n# saveWidget(pp, file=paste0(getwd(), \"/figures/dogs_streamgraph.html\"))\n\n# plot\npp\n```\n\n------------------------------------------------------------------------\n\n#### Interactive plot\n\n```{r interactive-plot, message=FALSE}\n# Script to generate plots to demonstrate how combinations of information dimensions\n# can become overwhelming and difficult to interpret.\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(plotly) # interactive plots\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\n# more info on this dataset: https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-07-28/readme.md\npenguins <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv') \n\n# get some nice colours from viridis (magma)\nsp_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n\n\n#### Day 1 ####\n\n# 1. Similarity\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, col = species), size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) # sets the colour scale we created above \nggsave(\"figures/penguins_similarity.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Proximity\n\ndf <- penguins %>% group_by(sex, species) %>% \n summarise(mean_mass = mean(body_mass_g, na.rm = TRUE)) %>% na.omit() \nggplot(df) +\n geom_bar(aes(y = mean_mass, x = species, fill = sex), \n position = \"dodge\", stat = \"identity\") +\n labs(x = \"Species\", y = \"Mean body mass (g)\", col = \"Sex\") + # labels\n scale_fill_manual(values = sp_cols) # sets the colour scale we created above\nggsave(\"figures/penguins_proximity.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Enclosure (Ellipses over a fake PCA)\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(size = 2.1, col = \"grey30\") +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"PCA1\", y = \"PCA2\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) + # sets the colour scale we created above\n theme(axis.text = element_blank(), axis.ticks = element_blank())\nggsave(\"figures/penguins_enclosure.png\", width = 6, height = 3, units = \"in\")\n\n# 4. Mismatched combination of principles\ntemp_palette <- rev(c(sp_cols, \"#1f78b4\", \"#33a02c\"))\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(aes(col = sex), size = 2.1) +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"?\") + # labels\n scale_color_manual(values = temp_palette) # sets the colour scale we created above\nggsave(\"figures/penguins_mismatchedgestalt.png\", width = 6, height = 3, units = \"in\")\n\n\n\n#### Day 2 ####\n\n# 1. Ineffective combinations: Luminance & shading -----------------------------\n\n# create the plot\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n col = species, # hue\n alpha = log(body_mass_g)), # luminance\n size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n col = \"Species\", alpha = \"Body mass (g)\") +\n scale_color_manual(values = sp_cols)\nggsave(\"figures/penguins_incompatible1.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Ineffective combinations: Sizes and shapes --------------------------------\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n shape = species, # shape\n size = log(body_mass_g)), alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\") \nggsave(\"figures/penguins_incompatible2.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Cognitive overload --------------------------------------------------------\n\n# get some nice colours from viridis (magma)\nsex_cols <- viridis::viridis_pal(option = \"magma\")(8)[c(3,6)]\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n shape = species, # dimension 3: shape\n size = log(body_mass_g), # dimension 4: size\n col = sex), # dimension 5: hue\n alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\", col = \"Sex\") +\n scale_color_manual(values = sex_cols)\nggsave(\"figures/penguins_5dimensions.png\", width = 7, height = 4, units = \"in\")\n\n\n# 4. Panels -------------------------------------------------------------------\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n col = log(body_mass_g)), # dimension 3: hue\n alpha = .7, size = 2) + \n facet_wrap(~ species) + # dimension 4: species!\n # this will create a separate panel for each species\n # note: this also automatically uses the same axes for all panels! If you want \n # axes to vary between panels, use the argument scales = \"free\"\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\nggsave(\"figures/penguins_dimensions_facets.png\", width = 7, height = 4, units = \"in\")\n\n\n# 5. Interactive ---------------------------------------------------------------\n\np <- na.omit(penguins) %>%\n ggplot(aes(y = bill_length_mm, \n x = bill_depth_mm, \n col = log(body_mass_g))) +\n geom_point(size = 2, alpha = .7) + \n facet_wrap(~ species) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\np <- ggplotly(p)\n#setwd(\"figures\")\nhtmlwidgets::saveWidget(as_widget(p), \"figures/penguins_interactive.html\")\np\n```\n\n### Example figures\n\n```{r animated.volcano}\n# Script to make animated plot of volcano eruptions over time\n\n# Load libraries:\nlibrary(dplyr) # data manipulation\nlibrary(ggplot2) # plotting\nlibrary(gganimate) # animation\nlibrary(gifski) # creating gifs\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# function to floor a year to the decade\nfloor_decade = function(value){return(value - value %% 10)}\n\n# read data \neruptions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-05-12/eruptions.csv')\n\n# select top 5 most frequently exploding volcanoes\ntemp <- group_by(eruptions, volcano_name) %>% tally() \ntemp <- temp[order(temp$n, decreasing = TRUE),]\n\n# make a time series dataset (number of eruptions per year)\neruptions$start_decade = floor_decade(eruptions$start_year)\n\n# filter dataset to subset we want to visualize\ndf <- eruptions %>% \n filter(between(start_decade, 1900, 2019)) %>%\n filter(volcano_name %in% temp$volcano_name[1:5]) %>%\n group_by(start_decade) %>%\n count(volcano_name) %>% ungroup()\n\n# plot!\np <- ggplot(df, aes(x = start_decade, y = n, fill = volcano_name)) +\n geom_area() +\n geom_vline(aes(xintercept = start_decade)) + # line that follows the current decade\n scale_fill_viridis_d(option = \"magma\", end = .8) +\n labs(x = \"\", y = \"Number of eruptions\", fill = \"Volcano\",\n title = 'Eruptions of the top 5 most frequently erupting volcanos worldwide') +\n # gganimate part: reveals each decade\n transition_reveal(start_decade) \nanimate(p, duration = 5, fps = 20, width = 800, height = 300, renderer = gifski_renderer())\n#anim_save(\"figures/volcano_eruptions.gif\")\n```\n\n```{r coffee.uncertainty}\n# Script to generate plots with various ways of representing uncertainty, based \n# Coffee & Code dataset from https://www.kaggle.com/devready/coffee-and-code/data\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(ggridges) # for density ridge plots\nlibrary(patchwork) # great package for \"patching\" plots together!\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\ndf <- read.csv(\"data/coffee_code.csv\")\n\n# set labels to be used in all plots\ncoffee_labels <- labs(title = \"Does coffee help programmers code?\",\n x = \"Coffee while coding\", \n y = \"Time spent coding \\n(hours/day)\") \n\n# the variable CodingWithoutCoffee is negative, which is harder to understand\n# (i.e. \"No\" means they drink coffee...). So, let's transform it into a more \n# intuitive variable!\ndf$CodingWithCoffee <- gsub(\"No\", \"Usually\", df$CodingWithoutCoffee)\ndf$CodingWithCoffee <- gsub(\"Yes\", \"Rarely\\n or never\", df$CodingWithCoffee)\n# convert to factor and set levels so they show up in a logical order\ndf$CodingWithCoffee <- factor(df$CodingWithCoffee,\n levels = c(\"Rarely\\n or never\", \n \"Sometimes\", \n \"Usually\"))\n\n# calculate summary statistics for the variable of choice\ndf_summary <- group_by(df, CodingWithCoffee) %>%\n summarise(\n # mean\n mean_codinghours = mean(CodingHours), \n # standard deviation\n sd_codinghours = sd(CodingHours), \n # standard error\n se_codinghours = sd(CodingHours)/sqrt(length(CodingHours)))\n\n\n# 1. Error bars (standard error) -----------------------------------------------\n\nggplot(df_summary) +\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours), \n width = .2) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(0,10)\nggsave(\"figures/coffee_errorbars.png\", width = 5, height = 3, units = \"in\")\n\n# 2. Boxplot -------------------------------------------------------------------\n\nggplot(df) +\n geom_boxplot(aes(x = CodingWithCoffee, y = CodingHours)) +\n coffee_labels\nggsave(\"figures/coffee_boxplot.png\", width = 5, height = 3, units = \"in\")\n\n\n# 3. Error bar demonstration ---------------------------------------------------\n\n# get some nice colours from viridis (magma)\nerror_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n# set labels to be used in the palette\nerror_labels = c(\"standard deviation\",\"95% confidence interval\",\"standard error\")\n\nggplot(df_summary) +\n # show the raw data\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n # standard deviation\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - sd_codinghours,\n ymax = mean_codinghours + sd_codinghours,\n col = \"SD\"), width = .2, lwd = 1) +\n # 95% confidence interval\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - 1.96*se_codinghours,\n ymax = mean_codinghours + 1.96*se_codinghours, \n col = \"CI\"), width = .2, lwd = 1) +\n # standard error\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours, \n col = \"SE\"), width = .2, lwd = 1) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(c(0,11)) +\n # manual palette/legend set-up!\n scale_colour_manual(name = \"Uncertainty metric\", \n values = c(SD = error_cols[1], \n CI = error_cols[2], \n SE = error_cols[3]),\n labels = error_labels) +\n theme(legend.position = \"top\")\nggsave(\"figures/coffee_bars_demo.png\", width = 7, height = 5, units = \"in\")\n\n\n# 4. Jitter plot with violin ---------------------------------------------------\n\nggplot() +\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n geom_violin(data = df, aes(x = CodingWithCoffee, \n y = CodingHours), alpha = 0) +\n geom_linerange(data = df_summary,\n aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours)) +\n geom_point(data = df_summary, \n aes(x = CodingWithCoffee, \n y = mean_codinghours), size = 3) +\n coffee_labels\nggsave(\"figures/coffee_violin_jitter.png\", width = 5, height = 3, units = \"in\")\n\n\n# 5. Density ridge plot --------------------------------------------------------\n\nggplot(df) + \n aes(y = CodingWithCoffee, x = CodingHours, fill = stat(x)) +\n geom_density_ridges_gradient(scale = 1.9, size = .2, rel_min_height = 0.005) +\n # colour palette (gradient according to CodingHours)\n scale_fill_viridis_c(option = \"magma\", direction = -1) +\n # remove legend - it's not necessary here!\n theme(legend.position = \"none\") +\n labs(title = coffee_labels$title, \n x = coffee_labels$y, \n y = \"Coffee \\nwhile coding\") + \n theme(axis.title.y = element_text(angle=0, hjust = 1, vjust = .9, \n margin = margin(t = 0, r = -50, b = 0, l = 0)))\nggsave(\"figures/coffee_density_ridges.png\", width = 5, height = 3, units = \"in\")\n\n# 6. Jitter vs. Rug plot ------------------------------------------------------------------\n\njitterplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_jitter(alpha = .2) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n coffee_labels + ylim(c(0,11)) + labs(x = \"Cups of coffee (per day)\")\n\nrugplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n geom_rug(position=\"jitter\", alpha = .7) + ylim(c(0,11)) +\n coffee_labels + labs(x = \"Cups of coffee (per day)\")\n\n# patch the two plots together\njitterplot + rugplot\n#ggsave(\"figures/coffee_jitter_vs_rugplot.png\", width = 10, height = 4, units = \"in\")\n\n```\n\n```{r densiplot}\n# Script to generate 95% confidence intervals of a generated random normal distribution\n# as an example in Day 2: Visualizing uncertainty.\n\n# load library\nlibrary(ggplot2)\nlibrary(magrittr)\nlibrary(dplyr)\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# set random seed\nset.seed(22)\n\n# generate population (random normal distribution)\ndf <- data.frame(\"value\" = rnorm(50, mean = 0, sd = 1))\n\n# descriptive stats for each distribution\ndesc_stats = df %>% \n summarise(mean_val = mean(value, na.rm = TRUE),\n se_val = sqrt(var(value)/length(value)))\n\n# build density plot!\np <- ggplot(data = df, aes(x = value, y = ..count..)) +\n geom_density(alpha = .2, lwd = .3) +\n xlim(c(min(df$value-1), max(df$value+1))) \n# extract plotted values\nbase_p <- ggplot_build(p)$data[[1]]\n# shade the 95% confidence interval\np + \n geom_area(data = subset(base_p, \n between(x, \n left = (desc_stats$mean_val - 1.96*desc_stats$se_val),\n right = (desc_stats$mean_val + 1.96*desc_stats$se_val))),\n aes(x = x, y = y), fill = \"cadetblue3\", alpha = .6) +\n # add vertical line to show population mean\n geom_vline(aes(xintercept = 0), lty = 2) +\n annotate(\"text\", x = 0.9, y = 19, label = \"True mean\", fontface = \"italic\") +\n # label axis!\n labs(x = \"Variable of interest\", y = \"\") \n#ggsave(\"figures/confidenceinterval_example.png\", width = 5, height = 3.5, units = \"in\")\n\n```\n\n### Annotated resource library\n\nThis is an annotated library of data visualization resources we used to build the BIOS² Data Visualization Training, as well as some bonus resources we didn't have the time to include. Feel free to save this page as a reference for your data visualization adventures!\n\n------------------------------------------------------------------------\n\n#### Books & articles\n\n[**Fundamentals of Data Visualization**](https://serialmentor.com/dataviz/)
A primer on making informative and compelling figures. This is the website for the book \"Fundamentals of Data Visualization\" by Claus O. Wilke, published by O'Reilly Media, Inc.\n\n[**Data Visualization: A practical introduction**](https://socviz.co/index.html#preface)
An accessible primer on how to create effective graphics from data using R (mainly ggplot). This book provides a hands-on introduction to the principles and practice of data visualization, explaining what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way.\n\n[**Data Science Design (Chapter 6: Visualizing Data)**](https://link.springer.com/content/pdf/10.1007%2F978-3-319-55444-0.pdf)
Covers the principles that make standard plot designs work, show how they can be misleading if not properly used, and develop a sense of when graphs might be lying, and how to construct better ones.\n\n[**Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods**](https://www.jstor.org/stable/2288400)
Cleveland, William S., and Robert McGill. \"Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods.\" Journal of the American Statistical Association, vol. 79, no. 387, 1984, pp. 531--554. JSTOR, www.jstor.org/stable/2288400. Accessed 9 Oct. 2020.\n\n[**Graphical Perception and Graphical Methods for Analyzing Scientific Data**](10.1126/science.229.4716.828)
Cleveland, William S., and Robert McGill. \"Graphical perception and graphical methods for analyzing scientific data.\" Science 229.4716 (1985): 828-833.\n\n[**From Static to Interactive: Transforming Data Visualization to Improve Transparency**](https://doi.org/10.1371/journal.pbio.1002484)
Weissgerber TL, Garovic VD, Savic M, Winham SJ, Milic NM (2016) designed an interactive line graph that demonstrates how dynamic alternatives to static graphics for small sample size studies allow for additional exploration of empirical datasets. This [simple, free, web-based tool](http://statistika.mfub.bg.ac.rs/interactive-graph/) demonstrates the overall concept and may promote widespread use of interactive graphics.\n\n[**Data visualization: ambiguity as a fellow traveler**](https://doi.org/10.1038/nmeth.2530)
Research that is being done about how to visualize uncertainty in data visualizations. Marx, V. Nat Methods 10, 613--615 (2013). \n\n[**Data visualization standards**](https://xdgov.github.io/data-design-standards/)
Collection of guidance and resources to help create better data visualizations with less effort.\n\n------------------------------------------------------------------------\n\n#### Design principles\n\n[**Gestalt Principles for Data Visualization: Similarity, Proximity & Enclosure**](http://emeeks.github.io/gestaltdataviz/section1.html)
Short visual guide to the Gestalt Principles.\n\n[**Why scientists need to be better at data visualization**](https://www.knowablemagazine.org/article/mind/2019/science-data-visualization?utm_campaign=2019-11-17)
A great overview of principles that could improve how we visualize scientific data and results.\n\n[**A collection of graphic pitfalls**](https://www.data-to-viz.com/caveats.html)
A collection of short articles about common issues with data visualizations that can mislead or obscure your message.\n\n------------------------------------------------------------------------\n\n#### Choosing a visualization\n\n[**Data Viz Project**](https://datavizproject.com/)
This is a great place to get inspiration and guidance about how to choose an appropriate visualization. There are many visualizations we are not used to seeing in ecology!\n\n[**From data to Viz \\| Find the graphic you need**](https://www.data-to-viz.com/)
Interactive tool to choose an appropriate visualization type for your data.\n\n------------------------------------------------------------------------\n\n#### Colour\n\n[**What to consider when choosing colors for data visualization**](https://blog.datawrapper.de/colors/)
A short, visual guide on things to keep in mind when using colour, such as when and how to use colour gradients, the colour grey, etc.\n\n[**ColorBrewer: Color Advice for Maps**](https://colorbrewer2.org/)
Tool to generate colour palettes for visualizations with colorblind-friendly options. You can also use these palettes in R using the [RColorBrewer](https://cran.r-project.org/web/packages/RColorBrewer/index.html) package, and the `scale_*_brewer()` (for discrete palettes) or `scale_*_distiller()` (for continuous palettes) functions in ggplot2.\n\n[**Color.review**](https://color.review/)
Tool to pick or verify colour palettes with high relative contrast between colours, to ensure your information is readable for everyone.\n\n[**Coblis --- Color Blindness Simulator**](https://www.color-blindness.com/coblis-color-blindness-simulator/)
Tool to upload an image and view it as they would appear to a colorblind person, with the option to simulate several color-vision deficiencies.\n\n[**500+ Named Colours with rgb and hex values**](http://cloford.com/resources/colours/500col.htm)
List of named colours along with their hex values.\n\n[**CartoDB/CartoColor**](https://github.com/CartoDB/cartocolor)
CARTOColors are a set of custom color palettes built on top of well-known standards for color use on maps, with next generation enhancements for the web and CARTO basemaps. Choose from a selection of sequential, diverging, or qualitative schemes for your next CARTO powered visualization using their [online module](https://carto.com/carto-colors/).\n\n------------------------------------------------------------------------\n\n#### Tools\n\n##### R\n\n[**The R Graph Gallery**](https://www.r-graph-gallery.com/index.html)
A collection of charts made with the R programming language. Hundreds of charts are displayed in several sections, always with their reproducible code available. The gallery makes a focus on the tidyverse and ggplot2.\n\n###### Base R {.unnumbered}\n\n[**Cheatsheet: Margins in base R**](https://www.r-graph-gallery.com/74-margin-and-oma-cheatsheet)
Edit your margins in base R to accommodate axis titles, legends, captions, etc.!\n\n[**Customizing tick marks in base R**](https://insileco.github.io/2020/08/29/custom-tick-marks-with-rs-base-graphics-system/)
Seems like a simple thing, but it can be so frustrating! This is a great post about customizing tick marks with base plot in R.\n\n[**Animations in R (for time series)**](https://insileco.github.io/2017/07/05/animations-in-r-time-series-of-erythemal-irradiance-in-the-st.-lawrence/)
If you want to use animations but don't want to use ggplot2, this demo might help you!\n\n###### ggplot2 {.unnumbered}\n\n[**Cheatsheet: ggplot2**](http://r-statistics.co/ggplot2-cheatsheet.html)
Cheatsheet for ggplot2 in R - anything you want to do is probably covered here!\n\n[**Coding Club tutorial: Data Viz Part 1 - Beautiful and informative data visualization**](https://ourcodingclub.github.io/tutorials/datavis/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**Coding Club tutorial: Data Viz Part 2 - Customizing your figures**](https://ourcodingclub.github.io/tutorials/data-vis-2/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**ggplot flipbook**](https://evamaerey.github.io/ggplot_flipbook/ggplot_flipbook_xaringan.html#1)
A flipbook-style demonstration that builds and customizes plots line by line using ggplot in R.\n\n[**gganimate: A Grammar of Animated Graphics**](https://github.com/thomasp85/gganimate)
Package to create animated graphics in R (with ggplot2).\n\n##### Python\n\n[**The Python Graph Gallery**](https://python-graph-gallery.com/)
This website displays hundreds of charts, always providing the reproducible python code.\n\n[**Python Tutorial: Intro to Matplotlib**](https://github.com/Randonnees-Datatrek/data-trek-2020/blob/master/Tutorials/Python_Tutorial/python_tutorial.ipynb)
Introduction to basic functionalities of the Python's library Matplotlib covering basic plots, plot attributes, subplots and plotting the `iris` dataset.\n\n[**The Art of Effective Visualization of Multi-dimensional Data**](https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57)
Covers both univariate (one-dimension) and multivariate (multi-dimensional) data visualization strategies using the Python machine learning ecosystem.\n\n##### Julia\n\n[**Julia Plots Gallery**](https://goropikari.github.io/PlotsGallery.jl/)
Display of various plots with reproducible code in Julia.\n\n[**Plots in Julia**](http://docs.juliaplots.org/latest/#Plots-powerful-convenience-for-visualization-in-Julia)
Documentation for the Plots package in Julia, including demonstrations for animated plots, and links to tutorials.\n\n[**Animations in Julia**](http://docs.juliaplots.org/latest/animations/)
How to start making animated plots in Julia.\n\n------------------------------------------------------------------------\n\n#### Customization\n\n[**Chart Studio**](https://plotly.com/chart-studio/)
Web editor to create interactive plots with plotly. You can download the image as .html, or static images, without coding the figure yourself.\n\n[**PhyloPic**](http://phylopic.org/)
Vector images of living organisms. This is great for ecologists who want to add silhouettes of their organisms onto their plots - search anything, and you will likely find it!\n\n[**Add icons on your R plot**](https://insileco.github.io/2017/05/23/add-icons-on-your-r-plot/)
Add special icons to your plot as a great way to customize it, and save space with labels!\n\n------------------------------------------------------------------------\n\n#### Inspiration (pretty things!)\n\n[**Information is Beautiful**](https://informationisbeautiful.net/visualizations/)
Collection of beautiful original visualizations about a variety of topics!\n\n[**TidyTuesday**](https://github.com/rfordatascience/tidytuesday)
A weekly data project aimed at the R ecosystem, where people wrangle and visualize data in loads of creative ways. Browse what people have created ([#TidyTuesday](https://twitter.com/search?q=%23TidyTuesday) on Twitter is great too!), and the visualizations that have inspired each week's theme.\n\n[**Wind currents on Earth**](https://earth.nullschool.net/)
Dynamic and interactive map of wind currents on Earth.\n\n[**A Day in the Life of Americans**](https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans/)
Dynamic visualisation of how Americans spend their time in an average day.\n\n[**2019: The Year in Visual Stories and Graphics**](https://www.nytimes.com/interactive/2019/12/30/us/2019-year-in-graphics.html)
Collection of the most popular visualizations by the New York Times in 2019.\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":true,"freeze":true,"echo":true,"output":true,"warning":false,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"message":false,"collapse":true,"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":true,"code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{"code-summary":"Show code"},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Data Visualization","description":"General principles of visualization and graphic design, and techniques of tailored visualization. This training was developed and delivered by Alex Arkilanian and Katherine Hébert on September 21st and 22nd, 2020.\n","author":["Alex Arkilanian","Katherine Hébert"],"categories":["Technical","Fellow contributed","EN"],"date":"09-21-2020","image":"image.jpg","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2020-12-07-making-websites-with-hugo/index.qmd.json b/.quarto/idx/posts/2020-12-07-making-websites-with-hugo/index.qmd.json index 5705346..a3041fd 100644 --- a/.quarto/idx/posts/2020-12-07-making-websites-with-hugo/index.qmd.json +++ b/.quarto/idx/posts/2020-12-07-making-websites-with-hugo/index.qmd.json @@ -1 +1 @@ -{"title":"Making Websites with HUGO","markdown":{"yaml":{"title":"Making Websites with HUGO","description":"This workshop provides a general introduction to HUGO, a popular open source framework for building websites without requiring a knowledge of HTML/CSS or web programming.\n","author":[{"name":"Dominique Gravel","affiliation":"Université de Sherbrooke"},{"name":"Guillaume Larocque","affiliation":"Quebec Centre for Biodiversity Science"}],"image":"image.jpg","categories":["Technical","Transversal competencies","EN"],"date":"12-07-2020","toc":true,"number-sections":true,"number-depth":1},"headingText":"Why this training workshop ?","containsRefs":false,"markdown":"\n\n\nI am only 10 hours of a crash course in web development ahead of you. As part of a major research project on setting a biodiversity observation network, I had to develop a prototype of a portal for the project, for biodiversity information and bunch of dashboards on biodiversity trends. Never made a website before. I know how to code in a few langages, and I know that I hate playing with boxes, menus, importing images manually, and most of all, dealing with a crash of the system and having to redo the whole thing because I made a mistake somewhere. Not that a bug when I try to compile is better, but at least it is more tractable.\n\nHugo made it very easily because of its fundamental feature (which is the same reason I edit papers with LaTeX): the distinction between the view and the content. Once you have set up the rules defining the visual aspects of the pages, then you can focus on the content and let the software automatically constructing the html code for you. It's fast, accessible, scriptable and could be version-controlled. All qualities for an open and reproducible science.\n\nTook me a few hours to learn the basics (much harder to get the higher level skills, especially to write your own Go scripts), I took some tricks here and there in different templates and at looking what others do, and that was it I had my website. Realized that it could be a good entry level course to BIOS2 fellows and decided to turn that experience into a training workshop.\n\nYou will find below basic instructions to install and run a template. The following is not a full tutorial, for that I recommend simply to take time looking at the documentation provided on the Hugo page (https://gohugo.io/). I also consulted the online book **Hugo in action** (https://www.manning.com/books/hugo-in-action). There are many other references, all of them with goods and bads. But it's nice to have multiple ones because sometimes the description of a concept may be obscure in one reference but better in the other and it's by comparing and switching between them that you can make progress.\n\n# Make sure Hugo is installed and check version\n\nFirst step, you have to make sure that it is properly installed on you computer. Type the following command in terminal to make sure :\n\n``` bash\nhugo version\n```\n\nYou can access to the help menu with the simple command :\n\n``` bash\nhugo help\n```\n\n# Be Timothée Poisot for fun\n\nWe will use Tim's website, which is a simple but efficient example of what we could achieve with Hugo. The strenght of the website is that it automatically updates with the addition of new content, such as publications, lab members and projects. The only thing you have to do, once the template is properly set up, is to update the content. That way, yo can focus on the material you want to put on, without struggling on how to place the boxes, format the police and all of the complicate stuff that comes with html and css. The content, written in markdown, is human readable and therefore could be easily edited by lab members. Further, since it's all scripted, it's easy to maintain and control versions.\n\nTake few minutes to look at the final webpage at https://poisotlab.io/\n\nNow you will clone the repository on your own computer so that you could start playing with the content, edit the files, modify list of papers and so on.\n\nYou can either use the clone button on the top of the page or the following command :\n\n``` bash\ngit clone https://github.com/bios2/Hugo-training-workshop.git\n```\n\nWe will take a few minutes to look at the content of the different folders. This structure is common to most of the Hugo templates. You will find multiple folders, it's useful to understand what's located where because the compiler expects this structure when it looks for specific information.\n\n**archetypes** (not in here, but usually in most templates). These are basic instructions to generate new content with the *hugo new* command. We won't use this feature today, but information about this feature is easy to find.\n\n**assets** contains the css files where the controls for visual aspect of the pages are specified. That's where you'll search for the different items and how to specify things such as box sizes, font colors and dimensions etc.... Note: assets directory is not created by default.\n\n**content** holds all of the .md files where the main content of the pages is provided. It's divided in several subfolders, corresponding to the different pages from the menu. Each top-level folder in Hugo is considered a content section (which is described usually in the config file). For instance, you have one folder called **Research** where the projects are described. You'll find one .md file per projec tin this folder. Note also that the folders contain systematically a \\_index.md file where the metadata and the top level information of the page are specified. We'll come back to that later.\n\n**data** stores specific information that will be consulted by the parser during compilation (configurationfiles). There are also data templates, and at the moment, there is one json file where the papers are listed and two toml files with a list of the students, past and present. json files could be edited with a text editor (not so fun), but there are some tools to do it efficiently.\n\n**layouts** contains the core files to compile the website. You will find in them instructions, in a strange blend of html and Go langages. No so easy and pleasant to play with, but looking at them tells you a bit about what the compiler does (a good example is for *people*). *list.html* for instance contains a loop that goes through the toml files in order to create the icons, the text and the link to the full markdown page where you have description for each student. You will find layouts for the main pages, as well as for partials (like the header menu).\n\n**resources** also contains css instructions for the template. We won't work with this one.\n\n**static** contains bunch of little things that are called during compilation. You'll find the logo for the lab, the pictures for students, pdf files for applications, images for each research project ...\n\nThere is also one very important file in the main folder the **config.toml** file. Inside, you will find a lot of the metadata that will control the structure of the main page. This find can be very simple for some templates, much more complicated for other ones. Note that for some templates, the config file may be in a distinct folder. Not all templates have exactly the same folder structure.\n\n*toml* is a file format for configuration files, it contains key parameters for the webpage. It consists of key = \"value\" pairs, \\[section names\\], and \\# comments. Let's open this one to have a closer look.\n\n## Exercise : Edit the toml file to include your own information.\n\nYou may want to change the section *People* to *Collaborators* and also provide a proper reference to your on github page. You can also add or remove sections, this will affect the menu at the top of the page. For instance, you can add a blog section.\n\n# Build the static html files\n\n## Build for local development\n\nHugo will use all of the material to generate static html files that will be displayed on your browser. The command is really easy to use to run it on your own computer, you simply have to type the following in the main folder :\n\n``` bash\nhugo server\n```\n\nAnd that's it, it compiles and you can simply open it in your browser by clicking on the adress indicated in the terminal. Congratulations for your first Hugo webste !\n\nThere are useful information in the terminal about the building process.\n\n## Build for publishing your website\n\nThe command *hugo server* is very fast and useful to test your website while you develop it. But once you'll be ready to distribute it, you'll need all of the html files and related material to distribute the website. This is easily done with the even simpler command\n\n``` bash\nhugo\n```\n\nYou will find in the directory that a new folder named **public** appeared, with all of the material needed to deploy the website. If you click on the *index.html* file, you'll get to the home page of the website. It is interesting to open this file in your text editor, you'll get a sense of the html code that hugo generated automatically for you. You can also take a look at other files.\n\n# Edit content\n\nEditing content is the easier thing to do. First thing to do, is to modify the content of the introduction paragraph on the main page. You'll find it in the \\*\\_index.md\\* file in the **content** folder. Open it and modify the text. You can after build the main page again to see the update.\n\nYou can also add material, with new md files. We will do so with a new research project (note the following could be done manually):\n\n``` bash\nhugo new research/chapter1.md\n```\n\nThis will generate a new markdown file, in which you can start adding material. But those files do have a particular structure, so before editing it, we'll take a quick look at another one, *datascience.md*.\n\nThe header section is typical of a markdown file with metadata (in toml or yaml format). You have to specify information to the parser about the title, the image and associated papers. Note that it will work if some of these (e.g. papers) are missing. You can modify the image as well.\n\nThe file here also a particular structure, with the marker between two paragraphs. This command indicates that only the first paragraph is displayed on the main page of the **Research** tab, and the full content follows if you click to know more about the project.\n\nNote that here you can use the basic features of markdown, with headers, bold, italics and so on. You can also include html code directly into the markdown and it should work. That said, it may conflict with higher level instructions in the layout or in the theme and may cause difficulties at building. While it is feasible to add such command, it is not recommended to do so. People rather suggest to use shortcodes (Tomorrow) or to modify the layout of the website.\n\n## Exercise\n\nTake 15 minutes to remove Tim's material and replace it by the three chapters of your thesis.\n\n# Hosting the website on a server\n\nThere are many options to host your new website on a server. An easy one, free, and that could be coupled with version control is to run it on github. Full instructions are available here :\n\nhttps://gohugo.io/hosting-and-deployment/hosting-on-github/\n\nWe will simply follow the instructions copied here for hosting a personal page. Note that you can also develop a page for a project.\n\n## GitHub User or Organization Pages\n\n### Step-by-step Instructions\n\n1. Create a (e.g. blog) repository on GitHub. This repository will contain Hugo's content and other source files.\n2. Create a .github.io GitHub repository. This is the repository that will contain the fully rendered version of your Hugo website.\n3. git clone && cd \n4. Paste your existing Hugo project into the new local repository. Make sure your website works locally (hugo server or hugo server -t ) and open your browser to http://localhost:1313.\n5. Once you are happy with the results: Press Ctrl+C to kill the server Before proceeding run rm -rf public to completely remove the public directory\n6. git submodule add -b main https://github.com//.github.io.git public. This creates a git submodule. Now when you run the hugo command to build your site to public, the created public directory will have a different remote origin (i.e. hosted GitHub repository).\n7. Make sure the baseURL in your config file is updated with: .github.io\n\n### Put it Into a Script\n\nYou're almost done. In order to automate next steps create a deploy.sh script. You can also make it executable with chmod +x deploy.sh.\n\nThe following are the contents of the deploy.sh script:\n\n``` bash\n #!/bin/sh\n\n # If a command fails then the deploy stops\n set -e\n\n printf \"\\033[0;32mDeploying updates to GitHub...\\033[0m\\n\"\n\n # Build the project.\n hugo # if using a theme, replace with `hugo -t `\n\n # Go To Public folder\n cd public\n\n # Add changes to git.\n git add .\n\n # Commit changes.\n msg=\"rebuilding site $(date)\"\n if [ -n \"$*\" ]; then\n msg=\"$*\"\n fi\n git commit -m \"$msg\"\n```\n\n# Push source and build repos.\n\n``` bash\ngit push origin main\n```\n\nYou can then run `./deploy.sh \"Your optional commit message\"` to send changes to .github.io. Note that you likely will want to commit changes to your repository as well.\n\nThat's it! Your personal page should be up and running at https://.github.io within a couple minutes.\n\n## Using a theme\n\nIt is usually a good idea to not modify a template directly, but to have the template and the site in a separate folder. The basic concept when doing this is that the config.toml file of the site has to link to the proper folder of the theme.\n\nFor example\n\n``` toml\ntheme = \"template-site\"\nthemesDir = \"../..\"\n```\n\nThis means that the template site is in a folder named template-site which is a parent folder of the site folder. Other options are possible.\n\nUsually, all the content should go in the site folder, not in the theme folder.\n\n### Exercise 1\n\n- Start modifying the theme to make it look like a website for a Zoo. Choose your preferred color scheme by changing the style= parameter in the config.toml file.\n\n- Feel free to download some images from [unsplash](https://unsplash.com) and save them in the static/img folder. You can then use these images in the carrousel, as \"testimonial\" photos or as background images for some of the sections. You can add or remove sections from the home page by editing the config.toml file and changing the enable= parameter in the params. segment at the bottom.\n\n- You can also try to create a new blog entry by adding a new file in the content/blog folder. This file will have a .md extension and will be written in markdown format.\n\n## Customizing a theme\n\n## Basics of HTML\n\nCore structure of an HTML page\n\n``` html\n\n\n\nThis is my great website\n\n\n\n

Main title

\n
Main content goes here
\n\n\n```\n\n### A divider, used to organize content into blocks\n\n``` html\n
\n```\n\n### A span, used to organize content or text into sections with different styles. Usually on the same line.\n\n``` html\n\n```\n\n### A paragraph\n\n``` html\n

\n```\n\n### Headings at different levels\n\n``` html\n

Main title

\n

Second level

\n

Third level

\n```\n\n### An image\n\n``` html\n\n```\n\n### A link\n\n``` html\n
Great website here!\n```\n\n## Link between HTML and CSS\n\n### In html\n\nid is always unique. Class is not.\n\n``` html\n
\nOne great div!\n
\n```\n\n### In CSS\n\n\"\\#\" is applied to id and \".\" is applied to class. When nothing is specified, applies to tag.\n\n``` css\n#this-div-only{\n font-size:24px;\n}\n\n.this-type-of-div{\n color: #bb0000;\n}\n\ndiv{\n display:block;\n}\n```\n\n## Basics of CSS\n\n[W3 Schools CSS reference](https://www.w3schools.com/cssref/)\n\n| Property | Description | Example |\n|------------------------|------------------------|------------------------|\n| width, height | width of item | 200px, 200pt, 100%, 100vw/vh |\n| min-width, min-height | minimum size of item | 200px, 200pt, 100%, 100vw |\n| color | font color | #aa0000, red or rgb(255,0,0) |\n| background-color | color of background | #aa0000, red or rgb(255,0,0) |\n| border-color | color of border | #aa0000, red or rgb(255,0,0) |\n| border | size, type and color of border | 1px solid black |\n| margin | margin around item (top right bottom left) | 1px, or 1px 2px 2px 1px |\n| padding | padding within item, inside div for example | 10px |\n| font-family | name of font | Verdana, Arial |\n| font-size | size of text | 14px, 2em |\n| display | should item be on the same line, or in a separate block? | inline, block, inline-block, flex, ... |\n\n### Exercise 2\n\n- Create a file named custom.css under template-site/my-site/static/css/.\n\n- Right-click on elements on the web page that you want to modify, then click on Inspect element and try to find CSS properties that you could modify to improve the look of the page. Then, choosing the proper class, add entries in the custom.css file that start with a dot (.) followed by the proper class names.\n\n``` css\n.this-class {\n font-size:28px;\n}\n```\n\n## Partials\n\nPartials are snippets of HTML code that could be reused on different places on the website. For example, you will see that the layouts/index.html file in the template-site folder lists all the partials that create the home page.\n\nAn important point to remember is that Hugo will look for files first in the site's folders, and if it doesn't find the files there, it will look for them in the theme's folder. So site folder layouts and CSS take priority over the theme folder.\n\n### Exercise 3\n\n- Create a new folder template-site/my-site/layouts. In this folder, create a new file named index.html and copy the content of the template-site/layouts/index.html file into it. Remove the testimonials section from the newly created file.\n\n- Create a new folder template-site/my-site/layouts/partials. In this folder, create a new file named featured-species.html put the following content into it, replacing the information with the species you selected.\n\n``` html\n
\n\"\"\n
\n

Red-Eyed Tree Frog

\n

This frog can be found in the tropical rain forests of Costa Rica.

\n
\n
\n```\n\n- Then, add this section to the index.html file created above.\n\n\n\n {{ partial \"featured_species.html\" . }}\n\n- You will probably need to restart the Hugo server to see the changes appear on the site.\n\n- Now, you need to edit the CSS! In your custom.css file, add the following lines.\n\n``` css\n\n.featured-species{\n height:300px;\n background-color: #1d1f20;\n color:white;\n}\n\n.species-image{\n height:300px;\n float:left;\n}\n\n.featured-species h3{\n color:white;\n font-size:1.5em;\n}\n\n.species-description{\n float:left;\n padding:20px;\n font-size:2em;\n}\n```\n\nModify this as you see fit!\n\n## Now a bit of GO lang to make the featured species different.\n\n[Introduction to Hugo templating](https://gohugo.io/templates/introduction/)\n\n### Exercise 4\n\n- Replace your partial featured-species.html content with this one\n\n``` html\n{{ range .Site.Data.species }}\n {{ if eq (.enable) true }}\n
\n \"\"\n
\n

{{ .name }}

\n

{{ .description }}

\n
\n
\n {{end}}\n{{end}}\n```\n\n- Now, create a new folder /template-site/my-site/data/species.\n\n- In this folder, create new file named frog.yaml with the following content.\n\n``` yaml\nenable: true\nname: \"Red-eyed tree frog\"\ndescription: \"This frog can be found in the forests of Costa Rica\"\nimage: \"frog.jpg\"\n```\n\n- Find other species photos and add them to the img folder. Then you can add new .yaml files in the data/species folder for each species.\n\n## iFrames\n\nAn iFrame is a HTML tag that essentially allows you to embed another web page inside of your site.\n\n### Exercise 5\n\nFind a Youtube video and click on the share option below the video. Find the Embed option and copy the code that starts with `\n\n```\n\nEdit the custom.css file and add this section\n\n``` css\n.video{\n width:100%;\n background-color:black;\n text-align:center;\n}\n```\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"markdown"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Making Websites with HUGO","description":"This workshop provides a general introduction to HUGO, a popular open source framework for building websites without requiring a knowledge of HTML/CSS or web programming.\n","author":[{"name":"Dominique Gravel","affiliation":"Université de Sherbrooke"},{"name":"Guillaume Larocque","affiliation":"Quebec Centre for Biodiversity Science"}],"image":"image.jpg","categories":["Technical","Transversal competencies","EN"],"date":"12-07-2020","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Making Websites with HUGO","markdown":{"yaml":{"title":"Making Websites with HUGO","description":"This workshop provides a general introduction to HUGO, a popular open source framework for building websites without requiring a knowledge of HTML/CSS or web programming.\n","author":[{"name":"Dominique Gravel"},{"name":"Guillaume Larocque"}],"image":"image.jpg","categories":["Technical","Transversal competencies","EN"],"date":"12-07-2020","toc":true,"number-sections":true,"number-depth":1},"headingText":"Why this training workshop ?","containsRefs":false,"markdown":"\n\n\nI am only 10 hours of a crash course in web development ahead of you. As part of a major research project on setting a biodiversity observation network, I had to develop a prototype of a portal for the project, for biodiversity information and bunch of dashboards on biodiversity trends. Never made a website before. I know how to code in a few langages, and I know that I hate playing with boxes, menus, importing images manually, and most of all, dealing with a crash of the system and having to redo the whole thing because I made a mistake somewhere. Not that a bug when I try to compile is better, but at least it is more tractable.\n\nHugo made it very easily because of its fundamental feature (which is the same reason I edit papers with LaTeX): the distinction between the view and the content. Once you have set up the rules defining the visual aspects of the pages, then you can focus on the content and let the software automatically constructing the html code for you. It's fast, accessible, scriptable and could be version-controlled. All qualities for an open and reproducible science.\n\nTook me a few hours to learn the basics (much harder to get the higher level skills, especially to write your own Go scripts), I took some tricks here and there in different templates and at looking what others do, and that was it I had my website. Realized that it could be a good entry level course to BIOS2 fellows and decided to turn that experience into a training workshop.\n\nYou will find below basic instructions to install and run a template. The following is not a full tutorial, for that I recommend simply to take time looking at the documentation provided on the Hugo page (https://gohugo.io/). I also consulted the online book **Hugo in action** (https://www.manning.com/books/hugo-in-action). There are many other references, all of them with goods and bads. But it's nice to have multiple ones because sometimes the description of a concept may be obscure in one reference but better in the other and it's by comparing and switching between them that you can make progress.\n\n# Make sure Hugo is installed and check version\n\nFirst step, you have to make sure that it is properly installed on you computer. Type the following command in terminal to make sure :\n\n``` bash\nhugo version\n```\n\nYou can access to the help menu with the simple command :\n\n``` bash\nhugo help\n```\n\n# Be Timothée Poisot for fun\n\nWe will use Tim's website, which is a simple but efficient example of what we could achieve with Hugo. The strenght of the website is that it automatically updates with the addition of new content, such as publications, lab members and projects. The only thing you have to do, once the template is properly set up, is to update the content. That way, yo can focus on the material you want to put on, without struggling on how to place the boxes, format the police and all of the complicate stuff that comes with html and css. The content, written in markdown, is human readable and therefore could be easily edited by lab members. Further, since it's all scripted, it's easy to maintain and control versions.\n\nTake few minutes to look at the final webpage at https://poisotlab.io/\n\nNow you will clone the repository on your own computer so that you could start playing with the content, edit the files, modify list of papers and so on.\n\nYou can either use the clone button on the top of the page or the following command :\n\n``` bash\ngit clone https://github.com/bios2/Hugo-training-workshop.git\n```\n\nWe will take a few minutes to look at the content of the different folders. This structure is common to most of the Hugo templates. You will find multiple folders, it's useful to understand what's located where because the compiler expects this structure when it looks for specific information.\n\n**archetypes** (not in here, but usually in most templates). These are basic instructions to generate new content with the *hugo new* command. We won't use this feature today, but information about this feature is easy to find.\n\n**assets** contains the css files where the controls for visual aspect of the pages are specified. That's where you'll search for the different items and how to specify things such as box sizes, font colors and dimensions etc.... Note: assets directory is not created by default.\n\n**content** holds all of the .md files where the main content of the pages is provided. It's divided in several subfolders, corresponding to the different pages from the menu. Each top-level folder in Hugo is considered a content section (which is described usually in the config file). For instance, you have one folder called **Research** where the projects are described. You'll find one .md file per projec tin this folder. Note also that the folders contain systematically a \\_index.md file where the metadata and the top level information of the page are specified. We'll come back to that later.\n\n**data** stores specific information that will be consulted by the parser during compilation (configurationfiles). There are also data templates, and at the moment, there is one json file where the papers are listed and two toml files with a list of the students, past and present. json files could be edited with a text editor (not so fun), but there are some tools to do it efficiently.\n\n**layouts** contains the core files to compile the website. You will find in them instructions, in a strange blend of html and Go langages. No so easy and pleasant to play with, but looking at them tells you a bit about what the compiler does (a good example is for *people*). *list.html* for instance contains a loop that goes through the toml files in order to create the icons, the text and the link to the full markdown page where you have description for each student. You will find layouts for the main pages, as well as for partials (like the header menu).\n\n**resources** also contains css instructions for the template. We won't work with this one.\n\n**static** contains bunch of little things that are called during compilation. You'll find the logo for the lab, the pictures for students, pdf files for applications, images for each research project ...\n\nThere is also one very important file in the main folder the **config.toml** file. Inside, you will find a lot of the metadata that will control the structure of the main page. This find can be very simple for some templates, much more complicated for other ones. Note that for some templates, the config file may be in a distinct folder. Not all templates have exactly the same folder structure.\n\n*toml* is a file format for configuration files, it contains key parameters for the webpage. It consists of key = \"value\" pairs, \\[section names\\], and \\# comments. Let's open this one to have a closer look.\n\n## Exercise : Edit the toml file to include your own information.\n\nYou may want to change the section *People* to *Collaborators* and also provide a proper reference to your on github page. You can also add or remove sections, this will affect the menu at the top of the page. For instance, you can add a blog section.\n\n# Build the static html files\n\n## Build for local development\n\nHugo will use all of the material to generate static html files that will be displayed on your browser. The command is really easy to use to run it on your own computer, you simply have to type the following in the main folder :\n\n``` bash\nhugo server\n```\n\nAnd that's it, it compiles and you can simply open it in your browser by clicking on the adress indicated in the terminal. Congratulations for your first Hugo webste !\n\nThere are useful information in the terminal about the building process.\n\n## Build for publishing your website\n\nThe command *hugo server* is very fast and useful to test your website while you develop it. But once you'll be ready to distribute it, you'll need all of the html files and related material to distribute the website. This is easily done with the even simpler command\n\n``` bash\nhugo\n```\n\nYou will find in the directory that a new folder named **public** appeared, with all of the material needed to deploy the website. If you click on the *index.html* file, you'll get to the home page of the website. It is interesting to open this file in your text editor, you'll get a sense of the html code that hugo generated automatically for you. You can also take a look at other files.\n\n# Edit content\n\nEditing content is the easier thing to do. First thing to do, is to modify the content of the introduction paragraph on the main page. You'll find it in the \\*\\_index.md\\* file in the **content** folder. Open it and modify the text. You can after build the main page again to see the update.\n\nYou can also add material, with new md files. We will do so with a new research project (note the following could be done manually):\n\n``` bash\nhugo new research/chapter1.md\n```\n\nThis will generate a new markdown file, in which you can start adding material. But those files do have a particular structure, so before editing it, we'll take a quick look at another one, *datascience.md*.\n\nThe header section is typical of a markdown file with metadata (in toml or yaml format). You have to specify information to the parser about the title, the image and associated papers. Note that it will work if some of these (e.g. papers) are missing. You can modify the image as well.\n\nThe file here also a particular structure, with the marker between two paragraphs. This command indicates that only the first paragraph is displayed on the main page of the **Research** tab, and the full content follows if you click to know more about the project.\n\nNote that here you can use the basic features of markdown, with headers, bold, italics and so on. You can also include html code directly into the markdown and it should work. That said, it may conflict with higher level instructions in the layout or in the theme and may cause difficulties at building. While it is feasible to add such command, it is not recommended to do so. People rather suggest to use shortcodes (Tomorrow) or to modify the layout of the website.\n\n## Exercise\n\nTake 15 minutes to remove Tim's material and replace it by the three chapters of your thesis.\n\n# Hosting the website on a server\n\nThere are many options to host your new website on a server. An easy one, free, and that could be coupled with version control is to run it on github. Full instructions are available here :\n\nhttps://gohugo.io/hosting-and-deployment/hosting-on-github/\n\nWe will simply follow the instructions copied here for hosting a personal page. Note that you can also develop a page for a project.\n\n## GitHub User or Organization Pages\n\n### Step-by-step Instructions\n\n1. Create a (e.g. blog) repository on GitHub. This repository will contain Hugo's content and other source files.\n2. Create a .github.io GitHub repository. This is the repository that will contain the fully rendered version of your Hugo website.\n3. git clone && cd \n4. Paste your existing Hugo project into the new local repository. Make sure your website works locally (hugo server or hugo server -t ) and open your browser to http://localhost:1313.\n5. Once you are happy with the results: Press Ctrl+C to kill the server Before proceeding run rm -rf public to completely remove the public directory\n6. git submodule add -b main https://github.com//.github.io.git public. This creates a git submodule. Now when you run the hugo command to build your site to public, the created public directory will have a different remote origin (i.e. hosted GitHub repository).\n7. Make sure the baseURL in your config file is updated with: .github.io\n\n### Put it Into a Script\n\nYou're almost done. In order to automate next steps create a deploy.sh script. You can also make it executable with chmod +x deploy.sh.\n\nThe following are the contents of the deploy.sh script:\n\n``` bash\n #!/bin/sh\n\n # If a command fails then the deploy stops\n set -e\n\n printf \"\\033[0;32mDeploying updates to GitHub...\\033[0m\\n\"\n\n # Build the project.\n hugo # if using a theme, replace with `hugo -t `\n\n # Go To Public folder\n cd public\n\n # Add changes to git.\n git add .\n\n # Commit changes.\n msg=\"rebuilding site $(date)\"\n if [ -n \"$*\" ]; then\n msg=\"$*\"\n fi\n git commit -m \"$msg\"\n```\n\n# Push source and build repos.\n\n``` bash\ngit push origin main\n```\n\nYou can then run `./deploy.sh \"Your optional commit message\"` to send changes to .github.io. Note that you likely will want to commit changes to your repository as well.\n\nThat's it! Your personal page should be up and running at https://.github.io within a couple minutes.\n\n## Using a theme\n\nIt is usually a good idea to not modify a template directly, but to have the template and the site in a separate folder. The basic concept when doing this is that the config.toml file of the site has to link to the proper folder of the theme.\n\nFor example\n\n``` toml\ntheme = \"template-site\"\nthemesDir = \"../..\"\n```\n\nThis means that the template site is in a folder named template-site which is a parent folder of the site folder. Other options are possible.\n\nUsually, all the content should go in the site folder, not in the theme folder.\n\n### Exercise 1\n\n- Start modifying the theme to make it look like a website for a Zoo. Choose your preferred color scheme by changing the style= parameter in the config.toml file.\n\n- Feel free to download some images from [unsplash](https://unsplash.com) and save them in the static/img folder. You can then use these images in the carrousel, as \"testimonial\" photos or as background images for some of the sections. You can add or remove sections from the home page by editing the config.toml file and changing the enable= parameter in the params. segment at the bottom.\n\n- You can also try to create a new blog entry by adding a new file in the content/blog folder. This file will have a .md extension and will be written in markdown format.\n\n## Customizing a theme\n\n## Basics of HTML\n\nCore structure of an HTML page\n\n``` html\n\n\n\nThis is my great website\n\n\n\n

Main title

\n
Main content goes here
\n\n\n```\n\n### A divider, used to organize content into blocks\n\n``` html\n
\n```\n\n### A span, used to organize content or text into sections with different styles. Usually on the same line.\n\n``` html\n\n```\n\n### A paragraph\n\n``` html\n

\n```\n\n### Headings at different levels\n\n``` html\n

Main title

\n

Second level

\n

Third level

\n```\n\n### An image\n\n``` html\n\n```\n\n### A link\n\n``` html\nGreat website here!\n```\n\n## Link between HTML and CSS\n\n### In html\n\nid is always unique. Class is not.\n\n``` html\n
\nOne great div!\n
\n```\n\n### In CSS\n\n\"\\#\" is applied to id and \".\" is applied to class. When nothing is specified, applies to tag.\n\n``` css\n#this-div-only{\n font-size:24px;\n}\n\n.this-type-of-div{\n color: #bb0000;\n}\n\ndiv{\n display:block;\n}\n```\n\n## Basics of CSS\n\n[W3 Schools CSS reference](https://www.w3schools.com/cssref/)\n\n| Property | Description | Example |\n|------------------------|------------------------|------------------------|\n| width, height | width of item | 200px, 200pt, 100%, 100vw/vh |\n| min-width, min-height | minimum size of item | 200px, 200pt, 100%, 100vw |\n| color | font color | #aa0000, red or rgb(255,0,0) |\n| background-color | color of background | #aa0000, red or rgb(255,0,0) |\n| border-color | color of border | #aa0000, red or rgb(255,0,0) |\n| border | size, type and color of border | 1px solid black |\n| margin | margin around item (top right bottom left) | 1px, or 1px 2px 2px 1px |\n| padding | padding within item, inside div for example | 10px |\n| font-family | name of font | Verdana, Arial |\n| font-size | size of text | 14px, 2em |\n| display | should item be on the same line, or in a separate block? | inline, block, inline-block, flex, ... |\n\n### Exercise 2\n\n- Create a file named custom.css under template-site/my-site/static/css/.\n\n- Right-click on elements on the web page that you want to modify, then click on Inspect element and try to find CSS properties that you could modify to improve the look of the page. Then, choosing the proper class, add entries in the custom.css file that start with a dot (.) followed by the proper class names.\n\n``` css\n.this-class {\n font-size:28px;\n}\n```\n\n## Partials\n\nPartials are snippets of HTML code that could be reused on different places on the website. For example, you will see that the layouts/index.html file in the template-site folder lists all the partials that create the home page.\n\nAn important point to remember is that Hugo will look for files first in the site's folders, and if it doesn't find the files there, it will look for them in the theme's folder. So site folder layouts and CSS take priority over the theme folder.\n\n### Exercise 3\n\n- Create a new folder template-site/my-site/layouts. In this folder, create a new file named index.html and copy the content of the template-site/layouts/index.html file into it. Remove the testimonials section from the newly created file.\n\n- Create a new folder template-site/my-site/layouts/partials. In this folder, create a new file named featured-species.html put the following content into it, replacing the information with the species you selected.\n\n``` html\n
\n\"\"\n
\n

Red-Eyed Tree Frog

\n

This frog can be found in the tropical rain forests of Costa Rica.

\n
\n
\n```\n\n- Then, add this section to the index.html file created above.\n\n\n\n {{ partial \"featured_species.html\" . }}\n\n- You will probably need to restart the Hugo server to see the changes appear on the site.\n\n- Now, you need to edit the CSS! In your custom.css file, add the following lines.\n\n``` css\n\n.featured-species{\n height:300px;\n background-color: #1d1f20;\n color:white;\n}\n\n.species-image{\n height:300px;\n float:left;\n}\n\n.featured-species h3{\n color:white;\n font-size:1.5em;\n}\n\n.species-description{\n float:left;\n padding:20px;\n font-size:2em;\n}\n```\n\nModify this as you see fit!\n\n## Now a bit of GO lang to make the featured species different.\n\n[Introduction to Hugo templating](https://gohugo.io/templates/introduction/)\n\n### Exercise 4\n\n- Replace your partial featured-species.html content with this one\n\n``` html\n{{ range .Site.Data.species }}\n {{ if eq (.enable) true }}\n
\n \"\"\n
\n

{{ .name }}

\n

{{ .description }}

\n
\n
\n {{end}}\n{{end}}\n```\n\n- Now, create a new folder /template-site/my-site/data/species.\n\n- In this folder, create new file named frog.yaml with the following content.\n\n``` yaml\nenable: true\nname: \"Red-eyed tree frog\"\ndescription: \"This frog can be found in the forests of Costa Rica\"\nimage: \"frog.jpg\"\n```\n\n- Find other species photos and add them to the img folder. Then you can add new .yaml files in the data/species folder for each species.\n\n## iFrames\n\nAn iFrame is a HTML tag that essentially allows you to embed another web page inside of your site.\n\n### Exercise 5\n\nFind a Youtube video and click on the share option below the video. Find the Embed option and copy the code that starts with `\n\n```\n\nEdit the custom.css file and add this section\n\n``` css\n.video{\n width:100%;\n background-color:black;\n text-align:center;\n}\n```\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"markdown"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Making Websites with HUGO","description":"This workshop provides a general introduction to HUGO, a popular open source framework for building websites without requiring a knowledge of HTML/CSS or web programming.\n","author":[{"name":"Dominique Gravel"},{"name":"Guillaume Larocque"}],"image":"image.jpg","categories":["Technical","Transversal competencies","EN"],"date":"12-07-2020","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index.qmd.json b/.quarto/idx/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index.qmd.json index db125ef..75a4125 100644 --- a/.quarto/idx/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index.qmd.json +++ b/.quarto/idx/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index.qmd.json @@ -1 +1 @@ -{"title":"Spatial Statistics in Ecology","markdown":{"yaml":{"title":"Spatial Statistics in Ecology","description":"Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). |\nSession de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).\n","author":[{"name":"Philippe Marchand","affiliation":"Université du Québec en Abitibi-Témiscamingue"}],"categories":["FR","EN","Technical"],"date":"2021-01-12","image":"image.jpg","toc":true,"number-sections":true,"number-depth":1,"execute":{"freeze":true,"cache":true}},"headingText":"Spatial Statistics in Ecology","containsRefs":false,"markdown":"\n\nVersion en français [à la suite](#statistiques-spatiales-en-écologie).\n\n\nBIOS² hosted an online training session about statistical analysis of spatial data in ecology, led by Pr. Philippe Marchand (UQAT). This 12-hour training was conducted in 4 sessions: January 12, 14, 19 & 21 (2021) from 1:00 to 4:00 pm EST.\n\nThe content included three types of spatial statistical analyses and their applications to ecology: (1) point pattern analysis to study the distribution of individuals or events in space; (2) geostatistical models to represent the spatial correlation of variables sampled at geolocated points; and (3) areal data models, which apply to measurements taken on areas in space and model spatial relationships as networks of neighbouring regions. The training also included practical exercises using the R statistical programming environment.\n\n[Philippe Marchand](https://github.com/pmarchand1) is a professor in ecology and biostatistics at Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) and BIOS² academic member. His research focuses on modeling processes that influence the spatial distribution of populations, including: seed dispersal and seedling establishment, animal movement, and the spread of forest diseases.\n\n**If you wish to consult the lesson materials and follow the exercises at your own pace, you can access them through [this link](https://bios2.github.io/Marchand.html#category:EN). Basic knowledge of linear regression models and experience fitting them in R is recommended. Original repository can be found [here](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Course outline\n\n| Day | Topics (EN) |\n|-----------------|:--------------------------|\n| 1 | • [Introduction to spatial statistics](#introduction)
• [Point pattern analysis](#point-pattern)
|\n| 2 | • [Spatial correlation](#spatial-correlation)
• [Geostatistical models](#geostat-models) |\n| 3 | • [Areal data](#areal-data)
• [Moran's I](#moran-i)
• [Spatial autoregression models](#spatial-autoreg)
• [Analysis of areal data in R](#analysis-areal) |\n| 4 | • [GLMM with spatial Gaussian process](#glmm-spatial-gaussian)
• [GLMM with spatial autoregression](#glmm-spatial-autoreg) |\n\n\n# Introduction to spatial statistics {#introduction}\n\n## Types of spatial analyses\n\nIn this training, we will discuss three types of spatial analyses: point pattern analysis, geostatistical models and models for areal data.\n\nIn **point pattern analysis**, we have point data representing the position of individuals or events in a study area and we assume that all individuals or events have been identified in that area. That analysis focuses on the distribution of the positions of the points themselves. Here are some typical questions for the analysis of point patterns:\n\n- Are the points randomly arranged or clustered?\n\n- Are two types of points arranged independently?\n\n**Geostatistical models** represent the spatial distribution of continuous variables that are measured at certain sampling points. They assume that measurements of those variables at different points are correlated as a function of the distance between the points. Applications of geostatistical models include the smoothing of spatial data (e.g., producing a map of a variable over an entire region based on point measurements) and the prediction of those variables for non-sampled points.\n\n**Areal data** are measurements taken not at points, but for regions of space represented by polygons (e.g. administrative divisions, grid cells). Models representing these types of data define a network linking each region to its neighbours and include correlations in the variable of interest between neighbouring regions.\n\n## Stationarity and isotropy\n\nSeveral spatial analyses assume that the variables are **stationary** in space. As with stationarity in the time domain, this property means that summary statistics (mean, variance and correlations between measures of a variable) do not vary with translation in space. For example, the spatial correlation between two points may depend on the distance between them, but not on their absolute position.\n\nIn particular, there cannot be a large-scale trend (often called *gradient* in a spatial context), or this trend must be taken into account before modelling the spatial correlation of residuals.\n\nIn the case of point pattern analysis, stationarity (also called homogeneity) means that point density does not follow a large-scale trend.\n\nIn a **isotropic** statistical model, the spatial correlations between measurements at two points depend only on the distance between the points, not on the direction. In this case, the summary statistics do not change under a spatial rotation of the data.\n\n## Georeferenced data\n\nEnvironmental studies increasingly use data from geospatial data sources, i.e. variables measured over a large part of the globe (e.g. climate, remote sensing). The processing of these data requires concepts related to Geographic Information Systems (GIS), which are not covered in this workshop, where we focus on the statistical aspects of spatially varying data.\n\nThe use of geospatial data does not necessarily mean that spatial statistics are required. For example, we will often extract values of geographic variables at study points to explain a biological response observed in the field. In this case, the use of spatial statistics is only necessary when there is a spatial correlation in the residuals, after controlling for the effect of the predictors.\n\n# Point pattern analysis {#point-pattern}\n\n## Point pattern and point process\n\nA *point pattern* describes the spatial position (most often in 2D) of individuals or events, represented by points, in a given study area, often called the observation \"window\".\n\nIt is assumed that each point has a negligible spatial extent relative to the distances between the points. More complex methods exist to deal with spatial patterns of objects that have a non-negligible width, but this topic is beyond the scope of this workshop.\n\nA *point process* is a statistical model that can be used to simulate point patterns or explain an observed point pattern.\n\n## Complete spatial randomness\n\nComplete spatial randomness (CSR) is one of the simplest point patterns, which serves as a null model for evaluating the characteristics of real point patterns. In this pattern, the presence of a point at a given position is independent of the presence of points in a neighbourhood.\n\nThe process creating this pattern is a homogeneous Poisson process. According to this model, the number of points in any area $A$ follows a Poisson distribution: $N(A) \\sim \\text{Pois}(\\lambda A)$, where $\\lambda$ is the *intensity* of the process (i.e. the density of points per unit area). $N$ is independent between two disjoint regions, no matter how those regions are defined.\n\nIn the graph below, only the pattern on the right is completely random. The pattern on the left shows point aggregation (higher probability of observing a point close to another point), while the pattern in the center shows repulsion (low probability of observing a point very close to another).\n\n```{r, include = FALSE}\nlibrary(spatstat)\n```\n\n```{r, echo = FALSE, fig.dim = c(9, 3)}\nset.seed(82)\ncsrp <- rpoispp(lambda = 100)\naggp <- rMatClust(20, 0.1, 5)\nevenp <- rMaternII(150, 0.05)\npar(mfrow = c(1, 3))\nplot(aggp, main = \"Aggregation\", pch = 19)\nplot(evenp, main = \"Repulsion\", pch = 19)\nplot(csrp, main = \"Random\", pch = 19)\n```\n\n## Exploratory or inferential analysis for a point pattern\n\nSeveral summary statistics are used to describe the characteristics of a point pattern. The simplest is the intensity $\\lambda$, which as mentioned above represents the density of points per unit area. If the point pattern is heterogeneous, the intensity is not constant, but depends on the position: $\\lambda(x, y)$.\n\nCompared to intensity, which is a first-order statistic, second-order statistics describe how the probability of the presence of a point in a region depends on the presence of other points. The Ripley's $K$ function presented in the next section is an example of a second-order summary statistic.\n\nStatistical inferences on point patterns usually consist of testing the hypothesis that the point pattern corresponds to a given null model, such as CSR or a more complex null model. Even for the simplest null models, we rarely know the theoretical distribution for a summary statistic of the point pattern under the null model. Hypothesis tests on point patterns are therefore performed by simulation: a large number of point patterns are simulated from the null model and the distribution of the summary statistics of interest for these simulations is compared to their values for the observed point pattern.\n\n## Ripley's K function\n\nRipley's K function $K(r)$ is defined as the mean number of points within a circle of radius $r$ around a point in the pattern, standardized by the intensity $\\lambda$.\n\nUnder the CSR null model, the mean number of points in any circle of radius $r$ is $\\lambda \\pi r^2$, thus in theory $K(r) = \\pi r^2$ for that model. A higher value of $K(r)$ means that there is an aggregation of points at the scale $r$, whereas a lower value means that there is repulsion.\n\nIn practice, $K(r)$ is estimated for a specific point pattern by the equation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\nwhere $A$ is the area of the observation window and $n$ is the number of points in the pattern, so $n(n-1)$ is the number of distinct pairs of points. We take the sum for all pairs of points of the indicator function $I$, which takes a value of 1 if the distance between points $i$ and $j$ is less than or equal to $r$. Finally, the term $w_{ij}$ is used to give extra weight to certain pairs of points to account for edge effects, as discussed in the next section.\n\nFor example, the graphs below show the estimated $K(r)$ function for the patterns shown above, for values of $r$ up to 1/4 of the window width. The red dashed curve shows the theoretical value for CSR and the gray area is an \"envelope\" produced by 99 simulations of that null pattern. The aggregated pattern shows an excess of neighbours up to $r = 0.25$ and the pattern with repulsion shows a significant deficit of neighbours for small values of $r$.\n\n```{r, include = FALSE}\nkagg <- envelope(aggp, Kest, correction = \"iso\") \nkeven <- envelope(evenp, Kest, correction = \"iso\")\nkcsr <- envelope(csrp, Kest, correction = \"iso\")\n```\n\n```{r, echo = FALSE, fig.dim = c(9, 3)}\npar(mfrow = c(1, 3))\nplot(kagg, main = \"Aggregation\", legend = FALSE)\nplot(keven, main = \"Repulsion\", legend = FALSE)\nplot(kcsr, main = \"Random\", legend = FALSE)\n```\n\nIn addition to $K$, there are other statistics to describe the second-order properties of point patterns, such as the mean distance between a point and its nearest $N$ neighbours. You can refer to the Wiegand and Moloney (2013) textbook in the references to learn more about different summary statistics for point patterns.\n\n## Edge effects\n\nIn the context of point pattern analysis, edge effects are due to the fact that we have incomplete knowledge of the neighbourhood of points near the edge of the observation window, which can induce a bias in the calculation of statistics such as Ripley's $K$.\n\nDifferent methods have been developed to correct the bias due to edge effects. In Ripley's edge correction method, the contribution of a neighbour $j$ located at a distance $r$ from a point $i$ receives a weight $w_{ij} = 1/\\phi_i(r)$, where $\\phi_i(r)$ is the fraction of the circle of radius $r$ around $i$ contained in the observation window. For example, if 2/3 of the circle is in the window, this neighbour counts as 3/2 neighbours in the calculation of a statistic like $K$.\n\n![](images/ripley_edge.png)\n\nRipley's method is one of the simplest to correct for edge effects, but is not necessarily the most efficient; in particular, larger weights given to certain pairs of points tend to increase the variance of the calculated statistic. Other correction methods are presented in specialized textbooks, such as Wiegand and Moloney (2013).\n\n## Example\n\nFor this example, we use the dataset [semis_xy.csv](data/semis_xy.csv), which represents the $(x, y)$ coordinates for seedlings of two species (*sp*, B = birch and P = poplar) in a 15 x 15 m plot.\n\n```{r}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\nThe *spatstat* package provides tools for point pattern analysis in R. The first step consists in transforming our data frame into a `ppp` object (point pattern) with the function of the same name. In this function, we specify which columns contain the coordinates *x* and *y* as well as the *marks*, which here will be the species codes. We also need to specify an observation window (`window`) using the `owin` function, where we provide the plot limits in *x* and *y*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\nMarks can be numeric or categorical. Note that for categorical marks as is the case here, the variable must be explicitly converted to a factor.\n\nThe `plot` function applied to a point pattern shows a diagram of the pattern.\n\n```{r}\nplot(semis)\n```\n\nThe `intensity` function calculates the density of points of each species by unit area (here, by $m^2$).\n\n```{r}\nintensity(semis)\n```\n\nTo first analyze the distribution of each species separately, we split the pattern with `split`. Since the pattern contains categorical marks, it is automatically split according to the values of those marks. The result is a list of two point patterns.\n\n```{r}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\nThe `Kest` function calculates Ripley's $K$ for a series of distances up to (by default) 1/4 of the width of the window. Here we apply it to the first pattern (birch) by choosing `semis_split[[1]]`. Note that double square brackets are necessary to choose an item from a list in R.\n\nThe argument `correction = \"iso\"` tells the function to apply Ripley's correction for edge effects.\n\n```{r}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\nAccording to this graph, there seems to be an excess of neighbours for distances of 1 m and above. To check if this is a significant difference, we produce a simulation envelope with the `envelope` function. The first argument of `envelope` is a point pattern to which the simulations will be compared, the second one is a function to be computed (here, `Kest`) for each simulated pattern, then we add the arguments of the `Kest` function (here, only `correction`).\n\n```{r}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\nAs indicated by the message, by default the function performs 99 simulations of the null model corresponding to complete spatial randomness (CSR).\n\nThe observed curve falls outside the envelope of the 99 simulations near $r = 2$. We must be careful not to interpret too quickly a result that is outside the envelope. Although there is about a 1% probability of obtaining a more extreme result under the null hypothesis at a given distance, the envelope is calculated for a large number of values of $r$ and is not corrected for multiple comparisons. Thus, a significant difference for a very small range of values of $r$ may be simply due to chance.\n\n### Exercise 1\n\nLooking at the graph of the second point pattern (poplar seedlings), can you predict where Ripley's $K$ will be in relation to the null hypothesis of complete spatial randomness? Verify your prediction by calculating Ripley's $K$ for this point pattern in R.\n\n## Effect of heterogeneity\n\nThe graph below illustrates a *heterogeneous* point pattern, i.e. it shows an density gradient (more points on the left than on the right).\n\n```{r, include = FALSE}\nlam_gr <- function(x, y) ifelse(x < 0.5, 500*(1-x), 200*(1-x))\nhetp <- rpoispp(lam_gr)\nkhet <- envelope(hetp, Kest, correction = \"iso\")\n```\n\n```{r, echo = FALSE}\npar(mfrow = c(1, 2))\nplot(hetp, pch = 19, main = \"\")\nplot(khet, main = \"\", legend = FALSE)\n```\n\nA density gradient can be confused with an aggregation of points, as can be seen on the graph of the corresponding Ripley's $K$. In theory, these are two different processes:\n\n- Heterogeneity: The density of points varies in the study area, for example due to the fact that certain local conditions are more favorable to the presence of the species of interest.\n\n- Aggregation: The mean density of points is homogeneous, but the presence of one point increases the presence of other points in its vicinity, for example due to positive interactions between individuals.\n\nHowever, it may be difficult to differentiate between the two in practice, especially since some patterns may be both heterogeneous and aggregated.\n\nLet's take the example of the poplar seedlings from the previous exercise. The `density` function applied to a point pattern performs a kernel density estimation of the density of the seedlings across the plot. By default, this function uses a Gaussian kernel with a standard deviation `sigma` specified in the function, which determines the scale at which density fluctuations are \"smoothed\". Here, we use a value of 2 m for `sigma` and we first represent the estimated density with `plot`, before overlaying the points (`add = TRUE` means that the points are added to the existing plot rather than creating a new plot).\n\n```{r}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\nTo measure the aggregation or repulsion of points in a heterogeneous pattern, we must use the inhomogeneous version of the $K$ statistic (`Kinhom` in *spatstat*). This statistic is still equal to the mean number of neighbours within a radius $r$ of a point in the pattern, but rather than standardizing this number by the overall intensity of the pattern, it is standardized by the local estimated density. As above, we specify `sigma = 2` to control the level of smoothing for the varying density estimate.\n\n```{r}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\nTaking into account the heterogeneity of the pattern at a scale `sigma` of 2 m, there seems to be a deficit of neighbours starting at a radius of about 1.5 m. We can now check whether this deviation is significant.\n\nAs before, we use `envelope` to simulate the `Kinhom` statistic under the null model. However, the null model here is not a homogeneous Poisson process (CSR). It is instead a heterogeneous Poisson process simulated by the function `rpoispp(dens_p)`, i.e. the points are independent of each other, but their density is heterogeneous and given by `dens_p`. The `simulate` argument of the `envelope` function specifies the function used for simulations under the null model; this function must have one argument, here `x`, even if it is not used.\n\nFinally, in addition to the arguments needed for `Kinhom`, i.e. `sigma` and `correction`, we also specify `nsim = 199` to perform 199 simulations and `nrank = 5` to eliminate the 5 most extreme results on each side of the envelope, i.e. the 10 most extreme results out of 199, to achieve an interval containing about 95% of the probability under the null hypothesis.\n\n```{r}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\nplot(khet_p)\n```\n\n*Note*: For a hypothesis test based on simulations of a null hypothesis, the $p$-value is estimated by $(m + 1)/(n + 1)$, where $n$ is the number of simulations and $m$ is the number of simulations where the value of the statistic is more extreme than that of the observed data. This is why the number of simulations is often chosen to be 99, 199, etc.\n\n### Exercise 2\n\nRepeat the heterogeneous density estimation and `Kinhom` calculation with a standard deviation `sigma` of 5 rather than 2. How does the smoothing level for the density estimation influence the conclusions?\n\nTo differentiate between a variation in the density of points from an interaction (aggregation or repulsion) between these points with this type of analysis, it is generally assumed that the two processes operate at different scales. Typically, we can test whether the points are aggregated at a small scale after accounting for a variation in density at a larger scale.\n\n## Relationship between two point patterns\n\nLet's consider a case where we have two point patterns, for example the position of trees of two species in a plot (orange and green points in the graph below). Each of the two patterns may or may not present an aggregation of points.\n\n```{r, echo = FALSE}\ndata(lansing)\nlansing <- subset(lansing, marks %in% c(\"maple\", \"redoak\"), drop = TRUE)\nplot(lansing, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"\", legend = FALSE)\n```\n\nRegardless of whether points are aggregated at the species level, we want to determine whether the two species are arranged independently. In other words, does the probability of observing a tree of one species depend on the presence of a tree of the other species at a given distance?\n\nThe bivariate version of Ripley's $K$ allows us to answer this question. For two patterns noted 1 and 2, the function $K_{12}(r)$ calculates the mean number of points in pattern 2 within a radius $r$ from a point in pattern 1, standardized by the density of pattern 2.\n\nIn theory, this function is symmetrical, so $K_{12}(r) = K_{21}(r)$ and the result would be the same whether the points of pattern 1 or 2 are chosen as \"focal\" points for the analysis. However, the estimation of the two quantities for an observed pattern may differ, in particular because of edge effects. The variance of $K_{12}$ and $K_{21}$ between simulations of a null model may also differ, so the null hypothesis test may have more or less power depending on the choice of the focal species.\n\nThe choice of an appropriate null model is important here. In order to determine whether there is a significant attraction or repulsion between the two patterns, the position of one of the patterns must be randomly moved relative to that of the other pattern, while keeping the spatial structure of each pattern taken in isolation.\n\nOne way to do this randomization is to shift one of the two patterns horizontally and/or vertically by a random distance. The part of the pattern that \"comes out\" on one side of the window is attached to the other side. This method is called a toroidal shift, because by connecting the top and bottom as well as the left and right of a rectangular surface, we obtain the shape of a torus (a three-dimensional \"donut\").\n\n```{r, echo = FALSE}\npar(mfrow = c(1, 2))\nset.seed(35)\nrsh <- rshift(lansing, which = 1, width = 0.5, height = 0)\nplot(lansing, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"Original\", legend = FALSE)\nrect(xleft = 1 - rsh$x[8], xright = 1, ybottom = 0, ytop = 1, \n col = rgb(0, 0, 0, alpha = 0.1))\nplot(rsh, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"After translation\", legend = FALSE)\nrect(xleft = 0, xright = rsh$x[8], ybottom = 0, ytop = 1, \n col = rgb(0, 0, 0, alpha = 0.1))\n```\n\nThe graph above shows a translation of the green pattern to the right, while the orange pattern remains in the same place. The green points in the shaded area are brought back on the other side. Note that while this method generally preserves the structure of each pattern while randomizing their relative position, it can have some drawbacks, such as dividing point clusters that are near the cutoff point.\n\nLet's now check whether the position of the two species (birch and poplar) is independent in our plot. The function `Kcross` calculates the bivariate $K_{ij}$, we must specify which type of point (mark) is considered as the focal species $i$ and the neighbouring species $j$.\n\n```{r}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\nHere, the observed $K$ is lower than the theoretical value, indicating a possible repulsion between the two patterns.\n\nTo determine the envelope of the $K$ under the null hypothesis of independence of the two patterns, we must specify that the simulations are based on a translation of the patterns. We indicate that the simulations use the function `rshift` (random translation) with the argument `simulate = function(x) rshift(x, which = \"B\")`; here, the `x` argument in `simulate` corresponds to the original point pattern and the `which` argument indicates which of the patterns is translated. As in the previous case, the arguments needed for `Kcross`, i.e. `i`, `j` and `correction`, must be repeated in the `envelope` function.\n\n```{r}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\nHere, the observed curve is totally within the envelope, so we do not reject the null hypothesis of independence of the two patterns.\n\n### Questions\n\n1. What would be one reason for our choice to translate the points of the birch rather than poplar?\n\n2. Would the simulations generated by random translation be a good null model if the two patterns were heterogeneous?\n\n## Marked point patterns\n\nThe [fir.csv](data/fir.csv) dataset contains the $(x, y)$ coordinates of 822 fir trees in a 1 hectare plot and their status (A = alive, D = dead) following a spruce budworm outbreak.\n\n```{r}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n```{r}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\nSuppose that we want to check whether fir mortality is independent or correlated between neighbouring trees. How does this question differ from the previous example, where we wanted to know if the position of the points of two species was independent?\n\nIn the previous example, the independence or interaction between the species referred to the formation of the pattern itself (whether or not seedlings of one species establish near those of the other species). Here, the characteristic of interest (survival) occurs after the establishment of the pattern, assuming that all those trees were alive at first and that some died as a result of the outbreak. So we take the position of the trees as fixed and we want to know whether the distribution of status (dead, alive) among those trees is random or shows a spatial pattern.\n\nIn Wiegand and Moloney's textbook, the first situation (establishment of seedlings of two species) is called a bivariate pattern, so it is really two interacting patterns, while the second is a single pattern with a qualitative *mark*. The *spatstat* package in R does not differentiate between the two in terms of pattern definition (types of points are always represented by the `marks` argument), but the analysis methods applied to the two questions differ.\n\nIn the case of a pattern with a qualitative mark, we can define a *mark connection function* $p_{ij}(r)$. For two points separated by a distance $r$, this function gives the probability that the first point has the mark $i$ and the second the mark $j$. Under the null hypothesis where the marks are independent, this probability is equal to the product of the proportions of each mark in the entire pattern, $p_{ij}(r) = p_i p_j$ independently of $r$.\n\nIn *spatstat*, the mark connection function is computed with the `markconnect` function, where the marks $i$ and $j$ and the type of edge correction must be specified. In our example, we see that two closely spaced points are less likely to have a different status (A and D) than expected under the assumption of random and independent distribution of marks (red dotted line).\n\n```{r}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\nIn this graph, the fluctuations in the function are due to the estimation error of a continuous $r$ function from a limited number of discrete point pairs.\n\nTo simulate the null model in this case, we use the `rlabel` function, which randomly reassigns the marks among the points of the pattern, keeping the points' positions fixed.\n\n```{r}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\nNote that since the `rlabel` function has only one required argument corresponding to the original point pattern, it was not necessary to specify: `simulate = function(x) rlabel(x)`.\n\nHere are the results for tree pairs of the same status A or D:\n\n```{r, fig.dim = c(10, 5)}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\nIt therefore appears that fir mortality due to this outbreak is spatially aggregated, since trees located in close proximity to each other have a greater probability of sharing the same status than predicted by the null hypothesis.\n\n## References\n\nFortin, M.-J. and Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK.\n\nWiegand, T. and Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nThe dataset in the last example is a subet of the Lake Duparquet Research and Teaching Forest (LDRTF) data, available on Dryad [here](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n# Solutions\n\n### Exercise 1\n\n```{r}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\nPoplar seedlings seem to be significantly aggregated according to the $K$ function.\n\n### Exercise 2\n\n```{r}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\nplot(khet_p)\n```\n\nHere, as we estimate density variations at a larger scale, even after accounting for this variation, the poplar seedlings seem to be aggregated at a small scale.\n\n# Spatial correlation of a variable {#spatial-correlation}\n\n```{r setup-spatial, include=FALSE}\n# knitr::opts_chunk$set(echo = TRUE)\nlibrary(tidyverse)\nlibrary(cowplot)\ntheme_set(theme_cowplot())\n```\n\nCorrelation between measurements of a variable taken at nearby points often occurs in environmental data. This principle is sometimes referred to as the \"first law of geography\" and is expressed in the following quote from Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things\".\n\nIn statistics, we often refer to *autocorrelation* as the correlation between measurements of the same variable taken at different times (temporal autocorrelation) or places (spatial autocorrelation).\n\n## Intrinsic or induced dependence\n\nThere are two basic types of spatial dependence on a measured variable $y$: an *intrinsic* dependence on $y$, or a dependence *induced* by external variables influencing $y$, which are themselves spatially correlated.\n\nFor example, suppose that the abundance of a species is correlated between two sites located near each other:\n\n- this spatial dependence can be induced if it is due to a spatial correlation of habitat factors that are favorable or unfavorable to the species;\n\n- or it can be intrinsic if it is due to the dispersion of individuals to nearby sites.\n\nIn many cases, both types of dependence affect a given variable.\n\nIf the dependence is simply induced and the external variables that cause it are included in the model explaining $y$, then the model residuals will be independent and we can use all the methods already seen that ignore spatial correlation.\n\nHowever, if the dependence is intrinsic or due to unmeasured external factors, then the spatial correlation of the residuals in the model will have to be taken into account.\n\n## Different ways to model spatial effects\n\nIn this training, we will directly model the spatial correlations of our data. It is useful to compare this approach to other ways of including spatial aspects in a statistical model.\n\nFirst, we could include predictors in the model that represent position (e.g., longitude, latitude). Such predictors may be useful for detecting a systematic large-scale trend or gradient, whether or not the trend is linear (e.g., with a generalized additive model).\n\nIn contrast to this approach, the models we will see now serve to model a spatial correlation in the random fluctuations of a variable (i.e., in the residuals after removing any systematic effect).\n\nMixed models use random effects to represent the non-independence of data on the basis of their grouping, i.e., after accounting for systematic fixed effects, data from the same group are more similar (their residual variation is correlated) than data from different groups. These groups were sometimes defined according to spatial criteria (observations grouped into sites).\n\nHowever, in the context of a random group effect, all groups are as different from each other, e.g., two sites within 100 km of each other are no more or less similar than two sites 2 km apart.\n\nThe methods we will see here and in the next parts of the training therefore allow us to model non-independence on a continuous scale (closer = more correlated) rather than just discrete (hierarchy of groups).\n\n# Geostatistical models {#geostat-models}\n\nGeostatistics refers to a group of techniques that originated in the earth sciences. Geostatistics is concerned with variables that are continuously distributed in space and where a number of points are sampled to estimate this distribution. A classic example of these techniques comes from the mining field, where the aim was to create a map of the concentration of ore at a site from samples taken at different points on the site.\n\nFor these models, we will assume that $z(x, y)$ is a stationary spatial variable measured at points with coordinates $x$ and $y$.\n\n## Variogram\n\nA central aspect of geostatistics is the estimation of the variogram $\\gamma_z$ . The variogram is equal to half the mean square difference between the values of $z$ for two points $(x_i, y_i)$ and $(x_j, y_j)$ separated by a distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nIn this equation, the $\\text{E}$ function with the index $d_{ij}=h$ designates the statistical expectation (i.e., the mean) of the squared deviation between the values of $z$ for points separated by a distance $h$.\n\nIf we want instead to express the autocorrelation $\\rho_z(h)$ between measures of $z$ separated by a distance $h$, it is related to the variogram by the equation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\nwhere $\\sigma_z^2$ is the global variance of $z$.\n\nNote that $\\gamma_z = \\sigma_z^2$ when we reach a distance where the measurements of $z$ are independent, so $\\rho_z = 0$. In this case, we can see that $\\gamma_z$ is similar to a variance, although it is sometimes called \"semivariogram\" or \"semivariance\" because of the 1/2 factor in the above equation.\n\n## Theoretical models for the variogram\n\nSeveral parametric models have been proposed to represent the spatial correlation as a function of the distance between sampling points. Let us first consider a correlation that decreases exponentially:\n\n$$\\rho_z(h) = e^{-h/r}$$\n\nHere, $\\rho_z = 1$ for $h = 0$ and the correlation is multiplied by $1/e \\approx 0.37$ each time the distance increases by $r$. In this context, $r$ is called the *range* of the correlation.\n\nFrom the above equation, we can calculate the corresponding variogram.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nHere is a graphical representation of this variogram.\n\n```{r, echo = FALSE}\nggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma)) +\n stat_function(fun = function(x) 5 * (1 - exp(-x/3)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\") +\n geom_segment(aes(x = 0, xend = 2.8, y = 5*(1-exp(-1)),\n yend = 5*(1-exp(-1))), \n arrow = arrow(length = unit(0.05, \"inches\"), ends = \"both\", type = \"closed\")) +\n annotate(\"text\", x = 1.5, y = 3.5, label = \"range\") +\n annotate(\"text\", x = 9, y = 5.5, label = \"sill\") +\n scale_y_continuous(limits = c(0, 6))\n```\n\nBecause of the exponential function, the value of $\\gamma$ at large distances approaches the global variance $\\sigma_z^2$ without exactly reaching it. This asymptote is called a *sill* in the geostatistical context and is represented by the symbol $s$.\n\nFinally, it is sometimes unrealistic to assume a perfect correlation when the distance tends towards 0, because of a possible variation of $z$ at a very small scale. A *nugget* effect, denoted $n$, can be added to the model so that $\\gamma$ approaches $n$ (rather than 0) if $h$ tends towards 0. The term nugget comes from the mining origin of these techniques, where a nugget could be the source of a sudden small-scale variation in the concentration of a mineral.\n\nBy adding the nugget effect, the remainder of the variogram is \"compressed\" to keep the same sill, resulting in the following equation.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nIn the *gstat* package that we use below, the term $(s-n)$ is called a *partial sill* or `psill` for the exponential portion of the variogram.\n\n```{r, echo = FALSE}\nggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma)) +\n stat_function(fun = function(x) 4 * (1 - exp(-x/3)) + 1,\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\") +\n geom_segment(aes(x = 0, xend = 2.8, y = 4*(1-exp(-1)) + 1,\n yend = 4*(1-exp(-1)) + 1), \n arrow = arrow(length = unit(0.05, \"inches\"), \n ends = \"both\", type = \"closed\")) +\n geom_segment(aes(x = 0, xend = 0, y = 0, yend = 0.9),\n arrow = arrow(length = unit(0.05, \"inches\"),\n ends = \"both\", type = \"closed\")) +\n annotate(\"text\", x = 1.5, y = 4, label = \"range\") +\n annotate(\"text\", x = 9, y = 5.5, label = \"sill\") +\n annotate(\"text\", x = 0.5, y = 0.5, label = \"nugget\") +\n scale_y_continuous(limits = c(0, 6))\n```\n\nIn addition to the exponential model, two other common theoretical models for the variogram are the Gaussian model (where the correlation follows a half-normal curve), and the spherical model (where the variogram increases linearly at the start and then curves and reaches the plateau at a distance equal to its range $r$). The spherical model thus allows the correlation to be exactly 0 at large distances, rather than gradually approaching zero in the case of the other models.\n\n| Model | $\\rho(h)$ | $\\gamma(h)$ |\n|------------------|-------------------------|-----------------------------|\n| Exponential | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$ |\n| Gaussian | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$ |\n| Spherical $(h < r)$ \\* | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$ |\n\n\\* For the spherical model, $\\rho = 0$ and $\\gamma = s$ if $h \\ge r$.\n\n```{r, echo = FALSE, fig.dim = c(9, 4)}\nvexp <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Exponential\") +\n stat_function(fun = function(x) 5 * (1 - exp(-x/3)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n \n\nvgau <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Gaussian\") +\n stat_function(fun = function(x) 5 * (1 - exp(-x^2/4^2)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n\nvsph <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Spherical\") +\n stat_function(fun = function(x) ifelse(x < 8, 5 * (1.5*x/8 - 0.5*x^3/8^3), 5),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n\nplot_grid(vexp, vgau, vsph, nrow = 1)\n```\n\n## Empirical variogram\n\nTo estimate $\\gamma_z(h)$ from empirical data, we need to define distance classes, thus grouping different distances within a margin of $\\pm \\delta$ around a distance $h$, then calculating the mean square deviation for the pairs of points in that distance class.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nWe will see in the next section how to estimate a variogram in R.\n\n## Regression model with spatial correlation\n\nThe following equation represents a multiple linear regression including residual spatial correlation:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nHere, $v$ designates the response variable and $u$ the predictors, to avoid confusion with the spatial coordinates $x$ and $y$.\n\nIn addition to the residual $\\epsilon$ that is independent between observations, the model includes a term $z$ that represents the spatially correlated portion of the residual variance.\n\nHere are suggested steps to apply this type of model:\n\n1. Fit the regression model without spatial correlation.\n\n2. Verify the presence of spatial correlation from the empirical variogram of the residuals.\n\n3. Fit one or more regression models with spatial correlation and select the one that shows the best fit to the data.\n\n# Geostatistical models in R\n\nThe *gstat* package contains functions related to geostatistics. For this example, we will use the `oxford` dataset from this package, which contains measurements of physical and chemical properties for 126 soil samples from a site, along with their coordinates `XCOORD` and `YCOORD`.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\nSuppose that we want to model the magnesium concentration (`MG1`), represented as a function of the spatial position in the following graph.\n\n```{r}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\nNote that the $x$ and $y$ axes have been inverted to save space. The `coord_fixed()` function of *ggplot2* ensures that the scale is the same on both axes, which is useful for representing spatial data.\n\nWe can immediately see that these measurements were taken on a 100 m grid. It seems that the magnesium concentration is spatially correlated, although it may be a correlation induced by another variable. In particular, we know that the concentration of magnesium is negatively related to the soil pH (`PH1`).\n\n```{r}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\nThe `variogram` function of *gstat* is used to estimate a variogram from empirical data. Here is the result obtained for the variable `MG1`.\n\n```{r}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\nThe formula `MG1 ~ 1` indicates that no linear predictor is included in this model, while the argument `locations` indicates which variables in the data frame correspond to the spatial coordinates.\n\nIn the resulting table, `gamma` is the value of the variogram for the distance class centered on `dist`, while `np` is the number of pairs of points in that class. Here, since the points are located on a grid, we obtain regular distance classes (e.g.: 100 m for neighboring points on the grid, 141 m for diagonal neighbors, etc.).\n\nHere, we limit ourselves to the estimation of isotropic variograms, i.e. the variogram depends only on the distance between the two points and not on the direction. Although we do not have time to see it today, it is possible with *gstat* to estimate the variogram separately in different directions.\n\nWe can illustrate the variogram with `plot`.\n\n```{r}\nplot(var_mg, col = \"black\")\n```\n\nIf we want to estimate the residual spatial correlation of `MG1` after including the effect of `PH1`, we can add that predictor to the formula.\n\n```{r}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\nIncluding the effect of pH, the range of the spatial correlation seems to decrease, while the plateau is reached around 300 m. It even seems that the variogram decreases beyond 400 m. In general, we assume that the variance between two points does not decrease with distance, unless there is a periodic spatial pattern.\n\nThe function `fit.variogram` accepts as arguments a variogram estimated from the data, as well as a theoretical model described in a `vgm` function, and then estimates the parameters of that model according to the data. The fitting is done by the method of least squares.\n\nFor example, `vgm(\"Exp\")` means we want to fit an exponential model.\n\n```{r}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\nThere is no nugget effect, because `psill = 0` for the `Nug` (nugget) part of the model. The exponential part has a sill at 1951 and a range of 95 m.\n\nTo compare different models, a vector of model names can be given to `vgm`. In the following example, we include the exponential, gaussian (\"Gau\") and spherical (\"Sph\") models.\n\n```{r, warning = FALSE, message = FALSE}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\nThe function gives us the result of the model with the best fit (lowest sum of squared deviations), which here is the same exponential model.\n\nFinally, we can superimpose the theoretical model and the empirical variogram on the same graph.\n\n```{r}\nplot(var_mg, vfit, col = \"black\")\n```\n\n## Regression with spatial correlation\n\nWe have seen above that the *gstat* package allows us to estimate the variogram of the residuals of a linear model. In our example, the magnesium concentration was modeled as a function of pH, with spatially correlated residuals.\n\nAnother tool to fit this same type of model is the `gls` function of the *nlme* package, which is included with the installation of R.\n\nThis function applies the *generalized least squares* method to fit linear regression models when the residuals are not independent or when the residual variance is not the same for all observations. Since the estimates of the coefficients depend on the estimated correlations between the residuals and the residuals themselves depend on the coefficients, the model is fitted by an iterative algorithm:\n\n1. A classical linear regression model (without correlation) is fitted to obtain residuals.\n\n2. The spatial correlation model (variogram) is fitted with those residuals.\n\n3. The regression coefficients are re-estimated, now taking into account the correlations.\n\nSteps 2 and 3 are repeated until the estimates are stable at a desired precision.\n\nHere is the application of this method to the same model for the magnesium concentration in the `oxford` dataset. In the `correlation` argument of `gls`, we specify an exponential correlation model as a function of our spatial coordinates and we include a possible nugget effect.\n\nIn addition to the exponential correlation `corExp`, the `gls` function can also estimate a Gaussian (`corGaus`) or spherical (`corSpher`) model.\n\n```{r}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\nTo compare this result with the adjusted variogram above, the parameters given by `gls` must be transformed. The range has the same meaning in both cases and corresponds to 478 m for the result of `gls`. The global variance of the residuals is the square of `Residual standard error`. The nugget effect here (0.294) is expressed as a fraction of that variance. Finally, to obtain the partial sill of the exponential part, the nugget effect must be subtracted from the total variance.\n\nAfter performing these calculations, we can give these parameters to the `vgm` function of *gstat* to superimpose this variogram estimated by `gls` on our variogram of the residuals of the classical linear model.\n\n```{r}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\nDoes the model fit the data less well here? In fact, this empirical variogram represented by the points was obtained from the residuals of the linear model ignoring the spatial correlation, so it is a biased estimate of the actual spatial correlations. The method is still adequate to quickly check if spatial correlations are present. However, to simultaneously fit the regression coefficients and the spatial correlation parameters, the generalized least squares (GLS) approach is preferable and will produce more accurate estimates.\n\nFinally, note that the result of the `gls` model also gives the AIC, which we can use to compare the fit of different models (with different predictors or different forms of spatial correlation).\n\n## Exercise\n\nThe [bryo_belg.csv](data/bryo_belg.csv) dataset is adapted from the data of this study:\n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nThis data frame shows the specific richness of ground bryophytes (*richness*) for different sampling points in the Belgian province of Limburg, with their position *(x, y)* in km, in addition to information on the proportion of forest (*forest*) and wetlands (*wetland*) in a 1 km\\^2\\$ cell containing the sampling point.\n\n```{r}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\nFor this exercise, we will use the square root of the specific richness as the response variable. The square root transformation often allows to homogenize the variance of the count data in order to apply a linear regression.\n\na) Fit a linear model of the transformed species richness to the proportion of forest and wetlands, without taking into account spatial correlations. What is the effect of the two predictors in this model?\n\nb) Calculate the empirical variogram of the model residuals in (a). Does there appear to be a spatial correlation between the points?\n\n*Note*: The `cutoff` argument to the `variogram` function specifies the maximum distance at which the variogram is calculated. You can manually adjust this value to get a good view of the sill.\n\nc) Re-fit the linear model in (a) with the `gls` function in the *nlme* package, trying different types of spatial correlations (exponential, Gaussian, spherical). Compare the models (including the one without spatial correlation) with the AIC.\n\nd) What is the effect of the proportion of forests and wetlands according to the model in (c)? Explain the differences between the conclusions of this model and the model in (a).\n\n# Kriging\n\nAs mentioned before, a common application of geostatistical models is to predict the value of the response variable at unsampled locations, a form of spatial interpolation called kriging (pronounced with a hard \"g\").\n\nThere are three basic types of kriging based on the assumptions made about the response variable:\n\n- Ordinary kriging: Stationary variable with an unknown mean.\n\n- Simple kriging: Stationary variable with a known mean.\n\n- Universal kriging: Variable with a trend given by a linear or non-linear model.\n\nFor all kriging methods, the predictions at a new point are a weighted mean of the values at known points. These weights are chosen so that kriging provides the best linear unbiased prediction of the response variable, if the model assumptions (in particular the variogram) are correct. That is, among all possible unbiased predictions, the weights are chosen to give the minimum mean square error. Kriging also provides an estimate of the uncertainty of each prediction.\n\nWhile we will not present the detailed kriging equations here, the weights depend on both the correlations (estimated by the variogram) between the sampled points and the new point, as well of the correlations between the sampled points themselves. In other words, sampled points near the new point are given more weight, but isolated sampled points are also given more weight, because sample points close to each other provide redundant information.\n\nKriging is an interpolation method, so the prediction at a sampled point will always be equal to the measured value (the measurement is supposed to have no error, just spatial variation). However, in the presence of a nugget effect, any small displacement from the sampled location will show variability according to the nugget.\n\nIn the example below, we generate a new dataset composed of randomly-generated (x, y) coordinates within the study area as well as randomly-generated pH values based on the `oxford` data. We then apply the function `krige` to predict the magnesium values at these new points. Note that we specify the variogram derived from the GLS results in the `model` argument to `krige`.\n\n```{r}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\nhead(pred)\n```\n\nThe result of `krige` includes the new point coordinates, the prediction of the variable `var1.pred` along with its estimated variance `var1.var`. In the graph below, we show the mean MG1 predictions from kriging (triangles) along with the measurements (circles).\n\n```{r}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\nThe estimated mean and variance from kriging can be used to simulate possible values of the variable at each new point, conditional on the sampled values. In the example below, we performed 4 conditional simulations by adding the argument `nsim = 4` to the same `krige` instruction.\n\n```{r}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\nhead(sim_mg)\n```\n\n```{r, message = FALSE, warning = FALSE, fig.dim = c(10, 5)}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n# Solutions\n\n```{r}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\nThe proportion of forest has a significant positive effect and the proportion of wetlands has a significant negative effect on bryophyte richness.\n\n```{r}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\nThe variogram is increasing from 0 to at least 40 km, so there appears to be spatial correlations in the model residuals.\n\n```{r}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n\n```{r}\nAIC(bryo_lm)\nAIC(bryo_exp)\nAIC(bryo_gaus)\nAIC(bryo_spher)\n```\n\nThe spherical model has the smallest AIC.\n\n```{r}\nsummary(bryo_spher)\n```\n\nBoth effects are less important in magnitude and the effect of wetlands is not significant anymore. As is the case for other types of non-independent residuals, the \"effective sample size\" here is less than the number of points, since points close to each other provide redundant information. Therefore, the relationship between predictors and response is less clear than given by the model assuming all these points were independent.\n\nNote that the results for all three `gls` models are quite similar, so the choice to include spatial correlations was more important than the exact shape assumed for the variogram.\n\n\n# Areal data {#areal-data}\n\nAreal data are variables measured for regions of space, defined by polygons. This type of data is more common in the social sciences, human geography and epidemiology, where data is often available at the scale of administrative divisions.\n\nThis type of data also appears frequently in natural resource management. For example, the following map shows the forest management units of the Ministère de la Forêt, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSuppose that a variable is available at the level of these management units. How can we model the spatial correlation between units that are spatially close together?\n\nOne option would be to apply the geostatistical methods seen before, for example by calculating the distance between the centers of the polygons.\n\nAnother option, which is more adapted for areal data, is to define a network where each region is connected to neighbouring regions by a link. It is then assumed that the variables are directly correlated between neighbouring regions only. (Note, however, that direct correlations between immediate neighbours also generate indirect correlations for a chain of neighbours).\n\nIn this type of model, the correlation is not necessarily the same from one link to another. In this case, each link in the network can be associated with a *weight* representing its importance for the spatial correlation. We represent these weights by a matrix $W$ where $w_{ij}$ is the weight of the link between regions $i$ and $j$. A region has no link with itself, so $w_{ii} = 0$.\n\nA simple choice for $W$ is to assign a weight equal to 1 if the regions are neighbours, otherwise 0 (binary weight).\n\nIn addition to land divisions represented by polygons, another example of areal data consists of a grid where the variable is calculated for each cell of the grid. In this case, a cell generally has 4 or 8 neighbouring cells, depending on whether diagonals are included or not.\n\n# Moran's I {#moran-i}\n\nBefore discussing spatial autocorrelation models, we present Moran's $I$ statistic, which allows us to test whether a significant correlation is present between neighbouring regions.\n\nMoran's $I$ is a spatial autocorrelation coefficient of $z$, weighted by the $w_{ij}$. It therefore takes values between -1 and 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nIn this equation, we recognize the expression of a correlation, which is the product of the deviations from the mean for two variables $z_i$ and $z_j$, divided by the product of their standard deviations (it is the same variable here, so we get the variance). The contribution of each pair $(i, j)$ is multiplied by its weight $w_{ij}$ and the term on the left (the number of regions $N$ divided by the sum of the weights) ensures that the result is bounded between -1 and 1.\n\nSince the distribution of $I$ is known in the absence of spatial autocorrelation, this statistic serves to test the null hypothesis that there is no spatial correlation between neighbouring regions.\n\nAlthough we will not see an example in this course, Moran's $I$ can also be applied to point data. In this case, we divide the pairs of points into distance classes and calculate $I$ for each distance class; the weight $w_{ij} = 1$ if the distance between $i$ and $j$ is in the desired distance class, otherwise 0.\n\n# Spatial autoregression models {#spatial-autoreg}\n\nLet us recall the formula for a linear regression with spatial dependence:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nwhere $z$ is the portion of the residual variance that is spatially correlated.\n\nThere are two main types of autoregressive models to represent the spatial dependence of $z$: conditional autoregression (CAR) and simultaneous autoregressive (SAR).\n\n## Conditional autoregressive (CAR) model\n\nIn the conditional autoregressive model, the value of $z_i$ for the region $i$ follows a normal distribution: its mean depends on the value $z_j$ of neighbouring regions, multiplied by the weight $w_{ij}$ and a correlation coefficient $\\rho$; its standard deviation $\\sigma_{z_i}$ may vary from one region to another.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nIn this model, if $w_{ij}$ is a binary matrix (0 for non-neighbours, 1 for neighbours), then $\\rho$ is the coefficient of partial correlation between neighbouring regions. This is similar to a first-order autoregressive model in the context of time series, where the autoregression coefficient indicates the partial correlation.\n\n## Simultaneous autoregressive (SAR) model\n\nIn the simultaneous autoregressive model, the value of $z_i$ is given directly by the sum of contributions from neighbouring values $z_j$, multiplied by $\\rho w_{ij}$, with an independent residual $\\nu_i$ of standard deviation $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nAt first glance, this looks like a temporal autoregressive model. However, there is an important conceptual difference. For temporal models, the causal influence is directed in only one direction: $v(t-2)$ affects $v(t-1)$ which then affects $v(t)$. For a spatial model, each $z_j$ that affects $z_i$ depends in turn on $z_i$. Thus, to determine the joint distribution of $z$, a system of equations must be solved simultaneously (hence the name of the model).\n\nFor this reason, although this model resembles the formula of CAR model, the solutions of the two models differ and in the case of SAR, the coefficient $\\rho$ is not directly equal to the partial correlation due to each neighbouring region.\n\nFor more details on the mathematical aspects of these models, see the article by Ver Hoef et al. (2018) suggested in reference.\n\nFor the moment, we will consider SAR and CAR as two types of possible models to represent a spatial correlation on a network. We can always fit several models and compare them with the AIC to choose the best form of correlation or the best weight matrix.\n\nThe CAR and SAR models share an advantage over geostatistical models in terms of efficiency. In a geostatistical model, spatial correlations are defined between each pair of points, although they become negligible as distance increases. For a CAR or SAR model, only neighbouring regions contribute and most weights are equal to 0, making these models faster to fit than a geostatistical model when the data are massive.\n\n# Analysis of areal data in R {#analysis-areal}\n\nTo illustrate the analysis of areal data in R, we load the packages *sf* (to read geospatial data), *spdep* (to define spatial networks and calculate Moran's $I$) and *spatialreg* (for SAR and CAR models).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n\nAs an example, we will use a dataset that presents some of the results of the 2018 provincial election in Quebec, with population characteristics of each riding. This data is included in a *shapefile* (.shp) file type, which we can read with the `read_sf` function of the *sf* package.\n\n```{r}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n*Note*: The dataset is actually composed of 4 files with the extensions .dbf, .prj, .shp and .shx, but it is sufficient to write the name of the .shp file in `read_sf`.\n\nThe columns of the dataset are, in order:\n\n- the name of the electoral riding (`circ`);\n- four characteristics of the population (`age_moy` = mean age, `pct_frn` = fraction of the population that speaks mainly French at home, `pct_prp` = fraction of households that own their home, `rev_med` = median income);\n- four columns showing the fraction of votes obtained by the main parties (CAQ, PQ, PLQ, QS);\n- a `geometry` column that contains the geometric object (multipolygon) corresponding to the riding.\n\nTo illustrate one of the variables on a map, we call the `plot` function with the name of the column in square brackets and quotation marks.\n\n```{r}\nplot(elect2018[\"rev_med\"])\n```\n\nIn this example, we want to model the fraction of votes obtained by the CAQ based on the characteristics of the population in each riding and taking into account the spatial correlations between neighbouring ridings.\n\n## Definition of the neighbourhood network\n\nThe `poly2nb` function of the *spdep* package defines a neighbourhood network from polygons. The result `vois` is a list of 125 elements where each element contains the indices of the neighbouring (bordering) polygons of a given polygon.\n\n```{r}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\nThus, the first riding (Abitibi-Est) has 6 neighbouring ridings, for which the names can be found as follows:\n\n```{r}\nelect2018$circ[vois[[1]]]\n```\n\nWe can illustrate this network by extracting the coordinates of the center of each district, creating a blank map with `plot(elect2018[\"geometry\"])`, then adding the network as an additional layer with `plot(vois, add = TRUE, coords = coords)`.\n\n```{r, message = FALSE, warning = FALSE}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\nWe can \"zoom\" on southern Québec by choosing the limits `xlim` and `ylim`.\n\n```{r}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\nWe still have to add weights to each network link with the `nb2listw` function. The style of weights \"B\" corresponds to binary weights, i.e. 1 for the presence of link and 0 for the absence of link between two ridings.\n\nOnce these weights are defined, we can verify with Moran's test whether there is a significant autocorrelation of votes obtained by the CAQ between neighbouring ridings.\n\n```{r}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\nThe value $I = 0.68$ is very significant judging by the $p$-value of the test.\n\nLet's verify if the spatial correlation persists after taking into account the four characteristics of the population, therefore by inspecting the residuals of a linear model including these four predictors.\n\n```{r}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\nmoran.test(residuals(elect_lm), poids)\n```\n\nMoran's $I$ has decreased but remains significant, so some of the previous correlation was induced by these predictors, but there remains a spatial correlation due to other factors.\n\n## Spatial autoregression models\n\nFinally, we fit SAR and CAR models to these data with the `spautolm` (*spatial autoregressive linear model*) function of *spatialreg*. Here is the code for a SAR model including the effect of the same four predictors.\n\n```{r}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\nThe value given by `Lambda` in the summary corresponds to the coefficient $\\rho$ in our description of the model. The likelihood-ratio test (`LR test`) confirms that this residual spatial correlation (after controlling for the effect of predictors) is significant.\n\nThe estimated effects for the predictors are similar to those of the linear model without spatial correlation. The effects of mean age, fraction of francophones and fraction of homeowners remain significant, although their magnitude has decreased somewhat.\n\nTo fit a CAR rather than SAR model, we must specify `family = \"CAR\"`.\n\n```{r}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\nFor a CAR model with binary weights, the value of `Lambda` (which we called $\\rho$) directly gives the partial correlation coefficient between neighbouring districts. Note that the AIC here is slightly higher than the SAR model, so the latter gave a better fit.\n\n## Exercise\n\nThe `rls_covid` dataset, in *shapefile* format, contains data on detected COVID-19 cases (`cas`), number of cases per 1000 people (`taux_1k`) and the population density (`dens_pop`) in each of Quebec's local health service networks (RLS) (Source: Data downloaded from the Institut national de santé publique du Québec as of January 17, 2021).\n\n```{r}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\nFit a linear model of the number of cases per 1000 as a function of population density (it is suggested to apply a logarithmic transform to the latter). Check whether the model residuals are correlated between bordering RLS with a Moran's test and then model the same data with a conditional autoregressive model.\n\n## Reference\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. and Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n```{r setup, include=FALSE}\nset.seed(82)\n```\n\n# GLMM with spatial Gaussian process {#glmm-spatial-gaussian}\n\n## Data\n\nThe `gambia` dataset found in the *geoR* package presents the results of a study of malaria prevalence among children of 65 villages in The Gambia. We will use a slightly transformed version of the data found in the file [gambia.csv](data/gambia.csv).\n\n```{r, warning = FALSE, message = FALSE}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\nHere are the fields in that dataset:\n\n- *id_village*: Identifier of the village.\n- *x* and *y*: Spatial coordinates of the village (in kilometers, based on UTM coordinates).\n- *pos*: Binary response, whether the child tested positive for malaria.\n- *age*: Age of the child in days.\n- *netuse*: Whether or not the child sleeps under a bed net.\n- *treated*: Whether or not the bed net is treated.\n- *green*: Remote sensing based measure of greenness of vegetation (measured at the village level).\n- *phc*: Presence or absence of a public health centre for the village.\n\nWe can count the number of positive cases and total children tested by village to map the fraction of positive cases (or prevalence, *prev*).\n\n```{r}\n# Create village-level dataset\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\nhead(gambia_agg)\n```\n\n```{r, message = FALSE, warning = FALSE}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\nWe use the `gambia.borders` dataset from the *geoR* package to trace the country boundaries with `geom_path`. Since those boundaries are in meters, we divide by 1000 to get the same scale as our points. We also use `coord_fixed` to ensure a 1:1 aspect ratio between the axes and use the `viridis` color scale, which makes it easier to visualize a continuous variable compared with the default gradient scale in *ggplot2*.\n\nBased on this map, there seems to be spatial correlation in malaria prevalence, with the eastern cluster of villages showing more high prevalence values (yellow-green) and the middle cluster showing more low prevalence values (purple).\n\n## Non-spatial GLMM\n\nFor this first example, we will ignore the spatial aspect of the data and model the presence of malaria (*pos*) as a function of the use of a bed net (*netuse*) and the presence of a public health centre (*phc*). Since we have a binary response, we need to use a logistic regression model (a GLM). Since we have predictors at both the individual and village level, and we expect that children of the same village have more similar probabilities of having malaria even after accounting for those predictors, we need to add a random effect of the village. The result is a GLMM that we fit using the `glmer` function in the *lme4* package.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\nAccording to these results, both *netuse* and *phc* result in a decrease of malaria prevalence, although the effect of *phc* is not significant at a threshold $\\alpha = 0.05$. The intercept (0.149) is the logit of the probability of malaria presence for a child with no bednet and no public health centre, but it is the mean intercept across all villages, and there is a lot of variation between villages, based on the random effect standard deviation of 0.90. We can get the estimated intercept for each village with the function `coef`:\n\n```{r}\nhead(coef(mod_glmm)$id_village)\n```\n\nSo for example, the intercept for village 1 is around 0.94, equivalent to a probability of 72%:\n\n```{r}\nplogis(0.937)\n```\n\nwhile the intercept in village 2 is equivalent to a probability of 52%:\n\n```{r}\nplogis(0.092)\n```\n\nThe [DHARMa package](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) provides a general method for checking whether the residuals of a GLMM are distributed according to the specified model and whether there is any residual trend. The package works by simulating replicates of each observation according to the fitted model and then determining a \"standardized residual\", which is the relative position of the observed value with respect to the simulated values, e.g. 0 if the observation is smaller than all the simulations, 0.5 if it is in the middle, etc. If the model represents the data well, each value of the standardized residual between 0 and 1 should be equally likely, so the standardized residuals should produce a uniform distribution between 0 and 1.\n\nThe `simulateResiduals` function performs the calculation of the standardized residuals, then the `plot` function plots the diagnostic graphs with the results of certain tests.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\nThe graph on the left is a quantile-quantile plot of standardized residuals. The results of three statistical tests also also shown: a Kolmogorov-Smirnov (*KS*) test which checks whether there is a deviation from the theoretical distribution, a dispersion test that checks whether there is underdispersion or overdispersion, and an outlier test based on the number of residuals that are more extreme than all the simulations. Here, we get a significant result for the outliers, though the message indicates that this result might have an inflated type I error rate in this case.\n\nOn the right, we generally get a graph of standardized residuals (in *y*) as a function of the rank of the predicted values, in order to check for any leftover trend in the residual. Here, the predictions are binned by quartile, so it might be better to instead aggregate the predictions and residuals by village, which we can do with the `recalculateResiduals` function.\n\n```{r}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\nThe plot to the right now shows individual points, along with a quantile regression for the 1st quartile, the median and the 3rd quartile. In theory, these three curves should be horizontal straight lines (no leftover trend in the residuals vs. predictions). The curve for the 3rd quartile (in red) is significantly different from a horizontal line, which could indicate some systematic effect that is missing from the model.\n\n## Spatial GLMM with spaMM\n\nThe *spaMM* (spatial mixed models) package is a relatively new R package that can perform approximate maximum likelihood estimation of parameters for GLMM with spatial dependence, modelled either as a Gaussian process or with a CAR (we will see the latter in the last section). The package implements different algorithms, but there is a single `fitme` function that chooses the appropriate algorithm for each model type. For example, here is the same (non-spatial) model as above fit with *spaMM*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\nNote that the estimates of the fixed effects as well as the variance of random effects are nearly identical to those obtained by `glmer` above.\n\nWe can now use *spaMM* to fit the same model with the addition of spatial correlations between villages. In the formula of the model, this is represented as a random effect `Matern(1 | x + y)`, which means that the intercepts are spatially correlated between villages following a Matérn correlation function of coordinates (*x, y*). The Matérn function is a flexible function for spatial correlation that includes a shape parameter $\\nu$ (`nu`), so that when $\\nu = 0.5$ it is equivalent to the exponential correlation but as $\\nu$ grows to large values, it approaches a Gaussian correlation. We could let the function estimate $\\nu$, but here we will fix it to 0.5 with the `fixed` argument of `fitme`.\n\n```{r}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\nsummary(mod_spamm)\n```\n\nLet's first check the random effects of the model. The spatial correlation function has a parameter `rho` equal to 0.0513. This parameter in *spaMM* is the inverse of the range, so here the range of exponential correlation is 1/0.0513 or around 19.5 km. There are now two variance prameters, the one identified as `x + y` is the long-range variance (i.e. sill) for the exponential correlation model whereas the one identified as `id_village` shows the non-spatially correlated portion of the variation between villages.\n\nIn fact, while we left the random effects `(1 | id_village)` in the formula to represent the non-spatial portion of variation between villages, we could also represent this with a nugget effect in the geostatistical model. In both cases, it would represent the idea that even two villages very close to each other would have different baseline prevalences in the model.\n\nBy default, the `Matern` function has no nugget effect, but we can add one by specifying a non-zero `Nugget` in the initial parameter list `init`.\n\n```{r}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\nsummary(mod_spamm2)\n```\n\nAs you can see, all estimates are the same, except that the variance of the spatial portion (sill) is now 0.84 and the nugget is equal to a fraction 0.235 of that sill, so a variance of 0.197, which is the same as the `id_village` random effect in the version above. Thus the two formulations are equivalent.\n\nNow, recall the coefficients we obtained for the non-spatial GLMM:\n\n```{r}\nsummary(mod_glmm)$coefficients\n```\n\nIn the spatial version, both fixed effects have moved slightly towards zero, but the standard error of the effect of `phc` has decreased. It is interesting that the inclusion of spatial dependence has allowed us to estimate more precisely the effect of having a public health centre in the village. This would not always be the case: for a predictor that is also strongly correlated in space, spatial correlation in the response makes it harder to estimate the effect of this predictor, since it is confounded with the spatial effect. However, for a predictor that is not correlated in space, including the spatial effect reduces the residual (non-spatial) variance and may thus increase the precision of the predictor's effect.\n\nThe *spaMM* package is also compatible with *DHARMa* for residual diagnostics. (You can in fact ignore the warning that it is not in the class of supported models, this is due to using the `fitme` function rather than a specific algorithm function in *spaMM*.)\n\n```{r}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\nFinally, while we will show how to make and visualize spatial predictions below, we can produce a quick map of the estimated spatial effects in a *spaMM* model with the `filled.mapMM` function.\n\n```{r}\nfilled.mapMM(mod_spamm2)\n```\n\n## Gaussian process models vs. smoothing splines\n\nIf you are familiar with generalized additive models (GAM), you might think that the spatial variation in malaria prevalence (as shown in the map above) could be represented by a 2D smoothing spline (as a function of $x$ and $y$) within a GAM.\n\nThe code below fits the GAM equivalent of our Gaussian process GLMM above with the `gam` function in the *mgcv* package. The spatial effect is represented by the 2D spline `s(x, y)` whereas the non-spatial random effect of village is represented by `s(id_village, bs = \"re\")`, which is the same as `(1 | id_village)` in the previous models. Note that for the `gam` function, categorical variables must be explicitly converted to factors.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n\nTo visualize the 2D spline, we will use the [*gratia* package](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\nNote that the plot of the spline `s(x, y)` (top right) does not extend too far from the locations of the data (other areas are blank). In this graph, we can also see that the village random effects follow the expected Gaussian distribution (top left).\n\nNext, we will use both the spatial GLMM from the previous section and this GAMM to predict the mean prevalence on a spatial grid of points contained in the file [gambia_pred.csv](data/gambia_pred.csv). The graph below adds those prediction points (in black) on the previous map of the data points.\n\n```{r, message = FALSE, warning = FALSE}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\nTo make predictions from the GAMM model at those points, the code below goes through the following steps:\n\n- All predictors in the model must be in the prediction data frame, so we add constant values of *netuse* and *phc* (both equal to 1) for all points. Thus, we will make predictions of malaria prevalence in the case where a net is used and a public health centre is present. We also add a constant *id_village*, although it will not be used in predictions (see below).\n\n- We call the `predict` function on the output of `gam` to produce predictions at the new data points (argument `newdata`), including standard errors (`se.fit = TRUE`) and excluding the village random effects, so the prediction is made for an \"average village\". The resulting object `gam_pred` will have columns `fit` (mean prediction) and `se.fit` (standard error). Those predictions and standard errors are on the link (logit) scale.\n\n- We add the original prediction data frame to `gam_pred` with `cbind`.\n\n- We add columns for the mean prediction and 50% confidence interval boundaries (mean $\\pm$ 0.674 standard error), converted from the logit scale to the probability scale with `plogis`. We choose a 50% interval since a 95% interval may be too wide here to contrast the different predictions on the map at the end of this section.\n\n```{r}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n\n*Note*: The reason we do not make predictions directly on the probability (response) scale is that the normal formula for confidence intervals applies more accurately on the logit scale. Adding a certain number of standard errors around the mean on the probability scale would lead to less accurate intervals and maybe even confidence intervals outside the possible range (0, 1) for a probability.\n\nWe apply the same strategy to make predictions from the *spaMM* spatial GLMM model. There are a few differences in the `predict` method compared with the GAMM case.\n\n- The argument `binding = \"fit\"` means that mean predictions (`fit` column) will be attached to the prediction dataset and returned as `spamm_pred`.\n\n- The `variances = list(linPred = TRUE)` tells `predict` to calculate the variance of the linear predictor (so the square of the standard error). However, it appears as an attribute `predVar` in the output data frame rather than a `se.fit` column, so we move it to a column on the next line.\n\n```{r}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n\nFinally, we combine both sets of predictions as different rows of a `pred_all` dataset with `bind_rows`. The name of the dataset each prediction originates from (`gam` or `spamm`) will appear in the \"model\" column (argument `.id`). To simplify production of the next plot, we then use `pivot_longer` in the *tidyr* package to change the three columns \"pred\", \"lo\" and \"hi\" to two columns, \"stat\" and \"value\" (`pred_tall` has thus three rows for every row in `pred_all`).\n\n```{r}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n\nHaving done these steps, we can finally look at the prediction maps (mean, lower and upper bounds of the 50% confidence interval) with `ggplot`. The original data points are shown in red.\n\n```{r}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\nWhile both models agree that there is a higher prevalence near the eastern cluster of villages, the GAMM also estimates a higher prevalence at a few points (western edge and around the center) where there is no data. This is an artifact of the shape of the spline fit around the data points, since a spline is meant to fit a global, although nonlinear, trend. In contrast, the geostatistical model represents the spatial effect as local correlations and reverts to the overall mean prevalence when far from any data points, which is a safer assumption. This is one reason to choose a geostatistical / Gaussian process model in this case.\n\n## Bayesian methods for GLMMs with Gaussian processes\n\nBayesian models provide a flexible framework to express models with complex dependence structure among the data, including spatial dependence. However, fitting a Gaussian process model with a fully Bayesian approach can be slow, due the need to compute a spatial covariance matrix between all point pairs at each iteration.\n\nThe INLA (integrated nested Laplace approximation) method performs an approximate calculation of the Bayesian posterior distribution, which makes it suitable for spatial regression problems. We do not cover it in this course, but I recommend the textbook by Paula Moraga (in the references section below) that provides worked examples of using INLA for various geostatistical and areal data models, in the context of epidemiology, including models with both space and time dependence. The book presents the same Gambia malaria data as an example of a geostatistical dataset, which inspired its use in this course.\n\n# GLMM with spatial autoregression {#glmm-spatial-autoreg}\n\nWe return to the last example of the previous part, where we modelled the rate of COVID-19 cases (cases / 1000) for administrative health network divisions (RLS) in Quebec as a function of their population density. The rate is given by the \"taux_1k\" column in the `rls_covid` shapefile.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\nPreviously, we modelled the logarithm of this rate as a linear function of the logarithm of population density, with the residual variance correlated among neighbouring units via a CAR (conditional autoregression) structure, as shown in the code below.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\nAs a reminder, the `poly2nb` function in the *spdep* package creates a list of neighbours based on bordering polygons in a shapefile, then the `nb2listw` converts it to a list of weights, here binary weights (`style = \"B\"`) so that each bordering region receives the same weight of 1 in the autoregressive model.\n\nInstead of using the rates, it would be possible to model the cases directly (column \"cas\" in the dataset) with a Poisson regression, which is appropriate for count data. To account for the fact that if the risk per person were equal, cases would be proportional to population, we can add the unit's population `pop` as an *offset* in the Poisson regression. Therefore, the model would look like: `cas ~ log(dens_pop) + offset(log(pop))`. Note that since the Poisson regression uses a logarithmic link, that model with `log(pop)` as an offset assumes that `log(cas / pop)` (so the log rate) is proportional to `log(dens_pop)`, just like the linear model above, but it has the advantage of modelling the stochasticity of the raw data (the number of cases) directly with a Poisson distribution.\n\nWe do not have the population in this data, but we can estimate it from the cases and the rate (cases / 1000) as follows:\n\n```{r}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n\nTo define a CAR model in *spaMM*, we need a weights matrix rather than a list of weights as in the *spatialreg* package. Fortunately, the *spdep* package also includes a function `nb2mat` to convert the neighbours list to a matrix of weights, here again using binary weights. To avoid a warning, we specify the row and column names of that matrix to be equal to the IDs associated with each unit (`RLS_code`). Then, we add a term `adjacency(1 | RLS_code)` to the model to specify that the residual variation between different groups defined by `RLS_code` is spatially correlated with a CAR structure (here, each group has only one observation since we have one data point by RLS unit).\n\n```{r}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\nNote that the spatial correlation coefficient `rho` (0.158) is similar to the equivalent quantity in the `spautolm` model above, where it was called `Lambda`. The effect of `log(dens_pop)` is also approximately 0.2 in both models.\n\n## Reference\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Available online at .\n\n------------------------------------------------------------------------\n\n# Statistiques spatiales en écologie {#statistiques-spatiales-en-écologie}\n\nBIOS² a organisé une session de formation en ligne sur l'analyse statistique des données spatiales en écologie, animée par le Pr. Philippe Marchand (UQAT). Cette formation de 12 heures s'est déroulée en 4 sessions : 12, 14, 19 & 21 janvier (2021) de 13h00 à 16h00 HNE.\n\nLe contenu comprenait trois types d'analyses statistiques spatiales et leurs applications en écologie : (1) l'analyse des patrons de points qui permet d'étudier la distribution d'individus ou d'événements dans l'espace; (2) les modèles géostatistiques qui représentent la corrélation spatiale de variables échantillonnées à des points géoréférencés; et (3) les modèles de données aréales, qui s'appliquent aux mesures prises sur des régions de l'espace et qui représentent les liens spatiaux par le biais de réseaux de voisinage. La formation comprenait également des exercices pratiques utilisant l'environnement de programmation statistique R.\n\n[Philippe Marchand](https://github.com/pmarchand1) est professeur d'écologie et de biostatistique à l'Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) et membre académique de BIOS². Ses travaux de recherche portent sur la modélisation de processus qui influencent la distribution spatiale des populations, incluant: la dispersion des graines et l'établissement des semis, le mouvement des animaux, et la propagation des épidémies forestières.\n\n**Si vous souhaitez consulter le matériel pédagogique et suivre les exercices à votre propre rythme, vous pouvez y accéder par [ce lien](https://bios2.github.io/Marchand.html#category:FR). Une connaissance de base des modèles de régression linéaire et une expérience de l'ajustement de ces modèles dans R sont recommandées. Le repositoire original se trouve [ici](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Plan du cours\n\n| Jour | Sujets | \n|-----------------|:--------------------------|\n| 1 | • [Introduction aux statistiques spatiales](#introduction-fr)
• [Analyse des patrons de points](#point-pattern-fr)
|\n| 2 | • [Corrélation spatiale d'une variable](#spatial-correlation-fr)
• [Modèles géostatistiques](#geostat-models-fr) | \n| 3 | • [Données aréales](#areal-data-fr)
• [Indice de Moran](#moran-i-fr)
• [Modèles d'autorégression spatiale](#spatial-autoreg-fr)
• [Analyse des données aréales dans R](#analysis-areal-fr) |\n| 4 | • [GLMM avec processus spatial gaussien](#glmm-spatial-gaussian-fr)
• [GLMM avec autorégression spatiale](#glmm-spatial-autoreg-fr)| \n\n# Introduction aux statistiques spatiales {#introduction-fr}\n\n## Types d'analyses spatiales\n\nDans le cadre de cette formation, nous discuterons de trois types d'analyses spatiales: l'analyse des patrons de points, les modèles géostatistiques et les modèles de données aréales.\n\nDans l'**analyse des patrons de points**, nous avons des données ponctuelles représentant la position d'individus ou d'événements dans une région d'étude et nous supposons que tous les individus ou événements ont été recensés dans cette région. Cette analyse s'intéresse à la distribution des positions des points eux-mêmes. Voici quelques questions typiques de l'analyse des patrons de points:\n\n- Les points sont-ils disposés aléatoirement ou agglomérés?\n\n- Deux types de points sont-ils disposés indépendamment?\n\nLes **modèles géostatistiques** visent à représenter la distribution spatiale de variables continues qui sont mesurés à certains points d'échantillonnage. Ils supposent que les mesures de ces variables à différents points sont corrélées en fonction de la distance entre ces points. Parmi les applications des modèles géostatistiques, notons le lissage des données spatiales (ex.: produire une carte d'une variable sur l'ensemble d'une région en fonction des mesures ponctuelles) et la prédiction de ces variables pour des points non-échantillonnés.\n\nLes **données aréales** sont des mesures prises non pas à des points, mais pour des régions de l'espace représentées par des polygones (ex.: divisions du territoire, cellules d'une grille). Les modèles représentant ces types de données définissent un réseau de voisinage reliant les régions et incluent une corrélation spatiale entre régions voisines. \n\n## Stationnarité et isotropie\n\nPlusieurs analyses spatiales supposent que les variables sont **stationnaires** dans l'espace. Comme pour la stationnarité dans le domaine temporel, cette propriété signifie que les statistiques sommaires (moyenne, variance et corrélations entre mesures d'une variable) ne varient pas avec une translation dans l'espace. Par exemple, la corrélation spatiale entre deux points peut dépendre de la distance les séparant, mais pas de leur position absolue.\n\nEn particulier, il ne peut pas y avoir de tendance à grande échelle (souvent appelée *gradient* dans un contexte spatial), ou bien cette tendance doit être prise en compte afin de modéliser la corrélation spatiale des résidus.\n\nDans le cas de l'analyse des patrons de points, la stationnarité (aussi appelée homogénéité dans ce contexte) signifie que la densité des points ne suit pas de tendance à grande échelle.\n\nDans un modèle statistique **isotropique**, les corrélations spatiales entre les mesures à deux points dépendent seulement de la distance entre ces points, pas de la direction. Dans ce cas, les statistiques sommaires ne varient pas si on effectue une rotation dans l'espace.\n\n## Données géoréférencées\n\nLes études environnementales utilisent de plus en plus de données provenant de sources de données géospatiales, c'est-à-dire des variables mesurées sur une grande partie du globe (ex.: climat, télédétection). Le traitement de ces données requiert des concepts liés aux systèmes d'information géographique (SIG), qui ne sont pas couverts dans cet atelier, alors que nous nous concentrons sur les aspects statistiques de données variant dans l'espace.\n\nL'utilisation de données géospatiales ne signifie pas nécessairement qu'il faut avoir recours à des statistiques spatiales. Par exemple, il est courant d'extraire les valeurs de ces variables géographiques à des points d'étude pour expliquer une réponse biologique observée sur le terrain. Dans ce cas, l'utilisation de statistiques spatiales est seulement nécessaire en présence d'une corrélation spatiale dans les résidus, après avoir tenu compte de l'effet des prédicteurs.\n\n\n# Analyse des patrons de points {#point-pattern-fr}\n\n## Patron de points et processus ponctuel\n\nUn patron de points (*point pattern*) décrit la position spatiale (le plus souvent en 2D) d'individus ou d'événements, représentés par des points, dans une aire d'étude donnée, souvent appelée la *fenêtre* d'observation. \n\nOn suppose que chaque point a une étendue spatiale négligeable par rapport aux distances entre les points. Des méthodes plus complexes existent pour traiter des patrons spatiaux d'objets qui ont une largeur non-néligeable, mais ce sujet dépasse la portée de cet atelier.\n\nUn processus ponctuel (*point process*) est un modèle statistique qui peut être utilisé pour simuler des patrons de points ou expliquer un patron de points observé.\n\n## Structure spatiale totalement aléatoire\n\nUne structure spatiale totalement aléatoire (*complete spatial randomness*) est un des patrons les plus simples, qui sert de modèle nul pour évaluer les caractéristiques de patrons de points réels. Dans ce patron, la présence d'un point à une position donnée est indépendante de la présence de points dans un voisinage. \n\nLe processus créant ce patron est un processus de Poisson homogène. Selon ce modèle, le nombre de points dans toute région de superficie $A$ suit une distribution de Poisson: $N(A) \\sim \\text{Pois}(\\lambda A)$, où $\\lambda$ est l'*intensité* du processus (i.e. la densité de points). $N$ est indépendant entre deux régions disjointes, peu importe comment ces régions sont définies.\n\nDans le graphique ci-dessous, seul le patron à droite est totalement aléatoire. Le patron à gauche montre une agrégation des points (probabilité plus grande d'observer un point si on est à proximité d'un autre point), tandis que le patron du centre montre une répulsion (faible probabilité d'observer un point très près d'un autre).\n\n```{r, include = FALSE}\nlibrary(spatstat)\n```\n\n```{r, echo = FALSE, fig.dim = c(9, 3)}\nset.seed(82)\ncsrp <- rpoispp(lambda = 100)\naggp <- rMatClust(20, 0.1, 5)\nevenp <- rMaternII(150, 0.05)\npar(mfrow = c(1, 3))\nplot(aggp, main = \"Agrégation\", pch = 19)\nplot(evenp, main = \"Répulsion\", pch = 19)\nplot(csrp, main = \"Aléatoire\", pch = 19)\n```\n\n## Analyse exploratoire ou inférentielle pour un patron de points\n\nPlusieurs statistiques sommaires sont utilisées pour décrire les caractéristiques un patron de points. La plus simple est l'**intensité** $\\lambda$, qui comme mentionné plus haut représente la densité de points par unité de surface. Si le patron de points est hétérogène, l'intensité n'est pas constante, mais dépend de la position: $\\lambda(x, y)$.\n\nPar rapport à l'intensité qui est une statistique dite de premier ordre, les statistiques de second ordre décrivent comment la probabilité de présence d'un point dans une région dépend de la présence d'autres points. L'indice $K$ de Ripley présenté dans la prochaine section est un exemple de statistique sommaire de second ordre.\n\nLes inférences statistiques réalisées sur des patrons de points consistent habituellement à tester l'hypothèse que le patron de points correspond à un modèle nul donné, par exemple une structure spatiale totalement aléatoire, ou un modèle nul plus complexe. Même pour les modèles nuls les plus simples, nous connaissons rarement la distribution théorique pour une statistique sommaire du patron de points sous le modèle nul. Les tests d'hypothèses sur les patrons de points sont donc réalisés par simulation: on simule un grand nombre de patrons de points à partir du modèle nul et on compare la distribution des statistiques sommaires qui nous intéressent pour ces simulations à la valeur des statistiques pour le patron de points observé.\n\n## Indice $K$ de Ripley\n\nL'indice de Ripley $K(r)$ est défini comme le nombre moyen de points se trouvant dans un cercle de rayon $r$ donné autour d'un point du patron, normalisé par l'intensité $\\lambda$. \n\nPour un patron totalement aléatoire, le nombre moyen de points dans un cercle de rayon $r$ est $\\lambda \\pi r^2$, donc en théorie $K(r) = \\pi r^2$ pour ce modèle nul. Une valeur de $K(r)$ supérieure signifie qu'il y a agrégation des points à l'échelle $r$, tandis qu'une valeur inférieure signifie qu'il y a une répulsion.\n\nEn pratique, $K(r)$ est estimé pour un patron de points donné par l'équation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\noù $A$ est l'aire de la fenêtre d'observation et $n$ est le nombre de points du patron, donc $n(n-1)$ est le nombre de paires de points distinctes. On fait la somme pour toutes les paires de points de la fonction indicatrice $I$, qui prend une valeur de 1 si la distance entre les points $i$ et $j$ est inférieure ou égale à $r$. Finalement, le terme $w_{ij}$ permet de donner un poids supplémentaire à certaines paires de points pour tenir compte des effets de bordure, tel que discuté dans la section suivante.\n\nPar exemple, les graphiques ci-dessous présentent la fonction estimée $K(r)$ pour les patrons illustrés ci-dessus, pour des valeurs de $r$ allant jusqu'à 1/4 de la largeur de la fenêtre. La courbe pointillée rouge indique la valeur théorique pour une structure spatiale totalement aléatoire et la zone grise est une \"enveloppe\" produite par 99 simulations de ce modèle nul. Le patron agrégé montre un excès de voisins jusqu'à $r = 0.25$ et le patron avec répulsion montre un déficit significatif de voisins pour les petites valeurs de $r$. \n\n```{r, include = FALSE}\nkagg <- envelope(aggp, Kest, correction = \"iso\") \nkeven <- envelope(evenp, Kest, correction = \"iso\")\nkcsr <- envelope(csrp, Kest, correction = \"iso\")\n```\n\n```{r, echo = FALSE, fig.dim = c(9, 3)}\npar(mfrow = c(1, 3))\nplot(kagg, main = \"Agrégation\", legend = FALSE)\nplot(keven, main = \"Répulsion\", legend = FALSE)\nplot(kcsr, main = \"Aléatoire\", legend = FALSE)\n```\n\nOutre le $K$, il existe d'autres statistiques pour décrire les propriétés de second ordre du patron, par exemple la distance moyenne entre un point et ses $N$ plus proches voisins. Vous pouvez consulter le manuel de Wiegand et Moloney (2013) suggéré en référence pour en apprendre plus sur différentes statistiques sommaires des patrons de points.\n\n## Effets de bordure\n\nDans le contexte de l'analyse de patrons de points, l'effet de bordure (\"edge effect\") est dû au fait que nous avons une connaissance incomplète du voisinage des points près du bord de la fenêtre d'observation, ce qui peut induire un biais dans le calcul des statistiques comme le $K$ de Ripley. \n\nDifférentes méthodes ont été développées pour corriger le biais dû aux effets de bordure. Selon la méthode de Ripley, la contribution d'un voisin $j$ situé à une distance $r$ d'un point $i$ reçoit un poids $w_{ij} = 1/\\phi_i(r)$, où $\\phi_i(r)$ est la fraction du cercle de rayon $r$ autour de $i$ contenu dans la fenêtre d'observation. Par exemple, si 2/3 du cercle se trouve dans la fenêtre, ce voisin compte pour 3/2 voisins dans le calcul d'une statistique comme $K$.\n\n![](images/ripley_edge.png)\n\nLa méthode de Ripley est une des plus simples pour corriger les effets de bordure, mais n'est pas nécessairement la plus efficace; notamment, les poids plus grands donnés à certaines paires de points tend à accroître la variance du calcul de la statistique. D'autres méthodes de correction sont présentées dans les manuels spécialisés, comme celui de Wiegand et Moloney (2013) en référence.\n\n## Exemple\n\nPour cet exemple, nous utilisons le jeu de données [semis_xy.csv](data/semis_xy.csv), qui représente les coordonnées $(x, y)$ de semis de deux espèces (*sp*, B = bouleau et P = peuplier) dans une placette de 15 x 15 m.\n\n```{r}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\nLe package *spatstat* permet d'effectuer des analyses de patrons de point dans R. La première étape consiste à transformer notre tableau de données en objet `ppp` (patron de points) avec la fonction du même nom. Dans cette fonction, nous spécifions quelles colonnes contiennent les coordonnées *x* et *y* ainsi que les marques (`marks`), qui seront ici les codes d'espèce. Il faut aussi spécifier une fenêtre d'observation (`window`) à l'aide de la fonction `owin`, à laquelle nous indiquons les limites de la placette en *x* et *y*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\nLes marques peuvent être numériques ou catégorielles. Notez que pour des marques catégorielles comme c'est le cas ici, il faut convertir explicitement la variable en facteur.\n\nLa fonction `plot` appliquée à un patron de points montre un diagramme du patron.\n\n```{r}\nplot(semis)\n```\n\nLa fonction `intensity` calcule la densité des points de chaque espèce par unité de surface, ici en $m^2$.\n\n```{r}\nintensity(semis)\n```\n\nPour analyser d'abord séparément la distribution de chaque espèce, nous séparons le patron avec `split`. Puisque le patron contient des marques catégorielles, la séparation se fait automatiquement en fonction de la valeur des marques. Le résultat est une liste de deux patrons de points.\n\n```{r}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\nLa fonction `Kest` calcule le $K$ de Ripley pour une série de distances allant (par défaut) jusqu'à 1/4 de la largeur de la fenêtre. Ici, nous l'appliquons au premier patron (bouleau) en choisissant `semis_split[[1]]`. Notez que les doubles crochets sont nécessaires pour choisir un élément d'une liste dans R.\n\nL'argument `correction = \"iso\"` indique d'appliquer la méthode de Ripley pour corriger les effets de bordure.\n\n```{r}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\nSelon ce graphique, il semble y avoir une excès de voisins à partir d'un rayon de 1 m. Pour vérifier s'il s'agit d'un écart significatif, nous produisons une enveloppe de simulation avec la fonction `envelope`. Le permier argument d'`envelope` est un patron de point auquel les simulations seront comparées, le deuxième une fonction à calculer (ici, `Kest`) pour chaque patron simulé, puis on y ajoute les arguments de la fonction `Kest` (ici, seulement `correction`).\n\n```{r}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\nTel qu'indiqué par le message, cette fonction effectue par défaut 99 simulations de l'hypothèse nulle correspondant à une structure spatiale totalement aléatoire (CSR, pour *complete spatial randomness*).\n\nLa courbe observée sort de l'enveloppe des 99 simulations près de $r = 2$. Il faut être prudent de ne pas interpréter trop rapidement un résultat sortant de l'enveloppe. Même s'il y a environ une probabilité de 1% d'obtenir un résultat plus extrême selon l'hypothèse nulle à une distance donnée, l'enveloppe est calculée pour un grand nombre de valeurs de la distance et nous n'effectuons pas de correction pour les comparaisons multiples. Ainsi, un écart significatif pour une très petite plage de valeurs de $r$ peut être simplement dû au hasard.\n\n\n### Exercice 1\n\nEn regardant le graphique du deuxième patron de points (semis de peuplier), pouvez-vous prédire où se situera le $K$ de Ripley par rapport à l'hypothèse nulle d'une structure spatiale totalement aléatoire? Vérifiez votre prédiction en calculant le $K$ de Ripley pour ce patron de points dans R.\n\n\n## Effet de l'hétérogénéité\n\nLe graphique ci-dessous illustre un patron de points *hétérogène*, c'est-à-dire qu'il présente un gradient d'intensité (plus de points à gauche qu'à droite).\n\n```{r, include = FALSE}\nlam_gr <- function(x, y) ifelse(x < 0.5, 500*(1-x), 200*(1-x))\nhetp <- rpoispp(lam_gr)\nkhet <- envelope(hetp, Kest, correction = \"iso\")\n```\n\n```{r, echo = FALSE}\npar(mfrow = c(1, 2))\nplot(hetp, pch = 19, main = \"\")\nplot(khet, main = \"\", legend = FALSE)\n```\n\nUn gradient de densité peut être confondu avec une agrégation des points, comme on peut voir sur le graphique du $K$ de Ripley correspondant. En théorie, il s'agit de deux processus différents:\n\n- Hétérogénéité: La densité de points varie dans la région d'étude, par exemple dû au fait que certaines conditions locales sont plus propices à la présence de l'espèce étudiée.\n\n- Agrégation: La densité moyenne des points est homogène, mais la présence d'un point augmente la présence d'autre points dans son voisinage, par exemple en raison d'interactions positives entre les individus.\n\nCependant, il peut être difficile de différencier les deux en pratique, surtout que certains patrons peuvent être à la fois hétérogènes et agrégés.\n\nPrenons l'exemple des semis de peuplier de l'exercice précédent. La fonction `density` appliquée à un patron de points effectue une estimation par noyau (*kernel density estimation*) de la densité des semis à travers la placette. Par défaut, cette fonction utilise un noyau gaussien avec un écart-type `sigma` spécifié dans la fonction, qui détermine l'échelle à laquelle les fluctuations de densité sont \"lissées\". Ici, nous utilisons une valeur de 2 m pour `sigma` et nous représentons d'abord la densité estimée avec `plot`, avant d'y superposer les points (`add = TRUE` signifie que les points sont ajoutés au graphique existant plutôt que de créer un nouveau graphique).\n\n```{r}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\nPour mesurer l'agrégation ou la répulsion des points d'un patron hétérogène, nous devons utilisé la version non-homogène de la statistique $K$ (`Kinhom` dans *spatstat*). Cette statistique est toujours égale au nombre moyen de voisins dans un rayon $r$ d'un point du patron, mais plutôt que de normaliser ce nombre par l'intensité globale du patron, il est normalisé par l'estimation locale de la densité de points. Comme ci-dessus, nous spécifions `sigma = 2` pour contrôler le niveau de lissage de l'estimation de la densité variable.\n\n```{r}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\nEn tenant compte de l'hétérogénéité du patron à une échelle `sigma` de 2 m, il semble donc y avoir un déficit de voisins à partir d'environ 1.5 m des points du patron. Il reste à voir si cette déviation est significative.\n\nComme précédemment, nous utilisons `envelope` pour simuler la statistique `Kinhom` sous le modèle nul. Cependant, ici le modèle nul n'est pas un processus de Poisson homogène (structure spatiale totalement aléatoire). Il s'agit plutôt d'un processus de Poisson hétérogène simulé par la fonction `rpoispp(dens_p)`, c'est-à-dire que les points sont indépendants les uns des autres, mais leur densité est hétérogène et donnée par `dens_p`. L'argument `simulate` de la fonction `envelope` permet de spécifier une fonction utilisée pour les simulations sous le modèle nul; cette fonction doit avoir un argument, ici `x`, même s'il n'est pas utilisé.\n\nFinalement, en plus des arguments nécessaires pour `Kinhom`, soit `sigma` et `correction`, nous spécifions aussi `nsim = 199` pour réaliser 199 simulations et `nrank = 5` pour éliminer les 5 résultats les plus extrêmes de chaque côté de l'enveloppe, donc les 10 plus extrêmes sur 199, pour réaliser un intervalle contenant environ 95% de la probabilité sous l'hypothèse nulle.\n\n```{r}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\nplot(khet_p)\n```\n\n*Note*: Pour un test d'hypothèse basé sur des simulations d'une hypothèse nulle, la valeur $p$ est estimée par $(m + 1)/(n + 1)$, où $n$ est le nombre de simulations et $m$ est le nombre de simulations où la valeur de la statistique est plus extrême que celle des données observées. C'est pour cette raison qu'on choisit un nombre de simulations comme 99, 199, etc.\n\n### Exercice 2\n\nRépétez l'estimation de la densité hétérogène et le calcul de `Kinhom` avec un écart-type `sigma` de 5 plutôt que 2. Comment le niveau de lissage pour la densité influence-t-il les conclusions?\n\nPour différencier une variation de densité des points et d'une interaction (agrégation ou répulsion) entre ces points avec ce type d'analyse, il faut généralement supposer que les deux processus opèrent à différentes échelles. Typiquement, nous pouvons tester si les points sont agrégés à petite échelle après avoir tenu compte d'une variation de la densité à une échelle plus grande.\n\n\n## Relation entre deux patrons de points\n\nConsidérons un cas où nous avons deux patrons de points, par exemple la position des arbres de deux espèces dans une parcelle (points oranges et verts dans le graphique ci-dessous). Chacun des deux patrons peut présenter ou non des agrégations de points. \n\n```{r, echo = FALSE}\ndata(lansing)\nlansing <- subset(lansing, marks %in% c(\"maple\", \"redoak\"), drop = TRUE)\nplot(lansing, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"\", legend = FALSE)\n```\n\nSans égard à cette agrégation au niveau de l'espèce, nous voulons déterminer si les deux espèces sont disposées indépendamment. Autrement dit, la probabilité d'observer un arbre d'une espèce dépend-elle de la présence d'un arbre de l'autre espèce à une distance donnée?\n\nLa version bivariée du $K$ de Ripley permet de répondre à cette question. Pour deux patrons désignés 1 et 2, l'indice $K_{12}(r)$ calcule le nombre moyen de points du patron 2 dans un rayon $r$ autour d'un point du patron 1, normalisé par la densité du patron 2.\n\nEn théorie, cet indice est symétrique, donc $K_{12}(r) = K_{21}(r)$ et le résultat serait le même si on choisit les points du patron 1 ou 2 comme points \"focaux\" pour l'analyse. Cependant, l'estimation des deux quantités pour un patron observé peut différer, notamment en raison des effets de bord. La variabilité peut aussi être différente pour $K_{12}$ et $K_{21}$ entre les simulations d'un modèle nul, donc le test de l'hypothèse nulle peut avoir une puissance différente selon le choix de l'espèce focale.\n\nLe choix d'un modèle nul approprié est important ici. Afin de déterminer s'il existe une attraction ou une répulsion significative entre les deux patrons, il faut déplacer aléatoirement la position d'un des patrons relative à celle de l'autre patron, tout en conservant la structure spatiale de chaque patron pris isolément.\n\nUne des façons d'effectuer cette randomisation consiste à décaler l'un des deux patrons horizontalement et/ou verticalement d'une distance aléatoire. La partie du patron qui \"sort\" d'un côté de la fenêtre est rattachée de l'autre côté. Cette méthode s'appelle une translation toroïdale (*toroidal shift*), car en connectant le haut et le bas ainsi que la gauche et la droite d'une surface rectangulaire, on obtient la forme d'un tore (un \"beigne\" en trois dimensions).\n\n```{r, echo = FALSE}\npar(mfrow = c(1, 2))\nset.seed(35)\nrsh <- rshift(lansing, which = 1, width = 0.5, height = 0)\nplot(lansing, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"Original\", legend = FALSE)\nrect(xleft = 1 - rsh$x[8], xright = 1, ybottom = 0, ytop = 1, \n col = rgb(0, 0, 0, alpha = 0.1))\nplot(rsh, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"Après translation\", legend = FALSE)\nrect(xleft = 0, xright = rsh$x[8], ybottom = 0, ytop = 1, \n col = rgb(0, 0, 0, alpha = 0.1))\n```\n\nLe graphique ci-dessus illustre une translation du patron vert vers la droite, tandis que le patron orange reste au même endroit. Les points verts dans la zone ombragée sont ramenés de l'autre côté. Notez que si cette méthode préserve de façon générale la structure de chaque patron tout en randomisant leur position relative, elle peut comporter certains inconvénients, comme de diviser des amas de points qui se trouvent près du point de coupure.\n\nVérifions maintenant s'il y a une dépendance entre la position des deux espèces (bouleau et peuplier) dans notre placette. La fonction `Kcross` calcule l'indice bivarié $K_{ij}$, il faut spécifier quel type de point est considéré comme l'espèce focale $i$ et l'espèce voisine $j$.\n\n```{r}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\nIci, le $K$ observé est inférieur à la valeur théorique, indiquant une répulsion possible des deux patrons.\n\nPour déterminer l'enveloppe du $K$ selon l'hypothèse nulle d'indépendance des deux patrons, nous devons spécifier que les simulations doivent être basées sur une translation des patrons. Nous indiquons que les simulations doivent utiliser la fonction `rshift` (translation aléatoire) avec l'argument `simulate = function(x) rshift(x, which = \"B\")`; ici, l'argument `x` de `simulate` correspond au patron de points original et l'argument `which` indique quel type de points subit la translation. Comme pour le cas précédent, il faut répéter dans la fonction `envelope` les arguments nécessaires pour `Kcross`, soit `i`, `j` et `correction`. \n\n```{r}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\nIci, la courbe observée se situe totalement dans l'enveloppe, donc nous ne rejetons pas l'hypothèse nulle d'indépendance des deux patrons.\n\n### Questions\n\n1. Quelle raison pourrait justifier ici notre choix d'effectuer la translation des points du bouleau plutôt que du peuplier?\n\n2. Est-ce que les simulations générées par translation aléatoire constitueraient un bon modèle nul si les deux patrons étaient hétérogènes?\n\n\n## Patrons de points marqués\n\nLe jeu de données [fir.csv](data/fir.csv) contient les coordonnées $(x, y)$ de 822 sapins dans une placette d'un hectare et leur statut (A = vivant, D = mort) suivant une épidémie de tordeuse des bourgeons de l'épinette.\n\n```{r}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n```{r}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\nSupposons que nous voulons vérifier si la mortalité des sapins est indépendante ou corrélée entre arbres rapprochés. En quoi cette question diffère-t-elle de l'exemple précédent où nous voulions savoir si la position des points de deux espèces était indépendante?\n\nDans l'exemple précédent, l'indépendance ou l'interaction entre les espèces référait à la formation du patron lui-même (que des semis d'une espèce s'établissent ou non à proximité de ceux de l'autre espèce). Ici, la caractéristique qui nous intéresse (survie des sapins) est postérieure à l'établissement du patron, en supposant que tous ces arbres étaient vivants d'abord et que certains sont morts suite à l'épidémie. Donc nous prenons la position des arbres comme fixe et nous voulons savoir si la distribution des statuts (mort, vivant) entre ces arbres est aléatoire ou présente un patron spatial.\n\nDans le manuel de Wiegand et Moloney, la première situation (établissement de semis de deux espèces) est appelé patron bivarié, donc il s'agit vraiment de deux patrons qui interagissent, tandis que la deuxième est un seul patron avec une *marque* qualitative. Le package *spatstat* dans R ne fait pas de différences entre les deux au niveau de la définition du patron (les types de points sont toujours représentés par l'argument `marks`), mais les méthodes d'analyse appliquées aux deux questions diffèrent.\n\nDans le cas d'un patron avec une marque qualitative, nous pouvons définir une fonction de connexion de marques (*mark connection function*) $p_{ij}(r)$. Pour deux points séparés par une distance $r$, cette fonction donne la probabilité que le premier point porte la marque $i$ et le deuxième la marque $j$. Selon l'hypothèse nulle où les marques sont indépendantes, cette probabilité est égale au produit des proportions de chaque marque dans le patron entier, $p_{ij}(r) = p_i p_j$ indépendamment de $r$.\n\nDans *spatstat*, la fonction de connexion de marques est calculée avec la fonction `markconnect`, où il faut spécifier les marques $i$ et $j$ ainsi que le type de correction des effets de bord. Dans notre exemple, nous voyons que deux points rapprochés ont moins de chance d'avoir une statut différent (A et D) que prévu selon l'hypothèse de distribution aléatoire et indépendante des marques (ligne rouge pointillée).\n\n```{r}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\nDans ce graphique, les ondulations dans la fonction sont dues à l'erreur d'estimation d'une fonction continue de $r$ à partir d'un nombre limité de paires de points discrètes.\n\nPour simuler le modèle nul dans ce cas-ci, nous utilisons la fonction `rlabel` qui réassigne aléatoirement les marques parmi les points du patron, en maintenant la position des points.\n\n```{r}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\nNotez que puisque la fonction `rlabel` a un seul argument obligatoire correspondant au patron de points original, il n'était pas nécessaire de spécifier au long: `simulate = function(x) rlabel(x)`.\n\nVoici les résultats pour les paires d'arbres du même statut A ou D:\n\n```{r, fig.dim = c(10, 5)}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\nIl semble donc que la mortalité des sapins due à cette épidémie est agrégée spatialement, puisque les arbres situés à proximité l'un de l'autre ont une plus grande probabilité de partager le même statut que prévu par l'hypothèse nulle.\n\n## Références\n\nFortin, M.-J. et Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK. \n\nWiegand, T. et Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nLe jeu de données du dernier exemple est tiré des données de la Forêt d'enseignement et de recherche du Lac Duparquet (FERLD), disponibles sur Dryad en suivant [ce lien](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n\n# Solutions\n\n### Exercice 1\n\n```{r}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\nLes semis de peuplier semblent significativement agrégés selon la valeur du $K$.\n\n### Exercice 2\n\n```{r}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\nplot(khet_p)\n```\n\nIci, puisque nous estimons la variation de densité à une plus grande échelle, même après avoir tenu compte de cette variation, les semis de peuplier semblent agrégés à petite échelle.\n\n\n# Corrélation spatiale d'une variable {#spatial-correlation-fr}\n\nLa corrélation entre les mesures d'une variable prises à des points rapprochés est une caractéristique dans de nombreux jeux de données. Ce principe est parfois appelé \"première loi de la géographie\" et exprimé par la citation de Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things.\" (Tout est relié, mais les choses rapprochées le sont davantage que celles éloignées).\n\nEn statistique, nous parlons souvent d'*autocorrélation* pour désigner la corrélation qui existe entre les mesures d'une même variable prises à différents moments (autocorrélation temporelle) ou différents lieux (autocorrélation spatiale).\n\n## Dépendance intrinsèque ou induite\n\nIl existe deux types fondamentaux de dépendance spatiale sur une variable mesurée $y$: une dépendance *intrinsèque* à $y$, ou une dépendance *induite* par des variables externes influençant $y$, qui sont elles-mêmes corrélées dans l'espace.\n\nPar exemple, supposons que l'abondance d'une espèce soit corrélée entre deux sites rapprochés:\n\n- cette dépendance spatiale peut être induite si elle est due à une corrélation spatiale des facteurs d'habitat qui favorisent ou défavorisent l'espèce;\n\n- ou elle peut être intrinsèque si elle est due à la dispersion d'individus entre sites rapprochés.\n\nDans plusieurs cas, les deux types de dépendance affectent une variable donnée.\n\nSi la dépendance est simplement induite et que les variables externes qui en sont la cause sont incluses dans le modèle expliquant $y$, alors les résidus du modèle seront indépendants et nous pouvons utiliser toutes les méthodes déjà vues qui ignorent la dépendance spatiale.\n\nCependant, si la dépendance est intrinsèque ou due à des influences externes non-mesurées, alors il faudra tenir compte de la dépendance spatiale des résidus dans le modèle.\n\n## Différentes façons de modéliser les effets spatiaux\n\nDans cette formation, nous modéliserons directement les corrélations spatiales de nos données. Il est utile de comparer cette approche à d'autres façons d'inclure des aspects spatiaux dans un modèle statistique.\n\nD'abord, nous pourrions inclure des prédicteurs dans le modèle qui représentent la position (ex.: longitude, latitude). De tels prédicteurs peuvent être utiles pour détecter une tendance ou un gradient systématique à grande échelle, que cette tendance soit linéaire ou non (par exemple, avec un modèle additif généralisé).\n\nEn contraste à cette approche, les modèles que nous verrons maintenant servent à modéliser une corrélation spatiale dans les fluctuations aléatoires d'une variable (i.e., dans les résidus après avoir enlevé tout effet systématique).\n\nLes modèles mixtes utilisent des effets aléatoires pour représenter la non-indépendance de données sur la base de leur groupement, c'est-à-dire qu'après avoir tenu compte des effets fixes systématiques, les données d'un même groupe sont plus semblables (leur variation résiduelle est corrélée) par rapport aux données de groupes différents. Ces groupes étaient parfois définis selon des critères spatiaux (observations regroupées en sites).\n\nCependant, dans un contexte d'effet aléatoire de groupe, tous les groupes sont aussi différents les uns des autres, ex.: deux sites à 100 km l'un de l'autre ne sont pas plus ou moins semblables que deux sites distants de 2 km.\n\nLes méthodes que nous verrons ici et dans les prochains parties de la formation nous permettent donc ce modéliser la non-indépendance sur une échelle continue (plus proche = plus corrélé) plutôt que seulement discrète (hiérarchie de groupements).\n\n\n# Modèles géostatistiques {#geostat-models-fr}\n\nLa géostatistique désigne un groupe de techniques tirant leur origine en sciences de la Terre. Elle s'intéresse à des variables distribuées de façon continue dans l'espace, dont on cherche à estimer la distribution en échantillonnant un nombre de points. Un exemple classique de ces techniques provient du domaine minier, où l'on cherchait à créer une carte de la concentration du minerai sur un site à partir d'échantillons pris à différents points du site.\n\nPour ces modèles, nous supposerons que $z(x, y)$ est une variable spatiale stationnaire mesurée selon les coordonnées $x$ et $y$.\n\n## Variogramme\n\nUn aspect central de la géostatistique est l'estimation du variogramme $\\gamma_z$ de la variable $z$. Le variogramme est égal à la moitié de l'écart carré moyen entre les valeurs de $z$ pour deux points $(x_i, y_i)$ et $(x_j, y_j)$ séparés par une distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nDans cette équation, la fonction $\\text{E}$ avec l'indice $d_{ij}=h$ désigne l'espérance statistique (autrement dit, la moyenne) de l'écart au carré entre les valeurs de $z$ pour les points séparés par une distance $h$.\n\nSi on préfère exprimer l'autocorrélation $\\rho_z(h)$ entre mesures de $z$ séparées par une distance $h$, celle-ci est reliée au variogramme par l'équation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\noù $\\sigma_z^2$ est la variance globale de $z$. \n\nNotez que $\\gamma_z = \\sigma_z^2$ si nous sommes à une distance où les mesures de $z$ sont indépendantes, donc $\\rho_z = 0$. Dans ce cas, on voit bien que $\\gamma_z$ s'apparente à une variance, même s'il est parfois appelé \"semivariogramme\" ou \"semivariance\" en raison du facteur 1/2 dans l'équation ci-dessus.\n\n## Modèles théoriques du variogramme\n\nPlusieurs modèles paramétriques ont été proposés pour représenter la corrélation spatiale en fonction de la distance entre points d'échantillonnage. Considérons d'abord une corrélation qui diminue de façon exponentielle: \n\n$$\\rho_z(h) = e^{-h/r}$$\n\nIci, $\\rho_z = 1$ pour $h = 0$ et la corréaltion est multipliée par $1/e \\approx 0.37$ pour chaque augmentation de $r$ de la distance. Dans ce contexte, $r$ se nomme la portée (*range*) de la corrélation.\n\nÀ partir de l'équation ci-dessus, nous pouvons calculer le variogramme correspondant.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nVoici une représentation graphique de ce variogramme.\n\n```{r, echo = FALSE}\nggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma)) +\n stat_function(fun = function(x) 5 * (1 - exp(-x/3)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\") +\n geom_segment(aes(x = 0, xend = 2.8, y = 5*(1-exp(-1)),\n yend = 5*(1-exp(-1))), \n arrow = arrow(length = unit(0.05, \"inches\"), ends = \"both\", type = \"closed\")) +\n annotate(\"text\", x = 1.5, y = 3.5, label = \"portée (range)\") +\n annotate(\"text\", x = 9, y = 5.5, label = \"palier (sill)\") +\n scale_y_continuous(limits = c(0, 6))\n```\n\nEn raison de la fonction exponentielle, la valeur de $\\gamma$ à des grandes distances s'approche de la variance globale $\\sigma_z^2$ sans exactement l'atteindre. Cette asymptote est appelée palier (*sill*) dans le contexte géostatistique et représentée par le symbole $s$.\n\nFinalement, il n'est parfois pas réaliste de supposer une corrélation parfaite lorsque la distance tend vers 0, en raison d'une variation possible de $z$ à très petite échelle. On peut ajouter au modèle un effet de pépite (*nugget*), noté $n$, pour que $\\gamma$ s'approche de $n$ (plutôt que 0) si $h$ tend vers 0. Le terme pépite provient de l'origine minière de ces techniques, où une pépite d'un minerai pourrait être la source d'une variation abrupte de la concentration à petite échelle.\n\nEn ajoutant l'effet de pépite, le reste du variogramme est \"compressé\" pour conserver le même palier, ce qui résulte en l'équation suivante.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nDans le package *gstat* que nous utiliserons ci-dessous, le terme $(s - n)$ est le palier partiel (*partial sill*, ou `psill`) pour la partie exponentielle.\n\n```{r, echo = FALSE}\nggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma)) +\n stat_function(fun = function(x) 4 * (1 - exp(-x/3)) + 1,\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\") +\n geom_segment(aes(x = 0, xend = 2.8, y = 4*(1-exp(-1)) + 1,\n yend = 4*(1-exp(-1)) + 1), \n arrow = arrow(length = unit(0.05, \"inches\"), \n ends = \"both\", type = \"closed\")) +\n geom_segment(aes(x = 0, xend = 0, y = 0, yend = 0.9),\n arrow = arrow(length = unit(0.05, \"inches\"),\n ends = \"both\", type = \"closed\")) +\n annotate(\"text\", x = 1.5, y = 4, label = \"portée (range)\") +\n annotate(\"text\", x = 9, y = 5.5, label = \"palier (sill)\") +\n annotate(\"text\", x = 1.5, y = 0.5, label = \"pépite (nugget)\") +\n scale_y_continuous(limits = c(0, 6))\n```\n\nEn plus du modèle exponentiel, deux autres modèles théoriques courants pour le variogramme sont le modèle gaussien (où la corrélation suit une courbe demi-normale), ainsi que le modèle sphérique (où le variogramme augmente de façon linéaire au départ pour ensuite courber et atteindre le palier à une distance égale à sa portée $r$). Le modèle sphérique permet donc à la corrélation d'être exactement 0 à grande distance, plutôt que de s'approcher graduellement de zéro dans le cas des autres modèles.\n\n Modèle | $\\rho(h)$ | $\\gamma(h)$\n-------|-----------|-------------\nExponentiel | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$\nGaussien | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$\nSphérique $(h < r)$ * | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$\n\n\\* Pour le modèle sphérique, $\\rho = 0$ et $\\gamma = s$ si $h \\ge r$.\n\n\n```{r, echo = FALSE, fig.dim = c(9, 4)}\nvexp <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Exponentiel\") +\n stat_function(fun = function(x) 5 * (1 - exp(-x/3)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n \n\nvgau <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Gaussien\") +\n stat_function(fun = function(x) 5 * (1 - exp(-x^2/4^2)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n\nvsph <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Sphérique\") +\n stat_function(fun = function(x) ifelse(x < 8, 5 * (1.5*x/8 - 0.5*x^3/8^3), 5),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n\nplot_grid(vexp, vgau, vsph, nrow = 1)\n```\n\n## Variogramme empirique\n\nPour estimer $\\gamma_z(h)$ à partir de données empiriques, nous devons définir des classes de distance, donc grouper différentes distances dans une marge $\\pm \\delta$ autour d'une distance $h$, puis calculer l'écart-carré moyen pour les paires de points dans cette classe de distance.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nNous verrons dans la partie suivante comment estimer un variogramme dans R.\n\n## Modèle de régression avec corrélation spatiale\n\nL'équation suivante représente une régression linéaire multiple incluant une corrélation spatiale résiduelle:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nIci, $v$ désigne la variable réponse et $u$ les prédicteurs, pour ne pas confondre avec les coordonnées spatiales $x$ et $y$. \n\nEn plus du résidu $\\epsilon$ qui est indépendant entre les observations, le modèle inclut un terme $z$ qui représente la portion spatialement corrélée de la variance résiduelle.\n\nVoici une suggestions d'étapes à suivre pour appliquer ce type de modèle:\n\n1. Ajuster le modèle de régression sans corrélation spatiale.\n\n2. Vérifier la présence de corrélation spatiale à partir du variogramme empirique des résidus.\n\n3. Ajuster un ou plusieurs modèles de régression avec corrélation spatiale et choisir celui qui montre le meilleur ajustement aux données. \n\n# Modèles géostatistiques dans R\n\nLe package *gstat* contient des fonctions liées à la géostatistique. Pour cet exemple, nous utiliserons le jeu de données `oxford` de ce package, qui contient des mesures de propriétés physiques et chimiques pour 126 échantillons du sol d'un site, ainsi que leurs coordonnées `XCOORD` et `YCOORD`.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\nSupposons que nous souhaitons modéliser la concentration de magnésium (`MG1`), représentée en fonction de la position spatiale dans le graphique suivant.\n\n```{r}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\nNotez que les axes $x$ et $y$ ont été inversés par souci d'espace. La fonction `coord_fixed()` de *ggplot2* assure que l'échelle soit la même sur les deux axes, ce qui est utile pour représenter des données spatiales. \n\nNous voyons tout de suite que ces mesures ont été prises sur une grille de 100 m de côté. Il semble que la concentration de magnésium soit spatialement corrélée, bien qu'il puisse s'agir d'une corrélation induite par une autre variable. Nous savons notamment que la concentration de magnésium est reliée négativement au pH du sol (`PH1`).\n\n```{r}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\nLa fonction `variogram` de *gstat* sert à estimer un variogramme à partir de données empiriques. Voici le résultat obtenu pour la variable `MG1`.\n\n```{r}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\nLa formule `MG1 ~ 1` indique qu'aucun prédicteur linéaire n'est inclus dans ce modèle, tandis que l'argument `locations` indique quelles variables du tableau correspondent aux coordonnées spatiales. \n\nDans le tableau obtenu, `gamma` est la valeur du variogramme pour la classe de distance centrée sur `dist`, tandis que `np` est le nombre de paires de points dans cette classe. Ici, puisque les points sont situés sur une grille, nous obtenons des classes de distance régulières (ex.: 100 m pour les points voisins sur la grille, 141 m pour les voisins en diagonale, etc.).\n\nNous nous limitons ici à l'estimation de variogrammes isotropiques, c'est-à-dire que le variogramme dépend seulement de la distance entre les deux points et non de la direction. Bien que nous n'ayons pas le temps de le voir aujourd'hui, il est possible avec *gstat* d'estimer séparément le variogramme dans différentes directions.\n\nNous pouvons illustrer le variogramme avec `plot`.\n\n```{r}\nplot(var_mg, col = \"black\")\n```\n\nSi nous voulons estimer la corrélation spatiale résiduelle de `MG1` après avoir inclus l'effet de `PH1`, nous pouvons ajouter ce prédicteur à la formule.\n\n```{r}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\nEn incluant l'effet du pH, la portée de la corrélation spatiale semble diminuer, alors que le plateau est atteint autour de 300 m. Il semble même que le variogramme diminue au-delà de 400 m. En général, nous supposons que la variance entre deux points ne diminue pas avec la distance, à moins d'avoir un patron spatial périodique.\n\nLa fonction `fit.variogram` accepte comme arguments un variogramme estimé à partir des données, ainsi qu'un modèle théorique décrit dans une fonction `vgm`, puis estime les paramètres de ce modèle en fonction des données. L'ajustement se fait par la méthode des moindres carrés.\n\nPar exemple, `vgm(\"Exp\")` indique d'ajuster un modèle exponentiel. \n\n```{r}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\nIl n'y a aucun effet de pépite, car `psill = 0` pour la partie `Nug` (*nugget*) du modèle. La partie exponentielle a un palier à 1951 et une portée de 95 m.\n\nPour comparer différents modèles, on peut donner un vecteur de noms de modèles à `vgm`. Dans l'exemple suivant, nous incluons les modèles exponentiel, gaussien (\"Gau\") et sphérique (\"Sph\").\n\n```{r, warning = FALSE, message = FALSE}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\nLa fonction nous donne le résultat du modèle le mieux ajusté (plus faible somme des écarts au carré), qui est ici le même modèle exponentiel.\n\nFinalement, nous pouvons superposer le modèle théorique et le variogramme empirique sur un même graphique.\n\n```{r}\nplot(var_mg, vfit, col = \"black\")\n```\n\n## Régression avec corrélation spatiale\n\nNous avons vu ci-dessus que le package *gstat* permet d'estimer le variogramme des résidus d'un modèle linéaire. Dans notre exemple, la concentration de magnésium était modélisée en fonction du pH, avec des résidus spatialement corrélés.\n\nUn autre outil pour ajuster ce même type de modèle est la fonction `gls` du package *nlme*, qui est inclus avec l'installation de R. \n\nCette fonction applique la méthode des moindres carrés généralisés (*generalized least squares*) pour ajuster des modèles de régression linéaire lorsque les résidus ne sont pas indépendants ou lorsque la variance résiduelle n'est pas la même pour toutes les observations. Comme les estimés des coefficients dépendent de l'estimé des corrélations entre les résidus et que ces derniers dépendent eux-mêmes des coefficients, le modèle est ajusté par un algorithme itératif:\n\n1. On ajuste un modèle de régression linéaire classique (sans corrélation) pour obtenir des résidus.\n\n2. On ajuste le modèle de corrélation spatiale (variogramme) avec ses résidus.\n\n3. On ré-estime les coefficients de la régression en tenant compte maintenant des corrélations.\n\nLes étapes 2 et 3 sont répétées jusqu'à ce que les estimés soient stables à une précision voulue.\n\nVoici l'application de cette méthode au même modèle pour la concentration de magnésium dans le jeu de données `oxford`. Dans l'argument `correlation` de `gls`, nous spécifions un modèle de corrélation exponentielle en fonction de nos coordonnées spatiales et indiquons que nous voulons aussi estimer un effet de pépite.\n\nEn plus de la corrélation exponentielle `corExp`, la fonction `gls` peut aussi estimer un modèle gaussien (`corGaus`) ou sphérique (`corSpher`).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\nPour comparer ce résultat au variogramme ajusté ci-dessus, il faut transformer les paramètres donnés par `gls`. La portée (range) a le même sens dans les deux cas et correspond à 478 m pour le résultat de `gls`. La variance globale des résidus est le carré de `Residual standard error`. L'effet de pépite ici (0.294) est exprimé comme fraction de cette variance. Finalement, pour obtenir le palier partiel de la partie exponentielle, il faut soustraire l'effet de pépite de la variance totale. \n\nAprès avoir réalisé ces calculs, nous pouvons donner ces paramètres à la fonction `vgm` de *gstat* pour superposer ce variogramme estimé par `gls` à notre variogramme des résidus du modèle linéaire classique.\n\n```{r}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\nEst-ce que le modèle est moins bien ajusté aux données ici? En fait, ce variogramme empirique représenté par les points avait été obtenu à partir des résidus du modèle linéaire ignorant la corrélation spatiale, donc c'est un estimé biaisé des corrélations spatiales réelles. La méthode est quand même adéquate pour vérifier rapidement s'il y a présence de corrélations spatiales. Toutefois, pour ajuster simultanément les coefficients de la régression et les paramètres de corrélation spatiale, l'approche des moindres carrés généralisés (GLS) est préférable et produira des estimés plus justes.\n\nFinalement, notez que le résultat du modèle `gls` donne aussi l'AIC, que nous pouvons utiliser pour comparer l'ajustement de différents modèles (avec différents prédicteurs ou différentes formes de corrélation spatiale).\n\n## Exercice\n\nLe fichier [bryo_belg.csv](data/bryo_belg.csv) est adapté des données de l'étude: \n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nCe tableau de données indique la richesse spécifique des bryophytes au sol (*richness*) pour différents points d'échantillonnage de la province belge de Limbourg, avec leur position *(x, y)* en km, en plus de l'information sur la proportion de forêts (*forest*) et de milieux humides (*wetland*) dans une cellule de 1 km$^2$ contenant le point d'échantillonnage.\n\n```{r}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\nPour cet exercice, nous utiliserons la racine carrée de la richesse spécifique comme variable réponse. La transformation racine carrée permet souvent d'homogénéiser la variance des données de comptage afin d'y appliquer une régression linéaire. \n\na) Ajustez un modèle linéaire de la richesse spécifique transformée en fonction de la fraction de forêt et de milieux humides, sans tenir compte des corrélations spatiales. Quel est l'effet des deux prédicteurs selon ce modèle?\n\nb) Calculez le variogramme empirique des résidus du modèle en (a). Semble-t-il y avoir une corrélation spatiale entre les points?\n\n*Note*: L'argument `cutoff` de la fonction `variogram` spécifie la distance maximale à laquelle le variogramme est calculé. Vous pouvez ajuster manuellement cette valeur pour bien voir le palier.\n\nc) Ré-ajustez le modèle linéaire en (a) avec la fonction `gls` du package *nlme*, en essayant différents types de corrélations spatiales (exponentielle, gaussienne, sphérique). Comparez les modèles (incluant celui sans corrélation spatiale) avec l'AIC.\n\nd) Quel est l'effet de la fraction de forêts et de milieux humides selon le modèle en (c)? Expliquez les différences entre les conclusions de ce modèle et du modèle en (a).\n\n\n# Krigeage\n\nTel que mentionné précédemment, une application courante des modèles géostatistiques consiste à prédire la valeur de la variable de réponse à des points non-échantillonnés, une forme d'interpolation spatiale appelée krigeage (*kriging*).\n\nIl existe trois principaux types de krigeage selon les suppositions faites au sujet de la variable réponse:\n\n- Krigeage ordinaire: variable stationnaire avec une moyenne inconnue.\n\n- Krigeage simple: Variable stationnaire avec une moyenne connue.\n\n- Krigeage universel: Variable dont la tendance est donnée par un modèle linéaire ou non linéaire.\n\nPour toutes les méthodes de krigeage, les prédictions à un nouveau point sont une moyenne pondérée des valeurs à des points connus. Ces pondérations sont choisies de manière à ce que le krigeage fournisse la meilleure prédiction linéaire non biaisée de la variable de réponse, si les hypothèses du modèle (en particulier le variogramme) sont correctes. C'est-à-dire que, parmi toutes les prédictions non biaisées possibles, les poids sont choisis de manière à donner l'erreur quadratique moyenne minimale. Le krigeage fournit également une estimation de l'incertitude de chaque prédiction.\n\nBien que nous ne présentions pas ici les équations détaillées du krigeage, les poids dépendent à la fois des corrélations (estimées par le variogramme) entre les points échantillonnés et le nouveau point, ainsi que des corrélations entre les points échantillonnés eux-mêmes. Autrement dit, les points échantillonnés proches du nouveau point ont plus de poids, mais les points échantillonnés isolés ont également plus de poids, car les points échantillonnés proches les uns des autres fournissent une informations redondante.\n\nLe krigeage est une méthode d'interpolation, donc la prédiction à un point échantillonné sera toujours égale à la valeur mesurée (la variable est supposée être mesurée sans erreur, elle varie seulement entre les points). Cependant, en présence d'un effet de pépite, tout petit déplacement par rapport à l'endroit échantillonné présentera une variabilité en fonction de la pépite.\n\nDans l'exemple ci-dessous, nous générons un nouvel ensemble de données composé de coordonnées (x, y) générées de façon aléatoire dans la zone d'étude ainsi que des valeurs de pH générées de façon aléatoire sur la base des données `oxford`. Nous appliquons ensuite la fonction `krige` pour prédire les valeurs de magnésium à ces nouveaux points. Notez que nous spécifions le variogramme dérivé des résultats du `gls` dans l'argument `model` de `krige`.\n\n```{r}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\nhead(pred)\n```\n\nLe résultat de `krige` comprend les nouvelles coordonnées du point, la prédiction de la variable `var1.pred` ainsi que sa variance estimée `var1.var`. Dans le graphique ci-dessous, nous montrons les prédictions moyennes de MG1 à partir du krigeage (triangles) ainsi que les mesures (cercles).\n\n```{r}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\nLa moyenne et la variance estimées par krigeage peuvent être utilisées pour simuler les valeurs possibles de la variable à chaque nouveau point, conditionnellement aux valeurs échantillonnées. Dans l'exemple ci-dessous, nous avons effectué 4 simulations conditionnelles en ajoutant l'argument `nsim = 4` à la même instruction `krige`.\n\n```{r}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\nhead(sim_mg)\n```\n\n```{r, message = FALSE, warning = FALSE, fig.dim = c(10, 5)}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n\n# Solutions\n\n```{r}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\nLa proportion de forêts a un effet positif significatif et la proportion de milieux humides a un effet négatif significatif sur la richesse des bryophytes.\n\n```{r}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\nLe variogramme augmente au moins jusqu'à une distance de 40 km, il semble donc y avoir des corrélations spatiales dans les résidus du modèle.\n\n```{r}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n\n```{r}\nAIC(bryo_lm)\nAIC(bryo_exp)\nAIC(bryo_gaus)\nAIC(bryo_spher)\n```\n\nLe modèle sphérique a l'AIC le plus faible.\n\n```{r}\nsummary(bryo_spher)\n```\n\nLa magnitude des deux effets est moins importante et l'effet des milieux humides n'est plus significatif. Comme c'est le cas pour d'autres types de résidus non indépendants, la \"taille effective\" de l'échantillon est ici inférieure au nombre de points, car des points proches les uns des autres fournissent une information redondante. Par conséquent, la relation entre les prédicteurs et la réponse est moins claire que celle donnée par le modèle supposant que tous ces points étaient indépendants.\n\nNotez que les résultats pour les trois modèles `gls` sont assez similaires, donc le choix d'inclure des corrélations spatiales était plus important que la forme exacte supposée pour le variogramme.\n\n\n# Données aréales {#areal-data-fr}\n\nLes données aréales sont des variables mesurées pour des régions de l'espace; ces régions sont définies par des polygones. Ce type de données est plus courant en sciences sociales, en géographie humaine et en épidémiologie, où les données sont souvent disponibles à l'échelle de divisions administratives du territoire. \n\nCe type de données apparaît aussi fréquemment dans la gestion des ressources naturelles. Par exemple, la carte suivante montre les unités d'aménagement forestier du Ministère de la Forêts, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSupposons qu'une certaine variable soit disponible au niveau de ces divisions du territoire. Comment pouvons-nous modéliser la corrélation spatiale entre les unités qui sont spatialement rapprochées?\n\nUne option serait d'appliquer les méthodes géostatistiques vues précédemment, en calculant par exemple la distance entre les centres des polygones.\n\nUne autre option, qui est davantage privilégiée pour les données aréales, consiste à définir un réseau où chaque région est connectée aux régions voisines par un lien. On suppose ensuite que les variables sont directement corrélées entre régions voisines seulement. (Notons toutefois que les corrélations directes entre voisins immédiats génèrent aussi des corrélations indirectes pour une chaîne de voisins.)\n\nDans ce type de modèle, la corrélation n'est pas nécessairement la même d'un lien à un autre. Dans ce cas, chaque lien du réseau peut être associé à un *poids* représentant son importance pour la corrélation spatiale. Nous représentons ces poids par une matrice $W$ où $w_{ij}$ est le poids du lien entre les régions $i$ et $j$. Une région n'a pas de lien avec elle-même, donc $w_{ii} = 0$.\n\nUn choix simple pour $W$ consiste à assigner un poids égal à 1 si les régions sont voisines, sinon 0 (poids binaires).\n\nOutre les divisions du territoire en polygones, un autre exemple de données aréales consiste en une grille où la variable est compilée pour chaque cellule de la grille. Dans ce cas, une cellule a généralement 4 ou 8 cellules voisines, selon que les diagonales soient incluses ou non.\n\n# Indice de Moran {#moran-i-fr}\n\nAvant de discuter des modèles d'autocorrélation spatiale, nous présentons l'indice $I$ de Moran, qui permet de tester si une corrélation significative est présente entre régions voisines. \n\nL'indice de Moran est un coefficient d'autocorrélation spatiale des $z$, pondéré par les poids $w_{ij}$. Il prend donc des valeurs entre -1 et 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nDans cette équation, nous reconnaissons l'expression d'une corrélation, soit le produit des écarts à la moyenne de deux variables $z_i$ et $z_j$, divisé par le produit de leurs écarts-types (qui est le même, donc on obtient la variance). La contribution de chaque paire $(i, j)$ est multipliée par son poids $w_{ij}$ et le terme à gauche (le nombre de régions $N$ divisé par la somme des poids) assure que le résultat soit borné entre -1 et 1.\n\nPuisque la distribution de $I$ est connue en l'absence d'autocorrélation spatiale, cette statistique permet de tester l'hypothèse nulle selon laquelle il n'y a pas de corrélation spatiale entre régions voisines.\n\nBien que nous ne verrons pas d'exemple dans ce cours-ci, l'indice de Moran peut aussi être appliqué aux données ponctuelles. Dans ce cas, on divise les paires de points en classes de distance et on calcule $I$ pour chaque classe de distance; le poids $w_{ij} = 1$ si la distance entre $i$ et $j$ se trouve dans la classe de distance voulue, 0 autrement.\n\n# Modèles d'autorégression spatiale {#spatial-autoreg-fr}\n\nRappelons-nous la formule pour une régression linéaire avec dépendance spatiale:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\noù $z$ est la portion de la variance résiduelle qui est spatialement corrélée.\n\nIl existe deux principaux types de modèles autorégressifs pour représenter la dépendance spatiale de $z$: l'autorégression conditionnelle (CAR) et l'autorégression simultanée (SAR).\n\n## Autorégression conditionnelle (CAR)\n\nDans le modèle d'autorégression conditionnelle, la valeur de $z_i$ pour la région $i$ suit une distribution normale: sa moyenne dépend de la valeur $z_j$ des régions voisines, multipliée par le poids $w_{ij}$ et un coefficient de corrélation $\\rho$; son écart-type $\\sigma_{z_i}$ peut varier d'une région à l'autre.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nDans ce modèle, si $w_{ij}$ est une matrice binaire (0 pour les non-voisins, 1 pour les voisins), alors $\\rho$ est le coefficient de corrélation partielle entre régions voisines. Cela est semblable à un modèle autorégressif d'ordre 1 dans le contexte de séries temporelles, où le coefficient d'autorégression indique la corrélation partielle.\n\n## Autorégression simultanée (SAR)\n\nDans le modèle d'autorégression simultanée, la valeur de $z_i$ est donnée directement par la somme de contributions des valeurs voisines $z_j$, multipliées par $\\rho w_{ij}$, avec un résidu indépendant $\\nu_i$ d'écart-type $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nÀ première vue, cela ressemble à un modèle autorégressif temporel. Il existe cependant une différence conceptuelle importante. Pour les modèles temporels, l'influence causale est dirigée dans une seule direction: $v(t-2)$ affecte $v(t-1)$ qui affecte ensuite $v(t)$. Pour un modèle spatial, chaque $z_j$ qui affecte $z_i$ dépend à son tour de $z_i$. Ainsi, pour déterminer la distribution conjointe des $z$, il faut résoudre simultanément (d'où le nom du modèle) un système d'équations. \n\nPour cette raison, même si ce modèle ressemble à la formule du modèle conditionnel (CAR), les solutions des deux modèles diffèrent et dans le cas du SAR, le coefficient $\\rho$ n'est pas directement égal à la corrélation partielle due à chaque région voisine.\n\nPour plus de détails sur les aspects mathématiques de ces modèles, vous pouvez consulter l'article de Ver Hoef et al. (2018) suggéré en référence. \n\nPour l'instant, nous considérerons les SAR et les CAR comme deux types de modèles possibles pour représenter une corrélation spatiale sur un réseau. Nous pouvons toujours ajuster plusieurs modèles et les comparer avec l'AIC pour choisir la meilleure forme de la corrélation ou la meilleure matrice de poids.\n\nLes modèles CAR et SAR partagent un avantage sur les modèles géostatistiques au niveau de l'efficacité. Dans un modèle géostatistique, les corrélations spatiales sont définies entre chaque paire de points, même si elles deviennent négligeables lorsque la distance augmente. Pour un modèle CAR ou SAR, seules les régions voisines contribuent et la plupart des poids sont égaux à 0, ce qui rend ces modèles plus rapides à ajuster qu'un modèle géostatistique lorsque les données sont massives.\n\n# Analyse des données aréales dans R {#analysis-areal-fr}\n\nPour illustrer l'analyse de données aréales dans R, nous chargeons les packages *sf* (pour lire des données géospatiales), *spdep* (pour définir des réseaux spatiaux et calculer l'indice de Moran) et *spatialreg* (pour les modèles SAR et CAR).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n\nNous utiliserons comme exemple un jeu de données qui présente une partie des résultats de l'élection provinciale de 2018 au Québec, avec des caractéristiques de la population de chaque circonscription. Ces données sont inclues dans un fichier de type *shapefile* (.shp), que nous pouvons lire avec la fonction `read_sf` du package *sf*.\n\n```{r}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n*Note*: Le jeu de données est en fait composé de 4 fichiers avec les extensions .dbf, .prj, .shp et .shx, mais il suffit d'inscrire le nom du fichier .shp dans `read_sf`.\n\nLes colonnes du jeu de données sont dans l'ordre:\n\n- le nom de la circonscription électorale;\n- quatre caractéristiques de la population (âge moyen, fraction de la population qui parle principalement français à la maison, fraction des ménages qui sont propriétaires de leur logement, revenu médian);\n- quatre colonnes montrant la fraction des votes obtenues par les principaux partis (CAQ, PQ, PLQ, QS);\n- une colonne `geometry` qui contient l'objet géométrique (multipolygone) correspondant à la circonscription.\n\nPour illustrer une des variables sur une carte, nous appelons la fonction `plot` avec le nom de la colonne entre crochets et guillemets. \n\n```{r}\nplot(elect2018[\"rev_med\"])\n```\n\nDans cet exemple, nous voulons modéliser la fraction des votes obtenue par la CAQ en fonction des caractéristiques de la population dans chaque circonscription et en tenant compte des corrélations spatiales entre circonscriptions voisines.\n\n## Définition du réseau de voisinage\n\nLa fonction `poly2nb` du package *spdep* définit un réseau de voisinage à partir de polygones. Le résultat `vois` est une liste de 125 éléments où chaque élément contient les indices des polygones voisins (limitrophes) d'un polygone donné.\n\n```{r}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\nAinsi, la première circonscription (Abitibi-Est) a 6 circonscriptions voisines, dont on peut trouver les noms ainsi:\n\n```{r}\nelect2018$circ[vois[[1]]]\n```\n\nNous pouvons illustrer ce réseau en faisant l'extraction des coordonnées du centre de chaque circonscription, en créant une carte muette avec `plot(elect2018[\"geometry\"])`, puis en ajoutant le réseau comme couche additionnelle avec `plot(vois, add = TRUE, coords = coords)`.\n\n```{r, message = FALSE, warning = FALSE}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\nOn peut faire un \"zoom\" sur le sud du Québec en choisissant les limites `xlim` et `ylim` appropriées.\n\n```{r}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\nIl nous reste à ajouter des poids à chaque lien du réseau avec la fonction `nb2listw`. Le style de poids \"B\" correspond aux poids binaires, soit 1 pour la présence de lien et 0 pour l'absence de lien entre deux circonscriptions.\n\nUne fois ces poids définis, nous pouvons vérifier avec le test de Moran s'il y a une autocorrélation significative des votes obtenus par la CAQ entre circonscriptions voisines.\n\n```{r}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\nLa valeur de $I = 0.68$ est très significative à en juger par la valeur $p$ du test.\n\nVérifions si la corrélation spatiale persiste après avoir tenu compte des quatre caractéristiques de la population, donc en inspectant les résidus d'un modèle linéaire incluant ces quatre prédicteurs.\n\n```{r}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\nmoran.test(residuals(elect_lm), poids)\n```\n\nL'indice de Moran a diminué mais demeure significatif, donc une partie de la corrélation précédente était induite par ces prédicteurs, mais il reste une corrélation spatiale due à d'autres facteurs. \n\n## Modèles d'autorégression spatiale\n\nFinalement, nous ajustons des modèles SAR et CAR à ces données avec la fonction `spautolm` (*spatial autoregressive linear model*) de *spatialreg*. Voici le code pour un modèle SAR incluant l'effet des même quatre prédicteurs. \n\n```{r}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\nLa valeur donnée par `Lambda` dans le sommaire correspond au coefficient $\\rho$ dans notre description du modèle. Le test du rapport de vraisemblance (`LR test`) confirme que cette corrélation spatiale résiduelle (après avoir tenu compte de l'effet des prédicteurs) est significative.\n\nLes effets estimés pour les prédicteurs sont semblables à ceux du modèle linéaire sans corrélation spatiale. Les effets de l'âge moyen, de la fraction de francophones et la fraction de propriétaires demeurent significatifs, bien que leur magnitude ait un peu diminué.\n\nPour évaluer un modèle CAR plutôt que SAR, nous devons spécifier `family = \"CAR\"`.\n\n```{r}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\nPour un modèle CAR avec des poids binaires, la valeur de `Lambda` (que nous avions appelé $\\rho$) donne directement le coefficient de corrélation partielle entre circonscriptions voisines. Notez que l'AIC ici est légèrement supérieur au modèle SAR, donc ce dernier donnait un meilleur ajustement.\n\n## Exercice\n\nLe jeu de données `rls_covid`, en format *shapefile*, contient des données sur les cas de COVID-19 détectés, le nombre de cas par 1000 personnes (`taux_1k`) et la densité de population (`dens_pop`) dans chacun des réseaux locaux de service de santé (RLS) du Québec. (Source: Données téléchargées de l'Institut national de santé publique du Québec en date du 17 janvier 2021.)\n\n```{r}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\nAjustez un modèle linéaire du nombre de cas par 1000 en fonction de la densité de population (il est suggéré d'appliquer une transformation logarithmique à cette dernière). Vérifiez si les résidus du modèle sont corrélés entre RLS limitrophes avec un test de Moran, puis modélisez les mêmes données avec un modèle autorégressif conditionnel.\n\n## Référence\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. et Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n# GLMM avec processus spatial gaussien {#glmm-spatial-gaussian-fr}\n\nDans les parties précédentes, nous avons vu comment tenir compte de la dépendance spatiale dans les modèles de régression linéaire avec des modèles géostatistiques (également appelés processus gaussiens) ou des modèles d'autocorrélation spatiale (CAR/SAR). Dans cette dernière partie, nous verrons comment combiner ces caractéristiques avec des modèles de régression plus complexes, en particulier les modèles linéaires généralisés à effets mixtes (GLMM).\n\n## Données\n\nLe jeu de données `gambia` inclus avec le package *geoR* présente les résultats d'une étude sur la prévalence du paludisme chez les enfants de 65 villages en Gambie. Nous utiliserons une version légèrement transformée des données contenues dans le fichier [gambia.csv](data/gambia.csv).\n\n```{r, warning = FALSE, message = FALSE}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\nVoici les champs de ce jeu de données:\n\n- *id_village*: Identifiant du village.\n- *x* and *y*: Coordonnées spatiales du village (en km, basé sur les coordonnées UTM).\n- *pos*: Réponse binaire, si l'enfant a eu un test positif du paludisme.\n- *age*: Âge de l'enfant en jours.\n- *netuse*: Si l'enfant dort sous un moustiquaire ou non.\n- *treated*: Si le moustiquaire est traité ou non.\n- *green*: Mesure de la végétation basée sur les données de télédétection (disponible à l'échelle du village).\n- *phc*: Présence ou absence d'un centre de santé publique pour le village.\n\nNous pouvons compter le nombre de cas positifs et le nombre total d'enfants testés par village pour cartographier la fraction des cas positifs (ou prévalence, *prev*).\n\n```{r}\n# Jeu de données à l'échelle du village\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\nhead(gambia_agg)\n```\n\n\n```{r, message = FALSE, warning = FALSE}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\nNous utilisons le jeu de données `gambia.borders` du package *geoR* pour tracer les frontières des pays avec `geom_path`. Comme ces frontières sont en mètres, nous les divisons par 1000 pour obtenir la même échelle que nos points. Nous utilisons également `coord_fixed` pour assurer un rapport d'aspect de 1:1 entre les axes et utilisons la palette de couleur `viridis`, qui permet de visualiser plus facilement une variable continue par rapport à la palette par défaut dans *ggplot2*.\n\nSur la base de cette carte, il semble y avoir une corrélation spatiale dans la prévalence du paludisme, le groupe de villages de l'est montrant des valeurs de prévalence plus élevées (jaune-vert) et le groupe du milieu montrant des valeurs de prévalence plus faibles (violet).\n\n## GLMM non spatial\n\nPour ce premier exemple, nous allons ignorer l'aspect spatial des données et modéliser la présence du paludisme (*pos*) en fonction de l'utilisation d'une moustiquaire (*netuse*) et de la présence d'un centre de santé publique (*phc*). Comme nous avons une réponse binaire, nous devons utiliser un modèle de régression logistique (un GLM). Comme nous avons des prédicteurs au niveau individuel et au niveau du village et que nous nous attendons à ce que les enfants d'un même village aient une probabilité plus similaire d'avoir le paludisme même après avoir pris en compte ces prédicteurs, nous devons ajouter un effet aléatoire du village. Le résultat est un GLMM que nous ajustons en utilisant la fonction `glmer` du package *lme4*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\nD'après ces résultats, les variables *netuse* et *phc* sont toutes deux associées à une diminution de la prévalence du paludisme, bien que l'effet de *phc* ne soit pas significatif à un seuil $\\alpha = 0.05$. L'ordonnée à l'origine (0.149) est le logit de la probabilité de présence du paludisme pour un enfant sans moustiquaire et sans centre de santé publique, mais c'est l'ordonnée à l'origine moyenne pour tous les villages. Il y a beaucoup de variation entre les villages selon l'écart-type de l'effet aléatoire (0.90). Nous pouvons obtenir l'ordonnée à l'origine estimée pour chaque village avec la fonction `coef`:\n\n```{r}\nhead(coef(mod_glmm)$id_village)\n```\n\nPar exemple, l'ordonnée à l'origine pour le village 1 est environ 0.94, équivalente à une probabilité de 72%:\n\n```{r}\nplogis(0.937)\n```\n\ntandis que celle pour le village 2 est équivalente à une probabilité de 52%:\n\n```{r}\nplogis(0.092)\n```\n\nLe [package DHARMa](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) fournit une méthode générale pour vérifier si les résidus d'un GLMM sont distribués selon le modèle spécifié et s'il existe une tendance résiduelle. Il simule des réplicats de chaque observation selon le modèle ajusté et détermine ensuite un \"résidu standardisé\", qui est la position relative de la valeur observée par rapport aux valeurs simulées, par exemple 0 si l'observation est plus petite que toutes les simulations, 0.5 si elle se trouve au milieu, etc. Si le modèle représente bien les données, chaque valeur du résidu standardisé entre 0 et 1 doit avoir la même probabilité, de sorte que les résidus standardisés doivent produire une distribution uniforme entre 0 et 1.\n\nLa fonction `simulateResiduals` effectue le calcul des résidus standardisés, puis la fonction `plot` trace les graphiques de diagnostic avec les résultats de certains tests.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\nLe graphique de gauche est un graphique quantile-quantile des résidus standardisés. Les résultats de trois tests statistiques sont également présentés: un test de Kolmogorov-Smirnov (*KS*) qui vérifie s'il y a un écart par rapport à la distribution théorique, un test de dispersion qui vérifie s'il y a une sous-dispersion ou une surdispersion et un test de valeurs aberrantes (*outlier*) basé sur le nombre de résidus qui sont plus extrêmes que toutes les simulations. Ici, nous obtenons un résultat significatif pour les valeurs aberrantes, bien que le message indique que ce résultat pourrait avoir un taux d'erreur de type I plus grand que prévu dans ce cas.\n\nÀ droite, nous obtenons généralement un graphique des résidus standardisés (en *y*) en fonction du rang des valeurs prédites, afin de vérifier l'absence de tendance résiduelle. Ici, les prédictions sont regroupées par quartile, il serait donc préférable d'agréger les prédictions et les résidus par village, ce que nous pouvons faire avec la fonction `recalculateResiduals`.\n\n```{r}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\nLe graphique de droite montre les points individuels, ainsi qu'une régression quantile pour le 1er quartile, la médiane et le 3e quartile. En théorie, ces trois courbes devraient être des lignes droites horizontales (pas de tendance des résidus par rapport aux prévisions). La courbe pour le 3e quartile (en rouge) est significativement différente d'une ligne horizontale, ce qui pourrait indiquer un effet systématique manquant dans le modèle.\n\n## GLMM spatial avec spaMM\n\nLe package *spaMM* (modèles mixtes spatiaux) est un package R relativement récent qui permet d'effectuer une estimation approximative du maximum de vraisemblance des paramètres pour les GLM avec dépendance spatiale, modélisés soit comme un processus gaussien, soit avec un CAR (nous verrons ce dernier dans la dernière section). Le package implémente différents algorithmes, mais il existe une fonction unique `fitme` qui choisit l'algorithme approprié pour chaque type de modèle. Par exemple, voici le même modèle (non spatial) que nous avons vu ci-dessus, ajusté avec *spaMM*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\nNotez que les estimés des effets fixes ainsi que la variance des effets aléatoires sont presque identiques à ceeux obtenues par `glmer` ci-dessus.\n\nNous pouvons maintenant utiliser *spaMM* pour ajuster le même modèle avec l'ajout de corrélations spatiales entre les villages. Dans la formule du modèle, ceci est représenté comme un effet aléatoire `Matern(1 | x + y)`, ce qui signifie que les ordonnées à l'origine sont spatialement corrélées entre les villages suivant une fonction de corrélation de Matérn des coordonnées (*x, y*). La fonction de Matérn est une fonction flexible de corrélation spatiale qui comprend un paramètre de forme $\\nu$ (`nu`), de sorte que lorsque $\\nu = 0,5$, elle est équivalente à la corrélation exponentielle, mais quand $\\nu$ prend de grandes valeurs, elle se rapproche d'une corrélation gaussienne. Nous pourrions laisser la fonction estimer $\\nu$, mais ici nous le fixons à 0.5 avec l'argument `fixed` de `fitme`.\n\n```{r}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\nsummary(mod_spamm)\n```\n\nCommençons par vérifier les effets aléatoires du modèle. La fonction de corrélation spatiale a un paramètre `rho` égal à 0.0513. Ce paramètre dans *spaMM* est l'inverse de la portée, donc ici la portée de la corrélation exponentielle est de 1/0.0513 ou environ 19.5 km. Il y a maintenant deux pramètres de variance, celui identifié comme `x + y` est la variance à longue distance (i.e. le palier) pour le modèle de corrélation exponentielle alors que celui identifié comme `id_village` montre la portion non corrélée de la variation entre les villages.\n\nSi nous avions ici laissé les effets aléatoires `(1 | id_village)` dans la formule pour représenter la partie non spatiale de la variation entre les villages, nous pourrions également représenter ceci avec un effet de pépite dans le modèle géostatistique. Dans les deux cas, cela représenterait l'idée que même deux villages très proches l'un de l'autre auraient des prévalences de base différentes dans le modèle.\n\nPar défaut, la fonction `Matern` n'a pas d'effet de pépite, mais nous pouvons en ajouter un en spécifiant une `pépite` non nulle dans la liste initiale des paramètres `init`.\n\n```{r}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\nsummary(mod_spamm2)\n```\n\nComme vous pouvez le voir, toutes les estimations sont les mêmes, sauf que la variance de la portion spatiale (palier) est maintenant de 0.84 et que la pépite est égale à une fraction 0.235 de ce palier, soit une variance de 0.197, ce qui est identique à l'effet aléatoire `id_village` dans la version ci-dessus. Les deux formulations sont donc équivalentes.\n\nMaintenant, rappelons les coefficients que nous avions obtenus pour le GLMM non spatial :\n\n```{r}\nsummary(mod_glmm)$coefficients\n```\n\nDans la version spatiale, les deux effets fixes se sont légèrement rapprochés de zéro, mais l'erreur-type de l'effet de `phc` a diminué. Il est intéressant de noter que l'inclusion de la dépendance spatiale nous a permis d'estimer plus précisément l'effet de la présence d'un centre de santé publique dans le village. Ce ne serait pas toujours le cas: pour un prédicteur qui est également fortement corrélé dans l'espace, la corrélation spatiale dans la réponse rend plus difficile l'estimation de l'effet de ce prédicteur, puisqu'il est confondu avec l'effet spatial. Cependant, pour un prédicteur qui n'est pas corrélé dans l'espace, l'inclusion de l'effet spatial réduit la variance résiduelle (non spatiale) et peut donc augmenter la précision de l'effet du prédicteur.\n\nLe package *spaMM* est également compatible avec *DHARMa* pour les diagnostics résiduels. (Vous pouvez ignorer l'avertissement selon lequel il ne fait pas partie de la classe des modèles pris en charge, cela est dû à l'utilisation de la fonction `fitme` plutôt que d'une fonction d'algorithme spécifique dans *spaMM*).\n\n```{r}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\nEnfin, bien que nous allons montrer comment calculer et visualiser des prédictions spatiales ci-dessous, nous pouvons produire une carte rapide des effets spatiaux estimés dans un modèle *spaMM* avec la fonction `filled.mapMM`.\n\n```{r}\nfilled.mapMM(mod_spamm2)\n```\n\n## Processus gaussiens vs. splines de lissage\n\nSi vous connaissez bien les modèles additifs généralisés (GAM), vous avez peut-être pensé à représenter la variation spatiale de la prévalence du paludisme (comme le montre la carte ci-dessus) par une spline de lissage en 2D (en fonction de $x$ et $y$) dans un GAM.\n\nLe code ci-dessous correspond à l'équivalent GAM de notre GLMM avec processus gaussien ci-dessus, ajusté avec la fonction `gam` du package *mgcv*. L'effet spatial est représenté par la spline 2D `s(x, y)` alors que l'effet aléatoire non spatial de village est représenté par `s(id_village, bs = \"re\")`, qui est équivalent à `(1 | id_village)` dans les modèles précédents. Notez que pour la fonction `gam`, les variables catégorielles doivent être explicitement converties en facteurs.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n\nPour visualiser la spline en 2D, nous utiliserons le package [*gratia*](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\nNotez que le graphique de la spline `s(x, y)` (en haut à droite) ne s'étend pas trop loin des emplacements des données (les autres zones sont vides). Dans ce graphique, on peut également voir que les effets aléatoires des villages suivent la distribution gaussienne attendue (en haut à gauche).\n\nEnsuite, nous utiliserons à la fois le GLMM spatial de la section précédente et ce GAMM pour prédire la prévalence moyenne sur une grille spatiale de points contenue dans le fichier [gambia_pred.csv](data/gambia_pred.csv). Le graphique ci-dessous ajoute ces points de prédiction (en noir) sur la carte précédente des points de données.\n\n```{r, message = FALSE, warning = FALSE}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\nPour faire des prédictions à partir du modèle GAMM à ces endroits, le code ci-dessous effectue les étapes suivantes:\n\n- Tous les prédicteurs du modèle doivent se trouver dans le tableau de données de prédiction, nous ajoutons donc des valeurs constantes de *netuse* et *phc* (toutes deux égales à 1) pour tous les points. Ainsi, nous ferons des prédictions sur la prévalence du paludisme dans le cas où un moustiquaire est utilisée et où un centre de santé publique est présent. Nous ajoutons également un *id_village* constant, bien qu'il ne soit pas utilisé dans les prédictions (voir ci-dessous).\n\n- Nous appelons la fonction `predict` à la sortie de `gam` pour produire des prédictions aux nouveaux points de données (argument `newdata`), en incluant les erreurs-types (`se.fit = TRUE`) et en excluant les effets aléatoires du village, donc la prédiction est faite pour un \"village moyen\". L'objet résultant `gam_pred` aura des colonnes `fit` (prédiction moyenne) et `se.fit` (erreur-type). Ces prédictions et erreurs-types sont sur l'échelle du lien (logit).\n\n- Nous rattachons le jeu de données de prédiction original à `gam_pred` avec `cbind`. \n\n- Nous ajoutons des colonnes pour la prédiction moyenne et les limites de l'intervalle de confiance à 50% (moyenne $\\pm$ 0.674 erreur-type), converties de l'échelle logit à l'échelle de probabilité avec `plogis`. Nous choisissons un intervalle de 50% car un intervalle de 95% peut être trop large ici pour contraster les différentes prédictions sur la carte à la fin de cette section.\n\n```{r}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n\n*Note* : La raison pour laquelle nous ne faisons pas de prédictions directement sur l'échelle de probabilité (réponse) est que la formule normale des intervalles de confiance s'applique plus précisément sur l'échelle logit. L'ajout d'un certain nombre d'erreurs-types autour de la moyenne sur l'échelle de probabilité conduirait à des intervalles moins précis et peut-être même à des intervalles de confiance en dehors de la plage de valeurs possible (0, 1) pour une probabilité.\n\nNous appliquons la même stratégie pour faire des prédictions à partir du GLMM spatial avec *spaMM*. Il y a quelques différences dans la méthode `predict` par rapport au cas du GAMM.\n\n- L'argument `binding = \"fit\"` signifie que les prédictions moyennes (colonne `fit`) seront attachées à l'ensemble de données de prédiction et retournées sous forme de tableau de données `spamm_pred`.\n\n- L'argument `variances = list(linPred = TRUE)` indique à `predict` de calculer la variance du prédicteur linéaire (donc le carré de l'erreur-type). Cependant, il apparaît comme un attribut `predVar` dans le tableau de données de sortie plutôt que dans une colonne `se.fit`, donc nous le déplaçons vers une colonne sur la ligne suivante. \n\n```{r}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n\nEnfin, nous combinons les deux ensembles de prédictions sous la forme de différentes rangées d'un tableau de données `pred_all` avec `bind_rows`. Le nom du tableau de données d'où provient chaque prédiction (`gam` ou `spamm`) apparaîtra dans la colonne \"model\" (argument `.id`). Pour simplifier la production du prochain graphique, nous utilisons ensuite `pivot_longer` dans le package *tidyr* pour changer les trois colonnes \"pred\", \"lo\" et \"hi\" en deux colonnes, \"stat\" et \"value\" (`pred_tall` a donc trois rangées pour chaque rangée dans `pred_all`).\n\n```{r}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n\nUne fois ces étapes franchies, nous pouvons enfin examiner les cartes de prédiction (moyenne, limites inférieure et supérieure de l'intervalle de confiance à 50 %) à l'aide d'un graphique `ggplot`. Les points de données originaux sont indiqués en rouge.\n\n```{r}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\nBien que les deux modèles s'accordent à dire que la prévalence est plus élevée près du groupe de villages de l'est, le GAMM estime également une prévalence plus élevée en quelques points (bord ouest et autour du centre) où il n'y a pas de données. Il s'agit d'un artefact de la forme de la spline autour des points de données, puisqu'une spline est censée correspondre à une tendance globale, bien que non linéaire. En revanche, le modèle géostatistique représente l'effet spatial sous forme de corrélations locales et revient à la prévalence moyenne globale lorsqu'il est éloigné de tout point de données, ce qui est une supposition plus sûre. C'est l'une des raisons pour lesquelles il est préférable de choisir un modèle géostatistique / processus gaussien dans ce cas.\n\n## Méthodes bayésiennes pour les GLMM avec processus gaussiens\n\nLes modèles bayésiens fournissent un cadre flexible pour exprimer des modèles avec une structure de dépendance complexe entre les données, y compris la dépendance spatiale. Cependant, l'ajustement d'un modèle de processus gaussien avec une approche entièrement bayésienne peut être lent, en raison de la nécessité de calculer une matrice de covariance spatiale entre toutes les paires de points à chaque itération. \n\nLa méthode INLA (pour *integrated nested Laplace approximation*) effectue un calcul approximatif de la distribution postérieure bayésienne, ce qui la rend adaptée aux problèmes de régression spatiale. Nous ne l'abordons pas dans ce cours, mais je recommande le manuel de Paula Moraga (dans la section des références ci-dessous) qui fournit des exemples concrets d'utilisation de la méthode INLA pour divers modèles de données géostatistiques et aréales, dans le contexte de l'épidémiologie, y compris des modèles avec une dépendance à la fois spatiale et temporelle. Le livre présente les mêmes données sur le paludisme en Gambie comme exemple d'un ensemble de données géostatistiques, ce qui a inspiré son utilisation dans ce cours.\n\n# GLMM avec autorégression spatiale {#glmm-spatial-autoreg-fr}\n\nNous revenons au dernier exemple de la partie précédente, où nous avions modélisé le taux de cas de COVID-19 (cas / 1000) pour les divisions administratives du réseau de la santé (RLS) au Québec en fonction de leur densité de population. Le taux est donné par la colonne \"taux_1k\" dans le *shapefile* `rls_covid`.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\nAuparavant, nous avions modélisé le logarithme de ce taux comme une fonction linéaire du logarithme de la densité de population, la variance résiduelle étant corrélée entre les unités voisines via une structure CAR (autorégression conditionnelle), comme le montre le code ci-dessous.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n*Rappel*: La fonction `poly2nb` du package *spdep* crée une liste de voisins basée sur les polygones limitrophes dans un *shapefile*, puis `nb2listw` la convertit en une liste de poids, ici des poids binaires (`style = \"B\"`) de sorte que chaque région limitrophe reçoive le même poids de 1 dans le modèle autorégressif.\n\nAu lieu d'utiliser les taux, il serait possible de modéliser directement les cas avec une régression de Poisson, qui est appropriée pour les données de comptage. Pour tenir compte du fait que si le risque par personne était égal, les cas seraient proportionnels à la population, nous pouvons ajouter la population de l'unité `pop` comme *offset* dans la régression de Poisson. Par conséquent, le modèle ressemblerait à : `cas ~ log(dens_pop) + offset(log(pop))`. Notez que puisque la régression de Poisson utilise un lien logarithmique, ce modèle avec `log(pop)` comme *offset* suppose que `log(cas / pop)` (donc le taux logarithmique) est proportionnel à `log(dens_pop)`, tout comme le modèle linéaire ci-dessus, mais il a l'avantage de modéliser la variabilité des données brutes (le nombre de cas) directement avec une distribution de Poisson.\n\nNous n'avons pas la population dans ces données, mais nous pouvons l'estimer à partir des cas et du taux (cas / 1000) comme suit:\n\n```{r}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n\nPour définir un modèle CAR dans *spaMM*, nous avons besoin d'une matrice de poids plutôt que d'une liste de poids comme dans le package *spatialreg*. Heureusement, le package *spdep* comprend également une fonction `nb2mat` pour convertir la liste des voisins en une matrice de poids, là encore en utilisant des poids binaires. Pour éviter un avertissement dans R, nous spécifions que les noms des lignes et des colonnes de cette matrice doivent être égaux aux identifiants associés à chaque unité (`RLS_code`). Ensuite, nous ajoutons un terme `adjacency(1 | RLS_code)` au modèle pour spécifier que la variation résiduelle entre les différents groupes définis par `RLS_code` est spatialement corrélée avec une structure CAR (ici, chaque groupe n'a qu'une observation puisque nous avons un point de données par unité RLS).\n\n```{r}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\nNotez que le coefficient de corrélation spatiale `rho` (0.158) est similaire à la quantité équivalente dans le modèle `spautolm` ci-dessus, où il était appelé `Lambda`. L'effet de `log(dens_pop)` est également d'environ 0.2 dans les deux modèles.\n\n\n## Référence\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Disponible en ligne: [https://www.paulamoraga.com/book-geospatial/](https://www.paulamoraga.com/book-geospatial/). \n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":true,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Spatial Statistics in Ecology","description":"Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). |\nSession de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).\n","author":[{"name":"Philippe Marchand","affiliation":"Université du Québec en Abitibi-Témiscamingue"}],"categories":["FR","EN","Technical"],"date":"2021-01-12","image":"image.jpg","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Spatial Statistics in Ecology","markdown":{"yaml":{"title":"Spatial Statistics in Ecology","description":"Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). |\nSession de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).\n","author":"Philippe Marchand","categories":["FR","EN","Technical"],"date":"2021-01-12","image":"image.jpg","toc":true,"number-sections":true,"number-depth":1,"execute":{"freeze":true,"cache":true}},"headingText":"Spatial Statistics in Ecology","containsRefs":false,"markdown":"\n\nVersion en français [à la suite](#statistiques-spatiales-en-écologie).\n\n\nBIOS² hosted an online training session about statistical analysis of spatial data in ecology, led by Pr. Philippe Marchand (UQAT). This 12-hour training was conducted in 4 sessions: January 12, 14, 19 & 21 (2021) from 1:00 to 4:00 pm EST.\n\nThe content included three types of spatial statistical analyses and their applications to ecology: (1) point pattern analysis to study the distribution of individuals or events in space; (2) geostatistical models to represent the spatial correlation of variables sampled at geolocated points; and (3) areal data models, which apply to measurements taken on areas in space and model spatial relationships as networks of neighbouring regions. The training also included practical exercises using the R statistical programming environment.\n\n[Philippe Marchand](https://github.com/pmarchand1) is a professor in ecology and biostatistics at Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) and BIOS² academic member. His research focuses on modeling processes that influence the spatial distribution of populations, including: seed dispersal and seedling establishment, animal movement, and the spread of forest diseases.\n\n**If you wish to consult the lesson materials and follow the exercises at your own pace, you can access them through [this link](https://bios2.github.io/Marchand.html#category:EN). Basic knowledge of linear regression models and experience fitting them in R is recommended. Original repository can be found [here](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Course outline\n\n| Day | Topics (EN) |\n|-----------------|:--------------------------|\n| 1 | • [Introduction to spatial statistics](#introduction)
• [Point pattern analysis](#point-pattern)
|\n| 2 | • [Spatial correlation](#spatial-correlation)
• [Geostatistical models](#geostat-models) |\n| 3 | • [Areal data](#areal-data)
• [Moran's I](#moran-i)
• [Spatial autoregression models](#spatial-autoreg)
• [Analysis of areal data in R](#analysis-areal) |\n| 4 | • [GLMM with spatial Gaussian process](#glmm-spatial-gaussian)
• [GLMM with spatial autoregression](#glmm-spatial-autoreg) |\n\n\n# Introduction to spatial statistics {#introduction}\n\n## Types of spatial analyses\n\nIn this training, we will discuss three types of spatial analyses: point pattern analysis, geostatistical models and models for areal data.\n\nIn **point pattern analysis**, we have point data representing the position of individuals or events in a study area and we assume that all individuals or events have been identified in that area. That analysis focuses on the distribution of the positions of the points themselves. Here are some typical questions for the analysis of point patterns:\n\n- Are the points randomly arranged or clustered?\n\n- Are two types of points arranged independently?\n\n**Geostatistical models** represent the spatial distribution of continuous variables that are measured at certain sampling points. They assume that measurements of those variables at different points are correlated as a function of the distance between the points. Applications of geostatistical models include the smoothing of spatial data (e.g., producing a map of a variable over an entire region based on point measurements) and the prediction of those variables for non-sampled points.\n\n**Areal data** are measurements taken not at points, but for regions of space represented by polygons (e.g. administrative divisions, grid cells). Models representing these types of data define a network linking each region to its neighbours and include correlations in the variable of interest between neighbouring regions.\n\n## Stationarity and isotropy\n\nSeveral spatial analyses assume that the variables are **stationary** in space. As with stationarity in the time domain, this property means that summary statistics (mean, variance and correlations between measures of a variable) do not vary with translation in space. For example, the spatial correlation between two points may depend on the distance between them, but not on their absolute position.\n\nIn particular, there cannot be a large-scale trend (often called *gradient* in a spatial context), or this trend must be taken into account before modelling the spatial correlation of residuals.\n\nIn the case of point pattern analysis, stationarity (also called homogeneity) means that point density does not follow a large-scale trend.\n\nIn a **isotropic** statistical model, the spatial correlations between measurements at two points depend only on the distance between the points, not on the direction. In this case, the summary statistics do not change under a spatial rotation of the data.\n\n## Georeferenced data\n\nEnvironmental studies increasingly use data from geospatial data sources, i.e. variables measured over a large part of the globe (e.g. climate, remote sensing). The processing of these data requires concepts related to Geographic Information Systems (GIS), which are not covered in this workshop, where we focus on the statistical aspects of spatially varying data.\n\nThe use of geospatial data does not necessarily mean that spatial statistics are required. For example, we will often extract values of geographic variables at study points to explain a biological response observed in the field. In this case, the use of spatial statistics is only necessary when there is a spatial correlation in the residuals, after controlling for the effect of the predictors.\n\n# Point pattern analysis {#point-pattern}\n\n## Point pattern and point process\n\nA *point pattern* describes the spatial position (most often in 2D) of individuals or events, represented by points, in a given study area, often called the observation \"window\".\n\nIt is assumed that each point has a negligible spatial extent relative to the distances between the points. More complex methods exist to deal with spatial patterns of objects that have a non-negligible width, but this topic is beyond the scope of this workshop.\n\nA *point process* is a statistical model that can be used to simulate point patterns or explain an observed point pattern.\n\n## Complete spatial randomness\n\nComplete spatial randomness (CSR) is one of the simplest point patterns, which serves as a null model for evaluating the characteristics of real point patterns. In this pattern, the presence of a point at a given position is independent of the presence of points in a neighbourhood.\n\nThe process creating this pattern is a homogeneous Poisson process. According to this model, the number of points in any area $A$ follows a Poisson distribution: $N(A) \\sim \\text{Pois}(\\lambda A)$, where $\\lambda$ is the *intensity* of the process (i.e. the density of points per unit area). $N$ is independent between two disjoint regions, no matter how those regions are defined.\n\nIn the graph below, only the pattern on the right is completely random. The pattern on the left shows point aggregation (higher probability of observing a point close to another point), while the pattern in the center shows repulsion (low probability of observing a point very close to another).\n\n```{r, include = FALSE}\nlibrary(spatstat)\n```\n\n```{r, echo = FALSE, fig.dim = c(9, 3)}\nset.seed(82)\ncsrp <- rpoispp(lambda = 100)\naggp <- rMatClust(20, 0.1, 5)\nevenp <- rMaternII(150, 0.05)\npar(mfrow = c(1, 3))\nplot(aggp, main = \"Aggregation\", pch = 19)\nplot(evenp, main = \"Repulsion\", pch = 19)\nplot(csrp, main = \"Random\", pch = 19)\n```\n\n## Exploratory or inferential analysis for a point pattern\n\nSeveral summary statistics are used to describe the characteristics of a point pattern. The simplest is the intensity $\\lambda$, which as mentioned above represents the density of points per unit area. If the point pattern is heterogeneous, the intensity is not constant, but depends on the position: $\\lambda(x, y)$.\n\nCompared to intensity, which is a first-order statistic, second-order statistics describe how the probability of the presence of a point in a region depends on the presence of other points. The Ripley's $K$ function presented in the next section is an example of a second-order summary statistic.\n\nStatistical inferences on point patterns usually consist of testing the hypothesis that the point pattern corresponds to a given null model, such as CSR or a more complex null model. Even for the simplest null models, we rarely know the theoretical distribution for a summary statistic of the point pattern under the null model. Hypothesis tests on point patterns are therefore performed by simulation: a large number of point patterns are simulated from the null model and the distribution of the summary statistics of interest for these simulations is compared to their values for the observed point pattern.\n\n## Ripley's K function\n\nRipley's K function $K(r)$ is defined as the mean number of points within a circle of radius $r$ around a point in the pattern, standardized by the intensity $\\lambda$.\n\nUnder the CSR null model, the mean number of points in any circle of radius $r$ is $\\lambda \\pi r^2$, thus in theory $K(r) = \\pi r^2$ for that model. A higher value of $K(r)$ means that there is an aggregation of points at the scale $r$, whereas a lower value means that there is repulsion.\n\nIn practice, $K(r)$ is estimated for a specific point pattern by the equation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\nwhere $A$ is the area of the observation window and $n$ is the number of points in the pattern, so $n(n-1)$ is the number of distinct pairs of points. We take the sum for all pairs of points of the indicator function $I$, which takes a value of 1 if the distance between points $i$ and $j$ is less than or equal to $r$. Finally, the term $w_{ij}$ is used to give extra weight to certain pairs of points to account for edge effects, as discussed in the next section.\n\nFor example, the graphs below show the estimated $K(r)$ function for the patterns shown above, for values of $r$ up to 1/4 of the window width. The red dashed curve shows the theoretical value for CSR and the gray area is an \"envelope\" produced by 99 simulations of that null pattern. The aggregated pattern shows an excess of neighbours up to $r = 0.25$ and the pattern with repulsion shows a significant deficit of neighbours for small values of $r$.\n\n```{r, include = FALSE}\nkagg <- envelope(aggp, Kest, correction = \"iso\") \nkeven <- envelope(evenp, Kest, correction = \"iso\")\nkcsr <- envelope(csrp, Kest, correction = \"iso\")\n```\n\n```{r, echo = FALSE, fig.dim = c(9, 3)}\npar(mfrow = c(1, 3))\nplot(kagg, main = \"Aggregation\", legend = FALSE)\nplot(keven, main = \"Repulsion\", legend = FALSE)\nplot(kcsr, main = \"Random\", legend = FALSE)\n```\n\nIn addition to $K$, there are other statistics to describe the second-order properties of point patterns, such as the mean distance between a point and its nearest $N$ neighbours. You can refer to the Wiegand and Moloney (2013) textbook in the references to learn more about different summary statistics for point patterns.\n\n## Edge effects\n\nIn the context of point pattern analysis, edge effects are due to the fact that we have incomplete knowledge of the neighbourhood of points near the edge of the observation window, which can induce a bias in the calculation of statistics such as Ripley's $K$.\n\nDifferent methods have been developed to correct the bias due to edge effects. In Ripley's edge correction method, the contribution of a neighbour $j$ located at a distance $r$ from a point $i$ receives a weight $w_{ij} = 1/\\phi_i(r)$, where $\\phi_i(r)$ is the fraction of the circle of radius $r$ around $i$ contained in the observation window. For example, if 2/3 of the circle is in the window, this neighbour counts as 3/2 neighbours in the calculation of a statistic like $K$.\n\n![](images/ripley_edge.png)\n\nRipley's method is one of the simplest to correct for edge effects, but is not necessarily the most efficient; in particular, larger weights given to certain pairs of points tend to increase the variance of the calculated statistic. Other correction methods are presented in specialized textbooks, such as Wiegand and Moloney (2013).\n\n## Example\n\nFor this example, we use the dataset [semis_xy.csv](data/semis_xy.csv), which represents the $(x, y)$ coordinates for seedlings of two species (*sp*, B = birch and P = poplar) in a 15 x 15 m plot.\n\n```{r}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\nThe *spatstat* package provides tools for point pattern analysis in R. The first step consists in transforming our data frame into a `ppp` object (point pattern) with the function of the same name. In this function, we specify which columns contain the coordinates *x* and *y* as well as the *marks*, which here will be the species codes. We also need to specify an observation window (`window`) using the `owin` function, where we provide the plot limits in *x* and *y*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\nMarks can be numeric or categorical. Note that for categorical marks as is the case here, the variable must be explicitly converted to a factor.\n\nThe `plot` function applied to a point pattern shows a diagram of the pattern.\n\n```{r}\nplot(semis)\n```\n\nThe `intensity` function calculates the density of points of each species by unit area (here, by $m^2$).\n\n```{r}\nintensity(semis)\n```\n\nTo first analyze the distribution of each species separately, we split the pattern with `split`. Since the pattern contains categorical marks, it is automatically split according to the values of those marks. The result is a list of two point patterns.\n\n```{r}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\nThe `Kest` function calculates Ripley's $K$ for a series of distances up to (by default) 1/4 of the width of the window. Here we apply it to the first pattern (birch) by choosing `semis_split[[1]]`. Note that double square brackets are necessary to choose an item from a list in R.\n\nThe argument `correction = \"iso\"` tells the function to apply Ripley's correction for edge effects.\n\n```{r}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\nAccording to this graph, there seems to be an excess of neighbours for distances of 1 m and above. To check if this is a significant difference, we produce a simulation envelope with the `envelope` function. The first argument of `envelope` is a point pattern to which the simulations will be compared, the second one is a function to be computed (here, `Kest`) for each simulated pattern, then we add the arguments of the `Kest` function (here, only `correction`).\n\n```{r}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\nAs indicated by the message, by default the function performs 99 simulations of the null model corresponding to complete spatial randomness (CSR).\n\nThe observed curve falls outside the envelope of the 99 simulations near $r = 2$. We must be careful not to interpret too quickly a result that is outside the envelope. Although there is about a 1% probability of obtaining a more extreme result under the null hypothesis at a given distance, the envelope is calculated for a large number of values of $r$ and is not corrected for multiple comparisons. Thus, a significant difference for a very small range of values of $r$ may be simply due to chance.\n\n### Exercise 1\n\nLooking at the graph of the second point pattern (poplar seedlings), can you predict where Ripley's $K$ will be in relation to the null hypothesis of complete spatial randomness? Verify your prediction by calculating Ripley's $K$ for this point pattern in R.\n\n## Effect of heterogeneity\n\nThe graph below illustrates a *heterogeneous* point pattern, i.e. it shows an density gradient (more points on the left than on the right).\n\n```{r, include = FALSE}\nlam_gr <- function(x, y) ifelse(x < 0.5, 500*(1-x), 200*(1-x))\nhetp <- rpoispp(lam_gr)\nkhet <- envelope(hetp, Kest, correction = \"iso\")\n```\n\n```{r, echo = FALSE}\npar(mfrow = c(1, 2))\nplot(hetp, pch = 19, main = \"\")\nplot(khet, main = \"\", legend = FALSE)\n```\n\nA density gradient can be confused with an aggregation of points, as can be seen on the graph of the corresponding Ripley's $K$. In theory, these are two different processes:\n\n- Heterogeneity: The density of points varies in the study area, for example due to the fact that certain local conditions are more favorable to the presence of the species of interest.\n\n- Aggregation: The mean density of points is homogeneous, but the presence of one point increases the presence of other points in its vicinity, for example due to positive interactions between individuals.\n\nHowever, it may be difficult to differentiate between the two in practice, especially since some patterns may be both heterogeneous and aggregated.\n\nLet's take the example of the poplar seedlings from the previous exercise. The `density` function applied to a point pattern performs a kernel density estimation of the density of the seedlings across the plot. By default, this function uses a Gaussian kernel with a standard deviation `sigma` specified in the function, which determines the scale at which density fluctuations are \"smoothed\". Here, we use a value of 2 m for `sigma` and we first represent the estimated density with `plot`, before overlaying the points (`add = TRUE` means that the points are added to the existing plot rather than creating a new plot).\n\n```{r}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\nTo measure the aggregation or repulsion of points in a heterogeneous pattern, we must use the inhomogeneous version of the $K$ statistic (`Kinhom` in *spatstat*). This statistic is still equal to the mean number of neighbours within a radius $r$ of a point in the pattern, but rather than standardizing this number by the overall intensity of the pattern, it is standardized by the local estimated density. As above, we specify `sigma = 2` to control the level of smoothing for the varying density estimate.\n\n```{r}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\nTaking into account the heterogeneity of the pattern at a scale `sigma` of 2 m, there seems to be a deficit of neighbours starting at a radius of about 1.5 m. We can now check whether this deviation is significant.\n\nAs before, we use `envelope` to simulate the `Kinhom` statistic under the null model. However, the null model here is not a homogeneous Poisson process (CSR). It is instead a heterogeneous Poisson process simulated by the function `rpoispp(dens_p)`, i.e. the points are independent of each other, but their density is heterogeneous and given by `dens_p`. The `simulate` argument of the `envelope` function specifies the function used for simulations under the null model; this function must have one argument, here `x`, even if it is not used.\n\nFinally, in addition to the arguments needed for `Kinhom`, i.e. `sigma` and `correction`, we also specify `nsim = 199` to perform 199 simulations and `nrank = 5` to eliminate the 5 most extreme results on each side of the envelope, i.e. the 10 most extreme results out of 199, to achieve an interval containing about 95% of the probability under the null hypothesis.\n\n```{r}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\nplot(khet_p)\n```\n\n*Note*: For a hypothesis test based on simulations of a null hypothesis, the $p$-value is estimated by $(m + 1)/(n + 1)$, where $n$ is the number of simulations and $m$ is the number of simulations where the value of the statistic is more extreme than that of the observed data. This is why the number of simulations is often chosen to be 99, 199, etc.\n\n### Exercise 2\n\nRepeat the heterogeneous density estimation and `Kinhom` calculation with a standard deviation `sigma` of 5 rather than 2. How does the smoothing level for the density estimation influence the conclusions?\n\nTo differentiate between a variation in the density of points from an interaction (aggregation or repulsion) between these points with this type of analysis, it is generally assumed that the two processes operate at different scales. Typically, we can test whether the points are aggregated at a small scale after accounting for a variation in density at a larger scale.\n\n## Relationship between two point patterns\n\nLet's consider a case where we have two point patterns, for example the position of trees of two species in a plot (orange and green points in the graph below). Each of the two patterns may or may not present an aggregation of points.\n\n```{r, echo = FALSE}\ndata(lansing)\nlansing <- subset(lansing, marks %in% c(\"maple\", \"redoak\"), drop = TRUE)\nplot(lansing, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"\", legend = FALSE)\n```\n\nRegardless of whether points are aggregated at the species level, we want to determine whether the two species are arranged independently. In other words, does the probability of observing a tree of one species depend on the presence of a tree of the other species at a given distance?\n\nThe bivariate version of Ripley's $K$ allows us to answer this question. For two patterns noted 1 and 2, the function $K_{12}(r)$ calculates the mean number of points in pattern 2 within a radius $r$ from a point in pattern 1, standardized by the density of pattern 2.\n\nIn theory, this function is symmetrical, so $K_{12}(r) = K_{21}(r)$ and the result would be the same whether the points of pattern 1 or 2 are chosen as \"focal\" points for the analysis. However, the estimation of the two quantities for an observed pattern may differ, in particular because of edge effects. The variance of $K_{12}$ and $K_{21}$ between simulations of a null model may also differ, so the null hypothesis test may have more or less power depending on the choice of the focal species.\n\nThe choice of an appropriate null model is important here. In order to determine whether there is a significant attraction or repulsion between the two patterns, the position of one of the patterns must be randomly moved relative to that of the other pattern, while keeping the spatial structure of each pattern taken in isolation.\n\nOne way to do this randomization is to shift one of the two patterns horizontally and/or vertically by a random distance. The part of the pattern that \"comes out\" on one side of the window is attached to the other side. This method is called a toroidal shift, because by connecting the top and bottom as well as the left and right of a rectangular surface, we obtain the shape of a torus (a three-dimensional \"donut\").\n\n```{r, echo = FALSE}\npar(mfrow = c(1, 2))\nset.seed(35)\nrsh <- rshift(lansing, which = 1, width = 0.5, height = 0)\nplot(lansing, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"Original\", legend = FALSE)\nrect(xleft = 1 - rsh$x[8], xright = 1, ybottom = 0, ytop = 1, \n col = rgb(0, 0, 0, alpha = 0.1))\nplot(rsh, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"After translation\", legend = FALSE)\nrect(xleft = 0, xright = rsh$x[8], ybottom = 0, ytop = 1, \n col = rgb(0, 0, 0, alpha = 0.1))\n```\n\nThe graph above shows a translation of the green pattern to the right, while the orange pattern remains in the same place. The green points in the shaded area are brought back on the other side. Note that while this method generally preserves the structure of each pattern while randomizing their relative position, it can have some drawbacks, such as dividing point clusters that are near the cutoff point.\n\nLet's now check whether the position of the two species (birch and poplar) is independent in our plot. The function `Kcross` calculates the bivariate $K_{ij}$, we must specify which type of point (mark) is considered as the focal species $i$ and the neighbouring species $j$.\n\n```{r}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\nHere, the observed $K$ is lower than the theoretical value, indicating a possible repulsion between the two patterns.\n\nTo determine the envelope of the $K$ under the null hypothesis of independence of the two patterns, we must specify that the simulations are based on a translation of the patterns. We indicate that the simulations use the function `rshift` (random translation) with the argument `simulate = function(x) rshift(x, which = \"B\")`; here, the `x` argument in `simulate` corresponds to the original point pattern and the `which` argument indicates which of the patterns is translated. As in the previous case, the arguments needed for `Kcross`, i.e. `i`, `j` and `correction`, must be repeated in the `envelope` function.\n\n```{r}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\nHere, the observed curve is totally within the envelope, so we do not reject the null hypothesis of independence of the two patterns.\n\n### Questions\n\n1. What would be one reason for our choice to translate the points of the birch rather than poplar?\n\n2. Would the simulations generated by random translation be a good null model if the two patterns were heterogeneous?\n\n## Marked point patterns\n\nThe [fir.csv](data/fir.csv) dataset contains the $(x, y)$ coordinates of 822 fir trees in a 1 hectare plot and their status (A = alive, D = dead) following a spruce budworm outbreak.\n\n```{r}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n```{r}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\nSuppose that we want to check whether fir mortality is independent or correlated between neighbouring trees. How does this question differ from the previous example, where we wanted to know if the position of the points of two species was independent?\n\nIn the previous example, the independence or interaction between the species referred to the formation of the pattern itself (whether or not seedlings of one species establish near those of the other species). Here, the characteristic of interest (survival) occurs after the establishment of the pattern, assuming that all those trees were alive at first and that some died as a result of the outbreak. So we take the position of the trees as fixed and we want to know whether the distribution of status (dead, alive) among those trees is random or shows a spatial pattern.\n\nIn Wiegand and Moloney's textbook, the first situation (establishment of seedlings of two species) is called a bivariate pattern, so it is really two interacting patterns, while the second is a single pattern with a qualitative *mark*. The *spatstat* package in R does not differentiate between the two in terms of pattern definition (types of points are always represented by the `marks` argument), but the analysis methods applied to the two questions differ.\n\nIn the case of a pattern with a qualitative mark, we can define a *mark connection function* $p_{ij}(r)$. For two points separated by a distance $r$, this function gives the probability that the first point has the mark $i$ and the second the mark $j$. Under the null hypothesis where the marks are independent, this probability is equal to the product of the proportions of each mark in the entire pattern, $p_{ij}(r) = p_i p_j$ independently of $r$.\n\nIn *spatstat*, the mark connection function is computed with the `markconnect` function, where the marks $i$ and $j$ and the type of edge correction must be specified. In our example, we see that two closely spaced points are less likely to have a different status (A and D) than expected under the assumption of random and independent distribution of marks (red dotted line).\n\n```{r}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\nIn this graph, the fluctuations in the function are due to the estimation error of a continuous $r$ function from a limited number of discrete point pairs.\n\nTo simulate the null model in this case, we use the `rlabel` function, which randomly reassigns the marks among the points of the pattern, keeping the points' positions fixed.\n\n```{r}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\nNote that since the `rlabel` function has only one required argument corresponding to the original point pattern, it was not necessary to specify: `simulate = function(x) rlabel(x)`.\n\nHere are the results for tree pairs of the same status A or D:\n\n```{r, fig.dim = c(10, 5)}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\nIt therefore appears that fir mortality due to this outbreak is spatially aggregated, since trees located in close proximity to each other have a greater probability of sharing the same status than predicted by the null hypothesis.\n\n## References\n\nFortin, M.-J. and Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK.\n\nWiegand, T. and Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nThe dataset in the last example is a subet of the Lake Duparquet Research and Teaching Forest (LDRTF) data, available on Dryad [here](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n# Solutions\n\n### Exercise 1\n\n```{r}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\nPoplar seedlings seem to be significantly aggregated according to the $K$ function.\n\n### Exercise 2\n\n```{r}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\nplot(khet_p)\n```\n\nHere, as we estimate density variations at a larger scale, even after accounting for this variation, the poplar seedlings seem to be aggregated at a small scale.\n\n# Spatial correlation of a variable {#spatial-correlation}\n\n```{r setup-spatial, include=FALSE}\n# knitr::opts_chunk$set(echo = TRUE)\nlibrary(tidyverse)\nlibrary(cowplot)\ntheme_set(theme_cowplot())\n```\n\nCorrelation between measurements of a variable taken at nearby points often occurs in environmental data. This principle is sometimes referred to as the \"first law of geography\" and is expressed in the following quote from Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things\".\n\nIn statistics, we often refer to *autocorrelation* as the correlation between measurements of the same variable taken at different times (temporal autocorrelation) or places (spatial autocorrelation).\n\n## Intrinsic or induced dependence\n\nThere are two basic types of spatial dependence on a measured variable $y$: an *intrinsic* dependence on $y$, or a dependence *induced* by external variables influencing $y$, which are themselves spatially correlated.\n\nFor example, suppose that the abundance of a species is correlated between two sites located near each other:\n\n- this spatial dependence can be induced if it is due to a spatial correlation of habitat factors that are favorable or unfavorable to the species;\n\n- or it can be intrinsic if it is due to the dispersion of individuals to nearby sites.\n\nIn many cases, both types of dependence affect a given variable.\n\nIf the dependence is simply induced and the external variables that cause it are included in the model explaining $y$, then the model residuals will be independent and we can use all the methods already seen that ignore spatial correlation.\n\nHowever, if the dependence is intrinsic or due to unmeasured external factors, then the spatial correlation of the residuals in the model will have to be taken into account.\n\n## Different ways to model spatial effects\n\nIn this training, we will directly model the spatial correlations of our data. It is useful to compare this approach to other ways of including spatial aspects in a statistical model.\n\nFirst, we could include predictors in the model that represent position (e.g., longitude, latitude). Such predictors may be useful for detecting a systematic large-scale trend or gradient, whether or not the trend is linear (e.g., with a generalized additive model).\n\nIn contrast to this approach, the models we will see now serve to model a spatial correlation in the random fluctuations of a variable (i.e., in the residuals after removing any systematic effect).\n\nMixed models use random effects to represent the non-independence of data on the basis of their grouping, i.e., after accounting for systematic fixed effects, data from the same group are more similar (their residual variation is correlated) than data from different groups. These groups were sometimes defined according to spatial criteria (observations grouped into sites).\n\nHowever, in the context of a random group effect, all groups are as different from each other, e.g., two sites within 100 km of each other are no more or less similar than two sites 2 km apart.\n\nThe methods we will see here and in the next parts of the training therefore allow us to model non-independence on a continuous scale (closer = more correlated) rather than just discrete (hierarchy of groups).\n\n# Geostatistical models {#geostat-models}\n\nGeostatistics refers to a group of techniques that originated in the earth sciences. Geostatistics is concerned with variables that are continuously distributed in space and where a number of points are sampled to estimate this distribution. A classic example of these techniques comes from the mining field, where the aim was to create a map of the concentration of ore at a site from samples taken at different points on the site.\n\nFor these models, we will assume that $z(x, y)$ is a stationary spatial variable measured at points with coordinates $x$ and $y$.\n\n## Variogram\n\nA central aspect of geostatistics is the estimation of the variogram $\\gamma_z$ . The variogram is equal to half the mean square difference between the values of $z$ for two points $(x_i, y_i)$ and $(x_j, y_j)$ separated by a distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nIn this equation, the $\\text{E}$ function with the index $d_{ij}=h$ designates the statistical expectation (i.e., the mean) of the squared deviation between the values of $z$ for points separated by a distance $h$.\n\nIf we want instead to express the autocorrelation $\\rho_z(h)$ between measures of $z$ separated by a distance $h$, it is related to the variogram by the equation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\nwhere $\\sigma_z^2$ is the global variance of $z$.\n\nNote that $\\gamma_z = \\sigma_z^2$ when we reach a distance where the measurements of $z$ are independent, so $\\rho_z = 0$. In this case, we can see that $\\gamma_z$ is similar to a variance, although it is sometimes called \"semivariogram\" or \"semivariance\" because of the 1/2 factor in the above equation.\n\n## Theoretical models for the variogram\n\nSeveral parametric models have been proposed to represent the spatial correlation as a function of the distance between sampling points. Let us first consider a correlation that decreases exponentially:\n\n$$\\rho_z(h) = e^{-h/r}$$\n\nHere, $\\rho_z = 1$ for $h = 0$ and the correlation is multiplied by $1/e \\approx 0.37$ each time the distance increases by $r$. In this context, $r$ is called the *range* of the correlation.\n\nFrom the above equation, we can calculate the corresponding variogram.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nHere is a graphical representation of this variogram.\n\n```{r, echo = FALSE}\nggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma)) +\n stat_function(fun = function(x) 5 * (1 - exp(-x/3)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\") +\n geom_segment(aes(x = 0, xend = 2.8, y = 5*(1-exp(-1)),\n yend = 5*(1-exp(-1))), \n arrow = arrow(length = unit(0.05, \"inches\"), ends = \"both\", type = \"closed\")) +\n annotate(\"text\", x = 1.5, y = 3.5, label = \"range\") +\n annotate(\"text\", x = 9, y = 5.5, label = \"sill\") +\n scale_y_continuous(limits = c(0, 6))\n```\n\nBecause of the exponential function, the value of $\\gamma$ at large distances approaches the global variance $\\sigma_z^2$ without exactly reaching it. This asymptote is called a *sill* in the geostatistical context and is represented by the symbol $s$.\n\nFinally, it is sometimes unrealistic to assume a perfect correlation when the distance tends towards 0, because of a possible variation of $z$ at a very small scale. A *nugget* effect, denoted $n$, can be added to the model so that $\\gamma$ approaches $n$ (rather than 0) if $h$ tends towards 0. The term nugget comes from the mining origin of these techniques, where a nugget could be the source of a sudden small-scale variation in the concentration of a mineral.\n\nBy adding the nugget effect, the remainder of the variogram is \"compressed\" to keep the same sill, resulting in the following equation.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nIn the *gstat* package that we use below, the term $(s-n)$ is called a *partial sill* or `psill` for the exponential portion of the variogram.\n\n```{r, echo = FALSE}\nggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma)) +\n stat_function(fun = function(x) 4 * (1 - exp(-x/3)) + 1,\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\") +\n geom_segment(aes(x = 0, xend = 2.8, y = 4*(1-exp(-1)) + 1,\n yend = 4*(1-exp(-1)) + 1), \n arrow = arrow(length = unit(0.05, \"inches\"), \n ends = \"both\", type = \"closed\")) +\n geom_segment(aes(x = 0, xend = 0, y = 0, yend = 0.9),\n arrow = arrow(length = unit(0.05, \"inches\"),\n ends = \"both\", type = \"closed\")) +\n annotate(\"text\", x = 1.5, y = 4, label = \"range\") +\n annotate(\"text\", x = 9, y = 5.5, label = \"sill\") +\n annotate(\"text\", x = 0.5, y = 0.5, label = \"nugget\") +\n scale_y_continuous(limits = c(0, 6))\n```\n\nIn addition to the exponential model, two other common theoretical models for the variogram are the Gaussian model (where the correlation follows a half-normal curve), and the spherical model (where the variogram increases linearly at the start and then curves and reaches the plateau at a distance equal to its range $r$). The spherical model thus allows the correlation to be exactly 0 at large distances, rather than gradually approaching zero in the case of the other models.\n\n| Model | $\\rho(h)$ | $\\gamma(h)$ |\n|------------------|-------------------------|-----------------------------|\n| Exponential | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$ |\n| Gaussian | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$ |\n| Spherical $(h < r)$ \\* | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$ |\n\n\\* For the spherical model, $\\rho = 0$ and $\\gamma = s$ if $h \\ge r$.\n\n```{r, echo = FALSE, fig.dim = c(9, 4)}\nvexp <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Exponential\") +\n stat_function(fun = function(x) 5 * (1 - exp(-x/3)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n \n\nvgau <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Gaussian\") +\n stat_function(fun = function(x) 5 * (1 - exp(-x^2/4^2)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n\nvsph <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Spherical\") +\n stat_function(fun = function(x) ifelse(x < 8, 5 * (1.5*x/8 - 0.5*x^3/8^3), 5),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n\nplot_grid(vexp, vgau, vsph, nrow = 1)\n```\n\n## Empirical variogram\n\nTo estimate $\\gamma_z(h)$ from empirical data, we need to define distance classes, thus grouping different distances within a margin of $\\pm \\delta$ around a distance $h$, then calculating the mean square deviation for the pairs of points in that distance class.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nWe will see in the next section how to estimate a variogram in R.\n\n## Regression model with spatial correlation\n\nThe following equation represents a multiple linear regression including residual spatial correlation:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nHere, $v$ designates the response variable and $u$ the predictors, to avoid confusion with the spatial coordinates $x$ and $y$.\n\nIn addition to the residual $\\epsilon$ that is independent between observations, the model includes a term $z$ that represents the spatially correlated portion of the residual variance.\n\nHere are suggested steps to apply this type of model:\n\n1. Fit the regression model without spatial correlation.\n\n2. Verify the presence of spatial correlation from the empirical variogram of the residuals.\n\n3. Fit one or more regression models with spatial correlation and select the one that shows the best fit to the data.\n\n# Geostatistical models in R\n\nThe *gstat* package contains functions related to geostatistics. For this example, we will use the `oxford` dataset from this package, which contains measurements of physical and chemical properties for 126 soil samples from a site, along with their coordinates `XCOORD` and `YCOORD`.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\nSuppose that we want to model the magnesium concentration (`MG1`), represented as a function of the spatial position in the following graph.\n\n```{r}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\nNote that the $x$ and $y$ axes have been inverted to save space. The `coord_fixed()` function of *ggplot2* ensures that the scale is the same on both axes, which is useful for representing spatial data.\n\nWe can immediately see that these measurements were taken on a 100 m grid. It seems that the magnesium concentration is spatially correlated, although it may be a correlation induced by another variable. In particular, we know that the concentration of magnesium is negatively related to the soil pH (`PH1`).\n\n```{r}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\nThe `variogram` function of *gstat* is used to estimate a variogram from empirical data. Here is the result obtained for the variable `MG1`.\n\n```{r}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\nThe formula `MG1 ~ 1` indicates that no linear predictor is included in this model, while the argument `locations` indicates which variables in the data frame correspond to the spatial coordinates.\n\nIn the resulting table, `gamma` is the value of the variogram for the distance class centered on `dist`, while `np` is the number of pairs of points in that class. Here, since the points are located on a grid, we obtain regular distance classes (e.g.: 100 m for neighboring points on the grid, 141 m for diagonal neighbors, etc.).\n\nHere, we limit ourselves to the estimation of isotropic variograms, i.e. the variogram depends only on the distance between the two points and not on the direction. Although we do not have time to see it today, it is possible with *gstat* to estimate the variogram separately in different directions.\n\nWe can illustrate the variogram with `plot`.\n\n```{r}\nplot(var_mg, col = \"black\")\n```\n\nIf we want to estimate the residual spatial correlation of `MG1` after including the effect of `PH1`, we can add that predictor to the formula.\n\n```{r}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\nIncluding the effect of pH, the range of the spatial correlation seems to decrease, while the plateau is reached around 300 m. It even seems that the variogram decreases beyond 400 m. In general, we assume that the variance between two points does not decrease with distance, unless there is a periodic spatial pattern.\n\nThe function `fit.variogram` accepts as arguments a variogram estimated from the data, as well as a theoretical model described in a `vgm` function, and then estimates the parameters of that model according to the data. The fitting is done by the method of least squares.\n\nFor example, `vgm(\"Exp\")` means we want to fit an exponential model.\n\n```{r}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\nThere is no nugget effect, because `psill = 0` for the `Nug` (nugget) part of the model. The exponential part has a sill at 1951 and a range of 95 m.\n\nTo compare different models, a vector of model names can be given to `vgm`. In the following example, we include the exponential, gaussian (\"Gau\") and spherical (\"Sph\") models.\n\n```{r, warning = FALSE, message = FALSE}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\nThe function gives us the result of the model with the best fit (lowest sum of squared deviations), which here is the same exponential model.\n\nFinally, we can superimpose the theoretical model and the empirical variogram on the same graph.\n\n```{r}\nplot(var_mg, vfit, col = \"black\")\n```\n\n## Regression with spatial correlation\n\nWe have seen above that the *gstat* package allows us to estimate the variogram of the residuals of a linear model. In our example, the magnesium concentration was modeled as a function of pH, with spatially correlated residuals.\n\nAnother tool to fit this same type of model is the `gls` function of the *nlme* package, which is included with the installation of R.\n\nThis function applies the *generalized least squares* method to fit linear regression models when the residuals are not independent or when the residual variance is not the same for all observations. Since the estimates of the coefficients depend on the estimated correlations between the residuals and the residuals themselves depend on the coefficients, the model is fitted by an iterative algorithm:\n\n1. A classical linear regression model (without correlation) is fitted to obtain residuals.\n\n2. The spatial correlation model (variogram) is fitted with those residuals.\n\n3. The regression coefficients are re-estimated, now taking into account the correlations.\n\nSteps 2 and 3 are repeated until the estimates are stable at a desired precision.\n\nHere is the application of this method to the same model for the magnesium concentration in the `oxford` dataset. In the `correlation` argument of `gls`, we specify an exponential correlation model as a function of our spatial coordinates and we include a possible nugget effect.\n\nIn addition to the exponential correlation `corExp`, the `gls` function can also estimate a Gaussian (`corGaus`) or spherical (`corSpher`) model.\n\n```{r}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\nTo compare this result with the adjusted variogram above, the parameters given by `gls` must be transformed. The range has the same meaning in both cases and corresponds to 478 m for the result of `gls`. The global variance of the residuals is the square of `Residual standard error`. The nugget effect here (0.294) is expressed as a fraction of that variance. Finally, to obtain the partial sill of the exponential part, the nugget effect must be subtracted from the total variance.\n\nAfter performing these calculations, we can give these parameters to the `vgm` function of *gstat* to superimpose this variogram estimated by `gls` on our variogram of the residuals of the classical linear model.\n\n```{r}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\nDoes the model fit the data less well here? In fact, this empirical variogram represented by the points was obtained from the residuals of the linear model ignoring the spatial correlation, so it is a biased estimate of the actual spatial correlations. The method is still adequate to quickly check if spatial correlations are present. However, to simultaneously fit the regression coefficients and the spatial correlation parameters, the generalized least squares (GLS) approach is preferable and will produce more accurate estimates.\n\nFinally, note that the result of the `gls` model also gives the AIC, which we can use to compare the fit of different models (with different predictors or different forms of spatial correlation).\n\n## Exercise\n\nThe [bryo_belg.csv](data/bryo_belg.csv) dataset is adapted from the data of this study:\n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nThis data frame shows the specific richness of ground bryophytes (*richness*) for different sampling points in the Belgian province of Limburg, with their position *(x, y)* in km, in addition to information on the proportion of forest (*forest*) and wetlands (*wetland*) in a 1 km\\^2\\$ cell containing the sampling point.\n\n```{r}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\nFor this exercise, we will use the square root of the specific richness as the response variable. The square root transformation often allows to homogenize the variance of the count data in order to apply a linear regression.\n\na) Fit a linear model of the transformed species richness to the proportion of forest and wetlands, without taking into account spatial correlations. What is the effect of the two predictors in this model?\n\nb) Calculate the empirical variogram of the model residuals in (a). Does there appear to be a spatial correlation between the points?\n\n*Note*: The `cutoff` argument to the `variogram` function specifies the maximum distance at which the variogram is calculated. You can manually adjust this value to get a good view of the sill.\n\nc) Re-fit the linear model in (a) with the `gls` function in the *nlme* package, trying different types of spatial correlations (exponential, Gaussian, spherical). Compare the models (including the one without spatial correlation) with the AIC.\n\nd) What is the effect of the proportion of forests and wetlands according to the model in (c)? Explain the differences between the conclusions of this model and the model in (a).\n\n# Kriging\n\nAs mentioned before, a common application of geostatistical models is to predict the value of the response variable at unsampled locations, a form of spatial interpolation called kriging (pronounced with a hard \"g\").\n\nThere are three basic types of kriging based on the assumptions made about the response variable:\n\n- Ordinary kriging: Stationary variable with an unknown mean.\n\n- Simple kriging: Stationary variable with a known mean.\n\n- Universal kriging: Variable with a trend given by a linear or non-linear model.\n\nFor all kriging methods, the predictions at a new point are a weighted mean of the values at known points. These weights are chosen so that kriging provides the best linear unbiased prediction of the response variable, if the model assumptions (in particular the variogram) are correct. That is, among all possible unbiased predictions, the weights are chosen to give the minimum mean square error. Kriging also provides an estimate of the uncertainty of each prediction.\n\nWhile we will not present the detailed kriging equations here, the weights depend on both the correlations (estimated by the variogram) between the sampled points and the new point, as well of the correlations between the sampled points themselves. In other words, sampled points near the new point are given more weight, but isolated sampled points are also given more weight, because sample points close to each other provide redundant information.\n\nKriging is an interpolation method, so the prediction at a sampled point will always be equal to the measured value (the measurement is supposed to have no error, just spatial variation). However, in the presence of a nugget effect, any small displacement from the sampled location will show variability according to the nugget.\n\nIn the example below, we generate a new dataset composed of randomly-generated (x, y) coordinates within the study area as well as randomly-generated pH values based on the `oxford` data. We then apply the function `krige` to predict the magnesium values at these new points. Note that we specify the variogram derived from the GLS results in the `model` argument to `krige`.\n\n```{r}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\nhead(pred)\n```\n\nThe result of `krige` includes the new point coordinates, the prediction of the variable `var1.pred` along with its estimated variance `var1.var`. In the graph below, we show the mean MG1 predictions from kriging (triangles) along with the measurements (circles).\n\n```{r}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\nThe estimated mean and variance from kriging can be used to simulate possible values of the variable at each new point, conditional on the sampled values. In the example below, we performed 4 conditional simulations by adding the argument `nsim = 4` to the same `krige` instruction.\n\n```{r}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\nhead(sim_mg)\n```\n\n```{r, message = FALSE, warning = FALSE, fig.dim = c(10, 5)}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n# Solutions\n\n```{r}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\nThe proportion of forest has a significant positive effect and the proportion of wetlands has a significant negative effect on bryophyte richness.\n\n```{r}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\nThe variogram is increasing from 0 to at least 40 km, so there appears to be spatial correlations in the model residuals.\n\n```{r}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n\n```{r}\nAIC(bryo_lm)\nAIC(bryo_exp)\nAIC(bryo_gaus)\nAIC(bryo_spher)\n```\n\nThe spherical model has the smallest AIC.\n\n```{r}\nsummary(bryo_spher)\n```\n\nBoth effects are less important in magnitude and the effect of wetlands is not significant anymore. As is the case for other types of non-independent residuals, the \"effective sample size\" here is less than the number of points, since points close to each other provide redundant information. Therefore, the relationship between predictors and response is less clear than given by the model assuming all these points were independent.\n\nNote that the results for all three `gls` models are quite similar, so the choice to include spatial correlations was more important than the exact shape assumed for the variogram.\n\n\n# Areal data {#areal-data}\n\nAreal data are variables measured for regions of space, defined by polygons. This type of data is more common in the social sciences, human geography and epidemiology, where data is often available at the scale of administrative divisions.\n\nThis type of data also appears frequently in natural resource management. For example, the following map shows the forest management units of the Ministère de la Forêt, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSuppose that a variable is available at the level of these management units. How can we model the spatial correlation between units that are spatially close together?\n\nOne option would be to apply the geostatistical methods seen before, for example by calculating the distance between the centers of the polygons.\n\nAnother option, which is more adapted for areal data, is to define a network where each region is connected to neighbouring regions by a link. It is then assumed that the variables are directly correlated between neighbouring regions only. (Note, however, that direct correlations between immediate neighbours also generate indirect correlations for a chain of neighbours).\n\nIn this type of model, the correlation is not necessarily the same from one link to another. In this case, each link in the network can be associated with a *weight* representing its importance for the spatial correlation. We represent these weights by a matrix $W$ where $w_{ij}$ is the weight of the link between regions $i$ and $j$. A region has no link with itself, so $w_{ii} = 0$.\n\nA simple choice for $W$ is to assign a weight equal to 1 if the regions are neighbours, otherwise 0 (binary weight).\n\nIn addition to land divisions represented by polygons, another example of areal data consists of a grid where the variable is calculated for each cell of the grid. In this case, a cell generally has 4 or 8 neighbouring cells, depending on whether diagonals are included or not.\n\n# Moran's I {#moran-i}\n\nBefore discussing spatial autocorrelation models, we present Moran's $I$ statistic, which allows us to test whether a significant correlation is present between neighbouring regions.\n\nMoran's $I$ is a spatial autocorrelation coefficient of $z$, weighted by the $w_{ij}$. It therefore takes values between -1 and 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nIn this equation, we recognize the expression of a correlation, which is the product of the deviations from the mean for two variables $z_i$ and $z_j$, divided by the product of their standard deviations (it is the same variable here, so we get the variance). The contribution of each pair $(i, j)$ is multiplied by its weight $w_{ij}$ and the term on the left (the number of regions $N$ divided by the sum of the weights) ensures that the result is bounded between -1 and 1.\n\nSince the distribution of $I$ is known in the absence of spatial autocorrelation, this statistic serves to test the null hypothesis that there is no spatial correlation between neighbouring regions.\n\nAlthough we will not see an example in this course, Moran's $I$ can also be applied to point data. In this case, we divide the pairs of points into distance classes and calculate $I$ for each distance class; the weight $w_{ij} = 1$ if the distance between $i$ and $j$ is in the desired distance class, otherwise 0.\n\n# Spatial autoregression models {#spatial-autoreg}\n\nLet us recall the formula for a linear regression with spatial dependence:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nwhere $z$ is the portion of the residual variance that is spatially correlated.\n\nThere are two main types of autoregressive models to represent the spatial dependence of $z$: conditional autoregression (CAR) and simultaneous autoregressive (SAR).\n\n## Conditional autoregressive (CAR) model\n\nIn the conditional autoregressive model, the value of $z_i$ for the region $i$ follows a normal distribution: its mean depends on the value $z_j$ of neighbouring regions, multiplied by the weight $w_{ij}$ and a correlation coefficient $\\rho$; its standard deviation $\\sigma_{z_i}$ may vary from one region to another.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nIn this model, if $w_{ij}$ is a binary matrix (0 for non-neighbours, 1 for neighbours), then $\\rho$ is the coefficient of partial correlation between neighbouring regions. This is similar to a first-order autoregressive model in the context of time series, where the autoregression coefficient indicates the partial correlation.\n\n## Simultaneous autoregressive (SAR) model\n\nIn the simultaneous autoregressive model, the value of $z_i$ is given directly by the sum of contributions from neighbouring values $z_j$, multiplied by $\\rho w_{ij}$, with an independent residual $\\nu_i$ of standard deviation $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nAt first glance, this looks like a temporal autoregressive model. However, there is an important conceptual difference. For temporal models, the causal influence is directed in only one direction: $v(t-2)$ affects $v(t-1)$ which then affects $v(t)$. For a spatial model, each $z_j$ that affects $z_i$ depends in turn on $z_i$. Thus, to determine the joint distribution of $z$, a system of equations must be solved simultaneously (hence the name of the model).\n\nFor this reason, although this model resembles the formula of CAR model, the solutions of the two models differ and in the case of SAR, the coefficient $\\rho$ is not directly equal to the partial correlation due to each neighbouring region.\n\nFor more details on the mathematical aspects of these models, see the article by Ver Hoef et al. (2018) suggested in reference.\n\nFor the moment, we will consider SAR and CAR as two types of possible models to represent a spatial correlation on a network. We can always fit several models and compare them with the AIC to choose the best form of correlation or the best weight matrix.\n\nThe CAR and SAR models share an advantage over geostatistical models in terms of efficiency. In a geostatistical model, spatial correlations are defined between each pair of points, although they become negligible as distance increases. For a CAR or SAR model, only neighbouring regions contribute and most weights are equal to 0, making these models faster to fit than a geostatistical model when the data are massive.\n\n# Analysis of areal data in R {#analysis-areal}\n\nTo illustrate the analysis of areal data in R, we load the packages *sf* (to read geospatial data), *spdep* (to define spatial networks and calculate Moran's $I$) and *spatialreg* (for SAR and CAR models).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n\nAs an example, we will use a dataset that presents some of the results of the 2018 provincial election in Quebec, with population characteristics of each riding. This data is included in a *shapefile* (.shp) file type, which we can read with the `read_sf` function of the *sf* package.\n\n```{r}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n*Note*: The dataset is actually composed of 4 files with the extensions .dbf, .prj, .shp and .shx, but it is sufficient to write the name of the .shp file in `read_sf`.\n\nThe columns of the dataset are, in order:\n\n- the name of the electoral riding (`circ`);\n- four characteristics of the population (`age_moy` = mean age, `pct_frn` = fraction of the population that speaks mainly French at home, `pct_prp` = fraction of households that own their home, `rev_med` = median income);\n- four columns showing the fraction of votes obtained by the main parties (CAQ, PQ, PLQ, QS);\n- a `geometry` column that contains the geometric object (multipolygon) corresponding to the riding.\n\nTo illustrate one of the variables on a map, we call the `plot` function with the name of the column in square brackets and quotation marks.\n\n```{r}\nplot(elect2018[\"rev_med\"])\n```\n\nIn this example, we want to model the fraction of votes obtained by the CAQ based on the characteristics of the population in each riding and taking into account the spatial correlations between neighbouring ridings.\n\n## Definition of the neighbourhood network\n\nThe `poly2nb` function of the *spdep* package defines a neighbourhood network from polygons. The result `vois` is a list of 125 elements where each element contains the indices of the neighbouring (bordering) polygons of a given polygon.\n\n```{r}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\nThus, the first riding (Abitibi-Est) has 6 neighbouring ridings, for which the names can be found as follows:\n\n```{r}\nelect2018$circ[vois[[1]]]\n```\n\nWe can illustrate this network by extracting the coordinates of the center of each district, creating a blank map with `plot(elect2018[\"geometry\"])`, then adding the network as an additional layer with `plot(vois, add = TRUE, coords = coords)`.\n\n```{r, message = FALSE, warning = FALSE}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\nWe can \"zoom\" on southern Québec by choosing the limits `xlim` and `ylim`.\n\n```{r}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\nWe still have to add weights to each network link with the `nb2listw` function. The style of weights \"B\" corresponds to binary weights, i.e. 1 for the presence of link and 0 for the absence of link between two ridings.\n\nOnce these weights are defined, we can verify with Moran's test whether there is a significant autocorrelation of votes obtained by the CAQ between neighbouring ridings.\n\n```{r}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\nThe value $I = 0.68$ is very significant judging by the $p$-value of the test.\n\nLet's verify if the spatial correlation persists after taking into account the four characteristics of the population, therefore by inspecting the residuals of a linear model including these four predictors.\n\n```{r}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\nmoran.test(residuals(elect_lm), poids)\n```\n\nMoran's $I$ has decreased but remains significant, so some of the previous correlation was induced by these predictors, but there remains a spatial correlation due to other factors.\n\n## Spatial autoregression models\n\nFinally, we fit SAR and CAR models to these data with the `spautolm` (*spatial autoregressive linear model*) function of *spatialreg*. Here is the code for a SAR model including the effect of the same four predictors.\n\n```{r}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\nThe value given by `Lambda` in the summary corresponds to the coefficient $\\rho$ in our description of the model. The likelihood-ratio test (`LR test`) confirms that this residual spatial correlation (after controlling for the effect of predictors) is significant.\n\nThe estimated effects for the predictors are similar to those of the linear model without spatial correlation. The effects of mean age, fraction of francophones and fraction of homeowners remain significant, although their magnitude has decreased somewhat.\n\nTo fit a CAR rather than SAR model, we must specify `family = \"CAR\"`.\n\n```{r}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\nFor a CAR model with binary weights, the value of `Lambda` (which we called $\\rho$) directly gives the partial correlation coefficient between neighbouring districts. Note that the AIC here is slightly higher than the SAR model, so the latter gave a better fit.\n\n## Exercise\n\nThe `rls_covid` dataset, in *shapefile* format, contains data on detected COVID-19 cases (`cas`), number of cases per 1000 people (`taux_1k`) and the population density (`dens_pop`) in each of Quebec's local health service networks (RLS) (Source: Data downloaded from the Institut national de santé publique du Québec as of January 17, 2021).\n\n```{r}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\nFit a linear model of the number of cases per 1000 as a function of population density (it is suggested to apply a logarithmic transform to the latter). Check whether the model residuals are correlated between bordering RLS with a Moran's test and then model the same data with a conditional autoregressive model.\n\n## Reference\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. and Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n```{r setup, include=FALSE}\nset.seed(82)\n```\n\n# GLMM with spatial Gaussian process {#glmm-spatial-gaussian}\n\n## Data\n\nThe `gambia` dataset found in the *geoR* package presents the results of a study of malaria prevalence among children of 65 villages in The Gambia. We will use a slightly transformed version of the data found in the file [gambia.csv](data/gambia.csv).\n\n```{r, warning = FALSE, message = FALSE}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\nHere are the fields in that dataset:\n\n- *id_village*: Identifier of the village.\n- *x* and *y*: Spatial coordinates of the village (in kilometers, based on UTM coordinates).\n- *pos*: Binary response, whether the child tested positive for malaria.\n- *age*: Age of the child in days.\n- *netuse*: Whether or not the child sleeps under a bed net.\n- *treated*: Whether or not the bed net is treated.\n- *green*: Remote sensing based measure of greenness of vegetation (measured at the village level).\n- *phc*: Presence or absence of a public health centre for the village.\n\nWe can count the number of positive cases and total children tested by village to map the fraction of positive cases (or prevalence, *prev*).\n\n```{r}\n# Create village-level dataset\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\nhead(gambia_agg)\n```\n\n```{r, message = FALSE, warning = FALSE}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\nWe use the `gambia.borders` dataset from the *geoR* package to trace the country boundaries with `geom_path`. Since those boundaries are in meters, we divide by 1000 to get the same scale as our points. We also use `coord_fixed` to ensure a 1:1 aspect ratio between the axes and use the `viridis` color scale, which makes it easier to visualize a continuous variable compared with the default gradient scale in *ggplot2*.\n\nBased on this map, there seems to be spatial correlation in malaria prevalence, with the eastern cluster of villages showing more high prevalence values (yellow-green) and the middle cluster showing more low prevalence values (purple).\n\n## Non-spatial GLMM\n\nFor this first example, we will ignore the spatial aspect of the data and model the presence of malaria (*pos*) as a function of the use of a bed net (*netuse*) and the presence of a public health centre (*phc*). Since we have a binary response, we need to use a logistic regression model (a GLM). Since we have predictors at both the individual and village level, and we expect that children of the same village have more similar probabilities of having malaria even after accounting for those predictors, we need to add a random effect of the village. The result is a GLMM that we fit using the `glmer` function in the *lme4* package.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\nAccording to these results, both *netuse* and *phc* result in a decrease of malaria prevalence, although the effect of *phc* is not significant at a threshold $\\alpha = 0.05$. The intercept (0.149) is the logit of the probability of malaria presence for a child with no bednet and no public health centre, but it is the mean intercept across all villages, and there is a lot of variation between villages, based on the random effect standard deviation of 0.90. We can get the estimated intercept for each village with the function `coef`:\n\n```{r}\nhead(coef(mod_glmm)$id_village)\n```\n\nSo for example, the intercept for village 1 is around 0.94, equivalent to a probability of 72%:\n\n```{r}\nplogis(0.937)\n```\n\nwhile the intercept in village 2 is equivalent to a probability of 52%:\n\n```{r}\nplogis(0.092)\n```\n\nThe [DHARMa package](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) provides a general method for checking whether the residuals of a GLMM are distributed according to the specified model and whether there is any residual trend. The package works by simulating replicates of each observation according to the fitted model and then determining a \"standardized residual\", which is the relative position of the observed value with respect to the simulated values, e.g. 0 if the observation is smaller than all the simulations, 0.5 if it is in the middle, etc. If the model represents the data well, each value of the standardized residual between 0 and 1 should be equally likely, so the standardized residuals should produce a uniform distribution between 0 and 1.\n\nThe `simulateResiduals` function performs the calculation of the standardized residuals, then the `plot` function plots the diagnostic graphs with the results of certain tests.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\nThe graph on the left is a quantile-quantile plot of standardized residuals. The results of three statistical tests also also shown: a Kolmogorov-Smirnov (*KS*) test which checks whether there is a deviation from the theoretical distribution, a dispersion test that checks whether there is underdispersion or overdispersion, and an outlier test based on the number of residuals that are more extreme than all the simulations. Here, we get a significant result for the outliers, though the message indicates that this result might have an inflated type I error rate in this case.\n\nOn the right, we generally get a graph of standardized residuals (in *y*) as a function of the rank of the predicted values, in order to check for any leftover trend in the residual. Here, the predictions are binned by quartile, so it might be better to instead aggregate the predictions and residuals by village, which we can do with the `recalculateResiduals` function.\n\n```{r}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\nThe plot to the right now shows individual points, along with a quantile regression for the 1st quartile, the median and the 3rd quartile. In theory, these three curves should be horizontal straight lines (no leftover trend in the residuals vs. predictions). The curve for the 3rd quartile (in red) is significantly different from a horizontal line, which could indicate some systematic effect that is missing from the model.\n\n## Spatial GLMM with spaMM\n\nThe *spaMM* (spatial mixed models) package is a relatively new R package that can perform approximate maximum likelihood estimation of parameters for GLMM with spatial dependence, modelled either as a Gaussian process or with a CAR (we will see the latter in the last section). The package implements different algorithms, but there is a single `fitme` function that chooses the appropriate algorithm for each model type. For example, here is the same (non-spatial) model as above fit with *spaMM*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\nNote that the estimates of the fixed effects as well as the variance of random effects are nearly identical to those obtained by `glmer` above.\n\nWe can now use *spaMM* to fit the same model with the addition of spatial correlations between villages. In the formula of the model, this is represented as a random effect `Matern(1 | x + y)`, which means that the intercepts are spatially correlated between villages following a Matérn correlation function of coordinates (*x, y*). The Matérn function is a flexible function for spatial correlation that includes a shape parameter $\\nu$ (`nu`), so that when $\\nu = 0.5$ it is equivalent to the exponential correlation but as $\\nu$ grows to large values, it approaches a Gaussian correlation. We could let the function estimate $\\nu$, but here we will fix it to 0.5 with the `fixed` argument of `fitme`.\n\n```{r}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\nsummary(mod_spamm)\n```\n\nLet's first check the random effects of the model. The spatial correlation function has a parameter `rho` equal to 0.0513. This parameter in *spaMM* is the inverse of the range, so here the range of exponential correlation is 1/0.0513 or around 19.5 km. There are now two variance prameters, the one identified as `x + y` is the long-range variance (i.e. sill) for the exponential correlation model whereas the one identified as `id_village` shows the non-spatially correlated portion of the variation between villages.\n\nIn fact, while we left the random effects `(1 | id_village)` in the formula to represent the non-spatial portion of variation between villages, we could also represent this with a nugget effect in the geostatistical model. In both cases, it would represent the idea that even two villages very close to each other would have different baseline prevalences in the model.\n\nBy default, the `Matern` function has no nugget effect, but we can add one by specifying a non-zero `Nugget` in the initial parameter list `init`.\n\n```{r}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\nsummary(mod_spamm2)\n```\n\nAs you can see, all estimates are the same, except that the variance of the spatial portion (sill) is now 0.84 and the nugget is equal to a fraction 0.235 of that sill, so a variance of 0.197, which is the same as the `id_village` random effect in the version above. Thus the two formulations are equivalent.\n\nNow, recall the coefficients we obtained for the non-spatial GLMM:\n\n```{r}\nsummary(mod_glmm)$coefficients\n```\n\nIn the spatial version, both fixed effects have moved slightly towards zero, but the standard error of the effect of `phc` has decreased. It is interesting that the inclusion of spatial dependence has allowed us to estimate more precisely the effect of having a public health centre in the village. This would not always be the case: for a predictor that is also strongly correlated in space, spatial correlation in the response makes it harder to estimate the effect of this predictor, since it is confounded with the spatial effect. However, for a predictor that is not correlated in space, including the spatial effect reduces the residual (non-spatial) variance and may thus increase the precision of the predictor's effect.\n\nThe *spaMM* package is also compatible with *DHARMa* for residual diagnostics. (You can in fact ignore the warning that it is not in the class of supported models, this is due to using the `fitme` function rather than a specific algorithm function in *spaMM*.)\n\n```{r}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\nFinally, while we will show how to make and visualize spatial predictions below, we can produce a quick map of the estimated spatial effects in a *spaMM* model with the `filled.mapMM` function.\n\n```{r}\nfilled.mapMM(mod_spamm2)\n```\n\n## Gaussian process models vs. smoothing splines\n\nIf you are familiar with generalized additive models (GAM), you might think that the spatial variation in malaria prevalence (as shown in the map above) could be represented by a 2D smoothing spline (as a function of $x$ and $y$) within a GAM.\n\nThe code below fits the GAM equivalent of our Gaussian process GLMM above with the `gam` function in the *mgcv* package. The spatial effect is represented by the 2D spline `s(x, y)` whereas the non-spatial random effect of village is represented by `s(id_village, bs = \"re\")`, which is the same as `(1 | id_village)` in the previous models. Note that for the `gam` function, categorical variables must be explicitly converted to factors.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n\nTo visualize the 2D spline, we will use the [*gratia* package](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\nNote that the plot of the spline `s(x, y)` (top right) does not extend too far from the locations of the data (other areas are blank). In this graph, we can also see that the village random effects follow the expected Gaussian distribution (top left).\n\nNext, we will use both the spatial GLMM from the previous section and this GAMM to predict the mean prevalence on a spatial grid of points contained in the file [gambia_pred.csv](data/gambia_pred.csv). The graph below adds those prediction points (in black) on the previous map of the data points.\n\n```{r, message = FALSE, warning = FALSE}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\nTo make predictions from the GAMM model at those points, the code below goes through the following steps:\n\n- All predictors in the model must be in the prediction data frame, so we add constant values of *netuse* and *phc* (both equal to 1) for all points. Thus, we will make predictions of malaria prevalence in the case where a net is used and a public health centre is present. We also add a constant *id_village*, although it will not be used in predictions (see below).\n\n- We call the `predict` function on the output of `gam` to produce predictions at the new data points (argument `newdata`), including standard errors (`se.fit = TRUE`) and excluding the village random effects, so the prediction is made for an \"average village\". The resulting object `gam_pred` will have columns `fit` (mean prediction) and `se.fit` (standard error). Those predictions and standard errors are on the link (logit) scale.\n\n- We add the original prediction data frame to `gam_pred` with `cbind`.\n\n- We add columns for the mean prediction and 50% confidence interval boundaries (mean $\\pm$ 0.674 standard error), converted from the logit scale to the probability scale with `plogis`. We choose a 50% interval since a 95% interval may be too wide here to contrast the different predictions on the map at the end of this section.\n\n```{r}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n\n*Note*: The reason we do not make predictions directly on the probability (response) scale is that the normal formula for confidence intervals applies more accurately on the logit scale. Adding a certain number of standard errors around the mean on the probability scale would lead to less accurate intervals and maybe even confidence intervals outside the possible range (0, 1) for a probability.\n\nWe apply the same strategy to make predictions from the *spaMM* spatial GLMM model. There are a few differences in the `predict` method compared with the GAMM case.\n\n- The argument `binding = \"fit\"` means that mean predictions (`fit` column) will be attached to the prediction dataset and returned as `spamm_pred`.\n\n- The `variances = list(linPred = TRUE)` tells `predict` to calculate the variance of the linear predictor (so the square of the standard error). However, it appears as an attribute `predVar` in the output data frame rather than a `se.fit` column, so we move it to a column on the next line.\n\n```{r}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n\nFinally, we combine both sets of predictions as different rows of a `pred_all` dataset with `bind_rows`. The name of the dataset each prediction originates from (`gam` or `spamm`) will appear in the \"model\" column (argument `.id`). To simplify production of the next plot, we then use `pivot_longer` in the *tidyr* package to change the three columns \"pred\", \"lo\" and \"hi\" to two columns, \"stat\" and \"value\" (`pred_tall` has thus three rows for every row in `pred_all`).\n\n```{r}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n\nHaving done these steps, we can finally look at the prediction maps (mean, lower and upper bounds of the 50% confidence interval) with `ggplot`. The original data points are shown in red.\n\n```{r}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\nWhile both models agree that there is a higher prevalence near the eastern cluster of villages, the GAMM also estimates a higher prevalence at a few points (western edge and around the center) where there is no data. This is an artifact of the shape of the spline fit around the data points, since a spline is meant to fit a global, although nonlinear, trend. In contrast, the geostatistical model represents the spatial effect as local correlations and reverts to the overall mean prevalence when far from any data points, which is a safer assumption. This is one reason to choose a geostatistical / Gaussian process model in this case.\n\n## Bayesian methods for GLMMs with Gaussian processes\n\nBayesian models provide a flexible framework to express models with complex dependence structure among the data, including spatial dependence. However, fitting a Gaussian process model with a fully Bayesian approach can be slow, due the need to compute a spatial covariance matrix between all point pairs at each iteration.\n\nThe INLA (integrated nested Laplace approximation) method performs an approximate calculation of the Bayesian posterior distribution, which makes it suitable for spatial regression problems. We do not cover it in this course, but I recommend the textbook by Paula Moraga (in the references section below) that provides worked examples of using INLA for various geostatistical and areal data models, in the context of epidemiology, including models with both space and time dependence. The book presents the same Gambia malaria data as an example of a geostatistical dataset, which inspired its use in this course.\n\n# GLMM with spatial autoregression {#glmm-spatial-autoreg}\n\nWe return to the last example of the previous part, where we modelled the rate of COVID-19 cases (cases / 1000) for administrative health network divisions (RLS) in Quebec as a function of their population density. The rate is given by the \"taux_1k\" column in the `rls_covid` shapefile.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\nPreviously, we modelled the logarithm of this rate as a linear function of the logarithm of population density, with the residual variance correlated among neighbouring units via a CAR (conditional autoregression) structure, as shown in the code below.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\nAs a reminder, the `poly2nb` function in the *spdep* package creates a list of neighbours based on bordering polygons in a shapefile, then the `nb2listw` converts it to a list of weights, here binary weights (`style = \"B\"`) so that each bordering region receives the same weight of 1 in the autoregressive model.\n\nInstead of using the rates, it would be possible to model the cases directly (column \"cas\" in the dataset) with a Poisson regression, which is appropriate for count data. To account for the fact that if the risk per person were equal, cases would be proportional to population, we can add the unit's population `pop` as an *offset* in the Poisson regression. Therefore, the model would look like: `cas ~ log(dens_pop) + offset(log(pop))`. Note that since the Poisson regression uses a logarithmic link, that model with `log(pop)` as an offset assumes that `log(cas / pop)` (so the log rate) is proportional to `log(dens_pop)`, just like the linear model above, but it has the advantage of modelling the stochasticity of the raw data (the number of cases) directly with a Poisson distribution.\n\nWe do not have the population in this data, but we can estimate it from the cases and the rate (cases / 1000) as follows:\n\n```{r}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n\nTo define a CAR model in *spaMM*, we need a weights matrix rather than a list of weights as in the *spatialreg* package. Fortunately, the *spdep* package also includes a function `nb2mat` to convert the neighbours list to a matrix of weights, here again using binary weights. To avoid a warning, we specify the row and column names of that matrix to be equal to the IDs associated with each unit (`RLS_code`). Then, we add a term `adjacency(1 | RLS_code)` to the model to specify that the residual variation between different groups defined by `RLS_code` is spatially correlated with a CAR structure (here, each group has only one observation since we have one data point by RLS unit).\n\n```{r}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\nNote that the spatial correlation coefficient `rho` (0.158) is similar to the equivalent quantity in the `spautolm` model above, where it was called `Lambda`. The effect of `log(dens_pop)` is also approximately 0.2 in both models.\n\n## Reference\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Available online at .\n\n------------------------------------------------------------------------\n\n# Statistiques spatiales en écologie {#statistiques-spatiales-en-écologie}\n\nBIOS² a organisé une session de formation en ligne sur l'analyse statistique des données spatiales en écologie, animée par le Pr. Philippe Marchand (UQAT). Cette formation de 12 heures s'est déroulée en 4 sessions : 12, 14, 19 & 21 janvier (2021) de 13h00 à 16h00 HNE.\n\nLe contenu comprenait trois types d'analyses statistiques spatiales et leurs applications en écologie : (1) l'analyse des patrons de points qui permet d'étudier la distribution d'individus ou d'événements dans l'espace; (2) les modèles géostatistiques qui représentent la corrélation spatiale de variables échantillonnées à des points géoréférencés; et (3) les modèles de données aréales, qui s'appliquent aux mesures prises sur des régions de l'espace et qui représentent les liens spatiaux par le biais de réseaux de voisinage. La formation comprenait également des exercices pratiques utilisant l'environnement de programmation statistique R.\n\n[Philippe Marchand](https://github.com/pmarchand1) est professeur d'écologie et de biostatistique à l'Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) et membre académique de BIOS². Ses travaux de recherche portent sur la modélisation de processus qui influencent la distribution spatiale des populations, incluant: la dispersion des graines et l'établissement des semis, le mouvement des animaux, et la propagation des épidémies forestières.\n\n**Si vous souhaitez consulter le matériel pédagogique et suivre les exercices à votre propre rythme, vous pouvez y accéder par [ce lien](https://bios2.github.io/Marchand.html#category:FR). Une connaissance de base des modèles de régression linéaire et une expérience de l'ajustement de ces modèles dans R sont recommandées. Le repositoire original se trouve [ici](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Plan du cours\n\n| Jour | Sujets | \n|-----------------|:--------------------------|\n| 1 | • [Introduction aux statistiques spatiales](#introduction-fr)
• [Analyse des patrons de points](#point-pattern-fr)
|\n| 2 | • [Corrélation spatiale d'une variable](#spatial-correlation-fr)
• [Modèles géostatistiques](#geostat-models-fr) | \n| 3 | • [Données aréales](#areal-data-fr)
• [Indice de Moran](#moran-i-fr)
• [Modèles d'autorégression spatiale](#spatial-autoreg-fr)
• [Analyse des données aréales dans R](#analysis-areal-fr) |\n| 4 | • [GLMM avec processus spatial gaussien](#glmm-spatial-gaussian-fr)
• [GLMM avec autorégression spatiale](#glmm-spatial-autoreg-fr)| \n\n# Introduction aux statistiques spatiales {#introduction-fr}\n\n## Types d'analyses spatiales\n\nDans le cadre de cette formation, nous discuterons de trois types d'analyses spatiales: l'analyse des patrons de points, les modèles géostatistiques et les modèles de données aréales.\n\nDans l'**analyse des patrons de points**, nous avons des données ponctuelles représentant la position d'individus ou d'événements dans une région d'étude et nous supposons que tous les individus ou événements ont été recensés dans cette région. Cette analyse s'intéresse à la distribution des positions des points eux-mêmes. Voici quelques questions typiques de l'analyse des patrons de points:\n\n- Les points sont-ils disposés aléatoirement ou agglomérés?\n\n- Deux types de points sont-ils disposés indépendamment?\n\nLes **modèles géostatistiques** visent à représenter la distribution spatiale de variables continues qui sont mesurés à certains points d'échantillonnage. Ils supposent que les mesures de ces variables à différents points sont corrélées en fonction de la distance entre ces points. Parmi les applications des modèles géostatistiques, notons le lissage des données spatiales (ex.: produire une carte d'une variable sur l'ensemble d'une région en fonction des mesures ponctuelles) et la prédiction de ces variables pour des points non-échantillonnés.\n\nLes **données aréales** sont des mesures prises non pas à des points, mais pour des régions de l'espace représentées par des polygones (ex.: divisions du territoire, cellules d'une grille). Les modèles représentant ces types de données définissent un réseau de voisinage reliant les régions et incluent une corrélation spatiale entre régions voisines. \n\n## Stationnarité et isotropie\n\nPlusieurs analyses spatiales supposent que les variables sont **stationnaires** dans l'espace. Comme pour la stationnarité dans le domaine temporel, cette propriété signifie que les statistiques sommaires (moyenne, variance et corrélations entre mesures d'une variable) ne varient pas avec une translation dans l'espace. Par exemple, la corrélation spatiale entre deux points peut dépendre de la distance les séparant, mais pas de leur position absolue.\n\nEn particulier, il ne peut pas y avoir de tendance à grande échelle (souvent appelée *gradient* dans un contexte spatial), ou bien cette tendance doit être prise en compte afin de modéliser la corrélation spatiale des résidus.\n\nDans le cas de l'analyse des patrons de points, la stationnarité (aussi appelée homogénéité dans ce contexte) signifie que la densité des points ne suit pas de tendance à grande échelle.\n\nDans un modèle statistique **isotropique**, les corrélations spatiales entre les mesures à deux points dépendent seulement de la distance entre ces points, pas de la direction. Dans ce cas, les statistiques sommaires ne varient pas si on effectue une rotation dans l'espace.\n\n## Données géoréférencées\n\nLes études environnementales utilisent de plus en plus de données provenant de sources de données géospatiales, c'est-à-dire des variables mesurées sur une grande partie du globe (ex.: climat, télédétection). Le traitement de ces données requiert des concepts liés aux systèmes d'information géographique (SIG), qui ne sont pas couverts dans cet atelier, alors que nous nous concentrons sur les aspects statistiques de données variant dans l'espace.\n\nL'utilisation de données géospatiales ne signifie pas nécessairement qu'il faut avoir recours à des statistiques spatiales. Par exemple, il est courant d'extraire les valeurs de ces variables géographiques à des points d'étude pour expliquer une réponse biologique observée sur le terrain. Dans ce cas, l'utilisation de statistiques spatiales est seulement nécessaire en présence d'une corrélation spatiale dans les résidus, après avoir tenu compte de l'effet des prédicteurs.\n\n\n# Analyse des patrons de points {#point-pattern-fr}\n\n## Patron de points et processus ponctuel\n\nUn patron de points (*point pattern*) décrit la position spatiale (le plus souvent en 2D) d'individus ou d'événements, représentés par des points, dans une aire d'étude donnée, souvent appelée la *fenêtre* d'observation. \n\nOn suppose que chaque point a une étendue spatiale négligeable par rapport aux distances entre les points. Des méthodes plus complexes existent pour traiter des patrons spatiaux d'objets qui ont une largeur non-néligeable, mais ce sujet dépasse la portée de cet atelier.\n\nUn processus ponctuel (*point process*) est un modèle statistique qui peut être utilisé pour simuler des patrons de points ou expliquer un patron de points observé.\n\n## Structure spatiale totalement aléatoire\n\nUne structure spatiale totalement aléatoire (*complete spatial randomness*) est un des patrons les plus simples, qui sert de modèle nul pour évaluer les caractéristiques de patrons de points réels. Dans ce patron, la présence d'un point à une position donnée est indépendante de la présence de points dans un voisinage. \n\nLe processus créant ce patron est un processus de Poisson homogène. Selon ce modèle, le nombre de points dans toute région de superficie $A$ suit une distribution de Poisson: $N(A) \\sim \\text{Pois}(\\lambda A)$, où $\\lambda$ est l'*intensité* du processus (i.e. la densité de points). $N$ est indépendant entre deux régions disjointes, peu importe comment ces régions sont définies.\n\nDans le graphique ci-dessous, seul le patron à droite est totalement aléatoire. Le patron à gauche montre une agrégation des points (probabilité plus grande d'observer un point si on est à proximité d'un autre point), tandis que le patron du centre montre une répulsion (faible probabilité d'observer un point très près d'un autre).\n\n```{r, include = FALSE}\nlibrary(spatstat)\n```\n\n```{r, echo = FALSE, fig.dim = c(9, 3)}\nset.seed(82)\ncsrp <- rpoispp(lambda = 100)\naggp <- rMatClust(20, 0.1, 5)\nevenp <- rMaternII(150, 0.05)\npar(mfrow = c(1, 3))\nplot(aggp, main = \"Agrégation\", pch = 19)\nplot(evenp, main = \"Répulsion\", pch = 19)\nplot(csrp, main = \"Aléatoire\", pch = 19)\n```\n\n## Analyse exploratoire ou inférentielle pour un patron de points\n\nPlusieurs statistiques sommaires sont utilisées pour décrire les caractéristiques un patron de points. La plus simple est l'**intensité** $\\lambda$, qui comme mentionné plus haut représente la densité de points par unité de surface. Si le patron de points est hétérogène, l'intensité n'est pas constante, mais dépend de la position: $\\lambda(x, y)$.\n\nPar rapport à l'intensité qui est une statistique dite de premier ordre, les statistiques de second ordre décrivent comment la probabilité de présence d'un point dans une région dépend de la présence d'autres points. L'indice $K$ de Ripley présenté dans la prochaine section est un exemple de statistique sommaire de second ordre.\n\nLes inférences statistiques réalisées sur des patrons de points consistent habituellement à tester l'hypothèse que le patron de points correspond à un modèle nul donné, par exemple une structure spatiale totalement aléatoire, ou un modèle nul plus complexe. Même pour les modèles nuls les plus simples, nous connaissons rarement la distribution théorique pour une statistique sommaire du patron de points sous le modèle nul. Les tests d'hypothèses sur les patrons de points sont donc réalisés par simulation: on simule un grand nombre de patrons de points à partir du modèle nul et on compare la distribution des statistiques sommaires qui nous intéressent pour ces simulations à la valeur des statistiques pour le patron de points observé.\n\n## Indice $K$ de Ripley\n\nL'indice de Ripley $K(r)$ est défini comme le nombre moyen de points se trouvant dans un cercle de rayon $r$ donné autour d'un point du patron, normalisé par l'intensité $\\lambda$. \n\nPour un patron totalement aléatoire, le nombre moyen de points dans un cercle de rayon $r$ est $\\lambda \\pi r^2$, donc en théorie $K(r) = \\pi r^2$ pour ce modèle nul. Une valeur de $K(r)$ supérieure signifie qu'il y a agrégation des points à l'échelle $r$, tandis qu'une valeur inférieure signifie qu'il y a une répulsion.\n\nEn pratique, $K(r)$ est estimé pour un patron de points donné par l'équation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\noù $A$ est l'aire de la fenêtre d'observation et $n$ est le nombre de points du patron, donc $n(n-1)$ est le nombre de paires de points distinctes. On fait la somme pour toutes les paires de points de la fonction indicatrice $I$, qui prend une valeur de 1 si la distance entre les points $i$ et $j$ est inférieure ou égale à $r$. Finalement, le terme $w_{ij}$ permet de donner un poids supplémentaire à certaines paires de points pour tenir compte des effets de bordure, tel que discuté dans la section suivante.\n\nPar exemple, les graphiques ci-dessous présentent la fonction estimée $K(r)$ pour les patrons illustrés ci-dessus, pour des valeurs de $r$ allant jusqu'à 1/4 de la largeur de la fenêtre. La courbe pointillée rouge indique la valeur théorique pour une structure spatiale totalement aléatoire et la zone grise est une \"enveloppe\" produite par 99 simulations de ce modèle nul. Le patron agrégé montre un excès de voisins jusqu'à $r = 0.25$ et le patron avec répulsion montre un déficit significatif de voisins pour les petites valeurs de $r$. \n\n```{r, include = FALSE}\nkagg <- envelope(aggp, Kest, correction = \"iso\") \nkeven <- envelope(evenp, Kest, correction = \"iso\")\nkcsr <- envelope(csrp, Kest, correction = \"iso\")\n```\n\n```{r, echo = FALSE, fig.dim = c(9, 3)}\npar(mfrow = c(1, 3))\nplot(kagg, main = \"Agrégation\", legend = FALSE)\nplot(keven, main = \"Répulsion\", legend = FALSE)\nplot(kcsr, main = \"Aléatoire\", legend = FALSE)\n```\n\nOutre le $K$, il existe d'autres statistiques pour décrire les propriétés de second ordre du patron, par exemple la distance moyenne entre un point et ses $N$ plus proches voisins. Vous pouvez consulter le manuel de Wiegand et Moloney (2013) suggéré en référence pour en apprendre plus sur différentes statistiques sommaires des patrons de points.\n\n## Effets de bordure\n\nDans le contexte de l'analyse de patrons de points, l'effet de bordure (\"edge effect\") est dû au fait que nous avons une connaissance incomplète du voisinage des points près du bord de la fenêtre d'observation, ce qui peut induire un biais dans le calcul des statistiques comme le $K$ de Ripley. \n\nDifférentes méthodes ont été développées pour corriger le biais dû aux effets de bordure. Selon la méthode de Ripley, la contribution d'un voisin $j$ situé à une distance $r$ d'un point $i$ reçoit un poids $w_{ij} = 1/\\phi_i(r)$, où $\\phi_i(r)$ est la fraction du cercle de rayon $r$ autour de $i$ contenu dans la fenêtre d'observation. Par exemple, si 2/3 du cercle se trouve dans la fenêtre, ce voisin compte pour 3/2 voisins dans le calcul d'une statistique comme $K$.\n\n![](images/ripley_edge.png)\n\nLa méthode de Ripley est une des plus simples pour corriger les effets de bordure, mais n'est pas nécessairement la plus efficace; notamment, les poids plus grands donnés à certaines paires de points tend à accroître la variance du calcul de la statistique. D'autres méthodes de correction sont présentées dans les manuels spécialisés, comme celui de Wiegand et Moloney (2013) en référence.\n\n## Exemple\n\nPour cet exemple, nous utilisons le jeu de données [semis_xy.csv](data/semis_xy.csv), qui représente les coordonnées $(x, y)$ de semis de deux espèces (*sp*, B = bouleau et P = peuplier) dans une placette de 15 x 15 m.\n\n```{r}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\nLe package *spatstat* permet d'effectuer des analyses de patrons de point dans R. La première étape consiste à transformer notre tableau de données en objet `ppp` (patron de points) avec la fonction du même nom. Dans cette fonction, nous spécifions quelles colonnes contiennent les coordonnées *x* et *y* ainsi que les marques (`marks`), qui seront ici les codes d'espèce. Il faut aussi spécifier une fenêtre d'observation (`window`) à l'aide de la fonction `owin`, à laquelle nous indiquons les limites de la placette en *x* et *y*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\nLes marques peuvent être numériques ou catégorielles. Notez que pour des marques catégorielles comme c'est le cas ici, il faut convertir explicitement la variable en facteur.\n\nLa fonction `plot` appliquée à un patron de points montre un diagramme du patron.\n\n```{r}\nplot(semis)\n```\n\nLa fonction `intensity` calcule la densité des points de chaque espèce par unité de surface, ici en $m^2$.\n\n```{r}\nintensity(semis)\n```\n\nPour analyser d'abord séparément la distribution de chaque espèce, nous séparons le patron avec `split`. Puisque le patron contient des marques catégorielles, la séparation se fait automatiquement en fonction de la valeur des marques. Le résultat est une liste de deux patrons de points.\n\n```{r}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\nLa fonction `Kest` calcule le $K$ de Ripley pour une série de distances allant (par défaut) jusqu'à 1/4 de la largeur de la fenêtre. Ici, nous l'appliquons au premier patron (bouleau) en choisissant `semis_split[[1]]`. Notez que les doubles crochets sont nécessaires pour choisir un élément d'une liste dans R.\n\nL'argument `correction = \"iso\"` indique d'appliquer la méthode de Ripley pour corriger les effets de bordure.\n\n```{r}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\nSelon ce graphique, il semble y avoir une excès de voisins à partir d'un rayon de 1 m. Pour vérifier s'il s'agit d'un écart significatif, nous produisons une enveloppe de simulation avec la fonction `envelope`. Le permier argument d'`envelope` est un patron de point auquel les simulations seront comparées, le deuxième une fonction à calculer (ici, `Kest`) pour chaque patron simulé, puis on y ajoute les arguments de la fonction `Kest` (ici, seulement `correction`).\n\n```{r}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\nTel qu'indiqué par le message, cette fonction effectue par défaut 99 simulations de l'hypothèse nulle correspondant à une structure spatiale totalement aléatoire (CSR, pour *complete spatial randomness*).\n\nLa courbe observée sort de l'enveloppe des 99 simulations près de $r = 2$. Il faut être prudent de ne pas interpréter trop rapidement un résultat sortant de l'enveloppe. Même s'il y a environ une probabilité de 1% d'obtenir un résultat plus extrême selon l'hypothèse nulle à une distance donnée, l'enveloppe est calculée pour un grand nombre de valeurs de la distance et nous n'effectuons pas de correction pour les comparaisons multiples. Ainsi, un écart significatif pour une très petite plage de valeurs de $r$ peut être simplement dû au hasard.\n\n\n### Exercice 1\n\nEn regardant le graphique du deuxième patron de points (semis de peuplier), pouvez-vous prédire où se situera le $K$ de Ripley par rapport à l'hypothèse nulle d'une structure spatiale totalement aléatoire? Vérifiez votre prédiction en calculant le $K$ de Ripley pour ce patron de points dans R.\n\n\n## Effet de l'hétérogénéité\n\nLe graphique ci-dessous illustre un patron de points *hétérogène*, c'est-à-dire qu'il présente un gradient d'intensité (plus de points à gauche qu'à droite).\n\n```{r, include = FALSE}\nlam_gr <- function(x, y) ifelse(x < 0.5, 500*(1-x), 200*(1-x))\nhetp <- rpoispp(lam_gr)\nkhet <- envelope(hetp, Kest, correction = \"iso\")\n```\n\n```{r, echo = FALSE}\npar(mfrow = c(1, 2))\nplot(hetp, pch = 19, main = \"\")\nplot(khet, main = \"\", legend = FALSE)\n```\n\nUn gradient de densité peut être confondu avec une agrégation des points, comme on peut voir sur le graphique du $K$ de Ripley correspondant. En théorie, il s'agit de deux processus différents:\n\n- Hétérogénéité: La densité de points varie dans la région d'étude, par exemple dû au fait que certaines conditions locales sont plus propices à la présence de l'espèce étudiée.\n\n- Agrégation: La densité moyenne des points est homogène, mais la présence d'un point augmente la présence d'autre points dans son voisinage, par exemple en raison d'interactions positives entre les individus.\n\nCependant, il peut être difficile de différencier les deux en pratique, surtout que certains patrons peuvent être à la fois hétérogènes et agrégés.\n\nPrenons l'exemple des semis de peuplier de l'exercice précédent. La fonction `density` appliquée à un patron de points effectue une estimation par noyau (*kernel density estimation*) de la densité des semis à travers la placette. Par défaut, cette fonction utilise un noyau gaussien avec un écart-type `sigma` spécifié dans la fonction, qui détermine l'échelle à laquelle les fluctuations de densité sont \"lissées\". Ici, nous utilisons une valeur de 2 m pour `sigma` et nous représentons d'abord la densité estimée avec `plot`, avant d'y superposer les points (`add = TRUE` signifie que les points sont ajoutés au graphique existant plutôt que de créer un nouveau graphique).\n\n```{r}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\nPour mesurer l'agrégation ou la répulsion des points d'un patron hétérogène, nous devons utilisé la version non-homogène de la statistique $K$ (`Kinhom` dans *spatstat*). Cette statistique est toujours égale au nombre moyen de voisins dans un rayon $r$ d'un point du patron, mais plutôt que de normaliser ce nombre par l'intensité globale du patron, il est normalisé par l'estimation locale de la densité de points. Comme ci-dessus, nous spécifions `sigma = 2` pour contrôler le niveau de lissage de l'estimation de la densité variable.\n\n```{r}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\nEn tenant compte de l'hétérogénéité du patron à une échelle `sigma` de 2 m, il semble donc y avoir un déficit de voisins à partir d'environ 1.5 m des points du patron. Il reste à voir si cette déviation est significative.\n\nComme précédemment, nous utilisons `envelope` pour simuler la statistique `Kinhom` sous le modèle nul. Cependant, ici le modèle nul n'est pas un processus de Poisson homogène (structure spatiale totalement aléatoire). Il s'agit plutôt d'un processus de Poisson hétérogène simulé par la fonction `rpoispp(dens_p)`, c'est-à-dire que les points sont indépendants les uns des autres, mais leur densité est hétérogène et donnée par `dens_p`. L'argument `simulate` de la fonction `envelope` permet de spécifier une fonction utilisée pour les simulations sous le modèle nul; cette fonction doit avoir un argument, ici `x`, même s'il n'est pas utilisé.\n\nFinalement, en plus des arguments nécessaires pour `Kinhom`, soit `sigma` et `correction`, nous spécifions aussi `nsim = 199` pour réaliser 199 simulations et `nrank = 5` pour éliminer les 5 résultats les plus extrêmes de chaque côté de l'enveloppe, donc les 10 plus extrêmes sur 199, pour réaliser un intervalle contenant environ 95% de la probabilité sous l'hypothèse nulle.\n\n```{r}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\nplot(khet_p)\n```\n\n*Note*: Pour un test d'hypothèse basé sur des simulations d'une hypothèse nulle, la valeur $p$ est estimée par $(m + 1)/(n + 1)$, où $n$ est le nombre de simulations et $m$ est le nombre de simulations où la valeur de la statistique est plus extrême que celle des données observées. C'est pour cette raison qu'on choisit un nombre de simulations comme 99, 199, etc.\n\n### Exercice 2\n\nRépétez l'estimation de la densité hétérogène et le calcul de `Kinhom` avec un écart-type `sigma` de 5 plutôt que 2. Comment le niveau de lissage pour la densité influence-t-il les conclusions?\n\nPour différencier une variation de densité des points et d'une interaction (agrégation ou répulsion) entre ces points avec ce type d'analyse, il faut généralement supposer que les deux processus opèrent à différentes échelles. Typiquement, nous pouvons tester si les points sont agrégés à petite échelle après avoir tenu compte d'une variation de la densité à une échelle plus grande.\n\n\n## Relation entre deux patrons de points\n\nConsidérons un cas où nous avons deux patrons de points, par exemple la position des arbres de deux espèces dans une parcelle (points oranges et verts dans le graphique ci-dessous). Chacun des deux patrons peut présenter ou non des agrégations de points. \n\n```{r, echo = FALSE}\ndata(lansing)\nlansing <- subset(lansing, marks %in% c(\"maple\", \"redoak\"), drop = TRUE)\nplot(lansing, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"\", legend = FALSE)\n```\n\nSans égard à cette agrégation au niveau de l'espèce, nous voulons déterminer si les deux espèces sont disposées indépendamment. Autrement dit, la probabilité d'observer un arbre d'une espèce dépend-elle de la présence d'un arbre de l'autre espèce à une distance donnée?\n\nLa version bivariée du $K$ de Ripley permet de répondre à cette question. Pour deux patrons désignés 1 et 2, l'indice $K_{12}(r)$ calcule le nombre moyen de points du patron 2 dans un rayon $r$ autour d'un point du patron 1, normalisé par la densité du patron 2.\n\nEn théorie, cet indice est symétrique, donc $K_{12}(r) = K_{21}(r)$ et le résultat serait le même si on choisit les points du patron 1 ou 2 comme points \"focaux\" pour l'analyse. Cependant, l'estimation des deux quantités pour un patron observé peut différer, notamment en raison des effets de bord. La variabilité peut aussi être différente pour $K_{12}$ et $K_{21}$ entre les simulations d'un modèle nul, donc le test de l'hypothèse nulle peut avoir une puissance différente selon le choix de l'espèce focale.\n\nLe choix d'un modèle nul approprié est important ici. Afin de déterminer s'il existe une attraction ou une répulsion significative entre les deux patrons, il faut déplacer aléatoirement la position d'un des patrons relative à celle de l'autre patron, tout en conservant la structure spatiale de chaque patron pris isolément.\n\nUne des façons d'effectuer cette randomisation consiste à décaler l'un des deux patrons horizontalement et/ou verticalement d'une distance aléatoire. La partie du patron qui \"sort\" d'un côté de la fenêtre est rattachée de l'autre côté. Cette méthode s'appelle une translation toroïdale (*toroidal shift*), car en connectant le haut et le bas ainsi que la gauche et la droite d'une surface rectangulaire, on obtient la forme d'un tore (un \"beigne\" en trois dimensions).\n\n```{r, echo = FALSE}\npar(mfrow = c(1, 2))\nset.seed(35)\nrsh <- rshift(lansing, which = 1, width = 0.5, height = 0)\nplot(lansing, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"Original\", legend = FALSE)\nrect(xleft = 1 - rsh$x[8], xright = 1, ybottom = 0, ytop = 1, \n col = rgb(0, 0, 0, alpha = 0.1))\nplot(rsh, chars = 20, cols = c(\"#1b9e77\", \"#d95f02\"), main = \"Après translation\", legend = FALSE)\nrect(xleft = 0, xright = rsh$x[8], ybottom = 0, ytop = 1, \n col = rgb(0, 0, 0, alpha = 0.1))\n```\n\nLe graphique ci-dessus illustre une translation du patron vert vers la droite, tandis que le patron orange reste au même endroit. Les points verts dans la zone ombragée sont ramenés de l'autre côté. Notez que si cette méthode préserve de façon générale la structure de chaque patron tout en randomisant leur position relative, elle peut comporter certains inconvénients, comme de diviser des amas de points qui se trouvent près du point de coupure.\n\nVérifions maintenant s'il y a une dépendance entre la position des deux espèces (bouleau et peuplier) dans notre placette. La fonction `Kcross` calcule l'indice bivarié $K_{ij}$, il faut spécifier quel type de point est considéré comme l'espèce focale $i$ et l'espèce voisine $j$.\n\n```{r}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\nIci, le $K$ observé est inférieur à la valeur théorique, indiquant une répulsion possible des deux patrons.\n\nPour déterminer l'enveloppe du $K$ selon l'hypothèse nulle d'indépendance des deux patrons, nous devons spécifier que les simulations doivent être basées sur une translation des patrons. Nous indiquons que les simulations doivent utiliser la fonction `rshift` (translation aléatoire) avec l'argument `simulate = function(x) rshift(x, which = \"B\")`; ici, l'argument `x` de `simulate` correspond au patron de points original et l'argument `which` indique quel type de points subit la translation. Comme pour le cas précédent, il faut répéter dans la fonction `envelope` les arguments nécessaires pour `Kcross`, soit `i`, `j` et `correction`. \n\n```{r}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\nIci, la courbe observée se situe totalement dans l'enveloppe, donc nous ne rejetons pas l'hypothèse nulle d'indépendance des deux patrons.\n\n### Questions\n\n1. Quelle raison pourrait justifier ici notre choix d'effectuer la translation des points du bouleau plutôt que du peuplier?\n\n2. Est-ce que les simulations générées par translation aléatoire constitueraient un bon modèle nul si les deux patrons étaient hétérogènes?\n\n\n## Patrons de points marqués\n\nLe jeu de données [fir.csv](data/fir.csv) contient les coordonnées $(x, y)$ de 822 sapins dans une placette d'un hectare et leur statut (A = vivant, D = mort) suivant une épidémie de tordeuse des bourgeons de l'épinette.\n\n```{r}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n```{r}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\nSupposons que nous voulons vérifier si la mortalité des sapins est indépendante ou corrélée entre arbres rapprochés. En quoi cette question diffère-t-elle de l'exemple précédent où nous voulions savoir si la position des points de deux espèces était indépendante?\n\nDans l'exemple précédent, l'indépendance ou l'interaction entre les espèces référait à la formation du patron lui-même (que des semis d'une espèce s'établissent ou non à proximité de ceux de l'autre espèce). Ici, la caractéristique qui nous intéresse (survie des sapins) est postérieure à l'établissement du patron, en supposant que tous ces arbres étaient vivants d'abord et que certains sont morts suite à l'épidémie. Donc nous prenons la position des arbres comme fixe et nous voulons savoir si la distribution des statuts (mort, vivant) entre ces arbres est aléatoire ou présente un patron spatial.\n\nDans le manuel de Wiegand et Moloney, la première situation (établissement de semis de deux espèces) est appelé patron bivarié, donc il s'agit vraiment de deux patrons qui interagissent, tandis que la deuxième est un seul patron avec une *marque* qualitative. Le package *spatstat* dans R ne fait pas de différences entre les deux au niveau de la définition du patron (les types de points sont toujours représentés par l'argument `marks`), mais les méthodes d'analyse appliquées aux deux questions diffèrent.\n\nDans le cas d'un patron avec une marque qualitative, nous pouvons définir une fonction de connexion de marques (*mark connection function*) $p_{ij}(r)$. Pour deux points séparés par une distance $r$, cette fonction donne la probabilité que le premier point porte la marque $i$ et le deuxième la marque $j$. Selon l'hypothèse nulle où les marques sont indépendantes, cette probabilité est égale au produit des proportions de chaque marque dans le patron entier, $p_{ij}(r) = p_i p_j$ indépendamment de $r$.\n\nDans *spatstat*, la fonction de connexion de marques est calculée avec la fonction `markconnect`, où il faut spécifier les marques $i$ et $j$ ainsi que le type de correction des effets de bord. Dans notre exemple, nous voyons que deux points rapprochés ont moins de chance d'avoir une statut différent (A et D) que prévu selon l'hypothèse de distribution aléatoire et indépendante des marques (ligne rouge pointillée).\n\n```{r}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\nDans ce graphique, les ondulations dans la fonction sont dues à l'erreur d'estimation d'une fonction continue de $r$ à partir d'un nombre limité de paires de points discrètes.\n\nPour simuler le modèle nul dans ce cas-ci, nous utilisons la fonction `rlabel` qui réassigne aléatoirement les marques parmi les points du patron, en maintenant la position des points.\n\n```{r}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\nNotez que puisque la fonction `rlabel` a un seul argument obligatoire correspondant au patron de points original, il n'était pas nécessaire de spécifier au long: `simulate = function(x) rlabel(x)`.\n\nVoici les résultats pour les paires d'arbres du même statut A ou D:\n\n```{r, fig.dim = c(10, 5)}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\nIl semble donc que la mortalité des sapins due à cette épidémie est agrégée spatialement, puisque les arbres situés à proximité l'un de l'autre ont une plus grande probabilité de partager le même statut que prévu par l'hypothèse nulle.\n\n## Références\n\nFortin, M.-J. et Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK. \n\nWiegand, T. et Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nLe jeu de données du dernier exemple est tiré des données de la Forêt d'enseignement et de recherche du Lac Duparquet (FERLD), disponibles sur Dryad en suivant [ce lien](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n\n# Solutions\n\n### Exercice 1\n\n```{r}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\nLes semis de peuplier semblent significativement agrégés selon la valeur du $K$.\n\n### Exercice 2\n\n```{r}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\nplot(khet_p)\n```\n\nIci, puisque nous estimons la variation de densité à une plus grande échelle, même après avoir tenu compte de cette variation, les semis de peuplier semblent agrégés à petite échelle.\n\n\n# Corrélation spatiale d'une variable {#spatial-correlation-fr}\n\nLa corrélation entre les mesures d'une variable prises à des points rapprochés est une caractéristique dans de nombreux jeux de données. Ce principe est parfois appelé \"première loi de la géographie\" et exprimé par la citation de Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things.\" (Tout est relié, mais les choses rapprochées le sont davantage que celles éloignées).\n\nEn statistique, nous parlons souvent d'*autocorrélation* pour désigner la corrélation qui existe entre les mesures d'une même variable prises à différents moments (autocorrélation temporelle) ou différents lieux (autocorrélation spatiale).\n\n## Dépendance intrinsèque ou induite\n\nIl existe deux types fondamentaux de dépendance spatiale sur une variable mesurée $y$: une dépendance *intrinsèque* à $y$, ou une dépendance *induite* par des variables externes influençant $y$, qui sont elles-mêmes corrélées dans l'espace.\n\nPar exemple, supposons que l'abondance d'une espèce soit corrélée entre deux sites rapprochés:\n\n- cette dépendance spatiale peut être induite si elle est due à une corrélation spatiale des facteurs d'habitat qui favorisent ou défavorisent l'espèce;\n\n- ou elle peut être intrinsèque si elle est due à la dispersion d'individus entre sites rapprochés.\n\nDans plusieurs cas, les deux types de dépendance affectent une variable donnée.\n\nSi la dépendance est simplement induite et que les variables externes qui en sont la cause sont incluses dans le modèle expliquant $y$, alors les résidus du modèle seront indépendants et nous pouvons utiliser toutes les méthodes déjà vues qui ignorent la dépendance spatiale.\n\nCependant, si la dépendance est intrinsèque ou due à des influences externes non-mesurées, alors il faudra tenir compte de la dépendance spatiale des résidus dans le modèle.\n\n## Différentes façons de modéliser les effets spatiaux\n\nDans cette formation, nous modéliserons directement les corrélations spatiales de nos données. Il est utile de comparer cette approche à d'autres façons d'inclure des aspects spatiaux dans un modèle statistique.\n\nD'abord, nous pourrions inclure des prédicteurs dans le modèle qui représentent la position (ex.: longitude, latitude). De tels prédicteurs peuvent être utiles pour détecter une tendance ou un gradient systématique à grande échelle, que cette tendance soit linéaire ou non (par exemple, avec un modèle additif généralisé).\n\nEn contraste à cette approche, les modèles que nous verrons maintenant servent à modéliser une corrélation spatiale dans les fluctuations aléatoires d'une variable (i.e., dans les résidus après avoir enlevé tout effet systématique).\n\nLes modèles mixtes utilisent des effets aléatoires pour représenter la non-indépendance de données sur la base de leur groupement, c'est-à-dire qu'après avoir tenu compte des effets fixes systématiques, les données d'un même groupe sont plus semblables (leur variation résiduelle est corrélée) par rapport aux données de groupes différents. Ces groupes étaient parfois définis selon des critères spatiaux (observations regroupées en sites).\n\nCependant, dans un contexte d'effet aléatoire de groupe, tous les groupes sont aussi différents les uns des autres, ex.: deux sites à 100 km l'un de l'autre ne sont pas plus ou moins semblables que deux sites distants de 2 km.\n\nLes méthodes que nous verrons ici et dans les prochains parties de la formation nous permettent donc ce modéliser la non-indépendance sur une échelle continue (plus proche = plus corrélé) plutôt que seulement discrète (hiérarchie de groupements).\n\n\n# Modèles géostatistiques {#geostat-models-fr}\n\nLa géostatistique désigne un groupe de techniques tirant leur origine en sciences de la Terre. Elle s'intéresse à des variables distribuées de façon continue dans l'espace, dont on cherche à estimer la distribution en échantillonnant un nombre de points. Un exemple classique de ces techniques provient du domaine minier, où l'on cherchait à créer une carte de la concentration du minerai sur un site à partir d'échantillons pris à différents points du site.\n\nPour ces modèles, nous supposerons que $z(x, y)$ est une variable spatiale stationnaire mesurée selon les coordonnées $x$ et $y$.\n\n## Variogramme\n\nUn aspect central de la géostatistique est l'estimation du variogramme $\\gamma_z$ de la variable $z$. Le variogramme est égal à la moitié de l'écart carré moyen entre les valeurs de $z$ pour deux points $(x_i, y_i)$ et $(x_j, y_j)$ séparés par une distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nDans cette équation, la fonction $\\text{E}$ avec l'indice $d_{ij}=h$ désigne l'espérance statistique (autrement dit, la moyenne) de l'écart au carré entre les valeurs de $z$ pour les points séparés par une distance $h$.\n\nSi on préfère exprimer l'autocorrélation $\\rho_z(h)$ entre mesures de $z$ séparées par une distance $h$, celle-ci est reliée au variogramme par l'équation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\noù $\\sigma_z^2$ est la variance globale de $z$. \n\nNotez que $\\gamma_z = \\sigma_z^2$ si nous sommes à une distance où les mesures de $z$ sont indépendantes, donc $\\rho_z = 0$. Dans ce cas, on voit bien que $\\gamma_z$ s'apparente à une variance, même s'il est parfois appelé \"semivariogramme\" ou \"semivariance\" en raison du facteur 1/2 dans l'équation ci-dessus.\n\n## Modèles théoriques du variogramme\n\nPlusieurs modèles paramétriques ont été proposés pour représenter la corrélation spatiale en fonction de la distance entre points d'échantillonnage. Considérons d'abord une corrélation qui diminue de façon exponentielle: \n\n$$\\rho_z(h) = e^{-h/r}$$\n\nIci, $\\rho_z = 1$ pour $h = 0$ et la corréaltion est multipliée par $1/e \\approx 0.37$ pour chaque augmentation de $r$ de la distance. Dans ce contexte, $r$ se nomme la portée (*range*) de la corrélation.\n\nÀ partir de l'équation ci-dessus, nous pouvons calculer le variogramme correspondant.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nVoici une représentation graphique de ce variogramme.\n\n```{r, echo = FALSE}\nggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma)) +\n stat_function(fun = function(x) 5 * (1 - exp(-x/3)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\") +\n geom_segment(aes(x = 0, xend = 2.8, y = 5*(1-exp(-1)),\n yend = 5*(1-exp(-1))), \n arrow = arrow(length = unit(0.05, \"inches\"), ends = \"both\", type = \"closed\")) +\n annotate(\"text\", x = 1.5, y = 3.5, label = \"portée (range)\") +\n annotate(\"text\", x = 9, y = 5.5, label = \"palier (sill)\") +\n scale_y_continuous(limits = c(0, 6))\n```\n\nEn raison de la fonction exponentielle, la valeur de $\\gamma$ à des grandes distances s'approche de la variance globale $\\sigma_z^2$ sans exactement l'atteindre. Cette asymptote est appelée palier (*sill*) dans le contexte géostatistique et représentée par le symbole $s$.\n\nFinalement, il n'est parfois pas réaliste de supposer une corrélation parfaite lorsque la distance tend vers 0, en raison d'une variation possible de $z$ à très petite échelle. On peut ajouter au modèle un effet de pépite (*nugget*), noté $n$, pour que $\\gamma$ s'approche de $n$ (plutôt que 0) si $h$ tend vers 0. Le terme pépite provient de l'origine minière de ces techniques, où une pépite d'un minerai pourrait être la source d'une variation abrupte de la concentration à petite échelle.\n\nEn ajoutant l'effet de pépite, le reste du variogramme est \"compressé\" pour conserver le même palier, ce qui résulte en l'équation suivante.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nDans le package *gstat* que nous utiliserons ci-dessous, le terme $(s - n)$ est le palier partiel (*partial sill*, ou `psill`) pour la partie exponentielle.\n\n```{r, echo = FALSE}\nggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma)) +\n stat_function(fun = function(x) 4 * (1 - exp(-x/3)) + 1,\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\") +\n geom_segment(aes(x = 0, xend = 2.8, y = 4*(1-exp(-1)) + 1,\n yend = 4*(1-exp(-1)) + 1), \n arrow = arrow(length = unit(0.05, \"inches\"), \n ends = \"both\", type = \"closed\")) +\n geom_segment(aes(x = 0, xend = 0, y = 0, yend = 0.9),\n arrow = arrow(length = unit(0.05, \"inches\"),\n ends = \"both\", type = \"closed\")) +\n annotate(\"text\", x = 1.5, y = 4, label = \"portée (range)\") +\n annotate(\"text\", x = 9, y = 5.5, label = \"palier (sill)\") +\n annotate(\"text\", x = 1.5, y = 0.5, label = \"pépite (nugget)\") +\n scale_y_continuous(limits = c(0, 6))\n```\n\nEn plus du modèle exponentiel, deux autres modèles théoriques courants pour le variogramme sont le modèle gaussien (où la corrélation suit une courbe demi-normale), ainsi que le modèle sphérique (où le variogramme augmente de façon linéaire au départ pour ensuite courber et atteindre le palier à une distance égale à sa portée $r$). Le modèle sphérique permet donc à la corrélation d'être exactement 0 à grande distance, plutôt que de s'approcher graduellement de zéro dans le cas des autres modèles.\n\n Modèle | $\\rho(h)$ | $\\gamma(h)$\n-------|-----------|-------------\nExponentiel | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$\nGaussien | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$\nSphérique $(h < r)$ * | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$\n\n\\* Pour le modèle sphérique, $\\rho = 0$ et $\\gamma = s$ si $h \\ge r$.\n\n\n```{r, echo = FALSE, fig.dim = c(9, 4)}\nvexp <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Exponentiel\") +\n stat_function(fun = function(x) 5 * (1 - exp(-x/3)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n \n\nvgau <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Gaussien\") +\n stat_function(fun = function(x) 5 * (1 - exp(-x^2/4^2)),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n\nvsph <- ggplot(NULL) + xlim(0, 10) +\n labs(x = \"h\", y = expression(gamma), title = \"Sphérique\") +\n stat_function(fun = function(x) ifelse(x < 8, 5 * (1.5*x/8 - 0.5*x^3/8^3), 5),\n geom = \"line\", color = \"#b3452c\", size = 1) +\n geom_hline(yintercept = 5, linetype = \"dotted\")\n\nplot_grid(vexp, vgau, vsph, nrow = 1)\n```\n\n## Variogramme empirique\n\nPour estimer $\\gamma_z(h)$ à partir de données empiriques, nous devons définir des classes de distance, donc grouper différentes distances dans une marge $\\pm \\delta$ autour d'une distance $h$, puis calculer l'écart-carré moyen pour les paires de points dans cette classe de distance.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nNous verrons dans la partie suivante comment estimer un variogramme dans R.\n\n## Modèle de régression avec corrélation spatiale\n\nL'équation suivante représente une régression linéaire multiple incluant une corrélation spatiale résiduelle:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nIci, $v$ désigne la variable réponse et $u$ les prédicteurs, pour ne pas confondre avec les coordonnées spatiales $x$ et $y$. \n\nEn plus du résidu $\\epsilon$ qui est indépendant entre les observations, le modèle inclut un terme $z$ qui représente la portion spatialement corrélée de la variance résiduelle.\n\nVoici une suggestions d'étapes à suivre pour appliquer ce type de modèle:\n\n1. Ajuster le modèle de régression sans corrélation spatiale.\n\n2. Vérifier la présence de corrélation spatiale à partir du variogramme empirique des résidus.\n\n3. Ajuster un ou plusieurs modèles de régression avec corrélation spatiale et choisir celui qui montre le meilleur ajustement aux données. \n\n# Modèles géostatistiques dans R\n\nLe package *gstat* contient des fonctions liées à la géostatistique. Pour cet exemple, nous utiliserons le jeu de données `oxford` de ce package, qui contient des mesures de propriétés physiques et chimiques pour 126 échantillons du sol d'un site, ainsi que leurs coordonnées `XCOORD` et `YCOORD`.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\nSupposons que nous souhaitons modéliser la concentration de magnésium (`MG1`), représentée en fonction de la position spatiale dans le graphique suivant.\n\n```{r}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\nNotez que les axes $x$ et $y$ ont été inversés par souci d'espace. La fonction `coord_fixed()` de *ggplot2* assure que l'échelle soit la même sur les deux axes, ce qui est utile pour représenter des données spatiales. \n\nNous voyons tout de suite que ces mesures ont été prises sur une grille de 100 m de côté. Il semble que la concentration de magnésium soit spatialement corrélée, bien qu'il puisse s'agir d'une corrélation induite par une autre variable. Nous savons notamment que la concentration de magnésium est reliée négativement au pH du sol (`PH1`).\n\n```{r}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\nLa fonction `variogram` de *gstat* sert à estimer un variogramme à partir de données empiriques. Voici le résultat obtenu pour la variable `MG1`.\n\n```{r}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\nLa formule `MG1 ~ 1` indique qu'aucun prédicteur linéaire n'est inclus dans ce modèle, tandis que l'argument `locations` indique quelles variables du tableau correspondent aux coordonnées spatiales. \n\nDans le tableau obtenu, `gamma` est la valeur du variogramme pour la classe de distance centrée sur `dist`, tandis que `np` est le nombre de paires de points dans cette classe. Ici, puisque les points sont situés sur une grille, nous obtenons des classes de distance régulières (ex.: 100 m pour les points voisins sur la grille, 141 m pour les voisins en diagonale, etc.).\n\nNous nous limitons ici à l'estimation de variogrammes isotropiques, c'est-à-dire que le variogramme dépend seulement de la distance entre les deux points et non de la direction. Bien que nous n'ayons pas le temps de le voir aujourd'hui, il est possible avec *gstat* d'estimer séparément le variogramme dans différentes directions.\n\nNous pouvons illustrer le variogramme avec `plot`.\n\n```{r}\nplot(var_mg, col = \"black\")\n```\n\nSi nous voulons estimer la corrélation spatiale résiduelle de `MG1` après avoir inclus l'effet de `PH1`, nous pouvons ajouter ce prédicteur à la formule.\n\n```{r}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\nEn incluant l'effet du pH, la portée de la corrélation spatiale semble diminuer, alors que le plateau est atteint autour de 300 m. Il semble même que le variogramme diminue au-delà de 400 m. En général, nous supposons que la variance entre deux points ne diminue pas avec la distance, à moins d'avoir un patron spatial périodique.\n\nLa fonction `fit.variogram` accepte comme arguments un variogramme estimé à partir des données, ainsi qu'un modèle théorique décrit dans une fonction `vgm`, puis estime les paramètres de ce modèle en fonction des données. L'ajustement se fait par la méthode des moindres carrés.\n\nPar exemple, `vgm(\"Exp\")` indique d'ajuster un modèle exponentiel. \n\n```{r}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\nIl n'y a aucun effet de pépite, car `psill = 0` pour la partie `Nug` (*nugget*) du modèle. La partie exponentielle a un palier à 1951 et une portée de 95 m.\n\nPour comparer différents modèles, on peut donner un vecteur de noms de modèles à `vgm`. Dans l'exemple suivant, nous incluons les modèles exponentiel, gaussien (\"Gau\") et sphérique (\"Sph\").\n\n```{r, warning = FALSE, message = FALSE}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\nLa fonction nous donne le résultat du modèle le mieux ajusté (plus faible somme des écarts au carré), qui est ici le même modèle exponentiel.\n\nFinalement, nous pouvons superposer le modèle théorique et le variogramme empirique sur un même graphique.\n\n```{r}\nplot(var_mg, vfit, col = \"black\")\n```\n\n## Régression avec corrélation spatiale\n\nNous avons vu ci-dessus que le package *gstat* permet d'estimer le variogramme des résidus d'un modèle linéaire. Dans notre exemple, la concentration de magnésium était modélisée en fonction du pH, avec des résidus spatialement corrélés.\n\nUn autre outil pour ajuster ce même type de modèle est la fonction `gls` du package *nlme*, qui est inclus avec l'installation de R. \n\nCette fonction applique la méthode des moindres carrés généralisés (*generalized least squares*) pour ajuster des modèles de régression linéaire lorsque les résidus ne sont pas indépendants ou lorsque la variance résiduelle n'est pas la même pour toutes les observations. Comme les estimés des coefficients dépendent de l'estimé des corrélations entre les résidus et que ces derniers dépendent eux-mêmes des coefficients, le modèle est ajusté par un algorithme itératif:\n\n1. On ajuste un modèle de régression linéaire classique (sans corrélation) pour obtenir des résidus.\n\n2. On ajuste le modèle de corrélation spatiale (variogramme) avec ses résidus.\n\n3. On ré-estime les coefficients de la régression en tenant compte maintenant des corrélations.\n\nLes étapes 2 et 3 sont répétées jusqu'à ce que les estimés soient stables à une précision voulue.\n\nVoici l'application de cette méthode au même modèle pour la concentration de magnésium dans le jeu de données `oxford`. Dans l'argument `correlation` de `gls`, nous spécifions un modèle de corrélation exponentielle en fonction de nos coordonnées spatiales et indiquons que nous voulons aussi estimer un effet de pépite.\n\nEn plus de la corrélation exponentielle `corExp`, la fonction `gls` peut aussi estimer un modèle gaussien (`corGaus`) ou sphérique (`corSpher`).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\nPour comparer ce résultat au variogramme ajusté ci-dessus, il faut transformer les paramètres donnés par `gls`. La portée (range) a le même sens dans les deux cas et correspond à 478 m pour le résultat de `gls`. La variance globale des résidus est le carré de `Residual standard error`. L'effet de pépite ici (0.294) est exprimé comme fraction de cette variance. Finalement, pour obtenir le palier partiel de la partie exponentielle, il faut soustraire l'effet de pépite de la variance totale. \n\nAprès avoir réalisé ces calculs, nous pouvons donner ces paramètres à la fonction `vgm` de *gstat* pour superposer ce variogramme estimé par `gls` à notre variogramme des résidus du modèle linéaire classique.\n\n```{r}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\nEst-ce que le modèle est moins bien ajusté aux données ici? En fait, ce variogramme empirique représenté par les points avait été obtenu à partir des résidus du modèle linéaire ignorant la corrélation spatiale, donc c'est un estimé biaisé des corrélations spatiales réelles. La méthode est quand même adéquate pour vérifier rapidement s'il y a présence de corrélations spatiales. Toutefois, pour ajuster simultanément les coefficients de la régression et les paramètres de corrélation spatiale, l'approche des moindres carrés généralisés (GLS) est préférable et produira des estimés plus justes.\n\nFinalement, notez que le résultat du modèle `gls` donne aussi l'AIC, que nous pouvons utiliser pour comparer l'ajustement de différents modèles (avec différents prédicteurs ou différentes formes de corrélation spatiale).\n\n## Exercice\n\nLe fichier [bryo_belg.csv](data/bryo_belg.csv) est adapté des données de l'étude: \n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nCe tableau de données indique la richesse spécifique des bryophytes au sol (*richness*) pour différents points d'échantillonnage de la province belge de Limbourg, avec leur position *(x, y)* en km, en plus de l'information sur la proportion de forêts (*forest*) et de milieux humides (*wetland*) dans une cellule de 1 km$^2$ contenant le point d'échantillonnage.\n\n```{r}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\nPour cet exercice, nous utiliserons la racine carrée de la richesse spécifique comme variable réponse. La transformation racine carrée permet souvent d'homogénéiser la variance des données de comptage afin d'y appliquer une régression linéaire. \n\na) Ajustez un modèle linéaire de la richesse spécifique transformée en fonction de la fraction de forêt et de milieux humides, sans tenir compte des corrélations spatiales. Quel est l'effet des deux prédicteurs selon ce modèle?\n\nb) Calculez le variogramme empirique des résidus du modèle en (a). Semble-t-il y avoir une corrélation spatiale entre les points?\n\n*Note*: L'argument `cutoff` de la fonction `variogram` spécifie la distance maximale à laquelle le variogramme est calculé. Vous pouvez ajuster manuellement cette valeur pour bien voir le palier.\n\nc) Ré-ajustez le modèle linéaire en (a) avec la fonction `gls` du package *nlme*, en essayant différents types de corrélations spatiales (exponentielle, gaussienne, sphérique). Comparez les modèles (incluant celui sans corrélation spatiale) avec l'AIC.\n\nd) Quel est l'effet de la fraction de forêts et de milieux humides selon le modèle en (c)? Expliquez les différences entre les conclusions de ce modèle et du modèle en (a).\n\n\n# Krigeage\n\nTel que mentionné précédemment, une application courante des modèles géostatistiques consiste à prédire la valeur de la variable de réponse à des points non-échantillonnés, une forme d'interpolation spatiale appelée krigeage (*kriging*).\n\nIl existe trois principaux types de krigeage selon les suppositions faites au sujet de la variable réponse:\n\n- Krigeage ordinaire: variable stationnaire avec une moyenne inconnue.\n\n- Krigeage simple: Variable stationnaire avec une moyenne connue.\n\n- Krigeage universel: Variable dont la tendance est donnée par un modèle linéaire ou non linéaire.\n\nPour toutes les méthodes de krigeage, les prédictions à un nouveau point sont une moyenne pondérée des valeurs à des points connus. Ces pondérations sont choisies de manière à ce que le krigeage fournisse la meilleure prédiction linéaire non biaisée de la variable de réponse, si les hypothèses du modèle (en particulier le variogramme) sont correctes. C'est-à-dire que, parmi toutes les prédictions non biaisées possibles, les poids sont choisis de manière à donner l'erreur quadratique moyenne minimale. Le krigeage fournit également une estimation de l'incertitude de chaque prédiction.\n\nBien que nous ne présentions pas ici les équations détaillées du krigeage, les poids dépendent à la fois des corrélations (estimées par le variogramme) entre les points échantillonnés et le nouveau point, ainsi que des corrélations entre les points échantillonnés eux-mêmes. Autrement dit, les points échantillonnés proches du nouveau point ont plus de poids, mais les points échantillonnés isolés ont également plus de poids, car les points échantillonnés proches les uns des autres fournissent une informations redondante.\n\nLe krigeage est une méthode d'interpolation, donc la prédiction à un point échantillonné sera toujours égale à la valeur mesurée (la variable est supposée être mesurée sans erreur, elle varie seulement entre les points). Cependant, en présence d'un effet de pépite, tout petit déplacement par rapport à l'endroit échantillonné présentera une variabilité en fonction de la pépite.\n\nDans l'exemple ci-dessous, nous générons un nouvel ensemble de données composé de coordonnées (x, y) générées de façon aléatoire dans la zone d'étude ainsi que des valeurs de pH générées de façon aléatoire sur la base des données `oxford`. Nous appliquons ensuite la fonction `krige` pour prédire les valeurs de magnésium à ces nouveaux points. Notez que nous spécifions le variogramme dérivé des résultats du `gls` dans l'argument `model` de `krige`.\n\n```{r}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\nhead(pred)\n```\n\nLe résultat de `krige` comprend les nouvelles coordonnées du point, la prédiction de la variable `var1.pred` ainsi que sa variance estimée `var1.var`. Dans le graphique ci-dessous, nous montrons les prédictions moyennes de MG1 à partir du krigeage (triangles) ainsi que les mesures (cercles).\n\n```{r}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\nLa moyenne et la variance estimées par krigeage peuvent être utilisées pour simuler les valeurs possibles de la variable à chaque nouveau point, conditionnellement aux valeurs échantillonnées. Dans l'exemple ci-dessous, nous avons effectué 4 simulations conditionnelles en ajoutant l'argument `nsim = 4` à la même instruction `krige`.\n\n```{r}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\nhead(sim_mg)\n```\n\n```{r, message = FALSE, warning = FALSE, fig.dim = c(10, 5)}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n\n# Solutions\n\n```{r}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\nLa proportion de forêts a un effet positif significatif et la proportion de milieux humides a un effet négatif significatif sur la richesse des bryophytes.\n\n```{r}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\nLe variogramme augmente au moins jusqu'à une distance de 40 km, il semble donc y avoir des corrélations spatiales dans les résidus du modèle.\n\n```{r}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n\n```{r}\nAIC(bryo_lm)\nAIC(bryo_exp)\nAIC(bryo_gaus)\nAIC(bryo_spher)\n```\n\nLe modèle sphérique a l'AIC le plus faible.\n\n```{r}\nsummary(bryo_spher)\n```\n\nLa magnitude des deux effets est moins importante et l'effet des milieux humides n'est plus significatif. Comme c'est le cas pour d'autres types de résidus non indépendants, la \"taille effective\" de l'échantillon est ici inférieure au nombre de points, car des points proches les uns des autres fournissent une information redondante. Par conséquent, la relation entre les prédicteurs et la réponse est moins claire que celle donnée par le modèle supposant que tous ces points étaient indépendants.\n\nNotez que les résultats pour les trois modèles `gls` sont assez similaires, donc le choix d'inclure des corrélations spatiales était plus important que la forme exacte supposée pour le variogramme.\n\n\n# Données aréales {#areal-data-fr}\n\nLes données aréales sont des variables mesurées pour des régions de l'espace; ces régions sont définies par des polygones. Ce type de données est plus courant en sciences sociales, en géographie humaine et en épidémiologie, où les données sont souvent disponibles à l'échelle de divisions administratives du territoire. \n\nCe type de données apparaît aussi fréquemment dans la gestion des ressources naturelles. Par exemple, la carte suivante montre les unités d'aménagement forestier du Ministère de la Forêts, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSupposons qu'une certaine variable soit disponible au niveau de ces divisions du territoire. Comment pouvons-nous modéliser la corrélation spatiale entre les unités qui sont spatialement rapprochées?\n\nUne option serait d'appliquer les méthodes géostatistiques vues précédemment, en calculant par exemple la distance entre les centres des polygones.\n\nUne autre option, qui est davantage privilégiée pour les données aréales, consiste à définir un réseau où chaque région est connectée aux régions voisines par un lien. On suppose ensuite que les variables sont directement corrélées entre régions voisines seulement. (Notons toutefois que les corrélations directes entre voisins immédiats génèrent aussi des corrélations indirectes pour une chaîne de voisins.)\n\nDans ce type de modèle, la corrélation n'est pas nécessairement la même d'un lien à un autre. Dans ce cas, chaque lien du réseau peut être associé à un *poids* représentant son importance pour la corrélation spatiale. Nous représentons ces poids par une matrice $W$ où $w_{ij}$ est le poids du lien entre les régions $i$ et $j$. Une région n'a pas de lien avec elle-même, donc $w_{ii} = 0$.\n\nUn choix simple pour $W$ consiste à assigner un poids égal à 1 si les régions sont voisines, sinon 0 (poids binaires).\n\nOutre les divisions du territoire en polygones, un autre exemple de données aréales consiste en une grille où la variable est compilée pour chaque cellule de la grille. Dans ce cas, une cellule a généralement 4 ou 8 cellules voisines, selon que les diagonales soient incluses ou non.\n\n# Indice de Moran {#moran-i-fr}\n\nAvant de discuter des modèles d'autocorrélation spatiale, nous présentons l'indice $I$ de Moran, qui permet de tester si une corrélation significative est présente entre régions voisines. \n\nL'indice de Moran est un coefficient d'autocorrélation spatiale des $z$, pondéré par les poids $w_{ij}$. Il prend donc des valeurs entre -1 et 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nDans cette équation, nous reconnaissons l'expression d'une corrélation, soit le produit des écarts à la moyenne de deux variables $z_i$ et $z_j$, divisé par le produit de leurs écarts-types (qui est le même, donc on obtient la variance). La contribution de chaque paire $(i, j)$ est multipliée par son poids $w_{ij}$ et le terme à gauche (le nombre de régions $N$ divisé par la somme des poids) assure que le résultat soit borné entre -1 et 1.\n\nPuisque la distribution de $I$ est connue en l'absence d'autocorrélation spatiale, cette statistique permet de tester l'hypothèse nulle selon laquelle il n'y a pas de corrélation spatiale entre régions voisines.\n\nBien que nous ne verrons pas d'exemple dans ce cours-ci, l'indice de Moran peut aussi être appliqué aux données ponctuelles. Dans ce cas, on divise les paires de points en classes de distance et on calcule $I$ pour chaque classe de distance; le poids $w_{ij} = 1$ si la distance entre $i$ et $j$ se trouve dans la classe de distance voulue, 0 autrement.\n\n# Modèles d'autorégression spatiale {#spatial-autoreg-fr}\n\nRappelons-nous la formule pour une régression linéaire avec dépendance spatiale:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\noù $z$ est la portion de la variance résiduelle qui est spatialement corrélée.\n\nIl existe deux principaux types de modèles autorégressifs pour représenter la dépendance spatiale de $z$: l'autorégression conditionnelle (CAR) et l'autorégression simultanée (SAR).\n\n## Autorégression conditionnelle (CAR)\n\nDans le modèle d'autorégression conditionnelle, la valeur de $z_i$ pour la région $i$ suit une distribution normale: sa moyenne dépend de la valeur $z_j$ des régions voisines, multipliée par le poids $w_{ij}$ et un coefficient de corrélation $\\rho$; son écart-type $\\sigma_{z_i}$ peut varier d'une région à l'autre.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nDans ce modèle, si $w_{ij}$ est une matrice binaire (0 pour les non-voisins, 1 pour les voisins), alors $\\rho$ est le coefficient de corrélation partielle entre régions voisines. Cela est semblable à un modèle autorégressif d'ordre 1 dans le contexte de séries temporelles, où le coefficient d'autorégression indique la corrélation partielle.\n\n## Autorégression simultanée (SAR)\n\nDans le modèle d'autorégression simultanée, la valeur de $z_i$ est donnée directement par la somme de contributions des valeurs voisines $z_j$, multipliées par $\\rho w_{ij}$, avec un résidu indépendant $\\nu_i$ d'écart-type $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nÀ première vue, cela ressemble à un modèle autorégressif temporel. Il existe cependant une différence conceptuelle importante. Pour les modèles temporels, l'influence causale est dirigée dans une seule direction: $v(t-2)$ affecte $v(t-1)$ qui affecte ensuite $v(t)$. Pour un modèle spatial, chaque $z_j$ qui affecte $z_i$ dépend à son tour de $z_i$. Ainsi, pour déterminer la distribution conjointe des $z$, il faut résoudre simultanément (d'où le nom du modèle) un système d'équations. \n\nPour cette raison, même si ce modèle ressemble à la formule du modèle conditionnel (CAR), les solutions des deux modèles diffèrent et dans le cas du SAR, le coefficient $\\rho$ n'est pas directement égal à la corrélation partielle due à chaque région voisine.\n\nPour plus de détails sur les aspects mathématiques de ces modèles, vous pouvez consulter l'article de Ver Hoef et al. (2018) suggéré en référence. \n\nPour l'instant, nous considérerons les SAR et les CAR comme deux types de modèles possibles pour représenter une corrélation spatiale sur un réseau. Nous pouvons toujours ajuster plusieurs modèles et les comparer avec l'AIC pour choisir la meilleure forme de la corrélation ou la meilleure matrice de poids.\n\nLes modèles CAR et SAR partagent un avantage sur les modèles géostatistiques au niveau de l'efficacité. Dans un modèle géostatistique, les corrélations spatiales sont définies entre chaque paire de points, même si elles deviennent négligeables lorsque la distance augmente. Pour un modèle CAR ou SAR, seules les régions voisines contribuent et la plupart des poids sont égaux à 0, ce qui rend ces modèles plus rapides à ajuster qu'un modèle géostatistique lorsque les données sont massives.\n\n# Analyse des données aréales dans R {#analysis-areal-fr}\n\nPour illustrer l'analyse de données aréales dans R, nous chargeons les packages *sf* (pour lire des données géospatiales), *spdep* (pour définir des réseaux spatiaux et calculer l'indice de Moran) et *spatialreg* (pour les modèles SAR et CAR).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n\nNous utiliserons comme exemple un jeu de données qui présente une partie des résultats de l'élection provinciale de 2018 au Québec, avec des caractéristiques de la population de chaque circonscription. Ces données sont inclues dans un fichier de type *shapefile* (.shp), que nous pouvons lire avec la fonction `read_sf` du package *sf*.\n\n```{r}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n*Note*: Le jeu de données est en fait composé de 4 fichiers avec les extensions .dbf, .prj, .shp et .shx, mais il suffit d'inscrire le nom du fichier .shp dans `read_sf`.\n\nLes colonnes du jeu de données sont dans l'ordre:\n\n- le nom de la circonscription électorale;\n- quatre caractéristiques de la population (âge moyen, fraction de la population qui parle principalement français à la maison, fraction des ménages qui sont propriétaires de leur logement, revenu médian);\n- quatre colonnes montrant la fraction des votes obtenues par les principaux partis (CAQ, PQ, PLQ, QS);\n- une colonne `geometry` qui contient l'objet géométrique (multipolygone) correspondant à la circonscription.\n\nPour illustrer une des variables sur une carte, nous appelons la fonction `plot` avec le nom de la colonne entre crochets et guillemets. \n\n```{r}\nplot(elect2018[\"rev_med\"])\n```\n\nDans cet exemple, nous voulons modéliser la fraction des votes obtenue par la CAQ en fonction des caractéristiques de la population dans chaque circonscription et en tenant compte des corrélations spatiales entre circonscriptions voisines.\n\n## Définition du réseau de voisinage\n\nLa fonction `poly2nb` du package *spdep* définit un réseau de voisinage à partir de polygones. Le résultat `vois` est une liste de 125 éléments où chaque élément contient les indices des polygones voisins (limitrophes) d'un polygone donné.\n\n```{r}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\nAinsi, la première circonscription (Abitibi-Est) a 6 circonscriptions voisines, dont on peut trouver les noms ainsi:\n\n```{r}\nelect2018$circ[vois[[1]]]\n```\n\nNous pouvons illustrer ce réseau en faisant l'extraction des coordonnées du centre de chaque circonscription, en créant une carte muette avec `plot(elect2018[\"geometry\"])`, puis en ajoutant le réseau comme couche additionnelle avec `plot(vois, add = TRUE, coords = coords)`.\n\n```{r, message = FALSE, warning = FALSE}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\nOn peut faire un \"zoom\" sur le sud du Québec en choisissant les limites `xlim` et `ylim` appropriées.\n\n```{r}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\nIl nous reste à ajouter des poids à chaque lien du réseau avec la fonction `nb2listw`. Le style de poids \"B\" correspond aux poids binaires, soit 1 pour la présence de lien et 0 pour l'absence de lien entre deux circonscriptions.\n\nUne fois ces poids définis, nous pouvons vérifier avec le test de Moran s'il y a une autocorrélation significative des votes obtenus par la CAQ entre circonscriptions voisines.\n\n```{r}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\nLa valeur de $I = 0.68$ est très significative à en juger par la valeur $p$ du test.\n\nVérifions si la corrélation spatiale persiste après avoir tenu compte des quatre caractéristiques de la population, donc en inspectant les résidus d'un modèle linéaire incluant ces quatre prédicteurs.\n\n```{r}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\nmoran.test(residuals(elect_lm), poids)\n```\n\nL'indice de Moran a diminué mais demeure significatif, donc une partie de la corrélation précédente était induite par ces prédicteurs, mais il reste une corrélation spatiale due à d'autres facteurs. \n\n## Modèles d'autorégression spatiale\n\nFinalement, nous ajustons des modèles SAR et CAR à ces données avec la fonction `spautolm` (*spatial autoregressive linear model*) de *spatialreg*. Voici le code pour un modèle SAR incluant l'effet des même quatre prédicteurs. \n\n```{r}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\nLa valeur donnée par `Lambda` dans le sommaire correspond au coefficient $\\rho$ dans notre description du modèle. Le test du rapport de vraisemblance (`LR test`) confirme que cette corrélation spatiale résiduelle (après avoir tenu compte de l'effet des prédicteurs) est significative.\n\nLes effets estimés pour les prédicteurs sont semblables à ceux du modèle linéaire sans corrélation spatiale. Les effets de l'âge moyen, de la fraction de francophones et la fraction de propriétaires demeurent significatifs, bien que leur magnitude ait un peu diminué.\n\nPour évaluer un modèle CAR plutôt que SAR, nous devons spécifier `family = \"CAR\"`.\n\n```{r}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\nPour un modèle CAR avec des poids binaires, la valeur de `Lambda` (que nous avions appelé $\\rho$) donne directement le coefficient de corrélation partielle entre circonscriptions voisines. Notez que l'AIC ici est légèrement supérieur au modèle SAR, donc ce dernier donnait un meilleur ajustement.\n\n## Exercice\n\nLe jeu de données `rls_covid`, en format *shapefile*, contient des données sur les cas de COVID-19 détectés, le nombre de cas par 1000 personnes (`taux_1k`) et la densité de population (`dens_pop`) dans chacun des réseaux locaux de service de santé (RLS) du Québec. (Source: Données téléchargées de l'Institut national de santé publique du Québec en date du 17 janvier 2021.)\n\n```{r}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\nAjustez un modèle linéaire du nombre de cas par 1000 en fonction de la densité de population (il est suggéré d'appliquer une transformation logarithmique à cette dernière). Vérifiez si les résidus du modèle sont corrélés entre RLS limitrophes avec un test de Moran, puis modélisez les mêmes données avec un modèle autorégressif conditionnel.\n\n## Référence\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. et Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n# GLMM avec processus spatial gaussien {#glmm-spatial-gaussian-fr}\n\nDans les parties précédentes, nous avons vu comment tenir compte de la dépendance spatiale dans les modèles de régression linéaire avec des modèles géostatistiques (également appelés processus gaussiens) ou des modèles d'autocorrélation spatiale (CAR/SAR). Dans cette dernière partie, nous verrons comment combiner ces caractéristiques avec des modèles de régression plus complexes, en particulier les modèles linéaires généralisés à effets mixtes (GLMM).\n\n## Données\n\nLe jeu de données `gambia` inclus avec le package *geoR* présente les résultats d'une étude sur la prévalence du paludisme chez les enfants de 65 villages en Gambie. Nous utiliserons une version légèrement transformée des données contenues dans le fichier [gambia.csv](data/gambia.csv).\n\n```{r, warning = FALSE, message = FALSE}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\nVoici les champs de ce jeu de données:\n\n- *id_village*: Identifiant du village.\n- *x* and *y*: Coordonnées spatiales du village (en km, basé sur les coordonnées UTM).\n- *pos*: Réponse binaire, si l'enfant a eu un test positif du paludisme.\n- *age*: Âge de l'enfant en jours.\n- *netuse*: Si l'enfant dort sous un moustiquaire ou non.\n- *treated*: Si le moustiquaire est traité ou non.\n- *green*: Mesure de la végétation basée sur les données de télédétection (disponible à l'échelle du village).\n- *phc*: Présence ou absence d'un centre de santé publique pour le village.\n\nNous pouvons compter le nombre de cas positifs et le nombre total d'enfants testés par village pour cartographier la fraction des cas positifs (ou prévalence, *prev*).\n\n```{r}\n# Jeu de données à l'échelle du village\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\nhead(gambia_agg)\n```\n\n\n```{r, message = FALSE, warning = FALSE}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\nNous utilisons le jeu de données `gambia.borders` du package *geoR* pour tracer les frontières des pays avec `geom_path`. Comme ces frontières sont en mètres, nous les divisons par 1000 pour obtenir la même échelle que nos points. Nous utilisons également `coord_fixed` pour assurer un rapport d'aspect de 1:1 entre les axes et utilisons la palette de couleur `viridis`, qui permet de visualiser plus facilement une variable continue par rapport à la palette par défaut dans *ggplot2*.\n\nSur la base de cette carte, il semble y avoir une corrélation spatiale dans la prévalence du paludisme, le groupe de villages de l'est montrant des valeurs de prévalence plus élevées (jaune-vert) et le groupe du milieu montrant des valeurs de prévalence plus faibles (violet).\n\n## GLMM non spatial\n\nPour ce premier exemple, nous allons ignorer l'aspect spatial des données et modéliser la présence du paludisme (*pos*) en fonction de l'utilisation d'une moustiquaire (*netuse*) et de la présence d'un centre de santé publique (*phc*). Comme nous avons une réponse binaire, nous devons utiliser un modèle de régression logistique (un GLM). Comme nous avons des prédicteurs au niveau individuel et au niveau du village et que nous nous attendons à ce que les enfants d'un même village aient une probabilité plus similaire d'avoir le paludisme même après avoir pris en compte ces prédicteurs, nous devons ajouter un effet aléatoire du village. Le résultat est un GLMM que nous ajustons en utilisant la fonction `glmer` du package *lme4*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\nD'après ces résultats, les variables *netuse* et *phc* sont toutes deux associées à une diminution de la prévalence du paludisme, bien que l'effet de *phc* ne soit pas significatif à un seuil $\\alpha = 0.05$. L'ordonnée à l'origine (0.149) est le logit de la probabilité de présence du paludisme pour un enfant sans moustiquaire et sans centre de santé publique, mais c'est l'ordonnée à l'origine moyenne pour tous les villages. Il y a beaucoup de variation entre les villages selon l'écart-type de l'effet aléatoire (0.90). Nous pouvons obtenir l'ordonnée à l'origine estimée pour chaque village avec la fonction `coef`:\n\n```{r}\nhead(coef(mod_glmm)$id_village)\n```\n\nPar exemple, l'ordonnée à l'origine pour le village 1 est environ 0.94, équivalente à une probabilité de 72%:\n\n```{r}\nplogis(0.937)\n```\n\ntandis que celle pour le village 2 est équivalente à une probabilité de 52%:\n\n```{r}\nplogis(0.092)\n```\n\nLe [package DHARMa](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) fournit une méthode générale pour vérifier si les résidus d'un GLMM sont distribués selon le modèle spécifié et s'il existe une tendance résiduelle. Il simule des réplicats de chaque observation selon le modèle ajusté et détermine ensuite un \"résidu standardisé\", qui est la position relative de la valeur observée par rapport aux valeurs simulées, par exemple 0 si l'observation est plus petite que toutes les simulations, 0.5 si elle se trouve au milieu, etc. Si le modèle représente bien les données, chaque valeur du résidu standardisé entre 0 et 1 doit avoir la même probabilité, de sorte que les résidus standardisés doivent produire une distribution uniforme entre 0 et 1.\n\nLa fonction `simulateResiduals` effectue le calcul des résidus standardisés, puis la fonction `plot` trace les graphiques de diagnostic avec les résultats de certains tests.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\nLe graphique de gauche est un graphique quantile-quantile des résidus standardisés. Les résultats de trois tests statistiques sont également présentés: un test de Kolmogorov-Smirnov (*KS*) qui vérifie s'il y a un écart par rapport à la distribution théorique, un test de dispersion qui vérifie s'il y a une sous-dispersion ou une surdispersion et un test de valeurs aberrantes (*outlier*) basé sur le nombre de résidus qui sont plus extrêmes que toutes les simulations. Ici, nous obtenons un résultat significatif pour les valeurs aberrantes, bien que le message indique que ce résultat pourrait avoir un taux d'erreur de type I plus grand que prévu dans ce cas.\n\nÀ droite, nous obtenons généralement un graphique des résidus standardisés (en *y*) en fonction du rang des valeurs prédites, afin de vérifier l'absence de tendance résiduelle. Ici, les prédictions sont regroupées par quartile, il serait donc préférable d'agréger les prédictions et les résidus par village, ce que nous pouvons faire avec la fonction `recalculateResiduals`.\n\n```{r}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\nLe graphique de droite montre les points individuels, ainsi qu'une régression quantile pour le 1er quartile, la médiane et le 3e quartile. En théorie, ces trois courbes devraient être des lignes droites horizontales (pas de tendance des résidus par rapport aux prévisions). La courbe pour le 3e quartile (en rouge) est significativement différente d'une ligne horizontale, ce qui pourrait indiquer un effet systématique manquant dans le modèle.\n\n## GLMM spatial avec spaMM\n\nLe package *spaMM* (modèles mixtes spatiaux) est un package R relativement récent qui permet d'effectuer une estimation approximative du maximum de vraisemblance des paramètres pour les GLM avec dépendance spatiale, modélisés soit comme un processus gaussien, soit avec un CAR (nous verrons ce dernier dans la dernière section). Le package implémente différents algorithmes, mais il existe une fonction unique `fitme` qui choisit l'algorithme approprié pour chaque type de modèle. Par exemple, voici le même modèle (non spatial) que nous avons vu ci-dessus, ajusté avec *spaMM*.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\nNotez que les estimés des effets fixes ainsi que la variance des effets aléatoires sont presque identiques à ceeux obtenues par `glmer` ci-dessus.\n\nNous pouvons maintenant utiliser *spaMM* pour ajuster le même modèle avec l'ajout de corrélations spatiales entre les villages. Dans la formule du modèle, ceci est représenté comme un effet aléatoire `Matern(1 | x + y)`, ce qui signifie que les ordonnées à l'origine sont spatialement corrélées entre les villages suivant une fonction de corrélation de Matérn des coordonnées (*x, y*). La fonction de Matérn est une fonction flexible de corrélation spatiale qui comprend un paramètre de forme $\\nu$ (`nu`), de sorte que lorsque $\\nu = 0,5$, elle est équivalente à la corrélation exponentielle, mais quand $\\nu$ prend de grandes valeurs, elle se rapproche d'une corrélation gaussienne. Nous pourrions laisser la fonction estimer $\\nu$, mais ici nous le fixons à 0.5 avec l'argument `fixed` de `fitme`.\n\n```{r}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\nsummary(mod_spamm)\n```\n\nCommençons par vérifier les effets aléatoires du modèle. La fonction de corrélation spatiale a un paramètre `rho` égal à 0.0513. Ce paramètre dans *spaMM* est l'inverse de la portée, donc ici la portée de la corrélation exponentielle est de 1/0.0513 ou environ 19.5 km. Il y a maintenant deux pramètres de variance, celui identifié comme `x + y` est la variance à longue distance (i.e. le palier) pour le modèle de corrélation exponentielle alors que celui identifié comme `id_village` montre la portion non corrélée de la variation entre les villages.\n\nSi nous avions ici laissé les effets aléatoires `(1 | id_village)` dans la formule pour représenter la partie non spatiale de la variation entre les villages, nous pourrions également représenter ceci avec un effet de pépite dans le modèle géostatistique. Dans les deux cas, cela représenterait l'idée que même deux villages très proches l'un de l'autre auraient des prévalences de base différentes dans le modèle.\n\nPar défaut, la fonction `Matern` n'a pas d'effet de pépite, mais nous pouvons en ajouter un en spécifiant une `pépite` non nulle dans la liste initiale des paramètres `init`.\n\n```{r}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\nsummary(mod_spamm2)\n```\n\nComme vous pouvez le voir, toutes les estimations sont les mêmes, sauf que la variance de la portion spatiale (palier) est maintenant de 0.84 et que la pépite est égale à une fraction 0.235 de ce palier, soit une variance de 0.197, ce qui est identique à l'effet aléatoire `id_village` dans la version ci-dessus. Les deux formulations sont donc équivalentes.\n\nMaintenant, rappelons les coefficients que nous avions obtenus pour le GLMM non spatial :\n\n```{r}\nsummary(mod_glmm)$coefficients\n```\n\nDans la version spatiale, les deux effets fixes se sont légèrement rapprochés de zéro, mais l'erreur-type de l'effet de `phc` a diminué. Il est intéressant de noter que l'inclusion de la dépendance spatiale nous a permis d'estimer plus précisément l'effet de la présence d'un centre de santé publique dans le village. Ce ne serait pas toujours le cas: pour un prédicteur qui est également fortement corrélé dans l'espace, la corrélation spatiale dans la réponse rend plus difficile l'estimation de l'effet de ce prédicteur, puisqu'il est confondu avec l'effet spatial. Cependant, pour un prédicteur qui n'est pas corrélé dans l'espace, l'inclusion de l'effet spatial réduit la variance résiduelle (non spatiale) et peut donc augmenter la précision de l'effet du prédicteur.\n\nLe package *spaMM* est également compatible avec *DHARMa* pour les diagnostics résiduels. (Vous pouvez ignorer l'avertissement selon lequel il ne fait pas partie de la classe des modèles pris en charge, cela est dû à l'utilisation de la fonction `fitme` plutôt que d'une fonction d'algorithme spécifique dans *spaMM*).\n\n```{r}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\nEnfin, bien que nous allons montrer comment calculer et visualiser des prédictions spatiales ci-dessous, nous pouvons produire une carte rapide des effets spatiaux estimés dans un modèle *spaMM* avec la fonction `filled.mapMM`.\n\n```{r}\nfilled.mapMM(mod_spamm2)\n```\n\n## Processus gaussiens vs. splines de lissage\n\nSi vous connaissez bien les modèles additifs généralisés (GAM), vous avez peut-être pensé à représenter la variation spatiale de la prévalence du paludisme (comme le montre la carte ci-dessus) par une spline de lissage en 2D (en fonction de $x$ et $y$) dans un GAM.\n\nLe code ci-dessous correspond à l'équivalent GAM de notre GLMM avec processus gaussien ci-dessus, ajusté avec la fonction `gam` du package *mgcv*. L'effet spatial est représenté par la spline 2D `s(x, y)` alors que l'effet aléatoire non spatial de village est représenté par `s(id_village, bs = \"re\")`, qui est équivalent à `(1 | id_village)` dans les modèles précédents. Notez que pour la fonction `gam`, les variables catégorielles doivent être explicitement converties en facteurs.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n\nPour visualiser la spline en 2D, nous utiliserons le package [*gratia*](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\nNotez que le graphique de la spline `s(x, y)` (en haut à droite) ne s'étend pas trop loin des emplacements des données (les autres zones sont vides). Dans ce graphique, on peut également voir que les effets aléatoires des villages suivent la distribution gaussienne attendue (en haut à gauche).\n\nEnsuite, nous utiliserons à la fois le GLMM spatial de la section précédente et ce GAMM pour prédire la prévalence moyenne sur une grille spatiale de points contenue dans le fichier [gambia_pred.csv](data/gambia_pred.csv). Le graphique ci-dessous ajoute ces points de prédiction (en noir) sur la carte précédente des points de données.\n\n```{r, message = FALSE, warning = FALSE}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\nPour faire des prédictions à partir du modèle GAMM à ces endroits, le code ci-dessous effectue les étapes suivantes:\n\n- Tous les prédicteurs du modèle doivent se trouver dans le tableau de données de prédiction, nous ajoutons donc des valeurs constantes de *netuse* et *phc* (toutes deux égales à 1) pour tous les points. Ainsi, nous ferons des prédictions sur la prévalence du paludisme dans le cas où un moustiquaire est utilisée et où un centre de santé publique est présent. Nous ajoutons également un *id_village* constant, bien qu'il ne soit pas utilisé dans les prédictions (voir ci-dessous).\n\n- Nous appelons la fonction `predict` à la sortie de `gam` pour produire des prédictions aux nouveaux points de données (argument `newdata`), en incluant les erreurs-types (`se.fit = TRUE`) et en excluant les effets aléatoires du village, donc la prédiction est faite pour un \"village moyen\". L'objet résultant `gam_pred` aura des colonnes `fit` (prédiction moyenne) et `se.fit` (erreur-type). Ces prédictions et erreurs-types sont sur l'échelle du lien (logit).\n\n- Nous rattachons le jeu de données de prédiction original à `gam_pred` avec `cbind`. \n\n- Nous ajoutons des colonnes pour la prédiction moyenne et les limites de l'intervalle de confiance à 50% (moyenne $\\pm$ 0.674 erreur-type), converties de l'échelle logit à l'échelle de probabilité avec `plogis`. Nous choisissons un intervalle de 50% car un intervalle de 95% peut être trop large ici pour contraster les différentes prédictions sur la carte à la fin de cette section.\n\n```{r}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n\n*Note* : La raison pour laquelle nous ne faisons pas de prédictions directement sur l'échelle de probabilité (réponse) est que la formule normale des intervalles de confiance s'applique plus précisément sur l'échelle logit. L'ajout d'un certain nombre d'erreurs-types autour de la moyenne sur l'échelle de probabilité conduirait à des intervalles moins précis et peut-être même à des intervalles de confiance en dehors de la plage de valeurs possible (0, 1) pour une probabilité.\n\nNous appliquons la même stratégie pour faire des prédictions à partir du GLMM spatial avec *spaMM*. Il y a quelques différences dans la méthode `predict` par rapport au cas du GAMM.\n\n- L'argument `binding = \"fit\"` signifie que les prédictions moyennes (colonne `fit`) seront attachées à l'ensemble de données de prédiction et retournées sous forme de tableau de données `spamm_pred`.\n\n- L'argument `variances = list(linPred = TRUE)` indique à `predict` de calculer la variance du prédicteur linéaire (donc le carré de l'erreur-type). Cependant, il apparaît comme un attribut `predVar` dans le tableau de données de sortie plutôt que dans une colonne `se.fit`, donc nous le déplaçons vers une colonne sur la ligne suivante. \n\n```{r}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n\nEnfin, nous combinons les deux ensembles de prédictions sous la forme de différentes rangées d'un tableau de données `pred_all` avec `bind_rows`. Le nom du tableau de données d'où provient chaque prédiction (`gam` ou `spamm`) apparaîtra dans la colonne \"model\" (argument `.id`). Pour simplifier la production du prochain graphique, nous utilisons ensuite `pivot_longer` dans le package *tidyr* pour changer les trois colonnes \"pred\", \"lo\" et \"hi\" en deux colonnes, \"stat\" et \"value\" (`pred_tall` a donc trois rangées pour chaque rangée dans `pred_all`).\n\n```{r}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n\nUne fois ces étapes franchies, nous pouvons enfin examiner les cartes de prédiction (moyenne, limites inférieure et supérieure de l'intervalle de confiance à 50 %) à l'aide d'un graphique `ggplot`. Les points de données originaux sont indiqués en rouge.\n\n```{r}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\nBien que les deux modèles s'accordent à dire que la prévalence est plus élevée près du groupe de villages de l'est, le GAMM estime également une prévalence plus élevée en quelques points (bord ouest et autour du centre) où il n'y a pas de données. Il s'agit d'un artefact de la forme de la spline autour des points de données, puisqu'une spline est censée correspondre à une tendance globale, bien que non linéaire. En revanche, le modèle géostatistique représente l'effet spatial sous forme de corrélations locales et revient à la prévalence moyenne globale lorsqu'il est éloigné de tout point de données, ce qui est une supposition plus sûre. C'est l'une des raisons pour lesquelles il est préférable de choisir un modèle géostatistique / processus gaussien dans ce cas.\n\n## Méthodes bayésiennes pour les GLMM avec processus gaussiens\n\nLes modèles bayésiens fournissent un cadre flexible pour exprimer des modèles avec une structure de dépendance complexe entre les données, y compris la dépendance spatiale. Cependant, l'ajustement d'un modèle de processus gaussien avec une approche entièrement bayésienne peut être lent, en raison de la nécessité de calculer une matrice de covariance spatiale entre toutes les paires de points à chaque itération. \n\nLa méthode INLA (pour *integrated nested Laplace approximation*) effectue un calcul approximatif de la distribution postérieure bayésienne, ce qui la rend adaptée aux problèmes de régression spatiale. Nous ne l'abordons pas dans ce cours, mais je recommande le manuel de Paula Moraga (dans la section des références ci-dessous) qui fournit des exemples concrets d'utilisation de la méthode INLA pour divers modèles de données géostatistiques et aréales, dans le contexte de l'épidémiologie, y compris des modèles avec une dépendance à la fois spatiale et temporelle. Le livre présente les mêmes données sur le paludisme en Gambie comme exemple d'un ensemble de données géostatistiques, ce qui a inspiré son utilisation dans ce cours.\n\n# GLMM avec autorégression spatiale {#glmm-spatial-autoreg-fr}\n\nNous revenons au dernier exemple de la partie précédente, où nous avions modélisé le taux de cas de COVID-19 (cas / 1000) pour les divisions administratives du réseau de la santé (RLS) au Québec en fonction de leur densité de population. Le taux est donné par la colonne \"taux_1k\" dans le *shapefile* `rls_covid`.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\nAuparavant, nous avions modélisé le logarithme de ce taux comme une fonction linéaire du logarithme de la densité de population, la variance résiduelle étant corrélée entre les unités voisines via une structure CAR (autorégression conditionnelle), comme le montre le code ci-dessous.\n\n```{r, message = FALSE, warning = FALSE}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n*Rappel*: La fonction `poly2nb` du package *spdep* crée une liste de voisins basée sur les polygones limitrophes dans un *shapefile*, puis `nb2listw` la convertit en une liste de poids, ici des poids binaires (`style = \"B\"`) de sorte que chaque région limitrophe reçoive le même poids de 1 dans le modèle autorégressif.\n\nAu lieu d'utiliser les taux, il serait possible de modéliser directement les cas avec une régression de Poisson, qui est appropriée pour les données de comptage. Pour tenir compte du fait que si le risque par personne était égal, les cas seraient proportionnels à la population, nous pouvons ajouter la population de l'unité `pop` comme *offset* dans la régression de Poisson. Par conséquent, le modèle ressemblerait à : `cas ~ log(dens_pop) + offset(log(pop))`. Notez que puisque la régression de Poisson utilise un lien logarithmique, ce modèle avec `log(pop)` comme *offset* suppose que `log(cas / pop)` (donc le taux logarithmique) est proportionnel à `log(dens_pop)`, tout comme le modèle linéaire ci-dessus, mais il a l'avantage de modéliser la variabilité des données brutes (le nombre de cas) directement avec une distribution de Poisson.\n\nNous n'avons pas la population dans ces données, mais nous pouvons l'estimer à partir des cas et du taux (cas / 1000) comme suit:\n\n```{r}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n\nPour définir un modèle CAR dans *spaMM*, nous avons besoin d'une matrice de poids plutôt que d'une liste de poids comme dans le package *spatialreg*. Heureusement, le package *spdep* comprend également une fonction `nb2mat` pour convertir la liste des voisins en une matrice de poids, là encore en utilisant des poids binaires. Pour éviter un avertissement dans R, nous spécifions que les noms des lignes et des colonnes de cette matrice doivent être égaux aux identifiants associés à chaque unité (`RLS_code`). Ensuite, nous ajoutons un terme `adjacency(1 | RLS_code)` au modèle pour spécifier que la variation résiduelle entre les différents groupes définis par `RLS_code` est spatialement corrélée avec une structure CAR (ici, chaque groupe n'a qu'une observation puisque nous avons un point de données par unité RLS).\n\n```{r}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\nNotez que le coefficient de corrélation spatiale `rho` (0.158) est similaire à la quantité équivalente dans le modèle `spautolm` ci-dessus, où il était appelé `Lambda`. L'effet de `log(dens_pop)` est également d'environ 0.2 dans les deux modèles.\n\n\n## Référence\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Disponible en ligne: [https://www.paulamoraga.com/book-geospatial/](https://www.paulamoraga.com/book-geospatial/). \n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":true,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Spatial Statistics in Ecology","description":"Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). |\nSession de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).\n","author":"Philippe Marchand","categories":["FR","EN","Technical"],"date":"2021-01-12","image":"image.jpg","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique/index.qmd.json b/.quarto/idx/posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique/index.qmd.json index b4fdc73..f9258d2 100644 --- a/.quarto/idx/posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique/index.qmd.json +++ b/.quarto/idx/posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique/index.qmd.json @@ -1 +1 @@ -{"title":"Introduction to EDI Concepts in a Scientific Context","markdown":{"yaml":{"title":"Introduction to EDI Concepts in a Scientific Context","description":"A short introduction to EDI concepts in a scientific context.\n","author":[{"name":"Agathe Riallan","affiliation":"Université de Sherbrooke"},{"name":"Marie-José Naud","affiliation":"Centre d’études nordiques (CEN)"}],"categories":["Transversal competencies","FR","EN"],"date":"01-22-2021","image":"image.jpg","toc":true,"number-sections":true,"number-depth":1},"headingText":"Introduction to EDI Concepts in a Scientific Context","containsRefs":false,"markdown":"\n\nTexte en français [à la suite](#introduction-aux-concepts-edi-en-contexte-scientifique).\n\n\nIn 2021, the BIOS2 training program will be holding a series of training and reflection activities on equity, diversity and inclusion issues. The goal is to develop an EDI action plan for the program in order to consolidate a more inclusive, respectful and open environment.\n\nThe objectives of this workshop are:\n\n- Define the concepts of equity, diversity and inclusion\n- Identify the benefits and challenges of EDI in the university context\n- Recongnize how to become an EDI bearer during one's university career\n- Raise awareness of intercultural communication (professional competence of tomorrow)\n\nThe workshop is developed by Agathe Riallan, Faculty Coordinator for Equity, Diversity and Inclusion (EDI) at the Faculty of Science, Université de Sherbrooke, in collaboration with Marie-José Naud, Equity, Diversity and Inclusion Advisor and Coordinator at the Centre d'études nordiques (CEN).\n\n\n\n




\n\n------------------------------------------------------------------------\n\n# Introduction aux concepts EDI en contexte scientifique {#introduction-aux-concepts-edi-en-contexte-scientifique}\n\nEn 2021, nous aurons une série de formations et d'activités de réflexion sur les questions d'équité, diversité et d'inclusion. Notre objectif est de mettre en place un plan d'action EDI pour le programme afin de consolider un environnement plus inclusif, respectueux et ouvert.\n\nLes objectifs de cet ateliers sont:\n\n- Définir les concepts d'équité, de diversité et d'inclusion\n- Identifier les avantages et les défis de l'ÉDI en contexte universitaire\n- Identifier comment être porteuse ou porteur de l'ÉDI lors de son parcours universitaire\n- Se sensibiliser à la communication interculturelle (compétence professionnelle de demain)\n\nL'atelier est développé par Agathe Riallan, Coordinatrice facultaire de l'Équité, de la Diversité et de l'Inclusion (ÉDI) de la Faculté des Sciences à Université de Sherbrooke, en collaboration avec Marie-José Naud, Conseillère en équité, diversité et inclusion et coordonnatrice au Centre d'études nordiques (CEN).\n\n\n\n



\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"markdown"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Introduction to EDI Concepts in a Scientific Context","description":"A short introduction to EDI concepts in a scientific context.\n","author":[{"name":"Agathe Riallan","affiliation":"Université de Sherbrooke"},{"name":"Marie-José Naud","affiliation":"Centre d’études nordiques (CEN)"}],"categories":["Transversal competencies","FR","EN"],"date":"01-22-2021","image":"image.jpg","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Introduction to EDI Concepts in a Scientific Context","markdown":{"yaml":{"title":"Introduction to EDI Concepts in a Scientific Context","description":"A short introduction to EDI concepts in a scientific context.\n","author":[{"name":"Agathe Riallan","affiliation":"Faculté des Sciences à Université de Sherbrooke"},{"name":"Marie-José Naud","affiliation":"Centre d’études nordiques (CEN)"}],"categories":["Transversal competencies","FR","EN"],"date":"01-22-2021","image":"image.jpg","toc":true,"number-sections":true,"number-depth":1},"headingText":"Introduction to EDI Concepts in a Scientific Context","containsRefs":false,"markdown":"\n\nTexte en français [à la suite](#introduction-aux-concepts-edi-en-contexte-scientifique).\n\n\nIn 2021, the BIOS2 training program will be holding a series of training and reflection activities on equity, diversity and inclusion issues. The goal is to develop an EDI action plan for the program in order to consolidate a more inclusive, respectful and open environment.\n\nThe objectives of this workshop are:\n\n- Define the concepts of equity, diversity and inclusion\n- Identify the benefits and challenges of EDI in the university context\n- Recongnize how to become an EDI bearer during one's university career\n- Raise awareness of intercultural communication (professional competence of tomorrow)\n\nThe workshop is developed by Agathe Riallan, Faculty Coordinator for Equity, Diversity and Inclusion (EDI) at the Faculty of Science, Université de Sherbrooke, in collaboration with Marie-José Naud, Equity, Diversity and Inclusion Advisor and Coordinator at the Centre d'études nordiques (CEN).\n\n\n\n




\n\n------------------------------------------------------------------------\n\n# Introduction aux concepts EDI en contexte scientifique {#introduction-aux-concepts-edi-en-contexte-scientifique}\n\nEn 2021, nous aurons une série de formations et d'activités de réflexion sur les questions d'équité, diversité et d'inclusion. Notre objectif est de mettre en place un plan d'action EDI pour le programme afin de consolider un environnement plus inclusif, respectueux et ouvert.\n\nLes objectifs de cet ateliers sont:\n\n- Définir les concepts d'équité, de diversité et d'inclusion\n- Identifier les avantages et les défis de l'ÉDI en contexte universitaire\n- Identifier comment être porteuse ou porteur de l'ÉDI lors de son parcours universitaire\n- Se sensibiliser à la communication interculturelle (compétence professionnelle de demain)\n\nL'atelier est développé par Agathe Riallan, Coordinatrice facultaire de l'Équité, de la Diversité et de l'Inclusion (ÉDI) de la Faculté des Sciences à Université de Sherbrooke, en collaboration avec Marie-José Naud, Conseillère en équité, diversité et inclusion et coordonnatrice au Centre d'études nordiques (CEN).\n\n\n\n



\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"markdown"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Introduction to EDI Concepts in a Scientific Context","description":"A short introduction to EDI concepts in a scientific context.\n","author":[{"name":"Agathe Riallan","affiliation":"Faculté des Sciences à Université de Sherbrooke"},{"name":"Marie-José Naud","affiliation":"Centre d’études nordiques (CEN)"}],"categories":["Transversal competencies","FR","EN"],"date":"01-22-2021","image":"image.jpg","number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2021-03-25-point-count-data-analysis/index.qmd.json b/.quarto/idx/posts/2021-03-25-point-count-data-analysis/index.qmd.json index a7cb09e..64acafa 100644 --- a/.quarto/idx/posts/2021-03-25-point-count-data-analysis/index.qmd.json +++ b/.quarto/idx/posts/2021-03-25-point-count-data-analysis/index.qmd.json @@ -1 +1 @@ -{"title":"Point-count Data Analysis","markdown":{"yaml":{"title":"Point-count Data Analysis","description":"Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Péter Sólymos to BIOS2 Fellows in March 2021.\n","author":[{"name":"Péter Sólymos","affiliation":"University of Alberta"}],"image":"thumb.jpeg","date":"2021-03-25","categories":["Technical","EN"],"toc":true,"number-sections":true,"number-depth":1},"headingText":"Instructor","containsRefs":false,"markdown":"\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(echo = TRUE, cache = TRUE)\n```\n\nThis course is aimed towards researchers analyzing field observations, who are often faced by data heterogeneities due to field sampling protocols changing from one project to another, or through time over the lifespan of projects, or trying to combine 'legacy' data sets with new data collected by recording units.\n\nSuch heterogeneities can bias analyses when data sets are integrated inadequately, or can lead to information loss when filtered and standardized to common standards. Accounting for these issues is important for better inference regarding status and trend of species and communities.\n\nAnalysts of such 'messy' data sets need to feel comfortable with manipulating the data, need a full understanding the mechanics of the models being used (i.e. critically interpreting the results and acknowledging assumptions and limitations), and should be able to make informed choices when faced with methodological challenges.\n\nThe course emphasizes critical thinking and active learning through hands on programming exercises. We will use publicly available data sets to demonstrate the data manipulation and analysis. We will use freely available and open-source R packages.\n\nThe expected outcome of the course is a solid foundation for further professional development via increased confidence in applying these methods for field observations.\n\n\n[**Dr. Peter Solymos**](https://peter.solymos.org)\\\n[Boreal Avian Modelling Project](https://borealbirds.ca) and the [Alberta Biodiversity Monitoring Institute](https://abmi.ca)\\\n[Department of Biological Sciences](https://www.ualberta.ca/biological-sciences/), [University of Alberta](https://ualberta.ca)\n\n## Outline\n\nEach day will consist of 3 sessions, roughly one hour each, with short breaks in between.\n\n> The video recordings from the workshop can be found on [YouTube](https://www.youtube.com/watch?v=cXGXvAOqEng&list=PLH424kyZX5ip0PfOo7g13nJEQNVxZlMOh).\n\n| Session | Topic | Files | Videos |\n|-----------------|-----------------|:-----------------:|:-----------------:|\n| **Day 1** | **Naive techniques** | | |\n| | 1\\. Introductions | [Slides](https://peter.solymos.org/qpad-workshop/day1-1-intro.pdf) | [Video](https://youtu.be/cXGXvAOqEng) |\n| | 2\\. Organizing point count data | [Notes](https://peter.solymos.org/qpad-workshop/day1-2-data-processing.html) | [Part 1](https://youtu.be/4PLyaU6bqRc), [Part 2](https://youtu.be/dcsiv-v0UgA) |\n| | 3\\. Regression techniques | [Notes](https://peter.solymos.org/qpad-workshop/day1-3-regression.html) | [Part 1](https://youtu.be/z_TpcF0FD4o), [Part 2](https://youtu.be/ZdTgdTqxFSM) |\n| **Day 2** | **Behavioral complexities** | | |\n| | 1\\. Statistical assumptions and nuisance variables | [Slides](https://peter.solymos.org/qpad-workshop/day2-1-intro.pdf) | [Video](https://youtu.be/8v3Uf_aILxI) |\n| | 2\\. Behavioral complexities | [Notes](https://peter.solymos.org/qpad-workshop/day2-2-behavior.html) | [bSims](https://youtu.be/gJ11_wlsEfU), [Video](https://youtu.be/UgGeaxMCs2c) |\n| | 3\\. Removal modeling techniques | [Notes](https://peter.solymos.org/qpad-workshop/day2-3-removal.html) | [Video](https://youtu.be/ny0ED9cxzeg) |\n| | 4\\. Finite mixture models and testing assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day2-4-mixtures.html) | [Mixtures](https://youtu.be/A1cnzXMMlxU), [Testing](https://youtu.be/flF5NL73ZZE) |\n| **Day 3** | **The detection process** | | |\n| | 1\\. The detection process | [Slides](https://peter.solymos.org/qpad-workshop/day3-1-intro.pdf) | [Video](https://youtu.be/CkdYEF_hZqY) |\n| | 2\\. Distance sampling and density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/x8GfKDEJcrA) |\n| | 3\\. Estimating population density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/yeoGxRQd6o0) |\n| | 4\\. Assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/o0bx-vNCaL0) |\n| **Day 4** | **Coming full circle** | | |\n| | 1\\. QPAD overview | [Slides](https://peter.solymos.org/qpad-workshop/day4-1-intro.pdf) | [Video](https://youtu.be/TU9rcwY2Y-g) |\n| | 2\\. Models with detectability offsets | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Offsets](https://youtu.be/vw_WO2hgNwk), [Models](https://youtu.be/Cy68E1GyNVU) |\n| | 3\\. Model validation and error propagation | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Validation](https://youtu.be/lRcJzfE838k), [Error](https://youtu.be/na5cTYNq2HM) |\n| | 4\\. Recordings, roadsides, closing remarks | [Notes](https://peter.solymos.org/qpad-workshop/day4-3-recordings.html) | [Video](https://youtu.be/ckEDGdLA_J4) |\n\n## Get course materials\n\n### Install required software\n\nFollow the instructions at the [R website](http://cran.r-project.org) to download and install the most up-to-date base R version suitable for your operating system (the latest R version at the time of writing these instructions is 4.0.4).\n\nThen run the following script in R:\n\n``` r\nsource(\"https://raw.githubusercontent.com/psolymos/qpad-workshop/main/src/install.R\")\n```\n\nHaving RStudio is not absolutely necessary, but it will make life easier. RStudio is also available for different operating systems. Pick the open source desktop edition from [here](http://www.rstudio.com/products/rstudio/download/) (the latest RStudio Desktop version at the time of writing these instructions is 1.4.1106).\n\nPrior exposure to R programming is not necessary, but knowledge of basic R object types and their manipulation (arrays, data frames, indexing) is useful for following hands-on exercises. Software Carpentry's [Data types and structures in R](http://swcarpentry.github.io/r-novice-inflammation/13-supp-data-structures/index.html) is a good resource to brush up your R skills.\n\n### Get the notes\n\nIf you don't want to use git:\n\n1. Download the [workshop archive](qpad-workshop-Final.zip) release into a folder\n2. Extract the zip archive\n3. Open the `workshop.Rproj` file in RStudio (or open any other R GUI/console and `setwd()` to the directory where you downloaded the file)\n4. (You can delete the archive)\n\nIf you want to use git: fork or clone the repository\n\n``` bash\ncd into/your/dir\ngit clone https://github.com/psolymos/qpad-workshop.git\n```\n\n## Useful resources\n\n- [Using the QPAD package to get offsets based on estimates from the Boreal Avian Modelling Project's database](https://github.com/ABbiodiversity/recurring/blob/master/offset/README.md)\n- [NA-POPS: Point count Offsets for Population Sizes of North America landbirds](http://na-pops.org/)\n\n## References\n\nSólymos, P., Toms, J. D., Matsuoka, S. M., Cumming, S. G., Barker, N. K. S., Thogmartin, W. E., Stralberg, D., Crosby, A. D., Dénes, F. V., Haché, S., Mahon, C. L., Schmiegelow, F. K. A., and Bayne, E. M., 2020. Lessons learned from comparing spatially explicit models and the Partners in Flight approach to estimate population sizes of boreal birds in Alberta, Canada. *Condor*, 122: 1-22. [PDF](https://drive.google.com/file/d/115WgtPd4zUSIFfSTHbWYs8OCHNdpKkh5/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Cumming, S. G., Stralberg, D., Fontaine, P., Schmiegelow, F. K. A., Song, S. J., and Bayne, E. M., 2018. Evaluating time-removal models for estimating availability of boreal birds during point-count surveys: sample size requirements and model complexity. *Condor*, 120: 765-786. [PDF](https://drive.google.com/file/d/13Czd_A82P0ZhIlvAEabxdHfmaZcJaNU3/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S., and Bayne, E. M., 2018. Phylogeny and species traits predict bird detectability. *Ecography*, 41: 1595-1603. [PDF](https://drive.google.com/file/d/1CRKl-bh1tqxddijEWZoNcDO_xFIgOfWZ/view?usp=sharing)\n\nVan Wilgenburg, S. L., Sólymos, P., Kardynal, K. J. and Frey, M. D., 2017. Paired sampling standardizes point count data from humans and acoustic recorders. *Avian Conservation and Ecology*, 12(1):13. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPOTZyTXlDb0xFQTA/view?usp=sharing)\n\nYip, D. A., Leston, L., Bayne, E. M., Sólymos, P. and Grover, A., 2017. Experimentally derived detection distances from audio recordings and human observers enable integrated analysis of point count data. *Avian Conservation and Ecology*, 12(1):11. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPQ2F6d1llQ3lPTzg/view?usp=sharing)\n\nSólymos, P., and Lele, S. R., 2016. Revisiting resource selection probability functions and single-visit methods: clarification and extensions. *Methods in Ecology and Evolution*, 7:196-205. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPRE5tVlRMSmhLWmM/view?usp=sharing)\n\nMatsuoka, S. M., Mahon, C. L., Handel, C. M., Sólymos, P., Bayne, E. M., Fontaine, P. C., and Ralph, C. J., 2014. Reviving common standards in point-count surveys for broad inference across studies. *Condor* 116:599-608. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPcGZNS3JSRUlBdDQ/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K. A. & Song, S. J., 2013. Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. *Methods in Ecology and Evolution* 4:1047-1058. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPV0RNUFU1N1dmS1E/view?usp=sharing)\n\nMatsuoka, S. M., Bayne, E. M., Sólymos, P., Fontaine, P., Cumming, S. G., Schmiegelow, F. K. A., & Song, S. A., 2012. Using binomial distance-sampling models to estimate the effective detection radius of point-counts surveys across boreal Canada. *Auk* 129:268-282. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPbFhhRUtZNWQyMk0/view?usp=sharing)\n\n## License\n\nThe course material is licensed under [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Source code is under [MIT](LICENSE) license.\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Point-count Data Analysis","description":"Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Péter Sólymos to BIOS2 Fellows in March 2021.\n","author":[{"name":"Péter Sólymos","affiliation":"University of Alberta"}],"image":"thumb.jpeg","date":"2021-03-25","categories":["Technical","EN"],"number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Point-count Data Analysis","markdown":{"yaml":{"title":"Point-count Data Analysis","description":"Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Peter Solymos to BIOS2 Fellows in March 2021.\n","author":"Peter Solymos","image":"thumb.jpeg","date":"2021-03-25","categories":["Technical","EN"],"toc":true,"number-sections":true,"number-depth":1},"headingText":"Instructor","containsRefs":false,"markdown":"\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(echo = TRUE, cache = TRUE)\n```\n\nThis course is aimed towards researchers analyzing field observations, who are often faced by data heterogeneities due to field sampling protocols changing from one project to another, or through time over the lifespan of projects, or trying to combine 'legacy' data sets with new data collected by recording units.\n\nSuch heterogeneities can bias analyses when data sets are integrated inadequately, or can lead to information loss when filtered and standardized to common standards. Accounting for these issues is important for better inference regarding status and trend of species and communities.\n\nAnalysts of such 'messy' data sets need to feel comfortable with manipulating the data, need a full understanding the mechanics of the models being used (i.e. critically interpreting the results and acknowledging assumptions and limitations), and should be able to make informed choices when faced with methodological challenges.\n\nThe course emphasizes critical thinking and active learning through hands on programming exercises. We will use publicly available data sets to demonstrate the data manipulation and analysis. We will use freely available and open-source R packages.\n\nThe expected outcome of the course is a solid foundation for further professional development via increased confidence in applying these methods for field observations.\n\n\n[**Dr. Peter Solymos**](https://peter.solymos.org)\\\n[Boreal Avian Modelling Project](https://borealbirds.ca) and the [Alberta Biodiversity Monitoring Institute](https://abmi.ca)\\\n[Department of Biological Sciences](https://www.ualberta.ca/biological-sciences/), [University of Alberta](https://ualberta.ca)\n\n## Outline\n\nEach day will consist of 3 sessions, roughly one hour each, with short breaks in between.\n\n> The video recordings from the workshop can be found on [YouTube](https://www.youtube.com/watch?v=cXGXvAOqEng&list=PLH424kyZX5ip0PfOo7g13nJEQNVxZlMOh).\n\n| Session | Topic | Files | Videos |\n|-----------------|-----------------|:-----------------:|:-----------------:|\n| **Day 1** | **Naive techniques** | | |\n| | 1\\. Introductions | [Slides](https://peter.solymos.org/qpad-workshop/day1-1-intro.pdf) | [Video](https://youtu.be/cXGXvAOqEng) |\n| | 2\\. Organizing point count data | [Notes](https://peter.solymos.org/qpad-workshop/day1-2-data-processing.html) | [Part 1](https://youtu.be/4PLyaU6bqRc), [Part 2](https://youtu.be/dcsiv-v0UgA) |\n| | 3\\. Regression techniques | [Notes](https://peter.solymos.org/qpad-workshop/day1-3-regression.html) | [Part 1](https://youtu.be/z_TpcF0FD4o), [Part 2](https://youtu.be/ZdTgdTqxFSM) |\n| **Day 2** | **Behavioral complexities** | | |\n| | 1\\. Statistical assumptions and nuisance variables | [Slides](https://peter.solymos.org/qpad-workshop/day2-1-intro.pdf) | [Video](https://youtu.be/8v3Uf_aILxI) |\n| | 2\\. Behavioral complexities | [Notes](https://peter.solymos.org/qpad-workshop/day2-2-behavior.html) | [bSims](https://youtu.be/gJ11_wlsEfU), [Video](https://youtu.be/UgGeaxMCs2c) |\n| | 3\\. Removal modeling techniques | [Notes](https://peter.solymos.org/qpad-workshop/day2-3-removal.html) | [Video](https://youtu.be/ny0ED9cxzeg) |\n| | 4\\. Finite mixture models and testing assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day2-4-mixtures.html) | [Mixtures](https://youtu.be/A1cnzXMMlxU), [Testing](https://youtu.be/flF5NL73ZZE) |\n| **Day 3** | **The detection process** | | |\n| | 1\\. The detection process | [Slides](https://peter.solymos.org/qpad-workshop/day3-1-intro.pdf) | [Video](https://youtu.be/CkdYEF_hZqY) |\n| | 2\\. Distance sampling and density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/x8GfKDEJcrA) |\n| | 3\\. Estimating population density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/yeoGxRQd6o0) |\n| | 4\\. Assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/o0bx-vNCaL0) |\n| **Day 4** | **Coming full circle** | | |\n| | 1\\. QPAD overview | [Slides](https://peter.solymos.org/qpad-workshop/day4-1-intro.pdf) | [Video](https://youtu.be/TU9rcwY2Y-g) |\n| | 2\\. Models with detectability offsets | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Offsets](https://youtu.be/vw_WO2hgNwk), [Models](https://youtu.be/Cy68E1GyNVU) |\n| | 3\\. Model validation and error propagation | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Validation](https://youtu.be/lRcJzfE838k), [Error](https://youtu.be/na5cTYNq2HM) |\n| | 4\\. Recordings, roadsides, closing remarks | [Notes](https://peter.solymos.org/qpad-workshop/day4-3-recordings.html) | [Video](https://youtu.be/ckEDGdLA_J4) |\n\n## Get course materials\n\n### Install required software\n\nFollow the instructions at the [R website](http://cran.r-project.org) to download and install the most up-to-date base R version suitable for your operating system (the latest R version at the time of writing these instructions is 4.0.4).\n\nThen run the following script in R:\n\n``` r\nsource(\"https://raw.githubusercontent.com/psolymos/qpad-workshop/main/src/install.R\")\n```\n\nHaving RStudio is not absolutely necessary, but it will make life easier. RStudio is also available for different operating systems. Pick the open source desktop edition from [here](http://www.rstudio.com/products/rstudio/download/) (the latest RStudio Desktop version at the time of writing these instructions is 1.4.1106).\n\nPrior exposure to R programming is not necessary, but knowledge of basic R object types and their manipulation (arrays, data frames, indexing) is useful for following hands-on exercises. Software Carpentry's [Data types and structures in R](http://swcarpentry.github.io/r-novice-inflammation/13-supp-data-structures/index.html) is a good resource to brush up your R skills.\n\n### Get the notes\n\nIf you don't want to use git:\n\n1. Download the [workshop archive](qpad-workshop-Final.zip) release into a folder\n2. Extract the zip archive\n3. Open the `workshop.Rproj` file in RStudio (or open any other R GUI/console and `setwd()` to the directory where you downloaded the file)\n4. (You can delete the archive)\n\nIf you want to use git: fork or clone the repository\n\n``` bash\ncd into/your/dir\ngit clone https://github.com/psolymos/qpad-workshop.git\n```\n\n## Useful resources\n\n- [Using the QPAD package to get offsets based on estimates from the Boreal Avian Modelling Project's database](https://github.com/ABbiodiversity/recurring/blob/master/offset/README.md)\n- [NA-POPS: Point count Offsets for Population Sizes of North America landbirds](http://na-pops.org/)\n\n## References\n\nSólymos, P., Toms, J. D., Matsuoka, S. M., Cumming, S. G., Barker, N. K. S., Thogmartin, W. E., Stralberg, D., Crosby, A. D., Dénes, F. V., Haché, S., Mahon, C. L., Schmiegelow, F. K. A., and Bayne, E. M., 2020. Lessons learned from comparing spatially explicit models and the Partners in Flight approach to estimate population sizes of boreal birds in Alberta, Canada. *Condor*, 122: 1-22. [PDF](https://drive.google.com/file/d/115WgtPd4zUSIFfSTHbWYs8OCHNdpKkh5/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Cumming, S. G., Stralberg, D., Fontaine, P., Schmiegelow, F. K. A., Song, S. J., and Bayne, E. M., 2018. Evaluating time-removal models for estimating availability of boreal birds during point-count surveys: sample size requirements and model complexity. *Condor*, 120: 765-786. [PDF](https://drive.google.com/file/d/13Czd_A82P0ZhIlvAEabxdHfmaZcJaNU3/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S., and Bayne, E. M., 2018. Phylogeny and species traits predict bird detectability. *Ecography*, 41: 1595-1603. [PDF](https://drive.google.com/file/d/1CRKl-bh1tqxddijEWZoNcDO_xFIgOfWZ/view?usp=sharing)\n\nVan Wilgenburg, S. L., Sólymos, P., Kardynal, K. J. and Frey, M. D., 2017. Paired sampling standardizes point count data from humans and acoustic recorders. *Avian Conservation and Ecology*, 12(1):13. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPOTZyTXlDb0xFQTA/view?usp=sharing)\n\nYip, D. A., Leston, L., Bayne, E. M., Sólymos, P. and Grover, A., 2017. Experimentally derived detection distances from audio recordings and human observers enable integrated analysis of point count data. *Avian Conservation and Ecology*, 12(1):11. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPQ2F6d1llQ3lPTzg/view?usp=sharing)\n\nSólymos, P., and Lele, S. R., 2016. Revisiting resource selection probability functions and single-visit methods: clarification and extensions. *Methods in Ecology and Evolution*, 7:196-205. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPRE5tVlRMSmhLWmM/view?usp=sharing)\n\nMatsuoka, S. M., Mahon, C. L., Handel, C. M., Sólymos, P., Bayne, E. M., Fontaine, P. C., and Ralph, C. J., 2014. Reviving common standards in point-count surveys for broad inference across studies. *Condor* 116:599-608. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPcGZNS3JSRUlBdDQ/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K. A. & Song, S. J., 2013. Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. *Methods in Ecology and Evolution* 4:1047-1058. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPV0RNUFU1N1dmS1E/view?usp=sharing)\n\nMatsuoka, S. M., Bayne, E. M., Sólymos, P., Fontaine, P., Cumming, S. G., Schmiegelow, F. K. A., & Song, S. A., 2012. Using binomial distance-sampling models to estimate the effective detection radius of point-counts surveys across boreal Canada. *Auk* 129:268-282. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPbFhhRUtZNWQyMk0/view?usp=sharing)\n\n## License\n\nThe course material is licensed under [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Source code is under [MIT](LICENSE) license.\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Point-count Data Analysis","description":"Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Peter Solymos to BIOS2 Fellows in March 2021.\n","author":"Peter Solymos","image":"thumb.jpeg","date":"2021-03-25","categories":["Technical","EN"],"number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2021-05-04-building-r-packages/index.qmd.json b/.quarto/idx/posts/2021-05-04-building-r-packages/index.qmd.json index ce8acf4..c71cadb 100644 --- a/.quarto/idx/posts/2021-05-04-building-r-packages/index.qmd.json +++ b/.quarto/idx/posts/2021-05-04-building-r-packages/index.qmd.json @@ -1 +1 @@ -{"title":"Building R packages","markdown":{"yaml":{"title":"Building R packages","description":"This practical training will cover the basics of modern package development in R with a focus on the following three aspects: (1) how to turn your code into functions, (2) how to write tests and documentation, and (3) how to share your R package on GitHub..\n","author":[{"name":"Andrew MacDonald","affilitation":"Université de Sherbrooke"}],"date":"2021-05-04","image":"altumcode-PNbDkQ2DDgM-unsplash.jpeg","categories":["Technical","EN"],"toc":true,"number-sections":true,"number-depth":1},"headingText":"*Mise en place* : development environment","containsRefs":false,"markdown":"\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(echo = FALSE, message = FALSE)\n```\n\n\n\n

via GIPHY

\n\nR packages! they are kind of like cookies:\n\n- Almost everyone enjoys them\n\n- delicious when homemade\n\n- Lots of storebought options available\n\n- Great skill to have\n\n- not necessary to sell them!\n\n \n\nBut most of all: cookies are delicious for what they *contain*: chocolate chunks, candy, oats, cocoa. However, all cookies share some fundamental ingredients and nearly identical structure. Flour, saturated with fat and sugar hydrated only with an egg, flavoured with vanilla and salt. The basic formula is invariant and admits only slight deviation -- otherwise, it becomes something other than a cookie.\n\nThis workshop is devoted to the study of cookie dough.\n\n\nWe'll explore a few useful packages in this workshop. The first two in particular are very popular tools for modern-day R package development:\n\n``` r\ninstall.packages(\"devtools\")\ninstall.packages(\"usethis\")\ninstall.packages(\"testthat\")\ninstall.packages(\"assertthat\")\n```\n\nBuilding an R package also requires specific tools for compiling the finished package. Run the following line to make sure you have the development environment:\n\n``` r\ndevtools::has_devel()\n```\n\nIf you do not have the software to build R packages, you should see a message which will help you find the correct links to download what you need!\n\nWindows will need RTools. First do the check above to see if you are already set up. If not then [download the software here](https://cran.r-project.org/bin/windows/Rtools/).\n\nand Install. After that, open R and run the following:\n\n``` r\nwriteLines('PATH=\"${RTOOLS40_HOME}\\\\usr\\\\bin;${PATH}\"', con = \"~/.Renviron\")\n```\n\nand restart R. Then run the check above once more to confirm\n\n\n\n## The structure: flour and sugar\n\n> No cookies without carbs\n\nAn R package is essentially a folder on your computer with specific structure. We will begin by creating an empty R package and taking a tour!\n\nOpen your R code editor, and find out where you are:\n\n``` r\ngetwd()\n```\n\nThis is to prepare for the next step, where we will choose a location for our R package folder. Please be intentional about where you place your R package! Do not place it in the same space as another package, Rstudio project or other project. Create a new and isolated location for it.\n\nI am working from an existing R project in my typical R Projects folder, so I go up one level:\n\n``` r\nusethis::create_package(\"../netwerk\")\n```\n\n\n\n![](start_pkg.png)\n\nLet's run R CMD CHECK right away. We will do this MANY TIMES.\n\n``` r\ndevtools::check()\n```\n\nWe should see some warnings! let's keep these in mind as we continue our tour.\n\n### The DESCRIPTION file\n\nThe most important file to notice is the DESCRIPTION. This gives general information about the entire package. It is written in a specific file format\n\n``` dcf\nPackage: netwerk\nTitle: Werks with Networks\nVersion: 0.0.0.9000\nAuthors@R: \n person(given = \"Andrew\",\n family = \"MacDonald\",\n role = c(\"aut\", \"cre\"),\n email = \"\")\nDescription: it does networks.\nLicense: MIT + file LICENSE\nEncoding: UTF-8\nLazyData: true\nRoxygen: list(markdown = TRUE)\nRoxygenNote: 7.1.1\nSuggests: \n testthat (>= 3.0.0)\nConfig/testthat/edition: 3\n```\n\nHere are some things to edit *manually* in `DESCRIPTION`:\n\n- package name \\[tk naming of R packages\\] -- make it short and convenient if you can!\n- Title: write this part In Title Case. Don't end the title with a period.\n- Description: Describe the package in a short block of text. This *should* end with a period.\n- Authors: Add your name here and the name of anyone building the package with you. `usethis` will have done the first step for you, and filled in the structure. Only \"aut\" (author) and \"cre\" (creator) are essential. [but many others are possible](https://www.loc.gov/marc/relators/relaterm.html)\n\nAdd your name here.\n\nAdd a license\n\n``` r\nusethis::use_mit_license(copyright_holder = \"\")\n```\n\nnote about the different roles that R package authors can have. Funny ones. but creator and maintainer are the key ones.\n\nNote the R folder. We'll get much more into that later\n\n- Rbuildignore\n\n## Keeping notes\n\ncreate an R file\n\n``` r\nusethis::use_build_ignore(\"dev.R\")\n```\n\nthe docs folder\n\nhere we have a very minimal version of an R packages we're going to be adding to it as the course progresses.\n\nOne thing we can do right away is build and check the R package\n\nWhat exactly is happining here? slide from R package tutorial.\n\nLots of checkpoints and progress confrimations along the way.\n\nOK so what is that all about? we have compiled the R package and it has gone to where the R packages on our computer go.\n\nThere is a natural cycle to how the different steps in an R package workflow proceed -- see the documentation for this lesson -- we will be following this process (TK another pictures?\n\nOk so now that we ahve the basic structure, let's talk about some content for the R package. I received the donation of a little R function already that we can use to create this workflow in a nice way\n\nThis R function (explain what the function does)\n\nOK so let's focus on just one part of this function.\n\nload all -- shortcut\n\n> how do we do this in VScode?\n\n> how to add something to the .Rbuildignore? it would be nice to have a little .dev script as a space to create all the ohter dependencies that are involved in making an R package.\n\n```{r, message=FALSE}\nusethis::use_build_ignore(\"development.R\")\n```\n\n## Useful links\n\nThis workshop borrows heavily from some excellent sources:\n\n- the [R packages book](https://r-pkgs.org/index.html) especially the [\"Whole Game\"](https://r-pkgs.org/whole-game.html#whole-game) chapter!\n- [rOpenSci Packages: Development, Maintenance, and Peer Review](https://devguide.ropensci.org/index.html)\n\nhttps://builder.r-hub.io/about.html\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Building R packages","description":"This practical training will cover the basics of modern package development in R with a focus on the following three aspects: (1) how to turn your code into functions, (2) how to write tests and documentation, and (3) how to share your R package on GitHub..\n","author":[{"name":"Andrew MacDonald","affilitation":"Université de Sherbrooke"}],"date":"2021-05-04","image":"altumcode-PNbDkQ2DDgM-unsplash.jpeg","categories":["Technical","EN"],"number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Building R packages","markdown":{"yaml":{"title":"Building R packages","description":"This practical training will cover the basics of modern package development in R with a focus on the following three aspects: (1) how to turn your code into functions, (2) how to write tests and documentation, and (3) how to share your R package on GitHub..\n","author":"Andrew MacDonald","date":"2021-05-04","image":"altumcode-PNbDkQ2DDgM-unsplash.jpeg","categories":["Technical","EN"],"toc":true,"number-sections":true,"number-depth":1},"headingText":"*Mise en place* : development environment","containsRefs":false,"markdown":"\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(echo = FALSE, message = FALSE)\n```\n\n\n\n

via GIPHY

\n\nR packages! they are kind of like cookies:\n\n- Almost everyone enjoys them\n\n- delicious when homemade\n\n- Lots of storebought options available\n\n- Great skill to have\n\n- not necessary to sell them!\n\n \n\nBut most of all: cookies are delicious for what they *contain*: chocolate chunks, candy, oats, cocoa. However, all cookies share some fundamental ingredients and nearly identical structure. Flour, saturated with fat and sugar hydrated only with an egg, flavoured with vanilla and salt. The basic formula is invariant and admits only slight deviation -- otherwise, it becomes something other than a cookie.\n\nThis workshop is devoted to the study of cookie dough.\n\n\nWe'll explore a few useful packages in this workshop. The first two in particular are very popular tools for modern-day R package development:\n\n``` r\ninstall.packages(\"devtools\")\ninstall.packages(\"usethis\")\ninstall.packages(\"testthat\")\ninstall.packages(\"assertthat\")\n```\n\nBuilding an R package also requires specific tools for compiling the finished package. Run the following line to make sure you have the development environment:\n\n``` r\ndevtools::has_devel()\n```\n\nIf you do not have the software to build R packages, you should see a message which will help you find the correct links to download what you need!\n\nWindows will need RTools. First do the check above to see if you are already set up. If not then [download the software here](https://cran.r-project.org/bin/windows/Rtools/).\n\nand Install. After that, open R and run the following:\n\n``` r\nwriteLines('PATH=\"${RTOOLS40_HOME}\\\\usr\\\\bin;${PATH}\"', con = \"~/.Renviron\")\n```\n\nand restart R. Then run the check above once more to confirm\n\n\n\n## The structure: flour and sugar\n\n> No cookies without carbs\n\nAn R package is essentially a folder on your computer with specific structure. We will begin by creating an empty R package and taking a tour!\n\nOpen your R code editor, and find out where you are:\n\n``` r\ngetwd()\n```\n\nThis is to prepare for the next step, where we will choose a location for our R package folder. Please be intentional about where you place your R package! Do not place it in the same space as another package, Rstudio project or other project. Create a new and isolated location for it.\n\nI am working from an existing R project in my typical R Projects folder, so I go up one level:\n\n``` r\nusethis::create_package(\"../netwerk\")\n```\n\n\n\n![](start_pkg.png)\n\nLet's run R CMD CHECK right away. We will do this MANY TIMES.\n\n``` r\ndevtools::check()\n```\n\nWe should see some warnings! let's keep these in mind as we continue our tour.\n\n### The DESCRIPTION file\n\nThe most important file to notice is the DESCRIPTION. This gives general information about the entire package. It is written in a specific file format\n\n``` dcf\nPackage: netwerk\nTitle: Werks with Networks\nVersion: 0.0.0.9000\nAuthors@R: \n person(given = \"Andrew\",\n family = \"MacDonald\",\n role = c(\"aut\", \"cre\"),\n email = \"\")\nDescription: it does networks.\nLicense: MIT + file LICENSE\nEncoding: UTF-8\nLazyData: true\nRoxygen: list(markdown = TRUE)\nRoxygenNote: 7.1.1\nSuggests: \n testthat (>= 3.0.0)\nConfig/testthat/edition: 3\n```\n\nHere are some things to edit *manually* in `DESCRIPTION`:\n\n- package name \\[tk naming of R packages\\] -- make it short and convenient if you can!\n- Title: write this part In Title Case. Don't end the title with a period.\n- Description: Describe the package in a short block of text. This *should* end with a period.\n- Authors: Add your name here and the name of anyone building the package with you. `usethis` will have done the first step for you, and filled in the structure. Only \"aut\" (author) and \"cre\" (creator) are essential. [but many others are possible](https://www.loc.gov/marc/relators/relaterm.html)\n\nAdd your name here.\n\nAdd a license\n\n``` r\nusethis::use_mit_license(copyright_holder = \"\")\n```\n\nnote about the different roles that R package authors can have. Funny ones. but creator and maintainer are the key ones.\n\nNote the R folder. We'll get much more into that later\n\n- Rbuildignore\n\n## Keeping notes\n\ncreate an R file\n\n``` r\nusethis::use_build_ignore(\"dev.R\")\n```\n\nthe docs folder\n\nhere we have a very minimal version of an R packages we're going to be adding to it as the course progresses.\n\nOne thing we can do right away is build and check the R package\n\nWhat exactly is happining here? slide from R package tutorial.\n\nLots of checkpoints and progress confrimations along the way.\n\nOK so what is that all about? we have compiled the R package and it has gone to where the R packages on our computer go.\n\nThere is a natural cycle to how the different steps in an R package workflow proceed -- see the documentation for this lesson -- we will be following this process (TK another pictures?\n\nOk so now that we ahve the basic structure, let's talk about some content for the R package. I received the donation of a little R function already that we can use to create this workflow in a nice way\n\nThis R function (explain what the function does)\n\nOK so let's focus on just one part of this function.\n\nload all -- shortcut\n\n> how do we do this in VScode?\n\n> how to add something to the .Rbuildignore? it would be nice to have a little .dev script as a space to create all the ohter dependencies that are involved in making an R package.\n\n```{r, message=FALSE}\nusethis::use_build_ignore(\"development.R\")\n```\n\n## Useful links\n\nThis workshop borrows heavily from some excellent sources:\n\n- the [R packages book](https://r-pkgs.org/index.html) especially the [\"Whole Game\"](https://r-pkgs.org/whole-game.html#whole-game) chapter!\n- [rOpenSci Packages: Development, Maintenance, and Peer Review](https://devguide.ropensci.org/index.html)\n\nhttps://builder.r-hub.io/about.html\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Building R packages","description":"This practical training will cover the basics of modern package development in R with a focus on the following three aspects: (1) how to turn your code into functions, (2) how to write tests and documentation, and (3) how to share your R package on GitHub..\n","author":"Andrew MacDonald","date":"2021-05-04","image":"altumcode-PNbDkQ2DDgM-unsplash.jpeg","categories":["Technical","EN"],"number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/idx/posts/2021-06-22-introduction-to-shiny-apps/index.qmd.json b/.quarto/idx/posts/2021-06-22-introduction-to-shiny-apps/index.qmd.json index a29c230..5a3ec93 100644 --- a/.quarto/idx/posts/2021-06-22-introduction-to-shiny-apps/index.qmd.json +++ b/.quarto/idx/posts/2021-06-22-introduction-to-shiny-apps/index.qmd.json @@ -1 +1 @@ -{"title":"Introduction to Shiny Apps","markdown":{"yaml":{"title":"Introduction to Shiny Apps","description":"Introduction to interactive app development with R Shiny.","author":[{"name":"Katherine Hébert","affiliation":"Université de Sherbrooke"},{"name":"Andrew MacDonald","affiliation":"Université de Sherbrooke"},{"name":"Jake Lawlor","affiliation":"McGill University"},{"name":"Vincent Bellavance","affiliation":"Université de Sherbrooke"}],"date":"06-22-2021","image":"image.jpg","categories":["Technical","Fellow contributed","EN"],"toc":true,"number-sections":true,"number-depth":1},"headingText":"Why do you want to use Shiny?","containsRefs":false,"markdown":"\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(eval = FALSE)\n```\n\n\nThere are many reasons to consider using Shiny for a project:\n\n- Sharing results from a paper with your readers;\n- Helping you explore a model, mathematics, simulations;\n- Letting non R users use R.\n\n## Hello Shiny!\n\nHere is an example of a Shiny app that RStudio generates when you open a new Shiny Web App file:\n\n```{r eval = FALSE}\n# Define UI for app that draws a histogram ----\nui <- fluidPage(\n\n # App title ----\n titlePanel(\"Hello Shiny!\"),\n\n # Sidebar layout with input and output definitions ----\n sidebarLayout(\n\n # Sidebar panel for inputs ----\n sidebarPanel(\n\n # Input: Slider for the number of bins ----\n sliderInput(inputId = \"bins\",\n label = \"Number of bins:\",\n min = 1,\n max = 50,\n value = 30)\n\n ),\n\n # Main panel for displaying outputs ----\n mainPanel(\n\n # Output: Histogram ----\n plotOutput(outputId = \"distPlot\")\n\n )\n )\n)\n```\n\n# How a Shiny app works\n\n## Building blocks\n\nWe've now seen the basic building blocks of a Shiny app:\n\n- The **user interface**, which determines how the app \"looks\". This is how we tell Shiny where to ask for user inputs, and where to put any outputs we create.\n- **Reactive values**, which are values that change according to user inputs. These are values that affect the outputs we create in the Shiny app, such as tables or plots.\n- The **server**, where we use reactive values to generate some outputs.\n\n### IDs\n\nThe **user interface** and **server** communicate through IDs that we assign to inputs from the user and outputs from the server.\n\n![](images/app-ids.png)\n\nWe use an ID (*in orange*) to link the user input in the UI to the reactive values used in the server:\n\n![](images/app-reactiveid.png)\n\nWe use another ID (*in blue*) to link the output created in the server to the output shown in the user interface:\n\n![](images/app-output.png)\n\n### Organisation\n\nThese elements can all be placed in one script named `app.R` or separately in scripts named `ui.R` and `server.R`. The choice is up to you, although it becomes easier to work in separate `ui.R` and `server.R` scripts when the Shiny app becomes more complex.\n\n**Example 1: Everything in `app.R`**\n\n![](images/app-in1.png) **Example 2: Split things into `ui.R` and `server.R`**\n\n![](images/app-in2.png)\n\n## Plots\n\nShiny is an excellent tool for visual exploration - it is at its most useful when a user can *see* something change before their eyes according to some selections. This is a great way to allow users to explore a dataset, explore the results of some analyses according to different parameters, and so on!\n\nLet's now add a plot to our Shiny app, to visualize the distribution of a variable depending on user input. We'll be adding the `ggplot2` and `ggridges` packages in the set-up step at the top of our `app.R` to allow us to make a plot.\n\n```{r}\n# load packages\nlibrary(shiny)\nlibrary(ggridges)\nlibrary(ggplot2)\nlibrary(here)\nlibrary(readr)\n```\n\n### User interface\n\nTo add a plot in our Shiny, we need to indicate where the plot should appear in the app. We can do this with `plotOutput()`, a similar function to `tableOutput()` in the previous section that is meant for plot outputs, as the name suggests.\n\n```{r}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n )\n)\n```\n\nNow our Shiny app knows where we want to place our plot.\n\n### Server\n\nWe now need to create the plot we want to show in our app. This plot will change depending on one or several reactive values that the user can input or select in our UI.\n\nWe link the UI and server together with IDs that are assigned to each object. Above, we told the UI to expect a plot output with the ID `\"ridgePlot\"`. In the server, we will create a plot and render it as a plot object using `renderPlot()`, and we will assign this plot output to the ID we call in the UI (as `output$ridgePlot`).\n\n```{r}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n\n \n # prepare the data\n # ----------------------------------------------------------\n \n # read the dataset\n eruptions <- readr::read_rds(here::here(\"data\", \"eruptions.rds\"))\n \n # filter the dataset to avoid overloading the plot \n eruptions <- eruptions[which(eruptions$volcano_name %in% names(which(table(eruptions$volcano_name) > 30))),]\n # this subsets to volcanoes that have erupted more than 30 times\n \n \n # make reactive dataset\n # ----------------------------------------------------------\n \n # subset volcano data with input year range\n eruptions_filtered <- reactive({\n subset(eruptions, start_year >= input$years[1] & end_year <= input$years[2])\n })\n \n \n # create and render the outputs\n # ----------------------------------------------------------\n \n # create the table of volcanoes\n output$erupt_table <- renderTable({\n head(eruptions_filtered())\n })\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name,\n fill = volcano_name)) +\n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges( size = .5) + # line width\n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # adjust the ggplot theme to make the plot \"prettier\"\n theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n}\n```\n\n### The Shiny app\n\nNow, if we run the Shiny app, we have a plot above the table we made previously. They are positioned in this way because the `plotOutput()` comes before the `tableOutput()` in the UI.\n\n```{r eval = FALSE}\n# Run the application\nshinyApp(ui = ui, server = server)\n```\n\n![](images/plotOutput.png)\n\n## Customising the theme\n\nIf you'd like to go one step further, you can also customize the appearance of your Shiny app using built-in themes, or creating your own themes.\n\n### Using built-in themes\n\nThere are several built-in themes in Shiny, which allow you to quickly change the appearance of your app. You can browse a gallery of available themes here [here](https://rstudio.github.io/shinythemes/), or test themes out interactively [here](https://shiny.rstudio.com/gallery/shiny-theme-selector.html).\n\nLet's try the *darkly* theme on our Shiny app. To do this, we will need the `shinythemes` package.\n\n```{r}\nlibrary(shinythemes)\n```\n\nWe can change the theme of our previous app with one line of code:\n\n```{r}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use the darkly theme\n theme = shinythemes::shinytheme(\"darkly\")\n)\n```\n\nNow, if we run the app, it looks a little different:\n\n![](images/darklytheme.png)\n\n### Using a custom theme\n\nYou can also go beyond the built-in themes, and create your own custom theme with the fonts and colours of your choice. You can also apply this theme to the outputs rendered in the app, to bring all the visuals together for a more cohesive look.\n\n#### Customizing a theme\n\nTo create a custom theme, we will be using the `bs_theme()` function from the `bslib` package.\n\n```{r}\nlibrary(bslib)\n```\n\n```{r}\n# Create a custom theme \ncute_theme <- bslib::bs_theme(\n \n bg = \"#36393B\", # background colour\n fg = \"#FFD166\", # most of the text on your app\n primary = \"#F26430\", # buttons, ...\n \n # you can also choose fonts\n base_font = font_google(\"Open Sans\"),\n heading_font = font_google(\"Open Sans\")\n)\n```\n\nTo apply this theme to our Shiny app (and the outputs), we will be using the `thematic` package.\n\n```{r}\nlibrary(thematic)\n```\n\nThere are two essential steps to apply a custom theme to a Shiny app:\n\n1. Activating thematic.\n2. Setting the user interface's theme to the custom theme (`cute_theme`).\n\n```{r}\n# Activate thematic\n# so your R outputs will be changed to match up with your chosen styling\nthematic::thematic_shiny()\n\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use our custom theme\n theme = cute_theme\n)\n```\n\nNow, if we run the app, the user interface and plot theme is set to the colours and fonts we set in `cute_theme`:\n\n![](images/thematic.png)\n\nHere, `thematic` is not changing the colours used to represent a variable in our plot, because this is an informative colour scale (unlike the colour of axis labels, lines, and the plot background). However, if we remove this colour variable in our ridgeplot in the server, thematic will change the plot colours as well. Here is a simplified example of our server to see what these changes would look like:\n\n```{r}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n \n #... (all the good stuff we wrote above)\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name)) + # we are no longer setting \n # the fill argument to a variable\n \n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges(size = .5) + \n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # remove the \"classic\" ggplot2 so it doesn't override thematic's changes\n # theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n }\n```\n\nNow, our plot's theme follows the app's custom theme as well:\n\n![](images/thematic_plot.png)\n\n# Constructing a Shiny app using shinyDashboards\n\n## Taking advantage of good defaults\n\nHere, we will use shiny extension `shinyDashboards` and `leaflet` to construct a custom Shiny App to map volcanoes of the world. First, we need a few additional packages.\n\n**Note: All Source code for this app can be found [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) on the BIOS2 Github.**\n\n```{r}\n# load packages\nlibrary(shiny)\nlibrary(shinydashboard) # dashboard layout package\nlibrary(shinyWidgets) # fancy widgets package\nlibrary(leaflet) # interactive maps package\nlibrary(dplyr)\nlibrary(ggplot2)\n```\n\n### Using ShinyDashboard\n\nWe will create our app using defaults from the ShinyDashboard package, which always includes three main components: a header, using `dashboardHeader()`, a sidebar, using `dashboardSidebar()`, and a body, using `dashboardBody()`. These are then added together using the `dashboardPage()` function.\n\nBuilding these elements is less like usual R coding, and more like web design, since we are, in fact, designing a unser interface for a web app. Here, we'll make a basic layout before populating it.\n\n```{r, echo=TRUE}\n# create the header of our app\nheader <- dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n)\n\n\n# create dashboard body - this is the major UI element\nbody <- dashboardBody(\n\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n \n # make first column, 25% of page - width = 3 of 12 columns\n column(width = 3,\n \n \n # Box 1: text explaining what this app is\n #-----------------------------------------------\n box( width = NULL,\n status=\"primary\", # this line can change the automatic color of the box.\n title = NULL,\n p(\"here, we'll include some info about this app\")\n\n \n ), # end box 1\n \n \n # box 2 : input for selecting volcano type\n #-----------------------------------------------\n box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T, \n \n p(\"here, we'll add a UI element for selecting volcano types\"),\n\n ), # end box 2\n \n \n \n # box 3: ggplot of selected volcanoes by continent\n #------------------------------------------------\n box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\",\n p(\"here, we'll add a bar plot of volcanoes in each continent\")\n ) # end box 3\n \n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n #--------------------------------------------------\n column(width = 9,\n # Box 4: leaflet map\n box(width = NULL, background = \"light-blue\", height = 850,\n p(\"here, we'll show volcanoes on a map\"),\n ) # end box with map\n ) # end second column\n \n ) # end fluidrow\n) # end body\n\n\n# add elements together\ndashboardPage(\n skin = \"blue\",\n header = header,\n sidebar = dashboardSidebar(disable = TRUE), # here, we only have one tab of our app, so we don't need a sidebar\n body = body\n)\n\n\n```\n\n![](images/shiny_dashboard_layout.png)\n\n## Populating the Layout\n\nNow, we are going to fill out app with elements. In this app, we will only have one user input: a selection of the volcano type to show. We will use this input (`input$volcano_type`), which will be used to filter data in the server (i.e. make a smaller dataset using only volcanoes of the selected types), then use this filtered dataset to create output elements (plots and maps).\n\nBelow, we show the necessary code to include in both the UI and the Server to create each plot element. Notice that after the reactive value `selected_volcanoes` is created in the selection box, this is the only object that is used to create the other elements in the app.\n\n| Location | Element | UI | Server |\n|:----------------|:----------------|:------------------|:------------------|\n| Box 1 | **Intro Textbox** | Markdown/HTML text code | |\n| Box 2 | **Selection Wigets** | `checkboxGroupButtons(` `inputID = \"volcano_type\")` | `selected_volcanoes <- reactive({` `volcano_df %>% filter(type %in% input$volcano_type)})` to create a filtered dataset that will react to user input |\n| Box 3 | **Bar Graph** | `plotOutput(\"continentplot\")` | `output$continentplot <- renderPlot(...))` which will plot from the `selectied_volcanoes` reactive object |\n| Box 4 | **Leaflet Map** | `leafletOutput(\"volcanomap\")` | `output$volcanomap <- renderLeaflet(...)` to map points from the `selectied_volcanoes` reactive object |\n\n![](images/populated_shiny.png)\n\n## Challenge!\n\nUse the code provided to add your own additional user input to the Shiny App. The code (which you can access [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) leaves a space for an additional UI input inside box 2). Then, you'll need to use your new input element to the reactive value in the Server, as noted in the server code.\n\nUse the [Default Shiny Widgets](https://shiny.rstudio.com/gallery/widget-gallery.html) or [shinyWidgets extended package](http://shinyapps.dreamrs.fr/shinyWidgets/) galleries to explore the types of elements you can add.\n\n![](images/add_elements_diagram.png)\n\n### See the completed app\n\nSee our completed app [HERE](https://jakelawlor.shinyapps.io/Volcanoes_of_the_World/)\n\n# Constructing a Shiny app using Golem\n\nFirst step is creating your own golem project:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.25.32.png)\n\nGolem provides you with some very helpful \"workflow\" scripts:\n\nEdit the Description by filling in this function in `01_dev.R`\n\nThen, add all the dependencies\n\nTogether, this edits the `DESCRIPTION` of your R package to look something like this:\n\nNow we can start building the app.\n\n```{r eval = FALSE}\napp_ui <- function(request) {\n tagList(\n # Leave this function for adding external resources\n golem_add_external_resources(),\n # Your application UI logic \n shinydashboard::dashboardPage(\n header = shinydashboard::dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n ),\n sidebar = shinydashboard::dashboardSidebar(disable = TRUE), # here, we only have one tab, so we don't need a sidebar\n body = shinydashboard::dashboardBody(\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n # make first column, 25% of page - width = 3 of 12 colums\n column(width = 3,\n # box 1 : input for selecting volcano type\n #-----------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T\n \n ## CHECKBOX HERE\n \n ), # end box 1\n # box 2: ggplot of selected volcanoes by continent\n #------------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\"\n \n ## PLOT HERE\n\n ) # end box 2\n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n column(width = 9,\n \n # Box 3: leaflet map\n shinydashboard::box(width = NULL, background = \"light-blue\"\n \n ## MAP HERE \n \n ) # end box with map\n ) # end second column\n ) # end fluidrow\n ) # end body\n )\n )\n}\n```\n\nThis indicates where each of the three components of the app would go.\n\nAt this point we can run the app to get a very empty-looking UI:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.58.08.png)\n\n### Golem modules\n\nWe could split this app into three different sections, corresponding to each of the three boxes:\n\n1. Filter the type of volcano we see\n2. take the filtered volcanoes and plot a stacked bar chart\n3. take the filtered volcanoes and plot a map\n\n### Selecting the volcanoes\n\n```{r, eval=FALSE}\n#' volcano_select UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_volcano_select_ui <- function(id){\n ns <- NS(id)\n tagList(\n # Widget specifying the species to be included on the plot\n shinyWidgets::checkboxGroupButtons(\n inputId = ns(\"volcano_type\"),\n label = \"Volcano Type\",\n choices = c(\"Stratovolcano\" , \"Shield\" ,\"Cone\" , \"Caldera\" , \"Volcanic Field\",\n \"Complex\" , \"Other\", \"Lava Dome\" , \"Submarine\" ),\n checkIcon = list(\n yes = tags$i(class = \"fa fa-check-square\", \n style = \"color: steelblue\"),\n no = tags$i(class = \"fa fa-square-o\", \n style = \"color: steelblue\"))\n ) # end checkboxGroupButtons\n )\n}\n \n#' volcano_select Server Functions\n#'\n#' @noRd \nmod_volcano_select_server <- function(id, volcano){\n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n # make reactive dataset\n # ------------------------------------------------\n # Make a subset of the data as a reactive value\n # this subset pulls volcano rows only in the selected types of volcano\n selected_volcanoes <- reactive({\n \n req(input$volcano_type)\n \n volcano %>%\n \n # select only volcanoes in the selected volcano type (by checkboxes in the UI)\n dplyr::filter(volcano_type_consolidated %in% input$volcano_type) %>%\n # Space to add your suggested filter here!! \n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # filter() %>%\n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # change volcano type into factor (this makes plotting it more consistent)\n dplyr::mutate(volcano_type_consolidated = factor(volcano_type_consolidated,\n levels = c(\"Stratovolcano\" , \"Shield\", \"Cone\", \"Caldera\", \"Volcanic Field\",\n \"Complex\" , \"Other\" , \"Lava Dome\" , \"Submarine\" ) ) )\n })\n \n })\n}\n \n## To be copied in the UI\n# mod_volcano_select_ui(\"volcano_select_1\")\n \n## To be copied in the server\n# mod_volcano_select_server(\"volcano_select_1\")\n\n```\n\nI also like to test my modules by using them to create a toy Shiny app. The best place to do this is by using a testthat directory. This is another great advantage of using a package workflow. You can set this up easily with `usethis::use_test()`: just run `usethis::use_test` from the R console when you have the module open.\n\nThen write a simple test like this\n\n```{r eval=FALSE}\ntest_that(\"volcano selection module works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_volcano_select_ui(\"volcano_select_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n selected_data <- mod_volcano_select_server(\"volcano_select_1\",\n volcano = volcano_data)\n \n output$table <- renderTable(selected_data())\n }\n \n shinyApp(ui = ui, server = server)\n \n})\n```\n\nWhich generates the following simple app:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2006.25.38.png)\n\n### Barplot of continents\n\n```{r eval=FALSE}\n#' continentplot UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_continentplot_ui <- function(id){\n ns <- NS(id)\n tagList(\n plotOutput(ns(\"barplot\"), # this calls to object continentplot that is made in the server page\n height = 350)\n )\n}\n \n#' continentplot Server Functions\n#'\n#' @noRd \nmod_continentplot_server <- function(id, volcano, selected_volcanoes){\n \n # kind of helpful\n stopifnot(is.reactive(selected_volcanoes))\n \n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n output$barplot <- renderPlot({\n \n # create basic barplot\n barplot <- ggplot2::ggplot(data = volcano,\n ggplot2::aes(x=continent,\n fill = volcano_type_consolidated))+\n # update theme and axis labels:\n ggplot2::theme_bw()+\n ggplot2::theme(plot.background = ggplot2::element_rect(color=\"transparent\",fill = \"transparent\"),\n panel.background = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"),\n panel.border = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"))+\n ggplot2::labs(x=NULL, y=NULL, title = NULL) +\n ggplot2::theme(axis.text.x = ggplot2::element_text(angle=45,hjust=1))\n \n \n # IF a selected_volcanoes() object exists, update the blank ggplot. \n # basically this makes it not mess up when nothing is selected\n \n barplot <- barplot +\n ggplot2::geom_bar(data = selected_volcanoes(), show.legend = F) +\n ggplot2::scale_fill_manual(values = RColorBrewer::brewer.pal(9,\"Set1\"), drop=F) +\n ggplot2::scale_x_discrete(drop=F)\n \n \n # print the plot\n barplot\n \n }) # end renderplot command\n \n \n })\n}\n \n## To be copied in the UI\n# mod_continentplot_ui(\"continentplot_1\")\n \n## To be copied in the server\n# mod_continentplot_server(\"continentplot_1\")\n\n```\n\nthe test\n\n```{r eval=FALSE}\ntest_that(\"volano barplot works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_continentplot_ui(\"continentplot_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n volcano_recent <- subset(volcano_data, last_eruption_year > 2000)\n mod_continentplot_server(\"continentplot_1\",\n volcano = volcano_data,\n selected_volcanoes = reactive(volcano_recent))\n }\n \n shinyApp(ui = ui, server = server)\n})\n```\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","listing":{"sort-ui":["date","author"]},"theme":"flatly","title-block-banner":true,"citation":{"container-title":"BIOS² Education Resources"},"title":"Introduction to Shiny Apps","description":"Introduction to interactive app development with R Shiny.","author":[{"name":"Katherine Hébert","affiliation":"Université de Sherbrooke"},{"name":"Andrew MacDonald","affiliation":"Université de Sherbrooke"},{"name":"Jake Lawlor","affiliation":"McGill University"},{"name":"Vincent Bellavance","affiliation":"Université de Sherbrooke"}],"date":"06-22-2021","image":"image.jpg","categories":["Technical","Fellow contributed","EN"],"number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file +{"title":"Introduction to Shiny Apps","markdown":{"yaml":{"title":"Introduction to Shiny Apps","description":"Introduction to interactive app development with R Shiny.","author":[{"name":"Katherine Hébert"},{"name":"Andrew MacDonald"},{"name":"Jake Lawlor"},{"name":"Vincent Bellevance"}],"date":"06-22-2021","image":"image.jpg","categories":["Technical","Fellow contributed","EN"],"toc":true,"number-sections":true,"number-depth":1},"headingText":"Why do you want to use Shiny?","containsRefs":false,"markdown":"\n\n```{r setup, include=FALSE}\nknitr::opts_chunk$set(eval = FALSE)\n```\n\n\nThere are many reasons to consider using Shiny for a project:\n\n- Sharing results from a paper with your readers;\n- Helping you explore a model, mathematics, simulations;\n- Letting non R users use R.\n\n## Hello Shiny!\n\nHere is an example of a Shiny app that RStudio generates when you open a new Shiny Web App file:\n\n```{r eval = FALSE}\n# Define UI for app that draws a histogram ----\nui <- fluidPage(\n\n # App title ----\n titlePanel(\"Hello Shiny!\"),\n\n # Sidebar layout with input and output definitions ----\n sidebarLayout(\n\n # Sidebar panel for inputs ----\n sidebarPanel(\n\n # Input: Slider for the number of bins ----\n sliderInput(inputId = \"bins\",\n label = \"Number of bins:\",\n min = 1,\n max = 50,\n value = 30)\n\n ),\n\n # Main panel for displaying outputs ----\n mainPanel(\n\n # Output: Histogram ----\n plotOutput(outputId = \"distPlot\")\n\n )\n )\n)\n```\n\n# How a Shiny app works\n\n## Building blocks\n\nWe've now seen the basic building blocks of a Shiny app:\n\n- The **user interface**, which determines how the app \"looks\". This is how we tell Shiny where to ask for user inputs, and where to put any outputs we create.\n- **Reactive values**, which are values that change according to user inputs. These are values that affect the outputs we create in the Shiny app, such as tables or plots.\n- The **server**, where we use reactive values to generate some outputs.\n\n### IDs\n\nThe **user interface** and **server** communicate through IDs that we assign to inputs from the user and outputs from the server.\n\n![](images/app-ids.png)\n\nWe use an ID (*in orange*) to link the user input in the UI to the reactive values used in the server:\n\n![](images/app-reactiveid.png)\n\nWe use another ID (*in blue*) to link the output created in the server to the output shown in the user interface:\n\n![](images/app-output.png)\n\n### Organisation\n\nThese elements can all be placed in one script named `app.R` or separately in scripts named `ui.R` and `server.R`. The choice is up to you, although it becomes easier to work in separate `ui.R` and `server.R` scripts when the Shiny app becomes more complex.\n\n**Example 1: Everything in `app.R`**\n\n![](images/app-in1.png) **Example 2: Split things into `ui.R` and `server.R`**\n\n![](images/app-in2.png)\n\n## Plots\n\nShiny is an excellent tool for visual exploration - it is at its most useful when a user can *see* something change before their eyes according to some selections. This is a great way to allow users to explore a dataset, explore the results of some analyses according to different parameters, and so on!\n\nLet's now add a plot to our Shiny app, to visualize the distribution of a variable depending on user input. We'll be adding the `ggplot2` and `ggridges` packages in the set-up step at the top of our `app.R` to allow us to make a plot.\n\n```{r}\n# load packages\nlibrary(shiny)\nlibrary(ggridges)\nlibrary(ggplot2)\nlibrary(here)\nlibrary(readr)\n```\n\n### User interface\n\nTo add a plot in our Shiny, we need to indicate where the plot should appear in the app. We can do this with `plotOutput()`, a similar function to `tableOutput()` in the previous section that is meant for plot outputs, as the name suggests.\n\n```{r}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n )\n)\n```\n\nNow our Shiny app knows where we want to place our plot.\n\n### Server\n\nWe now need to create the plot we want to show in our app. This plot will change depending on one or several reactive values that the user can input or select in our UI.\n\nWe link the UI and server together with IDs that are assigned to each object. Above, we told the UI to expect a plot output with the ID `\"ridgePlot\"`. In the server, we will create a plot and render it as a plot object using `renderPlot()`, and we will assign this plot output to the ID we call in the UI (as `output$ridgePlot`).\n\n```{r}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n\n \n # prepare the data\n # ----------------------------------------------------------\n \n # read the dataset\n eruptions <- readr::read_rds(here::here(\"data\", \"eruptions.rds\"))\n \n # filter the dataset to avoid overloading the plot \n eruptions <- eruptions[which(eruptions$volcano_name %in% names(which(table(eruptions$volcano_name) > 30))),]\n # this subsets to volcanoes that have erupted more than 30 times\n \n \n # make reactive dataset\n # ----------------------------------------------------------\n \n # subset volcano data with input year range\n eruptions_filtered <- reactive({\n subset(eruptions, start_year >= input$years[1] & end_year <= input$years[2])\n })\n \n \n # create and render the outputs\n # ----------------------------------------------------------\n \n # create the table of volcanoes\n output$erupt_table <- renderTable({\n head(eruptions_filtered())\n })\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name,\n fill = volcano_name)) +\n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges( size = .5) + # line width\n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # adjust the ggplot theme to make the plot \"prettier\"\n theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n}\n```\n\n### The Shiny app\n\nNow, if we run the Shiny app, we have a plot above the table we made previously. They are positioned in this way because the `plotOutput()` comes before the `tableOutput()` in the UI.\n\n```{r eval = FALSE}\n# Run the application\nshinyApp(ui = ui, server = server)\n```\n\n![](images/plotOutput.png)\n\n## Customising the theme\n\nIf you'd like to go one step further, you can also customize the appearance of your Shiny app using built-in themes, or creating your own themes.\n\n### Using built-in themes\n\nThere are several built-in themes in Shiny, which allow you to quickly change the appearance of your app. You can browse a gallery of available themes here [here](https://rstudio.github.io/shinythemes/), or test themes out interactively [here](https://shiny.rstudio.com/gallery/shiny-theme-selector.html).\n\nLet's try the *darkly* theme on our Shiny app. To do this, we will need the `shinythemes` package.\n\n```{r}\nlibrary(shinythemes)\n```\n\nWe can change the theme of our previous app with one line of code:\n\n```{r}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use the darkly theme\n theme = shinythemes::shinytheme(\"darkly\")\n)\n```\n\nNow, if we run the app, it looks a little different:\n\n![](images/darklytheme.png)\n\n### Using a custom theme\n\nYou can also go beyond the built-in themes, and create your own custom theme with the fonts and colours of your choice. You can also apply this theme to the outputs rendered in the app, to bring all the visuals together for a more cohesive look.\n\n#### Customizing a theme\n\nTo create a custom theme, we will be using the `bs_theme()` function from the `bslib` package.\n\n```{r}\nlibrary(bslib)\n```\n\n```{r}\n# Create a custom theme \ncute_theme <- bslib::bs_theme(\n \n bg = \"#36393B\", # background colour\n fg = \"#FFD166\", # most of the text on your app\n primary = \"#F26430\", # buttons, ...\n \n # you can also choose fonts\n base_font = font_google(\"Open Sans\"),\n heading_font = font_google(\"Open Sans\")\n)\n```\n\nTo apply this theme to our Shiny app (and the outputs), we will be using the `thematic` package.\n\n```{r}\nlibrary(thematic)\n```\n\nThere are two essential steps to apply a custom theme to a Shiny app:\n\n1. Activating thematic.\n2. Setting the user interface's theme to the custom theme (`cute_theme`).\n\n```{r}\n# Activate thematic\n# so your R outputs will be changed to match up with your chosen styling\nthematic::thematic_shiny()\n\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use our custom theme\n theme = cute_theme\n)\n```\n\nNow, if we run the app, the user interface and plot theme is set to the colours and fonts we set in `cute_theme`:\n\n![](images/thematic.png)\n\nHere, `thematic` is not changing the colours used to represent a variable in our plot, because this is an informative colour scale (unlike the colour of axis labels, lines, and the plot background). However, if we remove this colour variable in our ridgeplot in the server, thematic will change the plot colours as well. Here is a simplified example of our server to see what these changes would look like:\n\n```{r}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n \n #... (all the good stuff we wrote above)\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name)) + # we are no longer setting \n # the fill argument to a variable\n \n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges(size = .5) + \n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # remove the \"classic\" ggplot2 so it doesn't override thematic's changes\n # theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n }\n```\n\nNow, our plot's theme follows the app's custom theme as well:\n\n![](images/thematic_plot.png)\n\n# Constructing a Shiny app using shinyDashboards\n\n## Taking advantage of good defaults\n\nHere, we will use shiny extension `shinyDashboards` and `leaflet` to construct a custom Shiny App to map volcanoes of the world. First, we need a few additional packages.\n\n**Note: All Source code for this app can be found [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) on the BIOS2 Github.**\n\n```{r}\n# load packages\nlibrary(shiny)\nlibrary(shinydashboard) # dashboard layout package\nlibrary(shinyWidgets) # fancy widgets package\nlibrary(leaflet) # interactive maps package\nlibrary(dplyr)\nlibrary(ggplot2)\n```\n\n### Using ShinyDashboard\n\nWe will create our app using defaults from the ShinyDashboard package, which always includes three main components: a header, using `dashboardHeader()`, a sidebar, using `dashboardSidebar()`, and a body, using `dashboardBody()`. These are then added together using the `dashboardPage()` function.\n\nBuilding these elements is less like usual R coding, and more like web design, since we are, in fact, designing a unser interface for a web app. Here, we'll make a basic layout before populating it.\n\n```{r, echo=TRUE}\n# create the header of our app\nheader <- dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n)\n\n\n# create dashboard body - this is the major UI element\nbody <- dashboardBody(\n\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n \n # make first column, 25% of page - width = 3 of 12 columns\n column(width = 3,\n \n \n # Box 1: text explaining what this app is\n #-----------------------------------------------\n box( width = NULL,\n status=\"primary\", # this line can change the automatic color of the box.\n title = NULL,\n p(\"here, we'll include some info about this app\")\n\n \n ), # end box 1\n \n \n # box 2 : input for selecting volcano type\n #-----------------------------------------------\n box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T, \n \n p(\"here, we'll add a UI element for selecting volcano types\"),\n\n ), # end box 2\n \n \n \n # box 3: ggplot of selected volcanoes by continent\n #------------------------------------------------\n box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\",\n p(\"here, we'll add a bar plot of volcanoes in each continent\")\n ) # end box 3\n \n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n #--------------------------------------------------\n column(width = 9,\n # Box 4: leaflet map\n box(width = NULL, background = \"light-blue\", height = 850,\n p(\"here, we'll show volcanoes on a map\"),\n ) # end box with map\n ) # end second column\n \n ) # end fluidrow\n) # end body\n\n\n# add elements together\ndashboardPage(\n skin = \"blue\",\n header = header,\n sidebar = dashboardSidebar(disable = TRUE), # here, we only have one tab of our app, so we don't need a sidebar\n body = body\n)\n\n\n```\n\n![](images/shiny_dashboard_layout.png)\n\n## Populating the Layout\n\nNow, we are going to fill out app with elements. In this app, we will only have one user input: a selection of the volcano type to show. We will use this input (`input$volcano_type`), which will be used to filter data in the server (i.e. make a smaller dataset using only volcanoes of the selected types), then use this filtered dataset to create output elements (plots and maps).\n\nBelow, we show the necessary code to include in both the UI and the Server to create each plot element. Notice that after the reactive value `selected_volcanoes` is created in the selection box, this is the only object that is used to create the other elements in the app.\n\n| Location | Element | UI | Server |\n|:----------------|:----------------|:------------------|:------------------|\n| Box 1 | **Intro Textbox** | Markdown/HTML text code | |\n| Box 2 | **Selection Wigets** | `checkboxGroupButtons(` `inputID = \"volcano_type\")` | `selected_volcanoes <- reactive({` `volcano_df %>% filter(type %in% input$volcano_type)})` to create a filtered dataset that will react to user input |\n| Box 3 | **Bar Graph** | `plotOutput(\"continentplot\")` | `output$continentplot <- renderPlot(...))` which will plot from the `selectied_volcanoes` reactive object |\n| Box 4 | **Leaflet Map** | `leafletOutput(\"volcanomap\")` | `output$volcanomap <- renderLeaflet(...)` to map points from the `selectied_volcanoes` reactive object |\n\n![](images/populated_shiny.png)\n\n## Challenge!\n\nUse the code provided to add your own additional user input to the Shiny App. The code (which you can access [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) leaves a space for an additional UI input inside box 2). Then, you'll need to use your new input element to the reactive value in the Server, as noted in the server code.\n\nUse the [Default Shiny Widgets](https://shiny.rstudio.com/gallery/widget-gallery.html) or [shinyWidgets extended package](http://shinyapps.dreamrs.fr/shinyWidgets/) galleries to explore the types of elements you can add.\n\n![](images/add_elements_diagram.png)\n\n### See the completed app\n\nSee our completed app [HERE](https://jakelawlor.shinyapps.io/Volcanoes_of_the_World/)\n\n# Constructing a Shiny app using Golem\n\nFirst step is creating your own golem project:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.25.32.png)\n\nGolem provides you with some very helpful \"workflow\" scripts:\n\nEdit the Description by filling in this function in `01_dev.R`\n\nThen, add all the dependencies\n\nTogether, this edits the `DESCRIPTION` of your R package to look something like this:\n\nNow we can start building the app.\n\n```{r eval = FALSE}\napp_ui <- function(request) {\n tagList(\n # Leave this function for adding external resources\n golem_add_external_resources(),\n # Your application UI logic \n shinydashboard::dashboardPage(\n header = shinydashboard::dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n ),\n sidebar = shinydashboard::dashboardSidebar(disable = TRUE), # here, we only have one tab, so we don't need a sidebar\n body = shinydashboard::dashboardBody(\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n # make first column, 25% of page - width = 3 of 12 colums\n column(width = 3,\n # box 1 : input for selecting volcano type\n #-----------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T\n \n ## CHECKBOX HERE\n \n ), # end box 1\n # box 2: ggplot of selected volcanoes by continent\n #------------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\"\n \n ## PLOT HERE\n\n ) # end box 2\n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n column(width = 9,\n \n # Box 3: leaflet map\n shinydashboard::box(width = NULL, background = \"light-blue\"\n \n ## MAP HERE \n \n ) # end box with map\n ) # end second column\n ) # end fluidrow\n ) # end body\n )\n )\n}\n```\n\nThis indicates where each of the three components of the app would go.\n\nAt this point we can run the app to get a very empty-looking UI:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.58.08.png)\n\n### Golem modules\n\nWe could split this app into three different sections, corresponding to each of the three boxes:\n\n1. Filter the type of volcano we see\n2. take the filtered volcanoes and plot a stacked bar chart\n3. take the filtered volcanoes and plot a map\n\n### Selecting the volcanoes\n\n```{r, eval=FALSE}\n#' volcano_select UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_volcano_select_ui <- function(id){\n ns <- NS(id)\n tagList(\n # Widget specifying the species to be included on the plot\n shinyWidgets::checkboxGroupButtons(\n inputId = ns(\"volcano_type\"),\n label = \"Volcano Type\",\n choices = c(\"Stratovolcano\" , \"Shield\" ,\"Cone\" , \"Caldera\" , \"Volcanic Field\",\n \"Complex\" , \"Other\", \"Lava Dome\" , \"Submarine\" ),\n checkIcon = list(\n yes = tags$i(class = \"fa fa-check-square\", \n style = \"color: steelblue\"),\n no = tags$i(class = \"fa fa-square-o\", \n style = \"color: steelblue\"))\n ) # end checkboxGroupButtons\n )\n}\n \n#' volcano_select Server Functions\n#'\n#' @noRd \nmod_volcano_select_server <- function(id, volcano){\n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n # make reactive dataset\n # ------------------------------------------------\n # Make a subset of the data as a reactive value\n # this subset pulls volcano rows only in the selected types of volcano\n selected_volcanoes <- reactive({\n \n req(input$volcano_type)\n \n volcano %>%\n \n # select only volcanoes in the selected volcano type (by checkboxes in the UI)\n dplyr::filter(volcano_type_consolidated %in% input$volcano_type) %>%\n # Space to add your suggested filter here!! \n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # filter() %>%\n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # change volcano type into factor (this makes plotting it more consistent)\n dplyr::mutate(volcano_type_consolidated = factor(volcano_type_consolidated,\n levels = c(\"Stratovolcano\" , \"Shield\", \"Cone\", \"Caldera\", \"Volcanic Field\",\n \"Complex\" , \"Other\" , \"Lava Dome\" , \"Submarine\" ) ) )\n })\n \n })\n}\n \n## To be copied in the UI\n# mod_volcano_select_ui(\"volcano_select_1\")\n \n## To be copied in the server\n# mod_volcano_select_server(\"volcano_select_1\")\n\n```\n\nI also like to test my modules by using them to create a toy Shiny app. The best place to do this is by using a testthat directory. This is another great advantage of using a package workflow. You can set this up easily with `usethis::use_test()`: just run `usethis::use_test` from the R console when you have the module open.\n\nThen write a simple test like this\n\n```{r eval=FALSE}\ntest_that(\"volcano selection module works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_volcano_select_ui(\"volcano_select_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n selected_data <- mod_volcano_select_server(\"volcano_select_1\",\n volcano = volcano_data)\n \n output$table <- renderTable(selected_data())\n }\n \n shinyApp(ui = ui, server = server)\n \n})\n```\n\nWhich generates the following simple app:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2006.25.38.png)\n\n### Barplot of continents\n\n```{r eval=FALSE}\n#' continentplot UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_continentplot_ui <- function(id){\n ns <- NS(id)\n tagList(\n plotOutput(ns(\"barplot\"), # this calls to object continentplot that is made in the server page\n height = 350)\n )\n}\n \n#' continentplot Server Functions\n#'\n#' @noRd \nmod_continentplot_server <- function(id, volcano, selected_volcanoes){\n \n # kind of helpful\n stopifnot(is.reactive(selected_volcanoes))\n \n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n output$barplot <- renderPlot({\n \n # create basic barplot\n barplot <- ggplot2::ggplot(data = volcano,\n ggplot2::aes(x=continent,\n fill = volcano_type_consolidated))+\n # update theme and axis labels:\n ggplot2::theme_bw()+\n ggplot2::theme(plot.background = ggplot2::element_rect(color=\"transparent\",fill = \"transparent\"),\n panel.background = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"),\n panel.border = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"))+\n ggplot2::labs(x=NULL, y=NULL, title = NULL) +\n ggplot2::theme(axis.text.x = ggplot2::element_text(angle=45,hjust=1))\n \n \n # IF a selected_volcanoes() object exists, update the blank ggplot. \n # basically this makes it not mess up when nothing is selected\n \n barplot <- barplot +\n ggplot2::geom_bar(data = selected_volcanoes(), show.legend = F) +\n ggplot2::scale_fill_manual(values = RColorBrewer::brewer.pal(9,\"Set1\"), drop=F) +\n ggplot2::scale_x_discrete(drop=F)\n \n \n # print the plot\n barplot\n \n }) # end renderplot command\n \n \n })\n}\n \n## To be copied in the UI\n# mod_continentplot_ui(\"continentplot_1\")\n \n## To be copied in the server\n# mod_continentplot_server(\"continentplot_1\")\n\n```\n\nthe test\n\n```{r eval=FALSE}\ntest_that(\"volano barplot works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_continentplot_ui(\"continentplot_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n volcano_recent <- subset(volcano_data, last_eruption_year > 2000)\n mod_continentplot_server(\"continentplot_1\",\n volcano = volcano_data,\n selected_volcanoes = reactive(volcano_recent))\n }\n \n shinyApp(ui = ui, server = server)\n})\n```\n"},"formats":{"html":{"execute":{"fig-width":7,"fig-height":5,"fig-format":"retina","fig-dpi":96,"df-print":"default","error":false,"eval":true,"cache":null,"freeze":true,"echo":true,"output":true,"warning":true,"include":true,"keep-md":false,"keep-ipynb":false,"ipynb":null,"enabled":null,"daemon":null,"daemon-restart":false,"debug":false,"ipynb-filters":[],"engine":"knitr"},"render":{"keep-tex":false,"keep-source":false,"keep-hidden":false,"prefer-html":false,"output-divs":true,"output-ext":"html","fig-align":"default","fig-pos":null,"fig-env":null,"code-fold":"none","code-overflow":"scroll","code-link":false,"code-line-numbers":false,"code-tools":false,"tbl-colwidths":"auto","merge-includes":true,"latex-auto-mk":true,"latex-auto-install":true,"latex-clean":true,"latex-max-runs":10,"latex-makeindex":"makeindex","latex-makeindex-opts":[],"latex-tlmgr-opts":[],"latex-input-paths":[],"latex-output-dir":null,"link-external-icon":false,"link-external-newwindow":false,"self-contained-math":false,"format-resources":[]},"pandoc":{"standalone":true,"wrap":"none","default-image-extension":"png","to":"html","css":["../../styles.css"],"toc":true,"number-sections":true,"output-file":"index.html"},"language":{},"metadata":{"lang":"en","fig-responsive":true,"quarto-version":"1.2.253","editor":"source","theme":"flatly","title-block-banner":true,"title":"Introduction to Shiny Apps","description":"Introduction to interactive app development with R Shiny.","author":[{"name":"Katherine Hébert"},{"name":"Andrew MacDonald"},{"name":"Jake Lawlor"},{"name":"Vincent Bellevance"}],"date":"06-22-2021","image":"image.jpg","categories":["Technical","Fellow contributed","EN"],"number-depth":1},"extensions":{"book":{"multiFile":true}}}}} \ No newline at end of file diff --git a/.quarto/listing/listing-cache.json b/.quarto/listing/listing-cache.json index f26dc3d..225bb3c 100644 --- a/.quarto/listing/listing-cache.json +++ b/.quarto/listing/listing-cache.json @@ -1,52 +1,7 @@ { "listingMap": { - "posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative/index.qmd": [ - "B3049D40" - ], - "posts/2020-09-21-data-visualization/index.qmd": [ - "B3049D40" - ], - "posts/2021-11-02-introduction-to-gams/index.qmd": [ - "B3049D40" - ], - "posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution/index.qmd": [ - "B3049D40" - ], - "posts/2020-06-15-science-communication/index.qmd": [ - "B3049D40" - ], - "posts/2021-06-22-introduction-to-shiny-apps/index.qmd": [ - "B3049D40" - ], - "posts/2021-05-04-building-r-packages/index.qmd": [ - "B3049D40" - ], - "posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index.qmd": [ - "B3049D40" - ], - "posts/2022-05-19-introduction-to-microbiome-analysis/index.qmd": [ - "B3049D40" - ], - "posts/2020-12-07-making-websites-with-hugo/index.qmd": [ - "B3049D40" - ], - "posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique/index.qmd": [ - "B3049D40" - ], - "posts/2021-03-25-point-count-data-analysis/index.qmd": [ - "B3049D40" - ], - "posts/2021-07-19-glm-community-ecology/index.qmd": [ - "B3049D40" - ], - "summer-schools/BiodiversityModelling2022.qmd": [ - "B3049D40" - ], "index.qmd": [ "posts" - ], - "about.qmd": [ - "B3049D40" ] } } \ No newline at end of file diff --git a/.quarto/xref/1893bfdc b/.quarto/xref/1893bfdc index 8cb276d..6abc991 100644 --- a/.quarto/xref/1893bfdc +++ b/.quarto/xref/1893bfdc @@ -1 +1 @@ -{"headings":["instructor","outline","get-course-materials","install-required-software","get-the-notes","useful-resources","references","license"],"entries":[]} \ No newline at end of file +{"entries":[],"headings":["instructor","outline","get-course-materials","install-required-software","get-the-notes","useful-resources","references","license"]} \ No newline at end of file diff --git a/.quarto/xref/b199d1af b/.quarto/xref/b199d1af index 176cd22..03881fb 100644 --- a/.quarto/xref/b199d1af +++ b/.quarto/xref/b199d1af @@ -1 +1 @@ -{"headings":["partie-1---sensibilisation-aux-réalités-autochtones","objectifs-de-la-formation","durant-ce-webinaire-nous-allons","partie-2---recherche-en-collaboration-avec-les-communautés-autochtones","objectifs-de-la-formation-1","durant-ce-webminaire-nous-allons","ressources","balados","lectures-sites-internet","filmographie","national-film-board-of-canada","formatrice"],"entries":[]} \ No newline at end of file +{"entries":[],"headings":["partie-1---sensibilisation-aux-réalités-autochtones","objectifs-de-la-formation","durant-ce-webminaire-nous-allons","partie-2---recherche-en-collaboration-avec-les-communautés-autochtones","objectifs-de-la-formation-1","durant-ce-webminaire-nous-allons-1","ressources","balados","lectures-sites-internet","filmographie","national-film-board-of-canada","formatrice"]} \ No newline at end of file diff --git a/.quarto/xref/c738fe30 b/.quarto/xref/c738fe30 index 7df77d5..208374b 100644 --- a/.quarto/xref/c738fe30 +++ b/.quarto/xref/c738fe30 @@ -1 +1 @@ -{"headings":[],"entries":[]} \ No newline at end of file +{"entries":[],"headings":[]} \ No newline at end of file diff --git a/.quarto/xref/e80605ec b/.quarto/xref/e80605ec index 4a71287..6dfb720 100644 --- a/.quarto/xref/e80605ec +++ b/.quarto/xref/e80605ec @@ -1 +1 @@ -{"headings":["training-material","interactive-examples","streamgraph","interactive-plot","example-figures","annotated-resource-library","books-articles","design-principles","choosing-a-visualization","colour","tools","r","base-r","ggplot2","python","julia","customization","inspiration-pretty-things"],"entries":[]} \ No newline at end of file +{"entries":[],"headings":["training-material","interactive-examples","streamgraph","interactive-plot","example-figures","annotated-resource-library","books-articles","design-principles","choosing-a-visualization","colour","tools","r","base-r","ggplot2","python","julia","customization","inspiration-pretty-things"]} \ No newline at end of file diff --git a/.quarto/xref/edc7e195 b/.quarto/xref/edc7e195 index 241a68e..89b113c 100644 --- a/.quarto/xref/edc7e195 +++ b/.quarto/xref/edc7e195 @@ -1 +1 @@ -{"entries":[],"headings":["why-this-training-workshop","make-sure-hugo-is-installed-and-check-version","be-timothée-poisot-for-fun","exercise-edit-the-toml-file-to-include-your-own-information.","build-the-static-html-files","build-for-local-development","build-for-publishing-your-website","edit-content","exercise","hosting-the-website-on-a-server","github-user-or-organization-pages","step-by-step-instructions","put-it-into-a-script","push-source-and-build-repos.","using-a-theme","exercise-1","customizing-a-theme","basics-of-html","a-divider-used-to-organize-content-into-blocks","a-span-used-to-organize-content-or-text-into-sections-with-different-styles.-usually-on-the-same-line.","a-paragraph","headings-at-different-levels","an-image","a-link","link-between-html-and-css","in-html","in-css","basics-of-css","exercise-2","partials","exercise-3","now-a-bit-of-go-lang-to-make-the-featured-species-different.","exercise-4","iframes","exercise-5"]} \ No newline at end of file +{"headings":["why-this-training-workshop","make-sure-hugo-is-installed-and-check-version","be-timothée-poisot-for-fun","exercise-edit-the-toml-file-to-include-your-own-information.","build-the-static-html-files","build-for-local-development","build-for-publishing-your-website","edit-content","exercise","hosting-the-website-on-a-server","github-user-or-organization-pages","step-by-step-instructions","put-it-into-a-script","push-source-and-build-repos.","using-a-theme","exercise-1","customizing-a-theme","basics-of-html","a-divider-used-to-organize-content-into-blocks","a-span-used-to-organize-content-or-text-into-sections-with-different-styles.-usually-on-the-same-line.","a-paragraph","headings-at-different-levels","an-image","a-link","link-between-html-and-css","in-html","in-css","basics-of-css","exercise-2","partials","exercise-3","now-a-bit-of-go-lang-to-make-the-featured-species-different.","exercise-4","iframes","exercise-5"],"entries":[]} \ No newline at end of file diff --git a/.quarto/xref/efe04ec8 b/.quarto/xref/efe04ec8 index 7b674a9..90ba69a 100644 --- a/.quarto/xref/efe04ec8 +++ b/.quarto/xref/efe04ec8 @@ -1 +1 @@ -{"entries":[],"headings":["content","software","mathematica-installation","maxima-installation","maxima-testing","material","follow-along-pdf","other-resources","thanks"]} \ No newline at end of file +{"headings":["content","software","mathematica-installation","maxima-installation","maxima-testing","material","follow-along-pdf","other-resources","thanks"],"entries":[]} \ No newline at end of file diff --git a/_freeze/posts/2020-06-15-science-communication/index/execute-results/html.json b/_freeze/posts/2020-06-15-science-communication/index/execute-results/html.json index 9b35080..81536ce 100644 --- a/_freeze/posts/2020-06-15-science-communication/index/execute-results/html.json +++ b/_freeze/posts/2020-06-15-science-communication/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "32731220dc2884ca05a893eb4d727aa5", + "hash": "16eb9577cf6f5dccfcab36b6972360af", "result": { - "markdown": "---\ntitle: \"Science Communication\"\ndescription: |\n Recordings, content and handouts from a 6-hour Science Communication workshop held over two days on 15 and 16 June 2020.\nauthor:\n - name: \"Gracielle Higino\"\n affiliation: Université de Montréal\n - name: \"Katherine Hébert\"\n affiliation: Université de Sherbrooke\nbase_url: https://bios2.github.io/\nimage: image.jpg\ncategories: [Career, Fellow contributed, EN]\ndate: \"2020-06-15\"\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nThe objective of this training is to share and discuss the concepts and tools that contribute to effective science communication. The training is split into two sessions, which cover the basic concepts of effective science communication and how social media tools can be used to boost the signal of your research and extend your research network. Each training takes the form of a presentation interspersed with several short activity modules, where participants are invited to use the tools we will be discussing to kickstart their own science communication.\n\nThis training was given on June 1 and 2, 2020. You can view recordings of each session here:\n\n### Day 1\n\n\n\n### Day 2\n\n\n\n## Session 1: The basics of science communication\n\n#### Objectives:\n\n1. Discuss what science communication (or SciComm) can be, and its potential role in boosting the signal of your research\n2. Make an overview of basic concepts and tools that you can use in any medium (blog posts, presentations, conversations, twitter, etc.) to do effective science communication\n\nDuring this session, we:\n\n1. Discuss the potential pitfalls of science communication (notably, diversity and inclusivity problems).\n2. Cover the basic concepts of science communication, including the Golden Circle method, the creation of personas, and storytelling techniques.\n3. Have short activities where participants can try to use some of the techniques we will be covering, such as filling in their own Golden Circle and explaining a blog post as a storyboard.\n\n\n\n\n\n





\n\n## Session 2: Social media as a science communication tool\n\n#### Objectives:\n\n1. Rethink the way we write about science by exploring the world of blog posts\n2. Clarify the mechanics of Twitter and how it can be used effectively for science communication\n\nDuring this session, we:\n\n1. Discuss how to create a story structure using titles and the flow of ideas in blog posts, especially when we are used to writing scientific articles\n2. Cover the basics of how Twitter works (retweets, threads, replies, hashtags, photo captions, etc.) and how to find helpful connections\n3. Have short activities where participants will be invited to write their own Twitter biographies and to create a Twitter thread explaining a project of their choice.\n\n\n\n\n\n



\n", + "markdown": "---\ntitle: \"Science Communication\"\ndescription: |\n Recordings, content and handouts from a 6-hour Science Communication workshop held over two days on 15 and 16 June 2020.\nauthor:\n - name: Gracielle Higino\n - name: Katherine Hébert\nbase_url: https://bios2.github.io/\nimage: image.jpg\ncategories: [Career, Fellow contributed, EN]\ndate: \"2020-06-15\"\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nThe objective of this training is to share and discuss the concepts and tools that contribute to effective science communication. The training is split into two sessions, which cover the basic concepts of effective science communication and how social media tools can be used to boost the signal of your research and extend your research network. Each training takes the form of a presentation interspersed with several short activity modules, where participants are invited to use the tools we will be discussing to kickstart their own science communication.\n\nThis training was given on June 1 and 2, 2020. You can view recordings of each session here:\n\n### Day 1\n\n\n\n### Day 2\n\n\n\n## Session 1: The basics of science communication\n\n#### Objectives:\n\n1. Discuss what science communication (or SciComm) can be, and its potential role in boosting the signal of your research\n2. Make an overview of basic concepts and tools that you can use in any medium (blog posts, presentations, conversations, twitter, etc.) to do effective science communication\n\nDuring this session, we:\n\n1. Discuss the potential pitfalls of science communication (notably, diversity and inclusivity problems).\n2. Cover the basic concepts of science communication, including the Golden Circle method, the creation of personas, and storytelling techniques.\n3. Have short activities where participants can try to use some of the techniques we will be covering, such as filling in their own Golden Circle and explaining a blog post as a storyboard.\n\n\n\n\n\n





\n\n## Session 2: Social media as a science communication tool\n\n#### Objectives:\n\n1. Rethink the way we write about science by exploring the world of blog posts\n2. Clarify the mechanics of Twitter and how it can be used effectively for science communication\n\nDuring this session, we:\n\n1. Discuss how to create a story structure using titles and the flow of ideas in blog posts, especially when we are used to writing scientific articles\n2. Cover the basics of how Twitter works (retweets, threads, replies, hashtags, photo captions, etc.) and how to find helpful connections\n3. Have short activities where participants will be invited to write their own Twitter biographies and to create a Twitter thread explaining a project of their choice.\n\n\n\n\n\n



\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/posts/2020-09-21-data-visualization/index/execute-results/html.json b/_freeze/posts/2020-09-21-data-visualization/index/execute-results/html.json index bc4be28..c85525d 100644 --- a/_freeze/posts/2020-09-21-data-visualization/index/execute-results/html.json +++ b/_freeze/posts/2020-09-21-data-visualization/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "739bf50a2939995dffa89c8a810a1c81", + "hash": "7f5d3d74170356e739fc12fb640c4a08", "result": { - "markdown": "---\ntitle: \"Data Visualization\"\ndescription: |\n General principles of visualization and graphic design, and techniques of tailored visualization. This training was developed and delivered by Alex Arkilanian and Katherine Hébert on September 21st and 22nd, 2020.\nauthor:\n - name: \"Alex Arkilanian\"\n affiliation: McGill University\n - name: \"Katherine Hébert\"\n affiliation: Université de Sherbrooke\ncategories: [Technical, Fellow contributed, EN]\ndate: \"09-21-2020\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\nformat: \n html:\n code-fold: true\n code-summary: \"Show code\"\nexecute: \n cache: true\n warning: false\n message: false\n collapse: true\n---\n\n\nWelcome!\n\nThis training covers the general principles of visualization and graphic design, and techniques of tailored visualization. More specifically, the objectives of the training are:\n\n- Make an overview of basic data visualization principles, including shapes, sizes, colours, and fonts.\n- Discuss how to choose the right visualization for your data, what you want to communicate, and who you want to communicate to.\n- Tools and principles to tailor visualizations, particularly in making interpretable, interactive, and honest visualizations.\n\n## Training material\n\n*Click on \"Show code\" to learn how to do each plot!*\n\n### Interactive examples\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-1_3ffdc9070d841790d6510b3c8ffbac4e'}\n\n:::\n\n\n\n\n#### Streamgraph\n\n\n::: {.cell hash='index_cache/html/streamgraph-plot_93fdd122ca2090828f4a810da98557e8'}\n\n```{.r .cell-code}\n# Script to make a streamgraph of the top 10 most popular dog breeds in \n# New York City from 1999 to 2015\n\n# load libraries\nlibrary(lubridate) # dealing with dates\nlibrary(dplyr) # data manipulation\nlibrary(streamgraph) #devtools::install_github(\"hrbrmstr/streamgraph\")\nlibrary(htmlwidgets) # to save the widget!\n\n# load the dataset\n# more information about this dataset can be found here:\n# https://www.kaggle.com/smithaachar/nyc-dog-licensing-clean\nnyc_dogs <- read.csv(\"data/nyc_dogs.csv\")\n\n# convert birth year to date format (and keep only the year)\nnyc_dogs$AnimalBirthYear <- mdy_hms(nyc_dogs$AnimalBirthMonth) %>% year()\n\n# identify 10 most common dogs\ntopdogs <- nyc_dogs %>% count(BreedName) \ntopdogs <- topdogs[order(topdogs$n, decreasing = TRUE),]\n# keep 10 most common breeds (and remove last year of data which is incomplete)\ndf <- filter(nyc_dogs, BreedName %in% topdogs$BreedName[2:11] & AnimalBirthYear < 2016) %>% \n group_by(AnimalBirthYear) %>% \n count(BreedName) %>% ungroup()\n\n# get some nice colours from viridis (magma)\ncols <- viridis::viridis_pal(option = \"magma\")(length(unique(df$BreedName)))\n\n# make streamgraph!\npp <- streamgraph(df, \n key = BreedName, value = n, date = AnimalBirthYear, \n height=\"600px\", width=\"1000px\") %>%\n sg_legend(show=TRUE, label=\"names: \") %>%\n sg_fill_manual(values = cols) \n# saveWidget(pp, file=paste0(getwd(), \"/figures/dogs_streamgraph.html\"))\n\n# plot\npp\n```\n\n::: {.cell-output-display}\n```{=html}\n
\n
\n\n```\n:::\n:::\n\n\n------------------------------------------------------------------------\n\n#### Interactive plot\n\n\n::: {.cell hash='index_cache/html/interactive-plot_ffab3ec1ce4e0abef23fd229dc1c8908'}\n\n```{.r .cell-code}\n# Script to generate plots to demonstrate how combinations of information dimensions\n# can become overwhelming and difficult to interpret.\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(plotly) # interactive plots\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\n# more info on this dataset: https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-07-28/readme.md\npenguins <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv') \n\n# get some nice colours from viridis (magma)\nsp_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n\n\n#### Day 1 ####\n\n# 1. Similarity\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, col = species), size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) # sets the colour scale we created above \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-1.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_similarity.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Proximity\n\ndf <- penguins %>% group_by(sex, species) %>% \n summarise(mean_mass = mean(body_mass_g, na.rm = TRUE)) %>% na.omit() \nggplot(df) +\n geom_bar(aes(y = mean_mass, x = species, fill = sex), \n position = \"dodge\", stat = \"identity\") +\n labs(x = \"Species\", y = \"Mean body mass (g)\", col = \"Sex\") + # labels\n scale_fill_manual(values = sp_cols) # sets the colour scale we created above\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-2.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_proximity.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Enclosure (Ellipses over a fake PCA)\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(size = 2.1, col = \"grey30\") +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"PCA1\", y = \"PCA2\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) + # sets the colour scale we created above\n theme(axis.text = element_blank(), axis.ticks = element_blank())\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-3.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_enclosure.png\", width = 6, height = 3, units = \"in\")\n\n# 4. Mismatched combination of principles\ntemp_palette <- rev(c(sp_cols, \"#1f78b4\", \"#33a02c\"))\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(aes(col = sex), size = 2.1) +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"?\") + # labels\n scale_color_manual(values = temp_palette) # sets the colour scale we created above\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-4.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_mismatchedgestalt.png\", width = 6, height = 3, units = \"in\")\n\n\n\n#### Day 2 ####\n\n# 1. Ineffective combinations: Luminance & shading -----------------------------\n\n# create the plot\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n col = species, # hue\n alpha = log(body_mass_g)), # luminance\n size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n col = \"Species\", alpha = \"Body mass (g)\") +\n scale_color_manual(values = sp_cols)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-5.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_incompatible1.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Ineffective combinations: Sizes and shapes --------------------------------\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n shape = species, # shape\n size = log(body_mass_g)), alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\") \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-6.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_incompatible2.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Cognitive overload --------------------------------------------------------\n\n# get some nice colours from viridis (magma)\nsex_cols <- viridis::viridis_pal(option = \"magma\")(8)[c(3,6)]\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n shape = species, # dimension 3: shape\n size = log(body_mass_g), # dimension 4: size\n col = sex), # dimension 5: hue\n alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\", col = \"Sex\") +\n scale_color_manual(values = sex_cols)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-7.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_5dimensions.png\", width = 7, height = 4, units = \"in\")\n\n\n# 4. Panels -------------------------------------------------------------------\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n col = log(body_mass_g)), # dimension 3: hue\n alpha = .7, size = 2) + \n facet_wrap(~ species) + # dimension 4: species!\n # this will create a separate panel for each species\n # note: this also automatically uses the same axes for all panels! If you want \n # axes to vary between panels, use the argument scales = \"free\"\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-8.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_dimensions_facets.png\", width = 7, height = 4, units = \"in\")\n\n\n# 5. Interactive ---------------------------------------------------------------\n\np <- na.omit(penguins) %>%\n ggplot(aes(y = bill_length_mm, \n x = bill_depth_mm, \n col = log(body_mass_g))) +\n geom_point(size = 2, alpha = .7) + \n facet_wrap(~ species) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\np <- ggplotly(p)\n#setwd(\"figures\")\nhtmlwidgets::saveWidget(as_widget(p), \"figures/penguins_interactive.html\")\np\n```\n\n::: {.cell-output-display}\n```{=html}\n
\n\n```\n:::\n:::\n\n\n### Example figures\n\n\n::: {.cell hash='index_cache/html/animated.volcano_e85afe995a0e6702984595b25d6489b8'}\n\n```{.r .cell-code}\n# Script to make animated plot of volcano eruptions over time\n\n# Load libraries:\nlibrary(dplyr) # data manipulation\nlibrary(ggplot2) # plotting\nlibrary(gganimate) # animation\nlibrary(gifski) # creating gifs\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# function to floor a year to the decade\nfloor_decade = function(value){return(value - value %% 10)}\n\n# read data \neruptions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-05-12/eruptions.csv')\n\n# select top 5 most frequently exploding volcanoes\ntemp <- group_by(eruptions, volcano_name) %>% tally() \ntemp <- temp[order(temp$n, decreasing = TRUE),]\n\n# make a time series dataset (number of eruptions per year)\neruptions$start_decade = floor_decade(eruptions$start_year)\n\n# filter dataset to subset we want to visualize\ndf <- eruptions %>% \n filter(between(start_decade, 1900, 2019)) %>%\n filter(volcano_name %in% temp$volcano_name[1:5]) %>%\n group_by(start_decade) %>%\n count(volcano_name) %>% ungroup()\n\n# plot!\np <- ggplot(df, aes(x = start_decade, y = n, fill = volcano_name)) +\n geom_area() +\n geom_vline(aes(xintercept = start_decade)) + # line that follows the current decade\n scale_fill_viridis_d(option = \"magma\", end = .8) +\n labs(x = \"\", y = \"Number of eruptions\", fill = \"Volcano\",\n title = 'Eruptions of the top 5 most frequently erupting volcanos worldwide') +\n # gganimate part: reveals each decade\n transition_reveal(start_decade) \nanimate(p, duration = 5, fps = 20, width = 800, height = 300, renderer = gifski_renderer())\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/animated.volcano-1.gif)\n:::\n\n```{.r .cell-code}\n#anim_save(\"figures/volcano_eruptions.gif\")\n```\n:::\n\n::: {.cell hash='index_cache/html/coffee.uncertainty_21b5746a8b00c943a4574608fa050b80'}\n\n```{.r .cell-code}\n# Script to generate plots with various ways of representing uncertainty, based \n# Coffee & Code dataset from https://www.kaggle.com/devready/coffee-and-code/data\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(ggridges) # for density ridge plots\nlibrary(patchwork) # great package for \"patching\" plots together!\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\ndf <- read.csv(\"data/coffee_code.csv\")\n\n# set labels to be used in all plots\ncoffee_labels <- labs(title = \"Does coffee help programmers code?\",\n x = \"Coffee while coding\", \n y = \"Time spent coding \\n(hours/day)\") \n\n# the variable CodingWithoutCoffee is negative, which is harder to understand\n# (i.e. \"No\" means they drink coffee...). So, let's transform it into a more \n# intuitive variable!\ndf$CodingWithCoffee <- gsub(\"No\", \"Usually\", df$CodingWithoutCoffee)\ndf$CodingWithCoffee <- gsub(\"Yes\", \"Rarely\\n or never\", df$CodingWithCoffee)\n# convert to factor and set levels so they show up in a logical order\ndf$CodingWithCoffee <- factor(df$CodingWithCoffee,\n levels = c(\"Rarely\\n or never\", \n \"Sometimes\", \n \"Usually\"))\n\n# calculate summary statistics for the variable of choice\ndf_summary <- group_by(df, CodingWithCoffee) %>%\n summarise(\n # mean\n mean_codinghours = mean(CodingHours), \n # standard deviation\n sd_codinghours = sd(CodingHours), \n # standard error\n se_codinghours = sd(CodingHours)/sqrt(length(CodingHours)))\n\n\n# 1. Error bars (standard error) -----------------------------------------------\n\nggplot(df_summary) +\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours), \n width = .2) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(0,10)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-1.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_errorbars.png\", width = 5, height = 3, units = \"in\")\n\n# 2. Boxplot -------------------------------------------------------------------\n\nggplot(df) +\n geom_boxplot(aes(x = CodingWithCoffee, y = CodingHours)) +\n coffee_labels\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-2.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_boxplot.png\", width = 5, height = 3, units = \"in\")\n\n\n# 3. Error bar demonstration ---------------------------------------------------\n\n# get some nice colours from viridis (magma)\nerror_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n# set labels to be used in the palette\nerror_labels = c(\"standard deviation\",\"95% confidence interval\",\"standard error\")\n\nggplot(df_summary) +\n # show the raw data\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n # standard deviation\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - sd_codinghours,\n ymax = mean_codinghours + sd_codinghours,\n col = \"SD\"), width = .2, lwd = 1) +\n # 95% confidence interval\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - 1.96*se_codinghours,\n ymax = mean_codinghours + 1.96*se_codinghours, \n col = \"CI\"), width = .2, lwd = 1) +\n # standard error\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours, \n col = \"SE\"), width = .2, lwd = 1) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(c(0,11)) +\n # manual palette/legend set-up!\n scale_colour_manual(name = \"Uncertainty metric\", \n values = c(SD = error_cols[1], \n CI = error_cols[2], \n SE = error_cols[3]),\n labels = error_labels) +\n theme(legend.position = \"top\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-3.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_bars_demo.png\", width = 7, height = 5, units = \"in\")\n\n\n# 4. Jitter plot with violin ---------------------------------------------------\n\nggplot() +\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n geom_violin(data = df, aes(x = CodingWithCoffee, \n y = CodingHours), alpha = 0) +\n geom_linerange(data = df_summary,\n aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours)) +\n geom_point(data = df_summary, \n aes(x = CodingWithCoffee, \n y = mean_codinghours), size = 3) +\n coffee_labels\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-4.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_violin_jitter.png\", width = 5, height = 3, units = \"in\")\n\n\n# 5. Density ridge plot --------------------------------------------------------\n\nggplot(df) + \n aes(y = CodingWithCoffee, x = CodingHours, fill = stat(x)) +\n geom_density_ridges_gradient(scale = 1.9, size = .2, rel_min_height = 0.005) +\n # colour palette (gradient according to CodingHours)\n scale_fill_viridis_c(option = \"magma\", direction = -1) +\n # remove legend - it's not necessary here!\n theme(legend.position = \"none\") +\n labs(title = coffee_labels$title, \n x = coffee_labels$y, \n y = \"Coffee \\nwhile coding\") + \n theme(axis.title.y = element_text(angle=0, hjust = 1, vjust = .9, \n margin = margin(t = 0, r = -50, b = 0, l = 0)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-5.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_density_ridges.png\", width = 5, height = 3, units = \"in\")\n\n# 6. Jitter vs. Rug plot ------------------------------------------------------------------\n\njitterplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_jitter(alpha = .2) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n coffee_labels + ylim(c(0,11)) + labs(x = \"Cups of coffee (per day)\")\n\nrugplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n geom_rug(position=\"jitter\", alpha = .7) + ylim(c(0,11)) +\n coffee_labels + labs(x = \"Cups of coffee (per day)\")\n\n# patch the two plots together\njitterplot + rugplot\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-6.png){width=672}\n:::\n\n```{.r .cell-code}\n#ggsave(\"figures/coffee_jitter_vs_rugplot.png\", width = 10, height = 4, units = \"in\")\n```\n:::\n\n::: {.cell hash='index_cache/html/densiplot_9e12ea96cb628e826d38f0919f99fa44'}\n\n```{.r .cell-code}\n# Script to generate 95% confidence intervals of a generated random normal distribution\n# as an example in Day 2: Visualizing uncertainty.\n\n# load library\nlibrary(ggplot2)\nlibrary(magrittr)\nlibrary(dplyr)\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# set random seed\nset.seed(22)\n\n# generate population (random normal distribution)\ndf <- data.frame(\"value\" = rnorm(50, mean = 0, sd = 1))\n\n# descriptive stats for each distribution\ndesc_stats = df %>% \n summarise(mean_val = mean(value, na.rm = TRUE),\n se_val = sqrt(var(value)/length(value)))\n\n# build density plot!\np <- ggplot(data = df, aes(x = value, y = ..count..)) +\n geom_density(alpha = .2, lwd = .3) +\n xlim(c(min(df$value-1), max(df$value+1))) \n# extract plotted values\nbase_p <- ggplot_build(p)$data[[1]]\n# shade the 95% confidence interval\np + \n geom_area(data = subset(base_p, \n between(x, \n left = (desc_stats$mean_val - 1.96*desc_stats$se_val),\n right = (desc_stats$mean_val + 1.96*desc_stats$se_val))),\n aes(x = x, y = y), fill = \"cadetblue3\", alpha = .6) +\n # add vertical line to show population mean\n geom_vline(aes(xintercept = 0), lty = 2) +\n annotate(\"text\", x = 0.9, y = 19, label = \"True mean\", fontface = \"italic\") +\n # label axis!\n labs(x = \"Variable of interest\", y = \"\") \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/densiplot-1.png){width=672}\n:::\n\n```{.r .cell-code}\n#ggsave(\"figures/confidenceinterval_example.png\", width = 5, height = 3.5, units = \"in\")\n```\n:::\n\n\n### Annotated resource library\n\nThis is an annotated library of data visualization resources we used to build the BIOS² Data Visualization Training, as well as some bonus resources we didn't have the time to include. Feel free to save this page as a reference for your data visualization adventures!\n\n------------------------------------------------------------------------\n\n#### Books & articles\n\n[**Fundamentals of Data Visualization**](https://serialmentor.com/dataviz/)
A primer on making informative and compelling figures. This is the website for the book \"Fundamentals of Data Visualization\" by Claus O. Wilke, published by O'Reilly Media, Inc.\n\n[**Data Visualization: A practical introduction**](https://socviz.co/index.html#preface)
An accessible primer on how to create effective graphics from data using R (mainly ggplot). This book provides a hands-on introduction to the principles and practice of data visualization, explaining what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way.\n\n[**Data Science Design (Chapter 6: Visualizing Data)**](https://link.springer.com/content/pdf/10.1007%2F978-3-319-55444-0.pdf)
Covers the principles that make standard plot designs work, show how they can be misleading if not properly used, and develop a sense of when graphs might be lying, and how to construct better ones.\n\n[**Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods**](https://www.jstor.org/stable/2288400)
Cleveland, William S., and Robert McGill. \"Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods.\" Journal of the American Statistical Association, vol. 79, no. 387, 1984, pp. 531--554. JSTOR, www.jstor.org/stable/2288400. Accessed 9 Oct. 2020.\n\n[**Graphical Perception and Graphical Methods for Analyzing Scientific Data**](10.1126/science.229.4716.828)
Cleveland, William S., and Robert McGill. \"Graphical perception and graphical methods for analyzing scientific data.\" Science 229.4716 (1985): 828-833.\n\n[**From Static to Interactive: Transforming Data Visualization to Improve Transparency**](https://doi.org/10.1371/journal.pbio.1002484)
Weissgerber TL, Garovic VD, Savic M, Winham SJ, Milic NM (2016) designed an interactive line graph that demonstrates how dynamic alternatives to static graphics for small sample size studies allow for additional exploration of empirical datasets. This [simple, free, web-based tool](http://statistika.mfub.bg.ac.rs/interactive-graph/) demonstrates the overall concept and may promote widespread use of interactive graphics.\n\n[**Data visualization: ambiguity as a fellow traveler**](https://doi.org/10.1038/nmeth.2530)
Research that is being done about how to visualize uncertainty in data visualizations. Marx, V. Nat Methods 10, 613--615 (2013). \n\n[**Data visualization standards**](https://xdgov.github.io/data-design-standards/)
Collection of guidance and resources to help create better data visualizations with less effort.\n\n------------------------------------------------------------------------\n\n#### Design principles\n\n[**Gestalt Principles for Data Visualization: Similarity, Proximity & Enclosure**](http://emeeks.github.io/gestaltdataviz/section1.html)
Short visual guide to the Gestalt Principles.\n\n[**Why scientists need to be better at data visualization**](https://www.knowablemagazine.org/article/mind/2019/science-data-visualization?utm_campaign=2019-11-17)
A great overview of principles that could improve how we visualize scientific data and results.\n\n[**A collection of graphic pitfalls**](https://www.data-to-viz.com/caveats.html)
A collection of short articles about common issues with data visualizations that can mislead or obscure your message.\n\n------------------------------------------------------------------------\n\n#### Choosing a visualization\n\n[**Data Viz Project**](https://datavizproject.com/)
This is a great place to get inspiration and guidance about how to choose an appropriate visualization. There are many visualizations we are not used to seeing in ecology!\n\n[**From data to Viz \\| Find the graphic you need**](https://www.data-to-viz.com/)
Interactive tool to choose an appropriate visualization type for your data.\n\n------------------------------------------------------------------------\n\n#### Colour\n\n[**What to consider when choosing colors for data visualization**](https://blog.datawrapper.de/colors/)
A short, visual guide on things to keep in mind when using colour, such as when and how to use colour gradients, the colour grey, etc.\n\n[**ColorBrewer: Color Advice for Maps**](https://colorbrewer2.org/)
Tool to generate colour palettes for visualizations with colorblind-friendly options. You can also use these palettes in R using the [RColorBrewer](https://cran.r-project.org/web/packages/RColorBrewer/index.html) package, and the `scale_*_brewer()` (for discrete palettes) or `scale_*_distiller()` (for continuous palettes) functions in ggplot2.\n\n[**Color.review**](https://color.review/)
Tool to pick or verify colour palettes with high relative contrast between colours, to ensure your information is readable for everyone.\n\n[**Coblis --- Color Blindness Simulator**](https://www.color-blindness.com/coblis-color-blindness-simulator/)
Tool to upload an image and view it as they would appear to a colorblind person, with the option to simulate several color-vision deficiencies.\n\n[**500+ Named Colours with rgb and hex values**](http://cloford.com/resources/colours/500col.htm)
List of named colours along with their hex values.\n\n[**CartoDB/CartoColor**](https://github.com/CartoDB/cartocolor)
CARTOColors are a set of custom color palettes built on top of well-known standards for color use on maps, with next generation enhancements for the web and CARTO basemaps. Choose from a selection of sequential, diverging, or qualitative schemes for your next CARTO powered visualization using their [online module](https://carto.com/carto-colors/).\n\n------------------------------------------------------------------------\n\n#### Tools\n\n##### R\n\n[**The R Graph Gallery**](https://www.r-graph-gallery.com/index.html)
A collection of charts made with the R programming language. Hundreds of charts are displayed in several sections, always with their reproducible code available. The gallery makes a focus on the tidyverse and ggplot2.\n\n###### Base R {.unnumbered}\n\n[**Cheatsheet: Margins in base R**](https://www.r-graph-gallery.com/74-margin-and-oma-cheatsheet)
Edit your margins in base R to accommodate axis titles, legends, captions, etc.!\n\n[**Customizing tick marks in base R**](https://insileco.github.io/2020/08/29/custom-tick-marks-with-rs-base-graphics-system/)
Seems like a simple thing, but it can be so frustrating! This is a great post about customizing tick marks with base plot in R.\n\n[**Animations in R (for time series)**](https://insileco.github.io/2017/07/05/animations-in-r-time-series-of-erythemal-irradiance-in-the-st.-lawrence/)
If you want to use animations but don't want to use ggplot2, this demo might help you!\n\n###### ggplot2 {.unnumbered}\n\n[**Cheatsheet: ggplot2**](http://r-statistics.co/ggplot2-cheatsheet.html)
Cheatsheet for ggplot2 in R - anything you want to do is probably covered here!\n\n[**Coding Club tutorial: Data Viz Part 1 - Beautiful and informative data visualization**](https://ourcodingclub.github.io/tutorials/datavis/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**Coding Club tutorial: Data Viz Part 2 - Customizing your figures**](https://ourcodingclub.github.io/tutorials/data-vis-2/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**ggplot flipbook**](https://evamaerey.github.io/ggplot_flipbook/ggplot_flipbook_xaringan.html#1)
A flipbook-style demonstration that builds and customizes plots line by line using ggplot in R.\n\n[**gganimate: A Grammar of Animated Graphics**](https://github.com/thomasp85/gganimate)
Package to create animated graphics in R (with ggplot2).\n\n##### Python\n\n[**The Python Graph Gallery**](https://python-graph-gallery.com/)
This website displays hundreds of charts, always providing the reproducible python code.\n\n[**Python Tutorial: Intro to Matplotlib**](https://github.com/Randonnees-Datatrek/data-trek-2020/blob/master/Tutorials/Python_Tutorial/python_tutorial.ipynb)
Introduction to basic functionalities of the Python's library Matplotlib covering basic plots, plot attributes, subplots and plotting the `iris` dataset.\n\n[**The Art of Effective Visualization of Multi-dimensional Data**](https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57)
Covers both univariate (one-dimension) and multivariate (multi-dimensional) data visualization strategies using the Python machine learning ecosystem.\n\n##### Julia\n\n[**Julia Plots Gallery**](https://goropikari.github.io/PlotsGallery.jl/)
Display of various plots with reproducible code in Julia.\n\n[**Plots in Julia**](http://docs.juliaplots.org/latest/#Plots-powerful-convenience-for-visualization-in-Julia)
Documentation for the Plots package in Julia, including demonstrations for animated plots, and links to tutorials.\n\n[**Animations in Julia**](http://docs.juliaplots.org/latest/animations/)
How to start making animated plots in Julia.\n\n------------------------------------------------------------------------\n\n#### Customization\n\n[**Chart Studio**](https://plotly.com/chart-studio/)
Web editor to create interactive plots with plotly. You can download the image as .html, or static images, without coding the figure yourself.\n\n[**PhyloPic**](http://phylopic.org/)
Vector images of living organisms. This is great for ecologists who want to add silhouettes of their organisms onto their plots - search anything, and you will likely find it!\n\n[**Add icons on your R plot**](https://insileco.github.io/2017/05/23/add-icons-on-your-r-plot/)
Add special icons to your plot as a great way to customize it, and save space with labels!\n\n------------------------------------------------------------------------\n\n#### Inspiration (pretty things!)\n\n[**Information is Beautiful**](https://informationisbeautiful.net/visualizations/)
Collection of beautiful original visualizations about a variety of topics!\n\n[**TidyTuesday**](https://github.com/rfordatascience/tidytuesday)
A weekly data project aimed at the R ecosystem, where people wrangle and visualize data in loads of creative ways. Browse what people have created ([#TidyTuesday](https://twitter.com/search?q=%23TidyTuesday) on Twitter is great too!), and the visualizations that have inspired each week's theme.\n\n[**Wind currents on Earth**](https://earth.nullschool.net/)
Dynamic and interactive map of wind currents on Earth.\n\n[**A Day in the Life of Americans**](https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans/)
Dynamic visualisation of how Americans spend their time in an average day.\n\n[**2019: The Year in Visual Stories and Graphics**](https://www.nytimes.com/interactive/2019/12/30/us/2019-year-in-graphics.html)
Collection of the most popular visualizations by the New York Times in 2019.\n", + "markdown": "---\ntitle: \"Data Visualization\"\ndescription: |\n General principles of visualization and graphic design, and techniques of tailored visualization. This training was developed and delivered by Alex Arkilanian and Katherine Hébert on September 21st and 22nd, 2020.\nauthor:\n - Alex Arkilanian\n - Katherine Hébert\ncategories: [Technical, Fellow contributed, EN]\ndate: \"09-21-2020\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\nformat: \n html:\n code-fold: true\n code-summary: \"Show code\"\nexecute: \n cache: true\n warning: false\n message: false\n collapse: true\n---\n\n\nWelcome!\n\nThis training covers the general principles of visualization and graphic design, and techniques of tailored visualization. More specifically, the objectives of the training are:\n\n- Make an overview of basic data visualization principles, including shapes, sizes, colours, and fonts.\n- Discuss how to choose the right visualization for your data, what you want to communicate, and who you want to communicate to.\n- Tools and principles to tailor visualizations, particularly in making interpretable, interactive, and honest visualizations.\n\n## Training material\n\n*Click on \"Show code\" to learn how to do each plot!*\n\n### Interactive examples\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-1_3ffdc9070d841790d6510b3c8ffbac4e'}\n\n:::\n\n\n\n\n#### Streamgraph\n\n\n::: {.cell hash='index_cache/html/streamgraph-plot_93fdd122ca2090828f4a810da98557e8'}\n\n```{.r .cell-code}\n# Script to make a streamgraph of the top 10 most popular dog breeds in \n# New York City from 1999 to 2015\n\n# load libraries\nlibrary(lubridate) # dealing with dates\nlibrary(dplyr) # data manipulation\nlibrary(streamgraph) #devtools::install_github(\"hrbrmstr/streamgraph\")\nlibrary(htmlwidgets) # to save the widget!\n\n# load the dataset\n# more information about this dataset can be found here:\n# https://www.kaggle.com/smithaachar/nyc-dog-licensing-clean\nnyc_dogs <- read.csv(\"data/nyc_dogs.csv\")\n\n# convert birth year to date format (and keep only the year)\nnyc_dogs$AnimalBirthYear <- mdy_hms(nyc_dogs$AnimalBirthMonth) %>% year()\n\n# identify 10 most common dogs\ntopdogs <- nyc_dogs %>% count(BreedName) \ntopdogs <- topdogs[order(topdogs$n, decreasing = TRUE),]\n# keep 10 most common breeds (and remove last year of data which is incomplete)\ndf <- filter(nyc_dogs, BreedName %in% topdogs$BreedName[2:11] & AnimalBirthYear < 2016) %>% \n group_by(AnimalBirthYear) %>% \n count(BreedName) %>% ungroup()\n\n# get some nice colours from viridis (magma)\ncols <- viridis::viridis_pal(option = \"magma\")(length(unique(df$BreedName)))\n\n# make streamgraph!\npp <- streamgraph(df, \n key = BreedName, value = n, date = AnimalBirthYear, \n height=\"600px\", width=\"1000px\") %>%\n sg_legend(show=TRUE, label=\"names: \") %>%\n sg_fill_manual(values = cols) \n# saveWidget(pp, file=paste0(getwd(), \"/figures/dogs_streamgraph.html\"))\n\n# plot\npp\n```\n\n::: {.cell-output-display}\n```{=html}\n
\n
\n\n```\n:::\n:::\n\n\n------------------------------------------------------------------------\n\n#### Interactive plot\n\n\n::: {.cell hash='index_cache/html/interactive-plot_ffab3ec1ce4e0abef23fd229dc1c8908'}\n\n```{.r .cell-code}\n# Script to generate plots to demonstrate how combinations of information dimensions\n# can become overwhelming and difficult to interpret.\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(plotly) # interactive plots\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\n# more info on this dataset: https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-07-28/readme.md\npenguins <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-07-28/penguins.csv') \n\n# get some nice colours from viridis (magma)\nsp_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n\n\n#### Day 1 ####\n\n# 1. Similarity\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, col = species), size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) # sets the colour scale we created above \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-1.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_similarity.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Proximity\n\ndf <- penguins %>% group_by(sex, species) %>% \n summarise(mean_mass = mean(body_mass_g, na.rm = TRUE)) %>% na.omit() \nggplot(df) +\n geom_bar(aes(y = mean_mass, x = species, fill = sex), \n position = \"dodge\", stat = \"identity\") +\n labs(x = \"Species\", y = \"Mean body mass (g)\", col = \"Sex\") + # labels\n scale_fill_manual(values = sp_cols) # sets the colour scale we created above\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-2.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_proximity.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Enclosure (Ellipses over a fake PCA)\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(size = 2.1, col = \"grey30\") +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"PCA1\", y = \"PCA2\", col = \"Species\") + # labels\n scale_color_manual(values = sp_cols) + # sets the colour scale we created above\n theme(axis.text = element_blank(), axis.ticks = element_blank())\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-3.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_enclosure.png\", width = 6, height = 3, units = \"in\")\n\n# 4. Mismatched combination of principles\ntemp_palette <- rev(c(sp_cols, \"#1f78b4\", \"#33a02c\"))\nggplot(data = penguins, \n aes(y = bill_length_mm, x = bill_depth_mm)) +\n geom_point(aes(col = sex), size = 2.1) +\n stat_ellipse(aes(col = species), lwd = .7) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"?\") + # labels\n scale_color_manual(values = temp_palette) # sets the colour scale we created above\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-4.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_mismatchedgestalt.png\", width = 6, height = 3, units = \"in\")\n\n\n\n#### Day 2 ####\n\n# 1. Ineffective combinations: Luminance & shading -----------------------------\n\n# create the plot\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n col = species, # hue\n alpha = log(body_mass_g)), # luminance\n size = 2.5) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n col = \"Species\", alpha = \"Body mass (g)\") +\n scale_color_manual(values = sp_cols)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-5.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_incompatible1.png\", width = 6, height = 3, units = \"in\")\n\n# 2. Ineffective combinations: Sizes and shapes --------------------------------\n\nggplot(penguins) +\n geom_point(aes(y = bill_length_mm, x = bill_depth_mm, \n shape = species, # shape\n size = log(body_mass_g)), alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\") \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-6.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_incompatible2.png\", width = 6, height = 3, units = \"in\")\n\n# 3. Cognitive overload --------------------------------------------------------\n\n# get some nice colours from viridis (magma)\nsex_cols <- viridis::viridis_pal(option = \"magma\")(8)[c(3,6)]\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n shape = species, # dimension 3: shape\n size = log(body_mass_g), # dimension 4: size\n col = sex), # dimension 5: hue\n alpha = .7) + # size\n scale_size(range = c(.1, 5)) + # make sure the sizes are scaled by area and not by radius\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", \n shape = \"Species\", size = \"Body mass (g)\", col = \"Sex\") +\n scale_color_manual(values = sex_cols)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-7.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_5dimensions.png\", width = 7, height = 4, units = \"in\")\n\n\n# 4. Panels -------------------------------------------------------------------\n\nggplot(na.omit(penguins)) +\n geom_point(aes(y = bill_length_mm, # dimension 1: position along y scale\n x = bill_depth_mm, # dimension 2: position along x scale\n col = log(body_mass_g)), # dimension 3: hue\n alpha = .7, size = 2) + \n facet_wrap(~ species) + # dimension 4: species!\n # this will create a separate panel for each species\n # note: this also automatically uses the same axes for all panels! If you want \n # axes to vary between panels, use the argument scales = \"free\"\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/interactive-plot-8.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/penguins_dimensions_facets.png\", width = 7, height = 4, units = \"in\")\n\n\n# 5. Interactive ---------------------------------------------------------------\n\np <- na.omit(penguins) %>%\n ggplot(aes(y = bill_length_mm, \n x = bill_depth_mm, \n col = log(body_mass_g))) +\n geom_point(size = 2, alpha = .7) + \n facet_wrap(~ species) +\n labs(x = \"Bill depth (mm)\", y = \"Bill length (mm)\", col = \"Body mass (g)\") +\n scale_color_viridis_c(option = \"magma\", end = .9, direction = -1) +\n theme_linedraw() + theme(panel.grid = element_blank()) # making the panels prettier\np <- ggplotly(p)\n#setwd(\"figures\")\nhtmlwidgets::saveWidget(as_widget(p), \"figures/penguins_interactive.html\")\np\n```\n\n::: {.cell-output-display}\n```{=html}\n
\n\n```\n:::\n:::\n\n\n### Example figures\n\n\n::: {.cell hash='index_cache/html/animated.volcano_e85afe995a0e6702984595b25d6489b8'}\n\n```{.r .cell-code}\n# Script to make animated plot of volcano eruptions over time\n\n# Load libraries:\nlibrary(dplyr) # data manipulation\nlibrary(ggplot2) # plotting\nlibrary(gganimate) # animation\nlibrary(gifski) # creating gifs\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# function to floor a year to the decade\nfloor_decade = function(value){return(value - value %% 10)}\n\n# read data \neruptions <- readr::read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-05-12/eruptions.csv')\n\n# select top 5 most frequently exploding volcanoes\ntemp <- group_by(eruptions, volcano_name) %>% tally() \ntemp <- temp[order(temp$n, decreasing = TRUE),]\n\n# make a time series dataset (number of eruptions per year)\neruptions$start_decade = floor_decade(eruptions$start_year)\n\n# filter dataset to subset we want to visualize\ndf <- eruptions %>% \n filter(between(start_decade, 1900, 2019)) %>%\n filter(volcano_name %in% temp$volcano_name[1:5]) %>%\n group_by(start_decade) %>%\n count(volcano_name) %>% ungroup()\n\n# plot!\np <- ggplot(df, aes(x = start_decade, y = n, fill = volcano_name)) +\n geom_area() +\n geom_vline(aes(xintercept = start_decade)) + # line that follows the current decade\n scale_fill_viridis_d(option = \"magma\", end = .8) +\n labs(x = \"\", y = \"Number of eruptions\", fill = \"Volcano\",\n title = 'Eruptions of the top 5 most frequently erupting volcanos worldwide') +\n # gganimate part: reveals each decade\n transition_reveal(start_decade) \nanimate(p, duration = 5, fps = 20, width = 800, height = 300, renderer = gifski_renderer())\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/animated.volcano-1.gif)\n:::\n\n```{.r .cell-code}\n#anim_save(\"figures/volcano_eruptions.gif\")\n```\n:::\n\n::: {.cell hash='index_cache/html/coffee.uncertainty_21b5746a8b00c943a4574608fa050b80'}\n\n```{.r .cell-code}\n# Script to generate plots with various ways of representing uncertainty, based \n# Coffee & Code dataset from https://www.kaggle.com/devready/coffee-and-code/data\n\n# set-up & data manipulation ---------------------------------------------------\n\n# load packages\nlibrary(ggplot2) # for plots, built layer by layer\nlibrary(dplyr) # for data manipulation\nlibrary(magrittr) # for piping\nlibrary(ggridges) # for density ridge plots\nlibrary(patchwork) # great package for \"patching\" plots together!\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# import data\ndf <- read.csv(\"data/coffee_code.csv\")\n\n# set labels to be used in all plots\ncoffee_labels <- labs(title = \"Does coffee help programmers code?\",\n x = \"Coffee while coding\", \n y = \"Time spent coding \\n(hours/day)\") \n\n# the variable CodingWithoutCoffee is negative, which is harder to understand\n# (i.e. \"No\" means they drink coffee...). So, let's transform it into a more \n# intuitive variable!\ndf$CodingWithCoffee <- gsub(\"No\", \"Usually\", df$CodingWithoutCoffee)\ndf$CodingWithCoffee <- gsub(\"Yes\", \"Rarely\\n or never\", df$CodingWithCoffee)\n# convert to factor and set levels so they show up in a logical order\ndf$CodingWithCoffee <- factor(df$CodingWithCoffee,\n levels = c(\"Rarely\\n or never\", \n \"Sometimes\", \n \"Usually\"))\n\n# calculate summary statistics for the variable of choice\ndf_summary <- group_by(df, CodingWithCoffee) %>%\n summarise(\n # mean\n mean_codinghours = mean(CodingHours), \n # standard deviation\n sd_codinghours = sd(CodingHours), \n # standard error\n se_codinghours = sd(CodingHours)/sqrt(length(CodingHours)))\n\n\n# 1. Error bars (standard error) -----------------------------------------------\n\nggplot(df_summary) +\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours), \n width = .2) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(0,10)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-1.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_errorbars.png\", width = 5, height = 3, units = \"in\")\n\n# 2. Boxplot -------------------------------------------------------------------\n\nggplot(df) +\n geom_boxplot(aes(x = CodingWithCoffee, y = CodingHours)) +\n coffee_labels\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-2.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_boxplot.png\", width = 5, height = 3, units = \"in\")\n\n\n# 3. Error bar demonstration ---------------------------------------------------\n\n# get some nice colours from viridis (magma)\nerror_cols <- viridis::viridis_pal(option = \"magma\")(5)[2:4]\n# set labels to be used in the palette\nerror_labels = c(\"standard deviation\",\"95% confidence interval\",\"standard error\")\n\nggplot(df_summary) +\n # show the raw data\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n # standard deviation\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - sd_codinghours,\n ymax = mean_codinghours + sd_codinghours,\n col = \"SD\"), width = .2, lwd = 1) +\n # 95% confidence interval\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - 1.96*se_codinghours,\n ymax = mean_codinghours + 1.96*se_codinghours, \n col = \"CI\"), width = .2, lwd = 1) +\n # standard error\n geom_errorbar(aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours, \n col = \"SE\"), width = .2, lwd = 1) +\n geom_point(aes(x = CodingWithCoffee, y = mean_codinghours), \n size = 3) +\n coffee_labels + ylim(c(0,11)) +\n # manual palette/legend set-up!\n scale_colour_manual(name = \"Uncertainty metric\", \n values = c(SD = error_cols[1], \n CI = error_cols[2], \n SE = error_cols[3]),\n labels = error_labels) +\n theme(legend.position = \"top\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-3.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_bars_demo.png\", width = 7, height = 5, units = \"in\")\n\n\n# 4. Jitter plot with violin ---------------------------------------------------\n\nggplot() +\n geom_jitter(data = df, aes(x = CodingWithCoffee, \n y = CodingHours),\n alpha = .5, width = .05, col = \"grey\") +\n geom_violin(data = df, aes(x = CodingWithCoffee, \n y = CodingHours), alpha = 0) +\n geom_linerange(data = df_summary,\n aes(x = CodingWithCoffee, \n ymin = mean_codinghours - se_codinghours,\n ymax = mean_codinghours + se_codinghours)) +\n geom_point(data = df_summary, \n aes(x = CodingWithCoffee, \n y = mean_codinghours), size = 3) +\n coffee_labels\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-4.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_violin_jitter.png\", width = 5, height = 3, units = \"in\")\n\n\n# 5. Density ridge plot --------------------------------------------------------\n\nggplot(df) + \n aes(y = CodingWithCoffee, x = CodingHours, fill = stat(x)) +\n geom_density_ridges_gradient(scale = 1.9, size = .2, rel_min_height = 0.005) +\n # colour palette (gradient according to CodingHours)\n scale_fill_viridis_c(option = \"magma\", direction = -1) +\n # remove legend - it's not necessary here!\n theme(legend.position = \"none\") +\n labs(title = coffee_labels$title, \n x = coffee_labels$y, \n y = \"Coffee \\nwhile coding\") + \n theme(axis.title.y = element_text(angle=0, hjust = 1, vjust = .9, \n margin = margin(t = 0, r = -50, b = 0, l = 0)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-5.png){width=672}\n:::\n\n```{.r .cell-code}\nggsave(\"figures/coffee_density_ridges.png\", width = 5, height = 3, units = \"in\")\n\n# 6. Jitter vs. Rug plot ------------------------------------------------------------------\n\njitterplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_jitter(alpha = .2) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n coffee_labels + ylim(c(0,11)) + labs(x = \"Cups of coffee (per day)\")\n\nrugplot <- ggplot(df, aes(x = CoffeeCupsPerDay, y = CodingHours)) +\n geom_smooth(fill = error_cols[1], col = \"black\", method = lm, lwd = .7) +\n geom_rug(position=\"jitter\", alpha = .7) + ylim(c(0,11)) +\n coffee_labels + labs(x = \"Cups of coffee (per day)\")\n\n# patch the two plots together\njitterplot + rugplot\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/coffee.uncertainty-6.png){width=672}\n:::\n\n```{.r .cell-code}\n#ggsave(\"figures/coffee_jitter_vs_rugplot.png\", width = 10, height = 4, units = \"in\")\n```\n:::\n\n::: {.cell hash='index_cache/html/densiplot_9e12ea96cb628e826d38f0919f99fa44'}\n\n```{.r .cell-code}\n# Script to generate 95% confidence intervals of a generated random normal distribution\n# as an example in Day 2: Visualizing uncertainty.\n\n# load library\nlibrary(ggplot2)\nlibrary(magrittr)\nlibrary(dplyr)\n\n# set ggplot theme\ntheme_set(theme_classic() +\n theme(axis.title = element_text(size = 11, face = \"bold\"),\n axis.text = element_text(size = 11),\n plot.title = element_text(size = 13, face = \"bold\"),\n legend.title = element_text(size = 11, face = \"bold\"),\n legend.text = element_text(size = 10)))\n\n# set random seed\nset.seed(22)\n\n# generate population (random normal distribution)\ndf <- data.frame(\"value\" = rnorm(50, mean = 0, sd = 1))\n\n# descriptive stats for each distribution\ndesc_stats = df %>% \n summarise(mean_val = mean(value, na.rm = TRUE),\n se_val = sqrt(var(value)/length(value)))\n\n# build density plot!\np <- ggplot(data = df, aes(x = value, y = ..count..)) +\n geom_density(alpha = .2, lwd = .3) +\n xlim(c(min(df$value-1), max(df$value+1))) \n# extract plotted values\nbase_p <- ggplot_build(p)$data[[1]]\n# shade the 95% confidence interval\np + \n geom_area(data = subset(base_p, \n between(x, \n left = (desc_stats$mean_val - 1.96*desc_stats$se_val),\n right = (desc_stats$mean_val + 1.96*desc_stats$se_val))),\n aes(x = x, y = y), fill = \"cadetblue3\", alpha = .6) +\n # add vertical line to show population mean\n geom_vline(aes(xintercept = 0), lty = 2) +\n annotate(\"text\", x = 0.9, y = 19, label = \"True mean\", fontface = \"italic\") +\n # label axis!\n labs(x = \"Variable of interest\", y = \"\") \n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/densiplot-1.png){width=672}\n:::\n\n```{.r .cell-code}\n#ggsave(\"figures/confidenceinterval_example.png\", width = 5, height = 3.5, units = \"in\")\n```\n:::\n\n\n### Annotated resource library\n\nThis is an annotated library of data visualization resources we used to build the BIOS² Data Visualization Training, as well as some bonus resources we didn't have the time to include. Feel free to save this page as a reference for your data visualization adventures!\n\n------------------------------------------------------------------------\n\n#### Books & articles\n\n[**Fundamentals of Data Visualization**](https://serialmentor.com/dataviz/)
A primer on making informative and compelling figures. This is the website for the book \"Fundamentals of Data Visualization\" by Claus O. Wilke, published by O'Reilly Media, Inc.\n\n[**Data Visualization: A practical introduction**](https://socviz.co/index.html#preface)
An accessible primer on how to create effective graphics from data using R (mainly ggplot). This book provides a hands-on introduction to the principles and practice of data visualization, explaining what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way.\n\n[**Data Science Design (Chapter 6: Visualizing Data)**](https://link.springer.com/content/pdf/10.1007%2F978-3-319-55444-0.pdf)
Covers the principles that make standard plot designs work, show how they can be misleading if not properly used, and develop a sense of when graphs might be lying, and how to construct better ones.\n\n[**Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods**](https://www.jstor.org/stable/2288400)
Cleveland, William S., and Robert McGill. \"Graphical Perception: Theory, Experimentation, and Application to the Development of Graphical Methods.\" Journal of the American Statistical Association, vol. 79, no. 387, 1984, pp. 531--554. JSTOR, www.jstor.org/stable/2288400. Accessed 9 Oct. 2020.\n\n[**Graphical Perception and Graphical Methods for Analyzing Scientific Data**](10.1126/science.229.4716.828)
Cleveland, William S., and Robert McGill. \"Graphical perception and graphical methods for analyzing scientific data.\" Science 229.4716 (1985): 828-833.\n\n[**From Static to Interactive: Transforming Data Visualization to Improve Transparency**](https://doi.org/10.1371/journal.pbio.1002484)
Weissgerber TL, Garovic VD, Savic M, Winham SJ, Milic NM (2016) designed an interactive line graph that demonstrates how dynamic alternatives to static graphics for small sample size studies allow for additional exploration of empirical datasets. This [simple, free, web-based tool](http://statistika.mfub.bg.ac.rs/interactive-graph/) demonstrates the overall concept and may promote widespread use of interactive graphics.\n\n[**Data visualization: ambiguity as a fellow traveler**](https://doi.org/10.1038/nmeth.2530)
Research that is being done about how to visualize uncertainty in data visualizations. Marx, V. Nat Methods 10, 613--615 (2013). \n\n[**Data visualization standards**](https://xdgov.github.io/data-design-standards/)
Collection of guidance and resources to help create better data visualizations with less effort.\n\n------------------------------------------------------------------------\n\n#### Design principles\n\n[**Gestalt Principles for Data Visualization: Similarity, Proximity & Enclosure**](http://emeeks.github.io/gestaltdataviz/section1.html)
Short visual guide to the Gestalt Principles.\n\n[**Why scientists need to be better at data visualization**](https://www.knowablemagazine.org/article/mind/2019/science-data-visualization?utm_campaign=2019-11-17)
A great overview of principles that could improve how we visualize scientific data and results.\n\n[**A collection of graphic pitfalls**](https://www.data-to-viz.com/caveats.html)
A collection of short articles about common issues with data visualizations that can mislead or obscure your message.\n\n------------------------------------------------------------------------\n\n#### Choosing a visualization\n\n[**Data Viz Project**](https://datavizproject.com/)
This is a great place to get inspiration and guidance about how to choose an appropriate visualization. There are many visualizations we are not used to seeing in ecology!\n\n[**From data to Viz \\| Find the graphic you need**](https://www.data-to-viz.com/)
Interactive tool to choose an appropriate visualization type for your data.\n\n------------------------------------------------------------------------\n\n#### Colour\n\n[**What to consider when choosing colors for data visualization**](https://blog.datawrapper.de/colors/)
A short, visual guide on things to keep in mind when using colour, such as when and how to use colour gradients, the colour grey, etc.\n\n[**ColorBrewer: Color Advice for Maps**](https://colorbrewer2.org/)
Tool to generate colour palettes for visualizations with colorblind-friendly options. You can also use these palettes in R using the [RColorBrewer](https://cran.r-project.org/web/packages/RColorBrewer/index.html) package, and the `scale_*_brewer()` (for discrete palettes) or `scale_*_distiller()` (for continuous palettes) functions in ggplot2.\n\n[**Color.review**](https://color.review/)
Tool to pick or verify colour palettes with high relative contrast between colours, to ensure your information is readable for everyone.\n\n[**Coblis --- Color Blindness Simulator**](https://www.color-blindness.com/coblis-color-blindness-simulator/)
Tool to upload an image and view it as they would appear to a colorblind person, with the option to simulate several color-vision deficiencies.\n\n[**500+ Named Colours with rgb and hex values**](http://cloford.com/resources/colours/500col.htm)
List of named colours along with their hex values.\n\n[**CartoDB/CartoColor**](https://github.com/CartoDB/cartocolor)
CARTOColors are a set of custom color palettes built on top of well-known standards for color use on maps, with next generation enhancements for the web and CARTO basemaps. Choose from a selection of sequential, diverging, or qualitative schemes for your next CARTO powered visualization using their [online module](https://carto.com/carto-colors/).\n\n------------------------------------------------------------------------\n\n#### Tools\n\n##### R\n\n[**The R Graph Gallery**](https://www.r-graph-gallery.com/index.html)
A collection of charts made with the R programming language. Hundreds of charts are displayed in several sections, always with their reproducible code available. The gallery makes a focus on the tidyverse and ggplot2.\n\n###### Base R {.unnumbered}\n\n[**Cheatsheet: Margins in base R**](https://www.r-graph-gallery.com/74-margin-and-oma-cheatsheet)
Edit your margins in base R to accommodate axis titles, legends, captions, etc.!\n\n[**Customizing tick marks in base R**](https://insileco.github.io/2020/08/29/custom-tick-marks-with-rs-base-graphics-system/)
Seems like a simple thing, but it can be so frustrating! This is a great post about customizing tick marks with base plot in R.\n\n[**Animations in R (for time series)**](https://insileco.github.io/2017/07/05/animations-in-r-time-series-of-erythemal-irradiance-in-the-st.-lawrence/)
If you want to use animations but don't want to use ggplot2, this demo might help you!\n\n###### ggplot2 {.unnumbered}\n\n[**Cheatsheet: ggplot2**](http://r-statistics.co/ggplot2-cheatsheet.html)
Cheatsheet for ggplot2 in R - anything you want to do is probably covered here!\n\n[**Coding Club tutorial: Data Viz Part 1 - Beautiful and informative data visualization**](https://ourcodingclub.github.io/tutorials/datavis/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**Coding Club tutorial: Data Viz Part 2 - Customizing your figures**](https://ourcodingclub.github.io/tutorials/data-vis-2/)
Great tutorial demonstrating how to customize titles, subtitles, captions, labels, colour palettes, and themes in ggplot2.\n\n[**ggplot flipbook**](https://evamaerey.github.io/ggplot_flipbook/ggplot_flipbook_xaringan.html#1)
A flipbook-style demonstration that builds and customizes plots line by line using ggplot in R.\n\n[**gganimate: A Grammar of Animated Graphics**](https://github.com/thomasp85/gganimate)
Package to create animated graphics in R (with ggplot2).\n\n##### Python\n\n[**The Python Graph Gallery**](https://python-graph-gallery.com/)
This website displays hundreds of charts, always providing the reproducible python code.\n\n[**Python Tutorial: Intro to Matplotlib**](https://github.com/Randonnees-Datatrek/data-trek-2020/blob/master/Tutorials/Python_Tutorial/python_tutorial.ipynb)
Introduction to basic functionalities of the Python's library Matplotlib covering basic plots, plot attributes, subplots and plotting the `iris` dataset.\n\n[**The Art of Effective Visualization of Multi-dimensional Data**](https://towardsdatascience.com/the-art-of-effective-visualization-of-multi-dimensional-data-6c7202990c57)
Covers both univariate (one-dimension) and multivariate (multi-dimensional) data visualization strategies using the Python machine learning ecosystem.\n\n##### Julia\n\n[**Julia Plots Gallery**](https://goropikari.github.io/PlotsGallery.jl/)
Display of various plots with reproducible code in Julia.\n\n[**Plots in Julia**](http://docs.juliaplots.org/latest/#Plots-powerful-convenience-for-visualization-in-Julia)
Documentation for the Plots package in Julia, including demonstrations for animated plots, and links to tutorials.\n\n[**Animations in Julia**](http://docs.juliaplots.org/latest/animations/)
How to start making animated plots in Julia.\n\n------------------------------------------------------------------------\n\n#### Customization\n\n[**Chart Studio**](https://plotly.com/chart-studio/)
Web editor to create interactive plots with plotly. You can download the image as .html, or static images, without coding the figure yourself.\n\n[**PhyloPic**](http://phylopic.org/)
Vector images of living organisms. This is great for ecologists who want to add silhouettes of their organisms onto their plots - search anything, and you will likely find it!\n\n[**Add icons on your R plot**](https://insileco.github.io/2017/05/23/add-icons-on-your-r-plot/)
Add special icons to your plot as a great way to customize it, and save space with labels!\n\n------------------------------------------------------------------------\n\n#### Inspiration (pretty things!)\n\n[**Information is Beautiful**](https://informationisbeautiful.net/visualizations/)
Collection of beautiful original visualizations about a variety of topics!\n\n[**TidyTuesday**](https://github.com/rfordatascience/tidytuesday)
A weekly data project aimed at the R ecosystem, where people wrangle and visualize data in loads of creative ways. Browse what people have created ([#TidyTuesday](https://twitter.com/search?q=%23TidyTuesday) on Twitter is great too!), and the visualizations that have inspired each week's theme.\n\n[**Wind currents on Earth**](https://earth.nullschool.net/)
Dynamic and interactive map of wind currents on Earth.\n\n[**A Day in the Life of Americans**](https://flowingdata.com/2015/12/15/a-day-in-the-life-of-americans/)
Dynamic visualisation of how Americans spend their time in an average day.\n\n[**2019: The Year in Visual Stories and Graphics**](https://www.nytimes.com/interactive/2019/12/30/us/2019-year-in-graphics.html)
Collection of the most popular visualizations by the New York Times in 2019.\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index/execute-results/html.json b/_freeze/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index/execute-results/html.json index 6986b5b..9aebb99 100644 --- a/_freeze/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index/execute-results/html.json +++ b/_freeze/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "19dde62c3bfc1dca0ccb3bd9ef87397b", + "hash": "79e046f2b374d59cdb91e5bdc7ad320a", "result": { - "markdown": "---\ntitle: \"Spatial Statistics in Ecology\"\ndescription: |\n Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). | \n Session de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).\nauthor: \n - name: \"Philippe Marchand\"\n affiliation: Université du Québec en Abitibi-Témiscamingue\ncategories: [FR, EN, Technical]\ndate: \"2021-01-12\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\nexecute:\n freeze: true\n cache: true\n---\n\n\nVersion en français [à la suite](#statistiques-spatiales-en-écologie).\n\n# Spatial Statistics in Ecology\n\nBIOS² hosted an online training session about statistical analysis of spatial data in ecology, led by Pr. Philippe Marchand (UQAT). This 12-hour training was conducted in 4 sessions: January 12, 14, 19 & 21 (2021) from 1:00 to 4:00 pm EST.\n\nThe content included three types of spatial statistical analyses and their applications to ecology: (1) point pattern analysis to study the distribution of individuals or events in space; (2) geostatistical models to represent the spatial correlation of variables sampled at geolocated points; and (3) areal data models, which apply to measurements taken on areas in space and model spatial relationships as networks of neighbouring regions. The training also included practical exercises using the R statistical programming environment.\n\n[Philippe Marchand](https://github.com/pmarchand1) is a professor in ecology and biostatistics at Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) and BIOS² academic member. His research focuses on modeling processes that influence the spatial distribution of populations, including: seed dispersal and seedling establishment, animal movement, and the spread of forest diseases.\n\n**If you wish to consult the lesson materials and follow the exercises at your own pace, you can access them through [this link](https://bios2.github.io/Marchand.html#category:EN). Basic knowledge of linear regression models and experience fitting them in R is recommended. Original repository can be found [here](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Course outline\n\n| Day | Topics (EN) |\n|-----------------|:--------------------------|\n| 1 | • [Introduction to spatial statistics](#introduction)
• [Point pattern analysis](#point-pattern)
|\n| 2 | • [Spatial correlation](#spatial-correlation)
• [Geostatistical models](#geostat-models) |\n| 3 | • [Areal data](#areal-data)
• [Moran's I](#moran-i)
• [Spatial autoregression models](#spatial-autoreg)
• [Analysis of areal data in R](#analysis-areal) |\n| 4 | • [GLMM with spatial Gaussian process](#glmm-spatial-gaussian)
• [GLMM with spatial autoregression](#glmm-spatial-autoreg) |\n\n\n# Introduction to spatial statistics {#introduction}\n\n## Types of spatial analyses\n\nIn this training, we will discuss three types of spatial analyses: point pattern analysis, geostatistical models and models for areal data.\n\nIn **point pattern analysis**, we have point data representing the position of individuals or events in a study area and we assume that all individuals or events have been identified in that area. That analysis focuses on the distribution of the positions of the points themselves. Here are some typical questions for the analysis of point patterns:\n\n- Are the points randomly arranged or clustered?\n\n- Are two types of points arranged independently?\n\n**Geostatistical models** represent the spatial distribution of continuous variables that are measured at certain sampling points. They assume that measurements of those variables at different points are correlated as a function of the distance between the points. Applications of geostatistical models include the smoothing of spatial data (e.g., producing a map of a variable over an entire region based on point measurements) and the prediction of those variables for non-sampled points.\n\n**Areal data** are measurements taken not at points, but for regions of space represented by polygons (e.g. administrative divisions, grid cells). Models representing these types of data define a network linking each region to its neighbours and include correlations in the variable of interest between neighbouring regions.\n\n## Stationarity and isotropy\n\nSeveral spatial analyses assume that the variables are **stationary** in space. As with stationarity in the time domain, this property means that summary statistics (mean, variance and correlations between measures of a variable) do not vary with translation in space. For example, the spatial correlation between two points may depend on the distance between them, but not on their absolute position.\n\nIn particular, there cannot be a large-scale trend (often called *gradient* in a spatial context), or this trend must be taken into account before modelling the spatial correlation of residuals.\n\nIn the case of point pattern analysis, stationarity (also called homogeneity) means that point density does not follow a large-scale trend.\n\nIn a **isotropic** statistical model, the spatial correlations between measurements at two points depend only on the distance between the points, not on the direction. In this case, the summary statistics do not change under a spatial rotation of the data.\n\n## Georeferenced data\n\nEnvironmental studies increasingly use data from geospatial data sources, i.e. variables measured over a large part of the globe (e.g. climate, remote sensing). The processing of these data requires concepts related to Geographic Information Systems (GIS), which are not covered in this workshop, where we focus on the statistical aspects of spatially varying data.\n\nThe use of geospatial data does not necessarily mean that spatial statistics are required. For example, we will often extract values of geographic variables at study points to explain a biological response observed in the field. In this case, the use of spatial statistics is only necessary when there is a spatial correlation in the residuals, after controlling for the effect of the predictors.\n\n# Point pattern analysis {#point-pattern}\n\n## Point pattern and point process\n\nA *point pattern* describes the spatial position (most often in 2D) of individuals or events, represented by points, in a given study area, often called the observation \"window\".\n\nIt is assumed that each point has a negligible spatial extent relative to the distances between the points. More complex methods exist to deal with spatial patterns of objects that have a non-negligible width, but this topic is beyond the scope of this workshop.\n\nA *point process* is a statistical model that can be used to simulate point patterns or explain an observed point pattern.\n\n## Complete spatial randomness\n\nComplete spatial randomness (CSR) is one of the simplest point patterns, which serves as a null model for evaluating the characteristics of real point patterns. In this pattern, the presence of a point at a given position is independent of the presence of points in a neighbourhood.\n\nThe process creating this pattern is a homogeneous Poisson process. According to this model, the number of points in any area $A$ follows a Poisson distribution: $N(A) \\sim \\text{Pois}(\\lambda A)$, where $\\lambda$ is the *intensity* of the process (i.e. the density of points per unit area). $N$ is independent between two disjoint regions, no matter how those regions are defined.\n\nIn the graph below, only the pattern on the right is completely random. The pattern on the left shows point aggregation (higher probability of observing a point close to another point), while the pattern in the center shows repulsion (low probability of observing a point very close to another).\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-2_c019229dfeb24b4b22a136e6b038583d'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-2-1.png){width=864}\n:::\n:::\n\n\n## Exploratory or inferential analysis for a point pattern\n\nSeveral summary statistics are used to describe the characteristics of a point pattern. The simplest is the intensity $\\lambda$, which as mentioned above represents the density of points per unit area. If the point pattern is heterogeneous, the intensity is not constant, but depends on the position: $\\lambda(x, y)$.\n\nCompared to intensity, which is a first-order statistic, second-order statistics describe how the probability of the presence of a point in a region depends on the presence of other points. The Ripley's $K$ function presented in the next section is an example of a second-order summary statistic.\n\nStatistical inferences on point patterns usually consist of testing the hypothesis that the point pattern corresponds to a given null model, such as CSR or a more complex null model. Even for the simplest null models, we rarely know the theoretical distribution for a summary statistic of the point pattern under the null model. Hypothesis tests on point patterns are therefore performed by simulation: a large number of point patterns are simulated from the null model and the distribution of the summary statistics of interest for these simulations is compared to their values for the observed point pattern.\n\n## Ripley's K function\n\nRipley's K function $K(r)$ is defined as the mean number of points within a circle of radius $r$ around a point in the pattern, standardized by the intensity $\\lambda$.\n\nUnder the CSR null model, the mean number of points in any circle of radius $r$ is $\\lambda \\pi r^2$, thus in theory $K(r) = \\pi r^2$ for that model. A higher value of $K(r)$ means that there is an aggregation of points at the scale $r$, whereas a lower value means that there is repulsion.\n\nIn practice, $K(r)$ is estimated for a specific point pattern by the equation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\nwhere $A$ is the area of the observation window and $n$ is the number of points in the pattern, so $n(n-1)$ is the number of distinct pairs of points. We take the sum for all pairs of points of the indicator function $I$, which takes a value of 1 if the distance between points $i$ and $j$ is less than or equal to $r$. Finally, the term $w_{ij}$ is used to give extra weight to certain pairs of points to account for edge effects, as discussed in the next section.\n\nFor example, the graphs below show the estimated $K(r)$ function for the patterns shown above, for values of $r$ up to 1/4 of the window width. The red dashed curve shows the theoretical value for CSR and the gray area is an \"envelope\" produced by 99 simulations of that null pattern. The aggregated pattern shows an excess of neighbours up to $r = 0.25$ and the pattern with repulsion shows a significant deficit of neighbours for small values of $r$.\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-4_93b9963febba16ed4365408bd10b6c70'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-4-1.png){width=864}\n:::\n:::\n\n\nIn addition to $K$, there are other statistics to describe the second-order properties of point patterns, such as the mean distance between a point and its nearest $N$ neighbours. You can refer to the Wiegand and Moloney (2013) textbook in the references to learn more about different summary statistics for point patterns.\n\n## Edge effects\n\nIn the context of point pattern analysis, edge effects are due to the fact that we have incomplete knowledge of the neighbourhood of points near the edge of the observation window, which can induce a bias in the calculation of statistics such as Ripley's $K$.\n\nDifferent methods have been developed to correct the bias due to edge effects. In Ripley's edge correction method, the contribution of a neighbour $j$ located at a distance $r$ from a point $i$ receives a weight $w_{ij} = 1/\\phi_i(r)$, where $\\phi_i(r)$ is the fraction of the circle of radius $r$ around $i$ contained in the observation window. For example, if 2/3 of the circle is in the window, this neighbour counts as 3/2 neighbours in the calculation of a statistic like $K$.\n\n![](images/ripley_edge.png)\n\nRipley's method is one of the simplest to correct for edge effects, but is not necessarily the most efficient; in particular, larger weights given to certain pairs of points tend to increase the variance of the calculated statistic. Other correction methods are presented in specialized textbooks, such as Wiegand and Moloney (2013).\n\n## Example\n\nFor this example, we use the dataset [semis_xy.csv](data/semis_xy.csv), which represents the $(x, y)$ coordinates for seedlings of two species (*sp*, B = birch and P = poplar) in a 15 x 15 m plot.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-5_0f8146040b7a6a70fa3c497cc0385db2'}\n\n```{.r .cell-code}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y sp\n1 14.73 0.05 P\n2 14.72 1.71 P\n3 14.31 2.06 P\n4 14.16 2.64 P\n5 14.12 4.15 B\n6 9.88 4.08 B\n```\n:::\n:::\n\n\nThe *spatstat* package provides tools for point pattern analysis in R. The first step consists in transforming our data frame into a `ppp` object (point pattern) with the function of the same name. In this function, we specify which columns contain the coordinates *x* and *y* as well as the *marks*, which here will be the species codes. We also need to specify an observation window (`window`) using the `owin` function, where we provide the plot limits in *x* and *y*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-6_57149b36e4a5be5442a99b8f45b2dbdd'}\n\n```{.r .cell-code}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMarked planar point pattern: 281 points\nMultitype, with levels = B, P \nwindow: rectangle = [0, 15] x [0, 15] units\n```\n:::\n:::\n\n\nMarks can be numeric or categorical. Note that for categorical marks as is the case here, the variable must be explicitly converted to a factor.\n\nThe `plot` function applied to a point pattern shows a diagram of the pattern.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-7_ba656f4aa5befb58b9e9845ae787d99d'}\n\n```{.r .cell-code}\nplot(semis)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-7-1.png){width=672}\n:::\n:::\n\n\nThe `intensity` function calculates the density of points of each species by unit area (here, by $m^2$).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-8_0b22d4b3b39bd4dc862f8c161efb9330'}\n\n```{.r .cell-code}\nintensity(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n B P \n0.6666667 0.5822222 \n```\n:::\n:::\n\n\nTo first analyze the distribution of each species separately, we split the pattern with `split`. Since the pattern contains categorical marks, it is automatically split according to the values of those marks. The result is a list of two point patterns.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-9_5ff3f6384afcf7ed706bbf891accd2fa'}\n\n```{.r .cell-code}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-9-1.png){width=672}\n:::\n:::\n\n\nThe `Kest` function calculates Ripley's $K$ for a series of distances up to (by default) 1/4 of the width of the window. Here we apply it to the first pattern (birch) by choosing `semis_split[[1]]`. Note that double square brackets are necessary to choose an item from a list in R.\n\nThe argument `correction = \"iso\"` tells the function to apply Ripley's correction for edge effects.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-10_67e4bd9ed190d1af69a48250adb1bc3d'}\n\n```{.r .cell-code}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-10-1.png){width=672}\n:::\n:::\n\n\nAccording to this graph, there seems to be an excess of neighbours for distances of 1 m and above. To check if this is a significant difference, we produce a simulation envelope with the `envelope` function. The first argument of `envelope` is a point pattern to which the simulations will be compared, the second one is a function to be computed (here, `Kest`) for each simulated pattern, then we add the arguments of the `Kest` function (here, only `correction`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-11_ebe814599d9537b0a51121b965182658'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-11-1.png){width=672}\n:::\n:::\n\n\nAs indicated by the message, by default the function performs 99 simulations of the null model corresponding to complete spatial randomness (CSR).\n\nThe observed curve falls outside the envelope of the 99 simulations near $r = 2$. We must be careful not to interpret too quickly a result that is outside the envelope. Although there is about a 1% probability of obtaining a more extreme result under the null hypothesis at a given distance, the envelope is calculated for a large number of values of $r$ and is not corrected for multiple comparisons. Thus, a significant difference for a very small range of values of $r$ may be simply due to chance.\n\n### Exercise 1\n\nLooking at the graph of the second point pattern (poplar seedlings), can you predict where Ripley's $K$ will be in relation to the null hypothesis of complete spatial randomness? Verify your prediction by calculating Ripley's $K$ for this point pattern in R.\n\n## Effect of heterogeneity\n\nThe graph below illustrates a *heterogeneous* point pattern, i.e. it shows an density gradient (more points on the left than on the right).\n\n\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-13_36849871c75ced31ddf5bd09edb7ace9'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-13-1.png){width=672}\n:::\n:::\n\n\nA density gradient can be confused with an aggregation of points, as can be seen on the graph of the corresponding Ripley's $K$. In theory, these are two different processes:\n\n- Heterogeneity: The density of points varies in the study area, for example due to the fact that certain local conditions are more favorable to the presence of the species of interest.\n\n- Aggregation: The mean density of points is homogeneous, but the presence of one point increases the presence of other points in its vicinity, for example due to positive interactions between individuals.\n\nHowever, it may be difficult to differentiate between the two in practice, especially since some patterns may be both heterogeneous and aggregated.\n\nLet's take the example of the poplar seedlings from the previous exercise. The `density` function applied to a point pattern performs a kernel density estimation of the density of the seedlings across the plot. By default, this function uses a Gaussian kernel with a standard deviation `sigma` specified in the function, which determines the scale at which density fluctuations are \"smoothed\". Here, we use a value of 2 m for `sigma` and we first represent the estimated density with `plot`, before overlaying the points (`add = TRUE` means that the points are added to the existing plot rather than creating a new plot).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-14_3332987af85b2014bbebfa360ce15a9b'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n\nTo measure the aggregation or repulsion of points in a heterogeneous pattern, we must use the inhomogeneous version of the $K$ statistic (`Kinhom` in *spatstat*). This statistic is still equal to the mean number of neighbours within a radius $r$ of a point in the pattern, but rather than standardizing this number by the overall intensity of the pattern, it is standardized by the local estimated density. As above, we specify `sigma = 2` to control the level of smoothing for the varying density estimate.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-15_f82857163481aaf3f03a5dd201df8615'}\n\n```{.r .cell-code}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-15-1.png){width=672}\n:::\n:::\n\n\nTaking into account the heterogeneity of the pattern at a scale `sigma` of 2 m, there seems to be a deficit of neighbours starting at a radius of about 1.5 m. We can now check whether this deviation is significant.\n\nAs before, we use `envelope` to simulate the `Kinhom` statistic under the null model. However, the null model here is not a homogeneous Poisson process (CSR). It is instead a heterogeneous Poisson process simulated by the function `rpoispp(dens_p)`, i.e. the points are independent of each other, but their density is heterogeneous and given by `dens_p`. The `simulate` argument of the `envelope` function specifies the function used for simulations under the null model; this function must have one argument, here `x`, even if it is not used.\n\nFinally, in addition to the arguments needed for `Kinhom`, i.e. `sigma` and `correction`, we also specify `nsim = 199` to perform 199 simulations and `nrank = 5` to eliminate the 5 most extreme results on each side of the envelope, i.e. the 10 most extreme results out of 199, to achieve an interval containing about 95% of the probability under the null hypothesis.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-16_7119c82106369cf2aa8fe32fff918b5e'}\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-16-1.png){width=672}\n:::\n:::\n\n\n*Note*: For a hypothesis test based on simulations of a null hypothesis, the $p$-value is estimated by $(m + 1)/(n + 1)$, where $n$ is the number of simulations and $m$ is the number of simulations where the value of the statistic is more extreme than that of the observed data. This is why the number of simulations is often chosen to be 99, 199, etc.\n\n### Exercise 2\n\nRepeat the heterogeneous density estimation and `Kinhom` calculation with a standard deviation `sigma` of 5 rather than 2. How does the smoothing level for the density estimation influence the conclusions?\n\nTo differentiate between a variation in the density of points from an interaction (aggregation or repulsion) between these points with this type of analysis, it is generally assumed that the two processes operate at different scales. Typically, we can test whether the points are aggregated at a small scale after accounting for a variation in density at a larger scale.\n\n## Relationship between two point patterns\n\nLet's consider a case where we have two point patterns, for example the position of trees of two species in a plot (orange and green points in the graph below). Each of the two patterns may or may not present an aggregation of points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-17_b4289a87928bcb641b5e8e2bd2b6abf1'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-17-1.png){width=672}\n:::\n:::\n\n\nRegardless of whether points are aggregated at the species level, we want to determine whether the two species are arranged independently. In other words, does the probability of observing a tree of one species depend on the presence of a tree of the other species at a given distance?\n\nThe bivariate version of Ripley's $K$ allows us to answer this question. For two patterns noted 1 and 2, the function $K_{12}(r)$ calculates the mean number of points in pattern 2 within a radius $r$ from a point in pattern 1, standardized by the density of pattern 2.\n\nIn theory, this function is symmetrical, so $K_{12}(r) = K_{21}(r)$ and the result would be the same whether the points of pattern 1 or 2 are chosen as \"focal\" points for the analysis. However, the estimation of the two quantities for an observed pattern may differ, in particular because of edge effects. The variance of $K_{12}$ and $K_{21}$ between simulations of a null model may also differ, so the null hypothesis test may have more or less power depending on the choice of the focal species.\n\nThe choice of an appropriate null model is important here. In order to determine whether there is a significant attraction or repulsion between the two patterns, the position of one of the patterns must be randomly moved relative to that of the other pattern, while keeping the spatial structure of each pattern taken in isolation.\n\nOne way to do this randomization is to shift one of the two patterns horizontally and/or vertically by a random distance. The part of the pattern that \"comes out\" on one side of the window is attached to the other side. This method is called a toroidal shift, because by connecting the top and bottom as well as the left and right of a rectangular surface, we obtain the shape of a torus (a three-dimensional \"donut\").\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-18_2719c0934b27fb43697dae326b9542d1'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-18-1.png){width=672}\n:::\n:::\n\n\nThe graph above shows a translation of the green pattern to the right, while the orange pattern remains in the same place. The green points in the shaded area are brought back on the other side. Note that while this method generally preserves the structure of each pattern while randomizing their relative position, it can have some drawbacks, such as dividing point clusters that are near the cutoff point.\n\nLet's now check whether the position of the two species (birch and poplar) is independent in our plot. The function `Kcross` calculates the bivariate $K_{ij}$, we must specify which type of point (mark) is considered as the focal species $i$ and the neighbouring species $j$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-19_4dcee95d46a21e9800bad80559da1926'}\n\n```{.r .cell-code}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-19-1.png){width=672}\n:::\n:::\n\n\nHere, the observed $K$ is lower than the theoretical value, indicating a possible repulsion between the two patterns.\n\nTo determine the envelope of the $K$ under the null hypothesis of independence of the two patterns, we must specify that the simulations are based on a translation of the patterns. We indicate that the simulations use the function `rshift` (random translation) with the argument `simulate = function(x) rshift(x, which = \"B\")`; here, the `x` argument in `simulate` corresponds to the original point pattern and the `which` argument indicates which of the patterns is translated. As in the previous case, the arguments needed for `Kcross`, i.e. `i`, `j` and `correction`, must be repeated in the `envelope` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-20_0ac003a9d3ff5047aa7ab53d990626d2'}\n\n```{.r .cell-code}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-20-1.png){width=672}\n:::\n:::\n\n\nHere, the observed curve is totally within the envelope, so we do not reject the null hypothesis of independence of the two patterns.\n\n### Questions\n\n1. What would be one reason for our choice to translate the points of the birch rather than poplar?\n\n2. Would the simulations generated by random translation be a good null model if the two patterns were heterogeneous?\n\n## Marked point patterns\n\nThe [fir.csv](data/fir.csv) dataset contains the $(x, y)$ coordinates of 822 fir trees in a 1 hectare plot and their status (A = alive, D = dead) following a spruce budworm outbreak.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-21_facfc5f20aa18027ead60eade7d1f3e8'}\n\n```{.r .cell-code}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y status\n1 31.50 1.00 A\n2 85.25 30.75 D\n3 83.50 38.50 A\n4 84.00 37.75 A\n5 83.00 33.25 A\n6 33.25 0.25 A\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-22_8ca66569ad633346ebe5c4d72856947e'}\n\n```{.r .cell-code}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-22-1.png){width=672}\n:::\n:::\n\n\nSuppose that we want to check whether fir mortality is independent or correlated between neighbouring trees. How does this question differ from the previous example, where we wanted to know if the position of the points of two species was independent?\n\nIn the previous example, the independence or interaction between the species referred to the formation of the pattern itself (whether or not seedlings of one species establish near those of the other species). Here, the characteristic of interest (survival) occurs after the establishment of the pattern, assuming that all those trees were alive at first and that some died as a result of the outbreak. So we take the position of the trees as fixed and we want to know whether the distribution of status (dead, alive) among those trees is random or shows a spatial pattern.\n\nIn Wiegand and Moloney's textbook, the first situation (establishment of seedlings of two species) is called a bivariate pattern, so it is really two interacting patterns, while the second is a single pattern with a qualitative *mark*. The *spatstat* package in R does not differentiate between the two in terms of pattern definition (types of points are always represented by the `marks` argument), but the analysis methods applied to the two questions differ.\n\nIn the case of a pattern with a qualitative mark, we can define a *mark connection function* $p_{ij}(r)$. For two points separated by a distance $r$, this function gives the probability that the first point has the mark $i$ and the second the mark $j$. Under the null hypothesis where the marks are independent, this probability is equal to the product of the proportions of each mark in the entire pattern, $p_{ij}(r) = p_i p_j$ independently of $r$.\n\nIn *spatstat*, the mark connection function is computed with the `markconnect` function, where the marks $i$ and $j$ and the type of edge correction must be specified. In our example, we see that two closely spaced points are less likely to have a different status (A and D) than expected under the assumption of random and independent distribution of marks (red dotted line).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-23_ea3bee43b75cb2228264e2bba732134d'}\n\n```{.r .cell-code}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-23-1.png){width=672}\n:::\n:::\n\n\nIn this graph, the fluctuations in the function are due to the estimation error of a continuous $r$ function from a limited number of discrete point pairs.\n\nTo simulate the null model in this case, we use the `rlabel` function, which randomly reassigns the marks among the points of the pattern, keeping the points' positions fixed.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-24_b5961fa24a7b5816b3a04f809a6a674c'}\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-24-1.png){width=672}\n:::\n:::\n\n\nNote that since the `rlabel` function has only one required argument corresponding to the original point pattern, it was not necessary to specify: `simulate = function(x) rlabel(x)`.\n\nHere are the results for tree pairs of the same status A or D:\n\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-25_b52d50f419fba628767a4e51fec12988'}\n\n```{.r .cell-code}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-25-1.png){width=960}\n:::\n:::\n\n\nIt therefore appears that fir mortality due to this outbreak is spatially aggregated, since trees located in close proximity to each other have a greater probability of sharing the same status than predicted by the null hypothesis.\n\n## References\n\nFortin, M.-J. and Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK.\n\nWiegand, T. and Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nThe dataset in the last example is a subet of the Lake Duparquet Research and Teaching Forest (LDRTF) data, available on Dryad [here](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n# Solutions\n\n### Exercise 1\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-26_b3fd18c8b6c242843edf3836d1967112'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-26-1.png){width=672}\n:::\n:::\n\n\nPoplar seedlings seem to be significantly aggregated according to the $K$ function.\n\n### Exercise 2\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-27_acce28ca3e937720b0224ba60b6c233b'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-27-1.png){width=672}\n:::\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-27-2.png){width=672}\n:::\n:::\n\n\nHere, as we estimate density variations at a larger scale, even after accounting for this variation, the poplar seedlings seem to be aggregated at a small scale.\n\n# Spatial correlation of a variable {#spatial-correlation}\n\n\n\n\n\nCorrelation between measurements of a variable taken at nearby points often occurs in environmental data. This principle is sometimes referred to as the \"first law of geography\" and is expressed in the following quote from Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things\".\n\nIn statistics, we often refer to *autocorrelation* as the correlation between measurements of the same variable taken at different times (temporal autocorrelation) or places (spatial autocorrelation).\n\n## Intrinsic or induced dependence\n\nThere are two basic types of spatial dependence on a measured variable $y$: an *intrinsic* dependence on $y$, or a dependence *induced* by external variables influencing $y$, which are themselves spatially correlated.\n\nFor example, suppose that the abundance of a species is correlated between two sites located near each other:\n\n- this spatial dependence can be induced if it is due to a spatial correlation of habitat factors that are favorable or unfavorable to the species;\n\n- or it can be intrinsic if it is due to the dispersion of individuals to nearby sites.\n\nIn many cases, both types of dependence affect a given variable.\n\nIf the dependence is simply induced and the external variables that cause it are included in the model explaining $y$, then the model residuals will be independent and we can use all the methods already seen that ignore spatial correlation.\n\nHowever, if the dependence is intrinsic or due to unmeasured external factors, then the spatial correlation of the residuals in the model will have to be taken into account.\n\n## Different ways to model spatial effects\n\nIn this training, we will directly model the spatial correlations of our data. It is useful to compare this approach to other ways of including spatial aspects in a statistical model.\n\nFirst, we could include predictors in the model that represent position (e.g., longitude, latitude). Such predictors may be useful for detecting a systematic large-scale trend or gradient, whether or not the trend is linear (e.g., with a generalized additive model).\n\nIn contrast to this approach, the models we will see now serve to model a spatial correlation in the random fluctuations of a variable (i.e., in the residuals after removing any systematic effect).\n\nMixed models use random effects to represent the non-independence of data on the basis of their grouping, i.e., after accounting for systematic fixed effects, data from the same group are more similar (their residual variation is correlated) than data from different groups. These groups were sometimes defined according to spatial criteria (observations grouped into sites).\n\nHowever, in the context of a random group effect, all groups are as different from each other, e.g., two sites within 100 km of each other are no more or less similar than two sites 2 km apart.\n\nThe methods we will see here and in the next parts of the training therefore allow us to model non-independence on a continuous scale (closer = more correlated) rather than just discrete (hierarchy of groups).\n\n# Geostatistical models {#geostat-models}\n\nGeostatistics refers to a group of techniques that originated in the earth sciences. Geostatistics is concerned with variables that are continuously distributed in space and where a number of points are sampled to estimate this distribution. A classic example of these techniques comes from the mining field, where the aim was to create a map of the concentration of ore at a site from samples taken at different points on the site.\n\nFor these models, we will assume that $z(x, y)$ is a stationary spatial variable measured at points with coordinates $x$ and $y$.\n\n## Variogram\n\nA central aspect of geostatistics is the estimation of the variogram $\\gamma_z$ . The variogram is equal to half the mean square difference between the values of $z$ for two points $(x_i, y_i)$ and $(x_j, y_j)$ separated by a distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nIn this equation, the $\\text{E}$ function with the index $d_{ij}=h$ designates the statistical expectation (i.e., the mean) of the squared deviation between the values of $z$ for points separated by a distance $h$.\n\nIf we want instead to express the autocorrelation $\\rho_z(h)$ between measures of $z$ separated by a distance $h$, it is related to the variogram by the equation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\nwhere $\\sigma_z^2$ is the global variance of $z$.\n\nNote that $\\gamma_z = \\sigma_z^2$ when we reach a distance where the measurements of $z$ are independent, so $\\rho_z = 0$. In this case, we can see that $\\gamma_z$ is similar to a variance, although it is sometimes called \"semivariogram\" or \"semivariance\" because of the 1/2 factor in the above equation.\n\n## Theoretical models for the variogram\n\nSeveral parametric models have been proposed to represent the spatial correlation as a function of the distance between sampling points. Let us first consider a correlation that decreases exponentially:\n\n$$\\rho_z(h) = e^{-h/r}$$\n\nHere, $\\rho_z = 1$ for $h = 0$ and the correlation is multiplied by $1/e \\approx 0.37$ each time the distance increases by $r$. In this context, $r$ is called the *range* of the correlation.\n\nFrom the above equation, we can calculate the corresponding variogram.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nHere is a graphical representation of this variogram.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-28_db8b05730133a816cb7d6c558cbd7757'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-28-1.png){width=672}\n:::\n:::\n\n\nBecause of the exponential function, the value of $\\gamma$ at large distances approaches the global variance $\\sigma_z^2$ without exactly reaching it. This asymptote is called a *sill* in the geostatistical context and is represented by the symbol $s$.\n\nFinally, it is sometimes unrealistic to assume a perfect correlation when the distance tends towards 0, because of a possible variation of $z$ at a very small scale. A *nugget* effect, denoted $n$, can be added to the model so that $\\gamma$ approaches $n$ (rather than 0) if $h$ tends towards 0. The term nugget comes from the mining origin of these techniques, where a nugget could be the source of a sudden small-scale variation in the concentration of a mineral.\n\nBy adding the nugget effect, the remainder of the variogram is \"compressed\" to keep the same sill, resulting in the following equation.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nIn the *gstat* package that we use below, the term $(s-n)$ is called a *partial sill* or `psill` for the exponential portion of the variogram.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-29_76ce196068f7afb370f9fcd84ff0bf2d'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-29-1.png){width=672}\n:::\n:::\n\n\nIn addition to the exponential model, two other common theoretical models for the variogram are the Gaussian model (where the correlation follows a half-normal curve), and the spherical model (where the variogram increases linearly at the start and then curves and reaches the plateau at a distance equal to its range $r$). The spherical model thus allows the correlation to be exactly 0 at large distances, rather than gradually approaching zero in the case of the other models.\n\n| Model | $\\rho(h)$ | $\\gamma(h)$ |\n|------------------|-------------------------|-----------------------------|\n| Exponential | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$ |\n| Gaussian | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$ |\n| Spherical $(h < r)$ \\* | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$ |\n\n\\* For the spherical model, $\\rho = 0$ and $\\gamma = s$ if $h \\ge r$.\n\n\n::: {.cell fig.dim='[9,4]' hash='index_cache/html/unnamed-chunk-30_36d08077ec0b54caf8dbcbb8751648be'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-30-1.png){width=864}\n:::\n:::\n\n\n## Empirical variogram\n\nTo estimate $\\gamma_z(h)$ from empirical data, we need to define distance classes, thus grouping different distances within a margin of $\\pm \\delta$ around a distance $h$, then calculating the mean square deviation for the pairs of points in that distance class.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nWe will see in the next section how to estimate a variogram in R.\n\n## Regression model with spatial correlation\n\nThe following equation represents a multiple linear regression including residual spatial correlation:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nHere, $v$ designates the response variable and $u$ the predictors, to avoid confusion with the spatial coordinates $x$ and $y$.\n\nIn addition to the residual $\\epsilon$ that is independent between observations, the model includes a term $z$ that represents the spatially correlated portion of the residual variance.\n\nHere are suggested steps to apply this type of model:\n\n1. Fit the regression model without spatial correlation.\n\n2. Verify the presence of spatial correlation from the empirical variogram of the residuals.\n\n3. Fit one or more regression models with spatial correlation and select the one that shows the best fit to the data.\n\n# Geostatistical models in R\n\nThe *gstat* package contains functions related to geostatistics. For this example, we will use the `oxford` dataset from this package, which contains measurements of physical and chemical properties for 126 soil samples from a site, along with their coordinates `XCOORD` and `YCOORD`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-31_d42a00ecb66d27e6d127659ed2dfd66c'}\n\n```{.r .cell-code}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n'data.frame':\t126 obs. of 22 variables:\n $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...\n $ XCOORD : num 100 100 100 100 100 100 100 100 100 100 ...\n $ YCOORD : num 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...\n $ ELEV : num 598 597 610 615 610 595 580 590 598 588 ...\n $ PROFCLASS: Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 2 2 3 3 2 3 2 3 3 ...\n $ MAPCLASS : Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 3 3 3 3 2 2 3 3 3 ...\n $ VAL1 : num 3 3 4 4 3 3 4 4 4 3 ...\n $ CHR1 : num 3 3 3 3 3 2 2 3 3 3 ...\n $ LIME1 : num 4 4 4 4 4 0 2 1 0 4 ...\n $ VAL2 : num 4 4 5 8 8 4 8 4 8 8 ...\n $ CHR2 : num 4 4 4 2 2 4 2 4 2 2 ...\n $ LIME2 : num 4 4 4 5 5 4 5 4 5 5 ...\n $ DEPTHCM : num 61 91 46 20 20 91 30 61 38 25 ...\n $ DEP2LIME : num 20 20 20 20 20 20 20 20 40 20 ...\n $ PCLAY1 : num 15 25 20 20 18 25 25 35 35 12 ...\n $ PCLAY2 : num 10 10 20 10 10 20 10 20 10 10 ...\n $ MG1 : num 63 58 55 60 88 168 99 59 233 87 ...\n $ OM1 : num 5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...\n $ CEC1 : num 20 22 17 23 27 27 21 14 27 20 ...\n $ PH1 : num 7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...\n $ PHOS1 : num 13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...\n $ POT1 : num 196 157 115 172 238 164 312 184 123 282 ...\n```\n:::\n:::\n\n\nSuppose that we want to model the magnesium concentration (`MG1`), represented as a function of the spatial position in the following graph.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-32_cf223f9501bba263c237e06328f21358'}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-32-1.png){width=672}\n:::\n:::\n\n\nNote that the $x$ and $y$ axes have been inverted to save space. The `coord_fixed()` function of *ggplot2* ensures that the scale is the same on both axes, which is useful for representing spatial data.\n\nWe can immediately see that these measurements were taken on a 100 m grid. It seems that the magnesium concentration is spatially correlated, although it may be a correlation induced by another variable. In particular, we know that the concentration of magnesium is negatively related to the soil pH (`PH1`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-33_a9ec8bcf320a9e52d1252e4725f81bf7'}\n\n```{.r .cell-code}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-33-1.png){width=672}\n:::\n:::\n\n\nThe `variogram` function of *gstat* is used to estimate a variogram from empirical data. Here is the result obtained for the variable `MG1`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-34_c3f828164d93cc2b3d38500281fe87b9'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n np dist gamma dir.hor dir.ver id\n1 225 100.0000 1601.404 0 0 var1\n2 200 141.4214 1950.805 0 0 var1\n3 548 215.0773 2171.231 0 0 var1\n4 623 303.6283 2422.245 0 0 var1\n5 258 360.5551 2704.366 0 0 var1\n6 144 400.0000 2948.774 0 0 var1\n7 570 427.5569 2994.621 0 0 var1\n8 291 500.0000 3402.058 0 0 var1\n9 366 522.8801 3844.165 0 0 var1\n10 200 577.1759 3603.060 0 0 var1\n11 458 619.8400 3816.595 0 0 var1\n12 90 670.8204 3345.739 0 0 var1\n```\n:::\n:::\n\n\nThe formula `MG1 ~ 1` indicates that no linear predictor is included in this model, while the argument `locations` indicates which variables in the data frame correspond to the spatial coordinates.\n\nIn the resulting table, `gamma` is the value of the variogram for the distance class centered on `dist`, while `np` is the number of pairs of points in that class. Here, since the points are located on a grid, we obtain regular distance classes (e.g.: 100 m for neighboring points on the grid, 141 m for diagonal neighbors, etc.).\n\nHere, we limit ourselves to the estimation of isotropic variograms, i.e. the variogram depends only on the distance between the two points and not on the direction. Although we do not have time to see it today, it is possible with *gstat* to estimate the variogram separately in different directions.\n\nWe can illustrate the variogram with `plot`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-35_dced0e607669b721d5ef7df8faa51cb2'}\n\n```{.r .cell-code}\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-35-1.png){width=672}\n:::\n:::\n\n\nIf we want to estimate the residual spatial correlation of `MG1` after including the effect of `PH1`, we can add that predictor to the formula.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-36_41f230bd5a30f1cb7752e89e361c338a'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-36-1.png){width=672}\n:::\n:::\n\n\nIncluding the effect of pH, the range of the spatial correlation seems to decrease, while the plateau is reached around 300 m. It even seems that the variogram decreases beyond 400 m. In general, we assume that the variance between two points does not decrease with distance, unless there is a periodic spatial pattern.\n\nThe function `fit.variogram` accepts as arguments a variogram estimated from the data, as well as a theoretical model described in a `vgm` function, and then estimates the parameters of that model according to the data. The fitting is done by the method of least squares.\n\nFor example, `vgm(\"Exp\")` means we want to fit an exponential model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-37_b852e100bd05bd7def030586576b386c'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nThere is no nugget effect, because `psill = 0` for the `Nug` (nugget) part of the model. The exponential part has a sill at 1951 and a range of 95 m.\n\nTo compare different models, a vector of model names can be given to `vgm`. In the following example, we include the exponential, gaussian (\"Gau\") and spherical (\"Sph\") models.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-38_5af5359b8627d50d97bf2175f4728362'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nThe function gives us the result of the model with the best fit (lowest sum of squared deviations), which here is the same exponential model.\n\nFinally, we can superimpose the theoretical model and the empirical variogram on the same graph.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-39_acab997244a63895e5eaedd7b9e62465'}\n\n```{.r .cell-code}\nplot(var_mg, vfit, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-39-1.png){width=672}\n:::\n:::\n\n\n## Regression with spatial correlation\n\nWe have seen above that the *gstat* package allows us to estimate the variogram of the residuals of a linear model. In our example, the magnesium concentration was modeled as a function of pH, with spatially correlated residuals.\n\nAnother tool to fit this same type of model is the `gls` function of the *nlme* package, which is included with the installation of R.\n\nThis function applies the *generalized least squares* method to fit linear regression models when the residuals are not independent or when the residual variance is not the same for all observations. Since the estimates of the coefficients depend on the estimated correlations between the residuals and the residuals themselves depend on the coefficients, the model is fitted by an iterative algorithm:\n\n1. A classical linear regression model (without correlation) is fitted to obtain residuals.\n\n2. The spatial correlation model (variogram) is fitted with those residuals.\n\n3. The regression coefficients are re-estimated, now taking into account the correlations.\n\nSteps 2 and 3 are repeated until the estimates are stable at a desired precision.\n\nHere is the application of this method to the same model for the magnesium concentration in the `oxford` dataset. In the `correlation` argument of `gls`, we specify an exponential correlation model as a function of our spatial coordinates and we include a possible nugget effect.\n\nIn addition to the exponential correlation `corExp`, the `gls` function can also estimate a Gaussian (`corGaus`) or spherical (`corSpher`) model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-40_0b3199847595fbf9b39d87618cbffc8f'}\n\n```{.r .cell-code}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: MG1 ~ PH1 \n Data: oxford \n AIC BIC logLik\n 1278.65 1292.751 -634.325\n\nCorrelation Structure: Exponential spatial correlation\n Formula: ~XCOORD + YCOORD \n Parameter estimate(s):\n range nugget \n478.0322964 0.2944753 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 391.1387 50.42343 7.757084 0\nPH1 -41.0836 6.15662 -6.673079 0\n\n Correlation: \n (Intr)\nPH1 -0.891\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-2.1846957 -0.6684520 -0.3687813 0.4627580 3.1918604 \n\nResidual standard error: 53.8233 \nDegrees of freedom: 126 total; 124 residual\n```\n:::\n:::\n\n\nTo compare this result with the adjusted variogram above, the parameters given by `gls` must be transformed. The range has the same meaning in both cases and corresponds to 478 m for the result of `gls`. The global variance of the residuals is the square of `Residual standard error`. The nugget effect here (0.294) is expressed as a fraction of that variance. Finally, to obtain the partial sill of the exponential part, the nugget effect must be subtracted from the total variance.\n\nAfter performing these calculations, we can give these parameters to the `vgm` function of *gstat* to superimpose this variogram estimated by `gls` on our variogram of the residuals of the classical linear model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-41_bdace2c5570a84ab706e3cc520568742'}\n\n```{.r .cell-code}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-41-1.png){width=672}\n:::\n:::\n\n\nDoes the model fit the data less well here? In fact, this empirical variogram represented by the points was obtained from the residuals of the linear model ignoring the spatial correlation, so it is a biased estimate of the actual spatial correlations. The method is still adequate to quickly check if spatial correlations are present. However, to simultaneously fit the regression coefficients and the spatial correlation parameters, the generalized least squares (GLS) approach is preferable and will produce more accurate estimates.\n\nFinally, note that the result of the `gls` model also gives the AIC, which we can use to compare the fit of different models (with different predictors or different forms of spatial correlation).\n\n## Exercise\n\nThe [bryo_belg.csv](data/bryo_belg.csv) dataset is adapted from the data of this study:\n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nThis data frame shows the specific richness of ground bryophytes (*richness*) for different sampling points in the Belgian province of Limburg, with their position *(x, y)* in km, in addition to information on the proportion of forest (*forest*) and wetlands (*wetland*) in a 1 km\\^2\\$ cell containing the sampling point.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-42_c25ae6f03a62752dff743e2d40b205a0'}\n\n```{.r .cell-code}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n richness forest wetland x y\n1 9 0.2556721 0.5036614 228.9516 220.8869\n2 6 0.6449114 0.1172068 227.6714 219.8613\n3 5 0.5039905 0.6327003 228.8252 220.1073\n4 3 0.5987329 0.2432942 229.2775 218.9035\n5 2 0.7600775 0.1163538 209.2435 215.2414\n6 10 0.6865434 0.0000000 210.4142 216.5579\n```\n:::\n:::\n\n\nFor this exercise, we will use the square root of the specific richness as the response variable. The square root transformation often allows to homogenize the variance of the count data in order to apply a linear regression.\n\na) Fit a linear model of the transformed species richness to the proportion of forest and wetlands, without taking into account spatial correlations. What is the effect of the two predictors in this model?\n\nb) Calculate the empirical variogram of the model residuals in (a). Does there appear to be a spatial correlation between the points?\n\n*Note*: The `cutoff` argument to the `variogram` function specifies the maximum distance at which the variogram is calculated. You can manually adjust this value to get a good view of the sill.\n\nc) Re-fit the linear model in (a) with the `gls` function in the *nlme* package, trying different types of spatial correlations (exponential, Gaussian, spherical). Compare the models (including the one without spatial correlation) with the AIC.\n\nd) What is the effect of the proportion of forests and wetlands according to the model in (c)? Explain the differences between the conclusions of this model and the model in (a).\n\n# Kriging\n\nAs mentioned before, a common application of geostatistical models is to predict the value of the response variable at unsampled locations, a form of spatial interpolation called kriging (pronounced with a hard \"g\").\n\nThere are three basic types of kriging based on the assumptions made about the response variable:\n\n- Ordinary kriging: Stationary variable with an unknown mean.\n\n- Simple kriging: Stationary variable with a known mean.\n\n- Universal kriging: Variable with a trend given by a linear or non-linear model.\n\nFor all kriging methods, the predictions at a new point are a weighted mean of the values at known points. These weights are chosen so that kriging provides the best linear unbiased prediction of the response variable, if the model assumptions (in particular the variogram) are correct. That is, among all possible unbiased predictions, the weights are chosen to give the minimum mean square error. Kriging also provides an estimate of the uncertainty of each prediction.\n\nWhile we will not present the detailed kriging equations here, the weights depend on both the correlations (estimated by the variogram) between the sampled points and the new point, as well of the correlations between the sampled points themselves. In other words, sampled points near the new point are given more weight, but isolated sampled points are also given more weight, because sample points close to each other provide redundant information.\n\nKriging is an interpolation method, so the prediction at a sampled point will always be equal to the measured value (the measurement is supposed to have no error, just spatial variation). However, in the presence of a nugget effect, any small displacement from the sampled location will show variability according to the nugget.\n\nIn the example below, we generate a new dataset composed of randomly-generated (x, y) coordinates within the study area as well as randomly-generated pH values based on the `oxford` data. We then apply the function `krige` to predict the magnesium values at these new points. Note that we specify the variogram derived from the GLS results in the `model` argument to `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-43_f81acecbca5eefa202e114614faebc54'}\n\n```{.r .cell-code}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[using universal kriging]\n```\n:::\n\n```{.r .cell-code}\nhead(pred)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD var1.pred var1.var\n1 227.0169 162.1185 47.13065 1269.002\n2 418.9136 465.9013 79.68437 1427.269\n3 578.5943 2032.7477 60.30539 1264.471\n4 376.2734 1530.7193 127.22366 1412.875\n5 591.5336 421.6290 105.88124 1375.485\n6 355.7369 404.3378 127.73055 1250.114\n```\n:::\n:::\n\n\nThe result of `krige` includes the new point coordinates, the prediction of the variable `var1.pred` along with its estimated variance `var1.var`. In the graph below, we show the mean MG1 predictions from kriging (triangles) along with the measurements (circles).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-44_8a46f7bb0f5137f5dae6fef418b6b61e'}\n\n```{.r .cell-code}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-44-1.png){width=672}\n:::\n:::\n\n\nThe estimated mean and variance from kriging can be used to simulate possible values of the variable at each new point, conditional on the sampled values. In the example below, we performed 4 conditional simulations by adding the argument `nsim = 4` to the same `krige` instruction.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-45_15e6975ae8f74fb12acd4b9d15610303'}\n\n```{.r .cell-code}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ndrawing 4 GLS realisations of beta...\n[using conditional Gaussian simulation]\n```\n:::\n\n```{.r .cell-code}\nhead(sim_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD sim1 sim2 sim3 sim4\n1 227.0169 162.1185 9.638739 34.53159 46.08685 77.86376\n2 418.9136 465.9013 60.029144 20.17179 76.46333 59.57924\n3 578.5943 2032.7477 100.791412 77.47887 73.50058 59.40279\n4 376.2734 1530.7193 112.615730 150.96664 78.76125 146.83928\n5 591.5336 421.6290 70.925240 72.85522 153.90610 126.63758\n6 355.7369 404.3378 161.608032 118.93640 134.45695 142.20074\n```\n:::\n:::\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-46_dc67747871861d460645cc2d898c2797'}\n\n```{.r .cell-code}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-46-1.png){width=960}\n:::\n:::\n\n\n# Solutions\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-47_46625f4b0eb7a89df12358298784d779'}\n\n```{.r .cell-code}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = sqrt(richness) ~ forest + wetland, data = bryo_belg)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.8847 -0.4622 0.0545 0.4974 2.3116 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 2.34159 0.08369 27.981 < 2e-16 ***\nforest 1.11883 0.13925 8.034 9.74e-15 ***\nwetland -0.59264 0.17216 -3.442 0.000635 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.7095 on 417 degrees of freedom\nMultiple R-squared: 0.2231,\tAdjusted R-squared: 0.2193 \nF-statistic: 59.86 on 2 and 417 DF, p-value: < 2.2e-16\n```\n:::\n:::\n\n\nThe proportion of forest has a significant positive effect and the proportion of wetlands has a significant negative effect on bryophyte richness.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-48_9f1b47ee10d87121e3853375afbb8273'}\n\n```{.r .cell-code}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-1.png){width=672}\n:::\n:::\n\n\nThe variogram is increasing from 0 to at least 40 km, so there appears to be spatial correlations in the model residuals.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-49_2a94f7a8b64ea0bb9127648e255fcbd3'}\n\n```{.r .cell-code}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-50_9d306abf18fdbd164c34d87f9f9832d8'}\n\n```{.r .cell-code}\nAIC(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 908.6358\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_exp)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 867.822\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_gaus)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 870.9592\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 866.9117\n```\n:::\n:::\n\n\nThe spherical model has the smallest AIC.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-51_5c26da31bc0b2db751ce60929eb7b8be'}\n\n```{.r .cell-code}\nsummary(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: sqrt(richness) ~ forest + wetland \n Data: bryo_belg \n AIC BIC logLik\n 866.9117 891.1102 -427.4558\n\nCorrelation Structure: Spherical spatial correlation\n Formula: ~x + y \n Parameter estimate(s):\n range nugget \n43.1727664 0.6063187 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 2.0368769 0.2481636 8.207800 0.000\nforest 0.6989844 0.1481690 4.717481 0.000\nwetland -0.2441130 0.1809118 -1.349348 0.178\n\n Correlation: \n (Intr) forest\nforest -0.251 \nwetland -0.235 0.241\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-1.75204183 -0.06568688 0.61415597 1.15240370 3.23322743 \n\nResidual standard error: 0.7998264 \nDegrees of freedom: 420 total; 417 residual\n```\n:::\n:::\n\n\nBoth effects are less important in magnitude and the effect of wetlands is not significant anymore. As is the case for other types of non-independent residuals, the \"effective sample size\" here is less than the number of points, since points close to each other provide redundant information. Therefore, the relationship between predictors and response is less clear than given by the model assuming all these points were independent.\n\nNote that the results for all three `gls` models are quite similar, so the choice to include spatial correlations was more important than the exact shape assumed for the variogram.\n\n\n# Areal data {#areal-data}\n\nAreal data are variables measured for regions of space, defined by polygons. This type of data is more common in the social sciences, human geography and epidemiology, where data is often available at the scale of administrative divisions.\n\nThis type of data also appears frequently in natural resource management. For example, the following map shows the forest management units of the Ministère de la Forêt, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSuppose that a variable is available at the level of these management units. How can we model the spatial correlation between units that are spatially close together?\n\nOne option would be to apply the geostatistical methods seen before, for example by calculating the distance between the centers of the polygons.\n\nAnother option, which is more adapted for areal data, is to define a network where each region is connected to neighbouring regions by a link. It is then assumed that the variables are directly correlated between neighbouring regions only. (Note, however, that direct correlations between immediate neighbours also generate indirect correlations for a chain of neighbours).\n\nIn this type of model, the correlation is not necessarily the same from one link to another. In this case, each link in the network can be associated with a *weight* representing its importance for the spatial correlation. We represent these weights by a matrix $W$ where $w_{ij}$ is the weight of the link between regions $i$ and $j$. A region has no link with itself, so $w_{ii} = 0$.\n\nA simple choice for $W$ is to assign a weight equal to 1 if the regions are neighbours, otherwise 0 (binary weight).\n\nIn addition to land divisions represented by polygons, another example of areal data consists of a grid where the variable is calculated for each cell of the grid. In this case, a cell generally has 4 or 8 neighbouring cells, depending on whether diagonals are included or not.\n\n# Moran's I {#moran-i}\n\nBefore discussing spatial autocorrelation models, we present Moran's $I$ statistic, which allows us to test whether a significant correlation is present between neighbouring regions.\n\nMoran's $I$ is a spatial autocorrelation coefficient of $z$, weighted by the $w_{ij}$. It therefore takes values between -1 and 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nIn this equation, we recognize the expression of a correlation, which is the product of the deviations from the mean for two variables $z_i$ and $z_j$, divided by the product of their standard deviations (it is the same variable here, so we get the variance). The contribution of each pair $(i, j)$ is multiplied by its weight $w_{ij}$ and the term on the left (the number of regions $N$ divided by the sum of the weights) ensures that the result is bounded between -1 and 1.\n\nSince the distribution of $I$ is known in the absence of spatial autocorrelation, this statistic serves to test the null hypothesis that there is no spatial correlation between neighbouring regions.\n\nAlthough we will not see an example in this course, Moran's $I$ can also be applied to point data. In this case, we divide the pairs of points into distance classes and calculate $I$ for each distance class; the weight $w_{ij} = 1$ if the distance between $i$ and $j$ is in the desired distance class, otherwise 0.\n\n# Spatial autoregression models {#spatial-autoreg}\n\nLet us recall the formula for a linear regression with spatial dependence:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nwhere $z$ is the portion of the residual variance that is spatially correlated.\n\nThere are two main types of autoregressive models to represent the spatial dependence of $z$: conditional autoregression (CAR) and simultaneous autoregressive (SAR).\n\n## Conditional autoregressive (CAR) model\n\nIn the conditional autoregressive model, the value of $z_i$ for the region $i$ follows a normal distribution: its mean depends on the value $z_j$ of neighbouring regions, multiplied by the weight $w_{ij}$ and a correlation coefficient $\\rho$; its standard deviation $\\sigma_{z_i}$ may vary from one region to another.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nIn this model, if $w_{ij}$ is a binary matrix (0 for non-neighbours, 1 for neighbours), then $\\rho$ is the coefficient of partial correlation between neighbouring regions. This is similar to a first-order autoregressive model in the context of time series, where the autoregression coefficient indicates the partial correlation.\n\n## Simultaneous autoregressive (SAR) model\n\nIn the simultaneous autoregressive model, the value of $z_i$ is given directly by the sum of contributions from neighbouring values $z_j$, multiplied by $\\rho w_{ij}$, with an independent residual $\\nu_i$ of standard deviation $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nAt first glance, this looks like a temporal autoregressive model. However, there is an important conceptual difference. For temporal models, the causal influence is directed in only one direction: $v(t-2)$ affects $v(t-1)$ which then affects $v(t)$. For a spatial model, each $z_j$ that affects $z_i$ depends in turn on $z_i$. Thus, to determine the joint distribution of $z$, a system of equations must be solved simultaneously (hence the name of the model).\n\nFor this reason, although this model resembles the formula of CAR model, the solutions of the two models differ and in the case of SAR, the coefficient $\\rho$ is not directly equal to the partial correlation due to each neighbouring region.\n\nFor more details on the mathematical aspects of these models, see the article by Ver Hoef et al. (2018) suggested in reference.\n\nFor the moment, we will consider SAR and CAR as two types of possible models to represent a spatial correlation on a network. We can always fit several models and compare them with the AIC to choose the best form of correlation or the best weight matrix.\n\nThe CAR and SAR models share an advantage over geostatistical models in terms of efficiency. In a geostatistical model, spatial correlations are defined between each pair of points, although they become negligible as distance increases. For a CAR or SAR model, only neighbouring regions contribute and most weights are equal to 0, making these models faster to fit than a geostatistical model when the data are massive.\n\n# Analysis of areal data in R {#analysis-areal}\n\nTo illustrate the analysis of areal data in R, we load the packages *sf* (to read geospatial data), *spdep* (to define spatial networks and calculate Moran's $I$) and *spatialreg* (for SAR and CAR models).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-52_bbb39418b6f206ecf18ea280d1186280'}\n\n```{.r .cell-code}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n:::\n\n\nAs an example, we will use a dataset that presents some of the results of the 2018 provincial election in Quebec, with population characteristics of each riding. This data is included in a *shapefile* (.shp) file type, which we can read with the `read_sf` function of the *sf* package.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-53_57544cb924c4156b05da2ae4a2ea020a'}\n\n```{.r .cell-code}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 9 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 97879.03 ymin: 174515.3 xmax: 694261.1 ymax: 599757.1\nProjected CRS: LambertAQ\n# A tibble: 6 × 10\n circ age_moy pct_frn pct_prp rev_med propCAQ propPQ propPLQ propQS\n \n1 Abitibi-Est 40.8 0.963 0.644 34518 42.7 19.5 18.8 15.7\n2 Abitibi-Ouest 42.2 0.987 0.735 33234 34.1 33.3 11.3 16.6\n3 Acadie 40.3 0.573 0.403 25391 16.5 9 53.8 13.8\n4 Anjou-Louis-Riel 43.5 0.821 0.416 31275 28.9 14.7 39.1 14.5\n5 Argenteuil 43.3 0.858 0.766 31097 38.9 21.1 17.4 12.2\n6 Arthabaska 43.4 0.989 0.679 30082 61.8 9.4 11.4 12.6\n# … with 1 more variable: geometry \n```\n:::\n:::\n\n\n*Note*: The dataset is actually composed of 4 files with the extensions .dbf, .prj, .shp and .shx, but it is sufficient to write the name of the .shp file in `read_sf`.\n\nThe columns of the dataset are, in order:\n\n- the name of the electoral riding (`circ`);\n- four characteristics of the population (`age_moy` = mean age, `pct_frn` = fraction of the population that speaks mainly French at home, `pct_prp` = fraction of households that own their home, `rev_med` = median income);\n- four columns showing the fraction of votes obtained by the main parties (CAQ, PQ, PLQ, QS);\n- a `geometry` column that contains the geometric object (multipolygon) corresponding to the riding.\n\nTo illustrate one of the variables on a map, we call the `plot` function with the name of the column in square brackets and quotation marks.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-54_b911c1230b37d88999c315735187b9c4'}\n\n```{.r .cell-code}\nplot(elect2018[\"rev_med\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-54-1.png){width=672}\n:::\n:::\n\n\nIn this example, we want to model the fraction of votes obtained by the CAQ based on the characteristics of the population in each riding and taking into account the spatial correlations between neighbouring ridings.\n\n## Definition of the neighbourhood network\n\nThe `poly2nb` function of the *spdep* package defines a neighbourhood network from polygons. The result `vois` is a list of 125 elements where each element contains the indices of the neighbouring (bordering) polygons of a given polygon.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-55_98b699432f680855147ba1bd583f3497'}\n\n```{.r .cell-code}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 2 37 63 88 101 117\n```\n:::\n:::\n\n\nThus, the first riding (Abitibi-Est) has 6 neighbouring ridings, for which the names can be found as follows:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-56_1fa15a9556e3ec5f51ffe127e1e42830'}\n\n```{.r .cell-code}\nelect2018$circ[vois[[1]]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"Abitibi-Ouest\" \"Gatineau\" \n[3] \"Laviolette-Saint-Maurice\" \"Pontiac\" \n[5] \"Rouyn-Noranda-Témiscamingue\" \"Ungava\" \n```\n:::\n:::\n\n\nWe can illustrate this network by extracting the coordinates of the center of each district, creating a blank map with `plot(elect2018[\"geometry\"])`, then adding the network as an additional layer with `plot(vois, add = TRUE, coords = coords)`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-57_f0d7bd96b26b0a6cd39daec9f4aad58b'}\n\n```{.r .cell-code}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-57-1.png){width=672}\n:::\n:::\n\n\nWe can \"zoom\" on southern Québec by choosing the limits `xlim` and `ylim`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-58_1fa7ea9cbb36326317c26af33b739d1c'}\n\n```{.r .cell-code}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-58-1.png){width=672}\n:::\n:::\n\n\nWe still have to add weights to each network link with the `nb2listw` function. The style of weights \"B\" corresponds to binary weights, i.e. 1 for the presence of link and 0 for the absence of link between two ridings.\n\nOnce these weights are defined, we can verify with Moran's test whether there is a significant autocorrelation of votes obtained by the CAQ between neighbouring ridings.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-59_94da4f87bfc6fa6486cce26e9c1ed239'}\n\n```{.r .cell-code}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: elect2018$propCAQ \nweights: poids \n\nMoran I statistic standard deviate = 13.148, p-value < 2.2e-16\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.680607768 -0.008064516 0.002743472 \n```\n:::\n:::\n\n\nThe value $I = 0.68$ is very significant judging by the $p$-value of the test.\n\nLet's verify if the spatial correlation persists after taking into account the four characteristics of the population, therefore by inspecting the residuals of a linear model including these four predictors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-60_48eb067e5cfdccfc3e81ace94767cddc'}\n\n```{.r .cell-code}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018)\n\nResiduals:\n Min 1Q Median 3Q Max \n-30.9890 -4.4878 0.0562 6.2653 25.8146 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 1.354e+01 1.836e+01 0.737 0.463 \nage_moy -9.170e-01 3.855e-01 -2.378 0.019 * \npct_frn 4.588e+01 5.202e+00 8.820 1.09e-14 ***\npct_prp 3.582e+01 6.527e+00 5.488 2.31e-07 ***\nrev_med -2.624e-05 2.465e-04 -0.106 0.915 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 9.409 on 120 degrees of freedom\nMultiple R-squared: 0.6096,\tAdjusted R-squared: 0.5965 \nF-statistic: 46.84 on 4 and 120 DF, p-value: < 2.2e-16\n```\n:::\n\n```{.r .cell-code}\nmoran.test(residuals(elect_lm), poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: residuals(elect_lm) \nweights: poids \n\nMoran I statistic standard deviate = 6.7047, p-value = 1.009e-11\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.340083290 -0.008064516 0.002696300 \n```\n:::\n:::\n\n\nMoran's $I$ has decreased but remains significant, so some of the previous correlation was induced by these predictors, but there remains a spatial correlation due to other factors.\n\n## Spatial autoregression models\n\nFinally, we fit SAR and CAR models to these data with the `spautolm` (*spatial autoregressive linear model*) function of *spatialreg*. Here is the code for a SAR model including the effect of the same four predictors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-61_13bb8dc5c63cce02c362b41c905f9de5'}\n\n```{.r .cell-code}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\n\nResiduals:\n Min 1Q Median 3Q Max \n-23.08342 -4.10573 0.24274 4.29941 23.08245 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 15.09421119 16.52357745 0.9135 0.36098\nage_moy -0.70481703 0.32204139 -2.1886 0.02863\npct_frn 39.09375061 5.43653962 7.1909 6.435e-13\npct_prp 14.32329345 6.96492611 2.0565 0.03974\nrev_med 0.00016730 0.00023209 0.7208 0.47101\n\nLambda: 0.12887 LR test value: 42.274 p-value: 7.9339e-11 \nNumerical Hessian standard error of lambda: 0.012069 \n\nLog likelihood: -433.8862 \nML residual variance (sigma squared): 53.028, (sigma: 7.282)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 881.77\n```\n:::\n:::\n\n\nThe value given by `Lambda` in the summary corresponds to the coefficient $\\rho$ in our description of the model. The likelihood-ratio test (`LR test`) confirms that this residual spatial correlation (after controlling for the effect of predictors) is significant.\n\nThe estimated effects for the predictors are similar to those of the linear model without spatial correlation. The effects of mean age, fraction of francophones and fraction of homeowners remain significant, although their magnitude has decreased somewhat.\n\nTo fit a CAR rather than SAR model, we must specify `family = \"CAR\"`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-62_29349c4a3573934d0da78be8a806d927'}\n\n```{.r .cell-code}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-21.73315 -4.24623 -0.24369 3.44228 23.43749 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 16.57164696 16.84155327 0.9840 0.325128\nage_moy -0.79072151 0.32972225 -2.3981 0.016478\npct_frn 38.99116707 5.43667482 7.1719 7.399e-13\npct_prp 17.98557474 6.80333470 2.6436 0.008202\nrev_med 0.00012639 0.00023106 0.5470 0.584364\n\nLambda: 0.15517 LR test value: 40.532 p-value: 1.9344e-10 \nNumerical Hessian standard error of lambda: 0.0026868 \n\nLog likelihood: -434.7573 \nML residual variance (sigma squared): 53.9, (sigma: 7.3416)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 883.51\n```\n:::\n:::\n\n\nFor a CAR model with binary weights, the value of `Lambda` (which we called $\\rho$) directly gives the partial correlation coefficient between neighbouring districts. Note that the AIC here is slightly higher than the SAR model, so the latter gave a better fit.\n\n## Exercise\n\nThe `rls_covid` dataset, in *shapefile* format, contains data on detected COVID-19 cases (`cas`), number of cases per 1000 people (`taux_1k`) and the population density (`dens_pop`) in each of Quebec's local health service networks (RLS) (Source: Data downloaded from the Institut national de santé publique du Québec as of January 17, 2021).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-63_93fde0bc2a6d31114d1cad8dee5f0aa1'}\n\n```{.r .cell-code}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 5 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 785111.2 ymin: 341057.8 xmax: 979941.5 ymax: 541112.7\nProjected CRS: Conique_conforme_de_Lambert_du_MTQ_utilis_e_pour_Adresse_Qu_be\n# A tibble: 6 × 6\n RLS_code RLS_nom cas taux_1k dens_…¹ geometry\n \n1 0111 RLS de Kamouraska 152 7.34 6.76 (((827028.3 412772.4, 82…\n2 0112 RLS de Rivière-du-Lo… 256 7.34 19.6 (((855905 452116.9, 8557…\n3 0113 RLS de Témiscouata 81 4.26 4.69 (((911829.4 441311.2, 91…\n4 0114 RLS des Basques 28 3.3 5.35 (((879249.6 471975.6, 87…\n5 0115 RLS de Rimouski 576 9.96 15.5 (((917748.1 503148.7, 91…\n6 0116 RLS de La Mitis 76 4.24 5.53 (((951316 523499.3, 9525…\n# … with abbreviated variable name ¹​dens_pop\n```\n:::\n:::\n\n\nFit a linear model of the number of cases per 1000 as a function of population density (it is suggested to apply a logarithmic transform to the latter). Check whether the model residuals are correlated between bordering RLS with a Moran's test and then model the same data with a conditional autoregressive model.\n\n## Reference\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. and Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n\n\n\n# GLMM with spatial Gaussian process {#glmm-spatial-gaussian}\n\n## Data\n\nThe `gambia` dataset found in the *geoR* package presents the results of a study of malaria prevalence among children of 65 villages in The Gambia. We will use a slightly transformed version of the data found in the file [gambia.csv](data/gambia.csv).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-64_c90dcebc741300cf593af262129c15ab'}\n\n```{.r .cell-code}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n id_village x y pos age netuse treated green phc\n1 1 349.6313 1458.055 1 1783 0 0 40.85 1\n2 1 349.6313 1458.055 0 404 1 0 40.85 1\n3 1 349.6313 1458.055 0 452 1 0 40.85 1\n4 1 349.6313 1458.055 1 566 1 0 40.85 1\n5 1 349.6313 1458.055 0 598 1 0 40.85 1\n6 1 349.6313 1458.055 1 590 1 0 40.85 1\n```\n:::\n:::\n\n\nHere are the fields in that dataset:\n\n- *id_village*: Identifier of the village.\n- *x* and *y*: Spatial coordinates of the village (in kilometers, based on UTM coordinates).\n- *pos*: Binary response, whether the child tested positive for malaria.\n- *age*: Age of the child in days.\n- *netuse*: Whether or not the child sleeps under a bed net.\n- *treated*: Whether or not the bed net is treated.\n- *green*: Remote sensing based measure of greenness of vegetation (measured at the village level).\n- *phc*: Presence or absence of a public health centre for the village.\n\nWe can count the number of positive cases and total children tested by village to map the fraction of positive cases (or prevalence, *prev*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-65_8c814c1bf1c630ff765172316c6e438a'}\n\n```{.r .cell-code}\n# Create village-level dataset\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\n```\n\n::: {.cell-output .cell-output-stderr}\n```\n`summarise()` has grouped output by 'id_village', 'x', 'y', 'green'. You can\noverride using the `.groups` argument.\n```\n:::\n\n```{.r .cell-code}\nhead(gambia_agg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n# A tibble: 6 × 8\n id_village x y green phc pos total prev\n \n1 1 350. 1458. 40.8 1 17 33 0.515\n2 2 359. 1460. 40.8 1 19 63 0.302\n3 3 360. 1460. 40.1 0 7 17 0.412\n4 4 364. 1497. 40.8 0 8 24 0.333\n5 5 366. 1460. 40.8 0 10 26 0.385\n6 6 367. 1463. 40.8 0 7 18 0.389\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-66_ae2eb69bc71b443b86ab8b607284711a'}\n\n```{.r .cell-code}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-66-1.png){width=672}\n:::\n:::\n\n\nWe use the `gambia.borders` dataset from the *geoR* package to trace the country boundaries with `geom_path`. Since those boundaries are in meters, we divide by 1000 to get the same scale as our points. We also use `coord_fixed` to ensure a 1:1 aspect ratio between the axes and use the `viridis` color scale, which makes it easier to visualize a continuous variable compared with the default gradient scale in *ggplot2*.\n\nBased on this map, there seems to be spatial correlation in malaria prevalence, with the eastern cluster of villages showing more high prevalence values (yellow-green) and the middle cluster showing more low prevalence values (purple).\n\n## Non-spatial GLMM\n\nFor this first example, we will ignore the spatial aspect of the data and model the presence of malaria (*pos*) as a function of the use of a bed net (*netuse*) and the presence of a public health centre (*phc*). Since we have a binary response, we need to use a logistic regression model (a GLM). Since we have predictors at both the individual and village level, and we expect that children of the same village have more similar probabilities of having malaria even after accounting for those predictors, we need to add a random effect of the village. The result is a GLMM that we fit using the `glmer` function in the *lme4* package.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-67_5c5fd662cb4ced05e844aabdfdb7a676'}\n\n```{.r .cell-code}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Laplace\n Approximation) [glmerMod]\n Family: binomial ( logit )\nFormula: pos ~ netuse + phc + (1 | id_village)\n Data: gambia\n\n AIC BIC logLik deviance df.resid \n 2428.0 2450.5 -1210.0 2420.0 2031 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-2.1286 -0.7120 -0.4142 0.8474 3.3434 \n\nRandom effects:\n Groups Name Variance Std.Dev.\n id_village (Intercept) 0.8149 0.9027 \nNumber of obs: 2035, groups: id_village, 65\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 0.1491 0.2297 0.649 0.5164 \nnetuse -0.6044 0.1442 -4.190 2.79e-05 ***\nphc -0.4985 0.2604 -1.914 0.0556 . \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) netuse\nnetuse -0.422 \nphc -0.715 -0.025\n```\n:::\n:::\n\n\nAccording to these results, both *netuse* and *phc* result in a decrease of malaria prevalence, although the effect of *phc* is not significant at a threshold $\\alpha = 0.05$. The intercept (0.149) is the logit of the probability of malaria presence for a child with no bednet and no public health centre, but it is the mean intercept across all villages, and there is a lot of variation between villages, based on the random effect standard deviation of 0.90. We can get the estimated intercept for each village with the function `coef`:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-68_3720c229ebd5b2262ea78c97fa323bc0'}\n\n```{.r .cell-code}\nhead(coef(mod_glmm)$id_village)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n (Intercept) netuse phc\n1 0.93727515 -0.6043602 -0.4984835\n2 0.09204843 -0.6043602 -0.4984835\n3 0.22500620 -0.6043602 -0.4984835\n4 -0.46271089 -0.6043602 -0.4984835\n5 0.13680037 -0.6043602 -0.4984835\n6 -0.03723346 -0.6043602 -0.4984835\n```\n:::\n:::\n\n\nSo for example, the intercept for village 1 is around 0.94, equivalent to a probability of 72%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-69_5db6d43ef9ff435eae9aedd3aebe48f9'}\n\n```{.r .cell-code}\nplogis(0.937)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7184933\n```\n:::\n:::\n\n\nwhile the intercept in village 2 is equivalent to a probability of 52%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-70_8c98817d65db7e2319175c4f3cba494c'}\n\n```{.r .cell-code}\nplogis(0.092)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.5229838\n```\n:::\n:::\n\n\nThe [DHARMa package](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) provides a general method for checking whether the residuals of a GLMM are distributed according to the specified model and whether there is any residual trend. The package works by simulating replicates of each observation according to the fitted model and then determining a \"standardized residual\", which is the relative position of the observed value with respect to the simulated values, e.g. 0 if the observation is smaller than all the simulations, 0.5 if it is in the middle, etc. If the model represents the data well, each value of the standardized residual between 0 and 1 should be equally likely, so the standardized residuals should produce a uniform distribution between 0 and 1.\n\nThe `simulateResiduals` function performs the calculation of the standardized residuals, then the `plot` function plots the diagnostic graphs with the results of certain tests.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-71_7045ff49e2f9776387a59c78b53a1341'}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-71-1.png){width=672}\n:::\n:::\n\n\nThe graph on the left is a quantile-quantile plot of standardized residuals. The results of three statistical tests also also shown: a Kolmogorov-Smirnov (*KS*) test which checks whether there is a deviation from the theoretical distribution, a dispersion test that checks whether there is underdispersion or overdispersion, and an outlier test based on the number of residuals that are more extreme than all the simulations. Here, we get a significant result for the outliers, though the message indicates that this result might have an inflated type I error rate in this case.\n\nOn the right, we generally get a graph of standardized residuals (in *y*) as a function of the rank of the predicted values, in order to check for any leftover trend in the residual. Here, the predictions are binned by quartile, so it might be better to instead aggregate the predictions and residuals by village, which we can do with the `recalculateResiduals` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-72_65a9d2bb93c9d14f4d7fcc7b40b03c87'}\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-72-1.png){width=672}\n:::\n:::\n\n\nThe plot to the right now shows individual points, along with a quantile regression for the 1st quartile, the median and the 3rd quartile. In theory, these three curves should be horizontal straight lines (no leftover trend in the residuals vs. predictions). The curve for the 3rd quartile (in red) is significantly different from a horizontal line, which could indicate some systematic effect that is missing from the model.\n\n## Spatial GLMM with spaMM\n\nThe *spaMM* (spatial mixed models) package is a relatively new R package that can perform approximate maximum likelihood estimation of parameters for GLMM with spatial dependence, modelled either as a Gaussian process or with a CAR (we will see the latter in the last section). The package implements different algorithms, but there is a single `fitme` function that chooses the appropriate algorithm for each model type. For example, here is the same (non-spatial) model as above fit with *spaMM*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-73_4095dfb1a2890efd12578324ce9cfb41'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + (1 | id_village)\nEstimation of lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.1491 0.2287 0.6519\nnetuse -0.6045 0.1420 -4.2567\nphc -0.4986 0.2593 -1.9231\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n id_village : 0.8151 \n --- Coefficients for log(lambda):\n Group Term Estimate Cond.SE\n id_village (Intercept) -0.2045 0.2008\n# of obs: 2035; # of groups: id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1210.016\n```\n:::\n:::\n\n\nNote that the estimates of the fixed effects as well as the variance of random effects are nearly identical to those obtained by `glmer` above.\n\nWe can now use *spaMM* to fit the same model with the addition of spatial correlations between villages. In the formula of the model, this is represented as a random effect `Matern(1 | x + y)`, which means that the intercepts are spatially correlated between villages following a Matérn correlation function of coordinates (*x, y*). The Matérn function is a flexible function for spatial correlation that includes a shape parameter $\\nu$ (`nu`), so that when $\\nu = 0.5$ it is equivalent to the exponential correlation but as $\\nu$ grows to large values, it approaches a Gaussian correlation. We could let the function estimate $\\nu$, but here we will fix it to 0.5 with the `fixed` argument of `fitme`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-74_d3aef70cffd85f41f037e30922c132c2'}\n\n```{.r .cell-code}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.rho \n0.50000000 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.6421 \n id_village : 0.1978 \n# of obs: 2035; # of groups: x + y, 65; id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nLet's first check the random effects of the model. The spatial correlation function has a parameter `rho` equal to 0.0513. This parameter in *spaMM* is the inverse of the range, so here the range of exponential correlation is 1/0.0513 or around 19.5 km. There are now two variance prameters, the one identified as `x + y` is the long-range variance (i.e. sill) for the exponential correlation model whereas the one identified as `id_village` shows the non-spatially correlated portion of the variation between villages.\n\nIn fact, while we left the random effects `(1 | id_village)` in the formula to represent the non-spatial portion of variation between villages, we could also represent this with a nugget effect in the geostatistical model. In both cases, it would represent the idea that even two villages very close to each other would have different baseline prevalences in the model.\n\nBy default, the `Matern` function has no nugget effect, but we can add one by specifying a non-zero `Nugget` in the initial parameter list `init`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-75_dbd5d25ae78a3c934126be892144af99'}\n\n```{.r .cell-code}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm2)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.Nugget 1.rho \n0.50000000 0.23551027 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.8399 \n# of obs: 2035; # of groups: x + y, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nAs you can see, all estimates are the same, except that the variance of the spatial portion (sill) is now 0.84 and the nugget is equal to a fraction 0.235 of that sill, so a variance of 0.197, which is the same as the `id_village` random effect in the version above. Thus the two formulations are equivalent.\n\nNow, recall the coefficients we obtained for the non-spatial GLMM:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-76_2ff7323dca01a1d9207ef38489d6b664'}\n\n```{.r .cell-code}\nsummary(mod_glmm)$coefficients\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01\nnetuse -0.6043602 0.1442448 -4.1898243 2.791706e-05\nphc -0.4984835 0.2604083 -1.9142382 5.558973e-02\n```\n:::\n:::\n\n\nIn the spatial version, both fixed effects have moved slightly towards zero, but the standard error of the effect of `phc` has decreased. It is interesting that the inclusion of spatial dependence has allowed us to estimate more precisely the effect of having a public health centre in the village. This would not always be the case: for a predictor that is also strongly correlated in space, spatial correlation in the response makes it harder to estimate the effect of this predictor, since it is confounded with the spatial effect. However, for a predictor that is not correlated in space, including the spatial effect reduces the residual (non-spatial) variance and may thus increase the precision of the predictor's effect.\n\nThe *spaMM* package is also compatible with *DHARMa* for residual diagnostics. (You can in fact ignore the warning that it is not in the class of supported models, this is due to using the `fitme` function rather than a specific algorithm function in *spaMM*.)\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-77_435151fa87f7c6c10fa17fe4778779f0'}\n\n```{.r .cell-code}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-1.png){width=672}\n:::\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-2.png){width=672}\n:::\n:::\n\n\nFinally, while we will show how to make and visualize spatial predictions below, we can produce a quick map of the estimated spatial effects in a *spaMM* model with the `filled.mapMM` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-78_9aa73f93f8884bdd0fab5e2e18929e73'}\n\n```{.r .cell-code}\nfilled.mapMM(mod_spamm2)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-78-1.png){width=672}\n:::\n:::\n\n\n## Gaussian process models vs. smoothing splines\n\nIf you are familiar with generalized additive models (GAM), you might think that the spatial variation in malaria prevalence (as shown in the map above) could be represented by a 2D smoothing spline (as a function of $x$ and $y$) within a GAM.\n\nThe code below fits the GAM equivalent of our Gaussian process GLMM above with the `gam` function in the *mgcv* package. The spatial effect is represented by the 2D spline `s(x, y)` whereas the non-spatial random effect of village is represented by `s(id_village, bs = \"re\")`, which is the same as `(1 | id_village)` in the previous models. Note that for the `gam` function, categorical variables must be explicitly converted to factors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-79_ae40737239f2e38abf88e2861e3870b5'}\n\n```{.r .cell-code}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n:::\n\n\nTo visualize the 2D spline, we will use the [*gratia* package](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-80_d5c74c6f14896719f6bab59691ffa563'}\n\n```{.r .cell-code}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-80-1.png){width=672}\n:::\n:::\n\n\nNote that the plot of the spline `s(x, y)` (top right) does not extend too far from the locations of the data (other areas are blank). In this graph, we can also see that the village random effects follow the expected Gaussian distribution (top left).\n\nNext, we will use both the spatial GLMM from the previous section and this GAMM to predict the mean prevalence on a spatial grid of points contained in the file [gambia_pred.csv](data/gambia_pred.csv). The graph below adds those prediction points (in black) on the previous map of the data points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-81_29ad1d87f053e7c4195d592da7d54ff1'}\n\n```{.r .cell-code}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-81-1.png){width=672}\n:::\n:::\n\n\nTo make predictions from the GAMM model at those points, the code below goes through the following steps:\n\n- All predictors in the model must be in the prediction data frame, so we add constant values of *netuse* and *phc* (both equal to 1) for all points. Thus, we will make predictions of malaria prevalence in the case where a net is used and a public health centre is present. We also add a constant *id_village*, although it will not be used in predictions (see below).\n\n- We call the `predict` function on the output of `gam` to produce predictions at the new data points (argument `newdata`), including standard errors (`se.fit = TRUE`) and excluding the village random effects, so the prediction is made for an \"average village\". The resulting object `gam_pred` will have columns `fit` (mean prediction) and `se.fit` (standard error). Those predictions and standard errors are on the link (logit) scale.\n\n- We add the original prediction data frame to `gam_pred` with `cbind`.\n\n- We add columns for the mean prediction and 50% confidence interval boundaries (mean $\\pm$ 0.674 standard error), converted from the logit scale to the probability scale with `plogis`. We choose a 50% interval since a 95% interval may be too wide here to contrast the different predictions on the map at the end of this section.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-82_a655e5eb759da0f74f34c89ed61d58a2'}\n\n```{.r .cell-code}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\n*Note*: The reason we do not make predictions directly on the probability (response) scale is that the normal formula for confidence intervals applies more accurately on the logit scale. Adding a certain number of standard errors around the mean on the probability scale would lead to less accurate intervals and maybe even confidence intervals outside the possible range (0, 1) for a probability.\n\nWe apply the same strategy to make predictions from the *spaMM* spatial GLMM model. There are a few differences in the `predict` method compared with the GAMM case.\n\n- The argument `binding = \"fit\"` means that mean predictions (`fit` column) will be attached to the prediction dataset and returned as `spamm_pred`.\n\n- The `variances = list(linPred = TRUE)` tells `predict` to calculate the variance of the linear predictor (so the square of the standard error). However, it appears as an attribute `predVar` in the output data frame rather than a `se.fit` column, so we move it to a column on the next line.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-83_8466cc239c165bb619c3ec38ce8db16a'}\n\n```{.r .cell-code}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\nFinally, we combine both sets of predictions as different rows of a `pred_all` dataset with `bind_rows`. The name of the dataset each prediction originates from (`gam` or `spamm`) will appear in the \"model\" column (argument `.id`). To simplify production of the next plot, we then use `pivot_longer` in the *tidyr* package to change the three columns \"pred\", \"lo\" and \"hi\" to two columns, \"stat\" and \"value\" (`pred_tall` has thus three rows for every row in `pred_all`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-84_7a8a967d3486a1ba90686ccd4eede914'}\n\n```{.r .cell-code}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n:::\n\n\nHaving done these steps, we can finally look at the prediction maps (mean, lower and upper bounds of the 50% confidence interval) with `ggplot`. The original data points are shown in red.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-85_31003401bd646a7f13b4009bc478ce83'}\n\n```{.r .cell-code}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-85-1.png){width=672}\n:::\n:::\n\n\nWhile both models agree that there is a higher prevalence near the eastern cluster of villages, the GAMM also estimates a higher prevalence at a few points (western edge and around the center) where there is no data. This is an artifact of the shape of the spline fit around the data points, since a spline is meant to fit a global, although nonlinear, trend. In contrast, the geostatistical model represents the spatial effect as local correlations and reverts to the overall mean prevalence when far from any data points, which is a safer assumption. This is one reason to choose a geostatistical / Gaussian process model in this case.\n\n## Bayesian methods for GLMMs with Gaussian processes\n\nBayesian models provide a flexible framework to express models with complex dependence structure among the data, including spatial dependence. However, fitting a Gaussian process model with a fully Bayesian approach can be slow, due the need to compute a spatial covariance matrix between all point pairs at each iteration.\n\nThe INLA (integrated nested Laplace approximation) method performs an approximate calculation of the Bayesian posterior distribution, which makes it suitable for spatial regression problems. We do not cover it in this course, but I recommend the textbook by Paula Moraga (in the references section below) that provides worked examples of using INLA for various geostatistical and areal data models, in the context of epidemiology, including models with both space and time dependence. The book presents the same Gambia malaria data as an example of a geostatistical dataset, which inspired its use in this course.\n\n# GLMM with spatial autoregression {#glmm-spatial-autoreg}\n\nWe return to the last example of the previous part, where we modelled the rate of COVID-19 cases (cases / 1000) for administrative health network divisions (RLS) in Quebec as a function of their population density. The rate is given by the \"taux_1k\" column in the `rls_covid` shapefile.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-86_dee7e0520a18d70a7e5f70f91e7f0d0a'}\n\n```{.r .cell-code}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-86-1.png){width=672}\n:::\n:::\n\n\nPreviously, we modelled the logarithm of this rate as a linear function of the logarithm of population density, with the residual variance correlated among neighbouring units via a CAR (conditional autoregression) structure, as shown in the code below.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-87_51a48c9cba07b64df6887bc1c93140b3'}\n\n```{.r .cell-code}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid, \n listw = rls_w, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.201858 -0.254084 -0.053348 0.281482 1.427053 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16\nlog(dens_pop) 0.206623 0.032848 6.2903 3.169e-10\n\nLambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07 \nNumerical Hessian standard error of lambda: 0.0050486 \n\nLog likelihood: -80.68953 \nML residual variance (sigma squared): 0.2814, (sigma: 0.53048)\nNumber of observations: 95 \nNumber of parameters estimated: 4 \nAIC: 169.38\n```\n:::\n:::\n\n\nAs a reminder, the `poly2nb` function in the *spdep* package creates a list of neighbours based on bordering polygons in a shapefile, then the `nb2listw` converts it to a list of weights, here binary weights (`style = \"B\"`) so that each bordering region receives the same weight of 1 in the autoregressive model.\n\nInstead of using the rates, it would be possible to model the cases directly (column \"cas\" in the dataset) with a Poisson regression, which is appropriate for count data. To account for the fact that if the risk per person were equal, cases would be proportional to population, we can add the unit's population `pop` as an *offset* in the Poisson regression. Therefore, the model would look like: `cas ~ log(dens_pop) + offset(log(pop))`. Note that since the Poisson regression uses a logarithmic link, that model with `log(pop)` as an offset assumes that `log(cas / pop)` (so the log rate) is proportional to `log(dens_pop)`, just like the linear model above, but it has the advantage of modelling the stochasticity of the raw data (the number of cases) directly with a Poisson distribution.\n\nWe do not have the population in this data, but we can estimate it from the cases and the rate (cases / 1000) as follows:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-88_dd571339361d6d0f00653ec574a812b8'}\n\n```{.r .cell-code}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n:::\n\n\nTo define a CAR model in *spaMM*, we need a weights matrix rather than a list of weights as in the *spatialreg* package. Fortunately, the *spdep* package also includes a function `nb2mat` to convert the neighbours list to a matrix of weights, here again using binary weights. To avoid a warning, we specify the row and column names of that matrix to be equal to the IDs associated with each unit (`RLS_code`). Then, we add a term `adjacency(1 | RLS_code)` to the model to specify that the residual variation between different groups defined by `RLS_code` is spatially correlated with a CAR structure (here, each group has only one observation since we have one data point by RLS unit).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-89_96e9784ebad8d38cbd211f444a330b0c'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: poisson( link = log ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) -5.1618 0.16855 -30.625\nlog(dens_pop) 0.1999 0.03267 6.119\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.rho \n0.1576605 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n RLS_code : 0.266 \n# of obs: 95; # of groups: RLS_code, 95 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -709.3234\n```\n:::\n:::\n\n\nNote that the spatial correlation coefficient `rho` (0.158) is similar to the equivalent quantity in the `spautolm` model above, where it was called `Lambda`. The effect of `log(dens_pop)` is also approximately 0.2 in both models.\n\n## Reference\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Available online at .\n\n------------------------------------------------------------------------\n\n# Statistiques spatiales en écologie {#statistiques-spatiales-en-écologie}\n\nBIOS² a organisé une session de formation en ligne sur l'analyse statistique des données spatiales en écologie, animée par le Pr. Philippe Marchand (UQAT). Cette formation de 12 heures s'est déroulée en 4 sessions : 12, 14, 19 & 21 janvier (2021) de 13h00 à 16h00 HNE.\n\nLe contenu comprenait trois types d'analyses statistiques spatiales et leurs applications en écologie : (1) l'analyse des patrons de points qui permet d'étudier la distribution d'individus ou d'événements dans l'espace; (2) les modèles géostatistiques qui représentent la corrélation spatiale de variables échantillonnées à des points géoréférencés; et (3) les modèles de données aréales, qui s'appliquent aux mesures prises sur des régions de l'espace et qui représentent les liens spatiaux par le biais de réseaux de voisinage. La formation comprenait également des exercices pratiques utilisant l'environnement de programmation statistique R.\n\n[Philippe Marchand](https://github.com/pmarchand1) est professeur d'écologie et de biostatistique à l'Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) et membre académique de BIOS². Ses travaux de recherche portent sur la modélisation de processus qui influencent la distribution spatiale des populations, incluant: la dispersion des graines et l'établissement des semis, le mouvement des animaux, et la propagation des épidémies forestières.\n\n**Si vous souhaitez consulter le matériel pédagogique et suivre les exercices à votre propre rythme, vous pouvez y accéder par [ce lien](https://bios2.github.io/Marchand.html#category:FR). Une connaissance de base des modèles de régression linéaire et une expérience de l'ajustement de ces modèles dans R sont recommandées. Le repositoire original se trouve [ici](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Plan du cours\n\n| Jour | Sujets | \n|-----------------|:--------------------------|\n| 1 | • [Introduction aux statistiques spatiales](#introduction-fr)
• [Analyse des patrons de points](#point-pattern-fr)
|\n| 2 | • [Corrélation spatiale d'une variable](#spatial-correlation-fr)
• [Modèles géostatistiques](#geostat-models-fr) | \n| 3 | • [Données aréales](#areal-data-fr)
• [Indice de Moran](#moran-i-fr)
• [Modèles d'autorégression spatiale](#spatial-autoreg-fr)
• [Analyse des données aréales dans R](#analysis-areal-fr) |\n| 4 | • [GLMM avec processus spatial gaussien](#glmm-spatial-gaussian-fr)
• [GLMM avec autorégression spatiale](#glmm-spatial-autoreg-fr)| \n\n# Introduction aux statistiques spatiales {#introduction-fr}\n\n## Types d'analyses spatiales\n\nDans le cadre de cette formation, nous discuterons de trois types d'analyses spatiales: l'analyse des patrons de points, les modèles géostatistiques et les modèles de données aréales.\n\nDans l'**analyse des patrons de points**, nous avons des données ponctuelles représentant la position d'individus ou d'événements dans une région d'étude et nous supposons que tous les individus ou événements ont été recensés dans cette région. Cette analyse s'intéresse à la distribution des positions des points eux-mêmes. Voici quelques questions typiques de l'analyse des patrons de points:\n\n- Les points sont-ils disposés aléatoirement ou agglomérés?\n\n- Deux types de points sont-ils disposés indépendamment?\n\nLes **modèles géostatistiques** visent à représenter la distribution spatiale de variables continues qui sont mesurés à certains points d'échantillonnage. Ils supposent que les mesures de ces variables à différents points sont corrélées en fonction de la distance entre ces points. Parmi les applications des modèles géostatistiques, notons le lissage des données spatiales (ex.: produire une carte d'une variable sur l'ensemble d'une région en fonction des mesures ponctuelles) et la prédiction de ces variables pour des points non-échantillonnés.\n\nLes **données aréales** sont des mesures prises non pas à des points, mais pour des régions de l'espace représentées par des polygones (ex.: divisions du territoire, cellules d'une grille). Les modèles représentant ces types de données définissent un réseau de voisinage reliant les régions et incluent une corrélation spatiale entre régions voisines. \n\n## Stationnarité et isotropie\n\nPlusieurs analyses spatiales supposent que les variables sont **stationnaires** dans l'espace. Comme pour la stationnarité dans le domaine temporel, cette propriété signifie que les statistiques sommaires (moyenne, variance et corrélations entre mesures d'une variable) ne varient pas avec une translation dans l'espace. Par exemple, la corrélation spatiale entre deux points peut dépendre de la distance les séparant, mais pas de leur position absolue.\n\nEn particulier, il ne peut pas y avoir de tendance à grande échelle (souvent appelée *gradient* dans un contexte spatial), ou bien cette tendance doit être prise en compte afin de modéliser la corrélation spatiale des résidus.\n\nDans le cas de l'analyse des patrons de points, la stationnarité (aussi appelée homogénéité dans ce contexte) signifie que la densité des points ne suit pas de tendance à grande échelle.\n\nDans un modèle statistique **isotropique**, les corrélations spatiales entre les mesures à deux points dépendent seulement de la distance entre ces points, pas de la direction. Dans ce cas, les statistiques sommaires ne varient pas si on effectue une rotation dans l'espace.\n\n## Données géoréférencées\n\nLes études environnementales utilisent de plus en plus de données provenant de sources de données géospatiales, c'est-à-dire des variables mesurées sur une grande partie du globe (ex.: climat, télédétection). Le traitement de ces données requiert des concepts liés aux systèmes d'information géographique (SIG), qui ne sont pas couverts dans cet atelier, alors que nous nous concentrons sur les aspects statistiques de données variant dans l'espace.\n\nL'utilisation de données géospatiales ne signifie pas nécessairement qu'il faut avoir recours à des statistiques spatiales. Par exemple, il est courant d'extraire les valeurs de ces variables géographiques à des points d'étude pour expliquer une réponse biologique observée sur le terrain. Dans ce cas, l'utilisation de statistiques spatiales est seulement nécessaire en présence d'une corrélation spatiale dans les résidus, après avoir tenu compte de l'effet des prédicteurs.\n\n\n# Analyse des patrons de points {#point-pattern-fr}\n\n## Patron de points et processus ponctuel\n\nUn patron de points (*point pattern*) décrit la position spatiale (le plus souvent en 2D) d'individus ou d'événements, représentés par des points, dans une aire d'étude donnée, souvent appelée la *fenêtre* d'observation. \n\nOn suppose que chaque point a une étendue spatiale négligeable par rapport aux distances entre les points. Des méthodes plus complexes existent pour traiter des patrons spatiaux d'objets qui ont une largeur non-néligeable, mais ce sujet dépasse la portée de cet atelier.\n\nUn processus ponctuel (*point process*) est un modèle statistique qui peut être utilisé pour simuler des patrons de points ou expliquer un patron de points observé.\n\n## Structure spatiale totalement aléatoire\n\nUne structure spatiale totalement aléatoire (*complete spatial randomness*) est un des patrons les plus simples, qui sert de modèle nul pour évaluer les caractéristiques de patrons de points réels. Dans ce patron, la présence d'un point à une position donnée est indépendante de la présence de points dans un voisinage. \n\nLe processus créant ce patron est un processus de Poisson homogène. Selon ce modèle, le nombre de points dans toute région de superficie $A$ suit une distribution de Poisson: $N(A) \\sim \\text{Pois}(\\lambda A)$, où $\\lambda$ est l'*intensité* du processus (i.e. la densité de points). $N$ est indépendant entre deux régions disjointes, peu importe comment ces régions sont définies.\n\nDans le graphique ci-dessous, seul le patron à droite est totalement aléatoire. Le patron à gauche montre une agrégation des points (probabilité plus grande d'observer un point si on est à proximité d'un autre point), tandis que le patron du centre montre une répulsion (faible probabilité d'observer un point très près d'un autre).\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-91_adc67cb15e035b62bde9aae5a2aa1217'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-91-1.png){width=864}\n:::\n:::\n\n\n## Analyse exploratoire ou inférentielle pour un patron de points\n\nPlusieurs statistiques sommaires sont utilisées pour décrire les caractéristiques un patron de points. La plus simple est l'**intensité** $\\lambda$, qui comme mentionné plus haut représente la densité de points par unité de surface. Si le patron de points est hétérogène, l'intensité n'est pas constante, mais dépend de la position: $\\lambda(x, y)$.\n\nPar rapport à l'intensité qui est une statistique dite de premier ordre, les statistiques de second ordre décrivent comment la probabilité de présence d'un point dans une région dépend de la présence d'autres points. L'indice $K$ de Ripley présenté dans la prochaine section est un exemple de statistique sommaire de second ordre.\n\nLes inférences statistiques réalisées sur des patrons de points consistent habituellement à tester l'hypothèse que le patron de points correspond à un modèle nul donné, par exemple une structure spatiale totalement aléatoire, ou un modèle nul plus complexe. Même pour les modèles nuls les plus simples, nous connaissons rarement la distribution théorique pour une statistique sommaire du patron de points sous le modèle nul. Les tests d'hypothèses sur les patrons de points sont donc réalisés par simulation: on simule un grand nombre de patrons de points à partir du modèle nul et on compare la distribution des statistiques sommaires qui nous intéressent pour ces simulations à la valeur des statistiques pour le patron de points observé.\n\n## Indice $K$ de Ripley\n\nL'indice de Ripley $K(r)$ est défini comme le nombre moyen de points se trouvant dans un cercle de rayon $r$ donné autour d'un point du patron, normalisé par l'intensité $\\lambda$. \n\nPour un patron totalement aléatoire, le nombre moyen de points dans un cercle de rayon $r$ est $\\lambda \\pi r^2$, donc en théorie $K(r) = \\pi r^2$ pour ce modèle nul. Une valeur de $K(r)$ supérieure signifie qu'il y a agrégation des points à l'échelle $r$, tandis qu'une valeur inférieure signifie qu'il y a une répulsion.\n\nEn pratique, $K(r)$ est estimé pour un patron de points donné par l'équation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\noù $A$ est l'aire de la fenêtre d'observation et $n$ est le nombre de points du patron, donc $n(n-1)$ est le nombre de paires de points distinctes. On fait la somme pour toutes les paires de points de la fonction indicatrice $I$, qui prend une valeur de 1 si la distance entre les points $i$ et $j$ est inférieure ou égale à $r$. Finalement, le terme $w_{ij}$ permet de donner un poids supplémentaire à certaines paires de points pour tenir compte des effets de bordure, tel que discuté dans la section suivante.\n\nPar exemple, les graphiques ci-dessous présentent la fonction estimée $K(r)$ pour les patrons illustrés ci-dessus, pour des valeurs de $r$ allant jusqu'à 1/4 de la largeur de la fenêtre. La courbe pointillée rouge indique la valeur théorique pour une structure spatiale totalement aléatoire et la zone grise est une \"enveloppe\" produite par 99 simulations de ce modèle nul. Le patron agrégé montre un excès de voisins jusqu'à $r = 0.25$ et le patron avec répulsion montre un déficit significatif de voisins pour les petites valeurs de $r$. \n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-93_6abeb25aeaeb61368f985f60bb26c046'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-93-1.png){width=864}\n:::\n:::\n\n\nOutre le $K$, il existe d'autres statistiques pour décrire les propriétés de second ordre du patron, par exemple la distance moyenne entre un point et ses $N$ plus proches voisins. Vous pouvez consulter le manuel de Wiegand et Moloney (2013) suggéré en référence pour en apprendre plus sur différentes statistiques sommaires des patrons de points.\n\n## Effets de bordure\n\nDans le contexte de l'analyse de patrons de points, l'effet de bordure (\"edge effect\") est dû au fait que nous avons une connaissance incomplète du voisinage des points près du bord de la fenêtre d'observation, ce qui peut induire un biais dans le calcul des statistiques comme le $K$ de Ripley. \n\nDifférentes méthodes ont été développées pour corriger le biais dû aux effets de bordure. Selon la méthode de Ripley, la contribution d'un voisin $j$ situé à une distance $r$ d'un point $i$ reçoit un poids $w_{ij} = 1/\\phi_i(r)$, où $\\phi_i(r)$ est la fraction du cercle de rayon $r$ autour de $i$ contenu dans la fenêtre d'observation. Par exemple, si 2/3 du cercle se trouve dans la fenêtre, ce voisin compte pour 3/2 voisins dans le calcul d'une statistique comme $K$.\n\n![](images/ripley_edge.png)\n\nLa méthode de Ripley est une des plus simples pour corriger les effets de bordure, mais n'est pas nécessairement la plus efficace; notamment, les poids plus grands donnés à certaines paires de points tend à accroître la variance du calcul de la statistique. D'autres méthodes de correction sont présentées dans les manuels spécialisés, comme celui de Wiegand et Moloney (2013) en référence.\n\n## Exemple\n\nPour cet exemple, nous utilisons le jeu de données [semis_xy.csv](data/semis_xy.csv), qui représente les coordonnées $(x, y)$ de semis de deux espèces (*sp*, B = bouleau et P = peuplier) dans une placette de 15 x 15 m.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-94_327e5e9e3c1899c6fc6b1fb294f06e68'}\n\n```{.r .cell-code}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y sp\n1 14.73 0.05 P\n2 14.72 1.71 P\n3 14.31 2.06 P\n4 14.16 2.64 P\n5 14.12 4.15 B\n6 9.88 4.08 B\n```\n:::\n:::\n\n\nLe package *spatstat* permet d'effectuer des analyses de patrons de point dans R. La première étape consiste à transformer notre tableau de données en objet `ppp` (patron de points) avec la fonction du même nom. Dans cette fonction, nous spécifions quelles colonnes contiennent les coordonnées *x* et *y* ainsi que les marques (`marks`), qui seront ici les codes d'espèce. Il faut aussi spécifier une fenêtre d'observation (`window`) à l'aide de la fonction `owin`, à laquelle nous indiquons les limites de la placette en *x* et *y*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-95_e246a905ab0e728b8bebd2e4c7effcef'}\n\n```{.r .cell-code}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMarked planar point pattern: 281 points\nMultitype, with levels = B, P \nwindow: rectangle = [0, 15] x [0, 15] units\n```\n:::\n:::\n\n\nLes marques peuvent être numériques ou catégorielles. Notez que pour des marques catégorielles comme c'est le cas ici, il faut convertir explicitement la variable en facteur.\n\nLa fonction `plot` appliquée à un patron de points montre un diagramme du patron.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-96_96d77aa12e04c69ed21ee84e297dba59'}\n\n```{.r .cell-code}\nplot(semis)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-96-1.png){width=672}\n:::\n:::\n\n\nLa fonction `intensity` calcule la densité des points de chaque espèce par unité de surface, ici en $m^2$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-97_beac65d0093c1448eec5b7873eb79e0b'}\n\n```{.r .cell-code}\nintensity(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n B P \n0.6666667 0.5822222 \n```\n:::\n:::\n\n\nPour analyser d'abord séparément la distribution de chaque espèce, nous séparons le patron avec `split`. Puisque le patron contient des marques catégorielles, la séparation se fait automatiquement en fonction de la valeur des marques. Le résultat est une liste de deux patrons de points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-98_b03959fb9ef2a14b73c3512a12d3e227'}\n\n```{.r .cell-code}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-98-1.png){width=672}\n:::\n:::\n\n\nLa fonction `Kest` calcule le $K$ de Ripley pour une série de distances allant (par défaut) jusqu'à 1/4 de la largeur de la fenêtre. Ici, nous l'appliquons au premier patron (bouleau) en choisissant `semis_split[[1]]`. Notez que les doubles crochets sont nécessaires pour choisir un élément d'une liste dans R.\n\nL'argument `correction = \"iso\"` indique d'appliquer la méthode de Ripley pour corriger les effets de bordure.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-99_181444d1e19a264175dc77ad57d2d3d0'}\n\n```{.r .cell-code}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-99-1.png){width=672}\n:::\n:::\n\n\nSelon ce graphique, il semble y avoir une excès de voisins à partir d'un rayon de 1 m. Pour vérifier s'il s'agit d'un écart significatif, nous produisons une enveloppe de simulation avec la fonction `envelope`. Le permier argument d'`envelope` est un patron de point auquel les simulations seront comparées, le deuxième une fonction à calculer (ici, `Kest`) pour chaque patron simulé, puis on y ajoute les arguments de la fonction `Kest` (ici, seulement `correction`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-100_c8ef12d95e636626e72d894b8455cc8e'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-100-1.png){width=672}\n:::\n:::\n\n\nTel qu'indiqué par le message, cette fonction effectue par défaut 99 simulations de l'hypothèse nulle correspondant à une structure spatiale totalement aléatoire (CSR, pour *complete spatial randomness*).\n\nLa courbe observée sort de l'enveloppe des 99 simulations près de $r = 2$. Il faut être prudent de ne pas interpréter trop rapidement un résultat sortant de l'enveloppe. Même s'il y a environ une probabilité de 1% d'obtenir un résultat plus extrême selon l'hypothèse nulle à une distance donnée, l'enveloppe est calculée pour un grand nombre de valeurs de la distance et nous n'effectuons pas de correction pour les comparaisons multiples. Ainsi, un écart significatif pour une très petite plage de valeurs de $r$ peut être simplement dû au hasard.\n\n\n### Exercice 1\n\nEn regardant le graphique du deuxième patron de points (semis de peuplier), pouvez-vous prédire où se situera le $K$ de Ripley par rapport à l'hypothèse nulle d'une structure spatiale totalement aléatoire? Vérifiez votre prédiction en calculant le $K$ de Ripley pour ce patron de points dans R.\n\n\n## Effet de l'hétérogénéité\n\nLe graphique ci-dessous illustre un patron de points *hétérogène*, c'est-à-dire qu'il présente un gradient d'intensité (plus de points à gauche qu'à droite).\n\n\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-102_4f8ece21b321a6bc37f12ea916525a4e'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-102-1.png){width=672}\n:::\n:::\n\n\nUn gradient de densité peut être confondu avec une agrégation des points, comme on peut voir sur le graphique du $K$ de Ripley correspondant. En théorie, il s'agit de deux processus différents:\n\n- Hétérogénéité: La densité de points varie dans la région d'étude, par exemple dû au fait que certaines conditions locales sont plus propices à la présence de l'espèce étudiée.\n\n- Agrégation: La densité moyenne des points est homogène, mais la présence d'un point augmente la présence d'autre points dans son voisinage, par exemple en raison d'interactions positives entre les individus.\n\nCependant, il peut être difficile de différencier les deux en pratique, surtout que certains patrons peuvent être à la fois hétérogènes et agrégés.\n\nPrenons l'exemple des semis de peuplier de l'exercice précédent. La fonction `density` appliquée à un patron de points effectue une estimation par noyau (*kernel density estimation*) de la densité des semis à travers la placette. Par défaut, cette fonction utilise un noyau gaussien avec un écart-type `sigma` spécifié dans la fonction, qui détermine l'échelle à laquelle les fluctuations de densité sont \"lissées\". Ici, nous utilisons une valeur de 2 m pour `sigma` et nous représentons d'abord la densité estimée avec `plot`, avant d'y superposer les points (`add = TRUE` signifie que les points sont ajoutés au graphique existant plutôt que de créer un nouveau graphique).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-103_293155d4d47f9be8ba5f92c275edfe33'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-103-1.png){width=672}\n:::\n:::\n\n\nPour mesurer l'agrégation ou la répulsion des points d'un patron hétérogène, nous devons utilisé la version non-homogène de la statistique $K$ (`Kinhom` dans *spatstat*). Cette statistique est toujours égale au nombre moyen de voisins dans un rayon $r$ d'un point du patron, mais plutôt que de normaliser ce nombre par l'intensité globale du patron, il est normalisé par l'estimation locale de la densité de points. Comme ci-dessus, nous spécifions `sigma = 2` pour contrôler le niveau de lissage de l'estimation de la densité variable.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-104_2e7d6e77388db4c6cf95e3825468e730'}\n\n```{.r .cell-code}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-104-1.png){width=672}\n:::\n:::\n\n\nEn tenant compte de l'hétérogénéité du patron à une échelle `sigma` de 2 m, il semble donc y avoir un déficit de voisins à partir d'environ 1.5 m des points du patron. Il reste à voir si cette déviation est significative.\n\nComme précédemment, nous utilisons `envelope` pour simuler la statistique `Kinhom` sous le modèle nul. Cependant, ici le modèle nul n'est pas un processus de Poisson homogène (structure spatiale totalement aléatoire). Il s'agit plutôt d'un processus de Poisson hétérogène simulé par la fonction `rpoispp(dens_p)`, c'est-à-dire que les points sont indépendants les uns des autres, mais leur densité est hétérogène et donnée par `dens_p`. L'argument `simulate` de la fonction `envelope` permet de spécifier une fonction utilisée pour les simulations sous le modèle nul; cette fonction doit avoir un argument, ici `x`, même s'il n'est pas utilisé.\n\nFinalement, en plus des arguments nécessaires pour `Kinhom`, soit `sigma` et `correction`, nous spécifions aussi `nsim = 199` pour réaliser 199 simulations et `nrank = 5` pour éliminer les 5 résultats les plus extrêmes de chaque côté de l'enveloppe, donc les 10 plus extrêmes sur 199, pour réaliser un intervalle contenant environ 95% de la probabilité sous l'hypothèse nulle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-105_372339d2d2e016521c3700d91cc77898'}\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-105-1.png){width=672}\n:::\n:::\n\n\n*Note*: Pour un test d'hypothèse basé sur des simulations d'une hypothèse nulle, la valeur $p$ est estimée par $(m + 1)/(n + 1)$, où $n$ est le nombre de simulations et $m$ est le nombre de simulations où la valeur de la statistique est plus extrême que celle des données observées. C'est pour cette raison qu'on choisit un nombre de simulations comme 99, 199, etc.\n\n### Exercice 2\n\nRépétez l'estimation de la densité hétérogène et le calcul de `Kinhom` avec un écart-type `sigma` de 5 plutôt que 2. Comment le niveau de lissage pour la densité influence-t-il les conclusions?\n\nPour différencier une variation de densité des points et d'une interaction (agrégation ou répulsion) entre ces points avec ce type d'analyse, il faut généralement supposer que les deux processus opèrent à différentes échelles. Typiquement, nous pouvons tester si les points sont agrégés à petite échelle après avoir tenu compte d'une variation de la densité à une échelle plus grande.\n\n\n## Relation entre deux patrons de points\n\nConsidérons un cas où nous avons deux patrons de points, par exemple la position des arbres de deux espèces dans une parcelle (points oranges et verts dans le graphique ci-dessous). Chacun des deux patrons peut présenter ou non des agrégations de points. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-106_a7d54ff1bdd2b3ad9381ec359732b6e9'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-106-1.png){width=672}\n:::\n:::\n\n\nSans égard à cette agrégation au niveau de l'espèce, nous voulons déterminer si les deux espèces sont disposées indépendamment. Autrement dit, la probabilité d'observer un arbre d'une espèce dépend-elle de la présence d'un arbre de l'autre espèce à une distance donnée?\n\nLa version bivariée du $K$ de Ripley permet de répondre à cette question. Pour deux patrons désignés 1 et 2, l'indice $K_{12}(r)$ calcule le nombre moyen de points du patron 2 dans un rayon $r$ autour d'un point du patron 1, normalisé par la densité du patron 2.\n\nEn théorie, cet indice est symétrique, donc $K_{12}(r) = K_{21}(r)$ et le résultat serait le même si on choisit les points du patron 1 ou 2 comme points \"focaux\" pour l'analyse. Cependant, l'estimation des deux quantités pour un patron observé peut différer, notamment en raison des effets de bord. La variabilité peut aussi être différente pour $K_{12}$ et $K_{21}$ entre les simulations d'un modèle nul, donc le test de l'hypothèse nulle peut avoir une puissance différente selon le choix de l'espèce focale.\n\nLe choix d'un modèle nul approprié est important ici. Afin de déterminer s'il existe une attraction ou une répulsion significative entre les deux patrons, il faut déplacer aléatoirement la position d'un des patrons relative à celle de l'autre patron, tout en conservant la structure spatiale de chaque patron pris isolément.\n\nUne des façons d'effectuer cette randomisation consiste à décaler l'un des deux patrons horizontalement et/ou verticalement d'une distance aléatoire. La partie du patron qui \"sort\" d'un côté de la fenêtre est rattachée de l'autre côté. Cette méthode s'appelle une translation toroïdale (*toroidal shift*), car en connectant le haut et le bas ainsi que la gauche et la droite d'une surface rectangulaire, on obtient la forme d'un tore (un \"beigne\" en trois dimensions).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-107_1757cb541cf05d572ea82ab56ed6f90e'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-107-1.png){width=672}\n:::\n:::\n\n\nLe graphique ci-dessus illustre une translation du patron vert vers la droite, tandis que le patron orange reste au même endroit. Les points verts dans la zone ombragée sont ramenés de l'autre côté. Notez que si cette méthode préserve de façon générale la structure de chaque patron tout en randomisant leur position relative, elle peut comporter certains inconvénients, comme de diviser des amas de points qui se trouvent près du point de coupure.\n\nVérifions maintenant s'il y a une dépendance entre la position des deux espèces (bouleau et peuplier) dans notre placette. La fonction `Kcross` calcule l'indice bivarié $K_{ij}$, il faut spécifier quel type de point est considéré comme l'espèce focale $i$ et l'espèce voisine $j$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-108_e1fb67c992e6fbc5436f40af7db13109'}\n\n```{.r .cell-code}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-108-1.png){width=672}\n:::\n:::\n\n\nIci, le $K$ observé est inférieur à la valeur théorique, indiquant une répulsion possible des deux patrons.\n\nPour déterminer l'enveloppe du $K$ selon l'hypothèse nulle d'indépendance des deux patrons, nous devons spécifier que les simulations doivent être basées sur une translation des patrons. Nous indiquons que les simulations doivent utiliser la fonction `rshift` (translation aléatoire) avec l'argument `simulate = function(x) rshift(x, which = \"B\")`; ici, l'argument `x` de `simulate` correspond au patron de points original et l'argument `which` indique quel type de points subit la translation. Comme pour le cas précédent, il faut répéter dans la fonction `envelope` les arguments nécessaires pour `Kcross`, soit `i`, `j` et `correction`. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-109_727b1efb5e977942d084f00027cda511'}\n\n```{.r .cell-code}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-109-1.png){width=672}\n:::\n:::\n\n\nIci, la courbe observée se situe totalement dans l'enveloppe, donc nous ne rejetons pas l'hypothèse nulle d'indépendance des deux patrons.\n\n### Questions\n\n1. Quelle raison pourrait justifier ici notre choix d'effectuer la translation des points du bouleau plutôt que du peuplier?\n\n2. Est-ce que les simulations générées par translation aléatoire constitueraient un bon modèle nul si les deux patrons étaient hétérogènes?\n\n\n## Patrons de points marqués\n\nLe jeu de données [fir.csv](data/fir.csv) contient les coordonnées $(x, y)$ de 822 sapins dans une placette d'un hectare et leur statut (A = vivant, D = mort) suivant une épidémie de tordeuse des bourgeons de l'épinette.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-110_b43d75059cee9e8f87a67abfa290388c'}\n\n```{.r .cell-code}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y status\n1 31.50 1.00 A\n2 85.25 30.75 D\n3 83.50 38.50 A\n4 84.00 37.75 A\n5 83.00 33.25 A\n6 33.25 0.25 A\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-111_2327e6a3855266c0ba92a5eed5b7ce1a'}\n\n```{.r .cell-code}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-111-1.png){width=672}\n:::\n:::\n\n\nSupposons que nous voulons vérifier si la mortalité des sapins est indépendante ou corrélée entre arbres rapprochés. En quoi cette question diffère-t-elle de l'exemple précédent où nous voulions savoir si la position des points de deux espèces était indépendante?\n\nDans l'exemple précédent, l'indépendance ou l'interaction entre les espèces référait à la formation du patron lui-même (que des semis d'une espèce s'établissent ou non à proximité de ceux de l'autre espèce). Ici, la caractéristique qui nous intéresse (survie des sapins) est postérieure à l'établissement du patron, en supposant que tous ces arbres étaient vivants d'abord et que certains sont morts suite à l'épidémie. Donc nous prenons la position des arbres comme fixe et nous voulons savoir si la distribution des statuts (mort, vivant) entre ces arbres est aléatoire ou présente un patron spatial.\n\nDans le manuel de Wiegand et Moloney, la première situation (établissement de semis de deux espèces) est appelé patron bivarié, donc il s'agit vraiment de deux patrons qui interagissent, tandis que la deuxième est un seul patron avec une *marque* qualitative. Le package *spatstat* dans R ne fait pas de différences entre les deux au niveau de la définition du patron (les types de points sont toujours représentés par l'argument `marks`), mais les méthodes d'analyse appliquées aux deux questions diffèrent.\n\nDans le cas d'un patron avec une marque qualitative, nous pouvons définir une fonction de connexion de marques (*mark connection function*) $p_{ij}(r)$. Pour deux points séparés par une distance $r$, cette fonction donne la probabilité que le premier point porte la marque $i$ et le deuxième la marque $j$. Selon l'hypothèse nulle où les marques sont indépendantes, cette probabilité est égale au produit des proportions de chaque marque dans le patron entier, $p_{ij}(r) = p_i p_j$ indépendamment de $r$.\n\nDans *spatstat*, la fonction de connexion de marques est calculée avec la fonction `markconnect`, où il faut spécifier les marques $i$ et $j$ ainsi que le type de correction des effets de bord. Dans notre exemple, nous voyons que deux points rapprochés ont moins de chance d'avoir une statut différent (A et D) que prévu selon l'hypothèse de distribution aléatoire et indépendante des marques (ligne rouge pointillée).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-112_e925b891841588727659504a7a0c6e6d'}\n\n```{.r .cell-code}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-112-1.png){width=672}\n:::\n:::\n\n\nDans ce graphique, les ondulations dans la fonction sont dues à l'erreur d'estimation d'une fonction continue de $r$ à partir d'un nombre limité de paires de points discrètes.\n\nPour simuler le modèle nul dans ce cas-ci, nous utilisons la fonction `rlabel` qui réassigne aléatoirement les marques parmi les points du patron, en maintenant la position des points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-113_41cb4b77111500454c477fbd4c96dd08'}\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-113-1.png){width=672}\n:::\n:::\n\n\nNotez que puisque la fonction `rlabel` a un seul argument obligatoire correspondant au patron de points original, il n'était pas nécessaire de spécifier au long: `simulate = function(x) rlabel(x)`.\n\nVoici les résultats pour les paires d'arbres du même statut A ou D:\n\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-114_2a3fc9a64a69a67d1266f0273c3bb85c'}\n\n```{.r .cell-code}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-114-1.png){width=960}\n:::\n:::\n\n\nIl semble donc que la mortalité des sapins due à cette épidémie est agrégée spatialement, puisque les arbres situés à proximité l'un de l'autre ont une plus grande probabilité de partager le même statut que prévu par l'hypothèse nulle.\n\n## Références\n\nFortin, M.-J. et Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK. \n\nWiegand, T. et Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nLe jeu de données du dernier exemple est tiré des données de la Forêt d'enseignement et de recherche du Lac Duparquet (FERLD), disponibles sur Dryad en suivant [ce lien](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n\n# Solutions\n\n### Exercice 1\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-115_7bc8effd281fccbd2a1c1e21cd801493'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-115-1.png){width=672}\n:::\n:::\n\n\nLes semis de peuplier semblent significativement agrégés selon la valeur du $K$.\n\n### Exercice 2\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-116_53115f6ed07f7e0e4e7d2c8989998e70'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-116-1.png){width=672}\n:::\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-116-2.png){width=672}\n:::\n:::\n\n\nIci, puisque nous estimons la variation de densité à une plus grande échelle, même après avoir tenu compte de cette variation, les semis de peuplier semblent agrégés à petite échelle.\n\n\n# Corrélation spatiale d'une variable {#spatial-correlation-fr}\n\nLa corrélation entre les mesures d'une variable prises à des points rapprochés est une caractéristique dans de nombreux jeux de données. Ce principe est parfois appelé \"première loi de la géographie\" et exprimé par la citation de Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things.\" (Tout est relié, mais les choses rapprochées le sont davantage que celles éloignées).\n\nEn statistique, nous parlons souvent d'*autocorrélation* pour désigner la corrélation qui existe entre les mesures d'une même variable prises à différents moments (autocorrélation temporelle) ou différents lieux (autocorrélation spatiale).\n\n## Dépendance intrinsèque ou induite\n\nIl existe deux types fondamentaux de dépendance spatiale sur une variable mesurée $y$: une dépendance *intrinsèque* à $y$, ou une dépendance *induite* par des variables externes influençant $y$, qui sont elles-mêmes corrélées dans l'espace.\n\nPar exemple, supposons que l'abondance d'une espèce soit corrélée entre deux sites rapprochés:\n\n- cette dépendance spatiale peut être induite si elle est due à une corrélation spatiale des facteurs d'habitat qui favorisent ou défavorisent l'espèce;\n\n- ou elle peut être intrinsèque si elle est due à la dispersion d'individus entre sites rapprochés.\n\nDans plusieurs cas, les deux types de dépendance affectent une variable donnée.\n\nSi la dépendance est simplement induite et que les variables externes qui en sont la cause sont incluses dans le modèle expliquant $y$, alors les résidus du modèle seront indépendants et nous pouvons utiliser toutes les méthodes déjà vues qui ignorent la dépendance spatiale.\n\nCependant, si la dépendance est intrinsèque ou due à des influences externes non-mesurées, alors il faudra tenir compte de la dépendance spatiale des résidus dans le modèle.\n\n## Différentes façons de modéliser les effets spatiaux\n\nDans cette formation, nous modéliserons directement les corrélations spatiales de nos données. Il est utile de comparer cette approche à d'autres façons d'inclure des aspects spatiaux dans un modèle statistique.\n\nD'abord, nous pourrions inclure des prédicteurs dans le modèle qui représentent la position (ex.: longitude, latitude). De tels prédicteurs peuvent être utiles pour détecter une tendance ou un gradient systématique à grande échelle, que cette tendance soit linéaire ou non (par exemple, avec un modèle additif généralisé).\n\nEn contraste à cette approche, les modèles que nous verrons maintenant servent à modéliser une corrélation spatiale dans les fluctuations aléatoires d'une variable (i.e., dans les résidus après avoir enlevé tout effet systématique).\n\nLes modèles mixtes utilisent des effets aléatoires pour représenter la non-indépendance de données sur la base de leur groupement, c'est-à-dire qu'après avoir tenu compte des effets fixes systématiques, les données d'un même groupe sont plus semblables (leur variation résiduelle est corrélée) par rapport aux données de groupes différents. Ces groupes étaient parfois définis selon des critères spatiaux (observations regroupées en sites).\n\nCependant, dans un contexte d'effet aléatoire de groupe, tous les groupes sont aussi différents les uns des autres, ex.: deux sites à 100 km l'un de l'autre ne sont pas plus ou moins semblables que deux sites distants de 2 km.\n\nLes méthodes que nous verrons ici et dans les prochains parties de la formation nous permettent donc ce modéliser la non-indépendance sur une échelle continue (plus proche = plus corrélé) plutôt que seulement discrète (hiérarchie de groupements).\n\n\n# Modèles géostatistiques {#geostat-models-fr}\n\nLa géostatistique désigne un groupe de techniques tirant leur origine en sciences de la Terre. Elle s'intéresse à des variables distribuées de façon continue dans l'espace, dont on cherche à estimer la distribution en échantillonnant un nombre de points. Un exemple classique de ces techniques provient du domaine minier, où l'on cherchait à créer une carte de la concentration du minerai sur un site à partir d'échantillons pris à différents points du site.\n\nPour ces modèles, nous supposerons que $z(x, y)$ est une variable spatiale stationnaire mesurée selon les coordonnées $x$ et $y$.\n\n## Variogramme\n\nUn aspect central de la géostatistique est l'estimation du variogramme $\\gamma_z$ de la variable $z$. Le variogramme est égal à la moitié de l'écart carré moyen entre les valeurs de $z$ pour deux points $(x_i, y_i)$ et $(x_j, y_j)$ séparés par une distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nDans cette équation, la fonction $\\text{E}$ avec l'indice $d_{ij}=h$ désigne l'espérance statistique (autrement dit, la moyenne) de l'écart au carré entre les valeurs de $z$ pour les points séparés par une distance $h$.\n\nSi on préfère exprimer l'autocorrélation $\\rho_z(h)$ entre mesures de $z$ séparées par une distance $h$, celle-ci est reliée au variogramme par l'équation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\noù $\\sigma_z^2$ est la variance globale de $z$. \n\nNotez que $\\gamma_z = \\sigma_z^2$ si nous sommes à une distance où les mesures de $z$ sont indépendantes, donc $\\rho_z = 0$. Dans ce cas, on voit bien que $\\gamma_z$ s'apparente à une variance, même s'il est parfois appelé \"semivariogramme\" ou \"semivariance\" en raison du facteur 1/2 dans l'équation ci-dessus.\n\n## Modèles théoriques du variogramme\n\nPlusieurs modèles paramétriques ont été proposés pour représenter la corrélation spatiale en fonction de la distance entre points d'échantillonnage. Considérons d'abord une corrélation qui diminue de façon exponentielle: \n\n$$\\rho_z(h) = e^{-h/r}$$\n\nIci, $\\rho_z = 1$ pour $h = 0$ et la corréaltion est multipliée par $1/e \\approx 0.37$ pour chaque augmentation de $r$ de la distance. Dans ce contexte, $r$ se nomme la portée (*range*) de la corrélation.\n\nÀ partir de l'équation ci-dessus, nous pouvons calculer le variogramme correspondant.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nVoici une représentation graphique de ce variogramme.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-117_94b4bef8ba36e1b515cfee5fff6c1ebb'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-117-1.png){width=672}\n:::\n:::\n\n\nEn raison de la fonction exponentielle, la valeur de $\\gamma$ à des grandes distances s'approche de la variance globale $\\sigma_z^2$ sans exactement l'atteindre. Cette asymptote est appelée palier (*sill*) dans le contexte géostatistique et représentée par le symbole $s$.\n\nFinalement, il n'est parfois pas réaliste de supposer une corrélation parfaite lorsque la distance tend vers 0, en raison d'une variation possible de $z$ à très petite échelle. On peut ajouter au modèle un effet de pépite (*nugget*), noté $n$, pour que $\\gamma$ s'approche de $n$ (plutôt que 0) si $h$ tend vers 0. Le terme pépite provient de l'origine minière de ces techniques, où une pépite d'un minerai pourrait être la source d'une variation abrupte de la concentration à petite échelle.\n\nEn ajoutant l'effet de pépite, le reste du variogramme est \"compressé\" pour conserver le même palier, ce qui résulte en l'équation suivante.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nDans le package *gstat* que nous utiliserons ci-dessous, le terme $(s - n)$ est le palier partiel (*partial sill*, ou `psill`) pour la partie exponentielle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-118_616ef9e44728a1524a3df51fd61bde38'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-118-1.png){width=672}\n:::\n:::\n\n\nEn plus du modèle exponentiel, deux autres modèles théoriques courants pour le variogramme sont le modèle gaussien (où la corrélation suit une courbe demi-normale), ainsi que le modèle sphérique (où le variogramme augmente de façon linéaire au départ pour ensuite courber et atteindre le palier à une distance égale à sa portée $r$). Le modèle sphérique permet donc à la corrélation d'être exactement 0 à grande distance, plutôt que de s'approcher graduellement de zéro dans le cas des autres modèles.\n\n Modèle | $\\rho(h)$ | $\\gamma(h)$\n-------|-----------|-------------\nExponentiel | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$\nGaussien | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$\nSphérique $(h < r)$ * | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$\n\n\\* Pour le modèle sphérique, $\\rho = 0$ et $\\gamma = s$ si $h \\ge r$.\n\n\n\n::: {.cell fig.dim='[9,4]' hash='index_cache/html/unnamed-chunk-119_df4e0a7376691267996d3cce69016995'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-119-1.png){width=864}\n:::\n:::\n\n\n## Variogramme empirique\n\nPour estimer $\\gamma_z(h)$ à partir de données empiriques, nous devons définir des classes de distance, donc grouper différentes distances dans une marge $\\pm \\delta$ autour d'une distance $h$, puis calculer l'écart-carré moyen pour les paires de points dans cette classe de distance.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nNous verrons dans la partie suivante comment estimer un variogramme dans R.\n\n## Modèle de régression avec corrélation spatiale\n\nL'équation suivante représente une régression linéaire multiple incluant une corrélation spatiale résiduelle:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nIci, $v$ désigne la variable réponse et $u$ les prédicteurs, pour ne pas confondre avec les coordonnées spatiales $x$ et $y$. \n\nEn plus du résidu $\\epsilon$ qui est indépendant entre les observations, le modèle inclut un terme $z$ qui représente la portion spatialement corrélée de la variance résiduelle.\n\nVoici une suggestions d'étapes à suivre pour appliquer ce type de modèle:\n\n1. Ajuster le modèle de régression sans corrélation spatiale.\n\n2. Vérifier la présence de corrélation spatiale à partir du variogramme empirique des résidus.\n\n3. Ajuster un ou plusieurs modèles de régression avec corrélation spatiale et choisir celui qui montre le meilleur ajustement aux données. \n\n# Modèles géostatistiques dans R\n\nLe package *gstat* contient des fonctions liées à la géostatistique. Pour cet exemple, nous utiliserons le jeu de données `oxford` de ce package, qui contient des mesures de propriétés physiques et chimiques pour 126 échantillons du sol d'un site, ainsi que leurs coordonnées `XCOORD` et `YCOORD`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-120_bb070aeb602b5bb93fe5df883fdd6dbe'}\n\n```{.r .cell-code}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n'data.frame':\t126 obs. of 22 variables:\n $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...\n $ XCOORD : num 100 100 100 100 100 100 100 100 100 100 ...\n $ YCOORD : num 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...\n $ ELEV : num 598 597 610 615 610 595 580 590 598 588 ...\n $ PROFCLASS: Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 2 2 3 3 2 3 2 3 3 ...\n $ MAPCLASS : Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 3 3 3 3 2 2 3 3 3 ...\n $ VAL1 : num 3 3 4 4 3 3 4 4 4 3 ...\n $ CHR1 : num 3 3 3 3 3 2 2 3 3 3 ...\n $ LIME1 : num 4 4 4 4 4 0 2 1 0 4 ...\n $ VAL2 : num 4 4 5 8 8 4 8 4 8 8 ...\n $ CHR2 : num 4 4 4 2 2 4 2 4 2 2 ...\n $ LIME2 : num 4 4 4 5 5 4 5 4 5 5 ...\n $ DEPTHCM : num 61 91 46 20 20 91 30 61 38 25 ...\n $ DEP2LIME : num 20 20 20 20 20 20 20 20 40 20 ...\n $ PCLAY1 : num 15 25 20 20 18 25 25 35 35 12 ...\n $ PCLAY2 : num 10 10 20 10 10 20 10 20 10 10 ...\n $ MG1 : num 63 58 55 60 88 168 99 59 233 87 ...\n $ OM1 : num 5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...\n $ CEC1 : num 20 22 17 23 27 27 21 14 27 20 ...\n $ PH1 : num 7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...\n $ PHOS1 : num 13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...\n $ POT1 : num 196 157 115 172 238 164 312 184 123 282 ...\n```\n:::\n:::\n\n\nSupposons que nous souhaitons modéliser la concentration de magnésium (`MG1`), représentée en fonction de la position spatiale dans le graphique suivant.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-121_16158cd54c4487cc58ec9fd8dedf3de7'}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-121-1.png){width=672}\n:::\n:::\n\n\nNotez que les axes $x$ et $y$ ont été inversés par souci d'espace. La fonction `coord_fixed()` de *ggplot2* assure que l'échelle soit la même sur les deux axes, ce qui est utile pour représenter des données spatiales. \n\nNous voyons tout de suite que ces mesures ont été prises sur une grille de 100 m de côté. Il semble que la concentration de magnésium soit spatialement corrélée, bien qu'il puisse s'agir d'une corrélation induite par une autre variable. Nous savons notamment que la concentration de magnésium est reliée négativement au pH du sol (`PH1`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-122_d467da9d444c7554518f3d138f017425'}\n\n```{.r .cell-code}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-122-1.png){width=672}\n:::\n:::\n\n\nLa fonction `variogram` de *gstat* sert à estimer un variogramme à partir de données empiriques. Voici le résultat obtenu pour la variable `MG1`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-123_d148763eb057ac91a7c45c4a49d51a00'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n np dist gamma dir.hor dir.ver id\n1 225 100.0000 1601.404 0 0 var1\n2 200 141.4214 1950.805 0 0 var1\n3 548 215.0773 2171.231 0 0 var1\n4 623 303.6283 2422.245 0 0 var1\n5 258 360.5551 2704.366 0 0 var1\n6 144 400.0000 2948.774 0 0 var1\n7 570 427.5569 2994.621 0 0 var1\n8 291 500.0000 3402.058 0 0 var1\n9 366 522.8801 3844.165 0 0 var1\n10 200 577.1759 3603.060 0 0 var1\n11 458 619.8400 3816.595 0 0 var1\n12 90 670.8204 3345.739 0 0 var1\n```\n:::\n:::\n\n\nLa formule `MG1 ~ 1` indique qu'aucun prédicteur linéaire n'est inclus dans ce modèle, tandis que l'argument `locations` indique quelles variables du tableau correspondent aux coordonnées spatiales. \n\nDans le tableau obtenu, `gamma` est la valeur du variogramme pour la classe de distance centrée sur `dist`, tandis que `np` est le nombre de paires de points dans cette classe. Ici, puisque les points sont situés sur une grille, nous obtenons des classes de distance régulières (ex.: 100 m pour les points voisins sur la grille, 141 m pour les voisins en diagonale, etc.).\n\nNous nous limitons ici à l'estimation de variogrammes isotropiques, c'est-à-dire que le variogramme dépend seulement de la distance entre les deux points et non de la direction. Bien que nous n'ayons pas le temps de le voir aujourd'hui, il est possible avec *gstat* d'estimer séparément le variogramme dans différentes directions.\n\nNous pouvons illustrer le variogramme avec `plot`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-124_ca0a474a676de6872283aecd1d7057df'}\n\n```{.r .cell-code}\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-124-1.png){width=672}\n:::\n:::\n\n\nSi nous voulons estimer la corrélation spatiale résiduelle de `MG1` après avoir inclus l'effet de `PH1`, nous pouvons ajouter ce prédicteur à la formule.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-125_11cddc5b7e870cd1cc0cda1a95fac338'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-125-1.png){width=672}\n:::\n:::\n\n\nEn incluant l'effet du pH, la portée de la corrélation spatiale semble diminuer, alors que le plateau est atteint autour de 300 m. Il semble même que le variogramme diminue au-delà de 400 m. En général, nous supposons que la variance entre deux points ne diminue pas avec la distance, à moins d'avoir un patron spatial périodique.\n\nLa fonction `fit.variogram` accepte comme arguments un variogramme estimé à partir des données, ainsi qu'un modèle théorique décrit dans une fonction `vgm`, puis estime les paramètres de ce modèle en fonction des données. L'ajustement se fait par la méthode des moindres carrés.\n\nPar exemple, `vgm(\"Exp\")` indique d'ajuster un modèle exponentiel. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-126_03d3f3aa8b262e89fa7d8da65b62e30c'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nIl n'y a aucun effet de pépite, car `psill = 0` pour la partie `Nug` (*nugget*) du modèle. La partie exponentielle a un palier à 1951 et une portée de 95 m.\n\nPour comparer différents modèles, on peut donner un vecteur de noms de modèles à `vgm`. Dans l'exemple suivant, nous incluons les modèles exponentiel, gaussien (\"Gau\") et sphérique (\"Sph\").\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-127_2f3bfeceade9f4f4dfc5b3eba9eda432'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nLa fonction nous donne le résultat du modèle le mieux ajusté (plus faible somme des écarts au carré), qui est ici le même modèle exponentiel.\n\nFinalement, nous pouvons superposer le modèle théorique et le variogramme empirique sur un même graphique.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-128_c877e0be691daa5fe18f6d2ba00dfdcd'}\n\n```{.r .cell-code}\nplot(var_mg, vfit, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-128-1.png){width=672}\n:::\n:::\n\n\n## Régression avec corrélation spatiale\n\nNous avons vu ci-dessus que le package *gstat* permet d'estimer le variogramme des résidus d'un modèle linéaire. Dans notre exemple, la concentration de magnésium était modélisée en fonction du pH, avec des résidus spatialement corrélés.\n\nUn autre outil pour ajuster ce même type de modèle est la fonction `gls` du package *nlme*, qui est inclus avec l'installation de R. \n\nCette fonction applique la méthode des moindres carrés généralisés (*generalized least squares*) pour ajuster des modèles de régression linéaire lorsque les résidus ne sont pas indépendants ou lorsque la variance résiduelle n'est pas la même pour toutes les observations. Comme les estimés des coefficients dépendent de l'estimé des corrélations entre les résidus et que ces derniers dépendent eux-mêmes des coefficients, le modèle est ajusté par un algorithme itératif:\n\n1. On ajuste un modèle de régression linéaire classique (sans corrélation) pour obtenir des résidus.\n\n2. On ajuste le modèle de corrélation spatiale (variogramme) avec ses résidus.\n\n3. On ré-estime les coefficients de la régression en tenant compte maintenant des corrélations.\n\nLes étapes 2 et 3 sont répétées jusqu'à ce que les estimés soient stables à une précision voulue.\n\nVoici l'application de cette méthode au même modèle pour la concentration de magnésium dans le jeu de données `oxford`. Dans l'argument `correlation` de `gls`, nous spécifions un modèle de corrélation exponentielle en fonction de nos coordonnées spatiales et indiquons que nous voulons aussi estimer un effet de pépite.\n\nEn plus de la corrélation exponentielle `corExp`, la fonction `gls` peut aussi estimer un modèle gaussien (`corGaus`) ou sphérique (`corSpher`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-129_c4131310eb8ea32e0ccf4187e678e982'}\n\n```{.r .cell-code}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: MG1 ~ PH1 \n Data: oxford \n AIC BIC logLik\n 1278.65 1292.751 -634.325\n\nCorrelation Structure: Exponential spatial correlation\n Formula: ~XCOORD + YCOORD \n Parameter estimate(s):\n range nugget \n478.0322964 0.2944753 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 391.1387 50.42343 7.757084 0\nPH1 -41.0836 6.15662 -6.673079 0\n\n Correlation: \n (Intr)\nPH1 -0.891\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-2.1846957 -0.6684520 -0.3687813 0.4627580 3.1918604 \n\nResidual standard error: 53.8233 \nDegrees of freedom: 126 total; 124 residual\n```\n:::\n:::\n\n\nPour comparer ce résultat au variogramme ajusté ci-dessus, il faut transformer les paramètres donnés par `gls`. La portée (range) a le même sens dans les deux cas et correspond à 478 m pour le résultat de `gls`. La variance globale des résidus est le carré de `Residual standard error`. L'effet de pépite ici (0.294) est exprimé comme fraction de cette variance. Finalement, pour obtenir le palier partiel de la partie exponentielle, il faut soustraire l'effet de pépite de la variance totale. \n\nAprès avoir réalisé ces calculs, nous pouvons donner ces paramètres à la fonction `vgm` de *gstat* pour superposer ce variogramme estimé par `gls` à notre variogramme des résidus du modèle linéaire classique.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-130_1b4118890801a03647e2f78590f222be'}\n\n```{.r .cell-code}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-130-1.png){width=672}\n:::\n:::\n\n\nEst-ce que le modèle est moins bien ajusté aux données ici? En fait, ce variogramme empirique représenté par les points avait été obtenu à partir des résidus du modèle linéaire ignorant la corrélation spatiale, donc c'est un estimé biaisé des corrélations spatiales réelles. La méthode est quand même adéquate pour vérifier rapidement s'il y a présence de corrélations spatiales. Toutefois, pour ajuster simultanément les coefficients de la régression et les paramètres de corrélation spatiale, l'approche des moindres carrés généralisés (GLS) est préférable et produira des estimés plus justes.\n\nFinalement, notez que le résultat du modèle `gls` donne aussi l'AIC, que nous pouvons utiliser pour comparer l'ajustement de différents modèles (avec différents prédicteurs ou différentes formes de corrélation spatiale).\n\n## Exercice\n\nLe fichier [bryo_belg.csv](data/bryo_belg.csv) est adapté des données de l'étude: \n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nCe tableau de données indique la richesse spécifique des bryophytes au sol (*richness*) pour différents points d'échantillonnage de la province belge de Limbourg, avec leur position *(x, y)* en km, en plus de l'information sur la proportion de forêts (*forest*) et de milieux humides (*wetland*) dans une cellule de 1 km$^2$ contenant le point d'échantillonnage.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-131_9e78f0ec8229f51b3dcf95f72b18a23a'}\n\n```{.r .cell-code}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n richness forest wetland x y\n1 9 0.2556721 0.5036614 228.9516 220.8869\n2 6 0.6449114 0.1172068 227.6714 219.8613\n3 5 0.5039905 0.6327003 228.8252 220.1073\n4 3 0.5987329 0.2432942 229.2775 218.9035\n5 2 0.7600775 0.1163538 209.2435 215.2414\n6 10 0.6865434 0.0000000 210.4142 216.5579\n```\n:::\n:::\n\n\nPour cet exercice, nous utiliserons la racine carrée de la richesse spécifique comme variable réponse. La transformation racine carrée permet souvent d'homogénéiser la variance des données de comptage afin d'y appliquer une régression linéaire. \n\na) Ajustez un modèle linéaire de la richesse spécifique transformée en fonction de la fraction de forêt et de milieux humides, sans tenir compte des corrélations spatiales. Quel est l'effet des deux prédicteurs selon ce modèle?\n\nb) Calculez le variogramme empirique des résidus du modèle en (a). Semble-t-il y avoir une corrélation spatiale entre les points?\n\n*Note*: L'argument `cutoff` de la fonction `variogram` spécifie la distance maximale à laquelle le variogramme est calculé. Vous pouvez ajuster manuellement cette valeur pour bien voir le palier.\n\nc) Ré-ajustez le modèle linéaire en (a) avec la fonction `gls` du package *nlme*, en essayant différents types de corrélations spatiales (exponentielle, gaussienne, sphérique). Comparez les modèles (incluant celui sans corrélation spatiale) avec l'AIC.\n\nd) Quel est l'effet de la fraction de forêts et de milieux humides selon le modèle en (c)? Expliquez les différences entre les conclusions de ce modèle et du modèle en (a).\n\n\n# Krigeage\n\nTel que mentionné précédemment, une application courante des modèles géostatistiques consiste à prédire la valeur de la variable de réponse à des points non-échantillonnés, une forme d'interpolation spatiale appelée krigeage (*kriging*).\n\nIl existe trois principaux types de krigeage selon les suppositions faites au sujet de la variable réponse:\n\n- Krigeage ordinaire: variable stationnaire avec une moyenne inconnue.\n\n- Krigeage simple: Variable stationnaire avec une moyenne connue.\n\n- Krigeage universel: Variable dont la tendance est donnée par un modèle linéaire ou non linéaire.\n\nPour toutes les méthodes de krigeage, les prédictions à un nouveau point sont une moyenne pondérée des valeurs à des points connus. Ces pondérations sont choisies de manière à ce que le krigeage fournisse la meilleure prédiction linéaire non biaisée de la variable de réponse, si les hypothèses du modèle (en particulier le variogramme) sont correctes. C'est-à-dire que, parmi toutes les prédictions non biaisées possibles, les poids sont choisis de manière à donner l'erreur quadratique moyenne minimale. Le krigeage fournit également une estimation de l'incertitude de chaque prédiction.\n\nBien que nous ne présentions pas ici les équations détaillées du krigeage, les poids dépendent à la fois des corrélations (estimées par le variogramme) entre les points échantillonnés et le nouveau point, ainsi que des corrélations entre les points échantillonnés eux-mêmes. Autrement dit, les points échantillonnés proches du nouveau point ont plus de poids, mais les points échantillonnés isolés ont également plus de poids, car les points échantillonnés proches les uns des autres fournissent une informations redondante.\n\nLe krigeage est une méthode d'interpolation, donc la prédiction à un point échantillonné sera toujours égale à la valeur mesurée (la variable est supposée être mesurée sans erreur, elle varie seulement entre les points). Cependant, en présence d'un effet de pépite, tout petit déplacement par rapport à l'endroit échantillonné présentera une variabilité en fonction de la pépite.\n\nDans l'exemple ci-dessous, nous générons un nouvel ensemble de données composé de coordonnées (x, y) générées de façon aléatoire dans la zone d'étude ainsi que des valeurs de pH générées de façon aléatoire sur la base des données `oxford`. Nous appliquons ensuite la fonction `krige` pour prédire les valeurs de magnésium à ces nouveaux points. Notez que nous spécifions le variogramme dérivé des résultats du `gls` dans l'argument `model` de `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-132_027c26268d41b1f7157bb584e297db99'}\n\n```{.r .cell-code}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[using universal kriging]\n```\n:::\n\n```{.r .cell-code}\nhead(pred)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD var1.pred var1.var\n1 227.0169 162.1185 47.13065 1269.002\n2 418.9136 465.9013 79.68437 1427.269\n3 578.5943 2032.7477 60.30539 1264.471\n4 376.2734 1530.7193 127.22366 1412.875\n5 591.5336 421.6290 105.88124 1375.485\n6 355.7369 404.3378 127.73055 1250.114\n```\n:::\n:::\n\n\nLe résultat de `krige` comprend les nouvelles coordonnées du point, la prédiction de la variable `var1.pred` ainsi que sa variance estimée `var1.var`. Dans le graphique ci-dessous, nous montrons les prédictions moyennes de MG1 à partir du krigeage (triangles) ainsi que les mesures (cercles).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-133_1b4299bab8f6eba5fe4ea3b112a66235'}\n\n```{.r .cell-code}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-133-1.png){width=672}\n:::\n:::\n\n\nLa moyenne et la variance estimées par krigeage peuvent être utilisées pour simuler les valeurs possibles de la variable à chaque nouveau point, conditionnellement aux valeurs échantillonnées. Dans l'exemple ci-dessous, nous avons effectué 4 simulations conditionnelles en ajoutant l'argument `nsim = 4` à la même instruction `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-134_9a008c1eb0ae0b7b22fbfc9aa9ca64ba'}\n\n```{.r .cell-code}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ndrawing 4 GLS realisations of beta...\n[using conditional Gaussian simulation]\n```\n:::\n\n```{.r .cell-code}\nhead(sim_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD sim1 sim2 sim3 sim4\n1 227.0169 162.1185 9.638739 34.53159 46.08685 77.86376\n2 418.9136 465.9013 60.029144 20.17179 76.46333 59.57924\n3 578.5943 2032.7477 100.791412 77.47887 73.50058 59.40279\n4 376.2734 1530.7193 112.615730 150.96664 78.76125 146.83928\n5 591.5336 421.6290 70.925240 72.85522 153.90610 126.63758\n6 355.7369 404.3378 161.608032 118.93640 134.45695 142.20074\n```\n:::\n:::\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-135_3de9cc48384c950ead05df0c82810126'}\n\n```{.r .cell-code}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-135-1.png){width=960}\n:::\n:::\n\n\n\n# Solutions\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-136_e5d36a60c009aa3f50973208ae8f2f5b'}\n\n```{.r .cell-code}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = sqrt(richness) ~ forest + wetland, data = bryo_belg)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.8847 -0.4622 0.0545 0.4974 2.3116 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 2.34159 0.08369 27.981 < 2e-16 ***\nforest 1.11883 0.13925 8.034 9.74e-15 ***\nwetland -0.59264 0.17216 -3.442 0.000635 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.7095 on 417 degrees of freedom\nMultiple R-squared: 0.2231,\tAdjusted R-squared: 0.2193 \nF-statistic: 59.86 on 2 and 417 DF, p-value: < 2.2e-16\n```\n:::\n:::\n\n\nLa proportion de forêts a un effet positif significatif et la proportion de milieux humides a un effet négatif significatif sur la richesse des bryophytes.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-137_ec3dcc9a8a06613df18c98b96808666b'}\n\n```{.r .cell-code}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-137-1.png){width=672}\n:::\n:::\n\n\nLe variogramme augmente au moins jusqu'à une distance de 40 km, il semble donc y avoir des corrélations spatiales dans les résidus du modèle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-138_7c7f1feca29413974ebbf1ffe2ed08c2'}\n\n```{.r .cell-code}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-139_8c08d48b4eaefbe6cc8947569ca14603'}\n\n```{.r .cell-code}\nAIC(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 908.6358\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_exp)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 867.822\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_gaus)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 870.9592\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 866.9117\n```\n:::\n:::\n\n\nLe modèle sphérique a l'AIC le plus faible.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-140_6c6c64ec797a7b31d531a376b94c8dbc'}\n\n```{.r .cell-code}\nsummary(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: sqrt(richness) ~ forest + wetland \n Data: bryo_belg \n AIC BIC logLik\n 866.9117 891.1102 -427.4558\n\nCorrelation Structure: Spherical spatial correlation\n Formula: ~x + y \n Parameter estimate(s):\n range nugget \n43.1727664 0.6063187 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 2.0368769 0.2481636 8.207800 0.000\nforest 0.6989844 0.1481690 4.717481 0.000\nwetland -0.2441130 0.1809118 -1.349348 0.178\n\n Correlation: \n (Intr) forest\nforest -0.251 \nwetland -0.235 0.241\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-1.75204183 -0.06568688 0.61415597 1.15240370 3.23322743 \n\nResidual standard error: 0.7998264 \nDegrees of freedom: 420 total; 417 residual\n```\n:::\n:::\n\n\nLa magnitude des deux effets est moins importante et l'effet des milieux humides n'est plus significatif. Comme c'est le cas pour d'autres types de résidus non indépendants, la \"taille effective\" de l'échantillon est ici inférieure au nombre de points, car des points proches les uns des autres fournissent une information redondante. Par conséquent, la relation entre les prédicteurs et la réponse est moins claire que celle donnée par le modèle supposant que tous ces points étaient indépendants.\n\nNotez que les résultats pour les trois modèles `gls` sont assez similaires, donc le choix d'inclure des corrélations spatiales était plus important que la forme exacte supposée pour le variogramme.\n\n\n# Données aréales {#areal-data-fr}\n\nLes données aréales sont des variables mesurées pour des régions de l'espace; ces régions sont définies par des polygones. Ce type de données est plus courant en sciences sociales, en géographie humaine et en épidémiologie, où les données sont souvent disponibles à l'échelle de divisions administratives du territoire. \n\nCe type de données apparaît aussi fréquemment dans la gestion des ressources naturelles. Par exemple, la carte suivante montre les unités d'aménagement forestier du Ministère de la Forêts, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSupposons qu'une certaine variable soit disponible au niveau de ces divisions du territoire. Comment pouvons-nous modéliser la corrélation spatiale entre les unités qui sont spatialement rapprochées?\n\nUne option serait d'appliquer les méthodes géostatistiques vues précédemment, en calculant par exemple la distance entre les centres des polygones.\n\nUne autre option, qui est davantage privilégiée pour les données aréales, consiste à définir un réseau où chaque région est connectée aux régions voisines par un lien. On suppose ensuite que les variables sont directement corrélées entre régions voisines seulement. (Notons toutefois que les corrélations directes entre voisins immédiats génèrent aussi des corrélations indirectes pour une chaîne de voisins.)\n\nDans ce type de modèle, la corrélation n'est pas nécessairement la même d'un lien à un autre. Dans ce cas, chaque lien du réseau peut être associé à un *poids* représentant son importance pour la corrélation spatiale. Nous représentons ces poids par une matrice $W$ où $w_{ij}$ est le poids du lien entre les régions $i$ et $j$. Une région n'a pas de lien avec elle-même, donc $w_{ii} = 0$.\n\nUn choix simple pour $W$ consiste à assigner un poids égal à 1 si les régions sont voisines, sinon 0 (poids binaires).\n\nOutre les divisions du territoire en polygones, un autre exemple de données aréales consiste en une grille où la variable est compilée pour chaque cellule de la grille. Dans ce cas, une cellule a généralement 4 ou 8 cellules voisines, selon que les diagonales soient incluses ou non.\n\n# Indice de Moran {#moran-i-fr}\n\nAvant de discuter des modèles d'autocorrélation spatiale, nous présentons l'indice $I$ de Moran, qui permet de tester si une corrélation significative est présente entre régions voisines. \n\nL'indice de Moran est un coefficient d'autocorrélation spatiale des $z$, pondéré par les poids $w_{ij}$. Il prend donc des valeurs entre -1 et 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nDans cette équation, nous reconnaissons l'expression d'une corrélation, soit le produit des écarts à la moyenne de deux variables $z_i$ et $z_j$, divisé par le produit de leurs écarts-types (qui est le même, donc on obtient la variance). La contribution de chaque paire $(i, j)$ est multipliée par son poids $w_{ij}$ et le terme à gauche (le nombre de régions $N$ divisé par la somme des poids) assure que le résultat soit borné entre -1 et 1.\n\nPuisque la distribution de $I$ est connue en l'absence d'autocorrélation spatiale, cette statistique permet de tester l'hypothèse nulle selon laquelle il n'y a pas de corrélation spatiale entre régions voisines.\n\nBien que nous ne verrons pas d'exemple dans ce cours-ci, l'indice de Moran peut aussi être appliqué aux données ponctuelles. Dans ce cas, on divise les paires de points en classes de distance et on calcule $I$ pour chaque classe de distance; le poids $w_{ij} = 1$ si la distance entre $i$ et $j$ se trouve dans la classe de distance voulue, 0 autrement.\n\n# Modèles d'autorégression spatiale {#spatial-autoreg-fr}\n\nRappelons-nous la formule pour une régression linéaire avec dépendance spatiale:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\noù $z$ est la portion de la variance résiduelle qui est spatialement corrélée.\n\nIl existe deux principaux types de modèles autorégressifs pour représenter la dépendance spatiale de $z$: l'autorégression conditionnelle (CAR) et l'autorégression simultanée (SAR).\n\n## Autorégression conditionnelle (CAR)\n\nDans le modèle d'autorégression conditionnelle, la valeur de $z_i$ pour la région $i$ suit une distribution normale: sa moyenne dépend de la valeur $z_j$ des régions voisines, multipliée par le poids $w_{ij}$ et un coefficient de corrélation $\\rho$; son écart-type $\\sigma_{z_i}$ peut varier d'une région à l'autre.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nDans ce modèle, si $w_{ij}$ est une matrice binaire (0 pour les non-voisins, 1 pour les voisins), alors $\\rho$ est le coefficient de corrélation partielle entre régions voisines. Cela est semblable à un modèle autorégressif d'ordre 1 dans le contexte de séries temporelles, où le coefficient d'autorégression indique la corrélation partielle.\n\n## Autorégression simultanée (SAR)\n\nDans le modèle d'autorégression simultanée, la valeur de $z_i$ est donnée directement par la somme de contributions des valeurs voisines $z_j$, multipliées par $\\rho w_{ij}$, avec un résidu indépendant $\\nu_i$ d'écart-type $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nÀ première vue, cela ressemble à un modèle autorégressif temporel. Il existe cependant une différence conceptuelle importante. Pour les modèles temporels, l'influence causale est dirigée dans une seule direction: $v(t-2)$ affecte $v(t-1)$ qui affecte ensuite $v(t)$. Pour un modèle spatial, chaque $z_j$ qui affecte $z_i$ dépend à son tour de $z_i$. Ainsi, pour déterminer la distribution conjointe des $z$, il faut résoudre simultanément (d'où le nom du modèle) un système d'équations. \n\nPour cette raison, même si ce modèle ressemble à la formule du modèle conditionnel (CAR), les solutions des deux modèles diffèrent et dans le cas du SAR, le coefficient $\\rho$ n'est pas directement égal à la corrélation partielle due à chaque région voisine.\n\nPour plus de détails sur les aspects mathématiques de ces modèles, vous pouvez consulter l'article de Ver Hoef et al. (2018) suggéré en référence. \n\nPour l'instant, nous considérerons les SAR et les CAR comme deux types de modèles possibles pour représenter une corrélation spatiale sur un réseau. Nous pouvons toujours ajuster plusieurs modèles et les comparer avec l'AIC pour choisir la meilleure forme de la corrélation ou la meilleure matrice de poids.\n\nLes modèles CAR et SAR partagent un avantage sur les modèles géostatistiques au niveau de l'efficacité. Dans un modèle géostatistique, les corrélations spatiales sont définies entre chaque paire de points, même si elles deviennent négligeables lorsque la distance augmente. Pour un modèle CAR ou SAR, seules les régions voisines contribuent et la plupart des poids sont égaux à 0, ce qui rend ces modèles plus rapides à ajuster qu'un modèle géostatistique lorsque les données sont massives.\n\n# Analyse des données aréales dans R {#analysis-areal-fr}\n\nPour illustrer l'analyse de données aréales dans R, nous chargeons les packages *sf* (pour lire des données géospatiales), *spdep* (pour définir des réseaux spatiaux et calculer l'indice de Moran) et *spatialreg* (pour les modèles SAR et CAR).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-141_8c941e8bafdfac85f5eb2821d17ab03b'}\n\n```{.r .cell-code}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n:::\n\n\nNous utiliserons comme exemple un jeu de données qui présente une partie des résultats de l'élection provinciale de 2018 au Québec, avec des caractéristiques de la population de chaque circonscription. Ces données sont inclues dans un fichier de type *shapefile* (.shp), que nous pouvons lire avec la fonction `read_sf` du package *sf*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-142_f24372ba1482109fbffa68f052fd7dfb'}\n\n```{.r .cell-code}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 9 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 97879.03 ymin: 174515.3 xmax: 694261.1 ymax: 599757.1\nProjected CRS: LambertAQ\n# A tibble: 6 × 10\n circ age_moy pct_frn pct_prp rev_med propCAQ propPQ propPLQ propQS\n \n1 Abitibi-Est 40.8 0.963 0.644 34518 42.7 19.5 18.8 15.7\n2 Abitibi-Ouest 42.2 0.987 0.735 33234 34.1 33.3 11.3 16.6\n3 Acadie 40.3 0.573 0.403 25391 16.5 9 53.8 13.8\n4 Anjou-Louis-Riel 43.5 0.821 0.416 31275 28.9 14.7 39.1 14.5\n5 Argenteuil 43.3 0.858 0.766 31097 38.9 21.1 17.4 12.2\n6 Arthabaska 43.4 0.989 0.679 30082 61.8 9.4 11.4 12.6\n# … with 1 more variable: geometry \n```\n:::\n:::\n\n\n*Note*: Le jeu de données est en fait composé de 4 fichiers avec les extensions .dbf, .prj, .shp et .shx, mais il suffit d'inscrire le nom du fichier .shp dans `read_sf`.\n\nLes colonnes du jeu de données sont dans l'ordre:\n\n- le nom de la circonscription électorale;\n- quatre caractéristiques de la population (âge moyen, fraction de la population qui parle principalement français à la maison, fraction des ménages qui sont propriétaires de leur logement, revenu médian);\n- quatre colonnes montrant la fraction des votes obtenues par les principaux partis (CAQ, PQ, PLQ, QS);\n- une colonne `geometry` qui contient l'objet géométrique (multipolygone) correspondant à la circonscription.\n\nPour illustrer une des variables sur une carte, nous appelons la fonction `plot` avec le nom de la colonne entre crochets et guillemets. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-143_118d70deac183e230a7c64b3208cd1a7'}\n\n```{.r .cell-code}\nplot(elect2018[\"rev_med\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-143-1.png){width=672}\n:::\n:::\n\n\nDans cet exemple, nous voulons modéliser la fraction des votes obtenue par la CAQ en fonction des caractéristiques de la population dans chaque circonscription et en tenant compte des corrélations spatiales entre circonscriptions voisines.\n\n## Définition du réseau de voisinage\n\nLa fonction `poly2nb` du package *spdep* définit un réseau de voisinage à partir de polygones. Le résultat `vois` est une liste de 125 éléments où chaque élément contient les indices des polygones voisins (limitrophes) d'un polygone donné.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-144_e6285b834db05d427f22b7669e5dbee2'}\n\n```{.r .cell-code}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 2 37 63 88 101 117\n```\n:::\n:::\n\n\nAinsi, la première circonscription (Abitibi-Est) a 6 circonscriptions voisines, dont on peut trouver les noms ainsi:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-145_2fc04a4a3fbb352f0ae58db913423a12'}\n\n```{.r .cell-code}\nelect2018$circ[vois[[1]]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"Abitibi-Ouest\" \"Gatineau\" \n[3] \"Laviolette-Saint-Maurice\" \"Pontiac\" \n[5] \"Rouyn-Noranda-Témiscamingue\" \"Ungava\" \n```\n:::\n:::\n\n\nNous pouvons illustrer ce réseau en faisant l'extraction des coordonnées du centre de chaque circonscription, en créant une carte muette avec `plot(elect2018[\"geometry\"])`, puis en ajoutant le réseau comme couche additionnelle avec `plot(vois, add = TRUE, coords = coords)`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-146_56fcb69c11c78b9880373ab1b16efb12'}\n\n```{.r .cell-code}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-146-1.png){width=672}\n:::\n:::\n\n\nOn peut faire un \"zoom\" sur le sud du Québec en choisissant les limites `xlim` et `ylim` appropriées.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-147_b0a05b92ad9c5bc6e15ecbc77d7fd239'}\n\n```{.r .cell-code}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-147-1.png){width=672}\n:::\n:::\n\n\nIl nous reste à ajouter des poids à chaque lien du réseau avec la fonction `nb2listw`. Le style de poids \"B\" correspond aux poids binaires, soit 1 pour la présence de lien et 0 pour l'absence de lien entre deux circonscriptions.\n\nUne fois ces poids définis, nous pouvons vérifier avec le test de Moran s'il y a une autocorrélation significative des votes obtenus par la CAQ entre circonscriptions voisines.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-148_59eb24f4ba758ea6399bc94ea1c419ba'}\n\n```{.r .cell-code}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: elect2018$propCAQ \nweights: poids \n\nMoran I statistic standard deviate = 13.148, p-value < 2.2e-16\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.680607768 -0.008064516 0.002743472 \n```\n:::\n:::\n\n\nLa valeur de $I = 0.68$ est très significative à en juger par la valeur $p$ du test.\n\nVérifions si la corrélation spatiale persiste après avoir tenu compte des quatre caractéristiques de la population, donc en inspectant les résidus d'un modèle linéaire incluant ces quatre prédicteurs.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-149_7d8643515ed0e408c5e5163ec8e3740c'}\n\n```{.r .cell-code}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018)\n\nResiduals:\n Min 1Q Median 3Q Max \n-30.9890 -4.4878 0.0562 6.2653 25.8146 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 1.354e+01 1.836e+01 0.737 0.463 \nage_moy -9.170e-01 3.855e-01 -2.378 0.019 * \npct_frn 4.588e+01 5.202e+00 8.820 1.09e-14 ***\npct_prp 3.582e+01 6.527e+00 5.488 2.31e-07 ***\nrev_med -2.624e-05 2.465e-04 -0.106 0.915 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 9.409 on 120 degrees of freedom\nMultiple R-squared: 0.6096,\tAdjusted R-squared: 0.5965 \nF-statistic: 46.84 on 4 and 120 DF, p-value: < 2.2e-16\n```\n:::\n\n```{.r .cell-code}\nmoran.test(residuals(elect_lm), poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: residuals(elect_lm) \nweights: poids \n\nMoran I statistic standard deviate = 6.7047, p-value = 1.009e-11\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.340083290 -0.008064516 0.002696300 \n```\n:::\n:::\n\n\nL'indice de Moran a diminué mais demeure significatif, donc une partie de la corrélation précédente était induite par ces prédicteurs, mais il reste une corrélation spatiale due à d'autres facteurs. \n\n## Modèles d'autorégression spatiale\n\nFinalement, nous ajustons des modèles SAR et CAR à ces données avec la fonction `spautolm` (*spatial autoregressive linear model*) de *spatialreg*. Voici le code pour un modèle SAR incluant l'effet des même quatre prédicteurs. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-150_34bc73005b64f5a3ee73549b2cbc9b5e'}\n\n```{.r .cell-code}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\n\nResiduals:\n Min 1Q Median 3Q Max \n-23.08342 -4.10573 0.24274 4.29941 23.08245 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 15.09421119 16.52357745 0.9135 0.36098\nage_moy -0.70481703 0.32204139 -2.1886 0.02863\npct_frn 39.09375061 5.43653962 7.1909 6.435e-13\npct_prp 14.32329345 6.96492611 2.0565 0.03974\nrev_med 0.00016730 0.00023209 0.7208 0.47101\n\nLambda: 0.12887 LR test value: 42.274 p-value: 7.9339e-11 \nNumerical Hessian standard error of lambda: 0.012069 \n\nLog likelihood: -433.8862 \nML residual variance (sigma squared): 53.028, (sigma: 7.282)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 881.77\n```\n:::\n:::\n\n\nLa valeur donnée par `Lambda` dans le sommaire correspond au coefficient $\\rho$ dans notre description du modèle. Le test du rapport de vraisemblance (`LR test`) confirme que cette corrélation spatiale résiduelle (après avoir tenu compte de l'effet des prédicteurs) est significative.\n\nLes effets estimés pour les prédicteurs sont semblables à ceux du modèle linéaire sans corrélation spatiale. Les effets de l'âge moyen, de la fraction de francophones et la fraction de propriétaires demeurent significatifs, bien que leur magnitude ait un peu diminué.\n\nPour évaluer un modèle CAR plutôt que SAR, nous devons spécifier `family = \"CAR\"`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-151_7ba6f7fcd4cc33a20eb6848945d3cce4'}\n\n```{.r .cell-code}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-21.73315 -4.24623 -0.24369 3.44228 23.43749 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 16.57164696 16.84155327 0.9840 0.325128\nage_moy -0.79072151 0.32972225 -2.3981 0.016478\npct_frn 38.99116707 5.43667482 7.1719 7.399e-13\npct_prp 17.98557474 6.80333470 2.6436 0.008202\nrev_med 0.00012639 0.00023106 0.5470 0.584364\n\nLambda: 0.15517 LR test value: 40.532 p-value: 1.9344e-10 \nNumerical Hessian standard error of lambda: 0.0026868 \n\nLog likelihood: -434.7573 \nML residual variance (sigma squared): 53.9, (sigma: 7.3416)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 883.51\n```\n:::\n:::\n\n\nPour un modèle CAR avec des poids binaires, la valeur de `Lambda` (que nous avions appelé $\\rho$) donne directement le coefficient de corrélation partielle entre circonscriptions voisines. Notez que l'AIC ici est légèrement supérieur au modèle SAR, donc ce dernier donnait un meilleur ajustement.\n\n## Exercice\n\nLe jeu de données `rls_covid`, en format *shapefile*, contient des données sur les cas de COVID-19 détectés, le nombre de cas par 1000 personnes (`taux_1k`) et la densité de population (`dens_pop`) dans chacun des réseaux locaux de service de santé (RLS) du Québec. (Source: Données téléchargées de l'Institut national de santé publique du Québec en date du 17 janvier 2021.)\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-152_117a49f704cd9751636b707b593f6428'}\n\n```{.r .cell-code}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 5 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 785111.2 ymin: 341057.8 xmax: 979941.5 ymax: 541112.7\nProjected CRS: Conique_conforme_de_Lambert_du_MTQ_utilis_e_pour_Adresse_Qu_be\n# A tibble: 6 × 6\n RLS_code RLS_nom cas taux_1k dens_…¹ geometry\n \n1 0111 RLS de Kamouraska 152 7.34 6.76 (((827028.3 412772.4, 82…\n2 0112 RLS de Rivière-du-Lo… 256 7.34 19.6 (((855905 452116.9, 8557…\n3 0113 RLS de Témiscouata 81 4.26 4.69 (((911829.4 441311.2, 91…\n4 0114 RLS des Basques 28 3.3 5.35 (((879249.6 471975.6, 87…\n5 0115 RLS de Rimouski 576 9.96 15.5 (((917748.1 503148.7, 91…\n6 0116 RLS de La Mitis 76 4.24 5.53 (((951316 523499.3, 9525…\n# … with abbreviated variable name ¹​dens_pop\n```\n:::\n:::\n\n\nAjustez un modèle linéaire du nombre de cas par 1000 en fonction de la densité de population (il est suggéré d'appliquer une transformation logarithmique à cette dernière). Vérifiez si les résidus du modèle sont corrélés entre RLS limitrophes avec un test de Moran, puis modélisez les mêmes données avec un modèle autorégressif conditionnel.\n\n## Référence\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. et Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n# GLMM avec processus spatial gaussien {#glmm-spatial-gaussian-fr}\n\nDans les parties précédentes, nous avons vu comment tenir compte de la dépendance spatiale dans les modèles de régression linéaire avec des modèles géostatistiques (également appelés processus gaussiens) ou des modèles d'autocorrélation spatiale (CAR/SAR). Dans cette dernière partie, nous verrons comment combiner ces caractéristiques avec des modèles de régression plus complexes, en particulier les modèles linéaires généralisés à effets mixtes (GLMM).\n\n## Données\n\nLe jeu de données `gambia` inclus avec le package *geoR* présente les résultats d'une étude sur la prévalence du paludisme chez les enfants de 65 villages en Gambie. Nous utiliserons une version légèrement transformée des données contenues dans le fichier [gambia.csv](data/gambia.csv).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-153_94be0528ee530f4b0d9120a3e4a412d9'}\n\n```{.r .cell-code}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n id_village x y pos age netuse treated green phc\n1 1 349.6313 1458.055 1 1783 0 0 40.85 1\n2 1 349.6313 1458.055 0 404 1 0 40.85 1\n3 1 349.6313 1458.055 0 452 1 0 40.85 1\n4 1 349.6313 1458.055 1 566 1 0 40.85 1\n5 1 349.6313 1458.055 0 598 1 0 40.85 1\n6 1 349.6313 1458.055 1 590 1 0 40.85 1\n```\n:::\n:::\n\n\nVoici les champs de ce jeu de données:\n\n- *id_village*: Identifiant du village.\n- *x* and *y*: Coordonnées spatiales du village (en km, basé sur les coordonnées UTM).\n- *pos*: Réponse binaire, si l'enfant a eu un test positif du paludisme.\n- *age*: Âge de l'enfant en jours.\n- *netuse*: Si l'enfant dort sous un moustiquaire ou non.\n- *treated*: Si le moustiquaire est traité ou non.\n- *green*: Mesure de la végétation basée sur les données de télédétection (disponible à l'échelle du village).\n- *phc*: Présence ou absence d'un centre de santé publique pour le village.\n\nNous pouvons compter le nombre de cas positifs et le nombre total d'enfants testés par village pour cartographier la fraction des cas positifs (ou prévalence, *prev*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-154_f2e9fe8cc46d29ee6147236d160f6a1a'}\n\n```{.r .cell-code}\n# Jeu de données à l'échelle du village\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\n```\n\n::: {.cell-output .cell-output-stderr}\n```\n`summarise()` has grouped output by 'id_village', 'x', 'y', 'green'. You can\noverride using the `.groups` argument.\n```\n:::\n\n```{.r .cell-code}\nhead(gambia_agg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n# A tibble: 6 × 8\n id_village x y green phc pos total prev\n \n1 1 350. 1458. 40.8 1 17 33 0.515\n2 2 359. 1460. 40.8 1 19 63 0.302\n3 3 360. 1460. 40.1 0 7 17 0.412\n4 4 364. 1497. 40.8 0 8 24 0.333\n5 5 366. 1460. 40.8 0 10 26 0.385\n6 6 367. 1463. 40.8 0 7 18 0.389\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-155_b02463961b3424baa4da82ed27a5ca7e'}\n\n```{.r .cell-code}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-155-1.png){width=672}\n:::\n:::\n\n\nNous utilisons le jeu de données `gambia.borders` du package *geoR* pour tracer les frontières des pays avec `geom_path`. Comme ces frontières sont en mètres, nous les divisons par 1000 pour obtenir la même échelle que nos points. Nous utilisons également `coord_fixed` pour assurer un rapport d'aspect de 1:1 entre les axes et utilisons la palette de couleur `viridis`, qui permet de visualiser plus facilement une variable continue par rapport à la palette par défaut dans *ggplot2*.\n\nSur la base de cette carte, il semble y avoir une corrélation spatiale dans la prévalence du paludisme, le groupe de villages de l'est montrant des valeurs de prévalence plus élevées (jaune-vert) et le groupe du milieu montrant des valeurs de prévalence plus faibles (violet).\n\n## GLMM non spatial\n\nPour ce premier exemple, nous allons ignorer l'aspect spatial des données et modéliser la présence du paludisme (*pos*) en fonction de l'utilisation d'une moustiquaire (*netuse*) et de la présence d'un centre de santé publique (*phc*). Comme nous avons une réponse binaire, nous devons utiliser un modèle de régression logistique (un GLM). Comme nous avons des prédicteurs au niveau individuel et au niveau du village et que nous nous attendons à ce que les enfants d'un même village aient une probabilité plus similaire d'avoir le paludisme même après avoir pris en compte ces prédicteurs, nous devons ajouter un effet aléatoire du village. Le résultat est un GLMM que nous ajustons en utilisant la fonction `glmer` du package *lme4*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-156_7c91bce3c832a01ae8f8b3f26d71b9fa'}\n\n```{.r .cell-code}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Laplace\n Approximation) [glmerMod]\n Family: binomial ( logit )\nFormula: pos ~ netuse + phc + (1 | id_village)\n Data: gambia\n\n AIC BIC logLik deviance df.resid \n 2428.0 2450.5 -1210.0 2420.0 2031 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-2.1286 -0.7120 -0.4142 0.8474 3.3434 \n\nRandom effects:\n Groups Name Variance Std.Dev.\n id_village (Intercept) 0.8149 0.9027 \nNumber of obs: 2035, groups: id_village, 65\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 0.1491 0.2297 0.649 0.5164 \nnetuse -0.6044 0.1442 -4.190 2.79e-05 ***\nphc -0.4985 0.2604 -1.914 0.0556 . \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) netuse\nnetuse -0.422 \nphc -0.715 -0.025\n```\n:::\n:::\n\n\nD'après ces résultats, les variables *netuse* et *phc* sont toutes deux associées à une diminution de la prévalence du paludisme, bien que l'effet de *phc* ne soit pas significatif à un seuil $\\alpha = 0.05$. L'ordonnée à l'origine (0.149) est le logit de la probabilité de présence du paludisme pour un enfant sans moustiquaire et sans centre de santé publique, mais c'est l'ordonnée à l'origine moyenne pour tous les villages. Il y a beaucoup de variation entre les villages selon l'écart-type de l'effet aléatoire (0.90). Nous pouvons obtenir l'ordonnée à l'origine estimée pour chaque village avec la fonction `coef`:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-157_63042bdf37fbb1a41197653e4f00698a'}\n\n```{.r .cell-code}\nhead(coef(mod_glmm)$id_village)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n (Intercept) netuse phc\n1 0.93727515 -0.6043602 -0.4984835\n2 0.09204843 -0.6043602 -0.4984835\n3 0.22500620 -0.6043602 -0.4984835\n4 -0.46271089 -0.6043602 -0.4984835\n5 0.13680037 -0.6043602 -0.4984835\n6 -0.03723346 -0.6043602 -0.4984835\n```\n:::\n:::\n\n\nPar exemple, l'ordonnée à l'origine pour le village 1 est environ 0.94, équivalente à une probabilité de 72%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-158_4a79548bf948a9a1dd6b953821a54623'}\n\n```{.r .cell-code}\nplogis(0.937)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7184933\n```\n:::\n:::\n\n\ntandis que celle pour le village 2 est équivalente à une probabilité de 52%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-159_4c5678258eaea6caef0b0f87f03a5423'}\n\n```{.r .cell-code}\nplogis(0.092)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.5229838\n```\n:::\n:::\n\n\nLe [package DHARMa](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) fournit une méthode générale pour vérifier si les résidus d'un GLMM sont distribués selon le modèle spécifié et s'il existe une tendance résiduelle. Il simule des réplicats de chaque observation selon le modèle ajusté et détermine ensuite un \"résidu standardisé\", qui est la position relative de la valeur observée par rapport aux valeurs simulées, par exemple 0 si l'observation est plus petite que toutes les simulations, 0.5 si elle se trouve au milieu, etc. Si le modèle représente bien les données, chaque valeur du résidu standardisé entre 0 et 1 doit avoir la même probabilité, de sorte que les résidus standardisés doivent produire une distribution uniforme entre 0 et 1.\n\nLa fonction `simulateResiduals` effectue le calcul des résidus standardisés, puis la fonction `plot` trace les graphiques de diagnostic avec les résultats de certains tests.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-160_9f18e83c75ae6d568f2e7722da9a3235'}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-160-1.png){width=672}\n:::\n:::\n\n\nLe graphique de gauche est un graphique quantile-quantile des résidus standardisés. Les résultats de trois tests statistiques sont également présentés: un test de Kolmogorov-Smirnov (*KS*) qui vérifie s'il y a un écart par rapport à la distribution théorique, un test de dispersion qui vérifie s'il y a une sous-dispersion ou une surdispersion et un test de valeurs aberrantes (*outlier*) basé sur le nombre de résidus qui sont plus extrêmes que toutes les simulations. Ici, nous obtenons un résultat significatif pour les valeurs aberrantes, bien que le message indique que ce résultat pourrait avoir un taux d'erreur de type I plus grand que prévu dans ce cas.\n\nÀ droite, nous obtenons généralement un graphique des résidus standardisés (en *y*) en fonction du rang des valeurs prédites, afin de vérifier l'absence de tendance résiduelle. Ici, les prédictions sont regroupées par quartile, il serait donc préférable d'agréger les prédictions et les résidus par village, ce que nous pouvons faire avec la fonction `recalculateResiduals`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-161_24ccd295095906cee82b1b1c09edfb05'}\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-161-1.png){width=672}\n:::\n:::\n\n\nLe graphique de droite montre les points individuels, ainsi qu'une régression quantile pour le 1er quartile, la médiane et le 3e quartile. En théorie, ces trois courbes devraient être des lignes droites horizontales (pas de tendance des résidus par rapport aux prévisions). La courbe pour le 3e quartile (en rouge) est significativement différente d'une ligne horizontale, ce qui pourrait indiquer un effet systématique manquant dans le modèle.\n\n## GLMM spatial avec spaMM\n\nLe package *spaMM* (modèles mixtes spatiaux) est un package R relativement récent qui permet d'effectuer une estimation approximative du maximum de vraisemblance des paramètres pour les GLM avec dépendance spatiale, modélisés soit comme un processus gaussien, soit avec un CAR (nous verrons ce dernier dans la dernière section). Le package implémente différents algorithmes, mais il existe une fonction unique `fitme` qui choisit l'algorithme approprié pour chaque type de modèle. Par exemple, voici le même modèle (non spatial) que nous avons vu ci-dessus, ajusté avec *spaMM*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-162_54461b112807b785cded2a0cabf936b4'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + (1 | id_village)\nEstimation of lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.1491 0.2287 0.6519\nnetuse -0.6045 0.1420 -4.2567\nphc -0.4986 0.2593 -1.9231\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n id_village : 0.8151 \n --- Coefficients for log(lambda):\n Group Term Estimate Cond.SE\n id_village (Intercept) -0.2045 0.2008\n# of obs: 2035; # of groups: id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1210.016\n```\n:::\n:::\n\n\nNotez que les estimés des effets fixes ainsi que la variance des effets aléatoires sont presque identiques à ceeux obtenues par `glmer` ci-dessus.\n\nNous pouvons maintenant utiliser *spaMM* pour ajuster le même modèle avec l'ajout de corrélations spatiales entre les villages. Dans la formule du modèle, ceci est représenté comme un effet aléatoire `Matern(1 | x + y)`, ce qui signifie que les ordonnées à l'origine sont spatialement corrélées entre les villages suivant une fonction de corrélation de Matérn des coordonnées (*x, y*). La fonction de Matérn est une fonction flexible de corrélation spatiale qui comprend un paramètre de forme $\\nu$ (`nu`), de sorte que lorsque $\\nu = 0,5$, elle est équivalente à la corrélation exponentielle, mais quand $\\nu$ prend de grandes valeurs, elle se rapproche d'une corrélation gaussienne. Nous pourrions laisser la fonction estimer $\\nu$, mais ici nous le fixons à 0.5 avec l'argument `fixed` de `fitme`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-163_94f8693a9a4ea45698056ea7d175adbc'}\n\n```{.r .cell-code}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.rho \n0.50000000 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.6421 \n id_village : 0.1978 \n# of obs: 2035; # of groups: x + y, 65; id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nCommençons par vérifier les effets aléatoires du modèle. La fonction de corrélation spatiale a un paramètre `rho` égal à 0.0513. Ce paramètre dans *spaMM* est l'inverse de la portée, donc ici la portée de la corrélation exponentielle est de 1/0.0513 ou environ 19.5 km. Il y a maintenant deux pramètres de variance, celui identifié comme `x + y` est la variance à longue distance (i.e. le palier) pour le modèle de corrélation exponentielle alors que celui identifié comme `id_village` montre la portion non corrélée de la variation entre les villages.\n\nSi nous avions ici laissé les effets aléatoires `(1 | id_village)` dans la formule pour représenter la partie non spatiale de la variation entre les villages, nous pourrions également représenter ceci avec un effet de pépite dans le modèle géostatistique. Dans les deux cas, cela représenterait l'idée que même deux villages très proches l'un de l'autre auraient des prévalences de base différentes dans le modèle.\n\nPar défaut, la fonction `Matern` n'a pas d'effet de pépite, mais nous pouvons en ajouter un en spécifiant une `pépite` non nulle dans la liste initiale des paramètres `init`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-164_7807f13fbd48e4a433573a5160e106f1'}\n\n```{.r .cell-code}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm2)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.Nugget 1.rho \n0.50000000 0.23551027 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.8399 \n# of obs: 2035; # of groups: x + y, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nComme vous pouvez le voir, toutes les estimations sont les mêmes, sauf que la variance de la portion spatiale (palier) est maintenant de 0.84 et que la pépite est égale à une fraction 0.235 de ce palier, soit une variance de 0.197, ce qui est identique à l'effet aléatoire `id_village` dans la version ci-dessus. Les deux formulations sont donc équivalentes.\n\nMaintenant, rappelons les coefficients que nous avions obtenus pour le GLMM non spatial :\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-165_d9e37edd6e102c7e0e32c00182b4c98d'}\n\n```{.r .cell-code}\nsummary(mod_glmm)$coefficients\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01\nnetuse -0.6043602 0.1442448 -4.1898243 2.791706e-05\nphc -0.4984835 0.2604083 -1.9142382 5.558973e-02\n```\n:::\n:::\n\n\nDans la version spatiale, les deux effets fixes se sont légèrement rapprochés de zéro, mais l'erreur-type de l'effet de `phc` a diminué. Il est intéressant de noter que l'inclusion de la dépendance spatiale nous a permis d'estimer plus précisément l'effet de la présence d'un centre de santé publique dans le village. Ce ne serait pas toujours le cas: pour un prédicteur qui est également fortement corrélé dans l'espace, la corrélation spatiale dans la réponse rend plus difficile l'estimation de l'effet de ce prédicteur, puisqu'il est confondu avec l'effet spatial. Cependant, pour un prédicteur qui n'est pas corrélé dans l'espace, l'inclusion de l'effet spatial réduit la variance résiduelle (non spatiale) et peut donc augmenter la précision de l'effet du prédicteur.\n\nLe package *spaMM* est également compatible avec *DHARMa* pour les diagnostics résiduels. (Vous pouvez ignorer l'avertissement selon lequel il ne fait pas partie de la classe des modèles pris en charge, cela est dû à l'utilisation de la fonction `fitme` plutôt que d'une fonction d'algorithme spécifique dans *spaMM*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-166_482f0fc040c81b2f1de2f8ee99aed0d1'}\n\n```{.r .cell-code}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-166-1.png){width=672}\n:::\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-166-2.png){width=672}\n:::\n:::\n\n\nEnfin, bien que nous allons montrer comment calculer et visualiser des prédictions spatiales ci-dessous, nous pouvons produire une carte rapide des effets spatiaux estimés dans un modèle *spaMM* avec la fonction `filled.mapMM`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-167_e868e1e85e43353fb2484a914c5ac95b'}\n\n```{.r .cell-code}\nfilled.mapMM(mod_spamm2)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-167-1.png){width=672}\n:::\n:::\n\n\n## Processus gaussiens vs. splines de lissage\n\nSi vous connaissez bien les modèles additifs généralisés (GAM), vous avez peut-être pensé à représenter la variation spatiale de la prévalence du paludisme (comme le montre la carte ci-dessus) par une spline de lissage en 2D (en fonction de $x$ et $y$) dans un GAM.\n\nLe code ci-dessous correspond à l'équivalent GAM de notre GLMM avec processus gaussien ci-dessus, ajusté avec la fonction `gam` du package *mgcv*. L'effet spatial est représenté par la spline 2D `s(x, y)` alors que l'effet aléatoire non spatial de village est représenté par `s(id_village, bs = \"re\")`, qui est équivalent à `(1 | id_village)` dans les modèles précédents. Notez que pour la fonction `gam`, les variables catégorielles doivent être explicitement converties en facteurs.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-168_5bc46e857407589375ab5b89e189742e'}\n\n```{.r .cell-code}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n:::\n\n\nPour visualiser la spline en 2D, nous utiliserons le package [*gratia*](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-169_07227aba979cb7fed1f2b23e7e58bfaa'}\n\n```{.r .cell-code}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-169-1.png){width=672}\n:::\n:::\n\n\nNotez que le graphique de la spline `s(x, y)` (en haut à droite) ne s'étend pas trop loin des emplacements des données (les autres zones sont vides). Dans ce graphique, on peut également voir que les effets aléatoires des villages suivent la distribution gaussienne attendue (en haut à gauche).\n\nEnsuite, nous utiliserons à la fois le GLMM spatial de la section précédente et ce GAMM pour prédire la prévalence moyenne sur une grille spatiale de points contenue dans le fichier [gambia_pred.csv](data/gambia_pred.csv). Le graphique ci-dessous ajoute ces points de prédiction (en noir) sur la carte précédente des points de données.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-170_a944ccbc8f583a47e766a152bff9062f'}\n\n```{.r .cell-code}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-170-1.png){width=672}\n:::\n:::\n\n\nPour faire des prédictions à partir du modèle GAMM à ces endroits, le code ci-dessous effectue les étapes suivantes:\n\n- Tous les prédicteurs du modèle doivent se trouver dans le tableau de données de prédiction, nous ajoutons donc des valeurs constantes de *netuse* et *phc* (toutes deux égales à 1) pour tous les points. Ainsi, nous ferons des prédictions sur la prévalence du paludisme dans le cas où un moustiquaire est utilisée et où un centre de santé publique est présent. Nous ajoutons également un *id_village* constant, bien qu'il ne soit pas utilisé dans les prédictions (voir ci-dessous).\n\n- Nous appelons la fonction `predict` à la sortie de `gam` pour produire des prédictions aux nouveaux points de données (argument `newdata`), en incluant les erreurs-types (`se.fit = TRUE`) et en excluant les effets aléatoires du village, donc la prédiction est faite pour un \"village moyen\". L'objet résultant `gam_pred` aura des colonnes `fit` (prédiction moyenne) et `se.fit` (erreur-type). Ces prédictions et erreurs-types sont sur l'échelle du lien (logit).\n\n- Nous rattachons le jeu de données de prédiction original à `gam_pred` avec `cbind`. \n\n- Nous ajoutons des colonnes pour la prédiction moyenne et les limites de l'intervalle de confiance à 50% (moyenne $\\pm$ 0.674 erreur-type), converties de l'échelle logit à l'échelle de probabilité avec `plogis`. Nous choisissons un intervalle de 50% car un intervalle de 95% peut être trop large ici pour contraster les différentes prédictions sur la carte à la fin de cette section.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-171_357ffbfea872595db79ace469d64440a'}\n\n```{.r .cell-code}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\n*Note* : La raison pour laquelle nous ne faisons pas de prédictions directement sur l'échelle de probabilité (réponse) est que la formule normale des intervalles de confiance s'applique plus précisément sur l'échelle logit. L'ajout d'un certain nombre d'erreurs-types autour de la moyenne sur l'échelle de probabilité conduirait à des intervalles moins précis et peut-être même à des intervalles de confiance en dehors de la plage de valeurs possible (0, 1) pour une probabilité.\n\nNous appliquons la même stratégie pour faire des prédictions à partir du GLMM spatial avec *spaMM*. Il y a quelques différences dans la méthode `predict` par rapport au cas du GAMM.\n\n- L'argument `binding = \"fit\"` signifie que les prédictions moyennes (colonne `fit`) seront attachées à l'ensemble de données de prédiction et retournées sous forme de tableau de données `spamm_pred`.\n\n- L'argument `variances = list(linPred = TRUE)` indique à `predict` de calculer la variance du prédicteur linéaire (donc le carré de l'erreur-type). Cependant, il apparaît comme un attribut `predVar` dans le tableau de données de sortie plutôt que dans une colonne `se.fit`, donc nous le déplaçons vers une colonne sur la ligne suivante. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-172_4419491a3882f147cdc904a6d1ed9d9c'}\n\n```{.r .cell-code}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\nEnfin, nous combinons les deux ensembles de prédictions sous la forme de différentes rangées d'un tableau de données `pred_all` avec `bind_rows`. Le nom du tableau de données d'où provient chaque prédiction (`gam` ou `spamm`) apparaîtra dans la colonne \"model\" (argument `.id`). Pour simplifier la production du prochain graphique, nous utilisons ensuite `pivot_longer` dans le package *tidyr* pour changer les trois colonnes \"pred\", \"lo\" et \"hi\" en deux colonnes, \"stat\" et \"value\" (`pred_tall` a donc trois rangées pour chaque rangée dans `pred_all`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-173_1fc1b4f68f5b10a718d8d768a968469c'}\n\n```{.r .cell-code}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n:::\n\n\nUne fois ces étapes franchies, nous pouvons enfin examiner les cartes de prédiction (moyenne, limites inférieure et supérieure de l'intervalle de confiance à 50 %) à l'aide d'un graphique `ggplot`. Les points de données originaux sont indiqués en rouge.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-174_f5e1618501cf8d5cc8fb3b12843ae8e2'}\n\n```{.r .cell-code}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-174-1.png){width=672}\n:::\n:::\n\n\nBien que les deux modèles s'accordent à dire que la prévalence est plus élevée près du groupe de villages de l'est, le GAMM estime également une prévalence plus élevée en quelques points (bord ouest et autour du centre) où il n'y a pas de données. Il s'agit d'un artefact de la forme de la spline autour des points de données, puisqu'une spline est censée correspondre à une tendance globale, bien que non linéaire. En revanche, le modèle géostatistique représente l'effet spatial sous forme de corrélations locales et revient à la prévalence moyenne globale lorsqu'il est éloigné de tout point de données, ce qui est une supposition plus sûre. C'est l'une des raisons pour lesquelles il est préférable de choisir un modèle géostatistique / processus gaussien dans ce cas.\n\n## Méthodes bayésiennes pour les GLMM avec processus gaussiens\n\nLes modèles bayésiens fournissent un cadre flexible pour exprimer des modèles avec une structure de dépendance complexe entre les données, y compris la dépendance spatiale. Cependant, l'ajustement d'un modèle de processus gaussien avec une approche entièrement bayésienne peut être lent, en raison de la nécessité de calculer une matrice de covariance spatiale entre toutes les paires de points à chaque itération. \n\nLa méthode INLA (pour *integrated nested Laplace approximation*) effectue un calcul approximatif de la distribution postérieure bayésienne, ce qui la rend adaptée aux problèmes de régression spatiale. Nous ne l'abordons pas dans ce cours, mais je recommande le manuel de Paula Moraga (dans la section des références ci-dessous) qui fournit des exemples concrets d'utilisation de la méthode INLA pour divers modèles de données géostatistiques et aréales, dans le contexte de l'épidémiologie, y compris des modèles avec une dépendance à la fois spatiale et temporelle. Le livre présente les mêmes données sur le paludisme en Gambie comme exemple d'un ensemble de données géostatistiques, ce qui a inspiré son utilisation dans ce cours.\n\n# GLMM avec autorégression spatiale {#glmm-spatial-autoreg-fr}\n\nNous revenons au dernier exemple de la partie précédente, où nous avions modélisé le taux de cas de COVID-19 (cas / 1000) pour les divisions administratives du réseau de la santé (RLS) au Québec en fonction de leur densité de population. Le taux est donné par la colonne \"taux_1k\" dans le *shapefile* `rls_covid`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-175_d979460e37556b83e05dc8fb16e15b65'}\n\n```{.r .cell-code}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-175-1.png){width=672}\n:::\n:::\n\n\nAuparavant, nous avions modélisé le logarithme de ce taux comme une fonction linéaire du logarithme de la densité de population, la variance résiduelle étant corrélée entre les unités voisines via une structure CAR (autorégression conditionnelle), comme le montre le code ci-dessous.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-176_eabbd635c0d88a1a771574c50afa7c53'}\n\n```{.r .cell-code}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid, \n listw = rls_w, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.201858 -0.254084 -0.053348 0.281482 1.427053 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16\nlog(dens_pop) 0.206623 0.032848 6.2903 3.169e-10\n\nLambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07 \nNumerical Hessian standard error of lambda: 0.0050486 \n\nLog likelihood: -80.68953 \nML residual variance (sigma squared): 0.2814, (sigma: 0.53048)\nNumber of observations: 95 \nNumber of parameters estimated: 4 \nAIC: 169.38\n```\n:::\n:::\n\n\n*Rappel*: La fonction `poly2nb` du package *spdep* crée une liste de voisins basée sur les polygones limitrophes dans un *shapefile*, puis `nb2listw` la convertit en une liste de poids, ici des poids binaires (`style = \"B\"`) de sorte que chaque région limitrophe reçoive le même poids de 1 dans le modèle autorégressif.\n\nAu lieu d'utiliser les taux, il serait possible de modéliser directement les cas avec une régression de Poisson, qui est appropriée pour les données de comptage. Pour tenir compte du fait que si le risque par personne était égal, les cas seraient proportionnels à la population, nous pouvons ajouter la population de l'unité `pop` comme *offset* dans la régression de Poisson. Par conséquent, le modèle ressemblerait à : `cas ~ log(dens_pop) + offset(log(pop))`. Notez que puisque la régression de Poisson utilise un lien logarithmique, ce modèle avec `log(pop)` comme *offset* suppose que `log(cas / pop)` (donc le taux logarithmique) est proportionnel à `log(dens_pop)`, tout comme le modèle linéaire ci-dessus, mais il a l'avantage de modéliser la variabilité des données brutes (le nombre de cas) directement avec une distribution de Poisson.\n\nNous n'avons pas la population dans ces données, mais nous pouvons l'estimer à partir des cas et du taux (cas / 1000) comme suit:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-177_6dfaa30fb79c49e08cda1647cb0cd013'}\n\n```{.r .cell-code}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n:::\n\n\nPour définir un modèle CAR dans *spaMM*, nous avons besoin d'une matrice de poids plutôt que d'une liste de poids comme dans le package *spatialreg*. Heureusement, le package *spdep* comprend également une fonction `nb2mat` pour convertir la liste des voisins en une matrice de poids, là encore en utilisant des poids binaires. Pour éviter un avertissement dans R, nous spécifions que les noms des lignes et des colonnes de cette matrice doivent être égaux aux identifiants associés à chaque unité (`RLS_code`). Ensuite, nous ajoutons un terme `adjacency(1 | RLS_code)` au modèle pour spécifier que la variation résiduelle entre les différents groupes définis par `RLS_code` est spatialement corrélée avec une structure CAR (ici, chaque groupe n'a qu'une observation puisque nous avons un point de données par unité RLS).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-178_c3221c2defe378081625dfcfb8bdbe89'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: poisson( link = log ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) -5.1618 0.16855 -30.625\nlog(dens_pop) 0.1999 0.03267 6.119\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.rho \n0.1576605 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n RLS_code : 0.266 \n# of obs: 95; # of groups: RLS_code, 95 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -709.3234\n```\n:::\n:::\n\n\nNotez que le coefficient de corrélation spatiale `rho` (0.158) est similaire à la quantité équivalente dans le modèle `spautolm` ci-dessus, où il était appelé `Lambda`. L'effet de `log(dens_pop)` est également d'environ 0.2 dans les deux modèles.\n\n\n## Référence\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Disponible en ligne: [https://www.paulamoraga.com/book-geospatial/](https://www.paulamoraga.com/book-geospatial/). \n", + "markdown": "---\ntitle: \"4-Day Training in Spatial Statistics with Philippe Marchand\"\ndescription: |\n Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). | \n Session de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).\nauthor: Philippe Marchand\ncategories: [FR, EN, Technical]\ndate: \"2021-01-12\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\nexecute:\n freeze: true\n cache: true\n---\n\n\nVersion en français [à la suite](#statistiques-spatiales-en-écologie).\n\n# Spatial statistics in ecology\n\nBIOS² hosted an online training session about statistical analysis of spatial data in ecology, led by Pr. Philippe Marchand (UQAT). This 12-hour training was conducted in 4 sessions: January 12, 14, 19 & 21 (2021) from 1:00 to 4:00 pm EST.\n\nThe content included three types of spatial statistical analyses and their applications to ecology: (1) point pattern analysis to study the distribution of individuals or events in space; (2) geostatistical models to represent the spatial correlation of variables sampled at geolocated points; and (3) areal data models, which apply to measurements taken on areas in space and model spatial relationships as networks of neighbouring regions. The training also included practical exercises using the R statistical programming environment.\n\n[Philippe Marchand](https://github.com/pmarchand1) is a professor in ecology and biostatistics at Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) and BIOS² academic member. His research focuses on modeling processes that influence the spatial distribution of populations, including: seed dispersal and seedling establishment, animal movement, and the spread of forest diseases.\n\n**If you wish to consult the lesson materials and follow the exercises at your own pace, you can access them through [this link](https://bios2.github.io/Marchand.html#category:EN). Basic knowledge of linear regression models and experience fitting them in R is recommended. Original repository can be found [here](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Course outline\n\n| Day | Topics (EN) |\n|-----------------|:--------------------------|\n| 1 | • [Introduction to spatial statistics](#introduction)
• [Point pattern analysis](#point-pattern)
|\n| 2 | • [Spatial correlation](#spatial-correlation)
• [Geostatistical models](#geostat-models) |\n| 3 | • [Areal data](#areal-data)
• [Moran's I](#moran-i)
• [Spatial autoregression models](#spatial-autoreg)
• [Analysis of areal data in R](#analysis-areal) |\n| 4 | • [GLMM with spatial Gaussian process](#glmm-spatial-gaussian)
• [GLMM with spatial autoregression](#glmm-spatial-autoreg) |\n\n\n# Introduction to spatial statistics {#introduction}\n\n## Types of spatial analyses\n\nIn this training, we will discuss three types of spatial analyses: point pattern analysis, geostatistical models and models for areal data.\n\nIn **point pattern analysis**, we have point data representing the position of individuals or events in a study area and we assume that all individuals or events have been identified in that area. That analysis focuses on the distribution of the positions of the points themselves. Here are some typical questions for the analysis of point patterns:\n\n- Are the points randomly arranged or clustered?\n\n- Are two types of points arranged independently?\n\n**Geostatistical models** represent the spatial distribution of continuous variables that are measured at certain sampling points. They assume that measurements of those variables at different points are correlated as a function of the distance between the points. Applications of geostatistical models include the smoothing of spatial data (e.g., producing a map of a variable over an entire region based on point measurements) and the prediction of those variables for non-sampled points.\n\n**Areal data** are measurements taken not at points, but for regions of space represented by polygons (e.g. administrative divisions, grid cells). Models representing these types of data define a network linking each region to its neighbours and include correlations in the variable of interest between neighbouring regions.\n\n## Stationarity and isotropy\n\nSeveral spatial analyses assume that the variables are **stationary** in space. As with stationarity in the time domain, this property means that summary statistics (mean, variance and correlations between measures of a variable) do not vary with translation in space. For example, the spatial correlation between two points may depend on the distance between them, but not on their absolute position.\n\nIn particular, there cannot be a large-scale trend (often called *gradient* in a spatial context), or this trend must be taken into account before modelling the spatial correlation of residuals.\n\nIn the case of point pattern analysis, stationarity (also called homogeneity) means that point density does not follow a large-scale trend.\n\nIn a **isotropic** statistical model, the spatial correlations between measurements at two points depend only on the distance between the points, not on the direction. In this case, the summary statistics do not change under a spatial rotation of the data.\n\n## Georeferenced data\n\nEnvironmental studies increasingly use data from geospatial data sources, i.e. variables measured over a large part of the globe (e.g. climate, remote sensing). The processing of these data requires concepts related to Geographic Information Systems (GIS), which are not covered in this workshop, where we focus on the statistical aspects of spatially varying data.\n\nThe use of geospatial data does not necessarily mean that spatial statistics are required. For example, we will often extract values of geographic variables at study points to explain a biological response observed in the field. In this case, the use of spatial statistics is only necessary when there is a spatial correlation in the residuals, after controlling for the effect of the predictors.\n\n# Point pattern analysis {#point-pattern}\n\n## Point pattern and point process\n\nA *point pattern* describes the spatial position (most often in 2D) of individuals or events, represented by points, in a given study area, often called the observation \"window\".\n\nIt is assumed that each point has a negligible spatial extent relative to the distances between the points. More complex methods exist to deal with spatial patterns of objects that have a non-negligible width, but this topic is beyond the scope of this workshop.\n\nA *point process* is a statistical model that can be used to simulate point patterns or explain an observed point pattern.\n\n## Complete spatial randomness\n\nComplete spatial randomness (CSR) is one of the simplest point patterns, which serves as a null model for evaluating the characteristics of real point patterns. In this pattern, the presence of a point at a given position is independent of the presence of points in a neighbourhood.\n\nThe process creating this pattern is a homogeneous Poisson process. According to this model, the number of points in any area $A$ follows a Poisson distribution: $N(A) \\sim \\text{Pois}(\\lambda A)$, where $\\lambda$ is the *intensity* of the process (i.e. the density of points per unit area). $N$ is independent between two disjoint regions, no matter how those regions are defined.\n\nIn the graph below, only the pattern on the right is completely random. The pattern on the left shows point aggregation (higher probability of observing a point close to another point), while the pattern in the center shows repulsion (low probability of observing a point very close to another).\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-2_c019229dfeb24b4b22a136e6b038583d'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-2-1.png){width=864}\n:::\n:::\n\n\n## Exploratory or inferential analysis for a point pattern\n\nSeveral summary statistics are used to describe the characteristics of a point pattern. The simplest is the intensity $\\lambda$, which as mentioned above represents the density of points per unit area. If the point pattern is heterogeneous, the intensity is not constant, but depends on the position: $\\lambda(x, y)$.\n\nCompared to intensity, which is a first-order statistic, second-order statistics describe how the probability of the presence of a point in a region depends on the presence of other points. The Ripley's $K$ function presented in the next section is an example of a second-order summary statistic.\n\nStatistical inferences on point patterns usually consist of testing the hypothesis that the point pattern corresponds to a given null model, such as CSR or a more complex null model. Even for the simplest null models, we rarely know the theoretical distribution for a summary statistic of the point pattern under the null model. Hypothesis tests on point patterns are therefore performed by simulation: a large number of point patterns are simulated from the null model and the distribution of the summary statistics of interest for these simulations is compared to their values for the observed point pattern.\n\n## Ripley's K function\n\nRipley's K function $K(r)$ is defined as the mean number of points within a circle of radius $r$ around a point in the pattern, standardized by the intensity $\\lambda$.\n\nUnder the CSR null model, the mean number of points in any circle of radius $r$ is $\\lambda \\pi r^2$, thus in theory $K(r) = \\pi r^2$ for that model. A higher value of $K(r)$ means that there is an aggregation of points at the scale $r$, whereas a lower value means that there is repulsion.\n\nIn practice, $K(r)$ is estimated for a specific point pattern by the equation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\nwhere $A$ is the area of the observation window and $n$ is the number of points in the pattern, so $n(n-1)$ is the number of distinct pairs of points. We take the sum for all pairs of points of the indicator function $I$, which takes a value of 1 if the distance between points $i$ and $j$ is less than or equal to $r$. Finally, the term $w_{ij}$ is used to give extra weight to certain pairs of points to account for edge effects, as discussed in the next section.\n\nFor example, the graphs below show the estimated $K(r)$ function for the patterns shown above, for values of $r$ up to 1/4 of the window width. The red dashed curve shows the theoretical value for CSR and the gray area is an \"envelope\" produced by 99 simulations of that null pattern. The aggregated pattern shows an excess of neighbours up to $r = 0.25$ and the pattern with repulsion shows a significant deficit of neighbours for small values of $r$.\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-4_93b9963febba16ed4365408bd10b6c70'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-4-1.png){width=864}\n:::\n:::\n\n\nIn addition to $K$, there are other statistics to describe the second-order properties of point patterns, such as the mean distance between a point and its nearest $N$ neighbours. You can refer to the Wiegand and Moloney (2013) textbook in the references to learn more about different summary statistics for point patterns.\n\n## Edge effects\n\nIn the context of point pattern analysis, edge effects are due to the fact that we have incomplete knowledge of the neighbourhood of points near the edge of the observation window, which can induce a bias in the calculation of statistics such as Ripley's $K$.\n\nDifferent methods have been developed to correct the bias due to edge effects. In Ripley's edge correction method, the contribution of a neighbour $j$ located at a distance $r$ from a point $i$ receives a weight $w_{ij} = 1/\\phi_i(r)$, where $\\phi_i(r)$ is the fraction of the circle of radius $r$ around $i$ contained in the observation window. For example, if 2/3 of the circle is in the window, this neighbour counts as 3/2 neighbours in the calculation of a statistic like $K$.\n\n![](images/ripley_edge.png)\n\nRipley's method is one of the simplest to correct for edge effects, but is not necessarily the most efficient; in particular, larger weights given to certain pairs of points tend to increase the variance of the calculated statistic. Other correction methods are presented in specialized textbooks, such as Wiegand and Moloney (2013).\n\n## Example\n\nFor this example, we use the dataset [semis_xy.csv](data/semis_xy.csv), which represents the $(x, y)$ coordinates for seedlings of two species (*sp*, B = birch and P = poplar) in a 15 x 15 m plot.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-5_0f8146040b7a6a70fa3c497cc0385db2'}\n\n```{.r .cell-code}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y sp\n1 14.73 0.05 P\n2 14.72 1.71 P\n3 14.31 2.06 P\n4 14.16 2.64 P\n5 14.12 4.15 B\n6 9.88 4.08 B\n```\n:::\n:::\n\n\nThe *spatstat* package provides tools for point pattern analysis in R. The first step consists in transforming our data frame into a `ppp` object (point pattern) with the function of the same name. In this function, we specify which columns contain the coordinates *x* and *y* as well as the *marks*, which here will be the species codes. We also need to specify an observation window (`window`) using the `owin` function, where we provide the plot limits in *x* and *y*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-6_57149b36e4a5be5442a99b8f45b2dbdd'}\n\n```{.r .cell-code}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMarked planar point pattern: 281 points\nMultitype, with levels = B, P \nwindow: rectangle = [0, 15] x [0, 15] units\n```\n:::\n:::\n\n\nMarks can be numeric or categorical. Note that for categorical marks as is the case here, the variable must be explicitly converted to a factor.\n\nThe `plot` function applied to a point pattern shows a diagram of the pattern.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-7_ba656f4aa5befb58b9e9845ae787d99d'}\n\n```{.r .cell-code}\nplot(semis)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-7-1.png){width=672}\n:::\n:::\n\n\nThe `intensity` function calculates the density of points of each species by unit area (here, by $m^2$).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-8_0b22d4b3b39bd4dc862f8c161efb9330'}\n\n```{.r .cell-code}\nintensity(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n B P \n0.6666667 0.5822222 \n```\n:::\n:::\n\n\nTo first analyze the distribution of each species separately, we split the pattern with `split`. Since the pattern contains categorical marks, it is automatically split according to the values of those marks. The result is a list of two point patterns.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-9_5ff3f6384afcf7ed706bbf891accd2fa'}\n\n```{.r .cell-code}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-9-1.png){width=672}\n:::\n:::\n\n\nThe `Kest` function calculates Ripley's $K$ for a series of distances up to (by default) 1/4 of the width of the window. Here we apply it to the first pattern (birch) by choosing `semis_split[[1]]`. Note that double square brackets are necessary to choose an item from a list in R.\n\nThe argument `correction = \"iso\"` tells the function to apply Ripley's correction for edge effects.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-10_67e4bd9ed190d1af69a48250adb1bc3d'}\n\n```{.r .cell-code}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-10-1.png){width=672}\n:::\n:::\n\n\nAccording to this graph, there seems to be an excess of neighbours for distances of 1 m and above. To check if this is a significant difference, we produce a simulation envelope with the `envelope` function. The first argument of `envelope` is a point pattern to which the simulations will be compared, the second one is a function to be computed (here, `Kest`) for each simulated pattern, then we add the arguments of the `Kest` function (here, only `correction`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-11_ebe814599d9537b0a51121b965182658'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-11-1.png){width=672}\n:::\n:::\n\n\nAs indicated by the message, by default the function performs 99 simulations of the null model corresponding to complete spatial randomness (CSR).\n\nThe observed curve falls outside the envelope of the 99 simulations near $r = 2$. We must be careful not to interpret too quickly a result that is outside the envelope. Although there is about a 1% probability of obtaining a more extreme result under the null hypothesis at a given distance, the envelope is calculated for a large number of values of $r$ and is not corrected for multiple comparisons. Thus, a significant difference for a very small range of values of $r$ may be simply due to chance.\n\n### Exercise 1\n\nLooking at the graph of the second point pattern (poplar seedlings), can you predict where Ripley's $K$ will be in relation to the null hypothesis of complete spatial randomness? Verify your prediction by calculating Ripley's $K$ for this point pattern in R.\n\n## Effect of heterogeneity\n\nThe graph below illustrates a *heterogeneous* point pattern, i.e. it shows an density gradient (more points on the left than on the right).\n\n\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-13_36849871c75ced31ddf5bd09edb7ace9'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-13-1.png){width=672}\n:::\n:::\n\n\nA density gradient can be confused with an aggregation of points, as can be seen on the graph of the corresponding Ripley's $K$. In theory, these are two different processes:\n\n- Heterogeneity: The density of points varies in the study area, for example due to the fact that certain local conditions are more favorable to the presence of the species of interest.\n\n- Aggregation: The mean density of points is homogeneous, but the presence of one point increases the presence of other points in its vicinity, for example due to positive interactions between individuals.\n\nHowever, it may be difficult to differentiate between the two in practice, especially since some patterns may be both heterogeneous and aggregated.\n\nLet's take the example of the poplar seedlings from the previous exercise. The `density` function applied to a point pattern performs a kernel density estimation of the density of the seedlings across the plot. By default, this function uses a Gaussian kernel with a standard deviation `sigma` specified in the function, which determines the scale at which density fluctuations are \"smoothed\". Here, we use a value of 2 m for `sigma` and we first represent the estimated density with `plot`, before overlaying the points (`add = TRUE` means that the points are added to the existing plot rather than creating a new plot).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-14_3332987af85b2014bbebfa360ce15a9b'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n\nTo measure the aggregation or repulsion of points in a heterogeneous pattern, we must use the inhomogeneous version of the $K$ statistic (`Kinhom` in *spatstat*). This statistic is still equal to the mean number of neighbours within a radius $r$ of a point in the pattern, but rather than standardizing this number by the overall intensity of the pattern, it is standardized by the local estimated density. As above, we specify `sigma = 2` to control the level of smoothing for the varying density estimate.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-15_f82857163481aaf3f03a5dd201df8615'}\n\n```{.r .cell-code}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-15-1.png){width=672}\n:::\n:::\n\n\nTaking into account the heterogeneity of the pattern at a scale `sigma` of 2 m, there seems to be a deficit of neighbours starting at a radius of about 1.5 m. We can now check whether this deviation is significant.\n\nAs before, we use `envelope` to simulate the `Kinhom` statistic under the null model. However, the null model here is not a homogeneous Poisson process (CSR). It is instead a heterogeneous Poisson process simulated by the function `rpoispp(dens_p)`, i.e. the points are independent of each other, but their density is heterogeneous and given by `dens_p`. The `simulate` argument of the `envelope` function specifies the function used for simulations under the null model; this function must have one argument, here `x`, even if it is not used.\n\nFinally, in addition to the arguments needed for `Kinhom`, i.e. `sigma` and `correction`, we also specify `nsim = 199` to perform 199 simulations and `nrank = 5` to eliminate the 5 most extreme results on each side of the envelope, i.e. the 10 most extreme results out of 199, to achieve an interval containing about 95% of the probability under the null hypothesis.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-16_7119c82106369cf2aa8fe32fff918b5e'}\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-16-1.png){width=672}\n:::\n:::\n\n\n*Note*: For a hypothesis test based on simulations of a null hypothesis, the $p$-value is estimated by $(m + 1)/(n + 1)$, where $n$ is the number of simulations and $m$ is the number of simulations where the value of the statistic is more extreme than that of the observed data. This is why the number of simulations is often chosen to be 99, 199, etc.\n\n### Exercise 2\n\nRepeat the heterogeneous density estimation and `Kinhom` calculation with a standard deviation `sigma` of 5 rather than 2. How does the smoothing level for the density estimation influence the conclusions?\n\nTo differentiate between a variation in the density of points from an interaction (aggregation or repulsion) between these points with this type of analysis, it is generally assumed that the two processes operate at different scales. Typically, we can test whether the points are aggregated at a small scale after accounting for a variation in density at a larger scale.\n\n## Relationship between two point patterns\n\nLet's consider a case where we have two point patterns, for example the position of trees of two species in a plot (orange and green points in the graph below). Each of the two patterns may or may not present an aggregation of points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-17_b4289a87928bcb641b5e8e2bd2b6abf1'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-17-1.png){width=672}\n:::\n:::\n\n\nRegardless of whether points are aggregated at the species level, we want to determine whether the two species are arranged independently. In other words, does the probability of observing a tree of one species depend on the presence of a tree of the other species at a given distance?\n\nThe bivariate version of Ripley's $K$ allows us to answer this question. For two patterns noted 1 and 2, the function $K_{12}(r)$ calculates the mean number of points in pattern 2 within a radius $r$ from a point in pattern 1, standardized by the density of pattern 2.\n\nIn theory, this function is symmetrical, so $K_{12}(r) = K_{21}(r)$ and the result would be the same whether the points of pattern 1 or 2 are chosen as \"focal\" points for the analysis. However, the estimation of the two quantities for an observed pattern may differ, in particular because of edge effects. The variance of $K_{12}$ and $K_{21}$ between simulations of a null model may also differ, so the null hypothesis test may have more or less power depending on the choice of the focal species.\n\nThe choice of an appropriate null model is important here. In order to determine whether there is a significant attraction or repulsion between the two patterns, the position of one of the patterns must be randomly moved relative to that of the other pattern, while keeping the spatial structure of each pattern taken in isolation.\n\nOne way to do this randomization is to shift one of the two patterns horizontally and/or vertically by a random distance. The part of the pattern that \"comes out\" on one side of the window is attached to the other side. This method is called a toroidal shift, because by connecting the top and bottom as well as the left and right of a rectangular surface, we obtain the shape of a torus (a three-dimensional \"donut\").\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-18_2719c0934b27fb43697dae326b9542d1'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-18-1.png){width=672}\n:::\n:::\n\n\nThe graph above shows a translation of the green pattern to the right, while the orange pattern remains in the same place. The green points in the shaded area are brought back on the other side. Note that while this method generally preserves the structure of each pattern while randomizing their relative position, it can have some drawbacks, such as dividing point clusters that are near the cutoff point.\n\nLet's now check whether the position of the two species (birch and poplar) is independent in our plot. The function `Kcross` calculates the bivariate $K_{ij}$, we must specify which type of point (mark) is considered as the focal species $i$ and the neighbouring species $j$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-19_4dcee95d46a21e9800bad80559da1926'}\n\n```{.r .cell-code}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-19-1.png){width=672}\n:::\n:::\n\n\nHere, the observed $K$ is lower than the theoretical value, indicating a possible repulsion between the two patterns.\n\nTo determine the envelope of the $K$ under the null hypothesis of independence of the two patterns, we must specify that the simulations are based on a translation of the patterns. We indicate that the simulations use the function `rshift` (random translation) with the argument `simulate = function(x) rshift(x, which = \"B\")`; here, the `x` argument in `simulate` corresponds to the original point pattern and the `which` argument indicates which of the patterns is translated. As in the previous case, the arguments needed for `Kcross`, i.e. `i`, `j` and `correction`, must be repeated in the `envelope` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-20_0ac003a9d3ff5047aa7ab53d990626d2'}\n\n```{.r .cell-code}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-20-1.png){width=672}\n:::\n:::\n\n\nHere, the observed curve is totally within the envelope, so we do not reject the null hypothesis of independence of the two patterns.\n\n### Questions\n\n1. What would be one reason for our choice to translate the points of the birch rather than poplar?\n\n2. Would the simulations generated by random translation be a good null model if the two patterns were heterogeneous?\n\n## Marked point patterns\n\nThe [fir.csv](data/fir.csv) dataset contains the $(x, y)$ coordinates of 822 fir trees in a 1 hectare plot and their status (A = alive, D = dead) following a spruce budworm outbreak.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-21_facfc5f20aa18027ead60eade7d1f3e8'}\n\n```{.r .cell-code}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y status\n1 31.50 1.00 A\n2 85.25 30.75 D\n3 83.50 38.50 A\n4 84.00 37.75 A\n5 83.00 33.25 A\n6 33.25 0.25 A\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-22_8ca66569ad633346ebe5c4d72856947e'}\n\n```{.r .cell-code}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-22-1.png){width=672}\n:::\n:::\n\n\nSuppose that we want to check whether fir mortality is independent or correlated between neighbouring trees. How does this question differ from the previous example, where we wanted to know if the position of the points of two species was independent?\n\nIn the previous example, the independence or interaction between the species referred to the formation of the pattern itself (whether or not seedlings of one species establish near those of the other species). Here, the characteristic of interest (survival) occurs after the establishment of the pattern, assuming that all those trees were alive at first and that some died as a result of the outbreak. So we take the position of the trees as fixed and we want to know whether the distribution of status (dead, alive) among those trees is random or shows a spatial pattern.\n\nIn Wiegand and Moloney's textbook, the first situation (establishment of seedlings of two species) is called a bivariate pattern, so it is really two interacting patterns, while the second is a single pattern with a qualitative *mark*. The *spatstat* package in R does not differentiate between the two in terms of pattern definition (types of points are always represented by the `marks` argument), but the analysis methods applied to the two questions differ.\n\nIn the case of a pattern with a qualitative mark, we can define a *mark connection function* $p_{ij}(r)$. For two points separated by a distance $r$, this function gives the probability that the first point has the mark $i$ and the second the mark $j$. Under the null hypothesis where the marks are independent, this probability is equal to the product of the proportions of each mark in the entire pattern, $p_{ij}(r) = p_i p_j$ independently of $r$.\n\nIn *spatstat*, the mark connection function is computed with the `markconnect` function, where the marks $i$ and $j$ and the type of edge correction must be specified. In our example, we see that two closely spaced points are less likely to have a different status (A and D) than expected under the assumption of random and independent distribution of marks (red dotted line).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-23_ea3bee43b75cb2228264e2bba732134d'}\n\n```{.r .cell-code}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-23-1.png){width=672}\n:::\n:::\n\n\nIn this graph, the fluctuations in the function are due to the estimation error of a continuous $r$ function from a limited number of discrete point pairs.\n\nTo simulate the null model in this case, we use the `rlabel` function, which randomly reassigns the marks among the points of the pattern, keeping the points' positions fixed.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-24_b5961fa24a7b5816b3a04f809a6a674c'}\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-24-1.png){width=672}\n:::\n:::\n\n\nNote that since the `rlabel` function has only one required argument corresponding to the original point pattern, it was not necessary to specify: `simulate = function(x) rlabel(x)`.\n\nHere are the results for tree pairs of the same status A or D:\n\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-25_b52d50f419fba628767a4e51fec12988'}\n\n```{.r .cell-code}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-25-1.png){width=960}\n:::\n:::\n\n\nIt therefore appears that fir mortality due to this outbreak is spatially aggregated, since trees located in close proximity to each other have a greater probability of sharing the same status than predicted by the null hypothesis.\n\n## References\n\nFortin, M.-J. and Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK.\n\nWiegand, T. and Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nThe dataset in the last example is a subet of the Lake Duparquet Research and Teaching Forest (LDRTF) data, available on Dryad [here](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n# Solutions\n\n### Exercise 1\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-26_b3fd18c8b6c242843edf3836d1967112'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-26-1.png){width=672}\n:::\n:::\n\n\nPoplar seedlings seem to be significantly aggregated according to the $K$ function.\n\n### Exercise 2\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-27_acce28ca3e937720b0224ba60b6c233b'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-27-1.png){width=672}\n:::\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-27-2.png){width=672}\n:::\n:::\n\n\nHere, as we estimate density variations at a larger scale, even after accounting for this variation, the poplar seedlings seem to be aggregated at a small scale.\n\n# Spatial correlation of a variable {#spatial-correlation}\n\n\n\n\n\nCorrelation between measurements of a variable taken at nearby points often occurs in environmental data. This principle is sometimes referred to as the \"first law of geography\" and is expressed in the following quote from Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things\".\n\nIn statistics, we often refer to *autocorrelation* as the correlation between measurements of the same variable taken at different times (temporal autocorrelation) or places (spatial autocorrelation).\n\n## Intrinsic or induced dependence\n\nThere are two basic types of spatial dependence on a measured variable $y$: an *intrinsic* dependence on $y$, or a dependence *induced* by external variables influencing $y$, which are themselves spatially correlated.\n\nFor example, suppose that the abundance of a species is correlated between two sites located near each other:\n\n- this spatial dependence can be induced if it is due to a spatial correlation of habitat factors that are favorable or unfavorable to the species;\n\n- or it can be intrinsic if it is due to the dispersion of individuals to nearby sites.\n\nIn many cases, both types of dependence affect a given variable.\n\nIf the dependence is simply induced and the external variables that cause it are included in the model explaining $y$, then the model residuals will be independent and we can use all the methods already seen that ignore spatial correlation.\n\nHowever, if the dependence is intrinsic or due to unmeasured external factors, then the spatial correlation of the residuals in the model will have to be taken into account.\n\n## Different ways to model spatial effects\n\nIn this training, we will directly model the spatial correlations of our data. It is useful to compare this approach to other ways of including spatial aspects in a statistical model.\n\nFirst, we could include predictors in the model that represent position (e.g., longitude, latitude). Such predictors may be useful for detecting a systematic large-scale trend or gradient, whether or not the trend is linear (e.g., with a generalized additive model).\n\nIn contrast to this approach, the models we will see now serve to model a spatial correlation in the random fluctuations of a variable (i.e., in the residuals after removing any systematic effect).\n\nMixed models use random effects to represent the non-independence of data on the basis of their grouping, i.e., after accounting for systematic fixed effects, data from the same group are more similar (their residual variation is correlated) than data from different groups. These groups were sometimes defined according to spatial criteria (observations grouped into sites).\n\nHowever, in the context of a random group effect, all groups are as different from each other, e.g., two sites within 100 km of each other are no more or less similar than two sites 2 km apart.\n\nThe methods we will see here and in the next parts of the training therefore allow us to model non-independence on a continuous scale (closer = more correlated) rather than just discrete (hierarchy of groups).\n\n# Geostatistical models {#geostat-models}\n\nGeostatistics refers to a group of techniques that originated in the earth sciences. Geostatistics is concerned with variables that are continuously distributed in space and where a number of points are sampled to estimate this distribution. A classic example of these techniques comes from the mining field, where the aim was to create a map of the concentration of ore at a site from samples taken at different points on the site.\n\nFor these models, we will assume that $z(x, y)$ is a stationary spatial variable measured at points with coordinates $x$ and $y$.\n\n## Variogram\n\nA central aspect of geostatistics is the estimation of the variogram $\\gamma_z$ . The variogram is equal to half the mean square difference between the values of $z$ for two points $(x_i, y_i)$ and $(x_j, y_j)$ separated by a distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nIn this equation, the $\\text{E}$ function with the index $d_{ij}=h$ designates the statistical expectation (i.e., the mean) of the squared deviation between the values of $z$ for points separated by a distance $h$.\n\nIf we want instead to express the autocorrelation $\\rho_z(h)$ between measures of $z$ separated by a distance $h$, it is related to the variogram by the equation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\nwhere $\\sigma_z^2$ is the global variance of $z$.\n\nNote that $\\gamma_z = \\sigma_z^2$ when we reach a distance where the measurements of $z$ are independent, so $\\rho_z = 0$. In this case, we can see that $\\gamma_z$ is similar to a variance, although it is sometimes called \"semivariogram\" or \"semivariance\" because of the 1/2 factor in the above equation.\n\n## Theoretical models for the variogram\n\nSeveral parametric models have been proposed to represent the spatial correlation as a function of the distance between sampling points. Let us first consider a correlation that decreases exponentially:\n\n$$\\rho_z(h) = e^{-h/r}$$\n\nHere, $\\rho_z = 1$ for $h = 0$ and the correlation is multiplied by $1/e \\approx 0.37$ each time the distance increases by $r$. In this context, $r$ is called the *range* of the correlation.\n\nFrom the above equation, we can calculate the corresponding variogram.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nHere is a graphical representation of this variogram.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-28_db8b05730133a816cb7d6c558cbd7757'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-28-1.png){width=672}\n:::\n:::\n\n\nBecause of the exponential function, the value of $\\gamma$ at large distances approaches the global variance $\\sigma_z^2$ without exactly reaching it. This asymptote is called a *sill* in the geostatistical context and is represented by the symbol $s$.\n\nFinally, it is sometimes unrealistic to assume a perfect correlation when the distance tends towards 0, because of a possible variation of $z$ at a very small scale. A *nugget* effect, denoted $n$, can be added to the model so that $\\gamma$ approaches $n$ (rather than 0) if $h$ tends towards 0. The term nugget comes from the mining origin of these techniques, where a nugget could be the source of a sudden small-scale variation in the concentration of a mineral.\n\nBy adding the nugget effect, the remainder of the variogram is \"compressed\" to keep the same sill, resulting in the following equation.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nIn the *gstat* package that we use below, the term $(s-n)$ is called a *partial sill* or `psill` for the exponential portion of the variogram.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-29_76ce196068f7afb370f9fcd84ff0bf2d'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-29-1.png){width=672}\n:::\n:::\n\n\nIn addition to the exponential model, two other common theoretical models for the variogram are the Gaussian model (where the correlation follows a half-normal curve), and the spherical model (where the variogram increases linearly at the start and then curves and reaches the plateau at a distance equal to its range $r$). The spherical model thus allows the correlation to be exactly 0 at large distances, rather than gradually approaching zero in the case of the other models.\n\n| Model | $\\rho(h)$ | $\\gamma(h)$ |\n|------------------|-------------------------|-----------------------------|\n| Exponential | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$ |\n| Gaussian | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$ |\n| Spherical $(h < r)$ \\* | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$ |\n\n\\* For the spherical model, $\\rho = 0$ and $\\gamma = s$ if $h \\ge r$.\n\n\n::: {.cell fig.dim='[9,4]' hash='index_cache/html/unnamed-chunk-30_36d08077ec0b54caf8dbcbb8751648be'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-30-1.png){width=864}\n:::\n:::\n\n\n## Empirical variogram\n\nTo estimate $\\gamma_z(h)$ from empirical data, we need to define distance classes, thus grouping different distances within a margin of $\\pm \\delta$ around a distance $h$, then calculating the mean square deviation for the pairs of points in that distance class.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nWe will see in the next section how to estimate a variogram in R.\n\n## Regression model with spatial correlation\n\nThe following equation represents a multiple linear regression including residual spatial correlation:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nHere, $v$ designates the response variable and $u$ the predictors, to avoid confusion with the spatial coordinates $x$ and $y$.\n\nIn addition to the residual $\\epsilon$ that is independent between observations, the model includes a term $z$ that represents the spatially correlated portion of the residual variance.\n\nHere are suggested steps to apply this type of model:\n\n1. Fit the regression model without spatial correlation.\n\n2. Verify the presence of spatial correlation from the empirical variogram of the residuals.\n\n3. Fit one or more regression models with spatial correlation and select the one that shows the best fit to the data.\n\n# Geostatistical models in R\n\nThe *gstat* package contains functions related to geostatistics. For this example, we will use the `oxford` dataset from this package, which contains measurements of physical and chemical properties for 126 soil samples from a site, along with their coordinates `XCOORD` and `YCOORD`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-31_d42a00ecb66d27e6d127659ed2dfd66c'}\n\n```{.r .cell-code}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n'data.frame':\t126 obs. of 22 variables:\n $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...\n $ XCOORD : num 100 100 100 100 100 100 100 100 100 100 ...\n $ YCOORD : num 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...\n $ ELEV : num 598 597 610 615 610 595 580 590 598 588 ...\n $ PROFCLASS: Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 2 2 3 3 2 3 2 3 3 ...\n $ MAPCLASS : Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 3 3 3 3 2 2 3 3 3 ...\n $ VAL1 : num 3 3 4 4 3 3 4 4 4 3 ...\n $ CHR1 : num 3 3 3 3 3 2 2 3 3 3 ...\n $ LIME1 : num 4 4 4 4 4 0 2 1 0 4 ...\n $ VAL2 : num 4 4 5 8 8 4 8 4 8 8 ...\n $ CHR2 : num 4 4 4 2 2 4 2 4 2 2 ...\n $ LIME2 : num 4 4 4 5 5 4 5 4 5 5 ...\n $ DEPTHCM : num 61 91 46 20 20 91 30 61 38 25 ...\n $ DEP2LIME : num 20 20 20 20 20 20 20 20 40 20 ...\n $ PCLAY1 : num 15 25 20 20 18 25 25 35 35 12 ...\n $ PCLAY2 : num 10 10 20 10 10 20 10 20 10 10 ...\n $ MG1 : num 63 58 55 60 88 168 99 59 233 87 ...\n $ OM1 : num 5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...\n $ CEC1 : num 20 22 17 23 27 27 21 14 27 20 ...\n $ PH1 : num 7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...\n $ PHOS1 : num 13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...\n $ POT1 : num 196 157 115 172 238 164 312 184 123 282 ...\n```\n:::\n:::\n\n\nSuppose that we want to model the magnesium concentration (`MG1`), represented as a function of the spatial position in the following graph.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-32_cf223f9501bba263c237e06328f21358'}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-32-1.png){width=672}\n:::\n:::\n\n\nNote that the $x$ and $y$ axes have been inverted to save space. The `coord_fixed()` function of *ggplot2* ensures that the scale is the same on both axes, which is useful for representing spatial data.\n\nWe can immediately see that these measurements were taken on a 100 m grid. It seems that the magnesium concentration is spatially correlated, although it may be a correlation induced by another variable. In particular, we know that the concentration of magnesium is negatively related to the soil pH (`PH1`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-33_a9ec8bcf320a9e52d1252e4725f81bf7'}\n\n```{.r .cell-code}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-33-1.png){width=672}\n:::\n:::\n\n\nThe `variogram` function of *gstat* is used to estimate a variogram from empirical data. Here is the result obtained for the variable `MG1`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-34_c3f828164d93cc2b3d38500281fe87b9'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n np dist gamma dir.hor dir.ver id\n1 225 100.0000 1601.404 0 0 var1\n2 200 141.4214 1950.805 0 0 var1\n3 548 215.0773 2171.231 0 0 var1\n4 623 303.6283 2422.245 0 0 var1\n5 258 360.5551 2704.366 0 0 var1\n6 144 400.0000 2948.774 0 0 var1\n7 570 427.5569 2994.621 0 0 var1\n8 291 500.0000 3402.058 0 0 var1\n9 366 522.8801 3844.165 0 0 var1\n10 200 577.1759 3603.060 0 0 var1\n11 458 619.8400 3816.595 0 0 var1\n12 90 670.8204 3345.739 0 0 var1\n```\n:::\n:::\n\n\nThe formula `MG1 ~ 1` indicates that no linear predictor is included in this model, while the argument `locations` indicates which variables in the data frame correspond to the spatial coordinates.\n\nIn the resulting table, `gamma` is the value of the variogram for the distance class centered on `dist`, while `np` is the number of pairs of points in that class. Here, since the points are located on a grid, we obtain regular distance classes (e.g.: 100 m for neighboring points on the grid, 141 m for diagonal neighbors, etc.).\n\nHere, we limit ourselves to the estimation of isotropic variograms, i.e. the variogram depends only on the distance between the two points and not on the direction. Although we do not have time to see it today, it is possible with *gstat* to estimate the variogram separately in different directions.\n\nWe can illustrate the variogram with `plot`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-35_dced0e607669b721d5ef7df8faa51cb2'}\n\n```{.r .cell-code}\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-35-1.png){width=672}\n:::\n:::\n\n\nIf we want to estimate the residual spatial correlation of `MG1` after including the effect of `PH1`, we can add that predictor to the formula.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-36_41f230bd5a30f1cb7752e89e361c338a'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-36-1.png){width=672}\n:::\n:::\n\n\nIncluding the effect of pH, the range of the spatial correlation seems to decrease, while the plateau is reached around 300 m. It even seems that the variogram decreases beyond 400 m. In general, we assume that the variance between two points does not decrease with distance, unless there is a periodic spatial pattern.\n\nThe function `fit.variogram` accepts as arguments a variogram estimated from the data, as well as a theoretical model described in a `vgm` function, and then estimates the parameters of that model according to the data. The fitting is done by the method of least squares.\n\nFor example, `vgm(\"Exp\")` means we want to fit an exponential model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-37_b852e100bd05bd7def030586576b386c'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nThere is no nugget effect, because `psill = 0` for the `Nug` (nugget) part of the model. The exponential part has a sill at 1951 and a range of 95 m.\n\nTo compare different models, a vector of model names can be given to `vgm`. In the following example, we include the exponential, gaussian (\"Gau\") and spherical (\"Sph\") models.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-38_5af5359b8627d50d97bf2175f4728362'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nThe function gives us the result of the model with the best fit (lowest sum of squared deviations), which here is the same exponential model.\n\nFinally, we can superimpose the theoretical model and the empirical variogram on the same graph.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-39_acab997244a63895e5eaedd7b9e62465'}\n\n```{.r .cell-code}\nplot(var_mg, vfit, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-39-1.png){width=672}\n:::\n:::\n\n\n## Regression with spatial correlation\n\nWe have seen above that the *gstat* package allows us to estimate the variogram of the residuals of a linear model. In our example, the magnesium concentration was modeled as a function of pH, with spatially correlated residuals.\n\nAnother tool to fit this same type of model is the `gls` function of the *nlme* package, which is included with the installation of R.\n\nThis function applies the *generalized least squares* method to fit linear regression models when the residuals are not independent or when the residual variance is not the same for all observations. Since the estimates of the coefficients depend on the estimated correlations between the residuals and the residuals themselves depend on the coefficients, the model is fitted by an iterative algorithm:\n\n1. A classical linear regression model (without correlation) is fitted to obtain residuals.\n\n2. The spatial correlation model (variogram) is fitted with those residuals.\n\n3. The regression coefficients are re-estimated, now taking into account the correlations.\n\nSteps 2 and 3 are repeated until the estimates are stable at a desired precision.\n\nHere is the application of this method to the same model for the magnesium concentration in the `oxford` dataset. In the `correlation` argument of `gls`, we specify an exponential correlation model as a function of our spatial coordinates and we include a possible nugget effect.\n\nIn addition to the exponential correlation `corExp`, the `gls` function can also estimate a Gaussian (`corGaus`) or spherical (`corSpher`) model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-40_0b3199847595fbf9b39d87618cbffc8f'}\n\n```{.r .cell-code}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: MG1 ~ PH1 \n Data: oxford \n AIC BIC logLik\n 1278.65 1292.751 -634.325\n\nCorrelation Structure: Exponential spatial correlation\n Formula: ~XCOORD + YCOORD \n Parameter estimate(s):\n range nugget \n478.0322964 0.2944753 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 391.1387 50.42343 7.757084 0\nPH1 -41.0836 6.15662 -6.673079 0\n\n Correlation: \n (Intr)\nPH1 -0.891\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-2.1846957 -0.6684520 -0.3687813 0.4627580 3.1918604 \n\nResidual standard error: 53.8233 \nDegrees of freedom: 126 total; 124 residual\n```\n:::\n:::\n\n\nTo compare this result with the adjusted variogram above, the parameters given by `gls` must be transformed. The range has the same meaning in both cases and corresponds to 478 m for the result of `gls`. The global variance of the residuals is the square of `Residual standard error`. The nugget effect here (0.294) is expressed as a fraction of that variance. Finally, to obtain the partial sill of the exponential part, the nugget effect must be subtracted from the total variance.\n\nAfter performing these calculations, we can give these parameters to the `vgm` function of *gstat* to superimpose this variogram estimated by `gls` on our variogram of the residuals of the classical linear model.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-41_bdace2c5570a84ab706e3cc520568742'}\n\n```{.r .cell-code}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-41-1.png){width=672}\n:::\n:::\n\n\nDoes the model fit the data less well here? In fact, this empirical variogram represented by the points was obtained from the residuals of the linear model ignoring the spatial correlation, so it is a biased estimate of the actual spatial correlations. The method is still adequate to quickly check if spatial correlations are present. However, to simultaneously fit the regression coefficients and the spatial correlation parameters, the generalized least squares (GLS) approach is preferable and will produce more accurate estimates.\n\nFinally, note that the result of the `gls` model also gives the AIC, which we can use to compare the fit of different models (with different predictors or different forms of spatial correlation).\n\n## Exercise\n\nThe [bryo_belg.csv](data/bryo_belg.csv) dataset is adapted from the data of this study:\n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nThis data frame shows the specific richness of ground bryophytes (*richness*) for different sampling points in the Belgian province of Limburg, with their position *(x, y)* in km, in addition to information on the proportion of forest (*forest*) and wetlands (*wetland*) in a 1 km\\^2\\$ cell containing the sampling point.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-42_c25ae6f03a62752dff743e2d40b205a0'}\n\n```{.r .cell-code}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n richness forest wetland x y\n1 9 0.2556721 0.5036614 228.9516 220.8869\n2 6 0.6449114 0.1172068 227.6714 219.8613\n3 5 0.5039905 0.6327003 228.8252 220.1073\n4 3 0.5987329 0.2432942 229.2775 218.9035\n5 2 0.7600775 0.1163538 209.2435 215.2414\n6 10 0.6865434 0.0000000 210.4142 216.5579\n```\n:::\n:::\n\n\nFor this exercise, we will use the square root of the specific richness as the response variable. The square root transformation often allows to homogenize the variance of the count data in order to apply a linear regression.\n\na) Fit a linear model of the transformed species richness to the proportion of forest and wetlands, without taking into account spatial correlations. What is the effect of the two predictors in this model?\n\nb) Calculate the empirical variogram of the model residuals in (a). Does there appear to be a spatial correlation between the points?\n\n*Note*: The `cutoff` argument to the `variogram` function specifies the maximum distance at which the variogram is calculated. You can manually adjust this value to get a good view of the sill.\n\nc) Re-fit the linear model in (a) with the `gls` function in the *nlme* package, trying different types of spatial correlations (exponential, Gaussian, spherical). Compare the models (including the one without spatial correlation) with the AIC.\n\nd) What is the effect of the proportion of forests and wetlands according to the model in (c)? Explain the differences between the conclusions of this model and the model in (a).\n\n# Kriging\n\nAs mentioned before, a common application of geostatistical models is to predict the value of the response variable at unsampled locations, a form of spatial interpolation called kriging (pronounced with a hard \"g\").\n\nThere are three basic types of kriging based on the assumptions made about the response variable:\n\n- Ordinary kriging: Stationary variable with an unknown mean.\n\n- Simple kriging: Stationary variable with a known mean.\n\n- Universal kriging: Variable with a trend given by a linear or non-linear model.\n\nFor all kriging methods, the predictions at a new point are a weighted mean of the values at known points. These weights are chosen so that kriging provides the best linear unbiased prediction of the response variable, if the model assumptions (in particular the variogram) are correct. That is, among all possible unbiased predictions, the weights are chosen to give the minimum mean square error. Kriging also provides an estimate of the uncertainty of each prediction.\n\nWhile we will not present the detailed kriging equations here, the weights depend on both the correlations (estimated by the variogram) between the sampled points and the new point, as well of the correlations between the sampled points themselves. In other words, sampled points near the new point are given more weight, but isolated sampled points are also given more weight, because sample points close to each other provide redundant information.\n\nKriging is an interpolation method, so the prediction at a sampled point will always be equal to the measured value (the measurement is supposed to have no error, just spatial variation). However, in the presence of a nugget effect, any small displacement from the sampled location will show variability according to the nugget.\n\nIn the example below, we generate a new dataset composed of randomly-generated (x, y) coordinates within the study area as well as randomly-generated pH values based on the `oxford` data. We then apply the function `krige` to predict the magnesium values at these new points. Note that we specify the variogram derived from the GLS results in the `model` argument to `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-43_f81acecbca5eefa202e114614faebc54'}\n\n```{.r .cell-code}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[using universal kriging]\n```\n:::\n\n```{.r .cell-code}\nhead(pred)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD var1.pred var1.var\n1 227.0169 162.1185 47.13065 1269.002\n2 418.9136 465.9013 79.68437 1427.269\n3 578.5943 2032.7477 60.30539 1264.471\n4 376.2734 1530.7193 127.22366 1412.875\n5 591.5336 421.6290 105.88124 1375.485\n6 355.7369 404.3378 127.73055 1250.114\n```\n:::\n:::\n\n\nThe result of `krige` includes the new point coordinates, the prediction of the variable `var1.pred` along with its estimated variance `var1.var`. In the graph below, we show the mean MG1 predictions from kriging (triangles) along with the measurements (circles).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-44_8a46f7bb0f5137f5dae6fef418b6b61e'}\n\n```{.r .cell-code}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-44-1.png){width=672}\n:::\n:::\n\n\nThe estimated mean and variance from kriging can be used to simulate possible values of the variable at each new point, conditional on the sampled values. In the example below, we performed 4 conditional simulations by adding the argument `nsim = 4` to the same `krige` instruction.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-45_15e6975ae8f74fb12acd4b9d15610303'}\n\n```{.r .cell-code}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ndrawing 4 GLS realisations of beta...\n[using conditional Gaussian simulation]\n```\n:::\n\n```{.r .cell-code}\nhead(sim_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD sim1 sim2 sim3 sim4\n1 227.0169 162.1185 9.638739 34.53159 46.08685 77.86376\n2 418.9136 465.9013 60.029144 20.17179 76.46333 59.57924\n3 578.5943 2032.7477 100.791412 77.47887 73.50058 59.40279\n4 376.2734 1530.7193 112.615730 150.96664 78.76125 146.83928\n5 591.5336 421.6290 70.925240 72.85522 153.90610 126.63758\n6 355.7369 404.3378 161.608032 118.93640 134.45695 142.20074\n```\n:::\n:::\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-46_dc67747871861d460645cc2d898c2797'}\n\n```{.r .cell-code}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-46-1.png){width=960}\n:::\n:::\n\n\n# Solutions\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-47_46625f4b0eb7a89df12358298784d779'}\n\n```{.r .cell-code}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = sqrt(richness) ~ forest + wetland, data = bryo_belg)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.8847 -0.4622 0.0545 0.4974 2.3116 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 2.34159 0.08369 27.981 < 2e-16 ***\nforest 1.11883 0.13925 8.034 9.74e-15 ***\nwetland -0.59264 0.17216 -3.442 0.000635 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.7095 on 417 degrees of freedom\nMultiple R-squared: 0.2231,\tAdjusted R-squared: 0.2193 \nF-statistic: 59.86 on 2 and 417 DF, p-value: < 2.2e-16\n```\n:::\n:::\n\n\nThe proportion of forest has a significant positive effect and the proportion of wetlands has a significant negative effect on bryophyte richness.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-48_9f1b47ee10d87121e3853375afbb8273'}\n\n```{.r .cell-code}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-1.png){width=672}\n:::\n:::\n\n\nThe variogram is increasing from 0 to at least 40 km, so there appears to be spatial correlations in the model residuals.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-49_2a94f7a8b64ea0bb9127648e255fcbd3'}\n\n```{.r .cell-code}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-50_9d306abf18fdbd164c34d87f9f9832d8'}\n\n```{.r .cell-code}\nAIC(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 908.6358\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_exp)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 867.822\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_gaus)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 870.9592\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 866.9117\n```\n:::\n:::\n\n\nThe spherical model has the smallest AIC.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-51_5c26da31bc0b2db751ce60929eb7b8be'}\n\n```{.r .cell-code}\nsummary(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: sqrt(richness) ~ forest + wetland \n Data: bryo_belg \n AIC BIC logLik\n 866.9117 891.1102 -427.4558\n\nCorrelation Structure: Spherical spatial correlation\n Formula: ~x + y \n Parameter estimate(s):\n range nugget \n43.1727664 0.6063187 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 2.0368769 0.2481636 8.207800 0.000\nforest 0.6989844 0.1481690 4.717481 0.000\nwetland -0.2441130 0.1809118 -1.349348 0.178\n\n Correlation: \n (Intr) forest\nforest -0.251 \nwetland -0.235 0.241\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-1.75204183 -0.06568688 0.61415597 1.15240370 3.23322743 \n\nResidual standard error: 0.7998264 \nDegrees of freedom: 420 total; 417 residual\n```\n:::\n:::\n\n\nBoth effects are less important in magnitude and the effect of wetlands is not significant anymore. As is the case for other types of non-independent residuals, the \"effective sample size\" here is less than the number of points, since points close to each other provide redundant information. Therefore, the relationship between predictors and response is less clear than given by the model assuming all these points were independent.\n\nNote that the results for all three `gls` models are quite similar, so the choice to include spatial correlations was more important than the exact shape assumed for the variogram.\n\n\n# Areal data {#areal-data}\n\nAreal data are variables measured for regions of space, defined by polygons. This type of data is more common in the social sciences, human geography and epidemiology, where data is often available at the scale of administrative divisions.\n\nThis type of data also appears frequently in natural resource management. For example, the following map shows the forest management units of the Ministère de la Forêt, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSuppose that a variable is available at the level of these management units. How can we model the spatial correlation between units that are spatially close together?\n\nOne option would be to apply the geostatistical methods seen before, for example by calculating the distance between the centers of the polygons.\n\nAnother option, which is more adapted for areal data, is to define a network where each region is connected to neighbouring regions by a link. It is then assumed that the variables are directly correlated between neighbouring regions only. (Note, however, that direct correlations between immediate neighbours also generate indirect correlations for a chain of neighbours).\n\nIn this type of model, the correlation is not necessarily the same from one link to another. In this case, each link in the network can be associated with a *weight* representing its importance for the spatial correlation. We represent these weights by a matrix $W$ where $w_{ij}$ is the weight of the link between regions $i$ and $j$. A region has no link with itself, so $w_{ii} = 0$.\n\nA simple choice for $W$ is to assign a weight equal to 1 if the regions are neighbours, otherwise 0 (binary weight).\n\nIn addition to land divisions represented by polygons, another example of areal data consists of a grid where the variable is calculated for each cell of the grid. In this case, a cell generally has 4 or 8 neighbouring cells, depending on whether diagonals are included or not.\n\n# Moran's I {#moran-i}\n\nBefore discussing spatial autocorrelation models, we present Moran's $I$ statistic, which allows us to test whether a significant correlation is present between neighbouring regions.\n\nMoran's $I$ is a spatial autocorrelation coefficient of $z$, weighted by the $w_{ij}$. It therefore takes values between -1 and 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nIn this equation, we recognize the expression of a correlation, which is the product of the deviations from the mean for two variables $z_i$ and $z_j$, divided by the product of their standard deviations (it is the same variable here, so we get the variance). The contribution of each pair $(i, j)$ is multiplied by its weight $w_{ij}$ and the term on the left (the number of regions $N$ divided by the sum of the weights) ensures that the result is bounded between -1 and 1.\n\nSince the distribution of $I$ is known in the absence of spatial autocorrelation, this statistic serves to test the null hypothesis that there is no spatial correlation between neighbouring regions.\n\nAlthough we will not see an example in this course, Moran's $I$ can also be applied to point data. In this case, we divide the pairs of points into distance classes and calculate $I$ for each distance class; the weight $w_{ij} = 1$ if the distance between $i$ and $j$ is in the desired distance class, otherwise 0.\n\n# Spatial autoregression models {#spatial-autoreg}\n\nLet us recall the formula for a linear regression with spatial dependence:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nwhere $z$ is the portion of the residual variance that is spatially correlated.\n\nThere are two main types of autoregressive models to represent the spatial dependence of $z$: conditional autoregression (CAR) and simultaneous autoregressive (SAR).\n\n## Conditional autoregressive (CAR) model\n\nIn the conditional autoregressive model, the value of $z_i$ for the region $i$ follows a normal distribution: its mean depends on the value $z_j$ of neighbouring regions, multiplied by the weight $w_{ij}$ and a correlation coefficient $\\rho$; its standard deviation $\\sigma_{z_i}$ may vary from one region to another.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nIn this model, if $w_{ij}$ is a binary matrix (0 for non-neighbours, 1 for neighbours), then $\\rho$ is the coefficient of partial correlation between neighbouring regions. This is similar to a first-order autoregressive model in the context of time series, where the autoregression coefficient indicates the partial correlation.\n\n## Simultaneous autoregressive (SAR) model\n\nIn the simultaneous autoregressive model, the value of $z_i$ is given directly by the sum of contributions from neighbouring values $z_j$, multiplied by $\\rho w_{ij}$, with an independent residual $\\nu_i$ of standard deviation $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nAt first glance, this looks like a temporal autoregressive model. However, there is an important conceptual difference. For temporal models, the causal influence is directed in only one direction: $v(t-2)$ affects $v(t-1)$ which then affects $v(t)$. For a spatial model, each $z_j$ that affects $z_i$ depends in turn on $z_i$. Thus, to determine the joint distribution of $z$, a system of equations must be solved simultaneously (hence the name of the model).\n\nFor this reason, although this model resembles the formula of CAR model, the solutions of the two models differ and in the case of SAR, the coefficient $\\rho$ is not directly equal to the partial correlation due to each neighbouring region.\n\nFor more details on the mathematical aspects of these models, see the article by Ver Hoef et al. (2018) suggested in reference.\n\nFor the moment, we will consider SAR and CAR as two types of possible models to represent a spatial correlation on a network. We can always fit several models and compare them with the AIC to choose the best form of correlation or the best weight matrix.\n\nThe CAR and SAR models share an advantage over geostatistical models in terms of efficiency. In a geostatistical model, spatial correlations are defined between each pair of points, although they become negligible as distance increases. For a CAR or SAR model, only neighbouring regions contribute and most weights are equal to 0, making these models faster to fit than a geostatistical model when the data are massive.\n\n# Analysis of areal data in R {#analysis-areal}\n\nTo illustrate the analysis of areal data in R, we load the packages *sf* (to read geospatial data), *spdep* (to define spatial networks and calculate Moran's $I$) and *spatialreg* (for SAR and CAR models).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-52_bbb39418b6f206ecf18ea280d1186280'}\n\n```{.r .cell-code}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n:::\n\n\nAs an example, we will use a dataset that presents some of the results of the 2018 provincial election in Quebec, with population characteristics of each riding. This data is included in a *shapefile* (.shp) file type, which we can read with the `read_sf` function of the *sf* package.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-53_57544cb924c4156b05da2ae4a2ea020a'}\n\n```{.r .cell-code}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 9 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 97879.03 ymin: 174515.3 xmax: 694261.1 ymax: 599757.1\nProjected CRS: LambertAQ\n# A tibble: 6 × 10\n circ age_moy pct_frn pct_prp rev_med propCAQ propPQ propPLQ propQS\n \n1 Abitibi-Est 40.8 0.963 0.644 34518 42.7 19.5 18.8 15.7\n2 Abitibi-Ouest 42.2 0.987 0.735 33234 34.1 33.3 11.3 16.6\n3 Acadie 40.3 0.573 0.403 25391 16.5 9 53.8 13.8\n4 Anjou-Louis-Riel 43.5 0.821 0.416 31275 28.9 14.7 39.1 14.5\n5 Argenteuil 43.3 0.858 0.766 31097 38.9 21.1 17.4 12.2\n6 Arthabaska 43.4 0.989 0.679 30082 61.8 9.4 11.4 12.6\n# … with 1 more variable: geometry \n```\n:::\n:::\n\n\n*Note*: The dataset is actually composed of 4 files with the extensions .dbf, .prj, .shp and .shx, but it is sufficient to write the name of the .shp file in `read_sf`.\n\nThe columns of the dataset are, in order:\n\n- the name of the electoral riding (`circ`);\n- four characteristics of the population (`age_moy` = mean age, `pct_frn` = fraction of the population that speaks mainly French at home, `pct_prp` = fraction of households that own their home, `rev_med` = median income);\n- four columns showing the fraction of votes obtained by the main parties (CAQ, PQ, PLQ, QS);\n- a `geometry` column that contains the geometric object (multipolygon) corresponding to the riding.\n\nTo illustrate one of the variables on a map, we call the `plot` function with the name of the column in square brackets and quotation marks.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-54_b911c1230b37d88999c315735187b9c4'}\n\n```{.r .cell-code}\nplot(elect2018[\"rev_med\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-54-1.png){width=672}\n:::\n:::\n\n\nIn this example, we want to model the fraction of votes obtained by the CAQ based on the characteristics of the population in each riding and taking into account the spatial correlations between neighbouring ridings.\n\n## Definition of the neighbourhood network\n\nThe `poly2nb` function of the *spdep* package defines a neighbourhood network from polygons. The result `vois` is a list of 125 elements where each element contains the indices of the neighbouring (bordering) polygons of a given polygon.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-55_98b699432f680855147ba1bd583f3497'}\n\n```{.r .cell-code}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 2 37 63 88 101 117\n```\n:::\n:::\n\n\nThus, the first riding (Abitibi-Est) has 6 neighbouring ridings, for which the names can be found as follows:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-56_1fa15a9556e3ec5f51ffe127e1e42830'}\n\n```{.r .cell-code}\nelect2018$circ[vois[[1]]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"Abitibi-Ouest\" \"Gatineau\" \n[3] \"Laviolette-Saint-Maurice\" \"Pontiac\" \n[5] \"Rouyn-Noranda-Témiscamingue\" \"Ungava\" \n```\n:::\n:::\n\n\nWe can illustrate this network by extracting the coordinates of the center of each district, creating a blank map with `plot(elect2018[\"geometry\"])`, then adding the network as an additional layer with `plot(vois, add = TRUE, coords = coords)`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-57_f0d7bd96b26b0a6cd39daec9f4aad58b'}\n\n```{.r .cell-code}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-57-1.png){width=672}\n:::\n:::\n\n\nWe can \"zoom\" on southern Québec by choosing the limits `xlim` and `ylim`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-58_1fa7ea9cbb36326317c26af33b739d1c'}\n\n```{.r .cell-code}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-58-1.png){width=672}\n:::\n:::\n\n\nWe still have to add weights to each network link with the `nb2listw` function. The style of weights \"B\" corresponds to binary weights, i.e. 1 for the presence of link and 0 for the absence of link between two ridings.\n\nOnce these weights are defined, we can verify with Moran's test whether there is a significant autocorrelation of votes obtained by the CAQ between neighbouring ridings.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-59_94da4f87bfc6fa6486cce26e9c1ed239'}\n\n```{.r .cell-code}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: elect2018$propCAQ \nweights: poids \n\nMoran I statistic standard deviate = 13.148, p-value < 2.2e-16\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.680607768 -0.008064516 0.002743472 \n```\n:::\n:::\n\n\nThe value $I = 0.68$ is very significant judging by the $p$-value of the test.\n\nLet's verify if the spatial correlation persists after taking into account the four characteristics of the population, therefore by inspecting the residuals of a linear model including these four predictors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-60_48eb067e5cfdccfc3e81ace94767cddc'}\n\n```{.r .cell-code}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018)\n\nResiduals:\n Min 1Q Median 3Q Max \n-30.9890 -4.4878 0.0562 6.2653 25.8146 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 1.354e+01 1.836e+01 0.737 0.463 \nage_moy -9.170e-01 3.855e-01 -2.378 0.019 * \npct_frn 4.588e+01 5.202e+00 8.820 1.09e-14 ***\npct_prp 3.582e+01 6.527e+00 5.488 2.31e-07 ***\nrev_med -2.624e-05 2.465e-04 -0.106 0.915 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 9.409 on 120 degrees of freedom\nMultiple R-squared: 0.6096,\tAdjusted R-squared: 0.5965 \nF-statistic: 46.84 on 4 and 120 DF, p-value: < 2.2e-16\n```\n:::\n\n```{.r .cell-code}\nmoran.test(residuals(elect_lm), poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: residuals(elect_lm) \nweights: poids \n\nMoran I statistic standard deviate = 6.7047, p-value = 1.009e-11\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.340083290 -0.008064516 0.002696300 \n```\n:::\n:::\n\n\nMoran's $I$ has decreased but remains significant, so some of the previous correlation was induced by these predictors, but there remains a spatial correlation due to other factors.\n\n## Spatial autoregression models\n\nFinally, we fit SAR and CAR models to these data with the `spautolm` (*spatial autoregressive linear model*) function of *spatialreg*. Here is the code for a SAR model including the effect of the same four predictors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-61_13bb8dc5c63cce02c362b41c905f9de5'}\n\n```{.r .cell-code}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\n\nResiduals:\n Min 1Q Median 3Q Max \n-23.08342 -4.10573 0.24274 4.29941 23.08245 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 15.09421119 16.52357745 0.9135 0.36098\nage_moy -0.70481703 0.32204139 -2.1886 0.02863\npct_frn 39.09375061 5.43653962 7.1909 6.435e-13\npct_prp 14.32329345 6.96492611 2.0565 0.03974\nrev_med 0.00016730 0.00023209 0.7208 0.47101\n\nLambda: 0.12887 LR test value: 42.274 p-value: 7.9339e-11 \nNumerical Hessian standard error of lambda: 0.012069 \n\nLog likelihood: -433.8862 \nML residual variance (sigma squared): 53.028, (sigma: 7.282)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 881.77\n```\n:::\n:::\n\n\nThe value given by `Lambda` in the summary corresponds to the coefficient $\\rho$ in our description of the model. The likelihood-ratio test (`LR test`) confirms that this residual spatial correlation (after controlling for the effect of predictors) is significant.\n\nThe estimated effects for the predictors are similar to those of the linear model without spatial correlation. The effects of mean age, fraction of francophones and fraction of homeowners remain significant, although their magnitude has decreased somewhat.\n\nTo fit a CAR rather than SAR model, we must specify `family = \"CAR\"`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-62_29349c4a3573934d0da78be8a806d927'}\n\n```{.r .cell-code}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-21.73315 -4.24623 -0.24369 3.44228 23.43749 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 16.57164696 16.84155327 0.9840 0.325128\nage_moy -0.79072151 0.32972225 -2.3981 0.016478\npct_frn 38.99116707 5.43667482 7.1719 7.399e-13\npct_prp 17.98557474 6.80333470 2.6436 0.008202\nrev_med 0.00012639 0.00023106 0.5470 0.584364\n\nLambda: 0.15517 LR test value: 40.532 p-value: 1.9344e-10 \nNumerical Hessian standard error of lambda: 0.0026868 \n\nLog likelihood: -434.7573 \nML residual variance (sigma squared): 53.9, (sigma: 7.3416)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 883.51\n```\n:::\n:::\n\n\nFor a CAR model with binary weights, the value of `Lambda` (which we called $\\rho$) directly gives the partial correlation coefficient between neighbouring districts. Note that the AIC here is slightly higher than the SAR model, so the latter gave a better fit.\n\n## Exercise\n\nThe `rls_covid` dataset, in *shapefile* format, contains data on detected COVID-19 cases (`cas`), number of cases per 1000 people (`taux_1k`) and the population density (`dens_pop`) in each of Quebec's local health service networks (RLS) (Source: Data downloaded from the Institut national de santé publique du Québec as of January 17, 2021).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-63_93fde0bc2a6d31114d1cad8dee5f0aa1'}\n\n```{.r .cell-code}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 5 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 785111.2 ymin: 341057.8 xmax: 979941.5 ymax: 541112.7\nProjected CRS: Conique_conforme_de_Lambert_du_MTQ_utilis_e_pour_Adresse_Qu_be\n# A tibble: 6 × 6\n RLS_code RLS_nom cas taux_1k dens_…¹ geometry\n \n1 0111 RLS de Kamouraska 152 7.34 6.76 (((827028.3 412772.4, 82…\n2 0112 RLS de Rivière-du-Lo… 256 7.34 19.6 (((855905 452116.9, 8557…\n3 0113 RLS de Témiscouata 81 4.26 4.69 (((911829.4 441311.2, 91…\n4 0114 RLS des Basques 28 3.3 5.35 (((879249.6 471975.6, 87…\n5 0115 RLS de Rimouski 576 9.96 15.5 (((917748.1 503148.7, 91…\n6 0116 RLS de La Mitis 76 4.24 5.53 (((951316 523499.3, 9525…\n# … with abbreviated variable name ¹​dens_pop\n```\n:::\n:::\n\n\nFit a linear model of the number of cases per 1000 as a function of population density (it is suggested to apply a logarithmic transform to the latter). Check whether the model residuals are correlated between bordering RLS with a Moran's test and then model the same data with a conditional autoregressive model.\n\n## Reference\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. and Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n\n\n\n# GLMM with spatial Gaussian process {#glmm-spatial-gaussian}\n\n## Data\n\nThe `gambia` dataset found in the *geoR* package presents the results of a study of malaria prevalence among children of 65 villages in The Gambia. We will use a slightly transformed version of the data found in the file [gambia.csv](data/gambia.csv).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-64_c90dcebc741300cf593af262129c15ab'}\n\n```{.r .cell-code}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n id_village x y pos age netuse treated green phc\n1 1 349.6313 1458.055 1 1783 0 0 40.85 1\n2 1 349.6313 1458.055 0 404 1 0 40.85 1\n3 1 349.6313 1458.055 0 452 1 0 40.85 1\n4 1 349.6313 1458.055 1 566 1 0 40.85 1\n5 1 349.6313 1458.055 0 598 1 0 40.85 1\n6 1 349.6313 1458.055 1 590 1 0 40.85 1\n```\n:::\n:::\n\n\nHere are the fields in that dataset:\n\n- *id_village*: Identifier of the village.\n- *x* and *y*: Spatial coordinates of the village (in kilometers, based on UTM coordinates).\n- *pos*: Binary response, whether the child tested positive for malaria.\n- *age*: Age of the child in days.\n- *netuse*: Whether or not the child sleeps under a bed net.\n- *treated*: Whether or not the bed net is treated.\n- *green*: Remote sensing based measure of greenness of vegetation (measured at the village level).\n- *phc*: Presence or absence of a public health centre for the village.\n\nWe can count the number of positive cases and total children tested by village to map the fraction of positive cases (or prevalence, *prev*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-65_8c814c1bf1c630ff765172316c6e438a'}\n\n```{.r .cell-code}\n# Create village-level dataset\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\n```\n\n::: {.cell-output .cell-output-stderr}\n```\n`summarise()` has grouped output by 'id_village', 'x', 'y', 'green'. You can\noverride using the `.groups` argument.\n```\n:::\n\n```{.r .cell-code}\nhead(gambia_agg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n# A tibble: 6 × 8\n id_village x y green phc pos total prev\n \n1 1 350. 1458. 40.8 1 17 33 0.515\n2 2 359. 1460. 40.8 1 19 63 0.302\n3 3 360. 1460. 40.1 0 7 17 0.412\n4 4 364. 1497. 40.8 0 8 24 0.333\n5 5 366. 1460. 40.8 0 10 26 0.385\n6 6 367. 1463. 40.8 0 7 18 0.389\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-66_ae2eb69bc71b443b86ab8b607284711a'}\n\n```{.r .cell-code}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-66-1.png){width=672}\n:::\n:::\n\n\nWe use the `gambia.borders` dataset from the *geoR* package to trace the country boundaries with `geom_path`. Since those boundaries are in meters, we divide by 1000 to get the same scale as our points. We also use `coord_fixed` to ensure a 1:1 aspect ratio between the axes and use the `viridis` color scale, which makes it easier to visualize a continuous variable compared with the default gradient scale in *ggplot2*.\n\nBased on this map, there seems to be spatial correlation in malaria prevalence, with the eastern cluster of villages showing more high prevalence values (yellow-green) and the middle cluster showing more low prevalence values (purple).\n\n## Non-spatial GLMM\n\nFor this first example, we will ignore the spatial aspect of the data and model the presence of malaria (*pos*) as a function of the use of a bed net (*netuse*) and the presence of a public health centre (*phc*). Since we have a binary response, we need to use a logistic regression model (a GLM). Since we have predictors at both the individual and village level, and we expect that children of the same village have more similar probabilities of having malaria even after accounting for those predictors, we need to add a random effect of the village. The result is a GLMM that we fit using the `glmer` function in the *lme4* package.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-67_5c5fd662cb4ced05e844aabdfdb7a676'}\n\n```{.r .cell-code}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Laplace\n Approximation) [glmerMod]\n Family: binomial ( logit )\nFormula: pos ~ netuse + phc + (1 | id_village)\n Data: gambia\n\n AIC BIC logLik deviance df.resid \n 2428.0 2450.5 -1210.0 2420.0 2031 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-2.1286 -0.7120 -0.4142 0.8474 3.3434 \n\nRandom effects:\n Groups Name Variance Std.Dev.\n id_village (Intercept) 0.8149 0.9027 \nNumber of obs: 2035, groups: id_village, 65\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 0.1491 0.2297 0.649 0.5164 \nnetuse -0.6044 0.1442 -4.190 2.79e-05 ***\nphc -0.4985 0.2604 -1.914 0.0556 . \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) netuse\nnetuse -0.422 \nphc -0.715 -0.025\n```\n:::\n:::\n\n\nAccording to these results, both *netuse* and *phc* result in a decrease of malaria prevalence, although the effect of *phc* is not significant at a threshold $\\alpha = 0.05$. The intercept (0.149) is the logit of the probability of malaria presence for a child with no bednet and no public health centre, but it is the mean intercept across all villages, and there is a lot of variation between villages, based on the random effect standard deviation of 0.90. We can get the estimated intercept for each village with the function `coef`:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-68_3720c229ebd5b2262ea78c97fa323bc0'}\n\n```{.r .cell-code}\nhead(coef(mod_glmm)$id_village)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n (Intercept) netuse phc\n1 0.93727515 -0.6043602 -0.4984835\n2 0.09204843 -0.6043602 -0.4984835\n3 0.22500620 -0.6043602 -0.4984835\n4 -0.46271089 -0.6043602 -0.4984835\n5 0.13680037 -0.6043602 -0.4984835\n6 -0.03723346 -0.6043602 -0.4984835\n```\n:::\n:::\n\n\nSo for example, the intercept for village 1 is around 0.94, equivalent to a probability of 72%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-69_5db6d43ef9ff435eae9aedd3aebe48f9'}\n\n```{.r .cell-code}\nplogis(0.937)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7184933\n```\n:::\n:::\n\n\nwhile the intercept in village 2 is equivalent to a probability of 52%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-70_8c98817d65db7e2319175c4f3cba494c'}\n\n```{.r .cell-code}\nplogis(0.092)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.5229838\n```\n:::\n:::\n\n\nThe [DHARMa package](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) provides a general method for checking whether the residuals of a GLMM are distributed according to the specified model and whether there is any residual trend. The package works by simulating replicates of each observation according to the fitted model and then determining a \"standardized residual\", which is the relative position of the observed value with respect to the simulated values, e.g. 0 if the observation is smaller than all the simulations, 0.5 if it is in the middle, etc. If the model represents the data well, each value of the standardized residual between 0 and 1 should be equally likely, so the standardized residuals should produce a uniform distribution between 0 and 1.\n\nThe `simulateResiduals` function performs the calculation of the standardized residuals, then the `plot` function plots the diagnostic graphs with the results of certain tests.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-71_7045ff49e2f9776387a59c78b53a1341'}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-71-1.png){width=672}\n:::\n:::\n\n\nThe graph on the left is a quantile-quantile plot of standardized residuals. The results of three statistical tests also also shown: a Kolmogorov-Smirnov (*KS*) test which checks whether there is a deviation from the theoretical distribution, a dispersion test that checks whether there is underdispersion or overdispersion, and an outlier test based on the number of residuals that are more extreme than all the simulations. Here, we get a significant result for the outliers, though the message indicates that this result might have an inflated type I error rate in this case.\n\nOn the right, we generally get a graph of standardized residuals (in *y*) as a function of the rank of the predicted values, in order to check for any leftover trend in the residual. Here, the predictions are binned by quartile, so it might be better to instead aggregate the predictions and residuals by village, which we can do with the `recalculateResiduals` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-72_65a9d2bb93c9d14f4d7fcc7b40b03c87'}\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-72-1.png){width=672}\n:::\n:::\n\n\nThe plot to the right now shows individual points, along with a quantile regression for the 1st quartile, the median and the 3rd quartile. In theory, these three curves should be horizontal straight lines (no leftover trend in the residuals vs. predictions). The curve for the 3rd quartile (in red) is significantly different from a horizontal line, which could indicate some systematic effect that is missing from the model.\n\n## Spatial GLMM with spaMM\n\nThe *spaMM* (spatial mixed models) package is a relatively new R package that can perform approximate maximum likelihood estimation of parameters for GLMM with spatial dependence, modelled either as a Gaussian process or with a CAR (we will see the latter in the last section). The package implements different algorithms, but there is a single `fitme` function that chooses the appropriate algorithm for each model type. For example, here is the same (non-spatial) model as above fit with *spaMM*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-73_4095dfb1a2890efd12578324ce9cfb41'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + (1 | id_village)\nEstimation of lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.1491 0.2287 0.6519\nnetuse -0.6045 0.1420 -4.2567\nphc -0.4986 0.2593 -1.9231\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n id_village : 0.8151 \n --- Coefficients for log(lambda):\n Group Term Estimate Cond.SE\n id_village (Intercept) -0.2045 0.2008\n# of obs: 2035; # of groups: id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1210.016\n```\n:::\n:::\n\n\nNote that the estimates of the fixed effects as well as the variance of random effects are nearly identical to those obtained by `glmer` above.\n\nWe can now use *spaMM* to fit the same model with the addition of spatial correlations between villages. In the formula of the model, this is represented as a random effect `Matern(1 | x + y)`, which means that the intercepts are spatially correlated between villages following a Matérn correlation function of coordinates (*x, y*). The Matérn function is a flexible function for spatial correlation that includes a shape parameter $\\nu$ (`nu`), so that when $\\nu = 0.5$ it is equivalent to the exponential correlation but as $\\nu$ grows to large values, it approaches a Gaussian correlation. We could let the function estimate $\\nu$, but here we will fix it to 0.5 with the `fixed` argument of `fitme`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-74_d3aef70cffd85f41f037e30922c132c2'}\n\n```{.r .cell-code}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.rho \n0.50000000 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.6421 \n id_village : 0.1978 \n# of obs: 2035; # of groups: x + y, 65; id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nLet's first check the random effects of the model. The spatial correlation function has a parameter `rho` equal to 0.0513. This parameter in *spaMM* is the inverse of the range, so here the range of exponential correlation is 1/0.0513 or around 19.5 km. There are now two variance prameters, the one identified as `x + y` is the long-range variance (i.e. sill) for the exponential correlation model whereas the one identified as `id_village` shows the non-spatially correlated portion of the variation between villages.\n\nIn fact, while we left the random effects `(1 | id_village)` in the formula to represent the non-spatial portion of variation between villages, we could also represent this with a nugget effect in the geostatistical model. In both cases, it would represent the idea that even two villages very close to each other would have different baseline prevalences in the model.\n\nBy default, the `Matern` function has no nugget effect, but we can add one by specifying a non-zero `Nugget` in the initial parameter list `init`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-75_dbd5d25ae78a3c934126be892144af99'}\n\n```{.r .cell-code}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm2)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.Nugget 1.rho \n0.50000000 0.23551027 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.8399 \n# of obs: 2035; # of groups: x + y, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nAs you can see, all estimates are the same, except that the variance of the spatial portion (sill) is now 0.84 and the nugget is equal to a fraction 0.235 of that sill, so a variance of 0.197, which is the same as the `id_village` random effect in the version above. Thus the two formulations are equivalent.\n\nNow, recall the coefficients we obtained for the non-spatial GLMM:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-76_2ff7323dca01a1d9207ef38489d6b664'}\n\n```{.r .cell-code}\nsummary(mod_glmm)$coefficients\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01\nnetuse -0.6043602 0.1442448 -4.1898243 2.791706e-05\nphc -0.4984835 0.2604083 -1.9142382 5.558973e-02\n```\n:::\n:::\n\n\nIn the spatial version, both fixed effects have moved slightly towards zero, but the standard error of the effect of `phc` has decreased. It is interesting that the inclusion of spatial dependence has allowed us to estimate more precisely the effect of having a public health centre in the village. This would not always be the case: for a predictor that is also strongly correlated in space, spatial correlation in the response makes it harder to estimate the effect of this predictor, since it is confounded with the spatial effect. However, for a predictor that is not correlated in space, including the spatial effect reduces the residual (non-spatial) variance and may thus increase the precision of the predictor's effect.\n\nThe *spaMM* package is also compatible with *DHARMa* for residual diagnostics. (You can in fact ignore the warning that it is not in the class of supported models, this is due to using the `fitme` function rather than a specific algorithm function in *spaMM*.)\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-77_435151fa87f7c6c10fa17fe4778779f0'}\n\n```{.r .cell-code}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-1.png){width=672}\n:::\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-2.png){width=672}\n:::\n:::\n\n\nFinally, while we will show how to make and visualize spatial predictions below, we can produce a quick map of the estimated spatial effects in a *spaMM* model with the `filled.mapMM` function.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-78_9aa73f93f8884bdd0fab5e2e18929e73'}\n\n```{.r .cell-code}\nfilled.mapMM(mod_spamm2)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-78-1.png){width=672}\n:::\n:::\n\n\n## Gaussian process models vs. smoothing splines\n\nIf you are familiar with generalized additive models (GAM), you might think that the spatial variation in malaria prevalence (as shown in the map above) could be represented by a 2D smoothing spline (as a function of $x$ and $y$) within a GAM.\n\nThe code below fits the GAM equivalent of our Gaussian process GLMM above with the `gam` function in the *mgcv* package. The spatial effect is represented by the 2D spline `s(x, y)` whereas the non-spatial random effect of village is represented by `s(id_village, bs = \"re\")`, which is the same as `(1 | id_village)` in the previous models. Note that for the `gam` function, categorical variables must be explicitly converted to factors.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-79_ae40737239f2e38abf88e2861e3870b5'}\n\n```{.r .cell-code}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n:::\n\n\nTo visualize the 2D spline, we will use the [*gratia* package](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-80_d5c74c6f14896719f6bab59691ffa563'}\n\n```{.r .cell-code}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-80-1.png){width=672}\n:::\n:::\n\n\nNote that the plot of the spline `s(x, y)` (top right) does not extend too far from the locations of the data (other areas are blank). In this graph, we can also see that the village random effects follow the expected Gaussian distribution (top left).\n\nNext, we will use both the spatial GLMM from the previous section and this GAMM to predict the mean prevalence on a spatial grid of points contained in the file [gambia_pred.csv](data/gambia_pred.csv). The graph below adds those prediction points (in black) on the previous map of the data points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-81_29ad1d87f053e7c4195d592da7d54ff1'}\n\n```{.r .cell-code}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-81-1.png){width=672}\n:::\n:::\n\n\nTo make predictions from the GAMM model at those points, the code below goes through the following steps:\n\n- All predictors in the model must be in the prediction data frame, so we add constant values of *netuse* and *phc* (both equal to 1) for all points. Thus, we will make predictions of malaria prevalence in the case where a net is used and a public health centre is present. We also add a constant *id_village*, although it will not be used in predictions (see below).\n\n- We call the `predict` function on the output of `gam` to produce predictions at the new data points (argument `newdata`), including standard errors (`se.fit = TRUE`) and excluding the village random effects, so the prediction is made for an \"average village\". The resulting object `gam_pred` will have columns `fit` (mean prediction) and `se.fit` (standard error). Those predictions and standard errors are on the link (logit) scale.\n\n- We add the original prediction data frame to `gam_pred` with `cbind`.\n\n- We add columns for the mean prediction and 50% confidence interval boundaries (mean $\\pm$ 0.674 standard error), converted from the logit scale to the probability scale with `plogis`. We choose a 50% interval since a 95% interval may be too wide here to contrast the different predictions on the map at the end of this section.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-82_a655e5eb759da0f74f34c89ed61d58a2'}\n\n```{.r .cell-code}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\n*Note*: The reason we do not make predictions directly on the probability (response) scale is that the normal formula for confidence intervals applies more accurately on the logit scale. Adding a certain number of standard errors around the mean on the probability scale would lead to less accurate intervals and maybe even confidence intervals outside the possible range (0, 1) for a probability.\n\nWe apply the same strategy to make predictions from the *spaMM* spatial GLMM model. There are a few differences in the `predict` method compared with the GAMM case.\n\n- The argument `binding = \"fit\"` means that mean predictions (`fit` column) will be attached to the prediction dataset and returned as `spamm_pred`.\n\n- The `variances = list(linPred = TRUE)` tells `predict` to calculate the variance of the linear predictor (so the square of the standard error). However, it appears as an attribute `predVar` in the output data frame rather than a `se.fit` column, so we move it to a column on the next line.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-83_8466cc239c165bb619c3ec38ce8db16a'}\n\n```{.r .cell-code}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\nFinally, we combine both sets of predictions as different rows of a `pred_all` dataset with `bind_rows`. The name of the dataset each prediction originates from (`gam` or `spamm`) will appear in the \"model\" column (argument `.id`). To simplify production of the next plot, we then use `pivot_longer` in the *tidyr* package to change the three columns \"pred\", \"lo\" and \"hi\" to two columns, \"stat\" and \"value\" (`pred_tall` has thus three rows for every row in `pred_all`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-84_7a8a967d3486a1ba90686ccd4eede914'}\n\n```{.r .cell-code}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n:::\n\n\nHaving done these steps, we can finally look at the prediction maps (mean, lower and upper bounds of the 50% confidence interval) with `ggplot`. The original data points are shown in red.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-85_31003401bd646a7f13b4009bc478ce83'}\n\n```{.r .cell-code}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-85-1.png){width=672}\n:::\n:::\n\n\nWhile both models agree that there is a higher prevalence near the eastern cluster of villages, the GAMM also estimates a higher prevalence at a few points (western edge and around the center) where there is no data. This is an artifact of the shape of the spline fit around the data points, since a spline is meant to fit a global, although nonlinear, trend. In contrast, the geostatistical model represents the spatial effect as local correlations and reverts to the overall mean prevalence when far from any data points, which is a safer assumption. This is one reason to choose a geostatistical / Gaussian process model in this case.\n\n## Bayesian methods for GLMMs with Gaussian processes\n\nBayesian models provide a flexible framework to express models with complex dependence structure among the data, including spatial dependence. However, fitting a Gaussian process model with a fully Bayesian approach can be slow, due the need to compute a spatial covariance matrix between all point pairs at each iteration.\n\nThe INLA (integrated nested Laplace approximation) method performs an approximate calculation of the Bayesian posterior distribution, which makes it suitable for spatial regression problems. We do not cover it in this course, but I recommend the textbook by Paula Moraga (in the references section below) that provides worked examples of using INLA for various geostatistical and areal data models, in the context of epidemiology, including models with both space and time dependence. The book presents the same Gambia malaria data as an example of a geostatistical dataset, which inspired its use in this course.\n\n# GLMM with spatial autoregression {#glmm-spatial-autoreg}\n\nWe return to the last example of the previous part, where we modelled the rate of COVID-19 cases (cases / 1000) for administrative health network divisions (RLS) in Quebec as a function of their population density. The rate is given by the \"taux_1k\" column in the `rls_covid` shapefile.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-86_dee7e0520a18d70a7e5f70f91e7f0d0a'}\n\n```{.r .cell-code}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-86-1.png){width=672}\n:::\n:::\n\n\nPreviously, we modelled the logarithm of this rate as a linear function of the logarithm of population density, with the residual variance correlated among neighbouring units via a CAR (conditional autoregression) structure, as shown in the code below.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-87_51a48c9cba07b64df6887bc1c93140b3'}\n\n```{.r .cell-code}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid, \n listw = rls_w, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.201858 -0.254084 -0.053348 0.281482 1.427053 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16\nlog(dens_pop) 0.206623 0.032848 6.2903 3.169e-10\n\nLambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07 \nNumerical Hessian standard error of lambda: 0.0050486 \n\nLog likelihood: -80.68953 \nML residual variance (sigma squared): 0.2814, (sigma: 0.53048)\nNumber of observations: 95 \nNumber of parameters estimated: 4 \nAIC: 169.38\n```\n:::\n:::\n\n\nAs a reminder, the `poly2nb` function in the *spdep* package creates a list of neighbours based on bordering polygons in a shapefile, then the `nb2listw` converts it to a list of weights, here binary weights (`style = \"B\"`) so that each bordering region receives the same weight of 1 in the autoregressive model.\n\nInstead of using the rates, it would be possible to model the cases directly (column \"cas\" in the dataset) with a Poisson regression, which is appropriate for count data. To account for the fact that if the risk per person were equal, cases would be proportional to population, we can add the unit's population `pop` as an *offset* in the Poisson regression. Therefore, the model would look like: `cas ~ log(dens_pop) + offset(log(pop))`. Note that since the Poisson regression uses a logarithmic link, that model with `log(pop)` as an offset assumes that `log(cas / pop)` (so the log rate) is proportional to `log(dens_pop)`, just like the linear model above, but it has the advantage of modelling the stochasticity of the raw data (the number of cases) directly with a Poisson distribution.\n\nWe do not have the population in this data, but we can estimate it from the cases and the rate (cases / 1000) as follows:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-88_dd571339361d6d0f00653ec574a812b8'}\n\n```{.r .cell-code}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n:::\n\n\nTo define a CAR model in *spaMM*, we need a weights matrix rather than a list of weights as in the *spatialreg* package. Fortunately, the *spdep* package also includes a function `nb2mat` to convert the neighbours list to a matrix of weights, here again using binary weights. To avoid a warning, we specify the row and column names of that matrix to be equal to the IDs associated with each unit (`RLS_code`). Then, we add a term `adjacency(1 | RLS_code)` to the model to specify that the residual variation between different groups defined by `RLS_code` is spatially correlated with a CAR structure (here, each group has only one observation since we have one data point by RLS unit).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-89_96e9784ebad8d38cbd211f444a330b0c'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: poisson( link = log ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) -5.1618 0.16855 -30.625\nlog(dens_pop) 0.1999 0.03267 6.119\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.rho \n0.1576605 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n RLS_code : 0.266 \n# of obs: 95; # of groups: RLS_code, 95 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -709.3234\n```\n:::\n:::\n\n\nNote that the spatial correlation coefficient `rho` (0.158) is similar to the equivalent quantity in the `spautolm` model above, where it was called `Lambda`. The effect of `log(dens_pop)` is also approximately 0.2 in both models.\n\n## Reference\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Available online at .\n\n------------------------------------------------------------------------\n\n# Statistiques spatiales en écologie {#statistiques-spatiales-en-écologie}\n\nBIOS² a organisé une session de formation en ligne sur l'analyse statistique des données spatiales en écologie, animée par le Pr. Philippe Marchand (UQAT). Cette formation de 12 heures s'est déroulée en 4 sessions : 12, 14, 19 & 21 janvier (2021) de 13h00 à 16h00 HNE.\n\nLe contenu comprenait trois types d'analyses statistiques spatiales et leurs applications en écologie : (1) l'analyse des patrons de points qui permet d'étudier la distribution d'individus ou d'événements dans l'espace; (2) les modèles géostatistiques qui représentent la corrélation spatiale de variables échantillonnées à des points géoréférencés; et (3) les modèles de données aréales, qui s'appliquent aux mesures prises sur des régions de l'espace et qui représentent les liens spatiaux par le biais de réseaux de voisinage. La formation comprenait également des exercices pratiques utilisant l'environnement de programmation statistique R.\n\n[Philippe Marchand](https://github.com/pmarchand1) est professeur d'écologie et de biostatistique à l'Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) et membre académique de BIOS². Ses travaux de recherche portent sur la modélisation de processus qui influencent la distribution spatiale des populations, incluant: la dispersion des graines et l'établissement des semis, le mouvement des animaux, et la propagation des épidémies forestières.\n\n**Si vous souhaitez consulter le matériel pédagogique et suivre les exercices à votre propre rythme, vous pouvez y accéder par [ce lien](https://bios2.github.io/Marchand.html#category:FR). Une connaissance de base des modèles de régression linéaire et une expérience de l'ajustement de ces modèles dans R sont recommandées. Le repositoire original se trouve [ici](https://github.com/pmarchand1/BIOS2-spatial-stats).**\n\n## Plan du cours\n\n| Jour | Sujets | \n|-----------------|:--------------------------|\n| 1 | • [Introduction aux statistiques spatiales](#introduction-fr)
• [Analyse des patrons de points](#point-pattern-fr)
|\n| 2 | • [Corrélation spatiale d'une variable](#spatial-correlation-fr)
• [Modèles géostatistiques](#geostat-models-fr) | \n| 3 | • [Données aréales](#areal-data-fr)
• [Indice de Moran](#moran-i-fr)
• [Modèles d'autorégression spatiale](#spatial-autoreg-fr)
• [Analyse des données aréales dans R](#analysis-areal-fr) |\n| 4 | • [GLMM avec processus spatial gaussien](#glmm-spatial-gaussian-fr)
• [GLMM avec autorégression spatiale](#glmm-spatial-autoreg-fr)| \n\n# Introduction aux statistiques spatiales {#introduction-fr}\n\n## Types d'analyses spatiales\n\nDans le cadre de cette formation, nous discuterons de trois types d'analyses spatiales: l'analyse des patrons de points, les modèles géostatistiques et les modèles de données aréales.\n\nDans l'**analyse des patrons de points**, nous avons des données ponctuelles représentant la position d'individus ou d'événements dans une région d'étude et nous supposons que tous les individus ou événements ont été recensés dans cette région. Cette analyse s'intéresse à la distribution des positions des points eux-mêmes. Voici quelques questions typiques de l'analyse des patrons de points:\n\n- Les points sont-ils disposés aléatoirement ou agglomérés?\n\n- Deux types de points sont-ils disposés indépendamment?\n\nLes **modèles géostatistiques** visent à représenter la distribution spatiale de variables continues qui sont mesurés à certains points d'échantillonnage. Ils supposent que les mesures de ces variables à différents points sont corrélées en fonction de la distance entre ces points. Parmi les applications des modèles géostatistiques, notons le lissage des données spatiales (ex.: produire une carte d'une variable sur l'ensemble d'une région en fonction des mesures ponctuelles) et la prédiction de ces variables pour des points non-échantillonnés.\n\nLes **données aréales** sont des mesures prises non pas à des points, mais pour des régions de l'espace représentées par des polygones (ex.: divisions du territoire, cellules d'une grille). Les modèles représentant ces types de données définissent un réseau de voisinage reliant les régions et incluent une corrélation spatiale entre régions voisines. \n\n## Stationnarité et isotropie\n\nPlusieurs analyses spatiales supposent que les variables sont **stationnaires** dans l'espace. Comme pour la stationnarité dans le domaine temporel, cette propriété signifie que les statistiques sommaires (moyenne, variance et corrélations entre mesures d'une variable) ne varient pas avec une translation dans l'espace. Par exemple, la corrélation spatiale entre deux points peut dépendre de la distance les séparant, mais pas de leur position absolue.\n\nEn particulier, il ne peut pas y avoir de tendance à grande échelle (souvent appelée *gradient* dans un contexte spatial), ou bien cette tendance doit être prise en compte afin de modéliser la corrélation spatiale des résidus.\n\nDans le cas de l'analyse des patrons de points, la stationnarité (aussi appelée homogénéité dans ce contexte) signifie que la densité des points ne suit pas de tendance à grande échelle.\n\nDans un modèle statistique **isotropique**, les corrélations spatiales entre les mesures à deux points dépendent seulement de la distance entre ces points, pas de la direction. Dans ce cas, les statistiques sommaires ne varient pas si on effectue une rotation dans l'espace.\n\n## Données géoréférencées\n\nLes études environnementales utilisent de plus en plus de données provenant de sources de données géospatiales, c'est-à-dire des variables mesurées sur une grande partie du globe (ex.: climat, télédétection). Le traitement de ces données requiert des concepts liés aux systèmes d'information géographique (SIG), qui ne sont pas couverts dans cet atelier, alors que nous nous concentrons sur les aspects statistiques de données variant dans l'espace.\n\nL'utilisation de données géospatiales ne signifie pas nécessairement qu'il faut avoir recours à des statistiques spatiales. Par exemple, il est courant d'extraire les valeurs de ces variables géographiques à des points d'étude pour expliquer une réponse biologique observée sur le terrain. Dans ce cas, l'utilisation de statistiques spatiales est seulement nécessaire en présence d'une corrélation spatiale dans les résidus, après avoir tenu compte de l'effet des prédicteurs.\n\n\n# Analyse des patrons de points {#point-pattern-fr}\n\n## Patron de points et processus ponctuel\n\nUn patron de points (*point pattern*) décrit la position spatiale (le plus souvent en 2D) d'individus ou d'événements, représentés par des points, dans une aire d'étude donnée, souvent appelée la *fenêtre* d'observation. \n\nOn suppose que chaque point a une étendue spatiale négligeable par rapport aux distances entre les points. Des méthodes plus complexes existent pour traiter des patrons spatiaux d'objets qui ont une largeur non-néligeable, mais ce sujet dépasse la portée de cet atelier.\n\nUn processus ponctuel (*point process*) est un modèle statistique qui peut être utilisé pour simuler des patrons de points ou expliquer un patron de points observé.\n\n## Structure spatiale totalement aléatoire\n\nUne structure spatiale totalement aléatoire (*complete spatial randomness*) est un des patrons les plus simples, qui sert de modèle nul pour évaluer les caractéristiques de patrons de points réels. Dans ce patron, la présence d'un point à une position donnée est indépendante de la présence de points dans un voisinage. \n\nLe processus créant ce patron est un processus de Poisson homogène. Selon ce modèle, le nombre de points dans toute région de superficie $A$ suit une distribution de Poisson: $N(A) \\sim \\text{Pois}(\\lambda A)$, où $\\lambda$ est l'*intensité* du processus (i.e. la densité de points). $N$ est indépendant entre deux régions disjointes, peu importe comment ces régions sont définies.\n\nDans le graphique ci-dessous, seul le patron à droite est totalement aléatoire. Le patron à gauche montre une agrégation des points (probabilité plus grande d'observer un point si on est à proximité d'un autre point), tandis que le patron du centre montre une répulsion (faible probabilité d'observer un point très près d'un autre).\n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-91_adc67cb15e035b62bde9aae5a2aa1217'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-91-1.png){width=864}\n:::\n:::\n\n\n## Analyse exploratoire ou inférentielle pour un patron de points\n\nPlusieurs statistiques sommaires sont utilisées pour décrire les caractéristiques un patron de points. La plus simple est l'**intensité** $\\lambda$, qui comme mentionné plus haut représente la densité de points par unité de surface. Si le patron de points est hétérogène, l'intensité n'est pas constante, mais dépend de la position: $\\lambda(x, y)$.\n\nPar rapport à l'intensité qui est une statistique dite de premier ordre, les statistiques de second ordre décrivent comment la probabilité de présence d'un point dans une région dépend de la présence d'autres points. L'indice $K$ de Ripley présenté dans la prochaine section est un exemple de statistique sommaire de second ordre.\n\nLes inférences statistiques réalisées sur des patrons de points consistent habituellement à tester l'hypothèse que le patron de points correspond à un modèle nul donné, par exemple une structure spatiale totalement aléatoire, ou un modèle nul plus complexe. Même pour les modèles nuls les plus simples, nous connaissons rarement la distribution théorique pour une statistique sommaire du patron de points sous le modèle nul. Les tests d'hypothèses sur les patrons de points sont donc réalisés par simulation: on simule un grand nombre de patrons de points à partir du modèle nul et on compare la distribution des statistiques sommaires qui nous intéressent pour ces simulations à la valeur des statistiques pour le patron de points observé.\n\n## Indice $K$ de Ripley\n\nL'indice de Ripley $K(r)$ est défini comme le nombre moyen de points se trouvant dans un cercle de rayon $r$ donné autour d'un point du patron, normalisé par l'intensité $\\lambda$. \n\nPour un patron totalement aléatoire, le nombre moyen de points dans un cercle de rayon $r$ est $\\lambda \\pi r^2$, donc en théorie $K(r) = \\pi r^2$ pour ce modèle nul. Une valeur de $K(r)$ supérieure signifie qu'il y a agrégation des points à l'échelle $r$, tandis qu'une valeur inférieure signifie qu'il y a une répulsion.\n\nEn pratique, $K(r)$ est estimé pour un patron de points donné par l'équation:\n\n$$ K(r) = \\frac{A}{n(n-1)} \\sum_i \\sum_{j > i} I \\left( d_{ij} \\le r \\right) w_{ij}$$\n\noù $A$ est l'aire de la fenêtre d'observation et $n$ est le nombre de points du patron, donc $n(n-1)$ est le nombre de paires de points distinctes. On fait la somme pour toutes les paires de points de la fonction indicatrice $I$, qui prend une valeur de 1 si la distance entre les points $i$ et $j$ est inférieure ou égale à $r$. Finalement, le terme $w_{ij}$ permet de donner un poids supplémentaire à certaines paires de points pour tenir compte des effets de bordure, tel que discuté dans la section suivante.\n\nPar exemple, les graphiques ci-dessous présentent la fonction estimée $K(r)$ pour les patrons illustrés ci-dessus, pour des valeurs de $r$ allant jusqu'à 1/4 de la largeur de la fenêtre. La courbe pointillée rouge indique la valeur théorique pour une structure spatiale totalement aléatoire et la zone grise est une \"enveloppe\" produite par 99 simulations de ce modèle nul. Le patron agrégé montre un excès de voisins jusqu'à $r = 0.25$ et le patron avec répulsion montre un déficit significatif de voisins pour les petites valeurs de $r$. \n\n\n\n\n::: {.cell fig.dim='[9,3]' hash='index_cache/html/unnamed-chunk-93_6abeb25aeaeb61368f985f60bb26c046'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-93-1.png){width=864}\n:::\n:::\n\n\nOutre le $K$, il existe d'autres statistiques pour décrire les propriétés de second ordre du patron, par exemple la distance moyenne entre un point et ses $N$ plus proches voisins. Vous pouvez consulter le manuel de Wiegand et Moloney (2013) suggéré en référence pour en apprendre plus sur différentes statistiques sommaires des patrons de points.\n\n## Effets de bordure\n\nDans le contexte de l'analyse de patrons de points, l'effet de bordure (\"edge effect\") est dû au fait que nous avons une connaissance incomplète du voisinage des points près du bord de la fenêtre d'observation, ce qui peut induire un biais dans le calcul des statistiques comme le $K$ de Ripley. \n\nDifférentes méthodes ont été développées pour corriger le biais dû aux effets de bordure. Selon la méthode de Ripley, la contribution d'un voisin $j$ situé à une distance $r$ d'un point $i$ reçoit un poids $w_{ij} = 1/\\phi_i(r)$, où $\\phi_i(r)$ est la fraction du cercle de rayon $r$ autour de $i$ contenu dans la fenêtre d'observation. Par exemple, si 2/3 du cercle se trouve dans la fenêtre, ce voisin compte pour 3/2 voisins dans le calcul d'une statistique comme $K$.\n\n![](images/ripley_edge.png)\n\nLa méthode de Ripley est une des plus simples pour corriger les effets de bordure, mais n'est pas nécessairement la plus efficace; notamment, les poids plus grands donnés à certaines paires de points tend à accroître la variance du calcul de la statistique. D'autres méthodes de correction sont présentées dans les manuels spécialisés, comme celui de Wiegand et Moloney (2013) en référence.\n\n## Exemple\n\nPour cet exemple, nous utilisons le jeu de données [semis_xy.csv](data/semis_xy.csv), qui représente les coordonnées $(x, y)$ de semis de deux espèces (*sp*, B = bouleau et P = peuplier) dans une placette de 15 x 15 m.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-94_327e5e9e3c1899c6fc6b1fb294f06e68'}\n\n```{.r .cell-code}\nsemis <- read.csv(\"data/semis_xy.csv\")\nhead(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y sp\n1 14.73 0.05 P\n2 14.72 1.71 P\n3 14.31 2.06 P\n4 14.16 2.64 P\n5 14.12 4.15 B\n6 9.88 4.08 B\n```\n:::\n:::\n\n\nLe package *spatstat* permet d'effectuer des analyses de patrons de point dans R. La première étape consiste à transformer notre tableau de données en objet `ppp` (patron de points) avec la fonction du même nom. Dans cette fonction, nous spécifions quelles colonnes contiennent les coordonnées *x* et *y* ainsi que les marques (`marks`), qui seront ici les codes d'espèce. Il faut aussi spécifier une fenêtre d'observation (`window`) à l'aide de la fonction `owin`, à laquelle nous indiquons les limites de la placette en *x* et *y*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-95_e246a905ab0e728b8bebd2e4c7effcef'}\n\n```{.r .cell-code}\nlibrary(spatstat)\n\nsemis <- ppp(x = semis$x, y = semis$y, marks = as.factor(semis$sp),\n window = owin(xrange = c(0, 15), yrange = c(0, 15)))\nsemis\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMarked planar point pattern: 281 points\nMultitype, with levels = B, P \nwindow: rectangle = [0, 15] x [0, 15] units\n```\n:::\n:::\n\n\nLes marques peuvent être numériques ou catégorielles. Notez que pour des marques catégorielles comme c'est le cas ici, il faut convertir explicitement la variable en facteur.\n\nLa fonction `plot` appliquée à un patron de points montre un diagramme du patron.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-96_96d77aa12e04c69ed21ee84e297dba59'}\n\n```{.r .cell-code}\nplot(semis)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-96-1.png){width=672}\n:::\n:::\n\n\nLa fonction `intensity` calcule la densité des points de chaque espèce par unité de surface, ici en $m^2$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-97_beac65d0093c1448eec5b7873eb79e0b'}\n\n```{.r .cell-code}\nintensity(semis)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n B P \n0.6666667 0.5822222 \n```\n:::\n:::\n\n\nPour analyser d'abord séparément la distribution de chaque espèce, nous séparons le patron avec `split`. Puisque le patron contient des marques catégorielles, la séparation se fait automatiquement en fonction de la valeur des marques. Le résultat est une liste de deux patrons de points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-98_b03959fb9ef2a14b73c3512a12d3e227'}\n\n```{.r .cell-code}\nsemis_split <- split(semis)\nplot(semis_split)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-98-1.png){width=672}\n:::\n:::\n\n\nLa fonction `Kest` calcule le $K$ de Ripley pour une série de distances allant (par défaut) jusqu'à 1/4 de la largeur de la fenêtre. Ici, nous l'appliquons au premier patron (bouleau) en choisissant `semis_split[[1]]`. Notez que les doubles crochets sont nécessaires pour choisir un élément d'une liste dans R.\n\nL'argument `correction = \"iso\"` indique d'appliquer la méthode de Ripley pour corriger les effets de bordure.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-99_181444d1e19a264175dc77ad57d2d3d0'}\n\n```{.r .cell-code}\nk <- Kest(semis_split[[1]], correction = \"iso\")\nplot(k)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-99-1.png){width=672}\n:::\n:::\n\n\nSelon ce graphique, il semble y avoir une excès de voisins à partir d'un rayon de 1 m. Pour vérifier s'il s'agit d'un écart significatif, nous produisons une enveloppe de simulation avec la fonction `envelope`. Le permier argument d'`envelope` est un patron de point auquel les simulations seront comparées, le deuxième une fonction à calculer (ici, `Kest`) pour chaque patron simulé, puis on y ajoute les arguments de la fonction `Kest` (ici, seulement `correction`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-100_c8ef12d95e636626e72d894b8455cc8e'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[1]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-100-1.png){width=672}\n:::\n:::\n\n\nTel qu'indiqué par le message, cette fonction effectue par défaut 99 simulations de l'hypothèse nulle correspondant à une structure spatiale totalement aléatoire (CSR, pour *complete spatial randomness*).\n\nLa courbe observée sort de l'enveloppe des 99 simulations près de $r = 2$. Il faut être prudent de ne pas interpréter trop rapidement un résultat sortant de l'enveloppe. Même s'il y a environ une probabilité de 1% d'obtenir un résultat plus extrême selon l'hypothèse nulle à une distance donnée, l'enveloppe est calculée pour un grand nombre de valeurs de la distance et nous n'effectuons pas de correction pour les comparaisons multiples. Ainsi, un écart significatif pour une très petite plage de valeurs de $r$ peut être simplement dû au hasard.\n\n\n### Exercice 1\n\nEn regardant le graphique du deuxième patron de points (semis de peuplier), pouvez-vous prédire où se situera le $K$ de Ripley par rapport à l'hypothèse nulle d'une structure spatiale totalement aléatoire? Vérifiez votre prédiction en calculant le $K$ de Ripley pour ce patron de points dans R.\n\n\n## Effet de l'hétérogénéité\n\nLe graphique ci-dessous illustre un patron de points *hétérogène*, c'est-à-dire qu'il présente un gradient d'intensité (plus de points à gauche qu'à droite).\n\n\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-102_4f8ece21b321a6bc37f12ea916525a4e'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-102-1.png){width=672}\n:::\n:::\n\n\nUn gradient de densité peut être confondu avec une agrégation des points, comme on peut voir sur le graphique du $K$ de Ripley correspondant. En théorie, il s'agit de deux processus différents:\n\n- Hétérogénéité: La densité de points varie dans la région d'étude, par exemple dû au fait que certaines conditions locales sont plus propices à la présence de l'espèce étudiée.\n\n- Agrégation: La densité moyenne des points est homogène, mais la présence d'un point augmente la présence d'autre points dans son voisinage, par exemple en raison d'interactions positives entre les individus.\n\nCependant, il peut être difficile de différencier les deux en pratique, surtout que certains patrons peuvent être à la fois hétérogènes et agrégés.\n\nPrenons l'exemple des semis de peuplier de l'exercice précédent. La fonction `density` appliquée à un patron de points effectue une estimation par noyau (*kernel density estimation*) de la densité des semis à travers la placette. Par défaut, cette fonction utilise un noyau gaussien avec un écart-type `sigma` spécifié dans la fonction, qui détermine l'échelle à laquelle les fluctuations de densité sont \"lissées\". Ici, nous utilisons une valeur de 2 m pour `sigma` et nous représentons d'abord la densité estimée avec `plot`, avant d'y superposer les points (`add = TRUE` signifie que les points sont ajoutés au graphique existant plutôt que de créer un nouveau graphique).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-103_293155d4d47f9be8ba5f92c275edfe33'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 2)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-103-1.png){width=672}\n:::\n:::\n\n\nPour mesurer l'agrégation ou la répulsion des points d'un patron hétérogène, nous devons utilisé la version non-homogène de la statistique $K$ (`Kinhom` dans *spatstat*). Cette statistique est toujours égale au nombre moyen de voisins dans un rayon $r$ d'un point du patron, mais plutôt que de normaliser ce nombre par l'intensité globale du patron, il est normalisé par l'estimation locale de la densité de points. Comme ci-dessus, nous spécifions `sigma = 2` pour contrôler le niveau de lissage de l'estimation de la densité variable.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-104_2e7d6e77388db4c6cf95e3825468e730'}\n\n```{.r .cell-code}\nplot(Kinhom(semis_split[[2]], sigma = 2, correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-104-1.png){width=672}\n:::\n:::\n\n\nEn tenant compte de l'hétérogénéité du patron à une échelle `sigma` de 2 m, il semble donc y avoir un déficit de voisins à partir d'environ 1.5 m des points du patron. Il reste à voir si cette déviation est significative.\n\nComme précédemment, nous utilisons `envelope` pour simuler la statistique `Kinhom` sous le modèle nul. Cependant, ici le modèle nul n'est pas un processus de Poisson homogène (structure spatiale totalement aléatoire). Il s'agit plutôt d'un processus de Poisson hétérogène simulé par la fonction `rpoispp(dens_p)`, c'est-à-dire que les points sont indépendants les uns des autres, mais leur densité est hétérogène et donnée par `dens_p`. L'argument `simulate` de la fonction `envelope` permet de spécifier une fonction utilisée pour les simulations sous le modèle nul; cette fonction doit avoir un argument, ici `x`, même s'il n'est pas utilisé.\n\nFinalement, en plus des arguments nécessaires pour `Kinhom`, soit `sigma` et `correction`, nous spécifions aussi `nsim = 199` pour réaliser 199 simulations et `nrank = 5` pour éliminer les 5 résultats les plus extrêmes de chaque côté de l'enveloppe, donc les 10 plus extrêmes sur 199, pour réaliser un intervalle contenant environ 95% de la probabilité sous l'hypothèse nulle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-105_372339d2d2e016521c3700d91cc77898'}\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 2, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-105-1.png){width=672}\n:::\n:::\n\n\n*Note*: Pour un test d'hypothèse basé sur des simulations d'une hypothèse nulle, la valeur $p$ est estimée par $(m + 1)/(n + 1)$, où $n$ est le nombre de simulations et $m$ est le nombre de simulations où la valeur de la statistique est plus extrême que celle des données observées. C'est pour cette raison qu'on choisit un nombre de simulations comme 99, 199, etc.\n\n### Exercice 2\n\nRépétez l'estimation de la densité hétérogène et le calcul de `Kinhom` avec un écart-type `sigma` de 5 plutôt que 2. Comment le niveau de lissage pour la densité influence-t-il les conclusions?\n\nPour différencier une variation de densité des points et d'une interaction (agrégation ou répulsion) entre ces points avec ce type d'analyse, il faut généralement supposer que les deux processus opèrent à différentes échelles. Typiquement, nous pouvons tester si les points sont agrégés à petite échelle après avoir tenu compte d'une variation de la densité à une échelle plus grande.\n\n\n## Relation entre deux patrons de points\n\nConsidérons un cas où nous avons deux patrons de points, par exemple la position des arbres de deux espèces dans une parcelle (points oranges et verts dans le graphique ci-dessous). Chacun des deux patrons peut présenter ou non des agrégations de points. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-106_a7d54ff1bdd2b3ad9381ec359732b6e9'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-106-1.png){width=672}\n:::\n:::\n\n\nSans égard à cette agrégation au niveau de l'espèce, nous voulons déterminer si les deux espèces sont disposées indépendamment. Autrement dit, la probabilité d'observer un arbre d'une espèce dépend-elle de la présence d'un arbre de l'autre espèce à une distance donnée?\n\nLa version bivariée du $K$ de Ripley permet de répondre à cette question. Pour deux patrons désignés 1 et 2, l'indice $K_{12}(r)$ calcule le nombre moyen de points du patron 2 dans un rayon $r$ autour d'un point du patron 1, normalisé par la densité du patron 2.\n\nEn théorie, cet indice est symétrique, donc $K_{12}(r) = K_{21}(r)$ et le résultat serait le même si on choisit les points du patron 1 ou 2 comme points \"focaux\" pour l'analyse. Cependant, l'estimation des deux quantités pour un patron observé peut différer, notamment en raison des effets de bord. La variabilité peut aussi être différente pour $K_{12}$ et $K_{21}$ entre les simulations d'un modèle nul, donc le test de l'hypothèse nulle peut avoir une puissance différente selon le choix de l'espèce focale.\n\nLe choix d'un modèle nul approprié est important ici. Afin de déterminer s'il existe une attraction ou une répulsion significative entre les deux patrons, il faut déplacer aléatoirement la position d'un des patrons relative à celle de l'autre patron, tout en conservant la structure spatiale de chaque patron pris isolément.\n\nUne des façons d'effectuer cette randomisation consiste à décaler l'un des deux patrons horizontalement et/ou verticalement d'une distance aléatoire. La partie du patron qui \"sort\" d'un côté de la fenêtre est rattachée de l'autre côté. Cette méthode s'appelle une translation toroïdale (*toroidal shift*), car en connectant le haut et le bas ainsi que la gauche et la droite d'une surface rectangulaire, on obtient la forme d'un tore (un \"beigne\" en trois dimensions).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-107_1757cb541cf05d572ea82ab56ed6f90e'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-107-1.png){width=672}\n:::\n:::\n\n\nLe graphique ci-dessus illustre une translation du patron vert vers la droite, tandis que le patron orange reste au même endroit. Les points verts dans la zone ombragée sont ramenés de l'autre côté. Notez que si cette méthode préserve de façon générale la structure de chaque patron tout en randomisant leur position relative, elle peut comporter certains inconvénients, comme de diviser des amas de points qui se trouvent près du point de coupure.\n\nVérifions maintenant s'il y a une dépendance entre la position des deux espèces (bouleau et peuplier) dans notre placette. La fonction `Kcross` calcule l'indice bivarié $K_{ij}$, il faut spécifier quel type de point est considéré comme l'espèce focale $i$ et l'espèce voisine $j$.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-108_e1fb67c992e6fbc5436f40af7db13109'}\n\n```{.r .cell-code}\nplot(Kcross(semis, i = \"P\", j = \"B\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-108-1.png){width=672}\n:::\n:::\n\n\nIci, le $K$ observé est inférieur à la valeur théorique, indiquant une répulsion possible des deux patrons.\n\nPour déterminer l'enveloppe du $K$ selon l'hypothèse nulle d'indépendance des deux patrons, nous devons spécifier que les simulations doivent être basées sur une translation des patrons. Nous indiquons que les simulations doivent utiliser la fonction `rshift` (translation aléatoire) avec l'argument `simulate = function(x) rshift(x, which = \"B\")`; ici, l'argument `x` de `simulate` correspond au patron de points original et l'argument `which` indique quel type de points subit la translation. Comme pour le cas précédent, il faut répéter dans la fonction `envelope` les arguments nécessaires pour `Kcross`, soit `i`, `j` et `correction`. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-109_727b1efb5e977942d084f00027cda511'}\n\n```{.r .cell-code}\nplot(envelope(semis, Kcross, i = \"P\", j = \"B\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = function(x) rshift(x, which = \"B\")))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-109-1.png){width=672}\n:::\n:::\n\n\nIci, la courbe observée se situe totalement dans l'enveloppe, donc nous ne rejetons pas l'hypothèse nulle d'indépendance des deux patrons.\n\n### Questions\n\n1. Quelle raison pourrait justifier ici notre choix d'effectuer la translation des points du bouleau plutôt que du peuplier?\n\n2. Est-ce que les simulations générées par translation aléatoire constitueraient un bon modèle nul si les deux patrons étaient hétérogènes?\n\n\n## Patrons de points marqués\n\nLe jeu de données [fir.csv](data/fir.csv) contient les coordonnées $(x, y)$ de 822 sapins dans une placette d'un hectare et leur statut (A = vivant, D = mort) suivant une épidémie de tordeuse des bourgeons de l'épinette.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-110_b43d75059cee9e8f87a67abfa290388c'}\n\n```{.r .cell-code}\nfir <- read.csv(\"data/fir.csv\")\nhead(fir)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n x y status\n1 31.50 1.00 A\n2 85.25 30.75 D\n3 83.50 38.50 A\n4 84.00 37.75 A\n5 83.00 33.25 A\n6 33.25 0.25 A\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-111_2327e6a3855266c0ba92a5eed5b7ce1a'}\n\n```{.r .cell-code}\nfir <- ppp(x = fir$x, y = fir$y, marks = as.factor(fir$status),\n window = owin(xrange = c(0, 100), yrange = c(0, 100)))\nplot(fir)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-111-1.png){width=672}\n:::\n:::\n\n\nSupposons que nous voulons vérifier si la mortalité des sapins est indépendante ou corrélée entre arbres rapprochés. En quoi cette question diffère-t-elle de l'exemple précédent où nous voulions savoir si la position des points de deux espèces était indépendante?\n\nDans l'exemple précédent, l'indépendance ou l'interaction entre les espèces référait à la formation du patron lui-même (que des semis d'une espèce s'établissent ou non à proximité de ceux de l'autre espèce). Ici, la caractéristique qui nous intéresse (survie des sapins) est postérieure à l'établissement du patron, en supposant que tous ces arbres étaient vivants d'abord et que certains sont morts suite à l'épidémie. Donc nous prenons la position des arbres comme fixe et nous voulons savoir si la distribution des statuts (mort, vivant) entre ces arbres est aléatoire ou présente un patron spatial.\n\nDans le manuel de Wiegand et Moloney, la première situation (établissement de semis de deux espèces) est appelé patron bivarié, donc il s'agit vraiment de deux patrons qui interagissent, tandis que la deuxième est un seul patron avec une *marque* qualitative. Le package *spatstat* dans R ne fait pas de différences entre les deux au niveau de la définition du patron (les types de points sont toujours représentés par l'argument `marks`), mais les méthodes d'analyse appliquées aux deux questions diffèrent.\n\nDans le cas d'un patron avec une marque qualitative, nous pouvons définir une fonction de connexion de marques (*mark connection function*) $p_{ij}(r)$. Pour deux points séparés par une distance $r$, cette fonction donne la probabilité que le premier point porte la marque $i$ et le deuxième la marque $j$. Selon l'hypothèse nulle où les marques sont indépendantes, cette probabilité est égale au produit des proportions de chaque marque dans le patron entier, $p_{ij}(r) = p_i p_j$ indépendamment de $r$.\n\nDans *spatstat*, la fonction de connexion de marques est calculée avec la fonction `markconnect`, où il faut spécifier les marques $i$ et $j$ ainsi que le type de correction des effets de bord. Dans notre exemple, nous voyons que deux points rapprochés ont moins de chance d'avoir une statut différent (A et D) que prévu selon l'hypothèse de distribution aléatoire et indépendante des marques (ligne rouge pointillée).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-112_e925b891841588727659504a7a0c6e6d'}\n\n```{.r .cell-code}\nplot(markconnect(fir, i = \"A\", j = \"D\", correction = \"iso\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-112-1.png){width=672}\n:::\n:::\n\n\nDans ce graphique, les ondulations dans la fonction sont dues à l'erreur d'estimation d'une fonction continue de $r$ à partir d'un nombre limité de paires de points discrètes.\n\nPour simuler le modèle nul dans ce cas-ci, nous utilisons la fonction `rlabel` qui réassigne aléatoirement les marques parmi les points du patron, en maintenant la position des points.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-113_41cb4b77111500454c477fbd4c96dd08'}\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"A\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-113-1.png){width=672}\n:::\n:::\n\n\nNotez que puisque la fonction `rlabel` a un seul argument obligatoire correspondant au patron de points original, il n'était pas nécessaire de spécifier au long: `simulate = function(x) rlabel(x)`.\n\nVoici les résultats pour les paires d'arbres du même statut A ou D:\n\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-114_2a3fc9a64a69a67d1266f0273c3bb85c'}\n\n```{.r .cell-code}\npar(mfrow = c(1, 2))\nplot(envelope(fir, markconnect, i = \"A\", j = \"A\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(envelope(fir, markconnect, i = \"D\", j = \"D\", correction = \"iso\", \n nsim = 199, nrank = 5, simulate = rlabel))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-114-1.png){width=960}\n:::\n:::\n\n\nIl semble donc que la mortalité des sapins due à cette épidémie est agrégée spatialement, puisque les arbres situés à proximité l'un de l'autre ont une plus grande probabilité de partager le même statut que prévu par l'hypothèse nulle.\n\n## Références\n\nFortin, M.-J. et Dale, M.R.T. (2005) *Spatial Analysis: A Guide for Ecologists*. Cambridge University Press: Cambridge, UK. \n\nWiegand, T. et Moloney, K.A. (2013) *Handbook of Spatial Point-Pattern Analysis in Ecology*, CRC Press.\n\nLe jeu de données du dernier exemple est tiré des données de la Forêt d'enseignement et de recherche du Lac Duparquet (FERLD), disponibles sur Dryad en suivant [ce lien](https://doi.org/10.5061/dryad.tqjq2bvwz).\n\n\n# Solutions\n\n### Exercice 1\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-115_7bc8effd281fccbd2a1c1e21cd801493'}\n\n```{.r .cell-code}\nplot(envelope(semis_split[[2]], Kest, correction = \"iso\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 99 simulations of CSR ...\n1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,\n41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80,\n81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99.\n\nDone.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-115-1.png){width=672}\n:::\n:::\n\n\nLes semis de peuplier semblent significativement agrégés selon la valeur du $K$.\n\n### Exercice 2\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-116_53115f6ed07f7e0e4e7d2c8989998e70'}\n\n```{.r .cell-code}\ndens_p <- density(semis_split[[2]], sigma = 5)\nplot(dens_p)\nplot(semis_split[[2]], add = TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-116-1.png){width=672}\n:::\n\n```{.r .cell-code}\nkhet_p <- envelope(semis_split[[2]], Kinhom, sigma = 5, correction = \"iso\",\n nsim = 199, nrank = 5, simulate = function(x) rpoispp(dens_p))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGenerating 199 simulations by evaluating function ...\n1, 2, 3, 4.6.8.10.12.14.16.18.20.22.24.26.28.30.32.34.36.38.40\n.42.44.46.48.50.52.54.56.58.60.62.64.66.68.70.72.74.76.78.80\n.82.84.86.88.90.92.94.96.98.100.102.104.106.108.110.112.114.116.118.120\n.122.124.126.128.130.132.134.136.138.140.142.144.146.148.150.152.154.156.158.160\n.162.164.166.168.170.172.174.176.178.180.182.184.186.188.190.192.194.196.198 199.\n\nDone.\n```\n:::\n\n```{.r .cell-code}\nplot(khet_p)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-116-2.png){width=672}\n:::\n:::\n\n\nIci, puisque nous estimons la variation de densité à une plus grande échelle, même après avoir tenu compte de cette variation, les semis de peuplier semblent agrégés à petite échelle.\n\n\n# Corrélation spatiale d'une variable {#spatial-correlation-fr}\n\nLa corrélation entre les mesures d'une variable prises à des points rapprochés est une caractéristique dans de nombreux jeux de données. Ce principe est parfois appelé \"première loi de la géographie\" et exprimé par la citation de Waldo Tobler: \"Everything is related to everything else, but near things are more related than distant things.\" (Tout est relié, mais les choses rapprochées le sont davantage que celles éloignées).\n\nEn statistique, nous parlons souvent d'*autocorrélation* pour désigner la corrélation qui existe entre les mesures d'une même variable prises à différents moments (autocorrélation temporelle) ou différents lieux (autocorrélation spatiale).\n\n## Dépendance intrinsèque ou induite\n\nIl existe deux types fondamentaux de dépendance spatiale sur une variable mesurée $y$: une dépendance *intrinsèque* à $y$, ou une dépendance *induite* par des variables externes influençant $y$, qui sont elles-mêmes corrélées dans l'espace.\n\nPar exemple, supposons que l'abondance d'une espèce soit corrélée entre deux sites rapprochés:\n\n- cette dépendance spatiale peut être induite si elle est due à une corrélation spatiale des facteurs d'habitat qui favorisent ou défavorisent l'espèce;\n\n- ou elle peut être intrinsèque si elle est due à la dispersion d'individus entre sites rapprochés.\n\nDans plusieurs cas, les deux types de dépendance affectent une variable donnée.\n\nSi la dépendance est simplement induite et que les variables externes qui en sont la cause sont incluses dans le modèle expliquant $y$, alors les résidus du modèle seront indépendants et nous pouvons utiliser toutes les méthodes déjà vues qui ignorent la dépendance spatiale.\n\nCependant, si la dépendance est intrinsèque ou due à des influences externes non-mesurées, alors il faudra tenir compte de la dépendance spatiale des résidus dans le modèle.\n\n## Différentes façons de modéliser les effets spatiaux\n\nDans cette formation, nous modéliserons directement les corrélations spatiales de nos données. Il est utile de comparer cette approche à d'autres façons d'inclure des aspects spatiaux dans un modèle statistique.\n\nD'abord, nous pourrions inclure des prédicteurs dans le modèle qui représentent la position (ex.: longitude, latitude). De tels prédicteurs peuvent être utiles pour détecter une tendance ou un gradient systématique à grande échelle, que cette tendance soit linéaire ou non (par exemple, avec un modèle additif généralisé).\n\nEn contraste à cette approche, les modèles que nous verrons maintenant servent à modéliser une corrélation spatiale dans les fluctuations aléatoires d'une variable (i.e., dans les résidus après avoir enlevé tout effet systématique).\n\nLes modèles mixtes utilisent des effets aléatoires pour représenter la non-indépendance de données sur la base de leur groupement, c'est-à-dire qu'après avoir tenu compte des effets fixes systématiques, les données d'un même groupe sont plus semblables (leur variation résiduelle est corrélée) par rapport aux données de groupes différents. Ces groupes étaient parfois définis selon des critères spatiaux (observations regroupées en sites).\n\nCependant, dans un contexte d'effet aléatoire de groupe, tous les groupes sont aussi différents les uns des autres, ex.: deux sites à 100 km l'un de l'autre ne sont pas plus ou moins semblables que deux sites distants de 2 km.\n\nLes méthodes que nous verrons ici et dans les prochains parties de la formation nous permettent donc ce modéliser la non-indépendance sur une échelle continue (plus proche = plus corrélé) plutôt que seulement discrète (hiérarchie de groupements).\n\n\n# Modèles géostatistiques {#geostat-models-fr}\n\nLa géostatistique désigne un groupe de techniques tirant leur origine en sciences de la Terre. Elle s'intéresse à des variables distribuées de façon continue dans l'espace, dont on cherche à estimer la distribution en échantillonnant un nombre de points. Un exemple classique de ces techniques provient du domaine minier, où l'on cherchait à créer une carte de la concentration du minerai sur un site à partir d'échantillons pris à différents points du site.\n\nPour ces modèles, nous supposerons que $z(x, y)$ est une variable spatiale stationnaire mesurée selon les coordonnées $x$ et $y$.\n\n## Variogramme\n\nUn aspect central de la géostatistique est l'estimation du variogramme $\\gamma_z$ de la variable $z$. Le variogramme est égal à la moitié de l'écart carré moyen entre les valeurs de $z$ pour deux points $(x_i, y_i)$ et $(x_j, y_j)$ séparés par une distance $h$.\n\n$$\\gamma_z(h) = \\frac{1}{2} \\text{E} \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h}$$\n\nDans cette équation, la fonction $\\text{E}$ avec l'indice $d_{ij}=h$ désigne l'espérance statistique (autrement dit, la moyenne) de l'écart au carré entre les valeurs de $z$ pour les points séparés par une distance $h$.\n\nSi on préfère exprimer l'autocorrélation $\\rho_z(h)$ entre mesures de $z$ séparées par une distance $h$, celle-ci est reliée au variogramme par l'équation:\n\n$$\\gamma_z = \\sigma_z^2(1 - \\rho_z)$$ ,\n\noù $\\sigma_z^2$ est la variance globale de $z$. \n\nNotez que $\\gamma_z = \\sigma_z^2$ si nous sommes à une distance où les mesures de $z$ sont indépendantes, donc $\\rho_z = 0$. Dans ce cas, on voit bien que $\\gamma_z$ s'apparente à une variance, même s'il est parfois appelé \"semivariogramme\" ou \"semivariance\" en raison du facteur 1/2 dans l'équation ci-dessus.\n\n## Modèles théoriques du variogramme\n\nPlusieurs modèles paramétriques ont été proposés pour représenter la corrélation spatiale en fonction de la distance entre points d'échantillonnage. Considérons d'abord une corrélation qui diminue de façon exponentielle: \n\n$$\\rho_z(h) = e^{-h/r}$$\n\nIci, $\\rho_z = 1$ pour $h = 0$ et la corréaltion est multipliée par $1/e \\approx 0.37$ pour chaque augmentation de $r$ de la distance. Dans ce contexte, $r$ se nomme la portée (*range*) de la corrélation.\n\nÀ partir de l'équation ci-dessus, nous pouvons calculer le variogramme correspondant.\n\n$$\\gamma_z(h) = \\sigma_z^2 (1 - e^{-h/r})$$\n\nVoici une représentation graphique de ce variogramme.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-117_94b4bef8ba36e1b515cfee5fff6c1ebb'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-117-1.png){width=672}\n:::\n:::\n\n\nEn raison de la fonction exponentielle, la valeur de $\\gamma$ à des grandes distances s'approche de la variance globale $\\sigma_z^2$ sans exactement l'atteindre. Cette asymptote est appelée palier (*sill*) dans le contexte géostatistique et représentée par le symbole $s$.\n\nFinalement, il n'est parfois pas réaliste de supposer une corrélation parfaite lorsque la distance tend vers 0, en raison d'une variation possible de $z$ à très petite échelle. On peut ajouter au modèle un effet de pépite (*nugget*), noté $n$, pour que $\\gamma$ s'approche de $n$ (plutôt que 0) si $h$ tend vers 0. Le terme pépite provient de l'origine minière de ces techniques, où une pépite d'un minerai pourrait être la source d'une variation abrupte de la concentration à petite échelle.\n\nEn ajoutant l'effet de pépite, le reste du variogramme est \"compressé\" pour conserver le même palier, ce qui résulte en l'équation suivante.\n\n$$\\gamma_z(h) = n + (s - n) (1 - e^{-h/r})$$\n\nDans le package *gstat* que nous utiliserons ci-dessous, le terme $(s - n)$ est le palier partiel (*partial sill*, ou `psill`) pour la partie exponentielle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-118_616ef9e44728a1524a3df51fd61bde38'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-118-1.png){width=672}\n:::\n:::\n\n\nEn plus du modèle exponentiel, deux autres modèles théoriques courants pour le variogramme sont le modèle gaussien (où la corrélation suit une courbe demi-normale), ainsi que le modèle sphérique (où le variogramme augmente de façon linéaire au départ pour ensuite courber et atteindre le palier à une distance égale à sa portée $r$). Le modèle sphérique permet donc à la corrélation d'être exactement 0 à grande distance, plutôt que de s'approcher graduellement de zéro dans le cas des autres modèles.\n\n Modèle | $\\rho(h)$ | $\\gamma(h)$\n-------|-----------|-------------\nExponentiel | $\\exp\\left(-\\frac{h}{r}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h}{r}\\right)\\right)$\nGaussien | $\\exp\\left(-\\frac{h^2}{r^2}\\right)$ | $s \\left(1 - \\exp\\left(-\\frac{h^2}{r^2}\\right)\\right)$\nSphérique $(h < r)$ * | $1 - \\frac{3}{2}\\frac{h}{r} + \\frac{1}{2}\\frac{h^3}{r^3}$ | $s \\left(\\frac{3}{2}\\frac{h}{r} - \\frac{1}{2}\\frac{h^3}{r^3} \\right)$\n\n\\* Pour le modèle sphérique, $\\rho = 0$ et $\\gamma = s$ si $h \\ge r$.\n\n\n\n::: {.cell fig.dim='[9,4]' hash='index_cache/html/unnamed-chunk-119_df4e0a7376691267996d3cce69016995'}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-119-1.png){width=864}\n:::\n:::\n\n\n## Variogramme empirique\n\nPour estimer $\\gamma_z(h)$ à partir de données empiriques, nous devons définir des classes de distance, donc grouper différentes distances dans une marge $\\pm \\delta$ autour d'une distance $h$, puis calculer l'écart-carré moyen pour les paires de points dans cette classe de distance.\n\n$$\\hat{\\gamma_z}(h) = \\frac{1}{2 N_{\\text{paires}}} \\sum \\left[ \\left( z(x_i, y_i) - z(x_j, y_j) \\right)^2 \\right]_{d_{ij} = h \\pm \\delta}$$\n\nNous verrons dans la partie suivante comment estimer un variogramme dans R.\n\n## Modèle de régression avec corrélation spatiale\n\nL'équation suivante représente une régression linéaire multiple incluant une corrélation spatiale résiduelle:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\nIci, $v$ désigne la variable réponse et $u$ les prédicteurs, pour ne pas confondre avec les coordonnées spatiales $x$ et $y$. \n\nEn plus du résidu $\\epsilon$ qui est indépendant entre les observations, le modèle inclut un terme $z$ qui représente la portion spatialement corrélée de la variance résiduelle.\n\nVoici une suggestions d'étapes à suivre pour appliquer ce type de modèle:\n\n1. Ajuster le modèle de régression sans corrélation spatiale.\n\n2. Vérifier la présence de corrélation spatiale à partir du variogramme empirique des résidus.\n\n3. Ajuster un ou plusieurs modèles de régression avec corrélation spatiale et choisir celui qui montre le meilleur ajustement aux données. \n\n# Modèles géostatistiques dans R\n\nLe package *gstat* contient des fonctions liées à la géostatistique. Pour cet exemple, nous utiliserons le jeu de données `oxford` de ce package, qui contient des mesures de propriétés physiques et chimiques pour 126 échantillons du sol d'un site, ainsi que leurs coordonnées `XCOORD` et `YCOORD`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-120_bb070aeb602b5bb93fe5df883fdd6dbe'}\n\n```{.r .cell-code}\nlibrary(gstat)\n\ndata(oxford)\nstr(oxford)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n'data.frame':\t126 obs. of 22 variables:\n $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...\n $ XCOORD : num 100 100 100 100 100 100 100 100 100 100 ...\n $ YCOORD : num 2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...\n $ ELEV : num 598 597 610 615 610 595 580 590 598 588 ...\n $ PROFCLASS: Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 2 2 3 3 2 3 2 3 3 ...\n $ MAPCLASS : Factor w/ 3 levels \"Cr\",\"Ct\",\"Ia\": 2 3 3 3 3 2 2 3 3 3 ...\n $ VAL1 : num 3 3 4 4 3 3 4 4 4 3 ...\n $ CHR1 : num 3 3 3 3 3 2 2 3 3 3 ...\n $ LIME1 : num 4 4 4 4 4 0 2 1 0 4 ...\n $ VAL2 : num 4 4 5 8 8 4 8 4 8 8 ...\n $ CHR2 : num 4 4 4 2 2 4 2 4 2 2 ...\n $ LIME2 : num 4 4 4 5 5 4 5 4 5 5 ...\n $ DEPTHCM : num 61 91 46 20 20 91 30 61 38 25 ...\n $ DEP2LIME : num 20 20 20 20 20 20 20 20 40 20 ...\n $ PCLAY1 : num 15 25 20 20 18 25 25 35 35 12 ...\n $ PCLAY2 : num 10 10 20 10 10 20 10 20 10 10 ...\n $ MG1 : num 63 58 55 60 88 168 99 59 233 87 ...\n $ OM1 : num 5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...\n $ CEC1 : num 20 22 17 23 27 27 21 14 27 20 ...\n $ PH1 : num 7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...\n $ PHOS1 : num 13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...\n $ POT1 : num 196 157 115 172 238 164 312 184 123 282 ...\n```\n:::\n:::\n\n\nSupposons que nous souhaitons modéliser la concentration de magnésium (`MG1`), représentée en fonction de la position spatiale dans le graphique suivant.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-121_16158cd54c4487cc58ec9fd8dedf3de7'}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +\n geom_point() +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-121-1.png){width=672}\n:::\n:::\n\n\nNotez que les axes $x$ et $y$ ont été inversés par souci d'espace. La fonction `coord_fixed()` de *ggplot2* assure que l'échelle soit la même sur les deux axes, ce qui est utile pour représenter des données spatiales. \n\nNous voyons tout de suite que ces mesures ont été prises sur une grille de 100 m de côté. Il semble que la concentration de magnésium soit spatialement corrélée, bien qu'il puisse s'agir d'une corrélation induite par une autre variable. Nous savons notamment que la concentration de magnésium est reliée négativement au pH du sol (`PH1`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-122_d467da9d444c7554518f3d138f017425'}\n\n```{.r .cell-code}\nggplot(oxford, aes(x = PH1, y = MG1)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-122-1.png){width=672}\n:::\n:::\n\n\nLa fonction `variogram` de *gstat* sert à estimer un variogramme à partir de données empiriques. Voici le résultat obtenu pour la variable `MG1`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-123_d148763eb057ac91a7c45c4a49d51a00'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)\nvar_mg\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n np dist gamma dir.hor dir.ver id\n1 225 100.0000 1601.404 0 0 var1\n2 200 141.4214 1950.805 0 0 var1\n3 548 215.0773 2171.231 0 0 var1\n4 623 303.6283 2422.245 0 0 var1\n5 258 360.5551 2704.366 0 0 var1\n6 144 400.0000 2948.774 0 0 var1\n7 570 427.5569 2994.621 0 0 var1\n8 291 500.0000 3402.058 0 0 var1\n9 366 522.8801 3844.165 0 0 var1\n10 200 577.1759 3603.060 0 0 var1\n11 458 619.8400 3816.595 0 0 var1\n12 90 670.8204 3345.739 0 0 var1\n```\n:::\n:::\n\n\nLa formule `MG1 ~ 1` indique qu'aucun prédicteur linéaire n'est inclus dans ce modèle, tandis que l'argument `locations` indique quelles variables du tableau correspondent aux coordonnées spatiales. \n\nDans le tableau obtenu, `gamma` est la valeur du variogramme pour la classe de distance centrée sur `dist`, tandis que `np` est le nombre de paires de points dans cette classe. Ici, puisque les points sont situés sur une grille, nous obtenons des classes de distance régulières (ex.: 100 m pour les points voisins sur la grille, 141 m pour les voisins en diagonale, etc.).\n\nNous nous limitons ici à l'estimation de variogrammes isotropiques, c'est-à-dire que le variogramme dépend seulement de la distance entre les deux points et non de la direction. Bien que nous n'ayons pas le temps de le voir aujourd'hui, il est possible avec *gstat* d'estimer séparément le variogramme dans différentes directions.\n\nNous pouvons illustrer le variogramme avec `plot`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-124_ca0a474a676de6872283aecd1d7057df'}\n\n```{.r .cell-code}\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-124-1.png){width=672}\n:::\n:::\n\n\nSi nous voulons estimer la corrélation spatiale résiduelle de `MG1` après avoir inclus l'effet de `PH1`, nous pouvons ajouter ce prédicteur à la formule.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-125_11cddc5b7e870cd1cc0cda1a95fac338'}\n\n```{.r .cell-code}\nvar_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)\nplot(var_mg, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-125-1.png){width=672}\n:::\n:::\n\n\nEn incluant l'effet du pH, la portée de la corrélation spatiale semble diminuer, alors que le plateau est atteint autour de 300 m. Il semble même que le variogramme diminue au-delà de 400 m. En général, nous supposons que la variance entre deux points ne diminue pas avec la distance, à moins d'avoir un patron spatial périodique.\n\nLa fonction `fit.variogram` accepte comme arguments un variogramme estimé à partir des données, ainsi qu'un modèle théorique décrit dans une fonction `vgm`, puis estime les paramètres de ce modèle en fonction des données. L'ajustement se fait par la méthode des moindres carrés.\n\nPar exemple, `vgm(\"Exp\")` indique d'ajuster un modèle exponentiel. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-126_03d3f3aa8b262e89fa7d8da65b62e30c'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(\"Exp\"))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nIl n'y a aucun effet de pépite, car `psill = 0` pour la partie `Nug` (*nugget*) du modèle. La partie exponentielle a un palier à 1951 et une portée de 95 m.\n\nPour comparer différents modèles, on peut donner un vecteur de noms de modèles à `vgm`. Dans l'exemple suivant, nous incluons les modèles exponentiel, gaussien (\"Gau\") et sphérique (\"Sph\").\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-127_2f3bfeceade9f4f4dfc5b3eba9eda432'}\n\n```{.r .cell-code}\nvfit <- fit.variogram(var_mg, vgm(c(\"Exp\", \"Gau\", \"Sph\")))\nvfit\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n model psill range\n1 Nug 0.000 0.00000\n2 Exp 1951.496 95.11235\n```\n:::\n:::\n\n\nLa fonction nous donne le résultat du modèle le mieux ajusté (plus faible somme des écarts au carré), qui est ici le même modèle exponentiel.\n\nFinalement, nous pouvons superposer le modèle théorique et le variogramme empirique sur un même graphique.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-128_c877e0be691daa5fe18f6d2ba00dfdcd'}\n\n```{.r .cell-code}\nplot(var_mg, vfit, col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-128-1.png){width=672}\n:::\n:::\n\n\n## Régression avec corrélation spatiale\n\nNous avons vu ci-dessus que le package *gstat* permet d'estimer le variogramme des résidus d'un modèle linéaire. Dans notre exemple, la concentration de magnésium était modélisée en fonction du pH, avec des résidus spatialement corrélés.\n\nUn autre outil pour ajuster ce même type de modèle est la fonction `gls` du package *nlme*, qui est inclus avec l'installation de R. \n\nCette fonction applique la méthode des moindres carrés généralisés (*generalized least squares*) pour ajuster des modèles de régression linéaire lorsque les résidus ne sont pas indépendants ou lorsque la variance résiduelle n'est pas la même pour toutes les observations. Comme les estimés des coefficients dépendent de l'estimé des corrélations entre les résidus et que ces derniers dépendent eux-mêmes des coefficients, le modèle est ajusté par un algorithme itératif:\n\n1. On ajuste un modèle de régression linéaire classique (sans corrélation) pour obtenir des résidus.\n\n2. On ajuste le modèle de corrélation spatiale (variogramme) avec ses résidus.\n\n3. On ré-estime les coefficients de la régression en tenant compte maintenant des corrélations.\n\nLes étapes 2 et 3 sont répétées jusqu'à ce que les estimés soient stables à une précision voulue.\n\nVoici l'application de cette méthode au même modèle pour la concentration de magnésium dans le jeu de données `oxford`. Dans l'argument `correlation` de `gls`, nous spécifions un modèle de corrélation exponentielle en fonction de nos coordonnées spatiales et indiquons que nous voulons aussi estimer un effet de pépite.\n\nEn plus de la corrélation exponentielle `corExp`, la fonction `gls` peut aussi estimer un modèle gaussien (`corGaus`) ou sphérique (`corSpher`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-129_c4131310eb8ea32e0ccf4187e678e982'}\n\n```{.r .cell-code}\nlibrary(nlme)\ngls_mg <- gls(MG1 ~ PH1, oxford, \n correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))\nsummary(gls_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: MG1 ~ PH1 \n Data: oxford \n AIC BIC logLik\n 1278.65 1292.751 -634.325\n\nCorrelation Structure: Exponential spatial correlation\n Formula: ~XCOORD + YCOORD \n Parameter estimate(s):\n range nugget \n478.0322964 0.2944753 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 391.1387 50.42343 7.757084 0\nPH1 -41.0836 6.15662 -6.673079 0\n\n Correlation: \n (Intr)\nPH1 -0.891\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-2.1846957 -0.6684520 -0.3687813 0.4627580 3.1918604 \n\nResidual standard error: 53.8233 \nDegrees of freedom: 126 total; 124 residual\n```\n:::\n:::\n\n\nPour comparer ce résultat au variogramme ajusté ci-dessus, il faut transformer les paramètres donnés par `gls`. La portée (range) a le même sens dans les deux cas et correspond à 478 m pour le résultat de `gls`. La variance globale des résidus est le carré de `Residual standard error`. L'effet de pépite ici (0.294) est exprimé comme fraction de cette variance. Finalement, pour obtenir le palier partiel de la partie exponentielle, il faut soustraire l'effet de pépite de la variance totale. \n\nAprès avoir réalisé ces calculs, nous pouvons donner ces paramètres à la fonction `vgm` de *gstat* pour superposer ce variogramme estimé par `gls` à notre variogramme des résidus du modèle linéaire classique.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-130_1b4118890801a03647e2f78590f222be'}\n\n```{.r .cell-code}\ngls_range <- 478\ngls_var <- 53.823^2\ngls_nugget <- 0.294 * gls_var\ngls_psill <- gls_var - gls_nugget\n\ngls_vgm <- vgm(\"Exp\", psill = gls_psill, range = gls_range, nugget = gls_nugget)\n\nplot(var_mg, gls_vgm, col = \"black\", ylim = c(0, 4000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-130-1.png){width=672}\n:::\n:::\n\n\nEst-ce que le modèle est moins bien ajusté aux données ici? En fait, ce variogramme empirique représenté par les points avait été obtenu à partir des résidus du modèle linéaire ignorant la corrélation spatiale, donc c'est un estimé biaisé des corrélations spatiales réelles. La méthode est quand même adéquate pour vérifier rapidement s'il y a présence de corrélations spatiales. Toutefois, pour ajuster simultanément les coefficients de la régression et les paramètres de corrélation spatiale, l'approche des moindres carrés généralisés (GLS) est préférable et produira des estimés plus justes.\n\nFinalement, notez que le résultat du modèle `gls` donne aussi l'AIC, que nous pouvons utiliser pour comparer l'ajustement de différents modèles (avec différents prédicteurs ou différentes formes de corrélation spatiale).\n\n## Exercice\n\nLe fichier [bryo_belg.csv](data/bryo_belg.csv) est adapté des données de l'étude: \n\n> Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x\n\nCe tableau de données indique la richesse spécifique des bryophytes au sol (*richness*) pour différents points d'échantillonnage de la province belge de Limbourg, avec leur position *(x, y)* en km, en plus de l'information sur la proportion de forêts (*forest*) et de milieux humides (*wetland*) dans une cellule de 1 km$^2$ contenant le point d'échantillonnage.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-131_9e78f0ec8229f51b3dcf95f72b18a23a'}\n\n```{.r .cell-code}\nbryo_belg <- read.csv(\"data/bryo_belg.csv\")\nhead(bryo_belg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n richness forest wetland x y\n1 9 0.2556721 0.5036614 228.9516 220.8869\n2 6 0.6449114 0.1172068 227.6714 219.8613\n3 5 0.5039905 0.6327003 228.8252 220.1073\n4 3 0.5987329 0.2432942 229.2775 218.9035\n5 2 0.7600775 0.1163538 209.2435 215.2414\n6 10 0.6865434 0.0000000 210.4142 216.5579\n```\n:::\n:::\n\n\nPour cet exercice, nous utiliserons la racine carrée de la richesse spécifique comme variable réponse. La transformation racine carrée permet souvent d'homogénéiser la variance des données de comptage afin d'y appliquer une régression linéaire. \n\na) Ajustez un modèle linéaire de la richesse spécifique transformée en fonction de la fraction de forêt et de milieux humides, sans tenir compte des corrélations spatiales. Quel est l'effet des deux prédicteurs selon ce modèle?\n\nb) Calculez le variogramme empirique des résidus du modèle en (a). Semble-t-il y avoir une corrélation spatiale entre les points?\n\n*Note*: L'argument `cutoff` de la fonction `variogram` spécifie la distance maximale à laquelle le variogramme est calculé. Vous pouvez ajuster manuellement cette valeur pour bien voir le palier.\n\nc) Ré-ajustez le modèle linéaire en (a) avec la fonction `gls` du package *nlme*, en essayant différents types de corrélations spatiales (exponentielle, gaussienne, sphérique). Comparez les modèles (incluant celui sans corrélation spatiale) avec l'AIC.\n\nd) Quel est l'effet de la fraction de forêts et de milieux humides selon le modèle en (c)? Expliquez les différences entre les conclusions de ce modèle et du modèle en (a).\n\n\n# Krigeage\n\nTel que mentionné précédemment, une application courante des modèles géostatistiques consiste à prédire la valeur de la variable de réponse à des points non-échantillonnés, une forme d'interpolation spatiale appelée krigeage (*kriging*).\n\nIl existe trois principaux types de krigeage selon les suppositions faites au sujet de la variable réponse:\n\n- Krigeage ordinaire: variable stationnaire avec une moyenne inconnue.\n\n- Krigeage simple: Variable stationnaire avec une moyenne connue.\n\n- Krigeage universel: Variable dont la tendance est donnée par un modèle linéaire ou non linéaire.\n\nPour toutes les méthodes de krigeage, les prédictions à un nouveau point sont une moyenne pondérée des valeurs à des points connus. Ces pondérations sont choisies de manière à ce que le krigeage fournisse la meilleure prédiction linéaire non biaisée de la variable de réponse, si les hypothèses du modèle (en particulier le variogramme) sont correctes. C'est-à-dire que, parmi toutes les prédictions non biaisées possibles, les poids sont choisis de manière à donner l'erreur quadratique moyenne minimale. Le krigeage fournit également une estimation de l'incertitude de chaque prédiction.\n\nBien que nous ne présentions pas ici les équations détaillées du krigeage, les poids dépendent à la fois des corrélations (estimées par le variogramme) entre les points échantillonnés et le nouveau point, ainsi que des corrélations entre les points échantillonnés eux-mêmes. Autrement dit, les points échantillonnés proches du nouveau point ont plus de poids, mais les points échantillonnés isolés ont également plus de poids, car les points échantillonnés proches les uns des autres fournissent une informations redondante.\n\nLe krigeage est une méthode d'interpolation, donc la prédiction à un point échantillonné sera toujours égale à la valeur mesurée (la variable est supposée être mesurée sans erreur, elle varie seulement entre les points). Cependant, en présence d'un effet de pépite, tout petit déplacement par rapport à l'endroit échantillonné présentera une variabilité en fonction de la pépite.\n\nDans l'exemple ci-dessous, nous générons un nouvel ensemble de données composé de coordonnées (x, y) générées de façon aléatoire dans la zone d'étude ainsi que des valeurs de pH générées de façon aléatoire sur la base des données `oxford`. Nous appliquons ensuite la fonction `krige` pour prédire les valeurs de magnésium à ces nouveaux points. Notez que nous spécifions le variogramme dérivé des résultats du `gls` dans l'argument `model` de `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-132_027c26268d41b1f7157bb584e297db99'}\n\n```{.r .cell-code}\nset.seed(14)\nnew_points <- data.frame(\n XCOORD = runif(100, min(oxford$XCOORD), max(oxford$XCOORD)),\n YCOORD = runif(100, min(oxford$YCOORD), max(oxford$YCOORD)),\n PH1 = rnorm(100, mean(oxford$PH1), sd(oxford$PH1))\n)\n\npred <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[using universal kriging]\n```\n:::\n\n```{.r .cell-code}\nhead(pred)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD var1.pred var1.var\n1 227.0169 162.1185 47.13065 1269.002\n2 418.9136 465.9013 79.68437 1427.269\n3 578.5943 2032.7477 60.30539 1264.471\n4 376.2734 1530.7193 127.22366 1412.875\n5 591.5336 421.6290 105.88124 1375.485\n6 355.7369 404.3378 127.73055 1250.114\n```\n:::\n:::\n\n\nLe résultat de `krige` comprend les nouvelles coordonnées du point, la prédiction de la variable `var1.pred` ainsi que sa variance estimée `var1.var`. Dans le graphique ci-dessous, nous montrons les prédictions moyennes de MG1 à partir du krigeage (triangles) ainsi que les mesures (cercles).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-133_1b4299bab8f6eba5fe4ea3b112a66235'}\n\n```{.r .cell-code}\npred$MG1 <- pred$var1.pred\n\nggplot(oxford, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n geom_point(data = pred, shape = 17, size = 2) +\n coord_fixed()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-133-1.png){width=672}\n:::\n:::\n\n\nLa moyenne et la variance estimées par krigeage peuvent être utilisées pour simuler les valeurs possibles de la variable à chaque nouveau point, conditionnellement aux valeurs échantillonnées. Dans l'exemple ci-dessous, nous avons effectué 4 simulations conditionnelles en ajoutant l'argument `nsim = 4` à la même instruction `krige`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-134_9a008c1eb0ae0b7b22fbfc9aa9ca64ba'}\n\n```{.r .cell-code}\nsim_mg <- krige(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford,\n newdata = new_points, model = gls_vgm, nsim = 4)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ndrawing 4 GLS realisations of beta...\n[using conditional Gaussian simulation]\n```\n:::\n\n```{.r .cell-code}\nhead(sim_mg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n XCOORD YCOORD sim1 sim2 sim3 sim4\n1 227.0169 162.1185 9.638739 34.53159 46.08685 77.86376\n2 418.9136 465.9013 60.029144 20.17179 76.46333 59.57924\n3 578.5943 2032.7477 100.791412 77.47887 73.50058 59.40279\n4 376.2734 1530.7193 112.615730 150.96664 78.76125 146.83928\n5 591.5336 421.6290 70.925240 72.85522 153.90610 126.63758\n6 355.7369 404.3378 161.608032 118.93640 134.45695 142.20074\n```\n:::\n:::\n\n::: {.cell fig.dim='[10,5]' hash='index_cache/html/unnamed-chunk-135_3de9cc48384c950ead05df0c82810126'}\n\n```{.r .cell-code}\nlibrary(tidyr)\nsim_mg <- pivot_longer(sim_mg, cols = c(sim1, sim2, sim3, sim4), \n names_to = \"sim\", values_to = \"MG1\")\nggplot(sim_mg, aes(x = YCOORD, y = XCOORD, color = MG1)) +\n geom_point() +\n coord_fixed() +\n facet_wrap(~ sim)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-135-1.png){width=960}\n:::\n:::\n\n\n\n# Solutions\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-136_e5d36a60c009aa3f50973208ae8f2f5b'}\n\n```{.r .cell-code}\nbryo_lm <- lm(sqrt(richness) ~ forest + wetland, data = bryo_belg)\nsummary(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = sqrt(richness) ~ forest + wetland, data = bryo_belg)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.8847 -0.4622 0.0545 0.4974 2.3116 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 2.34159 0.08369 27.981 < 2e-16 ***\nforest 1.11883 0.13925 8.034 9.74e-15 ***\nwetland -0.59264 0.17216 -3.442 0.000635 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.7095 on 417 degrees of freedom\nMultiple R-squared: 0.2231,\tAdjusted R-squared: 0.2193 \nF-statistic: 59.86 on 2 and 417 DF, p-value: < 2.2e-16\n```\n:::\n:::\n\n\nLa proportion de forêts a un effet positif significatif et la proportion de milieux humides a un effet négatif significatif sur la richesse des bryophytes.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-137_ec3dcc9a8a06613df18c98b96808666b'}\n\n```{.r .cell-code}\nplot(variogram(sqrt(richness) ~ forest + wetland, locations = ~ x + y,\n data = bryo_belg, cutoff = 50), col = \"black\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-137-1.png){width=672}\n:::\n:::\n\n\nLe variogramme augmente au moins jusqu'à une distance de 40 km, il semble donc y avoir des corrélations spatiales dans les résidus du modèle.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-138_7c7f1feca29413974ebbf1ffe2ed08c2'}\n\n```{.r .cell-code}\nbryo_exp <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corExp(form = ~ x + y, nugget = TRUE))\nbryo_gaus <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corGaus(form = ~ x + y, nugget = TRUE))\nbryo_spher <- gls(sqrt(richness) ~ forest + wetland, data = bryo_belg,\n correlation = corSpher(form = ~ x + y, nugget = TRUE))\n```\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-139_8c08d48b4eaefbe6cc8947569ca14603'}\n\n```{.r .cell-code}\nAIC(bryo_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 908.6358\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_exp)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 867.822\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_gaus)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 870.9592\n```\n:::\n\n```{.r .cell-code}\nAIC(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 866.9117\n```\n:::\n:::\n\n\nLe modèle sphérique a l'AIC le plus faible.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-140_6c6c64ec797a7b31d531a376b94c8dbc'}\n\n```{.r .cell-code}\nsummary(bryo_spher)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized least squares fit by REML\n Model: sqrt(richness) ~ forest + wetland \n Data: bryo_belg \n AIC BIC logLik\n 866.9117 891.1102 -427.4558\n\nCorrelation Structure: Spherical spatial correlation\n Formula: ~x + y \n Parameter estimate(s):\n range nugget \n43.1727664 0.6063187 \n\nCoefficients:\n Value Std.Error t-value p-value\n(Intercept) 2.0368769 0.2481636 8.207800 0.000\nforest 0.6989844 0.1481690 4.717481 0.000\nwetland -0.2441130 0.1809118 -1.349348 0.178\n\n Correlation: \n (Intr) forest\nforest -0.251 \nwetland -0.235 0.241\n\nStandardized residuals:\n Min Q1 Med Q3 Max \n-1.75204183 -0.06568688 0.61415597 1.15240370 3.23322743 \n\nResidual standard error: 0.7998264 \nDegrees of freedom: 420 total; 417 residual\n```\n:::\n:::\n\n\nLa magnitude des deux effets est moins importante et l'effet des milieux humides n'est plus significatif. Comme c'est le cas pour d'autres types de résidus non indépendants, la \"taille effective\" de l'échantillon est ici inférieure au nombre de points, car des points proches les uns des autres fournissent une information redondante. Par conséquent, la relation entre les prédicteurs et la réponse est moins claire que celle donnée par le modèle supposant que tous ces points étaient indépendants.\n\nNotez que les résultats pour les trois modèles `gls` sont assez similaires, donc le choix d'inclure des corrélations spatiales était plus important que la forme exacte supposée pour le variogramme.\n\n\n# Données aréales {#areal-data-fr}\n\nLes données aréales sont des variables mesurées pour des régions de l'espace; ces régions sont définies par des polygones. Ce type de données est plus courant en sciences sociales, en géographie humaine et en épidémiologie, où les données sont souvent disponibles à l'échelle de divisions administratives du territoire. \n\nCe type de données apparaît aussi fréquemment dans la gestion des ressources naturelles. Par exemple, la carte suivante montre les unités d'aménagement forestier du Ministère de la Forêts, de la Faune et des Parcs du Québec.\n\n![](images/cartes_unites.png)\n\nSupposons qu'une certaine variable soit disponible au niveau de ces divisions du territoire. Comment pouvons-nous modéliser la corrélation spatiale entre les unités qui sont spatialement rapprochées?\n\nUne option serait d'appliquer les méthodes géostatistiques vues précédemment, en calculant par exemple la distance entre les centres des polygones.\n\nUne autre option, qui est davantage privilégiée pour les données aréales, consiste à définir un réseau où chaque région est connectée aux régions voisines par un lien. On suppose ensuite que les variables sont directement corrélées entre régions voisines seulement. (Notons toutefois que les corrélations directes entre voisins immédiats génèrent aussi des corrélations indirectes pour une chaîne de voisins.)\n\nDans ce type de modèle, la corrélation n'est pas nécessairement la même d'un lien à un autre. Dans ce cas, chaque lien du réseau peut être associé à un *poids* représentant son importance pour la corrélation spatiale. Nous représentons ces poids par une matrice $W$ où $w_{ij}$ est le poids du lien entre les régions $i$ et $j$. Une région n'a pas de lien avec elle-même, donc $w_{ii} = 0$.\n\nUn choix simple pour $W$ consiste à assigner un poids égal à 1 si les régions sont voisines, sinon 0 (poids binaires).\n\nOutre les divisions du territoire en polygones, un autre exemple de données aréales consiste en une grille où la variable est compilée pour chaque cellule de la grille. Dans ce cas, une cellule a généralement 4 ou 8 cellules voisines, selon que les diagonales soient incluses ou non.\n\n# Indice de Moran {#moran-i-fr}\n\nAvant de discuter des modèles d'autocorrélation spatiale, nous présentons l'indice $I$ de Moran, qui permet de tester si une corrélation significative est présente entre régions voisines. \n\nL'indice de Moran est un coefficient d'autocorrélation spatiale des $z$, pondéré par les poids $w_{ij}$. Il prend donc des valeurs entre -1 et 1.\n\n$$I = \\frac{N}{\\sum_i \\sum_j w_{ij}} \\frac{\\sum_i \\sum_j w_{ij} (z_i - \\bar{z}) (z_j - \\bar{z})}{\\sum_i (z_i - \\bar{z})^2}$$\n\nDans cette équation, nous reconnaissons l'expression d'une corrélation, soit le produit des écarts à la moyenne de deux variables $z_i$ et $z_j$, divisé par le produit de leurs écarts-types (qui est le même, donc on obtient la variance). La contribution de chaque paire $(i, j)$ est multipliée par son poids $w_{ij}$ et le terme à gauche (le nombre de régions $N$ divisé par la somme des poids) assure que le résultat soit borné entre -1 et 1.\n\nPuisque la distribution de $I$ est connue en l'absence d'autocorrélation spatiale, cette statistique permet de tester l'hypothèse nulle selon laquelle il n'y a pas de corrélation spatiale entre régions voisines.\n\nBien que nous ne verrons pas d'exemple dans ce cours-ci, l'indice de Moran peut aussi être appliqué aux données ponctuelles. Dans ce cas, on divise les paires de points en classes de distance et on calcule $I$ pour chaque classe de distance; le poids $w_{ij} = 1$ si la distance entre $i$ et $j$ se trouve dans la classe de distance voulue, 0 autrement.\n\n# Modèles d'autorégression spatiale {#spatial-autoreg-fr}\n\nRappelons-nous la formule pour une régression linéaire avec dépendance spatiale:\n\n$$v = \\beta_0 + \\sum_i \\beta_i u_i + z + \\epsilon$$\n\noù $z$ est la portion de la variance résiduelle qui est spatialement corrélée.\n\nIl existe deux principaux types de modèles autorégressifs pour représenter la dépendance spatiale de $z$: l'autorégression conditionnelle (CAR) et l'autorégression simultanée (SAR).\n\n## Autorégression conditionnelle (CAR)\n\nDans le modèle d'autorégression conditionnelle, la valeur de $z_i$ pour la région $i$ suit une distribution normale: sa moyenne dépend de la valeur $z_j$ des régions voisines, multipliée par le poids $w_{ij}$ et un coefficient de corrélation $\\rho$; son écart-type $\\sigma_{z_i}$ peut varier d'une région à l'autre.\n\n$$z_i \\sim \\text{N}\\left(\\sum_j \\rho w_{ij} z_j,\\sigma_{z_i} \\right)$$\n\nDans ce modèle, si $w_{ij}$ est une matrice binaire (0 pour les non-voisins, 1 pour les voisins), alors $\\rho$ est le coefficient de corrélation partielle entre régions voisines. Cela est semblable à un modèle autorégressif d'ordre 1 dans le contexte de séries temporelles, où le coefficient d'autorégression indique la corrélation partielle.\n\n## Autorégression simultanée (SAR)\n\nDans le modèle d'autorégression simultanée, la valeur de $z_i$ est donnée directement par la somme de contributions des valeurs voisines $z_j$, multipliées par $\\rho w_{ij}$, avec un résidu indépendant $\\nu_i$ d'écart-type $\\sigma_z$.\n\n$$z_i = \\sum_j \\rho w_{ij} z_j + \\nu_i$$\n\nÀ première vue, cela ressemble à un modèle autorégressif temporel. Il existe cependant une différence conceptuelle importante. Pour les modèles temporels, l'influence causale est dirigée dans une seule direction: $v(t-2)$ affecte $v(t-1)$ qui affecte ensuite $v(t)$. Pour un modèle spatial, chaque $z_j$ qui affecte $z_i$ dépend à son tour de $z_i$. Ainsi, pour déterminer la distribution conjointe des $z$, il faut résoudre simultanément (d'où le nom du modèle) un système d'équations. \n\nPour cette raison, même si ce modèle ressemble à la formule du modèle conditionnel (CAR), les solutions des deux modèles diffèrent et dans le cas du SAR, le coefficient $\\rho$ n'est pas directement égal à la corrélation partielle due à chaque région voisine.\n\nPour plus de détails sur les aspects mathématiques de ces modèles, vous pouvez consulter l'article de Ver Hoef et al. (2018) suggéré en référence. \n\nPour l'instant, nous considérerons les SAR et les CAR comme deux types de modèles possibles pour représenter une corrélation spatiale sur un réseau. Nous pouvons toujours ajuster plusieurs modèles et les comparer avec l'AIC pour choisir la meilleure forme de la corrélation ou la meilleure matrice de poids.\n\nLes modèles CAR et SAR partagent un avantage sur les modèles géostatistiques au niveau de l'efficacité. Dans un modèle géostatistique, les corrélations spatiales sont définies entre chaque paire de points, même si elles deviennent négligeables lorsque la distance augmente. Pour un modèle CAR ou SAR, seules les régions voisines contribuent et la plupart des poids sont égaux à 0, ce qui rend ces modèles plus rapides à ajuster qu'un modèle géostatistique lorsque les données sont massives.\n\n# Analyse des données aréales dans R {#analysis-areal-fr}\n\nPour illustrer l'analyse de données aréales dans R, nous chargeons les packages *sf* (pour lire des données géospatiales), *spdep* (pour définir des réseaux spatiaux et calculer l'indice de Moran) et *spatialreg* (pour les modèles SAR et CAR).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-141_8c941e8bafdfac85f5eb2821d17ab03b'}\n\n```{.r .cell-code}\nlibrary(sf)\nlibrary(spdep)\nlibrary(spatialreg)\n```\n:::\n\n\nNous utiliserons comme exemple un jeu de données qui présente une partie des résultats de l'élection provinciale de 2018 au Québec, avec des caractéristiques de la population de chaque circonscription. Ces données sont inclues dans un fichier de type *shapefile* (.shp), que nous pouvons lire avec la fonction `read_sf` du package *sf*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-142_f24372ba1482109fbffa68f052fd7dfb'}\n\n```{.r .cell-code}\nelect2018 <- read_sf(\"data/elect2018.shp\")\nhead(elect2018)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 9 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 97879.03 ymin: 174515.3 xmax: 694261.1 ymax: 599757.1\nProjected CRS: LambertAQ\n# A tibble: 6 × 10\n circ age_moy pct_frn pct_prp rev_med propCAQ propPQ propPLQ propQS\n \n1 Abitibi-Est 40.8 0.963 0.644 34518 42.7 19.5 18.8 15.7\n2 Abitibi-Ouest 42.2 0.987 0.735 33234 34.1 33.3 11.3 16.6\n3 Acadie 40.3 0.573 0.403 25391 16.5 9 53.8 13.8\n4 Anjou-Louis-Riel 43.5 0.821 0.416 31275 28.9 14.7 39.1 14.5\n5 Argenteuil 43.3 0.858 0.766 31097 38.9 21.1 17.4 12.2\n6 Arthabaska 43.4 0.989 0.679 30082 61.8 9.4 11.4 12.6\n# … with 1 more variable: geometry \n```\n:::\n:::\n\n\n*Note*: Le jeu de données est en fait composé de 4 fichiers avec les extensions .dbf, .prj, .shp et .shx, mais il suffit d'inscrire le nom du fichier .shp dans `read_sf`.\n\nLes colonnes du jeu de données sont dans l'ordre:\n\n- le nom de la circonscription électorale;\n- quatre caractéristiques de la population (âge moyen, fraction de la population qui parle principalement français à la maison, fraction des ménages qui sont propriétaires de leur logement, revenu médian);\n- quatre colonnes montrant la fraction des votes obtenues par les principaux partis (CAQ, PQ, PLQ, QS);\n- une colonne `geometry` qui contient l'objet géométrique (multipolygone) correspondant à la circonscription.\n\nPour illustrer une des variables sur une carte, nous appelons la fonction `plot` avec le nom de la colonne entre crochets et guillemets. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-143_118d70deac183e230a7c64b3208cd1a7'}\n\n```{.r .cell-code}\nplot(elect2018[\"rev_med\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-143-1.png){width=672}\n:::\n:::\n\n\nDans cet exemple, nous voulons modéliser la fraction des votes obtenue par la CAQ en fonction des caractéristiques de la population dans chaque circonscription et en tenant compte des corrélations spatiales entre circonscriptions voisines.\n\n## Définition du réseau de voisinage\n\nLa fonction `poly2nb` du package *spdep* définit un réseau de voisinage à partir de polygones. Le résultat `vois` est une liste de 125 éléments où chaque élément contient les indices des polygones voisins (limitrophes) d'un polygone donné.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-144_e6285b834db05d427f22b7669e5dbee2'}\n\n```{.r .cell-code}\nvois <- poly2nb(elect2018)\nvois[[1]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 2 37 63 88 101 117\n```\n:::\n:::\n\n\nAinsi, la première circonscription (Abitibi-Est) a 6 circonscriptions voisines, dont on peut trouver les noms ainsi:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-145_2fc04a4a3fbb352f0ae58db913423a12'}\n\n```{.r .cell-code}\nelect2018$circ[vois[[1]]]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"Abitibi-Ouest\" \"Gatineau\" \n[3] \"Laviolette-Saint-Maurice\" \"Pontiac\" \n[5] \"Rouyn-Noranda-Témiscamingue\" \"Ungava\" \n```\n:::\n:::\n\n\nNous pouvons illustrer ce réseau en faisant l'extraction des coordonnées du centre de chaque circonscription, en créant une carte muette avec `plot(elect2018[\"geometry\"])`, puis en ajoutant le réseau comme couche additionnelle avec `plot(vois, add = TRUE, coords = coords)`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-146_56fcb69c11c78b9880373ab1b16efb12'}\n\n```{.r .cell-code}\ncoords <- st_centroid(elect2018) %>%\n st_coordinates()\nplot(elect2018[\"geometry\"])\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-146-1.png){width=672}\n:::\n:::\n\n\nOn peut faire un \"zoom\" sur le sud du Québec en choisissant les limites `xlim` et `ylim` appropriées.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-147_b0a05b92ad9c5bc6e15ecbc77d7fd239'}\n\n```{.r .cell-code}\nplot(elect2018[\"geometry\"], \n xlim = c(400000, 800000), ylim = c(100000, 500000))\nplot(vois, add = TRUE, col = \"red\", coords = coords)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-147-1.png){width=672}\n:::\n:::\n\n\nIl nous reste à ajouter des poids à chaque lien du réseau avec la fonction `nb2listw`. Le style de poids \"B\" correspond aux poids binaires, soit 1 pour la présence de lien et 0 pour l'absence de lien entre deux circonscriptions.\n\nUne fois ces poids définis, nous pouvons vérifier avec le test de Moran s'il y a une autocorrélation significative des votes obtenus par la CAQ entre circonscriptions voisines.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-148_59eb24f4ba758ea6399bc94ea1c419ba'}\n\n```{.r .cell-code}\npoids <- nb2listw(vois, style = \"B\")\n\nmoran.test(elect2018$propCAQ, poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: elect2018$propCAQ \nweights: poids \n\nMoran I statistic standard deviate = 13.148, p-value < 2.2e-16\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.680607768 -0.008064516 0.002743472 \n```\n:::\n:::\n\n\nLa valeur de $I = 0.68$ est très significative à en juger par la valeur $p$ du test.\n\nVérifions si la corrélation spatiale persiste après avoir tenu compte des quatre caractéristiques de la population, donc en inspectant les résidus d'un modèle linéaire incluant ces quatre prédicteurs.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-149_7d8643515ed0e408c5e5163ec8e3740c'}\n\n```{.r .cell-code}\nelect_lm <- lm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, data = elect2018)\nsummary(elect_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018)\n\nResiduals:\n Min 1Q Median 3Q Max \n-30.9890 -4.4878 0.0562 6.2653 25.8146 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 1.354e+01 1.836e+01 0.737 0.463 \nage_moy -9.170e-01 3.855e-01 -2.378 0.019 * \npct_frn 4.588e+01 5.202e+00 8.820 1.09e-14 ***\npct_prp 3.582e+01 6.527e+00 5.488 2.31e-07 ***\nrev_med -2.624e-05 2.465e-04 -0.106 0.915 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 9.409 on 120 degrees of freedom\nMultiple R-squared: 0.6096,\tAdjusted R-squared: 0.5965 \nF-statistic: 46.84 on 4 and 120 DF, p-value: < 2.2e-16\n```\n:::\n\n```{.r .cell-code}\nmoran.test(residuals(elect_lm), poids)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n\tMoran I test under randomisation\n\ndata: residuals(elect_lm) \nweights: poids \n\nMoran I statistic standard deviate = 6.7047, p-value = 1.009e-11\nalternative hypothesis: greater\nsample estimates:\nMoran I statistic Expectation Variance \n 0.340083290 -0.008064516 0.002696300 \n```\n:::\n:::\n\n\nL'indice de Moran a diminué mais demeure significatif, donc une partie de la corrélation précédente était induite par ces prédicteurs, mais il reste une corrélation spatiale due à d'autres facteurs. \n\n## Modèles d'autorégression spatiale\n\nFinalement, nous ajustons des modèles SAR et CAR à ces données avec la fonction `spautolm` (*spatial autoregressive linear model*) de *spatialreg*. Voici le code pour un modèle SAR incluant l'effet des même quatre prédicteurs. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-150_34bc73005b64f5a3ee73549b2cbc9b5e'}\n\n```{.r .cell-code}\nelect_sar <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\nsummary(elect_sar)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids)\n\nResiduals:\n Min 1Q Median 3Q Max \n-23.08342 -4.10573 0.24274 4.29941 23.08245 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 15.09421119 16.52357745 0.9135 0.36098\nage_moy -0.70481703 0.32204139 -2.1886 0.02863\npct_frn 39.09375061 5.43653962 7.1909 6.435e-13\npct_prp 14.32329345 6.96492611 2.0565 0.03974\nrev_med 0.00016730 0.00023209 0.7208 0.47101\n\nLambda: 0.12887 LR test value: 42.274 p-value: 7.9339e-11 \nNumerical Hessian standard error of lambda: 0.012069 \n\nLog likelihood: -433.8862 \nML residual variance (sigma squared): 53.028, (sigma: 7.282)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 881.77\n```\n:::\n:::\n\n\nLa valeur donnée par `Lambda` dans le sommaire correspond au coefficient $\\rho$ dans notre description du modèle. Le test du rapport de vraisemblance (`LR test`) confirme que cette corrélation spatiale résiduelle (après avoir tenu compte de l'effet des prédicteurs) est significative.\n\nLes effets estimés pour les prédicteurs sont semblables à ceux du modèle linéaire sans corrélation spatiale. Les effets de l'âge moyen, de la fraction de francophones et la fraction de propriétaires demeurent significatifs, bien que leur magnitude ait un peu diminué.\n\nPour évaluer un modèle CAR plutôt que SAR, nous devons spécifier `family = \"CAR\"`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-151_7ba6f7fcd4cc33a20eb6848945d3cce4'}\n\n```{.r .cell-code}\nelect_car <- spautolm(propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\nsummary(elect_car)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = propCAQ ~ age_moy + pct_frn + pct_prp + rev_med, \n data = elect2018, listw = poids, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-21.73315 -4.24623 -0.24369 3.44228 23.43749 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 16.57164696 16.84155327 0.9840 0.325128\nage_moy -0.79072151 0.32972225 -2.3981 0.016478\npct_frn 38.99116707 5.43667482 7.1719 7.399e-13\npct_prp 17.98557474 6.80333470 2.6436 0.008202\nrev_med 0.00012639 0.00023106 0.5470 0.584364\n\nLambda: 0.15517 LR test value: 40.532 p-value: 1.9344e-10 \nNumerical Hessian standard error of lambda: 0.0026868 \n\nLog likelihood: -434.7573 \nML residual variance (sigma squared): 53.9, (sigma: 7.3416)\nNumber of observations: 125 \nNumber of parameters estimated: 7 \nAIC: 883.51\n```\n:::\n:::\n\n\nPour un modèle CAR avec des poids binaires, la valeur de `Lambda` (que nous avions appelé $\\rho$) donne directement le coefficient de corrélation partielle entre circonscriptions voisines. Notez que l'AIC ici est légèrement supérieur au modèle SAR, donc ce dernier donnait un meilleur ajustement.\n\n## Exercice\n\nLe jeu de données `rls_covid`, en format *shapefile*, contient des données sur les cas de COVID-19 détectés, le nombre de cas par 1000 personnes (`taux_1k`) et la densité de population (`dens_pop`) dans chacun des réseaux locaux de service de santé (RLS) du Québec. (Source: Données téléchargées de l'Institut national de santé publique du Québec en date du 17 janvier 2021.)\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-152_117a49f704cd9751636b707b593f6428'}\n\n```{.r .cell-code}\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nhead(rls_covid)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSimple feature collection with 6 features and 5 fields\nGeometry type: MULTIPOLYGON\nDimension: XY\nBounding box: xmin: 785111.2 ymin: 341057.8 xmax: 979941.5 ymax: 541112.7\nProjected CRS: Conique_conforme_de_Lambert_du_MTQ_utilis_e_pour_Adresse_Qu_be\n# A tibble: 6 × 6\n RLS_code RLS_nom cas taux_1k dens_…¹ geometry\n \n1 0111 RLS de Kamouraska 152 7.34 6.76 (((827028.3 412772.4, 82…\n2 0112 RLS de Rivière-du-Lo… 256 7.34 19.6 (((855905 452116.9, 8557…\n3 0113 RLS de Témiscouata 81 4.26 4.69 (((911829.4 441311.2, 91…\n4 0114 RLS des Basques 28 3.3 5.35 (((879249.6 471975.6, 87…\n5 0115 RLS de Rimouski 576 9.96 15.5 (((917748.1 503148.7, 91…\n6 0116 RLS de La Mitis 76 4.24 5.53 (((951316 523499.3, 9525…\n# … with abbreviated variable name ¹​dens_pop\n```\n:::\n:::\n\n\nAjustez un modèle linéaire du nombre de cas par 1000 en fonction de la densité de population (il est suggéré d'appliquer une transformation logarithmique à cette dernière). Vérifiez si les résidus du modèle sont corrélés entre RLS limitrophes avec un test de Moran, puis modélisez les mêmes données avec un modèle autorégressif conditionnel.\n\n## Référence\n\nVer Hoef, J.M., Peterson, E.E., Hooten, M.B., Hanks, E.M. et Fortin, M.-J. (2018) Spatial autoregressive models for statistical inference from ecological data. *Ecological Monographs* 88: 36-59.\n\n\n# GLMM avec processus spatial gaussien {#glmm-spatial-gaussian-fr}\n\nDans les parties précédentes, nous avons vu comment tenir compte de la dépendance spatiale dans les modèles de régression linéaire avec des modèles géostatistiques (également appelés processus gaussiens) ou des modèles d'autocorrélation spatiale (CAR/SAR). Dans cette dernière partie, nous verrons comment combiner ces caractéristiques avec des modèles de régression plus complexes, en particulier les modèles linéaires généralisés à effets mixtes (GLMM).\n\n## Données\n\nLe jeu de données `gambia` inclus avec le package *geoR* présente les résultats d'une étude sur la prévalence du paludisme chez les enfants de 65 villages en Gambie. Nous utiliserons une version légèrement transformée des données contenues dans le fichier [gambia.csv](data/gambia.csv).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-153_94be0528ee530f4b0d9120a3e4a412d9'}\n\n```{.r .cell-code}\nlibrary(geoR)\n\ngambia <- read.csv(\"data/gambia.csv\")\nhead(gambia)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n id_village x y pos age netuse treated green phc\n1 1 349.6313 1458.055 1 1783 0 0 40.85 1\n2 1 349.6313 1458.055 0 404 1 0 40.85 1\n3 1 349.6313 1458.055 0 452 1 0 40.85 1\n4 1 349.6313 1458.055 1 566 1 0 40.85 1\n5 1 349.6313 1458.055 0 598 1 0 40.85 1\n6 1 349.6313 1458.055 1 590 1 0 40.85 1\n```\n:::\n:::\n\n\nVoici les champs de ce jeu de données:\n\n- *id_village*: Identifiant du village.\n- *x* and *y*: Coordonnées spatiales du village (en km, basé sur les coordonnées UTM).\n- *pos*: Réponse binaire, si l'enfant a eu un test positif du paludisme.\n- *age*: Âge de l'enfant en jours.\n- *netuse*: Si l'enfant dort sous un moustiquaire ou non.\n- *treated*: Si le moustiquaire est traité ou non.\n- *green*: Mesure de la végétation basée sur les données de télédétection (disponible à l'échelle du village).\n- *phc*: Présence ou absence d'un centre de santé publique pour le village.\n\nNous pouvons compter le nombre de cas positifs et le nombre total d'enfants testés par village pour cartographier la fraction des cas positifs (ou prévalence, *prev*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-154_f2e9fe8cc46d29ee6147236d160f6a1a'}\n\n```{.r .cell-code}\n# Jeu de données à l'échelle du village\ngambia_agg <- group_by(gambia, id_village, x, y, green, phc) %>%\n summarize(pos = sum(pos), total = n()) %>%\n mutate(prev = pos / total) %>%\n ungroup()\n```\n\n::: {.cell-output .cell-output-stderr}\n```\n`summarise()` has grouped output by 'id_village', 'x', 'y', 'green'. You can\noverride using the `.groups` argument.\n```\n:::\n\n```{.r .cell-code}\nhead(gambia_agg)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n# A tibble: 6 × 8\n id_village x y green phc pos total prev\n \n1 1 350. 1458. 40.8 1 17 33 0.515\n2 2 359. 1460. 40.8 1 19 63 0.302\n3 3 360. 1460. 40.1 0 7 17 0.412\n4 4 364. 1497. 40.8 0 8 24 0.333\n5 5 366. 1460. 40.8 0 10 26 0.385\n6 6 367. 1463. 40.8 0 7 18 0.389\n```\n:::\n:::\n\n::: {.cell hash='index_cache/html/unnamed-chunk-155_b02463961b3424baa4da82ed27a5ca7e'}\n\n```{.r .cell-code}\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-155-1.png){width=672}\n:::\n:::\n\n\nNous utilisons le jeu de données `gambia.borders` du package *geoR* pour tracer les frontières des pays avec `geom_path`. Comme ces frontières sont en mètres, nous les divisons par 1000 pour obtenir la même échelle que nos points. Nous utilisons également `coord_fixed` pour assurer un rapport d'aspect de 1:1 entre les axes et utilisons la palette de couleur `viridis`, qui permet de visualiser plus facilement une variable continue par rapport à la palette par défaut dans *ggplot2*.\n\nSur la base de cette carte, il semble y avoir une corrélation spatiale dans la prévalence du paludisme, le groupe de villages de l'est montrant des valeurs de prévalence plus élevées (jaune-vert) et le groupe du milieu montrant des valeurs de prévalence plus faibles (violet).\n\n## GLMM non spatial\n\nPour ce premier exemple, nous allons ignorer l'aspect spatial des données et modéliser la présence du paludisme (*pos*) en fonction de l'utilisation d'une moustiquaire (*netuse*) et de la présence d'un centre de santé publique (*phc*). Comme nous avons une réponse binaire, nous devons utiliser un modèle de régression logistique (un GLM). Comme nous avons des prédicteurs au niveau individuel et au niveau du village et que nous nous attendons à ce que les enfants d'un même village aient une probabilité plus similaire d'avoir le paludisme même après avoir pris en compte ces prédicteurs, nous devons ajouter un effet aléatoire du village. Le résultat est un GLMM que nous ajustons en utilisant la fonction `glmer` du package *lme4*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-156_7c91bce3c832a01ae8f8b3f26d71b9fa'}\n\n```{.r .cell-code}\nlibrary(lme4)\n\nmod_glmm <- glmer(pos ~ netuse + phc + (1 | id_village), \n data = gambia, family = binomial)\nsummary(mod_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Laplace\n Approximation) [glmerMod]\n Family: binomial ( logit )\nFormula: pos ~ netuse + phc + (1 | id_village)\n Data: gambia\n\n AIC BIC logLik deviance df.resid \n 2428.0 2450.5 -1210.0 2420.0 2031 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-2.1286 -0.7120 -0.4142 0.8474 3.3434 \n\nRandom effects:\n Groups Name Variance Std.Dev.\n id_village (Intercept) 0.8149 0.9027 \nNumber of obs: 2035, groups: id_village, 65\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 0.1491 0.2297 0.649 0.5164 \nnetuse -0.6044 0.1442 -4.190 2.79e-05 ***\nphc -0.4985 0.2604 -1.914 0.0556 . \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) netuse\nnetuse -0.422 \nphc -0.715 -0.025\n```\n:::\n:::\n\n\nD'après ces résultats, les variables *netuse* et *phc* sont toutes deux associées à une diminution de la prévalence du paludisme, bien que l'effet de *phc* ne soit pas significatif à un seuil $\\alpha = 0.05$. L'ordonnée à l'origine (0.149) est le logit de la probabilité de présence du paludisme pour un enfant sans moustiquaire et sans centre de santé publique, mais c'est l'ordonnée à l'origine moyenne pour tous les villages. Il y a beaucoup de variation entre les villages selon l'écart-type de l'effet aléatoire (0.90). Nous pouvons obtenir l'ordonnée à l'origine estimée pour chaque village avec la fonction `coef`:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-157_63042bdf37fbb1a41197653e4f00698a'}\n\n```{.r .cell-code}\nhead(coef(mod_glmm)$id_village)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n (Intercept) netuse phc\n1 0.93727515 -0.6043602 -0.4984835\n2 0.09204843 -0.6043602 -0.4984835\n3 0.22500620 -0.6043602 -0.4984835\n4 -0.46271089 -0.6043602 -0.4984835\n5 0.13680037 -0.6043602 -0.4984835\n6 -0.03723346 -0.6043602 -0.4984835\n```\n:::\n:::\n\n\nPar exemple, l'ordonnée à l'origine pour le village 1 est environ 0.94, équivalente à une probabilité de 72%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-158_4a79548bf948a9a1dd6b953821a54623'}\n\n```{.r .cell-code}\nplogis(0.937)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7184933\n```\n:::\n:::\n\n\ntandis que celle pour le village 2 est équivalente à une probabilité de 52%:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-159_4c5678258eaea6caef0b0f87f03a5423'}\n\n```{.r .cell-code}\nplogis(0.092)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.5229838\n```\n:::\n:::\n\n\nLe [package DHARMa](https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html) fournit une méthode générale pour vérifier si les résidus d'un GLMM sont distribués selon le modèle spécifié et s'il existe une tendance résiduelle. Il simule des réplicats de chaque observation selon le modèle ajusté et détermine ensuite un \"résidu standardisé\", qui est la position relative de la valeur observée par rapport aux valeurs simulées, par exemple 0 si l'observation est plus petite que toutes les simulations, 0.5 si elle se trouve au milieu, etc. Si le modèle représente bien les données, chaque valeur du résidu standardisé entre 0 et 1 doit avoir la même probabilité, de sorte que les résidus standardisés doivent produire une distribution uniforme entre 0 et 1.\n\nLa fonction `simulateResiduals` effectue le calcul des résidus standardisés, puis la fonction `plot` trace les graphiques de diagnostic avec les résultats de certains tests.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-160_9f18e83c75ae6d568f2e7722da9a3235'}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nres_glmm <- simulateResiduals(mod_glmm)\nplot(res_glmm)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-160-1.png){width=672}\n:::\n:::\n\n\nLe graphique de gauche est un graphique quantile-quantile des résidus standardisés. Les résultats de trois tests statistiques sont également présentés: un test de Kolmogorov-Smirnov (*KS*) qui vérifie s'il y a un écart par rapport à la distribution théorique, un test de dispersion qui vérifie s'il y a une sous-dispersion ou une surdispersion et un test de valeurs aberrantes (*outlier*) basé sur le nombre de résidus qui sont plus extrêmes que toutes les simulations. Ici, nous obtenons un résultat significatif pour les valeurs aberrantes, bien que le message indique que ce résultat pourrait avoir un taux d'erreur de type I plus grand que prévu dans ce cas.\n\nÀ droite, nous obtenons généralement un graphique des résidus standardisés (en *y*) en fonction du rang des valeurs prédites, afin de vérifier l'absence de tendance résiduelle. Ici, les prédictions sont regroupées par quartile, il serait donc préférable d'agréger les prédictions et les résidus par village, ce que nous pouvons faire avec la fonction `recalculateResiduals`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-161_24ccd295095906cee82b1b1c09edfb05'}\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_glmm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-161-1.png){width=672}\n:::\n:::\n\n\nLe graphique de droite montre les points individuels, ainsi qu'une régression quantile pour le 1er quartile, la médiane et le 3e quartile. En théorie, ces trois courbes devraient être des lignes droites horizontales (pas de tendance des résidus par rapport aux prévisions). La courbe pour le 3e quartile (en rouge) est significativement différente d'une ligne horizontale, ce qui pourrait indiquer un effet systématique manquant dans le modèle.\n\n## GLMM spatial avec spaMM\n\nLe package *spaMM* (modèles mixtes spatiaux) est un package R relativement récent qui permet d'effectuer une estimation approximative du maximum de vraisemblance des paramètres pour les GLM avec dépendance spatiale, modélisés soit comme un processus gaussien, soit avec un CAR (nous verrons ce dernier dans la dernière section). Le package implémente différents algorithmes, mais il existe une fonction unique `fitme` qui choisit l'algorithme approprié pour chaque type de modèle. Par exemple, voici le même modèle (non spatial) que nous avons vu ci-dessus, ajusté avec *spaMM*.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-162_54461b112807b785cded2a0cabf936b4'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nmod_spamm_glmm <- fitme(pos ~ netuse + phc + (1 | id_village),\n data = gambia, family = binomial)\nsummary(mod_spamm_glmm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + (1 | id_village)\nEstimation of lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.1491 0.2287 0.6519\nnetuse -0.6045 0.1420 -4.2567\nphc -0.4986 0.2593 -1.9231\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n id_village : 0.8151 \n --- Coefficients for log(lambda):\n Group Term Estimate Cond.SE\n id_village (Intercept) -0.2045 0.2008\n# of obs: 2035; # of groups: id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1210.016\n```\n:::\n:::\n\n\nNotez que les estimés des effets fixes ainsi que la variance des effets aléatoires sont presque identiques à ceeux obtenues par `glmer` ci-dessus.\n\nNous pouvons maintenant utiliser *spaMM* pour ajuster le même modèle avec l'ajout de corrélations spatiales entre les villages. Dans la formule du modèle, ceci est représenté comme un effet aléatoire `Matern(1 | x + y)`, ce qui signifie que les ordonnées à l'origine sont spatialement corrélées entre les villages suivant une fonction de corrélation de Matérn des coordonnées (*x, y*). La fonction de Matérn est une fonction flexible de corrélation spatiale qui comprend un paramètre de forme $\\nu$ (`nu`), de sorte que lorsque $\\nu = 0,5$, elle est équivalente à la corrélation exponentielle, mais quand $\\nu$ prend de grandes valeurs, elle se rapproche d'une corrélation gaussienne. Nous pourrions laisser la fonction estimer $\\nu$, mais ici nous le fixons à 0.5 avec l'argument `fixed` de `fitme`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-163_94f8693a9a4ea45698056ea7d175adbc'}\n\n```{.r .cell-code}\nmod_spamm <- fitme(pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village),\n data = gambia, family = binomial, fixed = list(nu = 0.5))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y) + (1 | id_village)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.rho \n0.50000000 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.6421 \n id_village : 0.1978 \n# of obs: 2035; # of groups: x + y, 65; id_village, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nCommençons par vérifier les effets aléatoires du modèle. La fonction de corrélation spatiale a un paramètre `rho` égal à 0.0513. Ce paramètre dans *spaMM* est l'inverse de la portée, donc ici la portée de la corrélation exponentielle est de 1/0.0513 ou environ 19.5 km. Il y a maintenant deux pramètres de variance, celui identifié comme `x + y` est la variance à longue distance (i.e. le palier) pour le modèle de corrélation exponentielle alors que celui identifié comme `id_village` montre la portion non corrélée de la variation entre les villages.\n\nSi nous avions ici laissé les effets aléatoires `(1 | id_village)` dans la formule pour représenter la partie non spatiale de la variation entre les villages, nous pourrions également représenter ceci avec un effet de pépite dans le modèle géostatistique. Dans les deux cas, cela représenterait l'idée que même deux villages très proches l'un de l'autre auraient des prévalences de base différentes dans le modèle.\n\nPar défaut, la fonction `Matern` n'a pas d'effet de pépite, mais nous pouvons en ajouter un en spécifiant une `pépite` non nulle dans la liste initiale des paramètres `init`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-164_7807f13fbd48e4a433573a5160e106f1'}\n\n```{.r .cell-code}\nmod_spamm2 <- fitme(pos ~ netuse + phc + Matern(1 | x + y),\n data = gambia, family = binomial, fixed = list(nu = 0.5),\n init = list(Nugget = 0.1))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIncrease spaMM.options(separation_max=<.>) to at least 21 if you want to check separation (see 'help(separation)').\n```\n:::\n\n```{.r .cell-code}\nsummary(mod_spamm2)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: pos ~ netuse + phc + Matern(1 | x + y)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: binomial( link = logit ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) 0.06861 0.3352 0.2047\nnetuse -0.51719 0.1407 -3.6757\nphc -0.44416 0.2052 -2.1648\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.nu 1.Nugget 1.rho \n0.50000000 0.23551027 0.05128692 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n x + y : 0.8399 \n# of obs: 2035; # of groups: x + y, 65 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -1197.968\n```\n:::\n:::\n\n\nComme vous pouvez le voir, toutes les estimations sont les mêmes, sauf que la variance de la portion spatiale (palier) est maintenant de 0.84 et que la pépite est égale à une fraction 0.235 de ce palier, soit une variance de 0.197, ce qui est identique à l'effet aléatoire `id_village` dans la version ci-dessus. Les deux formulations sont donc équivalentes.\n\nMaintenant, rappelons les coefficients que nous avions obtenus pour le GLMM non spatial :\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-165_d9e37edd6e102c7e0e32c00182b4c98d'}\n\n```{.r .cell-code}\nsummary(mod_glmm)$coefficients\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 0.1490596 0.2296971 0.6489399 5.163772e-01\nnetuse -0.6043602 0.1442448 -4.1898243 2.791706e-05\nphc -0.4984835 0.2604083 -1.9142382 5.558973e-02\n```\n:::\n:::\n\n\nDans la version spatiale, les deux effets fixes se sont légèrement rapprochés de zéro, mais l'erreur-type de l'effet de `phc` a diminué. Il est intéressant de noter que l'inclusion de la dépendance spatiale nous a permis d'estimer plus précisément l'effet de la présence d'un centre de santé publique dans le village. Ce ne serait pas toujours le cas: pour un prédicteur qui est également fortement corrélé dans l'espace, la corrélation spatiale dans la réponse rend plus difficile l'estimation de l'effet de ce prédicteur, puisqu'il est confondu avec l'effet spatial. Cependant, pour un prédicteur qui n'est pas corrélé dans l'espace, l'inclusion de l'effet spatial réduit la variance résiduelle (non spatiale) et peut donc augmenter la précision de l'effet du prédicteur.\n\nLe package *spaMM* est également compatible avec *DHARMa* pour les diagnostics résiduels. (Vous pouvez ignorer l'avertissement selon lequel il ne fait pas partie de la classe des modèles pris en charge, cela est dû à l'utilisation de la fonction `fitme` plutôt que d'une fonction d'algorithme spécifique dans *spaMM*).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-166_482f0fc040c81b2f1de2f8ee99aed0d1'}\n\n```{.r .cell-code}\nres_spamm <- simulateResiduals(mod_spamm2)\nplot(res_spamm)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-166-1.png){width=672}\n:::\n\n```{.r .cell-code}\nplot(recalculateResiduals(res_spamm, group = gambia$id_village))\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-166-2.png){width=672}\n:::\n:::\n\n\nEnfin, bien que nous allons montrer comment calculer et visualiser des prédictions spatiales ci-dessous, nous pouvons produire une carte rapide des effets spatiaux estimés dans un modèle *spaMM* avec la fonction `filled.mapMM`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-167_e868e1e85e43353fb2484a914c5ac95b'}\n\n```{.r .cell-code}\nfilled.mapMM(mod_spamm2)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-167-1.png){width=672}\n:::\n:::\n\n\n## Processus gaussiens vs. splines de lissage\n\nSi vous connaissez bien les modèles additifs généralisés (GAM), vous avez peut-être pensé à représenter la variation spatiale de la prévalence du paludisme (comme le montre la carte ci-dessus) par une spline de lissage en 2D (en fonction de $x$ et $y$) dans un GAM.\n\nLe code ci-dessous correspond à l'équivalent GAM de notre GLMM avec processus gaussien ci-dessus, ajusté avec la fonction `gam` du package *mgcv*. L'effet spatial est représenté par la spline 2D `s(x, y)` alors que l'effet aléatoire non spatial de village est représenté par `s(id_village, bs = \"re\")`, qui est équivalent à `(1 | id_village)` dans les modèles précédents. Notez que pour la fonction `gam`, les variables catégorielles doivent être explicitement converties en facteurs.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-168_5bc46e857407589375ab5b89e189742e'}\n\n```{.r .cell-code}\nlibrary(mgcv)\ngambia$id_village <- as.factor(gambia$id_village)\nmod_gam <- gam(pos ~ netuse + phc + s(id_village, bs = \"re\") + s(x, y), \n data = gambia, family = binomial)\n```\n:::\n\n\nPour visualiser la spline en 2D, nous utiliserons le package [*gratia*](https://fromthebottomoftheheap.net/2018/10/23/introducing-gratia/).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-169_07227aba979cb7fed1f2b23e7e58bfaa'}\n\n```{.r .cell-code}\nlibrary(gratia)\ndraw(mod_gam)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-169-1.png){width=672}\n:::\n:::\n\n\nNotez que le graphique de la spline `s(x, y)` (en haut à droite) ne s'étend pas trop loin des emplacements des données (les autres zones sont vides). Dans ce graphique, on peut également voir que les effets aléatoires des villages suivent la distribution gaussienne attendue (en haut à gauche).\n\nEnsuite, nous utiliserons à la fois le GLMM spatial de la section précédente et ce GAMM pour prédire la prévalence moyenne sur une grille spatiale de points contenue dans le fichier [gambia_pred.csv](data/gambia_pred.csv). Le graphique ci-dessous ajoute ces points de prédiction (en noir) sur la carte précédente des points de données.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-170_a944ccbc8f583a47e766a152bff9062f'}\n\n```{.r .cell-code}\ngambia_pred <- read.csv(\"data/gambia_pred.csv\")\n\nggplot(gambia_agg, aes(x = x, y = y)) +\n geom_point(data = gambia_pred) +\n geom_point(aes(color = prev)) +\n geom_path(data = gambia.borders, aes(x = x / 1000, y = y / 1000)) +\n coord_fixed() +\n theme_minimal() +\n scale_color_viridis_c()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-170-1.png){width=672}\n:::\n:::\n\n\nPour faire des prédictions à partir du modèle GAMM à ces endroits, le code ci-dessous effectue les étapes suivantes:\n\n- Tous les prédicteurs du modèle doivent se trouver dans le tableau de données de prédiction, nous ajoutons donc des valeurs constantes de *netuse* et *phc* (toutes deux égales à 1) pour tous les points. Ainsi, nous ferons des prédictions sur la prévalence du paludisme dans le cas où un moustiquaire est utilisée et où un centre de santé publique est présent. Nous ajoutons également un *id_village* constant, bien qu'il ne soit pas utilisé dans les prédictions (voir ci-dessous).\n\n- Nous appelons la fonction `predict` à la sortie de `gam` pour produire des prédictions aux nouveaux points de données (argument `newdata`), en incluant les erreurs-types (`se.fit = TRUE`) et en excluant les effets aléatoires du village, donc la prédiction est faite pour un \"village moyen\". L'objet résultant `gam_pred` aura des colonnes `fit` (prédiction moyenne) et `se.fit` (erreur-type). Ces prédictions et erreurs-types sont sur l'échelle du lien (logit).\n\n- Nous rattachons le jeu de données de prédiction original à `gam_pred` avec `cbind`. \n\n- Nous ajoutons des colonnes pour la prédiction moyenne et les limites de l'intervalle de confiance à 50% (moyenne $\\pm$ 0.674 erreur-type), converties de l'échelle logit à l'échelle de probabilité avec `plogis`. Nous choisissons un intervalle de 50% car un intervalle de 95% peut être trop large ici pour contraster les différentes prédictions sur la carte à la fin de cette section.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-171_357ffbfea872595db79ace469d64440a'}\n\n```{.r .cell-code}\ngambia_pred <- mutate(gambia_pred, netuse = 1, phc = 1, id_village = 1)\n\ngam_pred <- predict(mod_gam, newdata = gambia_pred, se.fit = TRUE, \n exclude = \"s(id_village)\")\ngam_pred <- cbind(gambia_pred, as.data.frame(gam_pred))\ngam_pred <- mutate(gam_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit), # 50% CI\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\n*Note* : La raison pour laquelle nous ne faisons pas de prédictions directement sur l'échelle de probabilité (réponse) est que la formule normale des intervalles de confiance s'applique plus précisément sur l'échelle logit. L'ajout d'un certain nombre d'erreurs-types autour de la moyenne sur l'échelle de probabilité conduirait à des intervalles moins précis et peut-être même à des intervalles de confiance en dehors de la plage de valeurs possible (0, 1) pour une probabilité.\n\nNous appliquons la même stratégie pour faire des prédictions à partir du GLMM spatial avec *spaMM*. Il y a quelques différences dans la méthode `predict` par rapport au cas du GAMM.\n\n- L'argument `binding = \"fit\"` signifie que les prédictions moyennes (colonne `fit`) seront attachées à l'ensemble de données de prédiction et retournées sous forme de tableau de données `spamm_pred`.\n\n- L'argument `variances = list(linPred = TRUE)` indique à `predict` de calculer la variance du prédicteur linéaire (donc le carré de l'erreur-type). Cependant, il apparaît comme un attribut `predVar` dans le tableau de données de sortie plutôt que dans une colonne `se.fit`, donc nous le déplaçons vers une colonne sur la ligne suivante. \n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-172_4419491a3882f147cdc904a6d1ed9d9c'}\n\n```{.r .cell-code}\nspamm_pred <- predict(mod_spamm, newdata = gambia_pred, type = \"link\",\n binding = \"fit\", variances = list(linPred = TRUE))\nspamm_pred$se.fit <- sqrt(attr(spamm_pred, \"predVar\"))\nspamm_pred <- mutate(spamm_pred, pred = plogis(fit), \n lo = plogis(fit - 0.674 * se.fit),\n hi = plogis(fit + 0.674 * se.fit))\n```\n:::\n\n\nEnfin, nous combinons les deux ensembles de prédictions sous la forme de différentes rangées d'un tableau de données `pred_all` avec `bind_rows`. Le nom du tableau de données d'où provient chaque prédiction (`gam` ou `spamm`) apparaîtra dans la colonne \"model\" (argument `.id`). Pour simplifier la production du prochain graphique, nous utilisons ensuite `pivot_longer` dans le package *tidyr* pour changer les trois colonnes \"pred\", \"lo\" et \"hi\" en deux colonnes, \"stat\" et \"value\" (`pred_tall` a donc trois rangées pour chaque rangée dans `pred_all`).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-173_1fc1b4f68f5b10a718d8d768a968469c'}\n\n```{.r .cell-code}\npred_all <- bind_rows(gam = gam_pred, spamm = spamm_pred, .id = \"model\")\n\nlibrary(tidyr)\npred_tall <- pivot_longer(pred_all, c(pred, lo, hi), names_to = \"stat\",\n values_to = \"value\")\n```\n:::\n\n\nUne fois ces étapes franchies, nous pouvons enfin examiner les cartes de prédiction (moyenne, limites inférieure et supérieure de l'intervalle de confiance à 50 %) à l'aide d'un graphique `ggplot`. Les points de données originaux sont indiqués en rouge.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-174_f5e1618501cf8d5cc8fb3b12843ae8e2'}\n\n```{.r .cell-code}\nggplot(pred_tall, aes(x = x, y = y)) +\n geom_point(aes(color = value)) +\n geom_point(data = gambia_agg, color = \"red\", size = 0) +\n coord_fixed() +\n facet_grid(stat~model) +\n scale_color_viridis_c() +\n theme_minimal()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-174-1.png){width=672}\n:::\n:::\n\n\nBien que les deux modèles s'accordent à dire que la prévalence est plus élevée près du groupe de villages de l'est, le GAMM estime également une prévalence plus élevée en quelques points (bord ouest et autour du centre) où il n'y a pas de données. Il s'agit d'un artefact de la forme de la spline autour des points de données, puisqu'une spline est censée correspondre à une tendance globale, bien que non linéaire. En revanche, le modèle géostatistique représente l'effet spatial sous forme de corrélations locales et revient à la prévalence moyenne globale lorsqu'il est éloigné de tout point de données, ce qui est une supposition plus sûre. C'est l'une des raisons pour lesquelles il est préférable de choisir un modèle géostatistique / processus gaussien dans ce cas.\n\n## Méthodes bayésiennes pour les GLMM avec processus gaussiens\n\nLes modèles bayésiens fournissent un cadre flexible pour exprimer des modèles avec une structure de dépendance complexe entre les données, y compris la dépendance spatiale. Cependant, l'ajustement d'un modèle de processus gaussien avec une approche entièrement bayésienne peut être lent, en raison de la nécessité de calculer une matrice de covariance spatiale entre toutes les paires de points à chaque itération. \n\nLa méthode INLA (pour *integrated nested Laplace approximation*) effectue un calcul approximatif de la distribution postérieure bayésienne, ce qui la rend adaptée aux problèmes de régression spatiale. Nous ne l'abordons pas dans ce cours, mais je recommande le manuel de Paula Moraga (dans la section des références ci-dessous) qui fournit des exemples concrets d'utilisation de la méthode INLA pour divers modèles de données géostatistiques et aréales, dans le contexte de l'épidémiologie, y compris des modèles avec une dépendance à la fois spatiale et temporelle. Le livre présente les mêmes données sur le paludisme en Gambie comme exemple d'un ensemble de données géostatistiques, ce qui a inspiré son utilisation dans ce cours.\n\n# GLMM avec autorégression spatiale {#glmm-spatial-autoreg-fr}\n\nNous revenons au dernier exemple de la partie précédente, où nous avions modélisé le taux de cas de COVID-19 (cas / 1000) pour les divisions administratives du réseau de la santé (RLS) au Québec en fonction de leur densité de population. Le taux est donné par la colonne \"taux_1k\" dans le *shapefile* `rls_covid`.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-175_d979460e37556b83e05dc8fb16e15b65'}\n\n```{.r .cell-code}\nlibrary(sf)\nrls_covid <- read_sf(\"data/rls_covid.shp\")\nrls_covid <- rls_covid[!is.na(rls_covid$dens_pop), ]\nplot(rls_covid[\"taux_1k\"])\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-175-1.png){width=672}\n:::\n:::\n\n\nAuparavant, nous avions modélisé le logarithme de ce taux comme une fonction linéaire du logarithme de la densité de population, la variance résiduelle étant corrélée entre les unités voisines via une structure CAR (autorégression conditionnelle), comme le montre le code ci-dessous.\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-176_eabbd635c0d88a1a771574c50afa7c53'}\n\n```{.r .cell-code}\nlibrary(spdep)\nlibrary(spatialreg)\n\nrls_nb <- poly2nb(rls_covid)\nrls_w <- nb2listw(rls_nb, style = \"B\")\n\ncar_lm <- spautolm(log(taux_1k) ~ log(dens_pop), data = rls_covid,\n listw = rls_w, family = \"CAR\")\nsummary(car_lm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: spautolm(formula = log(taux_1k) ~ log(dens_pop), data = rls_covid, \n listw = rls_w, family = \"CAR\")\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.201858 -0.254084 -0.053348 0.281482 1.427053 \n\nCoefficients: \n Estimate Std. Error z value Pr(>|z|)\n(Intercept) 1.702068 0.168463 10.1035 < 2.2e-16\nlog(dens_pop) 0.206623 0.032848 6.2903 3.169e-10\n\nLambda: 0.15762 LR test value: 23.991 p-value: 9.6771e-07 \nNumerical Hessian standard error of lambda: 0.0050486 \n\nLog likelihood: -80.68953 \nML residual variance (sigma squared): 0.2814, (sigma: 0.53048)\nNumber of observations: 95 \nNumber of parameters estimated: 4 \nAIC: 169.38\n```\n:::\n:::\n\n\n*Rappel*: La fonction `poly2nb` du package *spdep* crée une liste de voisins basée sur les polygones limitrophes dans un *shapefile*, puis `nb2listw` la convertit en une liste de poids, ici des poids binaires (`style = \"B\"`) de sorte que chaque région limitrophe reçoive le même poids de 1 dans le modèle autorégressif.\n\nAu lieu d'utiliser les taux, il serait possible de modéliser directement les cas avec une régression de Poisson, qui est appropriée pour les données de comptage. Pour tenir compte du fait que si le risque par personne était égal, les cas seraient proportionnels à la population, nous pouvons ajouter la population de l'unité `pop` comme *offset* dans la régression de Poisson. Par conséquent, le modèle ressemblerait à : `cas ~ log(dens_pop) + offset(log(pop))`. Notez que puisque la régression de Poisson utilise un lien logarithmique, ce modèle avec `log(pop)` comme *offset* suppose que `log(cas / pop)` (donc le taux logarithmique) est proportionnel à `log(dens_pop)`, tout comme le modèle linéaire ci-dessus, mais il a l'avantage de modéliser la variabilité des données brutes (le nombre de cas) directement avec une distribution de Poisson.\n\nNous n'avons pas la population dans ces données, mais nous pouvons l'estimer à partir des cas et du taux (cas / 1000) comme suit:\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-177_6dfaa30fb79c49e08cda1647cb0cd013'}\n\n```{.r .cell-code}\nrls_covid$pop <- rls_covid$cas / rls_covid$taux_1k * 1000\n```\n:::\n\n\nPour définir un modèle CAR dans *spaMM*, nous avons besoin d'une matrice de poids plutôt que d'une liste de poids comme dans le package *spatialreg*. Heureusement, le package *spdep* comprend également une fonction `nb2mat` pour convertir la liste des voisins en une matrice de poids, là encore en utilisant des poids binaires. Pour éviter un avertissement dans R, nous spécifions que les noms des lignes et des colonnes de cette matrice doivent être égaux aux identifiants associés à chaque unité (`RLS_code`). Ensuite, nous ajoutons un terme `adjacency(1 | RLS_code)` au modèle pour spécifier que la variation résiduelle entre les différents groupes définis par `RLS_code` est spatialement corrélée avec une structure CAR (ici, chaque groupe n'a qu'une observation puisque nous avons un point de données par unité RLS).\n\n\n::: {.cell hash='index_cache/html/unnamed-chunk-178_c3221c2defe378081625dfcfb8bdbe89'}\n\n```{.r .cell-code}\nlibrary(spaMM)\n\nrls_mat <- nb2mat(rls_nb, style = \"B\")\nrownames(rls_mat) <- rls_covid$RLS_code\ncolnames(rls_mat) <- rls_covid$RLS_code\n\nrls_spamm <- fitme(cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code),\n data = rls_covid, adjMatrix = rls_mat, family = poisson)\nsummary(rls_spamm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nformula: cas ~ log(dens_pop) + offset(log(pop)) + adjacency(1 | RLS_code)\nEstimation of corrPars and lambda by ML (p_v approximation of logL).\nEstimation of fixed effects by ML (p_v approximation of logL).\nEstimation of lambda by 'outer' ML, maximizing logL.\nfamily: poisson( link = log ) \n ------------ Fixed effects (beta) ------------\n Estimate Cond. SE t-value\n(Intercept) -5.1618 0.16855 -30.625\nlog(dens_pop) 0.1999 0.03267 6.119\n --------------- Random effects ---------------\nFamily: gaussian( link = identity ) \n --- Correlation parameters:\n 1.rho \n0.1576605 \n --- Variance parameters ('lambda'):\nlambda = var(u) for u ~ Gaussian; \n RLS_code : 0.266 \n# of obs: 95; # of groups: RLS_code, 95 \n ------------- Likelihood values -------------\n logLik\nlogL (p_v(h)): -709.3234\n```\n:::\n:::\n\n\nNotez que le coefficient de corrélation spatiale `rho` (0.158) est similaire à la quantité équivalente dans le modèle `spautolm` ci-dessus, où il était appelé `Lambda`. L'effet de `log(dens_pop)` est également d'environ 0.2 dans les deux modèles.\n\n\n## Référence\n\nMoraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Disponible en ligne: [https://www.paulamoraga.com/book-geospatial/](https://www.paulamoraga.com/book-geospatial/). \n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/posts/2021-03-25-point-count-data-analysis/index/execute-results/html.json b/_freeze/posts/2021-03-25-point-count-data-analysis/index/execute-results/html.json index e8032b8..2729741 100644 --- a/_freeze/posts/2021-03-25-point-count-data-analysis/index/execute-results/html.json +++ b/_freeze/posts/2021-03-25-point-count-data-analysis/index/execute-results/html.json @@ -1,10 +1,8 @@ { - "hash": "81d2f348a7490fadd07c97687be6f98a", + "hash": "bdd59f9c065e2296897c5e573a62409d", "result": { - "markdown": "---\ntitle: \"Point-count Data Analysis\"\ndescription: |\n Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Péter Sólymos to BIOS2 Fellows in March 2021.\nauthor: \n - name: \"Péter Sólymos\"\n affiliation: University of Alberta\nimage: thumb.jpeg\ndate: \"2021-03-25\"\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nThis course is aimed towards researchers analyzing field observations, who are often faced by data heterogeneities due to field sampling protocols changing from one project to another, or through time over the lifespan of projects, or trying to combine 'legacy' data sets with new data collected by recording units.\n\nSuch heterogeneities can bias analyses when data sets are integrated inadequately, or can lead to information loss when filtered and standardized to common standards. Accounting for these issues is important for better inference regarding status and trend of species and communities.\n\nAnalysts of such 'messy' data sets need to feel comfortable with manipulating the data, need a full understanding the mechanics of the models being used (i.e. critically interpreting the results and acknowledging assumptions and limitations), and should be able to make informed choices when faced with methodological challenges.\n\nThe course emphasizes critical thinking and active learning through hands on programming exercises. We will use publicly available data sets to demonstrate the data manipulation and analysis. We will use freely available and open-source R packages.\n\nThe expected outcome of the course is a solid foundation for further professional development via increased confidence in applying these methods for field observations.\n\n## Instructor\n\n[**Dr. Peter Solymos**](https://peter.solymos.org)\\\n[Boreal Avian Modelling Project](https://borealbirds.ca) and the [Alberta Biodiversity Monitoring Institute](https://abmi.ca)\\\n[Department of Biological Sciences](https://www.ualberta.ca/biological-sciences/), [University of Alberta](https://ualberta.ca)\n\n## Outline\n\nEach day will consist of 3 sessions, roughly one hour each, with short breaks in between.\n\n> The video recordings from the workshop can be found on [YouTube](https://www.youtube.com/watch?v=cXGXvAOqEng&list=PLH424kyZX5ip0PfOo7g13nJEQNVxZlMOh).\n\n| Session | Topic | Files | Videos |\n|-----------------|-----------------|:-----------------:|:-----------------:|\n| **Day 1** | **Naive techniques** | | |\n| | 1\\. Introductions | [Slides](https://peter.solymos.org/qpad-workshop/day1-1-intro.pdf) | [Video](https://youtu.be/cXGXvAOqEng) |\n| | 2\\. Organizing point count data | [Notes](https://peter.solymos.org/qpad-workshop/day1-2-data-processing.html) | [Part 1](https://youtu.be/4PLyaU6bqRc), [Part 2](https://youtu.be/dcsiv-v0UgA) |\n| | 3\\. Regression techniques | [Notes](https://peter.solymos.org/qpad-workshop/day1-3-regression.html) | [Part 1](https://youtu.be/z_TpcF0FD4o), [Part 2](https://youtu.be/ZdTgdTqxFSM) |\n| **Day 2** | **Behavioral complexities** | | |\n| | 1\\. Statistical assumptions and nuisance variables | [Slides](https://peter.solymos.org/qpad-workshop/day2-1-intro.pdf) | [Video](https://youtu.be/8v3Uf_aILxI) |\n| | 2\\. Behavioral complexities | [Notes](https://peter.solymos.org/qpad-workshop/day2-2-behavior.html) | [bSims](https://youtu.be/gJ11_wlsEfU), [Video](https://youtu.be/UgGeaxMCs2c) |\n| | 3\\. Removal modeling techniques | [Notes](https://peter.solymos.org/qpad-workshop/day2-3-removal.html) | [Video](https://youtu.be/ny0ED9cxzeg) |\n| | 4\\. Finite mixture models and testing assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day2-4-mixtures.html) | [Mixtures](https://youtu.be/A1cnzXMMlxU), [Testing](https://youtu.be/flF5NL73ZZE) |\n| **Day 3** | **The detection process** | | |\n| | 1\\. The detection process | [Slides](https://peter.solymos.org/qpad-workshop/day3-1-intro.pdf) | [Video](https://youtu.be/CkdYEF_hZqY) |\n| | 2\\. Distance sampling and density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/x8GfKDEJcrA) |\n| | 3\\. Estimating population density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/yeoGxRQd6o0) |\n| | 4\\. Assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/o0bx-vNCaL0) |\n| **Day 4** | **Coming full circle** | | |\n| | 1\\. QPAD overview | [Slides](https://peter.solymos.org/qpad-workshop/day4-1-intro.pdf) | [Video](https://youtu.be/TU9rcwY2Y-g) |\n| | 2\\. Models with detectability offsets | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Offsets](https://youtu.be/vw_WO2hgNwk), [Models](https://youtu.be/Cy68E1GyNVU) |\n| | 3\\. Model validation and error propagation | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Validation](https://youtu.be/lRcJzfE838k), [Error](https://youtu.be/na5cTYNq2HM) |\n| | 4\\. Recordings, roadsides, closing remarks | [Notes](https://peter.solymos.org/qpad-workshop/day4-3-recordings.html) | [Video](https://youtu.be/ckEDGdLA_J4) |\n\n## Get course materials\n\n### Install required software\n\nFollow the instructions at the [R website](http://cran.r-project.org) to download and install the most up-to-date base R version suitable for your operating system (the latest R version at the time of writing these instructions is 4.0.4).\n\nThen run the following script in R:\n\n``` r\nsource(\"https://raw.githubusercontent.com/psolymos/qpad-workshop/main/src/install.R\")\n```\n\nHaving RStudio is not absolutely necessary, but it will make life easier. RStudio is also available for different operating systems. Pick the open source desktop edition from [here](http://www.rstudio.com/products/rstudio/download/) (the latest RStudio Desktop version at the time of writing these instructions is 1.4.1106).\n\nPrior exposure to R programming is not necessary, but knowledge of basic R object types and their manipulation (arrays, data frames, indexing) is useful for following hands-on exercises. Software Carpentry's [Data types and structures in R](http://swcarpentry.github.io/r-novice-inflammation/13-supp-data-structures/index.html) is a good resource to brush up your R skills.\n\n### Get the notes\n\nIf you don't want to use git:\n\n1. Download the [workshop archive](qpad-workshop-Final.zip) release into a folder\n2. Extract the zip archive\n3. Open the `workshop.Rproj` file in RStudio (or open any other R GUI/console and `setwd()` to the directory where you downloaded the file)\n4. (You can delete the archive)\n\nIf you want to use git: fork or clone the repository\n\n``` bash\ncd into/your/dir\ngit clone https://github.com/psolymos/qpad-workshop.git\n```\n\n## Useful resources\n\n- [Using the QPAD package to get offsets based on estimates from the Boreal Avian Modelling Project's database](https://github.com/ABbiodiversity/recurring/blob/master/offset/README.md)\n- [NA-POPS: Point count Offsets for Population Sizes of North America landbirds](http://na-pops.org/)\n\n## References\n\nSólymos, P., Toms, J. D., Matsuoka, S. M., Cumming, S. G., Barker, N. K. S., Thogmartin, W. E., Stralberg, D., Crosby, A. D., Dénes, F. V., Haché, S., Mahon, C. L., Schmiegelow, F. K. A., and Bayne, E. M., 2020. Lessons learned from comparing spatially explicit models and the Partners in Flight approach to estimate population sizes of boreal birds in Alberta, Canada. *Condor*, 122: 1-22. [PDF](https://drive.google.com/file/d/115WgtPd4zUSIFfSTHbWYs8OCHNdpKkh5/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Cumming, S. G., Stralberg, D., Fontaine, P., Schmiegelow, F. K. A., Song, S. J., and Bayne, E. M., 2018. Evaluating time-removal models for estimating availability of boreal birds during point-count surveys: sample size requirements and model complexity. *Condor*, 120: 765-786. [PDF](https://drive.google.com/file/d/13Czd_A82P0ZhIlvAEabxdHfmaZcJaNU3/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S., and Bayne, E. M., 2018. Phylogeny and species traits predict bird detectability. *Ecography*, 41: 1595-1603. [PDF](https://drive.google.com/file/d/1CRKl-bh1tqxddijEWZoNcDO_xFIgOfWZ/view?usp=sharing)\n\nVan Wilgenburg, S. L., Sólymos, P., Kardynal, K. J. and Frey, M. D., 2017. Paired sampling standardizes point count data from humans and acoustic recorders. *Avian Conservation and Ecology*, 12(1):13. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPOTZyTXlDb0xFQTA/view?usp=sharing)\n\nYip, D. A., Leston, L., Bayne, E. M., Sólymos, P. and Grover, A., 2017. Experimentally derived detection distances from audio recordings and human observers enable integrated analysis of point count data. *Avian Conservation and Ecology*, 12(1):11. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPQ2F6d1llQ3lPTzg/view?usp=sharing)\n\nSólymos, P., and Lele, S. R., 2016. Revisiting resource selection probability functions and single-visit methods: clarification and extensions. *Methods in Ecology and Evolution*, 7:196-205. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPRE5tVlRMSmhLWmM/view?usp=sharing)\n\nMatsuoka, S. M., Mahon, C. L., Handel, C. M., Sólymos, P., Bayne, E. M., Fontaine, P. C., and Ralph, C. J., 2014. Reviving common standards in point-count surveys for broad inference across studies. *Condor* 116:599-608. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPcGZNS3JSRUlBdDQ/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K. A. & Song, S. J., 2013. Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. *Methods in Ecology and Evolution* 4:1047-1058. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPV0RNUFU1N1dmS1E/view?usp=sharing)\n\nMatsuoka, S. M., Bayne, E. M., Sólymos, P., Fontaine, P., Cumming, S. G., Schmiegelow, F. K. A., & Song, S. A., 2012. Using binomial distance-sampling models to estimate the effective detection radius of point-counts surveys across boreal Canada. *Auk* 129:268-282. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPbFhhRUtZNWQyMk0/view?usp=sharing)\n\n## License\n\nThe course material is licensed under [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Source code is under [MIT](LICENSE) license.\n", - "supporting": [ - "index_files" - ], + "markdown": "---\ntitle: \"Point-count Data Analysis\"\ndescription: |\n Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Peter Solymos to BIOS2 Fellows in March 2021.\nauthor: Peter Solymos\nimage: thumb.jpeg\ndate: \"2021-03-25\"\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nThis course is aimed towards researchers analyzing field observations, who are often faced by data heterogeneities due to field sampling protocols changing from one project to another, or through time over the lifespan of projects, or trying to combine 'legacy' data sets with new data collected by recording units.\n\nSuch heterogeneities can bias analyses when data sets are integrated inadequately, or can lead to information loss when filtered and standardized to common standards. Accounting for these issues is important for better inference regarding status and trend of species and communities.\n\nAnalysts of such 'messy' data sets need to feel comfortable with manipulating the data, need a full understanding the mechanics of the models being used (i.e. critically interpreting the results and acknowledging assumptions and limitations), and should be able to make informed choices when faced with methodological challenges.\n\nThe course emphasizes critical thinking and active learning through hands on programming exercises. We will use publicly available data sets to demonstrate the data manipulation and analysis. We will use freely available and open-source R packages.\n\nThe expected outcome of the course is a solid foundation for further professional development via increased confidence in applying these methods for field observations.\n\n## Instructor\n\n[**Dr. Peter Solymos**](https://peter.solymos.org)\\\n[Boreal Avian Modelling Project](https://borealbirds.ca) and the [Alberta Biodiversity Monitoring Institute](https://abmi.ca)\\\n[Department of Biological Sciences](https://www.ualberta.ca/biological-sciences/), [University of Alberta](https://ualberta.ca)\n\n## Outline\n\nEach day will consist of 3 sessions, roughly one hour each, with short breaks in between.\n\n> The video recordings from the workshop can be found on [YouTube](https://www.youtube.com/watch?v=cXGXvAOqEng&list=PLH424kyZX5ip0PfOo7g13nJEQNVxZlMOh).\n\n| Session | Topic | Files | Videos |\n|-----------|----------------------------------------------------|:----------------------------------------------------------------------------:|:---------------------------------------------------------------------------------:|\n| **Day 1** | **Naive techniques** | | |\n| | 1\\. Introductions | [Slides](https://peter.solymos.org/qpad-workshop/day1-1-intro.pdf) | [Video](https://youtu.be/cXGXvAOqEng) |\n| | 2\\. Organizing point count data | [Notes](https://peter.solymos.org/qpad-workshop/day1-2-data-processing.html) | [Part 1](https://youtu.be/4PLyaU6bqRc), [Part 2](https://youtu.be/dcsiv-v0UgA) |\n| | 3\\. Regression techniques | [Notes](https://peter.solymos.org/qpad-workshop/day1-3-regression.html) | [Part 1](https://youtu.be/z_TpcF0FD4o), [Part 2](https://youtu.be/ZdTgdTqxFSM) |\n| **Day 2** | **Behavioral complexities** | | |\n| | 1\\. Statistical assumptions and nuisance variables | [Slides](https://peter.solymos.org/qpad-workshop/day2-1-intro.pdf) | [Video](https://youtu.be/8v3Uf_aILxI) |\n| | 2\\. Behavioral complexities | [Notes](https://peter.solymos.org/qpad-workshop/day2-2-behavior.html) | [bSims](https://youtu.be/gJ11_wlsEfU), [Video](https://youtu.be/UgGeaxMCs2c) |\n| | 3\\. Removal modeling techniques | [Notes](https://peter.solymos.org/qpad-workshop/day2-3-removal.html) | [Video](https://youtu.be/ny0ED9cxzeg) |\n| | 4\\. Finite mixture models and testing assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day2-4-mixtures.html) | [Mixtures](https://youtu.be/A1cnzXMMlxU), [Testing](https://youtu.be/flF5NL73ZZE) |\n| **Day 3** | **The detection process** | | |\n| | 1\\. The detection process | [Slides](https://peter.solymos.org/qpad-workshop/day3-1-intro.pdf) | [Video](https://youtu.be/CkdYEF_hZqY) |\n| | 2\\. Distance sampling and density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/x8GfKDEJcrA) |\n| | 3\\. Estimating population density | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/yeoGxRQd6o0) |\n| | 4\\. Assumptions | [Notes](https://peter.solymos.org/qpad-workshop/day3-2-detection.html) | [Video](https://youtu.be/o0bx-vNCaL0) |\n| **Day 4** | **Coming full circle** | | |\n| | 1\\. QPAD overview | [Slides](https://peter.solymos.org/qpad-workshop/day4-1-intro.pdf) | [Video](https://youtu.be/TU9rcwY2Y-g) |\n| | 2\\. Models with detectability offsets | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Offsets](https://youtu.be/vw_WO2hgNwk), [Models](https://youtu.be/Cy68E1GyNVU) |\n| | 3\\. Model validation and error propagation | [Notes](https://peter.solymos.org/qpad-workshop/day4-2-qpad.html) | [Validation](https://youtu.be/lRcJzfE838k), [Error](https://youtu.be/na5cTYNq2HM) |\n| | 4\\. Recordings, roadsides, closing remarks | [Notes](https://peter.solymos.org/qpad-workshop/day4-3-recordings.html) | [Video](https://youtu.be/ckEDGdLA_J4) |\n\n## Get course materials\n\n### Install required software\n\nFollow the instructions at the [R website](http://cran.r-project.org) to download and install the most up-to-date base R version suitable for your operating system (the latest R version at the time of writing these instructions is 4.0.4).\n\nThen run the following script in R:\n\n``` r\nsource(\"https://raw.githubusercontent.com/psolymos/qpad-workshop/main/src/install.R\")\n```\n\nHaving RStudio is not absolutely necessary, but it will make life easier. RStudio is also available for different operating systems. Pick the open source desktop edition from [here](http://www.rstudio.com/products/rstudio/download/) (the latest RStudio Desktop version at the time of writing these instructions is 1.4.1106).\n\nPrior exposure to R programming is not necessary, but knowledge of basic R object types and their manipulation (arrays, data frames, indexing) is useful for following hands-on exercises. Software Carpentry's [Data types and structures in R](http://swcarpentry.github.io/r-novice-inflammation/13-supp-data-structures/index.html) is a good resource to brush up your R skills.\n\n### Get the notes\n\nIf you don't want to use git:\n\n1. Download the [workshop archive](qpad-workshop-Final.zip) release into a folder\n2. Extract the zip archive\n3. Open the `workshop.Rproj` file in RStudio (or open any other R GUI/console and `setwd()` to the directory where you downloaded the file)\n4. (You can delete the archive)\n\nIf you want to use git: fork or clone the repository\n\n``` bash\ncd into/your/dir\ngit clone https://github.com/psolymos/qpad-workshop.git\n```\n\n## Useful resources\n\n- [Using the QPAD package to get offsets based on estimates from the Boreal Avian Modelling Project's database](https://github.com/ABbiodiversity/recurring/blob/master/offset/README.md)\n- [NA-POPS: Point count Offsets for Population Sizes of North America landbirds](http://na-pops.org/)\n\n## References\n\nSólymos, P., Toms, J. D., Matsuoka, S. M., Cumming, S. G., Barker, N. K. S., Thogmartin, W. E., Stralberg, D., Crosby, A. D., Dénes, F. V., Haché, S., Mahon, C. L., Schmiegelow, F. K. A., and Bayne, E. M., 2020. Lessons learned from comparing spatially explicit models and the Partners in Flight approach to estimate population sizes of boreal birds in Alberta, Canada. *Condor*, 122: 1-22. [PDF](https://drive.google.com/file/d/115WgtPd4zUSIFfSTHbWYs8OCHNdpKkh5/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Cumming, S. G., Stralberg, D., Fontaine, P., Schmiegelow, F. K. A., Song, S. J., and Bayne, E. M., 2018. Evaluating time-removal models for estimating availability of boreal birds during point-count surveys: sample size requirements and model complexity. *Condor*, 120: 765-786. [PDF](https://drive.google.com/file/d/13Czd_A82P0ZhIlvAEabxdHfmaZcJaNU3/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Stralberg, D., Barker, N. K. S., and Bayne, E. M., 2018. Phylogeny and species traits predict bird detectability. *Ecography*, 41: 1595-1603. [PDF](https://drive.google.com/file/d/1CRKl-bh1tqxddijEWZoNcDO_xFIgOfWZ/view?usp=sharing)\n\nVan Wilgenburg, S. L., Sólymos, P., Kardynal, K. J. and Frey, M. D., 2017. Paired sampling standardizes point count data from humans and acoustic recorders. *Avian Conservation and Ecology*, 12(1):13. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPOTZyTXlDb0xFQTA/view?usp=sharing)\n\nYip, D. A., Leston, L., Bayne, E. M., Sólymos, P. and Grover, A., 2017. Experimentally derived detection distances from audio recordings and human observers enable integrated analysis of point count data. *Avian Conservation and Ecology*, 12(1):11. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPQ2F6d1llQ3lPTzg/view?usp=sharing)\n\nSólymos, P., and Lele, S. R., 2016. Revisiting resource selection probability functions and single-visit methods: clarification and extensions. *Methods in Ecology and Evolution*, 7:196-205. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPRE5tVlRMSmhLWmM/view?usp=sharing)\n\nMatsuoka, S. M., Mahon, C. L., Handel, C. M., Sólymos, P., Bayne, E. M., Fontaine, P. C., and Ralph, C. J., 2014. Reviving common standards in point-count surveys for broad inference across studies. *Condor* 116:599-608. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPcGZNS3JSRUlBdDQ/view?usp=sharing)\n\nSólymos, P., Matsuoka, S. M., Bayne, E. M., Lele, S. R., Fontaine, P., Cumming, S. G., Stralberg, D., Schmiegelow, F. K. A. & Song, S. J., 2013. Calibrating indices of avian density from non-standardized survey data: making the most of a messy situation. *Methods in Ecology and Evolution* 4:1047-1058. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPV0RNUFU1N1dmS1E/view?usp=sharing)\n\nMatsuoka, S. M., Bayne, E. M., Sólymos, P., Fontaine, P., Cumming, S. G., Schmiegelow, F. K. A., & Song, S. A., 2012. Using binomial distance-sampling models to estimate the effective detection radius of point-counts surveys across boreal Canada. *Auk* 129:268-282. [PDF](https://drive.google.com/file/d/0B-q59n6LIwYPbFhhRUtZNWQyMk0/view?usp=sharing)\n\n## License\n\nThe course material is licensed under [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) license. Source code is under [MIT](LICENSE) license.\n", + "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" ], diff --git a/_freeze/posts/2021-05-04-building-r-packages/index/execute-results/html.json b/_freeze/posts/2021-05-04-building-r-packages/index/execute-results/html.json index 91de80c..5d646d1 100644 --- a/_freeze/posts/2021-05-04-building-r-packages/index/execute-results/html.json +++ b/_freeze/posts/2021-05-04-building-r-packages/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "f9c5cd75754140ed67e59951a6ea480b", + "hash": "2759d1707cdb7cd48df6fad351b0353b", "result": { - "markdown": "---\ntitle: \"Building R packages\"\ndescription: |\n This practical training will cover the basics of modern package development in R with a focus on the following three aspects: (1) how to turn your code into functions, (2) how to write tests and documentation, and (3) how to share your R package on GitHub..\nauthor: \n - name: \"Andrew MacDonald\"\n affilitation: Université de Sherbrooke\ndate: \"2021-05-04\"\nimage: altumcode-PNbDkQ2DDgM-unsplash.jpeg\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n\n\n

via GIPHY

\n\nR packages! they are kind of like cookies:\n\n- Almost everyone enjoys them\n\n- delicious when homemade\n\n- Lots of storebought options available\n\n- Great skill to have\n\n- not necessary to sell them!\n\n \n\nBut most of all: cookies are delicious for what they *contain*: chocolate chunks, candy, oats, cocoa. However, all cookies share some fundamental ingredients and nearly identical structure. Flour, saturated with fat and sugar hydrated only with an egg, flavoured with vanilla and salt. The basic formula is invariant and admits only slight deviation -- otherwise, it becomes something other than a cookie.\n\nThis workshop is devoted to the study of cookie dough.\n\n### *Mise en place* : development environment\n\nWe'll explore a few useful packages in this workshop. The first two in particular are very popular tools for modern-day R package development:\n\n``` r\ninstall.packages(\"devtools\")\ninstall.packages(\"usethis\")\ninstall.packages(\"testthat\")\ninstall.packages(\"assertthat\")\n```\n\nBuilding an R package also requires specific tools for compiling the finished package. Run the following line to make sure you have the development environment:\n\n``` r\ndevtools::has_devel()\n```\n\nIf you do not have the software to build R packages, you should see a message which will help you find the correct links to download what you need!\n\nWindows will need RTools. First do the check above to see if you are already set up. If not then [download the software here](https://cran.r-project.org/bin/windows/Rtools/).\n\nand Install. After that, open R and run the following:\n\n``` r\nwriteLines('PATH=\"${RTOOLS40_HOME}\\\\usr\\\\bin;${PATH}\"', con = \"~/.Renviron\")\n```\n\nand restart R. Then run the check above once more to confirm\n\n\n\n## The structure: flour and sugar\n\n> No cookies without carbs\n\nAn R package is essentially a folder on your computer with specific structure. We will begin by creating an empty R package and taking a tour!\n\nOpen your R code editor, and find out where you are:\n\n``` r\ngetwd()\n```\n\nThis is to prepare for the next step, where we will choose a location for our R package folder. Please be intentional about where you place your R package! Do not place it in the same space as another package, Rstudio project or other project. Create a new and isolated location for it.\n\nI am working from an existing R project in my typical R Projects folder, so I go up one level:\n\n``` r\nusethis::create_package(\"../netwerk\")\n```\n\n\n\n![](start_pkg.png)\n\nLet's run R CMD CHECK right away. We will do this MANY TIMES.\n\n``` r\ndevtools::check()\n```\n\nWe should see some warnings! let's keep these in mind as we continue our tour.\n\n### The DESCRIPTION file\n\nThe most important file to notice is the DESCRIPTION. This gives general information about the entire package. It is written in a specific file format\n\n``` dcf\nPackage: netwerk\nTitle: Werks with Networks\nVersion: 0.0.0.9000\nAuthors@R: \n person(given = \"Andrew\",\n family = \"MacDonald\",\n role = c(\"aut\", \"cre\"),\n email = \"\")\nDescription: it does networks.\nLicense: MIT + file LICENSE\nEncoding: UTF-8\nLazyData: true\nRoxygen: list(markdown = TRUE)\nRoxygenNote: 7.1.1\nSuggests: \n testthat (>= 3.0.0)\nConfig/testthat/edition: 3\n```\n\nHere are some things to edit *manually* in `DESCRIPTION`:\n\n- package name \\[tk naming of R packages\\] -- make it short and convenient if you can!\n- Title: write this part In Title Case. Don't end the title with a period.\n- Description: Describe the package in a short block of text. This *should* end with a period.\n- Authors: Add your name here and the name of anyone building the package with you. `usethis` will have done the first step for you, and filled in the structure. Only \"aut\" (author) and \"cre\" (creator) are essential. [but many others are possible](https://www.loc.gov/marc/relators/relaterm.html)\n\nAdd your name here.\n\nAdd a license\n\n``` r\nusethis::use_mit_license(copyright_holder = \"\")\n```\n\nnote about the different roles that R package authors can have. Funny ones. but creator and maintainer are the key ones.\n\nNote the R folder. We'll get much more into that later\n\n- Rbuildignore\n\n## Keeping notes\n\ncreate an R file\n\n``` r\nusethis::use_build_ignore(\"dev.R\")\n```\n\nthe docs folder\n\nhere we have a very minimal version of an R packages we're going to be adding to it as the course progresses.\n\nOne thing we can do right away is build and check the R package\n\nWhat exactly is happining here? slide from R package tutorial.\n\nLots of checkpoints and progress confrimations along the way.\n\nOK so what is that all about? we have compiled the R package and it has gone to where the R packages on our computer go.\n\nThere is a natural cycle to how the different steps in an R package workflow proceed -- see the documentation for this lesson -- we will be following this process (TK another pictures?\n\nOk so now that we ahve the basic structure, let's talk about some content for the R package. I received the donation of a little R function already that we can use to create this workflow in a nice way\n\nThis R function (explain what the function does)\n\nOK so let's focus on just one part of this function.\n\nload all -- shortcut\n\n> how do we do this in VScode?\n\n> how to add something to the .Rbuildignore? it would be nice to have a little .dev script as a space to create all the ohter dependencies that are involved in making an R package.\n\n\n::: {.cell}\n\n:::\n\n\n## Useful links\n\nThis workshop borrows heavily from some excellent sources:\n\n- the [R packages book](https://r-pkgs.org/index.html) especially the [\"Whole Game\"](https://r-pkgs.org/whole-game.html#whole-game) chapter!\n- [rOpenSci Packages: Development, Maintenance, and Peer Review](https://devguide.ropensci.org/index.html)\n\nhttps://builder.r-hub.io/about.html\n", + "markdown": "---\ntitle: \"Building R packages\"\ndescription: |\n This practical training will cover the basics of modern package development in R with a focus on the following three aspects: (1) how to turn your code into functions, (2) how to write tests and documentation, and (3) how to share your R package on GitHub..\nauthor: Andrew MacDonald\ndate: \"2021-05-04\"\nimage: altumcode-PNbDkQ2DDgM-unsplash.jpeg\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n\n\n

via GIPHY

\n\nR packages! they are kind of like cookies:\n\n- Almost everyone enjoys them\n\n- delicious when homemade\n\n- Lots of storebought options available\n\n- Great skill to have\n\n- not necessary to sell them!\n\n \n\nBut most of all: cookies are delicious for what they *contain*: chocolate chunks, candy, oats, cocoa. However, all cookies share some fundamental ingredients and nearly identical structure. Flour, saturated with fat and sugar hydrated only with an egg, flavoured with vanilla and salt. The basic formula is invariant and admits only slight deviation -- otherwise, it becomes something other than a cookie.\n\nThis workshop is devoted to the study of cookie dough.\n\n### *Mise en place* : development environment\n\nWe'll explore a few useful packages in this workshop. The first two in particular are very popular tools for modern-day R package development:\n\n``` r\ninstall.packages(\"devtools\")\ninstall.packages(\"usethis\")\ninstall.packages(\"testthat\")\ninstall.packages(\"assertthat\")\n```\n\nBuilding an R package also requires specific tools for compiling the finished package. Run the following line to make sure you have the development environment:\n\n``` r\ndevtools::has_devel()\n```\n\nIf you do not have the software to build R packages, you should see a message which will help you find the correct links to download what you need!\n\nWindows will need RTools. First do the check above to see if you are already set up. If not then [download the software here](https://cran.r-project.org/bin/windows/Rtools/).\n\nand Install. After that, open R and run the following:\n\n``` r\nwriteLines('PATH=\"${RTOOLS40_HOME}\\\\usr\\\\bin;${PATH}\"', con = \"~/.Renviron\")\n```\n\nand restart R. Then run the check above once more to confirm\n\n\n\n## The structure: flour and sugar\n\n> No cookies without carbs\n\nAn R package is essentially a folder on your computer with specific structure. We will begin by creating an empty R package and taking a tour!\n\nOpen your R code editor, and find out where you are:\n\n``` r\ngetwd()\n```\n\nThis is to prepare for the next step, where we will choose a location for our R package folder. Please be intentional about where you place your R package! Do not place it in the same space as another package, Rstudio project or other project. Create a new and isolated location for it.\n\nI am working from an existing R project in my typical R Projects folder, so I go up one level:\n\n``` r\nusethis::create_package(\"../netwerk\")\n```\n\n\n\n![](start_pkg.png)\n\nLet's run R CMD CHECK right away. We will do this MANY TIMES.\n\n``` r\ndevtools::check()\n```\n\nWe should see some warnings! let's keep these in mind as we continue our tour.\n\n### The DESCRIPTION file\n\nThe most important file to notice is the DESCRIPTION. This gives general information about the entire package. It is written in a specific file format\n\n``` dcf\nPackage: netwerk\nTitle: Werks with Networks\nVersion: 0.0.0.9000\nAuthors@R: \n person(given = \"Andrew\",\n family = \"MacDonald\",\n role = c(\"aut\", \"cre\"),\n email = \"\")\nDescription: it does networks.\nLicense: MIT + file LICENSE\nEncoding: UTF-8\nLazyData: true\nRoxygen: list(markdown = TRUE)\nRoxygenNote: 7.1.1\nSuggests: \n testthat (>= 3.0.0)\nConfig/testthat/edition: 3\n```\n\nHere are some things to edit *manually* in `DESCRIPTION`:\n\n- package name \\[tk naming of R packages\\] -- make it short and convenient if you can!\n- Title: write this part In Title Case. Don't end the title with a period.\n- Description: Describe the package in a short block of text. This *should* end with a period.\n- Authors: Add your name here and the name of anyone building the package with you. `usethis` will have done the first step for you, and filled in the structure. Only \"aut\" (author) and \"cre\" (creator) are essential. [but many others are possible](https://www.loc.gov/marc/relators/relaterm.html)\n\nAdd your name here.\n\nAdd a license\n\n``` r\nusethis::use_mit_license(copyright_holder = \"\")\n```\n\nnote about the different roles that R package authors can have. Funny ones. but creator and maintainer are the key ones.\n\nNote the R folder. We'll get much more into that later\n\n- Rbuildignore\n\n## Keeping notes\n\ncreate an R file\n\n``` r\nusethis::use_build_ignore(\"dev.R\")\n```\n\nthe docs folder\n\nhere we have a very minimal version of an R packages we're going to be adding to it as the course progresses.\n\nOne thing we can do right away is build and check the R package\n\nWhat exactly is happining here? slide from R package tutorial.\n\nLots of checkpoints and progress confrimations along the way.\n\nOK so what is that all about? we have compiled the R package and it has gone to where the R packages on our computer go.\n\nThere is a natural cycle to how the different steps in an R package workflow proceed -- see the documentation for this lesson -- we will be following this process (TK another pictures?\n\nOk so now that we ahve the basic structure, let's talk about some content for the R package. I received the donation of a little R function already that we can use to create this workflow in a nice way\n\nThis R function (explain what the function does)\n\nOK so let's focus on just one part of this function.\n\nload all -- shortcut\n\n> how do we do this in VScode?\n\n> how to add something to the .Rbuildignore? it would be nice to have a little .dev script as a space to create all the ohter dependencies that are involved in making an R package.\n\n\n::: {.cell}\n\n:::\n\n\n## Useful links\n\nThis workshop borrows heavily from some excellent sources:\n\n- the [R packages book](https://r-pkgs.org/index.html) especially the [\"Whole Game\"](https://r-pkgs.org/whole-game.html#whole-game) chapter!\n- [rOpenSci Packages: Development, Maintenance, and Peer Review](https://devguide.ropensci.org/index.html)\n\nhttps://builder.r-hub.io/about.html\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/posts/2021-06-22-introduction-to-shiny-apps/index/execute-results/html.json b/_freeze/posts/2021-06-22-introduction-to-shiny-apps/index/execute-results/html.json index 316242f..7463485 100644 --- a/_freeze/posts/2021-06-22-introduction-to-shiny-apps/index/execute-results/html.json +++ b/_freeze/posts/2021-06-22-introduction-to-shiny-apps/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "81821a688a1a06601deacad615689703", + "hash": "0731d9bc5af487d5bd597e0159bdd54a", "result": { - "markdown": "---\ntitle: \"Introduction to Shiny Apps\"\ndescription: \"Introduction to interactive app development with R Shiny.\"\nauthor:\n - name: \"Katherine Hébert\"\n affiliation: Université de Sherbrooke\n - name: \"Andrew MacDonald\"\n affiliation: Université de Sherbrooke\n - name: \"Jake Lawlor\"\n affiliation: McGill University\n - name: \"Vincent Bellavance\"\n affiliation: Université de Sherbrooke\ndate: \"06-22-2021\"\nimage: image.jpg\ncategories: [Technical, Fellow contributed, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n## Why do you want to use Shiny?\n\nThere are many reasons to consider using Shiny for a project:\n\n- Sharing results from a paper with your readers;\n- Helping you explore a model, mathematics, simulations;\n- Letting non R users use R.\n\n## Hello Shiny!\n\nHere is an example of a Shiny app that RStudio generates when you open a new Shiny Web App file:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for app that draws a histogram ----\nui <- fluidPage(\n\n # App title ----\n titlePanel(\"Hello Shiny!\"),\n\n # Sidebar layout with input and output definitions ----\n sidebarLayout(\n\n # Sidebar panel for inputs ----\n sidebarPanel(\n\n # Input: Slider for the number of bins ----\n sliderInput(inputId = \"bins\",\n label = \"Number of bins:\",\n min = 1,\n max = 50,\n value = 30)\n\n ),\n\n # Main panel for displaying outputs ----\n mainPanel(\n\n # Output: Histogram ----\n plotOutput(outputId = \"distPlot\")\n\n )\n )\n)\n```\n:::\n\n\n# How a Shiny app works\n\n## Building blocks\n\nWe've now seen the basic building blocks of a Shiny app:\n\n- The **user interface**, which determines how the app \"looks\". This is how we tell Shiny where to ask for user inputs, and where to put any outputs we create.\n- **Reactive values**, which are values that change according to user inputs. These are values that affect the outputs we create in the Shiny app, such as tables or plots.\n- The **server**, where we use reactive values to generate some outputs.\n\n### IDs\n\nThe **user interface** and **server** communicate through IDs that we assign to inputs from the user and outputs from the server.\n\n![](images/app-ids.png)\n\nWe use an ID (*in orange*) to link the user input in the UI to the reactive values used in the server:\n\n![](images/app-reactiveid.png)\n\nWe use another ID (*in blue*) to link the output created in the server to the output shown in the user interface:\n\n![](images/app-output.png)\n\n### Organisation\n\nThese elements can all be placed in one script named `app.R` or separately in scripts named `ui.R` and `server.R`. The choice is up to you, although it becomes easier to work in separate `ui.R` and `server.R` scripts when the Shiny app becomes more complex.\n\n**Example 1: Everything in `app.R`**\n\n![](images/app-in1.png) **Example 2: Split things into `ui.R` and `server.R`**\n\n![](images/app-in2.png)\n\n## Plots\n\nShiny is an excellent tool for visual exploration - it is at its most useful when a user can *see* something change before their eyes according to some selections. This is a great way to allow users to explore a dataset, explore the results of some analyses according to different parameters, and so on!\n\nLet's now add a plot to our Shiny app, to visualize the distribution of a variable depending on user input. We'll be adding the `ggplot2` and `ggridges` packages in the set-up step at the top of our `app.R` to allow us to make a plot.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load packages\nlibrary(shiny)\nlibrary(ggridges)\nlibrary(ggplot2)\nlibrary(here)\nlibrary(readr)\n```\n:::\n\n\n### User interface\n\nTo add a plot in our Shiny, we need to indicate where the plot should appear in the app. We can do this with `plotOutput()`, a similar function to `tableOutput()` in the previous section that is meant for plot outputs, as the name suggests.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n )\n)\n```\n:::\n\n\nNow our Shiny app knows where we want to place our plot.\n\n### Server\n\nWe now need to create the plot we want to show in our app. This plot will change depending on one or several reactive values that the user can input or select in our UI.\n\nWe link the UI and server together with IDs that are assigned to each object. Above, we told the UI to expect a plot output with the ID `\"ridgePlot\"`. In the server, we will create a plot and render it as a plot object using `renderPlot()`, and we will assign this plot output to the ID we call in the UI (as `output$ridgePlot`).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n\n \n # prepare the data\n # ----------------------------------------------------------\n \n # read the dataset\n eruptions <- readr::read_rds(here::here(\"data\", \"eruptions.rds\"))\n \n # filter the dataset to avoid overloading the plot \n eruptions <- eruptions[which(eruptions$volcano_name %in% names(which(table(eruptions$volcano_name) > 30))),]\n # this subsets to volcanoes that have erupted more than 30 times\n \n \n # make reactive dataset\n # ----------------------------------------------------------\n \n # subset volcano data with input year range\n eruptions_filtered <- reactive({\n subset(eruptions, start_year >= input$years[1] & end_year <= input$years[2])\n })\n \n \n # create and render the outputs\n # ----------------------------------------------------------\n \n # create the table of volcanoes\n output$erupt_table <- renderTable({\n head(eruptions_filtered())\n })\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name,\n fill = volcano_name)) +\n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges( size = .5) + # line width\n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # adjust the ggplot theme to make the plot \"prettier\"\n theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n}\n```\n:::\n\n\n### The Shiny app\n\nNow, if we run the Shiny app, we have a plot above the table we made previously. They are positioned in this way because the `plotOutput()` comes before the `tableOutput()` in the UI.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Run the application\nshinyApp(ui = ui, server = server)\n```\n:::\n\n\n![](images/plotOutput.png)\n\n## Customising the theme\n\nIf you'd like to go one step further, you can also customize the appearance of your Shiny app using built-in themes, or creating your own themes.\n\n### Using built-in themes\n\nThere are several built-in themes in Shiny, which allow you to quickly change the appearance of your app. You can browse a gallery of available themes here [here](https://rstudio.github.io/shinythemes/), or test themes out interactively [here](https://shiny.rstudio.com/gallery/shiny-theme-selector.html).\n\nLet's try the *darkly* theme on our Shiny app. To do this, we will need the `shinythemes` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(shinythemes)\n```\n:::\n\n\nWe can change the theme of our previous app with one line of code:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use the darkly theme\n theme = shinythemes::shinytheme(\"darkly\")\n)\n```\n:::\n\n\nNow, if we run the app, it looks a little different:\n\n![](images/darklytheme.png)\n\n### Using a custom theme\n\nYou can also go beyond the built-in themes, and create your own custom theme with the fonts and colours of your choice. You can also apply this theme to the outputs rendered in the app, to bring all the visuals together for a more cohesive look.\n\n#### Customizing a theme\n\nTo create a custom theme, we will be using the `bs_theme()` function from the `bslib` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(bslib)\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# Create a custom theme \ncute_theme <- bslib::bs_theme(\n \n bg = \"#36393B\", # background colour\n fg = \"#FFD166\", # most of the text on your app\n primary = \"#F26430\", # buttons, ...\n \n # you can also choose fonts\n base_font = font_google(\"Open Sans\"),\n heading_font = font_google(\"Open Sans\")\n)\n```\n:::\n\n\nTo apply this theme to our Shiny app (and the outputs), we will be using the `thematic` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(thematic)\n```\n:::\n\n\nThere are two essential steps to apply a custom theme to a Shiny app:\n\n1. Activating thematic.\n2. Setting the user interface's theme to the custom theme (`cute_theme`).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Activate thematic\n# so your R outputs will be changed to match up with your chosen styling\nthematic::thematic_shiny()\n\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use our custom theme\n theme = cute_theme\n)\n```\n:::\n\n\nNow, if we run the app, the user interface and plot theme is set to the colours and fonts we set in `cute_theme`:\n\n![](images/thematic.png)\n\nHere, `thematic` is not changing the colours used to represent a variable in our plot, because this is an informative colour scale (unlike the colour of axis labels, lines, and the plot background). However, if we remove this colour variable in our ridgeplot in the server, thematic will change the plot colours as well. Here is a simplified example of our server to see what these changes would look like:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n \n #... (all the good stuff we wrote above)\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name)) + # we are no longer setting \n # the fill argument to a variable\n \n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges(size = .5) + \n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # remove the \"classic\" ggplot2 so it doesn't override thematic's changes\n # theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n }\n```\n:::\n\n\nNow, our plot's theme follows the app's custom theme as well:\n\n![](images/thematic_plot.png)\n\n# Constructing a Shiny app using shinyDashboards\n\n## Taking advantage of good defaults\n\nHere, we will use shiny extension `shinyDashboards` and `leaflet` to construct a custom Shiny App to map volcanoes of the world. First, we need a few additional packages.\n\n**Note: All Source code for this app can be found [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) on the BIOS2 Github.**\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load packages\nlibrary(shiny)\nlibrary(shinydashboard) # dashboard layout package\nlibrary(shinyWidgets) # fancy widgets package\nlibrary(leaflet) # interactive maps package\nlibrary(dplyr)\nlibrary(ggplot2)\n```\n:::\n\n\n### Using ShinyDashboard\n\nWe will create our app using defaults from the ShinyDashboard package, which always includes three main components: a header, using `dashboardHeader()`, a sidebar, using `dashboardSidebar()`, and a body, using `dashboardBody()`. These are then added together using the `dashboardPage()` function.\n\nBuilding these elements is less like usual R coding, and more like web design, since we are, in fact, designing a unser interface for a web app. Here, we'll make a basic layout before populating it.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create the header of our app\nheader <- dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n)\n\n\n# create dashboard body - this is the major UI element\nbody <- dashboardBody(\n\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n \n # make first column, 25% of page - width = 3 of 12 columns\n column(width = 3,\n \n \n # Box 1: text explaining what this app is\n #-----------------------------------------------\n box( width = NULL,\n status=\"primary\", # this line can change the automatic color of the box.\n title = NULL,\n p(\"here, we'll include some info about this app\")\n\n \n ), # end box 1\n \n \n # box 2 : input for selecting volcano type\n #-----------------------------------------------\n box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T, \n \n p(\"here, we'll add a UI element for selecting volcano types\"),\n\n ), # end box 2\n \n \n \n # box 3: ggplot of selected volcanoes by continent\n #------------------------------------------------\n box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\",\n p(\"here, we'll add a bar plot of volcanoes in each continent\")\n ) # end box 3\n \n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n #--------------------------------------------------\n column(width = 9,\n # Box 4: leaflet map\n box(width = NULL, background = \"light-blue\", height = 850,\n p(\"here, we'll show volcanoes on a map\"),\n ) # end box with map\n ) # end second column\n \n ) # end fluidrow\n) # end body\n\n\n# add elements together\ndashboardPage(\n skin = \"blue\",\n header = header,\n sidebar = dashboardSidebar(disable = TRUE), # here, we only have one tab of our app, so we don't need a sidebar\n body = body\n)\n```\n:::\n\n\n![](images/shiny_dashboard_layout.png)\n\n## Populating the Layout\n\nNow, we are going to fill out app with elements. In this app, we will only have one user input: a selection of the volcano type to show. We will use this input (`input$volcano_type`), which will be used to filter data in the server (i.e. make a smaller dataset using only volcanoes of the selected types), then use this filtered dataset to create output elements (plots and maps).\n\nBelow, we show the necessary code to include in both the UI and the Server to create each plot element. Notice that after the reactive value `selected_volcanoes` is created in the selection box, this is the only object that is used to create the other elements in the app.\n\n| Location | Element | UI | Server |\n|:----------------|:----------------|:------------------|:------------------|\n| Box 1 | **Intro Textbox** | Markdown/HTML text code | |\n| Box 2 | **Selection Wigets** | `checkboxGroupButtons(` `inputID = \"volcano_type\")` | `selected_volcanoes <- reactive({` `volcano_df %>% filter(type %in% input$volcano_type)})` to create a filtered dataset that will react to user input |\n| Box 3 | **Bar Graph** | `plotOutput(\"continentplot\")` | `output$continentplot <- renderPlot(...))` which will plot from the `selectied_volcanoes` reactive object |\n| Box 4 | **Leaflet Map** | `leafletOutput(\"volcanomap\")` | `output$volcanomap <- renderLeaflet(...)` to map points from the `selectied_volcanoes` reactive object |\n\n![](images/populated_shiny.png)\n\n## Challenge!\n\nUse the code provided to add your own additional user input to the Shiny App. The code (which you can access [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) leaves a space for an additional UI input inside box 2). Then, you'll need to use your new input element to the reactive value in the Server, as noted in the server code.\n\nUse the [Default Shiny Widgets](https://shiny.rstudio.com/gallery/widget-gallery.html) or [shinyWidgets extended package](http://shinyapps.dreamrs.fr/shinyWidgets/) galleries to explore the types of elements you can add.\n\n![](images/add_elements_diagram.png)\n\n### See the completed app\n\nSee our completed app [HERE](https://jakelawlor.shinyapps.io/Volcanoes_of_the_World/)\n\n# Constructing a Shiny app using Golem\n\nFirst step is creating your own golem project:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.25.32.png)\n\nGolem provides you with some very helpful \"workflow\" scripts:\n\nEdit the Description by filling in this function in `01_dev.R`\n\nThen, add all the dependencies\n\nTogether, this edits the `DESCRIPTION` of your R package to look something like this:\n\nNow we can start building the app.\n\n\n::: {.cell}\n\n```{.r .cell-code}\napp_ui <- function(request) {\n tagList(\n # Leave this function for adding external resources\n golem_add_external_resources(),\n # Your application UI logic \n shinydashboard::dashboardPage(\n header = shinydashboard::dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n ),\n sidebar = shinydashboard::dashboardSidebar(disable = TRUE), # here, we only have one tab, so we don't need a sidebar\n body = shinydashboard::dashboardBody(\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n # make first column, 25% of page - width = 3 of 12 colums\n column(width = 3,\n # box 1 : input for selecting volcano type\n #-----------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T\n \n ## CHECKBOX HERE\n \n ), # end box 1\n # box 2: ggplot of selected volcanoes by continent\n #------------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\"\n \n ## PLOT HERE\n\n ) # end box 2\n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n column(width = 9,\n \n # Box 3: leaflet map\n shinydashboard::box(width = NULL, background = \"light-blue\"\n \n ## MAP HERE \n \n ) # end box with map\n ) # end second column\n ) # end fluidrow\n ) # end body\n )\n )\n}\n```\n:::\n\n\nThis indicates where each of the three components of the app would go.\n\nAt this point we can run the app to get a very empty-looking UI:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.58.08.png)\n\n### Golem modules\n\nWe could split this app into three different sections, corresponding to each of the three boxes:\n\n1. Filter the type of volcano we see\n2. take the filtered volcanoes and plot a stacked bar chart\n3. take the filtered volcanoes and plot a map\n\n### Selecting the volcanoes\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#' volcano_select UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_volcano_select_ui <- function(id){\n ns <- NS(id)\n tagList(\n # Widget specifying the species to be included on the plot\n shinyWidgets::checkboxGroupButtons(\n inputId = ns(\"volcano_type\"),\n label = \"Volcano Type\",\n choices = c(\"Stratovolcano\" , \"Shield\" ,\"Cone\" , \"Caldera\" , \"Volcanic Field\",\n \"Complex\" , \"Other\", \"Lava Dome\" , \"Submarine\" ),\n checkIcon = list(\n yes = tags$i(class = \"fa fa-check-square\", \n style = \"color: steelblue\"),\n no = tags$i(class = \"fa fa-square-o\", \n style = \"color: steelblue\"))\n ) # end checkboxGroupButtons\n )\n}\n \n#' volcano_select Server Functions\n#'\n#' @noRd \nmod_volcano_select_server <- function(id, volcano){\n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n # make reactive dataset\n # ------------------------------------------------\n # Make a subset of the data as a reactive value\n # this subset pulls volcano rows only in the selected types of volcano\n selected_volcanoes <- reactive({\n \n req(input$volcano_type)\n \n volcano %>%\n \n # select only volcanoes in the selected volcano type (by checkboxes in the UI)\n dplyr::filter(volcano_type_consolidated %in% input$volcano_type) %>%\n # Space to add your suggested filter here!! \n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # filter() %>%\n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # change volcano type into factor (this makes plotting it more consistent)\n dplyr::mutate(volcano_type_consolidated = factor(volcano_type_consolidated,\n levels = c(\"Stratovolcano\" , \"Shield\", \"Cone\", \"Caldera\", \"Volcanic Field\",\n \"Complex\" , \"Other\" , \"Lava Dome\" , \"Submarine\" ) ) )\n })\n \n })\n}\n \n## To be copied in the UI\n# mod_volcano_select_ui(\"volcano_select_1\")\n \n## To be copied in the server\n# mod_volcano_select_server(\"volcano_select_1\")\n```\n:::\n\n\nI also like to test my modules by using them to create a toy Shiny app. The best place to do this is by using a testthat directory. This is another great advantage of using a package workflow. You can set this up easily with `usethis::use_test()`: just run `usethis::use_test` from the R console when you have the module open.\n\nThen write a simple test like this\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntest_that(\"volcano selection module works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_volcano_select_ui(\"volcano_select_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n selected_data <- mod_volcano_select_server(\"volcano_select_1\",\n volcano = volcano_data)\n \n output$table <- renderTable(selected_data())\n }\n \n shinyApp(ui = ui, server = server)\n \n})\n```\n:::\n\n\nWhich generates the following simple app:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2006.25.38.png)\n\n### Barplot of continents\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#' continentplot UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_continentplot_ui <- function(id){\n ns <- NS(id)\n tagList(\n plotOutput(ns(\"barplot\"), # this calls to object continentplot that is made in the server page\n height = 350)\n )\n}\n \n#' continentplot Server Functions\n#'\n#' @noRd \nmod_continentplot_server <- function(id, volcano, selected_volcanoes){\n \n # kind of helpful\n stopifnot(is.reactive(selected_volcanoes))\n \n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n output$barplot <- renderPlot({\n \n # create basic barplot\n barplot <- ggplot2::ggplot(data = volcano,\n ggplot2::aes(x=continent,\n fill = volcano_type_consolidated))+\n # update theme and axis labels:\n ggplot2::theme_bw()+\n ggplot2::theme(plot.background = ggplot2::element_rect(color=\"transparent\",fill = \"transparent\"),\n panel.background = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"),\n panel.border = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"))+\n ggplot2::labs(x=NULL, y=NULL, title = NULL) +\n ggplot2::theme(axis.text.x = ggplot2::element_text(angle=45,hjust=1))\n \n \n # IF a selected_volcanoes() object exists, update the blank ggplot. \n # basically this makes it not mess up when nothing is selected\n \n barplot <- barplot +\n ggplot2::geom_bar(data = selected_volcanoes(), show.legend = F) +\n ggplot2::scale_fill_manual(values = RColorBrewer::brewer.pal(9,\"Set1\"), drop=F) +\n ggplot2::scale_x_discrete(drop=F)\n \n \n # print the plot\n barplot\n \n }) # end renderplot command\n \n \n })\n}\n \n## To be copied in the UI\n# mod_continentplot_ui(\"continentplot_1\")\n \n## To be copied in the server\n# mod_continentplot_server(\"continentplot_1\")\n```\n:::\n\n\nthe test\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntest_that(\"volano barplot works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_continentplot_ui(\"continentplot_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n volcano_recent <- subset(volcano_data, last_eruption_year > 2000)\n mod_continentplot_server(\"continentplot_1\",\n volcano = volcano_data,\n selected_volcanoes = reactive(volcano_recent))\n }\n \n shinyApp(ui = ui, server = server)\n})\n```\n:::\n", + "markdown": "---\ntitle: \"Introduction to Shiny Apps\"\ndescription: |\n Introduction to interactive app development with R Shiny. \nauthor:\n - name: Katherine Hébert\n - name: Andrew MacDonald\n - name: Jake Lawlor\n - name: Vincent Bellevance\ndate: \"06-22-2021\"\nimage: image.jpg\ncategories: [Technical, Fellow contributed, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n## Why do you want to use Shiny?\n\nThere are many reasons to consider using Shiny for a project:\n\n- Sharing results from a paper with your readers;\n- Helping you explore a model, mathematics, simulations;\n- Letting non R users use R.\n\n## Hello Shiny!\n\nHere is an example of a Shiny app that RStudio generates when you open a new Shiny Web App file:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for app that draws a histogram ----\nui <- fluidPage(\n\n # App title ----\n titlePanel(\"Hello Shiny!\"),\n\n # Sidebar layout with input and output definitions ----\n sidebarLayout(\n\n # Sidebar panel for inputs ----\n sidebarPanel(\n\n # Input: Slider for the number of bins ----\n sliderInput(inputId = \"bins\",\n label = \"Number of bins:\",\n min = 1,\n max = 50,\n value = 30)\n\n ),\n\n # Main panel for displaying outputs ----\n mainPanel(\n\n # Output: Histogram ----\n plotOutput(outputId = \"distPlot\")\n\n )\n )\n)\n```\n:::\n\n\n\n# How a Shiny app works\n\n## Building blocks\n\nWe've now seen the basic building blocks of a Shiny app:\n\n- The **user interface**, which determines how the app \"looks\". This is how we tell Shiny where to ask for user inputs, and where to put any outputs we create.\n- **Reactive values**, which are values that change according to user inputs. These are values that affect the outputs we create in the Shiny app, such as tables or plots.\n- The **server**, where we use reactive values to generate some outputs.\n\n### IDs\n\nThe **user interface** and **server** communicate through IDs that we assign to inputs from the user and outputs from the server.\n\n![](images/app-ids.png)\n\nWe use an ID (*in orange*) to link the user input in the UI to the reactive values used in the server:\n\n![](images/app-reactiveid.png)\n\nWe use another ID (*in blue*) to link the output created in the server to the output shown in the user interface:\n\n![](images/app-output.png)\n\n### Organisation\n\nThese elements can all be placed in one script named `app.R` or separately in scripts named `ui.R` and `server.R`. The choice is up to you, although it becomes easier to work in separate `ui.R` and `server.R` scripts when the Shiny app becomes more complex.\n\n**Example 1: Everything in `app.R`**\n\n![](images/app-in1.png) **Example 2: Split things into `ui.R` and `server.R`**\n\n![](images/app-in2.png)\n\n## Plots\n\nShiny is an excellent tool for visual exploration - it is at its most useful when a user can *see* something change before their eyes according to some selections. This is a great way to allow users to explore a dataset, explore the results of some analyses according to different parameters, and so on!\n\nLet's now add a plot to our Shiny app, to visualize the distribution of a variable depending on user input. We'll be adding the `ggplot2` and `ggridges` packages in the set-up step at the top of our `app.R` to allow us to make a plot.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load packages\nlibrary(shiny)\nlibrary(ggridges)\nlibrary(ggplot2)\nlibrary(here)\nlibrary(readr)\n```\n:::\n\n\n### User interface\n\nTo add a plot in our Shiny, we need to indicate where the plot should appear in the app. We can do this with `plotOutput()`, a similar function to `tableOutput()` in the previous section that is meant for plot outputs, as the name suggests.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n )\n)\n```\n:::\n\n\nNow our Shiny app knows where we want to place our plot.\n\n### Server\n\nWe now need to create the plot we want to show in our app. This plot will change depending on one or several reactive values that the user can input or select in our UI.\n\nWe link the UI and server together with IDs that are assigned to each object. Above, we told the UI to expect a plot output with the ID `\"ridgePlot\"`. In the server, we will create a plot and render it as a plot object using `renderPlot()`, and we will assign this plot output to the ID we call in the UI (as `output$ridgePlot`).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n\n \n # prepare the data\n # ----------------------------------------------------------\n \n # read the dataset\n eruptions <- readr::read_rds(here::here(\"data\", \"eruptions.rds\"))\n \n # filter the dataset to avoid overloading the plot \n eruptions <- eruptions[which(eruptions$volcano_name %in% names(which(table(eruptions$volcano_name) > 30))),]\n # this subsets to volcanoes that have erupted more than 30 times\n \n \n # make reactive dataset\n # ----------------------------------------------------------\n \n # subset volcano data with input year range\n eruptions_filtered <- reactive({\n subset(eruptions, start_year >= input$years[1] & end_year <= input$years[2])\n })\n \n \n # create and render the outputs\n # ----------------------------------------------------------\n \n # create the table of volcanoes\n output$erupt_table <- renderTable({\n head(eruptions_filtered())\n })\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name,\n fill = volcano_name)) +\n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges( size = .5) + # line width\n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # adjust the ggplot theme to make the plot \"prettier\"\n theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n}\n```\n:::\n\n\n### The Shiny app\n\nNow, if we run the Shiny app, we have a plot above the table we made previously. They are positioned in this way because the `plotOutput()` comes before the `tableOutput()` in the UI.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Run the application\nshinyApp(ui = ui, server = server)\n```\n:::\n\n\n![](images/plotOutput.png)\n\n## Customising the theme\n\nIf you'd like to go one step further, you can also customize the appearance of your Shiny app using built-in themes, or creating your own themes.\n\n### Using built-in themes\n\nThere are several built-in themes in Shiny, which allow you to quickly change the appearance of your app. You can browse a gallery of available themes here [here](https://rstudio.github.io/shinythemes/), or test themes out interactively [here](https://shiny.rstudio.com/gallery/shiny-theme-selector.html).\n\nLet's try the *darkly* theme on our Shiny app. To do this, we will need the `shinythemes` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(shinythemes)\n```\n:::\n\n\nWe can change the theme of our previous app with one line of code:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use the darkly theme\n theme = shinythemes::shinytheme(\"darkly\")\n)\n```\n:::\n\n\nNow, if we run the app, it looks a little different:\n\n![](images/darklytheme.png)\n\n### Using a custom theme\n\nYou can also go beyond the built-in themes, and create your own custom theme with the fonts and colours of your choice. You can also apply this theme to the outputs rendered in the app, to bring all the visuals together for a more cohesive look.\n\n#### Customizing a theme\n\nTo create a custom theme, we will be using the `bs_theme()` function from the `bslib` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(bslib)\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# Create a custom theme \ncute_theme <- bslib::bs_theme(\n \n bg = \"#36393B\", # background colour\n fg = \"#FFD166\", # most of the text on your app\n primary = \"#F26430\", # buttons, ...\n \n # you can also choose fonts\n base_font = font_google(\"Open Sans\"),\n heading_font = font_google(\"Open Sans\")\n)\n```\n:::\n\n\nTo apply this theme to our Shiny app (and the outputs), we will be using the `thematic` package.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(thematic)\n```\n:::\n\n\nThere are two essential steps to apply a custom theme to a Shiny app:\n\n1. Activating thematic.\n2. Setting the user interface's theme to the custom theme (`cute_theme`).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Activate thematic\n# so your R outputs will be changed to match up with your chosen styling\nthematic::thematic_shiny()\n\n# Define UI for application that makes a table andplots the Volcano Explosivity \n# Index for the most eruptive volcanoes within a selected range of years\n\nui <- fluidPage(\n \n # Application title ----\n \n titlePanel(\"Exploring volcano explosivity\"),\n \n # Input interface ----\n \n sidebarLayout(\n sidebarPanel(\n \n # Sidebar with a slider range input\n sliderInput(\"years\", # the id your server needs to use the selected value\n label = h3(\"Years\"),\n min = 1900, max = 2020, # maximum range that can be selected\n value = c(2010, 2020) # this is the default slider position\n )\n )\n ),\n \n # Show the outputs from the server ---------------\n mainPanel(\n \n # Show a ridgeplot of explosivity index for selected volcanoes\n plotOutput(\"ridgePlot\"),\n \n # then, show the table we made in the previous step\n tableOutput(\"erupt_table\")\n \n ),\n \n # Customize the theme ----------------------\n \n # Use our custom theme\n theme = cute_theme\n)\n```\n:::\n\n\nNow, if we run the app, the user interface and plot theme is set to the colours and fonts we set in `cute_theme`:\n\n![](images/thematic.png)\n\nHere, `thematic` is not changing the colours used to represent a variable in our plot, because this is an informative colour scale (unlike the colour of axis labels, lines, and the plot background). However, if we remove this colour variable in our ridgeplot in the server, thematic will change the plot colours as well. Here is a simplified example of our server to see what these changes would look like:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Define server logic required to make your output(s)\nserver <- function(input, output) {\n \n #... (all the good stuff we wrote above)\n \n # render the plot output\n output$ridgePlot <- renderPlot({\n \n # create the plot\n ggplot(data = eruptions_filtered(),\n aes(x = vei,\n y = volcano_name)) + # we are no longer setting \n # the fill argument to a variable\n \n # we are using a ridgeplot geom here, from the ggridges package\n geom_density_ridges(size = .5) + \n \n # label the axes\n labs(x = \"Volcano Explosivity Index\", y = \"\") +\n \n # remove the \"classic\" ggplot2 so it doesn't override thematic's changes\n # theme_classic() + \n theme(legend.position = \"none\",\n axis.text = element_text(size = 12, face = \"bold\"),\n axis.title = element_text(size = 14, face = \"bold\"))\n })\n }\n```\n:::\n\n\nNow, our plot's theme follows the app's custom theme as well:\n\n![](images/thematic_plot.png)\n\n\n# Constructing a Shiny app using shinyDashboards\n\n## Taking advantage of good defaults\n\nHere, we will use shiny extension `shinyDashboards` and `leaflet` to construct a custom Shiny App to map volcanoes of the world. First, we need a few additional packages.\n\n**Note: All Source code for this app can be found [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) on the BIOS2 Github.**\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load packages\nlibrary(shiny)\nlibrary(shinydashboard) # dashboard layout package\nlibrary(shinyWidgets) # fancy widgets package\nlibrary(leaflet) # interactive maps package\nlibrary(dplyr)\nlibrary(ggplot2)\n```\n:::\n\n\n### Using ShinyDashboard\n\nWe will create our app using defaults from the ShinyDashboard package, which always includes three main components: a header, using `dashboardHeader()`, a sidebar, using `dashboardSidebar()`, and a body, using `dashboardBody()`. These are then added together using the `dashboardPage()` function.\n\nBuilding these elements is less like usual R coding, and more like web design, since we are, in fact, designing a unser interface for a web app. Here, we'll make a basic layout before populating it.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create the header of our app\nheader <- dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n)\n\n\n# create dashboard body - this is the major UI element\nbody <- dashboardBody(\n\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n \n # make first column, 25% of page - width = 3 of 12 columns\n column(width = 3,\n \n \n # Box 1: text explaining what this app is\n #-----------------------------------------------\n box( width = NULL,\n status=\"primary\", # this line can change the automatic color of the box.\n title = NULL,\n p(\"here, we'll include some info about this app\")\n\n \n ), # end box 1\n \n \n # box 2 : input for selecting volcano type\n #-----------------------------------------------\n box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T, \n \n p(\"here, we'll add a UI element for selecting volcano types\"),\n\n ), # end box 2\n \n \n \n # box 3: ggplot of selected volcanoes by continent\n #------------------------------------------------\n box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\",\n p(\"here, we'll add a bar plot of volcanoes in each continent\")\n ) # end box 3\n \n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n #--------------------------------------------------\n column(width = 9,\n # Box 4: leaflet map\n box(width = NULL, background = \"light-blue\", height = 850,\n p(\"here, we'll show volcanoes on a map\"),\n ) # end box with map\n ) # end second column\n \n ) # end fluidrow\n) # end body\n\n\n# add elements together\ndashboardPage(\n skin = \"blue\",\n header = header,\n sidebar = dashboardSidebar(disable = TRUE), # here, we only have one tab of our app, so we don't need a sidebar\n body = body\n)\n```\n:::\n\n\n![](images/shiny_dashboard_layout.png)\n\n## Populating the Layout\n\nNow, we are going to fill out app with elements. In this app, we will only have one user input: a selection of the volcano type to show. We will use this input (`input$volcano_type`), which will be used to filter data in the server (i.e. make a smaller dataset using only volcanoes of the selected types), then use this filtered dataset to create output elements (plots and maps).\n\nBelow, we show the necessary code to include in both the UI and the Server to create each plot element. Notice that after the reactive value `selected_volcanoes` is created in the selection box, this is the only object that is used to create the other elements in the app.\n\n| Location | Element | UI | Server |\n|:----------------|:----------------|:-------------------|:-------------------|\n| Box 1 | **Intro Textbox** | Markdown/HTML text code | |\n| Box 2 | **Selection Wigets** | `checkboxGroupButtons(` `inputID = \"volcano_type\")` | `selected_volcanoes <- reactive({` `volcano_df %>% filter(type %in% input$volcano_type)})` to create a filtered dataset that will react to user input |\n| Box 3 | **Bar Graph** | `plotOutput(\"continentplot\")` | `output$continentplot <- renderPlot(...))` which will plot from the `selectied_volcanoes` reactive object |\n| Box 4 | **Leaflet Map** | `leafletOutput(\"volcanomap\")` | `output$volcanomap <- renderLeaflet(...)` to map points from the `selectied_volcanoes` reactive object |\n\n![](images/populated_shiny.png)\n\n## Challenge!\n\nUse the code provided to add your own additional user input to the Shiny App. The code (which you can access [here](https://github.com/bios2/shiny_day_2/tree/main/Jake_volcano_map/Volcano_Leaflet) leaves a space for an additional UI input inside box 2). Then, you'll need to use your new input element to the reactive value in the Server, as noted in the server code.\n\nUse the [Default Shiny Widgets](https://shiny.rstudio.com/gallery/widget-gallery.html) or [shinyWidgets extended package](http://shinyapps.dreamrs.fr/shinyWidgets/) galleries to explore the types of elements you can add.\n\n![](images/add_elements_diagram.png)\n\n### See the completed app\n\nSee our completed app [HERE](https://jakelawlor.shinyapps.io/Volcanoes_of_the_World/)\n\n\n# Constructing a Shiny app using Golem\n\nFirst step is creating your own golem project:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.25.32.png)\n\nGolem provides you with some very helpful \"workflow\" scripts:\n\nEdit the Description by filling in this function in `01_dev.R`\n\nThen, add all the dependencies\n\nTogether, this edits the `DESCRIPTION` of your R package to look something like this:\n\nNow we can start building the app.\n\n\n::: {.cell}\n\n```{.r .cell-code}\napp_ui <- function(request) {\n tagList(\n # Leave this function for adding external resources\n golem_add_external_resources(),\n # Your application UI logic \n shinydashboard::dashboardPage(\n header = shinydashboard::dashboardHeader(\n title = \"Exploring Volcanoes of the World\",\n titleWidth = 350 # since we have a long title, we need to extend width element in pixels\n ),\n sidebar = shinydashboard::dashboardSidebar(disable = TRUE), # here, we only have one tab, so we don't need a sidebar\n body = shinydashboard::dashboardBody(\n # make first row of elements (actually, this will be the only row)\n fluidRow(\n # make first column, 25% of page - width = 3 of 12 colums\n column(width = 3,\n # box 1 : input for selecting volcano type\n #-----------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n title = \"Selection Criteria\", solidHeader = T\n \n ## CHECKBOX HERE\n \n ), # end box 1\n # box 2: ggplot of selected volcanoes by continent\n #------------------------------------------------\n shinydashboard::box(width = NULL, status = \"primary\",\n solidHeader = TRUE, collapsible = T,\n title = \"Volcanoes by Continent\"\n \n ## PLOT HERE\n\n ) # end box 2\n ), # end column 1\n \n # second column - 75% of page (9 of 12 columns)\n column(width = 9,\n \n # Box 3: leaflet map\n shinydashboard::box(width = NULL, background = \"light-blue\"\n \n ## MAP HERE \n \n ) # end box with map\n ) # end second column\n ) # end fluidrow\n ) # end body\n )\n )\n}\n```\n:::\n\n\nThis indicates where each of the three components of the app would go.\n\nAt this point we can run the app to get a very empty-looking UI:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2005.58.08.png)\n\n### Golem modules\n\nWe could split this app into three different sections, corresponding to each of the three boxes:\n\n1. Filter the type of volcano we see\n2. take the filtered volcanoes and plot a stacked bar chart\n3. take the filtered volcanoes and plot a map\n\n### Selecting the volcanoes\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#' volcano_select UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_volcano_select_ui <- function(id){\n ns <- NS(id)\n tagList(\n # Widget specifying the species to be included on the plot\n shinyWidgets::checkboxGroupButtons(\n inputId = ns(\"volcano_type\"),\n label = \"Volcano Type\",\n choices = c(\"Stratovolcano\" , \"Shield\" ,\"Cone\" , \"Caldera\" , \"Volcanic Field\",\n \"Complex\" , \"Other\", \"Lava Dome\" , \"Submarine\" ),\n checkIcon = list(\n yes = tags$i(class = \"fa fa-check-square\", \n style = \"color: steelblue\"),\n no = tags$i(class = \"fa fa-square-o\", \n style = \"color: steelblue\"))\n ) # end checkboxGroupButtons\n )\n}\n \n#' volcano_select Server Functions\n#'\n#' @noRd \nmod_volcano_select_server <- function(id, volcano){\n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n # make reactive dataset\n # ------------------------------------------------\n # Make a subset of the data as a reactive value\n # this subset pulls volcano rows only in the selected types of volcano\n selected_volcanoes <- reactive({\n \n req(input$volcano_type)\n \n volcano %>%\n \n # select only volcanoes in the selected volcano type (by checkboxes in the UI)\n dplyr::filter(volcano_type_consolidated %in% input$volcano_type) %>%\n # Space to add your suggested filter here!! \n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # filter() %>%\n # --- --- --- --- --- --- --- --- --- --- --- --- ---\n # change volcano type into factor (this makes plotting it more consistent)\n dplyr::mutate(volcano_type_consolidated = factor(volcano_type_consolidated,\n levels = c(\"Stratovolcano\" , \"Shield\", \"Cone\", \"Caldera\", \"Volcanic Field\",\n \"Complex\" , \"Other\" , \"Lava Dome\" , \"Submarine\" ) ) )\n })\n \n })\n}\n \n## To be copied in the UI\n# mod_volcano_select_ui(\"volcano_select_1\")\n \n## To be copied in the server\n# mod_volcano_select_server(\"volcano_select_1\")\n```\n:::\n\n\nI also like to test my modules by using them to create a toy Shiny app. The best place to do this is by using a testthat directory. This is another great advantage of using a package workflow. You can set this up easily with `usethis::use_test()`: just run `usethis::use_test` from the R console when you have the module open.\n\nThen write a simple test like this\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntest_that(\"volcano selection module works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_volcano_select_ui(\"volcano_select_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n selected_data <- mod_volcano_select_server(\"volcano_select_1\",\n volcano = volcano_data)\n \n output$table <- renderTable(selected_data())\n }\n \n shinyApp(ui = ui, server = server)\n \n})\n```\n:::\n\n\nWhich generates the following simple app:\n\n![](Capture%20d%E2%80%99e%CC%81cran,%20le%202021-06-23%20a%CC%80%2006.25.38.png)\n\n### Barplot of continents\n\n\n::: {.cell}\n\n```{.r .cell-code}\n#' continentplot UI Function\n#'\n#' @description A shiny Module.\n#'\n#' @param id,input,output,session Internal parameters for {shiny}.\n#'\n#' @noRd \n#'\n#' @importFrom shiny NS tagList \nmod_continentplot_ui <- function(id){\n ns <- NS(id)\n tagList(\n plotOutput(ns(\"barplot\"), # this calls to object continentplot that is made in the server page\n height = 350)\n )\n}\n \n#' continentplot Server Functions\n#'\n#' @noRd \nmod_continentplot_server <- function(id, volcano, selected_volcanoes){\n \n # kind of helpful\n stopifnot(is.reactive(selected_volcanoes))\n \n moduleServer( id, function(input, output, session){\n ns <- session$ns\n \n output$barplot <- renderPlot({\n \n # create basic barplot\n barplot <- ggplot2::ggplot(data = volcano,\n ggplot2::aes(x=continent,\n fill = volcano_type_consolidated))+\n # update theme and axis labels:\n ggplot2::theme_bw()+\n ggplot2::theme(plot.background = ggplot2::element_rect(color=\"transparent\",fill = \"transparent\"),\n panel.background = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"),\n panel.border = ggplot2::element_rect(color=\"transparent\",fill=\"transparent\"))+\n ggplot2::labs(x=NULL, y=NULL, title = NULL) +\n ggplot2::theme(axis.text.x = ggplot2::element_text(angle=45,hjust=1))\n \n \n # IF a selected_volcanoes() object exists, update the blank ggplot. \n # basically this makes it not mess up when nothing is selected\n \n barplot <- barplot +\n ggplot2::geom_bar(data = selected_volcanoes(), show.legend = F) +\n ggplot2::scale_fill_manual(values = RColorBrewer::brewer.pal(9,\"Set1\"), drop=F) +\n ggplot2::scale_x_discrete(drop=F)\n \n \n # print the plot\n barplot\n \n }) # end renderplot command\n \n \n })\n}\n \n## To be copied in the UI\n# mod_continentplot_ui(\"continentplot_1\")\n \n## To be copied in the server\n# mod_continentplot_server(\"continentplot_1\")\n```\n:::\n\n\nthe test\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntest_that(\"volano barplot works\", {\n \n testthat::skip_if_not(interactive())\n \n \n ui <- fluidPage(\n ## To be copied in the UI\n mod_continentplot_ui(\"continentplot_1\"),\n tableOutput(\"table\")\n )\n \n server <- function(input, output) {\n ## To be copied in the server\n volcano_data <- readRDS(\"data/volcanoes.rds\")\n volcano_recent <- subset(volcano_data, last_eruption_year > 2000)\n mod_continentplot_server(\"continentplot_1\",\n volcano = volcano_data,\n selected_volcanoes = reactive(volcano_recent))\n }\n \n shinyApp(ui = ui, server = server)\n})\n```\n:::\n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/posts/2021-07-19-glm-community-ecology/index/execute-results/html.json b/_freeze/posts/2021-07-19-glm-community-ecology/index/execute-results/html.json index db79c02..d6c2685 100644 --- a/_freeze/posts/2021-07-19-glm-community-ecology/index/execute-results/html.json +++ b/_freeze/posts/2021-07-19-glm-community-ecology/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "451d4b28d224696937c4b5cadfee9f03", + "hash": "599c62c08e61ed5ea558aa2e68f42c7b", "result": { - "markdown": "---\ntitle: \"Generalized Linear Models for Community Ecology\"\ndescription: \"In this workshop we will explore, discuss, and apply generalized linear models to combine information on species distributions, traits, phylogenies, environmental and landscape variation. We will also discuss inference under spatial and phylogenetic autocorrelation under fixed and random effects implementations. We will discuss technical elements and cover implementations using R.\"\nauthor:\n - name: \"Pedro Peres-Neto\"\n affiliation: Concordia University\ndate: \"05-17-2021\"\nimage: image.jpg\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nGeneralized Linear Model for Community Ecology \n\nPedro Peres-Neto, Concordia University \nBIOS2 workshop, May 17 to 21, 2021 \nThis document was put together for the first time for this workshop. \nLet me know if you have suggestions or find any issues in the document. \n
\n\n**Tentative schedule**\n\n* Day 1: \n Introduction to types of data and approaches using GLMs in community ecology. \n Types of patterns in species distributions involving trait and environmental variation. \n Simulating data as a path to understand GLMs in community ecology. \n The simplest GLM: widely used bivariate correlations. \n The challenges of statistical inference regarding linking different types of information from communities and species. \n Understanding estimators and their properties in GLMs. \n\n* Day 2: \n From bivariate correlations to a variety of more complex GLMs: the case of Binomial and Poisson. \n The role of latents in specifying GLMs for community ecology. \n The issues underlying autocorrelation in ecological data: the cases of spatial and phylogenetic autocorrelation. \n Simple GLMM approaches (Generalized Linear Mixed Models). \n\n* Day 3: \n More complex GLMM approaches. \n Potential approaches for incorporating intraspecific data on traits. \n Discussion with participants: your research interests, your questions or your data (or anything really).\n\n**Philosophy:** We can't cover everything with extreme details. I've chosen a level that should be interesting enough and cover many different important aspects of GLMs applied to community ecology.\n\n**Note:** I mostly apply here base functions so that participants without strong knowledge of certain packages (e.g., ggplot, dplyr) can follow the code more easily. \n\n**Questions:** Participants should feel free to ask questions either directly or in the zoom chat. I've also set a good doc where participants can put questions there during the week when we are not connected. I'll read them and try to provide an answer or cover the question somehow: \n\nhttps://docs.google.com/document/d/17GQvGkBFs9MmLv6Yn473_Dr1t1Ps03VdHOHMhbZhBKk/edit\n\n
\n\n
**Simulating data**
\n\nSimulating a single species \n\nOne way to develop good intuition underlying quantitative methods is to be able to simulate data according to certain desired characteristics. We can then apply methods (GLMs here) to see how well they retrieve the data characteristics. \n\nLet's start with a very simple GLM, the logistic regression for one single species. Here, for simplicity, we considered one predictor. In many ecological simulations, this single predictor is considered an \"environmental gradient\" containing many environmental predictors. We can consider more gradients and we will discuss that later on in the workshop.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(100) # so that we all have the same results\nn.sites <- 100\nX <- rnorm(n.sites)\nb0 <- 0.5 # controls the max prob. values\nprob.presence <- 1./(1+exp(-(b0+3*X)))\nplot(prob.presence ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-1-1.png){width=576}\n:::\n:::\n\n\nThis model is pretty simple and its form is:\n\n$$p=\\frac{1}{1+e^{-(\\beta_0+\\beta_1X_1)}} = \\frac{1}{1+e^{-(0.5+3X_1)}}$$\n\nNow let's generate presences and absences according to the logistic model expectation. Since is a logistic model, we use `rbinom`,i.e., binomial trials:\n\n::: {.cell}\n\n```{.r .cell-code}\nDistribution <- rbinom(n.sites,1,prob.presence)\n```\n:::\n\n```\nView(cbind(prob.presence,Distribution))\n```\n\nLet's model the data using logistic regression:\n\n::: {.cell}\n\n```{.r .cell-code}\nmodel <- glm(Distribution ~ X,family=binomial(link=logit))\ncoefficients(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n(Intercept) X \n 0.09200133 3.66168492 \n```\n:::\n:::\n\n```\nView(cbind(prob.presence,Distribution,model$fitted.values))\n```\n\nPlotting the predicted versus the observed presence-absence values:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(model$fitted.values ~ Distribution)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-4-1.png){width=576}\n:::\n:::\n\n\nAt this point, we won't cover model diagnostics. Data were simulated according to the model and, as such, assumptions hold well. Plus, this is a single-species model; and this workshop is about community data, i.e., multiple species :).\n\nThis is a good blog explaining how to check for assumptions of logistic regressions.\n\nSimulating a more realistic single species \n\nSpecies don't tend to respond linearly to environmental features:\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](Gaussian.png){width=50%}\n:::\n:::\n\n\nNow that we understand some basics of presence-absence data, let's concentrate on more realistic species distribution data and multi-species data. There are many ways (found in the ecological literature) in which we can simulate these type of data. Below we will generate data using a standard Gaussian model for presence-absence data according to a trait and environmental feature (we will cover abundance data later on). This is a commonly used way to simulate data. Let's start with a single species and one environmental variable. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(100) # so that we all have the same results\nn.sites <- 100\nX <- rnorm(n.sites)\noptimum <- 0.2\nniche.breadth <- 0.5\nb0 <- 1 # controls the max prob. values\nb1 <- -2\n# this is a logistic model:\nprob.presence <- 1./(1+exp(-(b0+(b1*(X-optimum)^2)/(2*niche.breadth^2)))) \n```\n:::\n\n\nThis more \"complex\" model has the following form:\n\n$$p=\\frac{1}{1+e^{-(\\beta_0+\\beta_1\\frac{(X-\\mu)^2}{2\\sigma^2})}}=\\frac{1}{1+e^{-(1+2\\frac{(X-0.2)^2}{2\\cdot0.5^2})}}$$\nwhere $\\mu$ represents the species optimum and $\\sigma$ its niche breadth. \n\nLet's plot these probabilities:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(X,prob.presence,ylim=c(0,1))\n# plot optimum\nabline(v=optimum,col=\"red\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-7-1.png){width=576}\n:::\n:::\n\n\nNow let's simulate the distribution, i.e., presences and absences according to the model. Since is a logistic, we use `rbinom`,i.e., binomial trials:\n\n::: {.cell}\n\n```{.r .cell-code}\nDistribution <- rbinom(n.sites,1,prob.presence)\n```\n:::\n\n\nPlot the species distribution against the environmental variable:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(X,prob.presence,ylim=c(0,1))\nsites.present <- which(Distribution==1)\npoints(X[sites.present],Distribution[sites.present],col=\"green\",pch=16,cex=0.5)\nsites.absent <- which(Distribution==0)\npoints(X[sites.absent],Distribution[sites.absent],col=\"red\",pch=16,cex=0.5)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-9-1.png){width=576}\n:::\n:::\n\n\nThe parameters can be then estimated from the data using a logistic regression:\n\n::: {.cell}\n\n```{.r .cell-code}\npredictor <- cbind(X,X^2) \nmodel <- glm(Distribution ~ predictor,family=binomial(link=logit))\ncoeffs <- coefficients(model)\nb0 <- coeffs[1]\nb1 <- coeffs[2]\nb2 <- coeffs[3]\nestimated.optimum <- -b1/(2*b2) # as in ter Braak and Looman 1986\nestimated.niche.breadth <- 1/sqrt(-2*b2)\nc(estimated.optimum,estimated.niche.breadth) # estimated by the glm\n```\n\n::: {.cell-output .cell-output-stdout}\n```\npredictorX predictor \n 0.3317377 0.3922625 \n```\n:::\n\n```{.r .cell-code}\nc(optimum,niche.breadth) # set in our simulations above\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.2 0.5\n```\n:::\n:::\n\n\nWe can demonstrate computationally that the parameter estimations are unbiased as they are maximum likelihood via the GLM. Here we will be showing the sampling variation only for niche optimum and breadth. The other two parameters, $\\beta_0$ and $\\beta_1$ can be placed in the code below as well, demonstrating that they are also not biased. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nn.samples <- 1000\nestimation.matrix <- matrix(0,n.samples,2)\ncolnames(estimation.matrix) <- c(\"optimum\",\"niche.breadth\")\n# remember that we already set the parameters for the model above, i.e., optimum and niche breadth\nfor (i in 1:n.samples){\n X <- rnorm(n.sites)\n prob.presence <- 1./(1+exp((-b0+((X-optimum)^2)/(2*niche.breadth^2)))) # this is a logistic model\n Distribution <- rbinom(n.sites,1,prob.presence)\n predictor <- cbind(X,X^2) \n model <- glm(Distribution ~ predictor,family=binomial(link=logit))\n coeffs <- coefficients(model)\n intercept <- coeffs[1]\n b1 <- coeffs[2]\n b2 <- coeffs[3]\n estimation.matrix[i,\"optimum\"] <- -b1/(2*b2)\n estimation.matrix[i,\"niche.breadth\"] <- 1/sqrt(-2*b2)\n}\n```\n:::\n\nThere may be warnings \"glm.fit: fitted probabilities numerically 0 or 1 occurred\". But that is not a problem per se. It just tells us that the for some species, their models capture the distribution values perfectly. By the way, that also happens with real data. \n\nLet's observe the random variation around the parameter estimates and the average values:\n\n::: {.cell}\n\n```{.r .cell-code}\nboxplot(estimation.matrix)\nabline(h=apply(estimation.matrix,2,mean),col=\"firebrick\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-12-1.png){width=576}\n:::\n\n```{.r .cell-code}\napply(estimation.matrix,2,mean)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n optimum niche.breadth \n 0.2016913 0.4834230 \n```\n:::\n\n```{.r .cell-code}\nc(optimum,niche.breadth) # set in our simulations above\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.2 0.5\n```\n:::\n:::\n\nNote how the mean values are pretty close to the true values used to generate the data. This small simulation helps one understand the principles of sampling variation and unbiased estimation. \n\nSimulating multiple species \n\nNow, let's generalize our code to multiple species. We will create a function that allow us to make sure that all sites have at least one species present and all species are present at least in one site; this is a common (but not necessary) characteristic of data used in community ecology. \n\n\n::: {.cell}\n\n```{.r .cell-code}\ngenerate_communities <- function(tolerance,E,T,n.species,n.communities){\n repeat {\n # generates variation in niche breadth across species\n niche.breadth <- runif(n.species)*tolerance \n b0 <- runif(n.species,min=-4,max=4)\n prob.presence <- matrix(data=0,nrow=n.communities,ncol=n.species)\n Dist.matrix <- matrix(data=0,nrow=n.communities,ncol=n.species)\n for(j in 1:n.species){\n # species optima are trait values; which makes sense ecologically\n prob.presence[,j] <- 1./(1+exp((-b0[j]+((E-T[j])^2)/(2*niche.breadth[j]^2)))) \n Dist.matrix[,j] <- rbinom(n.communities,1,prob.presence[,j])\n }\n n_species_c <- sum(colSums(Dist.matrix)!=0) # _c for check\n n_communities_c <- sum(rowSums(Dist.matrix)!=0)\n if ((n_species_c == n.species) & (n_communities_c==n.communities)){break}\n }\n result <- list(Dist.matrix=Dist.matrix,prob.presence=prob.presence)\n return(result)\n}\n```\n:::\n\n\nNow let's generate a community. Note that we are using one environmental gradient and one trait. We could consider more variables (trait or environmental features) by adding terms to the logistic equation above. But for the time being, that will suffice. Note, thout, that in many ecological simulations, this single predictor is considered an \"environmental gradient\" containing many environmental predictors. We can consider more gradients and we will discuss that later on in the workshop. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(12351) # so that we all have the same results\nn.communities <- 100\nn.species <- 50\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nDist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\nProbs <- Dist$prob.presence\nDistribution <- Dist$Dist.matrix\n```\n:::\n\n\nLet's plot the probability values across environmental values. To do that nicely, we need to order the communities according to their environmental values as follows:\n\n::: {.cell}\n\n```{.r .cell-code}\nE.sorted <- sort(E, index.return=TRUE)\nProbs.sorted <- Probs[E.sorted$ix,]\nE.sorted <- E.sorted$x\nmatplot(E.sorted, Probs.sorted, cex.lab=1.5,cex.axis=2,lty = \"solid\", type = \"l\", pch = 1:10, cex = 0.8,\n xlab = \"Enviroment\", ylab = \"Probability of presence\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-15-1.png){width=576}\n:::\n:::\n\n\nAnd let's plot presences and absences against ordered environmental and trait values:\n\n::: {.cell}\n\n```{.r .cell-code}\nheatmap(as.matrix(Distribution),scale=\"none\",Rowv=E,Colv=T,col=c(\"white\",\"black\"),labCol=\"species\",labRow=\"communities\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-16-1.png){width=576}\n:::\n:::\n\n\n
\n\n
**Classic and simple GLMs for one trait and one environment (bivariate correlations)**
\n\nNow that we have a basic understanding of one GLM (logistic) and how they can model different types of community ecology data, i.e., species distributions, traits and environmental variation, we can start looking into approaches that that are used by ecologists to estimate the importance of environmental and trait variation to species distributions. \n\nLet's start by calculating the simplest and widely used metric of the community weighted trait mean:\n\n::: {.cell}\n\n```{.r .cell-code}\nCWM <- Distribution %*% T / rowSums(Distribution)\n```\n:::\n\nFor data that are based on presence-absence, this is simply the average of species trait values within communities. \n\nLet's now correlate CWM with the environment, i.e., community weighted means correlation. This is a widely used approach by ecologists:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(CWM ~ E)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-18-1.png){width=576}\n:::\n\n```{.r .cell-code}\ncor(CWM,E)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1]\n[1,] 0.9296338\n```\n:::\n:::\n\n\nAgain, the community weighted means correlation is likely the most commonly used approach with 1000s of studies having been published with it. \n\nAnother approach is to calculate the species weighted environment means and correlate with trait values. This approach is less common (but still quite used in the ecological literature) and is sometimes referred as to species niche centroid (SNC):\n\n\n::: {.cell}\n\n```{.r .cell-code}\nSNC <- t(E %*% Distribution) / colSums(Distribution)\n```\n:::\n\n\nLet's now correlate SNC with species traits:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(T ~ SNC)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-20-1.png){width=576}\n:::\n\n```{.r .cell-code}\ncor(T,SNC)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1]\n[1,] 0.7700065\n```\n:::\n:::\n\n\nNote that the two correlations (CWM- and SNC-based) differ. That's odd as they were both calculated on exactly the same information: the same Species Matrix, Environment and Trait. Peres-Neto, Dray & ter Braak (2017) demonstrated (mathematically) that this issue is related to the fact that although CWM and SNC are based on weights, they don't standardized and correlate them with the proper weights. CWM is based on averages calculated based on the sum of species (richness or total abundance per community) and SNC is based on averages calculated based on the number of communities in which species are presence (prevalence) or their total abundance. \n\nBecause of that, we have found (Peres-Neto et al. 2017) a few undesirable properties of these two correlations (CWM and SNC-based correlations). One is that when the correlation is expected to be zero, the sampling variation of these correlations are quite large (i.e., low precision). Let's evaluate this issue:\nBelow we generate data with structure, but then use a false trait completely independent of the original one, thus destroying the link between trait and environmental variation. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(120) # so that we all have the same results\nn.communities <- 100\nn.species <- 50\nn.samples <- 100 # set to larger later\n\nCWM.cor <- as.matrix(0,n.samples)\nfor (i in 1:n.samples){\n E <- rnorm(n.communities)\n T <- rnorm(n.species)\n Dist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\n T.false <- rnorm(n.species)\n CWM <- Dist$Dist.matrix %*% T.false / rowSums(Dist$Dist.matrix)\n CWM.cor[i] <- cor(CWM,E)\n}\n```\n:::\n\n\nLet's plot the correlations:\n\n::: {.cell}\n\n```{.r .cell-code}\nboxplot(CWM.cor)\nabline(h=mean(CWM.cor),col=\"firebrick\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-22-1.png){width=576}\n:::\n:::\n\n \nNote that the variation is quite large for correlations based on a random trait (i.e., T.false). For example, some correlations were greater than 0.7 and smaller than -0.60. We showed that although the variation is quite large, the expected value is zero; we would need 10000 or more simulations to make `mean(CWM.cor)` approach almost zero. A similar issue (i.e., large variation, low precision) happens for correlations based on SNO but we won't simulate here for brevity. One can easily adapt the code above to do so though. \n\nWe have shown that precision is much increased when using the 4th corner statistic. Originally described in matrix form by Legendre et al. (1997), we (Peres-Neto et al. 2017) demonstrated that the 4th corner statisticit is a GLM assuming an identity link, i.e., normally distributed residuals. \n\nThe basis of the 4th corner correlation is that it starts by the standardization of the trait by the sum of their species abundances (or number of sites occupied for presence-absence data), and the standardization of the environment by the sum of their community abundances. The default standardization (function `scale`) transforms the variable (trait or environment) in a way that its mean and standard deviation are 0 and 1, respectively. A weighted standardization makes the weighted mean and weighted standard deviation to be 0 and 1, respectively. \n\nR doesn't have a default function for weighted standardization. But this can be done using the follow function:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nstandardize_w <- function(X,w){\n ones <- rep(1,length(w))\n Xc <- X - ones %*% t(w)%*% X\n Xc / ones%*%sqrt(t(ones)%*%(Xc*Xc*w)) \n} \n```\n:::\n\n\nLet's get back to the original data used to calculate CWM and SNC based correlations:\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(12351) # so that we all have the same results\nn.communities <- 100\nn.species <- 50\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nDist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\nDistribution <- Dist$Dist.matrix\n```\n:::\n\n\nWe then standardize environment and trait by their respective abundance sums (rows for environment & columns for trait). \n\n\n::: {.cell}\n\n```{.r .cell-code}\n# make distribution matrix relative to its total sum; it makes calculations easier\nDist.rel <- Distribution/sum(Distribution)\nWn <- rowSums(Dist.rel)\nWs <- colSums(Dist.rel)\nE.std_w <- standardize_w(E,Wn)\nT.std_w <- standardize_w(T,Ws)\n```\n:::\n\n\nNote: In the future, include here the calculation of the weighted mean and standard deviation of \nE.std_w and T.std_w to show that they are zero and one, respectively (when weighted). \n\nWe then calculate the community average trait (weighted standardized) or the species niche centroid (weighted standardized):\n\n\n::: {.cell}\n\n```{.r .cell-code}\nCWM.w <- Dist.rel %*% T.std_w / Wn\nSNC.w <- t(E.std_w) %*% Dist.rel / Ws\n```\n:::\n\n\nWe then calculate the weighted correlation between the two vectors above but their appropriate weights. In the case of CWM.w:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# either using weighted correlation:\nt(CWM.w) %*% (E.std_w*Wn)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1]\n[1,] 0.2813709\n```\n:::\n\n```{.r .cell-code}\n# or the same value using weighted regression:\nlm(CWM.w ~ E.std_w,weights = Wn)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = CWM.w ~ E.std_w, weights = Wn)\n\nCoefficients:\n(Intercept) E.std_w \n 8.804e-17 2.814e-01 \n```\n:::\n:::\n\n\nIn the case of SNC.w:\n\n::: {.cell}\n\n```{.r .cell-code}\n# either using weighted correlation:\nSNC.w %*% (T.std_w*Ws)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1]\n[1,] 0.2813709\n```\n:::\n\n```{.r .cell-code}\n# or the same value using weighted regression:\nlm(t(SNC.w)~T.std_w,weights = Ws)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = t(SNC.w) ~ T.std_w, weights = Ws)\n\nCoefficients:\n(Intercept) T.std_w \n -5.000e-17 2.814e-01 \n```\n:::\n:::\n\n\nNote that regardless whether SNC or CWM were used, the 4th corner correlation gives the same result, which makes sense mathematically as both correlations use the exact same information. The reason (again) that the CWM and SNC standard correlation approaches differ is because they don't use appropriate weights in their standardization and weighted correlation. \n\nAnother issue to notice is that the 4th corner values are smaller than their standard CWM values. Whereas the CWM correlation was 0.9296, the 4th corner was 0.2814. The issue here is that the CWM correlation refers only to the trait variation among communities (trait beta-diversity), whereas the 4th corner refers to the total variation in traits (within, i.e., trait alpha diversity, and among communities, i.e., trait beta-diversity). This was demonstrated by algebraic proofs in Peres-Neto et al. (2017) but we won't get into these details here. \n\nThis does bring an interesting point for the analysis of trait in a community ecology context. The relative trait variation among communities (i.e., total trait beta-diversity) and within communities (i.e., gamma trait diversity) can be estimated as follows:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Among communities \nAmong.Variation <- sum(diag(t(CWM.w)%*%(CWM.w* Wn))) * 100\n# Within communities \nWithin.Variation <- 100 - Among.Variation\nc(Among.Variation,Within.Variation)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 9.460287 90.539713\n```\n:::\n:::\n\n\nThe standard CWM correlation is high because it pertains to only 9.46% of the total variation, whereas the 4th corner correlation pertains to all variation, i.e., both within and among. As the among communities component become large, the two correlations become somewhat more similar. \n\nLet's now investigate the sampling properties of the 4th corner correlation as we did above for the CWM correlation, i.e., when the trait-environment correlation is expected to be zero:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(120) # so that we all have the same results and the same communities and traits are generated as before\nn.communities <- 100\nn.species <- 50\nn.samples <- 100 # set to larger later\n\nCWM.4th.cor <- as.matrix(0,n.samples)\nfor (i in 1:n.samples){\n E <- rnorm(n.communities)\n T <- rnorm(n.species)\n Dist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\n T.false <- rnorm(n.species) # destroys the original generated relationship\n Dist.rel <- Dist$Dist.matrix/sum(Distribution)\n Wn <- rowSums(Dist.rel)\n E.std_w <- standardize_w(E,Wn)\n T.std_w.false <- standardize_w(T.false,Ws)\n CWM.w.false <- Dist.rel %*% T.std_w.false / Wn\n t(CWM.w.false) %*% (E.std_w*Wn)\n CWM.4th.cor[i] <- cor(CWM,E)\n}\n```\n:::\n\n\nLet's compare the two statistics:\n\n::: {.cell}\n\n```{.r .cell-code}\nboxplot(cbind(CWM.cor,CWM.4th.cor))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-31-1.png){width=672}\n:::\n:::\n\n \nNote how the 4th corner correlation is a much more precise predictor around the true value of zero.\n\n
\n\n
**Statistical hypothesis testing**
\nWe know for a while that the bivariate correlations discussed so far have elevated type I error rates based on parametric testing and under certain permutation schemes (Dray and Legendre 2008; and Dray et al. 2014). That means that when the statistical null hypothesis of no link between trait and environment will be rejected more often than the preset alpha level (significance level, e.g., 0.05 or 0.01). More recently, this was also established for more complex models (more on this later). Resolving these issues are challenging and remain a very active field of research. \n\nThe code so far has helped to build some intuition underlying the different bivariate correlations. We will now use a more complete utility function that allows calculating these different metrics using one single function. This function is part of Peres-Neto et al. (2017).\n\nDownload the utility function file:\n\nClick here to download it\n\nLoad the functions into R: \n\n::: {.cell}\n\n```{.r .cell-code}\nsource(\"UtilityFunctions.R\")\n```\n:::\n\n\nLet's use the function that calculates a number of the bivariate correlations, which are essentially simple GLMs. \n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(125)\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nDist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\nTraitEnv.res <- TraitEnvCor(Distribution,E,T, Chessel = TRUE)\nTraitEnv.res\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n CWM.cor wCWM.cor SNC.cor \n 0.016601826 0.054714685 0.288779046 \n wSNC.cor Fourthcorner Chessel.4thcor \n 0.039080469 0.006235766 0.015313259 \n Among Wn-variance (%) Within Wn-variance (%) \n 1.298888497 98.701111503 \n```\n:::\n:::\n\n\nIf we want to isolate the 4th corner correlation, we can simply:\n\n::: {.cell}\n\n```{.r .cell-code}\nTraitEnv.res[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.006235766 \n```\n:::\n:::\n\n\nLet's now run permutation Model 2, Model 4 and p.max for data without a link between trait and environment. We first create the data with no link:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(125)\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nDist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\nDistribution <- Dist$Dist.matrix\nT.false <- rnorm(n.species)\nTraitEnv.res <- TraitEnvCor(Distribution,E,T.false, Chessel = FALSE)\nTraitEnv.res[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.04168433 \n```\n:::\n:::\n\n\nNote how the 4th corner correlation is quite low, i.e., 0.0417. Now let's check this value with permutations: \n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(125)\nnrepet <- 99\nobs <- TraitEnv.res[\"Fourthcorner\"]\nsim.row <- matrix(0, nrow = nrepet, ncol = 1)\nsim.col <- matrix(0, nrow = nrepet, ncol = 1)\nfor(i in 1:nrepet){\n per.row <- sample(nrow(Distribution)) # permute communities\n per.col <- sample(ncol(Distribution)) # permute species\n sim.row[i] <- TraitEnvCor(Distribution,E[per.row],T.false)[\"Fourthcorner\"]\n sim.col[i] <- TraitEnvCor(Distribution,E,T.false[per.col])[\"Fourthcorner\"]\n}\npval.row <- (length(which(abs(sim.row) >= abs(obs))) + 1) / (nrepet + 1)\npval.col <- (length(which(abs(sim.col) >= abs(obs))) + 1) / (nrepet + 1)\np.max <- max(pval.row,pval.col)\nc(pval.row,pval.col,p.max)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.01 0.47 0.47\n```\n:::\n:::\n\n\nAs we can see, although only environmental features were important but not traits, the row permutation (across commmunities) detected the relationship as significant. Note, however, that the permutation across species did not. ter Braak et al. (2012) determined that the maximum value between the two p-values (row and column based) assures appropriate type I error rate as expected alpha.\n\nThe function above allows understanding the permutation procedures. That said, the utility function file has a more complete function:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(125)\nCorPermutationTest(Distribution, E, T.false, nrepet = 99)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n cor prow pcol pmax\nCWM.cor 0.36605145 0.01 0.33 0.33\nwCWM.cor 0.28014652 0.01 0.44 0.44\nSNC.cor 0.14836877 0.39 0.36 0.39\nwSNC.cor 0.09492897 0.26 0.47 0.47\nFourthcorner 0.04168433 0.01 0.47 0.47\n```\n:::\n:::\n\n\n
\n\n
**Bivariate correlations in practice**
\n\nI hope by now you are convinced that the 4th corner is a more robust metric of bivariate correlation (one trait and one environment). Here we will use the `Aravo` community plant data set (Massif du Grand Gabilier, France; Choler 2005) contained in the package `ade4`. We provide more explanation on the data in Dray et al. (2012). Here we will replicate the analysis in that paper. The data contain species abundances for 82 species distributed into 75 sites. Sites are described by 6 environmental variables: mean snowmelt date over the period 1997–1999, slope inclination, aspect, index of microscale landform, index of physical disturbance due to cryoturbation and solifluction, and an index of zoogenic disturbance due to trampling and burrowing activities of the Alpine marmot. All variables are quantitative except the landform and zoogenic disturbance indexes that are categorical variables with five and three categories, respectively. And eight quantitative functional traits (i.e., vegetative height, lateral spread, leaf elevation angle, leaf area, leaf thickness, specific leaf area, mass-based leaf nitrogen content, and seed mass) were measured on the 82 most abundant plant species (out of a total of 132 recorded species). \n\n\n::: {.cell}\n::: {.cell-output-display}\n![](aravo.png){width=70%}\n:::\n:::\n\n\nLoad the package and the data:\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"ade4\") in case you don't have it installed\nlibrary(ade4)\ndata(aravo)\ndim(aravo$spe)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 75 82\n```\n:::\n\n```{.r .cell-code}\ndim(aravo$env)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 75 6\n```\n:::\n\n```{.r .cell-code}\ndim(aravo$trait)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 82 8\n```\n:::\n:::\n\n\nLet's estimate the 4th corner correlations between each trait and environmental variable. `nrept` is the number of permutations and should be set to a reasonable high number (say 9999). Here we will use 999 to speed calculations. Note that all permutation tests (not only the ones for the 4th corner) include the observed correlation as part of the null distribution (i.e., permuted); hence the use of `nrept` as 999, i.e., 1000 possible permutations (the observed correlation is a possible permutation if we run the test infinite times; which is not possible; so we consider it as default. `modeltype` is set to 6, which is the largest p-value between model 2 permutation (entire communities in the distribution matrix) and model 4 (entire species in the distribution matrix). The p-max procedure is detailed in ter Braak et. 2012. Finally, p-values are adjusted using the `false discovery rate` for multiple testing. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nfour.comb.aravo.adj <- fourthcorner(aravo$env, aravo$spe,\naravo$traits, modeltype = 6, p.adjust.method.G = \"none\",\np.adjust.method.D = \"fdr\", nrepet = 999)\n```\n:::\n\n\nResults can be retrieved by simply typing:\n```\nfour.comb.aravo \n```\n\nThe 'classic' table of results can be produced as follows. D2 indicates that the 4th corner correlation is to be used between the quantitative variable and each category of the qualitative variables. Other bivariate metrics of 4th corner association are also described in Dray and Legendre (2008) for qualitative-quantitative associations. In the default plot, blue cells correspond to negative signicant relationships while red cells correspond to positive signicant relationships (this can be modified using the argument col in the function fourthcorner).\n\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(four.comb.aravo.adj, alpha = 0.05, stat = \"D2\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-41-1.png){width=576}\n:::\n:::\n\n\n
\n\n
**Stacking species information as a way to understand how to build more complex GLMs**
\n\nAlthough widely used (1000s of studies published using them), bivariate correlations are the simplest forms of GLMs for community data. That said, the 4th corner correlation can be calculated in a way that allows us (hopefully) to understand how more complex GLMs can be produced. They allow us understanding species stacking. Perhaps I should have considered this presentation before the calculations based on weights and standardizations (will inverst in the next version of the workshop). Let's build a small data so that we understand this principle. Consider a very artificial distribution matrix with 4 communities and 4 species. It was made artificial so that we can understand well its structure:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nDistribution <- as.matrix(rbind(c(1,1,0,0),c(1,0,0,0),c(0,0,1,1),c(0,0,1,0)))\nDistribution\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1] [,2] [,3] [,4]\n[1,] 1 1 0 0\n[2,] 1 0 0 0\n[3,] 0 0 1 1\n[4,] 0 0 1 0\n```\n:::\n:::\n\n\nLet's create some traits and environmental features:\n\n::: {.cell}\n\n```{.r .cell-code}\nT <- c(1,2,5,8)\nE <- c(10,12,100,112)\n```\n:::\n\n\nNow let's calculate its 4th corner correlation:\n\n::: {.cell}\n\n```{.r .cell-code}\nTraitEnvCor(Distribution,E,T)[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.8902989 \n```\n:::\n:::\n\n\nThe 4th corner correlation is pretty high given the highly structured data. Another way to calculate a 4th corner correlation is by using what we refer to as an \"inflated approach\". This approach allows understanding the structure of stacked information. This figure demonstrates the process and calculation:\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](InflatedApproach4thcorner.png){width=80%}\n:::\n:::\n\n\nNext we stack species distributions, environment and trait information:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nn.species <- ncol(Distribution)\nn.sites <- nrow(Distribution)\nDist.stacked <- as.vector(Distribution)\nE.stacked <- rep(1, n.species) %x% E\nT.stacked <- T %x% rep(1, n.sites) \n```\n:::\n\n```\nView(cbind(Dist.stacked,E.stacked,T.stacked))\n```\n\nWe then eliminatate the cells for which the distribution is zero and calculate the correlation:\n\n::: {.cell}\n\n```{.r .cell-code}\nzeros.dist <- which(Dist.stacked==0)\ncor(E.stacked[-zeros.dist],T.stacked[-zeros.dist])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.8902989\n```\n:::\n:::\n\n\nNote: perhaps I should have started with this explanation and then move to the more complicated way of using weights. The inflated approach is in fact a way to see how weights are given. \n\n
\n\n
**Simulating abundance data and understanding link functions in GLMs**
\n\nSimple model \n\nAlthough community ecologists commonly work with presence-absence data, abundance data are also commonly used in many approaches. Here we will use a Poisson model to simulate community data involving species distributions, traits and environment. Although link functions are used in all families of GLMs (poisson, binomial, negative binomial, gamma, etc), we will try to provide an explanation here of what they mean using abundance data. But the same rationale will apply to all families. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(100) # so that we all have the same results\nn.sites <- 100\nX <- rnorm(n.sites)\nb0 <- 0.05\nb1 <- 2\nY <- exp(b0 + b1*X)\nAbundance <- rpois(n.sites,Y)\nplot(Abundance ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-1.png){width=576}\n:::\n:::\n\n\nThis Poisson model has the following form. Note that multiple predictors can be considered. Here, for simplicity, we considered one predictor. Again, in many ecological simulations, this single predictor is considered an \"environmental gradient\" containing many environmental predictors. We can consider more gradients and we will discuss that later on in the workshop. \n\n$$Y={e^{(\\beta_0+\\beta_1X_1)}}=e^{(0.05+1.2X_1)}=log(Y)=0.05+1.2X_1$$\nThe model can be estimated as:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nmodel <- glm(Abundance ~ X, family=\"poisson\")\ncoefficients(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n(Intercept) X \n 0.03095719 2.02323099 \n```\n:::\n\n```{.r .cell-code}\nplot(model$fitted.values ~ Abundance)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-49-1.png){width=576}\n:::\n:::\n\n\nGLMs are linear models because they use link-functions to map non-linear relationships to a linear one. In this way, the link function connects the predictors in a model with the expected (mean) value of the response variable (dependent variable). In other words, the link-functions transforms the response values into new values that can be then regressed using linear approaches (Maximum Likelihood-based approaches and not simple OLS, ordinary least square approaches as in linear regression) against the X values. As we saw in the first example of the Poisson regression above, the relationship is not linear. The link-function for the Poisson distribution is `ln` of the response. Let's understand this point by plotting the log(Y) and X. Note that Y has no error and Abundance has error (i.e., based on the `rpois`, i.e., poisson trials)\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# without error:\nplot(log(Y) ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-50-1.png){width=576}\n:::\n\n```{.r .cell-code}\n# with error\nplot(log(Abundance) ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-50-2.png){width=576}\n:::\n:::\n\n\nWhat does the passage \"the link-function connects the predictors in a model with the expected (mean) value of the response variable (dependent variable)\" mean? As you can notice, we used Poisson trials to generate error around the initial Y values. Let's create a 100 possible trials:\n\n::: {.cell}\n\n```{.r .cell-code}\nmult.Y <- replicate(n=100,expr=rpois(n.sites,Y))\n```\n:::\n\n\n```\nView(mult.Y)\n```\n\nEach column in `mult.Y` contains one single trial. This would mimic, for instance, your error in estimating abundances when sampling real populations and assuming that a Poisson GLM would model your abundances across sites well. As such, in real data, obviously, we only have one \"trial\". But this small demonstration hopefully helps you understand what the GLM is trying to estimate via the link-function. \n\nLet's repeat the predictor `X` 100 times`so that it becomes compatible in size with the multiple trials; and we can then plot them:\n\n::: {.cell}\n\n```{.r .cell-code}\nrep.X <- rep(X, times = 100)\nplot(as.vector(mult.Y) ~ rep.X,pch=16,cex=0.5,col=\"firebrick\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-52-1.png){width=576}\n:::\n:::\n\n\nNote that larger values of abundances tend to have more error under the poisson model (which is also ecologically plausible). \n\nNow we can understand what the passage \"the link-function connects the predictors in a model with the expected (mean) value of the response\". Let's first increase the number of trials to 10000 and for each site (for which we have an X value), calculate its mean:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nmult.Y <- replicate(n=10000,expr=rpois(n.sites,Y))\nmean.mult.Y <- apply(mult.Y,1,mean)\nplot(mean.mult.Y ~ Y)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-53-1.png){width=576}\n:::\n:::\n\n\nAs we can observe, the mean across all trials (errors) equal the response variable Y, i.e., without error. Hopefully this provides a general understanding of what link functions are. A similar explanation can be given for the logistic regression (i.e., binomial error). In there we use a `logit` link function (transformation) instead.\n\nMissing predictors in GLMs as a source of error \n\nObviously the fit is great, particularly because we considered all the important predictors in the model. We don't usually have all predictors in a model and this can be simulated as well. Considering the following example where two environmental predictors were used to generate the abundance data but only was used in the regression model: \n\n$$p={e^{(\\beta_0+\\beta_1X_1+\\beta_1X_2)}}$$\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(100) # so that we all have the same results\nn.sites <- 100\nX <- matrix(rnorm(n.sites*2),n.sites,2)\nb0 <- 2\nb1 <- 0.5\nb2 <- 1.2\nY <- exp(b0 + b1*X[,1] + b1*X[,2]) # there are more direct matricial ways to do that\nAbundance <- rpois(n.sites,Y)\nmodel <- glm(Abundance ~ X[,1], family=\"poisson\")\nmodel\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: glm(formula = Abundance ~ X[, 1], family = \"poisson\")\n\nCoefficients:\n(Intercept) X[, 1] \n 2.0472 0.5294 \n\nDegrees of Freedom: 99 Total (i.e. Null); 98 Residual\nNull Deviance:\t 532.1 \nResidual Deviance: 258.8 \tAIC: 637.7\n```\n:::\n\n```{.r .cell-code}\nplot(model$fitted.values ~ Abundance)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-54-1.png){width=576}\n:::\n\n```{.r .cell-code}\nAIC(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 637.7152\n```\n:::\n:::\n\nNote that the errors around predicted and true values are much greater because only one predictor was included in the GLM even though two predictors were important. Now considering both predictors:\n\n::: {.cell}\n\n```{.r .cell-code}\nmodel <- glm(Abundance ~ X, family=\"poisson\")\nmodel\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: glm(formula = Abundance ~ X, family = \"poisson\")\n\nCoefficients:\n(Intercept) X1 X2 \n 1.9808 0.5300 0.4931 \n\nDegrees of Freedom: 99 Total (i.e. Null); 97 Residual\nNull Deviance:\t 532.1 \nResidual Deviance: 119 \tAIC: 500\n```\n:::\n\n```{.r .cell-code}\nplot(model$fitted.values ~ Abundance)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-55-1.png){width=576}\n:::\n\n```{.r .cell-code}\nAIC(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 500.0011\n```\n:::\n:::\n\n\nThis is a critical empirical (ecological) consideration because we can't measure everything. The error is much smaller and, as a consequence, the model fit is much improved (i.e., smaller AIC values) because it considers the two predictors. It can't be perfect because of the error related to the poisson trials that will always result in random variation (residual variation). \n\nA more realistic Gaussian Poisson model \n\nAs for the logistic model, we can also consider a more realistic Poisson model based on a Gaussian distribution:\n\n$$Y={h\\cdot e^{-(\\beta_0+\\beta_1\\frac{(X-\\mu)^2}{2\\sigma^2})}}$$\nAs before, $\\mu$ represents the species optimum and $\\sigma$ its niche breadth. $h$ represents the expected abundance in the optimum environmental value. Using code to simulate this model for one species; for simplicity, we will set $\\beta_0=0$ and $\\beta_1=1$:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(110)\nX <- rnorm(n.sites)\noptimum <- 1.2\nniche.breadth <- 0.5\nh <- 104\nY <- h * exp(-(X-optimum)^2/(2*niche.breadth^2))\nAbundance <- rpois(n.sites,Y)\nplot(Abundance~X)\nabline(v=1.2,col=\"firebrick\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-56-1.png){width=576}\n:::\n:::\n\n\nLet's fit the Poisson model:\n\n::: {.cell}\n\n```{.r .cell-code}\npredictor <- cbind(X,X^2) \nmodel <- glm(Abundance ~ predictor,family=\"poisson\")\nplot(model$fitted ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-57-1.png){width=576}\n:::\n\n```{.r .cell-code}\ncoeffs <- coefficients(model)\n```\n:::\n\n\nAs before, parameters used to simulate the species distribution can be estimated as:\n\n::: {.cell}\n\n```{.r .cell-code}\nb0 <- coeffs[1]\nb1 <- coeffs[2]\nb2 <- coeffs[3]\nestimated.optimum <- -b1/(2*b2) \nestimated.niche.breadth <- 1/sqrt(-2*b2)\nh <- exp(b0 + b1*estimated.optimum + b2*estimated.optimum^2)\ncbind(estimated.optimum,estimated.niche.breadth,h)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n estimated.optimum estimated.niche.breadth h\npredictorX 1.179753 0.4726181 104.8035\n```\n:::\n:::\n\n\nNow we can generalize the code to generate abundance data for multiple species:\n\n::: {.cell}\n\n```{.r .cell-code}\ngenerate_community_abundance <- function(tolerance,E,T,preset_nspecies,preset_ncommunities){\n repeat {\n # one trait, one environmental variable\n h <- runif(preset_nspecies,min=0.3,max=1)\n sigma <- runif(preset_nspecies)*tolerance\n L <- matrix(data=0,nrow=preset_ncommunities,ncol=preset_nspecies)\n for(j in 1:preset_nspecies){\n L[,j] <- 30*h[j]*exp(-(E-T[j])^2/(2*sigma[j]^2))\n #rpois(preset_ncommunities,30*h[j]*exp(-(E-T[j])^2/(2*sigma[j]^2)))\n }\n n_species_c <- sum(colSums(L)!=0) # _c for check\n n_communities_c <- sum(rowSums(L)!=0)\n if ((n_species_c == preset_nspecies) & (n_communities_c==preset_ncommunities)){break}\n }\n return(L)\n}\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(120) # so that we all have the same results\nn.communities <- 100\nn.species <- 50\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nY <- generate_community_abundance(tolerance = 1.5, E, T, n.species, n.communities)\n```\n:::\n\n\nLet's plot the expected abundance values across environmental values. To do that nicely, we need to order the communities according to their environmental values as follows:\n\n::: {.cell}\n\n```{.r .cell-code}\nE.sorted <- sort(E, index.return=TRUE)\nY.sorted <- Y[E.sorted$ix,]\nE.sorted <- E.sorted$x\nmatplot(E.sorted, Y.sorted, cex.lab=1.5,cex.axis=2,lty = \"solid\", type = \"l\", pch = 1:10, cex = 0.8,\n xlab = \"Enviroment\", ylab = \"Abundance\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-61-1.png){width=576}\n:::\n:::\n\n\nY, however, has no error and to create abundance values for each species (i.e., each column of Y; MARGIN = 2) according to a poisson model we can simply:\n\n::: {.cell}\n\n```{.r .cell-code}\nAbundances <- apply(Y,MARGIN=2,function(x) rpois(n.communities,x))\n```\n:::\n\n\nLet's plot the abundance values across environmental values. With erorr, they don't look as nice, obviously:\n\n::: {.cell}\n\n```{.r .cell-code}\nE.sorted <- sort(E, index.return=TRUE)\nAbundances.sorted <- Abundances[E.sorted$ix,]\nE.sorted <- E.sorted$x\nmatplot(E.sorted, Abundances.sorted, cex.lab=1.5,cex.axis=2,lty = \"solid\", type = \"l\", pch = 1:10, cex = 0.8, xlab = \"Enviroment\", ylab = \"Abundance\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-63-1.png){width=576}\n:::\n:::\n\n\nFinally, let's calculate the 4th corner statistics for these data:\n\n::: {.cell}\n\n```{.r .cell-code}\nTraitEnvCor(Abundances,E,T, Chessel = TRUE)[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.5365449 \n```\n:::\n:::\n\n\nAnd now for the data without error, i.e., before the poisson trials:\n\n::: {.cell}\n\n```{.r .cell-code}\nTraitEnvCor(Y,E,T, Chessel = TRUE)[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.5333836 \n```\n:::\n:::\n\nDespite the error we observed once we transformed Y (values without error) into abundances (with error via the poisson trials), the bivariate correlations are pretty similar, indicating that these metrics are robust against sampling error in abundances. Note, however, that we only used one predictor which was the one used to simulate the data to begin with; empirical data are much more complex than that. \n\nFinally, note that, as such, bivariate correlations are calculated in the same way regardless if the data are presence-absence or abundance; biomass data could be also considered. \n\n
\n\n
**Moving to more complex GLMs - the bilinear model**
\n\nLet's go back to our stacked model:\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](bilinear.png){width=80%}\n:::\n:::\n\n\nAnd now let's get back to our stacked approach using again the simplest example we used earlier. Let's enter the data again to make sure that we have the same data. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nDistribution <- as.matrix(rbind(c(1,1,0,0),c(1,0,0,0),c(0,0,1,1),c(0,0,1,0)))\nT <- c(1,2,5,8)\nE <- c(10,12,100,112)\nn.species <- ncol(Distribution)\nn.sites <- nrow(Distribution)\nDist.stacked <- as.vector(Distribution)\nE.stacked <- rep(1, n.species) %x% scale(E)\nT.stacked <- scale(T) %x% rep(1, n.sites)\n```\n:::\n\n\nThere are two ways in which we can code the analysis. Using the stacked way or using a kronecker product. The kronecker product stacks the data in the same way but it's a bit more \"cryptic\" and demonstrating the stacking is then easier by using simple coding. The stacked GLM below estimates the statistical interaction between Environment and Traits only. Note that the distribution for our ficitional example above is for presence and absences, hence we will use a binomial link-function (i.e., logistic regression). This can be referred as to the bilinear model by Gabriel (1998) which is rarely used in ecology but can provide a good introduction to what \"stacking\" means which is critical to understand more complex GLMs. \n\nUsing the stacked vectors above, we have:\n\n::: {.cell}\n\n```{.r .cell-code}\n predictor <- E.stacked * T.stacked\n model <- glm(Dist.stacked ~ predictor,family=binomial(link=logit))\n summary(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nglm(formula = Dist.stacked ~ predictor, family = binomial(link = logit))\n\nDeviance Residuals: \n Min 1Q Median 3Q Max \n-2.1282 -0.5101 -0.2570 0.7417 1.3162 \n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -0.9160 0.7681 -1.193 0.2330 \npredictor 2.4991 1.1975 2.087 0.0369 *\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 21.170 on 15 degrees of freedom\nResidual deviance: 13.597 on 14 degrees of freedom\nAIC: 17.597\n\nNumber of Fisher Scoring iterations: 5\n```\n:::\n:::\n\n\nThe stacking we saw can be easily done using matrix algebra (the early presentation is helpful to understand the principles though). To do it in algebra, we use the kronecker product as follows:\n\n$$Y= T\\otimes E$$\n\nAs such, the bilinear model is testing the statistical interaction between traits and environmental variables. \n\nwhich in R becomes:\n\n::: {.cell}\n\n```{.r .cell-code}\npredictor2 <- T %x% E\nmodel <- glm(Dist.stacked ~ predictor,family=binomial(link=logit))\nsummary(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nglm(formula = Dist.stacked ~ predictor, family = binomial(link = logit))\n\nDeviance Residuals: \n Min 1Q Median 3Q Max \n-2.1282 -0.5101 -0.2570 0.7417 1.3162 \n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -0.9160 0.7681 -1.193 0.2330 \npredictor 2.4991 1.1975 2.087 0.0369 *\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 21.170 on 15 degrees of freedom\nResidual deviance: 13.597 on 14 degrees of freedom\nAIC: 17.597\n\nNumber of Fisher Scoring iterations: 5\n```\n:::\n:::\n\nNote that the two ways to run the model results in the exact same estimates. Here we should interpret the slope for the model as the strength between trait and environment, i.e., $\\beta_1 = 2.4991$. Obviously the bilinear model can be easily extended to any class of GLMs as well depending on the nature of the response variable (e.g., poisson, negative binomial, etc; more on these below).\n\nNote also that we could have considered multiple traits and environments (as long as we have enough degrees of freedom). \n\nStacked or bilinear model on the Aravo data set \n\nLet's apply the Aravo data set we saw early here. We will reduce the environmental matrix by removing the qualitative variables. These can be easily accommodated but for the sake of speed, we will reduce it.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nE <- aravo$env[,c(\"Aspect\",\"Slope\",\"Snow\")]\nE <- as.matrix(E)\nT <- as.matrix(aravo$trait)\n```\n:::\n\n\nNow we apply the kronecker product using the base function `kronecker` rather than `%x%` that we saw early. This function generate names for each column of the matrix (i.e., interactions between each trait and predictor). The columns contain all possible two by two (pairwise) combinations of traits and environmental features. \n\n::: {.cell}\n\n```{.r .cell-code}\nTE <- kronecker(T, E, make.dimnames = TRUE)\ndim(TE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 6150 24\n```\n:::\n\n```{.r .cell-code}\ncolnames(TE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [1] \"Height:Aspect\" \"Height:Slope\" \"Height:Snow\" \"Spread:Aspect\"\n [5] \"Spread:Slope\" \"Spread:Snow\" \"Angle:Aspect\" \"Angle:Slope\" \n [9] \"Angle:Snow\" \"Area:Aspect\" \"Area:Slope\" \"Area:Snow\" \n[13] \"Thick:Aspect\" \"Thick:Slope\" \"Thick:Snow\" \"SLA:Aspect\" \n[17] \"SLA:Slope\" \"SLA:Snow\" \"N_mass:Aspect\" \"N_mass:Slope\" \n[21] \"N_mass:Snow\" \"Seed:Aspect\" \"Seed:Slope\" \"Seed:Snow\" \n```\n:::\n:::\n\n\nBecause we have abundance data, let's run the GLM using the poisson model (log link function) and the negative binomial which may work better when data are overdispersed (e.g., too many zeros, i.e., absences).\n\n\n::: {.cell}\n\n```{.r .cell-code}\nDist.stacked <- as.vector(as.matrix(aravo$spe))\nColNames <- colnames(TE)\nTE <- scale(TE) # so that slopes can be compared directly to one another\ncolnames(TE) <- ColNames\nmodel.bilinear.poisson <- glm(Dist.stacked ~ TE,family=\"poisson\")\nlibrary(MASS)\nmodel.bilinear.negBinom <- glm.nb(Dist.stacked ~ TE)\n```\n:::\n\n\nLet's compare the two models:\n\n::: {.cell}\n\n```{.r .cell-code}\nc(BIC(model.bilinear.poisson),BIC(model.bilinear.negBinom))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 9310.771 8784.627\n```\n:::\n:::\n\nThe BIC suggests that negative binomial fits the data better (smaller BIC, better fit). \n\nModel diagnostics for non-Gaussian models are challenging and often standard tools don't provide a good way to assess quality of models. Let's check model residuals using the more classic approach. `sppVec` below will be used to create a different color for each species.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create a vector of species names compatible with the stacked model:\nsppVec = rep(row.names(aravo$traits),each=nrow(aravo$spe))\nplot(residuals(model.bilinear.negBinom),log(fitted(model.bilinear.negBinom)),col=as.numeric(factor(sppVec)),xlab=\"Fitted values [log scale]\",ylab=\"residuals\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-74-1.png){width=576}\n:::\n:::\n\n\nAs we can see, the plot is pretty bad; and that's a common feature for GLMs. \n\nDunn and Smyth (1996) developed a new class of residuals that allows a much better way to diagnose whether the model fits the data well. The package `DHARMa` implements the approach. A tutorial for this package and the package features can be found at: .\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"DHARMa\")\nlibrary(\"DHARMa\")\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nThis is DHARMa 0.4.6. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa')\n```\n:::\n\n```{.r .cell-code}\nDunnSmyth.res <- simulateResiduals(fittedModel = model.bilinear.negBinom, plot = F)\nplot(DunnSmyth.res$scaledResiduals~log(fitted(model.bilinear.negBinom)),col=as.numeric(factor(sppVec)),xlab=\"Fitted values [log scale]\",ylab=\"residuals\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-75-1.png){width=576}\n:::\n:::\n\n\nAnd now the Q-Q plot to assess residual normality:\n\n::: {.cell}\n\n```{.r .cell-code}\nplotQQunif(DunnSmyth.res)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-76-1.png){width=576}\n:::\n:::\n\n\nJust for illustration, let's compare it with the Q-Q plot for the poisson model which had smaller support:\n\n::: {.cell}\n\n```{.r .cell-code}\nDunnSmyth.res.poisson <- simulateResiduals(fittedModel = model.bilinear.poisson, plot = F)\nplotQQunif(DunnSmyth.res.poisson)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-1.png){width=576}\n:::\n:::\n\nThe poisson model doesn't fit as well the expected line as the negative binomial model. As such, the negative binomial model fits better also with the assumption of normality. \n\nWe can use the package `jtools` to create model summaries and visualization for GLMs. You can find a good introduction to this package here: \n\nhttps://cran.r-project.org/web/packages/jtools/vignettes/summ.html\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"jtools\")\n# install.packages(\"ggstance\")\n# install.packages(\"broom.mixed\")\nlibrary(jtools)\nsumm(model.bilinear.negBinom)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nError in glm.control(...) : \n unused argument (family = list(\"Negative Binomial(0.5278)\", \"log\", function (mu) \nlog(mu), function (eta) \npmax(exp(eta), .Machine$double.eps), function (mu) \nmu + mu^2/.Theta, function (y, mu, wt) \n2 * wt * (y * log(pmax(1, y)/mu) - (y + .Theta) * log((y + .Theta)/(mu + .Theta))), function (y, n, mu, wt, dev) \n{\n term <- (y + .Theta) * log(mu + .Theta) - y * log(mu) + lgamma(y + 1) - .Theta * log(.Theta) + lgamma(.Theta) - lgamma(.Theta + y)\n 2 * sum(term * wt)\n}, function (eta) \npmax(exp(eta), .Machine$double.eps), expression({\n if (any(y < 0)) stop(\"negative values not allowed for the negative binomial family\")\n n <- rep(1, nobs)\n mustart <- y + (y == 0)/6\n}), function (mu) \nall(mu > 0), function (eta) \nTRUE, function (object, nsim) \n{\n ftd <- fitted(object)\n rnegbin(nsim * length(ftd), ftd, .Theta)\n}))\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Something went wrong when calculating the pseudo R-squared. Returning NA\ninstead.\n```\n:::\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 6150
Dependent variable Dist.stacked
Type Generalized linear model
Family Negative Binomial(0.5278)
Link log
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
𝛘²(NA) NA
Pseudo-R² (Cragg-Uhler) NA
Pseudo-R² (McFadden) NA
AIC 8609.80
BIC 8784.63
\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Est. S.E. z val. p
(Intercept) -1.27 0.03 -40.67 0.00
TEHeight:Aspect 0.09 0.11 0.81 0.42
TEHeight:Slope 0.08 0.05 1.56 0.12
TEHeight:Snow -0.07 0.11 -0.69 0.49
TESpread:Aspect 0.06 0.10 0.56 0.58
TESpread:Slope 0.07 0.06 1.18 0.24
TESpread:Snow -0.38 0.10 -3.82 0.00
TEAngle:Aspect 0.05 0.11 0.50 0.62
TEAngle:Slope 0.21 0.07 2.99 0.00
TEAngle:Snow -0.35 0.10 -3.52 0.00
TEArea:Aspect 0.05 0.12 0.36 0.72
TEArea:Slope 0.01 0.06 0.16 0.87
TEArea:Snow -0.24 0.12 -1.90 0.06
TEThick:Aspect -0.01 0.09 -0.09 0.93
TEThick:Slope 0.10 0.05 2.09 0.04
TEThick:Snow -0.17 0.09 -1.91 0.06
TESLA:Aspect 0.45 0.19 2.43 0.02
TESLA:Slope -0.31 0.14 -2.19 0.03
TESLA:Snow -0.42 0.15 -2.81 0.00
TEN_mass:Aspect -0.60 0.19 -3.10 0.00
TEN_mass:Slope -0.06 0.15 -0.38 0.70
TEN_mass:Snow 0.67 0.15 4.54 0.00
TESeed:Aspect 0.30 0.11 2.80 0.01
TESeed:Slope 0.11 0.05 2.21 0.03
TESeed:Snow -0.50 0.11 -4.39 0.00
\n Standard errors: MLE
\n`````\n:::\n:::\n\nThe package `jtools` offers a variety of table and graphical outputs and is worth exploring. Here we will produce a confidence interval plot for each slope. This will take a moment (one minute or less):\n\n\n::: {.cell}\n\n```{.r .cell-code}\nplot_summs(model.bilinear.negBinom, scale = TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nError in glm.control(...) : \n unused argument (family = list(\"Negative Binomial(0.5278)\", \"log\", function (mu) \nlog(mu), function (eta) \npmax(exp(eta), .Machine$double.eps), function (mu) \nmu + mu^2/.Theta, function (y, mu, wt) \n2 * wt * (y * log(pmax(1, y)/mu) - (y + .Theta) * log((y + .Theta)/(mu + .Theta))), function (y, n, mu, wt, dev) \n{\n term <- (y + .Theta) * log(mu + .Theta) - y * log(mu) + lgamma(y + 1) - .Theta * log(.Theta) + lgamma(.Theta) - lgamma(.Theta + y)\n 2 * sum(term * wt)\n}, function (eta) \npmax(exp(eta), .Machine$double.eps), expression({\n if (any(y < 0)) stop(\"negative values not allowed for the negative binomial family\")\n n <- rep(1, nobs)\n mustart <- y + (y == 0)/6\n}), function (mu) \nall(mu > 0), function (eta) \nTRUE, function (object, nsim) \n{\n ftd <- fitted(object)\n rnegbin(nsim * length(ftd), ftd, .Theta)\n}))\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Something went wrong when calculating the pseudo R-squared. Returning NA\ninstead.\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nRegistered S3 methods overwritten by 'broom':\n method from \n tidy.glht jtools\n tidy.summary.glht jtools\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nLoading required namespace: broom.mixed\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-79-1.png){width=576}\n:::\n:::\n\n\nOne needs to be careful when interpreting these confidence intervals as they were produced parametrically and they may be biased as we discussed in the section on statistical hypothesis testing. Again, this is a strong area of development among quantitative ecologists; but we haven't yet derived unified views on this issue. \n\nWe can also plot the coefficients building:\n\n::: {.cell}\n\n```{.r .cell-code}\ncf <- coefficients(model.bilinear.negBinom)[-1] # removes the intercept\ncfInter <- matrix(t(cf),nrow=ncol(E))\ncolnames(cfInter) <- colnames(T)\nrownames(cfInter) <- colnames(E)\ncfInter\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Height Spread Angle Area Thick SLA\nAspect 0.08562528 0.05659044 0.05406318 0.04512061 -0.008000594 0.4512878\nSlope 0.08477186 0.06555292 0.20518548 0.01057746 0.101762893 -0.3083102\nSnow -0.07428183 -0.37726596 -0.35230429 -0.23652105 -0.174573655 -0.4210057\n N_mass Seed\nAspect -0.59525146 0.2977853\nSlope -0.05644061 0.1137532\nSnow 0.67458707 -0.5011741\n```\n:::\n\n```{.r .cell-code}\n# install.packages(\"lattice\")\nlibrary(lattice)\na <- max(abs(cfInter))\ncolort = colorRampPalette(c(\"blue\",\"white\",\"red\"))\nlevelplot(cfInter, xlab=\"traits\",ylab=\"environment\", col.regions=colort(100), at=seq(-a, a, length=100))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-80-1.png){width=576}\n:::\n:::\n\n\n
\n\n
**Considering main effects of trait and environment, and their interactions - predicting and explaining species distributions**
\n\nThe bilinear model estimates and test for the interactions between traits and environmental features in a single model. That allows for partial slopes to be estimated (i.e., in which the effects of one trait-environment interaction is independent of the others as in standard linear regression models and GLMs). Understanding partial slopes is essential for inference and usually covered in Intro statistics for biologists/ecologists under multiple regression. A standard definition is \"The partial slope in multiple regression (or GLM) is the slope of the relationship between a predictor variable that is independent of the other predictor variables and the criterion. It is also the regression coefficient for the predictor variable in question.\" (https://onlinestatbook.com/2/glossary/partial_slope.html). \n \nNow, we may want to consider also the main effects of each environmental feature and traits in addition to their interactions. This is the model implemented in Jamil et al. (2013) and Brown et al. (2014). The Brown model et al. model is:\n\n$${ln(Y_{ij}) = \\beta_0\\ +\\beta_1env_i\\ +\\beta_2env_i^2\\ +\\beta_3spp_j\\ +\\beta_4(env \\times\\ trait)_{ij}\\ }$$\nwhere $\\beta_0$ is the overall intercept for the model, $\\beta_1env_i$ contains the slopes for each environmental variable, the model also consider square terms for the environmental variables $\\beta_2env_i^2$, $\\beta_3spp_j$ contains species-specific intercept terms which allows predictions for each species separately, $\\beta_4(env \\times\\ trait)_{ij}$ contains the slopes for each trait by environment interaction (the 4th corner slopes). Whereas Brown et al. treated $spp_j$ as fixed, Jamil et al. (2013) treated as random (more on this later). I've followed the formulation notation given in Brown et al. to facilitate understanding their paper; but we could easily change by the notation used in the mixed model selection (following Gelman and Hill 2007). \n\nBy setting species-specific intercept terms (i.e., $\\beta_3spp_j$) we can predict species in their appropriate scale of abundance variation. As such, we can use these types of models to predict species distributions. This sort of modelling is becoming the standard for predicting multiple species because it considers multiple types of predictors (trait, environments, non-linearities) and their interactions. Single species models, for instance, can't consider trait variation and the interactions of traits and environment. As such, stacked models are extremely powerful tools even for modelling single species distributions. \n\nThe Brown et al. model can be fit using the package `mvabund` as follows:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"mvabund\")\nlibrary(mvabund)\nglm.trait.res <- traitglm(as.matrix(aravo$spe),E,T,family=\"negative.binomial\",col.intercepts=TRUE)\nBIC(glm.trait.res)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n l \n8104.818 \n```\n:::\n:::\n\n\nAll coefficients of the model can be retrieved by:\n\n::: {.cell}\n\n```{.r .cell-code}\ncoefficients(glm.trait.res)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n l\n(Intercept) -1.939671753\nsppAlch.glau -0.054831143\nsppAlch.pent 0.024330521\nsppAlch.vulg -0.155929316\nsppAlop.alpi 0.069840352\nsppAndr.brig -0.144086942\nsppAndr.vita -0.117405506\nsppAnte.carp -0.105193294\nsppAnte.dioi -0.259135963\nsppAnth.alpe -0.404567216\nsppAnth.nipp -0.069393787\nsppArni.mont -0.265964212\nsppAste.alpi -0.324558310\nsppAven.vers -0.108786793\nsppBart.alpi -0.332898371\nsppCamp.sche -0.008108304\nsppCard.alpi -0.136528887\nsppCare.foet 0.027908430\nsppCare.parv -0.174556575\nsppCare.rosa -0.091371379\nsppCare.rupe -0.182772040\nsppCare.semp -0.112095430\nsppCera.cera -0.171760014\nsppCera.stri -0.021497460\nsppCirs.acau -0.188888639\nsppDrab.aizo -0.118690070\nsppDrya.octo -0.358279264\nsppErig.unif -0.059293913\nsppFest.laev -0.365739677\nsppFest.quad -0.105113832\nsppFest.viol -0.058339848\nsppGent.acau -0.181050369\nsppGent.camp -0.134520188\nsppGent.vern -0.044346876\nsppGeum.mont 0.064963289\nsppHeli.sede -0.217416821\nsppHier.pili -0.138692435\nsppHomo.alpi -0.207003373\nsppKobr.myos -0.028361647\nsppLeon.pyre 0.029558348\nsppLeuc.alpi -0.003570705\nsppLigu.muto -0.064014046\nsppLloy.sero -0.284035626\nsppLotu.alpi -0.144194010\nsppLuzu.lute -0.193109208\nsppMinu.sedo 0.021602219\nsppMinu.vern -0.137286811\nsppMyos.alpe -0.092884602\nsppOmal.supi 0.033812911\nsppOxyt.camp -0.233480701\nsppOxyt.lapp -0.201732614\nsppPhyt.orbi -0.327727501\nsppPlan.alpi 0.066971460\nsppPoa.alpi 0.095801892\nsppPoa.supi -0.203286074\nsppPoly.vivi -0.016324658\nsppPote.aure 0.053779431\nsppPote.cran -0.126165407\nsppPote.gran -0.231501706\nsppPuls.vern -0.096096734\nsppRanu.kuep -0.020389979\nsppSagi.glab -0.011366535\nsppSali.herb 0.053863437\nsppSali.reti -0.286340876\nsppSali.retu -0.255645078\nsppSali.serp -0.283448058\nsppSaxi.pani -0.185168997\nsppScab.luci -0.331712183\nsppSedu.alpe -0.065750719\nsppSemp.mont -0.074418068\nsppSene.inca -0.162375900\nsppSesl.caer -0.205203677\nsppSibb.proc 0.019139245\nsppSile.acau -0.179836450\nsppTara.alpi -0.250167730\nsppThym.poly -0.280189375\nsppTrif.alpi -0.134717635\nsppTrif.badi -0.322563479\nsppTrif.thal -0.225527793\nsppVero.alli -0.293989557\nsppVero.alpi -0.100779079\nsppVero.bell -0.011889063\nAspect 0.014997588\nSlope 0.064347175\nSnow -0.303043451\nAspect.squ 0.013997280\nSlope.squ -0.047627887\nSnow.squ -0.274070121\nAspect.Height -0.010645817\nAspect.Spread -0.070752741\nAspect.Angle -0.083977548\nAspect.Area -0.040276747\nAspect.Thick -0.082064700\nAspect.SLA 0.065782084\nAspect.N_mass -0.138709436\nAspect.Seed 0.042758169\nSlope.Height -0.020464655\nSlope.Spread 0.023128427\nSlope.Angle -0.018699260\nSlope.Area -0.027960323\nSlope.Thick -0.012369639\nSlope.SLA -0.108694248\nSlope.N_mass 0.021179434\nSlope.Seed 0.014142823\nSnow.Height -0.209648151\nSnow.Spread 0.049505713\nSnow.Angle -0.188496204\nSnow.Area -0.046298194\nSnow.Thick 0.099956790\nSnow.SLA 0.309130472\nSnow.N_mass 0.317287032\nSnow.Seed -0.169753499\n```\n:::\n:::\n\nThe overall intercept $\\beta_0=-1.9397$, the individual intercept for each species $\\beta_3spp_j$ are the coefficients above starting with `spp`; for instance, the individual slope for `Alch.glau` (1st species in the list) is $\\beta_3spp_1=-0.055$. The slopes for each environmental variable appear under the names we gave. For instance, the slope for aspect is $\\beta_1env_aspect=0.015$. Note that `.squ` in the coefficients are the slopes for the squared environmental terms; for instance $\\beta_2env_{snow}^2=-0.274$. Finally we have the 4th corner slopes. For instance, $\\beta_4(env \\times\\ trait)_{snow,seed\\_mass}=-0.1698$. Remember that snow here refers to the mean snowmelt date. As such, communities with large seed masses (in average) are found in sites that have early snowmelt dates compared to sites with late snowmelt dates; these sites have communities that tend to have small seed masses in average. \n\nLet's understand this model by programming it from scratch. That's really the best way to understand models; and whenever possible I try to demonstrate them from 'scratch'; not always possible depending on the amount of operations (e.g., mixed models) and our abilities to understand large codes . But this one is simple enough that we can do it:\n\n\n\n::: {.cell}\n\n```{.r .cell-code}\nn.species <- ncol(aravo$spe)\nn.communities <- nrow(aravo$spe)\nn.env.variables <- ncol(E)\n# repeats each trait to make it compatible (vectorized) with the stacked species distributions\ntraitVec <- T[rep(1:n.species,each=n.communities),]\n# repeats each environmental variable to make it compatible (vectorized) with the stacked species distributions:\nenvVec <- matrix(rep(t(E),n.species),ncol=NCOL(E),byrow=TRUE)\n# creates an intercept for each species:\nspecies.intercepts <- rep(1:n.species,each=n.communities)\nspecies.intercepts <- as.factor(species.intercepts)\nmod <- as.formula(\"~species.intercepts-1\")\nspecies.intercepts <- model.matrix(mod)[,-1]\n# the interaction terms:\nTE <- kronecker(T, E, make.dimnames = TRUE)\n# combining the predictors in a single matrix:\npreds <- cbind(species.intercepts,envVec,envVec^2,TE)\n# running the model\nmodel.bilinear.negBinom.Brown <- glm.nb(Dist.stacked ~ preds)\n```\n:::\n\n\nAnd as we can see, they are exactly the same model:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nBIC(glm.trait.res)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n l \n8104.818 \n```\n:::\n\n```{.r .cell-code}\nBIC(model.bilinear.negBinom.Brown)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 8104.818\n```\n:::\n:::\n\n\nWe can easily adapt the graphical and diagnostic outputs for this model as well, but we won't for simplicity. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nsumm(model.bilinear.negBinom)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nError in glm.control(...) : \n unused argument (family = list(\"Negative Binomial(0.5278)\", \"log\", function (mu) \nlog(mu), function (eta) \npmax(exp(eta), .Machine$double.eps), function (mu) \nmu + mu^2/.Theta, function (y, mu, wt) \n2 * wt * (y * log(pmax(1, y)/mu) - (y + .Theta) * log((y + .Theta)/(mu + .Theta))), function (y, n, mu, wt, dev) \n{\n term <- (y + .Theta) * log(mu + .Theta) - y * log(mu) + lgamma(y + 1) - .Theta * log(.Theta) + lgamma(.Theta) - lgamma(.Theta + y)\n 2 * sum(term * wt)\n}, function (eta) \npmax(exp(eta), .Machine$double.eps), expression({\n if (any(y < 0)) stop(\"negative values not allowed for the negative binomial family\")\n n <- rep(1, nobs)\n mustart <- y + (y == 0)/6\n}), function (mu) \nall(mu > 0), function (eta) \nTRUE, function (object, nsim) \n{\n ftd <- fitted(object)\n rnegbin(nsim * length(ftd), ftd, .Theta)\n}))\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Something went wrong when calculating the pseudo R-squared. Returning NA\ninstead.\n```\n:::\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 6150
Dependent variable Dist.stacked
Type Generalized linear model
Family Negative Binomial(0.5278)
Link log
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
𝛘²(NA) NA
Pseudo-R² (Cragg-Uhler) NA
Pseudo-R² (McFadden) NA
AIC 8609.80
BIC 8784.63
\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Est. S.E. z val. p
(Intercept) -1.27 0.03 -40.67 0.00
TEHeight:Aspect 0.09 0.11 0.81 0.42
TEHeight:Slope 0.08 0.05 1.56 0.12
TEHeight:Snow -0.07 0.11 -0.69 0.49
TESpread:Aspect 0.06 0.10 0.56 0.58
TESpread:Slope 0.07 0.06 1.18 0.24
TESpread:Snow -0.38 0.10 -3.82 0.00
TEAngle:Aspect 0.05 0.11 0.50 0.62
TEAngle:Slope 0.21 0.07 2.99 0.00
TEAngle:Snow -0.35 0.10 -3.52 0.00
TEArea:Aspect 0.05 0.12 0.36 0.72
TEArea:Slope 0.01 0.06 0.16 0.87
TEArea:Snow -0.24 0.12 -1.90 0.06
TEThick:Aspect -0.01 0.09 -0.09 0.93
TEThick:Slope 0.10 0.05 2.09 0.04
TEThick:Snow -0.17 0.09 -1.91 0.06
TESLA:Aspect 0.45 0.19 2.43 0.02
TESLA:Slope -0.31 0.14 -2.19 0.03
TESLA:Snow -0.42 0.15 -2.81 0.00
TEN_mass:Aspect -0.60 0.19 -3.10 0.00
TEN_mass:Slope -0.06 0.15 -0.38 0.70
TEN_mass:Snow 0.67 0.15 4.54 0.00
TESeed:Aspect 0.30 0.11 2.80 0.01
TESeed:Slope 0.11 0.05 2.21 0.03
TESeed:Snow -0.50 0.11 -4.39 0.00
\n Standard errors: MLE
\n`````\n:::\n:::\n\n\nAs mentioned earlier, we can get predicted models per species, making stacked models not only a community model but also considering information from multiple sources for single species distributions as well:\n\n::: {.cell}\n\n```{.r .cell-code}\nfitted.by.species <- matrix(glm.trait.res$fitted,n.communities,n.species)\n```\n:::\n\nPredicted abundance values per species are in columns:\n```\nView(fitted.by.species)\n```\n\n
\n\n
**A very brief way to understand mixed models: the Simpson's paradox **
\n\nSpecies and sites are not likely to differ from one another randomly but rather have some sites more similar to others (or more different). We call this a hierarchical structure. For instance, sites that are more close to one another may have more similar values than sites further way. Or some species may be more similar in abundance than others, and so on. \n\nWhen using linear models and GLMS, researchers often ignore the hierarchical structure of the data (some sites have more similar or differences in total abundances of species, some species have more similar or differences in their total abundances). As such, standard GLMs can generate biased variance estimates and increase the likelihood of committing type I errors (i.e., rejecting the statistical null hypothesis more often than set by alpha, i.e., significance level). \n\nAlthough this is very interesting ecologically, it does bring some inferential challenges (parameter estimation and statistical hypothesis testing) when fitting statistical models. GLMM (Generalized Linear Mixed Models) are then used to deal with these issues. This paper by Harrison et al. (2018) provides a great Introduction to GLLMs for ecologists: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970551/.\n\nOne common feature here is that species may differ in the way they are structured by environmental and/or trait variation. This can be well described by the Simpson's paradox (Simpson 1951), which is defined \"as a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined.\" \n\nLet's understand this paradox by simulating some data (code not show here) and graphing it. This sort of demonstration has become somewhat common when explaining the utility of mixed model. \n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-88-1.png){width=576}\n:::\n:::\n\n\nAt first glance, the influence of temperature on abundance is positive if we consider the variation across all data points independent of the sites. However, within species, the influence of the environment is negative. As such, it is obvious that there is variation among species that can't be explained by temperature alone. As such, we should consider a mixed model with temperature as a fixed factor (measured variable) and species as a random factor. Obviously one question of interest is why do species vary in their effects of temperature. But we don't have other predictors that could assist in explaining these differences (e.g., physiology). Perhaps considering traits could assist in determining this variation (more on that later).\n\nThe data was saved in a matrix called `data.Simpson`. For simplicity, we will treat these data as normally distributed. The data were generated assuming normality any way; the goal here is just a demonstration. \n\nLet's analyze these data with a fixed model using a simple regression:\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(jtools)\nlm.mod <- lm(abundance ~ scale(temperature),data=data.Simpson)\nsumm(lm.mod,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 100
Dependent variable abundance
Type OLS linear regression
\n\n \n \n \n \n \n \n \n \n \n \n \n \n\n
F(1,98) 15.13
0.13
Adj. R² 0.12
\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Est. S.E. t val. p
(Intercept) -0.08 0.18 -0.48 0.63
`scale(temperature)` 0.69 0.18 3.89 0.00
\n Standard errors: OLS; Continuous predictors are mean-centered and scaled by 1 s.d.
\n`````\n:::\n:::\n\nAs we can see, the overal influence of temperature is positive and significant, explaining 12% of the variation in abundance as a function of temperature (i.e., $R^2=0.12$). \n\nLet's consider now a mixed effect model that we estimate the variation in intercepts but still assume a common slope for all species. This is a common procedure in mixed model effects, i.e., starting with the simplest model. This fixed effect is coded as usually and the random effect is coded as `(1|species)`, where 1 means the intercepts (common way to code the intercept in statistical models). As such, one intercept per species is estimated. The `scale=TRUE` in the function `summ` below reports the analysis with standardized predictors. \n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"lme4\")\nlibrary(lme4)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nLoading required package: Matrix\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\n\nAttaching package: 'Matrix'\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nThe following objects are masked from 'package:tidyr':\n\n expand, pack, unpack\n```\n:::\n\n```{.r .cell-code}\nlm.mod.intercept <- lmer(abundance ~ temperature + (1|species),data=data.Simpson)\nsumm(lm.mod.intercept,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 100
Dependent variable abundance
Type Mixed effects linear regression
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
AIC 343.74
BIC 354.16
Pseudo-R² (fixed effects) 0.30
Pseudo-R² (total) 0.95
\n \n\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) -0.08 1.88 -0.04 3.94 0.97
temperature -2.84 0.35 -8.10 97.70 0.00
\n p values calculated using Kenward-Roger standard errors and d.f. ; Continuous predictors are mean-centered and scaled by 1 s.d.
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n\n
Random Effects
Group Parameter Std. Dev.
species (Intercept) 4.20
Residual 1.16
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n\n
Grouping Variables
Group # groups ICC
species 5 0.93
\n`````\n:::\n:::\n\nWow, what a change in the interpretation. By considering variation in intercepts across species, the fixed effect influence of temperature is now negative (as we should expect). Note, however, that we had information on a categorical factor, i.e, species, that could be used to estimate random effects related to variation among them. The variation (standard deviation) of intercepts among species is quite large in contrast to residuals; 4.20 against 1.16, respectively. The explanatory power of variation among intercepts make the $R^2=0.95$ increase dramatically in contrast to the fixed model, demonstrating that the species random effect has a huge effect and ability to improve the model predictive power. We also find the ICC (Intra Class Correlation) which measures how similar the abundance is within groups, i.e., species. The ICC is 0.93, indicating that abundance values are more similar within than among species. \nThe variation in intercepts can be plotted as follows:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nintercepts <- coefficients(lm.mod.intercept)$species[,\"(Intercept)\"]\nslopes <- coefficients(lm.mod.intercept)$species[,\"temperature\"]\nlines <- data.frame(intercepts,slopes)\nlines[\"species\"] <- unique(data.Simpson[,\"species\"])\ndata.Simpson$pred <- predict(lm.mod.intercept)\nggplot() +\ngeom_point(data=data.Simpson,aes(x=temperature,y=abundance,color=species),size=1) + \ngeom_abline(aes(intercept = `(Intercept)`, slope = temperature),size = 1.5,as.data.frame(t(fixef(lm.mod.intercept)))) +\ngeom_abline(data = lines, aes(intercept=intercepts, slope=slopes, color=species)) +\ntheme_classic() + \nxlab(\"Temperature\") + ylab(\"log(Abundance)\")\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.\nℹ Please use `linewidth` instead.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-91-1.png){width=672}\n:::\n:::\n\nThe black line represents the common model. Since only intercepts were allowed to vary, the species per slope are the same as the fixed model (after controlling for variation across species, which made the overall slope to be negative). \nFinally, let's estimate the random intercept and slope model. Here we estimate variation due to differences in intercepts and slopes across species:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlm.mod.interceptSlope <- lmer(abundance ~ temperature + (1 + temperature|species),data=data.Simpson)\nsumm(lm.mod.interceptSlope,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 100
Dependent variable abundance
Type Mixed effects linear regression
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
AIC 336.10
BIC 351.73
Pseudo-R² (fixed effects) 0.31
Pseudo-R² (total) 0.96
\n \n\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) 0.11 1.75 0.06 3.99 0.95
temperature -2.91 0.84 -3.45 3.98 0.03
\n p values calculated using Kenward-Roger standard errors and d.f. ; Continuous predictors are mean-centered and scaled by 1 s.d.
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Random Effects
Group Parameter Std. Dev.
species (Intercept) 3.84
species temperature 1.73
Residual 1.05
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n\n
Grouping Variables
Group # groups ICC
species 5 0.93
\n`````\n:::\n:::\n\n\nThe variation (standard deviation) in intercepts across species in much larger (3.84) than slopes (1.73). Is the predictive power between the two models significant? In order words, does a model that estimate independent slopes for each species explain more variation than one that only considers variation in intercepts?\nWe can simply compare the BIC of both models:\n\n::: {.cell}\n\n```{.r .cell-code}\nc(BIC(lm.mod),BIC(lm.mod.intercept),BIC(lm.mod.interceptSlope))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 408.7963 356.1764 353.7488\n```\n:::\n:::\n\nThere is more support for the mixed model that considers variation in intercepts and slopes. One can also estimate the p-value that one model fits better than the other:\n\n::: {.cell}\n\n```{.r .cell-code}\nanova(lm.mod.intercept,lm.mod.interceptSlope)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nrefitting model(s) with ML (instead of REML)\n```\n:::\n\n::: {.cell-output .cell-output-stdout}\n```\nData: data.Simpson\nModels:\nlm.mod.intercept: abundance ~ temperature + (1 | species)\nlm.mod.interceptSlope: abundance ~ temperature + (1 + temperature | species)\n npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)\nlm.mod.intercept 4 346.41 356.83 -169.21 338.41 \nlm.mod.interceptSlope 6 340.30 355.93 -164.15 328.30 10.114 2 0.006365\n \nlm.mod.intercept \nlm.mod.interceptSlope **\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n:::\n\n\nFinally, we can plot the intercept and slope variation. The common fixed effect slope has been now estimated by pooling the variation among species, hence it become negative in contrast to the original fixed effect slope. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nintercepts <- coefficients(lm.mod.interceptSlope)$species[,\"(Intercept)\"]\nslopes <- coefficients(lm.mod.interceptSlope)$species[,\"temperature\"]\nlines <- data.frame(intercepts,slopes)\nlines[\"species\"] <- unique(data.Simpson[,\"species\"])\ndata.Simpson$pred <- predict(lm.mod.intercept)\nggplot() +\ngeom_point(data=data.Simpson,aes(x=temperature,y=abundance,color=species),size=2) + \ngeom_abline(aes(intercept = `(Intercept)`, slope = temperature),size = 2,as.data.frame(t(fixef(lm.mod.interceptSlope)))) +\ngeom_abline(data = lines, aes(intercept=intercepts, slope=slopes, color=species),size = 2) +\ntheme_classic() + \nxlab(\"Temperature\") + ylab(\"log(Abundance)\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-95-1.png){width=672}\n:::\n:::\n\n\nAn extreme example pf the Simpson's paradox\n\nLet's consider (just visually) an even more extreme case. The fixed effect is very strong but the within species effect is almost zero. Hopefully the \"Simpson's\" examples here provide a good intuition on the importance of mixed models. \n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-97-1.png){width=576}\n:::\n:::\n\n\n
**Our first GLMM applied to the fourth corner problem treating species as a random effect - the MLML1 model**
\n\nThere are different ways that we can account for the potential random effects in community ecology data. Here we will review a few of the latest developments. \n\nMLM stands for multilevel (i.e., hierarchical) models (MLM). The simplest of these models is the one introduced by Pollock et al. (2012) and is often referred in the ecological literature as MLM1 (see Miller et al. 2018). The model has the following form (following the notation of Gelman and Hill 2007; as in Miller et al. 2018). This is a model that considers species as a random effect while estimating variation in both intercepts and slopes as the last model in the previous session (Simpson's paradox)\n\n$${ln(Y_{i}) = \\alpha\\ +a_{spp[i]}\\ +\\beta_{12}env_{site[i]}\\times trait_{spp[i]} + (\\beta_1+c_{spp[i]})env_{site[i]}+e_i}$$\n$a,c \\sim Gaussian(0,\\sigma_a^2,\\sigma_c^2,\\rho_{ac})$\n$e \\sim Gaussian(0,\\sigma_e^2)$\n\nNote that we changed the notation of Brown et al. $ij$ that served as an index for the $i^{th}$ site and $j^{th}$ species to simply one index $i$ since we are using a stacked model anyway, i.e., only rows for $Y_{i}$ and one column (i.e., stacked species distributions). As such, the functions $spp[i]$ and $site[i]$ map row i onto the corresponding species and sites. $\\beta_{12}$ contains the slopes for the interactions between environment and trait. The fixed effect $\\alpha$ gives the overall average abundance of species among sites (one overall intercept), and the fixed effect $\\beta_{1}$ gives the mean response of species to the different environmental variables. Random effect $a_{spp[i]}$ allows different species to have different overall abundance (i.e., sum of abundances across species; random intercept model across species), and random effect $c_{spp[i]}$ allows different species to have different responses to the environmental variables (i.e., random slope model across species). $a_{spp[i]}$ and $c_{spp[i]}$ have means zero and variances $\\sigma_a^2$ and $\\sigma_c^2$ (referred as to hyperparameters in mixed model lingo), with $\\rho_{ac}$ denoting the correlation between $a_{spp[i]}$ and $c_{spp[i]}$ (i.e., species intercepts and species slopes for the environment can correlate). Finally,random effect $e_i$ gives observation-level variance; this is necessary here to allow for overdispersion (Harisson, 2014). We can also use the negative binomial as we saw earlier. Note that we are assuming hierarchical variation in variance and not covariance (e.g., phylogenetic and spatial autocorrelation). One step at the time. \n\nLet's start by setting an appropriate data structure to run the mixed model. To make the coding more manageable we will consider here only one trait and one environment. The code can be easily generalized for multiple traits and environments. We found early a strong interaction between seed mass and snow in which species with greater seed mass tended to be found in sites with small levels of snow (i.e., a negative correlation between snow and seed mass).\n\nFor simplicity, let's load the `aravo` data again:\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(ade4)\ndata(aravo)\nE <- aravo$env[,c(\"Aspect\",\"Slope\",\"Snow\")]\nE <- as.matrix(E)\nT <- as.matrix(aravo$trait)\nDist.stacked <- as.vector(as.matrix(aravo$spe))\nn.species <- ncol(aravo$spe)\nn.communities <- nrow(aravo$spe)\nn.env.variables <- ncol(E)\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# to code for observation-level variance:\nobs <- 1:(n.species*n.communities)\n# to code for species (as we saw earlier to plot residuals):\nspecies <- rep(row.names(aravo$traits),each=nrow(aravo$spe))\nsites <- rep(row.names(aravo$spe),each=ncol(aravo$spe))\n# standardizing the data:\nseed.mass <- scale(T[rep(1:n.species,each=n.communities),\"Seed\"])\nsnow.melt.days <- scale(matrix(rep(t(E[,\"Snow\"]),n.species),ncol=1,byrow=TRUE))\ndata.df <- data.frame(abundance=Dist.stacked,snow.melt.days,seed.mass,species,sites,obs)\n```\n:::\n\nLet's see the data frame:\n```\nView(data.df)\n```\n\nLet's start by fitting a glm:\n\n::: {.cell}\n\n```{.r .cell-code}\nglm.mod <- glm(abundance ~ snow.melt.days + snow.melt.days:seed.mass,data=data.df, family = \"poisson\")\nsumm(glm.mod,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 6150
Dependent variable abundance
Type Generalized linear model
Family poisson
Link log
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
𝛘²(2) 56.18
Pseudo-R² (Cragg-Uhler) 0.01
Pseudo-R² (McFadden) 0.01
AIC 9421.91
BIC 9442.08
\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Est. S.E. z val. p
(Intercept) -1.17 0.02 -50.74 0.00
snow.melt.days -0.10 0.02 -4.20 0.00
snow.melt.days:seed.mass -0.14 0.02 -6.39 0.00
\n Standard errors: MLE; Continuous predictors are mean-centered and scaled by 1 s.d.
\n`````\n:::\n:::\n\nDespite the very low $R^2=0.01$, the coefficiences are all significant and negative. \n\nLet's run the model. Below, both intercepts (coded as 1) and slopes for snow.melt.days (coded as env) are allowed to vary among species (i.e., (1 + env|species)) and we also allow\n\n::: {.cell}\n\n```{.r .cell-code}\nMLM1.mod <- glmer(abundance ~ snow.melt.days + snow.melt.days:seed.mass + (1 + snow.melt.days|species) + (1 | obs), family = \"poisson\", control=glmerControl(calc.derivs=F), nAGQ = 0, data=data.df)\nsumm(MLM1.mod,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 6150
Dependent variable abundance
Type Mixed effects generalized linear model
Family poisson
Link log
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
AIC 7335.48
BIC 7382.55
Pseudo-R² (fixed effects) 0.09
Pseudo-R² (total) 0.65
\n \n\n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Fixed Effects
Est. S.E. z val. p
(Intercept) -2.12 0.17 -12.37 0.00
snow.melt.days -0.72 0.13 -5.51 0.00
snow.melt.days:seed.mass -0.08 0.09 -0.84 0.40
\n ; Continuous predictors are mean-centered and scaled by 1 s.d.
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Random Effects
Group Parameter Std. Dev.
obs (Intercept) 0.47
species (Intercept) 1.46
species snow.melt.days 1.08
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n\n
Grouping Variables
Group # groups ICC
obs 6150 0.07
species 82 0.63
\n`````\n:::\n:::\n\nThe variation among observations (residuals) is not relevant here; we used it to allow for potential overdispersion in abundance (i.e., variance of abundance much greater than the mean). Note that both the intercept and slopes contribute more or less to the same amount of variation (intercept sd=1.46 and slopes = 1.08), indicating that an intercept and slope mixed model is the most appropriate model. We could have fit the two models and tested as before we saw early in the Simpson's paradox section. Note the huge increase in $R^2=0.65$, demonstrating that considering a random structure is much better. The coefficient of `snow.melt.days` remains negative indicating that most species and their variation are negative despite the potential for some species to increase their abundances for large values of snow.melt.days. We will see this below. \n\nThe residual against the predicted values provide a good indication that the model is appropriate:\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nDunnSmyth.res <- simulateResiduals(fittedModel = MLM1.mod, plot = F)\nplot(DunnSmyth.res$scaledResiduals~log(fitted(MLM1.mod)),col=as.numeric(factor(species)),xlab=\"Fitted values [log scale]\",ylab=\"residuals\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-102-1.png){width=576}\n:::\n:::\n\n\nAnd now the Q-Q plot to assess residual normality:\n\n::: {.cell}\n\n```{.r .cell-code}\nplotQQunif(DunnSmyth.res)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-103-1.png){width=576}\n:::\n:::\n\nNote that the Kolmogorov-Smirnov (KS) provides indication that the residuals cannot be assumed to be normal. That said, the distribution of residuals looks somewhat on the expected. The KS becomes quite significant because of the large number of data points. Finally, GLMs and GLMMs tend to be quite robust even when residuals are not normal.\n\nIntercepts in a poisson model are log of species abundances not explained by the predictors model, i.e., when we set them \"manually\" to take values of zero. Perhaps some sites are more productive than others and we did not measure trait or environmental variables that could account for the slope and intercept variation variation; but the random effects is telling us that there is something we are potentially missing to explain their variation. \n\nMoreover, the random effect indicates that species slopes for the environment are strongly and positively correlated with the species intercepts ($\\rho_{ac}=0.73$). We can plot the intercepts against slopes:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(coefficients(MLM1.mod)$species[,\"(Intercept)\"],coefficients(MLM1.mod)$species[,\"snow.melt.days\"],xlab=\"species intercepts\", ylab=\"species environmental slopes\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-104-1.png){width=576}\n:::\n:::\n\n\n$\\rho_{ac}$ does not appear in summ(MLM1.mod) but can be found in `summary(MLM1.mod)` intead or calculated directly:\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(MLM1.mod)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Adaptive\n Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]\n Family: poisson ( log )\nFormula: abundance ~ snow.melt.days + snow.melt.days:seed.mass + (1 + \n snow.melt.days | species) + (1 | obs)\n Data: data.df\nControl: glmerControl(calc.derivs = F)\n\n AIC BIC logLik deviance df.resid \n 7335.5 7382.6 -3660.7 7321.5 6143 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-1.6289 -0.4400 -0.2650 -0.0639 7.6016 \n\nRandom effects:\n Groups Name Variance Std.Dev. Corr\n obs (Intercept) 0.2221 0.4712 \n species (Intercept) 2.1201 1.4560 \n snow.melt.days 1.1671 1.0803 0.73\nNumber of obs: 6150, groups: obs, 6150; species, 82\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -2.11504 0.17095 -12.372 < 2e-16 ***\nsnow.melt.days -0.71798 0.13037 -5.507 3.64e-08 ***\nsnow.melt.days:seed.mass -0.07552 0.09024 -0.837 0.403 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) snw.m.\nsnw.mlt.dys 0.730 \nsnw.mlt.d:. 0.010 0.015 \n```\n:::\n\n```{.r .cell-code}\ncor(coefficients(MLM1.mod)$species[,\"(Intercept)\"],coefficients(MLM1.mod)$species[,\"snow.melt.days\"])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7163168\n```\n:::\n:::\n\n\nAlthough the fixed-only effect model run earlier (glm.mod) indicated a significant correlation between snowmelt date and seed mass in driving species distributions, this effect is no longer relevant once the random effects are considered:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm.mod)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nglm(formula = abundance ~ snow.melt.days + snow.melt.days:seed.mass, \n family = \"poisson\", data = data.df)\n\nDeviance Residuals: \n Min 1Q Median 3Q Max \n-1.2804 -0.7946 -0.7868 -0.6822 4.3659 \n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -1.16767 0.02301 -50.744 < 2e-16 ***\nsnow.melt.days -0.09714 0.02313 -4.199 2.68e-05 ***\nsnow.melt.days:seed.mass -0.14286 0.02237 -6.387 1.70e-10 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 6552.0 on 6149 degrees of freedom\nResidual deviance: 6495.8 on 6147 degrees of freedom\nAIC: 9421.9\n\nNumber of Fisher Scoring iterations: 6\n```\n:::\n:::\n\nThis indicates that the random variation across species can account for the initial relationship between snow.melt.days and seed mass. Note that the importance of snow.melt.days remains relevant in driving species abundances across sites, but (again) not its interaction with seed mass. \n\nLet's plot regression models per species:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nintercepts <- coefficients(MLM1.mod)$species[,\"(Intercept)\"]\nslopes <- coefficients(MLM1.mod)$species[,\"snow.melt.days\"]\nlines <- data.frame(intercepts,slopes)\nlines[\"species\"] <- unique(data.df[,\"species\"])\ndata.df$pred <- predict(MLM1.mod)\nggplot(data=data.df) +\ngeom_point(data=data.df,aes(x=snow.melt.days,y=pred,color=species),size=1) + \ngeom_abline(data = lines, aes(intercept=intercepts, slope=slopes, color=species),size = 2) +\ngeom_abline(aes(intercept = `(Intercept)`, slope = snow.melt.days),size = 2,as.data.frame(t(fixef(MLM1.mod)))) +\ntheme_classic() + \nxlab(\"snow.melt.days\") + ylab(\"log(Abundance)\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-107-1.png){width=672}\n:::\n:::\n\n\n\nFinally, the GLMM has good predictive power (relative smaller confidence intervals and large $R^2=0.51$:\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"ggeffects\")\nlibrary(ggeffects)\nplot(ggpredict(MLM1.mod, \"snow.melt.days\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-108-1.png){width=672}\n:::\n:::\n\n\nFinally, as we discussed during the workshop, one needs to be careful while interpreting the significance of interactions between trait and environment. There are bootstrap-based developments to do that for the MLML1 model but they have been show to have inflated type I errors (Miller et al. 2019).\n\nFunction `glmer.nb` could have been used to fit the model using the negative binomial family instead.\n\nHere is a good and simple introduction to mixed models for poisson regression: \nhttps://stats.idre.ucla.edu/r/faq/random-coefficient-poisson-models/\n\n
**Our second GLMM applied to the fourth corner problem treating species and sites as random effects - the MLML2 model**
\n\nJamil et al. (2013) implemented a mixed model version in which in contrast to MLM1, it adds a fixed effect term for traits is included in the model (as in Brown et al. 2014) and also an additional random effect (intercepts) for site:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nMLM2.mod <- glmer(abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days|species) + (1 | sites) + (1 | obs), family = \"poisson\", control=glmerControl(calc.derivs=F), nAGQ = 0, data=data.df)\nsummary(MLM2.mod,scale = TRUE)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning in summary.merMod(MLM2.mod, scale = TRUE): additional arguments ignored\n```\n:::\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Adaptive\n Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]\n Family: poisson ( log )\nFormula: abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days | \n species) + (1 | sites) + (1 | obs)\n Data: data.df\nControl: glmerControl(calc.derivs = F)\n\n AIC BIC logLik deviance df.resid \n 7264.1 7324.6 -3623.0 7246.1 6141 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-1.5851 -0.4284 -0.2557 -0.0732 8.9436 \n\nRandom effects:\n Groups Name Variance Std.Dev. Corr\n obs (Intercept) 0.1472 0.3837 \n species (Intercept) 1.6523 1.2854 \n snow.melt.days 1.0169 1.0084 0.71\n sites (Intercept) 0.4344 0.6591 \nNumber of obs: 6150, groups: obs, 6150; species, 82; sites, 75\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -2.1239 0.1708 -12.436 < 2e-16 ***\nsnow.melt.days -0.6805 0.1228 -5.543 2.97e-08 ***\nseed.mass -0.2050 0.1634 -1.255 0.210 \nsnow.melt.days:seed.mass -0.1134 0.1281 -0.885 0.376 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) snw.m. sd.mss\nsnw.mlt.dys 0.630 \nseed.mass 0.022 0.029 \nsnw.mlt.d:. 0.023 0.031 0.680 \n```\n:::\n:::\n\n\nLet's test the fit difference between MLM1 and MLM2:\n\n::: {.cell}\n\n```{.r .cell-code}\nanova(MLM1.mod,MLM2.mod)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nData: data.df\nModels:\nMLM1.mod: abundance ~ snow.melt.days + snow.melt.days:seed.mass + (1 + snow.melt.days | species) + (1 | obs)\nMLM2.mod: abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days | species) + (1 | sites) + (1 | obs)\n npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) \nMLM1.mod 7 7335.5 7382.6 -3660.7 7321.5 \nMLM2.mod 9 7264.1 7324.6 -3623.0 7246.1 75.406 2 < 2.2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n\n```{.r .cell-code}\nc(BIC(MLM1.mod),BIC(MLM2.mod))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 7382.551 7324.594\n```\n:::\n:::\n\n\nWe won't diagnostics here for brevity and the code for the MLM1 can be easily adapted here. \n\nAlthough the fixed effects for the trait (seed mass) and interaction (seed mass and snow.melt.day) were not significant, the random effect standard deviation for site is relative large (0.66) and improved the predictive power for abundances across species.\n\n
**Our last GLMM applied to the fourth corner problem treating species and sites as random effects - the MLML3 model**
\n\nter Braak (2019) proposed yet another version that seems to work better than the previous ones. \n\n::: {.cell}\n\n```{.r .cell-code}\nMLM3.mod <- glmer(abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days|species) + (1 + seed.mass|sites) + (1 | obs), family = \"poisson\", control=glmerControl(calc.derivs=F), nAGQ = 0, data=data.df)\n```\n:::\n\n\nLet's test the fit difference between MLM2 and MLM3:\n\n::: {.cell}\n\n```{.r .cell-code}\nanova(MLM2.mod,MLM3.mod)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nData: data.df\nModels:\nMLM2.mod: abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days | species) + (1 | sites) + (1 | obs)\nMLM3.mod: abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days | species) + (1 + seed.mass | sites) + (1 | obs)\n npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)\nMLM2.mod 9 7264.1 7324.6 -3623.0 7246.1 \nMLM3.mod 11 7267.0 7341.0 -3622.5 7245.0 1.0759 2 0.5839\n```\n:::\n\n```{.r .cell-code}\nc(BIC(MLM2.mod),BIC(MLM3.mod))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 7324.594 7340.967\n```\n:::\n:::\n\n\nFor these data, the MLM3 does not improve the MLM2. \n\n**This is not the end - we will keep updating this page after the workshop** \n**References (still being filled):**\n\nAM Brown, DI Warton, NR Andrew, M Binns, G Cassis, H Gibb\nMethods in Ecology and Evolution 5 (4), 344-352\n\nCholer, P. (2005) Consistent shifts in Alpine plant traits along a mesotopographical gradient. Arctic, Antarctic, and Alpine Research, 37,444–453.\n\nDray, S., & Legendre, P. (2008) Testing the species traits-environment relationships : The fourth-corner problem revisited. Ecology, 89, 3400–3412.\n\nDunn, KP & Smyth GK (1996) Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 1-10.\n\nGabriel, KR. (1998) Generalised bilinear regression. Biometrika, 85, 689-700.\n\nGelman, A & Hill, J (2007). Data analysis using regression and multi-level/hierarchical models. New York, NY: Cambridge University Press.\n\nHarrison, XA (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ, 2, e616.\n\nJamil, T., Ozinga, W. A., Kleyer, M., & ter Braak, C. J. F. (2013). Selecting traits that explain species-environment relationships: A generalized linear mixed model approach. Journal of Vegetation Science, 24, 988–1000. \n\nPeres-Neto, P. R., Dray, S., & ter Braak, C. J. F. (2017). Linking trait variation to the environment: Critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography, 40, 806–816.\n\nPollock, L. J., Morris, W. K., & Vesk, P. A. (2012). The role of functional traits in species distributions revealed through a hierarchical model. Ecography, 35, 716–725. \n\nSimpson, EH (1951). The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, Series B., 13, 238–241.\n\nter Braak, CJF, Cormont, A. & Dray, S. (2012). Improved testing of species traits–environment relationships in the fourth‐corner problem. Ecology, 93, 1525-1526.\n\nter Braak, CJF & Looman, CWN. (1986). Weighted averaging, logistic regression and the Gaussian response model. Plant Ecology, 65, 3-11.\n\n**useful sites for GLMs (will also expand on this later on):**\n\n- Beyond Multiple Linear Regression: \n https://bookdown.org/roback/bookdown-BeyondMLR/\n \n\n\n\n\n\n\n", + "markdown": "---\ntitle: \"Generalized Linear Models for Community Ecology\"\ndescription: \"In this workshop we will explore, discuss, and apply generalized linear models to combine information on species distributions, traits, phylogenies, environmental and landscape variation. We will also discuss inference under spatial and phylogenetic autocorrelation under fixed and random effects implementations. We will discuss technical elements and cover implementations using R.\"\nauthor:\n - name: Pedro Peres-Neto\ndate: \"05-17-2021\"\nimage: image.jpg\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\nGeneralized Linear Model for Community Ecology \n\nPedro Peres-Neto, Concordia University \nBIOS2 workshop, May 17 to 21, 2021 \nThis document was put together for the first time for this workshop. \nLet me know if you have suggestions or find any issues in the document. \n
\n\n**Tentative schedule**\n\n* Day 1: \n Introduction to types of data and approaches using GLMs in community ecology. \n Types of patterns in species distributions involving trait and environmental variation. \n Simulating data as a path to understand GLMs in community ecology. \n The simplest GLM: widely used bivariate correlations. \n The challenges of statistical inference regarding linking different types of information from communities and species. \n Understanding estimators and their properties in GLMs. \n\n* Day 2: \n From bivariate correlations to a variety of more complex GLMs: the case of Binomial and Poisson. \n The role of latents in specifying GLMs for community ecology. \n The issues underlying autocorrelation in ecological data: the cases of spatial and phylogenetic autocorrelation. \n Simple GLMM approaches (Generalized Linear Mixed Models). \n\n* Day 3: \n More complex GLMM approaches. \n Potential approaches for incorporating intraspecific data on traits. \n Discussion with participants: your research interests, your questions or your data (or anything really).\n\n**Philosophy:** We can't cover everything with extreme details. I've chosen a level that should be interesting enough and cover many different important aspects of GLMs applied to community ecology.\n\n**Note:** I mostly apply here base functions so that participants without strong knowledge of certain packages (e.g., ggplot, dplyr) can follow the code more easily. \n\n**Questions:** Participants should feel free to ask questions either directly or in the zoom chat. I've also set a good doc where participants can put questions there during the week when we are not connected. I'll read them and try to provide an answer or cover the question somehow: \n\nhttps://docs.google.com/document/d/17GQvGkBFs9MmLv6Yn473_Dr1t1Ps03VdHOHMhbZhBKk/edit\n\n
\n\n
**Simulating data**
\n\nSimulating a single species \n\nOne way to develop good intuition underlying quantitative methods is to be able to simulate data according to certain desired characteristics. We can then apply methods (GLMs here) to see how well they retrieve the data characteristics. \n\nLet's start with a very simple GLM, the logistic regression for one single species. Here, for simplicity, we considered one predictor. In many ecological simulations, this single predictor is considered an \"environmental gradient\" containing many environmental predictors. We can consider more gradients and we will discuss that later on in the workshop.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(100) # so that we all have the same results\nn.sites <- 100\nX <- rnorm(n.sites)\nb0 <- 0.5 # controls the max prob. values\nprob.presence <- 1./(1+exp(-(b0+3*X)))\nplot(prob.presence ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-1-1.png){width=576}\n:::\n:::\n\n\nThis model is pretty simple and its form is:\n\n$$p=\\frac{1}{1+e^{-(\\beta_0+\\beta_1X_1)}} = \\frac{1}{1+e^{-(0.5+3X_1)}}$$\n\nNow let's generate presences and absences according to the logistic model expectation. Since is a logistic model, we use `rbinom`,i.e., binomial trials:\n\n::: {.cell}\n\n```{.r .cell-code}\nDistribution <- rbinom(n.sites,1,prob.presence)\n```\n:::\n\n```\nView(cbind(prob.presence,Distribution))\n```\n\nLet's model the data using logistic regression:\n\n::: {.cell}\n\n```{.r .cell-code}\nmodel <- glm(Distribution ~ X,family=binomial(link=logit))\ncoefficients(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n(Intercept) X \n 0.09200133 3.66168492 \n```\n:::\n:::\n\n```\nView(cbind(prob.presence,Distribution,model$fitted.values))\n```\n\nPlotting the predicted versus the observed presence-absence values:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(model$fitted.values ~ Distribution)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-4-1.png){width=576}\n:::\n:::\n\n\nAt this point, we won't cover model diagnostics. Data were simulated according to the model and, as such, assumptions hold well. Plus, this is a single-species model; and this workshop is about community data, i.e., multiple species :).\n\nThis is a good blog explaining how to check for assumptions of logistic regressions.\n\nSimulating a more realistic single species \n\nSpecies don't tend to respond linearly to environmental features:\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](Gaussian.png){width=50%}\n:::\n:::\n\n\nNow that we understand some basics of presence-absence data, let's concentrate on more realistic species distribution data and multi-species data. There are many ways (found in the ecological literature) in which we can simulate these type of data. Below we will generate data using a standard Gaussian model for presence-absence data according to a trait and environmental feature (we will cover abundance data later on). This is a commonly used way to simulate data. Let's start with a single species and one environmental variable. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(100) # so that we all have the same results\nn.sites <- 100\nX <- rnorm(n.sites)\noptimum <- 0.2\nniche.breadth <- 0.5\nb0 <- 1 # controls the max prob. values\nb1 <- -2\n# this is a logistic model:\nprob.presence <- 1./(1+exp(-(b0+(b1*(X-optimum)^2)/(2*niche.breadth^2)))) \n```\n:::\n\n\nThis more \"complex\" model has the following form:\n\n$$p=\\frac{1}{1+e^{-(\\beta_0+\\beta_1\\frac{(X-\\mu)^2}{2\\sigma^2})}}=\\frac{1}{1+e^{-(1+2\\frac{(X-0.2)^2}{2\\cdot0.5^2})}}$$\nwhere $\\mu$ represents the species optimum and $\\sigma$ its niche breadth. \n\nLet's plot these probabilities:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(X,prob.presence,ylim=c(0,1))\n# plot optimum\nabline(v=optimum,col=\"red\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-7-1.png){width=576}\n:::\n:::\n\n\nNow let's simulate the distribution, i.e., presences and absences according to the model. Since is a logistic, we use `rbinom`,i.e., binomial trials:\n\n::: {.cell}\n\n```{.r .cell-code}\nDistribution <- rbinom(n.sites,1,prob.presence)\n```\n:::\n\n\nPlot the species distribution against the environmental variable:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(X,prob.presence,ylim=c(0,1))\nsites.present <- which(Distribution==1)\npoints(X[sites.present],Distribution[sites.present],col=\"green\",pch=16,cex=0.5)\nsites.absent <- which(Distribution==0)\npoints(X[sites.absent],Distribution[sites.absent],col=\"red\",pch=16,cex=0.5)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-9-1.png){width=576}\n:::\n:::\n\n\nThe parameters can be then estimated from the data using a logistic regression:\n\n::: {.cell}\n\n```{.r .cell-code}\npredictor <- cbind(X,X^2) \nmodel <- glm(Distribution ~ predictor,family=binomial(link=logit))\ncoeffs <- coefficients(model)\nb0 <- coeffs[1]\nb1 <- coeffs[2]\nb2 <- coeffs[3]\nestimated.optimum <- -b1/(2*b2) # as in ter Braak and Looman 1986\nestimated.niche.breadth <- 1/sqrt(-2*b2)\nc(estimated.optimum,estimated.niche.breadth) # estimated by the glm\n```\n\n::: {.cell-output .cell-output-stdout}\n```\npredictorX predictor \n 0.3317377 0.3922625 \n```\n:::\n\n```{.r .cell-code}\nc(optimum,niche.breadth) # set in our simulations above\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.2 0.5\n```\n:::\n:::\n\n\nWe can demonstrate computationally that the parameter estimations are unbiased as they are maximum likelihood via the GLM. Here we will be showing the sampling variation only for niche optimum and breadth. The other two parameters, $\\beta_0$ and $\\beta_1$ can be placed in the code below as well, demonstrating that they are also not biased. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nn.samples <- 1000\nestimation.matrix <- matrix(0,n.samples,2)\ncolnames(estimation.matrix) <- c(\"optimum\",\"niche.breadth\")\n# remember that we already set the parameters for the model above, i.e., optimum and niche breadth\nfor (i in 1:n.samples){\n X <- rnorm(n.sites)\n prob.presence <- 1./(1+exp((-b0+((X-optimum)^2)/(2*niche.breadth^2)))) # this is a logistic model\n Distribution <- rbinom(n.sites,1,prob.presence)\n predictor <- cbind(X,X^2) \n model <- glm(Distribution ~ predictor,family=binomial(link=logit))\n coeffs <- coefficients(model)\n intercept <- coeffs[1]\n b1 <- coeffs[2]\n b2 <- coeffs[3]\n estimation.matrix[i,\"optimum\"] <- -b1/(2*b2)\n estimation.matrix[i,\"niche.breadth\"] <- 1/sqrt(-2*b2)\n}\n```\n:::\n\nThere may be warnings \"glm.fit: fitted probabilities numerically 0 or 1 occurred\". But that is not a problem per se. It just tells us that the for some species, their models capture the distribution values perfectly. By the way, that also happens with real data. \n\nLet's observe the random variation around the parameter estimates and the average values:\n\n::: {.cell}\n\n```{.r .cell-code}\nboxplot(estimation.matrix)\nabline(h=apply(estimation.matrix,2,mean),col=\"firebrick\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-12-1.png){width=576}\n:::\n\n```{.r .cell-code}\napply(estimation.matrix,2,mean)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n optimum niche.breadth \n 0.2016913 0.4834230 \n```\n:::\n\n```{.r .cell-code}\nc(optimum,niche.breadth) # set in our simulations above\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.2 0.5\n```\n:::\n:::\n\nNote how the mean values are pretty close to the true values used to generate the data. This small simulation helps one understand the principles of sampling variation and unbiased estimation. \n\nSimulating multiple species \n\nNow, let's generalize our code to multiple species. We will create a function that allow us to make sure that all sites have at least one species present and all species are present at least in one site; this is a common (but not necessary) characteristic of data used in community ecology. \n\n\n::: {.cell}\n\n```{.r .cell-code}\ngenerate_communities <- function(tolerance,E,T,n.species,n.communities){\n repeat {\n # generates variation in niche breadth across species\n niche.breadth <- runif(n.species)*tolerance \n b0 <- runif(n.species,min=-4,max=4)\n prob.presence <- matrix(data=0,nrow=n.communities,ncol=n.species)\n Dist.matrix <- matrix(data=0,nrow=n.communities,ncol=n.species)\n for(j in 1:n.species){\n # species optima are trait values; which makes sense ecologically\n prob.presence[,j] <- 1./(1+exp((-b0[j]+((E-T[j])^2)/(2*niche.breadth[j]^2)))) \n Dist.matrix[,j] <- rbinom(n.communities,1,prob.presence[,j])\n }\n n_species_c <- sum(colSums(Dist.matrix)!=0) # _c for check\n n_communities_c <- sum(rowSums(Dist.matrix)!=0)\n if ((n_species_c == n.species) & (n_communities_c==n.communities)){break}\n }\n result <- list(Dist.matrix=Dist.matrix,prob.presence=prob.presence)\n return(result)\n}\n```\n:::\n\n\nNow let's generate a community. Note that we are using one environmental gradient and one trait. We could consider more variables (trait or environmental features) by adding terms to the logistic equation above. But for the time being, that will suffice. Note, thout, that in many ecological simulations, this single predictor is considered an \"environmental gradient\" containing many environmental predictors. We can consider more gradients and we will discuss that later on in the workshop. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(12351) # so that we all have the same results\nn.communities <- 100\nn.species <- 50\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nDist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\nProbs <- Dist$prob.presence\nDistribution <- Dist$Dist.matrix\n```\n:::\n\n\nLet's plot the probability values across environmental values. To do that nicely, we need to order the communities according to their environmental values as follows:\n\n::: {.cell}\n\n```{.r .cell-code}\nE.sorted <- sort(E, index.return=TRUE)\nProbs.sorted <- Probs[E.sorted$ix,]\nE.sorted <- E.sorted$x\nmatplot(E.sorted, Probs.sorted, cex.lab=1.5,cex.axis=2,lty = \"solid\", type = \"l\", pch = 1:10, cex = 0.8,\n xlab = \"Enviroment\", ylab = \"Probability of presence\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-15-1.png){width=576}\n:::\n:::\n\n\nAnd let's plot presences and absences against ordered environmental and trait values:\n\n::: {.cell}\n\n```{.r .cell-code}\nheatmap(as.matrix(Distribution),scale=\"none\",Rowv=E,Colv=T,col=c(\"white\",\"black\"),labCol=\"species\",labRow=\"communities\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-16-1.png){width=576}\n:::\n:::\n\n\n
\n\n
**Classic and simple GLMs for one trait and one environment (bivariate correlations)**
\n\nNow that we have a basic understanding of one GLM (logistic) and how they can model different types of community ecology data, i.e., species distributions, traits and environmental variation, we can start looking into approaches that that are used by ecologists to estimate the importance of environmental and trait variation to species distributions. \n\nLet's start by calculating the simplest and widely used metric of the community weighted trait mean:\n\n::: {.cell}\n\n```{.r .cell-code}\nCWM <- Distribution %*% T / rowSums(Distribution)\n```\n:::\n\nFor data that are based on presence-absence, this is simply the average of species trait values within communities. \n\nLet's now correlate CWM with the environment, i.e., community weighted means correlation. This is a widely used approach by ecologists:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(CWM ~ E)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-18-1.png){width=576}\n:::\n\n```{.r .cell-code}\ncor(CWM,E)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1]\n[1,] 0.9296338\n```\n:::\n:::\n\n\nAgain, the community weighted means correlation is likely the most commonly used approach with 1000s of studies having been published with it. \n\nAnother approach is to calculate the species weighted environment means and correlate with trait values. This approach is less common (but still quite used in the ecological literature) and is sometimes referred as to species niche centroid (SNC):\n\n\n::: {.cell}\n\n```{.r .cell-code}\nSNC <- t(E %*% Distribution) / colSums(Distribution)\n```\n:::\n\n\nLet's now correlate SNC with species traits:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(T ~ SNC)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-20-1.png){width=576}\n:::\n\n```{.r .cell-code}\ncor(T,SNC)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1]\n[1,] 0.7700065\n```\n:::\n:::\n\n\nNote that the two correlations (CWM- and SNC-based) differ. That's odd as they were both calculated on exactly the same information: the same Species Matrix, Environment and Trait. Peres-Neto, Dray & ter Braak (2017) demonstrated (mathematically) that this issue is related to the fact that although CWM and SNC are based on weights, they don't standardized and correlate them with the proper weights. CWM is based on averages calculated based on the sum of species (richness or total abundance per community) and SNC is based on averages calculated based on the number of communities in which species are presence (prevalence) or their total abundance. \n\nBecause of that, we have found (Peres-Neto et al. 2017) a few undesirable properties of these two correlations (CWM and SNC-based correlations). One is that when the correlation is expected to be zero, the sampling variation of these correlations are quite large (i.e., low precision). Let's evaluate this issue:\nBelow we generate data with structure, but then use a false trait completely independent of the original one, thus destroying the link between trait and environmental variation. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(120) # so that we all have the same results\nn.communities <- 100\nn.species <- 50\nn.samples <- 100 # set to larger later\n\nCWM.cor <- as.matrix(0,n.samples)\nfor (i in 1:n.samples){\n E <- rnorm(n.communities)\n T <- rnorm(n.species)\n Dist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\n T.false <- rnorm(n.species)\n CWM <- Dist$Dist.matrix %*% T.false / rowSums(Dist$Dist.matrix)\n CWM.cor[i] <- cor(CWM,E)\n}\n```\n:::\n\n\nLet's plot the correlations:\n\n::: {.cell}\n\n```{.r .cell-code}\nboxplot(CWM.cor)\nabline(h=mean(CWM.cor),col=\"firebrick\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-22-1.png){width=576}\n:::\n:::\n\n \nNote that the variation is quite large for correlations based on a random trait (i.e., T.false). For example, some correlations were greater than 0.7 and smaller than -0.60. We showed that although the variation is quite large, the expected value is zero; we would need 10000 or more simulations to make `mean(CWM.cor)` approach almost zero. A similar issue (i.e., large variation, low precision) happens for correlations based on SNO but we won't simulate here for brevity. One can easily adapt the code above to do so though. \n\nWe have shown that precision is much increased when using the 4th corner statistic. Originally described in matrix form by Legendre et al. (1997), we (Peres-Neto et al. 2017) demonstrated that the 4th corner statisticit is a GLM assuming an identity link, i.e., normally distributed residuals. \n\nThe basis of the 4th corner correlation is that it starts by the standardization of the trait by the sum of their species abundances (or number of sites occupied for presence-absence data), and the standardization of the environment by the sum of their community abundances. The default standardization (function `scale`) transforms the variable (trait or environment) in a way that its mean and standard deviation are 0 and 1, respectively. A weighted standardization makes the weighted mean and weighted standard deviation to be 0 and 1, respectively. \n\nR doesn't have a default function for weighted standardization. But this can be done using the follow function:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nstandardize_w <- function(X,w){\n ones <- rep(1,length(w))\n Xc <- X - ones %*% t(w)%*% X\n Xc / ones%*%sqrt(t(ones)%*%(Xc*Xc*w)) \n} \n```\n:::\n\n\nLet's get back to the original data used to calculate CWM and SNC based correlations:\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(12351) # so that we all have the same results\nn.communities <- 100\nn.species <- 50\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nDist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\nDistribution <- Dist$Dist.matrix\n```\n:::\n\n\nWe then standardize environment and trait by their respective abundance sums (rows for environment & columns for trait). \n\n\n::: {.cell}\n\n```{.r .cell-code}\n# make distribution matrix relative to its total sum; it makes calculations easier\nDist.rel <- Distribution/sum(Distribution)\nWn <- rowSums(Dist.rel)\nWs <- colSums(Dist.rel)\nE.std_w <- standardize_w(E,Wn)\nT.std_w <- standardize_w(T,Ws)\n```\n:::\n\n\nNote: In the future, include here the calculation of the weighted mean and standard deviation of \nE.std_w and T.std_w to show that they are zero and one, respectively (when weighted). \n\nWe then calculate the community average trait (weighted standardized) or the species niche centroid (weighted standardized):\n\n\n::: {.cell}\n\n```{.r .cell-code}\nCWM.w <- Dist.rel %*% T.std_w / Wn\nSNC.w <- t(E.std_w) %*% Dist.rel / Ws\n```\n:::\n\n\nWe then calculate the weighted correlation between the two vectors above but their appropriate weights. In the case of CWM.w:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# either using weighted correlation:\nt(CWM.w) %*% (E.std_w*Wn)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1]\n[1,] 0.2813709\n```\n:::\n\n```{.r .cell-code}\n# or the same value using weighted regression:\nlm(CWM.w ~ E.std_w,weights = Wn)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = CWM.w ~ E.std_w, weights = Wn)\n\nCoefficients:\n(Intercept) E.std_w \n 8.804e-17 2.814e-01 \n```\n:::\n:::\n\n\nIn the case of SNC.w:\n\n::: {.cell}\n\n```{.r .cell-code}\n# either using weighted correlation:\nSNC.w %*% (T.std_w*Ws)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1]\n[1,] 0.2813709\n```\n:::\n\n```{.r .cell-code}\n# or the same value using weighted regression:\nlm(t(SNC.w)~T.std_w,weights = Ws)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = t(SNC.w) ~ T.std_w, weights = Ws)\n\nCoefficients:\n(Intercept) T.std_w \n -5.000e-17 2.814e-01 \n```\n:::\n:::\n\n\nNote that regardless whether SNC or CWM were used, the 4th corner correlation gives the same result, which makes sense mathematically as both correlations use the exact same information. The reason (again) that the CWM and SNC standard correlation approaches differ is because they don't use appropriate weights in their standardization and weighted correlation. \n\nAnother issue to notice is that the 4th corner values are smaller than their standard CWM values. Whereas the CWM correlation was 0.9296, the 4th corner was 0.2814. The issue here is that the CWM correlation refers only to the trait variation among communities (trait beta-diversity), whereas the 4th corner refers to the total variation in traits (within, i.e., trait alpha diversity, and among communities, i.e., trait beta-diversity). This was demonstrated by algebraic proofs in Peres-Neto et al. (2017) but we won't get into these details here. \n\nThis does bring an interesting point for the analysis of trait in a community ecology context. The relative trait variation among communities (i.e., total trait beta-diversity) and within communities (i.e., gamma trait diversity) can be estimated as follows:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Among communities \nAmong.Variation <- sum(diag(t(CWM.w)%*%(CWM.w* Wn))) * 100\n# Within communities \nWithin.Variation <- 100 - Among.Variation\nc(Among.Variation,Within.Variation)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 9.460287 90.539713\n```\n:::\n:::\n\n\nThe standard CWM correlation is high because it pertains to only 9.46% of the total variation, whereas the 4th corner correlation pertains to all variation, i.e., both within and among. As the among communities component become large, the two correlations become somewhat more similar. \n\nLet's now investigate the sampling properties of the 4th corner correlation as we did above for the CWM correlation, i.e., when the trait-environment correlation is expected to be zero:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(120) # so that we all have the same results and the same communities and traits are generated as before\nn.communities <- 100\nn.species <- 50\nn.samples <- 100 # set to larger later\n\nCWM.4th.cor <- as.matrix(0,n.samples)\nfor (i in 1:n.samples){\n E <- rnorm(n.communities)\n T <- rnorm(n.species)\n Dist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\n T.false <- rnorm(n.species) # destroys the original generated relationship\n Dist.rel <- Dist$Dist.matrix/sum(Distribution)\n Wn <- rowSums(Dist.rel)\n E.std_w <- standardize_w(E,Wn)\n T.std_w.false <- standardize_w(T.false,Ws)\n CWM.w.false <- Dist.rel %*% T.std_w.false / Wn\n t(CWM.w.false) %*% (E.std_w*Wn)\n CWM.4th.cor[i] <- cor(CWM,E)\n}\n```\n:::\n\n\nLet's compare the two statistics:\n\n::: {.cell}\n\n```{.r .cell-code}\nboxplot(cbind(CWM.cor,CWM.4th.cor))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-31-1.png){width=672}\n:::\n:::\n\n \nNote how the 4th corner correlation is a much more precise predictor around the true value of zero.\n\n
\n\n
**Statistical hypothesis testing**
\nWe know for a while that the bivariate correlations discussed so far have elevated type I error rates based on parametric testing and under certain permutation schemes (Dray and Legendre 2008; and Dray et al. 2014). That means that when the statistical null hypothesis of no link between trait and environment will be rejected more often than the preset alpha level (significance level, e.g., 0.05 or 0.01). More recently, this was also established for more complex models (more on this later). Resolving these issues are challenging and remain a very active field of research. \n\nThe code so far has helped to build some intuition underlying the different bivariate correlations. We will now use a more complete utility function that allows calculating these different metrics using one single function. This function is part of Peres-Neto et al. (2017).\n\nDownload the utility function file:\n\nClick here to download it\n\nLoad the functions into R: \n\n::: {.cell}\n\n```{.r .cell-code}\nsource(\"UtilityFunctions.R\")\n```\n:::\n\n\nLet's use the function that calculates a number of the bivariate correlations, which are essentially simple GLMs. \n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(125)\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nDist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\nTraitEnv.res <- TraitEnvCor(Distribution,E,T, Chessel = TRUE)\nTraitEnv.res\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n CWM.cor wCWM.cor SNC.cor \n 0.016601826 0.054714685 0.288779046 \n wSNC.cor Fourthcorner Chessel.4thcor \n 0.039080469 0.006235766 0.015313259 \n Among Wn-variance (%) Within Wn-variance (%) \n 1.298888497 98.701111503 \n```\n:::\n:::\n\n\nIf we want to isolate the 4th corner correlation, we can simply:\n\n::: {.cell}\n\n```{.r .cell-code}\nTraitEnv.res[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.006235766 \n```\n:::\n:::\n\n\nLet's now run permutation Model 2, Model 4 and p.max for data without a link between trait and environment. We first create the data with no link:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(125)\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nDist <- generate_communities(tolerance = 1.5, E, T, n.species, n.communities)\nDistribution <- Dist$Dist.matrix\nT.false <- rnorm(n.species)\nTraitEnv.res <- TraitEnvCor(Distribution,E,T.false, Chessel = FALSE)\nTraitEnv.res[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.04168433 \n```\n:::\n:::\n\n\nNote how the 4th corner correlation is quite low, i.e., 0.0417. Now let's check this value with permutations: \n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(125)\nnrepet <- 99\nobs <- TraitEnv.res[\"Fourthcorner\"]\nsim.row <- matrix(0, nrow = nrepet, ncol = 1)\nsim.col <- matrix(0, nrow = nrepet, ncol = 1)\nfor(i in 1:nrepet){\n per.row <- sample(nrow(Distribution)) # permute communities\n per.col <- sample(ncol(Distribution)) # permute species\n sim.row[i] <- TraitEnvCor(Distribution,E[per.row],T.false)[\"Fourthcorner\"]\n sim.col[i] <- TraitEnvCor(Distribution,E,T.false[per.col])[\"Fourthcorner\"]\n}\npval.row <- (length(which(abs(sim.row) >= abs(obs))) + 1) / (nrepet + 1)\npval.col <- (length(which(abs(sim.col) >= abs(obs))) + 1) / (nrepet + 1)\np.max <- max(pval.row,pval.col)\nc(pval.row,pval.col,p.max)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.01 0.47 0.47\n```\n:::\n:::\n\n\nAs we can see, although only environmental features were important but not traits, the row permutation (across commmunities) detected the relationship as significant. Note, however, that the permutation across species did not. ter Braak et al. (2012) determined that the maximum value between the two p-values (row and column based) assures appropriate type I error rate as expected alpha.\n\nThe function above allows understanding the permutation procedures. That said, the utility function file has a more complete function:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(125)\nCorPermutationTest(Distribution, E, T.false, nrepet = 99)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n cor prow pcol pmax\nCWM.cor 0.36605145 0.01 0.33 0.33\nwCWM.cor 0.28014652 0.01 0.44 0.44\nSNC.cor 0.14836877 0.39 0.36 0.39\nwSNC.cor 0.09492897 0.26 0.47 0.47\nFourthcorner 0.04168433 0.01 0.47 0.47\n```\n:::\n:::\n\n\n
\n\n
**Bivariate correlations in practice**
\n\nI hope by now you are convinced that the 4th corner is a more robust metric of bivariate correlation (one trait and one environment). Here we will use the `Aravo` community plant data set (Massif du Grand Gabilier, France; Choler 2005) contained in the package `ade4`. We provide more explanation on the data in Dray et al. (2012). Here we will replicate the analysis in that paper. The data contain species abundances for 82 species distributed into 75 sites. Sites are described by 6 environmental variables: mean snowmelt date over the period 1997–1999, slope inclination, aspect, index of microscale landform, index of physical disturbance due to cryoturbation and solifluction, and an index of zoogenic disturbance due to trampling and burrowing activities of the Alpine marmot. All variables are quantitative except the landform and zoogenic disturbance indexes that are categorical variables with five and three categories, respectively. And eight quantitative functional traits (i.e., vegetative height, lateral spread, leaf elevation angle, leaf area, leaf thickness, specific leaf area, mass-based leaf nitrogen content, and seed mass) were measured on the 82 most abundant plant species (out of a total of 132 recorded species). \n\n\n::: {.cell}\n::: {.cell-output-display}\n![](aravo.png){width=70%}\n:::\n:::\n\n\nLoad the package and the data:\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"ade4\") in case you don't have it installed\nlibrary(ade4)\ndata(aravo)\ndim(aravo$spe)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 75 82\n```\n:::\n\n```{.r .cell-code}\ndim(aravo$env)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 75 6\n```\n:::\n\n```{.r .cell-code}\ndim(aravo$trait)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 82 8\n```\n:::\n:::\n\n\nLet's estimate the 4th corner correlations between each trait and environmental variable. `nrept` is the number of permutations and should be set to a reasonable high number (say 9999). Here we will use 999 to speed calculations. Note that all permutation tests (not only the ones for the 4th corner) include the observed correlation as part of the null distribution (i.e., permuted); hence the use of `nrept` as 999, i.e., 1000 possible permutations (the observed correlation is a possible permutation if we run the test infinite times; which is not possible; so we consider it as default. `modeltype` is set to 6, which is the largest p-value between model 2 permutation (entire communities in the distribution matrix) and model 4 (entire species in the distribution matrix). The p-max procedure is detailed in ter Braak et. 2012. Finally, p-values are adjusted using the `false discovery rate` for multiple testing. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nfour.comb.aravo.adj <- fourthcorner(aravo$env, aravo$spe,\naravo$traits, modeltype = 6, p.adjust.method.G = \"none\",\np.adjust.method.D = \"fdr\", nrepet = 999)\n```\n:::\n\n\nResults can be retrieved by simply typing:\n```\nfour.comb.aravo \n```\n\nThe 'classic' table of results can be produced as follows. D2 indicates that the 4th corner correlation is to be used between the quantitative variable and each category of the qualitative variables. Other bivariate metrics of 4th corner association are also described in Dray and Legendre (2008) for qualitative-quantitative associations. In the default plot, blue cells correspond to negative signicant relationships while red cells correspond to positive signicant relationships (this can be modified using the argument col in the function fourthcorner).\n\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(four.comb.aravo.adj, alpha = 0.05, stat = \"D2\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-41-1.png){width=576}\n:::\n:::\n\n\n
\n\n
**Stacking species information as a way to understand how to build more complex GLMs**
\n\nAlthough widely used (1000s of studies published using them), bivariate correlations are the simplest forms of GLMs for community data. That said, the 4th corner correlation can be calculated in a way that allows us (hopefully) to understand how more complex GLMs can be produced. They allow us understanding species stacking. Perhaps I should have considered this presentation before the calculations based on weights and standardizations (will inverst in the next version of the workshop). Let's build a small data so that we understand this principle. Consider a very artificial distribution matrix with 4 communities and 4 species. It was made artificial so that we can understand well its structure:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nDistribution <- as.matrix(rbind(c(1,1,0,0),c(1,0,0,0),c(0,0,1,1),c(0,0,1,0)))\nDistribution\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [,1] [,2] [,3] [,4]\n[1,] 1 1 0 0\n[2,] 1 0 0 0\n[3,] 0 0 1 1\n[4,] 0 0 1 0\n```\n:::\n:::\n\n\nLet's create some traits and environmental features:\n\n::: {.cell}\n\n```{.r .cell-code}\nT <- c(1,2,5,8)\nE <- c(10,12,100,112)\n```\n:::\n\n\nNow let's calculate its 4th corner correlation:\n\n::: {.cell}\n\n```{.r .cell-code}\nTraitEnvCor(Distribution,E,T)[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.8902989 \n```\n:::\n:::\n\n\nThe 4th corner correlation is pretty high given the highly structured data. Another way to calculate a 4th corner correlation is by using what we refer to as an \"inflated approach\". This approach allows understanding the structure of stacked information. This figure demonstrates the process and calculation:\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](InflatedApproach4thcorner.png){width=80%}\n:::\n:::\n\n\nNext we stack species distributions, environment and trait information:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nn.species <- ncol(Distribution)\nn.sites <- nrow(Distribution)\nDist.stacked <- as.vector(Distribution)\nE.stacked <- rep(1, n.species) %x% E\nT.stacked <- T %x% rep(1, n.sites) \n```\n:::\n\n```\nView(cbind(Dist.stacked,E.stacked,T.stacked))\n```\n\nWe then eliminatate the cells for which the distribution is zero and calculate the correlation:\n\n::: {.cell}\n\n```{.r .cell-code}\nzeros.dist <- which(Dist.stacked==0)\ncor(E.stacked[-zeros.dist],T.stacked[-zeros.dist])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.8902989\n```\n:::\n:::\n\n\nNote: perhaps I should have started with this explanation and then move to the more complicated way of using weights. The inflated approach is in fact a way to see how weights are given. \n\n
\n\n
**Simulating abundance data and understanding link functions in GLMs**
\n\nSimple model \n\nAlthough community ecologists commonly work with presence-absence data, abundance data are also commonly used in many approaches. Here we will use a Poisson model to simulate community data involving species distributions, traits and environment. Although link functions are used in all families of GLMs (poisson, binomial, negative binomial, gamma, etc), we will try to provide an explanation here of what they mean using abundance data. But the same rationale will apply to all families. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(100) # so that we all have the same results\nn.sites <- 100\nX <- rnorm(n.sites)\nb0 <- 0.05\nb1 <- 2\nY <- exp(b0 + b1*X)\nAbundance <- rpois(n.sites,Y)\nplot(Abundance ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-1.png){width=576}\n:::\n:::\n\n\nThis Poisson model has the following form. Note that multiple predictors can be considered. Here, for simplicity, we considered one predictor. Again, in many ecological simulations, this single predictor is considered an \"environmental gradient\" containing many environmental predictors. We can consider more gradients and we will discuss that later on in the workshop. \n\n$$Y={e^{(\\beta_0+\\beta_1X_1)}}=e^{(0.05+1.2X_1)}=log(Y)=0.05+1.2X_1$$\nThe model can be estimated as:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nmodel <- glm(Abundance ~ X, family=\"poisson\")\ncoefficients(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n(Intercept) X \n 0.03095719 2.02323099 \n```\n:::\n\n```{.r .cell-code}\nplot(model$fitted.values ~ Abundance)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-49-1.png){width=576}\n:::\n:::\n\n\nGLMs are linear models because they use link-functions to map non-linear relationships to a linear one. In this way, the link function connects the predictors in a model with the expected (mean) value of the response variable (dependent variable). In other words, the link-functions transforms the response values into new values that can be then regressed using linear approaches (Maximum Likelihood-based approaches and not simple OLS, ordinary least square approaches as in linear regression) against the X values. As we saw in the first example of the Poisson regression above, the relationship is not linear. The link-function for the Poisson distribution is `ln` of the response. Let's understand this point by plotting the log(Y) and X. Note that Y has no error and Abundance has error (i.e., based on the `rpois`, i.e., poisson trials)\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# without error:\nplot(log(Y) ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-50-1.png){width=576}\n:::\n\n```{.r .cell-code}\n# with error\nplot(log(Abundance) ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-50-2.png){width=576}\n:::\n:::\n\n\nWhat does the passage \"the link-function connects the predictors in a model with the expected (mean) value of the response variable (dependent variable)\" mean? As you can notice, we used Poisson trials to generate error around the initial Y values. Let's create a 100 possible trials:\n\n::: {.cell}\n\n```{.r .cell-code}\nmult.Y <- replicate(n=100,expr=rpois(n.sites,Y))\n```\n:::\n\n\n```\nView(mult.Y)\n```\n\nEach column in `mult.Y` contains one single trial. This would mimic, for instance, your error in estimating abundances when sampling real populations and assuming that a Poisson GLM would model your abundances across sites well. As such, in real data, obviously, we only have one \"trial\". But this small demonstration hopefully helps you understand what the GLM is trying to estimate via the link-function. \n\nLet's repeat the predictor `X` 100 times`so that it becomes compatible in size with the multiple trials; and we can then plot them:\n\n::: {.cell}\n\n```{.r .cell-code}\nrep.X <- rep(X, times = 100)\nplot(as.vector(mult.Y) ~ rep.X,pch=16,cex=0.5,col=\"firebrick\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-52-1.png){width=576}\n:::\n:::\n\n\nNote that larger values of abundances tend to have more error under the poisson model (which is also ecologically plausible). \n\nNow we can understand what the passage \"the link-function connects the predictors in a model with the expected (mean) value of the response\". Let's first increase the number of trials to 10000 and for each site (for which we have an X value), calculate its mean:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nmult.Y <- replicate(n=10000,expr=rpois(n.sites,Y))\nmean.mult.Y <- apply(mult.Y,1,mean)\nplot(mean.mult.Y ~ Y)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-53-1.png){width=576}\n:::\n:::\n\n\nAs we can observe, the mean across all trials (errors) equal the response variable Y, i.e., without error. Hopefully this provides a general understanding of what link functions are. A similar explanation can be given for the logistic regression (i.e., binomial error). In there we use a `logit` link function (transformation) instead.\n\nMissing predictors in GLMs as a source of error \n\nObviously the fit is great, particularly because we considered all the important predictors in the model. We don't usually have all predictors in a model and this can be simulated as well. Considering the following example where two environmental predictors were used to generate the abundance data but only was used in the regression model: \n\n$$p={e^{(\\beta_0+\\beta_1X_1+\\beta_1X_2)}}$$\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(100) # so that we all have the same results\nn.sites <- 100\nX <- matrix(rnorm(n.sites*2),n.sites,2)\nb0 <- 2\nb1 <- 0.5\nb2 <- 1.2\nY <- exp(b0 + b1*X[,1] + b1*X[,2]) # there are more direct matricial ways to do that\nAbundance <- rpois(n.sites,Y)\nmodel <- glm(Abundance ~ X[,1], family=\"poisson\")\nmodel\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: glm(formula = Abundance ~ X[, 1], family = \"poisson\")\n\nCoefficients:\n(Intercept) X[, 1] \n 2.0472 0.5294 \n\nDegrees of Freedom: 99 Total (i.e. Null); 98 Residual\nNull Deviance:\t 532.1 \nResidual Deviance: 258.8 \tAIC: 637.7\n```\n:::\n\n```{.r .cell-code}\nplot(model$fitted.values ~ Abundance)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-54-1.png){width=576}\n:::\n\n```{.r .cell-code}\nAIC(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 637.7152\n```\n:::\n:::\n\nNote that the errors around predicted and true values are much greater because only one predictor was included in the GLM even though two predictors were important. Now considering both predictors:\n\n::: {.cell}\n\n```{.r .cell-code}\nmodel <- glm(Abundance ~ X, family=\"poisson\")\nmodel\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall: glm(formula = Abundance ~ X, family = \"poisson\")\n\nCoefficients:\n(Intercept) X1 X2 \n 1.9808 0.5300 0.4931 \n\nDegrees of Freedom: 99 Total (i.e. Null); 97 Residual\nNull Deviance:\t 532.1 \nResidual Deviance: 119 \tAIC: 500\n```\n:::\n\n```{.r .cell-code}\nplot(model$fitted.values ~ Abundance)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-55-1.png){width=576}\n:::\n\n```{.r .cell-code}\nAIC(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 500.0011\n```\n:::\n:::\n\n\nThis is a critical empirical (ecological) consideration because we can't measure everything. The error is much smaller and, as a consequence, the model fit is much improved (i.e., smaller AIC values) because it considers the two predictors. It can't be perfect because of the error related to the poisson trials that will always result in random variation (residual variation). \n\nA more realistic Gaussian Poisson model \n\nAs for the logistic model, we can also consider a more realistic Poisson model based on a Gaussian distribution:\n\n$$Y={h\\cdot e^{-(\\beta_0+\\beta_1\\frac{(X-\\mu)^2}{2\\sigma^2})}}$$\nAs before, $\\mu$ represents the species optimum and $\\sigma$ its niche breadth. $h$ represents the expected abundance in the optimum environmental value. Using code to simulate this model for one species; for simplicity, we will set $\\beta_0=0$ and $\\beta_1=1$:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(110)\nX <- rnorm(n.sites)\noptimum <- 1.2\nniche.breadth <- 0.5\nh <- 104\nY <- h * exp(-(X-optimum)^2/(2*niche.breadth^2))\nAbundance <- rpois(n.sites,Y)\nplot(Abundance~X)\nabline(v=1.2,col=\"firebrick\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-56-1.png){width=576}\n:::\n:::\n\n\nLet's fit the Poisson model:\n\n::: {.cell}\n\n```{.r .cell-code}\npredictor <- cbind(X,X^2) \nmodel <- glm(Abundance ~ predictor,family=\"poisson\")\nplot(model$fitted ~ X)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-57-1.png){width=576}\n:::\n\n```{.r .cell-code}\ncoeffs <- coefficients(model)\n```\n:::\n\n\nAs before, parameters used to simulate the species distribution can be estimated as:\n\n::: {.cell}\n\n```{.r .cell-code}\nb0 <- coeffs[1]\nb1 <- coeffs[2]\nb2 <- coeffs[3]\nestimated.optimum <- -b1/(2*b2) \nestimated.niche.breadth <- 1/sqrt(-2*b2)\nh <- exp(b0 + b1*estimated.optimum + b2*estimated.optimum^2)\ncbind(estimated.optimum,estimated.niche.breadth,h)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n estimated.optimum estimated.niche.breadth h\npredictorX 1.179753 0.4726181 104.8035\n```\n:::\n:::\n\n\nNow we can generalize the code to generate abundance data for multiple species:\n\n::: {.cell}\n\n```{.r .cell-code}\ngenerate_community_abundance <- function(tolerance,E,T,preset_nspecies,preset_ncommunities){\n repeat {\n # one trait, one environmental variable\n h <- runif(preset_nspecies,min=0.3,max=1)\n sigma <- runif(preset_nspecies)*tolerance\n L <- matrix(data=0,nrow=preset_ncommunities,ncol=preset_nspecies)\n for(j in 1:preset_nspecies){\n L[,j] <- 30*h[j]*exp(-(E-T[j])^2/(2*sigma[j]^2))\n #rpois(preset_ncommunities,30*h[j]*exp(-(E-T[j])^2/(2*sigma[j]^2)))\n }\n n_species_c <- sum(colSums(L)!=0) # _c for check\n n_communities_c <- sum(rowSums(L)!=0)\n if ((n_species_c == preset_nspecies) & (n_communities_c==preset_ncommunities)){break}\n }\n return(L)\n}\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(120) # so that we all have the same results\nn.communities <- 100\nn.species <- 50\nE <- rnorm(n.communities)\nT <- rnorm(n.species)\nY <- generate_community_abundance(tolerance = 1.5, E, T, n.species, n.communities)\n```\n:::\n\n\nLet's plot the expected abundance values across environmental values. To do that nicely, we need to order the communities according to their environmental values as follows:\n\n::: {.cell}\n\n```{.r .cell-code}\nE.sorted <- sort(E, index.return=TRUE)\nY.sorted <- Y[E.sorted$ix,]\nE.sorted <- E.sorted$x\nmatplot(E.sorted, Y.sorted, cex.lab=1.5,cex.axis=2,lty = \"solid\", type = \"l\", pch = 1:10, cex = 0.8,\n xlab = \"Enviroment\", ylab = \"Abundance\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-61-1.png){width=576}\n:::\n:::\n\n\nY, however, has no error and to create abundance values for each species (i.e., each column of Y; MARGIN = 2) according to a poisson model we can simply:\n\n::: {.cell}\n\n```{.r .cell-code}\nAbundances <- apply(Y,MARGIN=2,function(x) rpois(n.communities,x))\n```\n:::\n\n\nLet's plot the abundance values across environmental values. With erorr, they don't look as nice, obviously:\n\n::: {.cell}\n\n```{.r .cell-code}\nE.sorted <- sort(E, index.return=TRUE)\nAbundances.sorted <- Abundances[E.sorted$ix,]\nE.sorted <- E.sorted$x\nmatplot(E.sorted, Abundances.sorted, cex.lab=1.5,cex.axis=2,lty = \"solid\", type = \"l\", pch = 1:10, cex = 0.8, xlab = \"Enviroment\", ylab = \"Abundance\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-63-1.png){width=576}\n:::\n:::\n\n\nFinally, let's calculate the 4th corner statistics for these data:\n\n::: {.cell}\n\n```{.r .cell-code}\nTraitEnvCor(Abundances,E,T, Chessel = TRUE)[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.5365449 \n```\n:::\n:::\n\n\nAnd now for the data without error, i.e., before the poisson trials:\n\n::: {.cell}\n\n```{.r .cell-code}\nTraitEnvCor(Y,E,T, Chessel = TRUE)[\"Fourthcorner\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nFourthcorner \n 0.5333836 \n```\n:::\n:::\n\nDespite the error we observed once we transformed Y (values without error) into abundances (with error via the poisson trials), the bivariate correlations are pretty similar, indicating that these metrics are robust against sampling error in abundances. Note, however, that we only used one predictor which was the one used to simulate the data to begin with; empirical data are much more complex than that. \n\nFinally, note that, as such, bivariate correlations are calculated in the same way regardless if the data are presence-absence or abundance; biomass data could be also considered. \n\n
\n\n
**Moving to more complex GLMs - the bilinear model**
\n\nLet's go back to our stacked model:\n\n\n::: {.cell}\n::: {.cell-output-display}\n![](bilinear.png){width=80%}\n:::\n:::\n\n\nAnd now let's get back to our stacked approach using again the simplest example we used earlier. Let's enter the data again to make sure that we have the same data. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nDistribution <- as.matrix(rbind(c(1,1,0,0),c(1,0,0,0),c(0,0,1,1),c(0,0,1,0)))\nT <- c(1,2,5,8)\nE <- c(10,12,100,112)\nn.species <- ncol(Distribution)\nn.sites <- nrow(Distribution)\nDist.stacked <- as.vector(Distribution)\nE.stacked <- rep(1, n.species) %x% scale(E)\nT.stacked <- scale(T) %x% rep(1, n.sites)\n```\n:::\n\n\nThere are two ways in which we can code the analysis. Using the stacked way or using a kronecker product. The kronecker product stacks the data in the same way but it's a bit more \"cryptic\" and demonstrating the stacking is then easier by using simple coding. The stacked GLM below estimates the statistical interaction between Environment and Traits only. Note that the distribution for our ficitional example above is for presence and absences, hence we will use a binomial link-function (i.e., logistic regression). This can be referred as to the bilinear model by Gabriel (1998) which is rarely used in ecology but can provide a good introduction to what \"stacking\" means which is critical to understand more complex GLMs. \n\nUsing the stacked vectors above, we have:\n\n::: {.cell}\n\n```{.r .cell-code}\n predictor <- E.stacked * T.stacked\n model <- glm(Dist.stacked ~ predictor,family=binomial(link=logit))\n summary(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nglm(formula = Dist.stacked ~ predictor, family = binomial(link = logit))\n\nDeviance Residuals: \n Min 1Q Median 3Q Max \n-2.1282 -0.5101 -0.2570 0.7417 1.3162 \n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -0.9160 0.7681 -1.193 0.2330 \npredictor 2.4991 1.1975 2.087 0.0369 *\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 21.170 on 15 degrees of freedom\nResidual deviance: 13.597 on 14 degrees of freedom\nAIC: 17.597\n\nNumber of Fisher Scoring iterations: 5\n```\n:::\n:::\n\n\nThe stacking we saw can be easily done using matrix algebra (the early presentation is helpful to understand the principles though). To do it in algebra, we use the kronecker product as follows:\n\n$$Y= T\\otimes E$$\n\nAs such, the bilinear model is testing the statistical interaction between traits and environmental variables. \n\nwhich in R becomes:\n\n::: {.cell}\n\n```{.r .cell-code}\npredictor2 <- T %x% E\nmodel <- glm(Dist.stacked ~ predictor,family=binomial(link=logit))\nsummary(model)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nglm(formula = Dist.stacked ~ predictor, family = binomial(link = logit))\n\nDeviance Residuals: \n Min 1Q Median 3Q Max \n-2.1282 -0.5101 -0.2570 0.7417 1.3162 \n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -0.9160 0.7681 -1.193 0.2330 \npredictor 2.4991 1.1975 2.087 0.0369 *\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 21.170 on 15 degrees of freedom\nResidual deviance: 13.597 on 14 degrees of freedom\nAIC: 17.597\n\nNumber of Fisher Scoring iterations: 5\n```\n:::\n:::\n\nNote that the two ways to run the model results in the exact same estimates. Here we should interpret the slope for the model as the strength between trait and environment, i.e., $\\beta_1 = 2.4991$. Obviously the bilinear model can be easily extended to any class of GLMs as well depending on the nature of the response variable (e.g., poisson, negative binomial, etc; more on these below).\n\nNote also that we could have considered multiple traits and environments (as long as we have enough degrees of freedom). \n\nStacked or bilinear model on the Aravo data set \n\nLet's apply the Aravo data set we saw early here. We will reduce the environmental matrix by removing the qualitative variables. These can be easily accommodated but for the sake of speed, we will reduce it.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nE <- aravo$env[,c(\"Aspect\",\"Slope\",\"Snow\")]\nE <- as.matrix(E)\nT <- as.matrix(aravo$trait)\n```\n:::\n\n\nNow we apply the kronecker product using the base function `kronecker` rather than `%x%` that we saw early. This function generate names for each column of the matrix (i.e., interactions between each trait and predictor). The columns contain all possible two by two (pairwise) combinations of traits and environmental features. \n\n::: {.cell}\n\n```{.r .cell-code}\nTE <- kronecker(T, E, make.dimnames = TRUE)\ndim(TE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 6150 24\n```\n:::\n\n```{.r .cell-code}\ncolnames(TE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [1] \"Height:Aspect\" \"Height:Slope\" \"Height:Snow\" \"Spread:Aspect\"\n [5] \"Spread:Slope\" \"Spread:Snow\" \"Angle:Aspect\" \"Angle:Slope\" \n [9] \"Angle:Snow\" \"Area:Aspect\" \"Area:Slope\" \"Area:Snow\" \n[13] \"Thick:Aspect\" \"Thick:Slope\" \"Thick:Snow\" \"SLA:Aspect\" \n[17] \"SLA:Slope\" \"SLA:Snow\" \"N_mass:Aspect\" \"N_mass:Slope\" \n[21] \"N_mass:Snow\" \"Seed:Aspect\" \"Seed:Slope\" \"Seed:Snow\" \n```\n:::\n:::\n\n\nBecause we have abundance data, let's run the GLM using the poisson model (log link function) and the negative binomial which may work better when data are overdispersed (e.g., too many zeros, i.e., absences).\n\n\n::: {.cell}\n\n```{.r .cell-code}\nDist.stacked <- as.vector(as.matrix(aravo$spe))\nColNames <- colnames(TE)\nTE <- scale(TE) # so that slopes can be compared directly to one another\ncolnames(TE) <- ColNames\nmodel.bilinear.poisson <- glm(Dist.stacked ~ TE,family=\"poisson\")\nlibrary(MASS)\nmodel.bilinear.negBinom <- glm.nb(Dist.stacked ~ TE)\n```\n:::\n\n\nLet's compare the two models:\n\n::: {.cell}\n\n```{.r .cell-code}\nc(BIC(model.bilinear.poisson),BIC(model.bilinear.negBinom))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 9310.771 8784.627\n```\n:::\n:::\n\nThe BIC suggests that negative binomial fits the data better (smaller BIC, better fit). \n\nModel diagnostics for non-Gaussian models are challenging and often standard tools don't provide a good way to assess quality of models. Let's check model residuals using the more classic approach. `sppVec` below will be used to create a different color for each species.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create a vector of species names compatible with the stacked model:\nsppVec = rep(row.names(aravo$traits),each=nrow(aravo$spe))\nplot(residuals(model.bilinear.negBinom),log(fitted(model.bilinear.negBinom)),col=as.numeric(factor(sppVec)),xlab=\"Fitted values [log scale]\",ylab=\"residuals\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-74-1.png){width=576}\n:::\n:::\n\n\nAs we can see, the plot is pretty bad; and that's a common feature for GLMs. \n\nDunn and Smyth (1996) developed a new class of residuals that allows a much better way to diagnose whether the model fits the data well. The package `DHARMa` implements the approach. A tutorial for this package and the package features can be found at: .\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"DHARMa\")\nlibrary(\"DHARMa\")\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nThis is DHARMa 0.4.6. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa')\n```\n:::\n\n```{.r .cell-code}\nDunnSmyth.res <- simulateResiduals(fittedModel = model.bilinear.negBinom, plot = F)\nplot(DunnSmyth.res$scaledResiduals~log(fitted(model.bilinear.negBinom)),col=as.numeric(factor(sppVec)),xlab=\"Fitted values [log scale]\",ylab=\"residuals\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-75-1.png){width=576}\n:::\n:::\n\n\nAnd now the Q-Q plot to assess residual normality:\n\n::: {.cell}\n\n```{.r .cell-code}\nplotQQunif(DunnSmyth.res)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-76-1.png){width=576}\n:::\n:::\n\n\nJust for illustration, let's compare it with the Q-Q plot for the poisson model which had smaller support:\n\n::: {.cell}\n\n```{.r .cell-code}\nDunnSmyth.res.poisson <- simulateResiduals(fittedModel = model.bilinear.poisson, plot = F)\nplotQQunif(DunnSmyth.res.poisson)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-77-1.png){width=576}\n:::\n:::\n\nThe poisson model doesn't fit as well the expected line as the negative binomial model. As such, the negative binomial model fits better also with the assumption of normality. \n\nWe can use the package `jtools` to create model summaries and visualization for GLMs. You can find a good introduction to this package here: \n\nhttps://cran.r-project.org/web/packages/jtools/vignettes/summ.html\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"jtools\")\n# install.packages(\"ggstance\")\n# install.packages(\"broom.mixed\")\nlibrary(jtools)\nsumm(model.bilinear.negBinom)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nError in glm.control(...) : \n unused argument (family = list(\"Negative Binomial(0.5278)\", \"log\", function (mu) \nlog(mu), function (eta) \npmax(exp(eta), .Machine$double.eps), function (mu) \nmu + mu^2/.Theta, function (y, mu, wt) \n2 * wt * (y * log(pmax(1, y)/mu) - (y + .Theta) * log((y + .Theta)/(mu + .Theta))), function (y, n, mu, wt, dev) \n{\n term <- (y + .Theta) * log(mu + .Theta) - y * log(mu) + lgamma(y + 1) - .Theta * log(.Theta) + lgamma(.Theta) - lgamma(.Theta + y)\n 2 * sum(term * wt)\n}, function (eta) \npmax(exp(eta), .Machine$double.eps), expression({\n if (any(y < 0)) stop(\"negative values not allowed for the negative binomial family\")\n n <- rep(1, nobs)\n mustart <- y + (y == 0)/6\n}), function (mu) \nall(mu > 0), function (eta) \nTRUE, function (object, nsim) \n{\n ftd <- fitted(object)\n rnegbin(nsim * length(ftd), ftd, .Theta)\n}))\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Something went wrong when calculating the pseudo R-squared. Returning NA\ninstead.\n```\n:::\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 6150
Dependent variable Dist.stacked
Type Generalized linear model
Family Negative Binomial(0.5278)
Link log
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
𝛘²(NA) NA
Pseudo-R² (Cragg-Uhler) NA
Pseudo-R² (McFadden) NA
AIC 8609.80
BIC 8784.63
\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Est. S.E. z val. p
(Intercept) -1.27 0.03 -40.67 0.00
TEHeight:Aspect 0.09 0.11 0.81 0.42
TEHeight:Slope 0.08 0.05 1.56 0.12
TEHeight:Snow -0.07 0.11 -0.69 0.49
TESpread:Aspect 0.06 0.10 0.56 0.58
TESpread:Slope 0.07 0.06 1.18 0.24
TESpread:Snow -0.38 0.10 -3.82 0.00
TEAngle:Aspect 0.05 0.11 0.50 0.62
TEAngle:Slope 0.21 0.07 2.99 0.00
TEAngle:Snow -0.35 0.10 -3.52 0.00
TEArea:Aspect 0.05 0.12 0.36 0.72
TEArea:Slope 0.01 0.06 0.16 0.87
TEArea:Snow -0.24 0.12 -1.90 0.06
TEThick:Aspect -0.01 0.09 -0.09 0.93
TEThick:Slope 0.10 0.05 2.09 0.04
TEThick:Snow -0.17 0.09 -1.91 0.06
TESLA:Aspect 0.45 0.19 2.43 0.02
TESLA:Slope -0.31 0.14 -2.19 0.03
TESLA:Snow -0.42 0.15 -2.81 0.00
TEN_mass:Aspect -0.60 0.19 -3.10 0.00
TEN_mass:Slope -0.06 0.15 -0.38 0.70
TEN_mass:Snow 0.67 0.15 4.54 0.00
TESeed:Aspect 0.30 0.11 2.80 0.01
TESeed:Slope 0.11 0.05 2.21 0.03
TESeed:Snow -0.50 0.11 -4.39 0.00
\n Standard errors: MLE
\n`````\n:::\n:::\n\nThe package `jtools` offers a variety of table and graphical outputs and is worth exploring. Here we will produce a confidence interval plot for each slope. This will take a moment (one minute or less):\n\n\n::: {.cell}\n\n```{.r .cell-code}\nplot_summs(model.bilinear.negBinom, scale = TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nError in glm.control(...) : \n unused argument (family = list(\"Negative Binomial(0.5278)\", \"log\", function (mu) \nlog(mu), function (eta) \npmax(exp(eta), .Machine$double.eps), function (mu) \nmu + mu^2/.Theta, function (y, mu, wt) \n2 * wt * (y * log(pmax(1, y)/mu) - (y + .Theta) * log((y + .Theta)/(mu + .Theta))), function (y, n, mu, wt, dev) \n{\n term <- (y + .Theta) * log(mu + .Theta) - y * log(mu) + lgamma(y + 1) - .Theta * log(.Theta) + lgamma(.Theta) - lgamma(.Theta + y)\n 2 * sum(term * wt)\n}, function (eta) \npmax(exp(eta), .Machine$double.eps), expression({\n if (any(y < 0)) stop(\"negative values not allowed for the negative binomial family\")\n n <- rep(1, nobs)\n mustart <- y + (y == 0)/6\n}), function (mu) \nall(mu > 0), function (eta) \nTRUE, function (object, nsim) \n{\n ftd <- fitted(object)\n rnegbin(nsim * length(ftd), ftd, .Theta)\n}))\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Something went wrong when calculating the pseudo R-squared. Returning NA\ninstead.\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nRegistered S3 methods overwritten by 'broom':\n method from \n tidy.glht jtools\n tidy.summary.glht jtools\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nLoading required namespace: broom.mixed\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-79-1.png){width=576}\n:::\n:::\n\n\nOne needs to be careful when interpreting these confidence intervals as they were produced parametrically and they may be biased as we discussed in the section on statistical hypothesis testing. Again, this is a strong area of development among quantitative ecologists; but we haven't yet derived unified views on this issue. \n\nWe can also plot the coefficients building:\n\n::: {.cell}\n\n```{.r .cell-code}\ncf <- coefficients(model.bilinear.negBinom)[-1] # removes the intercept\ncfInter <- matrix(t(cf),nrow=ncol(E))\ncolnames(cfInter) <- colnames(T)\nrownames(cfInter) <- colnames(E)\ncfInter\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Height Spread Angle Area Thick SLA\nAspect 0.08562528 0.05659044 0.05406318 0.04512061 -0.008000594 0.4512878\nSlope 0.08477186 0.06555292 0.20518548 0.01057746 0.101762893 -0.3083102\nSnow -0.07428183 -0.37726596 -0.35230429 -0.23652105 -0.174573655 -0.4210057\n N_mass Seed\nAspect -0.59525146 0.2977853\nSlope -0.05644061 0.1137532\nSnow 0.67458707 -0.5011741\n```\n:::\n\n```{.r .cell-code}\n# install.packages(\"lattice\")\nlibrary(lattice)\na <- max(abs(cfInter))\ncolort = colorRampPalette(c(\"blue\",\"white\",\"red\"))\nlevelplot(cfInter, xlab=\"traits\",ylab=\"environment\", col.regions=colort(100), at=seq(-a, a, length=100))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-80-1.png){width=576}\n:::\n:::\n\n\n
\n\n
**Considering main effects of trait and environment, and their interactions - predicting and explaining species distributions**
\n\nThe bilinear model estimates and test for the interactions between traits and environmental features in a single model. That allows for partial slopes to be estimated (i.e., in which the effects of one trait-environment interaction is independent of the others as in standard linear regression models and GLMs). Understanding partial slopes is essential for inference and usually covered in Intro statistics for biologists/ecologists under multiple regression. A standard definition is \"The partial slope in multiple regression (or GLM) is the slope of the relationship between a predictor variable that is independent of the other predictor variables and the criterion. It is also the regression coefficient for the predictor variable in question.\" (https://onlinestatbook.com/2/glossary/partial_slope.html). \n \nNow, we may want to consider also the main effects of each environmental feature and traits in addition to their interactions. This is the model implemented in Jamil et al. (2013) and Brown et al. (2014). The Brown model et al. model is:\n\n$${ln(Y_{ij}) = \\beta_0\\ +\\beta_1env_i\\ +\\beta_2env_i^2\\ +\\beta_3spp_j\\ +\\beta_4(env \\times\\ trait)_{ij}\\ }$$\nwhere $\\beta_0$ is the overall intercept for the model, $\\beta_1env_i$ contains the slopes for each environmental variable, the model also consider square terms for the environmental variables $\\beta_2env_i^2$, $\\beta_3spp_j$ contains species-specific intercept terms which allows predictions for each species separately, $\\beta_4(env \\times\\ trait)_{ij}$ contains the slopes for each trait by environment interaction (the 4th corner slopes). Whereas Brown et al. treated $spp_j$ as fixed, Jamil et al. (2013) treated as random (more on this later). I've followed the formulation notation given in Brown et al. to facilitate understanding their paper; but we could easily change by the notation used in the mixed model selection (following Gelman and Hill 2007). \n\nBy setting species-specific intercept terms (i.e., $\\beta_3spp_j$) we can predict species in their appropriate scale of abundance variation. As such, we can use these types of models to predict species distributions. This sort of modelling is becoming the standard for predicting multiple species because it considers multiple types of predictors (trait, environments, non-linearities) and their interactions. Single species models, for instance, can't consider trait variation and the interactions of traits and environment. As such, stacked models are extremely powerful tools even for modelling single species distributions. \n\nThe Brown et al. model can be fit using the package `mvabund` as follows:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"mvabund\")\nlibrary(mvabund)\nglm.trait.res <- traitglm(as.matrix(aravo$spe),E,T,family=\"negative.binomial\",col.intercepts=TRUE)\nBIC(glm.trait.res)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n l \n8104.818 \n```\n:::\n:::\n\n\nAll coefficients of the model can be retrieved by:\n\n::: {.cell}\n\n```{.r .cell-code}\ncoefficients(glm.trait.res)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n l\n(Intercept) -1.939671753\nsppAlch.glau -0.054831143\nsppAlch.pent 0.024330521\nsppAlch.vulg -0.155929316\nsppAlop.alpi 0.069840352\nsppAndr.brig -0.144086942\nsppAndr.vita -0.117405506\nsppAnte.carp -0.105193294\nsppAnte.dioi -0.259135963\nsppAnth.alpe -0.404567216\nsppAnth.nipp -0.069393787\nsppArni.mont -0.265964212\nsppAste.alpi -0.324558310\nsppAven.vers -0.108786793\nsppBart.alpi -0.332898371\nsppCamp.sche -0.008108304\nsppCard.alpi -0.136528887\nsppCare.foet 0.027908430\nsppCare.parv -0.174556575\nsppCare.rosa -0.091371379\nsppCare.rupe -0.182772040\nsppCare.semp -0.112095430\nsppCera.cera -0.171760014\nsppCera.stri -0.021497460\nsppCirs.acau -0.188888639\nsppDrab.aizo -0.118690070\nsppDrya.octo -0.358279264\nsppErig.unif -0.059293913\nsppFest.laev -0.365739677\nsppFest.quad -0.105113832\nsppFest.viol -0.058339848\nsppGent.acau -0.181050369\nsppGent.camp -0.134520188\nsppGent.vern -0.044346876\nsppGeum.mont 0.064963289\nsppHeli.sede -0.217416821\nsppHier.pili -0.138692435\nsppHomo.alpi -0.207003373\nsppKobr.myos -0.028361647\nsppLeon.pyre 0.029558348\nsppLeuc.alpi -0.003570705\nsppLigu.muto -0.064014046\nsppLloy.sero -0.284035626\nsppLotu.alpi -0.144194010\nsppLuzu.lute -0.193109208\nsppMinu.sedo 0.021602219\nsppMinu.vern -0.137286811\nsppMyos.alpe -0.092884602\nsppOmal.supi 0.033812911\nsppOxyt.camp -0.233480701\nsppOxyt.lapp -0.201732614\nsppPhyt.orbi -0.327727501\nsppPlan.alpi 0.066971460\nsppPoa.alpi 0.095801892\nsppPoa.supi -0.203286074\nsppPoly.vivi -0.016324658\nsppPote.aure 0.053779431\nsppPote.cran -0.126165407\nsppPote.gran -0.231501706\nsppPuls.vern -0.096096734\nsppRanu.kuep -0.020389979\nsppSagi.glab -0.011366535\nsppSali.herb 0.053863437\nsppSali.reti -0.286340876\nsppSali.retu -0.255645078\nsppSali.serp -0.283448058\nsppSaxi.pani -0.185168997\nsppScab.luci -0.331712183\nsppSedu.alpe -0.065750719\nsppSemp.mont -0.074418068\nsppSene.inca -0.162375900\nsppSesl.caer -0.205203677\nsppSibb.proc 0.019139245\nsppSile.acau -0.179836450\nsppTara.alpi -0.250167730\nsppThym.poly -0.280189375\nsppTrif.alpi -0.134717635\nsppTrif.badi -0.322563479\nsppTrif.thal -0.225527793\nsppVero.alli -0.293989557\nsppVero.alpi -0.100779079\nsppVero.bell -0.011889063\nAspect 0.014997588\nSlope 0.064347175\nSnow -0.303043451\nAspect.squ 0.013997280\nSlope.squ -0.047627887\nSnow.squ -0.274070121\nAspect.Height -0.010645817\nAspect.Spread -0.070752741\nAspect.Angle -0.083977548\nAspect.Area -0.040276747\nAspect.Thick -0.082064700\nAspect.SLA 0.065782084\nAspect.N_mass -0.138709436\nAspect.Seed 0.042758169\nSlope.Height -0.020464655\nSlope.Spread 0.023128427\nSlope.Angle -0.018699260\nSlope.Area -0.027960323\nSlope.Thick -0.012369639\nSlope.SLA -0.108694248\nSlope.N_mass 0.021179434\nSlope.Seed 0.014142823\nSnow.Height -0.209648151\nSnow.Spread 0.049505713\nSnow.Angle -0.188496204\nSnow.Area -0.046298194\nSnow.Thick 0.099956790\nSnow.SLA 0.309130472\nSnow.N_mass 0.317287032\nSnow.Seed -0.169753499\n```\n:::\n:::\n\nThe overall intercept $\\beta_0=-1.9397$, the individual intercept for each species $\\beta_3spp_j$ are the coefficients above starting with `spp`; for instance, the individual slope for `Alch.glau` (1st species in the list) is $\\beta_3spp_1=-0.055$. The slopes for each environmental variable appear under the names we gave. For instance, the slope for aspect is $\\beta_1env_aspect=0.015$. Note that `.squ` in the coefficients are the slopes for the squared environmental terms; for instance $\\beta_2env_{snow}^2=-0.274$. Finally we have the 4th corner slopes. For instance, $\\beta_4(env \\times\\ trait)_{snow,seed\\_mass}=-0.1698$. Remember that snow here refers to the mean snowmelt date. As such, communities with large seed masses (in average) are found in sites that have early snowmelt dates compared to sites with late snowmelt dates; these sites have communities that tend to have small seed masses in average. \n\nLet's understand this model by programming it from scratch. That's really the best way to understand models; and whenever possible I try to demonstrate them from 'scratch'; not always possible depending on the amount of operations (e.g., mixed models) and our abilities to understand large codes . But this one is simple enough that we can do it:\n\n\n\n::: {.cell}\n\n```{.r .cell-code}\nn.species <- ncol(aravo$spe)\nn.communities <- nrow(aravo$spe)\nn.env.variables <- ncol(E)\n# repeats each trait to make it compatible (vectorized) with the stacked species distributions\ntraitVec <- T[rep(1:n.species,each=n.communities),]\n# repeats each environmental variable to make it compatible (vectorized) with the stacked species distributions:\nenvVec <- matrix(rep(t(E),n.species),ncol=NCOL(E),byrow=TRUE)\n# creates an intercept for each species:\nspecies.intercepts <- rep(1:n.species,each=n.communities)\nspecies.intercepts <- as.factor(species.intercepts)\nmod <- as.formula(\"~species.intercepts-1\")\nspecies.intercepts <- model.matrix(mod)[,-1]\n# the interaction terms:\nTE <- kronecker(T, E, make.dimnames = TRUE)\n# combining the predictors in a single matrix:\npreds <- cbind(species.intercepts,envVec,envVec^2,TE)\n# running the model\nmodel.bilinear.negBinom.Brown <- glm.nb(Dist.stacked ~ preds)\n```\n:::\n\n\nAnd as we can see, they are exactly the same model:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nBIC(glm.trait.res)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n l \n8104.818 \n```\n:::\n\n```{.r .cell-code}\nBIC(model.bilinear.negBinom.Brown)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 8104.818\n```\n:::\n:::\n\n\nWe can easily adapt the graphical and diagnostic outputs for this model as well, but we won't for simplicity. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nsumm(model.bilinear.negBinom)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nError in glm.control(...) : \n unused argument (family = list(\"Negative Binomial(0.5278)\", \"log\", function (mu) \nlog(mu), function (eta) \npmax(exp(eta), .Machine$double.eps), function (mu) \nmu + mu^2/.Theta, function (y, mu, wt) \n2 * wt * (y * log(pmax(1, y)/mu) - (y + .Theta) * log((y + .Theta)/(mu + .Theta))), function (y, n, mu, wt, dev) \n{\n term <- (y + .Theta) * log(mu + .Theta) - y * log(mu) + lgamma(y + 1) - .Theta * log(.Theta) + lgamma(.Theta) - lgamma(.Theta + y)\n 2 * sum(term * wt)\n}, function (eta) \npmax(exp(eta), .Machine$double.eps), expression({\n if (any(y < 0)) stop(\"negative values not allowed for the negative binomial family\")\n n <- rep(1, nobs)\n mustart <- y + (y == 0)/6\n}), function (mu) \nall(mu > 0), function (eta) \nTRUE, function (object, nsim) \n{\n ftd <- fitted(object)\n rnegbin(nsim * length(ftd), ftd, .Theta)\n}))\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Something went wrong when calculating the pseudo R-squared. Returning NA\ninstead.\n```\n:::\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 6150
Dependent variable Dist.stacked
Type Generalized linear model
Family Negative Binomial(0.5278)
Link log
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
𝛘²(NA) NA
Pseudo-R² (Cragg-Uhler) NA
Pseudo-R² (McFadden) NA
AIC 8609.80
BIC 8784.63
\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Est. S.E. z val. p
(Intercept) -1.27 0.03 -40.67 0.00
TEHeight:Aspect 0.09 0.11 0.81 0.42
TEHeight:Slope 0.08 0.05 1.56 0.12
TEHeight:Snow -0.07 0.11 -0.69 0.49
TESpread:Aspect 0.06 0.10 0.56 0.58
TESpread:Slope 0.07 0.06 1.18 0.24
TESpread:Snow -0.38 0.10 -3.82 0.00
TEAngle:Aspect 0.05 0.11 0.50 0.62
TEAngle:Slope 0.21 0.07 2.99 0.00
TEAngle:Snow -0.35 0.10 -3.52 0.00
TEArea:Aspect 0.05 0.12 0.36 0.72
TEArea:Slope 0.01 0.06 0.16 0.87
TEArea:Snow -0.24 0.12 -1.90 0.06
TEThick:Aspect -0.01 0.09 -0.09 0.93
TEThick:Slope 0.10 0.05 2.09 0.04
TEThick:Snow -0.17 0.09 -1.91 0.06
TESLA:Aspect 0.45 0.19 2.43 0.02
TESLA:Slope -0.31 0.14 -2.19 0.03
TESLA:Snow -0.42 0.15 -2.81 0.00
TEN_mass:Aspect -0.60 0.19 -3.10 0.00
TEN_mass:Slope -0.06 0.15 -0.38 0.70
TEN_mass:Snow 0.67 0.15 4.54 0.00
TESeed:Aspect 0.30 0.11 2.80 0.01
TESeed:Slope 0.11 0.05 2.21 0.03
TESeed:Snow -0.50 0.11 -4.39 0.00
\n Standard errors: MLE
\n`````\n:::\n:::\n\n\nAs mentioned earlier, we can get predicted models per species, making stacked models not only a community model but also considering information from multiple sources for single species distributions as well:\n\n::: {.cell}\n\n```{.r .cell-code}\nfitted.by.species <- matrix(glm.trait.res$fitted,n.communities,n.species)\n```\n:::\n\nPredicted abundance values per species are in columns:\n```\nView(fitted.by.species)\n```\n\n
\n\n
**A very brief way to understand mixed models: the Simpson's paradox **
\n\nSpecies and sites are not likely to differ from one another randomly but rather have some sites more similar to others (or more different). We call this a hierarchical structure. For instance, sites that are more close to one another may have more similar values than sites further way. Or some species may be more similar in abundance than others, and so on. \n\nWhen using linear models and GLMS, researchers often ignore the hierarchical structure of the data (some sites have more similar or differences in total abundances of species, some species have more similar or differences in their total abundances). As such, standard GLMs can generate biased variance estimates and increase the likelihood of committing type I errors (i.e., rejecting the statistical null hypothesis more often than set by alpha, i.e., significance level). \n\nAlthough this is very interesting ecologically, it does bring some inferential challenges (parameter estimation and statistical hypothesis testing) when fitting statistical models. GLMM (Generalized Linear Mixed Models) are then used to deal with these issues. This paper by Harrison et al. (2018) provides a great Introduction to GLLMs for ecologists: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970551/.\n\nOne common feature here is that species may differ in the way they are structured by environmental and/or trait variation. This can be well described by the Simpson's paradox (Simpson 1951), which is defined \"as a phenomenon in probability and statistics in which a trend appears in several groups of data but disappears or reverses when the groups are combined.\" \n\nLet's understand this paradox by simulating some data (code not show here) and graphing it. This sort of demonstration has become somewhat common when explaining the utility of mixed model. \n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-88-1.png){width=576}\n:::\n:::\n\n\nAt first glance, the influence of temperature on abundance is positive if we consider the variation across all data points independent of the sites. However, within species, the influence of the environment is negative. As such, it is obvious that there is variation among species that can't be explained by temperature alone. As such, we should consider a mixed model with temperature as a fixed factor (measured variable) and species as a random factor. Obviously one question of interest is why do species vary in their effects of temperature. But we don't have other predictors that could assist in explaining these differences (e.g., physiology). Perhaps considering traits could assist in determining this variation (more on that later).\n\nThe data was saved in a matrix called `data.Simpson`. For simplicity, we will treat these data as normally distributed. The data were generated assuming normality any way; the goal here is just a demonstration. \n\nLet's analyze these data with a fixed model using a simple regression:\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(jtools)\nlm.mod <- lm(abundance ~ scale(temperature),data=data.Simpson)\nsumm(lm.mod,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 100
Dependent variable abundance
Type OLS linear regression
\n\n \n \n \n \n \n \n \n \n \n \n \n \n\n
F(1,98) 15.13
0.13
Adj. R² 0.12
\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Est. S.E. t val. p
(Intercept) -0.08 0.18 -0.48 0.63
`scale(temperature)` 0.69 0.18 3.89 0.00
\n Standard errors: OLS; Continuous predictors are mean-centered and scaled by 1 s.d.
\n`````\n:::\n:::\n\nAs we can see, the overal influence of temperature is positive and significant, explaining 12% of the variation in abundance as a function of temperature (i.e., $R^2=0.12$). \n\nLet's consider now a mixed effect model that we estimate the variation in intercepts but still assume a common slope for all species. This is a common procedure in mixed model effects, i.e., starting with the simplest model. This fixed effect is coded as usually and the random effect is coded as `(1|species)`, where 1 means the intercepts (common way to code the intercept in statistical models). As such, one intercept per species is estimated. The `scale=TRUE` in the function `summ` below reports the analysis with standardized predictors. \n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"lme4\")\nlibrary(lme4)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nLoading required package: Matrix\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\n\nAttaching package: 'Matrix'\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nThe following objects are masked from 'package:tidyr':\n\n expand, pack, unpack\n```\n:::\n\n```{.r .cell-code}\nlm.mod.intercept <- lmer(abundance ~ temperature + (1|species),data=data.Simpson)\nsumm(lm.mod.intercept,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 100
Dependent variable abundance
Type Mixed effects linear regression
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
AIC 343.74
BIC 354.16
Pseudo-R² (fixed effects) 0.30
Pseudo-R² (total) 0.95
\n \n\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) -0.08 1.88 -0.04 3.94 0.97
temperature -2.84 0.35 -8.10 97.70 0.00
\n p values calculated using Kenward-Roger standard errors and d.f. ; Continuous predictors are mean-centered and scaled by 1 s.d.
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n\n
Random Effects
Group Parameter Std. Dev.
species (Intercept) 4.20
Residual 1.16
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n\n
Grouping Variables
Group # groups ICC
species 5 0.93
\n`````\n:::\n:::\n\nWow, what a change in the interpretation. By considering variation in intercepts across species, the fixed effect influence of temperature is now negative (as we should expect). Note, however, that we had information on a categorical factor, i.e, species, that could be used to estimate random effects related to variation among them. The variation (standard deviation) of intercepts among species is quite large in contrast to residuals; 4.20 against 1.16, respectively. The explanatory power of variation among intercepts make the $R^2=0.95$ increase dramatically in contrast to the fixed model, demonstrating that the species random effect has a huge effect and ability to improve the model predictive power. We also find the ICC (Intra Class Correlation) which measures how similar the abundance is within groups, i.e., species. The ICC is 0.93, indicating that abundance values are more similar within than among species. \nThe variation in intercepts can be plotted as follows:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(ggplot2)\nintercepts <- coefficients(lm.mod.intercept)$species[,\"(Intercept)\"]\nslopes <- coefficients(lm.mod.intercept)$species[,\"temperature\"]\nlines <- data.frame(intercepts,slopes)\nlines[\"species\"] <- unique(data.Simpson[,\"species\"])\ndata.Simpson$pred <- predict(lm.mod.intercept)\nggplot() +\ngeom_point(data=data.Simpson,aes(x=temperature,y=abundance,color=species),size=1) + \ngeom_abline(aes(intercept = `(Intercept)`, slope = temperature),size = 1.5,as.data.frame(t(fixef(lm.mod.intercept)))) +\ngeom_abline(data = lines, aes(intercept=intercepts, slope=slopes, color=species)) +\ntheme_classic() + \nxlab(\"Temperature\") + ylab(\"log(Abundance)\")\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.\nℹ Please use `linewidth` instead.\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-91-1.png){width=672}\n:::\n:::\n\nThe black line represents the common model. Since only intercepts were allowed to vary, the species per slope are the same as the fixed model (after controlling for variation across species, which made the overall slope to be negative). \nFinally, let's estimate the random intercept and slope model. Here we estimate variation due to differences in intercepts and slopes across species:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nlm.mod.interceptSlope <- lmer(abundance ~ temperature + (1 + temperature|species),data=data.Simpson)\nsumm(lm.mod.interceptSlope,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 100
Dependent variable abundance
Type Mixed effects linear regression
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
AIC 336.10
BIC 351.73
Pseudo-R² (fixed effects) 0.31
Pseudo-R² (total) 0.96
\n \n\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Fixed Effects
Est. S.E. t val. d.f. p
(Intercept) 0.11 1.75 0.06 3.99 0.95
temperature -2.91 0.84 -3.45 3.98 0.03
\n p values calculated using Kenward-Roger standard errors and d.f. ; Continuous predictors are mean-centered and scaled by 1 s.d.
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Random Effects
Group Parameter Std. Dev.
species (Intercept) 3.84
species temperature 1.73
Residual 1.05
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n\n
Grouping Variables
Group # groups ICC
species 5 0.93
\n`````\n:::\n:::\n\n\nThe variation (standard deviation) in intercepts across species in much larger (3.84) than slopes (1.73). Is the predictive power between the two models significant? In order words, does a model that estimate independent slopes for each species explain more variation than one that only considers variation in intercepts?\nWe can simply compare the BIC of both models:\n\n::: {.cell}\n\n```{.r .cell-code}\nc(BIC(lm.mod),BIC(lm.mod.intercept),BIC(lm.mod.interceptSlope))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 408.7963 356.1764 353.7488\n```\n:::\n:::\n\nThere is more support for the mixed model that considers variation in intercepts and slopes. One can also estimate the p-value that one model fits better than the other:\n\n::: {.cell}\n\n```{.r .cell-code}\nanova(lm.mod.intercept,lm.mod.interceptSlope)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nrefitting model(s) with ML (instead of REML)\n```\n:::\n\n::: {.cell-output .cell-output-stdout}\n```\nData: data.Simpson\nModels:\nlm.mod.intercept: abundance ~ temperature + (1 | species)\nlm.mod.interceptSlope: abundance ~ temperature + (1 + temperature | species)\n npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)\nlm.mod.intercept 4 346.41 356.83 -169.21 338.41 \nlm.mod.interceptSlope 6 340.30 355.93 -164.15 328.30 10.114 2 0.006365\n \nlm.mod.intercept \nlm.mod.interceptSlope **\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n:::\n\n\nFinally, we can plot the intercept and slope variation. The common fixed effect slope has been now estimated by pooling the variation among species, hence it become negative in contrast to the original fixed effect slope. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nintercepts <- coefficients(lm.mod.interceptSlope)$species[,\"(Intercept)\"]\nslopes <- coefficients(lm.mod.interceptSlope)$species[,\"temperature\"]\nlines <- data.frame(intercepts,slopes)\nlines[\"species\"] <- unique(data.Simpson[,\"species\"])\ndata.Simpson$pred <- predict(lm.mod.intercept)\nggplot() +\ngeom_point(data=data.Simpson,aes(x=temperature,y=abundance,color=species),size=2) + \ngeom_abline(aes(intercept = `(Intercept)`, slope = temperature),size = 2,as.data.frame(t(fixef(lm.mod.interceptSlope)))) +\ngeom_abline(data = lines, aes(intercept=intercepts, slope=slopes, color=species),size = 2) +\ntheme_classic() + \nxlab(\"Temperature\") + ylab(\"log(Abundance)\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-95-1.png){width=672}\n:::\n:::\n\n\nAn extreme example pf the Simpson's paradox\n\nLet's consider (just visually) an even more extreme case. The fixed effect is very strong but the within species effect is almost zero. Hopefully the \"Simpson's\" examples here provide a good intuition on the importance of mixed models. \n\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-97-1.png){width=576}\n:::\n:::\n\n\n
**Our first GLMM applied to the fourth corner problem treating species as a random effect - the MLML1 model**
\n\nThere are different ways that we can account for the potential random effects in community ecology data. Here we will review a few of the latest developments. \n\nMLM stands for multilevel (i.e., hierarchical) models (MLM). The simplest of these models is the one introduced by Pollock et al. (2012) and is often referred in the ecological literature as MLM1 (see Miller et al. 2018). The model has the following form (following the notation of Gelman and Hill 2007; as in Miller et al. 2018). This is a model that considers species as a random effect while estimating variation in both intercepts and slopes as the last model in the previous session (Simpson's paradox)\n\n$${ln(Y_{i}) = \\alpha\\ +a_{spp[i]}\\ +\\beta_{12}env_{site[i]}\\times trait_{spp[i]} + (\\beta_1+c_{spp[i]})env_{site[i]}+e_i}$$\n$a,c \\sim Gaussian(0,\\sigma_a^2,\\sigma_c^2,\\rho_{ac})$\n$e \\sim Gaussian(0,\\sigma_e^2)$\n\nNote that we changed the notation of Brown et al. $ij$ that served as an index for the $i^{th}$ site and $j^{th}$ species to simply one index $i$ since we are using a stacked model anyway, i.e., only rows for $Y_{i}$ and one column (i.e., stacked species distributions). As such, the functions $spp[i]$ and $site[i]$ map row i onto the corresponding species and sites. $\\beta_{12}$ contains the slopes for the interactions between environment and trait. The fixed effect $\\alpha$ gives the overall average abundance of species among sites (one overall intercept), and the fixed effect $\\beta_{1}$ gives the mean response of species to the different environmental variables. Random effect $a_{spp[i]}$ allows different species to have different overall abundance (i.e., sum of abundances across species; random intercept model across species), and random effect $c_{spp[i]}$ allows different species to have different responses to the environmental variables (i.e., random slope model across species). $a_{spp[i]}$ and $c_{spp[i]}$ have means zero and variances $\\sigma_a^2$ and $\\sigma_c^2$ (referred as to hyperparameters in mixed model lingo), with $\\rho_{ac}$ denoting the correlation between $a_{spp[i]}$ and $c_{spp[i]}$ (i.e., species intercepts and species slopes for the environment can correlate). Finally,random effect $e_i$ gives observation-level variance; this is necessary here to allow for overdispersion (Harisson, 2014). We can also use the negative binomial as we saw earlier. Note that we are assuming hierarchical variation in variance and not covariance (e.g., phylogenetic and spatial autocorrelation). One step at the time. \n\nLet's start by setting an appropriate data structure to run the mixed model. To make the coding more manageable we will consider here only one trait and one environment. The code can be easily generalized for multiple traits and environments. We found early a strong interaction between seed mass and snow in which species with greater seed mass tended to be found in sites with small levels of snow (i.e., a negative correlation between snow and seed mass).\n\nFor simplicity, let's load the `aravo` data again:\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(ade4)\ndata(aravo)\nE <- aravo$env[,c(\"Aspect\",\"Slope\",\"Snow\")]\nE <- as.matrix(E)\nT <- as.matrix(aravo$trait)\nDist.stacked <- as.vector(as.matrix(aravo$spe))\nn.species <- ncol(aravo$spe)\nn.communities <- nrow(aravo$spe)\nn.env.variables <- ncol(E)\n```\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# to code for observation-level variance:\nobs <- 1:(n.species*n.communities)\n# to code for species (as we saw earlier to plot residuals):\nspecies <- rep(row.names(aravo$traits),each=nrow(aravo$spe))\nsites <- rep(row.names(aravo$spe),each=ncol(aravo$spe))\n# standardizing the data:\nseed.mass <- scale(T[rep(1:n.species,each=n.communities),\"Seed\"])\nsnow.melt.days <- scale(matrix(rep(t(E[,\"Snow\"]),n.species),ncol=1,byrow=TRUE))\ndata.df <- data.frame(abundance=Dist.stacked,snow.melt.days,seed.mass,species,sites,obs)\n```\n:::\n\nLet's see the data frame:\n```\nView(data.df)\n```\n\nLet's start by fitting a glm:\n\n::: {.cell}\n\n```{.r .cell-code}\nglm.mod <- glm(abundance ~ snow.melt.days + snow.melt.days:seed.mass,data=data.df, family = \"poisson\")\nsumm(glm.mod,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 6150
Dependent variable abundance
Type Generalized linear model
Family poisson
Link log
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
𝛘²(2) 56.18
Pseudo-R² (Cragg-Uhler) 0.01
Pseudo-R² (McFadden) 0.01
AIC 9421.91
BIC 9442.08
\n \n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Est. S.E. z val. p
(Intercept) -1.17 0.02 -50.74 0.00
snow.melt.days -0.10 0.02 -4.20 0.00
snow.melt.days:seed.mass -0.14 0.02 -6.39 0.00
\n Standard errors: MLE; Continuous predictors are mean-centered and scaled by 1 s.d.
\n`````\n:::\n:::\n\nDespite the very low $R^2=0.01$, the coefficiences are all significant and negative. \n\nLet's run the model. Below, both intercepts (coded as 1) and slopes for snow.melt.days (coded as env) are allowed to vary among species (i.e., (1 + env|species)) and we also allow\n\n::: {.cell}\n\n```{.r .cell-code}\nMLM1.mod <- glmer(abundance ~ snow.melt.days + snow.melt.days:seed.mass + (1 + snow.melt.days|species) + (1 | obs), family = \"poisson\", control=glmerControl(calc.derivs=F), nAGQ = 0, data=data.df)\nsumm(MLM1.mod,scale = TRUE)\n```\n\n::: {.cell-output-display}\n`````{=html}\n\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Observations 6150
Dependent variable abundance
Type Mixed effects generalized linear model
Family poisson
Link log
\n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
AIC 7335.48
BIC 7382.55
Pseudo-R² (fixed effects) 0.09
Pseudo-R² (total) 0.65
\n \n\n \n \n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n\n
Fixed Effects
Est. S.E. z val. p
(Intercept) -2.12 0.17 -12.37 0.00
snow.melt.days -0.72 0.13 -5.51 0.00
snow.melt.days:seed.mass -0.08 0.09 -0.84 0.40
\n ; Continuous predictors are mean-centered and scaled by 1 s.d.
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n\n
Random Effects
Group Parameter Std. Dev.
obs (Intercept) 0.47
species (Intercept) 1.46
species snow.melt.days 1.08
\n \n\n \n \n \n \n \n \n\n \n \n \n \n \n \n \n \n \n \n\n
Grouping Variables
Group # groups ICC
obs 6150 0.07
species 82 0.63
\n`````\n:::\n:::\n\nThe variation among observations (residuals) is not relevant here; we used it to allow for potential overdispersion in abundance (i.e., variance of abundance much greater than the mean). Note that both the intercept and slopes contribute more or less to the same amount of variation (intercept sd=1.46 and slopes = 1.08), indicating that an intercept and slope mixed model is the most appropriate model. We could have fit the two models and tested as before we saw early in the Simpson's paradox section. Note the huge increase in $R^2=0.65$, demonstrating that considering a random structure is much better. The coefficient of `snow.melt.days` remains negative indicating that most species and their variation are negative despite the potential for some species to increase their abundances for large values of snow.melt.days. We will see this below. \n\nThe residual against the predicted values provide a good indication that the model is appropriate:\n\n::: {.cell}\n\n```{.r .cell-code}\nlibrary(DHARMa)\nDunnSmyth.res <- simulateResiduals(fittedModel = MLM1.mod, plot = F)\nplot(DunnSmyth.res$scaledResiduals~log(fitted(MLM1.mod)),col=as.numeric(factor(species)),xlab=\"Fitted values [log scale]\",ylab=\"residuals\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-102-1.png){width=576}\n:::\n:::\n\n\nAnd now the Q-Q plot to assess residual normality:\n\n::: {.cell}\n\n```{.r .cell-code}\nplotQQunif(DunnSmyth.res)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nDHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-103-1.png){width=576}\n:::\n:::\n\nNote that the Kolmogorov-Smirnov (KS) provides indication that the residuals cannot be assumed to be normal. That said, the distribution of residuals looks somewhat on the expected. The KS becomes quite significant because of the large number of data points. Finally, GLMs and GLMMs tend to be quite robust even when residuals are not normal.\n\nIntercepts in a poisson model are log of species abundances not explained by the predictors model, i.e., when we set them \"manually\" to take values of zero. Perhaps some sites are more productive than others and we did not measure trait or environmental variables that could account for the slope and intercept variation variation; but the random effects is telling us that there is something we are potentially missing to explain their variation. \n\nMoreover, the random effect indicates that species slopes for the environment are strongly and positively correlated with the species intercepts ($\\rho_{ac}=0.73$). We can plot the intercepts against slopes:\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(coefficients(MLM1.mod)$species[,\"(Intercept)\"],coefficients(MLM1.mod)$species[,\"snow.melt.days\"],xlab=\"species intercepts\", ylab=\"species environmental slopes\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-104-1.png){width=576}\n:::\n:::\n\n\n$\\rho_{ac}$ does not appear in summ(MLM1.mod) but can be found in `summary(MLM1.mod)` intead or calculated directly:\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(MLM1.mod)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Adaptive\n Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]\n Family: poisson ( log )\nFormula: abundance ~ snow.melt.days + snow.melt.days:seed.mass + (1 + \n snow.melt.days | species) + (1 | obs)\n Data: data.df\nControl: glmerControl(calc.derivs = F)\n\n AIC BIC logLik deviance df.resid \n 7335.5 7382.6 -3660.7 7321.5 6143 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-1.6289 -0.4400 -0.2650 -0.0639 7.6016 \n\nRandom effects:\n Groups Name Variance Std.Dev. Corr\n obs (Intercept) 0.2221 0.4712 \n species (Intercept) 2.1201 1.4560 \n snow.melt.days 1.1671 1.0803 0.73\nNumber of obs: 6150, groups: obs, 6150; species, 82\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -2.11504 0.17095 -12.372 < 2e-16 ***\nsnow.melt.days -0.71798 0.13037 -5.507 3.64e-08 ***\nsnow.melt.days:seed.mass -0.07552 0.09024 -0.837 0.403 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) snw.m.\nsnw.mlt.dys 0.730 \nsnw.mlt.d:. 0.010 0.015 \n```\n:::\n\n```{.r .cell-code}\ncor(coefficients(MLM1.mod)$species[,\"(Intercept)\"],coefficients(MLM1.mod)$species[,\"snow.melt.days\"])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.7163168\n```\n:::\n:::\n\n\nAlthough the fixed-only effect model run earlier (glm.mod) indicated a significant correlation between snowmelt date and seed mass in driving species distributions, this effect is no longer relevant once the random effects are considered:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm.mod)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nglm(formula = abundance ~ snow.melt.days + snow.melt.days:seed.mass, \n family = \"poisson\", data = data.df)\n\nDeviance Residuals: \n Min 1Q Median 3Q Max \n-1.2804 -0.7946 -0.7868 -0.6822 4.3659 \n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -1.16767 0.02301 -50.744 < 2e-16 ***\nsnow.melt.days -0.09714 0.02313 -4.199 2.68e-05 ***\nsnow.melt.days:seed.mass -0.14286 0.02237 -6.387 1.70e-10 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 6552.0 on 6149 degrees of freedom\nResidual deviance: 6495.8 on 6147 degrees of freedom\nAIC: 9421.9\n\nNumber of Fisher Scoring iterations: 6\n```\n:::\n:::\n\nThis indicates that the random variation across species can account for the initial relationship between snow.melt.days and seed mass. Note that the importance of snow.melt.days remains relevant in driving species abundances across sites, but (again) not its interaction with seed mass. \n\nLet's plot regression models per species:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nintercepts <- coefficients(MLM1.mod)$species[,\"(Intercept)\"]\nslopes <- coefficients(MLM1.mod)$species[,\"snow.melt.days\"]\nlines <- data.frame(intercepts,slopes)\nlines[\"species\"] <- unique(data.df[,\"species\"])\ndata.df$pred <- predict(MLM1.mod)\nggplot(data=data.df) +\ngeom_point(data=data.df,aes(x=snow.melt.days,y=pred,color=species),size=1) + \ngeom_abline(data = lines, aes(intercept=intercepts, slope=slopes, color=species),size = 2) +\ngeom_abline(aes(intercept = `(Intercept)`, slope = snow.melt.days),size = 2,as.data.frame(t(fixef(MLM1.mod)))) +\ntheme_classic() + \nxlab(\"snow.melt.days\") + ylab(\"log(Abundance)\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-107-1.png){width=672}\n:::\n:::\n\n\n\nFinally, the GLMM has good predictive power (relative smaller confidence intervals and large $R^2=0.51$:\n\n::: {.cell}\n\n```{.r .cell-code}\n# install.packages(\"ggeffects\")\nlibrary(ggeffects)\nplot(ggpredict(MLM1.mod, \"snow.melt.days\"))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-108-1.png){width=672}\n:::\n:::\n\n\nFinally, as we discussed during the workshop, one needs to be careful while interpreting the significance of interactions between trait and environment. There are bootstrap-based developments to do that for the MLML1 model but they have been show to have inflated type I errors (Miller et al. 2019).\n\nFunction `glmer.nb` could have been used to fit the model using the negative binomial family instead.\n\nHere is a good and simple introduction to mixed models for poisson regression: \nhttps://stats.idre.ucla.edu/r/faq/random-coefficient-poisson-models/\n\n
**Our second GLMM applied to the fourth corner problem treating species and sites as random effects - the MLML2 model**
\n\nJamil et al. (2013) implemented a mixed model version in which in contrast to MLM1, it adds a fixed effect term for traits is included in the model (as in Brown et al. 2014) and also an additional random effect (intercepts) for site:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nMLM2.mod <- glmer(abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days|species) + (1 | sites) + (1 | obs), family = \"poisson\", control=glmerControl(calc.derivs=F), nAGQ = 0, data=data.df)\nsummary(MLM2.mod,scale = TRUE)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning in summary.merMod(MLM2.mod, scale = TRUE): additional arguments ignored\n```\n:::\n\n::: {.cell-output .cell-output-stdout}\n```\nGeneralized linear mixed model fit by maximum likelihood (Adaptive\n Gauss-Hermite Quadrature, nAGQ = 0) [glmerMod]\n Family: poisson ( log )\nFormula: abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days | \n species) + (1 | sites) + (1 | obs)\n Data: data.df\nControl: glmerControl(calc.derivs = F)\n\n AIC BIC logLik deviance df.resid \n 7264.1 7324.6 -3623.0 7246.1 6141 \n\nScaled residuals: \n Min 1Q Median 3Q Max \n-1.5851 -0.4284 -0.2557 -0.0732 8.9436 \n\nRandom effects:\n Groups Name Variance Std.Dev. Corr\n obs (Intercept) 0.1472 0.3837 \n species (Intercept) 1.6523 1.2854 \n snow.melt.days 1.0169 1.0084 0.71\n sites (Intercept) 0.4344 0.6591 \nNumber of obs: 6150, groups: obs, 6150; species, 82; sites, 75\n\nFixed effects:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) -2.1239 0.1708 -12.436 < 2e-16 ***\nsnow.melt.days -0.6805 0.1228 -5.543 2.97e-08 ***\nseed.mass -0.2050 0.1634 -1.255 0.210 \nsnow.melt.days:seed.mass -0.1134 0.1281 -0.885 0.376 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nCorrelation of Fixed Effects:\n (Intr) snw.m. sd.mss\nsnw.mlt.dys 0.630 \nseed.mass 0.022 0.029 \nsnw.mlt.d:. 0.023 0.031 0.680 \n```\n:::\n:::\n\n\nLet's test the fit difference between MLM1 and MLM2:\n\n::: {.cell}\n\n```{.r .cell-code}\nanova(MLM1.mod,MLM2.mod)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nData: data.df\nModels:\nMLM1.mod: abundance ~ snow.melt.days + snow.melt.days:seed.mass + (1 + snow.melt.days | species) + (1 | obs)\nMLM2.mod: abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days | species) + (1 | sites) + (1 | obs)\n npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) \nMLM1.mod 7 7335.5 7382.6 -3660.7 7321.5 \nMLM2.mod 9 7264.1 7324.6 -3623.0 7246.1 75.406 2 < 2.2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n\n```{.r .cell-code}\nc(BIC(MLM1.mod),BIC(MLM2.mod))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 7382.551 7324.594\n```\n:::\n:::\n\n\nWe won't diagnostics here for brevity and the code for the MLM1 can be easily adapted here. \n\nAlthough the fixed effects for the trait (seed mass) and interaction (seed mass and snow.melt.day) were not significant, the random effect standard deviation for site is relative large (0.66) and improved the predictive power for abundances across species.\n\n
**Our last GLMM applied to the fourth corner problem treating species and sites as random effects - the MLML3 model**
\n\nter Braak (2019) proposed yet another version that seems to work better than the previous ones. \n\n::: {.cell}\n\n```{.r .cell-code}\nMLM3.mod <- glmer(abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days|species) + (1 + seed.mass|sites) + (1 | obs), family = \"poisson\", control=glmerControl(calc.derivs=F), nAGQ = 0, data=data.df)\n```\n:::\n\n\nLet's test the fit difference between MLM2 and MLM3:\n\n::: {.cell}\n\n```{.r .cell-code}\nanova(MLM2.mod,MLM3.mod)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nData: data.df\nModels:\nMLM2.mod: abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days | species) + (1 | sites) + (1 | obs)\nMLM3.mod: abundance ~ snow.melt.days * seed.mass + (1 + snow.melt.days | species) + (1 + seed.mass | sites) + (1 | obs)\n npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)\nMLM2.mod 9 7264.1 7324.6 -3623.0 7246.1 \nMLM3.mod 11 7267.0 7341.0 -3622.5 7245.0 1.0759 2 0.5839\n```\n:::\n\n```{.r .cell-code}\nc(BIC(MLM2.mod),BIC(MLM3.mod))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 7324.594 7340.967\n```\n:::\n:::\n\n\nFor these data, the MLM3 does not improve the MLM2. \n\n**This is not the end - we will keep updating this page after the workshop** \n**References (still being filled):**\n\nAM Brown, DI Warton, NR Andrew, M Binns, G Cassis, H Gibb\nMethods in Ecology and Evolution 5 (4), 344-352\n\nCholer, P. (2005) Consistent shifts in Alpine plant traits along a mesotopographical gradient. Arctic, Antarctic, and Alpine Research, 37,444–453.\n\nDray, S., & Legendre, P. (2008) Testing the species traits-environment relationships : The fourth-corner problem revisited. Ecology, 89, 3400–3412.\n\nDunn, KP & Smyth GK (1996) Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5, 1-10.\n\nGabriel, KR. (1998) Generalised bilinear regression. Biometrika, 85, 689-700.\n\nGelman, A & Hill, J (2007). Data analysis using regression and multi-level/hierarchical models. New York, NY: Cambridge University Press.\n\nHarrison, XA (2014). Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ, 2, e616.\n\nJamil, T., Ozinga, W. A., Kleyer, M., & ter Braak, C. J. F. (2013). Selecting traits that explain species-environment relationships: A generalized linear mixed model approach. Journal of Vegetation Science, 24, 988–1000. \n\nPeres-Neto, P. R., Dray, S., & ter Braak, C. J. F. (2017). Linking trait variation to the environment: Critical issues with community-weighted mean correlation resolved by the fourth-corner approach. Ecography, 40, 806–816.\n\nPollock, L. J., Morris, W. K., & Vesk, P. A. (2012). The role of functional traits in species distributions revealed through a hierarchical model. Ecography, 35, 716–725. \n\nSimpson, EH (1951). The Interpretation of Interaction in Contingency Tables. Journal of the Royal Statistical Society, Series B., 13, 238–241.\n\nter Braak, CJF, Cormont, A. & Dray, S. (2012). Improved testing of species traits–environment relationships in the fourth‐corner problem. Ecology, 93, 1525-1526.\n\nter Braak, CJF & Looman, CWN. (1986). Weighted averaging, logistic regression and the Gaussian response model. Plant Ecology, 65, 3-11.\n\n**useful sites for GLMs (will also expand on this later on):**\n\n- Beyond Multiple Linear Regression: \n https://bookdown.org/roback/bookdown-BeyondMLR/\n \n\n\n\n\n\n\n", "supporting": [ "index_files" ], diff --git a/_freeze/posts/2021-11-02-introduction-to-gams/index/execute-results/html.json b/_freeze/posts/2021-11-02-introduction-to-gams/index/execute-results/html.json index 7646a58..2918dec 100644 --- a/_freeze/posts/2021-11-02-introduction-to-gams/index/execute-results/html.json +++ b/_freeze/posts/2021-11-02-introduction-to-gams/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "6ecc15b249f62a4e97d20223f6eac2f7", + "hash": "11e68b677c9e3ed7d2fae933db9ae07d", "result": { - "markdown": "---\ntitle: \"Introduction to Generalized Additive Models (GAMs)\"\ndescription: \"To address the increase in both quantity and complexity of available data, ecologists require flexible, robust statistical models, as well as software to perform such analyses. This workshop will focus on how a single tool, the R mgcv package, can be used to fit Generalized Additive Models (GAMs) to data from a wide range of sources.\"\nauthor:\n - name: \"Eric Pedersen\"\n affiliation: Concordia University\ndate: \"11-02-2021\"\nimage: image.jpg\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n# Introduction to Generalized Additive Models (GAMs)\n\nA short course on how to fit, plot, and evaluate GAMs\n\nThe course website URL available at [pedersen-fisheries-lab.github.io/one-day-gam-workshop/](https://pedersen-fisheries-lab.github.io/one-day-gam-workshop/)\n\n## Overview\n\nThis is a 3-session, one-day workshop. It was developed with the goal of giving you enough GAM knowledge to feel comfortable fitting and working with GAMs in your day-to-day modelling practice, with just enough of more advanced applications to give a flavour of what GAMs can do. I will be covering a basic intro to GAM theory, with the rest focused on practical applications and a few advanced topics that I think might be interesting.\n\n## Learning Goals\n\n- Understand the basic GAM model, basis functions, and penalties\n- Fit 1D, 2D, and tensor-product GAMs to normal and non-normal data\n- Plot GAM fits, and understand how to explain GAM outputs\n- Diagnose common mispecification problems when fitting GAMs\n- Use GAMs to make predictions about new data, and assess model uncertainty\n- See how more complicated GAM models can be used as part of a modern workflow\n\n## Setup\n\n - You will need to install **R** and I recommend using **RStudio**. The\n latest version of R can be downloaded\n [here](https://cran.r-project.org/mirrors.html). RStudio is an application\n (an integrated development environment or IDE) that facilitates the use of R\n and offers a number of nice additional features. It can be downloaded\n [here](https://www.rstudio.com/products/rstudio/download/). You will need\n the free Desktop version for your computer.\n\n - Download the course materials as a ZIP file\n [here](https://github.com/pedersen-fisheries-lab/one-day-gam-workshop/archive/main.zip).\n Alternatively, if you have the [**usethis**](), R package, running the\n following command will download the course materials and open them:\n\n ``` {.r}\n usethis::use_course('pedersen-fisheries-lab/one-day-gam-workshop')\n ```\n\n - Install the R packages required for this course by running the following\n line of code your R console:\n\n ``` {.r}\n install.packages(c(\"dplyr\", \"ggplot2\", \"remotes\", \"mgcv\", \"tidyr\"))\n remotes::install_github(\"gavinsimpson/gratia\")\n ```\n\n\n# What is a GAM, and 1d smoothers\n\nOn Day 1, we covered:\n\n- Example data: Temperature with depth\n- Refresher on GLMs (regression, parameters, link functions)\n- Why smooth?\n- Simple models with `s()`\n- Introduction to the data\n- Adding more than one smooth to your model\n- `summary` and `plot`\n\nFollow the lecture and R script below:\n\n[Day 1 Script](scripts/01-intro-to-gams.R){.btn .btn-success role=\"button\"}\n[Day 1 Solutions](scripts/01-intro-to-gams-solutions.R){.btn .btn-success role=\"button\"}\n\n\n\n\n\n\n# \"Twiddling knobs in `gam`\"\n\nOn Day 2, we covered:\n\n- Moving beyond normal data (richness, shrimp biomass)\n - Exponential family and conditionally exp family (i.e., `family` + `tw` + `nb`)\n \n- More dimensions (Shrimp biomass)\n - Thin-plate 2d (Shrimp biomass with space)\n - What are tensors? (Shrimp biomass as a function of depth and temperature)\n - `ti` vs `te`\n - Spatio-temporal modelling\n - `te(x,y,t)` constructions\n\n- Centering constraints\n - What does the intercept mean?\n\nFollow the lecture and R script below:\n\n[Day 2 Script](scripts/02-extending-gams.R){.btn .btn-success role=\"button\"}\n \n\n\n\n# Prediction, uncertainty, model checking, and selection \n\nOn Day 3, we covered:\n\n- Using `predict` to calculate confidence intervals\n- Posterior simulation\n- `gam.check` for model checking\n- Quantile residuals\n- Diagnostic: `DHARMa`\n- Fitting to the residuals\n- `AIC` etc.\n- Shrinkage and `select=TRUE`\n\nFollow the lecture and R script below:\n\n[Day 3 Script](scripts/03-predictions-and-model-checking.R){.btn .btn-success role=\"button\"}\n\n\n\n\n# Other useful resources\n\n [3-day GAM workshop for DFO, a longer version of this workshop](https://github.com/pedersen-fisheries-lab/DFO-3day-gam-workshop/)\n \n [Our ESA GAM workshop](https://eric-pedersen.github.io/mgcv-esa-workshop/)\n \n [Our paper on Hierarchical Generalized Additive Models](https://peerj.com/articles/6876/)\n \n [Noam Ross's GAMs in R tutorial](https://noamross.github.io/gams-in-r-course/)\n \n [Noam Ross's Short talk on many types of models that can fit with mgcv](https://raw.githubusercontent.com/noamross/gam-resources/master/2017-11-14-noamross-gams-nyhackr.pdf)\n \n [Gavin Simpson's Blog: From the Bottom of the Heap](https://fromthebottomoftheheap.net/)\n \n [Gavin Simpson's Online GAM workshop](https://www.youtube.com/watch?v=sgw4cu8hrZM&feature=youtu.be)\n\n[David Miller's NOAA workshop](https://converged.yt/mgcv-workshop/) based on the ESA workshop\n\n[ David Miller's Distance DSM workshop](http://workshops.distancesampling.org/online-dsm-2020/)\n\n# Other useful GAM resources:\n\n - Simon Wood's book \"Generalized Additive Models: An Introduction with R, Second Edition\", is an incredibly useful tool for learning about GAMs, and covers all of this material in depth.\n \n- Hefley et al. (2017). \"The basis function approach for modeling autocorrelation in ecological data\". This is a great paper laying out how basis functions are used to model complex spatially structured systems. \n\n- The `mgcVis` package has more tools for plotting GAM model outputs. See Fasiolo et al.'s paper 2019 \"Scalable visualization methods for modern generalized additive models\". \n", + "markdown": "---\ntitle: \"Introduction to Generalized Additive Models (GAMs)\"\ndescription: \"To address the increase in both quantity and complexity of available data, ecologists require flexible, robust statistical models, as well as software to perform such analyses. This workshop will focus on how a single tool, the R mgcv package, can be used to fit Generalized Additive Models (GAMs) to data from a wide range of sources.\"\nauthor:\n - name: Eric Pedersen\ndate: \"11-02-2021\"\nimage: image.jpg\ncategories: [Technical, EN]\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n\n\n# Introduction to Generalized Additive Models (GAMs)\n\nA short course on how to fit, plot, and evaluate GAMs\n\nThe course website URL available at [pedersen-fisheries-lab.github.io/one-day-gam-workshop/](https://pedersen-fisheries-lab.github.io/one-day-gam-workshop/)\n\n## Overview\n\nThis is a 3-session, one-day workshop. It was developed with the goal of giving you enough GAM knowledge to feel comfortable fitting and working with GAMs in your day-to-day modelling practice, with just enough of more advanced applications to give a flavour of what GAMs can do. I will be covering a basic intro to GAM theory, with the rest focused on practical applications and a few advanced topics that I think might be interesting.\n\n## Learning Goals\n\n- Understand the basic GAM model, basis functions, and penalties\n- Fit 1D, 2D, and tensor-product GAMs to normal and non-normal data\n- Plot GAM fits, and understand how to explain GAM outputs\n- Diagnose common mispecification problems when fitting GAMs\n- Use GAMs to make predictions about new data, and assess model uncertainty\n- See how more complicated GAM models can be used as part of a modern workflow\n\n## Setup\n\n - You will need to install **R** and I recommend using **RStudio**. The\n latest version of R can be downloaded\n [here](https://cran.r-project.org/mirrors.html). RStudio is an application\n (an integrated development environment or IDE) that facilitates the use of R\n and offers a number of nice additional features. It can be downloaded\n [here](https://www.rstudio.com/products/rstudio/download/). You will need\n the free Desktop version for your computer.\n\n - Download the course materials as a ZIP file\n [here](https://github.com/pedersen-fisheries-lab/one-day-gam-workshop/archive/main.zip).\n Alternatively, if you have the [**usethis**](), R package, running the\n following command will download the course materials and open them:\n\n ``` {.r}\n usethis::use_course('pedersen-fisheries-lab/one-day-gam-workshop')\n ```\n\n - Install the R packages required for this course by running the following\n line of code your R console:\n\n ``` {.r}\n install.packages(c(\"dplyr\", \"ggplot2\", \"remotes\", \"mgcv\", \"tidyr\"))\n remotes::install_github(\"gavinsimpson/gratia\")\n ```\n\n\n# What is a GAM, and 1d smoothers\n\nOn Day 1, we covered:\n\n- Example data: Temperature with depth\n- Refresher on GLMs (regression, parameters, link functions)\n- Why smooth?\n- Simple models with `s()`\n- Introduction to the data\n- Adding more than one smooth to your model\n- `summary` and `plot`\n\nFollow the lecture and R script below:\n\n[Day 1 Script](scripts/01-intro-to-gams.R){.btn .btn-success role=\"button\"}\n[Day 1 Solutions](scripts/01-intro-to-gams-solutions.R){.btn .btn-success role=\"button\"}\n\n\n\n\n\n\n# \"Twiddling knobs in `gam`\"\n\nOn Day 2, we covered:\n\n- Moving beyond normal data (richness, shrimp biomass)\n - Exponential family and conditionally exp family (i.e., `family` + `tw` + `nb`)\n \n- More dimensions (Shrimp biomass)\n - Thin-plate 2d (Shrimp biomass with space)\n - What are tensors? (Shrimp biomass as a function of depth and temperature)\n - `ti` vs `te`\n - Spatio-temporal modelling\n - `te(x,y,t)` constructions\n\n- Centering constraints\n - What does the intercept mean?\n\nFollow the lecture and R script below:\n\n[Day 2 Script](scripts/02-extending-gams.R){.btn .btn-success role=\"button\"}\n \n\n\n\n# Prediction, uncertainty, model checking, and selection \n\nOn Day 3, we covered:\n\n- Using `predict` to calculate confidence intervals\n- Posterior simulation\n- `gam.check` for model checking\n- Quantile residuals\n- Diagnostic: `DHARMa`\n- Fitting to the residuals\n- `AIC` etc.\n- Shrinkage and `select=TRUE`\n\nFollow the lecture and R script below:\n\n[Day 3 Script](scripts/03-predictions-and-model-checking.R){.btn .btn-success role=\"button\"}\n\n\n\n\n# Other useful resources\n\n [3-day GAM workshop for DFO, a longer version of this workshop](https://github.com/pedersen-fisheries-lab/DFO-3day-gam-workshop/)\n \n [Our ESA GAM workshop](https://eric-pedersen.github.io/mgcv-esa-workshop/)\n \n [Our paper on Hierarchical Generalized Additive Models](https://peerj.com/articles/6876/)\n \n [Noam Ross's GAMs in R tutorial](https://noamross.github.io/gams-in-r-course/)\n \n [Noam Ross's Short talk on many types of models that can fit with mgcv](https://raw.githubusercontent.com/noamross/gam-resources/master/2017-11-14-noamross-gams-nyhackr.pdf)\n \n [Gavin Simpson's Blog: From the Bottom of the Heap](https://fromthebottomoftheheap.net/)\n \n [Gavin Simpson's Online GAM workshop](https://www.youtube.com/watch?v=sgw4cu8hrZM&feature=youtu.be)\n\n[David Miller's NOAA workshop](https://converged.yt/mgcv-workshop/) based on the ESA workshop\n\n[ David Miller's Distance DSM workshop](http://workshops.distancesampling.org/online-dsm-2020/)\n\n# Other useful GAM resources:\n\n - Simon Wood's book \"Generalized Additive Models: An Introduction with R, Second Edition\", is an incredibly useful tool for learning about GAMs, and covers all of this material in depth.\n \n- Hefley et al. (2017). \"The basis function approach for modeling autocorrelation in ecological data\". This is a great paper laying out how basis functions are used to model complex spatially structured systems. \n\n- The `mgcVis` package has more tools for plotting GAM model outputs. See Fasiolo et al.'s paper 2019 \"Scalable visualization methods for modern generalized additive models\". \n", "supporting": [], "filters": [ "rmarkdown/pagebreak.lua" diff --git a/_freeze/posts/2022-05-19-introduction-to-microbiome-analysis/index/execute-results/html.json b/_freeze/posts/2022-05-19-introduction-to-microbiome-analysis/index/execute-results/html.json index f24339d..7b3c63f 100644 --- a/_freeze/posts/2022-05-19-introduction-to-microbiome-analysis/index/execute-results/html.json +++ b/_freeze/posts/2022-05-19-introduction-to-microbiome-analysis/index/execute-results/html.json @@ -1,7 +1,7 @@ { - "hash": "4589fcb95535be69590c783627f218ca", + "hash": "06e42f33c8c94e72d1dc1ab06e358e57", "result": { - "markdown": "---\ntitle: \"Introduction to Microbiome Analysis\"\ndescription: |\n This workshop will give an overview of the theory and practice of using metabarcoding approaches to study the diversity of microbial communities. The workshop will give participants an understanding of 1) the current methods for microbiome diversity quantification using metabarcoding/amplicon sequencing approaches and 2) the normalization and diversity analysis approaches that can be used to quantify the diversity of microbial communities.\nauthor:\n - name: \"Steven Kembel\"\n affiliation: Université du Québec à Montréal\n - name: \"Zihui Wang\"\n affiliation: Université du Québec à Montréal\n - name: \"Salix Dubois\"\n affiliation: Université du Québec à Montréal\ncategories: [Technical, EN]\ndate: \"05-19-2022\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n# Workshop instructors\n\n[Dr. Steve Kembel](https://kembellab.ca/), Zihui Wang, and Salix Dubois\n\n[Université du Québec à Montréal](https://uqam.ca/)\n\n# Overview\n\nThis workshop will give an overview of the theory and practice of using amplicon sequencing approaches to study the diversity of microbial communities. In the first part of the workshop, we will discuss current methods for microbiome quantification using amplicon sequencing approaches. In the second part of the workshop, we will discuss normalization and diversity analysis approaches that can be used to quantify the diversity of microbial communities.\n\nThis workshop was developed with support from the [NSERC CREATE Computational Biodiversity Science and Services (BIOS²)](https://bios2.usherbrooke.ca/) training program and the [Canada Research Chair in Plant Microbiomes](https://kembellab.ca/).\n\n# Workshop materials\n\n## Day 1 - Microbiome quantification using amplicon sequencing approaches\n\n- Lecture - [Microbiome quantification using amplicon sequencing approaches (PDF)](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-analysis-1-sequence-analysis.pdf)\n- R practical - [Microbiome sequence analysis workshop](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-sequence-analysis.html)\n- Downloads\n - [Sequence data and SILVA database files (~350MB download from figshare)](https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077)\n - R workspace [Microbiome-sequence-analysis-workspace.RData](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-sequence-analysis-workspace.RData)\n - [R Markdown file](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-sequence-analysis.Rmd) used to generate the R practical document\n\n## Day 2 - Data normalization and ecological analysis of microbiome data\n\n- Lecture - [Data normalization and ecological analysis of microbiome data (PDF)](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-analysis-2-ecological-analysis.pdf)\n- R practical - [Microbiome ecological analysis workshop](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-ecological-analysis.html)\n- Downloads\n - Sample metadata [metadata-Qleaf_BACT.csv](http://kembellab.ca/microbiome-analysis-workshop/metadata-Qleaf_BACT.csv)\n - DADA2 ASV sequence table [seqtab.nochim.rds](http://kembellab.ca/microbiome-analysis-workshop/seqtab.nochim.rds)\n - DADA2 ASV taxonomic annotations [taxa.sp.rds](http://kembellab.ca/microbiome-analysis-workshop/#:~:text=ASV%20taxonomic%20annotations-,taxa.sp.rds,-R%20workspace%20Microbiome)\n- R workspace [Microbiome-ecological-analysis-workspace.RData](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-ecological-analysis-workspace.RData)\n- [R Markdown file](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-ecological-analysis.Rmd) used to generate the R practical document\n\n# Requirements\n\nThe workshop assumes basic familiarity with R/RStudio; practical exercises are based on the use of R scripts to analyse sequence data and resulting community data sets.\n\nTo be able to follow along with the practical exercises on your own computer, in addition to downloading the data files above, you will need to do the following:\n\nInstall the latest version of R for your operating system (version 4.2.0 as of May 2022): [https://cran.r-project.org/](https://cran.r-project.org/)\n\nInstall the latest version of RStudio for your operating system (version 2022.02.2+485 as of May 2022): [https://www.rstudio.com/products/rstudio/download/](https://www.rstudio.com/products/rstudio/download/)\n\nInstall the packages that we will use during the workshop by executing the following code in R version 4.2.0:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install packages from CRAN\ninstall.packages(pkgs = c(\"Rcpp\", \"RcppArmadillo\", \"picante\", \"ggpubr\", \"pheatmap\"), dependencies = TRUE)\n# install packages from Bioconductor\nif (!require(\"BiocManager\", quietly = TRUE))\n install.packages(\"BiocManager\")\nBiocManager::install(\"dada2\", version = \"3.15\", update = FALSE)\n# if the dada2 install returns a warning for BiocParallel, install from binary using this command:\n# BiocManager::install(\"BiocParallel\", version = \"3.15\", type=\"binary\", update = FALSE)\nBiocManager::install(\"DESeq2\")\nBiocManager::install(\"phyloseq\")\nBiocManager::install(\"ANCOMBC\")\n```\n:::\n\n\n# Microbiome quantification using amplicon sequencing approaches\n\n## About the data set\n\nIn this workshop, we will be analyzing the bacterial communities found on leaves of sugar maple seedlings of different provenances planted at sites across eastern North America.\n\nThese data are taken from the article:\n\nDe Bellis, Laforest-Lapointe, Solarik, Gravel, and Kembel. 2022. Regional variation drives differences in microbial communities associated with sugar maple across a latitudinal range. Ecology (published online ahead of print). [doi:10.1002/ecy.3727](https://doi.org/10.1002/ecy.3727)\n\nFor this workshop, we will work with a subset of samples from six of the nine sites sampled for the article. These samples are located in three different biomes (temperate, mixed, and boreal forests). At each site, several sugar maple seedlings were planted and harvested, and we collected bacterial DNA from the leaves. Each sample thus represents the bacterial communities on the leaves of a single sugar maple seedling. For each seedling, we have associated metadata on the provenance of the seed, the site where the seed was planted, and the biome/stand type where the seed was planted. We'll talk more about these samples and the biological hypotheses we want to test in day 2 of the workshop.\n\n### Data file setup and download\n\nTo follow along with the code, you will need to download the raw data (FASTQ sequence files) and the SILVA taxonomy files, and place a copy of these data sets in the working directory from which you are running the code.\n\nThe data files we will use for this workshop are available for download at the following URL: [https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077](https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077).\n\nThe sequence data in the folder rawdata-Qleaf_BACT consist of 74 compressed FASTQ files (2 files for each of 36 samples). These files were provided by the [UQAM CERMO-FC Genomics Platform](https://www.cermofc.uqam.ca/en/technological-platforms/genomics/) where the samples were sequenced in a multiplexed run on an Illumina MiSeq. The samples were demultiplexed into separate files based on the barcode associated with each sample, so there is a separate pair of files for each sample. One file labelled R2 contains the forward read for the sample, the other file labelled R1 contains the reverse read for the sample.\n\nIf your samples were not automatically demultiplexed by the sequencing centre, you will instead have just two files which are normally labelled R2 for forward reads and R1 for reverse reads, and you should also receive information about the sequence barcode associated with each sample. You will need to demultiplex this file yourself by using the unique barcode associated with each sample to split the single large file containing all samples together into a separate file for each sample. It is easier to not have to do this step yourself, so I recommend asking your sequencing centre how they will provide the data and request that the data be provided demultiplexed with separate files for each sample. If you do need to do the multiplexing yourself, there are numerous tools available to carry out demultplexing, including [QIIME](http://qiime.org/), [mothur](https://mothur.org/), or the standalone [idemp](https://github.com/yhwu/idemp) program.\n\nAfter downloading the compressed file \"rawdata-Qleaf_BACT.zip\" (the file is around 150MB in size), you will need to unzip the file into a folder on your computer. I suggest you place this folder in the working directory from which you are running the code for the workshop.\n\nThe SILVA taxonomy reference database files we will use for this workshop are available for download at the same URL where we found the sequence data: [https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077](https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077)\n\nAfter downloading the compressed file \"SILVA138.1.zip\" (the file is around 200MB in size), you will need to unzip the file into a folder on your computer. As for the raw data, I suggest you place this folder in the working directory from which you are running the code for the workshop.\n\nThis workshop uses the most recent version of the SILVA taxonomy currently available, which is version 138.1. There are up-to-date DADA2 formatted versions of the SILVA database along with other databases available at the [DADA2 website](https://benjjneb.github.io/dada2/training.html).\n\n### Install the DADA2 package\n\nYou will need to install the most recent version of the DADA2 R package. At the time of writing this workshop, this is DADA2 version 1.24.0. There are instructions for installing the DADA2 package [here](https://benjjneb.github.io/dada2/dada-installation.html). The command below works to install DADA2 version 1.24.0 using R version 4.2.0:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install dada2 if needed\nif (!requireNamespace(\"BiocManager\", quietly = TRUE))\n install.packages(\"BiocManager\")\nBiocManager::install(\"dada2\", version = \"3.15\")\n```\n:::\n\n\n## Sequence analysis with DADA2\n\nThis workshop is based directly on the excellent [DADA2 tutorial](https://benjjneb.github.io/dada2/tutorial.html). I highly recommend following the DADA2 tutorial when working with your own data, it is constantly updated to incorporate the latest version of the analyses available in the package and has helpful tips for analysing your own data. The DADA2 tutorial goes into more depth about each of the steps in this analysis pipeline, and includes useful advice about each step of the pipeline. In this workshop, we have adapted the tutorial materials to run through the basic steps of sequence analysis to go from sequence files to an ecological matrix of ASV abundances in samples, and the taxonomic annotation of those ASVs.\n\nWe begin by loading the DADA2 package.\n\n### Load package\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load library, check version\nlibrary(dada2); packageVersion(\"dada2\")\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nLoading required package: Rcpp\n```\n:::\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] '1.22.0'\n```\n:::\n:::\n\n\n### Set file paths\n\nWe need to set file paths so DADA2 knows where to find the raw data FASTQ files. I recommend creating a RStudio project for this workshop and placing a copy of the folder with the raw data FASTQ files in the working directory; by default in RStudio the working directory is the folder where you created the project. The exact paths below will need to be changed depending on where you placed the raw data files.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# set path to raw data FASTQ files\n# here we assume the raw data are in a folder named \"rawdata-Qleaf_BACT\"\n# in the current working directory (the directory where we created our\n# RStudio project for this workshop, by default)\npath <- \"rawdata-Qleaf_BACT/\"\n# list the files found in the path - this should include 74 files with\n# names like '2017-11-miseq-trimmed_R1.fastq_BC.C2.3X2.fastq.gz\"\nlist.files(path)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [1] \"2017-11-miseq-trimmed_R1.fastq_AUC.C1.2X1.fastq.gz\" \n [2] \"2017-11-miseq-trimmed_R1.fastq_AUC.C1.3.fastq.gz\" \n [3] \"2017-11-miseq-trimmed_R1.fastq_AUC.N1.1.fastq.gz\" \n [4] \"2017-11-miseq-trimmed_R1.fastq_AUC.N1.3.fastq.gz\" \n [5] \"2017-11-miseq-trimmed_R1.fastq_AUC.N2.1.X1.fastq.gz\"\n [6] \"2017-11-miseq-trimmed_R1.fastq_AUC.N2.1X2.fastq.gz\" \n [7] \"2017-11-miseq-trimmed_R1.fastq_AUC.N2.2.fastq.gz\" \n [8] \"2017-11-miseq-trimmed_R1.fastq_AUC.S1.1.X2.fastq.gz\"\n [9] \"2017-11-miseq-trimmed_R1.fastq_AUC.S1X1.fastq.gz\" \n[10] \"2017-11-miseq-trimmed_R1.fastq_AUC.S2.2.fastq.gz\" \n[11] \"2017-11-miseq-trimmed_R1.fastq_BC.C1.2.fastq.gz\" \n[12] \"2017-11-miseq-trimmed_R1.fastq_BC.C2.1X1.fastq.gz\" \n[13] \"2017-11-miseq-trimmed_R1.fastq_BC.C2.3X2.fastq.gz\" \n[14] \"2017-11-miseq-trimmed_R1.fastq_BC.C2.3X2b.fastq.gz\" \n[15] \"2017-11-miseq-trimmed_R1.fastq_BC.N1.3X2.fastq.gz\" \n[16] \"2017-11-miseq-trimmed_R1.fastq_BC.N1.fastq.gz\" \n[17] \"2017-11-miseq-trimmed_R1.fastq_BC.N2.1.X3.fastq.gz\" \n[18] \"2017-11-miseq-trimmed_R1.fastq_BC.N2.1X1.fastq.gz\" \n[19] \"2017-11-miseq-trimmed_R1.fastq_BC.N2.1X2.fastq.gz\" \n[20] \"2017-11-miseq-trimmed_R1.fastq_PAR.C1.1.fastq.gz\" \n[21] \"2017-11-miseq-trimmed_R1.fastq_PAR.C1.2.fastq.gz\" \n[22] \"2017-11-miseq-trimmed_R1.fastq_PAR.C2.3.fastq.gz\" \n[23] \"2017-11-miseq-trimmed_R1.fastq_PAR.N1.3.fastq.gz\" \n[24] \"2017-11-miseq-trimmed_R1.fastq_QLbactNeg19.fastq.gz\"\n[25] \"2017-11-miseq-trimmed_R1.fastq_QLbactNeg20.fastq.gz\"\n[26] \"2017-11-miseq-trimmed_R1.fastq_S.M.C1.3X2.fastq.gz\" \n[27] \"2017-11-miseq-trimmed_R1.fastq_S.M.C2.3.fastq.gz\" \n[28] \"2017-11-miseq-trimmed_R1.fastq_S.M.C2.3X2.fastq.gz\" \n[29] \"2017-11-miseq-trimmed_R1.fastq_S.M.S1.1X1.fastq.gz\" \n[30] \"2017-11-miseq-trimmed_R1.fastq_SF.C1.3.fastq.gz\" \n[31] \"2017-11-miseq-trimmed_R1.fastq_SF.C2.2.fastq.gz\" \n[32] \"2017-11-miseq-trimmed_R1.fastq_SF.N2.3.fastq.gz\" \n[33] \"2017-11-miseq-trimmed_R1.fastq_SF.S1.3.fastq.gz\" \n[34] \"2017-11-miseq-trimmed_R1.fastq_T2.C1.1.fastq.gz\" \n[35] \"2017-11-miseq-trimmed_R1.fastq_T2.C2.3.fastq.gz\" \n[36] \"2017-11-miseq-trimmed_R1.fastq_T2.N1.1.fastq.gz\" \n[37] \"2017-11-miseq-trimmed_R1.fastq_T2.S2.1.fastq.gz\" \n[38] \"2017-11-miseq-trimmed_R2.fastq_AUC.C1.2X1.fastq.gz\" \n[39] \"2017-11-miseq-trimmed_R2.fastq_AUC.C1.3.fastq.gz\" \n[40] \"2017-11-miseq-trimmed_R2.fastq_AUC.N1.1.fastq.gz\" \n[41] \"2017-11-miseq-trimmed_R2.fastq_AUC.N1.3.fastq.gz\" \n[42] \"2017-11-miseq-trimmed_R2.fastq_AUC.N2.1.X1.fastq.gz\"\n[43] \"2017-11-miseq-trimmed_R2.fastq_AUC.N2.1X2.fastq.gz\" \n[44] \"2017-11-miseq-trimmed_R2.fastq_AUC.N2.2.fastq.gz\" \n[45] \"2017-11-miseq-trimmed_R2.fastq_AUC.S1.1.X2.fastq.gz\"\n[46] \"2017-11-miseq-trimmed_R2.fastq_AUC.S1X1.fastq.gz\" \n[47] \"2017-11-miseq-trimmed_R2.fastq_AUC.S2.2.fastq.gz\" \n[48] \"2017-11-miseq-trimmed_R2.fastq_BC.C1.2.fastq.gz\" \n[49] \"2017-11-miseq-trimmed_R2.fastq_BC.C2.1X1.fastq.gz\" \n[50] \"2017-11-miseq-trimmed_R2.fastq_BC.C2.3X2.fastq.gz\" \n[51] \"2017-11-miseq-trimmed_R2.fastq_BC.C2.3X2b.fastq.gz\" \n[52] \"2017-11-miseq-trimmed_R2.fastq_BC.N1.3X2.fastq.gz\" \n[53] \"2017-11-miseq-trimmed_R2.fastq_BC.N1.fastq.gz\" \n[54] \"2017-11-miseq-trimmed_R2.fastq_BC.N2.1.X3.fastq.gz\" \n[55] \"2017-11-miseq-trimmed_R2.fastq_BC.N2.1X1.fastq.gz\" \n[56] \"2017-11-miseq-trimmed_R2.fastq_BC.N2.1X2.fastq.gz\" \n[57] \"2017-11-miseq-trimmed_R2.fastq_PAR.C1.1.fastq.gz\" \n[58] \"2017-11-miseq-trimmed_R2.fastq_PAR.C1.2.fastq.gz\" \n[59] \"2017-11-miseq-trimmed_R2.fastq_PAR.C2.3.fastq.gz\" \n[60] \"2017-11-miseq-trimmed_R2.fastq_PAR.N1.3.fastq.gz\" \n[61] \"2017-11-miseq-trimmed_R2.fastq_QLbactNeg19.fastq.gz\"\n[62] \"2017-11-miseq-trimmed_R2.fastq_QLbactNeg20.fastq.gz\"\n[63] \"2017-11-miseq-trimmed_R2.fastq_S.M.C1.3X2.fastq.gz\" \n[64] \"2017-11-miseq-trimmed_R2.fastq_S.M.C2.3.fastq.gz\" \n[65] \"2017-11-miseq-trimmed_R2.fastq_S.M.C2.3X2.fastq.gz\" \n[66] \"2017-11-miseq-trimmed_R2.fastq_S.M.S1.1X1.fastq.gz\" \n[67] \"2017-11-miseq-trimmed_R2.fastq_SF.C1.3.fastq.gz\" \n[68] \"2017-11-miseq-trimmed_R2.fastq_SF.C2.2.fastq.gz\" \n[69] \"2017-11-miseq-trimmed_R2.fastq_SF.N2.3.fastq.gz\" \n[70] \"2017-11-miseq-trimmed_R2.fastq_SF.S1.3.fastq.gz\" \n[71] \"2017-11-miseq-trimmed_R2.fastq_T2.C1.1.fastq.gz\" \n[72] \"2017-11-miseq-trimmed_R2.fastq_T2.C2.3.fastq.gz\" \n[73] \"2017-11-miseq-trimmed_R2.fastq_T2.N1.1.fastq.gz\" \n[74] \"2017-11-miseq-trimmed_R2.fastq_T2.S2.1.fastq.gz\" \n```\n:::\n:::\n\n\n### Find data files and extract sample names\n\nNow that we have the list of raw data FASTQ files, we need to process these file names to identify forward and reverse reads. For each sequence, the sequencer will create two files labelled R2 and R1. One of these files contains the forward reads, the other the reverse reads. Which file is which will depend on the protocol used to create sequencing libraries. In our case, the R2 files contain the forward reads, and the R1 files contain the reverse reads.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Identify forward and reverse reads\n# Filenames containing R2 are forward reads, R1 are reverse reads\nfnFs <- sort(list.files(path, pattern=\"R2\", full.names = TRUE))\nfnRs <- sort(list.files(path, pattern=\"R1\", full.names = TRUE))\n```\n:::\n\n\nWe also need to process the filenames to extract and clean up the sample names.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# FASTQ filenames have format:\n# BLABLA_R1.fastq_SAMPLENAME.fastq.gz\n# Extract sample names from filenames\n# Split filename at \"_\" character, the sample name is in the third chunk\nsample.names <- sapply(strsplit(basename(fnFs), \"_\"), `[`, 3)\n# Remove extra text from the end of filenames\nsample.names <- gsub(\".fastq.gz\", \"\", sample.names)\n# Look at sample names after processing\nsample.names\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [1] \"AUC.C1.2X1\" \"AUC.C1.3\" \"AUC.N1.1\" \"AUC.N1.3\" \"AUC.N2.1.X1\"\n [6] \"AUC.N2.1X2\" \"AUC.N2.2\" \"AUC.S1.1.X2\" \"AUC.S1X1\" \"AUC.S2.2\" \n[11] \"BC.C1.2\" \"BC.C2.1X1\" \"BC.C2.3X2\" \"BC.C2.3X2b\" \"BC.N1.3X2\" \n[16] \"BC.N1\" \"BC.N2.1.X3\" \"BC.N2.1X1\" \"BC.N2.1X2\" \"PAR.C1.1\" \n[21] \"PAR.C1.2\" \"PAR.C2.3\" \"PAR.N1.3\" \"QLbactNeg19\" \"QLbactNeg20\"\n[26] \"S.M.C1.3X2\" \"S.M.C2.3\" \"S.M.C2.3X2\" \"S.M.S1.1X1\" \"SF.C1.3\" \n[31] \"SF.C2.2\" \"SF.N2.3\" \"SF.S1.3\" \"T2.C1.1\" \"T2.C2.3\" \n[36] \"T2.N1.1\" \"T2.S2.1\" \n```\n:::\n:::\n\n\nWe now have the list of filenames for the forward and reverse reads, the list of sample names, and we know the sample name associated with each file.\n\n### Look at sequence quality profiles\n\nThe first step of working with our raw data is to look at the sequence quality profiles. These raw data FASTQ files were generated by sequencing a multiplexed library using the Illumina MiSeq sequencer. For this study, we used the Illumina V3 2x300nt sequencing chemistry, which sequences the first 300 nucleotides at the start (forward read) and end (reverse read) of each amplicon.\n\nThere is a quality score associated with each nucleotide known as the [Phred quality score](https://en.wikipedia.org/wiki/Phred_quality_score). This score indicates how confident we are in the identity of that nucleotide. Normally, the quality score should be above 30 (= 1 in 1000 chance of an incorrect base call) for much of the read, but it will begin to drop towards the end of the read. We want to identify where the quality begins to drop so we can trim out the low quality nucleotides.\n\nWe will visualize the forward and reverse read quality scores separately. Here, we begin by looking at the quality profile of forward reads for the first 9 samples.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Plot quality profile of forward reads\nplotQualityProfile(fnFs[1:9])\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: The `` argument of `guides()` cannot be `FALSE`. Use \"none\" instead as\nof ggplot2 3.3.4.\nℹ The deprecated feature was likely used in the dada2 package.\n Please report the issue at <\u001b]8;;https://github.com/benjjneb/dada2/issues\u0007https://github.com/benjjneb/dada2/issues\u001b]8;;\u0007>.\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Removed 937 rows containing missing values (`geom_tile()`).\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-7-1.png){width=672}\n:::\n:::\n\n\nWe can see that the quality is quite good, but around 200-220 nucleotides it begins to decrease. It's not a sharp drop (a \"crash\") but the median quality starts to decline around 200 nucleotides and dips below a median quality of around 20 by around 230-240 nucleotides.\n\nNow let's look at the reverse reads.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Plot quality profile of reverse reads\nplotQualityProfile(fnRs[1:9])\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Removed 188 rows containing missing values (`geom_tile()`).\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-8-1.png){width=672}\n:::\n:::\n\n\nThese are similar to the forward reads, but the quality stays high for longer. This is common (the R1 read tends to be of high quality than the R2). Here, the quality stays quite high almost all the way to the end of the read, although the median quality does begin to decline starting around 230-240 nucleotides.\n\n### Trimming and quality control\n\nNow that we have visualized the quality of the reads, we need to make some decisions about where to trim the reads.\n\nIt is very important to trim barcode and primer nucleotides from the reads as they can cause problems when identifying ASVs. Our reads contain the 12 nucleotide barcode sequence at the beginning of each read that will need to be trimmed. In our case, we used the primers 799F and 1115R to amplify the bacterial 16S rRNA gene. These primers are 18 nucleotides (799F) and 16 nucleotides (1115R) in length, and are found after the barcode sequence at the beginning of each read. Sometimes FASTQ files will be supplied with the barcodes and/or primers already removed from the sequences; you will need to check or ask the sequencing centre about this for your own data. In our case we will need to remove the forward barcode + primer nucleotides (30 nucleotides) and the reverse barcode + primer nucleotides (28 nucleotides) from the beginning of each read.\n\nWe also need to trim the reads to remove low-quality nucleotides from the end of the reads. As we saw above, the quality of both the forward and reverse reads are quite good, but forward read quality did begin to decline around 200 nucleotides and reverse read quality declines slightly beginning around 230-240 nucleotides.\n\nAn important consideration when deciding where to trim our reads is that we want to be able to merge together the forward and reverse reads later in the pipeline. To do this, we need the reads to overlap with one another. To figure out whether our forward and reverse reads will overlap after trimming, we need to know the length of the amplicon that we sequenced. In our case, the 799F-1115R primers create an amplicon that is 316 nucleotides in length. Thus, we need to make sure that the total length of the forward and reverse reads that remains after trimming is longer than 316 nucleotides in order to have some overlapping nucleotides that can be used to merge the reads together. If the forward and reverse reads cannot be merged by overlap after trimming, it will not be possible to create a merged read that covers the full length of the amplicon. This is not a fatal problem but it can reduce accuracy of ASV binning (since we are missing data for a portion of the amplicon) and it makes taxonomic annotation more challenging. The overlapping portion of the reads also serves to increase confidence in the quality of ASVs, since for the overlapping portion we have two estimates of the nucleotide at each position which serves to reduce error and increase confidence in the base call at that position.\n\nThis is an important consideration when choosing what primers to use and what sequencing technology to use. You should aim to ensure that the total length of your forward and reverse reads is enough to cover the length of the region targeted by your primers, with as much overlap as possible to make merging the reads together easier. In our case, with an amplicon length of 312 nucleotides, and forward/reverse reads of around 300 nucleotides each, we will be sure to have lots of overlap, so we don't have to worry too much if we need to trim our reads.\n\nNow that we know the number of nucleotides to trim from the start and end of each sequence, we can now filter and trim our reads. Here, we will trim out barcode and primer nucleotides from the start of reads and low-quality nucleotides from the end of reads. We also filter out reads with low quality after trimming, as well as reads that contain N (unknown) nucleotides and reads that map to the phiX genome (a viral genome that is often added to sequencing runs to increase library quality).\n\nThis will create filtered versions of the FASTQ files in a new folder named dada2-filtered.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# set filtered file folder paths and filenames\nfilt_path <- file.path(getwd(), \"dada2-filtered\")\nfiltFs <- file.path(filt_path, paste0(sample.names, \"_F_filt.fastq.gz\"))\nfiltRs <- file.path(filt_path, paste0(sample.names, \"_R_filt.fastq.gz\"))\n\n# Filter and trim reads\n# multithread argument = number of cores to use (set TRUE to use all)\n# note need to trim out primers at the start of the reads\n# and trim the end of the reads when the quality crashes\nout <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, trimLeft = c(30,28),\n truncLen=c(200,230), maxN=0, maxEE=2,\n truncQ=2, rm.phix=TRUE, compress=TRUE, \n multithread=TRUE, verbose=TRUE)\n```\n:::\n\n\n### Inferring ASVs\n\nNow that we have our trimmed quality-control sequences, we can infer the identity and abundance of ASVs in our sequence files.\n\nThe first step of this process is to learn the error rates of our sequences. DADA2 uses information about error rates to infer the identity of ASVs in the samples.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Learn error rates\nerrF <- learnErrors(filtFs, multithread=TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n103149200 total bases in 606760 reads from 32 samples will be used for learning the error rates.\n```\n:::\n\n```{.r .cell-code}\nerrR <- learnErrors(filtRs, multithread=TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n101062620 total bases in 500310 reads from 22 samples will be used for learning the error rates.\n```\n:::\n:::\n\n\nOnce we have learned the error rates, we do some bookkeeping to reduce the time required to infer ASVs by removing replicate sequences from each sample. A given FASTQ file might contain large numbers of identical sequences. We don't need to analyse each of these sequences separately; we'll dereplicate the file by removing duplicates of identical sequences. This keeps track of the number of duplicates so that at the end of our process we know the actual abundance of each of these identical sequences.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Dereplicate the filtered fastq files\nderepFs <- derepFastq(filtFs)\nderepRs <- derepFastq(filtRs)\n# Name the derep-class objects by the sample names\nnames(derepFs) <- sample.names\nnames(derepRs) <- sample.names\n```\n:::\n\n\nNow we are ready to use the [DADA2 algorithm](http://dx.doi.org/10.1038/nmeth.3869) to identify ASVs in our samples. DADA2 uses a model of the error rate in sequences to identify the unique amplicon sequence variants (ASVs) that are present in our samples.\n\nWhen carrying out ASV binning and chimera identification, we have the option to pool together samples (the pool argument). There are different strategies for pooling samples together. It is quicker to bin ASVs on a per-sample basis, but this might miss extremely rare ASVs that occur with low abundance in multiple samples. By pooling samples together, we can increase our ability to accurately identify these rare ASVs. The downside is that pooling samples together takes more time since we not have to analyse a larger number of sequences at the same time. The \"pseudo-pooling\" option strikes a balance between these options and is the approach we'll use today. There is an in-depth explanation of the different pooling options at the [DADA2 website](https://benjjneb.github.io/dada2/pseudo.html).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Infer the sequence variants in each sample\ndadaFs <- dada(derepFs, err=errF, pool=\"pseudo\", multithread=TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSample 1 - 43893 reads in 4133 unique sequences.\nSample 2 - 1535 reads in 279 unique sequences.\nSample 3 - 342 reads in 80 unique sequences.\nSample 4 - 36815 reads in 4992 unique sequences.\nSample 5 - 6901 reads in 796 unique sequences.\nSample 6 - 69130 reads in 6170 unique sequences.\nSample 7 - 13883 reads in 1640 unique sequences.\nSample 8 - 35769 reads in 2874 unique sequences.\nSample 9 - 35178 reads in 3504 unique sequences.\nSample 10 - 49487 reads in 5858 unique sequences.\nSample 11 - 15594 reads in 1607 unique sequences.\nSample 12 - 28849 reads in 2366 unique sequences.\nSample 13 - 529 reads in 110 unique sequences.\nSample 14 - 29475 reads in 2956 unique sequences.\nSample 15 - 22328 reads in 1714 unique sequences.\nSample 16 - 17615 reads in 2171 unique sequences.\nSample 17 - 24895 reads in 3116 unique sequences.\nSample 18 - 31171 reads in 2974 unique sequences.\nSample 19 - 11127 reads in 1205 unique sequences.\nSample 20 - 20 reads in 16 unique sequences.\nSample 21 - 255 reads in 57 unique sequences.\nSample 22 - 25519 reads in 2519 unique sequences.\nSample 23 - 7057 reads in 645 unique sequences.\nSample 24 - 29 reads in 11 unique sequences.\nSample 25 - 86 reads in 23 unique sequences.\nSample 26 - 11570 reads in 1413 unique sequences.\nSample 27 - 21806 reads in 2227 unique sequences.\nSample 28 - 8836 reads in 1092 unique sequences.\nSample 29 - 500 reads in 108 unique sequences.\nSample 30 - 19733 reads in 2783 unique sequences.\nSample 31 - 347 reads in 94 unique sequences.\nSample 32 - 36486 reads in 5477 unique sequences.\nSample 33 - 22106 reads in 2394 unique sequences.\nSample 34 - 24618 reads in 2881 unique sequences.\nSample 35 - 608 reads in 124 unique sequences.\nSample 36 - 25074 reads in 3998 unique sequences.\nSample 37 - 22197 reads in 2188 unique sequences.\n\n selfConsist step 2\n```\n:::\n\n```{.r .cell-code}\ndadaRs <- dada(derepRs, err=errR, pool=\"pseudo\", multithread=TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSample 1 - 43893 reads in 3352 unique sequences.\nSample 2 - 1535 reads in 196 unique sequences.\nSample 3 - 342 reads in 71 unique sequences.\nSample 4 - 36815 reads in 4930 unique sequences.\nSample 5 - 6901 reads in 557 unique sequences.\nSample 6 - 69130 reads in 5237 unique sequences.\nSample 7 - 13883 reads in 1296 unique sequences.\nSample 8 - 35769 reads in 2357 unique sequences.\nSample 9 - 35178 reads in 2961 unique sequences.\nSample 10 - 49487 reads in 4856 unique sequences.\nSample 11 - 15594 reads in 1250 unique sequences.\nSample 12 - 28849 reads in 2007 unique sequences.\nSample 13 - 529 reads in 83 unique sequences.\nSample 14 - 29475 reads in 2315 unique sequences.\nSample 15 - 22328 reads in 1413 unique sequences.\nSample 16 - 17615 reads in 1728 unique sequences.\nSample 17 - 24895 reads in 2801 unique sequences.\nSample 18 - 31171 reads in 2593 unique sequences.\nSample 19 - 11127 reads in 1113 unique sequences.\nSample 20 - 20 reads in 16 unique sequences.\nSample 21 - 255 reads in 48 unique sequences.\nSample 22 - 25519 reads in 2316 unique sequences.\nSample 23 - 7057 reads in 571 unique sequences.\nSample 24 - 29 reads in 8 unique sequences.\nSample 25 - 86 reads in 18 unique sequences.\nSample 26 - 11570 reads in 1256 unique sequences.\nSample 27 - 21806 reads in 1916 unique sequences.\nSample 28 - 8836 reads in 1008 unique sequences.\nSample 29 - 500 reads in 96 unique sequences.\nSample 30 - 19733 reads in 2245 unique sequences.\nSample 31 - 347 reads in 87 unique sequences.\nSample 32 - 36486 reads in 5014 unique sequences.\nSample 33 - 22106 reads in 2037 unique sequences.\nSample 34 - 24618 reads in 2683 unique sequences.\nSample 35 - 608 reads in 83 unique sequences.\nSample 36 - 25074 reads in 3689 unique sequences.\nSample 37 - 22197 reads in 1876 unique sequences.\n\n selfConsist step 2\n```\n:::\n:::\n\n\n### Merge denoised forward and reverse reads\n\nNow that we have identified ASVs from our sequences, we can merge together the forward and reverse reads into a single sequence that will cover the full length of our amplicon. This approach works by looking for matching nucleotides in the overlapping portion of the forward and reverse reads.\n\nAs noted above, if your forward and reverse reads do not overlap, they cannot be merged. It is still possible to merge them by concatenating together the forward and reverse reads, but this approach makes it more difficult to do taxonomic annotation.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Merge the denoised forward and reverse reads:\nmergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs)\n```\n:::\n\n\n### Construct sequence table\n\nWe have identified ASVs and merged the forward and reverse reads into a single ASV. We can now construct the sequence table, which is a matrix of ASV abundances in each sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# construct sequence table\nseqtab <- makeSequenceTable(mergers)\n# look at dimension of sequence table (# samples, # ASVs)\ndim(seqtab)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 37 2540\n```\n:::\n\n```{.r .cell-code}\n# look at length of ASVs\ntable(nchar(getSequences(seqtab)))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n295 296 297 298 299 300 301 302 303 304 305 306 307 308 312 318 \n 12 113 73 99 82 458 264 697 484 109 140 1 5 1 1 1 \n```\n:::\n:::\n\n\n### Remove chimeras\n\nThe final step of processing the sequence files involves identifying and removing chimeric sequences. These are sequences that contain portions of two distinct organisms. Chimeric sequences can arise at different stages in the process of sequencing samples including during PCR and during sequencing.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# remove chimeras\nseqtab.nochim <- removeBimeraDenovo(seqtab, method=\"consensus\", multithread=TRUE, verbose=TRUE)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIdentified 1425 bimeras out of 2540 input sequences.\n```\n:::\n\n```{.r .cell-code}\n# look at dimension of sequence table (# samples, # ASVs) after chimera removal\ndim(seqtab.nochim)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 37 1115\n```\n:::\n\n```{.r .cell-code}\n# what % of reads remain after chimera removal?\nsum(seqtab.nochim)/sum(seqtab)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.9836811\n```\n:::\n:::\n\n\n### Tracking read fate through the pipeline\n\nNow we have completed the processing of our files.\nWe can track how many reads per sample remain after the different steps of the process.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# summary - track reads through the pipeline\ngetN <- function(x) sum(getUniques(x))\ntrack <- cbind(out, sapply(dadaFs, getN), sapply(mergers, getN), rowSums(seqtab), rowSums(seqtab.nochim))\ncolnames(track) <- c(\"input\", \"filtered\", \"denoised\", \"merged\", \"tabled\", \"nonchim\")\nrownames(track) <- sample.names\nhead(track)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n input filtered denoised merged tabled nonchim\nAUC.C1.2X1 45852 43893 43836 43297 43297 43268\nAUC.C1.3 1605 1535 1535 1532 1532 1522\nAUC.N1.1 362 342 332 324 324 324\nAUC.N1.3 38442 36815 36731 35069 35069 33707\nAUC.N2.1.X1 7193 6901 6899 6857 6857 6854\nAUC.N2.1X2 72307 69130 69116 68251 68251 68226\n```\n:::\n:::\n\n\n### Taxonomic annotation\n\nNow we will annotate the taxonomic identity of each ASV by comparing its sequence with a reference database. Our data are bacterial 16S rRNA sequences so we'll use the SILVA database for this taxonomic annotation. A version of the SILVA database formatted for use with DADA2 is available at the [DADA2 website](https://benjjneb.github.io/dada2/training.html), along with other databases for different barcode genes.\n\n#### Higher-level taxonomic annotation\n\nFor taxonomic annotation at ranks from domains to genera, DADA2 uses the [RDP Naive Bayesian Classifier algorithm](https://journals.asm.org/doi/10.1128/AEM.00062-07). This algorithm compares each ASV sequence to the reference database. If the bootstrap confidence in the taxonomic annotation at each rank is 50% or greater, we assign that annotation to the ASV at that rank. If an ASV cannot be confidently identified at a given rank, there will be a NA value in the taxonomy table.\n\nNote that this step can be time consuming, especially if you have a large number of ASVs to identify. Running this annotation step on a computer with numerous cores/threads will speed up the process.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# identify taxonomy\ntaxa <- assignTaxonomy(seqtab.nochim, \"SILVA138.1/silva_nr99_v138.1_train_set.fa.gz\", multithread=TRUE, tryRC=TRUE)\n```\n:::\n\n\n#### Species-level taxonomic annotation\n\nWe use the RDP Naive Bayesian Classifier algorithm for taxonomic annotations at ranks from domains to genera. This allows for annotations even if there is not an exact match between ASV sequences and sequences in the reference database. At the species level, we need a different strategy, since we do not want to identify an ASV as belonging to a species unless its sequence matches that species exactly. Note that this approach means that we cannot carry out species-level taxonomic annotation if we concatenated our sequences rather than merging them together into a single sequence.\n\nThis step can also be somewhat time consuming depending on the number of ASVs to be annotated.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# exact species matching (won't work if concatenating sequences)\ntaxa.sp <- addSpecies(taxa, \"SILVA138.1/silva_species_assignment_v138.1.fa.gz\", allowMultiple = TRUE, tryRC = TRUE)\n```\n:::\n\n\nNow that we have the taxonomic annotations, we can inspect them. We create a special version of the taxonomy table with the ASV names removed (the name of each ASV is its full sequence, so the names are very long).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# inspect the taxonomic assignments\ntaxa.print <- taxa.sp # Removing sequence rownames for display only\nrownames(taxa.print) <- NULL\nhead(taxa.print, n=20)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \n [1,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n [2,] \"Bacteria\" \"Cyanobacteria\" \"Cyanobacteriia\" \"Chloroplast\" \n [3,] \"Bacteria\" \"Bacteroidota\" \"Bacteroidia\" \"Cytophagales\" \n [4,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n [5,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n [6,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n [7,] \"Bacteria\" \"Actinobacteriota\" \"Actinobacteria\" \"Micrococcales\" \n [8,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n [9,] \"Bacteria\" \"Actinobacteriota\" \"Actinobacteria\" \"Micrococcales\" \n[10,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n[11,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n[12,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n[13,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n[14,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n[15,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n[16,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n[17,] \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Burkholderiales\" \n[18,] \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Burkholderiales\" \n[19,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n[20,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n Family Genus \n [1,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n [2,] NA NA \n [3,] \"Hymenobacteraceae\" \"Hymenobacter\" \n [4,] \"Sphingomonadaceae\" \"Sphingomonas\" \n [5,] \"Sphingomonadaceae\" \"Sphingomonas\" \n [6,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n [7,] \"Microbacteriaceae\" \"Amnibacterium\" \n [8,] \"Sphingomonadaceae\" \"Sphingomonas\" \n [9,] \"Microbacteriaceae\" \"Frondihabitans\" \n[10,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n[11,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n[12,] \"Beijerinckiaceae\" \"1174-901-12\" \n[13,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n[14,] \"Sphingomonadaceae\" \"Sphingomonas\" \n[15,] \"Sphingomonadaceae\" \"Sphingomonas\" \n[16,] \"Sphingomonadaceae\" \"Sphingomonas\" \n[17,] \"Oxalobacteraceae\" \"Massilia\" \n[18,] \"Oxalobacteraceae\" \"Massilia\" \n[19,] \"Sphingomonadaceae\" \"Sphingomonas\" \n[20,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n Species \n [1,] NA \n [2,] NA \n [3,] \"arcticus/bucti/perfusus\" \n [4,] \"aerolata/faeni\" \n [5,] NA \n [6,] NA \n [7,] NA \n [8,] \"ginsenosidivorax\" \n [9,] \"australicus/cladoniiphilus/peucedani/sucicola\"\n[10,] NA \n[11,] NA \n[12,] NA \n[13,] NA \n[14,] \"faeni\" \n[15,] \"echinoides/glacialis/mucosissima/rhizogenes\" \n[16,] NA \n[17,] NA \n[18,] \"aurea/oculi\" \n[19,] NA \n[20,] NA \n```\n:::\n:::\n\n\n### Final steps - clean up and save data objects and workspace\n\nWe have now completed our analysis of the sequence files. We have created an ASV table seqtab.nochim that contains the error-corrected non-chimeric ASV sequences and their abundances in each sample. For each ASV we also have the taxonomic annotations of the ASV in the object taxa.sp. We will save these data objects to the file system, along with a copy of the entire workspace containing all the output of the analyses so far. We will use these files to continue our analyses in the next part of the workshop.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n## Save sequence table and taxonomic annotations to individual files\nsaveRDS(seqtab.nochim, \"seqtab.nochim.rds\")\nsaveRDS(taxa.sp, \"taxa.sp.rds\")\n## Save entire R workspace to file\nsave.image(\"Microbiome-sequence-analysis-workspace.RData\")\n```\n:::\n\n\n\n# Data normalization and ecological analysis of microbiome data\n\nIn this workshop, we will use the output of a DADA2 analysis of raw sequence data to explore the importance of different factors that influence the diversity and composition of microbial communities on leaves.\n\n## About the data set\n\nIn this workshop, we will be analyzing the bacterial communities found on leaves of sugar maple seedlings of different provenances planted at sites across eastern North America.\n\nThese data are taken from the article:\n\nDe Bellis, Laforest-Lapointe, Solarik, Gravel, and Kembel. 2022. Regional variation drives differences in microbial communities associated with sugar maple across a latitudinal range. Ecology (published online ahead of print). [doi:10.1002/ecy.3727](https://doi.org/10.1002/ecy.3727)\n\nFor this workshop, we will work with a subset of samples from six of the nine sites sampled for the article. These samples are located in three different biomes (temperate, mixed, and boreal forests). At each site, several sugar maple seedlings were planted and harvested, and we collected bacterial DNA from the leaves. Each sample thus represents the bacterial communities on the leaves of a single sugar maple seedling. For each seedling, we have associated metadata on the provenance of the seed, the site where the seed was planted, and the biome/stand type where the seed was planted.\n\n## Install and load required packages and data\n\nFor this part of the workshop we will need to install several R packages. The commands below should work to install these packages, you should make sure you have the latest version of R installed (version 4.2.0 at the time of writing this document).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install packages from CRAN\ninstall.packages(pkgs = c(\"Rcpp\", \"RcppArmadillo\", \"picante\", \"ggpubr\", \"pheatmap\"), dependencies = TRUE)\n# install packages from Bioconductor\nif (!require(\"BiocManager\", quietly = TRUE))\n install.packages(\"BiocManager\")\nBiocManager::install(\"dada2\", version = \"3.15\", update = FALSE)\n# if the dada2 install returns a warning for BiocParallel, install from binary using this command:\n# BiocManager::install(\"BiocParallel\", version = \"3.15\", type=\"binary\", update = FALSE)\nBiocManager::install(\"DESeq2\")\nBiocManager::install(\"phyloseq\")\nBiocManager::install(\"ANCOMBC\")\n```\n:::\n\n\nTo begin, we will load the required packages.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n### load packages\nlibrary(picante)\nlibrary(vegan)\nlibrary(ggplot2)\nlibrary(reshape2)\nlibrary(ggpubr)\nlibrary(DESeq2)\nlibrary(pheatmap)\nlibrary(ANCOMBC)\nlibrary(phyloseq)\n```\n:::\n\n\n### Load DADA2 results \n\nWe will continue our analyses picking up where we left off at the end of day 1 of the workshop. We used the DADA2 package to identify ASVs and their abundances in samples, and to annotate ASVs taxonomically by comparing them to the SILVA rRNA database. We saved these data objects as files. You will need to place a copy of the files \"seqtab.nochim.rds\" and \"taxa.sp.rds\" in the working directory, and then we load them into our R workspace.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load sequence table (nonchimeric ASV abundances in samples)\nseqtab.nochim <- readRDS(\"seqtab.nochim.rds\")\n# load taxonomic annotations (taxonomic ID of each ASV)\ntaxa.sp <- readRDS(\"taxa.sp.rds\")\n```\n:::\n\n\n### Load metadata \n\nThe metadata file we will use for this workshop is available for download at the following URL: [https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077](https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077).\n\nYou will need to download the file \"metadata-Qleaf_BACT.csv\" and place a copy of this file in the working directory. Then we can load the metadata.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load metadata\nmetadata <- read.csv(\"metadata-Qleaf_BACT.csv\", row.names = 1)\n# inspect metadata\nhead(metadata)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Description SampleType StandType TransplantedSite\nASH.S2.2 ASH.S2.2 Leaf.Bacteria Boreal Ashuapmushuan\nASH.N1.1.X1 ASH.N1.1.X1 Leaf.Bacteria Boreal Ashuapmushuan\nASH.N1.1.X3 ASH.N1.1.X3 Leaf.Bacteria Boreal Ashuapmushuan\nASH.N1.1X3 ASH.N1.1X3 Leaf.Bacteria Boreal Ashuapmushuan\nASH.C1.1 ASH.C1.1 Leaf.Bacteria Boreal Ashuapmushuan\nASH.C1.2 ASH.C1.2 Leaf.Bacteria Boreal Ashuapmushuan\n SeedSourceRegion SeedSourceOrigin TransplantedSiteLat\nASH.S2.2 South Kentucky 48.81\nASH.N1.1.X1 North Montmagny 48.81\nASH.N1.1.X3 North Montmagny 48.81\nASH.N1.1X3 North Montmagny 48.81\nASH.C1.1 Central Pennsylvania 48.81\nASH.C1.2 Central Pennsylvania 48.81\n TransplantedSiteLon SeedSourceOriginLat SeedSourceOriginLon\nASH.S2.2 -72.77 38.26 -84.95\nASH.N1.1.X1 -72.77 46.95 -70.46\nASH.N1.1.X3 -72.77 46.95 -70.46\nASH.N1.1X3 -72.77 46.95 -70.46\nASH.C1.1 -72.77 41.13 -77.62\nASH.C1.2 -72.77 41.13 -77.62\n```\n:::\n:::\n\n\nThe metadata contains information about each sample, including the following columns:\n\n* Description: the name of the sample (these match the names used on the sequence files)\n* SampleType: the samples we are working with are all leaf bacteria (we collected other types of data in the original study, but here we focus just on leaf bacteria)\n* StandType: the stand/biome type of the site where the seedling were planted. Either boreal, mixed, or temperate forest.\n* TransplantedSite: the site where the seedling was planted\n* SeedSourceRegion: the region from which the seed was collected\n* SeedSourceOrigin: the site from which the seed was collected\n* TransplantedSiteLat and TransplantedSiteLon: the latitude and longitude of the site where the seedling was transplanted\n\n## Cleaning and summarizing DADA2 results \n\nOur first steps will be to do some cleaning up of the DADA2 results to make it easier to work with them. We create community and taxonomy objects that we will work with.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# community object from nonchimeric ASV sequence table\ncomm <- seqtab.nochim\n# taxonomy object - make sure order of ASVs match between community and taxonomy\ntaxo <- taxa.sp[colnames(comm),]\n# keep metadata only for community samples\nmetadata <- metadata[rownames(comm),]\n```\n:::\n\n\nWe will also rename the ASVs in our community and taxonomy data objects. By default, ASVs are named by their full sequence. This makes it hard to look at these objects since the names are too long to display easily. We will replace the names of ASVs by \"ASV_XXX\" where XXX is a number from 1 to the number of observed ASVs.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# ASV names are their full sequences by default\n# This makes it very hard to look at them (the names are too long)\n# Store ASV sequence information and rename ASVs as \"ASV_XXX\"\nASV.sequence.info <- data.frame(ASV.name=paste0('ASV_',1:dim(comm)[2]),\n ASV.sequence=colnames(comm))\ncolnames(comm) <- ASV.sequence.info$ASV.name\nrownames(taxo) <- ASV.sequence.info$ASV.name\n```\n:::\n\n\n### Exploring community data\n\nNow we can begin to look at our data in more depth. \n\n\n::: {.cell}\n\n```{.r .cell-code}\n# community - number of samples (rows) and ASVs (columns)\ndim(comm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 37 1115\n```\n:::\n:::\n\n\nWe have 37 samples and 1115 ASVs. If we look at our data objects, we can see the type of data in each of the different objects.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# look at community data object\nhead(comm)[,1:6]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n ASV_1 ASV_2 ASV_3 ASV_4 ASV_5 ASV_6\nAUC.C1.2X1 10335 158 3993 4092 584 3225\nAUC.C1.3 123 98 15 0 3 3\nAUC.N1.1 84 17 16 5 0 3\nAUC.N1.3 4738 113 628 3978 0 329\nAUC.N2.1.X1 1871 1853 1431 20 58 2\nAUC.N2.1X2 19648 4200 6465 191 7221 2054\n```\n:::\n\n```{.r .cell-code}\n# look at taxonomy object\nhead(taxo)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \nASV_1 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \nASV_2 \"Bacteria\" \"Cyanobacteria\" \"Cyanobacteriia\" \"Chloroplast\" \nASV_3 \"Bacteria\" \"Bacteroidota\" \"Bacteroidia\" \"Cytophagales\" \nASV_4 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\nASV_5 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\nASV_6 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n Family Genus \nASV_1 \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\nASV_2 NA NA \nASV_3 \"Hymenobacteraceae\" \"Hymenobacter\" \nASV_4 \"Sphingomonadaceae\" \"Sphingomonas\" \nASV_5 \"Sphingomonadaceae\" \"Sphingomonas\" \nASV_6 \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n Species \nASV_1 NA \nASV_2 NA \nASV_3 \"arcticus/bucti/perfusus\"\nASV_4 \"aerolata/faeni\" \nASV_5 NA \nASV_6 NA \n```\n:::\n\n```{.r .cell-code}\n# look at metadata object\nhead(metadata)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Description SampleType StandType TransplantedSite\nAUC.C1.2X1 AUC.C1.2X1 Leaf.Bacteria Mixed Auclair\nAUC.C1.3 AUC.C1.3 Leaf.Bacteria Mixed Auclair\nAUC.N1.1 AUC.N1.1 Leaf.Bacteria Mixed Auclair\nAUC.N1.3 AUC.N1.3 Leaf.Bacteria Mixed Auclair\nAUC.N2.1.X1 AUC.N2.1.X1 Leaf.Bacteria Mixed Auclair\nAUC.N2.1X2 AUC.N2.1X2 Leaf.Bacteria Mixed Auclair\n SeedSourceRegion SeedSourceOrigin TransplantedSiteLat\nAUC.C1.2X1 Central Pennsylvania 47.75\nAUC.C1.3 Central Pennsylvania 47.75\nAUC.N1.1 North Montmagny 47.75\nAUC.N1.3 North Montmagny 47.75\nAUC.N2.1.X1 North Rivere-du-Loup 47.75\nAUC.N2.1X2 North Rivere-du-Loup 47.75\n TransplantedSiteLon SeedSourceOriginLat SeedSourceOriginLon\nAUC.C1.2X1 -68.08 41.13 -77.62\nAUC.C1.3 -68.08 41.13 -77.62\nAUC.N1.1 -68.08 46.95 -70.46\nAUC.N1.3 -68.08 46.95 -70.46\nAUC.N2.1.X1 -68.08 47.73 -69.48\nAUC.N2.1X2 -68.08 47.73 -69.48\n```\n:::\n:::\n\n\n### Subset community to remove host DNA\n\nBefore proceeding we need to remove host DNA and other contaminants and low-quality sequences. We should do this before rarefaction and subsetting samples since it could change the number of sequences per sample if there is a lot of non-target DNA. We will carry this step out first so that subsequent analyses don't include these non-bacterial ASVs in any of the analyses.\n\nA reminder that primer choice and the habitat you are studying will have a big effect on the amount of non-target DNA that is in your samples. Many commonly used primers (for example, the widely used Earth Microbiome Project 16S rRNA primers 515F–806R which target the V4 region of the 16S gene) will amplify not only free living bacteria, but also DNA from host cells including chloroplasts and mitochondria. If you are working with host-associated microbiomes you may want to consider using a different primer that will not amplify host DNA. For example, when quantifying plant-associated microbiomes we commonly use the 16S primer 799F-1115R which targets the V5 region of the 16S gene and does not amplify chloroplasts or mitochondria.\n\nBecause we used the 799F-1115R primers for this study, we do not expect to find much host DNA, but we should check anyways, since a few host DNA sequences might have been amplified anyways. This is a very important step of the data analysis process since host DNA is not part of the microbial community and should not be included in data analyses. Otherwise, the amount of host DNA in a sample will lead to changes in the abundance of ASVs that are not actually part of the bacterial community being targeted.\n\nWhen using a primer that targets bacteria, host DNA and DNA of non-target organisms in the samples will typically show up ASVs annotated as belonging to a non-Bacteria domain (Archaea or Eukaryota), or the taxonomic order is \"Chloroplast\", or the taxonomic family is \"Mitochondria\".\n\nFirst we check whether any of our sequence are classified into a domain other than the bacteria.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# How many ASVs are classified to different domains?\ntable(taxo[,\"Kingdom\"])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nBacteria \n 1115 \n```\n:::\n:::\n\n\nAll of the ASVs are classified as belonging to the domain Bacteria. Now let's check for chloroplasts and mitochondria.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# How many ASVs are classified as Chloroplasts?\ntable(taxo[,\"Order\"])[\"Chloroplast\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nChloroplast \n 12 \n```\n:::\n\n```{.r .cell-code}\n# How many ASVs are classified as Mitochondria?\ntable(taxo[,\"Family\"])[\"Mitochondria\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMitochondria \n 2 \n```\n:::\n:::\n\n\nThere are only a few ASVs classified as chloroplasts and mitochondria. This is expected since we used a primer that should exclude this host DNA. We will remove these ASVs before continuing our analyses.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Remove chloroplast and mitochondria ASVs from taxonomy table\ntaxo <- subset(taxo, taxo[,\"Order\"]!=\"Chloroplast\" & taxo[,\"Family\"]!=\"Mitochondria\")\n# Remove these ASVs from the community matrix as well\ncomm <- comm[,rownames(taxo)]\n```\n:::\n\n\nIf you find a large number of ASVs classified as non-Bacteria, or as chloroplasts or mitochondria, you will need to remove them from your data set prior to further analysis. Sometimes this can mean that many of your samples will contain few sequences after removing the host DNA and non-bacterial ASVs. If this is the case, you can consider using a primer that will not amplify host DNA, or sequencing your samples more deeply so that enough bacterial DNA will remain after removing the host DNA. However, this latter approach will waste a lot of your sequences, and in some cases if your samples contain mostly host DNA it will be difficult to obtain enough bacterial sequences to carry out ecological analyses.\n\n### Summary statistics\n\nTo begin with, we can calculate summary statistics for our community and taxonomy data. We mentioned earlier that the number of sequences per sample (library size) is normalized, meaning we aimed to sequence approximately the same number of reads per sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# number of reads per sample\nrowSums(comm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n AUC.C1.2X1 AUC.C1.3 AUC.N1.1 AUC.N1.3 AUC.N2.1.X1 AUC.N2.1X2 \n 43110 1305 307 33424 4966 63971 \n AUC.N2.2 AUC.S1.1.X2 AUC.S1X1 AUC.S2.2 BC.C1.2 BC.C2.1X1 \n 13344 19407 33599 45548 8670 25333 \n BC.C2.3X2 BC.C2.3X2b BC.N1.3X2 BC.N1 BC.N2.1.X3 BC.N2.1X1 \n 271 24140 7507 15009 22164 20475 \n BC.N2.1X2 PAR.C1.1 PAR.C1.2 PAR.C2.3 PAR.N1.3 QLbactNeg19 \n 10486 13 161 23407 6927 27 \nQLbactNeg20 S.M.C1.3X2 S.M.C2.3 S.M.C2.3X2 S.M.S1.1X1 SF.C1.3 \n 84 10137 20858 8403 485 19081 \n SF.C2.2 SF.N2.3 SF.S1.3 T2.C1.1 T2.C2.3 T2.N1.1 \n 273 31314 19664 23534 602 20712 \n T2.S2.1 \n 21663 \n```\n:::\n\n```{.r .cell-code}\n# visualize log10 number of reads per sample\nhist(log10(rowSums(comm)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-32-1.png){width=672}\n:::\n:::\n\n\nWe can see that most samples have at least 4000-10000 sequences/sample. But there are some samples with fewer reads. This includes both the negative control samples as well as some of the 'real' samples. We will need to remove samples with too few reads - we'll return to this shortly.\n\nWe can also look at the number of sequences per ASV.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# log10 of number of reads per ASV\nhist(log10(colSums(comm)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-33-1.png){width=672}\n:::\n:::\n\n\nWe can see that ASV abundances follow a roughly lognormal distribution, meaning that there are a few highly abundant ASVs, but most ASVs are rare. Most ASVs are represented by fewer than 100 sequences (10^2).\n\n### Remove negative controls and samples with low-quality data\n\nOne of the first steps of analysing ASV data sets is to remove control samples, as well as samples with too few sequences. We will also need to normalize our data to take into account the fact that samples differ in the number of sequences they contain.\n\n#### Rarefaction curves\n\nWe will visualize the relationship between the number of sequences in each sample (\"sample size\" in the figures below) versus the number of ASVs they contain (\"species\" in the figures below). These rarefaction curves make it clear why we need to take the number of sequences per sample into account when we analyse sample diversity.\n\nFirst we plot a rarefaction curve for all samples. Each curve shows how the number of ASVs per sample changes with number of sequences in a particular sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nrarecurve(comm, step=200, label=TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-34-1.png){width=672}\n:::\n:::\n\n\nFor these rarefaction curves, the key thing to look for is where ASV richness (number of ASVs per sample) reaches a plateau relative to the number of reads per sample. It does look like the samples we can see have reached a plateau of ASV richness. But it's hard to see the curve for many of the samples because of the x-axis limits - a few samples with a lot of sequences make it hard to see the less diverse samples. Let's zoom in to look just at the range from 0 to 5000 sequences/sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nrarecurve(comm, step=200, label=TRUE, xlim=c(0,5000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-35-1.png){width=672}\n:::\n:::\n\n\nNow we can see that the vast majority of samples reach a plateau in their ASV richness by around 3000-5000 sequences/sample. There are a few samples with very low numbers of both sequences and ASVs. We will now look at the composition of the communities in these different samples.\n\n#### Visualize community composition\n\nAnother way to quickly visualize the composition of all of our samples is to do an ordination to visualize similarity in composition among samples. Here we will visualize a principal components analysis on Hellinger-transformed ASV abundance data. Normally we should normalize the data before doing any diversity analysis but here we just want a quick look at whether some samples have very different composition from the rest. We do a PCA analysis and then plot the ordination results, overlaying confidence ellipses around the samples from the different transplanted stand types/biomes.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# PCA on Hellinger-transformed community data\ncomm.pca <- prcomp(decostand(comm,\"hellinger\"))\n# plot ordination results\nordiplot(comm.pca, display=\"sites\", type=\"text\",cex=0.5)\nordiellipse(comm.pca, metadata$StandType, label=TRUE,cex=0.8)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-36-1.png){width=672}\n:::\n:::\n\n\nThere are two things to note in this ordination figure. First, we can see that along the first axis there is a separation between the negative control samples and a few other samples that cluster with the negative controls, versus all the other samples. Second, we can see that the composition of the communities seems to differ among stand type/biome along the second axis, varying from boreal to mixed to temperate forests. We'll return to this observation later, but for now the important thing is that we can see that there are some samples that are more similar to the negative control samples than they are to the other 'real' samples. Let's visualize the number of sequences per sample (library size) mapped onto these ordination axes.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Surface plot - plot number of sequences/sample (library size)\nordisurf(comm.pca, rowSums(comm), bubble=TRUE, cex=2,\n main=\"Library size (sequences/sample)\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-37-1.png){width=672}\n:::\n:::\n\n\nWe can see that the common characteristic of the samples that cluster on the right side of the ordination plot, next to the negative control samples, is that these samples contain very few sequences.\n\nThere are several reasons why some samples contain few sequences, but in general this is an indication that these samples contain data of low quality and should be excluded from further analysis. This can be caused by low microbial biomass in the original samples, with some problem with the extraction or amplification of microbial DNA in these samples, or simply by chance. Regardless, the fact that the composition of the microbial communities in these samples is more similar to the negative controls than to the other 'real' samples means we need to get rid of these samples.\n\nIf many of your samples contain few sequences, this could indicate some problem with the protocol being used for sample processing and sequencing, or the normalization step of library preparation. It could also indicate low microbial biomass. In the data we are analysing here, I suspect that the problem with these samples was low microbial biomass. The maple seedlings from which we extracted microbial DNA were sometimes small with only 1-2 tiny leaves, which doesn't contain enough bacterial cells to reliably extract and sequence their DNA. When microbial biomass in a sample is small, the potential importance of contaminant DNA increases. Regardless of the cause, we will have to exclude these samples.\n\nDeciding what number of sequences to use as a cutoff when getting rid of samples with a low number of sequences will depend on the nature of your data set and your biological questions. You should always aim to ensure that you have enough reads per sample to reach a plateau in the rarefaction curve. Beyond that, you may want set a cutoff for a minimum number of reads per sample that ensures that you keep enough samples to have sufficient replicates in your different treatments.\n\n#### Check negative controls\n\nWe sequenced negative controls in this study to ensure that our samples were not contaminated and that the sequences we obtained come from bacteria on leaves and not from some other step of the sample processing such as from the DNA extraction kits or during PCR. As we saw above, the inclusion of these negative control samples is useful because we can look at their composition to identify 'real' samples that might contain contaminants. As a final step, let's look at the negative control samples to see what ASVs they contain.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Abundance of ASVs in negative controls\ncomm['QLbactNeg19',][comm['QLbactNeg19',]>0]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n ASV_1 ASV_44 ASV_77 ASV_138 \n 1 11 11 4 \n```\n:::\n\n```{.r .cell-code}\ncomm['QLbactNeg20',][comm['QLbactNeg20',]>0]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n ASV_8 ASV_30 ASV_77 ASV_91 ASV_418 ASV_625 ASV_1002 \n 1 1 2 1 72 3 4 \n```\n:::\n:::\n\n\nOur negative controls look clean - they contain only a few sequences (fewer than 100) belonging to a small number of ASVs. This is the type of result we are looking for, and we will remove these negative controls shortly when we remove low quality samples with small numbers of sequences. We can also look at the taxonomic identity of the ASVs that are present in the negative controls.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Taxonomic identity of ASVs present in negative controls\ntaxo[names(comm['QLbactNeg19',][comm['QLbactNeg19',]>0]),]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \nASV_1 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \nASV_44 \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Enterobacterales\"\nASV_77 \"Bacteria\" \"Firmicutes\" \"Bacilli\" \"Lactobacillales\" \nASV_138 \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Enterobacterales\"\n Family Genus \nASV_1 \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\nASV_44 \"Shewanellaceae\" \"Shewanella\" \nASV_77 \"Streptococcaceae\" \"Streptococcus\" \nASV_138 \"Shewanellaceae\" \"Shewanella\" \n Species \nASV_1 NA \nASV_44 \"algae/haliotis\" \nASV_77 \"cristatus/gordonii/ictaluri/mitis/porcorum/sanguinis\"\nASV_138 NA \n```\n:::\n\n```{.r .cell-code}\ntaxo[names(comm['QLbactNeg20',][comm['QLbactNeg20',]>0]),]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \nASV_8 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\nASV_30 \"Bacteria\" \"Bacteroidota\" \"Bacteroidia\" \"Cytophagales\" \nASV_77 \"Bacteria\" \"Firmicutes\" \"Bacilli\" \"Lactobacillales\" \nASV_91 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Acetobacterales\" \nASV_418 \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Xanthomonadales\" \nASV_625 \"Bacteria\" \"Firmicutes\" \"Bacilli\" \"Lactobacillales\" \nASV_1002 \"Bacteria\" \"Firmicutes\" \"Bacilli\" \"Staphylococcales\"\n Family Genus \nASV_8 \"Sphingomonadaceae\" \"Sphingomonas\" \nASV_30 \"Hymenobacteraceae\" \"Hymenobacter\" \nASV_77 \"Streptococcaceae\" \"Streptococcus\" \nASV_91 \"Acetobacteraceae\" \"Roseomonas\" \nASV_418 \"Rhodanobacteraceae\" \"Fulvimonas\" \nASV_625 \"Streptococcaceae\" \"Streptococcus\" \nASV_1002 \"Staphylococcaceae\" \"Staphylococcus\"\n Species \nASV_8 \"ginsenosidivorax\" \nASV_30 NA \nASV_77 \"cristatus/gordonii/ictaluri/mitis/porcorum/sanguinis\" \nASV_91 NA \nASV_418 NA \nASV_625 \"anginosus/mitis/oralis/pneumoniae/pseudopneumoniae\" \nASV_1002 \"aureus/capitis/caprae/epidermidis/haemolyticus/saccharolyticus/saprophyticus/warneri\"\n```\n:::\n:::\n\n\n### Subset community to remove low sequence number samples\n\nNow that we have done some exploratory data analyses, we will take a subset of our communities remove the negative controls as well as samples with a low number of sequences. \n\nWhen we looked at the rarefaction curves, it looked like most samples reached a plateau in number of ASVs per sequence by around 3000-5000 sequences/sample. When we looked at the distribution of number of sequences per sample, we saw that most samples contained at least 4000-5000 sequences. The samples that had fewer than that number of sequences were the ones that clustered with the negative control samples to the right of the ordination figure. Thus, we will set a cutoff of 4000 sequences per sample as a minimum to include a sample in further analysis. This will remove both the negative control samples and the samples of questionable quality that contained very few sequences.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# what is the dimension of the full community data set\ndim(comm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 37 1027\n```\n:::\n\n```{.r .cell-code}\n# take subset of communities with at least 4000 sequences\ncomm.sub <- comm[rowSums(comm)>=4000,]\n# also take subset of ASVs present in the remaining samples\ncomm.sub <- comm.sub[,apply(comm.sub,2,sum)>0]\n# what is the dimension of the subset community data set?\ndim(comm.sub)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 27 1008\n```\n:::\n\n```{.r .cell-code}\n# subset metadata and taxonomy to match\nmetadata.sub <- metadata[rownames(comm.sub),]\ntaxo.sub <- taxo[colnames(comm.sub),]\n# descriptive stats for samples and ASVs\n# number of sequences per sample\nhist(rowSums(comm.sub))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-40-1.png){width=672}\n:::\n\n```{.r .cell-code}\n# log10 number of sequences per ASV\nhist(log10(colSums(comm.sub)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-40-2.png){width=672}\n:::\n:::\n\n\n#### PCA on subset data\n\nBefore we normalize the data, let's do the same PCA analysis on Hellinger-transformed ASV abundances, this time only for the samples that remain after getting rid of those with fewer than 5000 sequences/sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\ncomm.sub.pca <- prcomp(decostand(comm.sub,\"hellinger\"))\n# plot ordination results\nordiplot(comm.sub.pca, display=\"sites\", type=\"text\",cex=0.5)\nordiellipse(comm.sub.pca, metadata.sub$StandType, label=TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-41-1.png){width=672}\n:::\n:::\n\n\nThis looks much better, there are no longer negative controls or 'outlier' samples that are highly distinct compositionally from the other sampes. We can still clearly see the gradient in composition from boreal-mixed-temperate stand types, which is now falling along the first two axes of the ordination. As mentioned previously, we now need to normalize the data to account for the remaining variation in sequence depth per sample.\n\n## Data normalization for diversity analysis\n\nData normalization for the analysis of microbiome data is a subject of great debate in the scientific literature. Different normalization approaches have been suggested to control for the compositional nature of microbiome data, to maximize statistical power, to account for variation in sequencing depth among samples, and to meet the assumptions of different statistical analysis methods.\n\nI recommend rarefaction as an essential data normalization approach that is needed when analysing the ecological diversity based on amplicon sequencing data sets. Because samples differ in sequencing depth, and this sequencing depth variation is due to the way we prepare libraries for sequencing and not any biological attribute of samples, we need to control for this variation. Rarefaction involves randomly selecting the same number of sequences per sample so that we can compare diversity metrics among samples.\n\nThe simplest justification for rarefaction is that that most measures of diversity are sensitive to sampling intensity. For example, taxa richness increases as we increase the number of individuals we sample from a community. If we take the same community and sample 10 individuals from it, and then sample 1000 individuals, we will obviously find more species when we sample more individuals. This is the fundamental problem that rarefaction addresses - we want to separate variation in diversity caused by some biological process from variation in diversity that is due to variation in library size.\n\nSimulation and empirical studies have shown that rarefaction outperforms other normalization approaches when samples differ in sequencing depth (e.g. Weiss et al. 2017. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27. [https://doi.org/10.1186/s40168-017-0237-y](https://doi.org/10.1186/s40168-017-0237-y)).\n\nDr. Pat Schloss has an excellent [series of videos on rarefaction](https://www.youtube.com/playlist?list=PLmNrK_nkqBpJuhS93PYC-Xr5oqur7IIWf) as part of his [Riffomonas](https://riffomonas.org/) project where he demonstrates very clearly why rarefaction is necessary when calculating diversity from sequencing data sets.\n\n### Rarefaction\n\nTo rarefy our data, we will randomly select the same number of sequences per sample for all of our samples. Because we already excluded samples containing fewer than 4000 sequences, we know that we can rarefy the remaining samples to at least 4000 sequences. Let's look at the rarefaction curve for our subset of samples.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# What is the smallest number of sequences/sample for subset of samples?\nmin(rowSums(comm.sub))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 4966\n```\n:::\n\n```{.r .cell-code}\n# Rarefaction curve for subset of samples\nrarecurve(comm.sub, step=200, label=FALSE, xlim=c(0,8000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-42-1.png){width=672}\n:::\n:::\n\n\nWe can see that nearly all samples have reached a plateau of ASV richness by around 3000-4000 sequences/sample. The sample with the smallest number of sequences remaining contains 4966 sequences. We will randomly rarefy our data to this number of sequences. This way, we can feel confident that our samples contain enough sequences to adequately quantify the diversity of ASVs present in the sample even after rarefaction. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(0)\n# Randomly rarefy samples\ncomm_rarfy <- rrarefy(comm.sub, sample = min(rowSums(comm.sub)))\n# Remove any ASVs whose abundance is 0 after rarefaction\ncomm_rarfy <- comm_rarfy[,colSums(comm_rarfy)>1]\n# Match ASV taxonomy to rarefied community\ntaxo_rarfy <- taxo.sub[colnames(comm_rarfy),]\n```\n:::\n\n\n#### Check the effect of rarefaction\n\nLet's check to see what effect rarefaction had on the ASV richness of samples.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Rarefaction is not expected to have a major influence on the diversity (as rarefaction curves have reached the plateau).\nrichness_raw <- rowSums((comm.sub>0)*1)\nrichness_rarfy <- rowSums((comm_rarfy>0)*1)\nplot(richness_rarfy~richness_raw,xlab='number of ASVs in raw data',ylab='number of ASVs in rarefied data')\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-44-1.png){width=672}\n:::\n:::\n\n\nThis supports the idea that rarefaction is not expected to have a major influence on diversity, since we saw in the rarefaction curves that richness reaches a plateau below the threshold number of sequences that we used for rarefaction. However, now that we have normalized the number of reads per sample, any differences in diversity among samples are not due to potential differences in library size. We are ready to begin our diversity analyses. We will use the rarefied community data set for these analyses.\n\n## Community analysis\n\nBefore we dive into analysing the diversity of leaf bacterial communities on sugar maples, this is a good time to return to the biological questions we posed in the article from which the data are taken.\n\n### Biological questions\n\nIn the study for which these data were collected, we looked at different taxonomic groups (bacteria, fungi, mycorrhizal fungi) living on sugar maple leaves and roots. Here we will concentrate just on leaf bacteria.\n\nOur aim was to assess the relative influence of host genotype (seed provenance) and environment (transplanted site and region) in structuring the microbiome of sugar maple seedlings. When analyzing the data, let's keep focused on these biological questions to help guide our decisions about how to analyze the data. We can take different perspectives to respond to this question by looking at different aspects of diversity. And beyond specific tests of our biological hypotheses, it is also useful to carry out basic descriptive analysis of community structure in order to determine what organisms were living in our samples.\n\nIn the metadata, the variables StandType and TransplantedSite represent the region and site into which the seedlings were planted (environment), and the variables SeedSourceRegion and SeedSourceOrigin represent the region and site from which the seeds were collected (genotype).\n\n### Visualize taxonomic composition of communities\n\nA fundamental question we can address using microbiome data is simply 'who is there'? What are the abundant taxa in different samples?\n\n#### Phylum-level taxonomic composition of samples\n\nRemember that for each ASV, we have taxonomic annotations at different ranks. Here we'll look at the relative abundance of bacterial phyla in each sample. We can repeat these analyses at different taxonomic ranks, but as we go to finer ranks there will be more ASVs with missing data because we could not confidently determine their taxonomic annotation, so there will be more unidentified taxa. Nearly all ASVs have an annotation at the phylum level. We first manipulate the ASV data to create a new data object of phylum abundances, and then we can visualize those abundances.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# community data aggregation at a taxonomic level. e.g. phylum \n# take the sum of each phylum in each sample\ntaxa.agg <- aggregate(t(comm_rarfy),by=list(taxo.sub[colnames(comm_rarfy),2]),FUN=sum)\n# clean up resulting object\nrownames(taxa.agg) <- taxa.agg$Group.1\nphylum_data <- t(taxa.agg[,-1])\n# convert abundances to relative abundances\nphylum_data <- phylum_data/rowSums(phylum_data)\n# remove rare phyla\nphylum_data <- phylum_data[,colSums(phylum_data)>0.01]\n# now reshape phylum data to long format\nphylum_data <- reshape2::melt(phylum_data)\n# rename columns\ncolnames(phylum_data)[1:2] <- c('Samples','Bacteria_phylum')\n# now we can plot phylum relative abundance per sample\nggplot(phylum_data, aes(Samples, weight = value, fill = Bacteria_phylum)) +\n geom_bar(color = \"black\", width = .7, position = 'fill') +\n labs( y = 'Relative abundance (%)') +\n scale_y_continuous(expand = c(0,0)) +\n scale_fill_viridis_d(direction = -1L) +\n theme_classic() +\n coord_flip()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-45-1.png){width=672}\n:::\n:::\n\n\n#### Phylum-level composition for each transplant site\n\nIt is also useful to see how taxonomic composition varies with respect to different variables we measured. For example, how does phylum-level taxonomic composition differ among different transplant sites?\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# aggregate average phylum abundances per transplanted site\nphylum_data_agg <- aggregate(phylum_data$value,by=list(metadata.sub[phylum_data$Samples,]$TransplantedSite,phylum_data$Bacteria_phylum),FUN=mean)\n# rename columns\ncolnames(phylum_data_agg) <- c('TransplantedSite','Bacteria_phylum','value')\n# now we can plot phylum abundance by transplant site\nggplot(phylum_data_agg, aes(TransplantedSite, weight =value, fill = Bacteria_phylum)) +\n geom_bar(color = \"black\", width = .7, position = 'fill') +\n labs( y = 'Relative abundance (%)') +\n scale_y_continuous(expand = c(0,0)) +\n scale_fill_viridis_d(direction = -1L) +\n theme_classic()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-46-1.png){width=672}\n:::\n:::\n\n\n### Community diversity (alpha diversity) \n\nTo look at how diversity differed among samples as a function of the different variables we are interested in, we'll begin by looking at the alpha-diversity, or within-community diversity. Two commonly used measures of alpha diversity are ASV richness (the number of ASVs present in the sample), and the Shannon index, also sometimes referred to as Shannon diversity or Shannon diversity index, which measures both the number of taxa in the sample (ASV richness) as well as the equitability of their abundances (evenness).\n\n#### Calculate ASV richness and Shannon diversity of bacterial community\n\n::: {.cell}\n\n```{.r .cell-code}\n# calculate ASV richness\n# calculate Shannon index\nShannon <- diversity(comm_rarfy)\nhist(richness_rarfy)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-47-1.png){width=672}\n:::\n\n```{.r .cell-code}\nhist(Shannon)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-47-2.png){width=672}\n:::\n:::\n\n\n#### Compare bacterial diversity among categories\n\nWe can ask how diversity differs with respect to seedling genotype and environment. Here, let's ask specifically whether leaf bacterial alpha diversity differs between stand types. See Figure 2 of the article by De Bellis et al. 2022 for a comparable analysis.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create data frame to hold alpha diversity values by stand type\ndiv_standtype <- data.frame(richness=richness_rarfy, Shannon=Shannon, standtype=metadata.sub$StandType)\n# set up analysis to compare diversity among different pairs of stand types\nmy_comparisons <- list( c(\"Mixed\", \"Boreal\"), c(\"Mixed\", \"Temperate\"), c(\"Boreal\", \"Temperate\") )\n# plot ASV richness as a function of stand type\nggboxplot(div_standtype, x = \"standtype\", y = \"richness\", hide.ns=F,\n color = \"standtype\", palette = \"jco\",add = \"jitter\") + \n stat_compare_means(comparisons = my_comparisons,method = \"t.test\")\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] FALSE\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-1.png){width=672}\n:::\n\n```{.r .cell-code}\n# plot Shannon index as a function of stand type\nggboxplot(div_standtype, x = \"standtype\", y = \"Shannon\",hide.ns=F,\n color = \"standtype\", palette = \"jco\",add = \"jitter\")+ \n stat_compare_means(comparisons = my_comparisons,method = \"t.test\")\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] FALSE\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-2.png){width=672}\n:::\n:::\n\n\nThese figures indicate that ASV richness does not differ significantly among pairs of stand types. However, the Shannon index does differ somewhat between temperate and boreal stands, where the Shannon index tends to be lower in boreal stands than in temperate stands. These analyses are limited somewhat by the sample size that remains after removing low quality samples; in the original article (De Bellis et al 2022) we compared more sites which increased sample size enough that we found a significant (P<0.05) difference in the Shannon index between temperate and boreal stand types.\n\n#### Bacterial diversity related to numeric variables \n\nWe can also ask if bacterial diversity differs with respect to numeric variables, for example with respect to latitude. To ask how richness varies with latitude, we will use a generalized linear model to take into account that richness counts are count data and thus are more likely to follow a Poisson distribution than a normal distribution.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# plot richness versus latitude\nplot(richness_rarfy~metadata.sub$TransplantedSiteLat,xlab='Latitude',ylab='ASV richness')\n# add best fit line\nabline(glm(richness_rarfy~metadata.sub$TransplantedSiteLat), family=\"poisson\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-49-1.png){width=672}\n:::\n\n```{.r .cell-code}\n# generalized linear model of richness vs. latitude\nsummary(glm(richness_rarfy~metadata.sub$TransplantedSiteLat, family=\"poisson\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nglm(formula = richness_rarfy ~ metadata.sub$TransplantedSiteLat, \n family = \"poisson\")\n\nDeviance Residuals: \n Min 1Q Median 3Q Max \n-8.3234 -2.7974 0.4008 2.0747 8.9199 \n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 7.98399 0.59571 13.403 < 2e-16 ***\nmetadata.sub$TransplantedSiteLat -0.06996 0.01246 -5.615 1.97e-08 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 409.78 on 26 degrees of freedom\nResidual deviance: 378.60 on 25 degrees of freedom\nAIC: 555.3\n\nNumber of Fisher Scoring iterations: 4\n```\n:::\n:::\n\n\nASV richness of leaf bacteria decreases with increasing latitude.\n\nWhat about the Shannon index? Here we'll fit a linear model since we expect the data to be normally distributed.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# plot Shannon index versus latitude\nplot(Shannon~metadata.sub$TransplantedSiteLat,xlab='Latitude',ylab='Shannon diversity')\n# add best fit line\nabline(lm(Shannon~metadata.sub$TransplantedSiteLat))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-50-1.png){width=672}\n:::\n\n```{.r .cell-code}\n# linear model of Shannon index vs. latitude\nsummary(lm(Shannon~metadata.sub$TransplantedSiteLat))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = Shannon ~ metadata.sub$TransplantedSiteLat)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.56982 -0.27830 0.07116 0.35948 1.11564 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 7.8728 3.6067 2.183 0.0387 *\nmetadata.sub$TransplantedSiteLat -0.1030 0.0752 -1.370 0.1829 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.5839 on 25 degrees of freedom\nMultiple R-squared: 0.06983,\tAdjusted R-squared: 0.03262 \nF-statistic: 1.877 on 1 and 25 DF, p-value: 0.1829\n```\n:::\n:::\n\n\nThe Shannon index of leaf bacteria decreases with increasing latitude, but the relationship is not statistically significant.\n\n### Community composition (beta diversity)\n\nWe can now look at the beta-diversity of the samples, which measures the between-community differences in composition.\n\nBeta diversity approaches to studying composition involve calculating a measure of the compositional difference between pairs of communities (= beta diversity, dissimilarity, or distance). Then these distance metrics can be analysed using approaches such as ordination (to summarize the overall trends in community composition among samples) or PERMANOVA (to test whether groups of samples differ significantly in their composition).\n\nThere are a huge number of different beta diversity/dissimilarity metrics that have been used in ecology. There is an ongoing debate about the relative advantages and disadvantages of these beta diversity measures and approaches. There are several different beta diversity metrics and ordination approaches that work well based on simulation studies and empirical analysis. For those wanting to learn more about multivariate analysis and beta diversity approaches for the analysis of ecological communities, the book [\"Numerical Ecology with R\"](http://adn.biol.umontreal.ca/~numericalecology/numecolR/) by Borcard, Gillet and Legendre is an excellent reference. Dr. Pierre Legendre also maintains a [website](http://adn.biol.umontreal.ca/~numericalecology/documents_enseignement/index.html) with links to several [excellent courses](http://adn.biol.umontreal.ca/~numericalecology/Trieste16/) that serve as a complete introduction to multivariate methods in ecology.\n\nIn this workshop we will focus on a few different beta diversity metrics and ordination approaches that have been shown to perform well in theory and practise when applied to ecological community data. How should you choose which of these approaches to your own data? This is not an easy question to answer, as long as you are using a method that works well with ecological community data, there are different reasons to prefer one method over another. Ultimately, it can be useful to try different approaches and see if you obtain similar results with your data.\n\n#### Ordination - Principal Components Analysis (PCA)\n\nPrincipal components analysis (PCA) is a commonly used approach to analysing multivariate data. PCA uses eigenanalysis of Euclidean distances among samples computed from ASV abundance data to identify the axes of correlated variation that explain the most possible variation in your multivariate data. These axes correspond to major gradients of changes in community composition. We typically focus on the first few axes of the PCA ordination, since these axes should capture the majority of the variation in community composition among samples.\n\nIt's important to note that PCA should never be used to analyze untranformed ecological community data. PCA is based on the Euclidean distance among samples. Ecological community data violate many of the assumptions of PCA - recall that there are many zeroes in our matrix of ASV abundances, and the distribution of abundance values among ASVs is very non-normal. [Legendre and Gallagher (2001)](http://adn.biol.umontreal.ca/~numericalecology/Reprints/Legendre_&_Gallagher.pdf) showed that several transformations including the Chord and Hellinger transformation allow ecological community data matrices to be analyzed using PCA. Here we will use the Hellinger transformation to transform ASV abundances prior to analyzing them with a PCA ordination.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Create Hellinger-transformed version of rarefied community data\ncomm_hel <- decostand(comm_rarfy,method='hellinger')\n# PCA analysis of Hellinger-transformed community data\ncomm_hel_PCA <- prcomp(comm_hel)\n# Summarize variance in beta diversity explained by PCA axes\nsummary(comm_hel_PCA)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nImportance of components:\n PC1 PC2 PC3 PC4 PC5 PC6 PC7\nStandard deviation 0.2599 0.20969 0.19519 0.1718 0.16095 0.15289 0.14424\nProportion of Variance 0.1497 0.09746 0.08445 0.0654 0.05742 0.05181 0.04612\nCumulative Proportion 0.1497 0.24712 0.33157 0.3970 0.45439 0.50620 0.55232\n PC8 PC9 PC10 PC11 PC12 PC13 PC14\nStandard deviation 0.13835 0.1327 0.12813 0.12268 0.12067 0.11446 0.11003\nProportion of Variance 0.04242 0.0390 0.03639 0.03336 0.03228 0.02904 0.02684\nCumulative Proportion 0.59474 0.6338 0.67014 0.70350 0.73577 0.76481 0.79165\n PC15 PC16 PC17 PC18 PC19 PC20 PC21\nStandard deviation 0.10440 0.10234 0.09813 0.09351 0.09258 0.09083 0.08976\nProportion of Variance 0.02416 0.02321 0.02134 0.01938 0.01900 0.01829 0.01786\nCumulative Proportion 0.81581 0.83902 0.86037 0.87975 0.89875 0.91704 0.93490\n PC22 PC23 PC24 PC25 PC26 PC27\nStandard deviation 0.08279 0.08176 0.07641 0.07181 0.06955 2.431e-16\nProportion of Variance 0.01519 0.01482 0.01294 0.01143 0.01072 0.000e+00\nCumulative Proportion 0.95009 0.96491 0.97785 0.98928 1.00000 1.000e+00\n```\n:::\n\n```{.r .cell-code}\n# Plot PCA results\nordiplot(comm_hel_PCA, display = 'sites', type = 'text',cex=0.8, main=\"PCA on Hellinger transformed data\")\n# Add ellipses around samples from different stand types\nordiellipse(comm_hel_PCA, metadata.sub$StandType, label=TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-51-1.png){width=672}\n:::\n:::\n\n\nThe PCA ordination diagram indicates the overall compositional similarity of samples. Samples that are close together in the ordination space contain similar ASVs with similar abundances. We can see that the gradient in community composition among different stand types is visible along the first two axes. Samples from each stand type tend to contain compositionally similar leaf bacterial communities.\n\nRecall that when we were first looking at the composition of communities in our samples (prior to subsetting and rarefaction), we obtained a similar looking result. As noted, because we used a rarefaction threshold that was sufficient for the rarefaction curves of the samples to reach a plateau in ASV richness, we do not expect major differences between the analysis of rarefied versus non-rarefied data. However, by analyzing the rarefied data we are now confident that the differences in composition among the samples are due to true differences in community composition and not due to differences in library size among samples.\n\n#### Ordination - Non-metric Multidimensional Scaling (NMDS)\n\nAnother commonly used ordination approach in ecology is non-metric multidimensional scaling (NMDS). NMDS can be used with any beta diversity distance metric. Unlike PCA, NMDS is not based on eigenanalysis of the distance metric. Rather, NMDS uses an algorithm to find an ordination of samples in a few dimensions that represents as best as possible the rank transformed pairwise distances among samples measured with the original distance metric. When carrying out a NMDS analysis, rather than obtaining many PCA axes, the user specifies how many axes to identify. NMDS analysis is based on a heuristic algorithm that may give slightly different results when run multiple times on the same data, whereas PCA has a unique analytical solution.\n\nNMDS can be used with any distance metric. Commonly in microbial ecology it is used with the Bray-Curtis distance. The Bray-Curtis distance, like the Hellinger distance, has been shown to perform well compared with other distance measures ([Faith et al. 1987](https://link.springer.com/article/10.1007/BF00038687), Gallagher and Legendre 2001).\n\nHere we'll calculate a NMDS ordination using Bray-Curtis distance.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# NMDS ordination based on Bray-Curtis distances\ncomm_NMDS <- metaMDS(comm_hel, distance=\"bray\", trace=FALSE)\nordiplot(comm_NMDS, cex = 0.5, type = 'text', display='sites')\nordiellipse(comm_NMDS, metadata.sub$StandType, label=TRUE)\n# overlay the direction of latitude effect on bacteria community composition\nef <- envfit(comm_NMDS, metadata.sub$TransplantedSiteLat)\nrownames(ef$vectors$arrows)='Latitude'\nplot(ef)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-52-1.png){width=672}\n:::\n:::\n\n\nHere we can see that the NMDS ordination based on Bray-Curtis distances among samples looks quite similar to the PCA ordination, with community composition differing among different stand types. We have also added an arrow indicating the correlation between latitude and the ordination axes, which also supports the idea that communities vary as we move from boreal stands in the north to temperate stands in the south.\n\n#### PERMANOVA\n\nOrdination analyses allow us to visualize how the composition of communities differs among samples and how it relates to different variables in a qualitative way. For example, we can see from the ordination diagrams above that it seems that community composition differs among stand types. We can statistically test whether stand types differ in composition using permutational multivariate analysis of variance (PERMANOVA). A PERMANOVA works in a way similar to an ANOVA, but with multivariate compositional data. PERMANOVA tests indicate whether community composition (beta diversity) differs among groups of samples.\n\nHere we can first use a PERMANOVA to test whether community composition differs among stand types. As with ordination methods, a PERMANOVA can be run on any distance metric. Let's try computing a PERMANOVA using both Hellinger distance (used for the PCA) and Bray-Curtis distance (used for the NMDS).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# set number of permutations for PERMANOVA\nperm <- how(nperm = 999)\n# PERMANOVA on Hellinger-transformed Euclidean distances\nadonis2(formula = dist(comm_hel) ~ StandType, data = metadata.sub, permutations = perm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nPermutation test for adonis under reduced model\nTerms added sequentially (first to last)\nPermutation: free\nNumber of permutations: 999\n\nadonis2(formula = dist(comm_hel) ~ StandType, data = metadata.sub, permutations = perm)\n Df SumOfSqs R2 F Pr(>F) \nStandType 2 1.8390 0.15678 2.2311 0.001 ***\nResidual 24 9.8911 0.84322 \nTotal 26 11.7301 1.00000 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n\n```{.r .cell-code}\n# PERMANOVA on Bray-Curtis distances\nadonis2(formula = vegdist(comm_rarfy, method=\"bray\") ~ StandType, data = metadata.sub, permutations = perm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nPermutation test for adonis under reduced model\nTerms added sequentially (first to last)\nPermutation: free\nNumber of permutations: 999\n\nadonis2(formula = vegdist(comm_rarfy, method = \"bray\") ~ StandType, data = metadata.sub, permutations = perm)\n Df SumOfSqs R2 F Pr(>F) \nStandType 2 0.9716 0.17856 2.6085 0.001 ***\nResidual 24 4.4697 0.82144 \nTotal 26 5.4413 1.00000 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n:::\n\n\nBoth of these analyses indicate that community composition differs significantly among stand types, explaining around 16-18% of variation in the distance metric.\n\nPERMANOVA can also be used to test more complex experimental designs. Here, let's replicate the analyses by De Bellis et al. (2022). We used PERMANOVA on Bray-Curtis distances to measure the relative importance of transplanted region and site (environment) versus origin region and site (genotype) in determining the composition of leaf bacterial communities. Site is nested within region for both variable types, which we represent using \"/\" in the formula (region/site).\n\n\n::: {.cell}\n\n```{.r .cell-code}\npermanova.bc <- adonis2(formula = vegdist(comm_rarfy, method=\"bray\") ~ StandType/TransplantedSite * SeedSourceRegion/SeedSourceOrigin, data = metadata.sub, permutations = perm)\nprint(permanova.bc)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nPermutation test for adonis under reduced model\nTerms added sequentially (first to last)\nPermutation: free\nNumber of permutations: 999\n\nadonis2(formula = vegdist(comm_rarfy, method = \"bray\") ~ StandType/TransplantedSite * SeedSourceRegion/SeedSourceOrigin, data = metadata.sub, permutations = perm)\n Df SumOfSqs\nStandType 2 0.9716\nSeedSourceRegion 2 0.2277\nStandType:TransplantedSite 3 0.6410\nStandType:SeedSourceRegion 3 0.5562\nStandType:TransplantedSite:SeedSourceRegion 3 0.7350\nStandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 5 1.1043\nResidual 8 1.2056\nTotal 26 5.4413\n R2 F\nStandType 0.17856 3.2236\nSeedSourceRegion 0.04184 0.7554\nStandType:TransplantedSite 0.11780 1.4177\nStandType:SeedSourceRegion 0.10222 1.2302\nStandType:TransplantedSite:SeedSourceRegion 0.13507 1.6256\nStandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 0.20294 1.4654\nResidual 0.22157 \nTotal 1.00000 \n Pr(>F) \nStandType 0.001 ***\nSeedSourceRegion 0.835 \nStandType:TransplantedSite 0.058 . \nStandType:SeedSourceRegion 0.191 \nStandType:TransplantedSite:SeedSourceRegion 0.019 * \nStandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 0.031 * \nResidual \nTotal \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n:::\n\n\nThis analysis shows that, as mentioned by De Bellis et al. (2022), stand type of planting was the most important variable explaining variation in leaf bacterial community composition. There was a marginally significant variation among transplanted sites. There were also significant interactions among transplant region and site as a function of seed source region and seed source site of origin, indicating that the leaf bacterial communities of some genotypes respond differently to different environments. Taken together, this analysis indicates that environment (transplant region and site) have a greater impact on the composition of leaf bacterial communities than genotype, although there is also an interaction between genotype and environment.\n\n### Differentially abundant taxa\n\nBy analyzing alpha and beta diversity, we have determined that some groups of samples differ in their diversity and composition. But measures of diversity look at the entire community. We may also be interested in knowing which individual taxa differ in abundance among groups of samples. To address this question we can use differential abundance analysis. There are many methods that can be used for differential abundance analysis, and as for other ecological analysis there is active debate about which methods should be used to detect differences in taxa abundances between groups of samples. \n\nDifferential abundance analysis allows you to identify differentially abundant taxa between two groups. There are many methods for this type of analysis such as ALDEx2, ANCOM-BC, and DESeq2. Several recent articles have compared the performance of these differential abundance approaches when applied to microbiome data ([Calgaro et al. (2020)](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02104-1), [Nearing et al. (2022)](https://www.nature.com/articles/s41467-022-28034-z)), finding that some methods perform better than others, but also finding that different methods are sensitive to different aspects of data structure and with differing statistical power and sensitivity. Here we will compare two different methods for detecting differentially abundant taxa.\n\nHaving seen a clear difference in leaf bacterial community composition between temperate and boreal forest stand types, we may ask which bacterial ASVs are differentially abundant between temperate versus boreal forest stand types. \n\n#### DESeq2\n\nThe DESeq2 approach ([Love et al. 2014. Genome Biol 15:550](https://doi.org/10.1186/s13059-014-0550-8)) models taxa abundances using a negative binomial distribution to detect taxa that are differentially abundant between groups. This approach was initially developed for gene expression analyses, but it is commonly used in the analysis of differential taxa abundances in microbial ecology.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# conduct DESeq analysis of ASV abundances between temperate and boreal stand types\n# We add a pseudocount (+1) to each abundance value to avoid zeroes\ncountdata <- data.frame(ASV=colnames(comm_rarfy),t(comm_rarfy+1))\nmetas <- metadata.sub\nmetas$StandType <- relevel(as.factor(metas$StandType),ref='Boreal')\ndds <- DESeqDataSetFromMatrix(countData=countdata, \n colData=metas,\n design=~StandType, tidy = TRUE)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nconverting counts to integer mode\n```\n:::\n\n```{.r .cell-code}\ndds2 <- DESeq(dds, fitType=\"local\", quiet=TRUE)\nres <- results(dds2, name=\"StandType_Temperate_vs_Boreal\")\n#coef of differently abundant ASV between temperate and boreal forest\nhead(res[order(res$padj),])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nlog2 fold change (MLE): StandType Temperate vs Boreal \nWald test p-value: StandType Temperate vs Boreal \nDataFrame with 6 rows and 6 columns\n baseMean log2FoldChange lfcSE stat pvalue padj\n \nASV_8 102.71993 6.31596 1.070810 5.89830 3.67260e-09 1.31686e-06\nASV_37 16.25372 5.24749 0.906315 5.78992 7.04201e-09 1.31686e-06\nASV_94 8.43527 4.85485 0.860202 5.64385 1.66291e-08 2.07309e-06\nASV_26 29.32340 5.88306 1.086821 5.41309 6.19468e-08 5.79203e-06\nASV_22 36.19921 5.19054 0.994117 5.22126 1.77713e-07 1.32929e-05\nASV_44 20.59886 -5.09305 1.001330 -5.08629 3.65139e-07 2.27603e-05\n```\n:::\n\n```{.r .cell-code}\n#Number of significantly different ASVs (adjusted_p_value<0.05)\ndim(res[is.na(res$padj)==F&res$padj<0.05,])[1]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 77\n```\n:::\n\n```{.r .cell-code}\nsig_des <- rownames(res[is.na(res$padj)==F&res$padj<0.05,])\n# show the distribution of these marker ASV in a heatmap\nmetatoshow <- subset(metas,!metas$StandType%in%'Mixed')\ndatatoshow <- comm_rarfy[rownames(metatoshow),rownames(res[order(res$padj),])[1:20]]\nannotation_col = data.frame(standtype = as.factor(metatoshow$StandType))\nrownames(annotation_col)=rownames(datatoshow)\npheatmap(t(datatoshow),scale= \"row\", annotation_col = annotation_col,cluster_cols = F)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-55-1.png){width=672}\n:::\n:::\n\n\n#### ANCOM-BC\n\nThe ANCOM-BC approach ([Lin and Peddada. 2020. Nat. Comm. 35:14](https://www.nature.com/articles/s41467-020-17041-7)) detects differentially abundant taxa by analysis of compositions of microbiomes with bias correction. [Nearing et al. (2022)](https://www.nature.com/articles/s41467-022-28034-z) found this method to be among the best-performing methods for detection of differentially abundant taxa. \n\n\n::: {.cell}\n\n```{.r .cell-code}\n# conduct ANCOM-BC analysis of differentially abundant taxa between boreal/temperate stand types\nASV <- otu_table(countdata[,-1],taxa_are_rows<-T)\nTAX <- tax_table(as.matrix(taxo.sub))\nMETA <- sample_data(metas)\nphyloseqobj = phyloseq(ASV, TAX, META)\nancob <- ancombc(phyloseq=phyloseqobj,formula='StandType',p_adj_method = \"holm\", zero_cut = 0.90, lib_cut = 1000,\n group = 'StandType', struc_zero = TRUE, neg_lb = F,\n tol = 1e-5, max_iter = 100, conserve = TRUE,\n alpha = 0.05, global = TRUE)\nres_ancob <- ancob$res\n#show coefficients of differential abundance test between temperate vs. boreal\ncoef_ancob <- data.frame(beta=res_ancob$beta$StandTypeTemperate,se=res_ancob$se$StandTypeTemperate,W=res_ancob$W$StandTypeTemperate,\n p_val=res_ancob$p_val$StandTypeTemperate,p_adj=res_ancob$q_val$StandTypeTemperate,sign_dif=res_ancob$diff_abn$StandTypeTemperate,\n row.names = rownames(res_ancob$beta))\ncoef_ancob <- coef_ancob[order(coef_ancob$p_adj),]\nhead(coef_ancob)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n beta se W p_val p_adj sign_dif\nASV_44 -2.2721929 0.4081187 -5.567481 2.584489e-08 2.101189e-05 TRUE\nASV_22 2.5469174 0.5179469 4.917333 8.773119e-07 7.123773e-04 TRUE\nASV_11 2.2662741 0.4980824 4.549998 5.364645e-06 4.350727e-03 TRUE\nASV_101 -1.8558870 0.4108073 -4.517658 6.252726e-06 5.064708e-03 TRUE\nASV_37 2.3964439 0.5694741 4.208170 2.574473e-05 2.082749e-02 TRUE\nASV_129 0.4651886 0.1182296 3.934619 8.332862e-05 6.732952e-02 FALSE\n```\n:::\n\n```{.r .cell-code}\n#Number of significantly different ASVs (adjusted p_value<0.05)\ndim(coef_ancob[coef_ancob$p_adj<0.05,])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 5 6\n```\n:::\n\n```{.r .cell-code}\nsig_ancob <- rownames(coef_ancob[1:dim(coef_ancob[coef_ancob$p_adj<0.05,])[1],])\n# show the significant ASVs\nmetatoshow <- subset(metas,!metas$StandType%in%'Mixed')\ndatatoshow <- comm_rarfy[rownames(metatoshow),sig_ancob]\nannotation_col = data.frame(standtype = as.factor(metatoshow$StandType))\nrownames(annotation_col)=rownames(datatoshow)\npheatmap(t(datatoshow),scale= \"row\", annotation_col = annotation_col,cluster_cols = F)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-56-1.png){width=672}\n:::\n:::\n\n\n#### Comparing differentially abundant taxa among methods\n\nIn a comparison between boreal and temperate forest stand types, ANCOM-BC and DESeq2 detected different numbers of differentially abundant ASVs. As noted earlier, there is still debate about which methods perform best for differentially abundant taxa detection. While DESeq2 and ANCOM identified differentially abundant taxa that are potentially unique to each method, there may be some ASVs that were detected as differentially abundant using both methods. This type of cross-method comparison can help us to identify statistically robust results - if taxa are differentially abundant enough to be detected by multiple methods, they should differ strongly in their abundance between groups. Let's look at the distribution of these differentially abundant ASVs identified by both methods.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# identify significantly differentially abundant ASVs according to both methods\nsig_both <- sig_des[sig_des%in%sig_ancob]\nsig_both\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"ASV_11\" \"ASV_22\" \"ASV_37\" \"ASV_44\" \"ASV_101\"\n```\n:::\n\n```{.r .cell-code}\n# show the distribution of these differentially abundant ASVs\nmetatoshow <- subset(metas,!metas$StandType%in%'Mixed')\ndatatoshow <- comm_rarfy[rownames(metatoshow),sig_both]\nannotation_col = data.frame(standtype = as.factor(metatoshow$StandType))\nrownames(annotation_col)=rownames(datatoshow)\npheatmap(t(datatoshow),scale= \"row\", annotation_col = annotation_col,cluster_cols = F)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-57-1.png){width=672}\n:::\n:::\n\n\nWe can also inspect the taxonomic annotations of these differentially abundant ASVs.\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntaxo_rarfy[sig_both,]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \nASV_11 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \nASV_22 \"Bacteria\" \"Bacteroidota\" \"Bacteroidia\" \"Cytophagales\" \nASV_37 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\nASV_44 \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Enterobacterales\"\nASV_101 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n Family Genus Species \nASV_11 \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\" NA \nASV_22 \"Hymenobacteraceae\" \"Hymenobacter\" NA \nASV_37 \"Sphingomonadaceae\" \"Sphingomonas\" NA \nASV_44 \"Shewanellaceae\" \"Shewanella\" \"algae/haliotis\"\nASV_101 \"Beijerinckiaceae\" \"Methylocella\" NA \n```\n:::\n:::\n\n\n### Final steps - clean up and save data objects and workspace\n\nWe have now completed our ecological analyses of leaf bacterial communities.\nYou may want to save the R workspace containing all the different data objects so that you can reload it in the future without having to re-run the analyses.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n## Save entire R workspace to file\nsave.image(\"Microbiome-ecological-analysis-workspace.RData\")\n```\n:::\n", + "markdown": "---\ntitle: \"Introduction to Microbiome Analysis\"\ndescription: |\n This workshop will give an overview of the theory and practice of using metabarcoding approaches to study the diversity of microbial communities. The workshop will give participants an understanding of 1) the current methods for microbiome diversity quantification using metabarcoding/amplicon sequencing approaches and 2) the normalization and diversity analysis approaches that can be used to quantify the diversity of microbial communities.\nauthor:\n - name: Steven Kembel\n affiliation: Université du Québec à Montréal\n - name: Zihui Wang\n - name: Salix Dubois\ncategories: [Technical, EN]\ndate: \"05-19-2022\"\nimage: image.jpg\ntoc: true\nnumber-sections: true\nnumber-depth: 1\n---\n\n\n# Workshop instructors\n\n[Dr. Steve Kembel](https://kembellab.ca/), Zihui Wang, and Salix Dubois\n\n[Université du Québec à Montréal](https://uqam.ca/)\n\n# Overview\n\nThis workshop will give an overview of the theory and practice of using amplicon sequencing approaches to study the diversity of microbial communities. In the first part of the workshop, we will discuss current methods for microbiome quantification using amplicon sequencing approaches. In the second part of the workshop, we will discuss normalization and diversity analysis approaches that can be used to quantify the diversity of microbial communities.\n\nThis workshop was developed with support from the [NSERC CREATE Computational Biodiversity Science and Services (BIOS²)](https://bios2.usherbrooke.ca/) training program and the [Canada Research Chair in Plant Microbiomes](https://kembellab.ca/).\n\n# Workshop materials\n\n## Day 1 - Microbiome quantification using amplicon sequencing approaches\n\n- Lecture - [Microbiome quantification using amplicon sequencing approaches (PDF)](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-analysis-1-sequence-analysis.pdf)\n- R practical - [Microbiome sequence analysis workshop](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-sequence-analysis.html)\n- Downloads\n - [Sequence data and SILVA database files (~350MB download from figshare)](https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077)\n - R workspace [Microbiome-sequence-analysis-workspace.RData](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-sequence-analysis-workspace.RData)\n - [R Markdown file](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-sequence-analysis.Rmd) used to generate the R practical document\n\n## Day 2 - Data normalization and ecological analysis of microbiome data\n\n- Lecture - [Data normalization and ecological analysis of microbiome data (PDF)](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-analysis-2-ecological-analysis.pdf)\n- R practical - [Microbiome ecological analysis workshop](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-ecological-analysis.html)\n- Downloads\n - Sample metadata [metadata-Qleaf_BACT.csv](http://kembellab.ca/microbiome-analysis-workshop/metadata-Qleaf_BACT.csv)\n - DADA2 ASV sequence table [seqtab.nochim.rds](http://kembellab.ca/microbiome-analysis-workshop/seqtab.nochim.rds)\n - DADA2 ASV taxonomic annotations [taxa.sp.rds](http://kembellab.ca/microbiome-analysis-workshop/#:~:text=ASV%20taxonomic%20annotations-,taxa.sp.rds,-R%20workspace%20Microbiome)\n- R workspace [Microbiome-ecological-analysis-workspace.RData](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-ecological-analysis-workspace.RData)\n- [R Markdown file](http://kembellab.ca/microbiome-analysis-workshop/Microbiome-ecological-analysis.Rmd) used to generate the R practical document\n\n# Requirements\n\nThe workshop assumes basic familiarity with R/RStudio; practical exercises are based on the use of R scripts to analyse sequence data and resulting community data sets.\n\nTo be able to follow along with the practical exercises on your own computer, in addition to downloading the data files above, you will need to do the following:\n\nInstall the latest version of R for your operating system (version 4.2.0 as of May 2022): [https://cran.r-project.org/](https://cran.r-project.org/)\n\nInstall the latest version of RStudio for your operating system (version 2022.02.2+485 as of May 2022): [https://www.rstudio.com/products/rstudio/download/](https://www.rstudio.com/products/rstudio/download/)\n\nInstall the packages that we will use during the workshop by executing the following code in R version 4.2.0:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install packages from CRAN\ninstall.packages(pkgs = c(\"Rcpp\", \"RcppArmadillo\", \"picante\", \"ggpubr\", \"pheatmap\"), dependencies = TRUE)\n# install packages from Bioconductor\nif (!require(\"BiocManager\", quietly = TRUE))\n install.packages(\"BiocManager\")\nBiocManager::install(\"dada2\", version = \"3.15\", update = FALSE)\n# if the dada2 install returns a warning for BiocParallel, install from binary using this command:\n# BiocManager::install(\"BiocParallel\", version = \"3.15\", type=\"binary\", update = FALSE)\nBiocManager::install(\"DESeq2\")\nBiocManager::install(\"phyloseq\")\nBiocManager::install(\"ANCOMBC\")\n```\n:::\n\n\n# Microbiome quantification using amplicon sequencing approaches\n\n## About the data set\n\nIn this workshop, we will be analyzing the bacterial communities found on leaves of sugar maple seedlings of different provenances planted at sites across eastern North America.\n\nThese data are taken from the article:\n\nDe Bellis, Laforest-Lapointe, Solarik, Gravel, and Kembel. 2022. Regional variation drives differences in microbial communities associated with sugar maple across a latitudinal range. Ecology (published online ahead of print). [doi:10.1002/ecy.3727](https://doi.org/10.1002/ecy.3727)\n\nFor this workshop, we will work with a subset of samples from six of the nine sites sampled for the article. These samples are located in three different biomes (temperate, mixed, and boreal forests). At each site, several sugar maple seedlings were planted and harvested, and we collected bacterial DNA from the leaves. Each sample thus represents the bacterial communities on the leaves of a single sugar maple seedling. For each seedling, we have associated metadata on the provenance of the seed, the site where the seed was planted, and the biome/stand type where the seed was planted. We'll talk more about these samples and the biological hypotheses we want to test in day 2 of the workshop.\n\n### Data file setup and download\n\nTo follow along with the code, you will need to download the raw data (FASTQ sequence files) and the SILVA taxonomy files, and place a copy of these data sets in the working directory from which you are running the code.\n\nThe data files we will use for this workshop are available for download at the following URL: [https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077](https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077).\n\nThe sequence data in the folder rawdata-Qleaf_BACT consist of 74 compressed FASTQ files (2 files for each of 36 samples). These files were provided by the [UQAM CERMO-FC Genomics Platform](https://www.cermofc.uqam.ca/en/technological-platforms/genomics/) where the samples were sequenced in a multiplexed run on an Illumina MiSeq. The samples were demultiplexed into separate files based on the barcode associated with each sample, so there is a separate pair of files for each sample. One file labelled R2 contains the forward read for the sample, the other file labelled R1 contains the reverse read for the sample.\n\nIf your samples were not automatically demultiplexed by the sequencing centre, you will instead have just two files which are normally labelled R2 for forward reads and R1 for reverse reads, and you should also receive information about the sequence barcode associated with each sample. You will need to demultiplex this file yourself by using the unique barcode associated with each sample to split the single large file containing all samples together into a separate file for each sample. It is easier to not have to do this step yourself, so I recommend asking your sequencing centre how they will provide the data and request that the data be provided demultiplexed with separate files for each sample. If you do need to do the multiplexing yourself, there are numerous tools available to carry out demultplexing, including [QIIME](http://qiime.org/), [mothur](https://mothur.org/), or the standalone [idemp](https://github.com/yhwu/idemp) program.\n\nAfter downloading the compressed file \"rawdata-Qleaf_BACT.zip\" (the file is around 150MB in size), you will need to unzip the file into a folder on your computer. I suggest you place this folder in the working directory from which you are running the code for the workshop.\n\nThe SILVA taxonomy reference database files we will use for this workshop are available for download at the same URL where we found the sequence data: [https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077](https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077)\n\nAfter downloading the compressed file \"SILVA138.1.zip\" (the file is around 200MB in size), you will need to unzip the file into a folder on your computer. As for the raw data, I suggest you place this folder in the working directory from which you are running the code for the workshop.\n\nThis workshop uses the most recent version of the SILVA taxonomy currently available, which is version 138.1. There are up-to-date DADA2 formatted versions of the SILVA database along with other databases available at the [DADA2 website](https://benjjneb.github.io/dada2/training.html).\n\n### Install the DADA2 package\n\nYou will need to install the most recent version of the DADA2 R package. At the time of writing this workshop, this is DADA2 version 1.24.0. There are instructions for installing the DADA2 package [here](https://benjjneb.github.io/dada2/dada-installation.html). The command below works to install DADA2 version 1.24.0 using R version 4.2.0:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install dada2 if needed\nif (!requireNamespace(\"BiocManager\", quietly = TRUE))\n install.packages(\"BiocManager\")\nBiocManager::install(\"dada2\", version = \"3.15\")\n```\n:::\n\n\n## Sequence analysis with DADA2\n\nThis workshop is based directly on the excellent [DADA2 tutorial](https://benjjneb.github.io/dada2/tutorial.html). I highly recommend following the DADA2 tutorial when working with your own data, it is constantly updated to incorporate the latest version of the analyses available in the package and has helpful tips for analysing your own data. The DADA2 tutorial goes into more depth about each of the steps in this analysis pipeline, and includes useful advice about each step of the pipeline. In this workshop, we have adapted the tutorial materials to run through the basic steps of sequence analysis to go from sequence files to an ecological matrix of ASV abundances in samples, and the taxonomic annotation of those ASVs.\n\nWe begin by loading the DADA2 package.\n\n### Load package\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load library, check version\nlibrary(dada2); packageVersion(\"dada2\")\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nLoading required package: Rcpp\n```\n:::\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] '1.22.0'\n```\n:::\n:::\n\n\n### Set file paths\n\nWe need to set file paths so DADA2 knows where to find the raw data FASTQ files. I recommend creating a RStudio project for this workshop and placing a copy of the folder with the raw data FASTQ files in the working directory; by default in RStudio the working directory is the folder where you created the project. The exact paths below will need to be changed depending on where you placed the raw data files.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# set path to raw data FASTQ files\n# here we assume the raw data are in a folder named \"rawdata-Qleaf_BACT\"\n# in the current working directory (the directory where we created our\n# RStudio project for this workshop, by default)\npath <- \"rawdata-Qleaf_BACT/\"\n# list the files found in the path - this should include 74 files with\n# names like '2017-11-miseq-trimmed_R1.fastq_BC.C2.3X2.fastq.gz\"\nlist.files(path)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [1] \"2017-11-miseq-trimmed_R1.fastq_AUC.C1.2X1.fastq.gz\" \n [2] \"2017-11-miseq-trimmed_R1.fastq_AUC.C1.3.fastq.gz\" \n [3] \"2017-11-miseq-trimmed_R1.fastq_AUC.N1.1.fastq.gz\" \n [4] \"2017-11-miseq-trimmed_R1.fastq_AUC.N1.3.fastq.gz\" \n [5] \"2017-11-miseq-trimmed_R1.fastq_AUC.N2.1.X1.fastq.gz\"\n [6] \"2017-11-miseq-trimmed_R1.fastq_AUC.N2.1X2.fastq.gz\" \n [7] \"2017-11-miseq-trimmed_R1.fastq_AUC.N2.2.fastq.gz\" \n [8] \"2017-11-miseq-trimmed_R1.fastq_AUC.S1.1.X2.fastq.gz\"\n [9] \"2017-11-miseq-trimmed_R1.fastq_AUC.S1X1.fastq.gz\" \n[10] \"2017-11-miseq-trimmed_R1.fastq_AUC.S2.2.fastq.gz\" \n[11] \"2017-11-miseq-trimmed_R1.fastq_BC.C1.2.fastq.gz\" \n[12] \"2017-11-miseq-trimmed_R1.fastq_BC.C2.1X1.fastq.gz\" \n[13] \"2017-11-miseq-trimmed_R1.fastq_BC.C2.3X2.fastq.gz\" \n[14] \"2017-11-miseq-trimmed_R1.fastq_BC.C2.3X2b.fastq.gz\" \n[15] \"2017-11-miseq-trimmed_R1.fastq_BC.N1.3X2.fastq.gz\" \n[16] \"2017-11-miseq-trimmed_R1.fastq_BC.N1.fastq.gz\" \n[17] \"2017-11-miseq-trimmed_R1.fastq_BC.N2.1.X3.fastq.gz\" \n[18] \"2017-11-miseq-trimmed_R1.fastq_BC.N2.1X1.fastq.gz\" \n[19] \"2017-11-miseq-trimmed_R1.fastq_BC.N2.1X2.fastq.gz\" \n[20] \"2017-11-miseq-trimmed_R1.fastq_PAR.C1.1.fastq.gz\" \n[21] \"2017-11-miseq-trimmed_R1.fastq_PAR.C1.2.fastq.gz\" \n[22] \"2017-11-miseq-trimmed_R1.fastq_PAR.C2.3.fastq.gz\" \n[23] \"2017-11-miseq-trimmed_R1.fastq_PAR.N1.3.fastq.gz\" \n[24] \"2017-11-miseq-trimmed_R1.fastq_QLbactNeg19.fastq.gz\"\n[25] \"2017-11-miseq-trimmed_R1.fastq_QLbactNeg20.fastq.gz\"\n[26] \"2017-11-miseq-trimmed_R1.fastq_S.M.C1.3X2.fastq.gz\" \n[27] \"2017-11-miseq-trimmed_R1.fastq_S.M.C2.3.fastq.gz\" \n[28] \"2017-11-miseq-trimmed_R1.fastq_S.M.C2.3X2.fastq.gz\" \n[29] \"2017-11-miseq-trimmed_R1.fastq_S.M.S1.1X1.fastq.gz\" \n[30] \"2017-11-miseq-trimmed_R1.fastq_SF.C1.3.fastq.gz\" \n[31] \"2017-11-miseq-trimmed_R1.fastq_SF.C2.2.fastq.gz\" \n[32] \"2017-11-miseq-trimmed_R1.fastq_SF.N2.3.fastq.gz\" \n[33] \"2017-11-miseq-trimmed_R1.fastq_SF.S1.3.fastq.gz\" \n[34] \"2017-11-miseq-trimmed_R1.fastq_T2.C1.1.fastq.gz\" \n[35] \"2017-11-miseq-trimmed_R1.fastq_T2.C2.3.fastq.gz\" \n[36] \"2017-11-miseq-trimmed_R1.fastq_T2.N1.1.fastq.gz\" \n[37] \"2017-11-miseq-trimmed_R1.fastq_T2.S2.1.fastq.gz\" \n[38] \"2017-11-miseq-trimmed_R2.fastq_AUC.C1.2X1.fastq.gz\" \n[39] \"2017-11-miseq-trimmed_R2.fastq_AUC.C1.3.fastq.gz\" \n[40] \"2017-11-miseq-trimmed_R2.fastq_AUC.N1.1.fastq.gz\" \n[41] \"2017-11-miseq-trimmed_R2.fastq_AUC.N1.3.fastq.gz\" \n[42] \"2017-11-miseq-trimmed_R2.fastq_AUC.N2.1.X1.fastq.gz\"\n[43] \"2017-11-miseq-trimmed_R2.fastq_AUC.N2.1X2.fastq.gz\" \n[44] \"2017-11-miseq-trimmed_R2.fastq_AUC.N2.2.fastq.gz\" \n[45] \"2017-11-miseq-trimmed_R2.fastq_AUC.S1.1.X2.fastq.gz\"\n[46] \"2017-11-miseq-trimmed_R2.fastq_AUC.S1X1.fastq.gz\" \n[47] \"2017-11-miseq-trimmed_R2.fastq_AUC.S2.2.fastq.gz\" \n[48] \"2017-11-miseq-trimmed_R2.fastq_BC.C1.2.fastq.gz\" \n[49] \"2017-11-miseq-trimmed_R2.fastq_BC.C2.1X1.fastq.gz\" \n[50] \"2017-11-miseq-trimmed_R2.fastq_BC.C2.3X2.fastq.gz\" \n[51] \"2017-11-miseq-trimmed_R2.fastq_BC.C2.3X2b.fastq.gz\" \n[52] \"2017-11-miseq-trimmed_R2.fastq_BC.N1.3X2.fastq.gz\" \n[53] \"2017-11-miseq-trimmed_R2.fastq_BC.N1.fastq.gz\" \n[54] \"2017-11-miseq-trimmed_R2.fastq_BC.N2.1.X3.fastq.gz\" \n[55] \"2017-11-miseq-trimmed_R2.fastq_BC.N2.1X1.fastq.gz\" \n[56] \"2017-11-miseq-trimmed_R2.fastq_BC.N2.1X2.fastq.gz\" \n[57] \"2017-11-miseq-trimmed_R2.fastq_PAR.C1.1.fastq.gz\" \n[58] \"2017-11-miseq-trimmed_R2.fastq_PAR.C1.2.fastq.gz\" \n[59] \"2017-11-miseq-trimmed_R2.fastq_PAR.C2.3.fastq.gz\" \n[60] \"2017-11-miseq-trimmed_R2.fastq_PAR.N1.3.fastq.gz\" \n[61] \"2017-11-miseq-trimmed_R2.fastq_QLbactNeg19.fastq.gz\"\n[62] \"2017-11-miseq-trimmed_R2.fastq_QLbactNeg20.fastq.gz\"\n[63] \"2017-11-miseq-trimmed_R2.fastq_S.M.C1.3X2.fastq.gz\" \n[64] \"2017-11-miseq-trimmed_R2.fastq_S.M.C2.3.fastq.gz\" \n[65] \"2017-11-miseq-trimmed_R2.fastq_S.M.C2.3X2.fastq.gz\" \n[66] \"2017-11-miseq-trimmed_R2.fastq_S.M.S1.1X1.fastq.gz\" \n[67] \"2017-11-miseq-trimmed_R2.fastq_SF.C1.3.fastq.gz\" \n[68] \"2017-11-miseq-trimmed_R2.fastq_SF.C2.2.fastq.gz\" \n[69] \"2017-11-miseq-trimmed_R2.fastq_SF.N2.3.fastq.gz\" \n[70] \"2017-11-miseq-trimmed_R2.fastq_SF.S1.3.fastq.gz\" \n[71] \"2017-11-miseq-trimmed_R2.fastq_T2.C1.1.fastq.gz\" \n[72] \"2017-11-miseq-trimmed_R2.fastq_T2.C2.3.fastq.gz\" \n[73] \"2017-11-miseq-trimmed_R2.fastq_T2.N1.1.fastq.gz\" \n[74] \"2017-11-miseq-trimmed_R2.fastq_T2.S2.1.fastq.gz\" \n```\n:::\n:::\n\n\n### Find data files and extract sample names\n\nNow that we have the list of raw data FASTQ files, we need to process these file names to identify forward and reverse reads. For each sequence, the sequencer will create two files labelled R2 and R1. One of these files contains the forward reads, the other the reverse reads. Which file is which will depend on the protocol used to create sequencing libraries. In our case, the R2 files contain the forward reads, and the R1 files contain the reverse reads.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Identify forward and reverse reads\n# Filenames containing R2 are forward reads, R1 are reverse reads\nfnFs <- sort(list.files(path, pattern=\"R2\", full.names = TRUE))\nfnRs <- sort(list.files(path, pattern=\"R1\", full.names = TRUE))\n```\n:::\n\n\nWe also need to process the filenames to extract and clean up the sample names.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# FASTQ filenames have format:\n# BLABLA_R1.fastq_SAMPLENAME.fastq.gz\n# Extract sample names from filenames\n# Split filename at \"_\" character, the sample name is in the third chunk\nsample.names <- sapply(strsplit(basename(fnFs), \"_\"), `[`, 3)\n# Remove extra text from the end of filenames\nsample.names <- gsub(\".fastq.gz\", \"\", sample.names)\n# Look at sample names after processing\nsample.names\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n [1] \"AUC.C1.2X1\" \"AUC.C1.3\" \"AUC.N1.1\" \"AUC.N1.3\" \"AUC.N2.1.X1\"\n [6] \"AUC.N2.1X2\" \"AUC.N2.2\" \"AUC.S1.1.X2\" \"AUC.S1X1\" \"AUC.S2.2\" \n[11] \"BC.C1.2\" \"BC.C2.1X1\" \"BC.C2.3X2\" \"BC.C2.3X2b\" \"BC.N1.3X2\" \n[16] \"BC.N1\" \"BC.N2.1.X3\" \"BC.N2.1X1\" \"BC.N2.1X2\" \"PAR.C1.1\" \n[21] \"PAR.C1.2\" \"PAR.C2.3\" \"PAR.N1.3\" \"QLbactNeg19\" \"QLbactNeg20\"\n[26] \"S.M.C1.3X2\" \"S.M.C2.3\" \"S.M.C2.3X2\" \"S.M.S1.1X1\" \"SF.C1.3\" \n[31] \"SF.C2.2\" \"SF.N2.3\" \"SF.S1.3\" \"T2.C1.1\" \"T2.C2.3\" \n[36] \"T2.N1.1\" \"T2.S2.1\" \n```\n:::\n:::\n\n\nWe now have the list of filenames for the forward and reverse reads, the list of sample names, and we know the sample name associated with each file.\n\n### Look at sequence quality profiles\n\nThe first step of working with our raw data is to look at the sequence quality profiles. These raw data FASTQ files were generated by sequencing a multiplexed library using the Illumina MiSeq sequencer. For this study, we used the Illumina V3 2x300nt sequencing chemistry, which sequences the first 300 nucleotides at the start (forward read) and end (reverse read) of each amplicon.\n\nThere is a quality score associated with each nucleotide known as the [Phred quality score](https://en.wikipedia.org/wiki/Phred_quality_score). This score indicates how confident we are in the identity of that nucleotide. Normally, the quality score should be above 30 (= 1 in 1000 chance of an incorrect base call) for much of the read, but it will begin to drop towards the end of the read. We want to identify where the quality begins to drop so we can trim out the low quality nucleotides.\n\nWe will visualize the forward and reverse read quality scores separately. Here, we begin by looking at the quality profile of forward reads for the first 9 samples.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Plot quality profile of forward reads\nplotQualityProfile(fnFs[1:9])\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: The `` argument of `guides()` cannot be `FALSE`. Use \"none\" instead as\nof ggplot2 3.3.4.\nℹ The deprecated feature was likely used in the dada2 package.\n Please report the issue at <\u001b]8;;https://github.com/benjjneb/dada2/issues\u0007https://github.com/benjjneb/dada2/issues\u001b]8;;\u0007>.\n```\n:::\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Removed 937 rows containing missing values (`geom_tile()`).\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-7-1.png){width=672}\n:::\n:::\n\n\nWe can see that the quality is quite good, but around 200-220 nucleotides it begins to decrease. It's not a sharp drop (a \"crash\") but the median quality starts to decline around 200 nucleotides and dips below a median quality of around 20 by around 230-240 nucleotides.\n\nNow let's look at the reverse reads.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Plot quality profile of reverse reads\nplotQualityProfile(fnRs[1:9])\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nWarning: Removed 188 rows containing missing values (`geom_tile()`).\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-8-1.png){width=672}\n:::\n:::\n\n\nThese are similar to the forward reads, but the quality stays high for longer. This is common (the R1 read tends to be of high quality than the R2). Here, the quality stays quite high almost all the way to the end of the read, although the median quality does begin to decline starting around 230-240 nucleotides.\n\n### Trimming and quality control\n\nNow that we have visualized the quality of the reads, we need to make some decisions about where to trim the reads.\n\nIt is very important to trim barcode and primer nucleotides from the reads as they can cause problems when identifying ASVs. Our reads contain the 12 nucleotide barcode sequence at the beginning of each read that will need to be trimmed. In our case, we used the primers 799F and 1115R to amplify the bacterial 16S rRNA gene. These primers are 18 nucleotides (799F) and 16 nucleotides (1115R) in length, and are found after the barcode sequence at the beginning of each read. Sometimes FASTQ files will be supplied with the barcodes and/or primers already removed from the sequences; you will need to check or ask the sequencing centre about this for your own data. In our case we will need to remove the forward barcode + primer nucleotides (30 nucleotides) and the reverse barcode + primer nucleotides (28 nucleotides) from the beginning of each read.\n\nWe also need to trim the reads to remove low-quality nucleotides from the end of the reads. As we saw above, the quality of both the forward and reverse reads are quite good, but forward read quality did begin to decline around 200 nucleotides and reverse read quality declines slightly beginning around 230-240 nucleotides.\n\nAn important consideration when deciding where to trim our reads is that we want to be able to merge together the forward and reverse reads later in the pipeline. To do this, we need the reads to overlap with one another. To figure out whether our forward and reverse reads will overlap after trimming, we need to know the length of the amplicon that we sequenced. In our case, the 799F-1115R primers create an amplicon that is 316 nucleotides in length. Thus, we need to make sure that the total length of the forward and reverse reads that remains after trimming is longer than 316 nucleotides in order to have some overlapping nucleotides that can be used to merge the reads together. If the forward and reverse reads cannot be merged by overlap after trimming, it will not be possible to create a merged read that covers the full length of the amplicon. This is not a fatal problem but it can reduce accuracy of ASV binning (since we are missing data for a portion of the amplicon) and it makes taxonomic annotation more challenging. The overlapping portion of the reads also serves to increase confidence in the quality of ASVs, since for the overlapping portion we have two estimates of the nucleotide at each position which serves to reduce error and increase confidence in the base call at that position.\n\nThis is an important consideration when choosing what primers to use and what sequencing technology to use. You should aim to ensure that the total length of your forward and reverse reads is enough to cover the length of the region targeted by your primers, with as much overlap as possible to make merging the reads together easier. In our case, with an amplicon length of 312 nucleotides, and forward/reverse reads of around 300 nucleotides each, we will be sure to have lots of overlap, so we don't have to worry too much if we need to trim our reads.\n\nNow that we know the number of nucleotides to trim from the start and end of each sequence, we can now filter and trim our reads. Here, we will trim out barcode and primer nucleotides from the start of reads and low-quality nucleotides from the end of reads. We also filter out reads with low quality after trimming, as well as reads that contain N (unknown) nucleotides and reads that map to the phiX genome (a viral genome that is often added to sequencing runs to increase library quality).\n\nThis will create filtered versions of the FASTQ files in a new folder named dada2-filtered.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# set filtered file folder paths and filenames\nfilt_path <- file.path(getwd(), \"dada2-filtered\")\nfiltFs <- file.path(filt_path, paste0(sample.names, \"_F_filt.fastq.gz\"))\nfiltRs <- file.path(filt_path, paste0(sample.names, \"_R_filt.fastq.gz\"))\n\n# Filter and trim reads\n# multithread argument = number of cores to use (set TRUE to use all)\n# note need to trim out primers at the start of the reads\n# and trim the end of the reads when the quality crashes\nout <- filterAndTrim(fnFs, filtFs, fnRs, filtRs, trimLeft = c(30,28),\n truncLen=c(200,230), maxN=0, maxEE=2,\n truncQ=2, rm.phix=TRUE, compress=TRUE, \n multithread=TRUE, verbose=TRUE)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nCreating output directory: /Users/katherine/Documents/GitHub/bios2.github.io/posts/2022-05-19-introduction-to-microbiome-analysis/dada2-filtered\n```\n:::\n:::\n\n\n### Inferring ASVs\n\nNow that we have our trimmed quality-control sequences, we can infer the identity and abundance of ASVs in our sequence files.\n\nThe first step of this process is to learn the error rates of our sequences. DADA2 uses information about error rates to infer the identity of ASVs in the samples.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Learn error rates\nerrF <- learnErrors(filtFs, multithread=TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n103149200 total bases in 606760 reads from 32 samples will be used for learning the error rates.\n```\n:::\n\n```{.r .cell-code}\nerrR <- learnErrors(filtRs, multithread=TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n101062620 total bases in 500310 reads from 22 samples will be used for learning the error rates.\n```\n:::\n:::\n\n\nOnce we have learned the error rates, we do some bookkeeping to reduce the time required to infer ASVs by removing replicate sequences from each sample. A given FASTQ file might contain large numbers of identical sequences. We don't need to analyse each of these sequences separately; we'll dereplicate the file by removing duplicates of identical sequences. This keeps track of the number of duplicates so that at the end of our process we know the actual abundance of each of these identical sequences.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Dereplicate the filtered fastq files\nderepFs <- derepFastq(filtFs)\nderepRs <- derepFastq(filtRs)\n# Name the derep-class objects by the sample names\nnames(derepFs) <- sample.names\nnames(derepRs) <- sample.names\n```\n:::\n\n\nNow we are ready to use the [DADA2 algorithm](http://dx.doi.org/10.1038/nmeth.3869) to identify ASVs in our samples. DADA2 uses a model of the error rate in sequences to identify the unique amplicon sequence variants (ASVs) that are present in our samples.\n\nWhen carrying out ASV binning and chimera identification, we have the option to pool together samples (the pool argument). There are different strategies for pooling samples together. It is quicker to bin ASVs on a per-sample basis, but this might miss extremely rare ASVs that occur with low abundance in multiple samples. By pooling samples together, we can increase our ability to accurately identify these rare ASVs. The downside is that pooling samples together takes more time since we not have to analyse a larger number of sequences at the same time. The \"pseudo-pooling\" option strikes a balance between these options and is the approach we'll use today. There is an in-depth explanation of the different pooling options at the [DADA2 website](https://benjjneb.github.io/dada2/pseudo.html).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Infer the sequence variants in each sample\ndadaFs <- dada(derepFs, err=errF, pool=\"pseudo\", multithread=TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSample 1 - 43893 reads in 4133 unique sequences.\nSample 2 - 1535 reads in 279 unique sequences.\nSample 3 - 342 reads in 80 unique sequences.\nSample 4 - 36815 reads in 4992 unique sequences.\nSample 5 - 6901 reads in 796 unique sequences.\nSample 6 - 69130 reads in 6170 unique sequences.\nSample 7 - 13883 reads in 1640 unique sequences.\nSample 8 - 35769 reads in 2874 unique sequences.\nSample 9 - 35178 reads in 3504 unique sequences.\nSample 10 - 49487 reads in 5858 unique sequences.\nSample 11 - 15594 reads in 1607 unique sequences.\nSample 12 - 28849 reads in 2366 unique sequences.\nSample 13 - 529 reads in 110 unique sequences.\nSample 14 - 29475 reads in 2956 unique sequences.\nSample 15 - 22328 reads in 1714 unique sequences.\nSample 16 - 17615 reads in 2171 unique sequences.\nSample 17 - 24895 reads in 3116 unique sequences.\nSample 18 - 31171 reads in 2974 unique sequences.\nSample 19 - 11127 reads in 1205 unique sequences.\nSample 20 - 20 reads in 16 unique sequences.\nSample 21 - 255 reads in 57 unique sequences.\nSample 22 - 25519 reads in 2519 unique sequences.\nSample 23 - 7057 reads in 645 unique sequences.\nSample 24 - 29 reads in 11 unique sequences.\nSample 25 - 86 reads in 23 unique sequences.\nSample 26 - 11570 reads in 1413 unique sequences.\nSample 27 - 21806 reads in 2227 unique sequences.\nSample 28 - 8836 reads in 1092 unique sequences.\nSample 29 - 500 reads in 108 unique sequences.\nSample 30 - 19733 reads in 2783 unique sequences.\nSample 31 - 347 reads in 94 unique sequences.\nSample 32 - 36486 reads in 5477 unique sequences.\nSample 33 - 22106 reads in 2394 unique sequences.\nSample 34 - 24618 reads in 2881 unique sequences.\nSample 35 - 608 reads in 124 unique sequences.\nSample 36 - 25074 reads in 3998 unique sequences.\nSample 37 - 22197 reads in 2188 unique sequences.\n\n selfConsist step 2\n```\n:::\n\n```{.r .cell-code}\ndadaRs <- dada(derepRs, err=errR, pool=\"pseudo\", multithread=TRUE)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nSample 1 - 43893 reads in 3352 unique sequences.\nSample 2 - 1535 reads in 196 unique sequences.\nSample 3 - 342 reads in 71 unique sequences.\nSample 4 - 36815 reads in 4930 unique sequences.\nSample 5 - 6901 reads in 557 unique sequences.\nSample 6 - 69130 reads in 5237 unique sequences.\nSample 7 - 13883 reads in 1296 unique sequences.\nSample 8 - 35769 reads in 2357 unique sequences.\nSample 9 - 35178 reads in 2961 unique sequences.\nSample 10 - 49487 reads in 4856 unique sequences.\nSample 11 - 15594 reads in 1250 unique sequences.\nSample 12 - 28849 reads in 2007 unique sequences.\nSample 13 - 529 reads in 83 unique sequences.\nSample 14 - 29475 reads in 2315 unique sequences.\nSample 15 - 22328 reads in 1413 unique sequences.\nSample 16 - 17615 reads in 1728 unique sequences.\nSample 17 - 24895 reads in 2801 unique sequences.\nSample 18 - 31171 reads in 2593 unique sequences.\nSample 19 - 11127 reads in 1113 unique sequences.\nSample 20 - 20 reads in 16 unique sequences.\nSample 21 - 255 reads in 48 unique sequences.\nSample 22 - 25519 reads in 2316 unique sequences.\nSample 23 - 7057 reads in 571 unique sequences.\nSample 24 - 29 reads in 8 unique sequences.\nSample 25 - 86 reads in 18 unique sequences.\nSample 26 - 11570 reads in 1256 unique sequences.\nSample 27 - 21806 reads in 1916 unique sequences.\nSample 28 - 8836 reads in 1008 unique sequences.\nSample 29 - 500 reads in 96 unique sequences.\nSample 30 - 19733 reads in 2245 unique sequences.\nSample 31 - 347 reads in 87 unique sequences.\nSample 32 - 36486 reads in 5014 unique sequences.\nSample 33 - 22106 reads in 2037 unique sequences.\nSample 34 - 24618 reads in 2683 unique sequences.\nSample 35 - 608 reads in 83 unique sequences.\nSample 36 - 25074 reads in 3689 unique sequences.\nSample 37 - 22197 reads in 1876 unique sequences.\n\n selfConsist step 2\n```\n:::\n:::\n\n\n### Merge denoised forward and reverse reads\n\nNow that we have identified ASVs from our sequences, we can merge together the forward and reverse reads into a single sequence that will cover the full length of our amplicon. This approach works by looking for matching nucleotides in the overlapping portion of the forward and reverse reads.\n\nAs noted above, if your forward and reverse reads do not overlap, they cannot be merged. It is still possible to merge them by concatenating together the forward and reverse reads, but this approach makes it more difficult to do taxonomic annotation.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Merge the denoised forward and reverse reads:\nmergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs)\n```\n:::\n\n\n### Construct sequence table\n\nWe have identified ASVs and merged the forward and reverse reads into a single ASV. We can now construct the sequence table, which is a matrix of ASV abundances in each sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# construct sequence table\nseqtab <- makeSequenceTable(mergers)\n# look at dimension of sequence table (# samples, # ASVs)\ndim(seqtab)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 37 2540\n```\n:::\n\n```{.r .cell-code}\n# look at length of ASVs\ntable(nchar(getSequences(seqtab)))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\n295 296 297 298 299 300 301 302 303 304 305 306 307 308 312 318 \n 12 113 73 99 82 458 264 697 484 109 140 1 5 1 1 1 \n```\n:::\n:::\n\n\n### Remove chimeras\n\nThe final step of processing the sequence files involves identifying and removing chimeric sequences. These are sequences that contain portions of two distinct organisms. Chimeric sequences can arise at different stages in the process of sequencing samples including during PCR and during sequencing.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# remove chimeras\nseqtab.nochim <- removeBimeraDenovo(seqtab, method=\"consensus\", multithread=TRUE, verbose=TRUE)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nIdentified 1425 bimeras out of 2540 input sequences.\n```\n:::\n\n```{.r .cell-code}\n# look at dimension of sequence table (# samples, # ASVs) after chimera removal\ndim(seqtab.nochim)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 37 1115\n```\n:::\n\n```{.r .cell-code}\n# what % of reads remain after chimera removal?\nsum(seqtab.nochim)/sum(seqtab)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 0.9836811\n```\n:::\n:::\n\n\n### Tracking read fate through the pipeline\n\nNow we have completed the processing of our files.\nWe can track how many reads per sample remain after the different steps of the process.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# summary - track reads through the pipeline\ngetN <- function(x) sum(getUniques(x))\ntrack <- cbind(out, sapply(dadaFs, getN), sapply(mergers, getN), rowSums(seqtab), rowSums(seqtab.nochim))\ncolnames(track) <- c(\"input\", \"filtered\", \"denoised\", \"merged\", \"tabled\", \"nonchim\")\nrownames(track) <- sample.names\nhead(track)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n input filtered denoised merged tabled nonchim\nAUC.C1.2X1 45852 43893 43836 43297 43297 43268\nAUC.C1.3 1605 1535 1535 1532 1532 1522\nAUC.N1.1 362 342 332 324 324 324\nAUC.N1.3 38442 36815 36731 35069 35069 33707\nAUC.N2.1.X1 7193 6901 6899 6857 6857 6854\nAUC.N2.1X2 72307 69130 69116 68251 68251 68226\n```\n:::\n:::\n\n\n### Taxonomic annotation\n\nNow we will annotate the taxonomic identity of each ASV by comparing its sequence with a reference database. Our data are bacterial 16S rRNA sequences so we'll use the SILVA database for this taxonomic annotation. A version of the SILVA database formatted for use with DADA2 is available at the [DADA2 website](https://benjjneb.github.io/dada2/training.html), along with other databases for different barcode genes.\n\n#### Higher-level taxonomic annotation\n\nFor taxonomic annotation at ranks from domains to genera, DADA2 uses the [RDP Naive Bayesian Classifier algorithm](https://journals.asm.org/doi/10.1128/AEM.00062-07). This algorithm compares each ASV sequence to the reference database. If the bootstrap confidence in the taxonomic annotation at each rank is 50% or greater, we assign that annotation to the ASV at that rank. If an ASV cannot be confidently identified at a given rank, there will be a NA value in the taxonomy table.\n\nNote that this step can be time consuming, especially if you have a large number of ASVs to identify. Running this annotation step on a computer with numerous cores/threads will speed up the process.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# identify taxonomy\ntaxa <- assignTaxonomy(seqtab.nochim, \"SILVA138.1/silva_nr99_v138.1_train_set.fa.gz\", multithread=TRUE, tryRC=TRUE)\n```\n:::\n\n\n#### Species-level taxonomic annotation\n\nWe use the RDP Naive Bayesian Classifier algorithm for taxonomic annotations at ranks from domains to genera. This allows for annotations even if there is not an exact match between ASV sequences and sequences in the reference database. At the species level, we need a different strategy, since we do not want to identify an ASV as belonging to a species unless its sequence matches that species exactly. Note that this approach means that we cannot carry out species-level taxonomic annotation if we concatenated our sequences rather than merging them together into a single sequence.\n\nThis step can also be somewhat time consuming depending on the number of ASVs to be annotated.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# exact species matching (won't work if concatenating sequences)\ntaxa.sp <- addSpecies(taxa, \"SILVA138.1/silva_species_assignment_v138.1.fa.gz\", allowMultiple = TRUE, tryRC = TRUE)\n```\n:::\n\n\nNow that we have the taxonomic annotations, we can inspect them. We create a special version of the taxonomy table with the ASV names removed (the name of each ASV is its full sequence, so the names are very long).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# inspect the taxonomic assignments\ntaxa.print <- taxa.sp # Removing sequence rownames for display only\nrownames(taxa.print) <- NULL\nhead(taxa.print, n=20)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \n [1,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n [2,] \"Bacteria\" \"Cyanobacteria\" \"Cyanobacteriia\" \"Chloroplast\" \n [3,] \"Bacteria\" \"Bacteroidota\" \"Bacteroidia\" \"Cytophagales\" \n [4,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n [5,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n [6,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n [7,] \"Bacteria\" \"Actinobacteriota\" \"Actinobacteria\" \"Micrococcales\" \n [8,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n [9,] \"Bacteria\" \"Actinobacteriota\" \"Actinobacteria\" \"Micrococcales\" \n[10,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n[11,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n[12,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n[13,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n[14,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n[15,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n[16,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n[17,] \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Burkholderiales\" \n[18,] \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Burkholderiales\" \n[19,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n[20,] \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n Family Genus \n [1,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n [2,] NA NA \n [3,] \"Hymenobacteraceae\" \"Hymenobacter\" \n [4,] \"Sphingomonadaceae\" \"Sphingomonas\" \n [5,] \"Sphingomonadaceae\" \"Sphingomonas\" \n [6,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n [7,] \"Microbacteriaceae\" \"Amnibacterium\" \n [8,] \"Sphingomonadaceae\" \"Sphingomonas\" \n [9,] \"Microbacteriaceae\" \"Frondihabitans\" \n[10,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n[11,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n[12,] \"Beijerinckiaceae\" \"1174-901-12\" \n[13,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n[14,] \"Sphingomonadaceae\" \"Sphingomonas\" \n[15,] \"Sphingomonadaceae\" \"Sphingomonas\" \n[16,] \"Sphingomonadaceae\" \"Sphingomonas\" \n[17,] \"Oxalobacteraceae\" \"Massilia\" \n[18,] \"Oxalobacteraceae\" \"Massilia\" \n[19,] \"Sphingomonadaceae\" \"Sphingomonas\" \n[20,] \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n Species \n [1,] NA \n [2,] NA \n [3,] \"arcticus/bucti/perfusus\" \n [4,] \"aerolata/faeni\" \n [5,] NA \n [6,] NA \n [7,] NA \n [8,] \"ginsenosidivorax\" \n [9,] \"australicus/cladoniiphilus/peucedani/sucicola\"\n[10,] NA \n[11,] NA \n[12,] NA \n[13,] NA \n[14,] \"faeni\" \n[15,] \"echinoides/glacialis/mucosissima/rhizogenes\" \n[16,] NA \n[17,] NA \n[18,] \"aurea/oculi\" \n[19,] NA \n[20,] NA \n```\n:::\n:::\n\n\n### Final steps - clean up and save data objects and workspace\n\nWe have now completed our analysis of the sequence files. We have created an ASV table seqtab.nochim that contains the error-corrected non-chimeric ASV sequences and their abundances in each sample. For each ASV we also have the taxonomic annotations of the ASV in the object taxa.sp. We will save these data objects to the file system, along with a copy of the entire workspace containing all the output of the analyses so far. We will use these files to continue our analyses in the next part of the workshop.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n## Save sequence table and taxonomic annotations to individual files\nsaveRDS(seqtab.nochim, \"seqtab.nochim.rds\")\nsaveRDS(taxa.sp, \"taxa.sp.rds\")\n## Save entire R workspace to file\nsave.image(\"Microbiome-sequence-analysis-workspace.RData\")\n```\n:::\n\n\n\n# Data normalization and ecological analysis of microbiome data\n\nIn this workshop, we will use the output of a DADA2 analysis of raw sequence data to explore the importance of different factors that influence the diversity and composition of microbial communities on leaves.\n\n## About the data set\n\nIn this workshop, we will be analyzing the bacterial communities found on leaves of sugar maple seedlings of different provenances planted at sites across eastern North America.\n\nThese data are taken from the article:\n\nDe Bellis, Laforest-Lapointe, Solarik, Gravel, and Kembel. 2022. Regional variation drives differences in microbial communities associated with sugar maple across a latitudinal range. Ecology (published online ahead of print). [doi:10.1002/ecy.3727](https://doi.org/10.1002/ecy.3727)\n\nFor this workshop, we will work with a subset of samples from six of the nine sites sampled for the article. These samples are located in three different biomes (temperate, mixed, and boreal forests). At each site, several sugar maple seedlings were planted and harvested, and we collected bacterial DNA from the leaves. Each sample thus represents the bacterial communities on the leaves of a single sugar maple seedling. For each seedling, we have associated metadata on the provenance of the seed, the site where the seed was planted, and the biome/stand type where the seed was planted.\n\n## Install and load required packages and data\n\nFor this part of the workshop we will need to install several R packages. The commands below should work to install these packages, you should make sure you have the latest version of R installed (version 4.2.0 at the time of writing this document).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# install packages from CRAN\ninstall.packages(pkgs = c(\"Rcpp\", \"RcppArmadillo\", \"picante\", \"ggpubr\", \"pheatmap\"), dependencies = TRUE)\n# install packages from Bioconductor\nif (!require(\"BiocManager\", quietly = TRUE))\n install.packages(\"BiocManager\")\nBiocManager::install(\"dada2\", version = \"3.15\", update = FALSE)\n# if the dada2 install returns a warning for BiocParallel, install from binary using this command:\n# BiocManager::install(\"BiocParallel\", version = \"3.15\", type=\"binary\", update = FALSE)\nBiocManager::install(\"DESeq2\")\nBiocManager::install(\"phyloseq\")\nBiocManager::install(\"ANCOMBC\")\n```\n:::\n\n\nTo begin, we will load the required packages.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n### load packages\nlibrary(picante)\nlibrary(vegan)\nlibrary(ggplot2)\nlibrary(reshape2)\nlibrary(ggpubr)\nlibrary(DESeq2)\nlibrary(pheatmap)\nlibrary(ANCOMBC)\nlibrary(phyloseq)\n```\n:::\n\n\n### Load DADA2 results \n\nWe will continue our analyses picking up where we left off at the end of day 1 of the workshop. We used the DADA2 package to identify ASVs and their abundances in samples, and to annotate ASVs taxonomically by comparing them to the SILVA rRNA database. We saved these data objects as files. You will need to place a copy of the files \"seqtab.nochim.rds\" and \"taxa.sp.rds\" in the working directory, and then we load them into our R workspace.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load sequence table (nonchimeric ASV abundances in samples)\nseqtab.nochim <- readRDS(\"seqtab.nochim.rds\")\n# load taxonomic annotations (taxonomic ID of each ASV)\ntaxa.sp <- readRDS(\"taxa.sp.rds\")\n```\n:::\n\n\n### Load metadata \n\nThe metadata file we will use for this workshop is available for download at the following URL: [https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077](https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077).\n\nYou will need to download the file \"metadata-Qleaf_BACT.csv\" and place a copy of this file in the working directory. Then we can load the metadata.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# load metadata\nmetadata <- read.csv(\"metadata-Qleaf_BACT.csv\", row.names = 1)\n# inspect metadata\nhead(metadata)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Description SampleType StandType TransplantedSite\nASH.S2.2 ASH.S2.2 Leaf.Bacteria Boreal Ashuapmushuan\nASH.N1.1.X1 ASH.N1.1.X1 Leaf.Bacteria Boreal Ashuapmushuan\nASH.N1.1.X3 ASH.N1.1.X3 Leaf.Bacteria Boreal Ashuapmushuan\nASH.N1.1X3 ASH.N1.1X3 Leaf.Bacteria Boreal Ashuapmushuan\nASH.C1.1 ASH.C1.1 Leaf.Bacteria Boreal Ashuapmushuan\nASH.C1.2 ASH.C1.2 Leaf.Bacteria Boreal Ashuapmushuan\n SeedSourceRegion SeedSourceOrigin TransplantedSiteLat\nASH.S2.2 South Kentucky 48.81\nASH.N1.1.X1 North Montmagny 48.81\nASH.N1.1.X3 North Montmagny 48.81\nASH.N1.1X3 North Montmagny 48.81\nASH.C1.1 Central Pennsylvania 48.81\nASH.C1.2 Central Pennsylvania 48.81\n TransplantedSiteLon SeedSourceOriginLat SeedSourceOriginLon\nASH.S2.2 -72.77 38.26 -84.95\nASH.N1.1.X1 -72.77 46.95 -70.46\nASH.N1.1.X3 -72.77 46.95 -70.46\nASH.N1.1X3 -72.77 46.95 -70.46\nASH.C1.1 -72.77 41.13 -77.62\nASH.C1.2 -72.77 41.13 -77.62\n```\n:::\n:::\n\n\nThe metadata contains information about each sample, including the following columns:\n\n* Description: the name of the sample (these match the names used on the sequence files)\n* SampleType: the samples we are working with are all leaf bacteria (we collected other types of data in the original study, but here we focus just on leaf bacteria)\n* StandType: the stand/biome type of the site where the seedling were planted. Either boreal, mixed, or temperate forest.\n* TransplantedSite: the site where the seedling was planted\n* SeedSourceRegion: the region from which the seed was collected\n* SeedSourceOrigin: the site from which the seed was collected\n* TransplantedSiteLat and TransplantedSiteLon: the latitude and longitude of the site where the seedling was transplanted\n\n## Cleaning and summarizing DADA2 results \n\nOur first steps will be to do some cleaning up of the DADA2 results to make it easier to work with them. We create community and taxonomy objects that we will work with.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# community object from nonchimeric ASV sequence table\ncomm <- seqtab.nochim\n# taxonomy object - make sure order of ASVs match between community and taxonomy\ntaxo <- taxa.sp[colnames(comm),]\n# keep metadata only for community samples\nmetadata <- metadata[rownames(comm),]\n```\n:::\n\n\nWe will also rename the ASVs in our community and taxonomy data objects. By default, ASVs are named by their full sequence. This makes it hard to look at these objects since the names are too long to display easily. We will replace the names of ASVs by \"ASV_XXX\" where XXX is a number from 1 to the number of observed ASVs.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# ASV names are their full sequences by default\n# This makes it very hard to look at them (the names are too long)\n# Store ASV sequence information and rename ASVs as \"ASV_XXX\"\nASV.sequence.info <- data.frame(ASV.name=paste0('ASV_',1:dim(comm)[2]),\n ASV.sequence=colnames(comm))\ncolnames(comm) <- ASV.sequence.info$ASV.name\nrownames(taxo) <- ASV.sequence.info$ASV.name\n```\n:::\n\n\n### Exploring community data\n\nNow we can begin to look at our data in more depth. \n\n\n::: {.cell}\n\n```{.r .cell-code}\n# community - number of samples (rows) and ASVs (columns)\ndim(comm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 37 1115\n```\n:::\n:::\n\n\nWe have 37 samples and 1115 ASVs. If we look at our data objects, we can see the type of data in each of the different objects.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# look at community data object\nhead(comm)[,1:6]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n ASV_1 ASV_2 ASV_3 ASV_4 ASV_5 ASV_6\nAUC.C1.2X1 10335 158 3993 4092 584 3225\nAUC.C1.3 123 98 15 0 3 3\nAUC.N1.1 84 17 16 5 0 3\nAUC.N1.3 4738 113 628 3978 0 329\nAUC.N2.1.X1 1871 1853 1431 20 58 2\nAUC.N2.1X2 19648 4200 6465 191 7221 2054\n```\n:::\n\n```{.r .cell-code}\n# look at taxonomy object\nhead(taxo)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \nASV_1 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \nASV_2 \"Bacteria\" \"Cyanobacteria\" \"Cyanobacteriia\" \"Chloroplast\" \nASV_3 \"Bacteria\" \"Bacteroidota\" \"Bacteroidia\" \"Cytophagales\" \nASV_4 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\nASV_5 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\nASV_6 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \n Family Genus \nASV_1 \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\nASV_2 NA NA \nASV_3 \"Hymenobacteraceae\" \"Hymenobacter\" \nASV_4 \"Sphingomonadaceae\" \"Sphingomonas\" \nASV_5 \"Sphingomonadaceae\" \"Sphingomonas\" \nASV_6 \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\n Species \nASV_1 NA \nASV_2 NA \nASV_3 \"arcticus/bucti/perfusus\"\nASV_4 \"aerolata/faeni\" \nASV_5 NA \nASV_6 NA \n```\n:::\n\n```{.r .cell-code}\n# look at metadata object\nhead(metadata)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Description SampleType StandType TransplantedSite\nAUC.C1.2X1 AUC.C1.2X1 Leaf.Bacteria Mixed Auclair\nAUC.C1.3 AUC.C1.3 Leaf.Bacteria Mixed Auclair\nAUC.N1.1 AUC.N1.1 Leaf.Bacteria Mixed Auclair\nAUC.N1.3 AUC.N1.3 Leaf.Bacteria Mixed Auclair\nAUC.N2.1.X1 AUC.N2.1.X1 Leaf.Bacteria Mixed Auclair\nAUC.N2.1X2 AUC.N2.1X2 Leaf.Bacteria Mixed Auclair\n SeedSourceRegion SeedSourceOrigin TransplantedSiteLat\nAUC.C1.2X1 Central Pennsylvania 47.75\nAUC.C1.3 Central Pennsylvania 47.75\nAUC.N1.1 North Montmagny 47.75\nAUC.N1.3 North Montmagny 47.75\nAUC.N2.1.X1 North Rivere-du-Loup 47.75\nAUC.N2.1X2 North Rivere-du-Loup 47.75\n TransplantedSiteLon SeedSourceOriginLat SeedSourceOriginLon\nAUC.C1.2X1 -68.08 41.13 -77.62\nAUC.C1.3 -68.08 41.13 -77.62\nAUC.N1.1 -68.08 46.95 -70.46\nAUC.N1.3 -68.08 46.95 -70.46\nAUC.N2.1.X1 -68.08 47.73 -69.48\nAUC.N2.1X2 -68.08 47.73 -69.48\n```\n:::\n:::\n\n\n### Subset community to remove host DNA\n\nBefore proceeding we need to remove host DNA and other contaminants and low-quality sequences. We should do this before rarefaction and subsetting samples since it could change the number of sequences per sample if there is a lot of non-target DNA. We will carry this step out first so that subsequent analyses don't include these non-bacterial ASVs in any of the analyses.\n\nA reminder that primer choice and the habitat you are studying will have a big effect on the amount of non-target DNA that is in your samples. Many commonly used primers (for example, the widely used Earth Microbiome Project 16S rRNA primers 515F–806R which target the V4 region of the 16S gene) will amplify not only free living bacteria, but also DNA from host cells including chloroplasts and mitochondria. If you are working with host-associated microbiomes you may want to consider using a different primer that will not amplify host DNA. For example, when quantifying plant-associated microbiomes we commonly use the 16S primer 799F-1115R which targets the V5 region of the 16S gene and does not amplify chloroplasts or mitochondria.\n\nBecause we used the 799F-1115R primers for this study, we do not expect to find much host DNA, but we should check anyways, since a few host DNA sequences might have been amplified anyways. This is a very important step of the data analysis process since host DNA is not part of the microbial community and should not be included in data analyses. Otherwise, the amount of host DNA in a sample will lead to changes in the abundance of ASVs that are not actually part of the bacterial community being targeted.\n\nWhen using a primer that targets bacteria, host DNA and DNA of non-target organisms in the samples will typically show up ASVs annotated as belonging to a non-Bacteria domain (Archaea or Eukaryota), or the taxonomic order is \"Chloroplast\", or the taxonomic family is \"Mitochondria\".\n\nFirst we check whether any of our sequence are classified into a domain other than the bacteria.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# How many ASVs are classified to different domains?\ntable(taxo[,\"Kingdom\"])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nBacteria \n 1115 \n```\n:::\n:::\n\n\nAll of the ASVs are classified as belonging to the domain Bacteria. Now let's check for chloroplasts and mitochondria.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# How many ASVs are classified as Chloroplasts?\ntable(taxo[,\"Order\"])[\"Chloroplast\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nChloroplast \n 12 \n```\n:::\n\n```{.r .cell-code}\n# How many ASVs are classified as Mitochondria?\ntable(taxo[,\"Family\"])[\"Mitochondria\"]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nMitochondria \n 2 \n```\n:::\n:::\n\n\nThere are only a few ASVs classified as chloroplasts and mitochondria. This is expected since we used a primer that should exclude this host DNA. We will remove these ASVs before continuing our analyses.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Remove chloroplast and mitochondria ASVs from taxonomy table\ntaxo <- subset(taxo, taxo[,\"Order\"]!=\"Chloroplast\" & taxo[,\"Family\"]!=\"Mitochondria\")\n# Remove these ASVs from the community matrix as well\ncomm <- comm[,rownames(taxo)]\n```\n:::\n\n\nIf you find a large number of ASVs classified as non-Bacteria, or as chloroplasts or mitochondria, you will need to remove them from your data set prior to further analysis. Sometimes this can mean that many of your samples will contain few sequences after removing the host DNA and non-bacterial ASVs. If this is the case, you can consider using a primer that will not amplify host DNA, or sequencing your samples more deeply so that enough bacterial DNA will remain after removing the host DNA. However, this latter approach will waste a lot of your sequences, and in some cases if your samples contain mostly host DNA it will be difficult to obtain enough bacterial sequences to carry out ecological analyses.\n\n### Summary statistics\n\nTo begin with, we can calculate summary statistics for our community and taxonomy data. We mentioned earlier that the number of sequences per sample (library size) is normalized, meaning we aimed to sequence approximately the same number of reads per sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# number of reads per sample\nrowSums(comm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n AUC.C1.2X1 AUC.C1.3 AUC.N1.1 AUC.N1.3 AUC.N2.1.X1 AUC.N2.1X2 \n 43110 1305 307 33460 4966 63971 \n AUC.N2.2 AUC.S1.1.X2 AUC.S1X1 AUC.S2.2 BC.C1.2 BC.C2.1X1 \n 13344 19423 33599 45852 8670 25333 \n BC.C2.3X2 BC.C2.3X2b BC.N1.3X2 BC.N1 BC.N2.1.X3 BC.N2.1X1 \n 271 24140 7507 15011 22165 20475 \n BC.N2.1X2 PAR.C1.1 PAR.C1.2 PAR.C2.3 PAR.N1.3 QLbactNeg19 \n 10486 13 161 23407 6927 27 \nQLbactNeg20 S.M.C1.3X2 S.M.C2.3 S.M.C2.3X2 S.M.S1.1X1 SF.C1.3 \n 84 10137 21022 8403 485 19081 \n SF.C2.2 SF.N2.3 SF.S1.3 T2.C1.1 T2.C2.3 T2.N1.1 \n 273 31340 19664 23534 602 20712 \n T2.S2.1 \n 21663 \n```\n:::\n\n```{.r .cell-code}\n# visualize log10 number of reads per sample\nhist(log10(rowSums(comm)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-32-1.png){width=672}\n:::\n:::\n\n\nWe can see that most samples have at least 4000-10000 sequences/sample. But there are some samples with fewer reads. This includes both the negative control samples as well as some of the 'real' samples. We will need to remove samples with too few reads - we'll return to this shortly.\n\nWe can also look at the number of sequences per ASV.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# log10 of number of reads per ASV\nhist(log10(colSums(comm)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-33-1.png){width=672}\n:::\n:::\n\n\nWe can see that ASV abundances follow a roughly lognormal distribution, meaning that there are a few highly abundant ASVs, but most ASVs are rare. Most ASVs are represented by fewer than 100 sequences (10^2).\n\n### Remove negative controls and samples with low-quality data\n\nOne of the first steps of analysing ASV data sets is to remove control samples, as well as samples with too few sequences. We will also need to normalize our data to take into account the fact that samples differ in the number of sequences they contain.\n\n#### Rarefaction curves\n\nWe will visualize the relationship between the number of sequences in each sample (\"sample size\" in the figures below) versus the number of ASVs they contain (\"species\" in the figures below). These rarefaction curves make it clear why we need to take the number of sequences per sample into account when we analyse sample diversity.\n\nFirst we plot a rarefaction curve for all samples. Each curve shows how the number of ASVs per sample changes with number of sequences in a particular sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nrarecurve(comm, step=200, label=TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-34-1.png){width=672}\n:::\n:::\n\n\nFor these rarefaction curves, the key thing to look for is where ASV richness (number of ASVs per sample) reaches a plateau relative to the number of reads per sample. It does look like the samples we can see have reached a plateau of ASV richness. But it's hard to see the curve for many of the samples because of the x-axis limits - a few samples with a lot of sequences make it hard to see the less diverse samples. Let's zoom in to look just at the range from 0 to 5000 sequences/sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nrarecurve(comm, step=200, label=TRUE, xlim=c(0,5000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-35-1.png){width=672}\n:::\n:::\n\n\nNow we can see that the vast majority of samples reach a plateau in their ASV richness by around 3000-5000 sequences/sample. There are a few samples with very low numbers of both sequences and ASVs. We will now look at the composition of the communities in these different samples.\n\n#### Visualize community composition\n\nAnother way to quickly visualize the composition of all of our samples is to do an ordination to visualize similarity in composition among samples. Here we will visualize a principal components analysis on Hellinger-transformed ASV abundance data. Normally we should normalize the data before doing any diversity analysis but here we just want a quick look at whether some samples have very different composition from the rest. We do a PCA analysis and then plot the ordination results, overlaying confidence ellipses around the samples from the different transplanted stand types/biomes.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# PCA on Hellinger-transformed community data\ncomm.pca <- prcomp(decostand(comm,\"hellinger\"))\n# plot ordination results\nordiplot(comm.pca, display=\"sites\", type=\"text\",cex=0.5)\nordiellipse(comm.pca, metadata$StandType, label=TRUE,cex=0.8)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-36-1.png){width=672}\n:::\n:::\n\n\nThere are two things to note in this ordination figure. First, we can see that along the first axis there is a separation between the negative control samples and a few other samples that cluster with the negative controls, versus all the other samples. Second, we can see that the composition of the communities seems to differ among stand type/biome along the second axis, varying from boreal to mixed to temperate forests. We'll return to this observation later, but for now the important thing is that we can see that there are some samples that are more similar to the negative control samples than they are to the other 'real' samples. Let's visualize the number of sequences per sample (library size) mapped onto these ordination axes.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Surface plot - plot number of sequences/sample (library size)\nordisurf(comm.pca, rowSums(comm), bubble=TRUE, cex=2,\n main=\"Library size (sequences/sample)\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-37-1.png){width=672}\n:::\n:::\n\n\nWe can see that the common characteristic of the samples that cluster on the right side of the ordination plot, next to the negative control samples, is that these samples contain very few sequences.\n\nThere are several reasons why some samples contain few sequences, but in general this is an indication that these samples contain data of low quality and should be excluded from further analysis. This can be caused by low microbial biomass in the original samples, with some problem with the extraction or amplification of microbial DNA in these samples, or simply by chance. Regardless, the fact that the composition of the microbial communities in these samples is more similar to the negative controls than to the other 'real' samples means we need to get rid of these samples.\n\nIf many of your samples contain few sequences, this could indicate some problem with the protocol being used for sample processing and sequencing, or the normalization step of library preparation. It could also indicate low microbial biomass. In the data we are analysing here, I suspect that the problem with these samples was low microbial biomass. The maple seedlings from which we extracted microbial DNA were sometimes small with only 1-2 tiny leaves, which doesn't contain enough bacterial cells to reliably extract and sequence their DNA. When microbial biomass in a sample is small, the potential importance of contaminant DNA increases. Regardless of the cause, we will have to exclude these samples.\n\nDeciding what number of sequences to use as a cutoff when getting rid of samples with a low number of sequences will depend on the nature of your data set and your biological questions. You should always aim to ensure that you have enough reads per sample to reach a plateau in the rarefaction curve. Beyond that, you may want set a cutoff for a minimum number of reads per sample that ensures that you keep enough samples to have sufficient replicates in your different treatments.\n\n#### Check negative controls\n\nWe sequenced negative controls in this study to ensure that our samples were not contaminated and that the sequences we obtained come from bacteria on leaves and not from some other step of the sample processing such as from the DNA extraction kits or during PCR. As we saw above, the inclusion of these negative control samples is useful because we can look at their composition to identify 'real' samples that might contain contaminants. As a final step, let's look at the negative control samples to see what ASVs they contain.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Abundance of ASVs in negative controls\ncomm['QLbactNeg19',][comm['QLbactNeg19',]>0]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n ASV_1 ASV_44 ASV_77 ASV_138 \n 1 11 11 4 \n```\n:::\n\n```{.r .cell-code}\ncomm['QLbactNeg20',][comm['QLbactNeg20',]>0]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n ASV_8 ASV_30 ASV_77 ASV_91 ASV_418 ASV_625 ASV_1002 \n 1 1 2 1 72 3 4 \n```\n:::\n:::\n\n\nOur negative controls look clean - they contain only a few sequences (fewer than 100) belonging to a small number of ASVs. This is the type of result we are looking for, and we will remove these negative controls shortly when we remove low quality samples with small numbers of sequences. We can also look at the taxonomic identity of the ASVs that are present in the negative controls.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Taxonomic identity of ASVs present in negative controls\ntaxo[names(comm['QLbactNeg19',][comm['QLbactNeg19',]>0]),]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \nASV_1 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \nASV_44 \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Enterobacterales\"\nASV_77 \"Bacteria\" \"Firmicutes\" \"Bacilli\" \"Lactobacillales\" \nASV_138 \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Enterobacterales\"\n Family Genus \nASV_1 \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\nASV_44 \"Shewanellaceae\" \"Shewanella\" \nASV_77 \"Streptococcaceae\" \"Streptococcus\" \nASV_138 \"Shewanellaceae\" \"Shewanella\" \n Species \nASV_1 NA \nASV_44 \"algae/haliotis\" \nASV_77 \"cristatus/gordonii/ictaluri/mitis/porcorum/sanguinis\"\nASV_138 NA \n```\n:::\n\n```{.r .cell-code}\ntaxo[names(comm['QLbactNeg20',][comm['QLbactNeg20',]>0]),]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \nASV_8 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\nASV_30 \"Bacteria\" \"Bacteroidota\" \"Bacteroidia\" \"Cytophagales\" \nASV_77 \"Bacteria\" \"Firmicutes\" \"Bacilli\" \"Lactobacillales\" \nASV_91 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Acetobacterales\" \nASV_418 \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Xanthomonadales\" \nASV_625 \"Bacteria\" \"Firmicutes\" \"Bacilli\" \"Lactobacillales\" \nASV_1002 \"Bacteria\" \"Firmicutes\" \"Bacilli\" \"Staphylococcales\"\n Family Genus \nASV_8 \"Sphingomonadaceae\" \"Sphingomonas\" \nASV_30 \"Hymenobacteraceae\" \"Hymenobacter\" \nASV_77 \"Streptococcaceae\" \"Streptococcus\" \nASV_91 \"Acetobacteraceae\" \"Roseomonas\" \nASV_418 \"Rhodanobacteraceae\" \"Fulvimonas\" \nASV_625 \"Streptococcaceae\" \"Streptococcus\" \nASV_1002 \"Staphylococcaceae\" \"Staphylococcus\"\n Species \nASV_8 \"ginsenosidivorax\" \nASV_30 NA \nASV_77 \"cristatus/gordonii/ictaluri/mitis/porcorum/sanguinis\" \nASV_91 NA \nASV_418 NA \nASV_625 \"anginosus/mitis/oralis/pneumoniae/pseudopneumoniae\" \nASV_1002 \"aureus/capitis/caprae/epidermidis/haemolyticus/saccharolyticus/saprophyticus/warneri\"\n```\n:::\n:::\n\n\n### Subset community to remove low sequence number samples\n\nNow that we have done some exploratory data analyses, we will take a subset of our communities remove the negative controls as well as samples with a low number of sequences. \n\nWhen we looked at the rarefaction curves, it looked like most samples reached a plateau in number of ASVs per sequence by around 3000-5000 sequences/sample. When we looked at the distribution of number of sequences per sample, we saw that most samples contained at least 4000-5000 sequences. The samples that had fewer than that number of sequences were the ones that clustered with the negative control samples to the right of the ordination figure. Thus, we will set a cutoff of 4000 sequences per sample as a minimum to include a sample in further analysis. This will remove both the negative control samples and the samples of questionable quality that contained very few sequences.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# what is the dimension of the full community data set\ndim(comm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 37 1032\n```\n:::\n\n```{.r .cell-code}\n# take subset of communities with at least 4000 sequences\ncomm.sub <- comm[rowSums(comm)>=4000,]\n# also take subset of ASVs present in the remaining samples\ncomm.sub <- comm.sub[,apply(comm.sub,2,sum)>0]\n# what is the dimension of the subset community data set?\ndim(comm.sub)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 27 1013\n```\n:::\n\n```{.r .cell-code}\n# subset metadata and taxonomy to match\nmetadata.sub <- metadata[rownames(comm.sub),]\ntaxo.sub <- taxo[colnames(comm.sub),]\n# descriptive stats for samples and ASVs\n# number of sequences per sample\nhist(rowSums(comm.sub))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-40-1.png){width=672}\n:::\n\n```{.r .cell-code}\n# log10 number of sequences per ASV\nhist(log10(colSums(comm.sub)))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-40-2.png){width=672}\n:::\n:::\n\n\n#### PCA on subset data\n\nBefore we normalize the data, let's do the same PCA analysis on Hellinger-transformed ASV abundances, this time only for the samples that remain after getting rid of those with fewer than 5000 sequences/sample.\n\n\n::: {.cell}\n\n```{.r .cell-code}\ncomm.sub.pca <- prcomp(decostand(comm.sub,\"hellinger\"))\n# plot ordination results\nordiplot(comm.sub.pca, display=\"sites\", type=\"text\",cex=0.5)\nordiellipse(comm.sub.pca, metadata.sub$StandType, label=TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-41-1.png){width=672}\n:::\n:::\n\n\nThis looks much better, there are no longer negative controls or 'outlier' samples that are highly distinct compositionally from the other sampes. We can still clearly see the gradient in composition from boreal-mixed-temperate stand types, which is now falling along the first two axes of the ordination. As mentioned previously, we now need to normalize the data to account for the remaining variation in sequence depth per sample.\n\n## Data normalization for diversity analysis\n\nData normalization for the analysis of microbiome data is a subject of great debate in the scientific literature. Different normalization approaches have been suggested to control for the compositional nature of microbiome data, to maximize statistical power, to account for variation in sequencing depth among samples, and to meet the assumptions of different statistical analysis methods.\n\nI recommend rarefaction as an essential data normalization approach that is needed when analysing the ecological diversity based on amplicon sequencing data sets. Because samples differ in sequencing depth, and this sequencing depth variation is due to the way we prepare libraries for sequencing and not any biological attribute of samples, we need to control for this variation. Rarefaction involves randomly selecting the same number of sequences per sample so that we can compare diversity metrics among samples.\n\nThe simplest justification for rarefaction is that that most measures of diversity are sensitive to sampling intensity. For example, taxa richness increases as we increase the number of individuals we sample from a community. If we take the same community and sample 10 individuals from it, and then sample 1000 individuals, we will obviously find more species when we sample more individuals. This is the fundamental problem that rarefaction addresses - we want to separate variation in diversity caused by some biological process from variation in diversity that is due to variation in library size.\n\nSimulation and empirical studies have shown that rarefaction outperforms other normalization approaches when samples differ in sequencing depth (e.g. Weiss et al. 2017. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27. [https://doi.org/10.1186/s40168-017-0237-y](https://doi.org/10.1186/s40168-017-0237-y)).\n\nDr. Pat Schloss has an excellent [series of videos on rarefaction](https://www.youtube.com/playlist?list=PLmNrK_nkqBpJuhS93PYC-Xr5oqur7IIWf) as part of his [Riffomonas](https://riffomonas.org/) project where he demonstrates very clearly why rarefaction is necessary when calculating diversity from sequencing data sets.\n\n### Rarefaction\n\nTo rarefy our data, we will randomly select the same number of sequences per sample for all of our samples. Because we already excluded samples containing fewer than 4000 sequences, we know that we can rarefy the remaining samples to at least 4000 sequences. Let's look at the rarefaction curve for our subset of samples.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# What is the smallest number of sequences/sample for subset of samples?\nmin(rowSums(comm.sub))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 4966\n```\n:::\n\n```{.r .cell-code}\n# Rarefaction curve for subset of samples\nrarecurve(comm.sub, step=200, label=FALSE, xlim=c(0,8000))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-42-1.png){width=672}\n:::\n:::\n\n\nWe can see that nearly all samples have reached a plateau of ASV richness by around 3000-4000 sequences/sample. The sample with the smallest number of sequences remaining contains 4966 sequences. We will randomly rarefy our data to this number of sequences. This way, we can feel confident that our samples contain enough sequences to adequately quantify the diversity of ASVs present in the sample even after rarefaction. \n\n\n::: {.cell}\n\n```{.r .cell-code}\nset.seed(0)\n# Randomly rarefy samples\ncomm_rarfy <- rrarefy(comm.sub, sample = min(rowSums(comm.sub)))\n# Remove any ASVs whose abundance is 0 after rarefaction\ncomm_rarfy <- comm_rarfy[,colSums(comm_rarfy)>1]\n# Match ASV taxonomy to rarefied community\ntaxo_rarfy <- taxo.sub[colnames(comm_rarfy),]\n```\n:::\n\n\n#### Check the effect of rarefaction\n\nLet's check to see what effect rarefaction had on the ASV richness of samples.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Rarefaction is not expected to have a major influence on the diversity (as rarefaction curves have reached the plateau).\nrichness_raw <- rowSums((comm.sub>0)*1)\nrichness_rarfy <- rowSums((comm_rarfy>0)*1)\nplot(richness_rarfy~richness_raw,xlab='number of ASVs in raw data',ylab='number of ASVs in rarefied data')\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-44-1.png){width=672}\n:::\n:::\n\n\nThis supports the idea that rarefaction is not expected to have a major influence on diversity, since we saw in the rarefaction curves that richness reaches a plateau below the threshold number of sequences that we used for rarefaction. However, now that we have normalized the number of reads per sample, any differences in diversity among samples are not due to potential differences in library size. We are ready to begin our diversity analyses. We will use the rarefied community data set for these analyses.\n\n## Community analysis\n\nBefore we dive into analysing the diversity of leaf bacterial communities on sugar maples, this is a good time to return to the biological questions we posed in the article from which the data are taken.\n\n### Biological questions\n\nIn the study for which these data were collected, we looked at different taxonomic groups (bacteria, fungi, mycorrhizal fungi) living on sugar maple leaves and roots. Here we will concentrate just on leaf bacteria.\n\nOur aim was to assess the relative influence of host genotype (seed provenance) and environment (transplanted site and region) in structuring the microbiome of sugar maple seedlings. When analyzing the data, let's keep focused on these biological questions to help guide our decisions about how to analyze the data. We can take different perspectives to respond to this question by looking at different aspects of diversity. And beyond specific tests of our biological hypotheses, it is also useful to carry out basic descriptive analysis of community structure in order to determine what organisms were living in our samples.\n\nIn the metadata, the variables StandType and TransplantedSite represent the region and site into which the seedlings were planted (environment), and the variables SeedSourceRegion and SeedSourceOrigin represent the region and site from which the seeds were collected (genotype).\n\n### Visualize taxonomic composition of communities\n\nA fundamental question we can address using microbiome data is simply 'who is there'? What are the abundant taxa in different samples?\n\n#### Phylum-level taxonomic composition of samples\n\nRemember that for each ASV, we have taxonomic annotations at different ranks. Here we'll look at the relative abundance of bacterial phyla in each sample. We can repeat these analyses at different taxonomic ranks, but as we go to finer ranks there will be more ASVs with missing data because we could not confidently determine their taxonomic annotation, so there will be more unidentified taxa. Nearly all ASVs have an annotation at the phylum level. We first manipulate the ASV data to create a new data object of phylum abundances, and then we can visualize those abundances.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# community data aggregation at a taxonomic level. e.g. phylum \n# take the sum of each phylum in each sample\ntaxa.agg <- aggregate(t(comm_rarfy),by=list(taxo.sub[colnames(comm_rarfy),2]),FUN=sum)\n# clean up resulting object\nrownames(taxa.agg) <- taxa.agg$Group.1\nphylum_data <- t(taxa.agg[,-1])\n# convert abundances to relative abundances\nphylum_data <- phylum_data/rowSums(phylum_data)\n# remove rare phyla\nphylum_data <- phylum_data[,colSums(phylum_data)>0.01]\n# now reshape phylum data to long format\nphylum_data <- reshape2::melt(phylum_data)\n# rename columns\ncolnames(phylum_data)[1:2] <- c('Samples','Bacteria_phylum')\n# now we can plot phylum relative abundance per sample\nggplot(phylum_data, aes(Samples, weight = value, fill = Bacteria_phylum)) +\n geom_bar(color = \"black\", width = .7, position = 'fill') +\n labs( y = 'Relative abundance (%)') +\n scale_y_continuous(expand = c(0,0)) +\n scale_fill_viridis_d(direction = -1L) +\n theme_classic() +\n coord_flip()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-45-1.png){width=672}\n:::\n:::\n\n\n#### Phylum-level composition for each transplant site\n\nIt is also useful to see how taxonomic composition varies with respect to different variables we measured. For example, how does phylum-level taxonomic composition differ among different transplant sites?\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# aggregate average phylum abundances per transplanted site\nphylum_data_agg <- aggregate(phylum_data$value,by=list(metadata.sub[phylum_data$Samples,]$TransplantedSite,phylum_data$Bacteria_phylum),FUN=mean)\n# rename columns\ncolnames(phylum_data_agg) <- c('TransplantedSite','Bacteria_phylum','value')\n# now we can plot phylum abundance by transplant site\nggplot(phylum_data_agg, aes(TransplantedSite, weight =value, fill = Bacteria_phylum)) +\n geom_bar(color = \"black\", width = .7, position = 'fill') +\n labs( y = 'Relative abundance (%)') +\n scale_y_continuous(expand = c(0,0)) +\n scale_fill_viridis_d(direction = -1L) +\n theme_classic()\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-46-1.png){width=672}\n:::\n:::\n\n\n### Community diversity (alpha diversity) \n\nTo look at how diversity differed among samples as a function of the different variables we are interested in, we'll begin by looking at the alpha-diversity, or within-community diversity. Two commonly used measures of alpha diversity are ASV richness (the number of ASVs present in the sample), and the Shannon index, also sometimes referred to as Shannon diversity or Shannon diversity index, which measures both the number of taxa in the sample (ASV richness) as well as the equitability of their abundances (evenness).\n\n#### Calculate ASV richness and Shannon diversity of bacterial community\n\n::: {.cell}\n\n```{.r .cell-code}\n# calculate ASV richness\n# calculate Shannon index\nShannon <- diversity(comm_rarfy)\nhist(richness_rarfy)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-47-1.png){width=672}\n:::\n\n```{.r .cell-code}\nhist(Shannon)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-47-2.png){width=672}\n:::\n:::\n\n\n#### Compare bacterial diversity among categories\n\nWe can ask how diversity differs with respect to seedling genotype and environment. Here, let's ask specifically whether leaf bacterial alpha diversity differs between stand types. See Figure 2 of the article by De Bellis et al. 2022 for a comparable analysis.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create data frame to hold alpha diversity values by stand type\ndiv_standtype <- data.frame(richness=richness_rarfy, Shannon=Shannon, standtype=metadata.sub$StandType)\n# set up analysis to compare diversity among different pairs of stand types\nmy_comparisons <- list( c(\"Mixed\", \"Boreal\"), c(\"Mixed\", \"Temperate\"), c(\"Boreal\", \"Temperate\") )\n# plot ASV richness as a function of stand type\nggboxplot(div_standtype, x = \"standtype\", y = \"richness\", hide.ns=F,\n color = \"standtype\", palette = \"jco\",add = \"jitter\") + \n stat_compare_means(comparisons = my_comparisons,method = \"t.test\")\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] FALSE\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-1.png){width=672}\n:::\n\n```{.r .cell-code}\n# plot Shannon index as a function of stand type\nggboxplot(div_standtype, x = \"standtype\", y = \"Shannon\",hide.ns=F,\n color = \"standtype\", palette = \"jco\",add = \"jitter\")+ \n stat_compare_means(comparisons = my_comparisons,method = \"t.test\")\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] FALSE\n```\n:::\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-48-2.png){width=672}\n:::\n:::\n\n\nThese figures indicate that ASV richness does not differ significantly among pairs of stand types. However, the Shannon index does differ somewhat between temperate and boreal stands, where the Shannon index tends to be lower in boreal stands than in temperate stands. These analyses are limited somewhat by the sample size that remains after removing low quality samples; in the original article (De Bellis et al 2022) we compared more sites which increased sample size enough that we found a significant (P<0.05) difference in the Shannon index between temperate and boreal stand types.\n\n#### Bacterial diversity related to numeric variables \n\nWe can also ask if bacterial diversity differs with respect to numeric variables, for example with respect to latitude. To ask how richness varies with latitude, we will use a generalized linear model to take into account that richness counts are count data and thus are more likely to follow a Poisson distribution than a normal distribution.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# plot richness versus latitude\nplot(richness_rarfy~metadata.sub$TransplantedSiteLat,xlab='Latitude',ylab='ASV richness')\n# add best fit line\nabline(glm(richness_rarfy~metadata.sub$TransplantedSiteLat), family=\"poisson\")\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-49-1.png){width=672}\n:::\n\n```{.r .cell-code}\n# generalized linear model of richness vs. latitude\nsummary(glm(richness_rarfy~metadata.sub$TransplantedSiteLat, family=\"poisson\"))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nglm(formula = richness_rarfy ~ metadata.sub$TransplantedSiteLat, \n family = \"poisson\")\n\nDeviance Residuals: \n Min 1Q Median 3Q Max \n-8.4014 -2.7516 0.1813 1.9888 8.7650 \n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 8.19232 0.59715 13.719 < 2e-16 ***\nmetadata.sub$TransplantedSiteLat -0.07447 0.01249 -5.961 2.51e-09 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 409.69 on 26 degrees of freedom\nResidual deviance: 374.56 on 25 degrees of freedom\nAIC: 551.05\n\nNumber of Fisher Scoring iterations: 4\n```\n:::\n:::\n\n\nASV richness of leaf bacteria decreases with increasing latitude.\n\nWhat about the Shannon index? Here we'll fit a linear model since we expect the data to be normally distributed.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# plot Shannon index versus latitude\nplot(Shannon~metadata.sub$TransplantedSiteLat,xlab='Latitude',ylab='Shannon diversity')\n# add best fit line\nabline(lm(Shannon~metadata.sub$TransplantedSiteLat))\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-50-1.png){width=672}\n:::\n\n```{.r .cell-code}\n# linear model of Shannon index vs. latitude\nsummary(lm(Shannon~metadata.sub$TransplantedSiteLat))\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n\nCall:\nlm(formula = Shannon ~ metadata.sub$TransplantedSiteLat)\n\nResiduals:\n Min 1Q Median 3Q Max \n-1.57049 -0.29249 0.08739 0.36791 1.11975 \n\nCoefficients:\n Estimate Std. Error t value Pr(>|t|) \n(Intercept) 7.88481 3.62209 2.177 0.0391 *\nmetadata.sub$TransplantedSiteLat -0.10330 0.07552 -1.368 0.1835 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\nResidual standard error: 0.5864 on 25 degrees of freedom\nMultiple R-squared: 0.06964,\tAdjusted R-squared: 0.03242 \nF-statistic: 1.871 on 1 and 25 DF, p-value: 0.1835\n```\n:::\n:::\n\n\nThe Shannon index of leaf bacteria decreases with increasing latitude, but the relationship is not statistically significant.\n\n### Community composition (beta diversity)\n\nWe can now look at the beta-diversity of the samples, which measures the between-community differences in composition.\n\nBeta diversity approaches to studying composition involve calculating a measure of the compositional difference between pairs of communities (= beta diversity, dissimilarity, or distance). Then these distance metrics can be analysed using approaches such as ordination (to summarize the overall trends in community composition among samples) or PERMANOVA (to test whether groups of samples differ significantly in their composition).\n\nThere are a huge number of different beta diversity/dissimilarity metrics that have been used in ecology. There is an ongoing debate about the relative advantages and disadvantages of these beta diversity measures and approaches. There are several different beta diversity metrics and ordination approaches that work well based on simulation studies and empirical analysis. For those wanting to learn more about multivariate analysis and beta diversity approaches for the analysis of ecological communities, the book [\"Numerical Ecology with R\"](http://adn.biol.umontreal.ca/~numericalecology/numecolR/) by Borcard, Gillet and Legendre is an excellent reference. Dr. Pierre Legendre also maintains a [website](http://adn.biol.umontreal.ca/~numericalecology/documents_enseignement/index.html) with links to several [excellent courses](http://adn.biol.umontreal.ca/~numericalecology/Trieste16/) that serve as a complete introduction to multivariate methods in ecology.\n\nIn this workshop we will focus on a few different beta diversity metrics and ordination approaches that have been shown to perform well in theory and practise when applied to ecological community data. How should you choose which of these approaches to your own data? This is not an easy question to answer, as long as you are using a method that works well with ecological community data, there are different reasons to prefer one method over another. Ultimately, it can be useful to try different approaches and see if you obtain similar results with your data.\n\n#### Ordination - Principal Components Analysis (PCA)\n\nPrincipal components analysis (PCA) is a commonly used approach to analysing multivariate data. PCA uses eigenanalysis of Euclidean distances among samples computed from ASV abundance data to identify the axes of correlated variation that explain the most possible variation in your multivariate data. These axes correspond to major gradients of changes in community composition. We typically focus on the first few axes of the PCA ordination, since these axes should capture the majority of the variation in community composition among samples.\n\nIt's important to note that PCA should never be used to analyze untranformed ecological community data. PCA is based on the Euclidean distance among samples. Ecological community data violate many of the assumptions of PCA - recall that there are many zeroes in our matrix of ASV abundances, and the distribution of abundance values among ASVs is very non-normal. [Legendre and Gallagher (2001)](http://adn.biol.umontreal.ca/~numericalecology/Reprints/Legendre_&_Gallagher.pdf) showed that several transformations including the Chord and Hellinger transformation allow ecological community data matrices to be analyzed using PCA. Here we will use the Hellinger transformation to transform ASV abundances prior to analyzing them with a PCA ordination.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# Create Hellinger-transformed version of rarefied community data\ncomm_hel <- decostand(comm_rarfy,method='hellinger')\n# PCA analysis of Hellinger-transformed community data\ncomm_hel_PCA <- prcomp(comm_hel)\n# Summarize variance in beta diversity explained by PCA axes\nsummary(comm_hel_PCA)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nImportance of components:\n PC1 PC2 PC3 PC4 PC5 PC6 PC7\nStandard deviation 0.2589 0.20916 0.19538 0.17237 0.16093 0.15440 0.1438\nProportion of Variance 0.1484 0.09685 0.08452 0.06578 0.05734 0.05278 0.0458\nCumulative Proportion 0.1484 0.24529 0.32980 0.39558 0.45291 0.50569 0.5515\n PC8 PC9 PC10 PC11 PC12 PC13 PC14\nStandard deviation 0.13831 0.13314 0.12828 0.12318 0.12099 0.11374 0.11051\nProportion of Variance 0.04235 0.03925 0.03643 0.03359 0.03241 0.02864 0.02704\nCumulative Proportion 0.59384 0.63309 0.66952 0.70311 0.73552 0.76416 0.79119\n PC15 PC16 PC17 PC18 PC19 PC20 PC21\nStandard deviation 0.10567 0.10227 0.09812 0.09407 0.09282 0.09092 0.08889\nProportion of Variance 0.02472 0.02316 0.02131 0.01959 0.01907 0.01830 0.01749\nCumulative Proportion 0.81591 0.83907 0.86039 0.87998 0.89905 0.91735 0.93484\n PC22 PC23 PC24 PC25 PC26 PC27\nStandard deviation 0.08364 0.08127 0.07621 0.07199 0.06958 2.022e-16\nProportion of Variance 0.01549 0.01462 0.01286 0.01147 0.01072 0.000e+00\nCumulative Proportion 0.95033 0.96495 0.97781 0.98928 1.00000 1.000e+00\n```\n:::\n\n```{.r .cell-code}\n# Plot PCA results\nordiplot(comm_hel_PCA, display = 'sites', type = 'text',cex=0.8, main=\"PCA on Hellinger transformed data\")\n# Add ellipses around samples from different stand types\nordiellipse(comm_hel_PCA, metadata.sub$StandType, label=TRUE)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-51-1.png){width=672}\n:::\n:::\n\n\nThe PCA ordination diagram indicates the overall compositional similarity of samples. Samples that are close together in the ordination space contain similar ASVs with similar abundances. We can see that the gradient in community composition among different stand types is visible along the first two axes. Samples from each stand type tend to contain compositionally similar leaf bacterial communities.\n\nRecall that when we were first looking at the composition of communities in our samples (prior to subsetting and rarefaction), we obtained a similar looking result. As noted, because we used a rarefaction threshold that was sufficient for the rarefaction curves of the samples to reach a plateau in ASV richness, we do not expect major differences between the analysis of rarefied versus non-rarefied data. However, by analyzing the rarefied data we are now confident that the differences in composition among the samples are due to true differences in community composition and not due to differences in library size among samples.\n\n#### Ordination - Non-metric Multidimensional Scaling (NMDS)\n\nAnother commonly used ordination approach in ecology is non-metric multidimensional scaling (NMDS). NMDS can be used with any beta diversity distance metric. Unlike PCA, NMDS is not based on eigenanalysis of the distance metric. Rather, NMDS uses an algorithm to find an ordination of samples in a few dimensions that represents as best as possible the rank transformed pairwise distances among samples measured with the original distance metric. When carrying out a NMDS analysis, rather than obtaining many PCA axes, the user specifies how many axes to identify. NMDS analysis is based on a heuristic algorithm that may give slightly different results when run multiple times on the same data, whereas PCA has a unique analytical solution.\n\nNMDS can be used with any distance metric. Commonly in microbial ecology it is used with the Bray-Curtis distance. The Bray-Curtis distance, like the Hellinger distance, has been shown to perform well compared with other distance measures ([Faith et al. 1987](https://link.springer.com/article/10.1007/BF00038687), Gallagher and Legendre 2001).\n\nHere we'll calculate a NMDS ordination using Bray-Curtis distance.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# NMDS ordination based on Bray-Curtis distances\ncomm_NMDS <- metaMDS(comm_hel, distance=\"bray\", trace=FALSE)\nordiplot(comm_NMDS, cex = 0.5, type = 'text', display='sites')\nordiellipse(comm_NMDS, metadata.sub$StandType, label=TRUE)\n# overlay the direction of latitude effect on bacteria community composition\nef <- envfit(comm_NMDS, metadata.sub$TransplantedSiteLat)\nrownames(ef$vectors$arrows)='Latitude'\nplot(ef)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-52-1.png){width=672}\n:::\n:::\n\n\nHere we can see that the NMDS ordination based on Bray-Curtis distances among samples looks quite similar to the PCA ordination, with community composition differing among different stand types. We have also added an arrow indicating the correlation between latitude and the ordination axes, which also supports the idea that communities vary as we move from boreal stands in the north to temperate stands in the south.\n\n#### PERMANOVA\n\nOrdination analyses allow us to visualize how the composition of communities differs among samples and how it relates to different variables in a qualitative way. For example, we can see from the ordination diagrams above that it seems that community composition differs among stand types. We can statistically test whether stand types differ in composition using permutational multivariate analysis of variance (PERMANOVA). A PERMANOVA works in a way similar to an ANOVA, but with multivariate compositional data. PERMANOVA tests indicate whether community composition (beta diversity) differs among groups of samples.\n\nHere we can first use a PERMANOVA to test whether community composition differs among stand types. As with ordination methods, a PERMANOVA can be run on any distance metric. Let's try computing a PERMANOVA using both Hellinger distance (used for the PCA) and Bray-Curtis distance (used for the NMDS).\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# set number of permutations for PERMANOVA\nperm <- how(nperm = 999)\n# PERMANOVA on Hellinger-transformed Euclidean distances\nadonis2(formula = dist(comm_hel) ~ StandType, data = metadata.sub, permutations = perm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nPermutation test for adonis under reduced model\nTerms added sequentially (first to last)\nPermutation: free\nNumber of permutations: 999\n\nadonis2(formula = dist(comm_hel) ~ StandType, data = metadata.sub, permutations = perm)\n Df SumOfSqs R2 F Pr(>F) \nStandType 2 1.8383 0.15653 2.227 0.001 ***\nResidual 24 9.9057 0.84347 \nTotal 26 11.7440 1.00000 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n\n```{.r .cell-code}\n# PERMANOVA on Bray-Curtis distances\nadonis2(formula = vegdist(comm_rarfy, method=\"bray\") ~ StandType, data = metadata.sub, permutations = perm)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nPermutation test for adonis under reduced model\nTerms added sequentially (first to last)\nPermutation: free\nNumber of permutations: 999\n\nadonis2(formula = vegdist(comm_rarfy, method = \"bray\") ~ StandType, data = metadata.sub, permutations = perm)\n Df SumOfSqs R2 F Pr(>F) \nStandType 2 0.9714 0.17849 2.6073 0.001 ***\nResidual 24 4.4711 0.82151 \nTotal 26 5.4425 1.00000 \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n:::\n\n\nBoth of these analyses indicate that community composition differs significantly among stand types, explaining around 16-18% of variation in the distance metric.\n\nPERMANOVA can also be used to test more complex experimental designs. Here, let's replicate the analyses by De Bellis et al. (2022). We used PERMANOVA on Bray-Curtis distances to measure the relative importance of transplanted region and site (environment) versus origin region and site (genotype) in determining the composition of leaf bacterial communities. Site is nested within region for both variable types, which we represent using \"/\" in the formula (region/site).\n\n\n::: {.cell}\n\n```{.r .cell-code}\npermanova.bc <- adonis2(formula = vegdist(comm_rarfy, method=\"bray\") ~ StandType/TransplantedSite * SeedSourceRegion/SeedSourceOrigin, data = metadata.sub, permutations = perm)\nprint(permanova.bc)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nPermutation test for adonis under reduced model\nTerms added sequentially (first to last)\nPermutation: free\nNumber of permutations: 999\n\nadonis2(formula = vegdist(comm_rarfy, method = \"bray\") ~ StandType/TransplantedSite * SeedSourceRegion/SeedSourceOrigin, data = metadata.sub, permutations = perm)\n Df SumOfSqs\nStandType 2 0.9714\nSeedSourceRegion 2 0.2306\nStandType:TransplantedSite 3 0.6369\nStandType:SeedSourceRegion 3 0.5521\nStandType:TransplantedSite:SeedSourceRegion 3 0.7395\nStandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 5 1.1115\nResidual 8 1.2005\nTotal 26 5.4425\n R2 F\nStandType 0.17849 3.2368\nSeedSourceRegion 0.04238 0.7684\nStandType:TransplantedSite 0.11703 1.4148\nStandType:SeedSourceRegion 0.10144 1.2264\nStandType:TransplantedSite:SeedSourceRegion 0.13587 1.6426\nStandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 0.20422 1.4814\nResidual 0.22058 \nTotal 1.00000 \n Pr(>F) \nStandType 0.001 ***\nSeedSourceRegion 0.825 \nStandType:TransplantedSite 0.059 . \nStandType:SeedSourceRegion 0.190 \nStandType:TransplantedSite:SeedSourceRegion 0.015 * \nStandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 0.028 * \nResidual \nTotal \n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n:::\n:::\n\n\nThis analysis shows that, as mentioned by De Bellis et al. (2022), stand type of planting was the most important variable explaining variation in leaf bacterial community composition. There was a marginally significant variation among transplanted sites. There were also significant interactions among transplant region and site as a function of seed source region and seed source site of origin, indicating that the leaf bacterial communities of some genotypes respond differently to different environments. Taken together, this analysis indicates that environment (transplant region and site) have a greater impact on the composition of leaf bacterial communities than genotype, although there is also an interaction between genotype and environment.\n\n### Differentially abundant taxa\n\nBy analyzing alpha and beta diversity, we have determined that some groups of samples differ in their diversity and composition. But measures of diversity look at the entire community. We may also be interested in knowing which individual taxa differ in abundance among groups of samples. To address this question we can use differential abundance analysis. There are many methods that can be used for differential abundance analysis, and as for other ecological analysis there is active debate about which methods should be used to detect differences in taxa abundances between groups of samples. \n\nDifferential abundance analysis allows you to identify differentially abundant taxa between two groups. There are many methods for this type of analysis such as ALDEx2, ANCOM-BC, and DESeq2. Several recent articles have compared the performance of these differential abundance approaches when applied to microbiome data ([Calgaro et al. (2020)](https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02104-1), [Nearing et al. (2022)](https://www.nature.com/articles/s41467-022-28034-z)), finding that some methods perform better than others, but also finding that different methods are sensitive to different aspects of data structure and with differing statistical power and sensitivity. Here we will compare two different methods for detecting differentially abundant taxa.\n\nHaving seen a clear difference in leaf bacterial community composition between temperate and boreal forest stand types, we may ask which bacterial ASVs are differentially abundant between temperate versus boreal forest stand types. \n\n#### DESeq2\n\nThe DESeq2 approach ([Love et al. 2014. Genome Biol 15:550](https://doi.org/10.1186/s13059-014-0550-8)) models taxa abundances using a negative binomial distribution to detect taxa that are differentially abundant between groups. This approach was initially developed for gene expression analyses, but it is commonly used in the analysis of differential taxa abundances in microbial ecology.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# conduct DESeq analysis of ASV abundances between temperate and boreal stand types\n# We add a pseudocount (+1) to each abundance value to avoid zeroes\ncountdata <- data.frame(ASV=colnames(comm_rarfy),t(comm_rarfy+1))\nmetas <- metadata.sub\nmetas$StandType <- relevel(as.factor(metas$StandType),ref='Boreal')\ndds <- DESeqDataSetFromMatrix(countData=countdata, \n colData=metas,\n design=~StandType, tidy = TRUE)\n```\n\n::: {.cell-output .cell-output-stderr}\n```\nconverting counts to integer mode\n```\n:::\n\n```{.r .cell-code}\ndds2 <- DESeq(dds, fitType=\"local\", quiet=TRUE)\nres <- results(dds2, name=\"StandType_Temperate_vs_Boreal\")\n#coef of differently abundant ASV between temperate and boreal forest\nhead(res[order(res$padj),])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\nlog2 fold change (MLE): StandType Temperate vs Boreal \nWald test p-value: StandType Temperate vs Boreal \nDataFrame with 6 rows and 6 columns\n baseMean log2FoldChange lfcSE stat pvalue padj\n \nASV_8 102.04960 6.50835 1.067510 6.09676 1.08243e-09 3.97251e-07\nASV_37 15.78403 5.30425 0.915866 5.79151 6.97561e-09 1.28002e-06\nASV_26 29.14312 6.12917 1.080029 5.67501 1.38680e-08 1.69651e-06\nASV_22 36.65986 5.38986 1.001350 5.38259 7.34201e-08 5.38903e-06\nASV_94 8.39685 4.46011 0.827277 5.39131 6.99456e-08 5.38903e-06\nASV_44 20.12295 -4.50073 0.907804 -4.95782 7.12877e-07 3.81254e-05\n```\n:::\n\n```{.r .cell-code}\n#Number of significantly different ASVs (adjusted_p_value<0.05)\ndim(res[is.na(res$padj)==F&res$padj<0.05,])[1]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 57\n```\n:::\n\n```{.r .cell-code}\nsig_des <- rownames(res[is.na(res$padj)==F&res$padj<0.05,])\n# show the distribution of these marker ASV in a heatmap\nmetatoshow <- subset(metas,!metas$StandType%in%'Mixed')\ndatatoshow <- comm_rarfy[rownames(metatoshow),rownames(res[order(res$padj),])[1:20]]\nannotation_col = data.frame(standtype = as.factor(metatoshow$StandType))\nrownames(annotation_col)=rownames(datatoshow)\npheatmap(t(datatoshow),scale= \"row\", annotation_col = annotation_col,cluster_cols = F)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-55-1.png){width=672}\n:::\n:::\n\n\n#### ANCOM-BC\n\nThe ANCOM-BC approach ([Lin and Peddada. 2020. Nat. Comm. 35:14](https://www.nature.com/articles/s41467-020-17041-7)) detects differentially abundant taxa by analysis of compositions of microbiomes with bias correction. [Nearing et al. (2022)](https://www.nature.com/articles/s41467-022-28034-z) found this method to be among the best-performing methods for detection of differentially abundant taxa. \n\n\n::: {.cell}\n\n```{.r .cell-code}\n# conduct ANCOM-BC analysis of differentially abundant taxa between boreal/temperate stand types\nASV <- otu_table(countdata[,-1],taxa_are_rows<-T)\nTAX <- tax_table(as.matrix(taxo.sub))\nMETA <- sample_data(metas)\nphyloseqobj = phyloseq(ASV, TAX, META)\nancob <- ancombc(phyloseq=phyloseqobj,formula='StandType',p_adj_method = \"holm\", zero_cut = 0.90, lib_cut = 1000,\n group = 'StandType', struc_zero = TRUE, neg_lb = F,\n tol = 1e-5, max_iter = 100, conserve = TRUE,\n alpha = 0.05, global = TRUE)\nres_ancob <- ancob$res\n#show coefficients of differential abundance test between temperate vs. boreal\ncoef_ancob <- data.frame(beta=res_ancob$beta$StandTypeTemperate,se=res_ancob$se$StandTypeTemperate,W=res_ancob$W$StandTypeTemperate,\n p_val=res_ancob$p_val$StandTypeTemperate,p_adj=res_ancob$q_val$StandTypeTemperate,sign_dif=res_ancob$diff_abn$StandTypeTemperate,\n row.names = rownames(res_ancob$beta))\ncoef_ancob <- coef_ancob[order(coef_ancob$p_adj),]\nhead(coef_ancob)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n beta se W p_val p_adj sign_dif\nASV_44 -2.213915 0.3357059 -6.594805 4.258139e-11 3.427802e-08 TRUE\nASV_22 2.616980 0.5076264 5.155326 2.531901e-07 2.035649e-04 TRUE\nASV_101 -1.863384 0.4046194 -4.605276 4.119198e-06 3.307716e-03 TRUE\nASV_37 2.407737 0.5650358 4.261212 2.033216e-05 1.630639e-02 TRUE\nASV_139 1.531506 0.3612910 4.238980 2.245373e-05 1.798544e-02 TRUE\nASV_11 2.228209 0.5398152 4.127725 3.663692e-05 2.930953e-02 TRUE\n```\n:::\n\n```{.r .cell-code}\n#Number of significantly different ASVs (adjusted p_value<0.05)\ndim(coef_ancob[coef_ancob$p_adj<0.05,])\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] 6 6\n```\n:::\n\n```{.r .cell-code}\nsig_ancob <- rownames(coef_ancob[1:dim(coef_ancob[coef_ancob$p_adj<0.05,])[1],])\n# show the significant ASVs\nmetatoshow <- subset(metas,!metas$StandType%in%'Mixed')\ndatatoshow <- comm_rarfy[rownames(metatoshow),sig_ancob]\nannotation_col = data.frame(standtype = as.factor(metatoshow$StandType))\nrownames(annotation_col)=rownames(datatoshow)\npheatmap(t(datatoshow),scale= \"row\", annotation_col = annotation_col,cluster_cols = F)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-56-1.png){width=672}\n:::\n:::\n\n\n#### Comparing differentially abundant taxa among methods\n\nIn a comparison between boreal and temperate forest stand types, ANCOM-BC and DESeq2 detected different numbers of differentially abundant ASVs. As noted earlier, there is still debate about which methods perform best for differentially abundant taxa detection. While DESeq2 and ANCOM identified differentially abundant taxa that are potentially unique to each method, there may be some ASVs that were detected as differentially abundant using both methods. This type of cross-method comparison can help us to identify statistically robust results - if taxa are differentially abundant enough to be detected by multiple methods, they should differ strongly in their abundance between groups. Let's look at the distribution of these differentially abundant ASVs identified by both methods.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# identify significantly differentially abundant ASVs according to both methods\nsig_both <- sig_des[sig_des%in%sig_ancob]\nsig_both\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n[1] \"ASV_11\" \"ASV_22\" \"ASV_37\" \"ASV_44\" \"ASV_101\" \"ASV_139\"\n```\n:::\n\n```{.r .cell-code}\n# show the distribution of these differentially abundant ASVs\nmetatoshow <- subset(metas,!metas$StandType%in%'Mixed')\ndatatoshow <- comm_rarfy[rownames(metatoshow),sig_both]\nannotation_col = data.frame(standtype = as.factor(metatoshow$StandType))\nrownames(annotation_col)=rownames(datatoshow)\npheatmap(t(datatoshow),scale= \"row\", annotation_col = annotation_col,cluster_cols = F)\n```\n\n::: {.cell-output-display}\n![](index_files/figure-html/unnamed-chunk-57-1.png){width=672}\n:::\n:::\n\n\nWe can also inspect the taxonomic annotations of these differentially abundant ASVs.\n\n\n::: {.cell}\n\n```{.r .cell-code}\ntaxo_rarfy[sig_both,]\n```\n\n::: {.cell-output .cell-output-stdout}\n```\n Kingdom Phylum Class Order \nASV_11 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \nASV_22 \"Bacteria\" \"Bacteroidota\" \"Bacteroidia\" \"Cytophagales\" \nASV_37 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\nASV_44 \"Bacteria\" \"Proteobacteria\" \"Gammaproteobacteria\" \"Enterobacterales\"\nASV_101 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Rhizobiales\" \nASV_139 \"Bacteria\" \"Proteobacteria\" \"Alphaproteobacteria\" \"Sphingomonadales\"\n Family Genus \nASV_11 \"Beijerinckiaceae\" \"Methylobacterium-Methylorubrum\"\nASV_22 \"Hymenobacteraceae\" \"Hymenobacter\" \nASV_37 \"Sphingomonadaceae\" \"Sphingomonas\" \nASV_44 \"Shewanellaceae\" \"Shewanella\" \nASV_101 \"Beijerinckiaceae\" \"Methylocella\" \nASV_139 \"Sphingomonadaceae\" \"Sphingomonas\" \n Species \nASV_11 NA \nASV_22 NA \nASV_37 NA \nASV_44 \"algae/haliotis\" \nASV_101 NA \nASV_139 \"glacialis/psychrolutea\"\n```\n:::\n:::\n\n\n### Final steps - clean up and save data objects and workspace\n\nWe have now completed our ecological analyses of leaf bacterial communities.\nYou may want to save the R workspace containing all the different data objects so that you can reload it in the future without having to re-run the analyses.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n## Save entire R workspace to file\nsave.image(\"Microbiome-ecological-analysis-workspace.RData\")\n```\n:::\n", "supporting": [ "index_files" ], diff --git a/_freeze/site_libs/plotly-binding-4.10.0/plotly.js b/_freeze/site_libs/plotly-binding-4.10.0/plotly.js index 1155269..aaca427 100644 --- a/_freeze/site_libs/plotly-binding-4.10.0/plotly.js +++ b/_freeze/site_libs/plotly-binding-4.10.0/plotly.js @@ -616,9 +616,9 @@ TraceManager.prototype.updateFilter = function(group, keys) { traces.push(trace); } } - this.gd.data = traces; } + this.gd.data = traces; Plotly.redraw(this.gd); // NOTE: we purposely do _not_ restore selection(s), since on filter, diff --git a/_freeze/site_libs/plotly-main-2.5.1/plotly-latest.min.js b/_freeze/site_libs/plotly-main-2.5.1/plotly-latest.min.js index 27bfdaa..d6b2f17 100644 --- a/_freeze/site_libs/plotly-main-2.5.1/plotly-latest.min.js +++ b/_freeze/site_libs/plotly-main-2.5.1/plotly-latest.min.js @@ -1,69 +1,62 @@ /** -* plotly.js v2.11.1 -* Copyright 2012-2022, Plotly, Inc. +* plotly.js v2.5.1 +* Copyright 2012-2021, Plotly, Inc. * All rights reserved. * Licensed under the MIT license */ -!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}((function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module '"+o+"'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,(function(t){return i(e[o][1][t]||t)}),u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o:not(.watermark)":"opacity:0;-webkit-transition:opacity .3s ease 0s;-moz-transition:opacity .3s ease 0s;-ms-transition:opacity .3s ease 0s;-o-transition:opacity .3s ease 0s;transition:opacity .3s ease 0s;","X:hover .modebar--hover .modebar-group":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;padding-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;height:22px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar.vertical":"display:flex;flex-direction:column;flex-wrap:wrap;align-content:flex-end;max-height:100%;","X .modebar.vertical svg":"top:-1px;","X .modebar.vertical .modebar-group":"display:block;float:none;padding-left:0px;padding-bottom:8px;","X .modebar.vertical .modebar-group .modebar-btn":"display:block;text-align:center;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":'content:"";position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;',"X [data-title]:after":"content:attr(data-title);background:#69738a;color:#fff;padding:8px 10px;font-size:12px;line-height:12px;white-space:nowrap;margin-right:-18px;border-radius:2px;","X .vertical [data-title]:before,X .vertical [data-title]:after":"top:0%;right:200%;","X .vertical [data-title]:before":"border:6px solid transparent;border-left-color:#69738a;margin-top:8px;margin-right:-30px;","X .select-outline":"fill:none;stroke-width:1;shape-rendering:crispEdges;","X .select-outline-1":"stroke:#fff;","X .select-outline-2":"stroke:#000;stroke-dasharray:2px 2px;",Y:'font-family:"Open Sans",verdana,arial,sans-serif;position:fixed;top:50px;right:20px;z-index:10000;font-size:10pt;max-width:180px;',"Y p":"margin:0;","Y .notifier-note":"min-width:180px;max-width:250px;border:1px solid #fff;z-index:3000;margin:0;background-color:#8c97af;background-color:rgba(140,151,175,.9);color:#fff;padding:10px;overflow-wrap:break-word;word-wrap:break-word;-ms-hyphens:auto;-webkit-hyphens:auto;hyphens:auto;","Y .notifier-close":"color:#fff;opacity:.8;float:right;padding:0 5px;background:none;border:none;font-size:20px;font-weight:bold;line-height:20px;","Y .notifier-close:hover":"color:#444;text-decoration:none;cursor:pointer;"};for(var a in i){var o=a.replace(/^,/," ,").replace(/X/g,".js-plotly-plot .plotly").replace(/Y/g,".plotly-notifier");n.addStyleRule(o,i[a])}},{"../src/lib":498}],2:[function(t,e,r){"use strict";e.exports=t("../src/transforms/aggregate")},{"../src/transforms/aggregate":1113}],3:[function(t,e,r){"use strict";e.exports=t("../src/traces/bar")},{"../src/traces/bar":651}],4:[function(t,e,r){"use strict";e.exports=t("../src/traces/barpolar")},{"../src/traces/barpolar":664}],5:[function(t,e,r){"use strict";e.exports=t("../src/traces/box")},{"../src/traces/box":674}],6:[function(t,e,r){"use strict";e.exports=t("../src/components/calendars")},{"../src/components/calendars":359}],7:[function(t,e,r){"use strict";e.exports=t("../src/traces/candlestick")},{"../src/traces/candlestick":683}],8:[function(t,e,r){"use strict";e.exports=t("../src/traces/carpet")},{"../src/traces/carpet":702}],9:[function(t,e,r){"use strict";e.exports=t("../src/traces/choropleth")},{"../src/traces/choropleth":716}],10:[function(t,e,r){"use strict";e.exports=t("../src/traces/choroplethmapbox")},{"../src/traces/choroplethmapbox":723}],11:[function(t,e,r){"use strict";e.exports=t("../src/traces/cone")},{"../src/traces/cone":729}],12:[function(t,e,r){"use strict";e.exports=t("../src/traces/contour")},{"../src/traces/contour":744}],13:[function(t,e,r){"use strict";e.exports=t("../src/traces/contourcarpet")},{"../src/traces/contourcarpet":755}],14:[function(t,e,r){"use strict";e.exports=t("../src/core")},{"../src/core":476}],15:[function(t,e,r){"use strict";e.exports=t("../src/traces/densitymapbox")},{"../src/traces/densitymapbox":763}],16:[function(t,e,r){"use strict";e.exports=t("../src/transforms/filter")},{"../src/transforms/filter":1114}],17:[function(t,e,r){"use strict";e.exports=t("../src/traces/funnel")},{"../src/traces/funnel":773}],18:[function(t,e,r){"use strict";e.exports=t("../src/traces/funnelarea")},{"../src/traces/funnelarea":782}],19:[function(t,e,r){"use strict";e.exports=t("../src/transforms/groupby")},{"../src/transforms/groupby":1115}],20:[function(t,e,r){"use strict";e.exports=t("../src/traces/heatmap")},{"../src/traces/heatmap":795}],21:[function(t,e,r){"use strict";e.exports=t("../src/traces/heatmapgl")},{"../src/traces/heatmapgl":806}],22:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram")},{"../src/traces/histogram":818}],23:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram2d")},{"../src/traces/histogram2d":824}],24:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram2dcontour")},{"../src/traces/histogram2dcontour":828}],25:[function(t,e,r){"use strict";e.exports=t("../src/traces/icicle")},{"../src/traces/icicle":834}],26:[function(t,e,r){"use strict";e.exports=t("../src/traces/image")},{"../src/traces/image":847}],27:[function(t,e,r){"use strict";var n=t("./core");n.register([t("./bar"),t("./box"),t("./heatmap"),t("./histogram"),t("./histogram2d"),t("./histogram2dcontour"),t("./contour"),t("./scatterternary"),t("./violin"),t("./funnel"),t("./waterfall"),t("./image"),t("./pie"),t("./sunburst"),t("./treemap"),t("./icicle"),t("./funnelarea"),t("./scatter3d"),t("./surface"),t("./isosurface"),t("./volume"),t("./mesh3d"),t("./cone"),t("./streamtube"),t("./scattergeo"),t("./choropleth"),t("./scattergl"),t("./splom"),t("./pointcloud"),t("./heatmapgl"),t("./parcoords"),t("./parcats"),t("./scattermapbox"),t("./choroplethmapbox"),t("./densitymapbox"),t("./sankey"),t("./indicator"),t("./table"),t("./carpet"),t("./scattercarpet"),t("./contourcarpet"),t("./ohlc"),t("./candlestick"),t("./scatterpolar"),t("./scatterpolargl"),t("./barpolar"),t("./scattersmith"),t("./aggregate"),t("./filter"),t("./groupby"),t("./sort"),t("./calendars")]),e.exports=n},{"./aggregate":2,"./bar":3,"./barpolar":4,"./box":5,"./calendars":6,"./candlestick":7,"./carpet":8,"./choropleth":9,"./choroplethmapbox":10,"./cone":11,"./contour":12,"./contourcarpet":13,"./core":14,"./densitymapbox":15,"./filter":16,"./funnel":17,"./funnelarea":18,"./groupby":19,"./heatmap":20,"./heatmapgl":21,"./histogram":22,"./histogram2d":23,"./histogram2dcontour":24,"./icicle":25,"./image":26,"./indicator":28,"./isosurface":29,"./mesh3d":30,"./ohlc":31,"./parcats":32,"./parcoords":33,"./pie":34,"./pointcloud":35,"./sankey":36,"./scatter3d":37,"./scattercarpet":38,"./scattergeo":39,"./scattergl":40,"./scattermapbox":41,"./scatterpolar":42,"./scatterpolargl":43,"./scattersmith":44,"./scatterternary":45,"./sort":46,"./splom":47,"./streamtube":48,"./sunburst":49,"./surface":50,"./table":51,"./treemap":52,"./violin":53,"./volume":54,"./waterfall":55}],28:[function(t,e,r){"use strict";e.exports=t("../src/traces/indicator")},{"../src/traces/indicator":855}],29:[function(t,e,r){"use strict";e.exports=t("../src/traces/isosurface")},{"../src/traces/isosurface":861}],30:[function(t,e,r){"use strict";e.exports=t("../src/traces/mesh3d")},{"../src/traces/mesh3d":866}],31:[function(t,e,r){"use strict";e.exports=t("../src/traces/ohlc")},{"../src/traces/ohlc":871}],32:[function(t,e,r){"use strict";e.exports=t("../src/traces/parcats")},{"../src/traces/parcats":880}],33:[function(t,e,r){"use strict";e.exports=t("../src/traces/parcoords")},{"../src/traces/parcoords":891}],34:[function(t,e,r){"use strict";e.exports=t("../src/traces/pie")},{"../src/traces/pie":902}],35:[function(t,e,r){"use strict";e.exports=t("../src/traces/pointcloud")},{"../src/traces/pointcloud":911}],36:[function(t,e,r){"use strict";e.exports=t("../src/traces/sankey")},{"../src/traces/sankey":917}],37:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatter3d")},{"../src/traces/scatter3d":955}],38:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattercarpet")},{"../src/traces/scattercarpet":962}],39:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattergeo")},{"../src/traces/scattergeo":970}],40:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattergl")},{"../src/traces/scattergl":984}],41:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattermapbox")},{"../src/traces/scattermapbox":994}],42:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterpolar")},{"../src/traces/scatterpolar":1002}],43:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterpolargl")},{"../src/traces/scatterpolargl":1010}],44:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattersmith")},{"../src/traces/scattersmith":1017}],45:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterternary")},{"../src/traces/scatterternary":1025}],46:[function(t,e,r){"use strict";e.exports=t("../src/transforms/sort")},{"../src/transforms/sort":1117}],47:[function(t,e,r){"use strict";e.exports=t("../src/traces/splom")},{"../src/traces/splom":1035}],48:[function(t,e,r){"use strict";e.exports=t("../src/traces/streamtube")},{"../src/traces/streamtube":1043}],49:[function(t,e,r){"use strict";e.exports=t("../src/traces/sunburst")},{"../src/traces/sunburst":1051}],50:[function(t,e,r){"use strict";e.exports=t("../src/traces/surface")},{"../src/traces/surface":1060}],51:[function(t,e,r){"use strict";e.exports=t("../src/traces/table")},{"../src/traces/table":1068}],52:[function(t,e,r){"use strict";e.exports=t("../src/traces/treemap")},{"../src/traces/treemap":1079}],53:[function(t,e,r){"use strict";e.exports=t("../src/traces/violin")},{"../src/traces/violin":1092}],54:[function(t,e,r){"use strict";e.exports=t("../src/traces/volume")},{"../src/traces/volume":1100}],55:[function(t,e,r){"use strict";e.exports=t("../src/traces/waterfall")},{"../src/traces/waterfall":1108}],56:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-array"),t("d3-collection"),t("d3-shape"),t("elementary-circuits-directed-graph")):i(n.d3=n.d3||{},n.d3,n.d3,n.d3,null)}(this,(function(t,e,r,n,i){"use strict";function a(t){return t.target.depth}function o(t,e){return t.sourceLinks.length?t.depth:e-1}function s(t){return function(){return t}}i=i&&i.hasOwnProperty("default")?i.default:i;var l="function"==typeof Symbol&&"symbol"==typeof Symbol.iterator?function(t){return typeof t}:function(t){return t&&"function"==typeof Symbol&&t.constructor===Symbol&&t!==Symbol.prototype?"symbol":typeof t};function c(t,e){return f(t.source,e.source)||t.index-e.index}function u(t,e){return f(t.target,e.target)||t.index-e.index}function f(t,e){return t.partOfCycle===e.partOfCycle?t.y0-e.y0:"top"===t.circularLinkType||"bottom"===e.circularLinkType?-1:1}function h(t){return t.value}function p(t){return(t.y0+t.y1)/2}function d(t){return p(t.source)}function m(t){return p(t.target)}function g(t){return t.index}function v(t){return t.nodes}function y(t){return t.links}function x(t,e){var r=t.get(e);if(!r)throw new Error("missing: "+e);return r}function b(t,e){return e(t)}function _(t,e,r){var n=0;if(null===r){for(var a=[],o=0;o1||i>1)}function M(t,e,r){return t.sort(E),t.forEach((function(n,i){var a,o,s=0;if(q(n,r)&&A(n))n.circularPathData.verticalBuffer=s+n.width/2;else{for(var l=0;lo.source.column)){var c=t[l].circularPathData.verticalBuffer+t[l].width/2+e;s=c>s?c:s}n.circularPathData.verticalBuffer=s+n.width/2}})),t}function S(t,r,i,a){var o=e.min(t.links,(function(t){return t.source.y0}));t.links.forEach((function(t){t.circular&&(t.circularPathData={})})),M(t.links.filter((function(t){return"top"==t.circularLinkType})),r,a),M(t.links.filter((function(t){return"bottom"==t.circularLinkType})),r,a),t.links.forEach((function(e){if(e.circular){if(e.circularPathData.arcRadius=e.width+10,e.circularPathData.leftNodeBuffer=5,e.circularPathData.rightNodeBuffer=5,e.circularPathData.sourceWidth=e.source.x1-e.source.x0,e.circularPathData.sourceX=e.source.x0+e.circularPathData.sourceWidth,e.circularPathData.targetX=e.target.x0,e.circularPathData.sourceY=e.y0,e.circularPathData.targetY=e.y1,q(e,a)&&A(e))e.circularPathData.leftSmallArcRadius=10+e.width/2,e.circularPathData.leftLargeArcRadius=10+e.width/2,e.circularPathData.rightSmallArcRadius=10+e.width/2,e.circularPathData.rightLargeArcRadius=10+e.width/2,"bottom"==e.circularLinkType?(e.circularPathData.verticalFullExtent=e.source.y1+25+e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.rightLargeArcRadius):(e.circularPathData.verticalFullExtent=e.source.y0-25-e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.rightLargeArcRadius);else{var s=e.source.column,l=e.circularLinkType,c=t.links.filter((function(t){return t.source.column==s&&t.circularLinkType==l}));"bottom"==e.circularLinkType?c.sort(C):c.sort(L);var u=0;c.forEach((function(t,n){t.circularLinkID==e.circularLinkID&&(e.circularPathData.leftSmallArcRadius=10+e.width/2+u,e.circularPathData.leftLargeArcRadius=10+e.width/2+n*r+u),u+=t.width})),s=e.target.column,c=t.links.filter((function(t){return t.target.column==s&&t.circularLinkType==l})),"bottom"==e.circularLinkType?c.sort(I):c.sort(P),u=0,c.forEach((function(t,n){t.circularLinkID==e.circularLinkID&&(e.circularPathData.rightSmallArcRadius=10+e.width/2+u,e.circularPathData.rightLargeArcRadius=10+e.width/2+n*r+u),u+=t.width})),"bottom"==e.circularLinkType?(e.circularPathData.verticalFullExtent=Math.max(i,e.source.y1,e.target.y1)+25+e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.rightLargeArcRadius):(e.circularPathData.verticalFullExtent=o-25-e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.rightLargeArcRadius)}e.circularPathData.leftInnerExtent=e.circularPathData.sourceX+e.circularPathData.leftNodeBuffer,e.circularPathData.rightInnerExtent=e.circularPathData.targetX-e.circularPathData.rightNodeBuffer,e.circularPathData.leftFullExtent=e.circularPathData.sourceX+e.circularPathData.leftLargeArcRadius+e.circularPathData.leftNodeBuffer,e.circularPathData.rightFullExtent=e.circularPathData.targetX-e.circularPathData.rightLargeArcRadius-e.circularPathData.rightNodeBuffer}if(e.circular)e.path=function(t){var e="";e="top"==t.circularLinkType?"M"+t.circularPathData.sourceX+" "+t.circularPathData.sourceY+" L"+t.circularPathData.leftInnerExtent+" "+t.circularPathData.sourceY+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftSmallArcRadius+" 0 0 0 "+t.circularPathData.leftFullExtent+" "+(t.circularPathData.sourceY-t.circularPathData.leftSmallArcRadius)+" L"+t.circularPathData.leftFullExtent+" "+t.circularPathData.verticalLeftInnerExtent+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftLargeArcRadius+" 0 0 0 "+t.circularPathData.leftInnerExtent+" "+t.circularPathData.verticalFullExtent+" L"+t.circularPathData.rightInnerExtent+" "+t.circularPathData.verticalFullExtent+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightLargeArcRadius+" 0 0 0 "+t.circularPathData.rightFullExtent+" "+t.circularPathData.verticalRightInnerExtent+" L"+t.circularPathData.rightFullExtent+" "+(t.circularPathData.targetY-t.circularPathData.rightSmallArcRadius)+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightSmallArcRadius+" 0 0 0 "+t.circularPathData.rightInnerExtent+" "+t.circularPathData.targetY+" L"+t.circularPathData.targetX+" "+t.circularPathData.targetY:"M"+t.circularPathData.sourceX+" "+t.circularPathData.sourceY+" L"+t.circularPathData.leftInnerExtent+" "+t.circularPathData.sourceY+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftSmallArcRadius+" 0 0 1 "+t.circularPathData.leftFullExtent+" "+(t.circularPathData.sourceY+t.circularPathData.leftSmallArcRadius)+" L"+t.circularPathData.leftFullExtent+" "+t.circularPathData.verticalLeftInnerExtent+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftLargeArcRadius+" 0 0 1 "+t.circularPathData.leftInnerExtent+" "+t.circularPathData.verticalFullExtent+" L"+t.circularPathData.rightInnerExtent+" "+t.circularPathData.verticalFullExtent+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightLargeArcRadius+" 0 0 1 "+t.circularPathData.rightFullExtent+" "+t.circularPathData.verticalRightInnerExtent+" L"+t.circularPathData.rightFullExtent+" "+(t.circularPathData.targetY+t.circularPathData.rightSmallArcRadius)+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightSmallArcRadius+" 0 0 1 "+t.circularPathData.rightInnerExtent+" "+t.circularPathData.targetY+" L"+t.circularPathData.targetX+" "+t.circularPathData.targetY;return e}(e);else{var f=n.linkHorizontal().source((function(t){return[t.source.x0+(t.source.x1-t.source.x0),t.y0]})).target((function(t){return[t.target.x0,t.y1]}));e.path=f(e)}}))}function E(t,e){return O(t)==O(e)?"bottom"==t.circularLinkType?C(t,e):L(t,e):O(e)-O(t)}function L(t,e){return t.y0-e.y0}function C(t,e){return e.y0-t.y0}function P(t,e){return t.y1-e.y1}function I(t,e){return e.y1-t.y1}function O(t){return t.target.column-t.source.column}function z(t){return t.target.x0-t.source.x1}function D(t,e){var r=T(t),n=z(e)/Math.tan(r);return"up"==H(t)?t.y1+n:t.y1-n}function R(t,e){var r=T(t),n=z(e)/Math.tan(r);return"up"==H(t)?t.y1-n:t.y1+n}function F(t,e,r,n){t.links.forEach((function(i){if(!i.circular&&i.target.column-i.source.column>1){var a=i.source.column+1,o=i.target.column-1,s=1,l=o-a+1;for(s=1;a<=o;a++,s++)t.nodes.forEach((function(o){if(o.column==a){var c,u=s/(l+1),f=Math.pow(1-u,3),h=3*u*Math.pow(1-u,2),p=3*Math.pow(u,2)*(1-u),d=Math.pow(u,3),m=f*i.y0+h*i.y0+p*i.y1+d*i.y1,g=m-i.width/2,v=m+i.width/2;g>o.y0&&go.y0&&vo.y1)&&(c=v-o.y0+10,o=N(o,c,e,r),t.nodes.forEach((function(t){b(t,n)!=b(o,n)&&t.column==o.column&&t.y0o.y1&&N(t,c,e,r)})))}}))}}))}function B(t,e){return t.y0>e.y0&&t.y0e.y0&&t.y1e.y1)}function N(t,e,r,n){return t.y0+e>=r&&t.y1+e<=n&&(t.y0=t.y0+e,t.y1=t.y1+e,t.targetLinks.forEach((function(t){t.y1=t.y1+e})),t.sourceLinks.forEach((function(t){t.y0=t.y0+e}))),t}function j(t,e,r,n){t.nodes.forEach((function(i){n&&i.y+(i.y1-i.y0)>e&&(i.y=i.y-(i.y+(i.y1-i.y0)-e));var a=t.links.filter((function(t){return b(t.source,r)==b(i,r)})),o=a.length;o>1&&a.sort((function(t,e){if(!t.circular&&!e.circular){if(t.target.column==e.target.column)return t.y1-e.y1;if(!V(t,e))return t.y1-e.y1;if(t.target.column>e.target.column){var r=R(e,t);return t.y1-r}if(e.target.column>t.target.column)return R(t,e)-e.y1}return t.circular&&!e.circular?"top"==t.circularLinkType?-1:1:e.circular&&!t.circular?"top"==e.circularLinkType?1:-1:t.circular&&e.circular?t.circularLinkType===e.circularLinkType&&"top"==t.circularLinkType?t.target.column===e.target.column?t.target.y1-e.target.y1:e.target.column-t.target.column:t.circularLinkType===e.circularLinkType&&"bottom"==t.circularLinkType?t.target.column===e.target.column?e.target.y1-t.target.y1:t.target.column-e.target.column:"top"==t.circularLinkType?-1:1:void 0}));var s=i.y0;a.forEach((function(t){t.y0=s+t.width/2,s+=t.width})),a.forEach((function(t,e){if("bottom"==t.circularLinkType){for(var r=e+1,n=0;r1&&n.sort((function(t,e){if(!t.circular&&!e.circular){if(t.source.column==e.source.column)return t.y0-e.y0;if(!V(t,e))return t.y0-e.y0;if(e.source.column0?"up":"down"}function q(t,e){return b(t.source,e)==b(t.target,e)}function G(t,r,n){var i=t.nodes,a=t.links,o=!1,s=!1;if(a.forEach((function(t){"top"==t.circularLinkType?o=!0:"bottom"==t.circularLinkType&&(s=!0)})),0==o||0==s){var l=e.min(i,(function(t){return t.y0})),c=(n-r)/(e.max(i,(function(t){return t.y1}))-l);i.forEach((function(t){var e=(t.y1-t.y0)*c;t.y0=(t.y0-l)*c,t.y1=t.y0+e})),a.forEach((function(t){t.y0=(t.y0-l)*c,t.y1=(t.y1-l)*c,t.width=t.width*c}))}}t.sankeyCircular=function(){var t,n,i=0,a=0,b=1,T=1,A=24,M=g,E=o,L=v,C=y,P=32,I=2,O=null;function z(){var t={nodes:L.apply(null,arguments),links:C.apply(null,arguments)};D(t),_(t,M,O),R(t),B(t),w(t,M),N(t,P,M),V(t);for(var e=4,r=0;r0?r+25+10:r,bottom:n=n>0?n+25+10:n,left:a=a>0?a+25+10:a,right:i=i>0?i+25+10:i}}(o),f=function(t,r){var n=e.max(t.nodes,(function(t){return t.column})),o=b-i,s=T-a,l=o/(o+r.right+r.left),c=s/(s+r.top+r.bottom);return i=i*l+r.left,b=0==r.right?b:b*l,a=a*c+r.top,T*=c,t.nodes.forEach((function(t){t.x0=i+t.column*((b-i-A)/n),t.x1=t.x0+A})),c}(o,u);l*=f,o.links.forEach((function(t){t.width=t.value*l})),c.forEach((function(t){var e=t.length;t.forEach((function(t,n){t.depth==c.length-1&&1==e||0==t.depth&&1==e?(t.y0=T/2-t.value*l,t.y1=t.y0+t.value*l):t.partOfCycle?0==k(t,r)?(t.y0=T/2+n,t.y1=t.y0+t.value*l):"top"==t.circularLinkType?(t.y0=a+n,t.y1=t.y0+t.value*l):(t.y0=T-t.value*l-n,t.y1=t.y0+t.value*l):0==u.top||0==u.bottom?(t.y0=(T-a)/e*n,t.y1=t.y0+t.value*l):(t.y0=(T-a)/2-e/2+n,t.y1=t.y0+t.value*l)}))}))}(l),y();for(var u=1,g=s;g>0;--g)v(u*=.99,l),y();function v(t,r){var n=c.length;c.forEach((function(i){var a=i.length,o=i[0].depth;i.forEach((function(i){var s;if(i.sourceLinks.length||i.targetLinks.length)if(i.partOfCycle&&k(i,r)>0);else if(0==o&&1==a)s=i.y1-i.y0,i.y0=T/2-s/2,i.y1=T/2+s/2;else if(o==n-1&&1==a)s=i.y1-i.y0,i.y0=T/2-s/2,i.y1=T/2+s/2;else{var l=e.mean(i.sourceLinks,m),c=e.mean(i.targetLinks,d),u=((l&&c?(l+c)/2:l||c)-p(i))*t;i.y0+=u,i.y1+=u}}))}))}function y(){c.forEach((function(e){var r,n,i,o=a,s=e.length;for(e.sort(f),i=0;i0&&(r.y0+=n,r.y1+=n),o=r.y1+t;if((n=o-t-T)>0)for(o=r.y0-=n,r.y1-=n,i=s-2;i>=0;--i)(n=(r=e[i]).y1+t-o)>0&&(r.y0-=n,r.y1-=n),o=r.y0}))}}function V(t){t.nodes.forEach((function(t){t.sourceLinks.sort(u),t.targetLinks.sort(c)})),t.nodes.forEach((function(t){var e=t.y0,r=e,n=t.y1,i=n;t.sourceLinks.forEach((function(t){t.circular?(t.y0=n-t.width/2,n-=t.width):(t.y0=e+t.width/2,e+=t.width)})),t.targetLinks.forEach((function(t){t.circular?(t.y1=i-t.width/2,i-=t.width):(t.y1=r+t.width/2,r+=t.width)}))}))}return z.nodeId=function(t){return arguments.length?(M="function"==typeof t?t:s(t),z):M},z.nodeAlign=function(t){return arguments.length?(E="function"==typeof t?t:s(t),z):E},z.nodeWidth=function(t){return arguments.length?(A=+t,z):A},z.nodePadding=function(e){return arguments.length?(t=+e,z):t},z.nodes=function(t){return arguments.length?(L="function"==typeof t?t:s(t),z):L},z.links=function(t){return arguments.length?(C="function"==typeof t?t:s(t),z):C},z.size=function(t){return arguments.length?(i=a=0,b=+t[0],T=+t[1],z):[b-i,T-a]},z.extent=function(t){return arguments.length?(i=+t[0][0],b=+t[1][0],a=+t[0][1],T=+t[1][1],z):[[i,a],[b,T]]},z.iterations=function(t){return arguments.length?(P=+t,z):P},z.circularLinkGap=function(t){return arguments.length?(I=+t,z):I},z.nodePaddingRatio=function(t){return arguments.length?(n=+t,z):n},z.sortNodes=function(t){return arguments.length?(O=t,z):O},z.update=function(t){return w(t,M),V(t),t.links.forEach((function(t){t.circular&&(t.circularLinkType=t.y0+t.y1a&&(b=a);var o=e.min(i,(function(t){return(y-n-(t.length-1)*b)/e.sum(t,u)}));i.forEach((function(t){t.forEach((function(t,e){t.y1=(t.y0=e)+t.value*o}))})),t.links.forEach((function(t){t.width=t.value*o}))}(),d();for(var a=1,o=A;o>0;--o)l(a*=.99),d(),s(a),d();function s(t){i.forEach((function(r){r.forEach((function(r){if(r.targetLinks.length){var n=(e.sum(r.targetLinks,h)/e.sum(r.targetLinks,u)-f(r))*t;r.y0+=n,r.y1+=n}}))}))}function l(t){i.slice().reverse().forEach((function(r){r.forEach((function(r){if(r.sourceLinks.length){var n=(e.sum(r.sourceLinks,p)/e.sum(r.sourceLinks,u)-f(r))*t;r.y0+=n,r.y1+=n}}))}))}function d(){i.forEach((function(t){var e,r,i,a=n,o=t.length;for(t.sort(c),i=0;i0&&(e.y0+=r,e.y1+=r),a=e.y1+b;if((r=a-b-y)>0)for(a=e.y0-=r,e.y1-=r,i=o-2;i>=0;--i)(r=(e=t[i]).y1+b-a)>0&&(e.y0-=r,e.y1-=r),a=e.y0}))}}function P(t){t.nodes.forEach((function(t){t.sourceLinks.sort(l),t.targetLinks.sort(s)})),t.nodes.forEach((function(t){var e=t.y0,r=e;t.sourceLinks.forEach((function(t){t.y0=e+t.width/2,e+=t.width})),t.targetLinks.forEach((function(t){t.y1=r+t.width/2,r+=t.width}))}))}return M.update=function(t){return P(t),t},M.nodeId=function(t){return arguments.length?(_="function"==typeof t?t:o(t),M):_},M.nodeAlign=function(t){return arguments.length?(w="function"==typeof t?t:o(t),M):w},M.nodeWidth=function(t){return arguments.length?(x=+t,M):x},M.nodePadding=function(t){return arguments.length?(b=+t,M):b},M.nodes=function(t){return arguments.length?(T="function"==typeof t?t:o(t),M):T},M.links=function(t){return arguments.length?(k="function"==typeof t?t:o(t),M):k},M.size=function(e){return arguments.length?(t=n=0,i=+e[0],y=+e[1],M):[i-t,y-n]},M.extent=function(e){return arguments.length?(t=+e[0][0],i=+e[1][0],n=+e[0][1],y=+e[1][1],M):[[t,n],[i,y]]},M.iterations=function(t){return arguments.length?(A=+t,M):A},M},t.sankeyCenter=function(t){return t.targetLinks.length?t.depth:t.sourceLinks.length?e.min(t.sourceLinks,i)-1:0},t.sankeyLeft=function(t){return t.depth},t.sankeyRight=function(t,e){return e-1-t.height},t.sankeyJustify=a,t.sankeyLinkHorizontal=function(){return n.linkHorizontal().source(y).target(x)},Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":102,"d3-collection":103,"d3-shape":114}],58:[function(t,e,r){(function(){var t={version:"3.8.0"},r=[].slice,n=function(t){return r.call(t)},i=self.document;function a(t){return t&&(t.ownerDocument||t.document||t).documentElement}function o(t){return t&&(t.ownerDocument&&t.ownerDocument.defaultView||t.document&&t||t.defaultView)}if(i)try{n(i.documentElement.childNodes)[0].nodeType}catch(t){n=function(t){for(var e=t.length,r=new Array(e);e--;)r[e]=t[e];return r}}if(Date.now||(Date.now=function(){return+new Date}),i)try{i.createElement("DIV").style.setProperty("opacity",0,"")}catch(t){var s=this.Element.prototype,l=s.setAttribute,c=s.setAttributeNS,u=this.CSSStyleDeclaration.prototype,f=u.setProperty;s.setAttribute=function(t,e){l.call(this,t,e+"")},s.setAttributeNS=function(t,e,r){c.call(this,t,e,r+"")},u.setProperty=function(t,e,r){f.call(this,t,e+"",r)}}function h(t,e){return te?1:t>=e?0:NaN}function p(t){return null===t?NaN:+t}function d(t){return!isNaN(t)}function m(t){return{left:function(e,r,n,i){for(arguments.length<3&&(n=0),arguments.length<4&&(i=e.length);n>>1;t(e[a],r)<0?n=a+1:i=a}return n},right:function(e,r,n,i){for(arguments.length<3&&(n=0),arguments.length<4&&(i=e.length);n>>1;t(e[a],r)>0?i=a:n=a+1}return n}}}t.ascending=h,t.descending=function(t,e){return et?1:e>=t?0:NaN},t.min=function(t,e){var r,n,i=-1,a=t.length;if(1===arguments.length){for(;++i=n){r=n;break}for(;++in&&(r=n)}else{for(;++i=n){r=n;break}for(;++in&&(r=n)}return r},t.max=function(t,e){var r,n,i=-1,a=t.length;if(1===arguments.length){for(;++i=n){r=n;break}for(;++ir&&(r=n)}else{for(;++i=n){r=n;break}for(;++ir&&(r=n)}return r},t.extent=function(t,e){var r,n,i,a=-1,o=t.length;if(1===arguments.length){for(;++a=n){r=i=n;break}for(;++an&&(r=n),i=n){r=i=n;break}for(;++an&&(r=n),i1)return o/(l-1)},t.deviation=function(){var e=t.variance.apply(this,arguments);return e?Math.sqrt(e):e};var g=m(h);function v(t){return t.length}t.bisectLeft=g.left,t.bisect=t.bisectRight=g.right,t.bisector=function(t){return m(1===t.length?function(e,r){return h(t(e),r)}:t)},t.shuffle=function(t,e,r){(a=arguments.length)<3&&(r=t.length,a<2&&(e=0));for(var n,i,a=r-e;a;)i=Math.random()*a--|0,n=t[a+e],t[a+e]=t[i+e],t[i+e]=n;return t},t.permute=function(t,e){for(var r=e.length,n=new Array(r);r--;)n[r]=t[e[r]];return n},t.pairs=function(t){for(var e=0,r=t.length-1,n=t[0],i=new Array(r<0?0:r);e=0;)for(e=(n=t[i]).length;--e>=0;)r[--o]=n[e];return r};var y=Math.abs;function x(t){for(var e=1;t*e%1;)e*=10;return e}function b(t,e){for(var r in e)Object.defineProperty(t.prototype,r,{value:e[r],enumerable:!1})}function _(){this._=Object.create(null)}t.range=function(t,e,r){if(arguments.length<3&&(r=1,arguments.length<2&&(e=t,t=0)),(e-t)/r==1/0)throw new Error("infinite range");var n,i=[],a=x(y(r)),o=-1;if(t*=a,e*=a,(r*=a)<0)for(;(n=t+r*++o)>e;)i.push(n/a);else for(;(n=t+r*++o)=i.length)return r?r.call(n,a):e?a.sort(e):a;for(var l,c,u,f,h=-1,p=a.length,d=i[s++],m=new _;++h=i.length)return e;var n=[],o=a[r++];return e.forEach((function(e,i){n.push({key:e,values:t(i,r)})})),o?n.sort((function(t,e){return o(t.key,e.key)})):n}(o(t.map,e,0),0)},n.key=function(t){return i.push(t),n},n.sortKeys=function(t){return a[i.length-1]=t,n},n.sortValues=function(t){return e=t,n},n.rollup=function(t){return r=t,n},n},t.set=function(t){var e=new L;if(t)for(var r=0,n=t.length;r=0&&(n=t.slice(r+1),t=t.slice(0,r)),t)return arguments.length<2?this[t].on(n):this[t].on(n,e);if(2===arguments.length){if(null==e)for(t in this)this.hasOwnProperty(t)&&this[t].on(n,null);return this}},t.event=null,t.requote=function(t){return t.replace(j,"\\$&")};var j=/[\\\^\$\*\+\?\|\[\]\(\)\.\{\}]/g,U={}.__proto__?function(t,e){t.__proto__=e}:function(t,e){for(var r in e)t[r]=e[r]};function V(t){return U(t,Y),t}var H=function(t,e){return e.querySelector(t)},q=function(t,e){return e.querySelectorAll(t)},G=function(t,e){var r=t.matches||t[I(t,"matchesSelector")];return(G=function(t,e){return r.call(t,e)})(t,e)};"function"==typeof Sizzle&&(H=function(t,e){return Sizzle(t,e)[0]||null},q=Sizzle,G=Sizzle.matchesSelector),t.selection=function(){return t.select(i.documentElement)};var Y=t.selection.prototype=[];function W(t){return"function"==typeof t?t:function(){return H(t,this)}}function X(t){return"function"==typeof t?t:function(){return q(t,this)}}Y.select=function(t){var e,r,n,i,a=[];t=W(t);for(var o=-1,s=this.length;++o=0&&"xmlns"!==(r=t.slice(0,e))&&(t=t.slice(e+1)),J.hasOwnProperty(r)?{space:J[r],local:t}:t}},Y.attr=function(e,r){if(arguments.length<2){if("string"==typeof e){var n=this.node();return(e=t.ns.qualify(e)).local?n.getAttributeNS(e.space,e.local):n.getAttribute(e)}for(r in e)this.each(K(r,e[r]));return this}return this.each(K(e,r))},Y.classed=function(t,e){if(arguments.length<2){if("string"==typeof t){var r=this.node(),n=(t=tt(t)).length,i=-1;if(e=r.classList){for(;++i=0;)(r=n[i])&&(a&&a!==r.nextSibling&&a.parentNode.insertBefore(r,a),a=r);return this},Y.sort=function(t){t=ct.apply(this,arguments);for(var e=-1,r=this.length;++e=e&&(e=i+1);!(o=s[e])&&++e0&&(e=e.slice(0,o));var l=mt.get(e);function c(){var t=this[a];t&&(this.removeEventListener(e,t,t.$),delete this[a])}return l&&(e=l,s=vt),o?r?function(){var t=s(r,n(arguments));c.call(this),this.addEventListener(e,this[a]=t,t.$=i),t._=r}:c:r?z:function(){var r,n=new RegExp("^__on([^.]+)"+t.requote(e)+"$");for(var i in this)if(r=i.match(n)){var a=this[i];this.removeEventListener(r[1],a,a.$),delete this[i]}}}t.selection.enter=ft,t.selection.enter.prototype=ht,ht.append=Y.append,ht.empty=Y.empty,ht.node=Y.node,ht.call=Y.call,ht.size=Y.size,ht.select=function(t){for(var e,r,n,i,a,o=[],s=-1,l=this.length;++s1?Et:t<-1?-Et:Math.asin(t)}function It(t){return((t=Math.exp(t))+1/t)/2}var Ot=Math.SQRT2;t.interpolateZoom=function(t,e){var r,n,i=t[0],a=t[1],o=t[2],s=e[0],l=e[1],c=e[2],u=s-i,f=l-a,h=u*u+f*f;if(h<1e-12)n=Math.log(c/o)/Ot,r=function(t){return[i+t*u,a+t*f,o*Math.exp(Ot*t*n)]};else{var p=Math.sqrt(h),d=(c*c-o*o+4*h)/(2*o*2*p),m=(c*c-o*o-4*h)/(2*c*2*p),g=Math.log(Math.sqrt(d*d+1)-d),v=Math.log(Math.sqrt(m*m+1)-m);n=(v-g)/Ot,r=function(t){var e,r=t*n,s=It(g),l=o/(2*p)*(s*(e=Ot*r+g,((e=Math.exp(2*e))-1)/(e+1))-function(t){return((t=Math.exp(t))-1/t)/2}(g));return[i+l*u,a+l*f,o*s/It(Ot*r+g)]}}return r.duration=1e3*n,r},t.behavior.zoom=function(){var e,r,n,a,s,l,c,u,f,h={x:0,y:0,k:1},p=[960,500],d=Rt,m=250,g=0,v="mousedown.zoom",y="mousemove.zoom",x="mouseup.zoom",b="touchstart.zoom",_=N(w,"zoomstart","zoom","zoomend");function w(t){t.on(v,P).on(Dt+".zoom",O).on("dblclick.zoom",z).on(b,I)}function T(t){return[(t[0]-h.x)/h.k,(t[1]-h.y)/h.k]}function k(t){h.k=Math.max(d[0],Math.min(d[1],t))}function A(t,e){e=function(t){return[t[0]*h.k+h.x,t[1]*h.k+h.y]}(e),h.x+=t[0]-e[0],h.y+=t[1]-e[1]}function M(e,n,i,a){e.__chart__={x:h.x,y:h.y,k:h.k},k(Math.pow(2,a)),A(r=n,i),e=t.select(e),m>0&&(e=e.transition().duration(m)),e.call(w.event)}function S(){c&&c.domain(l.range().map((function(t){return(t-h.x)/h.k})).map(l.invert)),f&&f.domain(u.range().map((function(t){return(t-h.y)/h.k})).map(u.invert))}function E(t){g++||t({type:"zoomstart"})}function L(t){S(),t({type:"zoom",scale:h.k,translate:[h.x,h.y]})}function C(t){--g||(t({type:"zoomend"}),r=null)}function P(){var e=this,r=_.of(e,arguments),n=0,i=t.select(o(e)).on(y,l).on(x,c),a=T(t.mouse(e)),s=bt(e);function l(){n=1,A(t.mouse(e),a),L(r)}function c(){i.on(y,null).on(x,null),s(n),C(r)}Di.call(e),E(r)}function I(){var e,r=this,n=_.of(r,arguments),i={},a=0,o=".zoom-"+t.event.changedTouches[0].identifier,l="touchmove"+o,c="touchend"+o,u=[],f=t.select(r),p=bt(r);function d(){var n=t.touches(r);return e=h.k,n.forEach((function(t){t.identifier in i&&(i[t.identifier]=T(t))})),n}function m(){var e=t.event.target;t.select(e).on(l,g).on(c,y),u.push(e);for(var n=t.event.changedTouches,o=0,f=n.length;o1){v=p[0];var x=p[1],b=v[0]-x[0],_=v[1]-x[1];a=b*b+_*_}}function g(){var o,l,c,u,f=t.touches(r);Di.call(r);for(var h=0,p=f.length;h360?t-=360:t<0&&(t+=360),t<60?n+(i-n)*t/60:t<180?i:t<240?n+(i-n)*(240-t)/60:n}(t))}return t=isNaN(t)?0:(t%=360)<0?t+360:t,e=isNaN(e)||e<0?0:e>1?1:e,n=2*(r=r<0?0:r>1?1:r)-(i=r<=.5?r*(1+e):r+e-r*e),new Qt(a(t+120),a(t),a(t-120))}function Ut(e,r,n){return this instanceof Ut?(this.h=+e,this.c=+r,void(this.l=+n)):arguments.length<2?e instanceof Ut?new Ut(e.h,e.c,e.l):Xt(e instanceof qt?e.l:(e=ae((e=t.rgb(e)).r,e.g,e.b)).l,e.a,e.b):new Ut(e,r,n)}Nt.brighter=function(t){return t=Math.pow(.7,arguments.length?t:1),new Bt(this.h,this.s,this.l/t)},Nt.darker=function(t){return t=Math.pow(.7,arguments.length?t:1),new Bt(this.h,this.s,t*this.l)},Nt.rgb=function(){return jt(this.h,this.s,this.l)},t.hcl=Ut;var Vt=Ut.prototype=new Ft;function Ht(t,e,r){return isNaN(t)&&(t=0),isNaN(e)&&(e=0),new qt(r,Math.cos(t*=Lt)*e,Math.sin(t)*e)}function qt(t,e,r){return this instanceof qt?(this.l=+t,this.a=+e,void(this.b=+r)):arguments.length<2?t instanceof qt?new qt(t.l,t.a,t.b):t instanceof Ut?Ht(t.h,t.c,t.l):ae((t=Qt(t)).r,t.g,t.b):new qt(t,e,r)}Vt.brighter=function(t){return new Ut(this.h,this.c,Math.min(100,this.l+Gt*(arguments.length?t:1)))},Vt.darker=function(t){return new Ut(this.h,this.c,Math.max(0,this.l-Gt*(arguments.length?t:1)))},Vt.rgb=function(){return Ht(this.h,this.c,this.l).rgb()},t.lab=qt;var Gt=18,Yt=qt.prototype=new Ft;function Wt(t,e,r){var n=(t+16)/116,i=n+e/500,a=n-r/200;return new Qt(Kt(3.2404542*(i=.95047*Zt(i))-1.5371385*(n=1*Zt(n))-.4985314*(a=1.08883*Zt(a))),Kt(-.969266*i+1.8760108*n+.041556*a),Kt(.0556434*i-.2040259*n+1.0572252*a))}function Xt(t,e,r){return t>0?new Ut(Math.atan2(r,e)*Ct,Math.sqrt(e*e+r*r),t):new Ut(NaN,NaN,t)}function Zt(t){return t>.206893034?t*t*t:(t-4/29)/7.787037}function Jt(t){return t>.008856?Math.pow(t,1/3):7.787037*t+4/29}function Kt(t){return Math.round(255*(t<=.00304?12.92*t:1.055*Math.pow(t,1/2.4)-.055))}function Qt(t,e,r){return this instanceof Qt?(this.r=~~t,this.g=~~e,void(this.b=~~r)):arguments.length<2?t instanceof Qt?new Qt(t.r,t.g,t.b):ne(""+t,Qt,jt):new Qt(t,e,r)}function $t(t){return new Qt(t>>16,t>>8&255,255&t)}function te(t){return $t(t)+""}Yt.brighter=function(t){return new qt(Math.min(100,this.l+Gt*(arguments.length?t:1)),this.a,this.b)},Yt.darker=function(t){return new qt(Math.max(0,this.l-Gt*(arguments.length?t:1)),this.a,this.b)},Yt.rgb=function(){return Wt(this.l,this.a,this.b)},t.rgb=Qt;var ee=Qt.prototype=new Ft;function re(t){return t<16?"0"+Math.max(0,t).toString(16):Math.min(255,t).toString(16)}function ne(t,e,r){var n,i,a,o=0,s=0,l=0;if(n=/([a-z]+)\((.*)\)/.exec(t=t.toLowerCase()))switch(i=n[2].split(","),n[1]){case"hsl":return r(parseFloat(i[0]),parseFloat(i[1])/100,parseFloat(i[2])/100);case"rgb":return e(se(i[0]),se(i[1]),se(i[2]))}return(a=le.get(t))?e(a.r,a.g,a.b):(null==t||"#"!==t.charAt(0)||isNaN(a=parseInt(t.slice(1),16))||(4===t.length?(o=(3840&a)>>4,o|=o>>4,s=240&a,s|=s>>4,l=15&a,l|=l<<4):7===t.length&&(o=(16711680&a)>>16,s=(65280&a)>>8,l=255&a)),e(o,s,l))}function ie(t,e,r){var n,i,a=Math.min(t/=255,e/=255,r/=255),o=Math.max(t,e,r),s=o-a,l=(o+a)/2;return s?(i=l<.5?s/(o+a):s/(2-o-a),n=t==o?(e-r)/s+(e0&&l<1?0:n),new Bt(n,i,l)}function ae(t,e,r){var n=Jt((.4124564*(t=oe(t))+.3575761*(e=oe(e))+.1804375*(r=oe(r)))/.95047),i=Jt((.2126729*t+.7151522*e+.072175*r)/1);return qt(116*i-16,500*(n-i),200*(i-Jt((.0193339*t+.119192*e+.9503041*r)/1.08883)))}function oe(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function se(t){var e=parseFloat(t);return"%"===t.charAt(t.length-1)?Math.round(2.55*e):e}ee.brighter=function(t){t=Math.pow(.7,arguments.length?t:1);var e=this.r,r=this.g,n=this.b,i=30;return e||r||n?(e&&e=200&&e<300||304===e){try{t=i.call(o,c)}catch(t){return void s.error.call(o,t)}s.load.call(o,t)}else s.error.call(o,c)}return self.XDomainRequest&&!("withCredentials"in c)&&/^(http(s)?:)?\/\//.test(e)&&(c=new XDomainRequest),"onload"in c?c.onload=c.onerror=f:c.onreadystatechange=function(){c.readyState>3&&f()},c.onprogress=function(e){var r=t.event;t.event=e;try{s.progress.call(o,c)}finally{t.event=r}},o.header=function(t,e){return t=(t+"").toLowerCase(),arguments.length<2?l[t]:(null==e?delete l[t]:l[t]=e+"",o)},o.mimeType=function(t){return arguments.length?(r=null==t?null:t+"",o):r},o.responseType=function(t){return arguments.length?(u=t,o):u},o.response=function(t){return i=t,o},["get","post"].forEach((function(t){o[t]=function(){return o.send.apply(o,[t].concat(n(arguments)))}})),o.send=function(t,n,i){if(2===arguments.length&&"function"==typeof n&&(i=n,n=null),c.open(t,e,!0),null==r||"accept"in l||(l.accept=r+",*/*"),c.setRequestHeader)for(var a in l)c.setRequestHeader(a,l[a]);return null!=r&&c.overrideMimeType&&c.overrideMimeType(r),null!=u&&(c.responseType=u),null!=i&&o.on("error",i).on("load",(function(t){i(null,t)})),s.beforesend.call(o,c),c.send(null==n?null:n),o},o.abort=function(){return c.abort(),o},t.rebind(o,s,"on"),null==a?o:o.get(function(t){return 1===t.length?function(e,r){t(null==e?r:null)}:t}(a))}le.forEach((function(t,e){le.set(t,$t(e))})),t.functor=ce,t.xhr=ue(C),t.dsv=function(t,e){var r=new RegExp('["'+t+"\n]"),n=t.charCodeAt(0);function i(t,r,n){arguments.length<3&&(n=r,r=null);var i=fe(t,e,null==r?a:o(r),n);return i.row=function(t){return arguments.length?i.response(null==(r=t)?a:o(t)):r},i}function a(t){return i.parse(t.responseText)}function o(t){return function(e){return i.parse(e.responseText,t)}}function s(e){return e.map(l).join(t)}function l(t){return r.test(t)?'"'+t.replace(/\"/g,'""')+'"':t}return i.parse=function(t,e){var r;return i.parseRows(t,(function(t,n){if(r)return r(t,n-1);var i=function(e){for(var r={},n=t.length,i=0;i=l)return o;if(i)return i=!1,a;var e=c;if(34===t.charCodeAt(e)){for(var r=e;r++24?(isFinite(e)&&(clearTimeout(me),me=setTimeout(ye,e)),de=0):(de=1,ge(ye))}function xe(){for(var t=Date.now(),e=he;e;)t>=e.t&&e.c(t-e.t)&&(e.c=null),e=e.n;return t}function be(){for(var t,e=he,r=1/0;e;)e.c?(e.t1&&(e=t[a[o-2]],r=t[a[o-1]],n=t[s],(r[0]-e[0])*(n[1]-e[1])-(r[1]-e[1])*(n[0]-e[0])<=0);)--o;a[o++]=s}return a.slice(0,o)}function ke(t,e){return t[0]-e[0]||t[1]-e[1]}t.timer=function(){ve.apply(this,arguments)},t.timer.flush=function(){xe(),be()},t.round=function(t,e){return e?Math.round(t*(e=Math.pow(10,e)))/e:Math.round(t)},t.geom={},t.geom.hull=function(t){var e=_e,r=we;if(arguments.length)return n(t);function n(t){if(t.length<3)return[];var n,i=ce(e),a=ce(r),o=t.length,s=[],l=[];for(n=0;n=0;--n)p.push(t[s[c[n]][2]]);for(n=+f;nkt)s=s.L;else{if(!((i=a-Ve(s,o))>kt)){n>-kt?(e=s.P,r=s):i>-kt?(e=s,r=s.N):e=r=s;break}if(!s.R){e=s;break}s=s.R}var l=Fe(t);if(Pe.insert(e,l),e||r){if(e===r)return We(e),r=Fe(e.site),Pe.insert(l,r),l.edge=r.edge=Je(e.site,l.site),Ye(e),void Ye(r);if(r){We(e),We(r);var c=e.site,u=c.x,f=c.y,h=t.x-u,p=t.y-f,d=r.site,m=d.x-u,g=d.y-f,v=2*(h*g-p*m),y=h*h+p*p,x=m*m+g*g,b={x:(g*y-p*x)/v+u,y:(h*x-m*y)/v+f};Qe(r.edge,c,d,b),l.edge=Je(c,t,null,b),r.edge=Je(t,d,null,b),Ye(e),Ye(r)}else l.edge=Je(e.site,l.site)}}function Ue(t,e){var r=t.site,n=r.x,i=r.y,a=i-e;if(!a)return n;var o=t.P;if(!o)return-1/0;var s=(r=o.site).x,l=r.y,c=l-e;if(!c)return s;var u=s-n,f=1/a-1/c,h=u/c;return f?(-h+Math.sqrt(h*h-2*f*(u*u/(-2*c)-l+c/2+i-a/2)))/f+n:(n+s)/2}function Ve(t,e){var r=t.N;if(r)return Ue(r,e);var n=t.site;return n.y===e?n.x:1/0}function He(t){this.site=t,this.edges=[]}function qe(t,e){return e.angle-t.angle}function Ge(){er(this),this.x=this.y=this.arc=this.site=this.cy=null}function Ye(t){var e=t.P,r=t.N;if(e&&r){var n=e.site,i=t.site,a=r.site;if(n!==a){var o=i.x,s=i.y,l=n.x-o,c=n.y-s,u=a.x-o,f=2*(l*(g=a.y-s)-c*u);if(!(f>=-1e-12)){var h=l*l+c*c,p=u*u+g*g,d=(g*h-c*p)/f,m=(l*p-u*h)/f,g=m+s,v=De.pop()||new Ge;v.arc=t,v.site=i,v.x=d+o,v.y=g+Math.sqrt(d*d+m*m),v.cy=g,t.circle=v;for(var y=null,x=Oe._;x;)if(v.y=s)return;if(h>d){if(a){if(a.y>=c)return}else a={x:g,y:l};r={x:g,y:c}}else{if(a){if(a.y1)if(h>d){if(a){if(a.y>=c)return}else a={x:(l-i)/n,y:l};r={x:(c-i)/n,y:c}}else{if(a){if(a.y=s)return}else a={x:o,y:n*o+i};r={x:s,y:n*s+i}}else{if(a){if(a.x0)){if(e/=h,h<0){if(e0){if(e>f)return;e>u&&(u=e)}if(e=i-l,h||!(e<0)){if(e/=h,h<0){if(e>f)return;e>u&&(u=e)}else if(h>0){if(e0)){if(e/=p,p<0){if(e0){if(e>f)return;e>u&&(u=e)}if(e=a-c,p||!(e<0)){if(e/=p,p<0){if(e>f)return;e>u&&(u=e)}else if(p>0){if(e0&&(t.a={x:l+u*h,y:c+u*p}),f<1&&(t.b={x:l+f*h,y:c+f*p}),t}}}}}),l=o.length;l--;)(!Xe(e=o[l],t)||!s(e)||y(e.a.x-e.b.x)kt||y(i-r)>kt)&&(s.splice(o,0,new $e(Ke(a.site,u,y(n-f)kt?{x:f,y:y(e-f)kt?{x:y(r-d)kt?{x:h,y:y(e-h)kt?{x:y(r-p)=r&&c.x<=i&&c.y>=n&&c.y<=o?[[r,o],[i,o],[i,n],[r,n]]:[]).point=t[s]})),e}function s(t){return t.map((function(t,e){return{x:Math.round(n(t,e)/kt)*kt,y:Math.round(i(t,e)/kt)*kt,i:e}}))}return o.links=function(t){return ar(s(t)).edges.filter((function(t){return t.l&&t.r})).map((function(e){return{source:t[e.l.i],target:t[e.r.i]}}))},o.triangles=function(t){var e=[];return ar(s(t)).cells.forEach((function(r,n){for(var i,a,o,s,l=r.site,c=r.edges.sort(qe),u=-1,f=c.length,h=c[f-1].edge,p=h.l===l?h.r:h.l;++ua||f>o||h=_)<<1|e>=b,T=w+4;wa&&(i=e.slice(a,i),s[o]?s[o]+=i:s[++o]=i),(r=r[0])===(n=n[0])?s[o]?s[o]+=n:s[++o]=n:(s[++o]=null,l.push({i:o,x:dr(r,n)})),a=vr.lastIndex;return am&&(m=l.x),l.y>g&&(g=l.y),c.push(l.x),u.push(l.y);else for(f=0;fm&&(m=b),_>g&&(g=_),c.push(b),u.push(_)}var w=m-p,T=g-d;function k(t,e,r,n,i,a,o,s){if(!isNaN(r)&&!isNaN(n))if(t.leaf){var l=t.x,c=t.y;if(null!=l)if(y(l-r)+y(c-n)<.01)A(t,e,r,n,i,a,o,s);else{var u=t.point;t.x=t.y=t.point=null,A(t,u,l,c,i,a,o,s),A(t,e,r,n,i,a,o,s)}else t.x=r,t.y=n,t.point=e}else A(t,e,r,n,i,a,o,s)}function A(t,e,r,n,i,a,o,s){var l=.5*(i+o),c=.5*(a+s),u=r>=l,f=n>=c,h=f<<1|u;t.leaf=!1,u?i=l:o=l,f?a=c:s=c,k(t=t.nodes[h]||(t.nodes[h]={leaf:!0,nodes:[],point:null,x:null,y:null}),e,r,n,i,a,o,s)}w>T?g=d+w:m=p+T;var M={leaf:!0,nodes:[],point:null,x:null,y:null,add:function(t){k(M,t,+v(t,++f),+x(t,f),p,d,m,g)},visit:function(t){ur(t,M,p,d,m,g)},find:function(t){return fr(M,t[0],t[1],p,d,m,g)}};if(f=-1,null==e){for(;++f=0&&!(n=t.interpolators[i](e,r)););return n}function xr(t,e){var r,n=[],i=[],a=t.length,o=e.length,s=Math.min(t.length,e.length);for(r=0;r=1?1:t(e)}}function kr(t){return function(e){return 1-t(1-e)}}function Ar(t){return function(e){return.5*(e<.5?t(2*e):2-t(2-2*e))}}function Mr(t){return t*t}function Sr(t){return t*t*t}function Er(t){if(t<=0)return 0;if(t>=1)return 1;var e=t*t,r=e*t;return 4*(t<.5?r:3*(t-e)+r-.75)}function Lr(t){return 1-Math.cos(t*Et)}function Cr(t){return Math.pow(2,10*(t-1))}function Pr(t){return 1-Math.sqrt(1-t*t)}function Ir(t){return t<1/2.75?7.5625*t*t:t<2/2.75?7.5625*(t-=1.5/2.75)*t+.75:t<2.5/2.75?7.5625*(t-=2.25/2.75)*t+.9375:7.5625*(t-=2.625/2.75)*t+.984375}function Or(t,e){return e-=t,function(r){return Math.round(t+e*r)}}function zr(t){var e,r,n,i=[t.a,t.b],a=[t.c,t.d],o=Rr(i),s=Dr(i,a),l=Rr(((e=a)[0]+=(n=-s)*(r=i)[0],e[1]+=n*r[1],e))||0;i[0]*a[1]=0?t.slice(0,e):t,i=e>=0?t.slice(e+1):"in";return n=_r.get(n)||br,Tr((i=wr.get(i)||C)(n.apply(null,r.call(arguments,1))))},t.interpolateHcl=function(e,r){e=t.hcl(e),r=t.hcl(r);var n=e.h,i=e.c,a=e.l,o=r.h-n,s=r.c-i,l=r.l-a;isNaN(s)&&(s=0,i=isNaN(i)?r.c:i);isNaN(o)?(o=0,n=isNaN(n)?r.h:n):o>180?o-=360:o<-180&&(o+=360);return function(t){return Ht(n+o*t,i+s*t,a+l*t)+""}},t.interpolateHsl=function(e,r){e=t.hsl(e),r=t.hsl(r);var n=e.h,i=e.s,a=e.l,o=r.h-n,s=r.s-i,l=r.l-a;isNaN(s)&&(s=0,i=isNaN(i)?r.s:i);isNaN(o)?(o=0,n=isNaN(n)?r.h:n):o>180?o-=360:o<-180&&(o+=360);return function(t){return jt(n+o*t,i+s*t,a+l*t)+""}},t.interpolateLab=function(e,r){e=t.lab(e),r=t.lab(r);var n=e.l,i=e.a,a=e.b,o=r.l-n,s=r.a-i,l=r.b-a;return function(t){return Wt(n+o*t,i+s*t,a+l*t)+""}},t.interpolateRound=Or,t.transform=function(e){var r=i.createElementNS(t.ns.prefix.svg,"g");return(t.transform=function(t){if(null!=t){r.setAttribute("transform",t);var e=r.transform.baseVal.consolidate()}return new zr(e?e.matrix:Fr)})(e)},zr.prototype.toString=function(){return"translate("+this.translate+")rotate("+this.rotate+")skewX("+this.skew+")scale("+this.scale+")"};var Fr={a:1,b:0,c:0,d:1,e:0,f:0};function Br(t){return t.length?t.pop()+",":""}function Nr(e,r){var n=[],i=[];return e=t.transform(e),r=t.transform(r),function(t,e,r,n){if(t[0]!==e[0]||t[1]!==e[1]){var i=r.push("translate(",null,",",null,")");n.push({i:i-4,x:dr(t[0],e[0])},{i:i-2,x:dr(t[1],e[1])})}else(e[0]||e[1])&&r.push("translate("+e+")")}(e.translate,r.translate,n,i),function(t,e,r,n){t!==e?(t-e>180?e+=360:e-t>180&&(t+=360),n.push({i:r.push(Br(r)+"rotate(",null,")")-2,x:dr(t,e)})):e&&r.push(Br(r)+"rotate("+e+")")}(e.rotate,r.rotate,n,i),function(t,e,r,n){t!==e?n.push({i:r.push(Br(r)+"skewX(",null,")")-2,x:dr(t,e)}):e&&r.push(Br(r)+"skewX("+e+")")}(e.skew,r.skew,n,i),function(t,e,r,n){if(t[0]!==e[0]||t[1]!==e[1]){var i=r.push(Br(r)+"scale(",null,",",null,")");n.push({i:i-4,x:dr(t[0],e[0])},{i:i-2,x:dr(t[1],e[1])})}else 1===e[0]&&1===e[1]||r.push(Br(r)+"scale("+e+")")}(e.scale,r.scale,n,i),e=r=null,function(t){for(var e,r=-1,a=i.length;++r0?n=t:(e.c=null,e.t=NaN,e=null,l.end({type:"end",alpha:n=0})):t>0&&(l.start({type:"start",alpha:n=t}),e=ve(s.tick)),s):n},s.start=function(){var t,e,r,n=v.length,l=y.length,u=c[0],d=c[1];for(t=0;t=0;)r.push(i[n])}function $r(t,e){for(var r=[t],n=[];null!=(t=r.pop());)if(n.push(t),(a=t.children)&&(i=a.length))for(var i,a,o=-1;++o=0;)o.push(u=c[l]),u.parent=a,u.depth=a.depth+1;r&&(a.value=0),a.children=c}else r&&(a.value=+r.call(n,a,a.depth)||0),delete a.children;return $r(i,(function(e){var n,i;t&&(n=e.children)&&n.sort(t),r&&(i=e.parent)&&(i.value+=e.value)})),s}return n.sort=function(e){return arguments.length?(t=e,n):t},n.children=function(t){return arguments.length?(e=t,n):e},n.value=function(t){return arguments.length?(r=t,n):r},n.revalue=function(t){return r&&(Qr(t,(function(t){t.children&&(t.value=0)})),$r(t,(function(t){var e;t.children||(t.value=+r.call(n,t,t.depth)||0),(e=t.parent)&&(e.value+=t.value)}))),t},n},t.layout.partition=function(){var e=t.layout.hierarchy(),r=[1,1];function n(t,n){var i=e.call(this,t,n);return function t(e,r,n,i){var a=e.children;if(e.x=r,e.y=e.depth*i,e.dx=n,e.dy=i,a&&(o=a.length)){var o,s,l,c=-1;for(n=e.value?n/e.value:0;++cs&&(s=n),o.push(n)}for(r=0;ri&&(n=r,i=e);return n}function dn(t){return t.reduce(mn,0)}function mn(t,e){return t+e[1]}function gn(t,e){return vn(t,Math.ceil(Math.log(e.length)/Math.LN2+1))}function vn(t,e){for(var r=-1,n=+t[0],i=(t[1]-n)/e,a=[];++r<=e;)a[r]=i*r+n;return a}function yn(e){return[t.min(e),t.max(e)]}function xn(t,e){return t.value-e.value}function bn(t,e){var r=t._pack_next;t._pack_next=e,e._pack_prev=t,e._pack_next=r,r._pack_prev=e}function _n(t,e){t._pack_next=e,e._pack_prev=t}function wn(t,e){var r=e.x-t.x,n=e.y-t.y,i=t.r+e.r;return.999*i*i>r*r+n*n}function Tn(t){if((e=t.children)&&(l=e.length)){var e,r,n,i,a,o,s,l,c=1/0,u=-1/0,f=1/0,h=-1/0;if(e.forEach(kn),(r=e[0]).x=-r.r,r.y=0,x(r),l>1&&((n=e[1]).x=n.r,n.y=0,x(n),l>2))for(Mn(r,n,i=e[2]),x(i),bn(r,i),r._pack_prev=i,bn(i,n),n=r._pack_next,a=3;a0)for(o=-1;++o=f[0]&&l<=f[1]&&((s=c[t.bisect(h,l,1,d)-1]).y+=m,s.push(a[o]));return c}return a.value=function(t){return arguments.length?(r=t,a):r},a.range=function(t){return arguments.length?(n=ce(t),a):n},a.bins=function(t){return arguments.length?(i="number"==typeof t?function(e){return vn(e,t)}:ce(t),a):i},a.frequency=function(t){return arguments.length?(e=!!t,a):e},a},t.layout.pack=function(){var e,r=t.layout.hierarchy().sort(xn),n=0,i=[1,1];function a(t,a){var o=r.call(this,t,a),s=o[0],l=i[0],c=i[1],u=null==e?Math.sqrt:"function"==typeof e?e:function(){return e};if(s.x=s.y=0,$r(s,(function(t){t.r=+u(t.value)})),$r(s,Tn),n){var f=n*(e?1:Math.max(2*s.r/l,2*s.r/c))/2;$r(s,(function(t){t.r+=f})),$r(s,Tn),$r(s,(function(t){t.r-=f}))}return function t(e,r,n,i){var a=e.children;if(e.x=r+=i*e.x,e.y=n+=i*e.y,e.r*=i,a)for(var o=-1,s=a.length;++op.x&&(p=t),t.depth>d.depth&&(d=t)}));var m=r(h,p)/2-h.x,g=n[0]/(p.x+r(p,h)/2+m),v=n[1]/(d.depth||1);Qr(u,(function(t){t.x=(t.x+m)*g,t.y=t.depth*v}))}return c}function o(t){var e=t.children,n=t.parent.children,i=t.i?n[t.i-1]:null;if(e.length){!function(t){var e,r=0,n=0,i=t.children,a=i.length;for(;--a>=0;)(e=i[a]).z+=r,e.m+=r,r+=e.s+(n+=e.c)}(t);var a=(e[0].z+e[e.length-1].z)/2;i?(t.z=i.z+r(t._,i._),t.m=t.z-a):t.z=a}else i&&(t.z=i.z+r(t._,i._));t.parent.A=function(t,e,n){if(e){for(var i,a=t,o=t,s=e,l=a.parent.children[0],c=a.m,u=o.m,f=s.m,h=l.m;s=Ln(s),a=En(a),s&&a;)l=En(l),(o=Ln(o)).a=t,(i=s.z+f-a.z-c+r(s._,a._))>0&&(Cn(Pn(s,t,n),t,i),c+=i,u+=i),f+=s.m,c+=a.m,h+=l.m,u+=o.m;s&&!Ln(o)&&(o.t=s,o.m+=f-u),a&&!En(l)&&(l.t=a,l.m+=c-h,n=t)}return n}(t,i,t.parent.A||n[0])}function s(t){t._.x=t.z+t.parent.m,t.m+=t.parent.m}function l(t){t.x*=n[0],t.y=t.depth*n[1]}return a.separation=function(t){return arguments.length?(r=t,a):r},a.size=function(t){return arguments.length?(i=null==(n=t)?l:null,a):i?null:n},a.nodeSize=function(t){return arguments.length?(i=null==(n=t)?null:l,a):i?n:null},Kr(a,e)},t.layout.cluster=function(){var e=t.layout.hierarchy().sort(null).value(null),r=Sn,n=[1,1],i=!1;function a(a,o){var s,l=e.call(this,a,o),c=l[0],u=0;$r(c,(function(e){var n=e.children;n&&n.length?(e.x=function(t){return t.reduce((function(t,e){return t+e.x}),0)/t.length}(n),e.y=function(e){return 1+t.max(e,(function(t){return t.y}))}(n)):(e.x=s?u+=r(e,s):0,e.y=0,s=e)}));var f=function t(e){var r=e.children;return r&&r.length?t(r[0]):e}(c),h=function t(e){var r,n=e.children;return n&&(r=n.length)?t(n[r-1]):e}(c),p=f.x-r(f,h)/2,d=h.x+r(h,f)/2;return $r(c,i?function(t){t.x=(t.x-c.x)*n[0],t.y=(c.y-t.y)*n[1]}:function(t){t.x=(t.x-p)/(d-p)*n[0],t.y=(1-(c.y?t.y/c.y:1))*n[1]}),l}return a.separation=function(t){return arguments.length?(r=t,a):r},a.size=function(t){return arguments.length?(i=null==(n=t),a):i?null:n},a.nodeSize=function(t){return arguments.length?(i=null!=(n=t),a):i?n:null},Kr(a,e)},t.layout.treemap=function(){var e,r=t.layout.hierarchy(),n=Math.round,i=[1,1],a=null,o=In,s=!1,l="squarify",c=.5*(1+Math.sqrt(5));function u(t,e){for(var r,n,i=-1,a=t.length;++i0;)s.push(r=c[i-1]),s.area+=r.area,"squarify"!==l||(n=p(s,m))<=h?(c.pop(),h=n):(s.area-=s.pop().area,d(s,m,a,!1),m=Math.min(a.dx,a.dy),s.length=s.area=0,h=1/0);s.length&&(d(s,m,a,!0),s.length=s.area=0),e.forEach(f)}}function h(t){var e=t.children;if(e&&e.length){var r,n=o(t),i=e.slice(),a=[];for(u(i,n.dx*n.dy/t.value),a.area=0;r=i.pop();)a.push(r),a.area+=r.area,null!=r.z&&(d(a,r.z?n.dx:n.dy,n,!i.length),a.length=a.area=0);e.forEach(h)}}function p(t,e){for(var r,n=t.area,i=0,a=1/0,o=-1,s=t.length;++oi&&(i=r));return e*=e,(n*=n)?Math.max(e*i*c/n,n/(e*a*c)):1/0}function d(t,e,r,i){var a,o=-1,s=t.length,l=r.x,c=r.y,u=e?n(t.area/e):0;if(e==r.dx){for((i||u>r.dy)&&(u=r.dy);++or.dx)&&(u=r.dx);++o1);return t+e*r*Math.sqrt(-2*Math.log(i)/i)}},logNormal:function(){var e=t.random.normal.apply(t,arguments);return function(){return Math.exp(e())}},bates:function(e){var r=t.random.irwinHall(e);return function(){return r()/e}},irwinHall:function(t){return function(){for(var e=0,r=0;r2?jn:Rn,s=i?Ur:jr;return a=t(e,r,s,n),o=t(r,e,s,yr),l}function l(t){return a(t)}return l.invert=function(t){return o(t)},l.domain=function(t){return arguments.length?(e=t.map(Number),s()):e},l.range=function(t){return arguments.length?(r=t,s()):r},l.rangeRound=function(t){return l.range(t).interpolate(Or)},l.clamp=function(t){return arguments.length?(i=t,s()):i},l.interpolate=function(t){return arguments.length?(n=t,s()):n},l.ticks=function(t){return qn(e,t)},l.tickFormat=function(t,r){return d3_scale_linearTickFormat(e,t,r)},l.nice=function(t){return Vn(e,t),s()},l.copy=function(){return t(e,r,n,i)},s()}([0,1],[0,1],yr,!1)};t.scale.log=function(){return function t(e,r,n,i){function a(t){return(n?Math.log(t<0?0:t):-Math.log(t>0?0:-t))/Math.log(r)}function o(t){return n?Math.pow(r,t):-Math.pow(r,-t)}function s(t){return e(a(t))}return s.invert=function(t){return o(e.invert(t))},s.domain=function(t){return arguments.length?(n=t[0]>=0,e.domain((i=t.map(Number)).map(a)),s):i},s.base=function(t){return arguments.length?(r=+t,e.domain(i.map(a)),s):r},s.nice=function(){var t=Fn(i.map(a),n?Math:Gn);return e.domain(t),i=t.map(o),s},s.ticks=function(){var t=zn(i),e=[],s=t[0],l=t[1],c=Math.floor(a(s)),u=Math.ceil(a(l)),f=r%1?2:r;if(isFinite(u-c)){if(n){for(;c0;h--)e.push(o(c)*h);for(c=0;e[c]l;u--);e=e.slice(c,u)}return e},s.copy=function(){return t(e.copy(),r,n,i)},Un(s,e)}(t.scale.linear().domain([0,1]),10,!0,[1,10])};var Gn={floor:function(t){return-Math.ceil(-t)},ceil:function(t){return-Math.floor(-t)}};function Yn(t){return function(e){return e<0?-Math.pow(-e,t):Math.pow(e,t)}}t.scale.pow=function(){return function t(e,r,n){var i=Yn(r),a=Yn(1/r);function o(t){return e(i(t))}return o.invert=function(t){return a(e.invert(t))},o.domain=function(t){return arguments.length?(e.domain((n=t.map(Number)).map(i)),o):n},o.ticks=function(t){return qn(n,t)},o.tickFormat=function(t,e){return d3_scale_linearTickFormat(n,t,e)},o.nice=function(t){return o.domain(Vn(n,t))},o.exponent=function(t){return arguments.length?(i=Yn(r=t),a=Yn(1/r),e.domain(n.map(i)),o):r},o.copy=function(){return t(e.copy(),r,n)},Un(o,e)}(t.scale.linear(),1,[0,1])},t.scale.sqrt=function(){return t.scale.pow().exponent(.5)},t.scale.ordinal=function(){return function e(r,n){var i,a,o;function s(t){return a[((i.get(t)||("range"===n.t?i.set(t,r.push(t)):NaN))-1)%a.length]}function l(e,n){return t.range(r.length).map((function(t){return e+n*t}))}return s.domain=function(t){if(!arguments.length)return r;r=[],i=new _;for(var e,a=-1,o=t.length;++a0?i[t-1]:r[0],tf?0:1;if(c=St)return l(c,p)+(s?l(s,1-p):"")+"Z";var d,m,g,v,y,x,b,_,w,T,k,A,M=0,S=0,E=[];if((v=(+o.apply(this,arguments)||0)/2)&&(g=n===Qn?Math.sqrt(s*s+c*c):+n.apply(this,arguments),p||(S*=-1),c&&(S=Pt(g/c*Math.sin(v))),s&&(M=Pt(g/s*Math.sin(v)))),c){y=c*Math.cos(u+S),x=c*Math.sin(u+S),b=c*Math.cos(f-S),_=c*Math.sin(f-S);var L=Math.abs(f-u-2*S)<=At?0:1;if(S&&ii(y,x,b,_)===p^L){var C=(u+f)/2;y=c*Math.cos(C),x=c*Math.sin(C),b=_=null}}else y=x=0;if(s){w=s*Math.cos(f-M),T=s*Math.sin(f-M),k=s*Math.cos(u+M),A=s*Math.sin(u+M);var P=Math.abs(u-f+2*M)<=At?0:1;if(M&&ii(w,T,k,A)===1-p^P){var I=(u+f)/2;w=s*Math.cos(I),T=s*Math.sin(I),k=A=null}}else w=T=0;if(h>kt&&(d=Math.min(Math.abs(c-s)/2,+r.apply(this,arguments)))>.001){m=s0?0:1}function ai(t,e,r,n,i){var a=t[0]-e[0],o=t[1]-e[1],s=(i?n:-n)/Math.sqrt(a*a+o*o),l=s*o,c=-s*a,u=t[0]+l,f=t[1]+c,h=e[0]+l,p=e[1]+c,d=(u+h)/2,m=(f+p)/2,g=h-u,v=p-f,y=g*g+v*v,x=r-n,b=u*p-h*f,_=(v<0?-1:1)*Math.sqrt(Math.max(0,x*x*y-b*b)),w=(b*v-g*_)/y,T=(-b*g-v*_)/y,k=(b*v+g*_)/y,A=(-b*g+v*_)/y,M=w-d,S=T-m,E=k-d,L=A-m;return M*M+S*S>E*E+L*L&&(w=k,T=A),[[w-l,T-c],[w*r/x,T*r/x]]}function oi(){return!0}function si(t){var e=_e,r=we,n=oi,i=ci,a=i.key,o=.7;function s(a){var s,l=[],c=[],u=-1,f=a.length,h=ce(e),p=ce(r);function d(){l.push("M",i(t(c),o))}for(;++u1&&i.push("H",n[0]);return i.join("")},"step-before":fi,"step-after":hi,basis:mi,"basis-open":function(t){if(t.length<4)return ci(t);var e,r=[],n=-1,i=t.length,a=[0],o=[0];for(;++n<3;)e=t[n],a.push(e[0]),o.push(e[1]);r.push(gi(xi,a)+","+gi(xi,o)),--n;for(;++n9&&(i=3*e/Math.sqrt(i),o[s]=i*r,o[s+1]=i*n));s=-1;for(;++s<=l;)i=(t[Math.min(l,s+1)][0]-t[Math.max(0,s-1)][0])/(6*(1+o[s]*o[s])),a.push([i||0,o[s]*i||0]);return a}(t))}});function ci(t){return t.length>1?t.join("L"):t+"Z"}function ui(t){return t.join("L")+"Z"}function fi(t){for(var e=0,r=t.length,n=t[0],i=[n[0],",",n[1]];++e1){s=e[1],a=t[l],l++,n+="C"+(i[0]+o[0])+","+(i[1]+o[1])+","+(a[0]-s[0])+","+(a[1]-s[1])+","+a[0]+","+a[1];for(var c=2;cAt)+",1 "+e}function l(t,e,r,n){return"Q 0,0 "+n}return a.radius=function(t){return arguments.length?(r=ce(t),a):r},a.source=function(e){return arguments.length?(t=ce(e),a):t},a.target=function(t){return arguments.length?(e=ce(t),a):e},a.startAngle=function(t){return arguments.length?(n=ce(t),a):n},a.endAngle=function(t){return arguments.length?(i=ce(t),a):i},a},t.svg.diagonal=function(){var t=ki,e=Ai,r=Si;function n(n,i){var a=t.call(this,n,i),o=e.call(this,n,i),s=(a.y+o.y)/2,l=[a,{x:a.x,y:s},{x:o.x,y:s},o];return"M"+(l=l.map(r))[0]+"C"+l[1]+" "+l[2]+" "+l[3]}return n.source=function(e){return arguments.length?(t=ce(e),n):t},n.target=function(t){return arguments.length?(e=ce(t),n):e},n.projection=function(t){return arguments.length?(r=t,n):r},n},t.svg.diagonal.radial=function(){var e=t.svg.diagonal(),r=Si,n=e.projection;return e.projection=function(t){return arguments.length?n(Ei(r=t)):r},e},t.svg.symbol=function(){var t=Ci,e=Li;function r(r,n){return(Ii.get(t.call(this,r,n))||Pi)(e.call(this,r,n))}return r.type=function(e){return arguments.length?(t=ce(e),r):t},r.size=function(t){return arguments.length?(e=ce(t),r):e},r};var Ii=t.map({circle:Pi,cross:function(t){var e=Math.sqrt(t/5)/2;return"M"+-3*e+","+-e+"H"+-e+"V"+-3*e+"H"+e+"V"+-e+"H"+3*e+"V"+e+"H"+e+"V"+3*e+"H"+-e+"V"+e+"H"+-3*e+"Z"},diamond:function(t){var e=Math.sqrt(t/(2*zi)),r=e*zi;return"M0,"+-e+"L"+r+",0 0,"+e+" "+-r+",0Z"},square:function(t){var e=Math.sqrt(t)/2;return"M"+-e+","+-e+"L"+e+","+-e+" "+e+","+e+" "+-e+","+e+"Z"},"triangle-down":function(t){var e=Math.sqrt(t/Oi),r=e*Oi/2;return"M0,"+r+"L"+e+","+-r+" "+-e+","+-r+"Z"},"triangle-up":function(t){var e=Math.sqrt(t/Oi),r=e*Oi/2;return"M0,"+-r+"L"+e+","+r+" "+-e+","+r+"Z"}});t.svg.symbolTypes=Ii.keys();var Oi=Math.sqrt(3),zi=Math.tan(30*Lt);Y.transition=function(t){for(var e,r,n=Bi||++Ui,i=qi(t),a=[],o=Ni||{time:Date.now(),ease:Er,delay:0,duration:250},s=-1,l=this.length;++s0;)c[--h].call(t,o);if(a>=1)return f.event&&f.event.end.call(t,t.__data__,e),--u.count?delete u[n]:delete t[r],1}f||(a=i.time,o=ve((function(t){var e=f.delay;if(o.t=e+a,e<=t)return h(t-e);o.c=h}),0,a),f=u[n]={tween:new _,time:a,timer:o,delay:i.delay,duration:i.duration,ease:i.ease,index:e},i=null,++u.count)}ji.call=Y.call,ji.empty=Y.empty,ji.node=Y.node,ji.size=Y.size,t.transition=function(e,r){return e&&e.transition?Bi?e.transition(r):e:t.selection().transition(e)},t.transition.prototype=ji,ji.select=function(t){var e,r,n,i=this.id,a=this.namespace,o=[];t=W(t);for(var s=-1,l=this.length;++srect,.s>rect").attr("width",s[1]-s[0])}function m(t){t.select(".extent").attr("y",l[0]),t.selectAll(".extent,.e>rect,.w>rect").attr("height",l[1]-l[0])}function g(){var f,g,v=this,y=t.select(t.event.target),x=n.of(v,arguments),b=t.select(v),_=y.datum(),w=!/^(n|s)$/.test(_)&&i,T=!/^(e|w)$/.test(_)&&a,k=y.classed("extent"),A=bt(v),M=t.mouse(v),S=t.select(o(v)).on("keydown.brush",C).on("keyup.brush",P);if(t.event.changedTouches?S.on("touchmove.brush",I).on("touchend.brush",z):S.on("mousemove.brush",I).on("mouseup.brush",z),b.interrupt().selectAll("*").interrupt(),k)M[0]=s[0]-M[0],M[1]=l[0]-M[1];else if(_){var E=+/w$/.test(_),L=+/^n/.test(_);g=[s[1-E]-M[0],l[1-L]-M[1]],M[0]=s[E],M[1]=l[L]}else t.event.altKey&&(f=M.slice());function C(){32==t.event.keyCode&&(k||(f=null,M[0]-=s[1],M[1]-=l[1],k=2),F())}function P(){32==t.event.keyCode&&2==k&&(M[0]+=s[1],M[1]+=l[1],k=0,F())}function I(){var e=t.mouse(v),r=!1;g&&(e[0]+=g[0],e[1]+=g[1]),k||(t.event.altKey?(f||(f=[(s[0]+s[1])/2,(l[0]+l[1])/2]),M[0]=s[+(e[0]>>1;e.dtype||(e.dtype="array"),"string"==typeof e.dtype?d=new(f(e.dtype))(g):e.dtype&&(d=e.dtype,Array.isArray(d)&&(d.length=g));for(var v=0;vr||s>1073741824){for(var h=0;he+n||w>r+n||T=A||a===o)){var s=y[i];void 0===o&&(o=s.length);for(var l=a;l=d&&u<=g&&f>=m&&f<=v&&S.push(c)}var h=x[i],p=h[4*a+0],b=h[4*a+1],M=h[4*a+2],E=h[4*a+3],P=C(h,a+1),I=.5*n,O=i+1;L(e,r,I,O,p,b||M||E||P),L(e,r+I,I,O,b,M||E||P),L(e+I,r,I,O,M,E||P),L(e+I,r+I,I,O,E,P)}}function C(t,e){for(var r=null,n=0;null===r;)if(r=t[4*e+n],++n>t.length)return null;return r}return L(0,0,1,0,0,1),S},d;function E(t,e,r,i,a){for(var o=[],s=0;s0){e+=Math.abs(a(t[0]));for(var r=1;r2){for(s=0;st[0]&&(e[0]=t[0]),e[1]>t[1]&&(e[1]=t[1]),e[2]=0))throw new Error("precision must be a positive number");var r=Math.pow(10,e||0);return Math.round(t*r)/r},r.radiansToLength=f,r.lengthToRadians=h,r.lengthToDegrees=function(t,e){return p(h(t,e))},r.bearingToAzimuth=function(t){var e=t%360;return e<0&&(e+=360),e},r.radiansToDegrees=p,r.degreesToRadians=function(t){return t%360*Math.PI/180},r.convertLength=function(t,e,r){if(void 0===e&&(e="kilometers"),void 0===r&&(r="kilometers"),!(t>=0))throw new Error("length must be a positive number");return f(h(t,e),r)},r.convertArea=function(t,e,n){if(void 0===e&&(e="meters"),void 0===n&&(n="kilometers"),!(t>=0))throw new Error("area must be a positive number");var i=r.areaFactors[e];if(!i)throw new Error("invalid original units");var a=r.areaFactors[n];if(!a)throw new Error("invalid final units");return t/i*a},r.isNumber=d,r.isObject=function(t){return!!t&&t.constructor===Object},r.validateBBox=function(t){if(!t)throw new Error("bbox is required");if(!Array.isArray(t))throw new Error("bbox must be an Array");if(4!==t.length&&6!==t.length)throw new Error("bbox must be an Array of 4 or 6 numbers");t.forEach((function(t){if(!d(t))throw new Error("bbox must only contain numbers")}))},r.validateId=function(t){if(!t)throw new Error("id is required");if(-1===["string","number"].indexOf(typeof t))throw new Error("id must be a number or a string")}},{}],65:[function(t,e,r){"use strict";Object.defineProperty(r,"__esModule",{value:!0});var n=t("@turf/helpers");function i(t,e,r){if(null!==t)for(var n,a,o,s,l,c,u,f,h=0,p=0,d=t.type,m="FeatureCollection"===d,g="Feature"===d,v=m?t.features.length:1,y=0;yc||p>u||d>f)return l=i,c=r,u=p,f=d,void(o=0);var m=n.lineString([l,i],t.properties);if(!1===e(m,r,a,d,o))return!1;o++,l=i}))&&void 0}}}))}function u(t,e){if(!t)throw new Error("geojson is required");l(t,(function(t,r,i){if(null!==t.geometry){var a=t.geometry.type,o=t.geometry.coordinates;switch(a){case"LineString":if(!1===e(t,r,i,0,0))return!1;break;case"Polygon":for(var s=0;si&&(i=t[o]),t[o]:not(.watermark)":"opacity:0;-webkit-transition:opacity .3s ease 0s;-moz-transition:opacity .3s ease 0s;-ms-transition:opacity .3s ease 0s;-o-transition:opacity .3s ease 0s;transition:opacity .3s ease 0s;","X:hover .modebar--hover .modebar-group":"opacity:1;","X .modebar-group":"float:left;display:inline-block;box-sizing:border-box;padding-left:8px;position:relative;vertical-align:middle;white-space:nowrap;","X .modebar-btn":"position:relative;font-size:16px;padding:3px 4px;height:22px;cursor:pointer;line-height:normal;box-sizing:border-box;","X .modebar-btn svg":"position:relative;top:2px;","X .modebar.vertical":"display:flex;flex-direction:column;flex-wrap:wrap;align-content:flex-end;max-height:100%;","X .modebar.vertical svg":"top:-1px;","X .modebar.vertical .modebar-group":"display:block;float:none;padding-left:0px;padding-bottom:8px;","X .modebar.vertical .modebar-group .modebar-btn":"display:block;text-align:center;","X [data-title]:before,X [data-title]:after":"position:absolute;-webkit-transform:translate3d(0, 0, 0);-moz-transform:translate3d(0, 0, 0);-ms-transform:translate3d(0, 0, 0);-o-transform:translate3d(0, 0, 0);transform:translate3d(0, 0, 0);display:none;opacity:0;z-index:1001;pointer-events:none;top:110%;right:50%;","X [data-title]:hover:before,X [data-title]:hover:after":"display:block;opacity:1;","X [data-title]:before":'content:"";position:absolute;background:transparent;border:6px solid transparent;z-index:1002;margin-top:-12px;border-bottom-color:#69738a;margin-right:-6px;',"X [data-title]:after":"content:attr(data-title);background:#69738a;color:#fff;padding:8px 10px;font-size:12px;line-height:12px;white-space:nowrap;margin-right:-18px;border-radius:2px;","X .vertical [data-title]:before,X .vertical [data-title]:after":"top:0%;right:200%;","X .vertical [data-title]:before":"border:6px solid transparent;border-left-color:#69738a;margin-top:8px;margin-right:-30px;","X .select-outline":"fill:none;stroke-width:1;shape-rendering:crispEdges;","X .select-outline-1":"stroke:#fff;","X .select-outline-2":"stroke:#000;stroke-dasharray:2px 2px;",Y:'font-family:"Open Sans",verdana,arial,sans-serif;position:fixed;top:50px;right:20px;z-index:10000;font-size:10pt;max-width:180px;',"Y p":"margin:0;","Y .notifier-note":"min-width:180px;max-width:250px;border:1px solid #fff;z-index:3000;margin:0;background-color:#8c97af;background-color:rgba(140,151,175,.9);color:#fff;padding:10px;overflow-wrap:break-word;word-wrap:break-word;-ms-hyphens:auto;-webkit-hyphens:auto;hyphens:auto;","Y .notifier-close":"color:#fff;opacity:.8;float:right;padding:0 5px;background:none;border:none;font-size:20px;font-weight:bold;line-height:20px;","Y .notifier-close:hover":"color:#444;text-decoration:none;cursor:pointer;"};for(var a in i){var o=a.replace(/^,/," ,").replace(/X/g,".js-plotly-plot .plotly").replace(/Y/g,".plotly-notifier");n.addStyleRule(o,i[a])}},{"../src/lib":776}],2:[function(t,e,r){"use strict";e.exports=t("../src/transforms/aggregate")},{"../src/transforms/aggregate":1372}],3:[function(t,e,r){"use strict";e.exports=t("../src/traces/bar")},{"../src/traces/bar":922}],4:[function(t,e,r){"use strict";e.exports=t("../src/traces/barpolar")},{"../src/traces/barpolar":935}],5:[function(t,e,r){"use strict";e.exports=t("../src/traces/box")},{"../src/traces/box":945}],6:[function(t,e,r){"use strict";e.exports=t("../src/components/calendars")},{"../src/components/calendars":637}],7:[function(t,e,r){"use strict";e.exports=t("../src/traces/candlestick")},{"../src/traces/candlestick":954}],8:[function(t,e,r){"use strict";e.exports=t("../src/traces/carpet")},{"../src/traces/carpet":973}],9:[function(t,e,r){"use strict";e.exports=t("../src/traces/choropleth")},{"../src/traces/choropleth":987}],10:[function(t,e,r){"use strict";e.exports=t("../src/traces/choroplethmapbox")},{"../src/traces/choroplethmapbox":994}],11:[function(t,e,r){"use strict";e.exports=t("../src/traces/cone")},{"../src/traces/cone":1e3}],12:[function(t,e,r){"use strict";e.exports=t("../src/traces/contour")},{"../src/traces/contour":1015}],13:[function(t,e,r){"use strict";e.exports=t("../src/traces/contourcarpet")},{"../src/traces/contourcarpet":1026}],14:[function(t,e,r){"use strict";e.exports=t("../src/core")},{"../src/core":754}],15:[function(t,e,r){"use strict";e.exports=t("../src/traces/densitymapbox")},{"../src/traces/densitymapbox":1034}],16:[function(t,e,r){"use strict";e.exports=t("../src/transforms/filter")},{"../src/transforms/filter":1373}],17:[function(t,e,r){"use strict";e.exports=t("../src/traces/funnel")},{"../src/traces/funnel":1044}],18:[function(t,e,r){"use strict";e.exports=t("../src/traces/funnelarea")},{"../src/traces/funnelarea":1053}],19:[function(t,e,r){"use strict";e.exports=t("../src/transforms/groupby")},{"../src/transforms/groupby":1374}],20:[function(t,e,r){"use strict";e.exports=t("../src/traces/heatmap")},{"../src/traces/heatmap":1066}],21:[function(t,e,r){"use strict";e.exports=t("../src/traces/heatmapgl")},{"../src/traces/heatmapgl":1076}],22:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram")},{"../src/traces/histogram":1088}],23:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram2d")},{"../src/traces/histogram2d":1094}],24:[function(t,e,r){"use strict";e.exports=t("../src/traces/histogram2dcontour")},{"../src/traces/histogram2dcontour":1098}],25:[function(t,e,r){"use strict";e.exports=t("../src/traces/icicle")},{"../src/traces/icicle":1104}],26:[function(t,e,r){"use strict";e.exports=t("../src/traces/image")},{"../src/traces/image":1117}],27:[function(t,e,r){"use strict";var n=t("./core");n.register([t("./bar"),t("./box"),t("./heatmap"),t("./histogram"),t("./histogram2d"),t("./histogram2dcontour"),t("./contour"),t("./scatterternary"),t("./violin"),t("./funnel"),t("./waterfall"),t("./image"),t("./pie"),t("./sunburst"),t("./treemap"),t("./icicle"),t("./funnelarea"),t("./scatter3d"),t("./surface"),t("./isosurface"),t("./volume"),t("./mesh3d"),t("./cone"),t("./streamtube"),t("./scattergeo"),t("./choropleth"),t("./scattergl"),t("./splom"),t("./pointcloud"),t("./heatmapgl"),t("./parcoords"),t("./parcats"),t("./scattermapbox"),t("./choroplethmapbox"),t("./densitymapbox"),t("./sankey"),t("./indicator"),t("./table"),t("./carpet"),t("./scattercarpet"),t("./contourcarpet"),t("./ohlc"),t("./candlestick"),t("./scatterpolar"),t("./scatterpolargl"),t("./barpolar"),t("./aggregate"),t("./filter"),t("./groupby"),t("./sort"),t("./calendars")]),e.exports=n},{"./aggregate":2,"./bar":3,"./barpolar":4,"./box":5,"./calendars":6,"./candlestick":7,"./carpet":8,"./choropleth":9,"./choroplethmapbox":10,"./cone":11,"./contour":12,"./contourcarpet":13,"./core":14,"./densitymapbox":15,"./filter":16,"./funnel":17,"./funnelarea":18,"./groupby":19,"./heatmap":20,"./heatmapgl":21,"./histogram":22,"./histogram2d":23,"./histogram2dcontour":24,"./icicle":25,"./image":26,"./indicator":28,"./isosurface":29,"./mesh3d":30,"./ohlc":31,"./parcats":32,"./parcoords":33,"./pie":34,"./pointcloud":35,"./sankey":36,"./scatter3d":37,"./scattercarpet":38,"./scattergeo":39,"./scattergl":40,"./scattermapbox":41,"./scatterpolar":42,"./scatterpolargl":43,"./scatterternary":44,"./sort":45,"./splom":46,"./streamtube":47,"./sunburst":48,"./surface":49,"./table":50,"./treemap":51,"./violin":52,"./volume":53,"./waterfall":54}],28:[function(t,e,r){"use strict";e.exports=t("../src/traces/indicator")},{"../src/traces/indicator":1125}],29:[function(t,e,r){"use strict";e.exports=t("../src/traces/isosurface")},{"../src/traces/isosurface":1131}],30:[function(t,e,r){"use strict";e.exports=t("../src/traces/mesh3d")},{"../src/traces/mesh3d":1136}],31:[function(t,e,r){"use strict";e.exports=t("../src/traces/ohlc")},{"../src/traces/ohlc":1141}],32:[function(t,e,r){"use strict";e.exports=t("../src/traces/parcats")},{"../src/traces/parcats":1150}],33:[function(t,e,r){"use strict";e.exports=t("../src/traces/parcoords")},{"../src/traces/parcoords":1160}],34:[function(t,e,r){"use strict";e.exports=t("../src/traces/pie")},{"../src/traces/pie":1171}],35:[function(t,e,r){"use strict";e.exports=t("../src/traces/pointcloud")},{"../src/traces/pointcloud":1180}],36:[function(t,e,r){"use strict";e.exports=t("../src/traces/sankey")},{"../src/traces/sankey":1186}],37:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatter3d")},{"../src/traces/scatter3d":1224}],38:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattercarpet")},{"../src/traces/scattercarpet":1231}],39:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattergeo")},{"../src/traces/scattergeo":1239}],40:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattergl")},{"../src/traces/scattergl":1252}],41:[function(t,e,r){"use strict";e.exports=t("../src/traces/scattermapbox")},{"../src/traces/scattermapbox":1262}],42:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterpolar")},{"../src/traces/scatterpolar":1270}],43:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterpolargl")},{"../src/traces/scatterpolargl":1277}],44:[function(t,e,r){"use strict";e.exports=t("../src/traces/scatterternary")},{"../src/traces/scatterternary":1285}],45:[function(t,e,r){"use strict";e.exports=t("../src/transforms/sort")},{"../src/transforms/sort":1376}],46:[function(t,e,r){"use strict";e.exports=t("../src/traces/splom")},{"../src/traces/splom":1294}],47:[function(t,e,r){"use strict";e.exports=t("../src/traces/streamtube")},{"../src/traces/streamtube":1302}],48:[function(t,e,r){"use strict";e.exports=t("../src/traces/sunburst")},{"../src/traces/sunburst":1310}],49:[function(t,e,r){"use strict";e.exports=t("../src/traces/surface")},{"../src/traces/surface":1319}],50:[function(t,e,r){"use strict";e.exports=t("../src/traces/table")},{"../src/traces/table":1327}],51:[function(t,e,r){"use strict";e.exports=t("../src/traces/treemap")},{"../src/traces/treemap":1338}],52:[function(t,e,r){"use strict";e.exports=t("../src/traces/violin")},{"../src/traces/violin":1351}],53:[function(t,e,r){"use strict";e.exports=t("../src/traces/volume")},{"../src/traces/volume":1359}],54:[function(t,e,r){"use strict";e.exports=t("../src/traces/waterfall")},{"../src/traces/waterfall":1367}],55:[function(t,e,r){"use strict";e.exports=function(t){var e=(t=t||{}).eye||[0,0,1],r=t.center||[0,0,0],s=t.up||[0,1,0],l=t.distanceLimits||[0,1/0],c=t.mode||"turntable",u=n(),f=i(),h=a();return u.setDistanceLimits(l[0],l[1]),u.lookAt(0,e,r,s),f.setDistanceLimits(l[0],l[1]),f.lookAt(0,e,r,s),h.setDistanceLimits(l[0],l[1]),h.lookAt(0,e,r,s),new o({turntable:u,orbit:f,matrix:h},c)};var n=t("turntable-camera-controller"),i=t("orbit-camera-controller"),a=t("matrix-camera-controller");function o(t,e){this._controllerNames=Object.keys(t),this._controllerList=this._controllerNames.map((function(e){return t[e]})),this._mode=e,this._active=t[e],this._active||(this._mode="turntable",this._active=t.turntable),this.modes=this._controllerNames,this.computedMatrix=this._active.computedMatrix,this.computedEye=this._active.computedEye,this.computedUp=this._active.computedUp,this.computedCenter=this._active.computedCenter,this.computedRadius=this._active.computedRadius}var s=o.prototype;s.flush=function(t){for(var e=this._controllerList,r=0;r1||i>1)}function M(t,e,r){return t.sort(E),t.forEach((function(n,i){var a,o,s=0;if(q(n,r)&&A(n))n.circularPathData.verticalBuffer=s+n.width/2;else{for(var l=0;lo.source.column)){var c=t[l].circularPathData.verticalBuffer+t[l].width/2+e;s=c>s?c:s}n.circularPathData.verticalBuffer=s+n.width/2}})),t}function S(t,r,i,a){var o=e.min(t.links,(function(t){return t.source.y0}));t.links.forEach((function(t){t.circular&&(t.circularPathData={})})),M(t.links.filter((function(t){return"top"==t.circularLinkType})),r,a),M(t.links.filter((function(t){return"bottom"==t.circularLinkType})),r,a),t.links.forEach((function(e){if(e.circular){if(e.circularPathData.arcRadius=e.width+10,e.circularPathData.leftNodeBuffer=5,e.circularPathData.rightNodeBuffer=5,e.circularPathData.sourceWidth=e.source.x1-e.source.x0,e.circularPathData.sourceX=e.source.x0+e.circularPathData.sourceWidth,e.circularPathData.targetX=e.target.x0,e.circularPathData.sourceY=e.y0,e.circularPathData.targetY=e.y1,q(e,a)&&A(e))e.circularPathData.leftSmallArcRadius=10+e.width/2,e.circularPathData.leftLargeArcRadius=10+e.width/2,e.circularPathData.rightSmallArcRadius=10+e.width/2,e.circularPathData.rightLargeArcRadius=10+e.width/2,"bottom"==e.circularLinkType?(e.circularPathData.verticalFullExtent=e.source.y1+25+e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.rightLargeArcRadius):(e.circularPathData.verticalFullExtent=e.source.y0-25-e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.rightLargeArcRadius);else{var s=e.source.column,l=e.circularLinkType,c=t.links.filter((function(t){return t.source.column==s&&t.circularLinkType==l}));"bottom"==e.circularLinkType?c.sort(C):c.sort(L);var u=0;c.forEach((function(t,n){t.circularLinkID==e.circularLinkID&&(e.circularPathData.leftSmallArcRadius=10+e.width/2+u,e.circularPathData.leftLargeArcRadius=10+e.width/2+n*r+u),u+=t.width})),s=e.target.column,c=t.links.filter((function(t){return t.target.column==s&&t.circularLinkType==l})),"bottom"==e.circularLinkType?c.sort(I):c.sort(P),u=0,c.forEach((function(t,n){t.circularLinkID==e.circularLinkID&&(e.circularPathData.rightSmallArcRadius=10+e.width/2+u,e.circularPathData.rightLargeArcRadius=10+e.width/2+n*r+u),u+=t.width})),"bottom"==e.circularLinkType?(e.circularPathData.verticalFullExtent=Math.max(i,e.source.y1,e.target.y1)+25+e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent-e.circularPathData.rightLargeArcRadius):(e.circularPathData.verticalFullExtent=o-25-e.circularPathData.verticalBuffer,e.circularPathData.verticalLeftInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.leftLargeArcRadius,e.circularPathData.verticalRightInnerExtent=e.circularPathData.verticalFullExtent+e.circularPathData.rightLargeArcRadius)}e.circularPathData.leftInnerExtent=e.circularPathData.sourceX+e.circularPathData.leftNodeBuffer,e.circularPathData.rightInnerExtent=e.circularPathData.targetX-e.circularPathData.rightNodeBuffer,e.circularPathData.leftFullExtent=e.circularPathData.sourceX+e.circularPathData.leftLargeArcRadius+e.circularPathData.leftNodeBuffer,e.circularPathData.rightFullExtent=e.circularPathData.targetX-e.circularPathData.rightLargeArcRadius-e.circularPathData.rightNodeBuffer}if(e.circular)e.path=function(t){var e="";e="top"==t.circularLinkType?"M"+t.circularPathData.sourceX+" "+t.circularPathData.sourceY+" L"+t.circularPathData.leftInnerExtent+" "+t.circularPathData.sourceY+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftSmallArcRadius+" 0 0 0 "+t.circularPathData.leftFullExtent+" "+(t.circularPathData.sourceY-t.circularPathData.leftSmallArcRadius)+" L"+t.circularPathData.leftFullExtent+" "+t.circularPathData.verticalLeftInnerExtent+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftLargeArcRadius+" 0 0 0 "+t.circularPathData.leftInnerExtent+" "+t.circularPathData.verticalFullExtent+" L"+t.circularPathData.rightInnerExtent+" "+t.circularPathData.verticalFullExtent+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightLargeArcRadius+" 0 0 0 "+t.circularPathData.rightFullExtent+" "+t.circularPathData.verticalRightInnerExtent+" L"+t.circularPathData.rightFullExtent+" "+(t.circularPathData.targetY-t.circularPathData.rightSmallArcRadius)+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightSmallArcRadius+" 0 0 0 "+t.circularPathData.rightInnerExtent+" "+t.circularPathData.targetY+" L"+t.circularPathData.targetX+" "+t.circularPathData.targetY:"M"+t.circularPathData.sourceX+" "+t.circularPathData.sourceY+" L"+t.circularPathData.leftInnerExtent+" "+t.circularPathData.sourceY+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftSmallArcRadius+" 0 0 1 "+t.circularPathData.leftFullExtent+" "+(t.circularPathData.sourceY+t.circularPathData.leftSmallArcRadius)+" L"+t.circularPathData.leftFullExtent+" "+t.circularPathData.verticalLeftInnerExtent+" A"+t.circularPathData.leftLargeArcRadius+" "+t.circularPathData.leftLargeArcRadius+" 0 0 1 "+t.circularPathData.leftInnerExtent+" "+t.circularPathData.verticalFullExtent+" L"+t.circularPathData.rightInnerExtent+" "+t.circularPathData.verticalFullExtent+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightLargeArcRadius+" 0 0 1 "+t.circularPathData.rightFullExtent+" "+t.circularPathData.verticalRightInnerExtent+" L"+t.circularPathData.rightFullExtent+" "+(t.circularPathData.targetY+t.circularPathData.rightSmallArcRadius)+" A"+t.circularPathData.rightLargeArcRadius+" "+t.circularPathData.rightSmallArcRadius+" 0 0 1 "+t.circularPathData.rightInnerExtent+" "+t.circularPathData.targetY+" L"+t.circularPathData.targetX+" "+t.circularPathData.targetY;return e}(e);else{var f=n.linkHorizontal().source((function(t){return[t.source.x0+(t.source.x1-t.source.x0),t.y0]})).target((function(t){return[t.target.x0,t.y1]}));e.path=f(e)}}))}function E(t,e){return O(t)==O(e)?"bottom"==t.circularLinkType?C(t,e):L(t,e):O(e)-O(t)}function L(t,e){return t.y0-e.y0}function C(t,e){return e.y0-t.y0}function P(t,e){return t.y1-e.y1}function I(t,e){return e.y1-t.y1}function O(t){return t.target.column-t.source.column}function z(t){return t.target.x0-t.source.x1}function D(t,e){var r=T(t),n=z(e)/Math.tan(r);return"up"==H(t)?t.y1+n:t.y1-n}function R(t,e){var r=T(t),n=z(e)/Math.tan(r);return"up"==H(t)?t.y1-n:t.y1+n}function F(t,e,r,n){t.links.forEach((function(i){if(!i.circular&&i.target.column-i.source.column>1){var a=i.source.column+1,o=i.target.column-1,s=1,l=o-a+1;for(s=1;a<=o;a++,s++)t.nodes.forEach((function(o){if(o.column==a){var c,u=s/(l+1),f=Math.pow(1-u,3),h=3*u*Math.pow(1-u,2),p=3*Math.pow(u,2)*(1-u),d=Math.pow(u,3),m=f*i.y0+h*i.y0+p*i.y1+d*i.y1,g=m-i.width/2,v=m+i.width/2;g>o.y0&&go.y0&&vo.y1)&&(c=v-o.y0+10,o=N(o,c,e,r),t.nodes.forEach((function(t){b(t,n)!=b(o,n)&&t.column==o.column&&t.y0o.y1&&N(t,c,e,r)})))}}))}}))}function B(t,e){return t.y0>e.y0&&t.y0e.y0&&t.y1e.y1)}function N(t,e,r,n){return t.y0+e>=r&&t.y1+e<=n&&(t.y0=t.y0+e,t.y1=t.y1+e,t.targetLinks.forEach((function(t){t.y1=t.y1+e})),t.sourceLinks.forEach((function(t){t.y0=t.y0+e}))),t}function j(t,e,r,n){t.nodes.forEach((function(i){n&&i.y+(i.y1-i.y0)>e&&(i.y=i.y-(i.y+(i.y1-i.y0)-e));var a=t.links.filter((function(t){return b(t.source,r)==b(i,r)})),o=a.length;o>1&&a.sort((function(t,e){if(!t.circular&&!e.circular){if(t.target.column==e.target.column)return t.y1-e.y1;if(!V(t,e))return t.y1-e.y1;if(t.target.column>e.target.column){var r=R(e,t);return t.y1-r}if(e.target.column>t.target.column)return R(t,e)-e.y1}return t.circular&&!e.circular?"top"==t.circularLinkType?-1:1:e.circular&&!t.circular?"top"==e.circularLinkType?1:-1:t.circular&&e.circular?t.circularLinkType===e.circularLinkType&&"top"==t.circularLinkType?t.target.column===e.target.column?t.target.y1-e.target.y1:e.target.column-t.target.column:t.circularLinkType===e.circularLinkType&&"bottom"==t.circularLinkType?t.target.column===e.target.column?e.target.y1-t.target.y1:t.target.column-e.target.column:"top"==t.circularLinkType?-1:1:void 0}));var s=i.y0;a.forEach((function(t){t.y0=s+t.width/2,s+=t.width})),a.forEach((function(t,e){if("bottom"==t.circularLinkType){for(var r=e+1,n=0;r1&&n.sort((function(t,e){if(!t.circular&&!e.circular){if(t.source.column==e.source.column)return t.y0-e.y0;if(!V(t,e))return t.y0-e.y0;if(e.source.column0?"up":"down"}function q(t,e){return b(t.source,e)==b(t.target,e)}function G(t,r,n){var i=t.nodes,a=t.links,o=!1,s=!1;if(a.forEach((function(t){"top"==t.circularLinkType?o=!0:"bottom"==t.circularLinkType&&(s=!0)})),0==o||0==s){var l=e.min(i,(function(t){return t.y0})),c=(n-r)/(e.max(i,(function(t){return t.y1}))-l);i.forEach((function(t){var e=(t.y1-t.y0)*c;t.y0=(t.y0-l)*c,t.y1=t.y0+e})),a.forEach((function(t){t.y0=(t.y0-l)*c,t.y1=(t.y1-l)*c,t.width=t.width*c}))}}t.sankeyCircular=function(){var t,n,i=0,a=0,b=1,T=1,A=24,M=g,E=o,L=v,C=y,P=32,I=2,O=null;function z(){var t={nodes:L.apply(null,arguments),links:C.apply(null,arguments)};D(t),_(t,M,O),R(t),B(t),w(t,M),N(t,P,M),V(t);for(var e=4,r=0;r0?r+25+10:r,bottom:n=n>0?n+25+10:n,left:a=a>0?a+25+10:a,right:i=i>0?i+25+10:i}}(o),f=function(t,r){var n=e.max(t.nodes,(function(t){return t.column})),o=b-i,s=T-a,l=o/(o+r.right+r.left),c=s/(s+r.top+r.bottom);return i=i*l+r.left,b=0==r.right?b:b*l,a=a*c+r.top,T*=c,t.nodes.forEach((function(t){t.x0=i+t.column*((b-i-A)/n),t.x1=t.x0+A})),c}(o,u);l*=f,o.links.forEach((function(t){t.width=t.value*l})),c.forEach((function(t){var e=t.length;t.forEach((function(t,n){t.depth==c.length-1&&1==e||0==t.depth&&1==e?(t.y0=T/2-t.value*l,t.y1=t.y0+t.value*l):t.partOfCycle?0==k(t,r)?(t.y0=T/2+n,t.y1=t.y0+t.value*l):"top"==t.circularLinkType?(t.y0=a+n,t.y1=t.y0+t.value*l):(t.y0=T-t.value*l-n,t.y1=t.y0+t.value*l):0==u.top||0==u.bottom?(t.y0=(T-a)/e*n,t.y1=t.y0+t.value*l):(t.y0=(T-a)/2-e/2+n,t.y1=t.y0+t.value*l)}))}))}(l),y();for(var u=1,g=s;g>0;--g)v(u*=.99,l),y();function v(t,r){var n=c.length;c.forEach((function(i){var a=i.length,o=i[0].depth;i.forEach((function(i){var s;if(i.sourceLinks.length||i.targetLinks.length)if(i.partOfCycle&&k(i,r)>0);else if(0==o&&1==a)s=i.y1-i.y0,i.y0=T/2-s/2,i.y1=T/2+s/2;else if(o==n-1&&1==a)s=i.y1-i.y0,i.y0=T/2-s/2,i.y1=T/2+s/2;else{var l=e.mean(i.sourceLinks,m),c=e.mean(i.targetLinks,d),u=((l&&c?(l+c)/2:l||c)-p(i))*t;i.y0+=u,i.y1+=u}}))}))}function y(){c.forEach((function(e){var r,n,i,o=a,s=e.length;for(e.sort(f),i=0;i0&&(r.y0+=n,r.y1+=n),o=r.y1+t;if((n=o-t-T)>0)for(o=r.y0-=n,r.y1-=n,i=s-2;i>=0;--i)(n=(r=e[i]).y1+t-o)>0&&(r.y0-=n,r.y1-=n),o=r.y0}))}}function V(t){t.nodes.forEach((function(t){t.sourceLinks.sort(u),t.targetLinks.sort(c)})),t.nodes.forEach((function(t){var e=t.y0,r=e,n=t.y1,i=n;t.sourceLinks.forEach((function(t){t.circular?(t.y0=n-t.width/2,n-=t.width):(t.y0=e+t.width/2,e+=t.width)})),t.targetLinks.forEach((function(t){t.circular?(t.y1=i-t.width/2,i-=t.width):(t.y1=r+t.width/2,r+=t.width)}))}))}return z.nodeId=function(t){return arguments.length?(M="function"==typeof t?t:s(t),z):M},z.nodeAlign=function(t){return arguments.length?(E="function"==typeof t?t:s(t),z):E},z.nodeWidth=function(t){return arguments.length?(A=+t,z):A},z.nodePadding=function(e){return arguments.length?(t=+e,z):t},z.nodes=function(t){return arguments.length?(L="function"==typeof t?t:s(t),z):L},z.links=function(t){return arguments.length?(C="function"==typeof t?t:s(t),z):C},z.size=function(t){return arguments.length?(i=a=0,b=+t[0],T=+t[1],z):[b-i,T-a]},z.extent=function(t){return arguments.length?(i=+t[0][0],b=+t[1][0],a=+t[0][1],T=+t[1][1],z):[[i,a],[b,T]]},z.iterations=function(t){return arguments.length?(P=+t,z):P},z.circularLinkGap=function(t){return arguments.length?(I=+t,z):I},z.nodePaddingRatio=function(t){return arguments.length?(n=+t,z):n},z.sortNodes=function(t){return arguments.length?(O=t,z):O},z.update=function(t){return w(t,M),V(t),t.links.forEach((function(t){t.circular&&(t.circularLinkType=t.y0+t.y1a&&(b=a);var o=e.min(i,(function(t){return(y-n-(t.length-1)*b)/e.sum(t,u)}));i.forEach((function(t){t.forEach((function(t,e){t.y1=(t.y0=e)+t.value*o}))})),t.links.forEach((function(t){t.width=t.value*o}))}(),d();for(var a=1,o=A;o>0;--o)l(a*=.99),d(),s(a),d();function s(t){i.forEach((function(r){r.forEach((function(r){if(r.targetLinks.length){var n=(e.sum(r.targetLinks,h)/e.sum(r.targetLinks,u)-f(r))*t;r.y0+=n,r.y1+=n}}))}))}function l(t){i.slice().reverse().forEach((function(r){r.forEach((function(r){if(r.sourceLinks.length){var n=(e.sum(r.sourceLinks,p)/e.sum(r.sourceLinks,u)-f(r))*t;r.y0+=n,r.y1+=n}}))}))}function d(){i.forEach((function(t){var e,r,i,a=n,o=t.length;for(t.sort(c),i=0;i0&&(e.y0+=r,e.y1+=r),a=e.y1+b;if((r=a-b-y)>0)for(a=e.y0-=r,e.y1-=r,i=o-2;i>=0;--i)(r=(e=t[i]).y1+b-a)>0&&(e.y0-=r,e.y1-=r),a=e.y0}))}}function P(t){t.nodes.forEach((function(t){t.sourceLinks.sort(l),t.targetLinks.sort(s)})),t.nodes.forEach((function(t){var e=t.y0,r=e;t.sourceLinks.forEach((function(t){t.y0=e+t.width/2,e+=t.width})),t.targetLinks.forEach((function(t){t.y1=r+t.width/2,r+=t.width}))}))}return M.update=function(t){return P(t),t},M.nodeId=function(t){return arguments.length?(_="function"==typeof t?t:o(t),M):_},M.nodeAlign=function(t){return arguments.length?(w="function"==typeof t?t:o(t),M):w},M.nodeWidth=function(t){return arguments.length?(x=+t,M):x},M.nodePadding=function(t){return arguments.length?(b=+t,M):b},M.nodes=function(t){return arguments.length?(T="function"==typeof t?t:o(t),M):T},M.links=function(t){return arguments.length?(k="function"==typeof t?t:o(t),M):k},M.size=function(e){return arguments.length?(t=n=0,i=+e[0],y=+e[1],M):[i-t,y-n]},M.extent=function(e){return arguments.length?(t=+e[0][0],i=+e[1][0],n=+e[0][1],y=+e[1][1],M):[[t,n],[i,y]]},M.iterations=function(t){return arguments.length?(A=+t,M):A},M},t.sankeyCenter=function(t){return t.targetLinks.length?t.depth:t.sourceLinks.length?e.min(t.sourceLinks,i)-1:0},t.sankeyLeft=function(t){return t.depth},t.sankeyRight=function(t,e){return e-1-t.height},t.sankeyJustify=a,t.sankeyLinkHorizontal=function(){return n.linkHorizontal().source(y).target(x)},Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":155,"d3-collection":156,"d3-shape":167}],58:[function(t,e,r){(function(){var t={version:"3.8.0"},r=[].slice,n=function(t){return r.call(t)},i=self.document;function a(t){return t&&(t.ownerDocument||t.document||t).documentElement}function o(t){return t&&(t.ownerDocument&&t.ownerDocument.defaultView||t.document&&t||t.defaultView)}if(i)try{n(i.documentElement.childNodes)[0].nodeType}catch(t){n=function(t){for(var e=t.length,r=new Array(e);e--;)r[e]=t[e];return r}}if(Date.now||(Date.now=function(){return+new Date}),i)try{i.createElement("DIV").style.setProperty("opacity",0,"")}catch(t){var s=this.Element.prototype,l=s.setAttribute,c=s.setAttributeNS,u=this.CSSStyleDeclaration.prototype,f=u.setProperty;s.setAttribute=function(t,e){l.call(this,t,e+"")},s.setAttributeNS=function(t,e,r){c.call(this,t,e,r+"")},u.setProperty=function(t,e,r){f.call(this,t,e+"",r)}}function h(t,e){return te?1:t>=e?0:NaN}function p(t){return null===t?NaN:+t}function d(t){return!isNaN(t)}function m(t){return{left:function(e,r,n,i){for(arguments.length<3&&(n=0),arguments.length<4&&(i=e.length);n>>1;t(e[a],r)<0?n=a+1:i=a}return n},right:function(e,r,n,i){for(arguments.length<3&&(n=0),arguments.length<4&&(i=e.length);n>>1;t(e[a],r)>0?i=a:n=a+1}return n}}}t.ascending=h,t.descending=function(t,e){return et?1:e>=t?0:NaN},t.min=function(t,e){var r,n,i=-1,a=t.length;if(1===arguments.length){for(;++i=n){r=n;break}for(;++in&&(r=n)}else{for(;++i=n){r=n;break}for(;++in&&(r=n)}return r},t.max=function(t,e){var r,n,i=-1,a=t.length;if(1===arguments.length){for(;++i=n){r=n;break}for(;++ir&&(r=n)}else{for(;++i=n){r=n;break}for(;++ir&&(r=n)}return r},t.extent=function(t,e){var r,n,i,a=-1,o=t.length;if(1===arguments.length){for(;++a=n){r=i=n;break}for(;++an&&(r=n),i=n){r=i=n;break}for(;++an&&(r=n),i1)return o/(l-1)},t.deviation=function(){var e=t.variance.apply(this,arguments);return e?Math.sqrt(e):e};var g=m(h);function v(t){return t.length}t.bisectLeft=g.left,t.bisect=t.bisectRight=g.right,t.bisector=function(t){return m(1===t.length?function(e,r){return h(t(e),r)}:t)},t.shuffle=function(t,e,r){(a=arguments.length)<3&&(r=t.length,a<2&&(e=0));for(var n,i,a=r-e;a;)i=Math.random()*a--|0,n=t[a+e],t[a+e]=t[i+e],t[i+e]=n;return t},t.permute=function(t,e){for(var r=e.length,n=new Array(r);r--;)n[r]=t[e[r]];return n},t.pairs=function(t){for(var e=0,r=t.length-1,n=t[0],i=new Array(r<0?0:r);e=0;)for(e=(n=t[i]).length;--e>=0;)r[--o]=n[e];return r};var y=Math.abs;function x(t){for(var e=1;t*e%1;)e*=10;return e}function b(t,e){for(var r in e)Object.defineProperty(t.prototype,r,{value:e[r],enumerable:!1})}function _(){this._=Object.create(null)}t.range=function(t,e,r){if(arguments.length<3&&(r=1,arguments.length<2&&(e=t,t=0)),(e-t)/r==1/0)throw new Error("infinite range");var n,i=[],a=x(y(r)),o=-1;if(t*=a,e*=a,(r*=a)<0)for(;(n=t+r*++o)>e;)i.push(n/a);else for(;(n=t+r*++o)=i.length)return r?r.call(n,a):e?a.sort(e):a;for(var l,c,u,f,h=-1,p=a.length,d=i[s++],m=new _;++h=i.length)return e;var n=[],o=a[r++];return e.forEach((function(e,i){n.push({key:e,values:t(i,r)})})),o?n.sort((function(t,e){return o(t.key,e.key)})):n}(o(t.map,e,0),0)},n.key=function(t){return i.push(t),n},n.sortKeys=function(t){return a[i.length-1]=t,n},n.sortValues=function(t){return e=t,n},n.rollup=function(t){return r=t,n},n},t.set=function(t){var e=new L;if(t)for(var r=0,n=t.length;r=0&&(n=t.slice(r+1),t=t.slice(0,r)),t)return arguments.length<2?this[t].on(n):this[t].on(n,e);if(2===arguments.length){if(null==e)for(t in this)this.hasOwnProperty(t)&&this[t].on(n,null);return this}},t.event=null,t.requote=function(t){return t.replace(j,"\\$&")};var j=/[\\\^\$\*\+\?\|\[\]\(\)\.\{\}]/g,U={}.__proto__?function(t,e){t.__proto__=e}:function(t,e){for(var r in e)t[r]=e[r]};function V(t){return U(t,Y),t}var H=function(t,e){return e.querySelector(t)},q=function(t,e){return e.querySelectorAll(t)},G=function(t,e){var r=t.matches||t[I(t,"matchesSelector")];return(G=function(t,e){return r.call(t,e)})(t,e)};"function"==typeof Sizzle&&(H=function(t,e){return Sizzle(t,e)[0]||null},q=Sizzle,G=Sizzle.matchesSelector),t.selection=function(){return t.select(i.documentElement)};var Y=t.selection.prototype=[];function W(t){return"function"==typeof t?t:function(){return H(t,this)}}function X(t){return"function"==typeof t?t:function(){return q(t,this)}}Y.select=function(t){var e,r,n,i,a=[];t=W(t);for(var o=-1,s=this.length;++o=0&&"xmlns"!==(r=t.slice(0,e))&&(t=t.slice(e+1)),J.hasOwnProperty(r)?{space:J[r],local:t}:t}},Y.attr=function(e,r){if(arguments.length<2){if("string"==typeof e){var n=this.node();return(e=t.ns.qualify(e)).local?n.getAttributeNS(e.space,e.local):n.getAttribute(e)}for(r in e)this.each(K(r,e[r]));return this}return this.each(K(e,r))},Y.classed=function(t,e){if(arguments.length<2){if("string"==typeof t){var r=this.node(),n=(t=tt(t)).length,i=-1;if(e=r.classList){for(;++i=0;)(r=n[i])&&(a&&a!==r.nextSibling&&a.parentNode.insertBefore(r,a),a=r);return this},Y.sort=function(t){t=ct.apply(this,arguments);for(var e=-1,r=this.length;++e=e&&(e=i+1);!(o=s[e])&&++e0&&(e=e.slice(0,o));var l=mt.get(e);function c(){var t=this[a];t&&(this.removeEventListener(e,t,t.$),delete this[a])}return l&&(e=l,s=vt),o?r?function(){var t=s(r,n(arguments));c.call(this),this.addEventListener(e,this[a]=t,t.$=i),t._=r}:c:r?z:function(){var r,n=new RegExp("^__on([^.]+)"+t.requote(e)+"$");for(var i in this)if(r=i.match(n)){var a=this[i];this.removeEventListener(r[1],a,a.$),delete this[i]}}}t.selection.enter=ft,t.selection.enter.prototype=ht,ht.append=Y.append,ht.empty=Y.empty,ht.node=Y.node,ht.call=Y.call,ht.size=Y.size,ht.select=function(t){for(var e,r,n,i,a,o=[],s=-1,l=this.length;++s1?Et:t<-1?-Et:Math.asin(t)}function It(t){return((t=Math.exp(t))+1/t)/2}var Ot=Math.SQRT2;t.interpolateZoom=function(t,e){var r,n,i=t[0],a=t[1],o=t[2],s=e[0],l=e[1],c=e[2],u=s-i,f=l-a,h=u*u+f*f;if(h<1e-12)n=Math.log(c/o)/Ot,r=function(t){return[i+t*u,a+t*f,o*Math.exp(Ot*t*n)]};else{var p=Math.sqrt(h),d=(c*c-o*o+4*h)/(2*o*2*p),m=(c*c-o*o-4*h)/(2*c*2*p),g=Math.log(Math.sqrt(d*d+1)-d),v=Math.log(Math.sqrt(m*m+1)-m);n=(v-g)/Ot,r=function(t){var e,r=t*n,s=It(g),l=o/(2*p)*(s*(e=Ot*r+g,((e=Math.exp(2*e))-1)/(e+1))-function(t){return((t=Math.exp(t))-1/t)/2}(g));return[i+l*u,a+l*f,o*s/It(Ot*r+g)]}}return r.duration=1e3*n,r},t.behavior.zoom=function(){var e,r,n,a,s,l,c,u,f,h={x:0,y:0,k:1},p=[960,500],d=Rt,m=250,g=0,v="mousedown.zoom",y="mousemove.zoom",x="mouseup.zoom",b="touchstart.zoom",_=N(w,"zoomstart","zoom","zoomend");function w(t){t.on(v,P).on(Dt+".zoom",O).on("dblclick.zoom",z).on(b,I)}function T(t){return[(t[0]-h.x)/h.k,(t[1]-h.y)/h.k]}function k(t){h.k=Math.max(d[0],Math.min(d[1],t))}function A(t,e){e=function(t){return[t[0]*h.k+h.x,t[1]*h.k+h.y]}(e),h.x+=t[0]-e[0],h.y+=t[1]-e[1]}function M(e,n,i,a){e.__chart__={x:h.x,y:h.y,k:h.k},k(Math.pow(2,a)),A(r=n,i),e=t.select(e),m>0&&(e=e.transition().duration(m)),e.call(w.event)}function S(){c&&c.domain(l.range().map((function(t){return(t-h.x)/h.k})).map(l.invert)),f&&f.domain(u.range().map((function(t){return(t-h.y)/h.k})).map(u.invert))}function E(t){g++||t({type:"zoomstart"})}function L(t){S(),t({type:"zoom",scale:h.k,translate:[h.x,h.y]})}function C(t){--g||(t({type:"zoomend"}),r=null)}function P(){var e=this,r=_.of(e,arguments),n=0,i=t.select(o(e)).on(y,l).on(x,c),a=T(t.mouse(e)),s=bt(e);function l(){n=1,A(t.mouse(e),a),L(r)}function c(){i.on(y,null).on(x,null),s(n),C(r)}Di.call(e),E(r)}function I(){var e,r=this,n=_.of(r,arguments),i={},a=0,o=".zoom-"+t.event.changedTouches[0].identifier,l="touchmove"+o,c="touchend"+o,u=[],f=t.select(r),p=bt(r);function d(){var n=t.touches(r);return e=h.k,n.forEach((function(t){t.identifier in i&&(i[t.identifier]=T(t))})),n}function m(){var e=t.event.target;t.select(e).on(l,g).on(c,y),u.push(e);for(var n=t.event.changedTouches,o=0,f=n.length;o1){v=p[0];var x=p[1],b=v[0]-x[0],_=v[1]-x[1];a=b*b+_*_}}function g(){var o,l,c,u,f=t.touches(r);Di.call(r);for(var h=0,p=f.length;h360?t-=360:t<0&&(t+=360),t<60?n+(i-n)*t/60:t<180?i:t<240?n+(i-n)*(240-t)/60:n}(t))}return t=isNaN(t)?0:(t%=360)<0?t+360:t,e=isNaN(e)||e<0?0:e>1?1:e,n=2*(r=r<0?0:r>1?1:r)-(i=r<=.5?r*(1+e):r+e-r*e),new Qt(a(t+120),a(t),a(t-120))}function Ut(e,r,n){return this instanceof Ut?(this.h=+e,this.c=+r,void(this.l=+n)):arguments.length<2?e instanceof Ut?new Ut(e.h,e.c,e.l):Xt(e instanceof qt?e.l:(e=ae((e=t.rgb(e)).r,e.g,e.b)).l,e.a,e.b):new Ut(e,r,n)}Nt.brighter=function(t){return t=Math.pow(.7,arguments.length?t:1),new Bt(this.h,this.s,this.l/t)},Nt.darker=function(t){return t=Math.pow(.7,arguments.length?t:1),new Bt(this.h,this.s,t*this.l)},Nt.rgb=function(){return jt(this.h,this.s,this.l)},t.hcl=Ut;var Vt=Ut.prototype=new Ft;function Ht(t,e,r){return isNaN(t)&&(t=0),isNaN(e)&&(e=0),new qt(r,Math.cos(t*=Lt)*e,Math.sin(t)*e)}function qt(t,e,r){return this instanceof qt?(this.l=+t,this.a=+e,void(this.b=+r)):arguments.length<2?t instanceof qt?new qt(t.l,t.a,t.b):t instanceof Ut?Ht(t.h,t.c,t.l):ae((t=Qt(t)).r,t.g,t.b):new qt(t,e,r)}Vt.brighter=function(t){return new Ut(this.h,this.c,Math.min(100,this.l+Gt*(arguments.length?t:1)))},Vt.darker=function(t){return new Ut(this.h,this.c,Math.max(0,this.l-Gt*(arguments.length?t:1)))},Vt.rgb=function(){return Ht(this.h,this.c,this.l).rgb()},t.lab=qt;var Gt=18,Yt=qt.prototype=new Ft;function Wt(t,e,r){var n=(t+16)/116,i=n+e/500,a=n-r/200;return new Qt(Kt(3.2404542*(i=.95047*Zt(i))-1.5371385*(n=1*Zt(n))-.4985314*(a=1.08883*Zt(a))),Kt(-.969266*i+1.8760108*n+.041556*a),Kt(.0556434*i-.2040259*n+1.0572252*a))}function Xt(t,e,r){return t>0?new Ut(Math.atan2(r,e)*Ct,Math.sqrt(e*e+r*r),t):new Ut(NaN,NaN,t)}function Zt(t){return t>.206893034?t*t*t:(t-4/29)/7.787037}function Jt(t){return t>.008856?Math.pow(t,1/3):7.787037*t+4/29}function Kt(t){return Math.round(255*(t<=.00304?12.92*t:1.055*Math.pow(t,1/2.4)-.055))}function Qt(t,e,r){return this instanceof Qt?(this.r=~~t,this.g=~~e,void(this.b=~~r)):arguments.length<2?t instanceof Qt?new Qt(t.r,t.g,t.b):ne(""+t,Qt,jt):new Qt(t,e,r)}function $t(t){return new Qt(t>>16,t>>8&255,255&t)}function te(t){return $t(t)+""}Yt.brighter=function(t){return new qt(Math.min(100,this.l+Gt*(arguments.length?t:1)),this.a,this.b)},Yt.darker=function(t){return new qt(Math.max(0,this.l-Gt*(arguments.length?t:1)),this.a,this.b)},Yt.rgb=function(){return Wt(this.l,this.a,this.b)},t.rgb=Qt;var ee=Qt.prototype=new Ft;function re(t){return t<16?"0"+Math.max(0,t).toString(16):Math.min(255,t).toString(16)}function ne(t,e,r){var n,i,a,o=0,s=0,l=0;if(n=/([a-z]+)\((.*)\)/.exec(t=t.toLowerCase()))switch(i=n[2].split(","),n[1]){case"hsl":return r(parseFloat(i[0]),parseFloat(i[1])/100,parseFloat(i[2])/100);case"rgb":return e(se(i[0]),se(i[1]),se(i[2]))}return(a=le.get(t))?e(a.r,a.g,a.b):(null==t||"#"!==t.charAt(0)||isNaN(a=parseInt(t.slice(1),16))||(4===t.length?(o=(3840&a)>>4,o|=o>>4,s=240&a,s|=s>>4,l=15&a,l|=l<<4):7===t.length&&(o=(16711680&a)>>16,s=(65280&a)>>8,l=255&a)),e(o,s,l))}function ie(t,e,r){var n,i,a=Math.min(t/=255,e/=255,r/=255),o=Math.max(t,e,r),s=o-a,l=(o+a)/2;return s?(i=l<.5?s/(o+a):s/(2-o-a),n=t==o?(e-r)/s+(e0&&l<1?0:n),new Bt(n,i,l)}function ae(t,e,r){var n=Jt((.4124564*(t=oe(t))+.3575761*(e=oe(e))+.1804375*(r=oe(r)))/.95047),i=Jt((.2126729*t+.7151522*e+.072175*r)/1);return qt(116*i-16,500*(n-i),200*(i-Jt((.0193339*t+.119192*e+.9503041*r)/1.08883)))}function oe(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function se(t){var e=parseFloat(t);return"%"===t.charAt(t.length-1)?Math.round(2.55*e):e}ee.brighter=function(t){t=Math.pow(.7,arguments.length?t:1);var e=this.r,r=this.g,n=this.b,i=30;return e||r||n?(e&&e=200&&e<300||304===e){try{t=i.call(o,c)}catch(t){return void s.error.call(o,t)}s.load.call(o,t)}else s.error.call(o,c)}return self.XDomainRequest&&!("withCredentials"in c)&&/^(http(s)?:)?\/\//.test(e)&&(c=new XDomainRequest),"onload"in c?c.onload=c.onerror=f:c.onreadystatechange=function(){c.readyState>3&&f()},c.onprogress=function(e){var r=t.event;t.event=e;try{s.progress.call(o,c)}finally{t.event=r}},o.header=function(t,e){return t=(t+"").toLowerCase(),arguments.length<2?l[t]:(null==e?delete l[t]:l[t]=e+"",o)},o.mimeType=function(t){return arguments.length?(r=null==t?null:t+"",o):r},o.responseType=function(t){return arguments.length?(u=t,o):u},o.response=function(t){return i=t,o},["get","post"].forEach((function(t){o[t]=function(){return o.send.apply(o,[t].concat(n(arguments)))}})),o.send=function(t,n,i){if(2===arguments.length&&"function"==typeof n&&(i=n,n=null),c.open(t,e,!0),null==r||"accept"in l||(l.accept=r+",*/*"),c.setRequestHeader)for(var a in l)c.setRequestHeader(a,l[a]);return null!=r&&c.overrideMimeType&&c.overrideMimeType(r),null!=u&&(c.responseType=u),null!=i&&o.on("error",i).on("load",(function(t){i(null,t)})),s.beforesend.call(o,c),c.send(null==n?null:n),o},o.abort=function(){return c.abort(),o},t.rebind(o,s,"on"),null==a?o:o.get(function(t){return 1===t.length?function(e,r){t(null==e?r:null)}:t}(a))}le.forEach((function(t,e){le.set(t,$t(e))})),t.functor=ce,t.xhr=ue(C),t.dsv=function(t,e){var r=new RegExp('["'+t+"\n]"),n=t.charCodeAt(0);function i(t,r,n){arguments.length<3&&(n=r,r=null);var i=fe(t,e,null==r?a:o(r),n);return i.row=function(t){return arguments.length?i.response(null==(r=t)?a:o(t)):r},i}function a(t){return i.parse(t.responseText)}function o(t){return function(e){return i.parse(e.responseText,t)}}function s(e){return e.map(l).join(t)}function l(t){return r.test(t)?'"'+t.replace(/\"/g,'""')+'"':t}return i.parse=function(t,e){var r;return i.parseRows(t,(function(t,n){if(r)return r(t,n-1);var i=function(e){for(var r={},n=t.length,i=0;i=l)return o;if(i)return i=!1,a;var e=c;if(34===t.charCodeAt(e)){for(var r=e;r++24?(isFinite(e)&&(clearTimeout(me),me=setTimeout(ye,e)),de=0):(de=1,ge(ye))}function xe(){for(var t=Date.now(),e=he;e;)t>=e.t&&e.c(t-e.t)&&(e.c=null),e=e.n;return t}function be(){for(var t,e=he,r=1/0;e;)e.c?(e.t1&&(e=t[a[o-2]],r=t[a[o-1]],n=t[s],(r[0]-e[0])*(n[1]-e[1])-(r[1]-e[1])*(n[0]-e[0])<=0);)--o;a[o++]=s}return a.slice(0,o)}function ke(t,e){return t[0]-e[0]||t[1]-e[1]}t.timer=function(){ve.apply(this,arguments)},t.timer.flush=function(){xe(),be()},t.round=function(t,e){return e?Math.round(t*(e=Math.pow(10,e)))/e:Math.round(t)},t.geom={},t.geom.hull=function(t){var e=_e,r=we;if(arguments.length)return n(t);function n(t){if(t.length<3)return[];var n,i=ce(e),a=ce(r),o=t.length,s=[],l=[];for(n=0;n=0;--n)p.push(t[s[c[n]][2]]);for(n=+f;nkt)s=s.L;else{if(!((i=a-Ve(s,o))>kt)){n>-kt?(e=s.P,r=s):i>-kt?(e=s,r=s.N):e=r=s;break}if(!s.R){e=s;break}s=s.R}var l=Fe(t);if(Pe.insert(e,l),e||r){if(e===r)return We(e),r=Fe(e.site),Pe.insert(l,r),l.edge=r.edge=Je(e.site,l.site),Ye(e),void Ye(r);if(r){We(e),We(r);var c=e.site,u=c.x,f=c.y,h=t.x-u,p=t.y-f,d=r.site,m=d.x-u,g=d.y-f,v=2*(h*g-p*m),y=h*h+p*p,x=m*m+g*g,b={x:(g*y-p*x)/v+u,y:(h*x-m*y)/v+f};Qe(r.edge,c,d,b),l.edge=Je(c,t,null,b),r.edge=Je(t,d,null,b),Ye(e),Ye(r)}else l.edge=Je(e.site,l.site)}}function Ue(t,e){var r=t.site,n=r.x,i=r.y,a=i-e;if(!a)return n;var o=t.P;if(!o)return-1/0;var s=(r=o.site).x,l=r.y,c=l-e;if(!c)return s;var u=s-n,f=1/a-1/c,h=u/c;return f?(-h+Math.sqrt(h*h-2*f*(u*u/(-2*c)-l+c/2+i-a/2)))/f+n:(n+s)/2}function Ve(t,e){var r=t.N;if(r)return Ue(r,e);var n=t.site;return n.y===e?n.x:1/0}function He(t){this.site=t,this.edges=[]}function qe(t,e){return e.angle-t.angle}function Ge(){er(this),this.x=this.y=this.arc=this.site=this.cy=null}function Ye(t){var e=t.P,r=t.N;if(e&&r){var n=e.site,i=t.site,a=r.site;if(n!==a){var o=i.x,s=i.y,l=n.x-o,c=n.y-s,u=a.x-o,f=2*(l*(g=a.y-s)-c*u);if(!(f>=-1e-12)){var h=l*l+c*c,p=u*u+g*g,d=(g*h-c*p)/f,m=(l*p-u*h)/f,g=m+s,v=De.pop()||new Ge;v.arc=t,v.site=i,v.x=d+o,v.y=g+Math.sqrt(d*d+m*m),v.cy=g,t.circle=v;for(var y=null,x=Oe._;x;)if(v.y=s)return;if(h>d){if(a){if(a.y>=c)return}else a={x:g,y:l};r={x:g,y:c}}else{if(a){if(a.y1)if(h>d){if(a){if(a.y>=c)return}else a={x:(l-i)/n,y:l};r={x:(c-i)/n,y:c}}else{if(a){if(a.y=s)return}else a={x:o,y:n*o+i};r={x:s,y:n*s+i}}else{if(a){if(a.x0)){if(e/=h,h<0){if(e0){if(e>f)return;e>u&&(u=e)}if(e=i-l,h||!(e<0)){if(e/=h,h<0){if(e>f)return;e>u&&(u=e)}else if(h>0){if(e0)){if(e/=p,p<0){if(e0){if(e>f)return;e>u&&(u=e)}if(e=a-c,p||!(e<0)){if(e/=p,p<0){if(e>f)return;e>u&&(u=e)}else if(p>0){if(e0&&(t.a={x:l+u*h,y:c+u*p}),f<1&&(t.b={x:l+f*h,y:c+f*p}),t}}}}}),l=o.length;l--;)(!Xe(e=o[l],t)||!s(e)||y(e.a.x-e.b.x)kt||y(i-r)>kt)&&(s.splice(o,0,new $e(Ke(a.site,u,y(n-f)kt?{x:f,y:y(e-f)kt?{x:y(r-d)kt?{x:h,y:y(e-h)kt?{x:y(r-p)=r&&c.x<=i&&c.y>=n&&c.y<=o?[[r,o],[i,o],[i,n],[r,n]]:[]).point=t[s]})),e}function s(t){return t.map((function(t,e){return{x:Math.round(n(t,e)/kt)*kt,y:Math.round(i(t,e)/kt)*kt,i:e}}))}return o.links=function(t){return ar(s(t)).edges.filter((function(t){return t.l&&t.r})).map((function(e){return{source:t[e.l.i],target:t[e.r.i]}}))},o.triangles=function(t){var e=[];return ar(s(t)).cells.forEach((function(r,n){for(var i,a,o,s,l=r.site,c=r.edges.sort(qe),u=-1,f=c.length,h=c[f-1].edge,p=h.l===l?h.r:h.l;++ua||f>o||h=_)<<1|e>=b,T=w+4;wa&&(i=e.slice(a,i),s[o]?s[o]+=i:s[++o]=i),(r=r[0])===(n=n[0])?s[o]?s[o]+=n:s[++o]=n:(s[++o]=null,l.push({i:o,x:dr(r,n)})),a=vr.lastIndex;return am&&(m=l.x),l.y>g&&(g=l.y),c.push(l.x),u.push(l.y);else for(f=0;fm&&(m=b),_>g&&(g=_),c.push(b),u.push(_)}var w=m-p,T=g-d;function k(t,e,r,n,i,a,o,s){if(!isNaN(r)&&!isNaN(n))if(t.leaf){var l=t.x,c=t.y;if(null!=l)if(y(l-r)+y(c-n)<.01)A(t,e,r,n,i,a,o,s);else{var u=t.point;t.x=t.y=t.point=null,A(t,u,l,c,i,a,o,s),A(t,e,r,n,i,a,o,s)}else t.x=r,t.y=n,t.point=e}else A(t,e,r,n,i,a,o,s)}function A(t,e,r,n,i,a,o,s){var l=.5*(i+o),c=.5*(a+s),u=r>=l,f=n>=c,h=f<<1|u;t.leaf=!1,u?i=l:o=l,f?a=c:s=c,k(t=t.nodes[h]||(t.nodes[h]={leaf:!0,nodes:[],point:null,x:null,y:null}),e,r,n,i,a,o,s)}w>T?g=d+w:m=p+T;var M={leaf:!0,nodes:[],point:null,x:null,y:null,add:function(t){k(M,t,+v(t,++f),+x(t,f),p,d,m,g)},visit:function(t){ur(t,M,p,d,m,g)},find:function(t){return fr(M,t[0],t[1],p,d,m,g)}};if(f=-1,null==e){for(;++f=0&&!(n=t.interpolators[i](e,r)););return n}function xr(t,e){var r,n=[],i=[],a=t.length,o=e.length,s=Math.min(t.length,e.length);for(r=0;r=1?1:t(e)}}function kr(t){return function(e){return 1-t(1-e)}}function Ar(t){return function(e){return.5*(e<.5?t(2*e):2-t(2-2*e))}}function Mr(t){return t*t}function Sr(t){return t*t*t}function Er(t){if(t<=0)return 0;if(t>=1)return 1;var e=t*t,r=e*t;return 4*(t<.5?r:3*(t-e)+r-.75)}function Lr(t){return 1-Math.cos(t*Et)}function Cr(t){return Math.pow(2,10*(t-1))}function Pr(t){return 1-Math.sqrt(1-t*t)}function Ir(t){return t<1/2.75?7.5625*t*t:t<2/2.75?7.5625*(t-=1.5/2.75)*t+.75:t<2.5/2.75?7.5625*(t-=2.25/2.75)*t+.9375:7.5625*(t-=2.625/2.75)*t+.984375}function Or(t,e){return e-=t,function(r){return Math.round(t+e*r)}}function zr(t){var e,r,n,i=[t.a,t.b],a=[t.c,t.d],o=Rr(i),s=Dr(i,a),l=Rr(((e=a)[0]+=(n=-s)*(r=i)[0],e[1]+=n*r[1],e))||0;i[0]*a[1]=0?t.slice(0,e):t,i=e>=0?t.slice(e+1):"in";return n=_r.get(n)||br,Tr((i=wr.get(i)||C)(n.apply(null,r.call(arguments,1))))},t.interpolateHcl=function(e,r){e=t.hcl(e),r=t.hcl(r);var n=e.h,i=e.c,a=e.l,o=r.h-n,s=r.c-i,l=r.l-a;isNaN(s)&&(s=0,i=isNaN(i)?r.c:i);isNaN(o)?(o=0,n=isNaN(n)?r.h:n):o>180?o-=360:o<-180&&(o+=360);return function(t){return Ht(n+o*t,i+s*t,a+l*t)+""}},t.interpolateHsl=function(e,r){e=t.hsl(e),r=t.hsl(r);var n=e.h,i=e.s,a=e.l,o=r.h-n,s=r.s-i,l=r.l-a;isNaN(s)&&(s=0,i=isNaN(i)?r.s:i);isNaN(o)?(o=0,n=isNaN(n)?r.h:n):o>180?o-=360:o<-180&&(o+=360);return function(t){return jt(n+o*t,i+s*t,a+l*t)+""}},t.interpolateLab=function(e,r){e=t.lab(e),r=t.lab(r);var n=e.l,i=e.a,a=e.b,o=r.l-n,s=r.a-i,l=r.b-a;return function(t){return Wt(n+o*t,i+s*t,a+l*t)+""}},t.interpolateRound=Or,t.transform=function(e){var r=i.createElementNS(t.ns.prefix.svg,"g");return(t.transform=function(t){if(null!=t){r.setAttribute("transform",t);var e=r.transform.baseVal.consolidate()}return new zr(e?e.matrix:Fr)})(e)},zr.prototype.toString=function(){return"translate("+this.translate+")rotate("+this.rotate+")skewX("+this.skew+")scale("+this.scale+")"};var Fr={a:1,b:0,c:0,d:1,e:0,f:0};function Br(t){return t.length?t.pop()+",":""}function Nr(e,r){var n=[],i=[];return e=t.transform(e),r=t.transform(r),function(t,e,r,n){if(t[0]!==e[0]||t[1]!==e[1]){var i=r.push("translate(",null,",",null,")");n.push({i:i-4,x:dr(t[0],e[0])},{i:i-2,x:dr(t[1],e[1])})}else(e[0]||e[1])&&r.push("translate("+e+")")}(e.translate,r.translate,n,i),function(t,e,r,n){t!==e?(t-e>180?e+=360:e-t>180&&(t+=360),n.push({i:r.push(Br(r)+"rotate(",null,")")-2,x:dr(t,e)})):e&&r.push(Br(r)+"rotate("+e+")")}(e.rotate,r.rotate,n,i),function(t,e,r,n){t!==e?n.push({i:r.push(Br(r)+"skewX(",null,")")-2,x:dr(t,e)}):e&&r.push(Br(r)+"skewX("+e+")")}(e.skew,r.skew,n,i),function(t,e,r,n){if(t[0]!==e[0]||t[1]!==e[1]){var i=r.push(Br(r)+"scale(",null,",",null,")");n.push({i:i-4,x:dr(t[0],e[0])},{i:i-2,x:dr(t[1],e[1])})}else 1===e[0]&&1===e[1]||r.push(Br(r)+"scale("+e+")")}(e.scale,r.scale,n,i),e=r=null,function(t){for(var e,r=-1,a=i.length;++r0?n=t:(e.c=null,e.t=NaN,e=null,l.end({type:"end",alpha:n=0})):t>0&&(l.start({type:"start",alpha:n=t}),e=ve(s.tick)),s):n},s.start=function(){var t,e,r,n=v.length,l=y.length,u=c[0],d=c[1];for(t=0;t=0;)r.push(i[n])}function $r(t,e){for(var r=[t],n=[];null!=(t=r.pop());)if(n.push(t),(a=t.children)&&(i=a.length))for(var i,a,o=-1;++o=0;)o.push(u=c[l]),u.parent=a,u.depth=a.depth+1;r&&(a.value=0),a.children=c}else r&&(a.value=+r.call(n,a,a.depth)||0),delete a.children;return $r(i,(function(e){var n,i;t&&(n=e.children)&&n.sort(t),r&&(i=e.parent)&&(i.value+=e.value)})),s}return n.sort=function(e){return arguments.length?(t=e,n):t},n.children=function(t){return arguments.length?(e=t,n):e},n.value=function(t){return arguments.length?(r=t,n):r},n.revalue=function(t){return r&&(Qr(t,(function(t){t.children&&(t.value=0)})),$r(t,(function(t){var e;t.children||(t.value=+r.call(n,t,t.depth)||0),(e=t.parent)&&(e.value+=t.value)}))),t},n},t.layout.partition=function(){var e=t.layout.hierarchy(),r=[1,1];function n(t,n){var i=e.call(this,t,n);return function t(e,r,n,i){var a=e.children;if(e.x=r,e.y=e.depth*i,e.dx=n,e.dy=i,a&&(o=a.length)){var o,s,l,c=-1;for(n=e.value?n/e.value:0;++cs&&(s=n),o.push(n)}for(r=0;ri&&(n=r,i=e);return n}function dn(t){return t.reduce(mn,0)}function mn(t,e){return t+e[1]}function gn(t,e){return vn(t,Math.ceil(Math.log(e.length)/Math.LN2+1))}function vn(t,e){for(var r=-1,n=+t[0],i=(t[1]-n)/e,a=[];++r<=e;)a[r]=i*r+n;return a}function yn(e){return[t.min(e),t.max(e)]}function xn(t,e){return t.value-e.value}function bn(t,e){var r=t._pack_next;t._pack_next=e,e._pack_prev=t,e._pack_next=r,r._pack_prev=e}function _n(t,e){t._pack_next=e,e._pack_prev=t}function wn(t,e){var r=e.x-t.x,n=e.y-t.y,i=t.r+e.r;return.999*i*i>r*r+n*n}function Tn(t){if((e=t.children)&&(l=e.length)){var e,r,n,i,a,o,s,l,c=1/0,u=-1/0,f=1/0,h=-1/0;if(e.forEach(kn),(r=e[0]).x=-r.r,r.y=0,x(r),l>1&&((n=e[1]).x=n.r,n.y=0,x(n),l>2))for(Mn(r,n,i=e[2]),x(i),bn(r,i),r._pack_prev=i,bn(i,n),n=r._pack_next,a=3;a0)for(o=-1;++o=f[0]&&l<=f[1]&&((s=c[t.bisect(h,l,1,d)-1]).y+=m,s.push(a[o]));return c}return a.value=function(t){return arguments.length?(r=t,a):r},a.range=function(t){return arguments.length?(n=ce(t),a):n},a.bins=function(t){return arguments.length?(i="number"==typeof t?function(e){return vn(e,t)}:ce(t),a):i},a.frequency=function(t){return arguments.length?(e=!!t,a):e},a},t.layout.pack=function(){var e,r=t.layout.hierarchy().sort(xn),n=0,i=[1,1];function a(t,a){var o=r.call(this,t,a),s=o[0],l=i[0],c=i[1],u=null==e?Math.sqrt:"function"==typeof e?e:function(){return e};if(s.x=s.y=0,$r(s,(function(t){t.r=+u(t.value)})),$r(s,Tn),n){var f=n*(e?1:Math.max(2*s.r/l,2*s.r/c))/2;$r(s,(function(t){t.r+=f})),$r(s,Tn),$r(s,(function(t){t.r-=f}))}return function t(e,r,n,i){var a=e.children;if(e.x=r+=i*e.x,e.y=n+=i*e.y,e.r*=i,a)for(var o=-1,s=a.length;++op.x&&(p=t),t.depth>d.depth&&(d=t)}));var m=r(h,p)/2-h.x,g=n[0]/(p.x+r(p,h)/2+m),v=n[1]/(d.depth||1);Qr(u,(function(t){t.x=(t.x+m)*g,t.y=t.depth*v}))}return c}function o(t){var e=t.children,n=t.parent.children,i=t.i?n[t.i-1]:null;if(e.length){!function(t){var e,r=0,n=0,i=t.children,a=i.length;for(;--a>=0;)(e=i[a]).z+=r,e.m+=r,r+=e.s+(n+=e.c)}(t);var a=(e[0].z+e[e.length-1].z)/2;i?(t.z=i.z+r(t._,i._),t.m=t.z-a):t.z=a}else i&&(t.z=i.z+r(t._,i._));t.parent.A=function(t,e,n){if(e){for(var i,a=t,o=t,s=e,l=a.parent.children[0],c=a.m,u=o.m,f=s.m,h=l.m;s=Ln(s),a=En(a),s&&a;)l=En(l),(o=Ln(o)).a=t,(i=s.z+f-a.z-c+r(s._,a._))>0&&(Cn(Pn(s,t,n),t,i),c+=i,u+=i),f+=s.m,c+=a.m,h+=l.m,u+=o.m;s&&!Ln(o)&&(o.t=s,o.m+=f-u),a&&!En(l)&&(l.t=a,l.m+=c-h,n=t)}return n}(t,i,t.parent.A||n[0])}function s(t){t._.x=t.z+t.parent.m,t.m+=t.parent.m}function l(t){t.x*=n[0],t.y=t.depth*n[1]}return a.separation=function(t){return arguments.length?(r=t,a):r},a.size=function(t){return arguments.length?(i=null==(n=t)?l:null,a):i?null:n},a.nodeSize=function(t){return arguments.length?(i=null==(n=t)?null:l,a):i?n:null},Kr(a,e)},t.layout.cluster=function(){var e=t.layout.hierarchy().sort(null).value(null),r=Sn,n=[1,1],i=!1;function a(a,o){var s,l=e.call(this,a,o),c=l[0],u=0;$r(c,(function(e){var n=e.children;n&&n.length?(e.x=function(t){return t.reduce((function(t,e){return t+e.x}),0)/t.length}(n),e.y=function(e){return 1+t.max(e,(function(t){return t.y}))}(n)):(e.x=s?u+=r(e,s):0,e.y=0,s=e)}));var f=function t(e){var r=e.children;return r&&r.length?t(r[0]):e}(c),h=function t(e){var r,n=e.children;return n&&(r=n.length)?t(n[r-1]):e}(c),p=f.x-r(f,h)/2,d=h.x+r(h,f)/2;return $r(c,i?function(t){t.x=(t.x-c.x)*n[0],t.y=(c.y-t.y)*n[1]}:function(t){t.x=(t.x-p)/(d-p)*n[0],t.y=(1-(c.y?t.y/c.y:1))*n[1]}),l}return a.separation=function(t){return arguments.length?(r=t,a):r},a.size=function(t){return arguments.length?(i=null==(n=t),a):i?null:n},a.nodeSize=function(t){return arguments.length?(i=null!=(n=t),a):i?n:null},Kr(a,e)},t.layout.treemap=function(){var e,r=t.layout.hierarchy(),n=Math.round,i=[1,1],a=null,o=In,s=!1,l="squarify",c=.5*(1+Math.sqrt(5));function u(t,e){for(var r,n,i=-1,a=t.length;++i0;)s.push(r=c[i-1]),s.area+=r.area,"squarify"!==l||(n=p(s,m))<=h?(c.pop(),h=n):(s.area-=s.pop().area,d(s,m,a,!1),m=Math.min(a.dx,a.dy),s.length=s.area=0,h=1/0);s.length&&(d(s,m,a,!0),s.length=s.area=0),e.forEach(f)}}function h(t){var e=t.children;if(e&&e.length){var r,n=o(t),i=e.slice(),a=[];for(u(i,n.dx*n.dy/t.value),a.area=0;r=i.pop();)a.push(r),a.area+=r.area,null!=r.z&&(d(a,r.z?n.dx:n.dy,n,!i.length),a.length=a.area=0);e.forEach(h)}}function p(t,e){for(var r,n=t.area,i=0,a=1/0,o=-1,s=t.length;++oi&&(i=r));return e*=e,(n*=n)?Math.max(e*i*c/n,n/(e*a*c)):1/0}function d(t,e,r,i){var a,o=-1,s=t.length,l=r.x,c=r.y,u=e?n(t.area/e):0;if(e==r.dx){for((i||u>r.dy)&&(u=r.dy);++or.dx)&&(u=r.dx);++o1);return t+e*r*Math.sqrt(-2*Math.log(i)/i)}},logNormal:function(){var e=t.random.normal.apply(t,arguments);return function(){return Math.exp(e())}},bates:function(e){var r=t.random.irwinHall(e);return function(){return r()/e}},irwinHall:function(t){return function(){for(var e=0,r=0;r2?jn:Rn,s=i?Ur:jr;return a=t(e,r,s,n),o=t(r,e,s,yr),l}function l(t){return a(t)}return l.invert=function(t){return o(t)},l.domain=function(t){return arguments.length?(e=t.map(Number),s()):e},l.range=function(t){return arguments.length?(r=t,s()):r},l.rangeRound=function(t){return l.range(t).interpolate(Or)},l.clamp=function(t){return arguments.length?(i=t,s()):i},l.interpolate=function(t){return arguments.length?(n=t,s()):n},l.ticks=function(t){return qn(e,t)},l.tickFormat=function(t,r){return d3_scale_linearTickFormat(e,t,r)},l.nice=function(t){return Vn(e,t),s()},l.copy=function(){return t(e,r,n,i)},s()}([0,1],[0,1],yr,!1)};t.scale.log=function(){return function t(e,r,n,i){function a(t){return(n?Math.log(t<0?0:t):-Math.log(t>0?0:-t))/Math.log(r)}function o(t){return n?Math.pow(r,t):-Math.pow(r,-t)}function s(t){return e(a(t))}return s.invert=function(t){return o(e.invert(t))},s.domain=function(t){return arguments.length?(n=t[0]>=0,e.domain((i=t.map(Number)).map(a)),s):i},s.base=function(t){return arguments.length?(r=+t,e.domain(i.map(a)),s):r},s.nice=function(){var t=Fn(i.map(a),n?Math:Gn);return e.domain(t),i=t.map(o),s},s.ticks=function(){var t=zn(i),e=[],s=t[0],l=t[1],c=Math.floor(a(s)),u=Math.ceil(a(l)),f=r%1?2:r;if(isFinite(u-c)){if(n){for(;c0;h--)e.push(o(c)*h);for(c=0;e[c]l;u--);e=e.slice(c,u)}return e},s.copy=function(){return t(e.copy(),r,n,i)},Un(s,e)}(t.scale.linear().domain([0,1]),10,!0,[1,10])};var Gn={floor:function(t){return-Math.ceil(-t)},ceil:function(t){return-Math.floor(-t)}};function Yn(t){return function(e){return e<0?-Math.pow(-e,t):Math.pow(e,t)}}t.scale.pow=function(){return function t(e,r,n){var i=Yn(r),a=Yn(1/r);function o(t){return e(i(t))}return o.invert=function(t){return a(e.invert(t))},o.domain=function(t){return arguments.length?(e.domain((n=t.map(Number)).map(i)),o):n},o.ticks=function(t){return qn(n,t)},o.tickFormat=function(t,e){return d3_scale_linearTickFormat(n,t,e)},o.nice=function(t){return o.domain(Vn(n,t))},o.exponent=function(t){return arguments.length?(i=Yn(r=t),a=Yn(1/r),e.domain(n.map(i)),o):r},o.copy=function(){return t(e.copy(),r,n)},Un(o,e)}(t.scale.linear(),1,[0,1])},t.scale.sqrt=function(){return t.scale.pow().exponent(.5)},t.scale.ordinal=function(){return function e(r,n){var i,a,o;function s(t){return a[((i.get(t)||("range"===n.t?i.set(t,r.push(t)):NaN))-1)%a.length]}function l(e,n){return t.range(r.length).map((function(t){return e+n*t}))}return s.domain=function(t){if(!arguments.length)return r;r=[],i=new _;for(var e,a=-1,o=t.length;++a0?i[t-1]:r[0],tf?0:1;if(c=St)return l(c,p)+(s?l(s,1-p):"")+"Z";var d,m,g,v,y,x,b,_,w,T,k,A,M=0,S=0,E=[];if((v=(+o.apply(this,arguments)||0)/2)&&(g=n===Qn?Math.sqrt(s*s+c*c):+n.apply(this,arguments),p||(S*=-1),c&&(S=Pt(g/c*Math.sin(v))),s&&(M=Pt(g/s*Math.sin(v)))),c){y=c*Math.cos(u+S),x=c*Math.sin(u+S),b=c*Math.cos(f-S),_=c*Math.sin(f-S);var L=Math.abs(f-u-2*S)<=At?0:1;if(S&&ii(y,x,b,_)===p^L){var C=(u+f)/2;y=c*Math.cos(C),x=c*Math.sin(C),b=_=null}}else y=x=0;if(s){w=s*Math.cos(f-M),T=s*Math.sin(f-M),k=s*Math.cos(u+M),A=s*Math.sin(u+M);var P=Math.abs(u-f+2*M)<=At?0:1;if(M&&ii(w,T,k,A)===1-p^P){var I=(u+f)/2;w=s*Math.cos(I),T=s*Math.sin(I),k=A=null}}else w=T=0;if(h>kt&&(d=Math.min(Math.abs(c-s)/2,+r.apply(this,arguments)))>.001){m=s0?0:1}function ai(t,e,r,n,i){var a=t[0]-e[0],o=t[1]-e[1],s=(i?n:-n)/Math.sqrt(a*a+o*o),l=s*o,c=-s*a,u=t[0]+l,f=t[1]+c,h=e[0]+l,p=e[1]+c,d=(u+h)/2,m=(f+p)/2,g=h-u,v=p-f,y=g*g+v*v,x=r-n,b=u*p-h*f,_=(v<0?-1:1)*Math.sqrt(Math.max(0,x*x*y-b*b)),w=(b*v-g*_)/y,T=(-b*g-v*_)/y,k=(b*v+g*_)/y,A=(-b*g+v*_)/y,M=w-d,S=T-m,E=k-d,L=A-m;return M*M+S*S>E*E+L*L&&(w=k,T=A),[[w-l,T-c],[w*r/x,T*r/x]]}function oi(){return!0}function si(t){var e=_e,r=we,n=oi,i=ci,a=i.key,o=.7;function s(a){var s,l=[],c=[],u=-1,f=a.length,h=ce(e),p=ce(r);function d(){l.push("M",i(t(c),o))}for(;++u1&&i.push("H",n[0]);return i.join("")},"step-before":fi,"step-after":hi,basis:mi,"basis-open":function(t){if(t.length<4)return ci(t);var e,r=[],n=-1,i=t.length,a=[0],o=[0];for(;++n<3;)e=t[n],a.push(e[0]),o.push(e[1]);r.push(gi(xi,a)+","+gi(xi,o)),--n;for(;++n9&&(i=3*e/Math.sqrt(i),o[s]=i*r,o[s+1]=i*n));s=-1;for(;++s<=l;)i=(t[Math.min(l,s+1)][0]-t[Math.max(0,s-1)][0])/(6*(1+o[s]*o[s])),a.push([i||0,o[s]*i||0]);return a}(t))}});function ci(t){return t.length>1?t.join("L"):t+"Z"}function ui(t){return t.join("L")+"Z"}function fi(t){for(var e=0,r=t.length,n=t[0],i=[n[0],",",n[1]];++e1){s=e[1],a=t[l],l++,n+="C"+(i[0]+o[0])+","+(i[1]+o[1])+","+(a[0]-s[0])+","+(a[1]-s[1])+","+a[0]+","+a[1];for(var c=2;cAt)+",1 "+e}function l(t,e,r,n){return"Q 0,0 "+n}return a.radius=function(t){return arguments.length?(r=ce(t),a):r},a.source=function(e){return arguments.length?(t=ce(e),a):t},a.target=function(t){return arguments.length?(e=ce(t),a):e},a.startAngle=function(t){return arguments.length?(n=ce(t),a):n},a.endAngle=function(t){return arguments.length?(i=ce(t),a):i},a},t.svg.diagonal=function(){var t=ki,e=Ai,r=Si;function n(n,i){var a=t.call(this,n,i),o=e.call(this,n,i),s=(a.y+o.y)/2,l=[a,{x:a.x,y:s},{x:o.x,y:s},o];return"M"+(l=l.map(r))[0]+"C"+l[1]+" "+l[2]+" "+l[3]}return n.source=function(e){return arguments.length?(t=ce(e),n):t},n.target=function(t){return arguments.length?(e=ce(t),n):e},n.projection=function(t){return arguments.length?(r=t,n):r},n},t.svg.diagonal.radial=function(){var e=t.svg.diagonal(),r=Si,n=e.projection;return e.projection=function(t){return arguments.length?n(Ei(r=t)):r},e},t.svg.symbol=function(){var t=Ci,e=Li;function r(r,n){return(Ii.get(t.call(this,r,n))||Pi)(e.call(this,r,n))}return r.type=function(e){return arguments.length?(t=ce(e),r):t},r.size=function(t){return arguments.length?(e=ce(t),r):e},r};var Ii=t.map({circle:Pi,cross:function(t){var e=Math.sqrt(t/5)/2;return"M"+-3*e+","+-e+"H"+-e+"V"+-3*e+"H"+e+"V"+-e+"H"+3*e+"V"+e+"H"+e+"V"+3*e+"H"+-e+"V"+e+"H"+-3*e+"Z"},diamond:function(t){var e=Math.sqrt(t/(2*zi)),r=e*zi;return"M0,"+-e+"L"+r+",0 0,"+e+" "+-r+",0Z"},square:function(t){var e=Math.sqrt(t)/2;return"M"+-e+","+-e+"L"+e+","+-e+" "+e+","+e+" "+-e+","+e+"Z"},"triangle-down":function(t){var e=Math.sqrt(t/Oi),r=e*Oi/2;return"M0,"+r+"L"+e+","+-r+" "+-e+","+-r+"Z"},"triangle-up":function(t){var e=Math.sqrt(t/Oi),r=e*Oi/2;return"M0,"+-r+"L"+e+","+r+" "+-e+","+r+"Z"}});t.svg.symbolTypes=Ii.keys();var Oi=Math.sqrt(3),zi=Math.tan(30*Lt);Y.transition=function(t){for(var e,r,n=Bi||++Ui,i=qi(t),a=[],o=Ni||{time:Date.now(),ease:Er,delay:0,duration:250},s=-1,l=this.length;++s0;)c[--h].call(t,o);if(a>=1)return f.event&&f.event.end.call(t,t.__data__,e),--u.count?delete u[n]:delete t[r],1}f||(a=i.time,o=ve((function(t){var e=f.delay;if(o.t=e+a,e<=t)return h(t-e);o.c=h}),0,a),f=u[n]={tween:new _,time:a,timer:o,delay:i.delay,duration:i.duration,ease:i.ease,index:e},i=null,++u.count)}ji.call=Y.call,ji.empty=Y.empty,ji.node=Y.node,ji.size=Y.size,t.transition=function(e,r){return e&&e.transition?Bi?e.transition(r):e:t.selection().transition(e)},t.transition.prototype=ji,ji.select=function(t){var e,r,n,i=this.id,a=this.namespace,o=[];t=W(t);for(var s=-1,l=this.length;++srect,.s>rect").attr("width",s[1]-s[0])}function m(t){t.select(".extent").attr("y",l[0]),t.selectAll(".extent,.e>rect,.w>rect").attr("height",l[1]-l[0])}function g(){var f,g,v=this,y=t.select(t.event.target),x=n.of(v,arguments),b=t.select(v),_=y.datum(),w=!/^(n|s)$/.test(_)&&i,T=!/^(e|w)$/.test(_)&&a,k=y.classed("extent"),A=bt(v),M=t.mouse(v),S=t.select(o(v)).on("keydown.brush",C).on("keyup.brush",P);if(t.event.changedTouches?S.on("touchmove.brush",I).on("touchend.brush",z):S.on("mousemove.brush",I).on("mouseup.brush",z),b.interrupt().selectAll("*").interrupt(),k)M[0]=s[0]-M[0],M[1]=l[0]-M[1];else if(_){var E=+/w$/.test(_),L=+/^n/.test(_);g=[s[1-E]-M[0],l[1-L]-M[1]],M[0]=s[E],M[1]=l[L]}else t.event.altKey&&(f=M.slice());function C(){32==t.event.keyCode&&(k||(f=null,M[0]-=s[1],M[1]-=l[1],k=2),F())}function P(){32==t.event.keyCode&&2==k&&(M[0]+=s[1],M[1]+=l[1],k=0,F())}function I(){var e=t.mouse(v),r=!1;g&&(e[0]+=g[0],e[1]+=g[1]),k||(t.event.altKey?(f||(f=[(s[0]+s[1])/2,(l[0]+l[1])/2]),M[0]=s[+(e[0]>>1;e.dtype||(e.dtype="array"),"string"==typeof e.dtype?d=new(f(e.dtype))(g):e.dtype&&(d=e.dtype,Array.isArray(d)&&(d.length=g));for(var v=0;vr||s>1073741824){for(var h=0;he+n||w>r+n||T=A||a===o)){var s=y[i];void 0===o&&(o=s.length);for(var l=a;l=d&&u<=g&&f>=m&&f<=v&&S.push(c)}var h=x[i],p=h[4*a+0],b=h[4*a+1],M=h[4*a+2],E=h[4*a+3],P=C(h,a+1),I=.5*n,O=i+1;L(e,r,I,O,p,b||M||E||P),L(e,r+I,I,O,b,M||E||P),L(e+I,r,I,O,M,E||P),L(e+I,r+I,I,O,E,P)}}function C(t,e){for(var r=null,n=0;null===r;)if(r=t[4*e+n],++n>t.length)return null;return r}return L(0,0,1,0,0,1),S},d;function E(t,e,r,i,a){for(var o=[],s=0;s0){e+=Math.abs(a(t[0]));for(var r=1;r2){for(s=0;st[0]&&(e[0]=t[0]),e[1]>t[1]&&(e[1]=t[1]),e[2]=0))throw new Error("precision must be a positive number");var r=Math.pow(10,e||0);return Math.round(t*r)/r},r.radiansToLength=f,r.lengthToRadians=h,r.lengthToDegrees=function(t,e){return p(h(t,e))},r.bearingToAzimuth=function(t){var e=t%360;return e<0&&(e+=360),e},r.radiansToDegrees=p,r.degreesToRadians=function(t){return t%360*Math.PI/180},r.convertLength=function(t,e,r){if(void 0===e&&(e="kilometers"),void 0===r&&(r="kilometers"),!(t>=0))throw new Error("length must be a positive number");return f(h(t,e),r)},r.convertArea=function(t,e,n){if(void 0===e&&(e="meters"),void 0===n&&(n="kilometers"),!(t>=0))throw new Error("area must be a positive number");var i=r.areaFactors[e];if(!i)throw new Error("invalid original units");var a=r.areaFactors[n];if(!a)throw new Error("invalid final units");return t/i*a},r.isNumber=d,r.isObject=function(t){return!!t&&t.constructor===Object},r.validateBBox=function(t){if(!t)throw new Error("bbox is required");if(!Array.isArray(t))throw new Error("bbox must be an Array");if(4!==t.length&&6!==t.length)throw new Error("bbox must be an Array of 4 or 6 numbers");t.forEach((function(t){if(!d(t))throw new Error("bbox must only contain numbers")}))},r.validateId=function(t){if(!t)throw new Error("id is required");if(-1===["string","number"].indexOf(typeof t))throw new Error("id must be a number or a string")}},{}],65:[function(t,e,r){"use strict";Object.defineProperty(r,"__esModule",{value:!0});var n=t("@turf/helpers");function i(t,e,r){if(null!==t)for(var n,a,o,s,l,c,u,f,h=0,p=0,d=t.type,m="FeatureCollection"===d,g="Feature"===d,v=m?t.features.length:1,y=0;yc||p>u||d>f)return l=i,c=r,u=p,f=d,void(o=0);var m=n.lineString([l,i],t.properties);if(!1===e(m,r,a,d,o))return!1;o++,l=i}))&&void 0}}}))}function u(t,e){if(!t)throw new Error("geojson is required");l(t,(function(t,r,i){if(null!==t.geometry){var a=t.geometry.type,o=t.geometry.coordinates;switch(a){case"LineString":if(!1===e(t,r,i,0,0))return!1;break;case"Polygon":for(var s=0;si&&(i=t[o]),t[o] * @license MIT - */function i(t,e){if(t===e)return 0;for(var r=t.length,n=e.length,i=0,a=Math.min(r,n);i=0;c--)if(u[c]!==f[c])return!1;for(c=u.length-1;c>=0;c--)if(s=u[c],!x(t[s],e[s],r,n))return!1;return!0}(t,e,r,n))}return r?t===e:t==e}function b(t){return"[object Arguments]"==Object.prototype.toString.call(t)}function _(t,e){if(!t||!e)return!1;if("[object RegExp]"==Object.prototype.toString.call(e))return e.test(t);try{if(t instanceof e)return!0}catch(t){}return!Error.isPrototypeOf(e)&&!0===e.call({},t)}function w(t,e,r,n){var i;if("function"!=typeof e)throw new TypeError('"block" argument must be a function');"string"==typeof r&&(n=r,r=null),i=function(t){var e;try{t()}catch(t){e=t}return e}(e),n=(r&&r.name?" ("+r.name+").":".")+(n?" "+n:"."),t&&!i&&v(i,r,"Missing expected exception"+n);var a="string"==typeof n,s=!t&&i&&!r;if((!t&&o.isError(i)&&a&&_(i,r)||s)&&v(i,r,"Got unwanted exception"+n),t&&i&&r&&!_(i,r)||!t&&i)throw i}h.AssertionError=function(t){this.name="AssertionError",this.actual=t.actual,this.expected=t.expected,this.operator=t.operator,t.message?(this.message=t.message,this.generatedMessage=!1):(this.message=function(t){return m(g(t.actual),128)+" "+t.operator+" "+m(g(t.expected),128)}(this),this.generatedMessage=!0);var e=t.stackStartFunction||v;if(Error.captureStackTrace)Error.captureStackTrace(this,e);else{var r=new Error;if(r.stack){var n=r.stack,i=d(e),a=n.indexOf("\n"+i);if(a>=0){var o=n.indexOf("\n",a+1);n=n.substring(o+1)}this.stack=n}}},o.inherits(h.AssertionError,Error),h.fail=v,h.ok=y,h.equal=function(t,e,r){t!=e&&v(t,e,r,"==",h.equal)},h.notEqual=function(t,e,r){t==e&&v(t,e,r,"!=",h.notEqual)},h.deepEqual=function(t,e,r){x(t,e,!1)||v(t,e,r,"deepEqual",h.deepEqual)},h.deepStrictEqual=function(t,e,r){x(t,e,!0)||v(t,e,r,"deepStrictEqual",h.deepStrictEqual)},h.notDeepEqual=function(t,e,r){x(t,e,!1)&&v(t,e,r,"notDeepEqual",h.notDeepEqual)},h.notDeepStrictEqual=function t(e,r,n){x(e,r,!0)&&v(e,r,n,"notDeepStrictEqual",t)},h.strictEqual=function(t,e,r){t!==e&&v(t,e,r,"===",h.strictEqual)},h.notStrictEqual=function(t,e,r){t===e&&v(t,e,r,"!==",h.notStrictEqual)},h.throws=function(t,e,r){w(!0,t,e,r)},h.doesNotThrow=function(t,e,r){w(!1,t,e,r)},h.ifError=function(t){if(t)throw t},h.strict=n((function t(e,r){e||v(e,!0,r,"==",t)}),h,{equal:h.strictEqual,deepEqual:h.deepStrictEqual,notEqual:h.notStrictEqual,notDeepEqual:h.notDeepStrictEqual}),h.strict.strict=h.strict;var T=Object.keys||function(t){var e=[];for(var r in t)s.call(t,r)&&e.push(r);return e}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"object-assign":242,"util/":74}],72:[function(t,e,r){"function"==typeof Object.create?e.exports=function(t,e){t.super_=e,t.prototype=Object.create(e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}})}:e.exports=function(t,e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}},{}],73:[function(t,e,r){e.exports=function(t){return t&&"object"==typeof t&&"function"==typeof t.copy&&"function"==typeof t.fill&&"function"==typeof t.readUInt8}},{}],74:[function(t,e,r){(function(e,n){(function(){var i=/%[sdj%]/g;r.format=function(t){if(!v(t)){for(var e=[],r=0;r=a)return t;switch(t){case"%s":return String(n[r++]);case"%d":return Number(n[r++]);case"%j":try{return JSON.stringify(n[r++])}catch(t){return"[Circular]"}default:return t}})),l=n[r];r=3&&(n.depth=arguments[2]),arguments.length>=4&&(n.colors=arguments[3]),d(e)?n.showHidden=e:e&&r._extend(n,e),y(n.showHidden)&&(n.showHidden=!1),y(n.depth)&&(n.depth=2),y(n.colors)&&(n.colors=!1),y(n.customInspect)&&(n.customInspect=!0),n.colors&&(n.stylize=l),u(n,t,n.depth)}function l(t,e){var r=s.styles[e];return r?"\x1b["+s.colors[r][0]+"m"+t+"\x1b["+s.colors[r][1]+"m":t}function c(t,e){return t}function u(t,e,n){if(t.customInspect&&e&&T(e.inspect)&&e.inspect!==r.inspect&&(!e.constructor||e.constructor.prototype!==e)){var i=e.inspect(n,t);return v(i)||(i=u(t,i,n)),i}var a=function(t,e){if(y(e))return t.stylize("undefined","undefined");if(v(e)){var r="'"+JSON.stringify(e).replace(/^"|"$/g,"").replace(/'/g,"\\'").replace(/\\"/g,'"')+"'";return t.stylize(r,"string")}if(g(e))return t.stylize(""+e,"number");if(d(e))return t.stylize(""+e,"boolean");if(m(e))return t.stylize("null","null")}(t,e);if(a)return a;var o=Object.keys(e),s=function(t){var e={};return t.forEach((function(t,r){e[t]=!0})),e}(o);if(t.showHidden&&(o=Object.getOwnPropertyNames(e)),w(e)&&(o.indexOf("message")>=0||o.indexOf("description")>=0))return f(e);if(0===o.length){if(T(e)){var l=e.name?": "+e.name:"";return t.stylize("[Function"+l+"]","special")}if(x(e))return t.stylize(RegExp.prototype.toString.call(e),"regexp");if(_(e))return t.stylize(Date.prototype.toString.call(e),"date");if(w(e))return f(e)}var c,b="",k=!1,A=["{","}"];(p(e)&&(k=!0,A=["[","]"]),T(e))&&(b=" [Function"+(e.name?": "+e.name:"")+"]");return x(e)&&(b=" "+RegExp.prototype.toString.call(e)),_(e)&&(b=" "+Date.prototype.toUTCString.call(e)),w(e)&&(b=" "+f(e)),0!==o.length||k&&0!=e.length?n<0?x(e)?t.stylize(RegExp.prototype.toString.call(e),"regexp"):t.stylize("[Object]","special"):(t.seen.push(e),c=k?function(t,e,r,n,i){for(var a=[],o=0,s=e.length;o=0&&0,t+e.replace(/\u001b\[\d\d?m/g,"").length+1}),0)>60)return r[0]+(""===e?"":e+"\n ")+" "+t.join(",\n ")+" "+r[1];return r[0]+e+" "+t.join(", ")+" "+r[1]}(c,b,A)):A[0]+b+A[1]}function f(t){return"["+Error.prototype.toString.call(t)+"]"}function h(t,e,r,n,i,a){var o,s,l;if((l=Object.getOwnPropertyDescriptor(e,i)||{value:e[i]}).get?s=l.set?t.stylize("[Getter/Setter]","special"):t.stylize("[Getter]","special"):l.set&&(s=t.stylize("[Setter]","special")),E(n,i)||(o="["+i+"]"),s||(t.seen.indexOf(l.value)<0?(s=m(r)?u(t,l.value,null):u(t,l.value,r-1)).indexOf("\n")>-1&&(s=a?s.split("\n").map((function(t){return" "+t})).join("\n").substr(2):"\n"+s.split("\n").map((function(t){return" "+t})).join("\n")):s=t.stylize("[Circular]","special")),y(o)){if(a&&i.match(/^\d+$/))return s;(o=JSON.stringify(""+i)).match(/^"([a-zA-Z_][a-zA-Z_0-9]*)"$/)?(o=o.substr(1,o.length-2),o=t.stylize(o,"name")):(o=o.replace(/'/g,"\\'").replace(/\\"/g,'"').replace(/(^"|"$)/g,"'"),o=t.stylize(o,"string"))}return o+": "+s}function p(t){return Array.isArray(t)}function d(t){return"boolean"==typeof t}function m(t){return null===t}function g(t){return"number"==typeof t}function v(t){return"string"==typeof t}function y(t){return void 0===t}function x(t){return b(t)&&"[object RegExp]"===k(t)}function b(t){return"object"==typeof t&&null!==t}function _(t){return b(t)&&"[object Date]"===k(t)}function w(t){return b(t)&&("[object Error]"===k(t)||t instanceof Error)}function T(t){return"function"==typeof t}function k(t){return Object.prototype.toString.call(t)}function A(t){return t<10?"0"+t.toString(10):t.toString(10)}r.debuglog=function(t){if(y(a)&&(a=e.env.NODE_DEBUG||""),t=t.toUpperCase(),!o[t])if(new RegExp("\\b"+t+"\\b","i").test(a)){var n=e.pid;o[t]=function(){var e=r.format.apply(r,arguments);console.error("%s %d: %s",t,n,e)}}else o[t]=function(){};return o[t]},r.inspect=s,s.colors={bold:[1,22],italic:[3,23],underline:[4,24],inverse:[7,27],white:[37,39],grey:[90,39],black:[30,39],blue:[34,39],cyan:[36,39],green:[32,39],magenta:[35,39],red:[31,39],yellow:[33,39]},s.styles={special:"cyan",number:"yellow",boolean:"yellow",undefined:"grey",null:"bold",string:"green",date:"magenta",regexp:"red"},r.isArray=p,r.isBoolean=d,r.isNull=m,r.isNullOrUndefined=function(t){return null==t},r.isNumber=g,r.isString=v,r.isSymbol=function(t){return"symbol"==typeof t},r.isUndefined=y,r.isRegExp=x,r.isObject=b,r.isDate=_,r.isError=w,r.isFunction=T,r.isPrimitive=function(t){return null===t||"boolean"==typeof t||"number"==typeof t||"string"==typeof t||"symbol"==typeof t||void 0===t},r.isBuffer=t("./support/isBuffer");var M=["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];function S(){var t=new Date,e=[A(t.getHours()),A(t.getMinutes()),A(t.getSeconds())].join(":");return[t.getDate(),M[t.getMonth()],e].join(" ")}function E(t,e){return Object.prototype.hasOwnProperty.call(t,e)}r.log=function(){console.log("%s - %s",S(),r.format.apply(r,arguments))},r.inherits=t("inherits"),r._extend=function(t,e){if(!e||!b(e))return t;for(var r=Object.keys(e),n=r.length;n--;)t[r[n]]=e[r[n]];return t}}).call(this)}).call(this,t("_process"),"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./support/isBuffer":73,_process:272,inherits:72}],75:[function(t,e,r){"use strict";r.byteLength=function(t){var e=c(t),r=e[0],n=e[1];return 3*(r+n)/4-n},r.toByteArray=function(t){var e,r,n=c(t),o=n[0],s=n[1],l=new a(function(t,e,r){return 3*(e+r)/4-r}(0,o,s)),u=0,f=s>0?o-4:o;for(r=0;r>16&255,l[u++]=e>>8&255,l[u++]=255&e;2===s&&(e=i[t.charCodeAt(r)]<<2|i[t.charCodeAt(r+1)]>>4,l[u++]=255&e);1===s&&(e=i[t.charCodeAt(r)]<<10|i[t.charCodeAt(r+1)]<<4|i[t.charCodeAt(r+2)]>>2,l[u++]=e>>8&255,l[u++]=255&e);return l},r.fromByteArray=function(t){for(var e,r=t.length,i=r%3,a=[],o=0,s=r-i;os?s:o+16383));1===i?(e=t[r-1],a.push(n[e>>2]+n[e<<4&63]+"==")):2===i&&(e=(t[r-2]<<8)+t[r-1],a.push(n[e>>10]+n[e>>4&63]+n[e<<2&63]+"="));return a.join("")};for(var n=[],i=[],a="undefined"!=typeof Uint8Array?Uint8Array:Array,o="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",s=0,l=o.length;s0)throw new Error("Invalid string. Length must be a multiple of 4");var r=t.indexOf("=");return-1===r&&(r=e),[r,r===e?0:4-r%4]}function u(t,e,r){for(var i,a,o=[],s=e;s>18&63]+n[a>>12&63]+n[a>>6&63]+n[63&a]);return o.join("")}i["-".charCodeAt(0)]=62,i["_".charCodeAt(0)]=63},{}],76:[function(t,e,r){"use strict";function n(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>=0?(a=o,i=o-1):n=o+1}return a}function i(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>0?(a=o,i=o-1):n=o+1}return a}function a(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<0?(a=o,n=o+1):i=o-1}return a}function o(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<=0?(a=o,n=o+1):i=o-1}return a}function s(t,e,r,n,i){for(;n<=i;){var a=n+i>>>1,o=t[a],s=void 0!==r?r(o,e):o-e;if(0===s)return a;s<=0?n=a+1:i=a-1}return-1}function l(t,e,r,n,i,a){return"function"==typeof r?a(t,e,r,void 0===n?0:0|n,void 0===i?t.length-1:0|i):a(t,e,void 0,void 0===r?0:0|r,void 0===n?t.length-1:0|n)}e.exports={ge:function(t,e,r,i,a){return l(t,e,r,i,a,n)},gt:function(t,e,r,n,a){return l(t,e,r,n,a,i)},lt:function(t,e,r,n,i){return l(t,e,r,n,i,a)},le:function(t,e,r,n,i){return l(t,e,r,n,i,o)},eq:function(t,e,r,n,i){return l(t,e,r,n,i,s)}}},{}],77:[function(t,e,r){"use strict";function n(t){var e=32;return(t&=-t)&&e--,65535&t&&(e-=16),16711935&t&&(e-=8),252645135&t&&(e-=4),858993459&t&&(e-=2),1431655765&t&&(e-=1),e}r.INT_BITS=32,r.INT_MAX=2147483647,r.INT_MIN=-1<<31,r.sign=function(t){return(t>0)-(t<0)},r.abs=function(t){var e=t>>31;return(t^e)-e},r.min=function(t,e){return e^(t^e)&-(t65535)<<4,e|=r=((t>>>=e)>255)<<3,e|=r=((t>>>=r)>15)<<2,(e|=r=((t>>>=r)>3)<<1)|(t>>>=r)>>1},r.log10=function(t){return t>=1e9?9:t>=1e8?8:t>=1e7?7:t>=1e6?6:t>=1e5?5:t>=1e4?4:t>=1e3?3:t>=100?2:t>=10?1:0},r.popCount=function(t){return 16843009*((t=(858993459&(t-=t>>>1&1431655765))+(t>>>2&858993459))+(t>>>4)&252645135)>>>24},r.countTrailingZeros=n,r.nextPow2=function(t){return t+=0===t,--t,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)+1},r.prevPow2=function(t){return t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)-(t>>>1)},r.parity=function(t){return t^=t>>>16,t^=t>>>8,t^=t>>>4,27030>>>(t&=15)&1};var i=new Array(256);!function(t){for(var e=0;e<256;++e){var r=e,n=e,i=7;for(r>>>=1;r;r>>>=1)n<<=1,n|=1&r,--i;t[e]=n<>>8&255]<<16|i[t>>>16&255]<<8|i[t>>>24&255]},r.interleave2=function(t,e){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t&=65535)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e&=65535)|e<<8))|e<<4))|e<<2))|e<<1))<<1},r.deinterleave2=function(t,e){return(t=65535&((t=16711935&((t=252645135&((t=858993459&((t=t>>>e&1431655765)|t>>>1))|t>>>2))|t>>>4))|t>>>16))<<16>>16},r.interleave3=function(t,e,r){return t=1227133513&((t=3272356035&((t=251719695&((t=4278190335&((t&=1023)|t<<16))|t<<8))|t<<4))|t<<2),(t|=(e=1227133513&((e=3272356035&((e=251719695&((e=4278190335&((e&=1023)|e<<16))|e<<8))|e<<4))|e<<2))<<1)|(r=1227133513&((r=3272356035&((r=251719695&((r=4278190335&((r&=1023)|r<<16))|r<<8))|r<<4))|r<<2))<<2},r.deinterleave3=function(t,e){return(t=1023&((t=4278190335&((t=251719695&((t=3272356035&((t=t>>>e&1227133513)|t>>>2))|t>>>4))|t>>>8))|t>>>16))<<22>>22},r.nextCombination=function(t){var e=t|t-1;return e+1|(~e&-~e)-1>>>n(t)+1}},{}],78:[function(t,e,r){"use strict";var n=t("clamp");e.exports=function(t,e){e||(e={});var r,o,s,l,c,u,f,h,p,d,m,g=null==e.cutoff?.25:e.cutoff,v=null==e.radius?8:e.radius,y=e.channel||0;if(ArrayBuffer.isView(t)||Array.isArray(t)){if(!e.width||!e.height)throw Error("For raw data width and height should be provided by options");r=e.width,o=e.height,l=t,u=e.stride?e.stride:Math.floor(t.length/r/o)}else window.HTMLCanvasElement&&t instanceof window.HTMLCanvasElement?(f=(h=t).getContext("2d"),r=h.width,o=h.height,p=f.getImageData(0,0,r,o),l=p.data,u=4):window.CanvasRenderingContext2D&&t instanceof window.CanvasRenderingContext2D?(h=t.canvas,f=t,r=h.width,o=h.height,p=f.getImageData(0,0,r,o),l=p.data,u=4):window.ImageData&&t instanceof window.ImageData&&(p=t,r=t.width,o=t.height,l=p.data,u=4);if(s=Math.max(r,o),window.Uint8ClampedArray&&l instanceof window.Uint8ClampedArray||window.Uint8Array&&l instanceof window.Uint8Array)for(c=l,l=Array(r*o),d=0,m=c.length;d=0;c--)if(u[c]!==f[c])return!1;for(c=u.length-1;c>=0;c--)if(s=u[c],!x(t[s],e[s],r,n))return!1;return!0}(t,e,r,n))}return r?t===e:t==e}function b(t){return"[object Arguments]"==Object.prototype.toString.call(t)}function _(t,e){if(!t||!e)return!1;if("[object RegExp]"==Object.prototype.toString.call(e))return e.test(t);try{if(t instanceof e)return!0}catch(t){}return!Error.isPrototypeOf(e)&&!0===e.call({},t)}function w(t,e,r,n){var i;if("function"!=typeof e)throw new TypeError('"block" argument must be a function');"string"==typeof r&&(n=r,r=null),i=function(t){var e;try{t()}catch(t){e=t}return e}(e),n=(r&&r.name?" ("+r.name+").":".")+(n?" "+n:"."),t&&!i&&v(i,r,"Missing expected exception"+n);var a="string"==typeof n,s=!t&&i&&!r;if((!t&&o.isError(i)&&a&&_(i,r)||s)&&v(i,r,"Got unwanted exception"+n),t&&i&&r&&!_(i,r)||!t&&i)throw i}h.AssertionError=function(t){this.name="AssertionError",this.actual=t.actual,this.expected=t.expected,this.operator=t.operator,t.message?(this.message=t.message,this.generatedMessage=!1):(this.message=function(t){return m(g(t.actual),128)+" "+t.operator+" "+m(g(t.expected),128)}(this),this.generatedMessage=!0);var e=t.stackStartFunction||v;if(Error.captureStackTrace)Error.captureStackTrace(this,e);else{var r=new Error;if(r.stack){var n=r.stack,i=d(e),a=n.indexOf("\n"+i);if(a>=0){var o=n.indexOf("\n",a+1);n=n.substring(o+1)}this.stack=n}}},o.inherits(h.AssertionError,Error),h.fail=v,h.ok=y,h.equal=function(t,e,r){t!=e&&v(t,e,r,"==",h.equal)},h.notEqual=function(t,e,r){t==e&&v(t,e,r,"!=",h.notEqual)},h.deepEqual=function(t,e,r){x(t,e,!1)||v(t,e,r,"deepEqual",h.deepEqual)},h.deepStrictEqual=function(t,e,r){x(t,e,!0)||v(t,e,r,"deepStrictEqual",h.deepStrictEqual)},h.notDeepEqual=function(t,e,r){x(t,e,!1)&&v(t,e,r,"notDeepEqual",h.notDeepEqual)},h.notDeepStrictEqual=function t(e,r,n){x(e,r,!0)&&v(e,r,n,"notDeepStrictEqual",t)},h.strictEqual=function(t,e,r){t!==e&&v(t,e,r,"===",h.strictEqual)},h.notStrictEqual=function(t,e,r){t===e&&v(t,e,r,"!==",h.notStrictEqual)},h.throws=function(t,e,r){w(!0,t,e,r)},h.doesNotThrow=function(t,e,r){w(!1,t,e,r)},h.ifError=function(t){if(t)throw t},h.strict=n((function t(e,r){e||v(e,!0,r,"==",t)}),h,{equal:h.strictEqual,deepEqual:h.deepStrictEqual,notEqual:h.notStrictEqual,notDeepEqual:h.notDeepStrictEqual}),h.strict.strict=h.strict;var T=Object.keys||function(t){var e=[];for(var r in t)s.call(t,r)&&e.push(r);return e}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"object-assign":466,"util/":79}],77:[function(t,e,r){"function"==typeof Object.create?e.exports=function(t,e){t.super_=e,t.prototype=Object.create(e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}})}:e.exports=function(t,e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}},{}],78:[function(t,e,r){e.exports=function(t){return t&&"object"==typeof t&&"function"==typeof t.copy&&"function"==typeof t.fill&&"function"==typeof t.readUInt8}},{}],79:[function(t,e,r){(function(e,n){(function(){var i=/%[sdj%]/g;r.format=function(t){if(!v(t)){for(var e=[],r=0;r=a)return t;switch(t){case"%s":return String(n[r++]);case"%d":return Number(n[r++]);case"%j":try{return JSON.stringify(n[r++])}catch(t){return"[Circular]"}default:return t}})),l=n[r];r=3&&(n.depth=arguments[2]),arguments.length>=4&&(n.colors=arguments[3]),d(e)?n.showHidden=e:e&&r._extend(n,e),y(n.showHidden)&&(n.showHidden=!1),y(n.depth)&&(n.depth=2),y(n.colors)&&(n.colors=!1),y(n.customInspect)&&(n.customInspect=!0),n.colors&&(n.stylize=l),u(n,t,n.depth)}function l(t,e){var r=s.styles[e];return r?"\x1b["+s.colors[r][0]+"m"+t+"\x1b["+s.colors[r][1]+"m":t}function c(t,e){return t}function u(t,e,n){if(t.customInspect&&e&&T(e.inspect)&&e.inspect!==r.inspect&&(!e.constructor||e.constructor.prototype!==e)){var i=e.inspect(n,t);return v(i)||(i=u(t,i,n)),i}var a=function(t,e){if(y(e))return t.stylize("undefined","undefined");if(v(e)){var r="'"+JSON.stringify(e).replace(/^"|"$/g,"").replace(/'/g,"\\'").replace(/\\"/g,'"')+"'";return t.stylize(r,"string")}if(g(e))return t.stylize(""+e,"number");if(d(e))return t.stylize(""+e,"boolean");if(m(e))return t.stylize("null","null")}(t,e);if(a)return a;var o=Object.keys(e),s=function(t){var e={};return t.forEach((function(t,r){e[t]=!0})),e}(o);if(t.showHidden&&(o=Object.getOwnPropertyNames(e)),w(e)&&(o.indexOf("message")>=0||o.indexOf("description")>=0))return f(e);if(0===o.length){if(T(e)){var l=e.name?": "+e.name:"";return t.stylize("[Function"+l+"]","special")}if(x(e))return t.stylize(RegExp.prototype.toString.call(e),"regexp");if(_(e))return t.stylize(Date.prototype.toString.call(e),"date");if(w(e))return f(e)}var c,b="",k=!1,A=["{","}"];(p(e)&&(k=!0,A=["[","]"]),T(e))&&(b=" [Function"+(e.name?": "+e.name:"")+"]");return x(e)&&(b=" "+RegExp.prototype.toString.call(e)),_(e)&&(b=" "+Date.prototype.toUTCString.call(e)),w(e)&&(b=" "+f(e)),0!==o.length||k&&0!=e.length?n<0?x(e)?t.stylize(RegExp.prototype.toString.call(e),"regexp"):t.stylize("[Object]","special"):(t.seen.push(e),c=k?function(t,e,r,n,i){for(var a=[],o=0,s=e.length;o=0&&0,t+e.replace(/\u001b\[\d\d?m/g,"").length+1}),0)>60)return r[0]+(""===e?"":e+"\n ")+" "+t.join(",\n ")+" "+r[1];return r[0]+e+" "+t.join(", ")+" "+r[1]}(c,b,A)):A[0]+b+A[1]}function f(t){return"["+Error.prototype.toString.call(t)+"]"}function h(t,e,r,n,i,a){var o,s,l;if((l=Object.getOwnPropertyDescriptor(e,i)||{value:e[i]}).get?s=l.set?t.stylize("[Getter/Setter]","special"):t.stylize("[Getter]","special"):l.set&&(s=t.stylize("[Setter]","special")),E(n,i)||(o="["+i+"]"),s||(t.seen.indexOf(l.value)<0?(s=m(r)?u(t,l.value,null):u(t,l.value,r-1)).indexOf("\n")>-1&&(s=a?s.split("\n").map((function(t){return" "+t})).join("\n").substr(2):"\n"+s.split("\n").map((function(t){return" "+t})).join("\n")):s=t.stylize("[Circular]","special")),y(o)){if(a&&i.match(/^\d+$/))return s;(o=JSON.stringify(""+i)).match(/^"([a-zA-Z_][a-zA-Z_0-9]*)"$/)?(o=o.substr(1,o.length-2),o=t.stylize(o,"name")):(o=o.replace(/'/g,"\\'").replace(/\\"/g,'"').replace(/(^"|"$)/g,"'"),o=t.stylize(o,"string"))}return o+": "+s}function p(t){return Array.isArray(t)}function d(t){return"boolean"==typeof t}function m(t){return null===t}function g(t){return"number"==typeof t}function v(t){return"string"==typeof t}function y(t){return void 0===t}function x(t){return b(t)&&"[object RegExp]"===k(t)}function b(t){return"object"==typeof t&&null!==t}function _(t){return b(t)&&"[object Date]"===k(t)}function w(t){return b(t)&&("[object Error]"===k(t)||t instanceof Error)}function T(t){return"function"==typeof t}function k(t){return Object.prototype.toString.call(t)}function A(t){return t<10?"0"+t.toString(10):t.toString(10)}r.debuglog=function(t){if(y(a)&&(a=e.env.NODE_DEBUG||""),t=t.toUpperCase(),!o[t])if(new RegExp("\\b"+t+"\\b","i").test(a)){var n=e.pid;o[t]=function(){var e=r.format.apply(r,arguments);console.error("%s %d: %s",t,n,e)}}else o[t]=function(){};return o[t]},r.inspect=s,s.colors={bold:[1,22],italic:[3,23],underline:[4,24],inverse:[7,27],white:[37,39],grey:[90,39],black:[30,39],blue:[34,39],cyan:[36,39],green:[32,39],magenta:[35,39],red:[31,39],yellow:[33,39]},s.styles={special:"cyan",number:"yellow",boolean:"yellow",undefined:"grey",null:"bold",string:"green",date:"magenta",regexp:"red"},r.isArray=p,r.isBoolean=d,r.isNull=m,r.isNullOrUndefined=function(t){return null==t},r.isNumber=g,r.isString=v,r.isSymbol=function(t){return"symbol"==typeof t},r.isUndefined=y,r.isRegExp=x,r.isObject=b,r.isDate=_,r.isError=w,r.isFunction=T,r.isPrimitive=function(t){return null===t||"boolean"==typeof t||"number"==typeof t||"string"==typeof t||"symbol"==typeof t||void 0===t},r.isBuffer=t("./support/isBuffer");var M=["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"];function S(){var t=new Date,e=[A(t.getHours()),A(t.getMinutes()),A(t.getSeconds())].join(":");return[t.getDate(),M[t.getMonth()],e].join(" ")}function E(t,e){return Object.prototype.hasOwnProperty.call(t,e)}r.log=function(){console.log("%s - %s",S(),r.format.apply(r,arguments))},r.inherits=t("inherits"),r._extend=function(t,e){if(!e||!b(e))return t;for(var r=Object.keys(e),n=r.length;n--;)t[r[n]]=e[r[n]];return t}}).call(this)}).call(this,t("_process"),"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./support/isBuffer":78,_process:504,inherits:77}],80:[function(t,e,r){e.exports=function(t){return atob(t)}},{}],81:[function(t,e,r){"use strict";e.exports=function(t,e){for(var r=e.length,a=new Array(r+1),o=0;o0?o-4:o;for(r=0;r>16&255,l[u++]=e>>8&255,l[u++]=255&e;2===s&&(e=i[t.charCodeAt(r)]<<2|i[t.charCodeAt(r+1)]>>4,l[u++]=255&e);1===s&&(e=i[t.charCodeAt(r)]<<10|i[t.charCodeAt(r+1)]<<4|i[t.charCodeAt(r+2)]>>2,l[u++]=e>>8&255,l[u++]=255&e);return l},r.fromByteArray=function(t){for(var e,r=t.length,i=r%3,a=[],o=0,s=r-i;os?s:o+16383));1===i?(e=t[r-1],a.push(n[e>>2]+n[e<<4&63]+"==")):2===i&&(e=(t[r-2]<<8)+t[r-1],a.push(n[e>>10]+n[e>>4&63]+n[e<<2&63]+"="));return a.join("")};for(var n=[],i=[],a="undefined"!=typeof Uint8Array?Uint8Array:Array,o="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",s=0,l=o.length;s0)throw new Error("Invalid string. Length must be a multiple of 4");var r=t.indexOf("=");return-1===r&&(r=e),[r,r===e?0:4-r%4]}function u(t,e,r){for(var i,a,o=[],s=e;s>18&63]+n[a>>12&63]+n[a>>6&63]+n[63&a]);return o.join("")}i["-".charCodeAt(0)]=62,i["_".charCodeAt(0)]=63},{}],83:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[1]).add(e[0].mul(t[1])),t[1].mul(e[1]))}},{"./lib/rationalize":93}],84:[function(t,e,r){"use strict";e.exports=function(t,e){return t[0].mul(e[1]).cmp(e[0].mul(t[1]))}},{}],85:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[1]),t[1].mul(e[0]))}},{"./lib/rationalize":93}],86:[function(t,e,r){"use strict";var n=t("./is-rat"),i=t("./lib/is-bn"),a=t("./lib/num-to-bn"),o=t("./lib/str-to-bn"),s=t("./lib/rationalize"),l=t("./div");e.exports=function t(e,r){if(n(e))return r?l(e,t(r)):[e[0].clone(),e[1].clone()];var c,u,f=0;if(i(e))c=e.clone();else if("string"==typeof e)c=o(e);else{if(0===e)return[a(0),a(1)];if(e===Math.floor(e))c=a(e);else{for(;e!==Math.floor(e);)e*=Math.pow(2,256),f-=256;c=a(e)}}if(n(r))c.mul(r[1]),u=r[0].clone();else if(i(r))u=r.clone();else if("string"==typeof r)u=o(r);else if(r)if(r===Math.floor(r))u=a(r);else{for(;r!==Math.floor(r);)r*=Math.pow(2,256),f+=256;u=a(r)}else u=a(1);f>0?c=c.ushln(f):f<0&&(u=u.ushln(-f));return s(c,u)}},{"./div":85,"./is-rat":87,"./lib/is-bn":91,"./lib/num-to-bn":92,"./lib/rationalize":93,"./lib/str-to-bn":94}],87:[function(t,e,r){"use strict";var n=t("./lib/is-bn");e.exports=function(t){return Array.isArray(t)&&2===t.length&&n(t[0])&&n(t[1])}},{"./lib/is-bn":91}],88:[function(t,e,r){"use strict";var n=t("bn.js");e.exports=function(t){return t.cmp(new n(0))}},{"bn.js":96}],89:[function(t,e,r){"use strict";var n=t("./bn-sign");e.exports=function(t){var e=t.length,r=t.words,i=0;if(1===e)i=r[0];else if(2===e)i=r[0]+67108864*r[1];else for(var a=0;a20)return 52;return r+32}},{"bit-twiddle":101,"double-bits":174}],91:[function(t,e,r){"use strict";t("bn.js");e.exports=function(t){return t&&"object"==typeof t&&Boolean(t.words)}},{"bn.js":96}],92:[function(t,e,r){"use strict";var n=t("bn.js"),i=t("double-bits");e.exports=function(t){var e=i.exponent(t);return e<52?new n(t):new n(t*Math.pow(2,52-e)).ushln(e-52)}},{"bn.js":96,"double-bits":174}],93:[function(t,e,r){"use strict";var n=t("./num-to-bn"),i=t("./bn-sign");e.exports=function(t,e){var r=i(t),a=i(e);if(0===r)return[n(0),n(1)];if(0===a)return[n(0),n(0)];a<0&&(t=t.neg(),e=e.neg());var o=t.gcd(e);if(o.cmpn(1))return[t.div(o),e.div(o)];return[t,e]}},{"./bn-sign":88,"./num-to-bn":92}],94:[function(t,e,r){"use strict";var n=t("bn.js");e.exports=function(t){return new n(t)}},{"bn.js":96}],95:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[0]),t[1].mul(e[1]))}},{"./lib/rationalize":93}],96:[function(t,e,r){!function(e,r){"use strict";function n(t,e){if(!t)throw new Error(e||"Assertion failed")}function i(t,e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}function a(t,e,r){if(a.isBN(t))return t;this.negative=0,this.words=null,this.length=0,this.red=null,null!==t&&("le"!==e&&"be"!==e||(r=e,e=10),this._init(t||0,e||10,r||"be"))}var o;"object"==typeof e?e.exports=a:r.BN=a,a.BN=a,a.wordSize=26;try{o="undefined"!=typeof window&&void 0!==window.Buffer?window.Buffer:t("buffer").Buffer}catch(t){}function s(t,e){var r=t.charCodeAt(e);return r>=65&&r<=70?r-55:r>=97&&r<=102?r-87:r-48&15}function l(t,e,r){var n=s(t,r);return r-1>=e&&(n|=s(t,r-1)<<4),n}function c(t,e,r,n){for(var i=0,a=Math.min(t.length,r),o=e;o=49?s-49+10:s>=17?s-17+10:s}return i}a.isBN=function(t){return t instanceof a||null!==t&&"object"==typeof t&&t.constructor.wordSize===a.wordSize&&Array.isArray(t.words)},a.max=function(t,e){return t.cmp(e)>0?t:e},a.min=function(t,e){return t.cmp(e)<0?t:e},a.prototype._init=function(t,e,r){if("number"==typeof t)return this._initNumber(t,e,r);if("object"==typeof t)return this._initArray(t,e,r);"hex"===e&&(e=16),n(e===(0|e)&&e>=2&&e<=36);var i=0;"-"===(t=t.toString().replace(/\s+/g,""))[0]&&(i++,this.negative=1),i=0;i-=3)o=t[i]|t[i-1]<<8|t[i-2]<<16,this.words[a]|=o<>>26-s&67108863,(s+=24)>=26&&(s-=26,a++);else if("le"===r)for(i=0,a=0;i>>26-s&67108863,(s+=24)>=26&&(s-=26,a++);return this.strip()},a.prototype._parseHex=function(t,e,r){this.length=Math.ceil((t.length-e)/6),this.words=new Array(this.length);for(var n=0;n=e;n-=2)i=l(t,e,n)<=18?(a-=18,o+=1,this.words[o]|=i>>>26):a+=8;else for(n=(t.length-e)%2==0?e+1:e;n=18?(a-=18,o+=1,this.words[o]|=i>>>26):a+=8;this.strip()},a.prototype._parseBase=function(t,e,r){this.words=[0],this.length=1;for(var n=0,i=1;i<=67108863;i*=e)n++;n--,i=i/e|0;for(var a=t.length-r,o=a%n,s=Math.min(a,a-o)+r,l=0,u=r;u1&&0===this.words[this.length-1];)this.length--;return this._normSign()},a.prototype._normSign=function(){return 1===this.length&&0===this.words[0]&&(this.negative=0),this},a.prototype.inspect=function(){return(this.red?""};var u=["","0","00","000","0000","00000","000000","0000000","00000000","000000000","0000000000","00000000000","000000000000","0000000000000","00000000000000","000000000000000","0000000000000000","00000000000000000","000000000000000000","0000000000000000000","00000000000000000000","000000000000000000000","0000000000000000000000","00000000000000000000000","000000000000000000000000","0000000000000000000000000"],f=[0,0,25,16,12,11,10,9,8,8,7,7,7,7,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5],h=[0,0,33554432,43046721,16777216,48828125,60466176,40353607,16777216,43046721,1e7,19487171,35831808,62748517,7529536,11390625,16777216,24137569,34012224,47045881,64e6,4084101,5153632,6436343,7962624,9765625,11881376,14348907,17210368,20511149,243e5,28629151,33554432,39135393,45435424,52521875,60466176];function p(t,e,r){r.negative=e.negative^t.negative;var n=t.length+e.length|0;r.length=n,n=n-1|0;var i=0|t.words[0],a=0|e.words[0],o=i*a,s=67108863&o,l=o/67108864|0;r.words[0]=s;for(var c=1;c>>26,f=67108863&l,h=Math.min(c,e.length-1),p=Math.max(0,c-t.length+1);p<=h;p++){var d=c-p|0;u+=(o=(i=0|t.words[d])*(a=0|e.words[p])+f)/67108864|0,f=67108863&o}r.words[c]=0|f,l=0|u}return 0!==l?r.words[c]=0|l:r.length--,r.strip()}a.prototype.toString=function(t,e){var r;if(e=0|e||1,16===(t=t||10)||"hex"===t){r="";for(var i=0,a=0,o=0;o>>24-i&16777215)||o!==this.length-1?u[6-l.length]+l+r:l+r,(i+=2)>=26&&(i-=26,o--)}for(0!==a&&(r=a.toString(16)+r);r.length%e!=0;)r="0"+r;return 0!==this.negative&&(r="-"+r),r}if(t===(0|t)&&t>=2&&t<=36){var c=f[t],p=h[t];r="";var d=this.clone();for(d.negative=0;!d.isZero();){var m=d.modn(p).toString(t);r=(d=d.idivn(p)).isZero()?m+r:u[c-m.length]+m+r}for(this.isZero()&&(r="0"+r);r.length%e!=0;)r="0"+r;return 0!==this.negative&&(r="-"+r),r}n(!1,"Base should be between 2 and 36")},a.prototype.toNumber=function(){var t=this.words[0];return 2===this.length?t+=67108864*this.words[1]:3===this.length&&1===this.words[2]?t+=4503599627370496+67108864*this.words[1]:this.length>2&&n(!1,"Number can only safely store up to 53 bits"),0!==this.negative?-t:t},a.prototype.toJSON=function(){return this.toString(16)},a.prototype.toBuffer=function(t,e){return n(void 0!==o),this.toArrayLike(o,t,e)},a.prototype.toArray=function(t,e){return this.toArrayLike(Array,t,e)},a.prototype.toArrayLike=function(t,e,r){var i=this.byteLength(),a=r||Math.max(1,i);n(i<=a,"byte array longer than desired length"),n(a>0,"Requested array length <= 0"),this.strip();var o,s,l="le"===e,c=new t(a),u=this.clone();if(l){for(s=0;!u.isZero();s++)o=u.andln(255),u.iushrn(8),c[s]=o;for(;s=4096&&(r+=13,e>>>=13),e>=64&&(r+=7,e>>>=7),e>=8&&(r+=4,e>>>=4),e>=2&&(r+=2,e>>>=2),r+e},a.prototype._zeroBits=function(t){if(0===t)return 26;var e=t,r=0;return 0==(8191&e)&&(r+=13,e>>>=13),0==(127&e)&&(r+=7,e>>>=7),0==(15&e)&&(r+=4,e>>>=4),0==(3&e)&&(r+=2,e>>>=2),0==(1&e)&&r++,r},a.prototype.bitLength=function(){var t=this.words[this.length-1],e=this._countBits(t);return 26*(this.length-1)+e},a.prototype.zeroBits=function(){if(this.isZero())return 0;for(var t=0,e=0;et.length?this.clone().ior(t):t.clone().ior(this)},a.prototype.uor=function(t){return this.length>t.length?this.clone().iuor(t):t.clone().iuor(this)},a.prototype.iuand=function(t){var e;e=this.length>t.length?t:this;for(var r=0;rt.length?this.clone().iand(t):t.clone().iand(this)},a.prototype.uand=function(t){return this.length>t.length?this.clone().iuand(t):t.clone().iuand(this)},a.prototype.iuxor=function(t){var e,r;this.length>t.length?(e=this,r=t):(e=t,r=this);for(var n=0;nt.length?this.clone().ixor(t):t.clone().ixor(this)},a.prototype.uxor=function(t){return this.length>t.length?this.clone().iuxor(t):t.clone().iuxor(this)},a.prototype.inotn=function(t){n("number"==typeof t&&t>=0);var e=0|Math.ceil(t/26),r=t%26;this._expand(e),r>0&&e--;for(var i=0;i0&&(this.words[i]=~this.words[i]&67108863>>26-r),this.strip()},a.prototype.notn=function(t){return this.clone().inotn(t)},a.prototype.setn=function(t,e){n("number"==typeof t&&t>=0);var r=t/26|0,i=t%26;return this._expand(r+1),this.words[r]=e?this.words[r]|1<t.length?(r=this,n=t):(r=t,n=this);for(var i=0,a=0;a>>26;for(;0!==i&&a>>26;if(this.length=r.length,0!==i)this.words[this.length]=i,this.length++;else if(r!==this)for(;at.length?this.clone().iadd(t):t.clone().iadd(this)},a.prototype.isub=function(t){if(0!==t.negative){t.negative=0;var e=this.iadd(t);return t.negative=1,e._normSign()}if(0!==this.negative)return this.negative=0,this.iadd(t),this.negative=1,this._normSign();var r,n,i=this.cmp(t);if(0===i)return this.negative=0,this.length=1,this.words[0]=0,this;i>0?(r=this,n=t):(r=t,n=this);for(var a=0,o=0;o>26,this.words[o]=67108863&e;for(;0!==a&&o>26,this.words[o]=67108863&e;if(0===a&&o>>13,p=0|o[1],d=8191&p,m=p>>>13,g=0|o[2],v=8191&g,y=g>>>13,x=0|o[3],b=8191&x,_=x>>>13,w=0|o[4],T=8191&w,k=w>>>13,A=0|o[5],M=8191&A,S=A>>>13,E=0|o[6],L=8191&E,C=E>>>13,P=0|o[7],I=8191&P,O=P>>>13,z=0|o[8],D=8191&z,R=z>>>13,F=0|o[9],B=8191&F,N=F>>>13,j=0|s[0],U=8191&j,V=j>>>13,H=0|s[1],q=8191&H,G=H>>>13,Y=0|s[2],W=8191&Y,X=Y>>>13,Z=0|s[3],J=8191&Z,K=Z>>>13,Q=0|s[4],$=8191&Q,tt=Q>>>13,et=0|s[5],rt=8191&et,nt=et>>>13,it=0|s[6],at=8191&it,ot=it>>>13,st=0|s[7],lt=8191&st,ct=st>>>13,ut=0|s[8],ft=8191&ut,ht=ut>>>13,pt=0|s[9],dt=8191&pt,mt=pt>>>13;r.negative=t.negative^e.negative,r.length=19;var gt=(c+(n=Math.imul(f,U))|0)+((8191&(i=(i=Math.imul(f,V))+Math.imul(h,U)|0))<<13)|0;c=((a=Math.imul(h,V))+(i>>>13)|0)+(gt>>>26)|0,gt&=67108863,n=Math.imul(d,U),i=(i=Math.imul(d,V))+Math.imul(m,U)|0,a=Math.imul(m,V);var vt=(c+(n=n+Math.imul(f,q)|0)|0)+((8191&(i=(i=i+Math.imul(f,G)|0)+Math.imul(h,q)|0))<<13)|0;c=((a=a+Math.imul(h,G)|0)+(i>>>13)|0)+(vt>>>26)|0,vt&=67108863,n=Math.imul(v,U),i=(i=Math.imul(v,V))+Math.imul(y,U)|0,a=Math.imul(y,V),n=n+Math.imul(d,q)|0,i=(i=i+Math.imul(d,G)|0)+Math.imul(m,q)|0,a=a+Math.imul(m,G)|0;var yt=(c+(n=n+Math.imul(f,W)|0)|0)+((8191&(i=(i=i+Math.imul(f,X)|0)+Math.imul(h,W)|0))<<13)|0;c=((a=a+Math.imul(h,X)|0)+(i>>>13)|0)+(yt>>>26)|0,yt&=67108863,n=Math.imul(b,U),i=(i=Math.imul(b,V))+Math.imul(_,U)|0,a=Math.imul(_,V),n=n+Math.imul(v,q)|0,i=(i=i+Math.imul(v,G)|0)+Math.imul(y,q)|0,a=a+Math.imul(y,G)|0,n=n+Math.imul(d,W)|0,i=(i=i+Math.imul(d,X)|0)+Math.imul(m,W)|0,a=a+Math.imul(m,X)|0;var xt=(c+(n=n+Math.imul(f,J)|0)|0)+((8191&(i=(i=i+Math.imul(f,K)|0)+Math.imul(h,J)|0))<<13)|0;c=((a=a+Math.imul(h,K)|0)+(i>>>13)|0)+(xt>>>26)|0,xt&=67108863,n=Math.imul(T,U),i=(i=Math.imul(T,V))+Math.imul(k,U)|0,a=Math.imul(k,V),n=n+Math.imul(b,q)|0,i=(i=i+Math.imul(b,G)|0)+Math.imul(_,q)|0,a=a+Math.imul(_,G)|0,n=n+Math.imul(v,W)|0,i=(i=i+Math.imul(v,X)|0)+Math.imul(y,W)|0,a=a+Math.imul(y,X)|0,n=n+Math.imul(d,J)|0,i=(i=i+Math.imul(d,K)|0)+Math.imul(m,J)|0,a=a+Math.imul(m,K)|0;var bt=(c+(n=n+Math.imul(f,$)|0)|0)+((8191&(i=(i=i+Math.imul(f,tt)|0)+Math.imul(h,$)|0))<<13)|0;c=((a=a+Math.imul(h,tt)|0)+(i>>>13)|0)+(bt>>>26)|0,bt&=67108863,n=Math.imul(M,U),i=(i=Math.imul(M,V))+Math.imul(S,U)|0,a=Math.imul(S,V),n=n+Math.imul(T,q)|0,i=(i=i+Math.imul(T,G)|0)+Math.imul(k,q)|0,a=a+Math.imul(k,G)|0,n=n+Math.imul(b,W)|0,i=(i=i+Math.imul(b,X)|0)+Math.imul(_,W)|0,a=a+Math.imul(_,X)|0,n=n+Math.imul(v,J)|0,i=(i=i+Math.imul(v,K)|0)+Math.imul(y,J)|0,a=a+Math.imul(y,K)|0,n=n+Math.imul(d,$)|0,i=(i=i+Math.imul(d,tt)|0)+Math.imul(m,$)|0,a=a+Math.imul(m,tt)|0;var _t=(c+(n=n+Math.imul(f,rt)|0)|0)+((8191&(i=(i=i+Math.imul(f,nt)|0)+Math.imul(h,rt)|0))<<13)|0;c=((a=a+Math.imul(h,nt)|0)+(i>>>13)|0)+(_t>>>26)|0,_t&=67108863,n=Math.imul(L,U),i=(i=Math.imul(L,V))+Math.imul(C,U)|0,a=Math.imul(C,V),n=n+Math.imul(M,q)|0,i=(i=i+Math.imul(M,G)|0)+Math.imul(S,q)|0,a=a+Math.imul(S,G)|0,n=n+Math.imul(T,W)|0,i=(i=i+Math.imul(T,X)|0)+Math.imul(k,W)|0,a=a+Math.imul(k,X)|0,n=n+Math.imul(b,J)|0,i=(i=i+Math.imul(b,K)|0)+Math.imul(_,J)|0,a=a+Math.imul(_,K)|0,n=n+Math.imul(v,$)|0,i=(i=i+Math.imul(v,tt)|0)+Math.imul(y,$)|0,a=a+Math.imul(y,tt)|0,n=n+Math.imul(d,rt)|0,i=(i=i+Math.imul(d,nt)|0)+Math.imul(m,rt)|0,a=a+Math.imul(m,nt)|0;var wt=(c+(n=n+Math.imul(f,at)|0)|0)+((8191&(i=(i=i+Math.imul(f,ot)|0)+Math.imul(h,at)|0))<<13)|0;c=((a=a+Math.imul(h,ot)|0)+(i>>>13)|0)+(wt>>>26)|0,wt&=67108863,n=Math.imul(I,U),i=(i=Math.imul(I,V))+Math.imul(O,U)|0,a=Math.imul(O,V),n=n+Math.imul(L,q)|0,i=(i=i+Math.imul(L,G)|0)+Math.imul(C,q)|0,a=a+Math.imul(C,G)|0,n=n+Math.imul(M,W)|0,i=(i=i+Math.imul(M,X)|0)+Math.imul(S,W)|0,a=a+Math.imul(S,X)|0,n=n+Math.imul(T,J)|0,i=(i=i+Math.imul(T,K)|0)+Math.imul(k,J)|0,a=a+Math.imul(k,K)|0,n=n+Math.imul(b,$)|0,i=(i=i+Math.imul(b,tt)|0)+Math.imul(_,$)|0,a=a+Math.imul(_,tt)|0,n=n+Math.imul(v,rt)|0,i=(i=i+Math.imul(v,nt)|0)+Math.imul(y,rt)|0,a=a+Math.imul(y,nt)|0,n=n+Math.imul(d,at)|0,i=(i=i+Math.imul(d,ot)|0)+Math.imul(m,at)|0,a=a+Math.imul(m,ot)|0;var Tt=(c+(n=n+Math.imul(f,lt)|0)|0)+((8191&(i=(i=i+Math.imul(f,ct)|0)+Math.imul(h,lt)|0))<<13)|0;c=((a=a+Math.imul(h,ct)|0)+(i>>>13)|0)+(Tt>>>26)|0,Tt&=67108863,n=Math.imul(D,U),i=(i=Math.imul(D,V))+Math.imul(R,U)|0,a=Math.imul(R,V),n=n+Math.imul(I,q)|0,i=(i=i+Math.imul(I,G)|0)+Math.imul(O,q)|0,a=a+Math.imul(O,G)|0,n=n+Math.imul(L,W)|0,i=(i=i+Math.imul(L,X)|0)+Math.imul(C,W)|0,a=a+Math.imul(C,X)|0,n=n+Math.imul(M,J)|0,i=(i=i+Math.imul(M,K)|0)+Math.imul(S,J)|0,a=a+Math.imul(S,K)|0,n=n+Math.imul(T,$)|0,i=(i=i+Math.imul(T,tt)|0)+Math.imul(k,$)|0,a=a+Math.imul(k,tt)|0,n=n+Math.imul(b,rt)|0,i=(i=i+Math.imul(b,nt)|0)+Math.imul(_,rt)|0,a=a+Math.imul(_,nt)|0,n=n+Math.imul(v,at)|0,i=(i=i+Math.imul(v,ot)|0)+Math.imul(y,at)|0,a=a+Math.imul(y,ot)|0,n=n+Math.imul(d,lt)|0,i=(i=i+Math.imul(d,ct)|0)+Math.imul(m,lt)|0,a=a+Math.imul(m,ct)|0;var kt=(c+(n=n+Math.imul(f,ft)|0)|0)+((8191&(i=(i=i+Math.imul(f,ht)|0)+Math.imul(h,ft)|0))<<13)|0;c=((a=a+Math.imul(h,ht)|0)+(i>>>13)|0)+(kt>>>26)|0,kt&=67108863,n=Math.imul(B,U),i=(i=Math.imul(B,V))+Math.imul(N,U)|0,a=Math.imul(N,V),n=n+Math.imul(D,q)|0,i=(i=i+Math.imul(D,G)|0)+Math.imul(R,q)|0,a=a+Math.imul(R,G)|0,n=n+Math.imul(I,W)|0,i=(i=i+Math.imul(I,X)|0)+Math.imul(O,W)|0,a=a+Math.imul(O,X)|0,n=n+Math.imul(L,J)|0,i=(i=i+Math.imul(L,K)|0)+Math.imul(C,J)|0,a=a+Math.imul(C,K)|0,n=n+Math.imul(M,$)|0,i=(i=i+Math.imul(M,tt)|0)+Math.imul(S,$)|0,a=a+Math.imul(S,tt)|0,n=n+Math.imul(T,rt)|0,i=(i=i+Math.imul(T,nt)|0)+Math.imul(k,rt)|0,a=a+Math.imul(k,nt)|0,n=n+Math.imul(b,at)|0,i=(i=i+Math.imul(b,ot)|0)+Math.imul(_,at)|0,a=a+Math.imul(_,ot)|0,n=n+Math.imul(v,lt)|0,i=(i=i+Math.imul(v,ct)|0)+Math.imul(y,lt)|0,a=a+Math.imul(y,ct)|0,n=n+Math.imul(d,ft)|0,i=(i=i+Math.imul(d,ht)|0)+Math.imul(m,ft)|0,a=a+Math.imul(m,ht)|0;var At=(c+(n=n+Math.imul(f,dt)|0)|0)+((8191&(i=(i=i+Math.imul(f,mt)|0)+Math.imul(h,dt)|0))<<13)|0;c=((a=a+Math.imul(h,mt)|0)+(i>>>13)|0)+(At>>>26)|0,At&=67108863,n=Math.imul(B,q),i=(i=Math.imul(B,G))+Math.imul(N,q)|0,a=Math.imul(N,G),n=n+Math.imul(D,W)|0,i=(i=i+Math.imul(D,X)|0)+Math.imul(R,W)|0,a=a+Math.imul(R,X)|0,n=n+Math.imul(I,J)|0,i=(i=i+Math.imul(I,K)|0)+Math.imul(O,J)|0,a=a+Math.imul(O,K)|0,n=n+Math.imul(L,$)|0,i=(i=i+Math.imul(L,tt)|0)+Math.imul(C,$)|0,a=a+Math.imul(C,tt)|0,n=n+Math.imul(M,rt)|0,i=(i=i+Math.imul(M,nt)|0)+Math.imul(S,rt)|0,a=a+Math.imul(S,nt)|0,n=n+Math.imul(T,at)|0,i=(i=i+Math.imul(T,ot)|0)+Math.imul(k,at)|0,a=a+Math.imul(k,ot)|0,n=n+Math.imul(b,lt)|0,i=(i=i+Math.imul(b,ct)|0)+Math.imul(_,lt)|0,a=a+Math.imul(_,ct)|0,n=n+Math.imul(v,ft)|0,i=(i=i+Math.imul(v,ht)|0)+Math.imul(y,ft)|0,a=a+Math.imul(y,ht)|0;var Mt=(c+(n=n+Math.imul(d,dt)|0)|0)+((8191&(i=(i=i+Math.imul(d,mt)|0)+Math.imul(m,dt)|0))<<13)|0;c=((a=a+Math.imul(m,mt)|0)+(i>>>13)|0)+(Mt>>>26)|0,Mt&=67108863,n=Math.imul(B,W),i=(i=Math.imul(B,X))+Math.imul(N,W)|0,a=Math.imul(N,X),n=n+Math.imul(D,J)|0,i=(i=i+Math.imul(D,K)|0)+Math.imul(R,J)|0,a=a+Math.imul(R,K)|0,n=n+Math.imul(I,$)|0,i=(i=i+Math.imul(I,tt)|0)+Math.imul(O,$)|0,a=a+Math.imul(O,tt)|0,n=n+Math.imul(L,rt)|0,i=(i=i+Math.imul(L,nt)|0)+Math.imul(C,rt)|0,a=a+Math.imul(C,nt)|0,n=n+Math.imul(M,at)|0,i=(i=i+Math.imul(M,ot)|0)+Math.imul(S,at)|0,a=a+Math.imul(S,ot)|0,n=n+Math.imul(T,lt)|0,i=(i=i+Math.imul(T,ct)|0)+Math.imul(k,lt)|0,a=a+Math.imul(k,ct)|0,n=n+Math.imul(b,ft)|0,i=(i=i+Math.imul(b,ht)|0)+Math.imul(_,ft)|0,a=a+Math.imul(_,ht)|0;var St=(c+(n=n+Math.imul(v,dt)|0)|0)+((8191&(i=(i=i+Math.imul(v,mt)|0)+Math.imul(y,dt)|0))<<13)|0;c=((a=a+Math.imul(y,mt)|0)+(i>>>13)|0)+(St>>>26)|0,St&=67108863,n=Math.imul(B,J),i=(i=Math.imul(B,K))+Math.imul(N,J)|0,a=Math.imul(N,K),n=n+Math.imul(D,$)|0,i=(i=i+Math.imul(D,tt)|0)+Math.imul(R,$)|0,a=a+Math.imul(R,tt)|0,n=n+Math.imul(I,rt)|0,i=(i=i+Math.imul(I,nt)|0)+Math.imul(O,rt)|0,a=a+Math.imul(O,nt)|0,n=n+Math.imul(L,at)|0,i=(i=i+Math.imul(L,ot)|0)+Math.imul(C,at)|0,a=a+Math.imul(C,ot)|0,n=n+Math.imul(M,lt)|0,i=(i=i+Math.imul(M,ct)|0)+Math.imul(S,lt)|0,a=a+Math.imul(S,ct)|0,n=n+Math.imul(T,ft)|0,i=(i=i+Math.imul(T,ht)|0)+Math.imul(k,ft)|0,a=a+Math.imul(k,ht)|0;var Et=(c+(n=n+Math.imul(b,dt)|0)|0)+((8191&(i=(i=i+Math.imul(b,mt)|0)+Math.imul(_,dt)|0))<<13)|0;c=((a=a+Math.imul(_,mt)|0)+(i>>>13)|0)+(Et>>>26)|0,Et&=67108863,n=Math.imul(B,$),i=(i=Math.imul(B,tt))+Math.imul(N,$)|0,a=Math.imul(N,tt),n=n+Math.imul(D,rt)|0,i=(i=i+Math.imul(D,nt)|0)+Math.imul(R,rt)|0,a=a+Math.imul(R,nt)|0,n=n+Math.imul(I,at)|0,i=(i=i+Math.imul(I,ot)|0)+Math.imul(O,at)|0,a=a+Math.imul(O,ot)|0,n=n+Math.imul(L,lt)|0,i=(i=i+Math.imul(L,ct)|0)+Math.imul(C,lt)|0,a=a+Math.imul(C,ct)|0,n=n+Math.imul(M,ft)|0,i=(i=i+Math.imul(M,ht)|0)+Math.imul(S,ft)|0,a=a+Math.imul(S,ht)|0;var Lt=(c+(n=n+Math.imul(T,dt)|0)|0)+((8191&(i=(i=i+Math.imul(T,mt)|0)+Math.imul(k,dt)|0))<<13)|0;c=((a=a+Math.imul(k,mt)|0)+(i>>>13)|0)+(Lt>>>26)|0,Lt&=67108863,n=Math.imul(B,rt),i=(i=Math.imul(B,nt))+Math.imul(N,rt)|0,a=Math.imul(N,nt),n=n+Math.imul(D,at)|0,i=(i=i+Math.imul(D,ot)|0)+Math.imul(R,at)|0,a=a+Math.imul(R,ot)|0,n=n+Math.imul(I,lt)|0,i=(i=i+Math.imul(I,ct)|0)+Math.imul(O,lt)|0,a=a+Math.imul(O,ct)|0,n=n+Math.imul(L,ft)|0,i=(i=i+Math.imul(L,ht)|0)+Math.imul(C,ft)|0,a=a+Math.imul(C,ht)|0;var Ct=(c+(n=n+Math.imul(M,dt)|0)|0)+((8191&(i=(i=i+Math.imul(M,mt)|0)+Math.imul(S,dt)|0))<<13)|0;c=((a=a+Math.imul(S,mt)|0)+(i>>>13)|0)+(Ct>>>26)|0,Ct&=67108863,n=Math.imul(B,at),i=(i=Math.imul(B,ot))+Math.imul(N,at)|0,a=Math.imul(N,ot),n=n+Math.imul(D,lt)|0,i=(i=i+Math.imul(D,ct)|0)+Math.imul(R,lt)|0,a=a+Math.imul(R,ct)|0,n=n+Math.imul(I,ft)|0,i=(i=i+Math.imul(I,ht)|0)+Math.imul(O,ft)|0,a=a+Math.imul(O,ht)|0;var Pt=(c+(n=n+Math.imul(L,dt)|0)|0)+((8191&(i=(i=i+Math.imul(L,mt)|0)+Math.imul(C,dt)|0))<<13)|0;c=((a=a+Math.imul(C,mt)|0)+(i>>>13)|0)+(Pt>>>26)|0,Pt&=67108863,n=Math.imul(B,lt),i=(i=Math.imul(B,ct))+Math.imul(N,lt)|0,a=Math.imul(N,ct),n=n+Math.imul(D,ft)|0,i=(i=i+Math.imul(D,ht)|0)+Math.imul(R,ft)|0,a=a+Math.imul(R,ht)|0;var It=(c+(n=n+Math.imul(I,dt)|0)|0)+((8191&(i=(i=i+Math.imul(I,mt)|0)+Math.imul(O,dt)|0))<<13)|0;c=((a=a+Math.imul(O,mt)|0)+(i>>>13)|0)+(It>>>26)|0,It&=67108863,n=Math.imul(B,ft),i=(i=Math.imul(B,ht))+Math.imul(N,ft)|0,a=Math.imul(N,ht);var Ot=(c+(n=n+Math.imul(D,dt)|0)|0)+((8191&(i=(i=i+Math.imul(D,mt)|0)+Math.imul(R,dt)|0))<<13)|0;c=((a=a+Math.imul(R,mt)|0)+(i>>>13)|0)+(Ot>>>26)|0,Ot&=67108863;var zt=(c+(n=Math.imul(B,dt))|0)+((8191&(i=(i=Math.imul(B,mt))+Math.imul(N,dt)|0))<<13)|0;return c=((a=Math.imul(N,mt))+(i>>>13)|0)+(zt>>>26)|0,zt&=67108863,l[0]=gt,l[1]=vt,l[2]=yt,l[3]=xt,l[4]=bt,l[5]=_t,l[6]=wt,l[7]=Tt,l[8]=kt,l[9]=At,l[10]=Mt,l[11]=St,l[12]=Et,l[13]=Lt,l[14]=Ct,l[15]=Pt,l[16]=It,l[17]=Ot,l[18]=zt,0!==c&&(l[19]=c,r.length++),r};function m(t,e,r){return(new g).mulp(t,e,r)}function g(t,e){this.x=t,this.y=e}Math.imul||(d=p),a.prototype.mulTo=function(t,e){var r=this.length+t.length;return 10===this.length&&10===t.length?d(this,t,e):r<63?p(this,t,e):r<1024?function(t,e,r){r.negative=e.negative^t.negative,r.length=t.length+e.length;for(var n=0,i=0,a=0;a>>26)|0)>>>26,o&=67108863}r.words[a]=s,n=o,o=i}return 0!==n?r.words[a]=n:r.length--,r.strip()}(this,t,e):m(this,t,e)},g.prototype.makeRBT=function(t){for(var e=new Array(t),r=a.prototype._countBits(t)-1,n=0;n>=1;return n},g.prototype.permute=function(t,e,r,n,i,a){for(var o=0;o>>=1)i++;return 1<>>=13,r[2*o+1]=8191&a,a>>>=13;for(o=2*e;o>=26,e+=i/67108864|0,e+=a>>>26,this.words[r]=67108863&a}return 0!==e&&(this.words[r]=e,this.length++),this},a.prototype.muln=function(t){return this.clone().imuln(t)},a.prototype.sqr=function(){return this.mul(this)},a.prototype.isqr=function(){return this.imul(this.clone())},a.prototype.pow=function(t){var e=function(t){for(var e=new Array(t.bitLength()),r=0;r>>i}return e}(t);if(0===e.length)return new a(1);for(var r=this,n=0;n=0);var e,r=t%26,i=(t-r)/26,a=67108863>>>26-r<<26-r;if(0!==r){var o=0;for(e=0;e>>26-r}o&&(this.words[e]=o,this.length++)}if(0!==i){for(e=this.length-1;e>=0;e--)this.words[e+i]=this.words[e];for(e=0;e=0),i=e?(e-e%26)/26:0;var a=t%26,o=Math.min((t-a)/26,this.length),s=67108863^67108863>>>a<o)for(this.length-=o,c=0;c=0&&(0!==u||c>=i);c--){var f=0|this.words[c];this.words[c]=u<<26-a|f>>>a,u=f&s}return l&&0!==u&&(l.words[l.length++]=u),0===this.length&&(this.words[0]=0,this.length=1),this.strip()},a.prototype.ishrn=function(t,e,r){return n(0===this.negative),this.iushrn(t,e,r)},a.prototype.shln=function(t){return this.clone().ishln(t)},a.prototype.ushln=function(t){return this.clone().iushln(t)},a.prototype.shrn=function(t){return this.clone().ishrn(t)},a.prototype.ushrn=function(t){return this.clone().iushrn(t)},a.prototype.testn=function(t){n("number"==typeof t&&t>=0);var e=t%26,r=(t-e)/26,i=1<=0);var e=t%26,r=(t-e)/26;if(n(0===this.negative,"imaskn works only with positive numbers"),this.length<=r)return this;if(0!==e&&r++,this.length=Math.min(r,this.length),0!==e){var i=67108863^67108863>>>e<=67108864;e++)this.words[e]-=67108864,e===this.length-1?this.words[e+1]=1:this.words[e+1]++;return this.length=Math.max(this.length,e+1),this},a.prototype.isubn=function(t){if(n("number"==typeof t),n(t<67108864),t<0)return this.iaddn(-t);if(0!==this.negative)return this.negative=0,this.iaddn(t),this.negative=1,this;if(this.words[0]-=t,1===this.length&&this.words[0]<0)this.words[0]=-this.words[0],this.negative=1;else for(var e=0;e>26)-(l/67108864|0),this.words[i+r]=67108863&a}for(;i>26,this.words[i+r]=67108863&a;if(0===s)return this.strip();for(n(-1===s),s=0,i=0;i>26,this.words[i]=67108863&a;return this.negative=1,this.strip()},a.prototype._wordDiv=function(t,e){var r=(this.length,t.length),n=this.clone(),i=t,o=0|i.words[i.length-1];0!==(r=26-this._countBits(o))&&(i=i.ushln(r),n.iushln(r),o=0|i.words[i.length-1]);var s,l=n.length-i.length;if("mod"!==e){(s=new a(null)).length=l+1,s.words=new Array(s.length);for(var c=0;c=0;f--){var h=67108864*(0|n.words[i.length+f])+(0|n.words[i.length+f-1]);for(h=Math.min(h/o|0,67108863),n._ishlnsubmul(i,h,f);0!==n.negative;)h--,n.negative=0,n._ishlnsubmul(i,1,f),n.isZero()||(n.negative^=1);s&&(s.words[f]=h)}return s&&s.strip(),n.strip(),"div"!==e&&0!==r&&n.iushrn(r),{div:s||null,mod:n}},a.prototype.divmod=function(t,e,r){return n(!t.isZero()),this.isZero()?{div:new a(0),mod:new a(0)}:0!==this.negative&&0===t.negative?(s=this.neg().divmod(t,e),"mod"!==e&&(i=s.div.neg()),"div"!==e&&(o=s.mod.neg(),r&&0!==o.negative&&o.iadd(t)),{div:i,mod:o}):0===this.negative&&0!==t.negative?(s=this.divmod(t.neg(),e),"mod"!==e&&(i=s.div.neg()),{div:i,mod:s.mod}):0!=(this.negative&t.negative)?(s=this.neg().divmod(t.neg(),e),"div"!==e&&(o=s.mod.neg(),r&&0!==o.negative&&o.isub(t)),{div:s.div,mod:o}):t.length>this.length||this.cmp(t)<0?{div:new a(0),mod:this}:1===t.length?"div"===e?{div:this.divn(t.words[0]),mod:null}:"mod"===e?{div:null,mod:new a(this.modn(t.words[0]))}:{div:this.divn(t.words[0]),mod:new a(this.modn(t.words[0]))}:this._wordDiv(t,e);var i,o,s},a.prototype.div=function(t){return this.divmod(t,"div",!1).div},a.prototype.mod=function(t){return this.divmod(t,"mod",!1).mod},a.prototype.umod=function(t){return this.divmod(t,"mod",!0).mod},a.prototype.divRound=function(t){var e=this.divmod(t);if(e.mod.isZero())return e.div;var r=0!==e.div.negative?e.mod.isub(t):e.mod,n=t.ushrn(1),i=t.andln(1),a=r.cmp(n);return a<0||1===i&&0===a?e.div:0!==e.div.negative?e.div.isubn(1):e.div.iaddn(1)},a.prototype.modn=function(t){n(t<=67108863);for(var e=(1<<26)%t,r=0,i=this.length-1;i>=0;i--)r=(e*r+(0|this.words[i]))%t;return r},a.prototype.idivn=function(t){n(t<=67108863);for(var e=0,r=this.length-1;r>=0;r--){var i=(0|this.words[r])+67108864*e;this.words[r]=i/t|0,e=i%t}return this.strip()},a.prototype.divn=function(t){return this.clone().idivn(t)},a.prototype.egcd=function(t){n(0===t.negative),n(!t.isZero());var e=this,r=t.clone();e=0!==e.negative?e.umod(t):e.clone();for(var i=new a(1),o=new a(0),s=new a(0),l=new a(1),c=0;e.isEven()&&r.isEven();)e.iushrn(1),r.iushrn(1),++c;for(var u=r.clone(),f=e.clone();!e.isZero();){for(var h=0,p=1;0==(e.words[0]&p)&&h<26;++h,p<<=1);if(h>0)for(e.iushrn(h);h-- >0;)(i.isOdd()||o.isOdd())&&(i.iadd(u),o.isub(f)),i.iushrn(1),o.iushrn(1);for(var d=0,m=1;0==(r.words[0]&m)&&d<26;++d,m<<=1);if(d>0)for(r.iushrn(d);d-- >0;)(s.isOdd()||l.isOdd())&&(s.iadd(u),l.isub(f)),s.iushrn(1),l.iushrn(1);e.cmp(r)>=0?(e.isub(r),i.isub(s),o.isub(l)):(r.isub(e),s.isub(i),l.isub(o))}return{a:s,b:l,gcd:r.iushln(c)}},a.prototype._invmp=function(t){n(0===t.negative),n(!t.isZero());var e=this,r=t.clone();e=0!==e.negative?e.umod(t):e.clone();for(var i,o=new a(1),s=new a(0),l=r.clone();e.cmpn(1)>0&&r.cmpn(1)>0;){for(var c=0,u=1;0==(e.words[0]&u)&&c<26;++c,u<<=1);if(c>0)for(e.iushrn(c);c-- >0;)o.isOdd()&&o.iadd(l),o.iushrn(1);for(var f=0,h=1;0==(r.words[0]&h)&&f<26;++f,h<<=1);if(f>0)for(r.iushrn(f);f-- >0;)s.isOdd()&&s.iadd(l),s.iushrn(1);e.cmp(r)>=0?(e.isub(r),o.isub(s)):(r.isub(e),s.isub(o))}return(i=0===e.cmpn(1)?o:s).cmpn(0)<0&&i.iadd(t),i},a.prototype.gcd=function(t){if(this.isZero())return t.abs();if(t.isZero())return this.abs();var e=this.clone(),r=t.clone();e.negative=0,r.negative=0;for(var n=0;e.isEven()&&r.isEven();n++)e.iushrn(1),r.iushrn(1);for(;;){for(;e.isEven();)e.iushrn(1);for(;r.isEven();)r.iushrn(1);var i=e.cmp(r);if(i<0){var a=e;e=r,r=a}else if(0===i||0===r.cmpn(1))break;e.isub(r)}return r.iushln(n)},a.prototype.invm=function(t){return this.egcd(t).a.umod(t)},a.prototype.isEven=function(){return 0==(1&this.words[0])},a.prototype.isOdd=function(){return 1==(1&this.words[0])},a.prototype.andln=function(t){return this.words[0]&t},a.prototype.bincn=function(t){n("number"==typeof t);var e=t%26,r=(t-e)/26,i=1<>>26,s&=67108863,this.words[o]=s}return 0!==a&&(this.words[o]=a,this.length++),this},a.prototype.isZero=function(){return 1===this.length&&0===this.words[0]},a.prototype.cmpn=function(t){var e,r=t<0;if(0!==this.negative&&!r)return-1;if(0===this.negative&&r)return 1;if(this.strip(),this.length>1)e=1;else{r&&(t=-t),n(t<=67108863,"Number is too big");var i=0|this.words[0];e=i===t?0:it.length)return 1;if(this.length=0;r--){var n=0|this.words[r],i=0|t.words[r];if(n!==i){ni&&(e=1);break}}return e},a.prototype.gtn=function(t){return 1===this.cmpn(t)},a.prototype.gt=function(t){return 1===this.cmp(t)},a.prototype.gten=function(t){return this.cmpn(t)>=0},a.prototype.gte=function(t){return this.cmp(t)>=0},a.prototype.ltn=function(t){return-1===this.cmpn(t)},a.prototype.lt=function(t){return-1===this.cmp(t)},a.prototype.lten=function(t){return this.cmpn(t)<=0},a.prototype.lte=function(t){return this.cmp(t)<=0},a.prototype.eqn=function(t){return 0===this.cmpn(t)},a.prototype.eq=function(t){return 0===this.cmp(t)},a.red=function(t){return new T(t)},a.prototype.toRed=function(t){return n(!this.red,"Already a number in reduction context"),n(0===this.negative,"red works only with positives"),t.convertTo(this)._forceRed(t)},a.prototype.fromRed=function(){return n(this.red,"fromRed works only with numbers in reduction context"),this.red.convertFrom(this)},a.prototype._forceRed=function(t){return this.red=t,this},a.prototype.forceRed=function(t){return n(!this.red,"Already a number in reduction context"),this._forceRed(t)},a.prototype.redAdd=function(t){return n(this.red,"redAdd works only with red numbers"),this.red.add(this,t)},a.prototype.redIAdd=function(t){return n(this.red,"redIAdd works only with red numbers"),this.red.iadd(this,t)},a.prototype.redSub=function(t){return n(this.red,"redSub works only with red numbers"),this.red.sub(this,t)},a.prototype.redISub=function(t){return n(this.red,"redISub works only with red numbers"),this.red.isub(this,t)},a.prototype.redShl=function(t){return n(this.red,"redShl works only with red numbers"),this.red.shl(this,t)},a.prototype.redMul=function(t){return n(this.red,"redMul works only with red numbers"),this.red._verify2(this,t),this.red.mul(this,t)},a.prototype.redIMul=function(t){return n(this.red,"redMul works only with red numbers"),this.red._verify2(this,t),this.red.imul(this,t)},a.prototype.redSqr=function(){return n(this.red,"redSqr works only with red numbers"),this.red._verify1(this),this.red.sqr(this)},a.prototype.redISqr=function(){return n(this.red,"redISqr works only with red numbers"),this.red._verify1(this),this.red.isqr(this)},a.prototype.redSqrt=function(){return n(this.red,"redSqrt works only with red numbers"),this.red._verify1(this),this.red.sqrt(this)},a.prototype.redInvm=function(){return n(this.red,"redInvm works only with red numbers"),this.red._verify1(this),this.red.invm(this)},a.prototype.redNeg=function(){return n(this.red,"redNeg works only with red numbers"),this.red._verify1(this),this.red.neg(this)},a.prototype.redPow=function(t){return n(this.red&&!t.red,"redPow(normalNum)"),this.red._verify1(this),this.red.pow(this,t)};var v={k256:null,p224:null,p192:null,p25519:null};function y(t,e){this.name=t,this.p=new a(e,16),this.n=this.p.bitLength(),this.k=new a(1).iushln(this.n).isub(this.p),this.tmp=this._tmp()}function x(){y.call(this,"k256","ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f")}function b(){y.call(this,"p224","ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001")}function _(){y.call(this,"p192","ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff")}function w(){y.call(this,"25519","7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed")}function T(t){if("string"==typeof t){var e=a._prime(t);this.m=e.p,this.prime=e}else n(t.gtn(1),"modulus must be greater than 1"),this.m=t,this.prime=null}function k(t){T.call(this,t),this.shift=this.m.bitLength(),this.shift%26!=0&&(this.shift+=26-this.shift%26),this.r=new a(1).iushln(this.shift),this.r2=this.imod(this.r.sqr()),this.rinv=this.r._invmp(this.m),this.minv=this.rinv.mul(this.r).isubn(1).div(this.m),this.minv=this.minv.umod(this.r),this.minv=this.r.sub(this.minv)}y.prototype._tmp=function(){var t=new a(null);return t.words=new Array(Math.ceil(this.n/13)),t},y.prototype.ireduce=function(t){var e,r=t;do{this.split(r,this.tmp),e=(r=(r=this.imulK(r)).iadd(this.tmp)).bitLength()}while(e>this.n);var n=e0?r.isub(this.p):void 0!==r.strip?r.strip():r._strip(),r},y.prototype.split=function(t,e){t.iushrn(this.n,0,e)},y.prototype.imulK=function(t){return t.imul(this.k)},i(x,y),x.prototype.split=function(t,e){for(var r=Math.min(t.length,9),n=0;n>>22,i=a}i>>>=22,t.words[n-10]=i,0===i&&t.length>10?t.length-=10:t.length-=9},x.prototype.imulK=function(t){t.words[t.length]=0,t.words[t.length+1]=0,t.length+=2;for(var e=0,r=0;r>>=26,t.words[r]=i,e=n}return 0!==e&&(t.words[t.length++]=e),t},a._prime=function(t){if(v[t])return v[t];var e;if("k256"===t)e=new x;else if("p224"===t)e=new b;else if("p192"===t)e=new _;else{if("p25519"!==t)throw new Error("Unknown prime "+t);e=new w}return v[t]=e,e},T.prototype._verify1=function(t){n(0===t.negative,"red works only with positives"),n(t.red,"red works only with red numbers")},T.prototype._verify2=function(t,e){n(0==(t.negative|e.negative),"red works only with positives"),n(t.red&&t.red===e.red,"red works only with red numbers")},T.prototype.imod=function(t){return this.prime?this.prime.ireduce(t)._forceRed(this):t.umod(this.m)._forceRed(this)},T.prototype.neg=function(t){return t.isZero()?t.clone():this.m.sub(t)._forceRed(this)},T.prototype.add=function(t,e){this._verify2(t,e);var r=t.add(e);return r.cmp(this.m)>=0&&r.isub(this.m),r._forceRed(this)},T.prototype.iadd=function(t,e){this._verify2(t,e);var r=t.iadd(e);return r.cmp(this.m)>=0&&r.isub(this.m),r},T.prototype.sub=function(t,e){this._verify2(t,e);var r=t.sub(e);return r.cmpn(0)<0&&r.iadd(this.m),r._forceRed(this)},T.prototype.isub=function(t,e){this._verify2(t,e);var r=t.isub(e);return r.cmpn(0)<0&&r.iadd(this.m),r},T.prototype.shl=function(t,e){return this._verify1(t),this.imod(t.ushln(e))},T.prototype.imul=function(t,e){return this._verify2(t,e),this.imod(t.imul(e))},T.prototype.mul=function(t,e){return this._verify2(t,e),this.imod(t.mul(e))},T.prototype.isqr=function(t){return this.imul(t,t.clone())},T.prototype.sqr=function(t){return this.mul(t,t)},T.prototype.sqrt=function(t){if(t.isZero())return t.clone();var e=this.m.andln(3);if(n(e%2==1),3===e){var r=this.m.add(new a(1)).iushrn(2);return this.pow(t,r)}for(var i=this.m.subn(1),o=0;!i.isZero()&&0===i.andln(1);)o++,i.iushrn(1);n(!i.isZero());var s=new a(1).toRed(this),l=s.redNeg(),c=this.m.subn(1).iushrn(1),u=this.m.bitLength();for(u=new a(2*u*u).toRed(this);0!==this.pow(u,c).cmp(l);)u.redIAdd(l);for(var f=this.pow(u,i),h=this.pow(t,i.addn(1).iushrn(1)),p=this.pow(t,i),d=o;0!==p.cmp(s);){for(var m=p,g=0;0!==m.cmp(s);g++)m=m.redSqr();n(g=0;n--){for(var c=e.words[n],u=l-1;u>=0;u--){var f=c>>u&1;i!==r[0]&&(i=this.sqr(i)),0!==f||0!==o?(o<<=1,o|=f,(4===++s||0===n&&0===u)&&(i=this.mul(i,r[o]),s=0,o=0)):s=0}l=26}return i},T.prototype.convertTo=function(t){var e=t.umod(this.m);return e===t?e.clone():e},T.prototype.convertFrom=function(t){var e=t.clone();return e.red=null,e},a.mont=function(t){return new k(t)},i(k,T),k.prototype.convertTo=function(t){return this.imod(t.ushln(this.shift))},k.prototype.convertFrom=function(t){var e=this.imod(t.mul(this.rinv));return e.red=null,e},k.prototype.imul=function(t,e){if(t.isZero()||e.isZero())return t.words[0]=0,t.length=1,t;var r=t.imul(e),n=r.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m),i=r.isub(n).iushrn(this.shift),a=i;return i.cmp(this.m)>=0?a=i.isub(this.m):i.cmpn(0)<0&&(a=i.iadd(this.m)),a._forceRed(this)},k.prototype.mul=function(t,e){if(t.isZero()||e.isZero())return new a(0)._forceRed(this);var r=t.mul(e),n=r.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m),i=r.isub(n).iushrn(this.shift),o=i;return i.cmp(this.m)>=0?o=i.isub(this.m):i.cmpn(0)<0&&(o=i.iadd(this.m)),o._forceRed(this)},k.prototype.invm=function(t){return this.imod(t._invmp(this.m).mul(this.r2))._forceRed(this)}}(void 0===e||e,this)},{buffer:111}],97:[function(t,e,r){"use strict";var n=t("./lib/bn-sign");e.exports=function(t){return n(t[0])*n(t[1])}},{"./lib/bn-sign":88}],98:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[1]).sub(t[1].mul(e[0])),t[1].mul(e[1]))}},{"./lib/rationalize":93}],99:[function(t,e,r){"use strict";var n=t("./lib/bn-to-num"),i=t("./lib/ctz");e.exports=function(t){var e=t[0],r=t[1];if(0===e.cmpn(0))return 0;var a=e.abs().divmod(r.abs()),o=a.div,s=n(o),l=a.mod,c=e.negative!==r.negative?-1:1;if(0===l.cmpn(0))return c*s;if(s){var u=i(s)+4,f=n(l.ushln(u).divRound(r));return c*(s+f*Math.pow(2,-u))}var h=r.bitLength()-l.bitLength()+53;f=n(l.ushln(h).divRound(r));return h<1023?c*f*Math.pow(2,-h):(f*=Math.pow(2,-1023),c*f*Math.pow(2,1023-h))}},{"./lib/bn-to-num":89,"./lib/ctz":90}],100:[function(t,e,r){"use strict";function n(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>=0?(a=o,i=o-1):n=o+1}return a}function i(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>0?(a=o,i=o-1):n=o+1}return a}function a(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<0?(a=o,n=o+1):i=o-1}return a}function o(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<=0?(a=o,n=o+1):i=o-1}return a}function s(t,e,r,n,i){for(;n<=i;){var a=n+i>>>1,o=t[a],s=void 0!==r?r(o,e):o-e;if(0===s)return a;s<=0?n=a+1:i=a-1}return-1}function l(t,e,r,n,i,a){return"function"==typeof r?a(t,e,r,void 0===n?0:0|n,void 0===i?t.length-1:0|i):a(t,e,void 0,void 0===r?0:0|r,void 0===n?t.length-1:0|n)}e.exports={ge:function(t,e,r,i,a){return l(t,e,r,i,a,n)},gt:function(t,e,r,n,a){return l(t,e,r,n,a,i)},lt:function(t,e,r,n,i){return l(t,e,r,n,i,a)},le:function(t,e,r,n,i){return l(t,e,r,n,i,o)},eq:function(t,e,r,n,i){return l(t,e,r,n,i,s)}}},{}],101:[function(t,e,r){"use strict";function n(t){var e=32;return(t&=-t)&&e--,65535&t&&(e-=16),16711935&t&&(e-=8),252645135&t&&(e-=4),858993459&t&&(e-=2),1431655765&t&&(e-=1),e}r.INT_BITS=32,r.INT_MAX=2147483647,r.INT_MIN=-1<<31,r.sign=function(t){return(t>0)-(t<0)},r.abs=function(t){var e=t>>31;return(t^e)-e},r.min=function(t,e){return e^(t^e)&-(t65535)<<4,e|=r=((t>>>=e)>255)<<3,e|=r=((t>>>=r)>15)<<2,(e|=r=((t>>>=r)>3)<<1)|(t>>>=r)>>1},r.log10=function(t){return t>=1e9?9:t>=1e8?8:t>=1e7?7:t>=1e6?6:t>=1e5?5:t>=1e4?4:t>=1e3?3:t>=100?2:t>=10?1:0},r.popCount=function(t){return 16843009*((t=(858993459&(t-=t>>>1&1431655765))+(t>>>2&858993459))+(t>>>4)&252645135)>>>24},r.countTrailingZeros=n,r.nextPow2=function(t){return t+=0===t,--t,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)+1},r.prevPow2=function(t){return t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)-(t>>>1)},r.parity=function(t){return t^=t>>>16,t^=t>>>8,t^=t>>>4,27030>>>(t&=15)&1};var i=new Array(256);!function(t){for(var e=0;e<256;++e){var r=e,n=e,i=7;for(r>>>=1;r;r>>>=1)n<<=1,n|=1&r,--i;t[e]=n<>>8&255]<<16|i[t>>>16&255]<<8|i[t>>>24&255]},r.interleave2=function(t,e){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t&=65535)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e&=65535)|e<<8))|e<<4))|e<<2))|e<<1))<<1},r.deinterleave2=function(t,e){return(t=65535&((t=16711935&((t=252645135&((t=858993459&((t=t>>>e&1431655765)|t>>>1))|t>>>2))|t>>>4))|t>>>16))<<16>>16},r.interleave3=function(t,e,r){return t=1227133513&((t=3272356035&((t=251719695&((t=4278190335&((t&=1023)|t<<16))|t<<8))|t<<4))|t<<2),(t|=(e=1227133513&((e=3272356035&((e=251719695&((e=4278190335&((e&=1023)|e<<16))|e<<8))|e<<4))|e<<2))<<1)|(r=1227133513&((r=3272356035&((r=251719695&((r=4278190335&((r&=1023)|r<<16))|r<<8))|r<<4))|r<<2))<<2},r.deinterleave3=function(t,e){return(t=1023&((t=4278190335&((t=251719695&((t=3272356035&((t=t>>>e&1227133513)|t>>>2))|t>>>4))|t>>>8))|t>>>16))<<22>>22},r.nextCombination=function(t){var e=t|t-1;return e+1|(~e&-~e)-1>>>n(t)+1}},{}],102:[function(t,e,r){"use strict";var n=t("clamp");e.exports=function(t,e){e||(e={});var r,o,s,l,c,u,f,h,p,d,m,g=null==e.cutoff?.25:e.cutoff,v=null==e.radius?8:e.radius,y=e.channel||0;if(ArrayBuffer.isView(t)||Array.isArray(t)){if(!e.width||!e.height)throw Error("For raw data width and height should be provided by options");r=e.width,o=e.height,l=t,u=e.stride?e.stride:Math.floor(t.length/r/o)}else window.HTMLCanvasElement&&t instanceof window.HTMLCanvasElement?(f=(h=t).getContext("2d"),r=h.width,o=h.height,p=f.getImageData(0,0,r,o),l=p.data,u=4):window.CanvasRenderingContext2D&&t instanceof window.CanvasRenderingContext2D?(h=t.canvas,f=t,r=h.width,o=h.height,p=f.getImageData(0,0,r,o),l=p.data,u=4):window.ImageData&&t instanceof window.ImageData&&(p=t,r=t.width,o=t.height,l=p.data,u=4);if(s=Math.max(r,o),window.Uint8ClampedArray&&l instanceof window.Uint8ClampedArray||window.Uint8Array&&l instanceof window.Uint8Array)for(c=l,l=Array(r*o),d=0,m=c.length;d>>1;if(!(u<=0)){var f,h=i.mallocDouble(2*u*s),p=i.mallocInt32(s);if((s=l(t,u,h,p))>0){if(1===u&&n)a.init(s),f=a.sweepComplete(u,r,0,s,h,p,0,s,h,p);else{var d=i.mallocDouble(2*u*c),m=i.mallocInt32(c);(c=l(e,u,d,m))>0&&(a.init(s+c),f=1===u?a.sweepBipartite(u,r,0,s,h,p,0,c,d,m):o(u,r,n,s,h,p,c,d,m),i.free(d),i.free(m))}i.free(h),i.free(p)}return f}}}function u(t,e){n.push([t,e])}function f(t){return n=[],c(t,t,u,!0),n}function h(t,e){return n=[],c(t,e,u,!1),n}},{"./lib/intersect":106,"./lib/sweep":110,"typedarray-pool":590}],105:[function(t,e,r){"use strict";function n(t){return t?function(t,e,r,n,i,a,o,s,l,c,u){return i-n>l-s?function(t,e,r,n,i,a,o,s,l,c,u){for(var f=2*t,h=n,p=f*n;hc-l?n?function(t,e,r,n,i,a,o,s,l,c,u){for(var f=2*t,h=n,p=f*n;h0;){var L=6*(S-=1),C=v[L],P=v[L+1],I=v[L+2],O=v[L+3],z=v[L+4],D=v[L+5],R=2*S,F=y[R],B=y[R+1],N=1&D,j=!!(16&D),U=u,V=w,H=k,q=A;if(N&&(U=k,V=A,H=u,q=w),!(2&D&&(I=p(t,C,P,I,U,V,B),P>=I)||4&D&&(P=d(t,C,P,I,U,V,F))>=I)){var G=I-P,Y=z-O;if(j){if(t*G*(G+Y)<1<<22){if(void 0!==(M=l.scanComplete(t,C,e,P,I,U,V,O,z,H,q)))return M;continue}}else{if(t*Math.min(G,Y)<128){if(void 0!==(M=o(t,C,e,N,P,I,U,V,O,z,H,q)))return M;continue}if(t*G*Y<1<<22){if(void 0!==(M=l.scanBipartite(t,C,e,N,P,I,U,V,O,z,H,q)))return M;continue}}var W=f(t,C,P,I,U,V,F,B);if(P=p0)&&!(p1>=hi)"),h=u("lo===p0"),p=u("lo>>1,f=2*t,h=u,p=o[f*u+e];for(;l=y?(h=v,p=y):g>=b?(h=m,p=g):(h=x,p=b):y>=b?(h=v,p=y):b>=g?(h=m,p=g):(h=x,p=b);for(var _=f*(c-1),w=f*h,T=0;Tr&&i[f+e]>c;--u,f-=o){for(var h=f,p=f+o,d=0;dh;++h,l+=s){if(i[l+f]===o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"loh;++h,l+=s){if(i[l+f]p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"lo<=p0":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=t+e,h=r;n>h;++h,l+=s){if(i[l+f]<=o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"hi<=p0":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=t+e,h=r;n>h;++h,l+=s){if(i[l+f]<=o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"lop;++p,l+=s){var d=i[l+f],m=i[l+h];if(dg;++g){var v=i[l+g];i[l+g]=i[c],i[c++]=v}var y=a[p];a[p]=a[u],a[u++]=y}}return u},"lo<=p0&&p0<=hi":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=e,h=t+e,p=r;n>p;++p,l+=s){var d=i[l+f],m=i[l+h];if(d<=o&&o<=m)if(u===p)u+=1,c+=s;else{for(var g=0;s>g;++g){var v=i[l+g];i[l+g]=i[c],i[c++]=v}var y=a[p];a[p]=a[u],a[u++]=y}}return u},"!(lo>=p0)&&!(p1>=hi)":function(t,e,r,n,i,a,o,s){for(var l=2*t,c=l*r,u=c,f=r,h=e,p=t+e,d=r;n>d;++d,c+=l){var m=i[c+h],g=i[c+p];if(!(m>=o||s>=g))if(f===d)f+=1,u+=l;else{for(var v=0;l>v;++v){var y=i[c+v];i[c+v]=i[u],i[u++]=y}var x=a[d];a[d]=a[f],a[f++]=x}}return f}}},{}],109:[function(t,e,r){"use strict";e.exports=function(t,e){e<=128?n(0,e-1,t):function t(e,r,u){var f=(r-e+1)/6|0,h=e+f,p=r-f,d=e+r>>1,m=d-f,g=d+f,v=h,y=m,x=d,b=g,_=p,w=e+1,T=r-1,k=0;l(v,y,u)&&(k=v,v=y,y=k);l(b,_,u)&&(k=b,b=_,_=k);l(v,x,u)&&(k=v,v=x,x=k);l(y,x,u)&&(k=y,y=x,x=k);l(v,b,u)&&(k=v,v=b,b=k);l(x,b,u)&&(k=x,x=b,b=k);l(y,_,u)&&(k=y,y=_,_=k);l(y,x,u)&&(k=y,y=x,x=k);l(b,_,u)&&(k=b,b=_,_=k);for(var A=u[2*y],M=u[2*y+1],S=u[2*b],E=u[2*b+1],L=2*v,C=2*x,P=2*_,I=2*h,O=2*d,z=2*p,D=0;D<2;++D){var R=u[L+D],F=u[C+D],B=u[P+D];u[I+D]=R,u[O+D]=F,u[z+D]=B}a(m,e,u),a(g,r,u);for(var N=w;N<=T;++N)if(c(N,A,M,u))N!==w&&i(N,w,u),++w;else if(!c(N,S,E,u))for(;;){if(c(T,S,E,u)){c(T,A,M,u)?(o(N,w,T,u),++w,--T):(i(N,T,u),--T);break}if(--Tt;){var c=r[l-2],u=r[l-1];if(cr[e+1])}function c(t,e,r,n){var i=n[t*=2];return i>>1;a(h,M);var S=0,E=0;for(w=0;w=1<<28)p(l,c,E--,L=L-(1<<28)|0);else if(L>=0)p(o,s,S--,L);else if(L<=-(1<<28)){L=-L-(1<<28)|0;for(var C=0;C>>1;a(h,E);var L=0,C=0,P=0;for(k=0;k>1==h[2*k+3]>>1&&(O=2,k+=1),I<0){for(var z=-(I>>1)-1,D=0;D>1)-1;0===O?p(o,s,L--,z):1===O?p(l,c,C--,z):2===O&&p(u,f,P--,z)}}},scanBipartite:function(t,e,r,n,i,l,c,u,f,m,g,v){var y=0,x=2*t,b=e,_=e+t,w=1,T=1;n?T=1<<28:w=1<<28;for(var k=i;k>>1;a(h,E);var L=0;for(k=0;k=1<<28?(P=!n,A-=1<<28):(P=!!n,A-=1),P)d(o,s,L++,A);else{var I=v[A],O=x*A,z=g[O+e+1],D=g[O+e+1+t];t:for(var R=0;R>>1;a(h,w);var T=0;for(y=0;y=1<<28)o[T++]=x-(1<<28);else{var A=p[x-=1],M=m*x,S=f[M+e+1],E=f[M+e+1+t];t:for(var L=0;L=0;--L)if(o[L]===x){for(O=L+1;O * @license MIT */ -"use strict";var e=t("base64-js"),n=t("ieee754");r.Buffer=a,r.SlowBuffer=function(t){+t!=t&&(t=0);return a.alloc(+t)},r.INSPECT_MAX_BYTES=50;function i(t){if(t>2147483647)throw new RangeError('The value "'+t+'" is invalid for option "size"');var e=new Uint8Array(t);return e.__proto__=a.prototype,e}function a(t,e,r){if("number"==typeof t){if("string"==typeof e)throw new TypeError('The "string" argument must be of type string. Received type number');return l(t)}return o(t,e,r)}function o(t,e,r){if("string"==typeof t)return function(t,e){"string"==typeof e&&""!==e||(e="utf8");if(!a.isEncoding(e))throw new TypeError("Unknown encoding: "+e);var r=0|f(t,e),n=i(r),o=n.write(t,e);o!==r&&(n=n.slice(0,o));return n}(t,e);if(ArrayBuffer.isView(t))return c(t);if(null==t)throw TypeError("The first argument must be one of type string, Buffer, ArrayBuffer, Array, or Array-like Object. Received type "+typeof t);if(B(t,ArrayBuffer)||t&&B(t.buffer,ArrayBuffer))return function(t,e,r){if(e<0||t.byteLength=2147483647)throw new RangeError("Attempt to allocate Buffer larger than maximum size: 0x"+2147483647..toString(16)+" bytes");return 0|t}function f(t,e){if(a.isBuffer(t))return t.length;if(ArrayBuffer.isView(t)||B(t,ArrayBuffer))return t.byteLength;if("string"!=typeof t)throw new TypeError('The "string" argument must be one of type string, Buffer, or ArrayBuffer. Received type '+typeof t);var r=t.length,n=arguments.length>2&&!0===arguments[2];if(!n&&0===r)return 0;for(var i=!1;;)switch(e){case"ascii":case"latin1":case"binary":return r;case"utf8":case"utf-8":return D(t).length;case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return 2*r;case"hex":return r>>>1;case"base64":return R(t).length;default:if(i)return n?-1:D(t).length;e=(""+e).toLowerCase(),i=!0}}function h(t,e,r){var n=!1;if((void 0===e||e<0)&&(e=0),e>this.length)return"";if((void 0===r||r>this.length)&&(r=this.length),r<=0)return"";if((r>>>=0)<=(e>>>=0))return"";for(t||(t="utf8");;)switch(t){case"hex":return M(this,e,r);case"utf8":case"utf-8":return T(this,e,r);case"ascii":return k(this,e,r);case"latin1":case"binary":return A(this,e,r);case"base64":return w(this,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return S(this,e,r);default:if(n)throw new TypeError("Unknown encoding: "+t);t=(t+"").toLowerCase(),n=!0}}function p(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function d(t,e,r,n,i){if(0===t.length)return-1;if("string"==typeof r?(n=r,r=0):r>2147483647?r=2147483647:r<-2147483648&&(r=-2147483648),N(r=+r)&&(r=i?0:t.length-1),r<0&&(r=t.length+r),r>=t.length){if(i)return-1;r=t.length-1}else if(r<0){if(!i)return-1;r=0}if("string"==typeof e&&(e=a.from(e,n)),a.isBuffer(e))return 0===e.length?-1:m(t,e,r,n,i);if("number"==typeof e)return e&=255,"function"==typeof Uint8Array.prototype.indexOf?i?Uint8Array.prototype.indexOf.call(t,e,r):Uint8Array.prototype.lastIndexOf.call(t,e,r):m(t,[e],r,n,i);throw new TypeError("val must be string, number or Buffer")}function m(t,e,r,n,i){var a,o=1,s=t.length,l=e.length;if(void 0!==n&&("ucs2"===(n=String(n).toLowerCase())||"ucs-2"===n||"utf16le"===n||"utf-16le"===n)){if(t.length<2||e.length<2)return-1;o=2,s/=2,l/=2,r/=2}function c(t,e){return 1===o?t[e]:t.readUInt16BE(e*o)}if(i){var u=-1;for(a=r;as&&(r=s-l),a=r;a>=0;a--){for(var f=!0,h=0;hi&&(n=i):n=i;var a=e.length;n>a/2&&(n=a/2);for(var o=0;o>8,i=r%256,a.push(i),a.push(n);return a}(e,t.length-r),t,r,n)}function w(t,r,n){return 0===r&&n===t.length?e.fromByteArray(t):e.fromByteArray(t.slice(r,n))}function T(t,e,r){r=Math.min(t.length,r);for(var n=[],i=e;i239?4:c>223?3:c>191?2:1;if(i+f<=r)switch(f){case 1:c<128&&(u=c);break;case 2:128==(192&(a=t[i+1]))&&(l=(31&c)<<6|63&a)>127&&(u=l);break;case 3:a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&(l=(15&c)<<12|(63&a)<<6|63&o)>2047&&(l<55296||l>57343)&&(u=l);break;case 4:a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&(l=(15&c)<<18|(63&a)<<12|(63&o)<<6|63&s)>65535&&l<1114112&&(u=l)}null===u?(u=65533,f=1):u>65535&&(u-=65536,n.push(u>>>10&1023|55296),u=56320|1023&u),n.push(u),i+=f}return function(t){var e=t.length;if(e<=4096)return String.fromCharCode.apply(String,t);var r="",n=0;for(;ne&&(t+=" ... "),""},a.prototype.compare=function(t,e,r,n,i){if(B(t,Uint8Array)&&(t=a.from(t,t.offset,t.byteLength)),!a.isBuffer(t))throw new TypeError('The "target" argument must be one of type Buffer or Uint8Array. Received type '+typeof t);if(void 0===e&&(e=0),void 0===r&&(r=t?t.length:0),void 0===n&&(n=0),void 0===i&&(i=this.length),e<0||r>t.length||n<0||i>this.length)throw new RangeError("out of range index");if(n>=i&&e>=r)return 0;if(n>=i)return-1;if(e>=r)return 1;if(this===t)return 0;for(var o=(i>>>=0)-(n>>>=0),s=(r>>>=0)-(e>>>=0),l=Math.min(o,s),c=this.slice(n,i),u=t.slice(e,r),f=0;f>>=0,isFinite(r)?(r>>>=0,void 0===n&&(n="utf8")):(n=r,r=void 0)}var i=this.length-e;if((void 0===r||r>i)&&(r=i),t.length>0&&(r<0||e<0)||e>this.length)throw new RangeError("Attempt to write outside buffer bounds");n||(n="utf8");for(var a=!1;;)switch(n){case"hex":return g(this,t,e,r);case"utf8":case"utf-8":return v(this,t,e,r);case"ascii":return y(this,t,e,r);case"latin1":case"binary":return x(this,t,e,r);case"base64":return b(this,t,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return _(this,t,e,r);default:if(a)throw new TypeError("Unknown encoding: "+n);n=(""+n).toLowerCase(),a=!0}},a.prototype.toJSON=function(){return{type:"Buffer",data:Array.prototype.slice.call(this._arr||this,0)}};function k(t,e,r){var n="";r=Math.min(t.length,r);for(var i=e;in)&&(r=n);for(var i="",a=e;ar)throw new RangeError("Trying to access beyond buffer length")}function L(t,e,r,n,i,o){if(!a.isBuffer(t))throw new TypeError('"buffer" argument must be a Buffer instance');if(e>i||et.length)throw new RangeError("Index out of range")}function C(t,e,r,n,i,a){if(r+n>t.length)throw new RangeError("Index out of range");if(r<0)throw new RangeError("Index out of range")}function P(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,4),n.write(t,e,r,i,23,4),r+4}function I(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,8),n.write(t,e,r,i,52,8),r+8}a.prototype.slice=function(t,e){var r=this.length;(t=~~t)<0?(t+=r)<0&&(t=0):t>r&&(t=r),(e=void 0===e?r:~~e)<0?(e+=r)<0&&(e=0):e>r&&(e=r),e>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t+--e],i=1;e>0&&(i*=256);)n+=this[t+--e]*i;return n},a.prototype.readUInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),this[t]},a.prototype.readUInt16LE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]|this[t+1]<<8},a.prototype.readUInt16BE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]<<8|this[t+1]},a.prototype.readUInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),(this[t]|this[t+1]<<8|this[t+2]<<16)+16777216*this[t+3]},a.prototype.readUInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),16777216*this[t]+(this[t+1]<<16|this[t+2]<<8|this[t+3])},a.prototype.readIntLE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a=(i*=128)&&(n-=Math.pow(2,8*e)),n},a.prototype.readIntBE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=e,i=1,a=this[t+--n];n>0&&(i*=256);)a+=this[t+--n]*i;return a>=(i*=128)&&(a-=Math.pow(2,8*e)),a},a.prototype.readInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),128&this[t]?-1*(255-this[t]+1):this[t]},a.prototype.readInt16LE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t]|this[t+1]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt16BE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t+1]|this[t]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]|this[t+1]<<8|this[t+2]<<16|this[t+3]<<24},a.prototype.readInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]<<24|this[t+1]<<16|this[t+2]<<8|this[t+3]},a.prototype.readFloatLE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!0,23,4)},a.prototype.readFloatBE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!1,23,4)},a.prototype.readDoubleLE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!0,52,8)},a.prototype.readDoubleBE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!1,52,8)},a.prototype.writeUIntLE=function(t,e,r,n){(t=+t,e>>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=1,a=0;for(this[e]=255&t;++a>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=r-1,a=1;for(this[e+i]=255&t;--i>=0&&(a*=256);)this[e+i]=t/a&255;return e+r},a.prototype.writeUInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,255,0),this[e]=255&t,e+1},a.prototype.writeUInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeUInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeUInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e+3]=t>>>24,this[e+2]=t>>>16,this[e+1]=t>>>8,this[e]=255&t,e+4},a.prototype.writeUInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeIntLE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=0,o=1,s=0;for(this[e]=255&t;++a>0)-s&255;return e+r},a.prototype.writeIntBE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=r-1,o=1,s=0;for(this[e+a]=255&t;--a>=0&&(o*=256);)t<0&&0===s&&0!==this[e+a+1]&&(s=1),this[e+a]=(t/o>>0)-s&255;return e+r},a.prototype.writeInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,127,-128),t<0&&(t=255+t+1),this[e]=255&t,e+1},a.prototype.writeInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),this[e]=255&t,this[e+1]=t>>>8,this[e+2]=t>>>16,this[e+3]=t>>>24,e+4},a.prototype.writeInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),t<0&&(t=4294967295+t+1),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeFloatLE=function(t,e,r){return P(this,t,e,!0,r)},a.prototype.writeFloatBE=function(t,e,r){return P(this,t,e,!1,r)},a.prototype.writeDoubleLE=function(t,e,r){return I(this,t,e,!0,r)},a.prototype.writeDoubleBE=function(t,e,r){return I(this,t,e,!1,r)},a.prototype.copy=function(t,e,r,n){if(!a.isBuffer(t))throw new TypeError("argument should be a Buffer");if(r||(r=0),n||0===n||(n=this.length),e>=t.length&&(e=t.length),e||(e=0),n>0&&n=this.length)throw new RangeError("Index out of range");if(n<0)throw new RangeError("sourceEnd out of bounds");n>this.length&&(n=this.length),t.length-e=0;--o)t[o+e]=this[o+r];else Uint8Array.prototype.set.call(t,this.subarray(r,n),e);return i},a.prototype.fill=function(t,e,r,n){if("string"==typeof t){if("string"==typeof e?(n=e,e=0,r=this.length):"string"==typeof r&&(n=r,r=this.length),void 0!==n&&"string"!=typeof n)throw new TypeError("encoding must be a string");if("string"==typeof n&&!a.isEncoding(n))throw new TypeError("Unknown encoding: "+n);if(1===t.length){var i=t.charCodeAt(0);("utf8"===n&&i<128||"latin1"===n)&&(t=i)}}else"number"==typeof t&&(t&=255);if(e<0||this.length>>=0,r=void 0===r?this.length:r>>>0,t||(t=0),"number"==typeof t)for(o=e;o55295&&r<57344){if(!i){if(r>56319){(e-=3)>-1&&a.push(239,191,189);continue}if(o+1===n){(e-=3)>-1&&a.push(239,191,189);continue}i=r;continue}if(r<56320){(e-=3)>-1&&a.push(239,191,189),i=r;continue}r=65536+(i-55296<<10|r-56320)}else i&&(e-=3)>-1&&a.push(239,191,189);if(i=null,r<128){if((e-=1)<0)break;a.push(r)}else if(r<2048){if((e-=2)<0)break;a.push(r>>6|192,63&r|128)}else if(r<65536){if((e-=3)<0)break;a.push(r>>12|224,r>>6&63|128,63&r|128)}else{if(!(r<1114112))throw new Error("Invalid code point");if((e-=4)<0)break;a.push(r>>18|240,r>>12&63|128,r>>6&63|128,63&r|128)}}return a}function R(t){return e.toByteArray(function(t){if((t=(t=t.split("=")[0]).trim().replace(O,"")).length<2)return"";for(;t.length%4!=0;)t+="=";return t}(t))}function F(t,e,r,n){for(var i=0;i=e.length||i>=t.length);++i)e[i+r]=t[i];return i}function B(t,e){return t instanceof e||null!=t&&null!=t.constructor&&null!=t.constructor.name&&t.constructor.name===e.name}function N(t){return t!=t}}).call(this)}).call(this,t("buffer").Buffer)},{"base64-js":75,buffer:80,ieee754:225}],81:[function(t,e,r){e.exports=function(t,e,r){return er?r:t:te?e:t}},{}],82:[function(t,e,r){"use strict";var n=t("clamp");function i(t,e){null==e&&(e=!0);var r=t[0],i=t[1],a=t[2],o=t[3];return null==o&&(o=e?1:255),e&&(r*=255,i*=255,a*=255,o*=255),16777216*(r=255&n(r,0,255))+((i=255&n(i,0,255))<<16)+((a=255&n(a,0,255))<<8)+(o=255&n(o,0,255))}e.exports=i,e.exports.to=i,e.exports.from=function(t,e){var r=(t=+t)>>>24,n=(16711680&t)>>>16,i=(65280&t)>>>8,a=255&t;return!1===e?[r,n,i,a]:[r/255,n/255,i/255,a/255]}},{clamp:81}],83:[function(t,e,r){"use strict";e.exports={aliceblue:[240,248,255],antiquewhite:[250,235,215],aqua:[0,255,255],aquamarine:[127,255,212],azure:[240,255,255],beige:[245,245,220],bisque:[255,228,196],black:[0,0,0],blanchedalmond:[255,235,205],blue:[0,0,255],blueviolet:[138,43,226],brown:[165,42,42],burlywood:[222,184,135],cadetblue:[95,158,160],chartreuse:[127,255,0],chocolate:[210,105,30],coral:[255,127,80],cornflowerblue:[100,149,237],cornsilk:[255,248,220],crimson:[220,20,60],cyan:[0,255,255],darkblue:[0,0,139],darkcyan:[0,139,139],darkgoldenrod:[184,134,11],darkgray:[169,169,169],darkgreen:[0,100,0],darkgrey:[169,169,169],darkkhaki:[189,183,107],darkmagenta:[139,0,139],darkolivegreen:[85,107,47],darkorange:[255,140,0],darkorchid:[153,50,204],darkred:[139,0,0],darksalmon:[233,150,122],darkseagreen:[143,188,143],darkslateblue:[72,61,139],darkslategray:[47,79,79],darkslategrey:[47,79,79],darkturquoise:[0,206,209],darkviolet:[148,0,211],deeppink:[255,20,147],deepskyblue:[0,191,255],dimgray:[105,105,105],dimgrey:[105,105,105],dodgerblue:[30,144,255],firebrick:[178,34,34],floralwhite:[255,250,240],forestgreen:[34,139,34],fuchsia:[255,0,255],gainsboro:[220,220,220],ghostwhite:[248,248,255],gold:[255,215,0],goldenrod:[218,165,32],gray:[128,128,128],green:[0,128,0],greenyellow:[173,255,47],grey:[128,128,128],honeydew:[240,255,240],hotpink:[255,105,180],indianred:[205,92,92],indigo:[75,0,130],ivory:[255,255,240],khaki:[240,230,140],lavender:[230,230,250],lavenderblush:[255,240,245],lawngreen:[124,252,0],lemonchiffon:[255,250,205],lightblue:[173,216,230],lightcoral:[240,128,128],lightcyan:[224,255,255],lightgoldenrodyellow:[250,250,210],lightgray:[211,211,211],lightgreen:[144,238,144],lightgrey:[211,211,211],lightpink:[255,182,193],lightsalmon:[255,160,122],lightseagreen:[32,178,170],lightskyblue:[135,206,250],lightslategray:[119,136,153],lightslategrey:[119,136,153],lightsteelblue:[176,196,222],lightyellow:[255,255,224],lime:[0,255,0],limegreen:[50,205,50],linen:[250,240,230],magenta:[255,0,255],maroon:[128,0,0],mediumaquamarine:[102,205,170],mediumblue:[0,0,205],mediumorchid:[186,85,211],mediumpurple:[147,112,219],mediumseagreen:[60,179,113],mediumslateblue:[123,104,238],mediumspringgreen:[0,250,154],mediumturquoise:[72,209,204],mediumvioletred:[199,21,133],midnightblue:[25,25,112],mintcream:[245,255,250],mistyrose:[255,228,225],moccasin:[255,228,181],navajowhite:[255,222,173],navy:[0,0,128],oldlace:[253,245,230],olive:[128,128,0],olivedrab:[107,142,35],orange:[255,165,0],orangered:[255,69,0],orchid:[218,112,214],palegoldenrod:[238,232,170],palegreen:[152,251,152],paleturquoise:[175,238,238],palevioletred:[219,112,147],papayawhip:[255,239,213],peachpuff:[255,218,185],peru:[205,133,63],pink:[255,192,203],plum:[221,160,221],powderblue:[176,224,230],purple:[128,0,128],rebeccapurple:[102,51,153],red:[255,0,0],rosybrown:[188,143,143],royalblue:[65,105,225],saddlebrown:[139,69,19],salmon:[250,128,114],sandybrown:[244,164,96],seagreen:[46,139,87],seashell:[255,245,238],sienna:[160,82,45],silver:[192,192,192],skyblue:[135,206,235],slateblue:[106,90,205],slategray:[112,128,144],slategrey:[112,128,144],snow:[255,250,250],springgreen:[0,255,127],steelblue:[70,130,180],tan:[210,180,140],teal:[0,128,128],thistle:[216,191,216],tomato:[255,99,71],turquoise:[64,224,208],violet:[238,130,238],wheat:[245,222,179],white:[255,255,255],whitesmoke:[245,245,245],yellow:[255,255,0],yellowgreen:[154,205,50]}},{}],84:[function(t,e,r){"use strict";var n=t("color-rgba"),i=t("clamp"),a=t("dtype");e.exports=function(t,e){"float"!==e&&e||(e="array"),"uint"===e&&(e="uint8"),"uint_clamped"===e&&(e="uint8_clamped");var r=new(a(e))(4),o="uint8"!==e&&"uint8_clamped"!==e;return t.length&&"string"!=typeof t||((t=n(t))[0]/=255,t[1]/=255,t[2]/=255),function(t){return t instanceof Uint8Array||t instanceof Uint8ClampedArray||!!(Array.isArray(t)&&(t[0]>1||0===t[0])&&(t[1]>1||0===t[1])&&(t[2]>1||0===t[2])&&(!t[3]||t[3]>1))}(t)?(r[0]=t[0],r[1]=t[1],r[2]=t[2],r[3]=null!=t[3]?t[3]:255,o&&(r[0]/=255,r[1]/=255,r[2]/=255,r[3]/=255),r):(o?(r[0]=t[0],r[1]=t[1],r[2]=t[2],r[3]=null!=t[3]?t[3]:1):(r[0]=i(Math.floor(255*t[0]),0,255),r[1]=i(Math.floor(255*t[1]),0,255),r[2]=i(Math.floor(255*t[2]),0,255),r[3]=null==t[3]?255:i(Math.floor(255*t[3]),0,255)),r)}},{clamp:81,"color-rgba":86,dtype:121}],85:[function(t,e,r){(function(r){(function(){"use strict";var n=t("color-name"),i=t("is-plain-obj"),a=t("defined");e.exports=function(t){var e,s,l=[],c=1;if("string"==typeof t)if(n[t])l=n[t].slice(),s="rgb";else if("transparent"===t)c=0,s="rgb",l=[0,0,0];else if(/^#[A-Fa-f0-9]+$/.test(t)){var u=(p=t.slice(1)).length;c=1,u<=4?(l=[parseInt(p[0]+p[0],16),parseInt(p[1]+p[1],16),parseInt(p[2]+p[2],16)],4===u&&(c=parseInt(p[3]+p[3],16)/255)):(l=[parseInt(p[0]+p[1],16),parseInt(p[2]+p[3],16),parseInt(p[4]+p[5],16)],8===u&&(c=parseInt(p[6]+p[7],16)/255)),l[0]||(l[0]=0),l[1]||(l[1]=0),l[2]||(l[2]=0),s="rgb"}else if(e=/^((?:rgb|hs[lvb]|hwb|cmyk?|xy[zy]|gray|lab|lchu?v?|[ly]uv|lms)a?)\s*\(([^\)]*)\)/.exec(t)){var f=e[1],h="rgb"===f,p=f.replace(/a$/,"");s=p;u="cmyk"===p?4:"gray"===p?1:3;l=e[2].trim().split(/\s*,\s*/).map((function(t,e){if(/%$/.test(t))return e===u?parseFloat(t)/100:"rgb"===p?255*parseFloat(t)/100:parseFloat(t);if("h"===p[e]){if(/deg$/.test(t))return parseFloat(t);if(void 0!==o[t])return o[t]}return parseFloat(t)})),f===p&&l.push(1),c=h||void 0===l[u]?1:l[u],l=l.slice(0,u)}else t.length>10&&/[0-9](?:\s|\/)/.test(t)&&(l=t.match(/([0-9]+)/g).map((function(t){return parseFloat(t)})),s=t.match(/([a-z])/gi).join("").toLowerCase());else if(isNaN(t))if(i(t)){var d=a(t.r,t.red,t.R,null);null!==d?(s="rgb",l=[d,a(t.g,t.green,t.G),a(t.b,t.blue,t.B)]):(s="hsl",l=[a(t.h,t.hue,t.H),a(t.s,t.saturation,t.S),a(t.l,t.lightness,t.L,t.b,t.brightness)]),c=a(t.a,t.alpha,t.opacity,1),null!=t.opacity&&(c/=100)}else(Array.isArray(t)||r.ArrayBuffer&&ArrayBuffer.isView&&ArrayBuffer.isView(t))&&(l=[t[0],t[1],t[2]],s="rgb",c=4===t.length?t[3]:1);else s="rgb",l=[t>>>16,(65280&t)>>>8,255&t];return{space:s,values:l,alpha:c}};var o={red:0,orange:60,yellow:120,green:180,blue:240,purple:300}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"color-name":83,defined:118,"is-plain-obj":231}],86:[function(t,e,r){"use strict";var n=t("color-parse"),i=t("color-space/hsl"),a=t("clamp");e.exports=function(t){var e,r=n(t);return r.space?((e=Array(3))[0]=a(r.values[0],0,255),e[1]=a(r.values[1],0,255),e[2]=a(r.values[2],0,255),"h"===r.space[0]&&(e=i.rgb(e)),e.push(a(r.alpha,0,1)),e):[]}},{clamp:81,"color-parse":85,"color-space/hsl":87}],87:[function(t,e,r){"use strict";var n=t("./rgb");e.exports={name:"hsl",min:[0,0,0],max:[360,100,100],channel:["hue","saturation","lightness"],alias:["HSL"],rgb:function(t){var e,r,n,i,a,o=t[0]/360,s=t[1]/100,l=t[2]/100;if(0===s)return[a=255*l,a,a];e=2*l-(r=l<.5?l*(1+s):l+s-l*s),i=[0,0,0];for(var c=0;c<3;c++)(n=o+1/3*-(c-1))<0?n++:n>1&&n--,a=6*n<1?e+6*(r-e)*n:2*n<1?r:3*n<2?e+(r-e)*(2/3-n)*6:e,i[c]=255*a;return i}},n.hsl=function(t){var e,r,n=t[0]/255,i=t[1]/255,a=t[2]/255,o=Math.min(n,i,a),s=Math.max(n,i,a),l=s-o;return s===o?e=0:n===s?e=(i-a)/l:i===s?e=2+(a-n)/l:a===s&&(e=4+(n-i)/l),(e=Math.min(60*e,360))<0&&(e+=360),r=(o+s)/2,[e,100*(s===o?0:r<=.5?l/(s+o):l/(2-s-o)),100*r]}},{"./rgb":88}],88:[function(t,e,r){"use strict";e.exports={name:"rgb",min:[0,0,0],max:[255,255,255],channel:["red","green","blue"],alias:["RGB"]}},{}],89:[function(t,e,r){e.exports={AFG:"afghan",ALA:"\\b\\wland",ALB:"albania",DZA:"algeria",ASM:"^(?=.*americ).*samoa",AND:"andorra",AGO:"angola",AIA:"anguill?a",ATA:"antarctica",ATG:"antigua",ARG:"argentin",ARM:"armenia",ABW:"^(?!.*bonaire).*\\baruba",AUS:"australia",AUT:"^(?!.*hungary).*austria|\\baustri.*\\bemp",AZE:"azerbaijan",BHS:"bahamas",BHR:"bahrain",BGD:"bangladesh|^(?=.*east).*paki?stan",BRB:"barbados",BLR:"belarus|byelo",BEL:"^(?!.*luxem).*belgium",BLZ:"belize|^(?=.*british).*honduras",BEN:"benin|dahome",BMU:"bermuda",BTN:"bhutan",BOL:"bolivia",BES:"^(?=.*bonaire).*eustatius|^(?=.*carib).*netherlands|\\bbes.?islands",BIH:"herzegovina|bosnia",BWA:"botswana|bechuana",BVT:"bouvet",BRA:"brazil",IOT:"british.?indian.?ocean",BRN:"brunei",BGR:"bulgaria",BFA:"burkina|\\bfaso|upper.?volta",BDI:"burundi",CPV:"verde",KHM:"cambodia|kampuchea|khmer",CMR:"cameroon",CAN:"canada",CYM:"cayman",CAF:"\\bcentral.african.republic",TCD:"\\bchad",CHL:"\\bchile",CHN:"^(?!.*\\bmac)(?!.*\\bhong)(?!.*\\btai)(?!.*\\brep).*china|^(?=.*peo)(?=.*rep).*china",CXR:"christmas",CCK:"\\bcocos|keeling",COL:"colombia",COM:"comoro",COG:"^(?!.*\\bdem)(?!.*\\bd[\\.]?r)(?!.*kinshasa)(?!.*zaire)(?!.*belg)(?!.*l.opoldville)(?!.*free).*\\bcongo",COK:"\\bcook",CRI:"costa.?rica",CIV:"ivoire|ivory",HRV:"croatia",CUB:"\\bcuba",CUW:"^(?!.*bonaire).*\\bcura(c|\xe7)ao",CYP:"cyprus",CSK:"czechoslovakia",CZE:"^(?=.*rep).*czech|czechia|bohemia",COD:"\\bdem.*congo|congo.*\\bdem|congo.*\\bd[\\.]?r|\\bd[\\.]?r.*congo|belgian.?congo|congo.?free.?state|kinshasa|zaire|l.opoldville|drc|droc|rdc",DNK:"denmark",DJI:"djibouti",DMA:"dominica(?!n)",DOM:"dominican.rep",ECU:"ecuador",EGY:"egypt",SLV:"el.?salvador",GNQ:"guine.*eq|eq.*guine|^(?=.*span).*guinea",ERI:"eritrea",EST:"estonia",ETH:"ethiopia|abyssinia",FLK:"falkland|malvinas",FRO:"faroe|faeroe",FJI:"fiji",FIN:"finland",FRA:"^(?!.*\\bdep)(?!.*martinique).*france|french.?republic|\\bgaul",GUF:"^(?=.*french).*guiana",PYF:"french.?polynesia|tahiti",ATF:"french.?southern",GAB:"gabon",GMB:"gambia",GEO:"^(?!.*south).*georgia",DDR:"german.?democratic.?republic|democratic.?republic.*germany|east.germany",DEU:"^(?!.*east).*germany|^(?=.*\\bfed.*\\brep).*german",GHA:"ghana|gold.?coast",GIB:"gibraltar",GRC:"greece|hellenic|hellas",GRL:"greenland",GRD:"grenada",GLP:"guadeloupe",GUM:"\\bguam",GTM:"guatemala",GGY:"guernsey",GIN:"^(?!.*eq)(?!.*span)(?!.*bissau)(?!.*portu)(?!.*new).*guinea",GNB:"bissau|^(?=.*portu).*guinea",GUY:"guyana|british.?guiana",HTI:"haiti",HMD:"heard.*mcdonald",VAT:"holy.?see|vatican|papal.?st",HND:"^(?!.*brit).*honduras",HKG:"hong.?kong",HUN:"^(?!.*austr).*hungary",ISL:"iceland",IND:"india(?!.*ocea)",IDN:"indonesia",IRN:"\\biran|persia",IRQ:"\\biraq|mesopotamia",IRL:"(^ireland)|(^republic.*ireland)",IMN:"^(?=.*isle).*\\bman",ISR:"israel",ITA:"italy",JAM:"jamaica",JPN:"japan",JEY:"jersey",JOR:"jordan",KAZ:"kazak",KEN:"kenya|british.?east.?africa|east.?africa.?prot",KIR:"kiribati",PRK:"^(?=.*democrat|people|north|d.*p.*.r).*\\bkorea|dprk|korea.*(d.*p.*r)",KWT:"kuwait",KGZ:"kyrgyz|kirghiz",LAO:"\\blaos?\\b",LVA:"latvia",LBN:"lebanon",LSO:"lesotho|basuto",LBR:"liberia",LBY:"libya",LIE:"liechtenstein",LTU:"lithuania",LUX:"^(?!.*belg).*luxem",MAC:"maca(o|u)",MDG:"madagascar|malagasy",MWI:"malawi|nyasa",MYS:"malaysia",MDV:"maldive",MLI:"\\bmali\\b",MLT:"\\bmalta",MHL:"marshall",MTQ:"martinique",MRT:"mauritania",MUS:"mauritius",MYT:"\\bmayotte",MEX:"\\bmexic",FSM:"fed.*micronesia|micronesia.*fed",MCO:"monaco",MNG:"mongolia",MNE:"^(?!.*serbia).*montenegro",MSR:"montserrat",MAR:"morocco|\\bmaroc",MOZ:"mozambique",MMR:"myanmar|burma",NAM:"namibia",NRU:"nauru",NPL:"nepal",NLD:"^(?!.*\\bant)(?!.*\\bcarib).*netherlands",ANT:"^(?=.*\\bant).*(nether|dutch)",NCL:"new.?caledonia",NZL:"new.?zealand",NIC:"nicaragua",NER:"\\bniger(?!ia)",NGA:"nigeria",NIU:"niue",NFK:"norfolk",MNP:"mariana",NOR:"norway",OMN:"\\boman|trucial",PAK:"^(?!.*east).*paki?stan",PLW:"palau",PSE:"palestin|\\bgaza|west.?bank",PAN:"panama",PNG:"papua|new.?guinea",PRY:"paraguay",PER:"peru",PHL:"philippines",PCN:"pitcairn",POL:"poland",PRT:"portugal",PRI:"puerto.?rico",QAT:"qatar",KOR:"^(?!.*d.*p.*r)(?!.*democrat)(?!.*people)(?!.*north).*\\bkorea(?!.*d.*p.*r)",MDA:"moldov|b(a|e)ssarabia",REU:"r(e|\xe9)union",ROU:"r(o|u|ou)mania",RUS:"\\brussia|soviet.?union|u\\.?s\\.?s\\.?r|socialist.?republics",RWA:"rwanda",BLM:"barth(e|\xe9)lemy",SHN:"helena",KNA:"kitts|\\bnevis",LCA:"\\blucia",MAF:"^(?=.*collectivity).*martin|^(?=.*france).*martin(?!ique)|^(?=.*french).*martin(?!ique)",SPM:"miquelon",VCT:"vincent",WSM:"^(?!.*amer).*samoa",SMR:"san.?marino",STP:"\\bs(a|\xe3)o.?tom(e|\xe9)",SAU:"\\bsa\\w*.?arabia",SEN:"senegal",SRB:"^(?!.*monte).*serbia",SYC:"seychell",SLE:"sierra",SGP:"singapore",SXM:"^(?!.*martin)(?!.*saba).*maarten",SVK:"^(?!.*cze).*slovak",SVN:"slovenia",SLB:"solomon",SOM:"somali",ZAF:"south.africa|s\\\\..?africa",SGS:"south.?georgia|sandwich",SSD:"\\bs\\w*.?sudan",ESP:"spain",LKA:"sri.?lanka|ceylon",SDN:"^(?!.*\\bs(?!u)).*sudan",SUR:"surinam|dutch.?guiana",SJM:"svalbard",SWZ:"swaziland",SWE:"sweden",CHE:"switz|swiss",SYR:"syria",TWN:"taiwan|taipei|formosa|^(?!.*peo)(?=.*rep).*china",TJK:"tajik",THA:"thailand|\\bsiam",MKD:"macedonia|fyrom",TLS:"^(?=.*leste).*timor|^(?=.*east).*timor",TGO:"togo",TKL:"tokelau",TON:"tonga",TTO:"trinidad|tobago",TUN:"tunisia",TUR:"turkey",TKM:"turkmen",TCA:"turks",TUV:"tuvalu",UGA:"uganda",UKR:"ukrain",ARE:"emirates|^u\\.?a\\.?e\\.?$|united.?arab.?em",GBR:"united.?kingdom|britain|^u\\.?k\\.?$",TZA:"tanzania",USA:"united.?states\\b(?!.*islands)|\\bu\\.?s\\.?a\\.?\\b|^\\s*u\\.?s\\.?\\b(?!.*islands)",UMI:"minor.?outlying.?is",URY:"uruguay",UZB:"uzbek",VUT:"vanuatu|new.?hebrides",VEN:"venezuela",VNM:"^(?!.*republic).*viet.?nam|^(?=.*socialist).*viet.?nam",VGB:"^(?=.*\\bu\\.?\\s?k).*virgin|^(?=.*brit).*virgin|^(?=.*kingdom).*virgin",VIR:"^(?=.*\\bu\\.?\\s?s).*virgin|^(?=.*states).*virgin",WLF:"futuna|wallis",ESH:"western.sahara",YEM:"^(?!.*arab)(?!.*north)(?!.*sana)(?!.*peo)(?!.*dem)(?!.*south)(?!.*aden)(?!.*\\bp\\.?d\\.?r).*yemen",YMD:"^(?=.*peo).*yemen|^(?!.*rep)(?=.*dem).*yemen|^(?=.*south).*yemen|^(?=.*aden).*yemen|^(?=.*\\bp\\.?d\\.?r).*yemen",YUG:"yugoslavia",ZMB:"zambia|northern.?rhodesia",EAZ:"zanzibar",ZWE:"zimbabwe|^(?!.*northern).*rhodesia"}},{}],90:[function(t,e,r){e.exports=["xx-small","x-small","small","medium","large","x-large","xx-large","larger","smaller"]},{}],91:[function(t,e,r){e.exports=["normal","condensed","semi-condensed","extra-condensed","ultra-condensed","expanded","semi-expanded","extra-expanded","ultra-expanded"]},{}],92:[function(t,e,r){e.exports=["normal","italic","oblique"]},{}],93:[function(t,e,r){e.exports=["normal","bold","bolder","lighter","100","200","300","400","500","600","700","800","900"]},{}],94:[function(t,e,r){"use strict";e.exports={parse:t("./parse"),stringify:t("./stringify")}},{"./parse":96,"./stringify":97}],95:[function(t,e,r){"use strict";var n=t("css-font-size-keywords");e.exports={isSize:function(t){return/^[\d\.]/.test(t)||-1!==t.indexOf("/")||-1!==n.indexOf(t)}}},{"css-font-size-keywords":90}],96:[function(t,e,r){"use strict";var n=t("unquote"),i=t("css-global-keywords"),a=t("css-system-font-keywords"),o=t("css-font-weight-keywords"),s=t("css-font-style-keywords"),l=t("css-font-stretch-keywords"),c=t("string-split-by"),u=t("./lib/util").isSize;e.exports=h;var f=h.cache={};function h(t){if("string"!=typeof t)throw new Error("Font argument must be a string.");if(f[t])return f[t];if(""===t)throw new Error("Cannot parse an empty string.");if(-1!==a.indexOf(t))return f[t]={system:t};for(var e,r={style:"normal",variant:"normal",weight:"normal",stretch:"normal",lineHeight:"normal",size:"1rem",family:["serif"]},h=c(t,/\s+/);e=h.shift();){if(-1!==i.indexOf(e))return["style","variant","weight","stretch"].forEach((function(t){r[t]=e})),f[t]=r;if(-1===s.indexOf(e))if("normal"!==e&&"small-caps"!==e)if(-1===l.indexOf(e)){if(-1===o.indexOf(e)){if(u(e)){var d=c(e,"/");if(r.size=d[0],null!=d[1]?r.lineHeight=p(d[1]):"/"===h[0]&&(h.shift(),r.lineHeight=p(h.shift())),!h.length)throw new Error("Missing required font-family.");return r.family=c(h.join(" "),/\s*,\s*/).map(n),f[t]=r}throw new Error("Unknown or unsupported font token: "+e)}r.weight=e}else r.stretch=e;else r.variant=e;else r.style=e}throw new Error("Missing required font-size.")}function p(t){var e=parseFloat(t);return e.toString()===t?e:t}},{"./lib/util":95,"css-font-stretch-keywords":91,"css-font-style-keywords":92,"css-font-weight-keywords":93,"css-global-keywords":98,"css-system-font-keywords":99,"string-split-by":299,unquote:323}],97:[function(t,e,r){"use strict";var n=t("pick-by-alias"),i=t("./lib/util").isSize,a=m(t("css-global-keywords")),o=m(t("css-system-font-keywords")),s=m(t("css-font-weight-keywords")),l=m(t("css-font-style-keywords")),c=m(t("css-font-stretch-keywords")),u={normal:1,"small-caps":1},f={serif:1,"sans-serif":1,monospace:1,cursive:1,fantasy:1,"system-ui":1},h="1rem",p="serif";function d(t,e){if(t&&!e[t]&&!a[t])throw Error("Unknown keyword `"+t+"`");return t}function m(t){for(var e={},r=0;re?1:t>=e?0:NaN}function r(t){var r;return 1===t.length&&(r=t,t=function(t,n){return e(r(t),n)}),{left:function(e,r,n,i){for(null==n&&(n=0),null==i&&(i=e.length);n>>1;t(e[a],r)<0?n=a+1:i=a}return n},right:function(e,r,n,i){for(null==n&&(n=0),null==i&&(i=e.length);n>>1;t(e[a],r)>0?i=a:n=a+1}return n}}}var n=r(e),i=n.right,a=n.left;function o(t,e){return[t,e]}function s(t){return null===t?NaN:+t}function l(t,e){var r,n,i=t.length,a=0,o=-1,l=0,c=0;if(null==e)for(;++o1)return c/(a-1)}function c(t,e){var r=l(t,e);return r?Math.sqrt(r):r}function u(t,e){var r,n,i,a=t.length,o=-1;if(null==e){for(;++o=r)for(n=i=r;++or&&(n=r),i=r)for(n=i=r;++or&&(n=r),i=0?(a>=v?10:a>=y?5:a>=x?2:1)*Math.pow(10,i):-Math.pow(10,-i)/(a>=v?10:a>=y?5:a>=x?2:1)}function _(t,e,r){var n=Math.abs(e-t)/Math.max(0,r),i=Math.pow(10,Math.floor(Math.log(n)/Math.LN10)),a=n/i;return a>=v?i*=10:a>=y?i*=5:a>=x&&(i*=2),e=1)return+r(t[n-1],n-1,t);var n,i=(n-1)*e,a=Math.floor(i),o=+r(t[a],a,t);return o+(+r(t[a+1],a+1,t)-o)*(i-a)}}function k(t,e){var r,n,i=t.length,a=-1;if(null==e){for(;++a=r)for(n=r;++ar&&(n=r)}else for(;++a=r)for(n=r;++ar&&(n=r);return n}function A(t){if(!(i=t.length))return[];for(var e=-1,r=k(t,M),n=new Array(r);++et?1:e>=t?0:NaN},t.deviation=c,t.extent=u,t.histogram=function(){var t=m,e=u,r=w;function n(n){var a,o,s=n.length,l=new Array(s);for(a=0;af;)h.pop(),--p;var d,m=new Array(p+1);for(a=0;a<=p;++a)(d=m[a]=[]).x0=a>0?h[a-1]:u,d.x1=a=r)for(n=r;++an&&(n=r)}else for(;++a=r)for(n=r;++an&&(n=r);return n},t.mean=function(t,e){var r,n=t.length,i=n,a=-1,o=0;if(null==e)for(;++a=0;)for(e=(n=t[i]).length;--e>=0;)r[--o]=n[e];return r},t.min=k,t.pairs=function(t,e){null==e&&(e=o);for(var r=0,n=t.length-1,i=t[0],a=new Array(n<0?0:n);r0)return[t];if((n=e0)for(t=Math.ceil(t/o),e=Math.floor(e/o),a=new Array(i=Math.ceil(e-t+1));++s=l.length)return null!=t&&n.sort(t),null!=e?e(n):n;for(var s,c,f,h=-1,p=n.length,d=l[i++],m=r(),g=a();++hl.length)return r;var i,a=c[n-1];return null!=e&&n>=l.length?i=r.entries():(i=[],r.each((function(e,r){i.push({key:r,values:t(e,n)})}))),null!=a?i.sort((function(t,e){return a(t.key,e.key)})):i}(u(t,0,a,o),0)},key:function(t){return l.push(t),s},sortKeys:function(t){return c[l.length-1]=t,s},sortValues:function(e){return t=e,s},rollup:function(t){return e=t,s}}},t.set=c,t.map=r,t.keys=function(t){var e=[];for(var r in t)e.push(r);return e},t.values=function(t){var e=[];for(var r in t)e.push(t[r]);return e},t.entries=function(t){var e=[];for(var r in t)e.push({key:r,value:t[r]});return e},Object.defineProperty(t,"__esModule",{value:!0})}))},{}],104:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e,r){t.prototype=e.prototype=r,r.constructor=t}function r(t,e){var r=Object.create(t.prototype);for(var n in e)r[n]=e[n];return r}function n(){}var i="\\s*([+-]?\\d+)\\s*",a="\\s*([+-]?\\d*\\.?\\d+(?:[eE][+-]?\\d+)?)\\s*",o="\\s*([+-]?\\d*\\.?\\d+(?:[eE][+-]?\\d+)?)%\\s*",s=/^#([0-9a-f]{3,8})$/,l=new RegExp("^rgb\\("+[i,i,i]+"\\)$"),c=new RegExp("^rgb\\("+[o,o,o]+"\\)$"),u=new RegExp("^rgba\\("+[i,i,i,a]+"\\)$"),f=new RegExp("^rgba\\("+[o,o,o,a]+"\\)$"),h=new RegExp("^hsl\\("+[a,o,o]+"\\)$"),p=new RegExp("^hsla\\("+[a,o,o,a]+"\\)$"),d={aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074};function m(){return this.rgb().formatHex()}function g(){return this.rgb().formatRgb()}function v(t){var e,r;return t=(t+"").trim().toLowerCase(),(e=s.exec(t))?(r=e[1].length,e=parseInt(e[1],16),6===r?y(e):3===r?new w(e>>8&15|e>>4&240,e>>4&15|240&e,(15&e)<<4|15&e,1):8===r?x(e>>24&255,e>>16&255,e>>8&255,(255&e)/255):4===r?x(e>>12&15|e>>8&240,e>>8&15|e>>4&240,e>>4&15|240&e,((15&e)<<4|15&e)/255):null):(e=l.exec(t))?new w(e[1],e[2],e[3],1):(e=c.exec(t))?new w(255*e[1]/100,255*e[2]/100,255*e[3]/100,1):(e=u.exec(t))?x(e[1],e[2],e[3],e[4]):(e=f.exec(t))?x(255*e[1]/100,255*e[2]/100,255*e[3]/100,e[4]):(e=h.exec(t))?M(e[1],e[2]/100,e[3]/100,1):(e=p.exec(t))?M(e[1],e[2]/100,e[3]/100,e[4]):d.hasOwnProperty(t)?y(d[t]):"transparent"===t?new w(NaN,NaN,NaN,0):null}function y(t){return new w(t>>16&255,t>>8&255,255&t,1)}function x(t,e,r,n){return n<=0&&(t=e=r=NaN),new w(t,e,r,n)}function b(t){return t instanceof n||(t=v(t)),t?new w((t=t.rgb()).r,t.g,t.b,t.opacity):new w}function _(t,e,r,n){return 1===arguments.length?b(t):new w(t,e,r,null==n?1:n)}function w(t,e,r,n){this.r=+t,this.g=+e,this.b=+r,this.opacity=+n}function T(){return"#"+A(this.r)+A(this.g)+A(this.b)}function k(){var t=this.opacity;return(1===(t=isNaN(t)?1:Math.max(0,Math.min(1,t)))?"rgb(":"rgba(")+Math.max(0,Math.min(255,Math.round(this.r)||0))+", "+Math.max(0,Math.min(255,Math.round(this.g)||0))+", "+Math.max(0,Math.min(255,Math.round(this.b)||0))+(1===t?")":", "+t+")")}function A(t){return((t=Math.max(0,Math.min(255,Math.round(t)||0)))<16?"0":"")+t.toString(16)}function M(t,e,r,n){return n<=0?t=e=r=NaN:r<=0||r>=1?t=e=NaN:e<=0&&(t=NaN),new L(t,e,r,n)}function S(t){if(t instanceof L)return new L(t.h,t.s,t.l,t.opacity);if(t instanceof n||(t=v(t)),!t)return new L;if(t instanceof L)return t;var e=(t=t.rgb()).r/255,r=t.g/255,i=t.b/255,a=Math.min(e,r,i),o=Math.max(e,r,i),s=NaN,l=o-a,c=(o+a)/2;return l?(s=e===o?(r-i)/l+6*(r0&&c<1?0:s,new L(s,l,c,t.opacity)}function E(t,e,r,n){return 1===arguments.length?S(t):new L(t,e,r,null==n?1:n)}function L(t,e,r,n){this.h=+t,this.s=+e,this.l=+r,this.opacity=+n}function C(t,e,r){return 255*(t<60?e+(r-e)*t/60:t<180?r:t<240?e+(r-e)*(240-t)/60:e)}e(n,v,{copy:function(t){return Object.assign(new this.constructor,this,t)},displayable:function(){return this.rgb().displayable()},hex:m,formatHex:m,formatHsl:function(){return S(this).formatHsl()},formatRgb:g,toString:g}),e(w,_,r(n,{brighter:function(t){return t=null==t?1/.7:Math.pow(1/.7,t),new w(this.r*t,this.g*t,this.b*t,this.opacity)},darker:function(t){return t=null==t?.7:Math.pow(.7,t),new w(this.r*t,this.g*t,this.b*t,this.opacity)},rgb:function(){return this},displayable:function(){return-.5<=this.r&&this.r<255.5&&-.5<=this.g&&this.g<255.5&&-.5<=this.b&&this.b<255.5&&0<=this.opacity&&this.opacity<=1},hex:T,formatHex:T,formatRgb:k,toString:k})),e(L,E,r(n,{brighter:function(t){return t=null==t?1/.7:Math.pow(1/.7,t),new L(this.h,this.s,this.l*t,this.opacity)},darker:function(t){return t=null==t?.7:Math.pow(.7,t),new L(this.h,this.s,this.l*t,this.opacity)},rgb:function(){var t=this.h%360+360*(this.h<0),e=isNaN(t)||isNaN(this.s)?0:this.s,r=this.l,n=r+(r<.5?r:1-r)*e,i=2*r-n;return new w(C(t>=240?t-240:t+120,i,n),C(t,i,n),C(t<120?t+240:t-120,i,n),this.opacity)},displayable:function(){return(0<=this.s&&this.s<=1||isNaN(this.s))&&0<=this.l&&this.l<=1&&0<=this.opacity&&this.opacity<=1},formatHsl:function(){var t=this.opacity;return(1===(t=isNaN(t)?1:Math.max(0,Math.min(1,t)))?"hsl(":"hsla(")+(this.h||0)+", "+100*(this.s||0)+"%, "+100*(this.l||0)+"%"+(1===t?")":", "+t+")")}}));var P=Math.PI/180,I=180/Math.PI,O=6/29,z=3*O*O;function D(t){if(t instanceof F)return new F(t.l,t.a,t.b,t.opacity);if(t instanceof q)return G(t);t instanceof w||(t=b(t));var e,r,n=U(t.r),i=U(t.g),a=U(t.b),o=B((.2225045*n+.7168786*i+.0606169*a)/1);return n===i&&i===a?e=r=o:(e=B((.4360747*n+.3850649*i+.1430804*a)/.96422),r=B((.0139322*n+.0971045*i+.7141733*a)/.82521)),new F(116*o-16,500*(e-o),200*(o-r),t.opacity)}function R(t,e,r,n){return 1===arguments.length?D(t):new F(t,e,r,null==n?1:n)}function F(t,e,r,n){this.l=+t,this.a=+e,this.b=+r,this.opacity=+n}function B(t){return t>.008856451679035631?Math.pow(t,1/3):t/z+4/29}function N(t){return t>O?t*t*t:z*(t-4/29)}function j(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function U(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function V(t){if(t instanceof q)return new q(t.h,t.c,t.l,t.opacity);if(t instanceof F||(t=D(t)),0===t.a&&0===t.b)return new q(NaN,0=0&&(r=t.slice(n+1),t=t.slice(0,n)),t&&!e.hasOwnProperty(t))throw new Error("unknown type: "+t);return{type:t,name:r}}))}function a(t,e){for(var r,n=0,i=t.length;n0)for(var r,n,i=new Array(r),a=0;ah+c||np+c||au.index){var f=h-s.x-s.vx,g=p-s.y-s.vy,v=f*f+g*g;vt.r&&(t.r=t[e].r)}function h(){if(r){var e,i,a=r.length;for(n=new Array(a),e=0;e=c)){(t.data!==r||t.next)&&(0===f&&(d+=(f=o())*f),0===h&&(d+=(h=o())*h),d1?(null==r?u.remove(t):u.set(t,v(r)),e):u.get(t)},find:function(e,r,n){var i,a,o,s,l,c=0,u=t.length;for(null==n?n=1/0:n*=n,c=0;c1?(h.on(t,r),e):h.on(t)}}},t.forceX=function(t){var e,r,n,i=a(.1);function o(t){for(var i,a=0,o=e.length;a1?n[0]+n.slice(2):n,+t.slice(r+1)]}function r(t){return(t=e(Math.abs(t)))?t[1]:NaN}var n,i=/^(?:(.)?([<>=^]))?([+\-( ])?([$#])?(0)?(\d+)?(,)?(\.\d+)?(~)?([a-z%])?$/i;function a(t){if(!(e=i.exec(t)))throw new Error("invalid format: "+t);var e;return new o({fill:e[1],align:e[2],sign:e[3],symbol:e[4],zero:e[5],width:e[6],comma:e[7],precision:e[8]&&e[8].slice(1),trim:e[9],type:e[10]})}function o(t){this.fill=void 0===t.fill?" ":t.fill+"",this.align=void 0===t.align?">":t.align+"",this.sign=void 0===t.sign?"-":t.sign+"",this.symbol=void 0===t.symbol?"":t.symbol+"",this.zero=!!t.zero,this.width=void 0===t.width?void 0:+t.width,this.comma=!!t.comma,this.precision=void 0===t.precision?void 0:+t.precision,this.trim=!!t.trim,this.type=void 0===t.type?"":t.type+""}function s(t,r){var n=e(t,r);if(!n)return t+"";var i=n[0],a=n[1];return a<0?"0."+new Array(-a).join("0")+i:i.length>a+1?i.slice(0,a+1)+"."+i.slice(a+1):i+new Array(a-i.length+2).join("0")}a.prototype=o.prototype,o.prototype.toString=function(){return this.fill+this.align+this.sign+this.symbol+(this.zero?"0":"")+(void 0===this.width?"":Math.max(1,0|this.width))+(this.comma?",":"")+(void 0===this.precision?"":"."+Math.max(0,0|this.precision))+(this.trim?"~":"")+this.type};var l={"%":function(t,e){return(100*t).toFixed(e)},b:function(t){return Math.round(t).toString(2)},c:function(t){return t+""},d:function(t){return Math.abs(t=Math.round(t))>=1e21?t.toLocaleString("en").replace(/,/g,""):t.toString(10)},e:function(t,e){return t.toExponential(e)},f:function(t,e){return t.toFixed(e)},g:function(t,e){return t.toPrecision(e)},o:function(t){return Math.round(t).toString(8)},p:function(t,e){return s(100*t,e)},r:s,s:function(t,r){var i=e(t,r);if(!i)return t+"";var a=i[0],o=i[1],s=o-(n=3*Math.max(-8,Math.min(8,Math.floor(o/3))))+1,l=a.length;return s===l?a:s>l?a+new Array(s-l+1).join("0"):s>0?a.slice(0,s)+"."+a.slice(s):"0."+new Array(1-s).join("0")+e(t,Math.max(0,r+s-1))[0]},X:function(t){return Math.round(t).toString(16).toUpperCase()},x:function(t){return Math.round(t).toString(16)}};function c(t){return t}var u,f=Array.prototype.map,h=["y","z","a","f","p","n","\xb5","m","","k","M","G","T","P","E","Z","Y"];function p(t){var e,i,o=void 0===t.grouping||void 0===t.thousands?c:(e=f.call(t.grouping,Number),i=t.thousands+"",function(t,r){for(var n=t.length,a=[],o=0,s=e[0],l=0;n>0&&s>0&&(l+s+1>r&&(s=Math.max(1,r-l)),a.push(t.substring(n-=s,n+s)),!((l+=s+1)>r));)s=e[o=(o+1)%e.length];return a.reverse().join(i)}),s=void 0===t.currency?"":t.currency[0]+"",u=void 0===t.currency?"":t.currency[1]+"",p=void 0===t.decimal?".":t.decimal+"",d=void 0===t.numerals?c:function(t){return function(e){return e.replace(/[0-9]/g,(function(e){return t[+e]}))}}(f.call(t.numerals,String)),m=void 0===t.percent?"%":t.percent+"",g=void 0===t.minus?"-":t.minus+"",v=void 0===t.nan?"NaN":t.nan+"";function y(t){var e=(t=a(t)).fill,r=t.align,i=t.sign,c=t.symbol,f=t.zero,y=t.width,x=t.comma,b=t.precision,_=t.trim,w=t.type;"n"===w?(x=!0,w="g"):l[w]||(void 0===b&&(b=12),_=!0,w="g"),(f||"0"===e&&"="===r)&&(f=!0,e="0",r="=");var T="$"===c?s:"#"===c&&/[boxX]/.test(w)?"0"+w.toLowerCase():"",k="$"===c?u:/[%p]/.test(w)?m:"",A=l[w],M=/[defgprs%]/.test(w);function S(t){var a,s,l,c=T,u=k;if("c"===w)u=A(t)+u,t="";else{var m=(t=+t)<0||1/t<0;if(t=isNaN(t)?v:A(Math.abs(t),b),_&&(t=function(t){t:for(var e,r=t.length,n=1,i=-1;n0&&(i=0)}return i>0?t.slice(0,i)+t.slice(e+1):t}(t)),m&&0==+t&&"+"!==i&&(m=!1),c=(m?"("===i?i:g:"-"===i||"("===i?"":i)+c,u=("s"===w?h[8+n/3]:"")+u+(m&&"("===i?")":""),M)for(a=-1,s=t.length;++a(l=t.charCodeAt(a))||l>57){u=(46===l?p+t.slice(a+1):t.slice(a))+u,t=t.slice(0,a);break}}x&&!f&&(t=o(t,1/0));var S=c.length+t.length+u.length,E=S>1)+c+t+u+E.slice(S);break;default:t=E+c+t+u}return d(t)}return b=void 0===b?6:/[gprs]/.test(w)?Math.max(1,Math.min(21,b)):Math.max(0,Math.min(20,b)),S.toString=function(){return t+""},S}return{format:y,formatPrefix:function(t,e){var n=y(((t=a(t)).type="f",t)),i=3*Math.max(-8,Math.min(8,Math.floor(r(e)/3))),o=Math.pow(10,-i),s=h[8+i/3];return function(t){return n(o*t)+s}}}}function d(e){return u=p(e),t.format=u.format,t.formatPrefix=u.formatPrefix,u}d({decimal:".",thousands:",",grouping:[3],currency:["$",""],minus:"-"}),t.FormatSpecifier=o,t.formatDefaultLocale=d,t.formatLocale=p,t.formatSpecifier=a,t.precisionFixed=function(t){return Math.max(0,-r(Math.abs(t)))},t.precisionPrefix=function(t,e){return Math.max(0,3*Math.max(-8,Math.min(8,Math.floor(r(e)/3)))-r(Math.abs(t)))},t.precisionRound=function(t,e){return t=Math.abs(t),e=Math.abs(e)-t,Math.max(0,r(e)-r(t))+1},Object.defineProperty(t,"__esModule",{value:!0})}))},{}],108:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-geo"),t("d3-array")):i(n.d3=n.d3||{},n.d3,n.d3)}(this,(function(t,e,r){"use strict";var n=Math.abs,i=Math.atan,a=Math.atan2,o=Math.cos,s=Math.exp,l=Math.floor,c=Math.log,u=Math.max,f=Math.min,h=Math.pow,p=Math.round,d=Math.sign||function(t){return t>0?1:t<0?-1:0},m=Math.sin,g=Math.tan,v=1e-6,y=Math.PI,x=y/2,b=y/4,_=Math.SQRT1_2,w=L(2),T=L(y),k=2*y,A=180/y,M=y/180;function S(t){return t>1?x:t<-1?-x:Math.asin(t)}function E(t){return t>1?0:t<-1?y:Math.acos(t)}function L(t){return t>0?Math.sqrt(t):0}function C(t){return(s(t)-s(-t))/2}function P(t){return(s(t)+s(-t))/2}function I(t){var e=g(t/2),r=2*c(o(t/2))/(e*e);function i(t,e){var n=o(t),i=o(e),a=m(e),s=i*n,l=-((1-s?c((1+s)/2)/(1-s):-.5)+r/(1+s));return[l*i*m(t),l*a]}return i.invert=function(e,i){var s,l=L(e*e+i*i),u=-t/2,f=50;if(!l)return[0,0];do{var h=u/2,p=o(h),d=m(h),g=d/p,y=-c(n(p));u-=s=(2/g*y-r*g-l)/(-y/(d*d)+1-r/(2*p*p))*(p<0?.7:1)}while(n(s)>v&&--f>0);var x=m(u);return[a(e*x,l*o(u)),S(i*x/l)]},i}function O(t,e){var r=o(e),n=function(t){return t?t/Math.sin(t):1}(E(r*o(t/=2)));return[2*r*m(t)*n,m(e)*n]}function z(t){var e=m(t),r=o(t),i=t>=0?1:-1,s=g(i*t),l=(1+e-r)/2;function c(t,n){var c=o(n),u=o(t/=2);return[(1+c)*m(t),(i*n>-a(u,s)-.001?0:10*-i)+l+m(n)*r-(1+c)*e*u]}return c.invert=function(t,c){var u=0,f=0,h=50;do{var p=o(u),d=m(u),g=o(f),y=m(f),x=1+g,b=x*d-t,_=l+y*r-x*e*p-c,w=x*p/2,T=-d*y,k=e*x*d/2,A=r*g+e*p*y,M=T*k-A*w,S=(_*T-b*A)/M/2,E=(b*k-_*w)/M;n(E)>2&&(E/=2),u-=S,f-=E}while((n(S)>v||n(E)>v)&&--h>0);return i*f>-a(o(u),s)-.001?[2*u,f]:null},c}function D(t,e){var r=g(e/2),n=L(1-r*r),i=1+n*o(t/=2),a=m(t)*n/i,s=r/i,l=a*a,c=s*s;return[4/3*a*(3+l-3*c),4/3*s*(3+3*l-c)]}O.invert=function(t,e){if(!(t*t+4*e*e>y*y+v)){var r=t,i=e,a=25;do{var s,l=m(r),c=m(r/2),u=o(r/2),f=m(i),h=o(i),p=m(2*i),d=f*f,g=h*h,x=c*c,b=1-g*u*u,_=b?E(h*u)*L(s=1/b):s=0,w=2*_*h*c-t,T=_*f-e,k=s*(g*x+_*h*u*d),A=s*(.5*l*p-2*_*f*c),M=.25*s*(p*c-_*f*g*l),S=s*(d*u+_*x*h),C=A*M-S*k;if(!C)break;var P=(T*A-w*S)/C,I=(w*M-T*k)/C;r-=P,i-=I}while((n(P)>v||n(I)>v)&&--a>0);return[r,i]}},D.invert=function(t,e){if(e*=3/8,!(t*=3/8)&&n(e)>1)return null;var r=1+t*t+e*e,i=L((r-L(r*r-4*e*e))/2),s=S(i)/3,l=i?function(t){return c(t+L(t*t-1))}(n(e/i))/3:function(t){return c(t+L(t*t+1))}(n(t))/3,u=o(s),f=P(l),h=f*f-u*u;return[2*d(t)*a(C(l)*u,.25-h),2*d(e)*a(f*m(s),.25+h)]};var R=L(8),F=c(1+w);function B(t,e){var r=n(e);return rx){var l=a(s[1],s[0]),c=L(s[0]*s[0]+s[1]*s[1]),u=r*p((l-x)/r)+x,f=a(m(l-=u),2-o(l));l=u+S(y/c*m(f))-f,s[0]=c*o(l),s[1]=c*m(l)}return s}return s.invert=function(t,n){var s=L(t*t+n*n);if(s>x){var l=a(n,t),c=r*p((l-x)/r)+x,u=l>c?-1:1,f=s*o(c-l),h=1/g(u*E((f-y)/L(y*(y-2*f)+s*s)));l=c+2*i((h+u*L(h*h-3))/3),t=s*o(l),n=s*m(l)}return e.geoAzimuthalEquidistantRaw.invert(t,n)},s}function j(t,r){if(arguments.length<2&&(r=t),1===r)return e.geoAzimuthalEqualAreaRaw;if(r===1/0)return U;function n(n,i){var a=e.geoAzimuthalEqualAreaRaw(n/r,i);return a[0]*=t,a}return n.invert=function(n,i){var a=e.geoAzimuthalEqualAreaRaw.invert(n/t,i);return a[0]*=r,a},n}function U(t,e){return[t*o(e)/o(e/=2),2*m(e)]}function V(t,e,r){var i,a,o,s=100;r=void 0===r?0:+r,e=+e;do{(a=t(r))===(o=t(r+v))&&(o=a+v),r-=i=-1*v*(a-e)/(a-o)}while(s-- >0&&n(i)>v);return s<0?NaN:r}function H(t,e,r){return void 0===e&&(e=40),void 0===r&&(r=1e-12),function(i,a,o,s){var l,c,u;o=void 0===o?0:+o,s=void 0===s?0:+s;for(var f=0;fl)o-=c/=2,s-=u/=2;else{l=m;var g=(o>0?-1:1)*r,v=(s>0?-1:1)*r,y=t(o+g,s),x=t(o,s+v),b=(y[0]-h[0])/g,_=(y[1]-h[1])/g,w=(x[0]-h[0])/v,T=(x[1]-h[1])/v,k=T*b-_*w,A=(n(k)<.5?.5:1)/k;if(o+=c=(d*w-p*T)*A,s+=u=(p*_-d*b)*A,n(c)0&&(i[1]*=1+a/1.5*i[0]*i[0]),i}return e.invert=H(e),e}function G(t,e){var r,i=t*m(e),a=30;do{e-=r=(e+m(e)-i)/(1+o(e))}while(n(r)>v&&--a>0);return e/2}function Y(t,e,r){function n(n,i){return[t*n*o(i=G(r,i)),e*m(i)]}return n.invert=function(n,i){return i=S(i/e),[n/(t*o(i)),S((2*i+m(2*i))/r)]},n}B.invert=function(t,e){if((a=n(e))1e-12&&--u>0);return[t/(o(l)*(R-1/m(l))),d(e)*l]},U.invert=function(t,e){var r=2*S(e/2);return[t*o(r/2)/o(r),r]};var W=Y(w/x,w,y);var X=2.00276,Z=1.11072;function J(t,e){var r=G(y,e);return[X*t/(1/o(e)+Z/o(r)),(e+w*m(r))/X]}function K(t){var r=0,n=e.geoProjectionMutator(t),i=n(r);return i.parallel=function(t){return arguments.length?n(r=t*M):r*A},i}function Q(t,e){return[t*o(e),e]}function $(t){if(!t)return Q;var e=1/g(t);function r(r,n){var i=e+t-n,a=i?r*o(n)/i:i;return[i*m(a),e-i*o(a)]}return r.invert=function(r,n){var i=L(r*r+(n=e-n)*n),s=e+t-i;return[i/o(s)*a(r,n),s]},r}function tt(t){function e(e,r){var n=x-r,i=n?e*t*m(n)/n:n;return[n*m(i)/t,x-n*o(i)]}return e.invert=function(e,r){var n=e*t,i=x-r,o=L(n*n+i*i),s=a(n,i);return[(o?o/m(o):1)*s/t,x-o]},e}J.invert=function(t,e){var r,i,a=X*e,s=e<0?-b:b,l=25;do{i=a-w*m(s),s-=r=(m(2*s)+2*s-y*m(i))/(2*o(2*s)+2+y*o(i)*w*o(s))}while(n(r)>v&&--l>0);return i=a-w*m(s),[t*(1/o(i)+Z/o(s))/X,i]},Q.invert=function(t,e){return[t/o(e),e]};var et=Y(1,4/y,y);function rt(t,e,r,i,s,l){var c,u=o(l);if(n(t)>1||n(l)>1)c=E(r*s+e*i*u);else{var f=m(t/2),h=m(l/2);c=2*S(L(f*f+e*i*h*h))}return n(c)>v?[c,a(i*m(l),e*s-r*i*u)]:[0,0]}function nt(t,e,r){return E((t*t+e*e-r*r)/(2*t*e))}function it(t){return t-2*y*l((t+y)/(2*y))}function at(t,e,r){for(var n,i=[[t[0],t[1],m(t[1]),o(t[1])],[e[0],e[1],m(e[1]),o(e[1])],[r[0],r[1],m(r[1]),o(r[1])]],a=i[2],s=0;s<3;++s,a=n)n=i[s],a.v=rt(n[1]-a[1],a[3],a[2],n[3],n[2],n[0]-a[0]),a.point=[0,0];var l=nt(i[0].v[0],i[2].v[0],i[1].v[0]),c=nt(i[0].v[0],i[1].v[0],i[2].v[0]),u=y-l;i[2].point[1]=0,i[0].point[0]=-(i[1].point[0]=i[0].v[0]/2);var f=[i[2].point[0]=i[0].point[0]+i[2].v[0]*o(l),2*(i[0].point[1]=i[1].point[1]=i[2].v[0]*m(l))];return function(t,e){var r,n=m(e),a=o(e),s=new Array(3);for(r=0;r<3;++r){var l=i[r];if(s[r]=rt(e-l[1],l[3],l[2],a,n,t-l[0]),!s[r][0])return l.point;s[r][1]=it(s[r][1]-l.v[1])}var h=f.slice();for(r=0;r<3;++r){var p=2==r?0:r+1,d=nt(i[r].v[0],s[r][0],s[p][0]);s[r][1]<0&&(d=-d),r?1==r?(d=c-d,h[0]-=s[r][0]*o(d),h[1]-=s[r][0]*m(d)):(d=u-d,h[0]+=s[r][0]*o(d),h[1]+=s[r][0]*m(d)):(h[0]+=s[r][0]*o(d),h[1]-=s[r][0]*m(d))}return h[0]/=3,h[1]/=3,h}}function ot(t){return t[0]*=M,t[1]*=M,t}function st(t,r,n){var i=e.geoCentroid({type:"MultiPoint",coordinates:[t,r,n]}),a=[-i[0],-i[1]],o=e.geoRotation(a),s=at(ot(o(t)),ot(o(r)),ot(o(n)));s.invert=H(s);var l=e.geoProjection(s).rotate(a),c=l.center;return delete l.rotate,l.center=function(t){return arguments.length?c(o(t)):o.invert(c())},l.clipAngle(90)}function lt(t,e){var r=L(1-m(e));return[2/T*t*r,T*(1-r)]}function ct(t){var e=g(t);function r(t,r){return[t,(t?t/m(t):1)*(m(r)*o(t)-e*o(r))]}return r.invert=e?function(t,r){t&&(r*=m(t)/t);var n=o(t);return[t,2*a(L(n*n+e*e-r*r)-n,e-r)]}:function(t,e){return[t,S(t?e*g(t)/t:e)]},r}lt.invert=function(t,e){var r=(r=e/T-1)*r;return[r>0?t*L(y/r)/2:0,S(1-r)]};var ut=L(3);function ft(t,e){return[ut*t*(2*o(2*e/3)-1)/T,ut*T*m(e/3)]}function ht(t){var e=o(t);function r(t,r){return[t*e,m(r)/e]}return r.invert=function(t,r){return[t/e,S(r*e)]},r}function pt(t){var e=o(t);function r(t,r){return[t*e,(1+e)*g(r/2)]}return r.invert=function(t,r){return[t/e,2*i(r/(1+e))]},r}function dt(t,e){var r=L(8/(3*y));return[r*t*(1-n(e)/y),r*e]}function mt(t,e){var r=L(4-3*m(n(e)));return[2/L(6*y)*t*r,d(e)*L(2*y/3)*(2-r)]}function gt(t,e){var r=L(y*(4+y));return[2/r*t*(1+L(1-4*e*e/(y*y))),4/r*e]}function vt(t,e){var r=(2+x)*m(e);e/=2;for(var i=0,a=1/0;i<10&&n(a)>v;i++){var s=o(e);e-=a=(e+m(e)*(s+2)-r)/(2*s*(1+s))}return[2/L(y*(4+y))*t*(1+o(e)),2*L(y/(4+y))*m(e)]}function yt(t,e){return[t*(1+o(e))/L(2+y),2*e/L(2+y)]}function xt(t,e){for(var r=(1+x)*m(e),i=0,a=1/0;i<10&&n(a)>v;i++)e-=a=(e+m(e)-r)/(1+o(e));return r=L(2+y),[t*(1+o(e))/r,2*e/r]}ft.invert=function(t,e){var r=3*S(e/(ut*T));return[T*t/(ut*(2*o(2*r/3)-1)),r]},dt.invert=function(t,e){var r=L(8/(3*y)),i=e/r;return[t/(r*(1-n(i)/y)),i]},mt.invert=function(t,e){var r=2-n(e)/L(2*y/3);return[t*L(6*y)/(2*r),d(e)*S((4-r*r)/3)]},gt.invert=function(t,e){var r=L(y*(4+y))/2;return[t*r/(1+L(1-e*e*(4+y)/(4*y))),e*r/2]},vt.invert=function(t,e){var r=e*L((4+y)/y)/2,n=S(r),i=o(n);return[t/(2/L(y*(4+y))*(1+i)),S((n+r*(i+2))/(2+x))]},yt.invert=function(t,e){var r=L(2+y),n=e*r/2;return[r*t/(1+o(n)),n]},xt.invert=function(t,e){var r=1+x,n=L(r/2);return[2*t*n/(1+o(e*=n)),S((e+m(e))/r)]};var bt=3+2*w;function _t(t,e){var r=m(t/=2),n=o(t),a=L(o(e)),s=o(e/=2),l=m(e)/(s+w*n*a),u=L(2/(1+l*l)),f=L((w*s+(n+r)*a)/(w*s+(n-r)*a));return[bt*(u*(f-1/f)-2*c(f)),bt*(u*l*(f+1/f)-2*i(l))]}_t.invert=function(t,e){if(!(r=D.invert(t/1.2,1.065*e)))return null;var r,a=r[0],s=r[1],l=20;t/=bt,e/=bt;do{var h=a/2,p=s/2,d=m(h),g=o(h),y=m(p),b=o(p),T=o(s),k=L(T),A=y/(b+w*g*k),M=A*A,S=L(2/(1+M)),E=(w*b+(g+d)*k)/(w*b+(g-d)*k),C=L(E),P=C-1/C,I=C+1/C,O=S*P-2*c(C)-t,z=S*A*I-2*i(A)-e,R=y&&_*k*d*M/y,F=(w*g*b+k)/(2*(b+w*g*k)*(b+w*g*k)*k),B=-.5*A*S*S*S,N=B*R,j=B*F,U=(U=2*b+w*k*(g-d))*U*C,V=(w*g*b*k+T)/U,H=-w*d*y/(k*U),q=P*N-2*V/C+S*(V+V/E),G=P*j-2*H/C+S*(H+H/E),Y=A*I*N-2*R/(1+M)+S*I*R+S*A*(V-V/E),W=A*I*j-2*F/(1+M)+S*I*F+S*A*(H-H/E),X=G*Y-W*q;if(!X)break;var Z=(z*G-O*W)/X,J=(O*Y-z*q)/X;a-=Z,s=u(-x,f(x,s-J))}while((n(Z)>v||n(J)>v)&&--l>0);return n(n(s)-x)s){var d=L(h),g=a(f,u),b=i*p(g/i),_=g-b,w=t*o(_),T=(t*m(_)-_*m(w))/(x-w),k=Lt(_,T),A=(y-t)/Ct(k,w,y);u=d;var M,S=50;do{u-=M=(t+Ct(k,w,u)*A-d)/(k(u)*A)}while(n(M)>v&&--S>0);f=_*m(u),us){var u=L(c),f=a(l,r),h=i*p(f/i),d=f-h;r=u*o(d),l=u*m(d);for(var g=r-x,v=m(r),b=l/v,_=rv||n(p)>v)&&--x>0);return[d,g]},u}Tt.invert=function(t,e){var r=e/(1+wt);return[t&&t/(wt*L(1-r*r)),2*i(r)]},kt.invert=function(t,e){var r=i(e/T),n=o(r),a=2*r;return[t*T/2/(o(a)*n*n),a]};var It=Pt(2.8284,-1.6988,.75432,-.18071,1.76003,-.38914,.042555);var Ot=Pt(2.583819,-.835827,.170354,-.038094,1.543313,-.411435,.082742);var zt=Pt(5/6*y,-.62636,-.0344,0,1.3493,-.05524,0,.045);function Dt(t,e){var r=t*t,n=e*e;return[t*(1-.162388*n)*(.87-952426e-9*r*r),e*(1+n/12)]}Dt.invert=function(t,e){var r,i=t,a=e,o=50;do{var s=a*a;a-=r=(a*(1+s/12)-e)/(1+s/4)}while(n(r)>v&&--o>0);o=50,t/=1-.162388*s;do{var l=(l=i*i)*l;i-=r=(i*(.87-952426e-9*l)-t)/(.87-.00476213*l)}while(n(r)>v&&--o>0);return[i,a]};var Rt=Pt(2.6516,-.76534,.19123,-.047094,1.36289,-.13965,.031762);function Ft(t){var e=t(x,0)[0]-t(-x,0)[0];function r(r,n){var i=r>0?-.5:.5,a=t(r+i*y,n);return a[0]-=i*e,a}return t.invert&&(r.invert=function(r,n){var i=r>0?-.5:.5,a=t.invert(r+i*e,n),o=a[0]-i*y;return o<-y?o+=2*y:o>y&&(o-=2*y),a[0]=o,a}),r}function Bt(t,e){var r=d(t),i=d(e),s=o(e),l=o(t)*s,c=m(t)*s,u=m(i*e);t=n(a(c,u)),e=S(l),n(t-x)>v&&(t%=x);var f=function(t,e){if(e===x)return[0,0];var r,i,a=m(e),s=a*a,l=s*s,c=1+l,u=1+3*l,f=1-l,h=S(1/L(c)),p=f+s*c*h,d=(1-a)/p,g=L(d),b=d*c,_=L(b),w=g*f;if(0===t)return[0,-(w+s*_)];var T,k=o(e),A=1/k,M=2*a*k,E=(-p*k-(-3*s+h*u)*M*(1-a))/(p*p),C=-A*M,P=-A*(s*c*E+d*u*M),I=-2*A*(f*(.5*E/g)-2*s*g*M),O=4*t/y;if(t>.222*y||e.175*y){if(r=(w+s*L(b*(1+l)-w*w))/(1+l),t>y/4)return[r,r];var z=r,D=.5*r;r=.5*(D+z),i=50;do{var R=L(b-r*r),F=r*(I+C*R)+P*S(r/_)-O;if(!F)break;F<0?D=r:z=r,r=.5*(D+z)}while(n(z-D)>v&&--i>0)}else{r=v,i=25;do{var B=r*r,N=L(b-B),j=I+C*N,U=r*j+P*S(r/_)-O,V=j+(P-C*B)/N;r-=T=N?U/V:0}while(n(T)>v&&--i>0)}return[r,-w-s*L(b-r*r)]}(t>y/4?x-t:t,e);return t>y/4&&(u=f[0],f[0]=-f[1],f[1]=-u),f[0]*=r,f[1]*=-i,f}function Nt(t,e){var r,a,l,c,u,f;if(e=1-v)return r=(1-e)/4,l=1/(a=P(t)),[(c=((f=s(2*(f=t)))-1)/(f+1))+r*((u=a*C(t))-t)/(a*a),l-r*c*l*(u-t),l+r*c*l*(u+t),2*i(s(t))-x+r*(u-t)/a];var h=[1,0,0,0,0,0,0,0,0],p=[L(e),0,0,0,0,0,0,0,0],d=0;for(a=L(1-e),u=1;n(p[d]/h[d])>v&&d<8;)r=h[d++],p[d]=(r-a)/2,h[d]=(r+a)/2,a=L(r*a),u*=2;l=u*h[d]*t;do{l=(S(c=p[d]*m(a=l)/h[d])+l)/2}while(--d);return[m(l),c=o(l),c/o(l-a),l]}function jt(t,e){if(!e)return t;if(1===e)return c(g(t/2+b));for(var r=1,a=L(1-e),o=L(e),s=0;n(o)>v;s++){if(t%y){var l=i(a*g(t)/r);l<0&&(l+=y),t+=l+~~(t/y)*y}else t+=t;o=(r+a)/2,a=L(r*a),o=((r=o)-a)/2}return t/(h(2,s)*r)}function Ut(t,e){var r=(w-1)/(w+1),l=L(1-r*r),u=jt(x,l*l),f=c(g(y/4+n(e)/2)),h=s(-1*f)/L(r),p=function(t,e){var r=t*t,n=e+1,i=1-r-e*e;return[.5*((t>=0?x:-x)-a(i,2*t)),-.25*c(i*i+4*r)+.5*c(n*n+r)]}(h*o(-1*t),h*m(-1*t)),v=function(t,e,r){var a=n(t),o=C(n(e));if(a){var s=1/m(a),l=1/(g(a)*g(a)),c=-(l+r*(o*o*s*s)-1+r),u=(-c+L(c*c-4*((r-1)*l)))/2;return[jt(i(1/L(u)),r)*d(t),jt(i(L((u/l-1)/r)),1-r)*d(e)]}return[0,jt(i(o),1-r)*d(e)]}(p[0],p[1],l*l);return[-v[1],(e>=0?1:-1)*(.5*u-v[0])]}function Vt(t){var e=m(t),r=o(t),i=Ht(t);function s(t,a){var s=i(t,a);t=s[0],a=s[1];var l=m(a),c=o(a),u=o(t),f=E(e*l+r*c*u),h=m(f),p=n(h)>v?f/h:1;return[p*r*m(t),(n(t)>x?p:-p)*(e*c-r*l*u)]}return i.invert=Ht(-t),s.invert=function(t,r){var n=L(t*t+r*r),s=-m(n),l=o(n),c=n*l,u=-r*s,f=n*e,h=L(c*c+u*u-f*f),p=a(c*f+u*h,u*f-c*h),d=(n>x?-1:1)*a(t*s,n*o(p)*l+r*m(p)*s);return i.invert(d,p)},s}function Ht(t){var e=m(t),r=o(t);return function(t,n){var i=o(n),s=o(t)*i,l=m(t)*i,c=m(n);return[a(l,s*r-c*e),S(c*r+s*e)]}}Bt.invert=function(t,e){n(t)>1&&(t=2*d(t)-t),n(e)>1&&(e=2*d(e)-e);var r=d(t),i=d(e),s=-r*t,l=-i*e,c=l/s<1,u=function(t,e){var r=0,i=1,a=.5,s=50;for(;;){var l=a*a,c=L(a),u=S(1/L(1+l)),f=1-l+a*(1+l)*u,h=(1-c)/f,p=L(h),d=h*(1+l),m=p*(1-l),g=L(d-t*t),v=e+m+a*g;if(n(i-r)<1e-12||0==--s||0===v)break;v>0?r=a:i=a,a=.5*(r+i)}if(!s)return null;var x=S(c),b=o(x),_=1/b,w=2*c*b,T=(-f*b-(-3*a+u*(1+3*l))*w*(1-c))/(f*f);return[y/4*(t*(-2*_*(.5*T/p*(1-l)-2*a*p*w)+-_*w*g)+-_*(a*(1+l)*T+h*(1+3*l)*w)*S(t/L(d))),x]}(c?l:s,c?s:l),f=u[0],h=u[1],p=o(h);return c&&(f=-x-f),[r*(a(m(f)*p,-m(h))+y),i*S(o(f)*p)]},Ut.invert=function(t,e){var r,n,o,l,u,f,h=(w-1)/(w+1),p=L(1-h*h),d=jt(x,p*p),m=(n=-t,o=p*p,(r=.5*d-e)?(l=Nt(r,o),n?(f=(u=Nt(n,1-o))[1]*u[1]+o*l[0]*l[0]*u[0]*u[0],[[l[0]*u[2]/f,l[1]*l[2]*u[0]*u[1]/f],[l[1]*u[1]/f,-l[0]*l[2]*u[0]*u[2]/f],[l[2]*u[1]*u[2]/f,-o*l[0]*l[1]*u[0]/f]]):[[l[0],0],[l[1],0],[l[2],0]]):[[0,(u=Nt(n,1-o))[0]/u[1]],[1/u[1],0],[u[2]/u[1],0]]),g=function(t,e){var r=e[0]*e[0]+e[1]*e[1];return[(t[0]*e[0]+t[1]*e[1])/r,(t[1]*e[0]-t[0]*e[1])/r]}(m[0],m[1]);return[a(g[1],g[0])/-1,2*i(s(-.5*c(h*g[0]*g[0]+h*g[1]*g[1])))-x]};var qt=S(1-1/3)*A,Gt=ht(0);function Yt(t){var e=qt*M,r=lt(y,e)[0]-lt(-y,e)[0],i=Gt(0,e)[1],a=lt(0,e)[1],o=T-a,s=k/t,c=4/k,h=i+o*o*4/k;function p(p,d){var m,g=n(d);if(g>e){var v=f(t-1,u(0,l((p+y)/s)));(m=lt(p+=y*(t-1)/t-v*s,g))[0]=m[0]*k/r-k*(t-1)/(2*t)+v*k/t,m[1]=i+4*(m[1]-a)*o/k,d<0&&(m[1]=-m[1])}else m=Gt(p,d);return m[0]*=c,m[1]/=h,m}return p.invert=function(e,p){e/=c;var d=n(p*=h);if(d>i){var m=f(t-1,u(0,l((e+y)/s)));e=(e+y*(t-1)/t-m*s)*r/k;var g=lt.invert(e,.25*(d-i)*k/o+a);return g[0]-=y*(t-1)/t-m*s,p<0&&(g[1]=-g[1]),g}return Gt.invert(e,p)},p}function Wt(t,e){return[t,1&e?90-v:qt]}function Xt(t,e){return[t,1&e?-90+v:-qt]}function Zt(t){return[t[0]*(1-v),t[1]]}function Jt(t){var e,r=1+t,i=S(m(1/r)),s=2*L(y/(e=y+4*i*r)),l=.5*s*(r+L(t*(2+t))),c=t*t,u=r*r;function f(f,h){var p,d,g=1-m(h);if(g&&g<2){var v,b=x-h,_=25;do{var w=m(b),T=o(b),k=i+a(w,r-T),A=1+u-2*r*T;b-=v=(b-c*i-r*w+A*k-.5*g*e)/(2*r*w*k)}while(n(v)>1e-12&&--_>0);p=s*L(A),d=f*k/y}else p=s*(t+g),d=f*i/y;return[p*m(d),l-p*o(d)]}return f.invert=function(t,n){var o=t*t+(n-=l)*n,f=(1+u-o/(s*s))/(2*r),h=E(f),p=m(h),d=i+a(p,r-f);return[S(t/L(o))*y/d,S(1-2*(h-c*i-r*p+(1+u-2*r*f)*d)/e)]},f}function Kt(t,e){return e>-.7109889596207567?((t=W(t,e))[1]+=.0528035274542,t):Q(t,e)}function Qt(t,e){return n(e)>.7109889596207567?((t=W(t,e))[1]-=e>0?.0528035274542:-.0528035274542,t):Q(t,e)}function $t(t,e,r,n){var i=L(4*y/(2*r+(1+t-e/2)*m(2*r)+(t+e)/2*m(4*r)+e/2*m(6*r))),a=L(n*m(r)*L((1+t*o(2*r)+e*o(4*r))/(1+t+e))),s=r*c(1);function l(r){return L(1+t*o(2*r)+e*o(4*r))}function c(n){var i=n*r;return(2*i+(1+t-e/2)*m(2*i)+(t+e)/2*m(4*i)+e/2*m(6*i))/r}function u(t){return l(t)*m(t)}var f=function(t,e){var n=r*V(c,s*m(e)/r,e/y);isNaN(n)&&(n=r*d(e));var u=i*l(n);return[u*a*t/y*o(n),u/a*m(n)]};return f.invert=function(t,e){var n=V(u,e*a/i);return[t*y/(o(n)*i*a*l(n)),S(r*c(n/r)/s)]},0===r&&(i=L(n/y),(f=function(t,e){return[t*i,m(e)/i]}).invert=function(t,e){return[t/i,S(e*i)]}),f}function te(t,e,r,n,i){void 0===n&&(n=1e-8),void 0===i&&(i=20);var a=t(e),o=t(.5*(e+r)),s=t(r);return function t(e,r,n,i,a,o,s,l,c,u,f){if(f.nanEncountered)return NaN;var h,p,d,m,g,v,y,x,b,_;if(p=e(r+.25*(h=n-r)),d=e(n-.25*h),isNaN(p))f.nanEncountered=!0;else{if(!isNaN(d))return _=((v=(m=h*(i+4*p+a)/12)+(g=h*(a+4*d+o)/12))-s)/15,u>c?(f.maxDepthCount++,v+_):Math.abs(_)t?r=n:e=n,n=e+r>>1}while(n>e);var i=c[n+1]-c[n];return i&&(i=(t-c[n+1])/i),(n+1+i)/s}var p=2*f(1)/y*o/r,g=function(t,e){var r=f(n(m(e))),a=i(r)*t;return r/=p,[a,e>=0?r:-r]};return g.invert=function(t,e){var r;return n(e*=p)<1&&(r=d(e)*S(a(n(e))*o)),[t/i(n(e)),r]},g}function re(t,e){return n(t[0]-e[0])=0;--l)n=(e=t[1][l])[0][0],i=e[0][1],a=e[1][1],o=e[2][0],s=e[2][1],c.push(ne([[o-v,s-v],[o-v,a+v],[n+v,a+v],[n+v,i-v]],30));return{type:"Polygon",coordinates:[r.merge(c)]}}function ae(t,r,n){var i,a;function o(e,n){for(var i=n<0?-1:1,a=r[+(n<0)],o=0,s=a.length-1;oa[o][2][0];++o);var l=t(e-a[o][1][0],n);return l[0]+=t(a[o][1][0],i*n>i*a[o][0][1]?a[o][0][1]:n)[0],l}n?o.invert=n(o):t.invert&&(o.invert=function(e,n){for(var i=a[+(n<0)],s=r[+(n<0)],l=0,c=i.length;lo&&(r=a,a=o,o=r),[[n,a],[i,o]]}))})),s):r.map((function(t){return t.map((function(t){return[[t[0][0]*A,t[0][1]*A],[t[1][0]*A,t[1][1]*A],[t[2][0]*A,t[2][1]*A]]}))}))},null!=r&&s.lobes(r),s}Kt.invert=function(t,e){return e>-.7109889596207567?W.invert(t,e-.0528035274542):Q.invert(t,e)},Qt.invert=function(t,e){return n(e)>.7109889596207567?W.invert(t,e+(e>0?.0528035274542:-.0528035274542)):Q.invert(t,e)};var oe=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var se=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var le=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var ce=[[[[-180,0],[-90,90],[0,0]],[[0,0],[90,90],[180,0]]],[[[-180,0],[-90,-90],[0,0]],[[0,0],[90,-90],[180,0]]]];var ue=[[[[-180,35],[-30,90],[0,35]],[[0,35],[30,90],[180,35]]],[[[-180,-10],[-102,-90],[-65,-10]],[[-65,-10],[5,-90],[77,-10]],[[77,-10],[103,-90],[180,-10]]]];var fe=[[[[-180,0],[-110,90],[-40,0]],[[-40,0],[0,90],[40,0]],[[40,0],[110,90],[180,0]]],[[[-180,0],[-110,-90],[-40,0]],[[-40,0],[0,-90],[40,0]],[[40,0],[110,-90],[180,0]]]];function he(t,e){return[3/k*t*L(y*y/3-e*e),e]}function pe(t){function e(e,r){if(n(n(r)-x)2)return null;var o=(e/=2)*e,s=(r/=2)*r,l=2*r/(1+o+s);return l=h((1+l)/(1-l),1/t),[a(2*e,1-o-s)/t,S((l-1)/(l+1))]},e}he.invert=function(t,e){return[k/3*t/L(y*y/3-e*e),e]};var de=y/w;function me(t,e){return[t*(1+L(o(e)))/2,e/(o(e/2)*o(t/6))]}function ge(t,e){var r=t*t,n=e*e;return[t*(.975534+n*(-.0143059*r-.119161+-.0547009*n)),e*(1.00384+r*(.0802894+-.02855*n+199025e-9*r)+n*(.0998909+-.0491032*n))]}function ve(t,e){return[m(t)/o(e),g(e)*o(t)]}function ye(t){var e=o(t),r=g(b+t/2);function i(i,a){var o=a-t,s=n(o)=0;)h=(f=t[u])[0]+l*(i=h)-c*p,p=f[1]+l*p+c*i;return[h=l*(i=h)-c*p,p=l*p+c*i]}return r.invert=function(r,s){var l=20,c=r,u=s;do{for(var f,h=e,p=t[h],d=p[0],g=p[1],v=0,y=0;--h>=0;)v=d+c*(f=v)-u*y,y=g+c*y+u*f,d=(p=t[h])[0]+c*(f=d)-u*g,g=p[1]+c*g+u*f;var x,b,_=(v=d+c*(f=v)-u*y)*v+(y=g+c*y+u*f)*y;c-=x=((d=c*(f=d)-u*g-r)*v+(g=c*g+u*f-s)*y)/_,u-=b=(g*v-d*y)/_}while(n(x)+n(b)>1e-12&&--l>0);if(l){var w=L(c*c+u*u),T=2*i(.5*w),k=m(T);return[a(c*k,w*o(T)),w?S(u*k/w):0]}},r}me.invert=function(t,e){var r=n(t),i=n(e),a=v,s=x;iv||n(b)>v)&&--a>0);return a&&[r,i]},ve.invert=function(t,e){var r=t*t,n=e*e+1,i=r+n,a=t?_*L((i-L(i*i-4*r))/r):1/L(n);return[S(t*a),d(e)*E(a)]},xe.invert=function(t,e){return[t,2.5*i(s(.8*e))-.625*y]};var _e=[[.9972523,0],[.0052513,-.0041175],[.0074606,.0048125],[-.0153783,-.1968253],[.0636871,-.1408027],[.3660976,-.2937382]],we=[[.98879,0],[0,0],[-.050909,0],[0,0],[.075528,0]],Te=[[.984299,0],[.0211642,.0037608],[-.1036018,-.0575102],[-.0329095,-.0320119],[.0499471,.1223335],[.026046,.0899805],[7388e-7,-.1435792],[.0075848,-.1334108],[-.0216473,.0776645],[-.0225161,.0853673]],ke=[[.9245,0],[0,0],[.01943,0]],Ae=[[.721316,0],[0,0],[-.00881625,-.00617325]];function Me(t,r){var n=e.geoProjection(be(t)).rotate(r).clipAngle(90),i=e.geoRotation(r),a=n.center;return delete n.rotate,n.center=function(t){return arguments.length?a(i(t)):i.invert(a())},n}var Se=L(6),Ee=L(7);function Le(t,e){var r=S(7*m(e)/(3*Se));return[Se*t*(2*o(2*r/3)-1)/Ee,9*m(r/3)/Ee]}function Ce(t,e){for(var r,i=(1+_)*m(e),a=e,s=0;s<25&&(a-=r=(m(a/2)+m(a)-i)/(.5*o(a/2)+o(a)),!(n(r)1e-12&&--l>0);return[t/(.84719-.13063*(i=s*s)+(o=i*(a=i*i))*o*(.05494*i-.04515-.02326*a+.00331*o)),s]},Oe.invert=function(t,e){for(var r=e/2,i=0,a=1/0;i<10&&n(a)>v;++i){var s=o(e/2);e-=a=(e-g(e/2)-r)/(1-.5/(s*s))}return[2*t/(1+o(e)),e]};var ze=[[[[-180,0],[-90,90],[0,0]],[[0,0],[90,90],[180,0]]],[[[-180,0],[-90,-90],[0,0]],[[0,0],[90,-90],[180,0]]]];function De(t,e){var r=m(e),i=o(e),a=d(t);if(0===t||n(e)===x)return[0,e];if(0===e)return[t,0];if(n(t)===x)return[t*i,x*r];var s=y/(2*t)-2*t/y,l=2*e/y,c=(1-l*l)/(r-l),u=s*s,f=c*c,h=1+u/f,p=1+f/u,g=(s*r/c-s/2)/h,v=(f*r/u+c/2)/p,b=v*v-(f*r*r/u+c*r-1)/p;return[x*(g+L(g*g+i*i/h)*a),x*(v+L(b<0?0:b)*d(-e*s)*a)]}De.invert=function(t,e){var r=(t/=x)*t,n=r+(e/=x)*e,i=y*y;return[t?(n-1+L((1-n)*(1-n)+4*r))/(2*t)*x:0,V((function(t){return n*(y*m(t)-2*t)*y+4*t*t*(e-m(t))+2*y*t-i*e}),0)]};function Re(t,e){var r=e*e;return[t,e*(1.0148+r*r*(.23185+r*(.02406*r-.14499)))]}function Fe(t,e){if(n(e)=0;)if(n=e[s],r[0]===n[0]&&r[1]===n[1]){if(a)return[a,r];a=r}}}(e.face,r.face),i=Be(n.map(r.project),n.map(e.project));e.transform=r.transform?Ne(r.transform,i):i;for(var a=r.edges,o=0,s=a.length;o1.790857183?e=1.790857183:e<-1.790857183&&(e=-1.790857183);var r,i=e;do{var a=i*i;i-=r=(i*(1.0148+a*a*(.23185+a*(.02406*a-.14499)))-e)/(1.0148+a*a*(5*.23185+a*(.21654*a-1.01493)))}while(n(r)>v);return[t,i]},Fe.invert=function(t,e){if(n(e)v&&--s>0);return l=g(a),[(n(e)n^p>n&&r<(h-c)*(n-u)/(p-u)+c&&(i=!i)}return i}(t[0],r))return t.push(e),!0}))||t.push([e])})),nr=[],t.length?t.length>1?{type:"MultiPolygon",coordinates:t}:{type:"Polygon",coordinates:t[0]}:null}};function sr(t){var r=t(x,0)[0]-t(-x,0)[0];function i(e,i){var a=n(e)0?e-y:e+y,i),s=(o[0]-o[1])*_,l=(o[0]+o[1])*_;if(a)return[s,l];var c=r*_,u=s>0^l>0?-1:1;return[u*s-d(l)*c,u*l-d(s)*c]}return t.invert&&(i.invert=function(e,i){var a=(e+i)*_,o=(i-e)*_,s=n(a)<.5*r&&n(o)<.5*r;if(!s){var l=r*_,c=a>0^o>0?-1:1,u=-c*e+(o>0?1:-1)*l,f=-c*i+(a>0?1:-1)*l;a=(-u-f)*_,o=(u-f)*_}var h=t.invert(a,o);return s||(h[0]+=a>0?y:-y),h}),e.geoProjection(i).rotate([-90,-90,45]).clipAngle(179.999)}function lr(){return sr(Ut).scale(111.48)}function cr(t){var e=m(t);function r(r,n){var a=e?g(r*e/2)/e:r/2;if(!n)return[2*a,-t];var s=2*i(a*m(n)),l=1/g(n);return[m(s)*l,n+(1-o(s))*l-t]}return r.invert=function(r,a){if(n(a+=t)v&&--u>0);var d=r*(f=g(c)),x=g(n(a)0?x:-x)*(h+o*(d-c)/2+o*o*(d-2*h+c)/2)]}function hr(t,e){var r=function(t){function e(e,r){var n=o(r),i=(t-1)/(t-n*o(e));return[i*n*m(e),i*m(r)]}return e.invert=function(e,r){var n=e*e+r*r,i=L(n),o=(t-L(1-n*(t+1)/(t-1)))/((t-1)/i+i/(t-1));return[a(e*o,i*L(1-o*o)),i?S(r*o/i):0]},e}(t);if(!e)return r;var n=o(e),i=m(e);function s(e,a){var o=r(e,a),s=o[1],l=s*i/(t-1)+n;return[o[0]*n/l,s/l]}return s.invert=function(e,a){var o=(t-1)/(t-1-a*i);return r.invert(o*e,o*a*n)},s}ur.forEach((function(t){t[1]*=1.0144})),fr.invert=function(t,e){var r=e/x,i=90*r,a=f(18,n(i/5)),o=u(0,l(a));do{var s=ur[o][1],c=ur[o+1][1],h=ur[f(19,o+2)][1],p=h-s,d=h-2*c+s,m=2*(n(r)-c)/p,g=d/p,v=m*(1-g*m*(1-2*g*m));if(v>=0||1===o){i=(e>=0?5:-5)*(v+a);var y,b=50;do{v=(a=f(18,n(i)/5))-(o=l(a)),s=ur[o][1],c=ur[o+1][1],h=ur[f(19,o+2)][1],i-=(y=(e>=0?x:-x)*(c+v*(h-s)/2+v*v*(h-2*c+s)/2)-e)*A}while(n(y)>1e-12&&--b>0);break}}while(--o>=0);var _=ur[o][0],w=ur[o+1][0],T=ur[f(19,o+2)][0];return[t/(w+v*(T-_)/2+v*v*(T-2*w+_)/2),i*M]};var pr=-179.9999,dr=179.9999,mr=-89.9999;function gr(t){return t.length>0}function vr(t){return-90===t||90===t?[0,t]:[-180,(e=t,Math.floor(1e4*e)/1e4)];var e}function yr(t){var e=t[0],r=t[1],n=!1;return e<=pr?(e=-180,n=!0):e>=dr&&(e=180,n=!0),r<=mr?(r=-90,n=!0):r>=89.9999&&(r=90,n=!0),n?[e,r]:t}function xr(t){return t.map(yr)}function br(t,e,r){for(var n=0,i=t.length;n=dr||u<=mr||u>=89.9999){a[o]=yr(l);for(var f=o+1;fpr&&pmr&&d<89.9999)break}if(f===o+1)continue;if(o){var m={index:-1,polygon:e,ring:a.slice(0,o+1)};m.ring[m.ring.length-1]=vr(u),r[r.length-1]=m}else r.pop();if(f>=s)break;r.push({index:-1,polygon:e,ring:a=a.slice(f-1)}),a[0]=vr(a[0][1]),o=-1,s=a.length}}}}function _r(t){var e,r,n,i,a,o,s=t.length,l={},c={};for(e=0;e0?y-l:l)*A],u=e.geoProjection(t(s)).rotate(c),f=e.geoRotation(c),h=u.center;return delete u.rotate,u.center=function(t){return arguments.length?h(f(t)):f.invert(h())},u.clipAngle(90)}function Mr(t){var r=o(t);function n(t,n){var i=e.geoGnomonicRaw(t,n);return i[0]*=r,i}return n.invert=function(t,n){return e.geoGnomonicRaw.invert(t/r,n)},n}function Sr(t,e){return Ar(Mr,t,e)}function Er(t){if(!(t*=2))return e.geoAzimuthalEquidistantRaw;var r=-t/2,n=-r,i=t*t,s=g(n),l=.5/m(n);function c(e,a){var s=E(o(a)*o(e-r)),l=E(o(a)*o(e-n));return[((s*=s)-(l*=l))/(2*t),(a<0?-1:1)*L(4*i*l-(i-s+l)*(i-s+l))/(2*t)]}return c.invert=function(t,e){var i,c,u=e*e,f=o(L(u+(i=t+r)*i)),h=o(L(u+(i=t+n)*i));return[a(c=f-h,i=(f+h)*s),(e<0?-1:1)*E(L(i*i+c*c)*l)]},c}function Lr(t,e){return Ar(Er,t,e)}function Cr(t,e){if(n(e)v&&--l>0);return[d(t)*(L(a*a+4)+a)*y/4,x*s]};var Rr=4*y+3*L(3),Fr=2*L(2*y*L(3)/Rr),Br=Y(Fr*L(3)/y,Fr,Rr/6);function Nr(t,e){return[t*L(1-3*e*e/(y*y)),e]}function jr(t,e){var r=o(e),n=o(t)*r,i=1-n,s=o(t=a(m(t)*r,-m(e))),l=m(t);return[l*(r=L(1-n*n))-s*i,-s*r-l*i]}function Ur(t,e){var r=O(t,e);return[(r[0]+t/x)/2,(r[1]+e)/2]}Nr.invert=function(t,e){return[t/L(1-3*e*e/(y*y)),e]},jr.invert=function(t,e){var r=(t*t+e*e)/-2,n=L(-r*(2+r)),i=e*r+t*n,o=t*r-e*n,s=L(o*o+i*i);return[a(n*i,s*(1+r)),s?-S(n*o/s):0]},Ur.invert=function(t,e){var r=t,i=e,a=25;do{var s,l=o(i),c=m(i),u=m(2*i),f=c*c,h=l*l,p=m(r),d=o(r/2),g=m(r/2),y=g*g,b=1-h*d*d,_=b?E(l*d)*L(s=1/b):s=0,w=.5*(2*_*l*g+r/x)-t,T=.5*(_*c+i)-e,k=.5*s*(h*y+_*l*d*f)+.5/x,A=s*(p*u/4-_*c*g),M=.125*s*(u*g-_*c*h*p),S=.5*s*(f*d+_*y*l)+.5,C=A*M-S*k,P=(T*A-w*S)/C,I=(w*M-T*k)/C;r-=P,i-=I}while((n(P)>v||n(I)>v)&&--a>0);return[r,i]},t.geoNaturalEarth=e.geoNaturalEarth1,t.geoNaturalEarthRaw=e.geoNaturalEarth1Raw,t.geoAiry=function(){var t=x,r=e.geoProjectionMutator(I),n=r(t);return n.radius=function(e){return arguments.length?r(t=e*M):t*A},n.scale(179.976).clipAngle(147)},t.geoAiryRaw=I,t.geoAitoff=function(){return e.geoProjection(O).scale(152.63)},t.geoAitoffRaw=O,t.geoArmadillo=function(){var t=20*M,r=t>=0?1:-1,n=g(r*t),i=e.geoProjectionMutator(z),s=i(t),l=s.stream;return s.parallel=function(e){return arguments.length?(n=g((r=(t=e*M)>=0?1:-1)*t),i(t)):t*A},s.stream=function(e){var i=s.rotate(),c=l(e),u=(s.rotate([0,0]),l(e)),f=s.precision();return s.rotate(i),c.sphere=function(){u.polygonStart(),u.lineStart();for(var e=-180*r;r*e<180;e+=90*r)u.point(e,90*r);if(t)for(;r*(e-=3*r*f)>=-180;)u.point(e,r*-a(o(e*M/2),n)*A);u.lineEnd(),u.polygonEnd()},c},s.scale(218.695).center([0,28.0974])},t.geoArmadilloRaw=z,t.geoAugust=function(){return e.geoProjection(D).scale(66.1603)},t.geoAugustRaw=D,t.geoBaker=function(){return e.geoProjection(B).scale(112.314)},t.geoBakerRaw=B,t.geoBerghaus=function(){var t=5,r=e.geoProjectionMutator(N),n=r(t),i=n.stream,s=-o(.01*M),l=m(.01*M);return n.lobes=function(e){return arguments.length?r(t=+e):t},n.stream=function(e){var r=n.rotate(),c=i(e),u=(n.rotate([0,0]),i(e));return n.rotate(r),c.sphere=function(){u.polygonStart(),u.lineStart();for(var e=0,r=360/t,n=2*y/t,i=90-180/t,c=x;e=0;)t.point((e=r[i])[0],e[1]);t.lineEnd(),t.polygonEnd()},t},n.scale(79.4187).parallel(45).clipAngle(179.999)},t.geoHammerRetroazimuthalRaw=Vt,t.geoHealpix=function(){var t=4,n=e.geoProjectionMutator(Yt),i=n(t),a=i.stream;return i.lobes=function(e){return arguments.length?n(t=+e):t},i.stream=function(n){var o=i.rotate(),s=a(n),l=(i.rotate([0,0]),a(n));return i.rotate(o),s.sphere=function(){var n,i;e.geoStream((n=180/t,i=[].concat(r.range(-180,180+n/2,n).map(Wt),r.range(180,-180-n/2,-n).map(Xt)),{type:"Polygon",coordinates:[180===n?i.map(Zt):i]}),l)},s},i.scale(239.75)},t.geoHealpixRaw=Yt,t.geoHill=function(){var t=1,r=e.geoProjectionMutator(Jt),n=r(t);return n.ratio=function(e){return arguments.length?r(t=+e):t},n.scale(167.774).center([0,18.67])},t.geoHillRaw=Jt,t.geoHomolosine=function(){return e.geoProjection(Qt).scale(152.63)},t.geoHomolosineRaw=Qt,t.geoHufnagel=function(){var t=1,r=0,n=45*M,i=2,a=e.geoProjectionMutator($t),o=a(t,r,n,i);return o.a=function(e){return arguments.length?a(t=+e,r,n,i):t},o.b=function(e){return arguments.length?a(t,r=+e,n,i):r},o.psiMax=function(e){return arguments.length?a(t,r,n=+e*M,i):n*A},o.ratio=function(e){return arguments.length?a(t,r,n,i=+e):i},o.scale(180.739)},t.geoHufnagelRaw=$t,t.geoHyperelliptical=function(){var t=0,r=2.5,n=1.183136,i=e.geoProjectionMutator(ee),a=i(t,r,n);return a.alpha=function(e){return arguments.length?i(t=+e,r,n):t},a.k=function(e){return arguments.length?i(t,r=+e,n):r},a.gamma=function(e){return arguments.length?i(t,r,n=+e):n},a.scale(152.63)},t.geoHyperellipticalRaw=ee,t.geoInterrupt=ae,t.geoInterruptedBoggs=function(){return ae(J,oe).scale(160.857)},t.geoInterruptedHomolosine=function(){return ae(Qt,se).scale(152.63)},t.geoInterruptedMollweide=function(){return ae(W,le).scale(169.529)},t.geoInterruptedMollweideHemispheres=function(){return ae(W,ce).scale(169.529).rotate([20,0])},t.geoInterruptedSinuMollweide=function(){return ae(Kt,ue,H).rotate([-20,-55]).scale(164.263).center([0,-5.4036])},t.geoInterruptedSinusoidal=function(){return ae(Q,fe).scale(152.63).rotate([-20,0])},t.geoKavrayskiy7=function(){return e.geoProjection(he).scale(158.837)},t.geoKavrayskiy7Raw=he,t.geoLagrange=function(){var t=.5,r=e.geoProjectionMutator(pe),n=r(t);return n.spacing=function(e){return arguments.length?r(t=+e):t},n.scale(124.75)},t.geoLagrangeRaw=pe,t.geoLarrivee=function(){return e.geoProjection(me).scale(97.2672)},t.geoLarriveeRaw=me,t.geoLaskowski=function(){return e.geoProjection(ge).scale(139.98)},t.geoLaskowskiRaw=ge,t.geoLittrow=function(){return e.geoProjection(ve).scale(144.049).clipAngle(89.999)},t.geoLittrowRaw=ve,t.geoLoximuthal=function(){return K(ye).parallel(40).scale(158.837)},t.geoLoximuthalRaw=ye,t.geoMiller=function(){return e.geoProjection(xe).scale(108.318)},t.geoMillerRaw=xe,t.geoModifiedStereographic=Me,t.geoModifiedStereographicRaw=be,t.geoModifiedStereographicAlaska=function(){return Me(_e,[152,-64]).scale(1400).center([-160.908,62.4864]).clipAngle(30).angle(7.8)},t.geoModifiedStereographicGs48=function(){return Me(we,[95,-38]).scale(1e3).clipAngle(55).center([-96.5563,38.8675])},t.geoModifiedStereographicGs50=function(){return Me(Te,[120,-45]).scale(359.513).clipAngle(55).center([-117.474,53.0628])},t.geoModifiedStereographicMiller=function(){return Me(ke,[-20,-18]).scale(209.091).center([20,16.7214]).clipAngle(82)},t.geoModifiedStereographicLee=function(){return Me(Ae,[165,10]).scale(250).clipAngle(130).center([-165,-10])},t.geoMollweide=function(){return e.geoProjection(W).scale(169.529)},t.geoMollweideRaw=W,t.geoMtFlatPolarParabolic=function(){return e.geoProjection(Le).scale(164.859)},t.geoMtFlatPolarParabolicRaw=Le,t.geoMtFlatPolarQuartic=function(){return e.geoProjection(Ce).scale(188.209)},t.geoMtFlatPolarQuarticRaw=Ce,t.geoMtFlatPolarSinusoidal=function(){return e.geoProjection(Pe).scale(166.518)},t.geoMtFlatPolarSinusoidalRaw=Pe,t.geoNaturalEarth2=function(){return e.geoProjection(Ie).scale(175.295)},t.geoNaturalEarth2Raw=Ie,t.geoNellHammer=function(){return e.geoProjection(Oe).scale(152.63)},t.geoNellHammerRaw=Oe,t.geoInterruptedQuarticAuthalic=function(){return ae(j(1/0),ze).rotate([20,0]).scale(152.63)},t.geoNicolosi=function(){return e.geoProjection(De).scale(127.267)},t.geoNicolosiRaw=De,t.geoPatterson=function(){return e.geoProjection(Re).scale(139.319)},t.geoPattersonRaw=Re,t.geoPolyconic=function(){return e.geoProjection(Fe).scale(103.74)},t.geoPolyconicRaw=Fe,t.geoPolyhedral=Ve,t.geoPolyhedralButterfly=function(t){t=t||function(t){var r=e.geoCentroid({type:"MultiPoint",coordinates:t});return e.geoGnomonic().scale(1).translate([0,0]).rotate([-r[0],-r[1]])};var r=Ye.map((function(e){return{face:e,project:t(e)}}));return[-1,0,0,1,0,1,4,5].forEach((function(t,e){var n=r[t];n&&(n.children||(n.children=[])).push(r[e])})),Ve(r[0],(function(t,e){return r[t<-y/2?e<0?6:4:t<0?e<0?2:0:t0?[-r[0],0]:[180-r[0],180])};var r=Ye.map((function(e){return{face:e,project:t(e)}}));return[-1,0,0,1,0,1,4,5].forEach((function(t,e){var n=r[t];n&&(n.children||(n.children=[])).push(r[e])})),Ve(r[0],(function(t,e){return r[t<-y/2?e<0?6:4:t<0?e<0?2:0:t2||a[0]!=e[0]||a[1]!=e[1])&&(n.push(a),e=a)}return 1===n.length&&t.length>1&&n.push(r(t[t.length-1])),n}function a(t){return t.map(i)}function o(t){if(null==t)return t;var e;switch(t.type){case"GeometryCollection":e={type:"GeometryCollection",geometries:t.geometries.map(o)};break;case"Point":e={type:"Point",coordinates:r(t.coordinates)};break;case"MultiPoint":e={type:t.type,coordinates:n(t.coordinates)};break;case"LineString":e={type:t.type,coordinates:i(t.coordinates)};break;case"MultiLineString":case"Polygon":e={type:t.type,coordinates:a(t.coordinates)};break;case"MultiPolygon":e={type:"MultiPolygon",coordinates:t.coordinates.map(a)};break;default:return t}return null!=t.bbox&&(e.bbox=t.bbox),e}function s(t){var e={type:"Feature",properties:t.properties,geometry:o(t.geometry)};return null!=t.id&&(e.id=t.id),null!=t.bbox&&(e.bbox=t.bbox),e}if(null!=t)switch(t.type){case"Feature":return s(t);case"FeatureCollection":var l={type:"FeatureCollection",features:t.features.map(s)};return null!=t.bbox&&(l.bbox=t.bbox),l;default:return o(t)}return t},t.geoQuincuncial=sr,t.geoRectangularPolyconic=function(){return K(cr).scale(131.215)},t.geoRectangularPolyconicRaw=cr,t.geoRobinson=function(){return e.geoProjection(fr).scale(152.63)},t.geoRobinsonRaw=fr,t.geoSatellite=function(){var t=2,r=0,n=e.geoProjectionMutator(hr),i=n(t,r);return i.distance=function(e){return arguments.length?n(t=+e,r):t},i.tilt=function(e){return arguments.length?n(t,r=e*M):r*A},i.scale(432.147).clipAngle(E(1/t)*A-1e-6)},t.geoSatelliteRaw=hr,t.geoSinuMollweide=function(){return e.geoProjection(Kt).rotate([-20,-55]).scale(164.263).center([0,-5.4036])},t.geoSinuMollweideRaw=Kt,t.geoSinusoidal=function(){return e.geoProjection(Q).scale(152.63)},t.geoSinusoidalRaw=Q,t.geoStitch=function(t){if(null==t)return t;switch(t.type){case"Feature":return wr(t);case"FeatureCollection":var e={type:"FeatureCollection",features:t.features.map(wr)};return null!=t.bbox&&(e.bbox=t.bbox),e;default:return Tr(t)}},t.geoTimes=function(){return e.geoProjection(kr).scale(146.153)},t.geoTimesRaw=kr,t.geoTwoPointAzimuthal=Sr,t.geoTwoPointAzimuthalRaw=Mr,t.geoTwoPointAzimuthalUsa=function(){return Sr([-158,21.5],[-77,39]).clipAngle(60).scale(400)},t.geoTwoPointEquidistant=Lr,t.geoTwoPointEquidistantRaw=Er,t.geoTwoPointEquidistantUsa=function(){return Lr([-158,21.5],[-77,39]).clipAngle(130).scale(122.571)},t.geoVanDerGrinten=function(){return e.geoProjection(Cr).scale(79.4183)},t.geoVanDerGrintenRaw=Cr,t.geoVanDerGrinten2=function(){return e.geoProjection(Pr).scale(79.4183)},t.geoVanDerGrinten2Raw=Pr,t.geoVanDerGrinten3=function(){return e.geoProjection(Ir).scale(79.4183)},t.geoVanDerGrinten3Raw=Ir,t.geoVanDerGrinten4=function(){return e.geoProjection(Or).scale(127.16)},t.geoVanDerGrinten4Raw=Or,t.geoWagner=Dr,t.geoWagner7=function(){return Dr().poleline(65).parallels(60).inflation(0).ratio(200).scale(172.633)},t.geoWagnerRaw=zr,t.geoWagner4=function(){return e.geoProjection(Br).scale(176.84)},t.geoWagner4Raw=Br,t.geoWagner6=function(){return e.geoProjection(Nr).scale(152.63)},t.geoWagner6Raw=Nr,t.geoWiechel=function(){return e.geoProjection(jr).rotate([0,-90,45]).scale(124.75).clipAngle(179.999)},t.geoWiechelRaw=jr,t.geoWinkel3=function(){return e.geoProjection(Ur).scale(158.837)},t.geoWinkel3Raw=Ur,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":102,"d3-geo":109}],109:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-array")):i((n=n||self).d3=n.d3||{},n.d3)}(this,(function(t,e){"use strict";function r(){return new n}function n(){this.reset()}n.prototype={constructor:n,reset:function(){this.s=this.t=0},add:function(t){a(i,t,this.t),a(this,i.s,this.s),this.s?this.t+=i.t:this.s=i.t},valueOf:function(){return this.s}};var i=new n;function a(t,e,r){var n=t.s=e+r,i=n-e,a=n-i;t.t=e-a+(r-i)}var o=1e-6,s=Math.PI,l=s/2,c=s/4,u=2*s,f=180/s,h=s/180,p=Math.abs,d=Math.atan,m=Math.atan2,g=Math.cos,v=Math.ceil,y=Math.exp,x=Math.log,b=Math.pow,_=Math.sin,w=Math.sign||function(t){return t>0?1:t<0?-1:0},T=Math.sqrt,k=Math.tan;function A(t){return t>1?0:t<-1?s:Math.acos(t)}function M(t){return t>1?l:t<-1?-l:Math.asin(t)}function S(t){return(t=_(t/2))*t}function E(){}function L(t,e){t&&P.hasOwnProperty(t.type)&&P[t.type](t,e)}var C={Feature:function(t,e){L(t.geometry,e)},FeatureCollection:function(t,e){for(var r=t.features,n=-1,i=r.length;++n=0?1:-1,i=n*r,a=g(e=(e*=h)/2+c),o=_(e),s=N*o,l=B*a+s*g(i),u=s*n*_(i);j.add(m(u,l)),F=t,B=a,N=o}function W(t){return[m(t[1],t[0]),M(t[2])]}function X(t){var e=t[0],r=t[1],n=g(r);return[n*g(e),n*_(e),_(r)]}function Z(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}function J(t,e){return[t[1]*e[2]-t[2]*e[1],t[2]*e[0]-t[0]*e[2],t[0]*e[1]-t[1]*e[0]]}function K(t,e){t[0]+=e[0],t[1]+=e[1],t[2]+=e[2]}function Q(t,e){return[t[0]*e,t[1]*e,t[2]*e]}function $(t){var e=T(t[0]*t[0]+t[1]*t[1]+t[2]*t[2]);t[0]/=e,t[1]/=e,t[2]/=e}var tt,et,rt,nt,it,at,ot,st,lt,ct,ut,ft,ht,pt,dt,mt,gt,vt,yt,xt,bt,_t,wt,Tt,kt,At,Mt=r(),St={point:Et,lineStart:Ct,lineEnd:Pt,polygonStart:function(){St.point=It,St.lineStart=Ot,St.lineEnd=zt,Mt.reset(),V.polygonStart()},polygonEnd:function(){V.polygonEnd(),St.point=Et,St.lineStart=Ct,St.lineEnd=Pt,j<0?(tt=-(rt=180),et=-(nt=90)):Mt>o?nt=90:Mt<-o&&(et=-90),ct[0]=tt,ct[1]=rt},sphere:function(){tt=-(rt=180),et=-(nt=90)}};function Et(t,e){lt.push(ct=[tt=t,rt=t]),ent&&(nt=e)}function Lt(t,e){var r=X([t*h,e*h]);if(st){var n=J(st,r),i=J([n[1],-n[0],0],n);$(i),i=W(i);var a,o=t-it,s=o>0?1:-1,l=i[0]*f*s,c=p(o)>180;c^(s*itnt&&(nt=a):c^(s*it<(l=(l+360)%360-180)&&lnt&&(nt=e)),c?tDt(tt,rt)&&(rt=t):Dt(t,rt)>Dt(tt,rt)&&(tt=t):rt>=tt?(trt&&(rt=t)):t>it?Dt(tt,t)>Dt(tt,rt)&&(rt=t):Dt(t,rt)>Dt(tt,rt)&&(tt=t)}else lt.push(ct=[tt=t,rt=t]);ent&&(nt=e),st=r,it=t}function Ct(){St.point=Lt}function Pt(){ct[0]=tt,ct[1]=rt,St.point=Et,st=null}function It(t,e){if(st){var r=t-it;Mt.add(p(r)>180?r+(r>0?360:-360):r)}else at=t,ot=e;V.point(t,e),Lt(t,e)}function Ot(){V.lineStart()}function zt(){It(at,ot),V.lineEnd(),p(Mt)>o&&(tt=-(rt=180)),ct[0]=tt,ct[1]=rt,st=null}function Dt(t,e){return(e-=t)<0?e+360:e}function Rt(t,e){return t[0]-e[0]}function Ft(t,e){return t[0]<=t[1]?t[0]<=e&&e<=t[1]:es?t+Math.round(-t/u)*u:t,e]}function Qt(t,e,r){return(t%=u)?e||r?Jt(te(t),ee(e,r)):te(t):e||r?ee(e,r):Kt}function $t(t){return function(e,r){return[(e+=t)>s?e-u:e<-s?e+u:e,r]}}function te(t){var e=$t(t);return e.invert=$t(-t),e}function ee(t,e){var r=g(t),n=_(t),i=g(e),a=_(e);function o(t,e){var o=g(e),s=g(t)*o,l=_(t)*o,c=_(e),u=c*r+s*n;return[m(l*i-u*a,s*r-c*n),M(u*i+l*a)]}return o.invert=function(t,e){var o=g(e),s=g(t)*o,l=_(t)*o,c=_(e),u=c*i-l*a;return[m(l*i+c*a,s*r+u*n),M(u*r-s*n)]},o}function re(t){function e(e){return(e=t(e[0]*h,e[1]*h))[0]*=f,e[1]*=f,e}return t=Qt(t[0]*h,t[1]*h,t.length>2?t[2]*h:0),e.invert=function(e){return(e=t.invert(e[0]*h,e[1]*h))[0]*=f,e[1]*=f,e},e}function ne(t,e,r,n,i,a){if(r){var o=g(e),s=_(e),l=n*r;null==i?(i=e+n*u,a=e-l/2):(i=ie(o,i),a=ie(o,a),(n>0?ia)&&(i+=n*u));for(var c,f=i;n>0?f>a:f1&&e.push(e.pop().concat(e.shift()))},result:function(){var r=e;return e=[],t=null,r}}}function oe(t,e){return p(t[0]-e[0])=0;--a)i.point((f=u[a])[0],f[1]);else n(p.x,p.p.x,-1,i);p=p.p}u=(p=p.o).z,d=!d}while(!p.v);i.lineEnd()}}}function ce(t){if(e=t.length){for(var e,r,n=0,i=t[0];++n=0?1:-1,z=O*I,D=z>s,R=T*C;if(ue.add(m(R*O*_(z),k*P+R*g(z))),f+=D?I+O*u:I,D^b>=r^E>=r){var F=J(X(x),X(S));$(F);var B=J(a,F);$(B);var N=(D^I>=0?-1:1)*M(B[2]);(n>N||n===N&&(F[0]||F[1]))&&(h+=D^I>=0?1:-1)}}return(f<-o||f0){for(h||(a.polygonStart(),h=!0),a.lineStart(),t=0;t1&&2&i&&c.push(c.pop().concat(c.shift())),s.push(c.filter(de))}return p}}function de(t){return t.length>1}function me(t,e){return((t=t.x)[0]<0?t[1]-l-o:l-t[1])-((e=e.x)[0]<0?e[1]-l-o:l-e[1])}var ge=pe((function(){return!0}),(function(t){var e,r=NaN,n=NaN,i=NaN;return{lineStart:function(){t.lineStart(),e=1},point:function(a,c){var u=a>0?s:-s,f=p(a-r);p(f-s)0?l:-l),t.point(i,n),t.lineEnd(),t.lineStart(),t.point(u,n),t.point(a,n),e=0):i!==u&&f>=s&&(p(r-i)o?d((_(e)*(a=g(n))*_(r)-_(n)*(i=g(e))*_(t))/(i*a*s)):(e+n)/2}(r,n,a,c),t.point(i,n),t.lineEnd(),t.lineStart(),t.point(u,n),e=0),t.point(r=a,n=c),i=u},lineEnd:function(){t.lineEnd(),r=n=NaN},clean:function(){return 2-e}}}),(function(t,e,r,n){var i;if(null==t)i=r*l,n.point(-s,i),n.point(0,i),n.point(s,i),n.point(s,0),n.point(s,-i),n.point(0,-i),n.point(-s,-i),n.point(-s,0),n.point(-s,i);else if(p(t[0]-e[0])>o){var a=t[0]0,i=p(e)>o;function a(t,r){return g(t)*g(r)>e}function l(t,r,n){var i=[1,0,0],a=J(X(t),X(r)),l=Z(a,a),c=a[0],u=l-c*c;if(!u)return!n&&t;var f=e*l/u,h=-e*c/u,d=J(i,a),m=Q(i,f);K(m,Q(a,h));var g=d,v=Z(m,g),y=Z(g,g),x=v*v-y*(Z(m,m)-1);if(!(x<0)){var b=T(x),_=Q(g,(-v-b)/y);if(K(_,m),_=W(_),!n)return _;var w,k=t[0],A=r[0],M=t[1],S=r[1];A0^_[1]<(p(_[0]-k)s^(k<=_[0]&&_[0]<=A)){var C=Q(g,(-v+b)/y);return K(C,m),[_,W(C)]}}}function c(e,r){var i=n?t:s-t,a=0;return e<-i?a|=1:e>i&&(a|=2),r<-i?a|=4:r>i&&(a|=8),a}return pe(a,(function(t){var e,r,o,u,f;return{lineStart:function(){u=o=!1,f=1},point:function(h,p){var d,m=[h,p],g=a(h,p),v=n?g?0:c(h,p):g?c(h+(h<0?s:-s),p):0;if(!e&&(u=o=g)&&t.lineStart(),g!==o&&(!(d=l(e,m))||oe(e,d)||oe(m,d))&&(m[2]=1),g!==o)f=0,g?(t.lineStart(),d=l(m,e),t.point(d[0],d[1])):(d=l(e,m),t.point(d[0],d[1],2),t.lineEnd()),e=d;else if(i&&e&&n^g){var y;v&r||!(y=l(m,e,!0))||(f=0,n?(t.lineStart(),t.point(y[0][0],y[0][1]),t.point(y[1][0],y[1][1]),t.lineEnd()):(t.point(y[1][0],y[1][1]),t.lineEnd(),t.lineStart(),t.point(y[0][0],y[0][1],3)))}!g||e&&oe(e,m)||t.point(m[0],m[1]),e=m,o=g,r=v},lineEnd:function(){o&&t.lineEnd(),e=null},clean:function(){return f|(u&&o)<<1}}}),(function(e,n,i,a){ne(a,t,r,i,e,n)}),n?[0,-t]:[-s,t-s])}function ye(t,r,n,i){function a(e,a){return t<=e&&e<=n&&r<=a&&a<=i}function s(e,a,o,s){var c=0,f=0;if(null==e||(c=l(e,o))!==(f=l(a,o))||u(e,a)<0^o>0)do{s.point(0===c||3===c?t:n,c>1?i:r)}while((c=(c+o+4)%4)!==f);else s.point(a[0],a[1])}function l(e,i){return p(e[0]-t)0?0:3:p(e[0]-n)0?2:1:p(e[1]-r)0?1:0:i>0?3:2}function c(t,e){return u(t.x,e.x)}function u(t,e){var r=l(t,1),n=l(e,1);return r!==n?r-n:0===r?e[1]-t[1]:1===r?t[0]-e[0]:2===r?t[1]-e[1]:e[0]-t[0]}return function(o){var l,u,f,h,p,d,m,g,v,y,x,b=o,_=ae(),w={point:T,lineStart:function(){w.point=k,u&&u.push(f=[]);y=!0,v=!1,m=g=NaN},lineEnd:function(){l&&(k(h,p),d&&v&&_.rejoin(),l.push(_.result()));w.point=T,v&&b.lineEnd()},polygonStart:function(){b=_,l=[],u=[],x=!0},polygonEnd:function(){var r=function(){for(var e=0,r=0,n=u.length;ri&&(h-a)*(i-o)>(p-o)*(t-a)&&++e:p<=i&&(h-a)*(i-o)<(p-o)*(t-a)&&--e;return e}(),n=x&&r,a=(l=e.merge(l)).length;(n||a)&&(o.polygonStart(),n&&(o.lineStart(),s(null,null,1,o),o.lineEnd()),a&&le(l,c,r,s,o),o.polygonEnd());b=o,l=u=f=null}};function T(t,e){a(t,e)&&b.point(t,e)}function k(e,o){var s=a(e,o);if(u&&f.push([e,o]),y)h=e,p=o,d=s,y=!1,s&&(b.lineStart(),b.point(e,o));else if(s&&v)b.point(e,o);else{var l=[m=Math.max(-1e9,Math.min(1e9,m)),g=Math.max(-1e9,Math.min(1e9,g))],c=[e=Math.max(-1e9,Math.min(1e9,e)),o=Math.max(-1e9,Math.min(1e9,o))];!function(t,e,r,n,i,a){var o,s=t[0],l=t[1],c=0,u=1,f=e[0]-s,h=e[1]-l;if(o=r-s,f||!(o>0)){if(o/=f,f<0){if(o0){if(o>u)return;o>c&&(c=o)}if(o=i-s,f||!(o<0)){if(o/=f,f<0){if(o>u)return;o>c&&(c=o)}else if(f>0){if(o0)){if(o/=h,h<0){if(o0){if(o>u)return;o>c&&(c=o)}if(o=a-l,h||!(o<0)){if(o/=h,h<0){if(o>u)return;o>c&&(c=o)}else if(h>0){if(o0&&(t[0]=s+c*f,t[1]=l+c*h),u<1&&(e[0]=s+u*f,e[1]=l+u*h),!0}}}}}(l,c,t,r,n,i)?s&&(b.lineStart(),b.point(e,o),x=!1):(v||(b.lineStart(),b.point(l[0],l[1])),b.point(c[0],c[1]),s||b.lineEnd(),x=!1)}m=e,g=o,v=s}return w}}var xe,be,_e,we=r(),Te={sphere:E,point:E,lineStart:function(){Te.point=Ae,Te.lineEnd=ke},lineEnd:E,polygonStart:E,polygonEnd:E};function ke(){Te.point=Te.lineEnd=E}function Ae(t,e){xe=t*=h,be=_(e*=h),_e=g(e),Te.point=Me}function Me(t,e){t*=h;var r=_(e*=h),n=g(e),i=p(t-xe),a=g(i),o=n*_(i),s=_e*r-be*n*a,l=be*r+_e*n*a;we.add(m(T(o*o+s*s),l)),xe=t,be=r,_e=n}function Se(t){return we.reset(),z(t,Te),+we}var Ee=[null,null],Le={type:"LineString",coordinates:Ee};function Ce(t,e){return Ee[0]=t,Ee[1]=e,Se(Le)}var Pe={Feature:function(t,e){return Oe(t.geometry,e)},FeatureCollection:function(t,e){for(var r=t.features,n=-1,i=r.length;++n0&&(i=Ce(t[a],t[a-1]))>0&&r<=i&&n<=i&&(r+n-i)*(1-Math.pow((r-n)/i,2))<1e-12*i)return!0;r=n}return!1}function Re(t,e){return!!he(t.map(Fe),Be(e))}function Fe(t){return(t=t.map(Be)).pop(),t}function Be(t){return[t[0]*h,t[1]*h]}function Ne(t,r,n){var i=e.range(t,r-o,n).concat(r);return function(t){return i.map((function(e){return[t,e]}))}}function je(t,r,n){var i=e.range(t,r-o,n).concat(r);return function(t){return i.map((function(e){return[e,t]}))}}function Ue(){var t,r,n,i,a,s,l,c,u,f,h,d,m=10,g=m,y=90,x=360,b=2.5;function _(){return{type:"MultiLineString",coordinates:w()}}function w(){return e.range(v(i/y)*y,n,y).map(h).concat(e.range(v(c/x)*x,l,x).map(d)).concat(e.range(v(r/m)*m,t,m).filter((function(t){return p(t%y)>o})).map(u)).concat(e.range(v(s/g)*g,a,g).filter((function(t){return p(t%x)>o})).map(f))}return _.lines=function(){return w().map((function(t){return{type:"LineString",coordinates:t}}))},_.outline=function(){return{type:"Polygon",coordinates:[h(i).concat(d(l).slice(1),h(n).reverse().slice(1),d(c).reverse().slice(1))]}},_.extent=function(t){return arguments.length?_.extentMajor(t).extentMinor(t):_.extentMinor()},_.extentMajor=function(t){return arguments.length?(i=+t[0][0],n=+t[1][0],c=+t[0][1],l=+t[1][1],i>n&&(t=i,i=n,n=t),c>l&&(t=c,c=l,l=t),_.precision(b)):[[i,c],[n,l]]},_.extentMinor=function(e){return arguments.length?(r=+e[0][0],t=+e[1][0],s=+e[0][1],a=+e[1][1],r>t&&(e=r,r=t,t=e),s>a&&(e=s,s=a,a=e),_.precision(b)):[[r,s],[t,a]]},_.step=function(t){return arguments.length?_.stepMajor(t).stepMinor(t):_.stepMinor()},_.stepMajor=function(t){return arguments.length?(y=+t[0],x=+t[1],_):[y,x]},_.stepMinor=function(t){return arguments.length?(m=+t[0],g=+t[1],_):[m,g]},_.precision=function(e){return arguments.length?(b=+e,u=Ne(s,a,90),f=je(r,t,b),h=Ne(c,l,90),d=je(i,n,b),_):b},_.extentMajor([[-180,-90+o],[180,90-o]]).extentMinor([[-180,-80-o],[180,80+o]])}function Ve(t){return t}var He,qe,Ge,Ye,We=r(),Xe=r(),Ze={point:E,lineStart:E,lineEnd:E,polygonStart:function(){Ze.lineStart=Je,Ze.lineEnd=$e},polygonEnd:function(){Ze.lineStart=Ze.lineEnd=Ze.point=E,We.add(p(Xe)),Xe.reset()},result:function(){var t=We/2;return We.reset(),t}};function Je(){Ze.point=Ke}function Ke(t,e){Ze.point=Qe,He=Ge=t,qe=Ye=e}function Qe(t,e){Xe.add(Ye*t-Ge*e),Ge=t,Ye=e}function $e(){Qe(He,qe)}var tr=1/0,er=tr,rr=-tr,nr=rr,ir={point:function(t,e){trr&&(rr=t);enr&&(nr=e)},lineStart:E,lineEnd:E,polygonStart:E,polygonEnd:E,result:function(){var t=[[tr,er],[rr,nr]];return rr=nr=-(er=tr=1/0),t}};var ar,or,sr,lr,cr=0,ur=0,fr=0,hr=0,pr=0,dr=0,mr=0,gr=0,vr=0,yr={point:xr,lineStart:br,lineEnd:Tr,polygonStart:function(){yr.lineStart=kr,yr.lineEnd=Ar},polygonEnd:function(){yr.point=xr,yr.lineStart=br,yr.lineEnd=Tr},result:function(){var t=vr?[mr/vr,gr/vr]:dr?[hr/dr,pr/dr]:fr?[cr/fr,ur/fr]:[NaN,NaN];return cr=ur=fr=hr=pr=dr=mr=gr=vr=0,t}};function xr(t,e){cr+=t,ur+=e,++fr}function br(){yr.point=_r}function _r(t,e){yr.point=wr,xr(sr=t,lr=e)}function wr(t,e){var r=t-sr,n=e-lr,i=T(r*r+n*n);hr+=i*(sr+t)/2,pr+=i*(lr+e)/2,dr+=i,xr(sr=t,lr=e)}function Tr(){yr.point=xr}function kr(){yr.point=Mr}function Ar(){Sr(ar,or)}function Mr(t,e){yr.point=Sr,xr(ar=sr=t,or=lr=e)}function Sr(t,e){var r=t-sr,n=e-lr,i=T(r*r+n*n);hr+=i*(sr+t)/2,pr+=i*(lr+e)/2,dr+=i,mr+=(i=lr*t-sr*e)*(sr+t),gr+=i*(lr+e),vr+=3*i,xr(sr=t,lr=e)}function Er(t){this._context=t}Er.prototype={_radius:4.5,pointRadius:function(t){return this._radius=t,this},polygonStart:function(){this._line=0},polygonEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){0===this._line&&this._context.closePath(),this._point=NaN},point:function(t,e){switch(this._point){case 0:this._context.moveTo(t,e),this._point=1;break;case 1:this._context.lineTo(t,e);break;default:this._context.moveTo(t+this._radius,e),this._context.arc(t,e,this._radius,0,u)}},result:E};var Lr,Cr,Pr,Ir,Or,zr=r(),Dr={point:E,lineStart:function(){Dr.point=Rr},lineEnd:function(){Lr&&Fr(Cr,Pr),Dr.point=E},polygonStart:function(){Lr=!0},polygonEnd:function(){Lr=null},result:function(){var t=+zr;return zr.reset(),t}};function Rr(t,e){Dr.point=Fr,Cr=Ir=t,Pr=Or=e}function Fr(t,e){Ir-=t,Or-=e,zr.add(T(Ir*Ir+Or*Or)),Ir=t,Or=e}function Br(){this._string=[]}function Nr(t){return"m0,"+t+"a"+t+","+t+" 0 1,1 0,"+-2*t+"a"+t+","+t+" 0 1,1 0,"+2*t+"z"}function jr(t){return function(e){var r=new Ur;for(var n in t)r[n]=t[n];return r.stream=e,r}}function Ur(){}function Vr(t,e,r){var n=t.clipExtent&&t.clipExtent();return t.scale(150).translate([0,0]),null!=n&&t.clipExtent(null),z(r,t.stream(ir)),e(ir.result()),null!=n&&t.clipExtent(n),t}function Hr(t,e,r){return Vr(t,(function(r){var n=e[1][0]-e[0][0],i=e[1][1]-e[0][1],a=Math.min(n/(r[1][0]-r[0][0]),i/(r[1][1]-r[0][1])),o=+e[0][0]+(n-a*(r[1][0]+r[0][0]))/2,s=+e[0][1]+(i-a*(r[1][1]+r[0][1]))/2;t.scale(150*a).translate([o,s])}),r)}function qr(t,e,r){return Hr(t,[[0,0],e],r)}function Gr(t,e,r){return Vr(t,(function(r){var n=+e,i=n/(r[1][0]-r[0][0]),a=(n-i*(r[1][0]+r[0][0]))/2,o=-i*r[0][1];t.scale(150*i).translate([a,o])}),r)}function Yr(t,e,r){return Vr(t,(function(r){var n=+e,i=n/(r[1][1]-r[0][1]),a=-i*r[0][0],o=(n-i*(r[1][1]+r[0][1]))/2;t.scale(150*i).translate([a,o])}),r)}Br.prototype={_radius:4.5,_circle:Nr(4.5),pointRadius:function(t){return(t=+t)!==this._radius&&(this._radius=t,this._circle=null),this},polygonStart:function(){this._line=0},polygonEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){0===this._line&&this._string.push("Z"),this._point=NaN},point:function(t,e){switch(this._point){case 0:this._string.push("M",t,",",e),this._point=1;break;case 1:this._string.push("L",t,",",e);break;default:null==this._circle&&(this._circle=Nr(this._radius)),this._string.push("M",t,",",e,this._circle)}},result:function(){if(this._string.length){var t=this._string.join("");return this._string=[],t}return null}},Ur.prototype={constructor:Ur,point:function(t,e){this.stream.point(t,e)},sphere:function(){this.stream.sphere()},lineStart:function(){this.stream.lineStart()},lineEnd:function(){this.stream.lineEnd()},polygonStart:function(){this.stream.polygonStart()},polygonEnd:function(){this.stream.polygonEnd()}};var Wr=g(30*h);function Xr(t,e){return+e?function(t,e){function r(n,i,a,s,l,c,u,f,h,d,g,v,y,x){var b=u-n,_=f-i,w=b*b+_*_;if(w>4*e&&y--){var k=s+d,A=l+g,S=c+v,E=T(k*k+A*A+S*S),L=M(S/=E),C=p(p(S)-1)e||p((b*z+_*D)/w-.5)>.3||s*d+l*g+c*v2?t[2]%360*h:0,I()):[y*f,x*f,b*f]},C.angle=function(t){return arguments.length?(_=t%360*h,I()):_*f},C.reflectX=function(t){return arguments.length?(w=t?-1:1,I()):w<0},C.reflectY=function(t){return arguments.length?(k=t?-1:1,I()):k<0},C.precision=function(t){return arguments.length?(o=Xr(s,L=t*t),O()):T(L)},C.fitExtent=function(t,e){return Hr(C,t,e)},C.fitSize=function(t,e){return qr(C,t,e)},C.fitWidth=function(t,e){return Gr(C,t,e)},C.fitHeight=function(t,e){return Yr(C,t,e)},function(){return e=t.apply(this,arguments),C.invert=e.invert&&P,I()}}function tn(t){var e=0,r=s/3,n=$r(t),i=n(e,r);return i.parallels=function(t){return arguments.length?n(e=t[0]*h,r=t[1]*h):[e*f,r*f]},i}function en(t,e){var r=_(t),n=(r+_(e))/2;if(p(n)0?e<-l+o&&(e=-l+o):e>l-o&&(e=l-o);var r=i/b(fn(e),n);return[r*_(n*t),i-r*g(n*t)]}return a.invert=function(t,e){var r=i-e,a=w(n)*T(t*t+r*r),o=m(t,p(r))*w(r);return r*n<0&&(o-=s*w(t)*w(r)),[o/n,2*d(b(i/a,1/n))-l]},a}function pn(t,e){return[t,e]}function dn(t,e){var r=g(t),n=t===e?_(t):(r-g(e))/(e-t),i=r/n+t;if(p(n)o&&--i>0);return[t/(.8707+(a=n*n)*(a*(a*a*a*(.003971-.001529*a)-.013791)-.131979)),n]},Tn.invert=on(M),kn.invert=on((function(t){return 2*d(t)})),An.invert=function(t,e){return[-e,2*d(y(t))-l]},t.geoAlbers=nn,t.geoAlbersUsa=function(){var t,e,r,n,i,a,s=nn(),l=rn().rotate([154,0]).center([-2,58.5]).parallels([55,65]),c=rn().rotate([157,0]).center([-3,19.9]).parallels([8,18]),u={point:function(t,e){a=[t,e]}};function f(t){var e=t[0],o=t[1];return a=null,r.point(e,o),a||(n.point(e,o),a)||(i.point(e,o),a)}function h(){return t=e=null,f}return f.invert=function(t){var e=s.scale(),r=s.translate(),n=(t[0]-r[0])/e,i=(t[1]-r[1])/e;return(i>=.12&&i<.234&&n>=-.425&&n<-.214?l:i>=.166&&i<.234&&n>=-.214&&n<-.115?c:s).invert(t)},f.stream=function(r){return t&&e===r?t:(n=[s.stream(e=r),l.stream(r),c.stream(r)],i=n.length,t={point:function(t,e){for(var r=-1;++rDt(n[0],n[1])&&(n[1]=i[1]),Dt(i[0],n[1])>Dt(n[0],n[1])&&(n[0]=i[0])):a.push(n=i);for(o=-1/0,e=0,n=a[r=a.length-1];e<=r;n=i,++e)i=a[e],(s=Dt(n[1],i[0]))>o&&(o=s,tt=i[0],rt=n[1])}return lt=ct=null,tt===1/0||et===1/0?[[NaN,NaN],[NaN,NaN]]:[[tt,et],[rt,nt]]},t.geoCentroid=function(t){ut=ft=ht=pt=dt=mt=gt=vt=yt=xt=bt=0,z(t,Bt);var e=yt,r=xt,n=bt,i=e*e+r*r+n*n;return i<1e-12&&(e=mt,r=gt,n=vt,ft2?t[2]+90:90]):[(t=r())[0],t[1],t[2]-90]},r([0,0,90]).scale(159.155)},t.geoTransverseMercatorRaw=An,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":102}],110:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e){return t.parent===e.parent?1:2}function r(t,e){return t+e.x}function n(t,e){return Math.max(t,e.y)}function i(t){var e=0,r=t.children,n=r&&r.length;if(n)for(;--n>=0;)e+=r[n].value;else e=1;t.value=e}function a(t,e){var r,n,i,a,s,u=new c(t),f=+t.value&&(u.value=t.value),h=[u];for(null==e&&(e=o);r=h.pop();)if(f&&(r.value=+r.data.value),(i=e(r.data))&&(s=i.length))for(r.children=new Array(s),a=s-1;a>=0;--a)h.push(n=r.children[a]=new c(i[a])),n.parent=r,n.depth=r.depth+1;return u.eachBefore(l)}function o(t){return t.children}function s(t){t.data=t.data.data}function l(t){var e=0;do{t.height=e}while((t=t.parent)&&t.height<++e)}function c(t){this.data=t,this.depth=this.height=0,this.parent=null}c.prototype=a.prototype={constructor:c,count:function(){return this.eachAfter(i)},each:function(t){var e,r,n,i,a=this,o=[a];do{for(e=o.reverse(),o=[];a=e.pop();)if(t(a),r=a.children)for(n=0,i=r.length;n=0;--r)i.push(e[r]);return this},sum:function(t){return this.eachAfter((function(e){for(var r=+t(e.data)||0,n=e.children,i=n&&n.length;--i>=0;)r+=n[i].value;e.value=r}))},sort:function(t){return this.eachBefore((function(e){e.children&&e.children.sort(t)}))},path:function(t){for(var e=this,r=function(t,e){if(t===e)return t;var r=t.ancestors(),n=e.ancestors(),i=null;t=r.pop(),e=n.pop();for(;t===e;)i=t,t=r.pop(),e=n.pop();return i}(e,t),n=[e];e!==r;)e=e.parent,n.push(e);for(var i=n.length;t!==r;)n.splice(i,0,t),t=t.parent;return n},ancestors:function(){for(var t=this,e=[t];t=t.parent;)e.push(t);return e},descendants:function(){var t=[];return this.each((function(e){t.push(e)})),t},leaves:function(){var t=[];return this.eachBefore((function(e){e.children||t.push(e)})),t},links:function(){var t=this,e=[];return t.each((function(r){r!==t&&e.push({source:r.parent,target:r})})),e},copy:function(){return a(this).eachBefore(s)}};var u=Array.prototype.slice;function f(t){for(var e,r,n=0,i=(t=function(t){for(var e,r,n=t.length;n;)r=Math.random()*n--|0,e=t[n],t[n]=t[r],t[r]=e;return t}(u.call(t))).length,a=[];n0&&r*r>n*n+i*i}function m(t,e){for(var r=0;r(o*=o)?(n=(c+o-i)/(2*c),a=Math.sqrt(Math.max(0,o/c-n*n)),r.x=t.x-n*s-a*l,r.y=t.y-n*l+a*s):(n=(c+i-o)/(2*c),a=Math.sqrt(Math.max(0,i/c-n*n)),r.x=e.x+n*s-a*l,r.y=e.y+n*l+a*s)):(r.x=e.x+r.r,r.y=e.y)}function b(t,e){var r=t.r+e.r-1e-6,n=e.x-t.x,i=e.y-t.y;return r>0&&r*r>n*n+i*i}function _(t){var e=t._,r=t.next._,n=e.r+r.r,i=(e.x*r.r+r.x*e.r)/n,a=(e.y*r.r+r.y*e.r)/n;return i*i+a*a}function w(t){this._=t,this.next=null,this.previous=null}function T(t){if(!(i=t.length))return 0;var e,r,n,i,a,o,s,l,c,u,h;if((e=t[0]).x=0,e.y=0,!(i>1))return e.r;if(r=t[1],e.x=-r.r,r.x=e.r,r.y=0,!(i>2))return e.r+r.r;x(r,e,n=t[2]),e=new w(e),r=new w(r),n=new w(n),e.next=n.previous=r,r.next=e.previous=n,n.next=r.previous=e;t:for(s=3;sh&&(h=s),g=u*u*m,(p=Math.max(h/g,g/f))>d){u-=s;break}d=p}v.push(o={value:u,dice:l1?e:1)},r}(G);var X=function t(e){function r(t,r,n,i,a){if((o=t._squarify)&&o.ratio===e)for(var o,s,l,c,u,f=-1,h=o.length,p=t.value;++f1?e:1)},r}(G);t.cluster=function(){var t=e,i=1,a=1,o=!1;function s(e){var s,l=0;e.eachAfter((function(e){var i=e.children;i?(e.x=function(t){return t.reduce(r,0)/t.length}(i),e.y=function(t){return 1+t.reduce(n,0)}(i)):(e.x=s?l+=t(e,s):0,e.y=0,s=e)}));var c=function(t){for(var e;e=t.children;)t=e[0];return t}(e),u=function(t){for(var e;e=t.children;)t=e[e.length-1];return t}(e),f=c.x-t(c,u)/2,h=u.x+t(u,c)/2;return e.eachAfter(o?function(t){t.x=(t.x-e.x)*i,t.y=(e.y-t.y)*a}:function(t){t.x=(t.x-f)/(h-f)*i,t.y=(1-(e.y?t.y/e.y:1))*a})}return s.separation=function(e){return arguments.length?(t=e,s):t},s.size=function(t){return arguments.length?(o=!1,i=+t[0],a=+t[1],s):o?null:[i,a]},s.nodeSize=function(t){return arguments.length?(o=!0,i=+t[0],a=+t[1],s):o?[i,a]:null},s},t.hierarchy=a,t.pack=function(){var t=null,e=1,r=1,n=M;function i(i){return i.x=e/2,i.y=r/2,t?i.eachBefore(L(t)).eachAfter(C(n,.5)).eachBefore(P(1)):i.eachBefore(L(E)).eachAfter(C(M,1)).eachAfter(C(n,i.r/Math.min(e,r))).eachBefore(P(Math.min(e,r)/(2*i.r))),i}return i.radius=function(e){return arguments.length?(t=k(e),i):t},i.size=function(t){return arguments.length?(e=+t[0],r=+t[1],i):[e,r]},i.padding=function(t){return arguments.length?(n="function"==typeof t?t:S(+t),i):n},i},t.packEnclose=f,t.packSiblings=function(t){return T(t),t},t.partition=function(){var t=1,e=1,r=0,n=!1;function i(i){var a=i.height+1;return i.x0=i.y0=r,i.x1=t,i.y1=e/a,i.eachBefore(function(t,e){return function(n){n.children&&O(n,n.x0,t*(n.depth+1)/e,n.x1,t*(n.depth+2)/e);var i=n.x0,a=n.y0,o=n.x1-r,s=n.y1-r;o0)throw new Error("cycle");return a}return r.id=function(e){return arguments.length?(t=A(e),r):t},r.parentId=function(t){return arguments.length?(e=A(t),r):e},r},t.tree=function(){var t=B,e=1,r=1,n=null;function i(i){var l=function(t){for(var e,r,n,i,a,o=new H(t,0),s=[o];e=s.pop();)if(n=e._.children)for(e.children=new Array(a=n.length),i=a-1;i>=0;--i)s.push(r=e.children[i]=new H(n[i],i)),r.parent=e;return(o.parent=new H(null,0)).children=[o],o}(i);if(l.eachAfter(a),l.parent.m=-l.z,l.eachBefore(o),n)i.eachBefore(s);else{var c=i,u=i,f=i;i.eachBefore((function(t){t.xu.x&&(u=t),t.depth>f.depth&&(f=t)}));var h=c===u?1:t(c,u)/2,p=h-c.x,d=e/(u.x+h+p),m=r/(f.depth||1);i.eachBefore((function(t){t.x=(t.x+p)*d,t.y=t.depth*m}))}return i}function a(e){var r=e.children,n=e.parent.children,i=e.i?n[e.i-1]:null;if(r){!function(t){for(var e,r=0,n=0,i=t.children,a=i.length;--a>=0;)(e=i[a]).z+=r,e.m+=r,r+=e.s+(n+=e.c)}(e);var a=(r[0].z+r[r.length-1].z)/2;i?(e.z=i.z+t(e._,i._),e.m=e.z-a):e.z=a}else i&&(e.z=i.z+t(e._,i._));e.parent.A=function(e,r,n){if(r){for(var i,a=e,o=e,s=r,l=a.parent.children[0],c=a.m,u=o.m,f=s.m,h=l.m;s=j(s),a=N(a),s&&a;)l=N(l),(o=j(o)).a=e,(i=s.z+f-a.z-c+t(s._,a._))>0&&(U(V(s,e,n),e,i),c+=i,u+=i),f+=s.m,c+=a.m,h+=l.m,u+=o.m;s&&!j(o)&&(o.t=s,o.m+=f-u),a&&!N(l)&&(l.t=a,l.m+=c-h,n=e)}return n}(e,i,e.parent.A||n[0])}function o(t){t._.x=t.z+t.parent.m,t.m+=t.parent.m}function s(t){t.x*=e,t.y=t.depth*r}return i.separation=function(e){return arguments.length?(t=e,i):t},i.size=function(t){return arguments.length?(n=!1,e=+t[0],r=+t[1],i):n?null:[e,r]},i.nodeSize=function(t){return arguments.length?(n=!0,e=+t[0],r=+t[1],i):n?[e,r]:null},i},t.treemap=function(){var t=W,e=!1,r=1,n=1,i=[0],a=M,o=M,s=M,l=M,c=M;function u(t){return t.x0=t.y0=0,t.x1=r,t.y1=n,t.eachBefore(f),i=[0],e&&t.eachBefore(I),t}function f(e){var r=i[e.depth],n=e.x0+r,u=e.y0+r,f=e.x1-r,h=e.y1-r;f=r-1){var u=s[e];return u.x0=i,u.y0=a,u.x1=o,void(u.y1=l)}var f=c[e],h=n/2+f,p=e+1,d=r-1;for(;p>>1;c[m]l-a){var y=(i*v+o*g)/n;t(e,p,g,i,a,y,l),t(p,r,v,y,a,o,l)}else{var x=(a*v+l*g)/n;t(e,p,g,i,a,o,x),t(p,r,v,i,x,o,l)}}(0,l,t.value,e,r,n,i)},t.treemapDice=O,t.treemapResquarify=X,t.treemapSlice=q,t.treemapSliceDice=function(t,e,r,n,i){(1&t.depth?q:O)(t,e,r,n,i)},t.treemapSquarify=W,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],111:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-color")):i((n=n||self).d3=n.d3||{},n.d3)}(this,(function(t,e){"use strict";function r(t,e,r,n,i){var a=t*t,o=a*t;return((1-3*t+3*a-o)*e+(4-6*a+3*o)*r+(1+3*t+3*a-3*o)*n+o*i)/6}function n(t){var e=t.length-1;return function(n){var i=n<=0?n=0:n>=1?(n=1,e-1):Math.floor(n*e),a=t[i],o=t[i+1],s=i>0?t[i-1]:2*a-o,l=i180||r<-180?r-360*Math.round(r/360):r):a(isNaN(t)?e:t)}function l(t){return 1==(t=+t)?c:function(e,r){return r-e?function(t,e,r){return t=Math.pow(t,r),e=Math.pow(e,r)-t,r=1/r,function(n){return Math.pow(t+n*e,r)}}(e,r,t):a(isNaN(e)?r:e)}}function c(t,e){var r=e-t;return r?o(t,r):a(isNaN(t)?e:t)}var u=function t(r){var n=l(r);function i(t,r){var i=n((t=e.rgb(t)).r,(r=e.rgb(r)).r),a=n(t.g,r.g),o=n(t.b,r.b),s=c(t.opacity,r.opacity);return function(e){return t.r=i(e),t.g=a(e),t.b=o(e),t.opacity=s(e),t+""}}return i.gamma=t,i}(1);function f(t){return function(r){var n,i,a=r.length,o=new Array(a),s=new Array(a),l=new Array(a);for(n=0;na&&(i=e.slice(a,i),s[o]?s[o]+=i:s[++o]=i),(r=r[0])===(n=n[0])?s[o]?s[o]+=n:s[++o]=n:(s[++o]=null,l.push({i:o,x:y(r,n)})),a=_.lastIndex;return a180?e+=360:e-t>180&&(t+=360),a.push({i:r.push(i(r)+"rotate(",null,n)-2,x:y(t,e)})):e&&r.push(i(r)+"rotate("+e+n)}(a.rotate,o.rotate,s,l),function(t,e,r,a){t!==e?a.push({i:r.push(i(r)+"skewX(",null,n)-2,x:y(t,e)}):e&&r.push(i(r)+"skewX("+e+n)}(a.skewX,o.skewX,s,l),function(t,e,r,n,a,o){if(t!==r||e!==n){var s=a.push(i(a)+"scale(",null,",",null,")");o.push({i:s-4,x:y(t,r)},{i:s-2,x:y(e,n)})}else 1===r&&1===n||a.push(i(a)+"scale("+r+","+n+")")}(a.scaleX,a.scaleY,o.scaleX,o.scaleY,s,l),a=o=null,function(t){for(var e,r=-1,n=l.length;++r1e-6)if(Math.abs(f*l-c*u)>1e-6&&a){var p=n-o,d=i-s,m=l*l+c*c,g=p*p+d*d,v=Math.sqrt(m),y=Math.sqrt(h),x=a*Math.tan((e-Math.acos((m+h-g)/(2*v*y)))/2),b=x/y,_=x/v;Math.abs(b-1)>1e-6&&(this._+="L"+(t+b*u)+","+(r+b*f)),this._+="A"+a+","+a+",0,0,"+ +(f*p>u*d)+","+(this._x1=t+_*l)+","+(this._y1=r+_*c)}else this._+="L"+(this._x1=t)+","+(this._y1=r);else;},arc:function(t,i,a,o,s,l){t=+t,i=+i,l=!!l;var c=(a=+a)*Math.cos(o),u=a*Math.sin(o),f=t+c,h=i+u,p=1^l,d=l?o-s:s-o;if(a<0)throw new Error("negative radius: "+a);null===this._x1?this._+="M"+f+","+h:(Math.abs(this._x1-f)>1e-6||Math.abs(this._y1-h)>1e-6)&&(this._+="L"+f+","+h),a&&(d<0&&(d=d%r+r),d>n?this._+="A"+a+","+a+",0,1,"+p+","+(t-c)+","+(i-u)+"A"+a+","+a+",0,1,"+p+","+(this._x1=f)+","+(this._y1=h):d>1e-6&&(this._+="A"+a+","+a+",0,"+ +(d>=e)+","+p+","+(this._x1=t+a*Math.cos(s))+","+(this._y1=i+a*Math.sin(s))))},rect:function(t,e,r,n){this._+="M"+(this._x0=this._x1=+t)+","+(this._y0=this._y1=+e)+"h"+ +r+"v"+ +n+"h"+-r+"Z"},toString:function(){return this._}},t.path=a,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],113:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e,r,n){if(isNaN(e)||isNaN(r))return t;var i,a,o,s,l,c,u,f,h,p=t._root,d={data:n},m=t._x0,g=t._y0,v=t._x1,y=t._y1;if(!p)return t._root=d,t;for(;p.length;)if((c=e>=(a=(m+v)/2))?m=a:v=a,(u=r>=(o=(g+y)/2))?g=o:y=o,i=p,!(p=p[f=u<<1|c]))return i[f]=d,t;if(s=+t._x.call(null,p.data),l=+t._y.call(null,p.data),e===s&&r===l)return d.next=p,i?i[f]=d:t._root=d,t;do{i=i?i[f]=new Array(4):t._root=new Array(4),(c=e>=(a=(m+v)/2))?m=a:v=a,(u=r>=(o=(g+y)/2))?g=o:y=o}while((f=u<<1|c)==(h=(l>=o)<<1|s>=a));return i[h]=p,i[f]=d,t}function r(t,e,r,n,i){this.node=t,this.x0=e,this.y0=r,this.x1=n,this.y1=i}function n(t){return t[0]}function i(t){return t[1]}function a(t,e,r){var a=new o(null==e?n:e,null==r?i:r,NaN,NaN,NaN,NaN);return null==t?a:a.addAll(t)}function o(t,e,r,n,i,a){this._x=t,this._y=e,this._x0=r,this._y0=n,this._x1=i,this._y1=a,this._root=void 0}function s(t){for(var e={data:t.data},r=e;t=t.next;)r=r.next={data:t.data};return e}var l=a.prototype=o.prototype;l.copy=function(){var t,e,r=new o(this._x,this._y,this._x0,this._y0,this._x1,this._y1),n=this._root;if(!n)return r;if(!n.length)return r._root=s(n),r;for(t=[{source:n,target:r._root=new Array(4)}];n=t.pop();)for(var i=0;i<4;++i)(e=n.source[i])&&(e.length?t.push({source:e,target:n.target[i]=new Array(4)}):n.target[i]=s(e));return r},l.add=function(t){var r=+this._x.call(null,t),n=+this._y.call(null,t);return e(this.cover(r,n),r,n,t)},l.addAll=function(t){var r,n,i,a,o=t.length,s=new Array(o),l=new Array(o),c=1/0,u=1/0,f=-1/0,h=-1/0;for(n=0;nf&&(f=i),ah&&(h=a));if(c>f||u>h)return this;for(this.cover(c,u).cover(f,h),n=0;nt||t>=i||n>e||e>=a;)switch(s=(ep||(o=c.y0)>d||(s=c.x1)=y)<<1|t>=v)&&(c=m[m.length-1],m[m.length-1]=m[m.length-1-u],m[m.length-1-u]=c)}else{var x=t-+this._x.call(null,g.data),b=e-+this._y.call(null,g.data),_=x*x+b*b;if(_=(s=(d+g)/2))?d=s:g=s,(u=o>=(l=(m+v)/2))?m=l:v=l,e=p,!(p=p[f=u<<1|c]))return this;if(!p.length)break;(e[f+1&3]||e[f+2&3]||e[f+3&3])&&(r=e,h=f)}for(;p.data!==t;)if(n=p,!(p=p.next))return this;return(i=p.next)&&delete p.next,n?(i?n.next=i:delete n.next,this):e?(i?e[f]=i:delete e[f],(p=e[0]||e[1]||e[2]||e[3])&&p===(e[3]||e[2]||e[1]||e[0])&&!p.length&&(r?r[h]=p:this._root=p),this):(this._root=i,this)},l.removeAll=function(t){for(var e=0,r=t.length;e1?0:t<-1?u:Math.acos(t)}function d(t){return t>=1?f:t<=-1?-f:Math.asin(t)}function m(t){return t.innerRadius}function g(t){return t.outerRadius}function v(t){return t.startAngle}function y(t){return t.endAngle}function x(t){return t&&t.padAngle}function b(t,e,r,n,i,a,o,s){var l=r-t,c=n-e,u=o-i,f=s-a,h=f*l-u*c;if(!(h*h<1e-12))return[t+(h=(u*(e-a)-f*(t-i))/h)*l,e+h*c]}function _(t,e,r,n,i,a,s){var l=t-r,u=e-n,f=(s?a:-a)/c(l*l+u*u),h=f*u,p=-f*l,d=t+h,m=e+p,g=r+h,v=n+p,y=(d+g)/2,x=(m+v)/2,b=g-d,_=v-m,w=b*b+_*_,T=i-a,k=d*v-g*m,A=(_<0?-1:1)*c(o(0,T*T*w-k*k)),M=(k*_-b*A)/w,S=(-k*b-_*A)/w,E=(k*_+b*A)/w,L=(-k*b+_*A)/w,C=M-y,P=S-x,I=E-y,O=L-x;return C*C+P*P>I*I+O*O&&(M=E,S=L),{cx:M,cy:S,x01:-h,y01:-p,x11:M*(i/T-1),y11:S*(i/T-1)}}function w(t){this._context=t}function T(t){return new w(t)}function k(t){return t[0]}function A(t){return t[1]}function M(){var t=k,n=A,i=r(!0),a=null,o=T,s=null;function l(r){var l,c,u,f=r.length,h=!1;for(null==a&&(s=o(u=e.path())),l=0;l<=f;++l)!(l=f;--h)c.point(v[h],y[h]);c.lineEnd(),c.areaEnd()}g&&(v[u]=+t(p,u,r),y[u]=+i(p,u,r),c.point(n?+n(p,u,r):v[u],a?+a(p,u,r):y[u]))}if(d)return c=null,d+""||null}function f(){return M().defined(o).curve(l).context(s)}return u.x=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),n=null,u):t},u.x0=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),u):t},u.x1=function(t){return arguments.length?(n=null==t?null:"function"==typeof t?t:r(+t),u):n},u.y=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),a=null,u):i},u.y0=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),u):i},u.y1=function(t){return arguments.length?(a=null==t?null:"function"==typeof t?t:r(+t),u):a},u.lineX0=u.lineY0=function(){return f().x(t).y(i)},u.lineY1=function(){return f().x(t).y(a)},u.lineX1=function(){return f().x(n).y(i)},u.defined=function(t){return arguments.length?(o="function"==typeof t?t:r(!!t),u):o},u.curve=function(t){return arguments.length?(l=t,null!=s&&(c=l(s)),u):l},u.context=function(t){return arguments.length?(null==t?s=c=null:c=l(s=t),u):s},u}function E(t,e){return et?1:e>=t?0:NaN}function L(t){return t}w.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:this._context.lineTo(t,e)}}};var C=I(T);function P(t){this._curve=t}function I(t){function e(e){return new P(t(e))}return e._curve=t,e}function O(t){var e=t.curve;return t.angle=t.x,delete t.x,t.radius=t.y,delete t.y,t.curve=function(t){return arguments.length?e(I(t)):e()._curve},t}function z(){return O(M().curve(C))}function D(){var t=S().curve(C),e=t.curve,r=t.lineX0,n=t.lineX1,i=t.lineY0,a=t.lineY1;return t.angle=t.x,delete t.x,t.startAngle=t.x0,delete t.x0,t.endAngle=t.x1,delete t.x1,t.radius=t.y,delete t.y,t.innerRadius=t.y0,delete t.y0,t.outerRadius=t.y1,delete t.y1,t.lineStartAngle=function(){return O(r())},delete t.lineX0,t.lineEndAngle=function(){return O(n())},delete t.lineX1,t.lineInnerRadius=function(){return O(i())},delete t.lineY0,t.lineOuterRadius=function(){return O(a())},delete t.lineY1,t.curve=function(t){return arguments.length?e(I(t)):e()._curve},t}function R(t,e){return[(e=+e)*Math.cos(t-=Math.PI/2),e*Math.sin(t)]}P.prototype={areaStart:function(){this._curve.areaStart()},areaEnd:function(){this._curve.areaEnd()},lineStart:function(){this._curve.lineStart()},lineEnd:function(){this._curve.lineEnd()},point:function(t,e){this._curve.point(e*Math.sin(t),e*-Math.cos(t))}};var F=Array.prototype.slice;function B(t){return t.source}function N(t){return t.target}function j(t){var n=B,i=N,a=k,o=A,s=null;function l(){var r,l=F.call(arguments),c=n.apply(this,l),u=i.apply(this,l);if(s||(s=r=e.path()),t(s,+a.apply(this,(l[0]=c,l)),+o.apply(this,l),+a.apply(this,(l[0]=u,l)),+o.apply(this,l)),r)return s=null,r+""||null}return l.source=function(t){return arguments.length?(n=t,l):n},l.target=function(t){return arguments.length?(i=t,l):i},l.x=function(t){return arguments.length?(a="function"==typeof t?t:r(+t),l):a},l.y=function(t){return arguments.length?(o="function"==typeof t?t:r(+t),l):o},l.context=function(t){return arguments.length?(s=null==t?null:t,l):s},l}function U(t,e,r,n,i){t.moveTo(e,r),t.bezierCurveTo(e=(e+n)/2,r,e,i,n,i)}function V(t,e,r,n,i){t.moveTo(e,r),t.bezierCurveTo(e,r=(r+i)/2,n,r,n,i)}function H(t,e,r,n,i){var a=R(e,r),o=R(e,r=(r+i)/2),s=R(n,r),l=R(n,i);t.moveTo(a[0],a[1]),t.bezierCurveTo(o[0],o[1],s[0],s[1],l[0],l[1])}var q={draw:function(t,e){var r=Math.sqrt(e/u);t.moveTo(r,0),t.arc(0,0,r,0,h)}},G={draw:function(t,e){var r=Math.sqrt(e/5)/2;t.moveTo(-3*r,-r),t.lineTo(-r,-r),t.lineTo(-r,-3*r),t.lineTo(r,-3*r),t.lineTo(r,-r),t.lineTo(3*r,-r),t.lineTo(3*r,r),t.lineTo(r,r),t.lineTo(r,3*r),t.lineTo(-r,3*r),t.lineTo(-r,r),t.lineTo(-3*r,r),t.closePath()}},Y=Math.sqrt(1/3),W=2*Y,X={draw:function(t,e){var r=Math.sqrt(e/W),n=r*Y;t.moveTo(0,-r),t.lineTo(n,0),t.lineTo(0,r),t.lineTo(-n,0),t.closePath()}},Z=Math.sin(u/10)/Math.sin(7*u/10),J=Math.sin(h/10)*Z,K=-Math.cos(h/10)*Z,Q={draw:function(t,e){var r=Math.sqrt(.8908130915292852*e),n=J*r,i=K*r;t.moveTo(0,-r),t.lineTo(n,i);for(var a=1;a<5;++a){var o=h*a/5,s=Math.cos(o),l=Math.sin(o);t.lineTo(l*r,-s*r),t.lineTo(s*n-l*i,l*n+s*i)}t.closePath()}},$={draw:function(t,e){var r=Math.sqrt(e),n=-r/2;t.rect(n,n,r,r)}},tt=Math.sqrt(3),et={draw:function(t,e){var r=-Math.sqrt(e/(3*tt));t.moveTo(0,2*r),t.lineTo(-tt*r,-r),t.lineTo(tt*r,-r),t.closePath()}},rt=-.5,nt=Math.sqrt(3)/2,it=1/Math.sqrt(12),at=3*(it/2+1),ot={draw:function(t,e){var r=Math.sqrt(e/at),n=r/2,i=r*it,a=n,o=r*it+r,s=-a,l=o;t.moveTo(n,i),t.lineTo(a,o),t.lineTo(s,l),t.lineTo(rt*n-nt*i,nt*n+rt*i),t.lineTo(rt*a-nt*o,nt*a+rt*o),t.lineTo(rt*s-nt*l,nt*s+rt*l),t.lineTo(rt*n+nt*i,rt*i-nt*n),t.lineTo(rt*a+nt*o,rt*o-nt*a),t.lineTo(rt*s+nt*l,rt*l-nt*s),t.closePath()}},st=[q,G,X,$,Q,et,ot];function lt(){}function ct(t,e,r){t._context.bezierCurveTo((2*t._x0+t._x1)/3,(2*t._y0+t._y1)/3,(t._x0+2*t._x1)/3,(t._y0+2*t._y1)/3,(t._x0+4*t._x1+e)/6,(t._y0+4*t._y1+r)/6)}function ut(t){this._context=t}function ft(t){this._context=t}function ht(t){this._context=t}function pt(t,e){this._basis=new ut(t),this._beta=e}ut.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){switch(this._point){case 3:ct(this,this._x1,this._y1);case 2:this._context.lineTo(this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3,this._context.lineTo((5*this._x0+this._x1)/6,(5*this._y0+this._y1)/6);default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},ft.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._y0=this._y1=this._y2=this._y3=this._y4=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x2,this._y2),this._context.closePath();break;case 2:this._context.moveTo((this._x2+2*this._x3)/3,(this._y2+2*this._y3)/3),this._context.lineTo((this._x3+2*this._x2)/3,(this._y3+2*this._y2)/3),this._context.closePath();break;case 3:this.point(this._x2,this._y2),this.point(this._x3,this._y3),this.point(this._x4,this._y4)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x2=t,this._y2=e;break;case 1:this._point=2,this._x3=t,this._y3=e;break;case 2:this._point=3,this._x4=t,this._y4=e,this._context.moveTo((this._x0+4*this._x1+t)/6,(this._y0+4*this._y1+e)/6);break;default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},ht.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3;var r=(this._x0+4*this._x1+t)/6,n=(this._y0+4*this._y1+e)/6;this._line?this._context.lineTo(r,n):this._context.moveTo(r,n);break;case 3:this._point=4;default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},pt.prototype={lineStart:function(){this._x=[],this._y=[],this._basis.lineStart()},lineEnd:function(){var t=this._x,e=this._y,r=t.length-1;if(r>0)for(var n,i=t[0],a=e[0],o=t[r]-i,s=e[r]-a,l=-1;++l<=r;)n=l/r,this._basis.point(this._beta*t[l]+(1-this._beta)*(i+n*o),this._beta*e[l]+(1-this._beta)*(a+n*s));this._x=this._y=null,this._basis.lineEnd()},point:function(t,e){this._x.push(+t),this._y.push(+e)}};var dt=function t(e){function r(t){return 1===e?new ut(t):new pt(t,e)}return r.beta=function(e){return t(+e)},r}(.85);function mt(t,e,r){t._context.bezierCurveTo(t._x1+t._k*(t._x2-t._x0),t._y1+t._k*(t._y2-t._y0),t._x2+t._k*(t._x1-e),t._y2+t._k*(t._y1-r),t._x2,t._y2)}function gt(t,e){this._context=t,this._k=(1-e)/6}gt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:mt(this,this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2,this._x1=t,this._y1=e;break;case 2:this._point=3;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var vt=function t(e){function r(t){return new gt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function yt(t,e){this._context=t,this._k=(1-e)/6}yt.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var xt=function t(e){function r(t){return new yt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function bt(t,e){this._context=t,this._k=(1-e)/6}bt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var _t=function t(e){function r(t){return new bt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function wt(t,e,r){var n=t._x1,i=t._y1,a=t._x2,o=t._y2;if(t._l01_a>1e-12){var s=2*t._l01_2a+3*t._l01_a*t._l12_a+t._l12_2a,l=3*t._l01_a*(t._l01_a+t._l12_a);n=(n*s-t._x0*t._l12_2a+t._x2*t._l01_2a)/l,i=(i*s-t._y0*t._l12_2a+t._y2*t._l01_2a)/l}if(t._l23_a>1e-12){var c=2*t._l23_2a+3*t._l23_a*t._l12_a+t._l12_2a,u=3*t._l23_a*(t._l23_a+t._l12_a);a=(a*c+t._x1*t._l23_2a-e*t._l12_2a)/u,o=(o*c+t._y1*t._l23_2a-r*t._l12_2a)/u}t._context.bezierCurveTo(n,i,a,o,t._x2,t._y2)}function Tt(t,e){this._context=t,this._alpha=e}Tt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:this.point(this._x2,this._y2)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var kt=function t(e){function r(t){return e?new Tt(t,e):new gt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function At(t,e){this._context=t,this._alpha=e}At.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var Mt=function t(e){function r(t){return e?new At(t,e):new yt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function St(t,e){this._context=t,this._alpha=e}St.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var Et=function t(e){function r(t){return e?new St(t,e):new bt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function Lt(t){this._context=t}function Ct(t){return t<0?-1:1}function Pt(t,e,r){var n=t._x1-t._x0,i=e-t._x1,a=(t._y1-t._y0)/(n||i<0&&-0),o=(r-t._y1)/(i||n<0&&-0),s=(a*i+o*n)/(n+i);return(Ct(a)+Ct(o))*Math.min(Math.abs(a),Math.abs(o),.5*Math.abs(s))||0}function It(t,e){var r=t._x1-t._x0;return r?(3*(t._y1-t._y0)/r-e)/2:e}function Ot(t,e,r){var n=t._x0,i=t._y0,a=t._x1,o=t._y1,s=(a-n)/3;t._context.bezierCurveTo(n+s,i+s*e,a-s,o-s*r,a,o)}function zt(t){this._context=t}function Dt(t){this._context=new Rt(t)}function Rt(t){this._context=t}function Ft(t){this._context=t}function Bt(t){var e,r,n=t.length-1,i=new Array(n),a=new Array(n),o=new Array(n);for(i[0]=0,a[0]=2,o[0]=t[0]+2*t[1],e=1;e=0;--e)i[e]=(o[e]-i[e+1])/a[e];for(a[n-1]=(t[n]+i[n-1])/2,e=0;e1)for(var r,n,i,a=1,o=t[e[0]],s=o.length;a=0;)r[e]=e;return r}function Vt(t,e){return t[e]}function Ht(t){var e=t.map(qt);return Ut(t).sort((function(t,r){return e[t]-e[r]}))}function qt(t){for(var e,r=-1,n=0,i=t.length,a=-1/0;++ra&&(a=e,n=r);return n}function Gt(t){var e=t.map(Yt);return Ut(t).sort((function(t,r){return e[t]-e[r]}))}function Yt(t){for(var e,r=0,n=-1,i=t.length;++n=0&&(this._t=1-this._t,this._line=1-this._line)},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:if(this._t<=0)this._context.lineTo(this._x,e),this._context.lineTo(t,e);else{var r=this._x*(1-this._t)+t*this._t;this._context.lineTo(r,this._y),this._context.lineTo(r,e)}}this._x=t,this._y=e}},t.arc=function(){var t=m,o=g,w=r(0),T=null,k=v,A=y,M=x,S=null;function E(){var r,m,g=+t.apply(this,arguments),v=+o.apply(this,arguments),y=k.apply(this,arguments)-f,x=A.apply(this,arguments)-f,E=n(x-y),L=x>y;if(S||(S=r=e.path()),v1e-12)if(E>h-1e-12)S.moveTo(v*a(y),v*l(y)),S.arc(0,0,v,y,x,!L),g>1e-12&&(S.moveTo(g*a(x),g*l(x)),S.arc(0,0,g,x,y,L));else{var C,P,I=y,O=x,z=y,D=x,R=E,F=E,B=M.apply(this,arguments)/2,N=B>1e-12&&(T?+T.apply(this,arguments):c(g*g+v*v)),j=s(n(v-g)/2,+w.apply(this,arguments)),U=j,V=j;if(N>1e-12){var H=d(N/g*l(B)),q=d(N/v*l(B));(R-=2*H)>1e-12?(z+=H*=L?1:-1,D-=H):(R=0,z=D=(y+x)/2),(F-=2*q)>1e-12?(I+=q*=L?1:-1,O-=q):(F=0,I=O=(y+x)/2)}var G=v*a(I),Y=v*l(I),W=g*a(D),X=g*l(D);if(j>1e-12){var Z,J=v*a(O),K=v*l(O),Q=g*a(z),$=g*l(z);if(E1e-12?V>1e-12?(C=_(Q,$,G,Y,v,V,L),P=_(J,K,W,X,v,V,L),S.moveTo(C.cx+C.x01,C.cy+C.y01),V1e-12&&R>1e-12?U>1e-12?(C=_(W,X,J,K,g,-U,L),P=_(G,Y,Q,$,g,-U,L),S.lineTo(C.cx+C.x01,C.cy+C.y01),U0&&(d+=f);for(null!=e?m.sort((function(t,r){return e(g[t],g[r])})):null!=n&&m.sort((function(t,e){return n(r[t],r[e])})),s=0,c=d?(y-p*b)/d:0;s0?f*c:0)+b,g[l]={data:r[l],index:s,value:f,startAngle:v,endAngle:u,padAngle:x};return g}return s.value=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),s):t},s.sortValues=function(t){return arguments.length?(e=t,n=null,s):e},s.sort=function(t){return arguments.length?(n=t,e=null,s):n},s.startAngle=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),s):i},s.endAngle=function(t){return arguments.length?(a="function"==typeof t?t:r(+t),s):a},s.padAngle=function(t){return arguments.length?(o="function"==typeof t?t:r(+t),s):o},s},t.pointRadial=R,t.radialArea=D,t.radialLine=z,t.stack=function(){var t=r([]),e=Ut,n=jt,i=Vt;function a(r){var a,o,s=t.apply(this,arguments),l=r.length,c=s.length,u=new Array(c);for(a=0;a0)for(var r,n,i,a,o,s,l=0,c=t[e[0]].length;l0?(n[0]=a,n[1]=a+=i):i<0?(n[1]=o,n[0]=o+=i):(n[0]=0,n[1]=i)},t.stackOffsetExpand=function(t,e){if((n=t.length)>0){for(var r,n,i,a=0,o=t[0].length;a0){for(var r,n=0,i=t[e[0]],a=i.length;n0&&(n=(r=t[e[0]]).length)>0){for(var r,n,i,a=0,o=1;o=12)]},q:function(t){return 1+~~(t.getMonth()/3)},Q:wt,s:Tt,S:H,u:q,U:G,V:W,w:X,W:Z,x:null,X:null,y:J,Y:Q,Z:tt,"%":_t},zt={a:function(t){return f[t.getUTCDay()]},A:function(t){return u[t.getUTCDay()]},b:function(t){return Y[t.getUTCMonth()]},B:function(t){return h[t.getUTCMonth()]},c:null,d:et,e:et,f:ot,g:vt,G:xt,H:rt,I:nt,j:it,L:at,m:st,M:lt,p:function(t){return c[+(t.getUTCHours()>=12)]},q:function(t){return 1+~~(t.getUTCMonth()/3)},Q:wt,s:Tt,S:ct,u:ut,U:ft,V:pt,w:dt,W:mt,x:null,X:null,y:gt,Y:yt,Z:bt,"%":_t},Dt={a:function(t,e,r){var n=St.exec(e.slice(r));return n?(t.w=Et[n[0].toLowerCase()],r+n[0].length):-1},A:function(t,e,r){var n=At.exec(e.slice(r));return n?(t.w=Mt[n[0].toLowerCase()],r+n[0].length):-1},b:function(t,e,r){var n=Pt.exec(e.slice(r));return n?(t.m=It[n[0].toLowerCase()],r+n[0].length):-1},B:function(t,e,r){var n=Lt.exec(e.slice(r));return n?(t.m=Ct[n[0].toLowerCase()],r+n[0].length):-1},c:function(t,e,r){return Bt(t,a,e,r)},d:A,e:A,f:P,g:_,G:b,H:S,I:S,j:M,L:C,m:k,M:E,p:function(t,e,r){var n=ht.exec(e.slice(r));return n?(t.p=kt[n[0].toLowerCase()],r+n[0].length):-1},q:T,Q:O,s:z,S:L,u:g,U:v,V:y,w:m,W:x,x:function(t,e,r){return Bt(t,o,e,r)},X:function(t,e,r){return Bt(t,l,e,r)},y:_,Y:b,Z:w,"%":I};function Rt(t,e){return function(r){var n,i,a,o=[],l=-1,c=0,u=t.length;for(r instanceof Date||(r=new Date(+r));++l53)return null;"w"in c||(c.w=1),"Z"in c?(l=(s=n(i(c.y,0,1))).getUTCDay(),s=l>4||0===l?e.utcMonday.ceil(s):e.utcMonday(s),s=e.utcDay.offset(s,7*(c.V-1)),c.y=s.getUTCFullYear(),c.m=s.getUTCMonth(),c.d=s.getUTCDate()+(c.w+6)%7):(l=(s=r(i(c.y,0,1))).getDay(),s=l>4||0===l?e.timeMonday.ceil(s):e.timeMonday(s),s=e.timeDay.offset(s,7*(c.V-1)),c.y=s.getFullYear(),c.m=s.getMonth(),c.d=s.getDate()+(c.w+6)%7)}else("W"in c||"U"in c)&&("w"in c||(c.w="u"in c?c.u%7:"W"in c?1:0),l="Z"in c?n(i(c.y,0,1)).getUTCDay():r(i(c.y,0,1)).getDay(),c.m=0,c.d="W"in c?(c.w+6)%7+7*c.W-(l+5)%7:c.w+7*c.U-(l+6)%7);return"Z"in c?(c.H+=c.Z/100|0,c.M+=c.Z%100,n(c)):r(c)}}function Bt(t,e,r,n){for(var i,a,o=0,l=e.length,c=r.length;o=c)return-1;if(37===(i=e.charCodeAt(o++))){if(i=e.charAt(o++),!(a=Dt[i in s?e.charAt(o++):i])||(n=a(t,r,n))<0)return-1}else if(i!=r.charCodeAt(n++))return-1}return n}return Ot.x=Rt(o,Ot),Ot.X=Rt(l,Ot),Ot.c=Rt(a,Ot),zt.x=Rt(o,zt),zt.X=Rt(l,zt),zt.c=Rt(a,zt),{format:function(t){var e=Rt(t+="",Ot);return e.toString=function(){return t},e},parse:function(t){var e=Ft(t+="",!1);return e.toString=function(){return t},e},utcFormat:function(t){var e=Rt(t+="",zt);return e.toString=function(){return t},e},utcParse:function(t){var e=Ft(t+="",!0);return e.toString=function(){return t},e}}}var o,s={"-":"",_:" ",0:"0"},l=/^\s*\d+/,c=/^%/,u=/[\\^$*+?|[\]().{}]/g;function f(t,e,r){var n=t<0?"-":"",i=(n?-t:t)+"",a=i.length;return n+(a68?1900:2e3),r+n[0].length):-1}function w(t,e,r){var n=/^(Z)|([+-]\d\d)(?::?(\d\d))?/.exec(e.slice(r,r+6));return n?(t.Z=n[1]?0:-(n[2]+(n[3]||"00")),r+n[0].length):-1}function T(t,e,r){var n=l.exec(e.slice(r,r+1));return n?(t.q=3*n[0]-3,r+n[0].length):-1}function k(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.m=n[0]-1,r+n[0].length):-1}function A(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.d=+n[0],r+n[0].length):-1}function M(t,e,r){var n=l.exec(e.slice(r,r+3));return n?(t.m=0,t.d=+n[0],r+n[0].length):-1}function S(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.H=+n[0],r+n[0].length):-1}function E(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.M=+n[0],r+n[0].length):-1}function L(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.S=+n[0],r+n[0].length):-1}function C(t,e,r){var n=l.exec(e.slice(r,r+3));return n?(t.L=+n[0],r+n[0].length):-1}function P(t,e,r){var n=l.exec(e.slice(r,r+6));return n?(t.L=Math.floor(n[0]/1e3),r+n[0].length):-1}function I(t,e,r){var n=c.exec(e.slice(r,r+1));return n?r+n[0].length:-1}function O(t,e,r){var n=l.exec(e.slice(r));return n?(t.Q=+n[0],r+n[0].length):-1}function z(t,e,r){var n=l.exec(e.slice(r));return n?(t.s=+n[0],r+n[0].length):-1}function D(t,e){return f(t.getDate(),e,2)}function R(t,e){return f(t.getHours(),e,2)}function F(t,e){return f(t.getHours()%12||12,e,2)}function B(t,r){return f(1+e.timeDay.count(e.timeYear(t),t),r,3)}function N(t,e){return f(t.getMilliseconds(),e,3)}function j(t,e){return N(t,e)+"000"}function U(t,e){return f(t.getMonth()+1,e,2)}function V(t,e){return f(t.getMinutes(),e,2)}function H(t,e){return f(t.getSeconds(),e,2)}function q(t){var e=t.getDay();return 0===e?7:e}function G(t,r){return f(e.timeSunday.count(e.timeYear(t)-1,t),r,2)}function Y(t){var r=t.getDay();return r>=4||0===r?e.timeThursday(t):e.timeThursday.ceil(t)}function W(t,r){return t=Y(t),f(e.timeThursday.count(e.timeYear(t),t)+(4===e.timeYear(t).getDay()),r,2)}function X(t){return t.getDay()}function Z(t,r){return f(e.timeMonday.count(e.timeYear(t)-1,t),r,2)}function J(t,e){return f(t.getFullYear()%100,e,2)}function K(t,e){return f((t=Y(t)).getFullYear()%100,e,2)}function Q(t,e){return f(t.getFullYear()%1e4,e,4)}function $(t,r){var n=t.getDay();return f((t=n>=4||0===n?e.timeThursday(t):e.timeThursday.ceil(t)).getFullYear()%1e4,r,4)}function tt(t){var e=t.getTimezoneOffset();return(e>0?"-":(e*=-1,"+"))+f(e/60|0,"0",2)+f(e%60,"0",2)}function et(t,e){return f(t.getUTCDate(),e,2)}function rt(t,e){return f(t.getUTCHours(),e,2)}function nt(t,e){return f(t.getUTCHours()%12||12,e,2)}function it(t,r){return f(1+e.utcDay.count(e.utcYear(t),t),r,3)}function at(t,e){return f(t.getUTCMilliseconds(),e,3)}function ot(t,e){return at(t,e)+"000"}function st(t,e){return f(t.getUTCMonth()+1,e,2)}function lt(t,e){return f(t.getUTCMinutes(),e,2)}function ct(t,e){return f(t.getUTCSeconds(),e,2)}function ut(t){var e=t.getUTCDay();return 0===e?7:e}function ft(t,r){return f(e.utcSunday.count(e.utcYear(t)-1,t),r,2)}function ht(t){var r=t.getUTCDay();return r>=4||0===r?e.utcThursday(t):e.utcThursday.ceil(t)}function pt(t,r){return t=ht(t),f(e.utcThursday.count(e.utcYear(t),t)+(4===e.utcYear(t).getUTCDay()),r,2)}function dt(t){return t.getUTCDay()}function mt(t,r){return f(e.utcMonday.count(e.utcYear(t)-1,t),r,2)}function gt(t,e){return f(t.getUTCFullYear()%100,e,2)}function vt(t,e){return f((t=ht(t)).getUTCFullYear()%100,e,2)}function yt(t,e){return f(t.getUTCFullYear()%1e4,e,4)}function xt(t,r){var n=t.getUTCDay();return f((t=n>=4||0===n?e.utcThursday(t):e.utcThursday.ceil(t)).getUTCFullYear()%1e4,r,4)}function bt(){return"+0000"}function _t(){return"%"}function wt(t){return+t}function Tt(t){return Math.floor(+t/1e3)}function kt(e){return o=a(e),t.timeFormat=o.format,t.timeParse=o.parse,t.utcFormat=o.utcFormat,t.utcParse=o.utcParse,o}kt({dateTime:"%x, %X",date:"%-m/%-d/%Y",time:"%-I:%M:%S %p",periods:["AM","PM"],days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]});var At=Date.prototype.toISOString?function(t){return t.toISOString()}:t.utcFormat("%Y-%m-%dT%H:%M:%S.%LZ");var Mt=+new Date("2000-01-01T00:00:00.000Z")?function(t){var e=new Date(t);return isNaN(e)?null:e}:t.utcParse("%Y-%m-%dT%H:%M:%S.%LZ");t.isoFormat=At,t.isoParse=Mt,t.timeFormatDefaultLocale=kt,t.timeFormatLocale=a,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-time":116}],116:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";var e=new Date,r=new Date;function n(t,i,a,o){function s(e){return t(e=0===arguments.length?new Date:new Date(+e)),e}return s.floor=function(e){return t(e=new Date(+e)),e},s.ceil=function(e){return t(e=new Date(e-1)),i(e,1),t(e),e},s.round=function(t){var e=s(t),r=s.ceil(t);return t-e0))return o;do{o.push(a=new Date(+e)),i(e,n),t(e)}while(a=r)for(;t(r),!e(r);)r.setTime(r-1)}),(function(t,r){if(t>=t)if(r<0)for(;++r<=0;)for(;i(t,-1),!e(t););else for(;--r>=0;)for(;i(t,1),!e(t););}))},a&&(s.count=function(n,i){return e.setTime(+n),r.setTime(+i),t(e),t(r),Math.floor(a(e,r))},s.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?s.filter(o?function(e){return o(e)%t==0}:function(e){return s.count(0,e)%t==0}):s:null}),s}var i=n((function(){}),(function(t,e){t.setTime(+t+e)}),(function(t,e){return e-t}));i.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?n((function(e){e.setTime(Math.floor(e/t)*t)}),(function(e,r){e.setTime(+e+r*t)}),(function(e,r){return(r-e)/t})):i:null};var a=i.range,o=n((function(t){t.setTime(t-t.getMilliseconds())}),(function(t,e){t.setTime(+t+1e3*e)}),(function(t,e){return(e-t)/1e3}),(function(t){return t.getUTCSeconds()})),s=o.range,l=n((function(t){t.setTime(t-t.getMilliseconds()-1e3*t.getSeconds())}),(function(t,e){t.setTime(+t+6e4*e)}),(function(t,e){return(e-t)/6e4}),(function(t){return t.getMinutes()})),c=l.range,u=n((function(t){t.setTime(t-t.getMilliseconds()-1e3*t.getSeconds()-6e4*t.getMinutes())}),(function(t,e){t.setTime(+t+36e5*e)}),(function(t,e){return(e-t)/36e5}),(function(t){return t.getHours()})),f=u.range,h=n((function(t){t.setHours(0,0,0,0)}),(function(t,e){t.setDate(t.getDate()+e)}),(function(t,e){return(e-t-6e4*(e.getTimezoneOffset()-t.getTimezoneOffset()))/864e5}),(function(t){return t.getDate()-1})),p=h.range;function d(t){return n((function(e){e.setDate(e.getDate()-(e.getDay()+7-t)%7),e.setHours(0,0,0,0)}),(function(t,e){t.setDate(t.getDate()+7*e)}),(function(t,e){return(e-t-6e4*(e.getTimezoneOffset()-t.getTimezoneOffset()))/6048e5}))}var m=d(0),g=d(1),v=d(2),y=d(3),x=d(4),b=d(5),_=d(6),w=m.range,T=g.range,k=v.range,A=y.range,M=x.range,S=b.range,E=_.range,L=n((function(t){t.setDate(1),t.setHours(0,0,0,0)}),(function(t,e){t.setMonth(t.getMonth()+e)}),(function(t,e){return e.getMonth()-t.getMonth()+12*(e.getFullYear()-t.getFullYear())}),(function(t){return t.getMonth()})),C=L.range,P=n((function(t){t.setMonth(0,1),t.setHours(0,0,0,0)}),(function(t,e){t.setFullYear(t.getFullYear()+e)}),(function(t,e){return e.getFullYear()-t.getFullYear()}),(function(t){return t.getFullYear()}));P.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n((function(e){e.setFullYear(Math.floor(e.getFullYear()/t)*t),e.setMonth(0,1),e.setHours(0,0,0,0)}),(function(e,r){e.setFullYear(e.getFullYear()+r*t)})):null};var I=P.range,O=n((function(t){t.setUTCSeconds(0,0)}),(function(t,e){t.setTime(+t+6e4*e)}),(function(t,e){return(e-t)/6e4}),(function(t){return t.getUTCMinutes()})),z=O.range,D=n((function(t){t.setUTCMinutes(0,0,0)}),(function(t,e){t.setTime(+t+36e5*e)}),(function(t,e){return(e-t)/36e5}),(function(t){return t.getUTCHours()})),R=D.range,F=n((function(t){t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCDate(t.getUTCDate()+e)}),(function(t,e){return(e-t)/864e5}),(function(t){return t.getUTCDate()-1})),B=F.range;function N(t){return n((function(e){e.setUTCDate(e.getUTCDate()-(e.getUTCDay()+7-t)%7),e.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCDate(t.getUTCDate()+7*e)}),(function(t,e){return(e-t)/6048e5}))}var j=N(0),U=N(1),V=N(2),H=N(3),q=N(4),G=N(5),Y=N(6),W=j.range,X=U.range,Z=V.range,J=H.range,K=q.range,Q=G.range,$=Y.range,tt=n((function(t){t.setUTCDate(1),t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCMonth(t.getUTCMonth()+e)}),(function(t,e){return e.getUTCMonth()-t.getUTCMonth()+12*(e.getUTCFullYear()-t.getUTCFullYear())}),(function(t){return t.getUTCMonth()})),et=tt.range,rt=n((function(t){t.setUTCMonth(0,1),t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCFullYear(t.getUTCFullYear()+e)}),(function(t,e){return e.getUTCFullYear()-t.getUTCFullYear()}),(function(t){return t.getUTCFullYear()}));rt.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n((function(e){e.setUTCFullYear(Math.floor(e.getUTCFullYear()/t)*t),e.setUTCMonth(0,1),e.setUTCHours(0,0,0,0)}),(function(e,r){e.setUTCFullYear(e.getUTCFullYear()+r*t)})):null};var nt=rt.range;t.timeDay=h,t.timeDays=p,t.timeFriday=b,t.timeFridays=S,t.timeHour=u,t.timeHours=f,t.timeInterval=n,t.timeMillisecond=i,t.timeMilliseconds=a,t.timeMinute=l,t.timeMinutes=c,t.timeMonday=g,t.timeMondays=T,t.timeMonth=L,t.timeMonths=C,t.timeSaturday=_,t.timeSaturdays=E,t.timeSecond=o,t.timeSeconds=s,t.timeSunday=m,t.timeSundays=w,t.timeThursday=x,t.timeThursdays=M,t.timeTuesday=v,t.timeTuesdays=k,t.timeWednesday=y,t.timeWednesdays=A,t.timeWeek=m,t.timeWeeks=w,t.timeYear=P,t.timeYears=I,t.utcDay=F,t.utcDays=B,t.utcFriday=G,t.utcFridays=Q,t.utcHour=D,t.utcHours=R,t.utcMillisecond=i,t.utcMilliseconds=a,t.utcMinute=O,t.utcMinutes=z,t.utcMonday=U,t.utcMondays=X,t.utcMonth=tt,t.utcMonths=et,t.utcSaturday=Y,t.utcSaturdays=$,t.utcSecond=o,t.utcSeconds=s,t.utcSunday=j,t.utcSundays=W,t.utcThursday=q,t.utcThursdays=K,t.utcTuesday=V,t.utcTuesdays=Z,t.utcWednesday=H,t.utcWednesdays=J,t.utcWeek=j,t.utcWeeks=W,t.utcYear=rt,t.utcYears=nt,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],117:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";var e,r,n=0,i=0,a=0,o=0,s=0,l=0,c="object"==typeof performance&&performance.now?performance:Date,u="object"==typeof window&&window.requestAnimationFrame?window.requestAnimationFrame.bind(window):function(t){setTimeout(t,17)};function f(){return s||(u(h),s=c.now()+l)}function h(){s=0}function p(){this._call=this._time=this._next=null}function d(t,e,r){var n=new p;return n.restart(t,e,r),n}function m(){f(),++n;for(var t,r=e;r;)(t=s-r._time)>=0&&r._call.call(null,t),r=r._next;--n}function g(){s=(o=c.now())+l,n=i=0;try{m()}finally{n=0,function(){var t,n,i=e,a=1/0;for(;i;)i._call?(a>i._time&&(a=i._time),t=i,i=i._next):(n=i._next,i._next=null,i=t?t._next=n:e=n);r=t,y(a)}(),s=0}}function v(){var t=c.now(),e=t-o;e>1e3&&(l-=e,o=t)}function y(t){n||(i&&(i=clearTimeout(i)),t-s>24?(t<1/0&&(i=setTimeout(g,t-c.now()-l)),a&&(a=clearInterval(a))):(a||(o=c.now(),a=setInterval(v,1e3)),n=1,u(g)))}p.prototype=d.prototype={constructor:p,restart:function(t,n,i){if("function"!=typeof t)throw new TypeError("callback is not a function");i=(null==i?f():+i)+(null==n?0:+n),this._next||r===this||(r?r._next=this:e=this,r=this),this._call=t,this._time=i,y()},stop:function(){this._call&&(this._call=null,this._time=1/0,y())}},t.interval=function(t,e,r){var n=new p,i=e;return null==e?(n.restart(t,e,r),n):(e=+e,r=null==r?f():+r,n.restart((function a(o){o+=i,n.restart(a,i+=e,r),t(o)}),e,r),n)},t.now=f,t.timeout=function(t,e,r){var n=new p;return e=null==e?0:+e,n.restart((function(r){n.stop(),t(r+e)}),e,r),n},t.timer=d,t.timerFlush=m,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],118:[function(t,e,r){e.exports=function(){for(var t=0;ts*l){var p=(h-f)/s;a[u]=1e3*p}}return a}function o(t){for(var e=[],r=t[0];r<=t[1];r++)for(var n=String.fromCharCode(r),i=t[0];i0)return function(t,e){var r,n;for(r=new Array(t),n=0;n80*r){n=l=t[0],s=c=t[1];for(var b=r;bl&&(l=u),p>c&&(c=p);d=0!==(d=Math.max(l-n,c-s))?1/d:0}return o(y,x,r,n,s,d),x}function i(t,e,r,n,i){var a,o;if(i===E(t,e,r,n)>0)for(a=e;a=e;a-=n)o=A(a,t[a],t[a+1],o);return o&&x(o,o.next)&&(M(o),o=o.next),o}function a(t,e){if(!t)return t;e||(e=t);var r,n=t;do{if(r=!1,n.steiner||!x(n,n.next)&&0!==y(n.prev,n,n.next))n=n.next;else{if(M(n),(n=e=n.prev)===n.next)break;r=!0}}while(r||n!==e);return e}function o(t,e,r,n,i,f,h){if(t){!h&&f&&function(t,e,r,n){var i=t;do{null===i.z&&(i.z=d(i.x,i.y,e,r,n)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==t);i.prevZ.nextZ=null,i.prevZ=null,function(t){var e,r,n,i,a,o,s,l,c=1;do{for(r=t,t=null,a=null,o=0;r;){for(o++,n=r,s=0,e=0;e0||l>0&&n;)0!==s&&(0===l||!n||r.z<=n.z)?(i=r,r=r.nextZ,s--):(i=n,n=n.nextZ,l--),a?a.nextZ=i:t=i,i.prevZ=a,a=i;r=n}a.nextZ=null,c*=2}while(o>1)}(i)}(t,n,i,f);for(var p,m,g=t;t.prev!==t.next;)if(p=t.prev,m=t.next,f?l(t,n,i,f):s(t))e.push(p.i/r),e.push(t.i/r),e.push(m.i/r),M(t),t=m.next,g=m.next;else if((t=m)===g){h?1===h?o(t=c(a(t),e,r),e,r,n,i,f,2):2===h&&u(t,e,r,n,i,f):o(a(t),e,r,n,i,f,1);break}}}function s(t){var e=t.prev,r=t,n=t.next;if(y(e,r,n)>=0)return!1;for(var i=t.next.next;i!==t.prev;){if(g(e.x,e.y,r.x,r.y,n.x,n.y,i.x,i.y)&&y(i.prev,i,i.next)>=0)return!1;i=i.next}return!0}function l(t,e,r,n){var i=t.prev,a=t,o=t.next;if(y(i,a,o)>=0)return!1;for(var s=i.xa.x?i.x>o.x?i.x:o.x:a.x>o.x?a.x:o.x,u=i.y>a.y?i.y>o.y?i.y:o.y:a.y>o.y?a.y:o.y,f=d(s,l,e,r,n),h=d(c,u,e,r,n),p=t.prevZ,m=t.nextZ;p&&p.z>=f&&m&&m.z<=h;){if(p!==t.prev&&p!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&y(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,m!==t.prev&&m!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,m.x,m.y)&&y(m.prev,m,m.next)>=0)return!1;m=m.nextZ}for(;p&&p.z>=f;){if(p!==t.prev&&p!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&y(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;m&&m.z<=h;){if(m!==t.prev&&m!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,m.x,m.y)&&y(m.prev,m,m.next)>=0)return!1;m=m.nextZ}return!0}function c(t,e,r){var n=t;do{var i=n.prev,o=n.next.next;!x(i,o)&&b(i,n,n.next,o)&&T(i,o)&&T(o,i)&&(e.push(i.i/r),e.push(n.i/r),e.push(o.i/r),M(n),M(n.next),n=t=o),n=n.next}while(n!==t);return a(n)}function u(t,e,r,n,i,s){var l=t;do{for(var c=l.next.next;c!==l.prev;){if(l.i!==c.i&&v(l,c)){var u=k(l,c);return l=a(l,l.next),u=a(u,u.next),o(l,e,r,n,i,s),void o(u,e,r,n,i,s)}c=c.next}l=l.next}while(l!==t)}function f(t,e){return t.x-e.x}function h(t,e){var r=function(t,e){var r,n=e,i=t.x,a=t.y,o=-1/0;do{if(a<=n.y&&a>=n.next.y&&n.next.y!==n.y){var s=n.x+(a-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(s<=i&&s>o){if(o=s,s===i){if(a===n.y)return n;if(a===n.next.y)return n.next}r=n.x=n.x&&n.x>=u&&i!==n.x&&g(ar.x||n.x===r.x&&p(r,n)))&&(r=n,h=l)),n=n.next}while(n!==c);return r}(t,e);if(!r)return e;var n=k(r,t),i=a(r,r.next);return a(n,n.next),e===r?i:e}function p(t,e){return y(t.prev,t,e.prev)<0&&y(e.next,t,t.next)<0}function d(t,e,r,n,i){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-r)*i)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function m(t){var e=t,r=t;do{(e.x=0&&(t-o)*(n-s)-(r-o)*(e-s)>=0&&(r-o)*(a-s)-(i-o)*(n-s)>=0}function v(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){var r=t;do{if(r.i!==t.i&&r.next.i!==t.i&&r.i!==e.i&&r.next.i!==e.i&&b(r,r.next,t,e))return!0;r=r.next}while(r!==t);return!1}(t,e)&&(T(t,e)&&T(e,t)&&function(t,e){var r=t,n=!1,i=(t.x+e.x)/2,a=(t.y+e.y)/2;do{r.y>a!=r.next.y>a&&r.next.y!==r.y&&i<(r.next.x-r.x)*(a-r.y)/(r.next.y-r.y)+r.x&&(n=!n),r=r.next}while(r!==t);return n}(t,e)&&(y(t.prev,t,e.prev)||y(t,e.prev,e))||x(t,e)&&y(t.prev,t,t.next)>0&&y(e.prev,e,e.next)>0)}function y(t,e,r){return(e.y-t.y)*(r.x-e.x)-(e.x-t.x)*(r.y-e.y)}function x(t,e){return t.x===e.x&&t.y===e.y}function b(t,e,r,n){var i=w(y(t,e,r)),a=w(y(t,e,n)),o=w(y(r,n,t)),s=w(y(r,n,e));return i!==a&&o!==s||(!(0!==i||!_(t,r,e))||(!(0!==a||!_(t,n,e))||(!(0!==o||!_(r,t,n))||!(0!==s||!_(r,e,n)))))}function _(t,e,r){return e.x<=Math.max(t.x,r.x)&&e.x>=Math.min(t.x,r.x)&&e.y<=Math.max(t.y,r.y)&&e.y>=Math.min(t.y,r.y)}function w(t){return t>0?1:t<0?-1:0}function T(t,e){return y(t.prev,t,t.next)<0?y(t,e,t.next)>=0&&y(t,t.prev,e)>=0:y(t,e,t.prev)<0||y(t,t.next,e)<0}function k(t,e){var r=new S(t.i,t.x,t.y),n=new S(e.i,e.x,e.y),i=t.next,a=e.prev;return t.next=e,e.prev=t,r.next=i,i.prev=r,n.next=r,r.prev=n,a.next=n,n.prev=a,n}function A(t,e,r,n){var i=new S(t,e,r);return n?(i.next=n.next,i.prev=n,n.next.prev=i,n.next=i):(i.prev=i,i.next=i),i}function M(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function S(t,e,r){this.i=t,this.x=e,this.y=r,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}function E(t,e,r,n){for(var i=0,a=e,o=r-n;a0&&(n+=t[i-1].length,r.holes.push(n))}return r}},{}],124:[function(t,e,r){var n=t("strongly-connected-components");e.exports=function(t,e){var r,i=[],a=[],o=[],s={},l=[];function c(t){var e,n,i=!1;for(a.push(t),o[t]=!0,e=0;e=e}))}(e);for(var r,i=n(t).components.filter((function(t){return t.length>1})),a=1/0,o=0;o=55296&&y<=56319&&(w+=t[++r]),w=T?h.call(T,k,w,m):w,e?(p.value=w,d(g,m,p)):g[m]=w,++m;v=m}if(void 0===v)for(v=o(t.length),e&&(g=new e(v)),r=0;r0?1:-1}},{}],135:[function(t,e,r){"use strict";var n=t("../math/sign"),i=Math.abs,a=Math.floor;e.exports=function(t){return isNaN(t)?0:0!==(t=Number(t))&&isFinite(t)?n(t)*a(i(t)):t}},{"../math/sign":132}],136:[function(t,e,r){"use strict";var n=t("./to-integer"),i=Math.max;e.exports=function(t){return i(0,n(t))}},{"./to-integer":135}],137:[function(t,e,r){"use strict";var n=t("./valid-callable"),i=t("./valid-value"),a=Function.prototype.bind,o=Function.prototype.call,s=Object.keys,l=Object.prototype.propertyIsEnumerable;e.exports=function(t,e){return function(r,c){var u,f=arguments[2],h=arguments[3];return r=Object(i(r)),n(c),u=s(r),h&&u.sort("function"==typeof h?a.call(h,r):void 0),"function"!=typeof t&&(t=u[t]),o.call(t,u,(function(t,n){return l.call(r,t)?o.call(c,f,r[t],t,r,n):e}))}}},{"./valid-callable":154,"./valid-value":156}],138:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?Object.assign:t("./shim")},{"./is-implemented":139,"./shim":140}],139:[function(t,e,r){"use strict";e.exports=function(){var t,e=Object.assign;return"function"==typeof e&&(e(t={foo:"raz"},{bar:"dwa"},{trzy:"trzy"}),t.foo+t.bar+t.trzy==="razdwatrzy")}},{}],140:[function(t,e,r){"use strict";var n=t("../keys"),i=t("../valid-value"),a=Math.max;e.exports=function(t,e){var r,o,s,l=a(arguments.length,2);for(t=Object(i(t)),s=function(n){try{t[n]=e[n]}catch(t){r||(r=t)}},o=1;o-1}},{}],160:[function(t,e,r){"use strict";var n=Object.prototype.toString,i=n.call("");e.exports=function(t){return"string"==typeof t||t&&"object"==typeof t&&(t instanceof String||n.call(t)===i)||!1}},{}],161:[function(t,e,r){"use strict";var n=Object.create(null),i=Math.random;e.exports=function(){var t;do{t=i().toString(36).slice(2)}while(n[t]);return t}},{}],162:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/set-prototype-of"),a=t("es5-ext/string/#/contains"),o=t("d"),s=t("es6-symbol"),l=t("./"),c=Object.defineProperty;n=e.exports=function(t,e){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");l.call(this,t),e=e?a.call(e,"key+value")?"key+value":a.call(e,"key")?"key":"value":"value",c(this,"__kind__",o("",e))},i&&i(n,l),delete n.prototype.constructor,n.prototype=Object.create(l.prototype,{_resolve:o((function(t){return"value"===this.__kind__?this.__list__[t]:"key+value"===this.__kind__?[t,this.__list__[t]]:t}))}),c(n.prototype,s.toStringTag,o("c","Array Iterator"))},{"./":165,d:101,"es5-ext/object/set-prototype-of":151,"es5-ext/string/#/contains":157,"es6-symbol":169}],163:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/object/valid-callable"),a=t("es5-ext/string/is-string"),o=t("./get"),s=Array.isArray,l=Function.prototype.call,c=Array.prototype.some;e.exports=function(t,e){var r,u,f,h,p,d,m,g,v=arguments[2];if(s(t)||n(t)?r="array":a(t)?r="string":t=o(t),i(e),f=function(){h=!0},"array"!==r)if("string"!==r)for(u=t.next();!u.done;){if(l.call(e,v,u.value,f),h)return;u=t.next()}else for(d=t.length,p=0;p=55296&&g<=56319&&(m+=t[++p]),l.call(e,v,m,f),!h);++p);else c.call(t,(function(t){return l.call(e,v,t,f),h}))}},{"./get":164,"es5-ext/function/is-arguments":129,"es5-ext/object/valid-callable":154,"es5-ext/string/is-string":160}],164:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/string/is-string"),a=t("./array"),o=t("./string"),s=t("./valid-iterable"),l=t("es6-symbol").iterator;e.exports=function(t){return"function"==typeof s(t)[l]?t[l]():n(t)?new a(t):i(t)?new o(t):new a(t)}},{"./array":162,"./string":167,"./valid-iterable":168,"es5-ext/function/is-arguments":129,"es5-ext/string/is-string":160,"es6-symbol":169}],165:[function(t,e,r){"use strict";var n,i=t("es5-ext/array/#/clear"),a=t("es5-ext/object/assign"),o=t("es5-ext/object/valid-callable"),s=t("es5-ext/object/valid-value"),l=t("d"),c=t("d/auto-bind"),u=t("es6-symbol"),f=Object.defineProperty,h=Object.defineProperties;e.exports=n=function(t,e){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");h(this,{__list__:l("w",s(t)),__context__:l("w",e),__nextIndex__:l("w",0)}),e&&(o(e.on),e.on("_add",this._onAdd),e.on("_delete",this._onDelete),e.on("_clear",this._onClear))},delete n.prototype.constructor,h(n.prototype,a({_next:l((function(){var t;if(this.__list__)return this.__redo__&&void 0!==(t=this.__redo__.shift())?t:this.__nextIndex__=this.__nextIndex__||(++this.__nextIndex__,this.__redo__?(this.__redo__.forEach((function(e,r){e>=t&&(this.__redo__[r]=++e)}),this),this.__redo__.push(t)):f(this,"__redo__",l("c",[t])))})),_onDelete:l((function(t){var e;t>=this.__nextIndex__||(--this.__nextIndex__,this.__redo__&&(-1!==(e=this.__redo__.indexOf(t))&&this.__redo__.splice(e,1),this.__redo__.forEach((function(e,r){e>t&&(this.__redo__[r]=--e)}),this)))})),_onClear:l((function(){this.__redo__&&i.call(this.__redo__),this.__nextIndex__=0}))}))),f(n.prototype,u.iterator,l((function(){return this})))},{d:101,"d/auto-bind":100,"es5-ext/array/#/clear":125,"es5-ext/object/assign":138,"es5-ext/object/valid-callable":154,"es5-ext/object/valid-value":156,"es6-symbol":169}],166:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/object/is-value"),a=t("es5-ext/string/is-string"),o=t("es6-symbol").iterator,s=Array.isArray;e.exports=function(t){return!!i(t)&&(!!s(t)||(!!a(t)||(!!n(t)||"function"==typeof t[o])))}},{"es5-ext/function/is-arguments":129,"es5-ext/object/is-value":145,"es5-ext/string/is-string":160,"es6-symbol":169}],167:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/set-prototype-of"),a=t("d"),o=t("es6-symbol"),s=t("./"),l=Object.defineProperty;n=e.exports=function(t){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");t=String(t),s.call(this,t),l(this,"__length__",a("",t.length))},i&&i(n,s),delete n.prototype.constructor,n.prototype=Object.create(s.prototype,{_next:a((function(){if(this.__list__)return this.__nextIndex__=55296&&e<=56319?r+this.__list__[this.__nextIndex__++]:r}))}),l(n.prototype,o.toStringTag,a("c","String Iterator"))},{"./":165,d:101,"es5-ext/object/set-prototype-of":151,"es6-symbol":169}],168:[function(t,e,r){"use strict";var n=t("./is-iterable");e.exports=function(t){if(!n(t))throw new TypeError(t+" is not iterable");return t}},{"./is-iterable":166}],169:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?t("ext/global-this").Symbol:t("./polyfill")},{"./is-implemented":170,"./polyfill":175,"ext/global-this":183}],170:[function(t,e,r){"use strict";var n=t("ext/global-this"),i={object:!0,symbol:!0};e.exports=function(){var t,e=n.Symbol;if("function"!=typeof e)return!1;t=e("test symbol");try{String(t)}catch(t){return!1}return!!i[typeof e.iterator]&&(!!i[typeof e.toPrimitive]&&!!i[typeof e.toStringTag])}},{"ext/global-this":183}],171:[function(t,e,r){"use strict";e.exports=function(t){return!!t&&("symbol"==typeof t||!!t.constructor&&("Symbol"===t.constructor.name&&"Symbol"===t[t.constructor.toStringTag]))}},{}],172:[function(t,e,r){"use strict";var n=t("d"),i=Object.create,a=Object.defineProperty,o=Object.prototype,s=i(null);e.exports=function(t){for(var e,r,i=0;s[t+(i||"")];)++i;return s[t+=i||""]=!0,a(o,e="@@"+t,n.gs(null,(function(t){r||(r=!0,a(this,e,n(t)),r=!1)}))),e}},{d:101}],173:[function(t,e,r){"use strict";var n=t("d"),i=t("ext/global-this").Symbol;e.exports=function(t){return Object.defineProperties(t,{hasInstance:n("",i&&i.hasInstance||t("hasInstance")),isConcatSpreadable:n("",i&&i.isConcatSpreadable||t("isConcatSpreadable")),iterator:n("",i&&i.iterator||t("iterator")),match:n("",i&&i.match||t("match")),replace:n("",i&&i.replace||t("replace")),search:n("",i&&i.search||t("search")),species:n("",i&&i.species||t("species")),split:n("",i&&i.split||t("split")),toPrimitive:n("",i&&i.toPrimitive||t("toPrimitive")),toStringTag:n("",i&&i.toStringTag||t("toStringTag")),unscopables:n("",i&&i.unscopables||t("unscopables"))})}},{d:101,"ext/global-this":183}],174:[function(t,e,r){"use strict";var n=t("d"),i=t("../../../validate-symbol"),a=Object.create(null);e.exports=function(t){return Object.defineProperties(t,{for:n((function(e){return a[e]?a[e]:a[e]=t(String(e))})),keyFor:n((function(t){var e;for(e in i(t),a)if(a[e]===t)return e}))})}},{"../../../validate-symbol":176,d:101}],175:[function(t,e,r){"use strict";var n,i,a,o=t("d"),s=t("./validate-symbol"),l=t("ext/global-this").Symbol,c=t("./lib/private/generate-name"),u=t("./lib/private/setup/standard-symbols"),f=t("./lib/private/setup/symbol-registry"),h=Object.create,p=Object.defineProperties,d=Object.defineProperty;if("function"==typeof l)try{String(l()),a=!0}catch(t){}else l=null;i=function(t){if(this instanceof i)throw new TypeError("Symbol is not a constructor");return n(t)},e.exports=n=function t(e){var r;if(this instanceof t)throw new TypeError("Symbol is not a constructor");return a?l(e):(r=h(i.prototype),e=void 0===e?"":String(e),p(r,{__description__:o("",e),__name__:o("",c(e))}))},u(n),f(n),p(i.prototype,{constructor:o(n),toString:o("",(function(){return this.__name__}))}),p(n.prototype,{toString:o((function(){return"Symbol ("+s(this).__description__+")"})),valueOf:o((function(){return s(this)}))}),d(n.prototype,n.toPrimitive,o("",(function(){var t=s(this);return"symbol"==typeof t?t:t.toString()}))),d(n.prototype,n.toStringTag,o("c","Symbol")),d(i.prototype,n.toStringTag,o("c",n.prototype[n.toStringTag])),d(i.prototype,n.toPrimitive,o("c",n.prototype[n.toPrimitive]))},{"./lib/private/generate-name":172,"./lib/private/setup/standard-symbols":173,"./lib/private/setup/symbol-registry":174,"./validate-symbol":176,d:101,"ext/global-this":183}],176:[function(t,e,r){"use strict";var n=t("./is-symbol");e.exports=function(t){if(!n(t))throw new TypeError(t+" is not a symbol");return t}},{"./is-symbol":171}],177:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?WeakMap:t("./polyfill")},{"./is-implemented":178,"./polyfill":180}],178:[function(t,e,r){"use strict";e.exports=function(){var t,e;if("function"!=typeof WeakMap)return!1;try{t=new WeakMap([[e={},"one"],[{},"two"],[{},"three"]])}catch(t){return!1}return"[object WeakMap]"===String(t)&&("function"==typeof t.set&&(t.set({},1)===t&&("function"==typeof t.delete&&("function"==typeof t.has&&"one"===t.get(e)))))}},{}],179:[function(t,e,r){"use strict";e.exports="function"==typeof WeakMap&&"[object WeakMap]"===Object.prototype.toString.call(new WeakMap)},{}],180:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/is-value"),a=t("es5-ext/object/set-prototype-of"),o=t("es5-ext/object/valid-object"),s=t("es5-ext/object/valid-value"),l=t("es5-ext/string/random-uniq"),c=t("d"),u=t("es6-iterator/get"),f=t("es6-iterator/for-of"),h=t("es6-symbol").toStringTag,p=t("./is-native-implemented"),d=Array.isArray,m=Object.defineProperty,g=Object.prototype.hasOwnProperty,v=Object.getPrototypeOf;e.exports=n=function(){var t,e=arguments[0];if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");return t=p&&a&&WeakMap!==n?a(new WeakMap,v(this)):this,i(e)&&(d(e)||(e=u(e))),m(t,"__weakMapData__",c("c","$weakMap$"+l())),e?(f(e,(function(e){s(e),t.set(e[0],e[1])})),t):t},p&&(a&&a(n,WeakMap),n.prototype=Object.create(WeakMap.prototype,{constructor:c(n)})),Object.defineProperties(n.prototype,{delete:c((function(t){return!!g.call(o(t),this.__weakMapData__)&&(delete t[this.__weakMapData__],!0)})),get:c((function(t){if(g.call(o(t),this.__weakMapData__))return t[this.__weakMapData__]})),has:c((function(t){return g.call(o(t),this.__weakMapData__)})),set:c((function(t,e){return m(o(t),this.__weakMapData__,c("c",e)),this})),toString:c((function(){return"[object WeakMap]"}))}),m(n.prototype,h,c("c","WeakMap"))},{"./is-native-implemented":179,d:101,"es5-ext/object/is-value":145,"es5-ext/object/set-prototype-of":151,"es5-ext/object/valid-object":155,"es5-ext/object/valid-value":156,"es5-ext/string/random-uniq":161,"es6-iterator/for-of":163,"es6-iterator/get":164,"es6-symbol":169}],181:[function(t,e,r){"use strict";var n,i="object"==typeof Reflect?Reflect:null,a=i&&"function"==typeof i.apply?i.apply:function(t,e,r){return Function.prototype.apply.call(t,e,r)};n=i&&"function"==typeof i.ownKeys?i.ownKeys:Object.getOwnPropertySymbols?function(t){return Object.getOwnPropertyNames(t).concat(Object.getOwnPropertySymbols(t))}:function(t){return Object.getOwnPropertyNames(t)};var o=Number.isNaN||function(t){return t!=t};function s(){s.init.call(this)}e.exports=s,e.exports.once=function(t,e){return new Promise((function(r,n){function i(r){t.removeListener(e,a),n(r)}function a(){"function"==typeof t.removeListener&&t.removeListener("error",i),r([].slice.call(arguments))}v(t,e,a,{once:!0}),"error"!==e&&function(t,e,r){"function"==typeof t.on&&v(t,"error",e,r)}(t,i,{once:!0})}))},s.EventEmitter=s,s.prototype._events=void 0,s.prototype._eventsCount=0,s.prototype._maxListeners=void 0;var l=10;function c(t){if("function"!=typeof t)throw new TypeError('The "listener" argument must be of type Function. Received type '+typeof t)}function u(t){return void 0===t._maxListeners?s.defaultMaxListeners:t._maxListeners}function f(t,e,r,n){var i,a,o,s;if(c(r),void 0===(a=t._events)?(a=t._events=Object.create(null),t._eventsCount=0):(void 0!==a.newListener&&(t.emit("newListener",e,r.listener?r.listener:r),a=t._events),o=a[e]),void 0===o)o=a[e]=r,++t._eventsCount;else if("function"==typeof o?o=a[e]=n?[r,o]:[o,r]:n?o.unshift(r):o.push(r),(i=u(t))>0&&o.length>i&&!o.warned){o.warned=!0;var l=new Error("Possible EventEmitter memory leak detected. "+o.length+" "+String(e)+" listeners added. Use emitter.setMaxListeners() to increase limit");l.name="MaxListenersExceededWarning",l.emitter=t,l.type=e,l.count=o.length,s=l,console&&console.warn&&console.warn(s)}return t}function h(){if(!this.fired)return this.target.removeListener(this.type,this.wrapFn),this.fired=!0,0===arguments.length?this.listener.call(this.target):this.listener.apply(this.target,arguments)}function p(t,e,r){var n={fired:!1,wrapFn:void 0,target:t,type:e,listener:r},i=h.bind(n);return i.listener=r,n.wrapFn=i,i}function d(t,e,r){var n=t._events;if(void 0===n)return[];var i=n[e];return void 0===i?[]:"function"==typeof i?r?[i.listener||i]:[i]:r?function(t){for(var e=new Array(t.length),r=0;r0&&(o=e[0]),o instanceof Error)throw o;var s=new Error("Unhandled error."+(o?" ("+o.message+")":""));throw s.context=o,s}var l=i[t];if(void 0===l)return!1;if("function"==typeof l)a(l,this,e);else{var c=l.length,u=g(l,c);for(r=0;r=0;a--)if(r[a]===e||r[a].listener===e){o=r[a].listener,i=a;break}if(i<0)return this;0===i?r.shift():function(t,e){for(;e+1=0;n--)this.removeListener(t,e[n]);return this},s.prototype.listeners=function(t){return d(this,t,!0)},s.prototype.rawListeners=function(t){return d(this,t,!1)},s.listenerCount=function(t,e){return"function"==typeof t.listenerCount?t.listenerCount(e):m.call(t,e)},s.prototype.listenerCount=m,s.prototype.eventNames=function(){return this._eventsCount>0?n(this._events):[]}},{}],182:[function(t,e,r){var n=function(){if("object"==typeof self&&self)return self;if("object"==typeof window&&window)return window;throw new Error("Unable to resolve global `this`")};e.exports=function(){if(this)return this;try{Object.defineProperty(Object.prototype,"__global__",{get:function(){return this},configurable:!0})}catch(t){return n()}try{return __global__||n()}finally{delete Object.prototype.__global__}}()},{}],183:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?globalThis:t("./implementation")},{"./implementation":182,"./is-implemented":184}],184:[function(t,e,r){"use strict";e.exports=function(){return"object"==typeof globalThis&&(!!globalThis&&globalThis.Array===Array)}},{}],185:[function(t,e,r){"use strict";var n=t("is-string-blank");e.exports=function(t){var e=typeof t;if("string"===e){var r=t;if(0===(t=+t)&&n(r))return!1}else if("number"!==e)return!1;return t-t<1}},{"is-string-blank":232}],186:[function(t,e,r){var n=t("dtype");e.exports=function(t,e,r){if(!t)throw new TypeError("must specify data as first parameter");if(r=0|+(r||0),Array.isArray(t)&&t[0]&&"number"==typeof t[0][0]){var i,a,o,s,l=t[0].length,c=t.length*l;e&&"string"!=typeof e||(e=new(n(e||"float32"))(c+r));var u=e.length-r;if(c!==u)throw new Error("source length "+c+" ("+l+"x"+t.length+") does not match destination length "+u);for(i=0,o=r;ie[0]-o[0]/2&&(h=o[0]/2,p+=o[1]);return r}},{"css-font/stringify":97}],188:[function(t,e,r){"use strict";function n(t,e){e||(e={}),("string"==typeof t||Array.isArray(t))&&(e.family=t);var r=Array.isArray(e.family)?e.family.join(", "):e.family;if(!r)throw Error("`family` must be defined");var s=e.size||e.fontSize||e.em||48,l=e.weight||e.fontWeight||"",c=(t=[e.style||e.fontStyle||"",l,s].join(" ")+"px "+r,e.origin||"top");if(n.cache[r]&&s<=n.cache[r].em)return i(n.cache[r],c);var u=e.canvas||n.canvas,f=u.getContext("2d"),h={upper:void 0!==e.upper?e.upper:"H",lower:void 0!==e.lower?e.lower:"x",descent:void 0!==e.descent?e.descent:"p",ascent:void 0!==e.ascent?e.ascent:"h",tittle:void 0!==e.tittle?e.tittle:"i",overshoot:void 0!==e.overshoot?e.overshoot:"O"},p=Math.ceil(1.5*s);u.height=p,u.width=.5*p,f.font=t;var d={top:0};f.clearRect(0,0,p,p),f.textBaseline="top",f.fillStyle="black",f.fillText("H",0,0);var m=a(f.getImageData(0,0,p,p));f.clearRect(0,0,p,p),f.textBaseline="bottom",f.fillText("H",0,p);var g=a(f.getImageData(0,0,p,p));d.lineHeight=d.bottom=p-g+m,f.clearRect(0,0,p,p),f.textBaseline="alphabetic",f.fillText("H",0,p);var v=p-a(f.getImageData(0,0,p,p))-1+m;d.baseline=d.alphabetic=v,f.clearRect(0,0,p,p),f.textBaseline="middle",f.fillText("H",0,.5*p);var y=a(f.getImageData(0,0,p,p));d.median=d.middle=p-y-1+m-.5*p,f.clearRect(0,0,p,p),f.textBaseline="hanging",f.fillText("H",0,.5*p);var x=a(f.getImageData(0,0,p,p));d.hanging=p-x-1+m-.5*p,f.clearRect(0,0,p,p),f.textBaseline="ideographic",f.fillText("H",0,p);var b=a(f.getImageData(0,0,p,p));if(d.ideographic=p-b-1+m,h.upper&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.upper,0,0),d.upper=a(f.getImageData(0,0,p,p)),d.capHeight=d.baseline-d.upper),h.lower&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.lower,0,0),d.lower=a(f.getImageData(0,0,p,p)),d.xHeight=d.baseline-d.lower),h.tittle&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.tittle,0,0),d.tittle=a(f.getImageData(0,0,p,p))),h.ascent&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.ascent,0,0),d.ascent=a(f.getImageData(0,0,p,p))),h.descent&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.descent,0,0),d.descent=o(f.getImageData(0,0,p,p))),h.overshoot){f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.overshoot,0,0);var _=o(f.getImageData(0,0,p,p));d.overshoot=_-v}for(var w in d)d[w]/=s;return d.em=s,n.cache[r]=d,i(d,c)}function i(t,e){var r={};for(var n in"string"==typeof e&&(e=t[e]),t)"em"!==n&&(r[n]=t[n]-e);return r}function a(t){for(var e=t.height,r=t.data,n=3;n0;n-=4)if(0!==r[n])return Math.floor(.25*(n-3)/e)}e.exports=n,n.canvas=document.createElement("canvas"),n.cache={}},{}],189:[function(t,e,r){e.exports=function(t,e){if("string"!=typeof t)throw new TypeError("must specify type string");if(e=e||{},"undefined"==typeof document&&!e.canvas)return null;var r=e.canvas||document.createElement("canvas");"number"==typeof e.width&&(r.width=e.width);"number"==typeof e.height&&(r.height=e.height);var n,i=e;try{var a=[t];0===t.indexOf("webgl")&&a.push("experimental-"+t);for(var o=0;o halfCharStep + halfCharWidth ||\n\t\t\t\t\tfloor(uv.x) < halfCharStep - halfCharWidth) return;\n\n\t\t\t\tuv += charId * charStep;\n\t\t\t\tuv = uv / atlasSize;\n\n\t\t\t\tvec4 color = fontColor;\n\t\t\t\tvec4 mask = texture2D(atlas, uv);\n\n\t\t\t\tfloat maskY = lightness(mask);\n\t\t\t\t// float colorY = lightness(color);\n\t\t\t\tcolor.a *= maskY;\n\t\t\t\tcolor.a *= opacity;\n\n\t\t\t\t// color.a += .1;\n\n\t\t\t\t// antialiasing, see yiq color space y-channel formula\n\t\t\t\t// color.rgb += (1. - color.rgb) * (1. - mask.rgb);\n\n\t\t\t\tgl_FragColor = color;\n\t\t\t}"});return{regl:t,draw:e,atlas:{}}},T.prototype.update=function(t){var e=this;if("string"==typeof t)t={text:t};else if(!t)return;null!=(t=i(t,{position:"position positions coord coords coordinates",font:"font fontFace fontface typeface cssFont css-font family fontFamily",fontSize:"fontSize fontsize size font-size",text:"text texts chars characters value values symbols",align:"align alignment textAlign textbaseline",baseline:"baseline textBaseline textbaseline",direction:"dir direction textDirection",color:"color colour fill fill-color fillColor textColor textcolor",kerning:"kerning kern",range:"range dataBox",viewport:"vp viewport viewBox viewbox viewPort",opacity:"opacity alpha transparency visible visibility opaque",offset:"offset positionOffset padding shift indent indentation"},!0)).opacity&&(Array.isArray(t.opacity)?this.opacity=t.opacity.map((function(t){return parseFloat(t)})):this.opacity=parseFloat(t.opacity)),null!=t.viewport&&(this.viewport=f(t.viewport),this.viewportArray=[this.viewport.x,this.viewport.y,this.viewport.width,this.viewport.height]),null==this.viewport&&(this.viewport={x:0,y:0,width:this.gl.drawingBufferWidth,height:this.gl.drawingBufferHeight},this.viewportArray=[this.viewport.x,this.viewport.y,this.viewport.width,this.viewport.height]),null!=t.kerning&&(this.kerning=t.kerning),null!=t.offset&&("number"==typeof t.offset&&(t.offset=[t.offset,0]),this.positionOffset=y(t.offset)),t.direction&&(this.direction=t.direction),t.range&&(this.range=t.range,this.scale=[1/(t.range[2]-t.range[0]),1/(t.range[3]-t.range[1])],this.translate=[-t.range[0],-t.range[1]]),t.scale&&(this.scale=t.scale),t.translate&&(this.translate=t.translate),this.scale||(this.scale=[1/this.viewport.width,1/this.viewport.height]),this.translate||(this.translate=[0,0]),this.font.length||t.font||(t.font=T.baseFontSize+"px sans-serif");var r,a=!1,o=!1;if(t.font&&(Array.isArray(t.font)?t.font:[t.font]).forEach((function(t,r){if("string"==typeof t)try{t=n.parse(t)}catch(e){t=n.parse(T.baseFontSize+"px "+t)}else t=n.parse(n.stringify(t));var i=n.stringify({size:T.baseFontSize,family:t.family,stretch:_?t.stretch:void 0,variant:t.variant,weight:t.weight,style:t.style}),s=p(t.size),l=Math.round(s[0]*d(s[1]));if(l!==e.fontSize[r]&&(o=!0,e.fontSize[r]=l),!(e.font[r]&&i==e.font[r].baseString||(a=!0,e.font[r]=T.fonts[i],e.font[r]))){var c=t.family.join(", "),u=[t.style];t.style!=t.variant&&u.push(t.variant),t.variant!=t.weight&&u.push(t.weight),_&&t.weight!=t.stretch&&u.push(t.stretch),e.font[r]={baseString:i,family:c,weight:t.weight,stretch:t.stretch,style:t.style,variant:t.variant,width:{},kerning:{},metrics:v(c,{origin:"top",fontSize:T.baseFontSize,fontStyle:u.join(" ")})},T.fonts[i]=e.font[r]}})),(a||o)&&this.font.forEach((function(r,i){var a=n.stringify({size:e.fontSize[i],family:r.family,stretch:_?r.stretch:void 0,variant:r.variant,weight:r.weight,style:r.style});if(e.fontAtlas[i]=e.shader.atlas[a],!e.fontAtlas[i]){var o=r.metrics;e.shader.atlas[a]=e.fontAtlas[i]={fontString:a,step:2*Math.ceil(e.fontSize[i]*o.bottom*.5),em:e.fontSize[i],cols:0,rows:0,height:0,width:0,chars:[],ids:{},texture:e.regl.texture()}}null==t.text&&(t.text=e.text)})),"string"==typeof t.text&&t.position&&t.position.length>2){for(var s=Array(.5*t.position.length),h=0;h2){for(var w=!t.position[0].length,k=u.mallocFloat(2*this.count),A=0,M=0;A1?e.align[r]:e.align[0]:e.align;if("number"==typeof n)return n;switch(n){case"right":case"end":return-t;case"center":case"centre":case"middle":return.5*-t}return 0}))),null==this.baseline&&null==t.baseline&&(t.baseline=0),null!=t.baseline&&(this.baseline=t.baseline,Array.isArray(this.baseline)||(this.baseline=[this.baseline]),this.baselineOffset=this.baseline.map((function(t,r){var n=(e.font[r]||e.font[0]).metrics,i=0;return i+=.5*n.bottom,i+="number"==typeof t?t-n.baseline:-n[t],i*=-1}))),null!=t.color)if(t.color||(t.color="transparent"),"string"!=typeof t.color&&isNaN(t.color)){var q;if("number"==typeof t.color[0]&&t.color.length>this.counts.length){var G=t.color.length;q=u.mallocUint8(G);for(var Y=(t.color.subarray||t.color.slice).bind(t.color),W=0;W4||this.baselineOffset.length>1||this.align&&this.align.length>1||this.fontAtlas.length>1||this.positionOffset.length>2){var J=Math.max(.5*this.position.length||0,.25*this.color.length||0,this.baselineOffset.length||0,this.alignOffset.length||0,this.font.length||0,this.opacity.length||0,.5*this.positionOffset.length||0);this.batch=Array(J);for(var K=0;K1?this.counts[K]:this.counts[0],offset:this.textOffsets.length>1?this.textOffsets[K]:this.textOffsets[0],color:this.color?this.color.length<=4?this.color:this.color.subarray(4*K,4*K+4):[0,0,0,255],opacity:Array.isArray(this.opacity)?this.opacity[K]:this.opacity,baseline:null!=this.baselineOffset[K]?this.baselineOffset[K]:this.baselineOffset[0],align:this.align?null!=this.alignOffset[K]?this.alignOffset[K]:this.alignOffset[0]:0,atlas:this.fontAtlas[K]||this.fontAtlas[0],positionOffset:this.positionOffset.length>2?this.positionOffset.subarray(2*K,2*K+2):this.positionOffset}}else this.count?this.batch=[{count:this.count,offset:0,color:this.color||[0,0,0,255],opacity:Array.isArray(this.opacity)?this.opacity[0]:this.opacity,baseline:this.baselineOffset[0],align:this.alignOffset?this.alignOffset[0]:0,atlas:this.fontAtlas[0],positionOffset:this.positionOffset}]:this.batch=[]},T.prototype.destroy=function(){},T.prototype.kerning=!0,T.prototype.position={constant:new Float32Array(2)},T.prototype.translate=null,T.prototype.scale=null,T.prototype.font=null,T.prototype.text="",T.prototype.positionOffset=[0,0],T.prototype.opacity=1,T.prototype.color=new Uint8Array([0,0,0,255]),T.prototype.alignOffset=[0,0],T.maxAtlasSize=1024,T.atlasCanvas=document.createElement("canvas"),T.atlasContext=T.atlasCanvas.getContext("2d",{alpha:!1}),T.baseFontSize=64,T.fonts={},e.exports=T},{"bit-twiddle":77,"color-normalize":84,"css-font":94,"detect-kerning":119,"es6-weak-map":177,"flatten-vertex-data":186,"font-atlas":187,"font-measure":188,"gl-util/context":221,"is-plain-obj":231,"object-assign":242,"parse-rect":244,"parse-unit":246,"pick-by-alias":248,regl:278,"to-px":309,"typedarray-pool":322}],221:[function(t,e,r){(function(r){(function(){"use strict";var n=t("pick-by-alias");function i(t){if(t.container)if(t.container==document.body)document.body.style.width||(t.canvas.width=t.width||t.pixelRatio*r.innerWidth),document.body.style.height||(t.canvas.height=t.height||t.pixelRatio*r.innerHeight);else{var e=t.container.getBoundingClientRect();t.canvas.width=t.width||e.right-e.left,t.canvas.height=t.height||e.bottom-e.top}}function a(t){return"function"==typeof t.getContext&&"width"in t&&"height"in t}function o(){var t=document.createElement("canvas");return t.style.position="absolute",t.style.top=0,t.style.left=0,t}e.exports=function(t){var e;if(t?"string"==typeof t&&(t={container:t}):t={},a(t)?t={container:t}:t="string"==typeof(e=t).nodeName&&"function"==typeof e.appendChild&&"function"==typeof e.getBoundingClientRect?{container:t}:function(t){return"function"==typeof t.drawArrays||"function"==typeof t.drawElements}(t)?{gl:t}:n(t,{container:"container target element el canvas holder parent parentNode wrapper use ref root node",gl:"gl context webgl glContext",attrs:"attributes attrs contextAttributes",pixelRatio:"pixelRatio pxRatio px ratio pxratio pixelratio",width:"w width",height:"h height"},!0),t.pixelRatio||(t.pixelRatio=r.pixelRatio||1),t.gl)return t.gl;if(t.canvas&&(t.container=t.canvas.parentNode),t.container){if("string"==typeof t.container){var s=document.querySelector(t.container);if(!s)throw Error("Element "+t.container+" is not found");t.container=s}a(t.container)?(t.canvas=t.container,t.container=t.canvas.parentNode):t.canvas||(t.canvas=o(),t.container.appendChild(t.canvas),i(t))}else if(!t.canvas){if("undefined"==typeof document)throw Error("Not DOM environment. Use headless-gl.");t.container=document.body||document.documentElement,t.canvas=o(),t.container.appendChild(t.canvas),i(t)}return t.gl||["webgl","experimental-webgl","webgl-experimental"].some((function(e){try{t.gl=t.canvas.getContext(e,t.attrs)}catch(t){}return t.gl})),t.gl}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"pick-by-alias":248}],222:[function(t,e,r){e.exports=function(t){"string"==typeof t&&(t=[t]);for(var e=[].slice.call(arguments,1),r=[],n=0;n2147483647)throw new RangeError('The value "'+t+'" is invalid for option "size"');var e=new Uint8Array(t);return e.__proto__=a.prototype,e}function a(t,e,r){if("number"==typeof t){if("string"==typeof e)throw new TypeError('The "string" argument must be of type string. Received type number');return l(t)}return o(t,e,r)}function o(t,e,r){if("string"==typeof t)return function(t,e){"string"==typeof e&&""!==e||(e="utf8");if(!a.isEncoding(e))throw new TypeError("Unknown encoding: "+e);var r=0|f(t,e),n=i(r),o=n.write(t,e);o!==r&&(n=n.slice(0,o));return n}(t,e);if(ArrayBuffer.isView(t))return c(t);if(null==t)throw TypeError("The first argument must be one of type string, Buffer, ArrayBuffer, Array, or Array-like Object. Received type "+typeof t);if(B(t,ArrayBuffer)||t&&B(t.buffer,ArrayBuffer))return function(t,e,r){if(e<0||t.byteLength=2147483647)throw new RangeError("Attempt to allocate Buffer larger than maximum size: 0x"+2147483647..toString(16)+" bytes");return 0|t}function f(t,e){if(a.isBuffer(t))return t.length;if(ArrayBuffer.isView(t)||B(t,ArrayBuffer))return t.byteLength;if("string"!=typeof t)throw new TypeError('The "string" argument must be one of type string, Buffer, or ArrayBuffer. Received type '+typeof t);var r=t.length,n=arguments.length>2&&!0===arguments[2];if(!n&&0===r)return 0;for(var i=!1;;)switch(e){case"ascii":case"latin1":case"binary":return r;case"utf8":case"utf-8":return D(t).length;case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return 2*r;case"hex":return r>>>1;case"base64":return R(t).length;default:if(i)return n?-1:D(t).length;e=(""+e).toLowerCase(),i=!0}}function h(t,e,r){var n=!1;if((void 0===e||e<0)&&(e=0),e>this.length)return"";if((void 0===r||r>this.length)&&(r=this.length),r<=0)return"";if((r>>>=0)<=(e>>>=0))return"";for(t||(t="utf8");;)switch(t){case"hex":return M(this,e,r);case"utf8":case"utf-8":return T(this,e,r);case"ascii":return k(this,e,r);case"latin1":case"binary":return A(this,e,r);case"base64":return w(this,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return S(this,e,r);default:if(n)throw new TypeError("Unknown encoding: "+t);t=(t+"").toLowerCase(),n=!0}}function p(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function d(t,e,r,n,i){if(0===t.length)return-1;if("string"==typeof r?(n=r,r=0):r>2147483647?r=2147483647:r<-2147483648&&(r=-2147483648),N(r=+r)&&(r=i?0:t.length-1),r<0&&(r=t.length+r),r>=t.length){if(i)return-1;r=t.length-1}else if(r<0){if(!i)return-1;r=0}if("string"==typeof e&&(e=a.from(e,n)),a.isBuffer(e))return 0===e.length?-1:m(t,e,r,n,i);if("number"==typeof e)return e&=255,"function"==typeof Uint8Array.prototype.indexOf?i?Uint8Array.prototype.indexOf.call(t,e,r):Uint8Array.prototype.lastIndexOf.call(t,e,r):m(t,[e],r,n,i);throw new TypeError("val must be string, number or Buffer")}function m(t,e,r,n,i){var a,o=1,s=t.length,l=e.length;if(void 0!==n&&("ucs2"===(n=String(n).toLowerCase())||"ucs-2"===n||"utf16le"===n||"utf-16le"===n)){if(t.length<2||e.length<2)return-1;o=2,s/=2,l/=2,r/=2}function c(t,e){return 1===o?t[e]:t.readUInt16BE(e*o)}if(i){var u=-1;for(a=r;as&&(r=s-l),a=r;a>=0;a--){for(var f=!0,h=0;hi&&(n=i):n=i;var a=e.length;n>a/2&&(n=a/2);for(var o=0;o>8,i=r%256,a.push(i),a.push(n);return a}(e,t.length-r),t,r,n)}function w(t,r,n){return 0===r&&n===t.length?e.fromByteArray(t):e.fromByteArray(t.slice(r,n))}function T(t,e,r){r=Math.min(t.length,r);for(var n=[],i=e;i239?4:c>223?3:c>191?2:1;if(i+f<=r)switch(f){case 1:c<128&&(u=c);break;case 2:128==(192&(a=t[i+1]))&&(l=(31&c)<<6|63&a)>127&&(u=l);break;case 3:a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&(l=(15&c)<<12|(63&a)<<6|63&o)>2047&&(l<55296||l>57343)&&(u=l);break;case 4:a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&(l=(15&c)<<18|(63&a)<<12|(63&o)<<6|63&s)>65535&&l<1114112&&(u=l)}null===u?(u=65533,f=1):u>65535&&(u-=65536,n.push(u>>>10&1023|55296),u=56320|1023&u),n.push(u),i+=f}return function(t){var e=t.length;if(e<=4096)return String.fromCharCode.apply(String,t);var r="",n=0;for(;ne&&(t+=" ... "),""},a.prototype.compare=function(t,e,r,n,i){if(B(t,Uint8Array)&&(t=a.from(t,t.offset,t.byteLength)),!a.isBuffer(t))throw new TypeError('The "target" argument must be one of type Buffer or Uint8Array. Received type '+typeof t);if(void 0===e&&(e=0),void 0===r&&(r=t?t.length:0),void 0===n&&(n=0),void 0===i&&(i=this.length),e<0||r>t.length||n<0||i>this.length)throw new RangeError("out of range index");if(n>=i&&e>=r)return 0;if(n>=i)return-1;if(e>=r)return 1;if(this===t)return 0;for(var o=(i>>>=0)-(n>>>=0),s=(r>>>=0)-(e>>>=0),l=Math.min(o,s),c=this.slice(n,i),u=t.slice(e,r),f=0;f>>=0,isFinite(r)?(r>>>=0,void 0===n&&(n="utf8")):(n=r,r=void 0)}var i=this.length-e;if((void 0===r||r>i)&&(r=i),t.length>0&&(r<0||e<0)||e>this.length)throw new RangeError("Attempt to write outside buffer bounds");n||(n="utf8");for(var a=!1;;)switch(n){case"hex":return g(this,t,e,r);case"utf8":case"utf-8":return v(this,t,e,r);case"ascii":return y(this,t,e,r);case"latin1":case"binary":return x(this,t,e,r);case"base64":return b(this,t,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return _(this,t,e,r);default:if(a)throw new TypeError("Unknown encoding: "+n);n=(""+n).toLowerCase(),a=!0}},a.prototype.toJSON=function(){return{type:"Buffer",data:Array.prototype.slice.call(this._arr||this,0)}};function k(t,e,r){var n="";r=Math.min(t.length,r);for(var i=e;in)&&(r=n);for(var i="",a=e;ar)throw new RangeError("Trying to access beyond buffer length")}function L(t,e,r,n,i,o){if(!a.isBuffer(t))throw new TypeError('"buffer" argument must be a Buffer instance');if(e>i||et.length)throw new RangeError("Index out of range")}function C(t,e,r,n,i,a){if(r+n>t.length)throw new RangeError("Index out of range");if(r<0)throw new RangeError("Index out of range")}function P(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,4),n.write(t,e,r,i,23,4),r+4}function I(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,8),n.write(t,e,r,i,52,8),r+8}a.prototype.slice=function(t,e){var r=this.length;(t=~~t)<0?(t+=r)<0&&(t=0):t>r&&(t=r),(e=void 0===e?r:~~e)<0?(e+=r)<0&&(e=0):e>r&&(e=r),e>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t+--e],i=1;e>0&&(i*=256);)n+=this[t+--e]*i;return n},a.prototype.readUInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),this[t]},a.prototype.readUInt16LE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]|this[t+1]<<8},a.prototype.readUInt16BE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]<<8|this[t+1]},a.prototype.readUInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),(this[t]|this[t+1]<<8|this[t+2]<<16)+16777216*this[t+3]},a.prototype.readUInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),16777216*this[t]+(this[t+1]<<16|this[t+2]<<8|this[t+3])},a.prototype.readIntLE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a=(i*=128)&&(n-=Math.pow(2,8*e)),n},a.prototype.readIntBE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=e,i=1,a=this[t+--n];n>0&&(i*=256);)a+=this[t+--n]*i;return a>=(i*=128)&&(a-=Math.pow(2,8*e)),a},a.prototype.readInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),128&this[t]?-1*(255-this[t]+1):this[t]},a.prototype.readInt16LE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t]|this[t+1]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt16BE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t+1]|this[t]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]|this[t+1]<<8|this[t+2]<<16|this[t+3]<<24},a.prototype.readInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]<<24|this[t+1]<<16|this[t+2]<<8|this[t+3]},a.prototype.readFloatLE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!0,23,4)},a.prototype.readFloatBE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!1,23,4)},a.prototype.readDoubleLE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!0,52,8)},a.prototype.readDoubleBE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!1,52,8)},a.prototype.writeUIntLE=function(t,e,r,n){(t=+t,e>>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=1,a=0;for(this[e]=255&t;++a>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=r-1,a=1;for(this[e+i]=255&t;--i>=0&&(a*=256);)this[e+i]=t/a&255;return e+r},a.prototype.writeUInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,255,0),this[e]=255&t,e+1},a.prototype.writeUInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeUInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeUInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e+3]=t>>>24,this[e+2]=t>>>16,this[e+1]=t>>>8,this[e]=255&t,e+4},a.prototype.writeUInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeIntLE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=0,o=1,s=0;for(this[e]=255&t;++a>0)-s&255;return e+r},a.prototype.writeIntBE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=r-1,o=1,s=0;for(this[e+a]=255&t;--a>=0&&(o*=256);)t<0&&0===s&&0!==this[e+a+1]&&(s=1),this[e+a]=(t/o>>0)-s&255;return e+r},a.prototype.writeInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,127,-128),t<0&&(t=255+t+1),this[e]=255&t,e+1},a.prototype.writeInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),this[e]=255&t,this[e+1]=t>>>8,this[e+2]=t>>>16,this[e+3]=t>>>24,e+4},a.prototype.writeInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),t<0&&(t=4294967295+t+1),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeFloatLE=function(t,e,r){return P(this,t,e,!0,r)},a.prototype.writeFloatBE=function(t,e,r){return P(this,t,e,!1,r)},a.prototype.writeDoubleLE=function(t,e,r){return I(this,t,e,!0,r)},a.prototype.writeDoubleBE=function(t,e,r){return I(this,t,e,!1,r)},a.prototype.copy=function(t,e,r,n){if(!a.isBuffer(t))throw new TypeError("argument should be a Buffer");if(r||(r=0),n||0===n||(n=this.length),e>=t.length&&(e=t.length),e||(e=0),n>0&&n=this.length)throw new RangeError("Index out of range");if(n<0)throw new RangeError("sourceEnd out of bounds");n>this.length&&(n=this.length),t.length-e=0;--o)t[o+e]=this[o+r];else Uint8Array.prototype.set.call(t,this.subarray(r,n),e);return i},a.prototype.fill=function(t,e,r,n){if("string"==typeof t){if("string"==typeof e?(n=e,e=0,r=this.length):"string"==typeof r&&(n=r,r=this.length),void 0!==n&&"string"!=typeof n)throw new TypeError("encoding must be a string");if("string"==typeof n&&!a.isEncoding(n))throw new TypeError("Unknown encoding: "+n);if(1===t.length){var i=t.charCodeAt(0);("utf8"===n&&i<128||"latin1"===n)&&(t=i)}}else"number"==typeof t&&(t&=255);if(e<0||this.length>>=0,r=void 0===r?this.length:r>>>0,t||(t=0),"number"==typeof t)for(o=e;o55295&&r<57344){if(!i){if(r>56319){(e-=3)>-1&&a.push(239,191,189);continue}if(o+1===n){(e-=3)>-1&&a.push(239,191,189);continue}i=r;continue}if(r<56320){(e-=3)>-1&&a.push(239,191,189),i=r;continue}r=65536+(i-55296<<10|r-56320)}else i&&(e-=3)>-1&&a.push(239,191,189);if(i=null,r<128){if((e-=1)<0)break;a.push(r)}else if(r<2048){if((e-=2)<0)break;a.push(r>>6|192,63&r|128)}else if(r<65536){if((e-=3)<0)break;a.push(r>>12|224,r>>6&63|128,63&r|128)}else{if(!(r<1114112))throw new Error("Invalid code point");if((e-=4)<0)break;a.push(r>>18|240,r>>12&63|128,r>>6&63|128,63&r|128)}}return a}function R(t){return e.toByteArray(function(t){if((t=(t=t.split("=")[0]).trim().replace(O,"")).length<2)return"";for(;t.length%4!=0;)t+="=";return t}(t))}function F(t,e,r,n){for(var i=0;i=e.length||i>=t.length);++i)e[i+r]=t[i];return i}function B(t,e){return t instanceof e||null!=t&&null!=t.constructor&&null!=t.constructor.name&&t.constructor.name===e.name}function N(t){return t!=t}}).call(this)}).call(this,t("buffer").Buffer)},{"base64-js":82,buffer:112,ieee754:427}],113:[function(t,e,r){"use strict";var n=t("./lib/monotone"),i=t("./lib/triangulation"),a=t("./lib/delaunay"),o=t("./lib/filter");function s(t){return[Math.min(t[0],t[1]),Math.max(t[0],t[1])]}function l(t,e){return t[0]-e[0]||t[1]-e[1]}function c(t,e,r){return e in t?t[e]:r}e.exports=function(t,e,r){Array.isArray(e)?(r=r||{},e=e||[]):(r=e||{},e=[]);var u=!!c(r,"delaunay",!0),f=!!c(r,"interior",!0),h=!!c(r,"exterior",!0),p=!!c(r,"infinity",!1);if(!f&&!h||0===t.length)return[];var d=n(t,e);if(u||f!==h||p){for(var m=i(t.length,function(t){return t.map(s).sort(l)}(e)),g=0;g0;){for(var p=r.pop(),d=(s=r.pop(),u=-1,f=-1,l=o[s],1);d=0||(e.flip(s,p),i(t,e,r,u,s,f),i(t,e,r,s,f,u),i(t,e,r,f,p,u),i(t,e,r,p,u,f)))}}},{"binary-search-bounds":100,"robust-in-sphere":522}],115:[function(t,e,r){"use strict";var n,i=t("binary-search-bounds");function a(t,e,r,n,i,a,o){this.cells=t,this.neighbor=e,this.flags=n,this.constraint=r,this.active=i,this.next=a,this.boundary=o}function o(t,e){return t[0]-e[0]||t[1]-e[1]||t[2]-e[2]}e.exports=function(t,e,r){var n=function(t,e){for(var r=t.cells(),n=r.length,i=0;i0||l.length>0;){for(;s.length>0;){var p=s.pop();if(c[p]!==-i){c[p]=i;u[p];for(var d=0;d<3;++d){var m=h[3*p+d];m>=0&&0===c[m]&&(f[3*p+d]?l.push(m):(s.push(m),c[m]=i))}}}var g=l;l=s,s=g,l.length=0,i=-i}var v=function(t,e,r){for(var n=0,i=0;i1&&i(r[h[p-2]],r[h[p-1]],a)>0;)t.push([h[p-1],h[p-2],o]),p-=1;h.length=p,h.push(o);var d=f.upperIds;for(p=d.length;p>1&&i(r[d[p-2]],r[d[p-1]],a)<0;)t.push([d[p-2],d[p-1],o]),p-=1;d.length=p,d.push(o)}}function u(t,e){var r;return(r=t.a[0]d[0]&&i.push(new o(d,p,2,l),new o(p,d,1,l))}i.sort(s);for(var m=i[0].a[0]-(1+Math.abs(i[0].a[0]))*Math.pow(2,-52),g=[new a([m,1],[m,0],-1,[],[],[],[])],v=[],y=(l=0,i.length);l=0}}(),a.removeTriangle=function(t,e,r){var n=this.stars;o(n[t],e,r),o(n[e],r,t),o(n[r],t,e)},a.addTriangle=function(t,e,r){var n=this.stars;n[t].push(e,r),n[e].push(r,t),n[r].push(t,e)},a.opposite=function(t,e){for(var r=this.stars[e],n=1,i=r.length;nr?r:t:te?e:t}},{}],122:[function(t,e,r){"use strict";e.exports=function(t,e,r){var n;if(r){n=e;for(var i=new Array(e.length),a=0;ae[2]?1:0)}function v(t,e,r){if(0!==t.length){if(e)for(var n=0;n=0;--a){var x=e[u=(S=n[a])[0]],b=x[0],_=x[1],w=t[b],T=t[_];if((w[0]-T[0]||w[1]-T[1])<0){var k=b;b=_,_=k}x[0]=b;var A,M=x[1]=S[1];for(i&&(A=x[2]);a>0&&n[a-1][0]===u;){var S,E=(S=n[--a])[1];i?e.push([M,E,A]):e.push([M,E]),M=E}i?e.push([M,_,A]):e.push([M,_])}return h}(t,e,h,g,r));return v(e,y,r),!!y||(h.length>0||g.length>0)}},{"./lib/rat-seg-intersect":123,"big-rat":86,"big-rat/cmp":84,"big-rat/to-float":99,"box-intersect":104,nextafter:463,"rat-vec":508,"robust-segment-intersect":527,"union-find":591}],123:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){var a=s(e,t),f=s(n,r),h=u(a,f);if(0===o(h))return null;var p=s(t,r),d=u(f,p),m=i(d,h),g=c(a,m);return l(t,g)};var n=t("big-rat/mul"),i=t("big-rat/div"),a=t("big-rat/sub"),o=t("big-rat/sign"),s=t("rat-vec/sub"),l=t("rat-vec/add"),c=t("rat-vec/muls");function u(t,e){return a(n(t[0],e[1]),n(t[1],e[0]))}},{"big-rat/div":85,"big-rat/mul":95,"big-rat/sign":97,"big-rat/sub":98,"rat-vec/add":507,"rat-vec/muls":509,"rat-vec/sub":510}],124:[function(t,e,r){"use strict";var n=t("clamp");function i(t,e){null==e&&(e=!0);var r=t[0],i=t[1],a=t[2],o=t[3];return null==o&&(o=e?1:255),e&&(r*=255,i*=255,a*=255,o*=255),16777216*(r=255&n(r,0,255))+((i=255&n(i,0,255))<<16)+((a=255&n(a,0,255))<<8)+(o=255&n(o,0,255))}e.exports=i,e.exports.to=i,e.exports.from=function(t,e){var r=(t=+t)>>>24,n=(16711680&t)>>>16,i=(65280&t)>>>8,a=255&t;return!1===e?[r,n,i,a]:[r/255,n/255,i/255,a/255]}},{clamp:121}],125:[function(t,e,r){"use strict";e.exports={aliceblue:[240,248,255],antiquewhite:[250,235,215],aqua:[0,255,255],aquamarine:[127,255,212],azure:[240,255,255],beige:[245,245,220],bisque:[255,228,196],black:[0,0,0],blanchedalmond:[255,235,205],blue:[0,0,255],blueviolet:[138,43,226],brown:[165,42,42],burlywood:[222,184,135],cadetblue:[95,158,160],chartreuse:[127,255,0],chocolate:[210,105,30],coral:[255,127,80],cornflowerblue:[100,149,237],cornsilk:[255,248,220],crimson:[220,20,60],cyan:[0,255,255],darkblue:[0,0,139],darkcyan:[0,139,139],darkgoldenrod:[184,134,11],darkgray:[169,169,169],darkgreen:[0,100,0],darkgrey:[169,169,169],darkkhaki:[189,183,107],darkmagenta:[139,0,139],darkolivegreen:[85,107,47],darkorange:[255,140,0],darkorchid:[153,50,204],darkred:[139,0,0],darksalmon:[233,150,122],darkseagreen:[143,188,143],darkslateblue:[72,61,139],darkslategray:[47,79,79],darkslategrey:[47,79,79],darkturquoise:[0,206,209],darkviolet:[148,0,211],deeppink:[255,20,147],deepskyblue:[0,191,255],dimgray:[105,105,105],dimgrey:[105,105,105],dodgerblue:[30,144,255],firebrick:[178,34,34],floralwhite:[255,250,240],forestgreen:[34,139,34],fuchsia:[255,0,255],gainsboro:[220,220,220],ghostwhite:[248,248,255],gold:[255,215,0],goldenrod:[218,165,32],gray:[128,128,128],green:[0,128,0],greenyellow:[173,255,47],grey:[128,128,128],honeydew:[240,255,240],hotpink:[255,105,180],indianred:[205,92,92],indigo:[75,0,130],ivory:[255,255,240],khaki:[240,230,140],lavender:[230,230,250],lavenderblush:[255,240,245],lawngreen:[124,252,0],lemonchiffon:[255,250,205],lightblue:[173,216,230],lightcoral:[240,128,128],lightcyan:[224,255,255],lightgoldenrodyellow:[250,250,210],lightgray:[211,211,211],lightgreen:[144,238,144],lightgrey:[211,211,211],lightpink:[255,182,193],lightsalmon:[255,160,122],lightseagreen:[32,178,170],lightskyblue:[135,206,250],lightslategray:[119,136,153],lightslategrey:[119,136,153],lightsteelblue:[176,196,222],lightyellow:[255,255,224],lime:[0,255,0],limegreen:[50,205,50],linen:[250,240,230],magenta:[255,0,255],maroon:[128,0,0],mediumaquamarine:[102,205,170],mediumblue:[0,0,205],mediumorchid:[186,85,211],mediumpurple:[147,112,219],mediumseagreen:[60,179,113],mediumslateblue:[123,104,238],mediumspringgreen:[0,250,154],mediumturquoise:[72,209,204],mediumvioletred:[199,21,133],midnightblue:[25,25,112],mintcream:[245,255,250],mistyrose:[255,228,225],moccasin:[255,228,181],navajowhite:[255,222,173],navy:[0,0,128],oldlace:[253,245,230],olive:[128,128,0],olivedrab:[107,142,35],orange:[255,165,0],orangered:[255,69,0],orchid:[218,112,214],palegoldenrod:[238,232,170],palegreen:[152,251,152],paleturquoise:[175,238,238],palevioletred:[219,112,147],papayawhip:[255,239,213],peachpuff:[255,218,185],peru:[205,133,63],pink:[255,192,203],plum:[221,160,221],powderblue:[176,224,230],purple:[128,0,128],rebeccapurple:[102,51,153],red:[255,0,0],rosybrown:[188,143,143],royalblue:[65,105,225],saddlebrown:[139,69,19],salmon:[250,128,114],sandybrown:[244,164,96],seagreen:[46,139,87],seashell:[255,245,238],sienna:[160,82,45],silver:[192,192,192],skyblue:[135,206,235],slateblue:[106,90,205],slategray:[112,128,144],slategrey:[112,128,144],snow:[255,250,250],springgreen:[0,255,127],steelblue:[70,130,180],tan:[210,180,140],teal:[0,128,128],thistle:[216,191,216],tomato:[255,99,71],turquoise:[64,224,208],violet:[238,130,238],wheat:[245,222,179],white:[255,255,255],whitesmoke:[245,245,245],yellow:[255,255,0],yellowgreen:[154,205,50]}},{}],126:[function(t,e,r){"use strict";var n=t("color-rgba"),i=t("clamp"),a=t("dtype");e.exports=function(t,e){"float"!==e&&e||(e="array"),"uint"===e&&(e="uint8"),"uint_clamped"===e&&(e="uint8_clamped");var r=new(a(e))(4),o="uint8"!==e&&"uint8_clamped"!==e;return t.length&&"string"!=typeof t||((t=n(t))[0]/=255,t[1]/=255,t[2]/=255),function(t){return t instanceof Uint8Array||t instanceof Uint8ClampedArray||!!(Array.isArray(t)&&(t[0]>1||0===t[0])&&(t[1]>1||0===t[1])&&(t[2]>1||0===t[2])&&(!t[3]||t[3]>1))}(t)?(r[0]=t[0],r[1]=t[1],r[2]=t[2],r[3]=null!=t[3]?t[3]:255,o&&(r[0]/=255,r[1]/=255,r[2]/=255,r[3]/=255),r):(o?(r[0]=t[0],r[1]=t[1],r[2]=t[2],r[3]=null!=t[3]?t[3]:1):(r[0]=i(Math.floor(255*t[0]),0,255),r[1]=i(Math.floor(255*t[1]),0,255),r[2]=i(Math.floor(255*t[2]),0,255),r[3]=null==t[3]?255:i(Math.floor(255*t[3]),0,255)),r)}},{clamp:121,"color-rgba":128,dtype:176}],127:[function(t,e,r){(function(r){(function(){"use strict";var n=t("color-name"),i=t("is-plain-obj"),a=t("defined");e.exports=function(t){var e,s,l=[],c=1;if("string"==typeof t)if(n[t])l=n[t].slice(),s="rgb";else if("transparent"===t)c=0,s="rgb",l=[0,0,0];else if(/^#[A-Fa-f0-9]+$/.test(t)){var u=(p=t.slice(1)).length;c=1,u<=4?(l=[parseInt(p[0]+p[0],16),parseInt(p[1]+p[1],16),parseInt(p[2]+p[2],16)],4===u&&(c=parseInt(p[3]+p[3],16)/255)):(l=[parseInt(p[0]+p[1],16),parseInt(p[2]+p[3],16),parseInt(p[4]+p[5],16)],8===u&&(c=parseInt(p[6]+p[7],16)/255)),l[0]||(l[0]=0),l[1]||(l[1]=0),l[2]||(l[2]=0),s="rgb"}else if(e=/^((?:rgb|hs[lvb]|hwb|cmyk?|xy[zy]|gray|lab|lchu?v?|[ly]uv|lms)a?)\s*\(([^\)]*)\)/.exec(t)){var f=e[1],h="rgb"===f,p=f.replace(/a$/,"");s=p;u="cmyk"===p?4:"gray"===p?1:3;l=e[2].trim().split(/\s*,\s*/).map((function(t,e){if(/%$/.test(t))return e===u?parseFloat(t)/100:"rgb"===p?255*parseFloat(t)/100:parseFloat(t);if("h"===p[e]){if(/deg$/.test(t))return parseFloat(t);if(void 0!==o[t])return o[t]}return parseFloat(t)})),f===p&&l.push(1),c=h||void 0===l[u]?1:l[u],l=l.slice(0,u)}else t.length>10&&/[0-9](?:\s|\/)/.test(t)&&(l=t.match(/([0-9]+)/g).map((function(t){return parseFloat(t)})),s=t.match(/([a-z])/gi).join("").toLowerCase());else if(isNaN(t))if(i(t)){var d=a(t.r,t.red,t.R,null);null!==d?(s="rgb",l=[d,a(t.g,t.green,t.G),a(t.b,t.blue,t.B)]):(s="hsl",l=[a(t.h,t.hue,t.H),a(t.s,t.saturation,t.S),a(t.l,t.lightness,t.L,t.b,t.brightness)]),c=a(t.a,t.alpha,t.opacity,1),null!=t.opacity&&(c/=100)}else(Array.isArray(t)||r.ArrayBuffer&&ArrayBuffer.isView&&ArrayBuffer.isView(t))&&(l=[t[0],t[1],t[2]],s="rgb",c=4===t.length?t[3]:1);else s="rgb",l=[t>>>16,(65280&t)>>>8,255&t];return{space:s,values:l,alpha:c}};var o={red:0,orange:60,yellow:120,green:180,blue:240,purple:300}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"color-name":125,defined:171,"is-plain-obj":437}],128:[function(t,e,r){"use strict";var n=t("color-parse"),i=t("color-space/hsl"),a=t("clamp");e.exports=function(t){var e,r=n(t);return r.space?((e=Array(3))[0]=a(r.values[0],0,255),e[1]=a(r.values[1],0,255),e[2]=a(r.values[2],0,255),"h"===r.space[0]&&(e=i.rgb(e)),e.push(a(r.alpha,0,1)),e):[]}},{clamp:121,"color-parse":127,"color-space/hsl":129}],129:[function(t,e,r){"use strict";var n=t("./rgb");e.exports={name:"hsl",min:[0,0,0],max:[360,100,100],channel:["hue","saturation","lightness"],alias:["HSL"],rgb:function(t){var e,r,n,i,a,o=t[0]/360,s=t[1]/100,l=t[2]/100;if(0===s)return[a=255*l,a,a];e=2*l-(r=l<.5?l*(1+s):l+s-l*s),i=[0,0,0];for(var c=0;c<3;c++)(n=o+1/3*-(c-1))<0?n++:n>1&&n--,a=6*n<1?e+6*(r-e)*n:2*n<1?r:3*n<2?e+(r-e)*(2/3-n)*6:e,i[c]=255*a;return i}},n.hsl=function(t){var e,r,n=t[0]/255,i=t[1]/255,a=t[2]/255,o=Math.min(n,i,a),s=Math.max(n,i,a),l=s-o;return s===o?e=0:n===s?e=(i-a)/l:i===s?e=2+(a-n)/l:a===s&&(e=4+(n-i)/l),(e=Math.min(60*e,360))<0&&(e+=360),r=(o+s)/2,[e,100*(s===o?0:r<=.5?l/(s+o):l/(2-s-o)),100*r]}},{"./rgb":130}],130:[function(t,e,r){"use strict";e.exports={name:"rgb",min:[0,0,0],max:[255,255,255],channel:["red","green","blue"],alias:["RGB"]}},{}],131:[function(t,e,r){e.exports={jet:[{index:0,rgb:[0,0,131]},{index:.125,rgb:[0,60,170]},{index:.375,rgb:[5,255,255]},{index:.625,rgb:[255,255,0]},{index:.875,rgb:[250,0,0]},{index:1,rgb:[128,0,0]}],hsv:[{index:0,rgb:[255,0,0]},{index:.169,rgb:[253,255,2]},{index:.173,rgb:[247,255,2]},{index:.337,rgb:[0,252,4]},{index:.341,rgb:[0,252,10]},{index:.506,rgb:[1,249,255]},{index:.671,rgb:[2,0,253]},{index:.675,rgb:[8,0,253]},{index:.839,rgb:[255,0,251]},{index:.843,rgb:[255,0,245]},{index:1,rgb:[255,0,6]}],hot:[{index:0,rgb:[0,0,0]},{index:.3,rgb:[230,0,0]},{index:.6,rgb:[255,210,0]},{index:1,rgb:[255,255,255]}],spring:[{index:0,rgb:[255,0,255]},{index:1,rgb:[255,255,0]}],summer:[{index:0,rgb:[0,128,102]},{index:1,rgb:[255,255,102]}],autumn:[{index:0,rgb:[255,0,0]},{index:1,rgb:[255,255,0]}],winter:[{index:0,rgb:[0,0,255]},{index:1,rgb:[0,255,128]}],bone:[{index:0,rgb:[0,0,0]},{index:.376,rgb:[84,84,116]},{index:.753,rgb:[169,200,200]},{index:1,rgb:[255,255,255]}],copper:[{index:0,rgb:[0,0,0]},{index:.804,rgb:[255,160,102]},{index:1,rgb:[255,199,127]}],greys:[{index:0,rgb:[0,0,0]},{index:1,rgb:[255,255,255]}],yignbu:[{index:0,rgb:[8,29,88]},{index:.125,rgb:[37,52,148]},{index:.25,rgb:[34,94,168]},{index:.375,rgb:[29,145,192]},{index:.5,rgb:[65,182,196]},{index:.625,rgb:[127,205,187]},{index:.75,rgb:[199,233,180]},{index:.875,rgb:[237,248,217]},{index:1,rgb:[255,255,217]}],greens:[{index:0,rgb:[0,68,27]},{index:.125,rgb:[0,109,44]},{index:.25,rgb:[35,139,69]},{index:.375,rgb:[65,171,93]},{index:.5,rgb:[116,196,118]},{index:.625,rgb:[161,217,155]},{index:.75,rgb:[199,233,192]},{index:.875,rgb:[229,245,224]},{index:1,rgb:[247,252,245]}],yiorrd:[{index:0,rgb:[128,0,38]},{index:.125,rgb:[189,0,38]},{index:.25,rgb:[227,26,28]},{index:.375,rgb:[252,78,42]},{index:.5,rgb:[253,141,60]},{index:.625,rgb:[254,178,76]},{index:.75,rgb:[254,217,118]},{index:.875,rgb:[255,237,160]},{index:1,rgb:[255,255,204]}],bluered:[{index:0,rgb:[0,0,255]},{index:1,rgb:[255,0,0]}],rdbu:[{index:0,rgb:[5,10,172]},{index:.35,rgb:[106,137,247]},{index:.5,rgb:[190,190,190]},{index:.6,rgb:[220,170,132]},{index:.7,rgb:[230,145,90]},{index:1,rgb:[178,10,28]}],picnic:[{index:0,rgb:[0,0,255]},{index:.1,rgb:[51,153,255]},{index:.2,rgb:[102,204,255]},{index:.3,rgb:[153,204,255]},{index:.4,rgb:[204,204,255]},{index:.5,rgb:[255,255,255]},{index:.6,rgb:[255,204,255]},{index:.7,rgb:[255,153,255]},{index:.8,rgb:[255,102,204]},{index:.9,rgb:[255,102,102]},{index:1,rgb:[255,0,0]}],rainbow:[{index:0,rgb:[150,0,90]},{index:.125,rgb:[0,0,200]},{index:.25,rgb:[0,25,255]},{index:.375,rgb:[0,152,255]},{index:.5,rgb:[44,255,150]},{index:.625,rgb:[151,255,0]},{index:.75,rgb:[255,234,0]},{index:.875,rgb:[255,111,0]},{index:1,rgb:[255,0,0]}],portland:[{index:0,rgb:[12,51,131]},{index:.25,rgb:[10,136,186]},{index:.5,rgb:[242,211,56]},{index:.75,rgb:[242,143,56]},{index:1,rgb:[217,30,30]}],blackbody:[{index:0,rgb:[0,0,0]},{index:.2,rgb:[230,0,0]},{index:.4,rgb:[230,210,0]},{index:.7,rgb:[255,255,255]},{index:1,rgb:[160,200,255]}],earth:[{index:0,rgb:[0,0,130]},{index:.1,rgb:[0,180,180]},{index:.2,rgb:[40,210,40]},{index:.4,rgb:[230,230,50]},{index:.6,rgb:[120,70,20]},{index:1,rgb:[255,255,255]}],electric:[{index:0,rgb:[0,0,0]},{index:.15,rgb:[30,0,100]},{index:.4,rgb:[120,0,100]},{index:.6,rgb:[160,90,0]},{index:.8,rgb:[230,200,0]},{index:1,rgb:[255,250,220]}],alpha:[{index:0,rgb:[255,255,255,0]},{index:1,rgb:[255,255,255,1]}],viridis:[{index:0,rgb:[68,1,84]},{index:.13,rgb:[71,44,122]},{index:.25,rgb:[59,81,139]},{index:.38,rgb:[44,113,142]},{index:.5,rgb:[33,144,141]},{index:.63,rgb:[39,173,129]},{index:.75,rgb:[92,200,99]},{index:.88,rgb:[170,220,50]},{index:1,rgb:[253,231,37]}],inferno:[{index:0,rgb:[0,0,4]},{index:.13,rgb:[31,12,72]},{index:.25,rgb:[85,15,109]},{index:.38,rgb:[136,34,106]},{index:.5,rgb:[186,54,85]},{index:.63,rgb:[227,89,51]},{index:.75,rgb:[249,140,10]},{index:.88,rgb:[249,201,50]},{index:1,rgb:[252,255,164]}],magma:[{index:0,rgb:[0,0,4]},{index:.13,rgb:[28,16,68]},{index:.25,rgb:[79,18,123]},{index:.38,rgb:[129,37,129]},{index:.5,rgb:[181,54,122]},{index:.63,rgb:[229,80,100]},{index:.75,rgb:[251,135,97]},{index:.88,rgb:[254,194,135]},{index:1,rgb:[252,253,191]}],plasma:[{index:0,rgb:[13,8,135]},{index:.13,rgb:[75,3,161]},{index:.25,rgb:[125,3,168]},{index:.38,rgb:[168,34,150]},{index:.5,rgb:[203,70,121]},{index:.63,rgb:[229,107,93]},{index:.75,rgb:[248,148,65]},{index:.88,rgb:[253,195,40]},{index:1,rgb:[240,249,33]}],warm:[{index:0,rgb:[125,0,179]},{index:.13,rgb:[172,0,187]},{index:.25,rgb:[219,0,170]},{index:.38,rgb:[255,0,130]},{index:.5,rgb:[255,63,74]},{index:.63,rgb:[255,123,0]},{index:.75,rgb:[234,176,0]},{index:.88,rgb:[190,228,0]},{index:1,rgb:[147,255,0]}],cool:[{index:0,rgb:[125,0,179]},{index:.13,rgb:[116,0,218]},{index:.25,rgb:[98,74,237]},{index:.38,rgb:[68,146,231]},{index:.5,rgb:[0,204,197]},{index:.63,rgb:[0,247,146]},{index:.75,rgb:[0,255,88]},{index:.88,rgb:[40,255,8]},{index:1,rgb:[147,255,0]}],"rainbow-soft":[{index:0,rgb:[125,0,179]},{index:.1,rgb:[199,0,180]},{index:.2,rgb:[255,0,121]},{index:.3,rgb:[255,108,0]},{index:.4,rgb:[222,194,0]},{index:.5,rgb:[150,255,0]},{index:.6,rgb:[0,255,55]},{index:.7,rgb:[0,246,150]},{index:.8,rgb:[50,167,222]},{index:.9,rgb:[103,51,235]},{index:1,rgb:[124,0,186]}],bathymetry:[{index:0,rgb:[40,26,44]},{index:.13,rgb:[59,49,90]},{index:.25,rgb:[64,76,139]},{index:.38,rgb:[63,110,151]},{index:.5,rgb:[72,142,158]},{index:.63,rgb:[85,174,163]},{index:.75,rgb:[120,206,163]},{index:.88,rgb:[187,230,172]},{index:1,rgb:[253,254,204]}],cdom:[{index:0,rgb:[47,15,62]},{index:.13,rgb:[87,23,86]},{index:.25,rgb:[130,28,99]},{index:.38,rgb:[171,41,96]},{index:.5,rgb:[206,67,86]},{index:.63,rgb:[230,106,84]},{index:.75,rgb:[242,149,103]},{index:.88,rgb:[249,193,135]},{index:1,rgb:[254,237,176]}],chlorophyll:[{index:0,rgb:[18,36,20]},{index:.13,rgb:[25,63,41]},{index:.25,rgb:[24,91,59]},{index:.38,rgb:[13,119,72]},{index:.5,rgb:[18,148,80]},{index:.63,rgb:[80,173,89]},{index:.75,rgb:[132,196,122]},{index:.88,rgb:[175,221,162]},{index:1,rgb:[215,249,208]}],density:[{index:0,rgb:[54,14,36]},{index:.13,rgb:[89,23,80]},{index:.25,rgb:[110,45,132]},{index:.38,rgb:[120,77,178]},{index:.5,rgb:[120,113,213]},{index:.63,rgb:[115,151,228]},{index:.75,rgb:[134,185,227]},{index:.88,rgb:[177,214,227]},{index:1,rgb:[230,241,241]}],"freesurface-blue":[{index:0,rgb:[30,4,110]},{index:.13,rgb:[47,14,176]},{index:.25,rgb:[41,45,236]},{index:.38,rgb:[25,99,212]},{index:.5,rgb:[68,131,200]},{index:.63,rgb:[114,156,197]},{index:.75,rgb:[157,181,203]},{index:.88,rgb:[200,208,216]},{index:1,rgb:[241,237,236]}],"freesurface-red":[{index:0,rgb:[60,9,18]},{index:.13,rgb:[100,17,27]},{index:.25,rgb:[142,20,29]},{index:.38,rgb:[177,43,27]},{index:.5,rgb:[192,87,63]},{index:.63,rgb:[205,125,105]},{index:.75,rgb:[216,162,148]},{index:.88,rgb:[227,199,193]},{index:1,rgb:[241,237,236]}],oxygen:[{index:0,rgb:[64,5,5]},{index:.13,rgb:[106,6,15]},{index:.25,rgb:[144,26,7]},{index:.38,rgb:[168,64,3]},{index:.5,rgb:[188,100,4]},{index:.63,rgb:[206,136,11]},{index:.75,rgb:[220,174,25]},{index:.88,rgb:[231,215,44]},{index:1,rgb:[248,254,105]}],par:[{index:0,rgb:[51,20,24]},{index:.13,rgb:[90,32,35]},{index:.25,rgb:[129,44,34]},{index:.38,rgb:[159,68,25]},{index:.5,rgb:[182,99,19]},{index:.63,rgb:[199,134,22]},{index:.75,rgb:[212,171,35]},{index:.88,rgb:[221,210,54]},{index:1,rgb:[225,253,75]}],phase:[{index:0,rgb:[145,105,18]},{index:.13,rgb:[184,71,38]},{index:.25,rgb:[186,58,115]},{index:.38,rgb:[160,71,185]},{index:.5,rgb:[110,97,218]},{index:.63,rgb:[50,123,164]},{index:.75,rgb:[31,131,110]},{index:.88,rgb:[77,129,34]},{index:1,rgb:[145,105,18]}],salinity:[{index:0,rgb:[42,24,108]},{index:.13,rgb:[33,50,162]},{index:.25,rgb:[15,90,145]},{index:.38,rgb:[40,118,137]},{index:.5,rgb:[59,146,135]},{index:.63,rgb:[79,175,126]},{index:.75,rgb:[120,203,104]},{index:.88,rgb:[193,221,100]},{index:1,rgb:[253,239,154]}],temperature:[{index:0,rgb:[4,35,51]},{index:.13,rgb:[23,51,122]},{index:.25,rgb:[85,59,157]},{index:.38,rgb:[129,79,143]},{index:.5,rgb:[175,95,130]},{index:.63,rgb:[222,112,101]},{index:.75,rgb:[249,146,66]},{index:.88,rgb:[249,196,65]},{index:1,rgb:[232,250,91]}],turbidity:[{index:0,rgb:[34,31,27]},{index:.13,rgb:[65,50,41]},{index:.25,rgb:[98,69,52]},{index:.38,rgb:[131,89,57]},{index:.5,rgb:[161,112,59]},{index:.63,rgb:[185,140,66]},{index:.75,rgb:[202,174,88]},{index:.88,rgb:[216,209,126]},{index:1,rgb:[233,246,171]}],"velocity-blue":[{index:0,rgb:[17,32,64]},{index:.13,rgb:[35,52,116]},{index:.25,rgb:[29,81,156]},{index:.38,rgb:[31,113,162]},{index:.5,rgb:[50,144,169]},{index:.63,rgb:[87,173,176]},{index:.75,rgb:[149,196,189]},{index:.88,rgb:[203,221,211]},{index:1,rgb:[254,251,230]}],"velocity-green":[{index:0,rgb:[23,35,19]},{index:.13,rgb:[24,64,38]},{index:.25,rgb:[11,95,45]},{index:.38,rgb:[39,123,35]},{index:.5,rgb:[95,146,12]},{index:.63,rgb:[152,165,18]},{index:.75,rgb:[201,186,69]},{index:.88,rgb:[233,216,137]},{index:1,rgb:[255,253,205]}],cubehelix:[{index:0,rgb:[0,0,0]},{index:.07,rgb:[22,5,59]},{index:.13,rgb:[60,4,105]},{index:.2,rgb:[109,1,135]},{index:.27,rgb:[161,0,147]},{index:.33,rgb:[210,2,142]},{index:.4,rgb:[251,11,123]},{index:.47,rgb:[255,29,97]},{index:.53,rgb:[255,54,69]},{index:.6,rgb:[255,85,46]},{index:.67,rgb:[255,120,34]},{index:.73,rgb:[255,157,37]},{index:.8,rgb:[241,191,57]},{index:.87,rgb:[224,220,93]},{index:.93,rgb:[218,241,142]},{index:1,rgb:[227,253,198]}]}},{}],132:[function(t,e,r){"use strict";var n=t("./colorScale"),i=t("lerp");function a(t){return[t[0]/255,t[1]/255,t[2]/255,t[3]]}function o(t){for(var e,r="#",n=0;n<3;++n)r+=("00"+(e=(e=t[n]).toString(16))).substr(e.length);return r}function s(t){return"rgba("+t.join(",")+")"}e.exports=function(t){var e,r,l,c,u,f,h,p,d,m;t||(t={});p=(t.nshades||72)-1,h=t.format||"hex",(f=t.colormap)||(f="jet");if("string"==typeof f){if(f=f.toLowerCase(),!n[f])throw Error(f+" not a supported colorscale");u=n[f]}else{if(!Array.isArray(f))throw Error("unsupported colormap option",f);u=f.slice()}if(u.length>p+1)throw new Error(f+" map requires nshades to be at least size "+u.length);d=Array.isArray(t.alpha)?2!==t.alpha.length?[1,1]:t.alpha.slice():"number"==typeof t.alpha?[t.alpha,t.alpha]:[1,1];e=u.map((function(t){return Math.round(t.index*p)})),d[0]=Math.min(Math.max(d[0],0),1),d[1]=Math.min(Math.max(d[1],0),1);var g=u.map((function(t,e){var r=u[e].index,n=u[e].rgb.slice();return 4===n.length&&n[3]>=0&&n[3]<=1||(n[3]=d[0]+(d[1]-d[0])*r),n})),v=[];for(m=0;m0||l(t,e,a)?-1:1:0===s?c>0||l(t,e,r)?1:-1:i(c-s)}var h=n(t,e,r);return h>0?o>0&&n(t,e,a)>0?1:-1:h<0?o>0||n(t,e,a)>0?1:-1:n(t,e,a)>0||l(t,e,r)?1:-1};var n=t("robust-orientation"),i=t("signum"),a=t("two-sum"),o=t("robust-product"),s=t("robust-sum");function l(t,e,r){var n=a(t[0],-e[0]),i=a(t[1],-e[1]),l=a(r[0],-e[0]),c=a(r[1],-e[1]),u=s(o(n,l),o(i,c));return u[u.length-1]>=0}},{"robust-orientation":524,"robust-product":525,"robust-sum":529,signum:134,"two-sum":578}],134:[function(t,e,r){"use strict";e.exports=function(t){return t<0?-1:t>0?1:0}},{}],135:[function(t,e,r){e.exports=function(t,e){var r=t.length,a=t.length-e.length;if(a)return a;switch(r){case 0:return 0;case 1:return t[0]-e[0];case 2:return t[0]+t[1]-e[0]-e[1]||n(t[0],t[1])-n(e[0],e[1]);case 3:var o=t[0]+t[1],s=e[0]+e[1];if(a=o+t[2]-(s+e[2]))return a;var l=n(t[0],t[1]),c=n(e[0],e[1]);return n(l,t[2])-n(c,e[2])||n(l+t[2],o)-n(c+e[2],s);case 4:var u=t[0],f=t[1],h=t[2],p=t[3],d=e[0],m=e[1],g=e[2],v=e[3];return u+f+h+p-(d+m+g+v)||n(u,f,h,p)-n(d,m,g,v,d)||n(u+f,u+h,u+p,f+h,f+p,h+p)-n(d+m,d+g,d+v,m+g,m+v,g+v)||n(u+f+h,u+f+p,u+h+p,f+h+p)-n(d+m+g,d+m+v,d+g+v,m+g+v);default:for(var y=t.slice().sort(i),x=e.slice().sort(i),b=0;bt[r][0]&&(r=n);return er?[[r],[e]]:[[e]]}},{}],139:[function(t,e,r){"use strict";e.exports=function(t){var e=n(t),r=e.length;if(r<=2)return[];for(var i=new Array(r),a=e[r-1],o=0;o=e[l]&&(s+=1);a[o]=s}}return t}(n(a,!0),r)}};var n=t("incremental-convex-hull"),i=t("affine-hull")},{"affine-hull":69,"incremental-convex-hull":428}],141:[function(t,e,r){e.exports={AFG:"afghan",ALA:"\\b\\wland",ALB:"albania",DZA:"algeria",ASM:"^(?=.*americ).*samoa",AND:"andorra",AGO:"angola",AIA:"anguill?a",ATA:"antarctica",ATG:"antigua",ARG:"argentin",ARM:"armenia",ABW:"^(?!.*bonaire).*\\baruba",AUS:"australia",AUT:"^(?!.*hungary).*austria|\\baustri.*\\bemp",AZE:"azerbaijan",BHS:"bahamas",BHR:"bahrain",BGD:"bangladesh|^(?=.*east).*paki?stan",BRB:"barbados",BLR:"belarus|byelo",BEL:"^(?!.*luxem).*belgium",BLZ:"belize|^(?=.*british).*honduras",BEN:"benin|dahome",BMU:"bermuda",BTN:"bhutan",BOL:"bolivia",BES:"^(?=.*bonaire).*eustatius|^(?=.*carib).*netherlands|\\bbes.?islands",BIH:"herzegovina|bosnia",BWA:"botswana|bechuana",BVT:"bouvet",BRA:"brazil",IOT:"british.?indian.?ocean",BRN:"brunei",BGR:"bulgaria",BFA:"burkina|\\bfaso|upper.?volta",BDI:"burundi",CPV:"verde",KHM:"cambodia|kampuchea|khmer",CMR:"cameroon",CAN:"canada",CYM:"cayman",CAF:"\\bcentral.african.republic",TCD:"\\bchad",CHL:"\\bchile",CHN:"^(?!.*\\bmac)(?!.*\\bhong)(?!.*\\btai)(?!.*\\brep).*china|^(?=.*peo)(?=.*rep).*china",CXR:"christmas",CCK:"\\bcocos|keeling",COL:"colombia",COM:"comoro",COG:"^(?!.*\\bdem)(?!.*\\bd[\\.]?r)(?!.*kinshasa)(?!.*zaire)(?!.*belg)(?!.*l.opoldville)(?!.*free).*\\bcongo",COK:"\\bcook",CRI:"costa.?rica",CIV:"ivoire|ivory",HRV:"croatia",CUB:"\\bcuba",CUW:"^(?!.*bonaire).*\\bcura(c|\xe7)ao",CYP:"cyprus",CSK:"czechoslovakia",CZE:"^(?=.*rep).*czech|czechia|bohemia",COD:"\\bdem.*congo|congo.*\\bdem|congo.*\\bd[\\.]?r|\\bd[\\.]?r.*congo|belgian.?congo|congo.?free.?state|kinshasa|zaire|l.opoldville|drc|droc|rdc",DNK:"denmark",DJI:"djibouti",DMA:"dominica(?!n)",DOM:"dominican.rep",ECU:"ecuador",EGY:"egypt",SLV:"el.?salvador",GNQ:"guine.*eq|eq.*guine|^(?=.*span).*guinea",ERI:"eritrea",EST:"estonia",ETH:"ethiopia|abyssinia",FLK:"falkland|malvinas",FRO:"faroe|faeroe",FJI:"fiji",FIN:"finland",FRA:"^(?!.*\\bdep)(?!.*martinique).*france|french.?republic|\\bgaul",GUF:"^(?=.*french).*guiana",PYF:"french.?polynesia|tahiti",ATF:"french.?southern",GAB:"gabon",GMB:"gambia",GEO:"^(?!.*south).*georgia",DDR:"german.?democratic.?republic|democratic.?republic.*germany|east.germany",DEU:"^(?!.*east).*germany|^(?=.*\\bfed.*\\brep).*german",GHA:"ghana|gold.?coast",GIB:"gibraltar",GRC:"greece|hellenic|hellas",GRL:"greenland",GRD:"grenada",GLP:"guadeloupe",GUM:"\\bguam",GTM:"guatemala",GGY:"guernsey",GIN:"^(?!.*eq)(?!.*span)(?!.*bissau)(?!.*portu)(?!.*new).*guinea",GNB:"bissau|^(?=.*portu).*guinea",GUY:"guyana|british.?guiana",HTI:"haiti",HMD:"heard.*mcdonald",VAT:"holy.?see|vatican|papal.?st",HND:"^(?!.*brit).*honduras",HKG:"hong.?kong",HUN:"^(?!.*austr).*hungary",ISL:"iceland",IND:"india(?!.*ocea)",IDN:"indonesia",IRN:"\\biran|persia",IRQ:"\\biraq|mesopotamia",IRL:"(^ireland)|(^republic.*ireland)",IMN:"^(?=.*isle).*\\bman",ISR:"israel",ITA:"italy",JAM:"jamaica",JPN:"japan",JEY:"jersey",JOR:"jordan",KAZ:"kazak",KEN:"kenya|british.?east.?africa|east.?africa.?prot",KIR:"kiribati",PRK:"^(?=.*democrat|people|north|d.*p.*.r).*\\bkorea|dprk|korea.*(d.*p.*r)",KWT:"kuwait",KGZ:"kyrgyz|kirghiz",LAO:"\\blaos?\\b",LVA:"latvia",LBN:"lebanon",LSO:"lesotho|basuto",LBR:"liberia",LBY:"libya",LIE:"liechtenstein",LTU:"lithuania",LUX:"^(?!.*belg).*luxem",MAC:"maca(o|u)",MDG:"madagascar|malagasy",MWI:"malawi|nyasa",MYS:"malaysia",MDV:"maldive",MLI:"\\bmali\\b",MLT:"\\bmalta",MHL:"marshall",MTQ:"martinique",MRT:"mauritania",MUS:"mauritius",MYT:"\\bmayotte",MEX:"\\bmexic",FSM:"fed.*micronesia|micronesia.*fed",MCO:"monaco",MNG:"mongolia",MNE:"^(?!.*serbia).*montenegro",MSR:"montserrat",MAR:"morocco|\\bmaroc",MOZ:"mozambique",MMR:"myanmar|burma",NAM:"namibia",NRU:"nauru",NPL:"nepal",NLD:"^(?!.*\\bant)(?!.*\\bcarib).*netherlands",ANT:"^(?=.*\\bant).*(nether|dutch)",NCL:"new.?caledonia",NZL:"new.?zealand",NIC:"nicaragua",NER:"\\bniger(?!ia)",NGA:"nigeria",NIU:"niue",NFK:"norfolk",MNP:"mariana",NOR:"norway",OMN:"\\boman|trucial",PAK:"^(?!.*east).*paki?stan",PLW:"palau",PSE:"palestin|\\bgaza|west.?bank",PAN:"panama",PNG:"papua|new.?guinea",PRY:"paraguay",PER:"peru",PHL:"philippines",PCN:"pitcairn",POL:"poland",PRT:"portugal",PRI:"puerto.?rico",QAT:"qatar",KOR:"^(?!.*d.*p.*r)(?!.*democrat)(?!.*people)(?!.*north).*\\bkorea(?!.*d.*p.*r)",MDA:"moldov|b(a|e)ssarabia",REU:"r(e|\xe9)union",ROU:"r(o|u|ou)mania",RUS:"\\brussia|soviet.?union|u\\.?s\\.?s\\.?r|socialist.?republics",RWA:"rwanda",BLM:"barth(e|\xe9)lemy",SHN:"helena",KNA:"kitts|\\bnevis",LCA:"\\blucia",MAF:"^(?=.*collectivity).*martin|^(?=.*france).*martin(?!ique)|^(?=.*french).*martin(?!ique)",SPM:"miquelon",VCT:"vincent",WSM:"^(?!.*amer).*samoa",SMR:"san.?marino",STP:"\\bs(a|\xe3)o.?tom(e|\xe9)",SAU:"\\bsa\\w*.?arabia",SEN:"senegal",SRB:"^(?!.*monte).*serbia",SYC:"seychell",SLE:"sierra",SGP:"singapore",SXM:"^(?!.*martin)(?!.*saba).*maarten",SVK:"^(?!.*cze).*slovak",SVN:"slovenia",SLB:"solomon",SOM:"somali",ZAF:"south.africa|s\\\\..?africa",SGS:"south.?georgia|sandwich",SSD:"\\bs\\w*.?sudan",ESP:"spain",LKA:"sri.?lanka|ceylon",SDN:"^(?!.*\\bs(?!u)).*sudan",SUR:"surinam|dutch.?guiana",SJM:"svalbard",SWZ:"swaziland",SWE:"sweden",CHE:"switz|swiss",SYR:"syria",TWN:"taiwan|taipei|formosa|^(?!.*peo)(?=.*rep).*china",TJK:"tajik",THA:"thailand|\\bsiam",MKD:"macedonia|fyrom",TLS:"^(?=.*leste).*timor|^(?=.*east).*timor",TGO:"togo",TKL:"tokelau",TON:"tonga",TTO:"trinidad|tobago",TUN:"tunisia",TUR:"turkey",TKM:"turkmen",TCA:"turks",TUV:"tuvalu",UGA:"uganda",UKR:"ukrain",ARE:"emirates|^u\\.?a\\.?e\\.?$|united.?arab.?em",GBR:"united.?kingdom|britain|^u\\.?k\\.?$",TZA:"tanzania",USA:"united.?states\\b(?!.*islands)|\\bu\\.?s\\.?a\\.?\\b|^\\s*u\\.?s\\.?\\b(?!.*islands)",UMI:"minor.?outlying.?is",URY:"uruguay",UZB:"uzbek",VUT:"vanuatu|new.?hebrides",VEN:"venezuela",VNM:"^(?!.*republic).*viet.?nam|^(?=.*socialist).*viet.?nam",VGB:"^(?=.*\\bu\\.?\\s?k).*virgin|^(?=.*brit).*virgin|^(?=.*kingdom).*virgin",VIR:"^(?=.*\\bu\\.?\\s?s).*virgin|^(?=.*states).*virgin",WLF:"futuna|wallis",ESH:"western.sahara",YEM:"^(?!.*arab)(?!.*north)(?!.*sana)(?!.*peo)(?!.*dem)(?!.*south)(?!.*aden)(?!.*\\bp\\.?d\\.?r).*yemen",YMD:"^(?=.*peo).*yemen|^(?!.*rep)(?=.*dem).*yemen|^(?=.*south).*yemen|^(?=.*aden).*yemen|^(?=.*\\bp\\.?d\\.?r).*yemen",YUG:"yugoslavia",ZMB:"zambia|northern.?rhodesia",EAZ:"zanzibar",ZWE:"zimbabwe|^(?!.*northern).*rhodesia"}},{}],142:[function(t,e,r){e.exports=["xx-small","x-small","small","medium","large","x-large","xx-large","larger","smaller"]},{}],143:[function(t,e,r){e.exports=["normal","condensed","semi-condensed","extra-condensed","ultra-condensed","expanded","semi-expanded","extra-expanded","ultra-expanded"]},{}],144:[function(t,e,r){e.exports=["normal","italic","oblique"]},{}],145:[function(t,e,r){e.exports=["normal","bold","bolder","lighter","100","200","300","400","500","600","700","800","900"]},{}],146:[function(t,e,r){"use strict";e.exports={parse:t("./parse"),stringify:t("./stringify")}},{"./parse":148,"./stringify":149}],147:[function(t,e,r){"use strict";var n=t("css-font-size-keywords");e.exports={isSize:function(t){return/^[\d\.]/.test(t)||-1!==t.indexOf("/")||-1!==n.indexOf(t)}}},{"css-font-size-keywords":142}],148:[function(t,e,r){"use strict";var n=t("unquote"),i=t("css-global-keywords"),a=t("css-system-font-keywords"),o=t("css-font-weight-keywords"),s=t("css-font-style-keywords"),l=t("css-font-stretch-keywords"),c=t("string-split-by"),u=t("./lib/util").isSize;e.exports=h;var f=h.cache={};function h(t){if("string"!=typeof t)throw new Error("Font argument must be a string.");if(f[t])return f[t];if(""===t)throw new Error("Cannot parse an empty string.");if(-1!==a.indexOf(t))return f[t]={system:t};for(var e,r={style:"normal",variant:"normal",weight:"normal",stretch:"normal",lineHeight:"normal",size:"1rem",family:["serif"]},h=c(t,/\s+/);e=h.shift();){if(-1!==i.indexOf(e))return["style","variant","weight","stretch"].forEach((function(t){r[t]=e})),f[t]=r;if(-1===s.indexOf(e))if("normal"!==e&&"small-caps"!==e)if(-1===l.indexOf(e)){if(-1===o.indexOf(e)){if(u(e)){var d=c(e,"/");if(r.size=d[0],null!=d[1]?r.lineHeight=p(d[1]):"/"===h[0]&&(h.shift(),r.lineHeight=p(h.shift())),!h.length)throw new Error("Missing required font-family.");return r.family=c(h.join(" "),/\s*,\s*/).map(n),f[t]=r}throw new Error("Unknown or unsupported font token: "+e)}r.weight=e}else r.stretch=e;else r.variant=e;else r.style=e}throw new Error("Missing required font-size.")}function p(t){var e=parseFloat(t);return e.toString()===t?e:t}},{"./lib/util":147,"css-font-stretch-keywords":143,"css-font-style-keywords":144,"css-font-weight-keywords":145,"css-global-keywords":150,"css-system-font-keywords":151,"string-split-by":562,unquote:593}],149:[function(t,e,r){"use strict";var n=t("pick-by-alias"),i=t("./lib/util").isSize,a=m(t("css-global-keywords")),o=m(t("css-system-font-keywords")),s=m(t("css-font-weight-keywords")),l=m(t("css-font-style-keywords")),c=m(t("css-font-stretch-keywords")),u={normal:1,"small-caps":1},f={serif:1,"sans-serif":1,monospace:1,cursive:1,fantasy:1,"system-ui":1},h="1rem",p="serif";function d(t,e){if(t&&!e[t]&&!a[t])throw Error("Unknown keyword `"+t+"`");return t}function m(t){for(var e={},r=0;r=0;--p)a[p]=c*t[p]+u*e[p]+f*r[p]+h*n[p];return a}return c*t+u*e+f*r+h*n},e.exports.derivative=function(t,e,r,n,i,a){var o=6*i*i-6*i,s=3*i*i-4*i+1,l=-6*i*i+6*i,c=3*i*i-2*i;if(t.length){a||(a=new Array(t.length));for(var u=t.length-1;u>=0;--u)a[u]=o*t[u]+s*e[u]+l*r[u]+c*n[u];return a}return o*t+s*e+l*r[u]+c*n}},{}],153:[function(t,e,r){"use strict";var n,i=t("type/value/is"),a=t("type/value/ensure"),o=t("type/plain-function/ensure"),s=t("es5-ext/object/copy"),l=t("es5-ext/object/normalize-options"),c=t("es5-ext/object/map"),u=Function.prototype.bind,f=Object.defineProperty,h=Object.prototype.hasOwnProperty;n=function(t,e,r){var n,i=a(e)&&o(e.value);return delete(n=s(e)).writable,delete n.value,n.get=function(){return!r.overwriteDefinition&&h.call(this,t)?i:(e.value=u.call(i,r.resolveContext?r.resolveContext(this):this),f(this,t,e),this[t])},n},e.exports=function(t){var e=l(arguments[1]);return i(e.resolveContext)&&o(e.resolveContext),c(t,(function(t,r){return n(r,t,e)}))}},{"es5-ext/object/copy":197,"es5-ext/object/map":205,"es5-ext/object/normalize-options":206,"type/plain-function/ensure":584,"type/value/ensure":588,"type/value/is":589}],154:[function(t,e,r){"use strict";var n=t("type/value/is"),i=t("type/plain-function/is"),a=t("es5-ext/object/assign"),o=t("es5-ext/object/normalize-options"),s=t("es5-ext/string/#/contains");(e.exports=function(t,e){var r,i,l,c,u;return arguments.length<2||"string"!=typeof t?(c=e,e=t,t=null):c=arguments[2],n(t)?(r=s.call(t,"c"),i=s.call(t,"e"),l=s.call(t,"w")):(r=l=!0,i=!1),u={value:e,configurable:r,enumerable:i,writable:l},c?a(o(c),u):u}).gs=function(t,e,r){var l,c,u,f;return"string"!=typeof t?(u=r,r=e,e=t,t=null):u=arguments[3],n(e)?i(e)?n(r)?i(r)||(u=r,r=void 0):r=void 0:(u=e,e=r=void 0):e=void 0,n(t)?(l=s.call(t,"c"),c=s.call(t,"e")):(l=!0,c=!1),f={get:e,set:r,configurable:l,enumerable:c},u?a(o(u),f):f}},{"es5-ext/object/assign":194,"es5-ext/object/normalize-options":206,"es5-ext/string/#/contains":213,"type/plain-function/is":585,"type/value/is":589}],155:[function(t,e,r){!function(t,n){n("object"==typeof r&&void 0!==e?r:t.d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e){return te?1:t>=e?0:NaN}function r(t){var r;return 1===t.length&&(r=t,t=function(t,n){return e(r(t),n)}),{left:function(e,r,n,i){for(null==n&&(n=0),null==i&&(i=e.length);n>>1;t(e[a],r)<0?n=a+1:i=a}return n},right:function(e,r,n,i){for(null==n&&(n=0),null==i&&(i=e.length);n>>1;t(e[a],r)>0?i=a:n=a+1}return n}}}var n=r(e),i=n.right,a=n.left;function o(t,e){return[t,e]}function s(t){return null===t?NaN:+t}function l(t,e){var r,n,i=t.length,a=0,o=-1,l=0,c=0;if(null==e)for(;++o1)return c/(a-1)}function c(t,e){var r=l(t,e);return r?Math.sqrt(r):r}function u(t,e){var r,n,i,a=t.length,o=-1;if(null==e){for(;++o=r)for(n=i=r;++or&&(n=r),i=r)for(n=i=r;++or&&(n=r),i=0?(a>=v?10:a>=y?5:a>=x?2:1)*Math.pow(10,i):-Math.pow(10,-i)/(a>=v?10:a>=y?5:a>=x?2:1)}function _(t,e,r){var n=Math.abs(e-t)/Math.max(0,r),i=Math.pow(10,Math.floor(Math.log(n)/Math.LN10)),a=n/i;return a>=v?i*=10:a>=y?i*=5:a>=x&&(i*=2),e=1)return+r(t[n-1],n-1,t);var n,i=(n-1)*e,a=Math.floor(i),o=+r(t[a],a,t);return o+(+r(t[a+1],a+1,t)-o)*(i-a)}}function k(t,e){var r,n,i=t.length,a=-1;if(null==e){for(;++a=r)for(n=r;++ar&&(n=r)}else for(;++a=r)for(n=r;++ar&&(n=r);return n}function A(t){if(!(i=t.length))return[];for(var e=-1,r=k(t,M),n=new Array(r);++et?1:e>=t?0:NaN},t.deviation=c,t.extent=u,t.histogram=function(){var t=m,e=u,r=w;function n(n){var a,o,s=n.length,l=new Array(s);for(a=0;af;)h.pop(),--p;var d,m=new Array(p+1);for(a=0;a<=p;++a)(d=m[a]=[]).x0=a>0?h[a-1]:u,d.x1=a=r)for(n=r;++an&&(n=r)}else for(;++a=r)for(n=r;++an&&(n=r);return n},t.mean=function(t,e){var r,n=t.length,i=n,a=-1,o=0;if(null==e)for(;++a=0;)for(e=(n=t[i]).length;--e>=0;)r[--o]=n[e];return r},t.min=k,t.pairs=function(t,e){null==e&&(e=o);for(var r=0,n=t.length-1,i=t[0],a=new Array(n<0?0:n);r0)return[t];if((n=e0)for(t=Math.ceil(t/o),e=Math.floor(e/o),a=new Array(i=Math.ceil(e-t+1));++s=l.length)return null!=t&&n.sort(t),null!=e?e(n):n;for(var s,c,f,h=-1,p=n.length,d=l[i++],m=r(),g=a();++hl.length)return r;var i,a=c[n-1];return null!=e&&n>=l.length?i=r.entries():(i=[],r.each((function(e,r){i.push({key:r,values:t(e,n)})}))),null!=a?i.sort((function(t,e){return a(t.key,e.key)})):i}(u(t,0,a,o),0)},key:function(t){return l.push(t),s},sortKeys:function(t){return c[l.length-1]=t,s},sortValues:function(e){return t=e,s},rollup:function(t){return e=t,s}}},t.set=c,t.map=r,t.keys=function(t){var e=[];for(var r in t)e.push(r);return e},t.values=function(t){var e=[];for(var r in t)e.push(t[r]);return e},t.entries=function(t){var e=[];for(var r in t)e.push({key:r,value:t[r]});return e},Object.defineProperty(t,"__esModule",{value:!0})}))},{}],157:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e,r){t.prototype=e.prototype=r,r.constructor=t}function r(t,e){var r=Object.create(t.prototype);for(var n in e)r[n]=e[n];return r}function n(){}var i="\\s*([+-]?\\d+)\\s*",a="\\s*([+-]?\\d*\\.?\\d+(?:[eE][+-]?\\d+)?)\\s*",o="\\s*([+-]?\\d*\\.?\\d+(?:[eE][+-]?\\d+)?)%\\s*",s=/^#([0-9a-f]{3,8})$/,l=new RegExp("^rgb\\("+[i,i,i]+"\\)$"),c=new RegExp("^rgb\\("+[o,o,o]+"\\)$"),u=new RegExp("^rgba\\("+[i,i,i,a]+"\\)$"),f=new RegExp("^rgba\\("+[o,o,o,a]+"\\)$"),h=new RegExp("^hsl\\("+[a,o,o]+"\\)$"),p=new RegExp("^hsla\\("+[a,o,o,a]+"\\)$"),d={aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074};function m(){return this.rgb().formatHex()}function g(){return this.rgb().formatRgb()}function v(t){var e,r;return t=(t+"").trim().toLowerCase(),(e=s.exec(t))?(r=e[1].length,e=parseInt(e[1],16),6===r?y(e):3===r?new w(e>>8&15|e>>4&240,e>>4&15|240&e,(15&e)<<4|15&e,1):8===r?x(e>>24&255,e>>16&255,e>>8&255,(255&e)/255):4===r?x(e>>12&15|e>>8&240,e>>8&15|e>>4&240,e>>4&15|240&e,((15&e)<<4|15&e)/255):null):(e=l.exec(t))?new w(e[1],e[2],e[3],1):(e=c.exec(t))?new w(255*e[1]/100,255*e[2]/100,255*e[3]/100,1):(e=u.exec(t))?x(e[1],e[2],e[3],e[4]):(e=f.exec(t))?x(255*e[1]/100,255*e[2]/100,255*e[3]/100,e[4]):(e=h.exec(t))?M(e[1],e[2]/100,e[3]/100,1):(e=p.exec(t))?M(e[1],e[2]/100,e[3]/100,e[4]):d.hasOwnProperty(t)?y(d[t]):"transparent"===t?new w(NaN,NaN,NaN,0):null}function y(t){return new w(t>>16&255,t>>8&255,255&t,1)}function x(t,e,r,n){return n<=0&&(t=e=r=NaN),new w(t,e,r,n)}function b(t){return t instanceof n||(t=v(t)),t?new w((t=t.rgb()).r,t.g,t.b,t.opacity):new w}function _(t,e,r,n){return 1===arguments.length?b(t):new w(t,e,r,null==n?1:n)}function w(t,e,r,n){this.r=+t,this.g=+e,this.b=+r,this.opacity=+n}function T(){return"#"+A(this.r)+A(this.g)+A(this.b)}function k(){var t=this.opacity;return(1===(t=isNaN(t)?1:Math.max(0,Math.min(1,t)))?"rgb(":"rgba(")+Math.max(0,Math.min(255,Math.round(this.r)||0))+", "+Math.max(0,Math.min(255,Math.round(this.g)||0))+", "+Math.max(0,Math.min(255,Math.round(this.b)||0))+(1===t?")":", "+t+")")}function A(t){return((t=Math.max(0,Math.min(255,Math.round(t)||0)))<16?"0":"")+t.toString(16)}function M(t,e,r,n){return n<=0?t=e=r=NaN:r<=0||r>=1?t=e=NaN:e<=0&&(t=NaN),new L(t,e,r,n)}function S(t){if(t instanceof L)return new L(t.h,t.s,t.l,t.opacity);if(t instanceof n||(t=v(t)),!t)return new L;if(t instanceof L)return t;var e=(t=t.rgb()).r/255,r=t.g/255,i=t.b/255,a=Math.min(e,r,i),o=Math.max(e,r,i),s=NaN,l=o-a,c=(o+a)/2;return l?(s=e===o?(r-i)/l+6*(r0&&c<1?0:s,new L(s,l,c,t.opacity)}function E(t,e,r,n){return 1===arguments.length?S(t):new L(t,e,r,null==n?1:n)}function L(t,e,r,n){this.h=+t,this.s=+e,this.l=+r,this.opacity=+n}function C(t,e,r){return 255*(t<60?e+(r-e)*t/60:t<180?r:t<240?e+(r-e)*(240-t)/60:e)}e(n,v,{copy:function(t){return Object.assign(new this.constructor,this,t)},displayable:function(){return this.rgb().displayable()},hex:m,formatHex:m,formatHsl:function(){return S(this).formatHsl()},formatRgb:g,toString:g}),e(w,_,r(n,{brighter:function(t){return t=null==t?1/.7:Math.pow(1/.7,t),new w(this.r*t,this.g*t,this.b*t,this.opacity)},darker:function(t){return t=null==t?.7:Math.pow(.7,t),new w(this.r*t,this.g*t,this.b*t,this.opacity)},rgb:function(){return this},displayable:function(){return-.5<=this.r&&this.r<255.5&&-.5<=this.g&&this.g<255.5&&-.5<=this.b&&this.b<255.5&&0<=this.opacity&&this.opacity<=1},hex:T,formatHex:T,formatRgb:k,toString:k})),e(L,E,r(n,{brighter:function(t){return t=null==t?1/.7:Math.pow(1/.7,t),new L(this.h,this.s,this.l*t,this.opacity)},darker:function(t){return t=null==t?.7:Math.pow(.7,t),new L(this.h,this.s,this.l*t,this.opacity)},rgb:function(){var t=this.h%360+360*(this.h<0),e=isNaN(t)||isNaN(this.s)?0:this.s,r=this.l,n=r+(r<.5?r:1-r)*e,i=2*r-n;return new w(C(t>=240?t-240:t+120,i,n),C(t,i,n),C(t<120?t+240:t-120,i,n),this.opacity)},displayable:function(){return(0<=this.s&&this.s<=1||isNaN(this.s))&&0<=this.l&&this.l<=1&&0<=this.opacity&&this.opacity<=1},formatHsl:function(){var t=this.opacity;return(1===(t=isNaN(t)?1:Math.max(0,Math.min(1,t)))?"hsl(":"hsla(")+(this.h||0)+", "+100*(this.s||0)+"%, "+100*(this.l||0)+"%"+(1===t?")":", "+t+")")}}));var P=Math.PI/180,I=180/Math.PI,O=6/29,z=3*O*O;function D(t){if(t instanceof F)return new F(t.l,t.a,t.b,t.opacity);if(t instanceof q)return G(t);t instanceof w||(t=b(t));var e,r,n=U(t.r),i=U(t.g),a=U(t.b),o=B((.2225045*n+.7168786*i+.0606169*a)/1);return n===i&&i===a?e=r=o:(e=B((.4360747*n+.3850649*i+.1430804*a)/.96422),r=B((.0139322*n+.0971045*i+.7141733*a)/.82521)),new F(116*o-16,500*(e-o),200*(o-r),t.opacity)}function R(t,e,r,n){return 1===arguments.length?D(t):new F(t,e,r,null==n?1:n)}function F(t,e,r,n){this.l=+t,this.a=+e,this.b=+r,this.opacity=+n}function B(t){return t>.008856451679035631?Math.pow(t,1/3):t/z+4/29}function N(t){return t>O?t*t*t:z*(t-4/29)}function j(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function U(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function V(t){if(t instanceof q)return new q(t.h,t.c,t.l,t.opacity);if(t instanceof F||(t=D(t)),0===t.a&&0===t.b)return new q(NaN,0=0&&(r=t.slice(n+1),t=t.slice(0,n)),t&&!e.hasOwnProperty(t))throw new Error("unknown type: "+t);return{type:t,name:r}}))}function a(t,e){for(var r,n=0,i=t.length;n0)for(var r,n,i=new Array(r),a=0;ah+c||np+c||au.index){var f=h-s.x-s.vx,g=p-s.y-s.vy,v=f*f+g*g;vt.r&&(t.r=t[e].r)}function h(){if(r){var e,i,a=r.length;for(n=new Array(a),e=0;e=c)){(t.data!==r||t.next)&&(0===f&&(d+=(f=o())*f),0===h&&(d+=(h=o())*h),d1?(null==r?u.remove(t):u.set(t,v(r)),e):u.get(t)},find:function(e,r,n){var i,a,o,s,l,c=0,u=t.length;for(null==n?n=1/0:n*=n,c=0;c1?(h.on(t,r),e):h.on(t)}}},t.forceX=function(t){var e,r,n,i=a(.1);function o(t){for(var i,a=0,o=e.length;a1?n[0]+n.slice(2):n,+t.slice(r+1)]}function r(t){return(t=e(Math.abs(t)))?t[1]:NaN}var n,i=/^(?:(.)?([<>=^]))?([+\-( ])?([$#])?(0)?(\d+)?(,)?(\.\d+)?(~)?([a-z%])?$/i;function a(t){if(!(e=i.exec(t)))throw new Error("invalid format: "+t);var e;return new o({fill:e[1],align:e[2],sign:e[3],symbol:e[4],zero:e[5],width:e[6],comma:e[7],precision:e[8]&&e[8].slice(1),trim:e[9],type:e[10]})}function o(t){this.fill=void 0===t.fill?" ":t.fill+"",this.align=void 0===t.align?">":t.align+"",this.sign=void 0===t.sign?"-":t.sign+"",this.symbol=void 0===t.symbol?"":t.symbol+"",this.zero=!!t.zero,this.width=void 0===t.width?void 0:+t.width,this.comma=!!t.comma,this.precision=void 0===t.precision?void 0:+t.precision,this.trim=!!t.trim,this.type=void 0===t.type?"":t.type+""}function s(t,r){var n=e(t,r);if(!n)return t+"";var i=n[0],a=n[1];return a<0?"0."+new Array(-a).join("0")+i:i.length>a+1?i.slice(0,a+1)+"."+i.slice(a+1):i+new Array(a-i.length+2).join("0")}a.prototype=o.prototype,o.prototype.toString=function(){return this.fill+this.align+this.sign+this.symbol+(this.zero?"0":"")+(void 0===this.width?"":Math.max(1,0|this.width))+(this.comma?",":"")+(void 0===this.precision?"":"."+Math.max(0,0|this.precision))+(this.trim?"~":"")+this.type};var l={"%":function(t,e){return(100*t).toFixed(e)},b:function(t){return Math.round(t).toString(2)},c:function(t){return t+""},d:function(t){return Math.abs(t=Math.round(t))>=1e21?t.toLocaleString("en").replace(/,/g,""):t.toString(10)},e:function(t,e){return t.toExponential(e)},f:function(t,e){return t.toFixed(e)},g:function(t,e){return t.toPrecision(e)},o:function(t){return Math.round(t).toString(8)},p:function(t,e){return s(100*t,e)},r:s,s:function(t,r){var i=e(t,r);if(!i)return t+"";var a=i[0],o=i[1],s=o-(n=3*Math.max(-8,Math.min(8,Math.floor(o/3))))+1,l=a.length;return s===l?a:s>l?a+new Array(s-l+1).join("0"):s>0?a.slice(0,s)+"."+a.slice(s):"0."+new Array(1-s).join("0")+e(t,Math.max(0,r+s-1))[0]},X:function(t){return Math.round(t).toString(16).toUpperCase()},x:function(t){return Math.round(t).toString(16)}};function c(t){return t}var u,f=Array.prototype.map,h=["y","z","a","f","p","n","\xb5","m","","k","M","G","T","P","E","Z","Y"];function p(t){var e,i,o=void 0===t.grouping||void 0===t.thousands?c:(e=f.call(t.grouping,Number),i=t.thousands+"",function(t,r){for(var n=t.length,a=[],o=0,s=e[0],l=0;n>0&&s>0&&(l+s+1>r&&(s=Math.max(1,r-l)),a.push(t.substring(n-=s,n+s)),!((l+=s+1)>r));)s=e[o=(o+1)%e.length];return a.reverse().join(i)}),s=void 0===t.currency?"":t.currency[0]+"",u=void 0===t.currency?"":t.currency[1]+"",p=void 0===t.decimal?".":t.decimal+"",d=void 0===t.numerals?c:function(t){return function(e){return e.replace(/[0-9]/g,(function(e){return t[+e]}))}}(f.call(t.numerals,String)),m=void 0===t.percent?"%":t.percent+"",g=void 0===t.minus?"-":t.minus+"",v=void 0===t.nan?"NaN":t.nan+"";function y(t){var e=(t=a(t)).fill,r=t.align,i=t.sign,c=t.symbol,f=t.zero,y=t.width,x=t.comma,b=t.precision,_=t.trim,w=t.type;"n"===w?(x=!0,w="g"):l[w]||(void 0===b&&(b=12),_=!0,w="g"),(f||"0"===e&&"="===r)&&(f=!0,e="0",r="=");var T="$"===c?s:"#"===c&&/[boxX]/.test(w)?"0"+w.toLowerCase():"",k="$"===c?u:/[%p]/.test(w)?m:"",A=l[w],M=/[defgprs%]/.test(w);function S(t){var a,s,l,c=T,u=k;if("c"===w)u=A(t)+u,t="";else{var m=(t=+t)<0||1/t<0;if(t=isNaN(t)?v:A(Math.abs(t),b),_&&(t=function(t){t:for(var e,r=t.length,n=1,i=-1;n0&&(i=0)}return i>0?t.slice(0,i)+t.slice(e+1):t}(t)),m&&0==+t&&"+"!==i&&(m=!1),c=(m?"("===i?i:g:"-"===i||"("===i?"":i)+c,u=("s"===w?h[8+n/3]:"")+u+(m&&"("===i?")":""),M)for(a=-1,s=t.length;++a(l=t.charCodeAt(a))||l>57){u=(46===l?p+t.slice(a+1):t.slice(a))+u,t=t.slice(0,a);break}}x&&!f&&(t=o(t,1/0));var S=c.length+t.length+u.length,E=S>1)+c+t+u+E.slice(S);break;default:t=E+c+t+u}return d(t)}return b=void 0===b?6:/[gprs]/.test(w)?Math.max(1,Math.min(21,b)):Math.max(0,Math.min(20,b)),S.toString=function(){return t+""},S}return{format:y,formatPrefix:function(t,e){var n=y(((t=a(t)).type="f",t)),i=3*Math.max(-8,Math.min(8,Math.floor(r(e)/3))),o=Math.pow(10,-i),s=h[8+i/3];return function(t){return n(o*t)+s}}}}function d(e){return u=p(e),t.format=u.format,t.formatPrefix=u.formatPrefix,u}d({decimal:".",thousands:",",grouping:[3],currency:["$",""],minus:"-"}),t.FormatSpecifier=o,t.formatDefaultLocale=d,t.formatLocale=p,t.formatSpecifier=a,t.precisionFixed=function(t){return Math.max(0,-r(Math.abs(t)))},t.precisionPrefix=function(t,e){return Math.max(0,3*Math.max(-8,Math.min(8,Math.floor(r(e)/3)))-r(Math.abs(t)))},t.precisionRound=function(t,e){return t=Math.abs(t),e=Math.abs(e)-t,Math.max(0,r(e)-r(t))+1},Object.defineProperty(t,"__esModule",{value:!0})}))},{}],161:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-geo"),t("d3-array")):i(n.d3=n.d3||{},n.d3,n.d3)}(this,(function(t,e,r){"use strict";var n=Math.abs,i=Math.atan,a=Math.atan2,o=Math.cos,s=Math.exp,l=Math.floor,c=Math.log,u=Math.max,f=Math.min,h=Math.pow,p=Math.round,d=Math.sign||function(t){return t>0?1:t<0?-1:0},m=Math.sin,g=Math.tan,v=1e-6,y=Math.PI,x=y/2,b=y/4,_=Math.SQRT1_2,w=L(2),T=L(y),k=2*y,A=180/y,M=y/180;function S(t){return t>1?x:t<-1?-x:Math.asin(t)}function E(t){return t>1?0:t<-1?y:Math.acos(t)}function L(t){return t>0?Math.sqrt(t):0}function C(t){return(s(t)-s(-t))/2}function P(t){return(s(t)+s(-t))/2}function I(t){var e=g(t/2),r=2*c(o(t/2))/(e*e);function i(t,e){var n=o(t),i=o(e),a=m(e),s=i*n,l=-((1-s?c((1+s)/2)/(1-s):-.5)+r/(1+s));return[l*i*m(t),l*a]}return i.invert=function(e,i){var s,l=L(e*e+i*i),u=-t/2,f=50;if(!l)return[0,0];do{var h=u/2,p=o(h),d=m(h),g=d/p,y=-c(n(p));u-=s=(2/g*y-r*g-l)/(-y/(d*d)+1-r/(2*p*p))*(p<0?.7:1)}while(n(s)>v&&--f>0);var x=m(u);return[a(e*x,l*o(u)),S(i*x/l)]},i}function O(t,e){var r=o(e),n=function(t){return t?t/Math.sin(t):1}(E(r*o(t/=2)));return[2*r*m(t)*n,m(e)*n]}function z(t){var e=m(t),r=o(t),i=t>=0?1:-1,s=g(i*t),l=(1+e-r)/2;function c(t,n){var c=o(n),u=o(t/=2);return[(1+c)*m(t),(i*n>-a(u,s)-.001?0:10*-i)+l+m(n)*r-(1+c)*e*u]}return c.invert=function(t,c){var u=0,f=0,h=50;do{var p=o(u),d=m(u),g=o(f),y=m(f),x=1+g,b=x*d-t,_=l+y*r-x*e*p-c,w=x*p/2,T=-d*y,k=e*x*d/2,A=r*g+e*p*y,M=T*k-A*w,S=(_*T-b*A)/M/2,E=(b*k-_*w)/M;n(E)>2&&(E/=2),u-=S,f-=E}while((n(S)>v||n(E)>v)&&--h>0);return i*f>-a(o(u),s)-.001?[2*u,f]:null},c}function D(t,e){var r=g(e/2),n=L(1-r*r),i=1+n*o(t/=2),a=m(t)*n/i,s=r/i,l=a*a,c=s*s;return[4/3*a*(3+l-3*c),4/3*s*(3+3*l-c)]}O.invert=function(t,e){if(!(t*t+4*e*e>y*y+v)){var r=t,i=e,a=25;do{var s,l=m(r),c=m(r/2),u=o(r/2),f=m(i),h=o(i),p=m(2*i),d=f*f,g=h*h,x=c*c,b=1-g*u*u,_=b?E(h*u)*L(s=1/b):s=0,w=2*_*h*c-t,T=_*f-e,k=s*(g*x+_*h*u*d),A=s*(.5*l*p-2*_*f*c),M=.25*s*(p*c-_*f*g*l),S=s*(d*u+_*x*h),C=A*M-S*k;if(!C)break;var P=(T*A-w*S)/C,I=(w*M-T*k)/C;r-=P,i-=I}while((n(P)>v||n(I)>v)&&--a>0);return[r,i]}},D.invert=function(t,e){if(e*=3/8,!(t*=3/8)&&n(e)>1)return null;var r=1+t*t+e*e,i=L((r-L(r*r-4*e*e))/2),s=S(i)/3,l=i?function(t){return c(t+L(t*t-1))}(n(e/i))/3:function(t){return c(t+L(t*t+1))}(n(t))/3,u=o(s),f=P(l),h=f*f-u*u;return[2*d(t)*a(C(l)*u,.25-h),2*d(e)*a(f*m(s),.25+h)]};var R=L(8),F=c(1+w);function B(t,e){var r=n(e);return rx){var l=a(s[1],s[0]),c=L(s[0]*s[0]+s[1]*s[1]),u=r*p((l-x)/r)+x,f=a(m(l-=u),2-o(l));l=u+S(y/c*m(f))-f,s[0]=c*o(l),s[1]=c*m(l)}return s}return s.invert=function(t,n){var s=L(t*t+n*n);if(s>x){var l=a(n,t),c=r*p((l-x)/r)+x,u=l>c?-1:1,f=s*o(c-l),h=1/g(u*E((f-y)/L(y*(y-2*f)+s*s)));l=c+2*i((h+u*L(h*h-3))/3),t=s*o(l),n=s*m(l)}return e.geoAzimuthalEquidistantRaw.invert(t,n)},s}function j(t,r){if(arguments.length<2&&(r=t),1===r)return e.geoAzimuthalEqualAreaRaw;if(r===1/0)return U;function n(n,i){var a=e.geoAzimuthalEqualAreaRaw(n/r,i);return a[0]*=t,a}return n.invert=function(n,i){var a=e.geoAzimuthalEqualAreaRaw.invert(n/t,i);return a[0]*=r,a},n}function U(t,e){return[t*o(e)/o(e/=2),2*m(e)]}function V(t,e,r){var i,a,o,s=100;r=void 0===r?0:+r,e=+e;do{(a=t(r))===(o=t(r+v))&&(o=a+v),r-=i=-1*v*(a-e)/(a-o)}while(s-- >0&&n(i)>v);return s<0?NaN:r}function H(t,e,r){return void 0===e&&(e=40),void 0===r&&(r=1e-12),function(i,a,o,s){var l,c,u;o=void 0===o?0:+o,s=void 0===s?0:+s;for(var f=0;fl)o-=c/=2,s-=u/=2;else{l=m;var g=(o>0?-1:1)*r,v=(s>0?-1:1)*r,y=t(o+g,s),x=t(o,s+v),b=(y[0]-h[0])/g,_=(y[1]-h[1])/g,w=(x[0]-h[0])/v,T=(x[1]-h[1])/v,k=T*b-_*w,A=(n(k)<.5?.5:1)/k;if(o+=c=(d*w-p*T)*A,s+=u=(p*_-d*b)*A,n(c)0&&(i[1]*=1+a/1.5*i[0]*i[0]),i}return e.invert=H(e),e}function G(t,e){var r,i=t*m(e),a=30;do{e-=r=(e+m(e)-i)/(1+o(e))}while(n(r)>v&&--a>0);return e/2}function Y(t,e,r){function n(n,i){return[t*n*o(i=G(r,i)),e*m(i)]}return n.invert=function(n,i){return i=S(i/e),[n/(t*o(i)),S((2*i+m(2*i))/r)]},n}B.invert=function(t,e){if((a=n(e))1e-12&&--u>0);return[t/(o(l)*(R-1/m(l))),d(e)*l]},U.invert=function(t,e){var r=2*S(e/2);return[t*o(r/2)/o(r),r]};var W=Y(w/x,w,y);var X=2.00276,Z=1.11072;function J(t,e){var r=G(y,e);return[X*t/(1/o(e)+Z/o(r)),(e+w*m(r))/X]}function K(t){var r=0,n=e.geoProjectionMutator(t),i=n(r);return i.parallel=function(t){return arguments.length?n(r=t*M):r*A},i}function Q(t,e){return[t*o(e),e]}function $(t){if(!t)return Q;var e=1/g(t);function r(r,n){var i=e+t-n,a=i?r*o(n)/i:i;return[i*m(a),e-i*o(a)]}return r.invert=function(r,n){var i=L(r*r+(n=e-n)*n),s=e+t-i;return[i/o(s)*a(r,n),s]},r}function tt(t){function e(e,r){var n=x-r,i=n?e*t*m(n)/n:n;return[n*m(i)/t,x-n*o(i)]}return e.invert=function(e,r){var n=e*t,i=x-r,o=L(n*n+i*i),s=a(n,i);return[(o?o/m(o):1)*s/t,x-o]},e}J.invert=function(t,e){var r,i,a=X*e,s=e<0?-b:b,l=25;do{i=a-w*m(s),s-=r=(m(2*s)+2*s-y*m(i))/(2*o(2*s)+2+y*o(i)*w*o(s))}while(n(r)>v&&--l>0);return i=a-w*m(s),[t*(1/o(i)+Z/o(s))/X,i]},Q.invert=function(t,e){return[t/o(e),e]};var et=Y(1,4/y,y);function rt(t,e,r,i,s,l){var c,u=o(l);if(n(t)>1||n(l)>1)c=E(r*s+e*i*u);else{var f=m(t/2),h=m(l/2);c=2*S(L(f*f+e*i*h*h))}return n(c)>v?[c,a(i*m(l),e*s-r*i*u)]:[0,0]}function nt(t,e,r){return E((t*t+e*e-r*r)/(2*t*e))}function it(t){return t-2*y*l((t+y)/(2*y))}function at(t,e,r){for(var n,i=[[t[0],t[1],m(t[1]),o(t[1])],[e[0],e[1],m(e[1]),o(e[1])],[r[0],r[1],m(r[1]),o(r[1])]],a=i[2],s=0;s<3;++s,a=n)n=i[s],a.v=rt(n[1]-a[1],a[3],a[2],n[3],n[2],n[0]-a[0]),a.point=[0,0];var l=nt(i[0].v[0],i[2].v[0],i[1].v[0]),c=nt(i[0].v[0],i[1].v[0],i[2].v[0]),u=y-l;i[2].point[1]=0,i[0].point[0]=-(i[1].point[0]=i[0].v[0]/2);var f=[i[2].point[0]=i[0].point[0]+i[2].v[0]*o(l),2*(i[0].point[1]=i[1].point[1]=i[2].v[0]*m(l))];return function(t,e){var r,n=m(e),a=o(e),s=new Array(3);for(r=0;r<3;++r){var l=i[r];if(s[r]=rt(e-l[1],l[3],l[2],a,n,t-l[0]),!s[r][0])return l.point;s[r][1]=it(s[r][1]-l.v[1])}var h=f.slice();for(r=0;r<3;++r){var p=2==r?0:r+1,d=nt(i[r].v[0],s[r][0],s[p][0]);s[r][1]<0&&(d=-d),r?1==r?(d=c-d,h[0]-=s[r][0]*o(d),h[1]-=s[r][0]*m(d)):(d=u-d,h[0]+=s[r][0]*o(d),h[1]+=s[r][0]*m(d)):(h[0]+=s[r][0]*o(d),h[1]-=s[r][0]*m(d))}return h[0]/=3,h[1]/=3,h}}function ot(t){return t[0]*=M,t[1]*=M,t}function st(t,r,n){var i=e.geoCentroid({type:"MultiPoint",coordinates:[t,r,n]}),a=[-i[0],-i[1]],o=e.geoRotation(a),s=at(ot(o(t)),ot(o(r)),ot(o(n)));s.invert=H(s);var l=e.geoProjection(s).rotate(a),c=l.center;return delete l.rotate,l.center=function(t){return arguments.length?c(o(t)):o.invert(c())},l.clipAngle(90)}function lt(t,e){var r=L(1-m(e));return[2/T*t*r,T*(1-r)]}function ct(t){var e=g(t);function r(t,r){return[t,(t?t/m(t):1)*(m(r)*o(t)-e*o(r))]}return r.invert=e?function(t,r){t&&(r*=m(t)/t);var n=o(t);return[t,2*a(L(n*n+e*e-r*r)-n,e-r)]}:function(t,e){return[t,S(t?e*g(t)/t:e)]},r}lt.invert=function(t,e){var r=(r=e/T-1)*r;return[r>0?t*L(y/r)/2:0,S(1-r)]};var ut=L(3);function ft(t,e){return[ut*t*(2*o(2*e/3)-1)/T,ut*T*m(e/3)]}function ht(t){var e=o(t);function r(t,r){return[t*e,m(r)/e]}return r.invert=function(t,r){return[t/e,S(r*e)]},r}function pt(t){var e=o(t);function r(t,r){return[t*e,(1+e)*g(r/2)]}return r.invert=function(t,r){return[t/e,2*i(r/(1+e))]},r}function dt(t,e){var r=L(8/(3*y));return[r*t*(1-n(e)/y),r*e]}function mt(t,e){var r=L(4-3*m(n(e)));return[2/L(6*y)*t*r,d(e)*L(2*y/3)*(2-r)]}function gt(t,e){var r=L(y*(4+y));return[2/r*t*(1+L(1-4*e*e/(y*y))),4/r*e]}function vt(t,e){var r=(2+x)*m(e);e/=2;for(var i=0,a=1/0;i<10&&n(a)>v;i++){var s=o(e);e-=a=(e+m(e)*(s+2)-r)/(2*s*(1+s))}return[2/L(y*(4+y))*t*(1+o(e)),2*L(y/(4+y))*m(e)]}function yt(t,e){return[t*(1+o(e))/L(2+y),2*e/L(2+y)]}function xt(t,e){for(var r=(1+x)*m(e),i=0,a=1/0;i<10&&n(a)>v;i++)e-=a=(e+m(e)-r)/(1+o(e));return r=L(2+y),[t*(1+o(e))/r,2*e/r]}ft.invert=function(t,e){var r=3*S(e/(ut*T));return[T*t/(ut*(2*o(2*r/3)-1)),r]},dt.invert=function(t,e){var r=L(8/(3*y)),i=e/r;return[t/(r*(1-n(i)/y)),i]},mt.invert=function(t,e){var r=2-n(e)/L(2*y/3);return[t*L(6*y)/(2*r),d(e)*S((4-r*r)/3)]},gt.invert=function(t,e){var r=L(y*(4+y))/2;return[t*r/(1+L(1-e*e*(4+y)/(4*y))),e*r/2]},vt.invert=function(t,e){var r=e*L((4+y)/y)/2,n=S(r),i=o(n);return[t/(2/L(y*(4+y))*(1+i)),S((n+r*(i+2))/(2+x))]},yt.invert=function(t,e){var r=L(2+y),n=e*r/2;return[r*t/(1+o(n)),n]},xt.invert=function(t,e){var r=1+x,n=L(r/2);return[2*t*n/(1+o(e*=n)),S((e+m(e))/r)]};var bt=3+2*w;function _t(t,e){var r=m(t/=2),n=o(t),a=L(o(e)),s=o(e/=2),l=m(e)/(s+w*n*a),u=L(2/(1+l*l)),f=L((w*s+(n+r)*a)/(w*s+(n-r)*a));return[bt*(u*(f-1/f)-2*c(f)),bt*(u*l*(f+1/f)-2*i(l))]}_t.invert=function(t,e){if(!(r=D.invert(t/1.2,1.065*e)))return null;var r,a=r[0],s=r[1],l=20;t/=bt,e/=bt;do{var h=a/2,p=s/2,d=m(h),g=o(h),y=m(p),b=o(p),T=o(s),k=L(T),A=y/(b+w*g*k),M=A*A,S=L(2/(1+M)),E=(w*b+(g+d)*k)/(w*b+(g-d)*k),C=L(E),P=C-1/C,I=C+1/C,O=S*P-2*c(C)-t,z=S*A*I-2*i(A)-e,R=y&&_*k*d*M/y,F=(w*g*b+k)/(2*(b+w*g*k)*(b+w*g*k)*k),B=-.5*A*S*S*S,N=B*R,j=B*F,U=(U=2*b+w*k*(g-d))*U*C,V=(w*g*b*k+T)/U,H=-w*d*y/(k*U),q=P*N-2*V/C+S*(V+V/E),G=P*j-2*H/C+S*(H+H/E),Y=A*I*N-2*R/(1+M)+S*I*R+S*A*(V-V/E),W=A*I*j-2*F/(1+M)+S*I*F+S*A*(H-H/E),X=G*Y-W*q;if(!X)break;var Z=(z*G-O*W)/X,J=(O*Y-z*q)/X;a-=Z,s=u(-x,f(x,s-J))}while((n(Z)>v||n(J)>v)&&--l>0);return n(n(s)-x)s){var d=L(h),g=a(f,u),b=i*p(g/i),_=g-b,w=t*o(_),T=(t*m(_)-_*m(w))/(x-w),k=Lt(_,T),A=(y-t)/Ct(k,w,y);u=d;var M,S=50;do{u-=M=(t+Ct(k,w,u)*A-d)/(k(u)*A)}while(n(M)>v&&--S>0);f=_*m(u),us){var u=L(c),f=a(l,r),h=i*p(f/i),d=f-h;r=u*o(d),l=u*m(d);for(var g=r-x,v=m(r),b=l/v,_=rv||n(p)>v)&&--x>0);return[d,g]},u}Tt.invert=function(t,e){var r=e/(1+wt);return[t&&t/(wt*L(1-r*r)),2*i(r)]},kt.invert=function(t,e){var r=i(e/T),n=o(r),a=2*r;return[t*T/2/(o(a)*n*n),a]};var It=Pt(2.8284,-1.6988,.75432,-.18071,1.76003,-.38914,.042555);var Ot=Pt(2.583819,-.835827,.170354,-.038094,1.543313,-.411435,.082742);var zt=Pt(5/6*y,-.62636,-.0344,0,1.3493,-.05524,0,.045);function Dt(t,e){var r=t*t,n=e*e;return[t*(1-.162388*n)*(.87-952426e-9*r*r),e*(1+n/12)]}Dt.invert=function(t,e){var r,i=t,a=e,o=50;do{var s=a*a;a-=r=(a*(1+s/12)-e)/(1+s/4)}while(n(r)>v&&--o>0);o=50,t/=1-.162388*s;do{var l=(l=i*i)*l;i-=r=(i*(.87-952426e-9*l)-t)/(.87-.00476213*l)}while(n(r)>v&&--o>0);return[i,a]};var Rt=Pt(2.6516,-.76534,.19123,-.047094,1.36289,-.13965,.031762);function Ft(t){var e=t(x,0)[0]-t(-x,0)[0];function r(r,n){var i=r>0?-.5:.5,a=t(r+i*y,n);return a[0]-=i*e,a}return t.invert&&(r.invert=function(r,n){var i=r>0?-.5:.5,a=t.invert(r+i*e,n),o=a[0]-i*y;return o<-y?o+=2*y:o>y&&(o-=2*y),a[0]=o,a}),r}function Bt(t,e){var r=d(t),i=d(e),s=o(e),l=o(t)*s,c=m(t)*s,u=m(i*e);t=n(a(c,u)),e=S(l),n(t-x)>v&&(t%=x);var f=function(t,e){if(e===x)return[0,0];var r,i,a=m(e),s=a*a,l=s*s,c=1+l,u=1+3*l,f=1-l,h=S(1/L(c)),p=f+s*c*h,d=(1-a)/p,g=L(d),b=d*c,_=L(b),w=g*f;if(0===t)return[0,-(w+s*_)];var T,k=o(e),A=1/k,M=2*a*k,E=(-p*k-(-3*s+h*u)*M*(1-a))/(p*p),C=-A*M,P=-A*(s*c*E+d*u*M),I=-2*A*(f*(.5*E/g)-2*s*g*M),O=4*t/y;if(t>.222*y||e.175*y){if(r=(w+s*L(b*(1+l)-w*w))/(1+l),t>y/4)return[r,r];var z=r,D=.5*r;r=.5*(D+z),i=50;do{var R=L(b-r*r),F=r*(I+C*R)+P*S(r/_)-O;if(!F)break;F<0?D=r:z=r,r=.5*(D+z)}while(n(z-D)>v&&--i>0)}else{r=v,i=25;do{var B=r*r,N=L(b-B),j=I+C*N,U=r*j+P*S(r/_)-O,V=j+(P-C*B)/N;r-=T=N?U/V:0}while(n(T)>v&&--i>0)}return[r,-w-s*L(b-r*r)]}(t>y/4?x-t:t,e);return t>y/4&&(u=f[0],f[0]=-f[1],f[1]=-u),f[0]*=r,f[1]*=-i,f}function Nt(t,e){var r,a,l,c,u,f;if(e=1-v)return r=(1-e)/4,l=1/(a=P(t)),[(c=((f=s(2*(f=t)))-1)/(f+1))+r*((u=a*C(t))-t)/(a*a),l-r*c*l*(u-t),l+r*c*l*(u+t),2*i(s(t))-x+r*(u-t)/a];var h=[1,0,0,0,0,0,0,0,0],p=[L(e),0,0,0,0,0,0,0,0],d=0;for(a=L(1-e),u=1;n(p[d]/h[d])>v&&d<8;)r=h[d++],p[d]=(r-a)/2,h[d]=(r+a)/2,a=L(r*a),u*=2;l=u*h[d]*t;do{l=(S(c=p[d]*m(a=l)/h[d])+l)/2}while(--d);return[m(l),c=o(l),c/o(l-a),l]}function jt(t,e){if(!e)return t;if(1===e)return c(g(t/2+b));for(var r=1,a=L(1-e),o=L(e),s=0;n(o)>v;s++){if(t%y){var l=i(a*g(t)/r);l<0&&(l+=y),t+=l+~~(t/y)*y}else t+=t;o=(r+a)/2,a=L(r*a),o=((r=o)-a)/2}return t/(h(2,s)*r)}function Ut(t,e){var r=(w-1)/(w+1),l=L(1-r*r),u=jt(x,l*l),f=c(g(y/4+n(e)/2)),h=s(-1*f)/L(r),p=function(t,e){var r=t*t,n=e+1,i=1-r-e*e;return[.5*((t>=0?x:-x)-a(i,2*t)),-.25*c(i*i+4*r)+.5*c(n*n+r)]}(h*o(-1*t),h*m(-1*t)),v=function(t,e,r){var a=n(t),o=C(n(e));if(a){var s=1/m(a),l=1/(g(a)*g(a)),c=-(l+r*(o*o*s*s)-1+r),u=(-c+L(c*c-4*((r-1)*l)))/2;return[jt(i(1/L(u)),r)*d(t),jt(i(L((u/l-1)/r)),1-r)*d(e)]}return[0,jt(i(o),1-r)*d(e)]}(p[0],p[1],l*l);return[-v[1],(e>=0?1:-1)*(.5*u-v[0])]}function Vt(t){var e=m(t),r=o(t),i=Ht(t);function s(t,a){var s=i(t,a);t=s[0],a=s[1];var l=m(a),c=o(a),u=o(t),f=E(e*l+r*c*u),h=m(f),p=n(h)>v?f/h:1;return[p*r*m(t),(n(t)>x?p:-p)*(e*c-r*l*u)]}return i.invert=Ht(-t),s.invert=function(t,r){var n=L(t*t+r*r),s=-m(n),l=o(n),c=n*l,u=-r*s,f=n*e,h=L(c*c+u*u-f*f),p=a(c*f+u*h,u*f-c*h),d=(n>x?-1:1)*a(t*s,n*o(p)*l+r*m(p)*s);return i.invert(d,p)},s}function Ht(t){var e=m(t),r=o(t);return function(t,n){var i=o(n),s=o(t)*i,l=m(t)*i,c=m(n);return[a(l,s*r-c*e),S(c*r+s*e)]}}Bt.invert=function(t,e){n(t)>1&&(t=2*d(t)-t),n(e)>1&&(e=2*d(e)-e);var r=d(t),i=d(e),s=-r*t,l=-i*e,c=l/s<1,u=function(t,e){var r=0,i=1,a=.5,s=50;for(;;){var l=a*a,c=L(a),u=S(1/L(1+l)),f=1-l+a*(1+l)*u,h=(1-c)/f,p=L(h),d=h*(1+l),m=p*(1-l),g=L(d-t*t),v=e+m+a*g;if(n(i-r)<1e-12||0==--s||0===v)break;v>0?r=a:i=a,a=.5*(r+i)}if(!s)return null;var x=S(c),b=o(x),_=1/b,w=2*c*b,T=(-f*b-(-3*a+u*(1+3*l))*w*(1-c))/(f*f);return[y/4*(t*(-2*_*(.5*T/p*(1-l)-2*a*p*w)+-_*w*g)+-_*(a*(1+l)*T+h*(1+3*l)*w)*S(t/L(d))),x]}(c?l:s,c?s:l),f=u[0],h=u[1],p=o(h);return c&&(f=-x-f),[r*(a(m(f)*p,-m(h))+y),i*S(o(f)*p)]},Ut.invert=function(t,e){var r,n,o,l,u,f,h=(w-1)/(w+1),p=L(1-h*h),d=jt(x,p*p),m=(n=-t,o=p*p,(r=.5*d-e)?(l=Nt(r,o),n?(f=(u=Nt(n,1-o))[1]*u[1]+o*l[0]*l[0]*u[0]*u[0],[[l[0]*u[2]/f,l[1]*l[2]*u[0]*u[1]/f],[l[1]*u[1]/f,-l[0]*l[2]*u[0]*u[2]/f],[l[2]*u[1]*u[2]/f,-o*l[0]*l[1]*u[0]/f]]):[[l[0],0],[l[1],0],[l[2],0]]):[[0,(u=Nt(n,1-o))[0]/u[1]],[1/u[1],0],[u[2]/u[1],0]]),g=function(t,e){var r=e[0]*e[0]+e[1]*e[1];return[(t[0]*e[0]+t[1]*e[1])/r,(t[1]*e[0]-t[0]*e[1])/r]}(m[0],m[1]);return[a(g[1],g[0])/-1,2*i(s(-.5*c(h*g[0]*g[0]+h*g[1]*g[1])))-x]};var qt=S(1-1/3)*A,Gt=ht(0);function Yt(t){var e=qt*M,r=lt(y,e)[0]-lt(-y,e)[0],i=Gt(0,e)[1],a=lt(0,e)[1],o=T-a,s=k/t,c=4/k,h=i+o*o*4/k;function p(p,d){var m,g=n(d);if(g>e){var v=f(t-1,u(0,l((p+y)/s)));(m=lt(p+=y*(t-1)/t-v*s,g))[0]=m[0]*k/r-k*(t-1)/(2*t)+v*k/t,m[1]=i+4*(m[1]-a)*o/k,d<0&&(m[1]=-m[1])}else m=Gt(p,d);return m[0]*=c,m[1]/=h,m}return p.invert=function(e,p){e/=c;var d=n(p*=h);if(d>i){var m=f(t-1,u(0,l((e+y)/s)));e=(e+y*(t-1)/t-m*s)*r/k;var g=lt.invert(e,.25*(d-i)*k/o+a);return g[0]-=y*(t-1)/t-m*s,p<0&&(g[1]=-g[1]),g}return Gt.invert(e,p)},p}function Wt(t,e){return[t,1&e?90-v:qt]}function Xt(t,e){return[t,1&e?-90+v:-qt]}function Zt(t){return[t[0]*(1-v),t[1]]}function Jt(t){var e,r=1+t,i=S(m(1/r)),s=2*L(y/(e=y+4*i*r)),l=.5*s*(r+L(t*(2+t))),c=t*t,u=r*r;function f(f,h){var p,d,g=1-m(h);if(g&&g<2){var v,b=x-h,_=25;do{var w=m(b),T=o(b),k=i+a(w,r-T),A=1+u-2*r*T;b-=v=(b-c*i-r*w+A*k-.5*g*e)/(2*r*w*k)}while(n(v)>1e-12&&--_>0);p=s*L(A),d=f*k/y}else p=s*(t+g),d=f*i/y;return[p*m(d),l-p*o(d)]}return f.invert=function(t,n){var o=t*t+(n-=l)*n,f=(1+u-o/(s*s))/(2*r),h=E(f),p=m(h),d=i+a(p,r-f);return[S(t/L(o))*y/d,S(1-2*(h-c*i-r*p+(1+u-2*r*f)*d)/e)]},f}function Kt(t,e){return e>-.7109889596207567?((t=W(t,e))[1]+=.0528035274542,t):Q(t,e)}function Qt(t,e){return n(e)>.7109889596207567?((t=W(t,e))[1]-=e>0?.0528035274542:-.0528035274542,t):Q(t,e)}function $t(t,e,r,n){var i=L(4*y/(2*r+(1+t-e/2)*m(2*r)+(t+e)/2*m(4*r)+e/2*m(6*r))),a=L(n*m(r)*L((1+t*o(2*r)+e*o(4*r))/(1+t+e))),s=r*c(1);function l(r){return L(1+t*o(2*r)+e*o(4*r))}function c(n){var i=n*r;return(2*i+(1+t-e/2)*m(2*i)+(t+e)/2*m(4*i)+e/2*m(6*i))/r}function u(t){return l(t)*m(t)}var f=function(t,e){var n=r*V(c,s*m(e)/r,e/y);isNaN(n)&&(n=r*d(e));var u=i*l(n);return[u*a*t/y*o(n),u/a*m(n)]};return f.invert=function(t,e){var n=V(u,e*a/i);return[t*y/(o(n)*i*a*l(n)),S(r*c(n/r)/s)]},0===r&&(i=L(n/y),(f=function(t,e){return[t*i,m(e)/i]}).invert=function(t,e){return[t/i,S(e*i)]}),f}function te(t,e,r,n,i){void 0===n&&(n=1e-8),void 0===i&&(i=20);var a=t(e),o=t(.5*(e+r)),s=t(r);return function t(e,r,n,i,a,o,s,l,c,u,f){if(f.nanEncountered)return NaN;var h,p,d,m,g,v,y,x,b,_;if(p=e(r+.25*(h=n-r)),d=e(n-.25*h),isNaN(p))f.nanEncountered=!0;else{if(!isNaN(d))return _=((v=(m=h*(i+4*p+a)/12)+(g=h*(a+4*d+o)/12))-s)/15,u>c?(f.maxDepthCount++,v+_):Math.abs(_)t?r=n:e=n,n=e+r>>1}while(n>e);var i=c[n+1]-c[n];return i&&(i=(t-c[n+1])/i),(n+1+i)/s}var p=2*f(1)/y*o/r,g=function(t,e){var r=f(n(m(e))),a=i(r)*t;return r/=p,[a,e>=0?r:-r]};return g.invert=function(t,e){var r;return n(e*=p)<1&&(r=d(e)*S(a(n(e))*o)),[t/i(n(e)),r]},g}function re(t,e){return n(t[0]-e[0])=0;--l)n=(e=t[1][l])[0][0],i=e[0][1],a=e[1][1],o=e[2][0],s=e[2][1],c.push(ne([[o-v,s-v],[o-v,a+v],[n+v,a+v],[n+v,i-v]],30));return{type:"Polygon",coordinates:[r.merge(c)]}}function ae(t,r,n){var i,a;function o(e,n){for(var i=n<0?-1:1,a=r[+(n<0)],o=0,s=a.length-1;oa[o][2][0];++o);var l=t(e-a[o][1][0],n);return l[0]+=t(a[o][1][0],i*n>i*a[o][0][1]?a[o][0][1]:n)[0],l}n?o.invert=n(o):t.invert&&(o.invert=function(e,n){for(var i=a[+(n<0)],s=r[+(n<0)],l=0,c=i.length;lo&&(r=a,a=o,o=r),[[n,a],[i,o]]}))})),s):r.map((function(t){return t.map((function(t){return[[t[0][0]*A,t[0][1]*A],[t[1][0]*A,t[1][1]*A],[t[2][0]*A,t[2][1]*A]]}))}))},null!=r&&s.lobes(r),s}Kt.invert=function(t,e){return e>-.7109889596207567?W.invert(t,e-.0528035274542):Q.invert(t,e)},Qt.invert=function(t,e){return n(e)>.7109889596207567?W.invert(t,e+(e>0?.0528035274542:-.0528035274542)):Q.invert(t,e)};var oe=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var se=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var le=[[[[-180,0],[-100,90],[-40,0]],[[-40,0],[30,90],[180,0]]],[[[-180,0],[-160,-90],[-100,0]],[[-100,0],[-60,-90],[-20,0]],[[-20,0],[20,-90],[80,0]],[[80,0],[140,-90],[180,0]]]];var ce=[[[[-180,0],[-90,90],[0,0]],[[0,0],[90,90],[180,0]]],[[[-180,0],[-90,-90],[0,0]],[[0,0],[90,-90],[180,0]]]];var ue=[[[[-180,35],[-30,90],[0,35]],[[0,35],[30,90],[180,35]]],[[[-180,-10],[-102,-90],[-65,-10]],[[-65,-10],[5,-90],[77,-10]],[[77,-10],[103,-90],[180,-10]]]];var fe=[[[[-180,0],[-110,90],[-40,0]],[[-40,0],[0,90],[40,0]],[[40,0],[110,90],[180,0]]],[[[-180,0],[-110,-90],[-40,0]],[[-40,0],[0,-90],[40,0]],[[40,0],[110,-90],[180,0]]]];function he(t,e){return[3/k*t*L(y*y/3-e*e),e]}function pe(t){function e(e,r){if(n(n(r)-x)2)return null;var o=(e/=2)*e,s=(r/=2)*r,l=2*r/(1+o+s);return l=h((1+l)/(1-l),1/t),[a(2*e,1-o-s)/t,S((l-1)/(l+1))]},e}he.invert=function(t,e){return[k/3*t/L(y*y/3-e*e),e]};var de=y/w;function me(t,e){return[t*(1+L(o(e)))/2,e/(o(e/2)*o(t/6))]}function ge(t,e){var r=t*t,n=e*e;return[t*(.975534+n*(-.0143059*r-.119161+-.0547009*n)),e*(1.00384+r*(.0802894+-.02855*n+199025e-9*r)+n*(.0998909+-.0491032*n))]}function ve(t,e){return[m(t)/o(e),g(e)*o(t)]}function ye(t){var e=o(t),r=g(b+t/2);function i(i,a){var o=a-t,s=n(o)=0;)h=(f=t[u])[0]+l*(i=h)-c*p,p=f[1]+l*p+c*i;return[h=l*(i=h)-c*p,p=l*p+c*i]}return r.invert=function(r,s){var l=20,c=r,u=s;do{for(var f,h=e,p=t[h],d=p[0],g=p[1],v=0,y=0;--h>=0;)v=d+c*(f=v)-u*y,y=g+c*y+u*f,d=(p=t[h])[0]+c*(f=d)-u*g,g=p[1]+c*g+u*f;var x,b,_=(v=d+c*(f=v)-u*y)*v+(y=g+c*y+u*f)*y;c-=x=((d=c*(f=d)-u*g-r)*v+(g=c*g+u*f-s)*y)/_,u-=b=(g*v-d*y)/_}while(n(x)+n(b)>1e-12&&--l>0);if(l){var w=L(c*c+u*u),T=2*i(.5*w),k=m(T);return[a(c*k,w*o(T)),w?S(u*k/w):0]}},r}me.invert=function(t,e){var r=n(t),i=n(e),a=v,s=x;iv||n(b)>v)&&--a>0);return a&&[r,i]},ve.invert=function(t,e){var r=t*t,n=e*e+1,i=r+n,a=t?_*L((i-L(i*i-4*r))/r):1/L(n);return[S(t*a),d(e)*E(a)]},xe.invert=function(t,e){return[t,2.5*i(s(.8*e))-.625*y]};var _e=[[.9972523,0],[.0052513,-.0041175],[.0074606,.0048125],[-.0153783,-.1968253],[.0636871,-.1408027],[.3660976,-.2937382]],we=[[.98879,0],[0,0],[-.050909,0],[0,0],[.075528,0]],Te=[[.984299,0],[.0211642,.0037608],[-.1036018,-.0575102],[-.0329095,-.0320119],[.0499471,.1223335],[.026046,.0899805],[7388e-7,-.1435792],[.0075848,-.1334108],[-.0216473,.0776645],[-.0225161,.0853673]],ke=[[.9245,0],[0,0],[.01943,0]],Ae=[[.721316,0],[0,0],[-.00881625,-.00617325]];function Me(t,r){var n=e.geoProjection(be(t)).rotate(r).clipAngle(90),i=e.geoRotation(r),a=n.center;return delete n.rotate,n.center=function(t){return arguments.length?a(i(t)):i.invert(a())},n}var Se=L(6),Ee=L(7);function Le(t,e){var r=S(7*m(e)/(3*Se));return[Se*t*(2*o(2*r/3)-1)/Ee,9*m(r/3)/Ee]}function Ce(t,e){for(var r,i=(1+_)*m(e),a=e,s=0;s<25&&(a-=r=(m(a/2)+m(a)-i)/(.5*o(a/2)+o(a)),!(n(r)1e-12&&--l>0);return[t/(.84719-.13063*(i=s*s)+(o=i*(a=i*i))*o*(.05494*i-.04515-.02326*a+.00331*o)),s]},Oe.invert=function(t,e){for(var r=e/2,i=0,a=1/0;i<10&&n(a)>v;++i){var s=o(e/2);e-=a=(e-g(e/2)-r)/(1-.5/(s*s))}return[2*t/(1+o(e)),e]};var ze=[[[[-180,0],[-90,90],[0,0]],[[0,0],[90,90],[180,0]]],[[[-180,0],[-90,-90],[0,0]],[[0,0],[90,-90],[180,0]]]];function De(t,e){var r=m(e),i=o(e),a=d(t);if(0===t||n(e)===x)return[0,e];if(0===e)return[t,0];if(n(t)===x)return[t*i,x*r];var s=y/(2*t)-2*t/y,l=2*e/y,c=(1-l*l)/(r-l),u=s*s,f=c*c,h=1+u/f,p=1+f/u,g=(s*r/c-s/2)/h,v=(f*r/u+c/2)/p,b=v*v-(f*r*r/u+c*r-1)/p;return[x*(g+L(g*g+i*i/h)*a),x*(v+L(b<0?0:b)*d(-e*s)*a)]}De.invert=function(t,e){var r=(t/=x)*t,n=r+(e/=x)*e,i=y*y;return[t?(n-1+L((1-n)*(1-n)+4*r))/(2*t)*x:0,V((function(t){return n*(y*m(t)-2*t)*y+4*t*t*(e-m(t))+2*y*t-i*e}),0)]};function Re(t,e){var r=e*e;return[t,e*(1.0148+r*r*(.23185+r*(.02406*r-.14499)))]}function Fe(t,e){if(n(e)=0;)if(n=e[s],r[0]===n[0]&&r[1]===n[1]){if(a)return[a,r];a=r}}}(e.face,r.face),i=Be(n.map(r.project),n.map(e.project));e.transform=r.transform?Ne(r.transform,i):i;for(var a=r.edges,o=0,s=a.length;o1.790857183?e=1.790857183:e<-1.790857183&&(e=-1.790857183);var r,i=e;do{var a=i*i;i-=r=(i*(1.0148+a*a*(.23185+a*(.02406*a-.14499)))-e)/(1.0148+a*a*(5*.23185+a*(.21654*a-1.01493)))}while(n(r)>v);return[t,i]},Fe.invert=function(t,e){if(n(e)v&&--s>0);return l=g(a),[(n(e)n^p>n&&r<(h-c)*(n-u)/(p-u)+c&&(i=!i)}return i}(t[0],r))return t.push(e),!0}))||t.push([e])})),nr=[],t.length?t.length>1?{type:"MultiPolygon",coordinates:t}:{type:"Polygon",coordinates:t[0]}:null}};function sr(t){var r=t(x,0)[0]-t(-x,0)[0];function i(e,i){var a=n(e)0?e-y:e+y,i),s=(o[0]-o[1])*_,l=(o[0]+o[1])*_;if(a)return[s,l];var c=r*_,u=s>0^l>0?-1:1;return[u*s-d(l)*c,u*l-d(s)*c]}return t.invert&&(i.invert=function(e,i){var a=(e+i)*_,o=(i-e)*_,s=n(a)<.5*r&&n(o)<.5*r;if(!s){var l=r*_,c=a>0^o>0?-1:1,u=-c*e+(o>0?1:-1)*l,f=-c*i+(a>0?1:-1)*l;a=(-u-f)*_,o=(u-f)*_}var h=t.invert(a,o);return s||(h[0]+=a>0?y:-y),h}),e.geoProjection(i).rotate([-90,-90,45]).clipAngle(179.999)}function lr(){return sr(Ut).scale(111.48)}function cr(t){var e=m(t);function r(r,n){var a=e?g(r*e/2)/e:r/2;if(!n)return[2*a,-t];var s=2*i(a*m(n)),l=1/g(n);return[m(s)*l,n+(1-o(s))*l-t]}return r.invert=function(r,a){if(n(a+=t)v&&--u>0);var d=r*(f=g(c)),x=g(n(a)0?x:-x)*(h+o*(d-c)/2+o*o*(d-2*h+c)/2)]}function hr(t,e){var r=function(t){function e(e,r){var n=o(r),i=(t-1)/(t-n*o(e));return[i*n*m(e),i*m(r)]}return e.invert=function(e,r){var n=e*e+r*r,i=L(n),o=(t-L(1-n*(t+1)/(t-1)))/((t-1)/i+i/(t-1));return[a(e*o,i*L(1-o*o)),i?S(r*o/i):0]},e}(t);if(!e)return r;var n=o(e),i=m(e);function s(e,a){var o=r(e,a),s=o[1],l=s*i/(t-1)+n;return[o[0]*n/l,s/l]}return s.invert=function(e,a){var o=(t-1)/(t-1-a*i);return r.invert(o*e,o*a*n)},s}ur.forEach((function(t){t[1]*=1.0144})),fr.invert=function(t,e){var r=e/x,i=90*r,a=f(18,n(i/5)),o=u(0,l(a));do{var s=ur[o][1],c=ur[o+1][1],h=ur[f(19,o+2)][1],p=h-s,d=h-2*c+s,m=2*(n(r)-c)/p,g=d/p,v=m*(1-g*m*(1-2*g*m));if(v>=0||1===o){i=(e>=0?5:-5)*(v+a);var y,b=50;do{v=(a=f(18,n(i)/5))-(o=l(a)),s=ur[o][1],c=ur[o+1][1],h=ur[f(19,o+2)][1],i-=(y=(e>=0?x:-x)*(c+v*(h-s)/2+v*v*(h-2*c+s)/2)-e)*A}while(n(y)>1e-12&&--b>0);break}}while(--o>=0);var _=ur[o][0],w=ur[o+1][0],T=ur[f(19,o+2)][0];return[t/(w+v*(T-_)/2+v*v*(T-2*w+_)/2),i*M]};var pr=-179.9999,dr=179.9999,mr=-89.9999;function gr(t){return t.length>0}function vr(t){return-90===t||90===t?[0,t]:[-180,(e=t,Math.floor(1e4*e)/1e4)];var e}function yr(t){var e=t[0],r=t[1],n=!1;return e<=pr?(e=-180,n=!0):e>=dr&&(e=180,n=!0),r<=mr?(r=-90,n=!0):r>=89.9999&&(r=90,n=!0),n?[e,r]:t}function xr(t){return t.map(yr)}function br(t,e,r){for(var n=0,i=t.length;n=dr||u<=mr||u>=89.9999){a[o]=yr(l);for(var f=o+1;fpr&&pmr&&d<89.9999)break}if(f===o+1)continue;if(o){var m={index:-1,polygon:e,ring:a.slice(0,o+1)};m.ring[m.ring.length-1]=vr(u),r[r.length-1]=m}else r.pop();if(f>=s)break;r.push({index:-1,polygon:e,ring:a=a.slice(f-1)}),a[0]=vr(a[0][1]),o=-1,s=a.length}}}}function _r(t){var e,r,n,i,a,o,s=t.length,l={},c={};for(e=0;e0?y-l:l)*A],u=e.geoProjection(t(s)).rotate(c),f=e.geoRotation(c),h=u.center;return delete u.rotate,u.center=function(t){return arguments.length?h(f(t)):f.invert(h())},u.clipAngle(90)}function Mr(t){var r=o(t);function n(t,n){var i=e.geoGnomonicRaw(t,n);return i[0]*=r,i}return n.invert=function(t,n){return e.geoGnomonicRaw.invert(t/r,n)},n}function Sr(t,e){return Ar(Mr,t,e)}function Er(t){if(!(t*=2))return e.geoAzimuthalEquidistantRaw;var r=-t/2,n=-r,i=t*t,s=g(n),l=.5/m(n);function c(e,a){var s=E(o(a)*o(e-r)),l=E(o(a)*o(e-n));return[((s*=s)-(l*=l))/(2*t),(a<0?-1:1)*L(4*i*l-(i-s+l)*(i-s+l))/(2*t)]}return c.invert=function(t,e){var i,c,u=e*e,f=o(L(u+(i=t+r)*i)),h=o(L(u+(i=t+n)*i));return[a(c=f-h,i=(f+h)*s),(e<0?-1:1)*E(L(i*i+c*c)*l)]},c}function Lr(t,e){return Ar(Er,t,e)}function Cr(t,e){if(n(e)v&&--l>0);return[d(t)*(L(a*a+4)+a)*y/4,x*s]};var Rr=4*y+3*L(3),Fr=2*L(2*y*L(3)/Rr),Br=Y(Fr*L(3)/y,Fr,Rr/6);function Nr(t,e){return[t*L(1-3*e*e/(y*y)),e]}function jr(t,e){var r=o(e),n=o(t)*r,i=1-n,s=o(t=a(m(t)*r,-m(e))),l=m(t);return[l*(r=L(1-n*n))-s*i,-s*r-l*i]}function Ur(t,e){var r=O(t,e);return[(r[0]+t/x)/2,(r[1]+e)/2]}Nr.invert=function(t,e){return[t/L(1-3*e*e/(y*y)),e]},jr.invert=function(t,e){var r=(t*t+e*e)/-2,n=L(-r*(2+r)),i=e*r+t*n,o=t*r-e*n,s=L(o*o+i*i);return[a(n*i,s*(1+r)),s?-S(n*o/s):0]},Ur.invert=function(t,e){var r=t,i=e,a=25;do{var s,l=o(i),c=m(i),u=m(2*i),f=c*c,h=l*l,p=m(r),d=o(r/2),g=m(r/2),y=g*g,b=1-h*d*d,_=b?E(l*d)*L(s=1/b):s=0,w=.5*(2*_*l*g+r/x)-t,T=.5*(_*c+i)-e,k=.5*s*(h*y+_*l*d*f)+.5/x,A=s*(p*u/4-_*c*g),M=.125*s*(u*g-_*c*h*p),S=.5*s*(f*d+_*y*l)+.5,C=A*M-S*k,P=(T*A-w*S)/C,I=(w*M-T*k)/C;r-=P,i-=I}while((n(P)>v||n(I)>v)&&--a>0);return[r,i]},t.geoNaturalEarth=e.geoNaturalEarth1,t.geoNaturalEarthRaw=e.geoNaturalEarth1Raw,t.geoAiry=function(){var t=x,r=e.geoProjectionMutator(I),n=r(t);return n.radius=function(e){return arguments.length?r(t=e*M):t*A},n.scale(179.976).clipAngle(147)},t.geoAiryRaw=I,t.geoAitoff=function(){return e.geoProjection(O).scale(152.63)},t.geoAitoffRaw=O,t.geoArmadillo=function(){var t=20*M,r=t>=0?1:-1,n=g(r*t),i=e.geoProjectionMutator(z),s=i(t),l=s.stream;return s.parallel=function(e){return arguments.length?(n=g((r=(t=e*M)>=0?1:-1)*t),i(t)):t*A},s.stream=function(e){var i=s.rotate(),c=l(e),u=(s.rotate([0,0]),l(e)),f=s.precision();return s.rotate(i),c.sphere=function(){u.polygonStart(),u.lineStart();for(var e=-180*r;r*e<180;e+=90*r)u.point(e,90*r);if(t)for(;r*(e-=3*r*f)>=-180;)u.point(e,r*-a(o(e*M/2),n)*A);u.lineEnd(),u.polygonEnd()},c},s.scale(218.695).center([0,28.0974])},t.geoArmadilloRaw=z,t.geoAugust=function(){return e.geoProjection(D).scale(66.1603)},t.geoAugustRaw=D,t.geoBaker=function(){return e.geoProjection(B).scale(112.314)},t.geoBakerRaw=B,t.geoBerghaus=function(){var t=5,r=e.geoProjectionMutator(N),n=r(t),i=n.stream,s=-o(.01*M),l=m(.01*M);return n.lobes=function(e){return arguments.length?r(t=+e):t},n.stream=function(e){var r=n.rotate(),c=i(e),u=(n.rotate([0,0]),i(e));return n.rotate(r),c.sphere=function(){u.polygonStart(),u.lineStart();for(var e=0,r=360/t,n=2*y/t,i=90-180/t,c=x;e=0;)t.point((e=r[i])[0],e[1]);t.lineEnd(),t.polygonEnd()},t},n.scale(79.4187).parallel(45).clipAngle(179.999)},t.geoHammerRetroazimuthalRaw=Vt,t.geoHealpix=function(){var t=4,n=e.geoProjectionMutator(Yt),i=n(t),a=i.stream;return i.lobes=function(e){return arguments.length?n(t=+e):t},i.stream=function(n){var o=i.rotate(),s=a(n),l=(i.rotate([0,0]),a(n));return i.rotate(o),s.sphere=function(){var n,i;e.geoStream((n=180/t,i=[].concat(r.range(-180,180+n/2,n).map(Wt),r.range(180,-180-n/2,-n).map(Xt)),{type:"Polygon",coordinates:[180===n?i.map(Zt):i]}),l)},s},i.scale(239.75)},t.geoHealpixRaw=Yt,t.geoHill=function(){var t=1,r=e.geoProjectionMutator(Jt),n=r(t);return n.ratio=function(e){return arguments.length?r(t=+e):t},n.scale(167.774).center([0,18.67])},t.geoHillRaw=Jt,t.geoHomolosine=function(){return e.geoProjection(Qt).scale(152.63)},t.geoHomolosineRaw=Qt,t.geoHufnagel=function(){var t=1,r=0,n=45*M,i=2,a=e.geoProjectionMutator($t),o=a(t,r,n,i);return o.a=function(e){return arguments.length?a(t=+e,r,n,i):t},o.b=function(e){return arguments.length?a(t,r=+e,n,i):r},o.psiMax=function(e){return arguments.length?a(t,r,n=+e*M,i):n*A},o.ratio=function(e){return arguments.length?a(t,r,n,i=+e):i},o.scale(180.739)},t.geoHufnagelRaw=$t,t.geoHyperelliptical=function(){var t=0,r=2.5,n=1.183136,i=e.geoProjectionMutator(ee),a=i(t,r,n);return a.alpha=function(e){return arguments.length?i(t=+e,r,n):t},a.k=function(e){return arguments.length?i(t,r=+e,n):r},a.gamma=function(e){return arguments.length?i(t,r,n=+e):n},a.scale(152.63)},t.geoHyperellipticalRaw=ee,t.geoInterrupt=ae,t.geoInterruptedBoggs=function(){return ae(J,oe).scale(160.857)},t.geoInterruptedHomolosine=function(){return ae(Qt,se).scale(152.63)},t.geoInterruptedMollweide=function(){return ae(W,le).scale(169.529)},t.geoInterruptedMollweideHemispheres=function(){return ae(W,ce).scale(169.529).rotate([20,0])},t.geoInterruptedSinuMollweide=function(){return ae(Kt,ue,H).rotate([-20,-55]).scale(164.263).center([0,-5.4036])},t.geoInterruptedSinusoidal=function(){return ae(Q,fe).scale(152.63).rotate([-20,0])},t.geoKavrayskiy7=function(){return e.geoProjection(he).scale(158.837)},t.geoKavrayskiy7Raw=he,t.geoLagrange=function(){var t=.5,r=e.geoProjectionMutator(pe),n=r(t);return n.spacing=function(e){return arguments.length?r(t=+e):t},n.scale(124.75)},t.geoLagrangeRaw=pe,t.geoLarrivee=function(){return e.geoProjection(me).scale(97.2672)},t.geoLarriveeRaw=me,t.geoLaskowski=function(){return e.geoProjection(ge).scale(139.98)},t.geoLaskowskiRaw=ge,t.geoLittrow=function(){return e.geoProjection(ve).scale(144.049).clipAngle(89.999)},t.geoLittrowRaw=ve,t.geoLoximuthal=function(){return K(ye).parallel(40).scale(158.837)},t.geoLoximuthalRaw=ye,t.geoMiller=function(){return e.geoProjection(xe).scale(108.318)},t.geoMillerRaw=xe,t.geoModifiedStereographic=Me,t.geoModifiedStereographicRaw=be,t.geoModifiedStereographicAlaska=function(){return Me(_e,[152,-64]).scale(1400).center([-160.908,62.4864]).clipAngle(30).angle(7.8)},t.geoModifiedStereographicGs48=function(){return Me(we,[95,-38]).scale(1e3).clipAngle(55).center([-96.5563,38.8675])},t.geoModifiedStereographicGs50=function(){return Me(Te,[120,-45]).scale(359.513).clipAngle(55).center([-117.474,53.0628])},t.geoModifiedStereographicMiller=function(){return Me(ke,[-20,-18]).scale(209.091).center([20,16.7214]).clipAngle(82)},t.geoModifiedStereographicLee=function(){return Me(Ae,[165,10]).scale(250).clipAngle(130).center([-165,-10])},t.geoMollweide=function(){return e.geoProjection(W).scale(169.529)},t.geoMollweideRaw=W,t.geoMtFlatPolarParabolic=function(){return e.geoProjection(Le).scale(164.859)},t.geoMtFlatPolarParabolicRaw=Le,t.geoMtFlatPolarQuartic=function(){return e.geoProjection(Ce).scale(188.209)},t.geoMtFlatPolarQuarticRaw=Ce,t.geoMtFlatPolarSinusoidal=function(){return e.geoProjection(Pe).scale(166.518)},t.geoMtFlatPolarSinusoidalRaw=Pe,t.geoNaturalEarth2=function(){return e.geoProjection(Ie).scale(175.295)},t.geoNaturalEarth2Raw=Ie,t.geoNellHammer=function(){return e.geoProjection(Oe).scale(152.63)},t.geoNellHammerRaw=Oe,t.geoInterruptedQuarticAuthalic=function(){return ae(j(1/0),ze).rotate([20,0]).scale(152.63)},t.geoNicolosi=function(){return e.geoProjection(De).scale(127.267)},t.geoNicolosiRaw=De,t.geoPatterson=function(){return e.geoProjection(Re).scale(139.319)},t.geoPattersonRaw=Re,t.geoPolyconic=function(){return e.geoProjection(Fe).scale(103.74)},t.geoPolyconicRaw=Fe,t.geoPolyhedral=Ve,t.geoPolyhedralButterfly=function(t){t=t||function(t){var r=e.geoCentroid({type:"MultiPoint",coordinates:t});return e.geoGnomonic().scale(1).translate([0,0]).rotate([-r[0],-r[1]])};var r=Ye.map((function(e){return{face:e,project:t(e)}}));return[-1,0,0,1,0,1,4,5].forEach((function(t,e){var n=r[t];n&&(n.children||(n.children=[])).push(r[e])})),Ve(r[0],(function(t,e){return r[t<-y/2?e<0?6:4:t<0?e<0?2:0:t0?[-r[0],0]:[180-r[0],180])};var r=Ye.map((function(e){return{face:e,project:t(e)}}));return[-1,0,0,1,0,1,4,5].forEach((function(t,e){var n=r[t];n&&(n.children||(n.children=[])).push(r[e])})),Ve(r[0],(function(t,e){return r[t<-y/2?e<0?6:4:t<0?e<0?2:0:t2||a[0]!=e[0]||a[1]!=e[1])&&(n.push(a),e=a)}return 1===n.length&&t.length>1&&n.push(r(t[t.length-1])),n}function a(t){return t.map(i)}function o(t){if(null==t)return t;var e;switch(t.type){case"GeometryCollection":e={type:"GeometryCollection",geometries:t.geometries.map(o)};break;case"Point":e={type:"Point",coordinates:r(t.coordinates)};break;case"MultiPoint":e={type:t.type,coordinates:n(t.coordinates)};break;case"LineString":e={type:t.type,coordinates:i(t.coordinates)};break;case"MultiLineString":case"Polygon":e={type:t.type,coordinates:a(t.coordinates)};break;case"MultiPolygon":e={type:"MultiPolygon",coordinates:t.coordinates.map(a)};break;default:return t}return null!=t.bbox&&(e.bbox=t.bbox),e}function s(t){var e={type:"Feature",properties:t.properties,geometry:o(t.geometry)};return null!=t.id&&(e.id=t.id),null!=t.bbox&&(e.bbox=t.bbox),e}if(null!=t)switch(t.type){case"Feature":return s(t);case"FeatureCollection":var l={type:"FeatureCollection",features:t.features.map(s)};return null!=t.bbox&&(l.bbox=t.bbox),l;default:return o(t)}return t},t.geoQuincuncial=sr,t.geoRectangularPolyconic=function(){return K(cr).scale(131.215)},t.geoRectangularPolyconicRaw=cr,t.geoRobinson=function(){return e.geoProjection(fr).scale(152.63)},t.geoRobinsonRaw=fr,t.geoSatellite=function(){var t=2,r=0,n=e.geoProjectionMutator(hr),i=n(t,r);return i.distance=function(e){return arguments.length?n(t=+e,r):t},i.tilt=function(e){return arguments.length?n(t,r=e*M):r*A},i.scale(432.147).clipAngle(E(1/t)*A-1e-6)},t.geoSatelliteRaw=hr,t.geoSinuMollweide=function(){return e.geoProjection(Kt).rotate([-20,-55]).scale(164.263).center([0,-5.4036])},t.geoSinuMollweideRaw=Kt,t.geoSinusoidal=function(){return e.geoProjection(Q).scale(152.63)},t.geoSinusoidalRaw=Q,t.geoStitch=function(t){if(null==t)return t;switch(t.type){case"Feature":return wr(t);case"FeatureCollection":var e={type:"FeatureCollection",features:t.features.map(wr)};return null!=t.bbox&&(e.bbox=t.bbox),e;default:return Tr(t)}},t.geoTimes=function(){return e.geoProjection(kr).scale(146.153)},t.geoTimesRaw=kr,t.geoTwoPointAzimuthal=Sr,t.geoTwoPointAzimuthalRaw=Mr,t.geoTwoPointAzimuthalUsa=function(){return Sr([-158,21.5],[-77,39]).clipAngle(60).scale(400)},t.geoTwoPointEquidistant=Lr,t.geoTwoPointEquidistantRaw=Er,t.geoTwoPointEquidistantUsa=function(){return Lr([-158,21.5],[-77,39]).clipAngle(130).scale(122.571)},t.geoVanDerGrinten=function(){return e.geoProjection(Cr).scale(79.4183)},t.geoVanDerGrintenRaw=Cr,t.geoVanDerGrinten2=function(){return e.geoProjection(Pr).scale(79.4183)},t.geoVanDerGrinten2Raw=Pr,t.geoVanDerGrinten3=function(){return e.geoProjection(Ir).scale(79.4183)},t.geoVanDerGrinten3Raw=Ir,t.geoVanDerGrinten4=function(){return e.geoProjection(Or).scale(127.16)},t.geoVanDerGrinten4Raw=Or,t.geoWagner=Dr,t.geoWagner7=function(){return Dr().poleline(65).parallels(60).inflation(0).ratio(200).scale(172.633)},t.geoWagnerRaw=zr,t.geoWagner4=function(){return e.geoProjection(Br).scale(176.84)},t.geoWagner4Raw=Br,t.geoWagner6=function(){return e.geoProjection(Nr).scale(152.63)},t.geoWagner6Raw=Nr,t.geoWiechel=function(){return e.geoProjection(jr).rotate([0,-90,45]).scale(124.75).clipAngle(179.999)},t.geoWiechelRaw=jr,t.geoWinkel3=function(){return e.geoProjection(Ur).scale(158.837)},t.geoWinkel3Raw=Ur,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":155,"d3-geo":162}],162:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-array")):i((n=n||self).d3=n.d3||{},n.d3)}(this,(function(t,e){"use strict";function r(){return new n}function n(){this.reset()}n.prototype={constructor:n,reset:function(){this.s=this.t=0},add:function(t){a(i,t,this.t),a(this,i.s,this.s),this.s?this.t+=i.t:this.s=i.t},valueOf:function(){return this.s}};var i=new n;function a(t,e,r){var n=t.s=e+r,i=n-e,a=n-i;t.t=e-a+(r-i)}var o=1e-6,s=Math.PI,l=s/2,c=s/4,u=2*s,f=180/s,h=s/180,p=Math.abs,d=Math.atan,m=Math.atan2,g=Math.cos,v=Math.ceil,y=Math.exp,x=Math.log,b=Math.pow,_=Math.sin,w=Math.sign||function(t){return t>0?1:t<0?-1:0},T=Math.sqrt,k=Math.tan;function A(t){return t>1?0:t<-1?s:Math.acos(t)}function M(t){return t>1?l:t<-1?-l:Math.asin(t)}function S(t){return(t=_(t/2))*t}function E(){}function L(t,e){t&&P.hasOwnProperty(t.type)&&P[t.type](t,e)}var C={Feature:function(t,e){L(t.geometry,e)},FeatureCollection:function(t,e){for(var r=t.features,n=-1,i=r.length;++n=0?1:-1,i=n*r,a=g(e=(e*=h)/2+c),o=_(e),s=N*o,l=B*a+s*g(i),u=s*n*_(i);j.add(m(u,l)),F=t,B=a,N=o}function W(t){return[m(t[1],t[0]),M(t[2])]}function X(t){var e=t[0],r=t[1],n=g(r);return[n*g(e),n*_(e),_(r)]}function Z(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}function J(t,e){return[t[1]*e[2]-t[2]*e[1],t[2]*e[0]-t[0]*e[2],t[0]*e[1]-t[1]*e[0]]}function K(t,e){t[0]+=e[0],t[1]+=e[1],t[2]+=e[2]}function Q(t,e){return[t[0]*e,t[1]*e,t[2]*e]}function $(t){var e=T(t[0]*t[0]+t[1]*t[1]+t[2]*t[2]);t[0]/=e,t[1]/=e,t[2]/=e}var tt,et,rt,nt,it,at,ot,st,lt,ct,ut,ft,ht,pt,dt,mt,gt,vt,yt,xt,bt,_t,wt,Tt,kt,At,Mt=r(),St={point:Et,lineStart:Ct,lineEnd:Pt,polygonStart:function(){St.point=It,St.lineStart=Ot,St.lineEnd=zt,Mt.reset(),V.polygonStart()},polygonEnd:function(){V.polygonEnd(),St.point=Et,St.lineStart=Ct,St.lineEnd=Pt,j<0?(tt=-(rt=180),et=-(nt=90)):Mt>o?nt=90:Mt<-o&&(et=-90),ct[0]=tt,ct[1]=rt},sphere:function(){tt=-(rt=180),et=-(nt=90)}};function Et(t,e){lt.push(ct=[tt=t,rt=t]),ent&&(nt=e)}function Lt(t,e){var r=X([t*h,e*h]);if(st){var n=J(st,r),i=J([n[1],-n[0],0],n);$(i),i=W(i);var a,o=t-it,s=o>0?1:-1,l=i[0]*f*s,c=p(o)>180;c^(s*itnt&&(nt=a):c^(s*it<(l=(l+360)%360-180)&&lnt&&(nt=e)),c?tDt(tt,rt)&&(rt=t):Dt(t,rt)>Dt(tt,rt)&&(tt=t):rt>=tt?(trt&&(rt=t)):t>it?Dt(tt,t)>Dt(tt,rt)&&(rt=t):Dt(t,rt)>Dt(tt,rt)&&(tt=t)}else lt.push(ct=[tt=t,rt=t]);ent&&(nt=e),st=r,it=t}function Ct(){St.point=Lt}function Pt(){ct[0]=tt,ct[1]=rt,St.point=Et,st=null}function It(t,e){if(st){var r=t-it;Mt.add(p(r)>180?r+(r>0?360:-360):r)}else at=t,ot=e;V.point(t,e),Lt(t,e)}function Ot(){V.lineStart()}function zt(){It(at,ot),V.lineEnd(),p(Mt)>o&&(tt=-(rt=180)),ct[0]=tt,ct[1]=rt,st=null}function Dt(t,e){return(e-=t)<0?e+360:e}function Rt(t,e){return t[0]-e[0]}function Ft(t,e){return t[0]<=t[1]?t[0]<=e&&e<=t[1]:es?t+Math.round(-t/u)*u:t,e]}function Qt(t,e,r){return(t%=u)?e||r?Jt(te(t),ee(e,r)):te(t):e||r?ee(e,r):Kt}function $t(t){return function(e,r){return[(e+=t)>s?e-u:e<-s?e+u:e,r]}}function te(t){var e=$t(t);return e.invert=$t(-t),e}function ee(t,e){var r=g(t),n=_(t),i=g(e),a=_(e);function o(t,e){var o=g(e),s=g(t)*o,l=_(t)*o,c=_(e),u=c*r+s*n;return[m(l*i-u*a,s*r-c*n),M(u*i+l*a)]}return o.invert=function(t,e){var o=g(e),s=g(t)*o,l=_(t)*o,c=_(e),u=c*i-l*a;return[m(l*i+c*a,s*r+u*n),M(u*r-s*n)]},o}function re(t){function e(e){return(e=t(e[0]*h,e[1]*h))[0]*=f,e[1]*=f,e}return t=Qt(t[0]*h,t[1]*h,t.length>2?t[2]*h:0),e.invert=function(e){return(e=t.invert(e[0]*h,e[1]*h))[0]*=f,e[1]*=f,e},e}function ne(t,e,r,n,i,a){if(r){var o=g(e),s=_(e),l=n*r;null==i?(i=e+n*u,a=e-l/2):(i=ie(o,i),a=ie(o,a),(n>0?ia)&&(i+=n*u));for(var c,f=i;n>0?f>a:f1&&e.push(e.pop().concat(e.shift()))},result:function(){var r=e;return e=[],t=null,r}}}function oe(t,e){return p(t[0]-e[0])=0;--a)i.point((f=u[a])[0],f[1]);else n(p.x,p.p.x,-1,i);p=p.p}u=(p=p.o).z,d=!d}while(!p.v);i.lineEnd()}}}function ce(t){if(e=t.length){for(var e,r,n=0,i=t[0];++n=0?1:-1,z=O*I,D=z>s,R=T*C;if(ue.add(m(R*O*_(z),k*P+R*g(z))),f+=D?I+O*u:I,D^b>=r^E>=r){var F=J(X(x),X(S));$(F);var B=J(a,F);$(B);var N=(D^I>=0?-1:1)*M(B[2]);(n>N||n===N&&(F[0]||F[1]))&&(h+=D^I>=0?1:-1)}}return(f<-o||f0){for(h||(a.polygonStart(),h=!0),a.lineStart(),t=0;t1&&2&i&&c.push(c.pop().concat(c.shift())),s.push(c.filter(de))}return p}}function de(t){return t.length>1}function me(t,e){return((t=t.x)[0]<0?t[1]-l-o:l-t[1])-((e=e.x)[0]<0?e[1]-l-o:l-e[1])}var ge=pe((function(){return!0}),(function(t){var e,r=NaN,n=NaN,i=NaN;return{lineStart:function(){t.lineStart(),e=1},point:function(a,c){var u=a>0?s:-s,f=p(a-r);p(f-s)0?l:-l),t.point(i,n),t.lineEnd(),t.lineStart(),t.point(u,n),t.point(a,n),e=0):i!==u&&f>=s&&(p(r-i)o?d((_(e)*(a=g(n))*_(r)-_(n)*(i=g(e))*_(t))/(i*a*s)):(e+n)/2}(r,n,a,c),t.point(i,n),t.lineEnd(),t.lineStart(),t.point(u,n),e=0),t.point(r=a,n=c),i=u},lineEnd:function(){t.lineEnd(),r=n=NaN},clean:function(){return 2-e}}}),(function(t,e,r,n){var i;if(null==t)i=r*l,n.point(-s,i),n.point(0,i),n.point(s,i),n.point(s,0),n.point(s,-i),n.point(0,-i),n.point(-s,-i),n.point(-s,0),n.point(-s,i);else if(p(t[0]-e[0])>o){var a=t[0]0,i=p(e)>o;function a(t,r){return g(t)*g(r)>e}function l(t,r,n){var i=[1,0,0],a=J(X(t),X(r)),l=Z(a,a),c=a[0],u=l-c*c;if(!u)return!n&&t;var f=e*l/u,h=-e*c/u,d=J(i,a),m=Q(i,f);K(m,Q(a,h));var g=d,v=Z(m,g),y=Z(g,g),x=v*v-y*(Z(m,m)-1);if(!(x<0)){var b=T(x),_=Q(g,(-v-b)/y);if(K(_,m),_=W(_),!n)return _;var w,k=t[0],A=r[0],M=t[1],S=r[1];A0^_[1]<(p(_[0]-k)s^(k<=_[0]&&_[0]<=A)){var C=Q(g,(-v+b)/y);return K(C,m),[_,W(C)]}}}function c(e,r){var i=n?t:s-t,a=0;return e<-i?a|=1:e>i&&(a|=2),r<-i?a|=4:r>i&&(a|=8),a}return pe(a,(function(t){var e,r,o,u,f;return{lineStart:function(){u=o=!1,f=1},point:function(h,p){var d,m=[h,p],g=a(h,p),v=n?g?0:c(h,p):g?c(h+(h<0?s:-s),p):0;if(!e&&(u=o=g)&&t.lineStart(),g!==o&&(!(d=l(e,m))||oe(e,d)||oe(m,d))&&(m[2]=1),g!==o)f=0,g?(t.lineStart(),d=l(m,e),t.point(d[0],d[1])):(d=l(e,m),t.point(d[0],d[1],2),t.lineEnd()),e=d;else if(i&&e&&n^g){var y;v&r||!(y=l(m,e,!0))||(f=0,n?(t.lineStart(),t.point(y[0][0],y[0][1]),t.point(y[1][0],y[1][1]),t.lineEnd()):(t.point(y[1][0],y[1][1]),t.lineEnd(),t.lineStart(),t.point(y[0][0],y[0][1],3)))}!g||e&&oe(e,m)||t.point(m[0],m[1]),e=m,o=g,r=v},lineEnd:function(){o&&t.lineEnd(),e=null},clean:function(){return f|(u&&o)<<1}}}),(function(e,n,i,a){ne(a,t,r,i,e,n)}),n?[0,-t]:[-s,t-s])}function ye(t,r,n,i){function a(e,a){return t<=e&&e<=n&&r<=a&&a<=i}function s(e,a,o,s){var c=0,f=0;if(null==e||(c=l(e,o))!==(f=l(a,o))||u(e,a)<0^o>0)do{s.point(0===c||3===c?t:n,c>1?i:r)}while((c=(c+o+4)%4)!==f);else s.point(a[0],a[1])}function l(e,i){return p(e[0]-t)0?0:3:p(e[0]-n)0?2:1:p(e[1]-r)0?1:0:i>0?3:2}function c(t,e){return u(t.x,e.x)}function u(t,e){var r=l(t,1),n=l(e,1);return r!==n?r-n:0===r?e[1]-t[1]:1===r?t[0]-e[0]:2===r?t[1]-e[1]:e[0]-t[0]}return function(o){var l,u,f,h,p,d,m,g,v,y,x,b=o,_=ae(),w={point:T,lineStart:function(){w.point=k,u&&u.push(f=[]);y=!0,v=!1,m=g=NaN},lineEnd:function(){l&&(k(h,p),d&&v&&_.rejoin(),l.push(_.result()));w.point=T,v&&b.lineEnd()},polygonStart:function(){b=_,l=[],u=[],x=!0},polygonEnd:function(){var r=function(){for(var e=0,r=0,n=u.length;ri&&(h-a)*(i-o)>(p-o)*(t-a)&&++e:p<=i&&(h-a)*(i-o)<(p-o)*(t-a)&&--e;return e}(),n=x&&r,a=(l=e.merge(l)).length;(n||a)&&(o.polygonStart(),n&&(o.lineStart(),s(null,null,1,o),o.lineEnd()),a&&le(l,c,r,s,o),o.polygonEnd());b=o,l=u=f=null}};function T(t,e){a(t,e)&&b.point(t,e)}function k(e,o){var s=a(e,o);if(u&&f.push([e,o]),y)h=e,p=o,d=s,y=!1,s&&(b.lineStart(),b.point(e,o));else if(s&&v)b.point(e,o);else{var l=[m=Math.max(-1e9,Math.min(1e9,m)),g=Math.max(-1e9,Math.min(1e9,g))],c=[e=Math.max(-1e9,Math.min(1e9,e)),o=Math.max(-1e9,Math.min(1e9,o))];!function(t,e,r,n,i,a){var o,s=t[0],l=t[1],c=0,u=1,f=e[0]-s,h=e[1]-l;if(o=r-s,f||!(o>0)){if(o/=f,f<0){if(o0){if(o>u)return;o>c&&(c=o)}if(o=i-s,f||!(o<0)){if(o/=f,f<0){if(o>u)return;o>c&&(c=o)}else if(f>0){if(o0)){if(o/=h,h<0){if(o0){if(o>u)return;o>c&&(c=o)}if(o=a-l,h||!(o<0)){if(o/=h,h<0){if(o>u)return;o>c&&(c=o)}else if(h>0){if(o0&&(t[0]=s+c*f,t[1]=l+c*h),u<1&&(e[0]=s+u*f,e[1]=l+u*h),!0}}}}}(l,c,t,r,n,i)?s&&(b.lineStart(),b.point(e,o),x=!1):(v||(b.lineStart(),b.point(l[0],l[1])),b.point(c[0],c[1]),s||b.lineEnd(),x=!1)}m=e,g=o,v=s}return w}}var xe,be,_e,we=r(),Te={sphere:E,point:E,lineStart:function(){Te.point=Ae,Te.lineEnd=ke},lineEnd:E,polygonStart:E,polygonEnd:E};function ke(){Te.point=Te.lineEnd=E}function Ae(t,e){xe=t*=h,be=_(e*=h),_e=g(e),Te.point=Me}function Me(t,e){t*=h;var r=_(e*=h),n=g(e),i=p(t-xe),a=g(i),o=n*_(i),s=_e*r-be*n*a,l=be*r+_e*n*a;we.add(m(T(o*o+s*s),l)),xe=t,be=r,_e=n}function Se(t){return we.reset(),z(t,Te),+we}var Ee=[null,null],Le={type:"LineString",coordinates:Ee};function Ce(t,e){return Ee[0]=t,Ee[1]=e,Se(Le)}var Pe={Feature:function(t,e){return Oe(t.geometry,e)},FeatureCollection:function(t,e){for(var r=t.features,n=-1,i=r.length;++n0&&(i=Ce(t[a],t[a-1]))>0&&r<=i&&n<=i&&(r+n-i)*(1-Math.pow((r-n)/i,2))<1e-12*i)return!0;r=n}return!1}function Re(t,e){return!!he(t.map(Fe),Be(e))}function Fe(t){return(t=t.map(Be)).pop(),t}function Be(t){return[t[0]*h,t[1]*h]}function Ne(t,r,n){var i=e.range(t,r-o,n).concat(r);return function(t){return i.map((function(e){return[t,e]}))}}function je(t,r,n){var i=e.range(t,r-o,n).concat(r);return function(t){return i.map((function(e){return[e,t]}))}}function Ue(){var t,r,n,i,a,s,l,c,u,f,h,d,m=10,g=m,y=90,x=360,b=2.5;function _(){return{type:"MultiLineString",coordinates:w()}}function w(){return e.range(v(i/y)*y,n,y).map(h).concat(e.range(v(c/x)*x,l,x).map(d)).concat(e.range(v(r/m)*m,t,m).filter((function(t){return p(t%y)>o})).map(u)).concat(e.range(v(s/g)*g,a,g).filter((function(t){return p(t%x)>o})).map(f))}return _.lines=function(){return w().map((function(t){return{type:"LineString",coordinates:t}}))},_.outline=function(){return{type:"Polygon",coordinates:[h(i).concat(d(l).slice(1),h(n).reverse().slice(1),d(c).reverse().slice(1))]}},_.extent=function(t){return arguments.length?_.extentMajor(t).extentMinor(t):_.extentMinor()},_.extentMajor=function(t){return arguments.length?(i=+t[0][0],n=+t[1][0],c=+t[0][1],l=+t[1][1],i>n&&(t=i,i=n,n=t),c>l&&(t=c,c=l,l=t),_.precision(b)):[[i,c],[n,l]]},_.extentMinor=function(e){return arguments.length?(r=+e[0][0],t=+e[1][0],s=+e[0][1],a=+e[1][1],r>t&&(e=r,r=t,t=e),s>a&&(e=s,s=a,a=e),_.precision(b)):[[r,s],[t,a]]},_.step=function(t){return arguments.length?_.stepMajor(t).stepMinor(t):_.stepMinor()},_.stepMajor=function(t){return arguments.length?(y=+t[0],x=+t[1],_):[y,x]},_.stepMinor=function(t){return arguments.length?(m=+t[0],g=+t[1],_):[m,g]},_.precision=function(e){return arguments.length?(b=+e,u=Ne(s,a,90),f=je(r,t,b),h=Ne(c,l,90),d=je(i,n,b),_):b},_.extentMajor([[-180,-90+o],[180,90-o]]).extentMinor([[-180,-80-o],[180,80+o]])}function Ve(t){return t}var He,qe,Ge,Ye,We=r(),Xe=r(),Ze={point:E,lineStart:E,lineEnd:E,polygonStart:function(){Ze.lineStart=Je,Ze.lineEnd=$e},polygonEnd:function(){Ze.lineStart=Ze.lineEnd=Ze.point=E,We.add(p(Xe)),Xe.reset()},result:function(){var t=We/2;return We.reset(),t}};function Je(){Ze.point=Ke}function Ke(t,e){Ze.point=Qe,He=Ge=t,qe=Ye=e}function Qe(t,e){Xe.add(Ye*t-Ge*e),Ge=t,Ye=e}function $e(){Qe(He,qe)}var tr=1/0,er=tr,rr=-tr,nr=rr,ir={point:function(t,e){trr&&(rr=t);enr&&(nr=e)},lineStart:E,lineEnd:E,polygonStart:E,polygonEnd:E,result:function(){var t=[[tr,er],[rr,nr]];return rr=nr=-(er=tr=1/0),t}};var ar,or,sr,lr,cr=0,ur=0,fr=0,hr=0,pr=0,dr=0,mr=0,gr=0,vr=0,yr={point:xr,lineStart:br,lineEnd:Tr,polygonStart:function(){yr.lineStart=kr,yr.lineEnd=Ar},polygonEnd:function(){yr.point=xr,yr.lineStart=br,yr.lineEnd=Tr},result:function(){var t=vr?[mr/vr,gr/vr]:dr?[hr/dr,pr/dr]:fr?[cr/fr,ur/fr]:[NaN,NaN];return cr=ur=fr=hr=pr=dr=mr=gr=vr=0,t}};function xr(t,e){cr+=t,ur+=e,++fr}function br(){yr.point=_r}function _r(t,e){yr.point=wr,xr(sr=t,lr=e)}function wr(t,e){var r=t-sr,n=e-lr,i=T(r*r+n*n);hr+=i*(sr+t)/2,pr+=i*(lr+e)/2,dr+=i,xr(sr=t,lr=e)}function Tr(){yr.point=xr}function kr(){yr.point=Mr}function Ar(){Sr(ar,or)}function Mr(t,e){yr.point=Sr,xr(ar=sr=t,or=lr=e)}function Sr(t,e){var r=t-sr,n=e-lr,i=T(r*r+n*n);hr+=i*(sr+t)/2,pr+=i*(lr+e)/2,dr+=i,mr+=(i=lr*t-sr*e)*(sr+t),gr+=i*(lr+e),vr+=3*i,xr(sr=t,lr=e)}function Er(t){this._context=t}Er.prototype={_radius:4.5,pointRadius:function(t){return this._radius=t,this},polygonStart:function(){this._line=0},polygonEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){0===this._line&&this._context.closePath(),this._point=NaN},point:function(t,e){switch(this._point){case 0:this._context.moveTo(t,e),this._point=1;break;case 1:this._context.lineTo(t,e);break;default:this._context.moveTo(t+this._radius,e),this._context.arc(t,e,this._radius,0,u)}},result:E};var Lr,Cr,Pr,Ir,Or,zr=r(),Dr={point:E,lineStart:function(){Dr.point=Rr},lineEnd:function(){Lr&&Fr(Cr,Pr),Dr.point=E},polygonStart:function(){Lr=!0},polygonEnd:function(){Lr=null},result:function(){var t=+zr;return zr.reset(),t}};function Rr(t,e){Dr.point=Fr,Cr=Ir=t,Pr=Or=e}function Fr(t,e){Ir-=t,Or-=e,zr.add(T(Ir*Ir+Or*Or)),Ir=t,Or=e}function Br(){this._string=[]}function Nr(t){return"m0,"+t+"a"+t+","+t+" 0 1,1 0,"+-2*t+"a"+t+","+t+" 0 1,1 0,"+2*t+"z"}function jr(t){return function(e){var r=new Ur;for(var n in t)r[n]=t[n];return r.stream=e,r}}function Ur(){}function Vr(t,e,r){var n=t.clipExtent&&t.clipExtent();return t.scale(150).translate([0,0]),null!=n&&t.clipExtent(null),z(r,t.stream(ir)),e(ir.result()),null!=n&&t.clipExtent(n),t}function Hr(t,e,r){return Vr(t,(function(r){var n=e[1][0]-e[0][0],i=e[1][1]-e[0][1],a=Math.min(n/(r[1][0]-r[0][0]),i/(r[1][1]-r[0][1])),o=+e[0][0]+(n-a*(r[1][0]+r[0][0]))/2,s=+e[0][1]+(i-a*(r[1][1]+r[0][1]))/2;t.scale(150*a).translate([o,s])}),r)}function qr(t,e,r){return Hr(t,[[0,0],e],r)}function Gr(t,e,r){return Vr(t,(function(r){var n=+e,i=n/(r[1][0]-r[0][0]),a=(n-i*(r[1][0]+r[0][0]))/2,o=-i*r[0][1];t.scale(150*i).translate([a,o])}),r)}function Yr(t,e,r){return Vr(t,(function(r){var n=+e,i=n/(r[1][1]-r[0][1]),a=-i*r[0][0],o=(n-i*(r[1][1]+r[0][1]))/2;t.scale(150*i).translate([a,o])}),r)}Br.prototype={_radius:4.5,_circle:Nr(4.5),pointRadius:function(t){return(t=+t)!==this._radius&&(this._radius=t,this._circle=null),this},polygonStart:function(){this._line=0},polygonEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){0===this._line&&this._string.push("Z"),this._point=NaN},point:function(t,e){switch(this._point){case 0:this._string.push("M",t,",",e),this._point=1;break;case 1:this._string.push("L",t,",",e);break;default:null==this._circle&&(this._circle=Nr(this._radius)),this._string.push("M",t,",",e,this._circle)}},result:function(){if(this._string.length){var t=this._string.join("");return this._string=[],t}return null}},Ur.prototype={constructor:Ur,point:function(t,e){this.stream.point(t,e)},sphere:function(){this.stream.sphere()},lineStart:function(){this.stream.lineStart()},lineEnd:function(){this.stream.lineEnd()},polygonStart:function(){this.stream.polygonStart()},polygonEnd:function(){this.stream.polygonEnd()}};var Wr=g(30*h);function Xr(t,e){return+e?function(t,e){function r(n,i,a,s,l,c,u,f,h,d,g,v,y,x){var b=u-n,_=f-i,w=b*b+_*_;if(w>4*e&&y--){var k=s+d,A=l+g,S=c+v,E=T(k*k+A*A+S*S),L=M(S/=E),C=p(p(S)-1)e||p((b*z+_*D)/w-.5)>.3||s*d+l*g+c*v2?t[2]%360*h:0,I()):[y*f,x*f,b*f]},C.angle=function(t){return arguments.length?(_=t%360*h,I()):_*f},C.reflectX=function(t){return arguments.length?(w=t?-1:1,I()):w<0},C.reflectY=function(t){return arguments.length?(k=t?-1:1,I()):k<0},C.precision=function(t){return arguments.length?(o=Xr(s,L=t*t),O()):T(L)},C.fitExtent=function(t,e){return Hr(C,t,e)},C.fitSize=function(t,e){return qr(C,t,e)},C.fitWidth=function(t,e){return Gr(C,t,e)},C.fitHeight=function(t,e){return Yr(C,t,e)},function(){return e=t.apply(this,arguments),C.invert=e.invert&&P,I()}}function tn(t){var e=0,r=s/3,n=$r(t),i=n(e,r);return i.parallels=function(t){return arguments.length?n(e=t[0]*h,r=t[1]*h):[e*f,r*f]},i}function en(t,e){var r=_(t),n=(r+_(e))/2;if(p(n)0?e<-l+o&&(e=-l+o):e>l-o&&(e=l-o);var r=i/b(fn(e),n);return[r*_(n*t),i-r*g(n*t)]}return a.invert=function(t,e){var r=i-e,a=w(n)*T(t*t+r*r),o=m(t,p(r))*w(r);return r*n<0&&(o-=s*w(t)*w(r)),[o/n,2*d(b(i/a,1/n))-l]},a}function pn(t,e){return[t,e]}function dn(t,e){var r=g(t),n=t===e?_(t):(r-g(e))/(e-t),i=r/n+t;if(p(n)o&&--i>0);return[t/(.8707+(a=n*n)*(a*(a*a*a*(.003971-.001529*a)-.013791)-.131979)),n]},Tn.invert=on(M),kn.invert=on((function(t){return 2*d(t)})),An.invert=function(t,e){return[-e,2*d(y(t))-l]},t.geoAlbers=nn,t.geoAlbersUsa=function(){var t,e,r,n,i,a,s=nn(),l=rn().rotate([154,0]).center([-2,58.5]).parallels([55,65]),c=rn().rotate([157,0]).center([-3,19.9]).parallels([8,18]),u={point:function(t,e){a=[t,e]}};function f(t){var e=t[0],o=t[1];return a=null,r.point(e,o),a||(n.point(e,o),a)||(i.point(e,o),a)}function h(){return t=e=null,f}return f.invert=function(t){var e=s.scale(),r=s.translate(),n=(t[0]-r[0])/e,i=(t[1]-r[1])/e;return(i>=.12&&i<.234&&n>=-.425&&n<-.214?l:i>=.166&&i<.234&&n>=-.214&&n<-.115?c:s).invert(t)},f.stream=function(r){return t&&e===r?t:(n=[s.stream(e=r),l.stream(r),c.stream(r)],i=n.length,t={point:function(t,e){for(var r=-1;++rDt(n[0],n[1])&&(n[1]=i[1]),Dt(i[0],n[1])>Dt(n[0],n[1])&&(n[0]=i[0])):a.push(n=i);for(o=-1/0,e=0,n=a[r=a.length-1];e<=r;n=i,++e)i=a[e],(s=Dt(n[1],i[0]))>o&&(o=s,tt=i[0],rt=n[1])}return lt=ct=null,tt===1/0||et===1/0?[[NaN,NaN],[NaN,NaN]]:[[tt,et],[rt,nt]]},t.geoCentroid=function(t){ut=ft=ht=pt=dt=mt=gt=vt=yt=xt=bt=0,z(t,Bt);var e=yt,r=xt,n=bt,i=e*e+r*r+n*n;return i<1e-12&&(e=mt,r=gt,n=vt,ft2?t[2]+90:90]):[(t=r())[0],t[1],t[2]-90]},r([0,0,90]).scale(159.155)},t.geoTransverseMercatorRaw=An,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-array":155}],163:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e){return t.parent===e.parent?1:2}function r(t,e){return t+e.x}function n(t,e){return Math.max(t,e.y)}function i(t){var e=0,r=t.children,n=r&&r.length;if(n)for(;--n>=0;)e+=r[n].value;else e=1;t.value=e}function a(t,e){var r,n,i,a,s,u=new c(t),f=+t.value&&(u.value=t.value),h=[u];for(null==e&&(e=o);r=h.pop();)if(f&&(r.value=+r.data.value),(i=e(r.data))&&(s=i.length))for(r.children=new Array(s),a=s-1;a>=0;--a)h.push(n=r.children[a]=new c(i[a])),n.parent=r,n.depth=r.depth+1;return u.eachBefore(l)}function o(t){return t.children}function s(t){t.data=t.data.data}function l(t){var e=0;do{t.height=e}while((t=t.parent)&&t.height<++e)}function c(t){this.data=t,this.depth=this.height=0,this.parent=null}c.prototype=a.prototype={constructor:c,count:function(){return this.eachAfter(i)},each:function(t){var e,r,n,i,a=this,o=[a];do{for(e=o.reverse(),o=[];a=e.pop();)if(t(a),r=a.children)for(n=0,i=r.length;n=0;--r)i.push(e[r]);return this},sum:function(t){return this.eachAfter((function(e){for(var r=+t(e.data)||0,n=e.children,i=n&&n.length;--i>=0;)r+=n[i].value;e.value=r}))},sort:function(t){return this.eachBefore((function(e){e.children&&e.children.sort(t)}))},path:function(t){for(var e=this,r=function(t,e){if(t===e)return t;var r=t.ancestors(),n=e.ancestors(),i=null;t=r.pop(),e=n.pop();for(;t===e;)i=t,t=r.pop(),e=n.pop();return i}(e,t),n=[e];e!==r;)e=e.parent,n.push(e);for(var i=n.length;t!==r;)n.splice(i,0,t),t=t.parent;return n},ancestors:function(){for(var t=this,e=[t];t=t.parent;)e.push(t);return e},descendants:function(){var t=[];return this.each((function(e){t.push(e)})),t},leaves:function(){var t=[];return this.eachBefore((function(e){e.children||t.push(e)})),t},links:function(){var t=this,e=[];return t.each((function(r){r!==t&&e.push({source:r.parent,target:r})})),e},copy:function(){return a(this).eachBefore(s)}};var u=Array.prototype.slice;function f(t){for(var e,r,n=0,i=(t=function(t){for(var e,r,n=t.length;n;)r=Math.random()*n--|0,e=t[n],t[n]=t[r],t[r]=e;return t}(u.call(t))).length,a=[];n0&&r*r>n*n+i*i}function m(t,e){for(var r=0;r(o*=o)?(n=(c+o-i)/(2*c),a=Math.sqrt(Math.max(0,o/c-n*n)),r.x=t.x-n*s-a*l,r.y=t.y-n*l+a*s):(n=(c+i-o)/(2*c),a=Math.sqrt(Math.max(0,i/c-n*n)),r.x=e.x+n*s-a*l,r.y=e.y+n*l+a*s)):(r.x=e.x+r.r,r.y=e.y)}function b(t,e){var r=t.r+e.r-1e-6,n=e.x-t.x,i=e.y-t.y;return r>0&&r*r>n*n+i*i}function _(t){var e=t._,r=t.next._,n=e.r+r.r,i=(e.x*r.r+r.x*e.r)/n,a=(e.y*r.r+r.y*e.r)/n;return i*i+a*a}function w(t){this._=t,this.next=null,this.previous=null}function T(t){if(!(i=t.length))return 0;var e,r,n,i,a,o,s,l,c,u,h;if((e=t[0]).x=0,e.y=0,!(i>1))return e.r;if(r=t[1],e.x=-r.r,r.x=e.r,r.y=0,!(i>2))return e.r+r.r;x(r,e,n=t[2]),e=new w(e),r=new w(r),n=new w(n),e.next=n.previous=r,r.next=e.previous=n,n.next=r.previous=e;t:for(s=3;sh&&(h=s),g=u*u*m,(p=Math.max(h/g,g/f))>d){u-=s;break}d=p}v.push(o={value:u,dice:l1?e:1)},r}(G);var X=function t(e){function r(t,r,n,i,a){if((o=t._squarify)&&o.ratio===e)for(var o,s,l,c,u,f=-1,h=o.length,p=t.value;++f1?e:1)},r}(G);t.cluster=function(){var t=e,i=1,a=1,o=!1;function s(e){var s,l=0;e.eachAfter((function(e){var i=e.children;i?(e.x=function(t){return t.reduce(r,0)/t.length}(i),e.y=function(t){return 1+t.reduce(n,0)}(i)):(e.x=s?l+=t(e,s):0,e.y=0,s=e)}));var c=function(t){for(var e;e=t.children;)t=e[0];return t}(e),u=function(t){for(var e;e=t.children;)t=e[e.length-1];return t}(e),f=c.x-t(c,u)/2,h=u.x+t(u,c)/2;return e.eachAfter(o?function(t){t.x=(t.x-e.x)*i,t.y=(e.y-t.y)*a}:function(t){t.x=(t.x-f)/(h-f)*i,t.y=(1-(e.y?t.y/e.y:1))*a})}return s.separation=function(e){return arguments.length?(t=e,s):t},s.size=function(t){return arguments.length?(o=!1,i=+t[0],a=+t[1],s):o?null:[i,a]},s.nodeSize=function(t){return arguments.length?(o=!0,i=+t[0],a=+t[1],s):o?[i,a]:null},s},t.hierarchy=a,t.pack=function(){var t=null,e=1,r=1,n=M;function i(i){return i.x=e/2,i.y=r/2,t?i.eachBefore(L(t)).eachAfter(C(n,.5)).eachBefore(P(1)):i.eachBefore(L(E)).eachAfter(C(M,1)).eachAfter(C(n,i.r/Math.min(e,r))).eachBefore(P(Math.min(e,r)/(2*i.r))),i}return i.radius=function(e){return arguments.length?(t=k(e),i):t},i.size=function(t){return arguments.length?(e=+t[0],r=+t[1],i):[e,r]},i.padding=function(t){return arguments.length?(n="function"==typeof t?t:S(+t),i):n},i},t.packEnclose=f,t.packSiblings=function(t){return T(t),t},t.partition=function(){var t=1,e=1,r=0,n=!1;function i(i){var a=i.height+1;return i.x0=i.y0=r,i.x1=t,i.y1=e/a,i.eachBefore(function(t,e){return function(n){n.children&&O(n,n.x0,t*(n.depth+1)/e,n.x1,t*(n.depth+2)/e);var i=n.x0,a=n.y0,o=n.x1-r,s=n.y1-r;o0)throw new Error("cycle");return a}return r.id=function(e){return arguments.length?(t=A(e),r):t},r.parentId=function(t){return arguments.length?(e=A(t),r):e},r},t.tree=function(){var t=B,e=1,r=1,n=null;function i(i){var l=function(t){for(var e,r,n,i,a,o=new H(t,0),s=[o];e=s.pop();)if(n=e._.children)for(e.children=new Array(a=n.length),i=a-1;i>=0;--i)s.push(r=e.children[i]=new H(n[i],i)),r.parent=e;return(o.parent=new H(null,0)).children=[o],o}(i);if(l.eachAfter(a),l.parent.m=-l.z,l.eachBefore(o),n)i.eachBefore(s);else{var c=i,u=i,f=i;i.eachBefore((function(t){t.xu.x&&(u=t),t.depth>f.depth&&(f=t)}));var h=c===u?1:t(c,u)/2,p=h-c.x,d=e/(u.x+h+p),m=r/(f.depth||1);i.eachBefore((function(t){t.x=(t.x+p)*d,t.y=t.depth*m}))}return i}function a(e){var r=e.children,n=e.parent.children,i=e.i?n[e.i-1]:null;if(r){!function(t){for(var e,r=0,n=0,i=t.children,a=i.length;--a>=0;)(e=i[a]).z+=r,e.m+=r,r+=e.s+(n+=e.c)}(e);var a=(r[0].z+r[r.length-1].z)/2;i?(e.z=i.z+t(e._,i._),e.m=e.z-a):e.z=a}else i&&(e.z=i.z+t(e._,i._));e.parent.A=function(e,r,n){if(r){for(var i,a=e,o=e,s=r,l=a.parent.children[0],c=a.m,u=o.m,f=s.m,h=l.m;s=j(s),a=N(a),s&&a;)l=N(l),(o=j(o)).a=e,(i=s.z+f-a.z-c+t(s._,a._))>0&&(U(V(s,e,n),e,i),c+=i,u+=i),f+=s.m,c+=a.m,h+=l.m,u+=o.m;s&&!j(o)&&(o.t=s,o.m+=f-u),a&&!N(l)&&(l.t=a,l.m+=c-h,n=e)}return n}(e,i,e.parent.A||n[0])}function o(t){t._.x=t.z+t.parent.m,t.m+=t.parent.m}function s(t){t.x*=e,t.y=t.depth*r}return i.separation=function(e){return arguments.length?(t=e,i):t},i.size=function(t){return arguments.length?(n=!1,e=+t[0],r=+t[1],i):n?null:[e,r]},i.nodeSize=function(t){return arguments.length?(n=!0,e=+t[0],r=+t[1],i):n?[e,r]:null},i},t.treemap=function(){var t=W,e=!1,r=1,n=1,i=[0],a=M,o=M,s=M,l=M,c=M;function u(t){return t.x0=t.y0=0,t.x1=r,t.y1=n,t.eachBefore(f),i=[0],e&&t.eachBefore(I),t}function f(e){var r=i[e.depth],n=e.x0+r,u=e.y0+r,f=e.x1-r,h=e.y1-r;f=r-1){var u=s[e];return u.x0=i,u.y0=a,u.x1=o,void(u.y1=l)}var f=c[e],h=n/2+f,p=e+1,d=r-1;for(;p>>1;c[m]l-a){var y=(i*v+o*g)/n;t(e,p,g,i,a,y,l),t(p,r,v,y,a,o,l)}else{var x=(a*v+l*g)/n;t(e,p,g,i,a,o,x),t(p,r,v,i,x,o,l)}}(0,l,t.value,e,r,n,i)},t.treemapDice=O,t.treemapResquarify=X,t.treemapSlice=q,t.treemapSliceDice=function(t,e,r,n,i){(1&t.depth?q:O)(t,e,r,n,i)},t.treemapSquarify=W,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],164:[function(t,e,r){!function(n,i){"object"==typeof r&&void 0!==e?i(r,t("d3-color")):i((n=n||self).d3=n.d3||{},n.d3)}(this,(function(t,e){"use strict";function r(t,e,r,n,i){var a=t*t,o=a*t;return((1-3*t+3*a-o)*e+(4-6*a+3*o)*r+(1+3*t+3*a-3*o)*n+o*i)/6}function n(t){var e=t.length-1;return function(n){var i=n<=0?n=0:n>=1?(n=1,e-1):Math.floor(n*e),a=t[i],o=t[i+1],s=i>0?t[i-1]:2*a-o,l=i180||r<-180?r-360*Math.round(r/360):r):a(isNaN(t)?e:t)}function l(t){return 1==(t=+t)?c:function(e,r){return r-e?function(t,e,r){return t=Math.pow(t,r),e=Math.pow(e,r)-t,r=1/r,function(n){return Math.pow(t+n*e,r)}}(e,r,t):a(isNaN(e)?r:e)}}function c(t,e){var r=e-t;return r?o(t,r):a(isNaN(t)?e:t)}var u=function t(r){var n=l(r);function i(t,r){var i=n((t=e.rgb(t)).r,(r=e.rgb(r)).r),a=n(t.g,r.g),o=n(t.b,r.b),s=c(t.opacity,r.opacity);return function(e){return t.r=i(e),t.g=a(e),t.b=o(e),t.opacity=s(e),t+""}}return i.gamma=t,i}(1);function f(t){return function(r){var n,i,a=r.length,o=new Array(a),s=new Array(a),l=new Array(a);for(n=0;na&&(i=e.slice(a,i),s[o]?s[o]+=i:s[++o]=i),(r=r[0])===(n=n[0])?s[o]?s[o]+=n:s[++o]=n:(s[++o]=null,l.push({i:o,x:y(r,n)})),a=_.lastIndex;return a180?e+=360:e-t>180&&(t+=360),a.push({i:r.push(i(r)+"rotate(",null,n)-2,x:y(t,e)})):e&&r.push(i(r)+"rotate("+e+n)}(a.rotate,o.rotate,s,l),function(t,e,r,a){t!==e?a.push({i:r.push(i(r)+"skewX(",null,n)-2,x:y(t,e)}):e&&r.push(i(r)+"skewX("+e+n)}(a.skewX,o.skewX,s,l),function(t,e,r,n,a,o){if(t!==r||e!==n){var s=a.push(i(a)+"scale(",null,",",null,")");o.push({i:s-4,x:y(t,r)},{i:s-2,x:y(e,n)})}else 1===r&&1===n||a.push(i(a)+"scale("+r+","+n+")")}(a.scaleX,a.scaleY,o.scaleX,o.scaleY,s,l),a=o=null,function(t){for(var e,r=-1,n=l.length;++r1e-6)if(Math.abs(f*l-c*u)>1e-6&&a){var p=n-o,d=i-s,m=l*l+c*c,g=p*p+d*d,v=Math.sqrt(m),y=Math.sqrt(h),x=a*Math.tan((e-Math.acos((m+h-g)/(2*v*y)))/2),b=x/y,_=x/v;Math.abs(b-1)>1e-6&&(this._+="L"+(t+b*u)+","+(r+b*f)),this._+="A"+a+","+a+",0,0,"+ +(f*p>u*d)+","+(this._x1=t+_*l)+","+(this._y1=r+_*c)}else this._+="L"+(this._x1=t)+","+(this._y1=r);else;},arc:function(t,i,a,o,s,l){t=+t,i=+i,l=!!l;var c=(a=+a)*Math.cos(o),u=a*Math.sin(o),f=t+c,h=i+u,p=1^l,d=l?o-s:s-o;if(a<0)throw new Error("negative radius: "+a);null===this._x1?this._+="M"+f+","+h:(Math.abs(this._x1-f)>1e-6||Math.abs(this._y1-h)>1e-6)&&(this._+="L"+f+","+h),a&&(d<0&&(d=d%r+r),d>n?this._+="A"+a+","+a+",0,1,"+p+","+(t-c)+","+(i-u)+"A"+a+","+a+",0,1,"+p+","+(this._x1=f)+","+(this._y1=h):d>1e-6&&(this._+="A"+a+","+a+",0,"+ +(d>=e)+","+p+","+(this._x1=t+a*Math.cos(s))+","+(this._y1=i+a*Math.sin(s))))},rect:function(t,e,r,n){this._+="M"+(this._x0=this._x1=+t)+","+(this._y0=this._y1=+e)+"h"+ +r+"v"+ +n+"h"+-r+"Z"},toString:function(){return this._}},t.path=a,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],166:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";function e(t,e,r,n){if(isNaN(e)||isNaN(r))return t;var i,a,o,s,l,c,u,f,h,p=t._root,d={data:n},m=t._x0,g=t._y0,v=t._x1,y=t._y1;if(!p)return t._root=d,t;for(;p.length;)if((c=e>=(a=(m+v)/2))?m=a:v=a,(u=r>=(o=(g+y)/2))?g=o:y=o,i=p,!(p=p[f=u<<1|c]))return i[f]=d,t;if(s=+t._x.call(null,p.data),l=+t._y.call(null,p.data),e===s&&r===l)return d.next=p,i?i[f]=d:t._root=d,t;do{i=i?i[f]=new Array(4):t._root=new Array(4),(c=e>=(a=(m+v)/2))?m=a:v=a,(u=r>=(o=(g+y)/2))?g=o:y=o}while((f=u<<1|c)==(h=(l>=o)<<1|s>=a));return i[h]=p,i[f]=d,t}function r(t,e,r,n,i){this.node=t,this.x0=e,this.y0=r,this.x1=n,this.y1=i}function n(t){return t[0]}function i(t){return t[1]}function a(t,e,r){var a=new o(null==e?n:e,null==r?i:r,NaN,NaN,NaN,NaN);return null==t?a:a.addAll(t)}function o(t,e,r,n,i,a){this._x=t,this._y=e,this._x0=r,this._y0=n,this._x1=i,this._y1=a,this._root=void 0}function s(t){for(var e={data:t.data},r=e;t=t.next;)r=r.next={data:t.data};return e}var l=a.prototype=o.prototype;l.copy=function(){var t,e,r=new o(this._x,this._y,this._x0,this._y0,this._x1,this._y1),n=this._root;if(!n)return r;if(!n.length)return r._root=s(n),r;for(t=[{source:n,target:r._root=new Array(4)}];n=t.pop();)for(var i=0;i<4;++i)(e=n.source[i])&&(e.length?t.push({source:e,target:n.target[i]=new Array(4)}):n.target[i]=s(e));return r},l.add=function(t){var r=+this._x.call(null,t),n=+this._y.call(null,t);return e(this.cover(r,n),r,n,t)},l.addAll=function(t){var r,n,i,a,o=t.length,s=new Array(o),l=new Array(o),c=1/0,u=1/0,f=-1/0,h=-1/0;for(n=0;nf&&(f=i),ah&&(h=a));if(c>f||u>h)return this;for(this.cover(c,u).cover(f,h),n=0;nt||t>=i||n>e||e>=a;)switch(s=(ep||(o=c.y0)>d||(s=c.x1)=y)<<1|t>=v)&&(c=m[m.length-1],m[m.length-1]=m[m.length-1-u],m[m.length-1-u]=c)}else{var x=t-+this._x.call(null,g.data),b=e-+this._y.call(null,g.data),_=x*x+b*b;if(_=(s=(d+g)/2))?d=s:g=s,(u=o>=(l=(m+v)/2))?m=l:v=l,e=p,!(p=p[f=u<<1|c]))return this;if(!p.length)break;(e[f+1&3]||e[f+2&3]||e[f+3&3])&&(r=e,h=f)}for(;p.data!==t;)if(n=p,!(p=p.next))return this;return(i=p.next)&&delete p.next,n?(i?n.next=i:delete n.next,this):e?(i?e[f]=i:delete e[f],(p=e[0]||e[1]||e[2]||e[3])&&p===(e[3]||e[2]||e[1]||e[0])&&!p.length&&(r?r[h]=p:this._root=p),this):(this._root=i,this)},l.removeAll=function(t){for(var e=0,r=t.length;e1?0:t<-1?u:Math.acos(t)}function d(t){return t>=1?f:t<=-1?-f:Math.asin(t)}function m(t){return t.innerRadius}function g(t){return t.outerRadius}function v(t){return t.startAngle}function y(t){return t.endAngle}function x(t){return t&&t.padAngle}function b(t,e,r,n,i,a,o,s){var l=r-t,c=n-e,u=o-i,f=s-a,h=f*l-u*c;if(!(h*h<1e-12))return[t+(h=(u*(e-a)-f*(t-i))/h)*l,e+h*c]}function _(t,e,r,n,i,a,s){var l=t-r,u=e-n,f=(s?a:-a)/c(l*l+u*u),h=f*u,p=-f*l,d=t+h,m=e+p,g=r+h,v=n+p,y=(d+g)/2,x=(m+v)/2,b=g-d,_=v-m,w=b*b+_*_,T=i-a,k=d*v-g*m,A=(_<0?-1:1)*c(o(0,T*T*w-k*k)),M=(k*_-b*A)/w,S=(-k*b-_*A)/w,E=(k*_+b*A)/w,L=(-k*b+_*A)/w,C=M-y,P=S-x,I=E-y,O=L-x;return C*C+P*P>I*I+O*O&&(M=E,S=L),{cx:M,cy:S,x01:-h,y01:-p,x11:M*(i/T-1),y11:S*(i/T-1)}}function w(t){this._context=t}function T(t){return new w(t)}function k(t){return t[0]}function A(t){return t[1]}function M(){var t=k,n=A,i=r(!0),a=null,o=T,s=null;function l(r){var l,c,u,f=r.length,h=!1;for(null==a&&(s=o(u=e.path())),l=0;l<=f;++l)!(l=f;--h)c.point(v[h],y[h]);c.lineEnd(),c.areaEnd()}g&&(v[u]=+t(p,u,r),y[u]=+i(p,u,r),c.point(n?+n(p,u,r):v[u],a?+a(p,u,r):y[u]))}if(d)return c=null,d+""||null}function f(){return M().defined(o).curve(l).context(s)}return u.x=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),n=null,u):t},u.x0=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),u):t},u.x1=function(t){return arguments.length?(n=null==t?null:"function"==typeof t?t:r(+t),u):n},u.y=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),a=null,u):i},u.y0=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),u):i},u.y1=function(t){return arguments.length?(a=null==t?null:"function"==typeof t?t:r(+t),u):a},u.lineX0=u.lineY0=function(){return f().x(t).y(i)},u.lineY1=function(){return f().x(t).y(a)},u.lineX1=function(){return f().x(n).y(i)},u.defined=function(t){return arguments.length?(o="function"==typeof t?t:r(!!t),u):o},u.curve=function(t){return arguments.length?(l=t,null!=s&&(c=l(s)),u):l},u.context=function(t){return arguments.length?(null==t?s=c=null:c=l(s=t),u):s},u}function E(t,e){return et?1:e>=t?0:NaN}function L(t){return t}w.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._point=0},lineEnd:function(){(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:this._context.lineTo(t,e)}}};var C=I(T);function P(t){this._curve=t}function I(t){function e(e){return new P(t(e))}return e._curve=t,e}function O(t){var e=t.curve;return t.angle=t.x,delete t.x,t.radius=t.y,delete t.y,t.curve=function(t){return arguments.length?e(I(t)):e()._curve},t}function z(){return O(M().curve(C))}function D(){var t=S().curve(C),e=t.curve,r=t.lineX0,n=t.lineX1,i=t.lineY0,a=t.lineY1;return t.angle=t.x,delete t.x,t.startAngle=t.x0,delete t.x0,t.endAngle=t.x1,delete t.x1,t.radius=t.y,delete t.y,t.innerRadius=t.y0,delete t.y0,t.outerRadius=t.y1,delete t.y1,t.lineStartAngle=function(){return O(r())},delete t.lineX0,t.lineEndAngle=function(){return O(n())},delete t.lineX1,t.lineInnerRadius=function(){return O(i())},delete t.lineY0,t.lineOuterRadius=function(){return O(a())},delete t.lineY1,t.curve=function(t){return arguments.length?e(I(t)):e()._curve},t}function R(t,e){return[(e=+e)*Math.cos(t-=Math.PI/2),e*Math.sin(t)]}P.prototype={areaStart:function(){this._curve.areaStart()},areaEnd:function(){this._curve.areaEnd()},lineStart:function(){this._curve.lineStart()},lineEnd:function(){this._curve.lineEnd()},point:function(t,e){this._curve.point(e*Math.sin(t),e*-Math.cos(t))}};var F=Array.prototype.slice;function B(t){return t.source}function N(t){return t.target}function j(t){var n=B,i=N,a=k,o=A,s=null;function l(){var r,l=F.call(arguments),c=n.apply(this,l),u=i.apply(this,l);if(s||(s=r=e.path()),t(s,+a.apply(this,(l[0]=c,l)),+o.apply(this,l),+a.apply(this,(l[0]=u,l)),+o.apply(this,l)),r)return s=null,r+""||null}return l.source=function(t){return arguments.length?(n=t,l):n},l.target=function(t){return arguments.length?(i=t,l):i},l.x=function(t){return arguments.length?(a="function"==typeof t?t:r(+t),l):a},l.y=function(t){return arguments.length?(o="function"==typeof t?t:r(+t),l):o},l.context=function(t){return arguments.length?(s=null==t?null:t,l):s},l}function U(t,e,r,n,i){t.moveTo(e,r),t.bezierCurveTo(e=(e+n)/2,r,e,i,n,i)}function V(t,e,r,n,i){t.moveTo(e,r),t.bezierCurveTo(e,r=(r+i)/2,n,r,n,i)}function H(t,e,r,n,i){var a=R(e,r),o=R(e,r=(r+i)/2),s=R(n,r),l=R(n,i);t.moveTo(a[0],a[1]),t.bezierCurveTo(o[0],o[1],s[0],s[1],l[0],l[1])}var q={draw:function(t,e){var r=Math.sqrt(e/u);t.moveTo(r,0),t.arc(0,0,r,0,h)}},G={draw:function(t,e){var r=Math.sqrt(e/5)/2;t.moveTo(-3*r,-r),t.lineTo(-r,-r),t.lineTo(-r,-3*r),t.lineTo(r,-3*r),t.lineTo(r,-r),t.lineTo(3*r,-r),t.lineTo(3*r,r),t.lineTo(r,r),t.lineTo(r,3*r),t.lineTo(-r,3*r),t.lineTo(-r,r),t.lineTo(-3*r,r),t.closePath()}},Y=Math.sqrt(1/3),W=2*Y,X={draw:function(t,e){var r=Math.sqrt(e/W),n=r*Y;t.moveTo(0,-r),t.lineTo(n,0),t.lineTo(0,r),t.lineTo(-n,0),t.closePath()}},Z=Math.sin(u/10)/Math.sin(7*u/10),J=Math.sin(h/10)*Z,K=-Math.cos(h/10)*Z,Q={draw:function(t,e){var r=Math.sqrt(.8908130915292852*e),n=J*r,i=K*r;t.moveTo(0,-r),t.lineTo(n,i);for(var a=1;a<5;++a){var o=h*a/5,s=Math.cos(o),l=Math.sin(o);t.lineTo(l*r,-s*r),t.lineTo(s*n-l*i,l*n+s*i)}t.closePath()}},$={draw:function(t,e){var r=Math.sqrt(e),n=-r/2;t.rect(n,n,r,r)}},tt=Math.sqrt(3),et={draw:function(t,e){var r=-Math.sqrt(e/(3*tt));t.moveTo(0,2*r),t.lineTo(-tt*r,-r),t.lineTo(tt*r,-r),t.closePath()}},rt=-.5,nt=Math.sqrt(3)/2,it=1/Math.sqrt(12),at=3*(it/2+1),ot={draw:function(t,e){var r=Math.sqrt(e/at),n=r/2,i=r*it,a=n,o=r*it+r,s=-a,l=o;t.moveTo(n,i),t.lineTo(a,o),t.lineTo(s,l),t.lineTo(rt*n-nt*i,nt*n+rt*i),t.lineTo(rt*a-nt*o,nt*a+rt*o),t.lineTo(rt*s-nt*l,nt*s+rt*l),t.lineTo(rt*n+nt*i,rt*i-nt*n),t.lineTo(rt*a+nt*o,rt*o-nt*a),t.lineTo(rt*s+nt*l,rt*l-nt*s),t.closePath()}},st=[q,G,X,$,Q,et,ot];function lt(){}function ct(t,e,r){t._context.bezierCurveTo((2*t._x0+t._x1)/3,(2*t._y0+t._y1)/3,(t._x0+2*t._x1)/3,(t._y0+2*t._y1)/3,(t._x0+4*t._x1+e)/6,(t._y0+4*t._y1+r)/6)}function ut(t){this._context=t}function ft(t){this._context=t}function ht(t){this._context=t}function pt(t,e){this._basis=new ut(t),this._beta=e}ut.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){switch(this._point){case 3:ct(this,this._x1,this._y1);case 2:this._context.lineTo(this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3,this._context.lineTo((5*this._x0+this._x1)/6,(5*this._y0+this._y1)/6);default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},ft.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._y0=this._y1=this._y2=this._y3=this._y4=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x2,this._y2),this._context.closePath();break;case 2:this._context.moveTo((this._x2+2*this._x3)/3,(this._y2+2*this._y3)/3),this._context.lineTo((this._x3+2*this._x2)/3,(this._y3+2*this._y2)/3),this._context.closePath();break;case 3:this.point(this._x2,this._y2),this.point(this._x3,this._y3),this.point(this._x4,this._y4)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x2=t,this._y2=e;break;case 1:this._point=2,this._x3=t,this._y3=e;break;case 2:this._point=3,this._x4=t,this._y4=e,this._context.moveTo((this._x0+4*this._x1+t)/6,(this._y0+4*this._y1+e)/6);break;default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},ht.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._y0=this._y1=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3;var r=(this._x0+4*this._x1+t)/6,n=(this._y0+4*this._y1+e)/6;this._line?this._context.lineTo(r,n):this._context.moveTo(r,n);break;case 3:this._point=4;default:ct(this,t,e)}this._x0=this._x1,this._x1=t,this._y0=this._y1,this._y1=e}},pt.prototype={lineStart:function(){this._x=[],this._y=[],this._basis.lineStart()},lineEnd:function(){var t=this._x,e=this._y,r=t.length-1;if(r>0)for(var n,i=t[0],a=e[0],o=t[r]-i,s=e[r]-a,l=-1;++l<=r;)n=l/r,this._basis.point(this._beta*t[l]+(1-this._beta)*(i+n*o),this._beta*e[l]+(1-this._beta)*(a+n*s));this._x=this._y=null,this._basis.lineEnd()},point:function(t,e){this._x.push(+t),this._y.push(+e)}};var dt=function t(e){function r(t){return 1===e?new ut(t):new pt(t,e)}return r.beta=function(e){return t(+e)},r}(.85);function mt(t,e,r){t._context.bezierCurveTo(t._x1+t._k*(t._x2-t._x0),t._y1+t._k*(t._y2-t._y0),t._x2+t._k*(t._x1-e),t._y2+t._k*(t._y1-r),t._x2,t._y2)}function gt(t,e){this._context=t,this._k=(1-e)/6}gt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:mt(this,this._x1,this._y1)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2,this._x1=t,this._y1=e;break;case 2:this._point=3;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var vt=function t(e){function r(t){return new gt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function yt(t,e){this._context=t,this._k=(1-e)/6}yt.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var xt=function t(e){function r(t){return new yt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function bt(t,e){this._context=t,this._k=(1-e)/6}bt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:mt(this,t,e)}this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var _t=function t(e){function r(t){return new bt(t,e)}return r.tension=function(e){return t(+e)},r}(0);function wt(t,e,r){var n=t._x1,i=t._y1,a=t._x2,o=t._y2;if(t._l01_a>1e-12){var s=2*t._l01_2a+3*t._l01_a*t._l12_a+t._l12_2a,l=3*t._l01_a*(t._l01_a+t._l12_a);n=(n*s-t._x0*t._l12_2a+t._x2*t._l01_2a)/l,i=(i*s-t._y0*t._l12_2a+t._y2*t._l01_2a)/l}if(t._l23_a>1e-12){var c=2*t._l23_2a+3*t._l23_a*t._l12_a+t._l12_2a,u=3*t._l23_a*(t._l23_a+t._l12_a);a=(a*c+t._x1*t._l23_2a-e*t._l12_2a)/u,o=(o*c+t._y1*t._l23_2a-r*t._l12_2a)/u}t._context.bezierCurveTo(n,i,a,o,t._x2,t._y2)}function Tt(t,e){this._context=t,this._alpha=e}Tt.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 2:this._context.lineTo(this._x2,this._y2);break;case 3:this.point(this._x2,this._y2)}(this._line||0!==this._line&&1===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;break;case 2:this._point=3;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var kt=function t(e){function r(t){return e?new Tt(t,e):new gt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function At(t,e){this._context=t,this._alpha=e}At.prototype={areaStart:lt,areaEnd:lt,lineStart:function(){this._x0=this._x1=this._x2=this._x3=this._x4=this._x5=this._y0=this._y1=this._y2=this._y3=this._y4=this._y5=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){switch(this._point){case 1:this._context.moveTo(this._x3,this._y3),this._context.closePath();break;case 2:this._context.lineTo(this._x3,this._y3),this._context.closePath();break;case 3:this.point(this._x3,this._y3),this.point(this._x4,this._y4),this.point(this._x5,this._y5)}},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1,this._x3=t,this._y3=e;break;case 1:this._point=2,this._context.moveTo(this._x4=t,this._y4=e);break;case 2:this._point=3,this._x5=t,this._y5=e;break;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var Mt=function t(e){function r(t){return e?new At(t,e):new yt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function St(t,e){this._context=t,this._alpha=e}St.prototype={areaStart:function(){this._line=0},areaEnd:function(){this._line=NaN},lineStart:function(){this._x0=this._x1=this._x2=this._y0=this._y1=this._y2=NaN,this._l01_a=this._l12_a=this._l23_a=this._l01_2a=this._l12_2a=this._l23_2a=this._point=0},lineEnd:function(){(this._line||0!==this._line&&3===this._point)&&this._context.closePath(),this._line=1-this._line},point:function(t,e){if(t=+t,e=+e,this._point){var r=this._x2-t,n=this._y2-e;this._l23_a=Math.sqrt(this._l23_2a=Math.pow(r*r+n*n,this._alpha))}switch(this._point){case 0:this._point=1;break;case 1:this._point=2;break;case 2:this._point=3,this._line?this._context.lineTo(this._x2,this._y2):this._context.moveTo(this._x2,this._y2);break;case 3:this._point=4;default:wt(this,t,e)}this._l01_a=this._l12_a,this._l12_a=this._l23_a,this._l01_2a=this._l12_2a,this._l12_2a=this._l23_2a,this._x0=this._x1,this._x1=this._x2,this._x2=t,this._y0=this._y1,this._y1=this._y2,this._y2=e}};var Et=function t(e){function r(t){return e?new St(t,e):new bt(t,0)}return r.alpha=function(e){return t(+e)},r}(.5);function Lt(t){this._context=t}function Ct(t){return t<0?-1:1}function Pt(t,e,r){var n=t._x1-t._x0,i=e-t._x1,a=(t._y1-t._y0)/(n||i<0&&-0),o=(r-t._y1)/(i||n<0&&-0),s=(a*i+o*n)/(n+i);return(Ct(a)+Ct(o))*Math.min(Math.abs(a),Math.abs(o),.5*Math.abs(s))||0}function It(t,e){var r=t._x1-t._x0;return r?(3*(t._y1-t._y0)/r-e)/2:e}function Ot(t,e,r){var n=t._x0,i=t._y0,a=t._x1,o=t._y1,s=(a-n)/3;t._context.bezierCurveTo(n+s,i+s*e,a-s,o-s*r,a,o)}function zt(t){this._context=t}function Dt(t){this._context=new Rt(t)}function Rt(t){this._context=t}function Ft(t){this._context=t}function Bt(t){var e,r,n=t.length-1,i=new Array(n),a=new Array(n),o=new Array(n);for(i[0]=0,a[0]=2,o[0]=t[0]+2*t[1],e=1;e=0;--e)i[e]=(o[e]-i[e+1])/a[e];for(a[n-1]=(t[n]+i[n-1])/2,e=0;e1)for(var r,n,i,a=1,o=t[e[0]],s=o.length;a=0;)r[e]=e;return r}function Vt(t,e){return t[e]}function Ht(t){var e=t.map(qt);return Ut(t).sort((function(t,r){return e[t]-e[r]}))}function qt(t){for(var e,r=-1,n=0,i=t.length,a=-1/0;++ra&&(a=e,n=r);return n}function Gt(t){var e=t.map(Yt);return Ut(t).sort((function(t,r){return e[t]-e[r]}))}function Yt(t){for(var e,r=0,n=-1,i=t.length;++n=0&&(this._t=1-this._t,this._line=1-this._line)},point:function(t,e){switch(t=+t,e=+e,this._point){case 0:this._point=1,this._line?this._context.lineTo(t,e):this._context.moveTo(t,e);break;case 1:this._point=2;default:if(this._t<=0)this._context.lineTo(this._x,e),this._context.lineTo(t,e);else{var r=this._x*(1-this._t)+t*this._t;this._context.lineTo(r,this._y),this._context.lineTo(r,e)}}this._x=t,this._y=e}},t.arc=function(){var t=m,o=g,w=r(0),T=null,k=v,A=y,M=x,S=null;function E(){var r,m,g=+t.apply(this,arguments),v=+o.apply(this,arguments),y=k.apply(this,arguments)-f,x=A.apply(this,arguments)-f,E=n(x-y),L=x>y;if(S||(S=r=e.path()),v1e-12)if(E>h-1e-12)S.moveTo(v*a(y),v*l(y)),S.arc(0,0,v,y,x,!L),g>1e-12&&(S.moveTo(g*a(x),g*l(x)),S.arc(0,0,g,x,y,L));else{var C,P,I=y,O=x,z=y,D=x,R=E,F=E,B=M.apply(this,arguments)/2,N=B>1e-12&&(T?+T.apply(this,arguments):c(g*g+v*v)),j=s(n(v-g)/2,+w.apply(this,arguments)),U=j,V=j;if(N>1e-12){var H=d(N/g*l(B)),q=d(N/v*l(B));(R-=2*H)>1e-12?(z+=H*=L?1:-1,D-=H):(R=0,z=D=(y+x)/2),(F-=2*q)>1e-12?(I+=q*=L?1:-1,O-=q):(F=0,I=O=(y+x)/2)}var G=v*a(I),Y=v*l(I),W=g*a(D),X=g*l(D);if(j>1e-12){var Z,J=v*a(O),K=v*l(O),Q=g*a(z),$=g*l(z);if(E1e-12?V>1e-12?(C=_(Q,$,G,Y,v,V,L),P=_(J,K,W,X,v,V,L),S.moveTo(C.cx+C.x01,C.cy+C.y01),V1e-12&&R>1e-12?U>1e-12?(C=_(W,X,J,K,g,-U,L),P=_(G,Y,Q,$,g,-U,L),S.lineTo(C.cx+C.x01,C.cy+C.y01),U0&&(d+=f);for(null!=e?m.sort((function(t,r){return e(g[t],g[r])})):null!=n&&m.sort((function(t,e){return n(r[t],r[e])})),s=0,c=d?(y-p*b)/d:0;s0?f*c:0)+b,g[l]={data:r[l],index:s,value:f,startAngle:v,endAngle:u,padAngle:x};return g}return s.value=function(e){return arguments.length?(t="function"==typeof e?e:r(+e),s):t},s.sortValues=function(t){return arguments.length?(e=t,n=null,s):e},s.sort=function(t){return arguments.length?(n=t,e=null,s):n},s.startAngle=function(t){return arguments.length?(i="function"==typeof t?t:r(+t),s):i},s.endAngle=function(t){return arguments.length?(a="function"==typeof t?t:r(+t),s):a},s.padAngle=function(t){return arguments.length?(o="function"==typeof t?t:r(+t),s):o},s},t.pointRadial=R,t.radialArea=D,t.radialLine=z,t.stack=function(){var t=r([]),e=Ut,n=jt,i=Vt;function a(r){var a,o,s=t.apply(this,arguments),l=r.length,c=s.length,u=new Array(c);for(a=0;a0)for(var r,n,i,a,o,s,l=0,c=t[e[0]].length;l0?(n[0]=a,n[1]=a+=i):i<0?(n[1]=o,n[0]=o+=i):(n[0]=0,n[1]=i)},t.stackOffsetExpand=function(t,e){if((n=t.length)>0){for(var r,n,i,a=0,o=t[0].length;a0){for(var r,n=0,i=t[e[0]],a=i.length;n0&&(n=(r=t[e[0]]).length)>0){for(var r,n,i,a=0,o=1;o=12)]},q:function(t){return 1+~~(t.getMonth()/3)},Q:wt,s:Tt,S:H,u:q,U:G,V:W,w:X,W:Z,x:null,X:null,y:J,Y:Q,Z:tt,"%":_t},zt={a:function(t){return f[t.getUTCDay()]},A:function(t){return u[t.getUTCDay()]},b:function(t){return Y[t.getUTCMonth()]},B:function(t){return h[t.getUTCMonth()]},c:null,d:et,e:et,f:ot,g:vt,G:xt,H:rt,I:nt,j:it,L:at,m:st,M:lt,p:function(t){return c[+(t.getUTCHours()>=12)]},q:function(t){return 1+~~(t.getUTCMonth()/3)},Q:wt,s:Tt,S:ct,u:ut,U:ft,V:pt,w:dt,W:mt,x:null,X:null,y:gt,Y:yt,Z:bt,"%":_t},Dt={a:function(t,e,r){var n=St.exec(e.slice(r));return n?(t.w=Et[n[0].toLowerCase()],r+n[0].length):-1},A:function(t,e,r){var n=At.exec(e.slice(r));return n?(t.w=Mt[n[0].toLowerCase()],r+n[0].length):-1},b:function(t,e,r){var n=Pt.exec(e.slice(r));return n?(t.m=It[n[0].toLowerCase()],r+n[0].length):-1},B:function(t,e,r){var n=Lt.exec(e.slice(r));return n?(t.m=Ct[n[0].toLowerCase()],r+n[0].length):-1},c:function(t,e,r){return Bt(t,a,e,r)},d:A,e:A,f:P,g:_,G:b,H:S,I:S,j:M,L:C,m:k,M:E,p:function(t,e,r){var n=ht.exec(e.slice(r));return n?(t.p=kt[n[0].toLowerCase()],r+n[0].length):-1},q:T,Q:O,s:z,S:L,u:g,U:v,V:y,w:m,W:x,x:function(t,e,r){return Bt(t,o,e,r)},X:function(t,e,r){return Bt(t,l,e,r)},y:_,Y:b,Z:w,"%":I};function Rt(t,e){return function(r){var n,i,a,o=[],l=-1,c=0,u=t.length;for(r instanceof Date||(r=new Date(+r));++l53)return null;"w"in c||(c.w=1),"Z"in c?(l=(s=n(i(c.y,0,1))).getUTCDay(),s=l>4||0===l?e.utcMonday.ceil(s):e.utcMonday(s),s=e.utcDay.offset(s,7*(c.V-1)),c.y=s.getUTCFullYear(),c.m=s.getUTCMonth(),c.d=s.getUTCDate()+(c.w+6)%7):(l=(s=r(i(c.y,0,1))).getDay(),s=l>4||0===l?e.timeMonday.ceil(s):e.timeMonday(s),s=e.timeDay.offset(s,7*(c.V-1)),c.y=s.getFullYear(),c.m=s.getMonth(),c.d=s.getDate()+(c.w+6)%7)}else("W"in c||"U"in c)&&("w"in c||(c.w="u"in c?c.u%7:"W"in c?1:0),l="Z"in c?n(i(c.y,0,1)).getUTCDay():r(i(c.y,0,1)).getDay(),c.m=0,c.d="W"in c?(c.w+6)%7+7*c.W-(l+5)%7:c.w+7*c.U-(l+6)%7);return"Z"in c?(c.H+=c.Z/100|0,c.M+=c.Z%100,n(c)):r(c)}}function Bt(t,e,r,n){for(var i,a,o=0,l=e.length,c=r.length;o=c)return-1;if(37===(i=e.charCodeAt(o++))){if(i=e.charAt(o++),!(a=Dt[i in s?e.charAt(o++):i])||(n=a(t,r,n))<0)return-1}else if(i!=r.charCodeAt(n++))return-1}return n}return Ot.x=Rt(o,Ot),Ot.X=Rt(l,Ot),Ot.c=Rt(a,Ot),zt.x=Rt(o,zt),zt.X=Rt(l,zt),zt.c=Rt(a,zt),{format:function(t){var e=Rt(t+="",Ot);return e.toString=function(){return t},e},parse:function(t){var e=Ft(t+="",!1);return e.toString=function(){return t},e},utcFormat:function(t){var e=Rt(t+="",zt);return e.toString=function(){return t},e},utcParse:function(t){var e=Ft(t+="",!0);return e.toString=function(){return t},e}}}var o,s={"-":"",_:" ",0:"0"},l=/^\s*\d+/,c=/^%/,u=/[\\^$*+?|[\]().{}]/g;function f(t,e,r){var n=t<0?"-":"",i=(n?-t:t)+"",a=i.length;return n+(a68?1900:2e3),r+n[0].length):-1}function w(t,e,r){var n=/^(Z)|([+-]\d\d)(?::?(\d\d))?/.exec(e.slice(r,r+6));return n?(t.Z=n[1]?0:-(n[2]+(n[3]||"00")),r+n[0].length):-1}function T(t,e,r){var n=l.exec(e.slice(r,r+1));return n?(t.q=3*n[0]-3,r+n[0].length):-1}function k(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.m=n[0]-1,r+n[0].length):-1}function A(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.d=+n[0],r+n[0].length):-1}function M(t,e,r){var n=l.exec(e.slice(r,r+3));return n?(t.m=0,t.d=+n[0],r+n[0].length):-1}function S(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.H=+n[0],r+n[0].length):-1}function E(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.M=+n[0],r+n[0].length):-1}function L(t,e,r){var n=l.exec(e.slice(r,r+2));return n?(t.S=+n[0],r+n[0].length):-1}function C(t,e,r){var n=l.exec(e.slice(r,r+3));return n?(t.L=+n[0],r+n[0].length):-1}function P(t,e,r){var n=l.exec(e.slice(r,r+6));return n?(t.L=Math.floor(n[0]/1e3),r+n[0].length):-1}function I(t,e,r){var n=c.exec(e.slice(r,r+1));return n?r+n[0].length:-1}function O(t,e,r){var n=l.exec(e.slice(r));return n?(t.Q=+n[0],r+n[0].length):-1}function z(t,e,r){var n=l.exec(e.slice(r));return n?(t.s=+n[0],r+n[0].length):-1}function D(t,e){return f(t.getDate(),e,2)}function R(t,e){return f(t.getHours(),e,2)}function F(t,e){return f(t.getHours()%12||12,e,2)}function B(t,r){return f(1+e.timeDay.count(e.timeYear(t),t),r,3)}function N(t,e){return f(t.getMilliseconds(),e,3)}function j(t,e){return N(t,e)+"000"}function U(t,e){return f(t.getMonth()+1,e,2)}function V(t,e){return f(t.getMinutes(),e,2)}function H(t,e){return f(t.getSeconds(),e,2)}function q(t){var e=t.getDay();return 0===e?7:e}function G(t,r){return f(e.timeSunday.count(e.timeYear(t)-1,t),r,2)}function Y(t){var r=t.getDay();return r>=4||0===r?e.timeThursday(t):e.timeThursday.ceil(t)}function W(t,r){return t=Y(t),f(e.timeThursday.count(e.timeYear(t),t)+(4===e.timeYear(t).getDay()),r,2)}function X(t){return t.getDay()}function Z(t,r){return f(e.timeMonday.count(e.timeYear(t)-1,t),r,2)}function J(t,e){return f(t.getFullYear()%100,e,2)}function K(t,e){return f((t=Y(t)).getFullYear()%100,e,2)}function Q(t,e){return f(t.getFullYear()%1e4,e,4)}function $(t,r){var n=t.getDay();return f((t=n>=4||0===n?e.timeThursday(t):e.timeThursday.ceil(t)).getFullYear()%1e4,r,4)}function tt(t){var e=t.getTimezoneOffset();return(e>0?"-":(e*=-1,"+"))+f(e/60|0,"0",2)+f(e%60,"0",2)}function et(t,e){return f(t.getUTCDate(),e,2)}function rt(t,e){return f(t.getUTCHours(),e,2)}function nt(t,e){return f(t.getUTCHours()%12||12,e,2)}function it(t,r){return f(1+e.utcDay.count(e.utcYear(t),t),r,3)}function at(t,e){return f(t.getUTCMilliseconds(),e,3)}function ot(t,e){return at(t,e)+"000"}function st(t,e){return f(t.getUTCMonth()+1,e,2)}function lt(t,e){return f(t.getUTCMinutes(),e,2)}function ct(t,e){return f(t.getUTCSeconds(),e,2)}function ut(t){var e=t.getUTCDay();return 0===e?7:e}function ft(t,r){return f(e.utcSunday.count(e.utcYear(t)-1,t),r,2)}function ht(t){var r=t.getUTCDay();return r>=4||0===r?e.utcThursday(t):e.utcThursday.ceil(t)}function pt(t,r){return t=ht(t),f(e.utcThursday.count(e.utcYear(t),t)+(4===e.utcYear(t).getUTCDay()),r,2)}function dt(t){return t.getUTCDay()}function mt(t,r){return f(e.utcMonday.count(e.utcYear(t)-1,t),r,2)}function gt(t,e){return f(t.getUTCFullYear()%100,e,2)}function vt(t,e){return f((t=ht(t)).getUTCFullYear()%100,e,2)}function yt(t,e){return f(t.getUTCFullYear()%1e4,e,4)}function xt(t,r){var n=t.getUTCDay();return f((t=n>=4||0===n?e.utcThursday(t):e.utcThursday.ceil(t)).getUTCFullYear()%1e4,r,4)}function bt(){return"+0000"}function _t(){return"%"}function wt(t){return+t}function Tt(t){return Math.floor(+t/1e3)}function kt(e){return o=a(e),t.timeFormat=o.format,t.timeParse=o.parse,t.utcFormat=o.utcFormat,t.utcParse=o.utcParse,o}kt({dateTime:"%x, %X",date:"%-m/%-d/%Y",time:"%-I:%M:%S %p",periods:["AM","PM"],days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]});var At=Date.prototype.toISOString?function(t){return t.toISOString()}:t.utcFormat("%Y-%m-%dT%H:%M:%S.%LZ");var Mt=+new Date("2000-01-01T00:00:00.000Z")?function(t){var e=new Date(t);return isNaN(e)?null:e}:t.utcParse("%Y-%m-%dT%H:%M:%S.%LZ");t.isoFormat=At,t.isoParse=Mt,t.timeFormatDefaultLocale=kt,t.timeFormatLocale=a,Object.defineProperty(t,"__esModule",{value:!0})}))},{"d3-time":169}],169:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";var e=new Date,r=new Date;function n(t,i,a,o){function s(e){return t(e=0===arguments.length?new Date:new Date(+e)),e}return s.floor=function(e){return t(e=new Date(+e)),e},s.ceil=function(e){return t(e=new Date(e-1)),i(e,1),t(e),e},s.round=function(t){var e=s(t),r=s.ceil(t);return t-e0))return o;do{o.push(a=new Date(+e)),i(e,n),t(e)}while(a=r)for(;t(r),!e(r);)r.setTime(r-1)}),(function(t,r){if(t>=t)if(r<0)for(;++r<=0;)for(;i(t,-1),!e(t););else for(;--r>=0;)for(;i(t,1),!e(t););}))},a&&(s.count=function(n,i){return e.setTime(+n),r.setTime(+i),t(e),t(r),Math.floor(a(e,r))},s.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?s.filter(o?function(e){return o(e)%t==0}:function(e){return s.count(0,e)%t==0}):s:null}),s}var i=n((function(){}),(function(t,e){t.setTime(+t+e)}),(function(t,e){return e-t}));i.every=function(t){return t=Math.floor(t),isFinite(t)&&t>0?t>1?n((function(e){e.setTime(Math.floor(e/t)*t)}),(function(e,r){e.setTime(+e+r*t)}),(function(e,r){return(r-e)/t})):i:null};var a=i.range,o=n((function(t){t.setTime(t-t.getMilliseconds())}),(function(t,e){t.setTime(+t+1e3*e)}),(function(t,e){return(e-t)/1e3}),(function(t){return t.getUTCSeconds()})),s=o.range,l=n((function(t){t.setTime(t-t.getMilliseconds()-1e3*t.getSeconds())}),(function(t,e){t.setTime(+t+6e4*e)}),(function(t,e){return(e-t)/6e4}),(function(t){return t.getMinutes()})),c=l.range,u=n((function(t){t.setTime(t-t.getMilliseconds()-1e3*t.getSeconds()-6e4*t.getMinutes())}),(function(t,e){t.setTime(+t+36e5*e)}),(function(t,e){return(e-t)/36e5}),(function(t){return t.getHours()})),f=u.range,h=n((function(t){t.setHours(0,0,0,0)}),(function(t,e){t.setDate(t.getDate()+e)}),(function(t,e){return(e-t-6e4*(e.getTimezoneOffset()-t.getTimezoneOffset()))/864e5}),(function(t){return t.getDate()-1})),p=h.range;function d(t){return n((function(e){e.setDate(e.getDate()-(e.getDay()+7-t)%7),e.setHours(0,0,0,0)}),(function(t,e){t.setDate(t.getDate()+7*e)}),(function(t,e){return(e-t-6e4*(e.getTimezoneOffset()-t.getTimezoneOffset()))/6048e5}))}var m=d(0),g=d(1),v=d(2),y=d(3),x=d(4),b=d(5),_=d(6),w=m.range,T=g.range,k=v.range,A=y.range,M=x.range,S=b.range,E=_.range,L=n((function(t){t.setDate(1),t.setHours(0,0,0,0)}),(function(t,e){t.setMonth(t.getMonth()+e)}),(function(t,e){return e.getMonth()-t.getMonth()+12*(e.getFullYear()-t.getFullYear())}),(function(t){return t.getMonth()})),C=L.range,P=n((function(t){t.setMonth(0,1),t.setHours(0,0,0,0)}),(function(t,e){t.setFullYear(t.getFullYear()+e)}),(function(t,e){return e.getFullYear()-t.getFullYear()}),(function(t){return t.getFullYear()}));P.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n((function(e){e.setFullYear(Math.floor(e.getFullYear()/t)*t),e.setMonth(0,1),e.setHours(0,0,0,0)}),(function(e,r){e.setFullYear(e.getFullYear()+r*t)})):null};var I=P.range,O=n((function(t){t.setUTCSeconds(0,0)}),(function(t,e){t.setTime(+t+6e4*e)}),(function(t,e){return(e-t)/6e4}),(function(t){return t.getUTCMinutes()})),z=O.range,D=n((function(t){t.setUTCMinutes(0,0,0)}),(function(t,e){t.setTime(+t+36e5*e)}),(function(t,e){return(e-t)/36e5}),(function(t){return t.getUTCHours()})),R=D.range,F=n((function(t){t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCDate(t.getUTCDate()+e)}),(function(t,e){return(e-t)/864e5}),(function(t){return t.getUTCDate()-1})),B=F.range;function N(t){return n((function(e){e.setUTCDate(e.getUTCDate()-(e.getUTCDay()+7-t)%7),e.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCDate(t.getUTCDate()+7*e)}),(function(t,e){return(e-t)/6048e5}))}var j=N(0),U=N(1),V=N(2),H=N(3),q=N(4),G=N(5),Y=N(6),W=j.range,X=U.range,Z=V.range,J=H.range,K=q.range,Q=G.range,$=Y.range,tt=n((function(t){t.setUTCDate(1),t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCMonth(t.getUTCMonth()+e)}),(function(t,e){return e.getUTCMonth()-t.getUTCMonth()+12*(e.getUTCFullYear()-t.getUTCFullYear())}),(function(t){return t.getUTCMonth()})),et=tt.range,rt=n((function(t){t.setUTCMonth(0,1),t.setUTCHours(0,0,0,0)}),(function(t,e){t.setUTCFullYear(t.getUTCFullYear()+e)}),(function(t,e){return e.getUTCFullYear()-t.getUTCFullYear()}),(function(t){return t.getUTCFullYear()}));rt.every=function(t){return isFinite(t=Math.floor(t))&&t>0?n((function(e){e.setUTCFullYear(Math.floor(e.getUTCFullYear()/t)*t),e.setUTCMonth(0,1),e.setUTCHours(0,0,0,0)}),(function(e,r){e.setUTCFullYear(e.getUTCFullYear()+r*t)})):null};var nt=rt.range;t.timeDay=h,t.timeDays=p,t.timeFriday=b,t.timeFridays=S,t.timeHour=u,t.timeHours=f,t.timeInterval=n,t.timeMillisecond=i,t.timeMilliseconds=a,t.timeMinute=l,t.timeMinutes=c,t.timeMonday=g,t.timeMondays=T,t.timeMonth=L,t.timeMonths=C,t.timeSaturday=_,t.timeSaturdays=E,t.timeSecond=o,t.timeSeconds=s,t.timeSunday=m,t.timeSundays=w,t.timeThursday=x,t.timeThursdays=M,t.timeTuesday=v,t.timeTuesdays=k,t.timeWednesday=y,t.timeWednesdays=A,t.timeWeek=m,t.timeWeeks=w,t.timeYear=P,t.timeYears=I,t.utcDay=F,t.utcDays=B,t.utcFriday=G,t.utcFridays=Q,t.utcHour=D,t.utcHours=R,t.utcMillisecond=i,t.utcMilliseconds=a,t.utcMinute=O,t.utcMinutes=z,t.utcMonday=U,t.utcMondays=X,t.utcMonth=tt,t.utcMonths=et,t.utcSaturday=Y,t.utcSaturdays=$,t.utcSecond=o,t.utcSeconds=s,t.utcSunday=j,t.utcSundays=W,t.utcThursday=q,t.utcThursdays=K,t.utcTuesday=V,t.utcTuesdays=Z,t.utcWednesday=H,t.utcWednesdays=J,t.utcWeek=j,t.utcWeeks=W,t.utcYear=rt,t.utcYears=nt,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],170:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?n(r):n((t=t||self).d3=t.d3||{})}(this,(function(t){"use strict";var e,r,n=0,i=0,a=0,o=0,s=0,l=0,c="object"==typeof performance&&performance.now?performance:Date,u="object"==typeof window&&window.requestAnimationFrame?window.requestAnimationFrame.bind(window):function(t){setTimeout(t,17)};function f(){return s||(u(h),s=c.now()+l)}function h(){s=0}function p(){this._call=this._time=this._next=null}function d(t,e,r){var n=new p;return n.restart(t,e,r),n}function m(){f(),++n;for(var t,r=e;r;)(t=s-r._time)>=0&&r._call.call(null,t),r=r._next;--n}function g(){s=(o=c.now())+l,n=i=0;try{m()}finally{n=0,function(){var t,n,i=e,a=1/0;for(;i;)i._call?(a>i._time&&(a=i._time),t=i,i=i._next):(n=i._next,i._next=null,i=t?t._next=n:e=n);r=t,y(a)}(),s=0}}function v(){var t=c.now(),e=t-o;e>1e3&&(l-=e,o=t)}function y(t){n||(i&&(i=clearTimeout(i)),t-s>24?(t<1/0&&(i=setTimeout(g,t-c.now()-l)),a&&(a=clearInterval(a))):(a||(o=c.now(),a=setInterval(v,1e3)),n=1,u(g)))}p.prototype=d.prototype={constructor:p,restart:function(t,n,i){if("function"!=typeof t)throw new TypeError("callback is not a function");i=(null==i?f():+i)+(null==n?0:+n),this._next||r===this||(r?r._next=this:e=this,r=this),this._call=t,this._time=i,y()},stop:function(){this._call&&(this._call=null,this._time=1/0,y())}},t.interval=function(t,e,r){var n=new p,i=e;return null==e?(n.restart(t,e,r),n):(e=+e,r=null==r?f():+r,n.restart((function a(o){o+=i,n.restart(a,i+=e,r),t(o)}),e,r),n)},t.now=f,t.timeout=function(t,e,r){var n=new p;return e=null==e?0:+e,n.restart((function(r){n.stop(),t(r+e)}),e,r),n},t.timer=d,t.timerFlush=m,Object.defineProperty(t,"__esModule",{value:!0})}))},{}],171:[function(t,e,r){e.exports=function(){for(var t=0;t=2)return!1;t[r]=n}return!0})):_.filter((function(t){for(var e=0;e<=s;++e){var r=v[t[e]];if(r<0)return!1;t[e]=r}return!0}));if(1&s)for(u=0;u<_.length;++u){h=(b=_[u])[0];b[0]=b[1],b[1]=h}return _}},{"incremental-convex-hull":428,uniq:592}],173:[function(t,e,r){"use strict";e.exports=a;var n=(a.canvas=document.createElement("canvas")).getContext("2d"),i=o([32,126]);function a(t,e){Array.isArray(t)&&(t=t.join(", "));var r,a={},s=16,l=.05;e&&(2===e.length&&"number"==typeof e[0]?r=o(e):Array.isArray(e)?r=e:(e.o?r=o(e.o):e.pairs&&(r=e.pairs),e.fontSize&&(s=e.fontSize),null!=e.threshold&&(l=e.threshold))),r||(r=i),n.font=s+"px "+t;for(var c=0;cs*l){var p=(h-f)/s;a[u]=1e3*p}}return a}function o(t){for(var e=[],r=t[0];r<=t[1];r++)for(var n=String.fromCharCode(r),i=t[0];i>>31},e.exports.exponent=function(t){return(e.exports.hi(t)<<1>>>21)-1023},e.exports.fraction=function(t){var r=e.exports.lo(t),n=e.exports.hi(t),i=1048575&n;return 2146435072&n&&(i+=1<<20),[r,i]},e.exports.denormalized=function(t){return!(2146435072&e.exports.hi(t))}}).call(this)}).call(this,t("buffer").Buffer)},{buffer:112}],175:[function(t,e,r){var n=t("abs-svg-path"),i=t("normalize-svg-path"),a={M:"moveTo",C:"bezierCurveTo"};e.exports=function(t,e){t.beginPath(),i(n(e)).forEach((function(e){var r=e[0],n=e.slice(1);t[a[r]].apply(t,n)})),t.closePath()}},{"abs-svg-path":67,"normalize-svg-path":464}],176:[function(t,e,r){e.exports=function(t){switch(t){case"int8":return Int8Array;case"int16":return Int16Array;case"int32":return Int32Array;case"uint8":return Uint8Array;case"uint16":return Uint16Array;case"uint32":return Uint32Array;case"float32":return Float32Array;case"float64":return Float64Array;case"array":return Array;case"uint8_clamped":return Uint8ClampedArray}}},{}],177:[function(t,e,r){"use strict";e.exports=function(t,e){switch(void 0===e&&(e=0),typeof t){case"number":if(t>0)return function(t,e){var r,n;for(r=new Array(t),n=0;n80*r){n=l=t[0],s=c=t[1];for(var b=r;bl&&(l=u),p>c&&(c=p);d=0!==(d=Math.max(l-n,c-s))?1/d:0}return o(y,x,r,n,s,d),x}function i(t,e,r,n,i){var a,o;if(i===E(t,e,r,n)>0)for(a=e;a=e;a-=n)o=A(a,t[a],t[a+1],o);return o&&x(o,o.next)&&(M(o),o=o.next),o}function a(t,e){if(!t)return t;e||(e=t);var r,n=t;do{if(r=!1,n.steiner||!x(n,n.next)&&0!==y(n.prev,n,n.next))n=n.next;else{if(M(n),(n=e=n.prev)===n.next)break;r=!0}}while(r||n!==e);return e}function o(t,e,r,n,i,f,h){if(t){!h&&f&&function(t,e,r,n){var i=t;do{null===i.z&&(i.z=d(i.x,i.y,e,r,n)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==t);i.prevZ.nextZ=null,i.prevZ=null,function(t){var e,r,n,i,a,o,s,l,c=1;do{for(r=t,t=null,a=null,o=0;r;){for(o++,n=r,s=0,e=0;e0||l>0&&n;)0!==s&&(0===l||!n||r.z<=n.z)?(i=r,r=r.nextZ,s--):(i=n,n=n.nextZ,l--),a?a.nextZ=i:t=i,i.prevZ=a,a=i;r=n}a.nextZ=null,c*=2}while(o>1)}(i)}(t,n,i,f);for(var p,m,g=t;t.prev!==t.next;)if(p=t.prev,m=t.next,f?l(t,n,i,f):s(t))e.push(p.i/r),e.push(t.i/r),e.push(m.i/r),M(t),t=m.next,g=m.next;else if((t=m)===g){h?1===h?o(t=c(a(t),e,r),e,r,n,i,f,2):2===h&&u(t,e,r,n,i,f):o(a(t),e,r,n,i,f,1);break}}}function s(t){var e=t.prev,r=t,n=t.next;if(y(e,r,n)>=0)return!1;for(var i=t.next.next;i!==t.prev;){if(g(e.x,e.y,r.x,r.y,n.x,n.y,i.x,i.y)&&y(i.prev,i,i.next)>=0)return!1;i=i.next}return!0}function l(t,e,r,n){var i=t.prev,a=t,o=t.next;if(y(i,a,o)>=0)return!1;for(var s=i.xa.x?i.x>o.x?i.x:o.x:a.x>o.x?a.x:o.x,u=i.y>a.y?i.y>o.y?i.y:o.y:a.y>o.y?a.y:o.y,f=d(s,l,e,r,n),h=d(c,u,e,r,n),p=t.prevZ,m=t.nextZ;p&&p.z>=f&&m&&m.z<=h;){if(p!==t.prev&&p!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&y(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,m!==t.prev&&m!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,m.x,m.y)&&y(m.prev,m,m.next)>=0)return!1;m=m.nextZ}for(;p&&p.z>=f;){if(p!==t.prev&&p!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&y(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;m&&m.z<=h;){if(m!==t.prev&&m!==t.next&&g(i.x,i.y,a.x,a.y,o.x,o.y,m.x,m.y)&&y(m.prev,m,m.next)>=0)return!1;m=m.nextZ}return!0}function c(t,e,r){var n=t;do{var i=n.prev,o=n.next.next;!x(i,o)&&b(i,n,n.next,o)&&T(i,o)&&T(o,i)&&(e.push(i.i/r),e.push(n.i/r),e.push(o.i/r),M(n),M(n.next),n=t=o),n=n.next}while(n!==t);return a(n)}function u(t,e,r,n,i,s){var l=t;do{for(var c=l.next.next;c!==l.prev;){if(l.i!==c.i&&v(l,c)){var u=k(l,c);return l=a(l,l.next),u=a(u,u.next),o(l,e,r,n,i,s),void o(u,e,r,n,i,s)}c=c.next}l=l.next}while(l!==t)}function f(t,e){return t.x-e.x}function h(t,e){var r=function(t,e){var r,n=e,i=t.x,a=t.y,o=-1/0;do{if(a<=n.y&&a>=n.next.y&&n.next.y!==n.y){var s=n.x+(a-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(s<=i&&s>o){if(o=s,s===i){if(a===n.y)return n;if(a===n.next.y)return n.next}r=n.x=n.x&&n.x>=u&&i!==n.x&&g(ar.x||n.x===r.x&&p(r,n)))&&(r=n,h=l)),n=n.next}while(n!==c);return r}(t,e);if(!r)return e;var n=k(r,t),i=a(r,r.next);return a(n,n.next),e===r?i:e}function p(t,e){return y(t.prev,t,e.prev)<0&&y(e.next,t,t.next)<0}function d(t,e,r,n,i){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-r)*i)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function m(t){var e=t,r=t;do{(e.x=0&&(t-o)*(n-s)-(r-o)*(e-s)>=0&&(r-o)*(a-s)-(i-o)*(n-s)>=0}function v(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){var r=t;do{if(r.i!==t.i&&r.next.i!==t.i&&r.i!==e.i&&r.next.i!==e.i&&b(r,r.next,t,e))return!0;r=r.next}while(r!==t);return!1}(t,e)&&(T(t,e)&&T(e,t)&&function(t,e){var r=t,n=!1,i=(t.x+e.x)/2,a=(t.y+e.y)/2;do{r.y>a!=r.next.y>a&&r.next.y!==r.y&&i<(r.next.x-r.x)*(a-r.y)/(r.next.y-r.y)+r.x&&(n=!n),r=r.next}while(r!==t);return n}(t,e)&&(y(t.prev,t,e.prev)||y(t,e.prev,e))||x(t,e)&&y(t.prev,t,t.next)>0&&y(e.prev,e,e.next)>0)}function y(t,e,r){return(e.y-t.y)*(r.x-e.x)-(e.x-t.x)*(r.y-e.y)}function x(t,e){return t.x===e.x&&t.y===e.y}function b(t,e,r,n){var i=w(y(t,e,r)),a=w(y(t,e,n)),o=w(y(r,n,t)),s=w(y(r,n,e));return i!==a&&o!==s||(!(0!==i||!_(t,r,e))||(!(0!==a||!_(t,n,e))||(!(0!==o||!_(r,t,n))||!(0!==s||!_(r,e,n)))))}function _(t,e,r){return e.x<=Math.max(t.x,r.x)&&e.x>=Math.min(t.x,r.x)&&e.y<=Math.max(t.y,r.y)&&e.y>=Math.min(t.y,r.y)}function w(t){return t>0?1:t<0?-1:0}function T(t,e){return y(t.prev,t,t.next)<0?y(t,e,t.next)>=0&&y(t,t.prev,e)>=0:y(t,e,t.prev)<0||y(t,t.next,e)<0}function k(t,e){var r=new S(t.i,t.x,t.y),n=new S(e.i,e.x,e.y),i=t.next,a=e.prev;return t.next=e,e.prev=t,r.next=i,i.prev=r,n.next=r,r.prev=n,a.next=n,n.prev=a,n}function A(t,e,r,n){var i=new S(t,e,r);return n?(i.next=n.next,i.prev=n,n.next.prev=i,n.next=i):(i.prev=i,i.next=i),i}function M(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function S(t,e,r){this.i=t,this.x=e,this.y=r,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}function E(t,e,r,n){for(var i=0,a=e,o=r-n;a0&&(n+=t[i-1].length,r.holes.push(n))}return r}},{}],179:[function(t,e,r){"use strict";e.exports=function(t,e){var r=t.length;if("number"!=typeof e){e=0;for(var i=0;i=e}))}(e);for(var r,i=n(t).components.filter((function(t){return t.length>1})),a=1/0,o=0;o=55296&&y<=56319&&(w+=t[++r]),w=T?h.call(T,k,w,m):w,e?(p.value=w,d(g,m,p)):g[m]=w,++m;v=m}if(void 0===v)for(v=o(t.length),e&&(g=new e(v)),r=0;r0?1:-1}},{}],191:[function(t,e,r){"use strict";var n=t("../math/sign"),i=Math.abs,a=Math.floor;e.exports=function(t){return isNaN(t)?0:0!==(t=Number(t))&&isFinite(t)?n(t)*a(i(t)):t}},{"../math/sign":188}],192:[function(t,e,r){"use strict";var n=t("./to-integer"),i=Math.max;e.exports=function(t){return i(0,n(t))}},{"./to-integer":191}],193:[function(t,e,r){"use strict";var n=t("./valid-callable"),i=t("./valid-value"),a=Function.prototype.bind,o=Function.prototype.call,s=Object.keys,l=Object.prototype.propertyIsEnumerable;e.exports=function(t,e){return function(r,c){var u,f=arguments[2],h=arguments[3];return r=Object(i(r)),n(c),u=s(r),h&&u.sort("function"==typeof h?a.call(h,r):void 0),"function"!=typeof t&&(t=u[t]),o.call(t,u,(function(t,n){return l.call(r,t)?o.call(c,f,r[t],t,r,n):e}))}}},{"./valid-callable":210,"./valid-value":212}],194:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?Object.assign:t("./shim")},{"./is-implemented":195,"./shim":196}],195:[function(t,e,r){"use strict";e.exports=function(){var t,e=Object.assign;return"function"==typeof e&&(e(t={foo:"raz"},{bar:"dwa"},{trzy:"trzy"}),t.foo+t.bar+t.trzy==="razdwatrzy")}},{}],196:[function(t,e,r){"use strict";var n=t("../keys"),i=t("../valid-value"),a=Math.max;e.exports=function(t,e){var r,o,s,l=a(arguments.length,2);for(t=Object(i(t)),s=function(n){try{t[n]=e[n]}catch(t){r||(r=t)}},o=1;o-1}},{}],216:[function(t,e,r){"use strict";var n=Object.prototype.toString,i=n.call("");e.exports=function(t){return"string"==typeof t||t&&"object"==typeof t&&(t instanceof String||n.call(t)===i)||!1}},{}],217:[function(t,e,r){"use strict";var n=Object.create(null),i=Math.random;e.exports=function(){var t;do{t=i().toString(36).slice(2)}while(n[t]);return t}},{}],218:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/set-prototype-of"),a=t("es5-ext/string/#/contains"),o=t("d"),s=t("es6-symbol"),l=t("./"),c=Object.defineProperty;n=e.exports=function(t,e){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");l.call(this,t),e=e?a.call(e,"key+value")?"key+value":a.call(e,"key")?"key":"value":"value",c(this,"__kind__",o("",e))},i&&i(n,l),delete n.prototype.constructor,n.prototype=Object.create(l.prototype,{_resolve:o((function(t){return"value"===this.__kind__?this.__list__[t]:"key+value"===this.__kind__?[t,this.__list__[t]]:t}))}),c(n.prototype,s.toStringTag,o("c","Array Iterator"))},{"./":221,d:154,"es5-ext/object/set-prototype-of":207,"es5-ext/string/#/contains":213,"es6-symbol":225}],219:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/object/valid-callable"),a=t("es5-ext/string/is-string"),o=t("./get"),s=Array.isArray,l=Function.prototype.call,c=Array.prototype.some;e.exports=function(t,e){var r,u,f,h,p,d,m,g,v=arguments[2];if(s(t)||n(t)?r="array":a(t)?r="string":t=o(t),i(e),f=function(){h=!0},"array"!==r)if("string"!==r)for(u=t.next();!u.done;){if(l.call(e,v,u.value,f),h)return;u=t.next()}else for(d=t.length,p=0;p=55296&&g<=56319&&(m+=t[++p]),l.call(e,v,m,f),!h);++p);else c.call(t,(function(t){return l.call(e,v,t,f),h}))}},{"./get":220,"es5-ext/function/is-arguments":185,"es5-ext/object/valid-callable":210,"es5-ext/string/is-string":216}],220:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/string/is-string"),a=t("./array"),o=t("./string"),s=t("./valid-iterable"),l=t("es6-symbol").iterator;e.exports=function(t){return"function"==typeof s(t)[l]?t[l]():n(t)?new a(t):i(t)?new o(t):new a(t)}},{"./array":218,"./string":223,"./valid-iterable":224,"es5-ext/function/is-arguments":185,"es5-ext/string/is-string":216,"es6-symbol":225}],221:[function(t,e,r){"use strict";var n,i=t("es5-ext/array/#/clear"),a=t("es5-ext/object/assign"),o=t("es5-ext/object/valid-callable"),s=t("es5-ext/object/valid-value"),l=t("d"),c=t("d/auto-bind"),u=t("es6-symbol"),f=Object.defineProperty,h=Object.defineProperties;e.exports=n=function(t,e){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");h(this,{__list__:l("w",s(t)),__context__:l("w",e),__nextIndex__:l("w",0)}),e&&(o(e.on),e.on("_add",this._onAdd),e.on("_delete",this._onDelete),e.on("_clear",this._onClear))},delete n.prototype.constructor,h(n.prototype,a({_next:l((function(){var t;if(this.__list__)return this.__redo__&&void 0!==(t=this.__redo__.shift())?t:this.__nextIndex__=this.__nextIndex__||(++this.__nextIndex__,this.__redo__?(this.__redo__.forEach((function(e,r){e>=t&&(this.__redo__[r]=++e)}),this),this.__redo__.push(t)):f(this,"__redo__",l("c",[t])))})),_onDelete:l((function(t){var e;t>=this.__nextIndex__||(--this.__nextIndex__,this.__redo__&&(-1!==(e=this.__redo__.indexOf(t))&&this.__redo__.splice(e,1),this.__redo__.forEach((function(e,r){e>t&&(this.__redo__[r]=--e)}),this)))})),_onClear:l((function(){this.__redo__&&i.call(this.__redo__),this.__nextIndex__=0}))}))),f(n.prototype,u.iterator,l((function(){return this})))},{d:154,"d/auto-bind":153,"es5-ext/array/#/clear":181,"es5-ext/object/assign":194,"es5-ext/object/valid-callable":210,"es5-ext/object/valid-value":212,"es6-symbol":225}],222:[function(t,e,r){"use strict";var n=t("es5-ext/function/is-arguments"),i=t("es5-ext/object/is-value"),a=t("es5-ext/string/is-string"),o=t("es6-symbol").iterator,s=Array.isArray;e.exports=function(t){return!!i(t)&&(!!s(t)||(!!a(t)||(!!n(t)||"function"==typeof t[o])))}},{"es5-ext/function/is-arguments":185,"es5-ext/object/is-value":201,"es5-ext/string/is-string":216,"es6-symbol":225}],223:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/set-prototype-of"),a=t("d"),o=t("es6-symbol"),s=t("./"),l=Object.defineProperty;n=e.exports=function(t){if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");t=String(t),s.call(this,t),l(this,"__length__",a("",t.length))},i&&i(n,s),delete n.prototype.constructor,n.prototype=Object.create(s.prototype,{_next:a((function(){if(this.__list__)return this.__nextIndex__=55296&&e<=56319?r+this.__list__[this.__nextIndex__++]:r}))}),l(n.prototype,o.toStringTag,a("c","String Iterator"))},{"./":221,d:154,"es5-ext/object/set-prototype-of":207,"es6-symbol":225}],224:[function(t,e,r){"use strict";var n=t("./is-iterable");e.exports=function(t){if(!n(t))throw new TypeError(t+" is not iterable");return t}},{"./is-iterable":222}],225:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?t("ext/global-this").Symbol:t("./polyfill")},{"./is-implemented":226,"./polyfill":231,"ext/global-this":239}],226:[function(t,e,r){"use strict";var n=t("ext/global-this"),i={object:!0,symbol:!0};e.exports=function(){var t,e=n.Symbol;if("function"!=typeof e)return!1;t=e("test symbol");try{String(t)}catch(t){return!1}return!!i[typeof e.iterator]&&(!!i[typeof e.toPrimitive]&&!!i[typeof e.toStringTag])}},{"ext/global-this":239}],227:[function(t,e,r){"use strict";e.exports=function(t){return!!t&&("symbol"==typeof t||!!t.constructor&&("Symbol"===t.constructor.name&&"Symbol"===t[t.constructor.toStringTag]))}},{}],228:[function(t,e,r){"use strict";var n=t("d"),i=Object.create,a=Object.defineProperty,o=Object.prototype,s=i(null);e.exports=function(t){for(var e,r,i=0;s[t+(i||"")];)++i;return s[t+=i||""]=!0,a(o,e="@@"+t,n.gs(null,(function(t){r||(r=!0,a(this,e,n(t)),r=!1)}))),e}},{d:154}],229:[function(t,e,r){"use strict";var n=t("d"),i=t("ext/global-this").Symbol;e.exports=function(t){return Object.defineProperties(t,{hasInstance:n("",i&&i.hasInstance||t("hasInstance")),isConcatSpreadable:n("",i&&i.isConcatSpreadable||t("isConcatSpreadable")),iterator:n("",i&&i.iterator||t("iterator")),match:n("",i&&i.match||t("match")),replace:n("",i&&i.replace||t("replace")),search:n("",i&&i.search||t("search")),species:n("",i&&i.species||t("species")),split:n("",i&&i.split||t("split")),toPrimitive:n("",i&&i.toPrimitive||t("toPrimitive")),toStringTag:n("",i&&i.toStringTag||t("toStringTag")),unscopables:n("",i&&i.unscopables||t("unscopables"))})}},{d:154,"ext/global-this":239}],230:[function(t,e,r){"use strict";var n=t("d"),i=t("../../../validate-symbol"),a=Object.create(null);e.exports=function(t){return Object.defineProperties(t,{for:n((function(e){return a[e]?a[e]:a[e]=t(String(e))})),keyFor:n((function(t){var e;for(e in i(t),a)if(a[e]===t)return e}))})}},{"../../../validate-symbol":232,d:154}],231:[function(t,e,r){"use strict";var n,i,a,o=t("d"),s=t("./validate-symbol"),l=t("ext/global-this").Symbol,c=t("./lib/private/generate-name"),u=t("./lib/private/setup/standard-symbols"),f=t("./lib/private/setup/symbol-registry"),h=Object.create,p=Object.defineProperties,d=Object.defineProperty;if("function"==typeof l)try{String(l()),a=!0}catch(t){}else l=null;i=function(t){if(this instanceof i)throw new TypeError("Symbol is not a constructor");return n(t)},e.exports=n=function t(e){var r;if(this instanceof t)throw new TypeError("Symbol is not a constructor");return a?l(e):(r=h(i.prototype),e=void 0===e?"":String(e),p(r,{__description__:o("",e),__name__:o("",c(e))}))},u(n),f(n),p(i.prototype,{constructor:o(n),toString:o("",(function(){return this.__name__}))}),p(n.prototype,{toString:o((function(){return"Symbol ("+s(this).__description__+")"})),valueOf:o((function(){return s(this)}))}),d(n.prototype,n.toPrimitive,o("",(function(){var t=s(this);return"symbol"==typeof t?t:t.toString()}))),d(n.prototype,n.toStringTag,o("c","Symbol")),d(i.prototype,n.toStringTag,o("c",n.prototype[n.toStringTag])),d(i.prototype,n.toPrimitive,o("c",n.prototype[n.toPrimitive]))},{"./lib/private/generate-name":228,"./lib/private/setup/standard-symbols":229,"./lib/private/setup/symbol-registry":230,"./validate-symbol":232,d:154,"ext/global-this":239}],232:[function(t,e,r){"use strict";var n=t("./is-symbol");e.exports=function(t){if(!n(t))throw new TypeError(t+" is not a symbol");return t}},{"./is-symbol":227}],233:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?WeakMap:t("./polyfill")},{"./is-implemented":234,"./polyfill":236}],234:[function(t,e,r){"use strict";e.exports=function(){var t,e;if("function"!=typeof WeakMap)return!1;try{t=new WeakMap([[e={},"one"],[{},"two"],[{},"three"]])}catch(t){return!1}return"[object WeakMap]"===String(t)&&("function"==typeof t.set&&(t.set({},1)===t&&("function"==typeof t.delete&&("function"==typeof t.has&&"one"===t.get(e)))))}},{}],235:[function(t,e,r){"use strict";e.exports="function"==typeof WeakMap&&"[object WeakMap]"===Object.prototype.toString.call(new WeakMap)},{}],236:[function(t,e,r){"use strict";var n,i=t("es5-ext/object/is-value"),a=t("es5-ext/object/set-prototype-of"),o=t("es5-ext/object/valid-object"),s=t("es5-ext/object/valid-value"),l=t("es5-ext/string/random-uniq"),c=t("d"),u=t("es6-iterator/get"),f=t("es6-iterator/for-of"),h=t("es6-symbol").toStringTag,p=t("./is-native-implemented"),d=Array.isArray,m=Object.defineProperty,g=Object.prototype.hasOwnProperty,v=Object.getPrototypeOf;e.exports=n=function(){var t,e=arguments[0];if(!(this instanceof n))throw new TypeError("Constructor requires 'new'");return t=p&&a&&WeakMap!==n?a(new WeakMap,v(this)):this,i(e)&&(d(e)||(e=u(e))),m(t,"__weakMapData__",c("c","$weakMap$"+l())),e?(f(e,(function(e){s(e),t.set(e[0],e[1])})),t):t},p&&(a&&a(n,WeakMap),n.prototype=Object.create(WeakMap.prototype,{constructor:c(n)})),Object.defineProperties(n.prototype,{delete:c((function(t){return!!g.call(o(t),this.__weakMapData__)&&(delete t[this.__weakMapData__],!0)})),get:c((function(t){if(g.call(o(t),this.__weakMapData__))return t[this.__weakMapData__]})),has:c((function(t){return g.call(o(t),this.__weakMapData__)})),set:c((function(t,e){return m(o(t),this.__weakMapData__,c("c",e)),this})),toString:c((function(){return"[object WeakMap]"}))}),m(n.prototype,h,c("c","WeakMap"))},{"./is-native-implemented":235,d:154,"es5-ext/object/is-value":201,"es5-ext/object/set-prototype-of":207,"es5-ext/object/valid-object":211,"es5-ext/object/valid-value":212,"es5-ext/string/random-uniq":217,"es6-iterator/for-of":219,"es6-iterator/get":220,"es6-symbol":225}],237:[function(t,e,r){"use strict";var n,i="object"==typeof Reflect?Reflect:null,a=i&&"function"==typeof i.apply?i.apply:function(t,e,r){return Function.prototype.apply.call(t,e,r)};n=i&&"function"==typeof i.ownKeys?i.ownKeys:Object.getOwnPropertySymbols?function(t){return Object.getOwnPropertyNames(t).concat(Object.getOwnPropertySymbols(t))}:function(t){return Object.getOwnPropertyNames(t)};var o=Number.isNaN||function(t){return t!=t};function s(){s.init.call(this)}e.exports=s,e.exports.once=function(t,e){return new Promise((function(r,n){function i(r){t.removeListener(e,a),n(r)}function a(){"function"==typeof t.removeListener&&t.removeListener("error",i),r([].slice.call(arguments))}v(t,e,a,{once:!0}),"error"!==e&&function(t,e,r){"function"==typeof t.on&&v(t,"error",e,r)}(t,i,{once:!0})}))},s.EventEmitter=s,s.prototype._events=void 0,s.prototype._eventsCount=0,s.prototype._maxListeners=void 0;var l=10;function c(t){if("function"!=typeof t)throw new TypeError('The "listener" argument must be of type Function. Received type '+typeof t)}function u(t){return void 0===t._maxListeners?s.defaultMaxListeners:t._maxListeners}function f(t,e,r,n){var i,a,o,s;if(c(r),void 0===(a=t._events)?(a=t._events=Object.create(null),t._eventsCount=0):(void 0!==a.newListener&&(t.emit("newListener",e,r.listener?r.listener:r),a=t._events),o=a[e]),void 0===o)o=a[e]=r,++t._eventsCount;else if("function"==typeof o?o=a[e]=n?[r,o]:[o,r]:n?o.unshift(r):o.push(r),(i=u(t))>0&&o.length>i&&!o.warned){o.warned=!0;var l=new Error("Possible EventEmitter memory leak detected. "+o.length+" "+String(e)+" listeners added. Use emitter.setMaxListeners() to increase limit");l.name="MaxListenersExceededWarning",l.emitter=t,l.type=e,l.count=o.length,s=l,console&&console.warn&&console.warn(s)}return t}function h(){if(!this.fired)return this.target.removeListener(this.type,this.wrapFn),this.fired=!0,0===arguments.length?this.listener.call(this.target):this.listener.apply(this.target,arguments)}function p(t,e,r){var n={fired:!1,wrapFn:void 0,target:t,type:e,listener:r},i=h.bind(n);return i.listener=r,n.wrapFn=i,i}function d(t,e,r){var n=t._events;if(void 0===n)return[];var i=n[e];return void 0===i?[]:"function"==typeof i?r?[i.listener||i]:[i]:r?function(t){for(var e=new Array(t.length),r=0;r0&&(o=e[0]),o instanceof Error)throw o;var s=new Error("Unhandled error."+(o?" ("+o.message+")":""));throw s.context=o,s}var l=i[t];if(void 0===l)return!1;if("function"==typeof l)a(l,this,e);else{var c=l.length,u=g(l,c);for(r=0;r=0;a--)if(r[a]===e||r[a].listener===e){o=r[a].listener,i=a;break}if(i<0)return this;0===i?r.shift():function(t,e){for(;e+1=0;n--)this.removeListener(t,e[n]);return this},s.prototype.listeners=function(t){return d(this,t,!0)},s.prototype.rawListeners=function(t){return d(this,t,!1)},s.listenerCount=function(t,e){return"function"==typeof t.listenerCount?t.listenerCount(e):m.call(t,e)},s.prototype.listenerCount=m,s.prototype.eventNames=function(){return this._eventsCount>0?n(this._events):[]}},{}],238:[function(t,e,r){var n=function(){if("object"==typeof self&&self)return self;if("object"==typeof window&&window)return window;throw new Error("Unable to resolve global `this`")};e.exports=function(){if(this)return this;try{Object.defineProperty(Object.prototype,"__global__",{get:function(){return this},configurable:!0})}catch(t){return n()}try{return __global__||n()}finally{delete Object.prototype.__global__}}()},{}],239:[function(t,e,r){"use strict";e.exports=t("./is-implemented")()?globalThis:t("./implementation")},{"./implementation":238,"./is-implemented":240}],240:[function(t,e,r){"use strict";e.exports=function(){return"object"==typeof globalThis&&(!!globalThis&&globalThis.Array===Array)}},{}],241:[function(t,e,r){"use strict";e.exports=function(t,e,r){var n=e||0,i=r||1;return[[t[12]+t[0],t[13]+t[1],t[14]+t[2],t[15]+t[3]],[t[12]-t[0],t[13]-t[1],t[14]-t[2],t[15]-t[3]],[t[12]+t[4],t[13]+t[5],t[14]+t[6],t[15]+t[7]],[t[12]-t[4],t[13]-t[5],t[14]-t[6],t[15]-t[7]],[n*t[12]+t[8],n*t[13]+t[9],n*t[14]+t[10],n*t[15]+t[11]],[i*t[12]-t[8],i*t[13]-t[9],i*t[14]-t[10],i*t[15]-t[11]]]}},{}],242:[function(t,e,r){"use strict";var n=t("is-string-blank");e.exports=function(t){var e=typeof t;if("string"===e){var r=t;if(0===(t=+t)&&n(r))return!1}else if("number"!==e)return!1;return t-t<1}},{"is-string-blank":438}],243:[function(t,e,r){"use strict";e.exports=function(t,e,r){switch(arguments.length){case 0:return new o([0],[0],0);case 1:return"number"==typeof t?new o(n=l(t),n,0):new o(t,l(t.length),0);case 2:if("number"==typeof e){var n=l(t.length);return new o(t,n,+e)}r=0;case 3:if(t.length!==e.length)throw new Error("state and velocity lengths must match");return new o(t,e,r)}};var n=t("cubic-hermite"),i=t("binary-search-bounds");function a(t,e,r){return Math.min(e,Math.max(t,r))}function o(t,e,r){this.dimension=t.length,this.bounds=[new Array(this.dimension),new Array(this.dimension)];for(var n=0;n=r-1){h=l.length-1;var d=t-e[r-1];for(p=0;p=r-1)for(var u=s.length-1,f=(e[r-1],0);f=0;--r)if(t[--e])return!1;return!0},s.jump=function(t){var e=this.lastT(),r=this.dimension;if(!(t0;--f)n.push(a(l[f-1],c[f-1],arguments[f])),i.push(0)}},s.push=function(t){var e=this.lastT(),r=this.dimension;if(!(t1e-6?1/s:0;this._time.push(t);for(var h=r;h>0;--h){var p=a(c[h-1],u[h-1],arguments[h]);n.push(p),i.push((p-n[o++])*f)}}},s.set=function(t){var e=this.dimension;if(!(t0;--l)r.push(a(o[l-1],s[l-1],arguments[l])),n.push(0)}},s.move=function(t){var e=this.lastT(),r=this.dimension;if(!(t<=e||arguments.length!==r+1)){var n=this._state,i=this._velocity,o=n.length-this.dimension,s=this.bounds,l=s[0],c=s[1],u=t-e,f=u>1e-6?1/u:0;this._time.push(t);for(var h=r;h>0;--h){var p=arguments[h];n.push(a(l[h-1],c[h-1],n[o++]+p)),i.push(p*f)}}},s.idle=function(t){var e=this.lastT();if(!(t=0;--f)n.push(a(l[f],c[f],n[o]+u*i[o])),i.push(0),o+=1}}},{"binary-search-bounds":100,"cubic-hermite":152}],244:[function(t,e,r){var n=t("dtype");e.exports=function(t,e,r){if(!t)throw new TypeError("must specify data as first parameter");if(r=0|+(r||0),Array.isArray(t)&&t[0]&&"number"==typeof t[0][0]){var i,a,o,s,l=t[0].length,c=t.length*l;e&&"string"!=typeof e||(e=new(n(e||"float32"))(c+r));var u=e.length-r;if(c!==u)throw new Error("source length "+c+" ("+l+"x"+t.length+") does not match destination length "+u);for(i=0,o=r;ie[0]-o[0]/2&&(h=o[0]/2,p+=o[1]);return r}},{"css-font/stringify":149}],246:[function(t,e,r){"use strict";function n(t,e){e||(e={}),("string"==typeof t||Array.isArray(t))&&(e.family=t);var r=Array.isArray(e.family)?e.family.join(", "):e.family;if(!r)throw Error("`family` must be defined");var s=e.size||e.fontSize||e.em||48,l=e.weight||e.fontWeight||"",c=(t=[e.style||e.fontStyle||"",l,s].join(" ")+"px "+r,e.origin||"top");if(n.cache[r]&&s<=n.cache[r].em)return i(n.cache[r],c);var u=e.canvas||n.canvas,f=u.getContext("2d"),h={upper:void 0!==e.upper?e.upper:"H",lower:void 0!==e.lower?e.lower:"x",descent:void 0!==e.descent?e.descent:"p",ascent:void 0!==e.ascent?e.ascent:"h",tittle:void 0!==e.tittle?e.tittle:"i",overshoot:void 0!==e.overshoot?e.overshoot:"O"},p=Math.ceil(1.5*s);u.height=p,u.width=.5*p,f.font=t;var d={top:0};f.clearRect(0,0,p,p),f.textBaseline="top",f.fillStyle="black",f.fillText("H",0,0);var m=a(f.getImageData(0,0,p,p));f.clearRect(0,0,p,p),f.textBaseline="bottom",f.fillText("H",0,p);var g=a(f.getImageData(0,0,p,p));d.lineHeight=d.bottom=p-g+m,f.clearRect(0,0,p,p),f.textBaseline="alphabetic",f.fillText("H",0,p);var v=p-a(f.getImageData(0,0,p,p))-1+m;d.baseline=d.alphabetic=v,f.clearRect(0,0,p,p),f.textBaseline="middle",f.fillText("H",0,.5*p);var y=a(f.getImageData(0,0,p,p));d.median=d.middle=p-y-1+m-.5*p,f.clearRect(0,0,p,p),f.textBaseline="hanging",f.fillText("H",0,.5*p);var x=a(f.getImageData(0,0,p,p));d.hanging=p-x-1+m-.5*p,f.clearRect(0,0,p,p),f.textBaseline="ideographic",f.fillText("H",0,p);var b=a(f.getImageData(0,0,p,p));if(d.ideographic=p-b-1+m,h.upper&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.upper,0,0),d.upper=a(f.getImageData(0,0,p,p)),d.capHeight=d.baseline-d.upper),h.lower&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.lower,0,0),d.lower=a(f.getImageData(0,0,p,p)),d.xHeight=d.baseline-d.lower),h.tittle&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.tittle,0,0),d.tittle=a(f.getImageData(0,0,p,p))),h.ascent&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.ascent,0,0),d.ascent=a(f.getImageData(0,0,p,p))),h.descent&&(f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.descent,0,0),d.descent=o(f.getImageData(0,0,p,p))),h.overshoot){f.clearRect(0,0,p,p),f.textBaseline="top",f.fillText(h.overshoot,0,0);var _=o(f.getImageData(0,0,p,p));d.overshoot=_-v}for(var w in d)d[w]/=s;return d.em=s,n.cache[r]=d,i(d,c)}function i(t,e){var r={};for(var n in"string"==typeof e&&(e=t[e]),t)"em"!==n&&(r[n]=t[n]-e);return r}function a(t){for(var e=t.height,r=t.data,n=3;n0;n-=4)if(0!==r[n])return Math.floor(.25*(n-3)/e)}e.exports=n,n.canvas=document.createElement("canvas"),n.cache={}},{}],247:[function(t,e,r){"use strict";e.exports=function(t){return new s(t||m,null)};function n(t,e,r,n,i,a){this._color=t,this.key=e,this.value=r,this.left=n,this.right=i,this._count=a}function i(t){return new n(t._color,t.key,t.value,t.left,t.right,t._count)}function a(t,e){return new n(t,e.key,e.value,e.left,e.right,e._count)}function o(t){t._count=1+(t.left?t.left._count:0)+(t.right?t.right._count:0)}function s(t,e){this._compare=t,this.root=e}var l=s.prototype;function c(t,e){var r;if(e.left&&(r=c(t,e.left)))return r;return(r=t(e.key,e.value))||(e.right?c(t,e.right):void 0)}function u(t,e,r,n){if(e(t,n.key)<=0){var i;if(n.left)if(i=u(t,e,r,n.left))return i;if(i=r(n.key,n.value))return i}if(n.right)return u(t,e,r,n.right)}function f(t,e,r,n,i){var a,o=r(t,i.key),s=r(e,i.key);if(o<=0){if(i.left&&(a=f(t,e,r,n,i.left)))return a;if(s>0&&(a=n(i.key,i.value)))return a}if(s>0&&i.right)return f(t,e,r,n,i.right)}function h(t,e){this.tree=t,this._stack=e}Object.defineProperty(l,"keys",{get:function(){var t=[];return this.forEach((function(e,r){t.push(e)})),t}}),Object.defineProperty(l,"values",{get:function(){var t=[];return this.forEach((function(e,r){t.push(r)})),t}}),Object.defineProperty(l,"length",{get:function(){return this.root?this.root._count:0}}),l.insert=function(t,e){for(var r=this._compare,i=this.root,l=[],c=[];i;){var u=r(t,i.key);l.push(i),c.push(u),i=u<=0?i.left:i.right}l.push(new n(0,t,e,null,null,1));for(var f=l.length-2;f>=0;--f){i=l[f];c[f]<=0?l[f]=new n(i._color,i.key,i.value,l[f+1],i.right,i._count+1):l[f]=new n(i._color,i.key,i.value,i.left,l[f+1],i._count+1)}for(f=l.length-1;f>1;--f){var h=l[f-1];i=l[f];if(1===h._color||1===i._color)break;var p=l[f-2];if(p.left===h)if(h.left===i){if(!(d=p.right)||0!==d._color){if(p._color=0,p.left=h.right,h._color=1,h.right=p,l[f-2]=h,l[f-1]=i,o(p),o(h),f>=3)(m=l[f-3]).left===p?m.left=h:m.right=h;break}h._color=1,p.right=a(1,d),p._color=0,f-=1}else{if(!(d=p.right)||0!==d._color){if(h.right=i.left,p._color=0,p.left=i.right,i._color=1,i.left=h,i.right=p,l[f-2]=i,l[f-1]=h,o(p),o(h),o(i),f>=3)(m=l[f-3]).left===p?m.left=i:m.right=i;break}h._color=1,p.right=a(1,d),p._color=0,f-=1}else if(h.right===i){if(!(d=p.left)||0!==d._color){if(p._color=0,p.right=h.left,h._color=1,h.left=p,l[f-2]=h,l[f-1]=i,o(p),o(h),f>=3)(m=l[f-3]).right===p?m.right=h:m.left=h;break}h._color=1,p.left=a(1,d),p._color=0,f-=1}else{var d;if(!(d=p.left)||0!==d._color){var m;if(h.left=i.right,p._color=0,p.right=i.left,i._color=1,i.right=h,i.left=p,l[f-2]=i,l[f-1]=h,o(p),o(h),o(i),f>=3)(m=l[f-3]).right===p?m.right=i:m.left=i;break}h._color=1,p.left=a(1,d),p._color=0,f-=1}}return l[0]._color=1,new s(r,l[0])},l.forEach=function(t,e,r){if(this.root)switch(arguments.length){case 1:return c(t,this.root);case 2:return u(e,this._compare,t,this.root);case 3:if(this._compare(e,r)>=0)return;return f(e,r,this._compare,t,this.root)}},Object.defineProperty(l,"begin",{get:function(){for(var t=[],e=this.root;e;)t.push(e),e=e.left;return new h(this,t)}}),Object.defineProperty(l,"end",{get:function(){for(var t=[],e=this.root;e;)t.push(e),e=e.right;return new h(this,t)}}),l.at=function(t){if(t<0)return new h(this,[]);for(var e=this.root,r=[];;){if(r.push(e),e.left){if(t=e.right._count)break;e=e.right}return new h(this,[])},l.ge=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a<=0&&(i=n.length),r=a<=0?r.left:r.right}return n.length=i,new h(this,n)},l.gt=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a<0&&(i=n.length),r=a<0?r.left:r.right}return n.length=i,new h(this,n)},l.lt=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a>0&&(i=n.length),r=a<=0?r.left:r.right}return n.length=i,new h(this,n)},l.le=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a>=0&&(i=n.length),r=a<0?r.left:r.right}return n.length=i,new h(this,n)},l.find=function(t){for(var e=this._compare,r=this.root,n=[];r;){var i=e(t,r.key);if(n.push(r),0===i)return new h(this,n);r=i<=0?r.left:r.right}return new h(this,[])},l.remove=function(t){var e=this.find(t);return e?e.remove():this},l.get=function(t){for(var e=this._compare,r=this.root;r;){var n=e(t,r.key);if(0===n)return r.value;r=n<=0?r.left:r.right}};var p=h.prototype;function d(t,e){t.key=e.key,t.value=e.value,t.left=e.left,t.right=e.right,t._color=e._color,t._count=e._count}function m(t,e){return te?1:0}Object.defineProperty(p,"valid",{get:function(){return this._stack.length>0}}),Object.defineProperty(p,"node",{get:function(){return this._stack.length>0?this._stack[this._stack.length-1]:null},enumerable:!0}),p.clone=function(){return new h(this.tree,this._stack.slice())},p.remove=function(){var t=this._stack;if(0===t.length)return this.tree;var e=new Array(t.length),r=t[t.length-1];e[e.length-1]=new n(r._color,r.key,r.value,r.left,r.right,r._count);for(var l=t.length-2;l>=0;--l){(r=t[l]).left===t[l+1]?e[l]=new n(r._color,r.key,r.value,e[l+1],r.right,r._count):e[l]=new n(r._color,r.key,r.value,r.left,e[l+1],r._count)}if((r=e[e.length-1]).left&&r.right){var c=e.length;for(r=r.left;r.right;)e.push(r),r=r.right;var u=e[c-1];e.push(new n(r._color,u.key,u.value,r.left,r.right,r._count)),e[c-1].key=r.key,e[c-1].value=r.value;for(l=e.length-2;l>=c;--l)r=e[l],e[l]=new n(r._color,r.key,r.value,r.left,e[l+1],r._count);e[c-1].left=e[c]}if(0===(r=e[e.length-1])._color){var f=e[e.length-2];f.left===r?f.left=null:f.right===r&&(f.right=null),e.pop();for(l=0;l=0;--l){if(e=t[l],0===l)return void(e._color=1);if((r=t[l-1]).left===e){if((n=r.right).right&&0===n.right._color){if(s=(n=r.right=i(n)).right=i(n.right),r.right=n.left,n.left=r,n.right=s,n._color=r._color,e._color=1,r._color=1,s._color=1,o(r),o(n),l>1)(c=t[l-2]).left===r?c.left=n:c.right=n;return void(t[l-1]=n)}if(n.left&&0===n.left._color){if(s=(n=r.right=i(n)).left=i(n.left),r.right=s.left,n.left=s.right,s.left=r,s.right=n,s._color=r._color,r._color=1,n._color=1,e._color=1,o(r),o(n),o(s),l>1)(c=t[l-2]).left===r?c.left=s:c.right=s;return void(t[l-1]=s)}if(1===n._color){if(0===r._color)return r._color=1,void(r.right=a(0,n));r.right=a(0,n);continue}n=i(n),r.right=n.left,n.left=r,n._color=r._color,r._color=0,o(r),o(n),l>1&&((c=t[l-2]).left===r?c.left=n:c.right=n),t[l-1]=n,t[l]=r,l+11)(c=t[l-2]).right===r?c.right=n:c.left=n;return void(t[l-1]=n)}if(n.right&&0===n.right._color){if(s=(n=r.left=i(n)).right=i(n.right),r.left=s.right,n.right=s.left,s.right=r,s.left=n,s._color=r._color,r._color=1,n._color=1,e._color=1,o(r),o(n),o(s),l>1)(c=t[l-2]).right===r?c.right=s:c.left=s;return void(t[l-1]=s)}if(1===n._color){if(0===r._color)return r._color=1,void(r.left=a(0,n));r.left=a(0,n);continue}var c;n=i(n),r.left=n.right,n.right=r,n._color=r._color,r._color=0,o(r),o(n),l>1&&((c=t[l-2]).right===r?c.right=n:c.left=n),t[l-1]=n,t[l]=r,l+10)return this._stack[this._stack.length-1].key},enumerable:!0}),Object.defineProperty(p,"value",{get:function(){if(this._stack.length>0)return this._stack[this._stack.length-1].value},enumerable:!0}),Object.defineProperty(p,"index",{get:function(){var t=0,e=this._stack;if(0===e.length){var r=this.tree.root;return r?r._count:0}e[e.length-1].left&&(t=e[e.length-1].left._count);for(var n=e.length-2;n>=0;--n)e[n+1]===e[n].right&&(++t,e[n].left&&(t+=e[n].left._count));return t},enumerable:!0}),p.next=function(){var t=this._stack;if(0!==t.length){var e=t[t.length-1];if(e.right)for(e=e.right;e;)t.push(e),e=e.left;else for(t.pop();t.length>0&&t[t.length-1].right===e;)e=t[t.length-1],t.pop()}},Object.defineProperty(p,"hasNext",{get:function(){var t=this._stack;if(0===t.length)return!1;if(t[t.length-1].right)return!0;for(var e=t.length-1;e>0;--e)if(t[e-1].left===t[e])return!0;return!1}}),p.update=function(t){var e=this._stack;if(0===e.length)throw new Error("Can't update empty node!");var r=new Array(e.length),i=e[e.length-1];r[r.length-1]=new n(i._color,i.key,t,i.left,i.right,i._count);for(var a=e.length-2;a>=0;--a)(i=e[a]).left===e[a+1]?r[a]=new n(i._color,i.key,i.value,r[a+1],i.right,i._count):r[a]=new n(i._color,i.key,i.value,i.left,r[a+1],i._count);return new s(this.tree._compare,r[0])},p.prev=function(){var t=this._stack;if(0!==t.length){var e=t[t.length-1];if(e.left)for(e=e.left;e;)t.push(e),e=e.right;else for(t.pop();t.length>0&&t[t.length-1].left===e;)e=t[t.length-1],t.pop()}},Object.defineProperty(p,"hasPrev",{get:function(){var t=this._stack;if(0===t.length)return!1;if(t[t.length-1].left)return!0;for(var e=t.length-1;e>0;--e)if(t[e-1].right===t[e])return!0;return!1}})},{}],248:[function(t,e,r){e.exports=function(t,e){if("string"!=typeof t)throw new TypeError("must specify type string");if(e=e||{},"undefined"==typeof document&&!e.canvas)return null;var r=e.canvas||document.createElement("canvas");"number"==typeof e.width&&(r.width=e.width);"number"==typeof e.height&&(r.height=e.height);var n,i=e;try{var a=[t];0===t.indexOf("webgl")&&a.push("experimental-"+t);for(var o=0;o0?(p[u]=-1,d[u]=0):(p[u]=0,d[u]=1)}}var m=[0,0,0],g={model:l,view:l,projection:l,_ortho:!1};f.isOpaque=function(){return!0},f.isTransparent=function(){return!1},f.drawTransparent=function(t){};var v=[0,0,0],y=[0,0,0],x=[0,0,0];f.draw=function(t){t=t||g;for(var e=this.gl,r=t.model||l,n=t.view||l,i=t.projection||l,a=this.bounds,s=t._ortho||!1,u=o(r,n,i,a,s),f=u.cubeEdges,h=u.axis,b=n[12],_=n[13],w=n[14],T=n[15],k=(s?2:1)*this.pixelRatio*(i[3]*b+i[7]*_+i[11]*w+i[15]*T)/e.drawingBufferHeight,A=0;A<3;++A)this.lastCubeProps.cubeEdges[A]=f[A],this.lastCubeProps.axis[A]=h[A];var M=p;for(A=0;A<3;++A)d(p[A],A,this.bounds,f,h);e=this.gl;var S,E=m;for(A=0;A<3;++A)this.backgroundEnable[A]?E[A]=h[A]:E[A]=0;this._background.draw(r,n,i,a,E,this.backgroundColor),this._lines.bind(r,n,i,this);for(A=0;A<3;++A){var L=[0,0,0];h[A]>0?L[A]=a[1][A]:L[A]=a[0][A];for(var C=0;C<2;++C){var P=(A+1+C)%3,I=(A+1+(1^C))%3;this.gridEnable[P]&&this._lines.drawGrid(P,I,this.bounds,L,this.gridColor[P],this.gridWidth[P]*this.pixelRatio)}for(C=0;C<2;++C){P=(A+1+C)%3,I=(A+1+(1^C))%3;this.zeroEnable[I]&&Math.min(a[0][I],a[1][I])<=0&&Math.max(a[0][I],a[1][I])>=0&&this._lines.drawZero(P,I,this.bounds,L,this.zeroLineColor[I],this.zeroLineWidth[I]*this.pixelRatio)}}for(A=0;A<3;++A){this.lineEnable[A]&&this._lines.drawAxisLine(A,this.bounds,M[A].primalOffset,this.lineColor[A],this.lineWidth[A]*this.pixelRatio),this.lineMirror[A]&&this._lines.drawAxisLine(A,this.bounds,M[A].mirrorOffset,this.lineColor[A],this.lineWidth[A]*this.pixelRatio);var O=c(v,M[A].primalMinor),z=c(y,M[A].mirrorMinor),D=this.lineTickLength;for(C=0;C<3;++C){var R=k/r[5*C];O[C]*=D[C]*R,z[C]*=D[C]*R}this.lineTickEnable[A]&&this._lines.drawAxisTicks(A,M[A].primalOffset,O,this.lineTickColor[A],this.lineTickWidth[A]*this.pixelRatio),this.lineTickMirror[A]&&this._lines.drawAxisTicks(A,M[A].mirrorOffset,z,this.lineTickColor[A],this.lineTickWidth[A]*this.pixelRatio)}this._lines.unbind(),this._text.bind(r,n,i,this.pixelRatio);var F,B;function N(t){(B=[0,0,0])[t]=1}function j(t,e,r){var n=(t+1)%3,i=(t+2)%3,a=e[n],o=e[i],s=r[n],l=r[i];a>0&&l>0||a>0&&l<0||a<0&&l>0||a<0&&l<0?N(n):(o>0&&s>0||o>0&&s<0||o<0&&s>0||o<0&&s<0)&&N(i)}for(A=0;A<3;++A){var U=M[A].primalMinor,V=M[A].mirrorMinor,H=c(x,M[A].primalOffset);for(C=0;C<3;++C)this.lineTickEnable[A]&&(H[C]+=k*U[C]*Math.max(this.lineTickLength[C],0)/r[5*C]);var q=[0,0,0];if(q[A]=1,this.tickEnable[A]){-3600===this.tickAngle[A]?(this.tickAngle[A]=0,this.tickAlign[A]="auto"):this.tickAlign[A]=-1,F=1,"auto"===(S=[this.tickAlign[A],.5,F])[0]?S[0]=0:S[0]=parseInt(""+S[0]),B=[0,0,0],j(A,U,V);for(C=0;C<3;++C)H[C]+=k*U[C]*this.tickPad[C]/r[5*C];this._text.drawTicks(A,this.tickSize[A],this.tickAngle[A],H,this.tickColor[A],q,B,S)}if(this.labelEnable[A]){F=0,B=[0,0,0],this.labels[A].length>4&&(N(A),F=1),"auto"===(S=[this.labelAlign[A],.5,F])[0]?S[0]=0:S[0]=parseInt(""+S[0]);for(C=0;C<3;++C)H[C]+=k*U[C]*this.labelPad[C]/r[5*C];H[A]+=.5*(a[0][A]+a[1][A]),this._text.drawLabel(A,this.labelSize[A],this.labelAngle[A],H,this.labelColor[A],[0,0,0],B,S)}}this._text.unbind()},f.dispose=function(){this._text.dispose(),this._lines.dispose(),this._background.dispose(),this._lines=null,this._text=null,this._background=null,this.gl=null}},{"./lib/background.js":250,"./lib/cube.js":251,"./lib/lines.js":252,"./lib/text.js":254,"./lib/ticks.js":255}],250:[function(t,e,r){"use strict";e.exports=function(t){for(var e=[],r=[],s=0,l=0;l<3;++l)for(var c=(l+1)%3,u=(l+2)%3,f=[0,0,0],h=[0,0,0],p=-1;p<=1;p+=2){r.push(s,s+2,s+1,s+1,s+2,s+3),f[l]=p,h[l]=p;for(var d=-1;d<=1;d+=2){f[c]=d;for(var m=-1;m<=1;m+=2)f[u]=m,e.push(f[0],f[1],f[2],h[0],h[1],h[2]),s+=1}var g=c;c=u,u=g}var v=n(t,new Float32Array(e)),y=n(t,new Uint16Array(r),t.ELEMENT_ARRAY_BUFFER),x=i(t,[{buffer:v,type:t.FLOAT,size:3,offset:0,stride:24},{buffer:v,type:t.FLOAT,size:3,offset:12,stride:24}],y),b=a(t);return b.attributes.position.location=0,b.attributes.normal.location=1,new o(t,v,x,b)};var n=t("gl-buffer"),i=t("gl-vao"),a=t("./shaders").bg;function o(t,e,r,n){this.gl=t,this.buffer=e,this.vao=r,this.shader=n}var s=o.prototype;s.draw=function(t,e,r,n,i,a){for(var o=!1,s=0;s<3;++s)o=o||i[s];if(o){var l=this.gl;l.enable(l.POLYGON_OFFSET_FILL),l.polygonOffset(1,2),this.shader.bind(),this.shader.uniforms={model:t,view:e,projection:r,bounds:n,enable:i,colors:a},this.vao.bind(),this.vao.draw(this.gl.TRIANGLES,36),this.vao.unbind(),l.disable(l.POLYGON_OFFSET_FILL)}},s.dispose=function(){this.vao.dispose(),this.buffer.dispose(),this.shader.dispose()}},{"./shaders":253,"gl-buffer":257,"gl-vao":343}],251:[function(t,e,r){"use strict";e.exports=function(t,e,r,a,p){i(s,e,t),i(s,r,s);for(var y=0,x=0;x<2;++x){u[2]=a[x][2];for(var b=0;b<2;++b){u[1]=a[b][1];for(var _=0;_<2;++_)u[0]=a[_][0],h(l[y],u,s),y+=1}}var w=-1;for(x=0;x<8;++x){for(var T=l[x][3],k=0;k<3;++k)c[x][k]=l[x][k]/T;p&&(c[x][2]*=-1),T<0&&(w<0||c[x][2]E&&(w|=1<E&&(w|=1<c[x][1])&&(R=x);var F=-1;for(x=0;x<3;++x){if((N=R^1<c[B][0]&&(B=N)}var j=m;j[0]=j[1]=j[2]=0,j[n.log2(F^R)]=R&F,j[n.log2(R^B)]=R&B;var U=7^B;U===w||U===D?(U=7^F,j[n.log2(B^U)]=U&B):j[n.log2(F^U)]=U&F;var V=g,H=w;for(A=0;A<3;++A)V[A]=H&1< HALF_PI) && (b <= ONE_AND_HALF_PI)) ?\n b - PI :\n b;\n}\n\nfloat look_horizontal_or_vertical(float a, float ratio) {\n // ratio controls the ratio between being horizontal to (vertical + horizontal)\n // if ratio is set to 0.5 then it is 50%, 50%.\n // when using a higher ratio e.g. 0.75 the result would\n // likely be more horizontal than vertical.\n\n float b = positive_angle(a);\n\n return\n (b < ( ratio) * HALF_PI) ? 0.0 :\n (b < (2.0 - ratio) * HALF_PI) ? -HALF_PI :\n (b < (2.0 + ratio) * HALF_PI) ? 0.0 :\n (b < (4.0 - ratio) * HALF_PI) ? HALF_PI :\n 0.0;\n}\n\nfloat roundTo(float a, float b) {\n return float(b * floor((a + 0.5 * b) / b));\n}\n\nfloat look_round_n_directions(float a, int n) {\n float b = positive_angle(a);\n float div = TWO_PI / float(n);\n float c = roundTo(b, div);\n return look_upwards(c);\n}\n\nfloat applyAlignOption(float rawAngle, float delta) {\n return\n (option > 2) ? look_round_n_directions(rawAngle + delta, option) : // option 3-n: round to n directions\n (option == 2) ? look_horizontal_or_vertical(rawAngle + delta, hv_ratio) : // horizontal or vertical\n (option == 1) ? rawAngle + delta : // use free angle, and flip to align with one direction of the axis\n (option == 0) ? look_upwards(rawAngle) : // use free angle, and stay upwards\n (option ==-1) ? 0.0 : // useful for backward compatibility, all texts remains horizontal\n rawAngle; // otherwise return back raw input angle\n}\n\nbool isAxisTitle = (axis.x == 0.0) &&\n (axis.y == 0.0) &&\n (axis.z == 0.0);\n\nvoid main() {\n //Compute world offset\n float axisDistance = position.z;\n vec3 dataPosition = axisDistance * axis + offset;\n\n float beta = angle; // i.e. user defined attributes for each tick\n\n float axisAngle;\n float clipAngle;\n float flip;\n\n if (enableAlign) {\n axisAngle = (isAxisTitle) ? HALF_PI :\n computeViewAngle(dataPosition, dataPosition + axis);\n clipAngle = computeViewAngle(dataPosition, dataPosition + alignDir);\n\n axisAngle += (sin(axisAngle) < 0.0) ? PI : 0.0;\n clipAngle += (sin(clipAngle) < 0.0) ? PI : 0.0;\n\n flip = (dot(vec2(cos(axisAngle), sin(axisAngle)),\n vec2(sin(clipAngle),-cos(clipAngle))) > 0.0) ? 1.0 : 0.0;\n\n beta += applyAlignOption(clipAngle, flip * PI);\n }\n\n //Compute plane offset\n vec2 planeCoord = position.xy * pixelScale;\n\n mat2 planeXform = scale * mat2(\n cos(beta), sin(beta),\n -sin(beta), cos(beta)\n );\n\n vec2 viewOffset = 2.0 * planeXform * planeCoord / resolution;\n\n //Compute clip position\n vec3 clipPosition = project(dataPosition);\n\n //Apply text offset in clip coordinates\n clipPosition += vec3(viewOffset, 0.0);\n\n //Done\n gl_Position = vec4(clipPosition, 1.0);\n}"]),l=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec4 color;\nvoid main() {\n gl_FragColor = color;\n}"]);r.text=function(t){return i(t,s,l,null,[{name:"position",type:"vec3"}])};var c=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec3 normal;\n\nuniform mat4 model, view, projection;\nuniform vec3 enable;\nuniform vec3 bounds[2];\n\nvarying vec3 colorChannel;\n\nvoid main() {\n\n vec3 signAxis = sign(bounds[1] - bounds[0]);\n\n vec3 realNormal = signAxis * normal;\n\n if(dot(realNormal, enable) > 0.0) {\n vec3 minRange = min(bounds[0], bounds[1]);\n vec3 maxRange = max(bounds[0], bounds[1]);\n vec3 nPosition = mix(minRange, maxRange, 0.5 * (position + 1.0));\n gl_Position = projection * view * model * vec4(nPosition, 1.0);\n } else {\n gl_Position = vec4(0,0,0,0);\n }\n\n colorChannel = abs(realNormal);\n}"]),u=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec4 colors[3];\n\nvarying vec3 colorChannel;\n\nvoid main() {\n gl_FragColor = colorChannel.x * colors[0] +\n colorChannel.y * colors[1] +\n colorChannel.z * colors[2];\n}"]);r.bg=function(t){return i(t,c,u,null,[{name:"position",type:"vec3"},{name:"normal",type:"vec3"}])}},{"gl-shader":323,glslify:424}],254:[function(t,e,r){(function(r){(function(){"use strict";e.exports=function(t,e,r,a,s,l){var u=n(t),f=i(t,[{buffer:u,size:3}]),h=o(t);h.attributes.position.location=0;var p=new c(t,h,u,f);return p.update(e,r,a,s,l),p};var n=t("gl-buffer"),i=t("gl-vao"),a=t("vectorize-text"),o=t("./shaders").text,s=window||r.global||{},l=s.__TEXT_CACHE||{};s.__TEXT_CACHE={};function c(t,e,r,n){this.gl=t,this.shader=e,this.buffer=r,this.vao=n,this.tickOffset=this.tickCount=this.labelOffset=this.labelCount=null}var u=c.prototype,f=[0,0];u.bind=function(t,e,r,n){this.vao.bind(),this.shader.bind();var i=this.shader.uniforms;i.model=t,i.view=e,i.projection=r,i.pixelScale=n,f[0]=this.gl.drawingBufferWidth,f[1]=this.gl.drawingBufferHeight,this.shader.uniforms.resolution=f},u.unbind=function(){this.vao.unbind()},u.update=function(t,e,r,n,i){var o=[];function s(t,e,r,n,i,s){var c=l[r];c||(c=l[r]={});var u=c[e];u||(u=c[e]=function(t,e){try{return a(t,e)}catch(e){return console.warn('error vectorizing text:"'+t+'" error:',e),{cells:[],positions:[]}}}(e,{triangles:!0,font:r,textAlign:"center",textBaseline:"middle",lineSpacing:i,styletags:s}));for(var f=(n||12)/12,h=u.positions,p=u.cells,d=0,m=p.length;d=0;--v){var y=h[g[v]];o.push(f*y[0],-f*y[1],t)}}for(var c=[0,0,0],u=[0,0,0],f=[0,0,0],h=[0,0,0],p={breaklines:!0,bolds:!0,italics:!0,subscripts:!0,superscripts:!0},d=0;d<3;++d){f[d]=o.length/3|0,s(.5*(t[0][d]+t[1][d]),e[d],r[d],12,1.25,p),h[d]=(o.length/3|0)-f[d],c[d]=o.length/3|0;for(var m=0;m=0&&(i=r.length-n-1);var a=Math.pow(10,i),o=Math.round(t*e*a),s=o+"";if(s.indexOf("e")>=0)return s;var l=o/a,c=o%a;o<0?(l=0|-Math.ceil(l),c=0|-c):(l=0|Math.floor(l),c|=0);var u=""+l;if(o<0&&(u="-"+u),i){for(var f=""+c;f.length=t[0][i];--o)a.push({x:o*e[i],text:n(e[i],o)});r.push(a)}return r},r.equal=function(t,e){for(var r=0;r<3;++r){if(t[r].length!==e[r].length)return!1;for(var n=0;nr)throw new Error("gl-buffer: If resizing buffer, must not specify offset");return t.bufferSubData(e,a,i),r}function u(t,e){for(var r=n.malloc(t.length,e),i=t.length,a=0;a=0;--n){if(e[n]!==r)return!1;r*=t[n]}return!0}(t.shape,t.stride))0===t.offset&&t.data.length===t.shape[0]?this.length=c(this.gl,this.type,this.length,this.usage,t.data,e):this.length=c(this.gl,this.type,this.length,this.usage,t.data.subarray(t.offset,t.shape[0]),e);else{var s=n.malloc(t.size,r),l=a(s,t.shape);i.assign(l,t),this.length=c(this.gl,this.type,this.length,this.usage,e<0?s:s.subarray(0,t.size),e),n.free(s)}}else if(Array.isArray(t)){var f;f=this.type===this.gl.ELEMENT_ARRAY_BUFFER?u(t,"uint16"):u(t,"float32"),this.length=c(this.gl,this.type,this.length,this.usage,e<0?f:f.subarray(0,t.length),e),n.free(f)}else if("object"==typeof t&&"number"==typeof t.length)this.length=c(this.gl,this.type,this.length,this.usage,t,e);else{if("number"!=typeof t&&void 0!==t)throw new Error("gl-buffer: Invalid data type");if(e>=0)throw new Error("gl-buffer: Cannot specify offset when resizing buffer");(t|=0)<=0&&(t=1),this.gl.bufferData(this.type,0|t,this.usage),this.length=t}},e.exports=function(t,e,r,n){if(r=r||t.ARRAY_BUFFER,n=n||t.DYNAMIC_DRAW,r!==t.ARRAY_BUFFER&&r!==t.ELEMENT_ARRAY_BUFFER)throw new Error("gl-buffer: Invalid type for webgl buffer, must be either gl.ARRAY_BUFFER or gl.ELEMENT_ARRAY_BUFFER");if(n!==t.DYNAMIC_DRAW&&n!==t.STATIC_DRAW&&n!==t.STREAM_DRAW)throw new Error("gl-buffer: Invalid usage for buffer, must be either gl.DYNAMIC_DRAW, gl.STATIC_DRAW or gl.STREAM_DRAW");var i=t.createBuffer(),a=new s(t,r,i,0,n);return a.update(e),a}},{ndarray:462,"ndarray-ops":457,"typedarray-pool":590}],258:[function(t,e,r){"use strict";var n=t("gl-vec3");e.exports=function(t,e){var r=t.positions,i=t.vectors,a={positions:[],vertexIntensity:[],vertexIntensityBounds:t.vertexIntensityBounds,vectors:[],cells:[],coneOffset:t.coneOffset,colormap:t.colormap};if(0===t.positions.length)return e&&(e[0]=[0,0,0],e[1]=[0,0,0]),a;for(var o=0,s=1/0,l=-1/0,c=1/0,u=-1/0,f=1/0,h=-1/0,p=null,d=null,m=[],g=1/0,v=!1,y=0;yo&&(o=n.length(b)),y){var _=2*n.distance(p,x)/(n.length(d)+n.length(b));_?(g=Math.min(g,_),v=!1):v=!0}v||(p=x,d=b),m.push(b)}var w=[s,c,f],T=[l,u,h];e&&(e[0]=w,e[1]=T),0===o&&(o=1);var k=1/o;isFinite(g)||(g=1),a.vectorScale=g;var A=t.coneSize||.5;t.absoluteConeSize&&(A=t.absoluteConeSize*k),a.coneScale=A;y=0;for(var M=0;y=1},p.isTransparent=function(){return this.opacity<1},p.pickSlots=1,p.setPickBase=function(t){this.pickId=t},p.update=function(t){t=t||{};var e=this.gl;this.dirty=!0,"lightPosition"in t&&(this.lightPosition=t.lightPosition),"opacity"in t&&(this.opacity=t.opacity),"ambient"in t&&(this.ambientLight=t.ambient),"diffuse"in t&&(this.diffuseLight=t.diffuse),"specular"in t&&(this.specularLight=t.specular),"roughness"in t&&(this.roughness=t.roughness),"fresnel"in t&&(this.fresnel=t.fresnel),void 0!==t.tubeScale&&(this.tubeScale=t.tubeScale),void 0!==t.vectorScale&&(this.vectorScale=t.vectorScale),void 0!==t.coneScale&&(this.coneScale=t.coneScale),void 0!==t.coneOffset&&(this.coneOffset=t.coneOffset),t.colormap&&(this.texture.shape=[256,256],this.texture.minFilter=e.LINEAR_MIPMAP_LINEAR,this.texture.magFilter=e.LINEAR,this.texture.setPixels(function(t){for(var e=u({colormap:t,nshades:256,format:"rgba"}),r=new Uint8Array(1024),n=0;n<256;++n){for(var i=e[n],a=0;a<3;++a)r[4*n+a]=i[a];r[4*n+3]=255*i[3]}return c(r,[256,256,4],[4,0,1])}(t.colormap)),this.texture.generateMipmap());var r=t.cells,n=t.positions,i=t.vectors;if(n&&r&&i){var a=[],o=[],s=[],l=[],f=[];this.cells=r,this.positions=n,this.vectors=i;var h=t.meshColor||[1,1,1,1],p=t.vertexIntensity,d=1/0,m=-1/0;if(p)if(t.vertexIntensityBounds)d=+t.vertexIntensityBounds[0],m=+t.vertexIntensityBounds[1];else for(var g=0;g0){var m=this.triShader;m.bind(),m.uniforms=c,this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind()}},p.drawPick=function(t){t=t||{};for(var e=this.gl,r=t.model||f,n=t.view||f,i=t.projection||f,a=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],o=0;o<3;++o)a[0][o]=Math.max(a[0][o],this.clipBounds[0][o]),a[1][o]=Math.min(a[1][o],this.clipBounds[1][o]);this._model=[].slice.call(r),this._view=[].slice.call(n),this._projection=[].slice.call(i),this._resolution=[e.drawingBufferWidth,e.drawingBufferHeight];var s={model:r,view:n,projection:i,clipBounds:a,tubeScale:this.tubeScale,vectorScale:this.vectorScale,coneScale:this.coneScale,coneOffset:this.coneOffset,pickId:this.pickId/255},l=this.pickShader;l.bind(),l.uniforms=s,this.triangleCount>0&&(this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind())},p.pick=function(t){if(!t)return null;if(t.id!==this.pickId)return null;var e=t.value[0]+256*t.value[1]+65536*t.value[2],r=this.cells[e],n=this.positions[r[1]].slice(0,3),i={position:n,dataCoordinate:n,index:Math.floor(r[1]/48)};return"cone"===this.traceType?i.index=Math.floor(r[1]/48):"streamtube"===this.traceType&&(i.intensity=this.intensity[r[1]],i.velocity=this.vectors[r[1]].slice(0,3),i.divergence=this.vectors[r[1]][3],i.index=e),i},p.dispose=function(){this.texture.dispose(),this.triShader.dispose(),this.pickShader.dispose(),this.triangleVAO.dispose(),this.trianglePositions.dispose(),this.triangleVectors.dispose(),this.triangleColors.dispose(),this.triangleUVs.dispose(),this.triangleIds.dispose()},e.exports=function(t,e,r){var n=r.shaders;1===arguments.length&&(t=(e=t).gl);var s=d(t,n),l=m(t,n),u=o(t,c(new Uint8Array([255,255,255,255]),[1,1,4]));u.generateMipmap(),u.minFilter=t.LINEAR_MIPMAP_LINEAR,u.magFilter=t.LINEAR;var f=i(t),p=i(t),g=i(t),v=i(t),y=i(t),x=a(t,[{buffer:f,type:t.FLOAT,size:4},{buffer:y,type:t.UNSIGNED_BYTE,size:4,normalized:!0},{buffer:g,type:t.FLOAT,size:4},{buffer:v,type:t.FLOAT,size:2},{buffer:p,type:t.FLOAT,size:4}]),b=new h(t,u,s,l,f,p,y,g,v,x,r.traceType||"cone");return b.update(e),b}},{colormap:132,"gl-buffer":257,"gl-mat4/invert":287,"gl-mat4/multiply":289,"gl-shader":323,"gl-texture2d":338,"gl-vao":343,ndarray:462}],260:[function(t,e,r){var n=t("glslify"),i=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the cone vertex and normal at the given index.\n//\n// The returned vertex is for a cone with its top at origin and height of 1.0,\n// pointing in the direction of the vector attribute.\n//\n// Each cone is made up of a top vertex, a center base vertex and base perimeter vertices.\n// These vertices are used to make up the triangles of the cone by the following:\n// segment + 0 top vertex\n// segment + 1 perimeter vertex a+1\n// segment + 2 perimeter vertex a\n// segment + 3 center base vertex\n// segment + 4 perimeter vertex a\n// segment + 5 perimeter vertex a+1\n// Where segment is the number of the radial segment * 6 and a is the angle at that radial segment.\n// To go from index to segment, floor(index / 6)\n// To go from segment to angle, 2*pi * (segment/segmentCount)\n// To go from index to segment index, index - (segment*6)\n//\nvec3 getConePosition(vec3 d, float rawIndex, float coneOffset, out vec3 normal) {\n\n const float segmentCount = 8.0;\n\n float index = rawIndex - floor(rawIndex /\n (segmentCount * 6.0)) *\n (segmentCount * 6.0);\n\n float segment = floor(0.001 + index/6.0);\n float segmentIndex = index - (segment*6.0);\n\n normal = -normalize(d);\n\n if (segmentIndex > 2.99 && segmentIndex < 3.01) {\n return mix(vec3(0.0), -d, coneOffset);\n }\n\n float nextAngle = (\n (segmentIndex > 0.99 && segmentIndex < 1.01) ||\n (segmentIndex > 4.99 && segmentIndex < 5.01)\n ) ? 1.0 : 0.0;\n float angle = 2.0 * 3.14159 * ((segment + nextAngle) / segmentCount);\n\n vec3 v1 = mix(d, vec3(0.0), coneOffset);\n vec3 v2 = v1 - d;\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d)*0.25;\n vec3 y = v * sin(angle) * length(d)*0.25;\n vec3 v3 = v2 + x + y;\n if (segmentIndex < 3.0) {\n vec3 tx = u * sin(angle);\n vec3 ty = v * -cos(angle);\n vec3 tangent = tx + ty;\n normal = normalize(cross(v3 - v1, tangent));\n }\n\n if (segmentIndex == 0.0) {\n return mix(d, vec3(0.0), coneOffset);\n }\n return v3;\n}\n\nattribute vec3 vector;\nattribute vec4 color, position;\nattribute vec2 uv;\n\nuniform float vectorScale, coneScale, coneOffset;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 eyePosition, lightPosition;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n // Scale the vector magnitude to stay constant with\n // model & view changes.\n vec3 normal;\n vec3 XYZ = getConePosition(mat3(model) * ((vectorScale * coneScale) * vector), position.w, coneOffset, normal);\n vec4 conePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * conePosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n // vec4 m_position = model * vec4(conePosition, 1.0);\n vec4 t_position = view * conePosition;\n gl_Position = projection * t_position;\n\n f_color = color;\n f_data = conePosition.xyz;\n f_position = position.xyz;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform sampler2D texture;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = f_color * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * opacity;\n}\n"]),o=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the cone vertex and normal at the given index.\n//\n// The returned vertex is for a cone with its top at origin and height of 1.0,\n// pointing in the direction of the vector attribute.\n//\n// Each cone is made up of a top vertex, a center base vertex and base perimeter vertices.\n// These vertices are used to make up the triangles of the cone by the following:\n// segment + 0 top vertex\n// segment + 1 perimeter vertex a+1\n// segment + 2 perimeter vertex a\n// segment + 3 center base vertex\n// segment + 4 perimeter vertex a\n// segment + 5 perimeter vertex a+1\n// Where segment is the number of the radial segment * 6 and a is the angle at that radial segment.\n// To go from index to segment, floor(index / 6)\n// To go from segment to angle, 2*pi * (segment/segmentCount)\n// To go from index to segment index, index - (segment*6)\n//\nvec3 getConePosition(vec3 d, float rawIndex, float coneOffset, out vec3 normal) {\n\n const float segmentCount = 8.0;\n\n float index = rawIndex - floor(rawIndex /\n (segmentCount * 6.0)) *\n (segmentCount * 6.0);\n\n float segment = floor(0.001 + index/6.0);\n float segmentIndex = index - (segment*6.0);\n\n normal = -normalize(d);\n\n if (segmentIndex > 2.99 && segmentIndex < 3.01) {\n return mix(vec3(0.0), -d, coneOffset);\n }\n\n float nextAngle = (\n (segmentIndex > 0.99 && segmentIndex < 1.01) ||\n (segmentIndex > 4.99 && segmentIndex < 5.01)\n ) ? 1.0 : 0.0;\n float angle = 2.0 * 3.14159 * ((segment + nextAngle) / segmentCount);\n\n vec3 v1 = mix(d, vec3(0.0), coneOffset);\n vec3 v2 = v1 - d;\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d)*0.25;\n vec3 y = v * sin(angle) * length(d)*0.25;\n vec3 v3 = v2 + x + y;\n if (segmentIndex < 3.0) {\n vec3 tx = u * sin(angle);\n vec3 ty = v * -cos(angle);\n vec3 tangent = tx + ty;\n normal = normalize(cross(v3 - v1, tangent));\n }\n\n if (segmentIndex == 0.0) {\n return mix(d, vec3(0.0), coneOffset);\n }\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform float vectorScale, coneScale, coneOffset;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n vec3 normal;\n vec3 XYZ = getConePosition(mat3(model) * ((vectorScale * coneScale) * vector.xyz), position.w, coneOffset, normal);\n vec4 conePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n gl_Position = projection * view * conePosition;\n f_id = id;\n f_position = position.xyz;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec4"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"vector",type:"vec3"}]},r.pickShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec4"},{name:"id",type:"vec4"},{name:"vector",type:"vec3"}]}},{glslify:424}],261:[function(t,e,r){e.exports={0:"NONE",1:"ONE",2:"LINE_LOOP",3:"LINE_STRIP",4:"TRIANGLES",5:"TRIANGLE_STRIP",6:"TRIANGLE_FAN",256:"DEPTH_BUFFER_BIT",512:"NEVER",513:"LESS",514:"EQUAL",515:"LEQUAL",516:"GREATER",517:"NOTEQUAL",518:"GEQUAL",519:"ALWAYS",768:"SRC_COLOR",769:"ONE_MINUS_SRC_COLOR",770:"SRC_ALPHA",771:"ONE_MINUS_SRC_ALPHA",772:"DST_ALPHA",773:"ONE_MINUS_DST_ALPHA",774:"DST_COLOR",775:"ONE_MINUS_DST_COLOR",776:"SRC_ALPHA_SATURATE",1024:"STENCIL_BUFFER_BIT",1028:"FRONT",1029:"BACK",1032:"FRONT_AND_BACK",1280:"INVALID_ENUM",1281:"INVALID_VALUE",1282:"INVALID_OPERATION",1285:"OUT_OF_MEMORY",1286:"INVALID_FRAMEBUFFER_OPERATION",2304:"CW",2305:"CCW",2849:"LINE_WIDTH",2884:"CULL_FACE",2885:"CULL_FACE_MODE",2886:"FRONT_FACE",2928:"DEPTH_RANGE",2929:"DEPTH_TEST",2930:"DEPTH_WRITEMASK",2931:"DEPTH_CLEAR_VALUE",2932:"DEPTH_FUNC",2960:"STENCIL_TEST",2961:"STENCIL_CLEAR_VALUE",2962:"STENCIL_FUNC",2963:"STENCIL_VALUE_MASK",2964:"STENCIL_FAIL",2965:"STENCIL_PASS_DEPTH_FAIL",2966:"STENCIL_PASS_DEPTH_PASS",2967:"STENCIL_REF",2968:"STENCIL_WRITEMASK",2978:"VIEWPORT",3024:"DITHER",3042:"BLEND",3088:"SCISSOR_BOX",3089:"SCISSOR_TEST",3106:"COLOR_CLEAR_VALUE",3107:"COLOR_WRITEMASK",3317:"UNPACK_ALIGNMENT",3333:"PACK_ALIGNMENT",3379:"MAX_TEXTURE_SIZE",3386:"MAX_VIEWPORT_DIMS",3408:"SUBPIXEL_BITS",3410:"RED_BITS",3411:"GREEN_BITS",3412:"BLUE_BITS",3413:"ALPHA_BITS",3414:"DEPTH_BITS",3415:"STENCIL_BITS",3553:"TEXTURE_2D",4352:"DONT_CARE",4353:"FASTEST",4354:"NICEST",5120:"BYTE",5121:"UNSIGNED_BYTE",5122:"SHORT",5123:"UNSIGNED_SHORT",5124:"INT",5125:"UNSIGNED_INT",5126:"FLOAT",5386:"INVERT",5890:"TEXTURE",6401:"STENCIL_INDEX",6402:"DEPTH_COMPONENT",6406:"ALPHA",6407:"RGB",6408:"RGBA",6409:"LUMINANCE",6410:"LUMINANCE_ALPHA",7680:"KEEP",7681:"REPLACE",7682:"INCR",7683:"DECR",7936:"VENDOR",7937:"RENDERER",7938:"VERSION",9728:"NEAREST",9729:"LINEAR",9984:"NEAREST_MIPMAP_NEAREST",9985:"LINEAR_MIPMAP_NEAREST",9986:"NEAREST_MIPMAP_LINEAR",9987:"LINEAR_MIPMAP_LINEAR",10240:"TEXTURE_MAG_FILTER",10241:"TEXTURE_MIN_FILTER",10242:"TEXTURE_WRAP_S",10243:"TEXTURE_WRAP_T",10497:"REPEAT",10752:"POLYGON_OFFSET_UNITS",16384:"COLOR_BUFFER_BIT",32769:"CONSTANT_COLOR",32770:"ONE_MINUS_CONSTANT_COLOR",32771:"CONSTANT_ALPHA",32772:"ONE_MINUS_CONSTANT_ALPHA",32773:"BLEND_COLOR",32774:"FUNC_ADD",32777:"BLEND_EQUATION_RGB",32778:"FUNC_SUBTRACT",32779:"FUNC_REVERSE_SUBTRACT",32819:"UNSIGNED_SHORT_4_4_4_4",32820:"UNSIGNED_SHORT_5_5_5_1",32823:"POLYGON_OFFSET_FILL",32824:"POLYGON_OFFSET_FACTOR",32854:"RGBA4",32855:"RGB5_A1",32873:"TEXTURE_BINDING_2D",32926:"SAMPLE_ALPHA_TO_COVERAGE",32928:"SAMPLE_COVERAGE",32936:"SAMPLE_BUFFERS",32937:"SAMPLES",32938:"SAMPLE_COVERAGE_VALUE",32939:"SAMPLE_COVERAGE_INVERT",32968:"BLEND_DST_RGB",32969:"BLEND_SRC_RGB",32970:"BLEND_DST_ALPHA",32971:"BLEND_SRC_ALPHA",33071:"CLAMP_TO_EDGE",33170:"GENERATE_MIPMAP_HINT",33189:"DEPTH_COMPONENT16",33306:"DEPTH_STENCIL_ATTACHMENT",33635:"UNSIGNED_SHORT_5_6_5",33648:"MIRRORED_REPEAT",33901:"ALIASED_POINT_SIZE_RANGE",33902:"ALIASED_LINE_WIDTH_RANGE",33984:"TEXTURE0",33985:"TEXTURE1",33986:"TEXTURE2",33987:"TEXTURE3",33988:"TEXTURE4",33989:"TEXTURE5",33990:"TEXTURE6",33991:"TEXTURE7",33992:"TEXTURE8",33993:"TEXTURE9",33994:"TEXTURE10",33995:"TEXTURE11",33996:"TEXTURE12",33997:"TEXTURE13",33998:"TEXTURE14",33999:"TEXTURE15",34e3:"TEXTURE16",34001:"TEXTURE17",34002:"TEXTURE18",34003:"TEXTURE19",34004:"TEXTURE20",34005:"TEXTURE21",34006:"TEXTURE22",34007:"TEXTURE23",34008:"TEXTURE24",34009:"TEXTURE25",34010:"TEXTURE26",34011:"TEXTURE27",34012:"TEXTURE28",34013:"TEXTURE29",34014:"TEXTURE30",34015:"TEXTURE31",34016:"ACTIVE_TEXTURE",34024:"MAX_RENDERBUFFER_SIZE",34041:"DEPTH_STENCIL",34055:"INCR_WRAP",34056:"DECR_WRAP",34067:"TEXTURE_CUBE_MAP",34068:"TEXTURE_BINDING_CUBE_MAP",34069:"TEXTURE_CUBE_MAP_POSITIVE_X",34070:"TEXTURE_CUBE_MAP_NEGATIVE_X",34071:"TEXTURE_CUBE_MAP_POSITIVE_Y",34072:"TEXTURE_CUBE_MAP_NEGATIVE_Y",34073:"TEXTURE_CUBE_MAP_POSITIVE_Z",34074:"TEXTURE_CUBE_MAP_NEGATIVE_Z",34076:"MAX_CUBE_MAP_TEXTURE_SIZE",34338:"VERTEX_ATTRIB_ARRAY_ENABLED",34339:"VERTEX_ATTRIB_ARRAY_SIZE",34340:"VERTEX_ATTRIB_ARRAY_STRIDE",34341:"VERTEX_ATTRIB_ARRAY_TYPE",34342:"CURRENT_VERTEX_ATTRIB",34373:"VERTEX_ATTRIB_ARRAY_POINTER",34466:"NUM_COMPRESSED_TEXTURE_FORMATS",34467:"COMPRESSED_TEXTURE_FORMATS",34660:"BUFFER_SIZE",34661:"BUFFER_USAGE",34816:"STENCIL_BACK_FUNC",34817:"STENCIL_BACK_FAIL",34818:"STENCIL_BACK_PASS_DEPTH_FAIL",34819:"STENCIL_BACK_PASS_DEPTH_PASS",34877:"BLEND_EQUATION_ALPHA",34921:"MAX_VERTEX_ATTRIBS",34922:"VERTEX_ATTRIB_ARRAY_NORMALIZED",34930:"MAX_TEXTURE_IMAGE_UNITS",34962:"ARRAY_BUFFER",34963:"ELEMENT_ARRAY_BUFFER",34964:"ARRAY_BUFFER_BINDING",34965:"ELEMENT_ARRAY_BUFFER_BINDING",34975:"VERTEX_ATTRIB_ARRAY_BUFFER_BINDING",35040:"STREAM_DRAW",35044:"STATIC_DRAW",35048:"DYNAMIC_DRAW",35632:"FRAGMENT_SHADER",35633:"VERTEX_SHADER",35660:"MAX_VERTEX_TEXTURE_IMAGE_UNITS",35661:"MAX_COMBINED_TEXTURE_IMAGE_UNITS",35663:"SHADER_TYPE",35664:"FLOAT_VEC2",35665:"FLOAT_VEC3",35666:"FLOAT_VEC4",35667:"INT_VEC2",35668:"INT_VEC3",35669:"INT_VEC4",35670:"BOOL",35671:"BOOL_VEC2",35672:"BOOL_VEC3",35673:"BOOL_VEC4",35674:"FLOAT_MAT2",35675:"FLOAT_MAT3",35676:"FLOAT_MAT4",35678:"SAMPLER_2D",35680:"SAMPLER_CUBE",35712:"DELETE_STATUS",35713:"COMPILE_STATUS",35714:"LINK_STATUS",35715:"VALIDATE_STATUS",35716:"INFO_LOG_LENGTH",35717:"ATTACHED_SHADERS",35718:"ACTIVE_UNIFORMS",35719:"ACTIVE_UNIFORM_MAX_LENGTH",35720:"SHADER_SOURCE_LENGTH",35721:"ACTIVE_ATTRIBUTES",35722:"ACTIVE_ATTRIBUTE_MAX_LENGTH",35724:"SHADING_LANGUAGE_VERSION",35725:"CURRENT_PROGRAM",36003:"STENCIL_BACK_REF",36004:"STENCIL_BACK_VALUE_MASK",36005:"STENCIL_BACK_WRITEMASK",36006:"FRAMEBUFFER_BINDING",36007:"RENDERBUFFER_BINDING",36048:"FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE",36049:"FRAMEBUFFER_ATTACHMENT_OBJECT_NAME",36050:"FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL",36051:"FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE",36053:"FRAMEBUFFER_COMPLETE",36054:"FRAMEBUFFER_INCOMPLETE_ATTACHMENT",36055:"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT",36057:"FRAMEBUFFER_INCOMPLETE_DIMENSIONS",36061:"FRAMEBUFFER_UNSUPPORTED",36064:"COLOR_ATTACHMENT0",36096:"DEPTH_ATTACHMENT",36128:"STENCIL_ATTACHMENT",36160:"FRAMEBUFFER",36161:"RENDERBUFFER",36162:"RENDERBUFFER_WIDTH",36163:"RENDERBUFFER_HEIGHT",36164:"RENDERBUFFER_INTERNAL_FORMAT",36168:"STENCIL_INDEX8",36176:"RENDERBUFFER_RED_SIZE",36177:"RENDERBUFFER_GREEN_SIZE",36178:"RENDERBUFFER_BLUE_SIZE",36179:"RENDERBUFFER_ALPHA_SIZE",36180:"RENDERBUFFER_DEPTH_SIZE",36181:"RENDERBUFFER_STENCIL_SIZE",36194:"RGB565",36336:"LOW_FLOAT",36337:"MEDIUM_FLOAT",36338:"HIGH_FLOAT",36339:"LOW_INT",36340:"MEDIUM_INT",36341:"HIGH_INT",36346:"SHADER_COMPILER",36347:"MAX_VERTEX_UNIFORM_VECTORS",36348:"MAX_VARYING_VECTORS",36349:"MAX_FRAGMENT_UNIFORM_VECTORS",37440:"UNPACK_FLIP_Y_WEBGL",37441:"UNPACK_PREMULTIPLY_ALPHA_WEBGL",37442:"CONTEXT_LOST_WEBGL",37443:"UNPACK_COLORSPACE_CONVERSION_WEBGL",37444:"BROWSER_DEFAULT_WEBGL"}},{}],262:[function(t,e,r){var n=t("./1.0/numbers");e.exports=function(t){return n[t]}},{"./1.0/numbers":261}],263:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl,r=n(e),o=i(e,[{buffer:r,type:e.FLOAT,size:3,offset:0,stride:40},{buffer:r,type:e.FLOAT,size:4,offset:12,stride:40},{buffer:r,type:e.FLOAT,size:3,offset:28,stride:40}]),l=a(e);l.attributes.position.location=0,l.attributes.color.location=1,l.attributes.offset.location=2;var c=new s(e,r,o,l);return c.update(t),c};var n=t("gl-buffer"),i=t("gl-vao"),a=t("./shaders/index"),o=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function s(t,e,r,n){this.gl=t,this.shader=n,this.buffer=e,this.vao=r,this.pixelRatio=1,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.lineWidth=[1,1,1],this.capSize=[10,10,10],this.lineCount=[0,0,0],this.lineOffset=[0,0,0],this.opacity=1,this.hasAlpha=!1}var l=s.prototype;function c(t,e){for(var r=0;r<3;++r)t[0][r]=Math.min(t[0][r],e[r]),t[1][r]=Math.max(t[1][r],e[r])}l.isOpaque=function(){return!this.hasAlpha},l.isTransparent=function(){return this.hasAlpha},l.drawTransparent=l.draw=function(t){var e=this.gl,r=this.shader.uniforms;this.shader.bind();var n=r.view=t.view||o,i=r.projection=t.projection||o;r.model=t.model||o,r.clipBounds=this.clipBounds,r.opacity=this.opacity;var a=n[12],s=n[13],l=n[14],c=n[15],u=(t._ortho||!1?2:1)*this.pixelRatio*(i[3]*a+i[7]*s+i[11]*l+i[15]*c)/e.drawingBufferHeight;this.vao.bind();for(var f=0;f<3;++f)e.lineWidth(this.lineWidth[f]*this.pixelRatio),r.capSize=this.capSize[f]*u,this.lineCount[f]&&e.drawArrays(e.LINES,this.lineOffset[f],this.lineCount[f]);this.vao.unbind()};var u=function(){for(var t=new Array(3),e=0;e<3;++e){for(var r=[],n=1;n<=2;++n)for(var i=-1;i<=1;i+=2){var a=[0,0,0];a[(n+e)%3]=i,r.push(a)}t[e]=r}return t}();function f(t,e,r,n){for(var i=u[n],a=0;a0)(m=u.slice())[s]+=p[1][s],i.push(u[0],u[1],u[2],d[0],d[1],d[2],d[3],0,0,0,m[0],m[1],m[2],d[0],d[1],d[2],d[3],0,0,0),c(this.bounds,m),o+=2+f(i,m,d,s)}}this.lineCount[s]=o-this.lineOffset[s]}this.buffer.update(i)}},l.dispose=function(){this.shader.dispose(),this.buffer.dispose(),this.vao.dispose()}},{"./shaders/index":264,"gl-buffer":257,"gl-vao":343}],264:[function(t,e,r){"use strict";var n=t("glslify"),i=t("gl-shader"),a=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position, offset;\nattribute vec4 color;\nuniform mat4 model, view, projection;\nuniform float capSize;\nvarying vec4 fragColor;\nvarying vec3 fragPosition;\n\nvoid main() {\n vec4 worldPosition = model * vec4(position, 1.0);\n worldPosition = (worldPosition / worldPosition.w) + vec4(capSize * offset, 0.0);\n gl_Position = projection * view * worldPosition;\n fragColor = color;\n fragPosition = position;\n}"]),o=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float opacity;\nvarying vec3 fragPosition;\nvarying vec4 fragColor;\n\nvoid main() {\n if (\n outOfRange(clipBounds[0], clipBounds[1], fragPosition) ||\n fragColor.a * opacity == 0.\n ) discard;\n\n gl_FragColor = opacity * fragColor;\n}"]);e.exports=function(t){return i(t,a,o,null,[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"offset",type:"vec3"}])}},{"gl-shader":323,glslify:424}],265:[function(t,e,r){"use strict";var n=t("gl-texture2d");e.exports=function(t,e,r,n){i||(i=t.FRAMEBUFFER_UNSUPPORTED,a=t.FRAMEBUFFER_INCOMPLETE_ATTACHMENT,o=t.FRAMEBUFFER_INCOMPLETE_DIMENSIONS,s=t.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT);var c=t.getExtension("WEBGL_draw_buffers");!l&&c&&function(t,e){var r=t.getParameter(e.MAX_COLOR_ATTACHMENTS_WEBGL);l=new Array(r+1);for(var n=0;n<=r;++n){for(var i=new Array(r),a=0;au||r<0||r>u)throw new Error("gl-fbo: Parameters are too large for FBO");var f=1;if("color"in(n=n||{})){if((f=Math.max(0|n.color,0))<0)throw new Error("gl-fbo: Must specify a nonnegative number of colors");if(f>1){if(!c)throw new Error("gl-fbo: Multiple draw buffer extension not supported");if(f>t.getParameter(c.MAX_COLOR_ATTACHMENTS_WEBGL))throw new Error("gl-fbo: Context does not support "+f+" draw buffers")}}var h=t.UNSIGNED_BYTE,p=t.getExtension("OES_texture_float");if(n.float&&f>0){if(!p)throw new Error("gl-fbo: Context does not support floating point textures");h=t.FLOAT}else n.preferFloat&&f>0&&p&&(h=t.FLOAT);var m=!0;"depth"in n&&(m=!!n.depth);var g=!1;"stencil"in n&&(g=!!n.stencil);return new d(t,e,r,h,f,m,g,c)};var i,a,o,s,l=null;function c(t){return[t.getParameter(t.FRAMEBUFFER_BINDING),t.getParameter(t.RENDERBUFFER_BINDING),t.getParameter(t.TEXTURE_BINDING_2D)]}function u(t,e){t.bindFramebuffer(t.FRAMEBUFFER,e[0]),t.bindRenderbuffer(t.RENDERBUFFER,e[1]),t.bindTexture(t.TEXTURE_2D,e[2])}function f(t){switch(t){case i:throw new Error("gl-fbo: Framebuffer unsupported");case a:throw new Error("gl-fbo: Framebuffer incomplete attachment");case o:throw new Error("gl-fbo: Framebuffer incomplete dimensions");case s:throw new Error("gl-fbo: Framebuffer incomplete missing attachment");default:throw new Error("gl-fbo: Framebuffer failed for unspecified reason")}}function h(t,e,r,i,a,o){if(!i)return null;var s=n(t,e,r,a,i);return s.magFilter=t.NEAREST,s.minFilter=t.NEAREST,s.mipSamples=1,s.bind(),t.framebufferTexture2D(t.FRAMEBUFFER,o,t.TEXTURE_2D,s.handle,0),s}function p(t,e,r,n,i){var a=t.createRenderbuffer();return t.bindRenderbuffer(t.RENDERBUFFER,a),t.renderbufferStorage(t.RENDERBUFFER,n,e,r),t.framebufferRenderbuffer(t.FRAMEBUFFER,i,t.RENDERBUFFER,a),a}function d(t,e,r,n,i,a,o,s){this.gl=t,this._shape=[0|e,0|r],this._destroyed=!1,this._ext=s,this.color=new Array(i);for(var d=0;d1&&s.drawBuffersWEBGL(l[o]);var y=r.getExtension("WEBGL_depth_texture");y?d?t.depth=h(r,i,a,y.UNSIGNED_INT_24_8_WEBGL,r.DEPTH_STENCIL,r.DEPTH_STENCIL_ATTACHMENT):m&&(t.depth=h(r,i,a,r.UNSIGNED_SHORT,r.DEPTH_COMPONENT,r.DEPTH_ATTACHMENT)):m&&d?t._depth_rb=p(r,i,a,r.DEPTH_STENCIL,r.DEPTH_STENCIL_ATTACHMENT):m?t._depth_rb=p(r,i,a,r.DEPTH_COMPONENT16,r.DEPTH_ATTACHMENT):d&&(t._depth_rb=p(r,i,a,r.STENCIL_INDEX,r.STENCIL_ATTACHMENT));var x=r.checkFramebufferStatus(r.FRAMEBUFFER);if(x!==r.FRAMEBUFFER_COMPLETE){t._destroyed=!0,r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteFramebuffer(t.handle),t.handle=null,t.depth&&(t.depth.dispose(),t.depth=null),t._depth_rb&&(r.deleteRenderbuffer(t._depth_rb),t._depth_rb=null);for(v=0;vi||r<0||r>i)throw new Error("gl-fbo: Can't resize FBO, invalid dimensions");t._shape[0]=e,t._shape[1]=r;for(var a=c(n),o=0;o>8*p&255;this.pickOffset=r,i.bind();var d=i.uniforms;d.viewTransform=t,d.pickOffset=e,d.shape=this.shape;var m=i.attributes;return this.positionBuffer.bind(),m.position.pointer(),this.weightBuffer.bind(),m.weight.pointer(s.UNSIGNED_BYTE,!1),this.idBuffer.bind(),m.pickId.pointer(s.UNSIGNED_BYTE,!1),s.drawArrays(s.TRIANGLES,0,o),r+this.shape[0]*this.shape[1]}}}(),f.pick=function(t,e,r){var n=this.pickOffset,i=this.shape[0]*this.shape[1];if(r=n+i)return null;var a=r-n,o=this.xData,s=this.yData;return{object:this,pointId:a,dataCoord:[o[a%this.shape[0]],s[a/this.shape[0]|0]]}},f.update=function(t){var e=(t=t||{}).shape||[0,0],r=t.x||i(e[0]),o=t.y||i(e[1]),s=t.z||new Float32Array(e[0]*e[1]),l=!1!==t.zsmooth;this.xData=r,this.yData=o;var c,u,f,p,d=t.colorLevels||[0],m=t.colorValues||[0,0,0,1],g=d.length,v=this.bounds;l?(c=v[0]=r[0],u=v[1]=o[0],f=v[2]=r[r.length-1],p=v[3]=o[o.length-1]):(c=v[0]=r[0]+(r[1]-r[0])/2,u=v[1]=o[0]+(o[1]-o[0])/2,f=v[2]=r[r.length-1]+(r[r.length-1]-r[r.length-2])/2,p=v[3]=o[o.length-1]+(o[o.length-1]-o[o.length-2])/2);var y=1/(f-c),x=1/(p-u),b=e[0],_=e[1];this.shape=[b,_];var w=(l?(b-1)*(_-1):b*_)*(h.length>>>1);this.numVertices=w;for(var T=a.mallocUint8(4*w),k=a.mallocFloat32(2*w),A=a.mallocUint8(2*w),M=a.mallocUint32(w),S=0,E=l?b-1:b,L=l?_-1:_,C=0;C max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform sampler2D dashTexture;\nuniform float dashScale;\nuniform float opacity;\n\nvarying vec3 worldPosition;\nvarying float pixelArcLength;\nvarying vec4 fragColor;\n\nvoid main() {\n if (\n outOfRange(clipBounds[0], clipBounds[1], worldPosition) ||\n fragColor.a * opacity == 0.\n ) discard;\n\n float dashWeight = texture2D(dashTexture, vec2(dashScale * pixelArcLength, 0)).r;\n if(dashWeight < 0.5) {\n discard;\n }\n gl_FragColor = fragColor * opacity;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\n#define FLOAT_MAX 1.70141184e38\n#define FLOAT_MIN 1.17549435e-38\n\n// https://github.com/mikolalysenko/glsl-read-float/blob/master/index.glsl\nvec4 packFloat(float v) {\n float av = abs(v);\n\n //Handle special cases\n if(av < FLOAT_MIN) {\n return vec4(0.0, 0.0, 0.0, 0.0);\n } else if(v > FLOAT_MAX) {\n return vec4(127.0, 128.0, 0.0, 0.0) / 255.0;\n } else if(v < -FLOAT_MAX) {\n return vec4(255.0, 128.0, 0.0, 0.0) / 255.0;\n }\n\n vec4 c = vec4(0,0,0,0);\n\n //Compute exponent and mantissa\n float e = floor(log2(av));\n float m = av * pow(2.0, -e) - 1.0;\n\n //Unpack mantissa\n c[1] = floor(128.0 * m);\n m -= c[1] / 128.0;\n c[2] = floor(32768.0 * m);\n m -= c[2] / 32768.0;\n c[3] = floor(8388608.0 * m);\n\n //Unpack exponent\n float ebias = e + 127.0;\n c[0] = floor(ebias / 2.0);\n ebias -= c[0] * 2.0;\n c[1] += floor(ebias) * 128.0;\n\n //Unpack sign bit\n c[0] += 128.0 * step(0.0, -v);\n\n //Scale back to range\n return c / 255.0;\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform float pickId;\nuniform vec3 clipBounds[2];\n\nvarying vec3 worldPosition;\nvarying float pixelArcLength;\nvarying vec4 fragColor;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], worldPosition)) discard;\n\n gl_FragColor = vec4(pickId/255.0, packFloat(pixelArcLength).xyz);\n}"]),l=[{name:"position",type:"vec3"},{name:"nextPosition",type:"vec3"},{name:"arcLength",type:"float"},{name:"lineWidth",type:"float"},{name:"color",type:"vec4"}];r.createShader=function(t){return i(t,a,o,null,l)},r.createPickShader=function(t){return i(t,a,s,null,l)}},{"gl-shader":323,glslify:424}],270:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl||t.scene&&t.scene.gl,r=f(e);r.attributes.position.location=0,r.attributes.nextPosition.location=1,r.attributes.arcLength.location=2,r.attributes.lineWidth.location=3,r.attributes.color.location=4;var o=h(e);o.attributes.position.location=0,o.attributes.nextPosition.location=1,o.attributes.arcLength.location=2,o.attributes.lineWidth.location=3,o.attributes.color.location=4;for(var s=n(e),l=i(e,[{buffer:s,size:3,offset:0,stride:48},{buffer:s,size:3,offset:12,stride:48},{buffer:s,size:1,offset:24,stride:48},{buffer:s,size:1,offset:28,stride:48},{buffer:s,size:4,offset:32,stride:48}]),u=c(new Array(1024),[256,1,4]),p=0;p<1024;++p)u.data[p]=255;var d=a(e,u);d.wrap=e.REPEAT;var m=new v(e,r,o,s,l,d);return m.update(t),m};var n=t("gl-buffer"),i=t("gl-vao"),a=t("gl-texture2d"),o=new Uint8Array(4),s=new Float32Array(o.buffer);var l=t("binary-search-bounds"),c=t("ndarray"),u=t("./lib/shaders"),f=u.createShader,h=u.createPickShader,p=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function d(t,e){for(var r=0,n=0;n<3;++n){var i=t[n]-e[n];r+=i*i}return Math.sqrt(r)}function m(t){for(var e=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],r=0;r<3;++r)e[0][r]=Math.max(t[0][r],e[0][r]),e[1][r]=Math.min(t[1][r],e[1][r]);return e}function g(t,e,r,n){this.arcLength=t,this.position=e,this.index=r,this.dataCoordinate=n}function v(t,e,r,n,i,a){this.gl=t,this.shader=e,this.pickShader=r,this.buffer=n,this.vao=i,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.points=[],this.arcLength=[],this.vertexCount=0,this.bounds=[[0,0,0],[0,0,0]],this.pickId=0,this.lineWidth=1,this.texture=a,this.dashScale=1,this.opacity=1,this.hasAlpha=!1,this.dirty=!0,this.pixelRatio=1}var y=v.prototype;y.isTransparent=function(){return this.hasAlpha},y.isOpaque=function(){return!this.hasAlpha},y.pickSlots=1,y.setPickBase=function(t){this.pickId=t},y.drawTransparent=y.draw=function(t){if(this.vertexCount){var e=this.gl,r=this.shader,n=this.vao;r.bind(),r.uniforms={model:t.model||p,view:t.view||p,projection:t.projection||p,clipBounds:m(this.clipBounds),dashTexture:this.texture.bind(),dashScale:this.dashScale/this.arcLength[this.arcLength.length-1],opacity:this.opacity,screenShape:[e.drawingBufferWidth,e.drawingBufferHeight],pixelRatio:this.pixelRatio},n.bind(),n.draw(e.TRIANGLE_STRIP,this.vertexCount),n.unbind()}},y.drawPick=function(t){if(this.vertexCount){var e=this.gl,r=this.pickShader,n=this.vao;r.bind(),r.uniforms={model:t.model||p,view:t.view||p,projection:t.projection||p,pickId:this.pickId,clipBounds:m(this.clipBounds),screenShape:[e.drawingBufferWidth,e.drawingBufferHeight],pixelRatio:this.pixelRatio},n.bind(),n.draw(e.TRIANGLE_STRIP,this.vertexCount),n.unbind()}},y.update=function(t){var e,r;this.dirty=!0;var n=!!t.connectGaps;"dashScale"in t&&(this.dashScale=t.dashScale),this.hasAlpha=!1,"opacity"in t&&(this.opacity=+t.opacity,this.opacity<1&&(this.hasAlpha=!0));var i=[],a=[],o=[],s=0,u=0,f=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],h=t.position||t.positions;if(h){var p=t.color||t.colors||[0,0,0,1],m=t.lineWidth||1,g=!1;t:for(e=1;e0){for(var w=0;w<24;++w)i.push(i[i.length-12]);u+=2,g=!0}continue t}f[0][r]=Math.min(f[0][r],b[r],_[r]),f[1][r]=Math.max(f[1][r],b[r],_[r])}Array.isArray(p[0])?(v=p.length>e-1?p[e-1]:p.length>0?p[p.length-1]:[0,0,0,1],y=p.length>e?p[e]:p.length>0?p[p.length-1]:[0,0,0,1]):v=y=p,3===v.length&&(v=[v[0],v[1],v[2],1]),3===y.length&&(y=[y[0],y[1],y[2],1]),!this.hasAlpha&&v[3]<1&&(this.hasAlpha=!0),x=Array.isArray(m)?m.length>e-1?m[e-1]:m.length>0?m[m.length-1]:[0,0,0,1]:m;var T=s;if(s+=d(b,_),g){for(r=0;r<2;++r)i.push(b[0],b[1],b[2],_[0],_[1],_[2],T,x,v[0],v[1],v[2],v[3]);u+=2,g=!1}i.push(b[0],b[1],b[2],_[0],_[1],_[2],T,x,v[0],v[1],v[2],v[3],b[0],b[1],b[2],_[0],_[1],_[2],T,-x,v[0],v[1],v[2],v[3],_[0],_[1],_[2],b[0],b[1],b[2],s,-x,y[0],y[1],y[2],y[3],_[0],_[1],_[2],b[0],b[1],b[2],s,x,y[0],y[1],y[2],y[3]),u+=4}}if(this.buffer.update(i),a.push(s),o.push(h[h.length-1].slice()),this.bounds=f,this.vertexCount=u,this.points=o,this.arcLength=a,"dashes"in t){var k=t.dashes.slice();for(k.unshift(0),e=1;e1.0001)return null;v+=g[f]}if(Math.abs(v-1)>.001)return null;return[h,s(t,g),g]}},{barycentric:81,"polytope-closest-point/lib/closest_point_2d.js":488}],302:[function(t,e,r){var n=t("glslify"),i=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position, normal;\nattribute vec4 color;\nattribute vec2 uv;\n\nuniform mat4 model\n , view\n , projection\n , inverseModel;\nuniform vec3 eyePosition\n , lightPosition;\n\nvarying vec3 f_normal\n , f_lightDirection\n , f_eyeDirection\n , f_data;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvec4 project(vec3 p) {\n return projection * view * model * vec4(p, 1.0);\n}\n\nvoid main() {\n gl_Position = project(position);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * vec4(position , 1.0);\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n f_color = color;\n f_data = position;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\n//#pragma glslify: beckmann = require(glsl-specular-beckmann) // used in gl-surface3d\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness\n , fresnel\n , kambient\n , kdiffuse\n , kspecular;\nuniform sampler2D texture;\n\nvarying vec3 f_normal\n , f_lightDirection\n , f_eyeDirection\n , f_data;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (f_color.a == 0.0 ||\n outOfRange(clipBounds[0], clipBounds[1], f_data)\n ) discard;\n\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n //float specular = max(0.0, beckmann(L, V, N, roughness)); // used in gl-surface3d\n\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = vec4(f_color.rgb, 1.0) * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * f_color.a;\n}\n"]),o=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 uv;\n\nuniform mat4 model, view, projection;\n\nvarying vec4 f_color;\nvarying vec3 f_data;\nvarying vec2 f_uv;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n f_color = color;\n f_data = position;\n f_uv = uv;\n}"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform sampler2D texture;\nuniform float opacity;\n\nvarying vec4 f_color;\nvarying vec3 f_data;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_data)) discard;\n\n gl_FragColor = f_color * texture2D(texture, f_uv) * opacity;\n}"]),l=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 uv;\nattribute float pointSize;\n\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0.0, 0.0 ,0.0 ,0.0);\n } else {\n gl_Position = projection * view * model * vec4(position, 1.0);\n }\n gl_PointSize = pointSize;\n f_color = color;\n f_uv = uv;\n}"]),c=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform sampler2D texture;\nuniform float opacity;\n\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n vec2 pointR = gl_PointCoord.xy - vec2(0.5, 0.5);\n if(dot(pointR, pointR) > 0.25) {\n discard;\n }\n gl_FragColor = f_color * texture2D(texture, f_uv) * opacity;\n}"]),u=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n f_id = id;\n f_position = position;\n}"]),f=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]),h=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute float pointSize;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n } else {\n gl_Position = projection * view * model * vec4(position, 1.0);\n gl_PointSize = pointSize;\n }\n f_id = id;\n f_position = position;\n}"]),p=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\n\nuniform mat4 model, view, projection;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n}"]),d=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec3 contourColor;\n\nvoid main() {\n gl_FragColor = vec4(contourColor, 1.0);\n}\n"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec3"},{name:"normal",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"}]},r.wireShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"}]},r.pointShader={vertex:l,fragment:c,attributes:[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"pointSize",type:"float"}]},r.pickShader={vertex:u,fragment:f,attributes:[{name:"position",type:"vec3"},{name:"id",type:"vec4"}]},r.pointPickShader={vertex:h,fragment:f,attributes:[{name:"position",type:"vec3"},{name:"pointSize",type:"float"},{name:"id",type:"vec4"}]},r.contourShader={vertex:p,fragment:d,attributes:[{name:"position",type:"vec3"}]}},{glslify:424}],303:[function(t,e,r){"use strict";var n=t("gl-shader"),i=t("gl-buffer"),a=t("gl-vao"),o=t("gl-texture2d"),s=t("normals"),l=t("gl-mat4/multiply"),c=t("gl-mat4/invert"),u=t("ndarray"),f=t("colormap"),h=t("simplicial-complex-contour"),p=t("typedarray-pool"),d=t("./lib/shaders"),m=t("./lib/closest-point"),g=d.meshShader,v=d.wireShader,y=d.pointShader,x=d.pickShader,b=d.pointPickShader,_=d.contourShader,w=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function T(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,T,k,A,M,S){this.gl=t,this.pixelRatio=1,this.cells=[],this.positions=[],this.intensity=[],this.texture=e,this.dirty=!0,this.triShader=r,this.lineShader=n,this.pointShader=i,this.pickShader=a,this.pointPickShader=o,this.contourShader=s,this.trianglePositions=l,this.triangleColors=u,this.triangleNormals=h,this.triangleUVs=f,this.triangleIds=c,this.triangleVAO=p,this.triangleCount=0,this.lineWidth=1,this.edgePositions=d,this.edgeColors=g,this.edgeUVs=v,this.edgeIds=m,this.edgeVAO=y,this.edgeCount=0,this.pointPositions=x,this.pointColors=_,this.pointUVs=T,this.pointSizes=k,this.pointIds=b,this.pointVAO=A,this.pointCount=0,this.contourLineWidth=1,this.contourPositions=M,this.contourVAO=S,this.contourCount=0,this.contourColor=[0,0,0],this.contourEnable=!0,this.pickVertex=!0,this.pickId=1,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.lightPosition=[1e5,1e5,0],this.ambientLight=.8,this.diffuseLight=.8,this.specularLight=2,this.roughness=.5,this.fresnel=1.5,this.opacity=1,this.hasAlpha=!1,this.opacityscale=!1,this._model=w,this._view=w,this._projection=w,this._resolution=[1,1]}var k=T.prototype;function A(t,e){if(!e)return 1;if(!e.length)return 1;for(var r=0;rt&&r>0){var n=(e[r][0]-t)/(e[r][0]-e[r-1][0]);return e[r][1]*(1-n)+n*e[r-1][1]}}return 1}function M(t){var e=n(t,g.vertex,g.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e.attributes.normal.location=4,e}function S(t){var e=n(t,v.vertex,v.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e}function E(t){var e=n(t,y.vertex,y.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e.attributes.pointSize.location=4,e}function L(t){var e=n(t,x.vertex,x.fragment);return e.attributes.position.location=0,e.attributes.id.location=1,e}function C(t){var e=n(t,b.vertex,b.fragment);return e.attributes.position.location=0,e.attributes.id.location=1,e.attributes.pointSize.location=4,e}function P(t){var e=n(t,_.vertex,_.fragment);return e.attributes.position.location=0,e}k.isOpaque=function(){return!this.hasAlpha},k.isTransparent=function(){return this.hasAlpha},k.pickSlots=1,k.setPickBase=function(t){this.pickId=t},k.highlight=function(t){if(t&&this.contourEnable){for(var e=h(this.cells,this.intensity,t.intensity),r=e.cells,n=e.vertexIds,i=e.vertexWeights,a=r.length,o=p.mallocFloat32(6*a),s=0,l=0;l0&&((f=this.triShader).bind(),f.uniforms=s,this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind());this.edgeCount>0&&this.lineWidth>0&&((f=this.lineShader).bind(),f.uniforms=s,this.edgeVAO.bind(),e.lineWidth(this.lineWidth*this.pixelRatio),e.drawArrays(e.LINES,0,2*this.edgeCount),this.edgeVAO.unbind());this.pointCount>0&&((f=this.pointShader).bind(),f.uniforms=s,this.pointVAO.bind(),e.drawArrays(e.POINTS,0,this.pointCount),this.pointVAO.unbind());this.contourEnable&&this.contourCount>0&&this.contourLineWidth>0&&((f=this.contourShader).bind(),f.uniforms=s,this.contourVAO.bind(),e.drawArrays(e.LINES,0,this.contourCount),this.contourVAO.unbind())},k.drawPick=function(t){t=t||{};for(var e=this.gl,r=t.model||w,n=t.view||w,i=t.projection||w,a=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],o=0;o<3;++o)a[0][o]=Math.max(a[0][o],this.clipBounds[0][o]),a[1][o]=Math.min(a[1][o],this.clipBounds[1][o]);this._model=[].slice.call(r),this._view=[].slice.call(n),this._projection=[].slice.call(i),this._resolution=[e.drawingBufferWidth,e.drawingBufferHeight];var s,l={model:r,view:n,projection:i,clipBounds:a,pickId:this.pickId/255};((s=this.pickShader).bind(),s.uniforms=l,this.triangleCount>0&&(this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind()),this.edgeCount>0&&(this.edgeVAO.bind(),e.lineWidth(this.lineWidth*this.pixelRatio),e.drawArrays(e.LINES,0,2*this.edgeCount),this.edgeVAO.unbind()),this.pointCount>0)&&((s=this.pointPickShader).bind(),s.uniforms=l,this.pointVAO.bind(),e.drawArrays(e.POINTS,0,this.pointCount),this.pointVAO.unbind())},k.pick=function(t){if(!t)return null;if(t.id!==this.pickId)return null;for(var e=t.value[0]+256*t.value[1]+65536*t.value[2],r=this.cells[e],n=this.positions,i=new Array(r.length),a=0;ai[k]&&(r.uniforms.dataAxis=c,r.uniforms.screenOffset=u,r.uniforms.color=g[t],r.uniforms.angle=v[t],a.drawArrays(a.TRIANGLES,i[k],i[A]-i[k]))),y[t]&&T&&(u[1^t]-=M*p*x[t],r.uniforms.dataAxis=f,r.uniforms.screenOffset=u,r.uniforms.color=b[t],r.uniforms.angle=_[t],a.drawArrays(a.TRIANGLES,w,T)),u[1^t]=M*s[2+(1^t)]-1,d[t+2]&&(u[1^t]+=M*p*m[t+2],ki[k]&&(r.uniforms.dataAxis=c,r.uniforms.screenOffset=u,r.uniforms.color=g[t+2],r.uniforms.angle=v[t+2],a.drawArrays(a.TRIANGLES,i[k],i[A]-i[k]))),y[t+2]&&T&&(u[1^t]+=M*p*x[t+2],r.uniforms.dataAxis=f,r.uniforms.screenOffset=u,r.uniforms.color=b[t+2],r.uniforms.angle=_[t+2],a.drawArrays(a.TRIANGLES,w,T))}),m.drawTitle=function(){var t=[0,0],e=[0,0];return function(){var r=this.plot,n=this.shader,i=r.gl,a=r.screenBox,o=r.titleCenter,s=r.titleAngle,l=r.titleColor,c=r.pixelRatio;if(this.titleCount){for(var u=0;u<2;++u)e[u]=2*(o[u]*c-a[u])/(a[2+u]-a[u])-1;n.bind(),n.uniforms.dataAxis=t,n.uniforms.screenOffset=e,n.uniforms.angle=s,n.uniforms.color=l,i.drawArrays(i.TRIANGLES,this.titleOffset,this.titleCount)}}}(),m.bind=(h=[0,0],p=[0,0],d=[0,0],function(){var t=this.plot,e=this.shader,r=t._tickBounds,n=t.dataBox,i=t.screenBox,a=t.viewBox;e.bind();for(var o=0;o<2;++o){var s=r[o],l=r[o+2]-s,c=.5*(n[o+2]+n[o]),u=n[o+2]-n[o],f=a[o],m=a[o+2]-f,g=i[o],v=i[o+2]-g;p[o]=2*l/u*m/v,h[o]=2*(s-c)/u*m/v}d[1]=2*t.pixelRatio/(i[3]-i[1]),d[0]=d[1]*(i[3]-i[1])/(i[2]-i[0]),e.uniforms.dataScale=p,e.uniforms.dataShift=h,e.uniforms.textScale=d,this.vbo.bind(),e.attributes.textCoordinate.pointer()}),m.update=function(t){var e,r,n,i,o,s=[],l=t.ticks,c=t.bounds;for(o=0;o<2;++o){var u=[Math.floor(s.length/3)],f=[-1/0],h=l[o];for(e=0;e=0){var m=e[d]-n[d]*(e[d+2]-e[d])/(n[d+2]-n[d]);0===d?o.drawLine(m,e[1],m,e[3],p[d],h[d]):o.drawLine(e[0],m,e[2],m,p[d],h[d])}}for(d=0;d=0;--t)this.objects[t].dispose();this.objects.length=0;for(t=this.overlays.length-1;t>=0;--t)this.overlays[t].dispose();this.overlays.length=0,this.gl=null},c.addObject=function(t){this.objects.indexOf(t)<0&&(this.objects.push(t),this.setDirty())},c.removeObject=function(t){for(var e=this.objects,r=0;rMath.abs(e))c.rotate(a,0,0,-t*r*Math.PI*d.rotateSpeed/window.innerWidth);else if(!d._ortho){var o=-d.zoomSpeed*i*e/window.innerHeight*(a-c.lastT())/20;c.pan(a,0,0,f*(Math.exp(o)-1))}}}),!0)},d.enableMouseListeners(),d};var n=t("right-now"),i=t("3d-view"),a=t("mouse-change"),o=t("mouse-wheel"),s=t("mouse-event-offset"),l=t("has-passive-events")},{"3d-view":55,"has-passive-events":426,"mouse-change":449,"mouse-event-offset":450,"mouse-wheel":452,"right-now":518}],311:[function(t,e,r){var n=t("glslify"),i=t("gl-shader"),a=n(["precision mediump float;\n#define GLSLIFY 1\nattribute vec2 position;\nvarying vec2 uv;\nvoid main() {\n uv = position;\n gl_Position = vec4(position, 0, 1);\n}"]),o=n(["precision mediump float;\n#define GLSLIFY 1\n\nuniform sampler2D accumBuffer;\nvarying vec2 uv;\n\nvoid main() {\n vec4 accum = texture2D(accumBuffer, 0.5 * (uv + 1.0));\n gl_FragColor = min(vec4(1,1,1,1), accum);\n}"]);e.exports=function(t){return i(t,a,o,null,[{name:"position",type:"vec2"}])}},{"gl-shader":323,glslify:424}],312:[function(t,e,r){"use strict";var n=t("./camera.js"),i=t("gl-axes3d"),a=t("gl-axes3d/properties"),o=t("gl-spikes3d"),s=t("gl-select-static"),l=t("gl-fbo"),c=t("a-big-triangle"),u=t("mouse-change"),f=t("gl-mat4/perspective"),h=t("gl-mat4/ortho"),p=t("./lib/shader"),d=t("is-mobile")({tablet:!0,featureDetect:!0});function m(){this.mouse=[-1,-1],this.screen=null,this.distance=1/0,this.index=null,this.dataCoordinate=null,this.dataPosition=null,this.object=null,this.data=null}function g(t){var e=Math.round(Math.log(Math.abs(t))/Math.log(10));if(e<0){var r=Math.round(Math.pow(10,-e));return Math.ceil(t*r)/r}if(e>0){r=Math.round(Math.pow(10,e));return Math.ceil(t/r)*r}return Math.ceil(t)}function v(t){return"boolean"!=typeof t||t}e.exports={createScene:function(t){(t=t||{}).camera=t.camera||{};var e=t.canvas;if(!e){if(e=document.createElement("canvas"),t.container)t.container.appendChild(e);else document.body.appendChild(e)}var r=t.gl;r||(t.glOptions&&(d=!!t.glOptions.preserveDrawingBuffer),r=function(t,e){var r=null;try{(r=t.getContext("webgl",e))||(r=t.getContext("experimental-webgl",e))}catch(t){return null}return r}(e,t.glOptions||{premultipliedAlpha:!0,antialias:!0,preserveDrawingBuffer:d}));if(!r)throw new Error("webgl not supported");var y=t.bounds||[[-10,-10,-10],[10,10,10]],x=new m,b=l(r,r.drawingBufferWidth,r.drawingBufferHeight,{preferFloat:!d}),_=p(r),w=t.cameraObject&&!0===t.cameraObject._ortho||t.camera.projection&&"orthographic"===t.camera.projection.type||!1,T={eye:t.camera.eye||[2,0,0],center:t.camera.center||[0,0,0],up:t.camera.up||[0,1,0],zoomMin:t.camera.zoomMax||.1,zoomMax:t.camera.zoomMin||100,mode:t.camera.mode||"turntable",_ortho:w},k=t.axes||{},A=i(r,k);A.enable=!k.disable;var M=t.spikes||{},S=o(r,M),E=[],L=[],C=[],P=[],I=!0,O=!0,z=new Array(16),D=new Array(16),R={view:null,projection:z,model:D,_ortho:!1},F=(O=!0,[r.drawingBufferWidth,r.drawingBufferHeight]),B=t.cameraObject||n(e,T),N={gl:r,contextLost:!1,pixelRatio:t.pixelRatio||1,canvas:e,selection:x,camera:B,axes:A,axesPixels:null,spikes:S,bounds:y,objects:E,shape:F,aspect:t.aspectRatio||[1,1,1],pickRadius:t.pickRadius||10,zNear:t.zNear||.01,zFar:t.zFar||1e3,fovy:t.fovy||Math.PI/4,clearColor:t.clearColor||[0,0,0,0],autoResize:v(t.autoResize),autoBounds:v(t.autoBounds),autoScale:!!t.autoScale,autoCenter:v(t.autoCenter),clipToBounds:v(t.clipToBounds),snapToData:!!t.snapToData,onselect:t.onselect||null,onrender:t.onrender||null,onclick:t.onclick||null,cameraParams:R,oncontextloss:null,mouseListener:null,_stopped:!1,getAspectratio:function(){return{x:this.aspect[0],y:this.aspect[1],z:this.aspect[2]}},setAspectratio:function(t){this.aspect[0]=t.x,this.aspect[1]=t.y,this.aspect[2]=t.z,O=!0},setBounds:function(t,e){this.bounds[0][t]=e.min,this.bounds[1][t]=e.max},setClearColor:function(t){this.clearColor=t},clearRGBA:function(){this.gl.clearColor(this.clearColor[0],this.clearColor[1],this.clearColor[2],this.clearColor[3]),this.gl.clear(this.gl.COLOR_BUFFER_BIT|this.gl.DEPTH_BUFFER_BIT)}},j=[r.drawingBufferWidth/N.pixelRatio|0,r.drawingBufferHeight/N.pixelRatio|0];function U(){if(!N._stopped&&N.autoResize){var t=e.parentNode,r=1,n=1;t&&t!==document.body?(r=t.clientWidth,n=t.clientHeight):(r=window.innerWidth,n=window.innerHeight);var i=0|Math.ceil(r*N.pixelRatio),a=0|Math.ceil(n*N.pixelRatio);if(i!==e.width||a!==e.height){e.width=i,e.height=a;var o=e.style;o.position=o.position||"absolute",o.left="0px",o.top="0px",o.width=r+"px",o.height=n+"px",I=!0}}}N.autoResize&&U();function V(){for(var t=E.length,e=P.length,n=0;n0&&0===C[e-1];)C.pop(),P.pop().dispose()}function H(){if(N.contextLost)return!0;r.isContextLost()&&(N.contextLost=!0,N.mouseListener.enabled=!1,N.selection.object=null,N.oncontextloss&&N.oncontextloss())}window.addEventListener("resize",U),N.update=function(t){N._stopped||(t=t||{},I=!0,O=!0)},N.add=function(t){N._stopped||(t.axes=A,E.push(t),L.push(-1),I=!0,O=!0,V())},N.remove=function(t){if(!N._stopped){var e=E.indexOf(t);e<0||(E.splice(e,1),L.pop(),I=!0,O=!0,V())}},N.dispose=function(){if(!N._stopped&&(N._stopped=!0,window.removeEventListener("resize",U),e.removeEventListener("webglcontextlost",H),N.mouseListener.enabled=!1,!N.contextLost)){A.dispose(),S.dispose();for(var t=0;tx.distance)continue;for(var c=0;c 1.0) {\n discard;\n }\n baseColor = mix(borderColor, color, step(radius, centerFraction));\n gl_FragColor = vec4(baseColor.rgb * baseColor.a, baseColor.a);\n }\n}\n"]),r.pickVertex=n(["precision mediump float;\n#define GLSLIFY 1\n\nattribute vec2 position;\nattribute vec4 pickId;\n\nuniform mat3 matrix;\nuniform float pointSize;\nuniform vec4 pickOffset;\n\nvarying vec4 fragId;\n\nvoid main() {\n vec3 hgPosition = matrix * vec3(position, 1);\n gl_Position = vec4(hgPosition.xy, 0, hgPosition.z);\n gl_PointSize = pointSize;\n\n vec4 id = pickId + pickOffset;\n id.y += floor(id.x / 256.0);\n id.x -= floor(id.x / 256.0) * 256.0;\n\n id.z += floor(id.y / 256.0);\n id.y -= floor(id.y / 256.0) * 256.0;\n\n id.w += floor(id.z / 256.0);\n id.z -= floor(id.z / 256.0) * 256.0;\n\n fragId = id;\n}\n"]),r.pickFragment=n(["precision mediump float;\n#define GLSLIFY 1\n\nvarying vec4 fragId;\n\nvoid main() {\n float radius = length(2.0 * gl_PointCoord.xy - 1.0);\n if(radius > 1.0) {\n discard;\n }\n gl_FragColor = fragId / 255.0;\n}\n"])},{glslify:424}],314:[function(t,e,r){"use strict";var n=t("gl-shader"),i=t("gl-buffer"),a=t("typedarray-pool"),o=t("./lib/shader");function s(t,e,r,n,i){this.plot=t,this.offsetBuffer=e,this.pickBuffer=r,this.shader=n,this.pickShader=i,this.sizeMin=.5,this.sizeMinCap=2,this.sizeMax=20,this.areaRatio=1,this.pointCount=0,this.color=[1,0,0,1],this.borderColor=[0,0,0,1],this.blend=!1,this.pickOffset=0,this.points=null}e.exports=function(t,e){var r=t.gl,a=i(r),l=i(r),c=n(r,o.pointVertex,o.pointFragment),u=n(r,o.pickVertex,o.pickFragment),f=new s(t,a,l,c,u);return f.update(e),t.addObject(f),f};var l,c,u=s.prototype;u.dispose=function(){this.shader.dispose(),this.pickShader.dispose(),this.offsetBuffer.dispose(),this.pickBuffer.dispose(),this.plot.removeObject(this)},u.update=function(t){var e;function r(e,r){return e in t?t[e]:r}t=t||{},this.sizeMin=r("sizeMin",.5),this.sizeMax=r("sizeMax",20),this.color=r("color",[1,0,0,1]).slice(),this.areaRatio=r("areaRatio",1),this.borderColor=r("borderColor",[0,0,0,1]).slice(),this.blend=r("blend",!1);var n=t.positions.length>>>1,i=t.positions instanceof Float32Array,o=t.idToIndex instanceof Int32Array&&t.idToIndex.length>=n,s=t.positions,l=i?s:a.mallocFloat32(s.length),c=o?t.idToIndex:a.mallocInt32(n);if(i||l.set(s),!o)for(l.set(s),e=0;e>>1;for(r=0;r=e[0]&&a<=e[2]&&o>=e[1]&&o<=e[3]&&n++}return n}(this.points,i),u=this.plot.pickPixelRatio*Math.max(Math.min(this.sizeMinCap,this.sizeMin),Math.min(this.sizeMax,this.sizeMax/Math.pow(s,.33333)));l[0]=2/a,l[4]=2/o,l[6]=-2*i[0]/a-1,l[7]=-2*i[1]/o-1,this.offsetBuffer.bind(),r.bind(),r.attributes.position.pointer(),r.uniforms.matrix=l,r.uniforms.color=this.color,r.uniforms.borderColor=this.borderColor,r.uniforms.pointCloud=u<5,r.uniforms.pointSize=u,r.uniforms.centerFraction=Math.min(1,Math.max(0,Math.sqrt(1-this.areaRatio))),e&&(c[0]=255&t,c[1]=t>>8&255,c[2]=t>>16&255,c[3]=t>>24&255,this.pickBuffer.bind(),r.attributes.pickId.pointer(n.UNSIGNED_BYTE),r.uniforms.pickOffset=c,this.pickOffset=t);var f=n.getParameter(n.BLEND),h=n.getParameter(n.DITHER);return f&&!this.blend&&n.disable(n.BLEND),h&&n.disable(n.DITHER),n.drawArrays(n.POINTS,0,this.pointCount),f&&!this.blend&&n.enable(n.BLEND),h&&n.enable(n.DITHER),t+this.pointCount}),u.draw=u.unifiedDraw,u.drawPick=u.unifiedDraw,u.pick=function(t,e,r){var n=this.pickOffset,i=this.pointCount;if(r=n+i)return null;var a=r-n,o=this.points;return{object:this,pointId:a,dataCoord:[o[2*a],o[2*a+1]]}}},{"./lib/shader":313,"gl-buffer":257,"gl-shader":323,"typedarray-pool":590}],315:[function(t,e,r){e.exports=function(t,e,r,n){var i,a,o,s,l,c=e[0],u=e[1],f=e[2],h=e[3],p=r[0],d=r[1],m=r[2],g=r[3];(a=c*p+u*d+f*m+h*g)<0&&(a=-a,p=-p,d=-d,m=-m,g=-g);1-a>1e-6?(i=Math.acos(a),o=Math.sin(i),s=Math.sin((1-n)*i)/o,l=Math.sin(n*i)/o):(s=1-n,l=n);return t[0]=s*c+l*p,t[1]=s*u+l*d,t[2]=s*f+l*m,t[3]=s*h+l*g,t}},{}],316:[function(t,e,r){"use strict";e.exports=function(t){return t||0===t?t.toString():""}},{}],317:[function(t,e,r){"use strict";var n=t("vectorize-text");e.exports=function(t,e,r){var a=i[e];a||(a=i[e]={});if(t in a)return a[t];var o={textAlign:"center",textBaseline:"middle",lineHeight:1,font:e,lineSpacing:1.25,styletags:{breaklines:!0,bolds:!0,italics:!0,subscripts:!0,superscripts:!0},triangles:!0},s=n(t,o);o.triangles=!1;var l,c,u=n(t,o);if(r&&1!==r){for(l=0;l max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform vec4 highlightId;\nuniform float highlightScale;\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float scale = 1.0;\n if(distance(highlightId, id) < 0.0001) {\n scale = highlightScale;\n }\n\n vec4 worldPosition = model * vec4(position, 1);\n vec4 viewPosition = view * worldPosition;\n viewPosition = viewPosition / viewPosition.w;\n vec4 clipPosition = projection * (viewPosition + scale * vec4(glyph.x, -glyph.y, 0, 0));\n\n gl_Position = clipPosition;\n interpColor = color;\n pickId = id;\n dataCoordinate = position;\n }\n}"]),o=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform vec2 screenSize;\nuniform vec3 clipBounds[2];\nuniform float highlightScale, pixelRatio;\nuniform vec4 highlightId;\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float scale = pixelRatio;\n if(distance(highlightId.bgr, id.bgr) < 0.001) {\n scale *= highlightScale;\n }\n\n vec4 worldPosition = model * vec4(position, 1.0);\n vec4 viewPosition = view * worldPosition;\n vec4 clipPosition = projection * viewPosition;\n clipPosition /= clipPosition.w;\n\n gl_Position = clipPosition + vec4(screenSize * scale * vec2(glyph.x, -glyph.y), 0.0, 0.0);\n interpColor = color;\n pickId = id;\n dataCoordinate = position;\n }\n}"]),s=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform float highlightScale;\nuniform vec4 highlightId;\nuniform vec3 axes[2];\nuniform mat4 model, view, projection;\nuniform vec2 screenSize;\nuniform vec3 clipBounds[2];\nuniform float scale, pixelRatio;\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float lscale = pixelRatio * scale;\n if(distance(highlightId, id) < 0.0001) {\n lscale *= highlightScale;\n }\n\n vec4 clipCenter = projection * view * model * vec4(position, 1);\n vec3 dataPosition = position + 0.5*lscale*(axes[0] * glyph.x + axes[1] * glyph.y) * clipCenter.w * screenSize.y;\n vec4 clipPosition = projection * view * model * vec4(dataPosition, 1);\n\n gl_Position = clipPosition;\n interpColor = color;\n pickId = id;\n dataCoordinate = dataPosition;\n }\n}\n"]),l=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 fragClipBounds[2];\nuniform float opacity;\n\nvarying vec4 interpColor;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (\n outOfRange(fragClipBounds[0], fragClipBounds[1], dataCoordinate) ||\n interpColor.a * opacity == 0.\n ) discard;\n gl_FragColor = interpColor * opacity;\n}\n"]),c=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 fragClipBounds[2];\nuniform float pickGroup;\n\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(fragClipBounds[0], fragClipBounds[1], dataCoordinate)) discard;\n\n gl_FragColor = vec4(pickGroup, pickId.bgr);\n}"]),u=[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"glyph",type:"vec2"},{name:"id",type:"vec4"}],f={vertex:a,fragment:l,attributes:u},h={vertex:o,fragment:l,attributes:u},p={vertex:s,fragment:l,attributes:u},d={vertex:a,fragment:c,attributes:u},m={vertex:o,fragment:c,attributes:u},g={vertex:s,fragment:c,attributes:u};function v(t,e){var r=n(t,e),i=r.attributes;return i.position.location=0,i.color.location=1,i.glyph.location=2,i.id.location=3,r}r.createPerspective=function(t){return v(t,f)},r.createOrtho=function(t){return v(t,h)},r.createProject=function(t){return v(t,p)},r.createPickPerspective=function(t){return v(t,d)},r.createPickOrtho=function(t){return v(t,m)},r.createPickProject=function(t){return v(t,g)}},{"gl-shader":323,glslify:424}],319:[function(t,e,r){"use strict";var n=t("is-string-blank"),i=t("gl-buffer"),a=t("gl-vao"),o=t("typedarray-pool"),s=t("gl-mat4/multiply"),l=t("./lib/shaders"),c=t("./lib/glyphs"),u=t("./lib/get-simple-string"),f=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function h(t,e){var r=t[0],n=t[1],i=t[2],a=t[3];return t[0]=e[0]*r+e[4]*n+e[8]*i+e[12]*a,t[1]=e[1]*r+e[5]*n+e[9]*i+e[13]*a,t[2]=e[2]*r+e[6]*n+e[10]*i+e[14]*a,t[3]=e[3]*r+e[7]*n+e[11]*i+e[15]*a,t}function p(t,e,r,n){return h(n,n),h(n,n),h(n,n)}function d(t,e){this.index=t,this.dataCoordinate=this.position=e}function m(t){return!0===t||t>1?1:t}function g(t,e,r,n,i,a,o,s,l,c,u,f){this.gl=t,this.pixelRatio=1,this.shader=e,this.orthoShader=r,this.projectShader=n,this.pointBuffer=i,this.colorBuffer=a,this.glyphBuffer=o,this.idBuffer=s,this.vao=l,this.vertexCount=0,this.lineVertexCount=0,this.opacity=1,this.hasAlpha=!1,this.lineWidth=0,this.projectScale=[2/3,2/3,2/3],this.projectOpacity=[1,1,1],this.projectHasAlpha=!1,this.pickId=0,this.pickPerspectiveShader=c,this.pickOrthoShader=u,this.pickProjectShader=f,this.points=[],this._selectResult=new d(0,[0,0,0]),this.useOrtho=!0,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.axesProject=[!0,!0,!0],this.axesBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.highlightId=[1,1,1,1],this.highlightScale=2,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.dirty=!0}e.exports=function(t){var e=t.gl,r=l.createPerspective(e),n=l.createOrtho(e),o=l.createProject(e),s=l.createPickPerspective(e),c=l.createPickOrtho(e),u=l.createPickProject(e),f=i(e),h=i(e),p=i(e),d=i(e),m=a(e,[{buffer:f,size:3,type:e.FLOAT},{buffer:h,size:4,type:e.FLOAT},{buffer:p,size:2,type:e.FLOAT},{buffer:d,size:4,type:e.UNSIGNED_BYTE,normalized:!0}]),v=new g(e,r,n,o,f,h,p,d,m,s,c,u);return v.update(t),v};var v=g.prototype;v.pickSlots=1,v.setPickBase=function(t){this.pickId=t},v.isTransparent=function(){if(this.hasAlpha)return!0;for(var t=0;t<3;++t)if(this.axesProject[t]&&this.projectHasAlpha)return!0;return!1},v.isOpaque=function(){if(!this.hasAlpha)return!0;for(var t=0;t<3;++t)if(this.axesProject[t]&&!this.projectHasAlpha)return!0;return!1};var y=[0,0],x=[0,0,0],b=[0,0,0],_=[0,0,0,1],w=[0,0,0,1],T=f.slice(),k=[0,0,0],A=[[0,0,0],[0,0,0]];function M(t){return t[0]=t[1]=t[2]=0,t}function S(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=1,t}function E(t,e,r,n){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[r]=n,t}function L(t,e,r,n){var i,a=e.axesProject,o=e.gl,l=t.uniforms,c=r.model||f,u=r.view||f,h=r.projection||f,d=e.axesBounds,m=function(t){for(var e=A,r=0;r<2;++r)for(var n=0;n<3;++n)e[r][n]=Math.max(Math.min(t[r][n],1e8),-1e8);return e}(e.clipBounds);i=e.axes&&e.axes.lastCubeProps?e.axes.lastCubeProps.axis:[1,1,1],y[0]=2/o.drawingBufferWidth,y[1]=2/o.drawingBufferHeight,t.bind(),l.view=u,l.projection=h,l.screenSize=y,l.highlightId=e.highlightId,l.highlightScale=e.highlightScale,l.clipBounds=m,l.pickGroup=e.pickId/255,l.pixelRatio=n;for(var g=0;g<3;++g)if(a[g]){l.scale=e.projectScale[g],l.opacity=e.projectOpacity[g];for(var v=T,L=0;L<16;++L)v[L]=0;for(L=0;L<4;++L)v[5*L]=1;v[5*g]=0,i[g]<0?v[12+g]=d[0][g]:v[12+g]=d[1][g],s(v,c,v),l.model=v;var C=(g+1)%3,P=(g+2)%3,I=M(x),O=M(b);I[C]=1,O[P]=1;var z=p(0,0,0,S(_,I)),D=p(0,0,0,S(w,O));if(Math.abs(z[1])>Math.abs(D[1])){var R=z;z=D,D=R,R=I,I=O,O=R;var F=C;C=P,P=F}z[0]<0&&(I[C]=-1),D[1]>0&&(O[P]=-1);var B=0,N=0;for(L=0;L<4;++L)B+=Math.pow(c[4*C+L],2),N+=Math.pow(c[4*P+L],2);I[C]/=Math.sqrt(B),O[P]/=Math.sqrt(N),l.axes[0]=I,l.axes[1]=O,l.fragClipBounds[0]=E(k,m[0],g,-1e8),l.fragClipBounds[1]=E(k,m[1],g,1e8),e.vao.bind(),e.vao.draw(o.TRIANGLES,e.vertexCount),e.lineWidth>0&&(o.lineWidth(e.lineWidth*n),e.vao.draw(o.LINES,e.lineVertexCount,e.vertexCount)),e.vao.unbind()}}var C=[[-1e8,-1e8,-1e8],[1e8,1e8,1e8]];function P(t,e,r,n,i,a,o){var s=r.gl;if((a===r.projectHasAlpha||o)&&L(e,r,n,i),a===r.hasAlpha||o){t.bind();var l=t.uniforms;l.model=n.model||f,l.view=n.view||f,l.projection=n.projection||f,y[0]=2/s.drawingBufferWidth,y[1]=2/s.drawingBufferHeight,l.screenSize=y,l.highlightId=r.highlightId,l.highlightScale=r.highlightScale,l.fragClipBounds=C,l.clipBounds=r.axes.bounds,l.opacity=r.opacity,l.pickGroup=r.pickId/255,l.pixelRatio=i,r.vao.bind(),r.vao.draw(s.TRIANGLES,r.vertexCount),r.lineWidth>0&&(s.lineWidth(r.lineWidth*i),r.vao.draw(s.LINES,r.lineVertexCount,r.vertexCount)),r.vao.unbind()}}function I(t,e,r,i){var a;a=Array.isArray(t)?e=this.pointCount||e<0)return null;var r=this.points[e],n=this._selectResult;n.index=e;for(var i=0;i<3;++i)n.position[i]=n.dataCoordinate[i]=r[i];return n},v.highlight=function(t){if(t){var e=t.index,r=255&e,n=e>>8&255,i=e>>16&255;this.highlightId=[r/255,n/255,i/255,0]}else this.highlightId=[1,1,1,1]},v.update=function(t){if("perspective"in(t=t||{})&&(this.useOrtho=!t.perspective),"orthographic"in t&&(this.useOrtho=!!t.orthographic),"lineWidth"in t&&(this.lineWidth=t.lineWidth),"project"in t)if(Array.isArray(t.project))this.axesProject=t.project;else{var e=!!t.project;this.axesProject=[e,e,e]}if("projectScale"in t)if(Array.isArray(t.projectScale))this.projectScale=t.projectScale.slice();else{var r=+t.projectScale;this.projectScale=[r,r,r]}if(this.projectHasAlpha=!1,"projectOpacity"in t){if(Array.isArray(t.projectOpacity))this.projectOpacity=t.projectOpacity.slice();else{r=+t.projectOpacity;this.projectOpacity=[r,r,r]}for(var n=0;n<3;++n)this.projectOpacity[n]=m(this.projectOpacity[n]),this.projectOpacity[n]<1&&(this.projectHasAlpha=!0)}this.hasAlpha=!1,"opacity"in t&&(this.opacity=m(t.opacity),this.opacity<1&&(this.hasAlpha=!0)),this.dirty=!0;var i,a,s=t.position,l=t.font||"normal",c=t.alignment||[0,0];if(2===c.length)i=c[0],a=c[1];else{i=[],a=[];for(n=0;n0){var O=0,z=x,D=[0,0,0,1],R=[0,0,0,1],F=Array.isArray(p)&&Array.isArray(p[0]),B=Array.isArray(v)&&Array.isArray(v[0]);t:for(n=0;n<_;++n){y+=1;for(w=s[n],T=0;T<3;++T){if(isNaN(w[T])||!isFinite(w[T]))continue t;f[T]=Math.max(f[T],w[T]),u[T]=Math.min(u[T],w[T])}k=(N=I(h,n,l,this.pixelRatio)).mesh,A=N.lines,M=N.bounds;var N,j=N.visible;if(j)if(Array.isArray(p)){if(3===(U=F?n0?1-M[0][0]:Y<0?1+M[1][0]:1,W*=W>0?1-M[0][1]:W<0?1+M[1][1]:1],Z=k.cells||[],J=k.positions||[];for(T=0;T0){var v=r*u;o.drawBox(f-v,h-v,p+v,h+v,a),o.drawBox(f-v,d-v,p+v,d+v,a),o.drawBox(f-v,h-v,f+v,d+v,a),o.drawBox(p-v,h-v,p+v,d+v,a)}}}},s.update=function(t){t=t||{},this.innerFill=!!t.innerFill,this.outerFill=!!t.outerFill,this.innerColor=(t.innerColor||[0,0,0,.5]).slice(),this.outerColor=(t.outerColor||[0,0,0,.5]).slice(),this.borderColor=(t.borderColor||[0,0,0,1]).slice(),this.borderWidth=t.borderWidth||0,this.selectBox=(t.selectBox||this.selectBox).slice()},s.dispose=function(){this.boxBuffer.dispose(),this.boxShader.dispose(),this.plot.removeOverlay(this)}},{"./lib/shaders":320,"gl-buffer":257,"gl-shader":323}],322:[function(t,e,r){"use strict";e.exports=function(t,e){var r=e[0],a=e[1],o=n(t,r,a,{}),s=i.mallocUint8(r*a*4);return new l(t,o,s)};var n=t("gl-fbo"),i=t("typedarray-pool"),a=t("ndarray"),o=t("bit-twiddle").nextPow2;function s(t,e,r,n,i){this.coord=[t,e],this.id=r,this.value=n,this.distance=i}function l(t,e,r){this.gl=t,this.fbo=e,this.buffer=r,this._readTimeout=null;var n=this;this._readCallback=function(){n.gl&&(e.bind(),t.readPixels(0,0,e.shape[0],e.shape[1],t.RGBA,t.UNSIGNED_BYTE,n.buffer),n._readTimeout=null)}}var c=l.prototype;Object.defineProperty(c,"shape",{get:function(){return this.gl?this.fbo.shape.slice():[0,0]},set:function(t){if(this.gl){this.fbo.shape=t;var e=this.fbo.shape[0],r=this.fbo.shape[1];if(r*e*4>this.buffer.length){i.free(this.buffer);for(var n=this.buffer=i.mallocUint8(o(r*e*4)),a=0;ar)for(t=r;te)for(t=e;t=0){for(var T=0|w.type.charAt(w.type.length-1),k=new Array(T),A=0;A=0;)M+=1;_[y]=M}var S=new Array(r.length);function E(){h.program=o.program(p,h._vref,h._fref,b,_);for(var t=0;t=0){if((d=h.charCodeAt(h.length-1)-48)<2||d>4)throw new n("","Invalid data type for attribute "+f+": "+h);s(t,e,p[0],i,d,a,f)}else{if(!(h.indexOf("mat")>=0))throw new n("","Unknown data type for attribute "+f+": "+h);var d;if((d=h.charCodeAt(h.length-1)-48)<2||d>4)throw new n("","Invalid data type for attribute "+f+": "+h);l(t,e,p,i,d,a,f)}}}return a};var n=t("./GLError");function i(t,e,r,n,i,a){this._gl=t,this._wrapper=e,this._index=r,this._locations=n,this._dimension=i,this._constFunc=a}var a=i.prototype;a.pointer=function(t,e,r,n){var i=this._gl,a=this._locations[this._index];i.vertexAttribPointer(a,this._dimension,t||i.FLOAT,!!e,r||0,n||0),i.enableVertexAttribArray(a)},a.set=function(t,e,r,n){return this._constFunc(this._locations[this._index],t,e,r,n)},Object.defineProperty(a,"location",{get:function(){return this._locations[this._index]},set:function(t){return t!==this._locations[this._index]&&(this._locations[this._index]=0|t,this._wrapper.program=null),0|t}});var o=[function(t,e,r){return void 0===r.length?t.vertexAttrib1f(e,r):t.vertexAttrib1fv(e,r)},function(t,e,r,n){return void 0===r.length?t.vertexAttrib2f(e,r,n):t.vertexAttrib2fv(e,r)},function(t,e,r,n,i){return void 0===r.length?t.vertexAttrib3f(e,r,n,i):t.vertexAttrib3fv(e,r)},function(t,e,r,n,i,a){return void 0===r.length?t.vertexAttrib4f(e,r,n,i,a):t.vertexAttrib4fv(e,r)}];function s(t,e,r,n,a,s,l){var c=o[a],u=new i(t,e,r,n,a,c);Object.defineProperty(s,l,{set:function(e){return t.disableVertexAttribArray(n[r]),c(t,n[r],e),e},get:function(){return u},enumerable:!0})}function l(t,e,r,n,i,a,o){for(var l=new Array(i),c=new Array(i),u=0;u4)throw new i("","Invalid uniform dimension type for matrix "+name+": "+v);t["uniformMatrix"+g+"fv"](s[u],!1,f);break}throw new i("","Unknown uniform data type for "+name+": "+v)}if((g=v.charCodeAt(v.length-1)-48)<2||g>4)throw new i("","Invalid data type");switch(v.charAt(0)){case"b":case"i":t["uniform"+g+"iv"](s[u],f);break;case"v":t["uniform"+g+"fv"](s[u],f);break;default:throw new i("","Unrecognized data type for vector "+name+": "+v)}}}}}}function c(t,e,n){if("object"==typeof n){var c=u(n);Object.defineProperty(t,e,{get:a(c),set:l(n),enumerable:!0,configurable:!1})}else s[n]?Object.defineProperty(t,e,{get:(f=n,function(t,e,r){return t.getUniform(e.program,r[f])}),set:l(n),enumerable:!0,configurable:!1}):t[e]=function(t){switch(t){case"bool":return!1;case"int":case"sampler2D":case"samplerCube":case"float":return 0;default:var e=t.indexOf("vec");if(0<=e&&e<=1&&t.length===4+e){if((r=t.charCodeAt(t.length-1)-48)<2||r>4)throw new i("","Invalid data type");return"b"===t.charAt(0)?o(r,!1):o(r,0)}if(0===t.indexOf("mat")&&4===t.length){var r;if((r=t.charCodeAt(t.length-1)-48)<2||r>4)throw new i("","Invalid uniform dimension type for matrix "+name+": "+t);return o(r*r,0)}throw new i("","Unknown uniform data type for "+name+": "+t)}}(r[n].type);var f}function u(t){var e;if(Array.isArray(t)){e=new Array(t.length);for(var r=0;r1){s[0]in a||(a[s[0]]=[]),a=a[s[0]];for(var l=1;l1)for(var l=0;l 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the tube vertex and normal at the given index.\n//\n// The returned vertex is for a tube ring with its center at origin, radius of length(d), pointing in the direction of d.\n//\n// Each tube segment is made up of a ring of vertices.\n// These vertices are used to make up the triangles of the tube by connecting them together in the vertex array.\n// The indexes of tube segments run from 0 to 8.\n//\nvec3 getTubePosition(vec3 d, float index, out vec3 normal) {\n float segmentCount = 8.0;\n\n float angle = 2.0 * 3.14159 * (index / segmentCount);\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d);\n vec3 y = v * sin(angle) * length(d);\n vec3 v3 = x + y;\n\n normal = normalize(v3);\n\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 color, position;\nattribute vec2 uv;\n\nuniform float vectorScale, tubeScale;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 eyePosition, lightPosition;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n // Scale the vector magnitude to stay constant with\n // model & view changes.\n vec3 normal;\n vec3 XYZ = getTubePosition(mat3(model) * (tubeScale * vector.w * normalize(vector.xyz)), position.w, normal);\n vec4 tubePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * tubePosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n // vec4 m_position = model * vec4(tubePosition, 1.0);\n vec4 t_position = view * tubePosition;\n gl_Position = projection * t_position;\n\n f_color = color;\n f_data = tubePosition.xyz;\n f_position = position.xyz;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform sampler2D texture;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = f_color * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * opacity;\n}\n"]),o=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the tube vertex and normal at the given index.\n//\n// The returned vertex is for a tube ring with its center at origin, radius of length(d), pointing in the direction of d.\n//\n// Each tube segment is made up of a ring of vertices.\n// These vertices are used to make up the triangles of the tube by connecting them together in the vertex array.\n// The indexes of tube segments run from 0 to 8.\n//\nvec3 getTubePosition(vec3 d, float index, out vec3 normal) {\n float segmentCount = 8.0;\n\n float angle = 2.0 * 3.14159 * (index / segmentCount);\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d);\n vec3 y = v * sin(angle) * length(d);\n vec3 v3 = x + y;\n\n normal = normalize(v3);\n\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform float tubeScale;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n vec3 normal;\n vec3 XYZ = getTubePosition(mat3(model) * (tubeScale * vector.w * normalize(vector.xyz)), position.w, normal);\n vec4 tubePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n gl_Position = projection * view * tubePosition;\n f_id = id;\n f_position = position.xyz;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec4"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"vector",type:"vec4"}]},r.pickShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec4"},{name:"id",type:"vec4"},{name:"vector",type:"vec4"}]}},{glslify:424}],334:[function(t,e,r){"use strict";var n=t("gl-vec3"),i=t("gl-vec4"),a=["xyz","xzy","yxz","yzx","zxy","zyx"],o=function(t,e,r,a){for(var o=0,s=0;s0)for(T=0;T<8;T++){var k=(T+1)%8;c.push(h[T],p[T],p[k],p[k],h[k],h[T]),f.push(y,v,v,v,y,y),d.push(m,g,g,g,m,m);var A=c.length;u.push([A-6,A-5,A-4],[A-3,A-2,A-1])}var M=h;h=p,p=M;var S=y;y=v,v=S;var E=m;m=g,g=E}return{positions:c,cells:u,vectors:f,vertexIntensity:d}}(t,r,a,o)})),f=[],h=[],p=[],d=[];for(s=0;se)return r-1}return r},l=function(t,e,r){return tr?r:t},c=function(t){var e=1/0;t.sort((function(t,e){return t-e}));for(var r=t.length,n=1;nf-1||y>h-1||x>p-1)return n.create();var b,_,w,T,k,A,M=a[0][d],S=a[0][v],E=a[1][m],L=a[1][y],C=a[2][g],P=(o-M)/(S-M),I=(c-E)/(L-E),O=(u-C)/(a[2][x]-C);switch(isFinite(P)||(P=.5),isFinite(I)||(I=.5),isFinite(O)||(O=.5),r.reversedX&&(d=f-1-d,v=f-1-v),r.reversedY&&(m=h-1-m,y=h-1-y),r.reversedZ&&(g=p-1-g,x=p-1-x),r.filled){case 5:k=g,A=x,w=m*p,T=y*p,b=d*p*h,_=v*p*h;break;case 4:k=g,A=x,b=d*p,_=v*p,w=m*p*f,T=y*p*f;break;case 3:w=m,T=y,k=g*h,A=x*h,b=d*h*p,_=v*h*p;break;case 2:w=m,T=y,b=d*h,_=v*h,k=g*h*f,A=x*h*f;break;case 1:b=d,_=v,k=g*f,A=x*f,w=m*f*p,T=y*f*p;break;default:b=d,_=v,w=m*f,T=y*f,k=g*f*h,A=x*f*h}var z=i[b+w+k],D=i[b+w+A],R=i[b+T+k],F=i[b+T+A],B=i[_+w+k],N=i[_+w+A],j=i[_+T+k],U=i[_+T+A],V=n.create(),H=n.create(),q=n.create(),G=n.create();n.lerp(V,z,B,P),n.lerp(H,D,N,P),n.lerp(q,R,j,P),n.lerp(G,F,U,P);var Y=n.create(),W=n.create();n.lerp(Y,V,q,I),n.lerp(W,H,G,I);var X=n.create();return n.lerp(X,Y,W,O),X}(e,t,p)},m=t.getDivergence||function(t,e){var r=n.create(),i=1e-4;n.add(r,t,[i,0,0]);var a=d(r);n.subtract(a,a,e),n.scale(a,a,1/i),n.add(r,t,[0,i,0]);var o=d(r);n.subtract(o,o,e),n.scale(o,o,1/i),n.add(r,t,[0,0,i]);var s=d(r);return n.subtract(s,s,e),n.scale(s,s,1/i),n.add(r,a,o),n.add(r,r,s),r},g=[],v=e[0][0],y=e[0][1],x=e[0][2],b=e[1][0],_=e[1][1],w=e[1][2],T=function(t){var e=t[0],r=t[1],n=t[2];return!(eb||r_||nw)},k=10*n.distance(e[0],e[1])/i,A=k*k,M=1,S=0,E=r.length;E>1&&(M=function(t){for(var e=[],r=[],n=[],i={},a={},o={},s=t.length,l=0;lS&&(S=F),D.push(F),g.push({points:P,velocities:I,divergences:D});for(var B=0;B<100*i&&P.lengthA&&n.scale(N,N,k/Math.sqrt(j)),n.add(N,N,C),O=d(N),n.squaredDistance(z,N)-A>-1e-4*A){P.push(N),z=N,I.push(O);R=m(N,O),F=n.length(R);isFinite(F)&&F>S&&(S=F),D.push(F)}C=N}}var U=o(g,t.colormap,S,M);return f?U.tubeScale=f:(0===S&&(S=1),U.tubeScale=.5*u*M/S),U};var u=t("./lib/shaders"),f=t("gl-cone3d").createMesh;e.exports.createTubeMesh=function(t,e){return f(t,e,{shaders:u,traceType:"streamtube"})}},{"./lib/shaders":333,"gl-cone3d":258,"gl-vec3":362,"gl-vec4":398}],335:[function(t,e,r){var n=t("gl-shader"),i=t("glslify"),a=i(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec4 uv;\nattribute vec3 f;\nattribute vec3 normal;\n\nuniform vec3 objectOffset;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 lightPosition, eyePosition;\nuniform sampler2D colormap;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n vec3 localCoordinate = vec3(uv.zw, f.x);\n worldCoordinate = objectOffset + localCoordinate;\n vec4 worldPosition = model * vec4(worldCoordinate, 1.0);\n vec4 clipPosition = projection * view * worldPosition;\n gl_Position = clipPosition;\n kill = f.y;\n value = f.z;\n planeCoordinate = uv.xy;\n\n vColor = texture2D(colormap, vec2(value, value));\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * worldPosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n lightDirection = lightPosition - cameraCoordinate.xyz;\n eyeDirection = eyePosition - cameraCoordinate.xyz;\n surfaceNormal = normalize((vec4(normal,0) * inverseModel).xyz);\n}\n"]),o=i(["precision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat beckmannSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness) {\n return beckmannDistribution(dot(surfaceNormal, normalize(lightDirection + viewDirection)), roughness);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 lowerBound, upperBound;\nuniform float contourTint;\nuniform vec4 contourColor;\nuniform sampler2D colormap;\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform float vertexColor;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n if (\n kill > 0.0 ||\n vColor.a == 0.0 ||\n outOfRange(clipBounds[0], clipBounds[1], worldCoordinate)\n ) discard;\n\n vec3 N = normalize(surfaceNormal);\n vec3 V = normalize(eyeDirection);\n vec3 L = normalize(lightDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = max(beckmannSpecular(L, V, N, roughness), 0.);\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n //decide how to interpolate color \u2014 in vertex or in fragment\n vec4 surfaceColor =\n step(vertexColor, .5) * texture2D(colormap, vec2(value, value)) +\n step(.5, vertexColor) * vColor;\n\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = mix(litColor, contourColor, contourTint) * opacity;\n}\n"]),s=i(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec4 uv;\nattribute float f;\n\nuniform vec3 objectOffset;\nuniform mat3 permutation;\nuniform mat4 model, view, projection;\nuniform float height, zOffset;\nuniform sampler2D colormap;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n vec3 dataCoordinate = permutation * vec3(uv.xy, height);\n worldCoordinate = objectOffset + dataCoordinate;\n vec4 worldPosition = model * vec4(worldCoordinate, 1.0);\n\n vec4 clipPosition = projection * view * worldPosition;\n clipPosition.z += zOffset;\n\n gl_Position = clipPosition;\n value = f + objectOffset.z;\n kill = -1.0;\n planeCoordinate = uv.zw;\n\n vColor = texture2D(colormap, vec2(value, value));\n\n //Don't do lighting for contours\n surfaceNormal = vec3(1,0,0);\n eyeDirection = vec3(0,1,0);\n lightDirection = vec3(0,0,1);\n}\n"]),l=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec2 shape;\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 surfaceNormal;\n\nvec2 splitFloat(float v) {\n float vh = 255.0 * v;\n float upper = floor(vh);\n float lower = fract(vh);\n return vec2(upper / 255.0, floor(lower * 16.0) / 16.0);\n}\n\nvoid main() {\n if ((kill > 0.0) ||\n (outOfRange(clipBounds[0], clipBounds[1], worldCoordinate))) discard;\n\n vec2 ux = splitFloat(planeCoordinate.x / shape.x);\n vec2 uy = splitFloat(planeCoordinate.y / shape.y);\n gl_FragColor = vec4(pickId, ux.x, uy.x, ux.y + (uy.y/16.0));\n}\n"]);r.createShader=function(t){var e=n(t,a,o,null,[{name:"uv",type:"vec4"},{name:"f",type:"vec3"},{name:"normal",type:"vec3"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e.attributes.normal.location=2,e},r.createPickShader=function(t){var e=n(t,a,l,null,[{name:"uv",type:"vec4"},{name:"f",type:"vec3"},{name:"normal",type:"vec3"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e.attributes.normal.location=2,e},r.createContourShader=function(t){var e=n(t,s,o,null,[{name:"uv",type:"vec4"},{name:"f",type:"float"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e},r.createPickContourShader=function(t){var e=n(t,s,l,null,[{name:"uv",type:"vec4"},{name:"f",type:"float"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e}},{"gl-shader":323,glslify:424}],336:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl,r=y(e),n=b(e),s=x(e),l=_(e),c=i(e),u=a(e,[{buffer:c,size:4,stride:40,offset:0},{buffer:c,size:3,stride:40,offset:16},{buffer:c,size:3,stride:40,offset:28}]),f=i(e),h=a(e,[{buffer:f,size:4,stride:20,offset:0},{buffer:f,size:1,stride:20,offset:16}]),p=i(e),d=a(e,[{buffer:p,size:2,type:e.FLOAT}]),m=o(e,1,256,e.RGBA,e.UNSIGNED_BYTE);m.minFilter=e.LINEAR,m.magFilter=e.LINEAR;var g=new M(e,[0,0],[[0,0,0],[0,0,0]],r,n,c,u,m,s,l,f,h,p,d,[0,0,0]),v={levels:[[],[],[]]};for(var w in t)v[w]=t[w];return v.colormap=v.colormap||"jet",g.update(v),g};var n=t("bit-twiddle"),i=t("gl-buffer"),a=t("gl-vao"),o=t("gl-texture2d"),s=t("typedarray-pool"),l=t("colormap"),c=t("ndarray-ops"),u=t("ndarray-pack"),f=t("ndarray"),h=t("surface-nets"),p=t("gl-mat4/multiply"),d=t("gl-mat4/invert"),m=t("binary-search-bounds"),g=t("ndarray-gradient"),v=t("./lib/shaders"),y=v.createShader,x=v.createContourShader,b=v.createPickShader,_=v.createPickContourShader,w=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],T=[[0,0],[0,1],[1,0],[1,1],[1,0],[0,1]],k=[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]];function A(t,e,r,n,i){this.position=t,this.index=e,this.uv=r,this.level=n,this.dataCoordinate=i}!function(){for(var t=0;t<3;++t){var e=k[t],r=(t+2)%3;e[(t+1)%3+0]=1,e[r+3]=1,e[t+6]=1}}();function M(t,e,r,n,i,a,o,l,c,u,h,p,d,m,g){this.gl=t,this.shape=e,this.bounds=r,this.objectOffset=g,this.intensityBounds=[],this._shader=n,this._pickShader=i,this._coordinateBuffer=a,this._vao=o,this._colorMap=l,this._contourShader=c,this._contourPickShader=u,this._contourBuffer=h,this._contourVAO=p,this._contourOffsets=[[],[],[]],this._contourCounts=[[],[],[]],this._vertexCount=0,this._pickResult=new A([0,0,0],[0,0],[0,0],[0,0,0],[0,0,0]),this._dynamicBuffer=d,this._dynamicVAO=m,this._dynamicOffsets=[0,0,0],this._dynamicCounts=[0,0,0],this.contourWidth=[1,1,1],this.contourLevels=[[1],[1],[1]],this.contourTint=[0,0,0],this.contourColor=[[.5,.5,.5,1],[.5,.5,.5,1],[.5,.5,.5,1]],this.showContour=!0,this.showSurface=!0,this.enableHighlight=[!0,!0,!0],this.highlightColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.highlightTint=[1,1,1],this.highlightLevel=[-1,-1,-1],this.enableDynamic=[!0,!0,!0],this.dynamicLevel=[NaN,NaN,NaN],this.dynamicColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.dynamicTint=[1,1,1],this.dynamicWidth=[1,1,1],this.axesBounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.surfaceProject=[!1,!1,!1],this.contourProject=[[!1,!1,!1],[!1,!1,!1],[!1,!1,!1]],this.colorBounds=[!1,!1],this._field=[f(s.mallocFloat(1024),[0,0]),f(s.mallocFloat(1024),[0,0]),f(s.mallocFloat(1024),[0,0])],this.pickId=1,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.snapToData=!1,this.pixelRatio=1,this.opacity=1,this.lightPosition=[10,1e4,0],this.ambientLight=.8,this.diffuseLight=.8,this.specularLight=2,this.roughness=.5,this.fresnel=1.5,this.vertexColor=0,this.dirty=!0}var S=M.prototype;S.genColormap=function(t,e){var r=!1,n=u([l({colormap:t,nshades:256,format:"rgba"}).map((function(t,n){var i=e?function(t,e){if(!e)return 1;if(!e.length)return 1;for(var r=0;rt&&r>0){var n=(e[r][0]-t)/(e[r][0]-e[r-1][0]);return e[r][1]*(1-n)+n*e[r-1][1]}}return 1}(n/255,e):t[3];return i<1&&(r=!0),[t[0],t[1],t[2],255*i]}))]);return c.divseq(n,255),this.hasAlphaScale=r,n},S.isTransparent=function(){return this.opacity<1||this.hasAlphaScale},S.isOpaque=function(){return!this.isTransparent()},S.pickSlots=1,S.setPickBase=function(t){this.pickId=t};var E=[0,0,0],L={showSurface:!1,showContour:!1,projections:[w.slice(),w.slice(),w.slice()],clipBounds:[[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]]]};function C(t,e){var r,n,i,a=e.axes&&e.axes.lastCubeProps.axis||E,o=e.showSurface,s=e.showContour;for(r=0;r<3;++r)for(o=o||e.surfaceProject[r],n=0;n<3;++n)s=s||e.contourProject[r][n];for(r=0;r<3;++r){var l=L.projections[r];for(n=0;n<16;++n)l[n]=0;for(n=0;n<4;++n)l[5*n]=1;l[5*r]=0,l[12+r]=e.axesBounds[+(a[r]>0)][r],p(l,t.model,l);var c=L.clipBounds[r];for(i=0;i<2;++i)for(n=0;n<3;++n)c[i][n]=t.clipBounds[i][n];c[0][r]=-1e8,c[1][r]=1e8}return L.showSurface=o,L.showContour=s,L}var P={model:w,view:w,projection:w,inverseModel:w.slice(),lowerBound:[0,0,0],upperBound:[0,0,0],colorMap:0,clipBounds:[[0,0,0],[0,0,0]],height:0,contourTint:0,contourColor:[0,0,0,1],permutation:[1,0,0,0,1,0,0,0,1],zOffset:-1e-4,objectOffset:[0,0,0],kambient:1,kdiffuse:1,kspecular:1,lightPosition:[1e3,1e3,1e3],eyePosition:[0,0,0],roughness:1,fresnel:1,opacity:1,vertexColor:0},I=w.slice(),O=[1,0,0,0,1,0,0,0,1];function z(t,e){t=t||{};var r=this.gl;r.disable(r.CULL_FACE),this._colorMap.bind(0);var n=P;n.model=t.model||w,n.view=t.view||w,n.projection=t.projection||w,n.lowerBound=[this.bounds[0][0],this.bounds[0][1],this.colorBounds[0]||this.bounds[0][2]],n.upperBound=[this.bounds[1][0],this.bounds[1][1],this.colorBounds[1]||this.bounds[1][2]],n.objectOffset=this.objectOffset,n.contourColor=this.contourColor[0],n.inverseModel=d(n.inverseModel,n.model);for(var i=0;i<2;++i)for(var a=n.clipBounds[i],o=0;o<3;++o)a[o]=Math.min(Math.max(this.clipBounds[i][o],-1e8),1e8);n.kambient=this.ambientLight,n.kdiffuse=this.diffuseLight,n.kspecular=this.specularLight,n.roughness=this.roughness,n.fresnel=this.fresnel,n.opacity=this.opacity,n.height=0,n.permutation=O,n.vertexColor=this.vertexColor;var s=I;for(p(s,n.view,n.model),p(s,n.projection,s),d(s,s),i=0;i<3;++i)n.eyePosition[i]=s[12+i]/s[15];var l=s[15];for(i=0;i<3;++i)l+=this.lightPosition[i]*s[4*i+3];for(i=0;i<3;++i){var c=s[12+i];for(o=0;o<3;++o)c+=s[4*o+i]*this.lightPosition[o];n.lightPosition[i]=c/l}var u=C(n,this);if(u.showSurface){for(this._shader.bind(),this._shader.uniforms=n,this._vao.bind(),this.showSurface&&this._vertexCount&&this._vao.draw(r.TRIANGLES,this._vertexCount),i=0;i<3;++i)this.surfaceProject[i]&&this.vertexCount&&(this._shader.uniforms.model=u.projections[i],this._shader.uniforms.clipBounds=u.clipBounds[i],this._vao.draw(r.TRIANGLES,this._vertexCount));this._vao.unbind()}if(u.showContour){var f=this._contourShader;n.kambient=1,n.kdiffuse=0,n.kspecular=0,n.opacity=1,f.bind(),f.uniforms=n;var h=this._contourVAO;for(h.bind(),i=0;i<3;++i)for(f.uniforms.permutation=k[i],r.lineWidth(this.contourWidth[i]*this.pixelRatio),o=0;o>4)/16)/255,i=Math.floor(n),a=n-i,o=e[1]*(t.value[1]+(15&t.value[2])/16)/255,s=Math.floor(o),l=o-s;i+=1,s+=1;var c=r.position;c[0]=c[1]=c[2]=0;for(var u=0;u<2;++u)for(var f=u?a:1-a,h=0;h<2;++h)for(var p=i+u,d=s+h,g=f*(h?l:1-l),v=0;v<3;++v)c[v]+=this._field[v].get(p,d)*g;for(var y=this._pickResult.level,x=0;x<3;++x)if(y[x]=m.le(this.contourLevels[x],c[x]),y[x]<0)this.contourLevels[x].length>0&&(y[x]=0);else if(y[x]Math.abs(_-c[x])&&(y[x]+=1)}for(r.index[0]=a<.5?i:i+1,r.index[1]=l<.5?s:s+1,r.uv[0]=n/e[0],r.uv[1]=o/e[1],v=0;v<3;++v)r.dataCoordinate[v]=this._field[v].get(r.index[0],r.index[1]);return r},S.padField=function(t,e){var r=e.shape.slice(),n=t.shape.slice();c.assign(t.lo(1,1).hi(r[0],r[1]),e),c.assign(t.lo(1).hi(r[0],1),e.hi(r[0],1)),c.assign(t.lo(1,n[1]-1).hi(r[0],1),e.lo(0,r[1]-1).hi(r[0],1)),c.assign(t.lo(0,1).hi(1,r[1]),e.hi(1)),c.assign(t.lo(n[0]-1,1).hi(1,r[1]),e.lo(r[0]-1)),t.set(0,0,e.get(0,0)),t.set(0,n[1]-1,e.get(0,r[1]-1)),t.set(n[0]-1,0,e.get(r[0]-1,0)),t.set(n[0]-1,n[1]-1,e.get(r[0]-1,r[1]-1))},S.update=function(t){t=t||{},this.objectOffset=t.objectOffset||this.objectOffset,this.dirty=!0,"contourWidth"in t&&(this.contourWidth=R(t.contourWidth,Number)),"showContour"in t&&(this.showContour=R(t.showContour,Boolean)),"showSurface"in t&&(this.showSurface=!!t.showSurface),"contourTint"in t&&(this.contourTint=R(t.contourTint,Boolean)),"contourColor"in t&&(this.contourColor=B(t.contourColor)),"contourProject"in t&&(this.contourProject=R(t.contourProject,(function(t){return R(t,Boolean)}))),"surfaceProject"in t&&(this.surfaceProject=t.surfaceProject),"dynamicColor"in t&&(this.dynamicColor=B(t.dynamicColor)),"dynamicTint"in t&&(this.dynamicTint=R(t.dynamicTint,Number)),"dynamicWidth"in t&&(this.dynamicWidth=R(t.dynamicWidth,Number)),"opacity"in t&&(this.opacity=t.opacity),"opacityscale"in t&&(this.opacityscale=t.opacityscale),"colorBounds"in t&&(this.colorBounds=t.colorBounds),"vertexColor"in t&&(this.vertexColor=t.vertexColor?1:0),"colormap"in t&&this._colorMap.setPixels(this.genColormap(t.colormap,this.opacityscale));var e=t.field||t.coords&&t.coords[2]||null,r=!1;if(e||(e=this._field[2].shape[0]||this._field[2].shape[2]?this._field[2].lo(1,1).hi(this._field[2].shape[0]-2,this._field[2].shape[1]-2):this._field[2].hi(0,0)),"field"in t||"coords"in t){var i=(e.shape[0]+2)*(e.shape[1]+2);i>this._field[2].data.length&&(s.freeFloat(this._field[2].data),this._field[2].data=s.mallocFloat(n.nextPow2(i))),this._field[2]=f(this._field[2].data,[e.shape[0]+2,e.shape[1]+2]),this.padField(this._field[2],e),this.shape=e.shape.slice();for(var a=this.shape,o=0;o<2;++o)this._field[2].size>this._field[o].data.length&&(s.freeFloat(this._field[o].data),this._field[o].data=s.mallocFloat(this._field[2].size)),this._field[o]=f(this._field[o].data,[a[0]+2,a[1]+2]);if(t.coords){var l=t.coords;if(!Array.isArray(l)||3!==l.length)throw new Error("gl-surface: invalid coordinates for x/y");for(o=0;o<2;++o){var c=l[o];for(v=0;v<2;++v)if(c.shape[v]!==a[v])throw new Error("gl-surface: coords have incorrect shape");this.padField(this._field[o],c)}}else if(t.ticks){var u=t.ticks;if(!Array.isArray(u)||2!==u.length)throw new Error("gl-surface: invalid ticks");for(o=0;o<2;++o){var p=u[o];if((Array.isArray(p)||p.length)&&(p=f(p)),p.shape[0]!==a[o])throw new Error("gl-surface: invalid tick length");var d=f(p.data,a);d.stride[o]=p.stride[0],d.stride[1^o]=0,this.padField(this._field[o],d)}}else{for(o=0;o<2;++o){var m=[0,0];m[o]=1,this._field[o]=f(this._field[o].data,[a[0]+2,a[1]+2],m,0)}this._field[0].set(0,0,0);for(var v=0;v0){for(var xt=0;xt<5;++xt)Q.pop();U-=1}continue t}Q.push(nt[0],nt[1],ot[0],ot[1],nt[2]),U+=1}}rt.push(U)}this._contourOffsets[$]=et,this._contourCounts[$]=rt}var bt=s.mallocFloat(Q.length);for(o=0;o halfCharStep + halfCharWidth ||\n\t\t\t\t\tfloor(uv.x) < halfCharStep - halfCharWidth) return;\n\n\t\t\t\tuv += charId * charStep;\n\t\t\t\tuv = uv / atlasSize;\n\n\t\t\t\tvec4 color = fontColor;\n\t\t\t\tvec4 mask = texture2D(atlas, uv);\n\n\t\t\t\tfloat maskY = lightness(mask);\n\t\t\t\t// float colorY = lightness(color);\n\t\t\t\tcolor.a *= maskY;\n\t\t\t\tcolor.a *= opacity;\n\n\t\t\t\t// color.a += .1;\n\n\t\t\t\t// antialiasing, see yiq color space y-channel formula\n\t\t\t\t// color.rgb += (1. - color.rgb) * (1. - mask.rgb);\n\n\t\t\t\tgl_FragColor = color;\n\t\t\t}"});return{regl:t,draw:e,atlas:{}}},T.prototype.update=function(t){var e=this;if("string"==typeof t)t={text:t};else if(!t)return;null!=(t=i(t,{position:"position positions coord coords coordinates",font:"font fontFace fontface typeface cssFont css-font family fontFamily",fontSize:"fontSize fontsize size font-size",text:"text texts chars characters value values symbols",align:"align alignment textAlign textbaseline",baseline:"baseline textBaseline textbaseline",direction:"dir direction textDirection",color:"color colour fill fill-color fillColor textColor textcolor",kerning:"kerning kern",range:"range dataBox",viewport:"vp viewport viewBox viewbox viewPort",opacity:"opacity alpha transparency visible visibility opaque",offset:"offset positionOffset padding shift indent indentation"},!0)).opacity&&(Array.isArray(t.opacity)?this.opacity=t.opacity.map((function(t){return parseFloat(t)})):this.opacity=parseFloat(t.opacity)),null!=t.viewport&&(this.viewport=f(t.viewport),this.viewportArray=[this.viewport.x,this.viewport.y,this.viewport.width,this.viewport.height]),null==this.viewport&&(this.viewport={x:0,y:0,width:this.gl.drawingBufferWidth,height:this.gl.drawingBufferHeight},this.viewportArray=[this.viewport.x,this.viewport.y,this.viewport.width,this.viewport.height]),null!=t.kerning&&(this.kerning=t.kerning),null!=t.offset&&("number"==typeof t.offset&&(t.offset=[t.offset,0]),this.positionOffset=y(t.offset)),t.direction&&(this.direction=t.direction),t.range&&(this.range=t.range,this.scale=[1/(t.range[2]-t.range[0]),1/(t.range[3]-t.range[1])],this.translate=[-t.range[0],-t.range[1]]),t.scale&&(this.scale=t.scale),t.translate&&(this.translate=t.translate),this.scale||(this.scale=[1/this.viewport.width,1/this.viewport.height]),this.translate||(this.translate=[0,0]),this.font.length||t.font||(t.font=T.baseFontSize+"px sans-serif");var r,a=!1,o=!1;if(t.font&&(Array.isArray(t.font)?t.font:[t.font]).forEach((function(t,r){if("string"==typeof t)try{t=n.parse(t)}catch(e){t=n.parse(T.baseFontSize+"px "+t)}else t=n.parse(n.stringify(t));var i=n.stringify({size:T.baseFontSize,family:t.family,stretch:_?t.stretch:void 0,variant:t.variant,weight:t.weight,style:t.style}),s=p(t.size),l=Math.round(s[0]*d(s[1]));if(l!==e.fontSize[r]&&(o=!0,e.fontSize[r]=l),!(e.font[r]&&i==e.font[r].baseString||(a=!0,e.font[r]=T.fonts[i],e.font[r]))){var c=t.family.join(", "),u=[t.style];t.style!=t.variant&&u.push(t.variant),t.variant!=t.weight&&u.push(t.weight),_&&t.weight!=t.stretch&&u.push(t.stretch),e.font[r]={baseString:i,family:c,weight:t.weight,stretch:t.stretch,style:t.style,variant:t.variant,width:{},kerning:{},metrics:v(c,{origin:"top",fontSize:T.baseFontSize,fontStyle:u.join(" ")})},T.fonts[i]=e.font[r]}})),(a||o)&&this.font.forEach((function(r,i){var a=n.stringify({size:e.fontSize[i],family:r.family,stretch:_?r.stretch:void 0,variant:r.variant,weight:r.weight,style:r.style});if(e.fontAtlas[i]=e.shader.atlas[a],!e.fontAtlas[i]){var o=r.metrics;e.shader.atlas[a]=e.fontAtlas[i]={fontString:a,step:2*Math.ceil(e.fontSize[i]*o.bottom*.5),em:e.fontSize[i],cols:0,rows:0,height:0,width:0,chars:[],ids:{},texture:e.regl.texture()}}null==t.text&&(t.text=e.text)})),"string"==typeof t.text&&t.position&&t.position.length>2){for(var s=Array(.5*t.position.length),h=0;h2){for(var w=!t.position[0].length,k=u.mallocFloat(2*this.count),A=0,M=0;A1?e.align[r]:e.align[0]:e.align;if("number"==typeof n)return n;switch(n){case"right":case"end":return-t;case"center":case"centre":case"middle":return.5*-t}return 0}))),null==this.baseline&&null==t.baseline&&(t.baseline=0),null!=t.baseline&&(this.baseline=t.baseline,Array.isArray(this.baseline)||(this.baseline=[this.baseline]),this.baselineOffset=this.baseline.map((function(t,r){var n=(e.font[r]||e.font[0]).metrics,i=0;return i+=.5*n.bottom,i+="number"==typeof t?t-n.baseline:-n[t],i*=-1}))),null!=t.color)if(t.color||(t.color="transparent"),"string"!=typeof t.color&&isNaN(t.color)){var q;if("number"==typeof t.color[0]&&t.color.length>this.counts.length){var G=t.color.length;q=u.mallocUint8(G);for(var Y=(t.color.subarray||t.color.slice).bind(t.color),W=0;W4||this.baselineOffset.length>1||this.align&&this.align.length>1||this.fontAtlas.length>1||this.positionOffset.length>2){var J=Math.max(.5*this.position.length||0,.25*this.color.length||0,this.baselineOffset.length||0,this.alignOffset.length||0,this.font.length||0,this.opacity.length||0,.5*this.positionOffset.length||0);this.batch=Array(J);for(var K=0;K1?this.counts[K]:this.counts[0],offset:this.textOffsets.length>1?this.textOffsets[K]:this.textOffsets[0],color:this.color?this.color.length<=4?this.color:this.color.subarray(4*K,4*K+4):[0,0,0,255],opacity:Array.isArray(this.opacity)?this.opacity[K]:this.opacity,baseline:null!=this.baselineOffset[K]?this.baselineOffset[K]:this.baselineOffset[0],align:this.align?null!=this.alignOffset[K]?this.alignOffset[K]:this.alignOffset[0]:0,atlas:this.fontAtlas[K]||this.fontAtlas[0],positionOffset:this.positionOffset.length>2?this.positionOffset.subarray(2*K,2*K+2):this.positionOffset}}else this.count?this.batch=[{count:this.count,offset:0,color:this.color||[0,0,0,255],opacity:Array.isArray(this.opacity)?this.opacity[0]:this.opacity,baseline:this.baselineOffset[0],align:this.alignOffset?this.alignOffset[0]:0,atlas:this.fontAtlas[0],positionOffset:this.positionOffset}]:this.batch=[]},T.prototype.destroy=function(){},T.prototype.kerning=!0,T.prototype.position={constant:new Float32Array(2)},T.prototype.translate=null,T.prototype.scale=null,T.prototype.font=null,T.prototype.text="",T.prototype.positionOffset=[0,0],T.prototype.opacity=1,T.prototype.color=new Uint8Array([0,0,0,255]),T.prototype.alignOffset=[0,0],T.maxAtlasSize=1024,T.atlasCanvas=document.createElement("canvas"),T.atlasContext=T.atlasCanvas.getContext("2d",{alpha:!1}),T.baseFontSize=64,T.fonts={},e.exports=T},{"bit-twiddle":101,"color-normalize":126,"css-font":146,"detect-kerning":173,"es6-weak-map":233,"flatten-vertex-data":244,"font-atlas":245,"font-measure":246,"gl-util/context":339,"is-plain-obj":437,"object-assign":466,"parse-rect":471,"parse-unit":473,"pick-by-alias":475,regl:516,"to-px":574,"typedarray-pool":590}],338:[function(t,e,r){"use strict";var n=t("ndarray"),i=t("ndarray-ops"),a=t("typedarray-pool");e.exports=function(t){if(arguments.length<=1)throw new Error("gl-texture2d: Missing arguments for texture2d constructor");o||c(t);if("number"==typeof arguments[1])return v(t,arguments[1],arguments[2],arguments[3]||t.RGBA,arguments[4]||t.UNSIGNED_BYTE);if(Array.isArray(arguments[1]))return v(t,0|arguments[1][0],0|arguments[1][1],arguments[2]||t.RGBA,arguments[3]||t.UNSIGNED_BYTE);if("object"==typeof arguments[1]){var e=arguments[1],r=u(e)?e:e.raw;if(r)return y(t,r,0|e.width,0|e.height,arguments[2]||t.RGBA,arguments[3]||t.UNSIGNED_BYTE);if(e.shape&&e.data&&e.stride)return x(t,e)}throw new Error("gl-texture2d: Invalid arguments for texture2d constructor")};var o=null,s=null,l=null;function c(t){o=[t.LINEAR,t.NEAREST_MIPMAP_LINEAR,t.LINEAR_MIPMAP_NEAREST,t.LINEAR_MIPMAP_NEAREST],s=[t.NEAREST,t.LINEAR,t.NEAREST_MIPMAP_NEAREST,t.NEAREST_MIPMAP_LINEAR,t.LINEAR_MIPMAP_NEAREST,t.LINEAR_MIPMAP_LINEAR],l=[t.REPEAT,t.CLAMP_TO_EDGE,t.MIRRORED_REPEAT]}function u(t){return"undefined"!=typeof HTMLCanvasElement&&t instanceof HTMLCanvasElement||"undefined"!=typeof HTMLImageElement&&t instanceof HTMLImageElement||"undefined"!=typeof HTMLVideoElement&&t instanceof HTMLVideoElement||"undefined"!=typeof ImageData&&t instanceof ImageData}var f=function(t,e){i.muls(t,e,255)};function h(t,e,r){var n=t.gl,i=n.getParameter(n.MAX_TEXTURE_SIZE);if(e<0||e>i||r<0||r>i)throw new Error("gl-texture2d: Invalid texture size");return t._shape=[e,r],t.bind(),n.texImage2D(n.TEXTURE_2D,0,t.format,e,r,0,t.format,t.type,null),t._mipLevels=[0],t}function p(t,e,r,n,i,a){this.gl=t,this.handle=e,this.format=i,this.type=a,this._shape=[r,n],this._mipLevels=[0],this._magFilter=t.NEAREST,this._minFilter=t.NEAREST,this._wrapS=t.CLAMP_TO_EDGE,this._wrapT=t.CLAMP_TO_EDGE,this._anisoSamples=1;var o=this,s=[this._wrapS,this._wrapT];Object.defineProperties(s,[{get:function(){return o._wrapS},set:function(t){return o.wrapS=t}},{get:function(){return o._wrapT},set:function(t){return o.wrapT=t}}]),this._wrapVector=s;var l=[this._shape[0],this._shape[1]];Object.defineProperties(l,[{get:function(){return o._shape[0]},set:function(t){return o.width=t}},{get:function(){return o._shape[1]},set:function(t){return o.height=t}}]),this._shapeVector=l}var d=p.prototype;function m(t,e){return 3===t.length?1===e[2]&&e[1]===t[0]*t[2]&&e[0]===t[2]:1===e[0]&&e[1]===t[0]}function g(t){var e=t.createTexture();return t.bindTexture(t.TEXTURE_2D,e),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_MIN_FILTER,t.NEAREST),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_MAG_FILTER,t.NEAREST),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_WRAP_S,t.CLAMP_TO_EDGE),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_WRAP_T,t.CLAMP_TO_EDGE),e}function v(t,e,r,n,i){var a=t.getParameter(t.MAX_TEXTURE_SIZE);if(e<0||e>a||r<0||r>a)throw new Error("gl-texture2d: Invalid texture shape");if(i===t.FLOAT&&!t.getExtension("OES_texture_float"))throw new Error("gl-texture2d: Floating point textures not supported on this platform");var o=g(t);return t.texImage2D(t.TEXTURE_2D,0,n,e,r,0,n,i,null),new p(t,o,e,r,n,i)}function y(t,e,r,n,i,a){var o=g(t);return t.texImage2D(t.TEXTURE_2D,0,i,i,a,e),new p(t,o,r,n,i,a)}function x(t,e){var r=e.dtype,o=e.shape.slice(),s=t.getParameter(t.MAX_TEXTURE_SIZE);if(o[0]<0||o[0]>s||o[1]<0||o[1]>s)throw new Error("gl-texture2d: Invalid texture size");var l=m(o,e.stride.slice()),c=0;"float32"===r?c=t.FLOAT:"float64"===r?(c=t.FLOAT,l=!1,r="float32"):"uint8"===r?c=t.UNSIGNED_BYTE:(c=t.UNSIGNED_BYTE,l=!1,r="uint8");var u,h,d=0;if(2===o.length)d=t.LUMINANCE,o=[o[0],o[1],1],e=n(e.data,o,[e.stride[0],e.stride[1],1],e.offset);else{if(3!==o.length)throw new Error("gl-texture2d: Invalid shape for texture");if(1===o[2])d=t.ALPHA;else if(2===o[2])d=t.LUMINANCE_ALPHA;else if(3===o[2])d=t.RGB;else{if(4!==o[2])throw new Error("gl-texture2d: Invalid shape for pixel coords");d=t.RGBA}}c!==t.FLOAT||t.getExtension("OES_texture_float")||(c=t.UNSIGNED_BYTE,l=!1);var v=e.size;if(l)u=0===e.offset&&e.data.length===v?e.data:e.data.subarray(e.offset,e.offset+v);else{var y=[o[2],o[2]*o[0],1];h=a.malloc(v,r);var x=n(h,o,y,0);"float32"!==r&&"float64"!==r||c!==t.UNSIGNED_BYTE?i.assign(x,e):f(x,e),u=h.subarray(0,v)}var b=g(t);return t.texImage2D(t.TEXTURE_2D,0,d,o[0],o[1],0,d,c,u),l||a.free(h),new p(t,b,o[0],o[1],d,c)}Object.defineProperties(d,{minFilter:{get:function(){return this._minFilter},set:function(t){this.bind();var e=this.gl;if(this.type===e.FLOAT&&o.indexOf(t)>=0&&(e.getExtension("OES_texture_float_linear")||(t=e.NEAREST)),s.indexOf(t)<0)throw new Error("gl-texture2d: Unknown filter mode "+t);return e.texParameteri(e.TEXTURE_2D,e.TEXTURE_MIN_FILTER,t),this._minFilter=t}},magFilter:{get:function(){return this._magFilter},set:function(t){this.bind();var e=this.gl;if(this.type===e.FLOAT&&o.indexOf(t)>=0&&(e.getExtension("OES_texture_float_linear")||(t=e.NEAREST)),s.indexOf(t)<0)throw new Error("gl-texture2d: Unknown filter mode "+t);return e.texParameteri(e.TEXTURE_2D,e.TEXTURE_MAG_FILTER,t),this._magFilter=t}},mipSamples:{get:function(){return this._anisoSamples},set:function(t){var e=this._anisoSamples;if(this._anisoSamples=0|Math.max(t,1),e!==this._anisoSamples){var r=this.gl.getExtension("EXT_texture_filter_anisotropic");r&&this.gl.texParameterf(this.gl.TEXTURE_2D,r.TEXTURE_MAX_ANISOTROPY_EXT,this._anisoSamples)}return this._anisoSamples}},wrapS:{get:function(){return this._wrapS},set:function(t){if(this.bind(),l.indexOf(t)<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);return this.gl.texParameteri(this.gl.TEXTURE_2D,this.gl.TEXTURE_WRAP_S,t),this._wrapS=t}},wrapT:{get:function(){return this._wrapT},set:function(t){if(this.bind(),l.indexOf(t)<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);return this.gl.texParameteri(this.gl.TEXTURE_2D,this.gl.TEXTURE_WRAP_T,t),this._wrapT=t}},wrap:{get:function(){return this._wrapVector},set:function(t){if(Array.isArray(t)||(t=[t,t]),2!==t.length)throw new Error("gl-texture2d: Must specify wrap mode for rows and columns");for(var e=0;e<2;++e)if(l.indexOf(t[e])<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);this._wrapS=t[0],this._wrapT=t[1];var r=this.gl;return this.bind(),r.texParameteri(r.TEXTURE_2D,r.TEXTURE_WRAP_S,this._wrapS),r.texParameteri(r.TEXTURE_2D,r.TEXTURE_WRAP_T,this._wrapT),t}},shape:{get:function(){return this._shapeVector},set:function(t){if(Array.isArray(t)){if(2!==t.length)throw new Error("gl-texture2d: Invalid texture shape")}else t=[0|t,0|t];return h(this,0|t[0],0|t[1]),[0|t[0],0|t[1]]}},width:{get:function(){return this._shape[0]},set:function(t){return h(this,t|=0,this._shape[1]),t}},height:{get:function(){return this._shape[1]},set:function(t){return t|=0,h(this,this._shape[0],t),t}}}),d.bind=function(t){var e=this.gl;return void 0!==t&&e.activeTexture(e.TEXTURE0+(0|t)),e.bindTexture(e.TEXTURE_2D,this.handle),void 0!==t?0|t:e.getParameter(e.ACTIVE_TEXTURE)-e.TEXTURE0},d.dispose=function(){this.gl.deleteTexture(this.handle)},d.generateMipmap=function(){this.bind(),this.gl.generateMipmap(this.gl.TEXTURE_2D);for(var t=Math.min(this._shape[0],this._shape[1]),e=0;t>0;++e,t>>>=1)this._mipLevels.indexOf(e)<0&&this._mipLevels.push(e)},d.setPixels=function(t,e,r,o){var s=this.gl;this.bind(),Array.isArray(e)?(o=r,r=0|e[1],e=0|e[0]):(e=e||0,r=r||0),o=o||0;var l=u(t)?t:t.raw;if(l){this._mipLevels.indexOf(o)<0?(s.texImage2D(s.TEXTURE_2D,0,this.format,this.format,this.type,l),this._mipLevels.push(o)):s.texSubImage2D(s.TEXTURE_2D,o,e,r,this.format,this.type,l)}else{if(!(t.shape&&t.stride&&t.data))throw new Error("gl-texture2d: Unsupported data type");if(t.shape.length<2||e+t.shape[1]>this._shape[1]>>>o||r+t.shape[0]>this._shape[0]>>>o||e<0||r<0)throw new Error("gl-texture2d: Texture dimensions are out of bounds");!function(t,e,r,o,s,l,c,u){var h=u.dtype,p=u.shape.slice();if(p.length<2||p.length>3)throw new Error("gl-texture2d: Invalid ndarray, must be 2d or 3d");var d=0,g=0,v=m(p,u.stride.slice());"float32"===h?d=t.FLOAT:"float64"===h?(d=t.FLOAT,v=!1,h="float32"):"uint8"===h?d=t.UNSIGNED_BYTE:(d=t.UNSIGNED_BYTE,v=!1,h="uint8");if(2===p.length)g=t.LUMINANCE,p=[p[0],p[1],1],u=n(u.data,p,[u.stride[0],u.stride[1],1],u.offset);else{if(3!==p.length)throw new Error("gl-texture2d: Invalid shape for texture");if(1===p[2])g=t.ALPHA;else if(2===p[2])g=t.LUMINANCE_ALPHA;else if(3===p[2])g=t.RGB;else{if(4!==p[2])throw new Error("gl-texture2d: Invalid shape for pixel coords");g=t.RGBA}p[2]}g!==t.LUMINANCE&&g!==t.ALPHA||s!==t.LUMINANCE&&s!==t.ALPHA||(g=s);if(g!==s)throw new Error("gl-texture2d: Incompatible texture format for setPixels");var y=u.size,x=c.indexOf(o)<0;x&&c.push(o);if(d===l&&v)0===u.offset&&u.data.length===y?x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,u.data):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,u.data):x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,u.data.subarray(u.offset,u.offset+y)):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,u.data.subarray(u.offset,u.offset+y));else{var b;b=l===t.FLOAT?a.mallocFloat32(y):a.mallocUint8(y);var _=n(b,p,[p[2],p[2]*p[0],1]);d===t.FLOAT&&l===t.UNSIGNED_BYTE?f(_,u):i.assign(_,u),x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,b.subarray(0,y)):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,b.subarray(0,y)),l===t.FLOAT?a.freeFloat32(b):a.freeUint8(b)}}(s,e,r,o,this.format,this.type,this._mipLevels,t)}}},{ndarray:462,"ndarray-ops":457,"typedarray-pool":590}],339:[function(t,e,r){(function(r){(function(){"use strict";var n=t("pick-by-alias");function i(t){if(t.container)if(t.container==document.body)document.body.style.width||(t.canvas.width=t.width||t.pixelRatio*r.innerWidth),document.body.style.height||(t.canvas.height=t.height||t.pixelRatio*r.innerHeight);else{var e=t.container.getBoundingClientRect();t.canvas.width=t.width||e.right-e.left,t.canvas.height=t.height||e.bottom-e.top}}function a(t){return"function"==typeof t.getContext&&"width"in t&&"height"in t}function o(){var t=document.createElement("canvas");return t.style.position="absolute",t.style.top=0,t.style.left=0,t}e.exports=function(t){var e;if(t?"string"==typeof t&&(t={container:t}):t={},a(t)?t={container:t}:t="string"==typeof(e=t).nodeName&&"function"==typeof e.appendChild&&"function"==typeof e.getBoundingClientRect?{container:t}:function(t){return"function"==typeof t.drawArrays||"function"==typeof t.drawElements}(t)?{gl:t}:n(t,{container:"container target element el canvas holder parent parentNode wrapper use ref root node",gl:"gl context webgl glContext",attrs:"attributes attrs contextAttributes",pixelRatio:"pixelRatio pxRatio px ratio pxratio pixelratio",width:"w width",height:"h height"},!0),t.pixelRatio||(t.pixelRatio=r.pixelRatio||1),t.gl)return t.gl;if(t.canvas&&(t.container=t.canvas.parentNode),t.container){if("string"==typeof t.container){var s=document.querySelector(t.container);if(!s)throw Error("Element "+t.container+" is not found");t.container=s}a(t.container)?(t.canvas=t.container,t.container=t.canvas.parentNode):t.canvas||(t.canvas=o(),t.container.appendChild(t.canvas),i(t))}else if(!t.canvas){if("undefined"==typeof document)throw Error("Not DOM environment. Use headless-gl.");t.container=document.body||document.documentElement,t.canvas=o(),t.container.appendChild(t.canvas),i(t)}return t.gl||["webgl","experimental-webgl","webgl-experimental"].some((function(e){try{t.gl=t.canvas.getContext(e,t.attrs)}catch(t){}return t.gl})),t.gl}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"pick-by-alias":475}],340:[function(t,e,r){"use strict";e.exports=function(t,e,r){e?e.bind():t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null);var n=0|t.getParameter(t.MAX_VERTEX_ATTRIBS);if(r){if(r.length>n)throw new Error("gl-vao: Too many vertex attributes");for(var i=0;i1?0:Math.acos(s)};var n=t("./fromValues"),i=t("./normalize"),a=t("./dot")},{"./dot":355,"./fromValues":361,"./normalize":372}],346:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.ceil(e[0]),t[1]=Math.ceil(e[1]),t[2]=Math.ceil(e[2]),t}},{}],347:[function(t,e,r){e.exports=function(t){var e=new Float32Array(3);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e}},{}],348:[function(t,e,r){e.exports=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t}},{}],349:[function(t,e,r){e.exports=function(){var t=new Float32Array(3);return t[0]=0,t[1]=0,t[2]=0,t}},{}],350:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2];return t[0]=i*l-a*s,t[1]=a*o-n*l,t[2]=n*s-i*o,t}},{}],351:[function(t,e,r){e.exports=t("./distance")},{"./distance":352}],352:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2];return Math.sqrt(r*r+n*n+i*i)}},{}],353:[function(t,e,r){e.exports=t("./divide")},{"./divide":354}],354:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]/r[0],t[1]=e[1]/r[1],t[2]=e[2]/r[2],t}},{}],355:[function(t,e,r){e.exports=function(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}},{}],356:[function(t,e,r){e.exports=1e-6},{}],357:[function(t,e,r){e.exports=function(t,e){var r=t[0],i=t[1],a=t[2],o=e[0],s=e[1],l=e[2];return Math.abs(r-o)<=n*Math.max(1,Math.abs(r),Math.abs(o))&&Math.abs(i-s)<=n*Math.max(1,Math.abs(i),Math.abs(s))&&Math.abs(a-l)<=n*Math.max(1,Math.abs(a),Math.abs(l))};var n=t("./epsilon")},{"./epsilon":356}],358:[function(t,e,r){e.exports=function(t,e){return t[0]===e[0]&&t[1]===e[1]&&t[2]===e[2]}},{}],359:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.floor(e[0]),t[1]=Math.floor(e[1]),t[2]=Math.floor(e[2]),t}},{}],360:[function(t,e,r){e.exports=function(t,e,r,i,a,o){var s,l;e||(e=3);r||(r=0);l=i?Math.min(i*e+r,t.length):t.length;for(s=r;s0&&(a=1/Math.sqrt(a),t[0]=e[0]*a,t[1]=e[1]*a,t[2]=e[2]*a);return t}},{}],373:[function(t,e,r){e.exports=function(t,e){e=e||1;var r=2*Math.random()*Math.PI,n=2*Math.random()-1,i=Math.sqrt(1-n*n)*e;return t[0]=Math.cos(r)*i,t[1]=Math.sin(r)*i,t[2]=n*e,t}},{}],374:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[1],a=r[2],o=e[1]-i,s=e[2]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=e[0],t[1]=i+o*c-s*l,t[2]=a+o*l+s*c,t}},{}],375:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[0],a=r[2],o=e[0]-i,s=e[2]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=i+s*l+o*c,t[1]=e[1],t[2]=a+s*c-o*l,t}},{}],376:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[0],a=r[1],o=e[0]-i,s=e[1]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=i+o*c-s*l,t[1]=a+o*l+s*c,t[2]=e[2],t}},{}],377:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.round(e[0]),t[1]=Math.round(e[1]),t[2]=Math.round(e[2]),t}},{}],378:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r,t[1]=e[1]*r,t[2]=e[2]*r,t}},{}],379:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e[0]+r[0]*n,t[1]=e[1]+r[1]*n,t[2]=e[2]+r[2]*n,t}},{}],380:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e,t[1]=r,t[2]=n,t}},{}],381:[function(t,e,r){e.exports=t("./squaredDistance")},{"./squaredDistance":383}],382:[function(t,e,r){e.exports=t("./squaredLength")},{"./squaredLength":384}],383:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2];return r*r+n*n+i*i}},{}],384:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2];return e*e+r*r+n*n}},{}],385:[function(t,e,r){e.exports=t("./subtract")},{"./subtract":386}],386:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t}},{}],387:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2];return t[0]=n*r[0]+i*r[3]+a*r[6],t[1]=n*r[1]+i*r[4]+a*r[7],t[2]=n*r[2]+i*r[5]+a*r[8],t}},{}],388:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[3]*n+r[7]*i+r[11]*a+r[15];return o=o||1,t[0]=(r[0]*n+r[4]*i+r[8]*a+r[12])/o,t[1]=(r[1]*n+r[5]*i+r[9]*a+r[13])/o,t[2]=(r[2]*n+r[6]*i+r[10]*a+r[14])/o,t}},{}],389:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2],c=r[3],u=c*n+s*a-l*i,f=c*i+l*n-o*a,h=c*a+o*i-s*n,p=-o*n-s*i-l*a;return t[0]=u*c+p*-o+f*-l-h*-s,t[1]=f*c+p*-s+h*-o-u*-l,t[2]=h*c+p*-l+u*-s-f*-o,t}},{}],390:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]+r[0],t[1]=e[1]+r[1],t[2]=e[2]+r[2],t[3]=e[3]+r[3],t}},{}],391:[function(t,e,r){e.exports=function(t){var e=new Float32Array(4);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[3],e}},{}],392:[function(t,e,r){e.exports=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=e[3],t}},{}],393:[function(t,e,r){e.exports=function(){var t=new Float32Array(4);return t[0]=0,t[1]=0,t[2]=0,t[3]=0,t}},{}],394:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2],a=e[3]-t[3];return Math.sqrt(r*r+n*n+i*i+a*a)}},{}],395:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]/r[0],t[1]=e[1]/r[1],t[2]=e[2]/r[2],t[3]=e[3]/r[3],t}},{}],396:[function(t,e,r){e.exports=function(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]+t[3]*e[3]}},{}],397:[function(t,e,r){e.exports=function(t,e,r,n){var i=new Float32Array(4);return i[0]=t,i[1]=e,i[2]=r,i[3]=n,i}},{}],398:[function(t,e,r){e.exports={create:t("./create"),clone:t("./clone"),fromValues:t("./fromValues"),copy:t("./copy"),set:t("./set"),add:t("./add"),subtract:t("./subtract"),multiply:t("./multiply"),divide:t("./divide"),min:t("./min"),max:t("./max"),scale:t("./scale"),scaleAndAdd:t("./scaleAndAdd"),distance:t("./distance"),squaredDistance:t("./squaredDistance"),length:t("./length"),squaredLength:t("./squaredLength"),negate:t("./negate"),inverse:t("./inverse"),normalize:t("./normalize"),dot:t("./dot"),lerp:t("./lerp"),random:t("./random"),transformMat4:t("./transformMat4"),transformQuat:t("./transformQuat")}},{"./add":390,"./clone":391,"./copy":392,"./create":393,"./distance":394,"./divide":395,"./dot":396,"./fromValues":397,"./inverse":399,"./length":400,"./lerp":401,"./max":402,"./min":403,"./multiply":404,"./negate":405,"./normalize":406,"./random":407,"./scale":408,"./scaleAndAdd":409,"./set":410,"./squaredDistance":411,"./squaredLength":412,"./subtract":413,"./transformMat4":414,"./transformQuat":415}],399:[function(t,e,r){e.exports=function(t,e){return t[0]=1/e[0],t[1]=1/e[1],t[2]=1/e[2],t[3]=1/e[3],t}},{}],400:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2],i=t[3];return Math.sqrt(e*e+r*r+n*n+i*i)}},{}],401:[function(t,e,r){e.exports=function(t,e,r,n){var i=e[0],a=e[1],o=e[2],s=e[3];return t[0]=i+n*(r[0]-i),t[1]=a+n*(r[1]-a),t[2]=o+n*(r[2]-o),t[3]=s+n*(r[3]-s),t}},{}],402:[function(t,e,r){e.exports=function(t,e,r){return t[0]=Math.max(e[0],r[0]),t[1]=Math.max(e[1],r[1]),t[2]=Math.max(e[2],r[2]),t[3]=Math.max(e[3],r[3]),t}},{}],403:[function(t,e,r){e.exports=function(t,e,r){return t[0]=Math.min(e[0],r[0]),t[1]=Math.min(e[1],r[1]),t[2]=Math.min(e[2],r[2]),t[3]=Math.min(e[3],r[3]),t}},{}],404:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r[0],t[1]=e[1]*r[1],t[2]=e[2]*r[2],t[3]=e[3]*r[3],t}},{}],405:[function(t,e,r){e.exports=function(t,e){return t[0]=-e[0],t[1]=-e[1],t[2]=-e[2],t[3]=-e[3],t}},{}],406:[function(t,e,r){e.exports=function(t,e){var r=e[0],n=e[1],i=e[2],a=e[3],o=r*r+n*n+i*i+a*a;o>0&&(o=1/Math.sqrt(o),t[0]=r*o,t[1]=n*o,t[2]=i*o,t[3]=a*o);return t}},{}],407:[function(t,e,r){var n=t("./normalize"),i=t("./scale");e.exports=function(t,e){return e=e||1,t[0]=Math.random(),t[1]=Math.random(),t[2]=Math.random(),t[3]=Math.random(),n(t,t),i(t,t,e),t}},{"./normalize":406,"./scale":408}],408:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r,t[1]=e[1]*r,t[2]=e[2]*r,t[3]=e[3]*r,t}},{}],409:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e[0]+r[0]*n,t[1]=e[1]+r[1]*n,t[2]=e[2]+r[2]*n,t[3]=e[3]+r[3]*n,t}},{}],410:[function(t,e,r){e.exports=function(t,e,r,n,i){return t[0]=e,t[1]=r,t[2]=n,t[3]=i,t}},{}],411:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2],a=e[3]-t[3];return r*r+n*n+i*i+a*a}},{}],412:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2],i=t[3];return e*e+r*r+n*n+i*i}},{}],413:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t[3]=e[3]-r[3],t}},{}],414:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3];return t[0]=r[0]*n+r[4]*i+r[8]*a+r[12]*o,t[1]=r[1]*n+r[5]*i+r[9]*a+r[13]*o,t[2]=r[2]*n+r[6]*i+r[10]*a+r[14]*o,t[3]=r[3]*n+r[7]*i+r[11]*a+r[15]*o,t}},{}],415:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2],c=r[3],u=c*n+s*a-l*i,f=c*i+l*n-o*a,h=c*a+o*i-s*n,p=-o*n-s*i-l*a;return t[0]=u*c+p*-o+f*-l-h*-s,t[1]=f*c+p*-s+h*-o-u*-l,t[2]=h*c+p*-l+u*-s-f*-o,t[3]=e[3],t}},{}],416:[function(t,e,r){var n=t("glsl-tokenizer"),i=t("atob-lite");e.exports=function(t){for(var e=Array.isArray(t)?t:n(t),r=0;r0)continue;r=t.slice(0,1).join("")}return A(r),v+=r.length,(p=p.slice(r.length)).length}}function I(){return/[^a-fA-F0-9]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function O(){return"."===e||/[eE]/.test(e)?(p.push(e),h=5,r=e,u+1):"x"===e&&1===p.length&&"0"===p[0]?(h=11,p.push(e),r=e,u+1):/[^\d]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function z(){return"f"===e&&(p.push(e),r=e,u+=1),/[eE]/.test(e)?(p.push(e),r=e,u+1):("-"!==e&&"+"!==e||!/[eE]/.test(r))&&/[^\d]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function D(){if(/[^\d\w_]/.test(e)){var t=p.join("");return h=k[t]?8:T[t]?7:6,A(p.join("")),h=999,u}return p.push(e),r=e,u+1}};var n=t("./lib/literals"),i=t("./lib/operators"),a=t("./lib/builtins"),o=t("./lib/literals-300es"),s=t("./lib/builtins-300es"),l=["block-comment","line-comment","preprocessor","operator","integer","float","ident","builtin","keyword","whitespace","eof","integer"]},{"./lib/builtins":419,"./lib/builtins-300es":418,"./lib/literals":421,"./lib/literals-300es":420,"./lib/operators":422}],418:[function(t,e,r){var n=t("./builtins");n=n.slice().filter((function(t){return!/^(gl\_|texture)/.test(t)})),e.exports=n.concat(["gl_VertexID","gl_InstanceID","gl_Position","gl_PointSize","gl_FragCoord","gl_FrontFacing","gl_FragDepth","gl_PointCoord","gl_MaxVertexAttribs","gl_MaxVertexUniformVectors","gl_MaxVertexOutputVectors","gl_MaxFragmentInputVectors","gl_MaxVertexTextureImageUnits","gl_MaxCombinedTextureImageUnits","gl_MaxTextureImageUnits","gl_MaxFragmentUniformVectors","gl_MaxDrawBuffers","gl_MinProgramTexelOffset","gl_MaxProgramTexelOffset","gl_DepthRangeParameters","gl_DepthRange","trunc","round","roundEven","isnan","isinf","floatBitsToInt","floatBitsToUint","intBitsToFloat","uintBitsToFloat","packSnorm2x16","unpackSnorm2x16","packUnorm2x16","unpackUnorm2x16","packHalf2x16","unpackHalf2x16","outerProduct","transpose","determinant","inverse","texture","textureSize","textureProj","textureLod","textureOffset","texelFetch","texelFetchOffset","textureProjOffset","textureLodOffset","textureProjLod","textureProjLodOffset","textureGrad","textureGradOffset","textureProjGrad","textureProjGradOffset"])},{"./builtins":419}],419:[function(t,e,r){e.exports=["abs","acos","all","any","asin","atan","ceil","clamp","cos","cross","dFdx","dFdy","degrees","distance","dot","equal","exp","exp2","faceforward","floor","fract","gl_BackColor","gl_BackLightModelProduct","gl_BackLightProduct","gl_BackMaterial","gl_BackSecondaryColor","gl_ClipPlane","gl_ClipVertex","gl_Color","gl_DepthRange","gl_DepthRangeParameters","gl_EyePlaneQ","gl_EyePlaneR","gl_EyePlaneS","gl_EyePlaneT","gl_Fog","gl_FogCoord","gl_FogFragCoord","gl_FogParameters","gl_FragColor","gl_FragCoord","gl_FragData","gl_FragDepth","gl_FragDepthEXT","gl_FrontColor","gl_FrontFacing","gl_FrontLightModelProduct","gl_FrontLightProduct","gl_FrontMaterial","gl_FrontSecondaryColor","gl_LightModel","gl_LightModelParameters","gl_LightModelProducts","gl_LightProducts","gl_LightSource","gl_LightSourceParameters","gl_MaterialParameters","gl_MaxClipPlanes","gl_MaxCombinedTextureImageUnits","gl_MaxDrawBuffers","gl_MaxFragmentUniformComponents","gl_MaxLights","gl_MaxTextureCoords","gl_MaxTextureImageUnits","gl_MaxTextureUnits","gl_MaxVaryingFloats","gl_MaxVertexAttribs","gl_MaxVertexTextureImageUnits","gl_MaxVertexUniformComponents","gl_ModelViewMatrix","gl_ModelViewMatrixInverse","gl_ModelViewMatrixInverseTranspose","gl_ModelViewMatrixTranspose","gl_ModelViewProjectionMatrix","gl_ModelViewProjectionMatrixInverse","gl_ModelViewProjectionMatrixInverseTranspose","gl_ModelViewProjectionMatrixTranspose","gl_MultiTexCoord0","gl_MultiTexCoord1","gl_MultiTexCoord2","gl_MultiTexCoord3","gl_MultiTexCoord4","gl_MultiTexCoord5","gl_MultiTexCoord6","gl_MultiTexCoord7","gl_Normal","gl_NormalMatrix","gl_NormalScale","gl_ObjectPlaneQ","gl_ObjectPlaneR","gl_ObjectPlaneS","gl_ObjectPlaneT","gl_Point","gl_PointCoord","gl_PointParameters","gl_PointSize","gl_Position","gl_ProjectionMatrix","gl_ProjectionMatrixInverse","gl_ProjectionMatrixInverseTranspose","gl_ProjectionMatrixTranspose","gl_SecondaryColor","gl_TexCoord","gl_TextureEnvColor","gl_TextureMatrix","gl_TextureMatrixInverse","gl_TextureMatrixInverseTranspose","gl_TextureMatrixTranspose","gl_Vertex","greaterThan","greaterThanEqual","inversesqrt","length","lessThan","lessThanEqual","log","log2","matrixCompMult","max","min","mix","mod","normalize","not","notEqual","pow","radians","reflect","refract","sign","sin","smoothstep","sqrt","step","tan","texture2D","texture2DLod","texture2DProj","texture2DProjLod","textureCube","textureCubeLod","texture2DLodEXT","texture2DProjLodEXT","textureCubeLodEXT","texture2DGradEXT","texture2DProjGradEXT","textureCubeGradEXT"]},{}],420:[function(t,e,r){var n=t("./literals");e.exports=n.slice().concat(["layout","centroid","smooth","case","mat2x2","mat2x3","mat2x4","mat3x2","mat3x3","mat3x4","mat4x2","mat4x3","mat4x4","uvec2","uvec3","uvec4","samplerCubeShadow","sampler2DArray","sampler2DArrayShadow","isampler2D","isampler3D","isamplerCube","isampler2DArray","usampler2D","usampler3D","usamplerCube","usampler2DArray","coherent","restrict","readonly","writeonly","resource","atomic_uint","noperspective","patch","sample","subroutine","common","partition","active","filter","image1D","image2D","image3D","imageCube","iimage1D","iimage2D","iimage3D","iimageCube","uimage1D","uimage2D","uimage3D","uimageCube","image1DArray","image2DArray","iimage1DArray","iimage2DArray","uimage1DArray","uimage2DArray","image1DShadow","image2DShadow","image1DArrayShadow","image2DArrayShadow","imageBuffer","iimageBuffer","uimageBuffer","sampler1DArray","sampler1DArrayShadow","isampler1D","isampler1DArray","usampler1D","usampler1DArray","isampler2DRect","usampler2DRect","samplerBuffer","isamplerBuffer","usamplerBuffer","sampler2DMS","isampler2DMS","usampler2DMS","sampler2DMSArray","isampler2DMSArray","usampler2DMSArray"])},{"./literals":421}],421:[function(t,e,r){e.exports=["precision","highp","mediump","lowp","attribute","const","uniform","varying","break","continue","do","for","while","if","else","in","out","inout","float","int","uint","void","bool","true","false","discard","return","mat2","mat3","mat4","vec2","vec3","vec4","ivec2","ivec3","ivec4","bvec2","bvec3","bvec4","sampler1D","sampler2D","sampler3D","samplerCube","sampler1DShadow","sampler2DShadow","struct","asm","class","union","enum","typedef","template","this","packed","goto","switch","default","inline","noinline","volatile","public","static","extern","external","interface","long","short","double","half","fixed","unsigned","input","output","hvec2","hvec3","hvec4","dvec2","dvec3","dvec4","fvec2","fvec3","fvec4","sampler2DRect","sampler3DRect","sampler2DRectShadow","sizeof","cast","namespace","using"]},{}],422:[function(t,e,r){e.exports=["<<=",">>=","++","--","<<",">>","<=",">=","==","!=","&&","||","+=","-=","*=","/=","%=","&=","^^","^=","|=","(",")","[","]",".","!","~","*","/","%","+","-","<",">","&","^","|","?",":","=",",",";","{","}"]},{}],423:[function(t,e,r){var n=t("./index");e.exports=function(t,e){var r=n(e),i=[];return i=(i=i.concat(r(t))).concat(r(null))}},{"./index":417}],424:[function(t,e,r){e.exports=function(t){"string"==typeof t&&(t=[t]);for(var e=[].slice.call(arguments,1),r=[],n=0;n */ -r.read=function(t,e,r,n,i){var a,o,s=8*i-n-1,l=(1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},r.write=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m}},{}],226:[function(t,e,r){"function"==typeof Object.create?e.exports=function(t,e){e&&(t.super_=e,t.prototype=Object.create(e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}}))}:e.exports=function(t,e){if(e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}}},{}],227:[function(t,e,r){e.exports=!0},{}],228:[function(t,e,r){"use strict";e.exports="undefined"!=typeof navigator&&(/MSIE/.test(navigator.userAgent)||/Trident\//.test(navigator.appVersion))},{}],229:[function(t,e,r){"use strict";e.exports=a,e.exports.isMobile=a,e.exports.default=a;var n=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i,i=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino|android|ipad|playbook|silk/i;function a(t){t||(t={});var e=t.ua;if(e||"undefined"==typeof navigator||(e=navigator.userAgent),e&&e.headers&&"string"==typeof e.headers["user-agent"]&&(e=e.headers["user-agent"]),"string"!=typeof e)return!1;var r=t.tablet?i.test(e):n.test(e);return!r&&t.tablet&&t.featureDetect&&navigator&&navigator.maxTouchPoints>1&&-1!==e.indexOf("Macintosh")&&-1!==e.indexOf("Safari")&&(r=!0),r}},{}],230:[function(t,e,r){"use strict";e.exports=function(t){var e=typeof t;return null!==t&&("object"===e||"function"===e)}},{}],231:[function(t,e,r){"use strict";var n=Object.prototype.toString;e.exports=function(t){var e;return"[object Object]"===n.call(t)&&(null===(e=Object.getPrototypeOf(t))||e===Object.getPrototypeOf({}))}},{}],232:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=t.length,n=0;n13)&&32!==e&&133!==e&&160!==e&&5760!==e&&6158!==e&&(e<8192||e>8205)&&8232!==e&&8233!==e&&8239!==e&&8287!==e&&8288!==e&&12288!==e&&65279!==e)return!1;return!0}},{}],233:[function(t,e,r){"use strict";e.exports=function(t){return"string"==typeof t&&(t=t.trim(),!!(/^[mzlhvcsqta]\s*[-+.0-9][^mlhvzcsqta]+/i.test(t)&&/[\dz]$/i.test(t)&&t.length>4))}},{}],234:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?e.exports=n():(t=t||self).mapboxgl=n()}(this,(function(){"use strict";var t,e,r;function n(n,i){if(t)if(e){var a="var sharedChunk = {}; ("+t+")(sharedChunk); ("+e+")(sharedChunk);",o={};t(o),(r=i(o)).workerUrl=window.URL.createObjectURL(new Blob([a],{type:"text/javascript"}))}else e=i;else t=i}return n(0,(function(t){function e(t,e){return t(e={exports:{}},e.exports),e.exports}var r=n;function n(t,e,r,n){this.cx=3*t,this.bx=3*(r-t)-this.cx,this.ax=1-this.cx-this.bx,this.cy=3*e,this.by=3*(n-e)-this.cy,this.ay=1-this.cy-this.by,this.p1x=t,this.p1y=n,this.p2x=r,this.p2y=n}n.prototype.sampleCurveX=function(t){return((this.ax*t+this.bx)*t+this.cx)*t},n.prototype.sampleCurveY=function(t){return((this.ay*t+this.by)*t+this.cy)*t},n.prototype.sampleCurveDerivativeX=function(t){return(3*this.ax*t+2*this.bx)*t+this.cx},n.prototype.solveCurveX=function(t,e){var r,n,i,a,o;for(void 0===e&&(e=1e-6),i=t,o=0;o<8;o++){if(a=this.sampleCurveX(i)-t,Math.abs(a)(n=1))return n;for(;ra?r=i:n=i,i=.5*(n-r)+r}return i},n.prototype.solve=function(t,e){return this.sampleCurveY(this.solveCurveX(t,e))};var i=a;function a(t,e){this.x=t,this.y=e}function o(t,e,n,i){var a=new r(t,e,n,i);return function(t){return a.solve(t)}}a.prototype={clone:function(){return new a(this.x,this.y)},add:function(t){return this.clone()._add(t)},sub:function(t){return this.clone()._sub(t)},multByPoint:function(t){return this.clone()._multByPoint(t)},divByPoint:function(t){return this.clone()._divByPoint(t)},mult:function(t){return this.clone()._mult(t)},div:function(t){return this.clone()._div(t)},rotate:function(t){return this.clone()._rotate(t)},rotateAround:function(t,e){return this.clone()._rotateAround(t,e)},matMult:function(t){return this.clone()._matMult(t)},unit:function(){return this.clone()._unit()},perp:function(){return this.clone()._perp()},round:function(){return this.clone()._round()},mag:function(){return Math.sqrt(this.x*this.x+this.y*this.y)},equals:function(t){return this.x===t.x&&this.y===t.y},dist:function(t){return Math.sqrt(this.distSqr(t))},distSqr:function(t){var e=t.x-this.x,r=t.y-this.y;return e*e+r*r},angle:function(){return Math.atan2(this.y,this.x)},angleTo:function(t){return Math.atan2(this.y-t.y,this.x-t.x)},angleWith:function(t){return this.angleWithSep(t.x,t.y)},angleWithSep:function(t,e){return Math.atan2(this.x*e-this.y*t,this.x*t+this.y*e)},_matMult:function(t){var e=t[0]*this.x+t[1]*this.y,r=t[2]*this.x+t[3]*this.y;return this.x=e,this.y=r,this},_add:function(t){return this.x+=t.x,this.y+=t.y,this},_sub:function(t){return this.x-=t.x,this.y-=t.y,this},_mult:function(t){return this.x*=t,this.y*=t,this},_div:function(t){return this.x/=t,this.y/=t,this},_multByPoint:function(t){return this.x*=t.x,this.y*=t.y,this},_divByPoint:function(t){return this.x/=t.x,this.y/=t.y,this},_unit:function(){return this._div(this.mag()),this},_perp:function(){var t=this.y;return this.y=this.x,this.x=-t,this},_rotate:function(t){var e=Math.cos(t),r=Math.sin(t),n=e*this.x-r*this.y,i=r*this.x+e*this.y;return this.x=n,this.y=i,this},_rotateAround:function(t,e){var r=Math.cos(t),n=Math.sin(t),i=e.x+r*(this.x-e.x)-n*(this.y-e.y),a=e.y+n*(this.x-e.x)+r*(this.y-e.y);return this.x=i,this.y=a,this},_round:function(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this}},a.convert=function(t){return t instanceof a?t:Array.isArray(t)?new a(t[0],t[1]):t};var s=o(.25,.1,.25,1);function l(t,e,r){return Math.min(r,Math.max(e,t))}function c(t,e,r){var n=r-e,i=((t-e)%n+n)%n+e;return i===e?r:i}function u(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];for(var n=0,i=e;n>e/4).toString(16):([1e7]+-[1e3]+-4e3+-8e3+-1e11).replace(/[018]/g,t)}()}function d(t){return!!t&&/^[0-9a-f]{8}-[0-9a-f]{4}-[4][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$/i.test(t)}function m(t,e){t.forEach((function(t){e[t]&&(e[t]=e[t].bind(e))}))}function g(t,e){return-1!==t.indexOf(e,t.length-e.length)}function v(t,e,r){var n={};for(var i in t)n[i]=e.call(r||this,t[i],i,t);return n}function y(t,e,r){var n={};for(var i in t)e.call(r||this,t[i],i,t)&&(n[i]=t[i]);return n}function x(t){return Array.isArray(t)?t.map(x):"object"==typeof t&&t?v(t,x):t}var b={};function _(t){b[t]||("undefined"!=typeof console&&console.warn(t),b[t]=!0)}function w(t,e,r){return(r.y-t.y)*(e.x-t.x)>(e.y-t.y)*(r.x-t.x)}function T(t){for(var e=0,r=0,n=t.length,i=n-1,a=void 0,o=void 0;r@\,;\:\\"\/\[\]\?\=\{\}\x7F]+)(?:\=(?:([^\x00-\x20\(\)<>@\,;\:\\"\/\[\]\?\=\{\}\x7F]+)|(?:\"((?:[^"\\]|\\.)*)\")))?/g,(function(t,r,n,i){var a=n||i;return e[r]=!a||a.toLowerCase(),""})),e["max-age"]){var r=parseInt(e["max-age"],10);isNaN(r)?delete e["max-age"]:e["max-age"]=r}return e}var M=null;function S(t){if(null==M){var e=t.navigator?t.navigator.userAgent:null;M=!!t.safari||!(!e||!(/\b(iPad|iPhone|iPod)\b/.test(e)||e.match("Safari")&&!e.match("Chrome")))}return M}function E(t){try{var e=self[t];return e.setItem("_mapbox_test_",1),e.removeItem("_mapbox_test_"),!0}catch(t){return!1}}var L,C,P,I,O=self.performance&&self.performance.now?self.performance.now.bind(self.performance):Date.now.bind(Date),z=self.requestAnimationFrame||self.mozRequestAnimationFrame||self.webkitRequestAnimationFrame||self.msRequestAnimationFrame,D=self.cancelAnimationFrame||self.mozCancelAnimationFrame||self.webkitCancelAnimationFrame||self.msCancelAnimationFrame,R={now:O,frame:function(t){var e=z(t);return{cancel:function(){return D(e)}}},getImageData:function(t,e){void 0===e&&(e=0);var r=self.document.createElement("canvas"),n=r.getContext("2d");if(!n)throw new Error("failed to create canvas 2d context");return r.width=t.width,r.height=t.height,n.drawImage(t,0,0,t.width,t.height),n.getImageData(-e,-e,t.width+2*e,t.height+2*e)},resolveURL:function(t){return L||(L=self.document.createElement("a")),L.href=t,L.href},hardwareConcurrency:self.navigator.hardwareConcurrency||4,get devicePixelRatio(){return self.devicePixelRatio},get prefersReducedMotion(){return!!self.matchMedia&&(null==C&&(C=self.matchMedia("(prefers-reduced-motion: reduce)")),C.matches)}},F={API_URL:"https://api.mapbox.com",get EVENTS_URL(){return this.API_URL?0===this.API_URL.indexOf("https://api.mapbox.cn")?"https://events.mapbox.cn/events/v2":0===this.API_URL.indexOf("https://api.mapbox.com")?"https://events.mapbox.com/events/v2":null:null},FEEDBACK_URL:"https://apps.mapbox.com/feedback",REQUIRE_ACCESS_TOKEN:!0,ACCESS_TOKEN:null,MAX_PARALLEL_IMAGE_REQUESTS:16},B={supported:!1,testSupport:function(t){if(N||!I)return;j?U(t):P=t}},N=!1,j=!1;function U(t){var e=t.createTexture();t.bindTexture(t.TEXTURE_2D,e);try{if(t.texImage2D(t.TEXTURE_2D,0,t.RGBA,t.RGBA,t.UNSIGNED_BYTE,I),t.isContextLost())return;B.supported=!0}catch(t){}t.deleteTexture(e),N=!0}self.document&&((I=self.document.createElement("img")).onload=function(){P&&U(P),P=null,j=!0},I.onerror=function(){N=!0,P=null},I.src="");var V="01";var H=function(t,e){this._transformRequestFn=t,this._customAccessToken=e,this._createSkuToken()};function q(t){return 0===t.indexOf("mapbox:")}H.prototype._createSkuToken=function(){var t=function(){for(var t="",e=0;e<10;e++)t+="0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"[Math.floor(62*Math.random())];return{token:["1",V,t].join(""),tokenExpiresAt:Date.now()+432e5}}();this._skuToken=t.token,this._skuTokenExpiresAt=t.tokenExpiresAt},H.prototype._isSkuTokenExpired=function(){return Date.now()>this._skuTokenExpiresAt},H.prototype.transformRequest=function(t,e){return this._transformRequestFn&&this._transformRequestFn(t,e)||{url:t}},H.prototype.normalizeStyleURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/styles/v1"+r.path,this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeGlyphsURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/fonts/v1"+r.path,this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeSourceURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/v4/"+r.authority+".json",r.params.push("secure"),this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeSpriteURL=function(t,e,r,n){var i=X(t);return q(t)?(i.path="/styles/v1"+i.path+"/sprite"+e+r,this._makeAPIURL(i,this._customAccessToken||n)):(i.path+=""+e+r,Z(i))},H.prototype.normalizeTileURL=function(t,e){if(this._isSkuTokenExpired()&&this._createSkuToken(),t&&!q(t))return t;var r=X(t),n=R.devicePixelRatio>=2||512===e?"@2x":"",i=B.supported?".webp":"$1";r.path=r.path.replace(/(\.(png|jpg)\d*)(?=$)/,""+n+i),r.path=r.path.replace(/^.+\/v4\//,"/"),r.path="/v4"+r.path;var a=this._customAccessToken||function(t){for(var e=0,r=t;e=1&&self.localStorage.setItem(e,JSON.stringify(this.eventData))}catch(t){_("Unable to write to LocalStorage")}},K.prototype.processRequests=function(t){},K.prototype.postEvent=function(t,e,r,n){var i=this;if(F.EVENTS_URL){var a=X(F.EVENTS_URL);a.params.push("access_token="+(n||F.ACCESS_TOKEN||""));var o={event:this.type,created:new Date(t).toISOString(),sdkIdentifier:"mapbox-gl-js",sdkVersion:"1.10.1",skuId:V,userId:this.anonId},s=e?u(o,e):o,l={url:Z(a),headers:{"Content-Type":"text/plain"},body:JSON.stringify([s])};this.pendingRequest=bt(l,(function(t){i.pendingRequest=null,r(t),i.saveEventData(),i.processRequests(n)}))}},K.prototype.queueRequest=function(t,e){this.queue.push(t),this.processRequests(e)};var Q,$,tt=function(t){function e(){t.call(this,"map.load"),this.success={},this.skuToken=""}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.postMapLoadEvent=function(t,e,r,n){this.skuToken=r,(F.EVENTS_URL&&n||F.ACCESS_TOKEN&&Array.isArray(t)&&t.some((function(t){return q(t)||Y(t)})))&&this.queueRequest({id:e,timestamp:Date.now()},n)},e.prototype.processRequests=function(t){var e=this;if(!this.pendingRequest&&0!==this.queue.length){var r=this.queue.shift(),n=r.id,i=r.timestamp;n&&this.success[n]||(this.anonId||this.fetchEventData(),d(this.anonId)||(this.anonId=p()),this.postEvent(i,{skuToken:this.skuToken},(function(t){t||n&&(e.success[n]=!0)}),t))}},e}(K),et=new(function(t){function e(e){t.call(this,"appUserTurnstile"),this._customAccessToken=e}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.postTurnstileEvent=function(t,e){F.EVENTS_URL&&F.ACCESS_TOKEN&&Array.isArray(t)&&t.some((function(t){return q(t)||Y(t)}))&&this.queueRequest(Date.now(),e)},e.prototype.processRequests=function(t){var e=this;if(!this.pendingRequest&&0!==this.queue.length){this.anonId&&this.eventData.lastSuccess&&this.eventData.tokenU||this.fetchEventData();var r=J(F.ACCESS_TOKEN),n=r?r.u:F.ACCESS_TOKEN,i=n!==this.eventData.tokenU;d(this.anonId)||(this.anonId=p(),i=!0);var a=this.queue.shift();if(this.eventData.lastSuccess){var o=new Date(this.eventData.lastSuccess),s=new Date(a),l=(a-this.eventData.lastSuccess)/864e5;i=i||l>=1||l<-1||o.getDate()!==s.getDate()}else i=!0;if(!i)return this.processRequests();this.postEvent(a,{"enabled.telemetry":!1},(function(t){t||(e.eventData.lastSuccess=a,e.eventData.tokenU=n)}),t)}},e}(K)),rt=et.postTurnstileEvent.bind(et),nt=new tt,it=nt.postMapLoadEvent.bind(nt),at=500,ot=50;function st(){self.caches&&!Q&&(Q=self.caches.open("mapbox-tiles"))}function lt(t,e,r){if(st(),Q){var n={status:e.status,statusText:e.statusText,headers:new self.Headers};e.headers.forEach((function(t,e){return n.headers.set(e,t)}));var i=A(e.headers.get("Cache-Control")||"");if(!i["no-store"])i["max-age"]&&n.headers.set("Expires",new Date(r+1e3*i["max-age"]).toUTCString()),new Date(n.headers.get("Expires")).getTime()-r<42e4||function(t,e){if(void 0===$)try{new Response(new ReadableStream),$=!0}catch(t){$=!1}$?e(t.body):t.blob().then(e)}(e,(function(e){var r=new self.Response(e,n);st(),Q&&Q.then((function(e){return e.put(ct(t.url),r)})).catch((function(t){return _(t.message)}))}))}}function ct(t){var e=t.indexOf("?");return e<0?t:t.slice(0,e)}function ut(t,e){if(st(),!Q)return e(null);var r=ct(t.url);Q.then((function(t){t.match(r).then((function(n){var i=function(t){if(!t)return!1;var e=new Date(t.headers.get("Expires")||0),r=A(t.headers.get("Cache-Control")||"");return e>Date.now()&&!r["no-cache"]}(n);t.delete(r),i&&t.put(r,n.clone()),e(null,n,i)})).catch(e)})).catch(e)}var ft,ht=1/0;function pt(){return null==ft&&(ft=self.OffscreenCanvas&&new self.OffscreenCanvas(1,1).getContext("2d")&&"function"==typeof self.createImageBitmap),ft}var dt={Unknown:"Unknown",Style:"Style",Source:"Source",Tile:"Tile",Glyphs:"Glyphs",SpriteImage:"SpriteImage",SpriteJSON:"SpriteJSON",Image:"Image"};"function"==typeof Object.freeze&&Object.freeze(dt);var mt=function(t){function e(e,r,n){401===r&&Y(n)&&(e+=": you may have provided an invalid Mapbox access token. See https://www.mapbox.com/api-documentation/#access-tokens-and-token-scopes"),t.call(this,e),this.status=r,this.url=n,this.name=this.constructor.name,this.message=e}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.toString=function(){return this.name+": "+this.message+" ("+this.status+"): "+this.url},e}(Error),gt=k()?function(){return self.worker&&self.worker.referrer}:function(){return("blob:"===self.location.protocol?self.parent:self).location.href};function vt(t,e){var r,n=new self.AbortController,i=new self.Request(t.url,{method:t.method||"GET",body:t.body,credentials:t.credentials,headers:t.headers,referrer:gt(),signal:n.signal}),a=!1,o=!1,s=(r=i.url).indexOf("sku=")>0&&Y(r);"json"===t.type&&i.headers.set("Accept","application/json");var l=function(r,n,a){if(!o){if(r&&"SecurityError"!==r.message&&_(r),n&&a)return c(n);var l=Date.now();self.fetch(i).then((function(r){if(r.ok){var n=s?r.clone():null;return c(r,n,l)}return e(new mt(r.statusText,r.status,t.url))})).catch((function(t){20!==t.code&&e(new Error(t.message))}))}},c=function(r,n,s){("arrayBuffer"===t.type?r.arrayBuffer():"json"===t.type?r.json():r.text()).then((function(t){o||(n&&s&<(i,n,s),a=!0,e(null,t,r.headers.get("Cache-Control"),r.headers.get("Expires")))})).catch((function(t){o||e(new Error(t.message))}))};return s?ut(i,l):l(null,null),{cancel:function(){o=!0,a||n.abort()}}}var yt=function(t,e){if(r=t.url,!(/^file:/.test(r)||/^file:/.test(gt())&&!/^\w+:/.test(r))){if(self.fetch&&self.Request&&self.AbortController&&self.Request.prototype.hasOwnProperty("signal"))return vt(t,e);if(k()&&self.worker&&self.worker.actor){return self.worker.actor.send("getResource",t,e,void 0,!0)}}var r;return function(t,e){var r=new self.XMLHttpRequest;for(var n in r.open(t.method||"GET",t.url,!0),"arrayBuffer"===t.type&&(r.responseType="arraybuffer"),t.headers)r.setRequestHeader(n,t.headers[n]);return"json"===t.type&&(r.responseType="text",r.setRequestHeader("Accept","application/json")),r.withCredentials="include"===t.credentials,r.onerror=function(){e(new Error(r.statusText))},r.onload=function(){if((r.status>=200&&r.status<300||0===r.status)&&null!==r.response){var n=r.response;if("json"===t.type)try{n=JSON.parse(r.response)}catch(t){return e(t)}e(null,n,r.getResponseHeader("Cache-Control"),r.getResponseHeader("Expires"))}else e(new mt(r.statusText,r.status,t.url))},r.send(t.body),{cancel:function(){return r.abort()}}}(t,e)},xt=function(t,e){return yt(u(t,{type:"arrayBuffer"}),e)},bt=function(t,e){return yt(u(t,{method:"POST"}),e)};var _t,wt;_t=[],wt=0;var Tt=function(t,e){if(B.supported&&(t.headers||(t.headers={}),t.headers.accept="image/webp,*/*"),wt>=F.MAX_PARALLEL_IMAGE_REQUESTS){var r={requestParameters:t,callback:e,cancelled:!1,cancel:function(){this.cancelled=!0}};return _t.push(r),r}wt++;var n=!1,i=function(){if(!n)for(n=!0,wt--;_t.length&&wt0||this._oneTimeListeners&&this._oneTimeListeners[t]&&this._oneTimeListeners[t].length>0||this._eventedParent&&this._eventedParent.listens(t)},Et.prototype.setEventedParent=function(t,e){return this._eventedParent=t,this._eventedParentData=e,this};var Lt={$version:8,$root:{version:{required:!0,type:"enum",values:[8]},name:{type:"string"},metadata:{type:"*"},center:{type:"array",value:"number"},zoom:{type:"number"},bearing:{type:"number",default:0,period:360,units:"degrees"},pitch:{type:"number",default:0,units:"degrees"},light:{type:"light"},sources:{required:!0,type:"sources"},sprite:{type:"string"},glyphs:{type:"string"},transition:{type:"transition"},layers:{required:!0,type:"array",value:"layer"}},sources:{"*":{type:"source"}},source:["source_vector","source_raster","source_raster_dem","source_geojson","source_video","source_image"],source_vector:{type:{required:!0,type:"enum",values:{vector:{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},scheme:{type:"enum",values:{xyz:{},tms:{}},default:"xyz"},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},attribution:{type:"string"},promoteId:{type:"promoteId"},"*":{type:"*"}},source_raster:{type:{required:!0,type:"enum",values:{raster:{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},tileSize:{type:"number",default:512,units:"pixels"},scheme:{type:"enum",values:{xyz:{},tms:{}},default:"xyz"},attribution:{type:"string"},"*":{type:"*"}},source_raster_dem:{type:{required:!0,type:"enum",values:{"raster-dem":{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},tileSize:{type:"number",default:512,units:"pixels"},attribution:{type:"string"},encoding:{type:"enum",values:{terrarium:{},mapbox:{}},default:"mapbox"},"*":{type:"*"}},source_geojson:{type:{required:!0,type:"enum",values:{geojson:{}}},data:{type:"*"},maxzoom:{type:"number",default:18},attribution:{type:"string"},buffer:{type:"number",default:128,maximum:512,minimum:0},tolerance:{type:"number",default:.375},cluster:{type:"boolean",default:!1},clusterRadius:{type:"number",default:50,minimum:0},clusterMaxZoom:{type:"number"},clusterProperties:{type:"*"},lineMetrics:{type:"boolean",default:!1},generateId:{type:"boolean",default:!1},promoteId:{type:"promoteId"}},source_video:{type:{required:!0,type:"enum",values:{video:{}}},urls:{required:!0,type:"array",value:"string"},coordinates:{required:!0,type:"array",length:4,value:{type:"array",length:2,value:"number"}}},source_image:{type:{required:!0,type:"enum",values:{image:{}}},url:{required:!0,type:"string"},coordinates:{required:!0,type:"array",length:4,value:{type:"array",length:2,value:"number"}}},layer:{id:{type:"string",required:!0},type:{type:"enum",values:{fill:{},line:{},symbol:{},circle:{},heatmap:{},"fill-extrusion":{},raster:{},hillshade:{},background:{}},required:!0},metadata:{type:"*"},source:{type:"string"},"source-layer":{type:"string"},minzoom:{type:"number",minimum:0,maximum:24},maxzoom:{type:"number",minimum:0,maximum:24},filter:{type:"filter"},layout:{type:"layout"},paint:{type:"paint"}},layout:["layout_fill","layout_line","layout_circle","layout_heatmap","layout_fill-extrusion","layout_symbol","layout_raster","layout_hillshade","layout_background"],layout_background:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_fill:{"fill-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_circle:{"circle-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_heatmap:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},"layout_fill-extrusion":{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_line:{"line-cap":{type:"enum",values:{butt:{},round:{},square:{}},default:"butt",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"line-join":{type:"enum",values:{bevel:{},round:{},miter:{}},default:"miter",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"line-miter-limit":{type:"number",default:2,requires:[{"line-join":"miter"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-round-limit":{type:"number",default:1.05,requires:[{"line-join":"round"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_symbol:{"symbol-placement":{type:"enum",values:{point:{},line:{},"line-center":{}},default:"point",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"symbol-spacing":{type:"number",default:250,minimum:1,units:"pixels",requires:[{"symbol-placement":"line"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"symbol-avoid-edges":{type:"boolean",default:!1,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"symbol-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"symbol-z-order":{type:"enum",values:{auto:{},"viewport-y":{},source:{}},default:"auto",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-allow-overlap":{type:"boolean",default:!1,requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-ignore-placement":{type:"boolean",default:!1,requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-optional":{type:"boolean",default:!1,requires:["icon-image","text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-rotation-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-size":{type:"number",default:1,minimum:0,units:"factor of the original icon size",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-text-fit":{type:"enum",values:{none:{},width:{},height:{},both:{}},default:"none",requires:["icon-image","text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-text-fit-padding":{type:"array",value:"number",length:4,default:[0,0,0,0],units:"pixels",requires:["icon-image","text-field",{"icon-text-fit":["both","width","height"]}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-image":{type:"resolvedImage",tokens:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-rotate":{type:"number",default:0,period:360,units:"degrees",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-padding":{type:"number",default:2,minimum:0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-keep-upright":{type:"boolean",default:!1,requires:["icon-image",{"icon-rotation-alignment":"map"},{"symbol-placement":["line","line-center"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-offset":{type:"array",value:"number",length:2,default:[0,0],requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-anchor":{type:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},default:"center",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-pitch-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-pitch-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-rotation-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-field":{type:"formatted",default:"",tokens:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-font":{type:"array",value:"string",default:["Open Sans Regular","Arial Unicode MS Regular"],requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-size":{type:"number",default:16,minimum:0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-max-width":{type:"number",default:10,minimum:0,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-line-height":{type:"number",default:1.2,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-letter-spacing":{type:"number",default:0,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-justify":{type:"enum",values:{auto:{},left:{},center:{},right:{}},default:"center",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-radial-offset":{type:"number",units:"ems",default:0,requires:["text-field"],"property-type":"data-driven",expression:{interpolated:!0,parameters:["zoom","feature"]}},"text-variable-anchor":{type:"array",value:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},requires:["text-field",{"symbol-placement":["point"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-anchor":{type:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},default:"center",requires:["text-field",{"!":"text-variable-anchor"}],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-max-angle":{type:"number",default:45,units:"degrees",requires:["text-field",{"symbol-placement":["line","line-center"]}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-writing-mode":{type:"array",value:"enum",values:{horizontal:{},vertical:{}},requires:["text-field",{"symbol-placement":["point"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-rotate":{type:"number",default:0,period:360,units:"degrees",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-padding":{type:"number",default:2,minimum:0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-keep-upright":{type:"boolean",default:!0,requires:["text-field",{"text-rotation-alignment":"map"},{"symbol-placement":["line","line-center"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-transform":{type:"enum",values:{none:{},uppercase:{},lowercase:{}},default:"none",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-offset":{type:"array",value:"number",units:"ems",length:2,default:[0,0],requires:["text-field",{"!":"text-radial-offset"}],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-allow-overlap":{type:"boolean",default:!1,requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-ignore-placement":{type:"boolean",default:!1,requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-optional":{type:"boolean",default:!1,requires:["text-field","icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_raster:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_hillshade:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},filter:{type:"array",value:"*"},filter_operator:{type:"enum",values:{"==":{},"!=":{},">":{},">=":{},"<":{},"<=":{},in:{},"!in":{},all:{},any:{},none:{},has:{},"!has":{},within:{}}},geometry_type:{type:"enum",values:{Point:{},LineString:{},Polygon:{}}},function:{expression:{type:"expression"},stops:{type:"array",value:"function_stop"},base:{type:"number",default:1,minimum:0},property:{type:"string",default:"$zoom"},type:{type:"enum",values:{identity:{},exponential:{},interval:{},categorical:{}},default:"exponential"},colorSpace:{type:"enum",values:{rgb:{},lab:{},hcl:{}},default:"rgb"},default:{type:"*",required:!1}},function_stop:{type:"array",minimum:0,maximum:24,value:["number","color"],length:2},expression:{type:"array",value:"*",minimum:1},expression_name:{type:"enum",values:{let:{group:"Variable binding"},var:{group:"Variable binding"},literal:{group:"Types"},array:{group:"Types"},at:{group:"Lookup"},in:{group:"Lookup"},"index-of":{group:"Lookup"},slice:{group:"Lookup"},case:{group:"Decision"},match:{group:"Decision"},coalesce:{group:"Decision"},step:{group:"Ramps, scales, curves"},interpolate:{group:"Ramps, scales, curves"},"interpolate-hcl":{group:"Ramps, scales, curves"},"interpolate-lab":{group:"Ramps, scales, curves"},ln2:{group:"Math"},pi:{group:"Math"},e:{group:"Math"},typeof:{group:"Types"},string:{group:"Types"},number:{group:"Types"},boolean:{group:"Types"},object:{group:"Types"},collator:{group:"Types"},format:{group:"Types"},image:{group:"Types"},"number-format":{group:"Types"},"to-string":{group:"Types"},"to-number":{group:"Types"},"to-boolean":{group:"Types"},"to-rgba":{group:"Color"},"to-color":{group:"Types"},rgb:{group:"Color"},rgba:{group:"Color"},get:{group:"Lookup"},has:{group:"Lookup"},length:{group:"Lookup"},properties:{group:"Feature data"},"feature-state":{group:"Feature data"},"geometry-type":{group:"Feature data"},id:{group:"Feature data"},zoom:{group:"Zoom"},"heatmap-density":{group:"Heatmap"},"line-progress":{group:"Feature data"},accumulated:{group:"Feature data"},"+":{group:"Math"},"*":{group:"Math"},"-":{group:"Math"},"/":{group:"Math"},"%":{group:"Math"},"^":{group:"Math"},sqrt:{group:"Math"},log10:{group:"Math"},ln:{group:"Math"},log2:{group:"Math"},sin:{group:"Math"},cos:{group:"Math"},tan:{group:"Math"},asin:{group:"Math"},acos:{group:"Math"},atan:{group:"Math"},min:{group:"Math"},max:{group:"Math"},round:{group:"Math"},abs:{group:"Math"},ceil:{group:"Math"},floor:{group:"Math"},distance:{group:"Math"},"==":{group:"Decision"},"!=":{group:"Decision"},">":{group:"Decision"},"<":{group:"Decision"},">=":{group:"Decision"},"<=":{group:"Decision"},all:{group:"Decision"},any:{group:"Decision"},"!":{group:"Decision"},within:{group:"Decision"},"is-supported-script":{group:"String"},upcase:{group:"String"},downcase:{group:"String"},concat:{group:"String"},"resolved-locale":{group:"String"}}},light:{anchor:{type:"enum",default:"viewport",values:{map:{},viewport:{}},"property-type":"data-constant",transition:!1,expression:{interpolated:!1,parameters:["zoom"]}},position:{type:"array",default:[1.15,210,30],length:3,value:"number","property-type":"data-constant",transition:!0,expression:{interpolated:!0,parameters:["zoom"]}},color:{type:"color","property-type":"data-constant",default:"#ffffff",expression:{interpolated:!0,parameters:["zoom"]},transition:!0},intensity:{type:"number","property-type":"data-constant",default:.5,minimum:0,maximum:1,expression:{interpolated:!0,parameters:["zoom"]},transition:!0}},paint:["paint_fill","paint_line","paint_circle","paint_heatmap","paint_fill-extrusion","paint_symbol","paint_raster","paint_hillshade","paint_background"],paint_fill:{"fill-antialias":{type:"boolean",default:!0,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"fill-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-outline-color":{type:"color",transition:!0,requires:[{"!":"fill-pattern"},{"fill-antialias":!0}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["fill-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"}},"paint_fill-extrusion":{"fill-extrusion-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"fill-extrusion-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["fill-extrusion-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"},"fill-extrusion-height":{type:"number",default:0,minimum:0,units:"meters",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-base":{type:"number",default:0,minimum:0,units:"meters",transition:!0,requires:["fill-extrusion-height"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-vertical-gradient":{type:"boolean",default:!0,transition:!1,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"}},paint_line:{"line-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"line-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["line-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"line-width":{type:"number",default:1,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-gap-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-offset":{type:"number",default:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-dasharray":{type:"array",value:"number",minimum:0,transition:!0,units:"line widths",requires:[{"!":"line-pattern"}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"cross-faded"},"line-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"},"line-gradient":{type:"color",transition:!1,requires:[{"!":"line-dasharray"},{"!":"line-pattern"},{source:"geojson",has:{lineMetrics:!0}}],expression:{interpolated:!0,parameters:["line-progress"]},"property-type":"color-ramp"}},paint_circle:{"circle-radius":{type:"number",default:5,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-blur":{type:"number",default:0,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"circle-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["circle-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-pitch-scale":{type:"enum",values:{map:{},viewport:{}},default:"map",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-pitch-alignment":{type:"enum",values:{map:{},viewport:{}},default:"viewport",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-stroke-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-stroke-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-stroke-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"}},paint_heatmap:{"heatmap-radius":{type:"number",default:30,minimum:1,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"heatmap-weight":{type:"number",default:1,minimum:0,transition:!1,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"heatmap-intensity":{type:"number",default:1,minimum:0,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"heatmap-color":{type:"color",default:["interpolate",["linear"],["heatmap-density"],0,"rgba(0, 0, 255, 0)",.1,"royalblue",.3,"cyan",.5,"lime",.7,"yellow",1,"red"],transition:!1,expression:{interpolated:!0,parameters:["heatmap-density"]},"property-type":"color-ramp"},"heatmap-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_symbol:{"icon-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-color":{type:"color",default:"#000000",transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-color":{type:"color",default:"rgba(0, 0, 0, 0)",transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["icon-image","icon-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-color":{type:"color",default:"#000000",transition:!0,overridable:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-color":{type:"color",default:"rgba(0, 0, 0, 0)",transition:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["text-field","text-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"}},paint_raster:{"raster-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-hue-rotate":{type:"number",default:0,period:360,transition:!0,units:"degrees",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-brightness-min":{type:"number",default:0,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-brightness-max":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-saturation":{type:"number",default:0,minimum:-1,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-contrast":{type:"number",default:0,minimum:-1,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-resampling":{type:"enum",values:{linear:{},nearest:{}},default:"linear",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"raster-fade-duration":{type:"number",default:300,minimum:0,transition:!1,units:"milliseconds",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_hillshade:{"hillshade-illumination-direction":{type:"number",default:335,minimum:0,maximum:359,transition:!1,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-illumination-anchor":{type:"enum",values:{map:{},viewport:{}},default:"viewport",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-exaggeration":{type:"number",default:.5,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-shadow-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-highlight-color":{type:"color",default:"#FFFFFF",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-accent-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_background:{"background-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"background-pattern"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"background-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"cross-faded"},"background-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},transition:{duration:{type:"number",default:300,minimum:0,units:"milliseconds"},delay:{type:"number",default:0,minimum:0,units:"milliseconds"}},"property-type":{"data-driven":{type:"property-type"},"cross-faded":{type:"property-type"},"cross-faded-data-driven":{type:"property-type"},"color-ramp":{type:"property-type"},"data-constant":{type:"property-type"},constant:{type:"property-type"}},promoteId:{"*":{type:"string"}}},Ct=function(t,e,r,n){this.message=(t?t+": ":"")+r,n&&(this.identifier=n),null!=e&&e.__line__&&(this.line=e.__line__)};function Pt(t){var e=t.key,r=t.value;return r?[new Ct(e,r,"constants have been deprecated as of v8")]:[]}function It(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];for(var n=0,i=e;n":"value"===t.itemType.kind?"array":"array<"+e+">"}return t.kind}var Zt=[Ft,Bt,Nt,jt,Ut,Gt,Vt,Wt(Ht),Yt];function Jt(t,e){if("error"===e.kind)return null;if("array"===t.kind){if("array"===e.kind&&(0===e.N&&"value"===e.itemType.kind||!Jt(t.itemType,e.itemType))&&("number"!=typeof t.N||t.N===e.N))return null}else{if(t.kind===e.kind)return null;if("value"===t.kind)for(var r=0,n=Zt;r255?255:t}function i(t){return t<0?0:t>1?1:t}function a(t){return"%"===t[t.length-1]?n(parseFloat(t)/100*255):n(parseInt(t))}function o(t){return"%"===t[t.length-1]?i(parseFloat(t)/100):i(parseFloat(t))}function s(t,e,r){return r<0?r+=1:r>1&&(r-=1),6*r<1?t+(e-t)*r*6:2*r<1?e:3*r<2?t+(e-t)*(2/3-r)*6:t}try{e.parseCSSColor=function(t){var e,i=t.replace(/ /g,"").toLowerCase();if(i in r)return r[i].slice();if("#"===i[0])return 4===i.length?(e=parseInt(i.substr(1),16))>=0&&e<=4095?[(3840&e)>>4|(3840&e)>>8,240&e|(240&e)>>4,15&e|(15&e)<<4,1]:null:7===i.length&&(e=parseInt(i.substr(1),16))>=0&&e<=16777215?[(16711680&e)>>16,(65280&e)>>8,255&e,1]:null;var l=i.indexOf("("),c=i.indexOf(")");if(-1!==l&&c+1===i.length){var u=i.substr(0,l),f=i.substr(l+1,c-(l+1)).split(","),h=1;switch(u){case"rgba":if(4!==f.length)return null;h=o(f.pop());case"rgb":return 3!==f.length?null:[a(f[0]),a(f[1]),a(f[2]),h];case"hsla":if(4!==f.length)return null;h=o(f.pop());case"hsl":if(3!==f.length)return null;var p=(parseFloat(f[0])%360+360)%360/360,d=o(f[1]),m=o(f[2]),g=m<=.5?m*(d+1):m+d-m*d,v=2*m-g;return[n(255*s(v,g,p+1/3)),n(255*s(v,g,p)),n(255*s(v,g,p-1/3)),h];default:return null}}return null}}catch(t){}})).parseCSSColor,te=function(t,e,r,n){void 0===n&&(n=1),this.r=t,this.g=e,this.b=r,this.a=n};te.parse=function(t){if(t){if(t instanceof te)return t;if("string"==typeof t){var e=$t(t);if(e)return new te(e[0]/255*e[3],e[1]/255*e[3],e[2]/255*e[3],e[3])}}},te.prototype.toString=function(){var t=this.toArray(),e=t[0],r=t[1],n=t[2],i=t[3];return"rgba("+Math.round(e)+","+Math.round(r)+","+Math.round(n)+","+i+")"},te.prototype.toArray=function(){var t=this.r,e=this.g,r=this.b,n=this.a;return 0===n?[0,0,0,0]:[255*t/n,255*e/n,255*r/n,n]},te.black=new te(0,0,0,1),te.white=new te(1,1,1,1),te.transparent=new te(0,0,0,0),te.red=new te(1,0,0,1);var ee=function(t,e,r){this.sensitivity=t?e?"variant":"case":e?"accent":"base",this.locale=r,this.collator=new Intl.Collator(this.locale?this.locale:[],{sensitivity:this.sensitivity,usage:"search"})};ee.prototype.compare=function(t,e){return this.collator.compare(t,e)},ee.prototype.resolvedLocale=function(){return new Intl.Collator(this.locale?this.locale:[]).resolvedOptions().locale};var re=function(t,e,r,n,i){this.text=t,this.image=e,this.scale=r,this.fontStack=n,this.textColor=i},ne=function(t){this.sections=t};ne.fromString=function(t){return new ne([new re(t,null,null,null,null)])},ne.prototype.isEmpty=function(){return 0===this.sections.length||!this.sections.some((function(t){return 0!==t.text.length||t.image&&0!==t.image.name.length}))},ne.factory=function(t){return t instanceof ne?t:ne.fromString(t)},ne.prototype.toString=function(){return 0===this.sections.length?"":this.sections.map((function(t){return t.text})).join("")},ne.prototype.serialize=function(){for(var t=["format"],e=0,r=this.sections;e=0&&t<=255&&"number"==typeof e&&e>=0&&e<=255&&"number"==typeof r&&r>=0&&r<=255?void 0===n||"number"==typeof n&&n>=0&&n<=1?null:"Invalid rgba value ["+[t,e,r,n].join(", ")+"]: 'a' must be between 0 and 1.":"Invalid rgba value ["+("number"==typeof n?[t,e,r,n]:[t,e,r]).join(", ")+"]: 'r', 'g', and 'b' must be between 0 and 255."}function oe(t){if(null===t)return!0;if("string"==typeof t)return!0;if("boolean"==typeof t)return!0;if("number"==typeof t)return!0;if(t instanceof te)return!0;if(t instanceof ee)return!0;if(t instanceof ne)return!0;if(t instanceof ie)return!0;if(Array.isArray(t)){for(var e=0,r=t;e2){var s=t[1];if("string"!=typeof s||!(s in fe)||"object"===s)return e.error('The item type argument of "array" must be one of string, number, boolean',1);a=fe[s],n++}else a=Ht;if(t.length>3){if(null!==t[2]&&("number"!=typeof t[2]||t[2]<0||t[2]!==Math.floor(t[2])))return e.error('The length argument to "array" must be a positive integer literal',2);o=t[2],n++}r=Wt(a,o)}else r=fe[i];for(var l=[];n1)&&e.push(n)}}return e.concat(this.args.map((function(t){return t.serialize()})))};var pe=function(t){this.type=Gt,this.sections=t};pe.parse=function(t,e){if(t.length<2)return e.error("Expected at least one argument.");var r=t[1];if(!Array.isArray(r)&&"object"==typeof r)return e.error("First argument must be an image or text section.");for(var n=[],i=!1,a=1;a<=t.length-1;++a){var o=t[a];if(i&&"object"==typeof o&&!Array.isArray(o)){i=!1;var s=null;if(o["font-scale"]&&!(s=e.parse(o["font-scale"],1,Bt)))return null;var l=null;if(o["text-font"]&&!(l=e.parse(o["text-font"],1,Wt(Nt))))return null;var c=null;if(o["text-color"]&&!(c=e.parse(o["text-color"],1,Ut)))return null;var u=n[n.length-1];u.scale=s,u.font=l,u.textColor=c}else{var f=e.parse(t[a],1,Ht);if(!f)return null;var h=f.type.kind;if("string"!==h&&"value"!==h&&"null"!==h&&"resolvedImage"!==h)return e.error("Formatted text type must be 'string', 'value', 'image' or 'null'.");i=!0,n.push({content:f,scale:null,font:null,textColor:null})}}return new pe(n)},pe.prototype.evaluate=function(t){return new ne(this.sections.map((function(e){var r=e.content.evaluate(t);return se(r)===Yt?new re("",r,null,null,null):new re(le(r),null,e.scale?e.scale.evaluate(t):null,e.font?e.font.evaluate(t).join(","):null,e.textColor?e.textColor.evaluate(t):null)})))},pe.prototype.eachChild=function(t){for(var e=0,r=this.sections;e-1),r},de.prototype.eachChild=function(t){t(this.input)},de.prototype.outputDefined=function(){return!1},de.prototype.serialize=function(){return["image",this.input.serialize()]};var me={"to-boolean":jt,"to-color":Ut,"to-number":Bt,"to-string":Nt},ge=function(t,e){this.type=t,this.args=e};ge.parse=function(t,e){if(t.length<2)return e.error("Expected at least one argument.");var r=t[0];if(("to-boolean"===r||"to-string"===r)&&2!==t.length)return e.error("Expected one argument.");for(var n=me[r],i=[],a=1;a4?"Invalid rbga value "+JSON.stringify(e)+": expected an array containing either three or four numeric values.":ae(e[0],e[1],e[2],e[3])))return new te(e[0]/255,e[1]/255,e[2]/255,e[3])}throw new ue(r||"Could not parse color from value '"+("string"==typeof e?e:String(JSON.stringify(e)))+"'")}if("number"===this.type.kind){for(var o=null,s=0,l=this.args;s=e[2])&&(!(t[1]<=e[1])&&!(t[3]>=e[3])))}function Te(t,e){var r,n=(180+t[0])/360,i=(r=t[1],(180-180/Math.PI*Math.log(Math.tan(Math.PI/4+r*Math.PI/360)))/360),a=Math.pow(2,e.z);return[Math.round(n*a*8192),Math.round(i*a*8192)]}function ke(t,e,r){return e[1]>t[1]!=r[1]>t[1]&&t[0]<(r[0]-e[0])*(t[1]-e[1])/(r[1]-e[1])+e[0]}function Ae(t,e){for(var r,n,i,a,o,s,l,c=!1,u=0,f=e.length;u0&&f<0||u<0&&f>0}function Ee(t,e,r){for(var n=0,i=r;nr[2]){var i=.5*n,a=t[0]-r[0]>i?-n:r[0]-t[0]>i?n:0;0===a&&(a=t[0]-r[2]>i?-n:r[2]-t[0]>i?n:0),t[0]+=a}_e(e,t)}function ze(t,e,r,n){for(var i=8192*Math.pow(2,n.z),a=[8192*n.x,8192*n.y],o=[],s=0,l=t;s=0)return!1;var r=!0;return t.eachChild((function(t){r&&!Ne(t,e)&&(r=!1)})),r}Re.parse=function(t,e){if(2!==t.length)return e.error("'within' expression requires exactly one argument, but found "+(t.length-1)+" instead.");if(oe(t[1])){var r=t[1];if("FeatureCollection"===r.type)for(var n=0;ne))throw new ue("Input is not a number.");o=s-1}return 0}Ue.prototype.parse=function(t,e,r,n,i){return void 0===i&&(i={}),e?this.concat(e,r,n)._parse(t,i):this._parse(t,i)},Ue.prototype._parse=function(t,e){function r(t,e,r){return"assert"===r?new he(e,[t]):"coerce"===r?new ge(e,[t]):t}if(null!==t&&"string"!=typeof t&&"boolean"!=typeof t&&"number"!=typeof t||(t=["literal",t]),Array.isArray(t)){if(0===t.length)return this.error('Expected an array with at least one element. If you wanted a literal array, use ["literal", []].');var n=t[0];if("string"!=typeof n)return this.error("Expression name must be a string, but found "+typeof n+' instead. If you wanted a literal array, use ["literal", [...]].',0),null;var i=this.registry[n];if(i){var a=i.parse(t,this);if(!a)return null;if(this.expectedType){var o=this.expectedType,s=a.type;if("string"!==o.kind&&"number"!==o.kind&&"boolean"!==o.kind&&"object"!==o.kind&&"array"!==o.kind||"value"!==s.kind)if("color"!==o.kind&&"formatted"!==o.kind&&"resolvedImage"!==o.kind||"value"!==s.kind&&"string"!==s.kind){if(this.checkSubtype(o,s))return null}else a=r(a,o,e.typeAnnotation||"coerce");else a=r(a,o,e.typeAnnotation||"assert")}if(!(a instanceof ce)&&"resolvedImage"!==a.type.kind&&function t(e){if(e instanceof je)return t(e.boundExpression);if(e instanceof xe&&"error"===e.name)return!1;if(e instanceof be)return!1;if(e instanceof Re)return!1;var r=e instanceof ge||e instanceof he,n=!0;if(e.eachChild((function(e){n=r?n&&t(e):n&&e instanceof ce})),!n)return!1;return Fe(e)&&Ne(e,["zoom","heatmap-density","line-progress","accumulated","is-supported-script"])}(a)){var l=new ye;try{a=new ce(a.type,a.evaluate(l))}catch(t){return this.error(t.message),null}}return a}return this.error('Unknown expression "'+n+'". If you wanted a literal array, use ["literal", [...]].',0)}return void 0===t?this.error("'undefined' value invalid. Use null instead."):"object"==typeof t?this.error('Bare objects invalid. Use ["literal", {...}] instead.'):this.error("Expected an array, but found "+typeof t+" instead.")},Ue.prototype.concat=function(t,e,r){var n="number"==typeof t?this.path.concat(t):this.path,i=r?this.scope.concat(r):this.scope;return new Ue(this.registry,n,e||null,i,this.errors)},Ue.prototype.error=function(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];var n=""+this.key+e.map((function(t){return"["+t+"]"})).join("");this.errors.push(new Dt(n,t))},Ue.prototype.checkSubtype=function(t,e){var r=Jt(t,e);return r&&this.error(r),r};var He=function(t,e,r){this.type=t,this.input=e,this.labels=[],this.outputs=[];for(var n=0,i=r;n=o)return e.error('Input/output pairs for "step" expressions must be arranged with input values in strictly ascending order.',l);var u=e.parse(s,c,i);if(!u)return null;i=i||u.type,n.push([o,u])}return new He(i,r,n)},He.prototype.evaluate=function(t){var e=this.labels,r=this.outputs;if(1===e.length)return r[0].evaluate(t);var n=this.input.evaluate(t);if(n<=e[0])return r[0].evaluate(t);var i=e.length;return n>=e[i-1]?r[i-1].evaluate(t):r[Ve(e,n)].evaluate(t)},He.prototype.eachChild=function(t){t(this.input);for(var e=0,r=this.outputs;e0&&t.push(this.labels[e]),t.push(this.outputs[e].serialize());return t};var Ge=Object.freeze({__proto__:null,number:qe,color:function(t,e,r){return new te(qe(t.r,e.r,r),qe(t.g,e.g,r),qe(t.b,e.b,r),qe(t.a,e.a,r))},array:function(t,e,r){return t.map((function(t,n){return qe(t,e[n],r)}))}}),Ye=6/29,We=3*Ye*Ye,Xe=Math.PI/180,Ze=180/Math.PI;function Je(t){return t>.008856451679035631?Math.pow(t,1/3):t/We+4/29}function Ke(t){return t>Ye?t*t*t:We*(t-4/29)}function Qe(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function $e(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function tr(t){var e=$e(t.r),r=$e(t.g),n=$e(t.b),i=Je((.4124564*e+.3575761*r+.1804375*n)/.95047),a=Je((.2126729*e+.7151522*r+.072175*n)/1);return{l:116*a-16,a:500*(i-a),b:200*(a-Je((.0193339*e+.119192*r+.9503041*n)/1.08883)),alpha:t.a}}function er(t){var e=(t.l+16)/116,r=isNaN(t.a)?e:e+t.a/500,n=isNaN(t.b)?e:e-t.b/200;return e=1*Ke(e),r=.95047*Ke(r),n=1.08883*Ke(n),new te(Qe(3.2404542*r-1.5371385*e-.4985314*n),Qe(-.969266*r+1.8760108*e+.041556*n),Qe(.0556434*r-.2040259*e+1.0572252*n),t.alpha)}function rr(t,e,r){var n=e-t;return t+r*(n>180||n<-180?n-360*Math.round(n/360):n)}var nr={forward:tr,reverse:er,interpolate:function(t,e,r){return{l:qe(t.l,e.l,r),a:qe(t.a,e.a,r),b:qe(t.b,e.b,r),alpha:qe(t.alpha,e.alpha,r)}}},ir={forward:function(t){var e=tr(t),r=e.l,n=e.a,i=e.b,a=Math.atan2(i,n)*Ze;return{h:a<0?a+360:a,c:Math.sqrt(n*n+i*i),l:r,alpha:t.a}},reverse:function(t){var e=t.h*Xe,r=t.c;return er({l:t.l,a:Math.cos(e)*r,b:Math.sin(e)*r,alpha:t.alpha})},interpolate:function(t,e,r){return{h:rr(t.h,e.h,r),c:qe(t.c,e.c,r),l:qe(t.l,e.l,r),alpha:qe(t.alpha,e.alpha,r)}}},ar=Object.freeze({__proto__:null,lab:nr,hcl:ir}),or=function(t,e,r,n,i){this.type=t,this.operator=e,this.interpolation=r,this.input=n,this.labels=[],this.outputs=[];for(var a=0,o=i;a1})))return e.error("Cubic bezier interpolation requires four numeric arguments with values between 0 and 1.",1);n={name:"cubic-bezier",controlPoints:s}}if(t.length-1<4)return e.error("Expected at least 4 arguments, but found only "+(t.length-1)+".");if((t.length-1)%2!=0)return e.error("Expected an even number of arguments.");if(!(i=e.parse(i,2,Bt)))return null;var l=[],c=null;"interpolate-hcl"===r||"interpolate-lab"===r?c=Ut:e.expectedType&&"value"!==e.expectedType.kind&&(c=e.expectedType);for(var u=0;u=f)return e.error('Input/output pairs for "interpolate" expressions must be arranged with input values in strictly ascending order.',p);var m=e.parse(h,d,c);if(!m)return null;c=c||m.type,l.push([f,m])}return"number"===c.kind||"color"===c.kind||"array"===c.kind&&"number"===c.itemType.kind&&"number"==typeof c.N?new or(c,r,n,i,l):e.error("Type "+Xt(c)+" is not interpolatable.")},or.prototype.evaluate=function(t){var e=this.labels,r=this.outputs;if(1===e.length)return r[0].evaluate(t);var n=this.input.evaluate(t);if(n<=e[0])return r[0].evaluate(t);var i=e.length;if(n>=e[i-1])return r[i-1].evaluate(t);var a=Ve(e,n),o=e[a],s=e[a+1],l=or.interpolationFactor(this.interpolation,n,o,s),c=r[a].evaluate(t),u=r[a+1].evaluate(t);return"interpolate"===this.operator?Ge[this.type.kind.toLowerCase()](c,u,l):"interpolate-hcl"===this.operator?ir.reverse(ir.interpolate(ir.forward(c),ir.forward(u),l)):nr.reverse(nr.interpolate(nr.forward(c),nr.forward(u),l))},or.prototype.eachChild=function(t){t(this.input);for(var e=0,r=this.outputs;e=r.length)throw new ue("Array index out of bounds: "+e+" > "+(r.length-1)+".");if(e!==Math.floor(e))throw new ue("Array index must be an integer, but found "+e+" instead.");return r[e]},ur.prototype.eachChild=function(t){t(this.index),t(this.input)},ur.prototype.outputDefined=function(){return!1},ur.prototype.serialize=function(){return["at",this.index.serialize(),this.input.serialize()]};var fr=function(t,e){this.type=jt,this.needle=t,this.haystack=e};fr.parse=function(t,e){if(3!==t.length)return e.error("Expected 2 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Ht);return r&&n?Kt(r.type,[jt,Nt,Bt,Ft,Ht])?new fr(r,n):e.error("Expected first argument to be of type boolean, string, number or null, but found "+Xt(r.type)+" instead"):null},fr.prototype.evaluate=function(t){var e=this.needle.evaluate(t),r=this.haystack.evaluate(t);if(!r)return!1;if(!Qt(e,["boolean","string","number","null"]))throw new ue("Expected first argument to be of type boolean, string, number or null, but found "+Xt(se(e))+" instead.");if(!Qt(r,["string","array"]))throw new ue("Expected second argument to be of type array or string, but found "+Xt(se(r))+" instead.");return r.indexOf(e)>=0},fr.prototype.eachChild=function(t){t(this.needle),t(this.haystack)},fr.prototype.outputDefined=function(){return!0},fr.prototype.serialize=function(){return["in",this.needle.serialize(),this.haystack.serialize()]};var hr=function(t,e,r){this.type=Bt,this.needle=t,this.haystack=e,this.fromIndex=r};hr.parse=function(t,e){if(t.length<=2||t.length>=5)return e.error("Expected 3 or 4 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Ht);if(!r||!n)return null;if(!Kt(r.type,[jt,Nt,Bt,Ft,Ht]))return e.error("Expected first argument to be of type boolean, string, number or null, but found "+Xt(r.type)+" instead");if(4===t.length){var i=e.parse(t[3],3,Bt);return i?new hr(r,n,i):null}return new hr(r,n)},hr.prototype.evaluate=function(t){var e=this.needle.evaluate(t),r=this.haystack.evaluate(t);if(!Qt(e,["boolean","string","number","null"]))throw new ue("Expected first argument to be of type boolean, string, number or null, but found "+Xt(se(e))+" instead.");if(!Qt(r,["string","array"]))throw new ue("Expected second argument to be of type array or string, but found "+Xt(se(r))+" instead.");if(this.fromIndex){var n=this.fromIndex.evaluate(t);return r.indexOf(e,n)}return r.indexOf(e)},hr.prototype.eachChild=function(t){t(this.needle),t(this.haystack),this.fromIndex&&t(this.fromIndex)},hr.prototype.outputDefined=function(){return!1},hr.prototype.serialize=function(){if(null!=this.fromIndex&&void 0!==this.fromIndex){var t=this.fromIndex.serialize();return["index-of",this.needle.serialize(),this.haystack.serialize(),t]}return["index-of",this.needle.serialize(),this.haystack.serialize()]};var pr=function(t,e,r,n,i,a){this.inputType=t,this.type=e,this.input=r,this.cases=n,this.outputs=i,this.otherwise=a};pr.parse=function(t,e){if(t.length<5)return e.error("Expected at least 4 arguments, but found only "+(t.length-1)+".");if(t.length%2!=1)return e.error("Expected an even number of arguments.");var r,n;e.expectedType&&"value"!==e.expectedType.kind&&(n=e.expectedType);for(var i={},a=[],o=2;oNumber.MAX_SAFE_INTEGER)return c.error("Branch labels must be integers no larger than "+Number.MAX_SAFE_INTEGER+".");if("number"==typeof h&&Math.floor(h)!==h)return c.error("Numeric branch labels must be integer values.");if(r){if(c.checkSubtype(r,se(h)))return null}else r=se(h);if(void 0!==i[String(h)])return c.error("Branch labels must be unique.");i[String(h)]=a.length}var p=e.parse(l,o,n);if(!p)return null;n=n||p.type,a.push(p)}var d=e.parse(t[1],1,Ht);if(!d)return null;var m=e.parse(t[t.length-1],t.length-1,n);return m?"value"!==d.type.kind&&e.concat(1).checkSubtype(r,d.type)?null:new pr(r,n,d,i,a,m):null},pr.prototype.evaluate=function(t){var e=this.input.evaluate(t);return(se(e)===this.inputType&&this.outputs[this.cases[e]]||this.otherwise).evaluate(t)},pr.prototype.eachChild=function(t){t(this.input),this.outputs.forEach(t),t(this.otherwise)},pr.prototype.outputDefined=function(){return this.outputs.every((function(t){return t.outputDefined()}))&&this.otherwise.outputDefined()},pr.prototype.serialize=function(){for(var t=this,e=["match",this.input.serialize()],r=[],n={},i=0,a=Object.keys(this.cases).sort();i=5)return e.error("Expected 3 or 4 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Bt);if(!r||!n)return null;if(!Kt(r.type,[Wt(Ht),Nt,Ht]))return e.error("Expected first argument to be of type array or string, but found "+Xt(r.type)+" instead");if(4===t.length){var i=e.parse(t[3],3,Bt);return i?new mr(r.type,r,n,i):null}return new mr(r.type,r,n)},mr.prototype.evaluate=function(t){var e=this.input.evaluate(t),r=this.beginIndex.evaluate(t);if(!Qt(e,["string","array"]))throw new ue("Expected first argument to be of type array or string, but found "+Xt(se(e))+" instead.");if(this.endIndex){var n=this.endIndex.evaluate(t);return e.slice(r,n)}return e.slice(r)},mr.prototype.eachChild=function(t){t(this.input),t(this.beginIndex),this.endIndex&&t(this.endIndex)},mr.prototype.outputDefined=function(){return!1},mr.prototype.serialize=function(){if(null!=this.endIndex&&void 0!==this.endIndex){var t=this.endIndex.serialize();return["slice",this.input.serialize(),this.beginIndex.serialize(),t]}return["slice",this.input.serialize(),this.beginIndex.serialize()]};var xr=yr("==",(function(t,e,r){return e===r}),vr),br=yr("!=",(function(t,e,r){return e!==r}),(function(t,e,r,n){return!vr(0,e,r,n)})),_r=yr("<",(function(t,e,r){return e",(function(t,e,r){return e>r}),(function(t,e,r,n){return n.compare(e,r)>0})),Tr=yr("<=",(function(t,e,r){return e<=r}),(function(t,e,r,n){return n.compare(e,r)<=0})),kr=yr(">=",(function(t,e,r){return e>=r}),(function(t,e,r,n){return n.compare(e,r)>=0})),Ar=function(t,e,r,n,i){this.type=Nt,this.number=t,this.locale=e,this.currency=r,this.minFractionDigits=n,this.maxFractionDigits=i};Ar.parse=function(t,e){if(3!==t.length)return e.error("Expected two arguments.");var r=e.parse(t[1],1,Bt);if(!r)return null;var n=t[2];if("object"!=typeof n||Array.isArray(n))return e.error("NumberFormat options argument must be an object.");var i=null;if(n.locale&&!(i=e.parse(n.locale,1,Nt)))return null;var a=null;if(n.currency&&!(a=e.parse(n.currency,1,Nt)))return null;var o=null;if(n["min-fraction-digits"]&&!(o=e.parse(n["min-fraction-digits"],1,Bt)))return null;var s=null;return n["max-fraction-digits"]&&!(s=e.parse(n["max-fraction-digits"],1,Bt))?null:new Ar(r,i,a,o,s)},Ar.prototype.evaluate=function(t){return new Intl.NumberFormat(this.locale?this.locale.evaluate(t):[],{style:this.currency?"currency":"decimal",currency:this.currency?this.currency.evaluate(t):void 0,minimumFractionDigits:this.minFractionDigits?this.minFractionDigits.evaluate(t):void 0,maximumFractionDigits:this.maxFractionDigits?this.maxFractionDigits.evaluate(t):void 0}).format(this.number.evaluate(t))},Ar.prototype.eachChild=function(t){t(this.number),this.locale&&t(this.locale),this.currency&&t(this.currency),this.minFractionDigits&&t(this.minFractionDigits),this.maxFractionDigits&&t(this.maxFractionDigits)},Ar.prototype.outputDefined=function(){return!1},Ar.prototype.serialize=function(){var t={};return this.locale&&(t.locale=this.locale.serialize()),this.currency&&(t.currency=this.currency.serialize()),this.minFractionDigits&&(t["min-fraction-digits"]=this.minFractionDigits.serialize()),this.maxFractionDigits&&(t["max-fraction-digits"]=this.maxFractionDigits.serialize()),["number-format",this.number.serialize(),t]};var Mr=function(t){this.type=Bt,this.input=t};Mr.parse=function(t,e){if(2!==t.length)return e.error("Expected 1 argument, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1);return r?"array"!==r.type.kind&&"string"!==r.type.kind&&"value"!==r.type.kind?e.error("Expected argument of type string or array, but found "+Xt(r.type)+" instead."):new Mr(r):null},Mr.prototype.evaluate=function(t){var e=this.input.evaluate(t);if("string"==typeof e)return e.length;if(Array.isArray(e))return e.length;throw new ue("Expected value to be of type string or array, but found "+Xt(se(e))+" instead.")},Mr.prototype.eachChild=function(t){t(this.input)},Mr.prototype.outputDefined=function(){return!1},Mr.prototype.serialize=function(){var t=["length"];return this.eachChild((function(e){t.push(e.serialize())})),t};var Sr={"==":xr,"!=":br,">":wr,"<":_r,">=":kr,"<=":Tr,array:he,at:ur,boolean:he,case:dr,coalesce:lr,collator:be,format:pe,image:de,in:fr,"index-of":hr,interpolate:or,"interpolate-hcl":or,"interpolate-lab":or,length:Mr,let:cr,literal:ce,match:pr,number:he,"number-format":Ar,object:he,slice:mr,step:He,string:he,"to-boolean":ge,"to-color":ge,"to-number":ge,"to-string":ge,var:je,within:Re};function Er(t,e){var r=e[0],n=e[1],i=e[2],a=e[3];r=r.evaluate(t),n=n.evaluate(t),i=i.evaluate(t);var o=a?a.evaluate(t):1,s=ae(r,n,i,o);if(s)throw new ue(s);return new te(r/255*o,n/255*o,i/255*o,o)}function Lr(t,e){return t in e}function Cr(t,e){var r=e[t];return void 0===r?null:r}function Pr(t){return{type:t}}function Ir(t){return{result:"success",value:t}}function Or(t){return{result:"error",value:t}}function zr(t){return"data-driven"===t["property-type"]||"cross-faded-data-driven"===t["property-type"]}function Dr(t){return!!t.expression&&t.expression.parameters.indexOf("zoom")>-1}function Rr(t){return!!t.expression&&t.expression.interpolated}function Fr(t){return t instanceof Number?"number":t instanceof String?"string":t instanceof Boolean?"boolean":Array.isArray(t)?"array":null===t?"null":typeof t}function Br(t){return"object"==typeof t&&null!==t&&!Array.isArray(t)}function Nr(t){return t}function jr(t,e,r){return void 0!==t?t:void 0!==e?e:void 0!==r?r:void 0}function Ur(t,e,r,n,i){return jr(typeof r===i?n[r]:void 0,t.default,e.default)}function Vr(t,e,r){if("number"!==Fr(r))return jr(t.default,e.default);var n=t.stops.length;if(1===n)return t.stops[0][1];if(r<=t.stops[0][0])return t.stops[0][1];if(r>=t.stops[n-1][0])return t.stops[n-1][1];var i=Ve(t.stops.map((function(t){return t[0]})),r);return t.stops[i][1]}function Hr(t,e,r){var n=void 0!==t.base?t.base:1;if("number"!==Fr(r))return jr(t.default,e.default);var i=t.stops.length;if(1===i)return t.stops[0][1];if(r<=t.stops[0][0])return t.stops[0][1];if(r>=t.stops[i-1][0])return t.stops[i-1][1];var a=Ve(t.stops.map((function(t){return t[0]})),r),o=function(t,e,r,n){var i=n-r,a=t-r;return 0===i?0:1===e?a/i:(Math.pow(e,a)-1)/(Math.pow(e,i)-1)}(r,n,t.stops[a][0],t.stops[a+1][0]),s=t.stops[a][1],l=t.stops[a+1][1],c=Ge[e.type]||Nr;if(t.colorSpace&&"rgb"!==t.colorSpace){var u=ar[t.colorSpace];c=function(t,e){return u.reverse(u.interpolate(u.forward(t),u.forward(e),o))}}return"function"==typeof s.evaluate?{evaluate:function(){for(var t=[],e=arguments.length;e--;)t[e]=arguments[e];var r=s.evaluate.apply(void 0,t),n=l.evaluate.apply(void 0,t);if(void 0!==r&&void 0!==n)return c(r,n,o)}}:c(s,l,o)}function qr(t,e,r){return"color"===e.type?r=te.parse(r):"formatted"===e.type?r=ne.fromString(r.toString()):"resolvedImage"===e.type?r=ie.fromString(r.toString()):Fr(r)===e.type||"enum"===e.type&&e.values[r]||(r=void 0),jr(r,t.default,e.default)}xe.register(Sr,{error:[{kind:"error"},[Nt],function(t,e){var r=e[0];throw new ue(r.evaluate(t))}],typeof:[Nt,[Ht],function(t,e){return Xt(se(e[0].evaluate(t)))}],"to-rgba":[Wt(Bt,4),[Ut],function(t,e){return e[0].evaluate(t).toArray()}],rgb:[Ut,[Bt,Bt,Bt],Er],rgba:[Ut,[Bt,Bt,Bt,Bt],Er],has:{type:jt,overloads:[[[Nt],function(t,e){return Lr(e[0].evaluate(t),t.properties())}],[[Nt,Vt],function(t,e){var r=e[0],n=e[1];return Lr(r.evaluate(t),n.evaluate(t))}]]},get:{type:Ht,overloads:[[[Nt],function(t,e){return Cr(e[0].evaluate(t),t.properties())}],[[Nt,Vt],function(t,e){var r=e[0],n=e[1];return Cr(r.evaluate(t),n.evaluate(t))}]]},"feature-state":[Ht,[Nt],function(t,e){return Cr(e[0].evaluate(t),t.featureState||{})}],properties:[Vt,[],function(t){return t.properties()}],"geometry-type":[Nt,[],function(t){return t.geometryType()}],id:[Ht,[],function(t){return t.id()}],zoom:[Bt,[],function(t){return t.globals.zoom}],"heatmap-density":[Bt,[],function(t){return t.globals.heatmapDensity||0}],"line-progress":[Bt,[],function(t){return t.globals.lineProgress||0}],accumulated:[Ht,[],function(t){return void 0===t.globals.accumulated?null:t.globals.accumulated}],"+":[Bt,Pr(Bt),function(t,e){for(var r=0,n=0,i=e;n":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i>a}],"filter-id->":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n>i}],"filter-<=":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i<=a}],"filter-id-<=":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n<=i}],"filter->=":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i>=a}],"filter-id->=":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n>=i}],"filter-has":[jt,[Ht],function(t,e){return e[0].value in t.properties()}],"filter-has-id":[jt,[],function(t){return null!==t.id()&&void 0!==t.id()}],"filter-type-in":[jt,[Wt(Nt)],function(t,e){return e[0].value.indexOf(t.geometryType())>=0}],"filter-id-in":[jt,[Wt(Ht)],function(t,e){return e[0].value.indexOf(t.id())>=0}],"filter-in-small":[jt,[Nt,Wt(Ht)],function(t,e){var r=e[0];return e[1].value.indexOf(t.properties()[r.value])>=0}],"filter-in-large":[jt,[Nt,Wt(Ht)],function(t,e){var r=e[0],n=e[1];return function(t,e,r,n){for(;r<=n;){var i=r+n>>1;if(e[i]===t)return!0;e[i]>t?n=i-1:r=i+1}return!1}(t.properties()[r.value],n.value,0,n.value.length-1)}],all:{type:jt,overloads:[[[jt,jt],function(t,e){var r=e[0],n=e[1];return r.evaluate(t)&&n.evaluate(t)}],[Pr(jt),function(t,e){for(var r=0,n=e;r0&&"string"==typeof t[0]&&t[0]in Sr}function Wr(t,e){var r=new Ue(Sr,[],e?function(t){var e={color:Ut,string:Nt,number:Bt,enum:Nt,boolean:jt,formatted:Gt,resolvedImage:Yt};if("array"===t.type)return Wt(e[t.value]||Ht,t.length);return e[t.type]}(e):void 0),n=r.parse(t,void 0,void 0,void 0,e&&"string"===e.type?{typeAnnotation:"coerce"}:void 0);return n?Ir(new Gr(n,e)):Or(r.errors)}Gr.prototype.evaluateWithoutErrorHandling=function(t,e,r,n,i,a){return this._evaluator.globals=t,this._evaluator.feature=e,this._evaluator.featureState=r,this._evaluator.canonical=n,this._evaluator.availableImages=i||null,this._evaluator.formattedSection=a,this.expression.evaluate(this._evaluator)},Gr.prototype.evaluate=function(t,e,r,n,i,a){this._evaluator.globals=t,this._evaluator.feature=e||null,this._evaluator.featureState=r||null,this._evaluator.canonical=n,this._evaluator.availableImages=i||null,this._evaluator.formattedSection=a||null;try{var o=this.expression.evaluate(this._evaluator);if(null==o||"number"==typeof o&&o!=o)return this._defaultValue;if(this._enumValues&&!(o in this._enumValues))throw new ue("Expected value to be one of "+Object.keys(this._enumValues).map((function(t){return JSON.stringify(t)})).join(", ")+", but found "+JSON.stringify(o)+" instead.");return o}catch(t){return this._warningHistory[t.message]||(this._warningHistory[t.message]=!0,"undefined"!=typeof console&&console.warn(t.message)),this._defaultValue}};var Xr=function(t,e){this.kind=t,this._styleExpression=e,this.isStateDependent="constant"!==t&&!Be(e.expression)};Xr.prototype.evaluateWithoutErrorHandling=function(t,e,r,n,i,a){return this._styleExpression.evaluateWithoutErrorHandling(t,e,r,n,i,a)},Xr.prototype.evaluate=function(t,e,r,n,i,a){return this._styleExpression.evaluate(t,e,r,n,i,a)};var Zr=function(t,e,r,n){this.kind=t,this.zoomStops=r,this._styleExpression=e,this.isStateDependent="camera"!==t&&!Be(e.expression),this.interpolationType=n};function Jr(t,e){if("error"===(t=Wr(t,e)).result)return t;var r=t.value.expression,n=Fe(r);if(!n&&!zr(e))return Or([new Dt("","data expressions not supported")]);var i=Ne(r,["zoom"]);if(!i&&!Dr(e))return Or([new Dt("","zoom expressions not supported")]);var a=function t(e){var r=null;if(e instanceof cr)r=t(e.result);else if(e instanceof lr)for(var n=0,i=e.args;nn.maximum?[new Ct(e,r,r+" is greater than the maximum value "+n.maximum)]:[]}function en(t){var e,r,n,i=t.valueSpec,a=Ot(t.value.type),o={},s="categorical"!==a&&void 0===t.value.property,l=!s,c="array"===Fr(t.value.stops)&&"array"===Fr(t.value.stops[0])&&"object"===Fr(t.value.stops[0][0]),u=Qr({key:t.key,value:t.value,valueSpec:t.styleSpec.function,style:t.style,styleSpec:t.styleSpec,objectElementValidators:{stops:function(t){if("identity"===a)return[new Ct(t.key,t.value,'identity function may not have a "stops" property')];var e=[],r=t.value;e=e.concat($r({key:t.key,value:r,valueSpec:t.valueSpec,style:t.style,styleSpec:t.styleSpec,arrayElementValidator:f})),"array"===Fr(r)&&0===r.length&&e.push(new Ct(t.key,r,"array must have at least one stop"));return e},default:function(t){return kn({key:t.key,value:t.value,valueSpec:i,style:t.style,styleSpec:t.styleSpec})}}});return"identity"===a&&s&&u.push(new Ct(t.key,t.value,'missing required property "property"')),"identity"===a||t.value.stops||u.push(new Ct(t.key,t.value,'missing required property "stops"')),"exponential"===a&&t.valueSpec.expression&&!Rr(t.valueSpec)&&u.push(new Ct(t.key,t.value,"exponential functions not supported")),t.styleSpec.$version>=8&&(l&&!zr(t.valueSpec)?u.push(new Ct(t.key,t.value,"property functions not supported")):s&&!Dr(t.valueSpec)&&u.push(new Ct(t.key,t.value,"zoom functions not supported"))),"categorical"!==a&&!c||void 0!==t.value.property||u.push(new Ct(t.key,t.value,'"property" property is required')),u;function f(t){var e=[],a=t.value,s=t.key;if("array"!==Fr(a))return[new Ct(s,a,"array expected, "+Fr(a)+" found")];if(2!==a.length)return[new Ct(s,a,"array length 2 expected, length "+a.length+" found")];if(c){if("object"!==Fr(a[0]))return[new Ct(s,a,"object expected, "+Fr(a[0])+" found")];if(void 0===a[0].zoom)return[new Ct(s,a,"object stop key must have zoom")];if(void 0===a[0].value)return[new Ct(s,a,"object stop key must have value")];if(n&&n>Ot(a[0].zoom))return[new Ct(s,a[0].zoom,"stop zoom values must appear in ascending order")];Ot(a[0].zoom)!==n&&(n=Ot(a[0].zoom),r=void 0,o={}),e=e.concat(Qr({key:s+"[0]",value:a[0],valueSpec:{zoom:{}},style:t.style,styleSpec:t.styleSpec,objectElementValidators:{zoom:tn,value:h}}))}else e=e.concat(h({key:s+"[0]",value:a[0],valueSpec:{},style:t.style,styleSpec:t.styleSpec},a));return Yr(zt(a[1]))?e.concat([new Ct(s+"[1]",a[1],"expressions are not allowed in function stops.")]):e.concat(kn({key:s+"[1]",value:a[1],valueSpec:i,style:t.style,styleSpec:t.styleSpec}))}function h(t,n){var s=Fr(t.value),l=Ot(t.value),c=null!==t.value?t.value:n;if(e){if(s!==e)return[new Ct(t.key,c,s+" stop domain type must match previous stop domain type "+e)]}else e=s;if("number"!==s&&"string"!==s&&"boolean"!==s)return[new Ct(t.key,c,"stop domain value must be a number, string, or boolean")];if("number"!==s&&"categorical"!==a){var u="number expected, "+s+" found";return zr(i)&&void 0===a&&(u+='\nIf you intended to use a categorical function, specify `"type": "categorical"`.'),[new Ct(t.key,c,u)]}return"categorical"!==a||"number"!==s||isFinite(l)&&Math.floor(l)===l?"categorical"!==a&&"number"===s&&void 0!==r&&l=2&&"$id"!==t[1]&&"$type"!==t[1];case"in":return t.length>=3&&("string"!=typeof t[1]||Array.isArray(t[2]));case"!in":case"!has":case"none":return!1;case"==":case"!=":case">":case">=":case"<":case"<=":return 3!==t.length||Array.isArray(t[1])||Array.isArray(t[2]);case"any":case"all":for(var e=0,r=t.slice(1);ee?1:0}function cn(t){if(!t)return!0;var e,r=t[0];return t.length<=1?"any"!==r:"=="===r?un(t[1],t[2],"=="):"!="===r?pn(un(t[1],t[2],"==")):"<"===r||">"===r||"<="===r||">="===r?un(t[1],t[2],r):"any"===r?(e=t.slice(1),["any"].concat(e.map(cn))):"all"===r?["all"].concat(t.slice(1).map(cn)):"none"===r?["all"].concat(t.slice(1).map(cn).map(pn)):"in"===r?fn(t[1],t.slice(2)):"!in"===r?pn(fn(t[1],t.slice(2))):"has"===r?hn(t[1]):"!has"===r?pn(hn(t[1])):"within"!==r||t}function un(t,e,r){switch(t){case"$type":return["filter-type-"+r,e];case"$id":return["filter-id-"+r,e];default:return["filter-"+r,t,e]}}function fn(t,e){if(0===e.length)return!1;switch(t){case"$type":return["filter-type-in",["literal",e]];case"$id":return["filter-id-in",["literal",e]];default:return e.length>200&&!e.some((function(t){return typeof t!=typeof e[0]}))?["filter-in-large",t,["literal",e.sort(ln)]]:["filter-in-small",t,["literal",e]]}}function hn(t){switch(t){case"$type":return!0;case"$id":return["filter-has-id"];default:return["filter-has",t]}}function pn(t){return["!",t]}function dn(t){return an(zt(t.value))?rn(It({},t,{expressionContext:"filter",valueSpec:{value:"boolean"}})):function t(e){var r=e.value,n=e.key;if("array"!==Fr(r))return[new Ct(n,r,"array expected, "+Fr(r)+" found")];var i,a=e.styleSpec,o=[];if(r.length<1)return[new Ct(n,r,"filter array must have at least 1 element")];switch(o=o.concat(nn({key:n+"[0]",value:r[0],valueSpec:a.filter_operator,style:e.style,styleSpec:e.styleSpec})),Ot(r[0])){case"<":case"<=":case">":case">=":r.length>=2&&"$type"===Ot(r[1])&&o.push(new Ct(n,r,'"$type" cannot be use with operator "'+r[0]+'"'));case"==":case"!=":3!==r.length&&o.push(new Ct(n,r,'filter array for operator "'+r[0]+'" must have 3 elements'));case"in":case"!in":r.length>=2&&"string"!==(i=Fr(r[1]))&&o.push(new Ct(n+"[1]",r[1],"string expected, "+i+" found"));for(var s=2;s=u[p+0]&&n>=u[p+1])?(o[h]=!0,a.push(c[h])):o[h]=!1}}},Dn.prototype._forEachCell=function(t,e,r,n,i,a,o,s){for(var l=this._convertToCellCoord(t),c=this._convertToCellCoord(e),u=this._convertToCellCoord(r),f=this._convertToCellCoord(n),h=l;h<=u;h++)for(var p=c;p<=f;p++){var d=this.d*p+h;if((!s||s(this._convertFromCellCoord(h),this._convertFromCellCoord(p),this._convertFromCellCoord(h+1),this._convertFromCellCoord(p+1)))&&i.call(this,t,e,r,n,d,a,o,s))return}},Dn.prototype._convertFromCellCoord=function(t){return(t-this.padding)/this.scale},Dn.prototype._convertToCellCoord=function(t){return Math.max(0,Math.min(this.d-1,Math.floor(t*this.scale)+this.padding))},Dn.prototype.toArrayBuffer=function(){if(this.arrayBuffer)return this.arrayBuffer;for(var t=this.cells,e=3+this.cells.length+1+1,r=0,n=0;n=0)){var f=t[u];c[u]=Bn[l].shallow.indexOf(u)>=0?f:Hn(f,e)}t instanceof Error&&(c.message=t.message)}if(c.$name)throw new Error("$name property is reserved for worker serialization logic.");return"Object"!==l&&(c.$name=l),c}throw new Error("can't serialize object of type "+typeof t)}function qn(t){if(null==t||"boolean"==typeof t||"number"==typeof t||"string"==typeof t||t instanceof Boolean||t instanceof Number||t instanceof String||t instanceof Date||t instanceof RegExp||Un(t)||Vn(t)||ArrayBuffer.isView(t)||t instanceof Rn)return t;if(Array.isArray(t))return t.map(qn);if("object"==typeof t){var e=t.$name||"Object",r=Bn[e].klass;if(!r)throw new Error("can't deserialize unregistered class "+e);if(r.deserialize)return r.deserialize(t);for(var n=Object.create(r.prototype),i=0,a=Object.keys(t);i=0?s:qn(s)}}return n}throw new Error("can't deserialize object of type "+typeof t)}var Gn=function(){this.first=!0};Gn.prototype.update=function(t,e){var r=Math.floor(t);return this.first?(this.first=!1,this.lastIntegerZoom=r,this.lastIntegerZoomTime=0,this.lastZoom=t,this.lastFloorZoom=r,!0):(this.lastFloorZoom>r?(this.lastIntegerZoom=r+1,this.lastIntegerZoomTime=e):this.lastFloorZoom=128&&t<=255},Arabic:function(t){return t>=1536&&t<=1791},"Arabic Supplement":function(t){return t>=1872&&t<=1919},"Arabic Extended-A":function(t){return t>=2208&&t<=2303},"Hangul Jamo":function(t){return t>=4352&&t<=4607},"Unified Canadian Aboriginal Syllabics":function(t){return t>=5120&&t<=5759},Khmer:function(t){return t>=6016&&t<=6143},"Unified Canadian Aboriginal Syllabics Extended":function(t){return t>=6320&&t<=6399},"General Punctuation":function(t){return t>=8192&&t<=8303},"Letterlike Symbols":function(t){return t>=8448&&t<=8527},"Number Forms":function(t){return t>=8528&&t<=8591},"Miscellaneous Technical":function(t){return t>=8960&&t<=9215},"Control Pictures":function(t){return t>=9216&&t<=9279},"Optical Character Recognition":function(t){return t>=9280&&t<=9311},"Enclosed Alphanumerics":function(t){return t>=9312&&t<=9471},"Geometric Shapes":function(t){return t>=9632&&t<=9727},"Miscellaneous Symbols":function(t){return t>=9728&&t<=9983},"Miscellaneous Symbols and Arrows":function(t){return t>=11008&&t<=11263},"CJK Radicals Supplement":function(t){return t>=11904&&t<=12031},"Kangxi Radicals":function(t){return t>=12032&&t<=12255},"Ideographic Description Characters":function(t){return t>=12272&&t<=12287},"CJK Symbols and Punctuation":function(t){return t>=12288&&t<=12351},Hiragana:function(t){return t>=12352&&t<=12447},Katakana:function(t){return t>=12448&&t<=12543},Bopomofo:function(t){return t>=12544&&t<=12591},"Hangul Compatibility Jamo":function(t){return t>=12592&&t<=12687},Kanbun:function(t){return t>=12688&&t<=12703},"Bopomofo Extended":function(t){return t>=12704&&t<=12735},"CJK Strokes":function(t){return t>=12736&&t<=12783},"Katakana Phonetic Extensions":function(t){return t>=12784&&t<=12799},"Enclosed CJK Letters and Months":function(t){return t>=12800&&t<=13055},"CJK Compatibility":function(t){return t>=13056&&t<=13311},"CJK Unified Ideographs Extension A":function(t){return t>=13312&&t<=19903},"Yijing Hexagram Symbols":function(t){return t>=19904&&t<=19967},"CJK Unified Ideographs":function(t){return t>=19968&&t<=40959},"Yi Syllables":function(t){return t>=40960&&t<=42127},"Yi Radicals":function(t){return t>=42128&&t<=42191},"Hangul Jamo Extended-A":function(t){return t>=43360&&t<=43391},"Hangul Syllables":function(t){return t>=44032&&t<=55215},"Hangul Jamo Extended-B":function(t){return t>=55216&&t<=55295},"Private Use Area":function(t){return t>=57344&&t<=63743},"CJK Compatibility Ideographs":function(t){return t>=63744&&t<=64255},"Arabic Presentation Forms-A":function(t){return t>=64336&&t<=65023},"Vertical Forms":function(t){return t>=65040&&t<=65055},"CJK Compatibility Forms":function(t){return t>=65072&&t<=65103},"Small Form Variants":function(t){return t>=65104&&t<=65135},"Arabic Presentation Forms-B":function(t){return t>=65136&&t<=65279},"Halfwidth and Fullwidth Forms":function(t){return t>=65280&&t<=65519}};function Wn(t){for(var e=0,r=t;e=65097&&t<=65103)||(!!Yn["CJK Compatibility Ideographs"](t)||(!!Yn["CJK Compatibility"](t)||(!!Yn["CJK Radicals Supplement"](t)||(!!Yn["CJK Strokes"](t)||(!(!Yn["CJK Symbols and Punctuation"](t)||t>=12296&&t<=12305||t>=12308&&t<=12319||12336===t)||(!!Yn["CJK Unified Ideographs Extension A"](t)||(!!Yn["CJK Unified Ideographs"](t)||(!!Yn["Enclosed CJK Letters and Months"](t)||(!!Yn["Hangul Compatibility Jamo"](t)||(!!Yn["Hangul Jamo Extended-A"](t)||(!!Yn["Hangul Jamo Extended-B"](t)||(!!Yn["Hangul Jamo"](t)||(!!Yn["Hangul Syllables"](t)||(!!Yn.Hiragana(t)||(!!Yn["Ideographic Description Characters"](t)||(!!Yn.Kanbun(t)||(!!Yn["Kangxi Radicals"](t)||(!!Yn["Katakana Phonetic Extensions"](t)||(!(!Yn.Katakana(t)||12540===t)||(!(!Yn["Halfwidth and Fullwidth Forms"](t)||65288===t||65289===t||65293===t||t>=65306&&t<=65310||65339===t||65341===t||65343===t||t>=65371&&t<=65503||65507===t||t>=65512&&t<=65519)||(!(!Yn["Small Form Variants"](t)||t>=65112&&t<=65118||t>=65123&&t<=65126)||(!!Yn["Unified Canadian Aboriginal Syllabics"](t)||(!!Yn["Unified Canadian Aboriginal Syllabics Extended"](t)||(!!Yn["Vertical Forms"](t)||(!!Yn["Yijing Hexagram Symbols"](t)||(!!Yn["Yi Syllables"](t)||!!Yn["Yi Radicals"](t))))))))))))))))))))))))))))))}function Jn(t){return!(Zn(t)||function(t){return!(!Yn["Latin-1 Supplement"](t)||167!==t&&169!==t&&174!==t&&177!==t&&188!==t&&189!==t&&190!==t&&215!==t&&247!==t)||(!(!Yn["General Punctuation"](t)||8214!==t&&8224!==t&&8225!==t&&8240!==t&&8241!==t&&8251!==t&&8252!==t&&8258!==t&&8263!==t&&8264!==t&&8265!==t&&8273!==t)||(!!Yn["Letterlike Symbols"](t)||(!!Yn["Number Forms"](t)||(!(!Yn["Miscellaneous Technical"](t)||!(t>=8960&&t<=8967||t>=8972&&t<=8991||t>=8996&&t<=9e3||9003===t||t>=9085&&t<=9114||t>=9150&&t<=9165||9167===t||t>=9169&&t<=9179||t>=9186&&t<=9215))||(!(!Yn["Control Pictures"](t)||9251===t)||(!!Yn["Optical Character Recognition"](t)||(!!Yn["Enclosed Alphanumerics"](t)||(!!Yn["Geometric Shapes"](t)||(!(!Yn["Miscellaneous Symbols"](t)||t>=9754&&t<=9759)||(!(!Yn["Miscellaneous Symbols and Arrows"](t)||!(t>=11026&&t<=11055||t>=11088&&t<=11097||t>=11192&&t<=11243))||(!!Yn["CJK Symbols and Punctuation"](t)||(!!Yn.Katakana(t)||(!!Yn["Private Use Area"](t)||(!!Yn["CJK Compatibility Forms"](t)||(!!Yn["Small Form Variants"](t)||(!!Yn["Halfwidth and Fullwidth Forms"](t)||(8734===t||8756===t||8757===t||t>=9984&&t<=10087||t>=10102&&t<=10131||65532===t||65533===t)))))))))))))))))}(t))}function Kn(t){return t>=1424&&t<=2303||Yn["Arabic Presentation Forms-A"](t)||Yn["Arabic Presentation Forms-B"](t)}function Qn(t,e){return!(!e&&Kn(t))&&!(t>=2304&&t<=3583||t>=3840&&t<=4255||Yn.Khmer(t))}function $n(t){for(var e=0,r=t;e-1&&(ai=ni),ii&&ii(t)};function li(){ci.fire(new Mt("pluginStateChange",{pluginStatus:ai,pluginURL:oi}))}var ci=new Et,ui=function(){return ai},fi=function(){if(ai!==ti||!oi)throw new Error("rtl-text-plugin cannot be downloaded unless a pluginURL is specified");ai=ei,li(),oi&&xt({url:oi},(function(t){t?si(t):(ai=ri,li())}))},hi={applyArabicShaping:null,processBidirectionalText:null,processStyledBidirectionalText:null,isLoaded:function(){return ai===ri||null!=hi.applyArabicShaping},isLoading:function(){return ai===ei},setState:function(t){ai=t.pluginStatus,oi=t.pluginURL},isParsed:function(){return null!=hi.applyArabicShaping&&null!=hi.processBidirectionalText&&null!=hi.processStyledBidirectionalText},getPluginURL:function(){return oi}},pi=function(t,e){this.zoom=t,e?(this.now=e.now,this.fadeDuration=e.fadeDuration,this.zoomHistory=e.zoomHistory,this.transition=e.transition):(this.now=0,this.fadeDuration=0,this.zoomHistory=new Gn,this.transition={})};pi.prototype.isSupportedScript=function(t){return function(t,e){for(var r=0,n=t;rthis.zoomHistory.lastIntegerZoom?{fromScale:2,toScale:1,t:e+(1-e)*r}:{fromScale:.5,toScale:1,t:1-(1-r)*e}};var di=function(t,e){this.property=t,this.value=e,this.expression=function(t,e){if(Br(t))return new Kr(t,e);if(Yr(t)){var r=Jr(t,e);if("error"===r.result)throw new Error(r.value.map((function(t){return t.key+": "+t.message})).join(", "));return r.value}var n=t;return"string"==typeof t&&"color"===e.type&&(n=te.parse(t)),{kind:"constant",evaluate:function(){return n}}}(void 0===e?t.specification.default:e,t.specification)};di.prototype.isDataDriven=function(){return"source"===this.expression.kind||"composite"===this.expression.kind},di.prototype.possiblyEvaluate=function(t,e,r){return this.property.possiblyEvaluate(this,t,e,r)};var mi=function(t){this.property=t,this.value=new di(t,void 0)};mi.prototype.transitioned=function(t,e){return new vi(this.property,this.value,e,u({},t.transition,this.transition),t.now)},mi.prototype.untransitioned=function(){return new vi(this.property,this.value,null,{},0)};var gi=function(t){this._properties=t,this._values=Object.create(t.defaultTransitionablePropertyValues)};gi.prototype.getValue=function(t){return x(this._values[t].value.value)},gi.prototype.setValue=function(t,e){this._values.hasOwnProperty(t)||(this._values[t]=new mi(this._values[t].property)),this._values[t].value=new di(this._values[t].property,null===e?void 0:x(e))},gi.prototype.getTransition=function(t){return x(this._values[t].transition)},gi.prototype.setTransition=function(t,e){this._values.hasOwnProperty(t)||(this._values[t]=new mi(this._values[t].property)),this._values[t].transition=x(e)||void 0},gi.prototype.serialize=function(){for(var t={},e=0,r=Object.keys(this._values);ethis.end)return this.prior=null,i;if(this.value.isDataDriven())return this.prior=null,i;if(n=1)return 1;var e=t*t,r=e*t;return 4*(t<.5?r:3*(t-e)+r-.75)}(o))}return i};var yi=function(t){this._properties=t,this._values=Object.create(t.defaultTransitioningPropertyValues)};yi.prototype.possiblyEvaluate=function(t,e,r){for(var n=new _i(this._properties),i=0,a=Object.keys(this._values);in.zoomHistory.lastIntegerZoom?{from:t,to:e}:{from:r,to:e}},e.prototype.interpolate=function(t){return t},e}(Ti),Ai=function(t){this.specification=t};Ai.prototype.possiblyEvaluate=function(t,e,r,n){if(void 0!==t.value){if("constant"===t.expression.kind){var i=t.expression.evaluate(e,null,{},r,n);return this._calculate(i,i,i,e)}return this._calculate(t.expression.evaluate(new pi(Math.floor(e.zoom-1),e)),t.expression.evaluate(new pi(Math.floor(e.zoom),e)),t.expression.evaluate(new pi(Math.floor(e.zoom+1),e)),e)}},Ai.prototype._calculate=function(t,e,r,n){return n.zoom>n.zoomHistory.lastIntegerZoom?{from:t,to:e}:{from:r,to:e}},Ai.prototype.interpolate=function(t){return t};var Mi=function(t){this.specification=t};Mi.prototype.possiblyEvaluate=function(t,e,r,n){return!!t.expression.evaluate(e,null,{},r,n)},Mi.prototype.interpolate=function(){return!1};var Si=function(t){for(var e in this.properties=t,this.defaultPropertyValues={},this.defaultTransitionablePropertyValues={},this.defaultTransitioningPropertyValues={},this.defaultPossiblyEvaluatedValues={},this.overridableProperties=[],t){var r=t[e];r.specification.overridable&&this.overridableProperties.push(e);var n=this.defaultPropertyValues[e]=new di(r,void 0),i=this.defaultTransitionablePropertyValues[e]=new mi(r);this.defaultTransitioningPropertyValues[e]=i.untransitioned(),this.defaultPossiblyEvaluatedValues[e]=n.possiblyEvaluate({})}};Nn("DataDrivenProperty",Ti),Nn("DataConstantProperty",wi),Nn("CrossFadedDataDrivenProperty",ki),Nn("CrossFadedProperty",Ai),Nn("ColorRampProperty",Mi);var Ei=function(t){function e(e,r){if(t.call(this),this.id=e.id,this.type=e.type,this._featureFilter={filter:function(){return!0},needGeometry:!1},"custom"!==e.type&&(e=e,this.metadata=e.metadata,this.minzoom=e.minzoom,this.maxzoom=e.maxzoom,"background"!==e.type&&(this.source=e.source,this.sourceLayer=e["source-layer"],this.filter=e.filter),r.layout&&(this._unevaluatedLayout=new xi(r.layout)),r.paint)){for(var n in this._transitionablePaint=new gi(r.paint),e.paint)this.setPaintProperty(n,e.paint[n],{validate:!1});for(var i in e.layout)this.setLayoutProperty(i,e.layout[i],{validate:!1});this._transitioningPaint=this._transitionablePaint.untransitioned(),this.paint=new _i(r.paint)}}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getCrossfadeParameters=function(){return this._crossfadeParameters},e.prototype.getLayoutProperty=function(t){return"visibility"===t?this.visibility:this._unevaluatedLayout.getValue(t)},e.prototype.setLayoutProperty=function(t,e,r){if(void 0===r&&(r={}),null!=e){var n="layers."+this.id+".layout."+t;if(this._validate(In,n,t,e,r))return}"visibility"!==t?this._unevaluatedLayout.setValue(t,e):this.visibility=e},e.prototype.getPaintProperty=function(t){return g(t,"-transition")?this._transitionablePaint.getTransition(t.slice(0,-"-transition".length)):this._transitionablePaint.getValue(t)},e.prototype.setPaintProperty=function(t,e,r){if(void 0===r&&(r={}),null!=e){var n="layers."+this.id+".paint."+t;if(this._validate(Pn,n,t,e,r))return!1}if(g(t,"-transition"))return this._transitionablePaint.setTransition(t.slice(0,-"-transition".length),e||void 0),!1;var i=this._transitionablePaint._values[t],a="cross-faded-data-driven"===i.property.specification["property-type"],o=i.value.isDataDriven(),s=i.value;this._transitionablePaint.setValue(t,e),this._handleSpecialPaintPropertyUpdate(t);var l=this._transitionablePaint._values[t].value;return l.isDataDriven()||o||a||this._handleOverridablePaintPropertyUpdate(t,s,l)},e.prototype._handleSpecialPaintPropertyUpdate=function(t){},e.prototype._handleOverridablePaintPropertyUpdate=function(t,e,r){return!1},e.prototype.isHidden=function(t){return!!(this.minzoom&&t=this.maxzoom)||"none"===this.visibility)},e.prototype.updateTransitions=function(t){this._transitioningPaint=this._transitionablePaint.transitioned(t,this._transitioningPaint)},e.prototype.hasTransition=function(){return this._transitioningPaint.hasTransition()},e.prototype.recalculate=function(t,e){t.getCrossfadeParameters&&(this._crossfadeParameters=t.getCrossfadeParameters()),this._unevaluatedLayout&&(this.layout=this._unevaluatedLayout.possiblyEvaluate(t,void 0,e)),this.paint=this._transitioningPaint.possiblyEvaluate(t,void 0,e)},e.prototype.serialize=function(){var t={id:this.id,type:this.type,source:this.source,"source-layer":this.sourceLayer,metadata:this.metadata,minzoom:this.minzoom,maxzoom:this.maxzoom,filter:this.filter,layout:this._unevaluatedLayout&&this._unevaluatedLayout.serialize(),paint:this._transitionablePaint&&this._transitionablePaint.serialize()};return this.visibility&&(t.layout=t.layout||{},t.layout.visibility=this.visibility),y(t,(function(t,e){return!(void 0===t||"layout"===e&&!Object.keys(t).length||"paint"===e&&!Object.keys(t).length)}))},e.prototype._validate=function(t,e,r,n,i){return void 0===i&&(i={}),(!i||!1!==i.validate)&&On(this,t.call(Ln,{key:e,layerType:this.type,objectKey:r,value:n,styleSpec:Lt,style:{glyphs:!0,sprite:!0}}))},e.prototype.is3D=function(){return!1},e.prototype.isTileClipped=function(){return!1},e.prototype.hasOffscreenPass=function(){return!1},e.prototype.resize=function(){},e.prototype.isStateDependent=function(){for(var t in this.paint._values){var e=this.paint.get(t);if(e instanceof bi&&zr(e.property.specification)&&(("source"===e.value.kind||"composite"===e.value.kind)&&e.value.isStateDependent))return!0}return!1},e}(Et),Li={Int8:Int8Array,Uint8:Uint8Array,Int16:Int16Array,Uint16:Uint16Array,Int32:Int32Array,Uint32:Uint32Array,Float32:Float32Array},Ci=function(t,e){this._structArray=t,this._pos1=e*this.size,this._pos2=this._pos1/2,this._pos4=this._pos1/4,this._pos8=this._pos1/8},Pi=function(){this.isTransferred=!1,this.capacity=-1,this.resize(0)};function Ii(t,e){void 0===e&&(e=1);var r=0,n=0;return{members:t.map((function(t){var i,a=(i=t.type,Li[i].BYTES_PER_ELEMENT),o=r=Oi(r,Math.max(e,a)),s=t.components||1;return n=Math.max(n,a),r+=a*s,{name:t.name,type:t.type,components:s,offset:o}})),size:Oi(r,Math.max(n,e)),alignment:e}}function Oi(t,e){return Math.ceil(t/e)*e}Pi.serialize=function(t,e){return t._trim(),e&&(t.isTransferred=!0,e.push(t.arrayBuffer)),{length:t.length,arrayBuffer:t.arrayBuffer}},Pi.deserialize=function(t){var e=Object.create(this.prototype);return e.arrayBuffer=t.arrayBuffer,e.length=t.length,e.capacity=t.arrayBuffer.byteLength/e.bytesPerElement,e._refreshViews(),e},Pi.prototype._trim=function(){this.length!==this.capacity&&(this.capacity=this.length,this.arrayBuffer=this.arrayBuffer.slice(0,this.length*this.bytesPerElement),this._refreshViews())},Pi.prototype.clear=function(){this.length=0},Pi.prototype.resize=function(t){this.reserve(t),this.length=t},Pi.prototype.reserve=function(t){if(t>this.capacity){this.capacity=Math.max(t,Math.floor(5*this.capacity),128),this.arrayBuffer=new ArrayBuffer(this.capacity*this.bytesPerElement);var e=this.uint8;this._refreshViews(),e&&this.uint8.set(e)}},Pi.prototype._refreshViews=function(){throw new Error("_refreshViews() must be implemented by each concrete StructArray layout")};var zi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.int16[n+0]=e,this.int16[n+1]=r,t},e}(Pi);zi.prototype.bytesPerElement=4,Nn("StructArrayLayout2i4",zi);var Di=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=4*t;return this.int16[a+0]=e,this.int16[a+1]=r,this.int16[a+2]=n,this.int16[a+3]=i,t},e}(Pi);Di.prototype.bytesPerElement=8,Nn("StructArrayLayout4i8",Di);var Ri=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=6*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.int16[s+2]=n,this.int16[s+3]=i,this.int16[s+4]=a,this.int16[s+5]=o,t},e}(Pi);Ri.prototype.bytesPerElement=12,Nn("StructArrayLayout2i4i12",Ri);var Fi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=4*t,l=8*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.uint8[l+4]=n,this.uint8[l+5]=i,this.uint8[l+6]=a,this.uint8[l+7]=o,t},e}(Pi);Fi.prototype.bytesPerElement=8,Nn("StructArrayLayout2i4ub8",Fi);var Bi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c){var u=this.length;return this.resize(u+1),this.emplace(u,t,e,r,n,i,a,o,s,l,c)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u){var f=9*t,h=18*t;return this.uint16[f+0]=e,this.uint16[f+1]=r,this.uint16[f+2]=n,this.uint16[f+3]=i,this.uint16[f+4]=a,this.uint16[f+5]=o,this.uint16[f+6]=s,this.uint16[f+7]=l,this.uint8[h+16]=c,this.uint8[h+17]=u,t},e}(Pi);Bi.prototype.bytesPerElement=18,Nn("StructArrayLayout8ui2ub18",Bi);var Ni=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f){var h=this.length;return this.resize(h+1),this.emplace(h,t,e,r,n,i,a,o,s,l,c,u,f)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h){var p=12*t;return this.int16[p+0]=e,this.int16[p+1]=r,this.int16[p+2]=n,this.int16[p+3]=i,this.uint16[p+4]=a,this.uint16[p+5]=o,this.uint16[p+6]=s,this.uint16[p+7]=l,this.int16[p+8]=c,this.int16[p+9]=u,this.int16[p+10]=f,this.int16[p+11]=h,t},e}(Pi);Ni.prototype.bytesPerElement=24,Nn("StructArrayLayout4i4ui4i24",Ni);var ji=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.float32[i+0]=e,this.float32[i+1]=r,this.float32[i+2]=n,t},e}(Pi);ji.prototype.bytesPerElement=12,Nn("StructArrayLayout3f12",ji);var Ui=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.uint32[r+0]=e,t},e}(Pi);Ui.prototype.bytesPerElement=4,Nn("StructArrayLayout1ul4",Ui);var Vi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l){var c=this.length;return this.resize(c+1),this.emplace(c,t,e,r,n,i,a,o,s,l)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c){var u=10*t,f=5*t;return this.int16[u+0]=e,this.int16[u+1]=r,this.int16[u+2]=n,this.int16[u+3]=i,this.int16[u+4]=a,this.int16[u+5]=o,this.uint32[f+3]=s,this.uint16[u+8]=l,this.uint16[u+9]=c,t},e}(Pi);Vi.prototype.bytesPerElement=20,Nn("StructArrayLayout6i1ul2ui20",Vi);var Hi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=6*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.int16[s+2]=n,this.int16[s+3]=i,this.int16[s+4]=a,this.int16[s+5]=o,t},e}(Pi);Hi.prototype.bytesPerElement=12,Nn("StructArrayLayout2i2i2i12",Hi);var qi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i){var a=this.length;return this.resize(a+1),this.emplace(a,t,e,r,n,i)},e.prototype.emplace=function(t,e,r,n,i,a){var o=4*t,s=8*t;return this.float32[o+0]=e,this.float32[o+1]=r,this.float32[o+2]=n,this.int16[s+6]=i,this.int16[s+7]=a,t},e}(Pi);qi.prototype.bytesPerElement=16,Nn("StructArrayLayout2f1f2i16",qi);var Gi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=12*t,o=3*t;return this.uint8[a+0]=e,this.uint8[a+1]=r,this.float32[o+1]=n,this.float32[o+2]=i,t},e}(Pi);Gi.prototype.bytesPerElement=12,Nn("StructArrayLayout2ub2f12",Gi);var Yi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.uint16[i+0]=e,this.uint16[i+1]=r,this.uint16[i+2]=n,t},e}(Pi);Yi.prototype.bytesPerElement=6,Nn("StructArrayLayout3ui6",Yi);var Wi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g){var v=this.length;return this.resize(v+1),this.emplace(v,t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v){var y=24*t,x=12*t,b=48*t;return this.int16[y+0]=e,this.int16[y+1]=r,this.uint16[y+2]=n,this.uint16[y+3]=i,this.uint32[x+2]=a,this.uint32[x+3]=o,this.uint32[x+4]=s,this.uint16[y+10]=l,this.uint16[y+11]=c,this.uint16[y+12]=u,this.float32[x+7]=f,this.float32[x+8]=h,this.uint8[b+36]=p,this.uint8[b+37]=d,this.uint8[b+38]=m,this.uint32[x+10]=g,this.int16[y+22]=v,t},e}(Pi);Wi.prototype.bytesPerElement=48,Nn("StructArrayLayout2i2ui3ul3ui2f3ub1ul1i48",Wi);var Xi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S){var E=this.length;return this.resize(E+1),this.emplace(E,t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S,E){var L=34*t,C=17*t;return this.int16[L+0]=e,this.int16[L+1]=r,this.int16[L+2]=n,this.int16[L+3]=i,this.int16[L+4]=a,this.int16[L+5]=o,this.int16[L+6]=s,this.int16[L+7]=l,this.uint16[L+8]=c,this.uint16[L+9]=u,this.uint16[L+10]=f,this.uint16[L+11]=h,this.uint16[L+12]=p,this.uint16[L+13]=d,this.uint16[L+14]=m,this.uint16[L+15]=g,this.uint16[L+16]=v,this.uint16[L+17]=y,this.uint16[L+18]=x,this.uint16[L+19]=b,this.uint16[L+20]=_,this.uint16[L+21]=w,this.uint16[L+22]=T,this.uint32[C+12]=k,this.float32[C+13]=A,this.float32[C+14]=M,this.float32[C+15]=S,this.float32[C+16]=E,t},e}(Pi);Xi.prototype.bytesPerElement=68,Nn("StructArrayLayout8i15ui1ul4f68",Xi);var Zi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.float32[r+0]=e,t},e}(Pi);Zi.prototype.bytesPerElement=4,Nn("StructArrayLayout1f4",Zi);var Ji=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.int16[i+0]=e,this.int16[i+1]=r,this.int16[i+2]=n,t},e}(Pi);Ji.prototype.bytesPerElement=6,Nn("StructArrayLayout3i6",Ji);var Ki=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=2*t,a=4*t;return this.uint32[i+0]=e,this.uint16[a+2]=r,this.uint16[a+3]=n,t},e}(Pi);Ki.prototype.bytesPerElement=8,Nn("StructArrayLayout1ul2ui8",Ki);var Qi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.uint16[n+0]=e,this.uint16[n+1]=r,t},e}(Pi);Qi.prototype.bytesPerElement=4,Nn("StructArrayLayout2ui4",Qi);var $i=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.uint16[r+0]=e,t},e}(Pi);$i.prototype.bytesPerElement=2,Nn("StructArrayLayout1ui2",$i);var ta=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.float32[n+0]=e,this.float32[n+1]=r,t},e}(Pi);ta.prototype.bytesPerElement=8,Nn("StructArrayLayout2f8",ta);var ea=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=4*t;return this.float32[a+0]=e,this.float32[a+1]=r,this.float32[a+2]=n,this.float32[a+3]=i,t},e}(Pi);ea.prototype.bytesPerElement=16,Nn("StructArrayLayout4f16",ea);var ra=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorPointX:{configurable:!0},anchorPointY:{configurable:!0},x1:{configurable:!0},y1:{configurable:!0},x2:{configurable:!0},y2:{configurable:!0},featureIndex:{configurable:!0},sourceLayerIndex:{configurable:!0},bucketIndex:{configurable:!0},anchorPoint:{configurable:!0}};return r.anchorPointX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorPointY.get=function(){return this._structArray.int16[this._pos2+1]},r.x1.get=function(){return this._structArray.int16[this._pos2+2]},r.y1.get=function(){return this._structArray.int16[this._pos2+3]},r.x2.get=function(){return this._structArray.int16[this._pos2+4]},r.y2.get=function(){return this._structArray.int16[this._pos2+5]},r.featureIndex.get=function(){return this._structArray.uint32[this._pos4+3]},r.sourceLayerIndex.get=function(){return this._structArray.uint16[this._pos2+8]},r.bucketIndex.get=function(){return this._structArray.uint16[this._pos2+9]},r.anchorPoint.get=function(){return new i(this.anchorPointX,this.anchorPointY)},Object.defineProperties(e.prototype,r),e}(Ci);ra.prototype.size=20;var na=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ra(this,t)},e}(Vi);Nn("CollisionBoxArray",na);var ia=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorX:{configurable:!0},anchorY:{configurable:!0},glyphStartIndex:{configurable:!0},numGlyphs:{configurable:!0},vertexStartIndex:{configurable:!0},lineStartIndex:{configurable:!0},lineLength:{configurable:!0},segment:{configurable:!0},lowerSize:{configurable:!0},upperSize:{configurable:!0},lineOffsetX:{configurable:!0},lineOffsetY:{configurable:!0},writingMode:{configurable:!0},placedOrientation:{configurable:!0},hidden:{configurable:!0},crossTileID:{configurable:!0},associatedIconIndex:{configurable:!0}};return r.anchorX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorY.get=function(){return this._structArray.int16[this._pos2+1]},r.glyphStartIndex.get=function(){return this._structArray.uint16[this._pos2+2]},r.numGlyphs.get=function(){return this._structArray.uint16[this._pos2+3]},r.vertexStartIndex.get=function(){return this._structArray.uint32[this._pos4+2]},r.lineStartIndex.get=function(){return this._structArray.uint32[this._pos4+3]},r.lineLength.get=function(){return this._structArray.uint32[this._pos4+4]},r.segment.get=function(){return this._structArray.uint16[this._pos2+10]},r.lowerSize.get=function(){return this._structArray.uint16[this._pos2+11]},r.upperSize.get=function(){return this._structArray.uint16[this._pos2+12]},r.lineOffsetX.get=function(){return this._structArray.float32[this._pos4+7]},r.lineOffsetY.get=function(){return this._structArray.float32[this._pos4+8]},r.writingMode.get=function(){return this._structArray.uint8[this._pos1+36]},r.placedOrientation.get=function(){return this._structArray.uint8[this._pos1+37]},r.placedOrientation.set=function(t){this._structArray.uint8[this._pos1+37]=t},r.hidden.get=function(){return this._structArray.uint8[this._pos1+38]},r.hidden.set=function(t){this._structArray.uint8[this._pos1+38]=t},r.crossTileID.get=function(){return this._structArray.uint32[this._pos4+10]},r.crossTileID.set=function(t){this._structArray.uint32[this._pos4+10]=t},r.associatedIconIndex.get=function(){return this._structArray.int16[this._pos2+22]},Object.defineProperties(e.prototype,r),e}(Ci);ia.prototype.size=48;var aa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ia(this,t)},e}(Wi);Nn("PlacedSymbolArray",aa);var oa=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorX:{configurable:!0},anchorY:{configurable:!0},rightJustifiedTextSymbolIndex:{configurable:!0},centerJustifiedTextSymbolIndex:{configurable:!0},leftJustifiedTextSymbolIndex:{configurable:!0},verticalPlacedTextSymbolIndex:{configurable:!0},placedIconSymbolIndex:{configurable:!0},verticalPlacedIconSymbolIndex:{configurable:!0},key:{configurable:!0},textBoxStartIndex:{configurable:!0},textBoxEndIndex:{configurable:!0},verticalTextBoxStartIndex:{configurable:!0},verticalTextBoxEndIndex:{configurable:!0},iconBoxStartIndex:{configurable:!0},iconBoxEndIndex:{configurable:!0},verticalIconBoxStartIndex:{configurable:!0},verticalIconBoxEndIndex:{configurable:!0},featureIndex:{configurable:!0},numHorizontalGlyphVertices:{configurable:!0},numVerticalGlyphVertices:{configurable:!0},numIconVertices:{configurable:!0},numVerticalIconVertices:{configurable:!0},useRuntimeCollisionCircles:{configurable:!0},crossTileID:{configurable:!0},textBoxScale:{configurable:!0},textOffset0:{configurable:!0},textOffset1:{configurable:!0},collisionCircleDiameter:{configurable:!0}};return r.anchorX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorY.get=function(){return this._structArray.int16[this._pos2+1]},r.rightJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+2]},r.centerJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+3]},r.leftJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+4]},r.verticalPlacedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+5]},r.placedIconSymbolIndex.get=function(){return this._structArray.int16[this._pos2+6]},r.verticalPlacedIconSymbolIndex.get=function(){return this._structArray.int16[this._pos2+7]},r.key.get=function(){return this._structArray.uint16[this._pos2+8]},r.textBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+9]},r.textBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+10]},r.verticalTextBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+11]},r.verticalTextBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+12]},r.iconBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+13]},r.iconBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+14]},r.verticalIconBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+15]},r.verticalIconBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+16]},r.featureIndex.get=function(){return this._structArray.uint16[this._pos2+17]},r.numHorizontalGlyphVertices.get=function(){return this._structArray.uint16[this._pos2+18]},r.numVerticalGlyphVertices.get=function(){return this._structArray.uint16[this._pos2+19]},r.numIconVertices.get=function(){return this._structArray.uint16[this._pos2+20]},r.numVerticalIconVertices.get=function(){return this._structArray.uint16[this._pos2+21]},r.useRuntimeCollisionCircles.get=function(){return this._structArray.uint16[this._pos2+22]},r.crossTileID.get=function(){return this._structArray.uint32[this._pos4+12]},r.crossTileID.set=function(t){this._structArray.uint32[this._pos4+12]=t},r.textBoxScale.get=function(){return this._structArray.float32[this._pos4+13]},r.textOffset0.get=function(){return this._structArray.float32[this._pos4+14]},r.textOffset1.get=function(){return this._structArray.float32[this._pos4+15]},r.collisionCircleDiameter.get=function(){return this._structArray.float32[this._pos4+16]},Object.defineProperties(e.prototype,r),e}(Ci);oa.prototype.size=68;var sa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new oa(this,t)},e}(Xi);Nn("SymbolInstanceArray",sa);var la=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getoffsetX=function(t){return this.float32[1*t+0]},e}(Zi);Nn("GlyphOffsetArray",la);var ca=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getx=function(t){return this.int16[3*t+0]},e.prototype.gety=function(t){return this.int16[3*t+1]},e.prototype.gettileUnitDistanceFromAnchor=function(t){return this.int16[3*t+2]},e}(Ji);Nn("SymbolLineVertexArray",ca);var ua=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={featureIndex:{configurable:!0},sourceLayerIndex:{configurable:!0},bucketIndex:{configurable:!0}};return r.featureIndex.get=function(){return this._structArray.uint32[this._pos4+0]},r.sourceLayerIndex.get=function(){return this._structArray.uint16[this._pos2+2]},r.bucketIndex.get=function(){return this._structArray.uint16[this._pos2+3]},Object.defineProperties(e.prototype,r),e}(Ci);ua.prototype.size=8;var fa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ua(this,t)},e}(Ki);Nn("FeatureIndexArray",fa);var ha=Ii([{name:"a_pos",components:2,type:"Int16"}],4).members,pa=function(t){void 0===t&&(t=[]),this.segments=t};function da(t,e){return 256*(t=l(Math.floor(t),0,255))+(e=l(Math.floor(e),0,255))}pa.prototype.prepareSegment=function(t,e,r,n){var i=this.segments[this.segments.length-1];return t>pa.MAX_VERTEX_ARRAY_LENGTH&&_("Max vertices per segment is "+pa.MAX_VERTEX_ARRAY_LENGTH+": bucket requested "+t),(!i||i.vertexLength+t>pa.MAX_VERTEX_ARRAY_LENGTH||i.sortKey!==n)&&(i={vertexOffset:e.length,primitiveOffset:r.length,vertexLength:0,primitiveLength:0},void 0!==n&&(i.sortKey=n),this.segments.push(i)),i},pa.prototype.get=function(){return this.segments},pa.prototype.destroy=function(){for(var t=0,e=this.segments;t>>16)*o&65535)<<16)&4294967295)<<15|l>>>17))*s+(((l>>>16)*s&65535)<<16)&4294967295)<<13|i>>>19))+((5*(i>>>16)&65535)<<16)&4294967295))+((58964+(a>>>16)&65535)<<16);switch(l=0,r){case 3:l^=(255&t.charCodeAt(c+2))<<16;case 2:l^=(255&t.charCodeAt(c+1))<<8;case 1:i^=l=(65535&(l=(l=(65535&(l^=255&t.charCodeAt(c)))*o+(((l>>>16)*o&65535)<<16)&4294967295)<<15|l>>>17))*s+(((l>>>16)*s&65535)<<16)&4294967295}return i^=t.length,i=2246822507*(65535&(i^=i>>>16))+((2246822507*(i>>>16)&65535)<<16)&4294967295,i=3266489909*(65535&(i^=i>>>13))+((3266489909*(i>>>16)&65535)<<16)&4294967295,(i^=i>>>16)>>>0}})),va=e((function(t){t.exports=function(t,e){for(var r,n=t.length,i=e^n,a=0;n>=4;)r=1540483477*(65535&(r=255&t.charCodeAt(a)|(255&t.charCodeAt(++a))<<8|(255&t.charCodeAt(++a))<<16|(255&t.charCodeAt(++a))<<24))+((1540483477*(r>>>16)&65535)<<16),i=1540483477*(65535&i)+((1540483477*(i>>>16)&65535)<<16)^(r=1540483477*(65535&(r^=r>>>24))+((1540483477*(r>>>16)&65535)<<16)),n-=4,++a;switch(n){case 3:i^=(255&t.charCodeAt(a+2))<<16;case 2:i^=(255&t.charCodeAt(a+1))<<8;case 1:i=1540483477*(65535&(i^=255&t.charCodeAt(a)))+((1540483477*(i>>>16)&65535)<<16)}return i=1540483477*(65535&(i^=i>>>13))+((1540483477*(i>>>16)&65535)<<16),(i^=i>>>15)>>>0}})),ya=ga,xa=ga,ba=va;ya.murmur3=xa,ya.murmur2=ba;var _a=function(){this.ids=[],this.positions=[],this.indexed=!1};_a.prototype.add=function(t,e,r,n){this.ids.push(Ta(t)),this.positions.push(e,r,n)},_a.prototype.getPositions=function(t){for(var e=Ta(t),r=0,n=this.ids.length-1;r>1;this.ids[i]>=e?n=i:r=i+1}for(var a=[];this.ids[r]===e;){var o=this.positions[3*r],s=this.positions[3*r+1],l=this.positions[3*r+2];a.push({index:o,start:s,end:l}),r++}return a},_a.serialize=function(t,e){var r=new Float64Array(t.ids),n=new Uint32Array(t.positions);return function t(e,r,n,i){for(;n>1],o=n-1,s=i+1;;){do{o++}while(e[o]a);if(o>=s)break;ka(e,o,s),ka(r,3*o,3*s),ka(r,3*o+1,3*s+1),ka(r,3*o+2,3*s+2)}s-nGa.max||o.yGa.max)&&(_("Geometry exceeds allowed extent, reduce your vector tile buffer size"),o.x=l(o.x,Ga.min,Ga.max),o.y=l(o.y,Ga.min,Ga.max))}return r}function Wa(t,e,r,n,i){t.emplaceBack(2*e+(n+1)/2,2*r+(i+1)/2)}var Xa=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.layoutVertexArray=new zi,this.indexArray=new Yi,this.segments=new pa,this.programConfigurations=new Ua(ha,t.layers,t.zoom),this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};function Za(t,e){for(var r=0;r1){if($a(t,e))return!0;for(var n=0;n1?t.distSqr(r):t.distSqr(r.sub(e)._mult(i)._add(e))}function no(t,e){for(var r,n,i,a=!1,o=0;oe.y!=i.y>e.y&&e.x<(i.x-n.x)*(e.y-n.y)/(i.y-n.y)+n.x&&(a=!a);return a}function io(t,e){for(var r=!1,n=0,i=t.length-1;ne.y!=o.y>e.y&&e.x<(o.x-a.x)*(e.y-a.y)/(o.y-a.y)+a.x&&(r=!r)}return r}function ao(t,e,r){var n=r[0],i=r[2];if(t.xi.x&&e.x>i.x||t.yi.y&&e.y>i.y)return!1;var a=w(t,e,r[0]);return a!==w(t,e,r[1])||a!==w(t,e,r[2])||a!==w(t,e,r[3])}function oo(t,e,r){var n=e.paint.get(t).value;return"constant"===n.kind?n.value:r.programConfigurations.get(e.id).getMaxValue(t)}function so(t){return Math.sqrt(t[0]*t[0]+t[1]*t[1])}function lo(t,e,r,n,a){if(!e[0]&&!e[1])return t;var o=i.convert(e)._mult(a);"viewport"===r&&o._rotate(-n);for(var s=[],l=0;l=8192||u<0||u>=8192)){var f=this.segments.prepareSegment(4,this.layoutVertexArray,this.indexArray,t.sortKey),h=f.vertexLength;Wa(this.layoutVertexArray,c,u,-1,-1),Wa(this.layoutVertexArray,c,u,1,-1),Wa(this.layoutVertexArray,c,u,1,1),Wa(this.layoutVertexArray,c,u,-1,1),this.indexArray.emplaceBack(h,h+1,h+2),this.indexArray.emplaceBack(h,h+3,h+2),f.vertexLength+=4,f.primitiveLength+=2}}this.programConfigurations.populatePaintArrays(this.layoutVertexArray.length,t,r,{},n)},Nn("CircleBucket",Xa,{omit:["layers"]});var co=new Si({"circle-sort-key":new Ti(Lt.layout_circle["circle-sort-key"])}),uo={paint:new Si({"circle-radius":new Ti(Lt.paint_circle["circle-radius"]),"circle-color":new Ti(Lt.paint_circle["circle-color"]),"circle-blur":new Ti(Lt.paint_circle["circle-blur"]),"circle-opacity":new Ti(Lt.paint_circle["circle-opacity"]),"circle-translate":new wi(Lt.paint_circle["circle-translate"]),"circle-translate-anchor":new wi(Lt.paint_circle["circle-translate-anchor"]),"circle-pitch-scale":new wi(Lt.paint_circle["circle-pitch-scale"]),"circle-pitch-alignment":new wi(Lt.paint_circle["circle-pitch-alignment"]),"circle-stroke-width":new Ti(Lt.paint_circle["circle-stroke-width"]),"circle-stroke-color":new Ti(Lt.paint_circle["circle-stroke-color"]),"circle-stroke-opacity":new Ti(Lt.paint_circle["circle-stroke-opacity"])}),layout:co},fo="undefined"!=typeof Float32Array?Float32Array:Array;function ho(t){return t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=1,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=1,t[11]=0,t[12]=0,t[13]=0,t[14]=0,t[15]=1,t}function po(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3],s=e[4],l=e[5],c=e[6],u=e[7],f=e[8],h=e[9],p=e[10],d=e[11],m=e[12],g=e[13],v=e[14],y=e[15],x=r[0],b=r[1],_=r[2],w=r[3];return t[0]=x*n+b*s+_*f+w*m,t[1]=x*i+b*l+_*h+w*g,t[2]=x*a+b*c+_*p+w*v,t[3]=x*o+b*u+_*d+w*y,x=r[4],b=r[5],_=r[6],w=r[7],t[4]=x*n+b*s+_*f+w*m,t[5]=x*i+b*l+_*h+w*g,t[6]=x*a+b*c+_*p+w*v,t[7]=x*o+b*u+_*d+w*y,x=r[8],b=r[9],_=r[10],w=r[11],t[8]=x*n+b*s+_*f+w*m,t[9]=x*i+b*l+_*h+w*g,t[10]=x*a+b*c+_*p+w*v,t[11]=x*o+b*u+_*d+w*y,x=r[12],b=r[13],_=r[14],w=r[15],t[12]=x*n+b*s+_*f+w*m,t[13]=x*i+b*l+_*h+w*g,t[14]=x*a+b*c+_*p+w*v,t[15]=x*o+b*u+_*d+w*y,t}Math.hypot||(Math.hypot=function(){for(var t=arguments,e=0,r=arguments.length;r--;)e+=t[r]*t[r];return Math.sqrt(e)});var mo=po;var go,vo,yo=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t};go=new fo(3),fo!=Float32Array&&(go[0]=0,go[1]=0,go[2]=0),vo=go;function xo(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3];return t[0]=r[0]*n+r[4]*i+r[8]*a+r[12]*o,t[1]=r[1]*n+r[5]*i+r[9]*a+r[13]*o,t[2]=r[2]*n+r[6]*i+r[10]*a+r[14]*o,t[3]=r[3]*n+r[7]*i+r[11]*a+r[15]*o,t}!function(){var t=function(){var t=new fo(4);return fo!=Float32Array&&(t[0]=0,t[1]=0,t[2]=0,t[3]=0),t}()}();var bo=function(t){var e=t[0],r=t[1];return e*e+r*r},_o=(function(){var t=function(){var t=new fo(2);return fo!=Float32Array&&(t[0]=0,t[1]=0),t}()}(),function(t){function e(e){t.call(this,e,uo)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.createBucket=function(t){return new Xa(t)},e.prototype.queryRadius=function(t){var e=t;return oo("circle-radius",this,e)+oo("circle-stroke-width",this,e)+so(this.paint.get("circle-translate"))},e.prototype.queryIntersectsFeature=function(t,e,r,n,i,a,o,s){for(var l=lo(t,this.paint.get("circle-translate"),this.paint.get("circle-translate-anchor"),a.angle,o),c=this.paint.get("circle-radius").evaluate(e,r)+this.paint.get("circle-stroke-width").evaluate(e,r),u="map"===this.paint.get("circle-pitch-alignment"),f=u?l:function(t,e){return t.map((function(t){return wo(t,e)}))}(l,s),h=u?c*o:c,p=0,d=n;pt.width||i.height>t.height||r.x>t.width-i.width||r.y>t.height-i.height)throw new RangeError("out of range source coordinates for image copy");if(i.width>e.width||i.height>e.height||n.x>e.width-i.width||n.y>e.height-i.height)throw new RangeError("out of range destination coordinates for image copy");for(var o=t.data,s=e.data,l=0;l80*r){n=a=t[0],i=o=t[1];for(var d=r;da&&(a=s),l>o&&(o=l);c=0!==(c=Math.max(a-n,o-i))?1/c:0}return jo(h,p,r,n,i,c),p}function Bo(t,e,r,n,i){var a,o;if(i===ls(t,e,r,n)>0)for(a=e;a=e;a-=n)o=as(a,t[a],t[a+1],o);return o&&$o(o,o.next)&&(os(o),o=o.next),o}function No(t,e){if(!t)return t;e||(e=t);var r,n=t;do{if(r=!1,n.steiner||!$o(n,n.next)&&0!==Qo(n.prev,n,n.next))n=n.next;else{if(os(n),(n=e=n.prev)===n.next)break;r=!0}}while(r||n!==e);return e}function jo(t,e,r,n,i,a,o){if(t){!o&&a&&function(t,e,r,n){var i=t;do{null===i.z&&(i.z=Xo(i.x,i.y,e,r,n)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==t);i.prevZ.nextZ=null,i.prevZ=null,function(t){var e,r,n,i,a,o,s,l,c=1;do{for(r=t,t=null,a=null,o=0;r;){for(o++,n=r,s=0,e=0;e0||l>0&&n;)0!==s&&(0===l||!n||r.z<=n.z)?(i=r,r=r.nextZ,s--):(i=n,n=n.nextZ,l--),a?a.nextZ=i:t=i,i.prevZ=a,a=i;r=n}a.nextZ=null,c*=2}while(o>1)}(i)}(t,n,i,a);for(var s,l,c=t;t.prev!==t.next;)if(s=t.prev,l=t.next,a?Vo(t,n,i,a):Uo(t))e.push(s.i/r),e.push(t.i/r),e.push(l.i/r),os(t),t=l.next,c=l.next;else if((t=l)===c){o?1===o?jo(t=Ho(No(t),e,r),e,r,n,i,a,2):2===o&&qo(t,e,r,n,i,a):jo(No(t),e,r,n,i,a,1);break}}}function Uo(t){var e=t.prev,r=t,n=t.next;if(Qo(e,r,n)>=0)return!1;for(var i=t.next.next;i!==t.prev;){if(Jo(e.x,e.y,r.x,r.y,n.x,n.y,i.x,i.y)&&Qo(i.prev,i,i.next)>=0)return!1;i=i.next}return!0}function Vo(t,e,r,n){var i=t.prev,a=t,o=t.next;if(Qo(i,a,o)>=0)return!1;for(var s=i.xa.x?i.x>o.x?i.x:o.x:a.x>o.x?a.x:o.x,u=i.y>a.y?i.y>o.y?i.y:o.y:a.y>o.y?a.y:o.y,f=Xo(s,l,e,r,n),h=Xo(c,u,e,r,n),p=t.prevZ,d=t.nextZ;p&&p.z>=f&&d&&d.z<=h;){if(p!==t.prev&&p!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&Qo(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,d!==t.prev&&d!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,d.x,d.y)&&Qo(d.prev,d,d.next)>=0)return!1;d=d.nextZ}for(;p&&p.z>=f;){if(p!==t.prev&&p!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&Qo(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;d&&d.z<=h;){if(d!==t.prev&&d!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,d.x,d.y)&&Qo(d.prev,d,d.next)>=0)return!1;d=d.nextZ}return!0}function Ho(t,e,r){var n=t;do{var i=n.prev,a=n.next.next;!$o(i,a)&&ts(i,n,n.next,a)&&ns(i,a)&&ns(a,i)&&(e.push(i.i/r),e.push(n.i/r),e.push(a.i/r),os(n),os(n.next),n=t=a),n=n.next}while(n!==t);return No(n)}function qo(t,e,r,n,i,a){var o=t;do{for(var s=o.next.next;s!==o.prev;){if(o.i!==s.i&&Ko(o,s)){var l=is(o,s);return o=No(o,o.next),l=No(l,l.next),jo(o,e,r,n,i,a),void jo(l,e,r,n,i,a)}s=s.next}o=o.next}while(o!==t)}function Go(t,e){return t.x-e.x}function Yo(t,e){if(e=function(t,e){var r,n=e,i=t.x,a=t.y,o=-1/0;do{if(a<=n.y&&a>=n.next.y&&n.next.y!==n.y){var s=n.x+(a-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(s<=i&&s>o){if(o=s,s===i){if(a===n.y)return n;if(a===n.next.y)return n.next}r=n.x=n.x&&n.x>=u&&i!==n.x&&Jo(ar.x||n.x===r.x&&Wo(r,n)))&&(r=n,h=l)),n=n.next}while(n!==c);return r}(t,e)){var r=is(e,t);No(e,e.next),No(r,r.next)}}function Wo(t,e){return Qo(t.prev,t,e.prev)<0&&Qo(e.next,t,t.next)<0}function Xo(t,e,r,n,i){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-r)*i)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function Zo(t){var e=t,r=t;do{(e.x=0&&(t-o)*(n-s)-(r-o)*(e-s)>=0&&(r-o)*(a-s)-(i-o)*(n-s)>=0}function Ko(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){var r=t;do{if(r.i!==t.i&&r.next.i!==t.i&&r.i!==e.i&&r.next.i!==e.i&&ts(r,r.next,t,e))return!0;r=r.next}while(r!==t);return!1}(t,e)&&(ns(t,e)&&ns(e,t)&&function(t,e){var r=t,n=!1,i=(t.x+e.x)/2,a=(t.y+e.y)/2;do{r.y>a!=r.next.y>a&&r.next.y!==r.y&&i<(r.next.x-r.x)*(a-r.y)/(r.next.y-r.y)+r.x&&(n=!n),r=r.next}while(r!==t);return n}(t,e)&&(Qo(t.prev,t,e.prev)||Qo(t,e.prev,e))||$o(t,e)&&Qo(t.prev,t,t.next)>0&&Qo(e.prev,e,e.next)>0)}function Qo(t,e,r){return(e.y-t.y)*(r.x-e.x)-(e.x-t.x)*(r.y-e.y)}function $o(t,e){return t.x===e.x&&t.y===e.y}function ts(t,e,r,n){var i=rs(Qo(t,e,r)),a=rs(Qo(t,e,n)),o=rs(Qo(r,n,t)),s=rs(Qo(r,n,e));return i!==a&&o!==s||(!(0!==i||!es(t,r,e))||(!(0!==a||!es(t,n,e))||(!(0!==o||!es(r,t,n))||!(0!==s||!es(r,e,n)))))}function es(t,e,r){return e.x<=Math.max(t.x,r.x)&&e.x>=Math.min(t.x,r.x)&&e.y<=Math.max(t.y,r.y)&&e.y>=Math.min(t.y,r.y)}function rs(t){return t>0?1:t<0?-1:0}function ns(t,e){return Qo(t.prev,t,t.next)<0?Qo(t,e,t.next)>=0&&Qo(t,t.prev,e)>=0:Qo(t,e,t.prev)<0||Qo(t,t.next,e)<0}function is(t,e){var r=new ss(t.i,t.x,t.y),n=new ss(e.i,e.x,e.y),i=t.next,a=e.prev;return t.next=e,e.prev=t,r.next=i,i.prev=r,n.next=r,r.prev=n,a.next=n,n.prev=a,n}function as(t,e,r,n){var i=new ss(t,e,r);return n?(i.next=n.next,i.prev=n,n.next.prev=i,n.next=i):(i.prev=i,i.next=i),i}function os(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function ss(t,e,r){this.i=t,this.x=e,this.y=r,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}function ls(t,e,r,n){for(var i=0,a=e,o=r-n;an;){if(i-n>600){var o=i-n+1,s=r-n+1,l=Math.log(o),c=.5*Math.exp(2*l/3),u=.5*Math.sqrt(l*c*(o-c)/o)*(s-o/2<0?-1:1),f=Math.max(n,Math.floor(r-s*c/o+u)),h=Math.min(i,Math.floor(r+(o-s)*c/o+u));t(e,r,f,h,a)}var p=e[r],d=n,m=i;for(us(e,n,r),a(e[i],p)>0&&us(e,n,i);d0;)m--}0===a(e[n],p)?us(e,n,m):(m++,us(e,m,i)),m<=r&&(n=m+1),r<=m&&(i=m-1)}}(t,e,r||0,n||t.length-1,i||fs)}function us(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function fs(t,e){return te?1:0}function hs(t,e){var r=t.length;if(r<=1)return[t];for(var n,i,a=[],o=0;o1)for(var l=0;l0&&(n+=t[i-1].length,r.holes.push(n))}return r},Do.default=Ro;var gs=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.patternFeatures=[],this.layoutVertexArray=new zi,this.indexArray=new Yi,this.indexArray2=new Qi,this.programConfigurations=new Ua(zo,t.layers,t.zoom),this.segments=new pa,this.segments2=new pa,this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};gs.prototype.populate=function(t,e,r){this.hasPattern=ds("fill",this.layers,e);for(var n=this.layers[0].layout.get("fill-sort-key"),i=[],a=0,o=t;a>3}if(a--,1===n||2===n)o+=t.readSVarint(),s+=t.readSVarint(),1===n&&(e&&l.push(e),e=[]),e.push(new i(o,s));else{if(7!==n)throw new Error("unknown command "+n);e&&e.push(e[0].clone())}}return e&&l.push(e),l},ws.prototype.bbox=function(){var t=this._pbf;t.pos=this._geometry;for(var e=t.readVarint()+t.pos,r=1,n=0,i=0,a=0,o=1/0,s=-1/0,l=1/0,c=-1/0;t.pos>3}if(n--,1===r||2===r)(i+=t.readSVarint())s&&(s=i),(a+=t.readSVarint())c&&(c=a);else if(7!==r)throw new Error("unknown command "+r)}return[o,l,s,c]},ws.prototype.toGeoJSON=function(t,e,r){var n,i,a=this.extent*Math.pow(2,r),o=this.extent*t,s=this.extent*e,l=this.loadGeometry(),c=ws.types[this.type];function u(t){for(var e=0;e>3;e=1===n?t.readString():2===n?t.readFloat():3===n?t.readDouble():4===n?t.readVarint64():5===n?t.readVarint():6===n?t.readSVarint():7===n?t.readBoolean():null}return e}(r))}function Es(t,e,r){if(3===t){var n=new As(r,r.readVarint()+r.pos);n.length&&(e[n.name]=n)}}Ms.prototype.feature=function(t){if(t<0||t>=this._features.length)throw new Error("feature index out of bounds");this._pbf.pos=this._features[t];var e=this._pbf.readVarint()+this._pbf.pos;return new _s(this._pbf,e,this.extent,this._keys,this._values)};var Ls={VectorTile:function(t,e){this.layers=t.readFields(Es,{},e)},VectorTileFeature:_s,VectorTileLayer:As},Cs=Ls.VectorTileFeature.types,Ps=Math.pow(2,13);function Is(t,e,r,n,i,a,o,s){t.emplaceBack(e,r,2*Math.floor(n*Ps)+o,i*Ps*2,a*Ps*2,Math.round(s))}var Os=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.layoutVertexArray=new Ri,this.indexArray=new Yi,this.programConfigurations=new Ua(bs,t.layers,t.zoom),this.segments=new pa,this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};function zs(t,e){return t.x===e.x&&(t.x<0||t.x>8192)||t.y===e.y&&(t.y<0||t.y>8192)}function Ds(t){return t.every((function(t){return t.x<0}))||t.every((function(t){return t.x>8192}))||t.every((function(t){return t.y<0}))||t.every((function(t){return t.y>8192}))}Os.prototype.populate=function(t,e,r){this.features=[],this.hasPattern=ds("fill-extrusion",this.layers,e);for(var n=0,i=t;n=1){var y=d[g-1];if(!zs(v,y)){f.vertexLength+4>pa.MAX_VERTEX_ARRAY_LENGTH&&(f=this.segments.prepareSegment(4,this.layoutVertexArray,this.indexArray));var x=v.sub(y)._perp()._unit(),b=y.dist(v);m+b>32768&&(m=0),Is(this.layoutVertexArray,v.x,v.y,x.x,x.y,0,0,m),Is(this.layoutVertexArray,v.x,v.y,x.x,x.y,0,1,m),m+=b,Is(this.layoutVertexArray,y.x,y.y,x.x,x.y,0,0,m),Is(this.layoutVertexArray,y.x,y.y,x.x,x.y,0,1,m);var _=f.vertexLength;this.indexArray.emplaceBack(_,_+2,_+1),this.indexArray.emplaceBack(_+1,_+2,_+3),f.vertexLength+=4,f.primitiveLength+=2}}}}if(f.vertexLength+l>pa.MAX_VERTEX_ARRAY_LENGTH&&(f=this.segments.prepareSegment(l,this.layoutVertexArray,this.indexArray)),"Polygon"===Cs[t.type]){for(var w=[],T=[],k=f.vertexLength,A=0,M=s;A=2&&t[l-1].equals(t[l-2]);)l--;for(var c=0;c0;if(T&&v>c){var A=u.dist(p);if(A>2*f){var M=u.sub(u.sub(p)._mult(f/A)._round());this.updateDistance(p,M),this.addCurrentVertex(M,m,0,0,h),p=M}}var S=p&&d,E=S?r:s?"butt":n;if(S&&"round"===E&&(_i&&(E="bevel"),"bevel"===E&&(_>2&&(E="flipbevel"),_100)y=g.mult(-1);else{var L=_*m.add(g).mag()/m.sub(g).mag();y._perp()._mult(L*(k?-1:1))}this.addCurrentVertex(u,y,0,0,h),this.addCurrentVertex(u,y.mult(-1),0,0,h)}else if("bevel"===E||"fakeround"===E){var C=-Math.sqrt(_*_-1),P=k?C:0,I=k?0:C;if(p&&this.addCurrentVertex(u,m,P,I,h),"fakeround"===E)for(var O=Math.round(180*w/Math.PI/20),z=1;z2*f){var j=u.add(d.sub(u)._mult(f/N)._round());this.updateDistance(u,j),this.addCurrentVertex(j,g,0,0,h),u=j}}}}},qs.prototype.addCurrentVertex=function(t,e,r,n,i,a){void 0===a&&(a=!1);var o=e.x+e.y*r,s=e.y-e.x*r,l=-e.x+e.y*n,c=-e.y-e.x*n;this.addHalfVertex(t,o,s,a,!1,r,i),this.addHalfVertex(t,l,c,a,!0,-n,i),this.distance>Hs/2&&0===this.totalDistance&&(this.distance=0,this.addCurrentVertex(t,e,r,n,i,a))},qs.prototype.addHalfVertex=function(t,e,r,n,i,a,o){var s=t.x,l=t.y,c=.5*this.scaledDistance;this.layoutVertexArray.emplaceBack((s<<1)+(n?1:0),(l<<1)+(i?1:0),Math.round(63*e)+128,Math.round(63*r)+128,1+(0===a?0:a<0?-1:1)|(63&c)<<2,c>>6);var u=o.vertexLength++;this.e1>=0&&this.e2>=0&&(this.indexArray.emplaceBack(this.e1,this.e2,u),o.primitiveLength++),i?this.e2=u:this.e1=u},qs.prototype.updateScaledDistance=function(){this.scaledDistance=this.totalDistance>0?(this.clipStart+(this.clipEnd-this.clipStart)*this.distance/this.totalDistance)*(Hs-1):this.distance},qs.prototype.updateDistance=function(t,e){this.distance+=t.dist(e),this.updateScaledDistance()},Nn("LineBucket",qs,{omit:["layers","patternFeatures"]});var Gs=new Si({"line-cap":new wi(Lt.layout_line["line-cap"]),"line-join":new Ti(Lt.layout_line["line-join"]),"line-miter-limit":new wi(Lt.layout_line["line-miter-limit"]),"line-round-limit":new wi(Lt.layout_line["line-round-limit"]),"line-sort-key":new Ti(Lt.layout_line["line-sort-key"])}),Ys={paint:new Si({"line-opacity":new Ti(Lt.paint_line["line-opacity"]),"line-color":new Ti(Lt.paint_line["line-color"]),"line-translate":new wi(Lt.paint_line["line-translate"]),"line-translate-anchor":new wi(Lt.paint_line["line-translate-anchor"]),"line-width":new Ti(Lt.paint_line["line-width"]),"line-gap-width":new Ti(Lt.paint_line["line-gap-width"]),"line-offset":new Ti(Lt.paint_line["line-offset"]),"line-blur":new Ti(Lt.paint_line["line-blur"]),"line-dasharray":new Ai(Lt.paint_line["line-dasharray"]),"line-pattern":new ki(Lt.paint_line["line-pattern"]),"line-gradient":new Mi(Lt.paint_line["line-gradient"])}),layout:Gs},Ws=new(function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.possiblyEvaluate=function(e,r){return r=new pi(Math.floor(r.zoom),{now:r.now,fadeDuration:r.fadeDuration,zoomHistory:r.zoomHistory,transition:r.transition}),t.prototype.possiblyEvaluate.call(this,e,r)},e.prototype.evaluate=function(e,r,n,i){return r=u({},r,{zoom:Math.floor(r.zoom)}),t.prototype.evaluate.call(this,e,r,n,i)},e}(Ti))(Ys.paint.properties["line-width"].specification);Ws.useIntegerZoom=!0;var Xs=function(t){function e(e){t.call(this,e,Ys)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._handleSpecialPaintPropertyUpdate=function(t){"line-gradient"===t&&this._updateGradient()},e.prototype._updateGradient=function(){var t=this._transitionablePaint._values["line-gradient"].value.expression;this.gradient=Co(t,"lineProgress"),this.gradientTexture=null},e.prototype.recalculate=function(e,r){t.prototype.recalculate.call(this,e,r),this.paint._values["line-floorwidth"]=Ws.possiblyEvaluate(this._transitioningPaint._values["line-width"].value,e)},e.prototype.createBucket=function(t){return new qs(t)},e.prototype.queryRadius=function(t){var e=t,r=Zs(oo("line-width",this,e),oo("line-gap-width",this,e)),n=oo("line-offset",this,e);return r/2+Math.abs(n)+so(this.paint.get("line-translate"))},e.prototype.queryIntersectsFeature=function(t,e,r,n,a,o,s){var l=lo(t,this.paint.get("line-translate"),this.paint.get("line-translate-anchor"),o.angle,s),c=s/2*Zs(this.paint.get("line-width").evaluate(e,r),this.paint.get("line-gap-width").evaluate(e,r)),u=this.paint.get("line-offset").evaluate(e,r);return u&&(n=function(t,e){for(var r=[],n=new i(0,0),a=0;a=3)for(var a=0;a0?e+2*t:t}var Js=Ii([{name:"a_pos_offset",components:4,type:"Int16"},{name:"a_data",components:4,type:"Uint16"},{name:"a_pixeloffset",components:4,type:"Int16"}],4),Ks=Ii([{name:"a_projected_pos",components:3,type:"Float32"}],4),Qs=(Ii([{name:"a_fade_opacity",components:1,type:"Uint32"}],4),Ii([{name:"a_placed",components:2,type:"Uint8"},{name:"a_shift",components:2,type:"Float32"}])),$s=(Ii([{type:"Int16",name:"anchorPointX"},{type:"Int16",name:"anchorPointY"},{type:"Int16",name:"x1"},{type:"Int16",name:"y1"},{type:"Int16",name:"x2"},{type:"Int16",name:"y2"},{type:"Uint32",name:"featureIndex"},{type:"Uint16",name:"sourceLayerIndex"},{type:"Uint16",name:"bucketIndex"}]),Ii([{name:"a_pos",components:2,type:"Int16"},{name:"a_anchor_pos",components:2,type:"Int16"},{name:"a_extrude",components:2,type:"Int16"}],4)),tl=Ii([{name:"a_pos",components:2,type:"Float32"},{name:"a_radius",components:1,type:"Float32"},{name:"a_flags",components:2,type:"Int16"}],4);Ii([{name:"triangle",components:3,type:"Uint16"}]),Ii([{type:"Int16",name:"anchorX"},{type:"Int16",name:"anchorY"},{type:"Uint16",name:"glyphStartIndex"},{type:"Uint16",name:"numGlyphs"},{type:"Uint32",name:"vertexStartIndex"},{type:"Uint32",name:"lineStartIndex"},{type:"Uint32",name:"lineLength"},{type:"Uint16",name:"segment"},{type:"Uint16",name:"lowerSize"},{type:"Uint16",name:"upperSize"},{type:"Float32",name:"lineOffsetX"},{type:"Float32",name:"lineOffsetY"},{type:"Uint8",name:"writingMode"},{type:"Uint8",name:"placedOrientation"},{type:"Uint8",name:"hidden"},{type:"Uint32",name:"crossTileID"},{type:"Int16",name:"associatedIconIndex"}]),Ii([{type:"Int16",name:"anchorX"},{type:"Int16",name:"anchorY"},{type:"Int16",name:"rightJustifiedTextSymbolIndex"},{type:"Int16",name:"centerJustifiedTextSymbolIndex"},{type:"Int16",name:"leftJustifiedTextSymbolIndex"},{type:"Int16",name:"verticalPlacedTextSymbolIndex"},{type:"Int16",name:"placedIconSymbolIndex"},{type:"Int16",name:"verticalPlacedIconSymbolIndex"},{type:"Uint16",name:"key"},{type:"Uint16",name:"textBoxStartIndex"},{type:"Uint16",name:"textBoxEndIndex"},{type:"Uint16",name:"verticalTextBoxStartIndex"},{type:"Uint16",name:"verticalTextBoxEndIndex"},{type:"Uint16",name:"iconBoxStartIndex"},{type:"Uint16",name:"iconBoxEndIndex"},{type:"Uint16",name:"verticalIconBoxStartIndex"},{type:"Uint16",name:"verticalIconBoxEndIndex"},{type:"Uint16",name:"featureIndex"},{type:"Uint16",name:"numHorizontalGlyphVertices"},{type:"Uint16",name:"numVerticalGlyphVertices"},{type:"Uint16",name:"numIconVertices"},{type:"Uint16",name:"numVerticalIconVertices"},{type:"Uint16",name:"useRuntimeCollisionCircles"},{type:"Uint32",name:"crossTileID"},{type:"Float32",name:"textBoxScale"},{type:"Float32",components:2,name:"textOffset"},{type:"Float32",name:"collisionCircleDiameter"}]),Ii([{type:"Float32",name:"offsetX"}]),Ii([{type:"Int16",name:"x"},{type:"Int16",name:"y"},{type:"Int16",name:"tileUnitDistanceFromAnchor"}]);function el(t,e,r){return t.sections.forEach((function(t){t.text=function(t,e,r){var n=e.layout.get("text-transform").evaluate(r,{});return"uppercase"===n?t=t.toLocaleUpperCase():"lowercase"===n&&(t=t.toLocaleLowerCase()),hi.applyArabicShaping&&(t=hi.applyArabicShaping(t)),t}(t.text,e,r)})),t}var rl={"!":"\ufe15","#":"\uff03",$:"\uff04","%":"\uff05","&":"\uff06","(":"\ufe35",")":"\ufe36","*":"\uff0a","+":"\uff0b",",":"\ufe10","-":"\ufe32",".":"\u30fb","/":"\uff0f",":":"\ufe13",";":"\ufe14","<":"\ufe3f","=":"\uff1d",">":"\ufe40","?":"\ufe16","@":"\uff20","[":"\ufe47","\\":"\uff3c","]":"\ufe48","^":"\uff3e",_:"\ufe33","`":"\uff40","{":"\ufe37","|":"\u2015","}":"\ufe38","~":"\uff5e","\xa2":"\uffe0","\xa3":"\uffe1","\xa5":"\uffe5","\xa6":"\uffe4","\xac":"\uffe2","\xaf":"\uffe3","\u2013":"\ufe32","\u2014":"\ufe31","\u2018":"\ufe43","\u2019":"\ufe44","\u201c":"\ufe41","\u201d":"\ufe42","\u2026":"\ufe19","\u2027":"\u30fb","\u20a9":"\uffe6","\u3001":"\ufe11","\u3002":"\ufe12","\u3008":"\ufe3f","\u3009":"\ufe40","\u300a":"\ufe3d","\u300b":"\ufe3e","\u300c":"\ufe41","\u300d":"\ufe42","\u300e":"\ufe43","\u300f":"\ufe44","\u3010":"\ufe3b","\u3011":"\ufe3c","\u3014":"\ufe39","\u3015":"\ufe3a","\u3016":"\ufe17","\u3017":"\ufe18","\uff01":"\ufe15","\uff08":"\ufe35","\uff09":"\ufe36","\uff0c":"\ufe10","\uff0d":"\ufe32","\uff0e":"\u30fb","\uff1a":"\ufe13","\uff1b":"\ufe14","\uff1c":"\ufe3f","\uff1e":"\ufe40","\uff1f":"\ufe16","\uff3b":"\ufe47","\uff3d":"\ufe48","\uff3f":"\ufe33","\uff5b":"\ufe37","\uff5c":"\u2015","\uff5d":"\ufe38","\uff5f":"\ufe35","\uff60":"\ufe36","\uff61":"\ufe12","\uff62":"\ufe41","\uff63":"\ufe42"};var nl=function(t,e,r,n,i){var a,o,s=8*i-n-1,l=(1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},il=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m},al=ol;function ol(t){this.buf=ArrayBuffer.isView&&ArrayBuffer.isView(t)?t:new Uint8Array(t||0),this.pos=0,this.type=0,this.length=this.buf.length}ol.Varint=0,ol.Fixed64=1,ol.Bytes=2,ol.Fixed32=5;var sl="undefined"==typeof TextDecoder?null:new TextDecoder("utf8");function ll(t){return t.type===ol.Bytes?t.readVarint()+t.pos:t.pos+1}function cl(t,e,r){return r?4294967296*e+(t>>>0):4294967296*(e>>>0)+(t>>>0)}function ul(t,e,r){var n=e<=16383?1:e<=2097151?2:e<=268435455?3:Math.floor(Math.log(e)/(7*Math.LN2));r.realloc(n);for(var i=r.pos-1;i>=t;i--)r.buf[i+n]=r.buf[i]}function fl(t,e){for(var r=0;r>>8,t[r+2]=e>>>16,t[r+3]=e>>>24}function wl(t,e){return(t[e]|t[e+1]<<8|t[e+2]<<16)+(t[e+3]<<24)}ol.prototype={destroy:function(){this.buf=null},readFields:function(t,e,r){for(r=r||this.length;this.pos>3,a=this.pos;this.type=7&n,t(i,e,this),this.pos===a&&this.skip(n)}return e},readMessage:function(t,e){return this.readFields(t,e,this.readVarint()+this.pos)},readFixed32:function(){var t=bl(this.buf,this.pos);return this.pos+=4,t},readSFixed32:function(){var t=wl(this.buf,this.pos);return this.pos+=4,t},readFixed64:function(){var t=bl(this.buf,this.pos)+4294967296*bl(this.buf,this.pos+4);return this.pos+=8,t},readSFixed64:function(){var t=bl(this.buf,this.pos)+4294967296*wl(this.buf,this.pos+4);return this.pos+=8,t},readFloat:function(){var t=nl(this.buf,this.pos,!0,23,4);return this.pos+=4,t},readDouble:function(){var t=nl(this.buf,this.pos,!0,52,8);return this.pos+=8,t},readVarint:function(t){var e,r,n=this.buf;return e=127&(r=n[this.pos++]),r<128?e:(e|=(127&(r=n[this.pos++]))<<7,r<128?e:(e|=(127&(r=n[this.pos++]))<<14,r<128?e:(e|=(127&(r=n[this.pos++]))<<21,r<128?e:function(t,e,r){var n,i,a=r.buf;if(i=a[r.pos++],n=(112&i)>>4,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<3,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<10,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<17,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<24,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(1&i)<<31,i<128)return cl(t,n,e);throw new Error("Expected varint not more than 10 bytes")}(e|=(15&(r=n[this.pos]))<<28,t,this))))},readVarint64:function(){return this.readVarint(!0)},readSVarint:function(){var t=this.readVarint();return t%2==1?(t+1)/-2:t/2},readBoolean:function(){return Boolean(this.readVarint())},readString:function(){var t=this.readVarint()+this.pos,e=this.pos;return this.pos=t,t-e>=12&&sl?function(t,e,r){return sl.decode(t.subarray(e,r))}(this.buf,e,t):function(t,e,r){var n="",i=e;for(;i239?4:l>223?3:l>191?2:1;if(i+u>r)break;1===u?l<128&&(c=l):2===u?128==(192&(a=t[i+1]))&&(c=(31&l)<<6|63&a)<=127&&(c=null):3===u?(a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&((c=(15&l)<<12|(63&a)<<6|63&o)<=2047||c>=55296&&c<=57343)&&(c=null)):4===u&&(a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&((c=(15&l)<<18|(63&a)<<12|(63&o)<<6|63&s)<=65535||c>=1114112)&&(c=null)),null===c?(c=65533,u=1):c>65535&&(c-=65536,n+=String.fromCharCode(c>>>10&1023|55296),c=56320|1023&c),n+=String.fromCharCode(c),i+=u}return n}(this.buf,e,t)},readBytes:function(){var t=this.readVarint()+this.pos,e=this.buf.subarray(this.pos,t);return this.pos=t,e},readPackedVarint:function(t,e){if(this.type!==ol.Bytes)return t.push(this.readVarint(e));var r=ll(this);for(t=t||[];this.pos127;);else if(e===ol.Bytes)this.pos=this.readVarint()+this.pos;else if(e===ol.Fixed32)this.pos+=4;else{if(e!==ol.Fixed64)throw new Error("Unimplemented type: "+e);this.pos+=8}},writeTag:function(t,e){this.writeVarint(t<<3|e)},realloc:function(t){for(var e=this.length||16;e268435455||t<0?function(t,e){var r,n;t>=0?(r=t%4294967296|0,n=t/4294967296|0):(n=~(-t/4294967296),4294967295^(r=~(-t%4294967296))?r=r+1|0:(r=0,n=n+1|0));if(t>=0x10000000000000000||t<-0x10000000000000000)throw new Error("Given varint doesn't fit into 10 bytes");e.realloc(10),function(t,e,r){r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos]=127&t}(r,0,e),function(t,e){var r=(7&t)<<4;if(e.buf[e.pos++]|=r|((t>>>=3)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;e.buf[e.pos++]=127&t}(n,e)}(t,this):(this.realloc(4),this.buf[this.pos++]=127&t|(t>127?128:0),t<=127||(this.buf[this.pos++]=127&(t>>>=7)|(t>127?128:0),t<=127||(this.buf[this.pos++]=127&(t>>>=7)|(t>127?128:0),t<=127||(this.buf[this.pos++]=t>>>7&127))))},writeSVarint:function(t){this.writeVarint(t<0?2*-t-1:2*t)},writeBoolean:function(t){this.writeVarint(Boolean(t))},writeString:function(t){t=String(t),this.realloc(4*t.length),this.pos++;var e=this.pos;this.pos=function(t,e,r){for(var n,i,a=0;a55295&&n<57344){if(!i){n>56319||a+1===e.length?(t[r++]=239,t[r++]=191,t[r++]=189):i=n;continue}if(n<56320){t[r++]=239,t[r++]=191,t[r++]=189,i=n;continue}n=i-55296<<10|n-56320|65536,i=null}else i&&(t[r++]=239,t[r++]=191,t[r++]=189,i=null);n<128?t[r++]=n:(n<2048?t[r++]=n>>6|192:(n<65536?t[r++]=n>>12|224:(t[r++]=n>>18|240,t[r++]=n>>12&63|128),t[r++]=n>>6&63|128),t[r++]=63&n|128)}return r}(this.buf,t,this.pos);var r=this.pos-e;r>=128&&ul(e,r,this),this.pos=e-1,this.writeVarint(r),this.pos+=r},writeFloat:function(t){this.realloc(4),il(this.buf,t,this.pos,!0,23,4),this.pos+=4},writeDouble:function(t){this.realloc(8),il(this.buf,t,this.pos,!0,52,8),this.pos+=8},writeBytes:function(t){var e=t.length;this.writeVarint(e),this.realloc(e);for(var r=0;r=128&&ul(r,n,this),this.pos=r-1,this.writeVarint(n),this.pos+=n},writeMessage:function(t,e,r){this.writeTag(t,ol.Bytes),this.writeRawMessage(e,r)},writePackedVarint:function(t,e){e.length&&this.writeMessage(t,fl,e)},writePackedSVarint:function(t,e){e.length&&this.writeMessage(t,hl,e)},writePackedBoolean:function(t,e){e.length&&this.writeMessage(t,ml,e)},writePackedFloat:function(t,e){e.length&&this.writeMessage(t,pl,e)},writePackedDouble:function(t,e){e.length&&this.writeMessage(t,dl,e)},writePackedFixed32:function(t,e){e.length&&this.writeMessage(t,gl,e)},writePackedSFixed32:function(t,e){e.length&&this.writeMessage(t,vl,e)},writePackedFixed64:function(t,e){e.length&&this.writeMessage(t,yl,e)},writePackedSFixed64:function(t,e){e.length&&this.writeMessage(t,xl,e)},writeBytesField:function(t,e){this.writeTag(t,ol.Bytes),this.writeBytes(e)},writeFixed32Field:function(t,e){this.writeTag(t,ol.Fixed32),this.writeFixed32(e)},writeSFixed32Field:function(t,e){this.writeTag(t,ol.Fixed32),this.writeSFixed32(e)},writeFixed64Field:function(t,e){this.writeTag(t,ol.Fixed64),this.writeFixed64(e)},writeSFixed64Field:function(t,e){this.writeTag(t,ol.Fixed64),this.writeSFixed64(e)},writeVarintField:function(t,e){this.writeTag(t,ol.Varint),this.writeVarint(e)},writeSVarintField:function(t,e){this.writeTag(t,ol.Varint),this.writeSVarint(e)},writeStringField:function(t,e){this.writeTag(t,ol.Bytes),this.writeString(e)},writeFloatField:function(t,e){this.writeTag(t,ol.Fixed32),this.writeFloat(e)},writeDoubleField:function(t,e){this.writeTag(t,ol.Fixed64),this.writeDouble(e)},writeBooleanField:function(t,e){this.writeVarintField(t,Boolean(e))}};function Tl(t,e,r){1===t&&r.readMessage(kl,e)}function kl(t,e,r){if(3===t){var n=r.readMessage(Al,{}),i=n.id,a=n.bitmap,o=n.width,s=n.height,l=n.left,c=n.top,u=n.advance;e.push({id:i,bitmap:new So({width:o+6,height:s+6},a),metrics:{width:o,height:s,left:l,top:c,advance:u}})}}function Al(t,e,r){1===t?e.id=r.readVarint():2===t?e.bitmap=r.readBytes():3===t?e.width=r.readVarint():4===t?e.height=r.readVarint():5===t?e.left=r.readSVarint():6===t?e.top=r.readSVarint():7===t&&(e.advance=r.readVarint())}function Ml(t){for(var e=0,r=0,n=0,i=t;n=0;h--){var p=o[h];if(!(f.w>p.w||f.h>p.h)){if(f.x=p.x,f.y=p.y,l=Math.max(l,f.y+f.h),s=Math.max(s,f.x+f.w),f.w===p.w&&f.h===p.h){var d=o.pop();h0&&N>A&&(A=N)}else{var j=r[S.fontStack],U=j&&j[L];if(U&&U.rect)I=U.rect,P=U.metrics;else{var V=e[S.fontStack],H=V&&V[L];if(!H)continue;P=H.metrics}C=24*(_-S.scale)}D?(t.verticalizable=!0,k.push({glyph:L,imageName:O,x:h,y:p+C,vertical:D,scale:S.scale,fontStack:S.fontStack,sectionIndex:E,metrics:P,rect:I}),h+=z*S.scale+c):(k.push({glyph:L,imageName:O,x:h,y:p+C,vertical:D,scale:S.scale,fontStack:S.fontStack,sectionIndex:E,metrics:P,rect:I}),h+=P.advance*S.scale+c)}if(0!==k.length){var q=h-c;d=Math.max(q,d),Vl(k,0,k.length-1,g,A)}h=0;var G=a*_+A;T.lineOffset=Math.max(A,w),p+=G,m=Math.max(G,m),++v}else p+=a,++v}var Y;var W=p- -17,X=Ul(o),Z=X.horizontalAlign,J=X.verticalAlign;(function(t,e,r,n,i,a,o,s,l){var c=(e-r)*i,u=0;u=a!==o?-s*n- -17:(-n*l+.5)*o;for(var f=0,h=t;f=0&&n>=t&&zl[this.text.charCodeAt(n)];n--)r--;this.text=this.text.substring(t,r),this.sectionIndex=this.sectionIndex.slice(t,r)},Il.prototype.substring=function(t,e){var r=new Il;return r.text=this.text.substring(t,e),r.sectionIndex=this.sectionIndex.slice(t,e),r.sections=this.sections,r},Il.prototype.toString=function(){return this.text},Il.prototype.getMaxScale=function(){var t=this;return this.sectionIndex.reduce((function(e,r){return Math.max(e,t.sections[r].scale)}),0)},Il.prototype.addTextSection=function(t,e){this.text+=t.text,this.sections.push(Pl.forText(t.scale,t.fontStack||e));for(var r=this.sections.length-1,n=0;n=63743?null:++this.imageSectionID:(this.imageSectionID=57344,this.imageSectionID)};var zl={9:!0,10:!0,11:!0,12:!0,13:!0,32:!0},Dl={};function Rl(t,e,r,n,i,a){if(e.imageName){var o=n[e.imageName];return o?o.displaySize[0]*e.scale*24/a+i:0}var s=r[e.fontStack],l=s&&s[t];return l?l.metrics.advance*e.scale+i:0}function Fl(t,e,r,n){var i=Math.pow(t-e,2);return n?t=0,f=0,h=0;h-r/2;){if(--o<0)return!1;s-=t[o].dist(a),a=t[o]}s+=t[o].dist(t[o+1]),o++;for(var l=[],c=0;sn;)c-=l.shift().angleDelta;if(c>i)return!1;o++,s+=f.dist(h)}return!0}function Jl(t){for(var e=0,r=0;rc){var d=(c-l)/p,m=qe(f.x,h.x,d),g=qe(f.y,h.y,d),v=new ql(m,g,h.angleTo(f),u);return v._round(),!o||Zl(t,v,s,o,e)?v:void 0}l+=p}}function tc(t,e,r,n,i,a,o,s,l){var c=Kl(n,a,o),u=Ql(n,i),f=u*o,h=0===t[0].x||t[0].x===l||0===t[0].y||t[0].y===l;return e-f=0&&_=0&&w=0&&p+u<=f){var T=new ql(_,w,x,m);T._round(),i&&!Zl(e,T,o,i,a)||d.push(T)}}h+=y}l||d.length||s||(d=t(e,h/2,n,i,a,o,s,!0,c));return d}(t,h?e/2*s%e:(u/2+2*a)*o*s%e,e,c,r,f,h,!1,l)}function ec(t,e,r,n,a){for(var o=[],s=0;s=n&&h.x>=n||(f.x>=n?f=new i(n,f.y+(h.y-f.y)*((n-f.x)/(h.x-f.x)))._round():h.x>=n&&(h=new i(n,f.y+(h.y-f.y)*((n-f.x)/(h.x-f.x)))._round()),f.y>=a&&h.y>=a||(f.y>=a?f=new i(f.x+(h.x-f.x)*((a-f.y)/(h.y-f.y)),a)._round():h.y>=a&&(h=new i(f.x+(h.x-f.x)*((a-f.y)/(h.y-f.y)),a)._round()),c&&f.equals(c[c.length-1])||(c=[f],o.push(c)),c.push(h)))))}return o}function rc(t,e,r,n){var a=[],o=t.image,s=o.pixelRatio,l=o.paddedRect.w-2,c=o.paddedRect.h-2,u=t.right-t.left,f=t.bottom-t.top,h=o.stretchX||[[0,l]],p=o.stretchY||[[0,c]],d=function(t,e){return t+e[1]-e[0]},m=h.reduce(d,0),g=p.reduce(d,0),v=l-m,y=c-g,x=0,b=m,_=0,w=g,T=0,k=v,A=0,M=y;if(o.content&&n){var S=o.content;x=nc(h,0,S[0]),_=nc(p,0,S[1]),b=nc(h,S[0],S[2]),w=nc(p,S[1],S[3]),T=S[0]-x,A=S[1]-_,k=S[2]-S[0]-b,M=S[3]-S[1]-w}var E=function(n,a,l,c){var h=ac(n.stretch-x,b,u,t.left),p=oc(n.fixed-T,k,n.stretch,m),d=ac(a.stretch-_,w,f,t.top),v=oc(a.fixed-A,M,a.stretch,g),y=ac(l.stretch-x,b,u,t.left),S=oc(l.fixed-T,k,l.stretch,m),E=ac(c.stretch-_,w,f,t.top),L=oc(c.fixed-A,M,c.stretch,g),C=new i(h,d),P=new i(y,d),I=new i(y,E),O=new i(h,E),z=new i(p/s,v/s),D=new i(S/s,L/s),R=e*Math.PI/180;if(R){var F=Math.sin(R),B=Math.cos(R),N=[B,-F,F,B];C._matMult(N),P._matMult(N),O._matMult(N),I._matMult(N)}var j=n.stretch+n.fixed,U=l.stretch+l.fixed,V=a.stretch+a.fixed,H=c.stretch+c.fixed;return{tl:C,tr:P,bl:O,br:I,tex:{x:o.paddedRect.x+1+j,y:o.paddedRect.y+1+V,w:U-j,h:H-V},writingMode:void 0,glyphOffset:[0,0],sectionIndex:0,pixelOffsetTL:z,pixelOffsetBR:D,minFontScaleX:k/s/u,minFontScaleY:M/s/f,isSDF:r}};if(n&&(o.stretchX||o.stretchY))for(var L=ic(h,v,m),C=ic(p,y,g),P=0;P0&&(d=Math.max(10,d),this.circleDiameter=d)}else{var m=o.top*s-l,g=o.bottom*s+l,v=o.left*s-l,y=o.right*s+l,x=o.collisionPadding;if(x&&(v-=x[0]*s,m-=x[1]*s,y+=x[2]*s,g+=x[3]*s),u){var b=new i(v,m),_=new i(y,m),w=new i(v,g),T=new i(y,g),k=u*Math.PI/180;b._rotate(k),_._rotate(k),w._rotate(k),T._rotate(k),v=Math.min(b.x,_.x,w.x,T.x),y=Math.max(b.x,_.x,w.x,T.x),m=Math.min(b.y,_.y,w.y,T.y),g=Math.max(b.y,_.y,w.y,T.y)}t.emplaceBack(e.x,e.y,v,m,y,g,r,n,a)}this.boxEndIndex=t.length},lc=function(t,e){if(void 0===t&&(t=[]),void 0===e&&(e=cc),this.data=t,this.length=this.data.length,this.compare=e,this.length>0)for(var r=(this.length>>1)-1;r>=0;r--)this._down(r)};function cc(t,e){return te?1:0}function uc(t,e,r){void 0===e&&(e=1),void 0===r&&(r=!1);for(var n=1/0,a=1/0,o=-1/0,s=-1/0,l=t[0],c=0;co)&&(o=u.x),(!c||u.y>s)&&(s=u.y)}var f=o-n,h=s-a,p=Math.min(f,h),d=p/2,m=new lc([],fc);if(0===p)return new i(n,a);for(var g=n;gy.d||!y.d)&&(y=b,r&&console.log("found best %d after %d probes",Math.round(1e4*b.d)/1e4,x)),b.max-y.d<=e||(d=b.h/2,m.push(new hc(b.p.x-d,b.p.y-d,d,t)),m.push(new hc(b.p.x+d,b.p.y-d,d,t)),m.push(new hc(b.p.x-d,b.p.y+d,d,t)),m.push(new hc(b.p.x+d,b.p.y+d,d,t)),x+=4)}return r&&(console.log("num probes: "+x),console.log("best distance: "+y.d)),y.p}function fc(t,e){return e.max-t.max}function hc(t,e,r,n){this.p=new i(t,e),this.h=r,this.d=function(t,e){for(var r=!1,n=1/0,i=0;it.y!=u.y>t.y&&t.x<(u.x-c.x)*(t.y-c.y)/(u.y-c.y)+c.x&&(r=!r),n=Math.min(n,ro(t,c,u))}return(r?1:-1)*Math.sqrt(n)}(this.p,n),this.max=this.d+this.h*Math.SQRT2}lc.prototype.push=function(t){this.data.push(t),this.length++,this._up(this.length-1)},lc.prototype.pop=function(){if(0!==this.length){var t=this.data[0],e=this.data.pop();return this.length--,this.length>0&&(this.data[0]=e,this._down(0)),t}},lc.prototype.peek=function(){return this.data[0]},lc.prototype._up=function(t){for(var e=this.data,r=this.compare,n=e[t];t>0;){var i=t-1>>1,a=e[i];if(r(n,a)>=0)break;e[t]=a,t=i}e[t]=n},lc.prototype._down=function(t){for(var e=this.data,r=this.compare,n=this.length>>1,i=e[t];t=0)break;e[t]=o,t=a}e[t]=i};var pc=Number.POSITIVE_INFINITY;function dc(t,e){return e[1]!==pc?function(t,e,r){var n=0,i=0;switch(e=Math.abs(e),r=Math.abs(r),t){case"top-right":case"top-left":case"top":i=r-7;break;case"bottom-right":case"bottom-left":case"bottom":i=7-r}switch(t){case"top-right":case"bottom-right":case"right":n=-e;break;case"top-left":case"bottom-left":case"left":n=e}return[n,i]}(t,e[0],e[1]):function(t,e){var r=0,n=0;e<0&&(e=0);var i=e/Math.sqrt(2);switch(t){case"top-right":case"top-left":n=i-7;break;case"bottom-right":case"bottom-left":n=7-i;break;case"bottom":n=7-e;break;case"top":n=e-7}switch(t){case"top-right":case"bottom-right":r=-i;break;case"top-left":case"bottom-left":r=i;break;case"left":r=e;break;case"right":r=-e}return[r,n]}(t,e[0])}function mc(t){switch(t){case"right":case"top-right":case"bottom-right":return"right";case"left":case"top-left":case"bottom-left":return"left"}return"center"}function gc(t,e,r,n,a,o,s,l,c,u,f,h,p,d,m){var g=function(t,e,r,n,a,o,s,l){for(var c=n.layout.get("text-rotate").evaluate(o,{})*Math.PI/180,u=[],f=0,h=e.positionedLines;f32640&&_(t.layerIds[0]+': Value for "text-size" is >= 255. Reduce your "text-size".'):"composite"===v.kind&&((y=[128*d.compositeTextSizes[0].evaluate(s,{},m),128*d.compositeTextSizes[1].evaluate(s,{},m)])[0]>32640||y[1]>32640)&&_(t.layerIds[0]+': Value for "text-size" is >= 255. Reduce your "text-size".'),t.addSymbols(t.text,g,y,l,o,s,u,e,c.lineStartIndex,c.lineLength,p,m);for(var x=0,b=f;x=0;o--)if(n.dist(a[o])0)&&("constant"!==a.value.kind||a.value.value.length>0),c="constant"!==s.value.kind||!!s.value.value||Object.keys(s.parameters).length>0,u=i.get("symbol-sort-key");if(this.features=[],l||c){for(var f=e.iconDependencies,h=e.glyphDependencies,p=e.availableImages,d=new pi(this.zoom),m=0,g=t;m=0;for(var O=0,z=k.sections;O=0;s--)a[s]={x:e[s].x,y:e[s].y,tileUnitDistanceFromAnchor:i},s>0&&(i+=e[s-1].dist(e[s]));for(var l=0;l0},Mc.prototype.hasIconData=function(){return this.icon.segments.get().length>0},Mc.prototype.hasDebugData=function(){return this.textCollisionBox&&this.iconCollisionBox},Mc.prototype.hasTextCollisionBoxData=function(){return this.hasDebugData()&&this.textCollisionBox.segments.get().length>0},Mc.prototype.hasIconCollisionBoxData=function(){return this.hasDebugData()&&this.iconCollisionBox.segments.get().length>0},Mc.prototype.addIndicesForPlacedSymbol=function(t,e){for(var r=t.placedSymbolArray.get(e),n=r.vertexStartIndex+4*r.numGlyphs,i=r.vertexStartIndex;i1||this.icon.segments.get().length>1)){this.symbolInstanceIndexes=this.getSortedSymbolIndexes(t),this.sortedAngle=t,this.text.indexArray.clear(),this.icon.indexArray.clear(),this.featureSortOrder=[];for(var r=0,n=this.symbolInstanceIndexes;r=0&&n.indexOf(t)===r&&e.addIndicesForPlacedSymbol(e.text,t)})),a.verticalPlacedTextSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.text,a.verticalPlacedTextSymbolIndex),a.placedIconSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.icon,a.placedIconSymbolIndex),a.verticalPlacedIconSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.icon,a.verticalPlacedIconSymbolIndex)}this.text.indexBuffer&&this.text.indexBuffer.updateData(this.text.indexArray),this.icon.indexBuffer&&this.icon.indexBuffer.updateData(this.icon.indexArray)}},Nn("SymbolBucket",Mc,{omit:["layers","collisionBoxArray","features","compareText"]}),Mc.MAX_GLYPHS=65535,Mc.addDynamicAttributes=wc;var Sc=new Si({"symbol-placement":new wi(Lt.layout_symbol["symbol-placement"]),"symbol-spacing":new wi(Lt.layout_symbol["symbol-spacing"]),"symbol-avoid-edges":new wi(Lt.layout_symbol["symbol-avoid-edges"]),"symbol-sort-key":new Ti(Lt.layout_symbol["symbol-sort-key"]),"symbol-z-order":new wi(Lt.layout_symbol["symbol-z-order"]),"icon-allow-overlap":new wi(Lt.layout_symbol["icon-allow-overlap"]),"icon-ignore-placement":new wi(Lt.layout_symbol["icon-ignore-placement"]),"icon-optional":new wi(Lt.layout_symbol["icon-optional"]),"icon-rotation-alignment":new wi(Lt.layout_symbol["icon-rotation-alignment"]),"icon-size":new Ti(Lt.layout_symbol["icon-size"]),"icon-text-fit":new wi(Lt.layout_symbol["icon-text-fit"]),"icon-text-fit-padding":new wi(Lt.layout_symbol["icon-text-fit-padding"]),"icon-image":new Ti(Lt.layout_symbol["icon-image"]),"icon-rotate":new Ti(Lt.layout_symbol["icon-rotate"]),"icon-padding":new wi(Lt.layout_symbol["icon-padding"]),"icon-keep-upright":new wi(Lt.layout_symbol["icon-keep-upright"]),"icon-offset":new Ti(Lt.layout_symbol["icon-offset"]),"icon-anchor":new Ti(Lt.layout_symbol["icon-anchor"]),"icon-pitch-alignment":new wi(Lt.layout_symbol["icon-pitch-alignment"]),"text-pitch-alignment":new wi(Lt.layout_symbol["text-pitch-alignment"]),"text-rotation-alignment":new wi(Lt.layout_symbol["text-rotation-alignment"]),"text-field":new Ti(Lt.layout_symbol["text-field"]),"text-font":new Ti(Lt.layout_symbol["text-font"]),"text-size":new Ti(Lt.layout_symbol["text-size"]),"text-max-width":new Ti(Lt.layout_symbol["text-max-width"]),"text-line-height":new wi(Lt.layout_symbol["text-line-height"]),"text-letter-spacing":new Ti(Lt.layout_symbol["text-letter-spacing"]),"text-justify":new Ti(Lt.layout_symbol["text-justify"]),"text-radial-offset":new Ti(Lt.layout_symbol["text-radial-offset"]),"text-variable-anchor":new wi(Lt.layout_symbol["text-variable-anchor"]),"text-anchor":new Ti(Lt.layout_symbol["text-anchor"]),"text-max-angle":new wi(Lt.layout_symbol["text-max-angle"]),"text-writing-mode":new wi(Lt.layout_symbol["text-writing-mode"]),"text-rotate":new Ti(Lt.layout_symbol["text-rotate"]),"text-padding":new wi(Lt.layout_symbol["text-padding"]),"text-keep-upright":new wi(Lt.layout_symbol["text-keep-upright"]),"text-transform":new Ti(Lt.layout_symbol["text-transform"]),"text-offset":new Ti(Lt.layout_symbol["text-offset"]),"text-allow-overlap":new wi(Lt.layout_symbol["text-allow-overlap"]),"text-ignore-placement":new wi(Lt.layout_symbol["text-ignore-placement"]),"text-optional":new wi(Lt.layout_symbol["text-optional"])}),Ec={paint:new Si({"icon-opacity":new Ti(Lt.paint_symbol["icon-opacity"]),"icon-color":new Ti(Lt.paint_symbol["icon-color"]),"icon-halo-color":new Ti(Lt.paint_symbol["icon-halo-color"]),"icon-halo-width":new Ti(Lt.paint_symbol["icon-halo-width"]),"icon-halo-blur":new Ti(Lt.paint_symbol["icon-halo-blur"]),"icon-translate":new wi(Lt.paint_symbol["icon-translate"]),"icon-translate-anchor":new wi(Lt.paint_symbol["icon-translate-anchor"]),"text-opacity":new Ti(Lt.paint_symbol["text-opacity"]),"text-color":new Ti(Lt.paint_symbol["text-color"],{runtimeType:Ut,getOverride:function(t){return t.textColor},hasOverride:function(t){return!!t.textColor}}),"text-halo-color":new Ti(Lt.paint_symbol["text-halo-color"]),"text-halo-width":new Ti(Lt.paint_symbol["text-halo-width"]),"text-halo-blur":new Ti(Lt.paint_symbol["text-halo-blur"]),"text-translate":new wi(Lt.paint_symbol["text-translate"]),"text-translate-anchor":new wi(Lt.paint_symbol["text-translate-anchor"])}),layout:Sc},Lc=function(t){this.type=t.property.overrides?t.property.overrides.runtimeType:Ft,this.defaultValue=t};Lc.prototype.evaluate=function(t){if(t.formattedSection){var e=this.defaultValue.property.overrides;if(e&&e.hasOverride(t.formattedSection))return e.getOverride(t.formattedSection)}return t.feature&&t.featureState?this.defaultValue.evaluate(t.feature,t.featureState):this.defaultValue.property.specification.default},Lc.prototype.eachChild=function(t){this.defaultValue.isConstant()||t(this.defaultValue.value._styleExpression.expression)},Lc.prototype.outputDefined=function(){return!1},Lc.prototype.serialize=function(){return null},Nn("FormatSectionOverride",Lc,{omit:["defaultValue"]});var Cc=function(t){function e(e){t.call(this,e,Ec)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.recalculate=function(e,r){if(t.prototype.recalculate.call(this,e,r),"auto"===this.layout.get("icon-rotation-alignment")&&("point"!==this.layout.get("symbol-placement")?this.layout._values["icon-rotation-alignment"]="map":this.layout._values["icon-rotation-alignment"]="viewport"),"auto"===this.layout.get("text-rotation-alignment")&&("point"!==this.layout.get("symbol-placement")?this.layout._values["text-rotation-alignment"]="map":this.layout._values["text-rotation-alignment"]="viewport"),"auto"===this.layout.get("text-pitch-alignment")&&(this.layout._values["text-pitch-alignment"]=this.layout.get("text-rotation-alignment")),"auto"===this.layout.get("icon-pitch-alignment")&&(this.layout._values["icon-pitch-alignment"]=this.layout.get("icon-rotation-alignment")),"point"===this.layout.get("symbol-placement")){var n=this.layout.get("text-writing-mode");if(n){for(var i=[],a=0,o=n;a",targetMapId:n,sourceMapId:a.mapId})}}},qc.prototype.receive=function(t){var e=t.data,r=e.id;if(r&&(!e.targetMapId||this.mapId===e.targetMapId))if(""===e.type){delete this.tasks[r];var n=this.cancelCallbacks[r];delete this.cancelCallbacks[r],n&&n()}else k()||e.mustQueue?(this.tasks[r]=e,this.taskQueue.push(r),this.invoker.trigger()):this.processTask(r,e)},qc.prototype.process=function(){if(this.taskQueue.length){var t=this.taskQueue.shift(),e=this.tasks[t];delete this.tasks[t],this.taskQueue.length&&this.invoker.trigger(),e&&this.processTask(t,e)}},qc.prototype.processTask=function(t,e){var r=this;if(""===e.type){var n=this.callbacks[t];delete this.callbacks[t],n&&(e.error?n(qn(e.error)):n(null,qn(e.data)))}else{var i=!1,a=S(this.globalScope)?void 0:[],o=e.hasCallback?function(e,n){i=!0,delete r.cancelCallbacks[t],r.target.postMessage({id:t,type:"",sourceMapId:r.mapId,error:e?Hn(e):null,data:Hn(n,a)},a)}:function(t){i=!0},s=null,l=qn(e.data);if(this.parent[e.type])s=this.parent[e.type](e.sourceMapId,l,o);else if(this.parent.getWorkerSource){var c=e.type.split(".");s=this.parent.getWorkerSource(e.sourceMapId,c[0],l.source)[c[1]](l,o)}else o(new Error("Could not find function "+e.type));!i&&s&&s.cancel&&(this.cancelCallbacks[t]=s.cancel)}},qc.prototype.remove=function(){this.invoker.remove(),this.target.removeEventListener("message",this.receive,!1)};var Yc=function(t,e){t&&(e?this.setSouthWest(t).setNorthEast(e):4===t.length?this.setSouthWest([t[0],t[1]]).setNorthEast([t[2],t[3]]):this.setSouthWest(t[0]).setNorthEast(t[1]))};Yc.prototype.setNorthEast=function(t){return this._ne=t instanceof Wc?new Wc(t.lng,t.lat):Wc.convert(t),this},Yc.prototype.setSouthWest=function(t){return this._sw=t instanceof Wc?new Wc(t.lng,t.lat):Wc.convert(t),this},Yc.prototype.extend=function(t){var e,r,n=this._sw,i=this._ne;if(t instanceof Wc)e=t,r=t;else{if(!(t instanceof Yc)){if(Array.isArray(t)){if(4===t.length||t.every(Array.isArray)){var a=t;return this.extend(Yc.convert(a))}var o=t;return this.extend(Wc.convert(o))}return this}if(e=t._sw,r=t._ne,!e||!r)return this}return n||i?(n.lng=Math.min(e.lng,n.lng),n.lat=Math.min(e.lat,n.lat),i.lng=Math.max(r.lng,i.lng),i.lat=Math.max(r.lat,i.lat)):(this._sw=new Wc(e.lng,e.lat),this._ne=new Wc(r.lng,r.lat)),this},Yc.prototype.getCenter=function(){return new Wc((this._sw.lng+this._ne.lng)/2,(this._sw.lat+this._ne.lat)/2)},Yc.prototype.getSouthWest=function(){return this._sw},Yc.prototype.getNorthEast=function(){return this._ne},Yc.prototype.getNorthWest=function(){return new Wc(this.getWest(),this.getNorth())},Yc.prototype.getSouthEast=function(){return new Wc(this.getEast(),this.getSouth())},Yc.prototype.getWest=function(){return this._sw.lng},Yc.prototype.getSouth=function(){return this._sw.lat},Yc.prototype.getEast=function(){return this._ne.lng},Yc.prototype.getNorth=function(){return this._ne.lat},Yc.prototype.toArray=function(){return[this._sw.toArray(),this._ne.toArray()]},Yc.prototype.toString=function(){return"LngLatBounds("+this._sw.toString()+", "+this._ne.toString()+")"},Yc.prototype.isEmpty=function(){return!(this._sw&&this._ne)},Yc.prototype.contains=function(t){var e=Wc.convert(t),r=e.lng,n=e.lat,i=this._sw.lat<=n&&n<=this._ne.lat,a=this._sw.lng<=r&&r<=this._ne.lng;return this._sw.lng>this._ne.lng&&(a=this._sw.lng>=r&&r>=this._ne.lng),i&&a},Yc.convert=function(t){return!t||t instanceof Yc?t:new Yc(t)};var Wc=function(t,e){if(isNaN(t)||isNaN(e))throw new Error("Invalid LngLat object: ("+t+", "+e+")");if(this.lng=+t,this.lat=+e,this.lat>90||this.lat<-90)throw new Error("Invalid LngLat latitude value: must be between -90 and 90")};Wc.prototype.wrap=function(){return new Wc(c(this.lng,-180,180),this.lat)},Wc.prototype.toArray=function(){return[this.lng,this.lat]},Wc.prototype.toString=function(){return"LngLat("+this.lng+", "+this.lat+")"},Wc.prototype.distanceTo=function(t){var e=Math.PI/180,r=this.lat*e,n=t.lat*e,i=Math.sin(r)*Math.sin(n)+Math.cos(r)*Math.cos(n)*Math.cos((t.lng-this.lng)*e);return 6371008.8*Math.acos(Math.min(i,1))},Wc.prototype.toBounds=function(t){void 0===t&&(t=0);var e=360*t/40075017,r=e/Math.cos(Math.PI/180*this.lat);return new Yc(new Wc(this.lng-r,this.lat-e),new Wc(this.lng+r,this.lat+e))},Wc.convert=function(t){if(t instanceof Wc)return t;if(Array.isArray(t)&&(2===t.length||3===t.length))return new Wc(Number(t[0]),Number(t[1]));if(!Array.isArray(t)&&"object"==typeof t&&null!==t)return new Wc(Number("lng"in t?t.lng:t.lon),Number(t.lat));throw new Error("`LngLatLike` argument must be specified as a LngLat instance, an object {lng: , lat: }, an object {lon: , lat: }, or an array of [, ]")};var Xc=2*Math.PI*6371008.8;function Zc(t){return Xc*Math.cos(t*Math.PI/180)}function Jc(t){return(180+t)/360}function Kc(t){return(180-180/Math.PI*Math.log(Math.tan(Math.PI/4+t*Math.PI/360)))/360}function Qc(t,e){return t/Zc(e)}function $c(t){var e=180-360*t;return 360/Math.PI*Math.atan(Math.exp(e*Math.PI/180))-90}var tu=function(t,e,r){void 0===r&&(r=0),this.x=+t,this.y=+e,this.z=+r};tu.fromLngLat=function(t,e){void 0===e&&(e=0);var r=Wc.convert(t);return new tu(Jc(r.lng),Kc(r.lat),Qc(e,r.lat))},tu.prototype.toLngLat=function(){return new Wc(360*this.x-180,$c(this.y))},tu.prototype.toAltitude=function(){return t=this.z,e=this.y,t*Zc($c(e));var t,e},tu.prototype.meterInMercatorCoordinateUnits=function(){return 1/Xc*(t=$c(this.y),1/Math.cos(t*Math.PI/180));var t};var eu=function(t,e,r){this.z=t,this.x=e,this.y=r,this.key=iu(0,t,t,e,r)};eu.prototype.equals=function(t){return this.z===t.z&&this.x===t.x&&this.y===t.y},eu.prototype.url=function(t,e){var r,n,i,a,o,s=(r=this.x,n=this.y,i=this.z,a=Gc(256*r,256*(n=Math.pow(2,i)-n-1),i),o=Gc(256*(r+1),256*(n+1),i),a[0]+","+a[1]+","+o[0]+","+o[1]),l=function(t,e,r){for(var n,i="",a=t;a>0;a--)i+=(e&(n=1<this.canonical.z?new nu(t,this.wrap,this.canonical.z,this.canonical.x,this.canonical.y):new nu(t,this.wrap,t,this.canonical.x>>e,this.canonical.y>>e)},nu.prototype.calculateScaledKey=function(t,e){var r=this.canonical.z-t;return t>this.canonical.z?iu(this.wrap*+e,t,this.canonical.z,this.canonical.x,this.canonical.y):iu(this.wrap*+e,t,t,this.canonical.x>>r,this.canonical.y>>r)},nu.prototype.isChildOf=function(t){if(t.wrap!==this.wrap)return!1;var e=this.canonical.z-t.canonical.z;return 0===t.overscaledZ||t.overscaledZ>e&&t.canonical.y===this.canonical.y>>e},nu.prototype.children=function(t){if(this.overscaledZ>=t)return[new nu(this.overscaledZ+1,this.wrap,this.canonical.z,this.canonical.x,this.canonical.y)];var e=this.canonical.z+1,r=2*this.canonical.x,n=2*this.canonical.y;return[new nu(e,this.wrap,e,r,n),new nu(e,this.wrap,e,r+1,n),new nu(e,this.wrap,e,r,n+1),new nu(e,this.wrap,e,r+1,n+1)]},nu.prototype.isLessThan=function(t){return this.wrapt.wrap)&&(this.overscaledZt.overscaledZ)&&(this.canonical.xt.canonical.x)&&this.canonical.y=this.dim+1||e<-1||e>=this.dim+1)throw new RangeError("out of range source coordinates for DEM data");return(e+1)*this.stride+(t+1)},au.prototype._unpackMapbox=function(t,e,r){return(256*t*256+256*e+r)/10-1e4},au.prototype._unpackTerrarium=function(t,e,r){return 256*t+e+r/256-32768},au.prototype.getPixels=function(){return new Eo({width:this.stride,height:this.stride},new Uint8Array(this.data.buffer))},au.prototype.backfillBorder=function(t,e,r){if(this.dim!==t.dim)throw new Error("dem dimension mismatch");var n=e*this.dim,i=e*this.dim+this.dim,a=r*this.dim,o=r*this.dim+this.dim;switch(e){case-1:n=i-1;break;case 1:i=n+1}switch(r){case-1:a=o-1;break;case 1:o=a+1}for(var s=-e*this.dim,l=-r*this.dim,c=a;c=0&&u[3]>=0&&s.insert(o,u[0],u[1],u[2],u[3])}},uu.prototype.loadVTLayers=function(){return this.vtLayers||(this.vtLayers=new Ls.VectorTile(new al(this.rawTileData)).layers,this.sourceLayerCoder=new ou(this.vtLayers?Object.keys(this.vtLayers).sort():["_geojsonTileLayer"])),this.vtLayers},uu.prototype.query=function(t,e,r,n){var a=this;this.loadVTLayers();for(var o=t.params||{},s=8192/t.tileSize/t.scale,l=sn(o.filter),c=t.queryGeometry,u=t.queryPadding*s,f=hu(c),h=this.grid.query(f.minX-u,f.minY-u,f.maxX+u,f.maxY+u),p=hu(t.cameraQueryGeometry),d=this.grid3D.query(p.minX-u,p.minY-u,p.maxX+u,p.maxY+u,(function(e,r,n,a){return function(t,e,r,n,a){for(var o=0,s=t;o=l.x&&a>=l.y)return!0}var c=[new i(e,r),new i(e,a),new i(n,a),new i(n,r)];if(t.length>2)for(var u=0,f=c;u=0)return!0;return!1}(a,f)){var h=this.sourceLayerCoder.decode(r),p=this.vtLayers[h].feature(n);if(i.filter(new pi(this.tileID.overscaledZ),p))for(var d=this.getId(p,h),m=0;mn)i=!1;else if(e)if(this.expirationTimeot&&(t.getActor().send("enforceCacheSizeLimit",at),ht=0)},t.clamp=l,t.clearTileCache=function(t){var e=self.caches.delete("mapbox-tiles");t&&e.catch(t).then((function(){return t()}))},t.clipLine=ec,t.clone=function(t){var e=new fo(16);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[3],e[4]=t[4],e[5]=t[5],e[6]=t[6],e[7]=t[7],e[8]=t[8],e[9]=t[9],e[10]=t[10],e[11]=t[11],e[12]=t[12],e[13]=t[13],e[14]=t[14],e[15]=t[15],e},t.clone$1=x,t.clone$2=function(t){var e=new fo(3);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e},t.collisionCircleLayout=tl,t.config=F,t.create=function(){var t=new fo(16);return fo!=Float32Array&&(t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[11]=0,t[12]=0,t[13]=0,t[14]=0),t[0]=1,t[5]=1,t[10]=1,t[15]=1,t},t.create$1=function(){var t=new fo(9);return fo!=Float32Array&&(t[1]=0,t[2]=0,t[3]=0,t[5]=0,t[6]=0,t[7]=0),t[0]=1,t[4]=1,t[8]=1,t},t.create$2=function(){var t=new fo(4);return fo!=Float32Array&&(t[1]=0,t[2]=0),t[0]=1,t[3]=1,t},t.createCommonjsModule=e,t.createExpression=Wr,t.createLayout=Ii,t.createStyleLayer=function(t){return"custom"===t.type?new Dc(t):new Rc[t.type](t)},t.cross=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2];return t[0]=i*l-a*s,t[1]=a*o-n*l,t[2]=n*s-i*o,t},t.deepEqual=function t(e,r){if(Array.isArray(e)){if(!Array.isArray(r)||e.length!==r.length)return!1;for(var n=0;n0&&(a=1/Math.sqrt(a)),t[0]=e[0]*a,t[1]=e[1]*a,t[2]=e[2]*a,t},t.number=qe,t.offscreenCanvasSupported=pt,t.ortho=function(t,e,r,n,i,a,o){var s=1/(e-r),l=1/(n-i),c=1/(a-o);return t[0]=-2*s,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=-2*l,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=2*c,t[11]=0,t[12]=(e+r)*s,t[13]=(i+n)*l,t[14]=(o+a)*c,t[15]=1,t},t.parseGlyphPBF=function(t){return new al(t).readFields(Tl,[])},t.pbf=al,t.performSymbolLayout=function(t,e,r,n,i,a,o){t.createArrays();var s=512*t.overscaling;t.tilePixelRatio=8192/s,t.compareText={},t.iconsNeedLinear=!1;var l=t.layers[0].layout,c=t.layers[0]._unevaluatedLayout._values,u={};if("composite"===t.textSizeData.kind){var f=t.textSizeData,h=f.minZoom,p=f.maxZoom;u.compositeTextSizes=[c["text-size"].possiblyEvaluate(new pi(h),o),c["text-size"].possiblyEvaluate(new pi(p),o)]}if("composite"===t.iconSizeData.kind){var d=t.iconSizeData,m=d.minZoom,g=d.maxZoom;u.compositeIconSizes=[c["icon-size"].possiblyEvaluate(new pi(m),o),c["icon-size"].possiblyEvaluate(new pi(g),o)]}u.layoutTextSize=c["text-size"].possiblyEvaluate(new pi(t.zoom+1),o),u.layoutIconSize=c["icon-size"].possiblyEvaluate(new pi(t.zoom+1),o),u.textMaxSize=c["text-size"].possiblyEvaluate(new pi(18));for(var v=24*l.get("text-line-height"),y="map"===l.get("text-rotation-alignment")&&"point"!==l.get("symbol-placement"),x=l.get("text-keep-upright"),b=l.get("text-size"),w=function(){var a=k[T],s=l.get("text-font").evaluate(a,{},o).join(","),c=b.evaluate(a,{},o),f=u.layoutTextSize.evaluate(a,{},o),h=u.layoutIconSize.evaluate(a,{},o),p={horizontal:{},vertical:void 0},d=a.text,m=[0,0];if(d){var g=d.toString(),w=24*l.get("text-letter-spacing").evaluate(a,{},o),A=function(t){for(var e=0,r=t;e=8192||f.y<0||f.y>=8192||function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,w,T,k,A){var M,S,E,L,C,P=t.addToLineVertexArray(e,r),I=0,O=0,z=0,D=0,R=-1,F=-1,B={},N=ya(""),j=0,U=0;void 0===s._unevaluatedLayout.getValue("text-radial-offset")?(M=s.layout.get("text-offset").evaluate(b,{},k).map((function(t){return 24*t})),j=M[0],U=M[1]):(j=24*s.layout.get("text-radial-offset").evaluate(b,{},k),U=pc);if(t.allowVerticalPlacement&&n.vertical){var V=s.layout.get("text-rotate").evaluate(b,{},k)+90,H=n.vertical;L=new sc(l,e,c,u,f,H,h,p,d,V),o&&(C=new sc(l,e,c,u,f,o,g,v,d,V))}if(i){var q=s.layout.get("icon-rotate").evaluate(b,{}),G="none"!==s.layout.get("icon-text-fit"),Y=rc(i,q,T,G),W=o?rc(o,q,T,G):void 0;E=new sc(l,e,c,u,f,i,g,v,!1,q),I=4*Y.length;var X=t.iconSizeData,Z=null;"source"===X.kind?(Z=[128*s.layout.get("icon-size").evaluate(b,{})])[0]>32640&&_(t.layerIds[0]+': Value for "icon-size" is >= 255. Reduce your "icon-size".'):"composite"===X.kind&&((Z=[128*w.compositeIconSizes[0].evaluate(b,{},k),128*w.compositeIconSizes[1].evaluate(b,{},k)])[0]>32640||Z[1]>32640)&&_(t.layerIds[0]+': Value for "icon-size" is >= 255. Reduce your "icon-size".'),t.addSymbols(t.icon,Y,Z,x,y,b,!1,e,P.lineStartIndex,P.lineLength,-1,k),R=t.icon.placedSymbolArray.length-1,W&&(O=4*W.length,t.addSymbols(t.icon,W,Z,x,y,b,Cl.vertical,e,P.lineStartIndex,P.lineLength,-1,k),F=t.icon.placedSymbolArray.length-1)}for(var J in n.horizontal){var K=n.horizontal[J];if(!S){N=ya(K.text);var Q=s.layout.get("text-rotate").evaluate(b,{},k);S=new sc(l,e,c,u,f,K,h,p,d,Q)}var $=1===K.positionedLines.length;if(z+=gc(t,e,K,a,s,d,b,m,P,n.vertical?Cl.horizontal:Cl.horizontalOnly,$?Object.keys(n.horizontal):[J],B,R,w,k),$)break}n.vertical&&(D+=gc(t,e,n.vertical,a,s,d,b,m,P,Cl.vertical,["vertical"],B,F,w,k));var tt=S?S.boxStartIndex:t.collisionBoxArray.length,et=S?S.boxEndIndex:t.collisionBoxArray.length,rt=L?L.boxStartIndex:t.collisionBoxArray.length,nt=L?L.boxEndIndex:t.collisionBoxArray.length,it=E?E.boxStartIndex:t.collisionBoxArray.length,at=E?E.boxEndIndex:t.collisionBoxArray.length,ot=C?C.boxStartIndex:t.collisionBoxArray.length,st=C?C.boxEndIndex:t.collisionBoxArray.length,lt=-1,ct=function(t,e){return t&&t.circleDiameter?Math.max(t.circleDiameter,e):e};lt=ct(S,lt),lt=ct(L,lt),lt=ct(E,lt);var ut=(lt=ct(C,lt))>-1?1:0;ut&&(lt*=A/24);t.glyphOffsetArray.length>=Mc.MAX_GLYPHS&&_("Too many glyphs being rendered in a tile. See https://github.com/mapbox/mapbox-gl-js/issues/2907");void 0!==b.sortKey&&t.addToSortKeyRanges(t.symbolInstances.length,b.sortKey);t.symbolInstances.emplaceBack(e.x,e.y,B.right>=0?B.right:-1,B.center>=0?B.center:-1,B.left>=0?B.left:-1,B.vertical||-1,R,F,N,tt,et,rt,nt,it,at,ot,st,c,z,D,I,O,ut,0,h,j,U,lt)}(t,f,s,r,n,i,h,t.layers[0],t.collisionBoxArray,e.index,e.sourceLayerIndex,t.index,v,w,A,l,x,T,M,d,e,a,c,u,o)};if("line"===S)for(var P=0,I=ec(e.geometry,0,0,8192,8192);P1){var V=$l(U,k,r.vertical||m,n,24,y);V&&C(U,V)}}else if("Polygon"===e.type)for(var H=0,q=hs(e.geometry,0);H=E.maxzoom))if("none"!==E.visibility)o(S,this.zoom,n),(m[E.id]=E.createBucket({index:u.bucketLayerIDs.length,layers:S,zoom:this.zoom,pixelRatio:this.pixelRatio,overscaling:this.overscaling,collisionBoxArray:this.collisionBoxArray,sourceLayerIndex:b,sourceID:this.source})).populate(_,g,this.tileID.canonical),u.bucketLayerIDs.push(S.map((function(t){return t.id})))}}}var L=t.mapObject(g.glyphDependencies,(function(t){return Object.keys(t).map(Number)}));Object.keys(L).length?a.send("getGlyphs",{uid:this.uid,stacks:L},(function(t,e){f||(f=t,h=e,I.call(l))})):h={};var C=Object.keys(g.iconDependencies);C.length?a.send("getImages",{icons:C,source:this.source,tileID:this.tileID,type:"icons"},(function(t,e){f||(f=t,p=e,I.call(l))})):p={};var P=Object.keys(g.patternDependencies);function I(){if(f)return s(f);if(h&&p&&d){var e=new i(h),r=new t.ImageAtlas(p,d);for(var a in m){var l=m[a];l instanceof t.SymbolBucket?(o(l.layers,this.zoom,n),t.performSymbolLayout(l,h,e.positions,p,r.iconPositions,this.showCollisionBoxes,this.tileID.canonical)):l.hasPattern&&(l instanceof t.LineBucket||l instanceof t.FillBucket||l instanceof t.FillExtrusionBucket)&&(o(l.layers,this.zoom,n),l.addFeatures(g,this.tileID.canonical,r.patternPositions))}this.status="done",s(null,{buckets:t.values(m).filter((function(t){return!t.isEmpty()})),featureIndex:u,collisionBoxArray:this.collisionBoxArray,glyphAtlasImage:e.image,imageAtlas:r,glyphMap:this.returnDependencies?h:null,iconMap:this.returnDependencies?p:null,glyphPositions:this.returnDependencies?e.positions:null})}}P.length?a.send("getImages",{icons:P,source:this.source,tileID:this.tileID,type:"patterns"},(function(t,e){f||(f=t,d=e,I.call(l))})):d={},I.call(this)};var l=function(t,e,r,n){this.actor=t,this.layerIndex=e,this.availableImages=r,this.loadVectorData=n||s,this.loading={},this.loaded={}};l.prototype.loadTile=function(e,r){var n=this,i=e.uid;this.loading||(this.loading={});var o=!!(e&&e.request&&e.request.collectResourceTiming)&&new t.RequestPerformance(e.request),s=this.loading[i]=new a(e);s.abort=this.loadVectorData(e,(function(e,a){if(delete n.loading[i],e||!a)return s.status="done",n.loaded[i]=s,r(e);var l=a.rawData,c={};a.expires&&(c.expires=a.expires),a.cacheControl&&(c.cacheControl=a.cacheControl);var u={};if(o){var f=o.finish();f&&(u.resourceTiming=JSON.parse(JSON.stringify(f)))}s.vectorTile=a.vectorTile,s.parse(a.vectorTile,n.layerIndex,n.availableImages,n.actor,(function(e,n){if(e||!n)return r(e);r(null,t.extend({rawTileData:l.slice(0)},n,c,u))})),n.loaded=n.loaded||{},n.loaded[i]=s}))},l.prototype.reloadTile=function(t,e){var r=this,n=this.loaded,i=t.uid,a=this;if(n&&n[i]){var o=n[i];o.showCollisionBoxes=t.showCollisionBoxes;var s=function(t,n){var i=o.reloadCallback;i&&(delete o.reloadCallback,o.parse(o.vectorTile,a.layerIndex,r.availableImages,a.actor,i)),e(t,n)};"parsing"===o.status?o.reloadCallback=s:"done"===o.status&&(o.vectorTile?o.parse(o.vectorTile,this.layerIndex,this.availableImages,this.actor,s):s())}},l.prototype.abortTile=function(t,e){var r=this.loading,n=t.uid;r&&r[n]&&r[n].abort&&(r[n].abort(),delete r[n]),e()},l.prototype.removeTile=function(t,e){var r=this.loaded,n=t.uid;r&&r[n]&&delete r[n],e()};var c=t.window.ImageBitmap,u=function(){this.loaded={}};u.prototype.loadTile=function(e,r){var n=e.uid,i=e.encoding,a=e.rawImageData,o=c&&a instanceof c?this.getImageData(a):a,s=new t.DEMData(n,o,i);this.loaded=this.loaded||{},this.loaded[n]=s,r(null,s)},u.prototype.getImageData=function(e){this.offscreenCanvas&&this.offscreenCanvasContext||(this.offscreenCanvas=new OffscreenCanvas(e.width,e.height),this.offscreenCanvasContext=this.offscreenCanvas.getContext("2d")),this.offscreenCanvas.width=e.width,this.offscreenCanvas.height=e.height,this.offscreenCanvasContext.drawImage(e,0,0,e.width,e.height);var r=this.offscreenCanvasContext.getImageData(-1,-1,e.width+2,e.height+2);return this.offscreenCanvasContext.clearRect(0,0,this.offscreenCanvas.width,this.offscreenCanvas.height),new t.RGBAImage({width:r.width,height:r.height},r.data)},u.prototype.removeTile=function(t){var e=this.loaded,r=t.uid;e&&e[r]&&delete e[r]};var f=function t(e,r){var n,i=e&&e.type;if("FeatureCollection"===i)for(n=0;n=0!=!!e&&t.reverse()}var d=t.vectorTile.VectorTileFeature.prototype.toGeoJSON,m=function(e){this._feature=e,this.extent=t.EXTENT,this.type=e.type,this.properties=e.tags,"id"in e&&!isNaN(e.id)&&(this.id=parseInt(e.id,10))};m.prototype.loadGeometry=function(){if(1===this._feature.type){for(var e=[],r=0,n=this._feature.geometry;r>31}function P(t,e){for(var r=t.loadGeometry(),n=t.type,i=0,a=0,o=r.length,s=0;s>1;!function t(e,r,n,i,a,o){for(;a>i;){if(a-i>600){var s=a-i+1,l=n-i+1,c=Math.log(s),u=.5*Math.exp(2*c/3),f=.5*Math.sqrt(c*u*(s-u)/s)*(l-s/2<0?-1:1),h=Math.max(i,Math.floor(n-l*u/s+f)),p=Math.min(a,Math.floor(n+(s-l)*u/s+f));t(e,r,n,h,p,o)}var d=r[2*n+o],m=i,g=a;for(z(e,r,i,n),r[2*a+o]>d&&z(e,r,i,a);md;)g--}r[2*i+o]===d?z(e,r,i,g):(g++,z(e,r,g,a)),g<=n&&(i=g+1),n<=g&&(a=g-1)}}(t,e,o,n,i,a%2),O(t,e,r,n,o-1,a+1),O(t,e,r,o+1,i,a+1)}}function z(t,e,r,n){D(t,r,n),D(e,2*r,2*n),D(e,2*r+1,2*n+1)}function D(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function R(t,e,r,n){var i=t-r,a=e-n;return i*i+a*a}_.fromVectorTileJs=w,_.fromGeojsonVt=T,_.GeoJSONWrapper=k;var F=function(t){return t[0]},B=function(t){return t[1]},N=function(t,e,r,n,i){void 0===e&&(e=F),void 0===r&&(r=B),void 0===n&&(n=64),void 0===i&&(i=Float64Array),this.nodeSize=n,this.points=t;for(var a=t.length<65536?Uint16Array:Uint32Array,o=this.ids=new a(t.length),s=this.coords=new i(2*t.length),l=0;l=r&&s<=i&&l>=n&&l<=a&&u.push(t[d]);else{var m=Math.floor((p+h)/2);s=e[2*m],l=e[2*m+1],s>=r&&s<=i&&l>=n&&l<=a&&u.push(t[m]);var g=(f+1)%2;(0===f?r<=s:n<=l)&&(c.push(p),c.push(m-1),c.push(g)),(0===f?i>=s:a>=l)&&(c.push(m+1),c.push(h),c.push(g))}}return u}(this.ids,this.coords,t,e,r,n,this.nodeSize)},N.prototype.within=function(t,e,r){return function(t,e,r,n,i,a){for(var o=[0,t.length-1,0],s=[],l=i*i;o.length;){var c=o.pop(),u=o.pop(),f=o.pop();if(u-f<=a)for(var h=f;h<=u;h++)R(e[2*h],e[2*h+1],r,n)<=l&&s.push(t[h]);else{var p=Math.floor((f+u)/2),d=e[2*p],m=e[2*p+1];R(d,m,r,n)<=l&&s.push(t[p]);var g=(c+1)%2;(0===c?r-i<=d:n-i<=m)&&(o.push(f),o.push(p-1),o.push(g)),(0===c?r+i>=d:n+i>=m)&&(o.push(p+1),o.push(u),o.push(g))}}return s}(this.ids,this.coords,t,e,r,this.nodeSize)};var j={minZoom:0,maxZoom:16,radius:40,extent:512,nodeSize:64,log:!1,generateId:!1,reduce:null,map:function(t){return t}},U=function(t){this.options=X(Object.create(j),t),this.trees=new Array(this.options.maxZoom+1)};function V(t,e,r,n,i){return{x:t,y:e,zoom:1/0,id:r,parentId:-1,numPoints:n,properties:i}}function H(t,e){var r=t.geometry.coordinates,n=r[0],i=r[1];return{x:Y(n),y:W(i),zoom:1/0,index:e,parentId:-1}}function q(t){return{type:"Feature",id:t.id,properties:G(t),geometry:{type:"Point",coordinates:[(n=t.x,360*(n-.5)),(e=t.y,r=(180-360*e)*Math.PI/180,360*Math.atan(Math.exp(r))/Math.PI-90)]}};var e,r,n}function G(t){var e=t.numPoints,r=e>=1e4?Math.round(e/1e3)+"k":e>=1e3?Math.round(e/100)/10+"k":e;return X(X({},t.properties),{cluster:!0,cluster_id:t.id,point_count:e,point_count_abbreviated:r})}function Y(t){return t/360+.5}function W(t){var e=Math.sin(t*Math.PI/180),r=.5-.25*Math.log((1+e)/(1-e))/Math.PI;return r<0?0:r>1?1:r}function X(t,e){for(var r in e)t[r]=e[r];return t}function Z(t){return t.x}function J(t){return t.y}function K(t,e,r,n,i,a){var o=i-r,s=a-n;if(0!==o||0!==s){var l=((t-r)*o+(e-n)*s)/(o*o+s*s);l>1?(r=i,n=a):l>0&&(r+=o*l,n+=s*l)}return(o=t-r)*o+(s=e-n)*s}function Q(t,e,r,n){var i={id:void 0===t?null:t,type:e,geometry:r,tags:n,minX:1/0,minY:1/0,maxX:-1/0,maxY:-1/0};return function(t){var e=t.geometry,r=t.type;if("Point"===r||"MultiPoint"===r||"LineString"===r)$(t,e);else if("Polygon"===r||"MultiLineString"===r)for(var n=0;n0&&(o+=n?(i*c-l*a)/2:Math.sqrt(Math.pow(l-i,2)+Math.pow(c-a,2))),i=l,a=c}var u=e.length-3;e[2]=1,function t(e,r,n,i){for(var a,o=i,s=n-r>>1,l=n-r,c=e[r],u=e[r+1],f=e[n],h=e[n+1],p=r+3;po)a=p,o=d;else if(d===o){var m=Math.abs(p-s);mi&&(a-r>3&&t(e,r,a,i),e[a+2]=o,n-a>3&&t(e,a,n,i))}(e,0,u,r),e[u+2]=1,e.size=Math.abs(o),e.start=0,e.end=e.size}function nt(t,e,r,n){for(var i=0;i1?1:r}function ot(t,e,r,n,i,a,o,s){if(n/=e,a>=(r/=e)&&o=n)return null;for(var l=[],c=0;c=r&&d=n)){var m=[];if("Point"===h||"MultiPoint"===h)st(f,m,r,n,i);else if("LineString"===h)lt(f,m,r,n,i,!1,s.lineMetrics);else if("MultiLineString"===h)ut(f,m,r,n,i,!1);else if("Polygon"===h)ut(f,m,r,n,i,!0);else if("MultiPolygon"===h)for(var g=0;g=r&&o<=n&&(e.push(t[a]),e.push(t[a+1]),e.push(t[a+2]))}}function lt(t,e,r,n,i,a,o){for(var s,l,c=ct(t),u=0===i?ht:pt,f=t.start,h=0;hr&&(l=u(c,p,d,g,v,r),o&&(c.start=f+s*l)):y>n?x=r&&(l=u(c,p,d,g,v,r),b=!0),x>n&&y<=n&&(l=u(c,p,d,g,v,n),b=!0),!a&&b&&(o&&(c.end=f+s*l),e.push(c),c=ct(t)),o&&(f+=s)}var _=t.length-3;p=t[_],d=t[_+1],m=t[_+2],(y=0===i?p:d)>=r&&y<=n&&ft(c,p,d,m),_=c.length-3,a&&_>=3&&(c[_]!==c[0]||c[_+1]!==c[1])&&ft(c,c[0],c[1],c[2]),c.length&&e.push(c)}function ct(t){var e=[];return e.size=t.size,e.start=t.start,e.end=t.end,e}function ut(t,e,r,n,i,a){for(var o=0;oo.maxX&&(o.maxX=u),f>o.maxY&&(o.maxY=f)}return o}function xt(t,e,r,n){var i=e.geometry,a=e.type,o=[];if("Point"===a||"MultiPoint"===a)for(var s=0;s0&&e.size<(i?o:n))r.numPoints+=e.length/3;else{for(var s=[],l=0;lo)&&(r.numSimplified++,s.push(e[l]),s.push(e[l+1])),r.numPoints++;i&&function(t,e){for(var r=0,n=0,i=t.length,a=i-2;n0===e)for(n=0,i=t.length;n24)throw new Error("maxZoom should be in the 0-24 range");if(e.promoteId&&e.generateId)throw new Error("promoteId and generateId cannot be used together.");var n=function(t,e){var r=[];if("FeatureCollection"===t.type)for(var n=0;n=n;c--){var u=+Date.now();s=this._cluster(s,c),this.trees[c]=new N(s,Z,J,a,Float32Array),r&&console.log("z%d: %d clusters in %dms",c,s.length,+Date.now()-u)}return r&&console.timeEnd("total time"),this},U.prototype.getClusters=function(t,e){var r=((t[0]+180)%360+360)%360-180,n=Math.max(-90,Math.min(90,t[1])),i=180===t[2]?180:((t[2]+180)%360+360)%360-180,a=Math.max(-90,Math.min(90,t[3]));if(t[2]-t[0]>=360)r=-180,i=180;else if(r>i){var o=this.getClusters([r,n,180,a],e),s=this.getClusters([-180,n,i,a],e);return o.concat(s)}for(var l=this.trees[this._limitZoom(e)],c=[],u=0,f=l.range(Y(r),W(a),Y(i),W(n));u1?this._map(c,!0):null,g=(l<<5)+(e+1)+this.points.length,v=0,y=f;v>5},U.prototype._getOriginZoom=function(t){return(t-this.points.length)%32},U.prototype._map=function(t,e){if(t.numPoints)return e?X({},t.properties):t.properties;var r=this.points[t.index].properties,n=this.options.map(r);return e&&n===r?X({},n):n},_t.prototype.options={maxZoom:14,indexMaxZoom:5,indexMaxPoints:1e5,tolerance:3,extent:4096,buffer:64,lineMetrics:!1,promoteId:null,generateId:!1,debug:0},_t.prototype.splitTile=function(t,e,r,n,i,a,o){for(var s=[t,e,r,n],l=this.options,c=l.debug;s.length;){n=s.pop(),r=s.pop(),e=s.pop(),t=s.pop();var u=1<1&&console.time("creation"),h=this.tiles[f]=yt(t,e,r,n,l),this.tileCoords.push({z:e,x:r,y:n}),c)){c>1&&(console.log("tile z%d-%d-%d (features: %d, points: %d, simplified: %d)",e,r,n,h.numFeatures,h.numPoints,h.numSimplified),console.timeEnd("creation"));var p="z"+e;this.stats[p]=(this.stats[p]||0)+1,this.total++}if(h.source=t,i){if(e===l.maxZoom||e===i)continue;var d=1<1&&console.time("clipping");var m,g,v,y,x,b,_=.5*l.buffer/l.extent,w=.5-_,T=.5+_,k=1+_;m=g=v=y=null,x=ot(t,u,r-_,r+T,0,h.minX,h.maxX,l),b=ot(t,u,r+w,r+k,0,h.minX,h.maxX,l),t=null,x&&(m=ot(x,u,n-_,n+T,1,h.minY,h.maxY,l),g=ot(x,u,n+w,n+k,1,h.minY,h.maxY,l),x=null),b&&(v=ot(b,u,n-_,n+T,1,h.minY,h.maxY,l),y=ot(b,u,n+w,n+k,1,h.minY,h.maxY,l),b=null),c>1&&console.timeEnd("clipping"),s.push(m||[],e+1,2*r,2*n),s.push(g||[],e+1,2*r,2*n+1),s.push(v||[],e+1,2*r+1,2*n),s.push(y||[],e+1,2*r+1,2*n+1)}}},_t.prototype.getTile=function(t,e,r){var n=this.options,i=n.extent,a=n.debug;if(t<0||t>24)return null;var o=1<1&&console.log("drilling down to z%d-%d-%d",t,e,r);for(var l,c=t,u=e,f=r;!l&&c>0;)c--,u=Math.floor(u/2),f=Math.floor(f/2),l=this.tiles[wt(c,u,f)];return l&&l.source?(a>1&&console.log("found parent tile z%d-%d-%d",c,u,f),a>1&&console.time("drilling down"),this.splitTile(l.source,c,u,f,t,e,r),a>1&&console.timeEnd("drilling down"),this.tiles[s]?gt(this.tiles[s],i):null):null};var kt=function(e){function r(t,r,n,i){e.call(this,t,r,n,Tt),i&&(this.loadGeoJSON=i)}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.loadData=function(t,e){this._pendingCallback&&this._pendingCallback(null,{abandoned:!0}),this._pendingCallback=e,this._pendingLoadDataParams=t,this._state&&"Idle"!==this._state?this._state="NeedsLoadData":(this._state="Coalescing",this._loadData())},r.prototype._loadData=function(){var e=this;if(this._pendingCallback&&this._pendingLoadDataParams){var r=this._pendingCallback,n=this._pendingLoadDataParams;delete this._pendingCallback,delete this._pendingLoadDataParams;var i=!!(n&&n.request&&n.request.collectResourceTiming)&&new t.RequestPerformance(n.request);this.loadGeoJSON(n,(function(a,o){if(a||!o)return r(a);if("object"!=typeof o)return r(new Error("Input data given to '"+n.source+"' is not a valid GeoJSON object."));f(o,!0);try{e._geoJSONIndex=n.cluster?new U(function(e){var r=e.superclusterOptions,n=e.clusterProperties;if(!n||!r)return r;for(var i={},a={},o={accumulated:null,zoom:0},s={properties:null},l=Object.keys(n),c=0,u=l;c=0?0:e.button},r.remove=function(t){t.parentNode&&t.parentNode.removeChild(t)};var h=function(e){function r(){e.call(this),this.images={},this.updatedImages={},this.callbackDispatchedThisFrame={},this.loaded=!1,this.requestors=[],this.patterns={},this.atlasImage=new t.RGBAImage({width:1,height:1}),this.dirty=!0}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.isLoaded=function(){return this.loaded},r.prototype.setLoaded=function(t){if(this.loaded!==t&&(this.loaded=t,t)){for(var e=0,r=this.requestors;e=0?1.2:1))}function v(t,e,r,n,i,a,o){for(var s=0;s65535)e(new Error("glyphs > 65535 not supported"));else if(a.ranges[s])e(null,{stack:r,id:i,glyph:o});else{var l=a.requests[s];l||(l=a.requests[s]=[],x.loadGlyphRange(r,s,n.url,n.requestManager,(function(t,e){if(e){for(var r in e)n._doesCharSupportLocalGlyph(+r)||(a.glyphs[+r]=e[+r]);a.ranges[s]=!0}for(var i=0,o=l;i1&&(l=t[++s]);var u=Math.abs(c-l.left),f=Math.abs(c-l.right),h=Math.min(u,f),p=void 0,d=i/r*(n+1);if(l.isDash){var m=n-Math.abs(d);p=Math.sqrt(h*h+m*m)}else p=n-Math.sqrt(h*h+d*d);this.data[o+c]=Math.max(0,Math.min(255,p+128))}},T.prototype.addRegularDash=function(t){for(var e=t.length-1;e>=0;--e){var r=t[e],n=t[e+1];r.zeroLength?t.splice(e,1):n&&n.isDash===r.isDash&&(n.left=r.left,t.splice(e,1))}var i=t[0],a=t[t.length-1];i.isDash===a.isDash&&(i.left=a.left-this.width,a.right=i.right+this.width);for(var o=this.width*this.nextRow,s=0,l=t[s],c=0;c1&&(l=t[++s]);var u=Math.abs(c-l.left),f=Math.abs(c-l.right),h=Math.min(u,f),p=l.isDash?h:-h;this.data[o+c]=Math.max(0,Math.min(255,p+128))}},T.prototype.addDash=function(e,r){var n=r?7:0,i=2*n+1;if(this.nextRow+i>this.height)return t.warnOnce("LineAtlas out of space"),null;for(var a=0,o=0;o=n&&e.x=i&&e.y0&&(l[new t.OverscaledTileID(e.overscaledZ,a,r.z,i,r.y-1).key]={backfilled:!1},l[new t.OverscaledTileID(e.overscaledZ,e.wrap,r.z,r.x,r.y-1).key]={backfilled:!1},l[new t.OverscaledTileID(e.overscaledZ,s,r.z,o,r.y-1).key]={backfilled:!1}),r.y+10&&(n.resourceTiming=e._resourceTiming,e._resourceTiming=[]),e.fire(new t.Event("data",n))}}))},r.prototype.onAdd=function(t){this.map=t,this.load()},r.prototype.setData=function(e){var r=this;return this._data=e,this.fire(new t.Event("dataloading",{dataType:"source"})),this._updateWorkerData((function(e){if(e)r.fire(new t.ErrorEvent(e));else{var n={dataType:"source",sourceDataType:"content"};r._collectResourceTiming&&r._resourceTiming&&r._resourceTiming.length>0&&(n.resourceTiming=r._resourceTiming,r._resourceTiming=[]),r.fire(new t.Event("data",n))}})),this},r.prototype.getClusterExpansionZoom=function(t,e){return this.actor.send("geojson.getClusterExpansionZoom",{clusterId:t,source:this.id},e),this},r.prototype.getClusterChildren=function(t,e){return this.actor.send("geojson.getClusterChildren",{clusterId:t,source:this.id},e),this},r.prototype.getClusterLeaves=function(t,e,r,n){return this.actor.send("geojson.getClusterLeaves",{source:this.id,clusterId:t,limit:e,offset:r},n),this},r.prototype._updateWorkerData=function(e){var r=this;this._loaded=!1;var n=t.extend({},this.workerOptions),i=this._data;"string"==typeof i?(n.request=this.map._requestManager.transformRequest(t.browser.resolveURL(i),t.ResourceType.Source),n.request.collectResourceTiming=this._collectResourceTiming):n.data=JSON.stringify(i),this.actor.send(this.type+".loadData",n,(function(t,i){r._removed||i&&i.abandoned||(r._loaded=!0,i&&i.resourceTiming&&i.resourceTiming[r.id]&&(r._resourceTiming=i.resourceTiming[r.id].slice(0)),r.actor.send(r.type+".coalesce",{source:n.source},null),e(t))}))},r.prototype.loaded=function(){return this._loaded},r.prototype.loadTile=function(e,r){var n=this,i=e.actor?"reloadTile":"loadTile";e.actor=this.actor;var a={type:this.type,uid:e.uid,tileID:e.tileID,zoom:e.tileID.overscaledZ,maxZoom:this.maxzoom,tileSize:this.tileSize,source:this.id,pixelRatio:t.browser.devicePixelRatio,showCollisionBoxes:this.map.showCollisionBoxes,promoteId:this.promoteId};e.request=this.actor.send(i,a,(function(t,a){return delete e.request,e.unloadVectorData(),e.aborted?r(null):t?r(t):(e.loadVectorData(a,n.map.painter,"reloadTile"===i),r(null))}))},r.prototype.abortTile=function(t){t.request&&(t.request.cancel(),delete t.request),t.aborted=!0},r.prototype.unloadTile=function(t){t.unloadVectorData(),this.actor.send("removeTile",{uid:t.uid,type:this.type,source:this.id})},r.prototype.onRemove=function(){this._removed=!0,this.actor.send("removeSource",{type:this.type,source:this.id})},r.prototype.serialize=function(){return t.extend({},this._options,{type:this.type,data:this._data})},r.prototype.hasTransition=function(){return!1},r}(t.Evented),P=t.createLayout([{name:"a_pos",type:"Int16",components:2},{name:"a_texture_pos",type:"Int16",components:2}]),I=function(e){function r(t,r,n,i){e.call(this),this.id=t,this.dispatcher=n,this.coordinates=r.coordinates,this.type="image",this.minzoom=0,this.maxzoom=22,this.tileSize=512,this.tiles={},this._loaded=!1,this.setEventedParent(i),this.options=r}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.load=function(e,r){var n=this;this._loaded=!1,this.fire(new t.Event("dataloading",{dataType:"source"})),this.url=this.options.url,t.getImage(this.map._requestManager.transformRequest(this.url,t.ResourceType.Image),(function(i,a){n._loaded=!0,i?n.fire(new t.ErrorEvent(i)):a&&(n.image=a,e&&(n.coordinates=e),r&&r(),n._finishLoading())}))},r.prototype.loaded=function(){return this._loaded},r.prototype.updateImage=function(t){var e=this;return this.image&&t.url?(this.options.url=t.url,this.load(t.coordinates,(function(){e.texture=null})),this):this},r.prototype._finishLoading=function(){this.map&&(this.setCoordinates(this.coordinates),this.fire(new t.Event("data",{dataType:"source",sourceDataType:"metadata"})))},r.prototype.onAdd=function(t){this.map=t,this.load()},r.prototype.setCoordinates=function(e){var r=this;this.coordinates=e;var n=e.map(t.MercatorCoordinate.fromLngLat);this.tileID=function(e){for(var r=1/0,n=1/0,i=-1/0,a=-1/0,o=0,s=e;or.end(0)?this.fire(new t.ErrorEvent(new t.ValidationError("sources."+this.id,null,"Playback for this video can be set only between the "+r.start(0)+" and "+r.end(0)+"-second mark."))):this.video.currentTime=e}},r.prototype.getVideo=function(){return this.video},r.prototype.onAdd=function(t){this.map||(this.map=t,this.load(),this.video&&(this.video.play(),this.setCoordinates(this.coordinates)))},r.prototype.prepare=function(){if(!(0===Object.keys(this.tiles).length||this.video.readyState<2)){var e=this.map.painter.context,r=e.gl;for(var n in this.boundsBuffer||(this.boundsBuffer=e.createVertexBuffer(this._boundsArray,P.members)),this.boundsSegments||(this.boundsSegments=t.SegmentVector.simpleSegment(0,0,4,2)),this.texture?this.video.paused||(this.texture.bind(r.LINEAR,r.CLAMP_TO_EDGE),r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,this.video)):(this.texture=new t.Texture(e,this.video,r.RGBA),this.texture.bind(r.LINEAR,r.CLAMP_TO_EDGE)),this.tiles){var i=this.tiles[n];"loaded"!==i.state&&(i.state="loaded",i.texture=this.texture)}}},r.prototype.serialize=function(){return{type:"video",urls:this.urls,coordinates:this.coordinates}},r.prototype.hasTransition=function(){return this.video&&!this.video.paused},r}(I),z=function(e){function r(r,n,i,a){e.call(this,r,n,i,a),n.coordinates?Array.isArray(n.coordinates)&&4===n.coordinates.length&&!n.coordinates.some((function(t){return!Array.isArray(t)||2!==t.length||t.some((function(t){return"number"!=typeof t}))}))||this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'"coordinates" property must be an array of 4 longitude/latitude array pairs'))):this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'missing required property "coordinates"'))),n.animate&&"boolean"!=typeof n.animate&&this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'optional "animate" property must be a boolean value'))),n.canvas?"string"==typeof n.canvas||n.canvas instanceof t.window.HTMLCanvasElement||this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'"canvas" must be either a string representing the ID of the canvas element from which to read, or an HTMLCanvasElement instance'))):this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'missing required property "canvas"'))),this.options=n,this.animate=void 0===n.animate||n.animate}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.load=function(){this._loaded=!0,this.canvas||(this.canvas=this.options.canvas instanceof t.window.HTMLCanvasElement?this.options.canvas:t.window.document.getElementById(this.options.canvas)),this.width=this.canvas.width,this.height=this.canvas.height,this._hasInvalidDimensions()?this.fire(new t.ErrorEvent(new Error("Canvas dimensions cannot be less than or equal to zero."))):(this.play=function(){this._playing=!0,this.map.triggerRepaint()},this.pause=function(){this._playing&&(this.prepare(),this._playing=!1)},this._finishLoading())},r.prototype.getCanvas=function(){return this.canvas},r.prototype.onAdd=function(t){this.map=t,this.load(),this.canvas&&this.animate&&this.play()},r.prototype.onRemove=function(){this.pause()},r.prototype.prepare=function(){var e=!1;if(this.canvas.width!==this.width&&(this.width=this.canvas.width,e=!0),this.canvas.height!==this.height&&(this.height=this.canvas.height,e=!0),!this._hasInvalidDimensions()&&0!==Object.keys(this.tiles).length){var r=this.map.painter.context,n=r.gl;for(var i in this.boundsBuffer||(this.boundsBuffer=r.createVertexBuffer(this._boundsArray,P.members)),this.boundsSegments||(this.boundsSegments=t.SegmentVector.simpleSegment(0,0,4,2)),this.texture?(e||this._playing)&&this.texture.update(this.canvas,{premultiply:!0}):this.texture=new t.Texture(r,this.canvas,n.RGBA,{premultiply:!0}),this.tiles){var a=this.tiles[i];"loaded"!==a.state&&(a.state="loaded",a.texture=this.texture)}}},r.prototype.serialize=function(){return{type:"canvas",coordinates:this.coordinates}},r.prototype.hasTransition=function(){return this._playing},r.prototype._hasInvalidDimensions=function(){for(var t=0,e=[this.canvas.width,this.canvas.height];tthis.max){var o=this._getAndRemoveByKey(this.order[0]);o&&this.onRemove(o)}return this},N.prototype.has=function(t){return t.wrapped().key in this.data},N.prototype.getAndRemove=function(t){return this.has(t)?this._getAndRemoveByKey(t.wrapped().key):null},N.prototype._getAndRemoveByKey=function(t){var e=this.data[t].shift();return e.timeout&&clearTimeout(e.timeout),0===this.data[t].length&&delete this.data[t],this.order.splice(this.order.indexOf(t),1),e.value},N.prototype.getByKey=function(t){var e=this.data[t];return e?e[0].value:null},N.prototype.get=function(t){return this.has(t)?this.data[t.wrapped().key][0].value:null},N.prototype.remove=function(t,e){if(!this.has(t))return this;var r=t.wrapped().key,n=void 0===e?0:this.data[r].indexOf(e),i=this.data[r][n];return this.data[r].splice(n,1),i.timeout&&clearTimeout(i.timeout),0===this.data[r].length&&delete this.data[r],this.onRemove(i.value),this.order.splice(this.order.indexOf(r),1),this},N.prototype.setMaxSize=function(t){for(this.max=t;this.order.length>this.max;){var e=this._getAndRemoveByKey(this.order[0]);e&&this.onRemove(e)}return this},N.prototype.filter=function(t){var e=[];for(var r in this.data)for(var n=0,i=this.data[r];n1||(Math.abs(r)>1&&(1===Math.abs(r+i)?r+=i:1===Math.abs(r-i)&&(r-=i)),e.dem&&t.dem&&(t.dem.backfillBorder(e.dem,r,n),t.neighboringTiles&&t.neighboringTiles[a]&&(t.neighboringTiles[a].backfilled=!0)))}},r.prototype.getTile=function(t){return this.getTileByID(t.key)},r.prototype.getTileByID=function(t){return this._tiles[t]},r.prototype._retainLoadedChildren=function(t,e,r,n){for(var i in this._tiles){var a=this._tiles[i];if(!(n[i]||!a.hasData()||a.tileID.overscaledZ<=e||a.tileID.overscaledZ>r)){for(var o=a.tileID;a&&a.tileID.overscaledZ>e+1;){var s=a.tileID.scaledTo(a.tileID.overscaledZ-1);(a=this._tiles[s.key])&&a.hasData()&&(o=s)}for(var l=o;l.overscaledZ>e;)if(t[(l=l.scaledTo(l.overscaledZ-1)).key]){n[o.key]=o;break}}}},r.prototype.findLoadedParent=function(t,e){if(t.key in this._loadedParentTiles){var r=this._loadedParentTiles[t.key];return r&&r.tileID.overscaledZ>=e?r:null}for(var n=t.overscaledZ-1;n>=e;n--){var i=t.scaledTo(n),a=this._getLoadedTile(i);if(a)return a}},r.prototype._getLoadedTile=function(t){var e=this._tiles[t.key];return e&&e.hasData()?e:this._cache.getByKey(t.wrapped().key)},r.prototype.updateCacheSize=function(t){var e=(Math.ceil(t.width/this._source.tileSize)+1)*(Math.ceil(t.height/this._source.tileSize)+1),r=Math.floor(5*e),n="number"==typeof this._maxTileCacheSize?Math.min(this._maxTileCacheSize,r):r;this._cache.setMaxSize(n)},r.prototype.handleWrapJump=function(t){var e=(t-(void 0===this._prevLng?t:this._prevLng))/360,r=Math.round(e);if(this._prevLng=t,r){var n={};for(var i in this._tiles){var a=this._tiles[i];a.tileID=a.tileID.unwrapTo(a.tileID.wrap+r),n[a.tileID.key]=a}for(var o in this._tiles=n,this._timers)clearTimeout(this._timers[o]),delete this._timers[o];for(var s in this._tiles){var l=this._tiles[s];this._setTileReloadTimer(s,l)}}},r.prototype.update=function(e){var n=this;if(this.transform=e,this._sourceLoaded&&!this._paused){var i;this.updateCacheSize(e),this.handleWrapJump(this.transform.center.lng),this._coveredTiles={},this.used?this._source.tileID?i=e.getVisibleUnwrappedCoordinates(this._source.tileID).map((function(e){return new t.OverscaledTileID(e.canonical.z,e.wrap,e.canonical.z,e.canonical.x,e.canonical.y)})):(i=e.coveringTiles({tileSize:this._source.tileSize,minzoom:this._source.minzoom,maxzoom:this._source.maxzoom,roundZoom:this._source.roundZoom,reparseOverscaled:this._source.reparseOverscaled}),this._source.hasTile&&(i=i.filter((function(t){return n._source.hasTile(t)})))):i=[];var a=e.coveringZoomLevel(this._source),o=Math.max(a-r.maxOverzooming,this._source.minzoom),s=Math.max(a+r.maxUnderzooming,this._source.minzoom),l=this._updateRetainedTiles(i,a);if(It(this._source.type)){for(var c={},u={},f=0,h=Object.keys(l);fthis._source.maxzoom){var g=d.children(this._source.maxzoom)[0],v=this.getTile(g);if(v&&v.hasData()){n[g.key]=g;continue}}else{var y=d.children(this._source.maxzoom);if(n[y[0].key]&&n[y[1].key]&&n[y[2].key]&&n[y[3].key])continue}for(var x=m.wasRequested(),b=d.overscaledZ-1;b>=a;--b){var _=d.scaledTo(b);if(i[_.key])break;if(i[_.key]=!0,!(m=this.getTile(_))&&x&&(m=this._addTile(_)),m&&(n[_.key]=_,x=m.wasRequested(),m.hasData()))break}}}return n},r.prototype._updateLoadedParentTileCache=function(){for(var t in this._loadedParentTiles={},this._tiles){for(var e=[],r=void 0,n=this._tiles[t].tileID;n.overscaledZ>0;){if(n.key in this._loadedParentTiles){r=this._loadedParentTiles[n.key];break}e.push(n.key);var i=n.scaledTo(n.overscaledZ-1);if(r=this._getLoadedTile(i))break;n=i}for(var a=0,o=e;a0||(e.hasData()&&"reloading"!==e.state?this._cache.add(e.tileID,e,e.getExpiryTimeout()):(e.aborted=!0,this._abortTile(e),this._unloadTile(e))))},r.prototype.clearTiles=function(){for(var t in this._shouldReloadOnResume=!1,this._paused=!1,this._tiles)this._removeTile(t);this._cache.reset()},r.prototype.tilesIn=function(e,r,n){var i=this,a=[],o=this.transform;if(!o)return a;for(var s=n?o.getCameraQueryGeometry(e):e,l=e.map((function(t){return o.pointCoordinate(t)})),c=s.map((function(t){return o.pointCoordinate(t)})),u=this.getIds(),f=1/0,h=1/0,p=-1/0,d=-1/0,m=0,g=c;m=0&&v[1].y+g>=0){var y=l.map((function(t){return s.getTilePoint(t)})),x=c.map((function(t){return s.getTilePoint(t)}));a.push({tile:n,tileID:s,queryGeometry:y,cameraQueryGeometry:x,scale:m})}}},x=0;x=t.browser.now())return!0}return!1},r.prototype.setFeatureState=function(t,e,r){t=t||"_geojsonTileLayer",this._state.updateState(t,e,r)},r.prototype.removeFeatureState=function(t,e,r){t=t||"_geojsonTileLayer",this._state.removeFeatureState(t,e,r)},r.prototype.getFeatureState=function(t,e){return t=t||"_geojsonTileLayer",this._state.getState(t,e)},r.prototype.setDependencies=function(t,e,r){var n=this._tiles[t];n&&n.setDependencies(e,r)},r.prototype.reloadTilesForDependencies=function(t,e){for(var r in this._tiles){this._tiles[r].hasDependency(t,e)&&this._reloadTile(r,"reloading")}this._cache.filter((function(r){return!r.hasDependency(t,e)}))},r}(t.Evented);function Pt(t,e){var r=Math.abs(2*t.wrap)-+(t.wrap<0),n=Math.abs(2*e.wrap)-+(e.wrap<0);return t.overscaledZ-e.overscaledZ||n-r||e.canonical.y-t.canonical.y||e.canonical.x-t.canonical.x}function It(t){return"raster"===t||"image"===t||"video"===t}function Ot(){return new t.window.Worker(Zi.workerUrl)}Ct.maxOverzooming=10,Ct.maxUnderzooming=3;var zt="mapboxgl_preloaded_worker_pool",Dt=function(){this.active={}};Dt.prototype.acquire=function(t){if(!this.workers)for(this.workers=[];this.workers.length0?(i-o)/s:0;return this.points[a].mult(1-l).add(this.points[r].mult(l))};var Kt=function(t,e,r){var n=this.boxCells=[],i=this.circleCells=[];this.xCellCount=Math.ceil(t/r),this.yCellCount=Math.ceil(e/r);for(var a=0;a=-e[0]&&r<=e[0]&&n>=-e[1]&&n<=e[1]}function ne(e,r,n,i,a,o,s,l){var c=i?e.textSizeData:e.iconSizeData,u=t.evaluateSizeForZoom(c,n.transform.zoom),f=[256/n.width*2+1,256/n.height*2+1],h=i?e.text.dynamicLayoutVertexArray:e.icon.dynamicLayoutVertexArray;h.clear();for(var p=e.lineVertexArray,d=i?e.text.placedSymbolArray:e.icon.placedSymbolArray,m=n.transform.width/n.transform.height,g=!1,v=0;vMath.abs(n.x-r.x)*i)return{useVertical:!0};return(e===t.WritingMode.vertical?r.yn.x)?{needsFlipping:!0}:null}function oe(e,r,n,i,a,o,s,l,c,u,f,h,p,d){var m,g=r/24,v=e.lineOffsetX*g,y=e.lineOffsetY*g;if(e.numGlyphs>1){var x=e.glyphStartIndex+e.numGlyphs,b=e.lineStartIndex,_=e.lineStartIndex+e.lineLength,w=ie(g,l,v,y,n,f,h,e,c,o,p);if(!w)return{notEnoughRoom:!0};var T=te(w.first.point,s).point,k=te(w.last.point,s).point;if(i&&!n){var A=ae(e.writingMode,T,k,d);if(A)return A}m=[w.first];for(var M=e.glyphStartIndex+1;M0?C.point:se(h,L,S,1,a),I=ae(e.writingMode,S,P,d);if(I)return I}var O=le(g*l.getoffsetX(e.glyphStartIndex),v,y,n,f,h,e.segment,e.lineStartIndex,e.lineStartIndex+e.lineLength,c,o,p);if(!O)return{notEnoughRoom:!0};m=[O]}for(var z=0,D=m;z0?1:-1,m=0;i&&(d*=-1,m=Math.PI),d<0&&(m+=Math.PI);for(var g=d>0?l+s:l+s+1,v=a,y=a,x=0,b=0,_=Math.abs(p),w=[];x+b<=_;){if((g+=d)=c)return null;if(y=v,w.push(v),void 0===(v=h[g])){var T=new t.Point(u.getx(g),u.gety(g)),k=te(T,f);if(k.signedDistanceFromCamera>0)v=h[g]=k.point;else{var A=g-d;v=se(0===x?o:new t.Point(u.getx(A),u.gety(A)),T,y,_-x+1,f)}}x+=b,b=y.dist(v)}var M=(_-x)/b,S=v.sub(y),E=S.mult(M)._add(y);E._add(S._unit()._perp()._mult(n*d));var L=m+Math.atan2(v.y-y.y,v.x-y.x);return w.push(E),{point:E,angle:L,path:w}}Kt.prototype.keysLength=function(){return this.boxKeys.length+this.circleKeys.length},Kt.prototype.insert=function(t,e,r,n,i){this._forEachCell(e,r,n,i,this._insertBoxCell,this.boxUid++),this.boxKeys.push(t),this.bboxes.push(e),this.bboxes.push(r),this.bboxes.push(n),this.bboxes.push(i)},Kt.prototype.insertCircle=function(t,e,r,n){this._forEachCell(e-n,r-n,e+n,r+n,this._insertCircleCell,this.circleUid++),this.circleKeys.push(t),this.circles.push(e),this.circles.push(r),this.circles.push(n)},Kt.prototype._insertBoxCell=function(t,e,r,n,i,a){this.boxCells[i].push(a)},Kt.prototype._insertCircleCell=function(t,e,r,n,i,a){this.circleCells[i].push(a)},Kt.prototype._query=function(t,e,r,n,i,a){if(r<0||t>this.width||n<0||e>this.height)return!i&&[];var o=[];if(t<=0&&e<=0&&this.width<=r&&this.height<=n){if(i)return!0;for(var s=0;s0:o},Kt.prototype._queryCircle=function(t,e,r,n,i){var a=t-r,o=t+r,s=e-r,l=e+r;if(o<0||a>this.width||l<0||s>this.height)return!n&&[];var c=[],u={hitTest:n,circle:{x:t,y:e,radius:r},seenUids:{box:{},circle:{}}};return this._forEachCell(a,s,o,l,this._queryCellCircle,c,u,i),n?c.length>0:c},Kt.prototype.query=function(t,e,r,n,i){return this._query(t,e,r,n,!1,i)},Kt.prototype.hitTest=function(t,e,r,n,i){return this._query(t,e,r,n,!0,i)},Kt.prototype.hitTestCircle=function(t,e,r,n){return this._queryCircle(t,e,r,!0,n)},Kt.prototype._queryCell=function(t,e,r,n,i,a,o,s){var l=o.seenUids,c=this.boxCells[i];if(null!==c)for(var u=this.bboxes,f=0,h=c;f=u[d+0]&&n>=u[d+1]&&(!s||s(this.boxKeys[p]))){if(o.hitTest)return a.push(!0),!0;a.push({key:this.boxKeys[p],x1:u[d],y1:u[d+1],x2:u[d+2],y2:u[d+3]})}}}var m=this.circleCells[i];if(null!==m)for(var g=this.circles,v=0,y=m;vo*o+s*s},Kt.prototype._circleAndRectCollide=function(t,e,r,n,i,a,o){var s=(a-n)/2,l=Math.abs(t-(n+s));if(l>s+r)return!1;var c=(o-i)/2,u=Math.abs(e-(i+c));if(u>c+r)return!1;if(l<=s||u<=c)return!0;var f=l-s,h=u-c;return f*f+h*h<=r*r};var ce=new Float32Array([-1/0,-1/0,0,-1/0,-1/0,0,-1/0,-1/0,0,-1/0,-1/0,0]);function ue(t,e){for(var r=0;r=1;P--)C.push(E.path[P]);for(var I=1;I0){for(var R=C[0].clone(),F=C[0].clone(),B=1;B=A.x&&F.x<=M.x&&R.y>=A.y&&F.y<=M.y?[C]:F.xM.x||F.yM.y?[]:t.clipLine([C],A.x,A.y,M.x,M.y)}for(var N=0,j=D;N=this.screenRightBoundary||n<100||e>this.screenBottomBoundary},he.prototype.isInsideGrid=function(t,e,r,n){return r>=0&&t=0&&e0)return this.prevPlacement&&this.prevPlacement.variableOffsets[f.crossTileID]&&this.prevPlacement.placements[f.crossTileID]&&this.prevPlacement.placements[f.crossTileID].text&&(m=this.prevPlacement.variableOffsets[f.crossTileID].anchor),this.variableOffsets[f.crossTileID]={textOffset:g,width:r,height:n,anchor:t,textBoxScale:i,prevAnchor:m},this.markUsedJustification(h,t,f,p),h.allowVerticalPlacement&&(this.markUsedOrientation(h,p,f),this.placedOrientations[f.crossTileID]=p),{shift:v,placedGlyphBoxes:y}},we.prototype.placeLayerBucketPart=function(e,r,n){var i=this,a=e.parameters,o=a.bucket,s=a.layout,l=a.posMatrix,c=a.textLabelPlaneMatrix,u=a.labelToScreenMatrix,f=a.textPixelRatio,h=a.holdingForFade,p=a.collisionBoxArray,d=a.partiallyEvaluatedTextSize,m=a.collisionGroup,g=s.get("text-optional"),v=s.get("icon-optional"),y=s.get("text-allow-overlap"),x=s.get("icon-allow-overlap"),b="map"===s.get("text-rotation-alignment"),_="map"===s.get("text-pitch-alignment"),w="none"!==s.get("icon-text-fit"),T="viewport-y"===s.get("symbol-z-order"),k=y&&(x||!o.hasIconData()||v),A=x&&(y||!o.hasTextData()||g);!o.collisionArrays&&p&&o.deserializeCollisionBoxes(p);var M=function(e,a){if(!r[e.crossTileID])if(h)i.placements[e.crossTileID]=new ge(!1,!1,!1);else{var p,T=!1,M=!1,S=!0,E=null,L={box:null,offscreen:null},C={box:null,offscreen:null},P=null,I=null,O=0,z=0,D=0;a.textFeatureIndex?O=a.textFeatureIndex:e.useRuntimeCollisionCircles&&(O=e.featureIndex),a.verticalTextFeatureIndex&&(z=a.verticalTextFeatureIndex);var R=a.textBox;if(R){var F=function(r){var n=t.WritingMode.horizontal;if(o.allowVerticalPlacement&&!r&&i.prevPlacement){var a=i.prevPlacement.placedOrientations[e.crossTileID];a&&(i.placedOrientations[e.crossTileID]=a,n=a,i.markUsedOrientation(o,n,e))}return n},B=function(r,n){if(o.allowVerticalPlacement&&e.numVerticalGlyphVertices>0&&a.verticalTextBox)for(var i=0,s=o.writingModes;i0&&(N=N.filter((function(t){return t!==j.anchor}))).unshift(j.anchor)}var U=function(t,r,n){for(var a=t.x2-t.x1,s=t.y2-t.y1,c=e.textBoxScale,u=w&&!x?r:null,h={box:[],offscreen:!1},p=y?2*N.length:N.length,d=0;d=N.length,k=i.attemptAnchorPlacement(g,t,a,s,c,b,_,f,l,m,v,e,o,n,u);if(k&&(h=k.placedGlyphBoxes)&&h.box&&h.box.length){T=!0,E=k.shift;break}}return h};B((function(){return U(R,a.iconBox,t.WritingMode.horizontal)}),(function(){var r=a.verticalTextBox,n=L&&L.box&&L.box.length;return o.allowVerticalPlacement&&!n&&e.numVerticalGlyphVertices>0&&r?U(r,a.verticalIconBox,t.WritingMode.vertical):{box:null,offscreen:null}})),L&&(T=L.box,S=L.offscreen);var V=F(L&&L.box);if(!T&&i.prevPlacement){var H=i.prevPlacement.variableOffsets[e.crossTileID];H&&(i.variableOffsets[e.crossTileID]=H,i.markUsedJustification(o,H.anchor,e,V))}}else{var q=function(t,r){var n=i.collisionIndex.placeCollisionBox(t,y,f,l,m.predicate);return n&&n.box&&n.box.length&&(i.markUsedOrientation(o,r,e),i.placedOrientations[e.crossTileID]=r),n};B((function(){return q(R,t.WritingMode.horizontal)}),(function(){var r=a.verticalTextBox;return o.allowVerticalPlacement&&e.numVerticalGlyphVertices>0&&r?q(r,t.WritingMode.vertical):{box:null,offscreen:null}})),F(L&&L.box&&L.box.length)}}if(T=(p=L)&&p.box&&p.box.length>0,S=p&&p.offscreen,e.useRuntimeCollisionCircles){var G=o.text.placedSymbolArray.get(e.centerJustifiedTextSymbolIndex),Y=t.evaluateSizeForFeature(o.textSizeData,d,G),W=s.get("text-padding"),X=e.collisionCircleDiameter;P=i.collisionIndex.placeCollisionCircles(y,G,o.lineVertexArray,o.glyphOffsetArray,Y,l,c,u,n,_,m.predicate,X,W),T=y||P.circles.length>0&&!P.collisionDetected,S=S&&P.offscreen}if(a.iconFeatureIndex&&(D=a.iconFeatureIndex),a.iconBox){var Z=function(t){var e=w&&E?_e(t,E.x,E.y,b,_,i.transform.angle):t;return i.collisionIndex.placeCollisionBox(e,x,f,l,m.predicate)};M=C&&C.box&&C.box.length&&a.verticalIconBox?(I=Z(a.verticalIconBox)).box.length>0:(I=Z(a.iconBox)).box.length>0,S=S&&I.offscreen}var J=g||0===e.numHorizontalGlyphVertices&&0===e.numVerticalGlyphVertices,K=v||0===e.numIconVertices;if(J||K?K?J||(M=M&&T):T=M&&T:M=T=M&&T,T&&p&&p.box&&(C&&C.box&&z?i.collisionIndex.insertCollisionBox(p.box,s.get("text-ignore-placement"),o.bucketInstanceId,z,m.ID):i.collisionIndex.insertCollisionBox(p.box,s.get("text-ignore-placement"),o.bucketInstanceId,O,m.ID)),M&&I&&i.collisionIndex.insertCollisionBox(I.box,s.get("icon-ignore-placement"),o.bucketInstanceId,D,m.ID),P&&(T&&i.collisionIndex.insertCollisionCircles(P.circles,s.get("text-ignore-placement"),o.bucketInstanceId,O,m.ID),n)){var Q=o.bucketInstanceId,$=i.collisionCircleArrays[Q];void 0===$&&($=i.collisionCircleArrays[Q]=new ve);for(var tt=0;tt=0;--E){var L=S[E];M(o.symbolInstances.get(L),o.collisionArrays[L])}else for(var C=e.symbolInstanceStart;C=0&&(e.text.placedSymbolArray.get(c).crossTileID=a>=0&&c!==a?0:n.crossTileID)}},we.prototype.markUsedOrientation=function(e,r,n){for(var i=r===t.WritingMode.horizontal||r===t.WritingMode.horizontalOnly?r:0,a=r===t.WritingMode.vertical?r:0,o=0,s=[n.leftJustifiedTextSymbolIndex,n.centerJustifiedTextSymbolIndex,n.rightJustifiedTextSymbolIndex];o0||l>0,x=a.numIconVertices>0,b=i.placedOrientations[a.crossTileID],_=b===t.WritingMode.vertical,w=b===t.WritingMode.horizontal||b===t.WritingMode.horizontalOnly;if(y){var T=Pe(v.text),k=_?Ie:T;d(e.text,s,k);var A=w?Ie:T;d(e.text,l,A);var M=v.text.isHidden();[a.rightJustifiedTextSymbolIndex,a.centerJustifiedTextSymbolIndex,a.leftJustifiedTextSymbolIndex].forEach((function(t){t>=0&&(e.text.placedSymbolArray.get(t).hidden=M||_?1:0)})),a.verticalPlacedTextSymbolIndex>=0&&(e.text.placedSymbolArray.get(a.verticalPlacedTextSymbolIndex).hidden=M||w?1:0);var S=i.variableOffsets[a.crossTileID];S&&i.markUsedJustification(e,S.anchor,a,b);var E=i.placedOrientations[a.crossTileID];E&&(i.markUsedJustification(e,"left",a,E),i.markUsedOrientation(e,E,a))}if(x){var L=Pe(v.icon),C=!(h&&a.verticalPlacedIconSymbolIndex&&_);if(a.placedIconSymbolIndex>=0){var P=C?L:Ie;d(e.icon,a.numIconVertices,P),e.icon.placedSymbolArray.get(a.placedIconSymbolIndex).hidden=v.icon.isHidden()}if(a.verticalPlacedIconSymbolIndex>=0){var I=C?Ie:L;d(e.icon,a.numVerticalIconVertices,I),e.icon.placedSymbolArray.get(a.verticalPlacedIconSymbolIndex).hidden=v.icon.isHidden()}}if(e.hasIconCollisionBoxData()||e.hasTextCollisionBoxData()){var O=e.collisionArrays[n];if(O){var z=new t.Point(0,0);if(O.textBox||O.verticalTextBox){var D=!0;if(c){var R=i.variableOffsets[m];R?(z=be(R.anchor,R.width,R.height,R.textOffset,R.textBoxScale),u&&z._rotate(f?i.transform.angle:-i.transform.angle)):D=!1}O.textBox&&Te(e.textCollisionBox.collisionVertexArray,v.text.placed,!D||_,z.x,z.y),O.verticalTextBox&&Te(e.textCollisionBox.collisionVertexArray,v.text.placed,!D||w,z.x,z.y)}var F=Boolean(!w&&O.verticalIconBox);O.iconBox&&Te(e.iconCollisionBox.collisionVertexArray,v.icon.placed,F,h?z.x:0,h?z.y:0),O.verticalIconBox&&Te(e.iconCollisionBox.collisionVertexArray,v.icon.placed,!F,h?z.x:0,h?z.y:0)}}},g=0;gt},we.prototype.setStale=function(){this.stale=!0};var ke=Math.pow(2,25),Ae=Math.pow(2,24),Me=Math.pow(2,17),Se=Math.pow(2,16),Ee=Math.pow(2,9),Le=Math.pow(2,8),Ce=Math.pow(2,1);function Pe(t){if(0===t.opacity&&!t.placed)return 0;if(1===t.opacity&&t.placed)return 4294967295;var e=t.placed?1:0,r=Math.floor(127*t.opacity);return r*ke+e*Ae+r*Me+e*Se+r*Ee+e*Le+r*Ce+e}var Ie=0,Oe=function(t){this._sortAcrossTiles="viewport-y"!==t.layout.get("symbol-z-order")&&void 0!==t.layout.get("symbol-sort-key").constantOr(1),this._currentTileIndex=0,this._currentPartIndex=0,this._seenCrossTileIDs={},this._bucketParts=[]};Oe.prototype.continuePlacement=function(t,e,r,n,i){for(var a=this._bucketParts;this._currentTileIndex2};this._currentPlacementIndex>=0;){var s=r[e[this._currentPlacementIndex]],l=this.placement.collisionIndex.transform.zoom;if("symbol"===s.type&&(!s.minzoom||s.minzoom<=l)&&(!s.maxzoom||s.maxzoom>l)){if(this._inProgressLayer||(this._inProgressLayer=new Oe(s)),this._inProgressLayer.continuePlacement(n[s.source],this.placement,this._showCollisionBoxes,s,o))return;delete this._inProgressLayer}this._currentPlacementIndex--}this._done=!0},ze.prototype.commit=function(t){return this.placement.commit(t),this.placement};var De=512/t.EXTENT/2,Re=function(t,e,r){this.tileID=t,this.indexedSymbolInstances={},this.bucketInstanceId=r;for(var n=0;nt.overscaledZ)for(var s in o){var l=o[s];l.tileID.isChildOf(t)&&l.findMatches(e.symbolInstances,t,i)}else{var c=o[t.scaledTo(Number(a)).key];c&&c.findMatches(e.symbolInstances,t,i)}}for(var u=0;u1?"@2x":"",l=t.getJSON(r.transformRequest(r.normalizeSpriteURL(e,s,".json"),t.ResourceType.SpriteJSON),(function(t,e){l=null,o||(o=t,i=e,u())})),c=t.getImage(r.transformRequest(r.normalizeSpriteURL(e,s,".png"),t.ResourceType.SpriteImage),(function(t,e){c=null,o||(o=t,a=e,u())}));function u(){if(o)n(o);else if(i&&a){var e=t.browser.getImageData(a),r={};for(var s in i){var l=i[s],c=l.width,u=l.height,f=l.x,h=l.y,p=l.sdf,d=l.pixelRatio,m=l.stretchX,g=l.stretchY,v=l.content,y=new t.RGBAImage({width:c,height:u});t.RGBAImage.copy(e,y,{x:f,y:h},{x:0,y:0},{width:c,height:u}),r[s]={data:y,pixelRatio:d,sdf:p,stretchX:m,stretchY:g,content:v}}n(null,r)}}return{cancel:function(){l&&(l.cancel(),l=null),c&&(c.cancel(),c=null)}}}(e,this.map._requestManager,(function(e,n){if(r._spriteRequest=null,e)r.fire(new t.ErrorEvent(e));else if(n)for(var i in n)r.imageManager.addImage(i,n[i]);r.imageManager.setLoaded(!0),r._availableImages=r.imageManager.listImages(),r.dispatcher.broadcast("setImages",r._availableImages),r.fire(new t.Event("data",{dataType:"style"}))}))},r.prototype._validateLayer=function(e){var r=this.sourceCaches[e.source];if(r){var n=e.sourceLayer;if(n){var i=r.getSource();("geojson"===i.type||i.vectorLayerIds&&-1===i.vectorLayerIds.indexOf(n))&&this.fire(new t.ErrorEvent(new Error('Source layer "'+n+'" does not exist on source "'+i.id+'" as specified by style layer "'+e.id+'"')))}}},r.prototype.loaded=function(){if(!this._loaded)return!1;if(Object.keys(this._updatedSources).length)return!1;for(var t in this.sourceCaches)if(!this.sourceCaches[t].loaded())return!1;return!!this.imageManager.isLoaded()},r.prototype._serializeLayers=function(t){for(var e=[],r=0,n=t;r0)throw new Error("Unimplemented: "+i.map((function(t){return t.command})).join(", ")+".");return n.forEach((function(t){"setTransition"!==t.command&&r[t.command].apply(r,t.args)})),this.stylesheet=e,!0},r.prototype.addImage=function(e,r){if(this.getImage(e))return this.fire(new t.ErrorEvent(new Error("An image with this name already exists.")));this.imageManager.addImage(e,r),this._availableImages=this.imageManager.listImages(),this._changedImages[e]=!0,this._changed=!0,this.fire(new t.Event("data",{dataType:"style"}))},r.prototype.updateImage=function(t,e){this.imageManager.updateImage(t,e)},r.prototype.getImage=function(t){return this.imageManager.getImage(t)},r.prototype.removeImage=function(e){if(!this.getImage(e))return this.fire(new t.ErrorEvent(new Error("No image with this name exists.")));this.imageManager.removeImage(e),this._availableImages=this.imageManager.listImages(),this._changedImages[e]=!0,this._changed=!0,this.fire(new t.Event("data",{dataType:"style"}))},r.prototype.listImages=function(){return this._checkLoaded(),this.imageManager.listImages()},r.prototype.addSource=function(e,r,n){var i=this;if(void 0===n&&(n={}),this._checkLoaded(),void 0!==this.sourceCaches[e])throw new Error("There is already a source with this ID");if(!r.type)throw new Error("The type property must be defined, but the only the following properties were given: "+Object.keys(r).join(", ")+".");if(!(["vector","raster","geojson","video","image"].indexOf(r.type)>=0)||!this._validate(t.validateStyle.source,"sources."+e,r,null,n)){this.map&&this.map._collectResourceTiming&&(r.collectResourceTiming=!0);var a=this.sourceCaches[e]=new Ct(e,r,this.dispatcher);a.style=this,a.setEventedParent(this,(function(){return{isSourceLoaded:i.loaded(),source:a.serialize(),sourceId:e}})),a.onAdd(this.map),this._changed=!0}},r.prototype.removeSource=function(e){if(this._checkLoaded(),void 0===this.sourceCaches[e])throw new Error("There is no source with this ID");for(var r in this._layers)if(this._layers[r].source===e)return this.fire(new t.ErrorEvent(new Error('Source "'+e+'" cannot be removed while layer "'+r+'" is using it.')));var n=this.sourceCaches[e];delete this.sourceCaches[e],delete this._updatedSources[e],n.fire(new t.Event("data",{sourceDataType:"metadata",dataType:"source",sourceId:e})),n.setEventedParent(null),n.clearTiles(),n.onRemove&&n.onRemove(this.map),this._changed=!0},r.prototype.setGeoJSONSourceData=function(t,e){this._checkLoaded(),this.sourceCaches[t].getSource().setData(e),this._changed=!0},r.prototype.getSource=function(t){return this.sourceCaches[t]&&this.sourceCaches[t].getSource()},r.prototype.addLayer=function(e,r,n){void 0===n&&(n={}),this._checkLoaded();var i=e.id;if(this.getLayer(i))this.fire(new t.ErrorEvent(new Error('Layer with id "'+i+'" already exists on this map')));else{var a;if("custom"===e.type){if(je(this,t.validateCustomStyleLayer(e)))return;a=t.createStyleLayer(e)}else{if("object"==typeof e.source&&(this.addSource(i,e.source),e=t.clone$1(e),e=t.extend(e,{source:i})),this._validate(t.validateStyle.layer,"layers."+i,e,{arrayIndex:-1},n))return;a=t.createStyleLayer(e),this._validateLayer(a),a.setEventedParent(this,{layer:{id:i}}),this._serializedLayers[a.id]=a.serialize()}var o=r?this._order.indexOf(r):this._order.length;if(r&&-1===o)this.fire(new t.ErrorEvent(new Error('Layer with id "'+r+'" does not exist on this map.')));else{if(this._order.splice(o,0,i),this._layerOrderChanged=!0,this._layers[i]=a,this._removedLayers[i]&&a.source&&"custom"!==a.type){var s=this._removedLayers[i];delete this._removedLayers[i],s.type!==a.type?this._updatedSources[a.source]="clear":(this._updatedSources[a.source]="reload",this.sourceCaches[a.source].pause())}this._updateLayer(a),a.onAdd&&a.onAdd(this.map)}}},r.prototype.moveLayer=function(e,r){if(this._checkLoaded(),this._changed=!0,this._layers[e]){if(e!==r){var n=this._order.indexOf(e);this._order.splice(n,1);var i=r?this._order.indexOf(r):this._order.length;r&&-1===i?this.fire(new t.ErrorEvent(new Error('Layer with id "'+r+'" does not exist on this map.'))):(this._order.splice(i,0,e),this._layerOrderChanged=!0)}}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be moved.")))},r.prototype.removeLayer=function(e){this._checkLoaded();var r=this._layers[e];if(r){r.setEventedParent(null);var n=this._order.indexOf(e);this._order.splice(n,1),this._layerOrderChanged=!0,this._changed=!0,this._removedLayers[e]=r,delete this._layers[e],delete this._serializedLayers[e],delete this._updatedLayers[e],delete this._updatedPaintProps[e],r.onRemove&&r.onRemove(this.map)}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be removed.")))},r.prototype.getLayer=function(t){return this._layers[t]},r.prototype.hasLayer=function(t){return t in this._layers},r.prototype.setLayerZoomRange=function(e,r,n){this._checkLoaded();var i=this.getLayer(e);i?i.minzoom===r&&i.maxzoom===n||(null!=r&&(i.minzoom=r),null!=n&&(i.maxzoom=n),this._updateLayer(i)):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot have zoom extent.")))},r.prototype.setFilter=function(e,r,n){void 0===n&&(n={}),this._checkLoaded();var i=this.getLayer(e);if(i){if(!t.deepEqual(i.filter,r))return null==r?(i.filter=void 0,void this._updateLayer(i)):void(this._validate(t.validateStyle.filter,"layers."+i.id+".filter",r,null,n)||(i.filter=t.clone$1(r),this._updateLayer(i)))}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be filtered.")))},r.prototype.getFilter=function(e){return t.clone$1(this.getLayer(e).filter)},r.prototype.setLayoutProperty=function(e,r,n,i){void 0===i&&(i={}),this._checkLoaded();var a=this.getLayer(e);a?t.deepEqual(a.getLayoutProperty(r),n)||(a.setLayoutProperty(r,n,i),this._updateLayer(a)):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be styled.")))},r.prototype.getLayoutProperty=function(e,r){var n=this.getLayer(e);if(n)return n.getLayoutProperty(r);this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style.")))},r.prototype.setPaintProperty=function(e,r,n,i){void 0===i&&(i={}),this._checkLoaded();var a=this.getLayer(e);a?t.deepEqual(a.getPaintProperty(r),n)||(a.setPaintProperty(r,n,i)&&this._updateLayer(a),this._changed=!0,this._updatedPaintProps[e]=!0):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be styled.")))},r.prototype.getPaintProperty=function(t,e){return this.getLayer(t).getPaintProperty(e)},r.prototype.setFeatureState=function(e,r){this._checkLoaded();var n=e.source,i=e.sourceLayer,a=this.sourceCaches[n];if(void 0!==a){var o=a.getSource().type;"geojson"===o&&i?this.fire(new t.ErrorEvent(new Error("GeoJSON sources cannot have a sourceLayer parameter."))):"vector"!==o||i?(void 0===e.id&&this.fire(new t.ErrorEvent(new Error("The feature id parameter must be provided."))),a.setFeatureState(i,e.id,r)):this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+n+"' does not exist in the map's style.")))},r.prototype.removeFeatureState=function(e,r){this._checkLoaded();var n=e.source,i=this.sourceCaches[n];if(void 0!==i){var a=i.getSource().type,o="vector"===a?e.sourceLayer:void 0;"vector"!==a||o?r&&"string"!=typeof e.id&&"number"!=typeof e.id?this.fire(new t.ErrorEvent(new Error("A feature id is requred to remove its specific state property."))):i.removeFeatureState(o,e.id,r):this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+n+"' does not exist in the map's style.")))},r.prototype.getFeatureState=function(e){this._checkLoaded();var r=e.source,n=e.sourceLayer,i=this.sourceCaches[r];if(void 0!==i){if("vector"!==i.getSource().type||n)return void 0===e.id&&this.fire(new t.ErrorEvent(new Error("The feature id parameter must be provided."))),i.getFeatureState(n,e.id);this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+r+"' does not exist in the map's style.")))},r.prototype.getTransition=function(){return t.extend({duration:300,delay:0},this.stylesheet&&this.stylesheet.transition)},r.prototype.serialize=function(){return t.filterObject({version:this.stylesheet.version,name:this.stylesheet.name,metadata:this.stylesheet.metadata,light:this.stylesheet.light,center:this.stylesheet.center,zoom:this.stylesheet.zoom,bearing:this.stylesheet.bearing,pitch:this.stylesheet.pitch,sprite:this.stylesheet.sprite,glyphs:this.stylesheet.glyphs,transition:this.stylesheet.transition,sources:t.mapObject(this.sourceCaches,(function(t){return t.serialize()})),layers:this._serializeLayers(this._order)},(function(t){return void 0!==t}))},r.prototype._updateLayer=function(t){this._updatedLayers[t.id]=!0,t.source&&!this._updatedSources[t.source]&&"raster"!==this.sourceCaches[t.source].getSource().type&&(this._updatedSources[t.source]="reload",this.sourceCaches[t.source].pause()),this._changed=!0},r.prototype._flattenAndSortRenderedFeatures=function(t){for(var e=this,r=function(t){return"fill-extrusion"===e._layers[t].type},n={},i=[],a=this._order.length-1;a>=0;a--){var o=this._order[a];if(r(o)){n[o]=a;for(var s=0,l=t;s=0;d--){var m=this._order[d];if(r(m))for(var g=i.length-1;g>=0;g--){var v=i[g].feature;if(n[v.layer.id] 0.5) {gl_FragColor=vec4(0.0,0.0,1.0,0.5)*alpha;}if (v_notUsed > 0.5) {gl_FragColor*=.1;}}","attribute vec2 a_pos;attribute vec2 a_anchor_pos;attribute vec2 a_extrude;attribute vec2 a_placed;attribute vec2 a_shift;uniform mat4 u_matrix;uniform vec2 u_extrude_scale;uniform float u_camera_to_center_distance;varying float v_placed;varying float v_notUsed;void main() {vec4 projectedPoint=u_matrix*vec4(a_anchor_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float collision_perspective_ratio=clamp(0.5+0.5*(u_camera_to_center_distance/camera_to_anchor_distance),0.0,4.0);gl_Position=u_matrix*vec4(a_pos,0.0,1.0);gl_Position.xy+=(a_extrude+a_shift)*u_extrude_scale*gl_Position.w*collision_perspective_ratio;v_placed=a_placed.x;v_notUsed=a_placed.y;}"),tr=yr("varying float v_radius;varying vec2 v_extrude;varying float v_perspective_ratio;varying float v_collision;void main() {float alpha=0.5*min(v_perspective_ratio,1.0);float stroke_radius=0.9*max(v_perspective_ratio,1.0);float distance_to_center=length(v_extrude);float distance_to_edge=abs(distance_to_center-v_radius);float opacity_t=smoothstep(-stroke_radius,0.0,-distance_to_edge);vec4 color=mix(vec4(0.0,0.0,1.0,0.5),vec4(1.0,0.0,0.0,1.0),v_collision);gl_FragColor=color*alpha*opacity_t;}","attribute vec2 a_pos;attribute float a_radius;attribute vec2 a_flags;uniform mat4 u_matrix;uniform mat4 u_inv_matrix;uniform vec2 u_viewport_size;uniform float u_camera_to_center_distance;varying float v_radius;varying vec2 v_extrude;varying float v_perspective_ratio;varying float v_collision;vec3 toTilePosition(vec2 screenPos) {vec4 rayStart=u_inv_matrix*vec4(screenPos,-1.0,1.0);vec4 rayEnd =u_inv_matrix*vec4(screenPos, 1.0,1.0);rayStart.xyz/=rayStart.w;rayEnd.xyz /=rayEnd.w;highp float t=(0.0-rayStart.z)/(rayEnd.z-rayStart.z);return mix(rayStart.xyz,rayEnd.xyz,t);}void main() {vec2 quadCenterPos=a_pos;float radius=a_radius;float collision=a_flags.x;float vertexIdx=a_flags.y;vec2 quadVertexOffset=vec2(mix(-1.0,1.0,float(vertexIdx >=2.0)),mix(-1.0,1.0,float(vertexIdx >=1.0 && vertexIdx <=2.0)));vec2 quadVertexExtent=quadVertexOffset*radius;vec3 tilePos=toTilePosition(quadCenterPos);vec4 clipPos=u_matrix*vec4(tilePos,1.0);highp float camera_to_anchor_distance=clipPos.w;highp float collision_perspective_ratio=clamp(0.5+0.5*(u_camera_to_center_distance/camera_to_anchor_distance),0.0,4.0);float padding_factor=1.2;v_radius=radius;v_extrude=quadVertexExtent*padding_factor;v_perspective_ratio=collision_perspective_ratio;v_collision=collision;gl_Position=vec4(clipPos.xyz/clipPos.w,1.0)+vec4(quadVertexExtent*padding_factor/u_viewport_size*2.0,0.0,0.0);}"),er=yr("uniform highp vec4 u_color;uniform sampler2D u_overlay;varying vec2 v_uv;void main() {vec4 overlay_color=texture2D(u_overlay,v_uv);gl_FragColor=mix(u_color,overlay_color,overlay_color.a);}","attribute vec2 a_pos;varying vec2 v_uv;uniform mat4 u_matrix;uniform float u_overlay_scale;void main() {v_uv=a_pos/8192.0;gl_Position=u_matrix*vec4(a_pos*u_overlay_scale,0,1);}"),rr=yr("#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float opacity\ngl_FragColor=color*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","attribute vec2 a_pos;uniform mat4 u_matrix;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float opacity\ngl_Position=u_matrix*vec4(a_pos,0,1);}"),nr=yr("varying vec2 v_pos;\n#pragma mapbox: define highp vec4 outline_color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 outline_color\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_pos-gl_FragCoord.xy);float alpha=1.0-smoothstep(0.0,1.0,dist);gl_FragColor=outline_color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","attribute vec2 a_pos;uniform mat4 u_matrix;uniform vec2 u_world;varying vec2 v_pos;\n#pragma mapbox: define highp vec4 outline_color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 outline_color\n#pragma mapbox: initialize lowp float opacity\ngl_Position=u_matrix*vec4(a_pos,0,1);v_pos=(gl_Position.xy/gl_Position.w+1.0)/2.0*u_world;}"),ir=yr("uniform vec2 u_texsize;uniform sampler2D u_image;uniform float u_fade;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec2 v_pos;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);float dist=length(v_pos-gl_FragCoord.xy);float alpha=1.0-smoothstep(0.0,1.0,dist);gl_FragColor=mix(color1,color2,u_fade)*alpha*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_world;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform vec3 u_scale;attribute vec2 a_pos;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec2 v_pos;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;gl_Position=u_matrix*vec4(a_pos,0,1);vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileRatio,a_pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileRatio,a_pos);v_pos=(gl_Position.xy/gl_Position.w+1.0)/2.0*u_world;}"),ar=yr("uniform vec2 u_texsize;uniform float u_fade;uniform sampler2D u_image;varying vec2 v_pos_a;varying vec2 v_pos_b;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);gl_FragColor=mix(color1,color2,u_fade)*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform vec3 u_scale;attribute vec2 a_pos;varying vec2 v_pos_a;varying vec2 v_pos_b;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileZoomRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;gl_Position=u_matrix*vec4(a_pos,0,1);v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileZoomRatio,a_pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileZoomRatio,a_pos);}"),or=yr("varying vec4 v_color;void main() {gl_FragColor=v_color;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec3 u_lightcolor;uniform lowp vec3 u_lightpos;uniform lowp float u_lightintensity;uniform float u_vertical_gradient;uniform lowp float u_opacity;attribute vec2 a_pos;attribute vec4 a_normal_ed;varying vec4 v_color;\n#pragma mapbox: define highp float base\n#pragma mapbox: define highp float height\n#pragma mapbox: define highp vec4 color\nvoid main() {\n#pragma mapbox: initialize highp float base\n#pragma mapbox: initialize highp float height\n#pragma mapbox: initialize highp vec4 color\nvec3 normal=a_normal_ed.xyz;base=max(0.0,base);height=max(0.0,height);float t=mod(normal.x,2.0);gl_Position=u_matrix*vec4(a_pos,t > 0.0 ? height : base,1);float colorvalue=color.r*0.2126+color.g*0.7152+color.b*0.0722;v_color=vec4(0.0,0.0,0.0,1.0);vec4 ambientlight=vec4(0.03,0.03,0.03,1.0);color+=ambientlight;float directional=clamp(dot(normal/16384.0,u_lightpos),0.0,1.0);directional=mix((1.0-u_lightintensity),max((1.0-colorvalue+u_lightintensity),1.0),directional);if (normal.y !=0.0) {directional*=((1.0-u_vertical_gradient)+(u_vertical_gradient*clamp((t+base)*pow(height/150.0,0.5),mix(0.7,0.98,1.0-u_lightintensity),1.0)));}v_color.r+=clamp(color.r*directional*u_lightcolor.r,mix(0.0,0.3,1.0-u_lightcolor.r),1.0);v_color.g+=clamp(color.g*directional*u_lightcolor.g,mix(0.0,0.3,1.0-u_lightcolor.g),1.0);v_color.b+=clamp(color.b*directional*u_lightcolor.b,mix(0.0,0.3,1.0-u_lightcolor.b),1.0);v_color*=u_opacity;}"),sr=yr("uniform vec2 u_texsize;uniform float u_fade;uniform sampler2D u_image;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec4 v_lighting;\n#pragma mapbox: define lowp float base\n#pragma mapbox: define lowp float height\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float base\n#pragma mapbox: initialize lowp float height\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);vec4 mixedColor=mix(color1,color2,u_fade);gl_FragColor=mixedColor*v_lighting;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform float u_height_factor;uniform vec3 u_scale;uniform float u_vertical_gradient;uniform lowp float u_opacity;uniform vec3 u_lightcolor;uniform lowp vec3 u_lightpos;uniform lowp float u_lightintensity;attribute vec2 a_pos;attribute vec4 a_normal_ed;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec4 v_lighting;\n#pragma mapbox: define lowp float base\n#pragma mapbox: define lowp float height\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float base\n#pragma mapbox: initialize lowp float height\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec3 normal=a_normal_ed.xyz;float edgedistance=a_normal_ed.w;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;base=max(0.0,base);height=max(0.0,height);float t=mod(normal.x,2.0);float z=t > 0.0 ? height : base;gl_Position=u_matrix*vec4(a_pos,z,1);vec2 pos=normal.x==1.0 && normal.y==0.0 && normal.z==16384.0\n? a_pos\n: vec2(edgedistance,z*u_height_factor);v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileRatio,pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileRatio,pos);v_lighting=vec4(0.0,0.0,0.0,1.0);float directional=clamp(dot(normal/16383.0,u_lightpos),0.0,1.0);directional=mix((1.0-u_lightintensity),max((0.5+u_lightintensity),1.0),directional);if (normal.y !=0.0) {directional*=((1.0-u_vertical_gradient)+(u_vertical_gradient*clamp((t+base)*pow(height/150.0,0.5),mix(0.7,0.98,1.0-u_lightintensity),1.0)));}v_lighting.rgb+=clamp(directional*u_lightcolor,mix(vec3(0.0),vec3(0.3),1.0-u_lightcolor),vec3(1.0));v_lighting*=u_opacity;}"),lr=yr("#ifdef GL_ES\nprecision highp float;\n#endif\nuniform sampler2D u_image;varying vec2 v_pos;uniform vec2 u_dimension;uniform float u_zoom;uniform float u_maxzoom;uniform vec4 u_unpack;float getElevation(vec2 coord,float bias) {vec4 data=texture2D(u_image,coord)*255.0;data.a=-1.0;return dot(data,u_unpack)/4.0;}void main() {vec2 epsilon=1.0/u_dimension;float a=getElevation(v_pos+vec2(-epsilon.x,-epsilon.y),0.0);float b=getElevation(v_pos+vec2(0,-epsilon.y),0.0);float c=getElevation(v_pos+vec2(epsilon.x,-epsilon.y),0.0);float d=getElevation(v_pos+vec2(-epsilon.x,0),0.0);float e=getElevation(v_pos,0.0);float f=getElevation(v_pos+vec2(epsilon.x,0),0.0);float g=getElevation(v_pos+vec2(-epsilon.x,epsilon.y),0.0);float h=getElevation(v_pos+vec2(0,epsilon.y),0.0);float i=getElevation(v_pos+vec2(epsilon.x,epsilon.y),0.0);float exaggeration=u_zoom < 2.0 ? 0.4 : u_zoom < 4.5 ? 0.35 : 0.3;vec2 deriv=vec2((c+f+f+i)-(a+d+d+g),(g+h+h+i)-(a+b+b+c))/ pow(2.0,(u_zoom-u_maxzoom)*exaggeration+19.2562-u_zoom);gl_FragColor=clamp(vec4(deriv.x/2.0+0.5,deriv.y/2.0+0.5,1.0,1.0),0.0,1.0);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_dimension;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);highp vec2 epsilon=1.0/u_dimension;float scale=(u_dimension.x-2.0)/u_dimension.x;v_pos=(a_texture_pos/8192.0)*scale+epsilon;}"),cr=yr("uniform sampler2D u_image;varying vec2 v_pos;uniform vec2 u_latrange;uniform vec2 u_light;uniform vec4 u_shadow;uniform vec4 u_highlight;uniform vec4 u_accent;\n#define PI 3.141592653589793\nvoid main() {vec4 pixel=texture2D(u_image,v_pos);vec2 deriv=((pixel.rg*2.0)-1.0);float scaleFactor=cos(radians((u_latrange[0]-u_latrange[1])*(1.0-v_pos.y)+u_latrange[1]));float slope=atan(1.25*length(deriv)/scaleFactor);float aspect=deriv.x !=0.0 ? atan(deriv.y,-deriv.x) : PI/2.0*(deriv.y > 0.0 ? 1.0 :-1.0);float intensity=u_light.x;float azimuth=u_light.y+PI;float base=1.875-intensity*1.75;float maxValue=0.5*PI;float scaledSlope=intensity !=0.5 ? ((pow(base,slope)-1.0)/(pow(base,maxValue)-1.0))*maxValue : slope;float accent=cos(scaledSlope);vec4 accent_color=(1.0-accent)*u_accent*clamp(intensity*2.0,0.0,1.0);float shade=abs(mod((aspect+azimuth)/PI+0.5,2.0)-1.0);vec4 shade_color=mix(u_shadow,u_highlight,shade)*sin(scaledSlope)*clamp(intensity*2.0,0.0,1.0);gl_FragColor=accent_color*(1.0-shade_color.a)+shade_color;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);v_pos=a_texture_pos/8192.0;}"),ur=yr("uniform lowp float u_device_pixel_ratio;varying vec2 v_width2;varying vec2 v_normal;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform vec2 u_units_to_pixels;uniform lowp float u_device_pixel_ratio;varying vec2 v_normal;varying vec2 v_width2;varying float v_gamma_scale;varying highp float v_linesofar;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;v_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*2.0;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_width2=vec2(outset,inset);}"),fr=yr("uniform lowp float u_device_pixel_ratio;uniform sampler2D u_image;varying vec2 v_width2;varying vec2 v_normal;varying float v_gamma_scale;varying highp float v_lineprogress;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);vec4 color=texture2D(u_image,vec2(v_lineprogress,0.5));gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define MAX_LINE_DISTANCE 32767.0\n#define scale 0.015873016\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;uniform vec2 u_units_to_pixels;varying vec2 v_normal;varying vec2 v_width2;varying float v_gamma_scale;varying highp float v_lineprogress;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;v_lineprogress=(floor(a_data.z/4.0)+a_data.w*64.0)*2.0/MAX_LINE_DISTANCE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_width2=vec2(outset,inset);}"),hr=yr("uniform lowp float u_device_pixel_ratio;uniform vec2 u_texsize;uniform float u_fade;uniform mediump vec3 u_scale;uniform sampler2D u_image;varying vec2 v_normal;varying vec2 v_width2;varying float v_linesofar;varying float v_gamma_scale;varying float v_width;\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileZoomRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;vec2 pattern_size_a=vec2(display_size_a.x*fromScale/tileZoomRatio,display_size_a.y);vec2 pattern_size_b=vec2(display_size_b.x*toScale/tileZoomRatio,display_size_b.y);float aspect_a=display_size_a.y/v_width;float aspect_b=display_size_b.y/v_width;float dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);float x_a=mod(v_linesofar/pattern_size_a.x*aspect_a,1.0);float x_b=mod(v_linesofar/pattern_size_b.x*aspect_b,1.0);float y=0.5*v_normal.y+0.5;vec2 texel_size=1.0/u_texsize;vec2 pos_a=mix(pattern_tl_a*texel_size-texel_size,pattern_br_a*texel_size+texel_size,vec2(x_a,y));vec2 pos_b=mix(pattern_tl_b*texel_size-texel_size,pattern_br_b*texel_size+texel_size,vec2(x_b,y));vec4 color=mix(texture2D(u_image,pos_a),texture2D(u_image,pos_b),u_fade);gl_FragColor=color*alpha*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\n#define LINE_DISTANCE_SCALE 2.0\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform vec2 u_units_to_pixels;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;varying vec2 v_normal;varying vec2 v_width2;varying float v_linesofar;varying float v_gamma_scale;varying float v_width;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;float a_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*LINE_DISTANCE_SCALE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_linesofar=a_linesofar;v_width2=vec2(outset,inset);v_width=floorwidth;}"),pr=yr("uniform lowp float u_device_pixel_ratio;uniform sampler2D u_image;uniform float u_sdfgamma;uniform float u_mix;varying vec2 v_normal;varying vec2 v_width2;varying vec2 v_tex_a;varying vec2 v_tex_b;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);float sdfdist_a=texture2D(u_image,v_tex_a).a;float sdfdist_b=texture2D(u_image,v_tex_b).a;float sdfdist=mix(sdfdist_a,sdfdist_b,u_mix);alpha*=smoothstep(0.5-u_sdfgamma/floorwidth,0.5+u_sdfgamma/floorwidth,sdfdist);gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\n#define LINE_DISTANCE_SCALE 2.0\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;uniform vec2 u_patternscale_a;uniform float u_tex_y_a;uniform vec2 u_patternscale_b;uniform float u_tex_y_b;uniform vec2 u_units_to_pixels;varying vec2 v_normal;varying vec2 v_width2;varying vec2 v_tex_a;varying vec2 v_tex_b;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;float a_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*LINE_DISTANCE_SCALE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_tex_a=vec2(a_linesofar*u_patternscale_a.x/floorwidth,normal.y*u_patternscale_a.y+u_tex_y_a);v_tex_b=vec2(a_linesofar*u_patternscale_b.x/floorwidth,normal.y*u_patternscale_b.y+u_tex_y_b);v_width2=vec2(outset,inset);}"),dr=yr("uniform float u_fade_t;uniform float u_opacity;uniform sampler2D u_image0;uniform sampler2D u_image1;varying vec2 v_pos0;varying vec2 v_pos1;uniform float u_brightness_low;uniform float u_brightness_high;uniform float u_saturation_factor;uniform float u_contrast_factor;uniform vec3 u_spin_weights;void main() {vec4 color0=texture2D(u_image0,v_pos0);vec4 color1=texture2D(u_image1,v_pos1);if (color0.a > 0.0) {color0.rgb=color0.rgb/color0.a;}if (color1.a > 0.0) {color1.rgb=color1.rgb/color1.a;}vec4 color=mix(color0,color1,u_fade_t);color.a*=u_opacity;vec3 rgb=color.rgb;rgb=vec3(dot(rgb,u_spin_weights.xyz),dot(rgb,u_spin_weights.zxy),dot(rgb,u_spin_weights.yzx));float average=(color.r+color.g+color.b)/3.0;rgb+=(average-rgb)*u_saturation_factor;rgb=(rgb-0.5)*u_contrast_factor+0.5;vec3 u_high_vec=vec3(u_brightness_low,u_brightness_low,u_brightness_low);vec3 u_low_vec=vec3(u_brightness_high,u_brightness_high,u_brightness_high);gl_FragColor=vec4(mix(u_high_vec,u_low_vec,rgb)*color.a,color.a);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_tl_parent;uniform float u_scale_parent;uniform float u_buffer_scale;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos0;varying vec2 v_pos1;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);v_pos0=(((a_texture_pos/8192.0)-0.5)/u_buffer_scale )+0.5;v_pos1=(v_pos0*u_scale_parent)+u_tl_parent;}"),mr=yr("uniform sampler2D u_texture;varying vec2 v_tex;varying float v_fade_opacity;\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\nlowp float alpha=opacity*v_fade_opacity;gl_FragColor=texture2D(u_texture,v_tex)*alpha;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec4 a_pixeloffset;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform highp float u_camera_to_center_distance;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform float u_fade_change;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform vec2 u_texsize;varying vec2 v_tex;varying float v_fade_opacity;\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);vec2 a_pxoffset=a_pixeloffset.xy;vec2 a_minFontScale=a_pixeloffset.zw/256.0;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=u_is_text ? size/24.0 : size;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*max(a_minFontScale,fontScale)+a_pxoffset/16.0),0.0,1.0);v_tex=a_tex/u_texsize;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;v_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));}"),gr=yr("#define SDF_PX 8.0\nuniform bool u_is_halo;uniform sampler2D u_texture;uniform highp float u_gamma_scale;uniform lowp float u_device_pixel_ratio;uniform bool u_is_text;varying vec2 v_data0;varying vec3 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nfloat EDGE_GAMMA=0.105/u_device_pixel_ratio;vec2 tex=v_data0.xy;float gamma_scale=v_data1.x;float size=v_data1.y;float fade_opacity=v_data1[2];float fontScale=u_is_text ? size/24.0 : size;lowp vec4 color=fill_color;highp float gamma=EDGE_GAMMA/(fontScale*u_gamma_scale);lowp float buff=(256.0-64.0)/256.0;if (u_is_halo) {color=halo_color;gamma=(halo_blur*1.19/SDF_PX+EDGE_GAMMA)/(fontScale*u_gamma_scale);buff=(6.0-halo_width/fontScale)/SDF_PX;}lowp float dist=texture2D(u_texture,tex).a;highp float gamma_scaled=gamma*gamma_scale;highp float alpha=smoothstep(buff-gamma_scaled,buff+gamma_scaled,dist);gl_FragColor=color*(alpha*opacity*fade_opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec4 a_pixeloffset;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform highp float u_camera_to_center_distance;uniform float u_fade_change;uniform vec2 u_texsize;varying vec2 v_data0;varying vec3 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);vec2 a_pxoffset=a_pixeloffset.xy;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=u_is_text ? size/24.0 : size;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*fontScale+a_pxoffset),0.0,1.0);float gamma_scale=gl_Position.w;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;float interpolated_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));v_data0=a_tex/u_texsize;v_data1=vec3(gamma_scale,size,interpolated_fade_opacity);}"),vr=yr("#define SDF_PX 8.0\n#define SDF 1.0\n#define ICON 0.0\nuniform bool u_is_halo;uniform sampler2D u_texture;uniform sampler2D u_texture_icon;uniform highp float u_gamma_scale;uniform lowp float u_device_pixel_ratio;varying vec4 v_data0;varying vec4 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nfloat fade_opacity=v_data1[2];if (v_data1.w==ICON) {vec2 tex_icon=v_data0.zw;lowp float alpha=opacity*fade_opacity;gl_FragColor=texture2D(u_texture_icon,tex_icon)*alpha;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\nreturn;}vec2 tex=v_data0.xy;float EDGE_GAMMA=0.105/u_device_pixel_ratio;float gamma_scale=v_data1.x;float size=v_data1.y;float fontScale=size/24.0;lowp vec4 color=fill_color;highp float gamma=EDGE_GAMMA/(fontScale*u_gamma_scale);lowp float buff=(256.0-64.0)/256.0;if (u_is_halo) {color=halo_color;gamma=(halo_blur*1.19/SDF_PX+EDGE_GAMMA)/(fontScale*u_gamma_scale);buff=(6.0-halo_width/fontScale)/SDF_PX;}lowp float dist=texture2D(u_texture,tex).a;highp float gamma_scaled=gamma*gamma_scale;highp float alpha=smoothstep(buff-gamma_scaled,buff+gamma_scaled,dist);gl_FragColor=color*(alpha*opacity*fade_opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform highp float u_camera_to_center_distance;uniform float u_fade_change;uniform vec2 u_texsize;uniform vec2 u_texsize_icon;varying vec4 v_data0;varying vec4 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);float is_sdf=a_size[0]-2.0*a_size_min;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=size/24.0;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*fontScale),0.0,1.0);float gamma_scale=gl_Position.w;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;float interpolated_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));v_data0.xy=a_tex/u_texsize;v_data0.zw=a_tex/u_texsize_icon;v_data1=vec4(gamma_scale,size,interpolated_fade_opacity,is_sdf);}");function yr(t,e){var r=/#pragma mapbox: ([\w]+) ([\w]+) ([\w]+) ([\w]+)/g,n={};return{fragmentSource:t=t.replace(r,(function(t,e,r,i,a){return n[a]=!0,"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nvarying "+r+" "+i+" "+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"\n#ifdef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n"})),vertexSource:e=e.replace(r,(function(t,e,r,i,a){var o="float"===i?"vec2":"vec4",s=a.match(/color/)?"color":o;return n[a]?"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nuniform lowp float u_"+a+"_t;\nattribute "+r+" "+o+" a_"+a+";\nvarying "+r+" "+i+" "+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"vec4"===s?"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+a+" = a_"+a+";\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+a+" = unpack_mix_"+s+"(a_"+a+", u_"+a+"_t);\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nuniform lowp float u_"+a+"_t;\nattribute "+r+" "+o+" a_"+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"vec4"===s?"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = a_"+a+";\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = unpack_mix_"+s+"(a_"+a+", u_"+a+"_t);\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n"}))}}var xr=Object.freeze({__proto__:null,prelude:Ye,background:We,backgroundPattern:Xe,circle:Ze,clippingMask:Je,heatmap:Ke,heatmapTexture:Qe,collisionBox:$e,collisionCircle:tr,debug:er,fill:rr,fillOutline:nr,fillOutlinePattern:ir,fillPattern:ar,fillExtrusion:or,fillExtrusionPattern:sr,hillshadePrepare:lr,hillshade:cr,line:ur,lineGradient:fr,linePattern:hr,lineSDF:pr,raster:dr,symbolIcon:mr,symbolSDF:gr,symbolTextAndIcon:vr}),br=function(){this.boundProgram=null,this.boundLayoutVertexBuffer=null,this.boundPaintVertexBuffers=[],this.boundIndexBuffer=null,this.boundVertexOffset=null,this.boundDynamicVertexBuffer=null,this.vao=null};br.prototype.bind=function(t,e,r,n,i,a,o,s){this.context=t;for(var l=this.boundPaintVertexBuffers.length!==n.length,c=0;!l&&c>16,s>>16],u_pixel_coord_lower:[65535&o,65535&s]}}_r.prototype.draw=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m){var g,v=t.gl;if(!this.failedToCreate){for(var y in t.program.set(this.program),t.setDepthMode(r),t.setStencilMode(n),t.setColorMode(i),t.setCullFace(a),this.fixedUniforms)this.fixedUniforms[y].set(o[y]);p&&p.setUniforms(t,this.binderUniforms,f,{zoom:h});for(var x=(g={},g[v.LINES]=2,g[v.TRIANGLES]=3,g[v.LINE_STRIP]=1,g)[e],b=0,_=u.get();b<_.length;b+=1){var w=_[b],T=w.vaos||(w.vaos={});(T[s]||(T[s]=new br)).bind(t,this,l,p?p.getPaintVertexBuffers():[],c,w.vertexOffset,d,m),v.drawElements(e,w.primitiveLength*x,v.UNSIGNED_SHORT,w.primitiveOffset*x*2)}}};var Tr=function(e,r,n,i){var a=r.style.light,o=a.properties.get("position"),s=[o.x,o.y,o.z],l=t.create$1();"viewport"===a.properties.get("anchor")&&t.fromRotation(l,-r.transform.angle),t.transformMat3(s,s,l);var c=a.properties.get("color");return{u_matrix:e,u_lightpos:s,u_lightintensity:a.properties.get("intensity"),u_lightcolor:[c.r,c.g,c.b],u_vertical_gradient:+n,u_opacity:i}},kr=function(e,r,n,i,a,o,s){return t.extend(Tr(e,r,n,i),wr(o,r,s),{u_height_factor:-Math.pow(2,a.overscaledZ)/s.tileSize/8})},Ar=function(t){return{u_matrix:t}},Mr=function(e,r,n,i){return t.extend(Ar(e),wr(n,r,i))},Sr=function(t,e){return{u_matrix:t,u_world:e}},Er=function(e,r,n,i,a){return t.extend(Mr(e,r,n,i),{u_world:a})},Lr=function(e,r,n,i){var a,o,s=e.transform;if("map"===i.paint.get("circle-pitch-alignment")){var l=pe(n,1,s.zoom);a=!0,o=[l,l]}else a=!1,o=s.pixelsToGLUnits;return{u_camera_to_center_distance:s.cameraToCenterDistance,u_scale_with_map:+("map"===i.paint.get("circle-pitch-scale")),u_matrix:e.translatePosMatrix(r.posMatrix,n,i.paint.get("circle-translate"),i.paint.get("circle-translate-anchor")),u_pitch_with_map:+a,u_device_pixel_ratio:t.browser.devicePixelRatio,u_extrude_scale:o}},Cr=function(t,e,r){var n=pe(r,1,e.zoom),i=Math.pow(2,e.zoom-r.tileID.overscaledZ),a=r.tileID.overscaleFactor();return{u_matrix:t,u_camera_to_center_distance:e.cameraToCenterDistance,u_pixels_to_tile_units:n,u_extrude_scale:[e.pixelsToGLUnits[0]/(n*i),e.pixelsToGLUnits[1]/(n*i)],u_overscale_factor:a}},Pr=function(t,e,r){return{u_matrix:t,u_inv_matrix:e,u_camera_to_center_distance:r.cameraToCenterDistance,u_viewport_size:[r.width,r.height]}},Ir=function(t,e,r){return void 0===r&&(r=1),{u_matrix:t,u_color:e,u_overlay:0,u_overlay_scale:r}},Or=function(t){return{u_matrix:t}},zr=function(t,e,r,n){return{u_matrix:t,u_extrude_scale:pe(e,1,r),u_intensity:n}};function Dr(e,r){var n=Math.pow(2,r.canonical.z),i=r.canonical.y;return[new t.MercatorCoordinate(0,i/n).toLngLat().lat,new t.MercatorCoordinate(0,(i+1)/n).toLngLat().lat]}var Rr=function(e,r,n){var i=e.transform;return{u_matrix:Ur(e,r,n),u_ratio:1/pe(r,1,i.zoom),u_device_pixel_ratio:t.browser.devicePixelRatio,u_units_to_pixels:[1/i.pixelsToGLUnits[0],1/i.pixelsToGLUnits[1]]}},Fr=function(e,r,n){return t.extend(Rr(e,r,n),{u_image:0})},Br=function(e,r,n,i){var a=e.transform,o=jr(r,a);return{u_matrix:Ur(e,r,n),u_texsize:r.imageAtlasTexture.size,u_ratio:1/pe(r,1,a.zoom),u_device_pixel_ratio:t.browser.devicePixelRatio,u_image:0,u_scale:[o,i.fromScale,i.toScale],u_fade:i.t,u_units_to_pixels:[1/a.pixelsToGLUnits[0],1/a.pixelsToGLUnits[1]]}},Nr=function(e,r,n,i,a){var o=e.transform,s=e.lineAtlas,l=jr(r,o),c="round"===n.layout.get("line-cap"),u=s.getDash(i.from,c),f=s.getDash(i.to,c),h=u.width*a.fromScale,p=f.width*a.toScale;return t.extend(Rr(e,r,n),{u_patternscale_a:[l/h,-u.height/2],u_patternscale_b:[l/p,-f.height/2],u_sdfgamma:s.width/(256*Math.min(h,p)*t.browser.devicePixelRatio)/2,u_image:0,u_tex_y_a:u.y,u_tex_y_b:f.y,u_mix:a.t})};function jr(t,e){return 1/pe(t,1,e.tileZoom)}function Ur(t,e,r){return t.translatePosMatrix(e.tileID.posMatrix,e,r.paint.get("line-translate"),r.paint.get("line-translate-anchor"))}var Vr=function(t,e,r,n,i){return{u_matrix:t,u_tl_parent:e,u_scale_parent:r,u_buffer_scale:1,u_fade_t:n.mix,u_opacity:n.opacity*i.paint.get("raster-opacity"),u_image0:0,u_image1:1,u_brightness_low:i.paint.get("raster-brightness-min"),u_brightness_high:i.paint.get("raster-brightness-max"),u_saturation_factor:(o=i.paint.get("raster-saturation"),o>0?1-1/(1.001-o):-o),u_contrast_factor:(a=i.paint.get("raster-contrast"),a>0?1/(1-a):1+a),u_spin_weights:Hr(i.paint.get("raster-hue-rotate"))};var a,o};function Hr(t){t*=Math.PI/180;var e=Math.sin(t),r=Math.cos(t);return[(2*r+1)/3,(-Math.sqrt(3)*e-r+1)/3,(Math.sqrt(3)*e-r+1)/3]}var qr,Gr=function(t,e,r,n,i,a,o,s,l,c){var u=i.transform;return{u_is_size_zoom_constant:+("constant"===t||"source"===t),u_is_size_feature_constant:+("constant"===t||"camera"===t),u_size_t:e?e.uSizeT:0,u_size:e?e.uSize:0,u_camera_to_center_distance:u.cameraToCenterDistance,u_pitch:u.pitch/360*2*Math.PI,u_rotate_symbol:+r,u_aspect_ratio:u.width/u.height,u_fade_change:i.options.fadeDuration?i.symbolFadeChange:1,u_matrix:a,u_label_plane_matrix:o,u_coord_matrix:s,u_is_text:+l,u_pitch_with_map:+n,u_texsize:c,u_texture:0}},Yr=function(e,r,n,i,a,o,s,l,c,u,f){var h=a.transform;return t.extend(Gr(e,r,n,i,a,o,s,l,c,u),{u_gamma_scale:i?Math.cos(h._pitch)*h.cameraToCenterDistance:1,u_device_pixel_ratio:t.browser.devicePixelRatio,u_is_halo:+f})},Wr=function(e,r,n,i,a,o,s,l,c,u){return t.extend(Yr(e,r,n,i,a,o,s,l,!0,c,!0),{u_texsize_icon:u,u_texture_icon:1})},Xr=function(t,e,r){return{u_matrix:t,u_opacity:e,u_color:r}},Zr=function(e,r,n,i,a,o){return t.extend(function(t,e,r,n){var i=r.imageManager.getPattern(t.from.toString()),a=r.imageManager.getPattern(t.to.toString()),o=r.imageManager.getPixelSize(),s=o.width,l=o.height,c=Math.pow(2,n.tileID.overscaledZ),u=n.tileSize*Math.pow(2,r.transform.tileZoom)/c,f=u*(n.tileID.canonical.x+n.tileID.wrap*c),h=u*n.tileID.canonical.y;return{u_image:0,u_pattern_tl_a:i.tl,u_pattern_br_a:i.br,u_pattern_tl_b:a.tl,u_pattern_br_b:a.br,u_texsize:[s,l],u_mix:e.t,u_pattern_size_a:i.displaySize,u_pattern_size_b:a.displaySize,u_scale_a:e.fromScale,u_scale_b:e.toScale,u_tile_units_to_pixels:1/pe(n,1,r.transform.tileZoom),u_pixel_coord_upper:[f>>16,h>>16],u_pixel_coord_lower:[65535&f,65535&h]}}(i,o,n,a),{u_matrix:e,u_opacity:r})},Jr={fillExtrusion:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_lightpos:new t.Uniform3f(e,r.u_lightpos),u_lightintensity:new t.Uniform1f(e,r.u_lightintensity),u_lightcolor:new t.Uniform3f(e,r.u_lightcolor),u_vertical_gradient:new t.Uniform1f(e,r.u_vertical_gradient),u_opacity:new t.Uniform1f(e,r.u_opacity)}},fillExtrusionPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_lightpos:new t.Uniform3f(e,r.u_lightpos),u_lightintensity:new t.Uniform1f(e,r.u_lightintensity),u_lightcolor:new t.Uniform3f(e,r.u_lightcolor),u_vertical_gradient:new t.Uniform1f(e,r.u_vertical_gradient),u_height_factor:new t.Uniform1f(e,r.u_height_factor),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade),u_opacity:new t.Uniform1f(e,r.u_opacity)}},fill:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},fillPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},fillOutline:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world)}},fillOutlinePattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},circle:function(e,r){return{u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_scale_with_map:new t.Uniform1i(e,r.u_scale_with_map),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_extrude_scale:new t.Uniform2f(e,r.u_extrude_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},collisionBox:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pixels_to_tile_units:new t.Uniform1f(e,r.u_pixels_to_tile_units),u_extrude_scale:new t.Uniform2f(e,r.u_extrude_scale),u_overscale_factor:new t.Uniform1f(e,r.u_overscale_factor)}},collisionCircle:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_inv_matrix:new t.UniformMatrix4f(e,r.u_inv_matrix),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_viewport_size:new t.Uniform2f(e,r.u_viewport_size)}},debug:function(e,r){return{u_color:new t.UniformColor(e,r.u_color),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_overlay:new t.Uniform1i(e,r.u_overlay),u_overlay_scale:new t.Uniform1f(e,r.u_overlay_scale)}},clippingMask:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},heatmap:function(e,r){return{u_extrude_scale:new t.Uniform1f(e,r.u_extrude_scale),u_intensity:new t.Uniform1f(e,r.u_intensity),u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},heatmapTexture:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world),u_image:new t.Uniform1i(e,r.u_image),u_color_ramp:new t.Uniform1i(e,r.u_color_ramp),u_opacity:new t.Uniform1f(e,r.u_opacity)}},hillshade:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_latrange:new t.Uniform2f(e,r.u_latrange),u_light:new t.Uniform2f(e,r.u_light),u_shadow:new t.UniformColor(e,r.u_shadow),u_highlight:new t.UniformColor(e,r.u_highlight),u_accent:new t.UniformColor(e,r.u_accent)}},hillshadePrepare:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_dimension:new t.Uniform2f(e,r.u_dimension),u_zoom:new t.Uniform1f(e,r.u_zoom),u_maxzoom:new t.Uniform1f(e,r.u_maxzoom),u_unpack:new t.Uniform4f(e,r.u_unpack)}},line:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels)}},lineGradient:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_image:new t.Uniform1i(e,r.u_image)}},linePattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_texsize:new t.Uniform2f(e,r.u_texsize),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_image:new t.Uniform1i(e,r.u_image),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},lineSDF:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_patternscale_a:new t.Uniform2f(e,r.u_patternscale_a),u_patternscale_b:new t.Uniform2f(e,r.u_patternscale_b),u_sdfgamma:new t.Uniform1f(e,r.u_sdfgamma),u_image:new t.Uniform1i(e,r.u_image),u_tex_y_a:new t.Uniform1f(e,r.u_tex_y_a),u_tex_y_b:new t.Uniform1f(e,r.u_tex_y_b),u_mix:new t.Uniform1f(e,r.u_mix)}},raster:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_tl_parent:new t.Uniform2f(e,r.u_tl_parent),u_scale_parent:new t.Uniform1f(e,r.u_scale_parent),u_buffer_scale:new t.Uniform1f(e,r.u_buffer_scale),u_fade_t:new t.Uniform1f(e,r.u_fade_t),u_opacity:new t.Uniform1f(e,r.u_opacity),u_image0:new t.Uniform1i(e,r.u_image0),u_image1:new t.Uniform1i(e,r.u_image1),u_brightness_low:new t.Uniform1f(e,r.u_brightness_low),u_brightness_high:new t.Uniform1f(e,r.u_brightness_high),u_saturation_factor:new t.Uniform1f(e,r.u_saturation_factor),u_contrast_factor:new t.Uniform1f(e,r.u_contrast_factor),u_spin_weights:new t.Uniform3f(e,r.u_spin_weights)}},symbolIcon:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texture:new t.Uniform1i(e,r.u_texture)}},symbolSDF:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texture:new t.Uniform1i(e,r.u_texture),u_gamma_scale:new t.Uniform1f(e,r.u_gamma_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_is_halo:new t.Uniform1i(e,r.u_is_halo)}},symbolTextAndIcon:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texsize_icon:new t.Uniform2f(e,r.u_texsize_icon),u_texture:new t.Uniform1i(e,r.u_texture),u_texture_icon:new t.Uniform1i(e,r.u_texture_icon),u_gamma_scale:new t.Uniform1f(e,r.u_gamma_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_is_halo:new t.Uniform1i(e,r.u_is_halo)}},background:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_opacity:new t.Uniform1f(e,r.u_opacity),u_color:new t.UniformColor(e,r.u_color)}},backgroundPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_opacity:new t.Uniform1f(e,r.u_opacity),u_image:new t.Uniform1i(e,r.u_image),u_pattern_tl_a:new t.Uniform2f(e,r.u_pattern_tl_a),u_pattern_br_a:new t.Uniform2f(e,r.u_pattern_br_a),u_pattern_tl_b:new t.Uniform2f(e,r.u_pattern_tl_b),u_pattern_br_b:new t.Uniform2f(e,r.u_pattern_br_b),u_texsize:new t.Uniform2f(e,r.u_texsize),u_mix:new t.Uniform1f(e,r.u_mix),u_pattern_size_a:new t.Uniform2f(e,r.u_pattern_size_a),u_pattern_size_b:new t.Uniform2f(e,r.u_pattern_size_b),u_scale_a:new t.Uniform1f(e,r.u_scale_a),u_scale_b:new t.Uniform1f(e,r.u_scale_b),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_tile_units_to_pixels:new t.Uniform1f(e,r.u_tile_units_to_pixels)}}};function Kr(e,r,n,i,a,o,s){for(var l=e.context,c=l.gl,u=e.useProgram("collisionBox"),f=[],h=0,p=0,d=0;d0){var _=t.create(),w=y;t.mul(_,v.placementInvProjMatrix,e.transform.glCoordMatrix),t.mul(_,_,v.placementViewportMatrix),f.push({circleArray:b,circleOffset:p,transform:w,invTransform:_}),p=h+=b.length/4}x&&u.draw(l,c.LINES,At.disabled,Mt.disabled,e.colorModeForRenderPass(),Et.disabled,Cr(y,e.transform,g),n.id,x.layoutVertexBuffer,x.indexBuffer,x.segments,null,e.transform.zoom,null,null,x.collisionVertexBuffer)}}if(s&&f.length){var T=e.useProgram("collisionCircle"),k=new t.StructArrayLayout2f1f2i16;k.resize(4*h),k._trim();for(var A=0,M=0,S=f;M=0&&(m[v.associatedIconIndex]={shiftedAnchor:S,angle:E})}else ue(v.numGlyphs,p)}if(f){d.clear();for(var C=e.icon.placedSymbolArray,P=0;P0){var s=t.browser.now(),l=(s-e.timeAdded)/o,c=r?(s-r.timeAdded)/o:-1,u=n.getSource(),f=a.coveringZoomLevel({tileSize:u.tileSize,roundZoom:u.roundZoom}),h=!r||Math.abs(r.tileID.overscaledZ-f)>Math.abs(e.tileID.overscaledZ-f),p=h&&e.refreshedUponExpiration?1:t.clamp(h?l:1-c,0,1);return e.refreshedUponExpiration&&l>=1&&(e.refreshedUponExpiration=!1),r?{opacity:1,mix:1-p}:{opacity:p,mix:0}}return{opacity:1,mix:0}}var un=new t.Color(1,0,0,1),fn=new t.Color(0,1,0,1),hn=new t.Color(0,0,1,1),pn=new t.Color(1,0,1,1),dn=new t.Color(0,1,1,1);function mn(t){var e=t.transform.padding;gn(t,t.transform.height-(e.top||0),3,un),gn(t,e.bottom||0,3,fn),vn(t,e.left||0,3,hn),vn(t,t.transform.width-(e.right||0),3,pn);var r=t.transform.centerPoint;!function(t,e,r,n){yn(t,e-1,r-10,2,20,n),yn(t,e-10,r-1,20,2,n)}(t,r.x,t.transform.height-r.y,dn)}function gn(t,e,r,n){yn(t,0,e+r/2,t.transform.width,r,n)}function vn(t,e,r,n){yn(t,e-r/2,0,r,t.transform.height,n)}function yn(e,r,n,i,a,o){var s=e.context,l=s.gl;l.enable(l.SCISSOR_TEST),l.scissor(r*t.browser.devicePixelRatio,n*t.browser.devicePixelRatio,i*t.browser.devicePixelRatio,a*t.browser.devicePixelRatio),s.clear({color:o}),l.disable(l.SCISSOR_TEST)}function xn(e,r,n){var i=e.context,a=i.gl,o=n.posMatrix,s=e.useProgram("debug"),l=At.disabled,c=Mt.disabled,u=e.colorModeForRenderPass();i.activeTexture.set(a.TEXTURE0),e.emptyTexture.bind(a.LINEAR,a.CLAMP_TO_EDGE),s.draw(i,a.LINE_STRIP,l,c,u,Et.disabled,Ir(o,t.Color.red),"$debug",e.debugBuffer,e.tileBorderIndexBuffer,e.debugSegments);var f=r.getTileByID(n.key).latestRawTileData,h=f&&f.byteLength||0,p=Math.floor(h/1024),d=r.getTile(n).tileSize,m=512/Math.min(d,512)*(n.overscaledZ/e.transform.zoom)*.5,g=n.canonical.toString();n.overscaledZ!==n.canonical.z&&(g+=" => "+n.overscaledZ),function(t,e){t.initDebugOverlayCanvas();var r=t.debugOverlayCanvas,n=t.context.gl,i=t.debugOverlayCanvas.getContext("2d");i.clearRect(0,0,r.width,r.height),i.shadowColor="white",i.shadowBlur=2,i.lineWidth=1.5,i.strokeStyle="white",i.textBaseline="top",i.font="bold 36px Open Sans, sans-serif",i.fillText(e,5,5),i.strokeText(e,5,5),t.debugOverlayTexture.update(r),t.debugOverlayTexture.bind(n.LINEAR,n.CLAMP_TO_EDGE)}(e,g+" "+p+"kb"),s.draw(i,a.TRIANGLES,l,c,St.alphaBlended,Et.disabled,Ir(o,t.Color.transparent,m),"$debug",e.debugBuffer,e.quadTriangleIndexBuffer,e.debugSegments)}var bn={symbol:function(e,r,n,i,a){if("translucent"===e.renderPass){var o=Mt.disabled,s=e.colorModeForRenderPass();n.layout.get("text-variable-anchor")&&function(e,r,n,i,a,o,s){for(var l=r.transform,c="map"===a,u="map"===o,f=0,h=e;f256&&this.clearStencil(),r.setColorMode(St.disabled),r.setDepthMode(At.disabled);var i=this.useProgram("clippingMask");this._tileClippingMaskIDs={};for(var a=0,o=e;a256&&this.clearStencil();var t=this.nextStencilID++,e=this.context.gl;return new Mt({func:e.NOTEQUAL,mask:255},t,255,e.KEEP,e.KEEP,e.REPLACE)},_n.prototype.stencilModeForClipping=function(t){var e=this.context.gl;return new Mt({func:e.EQUAL,mask:255},this._tileClippingMaskIDs[t.key],0,e.KEEP,e.KEEP,e.REPLACE)},_n.prototype.stencilConfigForOverlap=function(t){var e,r=this.context.gl,n=t.sort((function(t,e){return e.overscaledZ-t.overscaledZ})),i=n[n.length-1].overscaledZ,a=n[0].overscaledZ-i+1;if(a>1){this.currentStencilSource=void 0,this.nextStencilID+a>256&&this.clearStencil();for(var o={},s=0;s=0;this.currentLayer--){var w=this.style._layers[i[this.currentLayer]],T=a[w.source],k=u[w.source];this._renderTileClippingMasks(w,k),this.renderLayer(this,T,w,k)}for(this.renderPass="translucent",this.currentLayer=0;this.currentLayer0?e.pop():null},_n.prototype.isPatternMissing=function(t){if(!t)return!1;if(!t.from||!t.to)return!0;var e=this.imageManager.getPattern(t.from.toString()),r=this.imageManager.getPattern(t.to.toString());return!e||!r},_n.prototype.useProgram=function(t,e){this.cache=this.cache||{};var r=""+t+(e?e.cacheKey:"")+(this._showOverdrawInspector?"/overdraw":"");return this.cache[r]||(this.cache[r]=new _r(this.context,xr[t],e,Jr[t],this._showOverdrawInspector)),this.cache[r]},_n.prototype.setCustomLayerDefaults=function(){this.context.unbindVAO(),this.context.cullFace.setDefault(),this.context.activeTexture.setDefault(),this.context.pixelStoreUnpack.setDefault(),this.context.pixelStoreUnpackPremultiplyAlpha.setDefault(),this.context.pixelStoreUnpackFlipY.setDefault()},_n.prototype.setBaseState=function(){var t=this.context.gl;this.context.cullFace.set(!1),this.context.viewport.set([0,0,this.width,this.height]),this.context.blendEquation.set(t.FUNC_ADD)},_n.prototype.initDebugOverlayCanvas=function(){if(null==this.debugOverlayCanvas){this.debugOverlayCanvas=t.window.document.createElement("canvas"),this.debugOverlayCanvas.width=512,this.debugOverlayCanvas.height=512;var e=this.context.gl;this.debugOverlayTexture=new t.Texture(this.context,this.debugOverlayCanvas,e.RGBA)}},_n.prototype.destroy=function(){this.emptyTexture.destroy(),this.debugOverlayTexture&&this.debugOverlayTexture.destroy()};var wn=function(t,e){this.points=t,this.planes=e};wn.fromInvProjectionMatrix=function(e,r,n){var i=Math.pow(2,n),a=[[-1,1,-1,1],[1,1,-1,1],[1,-1,-1,1],[-1,-1,-1,1],[-1,1,1,1],[1,1,1,1],[1,-1,1,1],[-1,-1,1,1]].map((function(r){return t.transformMat4([],r,e)})).map((function(e){return t.scale$1([],e,1/e[3]/r*i)})),o=[[0,1,2],[6,5,4],[0,3,7],[2,1,5],[3,2,6],[0,4,5]].map((function(e){var r=t.sub([],a[e[0]],a[e[1]]),n=t.sub([],a[e[2]],a[e[1]]),i=t.normalize([],t.cross([],r,n)),o=-t.dot(i,a[e[1]]);return i.concat(o)}));return new wn(a,o)};var Tn=function(e,r){this.min=e,this.max=r,this.center=t.scale$2([],t.add([],this.min,this.max),.5)};Tn.prototype.quadrant=function(e){for(var r=[e%2==0,e<2],n=t.clone$2(this.min),i=t.clone$2(this.max),a=0;a=0;if(0===o)return 0;o!==r.length&&(n=!1)}if(n)return 2;for(var l=0;l<3;l++){for(var c=Number.MAX_VALUE,u=-Number.MAX_VALUE,f=0;fthis.max[l]-this.min[l])return 0}return 1};var kn=function(t,e,r,n){if(void 0===t&&(t=0),void 0===e&&(e=0),void 0===r&&(r=0),void 0===n&&(n=0),isNaN(t)||t<0||isNaN(e)||e<0||isNaN(r)||r<0||isNaN(n)||n<0)throw new Error("Invalid value for edge-insets, top, bottom, left and right must all be numbers");this.top=t,this.bottom=e,this.left=r,this.right=n};kn.prototype.interpolate=function(e,r,n){return null!=r.top&&null!=e.top&&(this.top=t.number(e.top,r.top,n)),null!=r.bottom&&null!=e.bottom&&(this.bottom=t.number(e.bottom,r.bottom,n)),null!=r.left&&null!=e.left&&(this.left=t.number(e.left,r.left,n)),null!=r.right&&null!=e.right&&(this.right=t.number(e.right,r.right,n)),this},kn.prototype.getCenter=function(e,r){var n=t.clamp((this.left+e-this.right)/2,0,e),i=t.clamp((this.top+r-this.bottom)/2,0,r);return new t.Point(n,i)},kn.prototype.equals=function(t){return this.top===t.top&&this.bottom===t.bottom&&this.left===t.left&&this.right===t.right},kn.prototype.clone=function(){return new kn(this.top,this.bottom,this.left,this.right)},kn.prototype.toJSON=function(){return{top:this.top,bottom:this.bottom,left:this.left,right:this.right}};var An=function(e,r,n,i,a){this.tileSize=512,this.maxValidLatitude=85.051129,this._renderWorldCopies=void 0===a||a,this._minZoom=e||0,this._maxZoom=r||22,this._minPitch=null==n?0:n,this._maxPitch=null==i?60:i,this.setMaxBounds(),this.width=0,this.height=0,this._center=new t.LngLat(0,0),this.zoom=0,this.angle=0,this._fov=.6435011087932844,this._pitch=0,this._unmodified=!0,this._edgeInsets=new kn,this._posMatrixCache={},this._alignedPosMatrixCache={}},Mn={minZoom:{configurable:!0},maxZoom:{configurable:!0},minPitch:{configurable:!0},maxPitch:{configurable:!0},renderWorldCopies:{configurable:!0},worldSize:{configurable:!0},centerOffset:{configurable:!0},size:{configurable:!0},bearing:{configurable:!0},pitch:{configurable:!0},fov:{configurable:!0},zoom:{configurable:!0},center:{configurable:!0},padding:{configurable:!0},centerPoint:{configurable:!0},unmodified:{configurable:!0},point:{configurable:!0}};An.prototype.clone=function(){var t=new An(this._minZoom,this._maxZoom,this._minPitch,this.maxPitch,this._renderWorldCopies);return t.tileSize=this.tileSize,t.latRange=this.latRange,t.width=this.width,t.height=this.height,t._center=this._center,t.zoom=this.zoom,t.angle=this.angle,t._fov=this._fov,t._pitch=this._pitch,t._unmodified=this._unmodified,t._edgeInsets=this._edgeInsets.clone(),t._calcMatrices(),t},Mn.minZoom.get=function(){return this._minZoom},Mn.minZoom.set=function(t){this._minZoom!==t&&(this._minZoom=t,this.zoom=Math.max(this.zoom,t))},Mn.maxZoom.get=function(){return this._maxZoom},Mn.maxZoom.set=function(t){this._maxZoom!==t&&(this._maxZoom=t,this.zoom=Math.min(this.zoom,t))},Mn.minPitch.get=function(){return this._minPitch},Mn.minPitch.set=function(t){this._minPitch!==t&&(this._minPitch=t,this.pitch=Math.max(this.pitch,t))},Mn.maxPitch.get=function(){return this._maxPitch},Mn.maxPitch.set=function(t){this._maxPitch!==t&&(this._maxPitch=t,this.pitch=Math.min(this.pitch,t))},Mn.renderWorldCopies.get=function(){return this._renderWorldCopies},Mn.renderWorldCopies.set=function(t){void 0===t?t=!0:null===t&&(t=!1),this._renderWorldCopies=t},Mn.worldSize.get=function(){return this.tileSize*this.scale},Mn.centerOffset.get=function(){return this.centerPoint._sub(this.size._div(2))},Mn.size.get=function(){return new t.Point(this.width,this.height)},Mn.bearing.get=function(){return-this.angle/Math.PI*180},Mn.bearing.set=function(e){var r=-t.wrap(e,-180,180)*Math.PI/180;this.angle!==r&&(this._unmodified=!1,this.angle=r,this._calcMatrices(),this.rotationMatrix=t.create$2(),t.rotate(this.rotationMatrix,this.rotationMatrix,this.angle))},Mn.pitch.get=function(){return this._pitch/Math.PI*180},Mn.pitch.set=function(e){var r=t.clamp(e,this.minPitch,this.maxPitch)/180*Math.PI;this._pitch!==r&&(this._unmodified=!1,this._pitch=r,this._calcMatrices())},Mn.fov.get=function(){return this._fov/Math.PI*180},Mn.fov.set=function(t){t=Math.max(.01,Math.min(60,t)),this._fov!==t&&(this._unmodified=!1,this._fov=t/180*Math.PI,this._calcMatrices())},Mn.zoom.get=function(){return this._zoom},Mn.zoom.set=function(t){var e=Math.min(Math.max(t,this.minZoom),this.maxZoom);this._zoom!==e&&(this._unmodified=!1,this._zoom=e,this.scale=this.zoomScale(e),this.tileZoom=Math.floor(e),this.zoomFraction=e-this.tileZoom,this._constrain(),this._calcMatrices())},Mn.center.get=function(){return this._center},Mn.center.set=function(t){t.lat===this._center.lat&&t.lng===this._center.lng||(this._unmodified=!1,this._center=t,this._constrain(),this._calcMatrices())},Mn.padding.get=function(){return this._edgeInsets.toJSON()},Mn.padding.set=function(t){this._edgeInsets.equals(t)||(this._unmodified=!1,this._edgeInsets.interpolate(this._edgeInsets,t,1),this._calcMatrices())},Mn.centerPoint.get=function(){return this._edgeInsets.getCenter(this.width,this.height)},An.prototype.isPaddingEqual=function(t){return this._edgeInsets.equals(t)},An.prototype.interpolatePadding=function(t,e,r){this._unmodified=!1,this._edgeInsets.interpolate(t,e,r),this._constrain(),this._calcMatrices()},An.prototype.coveringZoomLevel=function(t){var e=(t.roundZoom?Math.round:Math.floor)(this.zoom+this.scaleZoom(this.tileSize/t.tileSize));return Math.max(0,e)},An.prototype.getVisibleUnwrappedCoordinates=function(e){var r=[new t.UnwrappedTileID(0,e)];if(this._renderWorldCopies)for(var n=this.pointCoordinate(new t.Point(0,0)),i=this.pointCoordinate(new t.Point(this.width,0)),a=this.pointCoordinate(new t.Point(this.width,this.height)),o=this.pointCoordinate(new t.Point(0,this.height)),s=Math.floor(Math.min(n.x,i.x,a.x,o.x)),l=Math.floor(Math.max(n.x,i.x,a.x,o.x)),c=s-1;c<=l+1;c++)0!==c&&r.push(new t.UnwrappedTileID(c,e));return r},An.prototype.coveringTiles=function(e){var r=this.coveringZoomLevel(e),n=r;if(void 0!==e.minzoom&&re.maxzoom&&(r=e.maxzoom);var i=t.MercatorCoordinate.fromLngLat(this.center),a=Math.pow(2,r),o=[a*i.x,a*i.y,0],s=wn.fromInvProjectionMatrix(this.invProjMatrix,this.worldSize,r),l=e.minzoom||0;this.pitch<=60&&this._edgeInsets.top<.1&&(l=r);var c=function(t){return{aabb:new Tn([t*a,0,0],[(t+1)*a,a,0]),zoom:0,x:0,y:0,wrap:t,fullyVisible:!1}},u=[],f=[],h=r,p=e.reparseOverscaled?n:r;if(this._renderWorldCopies)for(var d=1;d<=3;d++)u.push(c(-d)),u.push(c(d));for(u.push(c(0));u.length>0;){var m=u.pop(),g=m.x,v=m.y,y=m.fullyVisible;if(!y){var x=m.aabb.intersects(s);if(0===x)continue;y=2===x}var b=m.aabb.distanceX(o),_=m.aabb.distanceY(o),w=Math.max(Math.abs(b),Math.abs(_)),T=3+(1<T&&m.zoom>=l)f.push({tileID:new t.OverscaledTileID(m.zoom===h?p:m.zoom,m.wrap,m.zoom,g,v),distanceSq:t.sqrLen([o[0]-.5-g,o[1]-.5-v])});else for(var k=0;k<4;k++){var A=(g<<1)+k%2,M=(v<<1)+(k>>1);u.push({aabb:m.aabb.quadrant(k),zoom:m.zoom+1,x:A,y:M,wrap:m.wrap,fullyVisible:y})}}return f.sort((function(t,e){return t.distanceSq-e.distanceSq})).map((function(t){return t.tileID}))},An.prototype.resize=function(t,e){this.width=t,this.height=e,this.pixelsToGLUnits=[2/t,-2/e],this._constrain(),this._calcMatrices()},Mn.unmodified.get=function(){return this._unmodified},An.prototype.zoomScale=function(t){return Math.pow(2,t)},An.prototype.scaleZoom=function(t){return Math.log(t)/Math.LN2},An.prototype.project=function(e){var r=t.clamp(e.lat,-this.maxValidLatitude,this.maxValidLatitude);return new t.Point(t.mercatorXfromLng(e.lng)*this.worldSize,t.mercatorYfromLat(r)*this.worldSize)},An.prototype.unproject=function(e){return new t.MercatorCoordinate(e.x/this.worldSize,e.y/this.worldSize).toLngLat()},Mn.point.get=function(){return this.project(this.center)},An.prototype.setLocationAtPoint=function(e,r){var n=this.pointCoordinate(r),i=this.pointCoordinate(this.centerPoint),a=this.locationCoordinate(e),o=new t.MercatorCoordinate(a.x-(n.x-i.x),a.y-(n.y-i.y));this.center=this.coordinateLocation(o),this._renderWorldCopies&&(this.center=this.center.wrap())},An.prototype.locationPoint=function(t){return this.coordinatePoint(this.locationCoordinate(t))},An.prototype.pointLocation=function(t){return this.coordinateLocation(this.pointCoordinate(t))},An.prototype.locationCoordinate=function(e){return t.MercatorCoordinate.fromLngLat(e)},An.prototype.coordinateLocation=function(t){return t.toLngLat()},An.prototype.pointCoordinate=function(e){var r=[e.x,e.y,0,1],n=[e.x,e.y,1,1];t.transformMat4(r,r,this.pixelMatrixInverse),t.transformMat4(n,n,this.pixelMatrixInverse);var i=r[3],a=n[3],o=r[0]/i,s=n[0]/a,l=r[1]/i,c=n[1]/a,u=r[2]/i,f=n[2]/a,h=u===f?0:(0-u)/(f-u);return new t.MercatorCoordinate(t.number(o,s,h)/this.worldSize,t.number(l,c,h)/this.worldSize)},An.prototype.coordinatePoint=function(e){var r=[e.x*this.worldSize,e.y*this.worldSize,0,1];return t.transformMat4(r,r,this.pixelMatrix),new t.Point(r[0]/r[3],r[1]/r[3])},An.prototype.getBounds=function(){return(new t.LngLatBounds).extend(this.pointLocation(new t.Point(0,0))).extend(this.pointLocation(new t.Point(this.width,0))).extend(this.pointLocation(new t.Point(this.width,this.height))).extend(this.pointLocation(new t.Point(0,this.height)))},An.prototype.getMaxBounds=function(){return this.latRange&&2===this.latRange.length&&this.lngRange&&2===this.lngRange.length?new t.LngLatBounds([this.lngRange[0],this.latRange[0]],[this.lngRange[1],this.latRange[1]]):null},An.prototype.setMaxBounds=function(t){t?(this.lngRange=[t.getWest(),t.getEast()],this.latRange=[t.getSouth(),t.getNorth()],this._constrain()):(this.lngRange=null,this.latRange=[-this.maxValidLatitude,this.maxValidLatitude])},An.prototype.calculatePosMatrix=function(e,r){void 0===r&&(r=!1);var n=e.key,i=r?this._alignedPosMatrixCache:this._posMatrixCache;if(i[n])return i[n];var a=e.canonical,o=this.worldSize/this.zoomScale(a.z),s=a.x+Math.pow(2,a.z)*e.wrap,l=t.identity(new Float64Array(16));return t.translate(l,l,[s*o,a.y*o,0]),t.scale(l,l,[o/t.EXTENT,o/t.EXTENT,1]),t.multiply(l,r?this.alignedProjMatrix:this.projMatrix,l),i[n]=new Float32Array(l),i[n]},An.prototype.customLayerMatrix=function(){return this.mercatorMatrix.slice()},An.prototype._constrain=function(){if(this.center&&this.width&&this.height&&!this._constraining){this._constraining=!0;var e,r,n,i,a=-90,o=90,s=-180,l=180,c=this.size,u=this._unmodified;if(this.latRange){var f=this.latRange;a=t.mercatorYfromLat(f[1])*this.worldSize,e=(o=t.mercatorYfromLat(f[0])*this.worldSize)-ao&&(i=o-g)}if(this.lngRange){var v=p.x,y=c.x/2;v-yl&&(n=l-y)}void 0===n&&void 0===i||(this.center=this.unproject(new t.Point(void 0!==n?n:p.x,void 0!==i?i:p.y))),this._unmodified=u,this._constraining=!1}},An.prototype._calcMatrices=function(){if(this.height){var e=this._fov/2,r=this.centerOffset;this.cameraToCenterDistance=.5/Math.tan(e)*this.height;var n=Math.PI/2+this._pitch,i=this._fov*(.5+r.y/this.height),a=Math.sin(i)*this.cameraToCenterDistance/Math.sin(t.clamp(Math.PI-n-i,.01,Math.PI-.01)),o=this.point,s=o.x,l=o.y,c=1.01*(Math.cos(Math.PI/2-this._pitch)*a+this.cameraToCenterDistance),u=this.height/50,f=new Float64Array(16);t.perspective(f,this._fov,this.width/this.height,u,c),f[8]=2*-r.x/this.width,f[9]=2*r.y/this.height,t.scale(f,f,[1,-1,1]),t.translate(f,f,[0,0,-this.cameraToCenterDistance]),t.rotateX(f,f,this._pitch),t.rotateZ(f,f,this.angle),t.translate(f,f,[-s,-l,0]),this.mercatorMatrix=t.scale([],f,[this.worldSize,this.worldSize,this.worldSize]),t.scale(f,f,[1,1,t.mercatorZfromAltitude(1,this.center.lat)*this.worldSize,1]),this.projMatrix=f,this.invProjMatrix=t.invert([],this.projMatrix);var h=this.width%2/2,p=this.height%2/2,d=Math.cos(this.angle),m=Math.sin(this.angle),g=s-Math.round(s)+d*h+m*p,v=l-Math.round(l)+d*p+m*h,y=new Float64Array(f);if(t.translate(y,y,[g>.5?g-1:g,v>.5?v-1:v,0]),this.alignedProjMatrix=y,f=t.create(),t.scale(f,f,[this.width/2,-this.height/2,1]),t.translate(f,f,[1,-1,0]),this.labelPlaneMatrix=f,f=t.create(),t.scale(f,f,[1,-1,1]),t.translate(f,f,[-1,-1,0]),t.scale(f,f,[2/this.width,2/this.height,1]),this.glCoordMatrix=f,this.pixelMatrix=t.multiply(new Float64Array(16),this.labelPlaneMatrix,this.projMatrix),!(f=t.invert(new Float64Array(16),this.pixelMatrix)))throw new Error("failed to invert matrix");this.pixelMatrixInverse=f,this._posMatrixCache={},this._alignedPosMatrixCache={}}},An.prototype.maxPitchScaleFactor=function(){if(!this.pixelMatrixInverse)return 1;var e=this.pointCoordinate(new t.Point(0,0)),r=[e.x*this.worldSize,e.y*this.worldSize,0,1];return t.transformMat4(r,r,this.pixelMatrix)[3]/this.cameraToCenterDistance},An.prototype.getCameraPoint=function(){var e=this._pitch,r=Math.tan(e)*(this.cameraToCenterDistance||1);return this.centerPoint.add(new t.Point(0,r))},An.prototype.getCameraQueryGeometry=function(e){var r=this.getCameraPoint();if(1===e.length)return[e[0],r];for(var n=r.x,i=r.y,a=r.x,o=r.y,s=0,l=e;s=3&&!t.some((function(t){return isNaN(t)}))){var e=this._map.dragRotate.isEnabled()&&this._map.touchZoomRotate.isEnabled()?+(t[3]||0):this._map.getBearing();return this._map.jumpTo({center:[+t[2],+t[1]],zoom:+t[0],bearing:e,pitch:+(t[4]||0)}),!0}return!1},Sn.prototype._updateHashUnthrottled=function(){var e=this.getHashString();try{t.window.history.replaceState(t.window.history.state,"",e)}catch(t){}};var En={linearity:.3,easing:t.bezier(0,0,.3,1)},Ln=t.extend({deceleration:2500,maxSpeed:1400},En),Cn=t.extend({deceleration:20,maxSpeed:1400},En),Pn=t.extend({deceleration:1e3,maxSpeed:360},En),In=t.extend({deceleration:1e3,maxSpeed:90},En),On=function(t){this._map=t,this.clear()};function zn(t,e){(!t.duration||t.duration0&&r-e[0].time>160;)e.shift()},On.prototype._onMoveEnd=function(e){if(this._drainInertiaBuffer(),!(this._inertiaBuffer.length<2)){for(var r={zoom:0,bearing:0,pitch:0,pan:new t.Point(0,0),pinchAround:void 0,around:void 0},n=0,i=this._inertiaBuffer;n=this._clickTolerance||this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.dblclick=function(t){return this._firePreventable(new Rn(t.type,this._map,t))},Nn.prototype.mouseover=function(t){this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.mouseout=function(t){this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.touchstart=function(t){return this._firePreventable(new Fn(t.type,this._map,t))},Nn.prototype.touchmove=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype.touchend=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype.touchcancel=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype._firePreventable=function(t){if(this._map.fire(t),t.defaultPrevented)return{}},Nn.prototype.isEnabled=function(){return!0},Nn.prototype.isActive=function(){return!1},Nn.prototype.enable=function(){},Nn.prototype.disable=function(){};var jn=function(t){this._map=t};jn.prototype.reset=function(){this._delayContextMenu=!1,delete this._contextMenuEvent},jn.prototype.mousemove=function(t){this._map.fire(new Rn(t.type,this._map,t))},jn.prototype.mousedown=function(){this._delayContextMenu=!0},jn.prototype.mouseup=function(){this._delayContextMenu=!1,this._contextMenuEvent&&(this._map.fire(new Rn("contextmenu",this._map,this._contextMenuEvent)),delete this._contextMenuEvent)},jn.prototype.contextmenu=function(t){this._delayContextMenu?this._contextMenuEvent=t:this._map.fire(new Rn(t.type,this._map,t)),this._map.listens("contextmenu")&&t.preventDefault()},jn.prototype.isEnabled=function(){return!0},jn.prototype.isActive=function(){return!1},jn.prototype.enable=function(){},jn.prototype.disable=function(){};var Un=function(t,e){this._map=t,this._el=t.getCanvasContainer(),this._container=t.getContainer(),this._clickTolerance=e.clickTolerance||1};function Vn(t,e){for(var r={},n=0;nthis.numTouches)&&(this.aborted=!0),this.aborted||(void 0===this.startTime&&(this.startTime=e.timeStamp),n.length===this.numTouches&&(this.centroid=function(e){for(var r=new t.Point(0,0),n=0,i=e;n30)&&(this.aborted=!0)}}},Hn.prototype.touchend=function(t,e,r){if((!this.centroid||t.timeStamp-this.startTime>500)&&(this.aborted=!0),0===r.length){var n=!this.aborted&&this.centroid;if(this.reset(),n)return n}};var qn=function(t){this.singleTap=new Hn(t),this.numTaps=t.numTaps,this.reset()};qn.prototype.reset=function(){this.lastTime=1/0,delete this.lastTap,this.count=0,this.singleTap.reset()},qn.prototype.touchstart=function(t,e,r){this.singleTap.touchstart(t,e,r)},qn.prototype.touchmove=function(t,e,r){this.singleTap.touchmove(t,e,r)},qn.prototype.touchend=function(t,e,r){var n=this.singleTap.touchend(t,e,r);if(n){var i=t.timeStamp-this.lastTime<500,a=!this.lastTap||this.lastTap.dist(n)<30;if(i&&a||this.reset(),this.count++,this.lastTime=t.timeStamp,this.lastTap=n,this.count===this.numTaps)return this.reset(),n}};var Gn=function(){this._zoomIn=new qn({numTouches:1,numTaps:2}),this._zoomOut=new qn({numTouches:2,numTaps:1}),this.reset()};Gn.prototype.reset=function(){this._active=!1,this._zoomIn.reset(),this._zoomOut.reset()},Gn.prototype.touchstart=function(t,e,r){this._zoomIn.touchstart(t,e,r),this._zoomOut.touchstart(t,e,r)},Gn.prototype.touchmove=function(t,e,r){this._zoomIn.touchmove(t,e,r),this._zoomOut.touchmove(t,e,r)},Gn.prototype.touchend=function(t,e,r){var n=this,i=this._zoomIn.touchend(t,e,r),a=this._zoomOut.touchend(t,e,r);return i?(this._active=!0,t.preventDefault(),setTimeout((function(){return n.reset()}),0),{cameraAnimation:function(e){return e.easeTo({duration:300,zoom:e.getZoom()+1,around:e.unproject(i)},{originalEvent:t})}}):a?(this._active=!0,t.preventDefault(),setTimeout((function(){return n.reset()}),0),{cameraAnimation:function(e){return e.easeTo({duration:300,zoom:e.getZoom()-1,around:e.unproject(a)},{originalEvent:t})}}):void 0},Gn.prototype.touchcancel=function(){this.reset()},Gn.prototype.enable=function(){this._enabled=!0},Gn.prototype.disable=function(){this._enabled=!1,this.reset()},Gn.prototype.isEnabled=function(){return this._enabled},Gn.prototype.isActive=function(){return this._active};var Yn=function(t){this.reset(),this._clickTolerance=t.clickTolerance||1};Yn.prototype.reset=function(){this._active=!1,this._moved=!1,delete this._lastPoint,delete this._eventButton},Yn.prototype._correctButton=function(t,e){return!1},Yn.prototype._move=function(t,e){return{}},Yn.prototype.mousedown=function(t,e){if(!this._lastPoint){var n=r.mouseButton(t);this._correctButton(t,n)&&(this._lastPoint=e,this._eventButton=n)}},Yn.prototype.mousemoveWindow=function(t,e){var r=this._lastPoint;if(r&&(t.preventDefault(),this._moved||!(e.dist(r)0&&(this._active=!0);var i=Vn(n,r),a=new t.Point(0,0),o=new t.Point(0,0),s=0;for(var l in i){var c=i[l],u=this._touches[l];u&&(a._add(c),o._add(c.sub(u)),s++,i[l]=c)}if(this._touches=i,!(sMath.abs(t.x)}var ii=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.reset=function(){t.prototype.reset.call(this),this._valid=void 0,delete this._firstMove,delete this._lastPoints},e.prototype._start=function(t){this._lastPoints=t,ni(t[0].sub(t[1]))&&(this._valid=!1)},e.prototype._move=function(t,e,r){var n=t[0].sub(this._lastPoints[0]),i=t[1].sub(this._lastPoints[1]);if(this._valid=this.gestureBeginsVertically(n,i,r.timeStamp),this._valid){this._lastPoints=t,this._active=!0;return{pitchDelta:-.5*((n.y+i.y)/2)}}},e.prototype.gestureBeginsVertically=function(t,e,r){if(void 0!==this._valid)return this._valid;var n=t.mag()>=2,i=e.mag()>=2;if(n||i){if(!n||!i)return void 0===this._firstMove&&(this._firstMove=r),r-this._firstMove<100&&void 0;var a=t.y>0==e.y>0;return ni(t)&&ni(e)&&a}},e}(Kn),ai={panStep:100,bearingStep:15,pitchStep:10},oi=function(){var t=ai;this._panStep=t.panStep,this._bearingStep=t.bearingStep,this._pitchStep=t.pitchStep};function si(t){return t*(2-t)}oi.prototype.reset=function(){this._active=!1},oi.prototype.keydown=function(t){var e=this;if(!(t.altKey||t.ctrlKey||t.metaKey)){var r=0,n=0,i=0,a=0,o=0;switch(t.keyCode){case 61:case 107:case 171:case 187:r=1;break;case 189:case 109:case 173:r=-1;break;case 37:t.shiftKey?n=-1:(t.preventDefault(),a=-1);break;case 39:t.shiftKey?n=1:(t.preventDefault(),a=1);break;case 38:t.shiftKey?i=1:(t.preventDefault(),o=-1);break;case 40:t.shiftKey?i=-1:(t.preventDefault(),o=1);break;default:return}return{cameraAnimation:function(s){var l=s.getZoom();s.easeTo({duration:300,easeId:"keyboardHandler",easing:si,zoom:r?Math.round(l)+r*(t.shiftKey?2:1):l,bearing:s.getBearing()+n*e._bearingStep,pitch:s.getPitch()+i*e._pitchStep,offset:[-a*e._panStep,-o*e._panStep],center:s.getCenter()},{originalEvent:t})}}}},oi.prototype.enable=function(){this._enabled=!0},oi.prototype.disable=function(){this._enabled=!1,this.reset()},oi.prototype.isEnabled=function(){return this._enabled},oi.prototype.isActive=function(){return this._active};var li=function(e,r){this._map=e,this._el=e.getCanvasContainer(),this._handler=r,this._delta=0,this._defaultZoomRate=.01,this._wheelZoomRate=1/450,t.bindAll(["_onWheel","_onTimeout","_onScrollFrame","_onScrollFinished"],this)};li.prototype.setZoomRate=function(t){this._defaultZoomRate=t},li.prototype.setWheelZoomRate=function(t){this._wheelZoomRate=t},li.prototype.isEnabled=function(){return!!this._enabled},li.prototype.isActive=function(){return!!this._active||void 0!==this._finishTimeout},li.prototype.isZooming=function(){return!!this._zooming},li.prototype.enable=function(t){this.isEnabled()||(this._enabled=!0,this._aroundCenter=t&&"center"===t.around)},li.prototype.disable=function(){this.isEnabled()&&(this._enabled=!1)},li.prototype.wheel=function(e){if(this.isEnabled()){var r=e.deltaMode===t.window.WheelEvent.DOM_DELTA_LINE?40*e.deltaY:e.deltaY,n=t.browser.now(),i=n-(this._lastWheelEventTime||0);this._lastWheelEventTime=n,0!==r&&r%4.000244140625==0?this._type="wheel":0!==r&&Math.abs(r)<4?this._type="trackpad":i>400?(this._type=null,this._lastValue=r,this._timeout=setTimeout(this._onTimeout,40,e)):this._type||(this._type=Math.abs(i*r)<200?"trackpad":"wheel",this._timeout&&(clearTimeout(this._timeout),this._timeout=null,r+=this._lastValue)),e.shiftKey&&r&&(r/=4),this._type&&(this._lastWheelEvent=e,this._delta-=r,this._active||this._start(e)),e.preventDefault()}},li.prototype._onTimeout=function(t){this._type="wheel",this._delta-=this._lastValue,this._active||this._start(t)},li.prototype._start=function(e){if(this._delta){this._frameId&&(this._frameId=null),this._active=!0,this.isZooming()||(this._zooming=!0),this._finishTimeout&&(clearTimeout(this._finishTimeout),delete this._finishTimeout);var n=r.mousePos(this._el,e);this._around=t.LngLat.convert(this._aroundCenter?this._map.getCenter():this._map.unproject(n)),this._aroundPoint=this._map.transform.locationPoint(this._around),this._frameId||(this._frameId=!0,this._handler._triggerRenderFrame())}},li.prototype.renderFrame=function(){return this._onScrollFrame()},li.prototype._onScrollFrame=function(){var e=this;if(this._frameId&&(this._frameId=null,this.isActive())){var r=this._map.transform;if(0!==this._delta){var n="wheel"===this._type&&Math.abs(this._delta)>4.000244140625?this._wheelZoomRate:this._defaultZoomRate,i=2/(1+Math.exp(-Math.abs(this._delta*n)));this._delta<0&&0!==i&&(i=1/i);var a="number"==typeof this._targetZoom?r.zoomScale(this._targetZoom):r.scale;this._targetZoom=Math.min(r.maxZoom,Math.max(r.minZoom,r.scaleZoom(a*i))),"wheel"===this._type&&(this._startZoom=r.zoom,this._easing=this._smoothOutEasing(200)),this._delta=0}var o,s="number"==typeof this._targetZoom?this._targetZoom:r.zoom,l=this._startZoom,c=this._easing,u=!1;if("wheel"===this._type&&l&&c){var f=Math.min((t.browser.now()-this._lastWheelEventTime)/200,1),h=c(f);o=t.number(l,s,h),f<1?this._frameId||(this._frameId=!0):u=!0}else o=s,u=!0;return this._active=!0,u&&(this._active=!1,this._finishTimeout=setTimeout((function(){e._zooming=!1,e._handler._triggerRenderFrame(),delete e._targetZoom,delete e._finishTimeout}),200)),{noInertia:!0,needsRenderFrame:!u,zoomDelta:o-r.zoom,around:this._aroundPoint,originalEvent:this._lastWheelEvent}}},li.prototype._smoothOutEasing=function(e){var r=t.ease;if(this._prevEase){var n=this._prevEase,i=(t.browser.now()-n.start)/n.duration,a=n.easing(i+.01)-n.easing(i),o=.27/Math.sqrt(a*a+1e-4)*.01,s=Math.sqrt(.0729-o*o);r=t.bezier(o,s,.25,1)}return this._prevEase={start:t.browser.now(),duration:e,easing:r},r},li.prototype.reset=function(){this._active=!1};var ci=function(t,e){this._clickZoom=t,this._tapZoom=e};ci.prototype.enable=function(){this._clickZoom.enable(),this._tapZoom.enable()},ci.prototype.disable=function(){this._clickZoom.disable(),this._tapZoom.disable()},ci.prototype.isEnabled=function(){return this._clickZoom.isEnabled()&&this._tapZoom.isEnabled()},ci.prototype.isActive=function(){return this._clickZoom.isActive()||this._tapZoom.isActive()};var ui=function(){this.reset()};ui.prototype.reset=function(){this._active=!1},ui.prototype.dblclick=function(t,e){return t.preventDefault(),{cameraAnimation:function(r){r.easeTo({duration:300,zoom:r.getZoom()+(t.shiftKey?-1:1),around:r.unproject(e)},{originalEvent:t})}}},ui.prototype.enable=function(){this._enabled=!0},ui.prototype.disable=function(){this._enabled=!1,this.reset()},ui.prototype.isEnabled=function(){return this._enabled},ui.prototype.isActive=function(){return this._active};var fi=function(){this._tap=new qn({numTouches:1,numTaps:1}),this.reset()};fi.prototype.reset=function(){this._active=!1,delete this._swipePoint,delete this._swipeTouch,delete this._tapTime,this._tap.reset()},fi.prototype.touchstart=function(t,e,r){this._swipePoint||(this._tapTime&&t.timeStamp-this._tapTime>500&&this.reset(),this._tapTime?r.length>0&&(this._swipePoint=e[0],this._swipeTouch=r[0].identifier):this._tap.touchstart(t,e,r))},fi.prototype.touchmove=function(t,e,r){if(this._tapTime){if(this._swipePoint){if(r[0].identifier!==this._swipeTouch)return;var n=e[0],i=n.y-this._swipePoint.y;return this._swipePoint=n,t.preventDefault(),this._active=!0,{zoomDelta:i/128}}}else this._tap.touchmove(t,e,r)},fi.prototype.touchend=function(t,e,r){this._tapTime?this._swipePoint&&0===r.length&&this.reset():this._tap.touchend(t,e,r)&&(this._tapTime=t.timeStamp)},fi.prototype.touchcancel=function(){this.reset()},fi.prototype.enable=function(){this._enabled=!0},fi.prototype.disable=function(){this._enabled=!1,this.reset()},fi.prototype.isEnabled=function(){return this._enabled},fi.prototype.isActive=function(){return this._active};var hi=function(t,e,r){this._el=t,this._mousePan=e,this._touchPan=r};hi.prototype.enable=function(t){this._inertiaOptions=t||{},this._mousePan.enable(),this._touchPan.enable(),this._el.classList.add("mapboxgl-touch-drag-pan")},hi.prototype.disable=function(){this._mousePan.disable(),this._touchPan.disable(),this._el.classList.remove("mapboxgl-touch-drag-pan")},hi.prototype.isEnabled=function(){return this._mousePan.isEnabled()&&this._touchPan.isEnabled()},hi.prototype.isActive=function(){return this._mousePan.isActive()||this._touchPan.isActive()};var pi=function(t,e,r){this._pitchWithRotate=t.pitchWithRotate,this._mouseRotate=e,this._mousePitch=r};pi.prototype.enable=function(){this._mouseRotate.enable(),this._pitchWithRotate&&this._mousePitch.enable()},pi.prototype.disable=function(){this._mouseRotate.disable(),this._mousePitch.disable()},pi.prototype.isEnabled=function(){return this._mouseRotate.isEnabled()&&(!this._pitchWithRotate||this._mousePitch.isEnabled())},pi.prototype.isActive=function(){return this._mouseRotate.isActive()||this._mousePitch.isActive()};var di=function(t,e,r,n){this._el=t,this._touchZoom=e,this._touchRotate=r,this._tapDragZoom=n,this._rotationDisabled=!1,this._enabled=!0};di.prototype.enable=function(t){this._touchZoom.enable(t),this._rotationDisabled||this._touchRotate.enable(t),this._tapDragZoom.enable(),this._el.classList.add("mapboxgl-touch-zoom-rotate")},di.prototype.disable=function(){this._touchZoom.disable(),this._touchRotate.disable(),this._tapDragZoom.disable(),this._el.classList.remove("mapboxgl-touch-zoom-rotate")},di.prototype.isEnabled=function(){return this._touchZoom.isEnabled()&&(this._rotationDisabled||this._touchRotate.isEnabled())&&this._tapDragZoom.isEnabled()},di.prototype.isActive=function(){return this._touchZoom.isActive()||this._touchRotate.isActive()||this._tapDragZoom.isActive()},di.prototype.disableRotation=function(){this._rotationDisabled=!0,this._touchRotate.disable()},di.prototype.enableRotation=function(){this._rotationDisabled=!1,this._touchZoom.isEnabled()&&this._touchRotate.enable()};var mi=function(t){return t.zoom||t.drag||t.pitch||t.rotate},gi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e}(t.Event);function vi(t){return t.panDelta&&t.panDelta.mag()||t.zoomDelta||t.bearingDelta||t.pitchDelta}var yi=function(e,n){this._map=e,this._el=this._map.getCanvasContainer(),this._handlers=[],this._handlersById={},this._changes=[],this._inertia=new On(e),this._bearingSnap=n.bearingSnap,this._previousActiveHandlers={},this._eventsInProgress={},this._addDefaultHandlers(n),t.bindAll(["handleEvent","handleWindowEvent"],this);var i=this._el;this._listeners=[[i,"touchstart",{passive:!1}],[i,"touchmove",{passive:!1}],[i,"touchend",void 0],[i,"touchcancel",void 0],[i,"mousedown",void 0],[i,"mousemove",void 0],[i,"mouseup",void 0],[t.window.document,"mousemove",{capture:!0}],[t.window.document,"mouseup",void 0],[i,"mouseover",void 0],[i,"mouseout",void 0],[i,"dblclick",void 0],[i,"click",void 0],[i,"keydown",{capture:!1}],[i,"keyup",void 0],[i,"wheel",{passive:!1}],[i,"contextmenu",void 0],[t.window,"blur",void 0]];for(var a=0,o=this._listeners;aa?Math.min(2,_):Math.max(.5,_),w=Math.pow(g,1-e),T=i.unproject(x.add(b.mult(e*w)).mult(m));i.setLocationAtPoint(i.renderWorldCopies?T.wrap():T,d)}n._fireMoveEvents(r)}),(function(t){n._afterEase(r,t)}),e),this},r.prototype._prepareEase=function(e,r,n){void 0===n&&(n={}),this._moving=!0,r||n.moving||this.fire(new t.Event("movestart",e)),this._zooming&&!n.zooming&&this.fire(new t.Event("zoomstart",e)),this._rotating&&!n.rotating&&this.fire(new t.Event("rotatestart",e)),this._pitching&&!n.pitching&&this.fire(new t.Event("pitchstart",e))},r.prototype._fireMoveEvents=function(e){this.fire(new t.Event("move",e)),this._zooming&&this.fire(new t.Event("zoom",e)),this._rotating&&this.fire(new t.Event("rotate",e)),this._pitching&&this.fire(new t.Event("pitch",e))},r.prototype._afterEase=function(e,r){if(!this._easeId||!r||this._easeId!==r){delete this._easeId;var n=this._zooming,i=this._rotating,a=this._pitching;this._moving=!1,this._zooming=!1,this._rotating=!1,this._pitching=!1,this._padding=!1,n&&this.fire(new t.Event("zoomend",e)),i&&this.fire(new t.Event("rotateend",e)),a&&this.fire(new t.Event("pitchend",e)),this.fire(new t.Event("moveend",e))}},r.prototype.flyTo=function(e,r){var n=this;if(!e.essential&&t.browser.prefersReducedMotion){var i=t.pick(e,["center","zoom","bearing","pitch","around"]);return this.jumpTo(i,r)}this.stop(),e=t.extend({offset:[0,0],speed:1.2,curve:1.42,easing:t.ease},e);var a=this.transform,o=this.getZoom(),s=this.getBearing(),l=this.getPitch(),c=this.getPadding(),u="zoom"in e?t.clamp(+e.zoom,a.minZoom,a.maxZoom):o,f="bearing"in e?this._normalizeBearing(e.bearing,s):s,h="pitch"in e?+e.pitch:l,p="padding"in e?e.padding:a.padding,d=a.zoomScale(u-o),m=t.Point.convert(e.offset),g=a.centerPoint.add(m),v=a.pointLocation(g),y=t.LngLat.convert(e.center||v);this._normalizeCenter(y);var x=a.project(v),b=a.project(y).sub(x),_=e.curve,w=Math.max(a.width,a.height),T=w/d,k=b.mag();if("minZoom"in e){var A=t.clamp(Math.min(e.minZoom,o,u),a.minZoom,a.maxZoom),M=w/a.zoomScale(A-o);_=Math.sqrt(M/k*2)}var S=_*_;function E(t){var e=(T*T-w*w+(t?-1:1)*S*S*k*k)/(2*(t?T:w)*S*k);return Math.log(Math.sqrt(e*e+1)-e)}function L(t){return(Math.exp(t)-Math.exp(-t))/2}function C(t){return(Math.exp(t)+Math.exp(-t))/2}var P=E(0),I=function(t){return C(P)/C(P+_*t)},O=function(t){return w*((C(P)*(L(e=P+_*t)/C(e))-L(P))/S)/k;var e},z=(E(1)-P)/_;if(Math.abs(k)<1e-6||!isFinite(z)){if(Math.abs(w-T)<1e-6)return this.easeTo(e,r);var D=Te.maxDuration&&(e.duration=0),this._zooming=!0,this._rotating=s!==f,this._pitching=h!==l,this._padding=!a.isPaddingEqual(p),this._prepareEase(r,!1),this._ease((function(e){var i=e*z,d=1/I(i);a.zoom=1===e?u:o+a.scaleZoom(d),n._rotating&&(a.bearing=t.number(s,f,e)),n._pitching&&(a.pitch=t.number(l,h,e)),n._padding&&(a.interpolatePadding(c,p,e),g=a.centerPoint.add(m));var v=1===e?y:a.unproject(x.add(b.mult(O(i))).mult(d));a.setLocationAtPoint(a.renderWorldCopies?v.wrap():v,g),n._fireMoveEvents(r)}),(function(){return n._afterEase(r)}),e),this},r.prototype.isEasing=function(){return!!this._easeFrameId},r.prototype.stop=function(){return this._stop()},r.prototype._stop=function(t,e){if(this._easeFrameId&&(this._cancelRenderFrame(this._easeFrameId),delete this._easeFrameId,delete this._onEaseFrame),this._onEaseEnd){var r=this._onEaseEnd;delete this._onEaseEnd,r.call(this,e)}if(!t){var n=this.handlers;n&&n.stop()}return this},r.prototype._ease=function(e,r,n){!1===n.animate||0===n.duration?(e(1),r()):(this._easeStart=t.browser.now(),this._easeOptions=n,this._onEaseFrame=e,this._onEaseEnd=r,this._easeFrameId=this._requestRenderFrame(this._renderFrameCallback))},r.prototype._renderFrameCallback=function(){var e=Math.min((t.browser.now()-this._easeStart)/this._easeOptions.duration,1);this._onEaseFrame(this._easeOptions.easing(e)),e<1?this._easeFrameId=this._requestRenderFrame(this._renderFrameCallback):this.stop()},r.prototype._normalizeBearing=function(e,r){e=t.wrap(e,-180,180);var n=Math.abs(e-r);return Math.abs(e-360-r)180?-360:r<-180?360:0}},r}(t.Evented),bi=function(e){void 0===e&&(e={}),this.options=e,t.bindAll(["_updateEditLink","_updateData","_updateCompact"],this)};bi.prototype.getDefaultPosition=function(){return"bottom-right"},bi.prototype.onAdd=function(t){var e=this.options&&this.options.compact;return this._map=t,this._container=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-attrib"),this._innerContainer=r.create("div","mapboxgl-ctrl-attrib-inner",this._container),e&&this._container.classList.add("mapboxgl-compact"),this._updateAttributions(),this._updateEditLink(),this._map.on("styledata",this._updateData),this._map.on("sourcedata",this._updateData),this._map.on("moveend",this._updateEditLink),void 0===e&&(this._map.on("resize",this._updateCompact),this._updateCompact()),this._container},bi.prototype.onRemove=function(){r.remove(this._container),this._map.off("styledata",this._updateData),this._map.off("sourcedata",this._updateData),this._map.off("moveend",this._updateEditLink),this._map.off("resize",this._updateCompact),this._map=void 0,this._attribHTML=void 0},bi.prototype._updateEditLink=function(){var e=this._editLink;e||(e=this._editLink=this._container.querySelector(".mapbox-improve-map"));var r=[{key:"owner",value:this.styleOwner},{key:"id",value:this.styleId},{key:"access_token",value:this._map._requestManager._customAccessToken||t.config.ACCESS_TOKEN}];if(e){var n=r.reduce((function(t,e,n){return e.value&&(t+=e.key+"="+e.value+(n=0)return!1;return!0}))).join(" | ");o!==this._attribHTML&&(this._attribHTML=o,t.length?(this._innerContainer.innerHTML=o,this._container.classList.remove("mapboxgl-attrib-empty")):this._container.classList.add("mapboxgl-attrib-empty"),this._editLink=null)}},bi.prototype._updateCompact=function(){this._map.getCanvasContainer().offsetWidth<=640?this._container.classList.add("mapboxgl-compact"):this._container.classList.remove("mapboxgl-compact")};var _i=function(){t.bindAll(["_updateLogo"],this),t.bindAll(["_updateCompact"],this)};_i.prototype.onAdd=function(t){this._map=t,this._container=r.create("div","mapboxgl-ctrl");var e=r.create("a","mapboxgl-ctrl-logo");return e.target="_blank",e.rel="noopener nofollow",e.href="https://www.mapbox.com/",e.setAttribute("aria-label",this._map._getUIString("LogoControl.Title")),e.setAttribute("rel","noopener nofollow"),this._container.appendChild(e),this._container.style.display="none",this._map.on("sourcedata",this._updateLogo),this._updateLogo(),this._map.on("resize",this._updateCompact),this._updateCompact(),this._container},_i.prototype.onRemove=function(){r.remove(this._container),this._map.off("sourcedata",this._updateLogo),this._map.off("resize",this._updateCompact)},_i.prototype.getDefaultPosition=function(){return"bottom-left"},_i.prototype._updateLogo=function(t){t&&"metadata"!==t.sourceDataType||(this._container.style.display=this._logoRequired()?"block":"none")},_i.prototype._logoRequired=function(){if(this._map.style){var t=this._map.style.sourceCaches;for(var e in t){if(t[e].getSource().mapbox_logo)return!0}return!1}},_i.prototype._updateCompact=function(){var t=this._container.children;if(t.length){var e=t[0];this._map.getCanvasContainer().offsetWidth<250?e.classList.add("mapboxgl-compact"):e.classList.remove("mapboxgl-compact")}};var wi=function(){this._queue=[],this._id=0,this._cleared=!1,this._currentlyRunning=!1};wi.prototype.add=function(t){var e=++this._id;return this._queue.push({callback:t,id:e,cancelled:!1}),e},wi.prototype.remove=function(t){for(var e=this._currentlyRunning,r=0,n=e?this._queue.concat(e):this._queue;re.maxZoom)throw new Error("maxZoom must be greater than or equal to minZoom");if(null!=e.minPitch&&null!=e.maxPitch&&e.minPitch>e.maxPitch)throw new Error("maxPitch must be greater than or equal to minPitch");if(null!=e.minPitch&&e.minPitch<0)throw new Error("minPitch must be greater than or equal to 0");if(null!=e.maxPitch&&e.maxPitch>60)throw new Error("maxPitch must be less than or equal to 60");var i=new An(e.minZoom,e.maxZoom,e.minPitch,e.maxPitch,e.renderWorldCopies);if(n.call(this,i,e),this._interactive=e.interactive,this._maxTileCacheSize=e.maxTileCacheSize,this._failIfMajorPerformanceCaveat=e.failIfMajorPerformanceCaveat,this._preserveDrawingBuffer=e.preserveDrawingBuffer,this._antialias=e.antialias,this._trackResize=e.trackResize,this._bearingSnap=e.bearingSnap,this._refreshExpiredTiles=e.refreshExpiredTiles,this._fadeDuration=e.fadeDuration,this._crossSourceCollisions=e.crossSourceCollisions,this._crossFadingFactor=1,this._collectResourceTiming=e.collectResourceTiming,this._renderTaskQueue=new wi,this._controls=[],this._mapId=t.uniqueId(),this._locale=t.extend({},Ti,e.locale),this._requestManager=new t.RequestManager(e.transformRequest,e.accessToken),"string"==typeof e.container){if(this._container=t.window.document.getElementById(e.container),!this._container)throw new Error("Container '"+e.container+"' not found.")}else{if(!(e.container instanceof Ai))throw new Error("Invalid type: 'container' must be a String or HTMLElement.");this._container=e.container}if(e.maxBounds&&this.setMaxBounds(e.maxBounds),t.bindAll(["_onWindowOnline","_onWindowResize","_contextLost","_contextRestored"],this),this._setupContainer(),this._setupPainter(),void 0===this.painter)throw new Error("Failed to initialize WebGL.");this.on("move",(function(){return r._update(!1)})),this.on("moveend",(function(){return r._update(!1)})),this.on("zoom",(function(){return r._update(!0)})),void 0!==t.window&&(t.window.addEventListener("online",this._onWindowOnline,!1),t.window.addEventListener("resize",this._onWindowResize,!1)),this.handlers=new yi(this,e);var a="string"==typeof e.hash&&e.hash||void 0;this._hash=e.hash&&new Sn(a).addTo(this),this._hash&&this._hash._onHashChange()||(this.jumpTo({center:e.center,zoom:e.zoom,bearing:e.bearing,pitch:e.pitch}),e.bounds&&(this.resize(),this.fitBounds(e.bounds,t.extend({},e.fitBoundsOptions,{duration:0})))),this.resize(),this._localIdeographFontFamily=e.localIdeographFontFamily,e.style&&this.setStyle(e.style,{localIdeographFontFamily:e.localIdeographFontFamily}),e.attributionControl&&this.addControl(new bi({customAttribution:e.customAttribution})),this.addControl(new _i,e.logoPosition),this.on("style.load",(function(){r.transform.unmodified&&r.jumpTo(r.style.stylesheet)})),this.on("data",(function(e){r._update("style"===e.dataType),r.fire(new t.Event(e.dataType+"data",e))})),this.on("dataloading",(function(e){r.fire(new t.Event(e.dataType+"dataloading",e))}))}n&&(i.__proto__=n),i.prototype=Object.create(n&&n.prototype),i.prototype.constructor=i;var a={showTileBoundaries:{configurable:!0},showPadding:{configurable:!0},showCollisionBoxes:{configurable:!0},showOverdrawInspector:{configurable:!0},repaint:{configurable:!0},vertices:{configurable:!0},version:{configurable:!0}};return i.prototype._getMapId=function(){return this._mapId},i.prototype.addControl=function(e,r){if(void 0===r&&e.getDefaultPosition&&(r=e.getDefaultPosition()),void 0===r&&(r="top-right"),!e||!e.onAdd)return this.fire(new t.ErrorEvent(new Error("Invalid argument to map.addControl(). Argument must be a control with onAdd and onRemove methods.")));var n=e.onAdd(this);this._controls.push(e);var i=this._controlPositions[r];return-1!==r.indexOf("bottom")?i.insertBefore(n,i.firstChild):i.appendChild(n),this},i.prototype.removeControl=function(e){if(!e||!e.onRemove)return this.fire(new t.ErrorEvent(new Error("Invalid argument to map.removeControl(). Argument must be a control with onAdd and onRemove methods.")));var r=this._controls.indexOf(e);return r>-1&&this._controls.splice(r,1),e.onRemove(this),this},i.prototype.resize=function(e){var r=this._containerDimensions(),n=r[0],i=r[1];this._resizeCanvas(n,i),this.transform.resize(n,i),this.painter.resize(n,i);var a=!this._moving;return a&&(this.stop(),this.fire(new t.Event("movestart",e)).fire(new t.Event("move",e))),this.fire(new t.Event("resize",e)),a&&this.fire(new t.Event("moveend",e)),this},i.prototype.getBounds=function(){return this.transform.getBounds()},i.prototype.getMaxBounds=function(){return this.transform.getMaxBounds()},i.prototype.setMaxBounds=function(e){return this.transform.setMaxBounds(t.LngLatBounds.convert(e)),this._update()},i.prototype.setMinZoom=function(t){if((t=null==t?-2:t)>=-2&&t<=this.transform.maxZoom)return this.transform.minZoom=t,this._update(),this.getZoom()=this.transform.minZoom)return this.transform.maxZoom=t,this._update(),this.getZoom()>t&&this.setZoom(t),this;throw new Error("maxZoom must be greater than the current minZoom")},i.prototype.getMaxZoom=function(){return this.transform.maxZoom},i.prototype.setMinPitch=function(t){if((t=null==t?0:t)<0)throw new Error("minPitch must be greater than or equal to 0");if(t>=0&&t<=this.transform.maxPitch)return this.transform.minPitch=t,this._update(),this.getPitch()60)throw new Error("maxPitch must be less than or equal to 60");if(t>=this.transform.minPitch)return this.transform.maxPitch=t,this._update(),this.getPitch()>t&&this.setPitch(t),this;throw new Error("maxPitch must be greater than the current minPitch")},i.prototype.getMaxPitch=function(){return this.transform.maxPitch},i.prototype.getRenderWorldCopies=function(){return this.transform.renderWorldCopies},i.prototype.setRenderWorldCopies=function(t){return this.transform.renderWorldCopies=t,this._update()},i.prototype.project=function(e){return this.transform.locationPoint(t.LngLat.convert(e))},i.prototype.unproject=function(e){return this.transform.pointLocation(t.Point.convert(e))},i.prototype.isMoving=function(){return this._moving||this.handlers.isMoving()},i.prototype.isZooming=function(){return this._zooming||this.handlers.isZooming()},i.prototype.isRotating=function(){return this._rotating||this.handlers.isRotating()},i.prototype._createDelegatedListener=function(t,e,r){var n,i=this;if("mouseenter"===t||"mouseover"===t){var a=!1;return{layer:e,listener:r,delegates:{mousemove:function(n){var o=i.getLayer(e)?i.queryRenderedFeatures(n.point,{layers:[e]}):[];o.length?a||(a=!0,r.call(i,new Rn(t,i,n.originalEvent,{features:o}))):a=!1},mouseout:function(){a=!1}}}}if("mouseleave"===t||"mouseout"===t){var o=!1;return{layer:e,listener:r,delegates:{mousemove:function(n){(i.getLayer(e)?i.queryRenderedFeatures(n.point,{layers:[e]}):[]).length?o=!0:o&&(o=!1,r.call(i,new Rn(t,i,n.originalEvent)))},mouseout:function(e){o&&(o=!1,r.call(i,new Rn(t,i,e.originalEvent)))}}}}return{layer:e,listener:r,delegates:(n={},n[t]=function(t){var n=i.getLayer(e)?i.queryRenderedFeatures(t.point,{layers:[e]}):[];n.length&&(t.features=n,r.call(i,t),delete t.features)},n)}},i.prototype.on=function(t,e,r){if(void 0===r)return n.prototype.on.call(this,t,e);var i=this._createDelegatedListener(t,e,r);for(var a in this._delegatedListeners=this._delegatedListeners||{},this._delegatedListeners[t]=this._delegatedListeners[t]||[],this._delegatedListeners[t].push(i),i.delegates)this.on(a,i.delegates[a]);return this},i.prototype.once=function(t,e,r){if(void 0===r)return n.prototype.once.call(this,t,e);var i=this._createDelegatedListener(t,e,r);for(var a in i.delegates)this.once(a,i.delegates[a]);return this},i.prototype.off=function(t,e,r){var i=this;if(void 0===r)return n.prototype.off.call(this,t,e);return this._delegatedListeners&&this._delegatedListeners[t]&&function(n){for(var a=n[t],o=0;o180;){var s=n.locationPoint(e);if(s.x>=0&&s.y>=0&&s.x<=n.width&&s.y<=n.height)break;e.lng>n.center.lng?e.lng-=360:e.lng+=360}return e}Ii.prototype.down=function(t,e){this.mouseRotate.mousedown(t,e),this.mousePitch&&this.mousePitch.mousedown(t,e),r.disableDrag()},Ii.prototype.move=function(t,e){var r=this.map,n=this.mouseRotate.mousemoveWindow(t,e);if(n&&n.bearingDelta&&r.setBearing(r.getBearing()+n.bearingDelta),this.mousePitch){var i=this.mousePitch.mousemoveWindow(t,e);i&&i.pitchDelta&&r.setPitch(r.getPitch()+i.pitchDelta)}},Ii.prototype.off=function(){var t=this.element;r.removeEventListener(t,"mousedown",this.mousedown),r.removeEventListener(t,"touchstart",this.touchstart,{passive:!1}),r.removeEventListener(t,"touchmove",this.touchmove),r.removeEventListener(t,"touchend",this.touchend),r.removeEventListener(t,"touchcancel",this.reset),this.offTemp()},Ii.prototype.offTemp=function(){r.enableDrag(),r.removeEventListener(t.window,"mousemove",this.mousemove),r.removeEventListener(t.window,"mouseup",this.mouseup)},Ii.prototype.mousedown=function(e){this.down(t.extend({},e,{ctrlKey:!0,preventDefault:function(){return e.preventDefault()}}),r.mousePos(this.element,e)),r.addEventListener(t.window,"mousemove",this.mousemove),r.addEventListener(t.window,"mouseup",this.mouseup)},Ii.prototype.mousemove=function(t){this.move(t,r.mousePos(this.element,t))},Ii.prototype.mouseup=function(t){this.mouseRotate.mouseupWindow(t),this.mousePitch&&this.mousePitch.mouseupWindow(t),this.offTemp()},Ii.prototype.touchstart=function(t){1!==t.targetTouches.length?this.reset():(this._startPos=this._lastPos=r.touchPos(this.element,t.targetTouches)[0],this.down({type:"mousedown",button:0,ctrlKey:!0,preventDefault:function(){return t.preventDefault()}},this._startPos))},Ii.prototype.touchmove=function(t){1!==t.targetTouches.length?this.reset():(this._lastPos=r.touchPos(this.element,t.targetTouches)[0],this.move({preventDefault:function(){return t.preventDefault()}},this._lastPos))},Ii.prototype.touchend=function(t){0===t.targetTouches.length&&this._startPos&&this._lastPos&&this._startPos.dist(this._lastPos)e.getEast()||r.latitudee.getNorth())},n.prototype._setErrorState=function(){switch(this._watchState){case"WAITING_ACTIVE":this._watchState="ACTIVE_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error");break;case"ACTIVE_LOCK":this._watchState="ACTIVE_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting");break;case"BACKGROUND":this._watchState="BACKGROUND_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting")}},n.prototype._onSuccess=function(e){if(this._map){if(this._isOutOfMapMaxBounds(e))return this._setErrorState(),this.fire(new t.Event("outofmaxbounds",e)),this._updateMarker(),void this._finish();if(this.options.trackUserLocation)switch(this._lastKnownPosition=e,this._watchState){case"WAITING_ACTIVE":case"ACTIVE_LOCK":case"ACTIVE_ERROR":this._watchState="ACTIVE_LOCK",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"BACKGROUND":case"BACKGROUND_ERROR":this._watchState="BACKGROUND",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background")}this.options.showUserLocation&&"OFF"!==this._watchState&&this._updateMarker(e),this.options.trackUserLocation&&"ACTIVE_LOCK"!==this._watchState||this._updateCamera(e),this.options.showUserLocation&&this._dotElement.classList.remove("mapboxgl-user-location-dot-stale"),this.fire(new t.Event("geolocate",e)),this._finish()}},n.prototype._updateCamera=function(e){var r=new t.LngLat(e.coords.longitude,e.coords.latitude),n=e.coords.accuracy,i=this._map.getBearing(),a=t.extend({bearing:i},this.options.fitBoundsOptions);this._map.fitBounds(r.toBounds(n),a,{geolocateSource:!0})},n.prototype._updateMarker=function(e){if(e){var r=new t.LngLat(e.coords.longitude,e.coords.latitude);this._accuracyCircleMarker.setLngLat(r).addTo(this._map),this._userLocationDotMarker.setLngLat(r).addTo(this._map),this._accuracy=e.coords.accuracy,this.options.showUserLocation&&this.options.showAccuracyCircle&&this._updateCircleRadius()}else this._userLocationDotMarker.remove(),this._accuracyCircleMarker.remove()},n.prototype._updateCircleRadius=function(){var t=this._map._container.clientHeight/2,e=this._map.unproject([0,t]),r=this._map.unproject([1,t]),n=e.distanceTo(r),i=Math.ceil(2*this._accuracy/n);this._circleElement.style.width=i+"px",this._circleElement.style.height=i+"px"},n.prototype._onZoom=function(){this.options.showUserLocation&&this.options.showAccuracyCircle&&this._updateCircleRadius()},n.prototype._onError=function(e){if(this._map){if(this.options.trackUserLocation)if(1===e.code){this._watchState="OFF",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.disabled=!0;var r=this._map._getUIString("GeolocateControl.LocationNotAvailable");this._geolocateButton.title=r,this._geolocateButton.setAttribute("aria-label",r),void 0!==this._geolocationWatchID&&this._clearWatch()}else{if(3===e.code&&ji)return;this._setErrorState()}"OFF"!==this._watchState&&this.options.showUserLocation&&this._dotElement.classList.add("mapboxgl-user-location-dot-stale"),this.fire(new t.Event("error",e)),this._finish()}},n.prototype._finish=function(){this._timeoutId&&clearTimeout(this._timeoutId),this._timeoutId=void 0},n.prototype._setupUI=function(e){var n=this;if(this._container.addEventListener("contextmenu",(function(t){return t.preventDefault()})),this._geolocateButton=r.create("button","mapboxgl-ctrl-geolocate",this._container),r.create("span","mapboxgl-ctrl-icon",this._geolocateButton).setAttribute("aria-hidden",!0),this._geolocateButton.type="button",!1===e){t.warnOnce("Geolocation support is not available so the GeolocateControl will be disabled.");var i=this._map._getUIString("GeolocateControl.LocationNotAvailable");this._geolocateButton.disabled=!0,this._geolocateButton.title=i,this._geolocateButton.setAttribute("aria-label",i)}else{var a=this._map._getUIString("GeolocateControl.FindMyLocation");this._geolocateButton.title=a,this._geolocateButton.setAttribute("aria-label",a)}this.options.trackUserLocation&&(this._geolocateButton.setAttribute("aria-pressed","false"),this._watchState="OFF"),this.options.showUserLocation&&(this._dotElement=r.create("div","mapboxgl-user-location-dot"),this._userLocationDotMarker=new Fi(this._dotElement),this._circleElement=r.create("div","mapboxgl-user-location-accuracy-circle"),this._accuracyCircleMarker=new Fi({element:this._circleElement,pitchAlignment:"map"}),this.options.trackUserLocation&&(this._watchState="OFF"),this._map.on("zoom",this._onZoom)),this._geolocateButton.addEventListener("click",this.trigger.bind(this)),this._setup=!0,this.options.trackUserLocation&&this._map.on("movestart",(function(e){var r=e.originalEvent&&"resize"===e.originalEvent.type;e.geolocateSource||"ACTIVE_LOCK"!==n._watchState||r||(n._watchState="BACKGROUND",n._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background"),n._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),n.fire(new t.Event("trackuserlocationend")))}))},n.prototype.trigger=function(){if(!this._setup)return t.warnOnce("Geolocate control triggered before added to a map"),!1;if(this.options.trackUserLocation){switch(this._watchState){case"OFF":this._watchState="WAITING_ACTIVE",this.fire(new t.Event("trackuserlocationstart"));break;case"WAITING_ACTIVE":case"ACTIVE_LOCK":case"ACTIVE_ERROR":case"BACKGROUND_ERROR":Ni--,ji=!1,this._watchState="OFF",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this.fire(new t.Event("trackuserlocationend"));break;case"BACKGROUND":this._watchState="ACTIVE_LOCK",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._lastKnownPosition&&this._updateCamera(this._lastKnownPosition),this.fire(new t.Event("trackuserlocationstart"))}switch(this._watchState){case"WAITING_ACTIVE":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"ACTIVE_LOCK":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"ACTIVE_ERROR":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error");break;case"BACKGROUND":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background");break;case"BACKGROUND_ERROR":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background-error")}if("OFF"===this._watchState&&void 0!==this._geolocationWatchID)this._clearWatch();else if(void 0===this._geolocationWatchID){var e;this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.setAttribute("aria-pressed","true"),++Ni>1?(e={maximumAge:6e5,timeout:0},ji=!0):(e=this.options.positionOptions,ji=!1),this._geolocationWatchID=t.window.navigator.geolocation.watchPosition(this._onSuccess,this._onError,e)}}else t.window.navigator.geolocation.getCurrentPosition(this._onSuccess,this._onError,this.options.positionOptions),this._timeoutId=setTimeout(this._finish,1e4);return!0},n.prototype._clearWatch=function(){t.window.navigator.geolocation.clearWatch(this._geolocationWatchID),this._geolocationWatchID=void 0,this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.setAttribute("aria-pressed","false"),this.options.showUserLocation&&this._updateMarker(null)},n}(t.Evented),Vi={maxWidth:100,unit:"metric"},Hi=function(e){this.options=t.extend({},Vi,e),t.bindAll(["_onMove","setUnit"],this)};function qi(t,e,r){var n=r&&r.maxWidth||100,i=t._container.clientHeight/2,a=t.unproject([0,i]),o=t.unproject([n,i]),s=a.distanceTo(o);if(r&&"imperial"===r.unit){var l=3.2808*s;if(l>5280)Gi(e,n,l/5280,t._getUIString("ScaleControl.Miles"));else Gi(e,n,l,t._getUIString("ScaleControl.Feet"))}else if(r&&"nautical"===r.unit){Gi(e,n,s/1852,t._getUIString("ScaleControl.NauticalMiles"))}else s>=1e3?Gi(e,n,s/1e3,t._getUIString("ScaleControl.Kilometers")):Gi(e,n,s,t._getUIString("ScaleControl.Meters"))}function Gi(t,e,r,n){var i,a,o,s=(i=r,a=Math.pow(10,(""+Math.floor(i)).length-1),o=(o=i/a)>=10?10:o>=5?5:o>=3?3:o>=2?2:o>=1?1:function(t){var e=Math.pow(10,Math.ceil(-Math.log(t)/Math.LN10));return Math.round(t*e)/e}(o),a*o),l=s/r;t.style.width=e*l+"px",t.innerHTML=s+" "+n}Hi.prototype.getDefaultPosition=function(){return"bottom-left"},Hi.prototype._onMove=function(){qi(this._map,this._container,this.options)},Hi.prototype.onAdd=function(t){return this._map=t,this._container=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-scale",t.getContainer()),this._map.on("move",this._onMove),this._onMove(),this._container},Hi.prototype.onRemove=function(){r.remove(this._container),this._map.off("move",this._onMove),this._map=void 0},Hi.prototype.setUnit=function(t){this.options.unit=t,qi(this._map,this._container,this.options)};var Yi=function(e){this._fullscreen=!1,e&&e.container&&(e.container instanceof t.window.HTMLElement?this._container=e.container:t.warnOnce("Full screen control 'container' must be a DOM element.")),t.bindAll(["_onClickFullscreen","_changeIcon"],this),"onfullscreenchange"in t.window.document?this._fullscreenchange="fullscreenchange":"onmozfullscreenchange"in t.window.document?this._fullscreenchange="mozfullscreenchange":"onwebkitfullscreenchange"in t.window.document?this._fullscreenchange="webkitfullscreenchange":"onmsfullscreenchange"in t.window.document&&(this._fullscreenchange="MSFullscreenChange")};Yi.prototype.onAdd=function(e){return this._map=e,this._container||(this._container=this._map.getContainer()),this._controlContainer=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-group"),this._checkFullscreenSupport()?this._setupUI():(this._controlContainer.style.display="none",t.warnOnce("This device does not support fullscreen mode.")),this._controlContainer},Yi.prototype.onRemove=function(){r.remove(this._controlContainer),this._map=null,t.window.document.removeEventListener(this._fullscreenchange,this._changeIcon)},Yi.prototype._checkFullscreenSupport=function(){return!!(t.window.document.fullscreenEnabled||t.window.document.mozFullScreenEnabled||t.window.document.msFullscreenEnabled||t.window.document.webkitFullscreenEnabled)},Yi.prototype._setupUI=function(){var e=this._fullscreenButton=r.create("button","mapboxgl-ctrl-fullscreen",this._controlContainer);r.create("span","mapboxgl-ctrl-icon",e).setAttribute("aria-hidden",!0),e.type="button",this._updateTitle(),this._fullscreenButton.addEventListener("click",this._onClickFullscreen),t.window.document.addEventListener(this._fullscreenchange,this._changeIcon)},Yi.prototype._updateTitle=function(){var t=this._getTitle();this._fullscreenButton.setAttribute("aria-label",t),this._fullscreenButton.title=t},Yi.prototype._getTitle=function(){return this._map._getUIString(this._isFullscreen()?"FullscreenControl.Exit":"FullscreenControl.Enter")},Yi.prototype._isFullscreen=function(){return this._fullscreen},Yi.prototype._changeIcon=function(){(t.window.document.fullscreenElement||t.window.document.mozFullScreenElement||t.window.document.webkitFullscreenElement||t.window.document.msFullscreenElement)===this._container!==this._fullscreen&&(this._fullscreen=!this._fullscreen,this._fullscreenButton.classList.toggle("mapboxgl-ctrl-shrink"),this._fullscreenButton.classList.toggle("mapboxgl-ctrl-fullscreen"),this._updateTitle())},Yi.prototype._onClickFullscreen=function(){this._isFullscreen()?t.window.document.exitFullscreen?t.window.document.exitFullscreen():t.window.document.mozCancelFullScreen?t.window.document.mozCancelFullScreen():t.window.document.msExitFullscreen?t.window.document.msExitFullscreen():t.window.document.webkitCancelFullScreen&&t.window.document.webkitCancelFullScreen():this._container.requestFullscreen?this._container.requestFullscreen():this._container.mozRequestFullScreen?this._container.mozRequestFullScreen():this._container.msRequestFullscreen?this._container.msRequestFullscreen():this._container.webkitRequestFullscreen&&this._container.webkitRequestFullscreen()};var Wi={closeButton:!0,closeOnClick:!0,className:"",maxWidth:"240px"},Xi=function(e){function n(r){e.call(this),this.options=t.extend(Object.create(Wi),r),t.bindAll(["_update","_onClose","remove","_onMouseMove","_onMouseUp","_onDrag"],this)}return e&&(n.__proto__=e),n.prototype=Object.create(e&&e.prototype),n.prototype.constructor=n,n.prototype.addTo=function(e){return this._map&&this.remove(),this._map=e,this.options.closeOnClick&&this._map.on("click",this._onClose),this.options.closeOnMove&&this._map.on("move",this._onClose),this._map.on("remove",this.remove),this._update(),this._trackPointer?(this._map.on("mousemove",this._onMouseMove),this._map.on("mouseup",this._onMouseUp),this._container&&this._container.classList.add("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.add("mapboxgl-track-pointer")):this._map.on("move",this._update),this.fire(new t.Event("open")),this},n.prototype.isOpen=function(){return!!this._map},n.prototype.remove=function(){return this._content&&r.remove(this._content),this._container&&(r.remove(this._container),delete this._container),this._map&&(this._map.off("move",this._update),this._map.off("move",this._onClose),this._map.off("click",this._onClose),this._map.off("remove",this.remove),this._map.off("mousemove",this._onMouseMove),this._map.off("mouseup",this._onMouseUp),this._map.off("drag",this._onDrag),delete this._map),this.fire(new t.Event("close")),this},n.prototype.getLngLat=function(){return this._lngLat},n.prototype.setLngLat=function(e){return this._lngLat=t.LngLat.convert(e),this._pos=null,this._trackPointer=!1,this._update(),this._map&&(this._map.on("move",this._update),this._map.off("mousemove",this._onMouseMove),this._container&&this._container.classList.remove("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.remove("mapboxgl-track-pointer")),this},n.prototype.trackPointer=function(){return this._trackPointer=!0,this._pos=null,this._update(),this._map&&(this._map.off("move",this._update),this._map.on("mousemove",this._onMouseMove),this._map.on("drag",this._onDrag),this._container&&this._container.classList.add("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.add("mapboxgl-track-pointer")),this},n.prototype.getElement=function(){return this._container},n.prototype.setText=function(e){return this.setDOMContent(t.window.document.createTextNode(e))},n.prototype.setHTML=function(e){var r,n=t.window.document.createDocumentFragment(),i=t.window.document.createElement("body");for(i.innerHTML=e;r=i.firstChild;)n.appendChild(r);return this.setDOMContent(n)},n.prototype.getMaxWidth=function(){return this._container&&this._container.style.maxWidth},n.prototype.setMaxWidth=function(t){return this.options.maxWidth=t,this._update(),this},n.prototype.setDOMContent=function(t){return this._createContent(),this._content.appendChild(t),this._update(),this},n.prototype.addClassName=function(t){this._container&&this._container.classList.add(t)},n.prototype.removeClassName=function(t){this._container&&this._container.classList.remove(t)},n.prototype.toggleClassName=function(t){if(this._container)return this._container.classList.toggle(t)},n.prototype._createContent=function(){this._content&&r.remove(this._content),this._content=r.create("div","mapboxgl-popup-content",this._container),this.options.closeButton&&(this._closeButton=r.create("button","mapboxgl-popup-close-button",this._content),this._closeButton.type="button",this._closeButton.setAttribute("aria-label","Close popup"),this._closeButton.innerHTML="×",this._closeButton.addEventListener("click",this._onClose))},n.prototype._onMouseUp=function(t){this._update(t.point)},n.prototype._onMouseMove=function(t){this._update(t.point)},n.prototype._onDrag=function(t){this._update(t.point)},n.prototype._update=function(e){var n=this,i=this._lngLat||this._trackPointer;if(this._map&&i&&this._content&&(this._container||(this._container=r.create("div","mapboxgl-popup",this._map.getContainer()),this._tip=r.create("div","mapboxgl-popup-tip",this._container),this._container.appendChild(this._content),this.options.className&&this.options.className.split(" ").forEach((function(t){return n._container.classList.add(t)})),this._trackPointer&&this._container.classList.add("mapboxgl-popup-track-pointer")),this.options.maxWidth&&this._container.style.maxWidth!==this.options.maxWidth&&(this._container.style.maxWidth=this.options.maxWidth),this._map.transform.renderWorldCopies&&!this._trackPointer&&(this._lngLat=Oi(this._lngLat,this._pos,this._map.transform)),!this._trackPointer||e)){var a=this._pos=this._trackPointer&&e?e:this._map.project(this._lngLat),o=this.options.anchor,s=function e(r){if(r){if("number"==typeof r){var n=Math.round(Math.sqrt(.5*Math.pow(r,2)));return{center:new t.Point(0,0),top:new t.Point(0,r),"top-left":new t.Point(n,n),"top-right":new t.Point(-n,n),bottom:new t.Point(0,-r),"bottom-left":new t.Point(n,-n),"bottom-right":new t.Point(-n,-n),left:new t.Point(r,0),right:new t.Point(-r,0)}}if(r instanceof t.Point||Array.isArray(r)){var i=t.Point.convert(r);return{center:i,top:i,"top-left":i,"top-right":i,bottom:i,"bottom-left":i,"bottom-right":i,left:i,right:i}}return{center:t.Point.convert(r.center||[0,0]),top:t.Point.convert(r.top||[0,0]),"top-left":t.Point.convert(r["top-left"]||[0,0]),"top-right":t.Point.convert(r["top-right"]||[0,0]),bottom:t.Point.convert(r.bottom||[0,0]),"bottom-left":t.Point.convert(r["bottom-left"]||[0,0]),"bottom-right":t.Point.convert(r["bottom-right"]||[0,0]),left:t.Point.convert(r.left||[0,0]),right:t.Point.convert(r.right||[0,0])}}return e(new t.Point(0,0))}(this.options.offset);if(!o){var l,c=this._container.offsetWidth,u=this._container.offsetHeight;l=a.y+s.bottom.ythis._map.transform.height-u?["bottom"]:[],a.xthis._map.transform.width-c/2&&l.push("right"),o=0===l.length?"bottom":l.join("-")}var f=a.add(s[o]).round();r.setTransform(this._container,zi[o]+" translate("+f.x+"px,"+f.y+"px)"),Di(this._container,o,"popup")}},n.prototype._onClose=function(){this.remove()},n}(t.Evented);var Zi={version:t.version,supported:e,setRTLTextPlugin:t.setRTLTextPlugin,getRTLTextPluginStatus:t.getRTLTextPluginStatus,Map:Ei,NavigationControl:Pi,GeolocateControl:Ui,AttributionControl:bi,ScaleControl:Hi,FullscreenControl:Yi,Popup:Xi,Marker:Fi,Style:qe,LngLat:t.LngLat,LngLatBounds:t.LngLatBounds,Point:t.Point,MercatorCoordinate:t.MercatorCoordinate,Evented:t.Evented,config:t.config,prewarm:function(){Bt().acquire(zt)},clearPrewarmedResources:function(){var t=Rt;t&&(t.isPreloaded()&&1===t.numActive()?(t.release(zt),Rt=null):console.warn("Could not clear WebWorkers since there are active Map instances that still reference it. The pre-warmed WebWorker pool can only be cleared when all map instances have been removed with map.remove()"))},get accessToken(){return t.config.ACCESS_TOKEN},set accessToken(e){t.config.ACCESS_TOKEN=e},get baseApiUrl(){return t.config.API_URL},set baseApiUrl(e){t.config.API_URL=e},get workerCount(){return Dt.workerCount},set workerCount(t){Dt.workerCount=t},get maxParallelImageRequests(){return t.config.MAX_PARALLEL_IMAGE_REQUESTS},set maxParallelImageRequests(e){t.config.MAX_PARALLEL_IMAGE_REQUESTS=e},clearStorage:function(e){t.clearTileCache(e)},workerUrl:""};return Zi})),r}))},{}],235:[function(t,e,r){"use strict";e.exports=Math.log2||function(t){return Math.log(t)*Math.LOG2E}},{}],236:[function(t,e,r){"use strict";e.exports=function(t,e){e||(e=t,t=window);var r=0,i=0,a=0,o={shift:!1,alt:!1,control:!1,meta:!1},s=!1;function l(t){var e=!1;return"altKey"in t&&(e=e||t.altKey!==o.alt,o.alt=!!t.altKey),"shiftKey"in t&&(e=e||t.shiftKey!==o.shift,o.shift=!!t.shiftKey),"ctrlKey"in t&&(e=e||t.ctrlKey!==o.control,o.control=!!t.ctrlKey),"metaKey"in t&&(e=e||t.metaKey!==o.meta,o.meta=!!t.metaKey),e}function c(t,s){var c=n.x(s),u=n.y(s);"buttons"in s&&(t=0|s.buttons),(t!==r||c!==i||u!==a||l(s))&&(r=0|t,i=c||0,a=u||0,e&&e(r,i,a,o))}function u(t){c(0,t)}function f(){(r||i||a||o.shift||o.alt||o.meta||o.control)&&(i=a=0,r=0,o.shift=o.alt=o.control=o.meta=!1,e&&e(0,0,0,o))}function h(t){l(t)&&e&&e(r,i,a,o)}function p(t){0===n.buttons(t)?c(0,t):c(r,t)}function d(t){c(r|n.buttons(t),t)}function m(t){c(r&~n.buttons(t),t)}function g(){s||(s=!0,t.addEventListener("mousemove",p),t.addEventListener("mousedown",d),t.addEventListener("mouseup",m),t.addEventListener("mouseleave",u),t.addEventListener("mouseenter",u),t.addEventListener("mouseout",u),t.addEventListener("mouseover",u),t.addEventListener("blur",f),t.addEventListener("keyup",h),t.addEventListener("keydown",h),t.addEventListener("keypress",h),t!==window&&(window.addEventListener("blur",f),window.addEventListener("keyup",h),window.addEventListener("keydown",h),window.addEventListener("keypress",h)))}g();var v={element:t};return Object.defineProperties(v,{enabled:{get:function(){return s},set:function(e){e?g():function(){if(!s)return;s=!1,t.removeEventListener("mousemove",p),t.removeEventListener("mousedown",d),t.removeEventListener("mouseup",m),t.removeEventListener("mouseleave",u),t.removeEventListener("mouseenter",u),t.removeEventListener("mouseout",u),t.removeEventListener("mouseover",u),t.removeEventListener("blur",f),t.removeEventListener("keyup",h),t.removeEventListener("keydown",h),t.removeEventListener("keypress",h),t!==window&&(window.removeEventListener("blur",f),window.removeEventListener("keyup",h),window.removeEventListener("keydown",h),window.removeEventListener("keypress",h))}()},enumerable:!0},buttons:{get:function(){return r},enumerable:!0},x:{get:function(){return i},enumerable:!0},y:{get:function(){return a},enumerable:!0},mods:{get:function(){return o},enumerable:!0}}),v};var n=t("mouse-event")},{"mouse-event":238}],237:[function(t,e,r){var n={left:0,top:0};e.exports=function(t,e,r){e=e||t.currentTarget||t.srcElement,Array.isArray(r)||(r=[0,0]);var i=t.clientX||0,a=t.clientY||0,o=(s=e,s===window||s===document||s===document.body?n:s.getBoundingClientRect());var s;return r[0]=i-o.left,r[1]=a-o.top,r}},{}],238:[function(t,e,r){"use strict";function n(t){return t.target||t.srcElement||window}r.buttons=function(t){if("object"==typeof t){if("buttons"in t)return t.buttons;if("which"in t){if(2===(e=t.which))return 4;if(3===e)return 2;if(e>0)return 1<=0)return 1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},r.write=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m}},{}],428:[function(t,e,r){"use strict";e.exports=function(t,e){var r=t.length;if(0===r)throw new Error("Must have at least d+1 points");var i=t[0].length;if(r<=i)throw new Error("Must input at least d+1 points");var o=t.slice(0,i+1),s=n.apply(void 0,o);if(0===s)throw new Error("Input not in general position");for(var l=new Array(i+1),u=0;u<=i;++u)l[u]=u;s<0&&(l[0]=1,l[1]=0);var f=new a(l,new Array(i+1),!1),h=f.adjacent,p=new Array(i+2);for(u=0;u<=i;++u){for(var d=l.slice(),m=0;m<=i;++m)m===u&&(d[m]=-1);var g=d[0];d[0]=d[1],d[1]=g;var v=new a(d,new Array(i+1),!0);h[u]=v,p[u]=v}p[i+1]=f;for(u=0;u<=i;++u){d=h[u].vertices;var y=h[u].adjacent;for(m=0;m<=i;++m){var x=d[m];if(x<0)y[m]=f;else for(var b=0;b<=i;++b)h[b].vertices.indexOf(x)<0&&(y[m]=h[b])}}var _=new c(i,o,p),w=!!e;for(u=i+1;u0;)for(var s=(t=o.pop()).adjacent,l=0;l<=r;++l){var c=s[l];if(c.boundary&&!(c.lastVisited<=-n)){for(var u=c.vertices,f=0;f<=r;++f){var h=u[f];i[f]=h<0?e:a[h]}var p=this.orient();if(p>0)return c;c.lastVisited=-n,0===p&&o.push(c)}}return null},u.walk=function(t,e){var r=this.vertices.length-1,n=this.dimension,i=this.vertices,a=this.tuple,o=e?this.interior.length*Math.random()|0:this.interior.length-1,s=this.interior[o];t:for(;!s.boundary;){for(var l=s.vertices,c=s.adjacent,u=0;u<=n;++u)a[u]=i[l[u]];s.lastVisited=r;for(u=0;u<=n;++u){var f=c[u];if(!(f.lastVisited>=r)){var h=a[u];a[u]=t;var p=this.orient();if(a[u]=h,p<0){s=f;continue t}f.boundary?f.lastVisited=-r:f.lastVisited=r}}return}return s},u.addPeaks=function(t,e){var r=this.vertices.length-1,n=this.dimension,i=this.vertices,l=this.tuple,c=this.interior,u=this.simplices,f=[e];e.lastVisited=r,e.vertices[e.vertices.indexOf(-1)]=r,e.boundary=!1,c.push(e);for(var h=[];f.length>0;){var p=(e=f.pop()).vertices,d=e.adjacent,m=p.indexOf(r);if(!(m<0))for(var g=0;g<=n;++g)if(g!==m){var v=d[g];if(v.boundary&&!(v.lastVisited>=r)){var y=v.vertices;if(v.lastVisited!==-r){for(var x=0,b=0;b<=n;++b)y[b]<0?(x=b,l[b]=t):l[b]=i[y[b]];if(this.orient()>0){y[x]=r,v.boundary=!1,c.push(v),f.push(v),v.lastVisited=r;continue}v.lastVisited=-r}var _=v.adjacent,w=p.slice(),T=d.slice(),k=new a(w,T,!0);u.push(k);var A=_.indexOf(e);if(!(A<0)){_[A]=k,T[m]=v,w[g]=-1,T[g]=e,d[g]=k,k.flip();for(b=0;b<=n;++b){var M=w[b];if(!(M<0||M===r)){for(var S=new Array(n-1),E=0,L=0;L<=n;++L){var C=w[L];C<0||L===b||(S[E++]=C)}h.push(new o(S,k,b))}}}}}}h.sort(s);for(g=0;g+1=0?o[l++]=s[u]:c=1&u;if(c===(1&t)){var f=o[0];o[0]=o[1],o[1]=f}e.push(o)}}return e}},{"robust-orientation":524,"simplicial-complex":534}],429:[function(t,e,r){"function"==typeof Object.create?e.exports=function(t,e){e&&(t.super_=e,t.prototype=Object.create(e.prototype,{constructor:{value:t,enumerable:!1,writable:!0,configurable:!0}}))}:e.exports=function(t,e){if(e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}}},{}],430:[function(t,e,r){"use strict";var n=t("binary-search-bounds");function i(t,e,r,n,i){this.mid=t,this.left=e,this.right=r,this.leftPoints=n,this.rightPoints=i,this.count=(e?e.count:0)+(r?r.count:0)+n.length}e.exports=function(t){if(!t||0===t.length)return new v(null);return new v(g(t))};var a=i.prototype;function o(t,e){t.mid=e.mid,t.left=e.left,t.right=e.right,t.leftPoints=e.leftPoints,t.rightPoints=e.rightPoints,t.count=e.count}function s(t,e){var r=g(e);t.mid=r.mid,t.left=r.left,t.right=r.right,t.leftPoints=r.leftPoints,t.rightPoints=r.rightPoints,t.count=r.count}function l(t,e){var r=t.intervals([]);r.push(e),s(t,r)}function c(t,e){var r=t.intervals([]),n=r.indexOf(e);return n<0?0:(r.splice(n,1),s(t,r),1)}function u(t,e,r){for(var n=0;n=0&&t[n][1]>=e;--n){var i=r(t[n]);if(i)return i}}function h(t,e){for(var r=0;r>1],a=[],o=[],s=[];for(r=0;r3*(e+1)?l(this,t):this.left.insert(t):this.left=g([t]);else if(t[0]>this.mid)this.right?4*(this.right.count+1)>3*(e+1)?l(this,t):this.right.insert(t):this.right=g([t]);else{var r=n.ge(this.leftPoints,t,d),i=n.ge(this.rightPoints,t,m);this.leftPoints.splice(r,0,t),this.rightPoints.splice(i,0,t)}},a.remove=function(t){var e=this.count-this.leftPoints;if(t[1]3*(e-1)?c(this,t):2===(s=this.left.remove(t))?(this.left=null,this.count-=1,1):(1===s&&(this.count-=1),s):0;if(t[0]>this.mid)return this.right?4*(this.left?this.left.count:0)>3*(e-1)?c(this,t):2===(s=this.right.remove(t))?(this.right=null,this.count-=1,1):(1===s&&(this.count-=1),s):0;if(1===this.count)return this.leftPoints[0]===t?2:0;if(1===this.leftPoints.length&&this.leftPoints[0]===t){if(this.left&&this.right){for(var r=this,i=this.left;i.right;)r=i,i=i.right;if(r===this)i.right=this.right;else{var a=this.left,s=this.right;r.count-=i.count,r.right=i.left,i.left=a,i.right=s}o(this,i),this.count=(this.left?this.left.count:0)+(this.right?this.right.count:0)+this.leftPoints.length}else this.left?o(this,this.left):o(this,this.right);return 1}for(a=n.ge(this.leftPoints,t,d);athis.mid){var r;if(this.right)if(r=this.right.queryPoint(t,e))return r;return f(this.rightPoints,t,e)}return h(this.leftPoints,e)},a.queryInterval=function(t,e,r){var n;if(tthis.mid&&this.right&&(n=this.right.queryInterval(t,e,r)))return n;return ethis.mid?f(this.rightPoints,t,r):h(this.leftPoints,r)};var y=v.prototype;y.insert=function(t){this.root?this.root.insert(t):this.root=new i(t[0],null,null,[t],[t])},y.remove=function(t){if(this.root){var e=this.root.remove(t);return 2===e&&(this.root=null),0!==e}return!1},y.queryPoint=function(t,e){if(this.root)return this.root.queryPoint(t,e)},y.queryInterval=function(t,e,r){if(t<=e&&this.root)return this.root.queryInterval(t,e,r)},Object.defineProperty(y,"count",{get:function(){return this.root?this.root.count:0}}),Object.defineProperty(y,"intervals",{get:function(){return this.root?this.root.intervals([]):[]}})},{"binary-search-bounds":100}],431:[function(t,e,r){"use strict";e.exports=function(t){for(var e=new Array(t),r=0;r + * @license MIT + */ +e.exports=function(t){return null!=t&&(n(t)||function(t){return"function"==typeof t.readFloatLE&&"function"==typeof t.slice&&n(t.slice(0,0))}(t)||!!t._isBuffer)}},{}],434:[function(t,e,r){"use strict";e.exports="undefined"!=typeof navigator&&(/MSIE/.test(navigator.userAgent)||/Trident\//.test(navigator.appVersion))},{}],435:[function(t,e,r){"use strict";e.exports=a,e.exports.isMobile=a,e.exports.default=a;var n=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i,i=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino|android|ipad|playbook|silk/i;function a(t){t||(t={});var e=t.ua;if(e||"undefined"==typeof navigator||(e=navigator.userAgent),e&&e.headers&&"string"==typeof e.headers["user-agent"]&&(e=e.headers["user-agent"]),"string"!=typeof e)return!1;var r=t.tablet?i.test(e):n.test(e);return!r&&t.tablet&&t.featureDetect&&navigator&&navigator.maxTouchPoints>1&&-1!==e.indexOf("Macintosh")&&-1!==e.indexOf("Safari")&&(r=!0),r}},{}],436:[function(t,e,r){"use strict";e.exports=function(t){var e=typeof t;return null!==t&&("object"===e||"function"===e)}},{}],437:[function(t,e,r){"use strict";var n=Object.prototype.toString;e.exports=function(t){var e;return"[object Object]"===n.call(t)&&(null===(e=Object.getPrototypeOf(t))||e===Object.getPrototypeOf({}))}},{}],438:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=t.length,n=0;n13)&&32!==e&&133!==e&&160!==e&&5760!==e&&6158!==e&&(e<8192||e>8205)&&8232!==e&&8233!==e&&8239!==e&&8287!==e&&8288!==e&&12288!==e&&65279!==e)return!1;return!0}},{}],439:[function(t,e,r){"use strict";e.exports=function(t){return"string"==typeof t&&(t=t.trim(),!!(/^[mzlhvcsqta]\s*[-+.0-9][^mlhvzcsqta]+/i.test(t)&&/[\dz]$/i.test(t)&&t.length>4))}},{}],440:[function(t,e,r){e.exports=function(t,e,r){return t*(1-r)+e*r}},{}],441:[function(t,e,r){!function(t,n){"object"==typeof r&&void 0!==e?e.exports=n():(t=t||self).mapboxgl=n()}(this,(function(){"use strict";var t,e,r;function n(n,i){if(t)if(e){var a="var sharedChunk = {}; ("+t+")(sharedChunk); ("+e+")(sharedChunk);",o={};t(o),(r=i(o)).workerUrl=window.URL.createObjectURL(new Blob([a],{type:"text/javascript"}))}else e=i;else t=i}return n(0,(function(t){function e(t,e){return t(e={exports:{}},e.exports),e.exports}var r=n;function n(t,e,r,n){this.cx=3*t,this.bx=3*(r-t)-this.cx,this.ax=1-this.cx-this.bx,this.cy=3*e,this.by=3*(n-e)-this.cy,this.ay=1-this.cy-this.by,this.p1x=t,this.p1y=n,this.p2x=r,this.p2y=n}n.prototype.sampleCurveX=function(t){return((this.ax*t+this.bx)*t+this.cx)*t},n.prototype.sampleCurveY=function(t){return((this.ay*t+this.by)*t+this.cy)*t},n.prototype.sampleCurveDerivativeX=function(t){return(3*this.ax*t+2*this.bx)*t+this.cx},n.prototype.solveCurveX=function(t,e){var r,n,i,a,o;for(void 0===e&&(e=1e-6),i=t,o=0;o<8;o++){if(a=this.sampleCurveX(i)-t,Math.abs(a)(n=1))return n;for(;ra?r=i:n=i,i=.5*(n-r)+r}return i},n.prototype.solve=function(t,e){return this.sampleCurveY(this.solveCurveX(t,e))};var i=a;function a(t,e){this.x=t,this.y=e}function o(t,e,n,i){var a=new r(t,e,n,i);return function(t){return a.solve(t)}}a.prototype={clone:function(){return new a(this.x,this.y)},add:function(t){return this.clone()._add(t)},sub:function(t){return this.clone()._sub(t)},multByPoint:function(t){return this.clone()._multByPoint(t)},divByPoint:function(t){return this.clone()._divByPoint(t)},mult:function(t){return this.clone()._mult(t)},div:function(t){return this.clone()._div(t)},rotate:function(t){return this.clone()._rotate(t)},rotateAround:function(t,e){return this.clone()._rotateAround(t,e)},matMult:function(t){return this.clone()._matMult(t)},unit:function(){return this.clone()._unit()},perp:function(){return this.clone()._perp()},round:function(){return this.clone()._round()},mag:function(){return Math.sqrt(this.x*this.x+this.y*this.y)},equals:function(t){return this.x===t.x&&this.y===t.y},dist:function(t){return Math.sqrt(this.distSqr(t))},distSqr:function(t){var e=t.x-this.x,r=t.y-this.y;return e*e+r*r},angle:function(){return Math.atan2(this.y,this.x)},angleTo:function(t){return Math.atan2(this.y-t.y,this.x-t.x)},angleWith:function(t){return this.angleWithSep(t.x,t.y)},angleWithSep:function(t,e){return Math.atan2(this.x*e-this.y*t,this.x*t+this.y*e)},_matMult:function(t){var e=t[0]*this.x+t[1]*this.y,r=t[2]*this.x+t[3]*this.y;return this.x=e,this.y=r,this},_add:function(t){return this.x+=t.x,this.y+=t.y,this},_sub:function(t){return this.x-=t.x,this.y-=t.y,this},_mult:function(t){return this.x*=t,this.y*=t,this},_div:function(t){return this.x/=t,this.y/=t,this},_multByPoint:function(t){return this.x*=t.x,this.y*=t.y,this},_divByPoint:function(t){return this.x/=t.x,this.y/=t.y,this},_unit:function(){return this._div(this.mag()),this},_perp:function(){var t=this.y;return this.y=this.x,this.x=-t,this},_rotate:function(t){var e=Math.cos(t),r=Math.sin(t),n=e*this.x-r*this.y,i=r*this.x+e*this.y;return this.x=n,this.y=i,this},_rotateAround:function(t,e){var r=Math.cos(t),n=Math.sin(t),i=e.x+r*(this.x-e.x)-n*(this.y-e.y),a=e.y+n*(this.x-e.x)+r*(this.y-e.y);return this.x=i,this.y=a,this},_round:function(){return this.x=Math.round(this.x),this.y=Math.round(this.y),this}},a.convert=function(t){return t instanceof a?t:Array.isArray(t)?new a(t[0],t[1]):t};var s=o(.25,.1,.25,1);function l(t,e,r){return Math.min(r,Math.max(e,t))}function c(t,e,r){var n=r-e,i=((t-e)%n+n)%n+e;return i===e?r:i}function u(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];for(var n=0,i=e;n>e/4).toString(16):([1e7]+-[1e3]+-4e3+-8e3+-1e11).replace(/[018]/g,t)}()}function d(t){return!!t&&/^[0-9a-f]{8}-[0-9a-f]{4}-[4][0-9a-f]{3}-[89ab][0-9a-f]{3}-[0-9a-f]{12}$/i.test(t)}function m(t,e){t.forEach((function(t){e[t]&&(e[t]=e[t].bind(e))}))}function g(t,e){return-1!==t.indexOf(e,t.length-e.length)}function v(t,e,r){var n={};for(var i in t)n[i]=e.call(r||this,t[i],i,t);return n}function y(t,e,r){var n={};for(var i in t)e.call(r||this,t[i],i,t)&&(n[i]=t[i]);return n}function x(t){return Array.isArray(t)?t.map(x):"object"==typeof t&&t?v(t,x):t}var b={};function _(t){b[t]||("undefined"!=typeof console&&console.warn(t),b[t]=!0)}function w(t,e,r){return(r.y-t.y)*(e.x-t.x)>(e.y-t.y)*(r.x-t.x)}function T(t){for(var e=0,r=0,n=t.length,i=n-1,a=void 0,o=void 0;r@\,;\:\\"\/\[\]\?\=\{\}\x7F]+)(?:\=(?:([^\x00-\x20\(\)<>@\,;\:\\"\/\[\]\?\=\{\}\x7F]+)|(?:\"((?:[^"\\]|\\.)*)\")))?/g,(function(t,r,n,i){var a=n||i;return e[r]=!a||a.toLowerCase(),""})),e["max-age"]){var r=parseInt(e["max-age"],10);isNaN(r)?delete e["max-age"]:e["max-age"]=r}return e}var M=null;function S(t){if(null==M){var e=t.navigator?t.navigator.userAgent:null;M=!!t.safari||!(!e||!(/\b(iPad|iPhone|iPod)\b/.test(e)||e.match("Safari")&&!e.match("Chrome")))}return M}function E(t){try{var e=self[t];return e.setItem("_mapbox_test_",1),e.removeItem("_mapbox_test_"),!0}catch(t){return!1}}var L,C,P,I,O=self.performance&&self.performance.now?self.performance.now.bind(self.performance):Date.now.bind(Date),z=self.requestAnimationFrame||self.mozRequestAnimationFrame||self.webkitRequestAnimationFrame||self.msRequestAnimationFrame,D=self.cancelAnimationFrame||self.mozCancelAnimationFrame||self.webkitCancelAnimationFrame||self.msCancelAnimationFrame,R={now:O,frame:function(t){var e=z(t);return{cancel:function(){return D(e)}}},getImageData:function(t,e){void 0===e&&(e=0);var r=self.document.createElement("canvas"),n=r.getContext("2d");if(!n)throw new Error("failed to create canvas 2d context");return r.width=t.width,r.height=t.height,n.drawImage(t,0,0,t.width,t.height),n.getImageData(-e,-e,t.width+2*e,t.height+2*e)},resolveURL:function(t){return L||(L=self.document.createElement("a")),L.href=t,L.href},hardwareConcurrency:self.navigator.hardwareConcurrency||4,get devicePixelRatio(){return self.devicePixelRatio},get prefersReducedMotion(){return!!self.matchMedia&&(null==C&&(C=self.matchMedia("(prefers-reduced-motion: reduce)")),C.matches)}},F={API_URL:"https://api.mapbox.com",get EVENTS_URL(){return this.API_URL?0===this.API_URL.indexOf("https://api.mapbox.cn")?"https://events.mapbox.cn/events/v2":0===this.API_URL.indexOf("https://api.mapbox.com")?"https://events.mapbox.com/events/v2":null:null},FEEDBACK_URL:"https://apps.mapbox.com/feedback",REQUIRE_ACCESS_TOKEN:!0,ACCESS_TOKEN:null,MAX_PARALLEL_IMAGE_REQUESTS:16},B={supported:!1,testSupport:function(t){if(N||!I)return;j?U(t):P=t}},N=!1,j=!1;function U(t){var e=t.createTexture();t.bindTexture(t.TEXTURE_2D,e);try{if(t.texImage2D(t.TEXTURE_2D,0,t.RGBA,t.RGBA,t.UNSIGNED_BYTE,I),t.isContextLost())return;B.supported=!0}catch(t){}t.deleteTexture(e),N=!0}self.document&&((I=self.document.createElement("img")).onload=function(){P&&U(P),P=null,j=!0},I.onerror=function(){N=!0,P=null},I.src="");var V="01";var H=function(t,e){this._transformRequestFn=t,this._customAccessToken=e,this._createSkuToken()};function q(t){return 0===t.indexOf("mapbox:")}H.prototype._createSkuToken=function(){var t=function(){for(var t="",e=0;e<10;e++)t+="0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"[Math.floor(62*Math.random())];return{token:["1",V,t].join(""),tokenExpiresAt:Date.now()+432e5}}();this._skuToken=t.token,this._skuTokenExpiresAt=t.tokenExpiresAt},H.prototype._isSkuTokenExpired=function(){return Date.now()>this._skuTokenExpiresAt},H.prototype.transformRequest=function(t,e){return this._transformRequestFn&&this._transformRequestFn(t,e)||{url:t}},H.prototype.normalizeStyleURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/styles/v1"+r.path,this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeGlyphsURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/fonts/v1"+r.path,this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeSourceURL=function(t,e){if(!q(t))return t;var r=X(t);return r.path="/v4/"+r.authority+".json",r.params.push("secure"),this._makeAPIURL(r,this._customAccessToken||e)},H.prototype.normalizeSpriteURL=function(t,e,r,n){var i=X(t);return q(t)?(i.path="/styles/v1"+i.path+"/sprite"+e+r,this._makeAPIURL(i,this._customAccessToken||n)):(i.path+=""+e+r,Z(i))},H.prototype.normalizeTileURL=function(t,e){if(this._isSkuTokenExpired()&&this._createSkuToken(),t&&!q(t))return t;var r=X(t),n=R.devicePixelRatio>=2||512===e?"@2x":"",i=B.supported?".webp":"$1";r.path=r.path.replace(/(\.(png|jpg)\d*)(?=$)/,""+n+i),r.path=r.path.replace(/^.+\/v4\//,"/"),r.path="/v4"+r.path;var a=this._customAccessToken||function(t){for(var e=0,r=t;e=1&&self.localStorage.setItem(e,JSON.stringify(this.eventData))}catch(t){_("Unable to write to LocalStorage")}},K.prototype.processRequests=function(t){},K.prototype.postEvent=function(t,e,r,n){var i=this;if(F.EVENTS_URL){var a=X(F.EVENTS_URL);a.params.push("access_token="+(n||F.ACCESS_TOKEN||""));var o={event:this.type,created:new Date(t).toISOString(),sdkIdentifier:"mapbox-gl-js",sdkVersion:"1.10.1",skuId:V,userId:this.anonId},s=e?u(o,e):o,l={url:Z(a),headers:{"Content-Type":"text/plain"},body:JSON.stringify([s])};this.pendingRequest=bt(l,(function(t){i.pendingRequest=null,r(t),i.saveEventData(),i.processRequests(n)}))}},K.prototype.queueRequest=function(t,e){this.queue.push(t),this.processRequests(e)};var Q,$,tt=function(t){function e(){t.call(this,"map.load"),this.success={},this.skuToken=""}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.postMapLoadEvent=function(t,e,r,n){this.skuToken=r,(F.EVENTS_URL&&n||F.ACCESS_TOKEN&&Array.isArray(t)&&t.some((function(t){return q(t)||Y(t)})))&&this.queueRequest({id:e,timestamp:Date.now()},n)},e.prototype.processRequests=function(t){var e=this;if(!this.pendingRequest&&0!==this.queue.length){var r=this.queue.shift(),n=r.id,i=r.timestamp;n&&this.success[n]||(this.anonId||this.fetchEventData(),d(this.anonId)||(this.anonId=p()),this.postEvent(i,{skuToken:this.skuToken},(function(t){t||n&&(e.success[n]=!0)}),t))}},e}(K),et=new(function(t){function e(e){t.call(this,"appUserTurnstile"),this._customAccessToken=e}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.postTurnstileEvent=function(t,e){F.EVENTS_URL&&F.ACCESS_TOKEN&&Array.isArray(t)&&t.some((function(t){return q(t)||Y(t)}))&&this.queueRequest(Date.now(),e)},e.prototype.processRequests=function(t){var e=this;if(!this.pendingRequest&&0!==this.queue.length){this.anonId&&this.eventData.lastSuccess&&this.eventData.tokenU||this.fetchEventData();var r=J(F.ACCESS_TOKEN),n=r?r.u:F.ACCESS_TOKEN,i=n!==this.eventData.tokenU;d(this.anonId)||(this.anonId=p(),i=!0);var a=this.queue.shift();if(this.eventData.lastSuccess){var o=new Date(this.eventData.lastSuccess),s=new Date(a),l=(a-this.eventData.lastSuccess)/864e5;i=i||l>=1||l<-1||o.getDate()!==s.getDate()}else i=!0;if(!i)return this.processRequests();this.postEvent(a,{"enabled.telemetry":!1},(function(t){t||(e.eventData.lastSuccess=a,e.eventData.tokenU=n)}),t)}},e}(K)),rt=et.postTurnstileEvent.bind(et),nt=new tt,it=nt.postMapLoadEvent.bind(nt),at=500,ot=50;function st(){self.caches&&!Q&&(Q=self.caches.open("mapbox-tiles"))}function lt(t,e,r){if(st(),Q){var n={status:e.status,statusText:e.statusText,headers:new self.Headers};e.headers.forEach((function(t,e){return n.headers.set(e,t)}));var i=A(e.headers.get("Cache-Control")||"");if(!i["no-store"])i["max-age"]&&n.headers.set("Expires",new Date(r+1e3*i["max-age"]).toUTCString()),new Date(n.headers.get("Expires")).getTime()-r<42e4||function(t,e){if(void 0===$)try{new Response(new ReadableStream),$=!0}catch(t){$=!1}$?e(t.body):t.blob().then(e)}(e,(function(e){var r=new self.Response(e,n);st(),Q&&Q.then((function(e){return e.put(ct(t.url),r)})).catch((function(t){return _(t.message)}))}))}}function ct(t){var e=t.indexOf("?");return e<0?t:t.slice(0,e)}function ut(t,e){if(st(),!Q)return e(null);var r=ct(t.url);Q.then((function(t){t.match(r).then((function(n){var i=function(t){if(!t)return!1;var e=new Date(t.headers.get("Expires")||0),r=A(t.headers.get("Cache-Control")||"");return e>Date.now()&&!r["no-cache"]}(n);t.delete(r),i&&t.put(r,n.clone()),e(null,n,i)})).catch(e)})).catch(e)}var ft,ht=1/0;function pt(){return null==ft&&(ft=self.OffscreenCanvas&&new self.OffscreenCanvas(1,1).getContext("2d")&&"function"==typeof self.createImageBitmap),ft}var dt={Unknown:"Unknown",Style:"Style",Source:"Source",Tile:"Tile",Glyphs:"Glyphs",SpriteImage:"SpriteImage",SpriteJSON:"SpriteJSON",Image:"Image"};"function"==typeof Object.freeze&&Object.freeze(dt);var mt=function(t){function e(e,r,n){401===r&&Y(n)&&(e+=": you may have provided an invalid Mapbox access token. See https://www.mapbox.com/api-documentation/#access-tokens-and-token-scopes"),t.call(this,e),this.status=r,this.url=n,this.name=this.constructor.name,this.message=e}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.toString=function(){return this.name+": "+this.message+" ("+this.status+"): "+this.url},e}(Error),gt=k()?function(){return self.worker&&self.worker.referrer}:function(){return("blob:"===self.location.protocol?self.parent:self).location.href};function vt(t,e){var r,n=new self.AbortController,i=new self.Request(t.url,{method:t.method||"GET",body:t.body,credentials:t.credentials,headers:t.headers,referrer:gt(),signal:n.signal}),a=!1,o=!1,s=(r=i.url).indexOf("sku=")>0&&Y(r);"json"===t.type&&i.headers.set("Accept","application/json");var l=function(r,n,a){if(!o){if(r&&"SecurityError"!==r.message&&_(r),n&&a)return c(n);var l=Date.now();self.fetch(i).then((function(r){if(r.ok){var n=s?r.clone():null;return c(r,n,l)}return e(new mt(r.statusText,r.status,t.url))})).catch((function(t){20!==t.code&&e(new Error(t.message))}))}},c=function(r,n,s){("arrayBuffer"===t.type?r.arrayBuffer():"json"===t.type?r.json():r.text()).then((function(t){o||(n&&s&<(i,n,s),a=!0,e(null,t,r.headers.get("Cache-Control"),r.headers.get("Expires")))})).catch((function(t){o||e(new Error(t.message))}))};return s?ut(i,l):l(null,null),{cancel:function(){o=!0,a||n.abort()}}}var yt=function(t,e){if(r=t.url,!(/^file:/.test(r)||/^file:/.test(gt())&&!/^\w+:/.test(r))){if(self.fetch&&self.Request&&self.AbortController&&self.Request.prototype.hasOwnProperty("signal"))return vt(t,e);if(k()&&self.worker&&self.worker.actor){return self.worker.actor.send("getResource",t,e,void 0,!0)}}var r;return function(t,e){var r=new self.XMLHttpRequest;for(var n in r.open(t.method||"GET",t.url,!0),"arrayBuffer"===t.type&&(r.responseType="arraybuffer"),t.headers)r.setRequestHeader(n,t.headers[n]);return"json"===t.type&&(r.responseType="text",r.setRequestHeader("Accept","application/json")),r.withCredentials="include"===t.credentials,r.onerror=function(){e(new Error(r.statusText))},r.onload=function(){if((r.status>=200&&r.status<300||0===r.status)&&null!==r.response){var n=r.response;if("json"===t.type)try{n=JSON.parse(r.response)}catch(t){return e(t)}e(null,n,r.getResponseHeader("Cache-Control"),r.getResponseHeader("Expires"))}else e(new mt(r.statusText,r.status,t.url))},r.send(t.body),{cancel:function(){return r.abort()}}}(t,e)},xt=function(t,e){return yt(u(t,{type:"arrayBuffer"}),e)},bt=function(t,e){return yt(u(t,{method:"POST"}),e)};var _t,wt;_t=[],wt=0;var Tt=function(t,e){if(B.supported&&(t.headers||(t.headers={}),t.headers.accept="image/webp,*/*"),wt>=F.MAX_PARALLEL_IMAGE_REQUESTS){var r={requestParameters:t,callback:e,cancelled:!1,cancel:function(){this.cancelled=!0}};return _t.push(r),r}wt++;var n=!1,i=function(){if(!n)for(n=!0,wt--;_t.length&&wt0||this._oneTimeListeners&&this._oneTimeListeners[t]&&this._oneTimeListeners[t].length>0||this._eventedParent&&this._eventedParent.listens(t)},Et.prototype.setEventedParent=function(t,e){return this._eventedParent=t,this._eventedParentData=e,this};var Lt={$version:8,$root:{version:{required:!0,type:"enum",values:[8]},name:{type:"string"},metadata:{type:"*"},center:{type:"array",value:"number"},zoom:{type:"number"},bearing:{type:"number",default:0,period:360,units:"degrees"},pitch:{type:"number",default:0,units:"degrees"},light:{type:"light"},sources:{required:!0,type:"sources"},sprite:{type:"string"},glyphs:{type:"string"},transition:{type:"transition"},layers:{required:!0,type:"array",value:"layer"}},sources:{"*":{type:"source"}},source:["source_vector","source_raster","source_raster_dem","source_geojson","source_video","source_image"],source_vector:{type:{required:!0,type:"enum",values:{vector:{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},scheme:{type:"enum",values:{xyz:{},tms:{}},default:"xyz"},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},attribution:{type:"string"},promoteId:{type:"promoteId"},"*":{type:"*"}},source_raster:{type:{required:!0,type:"enum",values:{raster:{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},tileSize:{type:"number",default:512,units:"pixels"},scheme:{type:"enum",values:{xyz:{},tms:{}},default:"xyz"},attribution:{type:"string"},"*":{type:"*"}},source_raster_dem:{type:{required:!0,type:"enum",values:{"raster-dem":{}}},url:{type:"string"},tiles:{type:"array",value:"string"},bounds:{type:"array",value:"number",length:4,default:[-180,-85.051129,180,85.051129]},minzoom:{type:"number",default:0},maxzoom:{type:"number",default:22},tileSize:{type:"number",default:512,units:"pixels"},attribution:{type:"string"},encoding:{type:"enum",values:{terrarium:{},mapbox:{}},default:"mapbox"},"*":{type:"*"}},source_geojson:{type:{required:!0,type:"enum",values:{geojson:{}}},data:{type:"*"},maxzoom:{type:"number",default:18},attribution:{type:"string"},buffer:{type:"number",default:128,maximum:512,minimum:0},tolerance:{type:"number",default:.375},cluster:{type:"boolean",default:!1},clusterRadius:{type:"number",default:50,minimum:0},clusterMaxZoom:{type:"number"},clusterProperties:{type:"*"},lineMetrics:{type:"boolean",default:!1},generateId:{type:"boolean",default:!1},promoteId:{type:"promoteId"}},source_video:{type:{required:!0,type:"enum",values:{video:{}}},urls:{required:!0,type:"array",value:"string"},coordinates:{required:!0,type:"array",length:4,value:{type:"array",length:2,value:"number"}}},source_image:{type:{required:!0,type:"enum",values:{image:{}}},url:{required:!0,type:"string"},coordinates:{required:!0,type:"array",length:4,value:{type:"array",length:2,value:"number"}}},layer:{id:{type:"string",required:!0},type:{type:"enum",values:{fill:{},line:{},symbol:{},circle:{},heatmap:{},"fill-extrusion":{},raster:{},hillshade:{},background:{}},required:!0},metadata:{type:"*"},source:{type:"string"},"source-layer":{type:"string"},minzoom:{type:"number",minimum:0,maximum:24},maxzoom:{type:"number",minimum:0,maximum:24},filter:{type:"filter"},layout:{type:"layout"},paint:{type:"paint"}},layout:["layout_fill","layout_line","layout_circle","layout_heatmap","layout_fill-extrusion","layout_symbol","layout_raster","layout_hillshade","layout_background"],layout_background:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_fill:{"fill-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_circle:{"circle-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_heatmap:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},"layout_fill-extrusion":{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_line:{"line-cap":{type:"enum",values:{butt:{},round:{},square:{}},default:"butt",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"line-join":{type:"enum",values:{bevel:{},round:{},miter:{}},default:"miter",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"line-miter-limit":{type:"number",default:2,requires:[{"line-join":"miter"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-round-limit":{type:"number",default:1.05,requires:[{"line-join":"round"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_symbol:{"symbol-placement":{type:"enum",values:{point:{},line:{},"line-center":{}},default:"point",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"symbol-spacing":{type:"number",default:250,minimum:1,units:"pixels",requires:[{"symbol-placement":"line"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"symbol-avoid-edges":{type:"boolean",default:!1,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"symbol-sort-key":{type:"number",expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"symbol-z-order":{type:"enum",values:{auto:{},"viewport-y":{},source:{}},default:"auto",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-allow-overlap":{type:"boolean",default:!1,requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-ignore-placement":{type:"boolean",default:!1,requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-optional":{type:"boolean",default:!1,requires:["icon-image","text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-rotation-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-size":{type:"number",default:1,minimum:0,units:"factor of the original icon size",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-text-fit":{type:"enum",values:{none:{},width:{},height:{},both:{}},default:"none",requires:["icon-image","text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-text-fit-padding":{type:"array",value:"number",length:4,default:[0,0,0,0],units:"pixels",requires:["icon-image","text-field",{"icon-text-fit":["both","width","height"]}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-image":{type:"resolvedImage",tokens:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-rotate":{type:"number",default:0,period:360,units:"degrees",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-padding":{type:"number",default:2,minimum:0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-keep-upright":{type:"boolean",default:!1,requires:["icon-image",{"icon-rotation-alignment":"map"},{"symbol-placement":["line","line-center"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"icon-offset":{type:"array",value:"number",length:2,default:[0,0],requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-anchor":{type:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},default:"center",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"icon-pitch-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-pitch-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-rotation-alignment":{type:"enum",values:{map:{},viewport:{},auto:{}},default:"auto",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-field":{type:"formatted",default:"",tokens:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-font":{type:"array",value:"string",default:["Open Sans Regular","Arial Unicode MS Regular"],requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-size":{type:"number",default:16,minimum:0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-max-width":{type:"number",default:10,minimum:0,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-line-height":{type:"number",default:1.2,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-letter-spacing":{type:"number",default:0,units:"ems",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-justify":{type:"enum",values:{auto:{},left:{},center:{},right:{}},default:"center",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-radial-offset":{type:"number",units:"ems",default:0,requires:["text-field"],"property-type":"data-driven",expression:{interpolated:!0,parameters:["zoom","feature"]}},"text-variable-anchor":{type:"array",value:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},requires:["text-field",{"symbol-placement":["point"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-anchor":{type:"enum",values:{center:{},left:{},right:{},top:{},bottom:{},"top-left":{},"top-right":{},"bottom-left":{},"bottom-right":{}},default:"center",requires:["text-field",{"!":"text-variable-anchor"}],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-max-angle":{type:"number",default:45,units:"degrees",requires:["text-field",{"symbol-placement":["line","line-center"]}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-writing-mode":{type:"array",value:"enum",values:{horizontal:{},vertical:{}},requires:["text-field",{"symbol-placement":["point"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-rotate":{type:"number",default:0,period:360,units:"degrees",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-padding":{type:"number",default:2,minimum:0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-keep-upright":{type:"boolean",default:!0,requires:["text-field",{"text-rotation-alignment":"map"},{"symbol-placement":["line","line-center"]}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-transform":{type:"enum",values:{none:{},uppercase:{},lowercase:{}},default:"none",requires:["text-field"],expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-offset":{type:"array",value:"number",units:"ems",length:2,default:[0,0],requires:["text-field",{"!":"text-radial-offset"}],expression:{interpolated:!0,parameters:["zoom","feature"]},"property-type":"data-driven"},"text-allow-overlap":{type:"boolean",default:!1,requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-ignore-placement":{type:"boolean",default:!1,requires:["text-field"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-optional":{type:"boolean",default:!1,requires:["text-field","icon-image"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_raster:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},layout_hillshade:{visibility:{type:"enum",values:{visible:{},none:{}},default:"visible","property-type":"constant"}},filter:{type:"array",value:"*"},filter_operator:{type:"enum",values:{"==":{},"!=":{},">":{},">=":{},"<":{},"<=":{},in:{},"!in":{},all:{},any:{},none:{},has:{},"!has":{},within:{}}},geometry_type:{type:"enum",values:{Point:{},LineString:{},Polygon:{}}},function:{expression:{type:"expression"},stops:{type:"array",value:"function_stop"},base:{type:"number",default:1,minimum:0},property:{type:"string",default:"$zoom"},type:{type:"enum",values:{identity:{},exponential:{},interval:{},categorical:{}},default:"exponential"},colorSpace:{type:"enum",values:{rgb:{},lab:{},hcl:{}},default:"rgb"},default:{type:"*",required:!1}},function_stop:{type:"array",minimum:0,maximum:24,value:["number","color"],length:2},expression:{type:"array",value:"*",minimum:1},expression_name:{type:"enum",values:{let:{group:"Variable binding"},var:{group:"Variable binding"},literal:{group:"Types"},array:{group:"Types"},at:{group:"Lookup"},in:{group:"Lookup"},"index-of":{group:"Lookup"},slice:{group:"Lookup"},case:{group:"Decision"},match:{group:"Decision"},coalesce:{group:"Decision"},step:{group:"Ramps, scales, curves"},interpolate:{group:"Ramps, scales, curves"},"interpolate-hcl":{group:"Ramps, scales, curves"},"interpolate-lab":{group:"Ramps, scales, curves"},ln2:{group:"Math"},pi:{group:"Math"},e:{group:"Math"},typeof:{group:"Types"},string:{group:"Types"},number:{group:"Types"},boolean:{group:"Types"},object:{group:"Types"},collator:{group:"Types"},format:{group:"Types"},image:{group:"Types"},"number-format":{group:"Types"},"to-string":{group:"Types"},"to-number":{group:"Types"},"to-boolean":{group:"Types"},"to-rgba":{group:"Color"},"to-color":{group:"Types"},rgb:{group:"Color"},rgba:{group:"Color"},get:{group:"Lookup"},has:{group:"Lookup"},length:{group:"Lookup"},properties:{group:"Feature data"},"feature-state":{group:"Feature data"},"geometry-type":{group:"Feature data"},id:{group:"Feature data"},zoom:{group:"Zoom"},"heatmap-density":{group:"Heatmap"},"line-progress":{group:"Feature data"},accumulated:{group:"Feature data"},"+":{group:"Math"},"*":{group:"Math"},"-":{group:"Math"},"/":{group:"Math"},"%":{group:"Math"},"^":{group:"Math"},sqrt:{group:"Math"},log10:{group:"Math"},ln:{group:"Math"},log2:{group:"Math"},sin:{group:"Math"},cos:{group:"Math"},tan:{group:"Math"},asin:{group:"Math"},acos:{group:"Math"},atan:{group:"Math"},min:{group:"Math"},max:{group:"Math"},round:{group:"Math"},abs:{group:"Math"},ceil:{group:"Math"},floor:{group:"Math"},distance:{group:"Math"},"==":{group:"Decision"},"!=":{group:"Decision"},">":{group:"Decision"},"<":{group:"Decision"},">=":{group:"Decision"},"<=":{group:"Decision"},all:{group:"Decision"},any:{group:"Decision"},"!":{group:"Decision"},within:{group:"Decision"},"is-supported-script":{group:"String"},upcase:{group:"String"},downcase:{group:"String"},concat:{group:"String"},"resolved-locale":{group:"String"}}},light:{anchor:{type:"enum",default:"viewport",values:{map:{},viewport:{}},"property-type":"data-constant",transition:!1,expression:{interpolated:!1,parameters:["zoom"]}},position:{type:"array",default:[1.15,210,30],length:3,value:"number","property-type":"data-constant",transition:!0,expression:{interpolated:!0,parameters:["zoom"]}},color:{type:"color","property-type":"data-constant",default:"#ffffff",expression:{interpolated:!0,parameters:["zoom"]},transition:!0},intensity:{type:"number","property-type":"data-constant",default:.5,minimum:0,maximum:1,expression:{interpolated:!0,parameters:["zoom"]},transition:!0}},paint:["paint_fill","paint_line","paint_circle","paint_heatmap","paint_fill-extrusion","paint_symbol","paint_raster","paint_hillshade","paint_background"],paint_fill:{"fill-antialias":{type:"boolean",default:!0,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"fill-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-outline-color":{type:"color",transition:!0,requires:[{"!":"fill-pattern"},{"fill-antialias":!0}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["fill-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"}},"paint_fill-extrusion":{"fill-extrusion-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"fill-extrusion-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["fill-extrusion-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"fill-extrusion-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"},"fill-extrusion-height":{type:"number",default:0,minimum:0,units:"meters",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-base":{type:"number",default:0,minimum:0,units:"meters",transition:!0,requires:["fill-extrusion-height"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"fill-extrusion-vertical-gradient":{type:"boolean",default:!0,transition:!1,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"}},paint_line:{"line-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"line-pattern"}],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"line-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["line-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"line-width":{type:"number",default:1,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-gap-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-offset":{type:"number",default:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"line-dasharray":{type:"array",value:"number",minimum:0,transition:!0,units:"line widths",requires:[{"!":"line-pattern"}],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"cross-faded"},"line-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom","feature"]},"property-type":"cross-faded-data-driven"},"line-gradient":{type:"color",transition:!1,requires:[{"!":"line-dasharray"},{"!":"line-pattern"},{source:"geojson",has:{lineMetrics:!0}}],expression:{interpolated:!0,parameters:["line-progress"]},"property-type":"color-ramp"}},paint_circle:{"circle-radius":{type:"number",default:5,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-blur":{type:"number",default:0,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"circle-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["circle-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-pitch-scale":{type:"enum",values:{map:{},viewport:{}},default:"map",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-pitch-alignment":{type:"enum",values:{map:{},viewport:{}},default:"viewport",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"circle-stroke-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-stroke-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"circle-stroke-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"}},paint_heatmap:{"heatmap-radius":{type:"number",default:30,minimum:1,transition:!0,units:"pixels",expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"heatmap-weight":{type:"number",default:1,minimum:0,transition:!1,expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"heatmap-intensity":{type:"number",default:1,minimum:0,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"heatmap-color":{type:"color",default:["interpolate",["linear"],["heatmap-density"],0,"rgba(0, 0, 255, 0)",.1,"royalblue",.3,"cyan",.5,"lime",.7,"yellow",1,"red"],transition:!1,expression:{interpolated:!0,parameters:["heatmap-density"]},"property-type":"color-ramp"},"heatmap-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_symbol:{"icon-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-color":{type:"color",default:"#000000",transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-color":{type:"color",default:"rgba(0, 0, 0, 0)",transition:!0,requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-halo-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"icon-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",requires:["icon-image"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"icon-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["icon-image","icon-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"text-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-color":{type:"color",default:"#000000",transition:!0,overridable:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-color":{type:"color",default:"rgba(0, 0, 0, 0)",transition:!0,requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-width":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-halo-blur":{type:"number",default:0,minimum:0,transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom","feature","feature-state"]},"property-type":"data-driven"},"text-translate":{type:"array",value:"number",length:2,default:[0,0],transition:!0,units:"pixels",requires:["text-field"],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"text-translate-anchor":{type:"enum",values:{map:{},viewport:{}},default:"map",requires:["text-field","text-translate"],expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"}},paint_raster:{"raster-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-hue-rotate":{type:"number",default:0,period:360,transition:!0,units:"degrees",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-brightness-min":{type:"number",default:0,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-brightness-max":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-saturation":{type:"number",default:0,minimum:-1,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-contrast":{type:"number",default:0,minimum:-1,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"raster-resampling":{type:"enum",values:{linear:{},nearest:{}},default:"linear",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"raster-fade-duration":{type:"number",default:300,minimum:0,transition:!1,units:"milliseconds",expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_hillshade:{"hillshade-illumination-direction":{type:"number",default:335,minimum:0,maximum:359,transition:!1,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-illumination-anchor":{type:"enum",values:{map:{},viewport:{}},default:"viewport",expression:{interpolated:!1,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-exaggeration":{type:"number",default:.5,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-shadow-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-highlight-color":{type:"color",default:"#FFFFFF",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"hillshade-accent-color":{type:"color",default:"#000000",transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},paint_background:{"background-color":{type:"color",default:"#000000",transition:!0,requires:[{"!":"background-pattern"}],expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"},"background-pattern":{type:"resolvedImage",transition:!0,expression:{interpolated:!1,parameters:["zoom"]},"property-type":"cross-faded"},"background-opacity":{type:"number",default:1,minimum:0,maximum:1,transition:!0,expression:{interpolated:!0,parameters:["zoom"]},"property-type":"data-constant"}},transition:{duration:{type:"number",default:300,minimum:0,units:"milliseconds"},delay:{type:"number",default:0,minimum:0,units:"milliseconds"}},"property-type":{"data-driven":{type:"property-type"},"cross-faded":{type:"property-type"},"cross-faded-data-driven":{type:"property-type"},"color-ramp":{type:"property-type"},"data-constant":{type:"property-type"},constant:{type:"property-type"}},promoteId:{"*":{type:"string"}}},Ct=function(t,e,r,n){this.message=(t?t+": ":"")+r,n&&(this.identifier=n),null!=e&&e.__line__&&(this.line=e.__line__)};function Pt(t){var e=t.key,r=t.value;return r?[new Ct(e,r,"constants have been deprecated as of v8")]:[]}function It(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];for(var n=0,i=e;n":"value"===t.itemType.kind?"array":"array<"+e+">"}return t.kind}var Zt=[Ft,Bt,Nt,jt,Ut,Gt,Vt,Wt(Ht),Yt];function Jt(t,e){if("error"===e.kind)return null;if("array"===t.kind){if("array"===e.kind&&(0===e.N&&"value"===e.itemType.kind||!Jt(t.itemType,e.itemType))&&("number"!=typeof t.N||t.N===e.N))return null}else{if(t.kind===e.kind)return null;if("value"===t.kind)for(var r=0,n=Zt;r255?255:t}function i(t){return t<0?0:t>1?1:t}function a(t){return"%"===t[t.length-1]?n(parseFloat(t)/100*255):n(parseInt(t))}function o(t){return"%"===t[t.length-1]?i(parseFloat(t)/100):i(parseFloat(t))}function s(t,e,r){return r<0?r+=1:r>1&&(r-=1),6*r<1?t+(e-t)*r*6:2*r<1?e:3*r<2?t+(e-t)*(2/3-r)*6:t}try{e.parseCSSColor=function(t){var e,i=t.replace(/ /g,"").toLowerCase();if(i in r)return r[i].slice();if("#"===i[0])return 4===i.length?(e=parseInt(i.substr(1),16))>=0&&e<=4095?[(3840&e)>>4|(3840&e)>>8,240&e|(240&e)>>4,15&e|(15&e)<<4,1]:null:7===i.length&&(e=parseInt(i.substr(1),16))>=0&&e<=16777215?[(16711680&e)>>16,(65280&e)>>8,255&e,1]:null;var l=i.indexOf("("),c=i.indexOf(")");if(-1!==l&&c+1===i.length){var u=i.substr(0,l),f=i.substr(l+1,c-(l+1)).split(","),h=1;switch(u){case"rgba":if(4!==f.length)return null;h=o(f.pop());case"rgb":return 3!==f.length?null:[a(f[0]),a(f[1]),a(f[2]),h];case"hsla":if(4!==f.length)return null;h=o(f.pop());case"hsl":if(3!==f.length)return null;var p=(parseFloat(f[0])%360+360)%360/360,d=o(f[1]),m=o(f[2]),g=m<=.5?m*(d+1):m+d-m*d,v=2*m-g;return[n(255*s(v,g,p+1/3)),n(255*s(v,g,p)),n(255*s(v,g,p-1/3)),h];default:return null}}return null}}catch(t){}})).parseCSSColor,te=function(t,e,r,n){void 0===n&&(n=1),this.r=t,this.g=e,this.b=r,this.a=n};te.parse=function(t){if(t){if(t instanceof te)return t;if("string"==typeof t){var e=$t(t);if(e)return new te(e[0]/255*e[3],e[1]/255*e[3],e[2]/255*e[3],e[3])}}},te.prototype.toString=function(){var t=this.toArray(),e=t[0],r=t[1],n=t[2],i=t[3];return"rgba("+Math.round(e)+","+Math.round(r)+","+Math.round(n)+","+i+")"},te.prototype.toArray=function(){var t=this.r,e=this.g,r=this.b,n=this.a;return 0===n?[0,0,0,0]:[255*t/n,255*e/n,255*r/n,n]},te.black=new te(0,0,0,1),te.white=new te(1,1,1,1),te.transparent=new te(0,0,0,0),te.red=new te(1,0,0,1);var ee=function(t,e,r){this.sensitivity=t?e?"variant":"case":e?"accent":"base",this.locale=r,this.collator=new Intl.Collator(this.locale?this.locale:[],{sensitivity:this.sensitivity,usage:"search"})};ee.prototype.compare=function(t,e){return this.collator.compare(t,e)},ee.prototype.resolvedLocale=function(){return new Intl.Collator(this.locale?this.locale:[]).resolvedOptions().locale};var re=function(t,e,r,n,i){this.text=t,this.image=e,this.scale=r,this.fontStack=n,this.textColor=i},ne=function(t){this.sections=t};ne.fromString=function(t){return new ne([new re(t,null,null,null,null)])},ne.prototype.isEmpty=function(){return 0===this.sections.length||!this.sections.some((function(t){return 0!==t.text.length||t.image&&0!==t.image.name.length}))},ne.factory=function(t){return t instanceof ne?t:ne.fromString(t)},ne.prototype.toString=function(){return 0===this.sections.length?"":this.sections.map((function(t){return t.text})).join("")},ne.prototype.serialize=function(){for(var t=["format"],e=0,r=this.sections;e=0&&t<=255&&"number"==typeof e&&e>=0&&e<=255&&"number"==typeof r&&r>=0&&r<=255?void 0===n||"number"==typeof n&&n>=0&&n<=1?null:"Invalid rgba value ["+[t,e,r,n].join(", ")+"]: 'a' must be between 0 and 1.":"Invalid rgba value ["+("number"==typeof n?[t,e,r,n]:[t,e,r]).join(", ")+"]: 'r', 'g', and 'b' must be between 0 and 255."}function oe(t){if(null===t)return!0;if("string"==typeof t)return!0;if("boolean"==typeof t)return!0;if("number"==typeof t)return!0;if(t instanceof te)return!0;if(t instanceof ee)return!0;if(t instanceof ne)return!0;if(t instanceof ie)return!0;if(Array.isArray(t)){for(var e=0,r=t;e2){var s=t[1];if("string"!=typeof s||!(s in fe)||"object"===s)return e.error('The item type argument of "array" must be one of string, number, boolean',1);a=fe[s],n++}else a=Ht;if(t.length>3){if(null!==t[2]&&("number"!=typeof t[2]||t[2]<0||t[2]!==Math.floor(t[2])))return e.error('The length argument to "array" must be a positive integer literal',2);o=t[2],n++}r=Wt(a,o)}else r=fe[i];for(var l=[];n1)&&e.push(n)}}return e.concat(this.args.map((function(t){return t.serialize()})))};var pe=function(t){this.type=Gt,this.sections=t};pe.parse=function(t,e){if(t.length<2)return e.error("Expected at least one argument.");var r=t[1];if(!Array.isArray(r)&&"object"==typeof r)return e.error("First argument must be an image or text section.");for(var n=[],i=!1,a=1;a<=t.length-1;++a){var o=t[a];if(i&&"object"==typeof o&&!Array.isArray(o)){i=!1;var s=null;if(o["font-scale"]&&!(s=e.parse(o["font-scale"],1,Bt)))return null;var l=null;if(o["text-font"]&&!(l=e.parse(o["text-font"],1,Wt(Nt))))return null;var c=null;if(o["text-color"]&&!(c=e.parse(o["text-color"],1,Ut)))return null;var u=n[n.length-1];u.scale=s,u.font=l,u.textColor=c}else{var f=e.parse(t[a],1,Ht);if(!f)return null;var h=f.type.kind;if("string"!==h&&"value"!==h&&"null"!==h&&"resolvedImage"!==h)return e.error("Formatted text type must be 'string', 'value', 'image' or 'null'.");i=!0,n.push({content:f,scale:null,font:null,textColor:null})}}return new pe(n)},pe.prototype.evaluate=function(t){return new ne(this.sections.map((function(e){var r=e.content.evaluate(t);return se(r)===Yt?new re("",r,null,null,null):new re(le(r),null,e.scale?e.scale.evaluate(t):null,e.font?e.font.evaluate(t).join(","):null,e.textColor?e.textColor.evaluate(t):null)})))},pe.prototype.eachChild=function(t){for(var e=0,r=this.sections;e-1),r},de.prototype.eachChild=function(t){t(this.input)},de.prototype.outputDefined=function(){return!1},de.prototype.serialize=function(){return["image",this.input.serialize()]};var me={"to-boolean":jt,"to-color":Ut,"to-number":Bt,"to-string":Nt},ge=function(t,e){this.type=t,this.args=e};ge.parse=function(t,e){if(t.length<2)return e.error("Expected at least one argument.");var r=t[0];if(("to-boolean"===r||"to-string"===r)&&2!==t.length)return e.error("Expected one argument.");for(var n=me[r],i=[],a=1;a4?"Invalid rbga value "+JSON.stringify(e)+": expected an array containing either three or four numeric values.":ae(e[0],e[1],e[2],e[3])))return new te(e[0]/255,e[1]/255,e[2]/255,e[3])}throw new ue(r||"Could not parse color from value '"+("string"==typeof e?e:String(JSON.stringify(e)))+"'")}if("number"===this.type.kind){for(var o=null,s=0,l=this.args;s=e[2])&&(!(t[1]<=e[1])&&!(t[3]>=e[3])))}function Te(t,e){var r,n=(180+t[0])/360,i=(r=t[1],(180-180/Math.PI*Math.log(Math.tan(Math.PI/4+r*Math.PI/360)))/360),a=Math.pow(2,e.z);return[Math.round(n*a*8192),Math.round(i*a*8192)]}function ke(t,e,r){return e[1]>t[1]!=r[1]>t[1]&&t[0]<(r[0]-e[0])*(t[1]-e[1])/(r[1]-e[1])+e[0]}function Ae(t,e){for(var r,n,i,a,o,s,l,c=!1,u=0,f=e.length;u0&&f<0||u<0&&f>0}function Ee(t,e,r){for(var n=0,i=r;nr[2]){var i=.5*n,a=t[0]-r[0]>i?-n:r[0]-t[0]>i?n:0;0===a&&(a=t[0]-r[2]>i?-n:r[2]-t[0]>i?n:0),t[0]+=a}_e(e,t)}function ze(t,e,r,n){for(var i=8192*Math.pow(2,n.z),a=[8192*n.x,8192*n.y],o=[],s=0,l=t;s=0)return!1;var r=!0;return t.eachChild((function(t){r&&!Ne(t,e)&&(r=!1)})),r}Re.parse=function(t,e){if(2!==t.length)return e.error("'within' expression requires exactly one argument, but found "+(t.length-1)+" instead.");if(oe(t[1])){var r=t[1];if("FeatureCollection"===r.type)for(var n=0;ne))throw new ue("Input is not a number.");o=s-1}return 0}Ue.prototype.parse=function(t,e,r,n,i){return void 0===i&&(i={}),e?this.concat(e,r,n)._parse(t,i):this._parse(t,i)},Ue.prototype._parse=function(t,e){function r(t,e,r){return"assert"===r?new he(e,[t]):"coerce"===r?new ge(e,[t]):t}if(null!==t&&"string"!=typeof t&&"boolean"!=typeof t&&"number"!=typeof t||(t=["literal",t]),Array.isArray(t)){if(0===t.length)return this.error('Expected an array with at least one element. If you wanted a literal array, use ["literal", []].');var n=t[0];if("string"!=typeof n)return this.error("Expression name must be a string, but found "+typeof n+' instead. If you wanted a literal array, use ["literal", [...]].',0),null;var i=this.registry[n];if(i){var a=i.parse(t,this);if(!a)return null;if(this.expectedType){var o=this.expectedType,s=a.type;if("string"!==o.kind&&"number"!==o.kind&&"boolean"!==o.kind&&"object"!==o.kind&&"array"!==o.kind||"value"!==s.kind)if("color"!==o.kind&&"formatted"!==o.kind&&"resolvedImage"!==o.kind||"value"!==s.kind&&"string"!==s.kind){if(this.checkSubtype(o,s))return null}else a=r(a,o,e.typeAnnotation||"coerce");else a=r(a,o,e.typeAnnotation||"assert")}if(!(a instanceof ce)&&"resolvedImage"!==a.type.kind&&function t(e){if(e instanceof je)return t(e.boundExpression);if(e instanceof xe&&"error"===e.name)return!1;if(e instanceof be)return!1;if(e instanceof Re)return!1;var r=e instanceof ge||e instanceof he,n=!0;if(e.eachChild((function(e){n=r?n&&t(e):n&&e instanceof ce})),!n)return!1;return Fe(e)&&Ne(e,["zoom","heatmap-density","line-progress","accumulated","is-supported-script"])}(a)){var l=new ye;try{a=new ce(a.type,a.evaluate(l))}catch(t){return this.error(t.message),null}}return a}return this.error('Unknown expression "'+n+'". If you wanted a literal array, use ["literal", [...]].',0)}return void 0===t?this.error("'undefined' value invalid. Use null instead."):"object"==typeof t?this.error('Bare objects invalid. Use ["literal", {...}] instead.'):this.error("Expected an array, but found "+typeof t+" instead.")},Ue.prototype.concat=function(t,e,r){var n="number"==typeof t?this.path.concat(t):this.path,i=r?this.scope.concat(r):this.scope;return new Ue(this.registry,n,e||null,i,this.errors)},Ue.prototype.error=function(t){for(var e=[],r=arguments.length-1;r-- >0;)e[r]=arguments[r+1];var n=""+this.key+e.map((function(t){return"["+t+"]"})).join("");this.errors.push(new Dt(n,t))},Ue.prototype.checkSubtype=function(t,e){var r=Jt(t,e);return r&&this.error(r),r};var He=function(t,e,r){this.type=t,this.input=e,this.labels=[],this.outputs=[];for(var n=0,i=r;n=o)return e.error('Input/output pairs for "step" expressions must be arranged with input values in strictly ascending order.',l);var u=e.parse(s,c,i);if(!u)return null;i=i||u.type,n.push([o,u])}return new He(i,r,n)},He.prototype.evaluate=function(t){var e=this.labels,r=this.outputs;if(1===e.length)return r[0].evaluate(t);var n=this.input.evaluate(t);if(n<=e[0])return r[0].evaluate(t);var i=e.length;return n>=e[i-1]?r[i-1].evaluate(t):r[Ve(e,n)].evaluate(t)},He.prototype.eachChild=function(t){t(this.input);for(var e=0,r=this.outputs;e0&&t.push(this.labels[e]),t.push(this.outputs[e].serialize());return t};var Ge=Object.freeze({__proto__:null,number:qe,color:function(t,e,r){return new te(qe(t.r,e.r,r),qe(t.g,e.g,r),qe(t.b,e.b,r),qe(t.a,e.a,r))},array:function(t,e,r){return t.map((function(t,n){return qe(t,e[n],r)}))}}),Ye=6/29,We=3*Ye*Ye,Xe=Math.PI/180,Ze=180/Math.PI;function Je(t){return t>.008856451679035631?Math.pow(t,1/3):t/We+4/29}function Ke(t){return t>Ye?t*t*t:We*(t-4/29)}function Qe(t){return 255*(t<=.0031308?12.92*t:1.055*Math.pow(t,1/2.4)-.055)}function $e(t){return(t/=255)<=.04045?t/12.92:Math.pow((t+.055)/1.055,2.4)}function tr(t){var e=$e(t.r),r=$e(t.g),n=$e(t.b),i=Je((.4124564*e+.3575761*r+.1804375*n)/.95047),a=Je((.2126729*e+.7151522*r+.072175*n)/1);return{l:116*a-16,a:500*(i-a),b:200*(a-Je((.0193339*e+.119192*r+.9503041*n)/1.08883)),alpha:t.a}}function er(t){var e=(t.l+16)/116,r=isNaN(t.a)?e:e+t.a/500,n=isNaN(t.b)?e:e-t.b/200;return e=1*Ke(e),r=.95047*Ke(r),n=1.08883*Ke(n),new te(Qe(3.2404542*r-1.5371385*e-.4985314*n),Qe(-.969266*r+1.8760108*e+.041556*n),Qe(.0556434*r-.2040259*e+1.0572252*n),t.alpha)}function rr(t,e,r){var n=e-t;return t+r*(n>180||n<-180?n-360*Math.round(n/360):n)}var nr={forward:tr,reverse:er,interpolate:function(t,e,r){return{l:qe(t.l,e.l,r),a:qe(t.a,e.a,r),b:qe(t.b,e.b,r),alpha:qe(t.alpha,e.alpha,r)}}},ir={forward:function(t){var e=tr(t),r=e.l,n=e.a,i=e.b,a=Math.atan2(i,n)*Ze;return{h:a<0?a+360:a,c:Math.sqrt(n*n+i*i),l:r,alpha:t.a}},reverse:function(t){var e=t.h*Xe,r=t.c;return er({l:t.l,a:Math.cos(e)*r,b:Math.sin(e)*r,alpha:t.alpha})},interpolate:function(t,e,r){return{h:rr(t.h,e.h,r),c:qe(t.c,e.c,r),l:qe(t.l,e.l,r),alpha:qe(t.alpha,e.alpha,r)}}},ar=Object.freeze({__proto__:null,lab:nr,hcl:ir}),or=function(t,e,r,n,i){this.type=t,this.operator=e,this.interpolation=r,this.input=n,this.labels=[],this.outputs=[];for(var a=0,o=i;a1})))return e.error("Cubic bezier interpolation requires four numeric arguments with values between 0 and 1.",1);n={name:"cubic-bezier",controlPoints:s}}if(t.length-1<4)return e.error("Expected at least 4 arguments, but found only "+(t.length-1)+".");if((t.length-1)%2!=0)return e.error("Expected an even number of arguments.");if(!(i=e.parse(i,2,Bt)))return null;var l=[],c=null;"interpolate-hcl"===r||"interpolate-lab"===r?c=Ut:e.expectedType&&"value"!==e.expectedType.kind&&(c=e.expectedType);for(var u=0;u=f)return e.error('Input/output pairs for "interpolate" expressions must be arranged with input values in strictly ascending order.',p);var m=e.parse(h,d,c);if(!m)return null;c=c||m.type,l.push([f,m])}return"number"===c.kind||"color"===c.kind||"array"===c.kind&&"number"===c.itemType.kind&&"number"==typeof c.N?new or(c,r,n,i,l):e.error("Type "+Xt(c)+" is not interpolatable.")},or.prototype.evaluate=function(t){var e=this.labels,r=this.outputs;if(1===e.length)return r[0].evaluate(t);var n=this.input.evaluate(t);if(n<=e[0])return r[0].evaluate(t);var i=e.length;if(n>=e[i-1])return r[i-1].evaluate(t);var a=Ve(e,n),o=e[a],s=e[a+1],l=or.interpolationFactor(this.interpolation,n,o,s),c=r[a].evaluate(t),u=r[a+1].evaluate(t);return"interpolate"===this.operator?Ge[this.type.kind.toLowerCase()](c,u,l):"interpolate-hcl"===this.operator?ir.reverse(ir.interpolate(ir.forward(c),ir.forward(u),l)):nr.reverse(nr.interpolate(nr.forward(c),nr.forward(u),l))},or.prototype.eachChild=function(t){t(this.input);for(var e=0,r=this.outputs;e=r.length)throw new ue("Array index out of bounds: "+e+" > "+(r.length-1)+".");if(e!==Math.floor(e))throw new ue("Array index must be an integer, but found "+e+" instead.");return r[e]},ur.prototype.eachChild=function(t){t(this.index),t(this.input)},ur.prototype.outputDefined=function(){return!1},ur.prototype.serialize=function(){return["at",this.index.serialize(),this.input.serialize()]};var fr=function(t,e){this.type=jt,this.needle=t,this.haystack=e};fr.parse=function(t,e){if(3!==t.length)return e.error("Expected 2 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Ht);return r&&n?Kt(r.type,[jt,Nt,Bt,Ft,Ht])?new fr(r,n):e.error("Expected first argument to be of type boolean, string, number or null, but found "+Xt(r.type)+" instead"):null},fr.prototype.evaluate=function(t){var e=this.needle.evaluate(t),r=this.haystack.evaluate(t);if(!r)return!1;if(!Qt(e,["boolean","string","number","null"]))throw new ue("Expected first argument to be of type boolean, string, number or null, but found "+Xt(se(e))+" instead.");if(!Qt(r,["string","array"]))throw new ue("Expected second argument to be of type array or string, but found "+Xt(se(r))+" instead.");return r.indexOf(e)>=0},fr.prototype.eachChild=function(t){t(this.needle),t(this.haystack)},fr.prototype.outputDefined=function(){return!0},fr.prototype.serialize=function(){return["in",this.needle.serialize(),this.haystack.serialize()]};var hr=function(t,e,r){this.type=Bt,this.needle=t,this.haystack=e,this.fromIndex=r};hr.parse=function(t,e){if(t.length<=2||t.length>=5)return e.error("Expected 3 or 4 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Ht);if(!r||!n)return null;if(!Kt(r.type,[jt,Nt,Bt,Ft,Ht]))return e.error("Expected first argument to be of type boolean, string, number or null, but found "+Xt(r.type)+" instead");if(4===t.length){var i=e.parse(t[3],3,Bt);return i?new hr(r,n,i):null}return new hr(r,n)},hr.prototype.evaluate=function(t){var e=this.needle.evaluate(t),r=this.haystack.evaluate(t);if(!Qt(e,["boolean","string","number","null"]))throw new ue("Expected first argument to be of type boolean, string, number or null, but found "+Xt(se(e))+" instead.");if(!Qt(r,["string","array"]))throw new ue("Expected second argument to be of type array or string, but found "+Xt(se(r))+" instead.");if(this.fromIndex){var n=this.fromIndex.evaluate(t);return r.indexOf(e,n)}return r.indexOf(e)},hr.prototype.eachChild=function(t){t(this.needle),t(this.haystack),this.fromIndex&&t(this.fromIndex)},hr.prototype.outputDefined=function(){return!1},hr.prototype.serialize=function(){if(null!=this.fromIndex&&void 0!==this.fromIndex){var t=this.fromIndex.serialize();return["index-of",this.needle.serialize(),this.haystack.serialize(),t]}return["index-of",this.needle.serialize(),this.haystack.serialize()]};var pr=function(t,e,r,n,i,a){this.inputType=t,this.type=e,this.input=r,this.cases=n,this.outputs=i,this.otherwise=a};pr.parse=function(t,e){if(t.length<5)return e.error("Expected at least 4 arguments, but found only "+(t.length-1)+".");if(t.length%2!=1)return e.error("Expected an even number of arguments.");var r,n;e.expectedType&&"value"!==e.expectedType.kind&&(n=e.expectedType);for(var i={},a=[],o=2;oNumber.MAX_SAFE_INTEGER)return c.error("Branch labels must be integers no larger than "+Number.MAX_SAFE_INTEGER+".");if("number"==typeof h&&Math.floor(h)!==h)return c.error("Numeric branch labels must be integer values.");if(r){if(c.checkSubtype(r,se(h)))return null}else r=se(h);if(void 0!==i[String(h)])return c.error("Branch labels must be unique.");i[String(h)]=a.length}var p=e.parse(l,o,n);if(!p)return null;n=n||p.type,a.push(p)}var d=e.parse(t[1],1,Ht);if(!d)return null;var m=e.parse(t[t.length-1],t.length-1,n);return m?"value"!==d.type.kind&&e.concat(1).checkSubtype(r,d.type)?null:new pr(r,n,d,i,a,m):null},pr.prototype.evaluate=function(t){var e=this.input.evaluate(t);return(se(e)===this.inputType&&this.outputs[this.cases[e]]||this.otherwise).evaluate(t)},pr.prototype.eachChild=function(t){t(this.input),this.outputs.forEach(t),t(this.otherwise)},pr.prototype.outputDefined=function(){return this.outputs.every((function(t){return t.outputDefined()}))&&this.otherwise.outputDefined()},pr.prototype.serialize=function(){for(var t=this,e=["match",this.input.serialize()],r=[],n={},i=0,a=Object.keys(this.cases).sort();i=5)return e.error("Expected 3 or 4 arguments, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1,Ht),n=e.parse(t[2],2,Bt);if(!r||!n)return null;if(!Kt(r.type,[Wt(Ht),Nt,Ht]))return e.error("Expected first argument to be of type array or string, but found "+Xt(r.type)+" instead");if(4===t.length){var i=e.parse(t[3],3,Bt);return i?new mr(r.type,r,n,i):null}return new mr(r.type,r,n)},mr.prototype.evaluate=function(t){var e=this.input.evaluate(t),r=this.beginIndex.evaluate(t);if(!Qt(e,["string","array"]))throw new ue("Expected first argument to be of type array or string, but found "+Xt(se(e))+" instead.");if(this.endIndex){var n=this.endIndex.evaluate(t);return e.slice(r,n)}return e.slice(r)},mr.prototype.eachChild=function(t){t(this.input),t(this.beginIndex),this.endIndex&&t(this.endIndex)},mr.prototype.outputDefined=function(){return!1},mr.prototype.serialize=function(){if(null!=this.endIndex&&void 0!==this.endIndex){var t=this.endIndex.serialize();return["slice",this.input.serialize(),this.beginIndex.serialize(),t]}return["slice",this.input.serialize(),this.beginIndex.serialize()]};var xr=yr("==",(function(t,e,r){return e===r}),vr),br=yr("!=",(function(t,e,r){return e!==r}),(function(t,e,r,n){return!vr(0,e,r,n)})),_r=yr("<",(function(t,e,r){return e",(function(t,e,r){return e>r}),(function(t,e,r,n){return n.compare(e,r)>0})),Tr=yr("<=",(function(t,e,r){return e<=r}),(function(t,e,r,n){return n.compare(e,r)<=0})),kr=yr(">=",(function(t,e,r){return e>=r}),(function(t,e,r,n){return n.compare(e,r)>=0})),Ar=function(t,e,r,n,i){this.type=Nt,this.number=t,this.locale=e,this.currency=r,this.minFractionDigits=n,this.maxFractionDigits=i};Ar.parse=function(t,e){if(3!==t.length)return e.error("Expected two arguments.");var r=e.parse(t[1],1,Bt);if(!r)return null;var n=t[2];if("object"!=typeof n||Array.isArray(n))return e.error("NumberFormat options argument must be an object.");var i=null;if(n.locale&&!(i=e.parse(n.locale,1,Nt)))return null;var a=null;if(n.currency&&!(a=e.parse(n.currency,1,Nt)))return null;var o=null;if(n["min-fraction-digits"]&&!(o=e.parse(n["min-fraction-digits"],1,Bt)))return null;var s=null;return n["max-fraction-digits"]&&!(s=e.parse(n["max-fraction-digits"],1,Bt))?null:new Ar(r,i,a,o,s)},Ar.prototype.evaluate=function(t){return new Intl.NumberFormat(this.locale?this.locale.evaluate(t):[],{style:this.currency?"currency":"decimal",currency:this.currency?this.currency.evaluate(t):void 0,minimumFractionDigits:this.minFractionDigits?this.minFractionDigits.evaluate(t):void 0,maximumFractionDigits:this.maxFractionDigits?this.maxFractionDigits.evaluate(t):void 0}).format(this.number.evaluate(t))},Ar.prototype.eachChild=function(t){t(this.number),this.locale&&t(this.locale),this.currency&&t(this.currency),this.minFractionDigits&&t(this.minFractionDigits),this.maxFractionDigits&&t(this.maxFractionDigits)},Ar.prototype.outputDefined=function(){return!1},Ar.prototype.serialize=function(){var t={};return this.locale&&(t.locale=this.locale.serialize()),this.currency&&(t.currency=this.currency.serialize()),this.minFractionDigits&&(t["min-fraction-digits"]=this.minFractionDigits.serialize()),this.maxFractionDigits&&(t["max-fraction-digits"]=this.maxFractionDigits.serialize()),["number-format",this.number.serialize(),t]};var Mr=function(t){this.type=Bt,this.input=t};Mr.parse=function(t,e){if(2!==t.length)return e.error("Expected 1 argument, but found "+(t.length-1)+" instead.");var r=e.parse(t[1],1);return r?"array"!==r.type.kind&&"string"!==r.type.kind&&"value"!==r.type.kind?e.error("Expected argument of type string or array, but found "+Xt(r.type)+" instead."):new Mr(r):null},Mr.prototype.evaluate=function(t){var e=this.input.evaluate(t);if("string"==typeof e)return e.length;if(Array.isArray(e))return e.length;throw new ue("Expected value to be of type string or array, but found "+Xt(se(e))+" instead.")},Mr.prototype.eachChild=function(t){t(this.input)},Mr.prototype.outputDefined=function(){return!1},Mr.prototype.serialize=function(){var t=["length"];return this.eachChild((function(e){t.push(e.serialize())})),t};var Sr={"==":xr,"!=":br,">":wr,"<":_r,">=":kr,"<=":Tr,array:he,at:ur,boolean:he,case:dr,coalesce:lr,collator:be,format:pe,image:de,in:fr,"index-of":hr,interpolate:or,"interpolate-hcl":or,"interpolate-lab":or,length:Mr,let:cr,literal:ce,match:pr,number:he,"number-format":Ar,object:he,slice:mr,step:He,string:he,"to-boolean":ge,"to-color":ge,"to-number":ge,"to-string":ge,var:je,within:Re};function Er(t,e){var r=e[0],n=e[1],i=e[2],a=e[3];r=r.evaluate(t),n=n.evaluate(t),i=i.evaluate(t);var o=a?a.evaluate(t):1,s=ae(r,n,i,o);if(s)throw new ue(s);return new te(r/255*o,n/255*o,i/255*o,o)}function Lr(t,e){return t in e}function Cr(t,e){var r=e[t];return void 0===r?null:r}function Pr(t){return{type:t}}function Ir(t){return{result:"success",value:t}}function Or(t){return{result:"error",value:t}}function zr(t){return"data-driven"===t["property-type"]||"cross-faded-data-driven"===t["property-type"]}function Dr(t){return!!t.expression&&t.expression.parameters.indexOf("zoom")>-1}function Rr(t){return!!t.expression&&t.expression.interpolated}function Fr(t){return t instanceof Number?"number":t instanceof String?"string":t instanceof Boolean?"boolean":Array.isArray(t)?"array":null===t?"null":typeof t}function Br(t){return"object"==typeof t&&null!==t&&!Array.isArray(t)}function Nr(t){return t}function jr(t,e,r){return void 0!==t?t:void 0!==e?e:void 0!==r?r:void 0}function Ur(t,e,r,n,i){return jr(typeof r===i?n[r]:void 0,t.default,e.default)}function Vr(t,e,r){if("number"!==Fr(r))return jr(t.default,e.default);var n=t.stops.length;if(1===n)return t.stops[0][1];if(r<=t.stops[0][0])return t.stops[0][1];if(r>=t.stops[n-1][0])return t.stops[n-1][1];var i=Ve(t.stops.map((function(t){return t[0]})),r);return t.stops[i][1]}function Hr(t,e,r){var n=void 0!==t.base?t.base:1;if("number"!==Fr(r))return jr(t.default,e.default);var i=t.stops.length;if(1===i)return t.stops[0][1];if(r<=t.stops[0][0])return t.stops[0][1];if(r>=t.stops[i-1][0])return t.stops[i-1][1];var a=Ve(t.stops.map((function(t){return t[0]})),r),o=function(t,e,r,n){var i=n-r,a=t-r;return 0===i?0:1===e?a/i:(Math.pow(e,a)-1)/(Math.pow(e,i)-1)}(r,n,t.stops[a][0],t.stops[a+1][0]),s=t.stops[a][1],l=t.stops[a+1][1],c=Ge[e.type]||Nr;if(t.colorSpace&&"rgb"!==t.colorSpace){var u=ar[t.colorSpace];c=function(t,e){return u.reverse(u.interpolate(u.forward(t),u.forward(e),o))}}return"function"==typeof s.evaluate?{evaluate:function(){for(var t=[],e=arguments.length;e--;)t[e]=arguments[e];var r=s.evaluate.apply(void 0,t),n=l.evaluate.apply(void 0,t);if(void 0!==r&&void 0!==n)return c(r,n,o)}}:c(s,l,o)}function qr(t,e,r){return"color"===e.type?r=te.parse(r):"formatted"===e.type?r=ne.fromString(r.toString()):"resolvedImage"===e.type?r=ie.fromString(r.toString()):Fr(r)===e.type||"enum"===e.type&&e.values[r]||(r=void 0),jr(r,t.default,e.default)}xe.register(Sr,{error:[{kind:"error"},[Nt],function(t,e){var r=e[0];throw new ue(r.evaluate(t))}],typeof:[Nt,[Ht],function(t,e){return Xt(se(e[0].evaluate(t)))}],"to-rgba":[Wt(Bt,4),[Ut],function(t,e){return e[0].evaluate(t).toArray()}],rgb:[Ut,[Bt,Bt,Bt],Er],rgba:[Ut,[Bt,Bt,Bt,Bt],Er],has:{type:jt,overloads:[[[Nt],function(t,e){return Lr(e[0].evaluate(t),t.properties())}],[[Nt,Vt],function(t,e){var r=e[0],n=e[1];return Lr(r.evaluate(t),n.evaluate(t))}]]},get:{type:Ht,overloads:[[[Nt],function(t,e){return Cr(e[0].evaluate(t),t.properties())}],[[Nt,Vt],function(t,e){var r=e[0],n=e[1];return Cr(r.evaluate(t),n.evaluate(t))}]]},"feature-state":[Ht,[Nt],function(t,e){return Cr(e[0].evaluate(t),t.featureState||{})}],properties:[Vt,[],function(t){return t.properties()}],"geometry-type":[Nt,[],function(t){return t.geometryType()}],id:[Ht,[],function(t){return t.id()}],zoom:[Bt,[],function(t){return t.globals.zoom}],"heatmap-density":[Bt,[],function(t){return t.globals.heatmapDensity||0}],"line-progress":[Bt,[],function(t){return t.globals.lineProgress||0}],accumulated:[Ht,[],function(t){return void 0===t.globals.accumulated?null:t.globals.accumulated}],"+":[Bt,Pr(Bt),function(t,e){for(var r=0,n=0,i=e;n":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i>a}],"filter-id->":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n>i}],"filter-<=":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i<=a}],"filter-id-<=":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n<=i}],"filter->=":[jt,[Nt,Ht],function(t,e){var r=e[0],n=e[1],i=t.properties()[r.value],a=n.value;return typeof i==typeof a&&i>=a}],"filter-id->=":[jt,[Ht],function(t,e){var r=e[0],n=t.id(),i=r.value;return typeof n==typeof i&&n>=i}],"filter-has":[jt,[Ht],function(t,e){return e[0].value in t.properties()}],"filter-has-id":[jt,[],function(t){return null!==t.id()&&void 0!==t.id()}],"filter-type-in":[jt,[Wt(Nt)],function(t,e){return e[0].value.indexOf(t.geometryType())>=0}],"filter-id-in":[jt,[Wt(Ht)],function(t,e){return e[0].value.indexOf(t.id())>=0}],"filter-in-small":[jt,[Nt,Wt(Ht)],function(t,e){var r=e[0];return e[1].value.indexOf(t.properties()[r.value])>=0}],"filter-in-large":[jt,[Nt,Wt(Ht)],function(t,e){var r=e[0],n=e[1];return function(t,e,r,n){for(;r<=n;){var i=r+n>>1;if(e[i]===t)return!0;e[i]>t?n=i-1:r=i+1}return!1}(t.properties()[r.value],n.value,0,n.value.length-1)}],all:{type:jt,overloads:[[[jt,jt],function(t,e){var r=e[0],n=e[1];return r.evaluate(t)&&n.evaluate(t)}],[Pr(jt),function(t,e){for(var r=0,n=e;r0&&"string"==typeof t[0]&&t[0]in Sr}function Wr(t,e){var r=new Ue(Sr,[],e?function(t){var e={color:Ut,string:Nt,number:Bt,enum:Nt,boolean:jt,formatted:Gt,resolvedImage:Yt};if("array"===t.type)return Wt(e[t.value]||Ht,t.length);return e[t.type]}(e):void 0),n=r.parse(t,void 0,void 0,void 0,e&&"string"===e.type?{typeAnnotation:"coerce"}:void 0);return n?Ir(new Gr(n,e)):Or(r.errors)}Gr.prototype.evaluateWithoutErrorHandling=function(t,e,r,n,i,a){return this._evaluator.globals=t,this._evaluator.feature=e,this._evaluator.featureState=r,this._evaluator.canonical=n,this._evaluator.availableImages=i||null,this._evaluator.formattedSection=a,this.expression.evaluate(this._evaluator)},Gr.prototype.evaluate=function(t,e,r,n,i,a){this._evaluator.globals=t,this._evaluator.feature=e||null,this._evaluator.featureState=r||null,this._evaluator.canonical=n,this._evaluator.availableImages=i||null,this._evaluator.formattedSection=a||null;try{var o=this.expression.evaluate(this._evaluator);if(null==o||"number"==typeof o&&o!=o)return this._defaultValue;if(this._enumValues&&!(o in this._enumValues))throw new ue("Expected value to be one of "+Object.keys(this._enumValues).map((function(t){return JSON.stringify(t)})).join(", ")+", but found "+JSON.stringify(o)+" instead.");return o}catch(t){return this._warningHistory[t.message]||(this._warningHistory[t.message]=!0,"undefined"!=typeof console&&console.warn(t.message)),this._defaultValue}};var Xr=function(t,e){this.kind=t,this._styleExpression=e,this.isStateDependent="constant"!==t&&!Be(e.expression)};Xr.prototype.evaluateWithoutErrorHandling=function(t,e,r,n,i,a){return this._styleExpression.evaluateWithoutErrorHandling(t,e,r,n,i,a)},Xr.prototype.evaluate=function(t,e,r,n,i,a){return this._styleExpression.evaluate(t,e,r,n,i,a)};var Zr=function(t,e,r,n){this.kind=t,this.zoomStops=r,this._styleExpression=e,this.isStateDependent="camera"!==t&&!Be(e.expression),this.interpolationType=n};function Jr(t,e){if("error"===(t=Wr(t,e)).result)return t;var r=t.value.expression,n=Fe(r);if(!n&&!zr(e))return Or([new Dt("","data expressions not supported")]);var i=Ne(r,["zoom"]);if(!i&&!Dr(e))return Or([new Dt("","zoom expressions not supported")]);var a=function t(e){var r=null;if(e instanceof cr)r=t(e.result);else if(e instanceof lr)for(var n=0,i=e.args;nn.maximum?[new Ct(e,r,r+" is greater than the maximum value "+n.maximum)]:[]}function en(t){var e,r,n,i=t.valueSpec,a=Ot(t.value.type),o={},s="categorical"!==a&&void 0===t.value.property,l=!s,c="array"===Fr(t.value.stops)&&"array"===Fr(t.value.stops[0])&&"object"===Fr(t.value.stops[0][0]),u=Qr({key:t.key,value:t.value,valueSpec:t.styleSpec.function,style:t.style,styleSpec:t.styleSpec,objectElementValidators:{stops:function(t){if("identity"===a)return[new Ct(t.key,t.value,'identity function may not have a "stops" property')];var e=[],r=t.value;e=e.concat($r({key:t.key,value:r,valueSpec:t.valueSpec,style:t.style,styleSpec:t.styleSpec,arrayElementValidator:f})),"array"===Fr(r)&&0===r.length&&e.push(new Ct(t.key,r,"array must have at least one stop"));return e},default:function(t){return kn({key:t.key,value:t.value,valueSpec:i,style:t.style,styleSpec:t.styleSpec})}}});return"identity"===a&&s&&u.push(new Ct(t.key,t.value,'missing required property "property"')),"identity"===a||t.value.stops||u.push(new Ct(t.key,t.value,'missing required property "stops"')),"exponential"===a&&t.valueSpec.expression&&!Rr(t.valueSpec)&&u.push(new Ct(t.key,t.value,"exponential functions not supported")),t.styleSpec.$version>=8&&(l&&!zr(t.valueSpec)?u.push(new Ct(t.key,t.value,"property functions not supported")):s&&!Dr(t.valueSpec)&&u.push(new Ct(t.key,t.value,"zoom functions not supported"))),"categorical"!==a&&!c||void 0!==t.value.property||u.push(new Ct(t.key,t.value,'"property" property is required')),u;function f(t){var e=[],a=t.value,s=t.key;if("array"!==Fr(a))return[new Ct(s,a,"array expected, "+Fr(a)+" found")];if(2!==a.length)return[new Ct(s,a,"array length 2 expected, length "+a.length+" found")];if(c){if("object"!==Fr(a[0]))return[new Ct(s,a,"object expected, "+Fr(a[0])+" found")];if(void 0===a[0].zoom)return[new Ct(s,a,"object stop key must have zoom")];if(void 0===a[0].value)return[new Ct(s,a,"object stop key must have value")];if(n&&n>Ot(a[0].zoom))return[new Ct(s,a[0].zoom,"stop zoom values must appear in ascending order")];Ot(a[0].zoom)!==n&&(n=Ot(a[0].zoom),r=void 0,o={}),e=e.concat(Qr({key:s+"[0]",value:a[0],valueSpec:{zoom:{}},style:t.style,styleSpec:t.styleSpec,objectElementValidators:{zoom:tn,value:h}}))}else e=e.concat(h({key:s+"[0]",value:a[0],valueSpec:{},style:t.style,styleSpec:t.styleSpec},a));return Yr(zt(a[1]))?e.concat([new Ct(s+"[1]",a[1],"expressions are not allowed in function stops.")]):e.concat(kn({key:s+"[1]",value:a[1],valueSpec:i,style:t.style,styleSpec:t.styleSpec}))}function h(t,n){var s=Fr(t.value),l=Ot(t.value),c=null!==t.value?t.value:n;if(e){if(s!==e)return[new Ct(t.key,c,s+" stop domain type must match previous stop domain type "+e)]}else e=s;if("number"!==s&&"string"!==s&&"boolean"!==s)return[new Ct(t.key,c,"stop domain value must be a number, string, or boolean")];if("number"!==s&&"categorical"!==a){var u="number expected, "+s+" found";return zr(i)&&void 0===a&&(u+='\nIf you intended to use a categorical function, specify `"type": "categorical"`.'),[new Ct(t.key,c,u)]}return"categorical"!==a||"number"!==s||isFinite(l)&&Math.floor(l)===l?"categorical"!==a&&"number"===s&&void 0!==r&&l=2&&"$id"!==t[1]&&"$type"!==t[1];case"in":return t.length>=3&&("string"!=typeof t[1]||Array.isArray(t[2]));case"!in":case"!has":case"none":return!1;case"==":case"!=":case">":case">=":case"<":case"<=":return 3!==t.length||Array.isArray(t[1])||Array.isArray(t[2]);case"any":case"all":for(var e=0,r=t.slice(1);ee?1:0}function cn(t){if(!t)return!0;var e,r=t[0];return t.length<=1?"any"!==r:"=="===r?un(t[1],t[2],"=="):"!="===r?pn(un(t[1],t[2],"==")):"<"===r||">"===r||"<="===r||">="===r?un(t[1],t[2],r):"any"===r?(e=t.slice(1),["any"].concat(e.map(cn))):"all"===r?["all"].concat(t.slice(1).map(cn)):"none"===r?["all"].concat(t.slice(1).map(cn).map(pn)):"in"===r?fn(t[1],t.slice(2)):"!in"===r?pn(fn(t[1],t.slice(2))):"has"===r?hn(t[1]):"!has"===r?pn(hn(t[1])):"within"!==r||t}function un(t,e,r){switch(t){case"$type":return["filter-type-"+r,e];case"$id":return["filter-id-"+r,e];default:return["filter-"+r,t,e]}}function fn(t,e){if(0===e.length)return!1;switch(t){case"$type":return["filter-type-in",["literal",e]];case"$id":return["filter-id-in",["literal",e]];default:return e.length>200&&!e.some((function(t){return typeof t!=typeof e[0]}))?["filter-in-large",t,["literal",e.sort(ln)]]:["filter-in-small",t,["literal",e]]}}function hn(t){switch(t){case"$type":return!0;case"$id":return["filter-has-id"];default:return["filter-has",t]}}function pn(t){return["!",t]}function dn(t){return an(zt(t.value))?rn(It({},t,{expressionContext:"filter",valueSpec:{value:"boolean"}})):function t(e){var r=e.value,n=e.key;if("array"!==Fr(r))return[new Ct(n,r,"array expected, "+Fr(r)+" found")];var i,a=e.styleSpec,o=[];if(r.length<1)return[new Ct(n,r,"filter array must have at least 1 element")];switch(o=o.concat(nn({key:n+"[0]",value:r[0],valueSpec:a.filter_operator,style:e.style,styleSpec:e.styleSpec})),Ot(r[0])){case"<":case"<=":case">":case">=":r.length>=2&&"$type"===Ot(r[1])&&o.push(new Ct(n,r,'"$type" cannot be use with operator "'+r[0]+'"'));case"==":case"!=":3!==r.length&&o.push(new Ct(n,r,'filter array for operator "'+r[0]+'" must have 3 elements'));case"in":case"!in":r.length>=2&&"string"!==(i=Fr(r[1]))&&o.push(new Ct(n+"[1]",r[1],"string expected, "+i+" found"));for(var s=2;s=u[p+0]&&n>=u[p+1])?(o[h]=!0,a.push(c[h])):o[h]=!1}}},Dn.prototype._forEachCell=function(t,e,r,n,i,a,o,s){for(var l=this._convertToCellCoord(t),c=this._convertToCellCoord(e),u=this._convertToCellCoord(r),f=this._convertToCellCoord(n),h=l;h<=u;h++)for(var p=c;p<=f;p++){var d=this.d*p+h;if((!s||s(this._convertFromCellCoord(h),this._convertFromCellCoord(p),this._convertFromCellCoord(h+1),this._convertFromCellCoord(p+1)))&&i.call(this,t,e,r,n,d,a,o,s))return}},Dn.prototype._convertFromCellCoord=function(t){return(t-this.padding)/this.scale},Dn.prototype._convertToCellCoord=function(t){return Math.max(0,Math.min(this.d-1,Math.floor(t*this.scale)+this.padding))},Dn.prototype.toArrayBuffer=function(){if(this.arrayBuffer)return this.arrayBuffer;for(var t=this.cells,e=3+this.cells.length+1+1,r=0,n=0;n=0)){var f=t[u];c[u]=Bn[l].shallow.indexOf(u)>=0?f:Hn(f,e)}t instanceof Error&&(c.message=t.message)}if(c.$name)throw new Error("$name property is reserved for worker serialization logic.");return"Object"!==l&&(c.$name=l),c}throw new Error("can't serialize object of type "+typeof t)}function qn(t){if(null==t||"boolean"==typeof t||"number"==typeof t||"string"==typeof t||t instanceof Boolean||t instanceof Number||t instanceof String||t instanceof Date||t instanceof RegExp||Un(t)||Vn(t)||ArrayBuffer.isView(t)||t instanceof Rn)return t;if(Array.isArray(t))return t.map(qn);if("object"==typeof t){var e=t.$name||"Object",r=Bn[e].klass;if(!r)throw new Error("can't deserialize unregistered class "+e);if(r.deserialize)return r.deserialize(t);for(var n=Object.create(r.prototype),i=0,a=Object.keys(t);i=0?s:qn(s)}}return n}throw new Error("can't deserialize object of type "+typeof t)}var Gn=function(){this.first=!0};Gn.prototype.update=function(t,e){var r=Math.floor(t);return this.first?(this.first=!1,this.lastIntegerZoom=r,this.lastIntegerZoomTime=0,this.lastZoom=t,this.lastFloorZoom=r,!0):(this.lastFloorZoom>r?(this.lastIntegerZoom=r+1,this.lastIntegerZoomTime=e):this.lastFloorZoom=128&&t<=255},Arabic:function(t){return t>=1536&&t<=1791},"Arabic Supplement":function(t){return t>=1872&&t<=1919},"Arabic Extended-A":function(t){return t>=2208&&t<=2303},"Hangul Jamo":function(t){return t>=4352&&t<=4607},"Unified Canadian Aboriginal Syllabics":function(t){return t>=5120&&t<=5759},Khmer:function(t){return t>=6016&&t<=6143},"Unified Canadian Aboriginal Syllabics Extended":function(t){return t>=6320&&t<=6399},"General Punctuation":function(t){return t>=8192&&t<=8303},"Letterlike Symbols":function(t){return t>=8448&&t<=8527},"Number Forms":function(t){return t>=8528&&t<=8591},"Miscellaneous Technical":function(t){return t>=8960&&t<=9215},"Control Pictures":function(t){return t>=9216&&t<=9279},"Optical Character Recognition":function(t){return t>=9280&&t<=9311},"Enclosed Alphanumerics":function(t){return t>=9312&&t<=9471},"Geometric Shapes":function(t){return t>=9632&&t<=9727},"Miscellaneous Symbols":function(t){return t>=9728&&t<=9983},"Miscellaneous Symbols and Arrows":function(t){return t>=11008&&t<=11263},"CJK Radicals Supplement":function(t){return t>=11904&&t<=12031},"Kangxi Radicals":function(t){return t>=12032&&t<=12255},"Ideographic Description Characters":function(t){return t>=12272&&t<=12287},"CJK Symbols and Punctuation":function(t){return t>=12288&&t<=12351},Hiragana:function(t){return t>=12352&&t<=12447},Katakana:function(t){return t>=12448&&t<=12543},Bopomofo:function(t){return t>=12544&&t<=12591},"Hangul Compatibility Jamo":function(t){return t>=12592&&t<=12687},Kanbun:function(t){return t>=12688&&t<=12703},"Bopomofo Extended":function(t){return t>=12704&&t<=12735},"CJK Strokes":function(t){return t>=12736&&t<=12783},"Katakana Phonetic Extensions":function(t){return t>=12784&&t<=12799},"Enclosed CJK Letters and Months":function(t){return t>=12800&&t<=13055},"CJK Compatibility":function(t){return t>=13056&&t<=13311},"CJK Unified Ideographs Extension A":function(t){return t>=13312&&t<=19903},"Yijing Hexagram Symbols":function(t){return t>=19904&&t<=19967},"CJK Unified Ideographs":function(t){return t>=19968&&t<=40959},"Yi Syllables":function(t){return t>=40960&&t<=42127},"Yi Radicals":function(t){return t>=42128&&t<=42191},"Hangul Jamo Extended-A":function(t){return t>=43360&&t<=43391},"Hangul Syllables":function(t){return t>=44032&&t<=55215},"Hangul Jamo Extended-B":function(t){return t>=55216&&t<=55295},"Private Use Area":function(t){return t>=57344&&t<=63743},"CJK Compatibility Ideographs":function(t){return t>=63744&&t<=64255},"Arabic Presentation Forms-A":function(t){return t>=64336&&t<=65023},"Vertical Forms":function(t){return t>=65040&&t<=65055},"CJK Compatibility Forms":function(t){return t>=65072&&t<=65103},"Small Form Variants":function(t){return t>=65104&&t<=65135},"Arabic Presentation Forms-B":function(t){return t>=65136&&t<=65279},"Halfwidth and Fullwidth Forms":function(t){return t>=65280&&t<=65519}};function Wn(t){for(var e=0,r=t;e=65097&&t<=65103)||(!!Yn["CJK Compatibility Ideographs"](t)||(!!Yn["CJK Compatibility"](t)||(!!Yn["CJK Radicals Supplement"](t)||(!!Yn["CJK Strokes"](t)||(!(!Yn["CJK Symbols and Punctuation"](t)||t>=12296&&t<=12305||t>=12308&&t<=12319||12336===t)||(!!Yn["CJK Unified Ideographs Extension A"](t)||(!!Yn["CJK Unified Ideographs"](t)||(!!Yn["Enclosed CJK Letters and Months"](t)||(!!Yn["Hangul Compatibility Jamo"](t)||(!!Yn["Hangul Jamo Extended-A"](t)||(!!Yn["Hangul Jamo Extended-B"](t)||(!!Yn["Hangul Jamo"](t)||(!!Yn["Hangul Syllables"](t)||(!!Yn.Hiragana(t)||(!!Yn["Ideographic Description Characters"](t)||(!!Yn.Kanbun(t)||(!!Yn["Kangxi Radicals"](t)||(!!Yn["Katakana Phonetic Extensions"](t)||(!(!Yn.Katakana(t)||12540===t)||(!(!Yn["Halfwidth and Fullwidth Forms"](t)||65288===t||65289===t||65293===t||t>=65306&&t<=65310||65339===t||65341===t||65343===t||t>=65371&&t<=65503||65507===t||t>=65512&&t<=65519)||(!(!Yn["Small Form Variants"](t)||t>=65112&&t<=65118||t>=65123&&t<=65126)||(!!Yn["Unified Canadian Aboriginal Syllabics"](t)||(!!Yn["Unified Canadian Aboriginal Syllabics Extended"](t)||(!!Yn["Vertical Forms"](t)||(!!Yn["Yijing Hexagram Symbols"](t)||(!!Yn["Yi Syllables"](t)||!!Yn["Yi Radicals"](t))))))))))))))))))))))))))))))}function Jn(t){return!(Zn(t)||function(t){return!(!Yn["Latin-1 Supplement"](t)||167!==t&&169!==t&&174!==t&&177!==t&&188!==t&&189!==t&&190!==t&&215!==t&&247!==t)||(!(!Yn["General Punctuation"](t)||8214!==t&&8224!==t&&8225!==t&&8240!==t&&8241!==t&&8251!==t&&8252!==t&&8258!==t&&8263!==t&&8264!==t&&8265!==t&&8273!==t)||(!!Yn["Letterlike Symbols"](t)||(!!Yn["Number Forms"](t)||(!(!Yn["Miscellaneous Technical"](t)||!(t>=8960&&t<=8967||t>=8972&&t<=8991||t>=8996&&t<=9e3||9003===t||t>=9085&&t<=9114||t>=9150&&t<=9165||9167===t||t>=9169&&t<=9179||t>=9186&&t<=9215))||(!(!Yn["Control Pictures"](t)||9251===t)||(!!Yn["Optical Character Recognition"](t)||(!!Yn["Enclosed Alphanumerics"](t)||(!!Yn["Geometric Shapes"](t)||(!(!Yn["Miscellaneous Symbols"](t)||t>=9754&&t<=9759)||(!(!Yn["Miscellaneous Symbols and Arrows"](t)||!(t>=11026&&t<=11055||t>=11088&&t<=11097||t>=11192&&t<=11243))||(!!Yn["CJK Symbols and Punctuation"](t)||(!!Yn.Katakana(t)||(!!Yn["Private Use Area"](t)||(!!Yn["CJK Compatibility Forms"](t)||(!!Yn["Small Form Variants"](t)||(!!Yn["Halfwidth and Fullwidth Forms"](t)||(8734===t||8756===t||8757===t||t>=9984&&t<=10087||t>=10102&&t<=10131||65532===t||65533===t)))))))))))))))))}(t))}function Kn(t){return t>=1424&&t<=2303||Yn["Arabic Presentation Forms-A"](t)||Yn["Arabic Presentation Forms-B"](t)}function Qn(t,e){return!(!e&&Kn(t))&&!(t>=2304&&t<=3583||t>=3840&&t<=4255||Yn.Khmer(t))}function $n(t){for(var e=0,r=t;e-1&&(ai=ni),ii&&ii(t)};function li(){ci.fire(new Mt("pluginStateChange",{pluginStatus:ai,pluginURL:oi}))}var ci=new Et,ui=function(){return ai},fi=function(){if(ai!==ti||!oi)throw new Error("rtl-text-plugin cannot be downloaded unless a pluginURL is specified");ai=ei,li(),oi&&xt({url:oi},(function(t){t?si(t):(ai=ri,li())}))},hi={applyArabicShaping:null,processBidirectionalText:null,processStyledBidirectionalText:null,isLoaded:function(){return ai===ri||null!=hi.applyArabicShaping},isLoading:function(){return ai===ei},setState:function(t){ai=t.pluginStatus,oi=t.pluginURL},isParsed:function(){return null!=hi.applyArabicShaping&&null!=hi.processBidirectionalText&&null!=hi.processStyledBidirectionalText},getPluginURL:function(){return oi}},pi=function(t,e){this.zoom=t,e?(this.now=e.now,this.fadeDuration=e.fadeDuration,this.zoomHistory=e.zoomHistory,this.transition=e.transition):(this.now=0,this.fadeDuration=0,this.zoomHistory=new Gn,this.transition={})};pi.prototype.isSupportedScript=function(t){return function(t,e){for(var r=0,n=t;rthis.zoomHistory.lastIntegerZoom?{fromScale:2,toScale:1,t:e+(1-e)*r}:{fromScale:.5,toScale:1,t:1-(1-r)*e}};var di=function(t,e){this.property=t,this.value=e,this.expression=function(t,e){if(Br(t))return new Kr(t,e);if(Yr(t)){var r=Jr(t,e);if("error"===r.result)throw new Error(r.value.map((function(t){return t.key+": "+t.message})).join(", "));return r.value}var n=t;return"string"==typeof t&&"color"===e.type&&(n=te.parse(t)),{kind:"constant",evaluate:function(){return n}}}(void 0===e?t.specification.default:e,t.specification)};di.prototype.isDataDriven=function(){return"source"===this.expression.kind||"composite"===this.expression.kind},di.prototype.possiblyEvaluate=function(t,e,r){return this.property.possiblyEvaluate(this,t,e,r)};var mi=function(t){this.property=t,this.value=new di(t,void 0)};mi.prototype.transitioned=function(t,e){return new vi(this.property,this.value,e,u({},t.transition,this.transition),t.now)},mi.prototype.untransitioned=function(){return new vi(this.property,this.value,null,{},0)};var gi=function(t){this._properties=t,this._values=Object.create(t.defaultTransitionablePropertyValues)};gi.prototype.getValue=function(t){return x(this._values[t].value.value)},gi.prototype.setValue=function(t,e){this._values.hasOwnProperty(t)||(this._values[t]=new mi(this._values[t].property)),this._values[t].value=new di(this._values[t].property,null===e?void 0:x(e))},gi.prototype.getTransition=function(t){return x(this._values[t].transition)},gi.prototype.setTransition=function(t,e){this._values.hasOwnProperty(t)||(this._values[t]=new mi(this._values[t].property)),this._values[t].transition=x(e)||void 0},gi.prototype.serialize=function(){for(var t={},e=0,r=Object.keys(this._values);ethis.end)return this.prior=null,i;if(this.value.isDataDriven())return this.prior=null,i;if(n=1)return 1;var e=t*t,r=e*t;return 4*(t<.5?r:3*(t-e)+r-.75)}(o))}return i};var yi=function(t){this._properties=t,this._values=Object.create(t.defaultTransitioningPropertyValues)};yi.prototype.possiblyEvaluate=function(t,e,r){for(var n=new _i(this._properties),i=0,a=Object.keys(this._values);in.zoomHistory.lastIntegerZoom?{from:t,to:e}:{from:r,to:e}},e.prototype.interpolate=function(t){return t},e}(Ti),Ai=function(t){this.specification=t};Ai.prototype.possiblyEvaluate=function(t,e,r,n){if(void 0!==t.value){if("constant"===t.expression.kind){var i=t.expression.evaluate(e,null,{},r,n);return this._calculate(i,i,i,e)}return this._calculate(t.expression.evaluate(new pi(Math.floor(e.zoom-1),e)),t.expression.evaluate(new pi(Math.floor(e.zoom),e)),t.expression.evaluate(new pi(Math.floor(e.zoom+1),e)),e)}},Ai.prototype._calculate=function(t,e,r,n){return n.zoom>n.zoomHistory.lastIntegerZoom?{from:t,to:e}:{from:r,to:e}},Ai.prototype.interpolate=function(t){return t};var Mi=function(t){this.specification=t};Mi.prototype.possiblyEvaluate=function(t,e,r,n){return!!t.expression.evaluate(e,null,{},r,n)},Mi.prototype.interpolate=function(){return!1};var Si=function(t){for(var e in this.properties=t,this.defaultPropertyValues={},this.defaultTransitionablePropertyValues={},this.defaultTransitioningPropertyValues={},this.defaultPossiblyEvaluatedValues={},this.overridableProperties=[],t){var r=t[e];r.specification.overridable&&this.overridableProperties.push(e);var n=this.defaultPropertyValues[e]=new di(r,void 0),i=this.defaultTransitionablePropertyValues[e]=new mi(r);this.defaultTransitioningPropertyValues[e]=i.untransitioned(),this.defaultPossiblyEvaluatedValues[e]=n.possiblyEvaluate({})}};Nn("DataDrivenProperty",Ti),Nn("DataConstantProperty",wi),Nn("CrossFadedDataDrivenProperty",ki),Nn("CrossFadedProperty",Ai),Nn("ColorRampProperty",Mi);var Ei=function(t){function e(e,r){if(t.call(this),this.id=e.id,this.type=e.type,this._featureFilter={filter:function(){return!0},needGeometry:!1},"custom"!==e.type&&(e=e,this.metadata=e.metadata,this.minzoom=e.minzoom,this.maxzoom=e.maxzoom,"background"!==e.type&&(this.source=e.source,this.sourceLayer=e["source-layer"],this.filter=e.filter),r.layout&&(this._unevaluatedLayout=new xi(r.layout)),r.paint)){for(var n in this._transitionablePaint=new gi(r.paint),e.paint)this.setPaintProperty(n,e.paint[n],{validate:!1});for(var i in e.layout)this.setLayoutProperty(i,e.layout[i],{validate:!1});this._transitioningPaint=this._transitionablePaint.untransitioned(),this.paint=new _i(r.paint)}}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getCrossfadeParameters=function(){return this._crossfadeParameters},e.prototype.getLayoutProperty=function(t){return"visibility"===t?this.visibility:this._unevaluatedLayout.getValue(t)},e.prototype.setLayoutProperty=function(t,e,r){if(void 0===r&&(r={}),null!=e){var n="layers."+this.id+".layout."+t;if(this._validate(In,n,t,e,r))return}"visibility"!==t?this._unevaluatedLayout.setValue(t,e):this.visibility=e},e.prototype.getPaintProperty=function(t){return g(t,"-transition")?this._transitionablePaint.getTransition(t.slice(0,-"-transition".length)):this._transitionablePaint.getValue(t)},e.prototype.setPaintProperty=function(t,e,r){if(void 0===r&&(r={}),null!=e){var n="layers."+this.id+".paint."+t;if(this._validate(Pn,n,t,e,r))return!1}if(g(t,"-transition"))return this._transitionablePaint.setTransition(t.slice(0,-"-transition".length),e||void 0),!1;var i=this._transitionablePaint._values[t],a="cross-faded-data-driven"===i.property.specification["property-type"],o=i.value.isDataDriven(),s=i.value;this._transitionablePaint.setValue(t,e),this._handleSpecialPaintPropertyUpdate(t);var l=this._transitionablePaint._values[t].value;return l.isDataDriven()||o||a||this._handleOverridablePaintPropertyUpdate(t,s,l)},e.prototype._handleSpecialPaintPropertyUpdate=function(t){},e.prototype._handleOverridablePaintPropertyUpdate=function(t,e,r){return!1},e.prototype.isHidden=function(t){return!!(this.minzoom&&t=this.maxzoom)||"none"===this.visibility)},e.prototype.updateTransitions=function(t){this._transitioningPaint=this._transitionablePaint.transitioned(t,this._transitioningPaint)},e.prototype.hasTransition=function(){return this._transitioningPaint.hasTransition()},e.prototype.recalculate=function(t,e){t.getCrossfadeParameters&&(this._crossfadeParameters=t.getCrossfadeParameters()),this._unevaluatedLayout&&(this.layout=this._unevaluatedLayout.possiblyEvaluate(t,void 0,e)),this.paint=this._transitioningPaint.possiblyEvaluate(t,void 0,e)},e.prototype.serialize=function(){var t={id:this.id,type:this.type,source:this.source,"source-layer":this.sourceLayer,metadata:this.metadata,minzoom:this.minzoom,maxzoom:this.maxzoom,filter:this.filter,layout:this._unevaluatedLayout&&this._unevaluatedLayout.serialize(),paint:this._transitionablePaint&&this._transitionablePaint.serialize()};return this.visibility&&(t.layout=t.layout||{},t.layout.visibility=this.visibility),y(t,(function(t,e){return!(void 0===t||"layout"===e&&!Object.keys(t).length||"paint"===e&&!Object.keys(t).length)}))},e.prototype._validate=function(t,e,r,n,i){return void 0===i&&(i={}),(!i||!1!==i.validate)&&On(this,t.call(Ln,{key:e,layerType:this.type,objectKey:r,value:n,styleSpec:Lt,style:{glyphs:!0,sprite:!0}}))},e.prototype.is3D=function(){return!1},e.prototype.isTileClipped=function(){return!1},e.prototype.hasOffscreenPass=function(){return!1},e.prototype.resize=function(){},e.prototype.isStateDependent=function(){for(var t in this.paint._values){var e=this.paint.get(t);if(e instanceof bi&&zr(e.property.specification)&&(("source"===e.value.kind||"composite"===e.value.kind)&&e.value.isStateDependent))return!0}return!1},e}(Et),Li={Int8:Int8Array,Uint8:Uint8Array,Int16:Int16Array,Uint16:Uint16Array,Int32:Int32Array,Uint32:Uint32Array,Float32:Float32Array},Ci=function(t,e){this._structArray=t,this._pos1=e*this.size,this._pos2=this._pos1/2,this._pos4=this._pos1/4,this._pos8=this._pos1/8},Pi=function(){this.isTransferred=!1,this.capacity=-1,this.resize(0)};function Ii(t,e){void 0===e&&(e=1);var r=0,n=0;return{members:t.map((function(t){var i,a=(i=t.type,Li[i].BYTES_PER_ELEMENT),o=r=Oi(r,Math.max(e,a)),s=t.components||1;return n=Math.max(n,a),r+=a*s,{name:t.name,type:t.type,components:s,offset:o}})),size:Oi(r,Math.max(n,e)),alignment:e}}function Oi(t,e){return Math.ceil(t/e)*e}Pi.serialize=function(t,e){return t._trim(),e&&(t.isTransferred=!0,e.push(t.arrayBuffer)),{length:t.length,arrayBuffer:t.arrayBuffer}},Pi.deserialize=function(t){var e=Object.create(this.prototype);return e.arrayBuffer=t.arrayBuffer,e.length=t.length,e.capacity=t.arrayBuffer.byteLength/e.bytesPerElement,e._refreshViews(),e},Pi.prototype._trim=function(){this.length!==this.capacity&&(this.capacity=this.length,this.arrayBuffer=this.arrayBuffer.slice(0,this.length*this.bytesPerElement),this._refreshViews())},Pi.prototype.clear=function(){this.length=0},Pi.prototype.resize=function(t){this.reserve(t),this.length=t},Pi.prototype.reserve=function(t){if(t>this.capacity){this.capacity=Math.max(t,Math.floor(5*this.capacity),128),this.arrayBuffer=new ArrayBuffer(this.capacity*this.bytesPerElement);var e=this.uint8;this._refreshViews(),e&&this.uint8.set(e)}},Pi.prototype._refreshViews=function(){throw new Error("_refreshViews() must be implemented by each concrete StructArray layout")};var zi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.int16[n+0]=e,this.int16[n+1]=r,t},e}(Pi);zi.prototype.bytesPerElement=4,Nn("StructArrayLayout2i4",zi);var Di=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=4*t;return this.int16[a+0]=e,this.int16[a+1]=r,this.int16[a+2]=n,this.int16[a+3]=i,t},e}(Pi);Di.prototype.bytesPerElement=8,Nn("StructArrayLayout4i8",Di);var Ri=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=6*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.int16[s+2]=n,this.int16[s+3]=i,this.int16[s+4]=a,this.int16[s+5]=o,t},e}(Pi);Ri.prototype.bytesPerElement=12,Nn("StructArrayLayout2i4i12",Ri);var Fi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=4*t,l=8*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.uint8[l+4]=n,this.uint8[l+5]=i,this.uint8[l+6]=a,this.uint8[l+7]=o,t},e}(Pi);Fi.prototype.bytesPerElement=8,Nn("StructArrayLayout2i4ub8",Fi);var Bi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c){var u=this.length;return this.resize(u+1),this.emplace(u,t,e,r,n,i,a,o,s,l,c)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u){var f=9*t,h=18*t;return this.uint16[f+0]=e,this.uint16[f+1]=r,this.uint16[f+2]=n,this.uint16[f+3]=i,this.uint16[f+4]=a,this.uint16[f+5]=o,this.uint16[f+6]=s,this.uint16[f+7]=l,this.uint8[h+16]=c,this.uint8[h+17]=u,t},e}(Pi);Bi.prototype.bytesPerElement=18,Nn("StructArrayLayout8ui2ub18",Bi);var Ni=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f){var h=this.length;return this.resize(h+1),this.emplace(h,t,e,r,n,i,a,o,s,l,c,u,f)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h){var p=12*t;return this.int16[p+0]=e,this.int16[p+1]=r,this.int16[p+2]=n,this.int16[p+3]=i,this.uint16[p+4]=a,this.uint16[p+5]=o,this.uint16[p+6]=s,this.uint16[p+7]=l,this.int16[p+8]=c,this.int16[p+9]=u,this.int16[p+10]=f,this.int16[p+11]=h,t},e}(Pi);Ni.prototype.bytesPerElement=24,Nn("StructArrayLayout4i4ui4i24",Ni);var ji=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.float32[i+0]=e,this.float32[i+1]=r,this.float32[i+2]=n,t},e}(Pi);ji.prototype.bytesPerElement=12,Nn("StructArrayLayout3f12",ji);var Ui=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.uint32[r+0]=e,t},e}(Pi);Ui.prototype.bytesPerElement=4,Nn("StructArrayLayout1ul4",Ui);var Vi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l){var c=this.length;return this.resize(c+1),this.emplace(c,t,e,r,n,i,a,o,s,l)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c){var u=10*t,f=5*t;return this.int16[u+0]=e,this.int16[u+1]=r,this.int16[u+2]=n,this.int16[u+3]=i,this.int16[u+4]=a,this.int16[u+5]=o,this.uint32[f+3]=s,this.uint16[u+8]=l,this.uint16[u+9]=c,t},e}(Pi);Vi.prototype.bytesPerElement=20,Nn("StructArrayLayout6i1ul2ui20",Vi);var Hi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a){var o=this.length;return this.resize(o+1),this.emplace(o,t,e,r,n,i,a)},e.prototype.emplace=function(t,e,r,n,i,a,o){var s=6*t;return this.int16[s+0]=e,this.int16[s+1]=r,this.int16[s+2]=n,this.int16[s+3]=i,this.int16[s+4]=a,this.int16[s+5]=o,t},e}(Pi);Hi.prototype.bytesPerElement=12,Nn("StructArrayLayout2i2i2i12",Hi);var qi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i){var a=this.length;return this.resize(a+1),this.emplace(a,t,e,r,n,i)},e.prototype.emplace=function(t,e,r,n,i,a){var o=4*t,s=8*t;return this.float32[o+0]=e,this.float32[o+1]=r,this.float32[o+2]=n,this.int16[s+6]=i,this.int16[s+7]=a,t},e}(Pi);qi.prototype.bytesPerElement=16,Nn("StructArrayLayout2f1f2i16",qi);var Gi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=12*t,o=3*t;return this.uint8[a+0]=e,this.uint8[a+1]=r,this.float32[o+1]=n,this.float32[o+2]=i,t},e}(Pi);Gi.prototype.bytesPerElement=12,Nn("StructArrayLayout2ub2f12",Gi);var Yi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.uint16[i+0]=e,this.uint16[i+1]=r,this.uint16[i+2]=n,t},e}(Pi);Yi.prototype.bytesPerElement=6,Nn("StructArrayLayout3ui6",Yi);var Wi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g){var v=this.length;return this.resize(v+1),this.emplace(v,t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v){var y=24*t,x=12*t,b=48*t;return this.int16[y+0]=e,this.int16[y+1]=r,this.uint16[y+2]=n,this.uint16[y+3]=i,this.uint32[x+2]=a,this.uint32[x+3]=o,this.uint32[x+4]=s,this.uint16[y+10]=l,this.uint16[y+11]=c,this.uint16[y+12]=u,this.float32[x+7]=f,this.float32[x+8]=h,this.uint8[b+36]=p,this.uint8[b+37]=d,this.uint8[b+38]=m,this.uint32[x+10]=g,this.int16[y+22]=v,t},e}(Pi);Wi.prototype.bytesPerElement=48,Nn("StructArrayLayout2i2ui3ul3ui2f3ub1ul1i48",Wi);var Xi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S){var E=this.length;return this.resize(E+1),this.emplace(E,t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S)},e.prototype.emplace=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S,E){var L=34*t,C=17*t;return this.int16[L+0]=e,this.int16[L+1]=r,this.int16[L+2]=n,this.int16[L+3]=i,this.int16[L+4]=a,this.int16[L+5]=o,this.int16[L+6]=s,this.int16[L+7]=l,this.uint16[L+8]=c,this.uint16[L+9]=u,this.uint16[L+10]=f,this.uint16[L+11]=h,this.uint16[L+12]=p,this.uint16[L+13]=d,this.uint16[L+14]=m,this.uint16[L+15]=g,this.uint16[L+16]=v,this.uint16[L+17]=y,this.uint16[L+18]=x,this.uint16[L+19]=b,this.uint16[L+20]=_,this.uint16[L+21]=w,this.uint16[L+22]=T,this.uint32[C+12]=k,this.float32[C+13]=A,this.float32[C+14]=M,this.float32[C+15]=S,this.float32[C+16]=E,t},e}(Pi);Xi.prototype.bytesPerElement=68,Nn("StructArrayLayout8i15ui1ul4f68",Xi);var Zi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.float32[r+0]=e,t},e}(Pi);Zi.prototype.bytesPerElement=4,Nn("StructArrayLayout1f4",Zi);var Ji=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.int16=new Int16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=3*t;return this.int16[i+0]=e,this.int16[i+1]=r,this.int16[i+2]=n,t},e}(Pi);Ji.prototype.bytesPerElement=6,Nn("StructArrayLayout3i6",Ji);var Ki=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint32=new Uint32Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r){var n=this.length;return this.resize(n+1),this.emplace(n,t,e,r)},e.prototype.emplace=function(t,e,r,n){var i=2*t,a=4*t;return this.uint32[i+0]=e,this.uint16[a+2]=r,this.uint16[a+3]=n,t},e}(Pi);Ki.prototype.bytesPerElement=8,Nn("StructArrayLayout1ul2ui8",Ki);var Qi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.uint16[n+0]=e,this.uint16[n+1]=r,t},e}(Pi);Qi.prototype.bytesPerElement=4,Nn("StructArrayLayout2ui4",Qi);var $i=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.uint16=new Uint16Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t){var e=this.length;return this.resize(e+1),this.emplace(e,t)},e.prototype.emplace=function(t,e){var r=1*t;return this.uint16[r+0]=e,t},e}(Pi);$i.prototype.bytesPerElement=2,Nn("StructArrayLayout1ui2",$i);var ta=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e){var r=this.length;return this.resize(r+1),this.emplace(r,t,e)},e.prototype.emplace=function(t,e,r){var n=2*t;return this.float32[n+0]=e,this.float32[n+1]=r,t},e}(Pi);ta.prototype.bytesPerElement=8,Nn("StructArrayLayout2f8",ta);var ea=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._refreshViews=function(){this.uint8=new Uint8Array(this.arrayBuffer),this.float32=new Float32Array(this.arrayBuffer)},e.prototype.emplaceBack=function(t,e,r,n){var i=this.length;return this.resize(i+1),this.emplace(i,t,e,r,n)},e.prototype.emplace=function(t,e,r,n,i){var a=4*t;return this.float32[a+0]=e,this.float32[a+1]=r,this.float32[a+2]=n,this.float32[a+3]=i,t},e}(Pi);ea.prototype.bytesPerElement=16,Nn("StructArrayLayout4f16",ea);var ra=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorPointX:{configurable:!0},anchorPointY:{configurable:!0},x1:{configurable:!0},y1:{configurable:!0},x2:{configurable:!0},y2:{configurable:!0},featureIndex:{configurable:!0},sourceLayerIndex:{configurable:!0},bucketIndex:{configurable:!0},anchorPoint:{configurable:!0}};return r.anchorPointX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorPointY.get=function(){return this._structArray.int16[this._pos2+1]},r.x1.get=function(){return this._structArray.int16[this._pos2+2]},r.y1.get=function(){return this._structArray.int16[this._pos2+3]},r.x2.get=function(){return this._structArray.int16[this._pos2+4]},r.y2.get=function(){return this._structArray.int16[this._pos2+5]},r.featureIndex.get=function(){return this._structArray.uint32[this._pos4+3]},r.sourceLayerIndex.get=function(){return this._structArray.uint16[this._pos2+8]},r.bucketIndex.get=function(){return this._structArray.uint16[this._pos2+9]},r.anchorPoint.get=function(){return new i(this.anchorPointX,this.anchorPointY)},Object.defineProperties(e.prototype,r),e}(Ci);ra.prototype.size=20;var na=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ra(this,t)},e}(Vi);Nn("CollisionBoxArray",na);var ia=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorX:{configurable:!0},anchorY:{configurable:!0},glyphStartIndex:{configurable:!0},numGlyphs:{configurable:!0},vertexStartIndex:{configurable:!0},lineStartIndex:{configurable:!0},lineLength:{configurable:!0},segment:{configurable:!0},lowerSize:{configurable:!0},upperSize:{configurable:!0},lineOffsetX:{configurable:!0},lineOffsetY:{configurable:!0},writingMode:{configurable:!0},placedOrientation:{configurable:!0},hidden:{configurable:!0},crossTileID:{configurable:!0},associatedIconIndex:{configurable:!0}};return r.anchorX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorY.get=function(){return this._structArray.int16[this._pos2+1]},r.glyphStartIndex.get=function(){return this._structArray.uint16[this._pos2+2]},r.numGlyphs.get=function(){return this._structArray.uint16[this._pos2+3]},r.vertexStartIndex.get=function(){return this._structArray.uint32[this._pos4+2]},r.lineStartIndex.get=function(){return this._structArray.uint32[this._pos4+3]},r.lineLength.get=function(){return this._structArray.uint32[this._pos4+4]},r.segment.get=function(){return this._structArray.uint16[this._pos2+10]},r.lowerSize.get=function(){return this._structArray.uint16[this._pos2+11]},r.upperSize.get=function(){return this._structArray.uint16[this._pos2+12]},r.lineOffsetX.get=function(){return this._structArray.float32[this._pos4+7]},r.lineOffsetY.get=function(){return this._structArray.float32[this._pos4+8]},r.writingMode.get=function(){return this._structArray.uint8[this._pos1+36]},r.placedOrientation.get=function(){return this._structArray.uint8[this._pos1+37]},r.placedOrientation.set=function(t){this._structArray.uint8[this._pos1+37]=t},r.hidden.get=function(){return this._structArray.uint8[this._pos1+38]},r.hidden.set=function(t){this._structArray.uint8[this._pos1+38]=t},r.crossTileID.get=function(){return this._structArray.uint32[this._pos4+10]},r.crossTileID.set=function(t){this._structArray.uint32[this._pos4+10]=t},r.associatedIconIndex.get=function(){return this._structArray.int16[this._pos2+22]},Object.defineProperties(e.prototype,r),e}(Ci);ia.prototype.size=48;var aa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ia(this,t)},e}(Wi);Nn("PlacedSymbolArray",aa);var oa=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={anchorX:{configurable:!0},anchorY:{configurable:!0},rightJustifiedTextSymbolIndex:{configurable:!0},centerJustifiedTextSymbolIndex:{configurable:!0},leftJustifiedTextSymbolIndex:{configurable:!0},verticalPlacedTextSymbolIndex:{configurable:!0},placedIconSymbolIndex:{configurable:!0},verticalPlacedIconSymbolIndex:{configurable:!0},key:{configurable:!0},textBoxStartIndex:{configurable:!0},textBoxEndIndex:{configurable:!0},verticalTextBoxStartIndex:{configurable:!0},verticalTextBoxEndIndex:{configurable:!0},iconBoxStartIndex:{configurable:!0},iconBoxEndIndex:{configurable:!0},verticalIconBoxStartIndex:{configurable:!0},verticalIconBoxEndIndex:{configurable:!0},featureIndex:{configurable:!0},numHorizontalGlyphVertices:{configurable:!0},numVerticalGlyphVertices:{configurable:!0},numIconVertices:{configurable:!0},numVerticalIconVertices:{configurable:!0},useRuntimeCollisionCircles:{configurable:!0},crossTileID:{configurable:!0},textBoxScale:{configurable:!0},textOffset0:{configurable:!0},textOffset1:{configurable:!0},collisionCircleDiameter:{configurable:!0}};return r.anchorX.get=function(){return this._structArray.int16[this._pos2+0]},r.anchorY.get=function(){return this._structArray.int16[this._pos2+1]},r.rightJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+2]},r.centerJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+3]},r.leftJustifiedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+4]},r.verticalPlacedTextSymbolIndex.get=function(){return this._structArray.int16[this._pos2+5]},r.placedIconSymbolIndex.get=function(){return this._structArray.int16[this._pos2+6]},r.verticalPlacedIconSymbolIndex.get=function(){return this._structArray.int16[this._pos2+7]},r.key.get=function(){return this._structArray.uint16[this._pos2+8]},r.textBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+9]},r.textBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+10]},r.verticalTextBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+11]},r.verticalTextBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+12]},r.iconBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+13]},r.iconBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+14]},r.verticalIconBoxStartIndex.get=function(){return this._structArray.uint16[this._pos2+15]},r.verticalIconBoxEndIndex.get=function(){return this._structArray.uint16[this._pos2+16]},r.featureIndex.get=function(){return this._structArray.uint16[this._pos2+17]},r.numHorizontalGlyphVertices.get=function(){return this._structArray.uint16[this._pos2+18]},r.numVerticalGlyphVertices.get=function(){return this._structArray.uint16[this._pos2+19]},r.numIconVertices.get=function(){return this._structArray.uint16[this._pos2+20]},r.numVerticalIconVertices.get=function(){return this._structArray.uint16[this._pos2+21]},r.useRuntimeCollisionCircles.get=function(){return this._structArray.uint16[this._pos2+22]},r.crossTileID.get=function(){return this._structArray.uint32[this._pos4+12]},r.crossTileID.set=function(t){this._structArray.uint32[this._pos4+12]=t},r.textBoxScale.get=function(){return this._structArray.float32[this._pos4+13]},r.textOffset0.get=function(){return this._structArray.float32[this._pos4+14]},r.textOffset1.get=function(){return this._structArray.float32[this._pos4+15]},r.collisionCircleDiameter.get=function(){return this._structArray.float32[this._pos4+16]},Object.defineProperties(e.prototype,r),e}(Ci);oa.prototype.size=68;var sa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new oa(this,t)},e}(Xi);Nn("SymbolInstanceArray",sa);var la=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getoffsetX=function(t){return this.float32[1*t+0]},e}(Zi);Nn("GlyphOffsetArray",la);var ca=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.getx=function(t){return this.int16[3*t+0]},e.prototype.gety=function(t){return this.int16[3*t+1]},e.prototype.gettileUnitDistanceFromAnchor=function(t){return this.int16[3*t+2]},e}(Ji);Nn("SymbolLineVertexArray",ca);var ua=function(t){function e(){t.apply(this,arguments)}t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e;var r={featureIndex:{configurable:!0},sourceLayerIndex:{configurable:!0},bucketIndex:{configurable:!0}};return r.featureIndex.get=function(){return this._structArray.uint32[this._pos4+0]},r.sourceLayerIndex.get=function(){return this._structArray.uint16[this._pos2+2]},r.bucketIndex.get=function(){return this._structArray.uint16[this._pos2+3]},Object.defineProperties(e.prototype,r),e}(Ci);ua.prototype.size=8;var fa=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.get=function(t){return new ua(this,t)},e}(Ki);Nn("FeatureIndexArray",fa);var ha=Ii([{name:"a_pos",components:2,type:"Int16"}],4).members,pa=function(t){void 0===t&&(t=[]),this.segments=t};function da(t,e){return 256*(t=l(Math.floor(t),0,255))+(e=l(Math.floor(e),0,255))}pa.prototype.prepareSegment=function(t,e,r,n){var i=this.segments[this.segments.length-1];return t>pa.MAX_VERTEX_ARRAY_LENGTH&&_("Max vertices per segment is "+pa.MAX_VERTEX_ARRAY_LENGTH+": bucket requested "+t),(!i||i.vertexLength+t>pa.MAX_VERTEX_ARRAY_LENGTH||i.sortKey!==n)&&(i={vertexOffset:e.length,primitiveOffset:r.length,vertexLength:0,primitiveLength:0},void 0!==n&&(i.sortKey=n),this.segments.push(i)),i},pa.prototype.get=function(){return this.segments},pa.prototype.destroy=function(){for(var t=0,e=this.segments;t>>16)*o&65535)<<16)&4294967295)<<15|l>>>17))*s+(((l>>>16)*s&65535)<<16)&4294967295)<<13|i>>>19))+((5*(i>>>16)&65535)<<16)&4294967295))+((58964+(a>>>16)&65535)<<16);switch(l=0,r){case 3:l^=(255&t.charCodeAt(c+2))<<16;case 2:l^=(255&t.charCodeAt(c+1))<<8;case 1:i^=l=(65535&(l=(l=(65535&(l^=255&t.charCodeAt(c)))*o+(((l>>>16)*o&65535)<<16)&4294967295)<<15|l>>>17))*s+(((l>>>16)*s&65535)<<16)&4294967295}return i^=t.length,i=2246822507*(65535&(i^=i>>>16))+((2246822507*(i>>>16)&65535)<<16)&4294967295,i=3266489909*(65535&(i^=i>>>13))+((3266489909*(i>>>16)&65535)<<16)&4294967295,(i^=i>>>16)>>>0}})),va=e((function(t){t.exports=function(t,e){for(var r,n=t.length,i=e^n,a=0;n>=4;)r=1540483477*(65535&(r=255&t.charCodeAt(a)|(255&t.charCodeAt(++a))<<8|(255&t.charCodeAt(++a))<<16|(255&t.charCodeAt(++a))<<24))+((1540483477*(r>>>16)&65535)<<16),i=1540483477*(65535&i)+((1540483477*(i>>>16)&65535)<<16)^(r=1540483477*(65535&(r^=r>>>24))+((1540483477*(r>>>16)&65535)<<16)),n-=4,++a;switch(n){case 3:i^=(255&t.charCodeAt(a+2))<<16;case 2:i^=(255&t.charCodeAt(a+1))<<8;case 1:i=1540483477*(65535&(i^=255&t.charCodeAt(a)))+((1540483477*(i>>>16)&65535)<<16)}return i=1540483477*(65535&(i^=i>>>13))+((1540483477*(i>>>16)&65535)<<16),(i^=i>>>15)>>>0}})),ya=ga,xa=ga,ba=va;ya.murmur3=xa,ya.murmur2=ba;var _a=function(){this.ids=[],this.positions=[],this.indexed=!1};_a.prototype.add=function(t,e,r,n){this.ids.push(Ta(t)),this.positions.push(e,r,n)},_a.prototype.getPositions=function(t){for(var e=Ta(t),r=0,n=this.ids.length-1;r>1;this.ids[i]>=e?n=i:r=i+1}for(var a=[];this.ids[r]===e;){var o=this.positions[3*r],s=this.positions[3*r+1],l=this.positions[3*r+2];a.push({index:o,start:s,end:l}),r++}return a},_a.serialize=function(t,e){var r=new Float64Array(t.ids),n=new Uint32Array(t.positions);return function t(e,r,n,i){for(;n>1],o=n-1,s=i+1;;){do{o++}while(e[o]a);if(o>=s)break;ka(e,o,s),ka(r,3*o,3*s),ka(r,3*o+1,3*s+1),ka(r,3*o+2,3*s+2)}s-nGa.max||o.yGa.max)&&(_("Geometry exceeds allowed extent, reduce your vector tile buffer size"),o.x=l(o.x,Ga.min,Ga.max),o.y=l(o.y,Ga.min,Ga.max))}return r}function Wa(t,e,r,n,i){t.emplaceBack(2*e+(n+1)/2,2*r+(i+1)/2)}var Xa=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.layoutVertexArray=new zi,this.indexArray=new Yi,this.segments=new pa,this.programConfigurations=new Ua(ha,t.layers,t.zoom),this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};function Za(t,e){for(var r=0;r1){if($a(t,e))return!0;for(var n=0;n1?t.distSqr(r):t.distSqr(r.sub(e)._mult(i)._add(e))}function no(t,e){for(var r,n,i,a=!1,o=0;oe.y!=i.y>e.y&&e.x<(i.x-n.x)*(e.y-n.y)/(i.y-n.y)+n.x&&(a=!a);return a}function io(t,e){for(var r=!1,n=0,i=t.length-1;ne.y!=o.y>e.y&&e.x<(o.x-a.x)*(e.y-a.y)/(o.y-a.y)+a.x&&(r=!r)}return r}function ao(t,e,r){var n=r[0],i=r[2];if(t.xi.x&&e.x>i.x||t.yi.y&&e.y>i.y)return!1;var a=w(t,e,r[0]);return a!==w(t,e,r[1])||a!==w(t,e,r[2])||a!==w(t,e,r[3])}function oo(t,e,r){var n=e.paint.get(t).value;return"constant"===n.kind?n.value:r.programConfigurations.get(e.id).getMaxValue(t)}function so(t){return Math.sqrt(t[0]*t[0]+t[1]*t[1])}function lo(t,e,r,n,a){if(!e[0]&&!e[1])return t;var o=i.convert(e)._mult(a);"viewport"===r&&o._rotate(-n);for(var s=[],l=0;l=8192||u<0||u>=8192)){var f=this.segments.prepareSegment(4,this.layoutVertexArray,this.indexArray,t.sortKey),h=f.vertexLength;Wa(this.layoutVertexArray,c,u,-1,-1),Wa(this.layoutVertexArray,c,u,1,-1),Wa(this.layoutVertexArray,c,u,1,1),Wa(this.layoutVertexArray,c,u,-1,1),this.indexArray.emplaceBack(h,h+1,h+2),this.indexArray.emplaceBack(h,h+3,h+2),f.vertexLength+=4,f.primitiveLength+=2}}this.programConfigurations.populatePaintArrays(this.layoutVertexArray.length,t,r,{},n)},Nn("CircleBucket",Xa,{omit:["layers"]});var co=new Si({"circle-sort-key":new Ti(Lt.layout_circle["circle-sort-key"])}),uo={paint:new Si({"circle-radius":new Ti(Lt.paint_circle["circle-radius"]),"circle-color":new Ti(Lt.paint_circle["circle-color"]),"circle-blur":new Ti(Lt.paint_circle["circle-blur"]),"circle-opacity":new Ti(Lt.paint_circle["circle-opacity"]),"circle-translate":new wi(Lt.paint_circle["circle-translate"]),"circle-translate-anchor":new wi(Lt.paint_circle["circle-translate-anchor"]),"circle-pitch-scale":new wi(Lt.paint_circle["circle-pitch-scale"]),"circle-pitch-alignment":new wi(Lt.paint_circle["circle-pitch-alignment"]),"circle-stroke-width":new Ti(Lt.paint_circle["circle-stroke-width"]),"circle-stroke-color":new Ti(Lt.paint_circle["circle-stroke-color"]),"circle-stroke-opacity":new Ti(Lt.paint_circle["circle-stroke-opacity"])}),layout:co},fo="undefined"!=typeof Float32Array?Float32Array:Array;function ho(t){return t[0]=1,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=1,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=1,t[11]=0,t[12]=0,t[13]=0,t[14]=0,t[15]=1,t}function po(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3],s=e[4],l=e[5],c=e[6],u=e[7],f=e[8],h=e[9],p=e[10],d=e[11],m=e[12],g=e[13],v=e[14],y=e[15],x=r[0],b=r[1],_=r[2],w=r[3];return t[0]=x*n+b*s+_*f+w*m,t[1]=x*i+b*l+_*h+w*g,t[2]=x*a+b*c+_*p+w*v,t[3]=x*o+b*u+_*d+w*y,x=r[4],b=r[5],_=r[6],w=r[7],t[4]=x*n+b*s+_*f+w*m,t[5]=x*i+b*l+_*h+w*g,t[6]=x*a+b*c+_*p+w*v,t[7]=x*o+b*u+_*d+w*y,x=r[8],b=r[9],_=r[10],w=r[11],t[8]=x*n+b*s+_*f+w*m,t[9]=x*i+b*l+_*h+w*g,t[10]=x*a+b*c+_*p+w*v,t[11]=x*o+b*u+_*d+w*y,x=r[12],b=r[13],_=r[14],w=r[15],t[12]=x*n+b*s+_*f+w*m,t[13]=x*i+b*l+_*h+w*g,t[14]=x*a+b*c+_*p+w*v,t[15]=x*o+b*u+_*d+w*y,t}Math.hypot||(Math.hypot=function(){for(var t=arguments,e=0,r=arguments.length;r--;)e+=t[r]*t[r];return Math.sqrt(e)});var mo=po;var go,vo,yo=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t};go=new fo(3),fo!=Float32Array&&(go[0]=0,go[1]=0,go[2]=0),vo=go;function xo(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3];return t[0]=r[0]*n+r[4]*i+r[8]*a+r[12]*o,t[1]=r[1]*n+r[5]*i+r[9]*a+r[13]*o,t[2]=r[2]*n+r[6]*i+r[10]*a+r[14]*o,t[3]=r[3]*n+r[7]*i+r[11]*a+r[15]*o,t}!function(){var t=function(){var t=new fo(4);return fo!=Float32Array&&(t[0]=0,t[1]=0,t[2]=0,t[3]=0),t}()}();var bo=function(t){var e=t[0],r=t[1];return e*e+r*r},_o=(function(){var t=function(){var t=new fo(2);return fo!=Float32Array&&(t[0]=0,t[1]=0),t}()}(),function(t){function e(e){t.call(this,e,uo)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.createBucket=function(t){return new Xa(t)},e.prototype.queryRadius=function(t){var e=t;return oo("circle-radius",this,e)+oo("circle-stroke-width",this,e)+so(this.paint.get("circle-translate"))},e.prototype.queryIntersectsFeature=function(t,e,r,n,i,a,o,s){for(var l=lo(t,this.paint.get("circle-translate"),this.paint.get("circle-translate-anchor"),a.angle,o),c=this.paint.get("circle-radius").evaluate(e,r)+this.paint.get("circle-stroke-width").evaluate(e,r),u="map"===this.paint.get("circle-pitch-alignment"),f=u?l:function(t,e){return t.map((function(t){return wo(t,e)}))}(l,s),h=u?c*o:c,p=0,d=n;pt.width||i.height>t.height||r.x>t.width-i.width||r.y>t.height-i.height)throw new RangeError("out of range source coordinates for image copy");if(i.width>e.width||i.height>e.height||n.x>e.width-i.width||n.y>e.height-i.height)throw new RangeError("out of range destination coordinates for image copy");for(var o=t.data,s=e.data,l=0;l80*r){n=a=t[0],i=o=t[1];for(var d=r;da&&(a=s),l>o&&(o=l);c=0!==(c=Math.max(a-n,o-i))?1/c:0}return jo(h,p,r,n,i,c),p}function Bo(t,e,r,n,i){var a,o;if(i===ls(t,e,r,n)>0)for(a=e;a=e;a-=n)o=as(a,t[a],t[a+1],o);return o&&$o(o,o.next)&&(os(o),o=o.next),o}function No(t,e){if(!t)return t;e||(e=t);var r,n=t;do{if(r=!1,n.steiner||!$o(n,n.next)&&0!==Qo(n.prev,n,n.next))n=n.next;else{if(os(n),(n=e=n.prev)===n.next)break;r=!0}}while(r||n!==e);return e}function jo(t,e,r,n,i,a,o){if(t){!o&&a&&function(t,e,r,n){var i=t;do{null===i.z&&(i.z=Xo(i.x,i.y,e,r,n)),i.prevZ=i.prev,i.nextZ=i.next,i=i.next}while(i!==t);i.prevZ.nextZ=null,i.prevZ=null,function(t){var e,r,n,i,a,o,s,l,c=1;do{for(r=t,t=null,a=null,o=0;r;){for(o++,n=r,s=0,e=0;e0||l>0&&n;)0!==s&&(0===l||!n||r.z<=n.z)?(i=r,r=r.nextZ,s--):(i=n,n=n.nextZ,l--),a?a.nextZ=i:t=i,i.prevZ=a,a=i;r=n}a.nextZ=null,c*=2}while(o>1)}(i)}(t,n,i,a);for(var s,l,c=t;t.prev!==t.next;)if(s=t.prev,l=t.next,a?Vo(t,n,i,a):Uo(t))e.push(s.i/r),e.push(t.i/r),e.push(l.i/r),os(t),t=l.next,c=l.next;else if((t=l)===c){o?1===o?jo(t=Ho(No(t),e,r),e,r,n,i,a,2):2===o&&qo(t,e,r,n,i,a):jo(No(t),e,r,n,i,a,1);break}}}function Uo(t){var e=t.prev,r=t,n=t.next;if(Qo(e,r,n)>=0)return!1;for(var i=t.next.next;i!==t.prev;){if(Jo(e.x,e.y,r.x,r.y,n.x,n.y,i.x,i.y)&&Qo(i.prev,i,i.next)>=0)return!1;i=i.next}return!0}function Vo(t,e,r,n){var i=t.prev,a=t,o=t.next;if(Qo(i,a,o)>=0)return!1;for(var s=i.xa.x?i.x>o.x?i.x:o.x:a.x>o.x?a.x:o.x,u=i.y>a.y?i.y>o.y?i.y:o.y:a.y>o.y?a.y:o.y,f=Xo(s,l,e,r,n),h=Xo(c,u,e,r,n),p=t.prevZ,d=t.nextZ;p&&p.z>=f&&d&&d.z<=h;){if(p!==t.prev&&p!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&Qo(p.prev,p,p.next)>=0)return!1;if(p=p.prevZ,d!==t.prev&&d!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,d.x,d.y)&&Qo(d.prev,d,d.next)>=0)return!1;d=d.nextZ}for(;p&&p.z>=f;){if(p!==t.prev&&p!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,p.x,p.y)&&Qo(p.prev,p,p.next)>=0)return!1;p=p.prevZ}for(;d&&d.z<=h;){if(d!==t.prev&&d!==t.next&&Jo(i.x,i.y,a.x,a.y,o.x,o.y,d.x,d.y)&&Qo(d.prev,d,d.next)>=0)return!1;d=d.nextZ}return!0}function Ho(t,e,r){var n=t;do{var i=n.prev,a=n.next.next;!$o(i,a)&&ts(i,n,n.next,a)&&ns(i,a)&&ns(a,i)&&(e.push(i.i/r),e.push(n.i/r),e.push(a.i/r),os(n),os(n.next),n=t=a),n=n.next}while(n!==t);return No(n)}function qo(t,e,r,n,i,a){var o=t;do{for(var s=o.next.next;s!==o.prev;){if(o.i!==s.i&&Ko(o,s)){var l=is(o,s);return o=No(o,o.next),l=No(l,l.next),jo(o,e,r,n,i,a),void jo(l,e,r,n,i,a)}s=s.next}o=o.next}while(o!==t)}function Go(t,e){return t.x-e.x}function Yo(t,e){if(e=function(t,e){var r,n=e,i=t.x,a=t.y,o=-1/0;do{if(a<=n.y&&a>=n.next.y&&n.next.y!==n.y){var s=n.x+(a-n.y)*(n.next.x-n.x)/(n.next.y-n.y);if(s<=i&&s>o){if(o=s,s===i){if(a===n.y)return n;if(a===n.next.y)return n.next}r=n.x=n.x&&n.x>=u&&i!==n.x&&Jo(ar.x||n.x===r.x&&Wo(r,n)))&&(r=n,h=l)),n=n.next}while(n!==c);return r}(t,e)){var r=is(e,t);No(e,e.next),No(r,r.next)}}function Wo(t,e){return Qo(t.prev,t,e.prev)<0&&Qo(e.next,t,t.next)<0}function Xo(t,e,r,n,i){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t=32767*(t-r)*i)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e=32767*(e-n)*i)|e<<8))|e<<4))|e<<2))|e<<1))<<1}function Zo(t){var e=t,r=t;do{(e.x=0&&(t-o)*(n-s)-(r-o)*(e-s)>=0&&(r-o)*(a-s)-(i-o)*(n-s)>=0}function Ko(t,e){return t.next.i!==e.i&&t.prev.i!==e.i&&!function(t,e){var r=t;do{if(r.i!==t.i&&r.next.i!==t.i&&r.i!==e.i&&r.next.i!==e.i&&ts(r,r.next,t,e))return!0;r=r.next}while(r!==t);return!1}(t,e)&&(ns(t,e)&&ns(e,t)&&function(t,e){var r=t,n=!1,i=(t.x+e.x)/2,a=(t.y+e.y)/2;do{r.y>a!=r.next.y>a&&r.next.y!==r.y&&i<(r.next.x-r.x)*(a-r.y)/(r.next.y-r.y)+r.x&&(n=!n),r=r.next}while(r!==t);return n}(t,e)&&(Qo(t.prev,t,e.prev)||Qo(t,e.prev,e))||$o(t,e)&&Qo(t.prev,t,t.next)>0&&Qo(e.prev,e,e.next)>0)}function Qo(t,e,r){return(e.y-t.y)*(r.x-e.x)-(e.x-t.x)*(r.y-e.y)}function $o(t,e){return t.x===e.x&&t.y===e.y}function ts(t,e,r,n){var i=rs(Qo(t,e,r)),a=rs(Qo(t,e,n)),o=rs(Qo(r,n,t)),s=rs(Qo(r,n,e));return i!==a&&o!==s||(!(0!==i||!es(t,r,e))||(!(0!==a||!es(t,n,e))||(!(0!==o||!es(r,t,n))||!(0!==s||!es(r,e,n)))))}function es(t,e,r){return e.x<=Math.max(t.x,r.x)&&e.x>=Math.min(t.x,r.x)&&e.y<=Math.max(t.y,r.y)&&e.y>=Math.min(t.y,r.y)}function rs(t){return t>0?1:t<0?-1:0}function ns(t,e){return Qo(t.prev,t,t.next)<0?Qo(t,e,t.next)>=0&&Qo(t,t.prev,e)>=0:Qo(t,e,t.prev)<0||Qo(t,t.next,e)<0}function is(t,e){var r=new ss(t.i,t.x,t.y),n=new ss(e.i,e.x,e.y),i=t.next,a=e.prev;return t.next=e,e.prev=t,r.next=i,i.prev=r,n.next=r,r.prev=n,a.next=n,n.prev=a,n}function as(t,e,r,n){var i=new ss(t,e,r);return n?(i.next=n.next,i.prev=n,n.next.prev=i,n.next=i):(i.prev=i,i.next=i),i}function os(t){t.next.prev=t.prev,t.prev.next=t.next,t.prevZ&&(t.prevZ.nextZ=t.nextZ),t.nextZ&&(t.nextZ.prevZ=t.prevZ)}function ss(t,e,r){this.i=t,this.x=e,this.y=r,this.prev=null,this.next=null,this.z=null,this.prevZ=null,this.nextZ=null,this.steiner=!1}function ls(t,e,r,n){for(var i=0,a=e,o=r-n;an;){if(i-n>600){var o=i-n+1,s=r-n+1,l=Math.log(o),c=.5*Math.exp(2*l/3),u=.5*Math.sqrt(l*c*(o-c)/o)*(s-o/2<0?-1:1),f=Math.max(n,Math.floor(r-s*c/o+u)),h=Math.min(i,Math.floor(r+(o-s)*c/o+u));t(e,r,f,h,a)}var p=e[r],d=n,m=i;for(us(e,n,r),a(e[i],p)>0&&us(e,n,i);d0;)m--}0===a(e[n],p)?us(e,n,m):(m++,us(e,m,i)),m<=r&&(n=m+1),r<=m&&(i=m-1)}}(t,e,r||0,n||t.length-1,i||fs)}function us(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function fs(t,e){return te?1:0}function hs(t,e){var r=t.length;if(r<=1)return[t];for(var n,i,a=[],o=0;o1)for(var l=0;l0&&(n+=t[i-1].length,r.holes.push(n))}return r},Do.default=Ro;var gs=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.patternFeatures=[],this.layoutVertexArray=new zi,this.indexArray=new Yi,this.indexArray2=new Qi,this.programConfigurations=new Ua(zo,t.layers,t.zoom),this.segments=new pa,this.segments2=new pa,this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};gs.prototype.populate=function(t,e,r){this.hasPattern=ds("fill",this.layers,e);for(var n=this.layers[0].layout.get("fill-sort-key"),i=[],a=0,o=t;a>3}if(a--,1===n||2===n)o+=t.readSVarint(),s+=t.readSVarint(),1===n&&(e&&l.push(e),e=[]),e.push(new i(o,s));else{if(7!==n)throw new Error("unknown command "+n);e&&e.push(e[0].clone())}}return e&&l.push(e),l},ws.prototype.bbox=function(){var t=this._pbf;t.pos=this._geometry;for(var e=t.readVarint()+t.pos,r=1,n=0,i=0,a=0,o=1/0,s=-1/0,l=1/0,c=-1/0;t.pos>3}if(n--,1===r||2===r)(i+=t.readSVarint())s&&(s=i),(a+=t.readSVarint())c&&(c=a);else if(7!==r)throw new Error("unknown command "+r)}return[o,l,s,c]},ws.prototype.toGeoJSON=function(t,e,r){var n,i,a=this.extent*Math.pow(2,r),o=this.extent*t,s=this.extent*e,l=this.loadGeometry(),c=ws.types[this.type];function u(t){for(var e=0;e>3;e=1===n?t.readString():2===n?t.readFloat():3===n?t.readDouble():4===n?t.readVarint64():5===n?t.readVarint():6===n?t.readSVarint():7===n?t.readBoolean():null}return e}(r))}function Es(t,e,r){if(3===t){var n=new As(r,r.readVarint()+r.pos);n.length&&(e[n.name]=n)}}Ms.prototype.feature=function(t){if(t<0||t>=this._features.length)throw new Error("feature index out of bounds");this._pbf.pos=this._features[t];var e=this._pbf.readVarint()+this._pbf.pos;return new _s(this._pbf,e,this.extent,this._keys,this._values)};var Ls={VectorTile:function(t,e){this.layers=t.readFields(Es,{},e)},VectorTileFeature:_s,VectorTileLayer:As},Cs=Ls.VectorTileFeature.types,Ps=Math.pow(2,13);function Is(t,e,r,n,i,a,o,s){t.emplaceBack(e,r,2*Math.floor(n*Ps)+o,i*Ps*2,a*Ps*2,Math.round(s))}var Os=function(t){this.zoom=t.zoom,this.overscaling=t.overscaling,this.layers=t.layers,this.layerIds=this.layers.map((function(t){return t.id})),this.index=t.index,this.hasPattern=!1,this.layoutVertexArray=new Ri,this.indexArray=new Yi,this.programConfigurations=new Ua(bs,t.layers,t.zoom),this.segments=new pa,this.stateDependentLayerIds=this.layers.filter((function(t){return t.isStateDependent()})).map((function(t){return t.id}))};function zs(t,e){return t.x===e.x&&(t.x<0||t.x>8192)||t.y===e.y&&(t.y<0||t.y>8192)}function Ds(t){return t.every((function(t){return t.x<0}))||t.every((function(t){return t.x>8192}))||t.every((function(t){return t.y<0}))||t.every((function(t){return t.y>8192}))}Os.prototype.populate=function(t,e,r){this.features=[],this.hasPattern=ds("fill-extrusion",this.layers,e);for(var n=0,i=t;n=1){var y=d[g-1];if(!zs(v,y)){f.vertexLength+4>pa.MAX_VERTEX_ARRAY_LENGTH&&(f=this.segments.prepareSegment(4,this.layoutVertexArray,this.indexArray));var x=v.sub(y)._perp()._unit(),b=y.dist(v);m+b>32768&&(m=0),Is(this.layoutVertexArray,v.x,v.y,x.x,x.y,0,0,m),Is(this.layoutVertexArray,v.x,v.y,x.x,x.y,0,1,m),m+=b,Is(this.layoutVertexArray,y.x,y.y,x.x,x.y,0,0,m),Is(this.layoutVertexArray,y.x,y.y,x.x,x.y,0,1,m);var _=f.vertexLength;this.indexArray.emplaceBack(_,_+2,_+1),this.indexArray.emplaceBack(_+1,_+2,_+3),f.vertexLength+=4,f.primitiveLength+=2}}}}if(f.vertexLength+l>pa.MAX_VERTEX_ARRAY_LENGTH&&(f=this.segments.prepareSegment(l,this.layoutVertexArray,this.indexArray)),"Polygon"===Cs[t.type]){for(var w=[],T=[],k=f.vertexLength,A=0,M=s;A=2&&t[l-1].equals(t[l-2]);)l--;for(var c=0;c0;if(T&&v>c){var A=u.dist(p);if(A>2*f){var M=u.sub(u.sub(p)._mult(f/A)._round());this.updateDistance(p,M),this.addCurrentVertex(M,m,0,0,h),p=M}}var S=p&&d,E=S?r:s?"butt":n;if(S&&"round"===E&&(_i&&(E="bevel"),"bevel"===E&&(_>2&&(E="flipbevel"),_100)y=g.mult(-1);else{var L=_*m.add(g).mag()/m.sub(g).mag();y._perp()._mult(L*(k?-1:1))}this.addCurrentVertex(u,y,0,0,h),this.addCurrentVertex(u,y.mult(-1),0,0,h)}else if("bevel"===E||"fakeround"===E){var C=-Math.sqrt(_*_-1),P=k?C:0,I=k?0:C;if(p&&this.addCurrentVertex(u,m,P,I,h),"fakeround"===E)for(var O=Math.round(180*w/Math.PI/20),z=1;z2*f){var j=u.add(d.sub(u)._mult(f/N)._round());this.updateDistance(u,j),this.addCurrentVertex(j,g,0,0,h),u=j}}}}},qs.prototype.addCurrentVertex=function(t,e,r,n,i,a){void 0===a&&(a=!1);var o=e.x+e.y*r,s=e.y-e.x*r,l=-e.x+e.y*n,c=-e.y-e.x*n;this.addHalfVertex(t,o,s,a,!1,r,i),this.addHalfVertex(t,l,c,a,!0,-n,i),this.distance>Hs/2&&0===this.totalDistance&&(this.distance=0,this.addCurrentVertex(t,e,r,n,i,a))},qs.prototype.addHalfVertex=function(t,e,r,n,i,a,o){var s=t.x,l=t.y,c=.5*this.scaledDistance;this.layoutVertexArray.emplaceBack((s<<1)+(n?1:0),(l<<1)+(i?1:0),Math.round(63*e)+128,Math.round(63*r)+128,1+(0===a?0:a<0?-1:1)|(63&c)<<2,c>>6);var u=o.vertexLength++;this.e1>=0&&this.e2>=0&&(this.indexArray.emplaceBack(this.e1,this.e2,u),o.primitiveLength++),i?this.e2=u:this.e1=u},qs.prototype.updateScaledDistance=function(){this.scaledDistance=this.totalDistance>0?(this.clipStart+(this.clipEnd-this.clipStart)*this.distance/this.totalDistance)*(Hs-1):this.distance},qs.prototype.updateDistance=function(t,e){this.distance+=t.dist(e),this.updateScaledDistance()},Nn("LineBucket",qs,{omit:["layers","patternFeatures"]});var Gs=new Si({"line-cap":new wi(Lt.layout_line["line-cap"]),"line-join":new Ti(Lt.layout_line["line-join"]),"line-miter-limit":new wi(Lt.layout_line["line-miter-limit"]),"line-round-limit":new wi(Lt.layout_line["line-round-limit"]),"line-sort-key":new Ti(Lt.layout_line["line-sort-key"])}),Ys={paint:new Si({"line-opacity":new Ti(Lt.paint_line["line-opacity"]),"line-color":new Ti(Lt.paint_line["line-color"]),"line-translate":new wi(Lt.paint_line["line-translate"]),"line-translate-anchor":new wi(Lt.paint_line["line-translate-anchor"]),"line-width":new Ti(Lt.paint_line["line-width"]),"line-gap-width":new Ti(Lt.paint_line["line-gap-width"]),"line-offset":new Ti(Lt.paint_line["line-offset"]),"line-blur":new Ti(Lt.paint_line["line-blur"]),"line-dasharray":new Ai(Lt.paint_line["line-dasharray"]),"line-pattern":new ki(Lt.paint_line["line-pattern"]),"line-gradient":new Mi(Lt.paint_line["line-gradient"])}),layout:Gs},Ws=new(function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.possiblyEvaluate=function(e,r){return r=new pi(Math.floor(r.zoom),{now:r.now,fadeDuration:r.fadeDuration,zoomHistory:r.zoomHistory,transition:r.transition}),t.prototype.possiblyEvaluate.call(this,e,r)},e.prototype.evaluate=function(e,r,n,i){return r=u({},r,{zoom:Math.floor(r.zoom)}),t.prototype.evaluate.call(this,e,r,n,i)},e}(Ti))(Ys.paint.properties["line-width"].specification);Ws.useIntegerZoom=!0;var Xs=function(t){function e(e){t.call(this,e,Ys)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype._handleSpecialPaintPropertyUpdate=function(t){"line-gradient"===t&&this._updateGradient()},e.prototype._updateGradient=function(){var t=this._transitionablePaint._values["line-gradient"].value.expression;this.gradient=Co(t,"lineProgress"),this.gradientTexture=null},e.prototype.recalculate=function(e,r){t.prototype.recalculate.call(this,e,r),this.paint._values["line-floorwidth"]=Ws.possiblyEvaluate(this._transitioningPaint._values["line-width"].value,e)},e.prototype.createBucket=function(t){return new qs(t)},e.prototype.queryRadius=function(t){var e=t,r=Zs(oo("line-width",this,e),oo("line-gap-width",this,e)),n=oo("line-offset",this,e);return r/2+Math.abs(n)+so(this.paint.get("line-translate"))},e.prototype.queryIntersectsFeature=function(t,e,r,n,a,o,s){var l=lo(t,this.paint.get("line-translate"),this.paint.get("line-translate-anchor"),o.angle,s),c=s/2*Zs(this.paint.get("line-width").evaluate(e,r),this.paint.get("line-gap-width").evaluate(e,r)),u=this.paint.get("line-offset").evaluate(e,r);return u&&(n=function(t,e){for(var r=[],n=new i(0,0),a=0;a=3)for(var a=0;a0?e+2*t:t}var Js=Ii([{name:"a_pos_offset",components:4,type:"Int16"},{name:"a_data",components:4,type:"Uint16"},{name:"a_pixeloffset",components:4,type:"Int16"}],4),Ks=Ii([{name:"a_projected_pos",components:3,type:"Float32"}],4),Qs=(Ii([{name:"a_fade_opacity",components:1,type:"Uint32"}],4),Ii([{name:"a_placed",components:2,type:"Uint8"},{name:"a_shift",components:2,type:"Float32"}])),$s=(Ii([{type:"Int16",name:"anchorPointX"},{type:"Int16",name:"anchorPointY"},{type:"Int16",name:"x1"},{type:"Int16",name:"y1"},{type:"Int16",name:"x2"},{type:"Int16",name:"y2"},{type:"Uint32",name:"featureIndex"},{type:"Uint16",name:"sourceLayerIndex"},{type:"Uint16",name:"bucketIndex"}]),Ii([{name:"a_pos",components:2,type:"Int16"},{name:"a_anchor_pos",components:2,type:"Int16"},{name:"a_extrude",components:2,type:"Int16"}],4)),tl=Ii([{name:"a_pos",components:2,type:"Float32"},{name:"a_radius",components:1,type:"Float32"},{name:"a_flags",components:2,type:"Int16"}],4);Ii([{name:"triangle",components:3,type:"Uint16"}]),Ii([{type:"Int16",name:"anchorX"},{type:"Int16",name:"anchorY"},{type:"Uint16",name:"glyphStartIndex"},{type:"Uint16",name:"numGlyphs"},{type:"Uint32",name:"vertexStartIndex"},{type:"Uint32",name:"lineStartIndex"},{type:"Uint32",name:"lineLength"},{type:"Uint16",name:"segment"},{type:"Uint16",name:"lowerSize"},{type:"Uint16",name:"upperSize"},{type:"Float32",name:"lineOffsetX"},{type:"Float32",name:"lineOffsetY"},{type:"Uint8",name:"writingMode"},{type:"Uint8",name:"placedOrientation"},{type:"Uint8",name:"hidden"},{type:"Uint32",name:"crossTileID"},{type:"Int16",name:"associatedIconIndex"}]),Ii([{type:"Int16",name:"anchorX"},{type:"Int16",name:"anchorY"},{type:"Int16",name:"rightJustifiedTextSymbolIndex"},{type:"Int16",name:"centerJustifiedTextSymbolIndex"},{type:"Int16",name:"leftJustifiedTextSymbolIndex"},{type:"Int16",name:"verticalPlacedTextSymbolIndex"},{type:"Int16",name:"placedIconSymbolIndex"},{type:"Int16",name:"verticalPlacedIconSymbolIndex"},{type:"Uint16",name:"key"},{type:"Uint16",name:"textBoxStartIndex"},{type:"Uint16",name:"textBoxEndIndex"},{type:"Uint16",name:"verticalTextBoxStartIndex"},{type:"Uint16",name:"verticalTextBoxEndIndex"},{type:"Uint16",name:"iconBoxStartIndex"},{type:"Uint16",name:"iconBoxEndIndex"},{type:"Uint16",name:"verticalIconBoxStartIndex"},{type:"Uint16",name:"verticalIconBoxEndIndex"},{type:"Uint16",name:"featureIndex"},{type:"Uint16",name:"numHorizontalGlyphVertices"},{type:"Uint16",name:"numVerticalGlyphVertices"},{type:"Uint16",name:"numIconVertices"},{type:"Uint16",name:"numVerticalIconVertices"},{type:"Uint16",name:"useRuntimeCollisionCircles"},{type:"Uint32",name:"crossTileID"},{type:"Float32",name:"textBoxScale"},{type:"Float32",components:2,name:"textOffset"},{type:"Float32",name:"collisionCircleDiameter"}]),Ii([{type:"Float32",name:"offsetX"}]),Ii([{type:"Int16",name:"x"},{type:"Int16",name:"y"},{type:"Int16",name:"tileUnitDistanceFromAnchor"}]);function el(t,e,r){return t.sections.forEach((function(t){t.text=function(t,e,r){var n=e.layout.get("text-transform").evaluate(r,{});return"uppercase"===n?t=t.toLocaleUpperCase():"lowercase"===n&&(t=t.toLocaleLowerCase()),hi.applyArabicShaping&&(t=hi.applyArabicShaping(t)),t}(t.text,e,r)})),t}var rl={"!":"\ufe15","#":"\uff03",$:"\uff04","%":"\uff05","&":"\uff06","(":"\ufe35",")":"\ufe36","*":"\uff0a","+":"\uff0b",",":"\ufe10","-":"\ufe32",".":"\u30fb","/":"\uff0f",":":"\ufe13",";":"\ufe14","<":"\ufe3f","=":"\uff1d",">":"\ufe40","?":"\ufe16","@":"\uff20","[":"\ufe47","\\":"\uff3c","]":"\ufe48","^":"\uff3e",_:"\ufe33","`":"\uff40","{":"\ufe37","|":"\u2015","}":"\ufe38","~":"\uff5e","\xa2":"\uffe0","\xa3":"\uffe1","\xa5":"\uffe5","\xa6":"\uffe4","\xac":"\uffe2","\xaf":"\uffe3","\u2013":"\ufe32","\u2014":"\ufe31","\u2018":"\ufe43","\u2019":"\ufe44","\u201c":"\ufe41","\u201d":"\ufe42","\u2026":"\ufe19","\u2027":"\u30fb","\u20a9":"\uffe6","\u3001":"\ufe11","\u3002":"\ufe12","\u3008":"\ufe3f","\u3009":"\ufe40","\u300a":"\ufe3d","\u300b":"\ufe3e","\u300c":"\ufe41","\u300d":"\ufe42","\u300e":"\ufe43","\u300f":"\ufe44","\u3010":"\ufe3b","\u3011":"\ufe3c","\u3014":"\ufe39","\u3015":"\ufe3a","\u3016":"\ufe17","\u3017":"\ufe18","\uff01":"\ufe15","\uff08":"\ufe35","\uff09":"\ufe36","\uff0c":"\ufe10","\uff0d":"\ufe32","\uff0e":"\u30fb","\uff1a":"\ufe13","\uff1b":"\ufe14","\uff1c":"\ufe3f","\uff1e":"\ufe40","\uff1f":"\ufe16","\uff3b":"\ufe47","\uff3d":"\ufe48","\uff3f":"\ufe33","\uff5b":"\ufe37","\uff5c":"\u2015","\uff5d":"\ufe38","\uff5f":"\ufe35","\uff60":"\ufe36","\uff61":"\ufe12","\uff62":"\ufe41","\uff63":"\ufe42"};var nl=function(t,e,r,n,i){var a,o,s=8*i-n-1,l=(1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},il=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m},al=ol;function ol(t){this.buf=ArrayBuffer.isView&&ArrayBuffer.isView(t)?t:new Uint8Array(t||0),this.pos=0,this.type=0,this.length=this.buf.length}ol.Varint=0,ol.Fixed64=1,ol.Bytes=2,ol.Fixed32=5;var sl="undefined"==typeof TextDecoder?null:new TextDecoder("utf8");function ll(t){return t.type===ol.Bytes?t.readVarint()+t.pos:t.pos+1}function cl(t,e,r){return r?4294967296*e+(t>>>0):4294967296*(e>>>0)+(t>>>0)}function ul(t,e,r){var n=e<=16383?1:e<=2097151?2:e<=268435455?3:Math.floor(Math.log(e)/(7*Math.LN2));r.realloc(n);for(var i=r.pos-1;i>=t;i--)r.buf[i+n]=r.buf[i]}function fl(t,e){for(var r=0;r>>8,t[r+2]=e>>>16,t[r+3]=e>>>24}function wl(t,e){return(t[e]|t[e+1]<<8|t[e+2]<<16)+(t[e+3]<<24)}ol.prototype={destroy:function(){this.buf=null},readFields:function(t,e,r){for(r=r||this.length;this.pos>3,a=this.pos;this.type=7&n,t(i,e,this),this.pos===a&&this.skip(n)}return e},readMessage:function(t,e){return this.readFields(t,e,this.readVarint()+this.pos)},readFixed32:function(){var t=bl(this.buf,this.pos);return this.pos+=4,t},readSFixed32:function(){var t=wl(this.buf,this.pos);return this.pos+=4,t},readFixed64:function(){var t=bl(this.buf,this.pos)+4294967296*bl(this.buf,this.pos+4);return this.pos+=8,t},readSFixed64:function(){var t=bl(this.buf,this.pos)+4294967296*wl(this.buf,this.pos+4);return this.pos+=8,t},readFloat:function(){var t=nl(this.buf,this.pos,!0,23,4);return this.pos+=4,t},readDouble:function(){var t=nl(this.buf,this.pos,!0,52,8);return this.pos+=8,t},readVarint:function(t){var e,r,n=this.buf;return e=127&(r=n[this.pos++]),r<128?e:(e|=(127&(r=n[this.pos++]))<<7,r<128?e:(e|=(127&(r=n[this.pos++]))<<14,r<128?e:(e|=(127&(r=n[this.pos++]))<<21,r<128?e:function(t,e,r){var n,i,a=r.buf;if(i=a[r.pos++],n=(112&i)>>4,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<3,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<10,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<17,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(127&i)<<24,i<128)return cl(t,n,e);if(i=a[r.pos++],n|=(1&i)<<31,i<128)return cl(t,n,e);throw new Error("Expected varint not more than 10 bytes")}(e|=(15&(r=n[this.pos]))<<28,t,this))))},readVarint64:function(){return this.readVarint(!0)},readSVarint:function(){var t=this.readVarint();return t%2==1?(t+1)/-2:t/2},readBoolean:function(){return Boolean(this.readVarint())},readString:function(){var t=this.readVarint()+this.pos,e=this.pos;return this.pos=t,t-e>=12&&sl?function(t,e,r){return sl.decode(t.subarray(e,r))}(this.buf,e,t):function(t,e,r){var n="",i=e;for(;i239?4:l>223?3:l>191?2:1;if(i+u>r)break;1===u?l<128&&(c=l):2===u?128==(192&(a=t[i+1]))&&(c=(31&l)<<6|63&a)<=127&&(c=null):3===u?(a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&((c=(15&l)<<12|(63&a)<<6|63&o)<=2047||c>=55296&&c<=57343)&&(c=null)):4===u&&(a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&((c=(15&l)<<18|(63&a)<<12|(63&o)<<6|63&s)<=65535||c>=1114112)&&(c=null)),null===c?(c=65533,u=1):c>65535&&(c-=65536,n+=String.fromCharCode(c>>>10&1023|55296),c=56320|1023&c),n+=String.fromCharCode(c),i+=u}return n}(this.buf,e,t)},readBytes:function(){var t=this.readVarint()+this.pos,e=this.buf.subarray(this.pos,t);return this.pos=t,e},readPackedVarint:function(t,e){if(this.type!==ol.Bytes)return t.push(this.readVarint(e));var r=ll(this);for(t=t||[];this.pos127;);else if(e===ol.Bytes)this.pos=this.readVarint()+this.pos;else if(e===ol.Fixed32)this.pos+=4;else{if(e!==ol.Fixed64)throw new Error("Unimplemented type: "+e);this.pos+=8}},writeTag:function(t,e){this.writeVarint(t<<3|e)},realloc:function(t){for(var e=this.length||16;e268435455||t<0?function(t,e){var r,n;t>=0?(r=t%4294967296|0,n=t/4294967296|0):(n=~(-t/4294967296),4294967295^(r=~(-t%4294967296))?r=r+1|0:(r=0,n=n+1|0));if(t>=0x10000000000000000||t<-0x10000000000000000)throw new Error("Given varint doesn't fit into 10 bytes");e.realloc(10),function(t,e,r){r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos++]=127&t|128,t>>>=7,r.buf[r.pos]=127&t}(r,0,e),function(t,e){var r=(7&t)<<4;if(e.buf[e.pos++]|=r|((t>>>=3)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;if(e.buf[e.pos++]=127&t|((t>>>=7)?128:0),!t)return;e.buf[e.pos++]=127&t}(n,e)}(t,this):(this.realloc(4),this.buf[this.pos++]=127&t|(t>127?128:0),t<=127||(this.buf[this.pos++]=127&(t>>>=7)|(t>127?128:0),t<=127||(this.buf[this.pos++]=127&(t>>>=7)|(t>127?128:0),t<=127||(this.buf[this.pos++]=t>>>7&127))))},writeSVarint:function(t){this.writeVarint(t<0?2*-t-1:2*t)},writeBoolean:function(t){this.writeVarint(Boolean(t))},writeString:function(t){t=String(t),this.realloc(4*t.length),this.pos++;var e=this.pos;this.pos=function(t,e,r){for(var n,i,a=0;a55295&&n<57344){if(!i){n>56319||a+1===e.length?(t[r++]=239,t[r++]=191,t[r++]=189):i=n;continue}if(n<56320){t[r++]=239,t[r++]=191,t[r++]=189,i=n;continue}n=i-55296<<10|n-56320|65536,i=null}else i&&(t[r++]=239,t[r++]=191,t[r++]=189,i=null);n<128?t[r++]=n:(n<2048?t[r++]=n>>6|192:(n<65536?t[r++]=n>>12|224:(t[r++]=n>>18|240,t[r++]=n>>12&63|128),t[r++]=n>>6&63|128),t[r++]=63&n|128)}return r}(this.buf,t,this.pos);var r=this.pos-e;r>=128&&ul(e,r,this),this.pos=e-1,this.writeVarint(r),this.pos+=r},writeFloat:function(t){this.realloc(4),il(this.buf,t,this.pos,!0,23,4),this.pos+=4},writeDouble:function(t){this.realloc(8),il(this.buf,t,this.pos,!0,52,8),this.pos+=8},writeBytes:function(t){var e=t.length;this.writeVarint(e),this.realloc(e);for(var r=0;r=128&&ul(r,n,this),this.pos=r-1,this.writeVarint(n),this.pos+=n},writeMessage:function(t,e,r){this.writeTag(t,ol.Bytes),this.writeRawMessage(e,r)},writePackedVarint:function(t,e){e.length&&this.writeMessage(t,fl,e)},writePackedSVarint:function(t,e){e.length&&this.writeMessage(t,hl,e)},writePackedBoolean:function(t,e){e.length&&this.writeMessage(t,ml,e)},writePackedFloat:function(t,e){e.length&&this.writeMessage(t,pl,e)},writePackedDouble:function(t,e){e.length&&this.writeMessage(t,dl,e)},writePackedFixed32:function(t,e){e.length&&this.writeMessage(t,gl,e)},writePackedSFixed32:function(t,e){e.length&&this.writeMessage(t,vl,e)},writePackedFixed64:function(t,e){e.length&&this.writeMessage(t,yl,e)},writePackedSFixed64:function(t,e){e.length&&this.writeMessage(t,xl,e)},writeBytesField:function(t,e){this.writeTag(t,ol.Bytes),this.writeBytes(e)},writeFixed32Field:function(t,e){this.writeTag(t,ol.Fixed32),this.writeFixed32(e)},writeSFixed32Field:function(t,e){this.writeTag(t,ol.Fixed32),this.writeSFixed32(e)},writeFixed64Field:function(t,e){this.writeTag(t,ol.Fixed64),this.writeFixed64(e)},writeSFixed64Field:function(t,e){this.writeTag(t,ol.Fixed64),this.writeSFixed64(e)},writeVarintField:function(t,e){this.writeTag(t,ol.Varint),this.writeVarint(e)},writeSVarintField:function(t,e){this.writeTag(t,ol.Varint),this.writeSVarint(e)},writeStringField:function(t,e){this.writeTag(t,ol.Bytes),this.writeString(e)},writeFloatField:function(t,e){this.writeTag(t,ol.Fixed32),this.writeFloat(e)},writeDoubleField:function(t,e){this.writeTag(t,ol.Fixed64),this.writeDouble(e)},writeBooleanField:function(t,e){this.writeVarintField(t,Boolean(e))}};function Tl(t,e,r){1===t&&r.readMessage(kl,e)}function kl(t,e,r){if(3===t){var n=r.readMessage(Al,{}),i=n.id,a=n.bitmap,o=n.width,s=n.height,l=n.left,c=n.top,u=n.advance;e.push({id:i,bitmap:new So({width:o+6,height:s+6},a),metrics:{width:o,height:s,left:l,top:c,advance:u}})}}function Al(t,e,r){1===t?e.id=r.readVarint():2===t?e.bitmap=r.readBytes():3===t?e.width=r.readVarint():4===t?e.height=r.readVarint():5===t?e.left=r.readSVarint():6===t?e.top=r.readSVarint():7===t&&(e.advance=r.readVarint())}function Ml(t){for(var e=0,r=0,n=0,i=t;n=0;h--){var p=o[h];if(!(f.w>p.w||f.h>p.h)){if(f.x=p.x,f.y=p.y,l=Math.max(l,f.y+f.h),s=Math.max(s,f.x+f.w),f.w===p.w&&f.h===p.h){var d=o.pop();h0&&N>A&&(A=N)}else{var j=r[S.fontStack],U=j&&j[L];if(U&&U.rect)I=U.rect,P=U.metrics;else{var V=e[S.fontStack],H=V&&V[L];if(!H)continue;P=H.metrics}C=24*(_-S.scale)}D?(t.verticalizable=!0,k.push({glyph:L,imageName:O,x:h,y:p+C,vertical:D,scale:S.scale,fontStack:S.fontStack,sectionIndex:E,metrics:P,rect:I}),h+=z*S.scale+c):(k.push({glyph:L,imageName:O,x:h,y:p+C,vertical:D,scale:S.scale,fontStack:S.fontStack,sectionIndex:E,metrics:P,rect:I}),h+=P.advance*S.scale+c)}if(0!==k.length){var q=h-c;d=Math.max(q,d),Vl(k,0,k.length-1,g,A)}h=0;var G=a*_+A;T.lineOffset=Math.max(A,w),p+=G,m=Math.max(G,m),++v}else p+=a,++v}var Y;var W=p- -17,X=Ul(o),Z=X.horizontalAlign,J=X.verticalAlign;(function(t,e,r,n,i,a,o,s,l){var c=(e-r)*i,u=0;u=a!==o?-s*n- -17:(-n*l+.5)*o;for(var f=0,h=t;f=0&&n>=t&&zl[this.text.charCodeAt(n)];n--)r--;this.text=this.text.substring(t,r),this.sectionIndex=this.sectionIndex.slice(t,r)},Il.prototype.substring=function(t,e){var r=new Il;return r.text=this.text.substring(t,e),r.sectionIndex=this.sectionIndex.slice(t,e),r.sections=this.sections,r},Il.prototype.toString=function(){return this.text},Il.prototype.getMaxScale=function(){var t=this;return this.sectionIndex.reduce((function(e,r){return Math.max(e,t.sections[r].scale)}),0)},Il.prototype.addTextSection=function(t,e){this.text+=t.text,this.sections.push(Pl.forText(t.scale,t.fontStack||e));for(var r=this.sections.length-1,n=0;n=63743?null:++this.imageSectionID:(this.imageSectionID=57344,this.imageSectionID)};var zl={9:!0,10:!0,11:!0,12:!0,13:!0,32:!0},Dl={};function Rl(t,e,r,n,i,a){if(e.imageName){var o=n[e.imageName];return o?o.displaySize[0]*e.scale*24/a+i:0}var s=r[e.fontStack],l=s&&s[t];return l?l.metrics.advance*e.scale+i:0}function Fl(t,e,r,n){var i=Math.pow(t-e,2);return n?t=0,f=0,h=0;h-r/2;){if(--o<0)return!1;s-=t[o].dist(a),a=t[o]}s+=t[o].dist(t[o+1]),o++;for(var l=[],c=0;sn;)c-=l.shift().angleDelta;if(c>i)return!1;o++,s+=f.dist(h)}return!0}function Jl(t){for(var e=0,r=0;rc){var d=(c-l)/p,m=qe(f.x,h.x,d),g=qe(f.y,h.y,d),v=new ql(m,g,h.angleTo(f),u);return v._round(),!o||Zl(t,v,s,o,e)?v:void 0}l+=p}}function tc(t,e,r,n,i,a,o,s,l){var c=Kl(n,a,o),u=Ql(n,i),f=u*o,h=0===t[0].x||t[0].x===l||0===t[0].y||t[0].y===l;return e-f=0&&_=0&&w=0&&p+u<=f){var T=new ql(_,w,x,m);T._round(),i&&!Zl(e,T,o,i,a)||d.push(T)}}h+=y}l||d.length||s||(d=t(e,h/2,n,i,a,o,s,!0,c));return d}(t,h?e/2*s%e:(u/2+2*a)*o*s%e,e,c,r,f,h,!1,l)}function ec(t,e,r,n,a){for(var o=[],s=0;s=n&&h.x>=n||(f.x>=n?f=new i(n,f.y+(h.y-f.y)*((n-f.x)/(h.x-f.x)))._round():h.x>=n&&(h=new i(n,f.y+(h.y-f.y)*((n-f.x)/(h.x-f.x)))._round()),f.y>=a&&h.y>=a||(f.y>=a?f=new i(f.x+(h.x-f.x)*((a-f.y)/(h.y-f.y)),a)._round():h.y>=a&&(h=new i(f.x+(h.x-f.x)*((a-f.y)/(h.y-f.y)),a)._round()),c&&f.equals(c[c.length-1])||(c=[f],o.push(c)),c.push(h)))))}return o}function rc(t,e,r,n){var a=[],o=t.image,s=o.pixelRatio,l=o.paddedRect.w-2,c=o.paddedRect.h-2,u=t.right-t.left,f=t.bottom-t.top,h=o.stretchX||[[0,l]],p=o.stretchY||[[0,c]],d=function(t,e){return t+e[1]-e[0]},m=h.reduce(d,0),g=p.reduce(d,0),v=l-m,y=c-g,x=0,b=m,_=0,w=g,T=0,k=v,A=0,M=y;if(o.content&&n){var S=o.content;x=nc(h,0,S[0]),_=nc(p,0,S[1]),b=nc(h,S[0],S[2]),w=nc(p,S[1],S[3]),T=S[0]-x,A=S[1]-_,k=S[2]-S[0]-b,M=S[3]-S[1]-w}var E=function(n,a,l,c){var h=ac(n.stretch-x,b,u,t.left),p=oc(n.fixed-T,k,n.stretch,m),d=ac(a.stretch-_,w,f,t.top),v=oc(a.fixed-A,M,a.stretch,g),y=ac(l.stretch-x,b,u,t.left),S=oc(l.fixed-T,k,l.stretch,m),E=ac(c.stretch-_,w,f,t.top),L=oc(c.fixed-A,M,c.stretch,g),C=new i(h,d),P=new i(y,d),I=new i(y,E),O=new i(h,E),z=new i(p/s,v/s),D=new i(S/s,L/s),R=e*Math.PI/180;if(R){var F=Math.sin(R),B=Math.cos(R),N=[B,-F,F,B];C._matMult(N),P._matMult(N),O._matMult(N),I._matMult(N)}var j=n.stretch+n.fixed,U=l.stretch+l.fixed,V=a.stretch+a.fixed,H=c.stretch+c.fixed;return{tl:C,tr:P,bl:O,br:I,tex:{x:o.paddedRect.x+1+j,y:o.paddedRect.y+1+V,w:U-j,h:H-V},writingMode:void 0,glyphOffset:[0,0],sectionIndex:0,pixelOffsetTL:z,pixelOffsetBR:D,minFontScaleX:k/s/u,minFontScaleY:M/s/f,isSDF:r}};if(n&&(o.stretchX||o.stretchY))for(var L=ic(h,v,m),C=ic(p,y,g),P=0;P0&&(d=Math.max(10,d),this.circleDiameter=d)}else{var m=o.top*s-l,g=o.bottom*s+l,v=o.left*s-l,y=o.right*s+l,x=o.collisionPadding;if(x&&(v-=x[0]*s,m-=x[1]*s,y+=x[2]*s,g+=x[3]*s),u){var b=new i(v,m),_=new i(y,m),w=new i(v,g),T=new i(y,g),k=u*Math.PI/180;b._rotate(k),_._rotate(k),w._rotate(k),T._rotate(k),v=Math.min(b.x,_.x,w.x,T.x),y=Math.max(b.x,_.x,w.x,T.x),m=Math.min(b.y,_.y,w.y,T.y),g=Math.max(b.y,_.y,w.y,T.y)}t.emplaceBack(e.x,e.y,v,m,y,g,r,n,a)}this.boxEndIndex=t.length},lc=function(t,e){if(void 0===t&&(t=[]),void 0===e&&(e=cc),this.data=t,this.length=this.data.length,this.compare=e,this.length>0)for(var r=(this.length>>1)-1;r>=0;r--)this._down(r)};function cc(t,e){return te?1:0}function uc(t,e,r){void 0===e&&(e=1),void 0===r&&(r=!1);for(var n=1/0,a=1/0,o=-1/0,s=-1/0,l=t[0],c=0;co)&&(o=u.x),(!c||u.y>s)&&(s=u.y)}var f=o-n,h=s-a,p=Math.min(f,h),d=p/2,m=new lc([],fc);if(0===p)return new i(n,a);for(var g=n;gy.d||!y.d)&&(y=b,r&&console.log("found best %d after %d probes",Math.round(1e4*b.d)/1e4,x)),b.max-y.d<=e||(d=b.h/2,m.push(new hc(b.p.x-d,b.p.y-d,d,t)),m.push(new hc(b.p.x+d,b.p.y-d,d,t)),m.push(new hc(b.p.x-d,b.p.y+d,d,t)),m.push(new hc(b.p.x+d,b.p.y+d,d,t)),x+=4)}return r&&(console.log("num probes: "+x),console.log("best distance: "+y.d)),y.p}function fc(t,e){return e.max-t.max}function hc(t,e,r,n){this.p=new i(t,e),this.h=r,this.d=function(t,e){for(var r=!1,n=1/0,i=0;it.y!=u.y>t.y&&t.x<(u.x-c.x)*(t.y-c.y)/(u.y-c.y)+c.x&&(r=!r),n=Math.min(n,ro(t,c,u))}return(r?1:-1)*Math.sqrt(n)}(this.p,n),this.max=this.d+this.h*Math.SQRT2}lc.prototype.push=function(t){this.data.push(t),this.length++,this._up(this.length-1)},lc.prototype.pop=function(){if(0!==this.length){var t=this.data[0],e=this.data.pop();return this.length--,this.length>0&&(this.data[0]=e,this._down(0)),t}},lc.prototype.peek=function(){return this.data[0]},lc.prototype._up=function(t){for(var e=this.data,r=this.compare,n=e[t];t>0;){var i=t-1>>1,a=e[i];if(r(n,a)>=0)break;e[t]=a,t=i}e[t]=n},lc.prototype._down=function(t){for(var e=this.data,r=this.compare,n=this.length>>1,i=e[t];t=0)break;e[t]=o,t=a}e[t]=i};var pc=Number.POSITIVE_INFINITY;function dc(t,e){return e[1]!==pc?function(t,e,r){var n=0,i=0;switch(e=Math.abs(e),r=Math.abs(r),t){case"top-right":case"top-left":case"top":i=r-7;break;case"bottom-right":case"bottom-left":case"bottom":i=7-r}switch(t){case"top-right":case"bottom-right":case"right":n=-e;break;case"top-left":case"bottom-left":case"left":n=e}return[n,i]}(t,e[0],e[1]):function(t,e){var r=0,n=0;e<0&&(e=0);var i=e/Math.sqrt(2);switch(t){case"top-right":case"top-left":n=i-7;break;case"bottom-right":case"bottom-left":n=7-i;break;case"bottom":n=7-e;break;case"top":n=e-7}switch(t){case"top-right":case"bottom-right":r=-i;break;case"top-left":case"bottom-left":r=i;break;case"left":r=e;break;case"right":r=-e}return[r,n]}(t,e[0])}function mc(t){switch(t){case"right":case"top-right":case"bottom-right":return"right";case"left":case"top-left":case"bottom-left":return"left"}return"center"}function gc(t,e,r,n,a,o,s,l,c,u,f,h,p,d,m){var g=function(t,e,r,n,a,o,s,l){for(var c=n.layout.get("text-rotate").evaluate(o,{})*Math.PI/180,u=[],f=0,h=e.positionedLines;f32640&&_(t.layerIds[0]+': Value for "text-size" is >= 255. Reduce your "text-size".'):"composite"===v.kind&&((y=[128*d.compositeTextSizes[0].evaluate(s,{},m),128*d.compositeTextSizes[1].evaluate(s,{},m)])[0]>32640||y[1]>32640)&&_(t.layerIds[0]+': Value for "text-size" is >= 255. Reduce your "text-size".'),t.addSymbols(t.text,g,y,l,o,s,u,e,c.lineStartIndex,c.lineLength,p,m);for(var x=0,b=f;x=0;o--)if(n.dist(a[o])0)&&("constant"!==a.value.kind||a.value.value.length>0),c="constant"!==s.value.kind||!!s.value.value||Object.keys(s.parameters).length>0,u=i.get("symbol-sort-key");if(this.features=[],l||c){for(var f=e.iconDependencies,h=e.glyphDependencies,p=e.availableImages,d=new pi(this.zoom),m=0,g=t;m=0;for(var O=0,z=k.sections;O=0;s--)a[s]={x:e[s].x,y:e[s].y,tileUnitDistanceFromAnchor:i},s>0&&(i+=e[s-1].dist(e[s]));for(var l=0;l0},Mc.prototype.hasIconData=function(){return this.icon.segments.get().length>0},Mc.prototype.hasDebugData=function(){return this.textCollisionBox&&this.iconCollisionBox},Mc.prototype.hasTextCollisionBoxData=function(){return this.hasDebugData()&&this.textCollisionBox.segments.get().length>0},Mc.prototype.hasIconCollisionBoxData=function(){return this.hasDebugData()&&this.iconCollisionBox.segments.get().length>0},Mc.prototype.addIndicesForPlacedSymbol=function(t,e){for(var r=t.placedSymbolArray.get(e),n=r.vertexStartIndex+4*r.numGlyphs,i=r.vertexStartIndex;i1||this.icon.segments.get().length>1)){this.symbolInstanceIndexes=this.getSortedSymbolIndexes(t),this.sortedAngle=t,this.text.indexArray.clear(),this.icon.indexArray.clear(),this.featureSortOrder=[];for(var r=0,n=this.symbolInstanceIndexes;r=0&&n.indexOf(t)===r&&e.addIndicesForPlacedSymbol(e.text,t)})),a.verticalPlacedTextSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.text,a.verticalPlacedTextSymbolIndex),a.placedIconSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.icon,a.placedIconSymbolIndex),a.verticalPlacedIconSymbolIndex>=0&&this.addIndicesForPlacedSymbol(this.icon,a.verticalPlacedIconSymbolIndex)}this.text.indexBuffer&&this.text.indexBuffer.updateData(this.text.indexArray),this.icon.indexBuffer&&this.icon.indexBuffer.updateData(this.icon.indexArray)}},Nn("SymbolBucket",Mc,{omit:["layers","collisionBoxArray","features","compareText"]}),Mc.MAX_GLYPHS=65535,Mc.addDynamicAttributes=wc;var Sc=new Si({"symbol-placement":new wi(Lt.layout_symbol["symbol-placement"]),"symbol-spacing":new wi(Lt.layout_symbol["symbol-spacing"]),"symbol-avoid-edges":new wi(Lt.layout_symbol["symbol-avoid-edges"]),"symbol-sort-key":new Ti(Lt.layout_symbol["symbol-sort-key"]),"symbol-z-order":new wi(Lt.layout_symbol["symbol-z-order"]),"icon-allow-overlap":new wi(Lt.layout_symbol["icon-allow-overlap"]),"icon-ignore-placement":new wi(Lt.layout_symbol["icon-ignore-placement"]),"icon-optional":new wi(Lt.layout_symbol["icon-optional"]),"icon-rotation-alignment":new wi(Lt.layout_symbol["icon-rotation-alignment"]),"icon-size":new Ti(Lt.layout_symbol["icon-size"]),"icon-text-fit":new wi(Lt.layout_symbol["icon-text-fit"]),"icon-text-fit-padding":new wi(Lt.layout_symbol["icon-text-fit-padding"]),"icon-image":new Ti(Lt.layout_symbol["icon-image"]),"icon-rotate":new Ti(Lt.layout_symbol["icon-rotate"]),"icon-padding":new wi(Lt.layout_symbol["icon-padding"]),"icon-keep-upright":new wi(Lt.layout_symbol["icon-keep-upright"]),"icon-offset":new Ti(Lt.layout_symbol["icon-offset"]),"icon-anchor":new Ti(Lt.layout_symbol["icon-anchor"]),"icon-pitch-alignment":new wi(Lt.layout_symbol["icon-pitch-alignment"]),"text-pitch-alignment":new wi(Lt.layout_symbol["text-pitch-alignment"]),"text-rotation-alignment":new wi(Lt.layout_symbol["text-rotation-alignment"]),"text-field":new Ti(Lt.layout_symbol["text-field"]),"text-font":new Ti(Lt.layout_symbol["text-font"]),"text-size":new Ti(Lt.layout_symbol["text-size"]),"text-max-width":new Ti(Lt.layout_symbol["text-max-width"]),"text-line-height":new wi(Lt.layout_symbol["text-line-height"]),"text-letter-spacing":new Ti(Lt.layout_symbol["text-letter-spacing"]),"text-justify":new Ti(Lt.layout_symbol["text-justify"]),"text-radial-offset":new Ti(Lt.layout_symbol["text-radial-offset"]),"text-variable-anchor":new wi(Lt.layout_symbol["text-variable-anchor"]),"text-anchor":new Ti(Lt.layout_symbol["text-anchor"]),"text-max-angle":new wi(Lt.layout_symbol["text-max-angle"]),"text-writing-mode":new wi(Lt.layout_symbol["text-writing-mode"]),"text-rotate":new Ti(Lt.layout_symbol["text-rotate"]),"text-padding":new wi(Lt.layout_symbol["text-padding"]),"text-keep-upright":new wi(Lt.layout_symbol["text-keep-upright"]),"text-transform":new Ti(Lt.layout_symbol["text-transform"]),"text-offset":new Ti(Lt.layout_symbol["text-offset"]),"text-allow-overlap":new wi(Lt.layout_symbol["text-allow-overlap"]),"text-ignore-placement":new wi(Lt.layout_symbol["text-ignore-placement"]),"text-optional":new wi(Lt.layout_symbol["text-optional"])}),Ec={paint:new Si({"icon-opacity":new Ti(Lt.paint_symbol["icon-opacity"]),"icon-color":new Ti(Lt.paint_symbol["icon-color"]),"icon-halo-color":new Ti(Lt.paint_symbol["icon-halo-color"]),"icon-halo-width":new Ti(Lt.paint_symbol["icon-halo-width"]),"icon-halo-blur":new Ti(Lt.paint_symbol["icon-halo-blur"]),"icon-translate":new wi(Lt.paint_symbol["icon-translate"]),"icon-translate-anchor":new wi(Lt.paint_symbol["icon-translate-anchor"]),"text-opacity":new Ti(Lt.paint_symbol["text-opacity"]),"text-color":new Ti(Lt.paint_symbol["text-color"],{runtimeType:Ut,getOverride:function(t){return t.textColor},hasOverride:function(t){return!!t.textColor}}),"text-halo-color":new Ti(Lt.paint_symbol["text-halo-color"]),"text-halo-width":new Ti(Lt.paint_symbol["text-halo-width"]),"text-halo-blur":new Ti(Lt.paint_symbol["text-halo-blur"]),"text-translate":new wi(Lt.paint_symbol["text-translate"]),"text-translate-anchor":new wi(Lt.paint_symbol["text-translate-anchor"])}),layout:Sc},Lc=function(t){this.type=t.property.overrides?t.property.overrides.runtimeType:Ft,this.defaultValue=t};Lc.prototype.evaluate=function(t){if(t.formattedSection){var e=this.defaultValue.property.overrides;if(e&&e.hasOverride(t.formattedSection))return e.getOverride(t.formattedSection)}return t.feature&&t.featureState?this.defaultValue.evaluate(t.feature,t.featureState):this.defaultValue.property.specification.default},Lc.prototype.eachChild=function(t){this.defaultValue.isConstant()||t(this.defaultValue.value._styleExpression.expression)},Lc.prototype.outputDefined=function(){return!1},Lc.prototype.serialize=function(){return null},Nn("FormatSectionOverride",Lc,{omit:["defaultValue"]});var Cc=function(t){function e(e){t.call(this,e,Ec)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.recalculate=function(e,r){if(t.prototype.recalculate.call(this,e,r),"auto"===this.layout.get("icon-rotation-alignment")&&("point"!==this.layout.get("symbol-placement")?this.layout._values["icon-rotation-alignment"]="map":this.layout._values["icon-rotation-alignment"]="viewport"),"auto"===this.layout.get("text-rotation-alignment")&&("point"!==this.layout.get("symbol-placement")?this.layout._values["text-rotation-alignment"]="map":this.layout._values["text-rotation-alignment"]="viewport"),"auto"===this.layout.get("text-pitch-alignment")&&(this.layout._values["text-pitch-alignment"]=this.layout.get("text-rotation-alignment")),"auto"===this.layout.get("icon-pitch-alignment")&&(this.layout._values["icon-pitch-alignment"]=this.layout.get("icon-rotation-alignment")),"point"===this.layout.get("symbol-placement")){var n=this.layout.get("text-writing-mode");if(n){for(var i=[],a=0,o=n;a",targetMapId:n,sourceMapId:a.mapId})}}},qc.prototype.receive=function(t){var e=t.data,r=e.id;if(r&&(!e.targetMapId||this.mapId===e.targetMapId))if(""===e.type){delete this.tasks[r];var n=this.cancelCallbacks[r];delete this.cancelCallbacks[r],n&&n()}else k()||e.mustQueue?(this.tasks[r]=e,this.taskQueue.push(r),this.invoker.trigger()):this.processTask(r,e)},qc.prototype.process=function(){if(this.taskQueue.length){var t=this.taskQueue.shift(),e=this.tasks[t];delete this.tasks[t],this.taskQueue.length&&this.invoker.trigger(),e&&this.processTask(t,e)}},qc.prototype.processTask=function(t,e){var r=this;if(""===e.type){var n=this.callbacks[t];delete this.callbacks[t],n&&(e.error?n(qn(e.error)):n(null,qn(e.data)))}else{var i=!1,a=S(this.globalScope)?void 0:[],o=e.hasCallback?function(e,n){i=!0,delete r.cancelCallbacks[t],r.target.postMessage({id:t,type:"",sourceMapId:r.mapId,error:e?Hn(e):null,data:Hn(n,a)},a)}:function(t){i=!0},s=null,l=qn(e.data);if(this.parent[e.type])s=this.parent[e.type](e.sourceMapId,l,o);else if(this.parent.getWorkerSource){var c=e.type.split(".");s=this.parent.getWorkerSource(e.sourceMapId,c[0],l.source)[c[1]](l,o)}else o(new Error("Could not find function "+e.type));!i&&s&&s.cancel&&(this.cancelCallbacks[t]=s.cancel)}},qc.prototype.remove=function(){this.invoker.remove(),this.target.removeEventListener("message",this.receive,!1)};var Yc=function(t,e){t&&(e?this.setSouthWest(t).setNorthEast(e):4===t.length?this.setSouthWest([t[0],t[1]]).setNorthEast([t[2],t[3]]):this.setSouthWest(t[0]).setNorthEast(t[1]))};Yc.prototype.setNorthEast=function(t){return this._ne=t instanceof Wc?new Wc(t.lng,t.lat):Wc.convert(t),this},Yc.prototype.setSouthWest=function(t){return this._sw=t instanceof Wc?new Wc(t.lng,t.lat):Wc.convert(t),this},Yc.prototype.extend=function(t){var e,r,n=this._sw,i=this._ne;if(t instanceof Wc)e=t,r=t;else{if(!(t instanceof Yc)){if(Array.isArray(t)){if(4===t.length||t.every(Array.isArray)){var a=t;return this.extend(Yc.convert(a))}var o=t;return this.extend(Wc.convert(o))}return this}if(e=t._sw,r=t._ne,!e||!r)return this}return n||i?(n.lng=Math.min(e.lng,n.lng),n.lat=Math.min(e.lat,n.lat),i.lng=Math.max(r.lng,i.lng),i.lat=Math.max(r.lat,i.lat)):(this._sw=new Wc(e.lng,e.lat),this._ne=new Wc(r.lng,r.lat)),this},Yc.prototype.getCenter=function(){return new Wc((this._sw.lng+this._ne.lng)/2,(this._sw.lat+this._ne.lat)/2)},Yc.prototype.getSouthWest=function(){return this._sw},Yc.prototype.getNorthEast=function(){return this._ne},Yc.prototype.getNorthWest=function(){return new Wc(this.getWest(),this.getNorth())},Yc.prototype.getSouthEast=function(){return new Wc(this.getEast(),this.getSouth())},Yc.prototype.getWest=function(){return this._sw.lng},Yc.prototype.getSouth=function(){return this._sw.lat},Yc.prototype.getEast=function(){return this._ne.lng},Yc.prototype.getNorth=function(){return this._ne.lat},Yc.prototype.toArray=function(){return[this._sw.toArray(),this._ne.toArray()]},Yc.prototype.toString=function(){return"LngLatBounds("+this._sw.toString()+", "+this._ne.toString()+")"},Yc.prototype.isEmpty=function(){return!(this._sw&&this._ne)},Yc.prototype.contains=function(t){var e=Wc.convert(t),r=e.lng,n=e.lat,i=this._sw.lat<=n&&n<=this._ne.lat,a=this._sw.lng<=r&&r<=this._ne.lng;return this._sw.lng>this._ne.lng&&(a=this._sw.lng>=r&&r>=this._ne.lng),i&&a},Yc.convert=function(t){return!t||t instanceof Yc?t:new Yc(t)};var Wc=function(t,e){if(isNaN(t)||isNaN(e))throw new Error("Invalid LngLat object: ("+t+", "+e+")");if(this.lng=+t,this.lat=+e,this.lat>90||this.lat<-90)throw new Error("Invalid LngLat latitude value: must be between -90 and 90")};Wc.prototype.wrap=function(){return new Wc(c(this.lng,-180,180),this.lat)},Wc.prototype.toArray=function(){return[this.lng,this.lat]},Wc.prototype.toString=function(){return"LngLat("+this.lng+", "+this.lat+")"},Wc.prototype.distanceTo=function(t){var e=Math.PI/180,r=this.lat*e,n=t.lat*e,i=Math.sin(r)*Math.sin(n)+Math.cos(r)*Math.cos(n)*Math.cos((t.lng-this.lng)*e);return 6371008.8*Math.acos(Math.min(i,1))},Wc.prototype.toBounds=function(t){void 0===t&&(t=0);var e=360*t/40075017,r=e/Math.cos(Math.PI/180*this.lat);return new Yc(new Wc(this.lng-r,this.lat-e),new Wc(this.lng+r,this.lat+e))},Wc.convert=function(t){if(t instanceof Wc)return t;if(Array.isArray(t)&&(2===t.length||3===t.length))return new Wc(Number(t[0]),Number(t[1]));if(!Array.isArray(t)&&"object"==typeof t&&null!==t)return new Wc(Number("lng"in t?t.lng:t.lon),Number(t.lat));throw new Error("`LngLatLike` argument must be specified as a LngLat instance, an object {lng: , lat: }, an object {lon: , lat: }, or an array of [, ]")};var Xc=2*Math.PI*6371008.8;function Zc(t){return Xc*Math.cos(t*Math.PI/180)}function Jc(t){return(180+t)/360}function Kc(t){return(180-180/Math.PI*Math.log(Math.tan(Math.PI/4+t*Math.PI/360)))/360}function Qc(t,e){return t/Zc(e)}function $c(t){var e=180-360*t;return 360/Math.PI*Math.atan(Math.exp(e*Math.PI/180))-90}var tu=function(t,e,r){void 0===r&&(r=0),this.x=+t,this.y=+e,this.z=+r};tu.fromLngLat=function(t,e){void 0===e&&(e=0);var r=Wc.convert(t);return new tu(Jc(r.lng),Kc(r.lat),Qc(e,r.lat))},tu.prototype.toLngLat=function(){return new Wc(360*this.x-180,$c(this.y))},tu.prototype.toAltitude=function(){return t=this.z,e=this.y,t*Zc($c(e));var t,e},tu.prototype.meterInMercatorCoordinateUnits=function(){return 1/Xc*(t=$c(this.y),1/Math.cos(t*Math.PI/180));var t};var eu=function(t,e,r){this.z=t,this.x=e,this.y=r,this.key=iu(0,t,t,e,r)};eu.prototype.equals=function(t){return this.z===t.z&&this.x===t.x&&this.y===t.y},eu.prototype.url=function(t,e){var r,n,i,a,o,s=(r=this.x,n=this.y,i=this.z,a=Gc(256*r,256*(n=Math.pow(2,i)-n-1),i),o=Gc(256*(r+1),256*(n+1),i),a[0]+","+a[1]+","+o[0]+","+o[1]),l=function(t,e,r){for(var n,i="",a=t;a>0;a--)i+=(e&(n=1<this.canonical.z?new nu(t,this.wrap,this.canonical.z,this.canonical.x,this.canonical.y):new nu(t,this.wrap,t,this.canonical.x>>e,this.canonical.y>>e)},nu.prototype.calculateScaledKey=function(t,e){var r=this.canonical.z-t;return t>this.canonical.z?iu(this.wrap*+e,t,this.canonical.z,this.canonical.x,this.canonical.y):iu(this.wrap*+e,t,t,this.canonical.x>>r,this.canonical.y>>r)},nu.prototype.isChildOf=function(t){if(t.wrap!==this.wrap)return!1;var e=this.canonical.z-t.canonical.z;return 0===t.overscaledZ||t.overscaledZ>e&&t.canonical.y===this.canonical.y>>e},nu.prototype.children=function(t){if(this.overscaledZ>=t)return[new nu(this.overscaledZ+1,this.wrap,this.canonical.z,this.canonical.x,this.canonical.y)];var e=this.canonical.z+1,r=2*this.canonical.x,n=2*this.canonical.y;return[new nu(e,this.wrap,e,r,n),new nu(e,this.wrap,e,r+1,n),new nu(e,this.wrap,e,r,n+1),new nu(e,this.wrap,e,r+1,n+1)]},nu.prototype.isLessThan=function(t){return this.wrapt.wrap)&&(this.overscaledZt.overscaledZ)&&(this.canonical.xt.canonical.x)&&this.canonical.y=this.dim+1||e<-1||e>=this.dim+1)throw new RangeError("out of range source coordinates for DEM data");return(e+1)*this.stride+(t+1)},au.prototype._unpackMapbox=function(t,e,r){return(256*t*256+256*e+r)/10-1e4},au.prototype._unpackTerrarium=function(t,e,r){return 256*t+e+r/256-32768},au.prototype.getPixels=function(){return new Eo({width:this.stride,height:this.stride},new Uint8Array(this.data.buffer))},au.prototype.backfillBorder=function(t,e,r){if(this.dim!==t.dim)throw new Error("dem dimension mismatch");var n=e*this.dim,i=e*this.dim+this.dim,a=r*this.dim,o=r*this.dim+this.dim;switch(e){case-1:n=i-1;break;case 1:i=n+1}switch(r){case-1:a=o-1;break;case 1:o=a+1}for(var s=-e*this.dim,l=-r*this.dim,c=a;c=0&&u[3]>=0&&s.insert(o,u[0],u[1],u[2],u[3])}},uu.prototype.loadVTLayers=function(){return this.vtLayers||(this.vtLayers=new Ls.VectorTile(new al(this.rawTileData)).layers,this.sourceLayerCoder=new ou(this.vtLayers?Object.keys(this.vtLayers).sort():["_geojsonTileLayer"])),this.vtLayers},uu.prototype.query=function(t,e,r,n){var a=this;this.loadVTLayers();for(var o=t.params||{},s=8192/t.tileSize/t.scale,l=sn(o.filter),c=t.queryGeometry,u=t.queryPadding*s,f=hu(c),h=this.grid.query(f.minX-u,f.minY-u,f.maxX+u,f.maxY+u),p=hu(t.cameraQueryGeometry),d=this.grid3D.query(p.minX-u,p.minY-u,p.maxX+u,p.maxY+u,(function(e,r,n,a){return function(t,e,r,n,a){for(var o=0,s=t;o=l.x&&a>=l.y)return!0}var c=[new i(e,r),new i(e,a),new i(n,a),new i(n,r)];if(t.length>2)for(var u=0,f=c;u=0)return!0;return!1}(a,f)){var h=this.sourceLayerCoder.decode(r),p=this.vtLayers[h].feature(n);if(i.filter(new pi(this.tileID.overscaledZ),p))for(var d=this.getId(p,h),m=0;mn)i=!1;else if(e)if(this.expirationTimeot&&(t.getActor().send("enforceCacheSizeLimit",at),ht=0)},t.clamp=l,t.clearTileCache=function(t){var e=self.caches.delete("mapbox-tiles");t&&e.catch(t).then((function(){return t()}))},t.clipLine=ec,t.clone=function(t){var e=new fo(16);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[3],e[4]=t[4],e[5]=t[5],e[6]=t[6],e[7]=t[7],e[8]=t[8],e[9]=t[9],e[10]=t[10],e[11]=t[11],e[12]=t[12],e[13]=t[13],e[14]=t[14],e[15]=t[15],e},t.clone$1=x,t.clone$2=function(t){var e=new fo(3);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e},t.collisionCircleLayout=tl,t.config=F,t.create=function(){var t=new fo(16);return fo!=Float32Array&&(t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[11]=0,t[12]=0,t[13]=0,t[14]=0),t[0]=1,t[5]=1,t[10]=1,t[15]=1,t},t.create$1=function(){var t=new fo(9);return fo!=Float32Array&&(t[1]=0,t[2]=0,t[3]=0,t[5]=0,t[6]=0,t[7]=0),t[0]=1,t[4]=1,t[8]=1,t},t.create$2=function(){var t=new fo(4);return fo!=Float32Array&&(t[1]=0,t[2]=0),t[0]=1,t[3]=1,t},t.createCommonjsModule=e,t.createExpression=Wr,t.createLayout=Ii,t.createStyleLayer=function(t){return"custom"===t.type?new Dc(t):new Rc[t.type](t)},t.cross=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2];return t[0]=i*l-a*s,t[1]=a*o-n*l,t[2]=n*s-i*o,t},t.deepEqual=function t(e,r){if(Array.isArray(e)){if(!Array.isArray(r)||e.length!==r.length)return!1;for(var n=0;n0&&(a=1/Math.sqrt(a)),t[0]=e[0]*a,t[1]=e[1]*a,t[2]=e[2]*a,t},t.number=qe,t.offscreenCanvasSupported=pt,t.ortho=function(t,e,r,n,i,a,o){var s=1/(e-r),l=1/(n-i),c=1/(a-o);return t[0]=-2*s,t[1]=0,t[2]=0,t[3]=0,t[4]=0,t[5]=-2*l,t[6]=0,t[7]=0,t[8]=0,t[9]=0,t[10]=2*c,t[11]=0,t[12]=(e+r)*s,t[13]=(i+n)*l,t[14]=(o+a)*c,t[15]=1,t},t.parseGlyphPBF=function(t){return new al(t).readFields(Tl,[])},t.pbf=al,t.performSymbolLayout=function(t,e,r,n,i,a,o){t.createArrays();var s=512*t.overscaling;t.tilePixelRatio=8192/s,t.compareText={},t.iconsNeedLinear=!1;var l=t.layers[0].layout,c=t.layers[0]._unevaluatedLayout._values,u={};if("composite"===t.textSizeData.kind){var f=t.textSizeData,h=f.minZoom,p=f.maxZoom;u.compositeTextSizes=[c["text-size"].possiblyEvaluate(new pi(h),o),c["text-size"].possiblyEvaluate(new pi(p),o)]}if("composite"===t.iconSizeData.kind){var d=t.iconSizeData,m=d.minZoom,g=d.maxZoom;u.compositeIconSizes=[c["icon-size"].possiblyEvaluate(new pi(m),o),c["icon-size"].possiblyEvaluate(new pi(g),o)]}u.layoutTextSize=c["text-size"].possiblyEvaluate(new pi(t.zoom+1),o),u.layoutIconSize=c["icon-size"].possiblyEvaluate(new pi(t.zoom+1),o),u.textMaxSize=c["text-size"].possiblyEvaluate(new pi(18));for(var v=24*l.get("text-line-height"),y="map"===l.get("text-rotation-alignment")&&"point"!==l.get("symbol-placement"),x=l.get("text-keep-upright"),b=l.get("text-size"),w=function(){var a=k[T],s=l.get("text-font").evaluate(a,{},o).join(","),c=b.evaluate(a,{},o),f=u.layoutTextSize.evaluate(a,{},o),h=u.layoutIconSize.evaluate(a,{},o),p={horizontal:{},vertical:void 0},d=a.text,m=[0,0];if(d){var g=d.toString(),w=24*l.get("text-letter-spacing").evaluate(a,{},o),A=function(t){for(var e=0,r=t;e=8192||f.y<0||f.y>=8192||function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,w,T,k,A){var M,S,E,L,C,P=t.addToLineVertexArray(e,r),I=0,O=0,z=0,D=0,R=-1,F=-1,B={},N=ya(""),j=0,U=0;void 0===s._unevaluatedLayout.getValue("text-radial-offset")?(M=s.layout.get("text-offset").evaluate(b,{},k).map((function(t){return 24*t})),j=M[0],U=M[1]):(j=24*s.layout.get("text-radial-offset").evaluate(b,{},k),U=pc);if(t.allowVerticalPlacement&&n.vertical){var V=s.layout.get("text-rotate").evaluate(b,{},k)+90,H=n.vertical;L=new sc(l,e,c,u,f,H,h,p,d,V),o&&(C=new sc(l,e,c,u,f,o,g,v,d,V))}if(i){var q=s.layout.get("icon-rotate").evaluate(b,{}),G="none"!==s.layout.get("icon-text-fit"),Y=rc(i,q,T,G),W=o?rc(o,q,T,G):void 0;E=new sc(l,e,c,u,f,i,g,v,!1,q),I=4*Y.length;var X=t.iconSizeData,Z=null;"source"===X.kind?(Z=[128*s.layout.get("icon-size").evaluate(b,{})])[0]>32640&&_(t.layerIds[0]+': Value for "icon-size" is >= 255. Reduce your "icon-size".'):"composite"===X.kind&&((Z=[128*w.compositeIconSizes[0].evaluate(b,{},k),128*w.compositeIconSizes[1].evaluate(b,{},k)])[0]>32640||Z[1]>32640)&&_(t.layerIds[0]+': Value for "icon-size" is >= 255. Reduce your "icon-size".'),t.addSymbols(t.icon,Y,Z,x,y,b,!1,e,P.lineStartIndex,P.lineLength,-1,k),R=t.icon.placedSymbolArray.length-1,W&&(O=4*W.length,t.addSymbols(t.icon,W,Z,x,y,b,Cl.vertical,e,P.lineStartIndex,P.lineLength,-1,k),F=t.icon.placedSymbolArray.length-1)}for(var J in n.horizontal){var K=n.horizontal[J];if(!S){N=ya(K.text);var Q=s.layout.get("text-rotate").evaluate(b,{},k);S=new sc(l,e,c,u,f,K,h,p,d,Q)}var $=1===K.positionedLines.length;if(z+=gc(t,e,K,a,s,d,b,m,P,n.vertical?Cl.horizontal:Cl.horizontalOnly,$?Object.keys(n.horizontal):[J],B,R,w,k),$)break}n.vertical&&(D+=gc(t,e,n.vertical,a,s,d,b,m,P,Cl.vertical,["vertical"],B,F,w,k));var tt=S?S.boxStartIndex:t.collisionBoxArray.length,et=S?S.boxEndIndex:t.collisionBoxArray.length,rt=L?L.boxStartIndex:t.collisionBoxArray.length,nt=L?L.boxEndIndex:t.collisionBoxArray.length,it=E?E.boxStartIndex:t.collisionBoxArray.length,at=E?E.boxEndIndex:t.collisionBoxArray.length,ot=C?C.boxStartIndex:t.collisionBoxArray.length,st=C?C.boxEndIndex:t.collisionBoxArray.length,lt=-1,ct=function(t,e){return t&&t.circleDiameter?Math.max(t.circleDiameter,e):e};lt=ct(S,lt),lt=ct(L,lt),lt=ct(E,lt);var ut=(lt=ct(C,lt))>-1?1:0;ut&&(lt*=A/24);t.glyphOffsetArray.length>=Mc.MAX_GLYPHS&&_("Too many glyphs being rendered in a tile. See https://github.com/mapbox/mapbox-gl-js/issues/2907");void 0!==b.sortKey&&t.addToSortKeyRanges(t.symbolInstances.length,b.sortKey);t.symbolInstances.emplaceBack(e.x,e.y,B.right>=0?B.right:-1,B.center>=0?B.center:-1,B.left>=0?B.left:-1,B.vertical||-1,R,F,N,tt,et,rt,nt,it,at,ot,st,c,z,D,I,O,ut,0,h,j,U,lt)}(t,f,s,r,n,i,h,t.layers[0],t.collisionBoxArray,e.index,e.sourceLayerIndex,t.index,v,w,A,l,x,T,M,d,e,a,c,u,o)};if("line"===S)for(var P=0,I=ec(e.geometry,0,0,8192,8192);P1){var V=$l(U,k,r.vertical||m,n,24,y);V&&C(U,V)}}else if("Polygon"===e.type)for(var H=0,q=hs(e.geometry,0);H=E.maxzoom))if("none"!==E.visibility)o(S,this.zoom,n),(m[E.id]=E.createBucket({index:u.bucketLayerIDs.length,layers:S,zoom:this.zoom,pixelRatio:this.pixelRatio,overscaling:this.overscaling,collisionBoxArray:this.collisionBoxArray,sourceLayerIndex:b,sourceID:this.source})).populate(_,g,this.tileID.canonical),u.bucketLayerIDs.push(S.map((function(t){return t.id})))}}}var L=t.mapObject(g.glyphDependencies,(function(t){return Object.keys(t).map(Number)}));Object.keys(L).length?a.send("getGlyphs",{uid:this.uid,stacks:L},(function(t,e){f||(f=t,h=e,I.call(l))})):h={};var C=Object.keys(g.iconDependencies);C.length?a.send("getImages",{icons:C,source:this.source,tileID:this.tileID,type:"icons"},(function(t,e){f||(f=t,p=e,I.call(l))})):p={};var P=Object.keys(g.patternDependencies);function I(){if(f)return s(f);if(h&&p&&d){var e=new i(h),r=new t.ImageAtlas(p,d);for(var a in m){var l=m[a];l instanceof t.SymbolBucket?(o(l.layers,this.zoom,n),t.performSymbolLayout(l,h,e.positions,p,r.iconPositions,this.showCollisionBoxes,this.tileID.canonical)):l.hasPattern&&(l instanceof t.LineBucket||l instanceof t.FillBucket||l instanceof t.FillExtrusionBucket)&&(o(l.layers,this.zoom,n),l.addFeatures(g,this.tileID.canonical,r.patternPositions))}this.status="done",s(null,{buckets:t.values(m).filter((function(t){return!t.isEmpty()})),featureIndex:u,collisionBoxArray:this.collisionBoxArray,glyphAtlasImage:e.image,imageAtlas:r,glyphMap:this.returnDependencies?h:null,iconMap:this.returnDependencies?p:null,glyphPositions:this.returnDependencies?e.positions:null})}}P.length?a.send("getImages",{icons:P,source:this.source,tileID:this.tileID,type:"patterns"},(function(t,e){f||(f=t,d=e,I.call(l))})):d={},I.call(this)};var l=function(t,e,r,n){this.actor=t,this.layerIndex=e,this.availableImages=r,this.loadVectorData=n||s,this.loading={},this.loaded={}};l.prototype.loadTile=function(e,r){var n=this,i=e.uid;this.loading||(this.loading={});var o=!!(e&&e.request&&e.request.collectResourceTiming)&&new t.RequestPerformance(e.request),s=this.loading[i]=new a(e);s.abort=this.loadVectorData(e,(function(e,a){if(delete n.loading[i],e||!a)return s.status="done",n.loaded[i]=s,r(e);var l=a.rawData,c={};a.expires&&(c.expires=a.expires),a.cacheControl&&(c.cacheControl=a.cacheControl);var u={};if(o){var f=o.finish();f&&(u.resourceTiming=JSON.parse(JSON.stringify(f)))}s.vectorTile=a.vectorTile,s.parse(a.vectorTile,n.layerIndex,n.availableImages,n.actor,(function(e,n){if(e||!n)return r(e);r(null,t.extend({rawTileData:l.slice(0)},n,c,u))})),n.loaded=n.loaded||{},n.loaded[i]=s}))},l.prototype.reloadTile=function(t,e){var r=this,n=this.loaded,i=t.uid,a=this;if(n&&n[i]){var o=n[i];o.showCollisionBoxes=t.showCollisionBoxes;var s=function(t,n){var i=o.reloadCallback;i&&(delete o.reloadCallback,o.parse(o.vectorTile,a.layerIndex,r.availableImages,a.actor,i)),e(t,n)};"parsing"===o.status?o.reloadCallback=s:"done"===o.status&&(o.vectorTile?o.parse(o.vectorTile,this.layerIndex,this.availableImages,this.actor,s):s())}},l.prototype.abortTile=function(t,e){var r=this.loading,n=t.uid;r&&r[n]&&r[n].abort&&(r[n].abort(),delete r[n]),e()},l.prototype.removeTile=function(t,e){var r=this.loaded,n=t.uid;r&&r[n]&&delete r[n],e()};var c=t.window.ImageBitmap,u=function(){this.loaded={}};u.prototype.loadTile=function(e,r){var n=e.uid,i=e.encoding,a=e.rawImageData,o=c&&a instanceof c?this.getImageData(a):a,s=new t.DEMData(n,o,i);this.loaded=this.loaded||{},this.loaded[n]=s,r(null,s)},u.prototype.getImageData=function(e){this.offscreenCanvas&&this.offscreenCanvasContext||(this.offscreenCanvas=new OffscreenCanvas(e.width,e.height),this.offscreenCanvasContext=this.offscreenCanvas.getContext("2d")),this.offscreenCanvas.width=e.width,this.offscreenCanvas.height=e.height,this.offscreenCanvasContext.drawImage(e,0,0,e.width,e.height);var r=this.offscreenCanvasContext.getImageData(-1,-1,e.width+2,e.height+2);return this.offscreenCanvasContext.clearRect(0,0,this.offscreenCanvas.width,this.offscreenCanvas.height),new t.RGBAImage({width:r.width,height:r.height},r.data)},u.prototype.removeTile=function(t){var e=this.loaded,r=t.uid;e&&e[r]&&delete e[r]};var f=function t(e,r){var n,i=e&&e.type;if("FeatureCollection"===i)for(n=0;n=0!=!!e&&t.reverse()}var d=t.vectorTile.VectorTileFeature.prototype.toGeoJSON,m=function(e){this._feature=e,this.extent=t.EXTENT,this.type=e.type,this.properties=e.tags,"id"in e&&!isNaN(e.id)&&(this.id=parseInt(e.id,10))};m.prototype.loadGeometry=function(){if(1===this._feature.type){for(var e=[],r=0,n=this._feature.geometry;r>31}function P(t,e){for(var r=t.loadGeometry(),n=t.type,i=0,a=0,o=r.length,s=0;s>1;!function t(e,r,n,i,a,o){for(;a>i;){if(a-i>600){var s=a-i+1,l=n-i+1,c=Math.log(s),u=.5*Math.exp(2*c/3),f=.5*Math.sqrt(c*u*(s-u)/s)*(l-s/2<0?-1:1),h=Math.max(i,Math.floor(n-l*u/s+f)),p=Math.min(a,Math.floor(n+(s-l)*u/s+f));t(e,r,n,h,p,o)}var d=r[2*n+o],m=i,g=a;for(z(e,r,i,n),r[2*a+o]>d&&z(e,r,i,a);md;)g--}r[2*i+o]===d?z(e,r,i,g):(g++,z(e,r,g,a)),g<=n&&(i=g+1),n<=g&&(a=g-1)}}(t,e,o,n,i,a%2),O(t,e,r,n,o-1,a+1),O(t,e,r,o+1,i,a+1)}}function z(t,e,r,n){D(t,r,n),D(e,2*r,2*n),D(e,2*r+1,2*n+1)}function D(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function R(t,e,r,n){var i=t-r,a=e-n;return i*i+a*a}_.fromVectorTileJs=w,_.fromGeojsonVt=T,_.GeoJSONWrapper=k;var F=function(t){return t[0]},B=function(t){return t[1]},N=function(t,e,r,n,i){void 0===e&&(e=F),void 0===r&&(r=B),void 0===n&&(n=64),void 0===i&&(i=Float64Array),this.nodeSize=n,this.points=t;for(var a=t.length<65536?Uint16Array:Uint32Array,o=this.ids=new a(t.length),s=this.coords=new i(2*t.length),l=0;l=r&&s<=i&&l>=n&&l<=a&&u.push(t[d]);else{var m=Math.floor((p+h)/2);s=e[2*m],l=e[2*m+1],s>=r&&s<=i&&l>=n&&l<=a&&u.push(t[m]);var g=(f+1)%2;(0===f?r<=s:n<=l)&&(c.push(p),c.push(m-1),c.push(g)),(0===f?i>=s:a>=l)&&(c.push(m+1),c.push(h),c.push(g))}}return u}(this.ids,this.coords,t,e,r,n,this.nodeSize)},N.prototype.within=function(t,e,r){return function(t,e,r,n,i,a){for(var o=[0,t.length-1,0],s=[],l=i*i;o.length;){var c=o.pop(),u=o.pop(),f=o.pop();if(u-f<=a)for(var h=f;h<=u;h++)R(e[2*h],e[2*h+1],r,n)<=l&&s.push(t[h]);else{var p=Math.floor((f+u)/2),d=e[2*p],m=e[2*p+1];R(d,m,r,n)<=l&&s.push(t[p]);var g=(c+1)%2;(0===c?r-i<=d:n-i<=m)&&(o.push(f),o.push(p-1),o.push(g)),(0===c?r+i>=d:n+i>=m)&&(o.push(p+1),o.push(u),o.push(g))}}return s}(this.ids,this.coords,t,e,r,this.nodeSize)};var j={minZoom:0,maxZoom:16,radius:40,extent:512,nodeSize:64,log:!1,generateId:!1,reduce:null,map:function(t){return t}},U=function(t){this.options=X(Object.create(j),t),this.trees=new Array(this.options.maxZoom+1)};function V(t,e,r,n,i){return{x:t,y:e,zoom:1/0,id:r,parentId:-1,numPoints:n,properties:i}}function H(t,e){var r=t.geometry.coordinates,n=r[0],i=r[1];return{x:Y(n),y:W(i),zoom:1/0,index:e,parentId:-1}}function q(t){return{type:"Feature",id:t.id,properties:G(t),geometry:{type:"Point",coordinates:[(n=t.x,360*(n-.5)),(e=t.y,r=(180-360*e)*Math.PI/180,360*Math.atan(Math.exp(r))/Math.PI-90)]}};var e,r,n}function G(t){var e=t.numPoints,r=e>=1e4?Math.round(e/1e3)+"k":e>=1e3?Math.round(e/100)/10+"k":e;return X(X({},t.properties),{cluster:!0,cluster_id:t.id,point_count:e,point_count_abbreviated:r})}function Y(t){return t/360+.5}function W(t){var e=Math.sin(t*Math.PI/180),r=.5-.25*Math.log((1+e)/(1-e))/Math.PI;return r<0?0:r>1?1:r}function X(t,e){for(var r in e)t[r]=e[r];return t}function Z(t){return t.x}function J(t){return t.y}function K(t,e,r,n,i,a){var o=i-r,s=a-n;if(0!==o||0!==s){var l=((t-r)*o+(e-n)*s)/(o*o+s*s);l>1?(r=i,n=a):l>0&&(r+=o*l,n+=s*l)}return(o=t-r)*o+(s=e-n)*s}function Q(t,e,r,n){var i={id:void 0===t?null:t,type:e,geometry:r,tags:n,minX:1/0,minY:1/0,maxX:-1/0,maxY:-1/0};return function(t){var e=t.geometry,r=t.type;if("Point"===r||"MultiPoint"===r||"LineString"===r)$(t,e);else if("Polygon"===r||"MultiLineString"===r)for(var n=0;n0&&(o+=n?(i*c-l*a)/2:Math.sqrt(Math.pow(l-i,2)+Math.pow(c-a,2))),i=l,a=c}var u=e.length-3;e[2]=1,function t(e,r,n,i){for(var a,o=i,s=n-r>>1,l=n-r,c=e[r],u=e[r+1],f=e[n],h=e[n+1],p=r+3;po)a=p,o=d;else if(d===o){var m=Math.abs(p-s);mi&&(a-r>3&&t(e,r,a,i),e[a+2]=o,n-a>3&&t(e,a,n,i))}(e,0,u,r),e[u+2]=1,e.size=Math.abs(o),e.start=0,e.end=e.size}function nt(t,e,r,n){for(var i=0;i1?1:r}function ot(t,e,r,n,i,a,o,s){if(n/=e,a>=(r/=e)&&o=n)return null;for(var l=[],c=0;c=r&&d=n)){var m=[];if("Point"===h||"MultiPoint"===h)st(f,m,r,n,i);else if("LineString"===h)lt(f,m,r,n,i,!1,s.lineMetrics);else if("MultiLineString"===h)ut(f,m,r,n,i,!1);else if("Polygon"===h)ut(f,m,r,n,i,!0);else if("MultiPolygon"===h)for(var g=0;g=r&&o<=n&&(e.push(t[a]),e.push(t[a+1]),e.push(t[a+2]))}}function lt(t,e,r,n,i,a,o){for(var s,l,c=ct(t),u=0===i?ht:pt,f=t.start,h=0;hr&&(l=u(c,p,d,g,v,r),o&&(c.start=f+s*l)):y>n?x=r&&(l=u(c,p,d,g,v,r),b=!0),x>n&&y<=n&&(l=u(c,p,d,g,v,n),b=!0),!a&&b&&(o&&(c.end=f+s*l),e.push(c),c=ct(t)),o&&(f+=s)}var _=t.length-3;p=t[_],d=t[_+1],m=t[_+2],(y=0===i?p:d)>=r&&y<=n&&ft(c,p,d,m),_=c.length-3,a&&_>=3&&(c[_]!==c[0]||c[_+1]!==c[1])&&ft(c,c[0],c[1],c[2]),c.length&&e.push(c)}function ct(t){var e=[];return e.size=t.size,e.start=t.start,e.end=t.end,e}function ut(t,e,r,n,i,a){for(var o=0;oo.maxX&&(o.maxX=u),f>o.maxY&&(o.maxY=f)}return o}function xt(t,e,r,n){var i=e.geometry,a=e.type,o=[];if("Point"===a||"MultiPoint"===a)for(var s=0;s0&&e.size<(i?o:n))r.numPoints+=e.length/3;else{for(var s=[],l=0;lo)&&(r.numSimplified++,s.push(e[l]),s.push(e[l+1])),r.numPoints++;i&&function(t,e){for(var r=0,n=0,i=t.length,a=i-2;n0===e)for(n=0,i=t.length;n24)throw new Error("maxZoom should be in the 0-24 range");if(e.promoteId&&e.generateId)throw new Error("promoteId and generateId cannot be used together.");var n=function(t,e){var r=[];if("FeatureCollection"===t.type)for(var n=0;n=n;c--){var u=+Date.now();s=this._cluster(s,c),this.trees[c]=new N(s,Z,J,a,Float32Array),r&&console.log("z%d: %d clusters in %dms",c,s.length,+Date.now()-u)}return r&&console.timeEnd("total time"),this},U.prototype.getClusters=function(t,e){var r=((t[0]+180)%360+360)%360-180,n=Math.max(-90,Math.min(90,t[1])),i=180===t[2]?180:((t[2]+180)%360+360)%360-180,a=Math.max(-90,Math.min(90,t[3]));if(t[2]-t[0]>=360)r=-180,i=180;else if(r>i){var o=this.getClusters([r,n,180,a],e),s=this.getClusters([-180,n,i,a],e);return o.concat(s)}for(var l=this.trees[this._limitZoom(e)],c=[],u=0,f=l.range(Y(r),W(a),Y(i),W(n));u1?this._map(c,!0):null,g=(l<<5)+(e+1)+this.points.length,v=0,y=f;v>5},U.prototype._getOriginZoom=function(t){return(t-this.points.length)%32},U.prototype._map=function(t,e){if(t.numPoints)return e?X({},t.properties):t.properties;var r=this.points[t.index].properties,n=this.options.map(r);return e&&n===r?X({},n):n},_t.prototype.options={maxZoom:14,indexMaxZoom:5,indexMaxPoints:1e5,tolerance:3,extent:4096,buffer:64,lineMetrics:!1,promoteId:null,generateId:!1,debug:0},_t.prototype.splitTile=function(t,e,r,n,i,a,o){for(var s=[t,e,r,n],l=this.options,c=l.debug;s.length;){n=s.pop(),r=s.pop(),e=s.pop(),t=s.pop();var u=1<1&&console.time("creation"),h=this.tiles[f]=yt(t,e,r,n,l),this.tileCoords.push({z:e,x:r,y:n}),c)){c>1&&(console.log("tile z%d-%d-%d (features: %d, points: %d, simplified: %d)",e,r,n,h.numFeatures,h.numPoints,h.numSimplified),console.timeEnd("creation"));var p="z"+e;this.stats[p]=(this.stats[p]||0)+1,this.total++}if(h.source=t,i){if(e===l.maxZoom||e===i)continue;var d=1<1&&console.time("clipping");var m,g,v,y,x,b,_=.5*l.buffer/l.extent,w=.5-_,T=.5+_,k=1+_;m=g=v=y=null,x=ot(t,u,r-_,r+T,0,h.minX,h.maxX,l),b=ot(t,u,r+w,r+k,0,h.minX,h.maxX,l),t=null,x&&(m=ot(x,u,n-_,n+T,1,h.minY,h.maxY,l),g=ot(x,u,n+w,n+k,1,h.minY,h.maxY,l),x=null),b&&(v=ot(b,u,n-_,n+T,1,h.minY,h.maxY,l),y=ot(b,u,n+w,n+k,1,h.minY,h.maxY,l),b=null),c>1&&console.timeEnd("clipping"),s.push(m||[],e+1,2*r,2*n),s.push(g||[],e+1,2*r,2*n+1),s.push(v||[],e+1,2*r+1,2*n),s.push(y||[],e+1,2*r+1,2*n+1)}}},_t.prototype.getTile=function(t,e,r){var n=this.options,i=n.extent,a=n.debug;if(t<0||t>24)return null;var o=1<1&&console.log("drilling down to z%d-%d-%d",t,e,r);for(var l,c=t,u=e,f=r;!l&&c>0;)c--,u=Math.floor(u/2),f=Math.floor(f/2),l=this.tiles[wt(c,u,f)];return l&&l.source?(a>1&&console.log("found parent tile z%d-%d-%d",c,u,f),a>1&&console.time("drilling down"),this.splitTile(l.source,c,u,f,t,e,r),a>1&&console.timeEnd("drilling down"),this.tiles[s]?gt(this.tiles[s],i):null):null};var kt=function(e){function r(t,r,n,i){e.call(this,t,r,n,Tt),i&&(this.loadGeoJSON=i)}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.loadData=function(t,e){this._pendingCallback&&this._pendingCallback(null,{abandoned:!0}),this._pendingCallback=e,this._pendingLoadDataParams=t,this._state&&"Idle"!==this._state?this._state="NeedsLoadData":(this._state="Coalescing",this._loadData())},r.prototype._loadData=function(){var e=this;if(this._pendingCallback&&this._pendingLoadDataParams){var r=this._pendingCallback,n=this._pendingLoadDataParams;delete this._pendingCallback,delete this._pendingLoadDataParams;var i=!!(n&&n.request&&n.request.collectResourceTiming)&&new t.RequestPerformance(n.request);this.loadGeoJSON(n,(function(a,o){if(a||!o)return r(a);if("object"!=typeof o)return r(new Error("Input data given to '"+n.source+"' is not a valid GeoJSON object."));f(o,!0);try{e._geoJSONIndex=n.cluster?new U(function(e){var r=e.superclusterOptions,n=e.clusterProperties;if(!n||!r)return r;for(var i={},a={},o={accumulated:null,zoom:0},s={properties:null},l=Object.keys(n),c=0,u=l;c=0?0:e.button},r.remove=function(t){t.parentNode&&t.parentNode.removeChild(t)};var h=function(e){function r(){e.call(this),this.images={},this.updatedImages={},this.callbackDispatchedThisFrame={},this.loaded=!1,this.requestors=[],this.patterns={},this.atlasImage=new t.RGBAImage({width:1,height:1}),this.dirty=!0}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.isLoaded=function(){return this.loaded},r.prototype.setLoaded=function(t){if(this.loaded!==t&&(this.loaded=t,t)){for(var e=0,r=this.requestors;e=0?1.2:1))}function v(t,e,r,n,i,a,o){for(var s=0;s65535)e(new Error("glyphs > 65535 not supported"));else if(a.ranges[s])e(null,{stack:r,id:i,glyph:o});else{var l=a.requests[s];l||(l=a.requests[s]=[],x.loadGlyphRange(r,s,n.url,n.requestManager,(function(t,e){if(e){for(var r in e)n._doesCharSupportLocalGlyph(+r)||(a.glyphs[+r]=e[+r]);a.ranges[s]=!0}for(var i=0,o=l;i1&&(l=t[++s]);var u=Math.abs(c-l.left),f=Math.abs(c-l.right),h=Math.min(u,f),p=void 0,d=i/r*(n+1);if(l.isDash){var m=n-Math.abs(d);p=Math.sqrt(h*h+m*m)}else p=n-Math.sqrt(h*h+d*d);this.data[o+c]=Math.max(0,Math.min(255,p+128))}},T.prototype.addRegularDash=function(t){for(var e=t.length-1;e>=0;--e){var r=t[e],n=t[e+1];r.zeroLength?t.splice(e,1):n&&n.isDash===r.isDash&&(n.left=r.left,t.splice(e,1))}var i=t[0],a=t[t.length-1];i.isDash===a.isDash&&(i.left=a.left-this.width,a.right=i.right+this.width);for(var o=this.width*this.nextRow,s=0,l=t[s],c=0;c1&&(l=t[++s]);var u=Math.abs(c-l.left),f=Math.abs(c-l.right),h=Math.min(u,f),p=l.isDash?h:-h;this.data[o+c]=Math.max(0,Math.min(255,p+128))}},T.prototype.addDash=function(e,r){var n=r?7:0,i=2*n+1;if(this.nextRow+i>this.height)return t.warnOnce("LineAtlas out of space"),null;for(var a=0,o=0;o=n&&e.x=i&&e.y0&&(l[new t.OverscaledTileID(e.overscaledZ,a,r.z,i,r.y-1).key]={backfilled:!1},l[new t.OverscaledTileID(e.overscaledZ,e.wrap,r.z,r.x,r.y-1).key]={backfilled:!1},l[new t.OverscaledTileID(e.overscaledZ,s,r.z,o,r.y-1).key]={backfilled:!1}),r.y+10&&(n.resourceTiming=e._resourceTiming,e._resourceTiming=[]),e.fire(new t.Event("data",n))}}))},r.prototype.onAdd=function(t){this.map=t,this.load()},r.prototype.setData=function(e){var r=this;return this._data=e,this.fire(new t.Event("dataloading",{dataType:"source"})),this._updateWorkerData((function(e){if(e)r.fire(new t.ErrorEvent(e));else{var n={dataType:"source",sourceDataType:"content"};r._collectResourceTiming&&r._resourceTiming&&r._resourceTiming.length>0&&(n.resourceTiming=r._resourceTiming,r._resourceTiming=[]),r.fire(new t.Event("data",n))}})),this},r.prototype.getClusterExpansionZoom=function(t,e){return this.actor.send("geojson.getClusterExpansionZoom",{clusterId:t,source:this.id},e),this},r.prototype.getClusterChildren=function(t,e){return this.actor.send("geojson.getClusterChildren",{clusterId:t,source:this.id},e),this},r.prototype.getClusterLeaves=function(t,e,r,n){return this.actor.send("geojson.getClusterLeaves",{source:this.id,clusterId:t,limit:e,offset:r},n),this},r.prototype._updateWorkerData=function(e){var r=this;this._loaded=!1;var n=t.extend({},this.workerOptions),i=this._data;"string"==typeof i?(n.request=this.map._requestManager.transformRequest(t.browser.resolveURL(i),t.ResourceType.Source),n.request.collectResourceTiming=this._collectResourceTiming):n.data=JSON.stringify(i),this.actor.send(this.type+".loadData",n,(function(t,i){r._removed||i&&i.abandoned||(r._loaded=!0,i&&i.resourceTiming&&i.resourceTiming[r.id]&&(r._resourceTiming=i.resourceTiming[r.id].slice(0)),r.actor.send(r.type+".coalesce",{source:n.source},null),e(t))}))},r.prototype.loaded=function(){return this._loaded},r.prototype.loadTile=function(e,r){var n=this,i=e.actor?"reloadTile":"loadTile";e.actor=this.actor;var a={type:this.type,uid:e.uid,tileID:e.tileID,zoom:e.tileID.overscaledZ,maxZoom:this.maxzoom,tileSize:this.tileSize,source:this.id,pixelRatio:t.browser.devicePixelRatio,showCollisionBoxes:this.map.showCollisionBoxes,promoteId:this.promoteId};e.request=this.actor.send(i,a,(function(t,a){return delete e.request,e.unloadVectorData(),e.aborted?r(null):t?r(t):(e.loadVectorData(a,n.map.painter,"reloadTile"===i),r(null))}))},r.prototype.abortTile=function(t){t.request&&(t.request.cancel(),delete t.request),t.aborted=!0},r.prototype.unloadTile=function(t){t.unloadVectorData(),this.actor.send("removeTile",{uid:t.uid,type:this.type,source:this.id})},r.prototype.onRemove=function(){this._removed=!0,this.actor.send("removeSource",{type:this.type,source:this.id})},r.prototype.serialize=function(){return t.extend({},this._options,{type:this.type,data:this._data})},r.prototype.hasTransition=function(){return!1},r}(t.Evented),P=t.createLayout([{name:"a_pos",type:"Int16",components:2},{name:"a_texture_pos",type:"Int16",components:2}]),I=function(e){function r(t,r,n,i){e.call(this),this.id=t,this.dispatcher=n,this.coordinates=r.coordinates,this.type="image",this.minzoom=0,this.maxzoom=22,this.tileSize=512,this.tiles={},this._loaded=!1,this.setEventedParent(i),this.options=r}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.load=function(e,r){var n=this;this._loaded=!1,this.fire(new t.Event("dataloading",{dataType:"source"})),this.url=this.options.url,t.getImage(this.map._requestManager.transformRequest(this.url,t.ResourceType.Image),(function(i,a){n._loaded=!0,i?n.fire(new t.ErrorEvent(i)):a&&(n.image=a,e&&(n.coordinates=e),r&&r(),n._finishLoading())}))},r.prototype.loaded=function(){return this._loaded},r.prototype.updateImage=function(t){var e=this;return this.image&&t.url?(this.options.url=t.url,this.load(t.coordinates,(function(){e.texture=null})),this):this},r.prototype._finishLoading=function(){this.map&&(this.setCoordinates(this.coordinates),this.fire(new t.Event("data",{dataType:"source",sourceDataType:"metadata"})))},r.prototype.onAdd=function(t){this.map=t,this.load()},r.prototype.setCoordinates=function(e){var r=this;this.coordinates=e;var n=e.map(t.MercatorCoordinate.fromLngLat);this.tileID=function(e){for(var r=1/0,n=1/0,i=-1/0,a=-1/0,o=0,s=e;or.end(0)?this.fire(new t.ErrorEvent(new t.ValidationError("sources."+this.id,null,"Playback for this video can be set only between the "+r.start(0)+" and "+r.end(0)+"-second mark."))):this.video.currentTime=e}},r.prototype.getVideo=function(){return this.video},r.prototype.onAdd=function(t){this.map||(this.map=t,this.load(),this.video&&(this.video.play(),this.setCoordinates(this.coordinates)))},r.prototype.prepare=function(){if(!(0===Object.keys(this.tiles).length||this.video.readyState<2)){var e=this.map.painter.context,r=e.gl;for(var n in this.boundsBuffer||(this.boundsBuffer=e.createVertexBuffer(this._boundsArray,P.members)),this.boundsSegments||(this.boundsSegments=t.SegmentVector.simpleSegment(0,0,4,2)),this.texture?this.video.paused||(this.texture.bind(r.LINEAR,r.CLAMP_TO_EDGE),r.texSubImage2D(r.TEXTURE_2D,0,0,0,r.RGBA,r.UNSIGNED_BYTE,this.video)):(this.texture=new t.Texture(e,this.video,r.RGBA),this.texture.bind(r.LINEAR,r.CLAMP_TO_EDGE)),this.tiles){var i=this.tiles[n];"loaded"!==i.state&&(i.state="loaded",i.texture=this.texture)}}},r.prototype.serialize=function(){return{type:"video",urls:this.urls,coordinates:this.coordinates}},r.prototype.hasTransition=function(){return this.video&&!this.video.paused},r}(I),z=function(e){function r(r,n,i,a){e.call(this,r,n,i,a),n.coordinates?Array.isArray(n.coordinates)&&4===n.coordinates.length&&!n.coordinates.some((function(t){return!Array.isArray(t)||2!==t.length||t.some((function(t){return"number"!=typeof t}))}))||this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'"coordinates" property must be an array of 4 longitude/latitude array pairs'))):this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'missing required property "coordinates"'))),n.animate&&"boolean"!=typeof n.animate&&this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'optional "animate" property must be a boolean value'))),n.canvas?"string"==typeof n.canvas||n.canvas instanceof t.window.HTMLCanvasElement||this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'"canvas" must be either a string representing the ID of the canvas element from which to read, or an HTMLCanvasElement instance'))):this.fire(new t.ErrorEvent(new t.ValidationError("sources."+r,null,'missing required property "canvas"'))),this.options=n,this.animate=void 0===n.animate||n.animate}return e&&(r.__proto__=e),r.prototype=Object.create(e&&e.prototype),r.prototype.constructor=r,r.prototype.load=function(){this._loaded=!0,this.canvas||(this.canvas=this.options.canvas instanceof t.window.HTMLCanvasElement?this.options.canvas:t.window.document.getElementById(this.options.canvas)),this.width=this.canvas.width,this.height=this.canvas.height,this._hasInvalidDimensions()?this.fire(new t.ErrorEvent(new Error("Canvas dimensions cannot be less than or equal to zero."))):(this.play=function(){this._playing=!0,this.map.triggerRepaint()},this.pause=function(){this._playing&&(this.prepare(),this._playing=!1)},this._finishLoading())},r.prototype.getCanvas=function(){return this.canvas},r.prototype.onAdd=function(t){this.map=t,this.load(),this.canvas&&this.animate&&this.play()},r.prototype.onRemove=function(){this.pause()},r.prototype.prepare=function(){var e=!1;if(this.canvas.width!==this.width&&(this.width=this.canvas.width,e=!0),this.canvas.height!==this.height&&(this.height=this.canvas.height,e=!0),!this._hasInvalidDimensions()&&0!==Object.keys(this.tiles).length){var r=this.map.painter.context,n=r.gl;for(var i in this.boundsBuffer||(this.boundsBuffer=r.createVertexBuffer(this._boundsArray,P.members)),this.boundsSegments||(this.boundsSegments=t.SegmentVector.simpleSegment(0,0,4,2)),this.texture?(e||this._playing)&&this.texture.update(this.canvas,{premultiply:!0}):this.texture=new t.Texture(r,this.canvas,n.RGBA,{premultiply:!0}),this.tiles){var a=this.tiles[i];"loaded"!==a.state&&(a.state="loaded",a.texture=this.texture)}}},r.prototype.serialize=function(){return{type:"canvas",coordinates:this.coordinates}},r.prototype.hasTransition=function(){return this._playing},r.prototype._hasInvalidDimensions=function(){for(var t=0,e=[this.canvas.width,this.canvas.height];tthis.max){var o=this._getAndRemoveByKey(this.order[0]);o&&this.onRemove(o)}return this},N.prototype.has=function(t){return t.wrapped().key in this.data},N.prototype.getAndRemove=function(t){return this.has(t)?this._getAndRemoveByKey(t.wrapped().key):null},N.prototype._getAndRemoveByKey=function(t){var e=this.data[t].shift();return e.timeout&&clearTimeout(e.timeout),0===this.data[t].length&&delete this.data[t],this.order.splice(this.order.indexOf(t),1),e.value},N.prototype.getByKey=function(t){var e=this.data[t];return e?e[0].value:null},N.prototype.get=function(t){return this.has(t)?this.data[t.wrapped().key][0].value:null},N.prototype.remove=function(t,e){if(!this.has(t))return this;var r=t.wrapped().key,n=void 0===e?0:this.data[r].indexOf(e),i=this.data[r][n];return this.data[r].splice(n,1),i.timeout&&clearTimeout(i.timeout),0===this.data[r].length&&delete this.data[r],this.onRemove(i.value),this.order.splice(this.order.indexOf(r),1),this},N.prototype.setMaxSize=function(t){for(this.max=t;this.order.length>this.max;){var e=this._getAndRemoveByKey(this.order[0]);e&&this.onRemove(e)}return this},N.prototype.filter=function(t){var e=[];for(var r in this.data)for(var n=0,i=this.data[r];n1||(Math.abs(r)>1&&(1===Math.abs(r+i)?r+=i:1===Math.abs(r-i)&&(r-=i)),e.dem&&t.dem&&(t.dem.backfillBorder(e.dem,r,n),t.neighboringTiles&&t.neighboringTiles[a]&&(t.neighboringTiles[a].backfilled=!0)))}},r.prototype.getTile=function(t){return this.getTileByID(t.key)},r.prototype.getTileByID=function(t){return this._tiles[t]},r.prototype._retainLoadedChildren=function(t,e,r,n){for(var i in this._tiles){var a=this._tiles[i];if(!(n[i]||!a.hasData()||a.tileID.overscaledZ<=e||a.tileID.overscaledZ>r)){for(var o=a.tileID;a&&a.tileID.overscaledZ>e+1;){var s=a.tileID.scaledTo(a.tileID.overscaledZ-1);(a=this._tiles[s.key])&&a.hasData()&&(o=s)}for(var l=o;l.overscaledZ>e;)if(t[(l=l.scaledTo(l.overscaledZ-1)).key]){n[o.key]=o;break}}}},r.prototype.findLoadedParent=function(t,e){if(t.key in this._loadedParentTiles){var r=this._loadedParentTiles[t.key];return r&&r.tileID.overscaledZ>=e?r:null}for(var n=t.overscaledZ-1;n>=e;n--){var i=t.scaledTo(n),a=this._getLoadedTile(i);if(a)return a}},r.prototype._getLoadedTile=function(t){var e=this._tiles[t.key];return e&&e.hasData()?e:this._cache.getByKey(t.wrapped().key)},r.prototype.updateCacheSize=function(t){var e=(Math.ceil(t.width/this._source.tileSize)+1)*(Math.ceil(t.height/this._source.tileSize)+1),r=Math.floor(5*e),n="number"==typeof this._maxTileCacheSize?Math.min(this._maxTileCacheSize,r):r;this._cache.setMaxSize(n)},r.prototype.handleWrapJump=function(t){var e=(t-(void 0===this._prevLng?t:this._prevLng))/360,r=Math.round(e);if(this._prevLng=t,r){var n={};for(var i in this._tiles){var a=this._tiles[i];a.tileID=a.tileID.unwrapTo(a.tileID.wrap+r),n[a.tileID.key]=a}for(var o in this._tiles=n,this._timers)clearTimeout(this._timers[o]),delete this._timers[o];for(var s in this._tiles){var l=this._tiles[s];this._setTileReloadTimer(s,l)}}},r.prototype.update=function(e){var n=this;if(this.transform=e,this._sourceLoaded&&!this._paused){var i;this.updateCacheSize(e),this.handleWrapJump(this.transform.center.lng),this._coveredTiles={},this.used?this._source.tileID?i=e.getVisibleUnwrappedCoordinates(this._source.tileID).map((function(e){return new t.OverscaledTileID(e.canonical.z,e.wrap,e.canonical.z,e.canonical.x,e.canonical.y)})):(i=e.coveringTiles({tileSize:this._source.tileSize,minzoom:this._source.minzoom,maxzoom:this._source.maxzoom,roundZoom:this._source.roundZoom,reparseOverscaled:this._source.reparseOverscaled}),this._source.hasTile&&(i=i.filter((function(t){return n._source.hasTile(t)})))):i=[];var a=e.coveringZoomLevel(this._source),o=Math.max(a-r.maxOverzooming,this._source.minzoom),s=Math.max(a+r.maxUnderzooming,this._source.minzoom),l=this._updateRetainedTiles(i,a);if(It(this._source.type)){for(var c={},u={},f=0,h=Object.keys(l);fthis._source.maxzoom){var g=d.children(this._source.maxzoom)[0],v=this.getTile(g);if(v&&v.hasData()){n[g.key]=g;continue}}else{var y=d.children(this._source.maxzoom);if(n[y[0].key]&&n[y[1].key]&&n[y[2].key]&&n[y[3].key])continue}for(var x=m.wasRequested(),b=d.overscaledZ-1;b>=a;--b){var _=d.scaledTo(b);if(i[_.key])break;if(i[_.key]=!0,!(m=this.getTile(_))&&x&&(m=this._addTile(_)),m&&(n[_.key]=_,x=m.wasRequested(),m.hasData()))break}}}return n},r.prototype._updateLoadedParentTileCache=function(){for(var t in this._loadedParentTiles={},this._tiles){for(var e=[],r=void 0,n=this._tiles[t].tileID;n.overscaledZ>0;){if(n.key in this._loadedParentTiles){r=this._loadedParentTiles[n.key];break}e.push(n.key);var i=n.scaledTo(n.overscaledZ-1);if(r=this._getLoadedTile(i))break;n=i}for(var a=0,o=e;a0||(e.hasData()&&"reloading"!==e.state?this._cache.add(e.tileID,e,e.getExpiryTimeout()):(e.aborted=!0,this._abortTile(e),this._unloadTile(e))))},r.prototype.clearTiles=function(){for(var t in this._shouldReloadOnResume=!1,this._paused=!1,this._tiles)this._removeTile(t);this._cache.reset()},r.prototype.tilesIn=function(e,r,n){var i=this,a=[],o=this.transform;if(!o)return a;for(var s=n?o.getCameraQueryGeometry(e):e,l=e.map((function(t){return o.pointCoordinate(t)})),c=s.map((function(t){return o.pointCoordinate(t)})),u=this.getIds(),f=1/0,h=1/0,p=-1/0,d=-1/0,m=0,g=c;m=0&&v[1].y+g>=0){var y=l.map((function(t){return s.getTilePoint(t)})),x=c.map((function(t){return s.getTilePoint(t)}));a.push({tile:n,tileID:s,queryGeometry:y,cameraQueryGeometry:x,scale:m})}}},x=0;x=t.browser.now())return!0}return!1},r.prototype.setFeatureState=function(t,e,r){t=t||"_geojsonTileLayer",this._state.updateState(t,e,r)},r.prototype.removeFeatureState=function(t,e,r){t=t||"_geojsonTileLayer",this._state.removeFeatureState(t,e,r)},r.prototype.getFeatureState=function(t,e){return t=t||"_geojsonTileLayer",this._state.getState(t,e)},r.prototype.setDependencies=function(t,e,r){var n=this._tiles[t];n&&n.setDependencies(e,r)},r.prototype.reloadTilesForDependencies=function(t,e){for(var r in this._tiles){this._tiles[r].hasDependency(t,e)&&this._reloadTile(r,"reloading")}this._cache.filter((function(r){return!r.hasDependency(t,e)}))},r}(t.Evented);function Pt(t,e){var r=Math.abs(2*t.wrap)-+(t.wrap<0),n=Math.abs(2*e.wrap)-+(e.wrap<0);return t.overscaledZ-e.overscaledZ||n-r||e.canonical.y-t.canonical.y||e.canonical.x-t.canonical.x}function It(t){return"raster"===t||"image"===t||"video"===t}function Ot(){return new t.window.Worker(Zi.workerUrl)}Ct.maxOverzooming=10,Ct.maxUnderzooming=3;var zt="mapboxgl_preloaded_worker_pool",Dt=function(){this.active={}};Dt.prototype.acquire=function(t){if(!this.workers)for(this.workers=[];this.workers.length0?(i-o)/s:0;return this.points[a].mult(1-l).add(this.points[r].mult(l))};var Kt=function(t,e,r){var n=this.boxCells=[],i=this.circleCells=[];this.xCellCount=Math.ceil(t/r),this.yCellCount=Math.ceil(e/r);for(var a=0;a=-e[0]&&r<=e[0]&&n>=-e[1]&&n<=e[1]}function ne(e,r,n,i,a,o,s,l){var c=i?e.textSizeData:e.iconSizeData,u=t.evaluateSizeForZoom(c,n.transform.zoom),f=[256/n.width*2+1,256/n.height*2+1],h=i?e.text.dynamicLayoutVertexArray:e.icon.dynamicLayoutVertexArray;h.clear();for(var p=e.lineVertexArray,d=i?e.text.placedSymbolArray:e.icon.placedSymbolArray,m=n.transform.width/n.transform.height,g=!1,v=0;vMath.abs(n.x-r.x)*i)return{useVertical:!0};return(e===t.WritingMode.vertical?r.yn.x)?{needsFlipping:!0}:null}function oe(e,r,n,i,a,o,s,l,c,u,f,h,p,d){var m,g=r/24,v=e.lineOffsetX*g,y=e.lineOffsetY*g;if(e.numGlyphs>1){var x=e.glyphStartIndex+e.numGlyphs,b=e.lineStartIndex,_=e.lineStartIndex+e.lineLength,w=ie(g,l,v,y,n,f,h,e,c,o,p);if(!w)return{notEnoughRoom:!0};var T=te(w.first.point,s).point,k=te(w.last.point,s).point;if(i&&!n){var A=ae(e.writingMode,T,k,d);if(A)return A}m=[w.first];for(var M=e.glyphStartIndex+1;M0?C.point:se(h,L,S,1,a),I=ae(e.writingMode,S,P,d);if(I)return I}var O=le(g*l.getoffsetX(e.glyphStartIndex),v,y,n,f,h,e.segment,e.lineStartIndex,e.lineStartIndex+e.lineLength,c,o,p);if(!O)return{notEnoughRoom:!0};m=[O]}for(var z=0,D=m;z0?1:-1,m=0;i&&(d*=-1,m=Math.PI),d<0&&(m+=Math.PI);for(var g=d>0?l+s:l+s+1,v=a,y=a,x=0,b=0,_=Math.abs(p),w=[];x+b<=_;){if((g+=d)=c)return null;if(y=v,w.push(v),void 0===(v=h[g])){var T=new t.Point(u.getx(g),u.gety(g)),k=te(T,f);if(k.signedDistanceFromCamera>0)v=h[g]=k.point;else{var A=g-d;v=se(0===x?o:new t.Point(u.getx(A),u.gety(A)),T,y,_-x+1,f)}}x+=b,b=y.dist(v)}var M=(_-x)/b,S=v.sub(y),E=S.mult(M)._add(y);E._add(S._unit()._perp()._mult(n*d));var L=m+Math.atan2(v.y-y.y,v.x-y.x);return w.push(E),{point:E,angle:L,path:w}}Kt.prototype.keysLength=function(){return this.boxKeys.length+this.circleKeys.length},Kt.prototype.insert=function(t,e,r,n,i){this._forEachCell(e,r,n,i,this._insertBoxCell,this.boxUid++),this.boxKeys.push(t),this.bboxes.push(e),this.bboxes.push(r),this.bboxes.push(n),this.bboxes.push(i)},Kt.prototype.insertCircle=function(t,e,r,n){this._forEachCell(e-n,r-n,e+n,r+n,this._insertCircleCell,this.circleUid++),this.circleKeys.push(t),this.circles.push(e),this.circles.push(r),this.circles.push(n)},Kt.prototype._insertBoxCell=function(t,e,r,n,i,a){this.boxCells[i].push(a)},Kt.prototype._insertCircleCell=function(t,e,r,n,i,a){this.circleCells[i].push(a)},Kt.prototype._query=function(t,e,r,n,i,a){if(r<0||t>this.width||n<0||e>this.height)return!i&&[];var o=[];if(t<=0&&e<=0&&this.width<=r&&this.height<=n){if(i)return!0;for(var s=0;s0:o},Kt.prototype._queryCircle=function(t,e,r,n,i){var a=t-r,o=t+r,s=e-r,l=e+r;if(o<0||a>this.width||l<0||s>this.height)return!n&&[];var c=[],u={hitTest:n,circle:{x:t,y:e,radius:r},seenUids:{box:{},circle:{}}};return this._forEachCell(a,s,o,l,this._queryCellCircle,c,u,i),n?c.length>0:c},Kt.prototype.query=function(t,e,r,n,i){return this._query(t,e,r,n,!1,i)},Kt.prototype.hitTest=function(t,e,r,n,i){return this._query(t,e,r,n,!0,i)},Kt.prototype.hitTestCircle=function(t,e,r,n){return this._queryCircle(t,e,r,!0,n)},Kt.prototype._queryCell=function(t,e,r,n,i,a,o,s){var l=o.seenUids,c=this.boxCells[i];if(null!==c)for(var u=this.bboxes,f=0,h=c;f=u[d+0]&&n>=u[d+1]&&(!s||s(this.boxKeys[p]))){if(o.hitTest)return a.push(!0),!0;a.push({key:this.boxKeys[p],x1:u[d],y1:u[d+1],x2:u[d+2],y2:u[d+3]})}}}var m=this.circleCells[i];if(null!==m)for(var g=this.circles,v=0,y=m;vo*o+s*s},Kt.prototype._circleAndRectCollide=function(t,e,r,n,i,a,o){var s=(a-n)/2,l=Math.abs(t-(n+s));if(l>s+r)return!1;var c=(o-i)/2,u=Math.abs(e-(i+c));if(u>c+r)return!1;if(l<=s||u<=c)return!0;var f=l-s,h=u-c;return f*f+h*h<=r*r};var ce=new Float32Array([-1/0,-1/0,0,-1/0,-1/0,0,-1/0,-1/0,0,-1/0,-1/0,0]);function ue(t,e){for(var r=0;r=1;P--)C.push(E.path[P]);for(var I=1;I0){for(var R=C[0].clone(),F=C[0].clone(),B=1;B=A.x&&F.x<=M.x&&R.y>=A.y&&F.y<=M.y?[C]:F.xM.x||F.yM.y?[]:t.clipLine([C],A.x,A.y,M.x,M.y)}for(var N=0,j=D;N=this.screenRightBoundary||n<100||e>this.screenBottomBoundary},he.prototype.isInsideGrid=function(t,e,r,n){return r>=0&&t=0&&e0)return this.prevPlacement&&this.prevPlacement.variableOffsets[f.crossTileID]&&this.prevPlacement.placements[f.crossTileID]&&this.prevPlacement.placements[f.crossTileID].text&&(m=this.prevPlacement.variableOffsets[f.crossTileID].anchor),this.variableOffsets[f.crossTileID]={textOffset:g,width:r,height:n,anchor:t,textBoxScale:i,prevAnchor:m},this.markUsedJustification(h,t,f,p),h.allowVerticalPlacement&&(this.markUsedOrientation(h,p,f),this.placedOrientations[f.crossTileID]=p),{shift:v,placedGlyphBoxes:y}},we.prototype.placeLayerBucketPart=function(e,r,n){var i=this,a=e.parameters,o=a.bucket,s=a.layout,l=a.posMatrix,c=a.textLabelPlaneMatrix,u=a.labelToScreenMatrix,f=a.textPixelRatio,h=a.holdingForFade,p=a.collisionBoxArray,d=a.partiallyEvaluatedTextSize,m=a.collisionGroup,g=s.get("text-optional"),v=s.get("icon-optional"),y=s.get("text-allow-overlap"),x=s.get("icon-allow-overlap"),b="map"===s.get("text-rotation-alignment"),_="map"===s.get("text-pitch-alignment"),w="none"!==s.get("icon-text-fit"),T="viewport-y"===s.get("symbol-z-order"),k=y&&(x||!o.hasIconData()||v),A=x&&(y||!o.hasTextData()||g);!o.collisionArrays&&p&&o.deserializeCollisionBoxes(p);var M=function(e,a){if(!r[e.crossTileID])if(h)i.placements[e.crossTileID]=new ge(!1,!1,!1);else{var p,T=!1,M=!1,S=!0,E=null,L={box:null,offscreen:null},C={box:null,offscreen:null},P=null,I=null,O=0,z=0,D=0;a.textFeatureIndex?O=a.textFeatureIndex:e.useRuntimeCollisionCircles&&(O=e.featureIndex),a.verticalTextFeatureIndex&&(z=a.verticalTextFeatureIndex);var R=a.textBox;if(R){var F=function(r){var n=t.WritingMode.horizontal;if(o.allowVerticalPlacement&&!r&&i.prevPlacement){var a=i.prevPlacement.placedOrientations[e.crossTileID];a&&(i.placedOrientations[e.crossTileID]=a,n=a,i.markUsedOrientation(o,n,e))}return n},B=function(r,n){if(o.allowVerticalPlacement&&e.numVerticalGlyphVertices>0&&a.verticalTextBox)for(var i=0,s=o.writingModes;i0&&(N=N.filter((function(t){return t!==j.anchor}))).unshift(j.anchor)}var U=function(t,r,n){for(var a=t.x2-t.x1,s=t.y2-t.y1,c=e.textBoxScale,u=w&&!x?r:null,h={box:[],offscreen:!1},p=y?2*N.length:N.length,d=0;d=N.length,k=i.attemptAnchorPlacement(g,t,a,s,c,b,_,f,l,m,v,e,o,n,u);if(k&&(h=k.placedGlyphBoxes)&&h.box&&h.box.length){T=!0,E=k.shift;break}}return h};B((function(){return U(R,a.iconBox,t.WritingMode.horizontal)}),(function(){var r=a.verticalTextBox,n=L&&L.box&&L.box.length;return o.allowVerticalPlacement&&!n&&e.numVerticalGlyphVertices>0&&r?U(r,a.verticalIconBox,t.WritingMode.vertical):{box:null,offscreen:null}})),L&&(T=L.box,S=L.offscreen);var V=F(L&&L.box);if(!T&&i.prevPlacement){var H=i.prevPlacement.variableOffsets[e.crossTileID];H&&(i.variableOffsets[e.crossTileID]=H,i.markUsedJustification(o,H.anchor,e,V))}}else{var q=function(t,r){var n=i.collisionIndex.placeCollisionBox(t,y,f,l,m.predicate);return n&&n.box&&n.box.length&&(i.markUsedOrientation(o,r,e),i.placedOrientations[e.crossTileID]=r),n};B((function(){return q(R,t.WritingMode.horizontal)}),(function(){var r=a.verticalTextBox;return o.allowVerticalPlacement&&e.numVerticalGlyphVertices>0&&r?q(r,t.WritingMode.vertical):{box:null,offscreen:null}})),F(L&&L.box&&L.box.length)}}if(T=(p=L)&&p.box&&p.box.length>0,S=p&&p.offscreen,e.useRuntimeCollisionCircles){var G=o.text.placedSymbolArray.get(e.centerJustifiedTextSymbolIndex),Y=t.evaluateSizeForFeature(o.textSizeData,d,G),W=s.get("text-padding"),X=e.collisionCircleDiameter;P=i.collisionIndex.placeCollisionCircles(y,G,o.lineVertexArray,o.glyphOffsetArray,Y,l,c,u,n,_,m.predicate,X,W),T=y||P.circles.length>0&&!P.collisionDetected,S=S&&P.offscreen}if(a.iconFeatureIndex&&(D=a.iconFeatureIndex),a.iconBox){var Z=function(t){var e=w&&E?_e(t,E.x,E.y,b,_,i.transform.angle):t;return i.collisionIndex.placeCollisionBox(e,x,f,l,m.predicate)};M=C&&C.box&&C.box.length&&a.verticalIconBox?(I=Z(a.verticalIconBox)).box.length>0:(I=Z(a.iconBox)).box.length>0,S=S&&I.offscreen}var J=g||0===e.numHorizontalGlyphVertices&&0===e.numVerticalGlyphVertices,K=v||0===e.numIconVertices;if(J||K?K?J||(M=M&&T):T=M&&T:M=T=M&&T,T&&p&&p.box&&(C&&C.box&&z?i.collisionIndex.insertCollisionBox(p.box,s.get("text-ignore-placement"),o.bucketInstanceId,z,m.ID):i.collisionIndex.insertCollisionBox(p.box,s.get("text-ignore-placement"),o.bucketInstanceId,O,m.ID)),M&&I&&i.collisionIndex.insertCollisionBox(I.box,s.get("icon-ignore-placement"),o.bucketInstanceId,D,m.ID),P&&(T&&i.collisionIndex.insertCollisionCircles(P.circles,s.get("text-ignore-placement"),o.bucketInstanceId,O,m.ID),n)){var Q=o.bucketInstanceId,$=i.collisionCircleArrays[Q];void 0===$&&($=i.collisionCircleArrays[Q]=new ve);for(var tt=0;tt=0;--E){var L=S[E];M(o.symbolInstances.get(L),o.collisionArrays[L])}else for(var C=e.symbolInstanceStart;C=0&&(e.text.placedSymbolArray.get(c).crossTileID=a>=0&&c!==a?0:n.crossTileID)}},we.prototype.markUsedOrientation=function(e,r,n){for(var i=r===t.WritingMode.horizontal||r===t.WritingMode.horizontalOnly?r:0,a=r===t.WritingMode.vertical?r:0,o=0,s=[n.leftJustifiedTextSymbolIndex,n.centerJustifiedTextSymbolIndex,n.rightJustifiedTextSymbolIndex];o0||l>0,x=a.numIconVertices>0,b=i.placedOrientations[a.crossTileID],_=b===t.WritingMode.vertical,w=b===t.WritingMode.horizontal||b===t.WritingMode.horizontalOnly;if(y){var T=Pe(v.text),k=_?Ie:T;d(e.text,s,k);var A=w?Ie:T;d(e.text,l,A);var M=v.text.isHidden();[a.rightJustifiedTextSymbolIndex,a.centerJustifiedTextSymbolIndex,a.leftJustifiedTextSymbolIndex].forEach((function(t){t>=0&&(e.text.placedSymbolArray.get(t).hidden=M||_?1:0)})),a.verticalPlacedTextSymbolIndex>=0&&(e.text.placedSymbolArray.get(a.verticalPlacedTextSymbolIndex).hidden=M||w?1:0);var S=i.variableOffsets[a.crossTileID];S&&i.markUsedJustification(e,S.anchor,a,b);var E=i.placedOrientations[a.crossTileID];E&&(i.markUsedJustification(e,"left",a,E),i.markUsedOrientation(e,E,a))}if(x){var L=Pe(v.icon),C=!(h&&a.verticalPlacedIconSymbolIndex&&_);if(a.placedIconSymbolIndex>=0){var P=C?L:Ie;d(e.icon,a.numIconVertices,P),e.icon.placedSymbolArray.get(a.placedIconSymbolIndex).hidden=v.icon.isHidden()}if(a.verticalPlacedIconSymbolIndex>=0){var I=C?Ie:L;d(e.icon,a.numVerticalIconVertices,I),e.icon.placedSymbolArray.get(a.verticalPlacedIconSymbolIndex).hidden=v.icon.isHidden()}}if(e.hasIconCollisionBoxData()||e.hasTextCollisionBoxData()){var O=e.collisionArrays[n];if(O){var z=new t.Point(0,0);if(O.textBox||O.verticalTextBox){var D=!0;if(c){var R=i.variableOffsets[m];R?(z=be(R.anchor,R.width,R.height,R.textOffset,R.textBoxScale),u&&z._rotate(f?i.transform.angle:-i.transform.angle)):D=!1}O.textBox&&Te(e.textCollisionBox.collisionVertexArray,v.text.placed,!D||_,z.x,z.y),O.verticalTextBox&&Te(e.textCollisionBox.collisionVertexArray,v.text.placed,!D||w,z.x,z.y)}var F=Boolean(!w&&O.verticalIconBox);O.iconBox&&Te(e.iconCollisionBox.collisionVertexArray,v.icon.placed,F,h?z.x:0,h?z.y:0),O.verticalIconBox&&Te(e.iconCollisionBox.collisionVertexArray,v.icon.placed,!F,h?z.x:0,h?z.y:0)}}},g=0;gt},we.prototype.setStale=function(){this.stale=!0};var ke=Math.pow(2,25),Ae=Math.pow(2,24),Me=Math.pow(2,17),Se=Math.pow(2,16),Ee=Math.pow(2,9),Le=Math.pow(2,8),Ce=Math.pow(2,1);function Pe(t){if(0===t.opacity&&!t.placed)return 0;if(1===t.opacity&&t.placed)return 4294967295;var e=t.placed?1:0,r=Math.floor(127*t.opacity);return r*ke+e*Ae+r*Me+e*Se+r*Ee+e*Le+r*Ce+e}var Ie=0,Oe=function(t){this._sortAcrossTiles="viewport-y"!==t.layout.get("symbol-z-order")&&void 0!==t.layout.get("symbol-sort-key").constantOr(1),this._currentTileIndex=0,this._currentPartIndex=0,this._seenCrossTileIDs={},this._bucketParts=[]};Oe.prototype.continuePlacement=function(t,e,r,n,i){for(var a=this._bucketParts;this._currentTileIndex2};this._currentPlacementIndex>=0;){var s=r[e[this._currentPlacementIndex]],l=this.placement.collisionIndex.transform.zoom;if("symbol"===s.type&&(!s.minzoom||s.minzoom<=l)&&(!s.maxzoom||s.maxzoom>l)){if(this._inProgressLayer||(this._inProgressLayer=new Oe(s)),this._inProgressLayer.continuePlacement(n[s.source],this.placement,this._showCollisionBoxes,s,o))return;delete this._inProgressLayer}this._currentPlacementIndex--}this._done=!0},ze.prototype.commit=function(t){return this.placement.commit(t),this.placement};var De=512/t.EXTENT/2,Re=function(t,e,r){this.tileID=t,this.indexedSymbolInstances={},this.bucketInstanceId=r;for(var n=0;nt.overscaledZ)for(var s in o){var l=o[s];l.tileID.isChildOf(t)&&l.findMatches(e.symbolInstances,t,i)}else{var c=o[t.scaledTo(Number(a)).key];c&&c.findMatches(e.symbolInstances,t,i)}}for(var u=0;u1?"@2x":"",l=t.getJSON(r.transformRequest(r.normalizeSpriteURL(e,s,".json"),t.ResourceType.SpriteJSON),(function(t,e){l=null,o||(o=t,i=e,u())})),c=t.getImage(r.transformRequest(r.normalizeSpriteURL(e,s,".png"),t.ResourceType.SpriteImage),(function(t,e){c=null,o||(o=t,a=e,u())}));function u(){if(o)n(o);else if(i&&a){var e=t.browser.getImageData(a),r={};for(var s in i){var l=i[s],c=l.width,u=l.height,f=l.x,h=l.y,p=l.sdf,d=l.pixelRatio,m=l.stretchX,g=l.stretchY,v=l.content,y=new t.RGBAImage({width:c,height:u});t.RGBAImage.copy(e,y,{x:f,y:h},{x:0,y:0},{width:c,height:u}),r[s]={data:y,pixelRatio:d,sdf:p,stretchX:m,stretchY:g,content:v}}n(null,r)}}return{cancel:function(){l&&(l.cancel(),l=null),c&&(c.cancel(),c=null)}}}(e,this.map._requestManager,(function(e,n){if(r._spriteRequest=null,e)r.fire(new t.ErrorEvent(e));else if(n)for(var i in n)r.imageManager.addImage(i,n[i]);r.imageManager.setLoaded(!0),r._availableImages=r.imageManager.listImages(),r.dispatcher.broadcast("setImages",r._availableImages),r.fire(new t.Event("data",{dataType:"style"}))}))},r.prototype._validateLayer=function(e){var r=this.sourceCaches[e.source];if(r){var n=e.sourceLayer;if(n){var i=r.getSource();("geojson"===i.type||i.vectorLayerIds&&-1===i.vectorLayerIds.indexOf(n))&&this.fire(new t.ErrorEvent(new Error('Source layer "'+n+'" does not exist on source "'+i.id+'" as specified by style layer "'+e.id+'"')))}}},r.prototype.loaded=function(){if(!this._loaded)return!1;if(Object.keys(this._updatedSources).length)return!1;for(var t in this.sourceCaches)if(!this.sourceCaches[t].loaded())return!1;return!!this.imageManager.isLoaded()},r.prototype._serializeLayers=function(t){for(var e=[],r=0,n=t;r0)throw new Error("Unimplemented: "+i.map((function(t){return t.command})).join(", ")+".");return n.forEach((function(t){"setTransition"!==t.command&&r[t.command].apply(r,t.args)})),this.stylesheet=e,!0},r.prototype.addImage=function(e,r){if(this.getImage(e))return this.fire(new t.ErrorEvent(new Error("An image with this name already exists.")));this.imageManager.addImage(e,r),this._availableImages=this.imageManager.listImages(),this._changedImages[e]=!0,this._changed=!0,this.fire(new t.Event("data",{dataType:"style"}))},r.prototype.updateImage=function(t,e){this.imageManager.updateImage(t,e)},r.prototype.getImage=function(t){return this.imageManager.getImage(t)},r.prototype.removeImage=function(e){if(!this.getImage(e))return this.fire(new t.ErrorEvent(new Error("No image with this name exists.")));this.imageManager.removeImage(e),this._availableImages=this.imageManager.listImages(),this._changedImages[e]=!0,this._changed=!0,this.fire(new t.Event("data",{dataType:"style"}))},r.prototype.listImages=function(){return this._checkLoaded(),this.imageManager.listImages()},r.prototype.addSource=function(e,r,n){var i=this;if(void 0===n&&(n={}),this._checkLoaded(),void 0!==this.sourceCaches[e])throw new Error("There is already a source with this ID");if(!r.type)throw new Error("The type property must be defined, but the only the following properties were given: "+Object.keys(r).join(", ")+".");if(!(["vector","raster","geojson","video","image"].indexOf(r.type)>=0)||!this._validate(t.validateStyle.source,"sources."+e,r,null,n)){this.map&&this.map._collectResourceTiming&&(r.collectResourceTiming=!0);var a=this.sourceCaches[e]=new Ct(e,r,this.dispatcher);a.style=this,a.setEventedParent(this,(function(){return{isSourceLoaded:i.loaded(),source:a.serialize(),sourceId:e}})),a.onAdd(this.map),this._changed=!0}},r.prototype.removeSource=function(e){if(this._checkLoaded(),void 0===this.sourceCaches[e])throw new Error("There is no source with this ID");for(var r in this._layers)if(this._layers[r].source===e)return this.fire(new t.ErrorEvent(new Error('Source "'+e+'" cannot be removed while layer "'+r+'" is using it.')));var n=this.sourceCaches[e];delete this.sourceCaches[e],delete this._updatedSources[e],n.fire(new t.Event("data",{sourceDataType:"metadata",dataType:"source",sourceId:e})),n.setEventedParent(null),n.clearTiles(),n.onRemove&&n.onRemove(this.map),this._changed=!0},r.prototype.setGeoJSONSourceData=function(t,e){this._checkLoaded(),this.sourceCaches[t].getSource().setData(e),this._changed=!0},r.prototype.getSource=function(t){return this.sourceCaches[t]&&this.sourceCaches[t].getSource()},r.prototype.addLayer=function(e,r,n){void 0===n&&(n={}),this._checkLoaded();var i=e.id;if(this.getLayer(i))this.fire(new t.ErrorEvent(new Error('Layer with id "'+i+'" already exists on this map')));else{var a;if("custom"===e.type){if(je(this,t.validateCustomStyleLayer(e)))return;a=t.createStyleLayer(e)}else{if("object"==typeof e.source&&(this.addSource(i,e.source),e=t.clone$1(e),e=t.extend(e,{source:i})),this._validate(t.validateStyle.layer,"layers."+i,e,{arrayIndex:-1},n))return;a=t.createStyleLayer(e),this._validateLayer(a),a.setEventedParent(this,{layer:{id:i}}),this._serializedLayers[a.id]=a.serialize()}var o=r?this._order.indexOf(r):this._order.length;if(r&&-1===o)this.fire(new t.ErrorEvent(new Error('Layer with id "'+r+'" does not exist on this map.')));else{if(this._order.splice(o,0,i),this._layerOrderChanged=!0,this._layers[i]=a,this._removedLayers[i]&&a.source&&"custom"!==a.type){var s=this._removedLayers[i];delete this._removedLayers[i],s.type!==a.type?this._updatedSources[a.source]="clear":(this._updatedSources[a.source]="reload",this.sourceCaches[a.source].pause())}this._updateLayer(a),a.onAdd&&a.onAdd(this.map)}}},r.prototype.moveLayer=function(e,r){if(this._checkLoaded(),this._changed=!0,this._layers[e]){if(e!==r){var n=this._order.indexOf(e);this._order.splice(n,1);var i=r?this._order.indexOf(r):this._order.length;r&&-1===i?this.fire(new t.ErrorEvent(new Error('Layer with id "'+r+'" does not exist on this map.'))):(this._order.splice(i,0,e),this._layerOrderChanged=!0)}}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be moved.")))},r.prototype.removeLayer=function(e){this._checkLoaded();var r=this._layers[e];if(r){r.setEventedParent(null);var n=this._order.indexOf(e);this._order.splice(n,1),this._layerOrderChanged=!0,this._changed=!0,this._removedLayers[e]=r,delete this._layers[e],delete this._serializedLayers[e],delete this._updatedLayers[e],delete this._updatedPaintProps[e],r.onRemove&&r.onRemove(this.map)}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be removed.")))},r.prototype.getLayer=function(t){return this._layers[t]},r.prototype.hasLayer=function(t){return t in this._layers},r.prototype.setLayerZoomRange=function(e,r,n){this._checkLoaded();var i=this.getLayer(e);i?i.minzoom===r&&i.maxzoom===n||(null!=r&&(i.minzoom=r),null!=n&&(i.maxzoom=n),this._updateLayer(i)):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot have zoom extent.")))},r.prototype.setFilter=function(e,r,n){void 0===n&&(n={}),this._checkLoaded();var i=this.getLayer(e);if(i){if(!t.deepEqual(i.filter,r))return null==r?(i.filter=void 0,void this._updateLayer(i)):void(this._validate(t.validateStyle.filter,"layers."+i.id+".filter",r,null,n)||(i.filter=t.clone$1(r),this._updateLayer(i)))}else this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be filtered.")))},r.prototype.getFilter=function(e){return t.clone$1(this.getLayer(e).filter)},r.prototype.setLayoutProperty=function(e,r,n,i){void 0===i&&(i={}),this._checkLoaded();var a=this.getLayer(e);a?t.deepEqual(a.getLayoutProperty(r),n)||(a.setLayoutProperty(r,n,i),this._updateLayer(a)):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be styled.")))},r.prototype.getLayoutProperty=function(e,r){var n=this.getLayer(e);if(n)return n.getLayoutProperty(r);this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style.")))},r.prototype.setPaintProperty=function(e,r,n,i){void 0===i&&(i={}),this._checkLoaded();var a=this.getLayer(e);a?t.deepEqual(a.getPaintProperty(r),n)||(a.setPaintProperty(r,n,i)&&this._updateLayer(a),this._changed=!0,this._updatedPaintProps[e]=!0):this.fire(new t.ErrorEvent(new Error("The layer '"+e+"' does not exist in the map's style and cannot be styled.")))},r.prototype.getPaintProperty=function(t,e){return this.getLayer(t).getPaintProperty(e)},r.prototype.setFeatureState=function(e,r){this._checkLoaded();var n=e.source,i=e.sourceLayer,a=this.sourceCaches[n];if(void 0!==a){var o=a.getSource().type;"geojson"===o&&i?this.fire(new t.ErrorEvent(new Error("GeoJSON sources cannot have a sourceLayer parameter."))):"vector"!==o||i?(void 0===e.id&&this.fire(new t.ErrorEvent(new Error("The feature id parameter must be provided."))),a.setFeatureState(i,e.id,r)):this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+n+"' does not exist in the map's style.")))},r.prototype.removeFeatureState=function(e,r){this._checkLoaded();var n=e.source,i=this.sourceCaches[n];if(void 0!==i){var a=i.getSource().type,o="vector"===a?e.sourceLayer:void 0;"vector"!==a||o?r&&"string"!=typeof e.id&&"number"!=typeof e.id?this.fire(new t.ErrorEvent(new Error("A feature id is requred to remove its specific state property."))):i.removeFeatureState(o,e.id,r):this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+n+"' does not exist in the map's style.")))},r.prototype.getFeatureState=function(e){this._checkLoaded();var r=e.source,n=e.sourceLayer,i=this.sourceCaches[r];if(void 0!==i){if("vector"!==i.getSource().type||n)return void 0===e.id&&this.fire(new t.ErrorEvent(new Error("The feature id parameter must be provided."))),i.getFeatureState(n,e.id);this.fire(new t.ErrorEvent(new Error("The sourceLayer parameter must be provided for vector source types.")))}else this.fire(new t.ErrorEvent(new Error("The source '"+r+"' does not exist in the map's style.")))},r.prototype.getTransition=function(){return t.extend({duration:300,delay:0},this.stylesheet&&this.stylesheet.transition)},r.prototype.serialize=function(){return t.filterObject({version:this.stylesheet.version,name:this.stylesheet.name,metadata:this.stylesheet.metadata,light:this.stylesheet.light,center:this.stylesheet.center,zoom:this.stylesheet.zoom,bearing:this.stylesheet.bearing,pitch:this.stylesheet.pitch,sprite:this.stylesheet.sprite,glyphs:this.stylesheet.glyphs,transition:this.stylesheet.transition,sources:t.mapObject(this.sourceCaches,(function(t){return t.serialize()})),layers:this._serializeLayers(this._order)},(function(t){return void 0!==t}))},r.prototype._updateLayer=function(t){this._updatedLayers[t.id]=!0,t.source&&!this._updatedSources[t.source]&&"raster"!==this.sourceCaches[t.source].getSource().type&&(this._updatedSources[t.source]="reload",this.sourceCaches[t.source].pause()),this._changed=!0},r.prototype._flattenAndSortRenderedFeatures=function(t){for(var e=this,r=function(t){return"fill-extrusion"===e._layers[t].type},n={},i=[],a=this._order.length-1;a>=0;a--){var o=this._order[a];if(r(o)){n[o]=a;for(var s=0,l=t;s=0;d--){var m=this._order[d];if(r(m))for(var g=i.length-1;g>=0;g--){var v=i[g].feature;if(n[v.layer.id] 0.5) {gl_FragColor=vec4(0.0,0.0,1.0,0.5)*alpha;}if (v_notUsed > 0.5) {gl_FragColor*=.1;}}","attribute vec2 a_pos;attribute vec2 a_anchor_pos;attribute vec2 a_extrude;attribute vec2 a_placed;attribute vec2 a_shift;uniform mat4 u_matrix;uniform vec2 u_extrude_scale;uniform float u_camera_to_center_distance;varying float v_placed;varying float v_notUsed;void main() {vec4 projectedPoint=u_matrix*vec4(a_anchor_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float collision_perspective_ratio=clamp(0.5+0.5*(u_camera_to_center_distance/camera_to_anchor_distance),0.0,4.0);gl_Position=u_matrix*vec4(a_pos,0.0,1.0);gl_Position.xy+=(a_extrude+a_shift)*u_extrude_scale*gl_Position.w*collision_perspective_ratio;v_placed=a_placed.x;v_notUsed=a_placed.y;}"),tr=yr("varying float v_radius;varying vec2 v_extrude;varying float v_perspective_ratio;varying float v_collision;void main() {float alpha=0.5*min(v_perspective_ratio,1.0);float stroke_radius=0.9*max(v_perspective_ratio,1.0);float distance_to_center=length(v_extrude);float distance_to_edge=abs(distance_to_center-v_radius);float opacity_t=smoothstep(-stroke_radius,0.0,-distance_to_edge);vec4 color=mix(vec4(0.0,0.0,1.0,0.5),vec4(1.0,0.0,0.0,1.0),v_collision);gl_FragColor=color*alpha*opacity_t;}","attribute vec2 a_pos;attribute float a_radius;attribute vec2 a_flags;uniform mat4 u_matrix;uniform mat4 u_inv_matrix;uniform vec2 u_viewport_size;uniform float u_camera_to_center_distance;varying float v_radius;varying vec2 v_extrude;varying float v_perspective_ratio;varying float v_collision;vec3 toTilePosition(vec2 screenPos) {vec4 rayStart=u_inv_matrix*vec4(screenPos,-1.0,1.0);vec4 rayEnd =u_inv_matrix*vec4(screenPos, 1.0,1.0);rayStart.xyz/=rayStart.w;rayEnd.xyz /=rayEnd.w;highp float t=(0.0-rayStart.z)/(rayEnd.z-rayStart.z);return mix(rayStart.xyz,rayEnd.xyz,t);}void main() {vec2 quadCenterPos=a_pos;float radius=a_radius;float collision=a_flags.x;float vertexIdx=a_flags.y;vec2 quadVertexOffset=vec2(mix(-1.0,1.0,float(vertexIdx >=2.0)),mix(-1.0,1.0,float(vertexIdx >=1.0 && vertexIdx <=2.0)));vec2 quadVertexExtent=quadVertexOffset*radius;vec3 tilePos=toTilePosition(quadCenterPos);vec4 clipPos=u_matrix*vec4(tilePos,1.0);highp float camera_to_anchor_distance=clipPos.w;highp float collision_perspective_ratio=clamp(0.5+0.5*(u_camera_to_center_distance/camera_to_anchor_distance),0.0,4.0);float padding_factor=1.2;v_radius=radius;v_extrude=quadVertexExtent*padding_factor;v_perspective_ratio=collision_perspective_ratio;v_collision=collision;gl_Position=vec4(clipPos.xyz/clipPos.w,1.0)+vec4(quadVertexExtent*padding_factor/u_viewport_size*2.0,0.0,0.0);}"),er=yr("uniform highp vec4 u_color;uniform sampler2D u_overlay;varying vec2 v_uv;void main() {vec4 overlay_color=texture2D(u_overlay,v_uv);gl_FragColor=mix(u_color,overlay_color,overlay_color.a);}","attribute vec2 a_pos;varying vec2 v_uv;uniform mat4 u_matrix;uniform float u_overlay_scale;void main() {v_uv=a_pos/8192.0;gl_Position=u_matrix*vec4(a_pos*u_overlay_scale,0,1);}"),rr=yr("#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float opacity\ngl_FragColor=color*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","attribute vec2 a_pos;uniform mat4 u_matrix;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float opacity\ngl_Position=u_matrix*vec4(a_pos,0,1);}"),nr=yr("varying vec2 v_pos;\n#pragma mapbox: define highp vec4 outline_color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 outline_color\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_pos-gl_FragCoord.xy);float alpha=1.0-smoothstep(0.0,1.0,dist);gl_FragColor=outline_color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","attribute vec2 a_pos;uniform mat4 u_matrix;uniform vec2 u_world;varying vec2 v_pos;\n#pragma mapbox: define highp vec4 outline_color\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 outline_color\n#pragma mapbox: initialize lowp float opacity\ngl_Position=u_matrix*vec4(a_pos,0,1);v_pos=(gl_Position.xy/gl_Position.w+1.0)/2.0*u_world;}"),ir=yr("uniform vec2 u_texsize;uniform sampler2D u_image;uniform float u_fade;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec2 v_pos;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);float dist=length(v_pos-gl_FragCoord.xy);float alpha=1.0-smoothstep(0.0,1.0,dist);gl_FragColor=mix(color1,color2,u_fade)*alpha*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_world;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform vec3 u_scale;attribute vec2 a_pos;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec2 v_pos;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;gl_Position=u_matrix*vec4(a_pos,0,1);vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileRatio,a_pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileRatio,a_pos);v_pos=(gl_Position.xy/gl_Position.w+1.0)/2.0*u_world;}"),ar=yr("uniform vec2 u_texsize;uniform float u_fade;uniform sampler2D u_image;varying vec2 v_pos_a;varying vec2 v_pos_b;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);gl_FragColor=mix(color1,color2,u_fade)*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform vec3 u_scale;attribute vec2 a_pos;varying vec2 v_pos_a;varying vec2 v_pos_b;\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileZoomRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;gl_Position=u_matrix*vec4(a_pos,0,1);v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileZoomRatio,a_pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileZoomRatio,a_pos);}"),or=yr("varying vec4 v_color;void main() {gl_FragColor=v_color;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec3 u_lightcolor;uniform lowp vec3 u_lightpos;uniform lowp float u_lightintensity;uniform float u_vertical_gradient;uniform lowp float u_opacity;attribute vec2 a_pos;attribute vec4 a_normal_ed;varying vec4 v_color;\n#pragma mapbox: define highp float base\n#pragma mapbox: define highp float height\n#pragma mapbox: define highp vec4 color\nvoid main() {\n#pragma mapbox: initialize highp float base\n#pragma mapbox: initialize highp float height\n#pragma mapbox: initialize highp vec4 color\nvec3 normal=a_normal_ed.xyz;base=max(0.0,base);height=max(0.0,height);float t=mod(normal.x,2.0);gl_Position=u_matrix*vec4(a_pos,t > 0.0 ? height : base,1);float colorvalue=color.r*0.2126+color.g*0.7152+color.b*0.0722;v_color=vec4(0.0,0.0,0.0,1.0);vec4 ambientlight=vec4(0.03,0.03,0.03,1.0);color+=ambientlight;float directional=clamp(dot(normal/16384.0,u_lightpos),0.0,1.0);directional=mix((1.0-u_lightintensity),max((1.0-colorvalue+u_lightintensity),1.0),directional);if (normal.y !=0.0) {directional*=((1.0-u_vertical_gradient)+(u_vertical_gradient*clamp((t+base)*pow(height/150.0,0.5),mix(0.7,0.98,1.0-u_lightintensity),1.0)));}v_color.r+=clamp(color.r*directional*u_lightcolor.r,mix(0.0,0.3,1.0-u_lightcolor.r),1.0);v_color.g+=clamp(color.g*directional*u_lightcolor.g,mix(0.0,0.3,1.0-u_lightcolor.g),1.0);v_color.b+=clamp(color.b*directional*u_lightcolor.b,mix(0.0,0.3,1.0-u_lightcolor.b),1.0);v_color*=u_opacity;}"),sr=yr("uniform vec2 u_texsize;uniform float u_fade;uniform sampler2D u_image;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec4 v_lighting;\n#pragma mapbox: define lowp float base\n#pragma mapbox: define lowp float height\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float base\n#pragma mapbox: initialize lowp float height\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;vec2 imagecoord=mod(v_pos_a,1.0);vec2 pos=mix(pattern_tl_a/u_texsize,pattern_br_a/u_texsize,imagecoord);vec4 color1=texture2D(u_image,pos);vec2 imagecoord_b=mod(v_pos_b,1.0);vec2 pos2=mix(pattern_tl_b/u_texsize,pattern_br_b/u_texsize,imagecoord_b);vec4 color2=texture2D(u_image,pos2);vec4 mixedColor=mix(color1,color2,u_fade);gl_FragColor=mixedColor*v_lighting;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_pixel_coord_upper;uniform vec2 u_pixel_coord_lower;uniform float u_height_factor;uniform vec3 u_scale;uniform float u_vertical_gradient;uniform lowp float u_opacity;uniform vec3 u_lightcolor;uniform lowp vec3 u_lightpos;uniform lowp float u_lightintensity;attribute vec2 a_pos;attribute vec4 a_normal_ed;varying vec2 v_pos_a;varying vec2 v_pos_b;varying vec4 v_lighting;\n#pragma mapbox: define lowp float base\n#pragma mapbox: define lowp float height\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float base\n#pragma mapbox: initialize lowp float height\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec3 normal=a_normal_ed.xyz;float edgedistance=a_normal_ed.w;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;base=max(0.0,base);height=max(0.0,height);float t=mod(normal.x,2.0);float z=t > 0.0 ? height : base;gl_Position=u_matrix*vec4(a_pos,z,1);vec2 pos=normal.x==1.0 && normal.y==0.0 && normal.z==16384.0\n? a_pos\n: vec2(edgedistance,z*u_height_factor);v_pos_a=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,fromScale*display_size_a,tileRatio,pos);v_pos_b=get_pattern_pos(u_pixel_coord_upper,u_pixel_coord_lower,toScale*display_size_b,tileRatio,pos);v_lighting=vec4(0.0,0.0,0.0,1.0);float directional=clamp(dot(normal/16383.0,u_lightpos),0.0,1.0);directional=mix((1.0-u_lightintensity),max((0.5+u_lightintensity),1.0),directional);if (normal.y !=0.0) {directional*=((1.0-u_vertical_gradient)+(u_vertical_gradient*clamp((t+base)*pow(height/150.0,0.5),mix(0.7,0.98,1.0-u_lightintensity),1.0)));}v_lighting.rgb+=clamp(directional*u_lightcolor,mix(vec3(0.0),vec3(0.3),1.0-u_lightcolor),vec3(1.0));v_lighting*=u_opacity;}"),lr=yr("#ifdef GL_ES\nprecision highp float;\n#endif\nuniform sampler2D u_image;varying vec2 v_pos;uniform vec2 u_dimension;uniform float u_zoom;uniform float u_maxzoom;uniform vec4 u_unpack;float getElevation(vec2 coord,float bias) {vec4 data=texture2D(u_image,coord)*255.0;data.a=-1.0;return dot(data,u_unpack)/4.0;}void main() {vec2 epsilon=1.0/u_dimension;float a=getElevation(v_pos+vec2(-epsilon.x,-epsilon.y),0.0);float b=getElevation(v_pos+vec2(0,-epsilon.y),0.0);float c=getElevation(v_pos+vec2(epsilon.x,-epsilon.y),0.0);float d=getElevation(v_pos+vec2(-epsilon.x,0),0.0);float e=getElevation(v_pos,0.0);float f=getElevation(v_pos+vec2(epsilon.x,0),0.0);float g=getElevation(v_pos+vec2(-epsilon.x,epsilon.y),0.0);float h=getElevation(v_pos+vec2(0,epsilon.y),0.0);float i=getElevation(v_pos+vec2(epsilon.x,epsilon.y),0.0);float exaggeration=u_zoom < 2.0 ? 0.4 : u_zoom < 4.5 ? 0.35 : 0.3;vec2 deriv=vec2((c+f+f+i)-(a+d+d+g),(g+h+h+i)-(a+b+b+c))/ pow(2.0,(u_zoom-u_maxzoom)*exaggeration+19.2562-u_zoom);gl_FragColor=clamp(vec4(deriv.x/2.0+0.5,deriv.y/2.0+0.5,1.0,1.0),0.0,1.0);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_dimension;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);highp vec2 epsilon=1.0/u_dimension;float scale=(u_dimension.x-2.0)/u_dimension.x;v_pos=(a_texture_pos/8192.0)*scale+epsilon;}"),cr=yr("uniform sampler2D u_image;varying vec2 v_pos;uniform vec2 u_latrange;uniform vec2 u_light;uniform vec4 u_shadow;uniform vec4 u_highlight;uniform vec4 u_accent;\n#define PI 3.141592653589793\nvoid main() {vec4 pixel=texture2D(u_image,v_pos);vec2 deriv=((pixel.rg*2.0)-1.0);float scaleFactor=cos(radians((u_latrange[0]-u_latrange[1])*(1.0-v_pos.y)+u_latrange[1]));float slope=atan(1.25*length(deriv)/scaleFactor);float aspect=deriv.x !=0.0 ? atan(deriv.y,-deriv.x) : PI/2.0*(deriv.y > 0.0 ? 1.0 :-1.0);float intensity=u_light.x;float azimuth=u_light.y+PI;float base=1.875-intensity*1.75;float maxValue=0.5*PI;float scaledSlope=intensity !=0.5 ? ((pow(base,slope)-1.0)/(pow(base,maxValue)-1.0))*maxValue : slope;float accent=cos(scaledSlope);vec4 accent_color=(1.0-accent)*u_accent*clamp(intensity*2.0,0.0,1.0);float shade=abs(mod((aspect+azimuth)/PI+0.5,2.0)-1.0);vec4 shade_color=mix(u_shadow,u_highlight,shade)*sin(scaledSlope)*clamp(intensity*2.0,0.0,1.0);gl_FragColor=accent_color*(1.0-shade_color.a)+shade_color;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);v_pos=a_texture_pos/8192.0;}"),ur=yr("uniform lowp float u_device_pixel_ratio;varying vec2 v_width2;varying vec2 v_normal;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform vec2 u_units_to_pixels;uniform lowp float u_device_pixel_ratio;varying vec2 v_normal;varying vec2 v_width2;varying float v_gamma_scale;varying highp float v_linesofar;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;v_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*2.0;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_width2=vec2(outset,inset);}"),fr=yr("uniform lowp float u_device_pixel_ratio;uniform sampler2D u_image;varying vec2 v_width2;varying vec2 v_normal;varying float v_gamma_scale;varying highp float v_lineprogress;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);vec4 color=texture2D(u_image,vec2(v_lineprogress,0.5));gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define MAX_LINE_DISTANCE 32767.0\n#define scale 0.015873016\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;uniform vec2 u_units_to_pixels;varying vec2 v_normal;varying vec2 v_width2;varying float v_gamma_scale;varying highp float v_lineprogress;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;v_lineprogress=(floor(a_data.z/4.0)+a_data.w*64.0)*2.0/MAX_LINE_DISTANCE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_width2=vec2(outset,inset);}"),hr=yr("uniform lowp float u_device_pixel_ratio;uniform vec2 u_texsize;uniform float u_fade;uniform mediump vec3 u_scale;uniform sampler2D u_image;varying vec2 v_normal;varying vec2 v_width2;varying float v_linesofar;varying float v_gamma_scale;varying float v_width;\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\nvec2 pattern_tl_a=pattern_from.xy;vec2 pattern_br_a=pattern_from.zw;vec2 pattern_tl_b=pattern_to.xy;vec2 pattern_br_b=pattern_to.zw;float tileZoomRatio=u_scale.x;float fromScale=u_scale.y;float toScale=u_scale.z;vec2 display_size_a=(pattern_br_a-pattern_tl_a)/pixel_ratio_from;vec2 display_size_b=(pattern_br_b-pattern_tl_b)/pixel_ratio_to;vec2 pattern_size_a=vec2(display_size_a.x*fromScale/tileZoomRatio,display_size_a.y);vec2 pattern_size_b=vec2(display_size_b.x*toScale/tileZoomRatio,display_size_b.y);float aspect_a=display_size_a.y/v_width;float aspect_b=display_size_b.y/v_width;float dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);float x_a=mod(v_linesofar/pattern_size_a.x*aspect_a,1.0);float x_b=mod(v_linesofar/pattern_size_b.x*aspect_b,1.0);float y=0.5*v_normal.y+0.5;vec2 texel_size=1.0/u_texsize;vec2 pos_a=mix(pattern_tl_a*texel_size-texel_size,pattern_br_a*texel_size+texel_size,vec2(x_a,y));vec2 pos_b=mix(pattern_tl_b*texel_size-texel_size,pattern_br_b*texel_size+texel_size,vec2(x_b,y));vec4 color=mix(texture2D(u_image,pos_a),texture2D(u_image,pos_b),u_fade);gl_FragColor=color*alpha*opacity;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\n#define LINE_DISTANCE_SCALE 2.0\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform vec2 u_units_to_pixels;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;varying vec2 v_normal;varying vec2 v_width2;varying float v_linesofar;varying float v_gamma_scale;varying float v_width;\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\n#pragma mapbox: define lowp vec4 pattern_from\n#pragma mapbox: define lowp vec4 pattern_to\n#pragma mapbox: define lowp float pixel_ratio_from\n#pragma mapbox: define lowp float pixel_ratio_to\nvoid main() {\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\n#pragma mapbox: initialize mediump vec4 pattern_from\n#pragma mapbox: initialize mediump vec4 pattern_to\n#pragma mapbox: initialize lowp float pixel_ratio_from\n#pragma mapbox: initialize lowp float pixel_ratio_to\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;float a_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*LINE_DISTANCE_SCALE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_linesofar=a_linesofar;v_width2=vec2(outset,inset);v_width=floorwidth;}"),pr=yr("uniform lowp float u_device_pixel_ratio;uniform sampler2D u_image;uniform float u_sdfgamma;uniform float u_mix;varying vec2 v_normal;varying vec2 v_width2;varying vec2 v_tex_a;varying vec2 v_tex_b;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\nfloat dist=length(v_normal)*v_width2.s;float blur2=(blur+1.0/u_device_pixel_ratio)*v_gamma_scale;float alpha=clamp(min(dist-(v_width2.t-blur2),v_width2.s-dist)/blur2,0.0,1.0);float sdfdist_a=texture2D(u_image,v_tex_a).a;float sdfdist_b=texture2D(u_image,v_tex_b).a;float sdfdist=mix(sdfdist_a,sdfdist_b,u_mix);alpha*=smoothstep(0.5-u_sdfgamma/floorwidth,0.5+u_sdfgamma/floorwidth,sdfdist);gl_FragColor=color*(alpha*opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","\n#define scale 0.015873016\n#define LINE_DISTANCE_SCALE 2.0\nattribute vec2 a_pos_normal;attribute vec4 a_data;uniform mat4 u_matrix;uniform mediump float u_ratio;uniform lowp float u_device_pixel_ratio;uniform vec2 u_patternscale_a;uniform float u_tex_y_a;uniform vec2 u_patternscale_b;uniform float u_tex_y_b;uniform vec2 u_units_to_pixels;varying vec2 v_normal;varying vec2 v_width2;varying vec2 v_tex_a;varying vec2 v_tex_b;varying float v_gamma_scale;\n#pragma mapbox: define highp vec4 color\n#pragma mapbox: define lowp float blur\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define mediump float gapwidth\n#pragma mapbox: define lowp float offset\n#pragma mapbox: define mediump float width\n#pragma mapbox: define lowp float floorwidth\nvoid main() {\n#pragma mapbox: initialize highp vec4 color\n#pragma mapbox: initialize lowp float blur\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize mediump float gapwidth\n#pragma mapbox: initialize lowp float offset\n#pragma mapbox: initialize mediump float width\n#pragma mapbox: initialize lowp float floorwidth\nfloat ANTIALIASING=1.0/u_device_pixel_ratio/2.0;vec2 a_extrude=a_data.xy-128.0;float a_direction=mod(a_data.z,4.0)-1.0;float a_linesofar=(floor(a_data.z/4.0)+a_data.w*64.0)*LINE_DISTANCE_SCALE;vec2 pos=floor(a_pos_normal*0.5);mediump vec2 normal=a_pos_normal-2.0*pos;normal.y=normal.y*2.0-1.0;v_normal=normal;gapwidth=gapwidth/2.0;float halfwidth=width/2.0;offset=-1.0*offset;float inset=gapwidth+(gapwidth > 0.0 ? ANTIALIASING : 0.0);float outset=gapwidth+halfwidth*(gapwidth > 0.0 ? 2.0 : 1.0)+(halfwidth==0.0 ? 0.0 : ANTIALIASING);mediump vec2 dist=outset*a_extrude*scale;mediump float u=0.5*a_direction;mediump float t=1.0-abs(u);mediump vec2 offset2=offset*a_extrude*scale*normal.y*mat2(t,-u,u,t);vec4 projected_extrude=u_matrix*vec4(dist/u_ratio,0.0,0.0);gl_Position=u_matrix*vec4(pos+offset2/u_ratio,0.0,1.0)+projected_extrude;float extrude_length_without_perspective=length(dist);float extrude_length_with_perspective=length(projected_extrude.xy/gl_Position.w*u_units_to_pixels);v_gamma_scale=extrude_length_without_perspective/extrude_length_with_perspective;v_tex_a=vec2(a_linesofar*u_patternscale_a.x/floorwidth,normal.y*u_patternscale_a.y+u_tex_y_a);v_tex_b=vec2(a_linesofar*u_patternscale_b.x/floorwidth,normal.y*u_patternscale_b.y+u_tex_y_b);v_width2=vec2(outset,inset);}"),dr=yr("uniform float u_fade_t;uniform float u_opacity;uniform sampler2D u_image0;uniform sampler2D u_image1;varying vec2 v_pos0;varying vec2 v_pos1;uniform float u_brightness_low;uniform float u_brightness_high;uniform float u_saturation_factor;uniform float u_contrast_factor;uniform vec3 u_spin_weights;void main() {vec4 color0=texture2D(u_image0,v_pos0);vec4 color1=texture2D(u_image1,v_pos1);if (color0.a > 0.0) {color0.rgb=color0.rgb/color0.a;}if (color1.a > 0.0) {color1.rgb=color1.rgb/color1.a;}vec4 color=mix(color0,color1,u_fade_t);color.a*=u_opacity;vec3 rgb=color.rgb;rgb=vec3(dot(rgb,u_spin_weights.xyz),dot(rgb,u_spin_weights.zxy),dot(rgb,u_spin_weights.yzx));float average=(color.r+color.g+color.b)/3.0;rgb+=(average-rgb)*u_saturation_factor;rgb=(rgb-0.5)*u_contrast_factor+0.5;vec3 u_high_vec=vec3(u_brightness_low,u_brightness_low,u_brightness_low);vec3 u_low_vec=vec3(u_brightness_high,u_brightness_high,u_brightness_high);gl_FragColor=vec4(mix(u_high_vec,u_low_vec,rgb)*color.a,color.a);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","uniform mat4 u_matrix;uniform vec2 u_tl_parent;uniform float u_scale_parent;uniform float u_buffer_scale;attribute vec2 a_pos;attribute vec2 a_texture_pos;varying vec2 v_pos0;varying vec2 v_pos1;void main() {gl_Position=u_matrix*vec4(a_pos,0,1);v_pos0=(((a_texture_pos/8192.0)-0.5)/u_buffer_scale )+0.5;v_pos1=(v_pos0*u_scale_parent)+u_tl_parent;}"),mr=yr("uniform sampler2D u_texture;varying vec2 v_tex;varying float v_fade_opacity;\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\nlowp float alpha=opacity*v_fade_opacity;gl_FragColor=texture2D(u_texture,v_tex)*alpha;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec4 a_pixeloffset;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform highp float u_camera_to_center_distance;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform float u_fade_change;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform vec2 u_texsize;varying vec2 v_tex;varying float v_fade_opacity;\n#pragma mapbox: define lowp float opacity\nvoid main() {\n#pragma mapbox: initialize lowp float opacity\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);vec2 a_pxoffset=a_pixeloffset.xy;vec2 a_minFontScale=a_pixeloffset.zw/256.0;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=u_is_text ? size/24.0 : size;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*max(a_minFontScale,fontScale)+a_pxoffset/16.0),0.0,1.0);v_tex=a_tex/u_texsize;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;v_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));}"),gr=yr("#define SDF_PX 8.0\nuniform bool u_is_halo;uniform sampler2D u_texture;uniform highp float u_gamma_scale;uniform lowp float u_device_pixel_ratio;uniform bool u_is_text;varying vec2 v_data0;varying vec3 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nfloat EDGE_GAMMA=0.105/u_device_pixel_ratio;vec2 tex=v_data0.xy;float gamma_scale=v_data1.x;float size=v_data1.y;float fade_opacity=v_data1[2];float fontScale=u_is_text ? size/24.0 : size;lowp vec4 color=fill_color;highp float gamma=EDGE_GAMMA/(fontScale*u_gamma_scale);lowp float buff=(256.0-64.0)/256.0;if (u_is_halo) {color=halo_color;gamma=(halo_blur*1.19/SDF_PX+EDGE_GAMMA)/(fontScale*u_gamma_scale);buff=(6.0-halo_width/fontScale)/SDF_PX;}lowp float dist=texture2D(u_texture,tex).a;highp float gamma_scaled=gamma*gamma_scale;highp float alpha=smoothstep(buff-gamma_scaled,buff+gamma_scaled,dist);gl_FragColor=color*(alpha*opacity*fade_opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec4 a_pixeloffset;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform highp float u_camera_to_center_distance;uniform float u_fade_change;uniform vec2 u_texsize;varying vec2 v_data0;varying vec3 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);vec2 a_pxoffset=a_pixeloffset.xy;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=u_is_text ? size/24.0 : size;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*fontScale+a_pxoffset),0.0,1.0);float gamma_scale=gl_Position.w;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;float interpolated_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));v_data0=a_tex/u_texsize;v_data1=vec3(gamma_scale,size,interpolated_fade_opacity);}"),vr=yr("#define SDF_PX 8.0\n#define SDF 1.0\n#define ICON 0.0\nuniform bool u_is_halo;uniform sampler2D u_texture;uniform sampler2D u_texture_icon;uniform highp float u_gamma_scale;uniform lowp float u_device_pixel_ratio;varying vec4 v_data0;varying vec4 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nfloat fade_opacity=v_data1[2];if (v_data1.w==ICON) {vec2 tex_icon=v_data0.zw;lowp float alpha=opacity*fade_opacity;gl_FragColor=texture2D(u_texture_icon,tex_icon)*alpha;\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\nreturn;}vec2 tex=v_data0.xy;float EDGE_GAMMA=0.105/u_device_pixel_ratio;float gamma_scale=v_data1.x;float size=v_data1.y;float fontScale=size/24.0;lowp vec4 color=fill_color;highp float gamma=EDGE_GAMMA/(fontScale*u_gamma_scale);lowp float buff=(256.0-64.0)/256.0;if (u_is_halo) {color=halo_color;gamma=(halo_blur*1.19/SDF_PX+EDGE_GAMMA)/(fontScale*u_gamma_scale);buff=(6.0-halo_width/fontScale)/SDF_PX;}lowp float dist=texture2D(u_texture,tex).a;highp float gamma_scaled=gamma*gamma_scale;highp float alpha=smoothstep(buff-gamma_scaled,buff+gamma_scaled,dist);gl_FragColor=color*(alpha*opacity*fade_opacity);\n#ifdef OVERDRAW_INSPECTOR\ngl_FragColor=vec4(1.0);\n#endif\n}","const float PI=3.141592653589793;attribute vec4 a_pos_offset;attribute vec4 a_data;attribute vec3 a_projected_pos;attribute float a_fade_opacity;uniform bool u_is_size_zoom_constant;uniform bool u_is_size_feature_constant;uniform highp float u_size_t;uniform highp float u_size;uniform mat4 u_matrix;uniform mat4 u_label_plane_matrix;uniform mat4 u_coord_matrix;uniform bool u_is_text;uniform bool u_pitch_with_map;uniform highp float u_pitch;uniform bool u_rotate_symbol;uniform highp float u_aspect_ratio;uniform highp float u_camera_to_center_distance;uniform float u_fade_change;uniform vec2 u_texsize;uniform vec2 u_texsize_icon;varying vec4 v_data0;varying vec4 v_data1;\n#pragma mapbox: define highp vec4 fill_color\n#pragma mapbox: define highp vec4 halo_color\n#pragma mapbox: define lowp float opacity\n#pragma mapbox: define lowp float halo_width\n#pragma mapbox: define lowp float halo_blur\nvoid main() {\n#pragma mapbox: initialize highp vec4 fill_color\n#pragma mapbox: initialize highp vec4 halo_color\n#pragma mapbox: initialize lowp float opacity\n#pragma mapbox: initialize lowp float halo_width\n#pragma mapbox: initialize lowp float halo_blur\nvec2 a_pos=a_pos_offset.xy;vec2 a_offset=a_pos_offset.zw;vec2 a_tex=a_data.xy;vec2 a_size=a_data.zw;float a_size_min=floor(a_size[0]*0.5);float is_sdf=a_size[0]-2.0*a_size_min;highp float segment_angle=-a_projected_pos[2];float size;if (!u_is_size_zoom_constant && !u_is_size_feature_constant) {size=mix(a_size_min,a_size[1],u_size_t)/128.0;} else if (u_is_size_zoom_constant && !u_is_size_feature_constant) {size=a_size_min/128.0;} else {size=u_size;}vec4 projectedPoint=u_matrix*vec4(a_pos,0,1);highp float camera_to_anchor_distance=projectedPoint.w;highp float distance_ratio=u_pitch_with_map ?\ncamera_to_anchor_distance/u_camera_to_center_distance :\nu_camera_to_center_distance/camera_to_anchor_distance;highp float perspective_ratio=clamp(0.5+0.5*distance_ratio,0.0,4.0);size*=perspective_ratio;float fontScale=size/24.0;highp float symbol_rotation=0.0;if (u_rotate_symbol) {vec4 offsetProjectedPoint=u_matrix*vec4(a_pos+vec2(1,0),0,1);vec2 a=projectedPoint.xy/projectedPoint.w;vec2 b=offsetProjectedPoint.xy/offsetProjectedPoint.w;symbol_rotation=atan((b.y-a.y)/u_aspect_ratio,b.x-a.x);}highp float angle_sin=sin(segment_angle+symbol_rotation);highp float angle_cos=cos(segment_angle+symbol_rotation);mat2 rotation_matrix=mat2(angle_cos,-1.0*angle_sin,angle_sin,angle_cos);vec4 projected_pos=u_label_plane_matrix*vec4(a_projected_pos.xy,0.0,1.0);gl_Position=u_coord_matrix*vec4(projected_pos.xy/projected_pos.w+rotation_matrix*(a_offset/32.0*fontScale),0.0,1.0);float gamma_scale=gl_Position.w;vec2 fade_opacity=unpack_opacity(a_fade_opacity);float fade_change=fade_opacity[1] > 0.5 ? u_fade_change :-u_fade_change;float interpolated_fade_opacity=max(0.0,min(1.0,fade_opacity[0]+fade_change));v_data0.xy=a_tex/u_texsize;v_data0.zw=a_tex/u_texsize_icon;v_data1=vec4(gamma_scale,size,interpolated_fade_opacity,is_sdf);}");function yr(t,e){var r=/#pragma mapbox: ([\w]+) ([\w]+) ([\w]+) ([\w]+)/g,n={};return{fragmentSource:t=t.replace(r,(function(t,e,r,i,a){return n[a]=!0,"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nvarying "+r+" "+i+" "+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"\n#ifdef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n"})),vertexSource:e=e.replace(r,(function(t,e,r,i,a){var o="float"===i?"vec2":"vec4",s=a.match(/color/)?"color":o;return n[a]?"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nuniform lowp float u_"+a+"_t;\nattribute "+r+" "+o+" a_"+a+";\nvarying "+r+" "+i+" "+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"vec4"===s?"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+a+" = a_"+a+";\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+a+" = unpack_mix_"+s+"(a_"+a+", u_"+a+"_t);\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"define"===e?"\n#ifndef HAS_UNIFORM_u_"+a+"\nuniform lowp float u_"+a+"_t;\nattribute "+r+" "+o+" a_"+a+";\n#else\nuniform "+r+" "+i+" u_"+a+";\n#endif\n":"vec4"===s?"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = a_"+a+";\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n":"\n#ifndef HAS_UNIFORM_u_"+a+"\n "+r+" "+i+" "+a+" = unpack_mix_"+s+"(a_"+a+", u_"+a+"_t);\n#else\n "+r+" "+i+" "+a+" = u_"+a+";\n#endif\n"}))}}var xr=Object.freeze({__proto__:null,prelude:Ye,background:We,backgroundPattern:Xe,circle:Ze,clippingMask:Je,heatmap:Ke,heatmapTexture:Qe,collisionBox:$e,collisionCircle:tr,debug:er,fill:rr,fillOutline:nr,fillOutlinePattern:ir,fillPattern:ar,fillExtrusion:or,fillExtrusionPattern:sr,hillshadePrepare:lr,hillshade:cr,line:ur,lineGradient:fr,linePattern:hr,lineSDF:pr,raster:dr,symbolIcon:mr,symbolSDF:gr,symbolTextAndIcon:vr}),br=function(){this.boundProgram=null,this.boundLayoutVertexBuffer=null,this.boundPaintVertexBuffers=[],this.boundIndexBuffer=null,this.boundVertexOffset=null,this.boundDynamicVertexBuffer=null,this.vao=null};br.prototype.bind=function(t,e,r,n,i,a,o,s){this.context=t;for(var l=this.boundPaintVertexBuffers.length!==n.length,c=0;!l&&c>16,s>>16],u_pixel_coord_lower:[65535&o,65535&s]}}_r.prototype.draw=function(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m){var g,v=t.gl;if(!this.failedToCreate){for(var y in t.program.set(this.program),t.setDepthMode(r),t.setStencilMode(n),t.setColorMode(i),t.setCullFace(a),this.fixedUniforms)this.fixedUniforms[y].set(o[y]);p&&p.setUniforms(t,this.binderUniforms,f,{zoom:h});for(var x=(g={},g[v.LINES]=2,g[v.TRIANGLES]=3,g[v.LINE_STRIP]=1,g)[e],b=0,_=u.get();b<_.length;b+=1){var w=_[b],T=w.vaos||(w.vaos={});(T[s]||(T[s]=new br)).bind(t,this,l,p?p.getPaintVertexBuffers():[],c,w.vertexOffset,d,m),v.drawElements(e,w.primitiveLength*x,v.UNSIGNED_SHORT,w.primitiveOffset*x*2)}}};var Tr=function(e,r,n,i){var a=r.style.light,o=a.properties.get("position"),s=[o.x,o.y,o.z],l=t.create$1();"viewport"===a.properties.get("anchor")&&t.fromRotation(l,-r.transform.angle),t.transformMat3(s,s,l);var c=a.properties.get("color");return{u_matrix:e,u_lightpos:s,u_lightintensity:a.properties.get("intensity"),u_lightcolor:[c.r,c.g,c.b],u_vertical_gradient:+n,u_opacity:i}},kr=function(e,r,n,i,a,o,s){return t.extend(Tr(e,r,n,i),wr(o,r,s),{u_height_factor:-Math.pow(2,a.overscaledZ)/s.tileSize/8})},Ar=function(t){return{u_matrix:t}},Mr=function(e,r,n,i){return t.extend(Ar(e),wr(n,r,i))},Sr=function(t,e){return{u_matrix:t,u_world:e}},Er=function(e,r,n,i,a){return t.extend(Mr(e,r,n,i),{u_world:a})},Lr=function(e,r,n,i){var a,o,s=e.transform;if("map"===i.paint.get("circle-pitch-alignment")){var l=pe(n,1,s.zoom);a=!0,o=[l,l]}else a=!1,o=s.pixelsToGLUnits;return{u_camera_to_center_distance:s.cameraToCenterDistance,u_scale_with_map:+("map"===i.paint.get("circle-pitch-scale")),u_matrix:e.translatePosMatrix(r.posMatrix,n,i.paint.get("circle-translate"),i.paint.get("circle-translate-anchor")),u_pitch_with_map:+a,u_device_pixel_ratio:t.browser.devicePixelRatio,u_extrude_scale:o}},Cr=function(t,e,r){var n=pe(r,1,e.zoom),i=Math.pow(2,e.zoom-r.tileID.overscaledZ),a=r.tileID.overscaleFactor();return{u_matrix:t,u_camera_to_center_distance:e.cameraToCenterDistance,u_pixels_to_tile_units:n,u_extrude_scale:[e.pixelsToGLUnits[0]/(n*i),e.pixelsToGLUnits[1]/(n*i)],u_overscale_factor:a}},Pr=function(t,e,r){return{u_matrix:t,u_inv_matrix:e,u_camera_to_center_distance:r.cameraToCenterDistance,u_viewport_size:[r.width,r.height]}},Ir=function(t,e,r){return void 0===r&&(r=1),{u_matrix:t,u_color:e,u_overlay:0,u_overlay_scale:r}},Or=function(t){return{u_matrix:t}},zr=function(t,e,r,n){return{u_matrix:t,u_extrude_scale:pe(e,1,r),u_intensity:n}};function Dr(e,r){var n=Math.pow(2,r.canonical.z),i=r.canonical.y;return[new t.MercatorCoordinate(0,i/n).toLngLat().lat,new t.MercatorCoordinate(0,(i+1)/n).toLngLat().lat]}var Rr=function(e,r,n){var i=e.transform;return{u_matrix:Ur(e,r,n),u_ratio:1/pe(r,1,i.zoom),u_device_pixel_ratio:t.browser.devicePixelRatio,u_units_to_pixels:[1/i.pixelsToGLUnits[0],1/i.pixelsToGLUnits[1]]}},Fr=function(e,r,n){return t.extend(Rr(e,r,n),{u_image:0})},Br=function(e,r,n,i){var a=e.transform,o=jr(r,a);return{u_matrix:Ur(e,r,n),u_texsize:r.imageAtlasTexture.size,u_ratio:1/pe(r,1,a.zoom),u_device_pixel_ratio:t.browser.devicePixelRatio,u_image:0,u_scale:[o,i.fromScale,i.toScale],u_fade:i.t,u_units_to_pixels:[1/a.pixelsToGLUnits[0],1/a.pixelsToGLUnits[1]]}},Nr=function(e,r,n,i,a){var o=e.transform,s=e.lineAtlas,l=jr(r,o),c="round"===n.layout.get("line-cap"),u=s.getDash(i.from,c),f=s.getDash(i.to,c),h=u.width*a.fromScale,p=f.width*a.toScale;return t.extend(Rr(e,r,n),{u_patternscale_a:[l/h,-u.height/2],u_patternscale_b:[l/p,-f.height/2],u_sdfgamma:s.width/(256*Math.min(h,p)*t.browser.devicePixelRatio)/2,u_image:0,u_tex_y_a:u.y,u_tex_y_b:f.y,u_mix:a.t})};function jr(t,e){return 1/pe(t,1,e.tileZoom)}function Ur(t,e,r){return t.translatePosMatrix(e.tileID.posMatrix,e,r.paint.get("line-translate"),r.paint.get("line-translate-anchor"))}var Vr=function(t,e,r,n,i){return{u_matrix:t,u_tl_parent:e,u_scale_parent:r,u_buffer_scale:1,u_fade_t:n.mix,u_opacity:n.opacity*i.paint.get("raster-opacity"),u_image0:0,u_image1:1,u_brightness_low:i.paint.get("raster-brightness-min"),u_brightness_high:i.paint.get("raster-brightness-max"),u_saturation_factor:(o=i.paint.get("raster-saturation"),o>0?1-1/(1.001-o):-o),u_contrast_factor:(a=i.paint.get("raster-contrast"),a>0?1/(1-a):1+a),u_spin_weights:Hr(i.paint.get("raster-hue-rotate"))};var a,o};function Hr(t){t*=Math.PI/180;var e=Math.sin(t),r=Math.cos(t);return[(2*r+1)/3,(-Math.sqrt(3)*e-r+1)/3,(Math.sqrt(3)*e-r+1)/3]}var qr,Gr=function(t,e,r,n,i,a,o,s,l,c){var u=i.transform;return{u_is_size_zoom_constant:+("constant"===t||"source"===t),u_is_size_feature_constant:+("constant"===t||"camera"===t),u_size_t:e?e.uSizeT:0,u_size:e?e.uSize:0,u_camera_to_center_distance:u.cameraToCenterDistance,u_pitch:u.pitch/360*2*Math.PI,u_rotate_symbol:+r,u_aspect_ratio:u.width/u.height,u_fade_change:i.options.fadeDuration?i.symbolFadeChange:1,u_matrix:a,u_label_plane_matrix:o,u_coord_matrix:s,u_is_text:+l,u_pitch_with_map:+n,u_texsize:c,u_texture:0}},Yr=function(e,r,n,i,a,o,s,l,c,u,f){var h=a.transform;return t.extend(Gr(e,r,n,i,a,o,s,l,c,u),{u_gamma_scale:i?Math.cos(h._pitch)*h.cameraToCenterDistance:1,u_device_pixel_ratio:t.browser.devicePixelRatio,u_is_halo:+f})},Wr=function(e,r,n,i,a,o,s,l,c,u){return t.extend(Yr(e,r,n,i,a,o,s,l,!0,c,!0),{u_texsize_icon:u,u_texture_icon:1})},Xr=function(t,e,r){return{u_matrix:t,u_opacity:e,u_color:r}},Zr=function(e,r,n,i,a,o){return t.extend(function(t,e,r,n){var i=r.imageManager.getPattern(t.from.toString()),a=r.imageManager.getPattern(t.to.toString()),o=r.imageManager.getPixelSize(),s=o.width,l=o.height,c=Math.pow(2,n.tileID.overscaledZ),u=n.tileSize*Math.pow(2,r.transform.tileZoom)/c,f=u*(n.tileID.canonical.x+n.tileID.wrap*c),h=u*n.tileID.canonical.y;return{u_image:0,u_pattern_tl_a:i.tl,u_pattern_br_a:i.br,u_pattern_tl_b:a.tl,u_pattern_br_b:a.br,u_texsize:[s,l],u_mix:e.t,u_pattern_size_a:i.displaySize,u_pattern_size_b:a.displaySize,u_scale_a:e.fromScale,u_scale_b:e.toScale,u_tile_units_to_pixels:1/pe(n,1,r.transform.tileZoom),u_pixel_coord_upper:[f>>16,h>>16],u_pixel_coord_lower:[65535&f,65535&h]}}(i,o,n,a),{u_matrix:e,u_opacity:r})},Jr={fillExtrusion:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_lightpos:new t.Uniform3f(e,r.u_lightpos),u_lightintensity:new t.Uniform1f(e,r.u_lightintensity),u_lightcolor:new t.Uniform3f(e,r.u_lightcolor),u_vertical_gradient:new t.Uniform1f(e,r.u_vertical_gradient),u_opacity:new t.Uniform1f(e,r.u_opacity)}},fillExtrusionPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_lightpos:new t.Uniform3f(e,r.u_lightpos),u_lightintensity:new t.Uniform1f(e,r.u_lightintensity),u_lightcolor:new t.Uniform3f(e,r.u_lightcolor),u_vertical_gradient:new t.Uniform1f(e,r.u_vertical_gradient),u_height_factor:new t.Uniform1f(e,r.u_height_factor),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade),u_opacity:new t.Uniform1f(e,r.u_opacity)}},fill:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},fillPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},fillOutline:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world)}},fillOutlinePattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world),u_image:new t.Uniform1i(e,r.u_image),u_texsize:new t.Uniform2f(e,r.u_texsize),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},circle:function(e,r){return{u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_scale_with_map:new t.Uniform1i(e,r.u_scale_with_map),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_extrude_scale:new t.Uniform2f(e,r.u_extrude_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},collisionBox:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pixels_to_tile_units:new t.Uniform1f(e,r.u_pixels_to_tile_units),u_extrude_scale:new t.Uniform2f(e,r.u_extrude_scale),u_overscale_factor:new t.Uniform1f(e,r.u_overscale_factor)}},collisionCircle:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_inv_matrix:new t.UniformMatrix4f(e,r.u_inv_matrix),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_viewport_size:new t.Uniform2f(e,r.u_viewport_size)}},debug:function(e,r){return{u_color:new t.UniformColor(e,r.u_color),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_overlay:new t.Uniform1i(e,r.u_overlay),u_overlay_scale:new t.Uniform1f(e,r.u_overlay_scale)}},clippingMask:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},heatmap:function(e,r){return{u_extrude_scale:new t.Uniform1f(e,r.u_extrude_scale),u_intensity:new t.Uniform1f(e,r.u_intensity),u_matrix:new t.UniformMatrix4f(e,r.u_matrix)}},heatmapTexture:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_world:new t.Uniform2f(e,r.u_world),u_image:new t.Uniform1i(e,r.u_image),u_color_ramp:new t.Uniform1i(e,r.u_color_ramp),u_opacity:new t.Uniform1f(e,r.u_opacity)}},hillshade:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_latrange:new t.Uniform2f(e,r.u_latrange),u_light:new t.Uniform2f(e,r.u_light),u_shadow:new t.UniformColor(e,r.u_shadow),u_highlight:new t.UniformColor(e,r.u_highlight),u_accent:new t.UniformColor(e,r.u_accent)}},hillshadePrepare:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_image:new t.Uniform1i(e,r.u_image),u_dimension:new t.Uniform2f(e,r.u_dimension),u_zoom:new t.Uniform1f(e,r.u_zoom),u_maxzoom:new t.Uniform1f(e,r.u_maxzoom),u_unpack:new t.Uniform4f(e,r.u_unpack)}},line:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels)}},lineGradient:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_image:new t.Uniform1i(e,r.u_image)}},linePattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_texsize:new t.Uniform2f(e,r.u_texsize),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_image:new t.Uniform1i(e,r.u_image),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_scale:new t.Uniform3f(e,r.u_scale),u_fade:new t.Uniform1f(e,r.u_fade)}},lineSDF:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_ratio:new t.Uniform1f(e,r.u_ratio),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_units_to_pixels:new t.Uniform2f(e,r.u_units_to_pixels),u_patternscale_a:new t.Uniform2f(e,r.u_patternscale_a),u_patternscale_b:new t.Uniform2f(e,r.u_patternscale_b),u_sdfgamma:new t.Uniform1f(e,r.u_sdfgamma),u_image:new t.Uniform1i(e,r.u_image),u_tex_y_a:new t.Uniform1f(e,r.u_tex_y_a),u_tex_y_b:new t.Uniform1f(e,r.u_tex_y_b),u_mix:new t.Uniform1f(e,r.u_mix)}},raster:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_tl_parent:new t.Uniform2f(e,r.u_tl_parent),u_scale_parent:new t.Uniform1f(e,r.u_scale_parent),u_buffer_scale:new t.Uniform1f(e,r.u_buffer_scale),u_fade_t:new t.Uniform1f(e,r.u_fade_t),u_opacity:new t.Uniform1f(e,r.u_opacity),u_image0:new t.Uniform1i(e,r.u_image0),u_image1:new t.Uniform1i(e,r.u_image1),u_brightness_low:new t.Uniform1f(e,r.u_brightness_low),u_brightness_high:new t.Uniform1f(e,r.u_brightness_high),u_saturation_factor:new t.Uniform1f(e,r.u_saturation_factor),u_contrast_factor:new t.Uniform1f(e,r.u_contrast_factor),u_spin_weights:new t.Uniform3f(e,r.u_spin_weights)}},symbolIcon:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texture:new t.Uniform1i(e,r.u_texture)}},symbolSDF:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texture:new t.Uniform1i(e,r.u_texture),u_gamma_scale:new t.Uniform1f(e,r.u_gamma_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_is_halo:new t.Uniform1i(e,r.u_is_halo)}},symbolTextAndIcon:function(e,r){return{u_is_size_zoom_constant:new t.Uniform1i(e,r.u_is_size_zoom_constant),u_is_size_feature_constant:new t.Uniform1i(e,r.u_is_size_feature_constant),u_size_t:new t.Uniform1f(e,r.u_size_t),u_size:new t.Uniform1f(e,r.u_size),u_camera_to_center_distance:new t.Uniform1f(e,r.u_camera_to_center_distance),u_pitch:new t.Uniform1f(e,r.u_pitch),u_rotate_symbol:new t.Uniform1i(e,r.u_rotate_symbol),u_aspect_ratio:new t.Uniform1f(e,r.u_aspect_ratio),u_fade_change:new t.Uniform1f(e,r.u_fade_change),u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_label_plane_matrix:new t.UniformMatrix4f(e,r.u_label_plane_matrix),u_coord_matrix:new t.UniformMatrix4f(e,r.u_coord_matrix),u_is_text:new t.Uniform1i(e,r.u_is_text),u_pitch_with_map:new t.Uniform1i(e,r.u_pitch_with_map),u_texsize:new t.Uniform2f(e,r.u_texsize),u_texsize_icon:new t.Uniform2f(e,r.u_texsize_icon),u_texture:new t.Uniform1i(e,r.u_texture),u_texture_icon:new t.Uniform1i(e,r.u_texture_icon),u_gamma_scale:new t.Uniform1f(e,r.u_gamma_scale),u_device_pixel_ratio:new t.Uniform1f(e,r.u_device_pixel_ratio),u_is_halo:new t.Uniform1i(e,r.u_is_halo)}},background:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_opacity:new t.Uniform1f(e,r.u_opacity),u_color:new t.UniformColor(e,r.u_color)}},backgroundPattern:function(e,r){return{u_matrix:new t.UniformMatrix4f(e,r.u_matrix),u_opacity:new t.Uniform1f(e,r.u_opacity),u_image:new t.Uniform1i(e,r.u_image),u_pattern_tl_a:new t.Uniform2f(e,r.u_pattern_tl_a),u_pattern_br_a:new t.Uniform2f(e,r.u_pattern_br_a),u_pattern_tl_b:new t.Uniform2f(e,r.u_pattern_tl_b),u_pattern_br_b:new t.Uniform2f(e,r.u_pattern_br_b),u_texsize:new t.Uniform2f(e,r.u_texsize),u_mix:new t.Uniform1f(e,r.u_mix),u_pattern_size_a:new t.Uniform2f(e,r.u_pattern_size_a),u_pattern_size_b:new t.Uniform2f(e,r.u_pattern_size_b),u_scale_a:new t.Uniform1f(e,r.u_scale_a),u_scale_b:new t.Uniform1f(e,r.u_scale_b),u_pixel_coord_upper:new t.Uniform2f(e,r.u_pixel_coord_upper),u_pixel_coord_lower:new t.Uniform2f(e,r.u_pixel_coord_lower),u_tile_units_to_pixels:new t.Uniform1f(e,r.u_tile_units_to_pixels)}}};function Kr(e,r,n,i,a,o,s){for(var l=e.context,c=l.gl,u=e.useProgram("collisionBox"),f=[],h=0,p=0,d=0;d0){var _=t.create(),w=y;t.mul(_,v.placementInvProjMatrix,e.transform.glCoordMatrix),t.mul(_,_,v.placementViewportMatrix),f.push({circleArray:b,circleOffset:p,transform:w,invTransform:_}),p=h+=b.length/4}x&&u.draw(l,c.LINES,At.disabled,Mt.disabled,e.colorModeForRenderPass(),Et.disabled,Cr(y,e.transform,g),n.id,x.layoutVertexBuffer,x.indexBuffer,x.segments,null,e.transform.zoom,null,null,x.collisionVertexBuffer)}}if(s&&f.length){var T=e.useProgram("collisionCircle"),k=new t.StructArrayLayout2f1f2i16;k.resize(4*h),k._trim();for(var A=0,M=0,S=f;M=0&&(m[v.associatedIconIndex]={shiftedAnchor:S,angle:E})}else ue(v.numGlyphs,p)}if(f){d.clear();for(var C=e.icon.placedSymbolArray,P=0;P0){var s=t.browser.now(),l=(s-e.timeAdded)/o,c=r?(s-r.timeAdded)/o:-1,u=n.getSource(),f=a.coveringZoomLevel({tileSize:u.tileSize,roundZoom:u.roundZoom}),h=!r||Math.abs(r.tileID.overscaledZ-f)>Math.abs(e.tileID.overscaledZ-f),p=h&&e.refreshedUponExpiration?1:t.clamp(h?l:1-c,0,1);return e.refreshedUponExpiration&&l>=1&&(e.refreshedUponExpiration=!1),r?{opacity:1,mix:1-p}:{opacity:p,mix:0}}return{opacity:1,mix:0}}var un=new t.Color(1,0,0,1),fn=new t.Color(0,1,0,1),hn=new t.Color(0,0,1,1),pn=new t.Color(1,0,1,1),dn=new t.Color(0,1,1,1);function mn(t){var e=t.transform.padding;gn(t,t.transform.height-(e.top||0),3,un),gn(t,e.bottom||0,3,fn),vn(t,e.left||0,3,hn),vn(t,t.transform.width-(e.right||0),3,pn);var r=t.transform.centerPoint;!function(t,e,r,n){yn(t,e-1,r-10,2,20,n),yn(t,e-10,r-1,20,2,n)}(t,r.x,t.transform.height-r.y,dn)}function gn(t,e,r,n){yn(t,0,e+r/2,t.transform.width,r,n)}function vn(t,e,r,n){yn(t,e-r/2,0,r,t.transform.height,n)}function yn(e,r,n,i,a,o){var s=e.context,l=s.gl;l.enable(l.SCISSOR_TEST),l.scissor(r*t.browser.devicePixelRatio,n*t.browser.devicePixelRatio,i*t.browser.devicePixelRatio,a*t.browser.devicePixelRatio),s.clear({color:o}),l.disable(l.SCISSOR_TEST)}function xn(e,r,n){var i=e.context,a=i.gl,o=n.posMatrix,s=e.useProgram("debug"),l=At.disabled,c=Mt.disabled,u=e.colorModeForRenderPass();i.activeTexture.set(a.TEXTURE0),e.emptyTexture.bind(a.LINEAR,a.CLAMP_TO_EDGE),s.draw(i,a.LINE_STRIP,l,c,u,Et.disabled,Ir(o,t.Color.red),"$debug",e.debugBuffer,e.tileBorderIndexBuffer,e.debugSegments);var f=r.getTileByID(n.key).latestRawTileData,h=f&&f.byteLength||0,p=Math.floor(h/1024),d=r.getTile(n).tileSize,m=512/Math.min(d,512)*(n.overscaledZ/e.transform.zoom)*.5,g=n.canonical.toString();n.overscaledZ!==n.canonical.z&&(g+=" => "+n.overscaledZ),function(t,e){t.initDebugOverlayCanvas();var r=t.debugOverlayCanvas,n=t.context.gl,i=t.debugOverlayCanvas.getContext("2d");i.clearRect(0,0,r.width,r.height),i.shadowColor="white",i.shadowBlur=2,i.lineWidth=1.5,i.strokeStyle="white",i.textBaseline="top",i.font="bold 36px Open Sans, sans-serif",i.fillText(e,5,5),i.strokeText(e,5,5),t.debugOverlayTexture.update(r),t.debugOverlayTexture.bind(n.LINEAR,n.CLAMP_TO_EDGE)}(e,g+" "+p+"kb"),s.draw(i,a.TRIANGLES,l,c,St.alphaBlended,Et.disabled,Ir(o,t.Color.transparent,m),"$debug",e.debugBuffer,e.quadTriangleIndexBuffer,e.debugSegments)}var bn={symbol:function(e,r,n,i,a){if("translucent"===e.renderPass){var o=Mt.disabled,s=e.colorModeForRenderPass();n.layout.get("text-variable-anchor")&&function(e,r,n,i,a,o,s){for(var l=r.transform,c="map"===a,u="map"===o,f=0,h=e;f256&&this.clearStencil(),r.setColorMode(St.disabled),r.setDepthMode(At.disabled);var i=this.useProgram("clippingMask");this._tileClippingMaskIDs={};for(var a=0,o=e;a256&&this.clearStencil();var t=this.nextStencilID++,e=this.context.gl;return new Mt({func:e.NOTEQUAL,mask:255},t,255,e.KEEP,e.KEEP,e.REPLACE)},_n.prototype.stencilModeForClipping=function(t){var e=this.context.gl;return new Mt({func:e.EQUAL,mask:255},this._tileClippingMaskIDs[t.key],0,e.KEEP,e.KEEP,e.REPLACE)},_n.prototype.stencilConfigForOverlap=function(t){var e,r=this.context.gl,n=t.sort((function(t,e){return e.overscaledZ-t.overscaledZ})),i=n[n.length-1].overscaledZ,a=n[0].overscaledZ-i+1;if(a>1){this.currentStencilSource=void 0,this.nextStencilID+a>256&&this.clearStencil();for(var o={},s=0;s=0;this.currentLayer--){var w=this.style._layers[i[this.currentLayer]],T=a[w.source],k=u[w.source];this._renderTileClippingMasks(w,k),this.renderLayer(this,T,w,k)}for(this.renderPass="translucent",this.currentLayer=0;this.currentLayer0?e.pop():null},_n.prototype.isPatternMissing=function(t){if(!t)return!1;if(!t.from||!t.to)return!0;var e=this.imageManager.getPattern(t.from.toString()),r=this.imageManager.getPattern(t.to.toString());return!e||!r},_n.prototype.useProgram=function(t,e){this.cache=this.cache||{};var r=""+t+(e?e.cacheKey:"")+(this._showOverdrawInspector?"/overdraw":"");return this.cache[r]||(this.cache[r]=new _r(this.context,xr[t],e,Jr[t],this._showOverdrawInspector)),this.cache[r]},_n.prototype.setCustomLayerDefaults=function(){this.context.unbindVAO(),this.context.cullFace.setDefault(),this.context.activeTexture.setDefault(),this.context.pixelStoreUnpack.setDefault(),this.context.pixelStoreUnpackPremultiplyAlpha.setDefault(),this.context.pixelStoreUnpackFlipY.setDefault()},_n.prototype.setBaseState=function(){var t=this.context.gl;this.context.cullFace.set(!1),this.context.viewport.set([0,0,this.width,this.height]),this.context.blendEquation.set(t.FUNC_ADD)},_n.prototype.initDebugOverlayCanvas=function(){if(null==this.debugOverlayCanvas){this.debugOverlayCanvas=t.window.document.createElement("canvas"),this.debugOverlayCanvas.width=512,this.debugOverlayCanvas.height=512;var e=this.context.gl;this.debugOverlayTexture=new t.Texture(this.context,this.debugOverlayCanvas,e.RGBA)}},_n.prototype.destroy=function(){this.emptyTexture.destroy(),this.debugOverlayTexture&&this.debugOverlayTexture.destroy()};var wn=function(t,e){this.points=t,this.planes=e};wn.fromInvProjectionMatrix=function(e,r,n){var i=Math.pow(2,n),a=[[-1,1,-1,1],[1,1,-1,1],[1,-1,-1,1],[-1,-1,-1,1],[-1,1,1,1],[1,1,1,1],[1,-1,1,1],[-1,-1,1,1]].map((function(r){return t.transformMat4([],r,e)})).map((function(e){return t.scale$1([],e,1/e[3]/r*i)})),o=[[0,1,2],[6,5,4],[0,3,7],[2,1,5],[3,2,6],[0,4,5]].map((function(e){var r=t.sub([],a[e[0]],a[e[1]]),n=t.sub([],a[e[2]],a[e[1]]),i=t.normalize([],t.cross([],r,n)),o=-t.dot(i,a[e[1]]);return i.concat(o)}));return new wn(a,o)};var Tn=function(e,r){this.min=e,this.max=r,this.center=t.scale$2([],t.add([],this.min,this.max),.5)};Tn.prototype.quadrant=function(e){for(var r=[e%2==0,e<2],n=t.clone$2(this.min),i=t.clone$2(this.max),a=0;a=0;if(0===o)return 0;o!==r.length&&(n=!1)}if(n)return 2;for(var l=0;l<3;l++){for(var c=Number.MAX_VALUE,u=-Number.MAX_VALUE,f=0;fthis.max[l]-this.min[l])return 0}return 1};var kn=function(t,e,r,n){if(void 0===t&&(t=0),void 0===e&&(e=0),void 0===r&&(r=0),void 0===n&&(n=0),isNaN(t)||t<0||isNaN(e)||e<0||isNaN(r)||r<0||isNaN(n)||n<0)throw new Error("Invalid value for edge-insets, top, bottom, left and right must all be numbers");this.top=t,this.bottom=e,this.left=r,this.right=n};kn.prototype.interpolate=function(e,r,n){return null!=r.top&&null!=e.top&&(this.top=t.number(e.top,r.top,n)),null!=r.bottom&&null!=e.bottom&&(this.bottom=t.number(e.bottom,r.bottom,n)),null!=r.left&&null!=e.left&&(this.left=t.number(e.left,r.left,n)),null!=r.right&&null!=e.right&&(this.right=t.number(e.right,r.right,n)),this},kn.prototype.getCenter=function(e,r){var n=t.clamp((this.left+e-this.right)/2,0,e),i=t.clamp((this.top+r-this.bottom)/2,0,r);return new t.Point(n,i)},kn.prototype.equals=function(t){return this.top===t.top&&this.bottom===t.bottom&&this.left===t.left&&this.right===t.right},kn.prototype.clone=function(){return new kn(this.top,this.bottom,this.left,this.right)},kn.prototype.toJSON=function(){return{top:this.top,bottom:this.bottom,left:this.left,right:this.right}};var An=function(e,r,n,i,a){this.tileSize=512,this.maxValidLatitude=85.051129,this._renderWorldCopies=void 0===a||a,this._minZoom=e||0,this._maxZoom=r||22,this._minPitch=null==n?0:n,this._maxPitch=null==i?60:i,this.setMaxBounds(),this.width=0,this.height=0,this._center=new t.LngLat(0,0),this.zoom=0,this.angle=0,this._fov=.6435011087932844,this._pitch=0,this._unmodified=!0,this._edgeInsets=new kn,this._posMatrixCache={},this._alignedPosMatrixCache={}},Mn={minZoom:{configurable:!0},maxZoom:{configurable:!0},minPitch:{configurable:!0},maxPitch:{configurable:!0},renderWorldCopies:{configurable:!0},worldSize:{configurable:!0},centerOffset:{configurable:!0},size:{configurable:!0},bearing:{configurable:!0},pitch:{configurable:!0},fov:{configurable:!0},zoom:{configurable:!0},center:{configurable:!0},padding:{configurable:!0},centerPoint:{configurable:!0},unmodified:{configurable:!0},point:{configurable:!0}};An.prototype.clone=function(){var t=new An(this._minZoom,this._maxZoom,this._minPitch,this.maxPitch,this._renderWorldCopies);return t.tileSize=this.tileSize,t.latRange=this.latRange,t.width=this.width,t.height=this.height,t._center=this._center,t.zoom=this.zoom,t.angle=this.angle,t._fov=this._fov,t._pitch=this._pitch,t._unmodified=this._unmodified,t._edgeInsets=this._edgeInsets.clone(),t._calcMatrices(),t},Mn.minZoom.get=function(){return this._minZoom},Mn.minZoom.set=function(t){this._minZoom!==t&&(this._minZoom=t,this.zoom=Math.max(this.zoom,t))},Mn.maxZoom.get=function(){return this._maxZoom},Mn.maxZoom.set=function(t){this._maxZoom!==t&&(this._maxZoom=t,this.zoom=Math.min(this.zoom,t))},Mn.minPitch.get=function(){return this._minPitch},Mn.minPitch.set=function(t){this._minPitch!==t&&(this._minPitch=t,this.pitch=Math.max(this.pitch,t))},Mn.maxPitch.get=function(){return this._maxPitch},Mn.maxPitch.set=function(t){this._maxPitch!==t&&(this._maxPitch=t,this.pitch=Math.min(this.pitch,t))},Mn.renderWorldCopies.get=function(){return this._renderWorldCopies},Mn.renderWorldCopies.set=function(t){void 0===t?t=!0:null===t&&(t=!1),this._renderWorldCopies=t},Mn.worldSize.get=function(){return this.tileSize*this.scale},Mn.centerOffset.get=function(){return this.centerPoint._sub(this.size._div(2))},Mn.size.get=function(){return new t.Point(this.width,this.height)},Mn.bearing.get=function(){return-this.angle/Math.PI*180},Mn.bearing.set=function(e){var r=-t.wrap(e,-180,180)*Math.PI/180;this.angle!==r&&(this._unmodified=!1,this.angle=r,this._calcMatrices(),this.rotationMatrix=t.create$2(),t.rotate(this.rotationMatrix,this.rotationMatrix,this.angle))},Mn.pitch.get=function(){return this._pitch/Math.PI*180},Mn.pitch.set=function(e){var r=t.clamp(e,this.minPitch,this.maxPitch)/180*Math.PI;this._pitch!==r&&(this._unmodified=!1,this._pitch=r,this._calcMatrices())},Mn.fov.get=function(){return this._fov/Math.PI*180},Mn.fov.set=function(t){t=Math.max(.01,Math.min(60,t)),this._fov!==t&&(this._unmodified=!1,this._fov=t/180*Math.PI,this._calcMatrices())},Mn.zoom.get=function(){return this._zoom},Mn.zoom.set=function(t){var e=Math.min(Math.max(t,this.minZoom),this.maxZoom);this._zoom!==e&&(this._unmodified=!1,this._zoom=e,this.scale=this.zoomScale(e),this.tileZoom=Math.floor(e),this.zoomFraction=e-this.tileZoom,this._constrain(),this._calcMatrices())},Mn.center.get=function(){return this._center},Mn.center.set=function(t){t.lat===this._center.lat&&t.lng===this._center.lng||(this._unmodified=!1,this._center=t,this._constrain(),this._calcMatrices())},Mn.padding.get=function(){return this._edgeInsets.toJSON()},Mn.padding.set=function(t){this._edgeInsets.equals(t)||(this._unmodified=!1,this._edgeInsets.interpolate(this._edgeInsets,t,1),this._calcMatrices())},Mn.centerPoint.get=function(){return this._edgeInsets.getCenter(this.width,this.height)},An.prototype.isPaddingEqual=function(t){return this._edgeInsets.equals(t)},An.prototype.interpolatePadding=function(t,e,r){this._unmodified=!1,this._edgeInsets.interpolate(t,e,r),this._constrain(),this._calcMatrices()},An.prototype.coveringZoomLevel=function(t){var e=(t.roundZoom?Math.round:Math.floor)(this.zoom+this.scaleZoom(this.tileSize/t.tileSize));return Math.max(0,e)},An.prototype.getVisibleUnwrappedCoordinates=function(e){var r=[new t.UnwrappedTileID(0,e)];if(this._renderWorldCopies)for(var n=this.pointCoordinate(new t.Point(0,0)),i=this.pointCoordinate(new t.Point(this.width,0)),a=this.pointCoordinate(new t.Point(this.width,this.height)),o=this.pointCoordinate(new t.Point(0,this.height)),s=Math.floor(Math.min(n.x,i.x,a.x,o.x)),l=Math.floor(Math.max(n.x,i.x,a.x,o.x)),c=s-1;c<=l+1;c++)0!==c&&r.push(new t.UnwrappedTileID(c,e));return r},An.prototype.coveringTiles=function(e){var r=this.coveringZoomLevel(e),n=r;if(void 0!==e.minzoom&&re.maxzoom&&(r=e.maxzoom);var i=t.MercatorCoordinate.fromLngLat(this.center),a=Math.pow(2,r),o=[a*i.x,a*i.y,0],s=wn.fromInvProjectionMatrix(this.invProjMatrix,this.worldSize,r),l=e.minzoom||0;this.pitch<=60&&this._edgeInsets.top<.1&&(l=r);var c=function(t){return{aabb:new Tn([t*a,0,0],[(t+1)*a,a,0]),zoom:0,x:0,y:0,wrap:t,fullyVisible:!1}},u=[],f=[],h=r,p=e.reparseOverscaled?n:r;if(this._renderWorldCopies)for(var d=1;d<=3;d++)u.push(c(-d)),u.push(c(d));for(u.push(c(0));u.length>0;){var m=u.pop(),g=m.x,v=m.y,y=m.fullyVisible;if(!y){var x=m.aabb.intersects(s);if(0===x)continue;y=2===x}var b=m.aabb.distanceX(o),_=m.aabb.distanceY(o),w=Math.max(Math.abs(b),Math.abs(_)),T=3+(1<T&&m.zoom>=l)f.push({tileID:new t.OverscaledTileID(m.zoom===h?p:m.zoom,m.wrap,m.zoom,g,v),distanceSq:t.sqrLen([o[0]-.5-g,o[1]-.5-v])});else for(var k=0;k<4;k++){var A=(g<<1)+k%2,M=(v<<1)+(k>>1);u.push({aabb:m.aabb.quadrant(k),zoom:m.zoom+1,x:A,y:M,wrap:m.wrap,fullyVisible:y})}}return f.sort((function(t,e){return t.distanceSq-e.distanceSq})).map((function(t){return t.tileID}))},An.prototype.resize=function(t,e){this.width=t,this.height=e,this.pixelsToGLUnits=[2/t,-2/e],this._constrain(),this._calcMatrices()},Mn.unmodified.get=function(){return this._unmodified},An.prototype.zoomScale=function(t){return Math.pow(2,t)},An.prototype.scaleZoom=function(t){return Math.log(t)/Math.LN2},An.prototype.project=function(e){var r=t.clamp(e.lat,-this.maxValidLatitude,this.maxValidLatitude);return new t.Point(t.mercatorXfromLng(e.lng)*this.worldSize,t.mercatorYfromLat(r)*this.worldSize)},An.prototype.unproject=function(e){return new t.MercatorCoordinate(e.x/this.worldSize,e.y/this.worldSize).toLngLat()},Mn.point.get=function(){return this.project(this.center)},An.prototype.setLocationAtPoint=function(e,r){var n=this.pointCoordinate(r),i=this.pointCoordinate(this.centerPoint),a=this.locationCoordinate(e),o=new t.MercatorCoordinate(a.x-(n.x-i.x),a.y-(n.y-i.y));this.center=this.coordinateLocation(o),this._renderWorldCopies&&(this.center=this.center.wrap())},An.prototype.locationPoint=function(t){return this.coordinatePoint(this.locationCoordinate(t))},An.prototype.pointLocation=function(t){return this.coordinateLocation(this.pointCoordinate(t))},An.prototype.locationCoordinate=function(e){return t.MercatorCoordinate.fromLngLat(e)},An.prototype.coordinateLocation=function(t){return t.toLngLat()},An.prototype.pointCoordinate=function(e){var r=[e.x,e.y,0,1],n=[e.x,e.y,1,1];t.transformMat4(r,r,this.pixelMatrixInverse),t.transformMat4(n,n,this.pixelMatrixInverse);var i=r[3],a=n[3],o=r[0]/i,s=n[0]/a,l=r[1]/i,c=n[1]/a,u=r[2]/i,f=n[2]/a,h=u===f?0:(0-u)/(f-u);return new t.MercatorCoordinate(t.number(o,s,h)/this.worldSize,t.number(l,c,h)/this.worldSize)},An.prototype.coordinatePoint=function(e){var r=[e.x*this.worldSize,e.y*this.worldSize,0,1];return t.transformMat4(r,r,this.pixelMatrix),new t.Point(r[0]/r[3],r[1]/r[3])},An.prototype.getBounds=function(){return(new t.LngLatBounds).extend(this.pointLocation(new t.Point(0,0))).extend(this.pointLocation(new t.Point(this.width,0))).extend(this.pointLocation(new t.Point(this.width,this.height))).extend(this.pointLocation(new t.Point(0,this.height)))},An.prototype.getMaxBounds=function(){return this.latRange&&2===this.latRange.length&&this.lngRange&&2===this.lngRange.length?new t.LngLatBounds([this.lngRange[0],this.latRange[0]],[this.lngRange[1],this.latRange[1]]):null},An.prototype.setMaxBounds=function(t){t?(this.lngRange=[t.getWest(),t.getEast()],this.latRange=[t.getSouth(),t.getNorth()],this._constrain()):(this.lngRange=null,this.latRange=[-this.maxValidLatitude,this.maxValidLatitude])},An.prototype.calculatePosMatrix=function(e,r){void 0===r&&(r=!1);var n=e.key,i=r?this._alignedPosMatrixCache:this._posMatrixCache;if(i[n])return i[n];var a=e.canonical,o=this.worldSize/this.zoomScale(a.z),s=a.x+Math.pow(2,a.z)*e.wrap,l=t.identity(new Float64Array(16));return t.translate(l,l,[s*o,a.y*o,0]),t.scale(l,l,[o/t.EXTENT,o/t.EXTENT,1]),t.multiply(l,r?this.alignedProjMatrix:this.projMatrix,l),i[n]=new Float32Array(l),i[n]},An.prototype.customLayerMatrix=function(){return this.mercatorMatrix.slice()},An.prototype._constrain=function(){if(this.center&&this.width&&this.height&&!this._constraining){this._constraining=!0;var e,r,n,i,a=-90,o=90,s=-180,l=180,c=this.size,u=this._unmodified;if(this.latRange){var f=this.latRange;a=t.mercatorYfromLat(f[1])*this.worldSize,e=(o=t.mercatorYfromLat(f[0])*this.worldSize)-ao&&(i=o-g)}if(this.lngRange){var v=p.x,y=c.x/2;v-yl&&(n=l-y)}void 0===n&&void 0===i||(this.center=this.unproject(new t.Point(void 0!==n?n:p.x,void 0!==i?i:p.y))),this._unmodified=u,this._constraining=!1}},An.prototype._calcMatrices=function(){if(this.height){var e=this._fov/2,r=this.centerOffset;this.cameraToCenterDistance=.5/Math.tan(e)*this.height;var n=Math.PI/2+this._pitch,i=this._fov*(.5+r.y/this.height),a=Math.sin(i)*this.cameraToCenterDistance/Math.sin(t.clamp(Math.PI-n-i,.01,Math.PI-.01)),o=this.point,s=o.x,l=o.y,c=1.01*(Math.cos(Math.PI/2-this._pitch)*a+this.cameraToCenterDistance),u=this.height/50,f=new Float64Array(16);t.perspective(f,this._fov,this.width/this.height,u,c),f[8]=2*-r.x/this.width,f[9]=2*r.y/this.height,t.scale(f,f,[1,-1,1]),t.translate(f,f,[0,0,-this.cameraToCenterDistance]),t.rotateX(f,f,this._pitch),t.rotateZ(f,f,this.angle),t.translate(f,f,[-s,-l,0]),this.mercatorMatrix=t.scale([],f,[this.worldSize,this.worldSize,this.worldSize]),t.scale(f,f,[1,1,t.mercatorZfromAltitude(1,this.center.lat)*this.worldSize,1]),this.projMatrix=f,this.invProjMatrix=t.invert([],this.projMatrix);var h=this.width%2/2,p=this.height%2/2,d=Math.cos(this.angle),m=Math.sin(this.angle),g=s-Math.round(s)+d*h+m*p,v=l-Math.round(l)+d*p+m*h,y=new Float64Array(f);if(t.translate(y,y,[g>.5?g-1:g,v>.5?v-1:v,0]),this.alignedProjMatrix=y,f=t.create(),t.scale(f,f,[this.width/2,-this.height/2,1]),t.translate(f,f,[1,-1,0]),this.labelPlaneMatrix=f,f=t.create(),t.scale(f,f,[1,-1,1]),t.translate(f,f,[-1,-1,0]),t.scale(f,f,[2/this.width,2/this.height,1]),this.glCoordMatrix=f,this.pixelMatrix=t.multiply(new Float64Array(16),this.labelPlaneMatrix,this.projMatrix),!(f=t.invert(new Float64Array(16),this.pixelMatrix)))throw new Error("failed to invert matrix");this.pixelMatrixInverse=f,this._posMatrixCache={},this._alignedPosMatrixCache={}}},An.prototype.maxPitchScaleFactor=function(){if(!this.pixelMatrixInverse)return 1;var e=this.pointCoordinate(new t.Point(0,0)),r=[e.x*this.worldSize,e.y*this.worldSize,0,1];return t.transformMat4(r,r,this.pixelMatrix)[3]/this.cameraToCenterDistance},An.prototype.getCameraPoint=function(){var e=this._pitch,r=Math.tan(e)*(this.cameraToCenterDistance||1);return this.centerPoint.add(new t.Point(0,r))},An.prototype.getCameraQueryGeometry=function(e){var r=this.getCameraPoint();if(1===e.length)return[e[0],r];for(var n=r.x,i=r.y,a=r.x,o=r.y,s=0,l=e;s=3&&!t.some((function(t){return isNaN(t)}))){var e=this._map.dragRotate.isEnabled()&&this._map.touchZoomRotate.isEnabled()?+(t[3]||0):this._map.getBearing();return this._map.jumpTo({center:[+t[2],+t[1]],zoom:+t[0],bearing:e,pitch:+(t[4]||0)}),!0}return!1},Sn.prototype._updateHashUnthrottled=function(){var e=this.getHashString();try{t.window.history.replaceState(t.window.history.state,"",e)}catch(t){}};var En={linearity:.3,easing:t.bezier(0,0,.3,1)},Ln=t.extend({deceleration:2500,maxSpeed:1400},En),Cn=t.extend({deceleration:20,maxSpeed:1400},En),Pn=t.extend({deceleration:1e3,maxSpeed:360},En),In=t.extend({deceleration:1e3,maxSpeed:90},En),On=function(t){this._map=t,this.clear()};function zn(t,e){(!t.duration||t.duration0&&r-e[0].time>160;)e.shift()},On.prototype._onMoveEnd=function(e){if(this._drainInertiaBuffer(),!(this._inertiaBuffer.length<2)){for(var r={zoom:0,bearing:0,pitch:0,pan:new t.Point(0,0),pinchAround:void 0,around:void 0},n=0,i=this._inertiaBuffer;n=this._clickTolerance||this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.dblclick=function(t){return this._firePreventable(new Rn(t.type,this._map,t))},Nn.prototype.mouseover=function(t){this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.mouseout=function(t){this._map.fire(new Rn(t.type,this._map,t))},Nn.prototype.touchstart=function(t){return this._firePreventable(new Fn(t.type,this._map,t))},Nn.prototype.touchmove=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype.touchend=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype.touchcancel=function(t){this._map.fire(new Fn(t.type,this._map,t))},Nn.prototype._firePreventable=function(t){if(this._map.fire(t),t.defaultPrevented)return{}},Nn.prototype.isEnabled=function(){return!0},Nn.prototype.isActive=function(){return!1},Nn.prototype.enable=function(){},Nn.prototype.disable=function(){};var jn=function(t){this._map=t};jn.prototype.reset=function(){this._delayContextMenu=!1,delete this._contextMenuEvent},jn.prototype.mousemove=function(t){this._map.fire(new Rn(t.type,this._map,t))},jn.prototype.mousedown=function(){this._delayContextMenu=!0},jn.prototype.mouseup=function(){this._delayContextMenu=!1,this._contextMenuEvent&&(this._map.fire(new Rn("contextmenu",this._map,this._contextMenuEvent)),delete this._contextMenuEvent)},jn.prototype.contextmenu=function(t){this._delayContextMenu?this._contextMenuEvent=t:this._map.fire(new Rn(t.type,this._map,t)),this._map.listens("contextmenu")&&t.preventDefault()},jn.prototype.isEnabled=function(){return!0},jn.prototype.isActive=function(){return!1},jn.prototype.enable=function(){},jn.prototype.disable=function(){};var Un=function(t,e){this._map=t,this._el=t.getCanvasContainer(),this._container=t.getContainer(),this._clickTolerance=e.clickTolerance||1};function Vn(t,e){for(var r={},n=0;nthis.numTouches)&&(this.aborted=!0),this.aborted||(void 0===this.startTime&&(this.startTime=e.timeStamp),n.length===this.numTouches&&(this.centroid=function(e){for(var r=new t.Point(0,0),n=0,i=e;n30)&&(this.aborted=!0)}}},Hn.prototype.touchend=function(t,e,r){if((!this.centroid||t.timeStamp-this.startTime>500)&&(this.aborted=!0),0===r.length){var n=!this.aborted&&this.centroid;if(this.reset(),n)return n}};var qn=function(t){this.singleTap=new Hn(t),this.numTaps=t.numTaps,this.reset()};qn.prototype.reset=function(){this.lastTime=1/0,delete this.lastTap,this.count=0,this.singleTap.reset()},qn.prototype.touchstart=function(t,e,r){this.singleTap.touchstart(t,e,r)},qn.prototype.touchmove=function(t,e,r){this.singleTap.touchmove(t,e,r)},qn.prototype.touchend=function(t,e,r){var n=this.singleTap.touchend(t,e,r);if(n){var i=t.timeStamp-this.lastTime<500,a=!this.lastTap||this.lastTap.dist(n)<30;if(i&&a||this.reset(),this.count++,this.lastTime=t.timeStamp,this.lastTap=n,this.count===this.numTaps)return this.reset(),n}};var Gn=function(){this._zoomIn=new qn({numTouches:1,numTaps:2}),this._zoomOut=new qn({numTouches:2,numTaps:1}),this.reset()};Gn.prototype.reset=function(){this._active=!1,this._zoomIn.reset(),this._zoomOut.reset()},Gn.prototype.touchstart=function(t,e,r){this._zoomIn.touchstart(t,e,r),this._zoomOut.touchstart(t,e,r)},Gn.prototype.touchmove=function(t,e,r){this._zoomIn.touchmove(t,e,r),this._zoomOut.touchmove(t,e,r)},Gn.prototype.touchend=function(t,e,r){var n=this,i=this._zoomIn.touchend(t,e,r),a=this._zoomOut.touchend(t,e,r);return i?(this._active=!0,t.preventDefault(),setTimeout((function(){return n.reset()}),0),{cameraAnimation:function(e){return e.easeTo({duration:300,zoom:e.getZoom()+1,around:e.unproject(i)},{originalEvent:t})}}):a?(this._active=!0,t.preventDefault(),setTimeout((function(){return n.reset()}),0),{cameraAnimation:function(e){return e.easeTo({duration:300,zoom:e.getZoom()-1,around:e.unproject(a)},{originalEvent:t})}}):void 0},Gn.prototype.touchcancel=function(){this.reset()},Gn.prototype.enable=function(){this._enabled=!0},Gn.prototype.disable=function(){this._enabled=!1,this.reset()},Gn.prototype.isEnabled=function(){return this._enabled},Gn.prototype.isActive=function(){return this._active};var Yn=function(t){this.reset(),this._clickTolerance=t.clickTolerance||1};Yn.prototype.reset=function(){this._active=!1,this._moved=!1,delete this._lastPoint,delete this._eventButton},Yn.prototype._correctButton=function(t,e){return!1},Yn.prototype._move=function(t,e){return{}},Yn.prototype.mousedown=function(t,e){if(!this._lastPoint){var n=r.mouseButton(t);this._correctButton(t,n)&&(this._lastPoint=e,this._eventButton=n)}},Yn.prototype.mousemoveWindow=function(t,e){var r=this._lastPoint;if(r&&(t.preventDefault(),this._moved||!(e.dist(r)0&&(this._active=!0);var i=Vn(n,r),a=new t.Point(0,0),o=new t.Point(0,0),s=0;for(var l in i){var c=i[l],u=this._touches[l];u&&(a._add(c),o._add(c.sub(u)),s++,i[l]=c)}if(this._touches=i,!(sMath.abs(t.x)}var ii=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e.prototype.reset=function(){t.prototype.reset.call(this),this._valid=void 0,delete this._firstMove,delete this._lastPoints},e.prototype._start=function(t){this._lastPoints=t,ni(t[0].sub(t[1]))&&(this._valid=!1)},e.prototype._move=function(t,e,r){var n=t[0].sub(this._lastPoints[0]),i=t[1].sub(this._lastPoints[1]);if(this._valid=this.gestureBeginsVertically(n,i,r.timeStamp),this._valid){this._lastPoints=t,this._active=!0;return{pitchDelta:-.5*((n.y+i.y)/2)}}},e.prototype.gestureBeginsVertically=function(t,e,r){if(void 0!==this._valid)return this._valid;var n=t.mag()>=2,i=e.mag()>=2;if(n||i){if(!n||!i)return void 0===this._firstMove&&(this._firstMove=r),r-this._firstMove<100&&void 0;var a=t.y>0==e.y>0;return ni(t)&&ni(e)&&a}},e}(Kn),ai={panStep:100,bearingStep:15,pitchStep:10},oi=function(){var t=ai;this._panStep=t.panStep,this._bearingStep=t.bearingStep,this._pitchStep=t.pitchStep};function si(t){return t*(2-t)}oi.prototype.reset=function(){this._active=!1},oi.prototype.keydown=function(t){var e=this;if(!(t.altKey||t.ctrlKey||t.metaKey)){var r=0,n=0,i=0,a=0,o=0;switch(t.keyCode){case 61:case 107:case 171:case 187:r=1;break;case 189:case 109:case 173:r=-1;break;case 37:t.shiftKey?n=-1:(t.preventDefault(),a=-1);break;case 39:t.shiftKey?n=1:(t.preventDefault(),a=1);break;case 38:t.shiftKey?i=1:(t.preventDefault(),o=-1);break;case 40:t.shiftKey?i=-1:(t.preventDefault(),o=1);break;default:return}return{cameraAnimation:function(s){var l=s.getZoom();s.easeTo({duration:300,easeId:"keyboardHandler",easing:si,zoom:r?Math.round(l)+r*(t.shiftKey?2:1):l,bearing:s.getBearing()+n*e._bearingStep,pitch:s.getPitch()+i*e._pitchStep,offset:[-a*e._panStep,-o*e._panStep],center:s.getCenter()},{originalEvent:t})}}}},oi.prototype.enable=function(){this._enabled=!0},oi.prototype.disable=function(){this._enabled=!1,this.reset()},oi.prototype.isEnabled=function(){return this._enabled},oi.prototype.isActive=function(){return this._active};var li=function(e,r){this._map=e,this._el=e.getCanvasContainer(),this._handler=r,this._delta=0,this._defaultZoomRate=.01,this._wheelZoomRate=1/450,t.bindAll(["_onWheel","_onTimeout","_onScrollFrame","_onScrollFinished"],this)};li.prototype.setZoomRate=function(t){this._defaultZoomRate=t},li.prototype.setWheelZoomRate=function(t){this._wheelZoomRate=t},li.prototype.isEnabled=function(){return!!this._enabled},li.prototype.isActive=function(){return!!this._active||void 0!==this._finishTimeout},li.prototype.isZooming=function(){return!!this._zooming},li.prototype.enable=function(t){this.isEnabled()||(this._enabled=!0,this._aroundCenter=t&&"center"===t.around)},li.prototype.disable=function(){this.isEnabled()&&(this._enabled=!1)},li.prototype.wheel=function(e){if(this.isEnabled()){var r=e.deltaMode===t.window.WheelEvent.DOM_DELTA_LINE?40*e.deltaY:e.deltaY,n=t.browser.now(),i=n-(this._lastWheelEventTime||0);this._lastWheelEventTime=n,0!==r&&r%4.000244140625==0?this._type="wheel":0!==r&&Math.abs(r)<4?this._type="trackpad":i>400?(this._type=null,this._lastValue=r,this._timeout=setTimeout(this._onTimeout,40,e)):this._type||(this._type=Math.abs(i*r)<200?"trackpad":"wheel",this._timeout&&(clearTimeout(this._timeout),this._timeout=null,r+=this._lastValue)),e.shiftKey&&r&&(r/=4),this._type&&(this._lastWheelEvent=e,this._delta-=r,this._active||this._start(e)),e.preventDefault()}},li.prototype._onTimeout=function(t){this._type="wheel",this._delta-=this._lastValue,this._active||this._start(t)},li.prototype._start=function(e){if(this._delta){this._frameId&&(this._frameId=null),this._active=!0,this.isZooming()||(this._zooming=!0),this._finishTimeout&&(clearTimeout(this._finishTimeout),delete this._finishTimeout);var n=r.mousePos(this._el,e);this._around=t.LngLat.convert(this._aroundCenter?this._map.getCenter():this._map.unproject(n)),this._aroundPoint=this._map.transform.locationPoint(this._around),this._frameId||(this._frameId=!0,this._handler._triggerRenderFrame())}},li.prototype.renderFrame=function(){return this._onScrollFrame()},li.prototype._onScrollFrame=function(){var e=this;if(this._frameId&&(this._frameId=null,this.isActive())){var r=this._map.transform;if(0!==this._delta){var n="wheel"===this._type&&Math.abs(this._delta)>4.000244140625?this._wheelZoomRate:this._defaultZoomRate,i=2/(1+Math.exp(-Math.abs(this._delta*n)));this._delta<0&&0!==i&&(i=1/i);var a="number"==typeof this._targetZoom?r.zoomScale(this._targetZoom):r.scale;this._targetZoom=Math.min(r.maxZoom,Math.max(r.minZoom,r.scaleZoom(a*i))),"wheel"===this._type&&(this._startZoom=r.zoom,this._easing=this._smoothOutEasing(200)),this._delta=0}var o,s="number"==typeof this._targetZoom?this._targetZoom:r.zoom,l=this._startZoom,c=this._easing,u=!1;if("wheel"===this._type&&l&&c){var f=Math.min((t.browser.now()-this._lastWheelEventTime)/200,1),h=c(f);o=t.number(l,s,h),f<1?this._frameId||(this._frameId=!0):u=!0}else o=s,u=!0;return this._active=!0,u&&(this._active=!1,this._finishTimeout=setTimeout((function(){e._zooming=!1,e._handler._triggerRenderFrame(),delete e._targetZoom,delete e._finishTimeout}),200)),{noInertia:!0,needsRenderFrame:!u,zoomDelta:o-r.zoom,around:this._aroundPoint,originalEvent:this._lastWheelEvent}}},li.prototype._smoothOutEasing=function(e){var r=t.ease;if(this._prevEase){var n=this._prevEase,i=(t.browser.now()-n.start)/n.duration,a=n.easing(i+.01)-n.easing(i),o=.27/Math.sqrt(a*a+1e-4)*.01,s=Math.sqrt(.0729-o*o);r=t.bezier(o,s,.25,1)}return this._prevEase={start:t.browser.now(),duration:e,easing:r},r},li.prototype.reset=function(){this._active=!1};var ci=function(t,e){this._clickZoom=t,this._tapZoom=e};ci.prototype.enable=function(){this._clickZoom.enable(),this._tapZoom.enable()},ci.prototype.disable=function(){this._clickZoom.disable(),this._tapZoom.disable()},ci.prototype.isEnabled=function(){return this._clickZoom.isEnabled()&&this._tapZoom.isEnabled()},ci.prototype.isActive=function(){return this._clickZoom.isActive()||this._tapZoom.isActive()};var ui=function(){this.reset()};ui.prototype.reset=function(){this._active=!1},ui.prototype.dblclick=function(t,e){return t.preventDefault(),{cameraAnimation:function(r){r.easeTo({duration:300,zoom:r.getZoom()+(t.shiftKey?-1:1),around:r.unproject(e)},{originalEvent:t})}}},ui.prototype.enable=function(){this._enabled=!0},ui.prototype.disable=function(){this._enabled=!1,this.reset()},ui.prototype.isEnabled=function(){return this._enabled},ui.prototype.isActive=function(){return this._active};var fi=function(){this._tap=new qn({numTouches:1,numTaps:1}),this.reset()};fi.prototype.reset=function(){this._active=!1,delete this._swipePoint,delete this._swipeTouch,delete this._tapTime,this._tap.reset()},fi.prototype.touchstart=function(t,e,r){this._swipePoint||(this._tapTime&&t.timeStamp-this._tapTime>500&&this.reset(),this._tapTime?r.length>0&&(this._swipePoint=e[0],this._swipeTouch=r[0].identifier):this._tap.touchstart(t,e,r))},fi.prototype.touchmove=function(t,e,r){if(this._tapTime){if(this._swipePoint){if(r[0].identifier!==this._swipeTouch)return;var n=e[0],i=n.y-this._swipePoint.y;return this._swipePoint=n,t.preventDefault(),this._active=!0,{zoomDelta:i/128}}}else this._tap.touchmove(t,e,r)},fi.prototype.touchend=function(t,e,r){this._tapTime?this._swipePoint&&0===r.length&&this.reset():this._tap.touchend(t,e,r)&&(this._tapTime=t.timeStamp)},fi.prototype.touchcancel=function(){this.reset()},fi.prototype.enable=function(){this._enabled=!0},fi.prototype.disable=function(){this._enabled=!1,this.reset()},fi.prototype.isEnabled=function(){return this._enabled},fi.prototype.isActive=function(){return this._active};var hi=function(t,e,r){this._el=t,this._mousePan=e,this._touchPan=r};hi.prototype.enable=function(t){this._inertiaOptions=t||{},this._mousePan.enable(),this._touchPan.enable(),this._el.classList.add("mapboxgl-touch-drag-pan")},hi.prototype.disable=function(){this._mousePan.disable(),this._touchPan.disable(),this._el.classList.remove("mapboxgl-touch-drag-pan")},hi.prototype.isEnabled=function(){return this._mousePan.isEnabled()&&this._touchPan.isEnabled()},hi.prototype.isActive=function(){return this._mousePan.isActive()||this._touchPan.isActive()};var pi=function(t,e,r){this._pitchWithRotate=t.pitchWithRotate,this._mouseRotate=e,this._mousePitch=r};pi.prototype.enable=function(){this._mouseRotate.enable(),this._pitchWithRotate&&this._mousePitch.enable()},pi.prototype.disable=function(){this._mouseRotate.disable(),this._mousePitch.disable()},pi.prototype.isEnabled=function(){return this._mouseRotate.isEnabled()&&(!this._pitchWithRotate||this._mousePitch.isEnabled())},pi.prototype.isActive=function(){return this._mouseRotate.isActive()||this._mousePitch.isActive()};var di=function(t,e,r,n){this._el=t,this._touchZoom=e,this._touchRotate=r,this._tapDragZoom=n,this._rotationDisabled=!1,this._enabled=!0};di.prototype.enable=function(t){this._touchZoom.enable(t),this._rotationDisabled||this._touchRotate.enable(t),this._tapDragZoom.enable(),this._el.classList.add("mapboxgl-touch-zoom-rotate")},di.prototype.disable=function(){this._touchZoom.disable(),this._touchRotate.disable(),this._tapDragZoom.disable(),this._el.classList.remove("mapboxgl-touch-zoom-rotate")},di.prototype.isEnabled=function(){return this._touchZoom.isEnabled()&&(this._rotationDisabled||this._touchRotate.isEnabled())&&this._tapDragZoom.isEnabled()},di.prototype.isActive=function(){return this._touchZoom.isActive()||this._touchRotate.isActive()||this._tapDragZoom.isActive()},di.prototype.disableRotation=function(){this._rotationDisabled=!0,this._touchRotate.disable()},di.prototype.enableRotation=function(){this._rotationDisabled=!1,this._touchZoom.isEnabled()&&this._touchRotate.enable()};var mi=function(t){return t.zoom||t.drag||t.pitch||t.rotate},gi=function(t){function e(){t.apply(this,arguments)}return t&&(e.__proto__=t),e.prototype=Object.create(t&&t.prototype),e.prototype.constructor=e,e}(t.Event);function vi(t){return t.panDelta&&t.panDelta.mag()||t.zoomDelta||t.bearingDelta||t.pitchDelta}var yi=function(e,n){this._map=e,this._el=this._map.getCanvasContainer(),this._handlers=[],this._handlersById={},this._changes=[],this._inertia=new On(e),this._bearingSnap=n.bearingSnap,this._previousActiveHandlers={},this._eventsInProgress={},this._addDefaultHandlers(n),t.bindAll(["handleEvent","handleWindowEvent"],this);var i=this._el;this._listeners=[[i,"touchstart",{passive:!1}],[i,"touchmove",{passive:!1}],[i,"touchend",void 0],[i,"touchcancel",void 0],[i,"mousedown",void 0],[i,"mousemove",void 0],[i,"mouseup",void 0],[t.window.document,"mousemove",{capture:!0}],[t.window.document,"mouseup",void 0],[i,"mouseover",void 0],[i,"mouseout",void 0],[i,"dblclick",void 0],[i,"click",void 0],[i,"keydown",{capture:!1}],[i,"keyup",void 0],[i,"wheel",{passive:!1}],[i,"contextmenu",void 0],[t.window,"blur",void 0]];for(var a=0,o=this._listeners;aa?Math.min(2,_):Math.max(.5,_),w=Math.pow(g,1-e),T=i.unproject(x.add(b.mult(e*w)).mult(m));i.setLocationAtPoint(i.renderWorldCopies?T.wrap():T,d)}n._fireMoveEvents(r)}),(function(t){n._afterEase(r,t)}),e),this},r.prototype._prepareEase=function(e,r,n){void 0===n&&(n={}),this._moving=!0,r||n.moving||this.fire(new t.Event("movestart",e)),this._zooming&&!n.zooming&&this.fire(new t.Event("zoomstart",e)),this._rotating&&!n.rotating&&this.fire(new t.Event("rotatestart",e)),this._pitching&&!n.pitching&&this.fire(new t.Event("pitchstart",e))},r.prototype._fireMoveEvents=function(e){this.fire(new t.Event("move",e)),this._zooming&&this.fire(new t.Event("zoom",e)),this._rotating&&this.fire(new t.Event("rotate",e)),this._pitching&&this.fire(new t.Event("pitch",e))},r.prototype._afterEase=function(e,r){if(!this._easeId||!r||this._easeId!==r){delete this._easeId;var n=this._zooming,i=this._rotating,a=this._pitching;this._moving=!1,this._zooming=!1,this._rotating=!1,this._pitching=!1,this._padding=!1,n&&this.fire(new t.Event("zoomend",e)),i&&this.fire(new t.Event("rotateend",e)),a&&this.fire(new t.Event("pitchend",e)),this.fire(new t.Event("moveend",e))}},r.prototype.flyTo=function(e,r){var n=this;if(!e.essential&&t.browser.prefersReducedMotion){var i=t.pick(e,["center","zoom","bearing","pitch","around"]);return this.jumpTo(i,r)}this.stop(),e=t.extend({offset:[0,0],speed:1.2,curve:1.42,easing:t.ease},e);var a=this.transform,o=this.getZoom(),s=this.getBearing(),l=this.getPitch(),c=this.getPadding(),u="zoom"in e?t.clamp(+e.zoom,a.minZoom,a.maxZoom):o,f="bearing"in e?this._normalizeBearing(e.bearing,s):s,h="pitch"in e?+e.pitch:l,p="padding"in e?e.padding:a.padding,d=a.zoomScale(u-o),m=t.Point.convert(e.offset),g=a.centerPoint.add(m),v=a.pointLocation(g),y=t.LngLat.convert(e.center||v);this._normalizeCenter(y);var x=a.project(v),b=a.project(y).sub(x),_=e.curve,w=Math.max(a.width,a.height),T=w/d,k=b.mag();if("minZoom"in e){var A=t.clamp(Math.min(e.minZoom,o,u),a.minZoom,a.maxZoom),M=w/a.zoomScale(A-o);_=Math.sqrt(M/k*2)}var S=_*_;function E(t){var e=(T*T-w*w+(t?-1:1)*S*S*k*k)/(2*(t?T:w)*S*k);return Math.log(Math.sqrt(e*e+1)-e)}function L(t){return(Math.exp(t)-Math.exp(-t))/2}function C(t){return(Math.exp(t)+Math.exp(-t))/2}var P=E(0),I=function(t){return C(P)/C(P+_*t)},O=function(t){return w*((C(P)*(L(e=P+_*t)/C(e))-L(P))/S)/k;var e},z=(E(1)-P)/_;if(Math.abs(k)<1e-6||!isFinite(z)){if(Math.abs(w-T)<1e-6)return this.easeTo(e,r);var D=Te.maxDuration&&(e.duration=0),this._zooming=!0,this._rotating=s!==f,this._pitching=h!==l,this._padding=!a.isPaddingEqual(p),this._prepareEase(r,!1),this._ease((function(e){var i=e*z,d=1/I(i);a.zoom=1===e?u:o+a.scaleZoom(d),n._rotating&&(a.bearing=t.number(s,f,e)),n._pitching&&(a.pitch=t.number(l,h,e)),n._padding&&(a.interpolatePadding(c,p,e),g=a.centerPoint.add(m));var v=1===e?y:a.unproject(x.add(b.mult(O(i))).mult(d));a.setLocationAtPoint(a.renderWorldCopies?v.wrap():v,g),n._fireMoveEvents(r)}),(function(){return n._afterEase(r)}),e),this},r.prototype.isEasing=function(){return!!this._easeFrameId},r.prototype.stop=function(){return this._stop()},r.prototype._stop=function(t,e){if(this._easeFrameId&&(this._cancelRenderFrame(this._easeFrameId),delete this._easeFrameId,delete this._onEaseFrame),this._onEaseEnd){var r=this._onEaseEnd;delete this._onEaseEnd,r.call(this,e)}if(!t){var n=this.handlers;n&&n.stop()}return this},r.prototype._ease=function(e,r,n){!1===n.animate||0===n.duration?(e(1),r()):(this._easeStart=t.browser.now(),this._easeOptions=n,this._onEaseFrame=e,this._onEaseEnd=r,this._easeFrameId=this._requestRenderFrame(this._renderFrameCallback))},r.prototype._renderFrameCallback=function(){var e=Math.min((t.browser.now()-this._easeStart)/this._easeOptions.duration,1);this._onEaseFrame(this._easeOptions.easing(e)),e<1?this._easeFrameId=this._requestRenderFrame(this._renderFrameCallback):this.stop()},r.prototype._normalizeBearing=function(e,r){e=t.wrap(e,-180,180);var n=Math.abs(e-r);return Math.abs(e-360-r)180?-360:r<-180?360:0}},r}(t.Evented),bi=function(e){void 0===e&&(e={}),this.options=e,t.bindAll(["_updateEditLink","_updateData","_updateCompact"],this)};bi.prototype.getDefaultPosition=function(){return"bottom-right"},bi.prototype.onAdd=function(t){var e=this.options&&this.options.compact;return this._map=t,this._container=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-attrib"),this._innerContainer=r.create("div","mapboxgl-ctrl-attrib-inner",this._container),e&&this._container.classList.add("mapboxgl-compact"),this._updateAttributions(),this._updateEditLink(),this._map.on("styledata",this._updateData),this._map.on("sourcedata",this._updateData),this._map.on("moveend",this._updateEditLink),void 0===e&&(this._map.on("resize",this._updateCompact),this._updateCompact()),this._container},bi.prototype.onRemove=function(){r.remove(this._container),this._map.off("styledata",this._updateData),this._map.off("sourcedata",this._updateData),this._map.off("moveend",this._updateEditLink),this._map.off("resize",this._updateCompact),this._map=void 0,this._attribHTML=void 0},bi.prototype._updateEditLink=function(){var e=this._editLink;e||(e=this._editLink=this._container.querySelector(".mapbox-improve-map"));var r=[{key:"owner",value:this.styleOwner},{key:"id",value:this.styleId},{key:"access_token",value:this._map._requestManager._customAccessToken||t.config.ACCESS_TOKEN}];if(e){var n=r.reduce((function(t,e,n){return e.value&&(t+=e.key+"="+e.value+(n=0)return!1;return!0}))).join(" | ");o!==this._attribHTML&&(this._attribHTML=o,t.length?(this._innerContainer.innerHTML=o,this._container.classList.remove("mapboxgl-attrib-empty")):this._container.classList.add("mapboxgl-attrib-empty"),this._editLink=null)}},bi.prototype._updateCompact=function(){this._map.getCanvasContainer().offsetWidth<=640?this._container.classList.add("mapboxgl-compact"):this._container.classList.remove("mapboxgl-compact")};var _i=function(){t.bindAll(["_updateLogo"],this),t.bindAll(["_updateCompact"],this)};_i.prototype.onAdd=function(t){this._map=t,this._container=r.create("div","mapboxgl-ctrl");var e=r.create("a","mapboxgl-ctrl-logo");return e.target="_blank",e.rel="noopener nofollow",e.href="https://www.mapbox.com/",e.setAttribute("aria-label",this._map._getUIString("LogoControl.Title")),e.setAttribute("rel","noopener nofollow"),this._container.appendChild(e),this._container.style.display="none",this._map.on("sourcedata",this._updateLogo),this._updateLogo(),this._map.on("resize",this._updateCompact),this._updateCompact(),this._container},_i.prototype.onRemove=function(){r.remove(this._container),this._map.off("sourcedata",this._updateLogo),this._map.off("resize",this._updateCompact)},_i.prototype.getDefaultPosition=function(){return"bottom-left"},_i.prototype._updateLogo=function(t){t&&"metadata"!==t.sourceDataType||(this._container.style.display=this._logoRequired()?"block":"none")},_i.prototype._logoRequired=function(){if(this._map.style){var t=this._map.style.sourceCaches;for(var e in t){if(t[e].getSource().mapbox_logo)return!0}return!1}},_i.prototype._updateCompact=function(){var t=this._container.children;if(t.length){var e=t[0];this._map.getCanvasContainer().offsetWidth<250?e.classList.add("mapboxgl-compact"):e.classList.remove("mapboxgl-compact")}};var wi=function(){this._queue=[],this._id=0,this._cleared=!1,this._currentlyRunning=!1};wi.prototype.add=function(t){var e=++this._id;return this._queue.push({callback:t,id:e,cancelled:!1}),e},wi.prototype.remove=function(t){for(var e=this._currentlyRunning,r=0,n=e?this._queue.concat(e):this._queue;re.maxZoom)throw new Error("maxZoom must be greater than or equal to minZoom");if(null!=e.minPitch&&null!=e.maxPitch&&e.minPitch>e.maxPitch)throw new Error("maxPitch must be greater than or equal to minPitch");if(null!=e.minPitch&&e.minPitch<0)throw new Error("minPitch must be greater than or equal to 0");if(null!=e.maxPitch&&e.maxPitch>60)throw new Error("maxPitch must be less than or equal to 60");var i=new An(e.minZoom,e.maxZoom,e.minPitch,e.maxPitch,e.renderWorldCopies);if(n.call(this,i,e),this._interactive=e.interactive,this._maxTileCacheSize=e.maxTileCacheSize,this._failIfMajorPerformanceCaveat=e.failIfMajorPerformanceCaveat,this._preserveDrawingBuffer=e.preserveDrawingBuffer,this._antialias=e.antialias,this._trackResize=e.trackResize,this._bearingSnap=e.bearingSnap,this._refreshExpiredTiles=e.refreshExpiredTiles,this._fadeDuration=e.fadeDuration,this._crossSourceCollisions=e.crossSourceCollisions,this._crossFadingFactor=1,this._collectResourceTiming=e.collectResourceTiming,this._renderTaskQueue=new wi,this._controls=[],this._mapId=t.uniqueId(),this._locale=t.extend({},Ti,e.locale),this._requestManager=new t.RequestManager(e.transformRequest,e.accessToken),"string"==typeof e.container){if(this._container=t.window.document.getElementById(e.container),!this._container)throw new Error("Container '"+e.container+"' not found.")}else{if(!(e.container instanceof Ai))throw new Error("Invalid type: 'container' must be a String or HTMLElement.");this._container=e.container}if(e.maxBounds&&this.setMaxBounds(e.maxBounds),t.bindAll(["_onWindowOnline","_onWindowResize","_contextLost","_contextRestored"],this),this._setupContainer(),this._setupPainter(),void 0===this.painter)throw new Error("Failed to initialize WebGL.");this.on("move",(function(){return r._update(!1)})),this.on("moveend",(function(){return r._update(!1)})),this.on("zoom",(function(){return r._update(!0)})),void 0!==t.window&&(t.window.addEventListener("online",this._onWindowOnline,!1),t.window.addEventListener("resize",this._onWindowResize,!1)),this.handlers=new yi(this,e);var a="string"==typeof e.hash&&e.hash||void 0;this._hash=e.hash&&new Sn(a).addTo(this),this._hash&&this._hash._onHashChange()||(this.jumpTo({center:e.center,zoom:e.zoom,bearing:e.bearing,pitch:e.pitch}),e.bounds&&(this.resize(),this.fitBounds(e.bounds,t.extend({},e.fitBoundsOptions,{duration:0})))),this.resize(),this._localIdeographFontFamily=e.localIdeographFontFamily,e.style&&this.setStyle(e.style,{localIdeographFontFamily:e.localIdeographFontFamily}),e.attributionControl&&this.addControl(new bi({customAttribution:e.customAttribution})),this.addControl(new _i,e.logoPosition),this.on("style.load",(function(){r.transform.unmodified&&r.jumpTo(r.style.stylesheet)})),this.on("data",(function(e){r._update("style"===e.dataType),r.fire(new t.Event(e.dataType+"data",e))})),this.on("dataloading",(function(e){r.fire(new t.Event(e.dataType+"dataloading",e))}))}n&&(i.__proto__=n),i.prototype=Object.create(n&&n.prototype),i.prototype.constructor=i;var a={showTileBoundaries:{configurable:!0},showPadding:{configurable:!0},showCollisionBoxes:{configurable:!0},showOverdrawInspector:{configurable:!0},repaint:{configurable:!0},vertices:{configurable:!0},version:{configurable:!0}};return i.prototype._getMapId=function(){return this._mapId},i.prototype.addControl=function(e,r){if(void 0===r&&e.getDefaultPosition&&(r=e.getDefaultPosition()),void 0===r&&(r="top-right"),!e||!e.onAdd)return this.fire(new t.ErrorEvent(new Error("Invalid argument to map.addControl(). Argument must be a control with onAdd and onRemove methods.")));var n=e.onAdd(this);this._controls.push(e);var i=this._controlPositions[r];return-1!==r.indexOf("bottom")?i.insertBefore(n,i.firstChild):i.appendChild(n),this},i.prototype.removeControl=function(e){if(!e||!e.onRemove)return this.fire(new t.ErrorEvent(new Error("Invalid argument to map.removeControl(). Argument must be a control with onAdd and onRemove methods.")));var r=this._controls.indexOf(e);return r>-1&&this._controls.splice(r,1),e.onRemove(this),this},i.prototype.resize=function(e){var r=this._containerDimensions(),n=r[0],i=r[1];this._resizeCanvas(n,i),this.transform.resize(n,i),this.painter.resize(n,i);var a=!this._moving;return a&&(this.stop(),this.fire(new t.Event("movestart",e)).fire(new t.Event("move",e))),this.fire(new t.Event("resize",e)),a&&this.fire(new t.Event("moveend",e)),this},i.prototype.getBounds=function(){return this.transform.getBounds()},i.prototype.getMaxBounds=function(){return this.transform.getMaxBounds()},i.prototype.setMaxBounds=function(e){return this.transform.setMaxBounds(t.LngLatBounds.convert(e)),this._update()},i.prototype.setMinZoom=function(t){if((t=null==t?-2:t)>=-2&&t<=this.transform.maxZoom)return this.transform.minZoom=t,this._update(),this.getZoom()=this.transform.minZoom)return this.transform.maxZoom=t,this._update(),this.getZoom()>t&&this.setZoom(t),this;throw new Error("maxZoom must be greater than the current minZoom")},i.prototype.getMaxZoom=function(){return this.transform.maxZoom},i.prototype.setMinPitch=function(t){if((t=null==t?0:t)<0)throw new Error("minPitch must be greater than or equal to 0");if(t>=0&&t<=this.transform.maxPitch)return this.transform.minPitch=t,this._update(),this.getPitch()60)throw new Error("maxPitch must be less than or equal to 60");if(t>=this.transform.minPitch)return this.transform.maxPitch=t,this._update(),this.getPitch()>t&&this.setPitch(t),this;throw new Error("maxPitch must be greater than the current minPitch")},i.prototype.getMaxPitch=function(){return this.transform.maxPitch},i.prototype.getRenderWorldCopies=function(){return this.transform.renderWorldCopies},i.prototype.setRenderWorldCopies=function(t){return this.transform.renderWorldCopies=t,this._update()},i.prototype.project=function(e){return this.transform.locationPoint(t.LngLat.convert(e))},i.prototype.unproject=function(e){return this.transform.pointLocation(t.Point.convert(e))},i.prototype.isMoving=function(){return this._moving||this.handlers.isMoving()},i.prototype.isZooming=function(){return this._zooming||this.handlers.isZooming()},i.prototype.isRotating=function(){return this._rotating||this.handlers.isRotating()},i.prototype._createDelegatedListener=function(t,e,r){var n,i=this;if("mouseenter"===t||"mouseover"===t){var a=!1;return{layer:e,listener:r,delegates:{mousemove:function(n){var o=i.getLayer(e)?i.queryRenderedFeatures(n.point,{layers:[e]}):[];o.length?a||(a=!0,r.call(i,new Rn(t,i,n.originalEvent,{features:o}))):a=!1},mouseout:function(){a=!1}}}}if("mouseleave"===t||"mouseout"===t){var o=!1;return{layer:e,listener:r,delegates:{mousemove:function(n){(i.getLayer(e)?i.queryRenderedFeatures(n.point,{layers:[e]}):[]).length?o=!0:o&&(o=!1,r.call(i,new Rn(t,i,n.originalEvent)))},mouseout:function(e){o&&(o=!1,r.call(i,new Rn(t,i,e.originalEvent)))}}}}return{layer:e,listener:r,delegates:(n={},n[t]=function(t){var n=i.getLayer(e)?i.queryRenderedFeatures(t.point,{layers:[e]}):[];n.length&&(t.features=n,r.call(i,t),delete t.features)},n)}},i.prototype.on=function(t,e,r){if(void 0===r)return n.prototype.on.call(this,t,e);var i=this._createDelegatedListener(t,e,r);for(var a in this._delegatedListeners=this._delegatedListeners||{},this._delegatedListeners[t]=this._delegatedListeners[t]||[],this._delegatedListeners[t].push(i),i.delegates)this.on(a,i.delegates[a]);return this},i.prototype.once=function(t,e,r){if(void 0===r)return n.prototype.once.call(this,t,e);var i=this._createDelegatedListener(t,e,r);for(var a in i.delegates)this.once(a,i.delegates[a]);return this},i.prototype.off=function(t,e,r){var i=this;if(void 0===r)return n.prototype.off.call(this,t,e);return this._delegatedListeners&&this._delegatedListeners[t]&&function(n){for(var a=n[t],o=0;o180;){var s=n.locationPoint(e);if(s.x>=0&&s.y>=0&&s.x<=n.width&&s.y<=n.height)break;e.lng>n.center.lng?e.lng-=360:e.lng+=360}return e}Ii.prototype.down=function(t,e){this.mouseRotate.mousedown(t,e),this.mousePitch&&this.mousePitch.mousedown(t,e),r.disableDrag()},Ii.prototype.move=function(t,e){var r=this.map,n=this.mouseRotate.mousemoveWindow(t,e);if(n&&n.bearingDelta&&r.setBearing(r.getBearing()+n.bearingDelta),this.mousePitch){var i=this.mousePitch.mousemoveWindow(t,e);i&&i.pitchDelta&&r.setPitch(r.getPitch()+i.pitchDelta)}},Ii.prototype.off=function(){var t=this.element;r.removeEventListener(t,"mousedown",this.mousedown),r.removeEventListener(t,"touchstart",this.touchstart,{passive:!1}),r.removeEventListener(t,"touchmove",this.touchmove),r.removeEventListener(t,"touchend",this.touchend),r.removeEventListener(t,"touchcancel",this.reset),this.offTemp()},Ii.prototype.offTemp=function(){r.enableDrag(),r.removeEventListener(t.window,"mousemove",this.mousemove),r.removeEventListener(t.window,"mouseup",this.mouseup)},Ii.prototype.mousedown=function(e){this.down(t.extend({},e,{ctrlKey:!0,preventDefault:function(){return e.preventDefault()}}),r.mousePos(this.element,e)),r.addEventListener(t.window,"mousemove",this.mousemove),r.addEventListener(t.window,"mouseup",this.mouseup)},Ii.prototype.mousemove=function(t){this.move(t,r.mousePos(this.element,t))},Ii.prototype.mouseup=function(t){this.mouseRotate.mouseupWindow(t),this.mousePitch&&this.mousePitch.mouseupWindow(t),this.offTemp()},Ii.prototype.touchstart=function(t){1!==t.targetTouches.length?this.reset():(this._startPos=this._lastPos=r.touchPos(this.element,t.targetTouches)[0],this.down({type:"mousedown",button:0,ctrlKey:!0,preventDefault:function(){return t.preventDefault()}},this._startPos))},Ii.prototype.touchmove=function(t){1!==t.targetTouches.length?this.reset():(this._lastPos=r.touchPos(this.element,t.targetTouches)[0],this.move({preventDefault:function(){return t.preventDefault()}},this._lastPos))},Ii.prototype.touchend=function(t){0===t.targetTouches.length&&this._startPos&&this._lastPos&&this._startPos.dist(this._lastPos)e.getEast()||r.latitudee.getNorth())},n.prototype._setErrorState=function(){switch(this._watchState){case"WAITING_ACTIVE":this._watchState="ACTIVE_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error");break;case"ACTIVE_LOCK":this._watchState="ACTIVE_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting");break;case"BACKGROUND":this._watchState="BACKGROUND_ERROR",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting")}},n.prototype._onSuccess=function(e){if(this._map){if(this._isOutOfMapMaxBounds(e))return this._setErrorState(),this.fire(new t.Event("outofmaxbounds",e)),this._updateMarker(),void this._finish();if(this.options.trackUserLocation)switch(this._lastKnownPosition=e,this._watchState){case"WAITING_ACTIVE":case"ACTIVE_LOCK":case"ACTIVE_ERROR":this._watchState="ACTIVE_LOCK",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"BACKGROUND":case"BACKGROUND_ERROR":this._watchState="BACKGROUND",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background")}this.options.showUserLocation&&"OFF"!==this._watchState&&this._updateMarker(e),this.options.trackUserLocation&&"ACTIVE_LOCK"!==this._watchState||this._updateCamera(e),this.options.showUserLocation&&this._dotElement.classList.remove("mapboxgl-user-location-dot-stale"),this.fire(new t.Event("geolocate",e)),this._finish()}},n.prototype._updateCamera=function(e){var r=new t.LngLat(e.coords.longitude,e.coords.latitude),n=e.coords.accuracy,i=this._map.getBearing(),a=t.extend({bearing:i},this.options.fitBoundsOptions);this._map.fitBounds(r.toBounds(n),a,{geolocateSource:!0})},n.prototype._updateMarker=function(e){if(e){var r=new t.LngLat(e.coords.longitude,e.coords.latitude);this._accuracyCircleMarker.setLngLat(r).addTo(this._map),this._userLocationDotMarker.setLngLat(r).addTo(this._map),this._accuracy=e.coords.accuracy,this.options.showUserLocation&&this.options.showAccuracyCircle&&this._updateCircleRadius()}else this._userLocationDotMarker.remove(),this._accuracyCircleMarker.remove()},n.prototype._updateCircleRadius=function(){var t=this._map._container.clientHeight/2,e=this._map.unproject([0,t]),r=this._map.unproject([1,t]),n=e.distanceTo(r),i=Math.ceil(2*this._accuracy/n);this._circleElement.style.width=i+"px",this._circleElement.style.height=i+"px"},n.prototype._onZoom=function(){this.options.showUserLocation&&this.options.showAccuracyCircle&&this._updateCircleRadius()},n.prototype._onError=function(e){if(this._map){if(this.options.trackUserLocation)if(1===e.code){this._watchState="OFF",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this._geolocateButton.disabled=!0;var r=this._map._getUIString("GeolocateControl.LocationNotAvailable");this._geolocateButton.title=r,this._geolocateButton.setAttribute("aria-label",r),void 0!==this._geolocationWatchID&&this._clearWatch()}else{if(3===e.code&&ji)return;this._setErrorState()}"OFF"!==this._watchState&&this.options.showUserLocation&&this._dotElement.classList.add("mapboxgl-user-location-dot-stale"),this.fire(new t.Event("error",e)),this._finish()}},n.prototype._finish=function(){this._timeoutId&&clearTimeout(this._timeoutId),this._timeoutId=void 0},n.prototype._setupUI=function(e){var n=this;if(this._container.addEventListener("contextmenu",(function(t){return t.preventDefault()})),this._geolocateButton=r.create("button","mapboxgl-ctrl-geolocate",this._container),r.create("span","mapboxgl-ctrl-icon",this._geolocateButton).setAttribute("aria-hidden",!0),this._geolocateButton.type="button",!1===e){t.warnOnce("Geolocation support is not available so the GeolocateControl will be disabled.");var i=this._map._getUIString("GeolocateControl.LocationNotAvailable");this._geolocateButton.disabled=!0,this._geolocateButton.title=i,this._geolocateButton.setAttribute("aria-label",i)}else{var a=this._map._getUIString("GeolocateControl.FindMyLocation");this._geolocateButton.title=a,this._geolocateButton.setAttribute("aria-label",a)}this.options.trackUserLocation&&(this._geolocateButton.setAttribute("aria-pressed","false"),this._watchState="OFF"),this.options.showUserLocation&&(this._dotElement=r.create("div","mapboxgl-user-location-dot"),this._userLocationDotMarker=new Fi(this._dotElement),this._circleElement=r.create("div","mapboxgl-user-location-accuracy-circle"),this._accuracyCircleMarker=new Fi({element:this._circleElement,pitchAlignment:"map"}),this.options.trackUserLocation&&(this._watchState="OFF"),this._map.on("zoom",this._onZoom)),this._geolocateButton.addEventListener("click",this.trigger.bind(this)),this._setup=!0,this.options.trackUserLocation&&this._map.on("movestart",(function(e){var r=e.originalEvent&&"resize"===e.originalEvent.type;e.geolocateSource||"ACTIVE_LOCK"!==n._watchState||r||(n._watchState="BACKGROUND",n._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background"),n._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),n.fire(new t.Event("trackuserlocationend")))}))},n.prototype.trigger=function(){if(!this._setup)return t.warnOnce("Geolocate control triggered before added to a map"),!1;if(this.options.trackUserLocation){switch(this._watchState){case"OFF":this._watchState="WAITING_ACTIVE",this.fire(new t.Event("trackuserlocationstart"));break;case"WAITING_ACTIVE":case"ACTIVE_LOCK":case"ACTIVE_ERROR":case"BACKGROUND_ERROR":Ni--,ji=!1,this._watchState="OFF",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-active-error"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background-error"),this.fire(new t.Event("trackuserlocationend"));break;case"BACKGROUND":this._watchState="ACTIVE_LOCK",this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-background"),this._lastKnownPosition&&this._updateCamera(this._lastKnownPosition),this.fire(new t.Event("trackuserlocationstart"))}switch(this._watchState){case"WAITING_ACTIVE":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"ACTIVE_LOCK":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active");break;case"ACTIVE_ERROR":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-active-error");break;case"BACKGROUND":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background");break;case"BACKGROUND_ERROR":this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-background-error")}if("OFF"===this._watchState&&void 0!==this._geolocationWatchID)this._clearWatch();else if(void 0===this._geolocationWatchID){var e;this._geolocateButton.classList.add("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.setAttribute("aria-pressed","true"),++Ni>1?(e={maximumAge:6e5,timeout:0},ji=!0):(e=this.options.positionOptions,ji=!1),this._geolocationWatchID=t.window.navigator.geolocation.watchPosition(this._onSuccess,this._onError,e)}}else t.window.navigator.geolocation.getCurrentPosition(this._onSuccess,this._onError,this.options.positionOptions),this._timeoutId=setTimeout(this._finish,1e4);return!0},n.prototype._clearWatch=function(){t.window.navigator.geolocation.clearWatch(this._geolocationWatchID),this._geolocationWatchID=void 0,this._geolocateButton.classList.remove("mapboxgl-ctrl-geolocate-waiting"),this._geolocateButton.setAttribute("aria-pressed","false"),this.options.showUserLocation&&this._updateMarker(null)},n}(t.Evented),Vi={maxWidth:100,unit:"metric"},Hi=function(e){this.options=t.extend({},Vi,e),t.bindAll(["_onMove","setUnit"],this)};function qi(t,e,r){var n=r&&r.maxWidth||100,i=t._container.clientHeight/2,a=t.unproject([0,i]),o=t.unproject([n,i]),s=a.distanceTo(o);if(r&&"imperial"===r.unit){var l=3.2808*s;if(l>5280)Gi(e,n,l/5280,t._getUIString("ScaleControl.Miles"));else Gi(e,n,l,t._getUIString("ScaleControl.Feet"))}else if(r&&"nautical"===r.unit){Gi(e,n,s/1852,t._getUIString("ScaleControl.NauticalMiles"))}else s>=1e3?Gi(e,n,s/1e3,t._getUIString("ScaleControl.Kilometers")):Gi(e,n,s,t._getUIString("ScaleControl.Meters"))}function Gi(t,e,r,n){var i,a,o,s=(i=r,a=Math.pow(10,(""+Math.floor(i)).length-1),o=(o=i/a)>=10?10:o>=5?5:o>=3?3:o>=2?2:o>=1?1:function(t){var e=Math.pow(10,Math.ceil(-Math.log(t)/Math.LN10));return Math.round(t*e)/e}(o),a*o),l=s/r;t.style.width=e*l+"px",t.innerHTML=s+" "+n}Hi.prototype.getDefaultPosition=function(){return"bottom-left"},Hi.prototype._onMove=function(){qi(this._map,this._container,this.options)},Hi.prototype.onAdd=function(t){return this._map=t,this._container=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-scale",t.getContainer()),this._map.on("move",this._onMove),this._onMove(),this._container},Hi.prototype.onRemove=function(){r.remove(this._container),this._map.off("move",this._onMove),this._map=void 0},Hi.prototype.setUnit=function(t){this.options.unit=t,qi(this._map,this._container,this.options)};var Yi=function(e){this._fullscreen=!1,e&&e.container&&(e.container instanceof t.window.HTMLElement?this._container=e.container:t.warnOnce("Full screen control 'container' must be a DOM element.")),t.bindAll(["_onClickFullscreen","_changeIcon"],this),"onfullscreenchange"in t.window.document?this._fullscreenchange="fullscreenchange":"onmozfullscreenchange"in t.window.document?this._fullscreenchange="mozfullscreenchange":"onwebkitfullscreenchange"in t.window.document?this._fullscreenchange="webkitfullscreenchange":"onmsfullscreenchange"in t.window.document&&(this._fullscreenchange="MSFullscreenChange")};Yi.prototype.onAdd=function(e){return this._map=e,this._container||(this._container=this._map.getContainer()),this._controlContainer=r.create("div","mapboxgl-ctrl mapboxgl-ctrl-group"),this._checkFullscreenSupport()?this._setupUI():(this._controlContainer.style.display="none",t.warnOnce("This device does not support fullscreen mode.")),this._controlContainer},Yi.prototype.onRemove=function(){r.remove(this._controlContainer),this._map=null,t.window.document.removeEventListener(this._fullscreenchange,this._changeIcon)},Yi.prototype._checkFullscreenSupport=function(){return!!(t.window.document.fullscreenEnabled||t.window.document.mozFullScreenEnabled||t.window.document.msFullscreenEnabled||t.window.document.webkitFullscreenEnabled)},Yi.prototype._setupUI=function(){var e=this._fullscreenButton=r.create("button","mapboxgl-ctrl-fullscreen",this._controlContainer);r.create("span","mapboxgl-ctrl-icon",e).setAttribute("aria-hidden",!0),e.type="button",this._updateTitle(),this._fullscreenButton.addEventListener("click",this._onClickFullscreen),t.window.document.addEventListener(this._fullscreenchange,this._changeIcon)},Yi.prototype._updateTitle=function(){var t=this._getTitle();this._fullscreenButton.setAttribute("aria-label",t),this._fullscreenButton.title=t},Yi.prototype._getTitle=function(){return this._map._getUIString(this._isFullscreen()?"FullscreenControl.Exit":"FullscreenControl.Enter")},Yi.prototype._isFullscreen=function(){return this._fullscreen},Yi.prototype._changeIcon=function(){(t.window.document.fullscreenElement||t.window.document.mozFullScreenElement||t.window.document.webkitFullscreenElement||t.window.document.msFullscreenElement)===this._container!==this._fullscreen&&(this._fullscreen=!this._fullscreen,this._fullscreenButton.classList.toggle("mapboxgl-ctrl-shrink"),this._fullscreenButton.classList.toggle("mapboxgl-ctrl-fullscreen"),this._updateTitle())},Yi.prototype._onClickFullscreen=function(){this._isFullscreen()?t.window.document.exitFullscreen?t.window.document.exitFullscreen():t.window.document.mozCancelFullScreen?t.window.document.mozCancelFullScreen():t.window.document.msExitFullscreen?t.window.document.msExitFullscreen():t.window.document.webkitCancelFullScreen&&t.window.document.webkitCancelFullScreen():this._container.requestFullscreen?this._container.requestFullscreen():this._container.mozRequestFullScreen?this._container.mozRequestFullScreen():this._container.msRequestFullscreen?this._container.msRequestFullscreen():this._container.webkitRequestFullscreen&&this._container.webkitRequestFullscreen()};var Wi={closeButton:!0,closeOnClick:!0,className:"",maxWidth:"240px"},Xi=function(e){function n(r){e.call(this),this.options=t.extend(Object.create(Wi),r),t.bindAll(["_update","_onClose","remove","_onMouseMove","_onMouseUp","_onDrag"],this)}return e&&(n.__proto__=e),n.prototype=Object.create(e&&e.prototype),n.prototype.constructor=n,n.prototype.addTo=function(e){return this._map&&this.remove(),this._map=e,this.options.closeOnClick&&this._map.on("click",this._onClose),this.options.closeOnMove&&this._map.on("move",this._onClose),this._map.on("remove",this.remove),this._update(),this._trackPointer?(this._map.on("mousemove",this._onMouseMove),this._map.on("mouseup",this._onMouseUp),this._container&&this._container.classList.add("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.add("mapboxgl-track-pointer")):this._map.on("move",this._update),this.fire(new t.Event("open")),this},n.prototype.isOpen=function(){return!!this._map},n.prototype.remove=function(){return this._content&&r.remove(this._content),this._container&&(r.remove(this._container),delete this._container),this._map&&(this._map.off("move",this._update),this._map.off("move",this._onClose),this._map.off("click",this._onClose),this._map.off("remove",this.remove),this._map.off("mousemove",this._onMouseMove),this._map.off("mouseup",this._onMouseUp),this._map.off("drag",this._onDrag),delete this._map),this.fire(new t.Event("close")),this},n.prototype.getLngLat=function(){return this._lngLat},n.prototype.setLngLat=function(e){return this._lngLat=t.LngLat.convert(e),this._pos=null,this._trackPointer=!1,this._update(),this._map&&(this._map.on("move",this._update),this._map.off("mousemove",this._onMouseMove),this._container&&this._container.classList.remove("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.remove("mapboxgl-track-pointer")),this},n.prototype.trackPointer=function(){return this._trackPointer=!0,this._pos=null,this._update(),this._map&&(this._map.off("move",this._update),this._map.on("mousemove",this._onMouseMove),this._map.on("drag",this._onDrag),this._container&&this._container.classList.add("mapboxgl-popup-track-pointer"),this._map._canvasContainer.classList.add("mapboxgl-track-pointer")),this},n.prototype.getElement=function(){return this._container},n.prototype.setText=function(e){return this.setDOMContent(t.window.document.createTextNode(e))},n.prototype.setHTML=function(e){var r,n=t.window.document.createDocumentFragment(),i=t.window.document.createElement("body");for(i.innerHTML=e;r=i.firstChild;)n.appendChild(r);return this.setDOMContent(n)},n.prototype.getMaxWidth=function(){return this._container&&this._container.style.maxWidth},n.prototype.setMaxWidth=function(t){return this.options.maxWidth=t,this._update(),this},n.prototype.setDOMContent=function(t){return this._createContent(),this._content.appendChild(t),this._update(),this},n.prototype.addClassName=function(t){this._container&&this._container.classList.add(t)},n.prototype.removeClassName=function(t){this._container&&this._container.classList.remove(t)},n.prototype.toggleClassName=function(t){if(this._container)return this._container.classList.toggle(t)},n.prototype._createContent=function(){this._content&&r.remove(this._content),this._content=r.create("div","mapboxgl-popup-content",this._container),this.options.closeButton&&(this._closeButton=r.create("button","mapboxgl-popup-close-button",this._content),this._closeButton.type="button",this._closeButton.setAttribute("aria-label","Close popup"),this._closeButton.innerHTML="×",this._closeButton.addEventListener("click",this._onClose))},n.prototype._onMouseUp=function(t){this._update(t.point)},n.prototype._onMouseMove=function(t){this._update(t.point)},n.prototype._onDrag=function(t){this._update(t.point)},n.prototype._update=function(e){var n=this,i=this._lngLat||this._trackPointer;if(this._map&&i&&this._content&&(this._container||(this._container=r.create("div","mapboxgl-popup",this._map.getContainer()),this._tip=r.create("div","mapboxgl-popup-tip",this._container),this._container.appendChild(this._content),this.options.className&&this.options.className.split(" ").forEach((function(t){return n._container.classList.add(t)})),this._trackPointer&&this._container.classList.add("mapboxgl-popup-track-pointer")),this.options.maxWidth&&this._container.style.maxWidth!==this.options.maxWidth&&(this._container.style.maxWidth=this.options.maxWidth),this._map.transform.renderWorldCopies&&!this._trackPointer&&(this._lngLat=Oi(this._lngLat,this._pos,this._map.transform)),!this._trackPointer||e)){var a=this._pos=this._trackPointer&&e?e:this._map.project(this._lngLat),o=this.options.anchor,s=function e(r){if(r){if("number"==typeof r){var n=Math.round(Math.sqrt(.5*Math.pow(r,2)));return{center:new t.Point(0,0),top:new t.Point(0,r),"top-left":new t.Point(n,n),"top-right":new t.Point(-n,n),bottom:new t.Point(0,-r),"bottom-left":new t.Point(n,-n),"bottom-right":new t.Point(-n,-n),left:new t.Point(r,0),right:new t.Point(-r,0)}}if(r instanceof t.Point||Array.isArray(r)){var i=t.Point.convert(r);return{center:i,top:i,"top-left":i,"top-right":i,bottom:i,"bottom-left":i,"bottom-right":i,left:i,right:i}}return{center:t.Point.convert(r.center||[0,0]),top:t.Point.convert(r.top||[0,0]),"top-left":t.Point.convert(r["top-left"]||[0,0]),"top-right":t.Point.convert(r["top-right"]||[0,0]),bottom:t.Point.convert(r.bottom||[0,0]),"bottom-left":t.Point.convert(r["bottom-left"]||[0,0]),"bottom-right":t.Point.convert(r["bottom-right"]||[0,0]),left:t.Point.convert(r.left||[0,0]),right:t.Point.convert(r.right||[0,0])}}return e(new t.Point(0,0))}(this.options.offset);if(!o){var l,c=this._container.offsetWidth,u=this._container.offsetHeight;l=a.y+s.bottom.ythis._map.transform.height-u?["bottom"]:[],a.xthis._map.transform.width-c/2&&l.push("right"),o=0===l.length?"bottom":l.join("-")}var f=a.add(s[o]).round();r.setTransform(this._container,zi[o]+" translate("+f.x+"px,"+f.y+"px)"),Di(this._container,o,"popup")}},n.prototype._onClose=function(){this.remove()},n}(t.Evented);var Zi={version:t.version,supported:e,setRTLTextPlugin:t.setRTLTextPlugin,getRTLTextPluginStatus:t.getRTLTextPluginStatus,Map:Ei,NavigationControl:Pi,GeolocateControl:Ui,AttributionControl:bi,ScaleControl:Hi,FullscreenControl:Yi,Popup:Xi,Marker:Fi,Style:qe,LngLat:t.LngLat,LngLatBounds:t.LngLatBounds,Point:t.Point,MercatorCoordinate:t.MercatorCoordinate,Evented:t.Evented,config:t.config,prewarm:function(){Bt().acquire(zt)},clearPrewarmedResources:function(){var t=Rt;t&&(t.isPreloaded()&&1===t.numActive()?(t.release(zt),Rt=null):console.warn("Could not clear WebWorkers since there are active Map instances that still reference it. The pre-warmed WebWorker pool can only be cleared when all map instances have been removed with map.remove()"))},get accessToken(){return t.config.ACCESS_TOKEN},set accessToken(e){t.config.ACCESS_TOKEN=e},get baseApiUrl(){return t.config.API_URL},set baseApiUrl(e){t.config.API_URL=e},get workerCount(){return Dt.workerCount},set workerCount(t){Dt.workerCount=t},get maxParallelImageRequests(){return t.config.MAX_PARALLEL_IMAGE_REQUESTS},set maxParallelImageRequests(e){t.config.MAX_PARALLEL_IMAGE_REQUESTS=e},clearStorage:function(e){t.clearTileCache(e)},workerUrl:""};return Zi})),r}))},{}],442:[function(t,e,r){var n=t("./normalize"),i=t("gl-mat4/create"),a=t("gl-mat4/clone"),o=t("gl-mat4/determinant"),s=t("gl-mat4/invert"),l=t("gl-mat4/transpose"),c={length:t("gl-vec3/length"),normalize:t("gl-vec3/normalize"),dot:t("gl-vec3/dot"),cross:t("gl-vec3/cross")},u=i(),f=i(),h=[0,0,0,0],p=[[0,0,0],[0,0,0],[0,0,0]],d=[0,0,0];function m(t,e,r,n,i){t[0]=e[0]*n+r[0]*i,t[1]=e[1]*n+r[1]*i,t[2]=e[2]*n+r[2]*i}e.exports=function(t,e,r,i,g,v){if(e||(e=[0,0,0]),r||(r=[0,0,0]),i||(i=[0,0,0]),g||(g=[0,0,0,1]),v||(v=[0,0,0,1]),!n(u,t))return!1;if(a(f,u),f[3]=0,f[7]=0,f[11]=0,f[15]=1,Math.abs(o(f)<1e-8))return!1;var y,x,b,_,w,T,k,A=u[3],M=u[7],S=u[11],E=u[12],L=u[13],C=u[14],P=u[15];if(0!==A||0!==M||0!==S){if(h[0]=A,h[1]=M,h[2]=S,h[3]=P,!s(f,f))return!1;l(f,f),y=g,b=f,_=(x=h)[0],w=x[1],T=x[2],k=x[3],y[0]=b[0]*_+b[4]*w+b[8]*T+b[12]*k,y[1]=b[1]*_+b[5]*w+b[9]*T+b[13]*k,y[2]=b[2]*_+b[6]*w+b[10]*T+b[14]*k,y[3]=b[3]*_+b[7]*w+b[11]*T+b[15]*k}else g[0]=g[1]=g[2]=0,g[3]=1;if(e[0]=E,e[1]=L,e[2]=C,function(t,e){t[0][0]=e[0],t[0][1]=e[1],t[0][2]=e[2],t[1][0]=e[4],t[1][1]=e[5],t[1][2]=e[6],t[2][0]=e[8],t[2][1]=e[9],t[2][2]=e[10]}(p,u),r[0]=c.length(p[0]),c.normalize(p[0],p[0]),i[0]=c.dot(p[0],p[1]),m(p[1],p[1],p[0],1,-i[0]),r[1]=c.length(p[1]),c.normalize(p[1],p[1]),i[0]/=r[1],i[1]=c.dot(p[0],p[2]),m(p[2],p[2],p[0],1,-i[1]),i[2]=c.dot(p[1],p[2]),m(p[2],p[2],p[1],1,-i[2]),r[2]=c.length(p[2]),c.normalize(p[2],p[2]),i[1]/=r[2],i[2]/=r[2],c.cross(d,p[1],p[2]),c.dot(p[0],d)<0)for(var I=0;I<3;I++)r[I]*=-1,p[I][0]*=-1,p[I][1]*=-1,p[I][2]*=-1;return v[0]=.5*Math.sqrt(Math.max(1+p[0][0]-p[1][1]-p[2][2],0)),v[1]=.5*Math.sqrt(Math.max(1-p[0][0]+p[1][1]-p[2][2],0)),v[2]=.5*Math.sqrt(Math.max(1-p[0][0]-p[1][1]+p[2][2],0)),v[3]=.5*Math.sqrt(Math.max(1+p[0][0]+p[1][1]+p[2][2],0)),p[2][1]>p[1][2]&&(v[0]=-v[0]),p[0][2]>p[2][0]&&(v[1]=-v[1]),p[1][0]>p[0][1]&&(v[2]=-v[2]),!0}},{"./normalize":443,"gl-mat4/clone":272,"gl-mat4/create":274,"gl-mat4/determinant":275,"gl-mat4/invert":287,"gl-mat4/transpose":300,"gl-vec3/cross":350,"gl-vec3/dot":355,"gl-vec3/length":365,"gl-vec3/normalize":372}],443:[function(t,e,r){e.exports=function(t,e){var r=e[15];if(0===r)return!1;for(var n=1/r,i=0;i<16;i++)t[i]=e[i]*n;return!0}},{}],444:[function(t,e,r){var n=t("gl-vec3/lerp"),i=t("mat4-recompose"),a=t("mat4-decompose"),o=t("gl-mat4/determinant"),s=t("quat-slerp"),l=f(),c=f(),u=f();function f(){return{translate:h(),scale:h(1),skew:h(),perspective:[0,0,0,1],quaternion:[0,0,0,1]}}function h(t){return[t||0,t||0,t||0]}e.exports=function(t,e,r,f){if(0===o(e)||0===o(r))return!1;var h=a(e,l.translate,l.scale,l.skew,l.perspective,l.quaternion),p=a(r,c.translate,c.scale,c.skew,c.perspective,c.quaternion);return!(!h||!p)&&(n(u.translate,l.translate,c.translate,f),n(u.skew,l.skew,c.skew,f),n(u.scale,l.scale,c.scale,f),n(u.perspective,l.perspective,c.perspective,f),s(u.quaternion,l.quaternion,c.quaternion,f),i(t,u.translate,u.scale,u.skew,u.perspective,u.quaternion),!0)}},{"gl-mat4/determinant":275,"gl-vec3/lerp":366,"mat4-decompose":442,"mat4-recompose":445,"quat-slerp":505}],445:[function(t,e,r){var n={identity:t("gl-mat4/identity"),translate:t("gl-mat4/translate"),multiply:t("gl-mat4/multiply"),create:t("gl-mat4/create"),scale:t("gl-mat4/scale"),fromRotationTranslation:t("gl-mat4/fromRotationTranslation")},i=(n.create(),n.create());e.exports=function(t,e,r,a,o,s){return n.identity(t),n.fromRotationTranslation(t,s,e),t[3]=o[0],t[7]=o[1],t[11]=o[2],t[15]=o[3],n.identity(i),0!==a[2]&&(i[9]=a[2],n.multiply(t,t,i)),0!==a[1]&&(i[9]=0,i[8]=a[1],n.multiply(t,t,i)),0!==a[0]&&(i[8]=0,i[4]=a[0],n.multiply(t,t,i)),n.scale(t,t,r),t}},{"gl-mat4/create":274,"gl-mat4/fromRotationTranslation":278,"gl-mat4/identity":285,"gl-mat4/multiply":289,"gl-mat4/scale":297,"gl-mat4/translate":299}],446:[function(t,e,r){"use strict";e.exports=Math.log2||function(t){return Math.log(t)*Math.LOG2E}},{}],447:[function(t,e,r){"use strict";var n=t("binary-search-bounds"),i=t("mat4-interpolate"),a=t("gl-mat4/invert"),o=t("gl-mat4/rotateX"),s=t("gl-mat4/rotateY"),l=t("gl-mat4/rotateZ"),c=t("gl-mat4/lookAt"),u=t("gl-mat4/translate"),f=(t("gl-mat4/scale"),t("gl-vec3/normalize")),h=[0,0,0];function p(t){this._components=t.slice(),this._time=[0],this.prevMatrix=t.slice(),this.nextMatrix=t.slice(),this.computedMatrix=t.slice(),this.computedInverse=t.slice(),this.computedEye=[0,0,0],this.computedUp=[0,0,0],this.computedCenter=[0,0,0],this.computedRadius=[0],this._limits=[-1/0,1/0]}e.exports=function(t){return new p((t=t||{}).matrix||[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1])};var d=p.prototype;d.recalcMatrix=function(t){var e=this._time,r=n.le(e,t),o=this.computedMatrix;if(!(r<0)){var s=this._components;if(r===e.length-1)for(var l=16*r,c=0;c<16;++c)o[c]=s[l++];else{var u=e[r+1]-e[r],h=(l=16*r,this.prevMatrix),p=!0;for(c=0;c<16;++c)h[c]=s[l++];var d=this.nextMatrix;for(c=0;c<16;++c)d[c]=s[l++],p=p&&h[c]===d[c];if(u<1e-6||p)for(c=0;c<16;++c)o[c]=h[c];else i(o,h,d,(t-e[r])/u)}var m=this.computedUp;m[0]=o[1],m[1]=o[5],m[2]=o[9],f(m,m);var g=this.computedInverse;a(g,o);var v=this.computedEye,y=g[15];v[0]=g[12]/y,v[1]=g[13]/y,v[2]=g[14]/y;var x=this.computedCenter,b=Math.exp(this.computedRadius[0]);for(c=0;c<3;++c)x[c]=v[c]-o[2+4*c]*b}},d.idle=function(t){if(!(t1&&n(t[o[u-2]],t[o[u-1]],c)<=0;)u-=1,o.pop();for(o.push(l),u=s.length;u>1&&n(t[s[u-2]],t[s[u-1]],c)>=0;)u-=1,s.pop();s.push(l)}r=new Array(s.length+o.length-2);for(var f=0,h=(i=0,o.length);i0;--p)r[f++]=s[p];return r};var n=t("robust-orientation")[3]},{"robust-orientation":524}],449:[function(t,e,r){"use strict";e.exports=function(t,e){e||(e=t,t=window);var r=0,i=0,a=0,o={shift:!1,alt:!1,control:!1,meta:!1},s=!1;function l(t){var e=!1;return"altKey"in t&&(e=e||t.altKey!==o.alt,o.alt=!!t.altKey),"shiftKey"in t&&(e=e||t.shiftKey!==o.shift,o.shift=!!t.shiftKey),"ctrlKey"in t&&(e=e||t.ctrlKey!==o.control,o.control=!!t.ctrlKey),"metaKey"in t&&(e=e||t.metaKey!==o.meta,o.meta=!!t.metaKey),e}function c(t,s){var c=n.x(s),u=n.y(s);"buttons"in s&&(t=0|s.buttons),(t!==r||c!==i||u!==a||l(s))&&(r=0|t,i=c||0,a=u||0,e&&e(r,i,a,o))}function u(t){c(0,t)}function f(){(r||i||a||o.shift||o.alt||o.meta||o.control)&&(i=a=0,r=0,o.shift=o.alt=o.control=o.meta=!1,e&&e(0,0,0,o))}function h(t){l(t)&&e&&e(r,i,a,o)}function p(t){0===n.buttons(t)?c(0,t):c(r,t)}function d(t){c(r|n.buttons(t),t)}function m(t){c(r&~n.buttons(t),t)}function g(){s||(s=!0,t.addEventListener("mousemove",p),t.addEventListener("mousedown",d),t.addEventListener("mouseup",m),t.addEventListener("mouseleave",u),t.addEventListener("mouseenter",u),t.addEventListener("mouseout",u),t.addEventListener("mouseover",u),t.addEventListener("blur",f),t.addEventListener("keyup",h),t.addEventListener("keydown",h),t.addEventListener("keypress",h),t!==window&&(window.addEventListener("blur",f),window.addEventListener("keyup",h),window.addEventListener("keydown",h),window.addEventListener("keypress",h)))}g();var v={element:t};return Object.defineProperties(v,{enabled:{get:function(){return s},set:function(e){e?g():function(){if(!s)return;s=!1,t.removeEventListener("mousemove",p),t.removeEventListener("mousedown",d),t.removeEventListener("mouseup",m),t.removeEventListener("mouseleave",u),t.removeEventListener("mouseenter",u),t.removeEventListener("mouseout",u),t.removeEventListener("mouseover",u),t.removeEventListener("blur",f),t.removeEventListener("keyup",h),t.removeEventListener("keydown",h),t.removeEventListener("keypress",h),t!==window&&(window.removeEventListener("blur",f),window.removeEventListener("keyup",h),window.removeEventListener("keydown",h),window.removeEventListener("keypress",h))}()},enumerable:!0},buttons:{get:function(){return r},enumerable:!0},x:{get:function(){return i},enumerable:!0},y:{get:function(){return a},enumerable:!0},mods:{get:function(){return o},enumerable:!0}}),v};var n=t("mouse-event")},{"mouse-event":451}],450:[function(t,e,r){var n={left:0,top:0};e.exports=function(t,e,r){e=e||t.currentTarget||t.srcElement,Array.isArray(r)||(r=[0,0]);var i=t.clientX||0,a=t.clientY||0,o=(s=e,s===window||s===document||s===document.body?n:s.getBoundingClientRect());var s;return r[0]=i-o.left,r[1]=a-o.top,r}},{}],451:[function(t,e,r){"use strict";function n(t){return t.target||t.srcElement||window}r.buttons=function(t){if("object"==typeof t){if("buttons"in t)return t.buttons;if("which"in t){if(2===(e=t.which))return 4;if(3===e)return 2;if(e>0)return 1<=0)return 1<0&&o(l,r))}catch(t){f.call(new p(r),t)}}}function f(t){var e=this;e.triggered||(e.triggered=!0,e.def&&(e=e.def),e.msg=t,e.state=2,e.chain.length>0&&o(l,e))}function h(t,e,r,n){for(var i=0;i1&&(r*=v=Math.sqrt(v),a*=v);var y=r*r,x=a*a,b=(c==u?-1:1)*Math.sqrt(Math.abs((y*x-y*g*g-x*m*m)/(y*g*g+x*m*m)));b==1/0&&(b=1);var _=b*r*g/a+(t+f)/2,w=b*-a*m/r+(e+h)/2,T=Math.asin(((e-w)/a).toFixed(9)),k=Math.asin(((h-w)/a).toFixed(9));(T=t<_?n-T:T)<0&&(T=2*n+T),(k=f<_?n-k:k)<0&&(k=2*n+k),u&&T>k&&(T-=2*n),!u&&k>T&&(k-=2*n)}if(Math.abs(k-T)>i){var A=k,M=f,S=h;k=T+i*(u&&k>T?1:-1);var E=s(f=_+r*Math.cos(k),h=w+a*Math.sin(k),r,a,o,0,u,M,S,[k,A,_,w])}var L=Math.tan((k-T)/4),C=4/3*r*L,P=4/3*a*L,I=[2*t-(t+C*Math.sin(T)),2*e-(e-P*Math.cos(T)),f+C*Math.sin(k),h-P*Math.cos(k),f,h];if(p)return I;E&&(I=I.concat(E));for(var O=0;O7&&(r.push(v.splice(0,7)),v.unshift("C"));break;case"S":var x=p,b=d;"C"!=e&&"S"!=e||(x+=x-n,b+=b-i),v=["C",x,b,v[1],v[2],v[3],v[4]];break;case"T":"Q"==e||"T"==e?(f=2*p-f,h=2*d-h):(f=p,h=d),v=o(p,d,f,h,v[1],v[2]);break;case"Q":f=v[1],h=v[2],v=o(p,d,v[1],v[2],v[3],v[4]);break;case"L":v=a(p,d,v[1],v[2]);break;case"H":v=a(p,d,v[1],d);break;case"V":v=a(p,d,p,v[1]);break;case"Z":v=a(p,d,l,u)}e=y,p=v[v.length-2],d=v[v.length-1],v.length>4?(n=v[v.length-4],i=v[v.length-3]):(n=p,i=d),r.push(v)}return r}},{}],242:[function(t,e,r){ +!function(t,r,n){r[t]=r[t]||n(),void 0!==e&&e.exports&&(e.exports=r[t])}("Promise",void 0!==t?t:this,(function(){"use strict";var t,e,n,i=Object.prototype.toString,a=void 0!==r?function(t){return r(t)}:setTimeout;try{Object.defineProperty({},"x",{}),t=function(t,e,r,n){return Object.defineProperty(t,e,{value:r,writable:!0,configurable:!1!==n})}}catch(e){t=function(t,e,r){return t[e]=r,t}}function o(t,r){n.add(t,r),e||(e=a(n.drain))}function s(t){var e,r=typeof t;return null==t||"object"!=r&&"function"!=r||(e=t.then),"function"==typeof e&&e}function l(){for(var t=0;t0&&o(l,r))}catch(t){f.call(new p(r),t)}}}function f(t){var e=this;e.triggered||(e.triggered=!0,e.def&&(e=e.def),e.msg=t,e.state=2,e.chain.length>0&&o(l,e))}function h(t,e,r,n){for(var i=0;i 0");"function"!=typeof t.vertex&&e("Must specify vertex creation function");"function"!=typeof t.cell&&e("Must specify cell creation function");"function"!=typeof t.phase&&e("Must specify phase function");for(var s=t.getters||[],l=new Array(a),c=0;c=0?l[c]=!0:l[c]=!1;return function(t,e,r,a,o,s){var l=[s,o].join(",");return(0,i[l])(t,e,r,n.mallocUint32,n.freeUint32)}(t.vertex,t.cell,t.phase,0,r,l)};var i={"false,0,1":function(t,e,r,n,i){return function(a,o,s,l){var c,u=0|a.shape[0],f=0|a.shape[1],h=a.data,p=0|a.offset,d=0|a.stride[0],m=0|a.stride[1],g=p,v=0|-d,y=0,x=0|-m,b=0,_=-d-m|0,w=0,T=0|d,k=m-d*u|0,A=0,M=0,S=0,E=2*u|0,L=n(E),C=n(E),P=0,I=0,O=-1,z=-1,D=0,R=0|-u,F=0|u,B=0,N=-u-1|0,j=u-1|0,U=0,V=0,H=0;for(A=0;A0){if(M=1,L[P++]=r(h[g],o,s,l),g+=T,u>0)for(A=1,c=h[g],I=L[P]=r(c,o,s,l),D=L[P+O],B=L[P+R],U=L[P+N],I===D&&I===B&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,D,B,U,o,s,l),V=C[P]=S++),P+=1,g+=T,A=2;A0)for(A=1,c=h[g],I=L[P]=r(c,o,s,l),D=L[P+O],B=L[P+R],U=L[P+N],I===D&&I===B&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,D,B,U,o,s,l),V=C[P]=S++,U!==B&&e(C[P+R],V,b,w,B,U,o,s,l)),P+=1,g+=T,A=2;A0){if(A=1,L[P++]=r(h[g],o,s,l),g+=T,f>0)for(M=1,c=h[g],I=L[P]=r(c,o,s,l),B=L[P+R],D=L[P+O],U=L[P+N],I===B&&I===D&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,B,D,U,o,s,l),V=C[P]=S++),P+=1,g+=T,M=2;M0)for(M=1,c=h[g],I=L[P]=r(c,o,s,l),B=L[P+R],D=L[P+O],U=L[P+N],I===B&&I===D&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,B,D,U,o,s,l),V=C[P]=S++,U!==B&&e(C[P+R],V,w,y,U,B,o,s,l)),P+=1,g+=T,M=2;M2&&a[1]>2&&n(i.pick(-1,-1).lo(1,1).hi(a[0]-2,a[1]-2),t.pick(-1,-1,0).lo(1,1).hi(a[0]-2,a[1]-2),t.pick(-1,-1,1).lo(1,1).hi(a[0]-2,a[1]-2)),a[1]>2&&(r(i.pick(0,-1).lo(1).hi(a[1]-2),t.pick(0,-1,1).lo(1).hi(a[1]-2)),e(t.pick(0,-1,0).lo(1).hi(a[1]-2))),a[1]>2&&(r(i.pick(a[0]-1,-1).lo(1).hi(a[1]-2),t.pick(a[0]-1,-1,1).lo(1).hi(a[1]-2)),e(t.pick(a[0]-1,-1,0).lo(1).hi(a[1]-2))),a[0]>2&&(r(i.pick(-1,0).lo(1).hi(a[0]-2),t.pick(-1,0,0).lo(1).hi(a[0]-2)),e(t.pick(-1,0,1).lo(1).hi(a[0]-2))),a[0]>2&&(r(i.pick(-1,a[1]-1).lo(1).hi(a[0]-2),t.pick(-1,a[1]-1,0).lo(1).hi(a[0]-2)),e(t.pick(-1,a[1]-1,1).lo(1).hi(a[0]-2))),t.set(0,0,0,0),t.set(0,0,1,0),t.set(a[0]-1,0,0,0),t.set(a[0]-1,0,1,0),t.set(0,a[1]-1,0,0),t.set(0,a[1]-1,1,0),t.set(a[0]-1,a[1]-1,0,0),t.set(a[0]-1,a[1]-1,1,0),t}}e.exports=function(t,e,r){return Array.isArray(r)||(r=n(e.dimension,"string"==typeof r?r:"clamp")),0===e.size?t:0===e.dimension?(t.set(0),t):function(t){var e=t.join();if(a=u[e])return a;for(var r=t.length,n=[f,h],i=1;i<=r;++i)n.push(p(i));var a=d.apply(void 0,n);return u[e]=a,a}(r)(t,e)}},{dup:177}],456:[function(t,e,r){"use strict";function n(t,e){var r=Math.floor(e),n=e-r,i=0<=r&&r0;){x<64?(l=x,x=0):(l=64,x-=64);for(var b=0|t[1];b>0;){b<64?(c=b,b=0):(c=64,b-=64),n=v+x*f+b*h,o=y+x*d+b*m;var _=0,w=0,T=0,k=p,A=f-u*p,M=h-l*f,S=g,E=d-u*g,L=m-l*d;for(T=0;T0;){m<64?(l=m,m=0):(l=64,m-=64);for(var g=0|t[0];g>0;){g<64?(s=g,g=0):(s=64,g-=64),n=p+m*u+g*c,o=d+m*h+g*f;var v=0,y=0,x=u,b=c-l*u,_=h,w=f-l*h;for(y=0;y0;){y<64?(c=y,y=0):(c=64,y-=64);for(var x=0|t[0];x>0;){x<64?(s=x,x=0):(s=64,x-=64);for(var b=0|t[1];b>0;){b<64?(l=b,b=0):(l=64,b-=64),n=g+y*h+x*u+b*f,o=v+y*m+x*p+b*d;var _=0,w=0,T=0,k=h,A=u-c*h,M=f-s*u,S=m,E=p-c*m,L=d-s*p;for(T=0;Tr;){v=0,y=m-o;e:for(g=0;gb)break e;y+=f,v+=h}for(v=m,y=m-o,g=0;g>1,q=H-j,G=H+j,Y=U,W=q,X=H,Z=G,J=V,K=i+1,Q=a-1,$=!0,tt=0,et=0,rt=0,nt=f,it=e(nt),at=e(nt);A=l*Y,M=l*W,N=s;t:for(k=0;k0){g=Y,Y=W,W=g;break t}if(rt<0)break t;N+=p}A=l*Z,M=l*J,N=s;t:for(k=0;k0){g=Z,Z=J,J=g;break t}if(rt<0)break t;N+=p}A=l*Y,M=l*X,N=s;t:for(k=0;k0){g=Y,Y=X,X=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*X,N=s;t:for(k=0;k0){g=W,W=X,X=g;break t}if(rt<0)break t;N+=p}A=l*Y,M=l*Z,N=s;t:for(k=0;k0){g=Y,Y=Z,Z=g;break t}if(rt<0)break t;N+=p}A=l*X,M=l*Z,N=s;t:for(k=0;k0){g=X,X=Z,Z=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*J,N=s;t:for(k=0;k0){g=W,W=J,J=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*X,N=s;t:for(k=0;k0){g=W,W=X,X=g;break t}if(rt<0)break t;N+=p}A=l*Z,M=l*J,N=s;t:for(k=0;k0){g=Z,Z=J,J=g;break t}if(rt<0)break t;N+=p}for(A=l*Y,M=l*W,S=l*X,E=l*Z,L=l*J,C=l*U,P=l*H,I=l*V,B=0,N=s,k=0;k0)){if(rt<0){for(A=l*b,M=l*K,S=l*Q,N=s,k=0;k0)for(;;){_=s+Q*l,B=0;t:for(k=0;k0)){_=s+Q*l,B=0;t:for(k=0;kV){t:for(;;){for(_=s+K*l,B=0,N=s,k=0;k1&&n?s(r,n[0],n[1]):s(r)}(t,e,l);return n(l,c)}},{"typedarray-pool":590}],461:[function(t,e,r){"use strict";var n=t("./lib/compile_sort.js"),i={};e.exports=function(t){var e=t.order,r=t.dtype,a=[e,r].join(":"),o=i[a];return o||(i[a]=o=n(e,r)),o(t),t}},{"./lib/compile_sort.js":460}],462:[function(t,e,r){var n=t("is-buffer"),i="undefined"!=typeof Float64Array;function a(t,e){return t[0]-e[0]}function o(){var t,e=this.stride,r=new Array(e.length);for(t=0;t=0&&(e+=a*(r=0|t),i-=r),new n(this.data,i,a,e)},i.step=function(t){var e=this.shape[0],r=this.stride[0],i=this.offset,a=0,o=Math.ceil;return"number"==typeof t&&((a=0|t)<0?(i+=r*(e-1),e=o(-e/a)):e=o(e/a),r*=a),new n(this.data,e,r,i)},i.transpose=function(t){t=void 0===t?0:0|t;var e=this.shape,r=this.stride;return new n(this.data,e[t],r[t],this.offset)},i.pick=function(t){var r=[],n=[],i=this.offset;return"number"==typeof t&&t>=0?i=i+this.stride[0]*t|0:(r.push(this.shape[0]),n.push(this.stride[0])),(0,e[r.length+1])(this.data,r,n,i)},function(t,e,r,i){return new n(t,e[0],r[0],i)}},2:function(t,e,r){function n(t,e,r,n,i,a){this.data=t,this.shape=[e,r],this.stride=[n,i],this.offset=0|a}var i=n.prototype;return i.dtype=t,i.dimension=2,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]}}),Object.defineProperty(i,"order",{get:function(){return Math.abs(this.stride[0])>Math.abs(this.stride[1])?[1,0]:[0,1]}}),i.set=function(e,r,n){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r,n):this.data[this.offset+this.stride[0]*e+this.stride[1]*r]=n},i.get=function(e,r){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r):this.data[this.offset+this.stride[0]*e+this.stride[1]*r]},i.index=function(t,e){return this.offset+this.stride[0]*t+this.stride[1]*e},i.hi=function(t,e){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,this.stride[0],this.stride[1],this.offset)},i.lo=function(t,e){var r=this.offset,i=0,a=this.shape[0],o=this.shape[1],s=this.stride[0],l=this.stride[1];return"number"==typeof t&&t>=0&&(r+=s*(i=0|t),a-=i),"number"==typeof e&&e>=0&&(r+=l*(i=0|e),o-=i),new n(this.data,a,o,s,l,r)},i.step=function(t,e){var r=this.shape[0],i=this.shape[1],a=this.stride[0],o=this.stride[1],s=this.offset,l=0,c=Math.ceil;return"number"==typeof t&&((l=0|t)<0?(s+=a*(r-1),r=c(-r/l)):r=c(r/l),a*=l),"number"==typeof e&&((l=0|e)<0?(s+=o*(i-1),i=c(-i/l)):i=c(i/l),o*=l),new n(this.data,r,i,a,o,s)},i.transpose=function(t,e){t=void 0===t?0:0|t,e=void 0===e?1:0|e;var r=this.shape,i=this.stride;return new n(this.data,r[t],r[e],i[t],i[e],this.offset)},i.pick=function(t,r){var n=[],i=[],a=this.offset;return"number"==typeof t&&t>=0?a=a+this.stride[0]*t|0:(n.push(this.shape[0]),i.push(this.stride[0])),"number"==typeof r&&r>=0?a=a+this.stride[1]*r|0:(n.push(this.shape[1]),i.push(this.stride[1])),(0,e[n.length+1])(this.data,n,i,a)},function(t,e,r,i){return new n(t,e[0],e[1],r[0],r[1],i)}},3:function(t,e,r){function n(t,e,r,n,i,a,o,s){this.data=t,this.shape=[e,r,n],this.stride=[i,a,o],this.offset=0|s}var i=n.prototype;return i.dtype=t,i.dimension=3,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]}}),Object.defineProperty(i,"order",{get:function(){var t=Math.abs(this.stride[0]),e=Math.abs(this.stride[1]),r=Math.abs(this.stride[2]);return t>e?e>r?[2,1,0]:t>r?[1,2,0]:[1,0,2]:t>r?[2,0,1]:r>e?[0,1,2]:[0,2,1]}}),i.set=function(e,r,n,i){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n,i):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n]=i},i.get=function(e,r,n){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n]},i.index=function(t,e,r){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r},i.hi=function(t,e,r){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,this.stride[0],this.stride[1],this.stride[2],this.offset)},i.lo=function(t,e,r){var i=this.offset,a=0,o=this.shape[0],s=this.shape[1],l=this.shape[2],c=this.stride[0],u=this.stride[1],f=this.stride[2];return"number"==typeof t&&t>=0&&(i+=c*(a=0|t),o-=a),"number"==typeof e&&e>=0&&(i+=u*(a=0|e),s-=a),"number"==typeof r&&r>=0&&(i+=f*(a=0|r),l-=a),new n(this.data,o,s,l,c,u,f,i)},i.step=function(t,e,r){var i=this.shape[0],a=this.shape[1],o=this.shape[2],s=this.stride[0],l=this.stride[1],c=this.stride[2],u=this.offset,f=0,h=Math.ceil;return"number"==typeof t&&((f=0|t)<0?(u+=s*(i-1),i=h(-i/f)):i=h(i/f),s*=f),"number"==typeof e&&((f=0|e)<0?(u+=l*(a-1),a=h(-a/f)):a=h(a/f),l*=f),"number"==typeof r&&((f=0|r)<0?(u+=c*(o-1),o=h(-o/f)):o=h(o/f),c*=f),new n(this.data,i,a,o,s,l,c,u)},i.transpose=function(t,e,r){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r;var i=this.shape,a=this.stride;return new n(this.data,i[t],i[e],i[r],a[t],a[e],a[r],this.offset)},i.pick=function(t,r,n){var i=[],a=[],o=this.offset;return"number"==typeof t&&t>=0?o=o+this.stride[0]*t|0:(i.push(this.shape[0]),a.push(this.stride[0])),"number"==typeof r&&r>=0?o=o+this.stride[1]*r|0:(i.push(this.shape[1]),a.push(this.stride[1])),"number"==typeof n&&n>=0?o=o+this.stride[2]*n|0:(i.push(this.shape[2]),a.push(this.stride[2])),(0,e[i.length+1])(this.data,i,a,o)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],r[0],r[1],r[2],i)}},4:function(t,e,r){function n(t,e,r,n,i,a,o,s,l,c){this.data=t,this.shape=[e,r,n,i],this.stride=[a,o,s,l],this.offset=0|c}var i=n.prototype;return i.dtype=t,i.dimension=4,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]*this.shape[3]}}),Object.defineProperty(i,"order",{get:r}),i.set=function(e,r,n,i,a){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i,a):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i]=a},i.get=function(e,r,n,i){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i]},i.index=function(t,e,r,n){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r+this.stride[3]*n},i.hi=function(t,e,r,i){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,"number"!=typeof i||i<0?this.shape[3]:0|i,this.stride[0],this.stride[1],this.stride[2],this.stride[3],this.offset)},i.lo=function(t,e,r,i){var a=this.offset,o=0,s=this.shape[0],l=this.shape[1],c=this.shape[2],u=this.shape[3],f=this.stride[0],h=this.stride[1],p=this.stride[2],d=this.stride[3];return"number"==typeof t&&t>=0&&(a+=f*(o=0|t),s-=o),"number"==typeof e&&e>=0&&(a+=h*(o=0|e),l-=o),"number"==typeof r&&r>=0&&(a+=p*(o=0|r),c-=o),"number"==typeof i&&i>=0&&(a+=d*(o=0|i),u-=o),new n(this.data,s,l,c,u,f,h,p,d,a)},i.step=function(t,e,r,i){var a=this.shape[0],o=this.shape[1],s=this.shape[2],l=this.shape[3],c=this.stride[0],u=this.stride[1],f=this.stride[2],h=this.stride[3],p=this.offset,d=0,m=Math.ceil;return"number"==typeof t&&((d=0|t)<0?(p+=c*(a-1),a=m(-a/d)):a=m(a/d),c*=d),"number"==typeof e&&((d=0|e)<0?(p+=u*(o-1),o=m(-o/d)):o=m(o/d),u*=d),"number"==typeof r&&((d=0|r)<0?(p+=f*(s-1),s=m(-s/d)):s=m(s/d),f*=d),"number"==typeof i&&((d=0|i)<0?(p+=h*(l-1),l=m(-l/d)):l=m(l/d),h*=d),new n(this.data,a,o,s,l,c,u,f,h,p)},i.transpose=function(t,e,r,i){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r,i=void 0===i?3:0|i;var a=this.shape,o=this.stride;return new n(this.data,a[t],a[e],a[r],a[i],o[t],o[e],o[r],o[i],this.offset)},i.pick=function(t,r,n,i){var a=[],o=[],s=this.offset;return"number"==typeof t&&t>=0?s=s+this.stride[0]*t|0:(a.push(this.shape[0]),o.push(this.stride[0])),"number"==typeof r&&r>=0?s=s+this.stride[1]*r|0:(a.push(this.shape[1]),o.push(this.stride[1])),"number"==typeof n&&n>=0?s=s+this.stride[2]*n|0:(a.push(this.shape[2]),o.push(this.stride[2])),"number"==typeof i&&i>=0?s=s+this.stride[3]*i|0:(a.push(this.shape[3]),o.push(this.stride[3])),(0,e[a.length+1])(this.data,a,o,s)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],e[3],r[0],r[1],r[2],r[3],i)}},5:function(t,e,r){function n(t,e,r,n,i,a,o,s,l,c,u,f){this.data=t,this.shape=[e,r,n,i,a],this.stride=[o,s,l,c,u],this.offset=0|f}var i=n.prototype;return i.dtype=t,i.dimension=5,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]*this.shape[3]*this.shape[4]}}),Object.defineProperty(i,"order",{get:r}),i.set=function(e,r,n,i,a,o){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a,o):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a]=o},i.get=function(e,r,n,i,a){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a]},i.index=function(t,e,r,n,i){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r+this.stride[3]*n+this.stride[4]*i},i.hi=function(t,e,r,i,a){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,"number"!=typeof i||i<0?this.shape[3]:0|i,"number"!=typeof a||a<0?this.shape[4]:0|a,this.stride[0],this.stride[1],this.stride[2],this.stride[3],this.stride[4],this.offset)},i.lo=function(t,e,r,i,a){var o=this.offset,s=0,l=this.shape[0],c=this.shape[1],u=this.shape[2],f=this.shape[3],h=this.shape[4],p=this.stride[0],d=this.stride[1],m=this.stride[2],g=this.stride[3],v=this.stride[4];return"number"==typeof t&&t>=0&&(o+=p*(s=0|t),l-=s),"number"==typeof e&&e>=0&&(o+=d*(s=0|e),c-=s),"number"==typeof r&&r>=0&&(o+=m*(s=0|r),u-=s),"number"==typeof i&&i>=0&&(o+=g*(s=0|i),f-=s),"number"==typeof a&&a>=0&&(o+=v*(s=0|a),h-=s),new n(this.data,l,c,u,f,h,p,d,m,g,v,o)},i.step=function(t,e,r,i,a){var o=this.shape[0],s=this.shape[1],l=this.shape[2],c=this.shape[3],u=this.shape[4],f=this.stride[0],h=this.stride[1],p=this.stride[2],d=this.stride[3],m=this.stride[4],g=this.offset,v=0,y=Math.ceil;return"number"==typeof t&&((v=0|t)<0?(g+=f*(o-1),o=y(-o/v)):o=y(o/v),f*=v),"number"==typeof e&&((v=0|e)<0?(g+=h*(s-1),s=y(-s/v)):s=y(s/v),h*=v),"number"==typeof r&&((v=0|r)<0?(g+=p*(l-1),l=y(-l/v)):l=y(l/v),p*=v),"number"==typeof i&&((v=0|i)<0?(g+=d*(c-1),c=y(-c/v)):c=y(c/v),d*=v),"number"==typeof a&&((v=0|a)<0?(g+=m*(u-1),u=y(-u/v)):u=y(u/v),m*=v),new n(this.data,o,s,l,c,u,f,h,p,d,m,g)},i.transpose=function(t,e,r,i,a){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r,i=void 0===i?3:0|i,a=void 0===a?4:0|a;var o=this.shape,s=this.stride;return new n(this.data,o[t],o[e],o[r],o[i],o[a],s[t],s[e],s[r],s[i],s[a],this.offset)},i.pick=function(t,r,n,i,a){var o=[],s=[],l=this.offset;return"number"==typeof t&&t>=0?l=l+this.stride[0]*t|0:(o.push(this.shape[0]),s.push(this.stride[0])),"number"==typeof r&&r>=0?l=l+this.stride[1]*r|0:(o.push(this.shape[1]),s.push(this.stride[1])),"number"==typeof n&&n>=0?l=l+this.stride[2]*n|0:(o.push(this.shape[2]),s.push(this.stride[2])),"number"==typeof i&&i>=0?l=l+this.stride[3]*i|0:(o.push(this.shape[3]),s.push(this.stride[3])),"number"==typeof a&&a>=0?l=l+this.stride[4]*a|0:(o.push(this.shape[4]),s.push(this.stride[4])),(0,e[o.length+1])(this.data,o,s,l)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],e[3],e[4],r[0],r[1],r[2],r[3],r[4],i)}}};function l(t,e){var r=-1===e?"T":String(e),n=s[r];return-1===e?n(t):0===e?n(t,c[t][0]):n(t,c[t],o)}var c={generic:[],buffer:[],array:[],float32:[],float64:[],int8:[],int16:[],int32:[],uint8_clamped:[],uint8:[],uint16:[],uint32:[],bigint64:[],biguint64:[]};e.exports=function(t,e,r,a){if(void 0===t)return(0,c.array[0])([]);"number"==typeof t&&(t=[t]),void 0===e&&(e=[t.length]);var o=e.length;if(void 0===r){r=new Array(o);for(var s=o-1,u=1;s>=0;--s)r[s]=u,u*=e[s]}if(void 0===a){a=0;for(s=0;st==t>0?a===-1>>>0?(r+=1,a=0):a+=1:0===a?(a=-1>>>0,r-=1):a-=1;return n.pack(a,r)}},{"double-bits":174}],464:[function(t,e,r){var n=Math.PI,i=c(120);function a(t,e,r,n){return["C",t,e,r,n,r,n]}function o(t,e,r,n,i,a){return["C",t/3+2/3*r,e/3+2/3*n,i/3+2/3*r,a/3+2/3*n,i,a]}function s(t,e,r,a,o,c,u,f,h,p){if(p)T=p[0],k=p[1],_=p[2],w=p[3];else{var d=l(t,e,-o);t=d.x,e=d.y;var m=(t-(f=(d=l(f,h,-o)).x))/2,g=(e-(h=d.y))/2,v=m*m/(r*r)+g*g/(a*a);v>1&&(r*=v=Math.sqrt(v),a*=v);var y=r*r,x=a*a,b=(c==u?-1:1)*Math.sqrt(Math.abs((y*x-y*g*g-x*m*m)/(y*g*g+x*m*m)));b==1/0&&(b=1);var _=b*r*g/a+(t+f)/2,w=b*-a*m/r+(e+h)/2,T=Math.asin(((e-w)/a).toFixed(9)),k=Math.asin(((h-w)/a).toFixed(9));(T=t<_?n-T:T)<0&&(T=2*n+T),(k=f<_?n-k:k)<0&&(k=2*n+k),u&&T>k&&(T-=2*n),!u&&k>T&&(k-=2*n)}if(Math.abs(k-T)>i){var A=k,M=f,S=h;k=T+i*(u&&k>T?1:-1);var E=s(f=_+r*Math.cos(k),h=w+a*Math.sin(k),r,a,o,0,u,M,S,[k,A,_,w])}var L=Math.tan((k-T)/4),C=4/3*r*L,P=4/3*a*L,I=[2*t-(t+C*Math.sin(T)),2*e-(e-P*Math.cos(T)),f+C*Math.sin(k),h-P*Math.cos(k),f,h];if(p)return I;E&&(I=I.concat(E));for(var O=0;O7&&(r.push(v.splice(0,7)),v.unshift("C"));break;case"S":var x=p,b=d;"C"!=e&&"S"!=e||(x+=x-n,b+=b-i),v=["C",x,b,v[1],v[2],v[3],v[4]];break;case"T":"Q"==e||"T"==e?(f=2*p-f,h=2*d-h):(f=p,h=d),v=o(p,d,f,h,v[1],v[2]);break;case"Q":f=v[1],h=v[2],v=o(p,d,v[1],v[2],v[3],v[4]);break;case"L":v=a(p,d,v[1],v[2]);break;case"H":v=a(p,d,v[1],d);break;case"V":v=a(p,d,p,v[1]);break;case"Z":v=a(p,d,l,u)}e=y,p=v[v.length-2],d=v[v.length-1],v.length>4?(n=v[v.length-4],i=v[v.length-3]):(n=p,i=d),r.push(v)}return r}},{}],465:[function(t,e,r){r.vertexNormals=function(t,e,r){for(var n=e.length,i=new Array(n),a=void 0===r?1e-6:r,o=0;oa){var b=i[c],_=1/Math.sqrt(g*y);for(x=0;x<3;++x){var w=(x+1)%3,T=(x+2)%3;b[x]+=_*(v[w]*m[T]-v[T]*m[w])}}}for(o=0;oa)for(_=1/Math.sqrt(k),x=0;x<3;++x)b[x]*=_;else for(x=0;x<3;++x)b[x]=0}return i},r.faceNormals=function(t,e,r){for(var n=t.length,i=new Array(n),a=void 0===r?1e-6:r,o=0;oa?1/Math.sqrt(p):0;for(c=0;c<3;++c)h[c]*=p;i[o]=h}return i}},{}],466:[function(t,e,r){ /* object-assign (c) Sindre Sorhus @license MIT */ -"use strict";var n=Object.getOwnPropertySymbols,i=Object.prototype.hasOwnProperty,a=Object.prototype.propertyIsEnumerable;function o(t){if(null==t)throw new TypeError("Object.assign cannot be called with null or undefined");return Object(t)}e.exports=function(){try{if(!Object.assign)return!1;var t=new String("abc");if(t[5]="de","5"===Object.getOwnPropertyNames(t)[0])return!1;for(var e={},r=0;r<10;r++)e["_"+String.fromCharCode(r)]=r;if("0123456789"!==Object.getOwnPropertyNames(e).map((function(t){return e[t]})).join(""))return!1;var n={};return"abcdefghijklmnopqrst".split("").forEach((function(t){n[t]=t})),"abcdefghijklmnopqrst"===Object.keys(Object.assign({},n)).join("")}catch(t){return!1}}()?Object.assign:function(t,e){for(var r,s,l=o(t),c=1;c1e4)throw Error("References have circular dependency. Please, check them.");r[n]=t})),n=n.reverse(),r=r.map((function(e){return n.forEach((function(r){e=e.replace(new RegExp("(\\"+i+r+"\\"+i+")","g"),t[0]+"$1"+t[1])})),e}))}));var o=new RegExp("\\"+i+"([0-9]+)\\"+i);return a?r:function t(e,r,n){for(var i,a=[],s=0;i=o.exec(e);){if(s++>1e4)throw Error("Circular references in parenthesis");a.push(e.slice(0,i.index)),a.push(t(r[i[1]],r)),e=e.slice(i.index+i[0].length)}return a.push(e),a}(r[0],r)}function i(t,e){if(e&&e.flat){var r,n=e&&e.escape||"___",i=t[0];if(!i)return"";for(var a=new RegExp("\\"+n+"([0-9]+)\\"+n),o=0;i!=r;){if(o++>1e4)throw Error("Circular references in "+t);r=i,i=i.replace(a,s)}return i}return t.reduce((function t(e,r){return Array.isArray(r)&&(r=r.reduce(t,"")),e+r}),"");function s(e,r){if(null==t[r])throw Error("Reference "+r+"is undefined");return t[r]}}function a(t,e){return Array.isArray(t)?i(t,e):n(t,e)}a.parse=n,a.stringify=i,e.exports=a},{}],244:[function(t,e,r){"use strict";var n=t("pick-by-alias");e.exports=function(t){var e;arguments.length>1&&(t=arguments);"string"==typeof t?t=t.split(/\s/).map(parseFloat):"number"==typeof t&&(t=[t]);t.length&&"number"==typeof t[0]?e=1===t.length?{width:t[0],height:t[0],x:0,y:0}:2===t.length?{width:t[0],height:t[1],x:0,y:0}:{x:t[0],y:t[1],width:t[2]-t[0]||0,height:t[3]-t[1]||0}:t&&(t=n(t,{left:"x l left Left",top:"y t top Top",width:"w width W Width",height:"h height W Width",bottom:"b bottom Bottom",right:"r right Right"}),e={x:t.left||0,y:t.top||0},null==t.width?t.right?e.width=t.right-e.x:e.width=0:e.width=t.width,null==t.height?t.bottom?e.height=t.bottom-e.y:e.height=0:e.height=t.height);return e}},{"pick-by-alias":248}],245:[function(t,e,r){e.exports=function(t){var e=[];return t.replace(i,(function(t,r,i){var o=r.toLowerCase();for(i=function(t){var e=t.match(a);return e?e.map(Number):[]}(i),"m"==o&&i.length>2&&(e.push([r].concat(i.splice(0,2))),o="l",r="m"==r?"l":"L");;){if(i.length==n[o])return i.unshift(r),e.push(i);if(i.length=-t},pointBetween:function(e,r,n){var i=e[1]-r[1],a=n[0]-r[0],o=e[0]-r[0],s=n[1]-r[1],l=o*a+i*s;return!(l-t)},pointsSameX:function(e,r){return Math.abs(e[0]-r[0])t!=o-i>t&&(a-c)*(i-u)/(o-u)+c-n>t&&(s=!s),a=c,o=u}return s}};return e}},{}],252:[function(t,e,r){var n={toPolygon:function(t,e){function r(e){if(e.length<=0)return t.segments({inverted:!1,regions:[]});function r(e){var r=e.slice(0,e.length-1);return t.segments({inverted:!1,regions:[r]})}for(var n=r(e[0]),i=1;i0}))}function u(t,n){var i=t.seg,a=n.seg,o=i.start,s=i.end,c=a.start,u=a.end;r&&r.checkIntersection(i,a);var f=e.linesIntersect(o,s,c,u);if(!1===f){if(!e.pointsCollinear(o,s,c))return!1;if(e.pointsSame(o,u)||e.pointsSame(s,c))return!1;var h=e.pointsSame(o,c),p=e.pointsSame(s,u);if(h&&p)return n;var d=!h&&e.pointBetween(o,c,u),m=!p&&e.pointBetween(s,c,u);if(h)return m?l(n,s):l(t,u),n;d&&(p||(m?l(n,s):l(t,u)),l(n,o))}else 0===f.alongA&&(-1===f.alongB?l(t,c):0===f.alongB?l(t,f.pt):1===f.alongB&&l(t,u)),0===f.alongB&&(-1===f.alongA?l(n,o):0===f.alongA?l(n,f.pt):1===f.alongA&&l(n,s));return!1}for(var f=[];!a.isEmpty();){var h=a.getHead();if(r&&r.vert(h.pt[0]),h.isStart){r&&r.segmentNew(h.seg,h.primary);var p=c(h),d=p.before?p.before.ev:null,m=p.after?p.after.ev:null;function g(){if(d){var t=u(h,d);if(t)return t}return!!m&&u(h,m)}r&&r.tempStatus(h.seg,!!d&&d.seg,!!m&&m.seg);var v,y=g();if(y){var x;if(t)(x=null===h.seg.myFill.below||h.seg.myFill.above!==h.seg.myFill.below)&&(y.seg.myFill.above=!y.seg.myFill.above);else y.seg.otherFill=h.seg.myFill;r&&r.segmentUpdate(y.seg),h.other.remove(),h.remove()}if(a.getHead()!==h){r&&r.rewind(h.seg);continue}if(t)x=null===h.seg.myFill.below||h.seg.myFill.above!==h.seg.myFill.below,h.seg.myFill.below=m?m.seg.myFill.above:i,h.seg.myFill.above=x?!h.seg.myFill.below:h.seg.myFill.below;else if(null===h.seg.otherFill)v=m?h.primary===m.primary?m.seg.otherFill.above:m.seg.myFill.above:h.primary?o:i,h.seg.otherFill={above:v,below:v};r&&r.status(h.seg,!!d&&d.seg,!!m&&m.seg),h.other.status=p.insert(n.node({ev:h}))}else{var b=h.status;if(null===b)throw new Error("PolyBool: Zero-length segment detected; your epsilon is probably too small or too large");if(s.exists(b.prev)&&s.exists(b.next)&&u(b.prev.ev,b.next.ev),r&&r.statusRemove(b.ev.seg),b.remove(),!h.primary){var _=h.seg.myFill;h.seg.myFill=h.seg.otherFill,h.seg.otherFill=_}f.push(h.seg)}a.getHead().remove()}return r&&r.done(),f}return t?{addRegion:function(t){for(var n,i,a,o=t[t.length-1],l=0;l0&&!this.aborted;){var r=this.ifds_to_read.shift();r.offset&&this.scan_ifd(r.id,r.offset,t)}},a.prototype.read_uint16=function(t){var e=this.input;if(t+2>e.length)throw n("unexpected EOF","EBADDATA");return this.big_endian?256*e[t]+e[t+1]:e[t]+256*e[t+1]},a.prototype.read_uint32=function(t){var e=this.input;if(t+4>e.length)throw n("unexpected EOF","EBADDATA");return this.big_endian?16777216*e[t]+65536*e[t+1]+256*e[t+2]+e[t+3]:e[t]+256*e[t+1]+65536*e[t+2]+16777216*e[t+3]},a.prototype.is_subifd_link=function(t,e){return 0===t&&34665===e||0===t&&34853===e||34665===t&&40965===e},a.prototype.exif_format_length=function(t){switch(t){case 1:case 2:case 6:case 7:return 1;case 3:case 8:return 2;case 4:case 9:case 11:return 4;case 5:case 10:case 12:return 8;default:return 0}},a.prototype.exif_format_read=function(t,e){var r;switch(t){case 1:case 2:return r=this.input[e];case 6:return(r=this.input[e])|33554430*(128&r);case 3:return r=this.read_uint16(e);case 8:return(r=this.read_uint16(e))|131070*(32768&r);case 4:return r=this.read_uint32(e);case 9:return 0|(r=this.read_uint32(e));case 5:case 10:case 11:case 12:case 7:default:return null}},a.prototype.scan_ifd=function(t,e,r){var a=this.read_uint16(e);e+=2;for(var o=0;othis.input.length)throw n("unexpected EOF","EBADDATA");for(var d=[],m=h,g=0;g0&&(this.ifds_to_read.push({id:s,offset:d[0]}),p=!0),!1===r({is_big_endian:this.big_endian,ifd:t,tag:s,format:l,count:c,entry_offset:e+this.start,data_length:f,data_offset:h+this.start,value:d,is_subifd_link:p}))return void(this.aborted=!0);e+=12}0===t&&this.ifds_to_read.push({id:1,offset:this.read_uint32(e)})},e.exports.ExifParser=a,e.exports.get_orientation=function(t){var e=0;try{return new a(t,0,t.length).each((function(t){if(0===t.ifd&&274===t.tag&&Array.isArray(t.value))return e=t.value[0],!1})),e}catch(t){return-1}}},{}],259:[function(t,e,r){"use strict";var n=t("./common").readUInt16BE,i=t("./common").readUInt32BE;function a(t,e){if(t.length<4+e)return null;var r=i(t,e);return t.length>4&15,i=15&t[4],a=t[5]>>4&15,o=n(t,6),l=8,c=0;ce.width||t.width===e.width&&t.height>e.height?t:e})),i=r.reduce((function(t,e){return t.height>e.height||t.height===e.height&&t.width>e.width?t:e})),n.width>i.height||n.width===i.height&&n.height>i.width?n:i),s=1;e.transforms.forEach((function(t){var e={1:6,2:5,3:8,4:7,5:4,6:3,7:2,8:1},r={1:4,2:3,3:2,4:1,5:6,6:5,7:8,8:7};if("imir"===t.type&&(s=0===t.value?r[s]:e[s=e[s=r[s]]]),"irot"===t.type)for(var n=0;n1&&(h.variants=f.variants),f.orientation&&(h.orientation=f.orientation),f.exif_location&&f.exif_location.offset+f.exif_location.length<=t.length){var p=a(t,f.exif_location.offset),d=t.slice(f.exif_location.offset+p+4,f.exif_location.offset+f.exif_location.length),m=s.get_orientation(d);m>0&&(h.orientation=m)}return h}}}}}}},{"../common":257,"../exif_utils":258,"../miaf_utils":259}],261:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt16LE,o=n("BM");e.exports=function(t){if(!(t.length<26)&&i(t,0,o))return{width:a(t,18),height:a(t,22),type:"bmp",mime:"image/bmp",wUnits:"px",hUnits:"px"}}},{"../common":257}],262:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt16LE,o=n("GIF87a"),s=n("GIF89a");e.exports=function(t){if(!(t.length<10)&&(i(t,0,o)||i(t,0,s)))return{width:a(t,6),height:a(t,8),type:"gif",mime:"image/gif",wUnits:"px",hUnits:"px"}}},{"../common":257}],263:[function(t,e,r){"use strict";var n=t("../common").readUInt16LE;e.exports=function(t){var e=n(t,0),r=n(t,2),i=n(t,4);if(0===e&&1===r&&i){for(var a=[],o={width:0,height:0},s=0;so.width||c>o.height)&&(o=u)}return{width:o.width,height:o.height,variants:a,type:"ico",mime:"image/x-icon",wUnits:"px",hUnits:"px"}}}},{"../common":257}],264:[function(t,e,r){"use strict";var n=t("../common").readUInt16BE,i=t("../common").str2arr,a=t("../common").sliceEq,o=t("../exif_utils"),s=i("Exif\0\0");e.exports=function(t){if(!(t.length<2)&&255===t[0]&&216===t[1]&&255===t[2])for(var e=2;;){for(;;){if(t.length-e<2)return;if(255===t[e++])break}for(var r,i,l=t[e++];255===l;)l=t[e++];if(208<=l&&l<=217||1===l)r=0;else{if(!(192<=l&&l<=254))return;if(t.length-e<2)return;r=n(t,e)-2,e+=2}if(217===l||218===l)return;if(225===l&&r>=10&&a(t,e,s)&&(i=o.get_orientation(t.slice(e+6,e+r))),r>=5&&192<=l&&l<=207&&196!==l&&200!==l&&204!==l){if(t.length-e0&&(c.orientation=i),c}e+=r}}},{"../common":257,"../exif_utils":258}],265:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt32BE,o=n("\x89PNG\r\n\x1a\n"),s=n("IHDR");e.exports=function(t){if(!(t.length<24)&&i(t,0,o)&&i(t,12,s))return{width:a(t,16),height:a(t,20),type:"png",mime:"image/png",wUnits:"px",hUnits:"px"}}},{"../common":257}],266:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt32BE,o=n("8BPS\0\x01");e.exports=function(t){if(!(t.length<22)&&i(t,0,o))return{width:a(t,18),height:a(t,14),type:"psd",mime:"image/vnd.adobe.photoshop",wUnits:"px",hUnits:"px"}}},{"../common":257}],267:[function(t,e,r){"use strict";function n(t){return"number"==typeof t&&isFinite(t)&&t>0}var i=/<[-_.:a-zA-Z0-9][^>]*>/,a=/^<([-_.:a-zA-Z0-9]+:)?svg\s/,o=/[^-]\bwidth="([^%]+?)"|[^-]\bwidth='([^%]+?)'/,s=/\bheight="([^%]+?)"|\bheight='([^%]+?)'/,l=/\bview[bB]ox="(.+?)"|\bview[bB]ox='(.+?)'/,c=/in$|mm$|cm$|pt$|pc$|px$|em$|ex$/;function u(t){return c.test(t)?t.match(c)[0]:"px"}e.exports=function(t){if(function(t){var e,r=0,n=t.length;for(239===t[0]&&187===t[1]&&191===t[2]&&(r=3);r>14&16383),type:"webp",mime:"image/webp",wUnits:"px",hUnits:"px"}}}function h(t,e){return{width:1+(t[e+6]<<16|t[e+5]<<8|t[e+4]),height:1+(t[e+9]<t.length)){for(;e+8=10?r=r||u(t,e+8):"VP8L"===p&&d>=9?r=r||f(t,e+8):"VP8X"===p&&d>=10?r=r||h(t,e+8):"EXIF"===p&&(n=s.get_orientation(t.slice(e+8,e+8+d)),e=1/0),e+=8+d}else e++;if(r)return n>0&&(r.orientation=n),r}}}},{"../common":257,"../exif_utils":258}],270:[function(t,e,r){"use strict";e.exports={avif:t("./parse_sync/avif"),bmp:t("./parse_sync/bmp"),gif:t("./parse_sync/gif"),ico:t("./parse_sync/ico"),jpeg:t("./parse_sync/jpeg"),png:t("./parse_sync/png"),psd:t("./parse_sync/psd"),svg:t("./parse_sync/svg"),tiff:t("./parse_sync/tiff"),webp:t("./parse_sync/webp")}},{"./parse_sync/avif":260,"./parse_sync/bmp":261,"./parse_sync/gif":262,"./parse_sync/ico":263,"./parse_sync/jpeg":264,"./parse_sync/png":265,"./parse_sync/psd":266,"./parse_sync/svg":267,"./parse_sync/tiff":268,"./parse_sync/webp":269}],271:[function(t,e,r){"use strict";var n=t("./lib/parsers_sync");e.exports=function(t){return function(t){for(var e=Object.keys(n),r=0;r1)for(var r=1;r1&&(t.scaleRatio=[t.scale[0]*t.viewport.width,t.scale[1]*t.viewport.height],r(t),t.after&&t.after(t))}function T(t){if(t){null!=t.length?"number"==typeof t[0]&&(t=[{positions:t}]):Array.isArray(t)||(t=[t]);var e=0,r=0;if(b.groups=x=t.map((function(t,c){var u=x[c];return t?("function"==typeof t?t={after:t}:"number"==typeof t[0]&&(t={positions:t}),t=o(t,{color:"color colors fill",capSize:"capSize cap capsize cap-size",lineWidth:"lineWidth line-width width line thickness",opacity:"opacity alpha",range:"range dataBox",viewport:"viewport viewBox",errors:"errors error",positions:"positions position data points"}),u||(x[c]=u={id:c,scale:null,translate:null,scaleFract:null,translateFract:null,draw:!0},t=s({},y,t)),a(u,t,[{lineWidth:function(t){return.5*+t},capSize:function(t){return.5*+t},opacity:parseFloat,errors:function(t){return t=l(t),r+=t.length,t},positions:function(t,r){return t=l(t,"float64"),r.count=Math.floor(t.length/2),r.bounds=n(t,2),r.offset=e,e+=r.count,t}},{color:function(t,e){var r=e.count;if(t||(t="transparent"),!Array.isArray(t)||"number"==typeof t[0]){var n=t;t=Array(r);for(var a=0;a 0. && baClipping < length(normalWidth * endBotJoin)) {\n\t\t//handle miter clipping\n\t\tbTopCoord -= normalWidth * endTopJoin;\n\t\tbTopCoord += normalize(endTopJoin * normalWidth) * baClipping;\n\t}\n\n\tif (nextReverse) {\n\t\t//make join rectangular\n\t\tvec2 miterShift = normalWidth * endJoinDirection * miterLimit * .5;\n\t\tfloat normalAdjust = 1. - min(miterLimit / endMiterRatio, 1.);\n\t\tbBotCoord = bCoord + miterShift - normalAdjust * normalWidth * currNormal * .5;\n\t\tbTopCoord = bCoord + miterShift + normalAdjust * normalWidth * currNormal * .5;\n\t}\n\telse if (!prevReverse && abClipping > 0. && abClipping < length(normalWidth * startBotJoin)) {\n\t\t//handle miter clipping\n\t\taBotCoord -= normalWidth * startBotJoin;\n\t\taBotCoord += normalize(startBotJoin * normalWidth) * abClipping;\n\t}\n\n\tvec2 aTopPosition = (aTopCoord) * adjustedScale + translate;\n\tvec2 aBotPosition = (aBotCoord) * adjustedScale + translate;\n\n\tvec2 bTopPosition = (bTopCoord) * adjustedScale + translate;\n\tvec2 bBotPosition = (bBotCoord) * adjustedScale + translate;\n\n\t//position is normalized 0..1 coord on the screen\n\tvec2 position = (aTopPosition * lineTop + aBotPosition * lineBot) * lineStart + (bTopPosition * lineTop + bBotPosition * lineBot) * lineEnd;\n\n\tstartCoord = aCoord * scaleRatio + translate * viewport.zw + viewport.xy;\n\tendCoord = bCoord * scaleRatio + translate * viewport.zw + viewport.xy;\n\n\tgl_Position = vec4(position * 2.0 - 1.0, depth, 1);\n\n\tenableStartMiter = step(dot(currTangent, prevTangent), .5);\n\tenableEndMiter = step(dot(currTangent, nextTangent), .5);\n\n\t//bevel miter cutoffs\n\tif (miterMode == 1.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tvec2 startMiterWidth = vec2(startJoinDirection) * thickness * miterLimit * .5;\n\t\t\tstartCutoff = vec4(aCoord, aCoord);\n\t\t\tstartCutoff.zw += vec2(-startJoinDirection.y, startJoinDirection.x) / scaleRatio;\n\t\t\tstartCutoff = startCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tstartCutoff += viewport.xyxy;\n\t\t\tstartCutoff += startMiterWidth.xyxy;\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tvec2 endMiterWidth = vec2(endJoinDirection) * thickness * miterLimit * .5;\n\t\t\tendCutoff = vec4(bCoord, bCoord);\n\t\t\tendCutoff.zw += vec2(-endJoinDirection.y, endJoinDirection.x) / scaleRatio;\n\t\t\tendCutoff = endCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tendCutoff += viewport.xyxy;\n\t\t\tendCutoff += endMiterWidth.xyxy;\n\t\t}\n\t}\n\n\t//round miter cutoffs\n\telse if (miterMode == 2.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tvec2 startMiterWidth = vec2(startJoinDirection) * thickness * abs(dot(startJoinDirection, currNormal)) * .5;\n\t\t\tstartCutoff = vec4(aCoord, aCoord);\n\t\t\tstartCutoff.zw += vec2(-startJoinDirection.y, startJoinDirection.x) / scaleRatio;\n\t\t\tstartCutoff = startCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tstartCutoff += viewport.xyxy;\n\t\t\tstartCutoff += startMiterWidth.xyxy;\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tvec2 endMiterWidth = vec2(endJoinDirection) * thickness * abs(dot(endJoinDirection, currNormal)) * .5;\n\t\t\tendCutoff = vec4(bCoord, bCoord);\n\t\t\tendCutoff.zw += vec2(-endJoinDirection.y, endJoinDirection.x) / scaleRatio;\n\t\t\tendCutoff = endCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tendCutoff += viewport.xyxy;\n\t\t\tendCutoff += endMiterWidth.xyxy;\n\t\t}\n\t}\n}\n"]),frag:o(["precision highp float;\n#define GLSLIFY 1\n\nuniform float dashLength, pixelRatio, thickness, opacity, id, miterMode;\nuniform sampler2D dashTexture;\n\nvarying vec4 fragColor;\nvarying vec2 tangent;\nvarying vec4 startCutoff, endCutoff;\nvarying vec2 startCoord, endCoord;\nvarying float enableStartMiter, enableEndMiter;\n\nfloat distToLine(vec2 p, vec2 a, vec2 b) {\n\tvec2 diff = b - a;\n\tvec2 perp = normalize(vec2(-diff.y, diff.x));\n\treturn dot(p - a, perp);\n}\n\nvoid main() {\n\tfloat alpha = 1., distToStart, distToEnd;\n\tfloat cutoff = thickness * .5;\n\n\t//bevel miter\n\tif (miterMode == 1.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tdistToStart = distToLine(gl_FragCoord.xy, startCutoff.xy, startCutoff.zw);\n\t\t\tif (distToStart < -1.) {\n\t\t\t\tdiscard;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\talpha *= min(max(distToStart + 1., 0.), 1.);\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tdistToEnd = distToLine(gl_FragCoord.xy, endCutoff.xy, endCutoff.zw);\n\t\t\tif (distToEnd < -1.) {\n\t\t\t\tdiscard;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\talpha *= min(max(distToEnd + 1., 0.), 1.);\n\t\t}\n\t}\n\n\t// round miter\n\telse if (miterMode == 2.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tdistToStart = distToLine(gl_FragCoord.xy, startCutoff.xy, startCutoff.zw);\n\t\t\tif (distToStart < 0.) {\n\t\t\t\tfloat radius = length(gl_FragCoord.xy - startCoord);\n\n\t\t\t\tif(radius > cutoff + .5) {\n\t\t\t\t\tdiscard;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\talpha -= smoothstep(cutoff - .5, cutoff + .5, radius);\n\t\t\t}\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tdistToEnd = distToLine(gl_FragCoord.xy, endCutoff.xy, endCutoff.zw);\n\t\t\tif (distToEnd < 0.) {\n\t\t\t\tfloat radius = length(gl_FragCoord.xy - endCoord);\n\n\t\t\t\tif(radius > cutoff + .5) {\n\t\t\t\t\tdiscard;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\talpha -= smoothstep(cutoff - .5, cutoff + .5, radius);\n\t\t\t}\n\t\t}\n\t}\n\n\tfloat t = fract(dot(tangent, gl_FragCoord.xy) / dashLength) * .5 + .25;\n\tfloat dash = texture2D(dashTexture, vec2(t, .5)).r;\n\n\tgl_FragColor = fragColor;\n\tgl_FragColor.a *= alpha * opacity * dash;\n}\n"]),attributes:{lineEnd:{buffer:r,divisor:0,stride:8,offset:0},lineTop:{buffer:r,divisor:0,stride:8,offset:4},aColor:{buffer:t.prop("colorBuffer"),stride:4,offset:0,divisor:1},bColor:{buffer:t.prop("colorBuffer"),stride:4,offset:4,divisor:1},prevCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:0,divisor:1},aCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:8,divisor:1},bCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:16,divisor:1},nextCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:24,divisor:1}}},n))}catch(t){e=i}return{fill:t({primitive:"triangle",elements:function(t,e){return e.triangles},offset:0,vert:o(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec2 position, positionFract;\n\nuniform vec4 color;\nuniform vec2 scale, scaleFract, translate, translateFract;\nuniform float pixelRatio, id;\nuniform vec4 viewport;\nuniform float opacity;\n\nvarying vec4 fragColor;\n\nconst float MAX_LINES = 256.;\n\nvoid main() {\n\tfloat depth = (MAX_LINES - 4. - id) / (MAX_LINES);\n\n\tvec2 position = position * scale + translate\n + positionFract * scale + translateFract\n + position * scaleFract\n + positionFract * scaleFract;\n\n\tgl_Position = vec4(position * 2.0 - 1.0, depth, 1);\n\n\tfragColor = color / 255.;\n\tfragColor.a *= opacity;\n}\n"]),frag:o(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nvoid main() {\n\tgl_FragColor = fragColor;\n}\n"]),uniforms:{scale:t.prop("scale"),color:t.prop("fill"),scaleFract:t.prop("scaleFract"),translateFract:t.prop("translateFract"),translate:t.prop("translate"),opacity:t.prop("opacity"),pixelRatio:t.context("pixelRatio"),id:t.prop("id"),viewport:function(t,e){return[e.viewport.x,e.viewport.y,t.viewportWidth,t.viewportHeight]}},attributes:{position:{buffer:t.prop("positionBuffer"),stride:8,offset:8},positionFract:{buffer:t.prop("positionFractBuffer"),stride:8,offset:8}},blend:n.blend,depth:{enable:!1},scissor:n.scissor,stencil:n.stencil,viewport:n.viewport}),rect:i,miter:e}},v.defaults={dashes:null,join:"miter",miterLimit:1,thickness:10,cap:"square",color:"black",opacity:1,overlay:!1,viewport:null,range:null,close:!1,fill:null},v.prototype.render=function(){for(var t,e=[],r=arguments.length;r--;)e[r]=arguments[r];e.length&&(t=this).update.apply(t,e),this.draw()},v.prototype.draw=function(){for(var t=this,e=[],r=arguments.length;r--;)e[r]=arguments[r];return(e.length?e:this.passes).forEach((function(e,r){var n;if(e&&Array.isArray(e))return(n=t).draw.apply(n,e);"number"==typeof e&&(e=t.passes[e]),e&&e.count>1&&e.opacity&&(t.regl._refresh(),e.fill&&e.triangles&&e.triangles.length>2&&t.shaders.fill(e),e.thickness&&(e.scale[0]*e.viewport.width>v.precisionThreshold||e.scale[1]*e.viewport.height>v.precisionThreshold||"rect"===e.join||!e.join&&(e.thickness<=2||e.count>=v.maxPoints)?t.shaders.rect(e):t.shaders.miter(e)))})),this},v.prototype.update=function(t){var e=this;if(t){null!=t.length?"number"==typeof t[0]&&(t=[{positions:t}]):Array.isArray(t)||(t=[t]);var r=this.regl,o=this.gl;if(t.forEach((function(t,f){var d=e.passes[f];if(void 0!==t)if(null!==t){if("number"==typeof t[0]&&(t={positions:t}),t=s(t,{positions:"positions points data coords",thickness:"thickness lineWidth lineWidths line-width linewidth width stroke-width strokewidth strokeWidth",join:"lineJoin linejoin join type mode",miterLimit:"miterlimit miterLimit",dashes:"dash dashes dasharray dash-array dashArray",color:"color colour stroke colors colours stroke-color strokeColor",fill:"fill fill-color fillColor",opacity:"alpha opacity",overlay:"overlay crease overlap intersect",close:"closed close closed-path closePath",range:"range dataBox",viewport:"viewport viewBox",hole:"holes hole hollow",splitNull:"splitNull"}),d||(e.passes[f]=d={id:f,scale:null,scaleFract:null,translate:null,translateFract:null,count:0,hole:[],depth:0,dashLength:1,dashTexture:r.texture({channels:1,data:new Uint8Array([255]),width:1,height:1,mag:"linear",min:"linear"}),colorBuffer:r.buffer({usage:"dynamic",type:"uint8",data:new Uint8Array}),positionBuffer:r.buffer({usage:"dynamic",type:"float",data:new Uint8Array}),positionFractBuffer:r.buffer({usage:"dynamic",type:"float",data:new Uint8Array})},t=a({},v.defaults,t)),null!=t.thickness&&(d.thickness=parseFloat(t.thickness)),null!=t.opacity&&(d.opacity=parseFloat(t.opacity)),null!=t.miterLimit&&(d.miterLimit=parseFloat(t.miterLimit)),null!=t.overlay&&(d.overlay=!!t.overlay,f=D}));(I=I.slice(0,R)).push(D)}for(var F=function(t){var e=k.slice(2*z,2*I[t]).concat(D?k.slice(2*D):[]),r=(d.hole||[]).map((function(e){return e-D+(I[t]-z)})),n=c(e,r);n=n.map((function(e){return e+z+(e+zt.length)&&(e=t.length);for(var r=0,n=new Array(e);r 1.0 + delta) {\n\t\tdiscard;\n\t}\n\n\talpha -= smoothstep(1.0 - delta, 1.0 + delta, radius);\n\n\tfloat borderRadius = fragBorderRadius;\n\tfloat ratio = smoothstep(borderRadius - delta, borderRadius + delta, radius);\n\tvec4 color = mix(fragColor, fragBorderColor, ratio);\n\tcolor.a *= alpha * opacity;\n\tgl_FragColor = color;\n}\n"]),l.vert=h(["precision highp float;\n#define GLSLIFY 1\n\nattribute float x, y, xFract, yFract;\nattribute float size, borderSize;\nattribute vec4 colorId, borderColorId;\nattribute float isActive;\n\nuniform bool constPointSize;\nuniform float pixelRatio;\nuniform vec2 paletteSize, scale, scaleFract, translate, translateFract;\nuniform sampler2D paletteTexture;\n\nconst float maxSize = 100.;\n\nvarying vec4 fragColor, fragBorderColor;\nvarying float fragBorderRadius, fragWidth;\n\nfloat pointSizeScale = (constPointSize) ? 2. : pixelRatio;\n\nbool isDirect = (paletteSize.x < 1.);\n\nvec4 getColor(vec4 id) {\n return isDirect ? id / 255. : texture2D(paletteTexture,\n vec2(\n (id.x + .5) / paletteSize.x,\n (id.y + .5) / paletteSize.y\n )\n );\n}\n\nvoid main() {\n // ignore inactive points\n if (isActive == 0.) return;\n\n vec2 position = vec2(x, y);\n vec2 positionFract = vec2(xFract, yFract);\n\n vec4 color = getColor(colorId);\n vec4 borderColor = getColor(borderColorId);\n\n float size = size * maxSize / 255.;\n float borderSize = borderSize * maxSize / 255.;\n\n gl_PointSize = (size + borderSize) * pointSizeScale;\n\n vec2 pos = (position + translate) * scale\n + (positionFract + translateFract) * scale\n + (position + translate) * scaleFract\n + (positionFract + translateFract) * scaleFract;\n\n gl_Position = vec4(pos * 2. - 1., 0., 1.);\n\n fragBorderRadius = 1. - 2. * borderSize / (size + borderSize);\n fragColor = color;\n fragBorderColor = borderColor.a == 0. || borderSize == 0. ? vec4(color.rgb, 0.) : borderColor;\n fragWidth = 1. / gl_PointSize;\n}\n"]),g&&(l.frag=l.frag.replace("smoothstep","smoothStep"),s.frag=s.frag.replace("smoothstep","smoothStep")),this.drawCircle=t(l)}b.defaults={color:"black",borderColor:"transparent",borderSize:0,size:12,opacity:1,marker:void 0,viewport:null,range:null,pixelSize:null,count:0,offset:0,bounds:null,positions:[],snap:1e4},b.prototype.render=function(){return arguments.length&&this.update.apply(this,arguments),this.draw(),this},b.prototype.draw=function(){for(var t=this,e=arguments.length,r=new Array(e),n=0;nn)?e.tree=u(t,{bounds:f}):n&&n.length&&(e.tree=n),e.tree){var h={primitive:"points",usage:"static",data:e.tree,type:"uint32"};e.elements?e.elements(h):e.elements=o.elements(h)}var p=v.float32(t);return i({data:p,usage:"dynamic"}),a({data:v.fract32(t,p),usage:"dynamic"}),s({data:new Uint8Array(c),type:"uint8",usage:"stream"}),t}},{marker:function(e,r,n){var i=r.activation;if(i.forEach((function(t){return t&&t.destroy&&t.destroy()})),i.length=0,e&&"number"!=typeof e[0]){for(var a=[],s=0,l=Math.min(e.length,r.count);s=0)return a;if(t instanceof Uint8Array||t instanceof Uint8ClampedArray)e=t;else{e=new Uint8Array(t.length);for(var o=0,s=t.length;o4*n&&(this.tooManyColors=!0),this.updatePalette(r),1===i.length?i[0]:i},b.prototype.updatePalette=function(t){if(!this.tooManyColors){var e=this.maxColors,r=this.paletteTexture,n=Math.ceil(.25*t.length/e);if(n>1)for(var i=.25*(t=t.slice()).length%e;i2?(s[0],s[2],n=s[1],i=s[3]):s.length?(n=s[0],i=s[1]):(s.x,n=s.y,s.x+s.width,i=s.y+s.height),l.length>2?(a=l[0],o=l[2],l[1],l[3]):l.length?(a=l[0],o=l[1]):(a=l.x,l.y,o=l.x+l.width,l.y+l.height),[a,n,o,i]}function p(t){if("number"==typeof t)return[t,t,t,t];if(2===t.length)return[t[0],t[1],t[0],t[1]];var e=l(t);return[e.x,e.y,e.x+e.width,e.y+e.height]}e.exports=u,u.prototype.render=function(){for(var t,e=this,r=[],n=arguments.length;n--;)r[n]=arguments[n];return r.length&&(t=this).update.apply(t,r),this.regl.attributes.preserveDrawingBuffer?this.draw():(this.dirty?null==this.planned&&(this.planned=o((function(){e.draw(),e.dirty=!0,e.planned=null}))):(this.draw(),this.dirty=!0,o((function(){e.dirty=!1}))),this)},u.prototype.update=function(){for(var t,e=[],r=arguments.length;r--;)e[r]=arguments[r];if(e.length){for(var n=0;nk))&&(s.lower||!(T>>=e))<<3,(e|=r=(15<(t>>>=r))<<2)|(r=(3<(t>>>=r))<<1)|t>>>r>>1}function s(){function t(t){t:{for(var e=16;268435456>=e;e*=16)if(t<=e){t=e;break t}t=0}return 0<(e=r[o(t)>>2]).length?e.pop():new ArrayBuffer(t)}function e(t){r[o(t.byteLength)>>2].push(t)}var r=a(8,(function(){return[]}));return{alloc:t,free:e,allocType:function(e,r){var n=null;switch(e){case 5120:n=new Int8Array(t(r),0,r);break;case 5121:n=new Uint8Array(t(r),0,r);break;case 5122:n=new Int16Array(t(2*r),0,r);break;case 5123:n=new Uint16Array(t(2*r),0,r);break;case 5124:n=new Int32Array(t(4*r),0,r);break;case 5125:n=new Uint32Array(t(4*r),0,r);break;case 5126:n=new Float32Array(t(4*r),0,r);break;default:return null}return n.length!==r?n.subarray(0,r):n},freeType:function(t){e(t.buffer)}}}function l(t){return!!t&&"object"==typeof t&&Array.isArray(t.shape)&&Array.isArray(t.stride)&&"number"==typeof t.offset&&t.shape.length===t.stride.length&&(Array.isArray(t.data)||J(t.data))}function c(t,e,r,n,i,a){for(var o=0;o(i=s)&&(i=n.buffer.byteLength,5123===f?i>>=1:5125===f&&(i>>=2)),n.vertCount=i,i=o,0>o&&(i=4,1===(o=n.buffer.dimension)&&(i=0),2===o&&(i=1),3===o&&(i=4)),n.primType=i}function o(t){n.elementsCount--,delete s[t.id],t.buffer.destroy(),t.buffer=null}var s={},c=0,u={uint8:5121,uint16:5123};e.oes_element_index_uint&&(u.uint32=5125),i.prototype.bind=function(){this.buffer.bind()};var f=[];return{create:function(t,e){function s(t){if(t)if("number"==typeof t)c(t),f.primType=4,f.vertCount=0|t,f.type=5121;else{var e=null,r=35044,n=-1,i=-1,o=0,h=0;Array.isArray(t)||J(t)||l(t)?e=t:("data"in t&&(e=t.data),"usage"in t&&(r=et[t.usage]),"primitive"in t&&(n=at[t.primitive]),"count"in t&&(i=0|t.count),"type"in t&&(h=u[t.type]),"length"in t?o=0|t.length:(o=i,5123===h||5122===h?o*=2:5125!==h&&5124!==h||(o*=4))),a(f,e,r,n,i,o,h)}else c(),f.primType=4,f.vertCount=0,f.type=5121;return s}var c=r.create(null,34963,!0),f=new i(c._buffer);return n.elementsCount++,s(t),s._reglType="elements",s._elements=f,s.subdata=function(t,e){return c.subdata(t,e),s},s.destroy=function(){o(f)},s},createStream:function(t){var e=f.pop();return e||(e=new i(r.create(null,34963,!0,!1)._buffer)),a(e,t,35040,-1,-1,0,0),e},destroyStream:function(t){f.push(t)},getElements:function(t){return"function"==typeof t&&t._elements instanceof i?t._elements:null},clear:function(){K(s).forEach(o)}}}function m(t){for(var e=X.allocType(5123,t.length),r=0;r>>31<<15,i=(a<<1>>>24)-127,a=a>>13&1023;e[r]=-24>i?n:-14>i?n+(a+1024>>-14-i):15>=i,r.height>>=i,p(r,n[i]),t.mipmask|=1<e;++e)t.images[e]=null;return t}function C(t){for(var e=t.images,r=0;re){for(var r=0;r=--this.refCount&&F(this)}}),o.profile&&(a.getTotalTextureSize=function(){var t=0;return Object.keys(yt).forEach((function(e){t+=yt[e].stats.size})),t}),{create2D:function(e,r){function n(t,e){var r=i.texInfo;P.call(r);var a=L();return"number"==typeof t?M(a,0|t,"number"==typeof e?0|e:0|t):t?(I(r,t),S(a,t)):M(a,1,1),r.genMipmaps&&(a.mipmask=(a.width<<1)-1),i.mipmask=a.mipmask,c(i,a),i.internalformat=a.internalformat,n.width=a.width,n.height=a.height,D(i),E(a,3553),O(r,3553),R(),C(a),o.profile&&(i.stats.size=T(i.internalformat,i.type,a.width,a.height,r.genMipmaps,!1)),n.format=tt[i.internalformat],n.type=et[i.type],n.mag=rt[r.magFilter],n.min=nt[r.minFilter],n.wrapS=it[r.wrapS],n.wrapT=it[r.wrapT],n}var i=new z(3553);return yt[i.id]=i,a.textureCount++,n(e,r),n.subimage=function(t,e,r,a){e|=0,r|=0,a|=0;var o=v();return c(o,i),o.width=0,o.height=0,p(o,t),o.width=o.width||(i.width>>a)-e,o.height=o.height||(i.height>>a)-r,D(i),d(o,3553,e,r,a),R(),k(o),n},n.resize=function(e,r){var a=0|e,s=0|r||a;if(a===i.width&&s===i.height)return n;n.width=i.width=a,n.height=i.height=s,D(i);for(var l=0;i.mipmask>>l;++l){var c=a>>l,u=s>>l;if(!c||!u)break;t.texImage2D(3553,l,i.format,c,u,0,i.format,i.type,null)}return R(),o.profile&&(i.stats.size=T(i.internalformat,i.type,a,s,!1,!1)),n},n._reglType="texture2d",n._texture=i,o.profile&&(n.stats=i.stats),n.destroy=function(){i.decRef()},n},createCube:function(e,r,n,i,s,l){function f(t,e,r,n,i,a){var s,l=h.texInfo;for(P.call(l),s=0;6>s;++s)m[s]=L();if("number"!=typeof t&&t){if("object"==typeof t)if(e)S(m[0],t),S(m[1],e),S(m[2],r),S(m[3],n),S(m[4],i),S(m[5],a);else if(I(l,t),u(h,t),"faces"in t)for(t=t.faces,s=0;6>s;++s)c(m[s],h),S(m[s],t[s]);else for(s=0;6>s;++s)S(m[s],t)}else for(t=0|t||1,s=0;6>s;++s)M(m[s],t,t);for(c(h,m[0]),h.mipmask=l.genMipmaps?(m[0].width<<1)-1:m[0].mipmask,h.internalformat=m[0].internalformat,f.width=m[0].width,f.height=m[0].height,D(h),s=0;6>s;++s)E(m[s],34069+s);for(O(l,34067),R(),o.profile&&(h.stats.size=T(h.internalformat,h.type,f.width,f.height,l.genMipmaps,!0)),f.format=tt[h.internalformat],f.type=et[h.type],f.mag=rt[l.magFilter],f.min=nt[l.minFilter],f.wrapS=it[l.wrapS],f.wrapT=it[l.wrapT],s=0;6>s;++s)C(m[s]);return f}var h=new z(34067);yt[h.id]=h,a.cubeCount++;var m=Array(6);return f(e,r,n,i,s,l),f.subimage=function(t,e,r,n,i){r|=0,n|=0,i|=0;var a=v();return c(a,h),a.width=0,a.height=0,p(a,e),a.width=a.width||(h.width>>i)-r,a.height=a.height||(h.height>>i)-n,D(h),d(a,34069+t,r,n,i),R(),k(a),f},f.resize=function(e){if((e|=0)!==h.width){f.width=h.width=e,f.height=h.height=e,D(h);for(var r=0;6>r;++r)for(var n=0;h.mipmask>>n;++n)t.texImage2D(34069+r,n,h.format,e>>n,e>>n,0,h.format,h.type,null);return R(),o.profile&&(h.stats.size=T(h.internalformat,h.type,f.width,f.height,!1,!0)),f}},f._reglType="textureCube",f._texture=h,o.profile&&(f.stats=h.stats),f.destroy=function(){h.decRef()},f},clear:function(){for(var e=0;er;++r)if(0!=(e.mipmask&1<>r,e.height>>r,0,e.internalformat,e.type,null);else for(var n=0;6>n;++n)t.texImage2D(34069+n,r,e.internalformat,e.width>>r,e.height>>r,0,e.internalformat,e.type,null);O(e.texInfo,e.target)}))},refresh:function(){for(var e=0;ei;++i){for(c=0;ct;++t)r[t].resize(n);return e.width=e.height=n,e},_reglType:"framebufferCube",destroy:function(){r.forEach((function(t){t.destroy()}))}})},clear:function(){K(k).forEach(g)},restore:function(){x.cur=null,x.next=null,x.dirty=!0,K(k).forEach((function(e){e.framebuffer=t.createFramebuffer(),v(e)}))}})}function M(){this.w=this.z=this.y=this.x=this.state=0,this.buffer=null,this.size=0,this.normalized=!1,this.type=5126,this.divisor=this.stride=this.offset=0}function S(t,e,r,n,i,a,o){function s(){this.id=++f,this.attributes=[],this.elements=null,this.ownsElements=!1,this.offset=this.count=0,this.instances=-1,this.primitive=4;var t=e.oes_vertex_array_object;this.vao=t?t.createVertexArrayOES():null,h[this.id]=this,this.buffers=[]}var c=r.maxAttributes,u=Array(c);for(r=0;r=h.byteLength?c.subdata(h):(c.destroy(),r.buffers[s]=null)),r.buffers[s]||(c=r.buffers[s]=i.create(u,34962,!1,!0)),f.buffer=i.getBuffer(c),f.size=0|f.buffer.dimension,f.normalized=!1,f.type=f.buffer.dtype,f.offset=0,f.stride=0,f.divisor=0,f.state=1,t[s]=1;else i.getBuffer(u)?(f.buffer=i.getBuffer(u),f.size=0|f.buffer.dimension,f.normalized=!1,f.type=f.buffer.dtype,f.offset=0,f.stride=0,f.divisor=0,f.state=1):i.getBuffer(u.buffer)?(f.buffer=i.getBuffer(u.buffer),f.size=0|(+u.size||f.buffer.dimension),f.normalized=!!u.normalized||!1,f.type="type"in u?tt[u.type]:f.buffer.dtype,f.offset=0|(u.offset||0),f.stride=0|(u.stride||0),f.divisor=0|(u.divisor||0),f.state=1):"x"in u&&(f.x=+u.x||0,f.y=+u.y||0,f.z=+u.z||0,f.w=+u.w||0,f.state=2)}for(c=0;ct&&(t=e.stats.uniformsCount)})),t},r.getMaxAttributesCount=function(){var t=0;return h.forEach((function(e){e.stats.attributesCount>t&&(t=e.stats.attributesCount)})),t}),{clear:function(){var e=t.deleteShader.bind(t);K(c).forEach(e),c={},K(u).forEach(e),u={},h.forEach((function(e){t.deleteProgram(e.program)})),h.length=0,f={},r.shaderCount=0},program:function(e,n,i,a){var o=f[n];o||(o=f[n]={});var p=o[e];if(p&&(p.refCount++,!a))return p;var d=new s(n,e);return r.shaderCount++,l(d,i,a),p||(o[e]=d),h.push(d),H(d,{destroy:function(){if(d.refCount--,0>=d.refCount){t.deleteProgram(d.program);var e=h.indexOf(d);h.splice(e,1),r.shaderCount--}0>=o[d.vertId].refCount&&(t.deleteShader(u[d.vertId]),delete u[d.vertId],delete f[d.fragId][d.vertId]),Object.keys(f[d.fragId]).length||(t.deleteShader(c[d.fragId]),delete c[d.fragId],delete f[d.fragId])}})},restore:function(){c={},u={};for(var t=0;t>>e|t<<32-e}function P(t,e){var r=(65535&t)+(65535&e);return(t>>16)+(e>>16)+(r>>16)<<16|65535&r}function I(t){return Array.prototype.slice.call(t)}function O(t){return I(t).join("")}function z(t){function e(){var t=[],e=[];return H((function(){t.push.apply(t,I(arguments))}),{def:function(){var r="v"+i++;return e.push(r),0>>4&15)+"0123456789abcdef".charAt(15&e);return r}(function(t){for(var e=Array(t.length>>2),r=0;r>5]|=(255&t.charCodeAt(r/8))<<24-r%32;var n,i,a,o,s,l,c,u,f,h,p,d=8*t.length;for(t=[1779033703,-1150833019,1013904242,-1521486534,1359893119,-1694144372,528734635,1541459225],r=Array(64),e[d>>5]|=128<<24-d%32,e[15+(d+64>>9<<4)]=d,u=0;uf;f++){var m;if(16>f)r[f]=e[f+u];else h=f,p=P(p=C(p=r[f-2],17)^C(p,19)^p>>>10,r[f-7]),m=C(m=r[f-15],7)^C(m,18)^m>>>3,r[h]=P(P(p,m),r[f-16]);h=P(P(P(P(c,h=C(h=o,6)^C(h,11)^C(h,25)),o&s^~o&l),kt[f]),r[f]),p=P(c=C(c=d,2)^C(c,13)^C(c,22),d&n^d&i^n&i),c=l,l=s,s=o,o=P(a,h),a=i,i=n,n=d,d=P(h,p)}t[0]=P(d,t[0]),t[1]=P(n,t[1]),t[2]=P(i,t[2]),t[3]=P(a,t[3]),t[4]=P(o,t[4]),t[5]=P(s,t[5]),t[6]=P(l,t[6]),t[7]=P(c,t[7])}for(e="",r=0;r<32*t.length;r+=8)e+=String.fromCharCode(t[r>>5]>>>24-r%32&255);return e}(function(t){for(var e,r,n="",i=-1;++i=e&&56320<=r&&57343>=r&&(e=65536+((1023&e)<<10)+(1023&r),i++),127>=e?n+=String.fromCharCode(e):2047>=e?n+=String.fromCharCode(192|e>>>6&31,128|63&e):65535>=e?n+=String.fromCharCode(224|e>>>12&15,128|e>>>6&63,128|63&e):2097151>=e&&(n+=String.fromCharCode(240|e>>>18&7,128|e>>>12&63,128|e>>>6&63,128|63&e));return n}(r))),n[e])?n[e].apply(null,o):(r=Function.apply(null,a.concat(r)),n&&(n[e]=r),r.apply(null,o))}}}function D(t){return Array.isArray(t)||J(t)||l(t)}function R(t){return t.sort((function(t,e){return"viewport"===t?-1:"viewport"===e?1:t"+e+"?"+i+".constant["+e+"]:0;"})).join(""),"}}else{","if(",s,"(",i,".buffer)){",u,"=",a,".createStream(",34962,",",i,".buffer);","}else{",u,"=",a,".getBuffer(",i,".buffer);","}",f,'="type" in ',i,"?",o.glTypes,"[",i,".type]:",u,".dtype;",l.normalized,"=!!",i,".normalized;"),n("size"),n("offset"),n("stride"),n("divisor"),r("}}"),r.exit("if(",l.isStream,"){",a,".destroyStream(",u,");","}"),l}))})),o}function M(t,e,n,i,o){function s(t){var e=c[t];e&&(h[t]=e)}var l=function(t,e){if("string"==typeof(r=t.static).frag&&"string"==typeof r.vert){if(0>1)",s],");")}function e(){r(l,".drawArraysInstancedANGLE(",[d,m,g,s],");")}p&&"null"!==p?y?t():(r("if(",p,"){"),t(),r("}else{"),e(),r("}")):e()}function o(){function t(){r(u+".drawElements("+[d,g,v,m+"<<(("+v+"-5121)>>1)"]+");")}function e(){r(u+".drawArrays("+[d,m,g]+");")}p&&"null"!==p?y?t():(r("if(",p,"){"),t(),r("}else{"),e(),r("}")):e()}var s,l,c=t.shared,u=c.gl,f=c.draw,h=n.draw,p=function(){var i=h.elements,a=e;return i?((i.contextDep&&n.contextDynamic||i.propDep)&&(a=r),i=i.append(t,a),h.elementsActive&&a("if("+i+")"+u+".bindBuffer(34963,"+i+".buffer.buffer);")):(i=a.def(),a(i,"=",f,".","elements",";","if(",i,"){",u,".bindBuffer(",34963,",",i,".buffer.buffer);}","else if(",c.vao,".currentVAO){",i,"=",t.shared.elements+".getElements("+c.vao,".currentVAO.elements);",rt?"":"if("+i+")"+u+".bindBuffer(34963,"+i+".buffer.buffer);","}")),i}(),d=i("primitive"),m=i("offset"),g=function(){var i=h.count,a=e;return i?((i.contextDep&&n.contextDynamic||i.propDep)&&(a=r),i=i.append(t,a)):i=a.def(f,".","count"),i}();if("number"==typeof g){if(0===g)return}else r("if(",g,"){"),r.exit("}");$&&(s=i("instances"),l=t.instancing);var v=p+".type",y=h.elements&&B(h.elements)&&!h.vaoActive;$&&("number"!=typeof s||0<=s)?"string"==typeof s?(r("if(",s,">0){"),a(),r("}else if(",s,"<0){"),o(),r("}")):a():o()}function q(t,e,r,n,i){return i=(e=_()).proc("body",i),$&&(e.instancing=i.def(e.shared.extensions,".angle_instanced_arrays")),t(e,i,r,n),e.compile().body}function Y(t,e,r,n){P(t,e),r.useVAO?r.drawVAO?e(t.shared.vao,".setVAO(",r.drawVAO.append(t,e),");"):e(t.shared.vao,".setVAO(",t.shared.vao,".targetVAO);"):(e(t.shared.vao,".setVAO(null);"),O(t,e,r,n.attributes,(function(){return!0}))),U(t,e,r,n.uniforms,(function(){return!0}),!1),V(t,e,e,r)}function W(t,e,r,n){function i(){return!0}t.batchId="a1",P(t,e),O(t,e,r,n.attributes,i),U(t,e,r,n.uniforms,i,!1),V(t,e,e,r)}function X(t,e,r,n){function i(t){return t.contextDep&&o||t.propDep}function a(t){return!i(t)}P(t,e);var o=r.contextDep,s=e.def(),l=e.def();t.shared.props=l,t.batchId=s;var c=t.scope(),u=t.scope();e(c.entry,"for(",s,"=0;",s,"<","a1",";++",s,"){",l,"=","a0","[",s,"];",u,"}",c.exit),r.needsContext&&S(t,u,r.context),r.needsFramebuffer&&E(t,u,r.framebuffer),C(t,u,r.state,i),r.profile&&i(r.profile)&&I(t,u,r,!1,!0),n?(r.useVAO?r.drawVAO?i(r.drawVAO)?u(t.shared.vao,".setVAO(",r.drawVAO.append(t,u),");"):c(t.shared.vao,".setVAO(",r.drawVAO.append(t,c),");"):c(t.shared.vao,".setVAO(",t.shared.vao,".targetVAO);"):(c(t.shared.vao,".setVAO(null);"),O(t,c,r,n.attributes,a),O(t,u,r,n.attributes,i)),U(t,c,r,n.uniforms,a,!1),U(t,u,r,n.uniforms,i,!0),V(t,c,u,r)):(e=t.global.def("{}"),n=r.shader.progVar.append(t,u),l=u.def(n,".id"),c=u.def(e,"[",l,"]"),u(t.shared.gl,".useProgram(",n,".program);","if(!",c,"){",c,"=",e,"[",l,"]=",t.link((function(e){return q(W,t,r,e,2)})),"(",n,");}",c,".call(this,a0[",s,"],",s,");"))}function Z(t,r){function n(e){var n=r.shader[e];n&&(n=n.append(t,i),isNaN(n)?i.set(a.shader,"."+e,n):i.set(a.shader,"."+e,t.link(n,{stable:!0})))}var i=t.proc("scope",3);t.batchId="a2";var a=t.shared,o=a.current;if(S(t,i,r.context),r.framebuffer&&r.framebuffer.append(t,i),R(Object.keys(r.state)).forEach((function(e){var n=r.state[e],o=n.append(t,i);g(o)?o.forEach((function(r,n){isNaN(r)?i.set(t.next[e],"["+n+"]",r):i.set(t.next[e],"["+n+"]",t.link(r,{stable:!0}))})):B(n)?i.set(a.next,"."+e,t.link(o,{stable:!0})):i.set(a.next,"."+e,o)})),I(t,i,r,!0,!0),["elements","offset","count","instances","primitive"].forEach((function(e){var n=r.draw[e];n&&(n=n.append(t,i),isNaN(n)?i.set(a.draw,"."+e,n):i.set(a.draw,"."+e,t.link(n),{stable:!0}))})),Object.keys(r.uniforms).forEach((function(n){var o=r.uniforms[n].append(t,i);Array.isArray(o)&&(o="["+o.map((function(e){return isNaN(e)?e:t.link(e,{stable:!0})}))+"]"),i.set(a.uniforms,"["+t.link(e.id(n),{stable:!0})+"]",o)})),Object.keys(r.attributes).forEach((function(e){var n=r.attributes[e].append(t,i),a=t.scopeAttrib(e);Object.keys(new K).forEach((function(t){i.set(a,"."+t,n[t])}))})),r.scopeVAO){var s=r.scopeVAO.append(t,i);isNaN(s)?i.set(a.vao,".targetVAO",s):i.set(a.vao,".targetVAO",t.link(s,{stable:!0}))}n("vert"),n("frag"),0=--this.refCount&&o(this)},i.profile&&(n.getTotalRenderbufferSize=function(){var t=0;return Object.keys(u).forEach((function(e){t+=u[e].stats.size})),t}),{create:function(e,r){function o(e,r){var n=0,a=0,u=32854;if("object"==typeof e&&e?("shape"in e?(n=0|(a=e.shape)[0],a=0|a[1]):("radius"in e&&(n=a=0|e.radius),"width"in e&&(n=0|e.width),"height"in e&&(a=0|e.height)),"format"in e&&(u=s[e.format])):"number"==typeof e?(n=0|e,a="number"==typeof r?0|r:n):e||(n=a=1),n!==c.width||a!==c.height||u!==c.format)return o.width=c.width=n,o.height=c.height=a,c.format=u,t.bindRenderbuffer(36161,c.renderbuffer),t.renderbufferStorage(36161,u,n,a),i.profile&&(c.stats.size=bt[c.format]*c.width*c.height),o.format=l[c.format],o}var c=new a(t.createRenderbuffer());return u[c.id]=c,n.renderbufferCount++,o(e,r),o.resize=function(e,r){var n=0|e,a=0|r||n;return n===c.width&&a===c.height||(o.width=c.width=n,o.height=c.height=a,t.bindRenderbuffer(36161,c.renderbuffer),t.renderbufferStorage(36161,c.format,n,a),i.profile&&(c.stats.size=bt[c.format]*c.width*c.height)),o},o._reglType="renderbuffer",o._renderbuffer=c,i.profile&&(o.stats=c.stats),o.destroy=function(){c.decRef()},o},clear:function(){K(u).forEach(o)},restore:function(){K(u).forEach((function(e){e.renderbuffer=t.createRenderbuffer(),t.bindRenderbuffer(36161,e.renderbuffer),t.renderbufferStorage(36161,e.format,e.width,e.height)})),t.bindRenderbuffer(36161,null)}}},wt=[];wt[6408]=4,wt[6407]=3;var Tt=[];Tt[5121]=1,Tt[5126]=4,Tt[36193]=2;var kt=[1116352408,1899447441,-1245643825,-373957723,961987163,1508970993,-1841331548,-1424204075,-670586216,310598401,607225278,1426881987,1925078388,-2132889090,-1680079193,-1046744716,-459576895,-272742522,264347078,604807628,770255983,1249150122,1555081692,1996064986,-1740746414,-1473132947,-1341970488,-1084653625,-958395405,-710438585,113926993,338241895,666307205,773529912,1294757372,1396182291,1695183700,1986661051,-2117940946,-1838011259,-1564481375,-1474664885,-1035236496,-949202525,-778901479,-694614492,-200395387,275423344,430227734,506948616,659060556,883997877,958139571,1322822218,1537002063,1747873779,1955562222,2024104815,-2067236844,-1933114872,-1866530822,-1538233109,-1090935817,-965641998],At=["x","y","z","w"],Mt="blend.func blend.equation stencil.func stencil.opFront stencil.opBack sample.coverage viewport scissor.box polygonOffset.offset".split(" "),St={0:0,1:1,zero:0,one:1,"src color":768,"one minus src color":769,"src alpha":770,"one minus src alpha":771,"dst color":774,"one minus dst color":775,"dst alpha":772,"one minus dst alpha":773,"constant color":32769,"one minus constant color":32770,"constant alpha":32771,"one minus constant alpha":32772,"src alpha saturate":776},Et={never:512,less:513,"<":513,equal:514,"=":514,"==":514,"===":514,lequal:515,"<=":515,greater:516,">":516,notequal:517,"!=":517,"!==":517,gequal:518,">=":518,always:519},Lt={0:0,zero:0,keep:7680,replace:7681,increment:7682,decrement:7683,"increment wrap":34055,"decrement wrap":34056,invert:5386},Ct={cw:2304,ccw:2305},Pt=new F(!1,!1,!1,(function(){}));return function(t){function e(){if(0===K.length)T&&T.update(),et=null;else{et=Y.next(e),f();for(var t=K.length-1;0<=t;--t){var r=K[t];r&&r(I,null,0)}g.flush(),T&&T.update()}}function r(){!et&&0=K.length&&n()}}}}function u(){var t=X.viewport,e=X.scissor_box;t[0]=t[1]=e[0]=e[1]=0,I.viewportWidth=I.framebufferWidth=I.drawingBufferWidth=t[2]=e[2]=g.drawingBufferWidth,I.viewportHeight=I.framebufferHeight=I.drawingBufferHeight=t[3]=e[3]=g.drawingBufferHeight}function f(){I.tick+=1,I.time=m(),u(),q.procs.poll()}function h(){B.refresh(),u(),q.procs.refresh(),T&&T.update()}function m(){return(W()-M)/1e3}if(!(t=i(t)))return null;var g=t.gl,v=g.getContextAttributes();g.isContextLost();var y=function(t,e){function r(e){var r;e=e.toLowerCase();try{r=n[e]=t.getExtension(e)}catch(t){}return!!r}for(var n={},i=0;ie;++e)rt(H({framebuffer:t.framebuffer.faces[e]},t),l);else rt(t,l);else l(0,t)},prop:G.define.bind(null,1),context:G.define.bind(null,2),this:G.define.bind(null,3),draw:s({}),buffer:function(t){return z.create(t,34962,!1,!1)},elements:function(t){return D.create(t,!1)},texture:B.create2D,cube:B.createCube,renderbuffer:N.create,framebuffer:j.create,framebufferCube:j.createCube,vao:R.createVAO,attributes:v,frame:c,on:function(t,e){var r;switch(t){case"frame":return c(e);case"lost":r=Q;break;case"restore":r=$;break;case"destroy":r=tt}return r.push(e),{cancel:function(){for(var t=0;t */ -var n=t("buffer"),i=n.Buffer;function a(t,e){for(var r in t)e[r]=t[r]}function o(t,e,r){return i(t,e,r)}i.from&&i.alloc&&i.allocUnsafe&&i.allocUnsafeSlow?e.exports=n:(a(n,r),r.Buffer=o),o.prototype=Object.create(i.prototype),a(i,o),o.from=function(t,e,r){if("number"==typeof t)throw new TypeError("Argument must not be a number");return i(t,e,r)},o.alloc=function(t,e,r){if("number"!=typeof t)throw new TypeError("Argument must be a number");var n=i(t);return void 0!==e?"string"==typeof r?n.fill(e,r):n.fill(e):n.fill(0),n},o.allocUnsafe=function(t){if("number"!=typeof t)throw new TypeError("Argument must be a number");return i(t)},o.allocUnsafeSlow=function(t){if("number"!=typeof t)throw new TypeError("Argument must be a number");return n.SlowBuffer(t)}},{buffer:80}],280:[function(t,e,r){e.exports=i;var n=t("events").EventEmitter;function i(){n.call(this)}t("inherits")(i,n),i.Readable=t("readable-stream/lib/_stream_readable.js"),i.Writable=t("readable-stream/lib/_stream_writable.js"),i.Duplex=t("readable-stream/lib/_stream_duplex.js"),i.Transform=t("readable-stream/lib/_stream_transform.js"),i.PassThrough=t("readable-stream/lib/_stream_passthrough.js"),i.finished=t("readable-stream/lib/internal/streams/end-of-stream.js"),i.pipeline=t("readable-stream/lib/internal/streams/pipeline.js"),i.Stream=i,i.prototype.pipe=function(t,e){var r=this;function i(e){t.writable&&!1===t.write(e)&&r.pause&&r.pause()}function a(){r.readable&&r.resume&&r.resume()}r.on("data",i),t.on("drain",a),t._isStdio||e&&!1===e.end||(r.on("end",s),r.on("close",l));var o=!1;function s(){o||(o=!0,t.end())}function l(){o||(o=!0,"function"==typeof t.destroy&&t.destroy())}function c(t){if(u(),0===n.listenerCount(this,"error"))throw t}function u(){r.removeListener("data",i),t.removeListener("drain",a),r.removeListener("end",s),r.removeListener("close",l),r.removeListener("error",c),t.removeListener("error",c),r.removeListener("end",u),r.removeListener("close",u),t.removeListener("close",u)}return r.on("error",c),t.on("error",c),r.on("end",u),r.on("close",u),t.on("close",u),t.emit("pipe",r),t}},{events:181,inherits:226,"readable-stream/lib/_stream_duplex.js":282,"readable-stream/lib/_stream_passthrough.js":283,"readable-stream/lib/_stream_readable.js":284,"readable-stream/lib/_stream_transform.js":285,"readable-stream/lib/_stream_writable.js":286,"readable-stream/lib/internal/streams/end-of-stream.js":290,"readable-stream/lib/internal/streams/pipeline.js":292}],281:[function(t,e,r){"use strict";var n={};function i(t,e,r){r||(r=Error);var i=function(t){var r,n;function i(r,n,i){return t.call(this,function(t,r,n){return"string"==typeof e?e:e(t,r,n)}(r,n,i))||this}return n=t,(r=i).prototype=Object.create(n.prototype),r.prototype.constructor=r,r.__proto__=n,i}(r);i.prototype.name=r.name,i.prototype.code=t,n[t]=i}function a(t,e){if(Array.isArray(t)){var r=t.length;return t=t.map((function(t){return String(t)})),r>2?"one of ".concat(e," ").concat(t.slice(0,r-1).join(", "),", or ")+t[r-1]:2===r?"one of ".concat(e," ").concat(t[0]," or ").concat(t[1]):"of ".concat(e," ").concat(t[0])}return"of ".concat(e," ").concat(String(t))}i("ERR_INVALID_OPT_VALUE",(function(t,e){return'The value "'+e+'" is invalid for option "'+t+'"'}),TypeError),i("ERR_INVALID_ARG_TYPE",(function(t,e,r){var n,i,o,s;if("string"==typeof e&&(i="not ",e.substr(!o||o<0?0:+o,i.length)===i)?(n="must not be",e=e.replace(/^not /,"")):n="must be",function(t,e,r){return(void 0===r||r>t.length)&&(r=t.length),t.substring(r-e.length,r)===e}(t," argument"))s="The ".concat(t," ").concat(n," ").concat(a(e,"type"));else{var l=function(t,e,r){return"number"!=typeof r&&(r=0),!(r+e.length>t.length)&&-1!==t.indexOf(e,r)}(t,".")?"property":"argument";s='The "'.concat(t,'" ').concat(l," ").concat(n," ").concat(a(e,"type"))}return s+=". Received type ".concat(typeof r)}),TypeError),i("ERR_STREAM_PUSH_AFTER_EOF","stream.push() after EOF"),i("ERR_METHOD_NOT_IMPLEMENTED",(function(t){return"The "+t+" method is not implemented"})),i("ERR_STREAM_PREMATURE_CLOSE","Premature close"),i("ERR_STREAM_DESTROYED",(function(t){return"Cannot call "+t+" after a stream was destroyed"})),i("ERR_MULTIPLE_CALLBACK","Callback called multiple times"),i("ERR_STREAM_CANNOT_PIPE","Cannot pipe, not readable"),i("ERR_STREAM_WRITE_AFTER_END","write after end"),i("ERR_STREAM_NULL_VALUES","May not write null values to stream",TypeError),i("ERR_UNKNOWN_ENCODING",(function(t){return"Unknown encoding: "+t}),TypeError),i("ERR_STREAM_UNSHIFT_AFTER_END_EVENT","stream.unshift() after end event"),e.exports.codes=n},{}],282:[function(t,e,r){(function(r){(function(){"use strict";var n=Object.keys||function(t){var e=[];for(var r in t)e.push(r);return e};e.exports=c;var i=t("./_stream_readable"),a=t("./_stream_writable");t("inherits")(c,i);for(var o=n(a.prototype),s=0;s0)if("string"==typeof e||o.objectMode||Object.getPrototypeOf(e)===s.prototype||(e=function(t){return s.from(t)}(e)),n)o.endEmitted?w(t,new _):S(t,o,e,!0);else if(o.ended)w(t,new x);else{if(o.destroyed)return!1;o.reading=!1,o.decoder&&!r?(e=o.decoder.write(e),o.objectMode||0!==e.length?S(t,o,e,!1):P(t,o)):S(t,o,e,!1)}else n||(o.reading=!1,P(t,o));return!o.ended&&(o.lengthe.highWaterMark&&(e.highWaterMark=function(t){return t>=1073741824?t=1073741824:(t--,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,t|=t>>>16,t++),t}(t)),t<=e.length?t:e.ended?e.length:(e.needReadable=!0,0))}function L(t){var e=t._readableState;c("emitReadable",e.needReadable,e.emittedReadable),e.needReadable=!1,e.emittedReadable||(c("emitReadable",e.flowing),e.emittedReadable=!0,r.nextTick(C,t))}function C(t){var e=t._readableState;c("emitReadable_",e.destroyed,e.length,e.ended),e.destroyed||!e.length&&!e.ended||(t.emit("readable"),e.emittedReadable=!1),e.needReadable=!e.flowing&&!e.ended&&e.length<=e.highWaterMark,R(t)}function P(t,e){e.readingMore||(e.readingMore=!0,r.nextTick(I,t,e))}function I(t,e){for(;!e.reading&&!e.ended&&(e.length0,e.resumeScheduled&&!e.paused?e.flowing=!0:t.listenerCount("data")>0&&t.resume()}function z(t){c("readable nexttick read 0"),t.read(0)}function D(t,e){c("resume",e.reading),e.reading||t.read(0),e.resumeScheduled=!1,t.emit("resume"),R(t),e.flowing&&!e.reading&&t.read(0)}function R(t){var e=t._readableState;for(c("flow",e.flowing);e.flowing&&null!==t.read(););}function F(t,e){return 0===e.length?null:(e.objectMode?r=e.buffer.shift():!t||t>=e.length?(r=e.decoder?e.buffer.join(""):1===e.buffer.length?e.buffer.first():e.buffer.concat(e.length),e.buffer.clear()):r=e.buffer.consume(t,e.decoder),r);var r}function B(t){var e=t._readableState;c("endReadable",e.endEmitted),e.endEmitted||(e.ended=!0,r.nextTick(N,e,t))}function N(t,e){if(c("endReadableNT",t.endEmitted,t.length),!t.endEmitted&&0===t.length&&(t.endEmitted=!0,e.readable=!1,e.emit("end"),t.autoDestroy)){var r=e._writableState;(!r||r.autoDestroy&&r.finished)&&e.destroy()}}function j(t,e){for(var r=0,n=t.length;r=e.highWaterMark:e.length>0)||e.ended))return c("read: emitReadable",e.length,e.ended),0===e.length&&e.ended?B(this):L(this),null;if(0===(t=E(t,e))&&e.ended)return 0===e.length&&B(this),null;var n,i=e.needReadable;return c("need readable",i),(0===e.length||e.length-t0?F(t,e):null)?(e.needReadable=e.length<=e.highWaterMark,t=0):(e.length-=t,e.awaitDrain=0),0===e.length&&(e.ended||(e.needReadable=!0),r!==t&&e.ended&&B(this)),null!==n&&this.emit("data",n),n},A.prototype._read=function(t){w(this,new b("_read()"))},A.prototype.pipe=function(t,e){var n=this,i=this._readableState;switch(i.pipesCount){case 0:i.pipes=t;break;case 1:i.pipes=[i.pipes,t];break;default:i.pipes.push(t)}i.pipesCount+=1,c("pipe count=%d opts=%j",i.pipesCount,e);var o=(!e||!1!==e.end)&&t!==r.stdout&&t!==r.stderr?l:g;function s(e,r){c("onunpipe"),e===n&&r&&!1===r.hasUnpiped&&(r.hasUnpiped=!0,c("cleanup"),t.removeListener("close",d),t.removeListener("finish",m),t.removeListener("drain",u),t.removeListener("error",p),t.removeListener("unpipe",s),n.removeListener("end",l),n.removeListener("end",g),n.removeListener("data",h),f=!0,!i.awaitDrain||t._writableState&&!t._writableState.needDrain||u())}function l(){c("onend"),t.end()}i.endEmitted?r.nextTick(o):n.once("end",o),t.on("unpipe",s);var u=function(t){return function(){var e=t._readableState;c("pipeOnDrain",e.awaitDrain),e.awaitDrain&&e.awaitDrain--,0===e.awaitDrain&&a(t,"data")&&(e.flowing=!0,R(t))}}(n);t.on("drain",u);var f=!1;function h(e){c("ondata");var r=t.write(e);c("dest.write",r),!1===r&&((1===i.pipesCount&&i.pipes===t||i.pipesCount>1&&-1!==j(i.pipes,t))&&!f&&(c("false write response, pause",i.awaitDrain),i.awaitDrain++),n.pause())}function p(e){c("onerror",e),g(),t.removeListener("error",p),0===a(t,"error")&&w(t,e)}function d(){t.removeListener("finish",m),g()}function m(){c("onfinish"),t.removeListener("close",d),g()}function g(){c("unpipe"),n.unpipe(t)}return n.on("data",h),function(t,e,r){if("function"==typeof t.prependListener)return t.prependListener(e,r);t._events&&t._events[e]?Array.isArray(t._events[e])?t._events[e].unshift(r):t._events[e]=[r,t._events[e]]:t.on(e,r)}(t,"error",p),t.once("close",d),t.once("finish",m),t.emit("pipe",n),i.flowing||(c("pipe resume"),n.resume()),t},A.prototype.unpipe=function(t){var e=this._readableState,r={hasUnpiped:!1};if(0===e.pipesCount)return this;if(1===e.pipesCount)return t&&t!==e.pipes||(t||(t=e.pipes),e.pipes=null,e.pipesCount=0,e.flowing=!1,t&&t.emit("unpipe",this,r)),this;if(!t){var n=e.pipes,i=e.pipesCount;e.pipes=null,e.pipesCount=0,e.flowing=!1;for(var a=0;a0,!1!==i.flowing&&this.resume()):"readable"===t&&(i.endEmitted||i.readableListening||(i.readableListening=i.needReadable=!0,i.flowing=!1,i.emittedReadable=!1,c("on readable",i.length,i.reading),i.length?L(this):i.reading||r.nextTick(z,this))),n},A.prototype.addListener=A.prototype.on,A.prototype.removeListener=function(t,e){var n=o.prototype.removeListener.call(this,t,e);return"readable"===t&&r.nextTick(O,this),n},A.prototype.removeAllListeners=function(t){var e=o.prototype.removeAllListeners.apply(this,arguments);return"readable"!==t&&void 0!==t||r.nextTick(O,this),e},A.prototype.resume=function(){var t=this._readableState;return t.flowing||(c("resume"),t.flowing=!t.readableListening,function(t,e){e.resumeScheduled||(e.resumeScheduled=!0,r.nextTick(D,t,e))}(this,t)),t.paused=!1,this},A.prototype.pause=function(){return c("call pause flowing=%j",this._readableState.flowing),!1!==this._readableState.flowing&&(c("pause"),this._readableState.flowing=!1,this.emit("pause")),this._readableState.paused=!0,this},A.prototype.wrap=function(t){var e=this,r=this._readableState,n=!1;for(var i in t.on("end",(function(){if(c("wrapped end"),r.decoder&&!r.ended){var t=r.decoder.end();t&&t.length&&e.push(t)}e.push(null)})),t.on("data",(function(i){(c("wrapped data"),r.decoder&&(i=r.decoder.write(i)),r.objectMode&&null==i)||(r.objectMode||i&&i.length)&&(e.push(i)||(n=!0,t.pause()))})),t)void 0===this[i]&&"function"==typeof t[i]&&(this[i]=function(e){return function(){return t[e].apply(t,arguments)}}(i));for(var a=0;a-1))throw new _(t);return this._writableState.defaultEncoding=t,this},Object.defineProperty(A.prototype,"writableBuffer",{enumerable:!1,get:function(){return this._writableState&&this._writableState.getBuffer()}}),Object.defineProperty(A.prototype,"writableHighWaterMark",{enumerable:!1,get:function(){return this._writableState.highWaterMark}}),A.prototype._write=function(t,e,r){r(new m("_write()"))},A.prototype._writev=null,A.prototype.end=function(t,e,n){var i=this._writableState;return"function"==typeof t?(n=t,t=null,e=null):"function"==typeof e&&(n=e,e=null),null!=t&&this.write(t,e),i.corked&&(i.corked=1,this.uncork()),i.ending||function(t,e,n){e.ending=!0,P(t,e),n&&(e.finished?r.nextTick(n):t.once("finish",n));e.ended=!0,t.writable=!1}(this,i,n),this},Object.defineProperty(A.prototype,"writableLength",{enumerable:!1,get:function(){return this._writableState.length}}),Object.defineProperty(A.prototype,"destroyed",{enumerable:!1,get:function(){return void 0!==this._writableState&&this._writableState.destroyed},set:function(t){this._writableState&&(this._writableState.destroyed=t)}}),A.prototype.destroy=f.destroy,A.prototype._undestroy=f.undestroy,A.prototype._destroy=function(t,e){e(t)}}).call(this)}).call(this,t("_process"),"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"../errors":281,"./_stream_duplex":282,"./internal/streams/destroy":289,"./internal/streams/state":293,"./internal/streams/stream":294,_process:272,buffer:80,inherits:226,"util-deprecate":325}],287:[function(t,e,r){(function(r){(function(){"use strict";var n;function i(t,e,r){return e in t?Object.defineProperty(t,e,{value:r,enumerable:!0,configurable:!0,writable:!0}):t[e]=r,t}var a=t("./end-of-stream"),o=Symbol("lastResolve"),s=Symbol("lastReject"),l=Symbol("error"),c=Symbol("ended"),u=Symbol("lastPromise"),f=Symbol("handlePromise"),h=Symbol("stream");function p(t,e){return{value:t,done:e}}function d(t){var e=t[o];if(null!==e){var r=t[h].read();null!==r&&(t[u]=null,t[o]=null,t[s]=null,e(p(r,!1)))}}function m(t){r.nextTick(d,t)}var g=Object.getPrototypeOf((function(){})),v=Object.setPrototypeOf((i(n={get stream(){return this[h]},next:function(){var t=this,e=this[l];if(null!==e)return Promise.reject(e);if(this[c])return Promise.resolve(p(void 0,!0));if(this[h].destroyed)return new Promise((function(e,n){r.nextTick((function(){t[l]?n(t[l]):e(p(void 0,!0))}))}));var n,i=this[u];if(i)n=new Promise(function(t,e){return function(r,n){t.then((function(){e[c]?r(p(void 0,!0)):e[f](r,n)}),n)}}(i,this));else{var a=this[h].read();if(null!==a)return Promise.resolve(p(a,!1));n=new Promise(this[f])}return this[u]=n,n}},Symbol.asyncIterator,(function(){return this})),i(n,"return",(function(){var t=this;return new Promise((function(e,r){t[h].destroy(null,(function(t){t?r(t):e(p(void 0,!0))}))}))})),n),g);e.exports=function(t){var e,r=Object.create(v,(i(e={},h,{value:t,writable:!0}),i(e,o,{value:null,writable:!0}),i(e,s,{value:null,writable:!0}),i(e,l,{value:null,writable:!0}),i(e,c,{value:t._readableState.endEmitted,writable:!0}),i(e,f,{value:function(t,e){var n=r[h].read();n?(r[u]=null,r[o]=null,r[s]=null,t(p(n,!1))):(r[o]=t,r[s]=e)},writable:!0}),e));return r[u]=null,a(t,(function(t){if(t&&"ERR_STREAM_PREMATURE_CLOSE"!==t.code){var e=r[s];return null!==e&&(r[u]=null,r[o]=null,r[s]=null,e(t)),void(r[l]=t)}var n=r[o];null!==n&&(r[u]=null,r[o]=null,r[s]=null,n(p(void 0,!0))),r[c]=!0})),t.on("readable",m.bind(null,r)),r}}).call(this)}).call(this,t("_process"))},{"./end-of-stream":290,_process:272}],288:[function(t,e,r){"use strict";function n(t,e){var r=Object.keys(t);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(t);e&&(n=n.filter((function(e){return Object.getOwnPropertyDescriptor(t,e).enumerable}))),r.push.apply(r,n)}return r}function i(t,e,r){return e in t?Object.defineProperty(t,e,{value:r,enumerable:!0,configurable:!0,writable:!0}):t[e]=r,t}function a(t,e){for(var r=0;r0?this.tail.next=e:this.head=e,this.tail=e,++this.length}},{key:"unshift",value:function(t){var e={data:t,next:this.head};0===this.length&&(this.tail=e),this.head=e,++this.length}},{key:"shift",value:function(){if(0!==this.length){var t=this.head.data;return 1===this.length?this.head=this.tail=null:this.head=this.head.next,--this.length,t}}},{key:"clear",value:function(){this.head=this.tail=null,this.length=0}},{key:"join",value:function(t){if(0===this.length)return"";for(var e=this.head,r=""+e.data;e=e.next;)r+=t+e.data;return r}},{key:"concat",value:function(t){if(0===this.length)return o.alloc(0);for(var e,r,n,i=o.allocUnsafe(t>>>0),a=this.head,s=0;a;)e=a.data,r=i,n=s,o.prototype.copy.call(e,r,n),s+=a.data.length,a=a.next;return i}},{key:"consume",value:function(t,e){var r;return ti.length?i.length:t;if(a===i.length?n+=i:n+=i.slice(0,t),0==(t-=a)){a===i.length?(++r,e.next?this.head=e.next:this.head=this.tail=null):(this.head=e,e.data=i.slice(a));break}++r}return this.length-=r,n}},{key:"_getBuffer",value:function(t){var e=o.allocUnsafe(t),r=this.head,n=1;for(r.data.copy(e),t-=r.data.length;r=r.next;){var i=r.data,a=t>i.length?i.length:t;if(i.copy(e,e.length-t,0,a),0==(t-=a)){a===i.length?(++n,r.next?this.head=r.next:this.head=this.tail=null):(this.head=r,r.data=i.slice(a));break}++n}return this.length-=n,e}},{key:l,value:function(t,e){return s(this,function(t){for(var e=1;e0,(function(t){n||(n=t),t&&o.forEach(c),a||(o.forEach(c),i(n))}))}));return e.reduce(u)}},{"../../../errors":281,"./end-of-stream":290}],293:[function(t,e,r){"use strict";var n=t("../../../errors").codes.ERR_INVALID_OPT_VALUE;e.exports={getHighWaterMark:function(t,e,r,i){var a=function(t,e,r){return null!=t.highWaterMark?t.highWaterMark:e?t[r]:null}(e,i,r);if(null!=a){if(!isFinite(a)||Math.floor(a)!==a||a<0)throw new n(i?r:"highWaterMark",a);return Math.floor(a)}return t.objectMode?16:16384}}},{"../../../errors":281}],294:[function(t,e,r){e.exports=t("events").EventEmitter},{events:181}],295:[function(t,e,r){(function(r,n){(function(){var r=t("assert"),i=t("debug")("stream-parser");e.exports=function(t){var e=t&&"function"==typeof t._transform,r=t&&"function"==typeof t._write;if(!e&&!r)throw new Error("must pass a Writable or Transform stream in");i("extending Parser into stream"),t._bytes=o,t._skipBytes=s,e&&(t._passthrough=l);e?t._transform=u:t._write=c};function a(t){i("initializing parser stream"),t._parserBytesLeft=0,t._parserBuffers=[],t._parserBuffered=0,t._parserState=-1,t._parserCallback=null,"function"==typeof t.push&&(t._parserOutput=t.push.bind(t)),t._parserInit=!0}function o(t,e){r(!this._parserCallback,'there is already a "callback" set!'),r(isFinite(t)&&t>0,'can only buffer a finite number of bytes > 0, got "'+t+'"'),this._parserInit||a(this),i("buffering %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=0}function s(t,e){r(!this._parserCallback,'there is already a "callback" set!'),r(t>0,'can only skip > 0 bytes, got "'+t+'"'),this._parserInit||a(this),i("skipping %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=1}function l(t,e){r(!this._parserCallback,'There is already a "callback" set!'),r(t>0,'can only pass through > 0 bytes, got "'+t+'"'),this._parserInit||a(this),i("passing through %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=2}function c(t,e,r){this._parserInit||a(this),i("write(%o bytes)",t.length),"function"==typeof e&&(r=e),h(this,t,null,r)}function u(t,e,r){this._parserInit||a(this),i("transform(%o bytes)",t.length),"function"!=typeof e&&(e=this._parserOutput),h(this,t,e,r)}function f(t,e,r,a){if(t._parserBytesLeft-=e.length,i("%o bytes left for stream piece",t._parserBytesLeft),0===t._parserState?(t._parserBuffers.push(e),t._parserBuffered+=e.length):2===t._parserState&&r(e),0!==t._parserBytesLeft)return a;var o=t._parserCallback;if(o&&0===t._parserState&&t._parserBuffers.length>1&&(e=n.concat(t._parserBuffers,t._parserBuffered)),0!==t._parserState&&(e=null),t._parserCallback=null,t._parserBuffered=0,t._parserState=-1,t._parserBuffers.splice(0),o){var s=[];e&&s.push(e),r&&s.push(r);var l=o.length>s.length;l&&s.push(p(a));var c=o.apply(t,s);if(!l||a===c)return a}}var h=p((function t(e,r,n,i){return e._parserBytesLeft<=0?i(new Error("got data but not currently parsing anything")):r.length<=e._parserBytesLeft?function(){return f(e,r,n,i)}:function(){var a=r.slice(0,e._parserBytesLeft);return f(e,a,n,(function(o){return o?i(o):r.length>a.length?function(){return t(e,r.slice(a.length),n,i)}:void 0}))}}));function p(t){return function(){for(var e=t.apply(this,arguments);"function"==typeof e;)e=e();return e}}}).call(this)}).call(this,t("_process"),t("buffer").Buffer)},{_process:272,assert:71,buffer:80,debug:296}],296:[function(t,e,r){(function(n){(function(){function i(){var t;try{t=r.storage.debug}catch(t){}return!t&&void 0!==n&&"env"in n&&(t=n.env.DEBUG),t}(r=e.exports=t("./debug")).log=function(){return"object"==typeof console&&console.log&&Function.prototype.apply.call(console.log,console,arguments)},r.formatArgs=function(t){var e=this.useColors;if(t[0]=(e?"%c":"")+this.namespace+(e?" %c":" ")+t[0]+(e?"%c ":" ")+"+"+r.humanize(this.diff),!e)return;var n="color: "+this.color;t.splice(1,0,n,"color: inherit");var i=0,a=0;t[0].replace(/%[a-zA-Z%]/g,(function(t){"%%"!==t&&(i++,"%c"===t&&(a=i))})),t.splice(a,0,n)},r.save=function(t){try{null==t?r.storage.removeItem("debug"):r.storage.debug=t}catch(t){}},r.load=i,r.useColors=function(){if("undefined"!=typeof window&&window.process&&"renderer"===window.process.type)return!0;return"undefined"!=typeof document&&document.documentElement&&document.documentElement.style&&document.documentElement.style.WebkitAppearance||"undefined"!=typeof window&&window.console&&(window.console.firebug||window.console.exception&&window.console.table)||"undefined"!=typeof navigator&&navigator.userAgent&&navigator.userAgent.toLowerCase().match(/firefox\/(\d+)/)&&parseInt(RegExp.$1,10)>=31||"undefined"!=typeof navigator&&navigator.userAgent&&navigator.userAgent.toLowerCase().match(/applewebkit\/(\d+)/)},r.storage="undefined"!=typeof chrome&&void 0!==chrome.storage?chrome.storage.local:function(){try{return window.localStorage}catch(t){}}(),r.colors=["lightseagreen","forestgreen","goldenrod","dodgerblue","darkorchid","crimson"],r.formatters.j=function(t){try{return JSON.stringify(t)}catch(t){return"[UnexpectedJSONParseError]: "+t.message}},r.enable(i())}).call(this)}).call(this,t("_process"))},{"./debug":297,_process:272}],297:[function(t,e,r){var n;function i(t){function e(){if(e.enabled){var t=e,i=+new Date,a=i-(n||i);t.diff=a,t.prev=n,t.curr=i,n=i;for(var o=new Array(arguments.length),s=0;s0)return function(t){if((t=String(t)).length>100)return;var e=/^((?:\d+)?\.?\d+) *(milliseconds?|msecs?|ms|seconds?|secs?|s|minutes?|mins?|m|hours?|hrs?|h|days?|d|years?|yrs?|y)?$/i.exec(t);if(!e)return;var r=parseFloat(e[1]);switch((e[2]||"ms").toLowerCase()){case"years":case"year":case"yrs":case"yr":case"y":return 315576e5*r;case"days":case"day":case"d":return r*o;case"hours":case"hour":case"hrs":case"hr":case"h":return r*a;case"minutes":case"minute":case"mins":case"min":case"m":return r*i;case"seconds":case"second":case"secs":case"sec":case"s":return r*n;case"milliseconds":case"millisecond":case"msecs":case"msec":case"ms":return r;default:return}}(t);if("number"===l&&!1===isNaN(t))return e.long?s(r=t,o,"day")||s(r,a,"hour")||s(r,i,"minute")||s(r,n,"second")||r+" ms":function(t){if(t>=o)return Math.round(t/o)+"d";if(t>=a)return Math.round(t/a)+"h";if(t>=i)return Math.round(t/i)+"m";if(t>=n)return Math.round(t/n)+"s";return t+"ms"}(t);throw new Error("val is not a non-empty string or a valid number. val="+JSON.stringify(t))}},{}],299:[function(t,e,r){"use strict";var n=t("parenthesis");e.exports=function(t,e,r){if(null==t)throw Error("First argument should be a string");if(null==e)throw Error("Separator should be a string or a RegExp");r?("string"==typeof r||Array.isArray(r))&&(r={ignore:r}):r={},null==r.escape&&(r.escape=!0),null==r.ignore?r.ignore=["[]","()","{}","<>",'""',"''","``","\u201c\u201d","\xab\xbb"]:("string"==typeof r.ignore&&(r.ignore=[r.ignore]),r.ignore=r.ignore.map((function(t){return 1===t.length&&(t+=t),t})));var i=n.parse(t,{flat:!0,brackets:r.ignore}),a=i[0].split(e);if(r.escape){for(var o=[],s=0;s>5==6?2:t>>4==14?3:t>>3==30?4:t>>6==2?-1:-2}function s(t){var e=this.lastTotal-this.lastNeed,r=function(t,e,r){if(128!=(192&e[0]))return t.lastNeed=0,"\ufffd";if(t.lastNeed>1&&e.length>1){if(128!=(192&e[1]))return t.lastNeed=1,"\ufffd";if(t.lastNeed>2&&e.length>2&&128!=(192&e[2]))return t.lastNeed=2,"\ufffd"}}(this,t);return void 0!==r?r:this.lastNeed<=t.length?(t.copy(this.lastChar,e,0,this.lastNeed),this.lastChar.toString(this.encoding,0,this.lastTotal)):(t.copy(this.lastChar,e,0,t.length),void(this.lastNeed-=t.length))}function l(t,e){if((t.length-e)%2==0){var r=t.toString("utf16le",e);if(r){var n=r.charCodeAt(r.length-1);if(n>=55296&&n<=56319)return this.lastNeed=2,this.lastTotal=4,this.lastChar[0]=t[t.length-2],this.lastChar[1]=t[t.length-1],r.slice(0,-1)}return r}return this.lastNeed=1,this.lastTotal=2,this.lastChar[0]=t[t.length-1],t.toString("utf16le",e,t.length-1)}function c(t){var e=t&&t.length?this.write(t):"";if(this.lastNeed){var r=this.lastTotal-this.lastNeed;return e+this.lastChar.toString("utf16le",0,r)}return e}function u(t,e){var r=(t.length-e)%3;return 0===r?t.toString("base64",e):(this.lastNeed=3-r,this.lastTotal=3,1===r?this.lastChar[0]=t[t.length-1]:(this.lastChar[0]=t[t.length-2],this.lastChar[1]=t[t.length-1]),t.toString("base64",e,t.length-r))}function f(t){var e=t&&t.length?this.write(t):"";return this.lastNeed?e+this.lastChar.toString("base64",0,3-this.lastNeed):e}function h(t){return t.toString(this.encoding)}function p(t){return t&&t.length?this.write(t):""}r.StringDecoder=a,a.prototype.write=function(t){if(0===t.length)return"";var e,r;if(this.lastNeed){if(void 0===(e=this.fillLast(t)))return"";r=this.lastNeed,this.lastNeed=0}else r=0;return r=0)return i>0&&(t.lastNeed=i-1),i;if(--n=0)return i>0&&(t.lastNeed=i-2),i;if(--n=0)return i>0&&(2===i?i=0:t.lastNeed=i-3),i;return 0}(this,t,e);if(!this.lastNeed)return t.toString("utf8",e);this.lastTotal=r;var n=t.length-(r-this.lastNeed);return t.copy(this.lastChar,0,n),t.toString("utf8",e,n)},a.prototype.fillLast=function(t){if(this.lastNeed<=t.length)return t.copy(this.lastChar,this.lastTotal-this.lastNeed,0,this.lastNeed),this.lastChar.toString(this.encoding,0,this.lastTotal);t.copy(this.lastChar,this.lastTotal-this.lastNeed,0,t.length),this.lastNeed-=t.length}},{"safe-buffer":279}],301:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.length,r=new Array(e),n=new Array(e),i=new Array(e),a=new Array(e),o=new Array(e),s=new Array(e),l=0;l0;){e=c[c.length-1];var p=t[e];if(a[e]=0&&s[e].push(o[m])}a[e]=d}else{if(n[e]===r[e]){var g=[],v=[],y=0;for(d=l.length-1;d>=0;--d){var x=l[d];if(i[x]=!1,g.push(x),v.push(s[x]),y+=s[x].length,o[x]=f.length,x===e){l.length=d;break}}f.push(g);var b=new Array(y);for(d=0;d1&&(i=1),i<-1&&(i=-1),(t*n-e*r<0?-1:1)*Math.acos(i)};r.default=function(t){var e=t.px,r=t.py,l=t.cx,c=t.cy,u=t.rx,f=t.ry,h=t.xAxisRotation,p=void 0===h?0:h,d=t.largeArcFlag,m=void 0===d?0:d,g=t.sweepFlag,v=void 0===g?0:g,y=[];if(0===u||0===f)return[];var x=Math.sin(p*i/360),b=Math.cos(p*i/360),_=b*(e-l)/2+x*(r-c)/2,w=-x*(e-l)/2+b*(r-c)/2;if(0===_&&0===w)return[];u=Math.abs(u),f=Math.abs(f);var T=Math.pow(_,2)/Math.pow(u,2)+Math.pow(w,2)/Math.pow(f,2);T>1&&(u*=Math.sqrt(T),f*=Math.sqrt(T));var k=function(t,e,r,n,a,o,l,c,u,f,h,p){var d=Math.pow(a,2),m=Math.pow(o,2),g=Math.pow(h,2),v=Math.pow(p,2),y=d*m-d*v-m*g;y<0&&(y=0),y/=d*v+m*g;var x=(y=Math.sqrt(y)*(l===c?-1:1))*a/o*p,b=y*-o/a*h,_=f*x-u*b+(t+r)/2,w=u*x+f*b+(e+n)/2,T=(h-x)/a,k=(p-b)/o,A=(-h-x)/a,M=(-p-b)/o,S=s(1,0,T,k),E=s(T,k,A,M);return 0===c&&E>0&&(E-=i),1===c&&E<0&&(E+=i),[_,w,S,E]}(e,r,l,c,u,f,m,v,x,b,_,w),A=n(k,4),M=A[0],S=A[1],E=A[2],L=A[3],C=Math.abs(L)/(i/4);Math.abs(1-C)<1e-7&&(C=1);var P=Math.max(Math.ceil(C),1);L/=P;for(var I=0;Ie[2]&&(e[2]=l[c+0]),l[c+1]>e[3]&&(e[3]=l[c+1]);return e}},{"abs-svg-path":66,"is-svg-path":233,"normalize-svg-path":304,"parse-svg-path":245}],304:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=[],o=0,s=0,l=0,c=0,u=null,f=null,h=0,p=0,d=0,m=t.length;d4?(o=g[g.length-4],s=g[g.length-3]):(o=h,s=p),r.push(g)}return r};var n=t("svg-arc-to-cubic-bezier");function i(t,e,r,n){return["C",t,e,r,n,r,n]}function a(t,e,r,n,i,a){return["C",t/3+2/3*r,e/3+2/3*n,i/3+2/3*r,a/3+2/3*n,i,a]}},{"svg-arc-to-cubic-bezier":302}],305:[function(t,e,r){"use strict";var n,i=t("svg-path-bounds"),a=t("parse-svg-path"),o=t("draw-svg-path"),s=t("is-svg-path"),l=t("bitmap-sdf"),c=document.createElement("canvas"),u=c.getContext("2d");e.exports=function(t,e){if(!s(t))throw Error("Argument should be valid svg path string");e||(e={});var r,f;e.shape?(r=e.shape[0],f=e.shape[1]):(r=c.width=e.w||e.width||200,f=c.height=e.h||e.height||200);var h=Math.min(r,f),p=e.stroke||0,d=e.viewbox||e.viewBox||i(t),m=[r/(d[2]-d[0]),f/(d[3]-d[1])],g=Math.min(m[0]||0,m[1]||0)/2;u.fillStyle="black",u.fillRect(0,0,r,f),u.fillStyle="white",p&&("number"!=typeof p&&(p=1),u.strokeStyle=p>0?"white":"black",u.lineWidth=Math.abs(p));if(u.translate(.5*r,.5*f),u.scale(g,g),function(){if(null!=n)return n;var t=document.createElement("canvas").getContext("2d");if(t.canvas.width=t.canvas.height=1,!window.Path2D)return n=!1;var e=new Path2D("M0,0h1v1h-1v-1Z");t.fillStyle="black",t.fill(e);var r=t.getImageData(0,0,1,1);return n=r&&r.data&&255===r.data[3]}()){var v=new Path2D(t);u.fill(v),p&&u.stroke(v)}else{var y=a(t);o(u,y),u.fill(),p&&u.stroke()}return u.setTransform(1,0,0,1,0,0),l(u,{cutoff:null!=e.cutoff?e.cutoff:.5,radius:null!=e.radius?e.radius:.5*h})}},{"bitmap-sdf":78,"draw-svg-path":120,"is-svg-path":233,"parse-svg-path":245,"svg-path-bounds":303}],306:[function(t,e,r){(function(e,n){(function(){var i=t("process/browser.js").nextTick,a=Function.prototype.apply,o=Array.prototype.slice,s={},l=0;function c(t,e){this._id=t,this._clearFn=e}r.setTimeout=function(){return new c(a.call(setTimeout,window,arguments),clearTimeout)},r.setInterval=function(){return new c(a.call(setInterval,window,arguments),clearInterval)},r.clearTimeout=r.clearInterval=function(t){t.close()},c.prototype.unref=c.prototype.ref=function(){},c.prototype.close=function(){this._clearFn.call(window,this._id)},r.enroll=function(t,e){clearTimeout(t._idleTimeoutId),t._idleTimeout=e},r.unenroll=function(t){clearTimeout(t._idleTimeoutId),t._idleTimeout=-1},r._unrefActive=r.active=function(t){clearTimeout(t._idleTimeoutId);var e=t._idleTimeout;e>=0&&(t._idleTimeoutId=setTimeout((function(){t._onTimeout&&t._onTimeout()}),e))},r.setImmediate="function"==typeof e?e:function(t){var e=l++,n=!(arguments.length<2)&&o.call(arguments,1);return s[e]=!0,i((function(){s[e]&&(n?t.apply(null,n):t.call(null),r.clearImmediate(e))})),e},r.clearImmediate="function"==typeof n?n:function(t){delete s[t]}}).call(this)}).call(this,t("timers").setImmediate,t("timers").clearImmediate)},{"process/browser.js":272,timers:306}],307:[function(t,e,r){!function(t){var r=/^\s+/,n=/\s+$/,i=0,a=t.round,o=t.min,s=t.max,l=t.random;function c(e,l){if(l=l||{},(e=e||"")instanceof c)return e;if(!(this instanceof c))return new c(e,l);var u=function(e){var i={r:0,g:0,b:0},a=1,l=null,c=null,u=null,f=!1,h=!1;"string"==typeof e&&(e=function(t){t=t.replace(r,"").replace(n,"").toLowerCase();var e,i=!1;if(S[t])t=S[t],i=!0;else if("transparent"==t)return{r:0,g:0,b:0,a:0,format:"name"};if(e=j.rgb.exec(t))return{r:e[1],g:e[2],b:e[3]};if(e=j.rgba.exec(t))return{r:e[1],g:e[2],b:e[3],a:e[4]};if(e=j.hsl.exec(t))return{h:e[1],s:e[2],l:e[3]};if(e=j.hsla.exec(t))return{h:e[1],s:e[2],l:e[3],a:e[4]};if(e=j.hsv.exec(t))return{h:e[1],s:e[2],v:e[3]};if(e=j.hsva.exec(t))return{h:e[1],s:e[2],v:e[3],a:e[4]};if(e=j.hex8.exec(t))return{r:I(e[1]),g:I(e[2]),b:I(e[3]),a:R(e[4]),format:i?"name":"hex8"};if(e=j.hex6.exec(t))return{r:I(e[1]),g:I(e[2]),b:I(e[3]),format:i?"name":"hex"};if(e=j.hex4.exec(t))return{r:I(e[1]+""+e[1]),g:I(e[2]+""+e[2]),b:I(e[3]+""+e[3]),a:R(e[4]+""+e[4]),format:i?"name":"hex8"};if(e=j.hex3.exec(t))return{r:I(e[1]+""+e[1]),g:I(e[2]+""+e[2]),b:I(e[3]+""+e[3]),format:i?"name":"hex"};return!1}(e));"object"==typeof e&&(U(e.r)&&U(e.g)&&U(e.b)?(p=e.r,d=e.g,m=e.b,i={r:255*C(p,255),g:255*C(d,255),b:255*C(m,255)},f=!0,h="%"===String(e.r).substr(-1)?"prgb":"rgb"):U(e.h)&&U(e.s)&&U(e.v)?(l=z(e.s),c=z(e.v),i=function(e,r,n){e=6*C(e,360),r=C(r,100),n=C(n,100);var i=t.floor(e),a=e-i,o=n*(1-r),s=n*(1-a*r),l=n*(1-(1-a)*r),c=i%6;return{r:255*[n,s,o,o,l,n][c],g:255*[l,n,n,s,o,o][c],b:255*[o,o,l,n,n,s][c]}}(e.h,l,c),f=!0,h="hsv"):U(e.h)&&U(e.s)&&U(e.l)&&(l=z(e.s),u=z(e.l),i=function(t,e,r){var n,i,a;function o(t,e,r){return r<0&&(r+=1),r>1&&(r-=1),r<1/6?t+6*(e-t)*r:r<.5?e:r<2/3?t+(e-t)*(2/3-r)*6:t}if(t=C(t,360),e=C(e,100),r=C(r,100),0===e)n=i=a=r;else{var s=r<.5?r*(1+e):r+e-r*e,l=2*r-s;n=o(l,s,t+1/3),i=o(l,s,t),a=o(l,s,t-1/3)}return{r:255*n,g:255*i,b:255*a}}(e.h,l,u),f=!0,h="hsl"),e.hasOwnProperty("a")&&(a=e.a));var p,d,m;return a=L(a),{ok:f,format:e.format||h,r:o(255,s(i.r,0)),g:o(255,s(i.g,0)),b:o(255,s(i.b,0)),a:a}}(e);this._originalInput=e,this._r=u.r,this._g=u.g,this._b=u.b,this._a=u.a,this._roundA=a(100*this._a)/100,this._format=l.format||u.format,this._gradientType=l.gradientType,this._r<1&&(this._r=a(this._r)),this._g<1&&(this._g=a(this._g)),this._b<1&&(this._b=a(this._b)),this._ok=u.ok,this._tc_id=i++}function u(t,e,r){t=C(t,255),e=C(e,255),r=C(r,255);var n,i,a=s(t,e,r),l=o(t,e,r),c=(a+l)/2;if(a==l)n=i=0;else{var u=a-l;switch(i=c>.5?u/(2-a-l):u/(a+l),a){case t:n=(e-r)/u+(e>1)+720)%360;--e;)n.h=(n.h+i)%360,a.push(c(n));return a}function M(t,e){e=e||6;for(var r=c(t).toHsv(),n=r.h,i=r.s,a=r.v,o=[],s=1/e;e--;)o.push(c({h:n,s:i,v:a})),a=(a+s)%1;return o}c.prototype={isDark:function(){return this.getBrightness()<128},isLight:function(){return!this.isDark()},isValid:function(){return this._ok},getOriginalInput:function(){return this._originalInput},getFormat:function(){return this._format},getAlpha:function(){return this._a},getBrightness:function(){var t=this.toRgb();return(299*t.r+587*t.g+114*t.b)/1e3},getLuminance:function(){var e,r,n,i=this.toRgb();return e=i.r/255,r=i.g/255,n=i.b/255,.2126*(e<=.03928?e/12.92:t.pow((e+.055)/1.055,2.4))+.7152*(r<=.03928?r/12.92:t.pow((r+.055)/1.055,2.4))+.0722*(n<=.03928?n/12.92:t.pow((n+.055)/1.055,2.4))},setAlpha:function(t){return this._a=L(t),this._roundA=a(100*this._a)/100,this},toHsv:function(){var t=f(this._r,this._g,this._b);return{h:360*t.h,s:t.s,v:t.v,a:this._a}},toHsvString:function(){var t=f(this._r,this._g,this._b),e=a(360*t.h),r=a(100*t.s),n=a(100*t.v);return 1==this._a?"hsv("+e+", "+r+"%, "+n+"%)":"hsva("+e+", "+r+"%, "+n+"%, "+this._roundA+")"},toHsl:function(){var t=u(this._r,this._g,this._b);return{h:360*t.h,s:t.s,l:t.l,a:this._a}},toHslString:function(){var t=u(this._r,this._g,this._b),e=a(360*t.h),r=a(100*t.s),n=a(100*t.l);return 1==this._a?"hsl("+e+", "+r+"%, "+n+"%)":"hsla("+e+", "+r+"%, "+n+"%, "+this._roundA+")"},toHex:function(t){return h(this._r,this._g,this._b,t)},toHexString:function(t){return"#"+this.toHex(t)},toHex8:function(t){return function(t,e,r,n,i){var o=[O(a(t).toString(16)),O(a(e).toString(16)),O(a(r).toString(16)),O(D(n))];if(i&&o[0].charAt(0)==o[0].charAt(1)&&o[1].charAt(0)==o[1].charAt(1)&&o[2].charAt(0)==o[2].charAt(1)&&o[3].charAt(0)==o[3].charAt(1))return o[0].charAt(0)+o[1].charAt(0)+o[2].charAt(0)+o[3].charAt(0);return o.join("")}(this._r,this._g,this._b,this._a,t)},toHex8String:function(t){return"#"+this.toHex8(t)},toRgb:function(){return{r:a(this._r),g:a(this._g),b:a(this._b),a:this._a}},toRgbString:function(){return 1==this._a?"rgb("+a(this._r)+", "+a(this._g)+", "+a(this._b)+")":"rgba("+a(this._r)+", "+a(this._g)+", "+a(this._b)+", "+this._roundA+")"},toPercentageRgb:function(){return{r:a(100*C(this._r,255))+"%",g:a(100*C(this._g,255))+"%",b:a(100*C(this._b,255))+"%",a:this._a}},toPercentageRgbString:function(){return 1==this._a?"rgb("+a(100*C(this._r,255))+"%, "+a(100*C(this._g,255))+"%, "+a(100*C(this._b,255))+"%)":"rgba("+a(100*C(this._r,255))+"%, "+a(100*C(this._g,255))+"%, "+a(100*C(this._b,255))+"%, "+this._roundA+")"},toName:function(){return 0===this._a?"transparent":!(this._a<1)&&(E[h(this._r,this._g,this._b,!0)]||!1)},toFilter:function(t){var e="#"+p(this._r,this._g,this._b,this._a),r=e,n=this._gradientType?"GradientType = 1, ":"";if(t){var i=c(t);r="#"+p(i._r,i._g,i._b,i._a)}return"progid:DXImageTransform.Microsoft.gradient("+n+"startColorstr="+e+",endColorstr="+r+")"},toString:function(t){var e=!!t;t=t||this._format;var r=!1,n=this._a<1&&this._a>=0;return e||!n||"hex"!==t&&"hex6"!==t&&"hex3"!==t&&"hex4"!==t&&"hex8"!==t&&"name"!==t?("rgb"===t&&(r=this.toRgbString()),"prgb"===t&&(r=this.toPercentageRgbString()),"hex"!==t&&"hex6"!==t||(r=this.toHexString()),"hex3"===t&&(r=this.toHexString(!0)),"hex4"===t&&(r=this.toHex8String(!0)),"hex8"===t&&(r=this.toHex8String()),"name"===t&&(r=this.toName()),"hsl"===t&&(r=this.toHslString()),"hsv"===t&&(r=this.toHsvString()),r||this.toHexString()):"name"===t&&0===this._a?this.toName():this.toRgbString()},clone:function(){return c(this.toString())},_applyModification:function(t,e){var r=t.apply(null,[this].concat([].slice.call(e)));return this._r=r._r,this._g=r._g,this._b=r._b,this.setAlpha(r._a),this},lighten:function(){return this._applyModification(v,arguments)},brighten:function(){return this._applyModification(y,arguments)},darken:function(){return this._applyModification(x,arguments)},desaturate:function(){return this._applyModification(d,arguments)},saturate:function(){return this._applyModification(m,arguments)},greyscale:function(){return this._applyModification(g,arguments)},spin:function(){return this._applyModification(b,arguments)},_applyCombination:function(t,e){return t.apply(null,[this].concat([].slice.call(e)))},analogous:function(){return this._applyCombination(A,arguments)},complement:function(){return this._applyCombination(_,arguments)},monochromatic:function(){return this._applyCombination(M,arguments)},splitcomplement:function(){return this._applyCombination(k,arguments)},triad:function(){return this._applyCombination(w,arguments)},tetrad:function(){return this._applyCombination(T,arguments)}},c.fromRatio=function(t,e){if("object"==typeof t){var r={};for(var n in t)t.hasOwnProperty(n)&&(r[n]="a"===n?t[n]:z(t[n]));t=r}return c(t,e)},c.equals=function(t,e){return!(!t||!e)&&c(t).toRgbString()==c(e).toRgbString()},c.random=function(){return c.fromRatio({r:l(),g:l(),b:l()})},c.mix=function(t,e,r){r=0===r?0:r||50;var n=c(t).toRgb(),i=c(e).toRgb(),a=r/100;return c({r:(i.r-n.r)*a+n.r,g:(i.g-n.g)*a+n.g,b:(i.b-n.b)*a+n.b,a:(i.a-n.a)*a+n.a})},c.readability=function(e,r){var n=c(e),i=c(r);return(t.max(n.getLuminance(),i.getLuminance())+.05)/(t.min(n.getLuminance(),i.getLuminance())+.05)},c.isReadable=function(t,e,r){var n,i,a=c.readability(t,e);switch(i=!1,(n=function(t){var e,r;e=((t=t||{level:"AA",size:"small"}).level||"AA").toUpperCase(),r=(t.size||"small").toLowerCase(),"AA"!==e&&"AAA"!==e&&(e="AA");"small"!==r&&"large"!==r&&(r="small");return{level:e,size:r}}(r)).level+n.size){case"AAsmall":case"AAAlarge":i=a>=4.5;break;case"AAlarge":i=a>=3;break;case"AAAsmall":i=a>=7}return i},c.mostReadable=function(t,e,r){var n,i,a,o,s=null,l=0;i=(r=r||{}).includeFallbackColors,a=r.level,o=r.size;for(var u=0;ul&&(l=n,s=c(e[u]));return c.isReadable(t,s,{level:a,size:o})||!i?s:(r.includeFallbackColors=!1,c.mostReadable(t,["#fff","#000"],r))};var S=c.names={aliceblue:"f0f8ff",antiquewhite:"faebd7",aqua:"0ff",aquamarine:"7fffd4",azure:"f0ffff",beige:"f5f5dc",bisque:"ffe4c4",black:"000",blanchedalmond:"ffebcd",blue:"00f",blueviolet:"8a2be2",brown:"a52a2a",burlywood:"deb887",burntsienna:"ea7e5d",cadetblue:"5f9ea0",chartreuse:"7fff00",chocolate:"d2691e",coral:"ff7f50",cornflowerblue:"6495ed",cornsilk:"fff8dc",crimson:"dc143c",cyan:"0ff",darkblue:"00008b",darkcyan:"008b8b",darkgoldenrod:"b8860b",darkgray:"a9a9a9",darkgreen:"006400",darkgrey:"a9a9a9",darkkhaki:"bdb76b",darkmagenta:"8b008b",darkolivegreen:"556b2f",darkorange:"ff8c00",darkorchid:"9932cc",darkred:"8b0000",darksalmon:"e9967a",darkseagreen:"8fbc8f",darkslateblue:"483d8b",darkslategray:"2f4f4f",darkslategrey:"2f4f4f",darkturquoise:"00ced1",darkviolet:"9400d3",deeppink:"ff1493",deepskyblue:"00bfff",dimgray:"696969",dimgrey:"696969",dodgerblue:"1e90ff",firebrick:"b22222",floralwhite:"fffaf0",forestgreen:"228b22",fuchsia:"f0f",gainsboro:"dcdcdc",ghostwhite:"f8f8ff",gold:"ffd700",goldenrod:"daa520",gray:"808080",green:"008000",greenyellow:"adff2f",grey:"808080",honeydew:"f0fff0",hotpink:"ff69b4",indianred:"cd5c5c",indigo:"4b0082",ivory:"fffff0",khaki:"f0e68c",lavender:"e6e6fa",lavenderblush:"fff0f5",lawngreen:"7cfc00",lemonchiffon:"fffacd",lightblue:"add8e6",lightcoral:"f08080",lightcyan:"e0ffff",lightgoldenrodyellow:"fafad2",lightgray:"d3d3d3",lightgreen:"90ee90",lightgrey:"d3d3d3",lightpink:"ffb6c1",lightsalmon:"ffa07a",lightseagreen:"20b2aa",lightskyblue:"87cefa",lightslategray:"789",lightslategrey:"789",lightsteelblue:"b0c4de",lightyellow:"ffffe0",lime:"0f0",limegreen:"32cd32",linen:"faf0e6",magenta:"f0f",maroon:"800000",mediumaquamarine:"66cdaa",mediumblue:"0000cd",mediumorchid:"ba55d3",mediumpurple:"9370db",mediumseagreen:"3cb371",mediumslateblue:"7b68ee",mediumspringgreen:"00fa9a",mediumturquoise:"48d1cc",mediumvioletred:"c71585",midnightblue:"191970",mintcream:"f5fffa",mistyrose:"ffe4e1",moccasin:"ffe4b5",navajowhite:"ffdead",navy:"000080",oldlace:"fdf5e6",olive:"808000",olivedrab:"6b8e23",orange:"ffa500",orangered:"ff4500",orchid:"da70d6",palegoldenrod:"eee8aa",palegreen:"98fb98",paleturquoise:"afeeee",palevioletred:"db7093",papayawhip:"ffefd5",peachpuff:"ffdab9",peru:"cd853f",pink:"ffc0cb",plum:"dda0dd",powderblue:"b0e0e6",purple:"800080",rebeccapurple:"663399",red:"f00",rosybrown:"bc8f8f",royalblue:"4169e1",saddlebrown:"8b4513",salmon:"fa8072",sandybrown:"f4a460",seagreen:"2e8b57",seashell:"fff5ee",sienna:"a0522d",silver:"c0c0c0",skyblue:"87ceeb",slateblue:"6a5acd",slategray:"708090",slategrey:"708090",snow:"fffafa",springgreen:"00ff7f",steelblue:"4682b4",tan:"d2b48c",teal:"008080",thistle:"d8bfd8",tomato:"ff6347",turquoise:"40e0d0",violet:"ee82ee",wheat:"f5deb3",white:"fff",whitesmoke:"f5f5f5",yellow:"ff0",yellowgreen:"9acd32"},E=c.hexNames=function(t){var e={};for(var r in t)t.hasOwnProperty(r)&&(e[t[r]]=r);return e}(S);function L(t){return t=parseFloat(t),(isNaN(t)||t<0||t>1)&&(t=1),t}function C(e,r){(function(t){return"string"==typeof t&&-1!=t.indexOf(".")&&1===parseFloat(t)})(e)&&(e="100%");var n=function(t){return"string"==typeof t&&-1!=t.indexOf("%")}(e);return e=o(r,s(0,parseFloat(e))),n&&(e=parseInt(e*r,10)/100),t.abs(e-r)<1e-6?1:e%r/parseFloat(r)}function P(t){return o(1,s(0,t))}function I(t){return parseInt(t,16)}function O(t){return 1==t.length?"0"+t:""+t}function z(t){return t<=1&&(t=100*t+"%"),t}function D(e){return t.round(255*parseFloat(e)).toString(16)}function R(t){return I(t)/255}var F,B,N,j=(B="[\\s|\\(]+("+(F="(?:[-\\+]?\\d*\\.\\d+%?)|(?:[-\\+]?\\d+%?)")+")[,|\\s]+("+F+")[,|\\s]+("+F+")\\s*\\)?",N="[\\s|\\(]+("+F+")[,|\\s]+("+F+")[,|\\s]+("+F+")[,|\\s]+("+F+")\\s*\\)?",{CSS_UNIT:new RegExp(F),rgb:new RegExp("rgb"+B),rgba:new RegExp("rgba"+N),hsl:new RegExp("hsl"+B),hsla:new RegExp("hsla"+N),hsv:new RegExp("hsv"+B),hsva:new RegExp("hsva"+N),hex3:/^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,hex6:/^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/,hex4:/^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,hex8:/^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/});function U(t){return!!j.CSS_UNIT.exec(t)}void 0!==e&&e.exports?e.exports=c:window.tinycolor=c}(Math)},{}],308:[function(t,e,r){"use strict";e.exports=i,e.exports.float32=e.exports.float=i,e.exports.fract32=e.exports.fract=function(t,e){if(t.length){if(t instanceof Float32Array)return new Float32Array(t.length);e instanceof Float32Array||(e=i(t));for(var r=0,n=e.length;ro&&(o=t[0]),t[1]s&&(s=t[1])}function c(t){switch(t.type){case"GeometryCollection":t.geometries.forEach(c);break;case"Point":l(t.coordinates);break;case"MultiPoint":t.coordinates.forEach(l)}}for(e in t.arcs.forEach((function(t){for(var e,r=-1,l=t.length;++ro&&(o=e[0]),e[1]s&&(s=e[1])})),t.objects)c(t.objects[e]);return[i,a,o,s]}function i(t,e){var r=e.id,n=e.bbox,i=null==e.properties?{}:e.properties,o=a(t,e);return null==r&&null==n?{type:"Feature",properties:i,geometry:o}:null==n?{type:"Feature",id:r,properties:i,geometry:o}:{type:"Feature",id:r,bbox:n,properties:i,geometry:o}}function a(t,e){var n=r(t.transform),i=t.arcs;function a(t,e){e.length&&e.pop();for(var r=i[t<0?~t:t],a=0,o=r.length;a1)n=l(t,e,r);else for(i=0,n=new Array(a=t.arcs.length);i1)for(var a,s,c=1,u=l(i[0]);cu&&(s=i[0],i[0]=i[c],i[c]=s,u=a);return i})).filter((function(t){return t.length>0}))}}function u(t,e){for(var r=0,n=t.length;r>>1;t[i]=2))throw new Error("n must be \u22652");var r,i=(l=t.bbox||n(t))[0],a=l[1],o=l[2],s=l[3];e={scale:[o-i?(o-i)/(r-1):1,s-a?(s-a)/(r-1):1],translate:[i,a]}}var l,c,u=f(e),h=t.objects,p={};function d(t){return u(t)}function m(t){var e;switch(t.type){case"GeometryCollection":e={type:"GeometryCollection",geometries:t.geometries.map(m)};break;case"Point":e={type:"Point",coordinates:d(t.coordinates)};break;case"MultiPoint":e={type:"MultiPoint",coordinates:t.coordinates.map(d)};break;default:return t}return null!=t.id&&(e.id=t.id),null!=t.bbox&&(e.bbox=t.bbox),null!=t.properties&&(e.properties=t.properties),e}for(c in h)p[c]=m(h[c]);return{type:"Topology",bbox:l,transform:e,objects:p,arcs:t.arcs.map((function(t){var e,r=0,n=1,i=t.length,a=new Array(i);for(a[0]=u(t[0],0);++r":(e.length>100&&(e=e.slice(0,99)+"\u2026"),e=e.replace(i,(function(t){switch(t){case"\n":return"\\n";case"\r":return"\\r";case"\u2028":return"\\u2028";case"\u2029":return"\\u2029";default:throw new Error("Unexpected character")}})))}},{"./safe-to-string":313}],315:[function(t,e,r){"use strict";var n=t("../value/is"),i={object:!0,function:!0,undefined:!0};e.exports=function(t){return!!n(t)&&hasOwnProperty.call(i,typeof t)}},{"../value/is":321}],316:[function(t,e,r){"use strict";var n=t("../lib/resolve-exception"),i=t("./is");e.exports=function(t){return i(t)?t:n(t,"%v is not a plain function",arguments[1])}},{"../lib/resolve-exception":312,"./is":317}],317:[function(t,e,r){"use strict";var n=t("../function/is"),i=/^\s*class[\s{/}]/,a=Function.prototype.toString;e.exports=function(t){return!!n(t)&&!i.test(a.call(t))}},{"../function/is":311}],318:[function(t,e,r){"use strict";var n=t("../object/is");e.exports=function(t){if(!n(t))return!1;try{return!!t.constructor&&t.constructor.prototype===t}catch(t){return!1}}},{"../object/is":315}],319:[function(t,e,r){"use strict";var n=t("../value/is"),i=t("../object/is"),a=Object.prototype.toString;e.exports=function(t){if(!n(t))return null;if(i(t)){var e=t.toString;if("function"!=typeof e)return null;if(e===a)return null}try{return""+t}catch(t){return null}}},{"../object/is":315,"../value/is":321}],320:[function(t,e,r){"use strict";var n=t("../lib/resolve-exception"),i=t("./is");e.exports=function(t){return i(t)?t:n(t,"Cannot use %v",arguments[1])}},{"../lib/resolve-exception":312,"./is":321}],321:[function(t,e,r){"use strict";e.exports=function(t){return null!=t}},{}],322:[function(t,e,r){(function(e){(function(){"use strict";var n=t("bit-twiddle"),i=t("dup"),a=t("buffer").Buffer;e.__TYPEDARRAY_POOL||(e.__TYPEDARRAY_POOL={UINT8:i([32,0]),UINT16:i([32,0]),UINT32:i([32,0]),BIGUINT64:i([32,0]),INT8:i([32,0]),INT16:i([32,0]),INT32:i([32,0]),BIGINT64:i([32,0]),FLOAT:i([32,0]),DOUBLE:i([32,0]),DATA:i([32,0]),UINT8C:i([32,0]),BUFFER:i([32,0])});var o="undefined"!=typeof Uint8ClampedArray,s="undefined"!=typeof BigUint64Array,l="undefined"!=typeof BigInt64Array,c=e.__TYPEDARRAY_POOL;c.UINT8C||(c.UINT8C=i([32,0])),c.BIGUINT64||(c.BIGUINT64=i([32,0])),c.BIGINT64||(c.BIGINT64=i([32,0])),c.BUFFER||(c.BUFFER=i([32,0]));var u=c.DATA,f=c.BUFFER;function h(t){if(t){var e=t.length||t.byteLength,r=n.log2(e);u[r].push(t)}}function p(t){t=n.nextPow2(t);var e=n.log2(t),r=u[e];return r.length>0?r.pop():new ArrayBuffer(t)}function d(t){return new Uint8Array(p(t),0,t)}function m(t){return new Uint16Array(p(2*t),0,t)}function g(t){return new Uint32Array(p(4*t),0,t)}function v(t){return new Int8Array(p(t),0,t)}function y(t){return new Int16Array(p(2*t),0,t)}function x(t){return new Int32Array(p(4*t),0,t)}function b(t){return new Float32Array(p(4*t),0,t)}function _(t){return new Float64Array(p(8*t),0,t)}function w(t){return o?new Uint8ClampedArray(p(t),0,t):d(t)}function T(t){return s?new BigUint64Array(p(8*t),0,t):null}function k(t){return l?new BigInt64Array(p(8*t),0,t):null}function A(t){return new DataView(p(t),0,t)}function M(t){t=n.nextPow2(t);var e=n.log2(t),r=f[e];return r.length>0?r.pop():new a(t)}r.free=function(t){if(a.isBuffer(t))f[n.log2(t.length)].push(t);else{if("[object ArrayBuffer]"!==Object.prototype.toString.call(t)&&(t=t.buffer),!t)return;var e=t.length||t.byteLength,r=0|n.log2(e);u[r].push(t)}},r.freeUint8=r.freeUint16=r.freeUint32=r.freeBigUint64=r.freeInt8=r.freeInt16=r.freeInt32=r.freeBigInt64=r.freeFloat32=r.freeFloat=r.freeFloat64=r.freeDouble=r.freeUint8Clamped=r.freeDataView=function(t){h(t.buffer)},r.freeArrayBuffer=h,r.freeBuffer=function(t){f[n.log2(t.length)].push(t)},r.malloc=function(t,e){if(void 0===e||"arraybuffer"===e)return p(t);switch(e){case"uint8":return d(t);case"uint16":return m(t);case"uint32":return g(t);case"int8":return v(t);case"int16":return y(t);case"int32":return x(t);case"float":case"float32":return b(t);case"double":case"float64":return _(t);case"uint8_clamped":return w(t);case"bigint64":return k(t);case"biguint64":return T(t);case"buffer":return M(t);case"data":case"dataview":return A(t);default:return null}return null},r.mallocArrayBuffer=p,r.mallocUint8=d,r.mallocUint16=m,r.mallocUint32=g,r.mallocInt8=v,r.mallocInt16=y,r.mallocInt32=x,r.mallocFloat32=r.mallocFloat=b,r.mallocFloat64=r.mallocDouble=_,r.mallocUint8Clamped=w,r.mallocBigUint64=T,r.mallocBigInt64=k,r.mallocDataView=A,r.mallocBuffer=M,r.clearCache=function(){for(var t=0;t<32;++t)c.UINT8[t].length=0,c.UINT16[t].length=0,c.UINT32[t].length=0,c.INT8[t].length=0,c.INT16[t].length=0,c.INT32[t].length=0,c.FLOAT[t].length=0,c.DOUBLE[t].length=0,c.BIGUINT64[t].length=0,c.BIGINT64[t].length=0,c.UINT8C[t].length=0,u[t].length=0,f[t].length=0}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"bit-twiddle":77,buffer:80,dup:122}],323:[function(t,e,r){var n=/[\'\"]/;e.exports=function(t){return t?(n.test(t.charAt(0))&&(t=t.substr(1)),n.test(t.charAt(t.length-1))&&(t=t.substr(0,t.length-1)),t):""}},{}],324:[function(t,e,r){"use strict";e.exports=function(t,e,r){Array.isArray(r)||(r=[].slice.call(arguments,2));for(var n=0,i=r.length;n2111)throw e.replace(/\{0\}/,this.local.name);return t},toMonthIndex:function(t,e,r){var i=this.intercalaryMonth(t);if(r&&e!==i||e<1||e>12)throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return i?!r&&e<=i?e-1:e:e-1},toChineseMonth:function(t,e){t.year&&(e=(t=t.year()).month());var r=this.intercalaryMonth(t);if(e<0||e>(r?12:11))throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return r?e>13},isIntercalaryMonth:function(t,e){t.year&&(e=(t=t.year()).month());var r=this.intercalaryMonth(t);return!!r&&r===e},leapYear:function(t){return 0!==this.intercalaryMonth(t)},weekOfYear:function(t,e,r){var i,o=this._validateYear(t,n.local.invalidyear),s=h[o-h[0]],l=s>>9&4095,c=s>>5&15,u=31&s;(i=a.newDate(l,c,u)).add(4-(i.dayOfWeek()||7),"d");var f=this.toJD(t,e,r)-i.toJD();return 1+Math.floor(f/7)},monthsInYear:function(t){return this.leapYear(t)?13:12},daysInMonth:function(t,e){t.year&&(e=t.month(),t=t.year()),t=this._validateYear(t);var r=f[t-f[0]];if(e>(r>>13?12:11))throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return r&1<<12-e?30:29},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,s,r,n.local.invalidDate);t=this._validateYear(i.year()),e=i.month(),r=i.day();var o=this.isIntercalaryMonth(t,e),s=this.toChineseMonth(t,e),l=function(t,e,r,n,i){var a,o,s;if("object"==typeof t)o=t,a=e||{};else{var l;if(!("number"==typeof t&&t>=1888&&t<=2111))throw new Error("Lunar year outside range 1888-2111");if(!("number"==typeof e&&e>=1&&e<=12))throw new Error("Lunar month outside range 1 - 12");if(!("number"==typeof r&&r>=1&&r<=30))throw new Error("Lunar day outside range 1 - 30");"object"==typeof n?(l=!1,a=n):(l=!!n,a=i||{}),o={year:t,month:e,day:r,isIntercalary:l}}s=o.day-1;var c,u=f[o.year-f[0]],p=u>>13;c=p&&(o.month>p||o.isIntercalary)?o.month:o.month-1;for(var d=0;d>9&4095,(m>>5&15)-1,(31&m)+s);return a.year=g.getFullYear(),a.month=1+g.getMonth(),a.day=g.getDate(),a}(t,s,r,o);return a.toJD(l.year,l.month,l.day)},fromJD:function(t){var e=a.fromJD(t),r=function(t,e,r,n){var i,a;if("object"==typeof t)i=t,a=e||{};else{if(!("number"==typeof t&&t>=1888&&t<=2111))throw new Error("Solar year outside range 1888-2111");if(!("number"==typeof e&&e>=1&&e<=12))throw new Error("Solar month outside range 1 - 12");if(!("number"==typeof r&&r>=1&&r<=31))throw new Error("Solar day outside range 1 - 31");i={year:t,month:e,day:r},a=n||{}}var o=h[i.year-h[0]],s=i.year<<9|i.month<<5|i.day;a.year=s>=o?i.year:i.year-1,o=h[a.year-h[0]];var l,c=new Date(o>>9&4095,(o>>5&15)-1,31&o),u=new Date(i.year,i.month-1,i.day);l=Math.round((u-c)/864e5);var p,d=f[a.year-f[0]];for(p=0;p<13;p++){var m=d&1<<12-p?30:29;if(l>13;!g||p=2&&n<=6},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return{century:o[Math.floor((i.year()-1)/100)+1]||""}},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year()+(i.year()<0?1:0),e=i.month(),(r=i.day())+(e>1?16:0)+(e>2?32*(e-2):0)+400*(t-1)+this.jdEpoch-1},fromJD:function(t){t=Math.floor(t+.5)-Math.floor(this.jdEpoch)-1;var e=Math.floor(t/400)+1;t-=400*(e-1),t+=t>15?16:0;var r=Math.floor(t/32)+1,n=t-32*(r-1)+1;return this.newDate(e<=0?e-1:e,r,n)}});var o={20:"Fruitbat",21:"Anchovy"};n.calendars.discworld=a},{"../main":341,"object-assign":242}],330:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Ethiopian",jdEpoch:1724220.5,daysPerMonth:[30,30,30,30,30,30,30,30,30,30,30,30,5],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Ethiopian",epochs:["BEE","EE"],monthNames:["Meskerem","Tikemet","Hidar","Tahesas","Tir","Yekatit","Megabit","Miazia","Genbot","Sene","Hamle","Nehase","Pagume"],monthNamesShort:["Mes","Tik","Hid","Tah","Tir","Yek","Meg","Mia","Gen","Sen","Ham","Neh","Pag"],dayNames:["Ehud","Segno","Maksegno","Irob","Hamus","Arb","Kidame"],dayNamesShort:["Ehu","Seg","Mak","Iro","Ham","Arb","Kid"],dayNamesMin:["Eh","Se","Ma","Ir","Ha","Ar","Ki"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return(t=e.year()+(e.year()<0?1:0))%4==3||t%4==-1},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear||n.regionalOptions[""].invalidYear),13},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(13===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return(t=i.year())<0&&t++,i.day()+30*(i.month()-1)+365*(t-1)+Math.floor(t/4)+this.jdEpoch-1},fromJD:function(t){var e=Math.floor(t)+.5-this.jdEpoch,r=Math.floor((e-Math.floor((e+366)/1461))/365)+1;r<=0&&r--,e=Math.floor(t)+.5-this.newDate(r,1,1).toJD();var n=Math.floor(e/30)+1,i=e-30*(n-1)+1;return this.newDate(r,n,i)}}),n.calendars.ethiopian=a},{"../main":341,"object-assign":242}],331:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}function o(t,e){return t-e*Math.floor(t/e)}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Hebrew",jdEpoch:347995.5,daysPerMonth:[30,29,30,29,30,29,30,29,30,29,30,29,29],hasYearZero:!1,minMonth:1,firstMonth:7,minDay:1,regionalOptions:{"":{name:"Hebrew",epochs:["BAM","AM"],monthNames:["Nisan","Iyar","Sivan","Tammuz","Av","Elul","Tishrei","Cheshvan","Kislev","Tevet","Shevat","Adar","Adar II"],monthNamesShort:["Nis","Iya","Siv","Tam","Av","Elu","Tis","Che","Kis","Tev","She","Ada","Ad2"],dayNames:["Yom Rishon","Yom Sheni","Yom Shlishi","Yom Revi'i","Yom Chamishi","Yom Shishi","Yom Shabbat"],dayNamesShort:["Ris","She","Shl","Rev","Cha","Shi","Sha"],dayNamesMin:["Ri","She","Shl","Re","Ch","Shi","Sha"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return this._leapYear(e.year())},_leapYear:function(t){return o(7*(t=t<0?t+1:t)+1,19)<7},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),this._leapYear(t.year?t.year():t)?13:12},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){return t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year(),this.toJD(-1===t?1:t+1,7,1)-this.toJD(t,7,1)},daysInMonth:function(t,e){return t.year&&(e=t.month(),t=t.year()),this._validate(t,e,this.minDay,n.local.invalidMonth),12===e&&this.leapYear(t)||8===e&&5===o(this.daysInYear(t),10)?30:9===e&&3===o(this.daysInYear(t),10)?29:this.daysPerMonth[e-1]},weekDay:function(t,e,r){return 6!==this.dayOfWeek(t,e,r)},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return{yearType:(this.leapYear(i)?"embolismic":"common")+" "+["deficient","regular","complete"][this.daysInYear(i)%10-3]}},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=t<=0?t+1:t,o=this.jdEpoch+this._delay1(a)+this._delay2(a)+r+1;if(e<7){for(var s=7;s<=this.monthsInYear(t);s++)o+=this.daysInMonth(t,s);for(s=1;s=this.toJD(-1===e?1:e+1,7,1);)e++;for(var r=tthis.toJD(e,r,this.daysInMonth(e,r));)r++;var n=t-this.toJD(e,r,1)+1;return this.newDate(e,r,n)}}),n.calendars.hebrew=a},{"../main":341,"object-assign":242}],332:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Islamic",jdEpoch:1948439.5,daysPerMonth:[30,29,30,29,30,29,30,29,30,29,30,29],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Islamic",epochs:["BH","AH"],monthNames:["Muharram","Safar","Rabi' al-awwal","Rabi' al-thani","Jumada al-awwal","Jumada al-thani","Rajab","Sha'aban","Ramadan","Shawwal","Dhu al-Qi'dah","Dhu al-Hijjah"],monthNamesShort:["Muh","Saf","Rab1","Rab2","Jum1","Jum2","Raj","Sha'","Ram","Shaw","DhuQ","DhuH"],dayNames:["Yawm al-ahad","Yawm al-ithnayn","Yawm ath-thulaathaa'","Yawm al-arbi'aa'","Yawm al-kham\u012bs","Yawm al-jum'a","Yawm as-sabt"],dayNamesShort:["Aha","Ith","Thu","Arb","Kha","Jum","Sab"],dayNamesMin:["Ah","It","Th","Ar","Kh","Ju","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:6,isRTL:!1}},leapYear:function(t){return(11*this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year()+14)%30<11},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){return this.leapYear(t)?355:354},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year(),e=i.month(),t=t<=0?t+1:t,(r=i.day())+Math.ceil(29.5*(e-1))+354*(t-1)+Math.floor((3+11*t)/30)+this.jdEpoch-1},fromJD:function(t){t=Math.floor(t)+.5;var e=Math.floor((30*(t-this.jdEpoch)+10646)/10631);e=e<=0?e-1:e;var r=Math.min(12,Math.ceil((t-29-this.toJD(e,1,1))/29.5)+1),n=t-this.toJD(e,r,1)+1;return this.newDate(e,r,n)}}),n.calendars.islamic=a},{"../main":341,"object-assign":242}],333:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Julian",jdEpoch:1721423.5,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Julian",epochs:["BC","AD"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"mm/dd/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return(t=e.year()<0?e.year()+1:e.year())%4==0},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(4-(n.dayOfWeek()||7),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year(),e=i.month(),r=i.day(),t<0&&t++,e<=2&&(t--,e+=12),Math.floor(365.25*(t+4716))+Math.floor(30.6001*(e+1))+r-1524.5},fromJD:function(t){var e=Math.floor(t+.5)+1524,r=Math.floor((e-122.1)/365.25),n=Math.floor(365.25*r),i=Math.floor((e-n)/30.6001),a=i-Math.floor(i<14?1:13),o=r-Math.floor(a>2?4716:4715),s=e-n-Math.floor(30.6001*i);return o<=0&&o--,this.newDate(o,a,s)}}),n.calendars.julian=a},{"../main":341,"object-assign":242}],334:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}function o(t,e){return t-e*Math.floor(t/e)}function s(t,e){return o(t-1,e)+1}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Mayan",jdEpoch:584282.5,hasYearZero:!0,minMonth:0,firstMonth:0,minDay:0,regionalOptions:{"":{name:"Mayan",epochs:["",""],monthNames:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17"],monthNamesShort:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17"],dayNames:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],dayNamesShort:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],dayNamesMin:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],digits:null,dateFormat:"YYYY.m.d",firstDay:0,isRTL:!1,haabMonths:["Pop","Uo","Zip","Zotz","Tzec","Xul","Yaxkin","Mol","Chen","Yax","Zac","Ceh","Mac","Kankin","Muan","Pax","Kayab","Cumku","Uayeb"],tzolkinMonths:["Imix","Ik","Akbal","Kan","Chicchan","Cimi","Manik","Lamat","Muluc","Oc","Chuen","Eb","Ben","Ix","Men","Cib","Caban","Etznab","Cauac","Ahau"]}},leapYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),!1},formatYear:function(t){t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year();var e=Math.floor(t/400);return t%=400,t+=t<0?400:0,e+"."+Math.floor(t/20)+"."+t%20},forYear:function(t){if((t=t.split(".")).length<3)throw"Invalid Mayan year";for(var e=0,r=0;r19||r>0&&n<0)throw"Invalid Mayan year";e=20*e+n}return e},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),18},weekOfYear:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate),0},daysInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),360},daysInMonth:function(t,e){return this._validate(t,e,this.minDay,n.local.invalidMonth),20},daysInWeek:function(){return 5},dayOfWeek:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate).day()},weekDay:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate),!0},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate).toJD(),a=this._toHaab(i),o=this._toTzolkin(i);return{haabMonthName:this.local.haabMonths[a[0]-1],haabMonth:a[0],haabDay:a[1],tzolkinDayName:this.local.tzolkinMonths[o[0]-1],tzolkinDay:o[0],tzolkinTrecena:o[1]}},_toHaab:function(t){var e=o((t-=this.jdEpoch)+8+340,365);return[Math.floor(e/20)+1,o(e,20)]},_toTzolkin:function(t){return[s((t-=this.jdEpoch)+20,20),s(t+4,13)]},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return i.day()+20*i.month()+360*i.year()+this.jdEpoch},fromJD:function(t){t=Math.floor(t)+.5-this.jdEpoch;var e=Math.floor(t/360);t%=360,t+=t<0?360:0;var r=Math.floor(t/20),n=t%20;return this.newDate(e,r,n)}}),n.calendars.mayan=a},{"../main":341,"object-assign":242}],335:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar;var o=n.instance("gregorian");i(a.prototype,{name:"Nanakshahi",jdEpoch:2257673.5,daysPerMonth:[31,31,31,31,31,30,30,30,30,30,30,30],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Nanakshahi",epochs:["BN","AN"],monthNames:["Chet","Vaisakh","Jeth","Harh","Sawan","Bhadon","Assu","Katak","Maghar","Poh","Magh","Phagun"],monthNamesShort:["Che","Vai","Jet","Har","Saw","Bha","Ass","Kat","Mgr","Poh","Mgh","Pha"],dayNames:["Somvaar","Mangalvar","Budhvaar","Veervaar","Shukarvaar","Sanicharvaar","Etvaar"],dayNamesShort:["Som","Mangal","Budh","Veer","Shukar","Sanichar","Et"],dayNamesMin:["So","Ma","Bu","Ve","Sh","Sa","Et"],digits:null,dateFormat:"dd-mm-yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear||n.regionalOptions[""].invalidYear);return o.leapYear(e.year()+(e.year()<1?1:0)+1469)},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(1-(n.dayOfWeek()||7),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidMonth);(t=i.year())<0&&t++;for(var a=i.day(),s=1;s=this.toJD(e+1,1,1);)e++;for(var r=t-Math.floor(this.toJD(e,1,1)+.5)+1,n=1;r>this.daysInMonth(e,n);)r-=this.daysInMonth(e,n),n++;return this.newDate(e,n,r)}}),n.calendars.nanakshahi=a},{"../main":341,"object-assign":242}],336:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Nepali",jdEpoch:1700709.5,daysPerMonth:[31,31,32,32,31,30,30,29,30,29,30,30],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,daysPerYear:365,regionalOptions:{"":{name:"Nepali",epochs:["BBS","ABS"],monthNames:["Baisakh","Jestha","Ashadh","Shrawan","Bhadra","Ashwin","Kartik","Mangsir","Paush","Mangh","Falgun","Chaitra"],monthNamesShort:["Bai","Je","As","Shra","Bha","Ash","Kar","Mang","Pau","Ma","Fal","Chai"],dayNames:["Aaitabaar","Sombaar","Manglbaar","Budhabaar","Bihibaar","Shukrabaar","Shanibaar"],dayNamesShort:["Aaita","Som","Mangl","Budha","Bihi","Shukra","Shani"],dayNamesMin:["Aai","So","Man","Bu","Bi","Shu","Sha"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:1,isRTL:!1}},leapYear:function(t){return this.daysInYear(t)!==this.daysPerYear},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){if(t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year(),void 0===this.NEPALI_CALENDAR_DATA[t])return this.daysPerYear;for(var e=0,r=this.minMonth;r<=12;r++)e+=this.NEPALI_CALENDAR_DATA[t][r];return e},daysInMonth:function(t,e){return t.year&&(e=t.month(),t=t.year()),this._validate(t,e,this.minDay,n.local.invalidMonth),void 0===this.NEPALI_CALENDAR_DATA[t]?this.daysPerMonth[e-1]:this.NEPALI_CALENDAR_DATA[t][e]},weekDay:function(t,e,r){return 6!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=n.instance(),o=0,s=e,l=t;this._createMissingCalendarData(t);var c=t-(s>9||9===s&&r>=this.NEPALI_CALENDAR_DATA[l][0]?56:57);for(9!==e&&(o=r,s--);9!==s;)s<=0&&(s=12,l--),o+=this.NEPALI_CALENDAR_DATA[l][s],s--;return 9===e?(o+=r-this.NEPALI_CALENDAR_DATA[l][0])<0&&(o+=a.daysInYear(c)):o+=this.NEPALI_CALENDAR_DATA[l][9]-this.NEPALI_CALENDAR_DATA[l][0],a.newDate(c,1,1).add(o,"d").toJD()},fromJD:function(t){var e=n.instance().fromJD(t),r=e.year(),i=e.dayOfYear(),a=r+56;this._createMissingCalendarData(a);for(var o=9,s=this.NEPALI_CALENDAR_DATA[a][0],l=this.NEPALI_CALENDAR_DATA[a][o]-s+1;i>l;)++o>12&&(o=1,a++),l+=this.NEPALI_CALENDAR_DATA[a][o];var c=this.NEPALI_CALENDAR_DATA[a][o]-(l-i);return this.newDate(a,o,c)},_createMissingCalendarData:function(t){var e=this.daysPerMonth.slice(0);e.unshift(17);for(var r=t-1;r0?474:473))%2820+474+38)%2816<682},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-(n.dayOfWeek()+1)%7,"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=t-(t>=0?474:473),s=474+o(a,2820);return r+(e<=7?31*(e-1):30*(e-1)+6)+Math.floor((682*s-110)/2816)+365*(s-1)+1029983*Math.floor(a/2820)+this.jdEpoch-1},fromJD:function(t){var e=(t=Math.floor(t)+.5)-this.toJD(475,1,1),r=Math.floor(e/1029983),n=o(e,1029983),i=2820;if(1029982!==n){var a=Math.floor(n/366),s=o(n,366);i=Math.floor((2134*a+2816*s+2815)/1028522)+a+1}var l=i+2820*r+474;l=l<=0?l-1:l;var c=t-this.toJD(l,1,1)+1,u=c<=186?Math.ceil(c/31):Math.ceil((c-6)/30),f=t-this.toJD(l,u,1)+1;return this.newDate(l,u,f)}}),n.calendars.persian=a,n.calendars.jalali=a},{"../main":341,"object-assign":242}],338:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Taiwan",jdEpoch:2419402.5,yearsOffset:1911,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Taiwan",epochs:["BROC","ROC"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:1,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(e.year());return a.leapYear(t)},weekOfYear:function(t,e,r){var i=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(i.year());return a.weekOfYear(t,i.month(),i.day())},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=this._t2gYear(i.year());return a.toJD(t,i.month(),i.day())},fromJD:function(t){var e=a.fromJD(t),r=this._g2tYear(e.year());return this.newDate(r,e.month(),e.day())},_t2gYear:function(t){return t+this.yearsOffset+(t>=-this.yearsOffset&&t<=-1?1:0)},_g2tYear:function(t){return t-this.yearsOffset-(t>=1&&t<=this.yearsOffset?1:0)}}),n.calendars.taiwan=o},{"../main":341,"object-assign":242}],339:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Thai",jdEpoch:1523098.5,yearsOffset:543,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Thai",epochs:["BBE","BE"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(e.year());return a.leapYear(t)},weekOfYear:function(t,e,r){var i=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(i.year());return a.weekOfYear(t,i.month(),i.day())},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=this._t2gYear(i.year());return a.toJD(t,i.month(),i.day())},fromJD:function(t){var e=a.fromJD(t),r=this._g2tYear(e.year());return this.newDate(r,e.month(),e.day())},_t2gYear:function(t){return t-this.yearsOffset-(t>=1&&t<=this.yearsOffset?1:0)},_g2tYear:function(t){return t+this.yearsOffset+(t>=-this.yearsOffset&&t<=-1?1:0)}}),n.calendars.thai=o},{"../main":341,"object-assign":242}],340:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"UmmAlQura",hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Umm al-Qura",epochs:["BH","AH"],monthNames:["Al-Muharram","Safar","Rabi' al-awwal","Rabi' Al-Thani","Jumada Al-Awwal","Jumada Al-Thani","Rajab","Sha'aban","Ramadan","Shawwal","Dhu al-Qi'dah","Dhu al-Hijjah"],monthNamesShort:["Muh","Saf","Rab1","Rab2","Jum1","Jum2","Raj","Sha'","Ram","Shaw","DhuQ","DhuH"],dayNames:["Yawm al-Ahad","Yawm al-Ithnain","Yawm al-Thal\u0101th\u0101\u2019","Yawm al-Arba\u2018\u0101\u2019","Yawm al-Kham\u012bs","Yawm al-Jum\u2018a","Yawm al-Sabt"],dayNamesMin:["Ah","Ith","Th","Ar","Kh","Ju","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:6,isRTL:!0}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return 355===this.daysInYear(e.year())},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){for(var e=0,r=1;r<=12;r++)e+=this.daysInMonth(t,r);return e},daysInMonth:function(t,e){for(var r=this._validate(t,e,this.minDay,n.local.invalidMonth).toJD()-24e5+.5,i=0,a=0;ar)return o[i]-o[i-1];i++}return 30},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate),a=12*(i.year()-1)+i.month()-15292;return i.day()+o[a-1]-1+24e5-.5},fromJD:function(t){for(var e=t-24e5+.5,r=0,n=0;ne);n++)r++;var i=r+15292,a=Math.floor((i-1)/12),s=a+1,l=i-12*a,c=e-o[r-1]+1;return this.newDate(s,l,c)},isValid:function(t,e,r){var i=n.baseCalendar.prototype.isValid.apply(this,arguments);return i&&(i=(t=null!=t.year?t.year:t)>=1276&&t<=1500),i},_validate:function(t,e,r,i){var a=n.baseCalendar.prototype._validate.apply(this,arguments);if(a.year<1276||a.year>1500)throw i.replace(/\{0\}/,this.local.name);return a}}),n.calendars.ummalqura=a;var o=[20,50,79,109,138,168,197,227,256,286,315,345,374,404,433,463,492,522,551,581,611,641,670,700,729,759,788,818,847,877,906,936,965,995,1024,1054,1083,1113,1142,1172,1201,1231,1260,1290,1320,1350,1379,1409,1438,1468,1497,1527,1556,1586,1615,1645,1674,1704,1733,1763,1792,1822,1851,1881,1910,1940,1969,1999,2028,2058,2087,2117,2146,2176,2205,2235,2264,2294,2323,2353,2383,2413,2442,2472,2501,2531,2560,2590,2619,2649,2678,2708,2737,2767,2796,2826,2855,2885,2914,2944,2973,3003,3032,3062,3091,3121,3150,3180,3209,3239,3268,3298,3327,3357,3386,3416,3446,3476,3505,3535,3564,3594,3623,3653,3682,3712,3741,3771,3800,3830,3859,3889,3918,3948,3977,4007,4036,4066,4095,4125,4155,4185,4214,4244,4273,4303,4332,4362,4391,4421,4450,4480,4509,4539,4568,4598,4627,4657,4686,4716,4745,4775,4804,4834,4863,4893,4922,4952,4981,5011,5040,5070,5099,5129,5158,5188,5218,5248,5277,5307,5336,5366,5395,5425,5454,5484,5513,5543,5572,5602,5631,5661,5690,5720,5749,5779,5808,5838,5867,5897,5926,5956,5985,6015,6044,6074,6103,6133,6162,6192,6221,6251,6281,6311,6340,6370,6399,6429,6458,6488,6517,6547,6576,6606,6635,6665,6694,6724,6753,6783,6812,6842,6871,6901,6930,6960,6989,7019,7048,7078,7107,7137,7166,7196,7225,7255,7284,7314,7344,7374,7403,7433,7462,7492,7521,7551,7580,7610,7639,7669,7698,7728,7757,7787,7816,7846,7875,7905,7934,7964,7993,8023,8053,8083,8112,8142,8171,8201,8230,8260,8289,8319,8348,8378,8407,8437,8466,8496,8525,8555,8584,8614,8643,8673,8702,8732,8761,8791,8821,8850,8880,8909,8938,8968,8997,9027,9056,9086,9115,9145,9175,9205,9234,9264,9293,9322,9352,9381,9410,9440,9470,9499,9529,9559,9589,9618,9648,9677,9706,9736,9765,9794,9824,9853,9883,9913,9943,9972,10002,10032,10061,10090,10120,10149,10178,10208,10237,10267,10297,10326,10356,10386,10415,10445,10474,10504,10533,10562,10592,10621,10651,10680,10710,10740,10770,10799,10829,10858,10888,10917,10947,10976,11005,11035,11064,11094,11124,11153,11183,11213,11242,11272,11301,11331,11360,11389,11419,11448,11478,11507,11537,11567,11596,11626,11655,11685,11715,11744,11774,11803,11832,11862,11891,11921,11950,11980,12010,12039,12069,12099,12128,12158,12187,12216,12246,12275,12304,12334,12364,12393,12423,12453,12483,12512,12542,12571,12600,12630,12659,12688,12718,12747,12777,12807,12837,12866,12896,12926,12955,12984,13014,13043,13072,13102,13131,13161,13191,13220,13250,13280,13310,13339,13368,13398,13427,13456,13486,13515,13545,13574,13604,13634,13664,13693,13723,13752,13782,13811,13840,13870,13899,13929,13958,13988,14018,14047,14077,14107,14136,14166,14195,14224,14254,14283,14313,14342,14372,14401,14431,14461,14490,14520,14550,14579,14609,14638,14667,14697,14726,14756,14785,14815,14844,14874,14904,14933,14963,14993,15021,15051,15081,15110,15140,15169,15199,15228,15258,15287,15317,15347,15377,15406,15436,15465,15494,15524,15553,15582,15612,15641,15671,15701,15731,15760,15790,15820,15849,15878,15908,15937,15966,15996,16025,16055,16085,16114,16144,16174,16204,16233,16262,16292,16321,16350,16380,16409,16439,16468,16498,16528,16558,16587,16617,16646,16676,16705,16734,16764,16793,16823,16852,16882,16912,16941,16971,17001,17030,17060,17089,17118,17148,17177,17207,17236,17266,17295,17325,17355,17384,17414,17444,17473,17502,17532,17561,17591,17620,17650,17679,17709,17738,17768,17798,17827,17857,17886,17916,17945,17975,18004,18034,18063,18093,18122,18152,18181,18211,18241,18270,18300,18330,18359,18388,18418,18447,18476,18506,18535,18565,18595,18625,18654,18684,18714,18743,18772,18802,18831,18860,18890,18919,18949,18979,19008,19038,19068,19098,19127,19156,19186,19215,19244,19274,19303,19333,19362,19392,19422,19452,19481,19511,19540,19570,19599,19628,19658,19687,19717,19746,19776,19806,19836,19865,19895,19924,19954,19983,20012,20042,20071,20101,20130,20160,20190,20219,20249,20279,20308,20338,20367,20396,20426,20455,20485,20514,20544,20573,20603,20633,20662,20692,20721,20751,20780,20810,20839,20869,20898,20928,20957,20987,21016,21046,21076,21105,21135,21164,21194,21223,21253,21282,21312,21341,21371,21400,21430,21459,21489,21519,21548,21578,21607,21637,21666,21696,21725,21754,21784,21813,21843,21873,21902,21932,21962,21991,22021,22050,22080,22109,22138,22168,22197,22227,22256,22286,22316,22346,22375,22405,22434,22464,22493,22522,22552,22581,22611,22640,22670,22700,22730,22759,22789,22818,22848,22877,22906,22936,22965,22994,23024,23054,23083,23113,23143,23173,23202,23232,23261,23290,23320,23349,23379,23408,23438,23467,23497,23527,23556,23586,23616,23645,23674,23704,23733,23763,23792,23822,23851,23881,23910,23940,23970,23999,24029,24058,24088,24117,24147,24176,24206,24235,24265,24294,24324,24353,24383,24413,24442,24472,24501,24531,24560,24590,24619,24648,24678,24707,24737,24767,24796,24826,24856,24885,24915,24944,24974,25003,25032,25062,25091,25121,25150,25180,25210,25240,25269,25299,25328,25358,25387,25416,25446,25475,25505,25534,25564,25594,25624,25653,25683,25712,25742,25771,25800,25830,25859,25888,25918,25948,25977,26007,26037,26067,26096,26126,26155,26184,26214,26243,26272,26302,26332,26361,26391,26421,26451,26480,26510,26539,26568,26598,26627,26656,26686,26715,26745,26775,26805,26834,26864,26893,26923,26952,26982,27011,27041,27070,27099,27129,27159,27188,27218,27248,27277,27307,27336,27366,27395,27425,27454,27484,27513,27542,27572,27602,27631,27661,27691,27720,27750,27779,27809,27838,27868,27897,27926,27956,27985,28015,28045,28074,28104,28134,28163,28193,28222,28252,28281,28310,28340,28369,28399,28428,28458,28488,28517,28547,28577,28607,28636,28665,28695,28724,28754,28783,28813,28843,28872,28901,28931,28960,28990,29019,29049,29078,29108,29137,29167,29196,29226,29255,29285,29315,29345,29375,29404,29434,29463,29492,29522,29551,29580,29610,29640,29669,29699,29729,29759,29788,29818,29847,29876,29906,29935,29964,29994,30023,30053,30082,30112,30141,30171,30200,30230,30259,30289,30318,30348,30378,30408,30437,30467,30496,30526,30555,30585,30614,30644,30673,30703,30732,30762,30791,30821,30850,30880,30909,30939,30968,30998,31027,31057,31086,31116,31145,31175,31204,31234,31263,31293,31322,31352,31381,31411,31441,31471,31500,31530,31559,31589,31618,31648,31676,31706,31736,31766,31795,31825,31854,31884,31913,31943,31972,32002,32031,32061,32090,32120,32150,32180,32209,32239,32268,32298,32327,32357,32386,32416,32445,32475,32504,32534,32563,32593,32622,32652,32681,32711,32740,32770,32799,32829,32858,32888,32917,32947,32976,33006,33035,33065,33094,33124,33153,33183,33213,33243,33272,33302,33331,33361,33390,33420,33450,33479,33509,33539,33568,33598,33627,33657,33686,33716,33745,33775,33804,33834,33863,33893,33922,33952,33981,34011,34040,34069,34099,34128,34158,34187,34217,34247,34277,34306,34336,34365,34395,34424,34454,34483,34512,34542,34571,34601,34631,34660,34690,34719,34749,34778,34808,34837,34867,34896,34926,34955,34985,35015,35044,35074,35103,35133,35162,35192,35222,35251,35280,35310,35340,35370,35399,35429,35458,35488,35517,35547,35576,35605,35635,35665,35694,35723,35753,35782,35811,35841,35871,35901,35930,35960,35989,36019,36048,36078,36107,36136,36166,36195,36225,36254,36284,36314,36343,36373,36403,36433,36462,36492,36521,36551,36580,36610,36639,36669,36698,36728,36757,36786,36816,36845,36875,36904,36934,36963,36993,37022,37052,37081,37111,37141,37170,37200,37229,37259,37288,37318,37347,37377,37406,37436,37465,37495,37524,37554,37584,37613,37643,37672,37701,37731,37760,37790,37819,37849,37878,37908,37938,37967,37997,38027,38056,38085,38115,38144,38174,38203,38233,38262,38292,38322,38351,38381,38410,38440,38469,38499,38528,38558,38587,38617,38646,38676,38705,38735,38764,38794,38823,38853,38882,38912,38941,38971,39001,39030,39059,39089,39118,39148,39178,39208,39237,39267,39297,39326,39355,39385,39414,39444,39473,39503,39532,39562,39592,39621,39650,39680,39709,39739,39768,39798,39827,39857,39886,39916,39946,39975,40005,40035,40064,40094,40123,40153,40182,40212,40241,40271,40300,40330,40359,40389,40418,40448,40477,40507,40536,40566,40595,40625,40655,40685,40714,40744,40773,40803,40832,40862,40892,40921,40951,40980,41009,41039,41068,41098,41127,41157,41186,41216,41245,41275,41304,41334,41364,41393,41422,41452,41481,41511,41540,41570,41599,41629,41658,41688,41718,41748,41777,41807,41836,41865,41894,41924,41953,41983,42012,42042,42072,42102,42131,42161,42190,42220,42249,42279,42308,42337,42367,42397,42426,42456,42485,42515,42545,42574,42604,42633,42662,42692,42721,42751,42780,42810,42839,42869,42899,42929,42958,42988,43017,43046,43076,43105,43135,43164,43194,43223,43253,43283,43312,43342,43371,43401,43430,43460,43489,43519,43548,43578,43607,43637,43666,43696,43726,43755,43785,43814,43844,43873,43903,43932,43962,43991,44021,44050,44080,44109,44139,44169,44198,44228,44258,44287,44317,44346,44375,44405,44434,44464,44493,44523,44553,44582,44612,44641,44671,44700,44730,44759,44788,44818,44847,44877,44906,44936,44966,44996,45025,45055,45084,45114,45143,45172,45202,45231,45261,45290,45320,45350,45380,45409,45439,45468,45498,45527,45556,45586,45615,45644,45674,45704,45733,45763,45793,45823,45852,45882,45911,45940,45970,45999,46028,46058,46088,46117,46147,46177,46206,46236,46265,46295,46324,46354,46383,46413,46442,46472,46501,46531,46560,46590,46620,46649,46679,46708,46738,46767,46797,46826,46856,46885,46915,46944,46974,47003,47033,47063,47092,47122,47151,47181,47210,47240,47269,47298,47328,47357,47387,47417,47446,47476,47506,47535,47565,47594,47624,47653,47682,47712,47741,47771,47800,47830,47860,47890,47919,47949,47978,48008,48037,48066,48096,48125,48155,48184,48214,48244,48273,48303,48333,48362,48392,48421,48450,48480,48509,48538,48568,48598,48627,48657,48687,48717,48746,48776,48805,48834,48864,48893,48922,48952,48982,49011,49041,49071,49100,49130,49160,49189,49218,49248,49277,49306,49336,49365,49395,49425,49455,49484,49514,49543,49573,49602,49632,49661,49690,49720,49749,49779,49809,49838,49868,49898,49927,49957,49986,50016,50045,50075,50104,50133,50163,50192,50222,50252,50281,50311,50340,50370,50400,50429,50459,50488,50518,50547,50576,50606,50635,50665,50694,50724,50754,50784,50813,50843,50872,50902,50931,50960,50990,51019,51049,51078,51108,51138,51167,51197,51227,51256,51286,51315,51345,51374,51403,51433,51462,51492,51522,51552,51582,51611,51641,51670,51699,51729,51758,51787,51816,51846,51876,51906,51936,51965,51995,52025,52054,52083,52113,52142,52171,52200,52230,52260,52290,52319,52349,52379,52408,52438,52467,52497,52526,52555,52585,52614,52644,52673,52703,52733,52762,52792,52822,52851,52881,52910,52939,52969,52998,53028,53057,53087,53116,53146,53176,53205,53235,53264,53294,53324,53353,53383,53412,53441,53471,53500,53530,53559,53589,53619,53648,53678,53708,53737,53767,53796,53825,53855,53884,53913,53943,53973,54003,54032,54062,54092,54121,54151,54180,54209,54239,54268,54297,54327,54357,54387,54416,54446,54476,54505,54535,54564,54593,54623,54652,54681,54711,54741,54770,54800,54830,54859,54889,54919,54948,54977,55007,55036,55066,55095,55125,55154,55184,55213,55243,55273,55302,55332,55361,55391,55420,55450,55479,55508,55538,55567,55597,55627,55657,55686,55716,55745,55775,55804,55834,55863,55892,55922,55951,55981,56011,56040,56070,56100,56129,56159,56188,56218,56247,56276,56306,56335,56365,56394,56424,56454,56483,56513,56543,56572,56601,56631,56660,56690,56719,56749,56778,56808,56837,56867,56897,56926,56956,56985,57015,57044,57074,57103,57133,57162,57192,57221,57251,57280,57310,57340,57369,57399,57429,57458,57487,57517,57546,57576,57605,57634,57664,57694,57723,57753,57783,57813,57842,57871,57901,57930,57959,57989,58018,58048,58077,58107,58137,58167,58196,58226,58255,58285,58314,58343,58373,58402,58432,58461,58491,58521,58551,58580,58610,58639,58669,58698,58727,58757,58786,58816,58845,58875,58905,58934,58964,58994,59023,59053,59082,59111,59141,59170,59200,59229,59259,59288,59318,59348,59377,59407,59436,59466,59495,59525,59554,59584,59613,59643,59672,59702,59731,59761,59791,59820,59850,59879,59909,59939,59968,59997,60027,60056,60086,60115,60145,60174,60204,60234,60264,60293,60323,60352,60381,60411,60440,60469,60499,60528,60558,60588,60618,60648,60677,60707,60736,60765,60795,60824,60853,60883,60912,60942,60972,61002,61031,61061,61090,61120,61149,61179,61208,61237,61267,61296,61326,61356,61385,61415,61445,61474,61504,61533,61563,61592,61621,61651,61680,61710,61739,61769,61799,61828,61858,61888,61917,61947,61976,62006,62035,62064,62094,62123,62153,62182,62212,62242,62271,62301,62331,62360,62390,62419,62448,62478,62507,62537,62566,62596,62625,62655,62685,62715,62744,62774,62803,62832,62862,62891,62921,62950,62980,63009,63039,63069,63099,63128,63157,63187,63216,63246,63275,63305,63334,63363,63393,63423,63453,63482,63512,63541,63571,63600,63630,63659,63689,63718,63747,63777,63807,63836,63866,63895,63925,63955,63984,64014,64043,64073,64102,64131,64161,64190,64220,64249,64279,64309,64339,64368,64398,64427,64457,64486,64515,64545,64574,64603,64633,64663,64692,64722,64752,64782,64811,64841,64870,64899,64929,64958,64987,65017,65047,65076,65106,65136,65166,65195,65225,65254,65283,65313,65342,65371,65401,65431,65460,65490,65520,65549,65579,65608,65638,65667,65697,65726,65755,65785,65815,65844,65874,65903,65933,65963,65992,66022,66051,66081,66110,66140,66169,66199,66228,66258,66287,66317,66346,66376,66405,66435,66465,66494,66524,66553,66583,66612,66641,66671,66700,66730,66760,66789,66819,66849,66878,66908,66937,66967,66996,67025,67055,67084,67114,67143,67173,67203,67233,67262,67292,67321,67351,67380,67409,67439,67468,67497,67527,67557,67587,67617,67646,67676,67705,67735,67764,67793,67823,67852,67882,67911,67941,67971,68e3,68030,68060,68089,68119,68148,68177,68207,68236,68266,68295,68325,68354,68384,68414,68443,68473,68502,68532,68561,68591,68620,68650,68679,68708,68738,68768,68797,68827,68857,68886,68916,68946,68975,69004,69034,69063,69092,69122,69152,69181,69211,69240,69270,69300,69330,69359,69388,69418,69447,69476,69506,69535,69565,69595,69624,69654,69684,69713,69743,69772,69802,69831,69861,69890,69919,69949,69978,70008,70038,70067,70097,70126,70156,70186,70215,70245,70274,70303,70333,70362,70392,70421,70451,70481,70510,70540,70570,70599,70629,70658,70687,70717,70746,70776,70805,70835,70864,70894,70924,70954,70983,71013,71042,71071,71101,71130,71159,71189,71218,71248,71278,71308,71337,71367,71397,71426,71455,71485,71514,71543,71573,71602,71632,71662,71691,71721,71751,71781,71810,71839,71869,71898,71927,71957,71986,72016,72046,72075,72105,72135,72164,72194,72223,72253,72282,72311,72341,72370,72400,72429,72459,72489,72518,72548,72577,72607,72637,72666,72695,72725,72754,72784,72813,72843,72872,72902,72931,72961,72991,73020,73050,73080,73109,73139,73168,73197,73227,73256,73286,73315,73345,73375,73404,73434,73464,73493,73523,73552,73581,73611,73640,73669,73699,73729,73758,73788,73818,73848,73877,73907,73936,73965,73995,74024,74053,74083,74113,74142,74172,74202,74231,74261,74291,74320,74349,74379,74408,74437,74467,74497,74526,74556,74586,74615,74645,74675,74704,74733,74763,74792,74822,74851,74881,74910,74940,74969,74999,75029,75058,75088,75117,75147,75176,75206,75235,75264,75294,75323,75353,75383,75412,75442,75472,75501,75531,75560,75590,75619,75648,75678,75707,75737,75766,75796,75826,75856,75885,75915,75944,75974,76003,76032,76062,76091,76121,76150,76180,76210,76239,76269,76299,76328,76358,76387,76416,76446,76475,76505,76534,76564,76593,76623,76653,76682,76712,76741,76771,76801,76830,76859,76889,76918,76948,76977,77007,77036,77066,77096,77125,77155,77185,77214,77243,77273,77302,77332,77361,77390,77420,77450,77479,77509,77539,77569,77598,77627,77657,77686,77715,77745,77774,77804,77833,77863,77893,77923,77952,77982,78011,78041,78070,78099,78129,78158,78188,78217,78247,78277,78307,78336,78366,78395,78425,78454,78483,78513,78542,78572,78601,78631,78661,78690,78720,78750,78779,78808,78838,78867,78897,78926,78956,78985,79015,79044,79074,79104,79133,79163,79192,79222,79251,79281,79310,79340,79369,79399,79428,79458,79487,79517,79546,79576,79606,79635,79665,79695,79724,79753,79783,79812,79841,79871,79900,79930,79960,79990]},{"../main":341,"object-assign":242}],341:[function(t,e,r){var n=t("object-assign");function i(){this.regionalOptions=[],this.regionalOptions[""]={invalidCalendar:"Calendar {0} not found",invalidDate:"Invalid {0} date",invalidMonth:"Invalid {0} month",invalidYear:"Invalid {0} year",differentCalendars:"Cannot mix {0} and {1} dates"},this.local=this.regionalOptions[""],this.calendars={},this._localCals={}}function a(t,e,r,n){if(this._calendar=t,this._year=e,this._month=r,this._day=n,0===this._calendar._validateLevel&&!this._calendar.isValid(this._year,this._month,this._day))throw(c.local.invalidDate||c.regionalOptions[""].invalidDate).replace(/\{0\}/,this._calendar.local.name)}function o(t,e){return"000000".substring(0,e-(t=""+t).length)+t}function s(){this.shortYearCutoff="+10"}function l(t){this.local=this.regionalOptions[t]||this.regionalOptions[""]}n(i.prototype,{instance:function(t,e){t=(t||"gregorian").toLowerCase(),e=e||"";var r=this._localCals[t+"-"+e];if(!r&&this.calendars[t]&&(r=new this.calendars[t](e),this._localCals[t+"-"+e]=r),!r)throw(this.local.invalidCalendar||this.regionalOptions[""].invalidCalendar).replace(/\{0\}/,t);return r},newDate:function(t,e,r,n,i){return(n=(null!=t&&t.year?t.calendar():"string"==typeof n?this.instance(n,i):n)||this.instance()).newDate(t,e,r)},substituteDigits:function(t){return function(e){return(e+"").replace(/[0-9]/g,(function(e){return t[e]}))}},substituteChineseDigits:function(t,e){return function(r){for(var n="",i=0;r>0;){var a=r%10;n=(0===a?"":t[a]+e[i])+n,i++,r=Math.floor(r/10)}return 0===n.indexOf(t[1]+e[1])&&(n=n.substr(1)),n||t[0]}}}),n(a.prototype,{newDate:function(t,e,r){return this._calendar.newDate(null==t?this:t,e,r)},year:function(t){return 0===arguments.length?this._year:this.set(t,"y")},month:function(t){return 0===arguments.length?this._month:this.set(t,"m")},day:function(t){return 0===arguments.length?this._day:this.set(t,"d")},date:function(t,e,r){if(!this._calendar.isValid(t,e,r))throw(c.local.invalidDate||c.regionalOptions[""].invalidDate).replace(/\{0\}/,this._calendar.local.name);return this._year=t,this._month=e,this._day=r,this},leapYear:function(){return this._calendar.leapYear(this)},epoch:function(){return this._calendar.epoch(this)},formatYear:function(){return this._calendar.formatYear(this)},monthOfYear:function(){return this._calendar.monthOfYear(this)},weekOfYear:function(){return this._calendar.weekOfYear(this)},daysInYear:function(){return this._calendar.daysInYear(this)},dayOfYear:function(){return this._calendar.dayOfYear(this)},daysInMonth:function(){return this._calendar.daysInMonth(this)},dayOfWeek:function(){return this._calendar.dayOfWeek(this)},weekDay:function(){return this._calendar.weekDay(this)},extraInfo:function(){return this._calendar.extraInfo(this)},add:function(t,e){return this._calendar.add(this,t,e)},set:function(t,e){return this._calendar.set(this,t,e)},compareTo:function(t){if(this._calendar.name!==t._calendar.name)throw(c.local.differentCalendars||c.regionalOptions[""].differentCalendars).replace(/\{0\}/,this._calendar.local.name).replace(/\{1\}/,t._calendar.local.name);var e=this._year!==t._year?this._year-t._year:this._month!==t._month?this.monthOfYear()-t.monthOfYear():this._day-t._day;return 0===e?0:e<0?-1:1},calendar:function(){return this._calendar},toJD:function(){return this._calendar.toJD(this)},fromJD:function(t){return this._calendar.fromJD(t)},toJSDate:function(){return this._calendar.toJSDate(this)},fromJSDate:function(t){return this._calendar.fromJSDate(t)},toString:function(){return(this.year()<0?"-":"")+o(Math.abs(this.year()),4)+"-"+o(this.month(),2)+"-"+o(this.day(),2)}}),n(s.prototype,{_validateLevel:0,newDate:function(t,e,r){return null==t?this.today():(t.year&&(this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),r=t.day(),e=t.month(),t=t.year()),new a(this,t,e,r))},today:function(){return this.fromJSDate(new Date)},epoch:function(t){return this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear).year()<0?this.local.epochs[0]:this.local.epochs[1]},formatYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear);return(e.year()<0?"-":"")+o(Math.abs(e.year()),4)},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear),12},monthOfYear:function(t,e){var r=this._validate(t,e,this.minDay,c.local.invalidMonth||c.regionalOptions[""].invalidMonth);return(r.month()+this.monthsInYear(r)-this.firstMonth)%this.monthsInYear(r)+this.minMonth},fromMonthOfYear:function(t,e){var r=(e+this.firstMonth-2*this.minMonth)%this.monthsInYear(t)+this.minMonth;return this._validate(t,r,this.minDay,c.local.invalidMonth||c.regionalOptions[""].invalidMonth),r},daysInYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear);return this.leapYear(e)?366:365},dayOfYear:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate);return n.toJD()-this.newDate(n.year(),this.fromMonthOfYear(n.year(),this.minMonth),this.minDay).toJD()+1},daysInWeek:function(){return 7},dayOfWeek:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate);return(Math.floor(this.toJD(n))+2)%this.daysInWeek()},extraInfo:function(t,e,r){return this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),{}},add:function(t,e,r){return this._validate(t,this.minMonth,this.minDay,c.local.invalidDate||c.regionalOptions[""].invalidDate),this._correctAdd(t,this._add(t,e,r),e,r)},_add:function(t,e,r){if(this._validateLevel++,"d"===r||"w"===r){var n=t.toJD()+e*("w"===r?this.daysInWeek():1),i=t.calendar().fromJD(n);return this._validateLevel--,[i.year(),i.month(),i.day()]}try{var a=t.year()+("y"===r?e:0),o=t.monthOfYear()+("m"===r?e:0);i=t.day();"y"===r?(t.month()!==this.fromMonthOfYear(a,o)&&(o=this.newDate(a,t.month(),this.minDay).monthOfYear()),o=Math.min(o,this.monthsInYear(a)),i=Math.min(i,this.daysInMonth(a,this.fromMonthOfYear(a,o)))):"m"===r&&(!function(t){for(;oe-1+t.minMonth;)a++,o-=e,e=t.monthsInYear(a)}(this),i=Math.min(i,this.daysInMonth(a,this.fromMonthOfYear(a,o))));var s=[a,this.fromMonthOfYear(a,o),i];return this._validateLevel--,s}catch(t){throw this._validateLevel--,t}},_correctAdd:function(t,e,r,n){if(!(this.hasYearZero||"y"!==n&&"m"!==n||0!==e[0]&&t.year()>0==e[0]>0)){var i={y:[1,1,"y"],m:[1,this.monthsInYear(-1),"m"],w:[this.daysInWeek(),this.daysInYear(-1),"d"],d:[1,this.daysInYear(-1),"d"]}[n],a=r<0?-1:1;e=this._add(t,r*i[0]+a*i[1],i[2])}return t.date(e[0],e[1],e[2])},set:function(t,e,r){this._validate(t,this.minMonth,this.minDay,c.local.invalidDate||c.regionalOptions[""].invalidDate);var n="y"===r?e:t.year(),i="m"===r?e:t.month(),a="d"===r?e:t.day();return"y"!==r&&"m"!==r||(a=Math.min(a,this.daysInMonth(n,i))),t.date(n,i,a)},isValid:function(t,e,r){this._validateLevel++;var n=this.hasYearZero||0!==t;if(n){var i=this.newDate(t,e,this.minDay);n=e>=this.minMonth&&e-this.minMonth=this.minDay&&r-this.minDay13.5?13:1),c=i-(l>2.5?4716:4715);return c<=0&&c--,this.newDate(c,l,s)},toJSDate:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),i=new Date(n.year(),n.month()-1,n.day());return i.setHours(0),i.setMinutes(0),i.setSeconds(0),i.setMilliseconds(0),i.setHours(i.getHours()>12?i.getHours()+2:0),i},fromJSDate:function(t){return this.newDate(t.getFullYear(),t.getMonth()+1,t.getDate())}});var c=e.exports=new i;c.cdate=a,c.baseCalendar=s,c.calendars.gregorian=l},{"object-assign":242}],342:[function(t,e,r){var n=t("object-assign"),i=t("./main");n(i.regionalOptions[""],{invalidArguments:"Invalid arguments",invalidFormat:"Cannot format a date from another calendar",missingNumberAt:"Missing number at position {0}",unknownNameAt:"Unknown name at position {0}",unexpectedLiteralAt:"Unexpected literal at position {0}",unexpectedText:"Additional text found at end"}),i.local=i.regionalOptions[""],n(i.cdate.prototype,{formatDate:function(t,e){return"string"!=typeof t&&(e=t,t=""),this._calendar.formatDate(t||"",this,e)}}),n(i.baseCalendar.prototype,{UNIX_EPOCH:i.instance().newDate(1970,1,1).toJD(),SECS_PER_DAY:86400,TICKS_EPOCH:i.instance().jdEpoch,TICKS_PER_DAY:864e9,ATOM:"yyyy-mm-dd",COOKIE:"D, dd M yyyy",FULL:"DD, MM d, yyyy",ISO_8601:"yyyy-mm-dd",JULIAN:"J",RFC_822:"D, d M yy",RFC_850:"DD, dd-M-yy",RFC_1036:"D, d M yy",RFC_1123:"D, d M yyyy",RFC_2822:"D, d M yyyy",RSS:"D, d M yy",TICKS:"!",TIMESTAMP:"@",W3C:"yyyy-mm-dd",formatDate:function(t,e,r){if("string"!=typeof t&&(r=e,e=t,t=""),!e)return"";if(e.calendar()!==this)throw i.local.invalidFormat||i.regionalOptions[""].invalidFormat;t=t||this.local.dateFormat;for(var n,a,o,s,l=(r=r||{}).dayNamesShort||this.local.dayNamesShort,c=r.dayNames||this.local.dayNames,u=r.monthNumbers||this.local.monthNumbers,f=r.monthNamesShort||this.local.monthNamesShort,h=r.monthNames||this.local.monthNames,p=(r.calculateWeek||this.local.calculateWeek,function(e,r){for(var n=1;w+n1}),d=function(t,e,r,n){var i=""+e;if(p(t,n))for(;i.length1},x=function(t,r){var n=y(t,r),a=[2,3,n?4:2,n?4:2,10,11,20]["oyYJ@!".indexOf(t)+1],o=new RegExp("^-?\\d{1,"+a+"}"),s=e.substring(A).match(o);if(!s)throw(i.local.missingNumberAt||i.regionalOptions[""].missingNumberAt).replace(/\{0\}/,A);return A+=s[0].length,parseInt(s[0],10)},b=this,_=function(){if("function"==typeof l){y("m");var t=l.call(b,e.substring(A));return A+=t.length,t}return x("m")},w=function(t,r,n,a){for(var o=y(t,a)?n:r,s=0;s-1){p=1,d=m;for(var E=this.daysInMonth(h,p);d>E;E=this.daysInMonth(h,p))p++,d-=E}return f>-1?this.fromJD(f):this.newDate(h,p,d)},determineDate:function(t,e,r,n,i){r&&"object"!=typeof r&&(i=n,n=r,r=null),"string"!=typeof n&&(i=n,n="");var a=this;return e=e?e.newDate():null,t=null==t?e:"string"==typeof t?function(t){try{return a.parseDate(n,t,i)}catch(t){}for(var e=((t=t.toLowerCase()).match(/^c/)&&r?r.newDate():null)||a.today(),o=/([+-]?[0-9]+)\s*(d|w|m|y)?/g,s=o.exec(t);s;)e.add(parseInt(s[1],10),s[2]||"d"),s=o.exec(t);return e}(t):"number"==typeof t?isNaN(t)||t===1/0||t===-1/0?e:a.today().add(t,"d"):a.newDate(t)}})},{"./main":341,"object-assign":242}],343:[function(t,e,r){"use strict";e.exports=[{path:"",backoff:0},{path:"M-2.4,-3V3L0.6,0Z",backoff:.6},{path:"M-3.7,-2.5V2.5L1.3,0Z",backoff:1.3},{path:"M-4.45,-3L-1.65,-0.2V0.2L-4.45,3L1.55,0Z",backoff:1.55},{path:"M-2.2,-2.2L-0.2,-0.2V0.2L-2.2,2.2L-1.4,3L1.6,0L-1.4,-3Z",backoff:1.6},{path:"M-4.4,-2.1L-0.6,-0.2V0.2L-4.4,2.1L-4,3L2,0L-4,-3Z",backoff:2},{path:"M2,0A2,2 0 1,1 0,-2A2,2 0 0,1 2,0Z",backoff:0,noRotate:!0},{path:"M2,2V-2H-2V2Z",backoff:0,noRotate:!0}]},{}],344:[function(t,e,r){"use strict";var n=t("./arrow_paths"),i=t("../../plots/font_attributes"),a=t("../../plots/cartesian/constants"),o=t("../../plot_api/plot_template").templatedArray;t("../../constants/axis_placeable_objects");e.exports=o("annotation",{visible:{valType:"boolean",dflt:!0,editType:"calc+arraydraw"},text:{valType:"string",editType:"calc+arraydraw"},textangle:{valType:"angle",dflt:0,editType:"calc+arraydraw"},font:i({editType:"calc+arraydraw",colorEditType:"arraydraw"}),width:{valType:"number",min:1,dflt:null,editType:"calc+arraydraw"},height:{valType:"number",min:1,dflt:null,editType:"calc+arraydraw"},opacity:{valType:"number",min:0,max:1,dflt:1,editType:"arraydraw"},align:{valType:"enumerated",values:["left","center","right"],dflt:"center",editType:"arraydraw"},valign:{valType:"enumerated",values:["top","middle","bottom"],dflt:"middle",editType:"arraydraw"},bgcolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"arraydraw"},bordercolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"arraydraw"},borderpad:{valType:"number",min:0,dflt:1,editType:"calc+arraydraw"},borderwidth:{valType:"number",min:0,dflt:1,editType:"calc+arraydraw"},showarrow:{valType:"boolean",dflt:!0,editType:"calc+arraydraw"},arrowcolor:{valType:"color",editType:"arraydraw"},arrowhead:{valType:"integer",min:0,max:n.length,dflt:1,editType:"arraydraw"},startarrowhead:{valType:"integer",min:0,max:n.length,dflt:1,editType:"arraydraw"},arrowside:{valType:"flaglist",flags:["end","start"],extras:["none"],dflt:"end",editType:"arraydraw"},arrowsize:{valType:"number",min:.3,dflt:1,editType:"calc+arraydraw"},startarrowsize:{valType:"number",min:.3,dflt:1,editType:"calc+arraydraw"},arrowwidth:{valType:"number",min:.1,editType:"calc+arraydraw"},standoff:{valType:"number",min:0,dflt:0,editType:"calc+arraydraw"},startstandoff:{valType:"number",min:0,dflt:0,editType:"calc+arraydraw"},ax:{valType:"any",editType:"calc+arraydraw"},ay:{valType:"any",editType:"calc+arraydraw"},axref:{valType:"enumerated",dflt:"pixel",values:["pixel",a.idRegex.x.toString()],editType:"calc"},ayref:{valType:"enumerated",dflt:"pixel",values:["pixel",a.idRegex.y.toString()],editType:"calc"},xref:{valType:"enumerated",values:["paper",a.idRegex.x.toString()],editType:"calc"},x:{valType:"any",editType:"calc+arraydraw"},xanchor:{valType:"enumerated",values:["auto","left","center","right"],dflt:"auto",editType:"calc+arraydraw"},xshift:{valType:"number",dflt:0,editType:"calc+arraydraw"},yref:{valType:"enumerated",values:["paper",a.idRegex.y.toString()],editType:"calc"},y:{valType:"any",editType:"calc+arraydraw"},yanchor:{valType:"enumerated",values:["auto","top","middle","bottom"],dflt:"auto",editType:"calc+arraydraw"},yshift:{valType:"number",dflt:0,editType:"calc+arraydraw"},clicktoshow:{valType:"enumerated",values:[!1,"onoff","onout"],dflt:!1,editType:"arraydraw"},xclick:{valType:"any",editType:"arraydraw"},yclick:{valType:"any",editType:"arraydraw"},hovertext:{valType:"string",editType:"arraydraw"},hoverlabel:{bgcolor:{valType:"color",editType:"arraydraw"},bordercolor:{valType:"color",editType:"arraydraw"},font:i({editType:"arraydraw"}),editType:"arraydraw"},captureevents:{valType:"boolean",editType:"arraydraw"},editType:"calc",_deprecated:{ref:{valType:"string",editType:"calc"}}})},{"../../constants/axis_placeable_objects":467,"../../plot_api/plot_template":538,"../../plots/cartesian/constants":556,"../../plots/font_attributes":580,"./arrow_paths":343}],345:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/cartesian/axes"),a=t("./draw").draw;function o(t){var e=t._fullLayout;n.filterVisible(e.annotations).forEach((function(e){var r=i.getFromId(t,e.xref),n=i.getFromId(t,e.yref),a=i.getRefType(e.xref),o=i.getRefType(e.yref);e._extremes={},"range"===a&&s(e,r),"range"===o&&s(e,n)}))}function s(t,e){var r,n=e._id,a=n.charAt(0),o=t[a],s=t["a"+a],l=t[a+"ref"],c=t["a"+a+"ref"],u=t["_"+a+"padplus"],f=t["_"+a+"padminus"],h={x:1,y:-1}[a]*t[a+"shift"],p=3*t.arrowsize*t.arrowwidth||0,d=p+h,m=p-h,g=3*t.startarrowsize*t.arrowwidth||0,v=g+h,y=g-h;if(c===l){var x=i.findExtremes(e,[e.r2c(o)],{ppadplus:d,ppadminus:m}),b=i.findExtremes(e,[e.r2c(s)],{ppadplus:Math.max(u,v),ppadminus:Math.max(f,y)});r={min:[x.min[0],b.min[0]],max:[x.max[0],b.max[0]]}}else v=s?v+s:v,y=s?y-s:y,r=i.findExtremes(e,[e.r2c(o)],{ppadplus:Math.max(u,d,v),ppadminus:Math.max(f,m,y)});t._extremes[n]=r}e.exports=function(t){var e=t._fullLayout;if(n.filterVisible(e.annotations).length&&t._fullData.length)return n.syncOrAsync([a,o],t)}},{"../../lib":498,"../../plots/cartesian/axes":549,"./draw":350}],346:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("../../plot_api/plot_template").arrayEditor;function o(t,e){var r,n,i,a,o,l,c,u=t._fullLayout.annotations,f=[],h=[],p=[],d=(e||[]).length;for(r=0;r0||r.explicitOff.length>0},onClick:function(t,e){var r,s,l=o(t,e),c=l.on,u=l.off.concat(l.explicitOff),f={},h=t._fullLayout.annotations;if(!c.length&&!u.length)return;for(r=0;r2/3?"right":"center"),{center:0,middle:0,left:.5,bottom:-.5,right:-.5,top:.5}[e]}for(var W=!1,X=["x","y"],Z=0;Z1)&&(nt===rt?((pt=it.r2fraction(e["a"+et]))<0||pt>1)&&(W=!0):W=!0),J=it._offset+it.r2p(e[et]),$=.5}else{var dt="domain"===ht;"x"===et?(Q=e[et],J=dt?it._offset+it._length*Q:J=T.l+T.w*Q):(Q=1-e[et],J=dt?it._offset+it._length*Q:J=T.t+T.h*Q),$=e.showarrow?.5:Q}if(e.showarrow){ft.head=J;var mt=e["a"+et];if(tt=ot*q(.5,e.xanchor)-st*q(.5,e.yanchor),nt===rt){var gt=l.getRefType(nt);"domain"===gt?("y"===et&&(mt=1-mt),ft.tail=it._offset+it._length*mt):"paper"===gt?"y"===et?(mt=1-mt,ft.tail=T.t+T.h*mt):ft.tail=T.l+T.w*mt:ft.tail=it._offset+it.r2p(mt),K=tt}else ft.tail=J+mt,K=tt+mt;ft.text=ft.tail+tt;var vt=w["x"===et?"width":"height"];if("paper"===rt&&(ft.head=o.constrain(ft.head,1,vt-1)),"pixel"===nt){var yt=-Math.max(ft.tail-3,ft.text),xt=Math.min(ft.tail+3,ft.text)-vt;yt>0?(ft.tail+=yt,ft.text+=yt):xt>0&&(ft.tail-=xt,ft.text-=xt)}ft.tail+=ut,ft.head+=ut}else K=tt=lt*q($,ct),ft.text=J+tt;ft.text+=ut,tt+=ut,K+=ut,e["_"+et+"padplus"]=lt/2+K,e["_"+et+"padminus"]=lt/2-K,e["_"+et+"size"]=lt,e["_"+et+"shift"]=tt}if(W)R.remove();else{var bt=0,_t=0;if("left"!==e.align&&(bt=(A-b)*("center"===e.align?.5:1)),"top"!==e.valign&&(_t=(D-_)*("middle"===e.valign?.5:1)),f)n.select("svg").attr({x:N+bt-1,y:N+_t}).call(u.setClipUrl,U?L:null,t);else{var wt=N+_t-m.top,Tt=N+bt-m.left;G.call(h.positionText,Tt,wt).call(u.setClipUrl,U?L:null,t)}V.select("rect").call(u.setRect,N,N,A,D),j.call(u.setRect,F/2,F/2,B-F,H-F),R.call(u.setTranslate,Math.round(C.x.text-B/2),Math.round(C.y.text-H/2)),O.attr({transform:"rotate("+P+","+C.x.text+","+C.y.text+")"});var kt,At=function(r,n){I.selectAll(".annotation-arrow-g").remove();var l=C.x.head,f=C.y.head,h=C.x.tail+r,p=C.y.tail+n,m=C.x.text+r,b=C.y.text+n,_=o.rotationXYMatrix(P,m,b),w=o.apply2DTransform(_),A=o.apply2DTransform2(_),L=+j.attr("width"),z=+j.attr("height"),D=m-.5*L,F=D+L,B=b-.5*z,N=B+z,U=[[D,B,D,N],[D,N,F,N],[F,N,F,B],[F,B,D,B]].map(A);if(!U.reduce((function(t,e){return t^!!o.segmentsIntersect(l,f,l+1e6,f+1e6,e[0],e[1],e[2],e[3])}),!1)){U.forEach((function(t){var e=o.segmentsIntersect(h,p,l,f,t[0],t[1],t[2],t[3]);e&&(h=e.x,p=e.y)}));var V=e.arrowwidth,H=e.arrowcolor,q=e.arrowside,G=I.append("g").style({opacity:c.opacity(H)}).classed("annotation-arrow-g",!0),Y=G.append("path").attr("d","M"+h+","+p+"L"+l+","+f).style("stroke-width",V+"px").call(c.stroke,c.rgb(H));if(g(Y,q,e),k.annotationPosition&&Y.node().parentNode&&!a){var W=l,X=f;if(e.standoff){var Z=Math.sqrt(Math.pow(l-h,2)+Math.pow(f-p,2));W+=e.standoff*(h-l)/Z,X+=e.standoff*(p-f)/Z}var J,K,Q=G.append("path").classed("annotation-arrow",!0).classed("anndrag",!0).classed("cursor-move",!0).attr({d:"M3,3H-3V-3H3ZM0,0L"+(h-W)+","+(p-X),transform:s(W,X)}).style("stroke-width",V+6+"px").call(c.stroke,"rgba(0,0,0,0)").call(c.fill,"rgba(0,0,0,0)");d.init({element:Q.node(),gd:t,prepFn:function(){var t=u.getTranslate(R);J=t.x,K=t.y,v&&v.autorange&&M(v._name+".autorange",!0),x&&x.autorange&&M(x._name+".autorange",!0)},moveFn:function(t,r){var n=w(J,K),i=n[0]+t,a=n[1]+r;R.call(u.setTranslate,i,a),S("x",y(v,t,"x",T,e)),S("y",y(x,r,"y",T,e)),e.axref===e.xref&&S("ax",y(v,t,"ax",T,e)),e.ayref===e.yref&&S("ay",y(x,r,"ay",T,e)),G.attr("transform",s(t,r)),O.attr({transform:"rotate("+P+","+i+","+a+")"})},doneFn:function(){i.call("_guiRelayout",t,E());var e=document.querySelector(".js-notes-box-panel");e&&e.redraw(e.selectedObj)}})}}};if(e.showarrow&&At(0,0),z)d.init({element:R.node(),gd:t,prepFn:function(){kt=O.attr("transform")},moveFn:function(t,r){var n="pointer";if(e.showarrow)e.axref===e.xref?S("ax",y(v,t,"ax",T,e)):S("ax",e.ax+t),e.ayref===e.yref?S("ay",y(x,r,"ay",T.w,e)):S("ay",e.ay+r),At(t,r);else{if(a)return;var i,o;if(v)i=y(v,t,"x",T,e);else{var l=e._xsize/T.w,c=e.x+(e._xshift-e.xshift)/T.w-l/2;i=d.align(c+t/T.w,l,0,1,e.xanchor)}if(x)o=y(x,r,"y",T,e);else{var u=e._ysize/T.h,f=e.y-(e._yshift+e.yshift)/T.h-u/2;o=d.align(f-r/T.h,u,0,1,e.yanchor)}S("x",i),S("y",o),v&&x||(n=d.getCursor(v?.5:i,x?.5:o,e.xanchor,e.yanchor))}O.attr({transform:s(t,r)+kt}),p(R,n)},clickFn:function(r,n){e.captureevents&&t.emit("plotly_clickannotation",Y(n))},doneFn:function(){p(R),i.call("_guiRelayout",t,E());var e=document.querySelector(".js-notes-box-panel");e&&e.redraw(e.selectedObj)}})}}}e.exports={draw:function(t){var e=t._fullLayout;e._infolayer.selectAll(".annotation").remove();for(var r=0;r=0,x=e.indexOf("end")>=0,b=d.backoff*g+r.standoff,_=m.backoff*v+r.startstandoff;if("line"===p.nodeName){o={x:+t.attr("x1"),y:+t.attr("y1")},u={x:+t.attr("x2"),y:+t.attr("y2")};var w=o.x-u.x,T=o.y-u.y;if(h=(f=Math.atan2(T,w))+Math.PI,b&&_&&b+_>Math.sqrt(w*w+T*T))return void z();if(b){if(b*b>w*w+T*T)return void z();var k=b*Math.cos(f),A=b*Math.sin(f);u.x+=k,u.y+=A,t.attr({x2:u.x,y2:u.y})}if(_){if(_*_>w*w+T*T)return void z();var M=_*Math.cos(f),S=_*Math.sin(f);o.x-=M,o.y-=S,t.attr({x1:o.x,y1:o.y})}}else if("path"===p.nodeName){var E=p.getTotalLength(),L="";if(E1){c=!0;break}}c?t.fullLayout._infolayer.select(".annotation-"+t.id+'[data-index="'+s+'"]').remove():(l._pdata=i(t.glplot.cameraParams,[e.xaxis.r2l(l.x)*r[0],e.yaxis.r2l(l.y)*r[1],e.zaxis.r2l(l.z)*r[2]]),n(t.graphDiv,l,s,t.id,l._xa,l._ya))}}},{"../../plots/gl3d/project":602,"../annotations/draw":350}],357:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib");e.exports={moduleType:"component",name:"annotations3d",schema:{subplots:{scene:{annotations:t("./attributes")}}},layoutAttributes:t("./attributes"),handleDefaults:t("./defaults"),includeBasePlot:function(t,e){var r=n.subplotsRegistry.gl3d;if(!r)return;for(var a=r.attrRegex,o=Object.keys(t),s=0;s=0))return t;if(3===o)n[o]>1&&(n[o]=1);else if(n[o]>=1)return t}var s=Math.round(255*n[0])+", "+Math.round(255*n[1])+", "+Math.round(255*n[2]);return a?"rgba("+s+", "+n[3]+")":"rgb("+s+")"}o.tinyRGB=function(t){var e=t.toRgb();return"rgb("+Math.round(e.r)+", "+Math.round(e.g)+", "+Math.round(e.b)+")"},o.rgb=function(t){return o.tinyRGB(n(t))},o.opacity=function(t){return t?n(t).getAlpha():0},o.addOpacity=function(t,e){var r=n(t).toRgb();return"rgba("+Math.round(r.r)+", "+Math.round(r.g)+", "+Math.round(r.b)+", "+e+")"},o.combine=function(t,e){var r=n(t).toRgb();if(1===r.a)return n(t).toRgbString();var i=n(e||c).toRgb(),a=1===i.a?i:{r:255*(1-i.a)+i.r*i.a,g:255*(1-i.a)+i.g*i.a,b:255*(1-i.a)+i.b*i.a},o={r:a.r*(1-r.a)+r.r*r.a,g:a.g*(1-r.a)+r.g*r.a,b:a.b*(1-r.a)+r.b*r.a};return n(o).toRgbString()},o.contrast=function(t,e,r){var i=n(t);return 1!==i.getAlpha()&&(i=n(o.combine(t,c))),(i.isDark()?e?i.lighten(e):c:r?i.darken(r):l).toString()},o.stroke=function(t,e){var r=n(e);t.style({stroke:o.tinyRGB(r),"stroke-opacity":r.getAlpha()})},o.fill=function(t,e){var r=n(e);t.style({fill:o.tinyRGB(r),"fill-opacity":r.getAlpha()})},o.clean=function(t){if(t&&"object"==typeof t){var e,r,n,i,s=Object.keys(t);for(e=0;e0?n>=l:n<=l));i++)n>u&&n0?n>=l:n<=l));i++)n>r[0]&&n1){var ct=Math.pow(10,Math.floor(Math.log(lt)/Math.LN10));ot*=ct*c.roundUp(lt/ct,[2,5,10]),(Math.abs(q.start)/q.size+1e-6)%1<2e-6&&(it.tick0=0)}it.dtick=ot}it.domain=o?[rt+I/R.h,rt+K-I/R.h]:[rt+P/R.w,rt+K-P/R.w],it.setScale(),t.attr("transform",u(Math.round(R.l),Math.round(R.t)));var ut,ft=t.select("."+A.cbtitleunshift).attr("transform",u(-Math.round(R.l),-Math.round(R.t))),ht=it.ticklabelposition,pt=it.title.font.size,dt=t.select("."+A.cbaxis),mt=0,gt=0;function vt(n,i){var a={propContainer:it,propName:e._propPrefix+"title",traceIndex:e._traceIndex,_meta:e._meta,placeholder:D._dfltTitle.colorbar,containerGroup:t.select("."+A.cbtitle)},o="h"===n.charAt(0)?n.substr(1):"h"+n;t.selectAll("."+o+",."+o+"-math-group").remove(),m.draw(r,n,f(a,i||{}))}return c.syncOrAsync([a.previousPromises,function(){var t,e;(o&&at||!o&&!at)&&("top"===j&&(t=P+R.l+R.w*O,e=I+R.t+R.h*(1-rt-K)+3+.75*pt),"bottom"===j&&(t=P+R.l+R.w*O,e=I+R.t+R.h*(1-rt)-3-.25*pt),"right"===j&&(e=I+R.t+R.h*z+3+.75*pt,t=P+R.l+R.w*rt),vt(it._id+"title",{attributes:{x:t,y:e,"text-anchor":o?"start":"middle"}}))},function(){if(!o&&!at||o&&at){var a,l=t.select("."+A.cbtitle),f=l.select("text"),h=[-M/2,M/2],d=l.select(".h"+it._id+"title-math-group").node(),m=15.6;if(f.node()&&(m=parseInt(f.node().style.fontSize,10)*w),d?(a=p.bBox(d),gt=a.width,(mt=a.height)>m&&(h[1]-=(mt-m)/2)):f.node()&&!f.classed(A.jsPlaceholder)&&(a=p.bBox(f.node()),gt=a.width,mt=a.height),o){if(mt){if(mt+=5,"top"===j)it.domain[1]-=mt/R.h,h[1]*=-1;else{it.domain[0]+=mt/R.h;var v=g.lineCount(f);h[1]+=(1-v)*m}l.attr("transform",u(h[0],h[1])),it.setScale()}}else gt&&("right"===j&&(it.domain[0]+=(gt+pt/2)/R.w),l.attr("transform",u(h[0],h[1])),it.setScale())}t.selectAll("."+A.cbfills+",."+A.cblines).attr("transform",o?u(0,Math.round(R.h*(1-it.domain[1]))):u(Math.round(R.w*it.domain[0]),0)),dt.attr("transform",o?u(0,Math.round(-R.t)):u(Math.round(-R.l),0));var y=t.select("."+A.cbfills).selectAll("rect."+A.cbfill).attr("style","").data(Y);y.enter().append("rect").classed(A.cbfill,!0).style("stroke","none"),y.exit().remove();var x=U.map(it.c2p).map(Math.round).sort((function(t,e){return t-e}));y.each((function(t,a){var s=[0===a?U[0]:(Y[a]+Y[a-1])/2,a===Y.length-1?U[1]:(Y[a]+Y[a+1])/2].map(it.c2p).map(Math.round);o&&(s[1]=c.constrain(s[1]+(s[1]>s[0])?1:-1,x[0],x[1]));var l=n.select(this).attr(o?"x":"y",Q).attr(o?"y":"x",n.min(s)).attr(o?"width":"height",Math.max(X,2)).attr(o?"height":"width",Math.max(n.max(s)-n.min(s),2));if(e._fillgradient)p.gradient(l,r,e._id,o?"vertical":"horizontalreversed",e._fillgradient,"fill");else{var u=H(t).replace("e-","");l.attr("fill",i(u).toHexString())}}));var b=t.select("."+A.cblines).selectAll("path."+A.cbline).data(B.color&&B.width?W:[]);b.enter().append("path").classed(A.cbline,!0),b.exit().remove(),b.each((function(t){var e=Q,r=Math.round(it.c2p(t))+B.width/2%1;n.select(this).attr("d","M"+(o?e+","+r:r+","+e)+(o?"h":"v")+X).call(p.lineGroupStyle,B.width,V(t),B.dash)})),dt.selectAll("g."+it._id+"tick,path").remove();var _=Q+X+(M||0)/2-("outside"===e.ticks?1:0),T=s.calcTicks(it),k=s.getTickSigns(it)[2];return s.drawTicks(r,it,{vals:"inside"===it.ticks?s.clipEnds(it,T):T,layer:dt,path:s.makeTickPath(it,_,k),transFn:s.makeTransTickFn(it)}),s.drawLabels(r,it,{vals:T,layer:dt,transFn:s.makeTransTickLabelFn(it),labelFns:s.makeLabelFns(it,_)})},function(){if(o&&!at||!o&&at){var t,i,a=it.position||0,s=it._offset+it._length/2;if("right"===j)i=s,t=R.l+R.w*a+10+pt*(it.showticklabels?1:.5);else if(t=s,"bottom"===j&&(i=R.t+R.h*a+10+(-1===ht.indexOf("inside")?it.tickfont.size:0)+("intside"!==it.ticks&&e.ticklen||0)),"top"===j){var l=N.text.split("
").length;i=R.t+R.h*a+10-X-w*pt*l}vt((o?"h":"v")+it._id+"title",{avoid:{selection:n.select(r).selectAll("g."+it._id+"tick"),side:j,offsetTop:o?0:R.t,offsetLeft:o?R.l:0,maxShift:o?D.width:D.height},attributes:{x:t,y:i,"text-anchor":"middle"},transform:{rotate:o?-90:0,offset:0}})}},a.previousPromises,function(){var n,s=X+M/2;-1===ht.indexOf("inside")&&(n=p.bBox(dt.node()),s+=o?n.width:n.height),ut=ft.select("text");var c=0,f=o&&"top"===j,m=!o&&"right"===j,g=0;if(ut.node()&&!ut.classed(A.jsPlaceholder)){var y,x=ft.select(".h"+it._id+"title-math-group").node();x&&(o&&at||!o&&!at)?(c=(n=p.bBox(x)).width,y=n.height):(c=(n=p.bBox(ft.node())).right-R.l-(o?Q:nt),y=n.bottom-R.t-(o?nt:Q),o||"top"!==j||(s+=n.height,g=n.height)),m&&(ut.attr("transform",u(c/2+pt/2,0)),c*=2),s=Math.max(s,o?c:y)}var b=2*(o?P:I)+s+S+M/2,w=0;!o&&N.text&&"bottom"===C&&z<=0&&(b+=w=b/2,g+=w),D._hColorbarMoveTitle=w,D._hColorbarMoveCBTitle=g;var F=S+M;t.select("."+A.cbbg).attr("x",(o?Q:nt)-F/2-(o?P:0)).attr("y",(o?nt:Q)-(o?J:I+g-w)).attr(o?"width":"height",Math.max(b-w,2)).attr(o?"height":"width",Math.max(J+F,2)).call(d.fill,E).call(d.stroke,e.bordercolor).style("stroke-width",S);var B=m?Math.max(c-10,0):0;if(t.selectAll("."+A.cboutline).attr("x",(o?Q:nt+P)+B).attr("y",(o?nt+I-J:Q)+(f?mt:0)).attr(o?"width":"height",Math.max(X,2)).attr(o?"height":"width",Math.max(J-(o?2*I+mt:2*P+B),2)).call(d.stroke,e.outlinecolor).style({fill:"none","stroke-width":M}),t.attr("transform",u(R.l-(o?$*b:0),R.t-(o?0:(1-tt)*b-g))),!o&&(S||i(E).getAlpha()&&!i.equals(D.paper_bgcolor,E))){var U=dt.selectAll("text"),V=U[0].length,H=t.select("."+A.cbbg).node(),q=p.bBox(H),G=p.getTranslate(t);U.each((function(t,e){var r=V-1;if(0===e||e===r){var n,i=p.bBox(this),a=p.getTranslate(this);if(e===r){var o=i.right+a.x;(n=q.right+G.x+nt-S-2+O-o)>0&&(n=0)}else if(0===e){var s=i.left+a.x;(n=q.left+G.x+nt+S+2-s)<0&&(n=0)}n&&(V<3?this.setAttribute("transform","translate("+n+",0) "+this.getAttribute("transform")):this.setAttribute("visibility","hidden"))}}))}var Y={},W=T[L],Z=k[L],K=T[C],et=k[C],rt=b-X;o?("pixels"===h?(Y.y=z,Y.t=J*K,Y.b=J*et):(Y.t=Y.b=0,Y.yt=z+l*K,Y.yb=z-l*et),"pixels"===_?(Y.x=O,Y.l=b*W,Y.r=b*Z):(Y.l=rt*W,Y.r=rt*Z,Y.xl=O-v*W,Y.xr=O+v*Z)):("pixels"===h?(Y.x=O,Y.l=J*W,Y.r=J*Z):(Y.l=Y.r=0,Y.xl=O+l*W,Y.xr=O-l*Z),"pixels"===_?(Y.y=1-z,Y.t=b*K,Y.b=b*et):(Y.t=rt*K,Y.b=rt*et,Y.yt=z-v*K,Y.yb=z+v*et)),a.autoMargin(r,e._id,Y)}],r)}(r,e,t);v&&v.then&&(t._promises||[]).push(v),t._context.edits.colorbarPosition&&function(t,e,r){var n,i,a,s="v"===e.orientation,c=r._fullLayout._size;l.init({element:t.node(),gd:r,prepFn:function(){n=t.attr("transform"),h(t)},moveFn:function(r,o){t.attr("transform",n+u(r,o)),i=l.align((s?e._uFrac:e._vFrac)+r/c.w,s?e._thickFrac:e._lenFrac,0,1,e.xanchor),a=l.align((s?e._vFrac:1-e._uFrac)-o/c.h,s?e._lenFrac:e._thickFrac,0,1,e.yanchor);var f=l.getCursor(i,a,e.xanchor,e.yanchor);h(t,f)},doneFn:function(){if(h(t),void 0!==i&&void 0!==a){var n={};n[e._propPrefix+"x"]=i,n[e._propPrefix+"y"]=a,void 0!==e._traceIndex?o.call("_guiRestyle",r,n,e._traceIndex):o.call("_guiRelayout",r,n)}}})}(r,e,t)})),e.exit().each((function(e){a.autoMargin(t,e._id)})).remove(),e.order()}}},{"../../constants/alignment":466,"../../lib":498,"../../lib/extend":488,"../../lib/setcursor":519,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"../../plots/cartesian/axis_defaults":551,"../../plots/cartesian/layout_attributes":564,"../../plots/cartesian/position_defaults":567,"../../plots/plots":614,"../../registry":633,"../color":361,"../colorscale/helpers":372,"../dragelement":380,"../drawing":383,"../titles":459,"./constants":363,"@plotly/d3":58,tinycolor2:307}],366:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t){return n.isPlainObject(t.colorbar)}},{"../../lib":498}],367:[function(t,e,r){"use strict";e.exports={moduleType:"component",name:"colorbar",attributes:t("./attributes"),supplyDefaults:t("./defaults"),draw:t("./draw").draw,hasColorbar:t("./has_colorbar")}},{"./attributes":362,"./defaults":364,"./draw":365,"./has_colorbar":366}],368:[function(t,e,r){"use strict";var n=t("../colorbar/attributes"),i=t("../../lib/regex").counter,a=t("../../lib/sort_object_keys"),o=t("./scales.js").scales;a(o);function s(t){return"`"+t+"`"}e.exports=function(t,e){t=t||"";var r,a=(e=e||{}).cLetter||"c",l=("onlyIfNumerical"in e?e.onlyIfNumerical:Boolean(t),"noScale"in e?e.noScale:"marker.line"===t),c="showScaleDflt"in e?e.showScaleDflt:"z"===a,u="string"==typeof e.colorscaleDflt?o[e.colorscaleDflt]:null,f=e.editTypeOverride||"",h=t?t+".":"";"colorAttr"in e?(r=e.colorAttr,e.colorAttr):s(h+(r={z:"z",c:"color"}[a]));var p=a+"auto",d=a+"min",m=a+"max",g=a+"mid",v=(s(h+p),s(h+d),s(h+m),{});v[d]=v[m]=void 0;var y={};y[p]=!1;var x={};return"color"===r&&(x.color={valType:"color",arrayOk:!0,editType:f||"style"},e.anim&&(x.color.anim=!0)),x[p]={valType:"boolean",dflt:!0,editType:"calc",impliedEdits:v},x[d]={valType:"number",dflt:null,editType:f||"plot",impliedEdits:y},x[m]={valType:"number",dflt:null,editType:f||"plot",impliedEdits:y},x[g]={valType:"number",dflt:null,editType:"calc",impliedEdits:v},x.colorscale={valType:"colorscale",editType:"calc",dflt:u,impliedEdits:{autocolorscale:!1}},x.autocolorscale={valType:"boolean",dflt:!1!==e.autoColorDflt,editType:"calc",impliedEdits:{colorscale:void 0}},x.reversescale={valType:"boolean",dflt:!1,editType:"plot"},l||(x.showscale={valType:"boolean",dflt:c,editType:"calc"},x.colorbar=n),e.noColorAxis||(x.coloraxis={valType:"subplotid",regex:i("coloraxis"),dflt:null,editType:"calc"}),x}},{"../../lib/regex":515,"../../lib/sort_object_keys":521,"../colorbar/attributes":362,"./scales.js":376}],369:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../lib"),a=t("./helpers").extractOpts;e.exports=function(t,e,r){var o,s=t._fullLayout,l=r.vals,c=r.containerStr,u=c?i.nestedProperty(e,c).get():e,f=a(u),h=!1!==f.auto,p=f.min,d=f.max,m=f.mid,g=function(){return i.aggNums(Math.min,null,l)},v=function(){return i.aggNums(Math.max,null,l)};(void 0===p?p=g():h&&(p=u._colorAx&&n(p)?Math.min(p,g()):g()),void 0===d?d=v():h&&(d=u._colorAx&&n(d)?Math.max(d,v()):v()),h&&void 0!==m&&(d-m>m-p?p=m-(d-m):d-m=0?s.colorscale.sequential:s.colorscale.sequentialminus,f._sync("colorscale",o))}},{"../../lib":498,"./helpers":372,"fast-isnumeric":185}],370:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./helpers").hasColorscale,a=t("./helpers").extractOpts;e.exports=function(t,e){function r(t,e){var r=t["_"+e];void 0!==r&&(t[e]=r)}function o(t,i){var o=i.container?n.nestedProperty(t,i.container).get():t;if(o)if(o.coloraxis)o._colorAx=e[o.coloraxis];else{var s=a(o),l=s.auto;(l||void 0===s.min)&&r(o,i.min),(l||void 0===s.max)&&r(o,i.max),s.autocolorscale&&r(o,"colorscale")}}for(var s=0;s=0;n--,i++){var a=t[n];r[i]=[1-a[0],a[1]]}return r}function d(t,e){e=e||{};for(var r=t.domain,o=t.range,l=o.length,c=new Array(l),u=0;u4/3-s?o:s}},{}],378:[function(t,e,r){"use strict";var n=t("../../lib"),i=[["sw-resize","s-resize","se-resize"],["w-resize","move","e-resize"],["nw-resize","n-resize","ne-resize"]];e.exports=function(t,e,r,a){return t="left"===r?0:"center"===r?1:"right"===r?2:n.constrain(Math.floor(3*t),0,2),e="bottom"===a?0:"middle"===a?1:"top"===a?2:n.constrain(Math.floor(3*e),0,2),i[e][t]}},{"../../lib":498}],379:[function(t,e,r){"use strict";r.selectMode=function(t){return"lasso"===t||"select"===t},r.drawMode=function(t){return"drawclosedpath"===t||"drawopenpath"===t||"drawline"===t||"drawrect"===t||"drawcircle"===t},r.openMode=function(t){return"drawline"===t||"drawopenpath"===t},r.rectMode=function(t){return"select"===t||"drawline"===t||"drawrect"===t||"drawcircle"===t},r.freeMode=function(t){return"lasso"===t||"drawclosedpath"===t||"drawopenpath"===t},r.selectingOrDrawing=function(t){return r.freeMode(t)||r.rectMode(t)}},{}],380:[function(t,e,r){"use strict";var n=t("mouse-event-offset"),i=t("has-hover"),a=t("has-passive-events"),o=t("../../lib").removeElement,s=t("../../plots/cartesian/constants"),l=e.exports={};l.align=t("./align"),l.getCursor=t("./cursor");var c=t("./unhover");function u(){var t=document.createElement("div");t.className="dragcover";var e=t.style;return e.position="fixed",e.left=0,e.right=0,e.top=0,e.bottom=0,e.zIndex=999999999,e.background="none",document.body.appendChild(t),t}function f(t){return n(t.changedTouches?t.changedTouches[0]:t,document.body)}l.unhover=c.wrapped,l.unhoverRaw=c.raw,l.init=function(t){var e,r,n,c,h,p,d,m,g=t.gd,v=1,y=g._context.doubleClickDelay,x=t.element;g._mouseDownTime||(g._mouseDownTime=0),x.style.pointerEvents="all",x.onmousedown=_,a?(x._ontouchstart&&x.removeEventListener("touchstart",x._ontouchstart),x._ontouchstart=_,x.addEventListener("touchstart",_,{passive:!1})):x.ontouchstart=_;var b=t.clampFn||function(t,e,r){return Math.abs(t)y&&(v=Math.max(v-1,1)),g._dragged)t.doneFn&&t.doneFn();else if(t.clickFn&&t.clickFn(v,p),!m){var r;try{r=new MouseEvent("click",e)}catch(t){var n=f(e);(r=document.createEvent("MouseEvents")).initMouseEvent("click",e.bubbles,e.cancelable,e.view,e.detail,e.screenX,e.screenY,n[0],n[1],e.ctrlKey,e.altKey,e.shiftKey,e.metaKey,e.button,e.relatedTarget)}d.dispatchEvent(r)}g._dragging=!1,g._dragged=!1}else g._dragged=!1}},l.coverSlip=u},{"../../lib":498,"../../plots/cartesian/constants":556,"./align":377,"./cursor":378,"./unhover":381,"has-hover":223,"has-passive-events":224,"mouse-event-offset":237}],381:[function(t,e,r){"use strict";var n=t("../../lib/events"),i=t("../../lib/throttle"),a=t("../../lib/dom").getGraphDiv,o=t("../fx/constants"),s=e.exports={};s.wrapped=function(t,e,r){(t=a(t))._fullLayout&&i.clear(t._fullLayout._uid+o.HOVERID),s.raw(t,e,r)},s.raw=function(t,e){var r=t._fullLayout,i=t._hoverdata;e||(e={}),e.target&&!t._dragged&&!1===n.triggerHandler(t,"plotly_beforehover",e)||(r._hoverlayer.selectAll("g").remove(),r._hoverlayer.selectAll("line").remove(),r._hoverlayer.selectAll("circle").remove(),t._hoverdata=void 0,e.target&&i&&t.emit("plotly_unhover",{event:e,points:i}))}},{"../../lib/dom":486,"../../lib/events":487,"../../lib/throttle":525,"../fx/constants":395}],382:[function(t,e,r){"use strict";r.dash={valType:"string",values:["solid","dot","dash","longdash","dashdot","longdashdot"],dflt:"solid",editType:"style"},r.pattern={shape:{valType:"enumerated",values:["","/","\\","x","-","|","+","."],dflt:"",arrayOk:!0,editType:"style"},fillmode:{valType:"enumerated",values:["replace","overlay"],dflt:"replace",editType:"style"},bgcolor:{valType:"color",arrayOk:!0,editType:"style"},fgcolor:{valType:"color",arrayOk:!0,editType:"style"},fgopacity:{valType:"number",editType:"style",min:0,max:1},size:{valType:"number",min:0,dflt:8,arrayOk:!0,editType:"style"},solidity:{valType:"number",min:0,max:1,dflt:.3,arrayOk:!0,editType:"style"},editType:"style"}},{}],383:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.numberFormat,o=t("fast-isnumeric"),s=t("tinycolor2"),l=t("../../registry"),c=t("../color"),u=t("../colorscale"),f=i.strTranslate,h=t("../../lib/svg_text_utils"),p=t("../../constants/xmlns_namespaces"),d=t("../../constants/alignment").LINE_SPACING,m=t("../../constants/interactions").DESELECTDIM,g=t("../../traces/scatter/subtypes"),v=t("../../traces/scatter/make_bubble_size_func"),y=t("../../components/fx/helpers").appendArrayPointValue,x=e.exports={};function b(t,e,r){var n=e.fillpattern,i=n&&x.getPatternAttr(n.shape,0,"");if(i){var a=x.getPatternAttr(n.bgcolor,0,null),o=x.getPatternAttr(n.fgcolor,0,null),s=n.fgopacity,l=x.getPatternAttr(n.size,0,8),u=x.getPatternAttr(n.solidity,0,.3),f=e.uid;x.pattern(t,"point",r,f,i,l,u,void 0,n.fillmode,a,o,s)}else e.fillcolor&&t.call(c.fill,e.fillcolor)}x.font=function(t,e,r,n){i.isPlainObject(e)&&(n=e.color,r=e.size,e=e.family),e&&t.style("font-family",e),r+1&&t.style("font-size",r+"px"),n&&t.call(c.fill,n)},x.setPosition=function(t,e,r){t.attr("x",e).attr("y",r)},x.setSize=function(t,e,r){t.attr("width",e).attr("height",r)},x.setRect=function(t,e,r,n,i){t.call(x.setPosition,e,r).call(x.setSize,n,i)},x.translatePoint=function(t,e,r,n){var i=r.c2p(t.x),a=n.c2p(t.y);return!!(o(i)&&o(a)&&e.node())&&("text"===e.node().nodeName?e.attr("x",i).attr("y",a):e.attr("transform",f(i,a)),!0)},x.translatePoints=function(t,e,r){t.each((function(t){var i=n.select(this);x.translatePoint(t,i,e,r)}))},x.hideOutsideRangePoint=function(t,e,r,n,i,a){e.attr("display",r.isPtWithinRange(t,i)&&n.isPtWithinRange(t,a)?null:"none")},x.hideOutsideRangePoints=function(t,e){if(e._hasClipOnAxisFalse){var r=e.xaxis,i=e.yaxis;t.each((function(e){var a=e[0].trace,o=a.xcalendar,s=a.ycalendar,c=l.traceIs(a,"bar-like")?".bartext":".point,.textpoint";t.selectAll(c).each((function(t){x.hideOutsideRangePoint(t,n.select(this),r,i,o,s)}))}))}},x.crispRound=function(t,e,r){return e&&o(e)?t._context.staticPlot?e:e<1?1:Math.round(e):r||0},x.singleLineStyle=function(t,e,r,n,i){e.style("fill","none");var a=(((t||[])[0]||{}).trace||{}).line||{},o=r||a.width||0,s=i||a.dash||"";c.stroke(e,n||a.color),x.dashLine(e,s,o)},x.lineGroupStyle=function(t,e,r,i){t.style("fill","none").each((function(t){var a=(((t||[])[0]||{}).trace||{}).line||{},o=e||a.width||0,s=i||a.dash||"";n.select(this).call(c.stroke,r||a.color).call(x.dashLine,s,o)}))},x.dashLine=function(t,e,r){r=+r||0,e=x.dashStyle(e,r),t.style({"stroke-dasharray":e,"stroke-width":r+"px"})},x.dashStyle=function(t,e){e=+e||1;var r=Math.max(e,3);return"solid"===t?t="":"dot"===t?t=r+"px,"+r+"px":"dash"===t?t=3*r+"px,"+3*r+"px":"longdash"===t?t=5*r+"px,"+5*r+"px":"dashdot"===t?t=3*r+"px,"+r+"px,"+r+"px,"+r+"px":"longdashdot"===t&&(t=5*r+"px,"+2*r+"px,"+r+"px,"+2*r+"px"),t},x.singleFillStyle=function(t,e){var r=n.select(t.node());b(t,((r.data()[0]||[])[0]||{}).trace||{},e)},x.fillGroupStyle=function(t,e){t.style("stroke-width",0).each((function(t){var r=n.select(this);t[0].trace&&b(r,t[0].trace,e)}))};var _=t("./symbol_defs");x.symbolNames=[],x.symbolFuncs=[],x.symbolNeedLines={},x.symbolNoDot={},x.symbolNoFill={},x.symbolList=[],Object.keys(_).forEach((function(t){var e=_[t],r=e.n;x.symbolList.push(r,String(r),t,r+100,String(r+100),t+"-open"),x.symbolNames[r]=t,x.symbolFuncs[r]=e.f,e.needLine&&(x.symbolNeedLines[r]=!0),e.noDot?x.symbolNoDot[r]=!0:x.symbolList.push(r+200,String(r+200),t+"-dot",r+300,String(r+300),t+"-open-dot"),e.noFill&&(x.symbolNoFill[r]=!0)}));var w=x.symbolNames.length;function T(t,e){var r=t%100;return x.symbolFuncs[r](e)+(t>=200?"M0,0.5L0.5,0L0,-0.5L-0.5,0Z":"")}x.symbolNumber=function(t){if(o(t))t=+t;else if("string"==typeof t){var e=0;t.indexOf("-open")>0&&(e=100,t=t.replace("-open","")),t.indexOf("-dot")>0&&(e+=200,t=t.replace("-dot","")),(t=x.symbolNames.indexOf(t))>=0&&(t+=e)}return t%100>=w||t>=400?0:Math.floor(Math.max(t,0))};var k={x1:1,x2:0,y1:0,y2:0},A={x1:0,x2:0,y1:1,y2:0},M=a("~f"),S={radial:{node:"radialGradient"},radialreversed:{node:"radialGradient",reversed:!0},horizontal:{node:"linearGradient",attrs:k},horizontalreversed:{node:"linearGradient",attrs:k,reversed:!0},vertical:{node:"linearGradient",attrs:A},verticalreversed:{node:"linearGradient",attrs:A,reversed:!0}};x.gradient=function(t,e,r,a,o,l){for(var u=o.length,f=S[a],h=new Array(u),p=0;p=100,e.attr("d",T(u,l))}var f,h,p,d=!1;if(t.so)p=s.outlierwidth,h=s.outliercolor,f=o.outliercolor;else{var m=(s||{}).width;p=(t.mlw+1||m+1||(t.trace?(t.trace.marker.line||{}).width:0)+1)-1||0,h="mlc"in t?t.mlcc=n.lineScale(t.mlc):i.isArrayOrTypedArray(s.color)?c.defaultLine:s.color,i.isArrayOrTypedArray(o.color)&&(f=c.defaultLine,d=!0),f="mc"in t?t.mcc=n.markerScale(t.mc):o.color||"rgba(0,0,0,0)",n.selectedColorFn&&(f=n.selectedColorFn(t))}if(t.om)e.call(c.stroke,f).style({"stroke-width":(p||1)+"px",fill:"none"});else{e.style("stroke-width",(t.isBlank?0:p)+"px");var g=o.gradient,v=t.mgt;v?d=!0:v=g&&g.type,i.isArrayOrTypedArray(v)&&(v=v[0],S[v]||(v=0));var y=o.pattern,b=y&&x.getPatternAttr(y.shape,t.i,"");if(v&&"none"!==v){var _=t.mgc;_?d=!0:_=g.color;var w=r.uid;d&&(w+="-"+t.i),x.gradient(e,a,w,v,[[0,_],[1,f]],"fill")}else if(b){var k=x.getPatternAttr(y.bgcolor,t.i,null),A=x.getPatternAttr(y.fgcolor,t.i,null),M=y.fgopacity,E=x.getPatternAttr(y.size,t.i,8),L=x.getPatternAttr(y.solidity,t.i,.3),C=t.mcc||i.isArrayOrTypedArray(y.shape)||i.isArrayOrTypedArray(y.bgcolor)||i.isArrayOrTypedArray(y.size)||i.isArrayOrTypedArray(y.solidity),P=r.uid;C&&(P+="-"+t.i),x.pattern(e,"point",a,P,b,E,L,t.mcc,y.fillmode,k,A,M)}else c.fill(e,f);p&&c.stroke(e,h)}},x.makePointStyleFns=function(t){var e={},r=t.marker;return e.markerScale=x.tryColorscale(r,""),e.lineScale=x.tryColorscale(r,"line"),l.traceIs(t,"symbols")&&(e.ms2mrc=g.isBubble(t)?v(t):function(){return(r.size||6)/2}),t.selectedpoints&&i.extendFlat(e,x.makeSelectedPointStyleFns(t)),e},x.makeSelectedPointStyleFns=function(t){var e={},r=t.selected||{},n=t.unselected||{},a=t.marker||{},o=r.marker||{},s=n.marker||{},c=a.opacity,u=o.opacity,f=s.opacity,h=void 0!==u,p=void 0!==f;(i.isArrayOrTypedArray(c)||h||p)&&(e.selectedOpacityFn=function(t){var e=void 0===t.mo?a.opacity:t.mo;return t.selected?h?u:e:p?f:m*e});var d=a.color,g=o.color,v=s.color;(g||v)&&(e.selectedColorFn=function(t){var e=t.mcc||d;return t.selected?g||e:v||e});var y=a.size,x=o.size,b=s.size,_=void 0!==x,w=void 0!==b;return l.traceIs(t,"symbols")&&(_||w)&&(e.selectedSizeFn=function(t){var e=t.mrc||y/2;return t.selected?_?x/2:e:w?b/2:e}),e},x.makeSelectedTextStyleFns=function(t){var e={},r=t.selected||{},n=t.unselected||{},i=t.textfont||{},a=r.textfont||{},o=n.textfont||{},s=i.color,l=a.color,u=o.color;return e.selectedTextColorFn=function(t){var e=t.tc||s;return t.selected?l||e:u||(l?e:c.addOpacity(e,m))},e},x.selectedPointStyle=function(t,e){if(t.size()&&e.selectedpoints){var r=x.makeSelectedPointStyleFns(e),i=e.marker||{},a=[];r.selectedOpacityFn&&a.push((function(t,e){t.style("opacity",r.selectedOpacityFn(e))})),r.selectedColorFn&&a.push((function(t,e){c.fill(t,r.selectedColorFn(e))})),r.selectedSizeFn&&a.push((function(t,e){var n=e.mx||i.symbol||0,a=r.selectedSizeFn(e);t.attr("d",T(x.symbolNumber(n),a)),e.mrc2=a})),a.length&&t.each((function(t){for(var e=n.select(this),r=0;r0?r:0}x.textPointStyle=function(t,e,r){if(t.size()){var a;if(e.selectedpoints){var o=x.makeSelectedTextStyleFns(e);a=o.selectedTextColorFn}var s=e.texttemplate,l=r._fullLayout;t.each((function(t){var o=n.select(this),c=s?i.extractOption(t,e,"txt","texttemplate"):i.extractOption(t,e,"tx","text");if(c||0===c){if(s){var u=e._module.formatLabels,f=u?u(t,e,l):{},p={};y(p,e,t.i);var d=e._meta||{};c=i.texttemplateString(c,f,l._d3locale,p,t,d)}var m=t.tp||e.textposition,g=C(t,e),v=a?a(t):t.tc||e.textfont.color;o.call(x.font,t.tf||e.textfont.family,g,v).text(c).call(h.convertToTspans,r).call(L,m,g,t.mrc)}else o.remove()}))}},x.selectedTextStyle=function(t,e){if(t.size()&&e.selectedpoints){var r=x.makeSelectedTextStyleFns(e);t.each((function(t){var i=n.select(this),a=r.selectedTextColorFn(t),o=t.tp||e.textposition,s=C(t,e);c.fill(i,a);var u=l.traceIs(e,"bar-like");L(i,o,s,t.mrc2||t.mrc,u)}))}};function P(t,e,r,i){var a=t[0]-e[0],o=t[1]-e[1],s=r[0]-e[0],l=r[1]-e[1],c=Math.pow(a*a+o*o,.25),u=Math.pow(s*s+l*l,.25),f=(u*u*a-c*c*s)*i,h=(u*u*o-c*c*l)*i,p=3*u*(c+u),d=3*c*(c+u);return[[n.round(e[0]+(p&&f/p),2),n.round(e[1]+(p&&h/p),2)],[n.round(e[0]-(d&&f/d),2),n.round(e[1]-(d&&h/d),2)]]}x.smoothopen=function(t,e){if(t.length<3)return"M"+t.join("L");var r,n="M"+t[0],i=[];for(r=1;r=1e4&&(x.savedBBoxes={},z=0),r&&(x.savedBBoxes[r]=g),z++,i.extendFlat({},g)},x.setClipUrl=function(t,e,r){t.attr("clip-path",R(e,r))},x.getTranslate=function(t){var e=(t[t.attr?"attr":"getAttribute"]("transform")||"").replace(/.*\btranslate\((-?\d*\.?\d*)[^-\d]*(-?\d*\.?\d*)[^\d].*/,(function(t,e,r){return[e,r].join(" ")})).split(" ");return{x:+e[0]||0,y:+e[1]||0}},x.setTranslate=function(t,e,r){var n=t.attr?"attr":"getAttribute",i=t.attr?"attr":"setAttribute",a=t[n]("transform")||"";return e=e||0,r=r||0,a=a.replace(/(\btranslate\(.*?\);?)/,"").trim(),a=(a+=f(e,r)).trim(),t[i]("transform",a),a},x.getScale=function(t){var e=(t[t.attr?"attr":"getAttribute"]("transform")||"").replace(/.*\bscale\((\d*\.?\d*)[^\d]*(\d*\.?\d*)[^\d].*/,(function(t,e,r){return[e,r].join(" ")})).split(" ");return{x:+e[0]||1,y:+e[1]||1}},x.setScale=function(t,e,r){var n=t.attr?"attr":"getAttribute",i=t.attr?"attr":"setAttribute",a=t[n]("transform")||"";return e=e||1,r=r||1,a=a.replace(/(\bscale\(.*?\);?)/,"").trim(),a=(a+="scale("+e+","+r+")").trim(),t[i]("transform",a),a};var F=/\s*sc.*/;x.setPointGroupScale=function(t,e,r){if(e=e||1,r=r||1,t){var n=1===e&&1===r?"":"scale("+e+","+r+")";t.each((function(){var t=(this.getAttribute("transform")||"").replace(F,"");t=(t+=n).trim(),this.setAttribute("transform",t)}))}};var B=/translate\([^)]*\)\s*$/;x.setTextPointsScale=function(t,e,r){t&&t.each((function(){var t,i=n.select(this),a=i.select("text");if(a.node()){var o=parseFloat(a.attr("x")||0),s=parseFloat(a.attr("y")||0),l=(i.attr("transform")||"").match(B);t=1===e&&1===r?[]:[f(o,s),"scale("+e+","+r+")",f(-o,-s)],l&&t.push(l),i.attr("transform",t.join(""))}}))}},{"../../components/fx/helpers":397,"../../constants/alignment":466,"../../constants/interactions":473,"../../constants/xmlns_namespaces":475,"../../lib":498,"../../lib/svg_text_utils":524,"../../registry":633,"../../traces/scatter/make_bubble_size_func":939,"../../traces/scatter/subtypes":947,"../color":361,"../colorscale":373,"./symbol_defs":384,"@plotly/d3":58,"fast-isnumeric":185,tinycolor2:307}],384:[function(t,e,r){"use strict";var n=t("@plotly/d3");e.exports={circle:{n:0,f:function(t){var e=n.round(t,2);return"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"}},square:{n:1,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"}},diamond:{n:2,f:function(t){var e=n.round(1.3*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"Z"}},cross:{n:3,f:function(t){var e=n.round(.4*t,2),r=n.round(1.2*t,2);return"M"+r+","+e+"H"+e+"V"+r+"H-"+e+"V"+e+"H-"+r+"V-"+e+"H-"+e+"V-"+r+"H"+e+"V-"+e+"H"+r+"Z"}},x:{n:4,f:function(t){var e=n.round(.8*t/Math.sqrt(2),2),r="l"+e+","+e,i="l"+e+",-"+e,a="l-"+e+",-"+e,o="l-"+e+","+e;return"M0,"+e+r+i+a+i+a+o+a+o+r+o+r+"Z"}},"triangle-up":{n:5,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+e+","+n.round(t/2,2)+"H"+e+"L0,-"+n.round(t,2)+"Z"}},"triangle-down":{n:6,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+e+",-"+n.round(t/2,2)+"H"+e+"L0,"+n.round(t,2)+"Z"}},"triangle-left":{n:7,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M"+n.round(t/2,2)+",-"+e+"V"+e+"L-"+n.round(t,2)+",0Z"}},"triangle-right":{n:8,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+n.round(t/2,2)+",-"+e+"V"+e+"L"+n.round(t,2)+",0Z"}},"triangle-ne":{n:9,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M-"+r+",-"+e+"H"+e+"V"+r+"Z"}},"triangle-se":{n:10,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M"+e+",-"+r+"V"+e+"H-"+r+"Z"}},"triangle-sw":{n:11,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M"+r+","+e+"H-"+e+"V-"+r+"Z"}},"triangle-nw":{n:12,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M-"+e+","+r+"V-"+e+"H"+r+"Z"}},pentagon:{n:13,f:function(t){var e=n.round(.951*t,2),r=n.round(.588*t,2),i=n.round(-t,2),a=n.round(-.309*t,2);return"M"+e+","+a+"L"+r+","+n.round(.809*t,2)+"H-"+r+"L-"+e+","+a+"L0,"+i+"Z"}},hexagon:{n:14,f:function(t){var e=n.round(t,2),r=n.round(t/2,2),i=n.round(t*Math.sqrt(3)/2,2);return"M"+i+",-"+r+"V"+r+"L0,"+e+"L-"+i+","+r+"V-"+r+"L0,-"+e+"Z"}},hexagon2:{n:15,f:function(t){var e=n.round(t,2),r=n.round(t/2,2),i=n.round(t*Math.sqrt(3)/2,2);return"M-"+r+","+i+"H"+r+"L"+e+",0L"+r+",-"+i+"H-"+r+"L-"+e+",0Z"}},octagon:{n:16,f:function(t){var e=n.round(.924*t,2),r=n.round(.383*t,2);return"M-"+r+",-"+e+"H"+r+"L"+e+",-"+r+"V"+r+"L"+r+","+e+"H-"+r+"L-"+e+","+r+"V-"+r+"Z"}},star:{n:17,f:function(t){var e=1.4*t,r=n.round(.225*e,2),i=n.round(.951*e,2),a=n.round(.363*e,2),o=n.round(.588*e,2),s=n.round(-e,2),l=n.round(-.309*e,2),c=n.round(.118*e,2),u=n.round(.809*e,2);return"M"+r+","+l+"H"+i+"L"+a+","+c+"L"+o+","+u+"L0,"+n.round(.382*e,2)+"L-"+o+","+u+"L-"+a+","+c+"L-"+i+","+l+"H-"+r+"L0,"+s+"Z"}},hexagram:{n:18,f:function(t){var e=n.round(.66*t,2),r=n.round(.38*t,2),i=n.round(.76*t,2);return"M-"+i+",0l-"+r+",-"+e+"h"+i+"l"+r+",-"+e+"l"+r+","+e+"h"+i+"l-"+r+","+e+"l"+r+","+e+"h-"+i+"l-"+r+","+e+"l-"+r+",-"+e+"h-"+i+"Z"}},"star-triangle-up":{n:19,f:function(t){var e=n.round(t*Math.sqrt(3)*.8,2),r=n.round(.8*t,2),i=n.round(1.6*t,2),a=n.round(4*t,2),o="A "+a+","+a+" 0 0 1 ";return"M-"+e+","+r+o+e+","+r+o+"0,-"+i+o+"-"+e+","+r+"Z"}},"star-triangle-down":{n:20,f:function(t){var e=n.round(t*Math.sqrt(3)*.8,2),r=n.round(.8*t,2),i=n.round(1.6*t,2),a=n.round(4*t,2),o="A "+a+","+a+" 0 0 1 ";return"M"+e+",-"+r+o+"-"+e+",-"+r+o+"0,"+i+o+e+",-"+r+"Z"}},"star-square":{n:21,f:function(t){var e=n.round(1.1*t,2),r=n.round(2*t,2),i="A "+r+","+r+" 0 0 1 ";return"M-"+e+",-"+e+i+"-"+e+","+e+i+e+","+e+i+e+",-"+e+i+"-"+e+",-"+e+"Z"}},"star-diamond":{n:22,f:function(t){var e=n.round(1.4*t,2),r=n.round(1.9*t,2),i="A "+r+","+r+" 0 0 1 ";return"M-"+e+",0"+i+"0,"+e+i+e+",0"+i+"0,-"+e+i+"-"+e+",0Z"}},"diamond-tall":{n:23,f:function(t){var e=n.round(.7*t,2),r=n.round(1.4*t,2);return"M0,"+r+"L"+e+",0L0,-"+r+"L-"+e+",0Z"}},"diamond-wide":{n:24,f:function(t){var e=n.round(1.4*t,2),r=n.round(.7*t,2);return"M0,"+r+"L"+e+",0L0,-"+r+"L-"+e+",0Z"}},hourglass:{n:25,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"H-"+e+"L"+e+",-"+e+"H-"+e+"Z"},noDot:!0},bowtie:{n:26,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"V-"+e+"L-"+e+","+e+"V-"+e+"Z"},noDot:!0},"circle-cross":{n:27,f:function(t){var e=n.round(t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"},needLine:!0,noDot:!0},"circle-x":{n:28,f:function(t){var e=n.round(t,2),r=n.round(t/Math.sqrt(2),2);return"M"+r+","+r+"L-"+r+",-"+r+"M"+r+",-"+r+"L-"+r+","+r+"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"},needLine:!0,noDot:!0},"square-cross":{n:29,f:function(t){var e=n.round(t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"},needLine:!0,noDot:!0},"square-x":{n:30,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e+"M"+e+",-"+e+"L-"+e+","+e+"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"},needLine:!0,noDot:!0},"diamond-cross":{n:31,f:function(t){var e=n.round(1.3*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"ZM0,-"+e+"V"+e+"M-"+e+",0H"+e},needLine:!0,noDot:!0},"diamond-x":{n:32,f:function(t){var e=n.round(1.3*t,2),r=n.round(.65*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"ZM-"+r+",-"+r+"L"+r+","+r+"M-"+r+","+r+"L"+r+",-"+r},needLine:!0,noDot:!0},"cross-thin":{n:33,f:function(t){var e=n.round(1.4*t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e},needLine:!0,noDot:!0,noFill:!0},"x-thin":{n:34,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e+"M"+e+",-"+e+"L-"+e+","+e},needLine:!0,noDot:!0,noFill:!0},asterisk:{n:35,f:function(t){var e=n.round(1.2*t,2),r=n.round(.85*t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+r+","+r+"L-"+r+",-"+r+"M"+r+",-"+r+"L-"+r+","+r},needLine:!0,noDot:!0,noFill:!0},hash:{n:36,f:function(t){var e=n.round(t/2,2),r=n.round(t,2);return"M"+e+","+r+"V-"+r+"m-"+r+",0V"+r+"M"+r+","+e+"H-"+r+"m0,-"+r+"H"+r},needLine:!0,noFill:!0},"y-up":{n:37,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+e+","+i+"L0,0M"+e+","+i+"L0,0M0,-"+r+"L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-down":{n:38,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+e+",-"+i+"L0,0M"+e+",-"+i+"L0,0M0,"+r+"L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-left":{n:39,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M"+i+","+e+"L0,0M"+i+",-"+e+"L0,0M-"+r+",0L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-right":{n:40,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+i+","+e+"L0,0M-"+i+",-"+e+"L0,0M"+r+",0L0,0"},needLine:!0,noDot:!0,noFill:!0},"line-ew":{n:41,f:function(t){var e=n.round(1.4*t,2);return"M"+e+",0H-"+e},needLine:!0,noDot:!0,noFill:!0},"line-ns":{n:42,f:function(t){var e=n.round(1.4*t,2);return"M0,"+e+"V-"+e},needLine:!0,noDot:!0,noFill:!0},"line-ne":{n:43,f:function(t){var e=n.round(t,2);return"M"+e+",-"+e+"L-"+e+","+e},needLine:!0,noDot:!0,noFill:!0},"line-nw":{n:44,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e},needLine:!0,noDot:!0,noFill:!0},"arrow-up":{n:45,f:function(t){var e=n.round(t,2);return"M0,0L-"+e+","+n.round(2*t,2)+"H"+e+"Z"},noDot:!0},"arrow-down":{n:46,f:function(t){var e=n.round(t,2);return"M0,0L-"+e+",-"+n.round(2*t,2)+"H"+e+"Z"},noDot:!0},"arrow-left":{n:47,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,0L"+e+",-"+r+"V"+r+"Z"},noDot:!0},"arrow-right":{n:48,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,0L-"+e+",-"+r+"V"+r+"Z"},noDot:!0},"arrow-bar-up":{n:49,f:function(t){var e=n.round(t,2);return"M-"+e+",0H"+e+"M0,0L-"+e+","+n.round(2*t,2)+"H"+e+"Z"},needLine:!0,noDot:!0},"arrow-bar-down":{n:50,f:function(t){var e=n.round(t,2);return"M-"+e+",0H"+e+"M0,0L-"+e+",-"+n.round(2*t,2)+"H"+e+"Z"},needLine:!0,noDot:!0},"arrow-bar-left":{n:51,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,-"+r+"V"+r+"M0,0L"+e+",-"+r+"V"+r+"Z"},needLine:!0,noDot:!0},"arrow-bar-right":{n:52,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,-"+r+"V"+r+"M0,0L-"+e+",-"+r+"V"+r+"Z"},needLine:!0,noDot:!0}}},{"@plotly/d3":58}],385:[function(t,e,r){"use strict";e.exports={visible:{valType:"boolean",editType:"calc"},type:{valType:"enumerated",values:["percent","constant","sqrt","data"],editType:"calc"},symmetric:{valType:"boolean",editType:"calc"},array:{valType:"data_array",editType:"calc"},arrayminus:{valType:"data_array",editType:"calc"},value:{valType:"number",min:0,dflt:10,editType:"calc"},valueminus:{valType:"number",min:0,dflt:10,editType:"calc"},traceref:{valType:"integer",min:0,dflt:0,editType:"style"},tracerefminus:{valType:"integer",min:0,dflt:0,editType:"style"},copy_ystyle:{valType:"boolean",editType:"plot"},copy_zstyle:{valType:"boolean",editType:"style"},color:{valType:"color",editType:"style"},thickness:{valType:"number",min:0,dflt:2,editType:"style"},width:{valType:"number",min:0,editType:"plot"},editType:"calc",_deprecated:{opacity:{valType:"number",editType:"style"}}}},{}],386:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../registry"),a=t("../../plots/cartesian/axes"),o=t("../../lib"),s=t("./compute_error");function l(t,e,r,i){var l=e["error_"+i]||{},c=[];if(l.visible&&-1!==["linear","log"].indexOf(r.type)){for(var u=s(l),f=0;f0;e.each((function(e){var f,h=e[0].trace,p=h.error_x||{},d=h.error_y||{};h.ids&&(f=function(t){return t.id});var m=o.hasMarkers(h)&&h.marker.maxdisplayed>0;d.visible||p.visible||(e=[]);var g=n.select(this).selectAll("g.errorbar").data(e,f);if(g.exit().remove(),e.length){p.visible||g.selectAll("path.xerror").remove(),d.visible||g.selectAll("path.yerror").remove(),g.style("opacity",1);var v=g.enter().append("g").classed("errorbar",!0);u&&v.style("opacity",0).transition().duration(s.duration).style("opacity",1),a.setClipUrl(g,r.layerClipId,t),g.each((function(t){var e=n.select(this),r=function(t,e,r){var n={x:e.c2p(t.x),y:r.c2p(t.y)};void 0!==t.yh&&(n.yh=r.c2p(t.yh),n.ys=r.c2p(t.ys),i(n.ys)||(n.noYS=!0,n.ys=r.c2p(t.ys,!0)));void 0!==t.xh&&(n.xh=e.c2p(t.xh),n.xs=e.c2p(t.xs),i(n.xs)||(n.noXS=!0,n.xs=e.c2p(t.xs,!0)));return n}(t,l,c);if(!m||t.vis){var a,o=e.select("path.yerror");if(d.visible&&i(r.x)&&i(r.yh)&&i(r.ys)){var f=d.width;a="M"+(r.x-f)+","+r.yh+"h"+2*f+"m-"+f+",0V"+r.ys,r.noYS||(a+="m-"+f+",0h"+2*f),!o.size()?o=e.append("path").style("vector-effect","non-scaling-stroke").classed("yerror",!0):u&&(o=o.transition().duration(s.duration).ease(s.easing)),o.attr("d",a)}else o.remove();var h=e.select("path.xerror");if(p.visible&&i(r.y)&&i(r.xh)&&i(r.xs)){var g=(p.copy_ystyle?d:p).width;a="M"+r.xh+","+(r.y-g)+"v"+2*g+"m0,-"+g+"H"+r.xs,r.noXS||(a+="m0,-"+g+"v"+2*g),!h.size()?h=e.append("path").style("vector-effect","non-scaling-stroke").classed("xerror",!0):u&&(h=h.transition().duration(s.duration).ease(s.easing)),h.attr("d",a)}else h.remove()}}))}}))}},{"../../traces/scatter/subtypes":947,"../drawing":383,"@plotly/d3":58,"fast-isnumeric":185}],391:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../color");e.exports=function(t){t.each((function(t){var e=t[0].trace,r=e.error_y||{},a=e.error_x||{},o=n.select(this);o.selectAll("path.yerror").style("stroke-width",r.thickness+"px").call(i.stroke,r.color),a.copy_ystyle&&(a=r),o.selectAll("path.xerror").style("stroke-width",a.thickness+"px").call(i.stroke,a.color)}))}},{"../color":361,"@plotly/d3":58}],392:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("./layout_attributes").hoverlabel,a=t("../../lib/extend").extendFlat;e.exports={hoverlabel:{bgcolor:a({},i.bgcolor,{arrayOk:!0}),bordercolor:a({},i.bordercolor,{arrayOk:!0}),font:n({arrayOk:!0,editType:"none"}),align:a({},i.align,{arrayOk:!0}),namelength:a({},i.namelength,{arrayOk:!0}),editType:"none"}}},{"../../lib/extend":488,"../../plots/font_attributes":580,"./layout_attributes":402}],393:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry");function a(t,e,r,i){i=i||n.identity,Array.isArray(t)&&(e[0][r]=i(t))}e.exports=function(t){var e=t.calcdata,r=t._fullLayout;function o(t){return function(e){return n.coerceHoverinfo({hoverinfo:e},{_module:t._module},r)}}for(var s=0;s=0&&r.index_[0]._length||ot<0||ot>w[0]._length)return d.unhoverRaw(t,e)}if(e.pointerX=at+_[0]._offset,e.pointerY=ot+w[0]._offset,V="xval"in e?v.flat(l,e.xval):v.p2c(_,at),H="yval"in e?v.flat(l,e.yval):v.p2c(w,ot),!i(V[0])||!i(H[0]))return o.warn("Fx.hover failed",e,t),d.unhoverRaw(t,e)}var ct=1/0;function ut(t,r){for(G=0;Gtt&&(et.splice(0,tt),ct=et[0].distance),y&&0!==B&&0===et.length){$.distance=B,$.index=!1;var f=W._module.hoverPoints($,K,Q,"closest",{hoverLayer:u._hoverlayer});if(f&&(f=f.filter((function(t){return t.spikeDistance<=B}))),f&&f.length){var h,d=f.filter((function(t){return t.xa.showspikes&&"hovered data"!==t.xa.spikesnap}));if(d.length){var m=d[0];i(m.x0)&&i(m.y0)&&(h=ht(m),(!nt.vLinePoint||nt.vLinePoint.spikeDistance>h.spikeDistance)&&(nt.vLinePoint=h))}var g=f.filter((function(t){return t.ya.showspikes&&"hovered data"!==t.ya.spikesnap}));if(g.length){var x=g[0];i(x.x0)&&i(x.y0)&&(h=ht(x),(!nt.hLinePoint||nt.hLinePoint.spikeDistance>h.spikeDistance)&&(nt.hLinePoint=h))}}}}}function ft(t,e,r){for(var n,i=null,a=1/0,o=0;o0&&Math.abs(t.distance)Tt-1;Mt--)Ct(et[Mt]);et=St,gt()}var Pt=t._hoverdata,It=[],Ot=j(t),zt=U(t);for(q=0;q1||et.length>1)||"closest"===P&&it&&et.length>1,Wt=p.combine(u.plot_bgcolor||p.background,u.paper_bgcolor),Xt=I(et,{gd:t,hovermode:P,rotateLabels:Yt,bgColor:Wt,container:u._hoverlayer,outerContainer:u._paper.node(),commonLabelOpts:u.hoverlabel,hoverdistance:u.hoverdistance});v.isUnifiedHover(P)||(!function(t,e,r){var n,i,a,o,s,l,c,u=0,f=1,h=t.size(),p=new Array(h),d=0;function m(t){var e=t[0],r=t[t.length-1];if(i=e.pmin-e.pos-e.dp+e.size,a=r.pos+r.dp+r.size-e.pmax,i>.01){for(s=t.length-1;s>=0;s--)t[s].dp+=i;n=!1}if(!(a<.01)){if(i<-.01){for(s=t.length-1;s>=0;s--)t[s].dp-=a;n=!1}if(n){var c=0;for(o=0;oe.pmax&&c++;for(o=t.length-1;o>=0&&!(c<=0);o--)(l=t[o]).pos>e.pmax-1&&(l.del=!0,c--);for(o=0;o=0;s--)t[s].dp-=a;for(o=t.length-1;o>=0&&!(c<=0);o--)(l=t[o]).pos+l.dp+l.size>e.pmax&&(l.del=!0,c--)}}}t.each((function(t){var n=t[e],i="x"===n._id.charAt(0),a=n.range;0===d&&a&&a[0]>a[1]!==i&&(f=-1),p[d++]=[{datum:t,traceIndex:t.trace.index,dp:0,pos:t.pos,posref:t.posref,size:t.by*(i?T:1)/2,pmin:0,pmax:i?r.width:r.height}]})),p.sort((function(t,e){return t[0].posref-e[0].posref||f*(e[0].traceIndex-t[0].traceIndex)}));for(;!n&&u<=h;){for(u++,n=!0,o=0;o.01&&y.pmin===x.pmin&&y.pmax===x.pmax){for(s=v.length-1;s>=0;s--)v[s].dp+=i;for(g.push.apply(g,v),p.splice(o+1,1),c=0,s=g.length-1;s>=0;s--)c+=g[s].dp;for(a=c/g.length,s=g.length-1;s>=0;s--)g[s].dp-=a;n=!1}else o++}p.forEach(m)}for(o=p.length-1;o>=0;o--){var b=p[o];for(s=b.length-1;s>=0;s--){var _=b[s],w=_.datum;w.offset=_.dp,w.del=_.del}}}(Xt,Yt?"xa":"ya",u),z(Xt,Yt,u._invScaleX,u._invScaleY));if(s&&s.tagName){var Zt=g.getComponentMethod("annotations","hasClickToShow")(t,It);f(n.select(s),Zt?"pointer":"")}if(!s||a||!function(t,e,r){if(!r||r.length!==t._hoverdata.length)return!0;for(var n=r.length-1;n>=0;n--){var i=r[n],a=t._hoverdata[n];if(i.curveNumber!==a.curveNumber||String(i.pointNumber)!==String(a.pointNumber)||String(i.pointNumbers)!==String(a.pointNumbers))return!0}return!1}(t,0,Pt))return;Pt&&t.emit("plotly_unhover",{event:e,points:Pt});t.emit("plotly_hover",{event:e,points:t._hoverdata,xaxes:_,yaxes:w,xvals:V,yvals:H})}(t,e,r,a,s)}))},r.loneHover=function(t,e){var r=!0;Array.isArray(t)||(r=!1,t=[t]);var i=e.gd,a=j(i),o=U(i),s=I(t.map((function(t){var r=t._x0||t.x0||t.x||0,n=t._x1||t.x1||t.x||0,s=t._y0||t.y0||t.y||0,l=t._y1||t.y1||t.y||0,c=t.eventData;if(c){var u=Math.min(r,n),f=Math.max(r,n),h=Math.min(s,l),d=Math.max(s,l),m=t.trace;if(g.traceIs(m,"gl3d")){var v=i._fullLayout[m.scene]._scene.container,y=v.offsetLeft,x=v.offsetTop;u+=y,f+=y,h+=x,d+=x}c.bbox={x0:u+o,x1:f+o,y0:h+a,y1:d+a},e.inOut_bbox&&e.inOut_bbox.push(c.bbox)}else c=!1;return{color:t.color||p.defaultLine,x0:t.x0||t.x||0,x1:t.x1||t.x||0,y0:t.y0||t.y||0,y1:t.y1||t.y||0,xLabel:t.xLabel,yLabel:t.yLabel,zLabel:t.zLabel,text:t.text,name:t.name,idealAlign:t.idealAlign,borderColor:t.borderColor,fontFamily:t.fontFamily,fontSize:t.fontSize,fontColor:t.fontColor,nameLength:t.nameLength,textAlign:t.textAlign,trace:t.trace||{index:0,hoverinfo:""},xa:{_offset:0},ya:{_offset:0},index:0,hovertemplate:t.hovertemplate||!1,hovertemplateLabels:t.hovertemplateLabels||!1,eventData:c}})),{gd:i,hovermode:"closest",rotateLabels:!1,bgColor:e.bgColor||p.background,container:n.select(e.container),outerContainer:e.outerContainer||e.container}),l=0,c=0;return s.sort((function(t,e){return t.y0-e.y0})).each((function(t,r){var n=t.y0-t.by/2;t.offset=n-5([\s\S]*)<\/extra>/;function I(t,e){var r=e.gd,i=r._fullLayout,a=e.hovermode,c=e.rotateLabels,f=e.bgColor,d=e.container,m=e.outerContainer,w=e.commonLabelOpts||{};if(0===t.length)return[[]];var T=e.fontFamily||y.HOVERFONT,k=e.fontSize||y.HOVERFONTSIZE,A=t[0],E=A.xa,L=A.ya,P=a.charAt(0),I=A[P+"Label"],z=V(r,m),D=z.top,R=z.width,F=z.height,B=void 0!==I&&A.distance<=e.hoverdistance&&("x"===a||"y"===a);if(B){var N,j,U=!0;for(N=0;Ni.width-b?(g=i.width-b,e.attr("d","M"+(b-M)+",0L"+b+","+x+M+"v"+x+(2*S+y.height)+"H-"+b+"V"+x+M+"H"+(b-2*M)+"Z")):e.attr("d","M0,0L"+M+","+x+M+"H"+(S+y.width/2)+"v"+x+(2*S+y.height)+"H-"+(S+y.width/2)+"V"+x+M+"H-"+M+"Z")}else{var _,C,P;"right"===L.side?(_="start",C=1,P="",g=E._offset+E._length):(_="end",C=-1,P="-",g=E._offset),v=L._offset+(A.y0+A.y1)/2,l.attr("text-anchor",_),e.attr("d","M0,0L"+P+M+","+M+"V"+(S+y.height/2)+"h"+P+(2*S+y.width)+"V-"+(S+y.height/2)+"H"+P+M+"V-"+M+"Z");var O,z=y.height/2,R=D-y.top-z,F="clip"+i._uid+"commonlabel"+L._id;if(g=0?at:ot+ct=0?ot:vt+ct=0?nt:it+ut=0?it:yt+ut=0,"top"!==t.idealAlign&&G||!Y?G?(z+=j/2,t.anchor="start"):t.anchor="middle":(z-=j/2,t.anchor="end");else if(t.pos=z,G=P+N/2+W<=R,Y=P-N/2-W>=0,"left"!==t.idealAlign&&G||!Y)if(G)P+=N/2,t.anchor="start";else{t.anchor="middle";var X=W/2,Z=P+X-R,J=P-X;Z>0&&(P-=Z),J<0&&(P+=-J)}else P-=N/2,t.anchor="end";w.attr("text-anchor",t.anchor),E&&A.attr("text-anchor",t.anchor),e.attr("transform",s(P,z)+(c?l(_):""))})),xt}function O(t,e,r,n,i,a){var s="",l="";void 0!==t.nameOverride&&(t.name=t.nameOverride),t.name&&(t.trace._meta&&(t.name=o.templateString(t.name,t.trace._meta)),s=B(t.name,t.nameLength));var c=r.charAt(0),u="x"===c?"y":"x";void 0!==t.zLabel?(void 0!==t.xLabel&&(l+="x: "+t.xLabel+"
"),void 0!==t.yLabel&&(l+="y: "+t.yLabel+"
"),"choropleth"!==t.trace.type&&"choroplethmapbox"!==t.trace.type&&(l+=(l?"z: ":"")+t.zLabel)):e&&t[c+"Label"]===i?l=t[u+"Label"]||"":void 0===t.xLabel?void 0!==t.yLabel&&"scattercarpet"!==t.trace.type&&(l=t.yLabel):l=void 0===t.yLabel?t.xLabel:"("+t.xLabel+", "+t.yLabel+")",!t.text&&0!==t.text||Array.isArray(t.text)||(l+=(l?"
":"")+t.text),void 0!==t.extraText&&(l+=(l?"
":"")+t.extraText),a&&""===l&&!t.hovertemplate&&(""===s&&a.remove(),l=s);var f=t.hovertemplate||!1;if(f){var h=t.hovertemplateLabels||t;t[c+"Label"]!==i&&(h[c+"other"]=h[c+"Val"],h[c+"otherLabel"]=h[c+"Label"]),l=(l=o.hovertemplateString(f,h,n._d3locale,t.eventData[0]||{},t.trace._meta)).replace(P,(function(e,r){return s=B(r,t.nameLength),""}))}return[l,s]}function z(t,e,r,i){var a=function(t){return t*r},o=function(t){return t*i};t.each((function(t){var r=n.select(this);if(t.del)return r.remove();var i=r.select("text.nums"),s=t.anchor,l="end"===s?-1:1,c={start:1,end:-1,middle:0}[s],f=c*(M+S),p=f+c*(t.txwidth+S),d=0,m=t.offset,g="middle"===s;g&&(f-=t.tx2width/2,p+=t.txwidth/2+S),e&&(m*=-A,d=t.offset*k),r.select("path").attr("d",g?"M-"+a(t.bx/2+t.tx2width/2)+","+o(m-t.by/2)+"h"+a(t.bx)+"v"+o(t.by)+"h-"+a(t.bx)+"Z":"M0,0L"+a(l*M+d)+","+o(M+m)+"v"+o(t.by/2-M)+"h"+a(l*t.bx)+"v-"+o(t.by)+"H"+a(l*M+d)+"V"+o(m-M)+"Z");var v=d+f,y=m+t.ty0-t.by/2+S,x=t.textAlign||"auto";"auto"!==x&&("left"===x&&"start"!==s?(i.attr("text-anchor","start"),v=g?-t.bx/2-t.tx2width/2+S:-t.bx-S):"right"===x&&"end"!==s&&(i.attr("text-anchor","end"),v=g?t.bx/2-t.tx2width/2-S:t.bx+S)),i.call(u.positionText,a(v),o(y)),t.tx2width&&(r.select("text.name").call(u.positionText,a(p+c*S+d),o(m+t.ty0-t.by/2+S)),r.select("rect").call(h.setRect,a(p+(c-1)*t.tx2width/2+d),o(m-t.by/2-1),a(t.tx2width),o(t.by+2)))}))}function D(t,e){var r=t.index,n=t.trace||{},a=t.cd[0],s=t.cd[r]||{};function l(t){return t||i(t)&&0===t}var c=Array.isArray(r)?function(t,e){var i=o.castOption(a,r,t);return l(i)?i:o.extractOption({},n,"",e)}:function(t,e){return o.extractOption(s,n,t,e)};function u(e,r,n){var i=c(r,n);l(i)&&(t[e]=i)}if(u("hoverinfo","hi","hoverinfo"),u("bgcolor","hbg","hoverlabel.bgcolor"),u("borderColor","hbc","hoverlabel.bordercolor"),u("fontFamily","htf","hoverlabel.font.family"),u("fontSize","hts","hoverlabel.font.size"),u("fontColor","htc","hoverlabel.font.color"),u("nameLength","hnl","hoverlabel.namelength"),u("textAlign","hta","hoverlabel.align"),t.posref="y"===e||"closest"===e&&"h"===n.orientation?t.xa._offset+(t.x0+t.x1)/2:t.ya._offset+(t.y0+t.y1)/2,t.x0=o.constrain(t.x0,0,t.xa._length),t.x1=o.constrain(t.x1,0,t.xa._length),t.y0=o.constrain(t.y0,0,t.ya._length),t.y1=o.constrain(t.y1,0,t.ya._length),void 0!==t.xLabelVal&&(t.xLabel="xLabel"in t?t.xLabel:m.hoverLabelText(t.xa,t.xLabelVal,n.xhoverformat),t.xVal=t.xa.c2d(t.xLabelVal)),void 0!==t.yLabelVal&&(t.yLabel="yLabel"in t?t.yLabel:m.hoverLabelText(t.ya,t.yLabelVal,n.yhoverformat),t.yVal=t.ya.c2d(t.yLabelVal)),void 0!==t.zLabelVal&&void 0===t.zLabel&&(t.zLabel=String(t.zLabelVal)),!(isNaN(t.xerr)||"log"===t.xa.type&&t.xerr<=0)){var f=m.tickText(t.xa,t.xa.c2l(t.xerr),"hover").text;void 0!==t.xerrneg?t.xLabel+=" +"+f+" / -"+m.tickText(t.xa,t.xa.c2l(t.xerrneg),"hover").text:t.xLabel+=" \xb1 "+f,"x"===e&&(t.distance+=1)}if(!(isNaN(t.yerr)||"log"===t.ya.type&&t.yerr<=0)){var h=m.tickText(t.ya,t.ya.c2l(t.yerr),"hover").text;void 0!==t.yerrneg?t.yLabel+=" +"+h+" / -"+m.tickText(t.ya,t.ya.c2l(t.yerrneg),"hover").text:t.yLabel+=" \xb1 "+h,"y"===e&&(t.distance+=1)}var p=t.hoverinfo||t.trace.hoverinfo;return p&&"all"!==p&&(-1===(p=Array.isArray(p)?p:p.split("+")).indexOf("x")&&(t.xLabel=void 0),-1===p.indexOf("y")&&(t.yLabel=void 0),-1===p.indexOf("z")&&(t.zLabel=void 0),-1===p.indexOf("text")&&(t.text=void 0),-1===p.indexOf("name")&&(t.name=void 0)),t}function R(t,e,r){var n,i,o=r.container,s=r.fullLayout,l=s._size,c=r.event,u=!!e.hLinePoint,f=!!e.vLinePoint;if(o.selectAll(".spikeline").remove(),f||u){var d=p.combine(s.plot_bgcolor,s.paper_bgcolor);if(u){var g,v,y=e.hLinePoint;n=y&&y.xa,"cursor"===(i=y&&y.ya).spikesnap?(g=c.pointerX,v=c.pointerY):(g=n._offset+y.x,v=i._offset+y.y);var x,b,_=a.readability(y.color,d)<1.5?p.contrast(d):y.color,w=i.spikemode,T=i.spikethickness,k=i.spikecolor||_,A=m.getPxPosition(t,i);if(-1!==w.indexOf("toaxis")||-1!==w.indexOf("across")){if(-1!==w.indexOf("toaxis")&&(x=A,b=g),-1!==w.indexOf("across")){var M=i._counterDomainMin,S=i._counterDomainMax;"free"===i.anchor&&(M=Math.min(M,i.position),S=Math.max(S,i.position)),x=l.l+M*l.w,b=l.l+S*l.w}o.insert("line",":first-child").attr({x1:x,x2:b,y1:v,y2:v,"stroke-width":T,stroke:k,"stroke-dasharray":h.dashStyle(i.spikedash,T)}).classed("spikeline",!0).classed("crisp",!0),o.insert("line",":first-child").attr({x1:x,x2:b,y1:v,y2:v,"stroke-width":T+2,stroke:d}).classed("spikeline",!0).classed("crisp",!0)}-1!==w.indexOf("marker")&&o.insert("circle",":first-child").attr({cx:A+("right"!==i.side?T:-T),cy:v,r:T,fill:k}).classed("spikeline",!0)}if(f){var E,L,C=e.vLinePoint;n=C&&C.xa,i=C&&C.ya,"cursor"===n.spikesnap?(E=c.pointerX,L=c.pointerY):(E=n._offset+C.x,L=i._offset+C.y);var P,I,O=a.readability(C.color,d)<1.5?p.contrast(d):C.color,z=n.spikemode,D=n.spikethickness,R=n.spikecolor||O,F=m.getPxPosition(t,n);if(-1!==z.indexOf("toaxis")||-1!==z.indexOf("across")){if(-1!==z.indexOf("toaxis")&&(P=F,I=L),-1!==z.indexOf("across")){var B=n._counterDomainMin,N=n._counterDomainMax;"free"===n.anchor&&(B=Math.min(B,n.position),N=Math.max(N,n.position)),P=l.t+(1-N)*l.h,I=l.t+(1-B)*l.h}o.insert("line",":first-child").attr({x1:E,x2:E,y1:P,y2:I,"stroke-width":D,stroke:R,"stroke-dasharray":h.dashStyle(n.spikedash,D)}).classed("spikeline",!0).classed("crisp",!0),o.insert("line",":first-child").attr({x1:E,x2:E,y1:P,y2:I,"stroke-width":D+2,stroke:d}).classed("spikeline",!0).classed("crisp",!0)}-1!==z.indexOf("marker")&&o.insert("circle",":first-child").attr({cx:E,cy:F-("top"!==n.side?D:-D),r:D,fill:R}).classed("spikeline",!0)}}}function F(t,e){return!e||(e.vLinePoint!==t._spikepoints.vLinePoint||e.hLinePoint!==t._spikepoints.hLinePoint)}function B(t,e){return u.plainText(t||"",{len:e,allowedTags:["br","sub","sup","b","i","em"]})}function N(t,e,r){var n=e[t+"a"],i=e[t+"Val"],a=e.cd[0];if("category"===n.type)i=n._categoriesMap[i];else if("date"===n.type){var o=e.trace[t+"periodalignment"];if(o){var s=e.cd[e.index],l=s[t+"Start"];void 0===l&&(l=s[t]);var c=s[t+"End"];void 0===c&&(c=s[t]);var u=c-l;"end"===o?i+=u:"middle"===o&&(i+=u/2)}i=n.d2c(i)}return a&&a.t&&a.t.posLetter===n._id&&("group"!==r.boxmode&&"group"!==r.violinmode||(i+=a.t.dPos)),i}function j(t){return t.offsetTop+t.clientTop}function U(t){return t.offsetLeft+t.clientLeft}function V(t,e){var r=t._fullLayout,n=e.getBoundingClientRect(),i=n.x,a=n.y,s=i+n.width,l=a+n.height,c=o.apply3DTransform(r._invTransform)(i,a),u=o.apply3DTransform(r._invTransform)(s,l),f=c[0],h=c[1],p=u[0],d=u[1];return{x:f,y:h,width:p-f,height:d-h,top:Math.min(h,d),left:Math.min(f,p),right:Math.max(f,p),bottom:Math.max(h,d)}}},{"../../lib":498,"../../lib/events":487,"../../lib/override_cursor":509,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"../../registry":633,"../color":361,"../dragelement":380,"../drawing":383,"../legend/defaults":413,"../legend/draw":414,"./constants":395,"./helpers":397,"@plotly/d3":58,"fast-isnumeric":185,tinycolor2:307}],399:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../color"),a=t("./helpers").isUnifiedHover;e.exports=function(t,e,r,o){o=o||{};var s=e.legend;function l(t){o.font[t]||(o.font[t]=s?e.legend.font[t]:e.font[t])}e&&a(e.hovermode)&&(o.font||(o.font={}),l("size"),l("family"),l("color"),s?(o.bgcolor||(o.bgcolor=i.combine(e.legend.bgcolor,e.paper_bgcolor)),o.bordercolor||(o.bordercolor=e.legend.bordercolor)):o.bgcolor||(o.bgcolor=e.paper_bgcolor)),r("hoverlabel.bgcolor",o.bgcolor),r("hoverlabel.bordercolor",o.bordercolor),r("hoverlabel.namelength",o.namelength),n.coerceFont(r,"hoverlabel.font",o.font),r("hoverlabel.align",o.align)}},{"../../lib":498,"../color":361,"./helpers":397}],400:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return void 0!==e[r]?e[r]:n.coerce(t,e,i,r,a)}return r("clickmode"),r("hovermode")}},{"../../lib":498,"./layout_attributes":402}],401:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../dragelement"),o=t("./helpers"),s=t("./layout_attributes"),l=t("./hover");e.exports={moduleType:"component",name:"fx",constants:t("./constants"),schema:{layout:s},attributes:t("./attributes"),layoutAttributes:s,supplyLayoutGlobalDefaults:t("./layout_global_defaults"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),getDistanceFunction:o.getDistanceFunction,getClosest:o.getClosest,inbox:o.inbox,quadrature:o.quadrature,appendArrayPointValue:o.appendArrayPointValue,castHoverOption:function(t,e,r){return i.castOption(t,e,"hoverlabel."+r)},castHoverinfo:function(t,e,r){return i.castOption(t,r,"hoverinfo",(function(r){return i.coerceHoverinfo({hoverinfo:r},{_module:t._module},e)}))},hover:l.hover,unhover:a.unhover,loneHover:l.loneHover,loneUnhover:function(t){var e=i.isD3Selection(t)?t:n.select(t);e.selectAll("g.hovertext").remove(),e.selectAll(".spikeline").remove()},click:t("./click")}},{"../../lib":498,"../dragelement":380,"./attributes":392,"./calc":393,"./click":394,"./constants":395,"./defaults":396,"./helpers":397,"./hover":398,"./layout_attributes":402,"./layout_defaults":403,"./layout_global_defaults":404,"@plotly/d3":58}],402:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../plots/font_attributes"),a=i({editType:"none"});a.family.dflt=n.HOVERFONT,a.size.dflt=n.HOVERFONTSIZE,e.exports={clickmode:{valType:"flaglist",flags:["event","select"],dflt:"event",editType:"plot",extras:["none"]},dragmode:{valType:"enumerated",values:["zoom","pan","select","lasso","drawclosedpath","drawopenpath","drawline","drawrect","drawcircle","orbit","turntable",!1],dflt:"zoom",editType:"modebar"},hovermode:{valType:"enumerated",values:["x","y","closest",!1,"x unified","y unified"],dflt:"closest",editType:"modebar"},hoverdistance:{valType:"integer",min:-1,dflt:20,editType:"none"},spikedistance:{valType:"integer",min:-1,dflt:-1,editType:"none"},hoverlabel:{bgcolor:{valType:"color",editType:"none"},bordercolor:{valType:"color",editType:"none"},font:a,grouptitlefont:i({editType:"none"}),align:{valType:"enumerated",values:["left","right","auto"],dflt:"auto",editType:"none"},namelength:{valType:"integer",min:-1,dflt:15,editType:"none"},editType:"none"},selectdirection:{valType:"enumerated",values:["h","v","d","any"],dflt:"any",editType:"none"}}},{"../../plots/font_attributes":580,"./constants":395}],403:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes"),a=t("./hovermode_defaults"),o=t("./hoverlabel_defaults");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}a(t,e)&&(r("hoverdistance"),r("spikedistance")),"select"===r("dragmode")&&r("selectdirection");var s=e._has("mapbox"),l=e._has("geo"),c=e._basePlotModules.length;"zoom"===e.dragmode&&((s||l)&&1===c||s&&l&&2===c)&&(e.dragmode="pan"),o(t,e,r),n.coerceFont(r,"hoverlabel.grouptitlefont",e.hoverlabel.font)}},{"../../lib":498,"./hoverlabel_defaults":399,"./hovermode_defaults":400,"./layout_attributes":402}],404:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./hoverlabel_defaults"),a=t("./layout_attributes");e.exports=function(t,e){i(t,e,(function(r,i){return n.coerce(t,e,a,r,i)}))}},{"../../lib":498,"./hoverlabel_defaults":399,"./layout_attributes":402}],405:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../lib/regex").counter,a=t("../../plots/domain").attributes,o=t("../../plots/cartesian/constants").idRegex,s=t("../../plot_api/plot_template"),l={rows:{valType:"integer",min:1,editType:"plot"},roworder:{valType:"enumerated",values:["top to bottom","bottom to top"],dflt:"top to bottom",editType:"plot"},columns:{valType:"integer",min:1,editType:"plot"},subplots:{valType:"info_array",freeLength:!0,dimensions:2,items:{valType:"enumerated",values:[i("xy").toString(),""],editType:"plot"},editType:"plot"},xaxes:{valType:"info_array",freeLength:!0,items:{valType:"enumerated",values:[o.x.toString(),""],editType:"plot"},editType:"plot"},yaxes:{valType:"info_array",freeLength:!0,items:{valType:"enumerated",values:[o.y.toString(),""],editType:"plot"},editType:"plot"},pattern:{valType:"enumerated",values:["independent","coupled"],dflt:"coupled",editType:"plot"},xgap:{valType:"number",min:0,max:1,editType:"plot"},ygap:{valType:"number",min:0,max:1,editType:"plot"},domain:a({name:"grid",editType:"plot",noGridCell:!0},{}),xside:{valType:"enumerated",values:["bottom","bottom plot","top plot","top"],dflt:"bottom plot",editType:"plot"},yside:{valType:"enumerated",values:["left","left plot","right plot","right"],dflt:"left plot",editType:"plot"},editType:"plot"};function c(t,e,r){var n=e[r+"axes"],i=Object.keys((t._splomAxes||{})[r]||{});return Array.isArray(n)?n:i.length?i:void 0}function u(t,e,r,n,i,a){var o=e(t+"gap",r),s=e("domain."+t);e(t+"side",n);for(var l=new Array(i),c=s[0],u=(s[1]-c)/(i-o),f=u*(1-o),h=0;h1){if(!h&&!p&&!d)"independent"===k("pattern")&&(h=!0);g._hasSubplotGrid=h;var x,b,_="top to bottom"===k("roworder"),w=h?.2:.1,T=h?.3:.1;m&&e._splomGridDflt&&(x=e._splomGridDflt.xside,b=e._splomGridDflt.yside),g._domains={x:u("x",k,w,x,y),y:u("y",k,T,b,v,_)}}else delete e.grid}function k(t,e){return n.coerce(r,g,l,t,e)}},contentDefaults:function(t,e){var r=e.grid;if(r&&r._domains){var n,i,a,o,s,l,u,h=t.grid||{},p=e._subplots,d=r._hasSubplotGrid,m=r.rows,g=r.columns,v="independent"===r.pattern,y=r._axisMap={};if(d){var x=h.subplots||[];l=r.subplots=new Array(m);var b=1;for(n=0;n1);if(!1===_&&(e.legend=void 0),(!1!==_||f.uirevision)&&(p("uirevision",e.uirevision),!1!==_)){p("bgcolor",e.paper_bgcolor),p("bordercolor"),p("borderwidth");var w,T,k,A=i.coerceFont(p,"font",e.font),M="h"===p("orientation");if(M?(w=0,n.getComponentMethod("rangeslider","isVisible")(t.xaxis)?(T=1.1,k="bottom"):(T=-.1,k="top")):(w=1.02,T=1,k="auto"),p("traceorder",x),c.isGrouped(e.legend)&&p("tracegroupgap"),p("itemsizing"),p("itemwidth"),p("itemclick"),p("itemdoubleclick"),p("groupclick"),p("x",w),p("xanchor"),p("y",T),p("yanchor",k),p("valign"),i.noneOrAll(f,h,["x","y"]),p("title.text")){p("title.side",M?"left":"top");var S=i.extendFlat({},A,{size:i.bigFont(A.size)});i.coerceFont(p,"title.font",S)}}}},{"../../lib":498,"../../plot_api/plot_template":538,"../../plots/attributes":545,"../../plots/layout_attributes":605,"../../registry":633,"./attributes":411,"./helpers":417}],414:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../plots/plots"),o=t("../../registry"),s=t("../../lib/events"),l=t("../dragelement"),c=t("../drawing"),u=t("../color"),f=t("../../lib/svg_text_utils"),h=t("./handle_click"),p=t("./constants"),d=t("../../constants/alignment"),m=d.LINE_SPACING,g=d.FROM_TL,v=d.FROM_BR,y=t("./get_legend_data"),x=t("./style"),b=t("./helpers");function _(t,e,r,n,i){var a=r.data()[0][0].trace,l={event:i,node:r.node(),curveNumber:a.index,expandedIndex:a._expandedIndex,data:t.data,layout:t.layout,frames:t._transitionData._frames,config:t._context,fullData:t._fullData,fullLayout:t._fullLayout};if(a._group&&(l.group=a._group),o.traceIs(a,"pie-like")&&(l.label=r.datum()[0].label),!1!==s.triggerHandler(t,"plotly_legendclick",l))if(1===n)e._clickTimeout=setTimeout((function(){t._fullLayout&&h(r,t,n)}),t._context.doubleClickDelay);else if(2===n){e._clickTimeout&&clearTimeout(e._clickTimeout),t._legendMouseDownTime=0,!1!==s.triggerHandler(t,"plotly_legenddoubleclick",l)&&h(r,t,n)}}function w(t,e,r){var n,a,s=t.data()[0][0],l=s.trace,u=o.traceIs(l,"pie-like"),h=!r._inHover&&e._context.edits.legendText&&!u,d=r._maxNameLength;s.groupTitle?(n=s.groupTitle.text,a=s.groupTitle.font):(a=r.font,r.entries?n=s.text:(n=u?s.label:l.name,l._meta&&(n=i.templateString(n,l._meta))));var m=i.ensureSingle(t,"text","legendtext");m.attr("text-anchor","start").call(c.font,a).text(h?T(n,d):n);var g=r.itemwidth+2*p.itemGap;f.positionText(m,g,0),h?m.call(f.makeEditable,{gd:e,text:n}).call(A,t,e,r).on("edit",(function(n){this.text(T(n,d)).call(A,t,e,r);var a=s.trace._fullInput||{},c={};if(o.hasTransform(a,"groupby")){var u=o.getTransformIndices(a,"groupby"),f=u[u.length-1],h=i.keyedContainer(a,"transforms["+f+"].styles","target","value.name");h.set(s.trace._group,n),c=h.constructUpdate()}else c.name=n;return o.call("_guiRestyle",e,c,l.index)})):A(m,t,e,r)}function T(t,e){var r=Math.max(4,e);if(t&&t.trim().length>=r/2)return t;for(var n=r-(t=t||"").length;n>0;n--)t+=" ";return t}function k(t,e){var r,a=e._context.doubleClickDelay,o=1,s=i.ensureSingle(t,"rect","legendtoggle",(function(t){e._context.staticPlot||t.style("cursor","pointer").attr("pointer-events","all"),t.call(u.fill,"rgba(0,0,0,0)")}));e._context.staticPlot||(s.on("mousedown",(function(){(r=(new Date).getTime())-e._legendMouseDownTimea&&(o=Math.max(o-1,1)),_(e,r,t,o,n.event)}})))}function A(t,e,r,n,i){n._inHover&&t.attr("data-notex",!0),f.convertToTspans(t,r,(function(){!function(t,e,r,n){var i=t.data()[0][0];if(!r._inHover&&i&&!i.trace.showlegend)return void t.remove();var a=t.select("g[class*=math-group]"),o=a.node();r||(r=e._fullLayout.legend);var s,l=r.borderwidth;s=1===n?r.title.font:i.groupTitle?i.groupTitle.font:r.font;var u,h,d=s.size*m;if(o){var g=c.bBox(o);u=g.height,h=g.width,1===n?c.setTranslate(a,l,l+.75*u):c.setTranslate(a,0,.25*u)}else{var v=t.select(1===n?".legendtitletext":".legendtext"),y=f.lineCount(v),x=v.node();if(u=d*y,h=x?c.bBox(x).width:0,1===n)"left"===r.title.side&&(h+=2*p.itemGap),f.positionText(v,l+p.titlePad,l+d);else{var b=2*p.itemGap+r.itemwidth;i.groupTitle&&(b=p.itemGap,h-=r.itemwidth),f.positionText(v,b,-d*((y-1)/2-.3))}}1===n?(r._titleWidth=h,r._titleHeight=u):(i.lineHeight=d,i.height=Math.max(u,16)+3,i.width=h)}(e,r,n,i)}))}function M(t){return i.isRightAnchor(t)?"right":i.isCenterAnchor(t)?"center":"left"}function S(t){return i.isBottomAnchor(t)?"bottom":i.isMiddleAnchor(t)?"middle":"top"}e.exports=function(t,e){return e||(e=t._fullLayout.legend||{}),function(t,e){var r,s,f=t._fullLayout,h="legend"+f._uid,d=e._inHover;d?(r=e.layer,h+="-hover"):r=f._infolayer;if(!r)return;t._legendMouseDownTime||(t._legendMouseDownTime=0);if(d){if(!e.entries)return;s=y(e.entries,e)}else{if(!t.calcdata)return;s=f.showlegend&&y(t.calcdata,e)}var m=f.hiddenlabels||[];if(!(d||f.showlegend&&s.length))return r.selectAll(".legend").remove(),f._topdefs.select("#"+h).remove(),a.autoMargin(t,"legend");var T=i.ensureSingle(r,"g","legend",(function(t){d||t.attr("pointer-events","all")})),E=i.ensureSingleById(f._topdefs,"clipPath",h,(function(t){t.append("rect")})),L=i.ensureSingle(T,"rect","bg",(function(t){t.attr("shape-rendering","crispEdges")}));L.call(u.stroke,e.bordercolor).call(u.fill,e.bgcolor).style("stroke-width",e.borderwidth+"px");var C=i.ensureSingle(T,"g","scrollbox"),P=e.title;if(e._titleWidth=0,e._titleHeight=0,P.text){var I=i.ensureSingle(C,"text","legendtitletext");I.attr("text-anchor","start").call(c.font,P.font).text(P.text),A(I,C,t,e,1)}else C.selectAll(".legendtitletext").remove();var O=i.ensureSingle(T,"rect","scrollbar",(function(t){t.attr(p.scrollBarEnterAttrs).call(u.fill,p.scrollBarColor)})),z=C.selectAll("g.groups").data(s);z.enter().append("g").attr("class","groups"),z.exit().remove();var D=z.selectAll("g.traces").data(i.identity);D.enter().append("g").attr("class","traces"),D.exit().remove(),D.style("opacity",(function(t){var e=t[0].trace;return o.traceIs(e,"pie-like")?-1!==m.indexOf(t[0].label)?.5:1:"legendonly"===e.visible?.5:1})).each((function(){n.select(this).call(w,t,e)})).call(x,t,e).each((function(){d||n.select(this).call(k,t)})),i.syncOrAsync([a.previousPromises,function(){return function(t,e,r,i){var a=t._fullLayout;i||(i=a.legend);var o=a._size,s=b.isVertical(i),l=b.isGrouped(i),u=i.borderwidth,f=2*u,h=p.itemGap,d=i.itemwidth+2*h,m=2*(u+h),g=S(i),v=i.y<0||0===i.y&&"top"===g,y=i.y>1||1===i.y&&"bottom"===g,x=i.tracegroupgap;i._maxHeight=Math.max(v||y?a.height/2:o.h,30);var _=0;i._width=0,i._height=0;var w=function(t){var e=0,r=0,n=t.title.side;n&&(-1!==n.indexOf("left")&&(e=t._titleWidth),-1!==n.indexOf("top")&&(r=t._titleHeight));return[e,r]}(i);if(s)r.each((function(t){var e=t[0].height;c.setTranslate(this,u+w[0],u+w[1]+i._height+e/2+h),i._height+=e,i._width=Math.max(i._width,t[0].width)})),_=d+i._width,i._width+=h+d+f,i._height+=m,l&&(e.each((function(t,e){c.setTranslate(this,0,e*i.tracegroupgap)})),i._height+=(i._lgroupsLength-1)*i.tracegroupgap);else{var T=M(i),k=i.x<0||0===i.x&&"right"===T,A=i.x>1||1===i.x&&"left"===T,E=y||v,L=a.width/2;i._maxWidth=Math.max(k?E&&"left"===T?o.l+o.w:L:A?E&&"right"===T?o.r+o.w:L:o.w,2*d);var C=0,P=0;r.each((function(t){var e=t[0].width+d;C=Math.max(C,e),P+=e})),_=null;var I=0;if(l){var O=0,z=0,D=0;e.each((function(){var t=0,e=0;n.select(this).selectAll("g.traces").each((function(r){var n=r[0].width,i=r[0].height;c.setTranslate(this,w[0],w[1]+u+h+i/2+e),e+=i,t=Math.max(t,d+n)}));var r=t+h;z>0&&r+u+z>i._maxWidth?(I=Math.max(I,z),z=0,D+=O+x,O=e):O=Math.max(O,e),c.setTranslate(this,z,D),z+=r})),i._width=Math.max(I,z)+u,i._height=D+O+m}else{var R=r.size(),F=P+f+(R-1)*h=i._maxWidth&&(I=Math.max(I,U),N=0,j+=B,i._height+=B,B=0),c.setTranslate(this,w[0]+u+N,w[1]+u+j+e/2+h),U=N+r+h,N+=n,B=Math.max(B,e)})),F?(i._width=N+f,i._height=B+m):(i._width=Math.max(I,U)+f,i._height+=B+m)}}i._width=Math.ceil(Math.max(i._width+w[0],i._titleWidth+2*(u+p.titlePad))),i._height=Math.ceil(Math.max(i._height+w[1],i._titleHeight+2*(u+p.itemGap))),i._effHeight=Math.min(i._height,i._maxHeight);var V=t._context.edits,H=V.legendText||V.legendPosition;r.each((function(t){var e=n.select(this).select(".legendtoggle"),r=t[0].height,i=H?d:_||d+t[0].width;s||(i+=h/2),c.setRect(e,0,-r/2,i,r)}))}(t,z,D,e)},function(){var s,u,m,y,x=f._size,b=e.borderwidth;if(!d){if(function(t){var e=t._fullLayout.legend,r=M(e),n=S(e);return a.autoMargin(t,"legend",{x:e.x,y:e.y,l:e._width*g[r],r:e._width*v[r],b:e._effHeight*v[n],t:e._effHeight*g[n]})}(t))return;var w=x.l+x.w*e.x-g[M(e)]*e._width,k=x.t+x.h*(1-e.y)-g[S(e)]*e._effHeight;if(f.margin.autoexpand){var A=w,P=k;w=i.constrain(w,0,f.width-e._width),k=i.constrain(k,0,f.height-e._effHeight),w!==A&&i.log("Constrain legend.x to make legend fit inside graph"),k!==P&&i.log("Constrain legend.y to make legend fit inside graph")}c.setTranslate(T,w,k)}if(O.on(".drag",null),T.on("wheel",null),d||e._height<=e._maxHeight||t._context.staticPlot){var I=e._effHeight;d&&(I=e._height),L.attr({width:e._width-b,height:I-b,x:b/2,y:b/2}),c.setTranslate(C,0,0),E.select("rect").attr({width:e._width-2*b,height:I-2*b,x:b,y:b}),c.setClipUrl(C,h,t),c.setRect(O,0,0,0,0),delete e._scrollY}else{var z,D,R,F=Math.max(p.scrollBarMinHeight,e._effHeight*e._effHeight/e._height),B=e._effHeight-F-2*p.scrollBarMargin,N=e._height-e._effHeight,j=B/N,U=Math.min(e._scrollY||0,N);L.attr({width:e._width-2*b+p.scrollBarWidth+p.scrollBarMargin,height:e._effHeight-b,x:b/2,y:b/2}),E.select("rect").attr({width:e._width-2*b+p.scrollBarWidth+p.scrollBarMargin,height:e._effHeight-2*b,x:b,y:b+U}),c.setClipUrl(C,h,t),q(U,F,j),T.on("wheel",(function(){q(U=i.constrain(e._scrollY+n.event.deltaY/B*N,0,N),F,j),0!==U&&U!==N&&n.event.preventDefault()}));var V=n.behavior.drag().on("dragstart",(function(){var t=n.event.sourceEvent;z="touchstart"===t.type?t.changedTouches[0].clientY:t.clientY,R=U})).on("drag",(function(){var t=n.event.sourceEvent;2===t.buttons||t.ctrlKey||(D="touchmove"===t.type?t.changedTouches[0].clientY:t.clientY,q(U=function(t,e,r){var n=(r-e)/j+t;return i.constrain(n,0,N)}(R,z,D),F,j))}));O.call(V);var H=n.behavior.drag().on("dragstart",(function(){var t=n.event.sourceEvent;"touchstart"===t.type&&(z=t.changedTouches[0].clientY,R=U)})).on("drag",(function(){var t=n.event.sourceEvent;"touchmove"===t.type&&(D=t.changedTouches[0].clientY,q(U=function(t,e,r){var n=(e-r)/j+t;return i.constrain(n,0,N)}(R,z,D),F,j))}));C.call(H)}function q(r,n,i){e._scrollY=t._fullLayout.legend._scrollY=r,c.setTranslate(C,0,-r),c.setRect(O,e._width,p.scrollBarMargin+r*i,p.scrollBarWidth,n),E.select("rect").attr("y",b+r)}t._context.edits.legendPosition&&(T.classed("cursor-move",!0),l.init({element:T.node(),gd:t,prepFn:function(){var t=c.getTranslate(T);m=t.x,y=t.y},moveFn:function(t,r){var n=m+t,i=y+r;c.setTranslate(T,n,i),s=l.align(n,0,x.l,x.l+x.w,e.xanchor),u=l.align(i,0,x.t+x.h,x.t,e.yanchor)},doneFn:function(){void 0!==s&&void 0!==u&&o.call("_guiRelayout",t,{"legend.x":s,"legend.y":u})},clickFn:function(e,n){var i=r.selectAll("g.traces").filter((function(){var t=this.getBoundingClientRect();return n.clientX>=t.left&&n.clientX<=t.right&&n.clientY>=t.top&&n.clientY<=t.bottom}));i.size()>0&&_(t,T,i,e,n)}}))}],t)}(t,e)}},{"../../constants/alignment":466,"../../lib":498,"../../lib/events":487,"../../lib/svg_text_utils":524,"../../plots/plots":614,"../../registry":633,"../color":361,"../dragelement":380,"../drawing":383,"./constants":412,"./get_legend_data":415,"./handle_click":416,"./helpers":417,"./style":419,"@plotly/d3":58}],415:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("./helpers");e.exports=function(t,e){var r,a,o=e._inHover,s=i.isGrouped(e),l=i.isReversed(e),c={},u=[],f=!1,h={},p=0,d=0;function m(t,r){if(""!==t&&i.isGrouped(e))-1===u.indexOf(t)?(u.push(t),f=!0,c[t]=[r]):c[t].push(r);else{var n="~~i"+p;u.push(n),c[n]=[r],p++}}for(r=0;rA&&(k=A)}w[r][0]._groupMinRank=k,w[r][0]._preGroupSort=r}var M=function(t,e){return t.trace.legendrank-e.trace.legendrank||t._preSort-e._preSort};for(w.forEach((function(t,e){t[0]._preGroupSort=e})),w.sort((function(t,e){return t[0]._groupMinRank-e[0]._groupMinRank||t[0]._preGroupSort-e[0]._preGroupSort})),r=0;rr?r:t}e.exports=function(t,e,r){var v=e._fullLayout;r||(r=v.legend);var y="constant"===r.itemsizing,x=r.itemwidth,b=(x+2*p.itemGap)/2,_=o(b,0),w=function(t,e,r,n){var i;if(t+1)i=t;else{if(!(e&&e.width>0))return 0;i=e.width}return y?n:Math.min(i,r)};function T(t,a,o){var u=t[0].trace,f=u.marker||{},h=f.line||{},p=o?u.visible&&u.type===o:i.traceIs(u,"bar"),d=n.select(a).select("g.legendpoints").selectAll("path.legend"+o).data(p?[t]:[]);d.enter().append("path").classed("legend"+o,!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),d.exit().remove(),d.each((function(t){var i=n.select(this),a=t[0],o=w(a.mlw,f.line,5,2);i.style("stroke-width",o+"px");var p=a.mcc;if(!r._inHover&&"mc"in a){var d=c(f),m=d.mid;void 0===m&&(m=(d.max+d.min)/2),p=s.tryColorscale(f,"")(m)}var v=p||a.mc||f.color,y=f.pattern,x=y&&s.getPatternAttr(y.shape,0,"");if(x){var b=s.getPatternAttr(y.bgcolor,0,null),_=s.getPatternAttr(y.fgcolor,0,null),T=y.fgopacity,k=g(y.size,8,10),A=g(y.solidity,.5,1),M="legend-"+u.uid;i.call(s.pattern,"legend",e,M,x,k,A,p,y.fillmode,b,_,T)}else i.call(l.fill,v);o&&l.stroke(i,a.mlc||h.color)}))}function k(t,e,r){var o=t[0],s=o.trace,l=r?s.visible&&s.type===r:i.traceIs(s,r),c=n.select(e).select("g.legendpoints").selectAll("path.legend"+r).data(l?[t]:[]);if(c.enter().append("path").classed("legend"+r,!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),c.exit().remove(),c.size()){var u=(s.marker||{}).line,p=w(h(u.width,o.pts),u,5,2),d=a.minExtend(s,{marker:{line:{width:p}}});d.marker.line.color=u.color;var m=a.minExtend(o,{trace:d});f(c,m,d)}}t.each((function(t){var e=n.select(this),i=a.ensureSingle(e,"g","layers");i.style("opacity",t[0].trace.opacity);var s=r.valign,l=t[0].lineHeight,c=t[0].height;if("middle"!==s&&l&&c){var u={top:1,bottom:-1}[s]*(.5*(l-c+3));i.attr("transform",o(0,u))}else i.attr("transform",null);i.selectAll("g.legendfill").data([t]).enter().append("g").classed("legendfill",!0),i.selectAll("g.legendlines").data([t]).enter().append("g").classed("legendlines",!0);var f=i.selectAll("g.legendsymbols").data([t]);f.enter().append("g").classed("legendsymbols",!0),f.selectAll("g.legendpoints").data([t]).enter().append("g").classed("legendpoints",!0)})).each((function(t){var r,i=t[0].trace,o=[];if(i.visible)switch(i.type){case"histogram2d":case"heatmap":o=[["M-15,-2V4H15V-2Z"]],r=!0;break;case"choropleth":case"choroplethmapbox":o=[["M-6,-6V6H6V-6Z"]],r=!0;break;case"densitymapbox":o=[["M-6,0 a6,6 0 1,0 12,0 a 6,6 0 1,0 -12,0"]],r="radial";break;case"cone":o=[["M-6,2 A2,2 0 0,0 -6,6 V6L6,4Z"],["M-6,-6 A2,2 0 0,0 -6,-2 L6,-4Z"],["M-6,-2 A2,2 0 0,0 -6,2 L6,0Z"]],r=!1;break;case"streamtube":o=[["M-6,2 A2,2 0 0,0 -6,6 H6 A2,2 0 0,1 6,2 Z"],["M-6,-6 A2,2 0 0,0 -6,-2 H6 A2,2 0 0,1 6,-6 Z"],["M-6,-2 A2,2 0 0,0 -6,2 H6 A2,2 0 0,1 6,-2 Z"]],r=!1;break;case"surface":o=[["M-6,-6 A2,3 0 0,0 -6,0 H6 A2,3 0 0,1 6,-6 Z"],["M-6,1 A2,3 0 0,1 -6,6 H6 A2,3 0 0,0 6,0 Z"]],r=!0;break;case"mesh3d":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6H6L0,6Z"]],r=!1;break;case"volume":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6H6L0,6Z"]],r=!0;break;case"isosurface":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6 A12,24 0 0,0 6,-6 L0,6Z"]],r=!1}var u=n.select(this).select("g.legendpoints").selectAll("path.legend3dandfriends").data(o);u.enter().append("path").classed("legend3dandfriends",!0).attr("transform",_).style("stroke-miterlimit",1),u.exit().remove(),u.each((function(t,o){var u,f=n.select(this),h=c(i),p=h.colorscale,m=h.reversescale;if(p){if(!r){var g=p.length;u=0===o?p[m?g-1:0][1]:1===o?p[m?0:g-1][1]:p[Math.floor((g-1)/2)][1]}}else{var v=i.vertexcolor||i.facecolor||i.color;u=a.isArrayOrTypedArray(v)?v[o]||v[0]:v}f.attr("d",t[0]),u?f.call(l.fill,u):f.call((function(t){if(t.size()){var n="legendfill-"+i.uid;s.gradient(t,e,n,d(m,"radial"===r),p,"fill")}}))}))})).each((function(t){var e=t[0].trace,r="waterfall"===e.type;if(t[0]._distinct&&r){var i=t[0].trace[t[0].dir].marker;return t[0].mc=i.color,t[0].mlw=i.line.width,t[0].mlc=i.line.color,T(t,this,"waterfall")}var a=[];e.visible&&r&&(a=t[0].hasTotals?[["increasing","M-6,-6V6H0Z"],["totals","M6,6H0L-6,-6H-0Z"],["decreasing","M6,6V-6H0Z"]]:[["increasing","M-6,-6V6H6Z"],["decreasing","M6,6V-6H-6Z"]]);var o=n.select(this).select("g.legendpoints").selectAll("path.legendwaterfall").data(a);o.enter().append("path").classed("legendwaterfall",!0).attr("transform",_).style("stroke-miterlimit",1),o.exit().remove(),o.each((function(t){var r=n.select(this),i=e[t[0]].marker,a=w(void 0,i.line,5,2);r.attr("d",t[1]).style("stroke-width",a+"px").call(l.fill,i.color),a&&r.call(l.stroke,i.line.color)}))})).each((function(t){T(t,this,"funnel")})).each((function(t){T(t,this)})).each((function(t){var r=t[0].trace,o=n.select(this).select("g.legendpoints").selectAll("path.legendbox").data(r.visible&&i.traceIs(r,"box-violin")?[t]:[]);o.enter().append("path").classed("legendbox",!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),o.exit().remove(),o.each((function(){var t=n.select(this);if("all"!==r.boxpoints&&"all"!==r.points||0!==l.opacity(r.fillcolor)||0!==l.opacity((r.line||{}).color)){var i=w(void 0,r.line,5,2);t.style("stroke-width",i+"px").call(l.fill,r.fillcolor),i&&l.stroke(t,r.line.color)}else{var c=a.minExtend(r,{marker:{size:y?12:a.constrain(r.marker.size,2,16),sizeref:1,sizemin:1,sizemode:"diameter"}});o.call(s.pointStyle,c,e)}}))})).each((function(t){k(t,this,"funnelarea")})).each((function(t){k(t,this,"pie")})).each((function(t){var r,i,o=m(t),l=o.showFill,f=o.showLine,h=o.showGradientLine,p=o.showGradientFill,g=o.anyFill,v=o.anyLine,y=t[0],b=y.trace,_=c(b),T=_.colorscale,k=_.reversescale,A=u.hasMarkers(b)||!g?"M5,0":v?"M5,-2":"M5,-3",M=n.select(this),S=M.select(".legendfill").selectAll("path").data(l||p?[t]:[]);if(S.enter().append("path").classed("js-fill",!0),S.exit().remove(),S.attr("d",A+"h"+x+"v6h-"+x+"z").call((function(t){if(t.size())if(l)s.fillGroupStyle(t,e);else{var r="legendfill-"+b.uid;s.gradient(t,e,r,d(k),T,"fill")}})),f||h){var E=w(void 0,b.line,10,5);i=a.minExtend(b,{line:{width:E}}),r=[a.minExtend(y,{trace:i})]}var L=M.select(".legendlines").selectAll("path").data(f||h?[r]:[]);L.enter().append("path").classed("js-line",!0),L.exit().remove(),L.attr("d",A+(h?"l"+x+",0.0001":"h"+x)).call(f?s.lineGroupStyle:function(t){if(t.size()){var r="legendline-"+b.uid;s.lineGroupStyle(t),s.gradient(t,e,r,d(k),T,"stroke")}})})).each((function(t){var r,i,o=m(t),l=o.anyFill,c=o.anyLine,f=o.showLine,h=o.showMarker,p=t[0],d=p.trace,g=!h&&!c&&!l&&u.hasText(d);function v(t,e,r,n){var i=a.nestedProperty(d,t).get(),o=a.isArrayOrTypedArray(i)&&e?e(i):i;if(y&&o&&void 0!==n&&(o=n),r){if(or[1])return r[1]}return o}function x(t){return p._distinct&&p.index&&t[p.index]?t[p.index]:t[0]}if(h||g||f){var b={},w={};if(h){b.mc=v("marker.color",x),b.mx=v("marker.symbol",x),b.mo=v("marker.opacity",a.mean,[.2,1]),b.mlc=v("marker.line.color",x),b.mlw=v("marker.line.width",a.mean,[0,5],2),w.marker={sizeref:1,sizemin:1,sizemode:"diameter"};var T=v("marker.size",a.mean,[2,16],12);b.ms=T,w.marker.size=T}f&&(w.line={width:v("line.width",x,[0,10],5)}),g&&(b.tx="Aa",b.tp=v("textposition",x),b.ts=10,b.tc=v("textfont.color",x),b.tf=v("textfont.family",x)),r=[a.minExtend(p,b)],(i=a.minExtend(d,w)).selectedpoints=null,i.texttemplate=null}var k=n.select(this).select("g.legendpoints"),A=k.selectAll("path.scatterpts").data(h?r:[]);A.enter().insert("path",":first-child").classed("scatterpts",!0).attr("transform",_),A.exit().remove(),A.call(s.pointStyle,i,e),h&&(r[0].mrc=3);var M=k.selectAll("g.pointtext").data(g?r:[]);M.enter().append("g").classed("pointtext",!0).append("text").attr("transform",_),M.exit().remove(),M.selectAll("text").call(s.textPointStyle,i,e)})).each((function(t){var e=t[0].trace,r=n.select(this).select("g.legendpoints").selectAll("path.legendcandle").data(e.visible&&"candlestick"===e.type?[t,t]:[]);r.enter().append("path").classed("legendcandle",!0).attr("d",(function(t,e){return e?"M-15,0H-8M-8,6V-6H8Z":"M15,0H8M8,-6V6H-8Z"})).attr("transform",_).style("stroke-miterlimit",1),r.exit().remove(),r.each((function(t,r){var i=n.select(this),a=e[r?"increasing":"decreasing"],o=w(void 0,a.line,5,2);i.style("stroke-width",o+"px").call(l.fill,a.fillcolor),o&&l.stroke(i,a.line.color)}))})).each((function(t){var e=t[0].trace,r=n.select(this).select("g.legendpoints").selectAll("path.legendohlc").data(e.visible&&"ohlc"===e.type?[t,t]:[]);r.enter().append("path").classed("legendohlc",!0).attr("d",(function(t,e){return e?"M-15,0H0M-8,-6V0":"M15,0H0M8,6V0"})).attr("transform",_).style("stroke-miterlimit",1),r.exit().remove(),r.each((function(t,r){var i=n.select(this),a=e[r?"increasing":"decreasing"],o=w(void 0,a.line,5,2);i.style("fill","none").call(s.dashLine,a.line.dash,o),o&&l.stroke(i,a.line.color)}))}))}},{"../../lib":498,"../../registry":633,"../../traces/pie/helpers":901,"../../traces/pie/style_one":907,"../../traces/scatter/subtypes":947,"../color":361,"../colorscale/helpers":372,"../drawing":383,"./constants":412,"@plotly/d3":58}],420:[function(t,e,r){"use strict";t("./constants");e.exports={editType:"modebar",orientation:{valType:"enumerated",values:["v","h"],dflt:"h",editType:"modebar"},bgcolor:{valType:"color",editType:"modebar"},color:{valType:"color",editType:"modebar"},activecolor:{valType:"color",editType:"modebar"},uirevision:{valType:"any",editType:"none"},add:{valType:"string",arrayOk:!0,dflt:"",editType:"modebar"},remove:{valType:"string",arrayOk:!0,dflt:"",editType:"modebar"}}},{"./constants":422}],421:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../plots/plots"),a=t("../../plots/cartesian/axis_ids"),o=t("../../fonts/ploticon"),s=t("../shapes/draw").eraseActiveShape,l=t("../../lib"),c=l._,u=e.exports={};function f(t,e){var r,i,o=e.currentTarget,s=o.getAttribute("data-attr"),l=o.getAttribute("data-val")||!0,c=t._fullLayout,u={},f=a.list(t,null,!0),h=c._cartesianSpikesEnabled;if("zoom"===s){var p,d="in"===l?.5:2,m=(1+d)/2,g=(1-d)/2;for(i=0;i1?(I=["toggleHover"],O=["resetViews"]):v?(P=["zoomInGeo","zoomOutGeo"],I=["hoverClosestGeo"],O=["resetGeo"]):g?(I=["hoverClosest3d"],O=["resetCameraDefault3d","resetCameraLastSave3d"]):w?(P=["zoomInMapbox","zoomOutMapbox"],I=["toggleHover"],O=["resetViewMapbox"]):b?I=["hoverClosestGl2d"]:y?I=["hoverClosestPie"]:A?(I=["hoverClosestCartesian","hoverCompareCartesian"],O=["resetViewSankey"]):I=["toggleHover"];m&&(I=["toggleSpikelines","hoverClosestCartesian","hoverCompareCartesian"]);(function(t){for(var e=0;e0)){var m=function(t,e,r){for(var n=r.filter((function(r){return e[r].anchor===t._id})),i=0,a=0;a=n.max)e=F[r+1];else if(t=n.pmax)e=F[r+1];else if(t0?h+c:c;return{ppad:c,ppadplus:u?d:m,ppadminus:u?m:d}}return{ppad:c}}function u(t,e,r,n,i){var s="category"===t.type||"multicategory"===t.type?t.r2c:t.d2c;if(void 0!==e)return[s(e),s(r)];if(n){var l,c,u,f,h=1/0,p=-1/0,d=n.match(a.segmentRE);for("date"===t.type&&(s=o.decodeDate(s)),l=0;lp&&(p=f)));return p>=h?[h,p]:void 0}}e.exports=function(t){var e=t._fullLayout,r=n.filterVisible(e.shapes);if(r.length&&t._fullData.length)for(var o=0;oy?(k=f,E="y0",A=y,L="y1"):(k=y,E="y1",A=f,L="y0");Z(n),Q(s,r),function(t,e,r){var n=e.xref,i=e.yref,o=a.getFromId(r,n),s=a.getFromId(r,i),l="";"paper"===n||o.autorange||(l+=n);"paper"===i||s.autorange||(l+=i);u.setClipUrl(t,l?"clip"+r._fullLayout._uid+l:null,r)}(e,r,t),X.moveFn="move"===O?J:K,X.altKey=n.altKey},doneFn:function(){if(v(t))return;p(e),$(s),b(e,t,r),n.call("_guiRelayout",t,l.getUpdateObj())},clickFn:function(){if(v(t))return;$(s)}};function Z(r){if(v(t))O=null;else if(R)O="path"===r.target.tagName?"move":"start-point"===r.target.attributes["data-line-point"].value?"resize-over-start-point":"resize-over-end-point";else{var n=X.element.getBoundingClientRect(),i=n.right-n.left,a=n.bottom-n.top,o=r.clientX-n.left,s=r.clientY-n.top,l=!F&&i>10&&a>10&&!r.shiftKey?h.getCursor(o/i,1-s/a):"move";p(e,l),O=l.split("-")[0]}}function J(n,i){if("path"===r.type){var a=function(t){return t},o=a,l=a;z?B("xanchor",r.xanchor=G(x+n)):(o=function(t){return G(H(t)+n)},N&&"date"===N.type&&(o=m.encodeDate(o))),D?B("yanchor",r.yanchor=Y(T+i)):(l=function(t){return Y(q(t)+i)},U&&"date"===U.type&&(l=m.encodeDate(l))),B("path",r.path=w(I,o,l))}else z?B("xanchor",r.xanchor=G(x+n)):(B("x0",r.x0=G(c+n)),B("x1",r.x1=G(g+n))),D?B("yanchor",r.yanchor=Y(T+i)):(B("y0",r.y0=Y(f+i)),B("y1",r.y1=Y(y+i)));e.attr("d",_(t,r)),Q(s,r)}function K(n,i){if(F){var a=function(t){return t},o=a,l=a;z?B("xanchor",r.xanchor=G(x+n)):(o=function(t){return G(H(t)+n)},N&&"date"===N.type&&(o=m.encodeDate(o))),D?B("yanchor",r.yanchor=Y(T+i)):(l=function(t){return Y(q(t)+i)},U&&"date"===U.type&&(l=m.encodeDate(l))),B("path",r.path=w(I,o,l))}else if(R){if("resize-over-start-point"===O){var u=c+n,h=D?f-i:f+i;B("x0",r.x0=z?u:G(u)),B("y0",r.y0=D?h:Y(h))}else if("resize-over-end-point"===O){var p=g+n,d=D?y-i:y+i;B("x1",r.x1=z?p:G(p)),B("y1",r.y1=D?d:Y(d))}}else{var v=function(t){return-1!==O.indexOf(t)},b=v("n"),j=v("s"),V=v("w"),W=v("e"),X=b?k+i:k,Z=j?A+i:A,J=V?M+n:M,K=W?S+n:S;D&&(b&&(X=k-i),j&&(Z=A-i)),(!D&&Z-X>10||D&&X-Z>10)&&(B(E,r[E]=D?X:Y(X)),B(L,r[L]=D?Z:Y(Z))),K-J>10&&(B(C,r[C]=z?J:G(J)),B(P,r[P]=z?K:G(K)))}e.attr("d",_(t,r)),Q(s,r)}function Q(t,e){(z||D)&&function(){var r="path"!==e.type,n=t.selectAll(".visual-cue").data([0]);n.enter().append("path").attr({fill:"#fff","fill-rule":"evenodd",stroke:"#000","stroke-width":1}).classed("visual-cue",!0);var a=H(z?e.xanchor:i.midRange(r?[e.x0,e.x1]:m.extractPathCoords(e.path,d.paramIsX))),o=q(D?e.yanchor:i.midRange(r?[e.y0,e.y1]:m.extractPathCoords(e.path,d.paramIsY)));if(a=m.roundPositionForSharpStrokeRendering(a,1),o=m.roundPositionForSharpStrokeRendering(o,1),z&&D){var s="M"+(a-1-1)+","+(o-1-1)+"h-8v2h8 v8h2v-8 h8v-2h-8 v-8h-2 Z";n.attr("d",s)}else if(z){var l="M"+(a-1-1)+","+(o-9-1)+"v18 h2 v-18 Z";n.attr("d",l)}else{var c="M"+(a-9-1)+","+(o-1-1)+"h18 v2 h-18 Z";n.attr("d",c)}}()}function $(t){t.selectAll(".visual-cue").remove()}h.init(X),W.node().onmousemove=Z}(t,z,l,e,r,O):!0===l.editable&&z.style("pointer-events",P||c.opacity(S)*M<=.5?"stroke":"all");z.node().addEventListener("click",(function(){return function(t,e){if(!y(t))return;var r=+e.node().getAttribute("data-index");if(r>=0){if(r===t._fullLayout._activeShapeIndex)return void T(t);t._fullLayout._activeShapeIndex=r,t._fullLayout._deactivateShape=T,g(t)}}(t,z)}))}}function b(t,e,r){var n=(r.xref+r.yref).replace(/paper/g,"").replace(/[xyz][1-9]* *domain/g,"");u.setClipUrl(t,n?"clip"+e._fullLayout._uid+n:null,e)}function _(t,e){var r,n,o,s,l,c,u,f,h=e.type,p=a.getRefType(e.xref),g=a.getRefType(e.yref),v=a.getFromId(t,e.xref),y=a.getFromId(t,e.yref),x=t._fullLayout._size;if(v?"domain"===p?n=function(t){return v._offset+v._length*t}:(r=m.shapePositionToRange(v),n=function(t){return v._offset+v.r2p(r(t,!0))}):n=function(t){return x.l+x.w*t},y?"domain"===g?s=function(t){return y._offset+y._length*(1-t)}:(o=m.shapePositionToRange(y),s=function(t){return y._offset+y.r2p(o(t,!0))}):s=function(t){return x.t+x.h*(1-t)},"path"===h)return v&&"date"===v.type&&(n=m.decodeDate(n)),y&&"date"===y.type&&(s=m.decodeDate(s)),function(t,e,r){var n=t.path,a=t.xsizemode,o=t.ysizemode,s=t.xanchor,l=t.yanchor;return n.replace(d.segmentRE,(function(t){var n=0,c=t.charAt(0),u=d.paramIsX[c],f=d.paramIsY[c],h=d.numParams[c],p=t.substr(1).replace(d.paramRE,(function(t){return u[n]?t="pixel"===a?e(s)+Number(t):e(t):f[n]&&(t="pixel"===o?r(l)-Number(t):r(t)),++n>h&&(t="X"),t}));return n>h&&(p=p.replace(/[\s,]*X.*/,""),i.log("Ignoring extra params in segment "+t)),c+p}))}(e,n,s);if("pixel"===e.xsizemode){var b=n(e.xanchor);l=b+e.x0,c=b+e.x1}else l=n(e.x0),c=n(e.x1);if("pixel"===e.ysizemode){var _=s(e.yanchor);u=_-e.y0,f=_-e.y1}else u=s(e.y0),f=s(e.y1);if("line"===h)return"M"+l+","+u+"L"+c+","+f;if("rect"===h)return"M"+l+","+u+"H"+c+"V"+f+"H"+l+"Z";var w=(l+c)/2,T=(u+f)/2,k=Math.abs(w-l),A=Math.abs(T-u),M="A"+k+","+A,S=w+k+","+T;return"M"+S+M+" 0 1,1 "+(w+","+(T-A))+M+" 0 0,1 "+S+"Z"}function w(t,e,r){return t.replace(d.segmentRE,(function(t){var n=0,i=t.charAt(0),a=d.paramIsX[i],o=d.paramIsY[i],s=d.numParams[i];return i+t.substr(1).replace(d.paramRE,(function(t){return n>=s||(a[n]?t=e(t):o[n]&&(t=r(t)),n++),t}))}))}function T(t){y(t)&&(t._fullLayout._activeShapeIndex>=0&&(l(t),delete t._fullLayout._activeShapeIndex,g(t)))}e.exports={draw:g,drawOne:x,eraseActiveShape:function(t){if(!y(t))return;l(t);var e=t._fullLayout._activeShapeIndex,r=(t.layout||{}).shapes||[];if(e=0&&f(v),r.attr("d",m(e)),A&&!h)&&(k=function(t,e){for(var r=0;r1&&(2!==t.length||"Z"!==t[1][0])&&(0===T&&(t[0][0]="M"),e[w]=t,y(),x())}}()}}function I(t,r){!function(t,r){if(e.length)for(var n=0;n0&&l0&&(s=s.transition().duration(e.transition.duration).ease(e.transition.easing)),s.attr("transform",l(o-.5*f.gripWidth,e._dims.currentValueTotalHeight))}}function E(t,e){var r=t._dims;return r.inputAreaStart+f.stepInset+(r.inputAreaLength-2*f.stepInset)*Math.min(1,Math.max(0,e))}function L(t,e){var r=t._dims;return Math.min(1,Math.max(0,(e-f.stepInset-r.inputAreaStart)/(r.inputAreaLength-2*f.stepInset-2*r.inputAreaStart)))}function C(t,e,r){var n=r._dims,i=s.ensureSingle(t,"rect",f.railTouchRectClass,(function(n){n.call(A,e,t,r).style("pointer-events","all")}));i.attr({width:n.inputAreaLength,height:Math.max(n.inputAreaWidth,f.tickOffset+r.ticklen+n.labelHeight)}).call(a.fill,r.bgcolor).attr("opacity",0),o.setTranslate(i,0,n.currentValueTotalHeight)}function P(t,e){var r=e._dims,n=r.inputAreaLength-2*f.railInset,i=s.ensureSingle(t,"rect",f.railRectClass);i.attr({width:n,height:f.railWidth,rx:f.railRadius,ry:f.railRadius,"shape-rendering":"crispEdges"}).call(a.stroke,e.bordercolor).call(a.fill,e.bgcolor).style("stroke-width",e.borderwidth+"px"),o.setTranslate(i,f.railInset,.5*(r.inputAreaWidth-f.railWidth)+r.currentValueTotalHeight)}e.exports=function(t){var e=t._fullLayout,r=function(t,e){for(var r=t[f.name],n=[],i=0;i0?[0]:[]);function s(e){e._commandObserver&&(e._commandObserver.remove(),delete e._commandObserver),i.autoMargin(t,g(e))}if(a.enter().append("g").classed(f.containerClassName,!0).style("cursor","ew-resize"),a.exit().each((function(){n.select(this).selectAll("g."+f.groupClassName).each(s)})).remove(),0!==r.length){var l=a.selectAll("g."+f.groupClassName).data(r,v);l.enter().append("g").classed(f.groupClassName,!0),l.exit().each(s).remove();for(var c=0;c0||h<0){var v={left:[-d,0],right:[d,0],top:[0,-d],bottom:[0,d]}[b.side];e.attr("transform",l(v[0],v[1]))}}}return R.call(F),O&&(E?R.on(".opacity",null):(A=0,M=!0,R.text(y).on("mouseover.opacity",(function(){n.select(this).transition().duration(h.SHOW_PLACEHOLDER).style("opacity",1)})).on("mouseout.opacity",(function(){n.select(this).transition().duration(h.HIDE_PLACEHOLDER).style("opacity",0)}))),R.call(f.makeEditable,{gd:t}).on("edit",(function(e){void 0!==x?o.call("_guiRestyle",t,v,e,x):o.call("_guiRelayout",t,v,e)})).on("cancel",(function(){this.text(this.attr("data-unformatted")).call(F)})).on("input",(function(t){this.text(t||" ").call(f.positionText,_.x,_.y)}))),R.classed("js-placeholder",M),T}}},{"../../constants/alignment":466,"../../constants/interactions":473,"../../lib":498,"../../lib/svg_text_utils":524,"../../plots/plots":614,"../../registry":633,"../color":361,"../drawing":383,"@plotly/d3":58,"fast-isnumeric":185}],460:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("../color/attributes"),a=t("../../lib/extend").extendFlat,o=t("../../plot_api/edit_types").overrideAll,s=t("../../plots/pad_attributes"),l=t("../../plot_api/plot_template").templatedArray,c=l("button",{visible:{valType:"boolean"},method:{valType:"enumerated",values:["restyle","relayout","animate","update","skip"],dflt:"restyle"},args:{valType:"info_array",freeLength:!0,items:[{valType:"any"},{valType:"any"},{valType:"any"}]},args2:{valType:"info_array",freeLength:!0,items:[{valType:"any"},{valType:"any"},{valType:"any"}]},label:{valType:"string",dflt:""},execute:{valType:"boolean",dflt:!0}});e.exports=o(l("updatemenu",{_arrayAttrRegexps:[/^updatemenus\[(0|[1-9][0-9]+)\]\.buttons/],visible:{valType:"boolean"},type:{valType:"enumerated",values:["dropdown","buttons"],dflt:"dropdown"},direction:{valType:"enumerated",values:["left","right","up","down"],dflt:"down"},active:{valType:"integer",min:-1,dflt:0},showactive:{valType:"boolean",dflt:!0},buttons:c,x:{valType:"number",min:-2,max:3,dflt:-.05},xanchor:{valType:"enumerated",values:["auto","left","center","right"],dflt:"right"},y:{valType:"number",min:-2,max:3,dflt:1},yanchor:{valType:"enumerated",values:["auto","top","middle","bottom"],dflt:"top"},pad:a(s({editType:"arraydraw"}),{}),font:n({}),bgcolor:{valType:"color"},bordercolor:{valType:"color",dflt:i.borderLine},borderwidth:{valType:"number",min:0,dflt:1,editType:"arraydraw"}}),"arraydraw","from-root")},{"../../lib/extend":488,"../../plot_api/edit_types":531,"../../plot_api/plot_template":538,"../../plots/font_attributes":580,"../../plots/pad_attributes":613,"../color/attributes":360}],461:[function(t,e,r){"use strict";e.exports={name:"updatemenus",containerClassName:"updatemenu-container",headerGroupClassName:"updatemenu-header-group",headerClassName:"updatemenu-header",headerArrowClassName:"updatemenu-header-arrow",dropdownButtonGroupClassName:"updatemenu-dropdown-button-group",dropdownButtonClassName:"updatemenu-dropdown-button",buttonClassName:"updatemenu-button",itemRectClassName:"updatemenu-item-rect",itemTextClassName:"updatemenu-item-text",menuIndexAttrName:"updatemenu-active-index",autoMarginIdRoot:"updatemenu-",blankHeaderOpts:{label:" "},minWidth:30,minHeight:30,textPadX:24,arrowPadX:16,rx:2,ry:2,textOffsetX:12,textOffsetY:3,arrowOffsetX:4,gapButtonHeader:5,gapButton:2,activeColor:"#F4FAFF",hoverColor:"#F4FAFF",arrowSymbol:{left:"\u25c4",right:"\u25ba",up:"\u25b2",down:"\u25bc"}}},{}],462:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/array_container_defaults"),a=t("./attributes"),o=t("./constants").name,s=a.buttons;function l(t,e,r){function o(r,i){return n.coerce(t,e,a,r,i)}o("visible",i(t,e,{name:"buttons",handleItemDefaults:c}).length>0)&&(o("active"),o("direction"),o("type"),o("showactive"),o("x"),o("y"),n.noneOrAll(t,e,["x","y"]),o("xanchor"),o("yanchor"),o("pad.t"),o("pad.r"),o("pad.b"),o("pad.l"),n.coerceFont(o,"font",r.font),o("bgcolor",r.paper_bgcolor),o("bordercolor"),o("borderwidth"))}function c(t,e){function r(r,i){return n.coerce(t,e,s,r,i)}r("visible","skip"===t.method||Array.isArray(t.args))&&(r("method"),r("args"),r("args2"),r("label"),r("execute"))}e.exports=function(t,e){i(t,e,{name:o,handleItemDefaults:l})}},{"../../lib":498,"../../plots/array_container_defaults":544,"./attributes":460,"./constants":461}],463:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../plots/plots"),a=t("../color"),o=t("../drawing"),s=t("../../lib"),l=t("../../lib/svg_text_utils"),c=t("../../plot_api/plot_template").arrayEditor,u=t("../../constants/alignment").LINE_SPACING,f=t("./constants"),h=t("./scrollbox");function p(t){return t._index}function d(t,e){return+t.attr(f.menuIndexAttrName)===e._index}function m(t,e,r,n,i,a,o,s){e.active=o,c(t.layout,f.name,e).applyUpdate("active",o),"buttons"===e.type?v(t,n,null,null,e):"dropdown"===e.type&&(i.attr(f.menuIndexAttrName,"-1"),g(t,n,i,a,e),s||v(t,n,i,a,e))}function g(t,e,r,n,i){var a=s.ensureSingle(e,"g",f.headerClassName,(function(t){t.style("pointer-events","all")})),l=i._dims,c=i.active,u=i.buttons[c]||f.blankHeaderOpts,h={y:i.pad.t,yPad:0,x:i.pad.l,xPad:0,index:0},p={width:l.headerWidth,height:l.headerHeight};a.call(y,i,u,t).call(M,i,h,p),s.ensureSingle(e,"text",f.headerArrowClassName,(function(t){t.attr("text-anchor","end").call(o.font,i.font).text(f.arrowSymbol[i.direction])})).attr({x:l.headerWidth-f.arrowOffsetX+i.pad.l,y:l.headerHeight/2+f.textOffsetY+i.pad.t}),a.on("click",(function(){r.call(S,String(d(r,i)?-1:i._index)),v(t,e,r,n,i)})),a.on("mouseover",(function(){a.call(w)})),a.on("mouseout",(function(){a.call(T,i)})),o.setTranslate(e,l.lx,l.ly)}function v(t,e,r,a,o){r||(r=e).attr("pointer-events","all");var l=function(t){return-1==+t.attr(f.menuIndexAttrName)}(r)&&"buttons"!==o.type?[]:o.buttons,c="dropdown"===o.type?f.dropdownButtonClassName:f.buttonClassName,u=r.selectAll("g."+c).data(s.filterVisible(l)),h=u.enter().append("g").classed(c,!0),p=u.exit();"dropdown"===o.type?(h.attr("opacity","0").transition().attr("opacity","1"),p.transition().attr("opacity","0").remove()):p.remove();var d=0,g=0,v=o._dims,x=-1!==["up","down"].indexOf(o.direction);"dropdown"===o.type&&(x?g=v.headerHeight+f.gapButtonHeader:d=v.headerWidth+f.gapButtonHeader),"dropdown"===o.type&&"up"===o.direction&&(g=-f.gapButtonHeader+f.gapButton-v.openHeight),"dropdown"===o.type&&"left"===o.direction&&(d=-f.gapButtonHeader+f.gapButton-v.openWidth);var b={x:v.lx+d+o.pad.l,y:v.ly+g+o.pad.t,yPad:f.gapButton,xPad:f.gapButton,index:0},k={l:b.x+o.borderwidth,t:b.y+o.borderwidth};u.each((function(s,l){var c=n.select(this);c.call(y,o,s,t).call(M,o,b),c.on("click",(function(){n.event.defaultPrevented||(s.execute&&(s.args2&&o.active===l?(m(t,o,0,e,r,a,-1),i.executeAPICommand(t,s.method,s.args2)):(m(t,o,0,e,r,a,l),i.executeAPICommand(t,s.method,s.args))),t.emit("plotly_buttonclicked",{menu:o,button:s,active:o.active}))})),c.on("mouseover",(function(){c.call(w)})),c.on("mouseout",(function(){c.call(T,o),u.call(_,o)}))})),u.call(_,o),x?(k.w=Math.max(v.openWidth,v.headerWidth),k.h=b.y-k.t):(k.w=b.x-k.l,k.h=Math.max(v.openHeight,v.headerHeight)),k.direction=o.direction,a&&(u.size()?function(t,e,r,n,i,a){var o,s,l,c=i.direction,u="up"===c||"down"===c,h=i._dims,p=i.active;if(u)for(s=0,l=0;l0?[0]:[]);if(o.enter().append("g").classed(f.containerClassName,!0).style("cursor","pointer"),o.exit().each((function(){n.select(this).selectAll("g."+f.headerGroupClassName).each(a)})).remove(),0!==r.length){var l=o.selectAll("g."+f.headerGroupClassName).data(r,p);l.enter().append("g").classed(f.headerGroupClassName,!0);for(var c=s.ensureSingle(o,"g",f.dropdownButtonGroupClassName,(function(t){t.style("pointer-events","all")})),u=0;uw,A=s.barLength+2*s.barPad,M=s.barWidth+2*s.barPad,S=d,E=g+v;E+M>c&&(E=c-M);var L=this.container.selectAll("rect.scrollbar-horizontal").data(k?[0]:[]);L.exit().on(".drag",null).remove(),L.enter().append("rect").classed("scrollbar-horizontal",!0).call(i.fill,s.barColor),k?(this.hbar=L.attr({rx:s.barRadius,ry:s.barRadius,x:S,y:E,width:A,height:M}),this._hbarXMin=S+A/2,this._hbarTranslateMax=w-A):(delete this.hbar,delete this._hbarXMin,delete this._hbarTranslateMax);var C=v>T,P=s.barWidth+2*s.barPad,I=s.barLength+2*s.barPad,O=d+m,z=g;O+P>l&&(O=l-P);var D=this.container.selectAll("rect.scrollbar-vertical").data(C?[0]:[]);D.exit().on(".drag",null).remove(),D.enter().append("rect").classed("scrollbar-vertical",!0).call(i.fill,s.barColor),C?(this.vbar=D.attr({rx:s.barRadius,ry:s.barRadius,x:O,y:z,width:P,height:I}),this._vbarYMin=z+I/2,this._vbarTranslateMax=T-I):(delete this.vbar,delete this._vbarYMin,delete this._vbarTranslateMax);var R=this.id,F=u-.5,B=C?f+P+.5:f+.5,N=h-.5,j=k?p+M+.5:p+.5,U=o._topdefs.selectAll("#"+R).data(k||C?[0]:[]);if(U.exit().remove(),U.enter().append("clipPath").attr("id",R).append("rect"),k||C?(this._clipRect=U.select("rect").attr({x:Math.floor(F),y:Math.floor(N),width:Math.ceil(B)-Math.floor(F),height:Math.ceil(j)-Math.floor(N)}),this.container.call(a.setClipUrl,R,this.gd),this.bg.attr({x:d,y:g,width:m,height:v})):(this.bg.attr({width:0,height:0}),this.container.on("wheel",null).on(".drag",null).call(a.setClipUrl,null),delete this._clipRect),k||C){var V=n.behavior.drag().on("dragstart",(function(){n.event.sourceEvent.preventDefault()})).on("drag",this._onBoxDrag.bind(this));this.container.on("wheel",null).on("wheel",this._onBoxWheel.bind(this)).on(".drag",null).call(V);var H=n.behavior.drag().on("dragstart",(function(){n.event.sourceEvent.preventDefault(),n.event.sourceEvent.stopPropagation()})).on("drag",this._onBarDrag.bind(this));k&&this.hbar.on(".drag",null).call(H),C&&this.vbar.on(".drag",null).call(H)}this.setTranslate(e,r)},s.prototype.disable=function(){(this.hbar||this.vbar)&&(this.bg.attr({width:0,height:0}),this.container.on("wheel",null).on(".drag",null).call(a.setClipUrl,null),delete this._clipRect),this.hbar&&(this.hbar.on(".drag",null),this.hbar.remove(),delete this.hbar,delete this._hbarXMin,delete this._hbarTranslateMax),this.vbar&&(this.vbar.on(".drag",null),this.vbar.remove(),delete this.vbar,delete this._vbarYMin,delete this._vbarTranslateMax)},s.prototype._onBoxDrag=function(){var t=this.translateX,e=this.translateY;this.hbar&&(t-=n.event.dx),this.vbar&&(e-=n.event.dy),this.setTranslate(t,e)},s.prototype._onBoxWheel=function(){var t=this.translateX,e=this.translateY;this.hbar&&(t+=n.event.deltaY),this.vbar&&(e+=n.event.deltaY),this.setTranslate(t,e)},s.prototype._onBarDrag=function(){var t=this.translateX,e=this.translateY;if(this.hbar){var r=t+this._hbarXMin,i=r+this._hbarTranslateMax;t=(o.constrain(n.event.x,r,i)-r)/(i-r)*(this.position.w-this._box.w)}if(this.vbar){var a=e+this._vbarYMin,s=a+this._vbarTranslateMax;e=(o.constrain(n.event.y,a,s)-a)/(s-a)*(this.position.h-this._box.h)}this.setTranslate(t,e)},s.prototype.setTranslate=function(t,e){var r=this.position.w-this._box.w,n=this.position.h-this._box.h;if(t=o.constrain(t||0,0,r),e=o.constrain(e||0,0,n),this.translateX=t,this.translateY=e,this.container.call(a.setTranslate,this._box.l-this.position.l-t,this._box.t-this.position.t-e),this._clipRect&&this._clipRect.attr({x:Math.floor(this.position.l+t-.5),y:Math.floor(this.position.t+e-.5)}),this.hbar){var i=t/r;this.hbar.call(a.setTranslate,t+i*this._hbarTranslateMax,e)}if(this.vbar){var s=e/n;this.vbar.call(a.setTranslate,t,e+s*this._vbarTranslateMax)}}},{"../../lib":498,"../color":361,"../drawing":383,"@plotly/d3":58}],466:[function(t,e,r){"use strict";e.exports={FROM_BL:{left:0,center:.5,right:1,bottom:0,middle:.5,top:1},FROM_TL:{left:0,center:.5,right:1,bottom:1,middle:.5,top:0},FROM_BR:{left:1,center:.5,right:0,bottom:0,middle:.5,top:1},LINE_SPACING:1.3,CAP_SHIFT:.7,MID_SHIFT:.35,OPPOSITE_SIDE:{left:"right",right:"left",top:"bottom",bottom:"top"}}},{}],467:[function(t,e,r){"use strict";e.exports={axisRefDescription:function(t,e,r){return["If set to a",t,"axis id (e.g. *"+t+"* or","*"+t+"2*), the `"+t+"` position refers to a",t,"coordinate. If set to *paper*, the `"+t+"`","position refers to the distance from the",e,"of the plotting","area in normalized coordinates where *0* (*1*) corresponds to the",e,"("+r+"). If set to a",t,"axis ID followed by","*domain* (separated by a space), the position behaves like for","*paper*, but refers to the distance in fractions of the domain","length from the",e,"of the domain of that axis: e.g.,","*"+t+"2 domain* refers to the domain of the second",t," axis and a",t,"position of 0.5 refers to the","point between the",e,"and the",r,"of the domain of the","second",t,"axis."].join(" ")}}},{}],468:[function(t,e,r){"use strict";e.exports={INCREASING:{COLOR:"#3D9970",SYMBOL:"\u25b2"},DECREASING:{COLOR:"#FF4136",SYMBOL:"\u25bc"}}},{}],469:[function(t,e,r){"use strict";e.exports={FORMAT_LINK:"https://github.com/d3/d3-format/tree/v1.4.5#d3-format",DATE_FORMAT_LINK:"https://github.com/d3/d3-time-format/tree/v2.2.3#locale_format"}},{}],470:[function(t,e,r){"use strict";e.exports={COMPARISON_OPS:["=","!=","<",">=",">","<="],COMPARISON_OPS2:["=","<",">=",">","<="],INTERVAL_OPS:["[]","()","[)","(]","][",")(","](",")["],SET_OPS:["{}","}{"],CONSTRAINT_REDUCTION:{"=":"=","<":"<","<=":"<",">":">",">=":">","[]":"[]","()":"[]","[)":"[]","(]":"[]","][":"][",")(":"][","](":"][",")[":"]["}}},{}],471:[function(t,e,r){"use strict";e.exports={solid:[[],0],dot:[[.5,1],200],dash:[[.5,1],50],longdash:[[.5,1],10],dashdot:[[.5,.625,.875,1],50],longdashdot:[[.5,.7,.8,1],10]}},{}],472:[function(t,e,r){"use strict";e.exports={circle:"\u25cf","circle-open":"\u25cb",square:"\u25a0","square-open":"\u25a1",diamond:"\u25c6","diamond-open":"\u25c7",cross:"+",x:"\u274c"}},{}],473:[function(t,e,r){"use strict";e.exports={SHOW_PLACEHOLDER:100,HIDE_PLACEHOLDER:1e3,DESELECTDIM:.2}},{}],474:[function(t,e,r){"use strict";e.exports={BADNUM:void 0,FP_SAFE:1e-4*Number.MAX_VALUE,ONEMAXYEAR:316224e5,ONEAVGYEAR:315576e5,ONEMINYEAR:31536e6,ONEMAXQUARTER:79488e5,ONEAVGQUARTER:78894e5,ONEMINQUARTER:76896e5,ONEMAXMONTH:26784e5,ONEAVGMONTH:26298e5,ONEMINMONTH:24192e5,ONEWEEK:6048e5,ONEDAY:864e5,ONEHOUR:36e5,ONEMIN:6e4,ONESEC:1e3,EPOCHJD:2440587.5,ALMOST_EQUAL:.999999,LOG_CLIP:10,MINUS_SIGN:"\u2212"}},{}],475:[function(t,e,r){"use strict";r.xmlns="http://www.w3.org/2000/xmlns/",r.svg="http://www.w3.org/2000/svg",r.xlink="http://www.w3.org/1999/xlink",r.svgAttrs={xmlns:r.svg,"xmlns:xlink":r.xlink}},{}],476:[function(t,e,r){"use strict";r.version=t("./version").version,t("native-promise-only"),t("../build/plotcss");for(var n=t("./registry"),i=r.register=n.register,a=t("./plot_api"),o=Object.keys(a),s=0;splotly-logomark"}}},{}],478:[function(t,e,r){"use strict";r.isLeftAnchor=function(t){return"left"===t.xanchor||"auto"===t.xanchor&&t.x<=1/3},r.isCenterAnchor=function(t){return"center"===t.xanchor||"auto"===t.xanchor&&t.x>1/3&&t.x<2/3},r.isRightAnchor=function(t){return"right"===t.xanchor||"auto"===t.xanchor&&t.x>=2/3},r.isTopAnchor=function(t){return"top"===t.yanchor||"auto"===t.yanchor&&t.y>=2/3},r.isMiddleAnchor=function(t){return"middle"===t.yanchor||"auto"===t.yanchor&&t.y>1/3&&t.y<2/3},r.isBottomAnchor=function(t){return"bottom"===t.yanchor||"auto"===t.yanchor&&t.y<=1/3}},{}],479:[function(t,e,r){"use strict";var n=t("./mod"),i=n.mod,a=n.modHalf,o=Math.PI,s=2*o;function l(t){return Math.abs(t[1]-t[0])>s-1e-14}function c(t,e){return a(e-t,s)}function u(t,e){if(l(e))return!0;var r,n;e[0](n=i(n,s))&&(n+=s);var a=i(t,s),o=a+s;return a>=r&&a<=n||o>=r&&o<=n}function f(t,e,r,n,i,a,c){i=i||0,a=a||0;var u,f,h,p,d,m=l([r,n]);function g(t,e){return[t*Math.cos(e)+i,a-t*Math.sin(e)]}m?(u=0,f=o,h=s):r=i&&t<=a);var i,a},pathArc:function(t,e,r,n,i){return f(null,t,e,r,n,i,0)},pathSector:function(t,e,r,n,i){return f(null,t,e,r,n,i,1)},pathAnnulus:function(t,e,r,n,i,a){return f(t,e,r,n,i,a,1)}}},{"./mod":505}],480:[function(t,e,r){"use strict";var n=Array.isArray,i="undefined"!=typeof ArrayBuffer&&ArrayBuffer.isView?ArrayBuffer:{isView:function(){return!1}},a="undefined"==typeof DataView?function(){}:DataView;function o(t){return i.isView(t)&&!(t instanceof a)}function s(t){return n(t)||o(t)}function l(t,e,r){if(s(t)){if(s(t[0])){for(var n=r,i=0;ii.max?e.set(r):e.set(+t)}},integer:{coerceFunction:function(t,e,r,i){t%1||!n(t)||void 0!==i.min&&ti.max?e.set(r):e.set(+t)}},string:{coerceFunction:function(t,e,r,n){if("string"!=typeof t){var i="number"==typeof t;!0!==n.strict&&i?e.set(String(t)):e.set(r)}else n.noBlank&&!t?e.set(r):e.set(t)}},color:{coerceFunction:function(t,e,r){i(t).isValid()?e.set(t):e.set(r)}},colorlist:{coerceFunction:function(t,e,r){Array.isArray(t)&&t.length&&t.every((function(t){return i(t).isValid()}))?e.set(t):e.set(r)}},colorscale:{coerceFunction:function(t,e,r){e.set(o.get(t,r))}},angle:{coerceFunction:function(t,e,r){"auto"===t?e.set("auto"):n(t)?e.set(f(+t,360)):e.set(r)}},subplotid:{coerceFunction:function(t,e,r,n){var i=n.regex||u(r);"string"==typeof t&&i.test(t)?e.set(t):e.set(r)},validateFunction:function(t,e){var r=e.dflt;return t===r||"string"==typeof t&&!!u(r).test(t)}},flaglist:{coerceFunction:function(t,e,r,n){if("string"==typeof t)if(-1===(n.extras||[]).indexOf(t)){for(var i=t.split("+"),a=0;a=n&&t<=i?t:u}if("string"!=typeof t&&"number"!=typeof t)return u;t=String(t);var c=_(e),v=t.charAt(0);!c||"G"!==v&&"g"!==v||(t=t.substr(1),e="");var w=c&&"chinese"===e.substr(0,7),T=t.match(w?x:y);if(!T)return u;var k=T[1],A=T[3]||"1",M=Number(T[5]||1),S=Number(T[7]||0),E=Number(T[9]||0),L=Number(T[11]||0);if(c){if(2===k.length)return u;var C;k=Number(k);try{var P=g.getComponentMethod("calendars","getCal")(e);if(w){var I="i"===A.charAt(A.length-1);A=parseInt(A,10),C=P.newDate(k,P.toMonthIndex(k,A,I),M)}else C=P.newDate(k,Number(A),M)}catch(t){return u}return C?(C.toJD()-m)*f+S*h+E*p+L*d:u}k=2===k.length?(Number(k)+2e3-b)%100+b:Number(k),A-=1;var O=new Date(Date.UTC(2e3,A,M,S,E));return O.setUTCFullYear(k),O.getUTCMonth()!==A||O.getUTCDate()!==M?u:O.getTime()+L*d},n=r.MIN_MS=r.dateTime2ms("-9999"),i=r.MAX_MS=r.dateTime2ms("9999-12-31 23:59:59.9999"),r.isDateTime=function(t,e){return r.dateTime2ms(t,e)!==u};var T=90*f,k=3*h,A=5*p;function M(t,e,r,n,i){if((e||r||n||i)&&(t+=" "+w(e,2)+":"+w(r,2),(n||i)&&(t+=":"+w(n,2),i))){for(var a=4;i%10==0;)a-=1,i/=10;t+="."+w(i,a)}return t}r.ms2DateTime=function(t,e,r){if("number"!=typeof t||!(t>=n&&t<=i))return u;e||(e=0);var a,o,s,c,y,x,b=Math.floor(10*l(t+.05,1)),w=Math.round(t-b/10);if(_(r)){var S=Math.floor(w/f)+m,E=Math.floor(l(t,f));try{a=g.getComponentMethod("calendars","getCal")(r).fromJD(S).formatDate("yyyy-mm-dd")}catch(t){a=v("G%Y-%m-%d")(new Date(w))}if("-"===a.charAt(0))for(;a.length<11;)a="-0"+a.substr(1);else for(;a.length<10;)a="0"+a;o=e=n+f&&t<=i-f))return u;var e=Math.floor(10*l(t+.05,1)),r=new Date(Math.round(t-e/10));return M(a("%Y-%m-%d")(r),r.getHours(),r.getMinutes(),r.getSeconds(),10*r.getUTCMilliseconds()+e)},r.cleanDate=function(t,e,n){if(t===u)return e;if(r.isJSDate(t)||"number"==typeof t&&isFinite(t)){if(_(n))return s.error("JS Dates and milliseconds are incompatible with world calendars",t),e;if(!(t=r.ms2DateTimeLocal(+t))&&void 0!==e)return e}else if(!r.isDateTime(t,n))return s.error("unrecognized date",t),e;return t};var S=/%\d?f/g,E=/%h/g,L={1:"1",2:"1",3:"2",4:"2"};function C(t,e,r,n){t=t.replace(S,(function(t){var r=Math.min(+t.charAt(1)||6,6);return(e/1e3%1+2).toFixed(r).substr(2).replace(/0+$/,"")||"0"}));var i=new Date(Math.floor(e+.05));if(t=t.replace(E,(function(){return L[r("%q")(i)]})),_(n))try{t=g.getComponentMethod("calendars","worldCalFmt")(t,e,n)}catch(t){return"Invalid"}return r(t)(i)}var P=[59,59.9,59.99,59.999,59.9999];r.formatDate=function(t,e,r,n,i,a){if(i=_(i)&&i,!e)if("y"===r)e=a.year;else if("m"===r)e=a.month;else{if("d"!==r)return function(t,e){var r=l(t+.05,f),n=w(Math.floor(r/h),2)+":"+w(l(Math.floor(r/p),60),2);if("M"!==e){o(e)||(e=0);var i=(100+Math.min(l(t/d,60),P[e])).toFixed(e).substr(1);e>0&&(i=i.replace(/0+$/,"").replace(/[\.]$/,"")),n+=":"+i}return n}(t,r)+"\n"+C(a.dayMonthYear,t,n,i);e=a.dayMonth+"\n"+a.year}return C(e,t,n,i)};var I=3*f;r.incrementMonth=function(t,e,r){r=_(r)&&r;var n=l(t,f);if(t=Math.round(t-n),r)try{var i=Math.round(t/f)+m,a=g.getComponentMethod("calendars","getCal")(r),o=a.fromJD(i);return e%12?a.add(o,e,"m"):a.add(o,e/12,"y"),(o.toJD()-m)*f+n}catch(e){s.error("invalid ms "+t+" in calendar "+r)}var c=new Date(t+I);return c.setUTCMonth(c.getUTCMonth()+e)+n-I},r.findExactDates=function(t,e){for(var r,n,i=0,a=0,s=0,l=0,c=_(e)&&g.getComponentMethod("calendars","getCal")(e),u=0;u0&&t[e+1][0]<0)return e;return null}switch(e="RUS"===s||"FJI"===s?function(t){var e;if(null===c(t))e=t;else for(e=new Array(t.length),i=0;ie?r[n++]=[t[i][0]+360,t[i][1]]:i===e?(r[n++]=t[i],r[n++]=[t[i][0],-90]):r[n++]=t[i];var a=h.tester(r);a.pts.pop(),l.push(a)}:function(t){l.push(h.tester(t))},a.type){case"MultiPolygon":for(r=0;ri&&(i=c,e=l)}else e=r;return o.default(e).geometry.coordinates}(u),n.fIn=t,n.fOut=u,s.push(u)}else c.log(["Location",n.loc,"does not have a valid GeoJSON geometry.","Traces with locationmode *geojson-id* only support","*Polygon* and *MultiPolygon* geometries."].join(" "))}delete i[r]}switch(r.type){case"FeatureCollection":var h=r.features;for(n=0;n100?(clearInterval(a),n("Unexpected error while fetching from "+t)):void i++}),50)}))}for(var o=0;o0&&(r.push(i),i=[])}return i.length>0&&r.push(i),r},r.makeLine=function(t){return 1===t.length?{type:"LineString",coordinates:t[0]}:{type:"MultiLineString",coordinates:t}},r.makePolygon=function(t){if(1===t.length)return{type:"Polygon",coordinates:t};for(var e=new Array(t.length),r=0;r1||m<0||m>1?null:{x:t+l*m,y:e+f*m}}function l(t,e,r,n,i){var a=n*t+i*e;if(a<0)return n*n+i*i;if(a>r){var o=n-t,s=i-e;return o*o+s*s}var l=n*e-i*t;return l*l/r}r.segmentsIntersect=s,r.segmentDistance=function(t,e,r,n,i,a,o,c){if(s(t,e,r,n,i,a,o,c))return 0;var u=r-t,f=n-e,h=o-i,p=c-a,d=u*u+f*f,m=h*h+p*p,g=Math.min(l(u,f,d,i-t,a-e),l(u,f,d,o-t,c-e),l(h,p,m,t-i,e-a),l(h,p,m,r-i,n-a));return Math.sqrt(g)},r.getTextLocation=function(t,e,r,s){if(t===i&&s===a||(n={},i=t,a=s),n[r])return n[r];var l=t.getPointAtLength(o(r-s/2,e)),c=t.getPointAtLength(o(r+s/2,e)),u=Math.atan((c.y-l.y)/(c.x-l.x)),f=t.getPointAtLength(o(r,e)),h={x:(4*f.x+l.x+c.x)/6,y:(4*f.y+l.y+c.y)/6,theta:u};return n[r]=h,h},r.clearLocationCache=function(){i=null},r.getVisibleSegment=function(t,e,r){var n,i,a=e.left,o=e.right,s=e.top,l=e.bottom,c=0,u=t.getTotalLength(),f=u;function h(e){var r=t.getPointAtLength(e);0===e?n=r:e===u&&(i=r);var c=r.xo?r.x-o:0,f=r.yl?r.y-l:0;return Math.sqrt(c*c+f*f)}for(var p=h(c);p;){if((c+=p+r)>f)return;p=h(c)}for(p=h(f);p;){if(c>(f-=p+r))return;p=h(f)}return{min:c,max:f,len:f-c,total:u,isClosed:0===c&&f===u&&Math.abs(n.x-i.x)<.1&&Math.abs(n.y-i.y)<.1}},r.findPointOnPath=function(t,e,r,n){for(var i,a,o,s=(n=n||{}).pathLength||t.getTotalLength(),l=n.tolerance||.001,c=n.iterationLimit||30,u=t.getPointAtLength(0)[r]>t.getPointAtLength(s)[r]?-1:1,f=0,h=0,p=s;f0?p=i:h=i,f++}return a}},{"./mod":505}],494:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("tinycolor2"),a=t("color-normalize"),o=t("../components/colorscale"),s=t("../components/color/attributes").defaultLine,l=t("./array").isArrayOrTypedArray,c=a(s);function u(t,e){var r=t;return r[3]*=e,r}function f(t){if(n(t))return c;var e=a(t);return e.length?e:c}function h(t){return n(t)?t:1}e.exports={formatColor:function(t,e,r){var n,i,s,p,d,m=t.color,g=l(m),v=l(e),y=o.extractOpts(t),x=[];if(n=void 0!==y.colorscale?o.makeColorScaleFuncFromTrace(t):f,i=g?function(t,e){return void 0===t[e]?c:a(n(t[e]))}:f,s=v?function(t,e){return void 0===t[e]?1:h(t[e])}:h,g||v)for(var b=0;b1?(r*t+r*e)/r:t+e,i=String(n).length;if(i>16){var a=String(e).length;if(i>=String(t).length+a){var o=parseFloat(n).toPrecision(12);-1===o.indexOf("e+")&&(n=+o)}}return n}},{}],498:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-time-format").utcFormat,a=t("d3-format").format,o=t("fast-isnumeric"),s=t("../constants/numerical"),l=s.FP_SAFE,c=-l,u=s.BADNUM,f=e.exports={};f.adjustFormat=function(t){return!t||/^\d[.]\df/.test(t)||/[.]\d%/.test(t)?t:"0.f"===t?"~f":/^\d%/.test(t)?"~%":/^\ds/.test(t)?"~s":!/^[~,.0$]/.test(t)&&/[&fps]/.test(t)?"~"+t:t};var h={};f.warnBadFormat=function(t){var e=String(t);h[e]||(h[e]=1,f.warn('encountered bad format: "'+e+'"'))},f.noFormat=function(t){return String(t)},f.numberFormat=function(t){var e;try{e=a(f.adjustFormat(t))}catch(e){return f.warnBadFormat(t),f.noFormat}return e},f.nestedProperty=t("./nested_property"),f.keyedContainer=t("./keyed_container"),f.relativeAttr=t("./relative_attr"),f.isPlainObject=t("./is_plain_object"),f.toLogRange=t("./to_log_range"),f.relinkPrivateKeys=t("./relink_private");var p=t("./array");f.isTypedArray=p.isTypedArray,f.isArrayOrTypedArray=p.isArrayOrTypedArray,f.isArray1D=p.isArray1D,f.ensureArray=p.ensureArray,f.concat=p.concat,f.maxRowLength=p.maxRowLength,f.minRowLength=p.minRowLength;var d=t("./mod");f.mod=d.mod,f.modHalf=d.modHalf;var m=t("./coerce");f.valObjectMeta=m.valObjectMeta,f.coerce=m.coerce,f.coerce2=m.coerce2,f.coerceFont=m.coerceFont,f.coercePattern=m.coercePattern,f.coerceHoverinfo=m.coerceHoverinfo,f.coerceSelectionMarkerOpacity=m.coerceSelectionMarkerOpacity,f.validate=m.validate;var g=t("./dates");f.dateTime2ms=g.dateTime2ms,f.isDateTime=g.isDateTime,f.ms2DateTime=g.ms2DateTime,f.ms2DateTimeLocal=g.ms2DateTimeLocal,f.cleanDate=g.cleanDate,f.isJSDate=g.isJSDate,f.formatDate=g.formatDate,f.incrementMonth=g.incrementMonth,f.dateTick0=g.dateTick0,f.dfltRange=g.dfltRange,f.findExactDates=g.findExactDates,f.MIN_MS=g.MIN_MS,f.MAX_MS=g.MAX_MS;var v=t("./search");f.findBin=v.findBin,f.sorterAsc=v.sorterAsc,f.sorterDes=v.sorterDes,f.distinctVals=v.distinctVals,f.roundUp=v.roundUp,f.sort=v.sort,f.findIndexOfMin=v.findIndexOfMin,f.sortObjectKeys=t("./sort_object_keys");var y=t("./stats");f.aggNums=y.aggNums,f.len=y.len,f.mean=y.mean,f.median=y.median,f.midRange=y.midRange,f.variance=y.variance,f.stdev=y.stdev,f.interp=y.interp;var x=t("./matrix");f.init2dArray=x.init2dArray,f.transposeRagged=x.transposeRagged,f.dot=x.dot,f.translationMatrix=x.translationMatrix,f.rotationMatrix=x.rotationMatrix,f.rotationXYMatrix=x.rotationXYMatrix,f.apply3DTransform=x.apply3DTransform,f.apply2DTransform=x.apply2DTransform,f.apply2DTransform2=x.apply2DTransform2,f.convertCssMatrix=x.convertCssMatrix,f.inverseTransformMatrix=x.inverseTransformMatrix;var b=t("./angles");f.deg2rad=b.deg2rad,f.rad2deg=b.rad2deg,f.angleDelta=b.angleDelta,f.angleDist=b.angleDist,f.isFullCircle=b.isFullCircle,f.isAngleInsideSector=b.isAngleInsideSector,f.isPtInsideSector=b.isPtInsideSector,f.pathArc=b.pathArc,f.pathSector=b.pathSector,f.pathAnnulus=b.pathAnnulus;var _=t("./anchor_utils");f.isLeftAnchor=_.isLeftAnchor,f.isCenterAnchor=_.isCenterAnchor,f.isRightAnchor=_.isRightAnchor,f.isTopAnchor=_.isTopAnchor,f.isMiddleAnchor=_.isMiddleAnchor,f.isBottomAnchor=_.isBottomAnchor;var w=t("./geometry2d");f.segmentsIntersect=w.segmentsIntersect,f.segmentDistance=w.segmentDistance,f.getTextLocation=w.getTextLocation,f.clearLocationCache=w.clearLocationCache,f.getVisibleSegment=w.getVisibleSegment,f.findPointOnPath=w.findPointOnPath;var T=t("./extend");f.extendFlat=T.extendFlat,f.extendDeep=T.extendDeep,f.extendDeepAll=T.extendDeepAll,f.extendDeepNoArrays=T.extendDeepNoArrays;var k=t("./loggers");f.log=k.log,f.warn=k.warn,f.error=k.error;var A=t("./regex");f.counterRegex=A.counter;var M=t("./throttle");f.throttle=M.throttle,f.throttleDone=M.done,f.clearThrottle=M.clear;var S=t("./dom");function E(t){var e={};for(var r in t)for(var n=t[r],i=0;il||t=e)&&(o(t)&&t>=0&&t%1==0)},f.noop=t("./noop"),f.identity=t("./identity"),f.repeat=function(t,e){for(var r=new Array(e),n=0;nr?Math.max(r,Math.min(e,t)):Math.max(e,Math.min(r,t))},f.bBoxIntersect=function(t,e,r){return r=r||0,t.left<=e.right+r&&e.left<=t.right+r&&t.top<=e.bottom+r&&e.top<=t.bottom+r},f.simpleMap=function(t,e,r,n,i){for(var a=t.length,o=new Array(a),s=0;s=Math.pow(2,r)?i>10?(f.warn("randstr failed uniqueness"),l):t(e,r,n,(i||0)+1):l},f.OptionControl=function(t,e){t||(t={}),e||(e="opt");var r={optionList:[],_newoption:function(n){n[e]=t,r[n.name]=n,r.optionList.push(n)}};return r["_"+e]=t,r},f.smooth=function(t,e){if((e=Math.round(e)||0)<2)return t;var r,n,i,a,o=t.length,s=2*o,l=2*e-1,c=new Array(l),u=new Array(o);for(r=0;r=s&&(i-=s*Math.floor(i/s)),i<0?i=-1-i:i>=o&&(i=s-1-i),a+=t[i]*c[n];u[r]=a}return u},f.syncOrAsync=function(t,e,r){var n;function i(){return f.syncOrAsync(t,e,r)}for(;t.length;)if((n=(0,t.splice(0,1)[0])(e))&&n.then)return n.then(i);return r&&r(e)},f.stripTrailingSlash=function(t){return"/"===t.substr(-1)?t.substr(0,t.length-1):t},f.noneOrAll=function(t,e,r){if(t){var n,i=!1,a=!0;for(n=0;n0?e:0}))},f.fillArray=function(t,e,r,n){if(n=n||f.identity,f.isArrayOrTypedArray(t))for(var i=0;i1?i+o[1]:"";if(a&&(o.length>1||s.length>4||r))for(;n.test(s);)s=s.replace(n,"$1"+a+"$2");return s+l},f.TEMPLATE_STRING_REGEX=/%{([^\s%{}:]*)([:|\|][^}]*)?}/g;var z=/^\w*$/;f.templateString=function(t,e){var r={};return t.replace(f.TEMPLATE_STRING_REGEX,(function(t,n){var i;return z.test(n)?i=e[n]:(r[n]=r[n]||f.nestedProperty(e,n).get,i=r[n]()),f.isValidTextValue(i)?i:""}))};var D={max:10,count:0,name:"hovertemplate"};f.hovertemplateString=function(){return B.apply(D,arguments)};var R={max:10,count:0,name:"texttemplate"};f.texttemplateString=function(){return B.apply(R,arguments)};var F=/^[:|\|]/;function B(t,e,r){var n=this,a=arguments;e||(e={});var o={};return t.replace(f.TEMPLATE_STRING_REGEX,(function(t,s,l){var c,u,h,p="_xother"===s||"_yother"===s,d="_xother_"===s||"_yother_"===s,m="xother_"===s||"yother_"===s,g="xother"===s||"yother"===s||p||m||d,v=s;if((p||d)&&(v=v.substring(1)),(m||d)&&(v=v.substring(0,v.length-1)),g){if(void 0===(c=e[v]))return""}else for(h=3;h=48&&o<=57,c=s>=48&&s<=57;if(l&&(n=10*n+o-48),c&&(i=10*i+s-48),!l||!c){if(n!==i)return n-i;if(o!==s)return o-s}}return i-n};var N=2e9;f.seedPseudoRandom=function(){N=2e9},f.pseudoRandom=function(){var t=N;return N=(69069*N+1)%4294967296,Math.abs(N-t)<429496729?f.pseudoRandom():N/4294967296},f.fillText=function(t,e,r){var n=Array.isArray(r)?function(t){r.push(t)}:function(t){r.text=t},i=f.extractOption(t,e,"htx","hovertext");if(f.isValidTextValue(i))return n(i);var a=f.extractOption(t,e,"tx","text");return f.isValidTextValue(a)?n(a):void 0},f.isValidTextValue=function(t){return t||0===t},f.formatPercent=function(t,e){e=e||0;for(var r=(Math.round(100*t*Math.pow(10,e))*Math.pow(.1,e)).toFixed(e)+"%",n=0;n1&&(c=1):c=0,f.strTranslate(i-c*(r+o),a-c*(n+s))+f.strScale(c)+(l?"rotate("+l+(e?"":" "+r+" "+n)+")":"")},f.ensureUniformFontSize=function(t,e){var r=f.extendFlat({},e);return r.size=Math.max(e.size,t._fullLayout.uniformtext.minsize||0),r},f.join2=function(t,e,r){var n=t.length;return n>1?t.slice(0,-1).join(e)+r+t[n-1]:t.join(e)},f.bigFont=function(t){return Math.round(1.2*t)};var j=f.getFirefoxVersion(),U=null!==j&&j<86;f.getPositionFromD3Event=function(){return U?[n.event.layerX,n.event.layerY]:[n.event.offsetX,n.event.offsetY]}},{"../constants/numerical":474,"./anchor_utils":478,"./angles":479,"./array":480,"./clean_number":481,"./clear_responsive":483,"./coerce":484,"./dates":485,"./dom":486,"./extend":488,"./filter_unique":489,"./filter_visible":490,"./geometry2d":493,"./identity":496,"./increment":497,"./is_plain_object":499,"./keyed_container":500,"./localize":501,"./loggers":502,"./make_trace_groups":503,"./matrix":504,"./mod":505,"./nested_property":506,"./noop":507,"./notifier":508,"./preserve_drawing_buffer":512,"./push_unique":513,"./regex":515,"./relative_attr":516,"./relink_private":517,"./search":518,"./sort_object_keys":521,"./stats":522,"./throttle":525,"./to_log_range":526,"@plotly/d3":58,"d3-format":107,"d3-time-format":115,"fast-isnumeric":185}],499:[function(t,e,r){"use strict";e.exports=function(t){return window&&window.process&&window.process.versions?"[object Object]"===Object.prototype.toString.call(t):"[object Object]"===Object.prototype.toString.call(t)&&Object.getPrototypeOf(t).hasOwnProperty("hasOwnProperty")}},{}],500:[function(t,e,r){"use strict";var n=t("./nested_property"),i=/^\w*$/;e.exports=function(t,e,r,a){var o,s,l;r=r||"name",a=a||"value";var c={};e&&e.length?(l=n(t,e),s=l.get()):s=t,e=e||"";var u={};if(s)for(o=0;o2)return c[e]=2|c[e],h.set(t,null);if(f){for(o=e;o1){var e=["LOG:"];for(t=0;t1){var r=[];for(t=0;t"),"long")}},a.warn=function(){var t;if(n.logging>0){var e=["WARN:"];for(t=0;t0){var r=[];for(t=0;t"),"stick")}},a.error=function(){var t;if(n.logging>0){var e=["ERROR:"];for(t=0;t0){var r=[];for(t=0;t"),"stick")}}},{"../plot_api/plot_config":536,"./notifier":508}],503:[function(t,e,r){"use strict";var n=t("@plotly/d3");e.exports=function(t,e,r){var i=t.selectAll("g."+r.replace(/\s/g,".")).data(e,(function(t){return t[0].trace.uid}));i.exit().remove(),i.enter().append("g").attr("class",r),i.order();var a=t.classed("rangeplot")?"nodeRangePlot3":"node3";return i.each((function(t){t[0][a]=n.select(this)})),i}},{"@plotly/d3":58}],504:[function(t,e,r){"use strict";var n=t("gl-mat4");r.init2dArray=function(t,e){for(var r=new Array(t),n=0;ne/2?t-Math.round(t/e)*e:t}}},{}],506:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./array").isArrayOrTypedArray;function a(t,e){return function(){var r,n,o,s,l,c=t;for(s=0;s/g),l=0;la||c===i||cs)&&(!e||!l(t))}:function(t,e){var l=t[0],c=t[1];if(l===i||la||c===i||cs)return!1;var u,f,h,p,d,m=r.length,g=r[0][0],v=r[0][1],y=0;for(u=1;uMath.max(f,g)||c>Math.max(h,v)))if(cu||Math.abs(n(o,h))>i)return!0;return!1},a.filter=function(t,e){var r=[t[0]],n=0,i=0;function o(o){t.push(o);var s=r.length,l=n;r.splice(i+1);for(var c=l+1;c1&&o(t.pop());return{addPt:o,raw:t,filtered:r}}},{"../constants/numerical":474,"./matrix":504}],511:[function(t,e,r){(function(r){(function(){"use strict";var n=t("./show_no_webgl_msg"),i=t("regl");e.exports=function(t,e,a){var o=t._fullLayout,s=!0;return o._glcanvas.each((function(n){if(n.regl)n.regl.preloadCachedCode(a);else if(!n.pick||o._has("parcoords")){try{n.regl=i({canvas:this,attributes:{antialias:!n.pick,preserveDrawingBuffer:!0},pixelRatio:t._context.plotGlPixelRatio||r.devicePixelRatio,extensions:e||[],cachedCode:a||{}})}catch(t){s=!1}n.regl||(s=!1),s&&this.addEventListener("webglcontextlost",(function(e){t&&t.emit&&t.emit("plotly_webglcontextlost",{event:e,layer:n.key})}),!1)}})),s||n({container:o._glcontainer.node()}),s}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./show_no_webgl_msg":520,regl:278}],512:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("is-mobile");e.exports=function(t){var e;if("string"!=typeof(e=t&&t.hasOwnProperty("userAgent")?t.userAgent:function(){var t;"undefined"!=typeof navigator&&(t=navigator.userAgent);t&&t.headers&&"string"==typeof t.headers["user-agent"]&&(t=t.headers["user-agent"]);return t}()))return!0;var r=i({ua:{headers:{"user-agent":e}},tablet:!0,featureDetect:!1});if(!r)for(var a=e.split(" "),o=1;o-1;s--){var l=a[s];if("Version/"===l.substr(0,8)){var c=l.substr(8).split(".")[0];if(n(c)&&(c=+c),c>=13)return!0}}}return r}},{"fast-isnumeric":185,"is-mobile":229}],513:[function(t,e,r){"use strict";e.exports=function(t,e){if(e instanceof RegExp){for(var r=e.toString(),n=0;ni.queueLength&&(t.undoQueue.queue.shift(),t.undoQueue.index--))},startSequence:function(t){t.undoQueue=t.undoQueue||{index:0,queue:[],sequence:!1},t.undoQueue.sequence=!0,t.undoQueue.beginSequence=!0},stopSequence:function(t){t.undoQueue=t.undoQueue||{index:0,queue:[],sequence:!1},t.undoQueue.sequence=!1,t.undoQueue.beginSequence=!1},undo:function(t){var e,r;if(!(void 0===t.undoQueue||isNaN(t.undoQueue.index)||t.undoQueue.index<=0)){for(t.undoQueue.index--,e=t.undoQueue.queue[t.undoQueue.index],t.undoQueue.inSequence=!0,r=0;r=t.undoQueue.queue.length)){for(e=t.undoQueue.queue[t.undoQueue.index],t.undoQueue.inSequence=!0,r=0;re}function u(t,e){return t>=e}r.findBin=function(t,e,r){if(n(e.start))return r?Math.ceil((t-e.start)/e.size-1e-9)-1:Math.floor((t-e.start)/e.size+1e-9);var a,o,f=0,h=e.length,p=0,d=h>1?(e[h-1]-e[0])/(h-1):1;for(o=d>=0?r?s:l:r?u:c,t+=1e-9*d*(r?-1:1)*(d>=0?1:-1);f90&&i.log("Long binary search..."),f-1},r.sorterAsc=function(t,e){return t-e},r.sorterDes=function(t,e){return e-t},r.distinctVals=function(t){var e,n=t.slice();for(n.sort(r.sorterAsc),e=n.length-1;e>-1&&n[e]===o;e--);for(var i,a=n[e]-n[0]||1,s=a/(e||1)/1e4,l=[],c=0;c<=e;c++){var u=n[c],f=u-i;void 0===i?(l.push(u),i=u):f>s&&(a=Math.min(a,f),l.push(u),i=u)}return{vals:l,minDiff:a}},r.roundUp=function(t,e,r){for(var n,i=0,a=e.length-1,o=0,s=r?0:1,l=r?1:0,c=r?Math.ceil:Math.floor;i0&&(n=1),r&&n)return t.sort(e)}return n?t:t.reverse()},r.findIndexOfMin=function(t,e){e=e||a;for(var r,n=1/0,i=0;ia.length)&&(o=a.length),n(e)||(e=!1),i(a[0])){for(l=new Array(o),s=0;st.length-1)return t[t.length-1];var r=e%1;return r*t[Math.ceil(e)]+(1-r)*t[Math.floor(e)]}},{"./array":480,"fast-isnumeric":185}],523:[function(t,e,r){"use strict";var n=t("color-normalize");e.exports=function(t){return t?n(t):[0,0,0,1]}},{"color-normalize":84}],524:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../lib"),a=i.strTranslate,o=t("../constants/xmlns_namespaces"),s=t("../constants/alignment").LINE_SPACING,l=/([^$]*)([$]+[^$]*[$]+)([^$]*)/;r.convertToTspans=function(t,e,m){var M=t.text(),S=!t.attr("data-notex")&&e&&e._context.typesetMath&&"undefined"!=typeof MathJax&&M.match(l),C=n.select(t.node().parentNode);if(!C.empty()){var P=t.attr("class")?t.attr("class").split(" ")[0]:"text";return P+="-math",C.selectAll("svg."+P).remove(),C.selectAll("g."+P+"-group").remove(),t.style("display",null).attr({"data-unformatted":M,"data-math":"N"}),S?(e&&e._promises||[]).push(new Promise((function(e){t.style("display","none");var r=parseInt(t.node().style.fontSize,10),o={fontSize:r};!function(t,e,r){var a,o,s,l,h=parseInt((MathJax.version||"").split(".")[0]);if(2!==h&&3!==h)return void i.warn("No MathJax version:",MathJax.version);var p=function(){var r="math-output-"+i.randstr({},64),a=(l=n.select("body").append("div").attr({id:r}).style({visibility:"hidden",position:"absolute","font-size":e.fontSize+"px"}).text(t.replace(c,"\\lt ").replace(u,"\\gt "))).node();return 2===h?MathJax.Hub.Typeset(a):MathJax.typeset([a])},d=function(){var e=l.select(2===h?".MathJax_SVG":".MathJax"),a=!e.empty()&&l.select("svg").node();if(a){var o,s=a.getBoundingClientRect();o=2===h?n.select("body").select("#MathJax_SVG_glyphs"):e.select("defs"),r(e,o,s)}else i.log("There was an error in the tex syntax.",t),r();l.remove()};2===h?MathJax.Hub.Queue((function(){return o=i.extendDeepAll({},MathJax.Hub.config),s=MathJax.Hub.processSectionDelay,void 0!==MathJax.Hub.processSectionDelay&&(MathJax.Hub.processSectionDelay=0),MathJax.Hub.Config({messageStyle:"none",tex2jax:{inlineMath:f},displayAlign:"left"})}),(function(){if("SVG"!==(a=MathJax.Hub.config.menuSettings.renderer))return MathJax.Hub.setRenderer("SVG")}),p,d,(function(){if("SVG"!==a)return MathJax.Hub.setRenderer(a)}),(function(){return void 0!==s&&(MathJax.Hub.processSectionDelay=s),MathJax.Hub.Config(o)})):3===h&&(o=i.extendDeepAll({},MathJax.config),MathJax.config.tex||(MathJax.config.tex={}),MathJax.config.tex.inlineMath=f,"svg"!==(a=MathJax.config.startup.output)&&(MathJax.config.startup.output="svg"),MathJax.startup.defaultReady(),MathJax.startup.promise.then((function(){p(),d(),"svg"!==a&&(MathJax.config.startup.output=a),MathJax.config=o})))}(S[2],o,(function(n,i,o){C.selectAll("svg."+P).remove(),C.selectAll("g."+P+"-group").remove();var s=n&&n.select("svg");if(!s||!s.node())return I(),void e();var l=C.append("g").classed(P+"-group",!0).attr({"pointer-events":"none","data-unformatted":M,"data-math":"Y"});l.node().appendChild(s.node()),i&&i.node()&&s.node().insertBefore(i.node().cloneNode(!0),s.node().firstChild);var c=o.width,u=o.height;s.attr({class:P,height:u,preserveAspectRatio:"xMinYMin meet"}).style({overflow:"visible","pointer-events":"none"});var f=t.node().style.fill||"black",h=s.select("g");h.attr({fill:f,stroke:f});var p=h.node().getBoundingClientRect(),d=p.width,g=p.height;(d>c||g>u)&&(s.style("overflow","hidden"),d=(p=s.node().getBoundingClientRect()).width,g=p.height);var v=+t.attr("x"),y=+t.attr("y"),x=-(r||t.node().getBoundingClientRect().height)/4;if("y"===P[0])l.attr({transform:"rotate("+[-90,v,y]+")"+a(-d/2,x-g/2)});else if("l"===P[0])y=x-g/2;else if("a"===P[0]&&0!==P.indexOf("atitle"))v=0,y=x;else{var b=t.attr("text-anchor");v-=d*("middle"===b?.5:"end"===b?1:0),y=y+x-g/2}s.attr({x:v,y:y}),m&&m.call(t,l),e(l)}))}))):I(),t}function I(){C.empty()||(P=t.attr("class")+"-math",C.select("svg."+P).remove()),t.text("").style("white-space","pre"),function(t,e){e=e.replace(g," ");var r,a=!1,l=[],c=-1;function u(){c++;var e=document.createElementNS(o.svg,"tspan");n.select(e).attr({class:"line",dy:c*s+"em"}),t.appendChild(e),r=e;var i=l;if(l=[{node:e}],i.length>1)for(var a=1;a doesnt match end tag <"+t+">. Pretending it did match.",e),r=l[l.length-1].node}else i.log("Ignoring unexpected end tag .",e)}x.test(e)?u():(r=t,l=[{node:t}]);for(var S=e.split(v),C=0;C|>|>)/g;var f=[["$","$"],["\\(","\\)"]];var h={sup:"font-size:70%",sub:"font-size:70%",b:"font-weight:bold",i:"font-style:italic",a:"cursor:pointer",span:"",em:"font-style:italic;font-weight:bold"},p={sub:"0.3em",sup:"-0.6em"},d={sub:"-0.21em",sup:"0.42em"},m=["http:","https:","mailto:","",void 0,":"],g=r.NEWLINES=/(\r\n?|\n)/g,v=/(<[^<>]*>)/,y=/<(\/?)([^ >]*)(\s+(.*))?>/i,x=//i;r.BR_TAG_ALL=//gi;var b=/(^|[\s"'])style\s*=\s*("([^"]*);?"|'([^']*);?')/i,_=/(^|[\s"'])href\s*=\s*("([^"]*)"|'([^']*)')/i,w=/(^|[\s"'])target\s*=\s*("([^"\s]*)"|'([^'\s]*)')/i,T=/(^|[\s"'])popup\s*=\s*("([\w=,]*)"|'([\w=,]*)')/i;function k(t,e){if(!t)return null;var r=t.match(e),n=r&&(r[3]||r[4]);return n&&E(n)}var A=/(^|;)\s*color:/;r.plainText=function(t,e){for(var r=void 0!==(e=e||{}).len&&-1!==e.len?e.len:1/0,n=void 0!==e.allowedTags?e.allowedTags:["br"],i="...".length,a=t.split(v),o=[],s="",l=0,c=0;ci?o.push(u.substr(0,d-i)+"..."):o.push(u.substr(0,d));break}s=""}}return o.join("")};var M={mu:"\u03bc",amp:"&",lt:"<",gt:">",nbsp:"\xa0",times:"\xd7",plusmn:"\xb1",deg:"\xb0"},S=/&(#\d+|#x[\da-fA-F]+|[a-z]+);/g;function E(t){return t.replace(S,(function(t,e){return("#"===e.charAt(0)?function(t){if(t>1114111)return;var e=String.fromCodePoint;if(e)return e(t);var r=String.fromCharCode;return t<=65535?r(t):r(55232+(t>>10),t%1024+56320)}("x"===e.charAt(1)?parseInt(e.substr(2),16):parseInt(e.substr(1),10)):M[e])||t}))}function L(t){var e=encodeURI(decodeURI(t)),r=document.createElement("a"),n=document.createElement("a");r.href=t,n.href=e;var i=r.protocol,a=n.protocol;return-1!==m.indexOf(i)&&-1!==m.indexOf(a)?e:""}function C(t,e,r){var n,a,o,s=r.horizontalAlign,l=r.verticalAlign||"top",c=t.node().getBoundingClientRect(),u=e.node().getBoundingClientRect();return a="bottom"===l?function(){return c.bottom-n.height}:"middle"===l?function(){return c.top+(c.height-n.height)/2}:function(){return c.top},o="right"===s?function(){return c.right-n.width}:"center"===s?function(){return c.left+(c.width-n.width)/2}:function(){return c.left},function(){n=this.node().getBoundingClientRect();var t=o()-u.left,e=a()-u.top,s=r.gd||{};if(r.gd){s._fullLayout._calcInverseTransform(s);var l=i.apply3DTransform(s._fullLayout._invTransform)(t,e);t=l[0],e=l[1]}return this.style({top:e+"px",left:t+"px","z-index":1e3}),this}}r.convertEntities=E,r.sanitizeHTML=function(t){t=t.replace(g," ");for(var e=document.createElement("p"),r=e,i=[],a=t.split(v),o=0;oa.ts+e?l():a.timer=setTimeout((function(){l(),a.timer=null}),e)},r.done=function(t){var e=n[t];return e&&e.timer?new Promise((function(t){var r=e.onDone;e.onDone=function(){r&&r(),t(),e.onDone=null}})):Promise.resolve()},r.clear=function(t){if(t)i(n[t]),delete n[t];else for(var e in n)r.clear(e)}},{}],526:[function(t,e,r){"use strict";var n=t("fast-isnumeric");e.exports=function(t,e){if(t>0)return Math.log(t)/Math.LN10;var r=Math.log(Math.min(e[0],e[1]))/Math.LN10;return n(r)||(r=Math.log(Math.max(e[0],e[1]))/Math.LN10-6),r}},{"fast-isnumeric":185}],527:[function(t,e,r){"use strict";var n=e.exports={},i=t("../plots/geo/constants").locationmodeToLayer,a=t("topojson-client").feature;n.getTopojsonName=function(t){return[t.scope.replace(/ /g,"-"),"_",t.resolution.toString(),"m"].join("")},n.getTopojsonPath=function(t,e){return t+e+".json"},n.getTopojsonFeatures=function(t,e){var r=i[t.locationmode],n=e.objects[r];return a(e,n).features}},{"../plots/geo/constants":582,"topojson-client":310}],528:[function(t,e,r){"use strict";e.exports={moduleType:"locale",name:"en-US",dictionary:{"Click to enter Colorscale title":"Click to enter Colorscale title"},format:{date:"%m/%d/%Y"}}},{}],529:[function(t,e,r){"use strict";e.exports={moduleType:"locale",name:"en",dictionary:{"Click to enter Colorscale title":"Click to enter Colourscale title"},format:{days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],periods:["AM","PM"],dateTime:"%a %b %e %X %Y",date:"%d/%m/%Y",time:"%H:%M:%S",decimal:".",thousands:",",grouping:[3],currency:["$",""],year:"%Y",month:"%b %Y",dayMonth:"%b %-d",dayMonthYear:"%b %-d, %Y"}}},{}],530:[function(t,e,r){"use strict";var n=t("../registry");e.exports=function(t){for(var e,r,i=n.layoutArrayContainers,a=n.layoutArrayRegexes,o=t.split("[")[0],s=0;s0&&o.log("Clearing previous rejected promises from queue."),t._promises=[]},r.cleanLayout=function(t){var e,n;t||(t={}),t.xaxis1&&(t.xaxis||(t.xaxis=t.xaxis1),delete t.xaxis1),t.yaxis1&&(t.yaxis||(t.yaxis=t.yaxis1),delete t.yaxis1),t.scene1&&(t.scene||(t.scene=t.scene1),delete t.scene1);var a=(s.subplotsRegistry.cartesian||{}).attrRegex,l=(s.subplotsRegistry.polar||{}).attrRegex,f=(s.subplotsRegistry.ternary||{}).attrRegex,h=(s.subplotsRegistry.gl3d||{}).attrRegex,m=Object.keys(t);for(e=0;e3?(O.x=1.02,O.xanchor="left"):O.x<-2&&(O.x=-.02,O.xanchor="right"),O.y>3?(O.y=1.02,O.yanchor="bottom"):O.y<-2&&(O.y=-.02,O.yanchor="top")),d(t),"rotate"===t.dragmode&&(t.dragmode="orbit"),c.clean(t),t.template&&t.template.layout&&r.cleanLayout(t.template.layout),t},r.cleanData=function(t){for(var e=0;e0)return t.substr(0,e)}r.hasParent=function(t,e){for(var r=b(e);r;){if(r in t)return!0;r=b(r)}return!1};var _=["x","y","z"];r.clearAxisTypes=function(t,e,r){for(var n=0;n1&&a.warn("Full array edits are incompatible with other edits",f);var y=r[""][""];if(c(y))e.set(null);else{if(!Array.isArray(y))return a.warn("Unrecognized full array edit value",f,y),!0;e.set(y)}return!m&&(h(g,v),p(t),!0)}var x,b,_,w,T,k,A,M,S=Object.keys(r).map(Number).sort(o),E=e.get(),L=E||[],C=u(v,f).get(),P=[],I=-1,O=L.length;for(x=0;xL.length-(A?0:1))a.warn("index out of range",f,_);else if(void 0!==k)T.length>1&&a.warn("Insertion & removal are incompatible with edits to the same index.",f,_),c(k)?P.push(_):A?("add"===k&&(k={}),L.splice(_,0,k),C&&C.splice(_,0,{})):a.warn("Unrecognized full object edit value",f,_,k),-1===I&&(I=_);else for(b=0;b=0;x--)L.splice(P[x],1),C&&C.splice(P[x],1);if(L.length?E||e.set(L):e.set(null),m)return!1;if(h(g,v),d!==i){var z;if(-1===I)z=S;else{for(O=Math.max(L.length,O),z=[],x=0;x=I);x++)z.push(_);for(x=I;x=t.data.length||i<-t.data.length)throw new Error(r+" must be valid indices for gd.data.");if(e.indexOf(i,n+1)>-1||i>=0&&e.indexOf(-t.data.length+i)>-1||i<0&&e.indexOf(t.data.length+i)>-1)throw new Error("each index in "+r+" must be unique.")}}function I(t,e,r){if(!Array.isArray(t.data))throw new Error("gd.data must be an array.");if(void 0===e)throw new Error("currentIndices is a required argument.");if(Array.isArray(e)||(e=[e]),P(t,e,"currentIndices"),void 0===r||Array.isArray(r)||(r=[r]),void 0!==r&&P(t,r,"newIndices"),void 0!==r&&e.length!==r.length)throw new Error("current and new indices must be of equal length.")}function O(t,e,r,n,a){!function(t,e,r,n){var i=o.isPlainObject(n);if(!Array.isArray(t.data))throw new Error("gd.data must be an array");if(!o.isPlainObject(e))throw new Error("update must be a key:value object");if(void 0===r)throw new Error("indices must be an integer or array of integers");for(var a in P(t,r,"indices"),e){if(!Array.isArray(e[a])||e[a].length!==r.length)throw new Error("attribute "+a+" must be an array of length equal to indices array length");if(i&&(!(a in n)||!Array.isArray(n[a])||n[a].length!==e[a].length))throw new Error("when maxPoints is set as a key:value object it must contain a 1:1 corrispondence with the keys and number of traces in the update object")}}(t,e,r,n);for(var l=function(t,e,r,n){var a,l,c,u,f,h=o.isPlainObject(n),p=[];for(var d in Array.isArray(r)||(r=[r]),r=C(r,t.data.length-1),e)for(var m=0;m-1&&-1===r.indexOf("grouptitlefont")?l(r,r.replace("titlefont","title.font")):r.indexOf("titleposition")>-1?l(r,r.replace("titleposition","title.position")):r.indexOf("titleside")>-1?l(r,r.replace("titleside","title.side")):r.indexOf("titleoffset")>-1&&l(r,r.replace("titleoffset","title.offset")):l(r,r.replace("title","title.text"));function l(e,r){t[r]=t[e],delete t[e]}}function U(t,e,r){t=o.getGraphDiv(t),_.clearPromiseQueue(t);var n={};if("string"==typeof e)n[e]=r;else{if(!o.isPlainObject(e))return o.warn("Relayout fail.",e,r),Promise.reject();n=o.extendFlat({},e)}Object.keys(n).length&&(t.changed=!0);var i=W(t,n),a=i.flags;a.calc&&(t.calcdata=void 0);var s=[h.previousPromises];a.layoutReplot?s.push(w.layoutReplot):Object.keys(n).length&&(V(t,a,i)||h.supplyDefaults(t),a.legend&&s.push(w.doLegend),a.layoutstyle&&s.push(w.layoutStyles),a.axrange&&H(s,i.rangesAltered),a.ticks&&s.push(w.doTicksRelayout),a.modebar&&s.push(w.doModeBar),a.camera&&s.push(w.doCamera),a.colorbars&&s.push(w.doColorBars),s.push(M)),s.push(h.rehover,h.redrag),c.add(t,U,[t,i.undoit],U,[t,i.redoit]);var l=o.syncOrAsync(s,t);return l&&l.then||(l=Promise.resolve(t)),l.then((function(){return t.emit("plotly_relayout",i.eventData),t}))}function V(t,e,r){var n=t._fullLayout;if(!e.axrange)return!1;for(var i in e)if("axrange"!==i&&e[i])return!1;for(var a in r.rangesAltered){var o=p.id2name(a),s=t.layout[o],l=n[o];if(l.autorange=s.autorange,s.range&&(l.range=s.range.slice()),l.cleanRange(),l._matchGroup)for(var c in l._matchGroup)if(c!==a){var u=n[p.id2name(c)];u.autorange=l.autorange,u.range=l.range.slice(),u._input.range=l.range.slice()}}return!0}function H(t,e){var r=e?function(t){var r=[],n=!0;for(var i in e){var a=p.getFromId(t,i);if(r.push(i),-1!==(a.ticklabelposition||"").indexOf("inside")&&a._anchorAxis&&r.push(a._anchorAxis._id),a._matchGroup)for(var o in a._matchGroup)e[o]||r.push(o);a.automargin&&(n=!1)}return p.draw(t,r,{skipTitle:n})}:function(t){return p.draw(t,"redraw")};t.push(y,w.doAutoRangeAndConstraints,r,w.drawData,w.finalDraw)}var q=/^[xyz]axis[0-9]*\.range(\[[0|1]\])?$/,G=/^[xyz]axis[0-9]*\.autorange$/,Y=/^[xyz]axis[0-9]*\.domain(\[[0|1]\])?$/;function W(t,e){var r,n,i,a=t.layout,l=t._fullLayout,c=l._guiEditing,h=F(l._preGUI,c),d=Object.keys(e),m=p.list(t),g=o.extendDeepAll({},e),v={};for(j(e),d=Object.keys(e),n=0;n0&&"string"!=typeof O.parts[D];)D--;var B=O.parts[D],N=O.parts[D-1]+"."+B,U=O.parts.slice(0,D).join("."),V=s(t.layout,U).get(),H=s(l,U).get(),W=O.get();if(void 0!==z){M[I]=z,S[I]="reverse"===B?z:R(W);var Z=f.getLayoutValObject(l,O.parts);if(Z&&Z.impliedEdits&&null!==z)for(var J in Z.impliedEdits)E(o.relativeAttr(I,J),Z.impliedEdits[J]);if(-1!==["width","height"].indexOf(I))if(z){E("autosize",null);var K="height"===I?"width":"height";E(K,l[K])}else l[I]=t._initialAutoSize[I];else if("autosize"===I)E("width",z?null:l.width),E("height",z?null:l.height);else if(N.match(q))P(N),s(l,U+"._inputRange").set(null);else if(N.match(G)){P(N),s(l,U+"._inputRange").set(null);var Q=s(l,U).get();Q._inputDomain&&(Q._input.domain=Q._inputDomain.slice())}else N.match(Y)&&s(l,U+"._inputDomain").set(null);if("type"===B){L=V;var $="linear"===H.type&&"log"===z,tt="log"===H.type&&"linear"===z;if($||tt){if(L&&L.range)if(H.autorange)$&&(L.range=L.range[1]>L.range[0]?[1,2]:[2,1]);else{var et=L.range[0],rt=L.range[1];$?(et<=0&&rt<=0&&E(U+".autorange",!0),et<=0?et=rt/1e6:rt<=0&&(rt=et/1e6),E(U+".range[0]",Math.log(et)/Math.LN10),E(U+".range[1]",Math.log(rt)/Math.LN10)):(E(U+".range[0]",Math.pow(10,et)),E(U+".range[1]",Math.pow(10,rt)))}else E(U+".autorange",!0);Array.isArray(l._subplots.polar)&&l._subplots.polar.length&&l[O.parts[0]]&&"radialaxis"===O.parts[1]&&delete l[O.parts[0]]._subplot.viewInitial["radialaxis.range"],u.getComponentMethod("annotations","convertCoords")(t,H,z,E),u.getComponentMethod("images","convertCoords")(t,H,z,E)}else E(U+".autorange",!0),E(U+".range",null);s(l,U+"._inputRange").set(null)}else if(B.match(k)){var nt=s(l,I).get(),it=(z||{}).type;it&&"-"!==it||(it="linear"),u.getComponentMethod("annotations","convertCoords")(t,nt,it,E),u.getComponentMethod("images","convertCoords")(t,nt,it,E)}var at=b.containerArrayMatch(I);if(at){r=at.array,n=at.index;var ot=at.property,st=Z||{editType:"calc"};""!==n&&""===ot&&(b.isAddVal(z)?S[I]=null:b.isRemoveVal(z)?S[I]=(s(a,r).get()||[])[n]:o.warn("unrecognized full object value",e)),T.update(A,st),v[r]||(v[r]={});var lt=v[r][n];lt||(lt=v[r][n]={}),lt[ot]=z,delete e[I]}else"reverse"===B?(V.range?V.range.reverse():(E(U+".autorange",!0),V.range=[1,0]),H.autorange?A.calc=!0:A.plot=!0):(l._has("scatter-like")&&l._has("regl")&&"dragmode"===I&&("lasso"===z||"select"===z)&&"lasso"!==W&&"select"!==W||l._has("gl2d")?A.plot=!0:Z?T.update(A,Z):A.calc=!0,O.set(z))}}for(r in v){b.applyContainerArrayChanges(t,h(a,r),v[r],A,h)||(A.plot=!0)}for(var ct in C){var ut=(L=p.getFromId(t,ct))&&L._constraintGroup;if(ut)for(var ft in A.calc=!0,ut)C[ft]||(p.getFromId(t,ft)._constraintShrinkable=!0)}return(X(t)||e.height||e.width)&&(A.plot=!0),(A.plot||A.calc)&&(A.layoutReplot=!0),{flags:A,rangesAltered:C,undoit:S,redoit:M,eventData:g}}function X(t){var e=t._fullLayout,r=e.width,n=e.height;return t.layout.autosize&&h.plotAutoSize(t,t.layout,e),e.width!==r||e.height!==n}function Z(t,e,n,i){t=o.getGraphDiv(t),_.clearPromiseQueue(t),o.isPlainObject(e)||(e={}),o.isPlainObject(n)||(n={}),Object.keys(e).length&&(t.changed=!0),Object.keys(n).length&&(t.changed=!0);var a=_.coerceTraceIndices(t,i),s=N(t,o.extendFlat({},e),a),l=s.flags,u=W(t,o.extendFlat({},n)),f=u.flags;(l.calc||f.calc)&&(t.calcdata=void 0),l.clearAxisTypes&&_.clearAxisTypes(t,a,n);var p=[];f.layoutReplot?p.push(w.layoutReplot):l.fullReplot?p.push(r._doPlot):(p.push(h.previousPromises),V(t,f,u)||h.supplyDefaults(t),l.style&&p.push(w.doTraceStyle),(l.colorbars||f.colorbars)&&p.push(w.doColorBars),f.legend&&p.push(w.doLegend),f.layoutstyle&&p.push(w.layoutStyles),f.axrange&&H(p,u.rangesAltered),f.ticks&&p.push(w.doTicksRelayout),f.modebar&&p.push(w.doModeBar),f.camera&&p.push(w.doCamera),p.push(M)),p.push(h.rehover,h.redrag),c.add(t,Z,[t,s.undoit,u.undoit,s.traces],Z,[t,s.redoit,u.redoit,s.traces]);var d=o.syncOrAsync(p,t);return d&&d.then||(d=Promise.resolve(t)),d.then((function(){return t.emit("plotly_update",{data:s.eventData,layout:u.eventData}),t}))}function J(t){return function(e){e._fullLayout._guiEditing=!0;var r=t.apply(null,arguments);return e._fullLayout._guiEditing=!1,r}}var K=[{pattern:/^hiddenlabels/,attr:"legend.uirevision"},{pattern:/^((x|y)axis\d*)\.((auto)?range|title\.text)/},{pattern:/axis\d*\.showspikes$/,attr:"modebar.uirevision"},{pattern:/(hover|drag)mode$/,attr:"modebar.uirevision"},{pattern:/^(scene\d*)\.camera/},{pattern:/^(geo\d*)\.(projection|center|fitbounds)/},{pattern:/^(ternary\d*\.[abc]axis)\.(min|title\.text)$/},{pattern:/^(polar\d*\.radialaxis)\.((auto)?range|angle|title\.text)/},{pattern:/^(polar\d*\.angularaxis)\.rotation/},{pattern:/^(mapbox\d*)\.(center|zoom|bearing|pitch)/},{pattern:/^legend\.(x|y)$/,attr:"editrevision"},{pattern:/^(shapes|annotations)/,attr:"editrevision"},{pattern:/^title\.text$/,attr:"editrevision"}],Q=[{pattern:/^selectedpoints$/,attr:"selectionrevision"},{pattern:/(^|value\.)visible$/,attr:"legend.uirevision"},{pattern:/^dimensions\[\d+\]\.constraintrange/},{pattern:/^node\.(x|y|groups)/},{pattern:/^level$/},{pattern:/(^|value\.)name$/},{pattern:/colorbar\.title\.text$/},{pattern:/colorbar\.(x|y)$/,attr:"editrevision"}];function $(t,e){for(var r=0;r1;)if(n.pop(),void 0!==(r=s(e,n.join(".")+".uirevision").get()))return r;return e.uirevision}function et(t,e){for(var r=0;r=i.length?i[0]:i[t]:i}function l(t){return Array.isArray(a)?t>=a.length?a[0]:a[t]:a}function c(t,e){var r=0;return function(){if(t&&++r===e)return t()}}return void 0===n._frameWaitingCnt&&(n._frameWaitingCnt=0),new Promise((function(a,u){function f(){n._currentFrame&&n._currentFrame.onComplete&&n._currentFrame.onComplete();var e=n._currentFrame=n._frameQueue.shift();if(e){var r=e.name?e.name.toString():null;t._fullLayout._currentFrame=r,n._lastFrameAt=Date.now(),n._timeToNext=e.frameOpts.duration,h.transition(t,e.frame.data,e.frame.layout,_.coerceTraceIndices(t,e.frame.traces),e.frameOpts,e.transitionOpts).then((function(){e.onComplete&&e.onComplete()})),t.emit("plotly_animatingframe",{name:r,frame:e.frame,animation:{frame:e.frameOpts,transition:e.transitionOpts}})}else t.emit("plotly_animated"),window.cancelAnimationFrame(n._animationRaf),n._animationRaf=null}function p(){t.emit("plotly_animating"),n._lastFrameAt=-1/0,n._timeToNext=0,n._runningTransitions=0,n._currentFrame=null;var e=function(){n._animationRaf=window.requestAnimationFrame(e),Date.now()-n._lastFrameAt>n._timeToNext&&f()};e()}var d,m,g=0;function v(t){return Array.isArray(i)?g>=i.length?t.transitionOpts=i[g]:t.transitionOpts=i[0]:t.transitionOpts=i,g++,t}var y=[],x=null==e,b=Array.isArray(e);if(!x&&!b&&o.isPlainObject(e))y.push({type:"object",data:v(o.extendFlat({},e))});else if(x||-1!==["string","number"].indexOf(typeof e))for(d=0;d0&&kk)&&A.push(m);y=A}}y.length>0?function(e){if(0!==e.length){for(var i=0;i=0;n--)if(o.isPlainObject(e[n])){var m=e[n].name,g=(u[m]||d[m]||{}).name,v=e[n].name,y=u[g]||d[g];g&&v&&"number"==typeof v&&y&&A<5&&(A++,o.warn('addFrames: overwriting frame "'+(u[g]||d[g]).name+'" with a frame whose name of type "number" also equates to "'+g+'". This is valid but may potentially lead to unexpected behavior since all plotly.js frame names are stored internally as strings.'),5===A&&o.warn("addFrames: This API call has yielded too many of these warnings. For the rest of this call, further warnings about numeric frame names will be suppressed.")),d[m]={name:m},p.push({frame:h.supplyFrameDefaults(e[n]),index:r&&void 0!==r[n]&&null!==r[n]?r[n]:f+n})}p.sort((function(t,e){return t.index>e.index?-1:t.index=0;n--){if("number"==typeof(i=p[n].frame).name&&o.warn("Warning: addFrames accepts frames with numeric names, but the numbers areimplicitly cast to strings"),!i.name)for(;u[i.name="frame "+t._transitionData._counter++];);if(u[i.name]){for(a=0;a=0;r--)n=e[r],a.push({type:"delete",index:n}),s.unshift({type:"insert",index:n,value:i[n]});var l=h.modifyFrames,u=h.modifyFrames,f=[t,s],p=[t,a];return c&&c.add(t,l,f,u,p),h.modifyFrames(t,a)},r.addTraces=function t(e,n,i){e=o.getGraphDiv(e);var a,s,l=[],u=r.deleteTraces,f=t,h=[e,l],p=[e,n];for(function(t,e,r){var n,i;if(!Array.isArray(t.data))throw new Error("gd.data must be an array.");if(void 0===e)throw new Error("traces must be defined.");for(Array.isArray(e)||(e=[e]),n=0;n=0&&r=0&&r=a.length)return!1;if(2===t.dimensions){if(r++,e.length===r)return t;var o=e[r];if(!y(o))return!1;t=a[i][o]}else t=a[i]}else t=a}}return t}function y(t){return t===Math.round(t)&&t>=0}function x(){var t,e,r={};for(t in f(r,o),n.subplotsRegistry){if((e=n.subplotsRegistry[t]).layoutAttributes)if(Array.isArray(e.attr))for(var i=0;i=l.length)return!1;i=(r=(n.transformsRegistry[l[c].type]||{}).attributes)&&r[e[2]],s=3}else{var u=t._module;if(u||(u=(n.modules[t.type||a.type.dflt]||{})._module),!u)return!1;if(!(i=(r=u.attributes)&&r[o])){var f=u.basePlotModule;f&&f.attributes&&(i=f.attributes[o])}i||(i=a[o])}return v(i,e,s)},r.getLayoutValObject=function(t,e){return v(function(t,e){var r,i,a,s,l=t._basePlotModules;if(l){var c;for(r=0;r=i&&(r._input||{})._templateitemname;o&&(a=i);var s,l=e+"["+a+"]";function c(){s={},o&&(s[l]={},s[l].templateitemname=o)}function u(t,e){o?n.nestedProperty(s[l],t).set(e):s[l+"."+t]=e}function f(){var t=s;return c(),t}return c(),{modifyBase:function(t,e){s[t]=e},modifyItem:u,getUpdateObj:f,applyUpdate:function(e,r){e&&u(e,r);var i=f();for(var a in i)n.nestedProperty(t,a).set(i[a])}}}},{"../lib":498,"../plots/attributes":545}],539:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../registry"),a=t("../plots/plots"),o=t("../lib"),s=t("../lib/clear_gl_canvases"),l=t("../components/color"),c=t("../components/drawing"),u=t("../components/titles"),f=t("../components/modebar"),h=t("../plots/cartesian/axes"),p=t("../constants/alignment"),d=t("../plots/cartesian/constraints"),m=d.enforce,g=d.clean,v=t("../plots/cartesian/autorange").doAutoRange;function y(t,e,r){for(var n=0;n=t[1]||i[1]<=t[0])&&(a[0]e[0]))return!0}return!1}function x(t){var e,i,s,u,d,m,g=t._fullLayout,v=g._size,x=v.p,_=h.list(t,"",!0);if(g._paperdiv.style({width:t._context.responsive&&g.autosize&&!t._context._hasZeroWidth&&!t.layout.width?"100%":g.width+"px",height:t._context.responsive&&g.autosize&&!t._context._hasZeroHeight&&!t.layout.height?"100%":g.height+"px"}).selectAll(".main-svg").call(c.setSize,g.width,g.height),t._context.setBackground(t,g.paper_bgcolor),r.drawMainTitle(t),f.manage(t),!g._has("cartesian"))return a.previousPromises(t);function T(t,e,r){var n=t._lw/2;return"x"===t._id.charAt(0)?e?"top"===r?e._offset-x-n:e._offset+e._length+x+n:v.t+v.h*(1-(t.position||0))+n%1:e?"right"===r?e._offset+e._length+x+n:e._offset-x-n:v.l+v.w*(t.position||0)+n%1}for(e=0;e<_.length;e++){var k=(u=_[e])._anchorAxis;u._linepositions={},u._lw=c.crispRound(t,u.linewidth,1),u._mainLinePosition=T(u,k,u.side),u._mainMirrorPosition=u.mirror&&k?T(u,k,p.OPPOSITE_SIDE[u.side]):null}var A=[],M=[],S=[],E=1===l.opacity(g.paper_bgcolor)&&1===l.opacity(g.plot_bgcolor)&&g.paper_bgcolor===g.plot_bgcolor;for(i in g._plots)if((s=g._plots[i]).mainplot)s.bg&&s.bg.remove(),s.bg=void 0;else{var L=s.xaxis.domain,C=s.yaxis.domain,P=s.plotgroup;if(y(L,C,S)){var I=P.node(),O=s.bg=o.ensureSingle(P,"rect","bg");I.insertBefore(O.node(),I.childNodes[0]),M.push(i)}else P.select("rect.bg").remove(),S.push([L,C]),E||(A.push(i),M.push(i))}var z,D,R,F,B,N,j,U,V,H,q,G,Y,W=g._bgLayer.selectAll(".bg").data(A);for(W.enter().append("rect").classed("bg",!0),W.exit().remove(),W.each((function(t){g._plots[t].bg=n.select(this)})),e=0;eT?u.push({code:"unused",traceType:y,templateCount:w,dataCount:T}):T>w&&u.push({code:"reused",traceType:y,templateCount:w,dataCount:T})}}else u.push({code:"data"});if(function t(e,r){for(var n in e)if("_"!==n.charAt(0)){var a=e[n],o=m(e,n,r);i(a)?(Array.isArray(e)&&!1===a._template&&a.templateitemname&&u.push({code:"missing",path:o,templateitemname:a.templateitemname}),t(a,o)):Array.isArray(a)&&g(a)&&t(a,o)}}({data:p,layout:h},""),u.length)return u.map(v)}},{"../lib":498,"../plots/attributes":545,"../plots/plots":614,"./plot_config":536,"./plot_schema":537,"./plot_template":538}],541:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./plot_api"),a=t("../plots/plots"),o=t("../lib"),s=t("../snapshot/helpers"),l=t("../snapshot/tosvg"),c=t("../snapshot/svgtoimg"),u=t("../version").version,f={format:{valType:"enumerated",values:["png","jpeg","webp","svg","full-json"],dflt:"png"},width:{valType:"number",min:1},height:{valType:"number",min:1},scale:{valType:"number",min:0,dflt:1},setBackground:{valType:"any",dflt:!1},imageDataOnly:{valType:"boolean",dflt:!1}};e.exports=function(t,e){var r,h,p,d;function m(t){return!(t in e)||o.validate(e[t],f[t])}if(e=e||{},o.isPlainObject(t)?(r=t.data||[],h=t.layout||{},p=t.config||{},d={}):(t=o.getGraphDiv(t),r=o.extendDeep([],t.data),h=o.extendDeep({},t.layout),p=t._context,d=t._fullLayout||{}),!m("width")&&null!==e.width||!m("height")&&null!==e.height)throw new Error("Height and width should be pixel values.");if(!m("format"))throw new Error("Export format is not "+o.join2(f.format.values,", "," or ")+".");var g={};function v(t,r){return o.coerce(e,g,f,t,r)}var y=v("format"),x=v("width"),b=v("height"),_=v("scale"),w=v("setBackground"),T=v("imageDataOnly"),k=document.createElement("div");k.style.position="absolute",k.style.left="-5000px",document.body.appendChild(k);var A=o.extendFlat({},h);x?A.width=x:null===e.width&&n(d.width)&&(A.width=d.width),b?A.height=b:null===e.height&&n(d.height)&&(A.height=d.height);var M=o.extendFlat({},p,{_exportedPlot:!0,staticPlot:!0,setBackground:w}),S=s.getRedrawFunc(k);function E(){return new Promise((function(t){setTimeout(t,s.getDelay(k._fullLayout))}))}function L(){return new Promise((function(t,e){var r=l(k,y,_),n=k._fullLayout.width,f=k._fullLayout.height;function h(){i.purge(k),document.body.removeChild(k)}if("full-json"===y){var p=a.graphJson(k,!1,"keepdata","object",!0,!0);return p.version=u,p=JSON.stringify(p),h(),t(T?p:s.encodeJSON(p))}if(h(),"svg"===y)return t(T?r:s.encodeSVG(r));var d=document.createElement("canvas");d.id=o.randstr(),c({format:y,width:n,height:f,scale:_,canvas:d,svg:r,promise:!0}).then(t).catch(e)}))}return new Promise((function(t,e){i.newPlot(k,r,A,M).then(S).then(E).then(L).then((function(e){t(function(t){return T?t.replace(s.IMAGE_URL_PREFIX,""):t}(e))})).catch((function(t){e(t)}))}))}},{"../lib":498,"../plots/plots":614,"../snapshot/helpers":637,"../snapshot/svgtoimg":639,"../snapshot/tosvg":641,"../version":1118,"./plot_api":535,"fast-isnumeric":185}],542:[function(t,e,r){"use strict";var n=t("../lib"),i=t("../plots/plots"),a=t("./plot_schema"),o=t("./plot_config").dfltConfig,s=n.isPlainObject,l=Array.isArray,c=n.isArrayOrTypedArray;function u(t,e,r,i,a,o){o=o||[];for(var f=Object.keys(t),h=0;hx.length&&i.push(d("unused",a,v.concat(x.length)));var A,M,S,E,L,C=x.length,P=Array.isArray(k);if(P&&(C=Math.min(C,k.length)),2===b.dimensions)for(M=0;Mx[M].length&&i.push(d("unused",a,v.concat(M,x[M].length)));var I=x[M].length;for(A=0;A<(P?Math.min(I,k[M].length):I);A++)S=P?k[M][A]:k,E=y[M][A],L=x[M][A],n.validate(E,S)?L!==E&&L!==+E&&i.push(d("dynamic",a,v.concat(M,A),E,L)):i.push(d("value",a,v.concat(M,A),E))}else i.push(d("array",a,v.concat(M),y[M]));else for(M=0;M1&&p.push(d("object","layout"))),i.supplyDefaults(m);for(var g=m._fullData,v=r.length,y=0;y0&&Math.round(f)===f))return{vals:i};c=f}for(var h=e.calendar,p="start"===l,d="end"===l,m=t[r+"period0"],g=a(m,h)||0,v=[],y=[],x=[],b=i.length,_=0;_A;)k=o(k,-c,h);for(;k<=A;)k=o(k,c,h);T=o(k,-c,h)}else{for(k=g+(w=Math.round((A-g)/u))*u;k>A;)k-=u;for(;k<=A;)k+=u;T=k-u}v[_]=p?T:d?k:(T+k)/2,y[_]=T,x[_]=k}return{vals:v,starts:y,ends:x}}},{"../../constants/numerical":474,"../../lib":498,"fast-isnumeric":185}],547:[function(t,e,r){"use strict";e.exports={xaxis:{valType:"subplotid",dflt:"x",editType:"calc+clearAxisTypes"},yaxis:{valType:"subplotid",dflt:"y",editType:"calc+clearAxisTypes"}}},{}],548:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("fast-isnumeric"),a=t("../../lib"),o=t("../../constants/numerical").FP_SAFE,s=t("../../registry"),l=t("../../components/drawing"),c=t("./axis_ids"),u=c.getFromId,f=c.isLinked;function h(t,e){var r,n,i=[],o=t._fullLayout,s=d(o,e,0),l=d(o,e,1),c=m(t,e),u=c.min,f=c.max;if(0===u.length||0===f.length)return a.simpleMap(e.range,e.r2l);var h=u[0].val,g=f[0].val;for(r=1;r0&&((T=E-s(x)-l(b))>L?k/T>C&&(_=x,w=b,C=k/T):k/E>C&&(_={val:x.val,nopad:1},w={val:b.val,nopad:1},C=k/E));if(h===g){var P=h-1,I=h+1;if(M)if(0===h)i=[0,1];else{var O=(h>0?f:u).reduce((function(t,e){return Math.max(t,l(e))}),0),z=h/(1-Math.min(.5,O/E));i=h>0?[0,z]:[z,0]}else i=S?[Math.max(0,P),Math.max(1,I)]:[P,I]}else M?(_.val>=0&&(_={val:0,nopad:1}),w.val<=0&&(w={val:0,nopad:1})):S&&(_.val-C*s(_)<0&&(_={val:0,nopad:1}),w.val<=0&&(w={val:1,nopad:1})),C=(w.val-_.val-p(e,x.val,b.val))/(E-s(_)-l(w)),i=[_.val-C*s(_),w.val+C*l(w)];return v&&i.reverse(),a.simpleMap(i,e.l2r||Number)}function p(t,e,r){var n=0;if(t.rangebreaks)for(var i=t.locateBreaks(e,r),a=0;a0?r.ppadplus:r.ppadminus)||r.ppad||0),S=A((t._m>0?r.ppadminus:r.ppadplus)||r.ppad||0),E=A(r.vpadplus||r.vpad),L=A(r.vpadminus||r.vpad);if(!T){if(h=1/0,p=-1/0,w)for(n=0;n0&&(h=a),a>p&&a-o&&(h=a),a>p&&a=I;n--)P(n);return{min:d,max:m,opts:r}},concatExtremes:m};function m(t,e,r){var n,i,a,o=e._id,s=t._fullData,l=t._fullLayout,c=[],f=[];function h(t,e){for(n=0;n=r&&(c.extrapad||!o)){s=!1;break}i(e,c.val)&&c.pad<=r&&(o||!c.extrapad)&&(t.splice(l,1),l--)}if(s){var u=a&&0===e;t.push({val:e,pad:u?0:r,extrapad:!u&&o})}}function x(t){return i(t)&&Math.abs(t)=e}},{"../../components/drawing":383,"../../constants/numerical":474,"../../lib":498,"../../registry":633,"./axis_ids":553,"@plotly/d3":58,"fast-isnumeric":185}],549:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("fast-isnumeric"),a=t("../../plots/plots"),o=t("../../registry"),s=t("../../lib"),l=s.strTranslate,c=t("../../lib/svg_text_utils"),u=t("../../components/titles"),f=t("../../components/color"),h=t("../../components/drawing"),p=t("./layout_attributes"),d=t("./clean_ticks"),m=t("../../constants/numerical"),g=m.ONEMAXYEAR,v=m.ONEAVGYEAR,y=m.ONEMINYEAR,x=m.ONEMAXQUARTER,b=m.ONEAVGQUARTER,_=m.ONEMINQUARTER,w=m.ONEMAXMONTH,T=m.ONEAVGMONTH,k=m.ONEMINMONTH,A=m.ONEWEEK,M=m.ONEDAY,S=M/2,E=m.ONEHOUR,L=m.ONEMIN,C=m.ONESEC,P=m.MINUS_SIGN,I=m.BADNUM,O={K:"zeroline"},z={K:"gridline",L:"path"},D={K:"tick",L:"path"},R={K:"tick",L:"text"},F=t("../../constants/alignment"),B=F.MID_SHIFT,N=F.CAP_SHIFT,j=F.LINE_SPACING,U=F.OPPOSITE_SIDE,V=e.exports={};V.setConvert=t("./set_convert");var H=t("./axis_autotype"),q=t("./axis_ids"),G=q.idSort,Y=q.isLinked;V.id2name=q.id2name,V.name2id=q.name2id,V.cleanId=q.cleanId,V.list=q.list,V.listIds=q.listIds,V.getFromId=q.getFromId,V.getFromTrace=q.getFromTrace;var W=t("./autorange");V.getAutoRange=W.getAutoRange,V.findExtremes=W.findExtremes;function X(t){var e=1e-4*(t[1]-t[0]);return[t[0]-e,t[1]+e]}V.coerceRef=function(t,e,r,n,i,a){var o=n.charAt(n.length-1),l=r._fullLayout._subplots[o+"axis"],c=n+"ref",u={};return i||(i=l[0]||("string"==typeof a?a:a[0])),a||(a=i),l=l.concat(l.map((function(t){return t+" domain"}))),u[c]={valType:"enumerated",values:l.concat(a?"string"==typeof a?[a]:a:[]),dflt:i},s.coerce(t,e,u,c)},V.getRefType=function(t){return void 0===t?t:"paper"===t?"paper":"pixel"===t?"pixel":/( domain)$/.test(t)?"domain":"range"},V.coercePosition=function(t,e,r,n,i,a){var o,l;if("range"!==V.getRefType(n))o=s.ensureNumber,l=r(i,a);else{var c=V.getFromId(e,n);l=r(i,a=c.fraction2r(a)),o=c.cleanPos}t[i]=o(l)},V.cleanPosition=function(t,e,r){return("paper"===r||"pixel"===r?s.ensureNumber:V.getFromId(e,r).cleanPos)(t)},V.redrawComponents=function(t,e){e=e||V.listIds(t);var r=t._fullLayout;function n(n,i,a,s){for(var l=o.getComponentMethod(n,i),c={},u=0;u2e-6||((r-t._forceTick0)/t._minDtick%1+1.000001)%1>2e-6)&&(t._minDtick=0)):t._minDtick=0},V.saveRangeInitial=function(t,e){for(var r=V.list(t,"",!0),n=!1,i=0;i.3*h||u(n)||u(a))){var p=r.dtick/2;t+=t+p.8){var o=Number(r.substr(1));a.exactYears>.8&&o%12==0?t=V.tickIncrement(t,"M6","reverse")+1.5*M:a.exactMonths>.8?t=V.tickIncrement(t,"M1","reverse")+15.5*M:t-=S;var l=V.tickIncrement(t,r);if(l<=n)return l}return t}(y,t,v,c,a)),g=y,0;g<=u;)g=V.tickIncrement(g,v,!1,a);return{start:e.c2r(y,0,a),end:e.c2r(g,0,a),size:v,_dataSpan:u-c}},V.prepTicks=function(t,e){var r=s.simpleMap(t.range,t.r2l,void 0,void 0,e);if(t._dtickInit=t.dtick,t._tick0Init=t.tick0,"auto"===t.tickmode||!t.dtick){var n,a=t.nticks;a||("category"===t.type||"multicategory"===t.type?(n=t.tickfont?s.bigFont(t.tickfont.size||12):15,a=t._length/n):(n="y"===t._id.charAt(0)?40:80,a=s.constrain(t._length/n,4,9)+1),"radialaxis"===t._name&&(a*=2)),"array"===t.tickmode&&(a*=100),t._roughDTick=Math.abs(r[1]-r[0])/a,V.autoTicks(t,t._roughDTick),t._minDtick>0&&t.dtick<2*t._minDtick&&(t.dtick=t._minDtick,t.tick0=t.l2r(t._forceTick0))}"period"===t.ticklabelmode&&function(t){var e;function r(){return!(i(t.dtick)||"M"!==t.dtick.charAt(0))}var n=r(),a=V.getTickFormat(t);if(a){var o=t._dtickInit!==t.dtick;/%[fLQsSMX]/.test(a)||(/%[HI]/.test(a)?(e=E,o&&!n&&t.dticka&&f=o:d<=o;d=V.tickIncrement(d,t.dtick,l,t.calendar)){if(R++,t.rangebreaks&&!l){if(d=u)break}if(P.length>C||d===O)break;O=d;var F=!1;h&&d!==(0|d)&&(F=!0);var B={minor:F,value:d};L>1&&R%L&&(B.skipLabel=!0),P.push(B)}if(p&&function(t,e,r){for(var n=0;n0?(a=n-1,o=n):(a=n,o=n);var s,l=t[a].value,c=t[o].value,u=Math.abs(c-l),f=r||u,h=0;f>=y?h=u>=y&&u<=g?u:v:r===b&&f>=_?h=u>=_&&u<=x?u:b:f>=k?h=u>=k&&u<=w?u:T:r===A&&f>=A?h=A:f>=M?h=M:r===S&&f>=S?h=S:r===E&&f>=E&&(h=E),h>=u&&(h=u,s=!0);var p=i+h;if(e.rangebreaks&&h>0){for(var d=0,m=0;m<84;m++){var L=(m+.5)/84;e.maskBreaks(i*(1-L)+L*p)!==I&&d++}(h*=d/84)||(t[n].drop=!0),s&&u>A&&(h=u)}(h>0||0===n)&&(t[n].periodX=i+h/2)}}(P,t,t._definedDelta),t.rangebreaks){var N="y"===t._id.charAt(0),j=1;"auto"===t.tickmode&&(j=t.tickfont?t.tickfont.size:12);var U=NaN;for(z=P.length-1;z>-1;z--)if(P[z].drop)P.splice(z,1);else{P[z].value=Mt(P[z].value,t);var H=t.c2p(P[z].value);(N?U>H-j:Uu||Gu&&(q.periodX=u),G10||"01-01"!==n.substr(5)?t._tickround="d":t._tickround=+e.substr(1)%12==0?"y":"m";else if(e>=M&&a<=10||e>=15*M)t._tickround="d";else if(e>=L&&a<=16||e>=E)t._tickround="M";else if(e>=C&&a<=19||e>=L)t._tickround="S";else{var o=t.l2r(r+e).replace(/^-/,"").length;t._tickround=Math.max(a,o)-20,t._tickround<0&&(t._tickround=4)}}else if(i(e)||"L"===e.charAt(0)){var s=t.range.map(t.r2d||Number);i(e)||(e=Number(e.substr(1))),t._tickround=2-Math.floor(Math.log(e)/Math.LN10+.01);var l=Math.max(Math.abs(s[0]),Math.abs(s[1])),c=Math.floor(Math.log(l)/Math.LN10+.01),u=void 0===t.minexponent?3:t.minexponent;Math.abs(c)>u&&(ut(t.exponentformat)&&!ft(c)?t._tickexponent=3*Math.round((c-1)/3):t._tickexponent=c)}else t._tickround=null}function lt(t,e,r){var n=t.tickfont||{};return{x:e,dx:0,dy:0,text:r||"",fontSize:n.size,font:n.family,fontColor:n.color}}V.autoTicks=function(t,e){var r;function n(t){return Math.pow(t,Math.floor(Math.log(e)/Math.LN10))}if("date"===t.type){t.tick0=s.dateTick0(t.calendar,0);var a=2*e;if(a>v)e/=v,r=n(10),t.dtick="M"+12*ot(e,r,$);else if(a>T)e/=T,t.dtick="M"+ot(e,1,tt);else if(a>M){t.dtick=ot(e,M,t._hasDayOfWeekBreaks?[1,2,7,14]:rt);var o=V.getTickFormat(t),l="period"===t.ticklabelmode;l&&(t._rawTick0=t.tick0),/%[uVW]/.test(o)?t.tick0=s.dateTick0(t.calendar,2):t.tick0=s.dateTick0(t.calendar,1),l&&(t._dowTick0=t.tick0)}else a>E?t.dtick=ot(e,E,tt):a>L?t.dtick=ot(e,L,et):a>C?t.dtick=ot(e,C,et):(r=n(10),t.dtick=ot(e,r,$))}else if("log"===t.type){t.tick0=0;var c=s.simpleMap(t.range,t.r2l);if(e>.7)t.dtick=Math.ceil(e);else if(Math.abs(c[1]-c[0])<1){var u=1.5*Math.abs((c[1]-c[0])/e);e=Math.abs(Math.pow(10,c[1])-Math.pow(10,c[0]))/u,r=n(10),t.dtick="L"+ot(e,r,$)}else t.dtick=e>.3?"D2":"D1"}else"category"===t.type||"multicategory"===t.type?(t.tick0=0,t.dtick=Math.ceil(Math.max(e,1))):At(t)?(t.tick0=0,r=1,t.dtick=ot(e,r,at)):(t.tick0=0,r=n(10),t.dtick=ot(e,r,$));if(0===t.dtick&&(t.dtick=1),!i(t.dtick)&&"string"!=typeof t.dtick){var f=t.dtick;throw t.dtick=1,"ax.dtick error: "+String(f)}},V.tickIncrement=function(t,e,r,a){var o=r?-1:1;if(i(e))return s.increment(t,o*e);var l=e.charAt(0),c=o*Number(e.substr(1));if("M"===l)return s.incrementMonth(t,c,a);if("L"===l)return Math.log(Math.pow(10,t)+c)/Math.LN10;if("D"===l){var u="D2"===e?it:nt,f=t+.01*o,h=s.roundUp(s.mod(f,1),u,r);return Math.floor(f)+Math.log(n.round(Math.pow(10,h),1))/Math.LN10}throw"unrecognized dtick "+String(e)},V.tickFirst=function(t,e){var r=t.r2l||Number,a=s.simpleMap(t.range,r,void 0,void 0,e),o=a[1] ")}else t._prevDateHead=l,c+="
"+l;e.text=c}(t,o,r,c):"log"===u?function(t,e,r,n,a){var o=t.dtick,l=e.x,c=t.tickformat,u="string"==typeof o&&o.charAt(0);"never"===a&&(a="");n&&"L"!==u&&(o="L3",u="L");if(c||"L"===u)e.text=ht(Math.pow(10,l),t,a,n);else if(i(o)||"D"===u&&s.mod(l+.01,1)<.1){var f=Math.round(l),h=Math.abs(f),p=t.exponentformat;"power"===p||ut(p)&&ft(f)?(e.text=0===f?1:1===f?"10":"10"+(f>1?"":P)+h+"",e.fontSize*=1.25):("e"===p||"E"===p)&&h>2?e.text="1"+p+(f>0?"+":P)+h:(e.text=ht(Math.pow(10,l),t,"","fakehover"),"D1"===o&&"y"===t._id.charAt(0)&&(e.dy-=e.fontSize/6))}else{if("D"!==u)throw"unrecognized dtick "+String(o);e.text=String(Math.round(Math.pow(10,s.mod(l,1)))),e.fontSize*=.75}if("D1"===t.dtick){var d=String(e.text).charAt(0);"0"!==d&&"1"!==d||("y"===t._id.charAt(0)?e.dx-=e.fontSize/4:(e.dy+=e.fontSize/2,e.dx+=(t.range[1]>t.range[0]?1:-1)*e.fontSize*(l<0?.5:.25)))}}(t,o,0,c,m):"category"===u?function(t,e){var r=t._categories[Math.round(e.x)];void 0===r&&(r="");e.text=String(r)}(t,o):"multicategory"===u?function(t,e,r){var n=Math.round(e.x),i=t._categories[n]||[],a=void 0===i[1]?"":String(i[1]),o=void 0===i[0]?"":String(i[0]);r?e.text=o+" - "+a:(e.text=a,e.text2=o)}(t,o,r):At(t)?function(t,e,r,n,i){if("radians"!==t.thetaunit||r)e.text=ht(e.x,t,i,n);else{var a=e.x/180;if(0===a)e.text="0";else{var o=function(t){function e(t,e){return Math.abs(t-e)<=1e-6}var r=function(t){for(var r=1;!e(Math.round(t*r)/r,t);)r*=10;return r}(t),n=t*r,i=Math.abs(function t(r,n){return e(n,0)?r:t(n,r%n)}(n,r));return[Math.round(n/i),Math.round(r/i)]}(a);if(o[1]>=100)e.text=ht(s.deg2rad(e.x),t,i,n);else{var l=e.x<0;1===o[1]?1===o[0]?e.text="\u03c0":e.text=o[0]+"\u03c0":e.text=["",o[0],"","\u2044","",o[1],"","\u03c0"].join(""),l&&(e.text=P+e.text)}}}}(t,o,r,c,m):function(t,e,r,n,i){"never"===i?i="":"all"===t.showexponent&&Math.abs(e.x/t.dtick)<1e-6&&(i="hide");e.text=ht(e.x,t,i,n)}(t,o,0,c,m),n||(t.tickprefix&&!d(t.showtickprefix)&&(o.text=t.tickprefix+o.text),t.ticksuffix&&!d(t.showticksuffix)&&(o.text+=t.ticksuffix)),"boundaries"===t.tickson||t.showdividers){var g=function(e){var r=t.l2p(e);return r>=0&&r<=t._length?e:null};o.xbnd=[g(o.x-.5),g(o.x+t.dtick-.5)]}return o},V.hoverLabelText=function(t,e,r){r&&(t=s.extendFlat({},t,{hoverformat:r}));var n=Array.isArray(e)?e[0]:e,i=Array.isArray(e)?e[1]:void 0;if(void 0!==i&&i!==n)return V.hoverLabelText(t,n,r)+" - "+V.hoverLabelText(t,i,r);var a="log"===t.type&&n<=0,o=V.tickText(t,t.c2l(a?-n:n),"hover").text;return a?0===n?"0":P+o:o};var ct=["f","p","n","\u03bc","m","","k","M","G","T"];function ut(t){return"SI"===t||"B"===t}function ft(t){return t>14||t<-15}function ht(t,e,r,n){var a=t<0,o=e._tickround,l=r||e.exponentformat||"B",c=e._tickexponent,u=V.getTickFormat(e),f=e.separatethousands;if(n){var h={exponentformat:l,minexponent:e.minexponent,dtick:"none"===e.showexponent?e.dtick:i(t)&&Math.abs(t)||1,range:"none"===e.showexponent?e.range.map(e.r2d):[0,t||1]};st(h),o=(Number(h._tickround)||0)+4,c=h._tickexponent,e.hoverformat&&(u=e.hoverformat)}if(u)return e._numFormat(u)(t).replace(/-/g,P);var p,d=Math.pow(10,-o)/2;if("none"===l&&(c=0),(t=Math.abs(t))"+p+"":"B"===l&&9===c?t+="B":ut(l)&&(t+=ct[c/3+5]));return a?P+t:t}function pt(t,e){for(var r=[],n={},i=0;i1&&r=i.min&&t=0,a=u(t,e[1])<=0;return(r||i)&&(n||a)}if(t.tickformatstops&&t.tickformatstops.length>0)switch(t.type){case"date":case"linear":for(e=0;e=o(i)))){r=n;break}break;case"log":for(e=0;e0?r.bottom-f:0,h)))),e.automargin){n={x:0,y:0,r:0,l:0,t:0,b:0};var p=[0,1];if("x"===d){if("b"===l?n[l]=e._depth:(n[l]=e._depth=Math.max(r.width>0?f-r.top:0,h),p.reverse()),r.width>0){var g=r.right-(e._offset+e._length);g>0&&(n.xr=1,n.r=g);var v=e._offset-r.left;v>0&&(n.xl=0,n.l=v)}}else if("l"===l?n[l]=e._depth=Math.max(r.height>0?f-r.left:0,h):(n[l]=e._depth=Math.max(r.height>0?r.right-f:0,h),p.reverse()),r.height>0){var y=r.bottom-(e._offset+e._length);y>0&&(n.yb=0,n.b=y);var x=e._offset-r.top;x>0&&(n.yt=1,n.t=x)}n[m]="free"===e.anchor?e.position:e._anchorAxis.domain[p[0]],e.title.text!==c._dfltTitle[d]&&(n[l]+=gt(e)+(e.title.standoff||0)),e.mirror&&"free"!==e.anchor&&((i={x:0,y:0,r:0,l:0,t:0,b:0})[u]=e.linewidth,e.mirror&&!0!==e.mirror&&(i[u]+=h),!0===e.mirror||"ticks"===e.mirror?i[m]=e._anchorAxis.domain[p[1]]:"all"!==e.mirror&&"allticks"!==e.mirror||(i[m]=[e._counterDomainMin,e._counterDomainMax][p[1]]))}K&&(s=o.getComponentMethod("rangeslider","autoMarginOpts")(t,e)),a.autoMargin(t,xt(e),n),a.autoMargin(t,bt(e),i),a.autoMargin(t,_t(e),s)})),r.skipTitle||K&&"bottom"===e.side||Z.push((function(){return function(t,e){var r,n=t._fullLayout,i=e._id,a=i.charAt(0),o=e.title.font.size;if(e.title.hasOwnProperty("standoff"))r=e._depth+e.title.standoff+gt(e);else{var s=St(e);if("multicategory"===e.type)r=e._depth;else{var l=1.5*o;s&&(l=.5*o,"outside"===e.ticks&&(l+=e.ticklen)),r=10+l+(e.linewidth?e.linewidth-1:0)}s||(r+="x"===a?"top"===e.side?o*(e.showticklabels?1:0):o*(e.showticklabels?1.5:.5):"right"===e.side?o*(e.showticklabels?1:.5):o*(e.showticklabels?.5:0))}var c,f,p,d,m=V.getPxPosition(t,e);"x"===a?(f=e._offset+e._length/2,p="top"===e.side?m-r:m+r):(p=e._offset+e._length/2,f="right"===e.side?m+r:m-r,c={rotate:"-90",offset:0});if("multicategory"!==e.type){var g=e._selections[e._id+"tick"];if(d={selection:g,side:e.side},g&&g.node()&&g.node().parentNode){var v=h.getTranslate(g.node().parentNode);d.offsetLeft=v.x,d.offsetTop=v.y}e.title.hasOwnProperty("standoff")&&(d.pad=0)}return u.draw(t,i+"title",{propContainer:e,propName:e._name+".title.text",placeholder:n._dfltTitle[a],avoid:d,transform:c,attributes:{x:f,y:p,"text-anchor":"middle"}})}(t,e)})),s.syncOrAsync(Z)}}function Q(t){var r=p+(t||"tick");return w[r]||(w[r]=function(t,e){var r,n,i,a;t._selections[e].size()?(r=1/0,n=-1/0,i=1/0,a=-1/0,t._selections[e].each((function(){var t=yt(this),e=h.bBox(t.node().parentNode);r=Math.min(r,e.top),n=Math.max(n,e.bottom),i=Math.min(i,e.left),a=Math.max(a,e.right)}))):(r=0,n=0,i=0,a=0);return{top:r,bottom:n,left:i,right:a,height:n-r,width:a-i}}(e,r)),w[r]}},V.getTickSigns=function(t){var e=t._id.charAt(0),r={x:"top",y:"right"}[e],n=t.side===r?1:-1,i=[-1,1,n,-n];return"inside"!==t.ticks==("x"===e)&&(i=i.map((function(t){return-t}))),t.side&&i.push({l:-1,t:-1,r:1,b:1}[t.side.charAt(0)]),i},V.makeTransTickFn=function(t){return"x"===t._id.charAt(0)?function(e){return l(t._offset+t.l2p(e.x),0)}:function(e){return l(0,t._offset+t.l2p(e.x))}},V.makeTransTickLabelFn=function(t){var e=function(t){var e=t.ticklabelposition||"",r=function(t){return-1!==e.indexOf(t)},n=r("top"),i=r("left"),a=r("right"),o=r("bottom"),s=r("inside"),l=o||i||n||a;if(!l&&!s)return[0,0];var c=t.side,u=l?(t.tickwidth||0)/2:0,f=3,h=t.tickfont?t.tickfont.size:12;(o||n)&&(u+=h*N,f+=(t.linewidth||0)/2);(i||a)&&(u+=(t.linewidth||0)/2,f+=3);s&&"top"===c&&(f-=h*(1-N));(i||n)&&(u=-u);"bottom"!==c&&"right"!==c||(f=-f);return[l?u:0,s?f:0]}(t),r=e[0],n=e[1];return"x"===t._id.charAt(0)?function(e){return l(r+t._offset+t.l2p(dt(e)),n)}:function(e){return l(n,r+t._offset+t.l2p(dt(e)))}},V.makeTickPath=function(t,e,r,n){n=void 0!==n?n:t.ticklen;var i=t._id.charAt(0),a=(t.linewidth||1)/2;return"x"===i?"M0,"+(e+a*r)+"v"+n*r:"M"+(e+a*r)+",0h"+n*r},V.makeLabelFns=function(t,e,r){var n=t.ticklabelposition||"",a=function(t){return-1!==n.indexOf(t)},o=a("top"),l=a("left"),c=a("right"),u=a("bottom")||l||o||c,f=a("inside"),h="inside"===n&&"inside"===t.ticks||!f&&"outside"===t.ticks&&"boundaries"!==t.tickson,p=0,d=0,m=h?t.ticklen:0;if(f?m*=-1:u&&(m=0),h&&(p+=m,r)){var g=s.deg2rad(r);p=m*Math.cos(g)+1,d=m*Math.sin(g)}t.showticklabels&&(h||t.showline)&&(p+=.2*t.tickfont.size);var v,y,x,b,_,w={labelStandoff:p+=(t.linewidth||1)/2*(f?-1:1),labelShift:d},T=0,k=t.side,A=t._id.charAt(0),M=t.tickangle;if("x"===A)b=(_=!f&&"bottom"===k||f&&"top"===k)?1:-1,f&&(b*=-1),v=d*b,y=e+p*b,x=_?1:-.2,90===Math.abs(M)&&(f?x+=B:x=-90===M&&"bottom"===k?N:90===M&&"top"===k?B:.5,T=B/2*(M/90)),w.xFn=function(t){return t.dx+v+T*t.fontSize},w.yFn=function(t){return t.dy+y+t.fontSize*x},w.anchorFn=function(t,e){if(u){if(l)return"end";if(c)return"start"}return i(e)&&0!==e&&180!==e?e*b<0!==f?"end":"start":"middle"},w.heightFn=function(e,r,n){return r<-60||r>60?-.5*n:"top"===t.side!==f?-n:0};else if("y"===A){if(b=(_=!f&&"left"===k||f&&"right"===k)?1:-1,f&&(b*=-1),v=p,y=d*b,x=0,f||90!==Math.abs(M)||(x=-90===M&&"left"===k||90===M&&"right"===k?N:.5),f){var S=i(M)?+M:0;if(0!==S){var E=s.deg2rad(S);T=Math.abs(Math.sin(E))*N*b,x=0}}w.xFn=function(t){return t.dx+e-(v+t.fontSize*x)*b+T*t.fontSize},w.yFn=function(t){return t.dy+y+t.fontSize*B},w.anchorFn=function(t,e){return i(e)&&90===Math.abs(e)?"middle":_?"end":"start"},w.heightFn=function(e,r,n){return"right"===t.side&&(r*=-1),r<-30?-n:r<30?-.5*n:0}}return w},V.drawTicks=function(t,e,r){r=r||{};var n=e._id+"tick",i=r.vals;"period"===e.ticklabelmode&&(i=i.slice()).shift();var a=r.layer.selectAll("path."+n).data(e.ticks?i:[],mt);a.exit().remove(),a.enter().append("path").classed(n,1).classed("ticks",1).classed("crisp",!1!==r.crisp).call(f.stroke,e.tickcolor).style("stroke-width",h.crispRound(t,e.tickwidth,1)+"px").attr("d",r.path).style("display",null),Et(e,[D]),a.attr("transform",r.transFn)},V.drawGrid=function(t,e,r){r=r||{};var n=e._id+"grid",i=r.vals,a=r.counterAxis;if(!1===e.showgrid)i=[];else if(a&&V.shouldShowZeroLine(t,e,a))for(var o="array"===e.tickmode,s=0;sp||a.leftp||a.top+(e.tickangle?0:t.fontSize/4)e["_visibleLabelMin_"+r._id]?l.style("display","none"):"tick"!==t.K||i||l.style("display",null)}))}))}))}))},x(v,g+1?g:m);var b=null;e._selections&&(e._selections[f]=v);var _=[function(){return y.length&&Promise.all(y)}];e.automargin&&a._redrawFromAutoMarginCount&&90===g?(b=90,_.push((function(){x(v,g)}))):_.push((function(){if(x(v,m),p.length&&"x"===u&&!i(m)&&("log"!==e.type||"D"!==String(e.dtick).charAt(0))){b=0;var t,n=0,a=[];if(v.each((function(t){n=Math.max(n,t.fontSize);var r=e.l2p(t.x),i=yt(this),o=h.bBox(i.node());a.push({top:0,bottom:10,height:10,left:r-o.width/2,right:r+o.width/2+2,width:o.width+2})})),"boundaries"!==e.tickson&&!e.showdividers||r.secondary){var o=p.length,l=Math.abs((p[o-1].x-p[0].x)*e._m)/(o-1),c=e.ticklabelposition||"",f=function(t){return-1!==c.indexOf(t)},d=f("top"),g=f("left"),y=f("right"),_=f("bottom")||g||d||y?(e.tickwidth||0)+6:0,w=l<2.5*n||"multicategory"===e.type||"realaxis"===e._name;for(t=0;t1)for(n=1;n2*o}(i,e))return"date";var g="strict"!==r.autotypenumbers;return function(t,e){for(var r=t.length,n=f(r),i=0,o=0,s={},u=0;u2*i}(i,g)?"category":function(t,e){for(var r=t.length,n=0;n=2){var l,c,u="";if(2===o.length)for(l=0;l<2;l++)if(c=x(o[l])){u=m;break}var f=i("pattern",u);if(f===m)for(l=0;l<2;l++)(c=x(o[l]))&&(e.bounds[l]=o[l]=c-1);if(f)for(l=0;l<2;l++)switch(c=o[l],f){case m:if(!n(c))return void(e.enabled=!1);if((c=+c)!==Math.floor(c)||c<0||c>=7)return void(e.enabled=!1);e.bounds[l]=o[l]=c;break;case g:if(!n(c))return void(e.enabled=!1);if((c=+c)<0||c>24)return void(e.enabled=!1);e.bounds[l]=o[l]=c}if(!1===r.autorange){var h=r.range;if(h[0]h[1])return void(e.enabled=!1)}else if(o[0]>h[0]&&o[1]n?1:-1:+(t.substr(1)||1)-+(e.substr(1)||1)},r.ref2id=function(t){return!!/^[xyz]/.test(t)&&t.split(" ")[0]},r.isLinked=function(t,e){return a(e,t._axisMatchGroups)||a(e,t._axisConstraintGroups)}},{"../../registry":633,"./constants":556}],554:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){if("category"===e.type){var i,a=t.categoryarray,o=Array.isArray(a)&&a.length>0;o&&(i="array");var s,l=r("categoryorder",i);"array"===l&&(s=r("categoryarray")),o||"array"!==l||(l=e.categoryorder="trace"),"trace"===l?e._initialCategories=[]:"array"===l?e._initialCategories=s.slice():(s=function(t,e){var r,n,i,a=e.dataAttr||t._id.charAt(0),o={};if(e.axData)r=e.axData;else for(r=[],n=0;nn?i.substr(n):a.substr(r))+o:i+a+t*e:o}function g(t,e){for(var r=e._size,n=r.h/r.w,i={},a=Object.keys(t),o=0;oc*x)||T)for(r=0;rO&&FP&&(P=F);h/=(P-C)/(2*I),C=l.l2r(C),P=l.l2r(P),l.range=l._input.range=S=0?Math.min(t,.9):1/(1/Math.max(t,-.3)+3.222))}function N(t,e,r,n,i){return t.append("path").attr("class","zoombox").style({fill:e>.2?"rgba(0,0,0,0)":"rgba(255,255,255,0)","stroke-width":0}).attr("transform",c(r,n)).attr("d",i+"Z")}function j(t,e,r){return t.append("path").attr("class","zoombox-corners").style({fill:f.background,stroke:f.defaultLine,"stroke-width":1,opacity:0}).attr("transform",c(e,r)).attr("d","M0,0Z")}function U(t,e,r,n,i,a){t.attr("d",n+"M"+r.l+","+r.t+"v"+r.h+"h"+r.w+"v-"+r.h+"h-"+r.w+"Z"),V(t,e,i,a)}function V(t,e,r,n){r||(t.transition().style("fill",n>.2?"rgba(0,0,0,0.4)":"rgba(255,255,255,0.3)").duration(200),e.transition().style("opacity",1).duration(200))}function H(t){n.select(t).selectAll(".zoombox,.js-zoombox-backdrop,.js-zoombox-menu,.zoombox-corners").remove()}function q(t){I&&t.data&&t._context.showTips&&(i.notifier(i._(t,"Double-click to zoom back out"),"long"),I=!1)}function G(t){var e=Math.floor(Math.min(t.b-t.t,t.r-t.l,P)/2);return"M"+(t.l-3.5)+","+(t.t-.5+e)+"h3v"+-e+"h"+e+"v-3h-"+(e+3)+"ZM"+(t.r+3.5)+","+(t.t-.5+e)+"h-3v"+-e+"h"+-e+"v-3h"+(e+3)+"ZM"+(t.r+3.5)+","+(t.b+.5-e)+"h-3v"+e+"h"+-e+"v3h"+(e+3)+"ZM"+(t.l-3.5)+","+(t.b+.5-e)+"h3v"+e+"h"+e+"v3h-"+(e+3)+"Z"}function Y(t,e,r,n,a){for(var o,s,l,c,u=!1,f={},h={},p=(a||{}).xaHash,d=(a||{}).yaHash,m=0;m=0)i._fullLayout._deactivateShape(i);else{var o=i._fullLayout.clickmode;if(H(i),2!==t||vt||qt(),gt)o.indexOf("select")>-1&&S(r,i,J,K,e.id,Pt),o.indexOf("event")>-1&&p.click(i,r,e.id);else if(1===t&&vt){var s=m?O:I,c="s"===m||"w"===v?0:1,f=s._name+".range["+c+"]",h=function(t,e){var r,n=t.range[e],i=Math.abs(n-t.range[1-e]);return"date"===t.type?n:"log"===t.type?(r=Math.ceil(Math.max(0,-Math.log(i)/Math.LN10))+3,a("."+r+"g")(Math.pow(10,n))):(r=Math.floor(Math.log(Math.abs(n))/Math.LN10)-Math.floor(Math.log(i)/Math.LN10)+4,a("."+String(r)+"g")(n))}(s,c),d="left",g="middle";if(s.fixedrange)return;m?(g="n"===m?"top":"bottom","right"===s.side&&(d="right")):"e"===v&&(d="right"),i._context.showAxisRangeEntryBoxes&&n.select(bt).call(u.makeEditable,{gd:i,immediate:!0,background:i._fullLayout.paper_bgcolor,text:String(h),fill:s.tickfont?s.tickfont.color:"#444",horizontalAlign:d,verticalAlign:g}).on("edit",(function(t){var e=s.d2r(t);void 0!==e&&l.call("_guiRelayout",i,f,e)}))}}}function zt(e,r){if(t._transitioningWithDuration)return!1;var n=Math.max(0,Math.min(tt,pt*e+_t)),i=Math.max(0,Math.min(et,dt*r+wt)),a=Math.abs(n-_t),o=Math.abs(i-wt);function s(){St="",Tt.r=Tt.l,Tt.t=Tt.b,Lt.attr("d","M0,0Z")}if(Tt.l=Math.min(_t,n),Tt.r=Math.max(_t,n),Tt.t=Math.min(wt,i),Tt.b=Math.max(wt,i),rt.isSubplotConstrained)a>P||o>P?(St="xy",a/tt>o/et?(o=a*et/tt,wt>i?Tt.t=wt-o:Tt.b=wt+o):(a=o*tt/et,_t>n?Tt.l=_t-a:Tt.r=_t+a),Lt.attr("d",G(Tt))):s();else if(nt.isSubplotConstrained)if(a>P||o>P){St="xy";var l=Math.min(Tt.l/tt,(et-Tt.b)/et),c=Math.max(Tt.r/tt,(et-Tt.t)/et);Tt.l=l*tt,Tt.r=c*tt,Tt.b=(1-l)*et,Tt.t=(1-c)*et,Lt.attr("d",G(Tt))}else s();else!at||o0){var u;if(nt.isSubplotConstrained||!it&&1===at.length){for(u=0;um[1]-1/4096&&(e.domain=s),i.noneOrAll(t.domain,e.domain,s)}return r("layer"),e}},{"../../lib":498,"fast-isnumeric":185}],568:[function(t,e,r){"use strict";var n=t("./show_dflt");e.exports=function(t,e,r,i,a){a||(a={});var o=a.tickSuffixDflt,s=n(t);r("tickprefix")&&r("showtickprefix",s),r("ticksuffix",o)&&r("showticksuffix",s)}},{"./show_dflt":572}],569:[function(t,e,r){"use strict";var n=t("../../constants/alignment").FROM_BL;e.exports=function(t,e,r){void 0===r&&(r=n[t.constraintoward||"center"]);var i=[t.r2l(t.range[0]),t.r2l(t.range[1])],a=i[0]+(i[1]-i[0])*r;t.range=t._input.range=[t.l2r(a+(i[0]-a)*e),t.l2r(a+(i[1]-a)*e)],t.setScale()}},{"../../constants/alignment":466}],570:[function(t,e,r){"use strict";var n=t("polybooljs"),i=t("../../registry"),a=t("../../components/drawing").dashStyle,o=t("../../components/color"),s=t("../../components/fx"),l=t("../../components/fx/helpers").makeEventData,c=t("../../components/dragelement/helpers"),u=c.freeMode,f=c.rectMode,h=c.drawMode,p=c.openMode,d=c.selectMode,m=t("../../components/shapes/draw_newshape/display_outlines"),g=t("../../components/shapes/draw_newshape/helpers").handleEllipse,v=t("../../components/shapes/draw_newshape/newshapes"),y=t("../../lib"),x=t("../../lib/polygon"),b=t("../../lib/throttle"),_=t("./axis_ids").getFromId,w=t("../../lib/clear_gl_canvases"),T=t("../../plot_api/subroutines").redrawReglTraces,k=t("./constants"),A=k.MINSELECT,M=x.filter,S=x.tester,E=t("./handle_outline").clearSelect,L=t("./helpers"),C=L.p2r,P=L.axValue,I=L.getTransform;function O(t,e,r,n,i,a,o){var s,l,c,u,f,h,d,g,v,y=e._hoverdata,x=e._fullLayout.clickmode.indexOf("event")>-1,b=[];if(function(t){return t&&Array.isArray(t)&&!0!==t[0].hoverOnBox}(y)){F(t,e,a);var _=function(t,e){var r,n,i=t[0],a=-1,o=[];for(n=0;n0?function(t,e){var r,n,i,a=[];for(i=0;i0&&a.push(r);if(1===a.length&&a[0]===e.searchInfo&&(n=e.searchInfo.cd[0].trace).selectedpoints.length===e.pointNumbers.length){for(i=0;i1)return!1;if((i+=r.selectedpoints.length)>1)return!1}return 1===i}(s)&&(h=j(_))){for(o&&o.remove(),v=0;v=0&&n._fullLayout._deactivateShape(n),h(e)){var a=n._fullLayout._zoomlayer.selectAll(".select-outline-"+r.id);if(a&&n._fullLayout._drawing){var o=v(a,t);o&&i.call("_guiRelayout",n,{shapes:o}),n._fullLayout._drawing=!1}}r.selection={},r.selection.selectionDefs=t.selectionDefs=[],r.selection.mergedPolygons=t.mergedPolygons=[]}function N(t,e,r,n){var i,a,o,s=[],l=e.map((function(t){return t._id})),c=r.map((function(t){return t._id}));for(o=0;o0?n[0]:r;return!!e.selectedpoints&&e.selectedpoints.indexOf(i)>-1}function U(t,e,r){var n,a,o,s;for(n=0;n=0)L._fullLayout._deactivateShape(L);else if(!_){var r=z.clickmode;b.done(mt).then((function(){if(b.clear(mt),2===t){for(ft.remove(),$=0;$-1&&O(e,L,i.xaxes,i.yaxes,i.subplot,i,ft),"event"===r&&L.emit("plotly_selected",void 0);s.click(L,e)})).catch(y.error)}},i.doneFn=function(){dt.remove(),b.done(mt).then((function(){b.clear(mt),i.gd.emit("plotly_selected",et),Q&&i.selectionDefs&&(Q.subtract=ut,i.selectionDefs.push(Q),i.mergedPolygons.length=0,[].push.apply(i.mergedPolygons,K)),i.doneFnCompleted&&i.doneFnCompleted(gt)})).catch(y.error),_&&B(i)}},clearSelect:E,clearSelectionsCache:B,selectOnClick:O}},{"../../components/color":361,"../../components/dragelement/helpers":379,"../../components/drawing":383,"../../components/fx":401,"../../components/fx/helpers":397,"../../components/shapes/draw_newshape/display_outlines":449,"../../components/shapes/draw_newshape/helpers":450,"../../components/shapes/draw_newshape/newshapes":451,"../../lib":498,"../../lib/clear_gl_canvases":482,"../../lib/polygon":510,"../../lib/throttle":525,"../../plot_api/subroutines":539,"../../registry":633,"./axis_ids":553,"./constants":556,"./handle_outline":560,"./helpers":561,polybooljs:249}],571:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-time-format").utcFormat,a=t("../../lib"),o=a.numberFormat,s=t("fast-isnumeric"),l=a.cleanNumber,c=a.ms2DateTime,u=a.dateTime2ms,f=a.ensureNumber,h=a.isArrayOrTypedArray,p=t("../../constants/numerical"),d=p.FP_SAFE,m=p.BADNUM,g=p.LOG_CLIP,v=p.ONEWEEK,y=p.ONEDAY,x=p.ONEHOUR,b=p.ONEMIN,_=p.ONESEC,w=t("./axis_ids"),T=t("./constants"),k=T.HOUR_PATTERN,A=T.WEEKDAY_PATTERN;function M(t){return Math.pow(10,t)}function S(t){return null!=t}e.exports=function(t,e){e=e||{};var r=t._id||"x",p=r.charAt(0);function E(e,r){if(e>0)return Math.log(e)/Math.LN10;if(e<=0&&r&&t.range&&2===t.range.length){var n=t.range[0],i=t.range[1];return.5*(n+i-2*g*Math.abs(n-i))}return m}function L(e,r,n,i){if((i||{}).msUTC&&s(e))return+e;var o=u(e,n||t.calendar);if(o===m){if(!s(e))return m;e=+e;var l=Math.floor(10*a.mod(e+.05,1)),c=Math.round(e-l/10);o=u(new Date(c))+l/10}return o}function C(e,r,n){return c(e,r,n||t.calendar)}function P(e){return t._categories[Math.round(e)]}function I(e){if(S(e)){if(void 0===t._categoriesMap&&(t._categoriesMap={}),void 0!==t._categoriesMap[e])return t._categoriesMap[e];t._categories.push("number"==typeof e?String(e):e);var r=t._categories.length-1;return t._categoriesMap[e]=r,r}return m}function O(e){if(t._categoriesMap)return t._categoriesMap[e]}function z(t){var e=O(t);return void 0!==e?e:s(t)?+t:void 0}function D(t){return s(t)?+t:O(t)}function R(t,e,r){return n.round(r+e*t,2)}function F(t,e,r){return(t-r)/e}var B=function(e){return s(e)?R(e,t._m,t._b):m},N=function(e){return F(e,t._m,t._b)};if(t.rangebreaks){var j="y"===p;B=function(e){if(!s(e))return m;var r=t._rangebreaks.length;if(!r)return R(e,t._m,t._b);var n=j;t.range[0]>t.range[1]&&(n=!n);for(var i=n?-1:1,a=i*e,o=0,l=0;lu)){o=a<(c+u)/2?l:l+1;break}o=l+1}var f=t._B[o]||0;return isFinite(f)?R(e,t._m2,f):0},N=function(e){var r=t._rangebreaks.length;if(!r)return F(e,t._m,t._b);for(var n=0,i=0;it._rangebreaks[i].pmax&&(n=i+1);return F(e,t._m2,t._B[n])}}t.c2l="log"===t.type?E:f,t.l2c="log"===t.type?M:f,t.l2p=B,t.p2l=N,t.c2p="log"===t.type?function(t,e){return B(E(t,e))}:B,t.p2c="log"===t.type?function(t){return M(N(t))}:N,-1!==["linear","-"].indexOf(t.type)?(t.d2r=t.r2d=t.d2c=t.r2c=t.d2l=t.r2l=l,t.c2d=t.c2r=t.l2d=t.l2r=f,t.d2p=t.r2p=function(e){return t.l2p(l(e))},t.p2d=t.p2r=N,t.cleanPos=f):"log"===t.type?(t.d2r=t.d2l=function(t,e){return E(l(t),e)},t.r2d=t.r2c=function(t){return M(l(t))},t.d2c=t.r2l=l,t.c2d=t.l2r=f,t.c2r=E,t.l2d=M,t.d2p=function(e,r){return t.l2p(t.d2r(e,r))},t.p2d=function(t){return M(N(t))},t.r2p=function(e){return t.l2p(l(e))},t.p2r=N,t.cleanPos=f):"date"===t.type?(t.d2r=t.r2d=a.identity,t.d2c=t.r2c=t.d2l=t.r2l=L,t.c2d=t.c2r=t.l2d=t.l2r=C,t.d2p=t.r2p=function(e,r,n){return t.l2p(L(e,0,n))},t.p2d=t.p2r=function(t,e,r){return C(N(t),e,r)},t.cleanPos=function(e){return a.cleanDate(e,m,t.calendar)}):"category"===t.type?(t.d2c=t.d2l=I,t.r2d=t.c2d=t.l2d=P,t.d2r=t.d2l_noadd=z,t.r2c=function(e){var r=D(e);return void 0!==r?r:t.fraction2r(.5)},t.l2r=t.c2r=f,t.r2l=D,t.d2p=function(e){return t.l2p(t.r2c(e))},t.p2d=function(t){return P(N(t))},t.r2p=t.d2p,t.p2r=N,t.cleanPos=function(t){return"string"==typeof t&&""!==t?t:f(t)}):"multicategory"===t.type&&(t.r2d=t.c2d=t.l2d=P,t.d2r=t.d2l_noadd=z,t.r2c=function(e){var r=z(e);return void 0!==r?r:t.fraction2r(.5)},t.r2c_just_indices=O,t.l2r=t.c2r=f,t.r2l=z,t.d2p=function(e){return t.l2p(t.r2c(e))},t.p2d=function(t){return P(N(t))},t.r2p=t.d2p,t.p2r=N,t.cleanPos=function(t){return Array.isArray(t)||"string"==typeof t&&""!==t?t:f(t)},t.setupMultiCategory=function(n){var i,o,s=t._traceIndices,l=t._matchGroup;if(l&&0===t._categories.length)for(var c in l)if(c!==r){var u=e[w.id2name(c)];s=s.concat(u._traceIndices)}var f=[[0,{}],[0,{}]],d=[];for(i=0;id&&(o[n]=d),o[0]===o[1]){var c=Math.max(1,Math.abs(1e-6*o[0]));o[0]-=c,o[1]+=c}}else a.nestedProperty(t,e).set(i)},t.setScale=function(r){var n=e._size;if(t.overlaying){var i=w.getFromId({_fullLayout:e},t.overlaying);t.domain=i.domain}var a=r&&t._r?"_r":"range",o=t.calendar;t.cleanRange(a);var s,l,c=t.r2l(t[a][0],o),u=t.r2l(t[a][1],o),f="y"===p;if((f?(t._offset=n.t+(1-t.domain[1])*n.h,t._length=n.h*(t.domain[1]-t.domain[0]),t._m=t._length/(c-u),t._b=-t._m*u):(t._offset=n.l+t.domain[0]*n.w,t._length=n.w*(t.domain[1]-t.domain[0]),t._m=t._length/(u-c),t._b=-t._m*c),t._rangebreaks=[],t._lBreaks=0,t._m2=0,t._B=[],t.rangebreaks)&&(t._rangebreaks=t.locateBreaks(Math.min(c,u),Math.max(c,u)),t._rangebreaks.length)){for(s=0;su&&(h=!h),h&&t._rangebreaks.reverse();var d=h?-1:1;for(t._m2=d*t._length/(Math.abs(u-c)-t._lBreaks),t._B.push(-t._m2*(f?u:c)),s=0;si&&(i+=7,oi&&(i+=24,o=n&&o=n&&e=s.min&&(ts.max&&(s.max=n),i=!1)}i&&c.push({min:t,max:n})}};for(n=0;nr.duration?(!function(){for(var r={},n=0;n rect").call(o.setTranslate,0,0).call(o.setScale,1,1),t.plot.call(o.setTranslate,e._offset,r._offset).call(o.setScale,1,1);var n=t.plot.selectAll(".scatterlayer .trace");n.selectAll(".point").call(o.setPointGroupScale,1,1),n.selectAll(".textpoint").call(o.setTextPointsScale,1,1),n.call(o.hideOutsideRangePoints,t)}function g(e,r){var n=e.plotinfo,i=n.xaxis,l=n.yaxis,c=i._length,u=l._length,f=!!e.xr1,h=!!e.yr1,p=[];if(f){var d=a.simpleMap(e.xr0,i.r2l),m=a.simpleMap(e.xr1,i.r2l),g=d[1]-d[0],v=m[1]-m[0];p[0]=(d[0]*(1-r)+r*m[0]-d[0])/(d[1]-d[0])*c,p[2]=c*(1-r+r*v/g),i.range[0]=i.l2r(d[0]*(1-r)+r*m[0]),i.range[1]=i.l2r(d[1]*(1-r)+r*m[1])}else p[0]=0,p[2]=c;if(h){var y=a.simpleMap(e.yr0,l.r2l),x=a.simpleMap(e.yr1,l.r2l),b=y[1]-y[0],_=x[1]-x[0];p[1]=(y[1]*(1-r)+r*x[1]-y[1])/(y[0]-y[1])*u,p[3]=u*(1-r+r*_/b),l.range[0]=i.l2r(y[0]*(1-r)+r*x[0]),l.range[1]=l.l2r(y[1]*(1-r)+r*x[1])}else p[1]=0,p[3]=u;s.drawOne(t,i,{skipTitle:!0}),s.drawOne(t,l,{skipTitle:!0}),s.redrawComponents(t,[i._id,l._id]);var w=f?c/p[2]:1,T=h?u/p[3]:1,k=f?p[0]:0,A=h?p[1]:0,M=f?p[0]/p[2]*c:0,S=h?p[1]/p[3]*u:0,E=i._offset-M,L=l._offset-S;n.clipRect.call(o.setTranslate,k,A).call(o.setScale,1/w,1/T),n.plot.call(o.setTranslate,E,L).call(o.setScale,w,T),o.setPointGroupScale(n.zoomScalePts,1/w,1/T),o.setTextPointsScale(n.zoomScaleTxt,1/w,1/T)}s.redrawComponents(t)}},{"../../components/drawing":383,"../../lib":498,"../../registry":633,"./axes":549,"@plotly/d3":58}],577:[function(t,e,r){"use strict";var n=t("../../registry").traceIs,i=t("./axis_autotype");function a(t){return{v:"x",h:"y"}[t.orientation||"v"]}function o(t,e){var r=a(t),i=n(t,"box-violin"),o=n(t._fullInput||{},"candlestick");return i&&!o&&e===r&&void 0===t[r]&&void 0===t[r+"0"]}e.exports=function(t,e,r,s){r("autotypenumbers",s.autotypenumbersDflt),"-"===r("type",(s.splomStash||{}).type)&&(!function(t,e){if("-"!==t.type)return;var r,s=t._id,l=s.charAt(0);-1!==s.indexOf("scene")&&(s=l);var c=function(t,e,r){for(var n=0;n0&&(i["_"+r+"axes"]||{})[e])return i;if((i[r+"axis"]||r)===e){if(o(i,r))return i;if((i[r]||[]).length||i[r+"0"])return i}}}(e,s,l);if(!c)return;if("histogram"===c.type&&l==={v:"y",h:"x"}[c.orientation||"v"])return void(t.type="linear");var u=l+"calendar",f=c[u],h={noMultiCategory:!n(c,"cartesian")||n(c,"noMultiCategory")};"box"===c.type&&c._hasPreCompStats&&l==={h:"x",v:"y"}[c.orientation||"v"]&&(h.noMultiCategory=!0);if(h.autotypenumbers=t.autotypenumbers,o(c,l)){var p=a(c),d=[];for(r=0;r0?".":"")+a;i.isPlainObject(o)?l(o,e,s,n+1):e(s,a,o)}}))}r.manageCommandObserver=function(t,e,n,o){var s={},l=!0;e&&e._commandObserver&&(s=e._commandObserver),s.cache||(s.cache={}),s.lookupTable={};var c=r.hasSimpleAPICommandBindings(t,n,s.lookupTable);if(e&&e._commandObserver){if(c)return s;if(e._commandObserver.remove)return e._commandObserver.remove(),e._commandObserver=null,s}if(c){a(t,c,s.cache),s.check=function(){if(l){var e=a(t,c,s.cache);return e.changed&&o&&void 0!==s.lookupTable[e.value]&&(s.disable(),Promise.resolve(o({value:e.value,type:c.type,prop:c.prop,traces:c.traces,index:s.lookupTable[e.value]})).then(s.enable,s.enable)),e.changed}};for(var u=["plotly_relayout","plotly_redraw","plotly_restyle","plotly_update","plotly_animatingframe","plotly_afterplot"],f=0;f0&&i<0&&(i+=360);var s=(i-n)/4;return{type:"Polygon",coordinates:[[[n,a],[n,o],[n+s,o],[n+2*s,o],[n+3*s,o],[i,o],[i,a],[i-s,a],[i-2*s,a],[i-3*s,a],[n,a]]]}}e.exports=function(t){return new M(t)},S.plot=function(t,e,r){var n=this,i=e[this.id],a=[],o=!1;for(var s in w.layerNameToAdjective)if("frame"!==s&&i["show"+s]){o=!0;break}for(var l=0;l0&&a._module.calcGeoJSON(i,e)}if(!this.updateProjection(t,e)){this.viewInitial&&this.scope===r.scope||this.saveViewInitial(r),this.scope=r.scope,this.updateBaseLayers(e,r),this.updateDims(e,r),this.updateFx(e,r),d.generalUpdatePerTraceModule(this.graphDiv,this,t,r);var o=this.layers.frontplot.select(".scatterlayer");this.dataPoints.point=o.selectAll(".point"),this.dataPoints.text=o.selectAll("text"),this.dataPaths.line=o.selectAll(".js-line");var s=this.layers.backplot.select(".choroplethlayer");this.dataPaths.choropleth=s.selectAll("path"),this.render()}},S.updateProjection=function(t,e){var r=this.graphDiv,n=e[this.id],l=e._size,u=n.domain,f=n.projection,h=n.lonaxis,p=n.lataxis,d=h._ax,m=p._ax,v=this.projection=function(t){var e=t.projection,r=e.type,n=w.projNames[r];n="geo"+c.titleCase(n);for(var l=(i[n]||s[n])(),u=t._isSatellite?180*Math.acos(1/e.distance)/Math.PI:t._isClipped?w.lonaxisSpan[r]/2:null,f=["center","rotate","parallels","clipExtent"],h=function(t){return t?l:[]},p=0;pu*Math.PI/180}return!1},l.getPath=function(){return a().projection(l)},l.getBounds=function(t){return l.getPath().bounds(t)},l.precision(w.precision),t._isSatellite&&l.tilt(e.tilt).distance(e.distance);u&&l.clipAngle(u-w.clipPad);return l}(n),y=[[l.l+l.w*u.x[0],l.t+l.h*(1-u.y[1])],[l.l+l.w*u.x[1],l.t+l.h*(1-u.y[0])]],x=n.center||{},b=f.rotation||{},_=h.range||[],T=p.range||[];if(n.fitbounds){d._length=y[1][0]-y[0][0],m._length=y[1][1]-y[0][1],d.range=g(r,d),m.range=g(r,m);var k=(d.range[0]+d.range[1])/2,A=(m.range[0]+m.range[1])/2;if(n._isScoped)x={lon:k,lat:A};else if(n._isClipped){x={lon:k,lat:A},b={lon:k,lat:A,roll:b.roll};var M=f.type,S=w.lonaxisSpan[M]/2||180,L=w.lataxisSpan[M]/2||90;_=[k-S,k+S],T=[A-L,A+L]}else x={lon:k,lat:A},b={lon:k,lat:b.lat,roll:b.roll}}v.center([x.lon-b.lon,x.lat-b.lat]).rotate([-b.lon,-b.lat,b.roll]).parallels(f.parallels);var C=E(_,T);v.fitExtent(y,C);var P=this.bounds=v.getBounds(C),I=this.fitScale=v.scale(),O=v.translate();if(n.fitbounds){var z=v.getBounds(E(d.range,m.range)),D=Math.min((P[1][0]-P[0][0])/(z[1][0]-z[0][0]),(P[1][1]-P[0][1])/(z[1][1]-z[0][1]));isFinite(D)?v.scale(D*I):c.warn("Something went wrong during"+this.id+"fitbounds computations.")}else v.scale(f.scale*I);var R=this.midPt=[(P[0][0]+P[1][0])/2,(P[0][1]+P[1][1])/2];if(v.translate([O[0]+(R[0]-O[0]),O[1]+(R[1]-O[1])]).clipExtent(P),n._isAlbersUsa){var F=v([x.lon,x.lat]),B=v.translate();v.translate([B[0]-(F[0]-B[0]),B[1]-(F[1]-B[1])])}},S.updateBaseLayers=function(t,e){var r=this,i=r.topojson,a=r.layers,o=r.basePaths;function s(t){return"lonaxis"===t||"lataxis"===t}function l(t){return Boolean(w.lineLayers[t])}function c(t){return Boolean(w.fillLayers[t])}var u=(this.hasChoropleth?w.layersForChoropleth:w.layers).filter((function(t){return l(t)||c(t)?e["show"+t]:!s(t)||e[t].showgrid})),p=r.framework.selectAll(".layer").data(u,String);p.exit().each((function(t){delete a[t],delete o[t],n.select(this).remove()})),p.enter().append("g").attr("class",(function(t){return"layer "+t})).each((function(t){var e=a[t]=n.select(this);"bg"===t?r.bgRect=e.append("rect").style("pointer-events","all"):s(t)?o[t]=e.append("path").style("fill","none"):"backplot"===t?e.append("g").classed("choroplethlayer",!0):"frontplot"===t?e.append("g").classed("scatterlayer",!0):l(t)?o[t]=e.append("path").style("fill","none").style("stroke-miterlimit",2):c(t)&&(o[t]=e.append("path").style("stroke","none"))})),p.order(),p.each((function(r){var n=o[r],a=w.layerNameToAdjective[r];"frame"===r?n.datum(w.sphereSVG):l(r)||c(r)?n.datum(A(i,i.objects[r])):s(r)&&n.datum(function(t,e,r){var n,i,a,o=e[t],s=w.scopeDefaults[e.scope];"lonaxis"===t?(n=s.lonaxisRange,i=s.lataxisRange,a=function(t,e){return[t,e]}):"lataxis"===t&&(n=s.lataxisRange,i=s.lonaxisRange,a=function(t,e){return[e,t]});var l={type:"linear",range:[n[0],n[1]-1e-6],tick0:o.tick0,dtick:o.dtick};m.setConvert(l,r);var c=m.calcTicks(l);e.isScoped||"lonaxis"!==t||c.pop();for(var u=c.length,f=new Array(u),h=0;h-1&&b(n.event,i,[r.xaxis],[r.yaxis],r.id,f),s.indexOf("event")>-1&&p.click(i,n.event))}))}function h(t){return r.projection.invert([t[0]+r.xaxis._offset,t[1]+r.yaxis._offset])}},S.makeFramework=function(){var t=this,e=t.graphDiv,r=e._fullLayout,i="clip"+r._uid+t.id;t.clipDef=r._clips.append("clipPath").attr("id",i),t.clipRect=t.clipDef.append("rect"),t.framework=n.select(t.container).append("g").attr("class","geo "+t.id).call(h.setClipUrl,i,e),t.project=function(e){var r=t.projection(e);return r?[r[0]-t.xaxis._offset,r[1]-t.yaxis._offset]:[null,null]},t.xaxis={_id:"x",c2p:function(e){return t.project(e)[0]}},t.yaxis={_id:"y",c2p:function(e){return t.project(e)[1]}},t.mockAxis={type:"linear",showexponent:"all",exponentformat:"B"},m.setConvert(t.mockAxis,r)},S.saveViewInitial=function(t){var e,r=t.center||{},n=t.projection,i=n.rotation||{};this.viewInitial={fitbounds:t.fitbounds,"projection.scale":n.scale},e=t._isScoped?{"center.lon":r.lon,"center.lat":r.lat}:t._isClipped?{"projection.rotation.lon":i.lon,"projection.rotation.lat":i.lat}:{"center.lon":r.lon,"center.lat":r.lat,"projection.rotation.lon":i.lon},c.extendFlat(this.viewInitial,e)},S.render=function(){var t,e=this.projection,r=e.getPath();function n(t){var r=e(t.lonlat);return r?u(r[0],r[1]):null}function i(t){return e.isLonLatOverEdges(t.lonlat)?"none":null}for(t in this.basePaths)this.basePaths[t].attr("d",r);for(t in this.dataPaths)this.dataPaths[t].attr("d",(function(t){return r(t.geojson)}));for(t in this.dataPoints)this.dataPoints[t].attr("display",i).attr("transform",n)}},{"../../components/color":361,"../../components/dragelement":380,"../../components/drawing":383,"../../components/fx":401,"../../lib":498,"../../lib/geo_location_utils":491,"../../lib/topojson_utils":527,"../../registry":633,"../cartesian/autorange":548,"../cartesian/axes":549,"../cartesian/select":570,"../plots":614,"./constants":582,"./zoom":587,"@plotly/d3":58,"d3-geo":109,"d3-geo-projection":108,"topojson-client":310}],584:[function(t,e,r){"use strict";var n=t("../../plots/get_data").getSubplotCalcData,i=t("../../lib").counterRegex,a=t("./geo"),o="geo",s=i(o),l={};l.geo={valType:"subplotid",dflt:o,editType:"calc"},e.exports={attr:o,name:o,idRoot:o,idRegex:s,attrRegex:s,attributes:l,layoutAttributes:t("./layout_attributes"),supplyLayoutDefaults:t("./layout_defaults"),plot:function(t){for(var e=t._fullLayout,r=t.calcdata,i=e._subplots.geo,s=0;s0&&P<0&&(P+=360);var I,O,z,D=(C+P)/2;if(!p){var R=d?f.projRotate:[D,0,0];I=r("projection.rotation.lon",R[0]),r("projection.rotation.lat",R[1]),r("projection.rotation.roll",R[2]),r("showcoastlines",!d&&x)&&(r("coastlinecolor"),r("coastlinewidth")),r("showocean",!!x&&void 0)&&r("oceancolor")}(p?(O=-96.6,z=38.7):(O=d?D:I,z=(L[0]+L[1])/2),r("center.lon",O),r("center.lat",z),m&&(r("projection.tilt"),r("projection.distance")),g)&&r("projection.parallels",f.projParallels||[0,60]);r("projection.scale"),r("showland",!!x&&void 0)&&r("landcolor"),r("showlakes",!!x&&void 0)&&r("lakecolor"),r("showrivers",!!x&&void 0)&&(r("rivercolor"),r("riverwidth")),r("showcountries",d&&"usa"!==u&&x)&&(r("countrycolor"),r("countrywidth")),("usa"===u||"north america"===u&&50===c)&&(r("showsubunits",x),r("subunitcolor"),r("subunitwidth")),d||r("showframe",x)&&(r("framecolor"),r("framewidth")),r("bgcolor"),r("fitbounds")&&(delete e.projection.scale,d?(delete e.center.lon,delete e.center.lat):v?(delete e.center.lon,delete e.center.lat,delete e.projection.rotation.lon,delete e.projection.rotation.lat,delete e.lonaxis.range,delete e.lataxis.range):(delete e.center.lon,delete e.center.lat,delete e.projection.rotation.lon))}e.exports=function(t,e,r){i(t,e,r,{type:"geo",attributes:s,handleDefaults:c,fullData:r,partition:"y"})}},{"../../lib":498,"../get_data":588,"../subplot_defaults":627,"./constants":582,"./layout_attributes":585}],587:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../registry"),o=Math.PI/180,s=180/Math.PI,l={cursor:"pointer"},c={cursor:"auto"};function u(t,e){return n.behavior.zoom().translate(e.translate()).scale(e.scale())}function f(t,e,r){var n=t.id,o=t.graphDiv,s=o.layout,l=s[n],c=o._fullLayout,u=c[n],f={},h={};function p(t,e){f[n+"."+t]=i.nestedProperty(l,t).get(),a.call("_storeDirectGUIEdit",s,c._preGUI,f);var r=i.nestedProperty(u,t);r.get()!==e&&(r.set(e),i.nestedProperty(l,t).set(e),h[n+"."+t]=e)}r(p),p("projection.scale",e.scale()/t.fitScale),p("fitbounds",!1),o.emit("plotly_relayout",h)}function h(t,e){var r=u(0,e);function i(r){var n=e.invert(t.midPt);r("center.lon",n[0]),r("center.lat",n[1])}return r.on("zoomstart",(function(){n.select(this).style(l)})).on("zoom",(function(){e.scale(n.event.scale).translate(n.event.translate),t.render();var r=e.invert(t.midPt);t.graphDiv.emit("plotly_relayouting",{"geo.projection.scale":e.scale()/t.fitScale,"geo.center.lon":r[0],"geo.center.lat":r[1]})})).on("zoomend",(function(){n.select(this).style(c),f(t,e,i)})),r}function p(t,e){var r,i,a,o,s,h,p,d,m,g=u(0,e);function v(t){return e.invert(t)}function y(r){var n=e.rotate(),i=e.invert(t.midPt);r("projection.rotation.lon",-n[0]),r("center.lon",i[0]),r("center.lat",i[1])}return g.on("zoomstart",(function(){n.select(this).style(l),r=n.mouse(this),i=e.rotate(),a=e.translate(),o=i,s=v(r)})).on("zoom",(function(){if(h=n.mouse(this),function(t){var r=v(t);if(!r)return!0;var n=e(r);return Math.abs(n[0]-t[0])>2||Math.abs(n[1]-t[1])>2}(r))return g.scale(e.scale()),void g.translate(e.translate());e.scale(n.event.scale),e.translate([a[0],n.event.translate[1]]),s?v(h)&&(d=v(h),p=[o[0]+(d[0]-s[0]),i[1],i[2]],e.rotate(p),o=p):s=v(r=h),m=!0,t.render();var l=e.rotate(),c=e.invert(t.midPt);t.graphDiv.emit("plotly_relayouting",{"geo.projection.scale":e.scale()/t.fitScale,"geo.center.lon":c[0],"geo.center.lat":c[1],"geo.projection.rotation.lon":-l[0]})})).on("zoomend",(function(){n.select(this).style(c),m&&f(t,e,y)})),g}function d(t,e){var r,i={r:e.rotate(),k:e.scale()},a=u(0,e),o=function(t){var e=0,r=arguments.length,i=[];for(;++ed?(a=(f>0?90:-90)-p,i=0):(a=Math.asin(f/d)*s-p,i=Math.sqrt(d*d-f*f));var m=180-a-2*p,g=(Math.atan2(h,u)-Math.atan2(c,i))*s,v=(Math.atan2(h,u)-Math.atan2(c,-i))*s;return b(r[0],r[1],a,g)<=b(r[0],r[1],m,v)?[a,g,r[2]]:[m,v,r[2]]}function b(t,e,r,n){var i=_(r-t),a=_(n-e);return Math.sqrt(i*i+a*a)}function _(t){return(t%360+540)%360-180}function w(t,e,r){var n=r*o,i=t.slice(),a=0===e?1:0,s=2===e?1:2,l=Math.cos(n),c=Math.sin(n);return i[a]=t[a]*l-t[s]*c,i[s]=t[s]*l+t[a]*c,i}function T(t){return[Math.atan2(2*(t[0]*t[1]+t[2]*t[3]),1-2*(t[1]*t[1]+t[2]*t[2]))*s,Math.asin(Math.max(-1,Math.min(1,2*(t[0]*t[2]-t[3]*t[1]))))*s,Math.atan2(2*(t[0]*t[3]+t[1]*t[2]),1-2*(t[2]*t[2]+t[3]*t[3]))*s]}function k(t,e){for(var r=0,n=0,i=t.length;nMath.abs(s)?(c.boxEnd[1]=c.boxStart[1]+Math.abs(a)*_*(s>=0?1:-1),c.boxEnd[1]l[3]&&(c.boxEnd[1]=l[3],c.boxEnd[0]=c.boxStart[0]+(l[3]-c.boxStart[1])/Math.abs(_))):(c.boxEnd[0]=c.boxStart[0]+Math.abs(s)/_*(a>=0?1:-1),c.boxEnd[0]l[2]&&(c.boxEnd[0]=l[2],c.boxEnd[1]=c.boxStart[1]+(l[2]-c.boxStart[0])*Math.abs(_)))}}else c.boxEnabled?(a=c.boxStart[0]!==c.boxEnd[0],s=c.boxStart[1]!==c.boxEnd[1],a||s?(a&&(g(0,c.boxStart[0],c.boxEnd[0]),t.xaxis.autorange=!1),s&&(g(1,c.boxStart[1],c.boxEnd[1]),t.yaxis.autorange=!1),t.relayoutCallback()):t.glplot.setDirty(),c.boxEnabled=!1,c.boxInited=!1):c.boxInited&&(c.boxInited=!1);break;case"pan":c.boxEnabled=!1,c.boxInited=!1,e?(c.panning||(c.dragStart[0]=n,c.dragStart[1]=i),Math.abs(c.dragStart[0]-n).999&&(m="turntable"):m="turntable")}else m="turntable";r("dragmode",m),r("hovermode",n.getDfltFromLayout("hovermode"))}e.exports=function(t,e,r){var i=e._basePlotModules.length>1;o(t,e,r,{type:"gl3d",attributes:l,handleDefaults:u,fullLayout:e,font:e.font,fullData:r,getDfltFromLayout:function(e){if(!i)return n.validate(t[e],l[e])?t[e]:void 0},autotypenumbersDflt:e.autotypenumbers,paper_bgcolor:e.paper_bgcolor,calendar:e.calendar})}},{"../../../components/color":361,"../../../lib":498,"../../../registry":633,"../../get_data":588,"../../subplot_defaults":627,"./axis_defaults":596,"./layout_attributes":599}],599:[function(t,e,r){"use strict";var n=t("./axis_attributes"),i=t("../../domain").attributes,a=t("../../../lib/extend").extendFlat,o=t("../../../lib").counterRegex;function s(t,e,r){return{x:{valType:"number",dflt:t,editType:"camera"},y:{valType:"number",dflt:e,editType:"camera"},z:{valType:"number",dflt:r,editType:"camera"},editType:"camera"}}e.exports={_arrayAttrRegexps:[o("scene",".annotations",!0)],bgcolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"plot"},camera:{up:a(s(0,0,1),{}),center:a(s(0,0,0),{}),eye:a(s(1.25,1.25,1.25),{}),projection:{type:{valType:"enumerated",values:["perspective","orthographic"],dflt:"perspective",editType:"calc"},editType:"calc"},editType:"camera"},domain:i({name:"scene",editType:"plot"}),aspectmode:{valType:"enumerated",values:["auto","cube","data","manual"],dflt:"auto",editType:"plot",impliedEdits:{"aspectratio.x":void 0,"aspectratio.y":void 0,"aspectratio.z":void 0}},aspectratio:{x:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},y:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},z:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},editType:"plot",impliedEdits:{aspectmode:"manual"}},xaxis:n,yaxis:n,zaxis:n,dragmode:{valType:"enumerated",values:["orbit","turntable","zoom","pan",!1],editType:"plot"},hovermode:{valType:"enumerated",values:["closest",!1],dflt:"closest",editType:"modebar"},uirevision:{valType:"any",editType:"none"},editType:"plot",_deprecated:{cameraposition:{valType:"info_array",editType:"camera"}}}},{"../../../lib":498,"../../../lib/extend":488,"../../domain":579,"./axis_attributes":595}],600:[function(t,e,r){"use strict";var n=t("../../../lib/str2rgbarray"),i=["xaxis","yaxis","zaxis"];function a(){this.enabled=[!0,!0,!0],this.colors=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.drawSides=[!0,!0,!0],this.lineWidth=[1,1,1]}a.prototype.merge=function(t){for(var e=0;e<3;++e){var r=t[i[e]];r.visible?(this.enabled[e]=r.showspikes,this.colors[e]=n(r.spikecolor),this.drawSides[e]=r.spikesides,this.lineWidth[e]=r.spikethickness):(this.enabled[e]=!1,this.drawSides[e]=!1)}},e.exports=function(t){var e=new a;return e.merge(t),e}},{"../../../lib/str2rgbarray":523}],601:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.axesOptions,r=t.glplot.axesPixels,s=t.fullSceneLayout,l=[[],[],[]],c=0;c<3;++c){var u=s[a[c]];if(u._length=(r[c].hi-r[c].lo)*r[c].pixelsPerDataUnit/t.dataScale[c],Math.abs(u._length)===1/0||isNaN(u._length))l[c]=[];else{u._input_range=u.range.slice(),u.range[0]=r[c].lo/t.dataScale[c],u.range[1]=r[c].hi/t.dataScale[c],u._m=1/(t.dataScale[c]*r[c].pixelsPerDataUnit),u.range[0]===u.range[1]&&(u.range[0]-=1,u.range[1]+=1);var f=u.tickmode;if("auto"===u.tickmode){u.tickmode="linear";var h=u.nticks||i.constrain(u._length/40,4,9);n.autoTicks(u,Math.abs(u.range[1]-u.range[0])/h)}for(var p=n.calcTicks(u,{msUTC:!0}),d=0;d/g," "));l[c]=p,u.tickmode=f}}e.ticks=l;for(c=0;c<3;++c){o[c]=.5*(t.glplot.bounds[0][c]+t.glplot.bounds[1][c]);for(d=0;d<2;++d)e.bounds[d][c]=t.glplot.bounds[d][c]}t.contourLevels=function(t){for(var e=new Array(3),r=0;r<3;++r){for(var n=t[r],i=new Array(n.length),a=0;ar.deltaY?1.1:1/1.1,a=t.glplot.getAspectratio();t.glplot.setAspectratio({x:n*a.x,y:n*a.y,z:n*a.z})}i(t)}}),!!c&&{passive:!1}),t.glplot.canvas.addEventListener("mousemove",(function(){if(!1!==t.fullSceneLayout.dragmode&&0!==t.camera.mouseListener.buttons){var e=n();t.graphDiv.emit("plotly_relayouting",e)}})),t.staticMode||t.glplot.canvas.addEventListener("webglcontextlost",(function(r){e&&e.emit&&e.emit("plotly_webglcontextlost",{event:r,layer:t.id})}),!1)),t.glplot.oncontextloss=function(){t.recoverContext()},t.glplot.onrender=function(){t.render()},!0},w.render=function(){var t,e=this,r=e.graphDiv,n=e.svgContainer,i=e.container.getBoundingClientRect();r._fullLayout._calcInverseTransform(r);var a=r._fullLayout._invScaleX,o=r._fullLayout._invScaleY,s=i.width*a,l=i.height*o;n.setAttributeNS(null,"viewBox","0 0 "+s+" "+l),n.setAttributeNS(null,"width",s),n.setAttributeNS(null,"height",l),b(e),e.glplot.axes.update(e.axesOptions);for(var c=Object.keys(e.traces),u=null,h=e.glplot.selection,m=0;m")):"isosurface"===t.type||"volume"===t.type?(T.valueLabel=p.hoverLabelText(e._mockAxis,e._mockAxis.d2l(h.traceCoordinate[3]),t.valuehoverformat),S.push("value: "+T.valueLabel),h.textLabel&&S.push(h.textLabel),x=S.join("
")):x=h.textLabel;var E={x:h.traceCoordinate[0],y:h.traceCoordinate[1],z:h.traceCoordinate[2],data:_._input,fullData:_,curveNumber:_.index,pointNumber:w};d.appendArrayPointValue(E,_,w),t._module.eventData&&(E=_._module.eventData(E,h,_,{},w));var L={points:[E]};if(e.fullSceneLayout.hovermode){var C=[];d.loneHover({trace:_,x:(.5+.5*y[0]/y[3])*s,y:(.5-.5*y[1]/y[3])*l,xLabel:T.xLabel,yLabel:T.yLabel,zLabel:T.zLabel,text:x,name:u.name,color:d.castHoverOption(_,w,"bgcolor")||u.color,borderColor:d.castHoverOption(_,w,"bordercolor"),fontFamily:d.castHoverOption(_,w,"font.family"),fontSize:d.castHoverOption(_,w,"font.size"),fontColor:d.castHoverOption(_,w,"font.color"),nameLength:d.castHoverOption(_,w,"namelength"),textAlign:d.castHoverOption(_,w,"align"),hovertemplate:f.castOption(_,w,"hovertemplate"),hovertemplateLabels:f.extendFlat({},E,T),eventData:[E]},{container:n,gd:r,inOut_bbox:C}),E.bbox=C[0]}h.buttons&&h.distance<5?r.emit("plotly_click",L):r.emit("plotly_hover",L),this.oldEventData=L}else d.loneUnhover(n),this.oldEventData&&r.emit("plotly_unhover",this.oldEventData),this.oldEventData=void 0;e.drawAnnotations(e)},w.recoverContext=function(){var t=this;t.glplot.dispose();var e=function(){t.glplot.gl.isContextLost()?requestAnimationFrame(e):t.initializeGLPlot()?t.plot.apply(t,t.plotArgs):f.error("Catastrophic and unrecoverable WebGL error. Context lost.")};requestAnimationFrame(e)};var k=["xaxis","yaxis","zaxis"];function A(t,e,r){for(var n=t.fullSceneLayout,i=0;i<3;i++){var a=k[i],o=a.charAt(0),s=n[a],l=e[o],c=e[o+"calendar"],u=e["_"+o+"length"];if(f.isArrayOrTypedArray(l))for(var h,p=0;p<(u||l.length);p++)if(f.isArrayOrTypedArray(l[p]))for(var d=0;dg[1][a])g[0][a]=-1,g[1][a]=1;else{var L=g[1][a]-g[0][a];g[0][a]-=L/32,g[1][a]+=L/32}if("reversed"===s.autorange){var C=g[0][a];g[0][a]=g[1][a],g[1][a]=C}}else{var P=s.range;g[0][a]=s.r2l(P[0]),g[1][a]=s.r2l(P[1])}g[0][a]===g[1][a]&&(g[0][a]-=1,g[1][a]+=1),v[a]=g[1][a]-g[0][a],this.glplot.setBounds(a,{min:g[0][a]*h[a],max:g[1][a]*h[a]})}var I=c.aspectmode;if("cube"===I)d=[1,1,1];else if("manual"===I){var O=c.aspectratio;d=[O.x,O.y,O.z]}else{if("auto"!==I&&"data"!==I)throw new Error("scene.js aspectRatio was not one of the enumerated types");var z=[1,1,1];for(a=0;a<3;++a){var D=y[l=(s=c[k[a]]).type];z[a]=Math.pow(D.acc,1/D.count)/h[a]}d="data"===I||Math.max.apply(null,z)/Math.min.apply(null,z)<=4?z:[1,1,1]}c.aspectratio.x=u.aspectratio.x=d[0],c.aspectratio.y=u.aspectratio.y=d[1],c.aspectratio.z=u.aspectratio.z=d[2],this.glplot.setAspectratio(c.aspectratio),this.viewInitial.aspectratio||(this.viewInitial.aspectratio={x:c.aspectratio.x,y:c.aspectratio.y,z:c.aspectratio.z}),this.viewInitial.aspectmode||(this.viewInitial.aspectmode=c.aspectmode);var R=c.domain||null,F=e._size||null;if(R&&F){var B=this.container.style;B.position="absolute",B.left=F.l+R.x[0]*F.w+"px",B.top=F.t+(1-R.y[1])*F.h+"px",B.width=F.w*(R.x[1]-R.x[0])+"px",B.height=F.h*(R.y[1]-R.y[0])+"px"}this.glplot.redraw()}},w.destroy=function(){this.glplot&&(this.camera.mouseListener.enabled=!1,this.container.removeEventListener("wheel",this.camera.wheelListener),this.camera=null,this.glplot.dispose(),this.container.parentNode.removeChild(this.container),this.glplot=null)},w.getCamera=function(){var t;return this.camera.view.recalcMatrix(this.camera.view.lastT()),{up:{x:(t=this.camera).up[0],y:t.up[1],z:t.up[2]},center:{x:t.center[0],y:t.center[1],z:t.center[2]},eye:{x:t.eye[0],y:t.eye[1],z:t.eye[2]},projection:{type:!0===t._ortho?"orthographic":"perspective"}}},w.setViewport=function(t){var e,r=t.camera;this.camera.lookAt.apply(this,[[(e=r).eye.x,e.eye.y,e.eye.z],[e.center.x,e.center.y,e.center.z],[e.up.x,e.up.y,e.up.z]]),this.glplot.setAspectratio(t.aspectratio),"orthographic"===r.projection.type!==this.camera._ortho&&(this.glplot.redraw(),this.glplot.clearRGBA(),this.glplot.dispose(),this.initializeGLPlot())},w.isCameraChanged=function(t){var e=this.getCamera(),r=f.nestedProperty(t,this.id+".camera").get();function n(t,e,r,n){var i=["up","center","eye"],a=["x","y","z"];return e[i[r]]&&t[i[r]][a[n]]===e[i[r]][a[n]]}var i=!1;if(void 0===r)i=!0;else{for(var a=0;a<3;a++)for(var o=0;o<3;o++)if(!n(e,r,a,o)){i=!0;break}(!r.projection||e.projection&&e.projection.type!==r.projection.type)&&(i=!0)}return i},w.isAspectChanged=function(t){var e=this.glplot.getAspectratio(),r=f.nestedProperty(t,this.id+".aspectratio").get();return void 0===r||r.x!==e.x||r.y!==e.y||r.z!==e.z},w.saveLayout=function(t){var e,r,n,i,a,o,s=this.fullLayout,l=this.isCameraChanged(t),c=this.isAspectChanged(t),h=l||c;if(h){var p={};if(l&&(e=this.getCamera(),n=(r=f.nestedProperty(t,this.id+".camera")).get(),p[this.id+".camera"]=n),c&&(i=this.glplot.getAspectratio(),o=(a=f.nestedProperty(t,this.id+".aspectratio")).get(),p[this.id+".aspectratio"]=o),u.call("_storeDirectGUIEdit",t,s._preGUI,p),l)r.set(e),f.nestedProperty(s,this.id+".camera").set(e);if(c)a.set(i),f.nestedProperty(s,this.id+".aspectratio").set(i),this.glplot.redraw()}return h},w.updateFx=function(t,e){var r=this.camera;if(r)if("orbit"===t)r.mode="orbit",r.keyBindingMode="rotate";else if("turntable"===t){r.up=[0,0,1],r.mode="turntable",r.keyBindingMode="rotate";var n=this.graphDiv,i=n._fullLayout,a=this.fullSceneLayout.camera,o=a.up.x,s=a.up.y,l=a.up.z;if(l/Math.sqrt(o*o+s*s+l*l)<.999){var c=this.id+".camera.up",h={x:0,y:0,z:1},p={};p[c]=h;var d=n.layout;u.call("_storeDirectGUIEdit",d,i._preGUI,p),a.up=h,f.nestedProperty(d,c).set(h)}}else r.keyBindingMode=t;this.fullSceneLayout.hovermode=e},w.toImage=function(t){t||(t="png"),this.staticMode&&this.container.appendChild(n),this.glplot.redraw();var e=this.glplot.gl,r=e.drawingBufferWidth,i=e.drawingBufferHeight;e.bindFramebuffer(e.FRAMEBUFFER,null);var a=new Uint8Array(r*i*4);e.readPixels(0,0,r,i,e.RGBA,e.UNSIGNED_BYTE,a),function(t,e,r){for(var n=0,i=r-1;n0)for(var s=255/o,l=0;l<3;++l)t[a+l]=Math.min(s*t[a+l],255)}}(a,r,i);var o=document.createElement("canvas");o.width=r,o.height=i;var s,l=o.getContext("2d"),c=l.createImageData(r,i);switch(c.data.set(a),l.putImageData(c,0,0),t){case"jpeg":s=o.toDataURL("image/jpeg");break;case"webp":s=o.toDataURL("image/webp");break;default:s=o.toDataURL("image/png")}return this.staticMode&&this.container.removeChild(n),s},w.setConvert=function(){for(var t=0;t<3;t++){var e=this.fullSceneLayout[k[t]];p.setConvert(e,this.fullLayout),e.setScale=f.noop}},w.make4thDimension=function(){var t=this.graphDiv._fullLayout;this._mockAxis={type:"linear",showexponent:"all",exponentformat:"B"},p.setConvert(this._mockAxis,t)},e.exports=_},{"../../../stackgl_modules":1119,"../../components/fx":401,"../../lib":498,"../../lib/show_no_webgl_msg":520,"../../lib/str2rgbarray":523,"../../plots/cartesian/axes":549,"../../registry":633,"./layout/convert":597,"./layout/spikes":600,"./layout/tick_marks":601,"./project":602,"has-passive-events":224,"webgl-context":326}],604:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){n=n||t.length;for(var i=new Array(n),a=0;aOpenStreetMap contributors',a=['\xa9 Carto',i].join(" "),o=['Map tiles by Stamen Design','under CC BY 3.0',"|",'Data by OpenStreetMap contributors','under ODbL'].join(" "),s={"open-street-map":{id:"osm",version:8,sources:{"plotly-osm-tiles":{type:"raster",attribution:i,tiles:["https://a.tile.openstreetmap.org/{z}/{x}/{y}.png","https://b.tile.openstreetmap.org/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-osm-tiles",type:"raster",source:"plotly-osm-tiles",minzoom:0,maxzoom:22}]},"white-bg":{id:"white-bg",version:8,sources:{},layers:[{id:"white-bg",type:"background",paint:{"background-color":"#FFFFFF"},minzoom:0,maxzoom:22}]},"carto-positron":{id:"carto-positron",version:8,sources:{"plotly-carto-positron":{type:"raster",attribution:a,tiles:["https://cartodb-basemaps-c.global.ssl.fastly.net/light_all/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-carto-positron",type:"raster",source:"plotly-carto-positron",minzoom:0,maxzoom:22}]},"carto-darkmatter":{id:"carto-darkmatter",version:8,sources:{"plotly-carto-darkmatter":{type:"raster",attribution:a,tiles:["https://cartodb-basemaps-c.global.ssl.fastly.net/dark_all/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-carto-darkmatter",type:"raster",source:"plotly-carto-darkmatter",minzoom:0,maxzoom:22}]},"stamen-terrain":{id:"stamen-terrain",version:8,sources:{"plotly-stamen-terrain":{type:"raster",attribution:o,tiles:["https://stamen-tiles.a.ssl.fastly.net/terrain/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-terrain",type:"raster",source:"plotly-stamen-terrain",minzoom:0,maxzoom:22}]},"stamen-toner":{id:"stamen-toner",version:8,sources:{"plotly-stamen-toner":{type:"raster",attribution:o,tiles:["https://stamen-tiles.a.ssl.fastly.net/toner/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-toner",type:"raster",source:"plotly-stamen-toner",minzoom:0,maxzoom:22}]},"stamen-watercolor":{id:"stamen-watercolor",version:8,sources:{"plotly-stamen-watercolor":{type:"raster",attribution:['Map tiles by Stamen Design','under CC BY 3.0',"|",'Data by OpenStreetMap contributors','under CC BY SA'].join(" "),tiles:["https://stamen-tiles.a.ssl.fastly.net/watercolor/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-watercolor",type:"raster",source:"plotly-stamen-watercolor",minzoom:0,maxzoom:22}]}},l=n(s);e.exports={requiredVersion:"1.10.1",styleUrlPrefix:"mapbox://styles/mapbox/",styleUrlSuffix:"v9",styleValuesMapbox:["basic","streets","outdoors","light","dark","satellite","satellite-streets"],styleValueDflt:"basic",stylesNonMapbox:s,styleValuesNonMapbox:l,traceLayerPrefix:"plotly-trace-layer-",layoutLayerPrefix:"plotly-layout-layer-",wrongVersionErrorMsg:["Your custom plotly.js bundle is not using the correct mapbox-gl version","Please install mapbox-gl@1.10.1."].join("\n"),noAccessTokenErrorMsg:["Missing Mapbox access token.","Mapbox trace type require a Mapbox access token to be registered.","For example:"," Plotly.newPlot(gd, data, layout, { mapboxAccessToken: 'my-access-token' });","More info here: https://www.mapbox.com/help/define-access-token/"].join("\n"),missingStyleErrorMsg:["No valid mapbox style found, please set `mapbox.style` to one of:",l.join(", "),"or register a Mapbox access token to use a Mapbox-served style."].join("\n"),multipleTokensErrorMsg:["Set multiple mapbox access token across different mapbox subplot,","using first token found as mapbox-gl does not allow multipleaccess tokens on the same page."].join("\n"),mapOnErrorMsg:"Mapbox error.",mapboxLogo:{path0:"m 10.5,1.24 c -5.11,0 -9.25,4.15 -9.25,9.25 0,5.1 4.15,9.25 9.25,9.25 5.1,0 9.25,-4.15 9.25,-9.25 0,-5.11 -4.14,-9.25 -9.25,-9.25 z m 4.39,11.53 c -1.93,1.93 -4.78,2.31 -6.7,2.31 -0.7,0 -1.41,-0.05 -2.1,-0.16 0,0 -1.02,-5.64 2.14,-8.81 0.83,-0.83 1.95,-1.28 3.13,-1.28 1.27,0 2.49,0.51 3.39,1.42 1.84,1.84 1.89,4.75 0.14,6.52 z",path1:"M 10.5,-0.01 C 4.7,-0.01 0,4.7 0,10.49 c 0,5.79 4.7,10.5 10.5,10.5 5.8,0 10.5,-4.7 10.5,-10.5 C 20.99,4.7 16.3,-0.01 10.5,-0.01 Z m 0,19.75 c -5.11,0 -9.25,-4.15 -9.25,-9.25 0,-5.1 4.14,-9.26 9.25,-9.26 5.11,0 9.25,4.15 9.25,9.25 0,5.13 -4.14,9.26 -9.25,9.26 z",path2:"M 14.74,6.25 C 12.9,4.41 9.98,4.35 8.23,6.1 5.07,9.27 6.09,14.91 6.09,14.91 c 0,0 5.64,1.02 8.81,-2.14 C 16.64,11 16.59,8.09 14.74,6.25 Z m -2.27,4.09 -0.91,1.87 -0.9,-1.87 -1.86,-0.91 1.86,-0.9 0.9,-1.87 0.91,1.87 1.86,0.9 z",polygon:"11.56,12.21 10.66,10.34 8.8,9.43 10.66,8.53 11.56,6.66 12.47,8.53 14.33,9.43 12.47,10.34"},styleRules:{map:"overflow:hidden;position:relative;","missing-css":"display:none;",canary:"background-color:salmon;","ctrl-bottom-left":"position: absolute; pointer-events: none; z-index: 2; bottom: 0; left: 0;","ctrl-bottom-right":"position: absolute; pointer-events: none; z-index: 2; right: 0; bottom: 0;",ctrl:"clear: both; pointer-events: auto; transform: translate(0, 0);","ctrl-attrib.mapboxgl-compact .mapboxgl-ctrl-attrib-inner":"display: none;","ctrl-attrib.mapboxgl-compact:hover .mapboxgl-ctrl-attrib-inner":"display: block; margin-top:2px","ctrl-attrib.mapboxgl-compact:hover":"padding: 2px 24px 2px 4px; visibility: visible; margin-top: 6px;","ctrl-attrib.mapboxgl-compact::after":'content: ""; cursor: pointer; position: absolute; background-image: url(\'data:image/svg+xml;charset=utf-8,%3Csvg viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"%3E %3Cpath fill="%23333333" fill-rule="evenodd" d="M4,10a6,6 0 1,0 12,0a6,6 0 1,0 -12,0 M9,7a1,1 0 1,0 2,0a1,1 0 1,0 -2,0 M9,10a1,1 0 1,1 2,0l0,3a1,1 0 1,1 -2,0"/%3E %3C/svg%3E\'); background-color: rgba(255, 255, 255, 0.5); width: 24px; height: 24px; box-sizing: border-box; border-radius: 12px;',"ctrl-attrib.mapboxgl-compact":"min-height: 20px; padding: 0; margin: 10px; position: relative; background-color: #fff; border-radius: 3px 12px 12px 3px;","ctrl-bottom-right > .mapboxgl-ctrl-attrib.mapboxgl-compact::after":"bottom: 0; right: 0","ctrl-bottom-left > .mapboxgl-ctrl-attrib.mapboxgl-compact::after":"bottom: 0; left: 0","ctrl-bottom-left .mapboxgl-ctrl":"margin: 0 0 10px 10px; float: left;","ctrl-bottom-right .mapboxgl-ctrl":"margin: 0 10px 10px 0; float: right;","ctrl-attrib":"color: rgba(0, 0, 0, 0.75); text-decoration: none; font-size: 12px","ctrl-attrib a":"color: rgba(0, 0, 0, 0.75); text-decoration: none; font-size: 12px","ctrl-attrib a:hover":"color: inherit; text-decoration: underline;","ctrl-attrib .mapbox-improve-map":"font-weight: bold; margin-left: 2px;","attrib-empty":"display: none;","ctrl-logo":'display:block; width: 21px; height: 21px; background-image: url(\'data:image/svg+xml;charset=utf-8,%3C?xml version="1.0" encoding="utf-8"?%3E %3Csvg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 21 21" style="enable-background:new 0 0 21 21;" xml:space="preserve"%3E%3Cg transform="translate(0,0.01)"%3E%3Cpath d="m 10.5,1.24 c -5.11,0 -9.25,4.15 -9.25,9.25 0,5.1 4.15,9.25 9.25,9.25 5.1,0 9.25,-4.15 9.25,-9.25 0,-5.11 -4.14,-9.25 -9.25,-9.25 z m 4.39,11.53 c -1.93,1.93 -4.78,2.31 -6.7,2.31 -0.7,0 -1.41,-0.05 -2.1,-0.16 0,0 -1.02,-5.64 2.14,-8.81 0.83,-0.83 1.95,-1.28 3.13,-1.28 1.27,0 2.49,0.51 3.39,1.42 1.84,1.84 1.89,4.75 0.14,6.52 z" style="opacity:0.9;fill:%23ffffff;enable-background:new" class="st0"/%3E%3Cpath d="M 10.5,-0.01 C 4.7,-0.01 0,4.7 0,10.49 c 0,5.79 4.7,10.5 10.5,10.5 5.8,0 10.5,-4.7 10.5,-10.5 C 20.99,4.7 16.3,-0.01 10.5,-0.01 Z m 0,19.75 c -5.11,0 -9.25,-4.15 -9.25,-9.25 0,-5.1 4.14,-9.26 9.25,-9.26 5.11,0 9.25,4.15 9.25,9.25 0,5.13 -4.14,9.26 -9.25,9.26 z" style="opacity:0.35;enable-background:new" class="st1"/%3E%3Cpath d="M 14.74,6.25 C 12.9,4.41 9.98,4.35 8.23,6.1 5.07,9.27 6.09,14.91 6.09,14.91 c 0,0 5.64,1.02 8.81,-2.14 C 16.64,11 16.59,8.09 14.74,6.25 Z m -2.27,4.09 -0.91,1.87 -0.9,-1.87 -1.86,-0.91 1.86,-0.9 0.9,-1.87 0.91,1.87 1.86,0.9 z" style="opacity:0.35;enable-background:new" class="st1"/%3E%3Cpolygon points="11.56,12.21 10.66,10.34 8.8,9.43 10.66,8.53 11.56,6.66 12.47,8.53 14.33,9.43 12.47,10.34 " style="opacity:0.9;fill:%23ffffff;enable-background:new" class="st0"/%3E%3C/g%3E%3C/svg%3E\')'}}},{"../../lib/sort_object_keys":521}],607:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){var r=t.split(" "),i=r[0],a=r[1],o=n.isArrayOrTypedArray(e)?n.mean(e):e,s=.5+o/100,l=1.5+o/100,c=["",""],u=[0,0];switch(i){case"top":c[0]="top",u[1]=-l;break;case"bottom":c[0]="bottom",u[1]=l}switch(a){case"left":c[1]="right",u[0]=-s;break;case"right":c[1]="left",u[0]=s}return{anchor:c[0]&&c[1]?c.join("-"):c[0]?c[0]:c[1]?c[1]:"center",offset:u}}},{"../../lib":498}],608:[function(t,e,r){"use strict";var n=t("mapbox-gl/dist/mapbox-gl-unminified"),i=t("../../lib"),a=i.strTranslate,o=i.strScale,s=t("../../plots/get_data").getSubplotCalcData,l=t("../../constants/xmlns_namespaces"),c=t("@plotly/d3"),u=t("../../components/drawing"),f=t("../../lib/svg_text_utils"),h=t("./mapbox"),p=r.constants=t("./constants");function d(t){return"string"==typeof t&&(-1!==p.styleValuesMapbox.indexOf(t)||0===t.indexOf("mapbox://"))}r.name="mapbox",r.attr="subplot",r.idRoot="mapbox",r.idRegex=r.attrRegex=i.counterRegex("mapbox"),r.attributes={subplot:{valType:"subplotid",dflt:"mapbox",editType:"calc"}},r.layoutAttributes=t("./layout_attributes"),r.supplyLayoutDefaults=t("./layout_defaults"),r.plot=function(t){var e=t._fullLayout,r=t.calcdata,a=e._subplots.mapbox;if(n.version!==p.requiredVersion)throw new Error(p.wrongVersionErrorMsg);var o=function(t,e){var r=t._fullLayout;if(""===t._context.mapboxAccessToken)return"";for(var n=[],a=[],o=!1,s=!1,l=0;l1&&i.warn(p.multipleTokensErrorMsg),n[0]):(a.length&&i.log(["Listed mapbox access token(s)",a.join(","),"but did not use a Mapbox map style, ignoring token(s)."].join(" ")),"")}(t,a);n.accessToken=o;for(var l=0;l_/2){var w=v.split("|").join("
");x.text(w).attr("data-unformatted",w).call(f.convertToTspans,t),b=u.bBox(x.node())}x.attr("transform",a(-3,8-b.height)),y.insert("rect",".static-attribution").attr({x:-b.width-6,y:-b.height-3,width:b.width+6,height:b.height+3,fill:"rgba(255, 255, 255, 0.75)"});var T=1;b.width+6>_&&(T=_/(b.width+6));var k=[n.l+n.w*h.x[1],n.t+n.h*(1-h.y[0])];y.attr("transform",a(k[0],k[1])+o(T))}},r.updateFx=function(t){for(var e=t._fullLayout,r=e._subplots.mapbox,n=0;n0){for(var r=0;r0}function u(t){var e={},r={};switch(t.type){case"circle":n.extendFlat(r,{"circle-radius":t.circle.radius,"circle-color":t.color,"circle-opacity":t.opacity});break;case"line":n.extendFlat(r,{"line-width":t.line.width,"line-color":t.color,"line-opacity":t.opacity,"line-dasharray":t.line.dash});break;case"fill":n.extendFlat(r,{"fill-color":t.color,"fill-outline-color":t.fill.outlinecolor,"fill-opacity":t.opacity});break;case"symbol":var i=t.symbol,o=a(i.textposition,i.iconsize);n.extendFlat(e,{"icon-image":i.icon+"-15","icon-size":i.iconsize/10,"text-field":i.text,"text-size":i.textfont.size,"text-anchor":o.anchor,"text-offset":o.offset,"symbol-placement":i.placement}),n.extendFlat(r,{"icon-color":t.color,"text-color":i.textfont.color,"text-opacity":t.opacity});break;case"raster":n.extendFlat(r,{"raster-fade-duration":0,"raster-opacity":t.opacity})}return{layout:e,paint:r}}l.update=function(t){this.visible?this.needsNewImage(t)?this.updateImage(t):this.needsNewSource(t)?(this.removeLayer(),this.updateSource(t),this.updateLayer(t)):this.needsNewLayer(t)?this.updateLayer(t):this.updateStyle(t):(this.updateSource(t),this.updateLayer(t)),this.visible=c(t)},l.needsNewImage=function(t){return this.subplot.map.getSource(this.idSource)&&"image"===this.sourceType&&"image"===t.sourcetype&&(this.source!==t.source||JSON.stringify(this.coordinates)!==JSON.stringify(t.coordinates))},l.needsNewSource=function(t){return this.sourceType!==t.sourcetype||JSON.stringify(this.source)!==JSON.stringify(t.source)||this.layerType!==t.type},l.needsNewLayer=function(t){return this.layerType!==t.type||this.below!==this.subplot.belowLookup["layout-"+this.index]},l.lookupBelow=function(){return this.subplot.belowLookup["layout-"+this.index]},l.updateImage=function(t){this.subplot.map.getSource(this.idSource).updateImage({url:t.source,coordinates:t.coordinates});var e=this.findFollowingMapboxLayerId(this.lookupBelow());null!==e&&this.subplot.map.moveLayer(this.idLayer,e)},l.updateSource=function(t){var e=this.subplot.map;if(e.getSource(this.idSource)&&e.removeSource(this.idSource),this.sourceType=t.sourcetype,this.source=t.source,c(t)){var r=function(t){var e,r=t.sourcetype,n=t.source,a={type:r};"geojson"===r?e="data":"vector"===r?e="string"==typeof n?"url":"tiles":"raster"===r?(e="tiles",a.tileSize=256):"image"===r&&(e="url",a.coordinates=t.coordinates);a[e]=n,t.sourceattribution&&(a.attribution=i(t.sourceattribution));return a}(t);e.addSource(this.idSource,r)}},l.findFollowingMapboxLayerId=function(t){if("traces"===t)for(var e=this.subplot.getMapLayers(),r=0;r1)for(r=0;r-1&&v(e.originalEvent,n,[r.xaxis],[r.yaxis],r.id,t),i.indexOf("event")>-1&&c.click(n,e.originalEvent)}}},_.updateFx=function(t){var e=this,r=e.map,n=e.gd;if(!e.isStatic){var a,o=t.dragmode;a=f(o)?function(t,r){(t.range={})[e.id]=[c([r.xmin,r.ymin]),c([r.xmax,r.ymax])]}:function(t,r,n){(t.lassoPoints={})[e.id]=n.filtered.map(c)};var s=e.dragOptions;e.dragOptions=i.extendDeep(s||{},{dragmode:t.dragmode,element:e.div,gd:n,plotinfo:{id:e.id,domain:t[e.id].domain,xaxis:e.xaxis,yaxis:e.yaxis,fillRangeItems:a},xaxes:[e.xaxis],yaxes:[e.yaxis],subplot:e.id}),r.off("click",e.onClickInPanHandler),p(o)||h(o)?(r.dragPan.disable(),r.on("zoomstart",e.clearSelect),e.dragOptions.prepFn=function(t,r,n){d(t,r,n,e.dragOptions,o)},l.init(e.dragOptions)):(r.dragPan.enable(),r.off("zoomstart",e.clearSelect),e.div.onmousedown=null,e.onClickInPanHandler=e.onClickInPanFn(e.dragOptions),r.on("click",e.onClickInPanHandler))}function c(t){var r=e.map.unproject(t);return[r.lng,r.lat]}},_.updateFramework=function(t){var e=t[this.id].domain,r=t._size,n=this.div.style;n.width=r.w*(e.x[1]-e.x[0])+"px",n.height=r.h*(e.y[1]-e.y[0])+"px",n.left=r.l+e.x[0]*r.w+"px",n.top=r.t+(1-e.y[1])*r.h+"px",this.xaxis._offset=r.l+e.x[0]*r.w,this.xaxis._length=r.w*(e.x[1]-e.x[0]),this.yaxis._offset=r.t+(1-e.y[1])*r.h,this.yaxis._length=r.h*(e.y[1]-e.y[0])},_.updateLayers=function(t){var e,r=t[this.id].layers,n=this.layerList;if(r.length!==n.length){for(e=0;e=e.width-20?(a["text-anchor"]="start",a.x=5):(a["text-anchor"]="end",a.x=e._paper.attr("width")-7),r.attr(a);var o=r.select(".js-link-to-tool"),s=r.select(".js-link-spacer"),l=r.select(".js-sourcelinks");t._context.showSources&&t._context.showSources(t),t._context.showLink&&function(t,e){e.text("");var r=e.append("a").attr({"xlink:xlink:href":"#",class:"link--impt link--embedview","font-weight":"bold"}).text(t._context.linkText+" "+String.fromCharCode(187));if(t._context.sendData)r.on("click",(function(){b.sendDataToCloud(t)}));else{var n=window.location.pathname.split("/"),i=window.location.search;r.attr({"xlink:xlink:show":"new","xlink:xlink:href":"/"+n[2].split(".")[0]+"/"+n[1]+i})}}(t,o),s.text(o.text()&&l.text()?" - ":"")}},b.sendDataToCloud=function(t){var e=(window.PLOTLYENV||{}).BASE_URL||t._context.plotlyServerURL;if(e){t.emit("plotly_beforeexport");var r=n.select(t).append("div").attr("id","hiddenform").style("display","none"),i=r.append("form").attr({action:e+"/external",method:"post",target:"_blank"});return i.append("input").attr({type:"text",name:"data"}).node().value=b.graphJson(t,!1,"keepdata"),i.node().submit(),r.remove(),t.emit("plotly_afterexport"),!1}};var T=["days","shortDays","months","shortMonths","periods","dateTime","date","time","decimal","thousands","grouping","currency"],k=["year","month","dayMonth","dayMonthYear"];function A(t,e){var r=t._context.locale;r||(r="en-US");var n=!1,i={};function a(t){for(var r=!0,a=0;a1&&z.length>1){for(s.getComponentMethod("grid","sizeDefaults")(c,l),o=0;o15&&z.length>15&&0===l.shapes.length&&0===l.images.length,b.linkSubplots(h,l,f,n),b.cleanPlot(h,l,f,n);var N=!(!n._has||!n._has("gl2d")),j=!(!l._has||!l._has("gl2d")),U=!(!n._has||!n._has("cartesian"))||N,V=!(!l._has||!l._has("cartesian"))||j;U&&!V?n._bgLayer.remove():V&&!U&&(l._shouldCreateBgLayer=!0),n._zoomlayer&&!t._dragging&&d({_fullLayout:n}),function(t,e){var r,n=[];e.meta&&(r=e._meta={meta:e.meta,layout:{meta:e.meta}});for(var i=0;i0){var f=1-2*s;n=Math.round(f*n),i=Math.round(f*i)}}var h=b.layoutAttributes.width.min,p=b.layoutAttributes.height.min;n1,m=!e.height&&Math.abs(r.height-i)>1;(m||d)&&(d&&(r.width=n),m&&(r.height=i)),t._initialAutoSize||(t._initialAutoSize={width:n,height:i}),b.sanitizeMargins(r)},b.supplyLayoutModuleDefaults=function(t,e,r,n){var i,a,o,l=s.componentsRegistry,c=e._basePlotModules,f=s.subplotsRegistry.cartesian;for(i in l)(o=l[i]).includeBasePlot&&o.includeBasePlot(t,e);for(var h in c.length||c.push(f),e._has("cartesian")&&(s.getComponentMethod("grid","contentDefaults")(t,e),f.finalizeSubplots(t,e)),e._subplots)e._subplots[h].sort(u.subplotSort);for(a=0;a1&&(r.l/=m,r.r/=m)}if(f){var g=(r.t+r.b)/f;g>1&&(r.t/=g,r.b/=g)}var v=void 0!==r.xl?r.xl:r.x,y=void 0!==r.xr?r.xr:r.x,x=void 0!==r.yt?r.yt:r.y,_=void 0!==r.yb?r.yb:r.y;h[e]={l:{val:v,size:r.l+d},r:{val:y,size:r.r+d},b:{val:_,size:r.b+d},t:{val:x,size:r.t+d}},p[e]=1}else delete h[e],delete p[e];if(!n._replotting)return b.doAutoMargin(t)}},b.doAutoMargin=function(t){var e=t._fullLayout,r=e.width,n=e.height;e._size||(e._size={}),C(e);var i=e._size,a=e.margin,l=u.extendFlat({},i),c=a.l,f=a.r,h=a.t,d=a.b,m=e._pushmargin,g=e._pushmarginIds;if(!1!==e.margin.autoexpand){for(var v in m)g[v]||delete m[v];for(var y in m.base={l:{val:0,size:c},r:{val:1,size:f},t:{val:1,size:h},b:{val:0,size:d}},m){var x=m[y].l||{},_=m[y].b||{},w=x.val,T=x.size,k=_.val,A=_.size;for(var M in m){if(o(T)&&m[M].r){var S=m[M].r.val,E=m[M].r.size;if(S>w){var L=(T*S+(E-r)*w)/(S-w),P=(E*(1-w)+(T-r)*(1-S))/(S-w);L+P>c+f&&(c=L,f=P)}}if(o(A)&&m[M].t){var I=m[M].t.val,O=m[M].t.size;if(I>k){var z=(A*I+(O-n)*k)/(I-k),D=(O*(1-k)+(A-n)*(1-I))/(I-k);z+D>d+h&&(d=z,h=D)}}}}}var R=u.constrain(r-a.l-a.r,2,64),F=u.constrain(n-a.t-a.b,2,64),B=Math.max(0,r-R),N=Math.max(0,n-F);if(B){var j=(c+f)/B;j>1&&(c/=j,f/=j)}if(N){var U=(d+h)/N;U>1&&(d/=U,h/=U)}if(i.l=Math.round(c),i.r=Math.round(f),i.t=Math.round(h),i.b=Math.round(d),i.p=Math.round(a.pad),i.w=Math.round(r)-i.l-i.r,i.h=Math.round(n)-i.t-i.b,!e._replotting&&b.didMarginChange(l,i)){"_redrawFromAutoMarginCount"in e?e._redrawFromAutoMarginCount++:e._redrawFromAutoMarginCount=1;var V=3*(1+Object.keys(g).length);if(e._redrawFromAutoMarginCount0&&(t._transitioningWithDuration=!0),t._transitionData._interruptCallbacks.push((function(){n=!0})),r.redraw&&t._transitionData._interruptCallbacks.push((function(){return s.call("redraw",t)})),t._transitionData._interruptCallbacks.push((function(){t.emit("plotly_transitioninterrupted",[])}));var a=0,o=0;function l(){return a++,function(){o++,n||o!==a||function(e){if(!t._transitionData)return;(function(t){if(t)for(;t.length;)t.shift()})(t._transitionData._interruptCallbacks),Promise.resolve().then((function(){if(r.redraw)return s.call("redraw",t)})).then((function(){t._transitioning=!1,t._transitioningWithDuration=!1,t.emit("plotly_transitioned",[])})).then(e)}(i)}}r.runFn(l),setTimeout(l())}))}],a=u.syncOrAsync(i,t);return a&&a.then||(a=Promise.resolve()),a.then((function(){return t}))}b.didMarginChange=function(t,e){for(var r=0;r1)return!0}return!1},b.graphJson=function(t,e,r,n,i,a){(i&&e&&!t._fullData||i&&!e&&!t._fullLayout)&&b.supplyDefaults(t);var o=i?t._fullData:t.data,s=i?t._fullLayout:t.layout,l=(t._transitionData||{})._frames;function c(t,e){if("function"==typeof t)return e?"_function_":null;if(u.isPlainObject(t)){var n,i={};return Object.keys(t).sort().forEach((function(a){if(-1===["_","["].indexOf(a.charAt(0)))if("function"!=typeof t[a]){if("keepdata"===r){if("src"===a.substr(a.length-3))return}else if("keepstream"===r){if("string"==typeof(n=t[a+"src"])&&n.indexOf(":")>0&&!u.isPlainObject(t.stream))return}else if("keepall"!==r&&"string"==typeof(n=t[a+"src"])&&n.indexOf(":")>0)return;i[a]=c(t[a],e)}else e&&(i[a]="_function")})),i}return Array.isArray(t)?t.map((function(t){return c(t,e)})):u.isTypedArray(t)?u.simpleMap(t,u.identity):u.isJSDate(t)?u.ms2DateTimeLocal(+t):t}var f={data:(o||[]).map((function(t){var r=c(t);return e&&delete r.fit,r}))};if(!e&&(f.layout=c(s),i)){var h=s._size;f.layout.computed={margin:{b:h.b,l:h.l,r:h.r,t:h.t}}}return l&&(f.frames=c(l)),a&&(f.config=c(t._context,!0)),"object"===n?f:JSON.stringify(f)},b.modifyFrames=function(t,e){var r,n,i,a=t._transitionData._frames,o=t._transitionData._frameHash;for(r=0;r=0;a--)if(s[a].enabled){r._indexToPoints=s[a]._indexToPoints;break}n&&n.calc&&(o=n.calc(t,r))}Array.isArray(o)&&o[0]||(o=[{x:h,y:h}]),o[0].t||(o[0].t={}),o[0].trace=r,d[e]=o}}for(z(o,c,f),i=0;i1e-10?t:0}function h(t,e,r){e=e||0,r=r||0;for(var n=t.length,i=new Array(n),a=0;a0?r:1/0})),i=n.mod(r+1,e.length);return[e[r],e[i]]},findIntersectionXY:c,findXYatLength:function(t,e,r,n){var i=-e*r,a=e*e+1,o=2*(e*i-r),s=i*i+r*r-t*t,l=Math.sqrt(o*o-4*a*s),c=(-o+l)/(2*a),u=(-o-l)/(2*a);return[[c,e*c+i+n],[u,e*u+i+n]]},clampTiny:f,pathPolygon:function(t,e,r,n,i,a){return"M"+h(u(t,e,r,n),i,a).join("L")},pathPolygonAnnulus:function(t,e,r,n,i,a,o){var s,l;t=90||s>90&&l>=450?1:u<=0&&h<=0?0:Math.max(u,h);e=s<=180&&l>=180||s>180&&l>=540?-1:c>=0&&f>=0?0:Math.min(c,f);r=s<=270&&l>=270||s>270&&l>=630?-1:u>=0&&h>=0?0:Math.min(u,h);n=l>=360?1:c<=0&&f<=0?0:Math.max(c,f);return[e,r,n,i]}(p),b=x[2]-x[0],_=x[3]-x[1],w=h/f,T=Math.abs(_/b);w>T?(d=f,y=(h-(m=f*T))/n.h/2,g=[o[0],o[1]],v=[s[0]+y,s[1]-y]):(m=h,y=(f-(d=h/T))/n.w/2,g=[o[0]+y,o[1]-y],v=[s[0],s[1]]),this.xLength2=d,this.yLength2=m,this.xDomain2=g,this.yDomain2=v;var k,A=this.xOffset2=n.l+n.w*g[0],M=this.yOffset2=n.t+n.h*(1-v[1]),S=this.radius=d/b,E=this.innerRadius=this.getHole(e)*S,L=this.cx=A-S*x[0],C=this.cy=M+S*x[3],P=this.cxx=L-A,I=this.cyy=C-M,O=i.side;"counterclockwise"===O?(k=O,O="top"):"clockwise"===O&&(k=O,O="bottom"),this.radialAxis=this.mockAxis(t,e,i,{_id:"x",side:O,_trueSide:k,domain:[E/n.w,S/n.w]}),this.angularAxis=this.mockAxis(t,e,a,{side:"right",domain:[0,Math.PI],autorange:!1}),this.doAutoRange(t,e),this.updateAngularAxis(t,e),this.updateRadialAxis(t,e),this.updateRadialAxisTitle(t,e),this.xaxis=this.mockCartesianAxis(t,e,{_id:"x",domain:g}),this.yaxis=this.mockCartesianAxis(t,e,{_id:"y",domain:v});var z=this.pathSubplot();this.clipPaths.forTraces.select("path").attr("d",z).attr("transform",l(P,I)),r.frontplot.attr("transform",l(A,M)).call(u.setClipUrl,this._hasClipOnAxisFalse?null:this.clipIds.forTraces,this.gd),r.bg.attr("d",z).attr("transform",l(L,C)).call(c.fill,e.bgcolor)},N.mockAxis=function(t,e,r,n){var i=o.extendFlat({},r,n);return d(i,e,t),i},N.mockCartesianAxis=function(t,e,r){var n=this,i=n.isSmith,a=r._id,s=o.extendFlat({type:"linear"},r);p(s,t);var l={x:[0,2],y:[1,3]};return s.setRange=function(){var t=n.sectorBBox,r=l[a],i=n.radialAxis._rl,o=(i[1]-i[0])/(1-n.getHole(e));s.range=[t[r[0]]*o,t[r[1]]*o]},s.isPtWithinRange="x"!==a||i?function(){return!0}:function(t){return n.isPtInside(t)},s.setRange(),s.setScale(),s},N.doAutoRange=function(t,e){var r=this.gd,n=this.radialAxis,i=this.getRadial(e);m(r,n);var a=n.range;i.range=a.slice(),i._input.range=a.slice(),n._rl=[n.r2l(a[0],null,"gregorian"),n.r2l(a[1],null,"gregorian")]},N.updateRadialAxis=function(t,e){var r=this,n=r.gd,i=r.layers,a=r.radius,u=r.innerRadius,f=r.cx,p=r.cy,d=r.getRadial(e),m=D(r.getSector(e)[0],360),g=r.radialAxis,v=u90&&m<=270&&(g.tickangle=180);var x=y?function(t){var e=O(r,C([t.x,0]));return l(e[0]-f,e[1]-p)}:function(t){return l(g.l2p(t.x)+u,0)},b=y?function(t){return I(r,t.x,-1/0,1/0)}:function(t){return r.pathArc(g.r2p(t.x)+u)},_=j(d);if(r.radialTickLayout!==_&&(i["radial-axis"].selectAll(".xtick").remove(),r.radialTickLayout=_),v){g.setScale();var w=0,T=y?(g.tickvals||[]).filter((function(t){return t>=0})).map((function(t){return h.tickText(g,t,!0,!1)})):h.calcTicks(g),k=y?T:h.clipEnds(g,T),A=h.getTickSigns(g)[2];y&&(("top"===g.ticks&&"bottom"===g.side||"bottom"===g.ticks&&"top"===g.side)&&(A=-A),"top"===g.ticks&&"top"===g.side&&(w=-g.ticklen),"bottom"===g.ticks&&"bottom"===g.side&&(w=g.ticklen)),h.drawTicks(n,g,{vals:T,layer:i["radial-axis"],path:h.makeTickPath(g,0,A),transFn:x,crisp:!1}),h.drawGrid(n,g,{vals:k,layer:i["radial-grid"],path:b,transFn:o.noop,crisp:!1}),h.drawLabels(n,g,{vals:T,layer:i["radial-axis"],transFn:x,labelFns:h.makeLabelFns(g,w)})}var M=r.radialAxisAngle=r.vangles?F(U(R(d.angle),r.vangles)):d.angle,S=l(f,p),E=S+s(-M);V(i["radial-axis"],v&&(d.showticklabels||d.ticks),{transform:E}),V(i["radial-grid"],v&&d.showgrid,{transform:y?"":S}),V(i["radial-line"].select("line"),v&&d.showline,{x1:y?-a:u,y1:0,x2:a,y2:0,transform:E}).attr("stroke-width",d.linewidth).call(c.stroke,d.linecolor)},N.updateRadialAxisTitle=function(t,e,r){if(!this.isSmith){var n=this.gd,i=this.radius,a=this.cx,o=this.cy,s=this.getRadial(e),l=this.id+"title",c=0;if(s.title){var f=u.bBox(this.layers["radial-axis"].node()).height,h=s.title.font.size,p=s.side;c="top"===p?h:"counterclockwise"===p?-(f+.4*h):f+.8*h}var d=void 0!==r?r:this.radialAxisAngle,m=R(d),g=Math.cos(m),v=Math.sin(m),y=a+i/2*g+c*v,b=o-i/2*v+c*g;this.layers["radial-axis-title"]=x.draw(n,l,{propContainer:s,propName:this.id+".radialaxis.title",placeholder:z(n,"Click to enter radial axis title"),attributes:{x:y,y:b,"text-anchor":"middle"},transform:{rotate:-d}})}},N.updateAngularAxis=function(t,e){var r=this,n=r.gd,i=r.layers,a=r.radius,u=r.innerRadius,f=r.cx,p=r.cy,d=r.getAngular(e),m=r.angularAxis,g=r.isSmith;g||(r.fillViewInitialKey("angularaxis.rotation",d.rotation),m.setGeometry(),m.setScale());var v=g?function(t){var e=O(r,C([0,t.x]));return Math.atan2(e[0]-f,e[1]-p)-Math.PI/2}:function(t){return m.t2g(t.x)};"linear"===m.type&&"radians"===m.thetaunit&&(m.tick0=F(m.tick0),m.dtick=F(m.dtick));var y=function(t){return l(f+a*Math.cos(t),p-a*Math.sin(t))},x=g?function(t){var e=O(r,C([0,t.x]));return l(e[0],e[1])}:function(t){return y(v(t))},b=g?function(t){var e=O(r,C([0,t.x])),n=Math.atan2(e[0]-f,e[1]-p)-Math.PI/2;return l(e[0],e[1])+s(-F(n))}:function(t){var e=v(t);return y(e)+s(-F(e))},_=g?function(t){return P(r,t.x,0,1/0)}:function(t){var e=v(t),r=Math.cos(e),n=Math.sin(e);return"M"+[f+u*r,p-u*n]+"L"+[f+a*r,p-a*n]},w=h.makeLabelFns(m,0).labelStandoff,T={xFn:function(t){var e=v(t);return Math.cos(e)*w},yFn:function(t){var e=v(t),r=Math.sin(e)>0?.2:1;return-Math.sin(e)*(w+t.fontSize*r)+Math.abs(Math.cos(e))*(t.fontSize*M)},anchorFn:function(t){var e=v(t),r=Math.cos(e);return Math.abs(r)<.1?"middle":r>0?"start":"end"},heightFn:function(t,e,r){var n=v(t);return-.5*(1+Math.sin(n))*r}},k=j(d);r.angularTickLayout!==k&&(i["angular-axis"].selectAll("."+m._id+"tick").remove(),r.angularTickLayout=k);var A,S=g?[1/0].concat(m.tickvals||[]).map((function(t){return h.tickText(m,t,!0,!1)})):h.calcTicks(m);if(g&&(S[0].text="\u221e",S[0].fontSize*=1.75),"linear"===e.gridshape?(A=S.map(v),o.angleDelta(A[0],A[1])<0&&(A=A.slice().reverse())):A=null,r.vangles=A,"category"===m.type&&(S=S.filter((function(t){return o.isAngleInsideSector(v(t),r.sectorInRad)}))),m.visible){var E="inside"===m.ticks?-1:1,L=(m.linewidth||1)/2;h.drawTicks(n,m,{vals:S,layer:i["angular-axis"],path:"M"+E*L+",0h"+E*m.ticklen,transFn:b,crisp:!1}),h.drawGrid(n,m,{vals:S,layer:i["angular-grid"],path:_,transFn:o.noop,crisp:!1}),h.drawLabels(n,m,{vals:S,layer:i["angular-axis"],repositionOnUpdate:!0,transFn:x,labelFns:T})}V(i["angular-line"].select("path"),d.showline,{d:r.pathSubplot(),transform:l(f,p)}).attr("stroke-width",d.linewidth).call(c.stroke,d.linecolor)},N.updateFx=function(t,e){this.gd._context.staticPlot||(!this.isSmith&&(this.updateAngularDrag(t),this.updateRadialDrag(t,e,0),this.updateRadialDrag(t,e,1)),this.updateHoverAndMainDrag(t))},N.updateHoverAndMainDrag=function(t){var e,r,s=this,c=s.isSmith,u=s.gd,f=s.layers,h=t._zoomlayer,p=S.MINZOOM,d=S.OFFEDGE,m=s.radius,x=s.innerRadius,T=s.cx,k=s.cy,A=s.cxx,M=s.cyy,L=s.sectorInRad,C=s.vangles,P=s.radialAxis,I=E.clampTiny,O=E.findXYatLength,z=E.findEnclosingVertexAngles,D=S.cornerHalfWidth,R=S.cornerLen/2,F=g.makeDragger(f,"path","maindrag","crosshair");n.select(F).attr("d",s.pathSubplot()).attr("transform",l(T,k)),F.onmousemove=function(t){y.hover(u,t,s.id),u._fullLayout._lasthover=F,u._fullLayout._hoversubplot=s.id},F.onmouseout=function(t){u._dragging||v.unhover(u,t)};var B,N,j,U,V,H,q,G,Y,W={element:F,gd:u,subplot:s.id,plotinfo:{id:s.id,xaxis:s.xaxis,yaxis:s.yaxis},xaxes:[s.xaxis],yaxes:[s.yaxis]};function X(t,e){return Math.sqrt(t*t+e*e)}function Z(t,e){return X(t-A,e-M)}function J(t,e){return Math.atan2(M-e,t-A)}function K(t,e){return[t*Math.cos(e),t*Math.sin(-e)]}function Q(t,e){if(0===t)return s.pathSector(2*D);var r=R/t,n=e-r,i=e+r,a=Math.max(0,Math.min(t,m)),o=a-D,l=a+D;return"M"+K(o,n)+"A"+[o,o]+" 0,0,0 "+K(o,i)+"L"+K(l,i)+"A"+[l,l]+" 0,0,1 "+K(l,n)+"Z"}function $(t,e,r){if(0===t)return s.pathSector(2*D);var n,i,a=K(t,e),o=K(t,r),l=I((a[0]+o[0])/2),c=I((a[1]+o[1])/2);if(l&&c){var u=c/l,f=-1/u,h=O(D,u,l,c);n=O(R,f,h[0][0],h[0][1]),i=O(R,f,h[1][0],h[1][1])}else{var p,d;c?(p=R,d=D):(p=D,d=R),n=[[l-p,c-d],[l+p,c-d]],i=[[l-p,c+d],[l+p,c+d]]}return"M"+n.join("L")+"L"+i.reverse().join("L")+"Z"}function tt(t,e){return e=Math.max(Math.min(e,m),x),tp?(t-1&&1===t&&_(e,u,[s.xaxis],[s.yaxis],s.id,W),r.indexOf("event")>-1&&y.click(u,e,s.id)}W.prepFn=function(t,n,a){var l=u._fullLayout.dragmode,f=F.getBoundingClientRect();u._fullLayout._calcInverseTransform(u);var p=u._fullLayout._invTransform;e=u._fullLayout._invScaleX,r=u._fullLayout._invScaleY;var d=o.apply3DTransform(p)(n-f.left,a-f.top);if(B=d[0],N=d[1],C){var v=E.findPolygonOffset(m,L[0],L[1],C);B+=A+v[0],N+=M+v[1]}switch(l){case"zoom":W.clickFn=st,c||(W.moveFn=C?it:rt,W.doneFn=at,function(){j=null,U=null,V=s.pathSubplot(),H=!1;var t=u._fullLayout[s.id];q=i(t.bgcolor).getLuminance(),(G=g.makeZoombox(h,q,T,k,V)).attr("fill-rule","evenodd"),Y=g.makeCorners(h,T,k),w(u)}());break;case"select":case"lasso":b(t,n,a,W,l)}},v.init(W)},N.updateRadialDrag=function(t,e,r){var i=this,c=i.gd,u=i.layers,f=i.radius,h=i.innerRadius,p=i.cx,d=i.cy,m=i.radialAxis,y=S.radialDragBoxSize,x=y/2;if(m.visible){var b,_,T,M=R(i.radialAxisAngle),E=m._rl,L=E[0],C=E[1],P=E[r],I=.75*(E[1]-E[0])/(1-i.getHole(e))/f;r?(b=p+(f+x)*Math.cos(M),_=d-(f+x)*Math.sin(M),T="radialdrag"):(b=p+(h-x)*Math.cos(M),_=d-(h-x)*Math.sin(M),T="radialdrag-inner");var O,z,D,B=g.makeRectDragger(u,T,"crosshair",-x,-x,y,y),N={element:B,gd:c};V(n.select(B),m.visible&&h0==(r?D>L:Dn?function(t){return t<=0}:function(t){return t>=0};t.c2g=function(r){var n=t.c2l(r)-e;return(s(n)?n:0)+o},t.g2c=function(r){return t.l2c(r+e-o)},t.g2p=function(t){return t*a},t.c2p=function(e){return t.g2p(t.c2g(e))}}}(t,e);break;case"angularaxis":!function(t,e){var r=t.type;if("linear"===r){var i=t.d2c,s=t.c2d;t.d2c=function(t,e){return function(t,e){return"degrees"===e?a(t):t}(i(t),e)},t.c2d=function(t,e){return s(function(t,e){return"degrees"===e?o(t):t}(t,e))}}t.makeCalcdata=function(e,i){var a,o,s=e[i],l=e._length,c=function(r){return t.d2c(r,e.thetaunit)};if(s){if(n.isTypedArray(s)&&"linear"===r){if(l===s.length)return s;if(s.subarray)return s.subarray(0,l)}for(a=new Array(l),o=0;o0?1:0}function i(t){var e=t[0],r=t[1];if(!isFinite(e)||!isFinite(r))return[1,0];var n=(e+1)*(e+1)+r*r;return[(e*e+r*r-1)/n,2*r/n]}function a(t,e){var r=e[0],n=e[1];return[r*t.radius+t.cx,-n*t.radius+t.cy]}function o(t,e){return e*t.radius}e.exports={smith:i,reactanceArc:function(t,e,r,n){var s=a(t,i([r,e])),l=s[0],c=s[1],u=a(t,i([n,e])),f=u[0],h=u[1];if(0===e)return["M"+l+","+c,"L"+f+","+h].join(" ");var p=o(t,1/Math.abs(e));return["M"+l+","+c,"A"+p+","+p+" 0 0,"+(e<0?1:0)+" "+f+","+h].join(" ")},resistanceArc:function(t,e,r,s){var l=o(t,1/(e+1)),c=a(t,i([e,r])),u=c[0],f=c[1],h=a(t,i([e,s])),p=h[0],d=h[1];if(n(r)!==n(s)){var m=a(t,i([e,0]));return["M"+u+","+f,"A"+l+","+l+" 0 0,"+(00){for(var n=[],i=0;i=u&&(h.min=0,d.min=0,g.min=0,t.aaxis&&delete t.aaxis.min,t.baxis&&delete t.baxis.min,t.caxis&&delete t.caxis.min)}function m(t,e,r,n){var i=h[e._name];function o(r,n){return a.coerce(t,e,i,r,n)}o("uirevision",n.uirevision),e.type="linear";var p=o("color"),d=p!==i.color.dflt?p:r.font.color,m=e._name.charAt(0).toUpperCase(),g="Component "+m,v=o("title.text",g);e._hovertitle=v===g?v:m,a.coerceFont(o,"title.font",{family:r.font.family,size:a.bigFont(r.font.size),color:d}),o("min"),u(t,e,o,"linear"),l(t,e,o,"linear"),s(t,e,o,"linear"),c(t,e,o,{outerTicks:!0}),o("showticklabels")&&(a.coerceFont(o,"tickfont",{family:r.font.family,size:r.font.size,color:d}),o("tickangle"),o("tickformat")),f(t,e,o,{dfltColor:p,bgColor:r.bgColor,blend:60,showLine:!0,showGrid:!0,noZeroLine:!0,attributes:i}),o("hoverformat"),o("layer")}e.exports=function(t,e,r){o(t,e,r,{type:"ternary",attributes:h,handleDefaults:d,font:e.font,paper_bgcolor:e.paper_bgcolor})}},{"../../components/color":361,"../../lib":498,"../../plot_api/plot_template":538,"../cartesian/line_grid_defaults":566,"../cartesian/prefix_suffix_defaults":568,"../cartesian/tick_label_defaults":573,"../cartesian/tick_mark_defaults":574,"../cartesian/tick_value_defaults":575,"../subplot_defaults":627,"./layout_attributes":630}],632:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("tinycolor2"),a=t("../../registry"),o=t("../../lib"),s=o.strTranslate,l=o._,c=t("../../components/color"),u=t("../../components/drawing"),f=t("../cartesian/set_convert"),h=t("../../lib/extend").extendFlat,p=t("../plots"),d=t("../cartesian/axes"),m=t("../../components/dragelement"),g=t("../../components/fx"),v=t("../../components/dragelement/helpers"),y=v.freeMode,x=v.rectMode,b=t("../../components/titles"),_=t("../cartesian/select").prepSelect,w=t("../cartesian/select").selectOnClick,T=t("../cartesian/select").clearSelect,k=t("../cartesian/select").clearSelectionsCache,A=t("../cartesian/constants");function M(t,e){this.id=t.id,this.graphDiv=t.graphDiv,this.init(e),this.makeFramework(e),this.aTickLayout=null,this.bTickLayout=null,this.cTickLayout=null}e.exports=M;var S=M.prototype;S.init=function(t){this.container=t._ternarylayer,this.defs=t._defs,this.layoutId=t._uid,this.traceHash={},this.layers={}},S.plot=function(t,e){var r=e[this.id],n=e._size;this._hasClipOnAxisFalse=!1;for(var i=0;iE*b?i=(a=b)*E:a=(i=x)/E,o=v*i/x,l=y*a/b,r=e.l+e.w*m-i/2,n=e.t+e.h*(1-g)-a/2,p.x0=r,p.y0=n,p.w=i,p.h=a,p.sum=_,p.xaxis={type:"linear",range:[w+2*k-_,_-w-2*T],domain:[m-o/2,m+o/2],_id:"x"},f(p.xaxis,p.graphDiv._fullLayout),p.xaxis.setScale(),p.xaxis.isPtWithinRange=function(t){return t.a>=p.aaxis.range[0]&&t.a<=p.aaxis.range[1]&&t.b>=p.baxis.range[1]&&t.b<=p.baxis.range[0]&&t.c>=p.caxis.range[1]&&t.c<=p.caxis.range[0]},p.yaxis={type:"linear",range:[w,_-T-k],domain:[g-l/2,g+l/2],_id:"y"},f(p.yaxis,p.graphDiv._fullLayout),p.yaxis.setScale(),p.yaxis.isPtWithinRange=function(){return!0};var A=p.yaxis.domain[0],M=p.aaxis=h({},t.aaxis,{range:[w,_-T-k],side:"left",tickangle:(+t.aaxis.tickangle||0)-30,domain:[A,A+l*E],anchor:"free",position:0,_id:"y",_length:i});f(M,p.graphDiv._fullLayout),M.setScale();var S=p.baxis=h({},t.baxis,{range:[_-w-k,T],side:"bottom",domain:p.xaxis.domain,anchor:"free",position:0,_id:"x",_length:i});f(S,p.graphDiv._fullLayout),S.setScale();var L=p.caxis=h({},t.caxis,{range:[_-w-T,k],side:"right",tickangle:(+t.caxis.tickangle||0)+30,domain:[A,A+l*E],anchor:"free",position:0,_id:"y",_length:i});f(L,p.graphDiv._fullLayout),L.setScale();var C="M"+r+","+(n+a)+"h"+i+"l-"+i/2+",-"+a+"Z";p.clipDef.select("path").attr("d",C),p.layers.plotbg.select("path").attr("d",C);var P="M0,"+a+"h"+i+"l-"+i/2+",-"+a+"Z";p.clipDefRelative.select("path").attr("d",P);var I=s(r,n);p.plotContainer.selectAll(".scatterlayer,.maplayer").attr("transform",I),p.clipDefRelative.select("path").attr("transform",null);var O=s(r-S._offset,n+a);p.layers.baxis.attr("transform",O),p.layers.bgrid.attr("transform",O);var z=s(r+i/2,n)+"rotate(30)"+s(0,-M._offset);p.layers.aaxis.attr("transform",z),p.layers.agrid.attr("transform",z);var D=s(r+i/2,n)+"rotate(-30)"+s(0,-L._offset);p.layers.caxis.attr("transform",D),p.layers.cgrid.attr("transform",D),p.drawAxes(!0),p.layers.aline.select("path").attr("d",M.showline?"M"+r+","+(n+a)+"l"+i/2+",-"+a:"M0,0").call(c.stroke,M.linecolor||"#000").style("stroke-width",(M.linewidth||0)+"px"),p.layers.bline.select("path").attr("d",S.showline?"M"+r+","+(n+a)+"h"+i:"M0,0").call(c.stroke,S.linecolor||"#000").style("stroke-width",(S.linewidth||0)+"px"),p.layers.cline.select("path").attr("d",L.showline?"M"+(r+i/2)+","+n+"l"+i/2+","+a:"M0,0").call(c.stroke,L.linecolor||"#000").style("stroke-width",(L.linewidth||0)+"px"),p.graphDiv._context.staticPlot||p.initInteractions(),u.setClipUrl(p.layers.frontplot,p._hasClipOnAxisFalse?null:p.clipId,p.graphDiv)},S.drawAxes=function(t){var e=this.graphDiv,r=this.id.substr(7)+"title",n=this.layers,i=this.aaxis,a=this.baxis,o=this.caxis;if(this.drawAx(i),this.drawAx(a),this.drawAx(o),t){var s=Math.max(i.showticklabels?i.tickfont.size/2:0,(o.showticklabels?.75*o.tickfont.size:0)+("outside"===o.ticks?.87*o.ticklen:0)),c=(a.showticklabels?a.tickfont.size:0)+("outside"===a.ticks?a.ticklen:0)+3;n["a-title"]=b.draw(e,"a"+r,{propContainer:i,propName:this.id+".aaxis.title",placeholder:l(e,"Click to enter Component A title"),attributes:{x:this.x0+this.w/2,y:this.y0-i.title.font.size/3-s,"text-anchor":"middle"}}),n["b-title"]=b.draw(e,"b"+r,{propContainer:a,propName:this.id+".baxis.title",placeholder:l(e,"Click to enter Component B title"),attributes:{x:this.x0-c,y:this.y0+this.h+.83*a.title.font.size+c,"text-anchor":"middle"}}),n["c-title"]=b.draw(e,"c"+r,{propContainer:o,propName:this.id+".caxis.title",placeholder:l(e,"Click to enter Component C title"),attributes:{x:this.x0+this.w+c,y:this.y0+this.h+.83*o.title.font.size+c,"text-anchor":"middle"}})}},S.drawAx=function(t){var e,r=this.graphDiv,n=t._name,i=n.charAt(0),a=t._id,s=this.layers[n],l=i+"tickLayout",c=(e=t).ticks+String(e.ticklen)+String(e.showticklabels);this[l]!==c&&(s.selectAll("."+a+"tick").remove(),this[l]=c),t.setScale();var u=d.calcTicks(t),f=d.clipEnds(t,u),h=d.makeTransTickFn(t),p=d.getTickSigns(t)[2],m=o.deg2rad(30),g=p*(t.linewidth||1)/2,v=p*t.ticklen,y=this.w,x=this.h,b="b"===i?"M0,"+g+"l"+Math.sin(m)*v+","+Math.cos(m)*v:"M"+g+",0l"+Math.cos(m)*v+","+-Math.sin(m)*v,_={a:"M0,0l"+x+",-"+y/2,b:"M0,0l-"+y/2+",-"+x,c:"M0,0l-"+x+","+y/2}[i];d.drawTicks(r,t,{vals:"inside"===t.ticks?f:u,layer:s,path:b,transFn:h,crisp:!1}),d.drawGrid(r,t,{vals:f,layer:this.layers[i+"grid"],path:_,transFn:h,crisp:!1}),d.drawLabels(r,t,{vals:u,layer:s,transFn:h,labelFns:d.makeLabelFns(t,0,30)})};var L=A.MINZOOM/2+.87,C="m-0.87,.5h"+L+"v3h-"+(L+5.2)+"l"+(L/2+2.6)+",-"+(.87*L+4.5)+"l2.6,1.5l-"+L/2+","+.87*L+"Z",P="m0.87,.5h-"+L+"v3h"+(L+5.2)+"l-"+(L/2+2.6)+",-"+(.87*L+4.5)+"l-2.6,1.5l"+L/2+","+.87*L+"Z",I="m0,1l"+L/2+","+.87*L+"l2.6,-1.5l-"+(L/2+2.6)+",-"+(.87*L+4.5)+"l-"+(L/2+2.6)+","+(.87*L+4.5)+"l2.6,1.5l"+L/2+",-"+.87*L+"Z",O=!0;function z(t){n.select(t).selectAll(".zoombox,.js-zoombox-backdrop,.js-zoombox-menu,.zoombox-corners").remove()}S.clearSelect=function(){k(this.dragOptions),T(this.dragOptions.gd)},S.initInteractions=function(){var t,e,r,n,f,h,p,d,v,b,T,k,M=this,S=M.layers.plotbg.select("path").node(),L=M.graphDiv,D=L._fullLayout._zoomlayer;function R(t){var e={};return e[M.id+".aaxis.min"]=t.a,e[M.id+".baxis.min"]=t.b,e[M.id+".caxis.min"]=t.c,e}function F(t,e){var r=L._fullLayout.clickmode;z(L),2===t&&(L.emit("plotly_doubleclick",null),a.call("_guiRelayout",L,R({a:0,b:0,c:0}))),r.indexOf("select")>-1&&1===t&&w(e,L,[M.xaxis],[M.yaxis],M.id,M.dragOptions),r.indexOf("event")>-1&&g.click(L,e,M.id)}function B(t,e){return 1-e/M.h}function N(t,e){return 1-(t+(M.h-e)/Math.sqrt(3))/M.w}function j(t,e){return(t-(M.h-e)/Math.sqrt(3))/M.w}function U(i,a){var o=r+i*t,s=n+a*e,l=Math.max(0,Math.min(1,B(0,n),B(0,s))),c=Math.max(0,Math.min(1,N(r,n),N(o,s))),u=Math.max(0,Math.min(1,j(r,n),j(o,s))),m=(l/2+u)*M.w,g=(1-l/2-c)*M.w,y=(m+g)/2,x=g-m,_=(1-l)*M.h,w=_-x/E;x.2?"rgba(0,0,0,0.4)":"rgba(255,255,255,0.3)").duration(200),k.transition().style("opacity",1).duration(200),b=!0),L.emit("plotly_relayouting",R(p))}function V(){z(L),p!==f&&(a.call("_guiRelayout",L,R(p)),O&&L.data&&L._context.showTips&&(o.notifier(l(L,"Double-click to zoom back out"),"long"),O=!1))}function H(t,e){var r=t/M.xaxis._m,n=e/M.yaxis._m,i=[(p={a:f.a-n,b:f.b+(r+n)/2,c:f.c-(r-n)/2}).a,p.b,p.c].sort(o.sorterAsc),a=i.indexOf(p.a),l=i.indexOf(p.b),c=i.indexOf(p.c);i[0]<0&&(i[1]+i[0]/2<0?(i[2]+=i[0]+i[1],i[0]=i[1]=0):(i[2]+=i[0]/2,i[1]+=i[0]/2,i[0]=0),p={a:i[a],b:i[l],c:i[c]},e=(f.a-p.a)*M.yaxis._m,t=(f.c-p.c-f.b+p.b)*M.xaxis._m);var h=s(M.x0+t,M.y0+e);M.plotContainer.selectAll(".scatterlayer,.maplayer").attr("transform",h);var d=s(-t,-e);M.clipDefRelative.select("path").attr("transform",d),M.aaxis.range=[p.a,M.sum-p.b-p.c],M.baxis.range=[M.sum-p.a-p.c,p.b],M.caxis.range=[M.sum-p.a-p.b,p.c],M.drawAxes(!1),M._hasClipOnAxisFalse&&M.plotContainer.select(".scatterlayer").selectAll(".trace").call(u.hideOutsideRangePoints,M),L.emit("plotly_relayouting",R(p))}function q(){a.call("_guiRelayout",L,R(p))}this.dragOptions={element:S,gd:L,plotinfo:{id:M.id,domain:L._fullLayout[M.id].domain,xaxis:M.xaxis,yaxis:M.yaxis},subplot:M.id,prepFn:function(a,l,u){M.dragOptions.xaxes=[M.xaxis],M.dragOptions.yaxes=[M.yaxis],t=L._fullLayout._invScaleX,e=L._fullLayout._invScaleY;var m=M.dragOptions.dragmode=L._fullLayout.dragmode;y(m)?M.dragOptions.minDrag=1:M.dragOptions.minDrag=void 0,"zoom"===m?(M.dragOptions.moveFn=U,M.dragOptions.clickFn=F,M.dragOptions.doneFn=V,function(t,e,a){var l=S.getBoundingClientRect();r=e-l.left,n=a-l.top,L._fullLayout._calcInverseTransform(L);var u=L._fullLayout._invTransform,m=o.apply3DTransform(u)(r,n);r=m[0],n=m[1],f={a:M.aaxis.range[0],b:M.baxis.range[1],c:M.caxis.range[1]},p=f,h=M.aaxis.range[1]-f.a,d=i(M.graphDiv._fullLayout[M.id].bgcolor).getLuminance(),v="M0,"+M.h+"L"+M.w/2+", 0L"+M.w+","+M.h+"Z",b=!1,T=D.append("path").attr("class","zoombox").attr("transform",s(M.x0,M.y0)).style({fill:d>.2?"rgba(0,0,0,0)":"rgba(255,255,255,0)","stroke-width":0}).attr("d",v),k=D.append("path").attr("class","zoombox-corners").attr("transform",s(M.x0,M.y0)).style({fill:c.background,stroke:c.defaultLine,"stroke-width":1,opacity:0}).attr("d","M0,0Z"),M.clearSelect(L)}(0,l,u)):"pan"===m?(M.dragOptions.moveFn=H,M.dragOptions.clickFn=F,M.dragOptions.doneFn=q,f={a:M.aaxis.range[0],b:M.baxis.range[1],c:M.caxis.range[1]},p=f,M.clearSelect(L)):(x(m)||y(m))&&_(a,l,u,M.dragOptions,m)}},S.onmousemove=function(t){g.hover(L,t,M.id),L._fullLayout._lasthover=S,L._fullLayout._hoversubplot=M.id},S.onmouseout=function(t){L._dragging||m.unhover(L,t)},m.init(this.dragOptions)}},{"../../components/color":361,"../../components/dragelement":380,"../../components/dragelement/helpers":379,"../../components/drawing":383,"../../components/fx":401,"../../components/titles":459,"../../lib":498,"../../lib/extend":488,"../../registry":633,"../cartesian/axes":549,"../cartesian/constants":556,"../cartesian/select":570,"../cartesian/set_convert":571,"../plots":614,"@plotly/d3":58,tinycolor2:307}],633:[function(t,e,r){"use strict";var n=t("./lib/loggers"),i=t("./lib/noop"),a=t("./lib/push_unique"),o=t("./lib/is_plain_object"),s=t("./lib/dom").addStyleRule,l=t("./lib/extend"),c=t("./plots/attributes"),u=t("./plots/layout_attributes"),f=l.extendFlat,h=l.extendDeepAll;function p(t){var e=t.name,i=t.categories,a=t.meta;if(r.modules[e])n.log("Type "+e+" already registered");else{r.subplotsRegistry[t.basePlotModule.name]||function(t){var e=t.name;if(r.subplotsRegistry[e])return void n.log("Plot type "+e+" already registered.");for(var i in v(t),r.subplotsRegistry[e]=t,r.componentsRegistry)b(i,t.name)}(t.basePlotModule);for(var o={},l=0;l-1&&(f[p[r]].title={text:""});for(r=0;r")?"":e.html(t).text()}));return e.remove(),r}(_),_=(_=_.replace(/&(?!\w+;|\#[0-9]+;| \#x[0-9A-F]+;)/g,"&")).replace(c,"'"),i.isIE()&&(_=(_=(_=_.replace(/"/gi,"'")).replace(/(\('#)([^']*)('\))/gi,'("#$2")')).replace(/(\\')/gi,'"')),_}},{"../components/color":361,"../components/drawing":383,"../constants/xmlns_namespaces":475,"../lib":498,"@plotly/d3":58}],642:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){for(var r=0;rf+c||!n(u))}for(var p=0;pa))return e}return void 0!==r?r:t.dflt},r.coerceColor=function(t,e,r){return i(e).isValid()?e:void 0!==r?r:t.dflt},r.coerceEnumerated=function(t,e,r){return t.coerceNumber&&(e=+e),-1!==t.values.indexOf(e)?e:void 0!==r?r:t.dflt},r.getValue=function(t,e){var r;return Array.isArray(t)?e0?e+=r:u<0&&(e-=r)}return e}function z(t){var e=u,r=t.b,i=O(t);return n.inbox(r-e,i-e,_+(i-e)/(i-r)-1)}var D=t[f+"a"],R=t[h+"a"];m=Math.abs(D.r2c(D.range[1])-D.r2c(D.range[0]));var F=n.getDistanceFunction(i,p,d,(function(t){return(p(t)+d(t))/2}));if(n.getClosest(g,F,t),!1!==t.index&&g[t.index].p!==c){k||(L=function(t){return Math.min(A(t),t.p-y.bargroupwidth/2)},C=function(t){return Math.max(M(t),t.p+y.bargroupwidth/2)});var B=g[t.index],N=v.base?B.b+B.s:B.s;t[h+"0"]=t[h+"1"]=R.c2p(B[h],!0),t[h+"LabelVal"]=N;var j=y.extents[y.extents.round(B.p)];t[f+"0"]=D.c2p(x?L(B):j[0],!0),t[f+"1"]=D.c2p(x?C(B):j[1],!0);var U=void 0!==B.orig_p;return t[f+"LabelVal"]=U?B.orig_p:B.p,t.labelLabel=l(D,t[f+"LabelVal"],v[f+"hoverformat"]),t.valueLabel=l(R,t[h+"LabelVal"],v[h+"hoverformat"]),t.baseLabel=l(R,B.b,v[h+"hoverformat"]),t.spikeDistance=(function(t){var e=u,r=t.b,i=O(t);return n.inbox(r-e,i-e,w+(i-e)/(i-r)-1)}(B)+function(t){return P(A(t),M(t),w)}(B))/2,t[f+"Spike"]=D.c2p(B.p,!0),o(B,v,t),t.hovertemplate=v.hovertemplate,t}}function f(t,e){var r=e.mcc||t.marker.color,n=e.mlcc||t.marker.line.color,i=s(t,e);return a.opacity(r)?r:a.opacity(n)&&i?n:void 0}e.exports={hoverPoints:function(t,e,r,n,a){var o=u(t,e,r,n,a);if(o){var s=o.cd,l=s[0].trace,c=s[o.index];return o.color=f(l,c),i.getComponentMethod("errorbars","hoverInfo")(c,l,o),[o]}},hoverOnBars:u,getTraceColor:f}},{"../../components/color":361,"../../components/fx":401,"../../constants/numerical":474,"../../lib":498,"../../plots/cartesian/axes":549,"../../registry":633,"./helpers":649}],651:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc").crossTraceCalc,colorbar:t("../scatter/marker_colorbar"),arraysToCalcdata:t("./arrays_to_calcdata"),plot:t("./plot").plot,style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"bar",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","bar","oriented","errorBarsOK","showLegend","zoomScale"],animatable:!0,meta:{}}},{"../../plots/cartesian":563,"../scatter/marker_colorbar":940,"./arrays_to_calcdata":642,"./attributes":643,"./calc":644,"./cross_trace_calc":646,"./defaults":647,"./event_data":648,"./hover":650,"./layout_attributes":652,"./layout_defaults":653,"./plot":654,"./select":655,"./style":657}],652:[function(t,e,r){"use strict";e.exports={barmode:{valType:"enumerated",values:["stack","group","overlay","relative"],dflt:"group",editType:"calc"},barnorm:{valType:"enumerated",values:["","fraction","percent"],dflt:"",editType:"calc"},bargap:{valType:"number",min:0,max:1,editType:"calc"},bargroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],653:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../plots/cartesian/axes"),a=t("../../lib"),o=t("./layout_attributes");e.exports=function(t,e,r){function s(r,n){return a.coerce(t,e,o,r,n)}for(var l=!1,c=!1,u=!1,f={},h=s("barmode"),p=0;p0}function S(t){return"auto"===t?0:t}function E(t,e){var r=Math.PI/180*e,n=Math.abs(Math.sin(r)),i=Math.abs(Math.cos(r));return{x:t.width*i+t.height*n,y:t.width*n+t.height*i}}function L(t,e,r,n,i,a){var o=!!a.isHorizontal,s=!!a.constrained,l=a.angle||0,c=a.anchor||"end",u="end"===c,f="start"===c,h=((a.leftToRight||0)+1)/2,p=1-h,d=i.width,m=i.height,g=Math.abs(e-t),v=Math.abs(n-r),y=g>2*_&&v>2*_?_:0;g-=2*y,v-=2*y;var x=S(l);"auto"!==l||d<=g&&m<=v||!(d>g||m>v)||(d>v||m>g)&&d.01?q:function(t,e,r){return r&&t===e?t:Math.abs(t-e)>=2?q(t):t>e?Math.ceil(t):Math.floor(t)};B=G(B,N,D),N=G(N,B,D),j=G(j,U,!D),U=G(U,j,!D)}var Y=A(a.ensureSingle(I,"path"),P,g,v);if(Y.style("vector-effect","non-scaling-stroke").attr("d",isNaN((N-B)*(U-j))||V&&t._context.staticPlot?"M0,0Z":"M"+B+","+j+"V"+U+"H"+N+"V"+j+"Z").call(l.setClipUrl,e.layerClipId,t),!P.uniformtext.mode&&R){var W=l.makePointStyleFns(f);l.singlePointStyle(c,Y,f,W,t)}!function(t,e,r,n,i,s,c,f,p,g,v){var w,T=e.xaxis,M=e.yaxis,C=t._fullLayout;function P(e,r,n){return a.ensureSingle(e,"text").text(r).attr({class:"bartext bartext-"+w,"text-anchor":"middle","data-notex":1}).call(l.font,n).call(o.convertToTspans,t)}var I=n[0].trace,O="h"===I.orientation,z=function(t,e,r,n,i){var o,s=e[0].trace;o=s.texttemplate?function(t,e,r,n,i){var o=e[0].trace,s=a.castOption(o,r,"texttemplate");if(!s)return"";var l,c,f,h,p="histogram"===o.type,d="waterfall"===o.type,m="funnel"===o.type,g="h"===o.orientation;g?(l="y",c=i,f="x",h=n):(l="x",c=n,f="y",h=i);function v(t){return u(h,h.c2l(t),!0).text}var y=e[r],x={};x.label=y.p,x.labelLabel=x[l+"Label"]=(_=y.p,u(c,c.c2l(_),!0).text);var _;var w=a.castOption(o,y.i,"text");(0===w||w)&&(x.text=w);x.value=y.s,x.valueLabel=x[f+"Label"]=v(y.s);var T={};b(T,o,y.i),(p||void 0===T.x)&&(T.x=g?x.value:x.label);(p||void 0===T.y)&&(T.y=g?x.label:x.value);(p||void 0===T.xLabel)&&(T.xLabel=g?x.valueLabel:x.labelLabel);(p||void 0===T.yLabel)&&(T.yLabel=g?x.labelLabel:x.valueLabel);d&&(x.delta=+y.rawS||y.s,x.deltaLabel=v(x.delta),x.final=y.v,x.finalLabel=v(x.final),x.initial=x.final-x.delta,x.initialLabel=v(x.initial));m&&(x.value=y.s,x.valueLabel=v(x.value),x.percentInitial=y.begR,x.percentInitialLabel=a.formatPercent(y.begR),x.percentPrevious=y.difR,x.percentPreviousLabel=a.formatPercent(y.difR),x.percentTotal=y.sumR,x.percenTotalLabel=a.formatPercent(y.sumR));var k=a.castOption(o,y.i,"customdata");k&&(x.customdata=k);return a.texttemplateString(s,x,t._d3locale,T,x,o._meta||{})}(t,e,r,n,i):s.textinfo?function(t,e,r,n){var i=t[0].trace,o="h"===i.orientation,s="waterfall"===i.type,l="funnel"===i.type;function c(t){return u(o?r:n,+t,!0).text}var f,h=i.textinfo,p=t[e],d=h.split("+"),m=[],g=function(t){return-1!==d.indexOf(t)};g("label")&&m.push((v=t[e].p,u(o?n:r,v,!0).text));var v;g("text")&&(0===(f=a.castOption(i,p.i,"text"))||f)&&m.push(f);if(s){var y=+p.rawS||p.s,x=p.v,b=x-y;g("initial")&&m.push(c(b)),g("delta")&&m.push(c(y)),g("final")&&m.push(c(x))}if(l){g("value")&&m.push(c(p.s));var _=0;g("percent initial")&&_++,g("percent previous")&&_++,g("percent total")&&_++;var w=_>1;g("percent initial")&&(f=a.formatPercent(p.begR),w&&(f+=" of initial"),m.push(f)),g("percent previous")&&(f=a.formatPercent(p.difR),w&&(f+=" of previous"),m.push(f)),g("percent total")&&(f=a.formatPercent(p.sumR),w&&(f+=" of total"),m.push(f))}return m.join("
")}(e,r,n,i):m.getValue(s.text,r);return m.coerceString(y,o)}(C,n,i,T,M);w=function(t,e){var r=m.getValue(t.textposition,e);return m.coerceEnumerated(x,r)}(I,i);var D="stack"===g.mode||"relative"===g.mode,R=n[i],F=!D||R._outmost;if(!z||"none"===w||(R.isBlank||s===c||f===p)&&("auto"===w||"inside"===w))return void r.select("text").remove();var B=C.font,N=d.getBarColor(n[i],I),j=d.getInsideTextFont(I,i,B,N),U=d.getOutsideTextFont(I,i,B),V=r.datum();O?"log"===T.type&&V.s0<=0&&(s=T.range[0]=G*(Z/Y):Z>=Y*(X/G);G>0&&Y>0&&(J||K||Q)?w="inside":(w="outside",H.remove(),H=null)}else w="inside";if(!H){W=a.ensureUniformFontSize(t,"outside"===w?U:j);var $=(H=P(r,z,W)).attr("transform");if(H.attr("transform",""),q=l.bBox(H.node()),G=q.width,Y=q.height,H.attr("transform",$),G<=0||Y<=0)return void H.remove()}var tt,et,rt=I.textangle;"outside"===w?(et="both"===I.constraintext||"outside"===I.constraintext,tt=function(t,e,r,n,i,a){var o,s=!!a.isHorizontal,l=!!a.constrained,c=a.angle||0,u=i.width,f=i.height,h=Math.abs(e-t),p=Math.abs(n-r);o=s?p>2*_?_:0:h>2*_?_:0;var d=1;l&&(d=s?Math.min(1,p/f):Math.min(1,h/u));var m=S(c),g=E(i,m),v=(s?g.x:g.y)/2,y=(i.left+i.right)/2,x=(i.top+i.bottom)/2,b=(t+e)/2,w=(r+n)/2,T=0,A=0,M=s?k(e,t):k(r,n);s?(b=e-M*o,T=M*v):(w=n+M*o,A=-M*v);return{textX:y,textY:x,targetX:b,targetY:w,anchorX:T,anchorY:A,scale:d,rotate:m}}(s,c,f,p,q,{isHorizontal:O,constrained:et,angle:rt})):(et="both"===I.constraintext||"inside"===I.constraintext,tt=L(s,c,f,p,q,{isHorizontal:O,constrained:et,angle:rt,anchor:I.insidetextanchor}));tt.fontSize=W.size,h("histogram"===I.type?"bar":I.type,tt,C),R.transform=tt,A(H,C,g,v).attr("transform",a.getTextTransform(tt))}(t,e,I,r,p,B,N,j,U,g,v),e.layerClipId&&l.hideOutsideRangePoint(c,I.select("text"),w,C,f.xcalendar,f.ycalendar)}));var j=!1===f.cliponaxis;l.setClipUrl(c,j?null:e.layerClipId,t)}));c.getComponentMethod("errorbars","plot")(t,I,e,g)},toMoveInsideBar:L}},{"../../components/color":361,"../../components/drawing":383,"../../components/fx/helpers":397,"../../lib":498,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"../../registry":633,"./attributes":643,"./constants":645,"./helpers":649,"./style":657,"./uniform_text":659,"@plotly/d3":58,"fast-isnumeric":185}],655:[function(t,e,r){"use strict";function n(t,e,r,n,i){var a=e.c2p(n?t.s0:t.p0,!0),o=e.c2p(n?t.s1:t.p1,!0),s=r.c2p(n?t.p0:t.s0,!0),l=r.c2p(n?t.p1:t.s1,!0);return i?[(a+o)/2,(s+l)/2]:n?[o,(s+l)/2]:[(a+o)/2,l]}e.exports=function(t,e){var r,i=t.cd,a=t.xaxis,o=t.yaxis,s=i[0].trace,l="funnel"===s.type,c="h"===s.orientation,u=[];if(!1===e)for(r=0;r1||0===i.bargap&&0===i.bargroupgap&&!t[0].trace.marker.line.width)&&n.select(this).attr("shape-rendering","crispEdges")})),e.selectAll("g.points").each((function(e){d(n.select(this),e[0].trace,t)})),s.getComponentMethod("errorbars","style")(e)},styleTextPoints:m,styleOnSelect:function(t,e,r){var i=e[0].trace;i.selectedpoints?function(t,e,r){a.selectedPointStyle(t.selectAll("path"),e),function(t,e,r){t.each((function(t){var i,s=n.select(this);if(t.selected){i=o.ensureUniformFontSize(r,g(s,t,e,r));var l=e.selected.textfont&&e.selected.textfont.color;l&&(i.color=l),a.font(s,i)}else a.selectedTextStyle(s,e)}))}(t.selectAll("text"),e,r)}(r,i,t):(d(r,i,t),s.getComponentMethod("errorbars","style")(r))},getInsideTextFont:y,getOutsideTextFont:x,getBarColor:_,resizeText:l}},{"../../components/color":361,"../../components/drawing":383,"../../lib":498,"../../registry":633,"./attributes":643,"./helpers":649,"./uniform_text":659,"@plotly/d3":58}],658:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults"),o=t("../../lib").coercePattern;e.exports=function(t,e,r,s,l){var c=r("marker.color",s),u=i(t,"marker");u&&a(t,e,l,r,{prefix:"marker.",cLetter:"c"}),r("marker.line.color",n.defaultLine),i(t,"marker.line")&&a(t,e,l,r,{prefix:"marker.line.",cLetter:"c"}),r("marker.line.width"),r("marker.opacity"),o(r,"marker.pattern",c,u),r("selected.marker.color"),r("unselected.marker.color")}},{"../../components/color":361,"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"../../lib":498}],659:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib");function a(t){return"_"+t+"Text_minsize"}e.exports={recordMinTextSize:function(t,e,r){if(r.uniformtext.mode){var n=a(t),i=r.uniformtext.minsize,o=e.scale*e.fontSize;e.hide=oh.range[1]&&(x+=Math.PI);if(n.getClosest(c,(function(t){return m(y,x,[t.rp0,t.rp1],[t.thetag0,t.thetag1],d)?g+Math.min(1,Math.abs(t.thetag1-t.thetag0)/v)-1+(t.rp1-y)/(t.rp1-t.rp0)-1:1/0}),t),!1!==t.index){var b=c[t.index];t.x0=t.x1=b.ct[0],t.y0=t.y1=b.ct[1];var _=i.extendFlat({},b,{r:b.s,theta:b.p});return o(b,u,t),s(_,u,f,t),t.hovertemplate=u.hovertemplate,t.color=a(u,b),t.xLabelVal=t.yLabelVal=void 0,b.s<0&&(t.idealAlign="left"),[t]}}},{"../../components/fx":401,"../../lib":498,"../../plots/polar/helpers":616,"../bar/hover":650,"../scatterpolar/hover":1001}],664:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"barpolar",basePlotModule:t("../../plots/polar"),categories:["polar","bar","showLegend"],attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("../scatterpolar/format_labels"),style:t("../bar/style").style,styleOnSelect:t("../bar/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../bar/select"),meta:{}}},{"../../plots/polar":617,"../bar/select":655,"../bar/style":657,"../scatter/marker_colorbar":940,"../scatterpolar/format_labels":1e3,"./attributes":660,"./calc":661,"./defaults":662,"./hover":663,"./layout_attributes":665,"./layout_defaults":666,"./plot":667}],665:[function(t,e,r){"use strict";e.exports={barmode:{valType:"enumerated",values:["stack","overlay"],dflt:"stack",editType:"calc"},bargap:{valType:"number",dflt:.1,min:0,max:1,editType:"calc"}}},{}],666:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a,o={};function s(r,o){return n.coerce(t[a]||{},e[a],i,r,o)}for(var l=0;l0?(c=o,u=l):(c=l,u=o);var f=[s.findEnclosingVertexAngles(c,t.vangles)[0],(c+u)/2,s.findEnclosingVertexAngles(u,t.vangles)[1]];return s.pathPolygonAnnulus(n,i,c,u,f,e,r)};return function(t,n,i,o){return a.pathAnnulus(t,n,i,o,e,r)}}(e),p=e.layers.frontplot.select("g.barlayer");a.makeTraceGroups(p,r,"trace bars").each((function(){var r=n.select(this),s=a.ensureSingle(r,"g","points").selectAll("g.point").data(a.identity);s.enter().append("g").style("vector-effect","non-scaling-stroke").style("stroke-miterlimit",2).classed("point",!0),s.exit().remove(),s.each((function(t){var e,r=n.select(this),o=t.rp0=u.c2p(t.s0),s=t.rp1=u.c2p(t.s1),p=t.thetag0=f.c2g(t.p0),d=t.thetag1=f.c2g(t.p1);if(i(o)&&i(s)&&i(p)&&i(d)&&o!==s&&p!==d){var m=u.c2g(t.s1),g=(p+d)/2;t.ct=[l.c2p(m*Math.cos(g)),c.c2p(m*Math.sin(g))],e=h(o,s,p,d)}else e="M0,0Z";a.ensureSingle(r,"path").attr("d",e)})),o.setClipUrl(r,e._hasClipOnAxisFalse?e.clipIds.forTraces:null,t)}))}},{"../../components/drawing":383,"../../lib":498,"../../plots/polar/helpers":616,"@plotly/d3":58,"fast-isnumeric":185}],668:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../bar/attributes"),a=t("../../components/color/attributes"),o=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../lib/extend").extendFlat,c=n.marker,u=c.line;e.exports={y:{valType:"data_array",editType:"calc+clearAxisTypes"},x:{valType:"data_array",editType:"calc+clearAxisTypes"},x0:{valType:"any",editType:"calc+clearAxisTypes"},y0:{valType:"any",editType:"calc+clearAxisTypes"},dx:{valType:"number",editType:"calc"},dy:{valType:"number",editType:"calc"},xperiod:n.xperiod,yperiod:n.yperiod,xperiod0:n.xperiod0,yperiod0:n.yperiod0,xperiodalignment:n.xperiodalignment,yperiodalignment:n.yperiodalignment,xhoverformat:o("x"),yhoverformat:o("y"),name:{valType:"string",editType:"calc+clearAxisTypes"},q1:{valType:"data_array",editType:"calc+clearAxisTypes"},median:{valType:"data_array",editType:"calc+clearAxisTypes"},q3:{valType:"data_array",editType:"calc+clearAxisTypes"},lowerfence:{valType:"data_array",editType:"calc"},upperfence:{valType:"data_array",editType:"calc"},notched:{valType:"boolean",editType:"calc"},notchwidth:{valType:"number",min:0,max:.5,dflt:.25,editType:"calc"},notchspan:{valType:"data_array",editType:"calc"},boxpoints:{valType:"enumerated",values:["all","outliers","suspectedoutliers",!1],editType:"calc"},jitter:{valType:"number",min:0,max:1,editType:"calc"},pointpos:{valType:"number",min:-2,max:2,editType:"calc"},boxmean:{valType:"enumerated",values:[!0,"sd",!1],editType:"calc"},mean:{valType:"data_array",editType:"calc"},sd:{valType:"data_array",editType:"calc"},orientation:{valType:"enumerated",values:["v","h"],editType:"calc+clearAxisTypes"},quartilemethod:{valType:"enumerated",values:["linear","exclusive","inclusive"],dflt:"linear",editType:"calc"},width:{valType:"number",min:0,dflt:0,editType:"calc"},marker:{outliercolor:{valType:"color",dflt:"rgba(0, 0, 0, 0)",editType:"style"},symbol:l({},c.symbol,{arrayOk:!1,editType:"plot"}),opacity:l({},c.opacity,{arrayOk:!1,dflt:1,editType:"style"}),size:l({},c.size,{arrayOk:!1,editType:"calc"}),color:l({},c.color,{arrayOk:!1,editType:"style"}),line:{color:l({},u.color,{arrayOk:!1,dflt:a.defaultLine,editType:"style"}),width:l({},u.width,{arrayOk:!1,dflt:0,editType:"style"}),outliercolor:{valType:"color",editType:"style"},outlierwidth:{valType:"number",min:0,dflt:1,editType:"style"},editType:"style"},editType:"plot"},line:{color:{valType:"color",editType:"style"},width:{valType:"number",min:0,dflt:2,editType:"style"},editType:"plot"},fillcolor:n.fillcolor,whiskerwidth:{valType:"number",min:0,max:1,dflt:.5,editType:"calc"},offsetgroup:i.offsetgroup,alignmentgroup:i.alignmentgroup,selected:{marker:n.selected.marker,editType:"style"},unselected:{marker:n.unselected.marker,editType:"style"},text:l({},n.text,{}),hovertext:l({},n.hovertext,{}),hovertemplate:s({}),hoveron:{valType:"flaglist",flags:["boxes","points"],dflt:"boxes+points",editType:"style"}}},{"../../components/color/attributes":360,"../../lib/extend":488,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628,"../bar/attributes":643,"../scatter/attributes":922}],669:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../plots/cartesian/axes"),a=t("../../plots/cartesian/align_period"),o=t("../../lib"),s=t("../../constants/numerical").BADNUM,l=o._;e.exports=function(t,e){var r,c,y,x,b,_,w,T=t._fullLayout,k=i.getFromId(t,e.xaxis||"x"),A=i.getFromId(t,e.yaxis||"y"),M=[],S="violin"===e.type?"_numViolins":"_numBoxes";"h"===e.orientation?(y=k,x="x",b=A,_="y",w=!!e.yperiodalignment):(y=A,x="y",b=k,_="x",w=!!e.xperiodalignment);var E,L,C,P,I,O,z=function(t,e,r,i){var s,l=e+"0"in t,c="d"+e in t;if(e in t||l&&c){var u=r.makeCalcdata(t,e);return[a(t,r,e,u).vals,u]}s=l?t[e+"0"]:"name"in t&&("category"===r.type||n(t.name)&&-1!==["linear","log"].indexOf(r.type)||o.isDateTime(t.name)&&"date"===r.type)?t.name:i;for(var f="multicategory"===r.type?r.r2c_just_indices(s):r.d2c(s,0,t[e+"calendar"]),h=t._length,p=new Array(h),d=0;dE.uf};if(e._hasPreCompStats){var U=e[x],V=function(t){return y.d2c((e[t]||[])[r])},H=1/0,q=-1/0;for(r=0;r=E.q1&&E.q3>=E.med){var Y=V("lowerfence");E.lf=Y!==s&&Y<=E.q1?Y:p(E,C,P);var W=V("upperfence");E.uf=W!==s&&W>=E.q3?W:d(E,C,P);var X=V("mean");E.mean=X!==s?X:P?o.mean(C,P):(E.q1+E.q3)/2;var Z=V("sd");E.sd=X!==s&&Z>=0?Z:P?o.stdev(C,P,E.mean):E.q3-E.q1,E.lo=m(E),E.uo=g(E);var J=V("notchspan");J=J!==s&&J>0?J:v(E,P),E.ln=E.med-J,E.un=E.med+J;var K=E.lf,Q=E.uf;e.boxpoints&&C.length&&(K=Math.min(K,C[0]),Q=Math.max(Q,C[P-1])),e.notched&&(K=Math.min(K,E.ln),Q=Math.max(Q,E.un)),E.min=K,E.max=Q}else{var $;o.warn(["Invalid input - make sure that q1 <= median <= q3","q1 = "+E.q1,"median = "+E.med,"q3 = "+E.q3].join("\n")),$=E.med!==s?E.med:E.q1!==s?E.q3!==s?(E.q1+E.q3)/2:E.q1:E.q3!==s?E.q3:0,E.med=$,E.q1=E.q3=$,E.lf=E.uf=$,E.mean=E.sd=$,E.ln=E.un=$,E.min=E.max=$}H=Math.min(H,E.min),q=Math.max(q,E.max),E.pts2=L.filter(j),M.push(E)}}e._extremes[y._id]=i.findExtremes(y,[H,q],{padded:!0})}else{var tt=y.makeCalcdata(e,x),et=function(t,e){for(var r=t.length,n=new Array(r+1),i=0;i=0&&it0){var ut,ft;if((E={}).pos=E[_]=B[r],L=E.pts=nt[r].sort(f),P=(C=E[x]=L.map(h)).length,E.min=C[0],E.max=C[P-1],E.mean=o.mean(C,P),E.sd=o.stdev(C,P,E.mean),E.med=o.interp(C,.5),P%2&&(lt||ct))lt?(ut=C.slice(0,P/2),ft=C.slice(P/2+1)):ct&&(ut=C.slice(0,P/2+1),ft=C.slice(P/2)),E.q1=o.interp(ut,.5),E.q3=o.interp(ft,.5);else E.q1=o.interp(C,.25),E.q3=o.interp(C,.75);E.lf=p(E,C,P),E.uf=d(E,C,P),E.lo=m(E),E.uo=g(E);var ht=v(E,P);E.ln=E.med-ht,E.un=E.med+ht,at=Math.min(at,E.ln),ot=Math.max(ot,E.un),E.pts2=L.filter(j),M.push(E)}e._extremes[y._id]=i.findExtremes(y,e.notched?tt.concat([at,ot]):tt,{padded:!0})}return function(t,e){if(o.isArrayOrTypedArray(e.selectedpoints))for(var r=0;r0?(M[0].t={num:T[S],dPos:N,posLetter:_,valLetter:x,labels:{med:l(t,"median:"),min:l(t,"min:"),q1:l(t,"q1:"),q3:l(t,"q3:"),max:l(t,"max:"),mean:"sd"===e.boxmean?l(t,"mean \xb1 \u03c3:"):l(t,"mean:"),lf:l(t,"lower fence:"),uf:l(t,"upper fence:")}},T[S]++,M):[{t:{empty:!0}}]};var c={text:"tx",hovertext:"htx"};function u(t,e,r){for(var n in c)o.isArrayOrTypedArray(e[n])&&(Array.isArray(r)?o.isArrayOrTypedArray(e[n][r[0]])&&(t[c[n]]=e[n][r[0]][r[1]]):t[c[n]]=e[n][r])}function f(t,e){return t.v-e.v}function h(t){return t.v}function p(t,e,r){return 0===r?t.q1:Math.min(t.q1,e[Math.min(o.findBin(2.5*t.q1-1.5*t.q3,e,!0)+1,r-1)])}function d(t,e,r){return 0===r?t.q3:Math.max(t.q3,e[Math.max(o.findBin(2.5*t.q3-1.5*t.q1,e),0)])}function m(t){return 4*t.q1-3*t.q3}function g(t){return 4*t.q3-3*t.q1}function v(t,e){return 0===e?0:1.57*(t.q3-t.q1)/Math.sqrt(e)}},{"../../constants/numerical":474,"../../lib":498,"../../plots/cartesian/align_period":546,"../../plots/cartesian/axes":549,"fast-isnumeric":185}],670:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib"),a=t("../../plots/cartesian/constraints").getAxisGroup,o=["v","h"];function s(t,e,r,o){var s,l,c,u=e.calcdata,f=e._fullLayout,h=o._id,p=h.charAt(0),d=[],m=0;for(s=0;s1,b=1-f[t+"gap"],_=1-f[t+"groupgap"];for(s=0;s0){var q=E.pointpos,G=E.jitter,Y=E.marker.size/2,W=0;q+G>=0&&((W=V*(q+G))>M?(H=!0,j=Y,B=W):W>R&&(j=Y,B=M)),W<=M&&(B=M);var X=0;q-G<=0&&((X=-V*(q-G))>S?(H=!0,U=Y,N=X):X>F&&(U=Y,N=S)),X<=S&&(N=S)}else B=M,N=S;var Z=new Array(c.length);for(l=0;l0?(g="v",v=x>0?Math.min(_,b):Math.min(b)):x>0?(g="h",v=Math.min(_)):v=0;if(v){e._length=v;var S=r("orientation",g);e._hasPreCompStats?"v"===S&&0===x?(r("x0",0),r("dx",1)):"h"===S&&0===y&&(r("y0",0),r("dy",1)):"v"===S&&0===x?r("x0"):"h"===S&&0===y&&r("y0"),i.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x","y"],a)}else e.visible=!1}function f(t,e,r,i){var a=i.prefix,o=n.coerce2(t,e,c,"marker.outliercolor"),s=r("marker.line.outliercolor"),l="outliers";e._hasPreCompStats?l="all":(o||s)&&(l="suspectedoutliers");var u=r(a+"points",l);u?(r("jitter","all"===u?.3:0),r("pointpos","all"===u?-1.5:0),r("marker.symbol"),r("marker.opacity"),r("marker.size"),r("marker.color",e.line.color),r("marker.line.color"),r("marker.line.width"),"suspectedoutliers"===u&&(r("marker.line.outliercolor",e.marker.color),r("marker.line.outlierwidth")),r("selected.marker.color"),r("unselected.marker.color"),r("selected.marker.size"),r("unselected.marker.size"),r("text"),r("hovertext")):delete e.marker;var f=r("hoveron");"all"!==f&&-1===f.indexOf("points")||r("hovertemplate"),n.coerceSelectionMarkerOpacity(e,r)}e.exports={supplyDefaults:function(t,e,r,i){function s(r,i){return n.coerce(t,e,c,r,i)}if(u(t,e,s,i),!1!==e.visible){o(t,e,i,s),s("xhoverformat"),s("yhoverformat");var l=e._hasPreCompStats;l&&(s("lowerfence"),s("upperfence")),s("line.color",(t.marker||{}).color||r),s("line.width"),s("fillcolor",a.addOpacity(e.line.color,.5));var h=!1;if(l){var p=s("mean"),d=s("sd");p&&p.length&&(h=!0,d&&d.length&&(h="sd"))}s("boxmean",h),s("whiskerwidth"),s("width"),s("quartilemethod");var m=!1;if(l){var g=s("notchspan");g&&g.length&&(m=!0)}else n.validate(t.notchwidth,c.notchwidth)&&(m=!0);s("notched",m)&&s("notchwidth"),f(t,e,s,{prefix:"box"})}},crossTraceDefaults:function(t,e){var r,i;function a(t){return n.coerce(i._input,i,c,t)}for(var o=0;ot.lo&&(x.so=!0)}return a}));h.enter().append("path").classed("point",!0),h.exit().remove(),h.call(a.translatePoints,o,s)}function l(t,e,r,a){var o,s,l=e.val,c=e.pos,u=!!c.rangebreaks,f=a.bPos,h=a.bPosPxOffset||0,p=r.boxmean||(r.meanline||{}).visible;Array.isArray(a.bdPos)?(o=a.bdPos[0],s=a.bdPos[1]):(o=a.bdPos,s=a.bdPos);var d=t.selectAll("path.mean").data("box"===r.type&&r.boxmean||"violin"===r.type&&r.box.visible&&r.meanline.visible?i.identity:[]);d.enter().append("path").attr("class","mean").style({fill:"none","vector-effect":"non-scaling-stroke"}),d.exit().remove(),d.each((function(t){var e=c.c2l(t.pos+f,!0),i=c.l2p(e-o)+h,a=c.l2p(e+s)+h,d=u?(i+a)/2:c.l2p(e)+h,m=l.c2p(t.mean,!0),g=l.c2p(t.mean-t.sd,!0),v=l.c2p(t.mean+t.sd,!0);"h"===r.orientation?n.select(this).attr("d","M"+m+","+i+"V"+a+("sd"===p?"m0,0L"+g+","+d+"L"+m+","+i+"L"+v+","+d+"Z":"")):n.select(this).attr("d","M"+i+","+m+"H"+a+("sd"===p?"m0,0L"+d+","+g+"L"+i+","+m+"L"+d+","+v+"Z":""))}))}e.exports={plot:function(t,e,r,a){var c=e.xaxis,u=e.yaxis;i.makeTraceGroups(a,r,"trace boxes").each((function(t){var e,r,i=n.select(this),a=t[0],f=a.t,h=a.trace;(f.wdPos=f.bdPos*h.whiskerwidth,!0!==h.visible||f.empty)?i.remove():("h"===h.orientation?(e=u,r=c):(e=c,r=u),o(i,{pos:e,val:r},h,f),s(i,{x:c,y:u},h,f),l(i,{pos:e,val:r},h,f))}))},plotBoxAndWhiskers:o,plotPoints:s,plotBoxMean:l}},{"../../components/drawing":383,"../../lib":498,"@plotly/d3":58}],678:[function(t,e,r){"use strict";e.exports=function(t,e){var r,n,i=t.cd,a=t.xaxis,o=t.yaxis,s=[];if(!1===e)for(r=0;r=10)return null;for(var i=1/0,a=-1/0,o=e.length,s=0;s0?Math.floor:Math.ceil,I=L>0?Math.ceil:Math.floor,O=L>0?Math.min:Math.max,z=L>0?Math.max:Math.min,D=P(S+C),R=I(E-C),F=[[f=M(S)]];for(a=D;a*L=0;i--)a[u-i]=t[f][i],o[u-i]=e[f][i];for(s.push({x:a,y:o,bicubic:l}),i=f,a=[],o=[];i>=0;i--)a[f-i]=t[i][0],o[f-i]=e[i][0];return s.push({x:a,y:o,bicubic:c}),s}},{}],692:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib/extend").extendFlat;e.exports=function(t,e,r){var a,o,s,l,c,u,f,h,p,d,m,g,v,y,x=t["_"+e],b=t[e+"axis"],_=b._gridlines=[],w=b._minorgridlines=[],T=b._boundarylines=[],k=t["_"+r],A=t[r+"axis"];"array"===b.tickmode&&(b.tickvals=x.slice());var M=t._xctrl,S=t._yctrl,E=M[0].length,L=M.length,C=t._a.length,P=t._b.length;n.prepTicks(b),"array"===b.tickmode&&delete b.tickvals;var I=b.smoothing?3:1;function O(n){var i,a,o,s,l,c,u,f,p,d,m,g,v=[],y=[],x={};if("b"===e)for(a=t.b2j(n),o=Math.floor(Math.max(0,Math.min(P-2,a))),s=a-o,x.length=P,x.crossLength=C,x.xy=function(e){return t.evalxy([],e,a)},x.dxy=function(e,r){return t.dxydi([],e,o,r,s)},i=0;i0&&(p=t.dxydi([],i-1,o,0,s),v.push(l[0]+p[0]/3),y.push(l[1]+p[1]/3),d=t.dxydi([],i-1,o,1,s),v.push(f[0]-d[0]/3),y.push(f[1]-d[1]/3)),v.push(f[0]),y.push(f[1]),l=f;else for(i=t.a2i(n),c=Math.floor(Math.max(0,Math.min(C-2,i))),u=i-c,x.length=C,x.crossLength=P,x.xy=function(e){return t.evalxy([],i,e)},x.dxy=function(e,r){return t.dxydj([],c,e,u,r)},a=0;a0&&(m=t.dxydj([],c,a-1,u,0),v.push(l[0]+m[0]/3),y.push(l[1]+m[1]/3),g=t.dxydj([],c,a-1,u,1),v.push(f[0]-g[0]/3),y.push(f[1]-g[1]/3)),v.push(f[0]),y.push(f[1]),l=f;return x.axisLetter=e,x.axis=b,x.crossAxis=A,x.value=n,x.constvar=r,x.index=h,x.x=v,x.y=y,x.smoothing=A.smoothing,x}function z(n){var i,a,o,s,l,c=[],u=[],f={};if(f.length=x.length,f.crossLength=k.length,"b"===e)for(o=Math.max(0,Math.min(P-2,n)),l=Math.min(1,Math.max(0,n-o)),f.xy=function(e){return t.evalxy([],e,n)},f.dxy=function(e,r){return t.dxydi([],e,o,r,l)},i=0;ix.length-1||_.push(i(z(o),{color:b.gridcolor,width:b.gridwidth}));for(h=u;hx.length-1||m<0||m>x.length-1))for(g=x[s],v=x[m],a=0;ax[x.length-1]||w.push(i(O(d),{color:b.minorgridcolor,width:b.minorgridwidth}));b.startline&&T.push(i(z(0),{color:b.startlinecolor,width:b.startlinewidth})),b.endline&&T.push(i(z(x.length-1),{color:b.endlinecolor,width:b.endlinewidth}))}else{for(l=5e-15,u=(c=[Math.floor((x[x.length-1]-b.tick0)/b.dtick*(1+l)),Math.ceil((x[0]-b.tick0)/b.dtick/(1+l))].sort((function(t,e){return t-e})))[0],f=c[1],h=u;h<=f;h++)p=b.tick0+b.dtick*h,_.push(i(O(p),{color:b.gridcolor,width:b.gridwidth}));for(h=u-1;hx[x.length-1]||w.push(i(O(d),{color:b.minorgridcolor,width:b.minorgridwidth}));b.startline&&T.push(i(O(x[0]),{color:b.startlinecolor,width:b.startlinewidth})),b.endline&&T.push(i(O(x[x.length-1]),{color:b.endlinecolor,width:b.endlinewidth}))}}},{"../../lib/extend":488,"../../plots/cartesian/axes":549}],693:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib/extend").extendFlat;e.exports=function(t,e){var r,a,o,s=e._labels=[],l=e._gridlines;for(r=0;re.length&&(t=t.slice(0,e.length)):t=[],i=0;i90&&(p-=180,l=-l),{angle:p,flip:l,p:t.c2p(n,e,r),offsetMultplier:c}}},{}],707:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("./map_1d_array"),o=t("./makepath"),s=t("./orient_text"),l=t("../../lib/svg_text_utils"),c=t("../../lib"),u=c.strRotate,f=c.strTranslate,h=t("../../constants/alignment");function p(t,e,r,i,s,l){var c="const-"+s+"-lines",u=r.selectAll("."+c).data(l);u.enter().append("path").classed(c,!0).style("vector-effect","non-scaling-stroke"),u.each((function(r){var i=r,s=i.x,l=i.y,c=a([],s,t.c2p),u=a([],l,e.c2p),f="M"+o(c,u,i.smoothing);n.select(this).attr("d",f).style("stroke-width",i.width).style("stroke",i.color).style("fill","none")})),u.exit().remove()}function d(t,e,r,a,o,c,h,p){var d=c.selectAll("text."+p).data(h);d.enter().append("text").classed(p,!0);var m=0,g={};return d.each((function(o,c){var h;if("auto"===o.axis.tickangle)h=s(a,e,r,o.xy,o.dxy);else{var p=(o.axis.tickangle+180)*Math.PI/180;h=s(a,e,r,o.xy,[Math.cos(p),Math.sin(p)])}c||(g={angle:h.angle,flip:h.flip});var d=(o.endAnchor?-1:1)*h.flip,v=n.select(this).attr({"text-anchor":d>0?"start":"end","data-notex":1}).call(i.font,o.font).text(o.text).call(l.convertToTspans,t),y=i.bBox(this);v.attr("transform",f(h.p[0],h.p[1])+u(h.angle)+f(o.axis.labelpadding*d,.3*y.height)),m=Math.max(m,y.width+o.axis.labelpadding)})),d.exit().remove(),g.maxExtent=m,g}e.exports=function(t,e,r,i){var l=e.xaxis,u=e.yaxis,f=t._fullLayout._clips;c.makeTraceGroups(i,r,"trace").each((function(e){var r=n.select(this),i=e[0],h=i.trace,m=h.aaxis,g=h.baxis,y=c.ensureSingle(r,"g","minorlayer"),x=c.ensureSingle(r,"g","majorlayer"),b=c.ensureSingle(r,"g","boundarylayer"),_=c.ensureSingle(r,"g","labellayer");r.style("opacity",h.opacity),p(l,u,x,m,"a",m._gridlines),p(l,u,x,g,"b",g._gridlines),p(l,u,y,m,"a",m._minorgridlines),p(l,u,y,g,"b",g._minorgridlines),p(l,u,b,m,"a-boundary",m._boundarylines),p(l,u,b,g,"b-boundary",g._boundarylines);var w=d(t,l,u,h,i,_,m._labels,"a-label"),T=d(t,l,u,h,i,_,g._labels,"b-label");!function(t,e,r,n,i,a,o,l){var u,f,h,p,d=c.aggNums(Math.min,null,r.a),m=c.aggNums(Math.max,null,r.a),g=c.aggNums(Math.min,null,r.b),y=c.aggNums(Math.max,null,r.b);u=.5*(d+m),f=g,h=r.ab2xy(u,f,!0),p=r.dxyda_rough(u,f),void 0===o.angle&&c.extendFlat(o,s(r,i,a,h,r.dxydb_rough(u,f)));v(t,e,r,n,h,p,r.aaxis,i,a,o,"a-title"),u=d,f=.5*(g+y),h=r.ab2xy(u,f,!0),p=r.dxydb_rough(u,f),void 0===l.angle&&c.extendFlat(l,s(r,i,a,h,r.dxyda_rough(u,f)));v(t,e,r,n,h,p,r.baxis,i,a,l,"b-title")}(t,_,h,i,l,u,w,T),function(t,e,r,n,i){var s,l,u,f,h=r.select("#"+t._clipPathId);h.size()||(h=r.append("clipPath").classed("carpetclip",!0));var p=c.ensureSingle(h,"path","carpetboundary"),d=e.clipsegments,m=[];for(f=0;f90&&y<270,b=n.select(this);b.text(h.title.text).call(l.convertToTspans,t),x&&(_=(-l.lineCount(b)+g)*m*a-_),b.attr("transform",f(e.p[0],e.p[1])+u(e.angle)+f(0,_)).attr("text-anchor","middle").call(i.font,h.title.font)})),b.exit().remove()}},{"../../components/drawing":383,"../../constants/alignment":466,"../../lib":498,"../../lib/svg_text_utils":524,"./makepath":704,"./map_1d_array":705,"./orient_text":706,"@plotly/d3":58}],708:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../lib/search").findBin,a=t("./compute_control_points"),o=t("./create_spline_evaluator"),s=t("./create_i_derivative_evaluator"),l=t("./create_j_derivative_evaluator");e.exports=function(t){var e=t._a,r=t._b,c=e.length,u=r.length,f=t.aaxis,h=t.baxis,p=e[0],d=e[c-1],m=r[0],g=r[u-1],v=e[e.length-1]-e[0],y=r[r.length-1]-r[0],x=v*n.RELATIVE_CULL_TOLERANCE,b=y*n.RELATIVE_CULL_TOLERANCE;p-=x,d+=x,m-=b,g+=b,t.isVisible=function(t,e){return t>p&&tm&&ed||eg},t.setScale=function(){var e=t._x,r=t._y,n=a(t._xctrl,t._yctrl,e,r,f.smoothing,h.smoothing);t._xctrl=n[0],t._yctrl=n[1],t.evalxy=o([t._xctrl,t._yctrl],c,u,f.smoothing,h.smoothing),t.dxydi=s([t._xctrl,t._yctrl],f.smoothing,h.smoothing),t.dxydj=l([t._xctrl,t._yctrl],f.smoothing,h.smoothing)},t.i2a=function(t){var r=Math.max(0,Math.floor(t[0]),c-2),n=t[0]-r;return(1-n)*e[r]+n*e[r+1]},t.j2b=function(t){var e=Math.max(0,Math.floor(t[1]),c-2),n=t[1]-e;return(1-n)*r[e]+n*r[e+1]},t.ij2ab=function(e){return[t.i2a(e[0]),t.j2b(e[1])]},t.a2i=function(t){var r=Math.max(0,Math.min(i(t,e),c-2)),n=e[r],a=e[r+1];return Math.max(0,Math.min(c-1,r+(t-n)/(a-n)))},t.b2j=function(t){var e=Math.max(0,Math.min(i(t,r),u-2)),n=r[e],a=r[e+1];return Math.max(0,Math.min(u-1,e+(t-n)/(a-n)))},t.ab2ij=function(e){return[t.a2i(e[0]),t.b2j(e[1])]},t.i2c=function(e,r){return t.evalxy([],e,r)},t.ab2xy=function(n,i,a){if(!a&&(ne[c-1]|ir[u-1]))return[!1,!1];var o=t.a2i(n),s=t.b2j(i),l=t.evalxy([],o,s);if(a){var f,h,p,d,m=0,g=0,v=[];ne[c-1]?(f=c-2,h=1,m=(n-e[c-1])/(e[c-1]-e[c-2])):h=o-(f=Math.max(0,Math.min(c-2,Math.floor(o)))),ir[u-1]?(p=u-2,d=1,g=(i-r[u-1])/(r[u-1]-r[u-2])):d=s-(p=Math.max(0,Math.min(u-2,Math.floor(s)))),m&&(t.dxydi(v,f,p,h,d),l[0]+=v[0]*m,l[1]+=v[1]*m),g&&(t.dxydj(v,f,p,h,d),l[0]+=v[0]*g,l[1]+=v[1]*g)}return l},t.c2p=function(t,e,r){return[e.c2p(t[0]),r.c2p(t[1])]},t.p2x=function(t,e,r){return[e.p2c(t[0]),r.p2c(t[1])]},t.dadi=function(t){var r=Math.max(0,Math.min(e.length-2,t));return e[r+1]-e[r]},t.dbdj=function(t){var e=Math.max(0,Math.min(r.length-2,t));return r[e+1]-r[e]},t.dxyda=function(e,r,n,i){var a=t.dxydi(null,e,r,n,i),o=t.dadi(e,n);return[a[0]/o,a[1]/o]},t.dxydb=function(e,r,n,i){var a=t.dxydj(null,e,r,n,i),o=t.dbdj(r,i);return[a[0]/o,a[1]/o]},t.dxyda_rough=function(e,r,n){var i=v*(n||.1),a=t.ab2xy(e+i,r,!0),o=t.ab2xy(e-i,r,!0);return[.5*(a[0]-o[0])/i,.5*(a[1]-o[1])/i]},t.dxydb_rough=function(e,r,n){var i=y*(n||.1),a=t.ab2xy(e,r+i,!0),o=t.ab2xy(e,r-i,!0);return[.5*(a[0]-o[0])/i,.5*(a[1]-o[1])/i]},t.dpdx=function(t){return t._m},t.dpdy=function(t){return t._m}}},{"../../lib/search":518,"./compute_control_points":696,"./constants":697,"./create_i_derivative_evaluator":698,"./create_j_derivative_evaluator":699,"./create_spline_evaluator":700}],709:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e,r){var i,a,o,s=[],l=[],c=t[0].length,u=t.length;function f(e,r){var n,i=0,a=0;return e>0&&void 0!==(n=t[r][e-1])&&(a++,i+=n),e0&&void 0!==(n=t[r-1][e])&&(a++,i+=n),r0&&a0&&i1e-5);return n.log("Smoother converged to",k,"after",A,"iterations"),t}},{"../../lib":498}],710:[function(t,e,r){"use strict";var n=t("../../lib").isArray1D;e.exports=function(t,e,r){var i=r("x"),a=i&&i.length,o=r("y"),s=o&&o.length;if(!a&&!s)return!1;if(e._cheater=!i,a&&!n(i)||s&&!n(o))e._length=null;else{var l=a?i.length:1/0;s&&(l=Math.min(l,o.length)),e.a&&e.a.length&&(l=Math.min(l,e.a.length)),e.b&&e.b.length&&(l=Math.min(l,e.b.length)),e._length=l}return!0}},{"../../lib":498}],711:[function(t,e,r){"use strict";var n=t("../../plots/template_attributes").hovertemplateAttrs,i=t("../scattergeo/attributes"),a=t("../../components/colorscale/attributes"),o=t("../../plots/attributes"),s=t("../../components/color/attributes").defaultLine,l=t("../../lib/extend").extendFlat,c=i.marker.line;e.exports=l({locations:{valType:"data_array",editType:"calc"},locationmode:i.locationmode,z:{valType:"data_array",editType:"calc"},geojson:l({},i.geojson,{}),featureidkey:i.featureidkey,text:l({},i.text,{}),hovertext:l({},i.hovertext,{}),marker:{line:{color:l({},c.color,{dflt:s}),width:l({},c.width,{dflt:1}),editType:"calc"},opacity:{valType:"number",arrayOk:!0,min:0,max:1,dflt:1,editType:"style"},editType:"calc"},selected:{marker:{opacity:i.selected.marker.opacity,editType:"plot"},editType:"plot"},unselected:{marker:{opacity:i.unselected.marker.opacity,editType:"plot"},editType:"plot"},hoverinfo:l({},o.hoverinfo,{editType:"calc",flags:["location","z","text","name"]}),hovertemplate:n(),showlegend:l({},o.showlegend,{dflt:!1})},a("",{cLetter:"z",editTypeOverride:"calc"}))},{"../../components/color/attributes":360,"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/template_attributes":628,"../scattergeo/attributes":964}],712:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../constants/numerical").BADNUM,a=t("../../components/colorscale/calc"),o=t("../scatter/arrays_to_calcdata"),s=t("../scatter/calc_selection");function l(t){return t&&"string"==typeof t}e.exports=function(t,e){var r,c=e._length,u=new Array(c);r=e.geojson?function(t){return l(t)||n(t)}:l;for(var f=0;f")}(t,f,o),[t]}},{"../../lib":498,"../../plots/cartesian/axes":549,"./attributes":711}],716:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../heatmap/colorbar"),calc:t("./calc"),calcGeoJSON:t("./plot").calcGeoJSON,plot:t("./plot").plot,style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"choropleth",basePlotModule:t("../../plots/geo"),categories:["geo","noOpacity","showLegend"],meta:{}}},{"../../plots/geo":584,"../heatmap/colorbar":790,"./attributes":711,"./calc":712,"./defaults":713,"./event_data":714,"./hover":715,"./plot":717,"./select":718,"./style":719}],717:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../lib/geo_location_utils"),o=t("../../lib/topojson_utils").getTopojsonFeatures,s=t("../../plots/cartesian/autorange").findExtremes,l=t("./style").style;e.exports={calcGeoJSON:function(t,e){for(var r=t[0].trace,n=e[r.geo],i=n._subplot,l=r.locationmode,c=r._length,u="geojson-id"===l?a.extractTraceFeature(t):o(r,i.topojson),f=[],h=[],p=0;p=0;n--){var i=r[n].id;if("string"==typeof i&&0===i.indexOf("water"))for(var a=n+1;a=0;r--)t.removeLayer(e[r][1])},s.dispose=function(){var t=this.subplot.map;this._removeLayers(),t.removeSource(this.sourceId)},e.exports=function(t,e){var r=e[0].trace,i=new o(t,r.uid),a=i.sourceId,s=n(e),l=i.below=t.belowLookup["trace-"+r.uid];return t.map.addSource(a,{type:"geojson",data:s.geojson}),i._addLayers(s,l),e[0].trace._glTrace=i,i}},{"../../plots/mapbox/constants":606,"./convert":721}],725:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../mesh3d/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c={x:{valType:"data_array",editType:"calc+clearAxisTypes"},y:{valType:"data_array",editType:"calc+clearAxisTypes"},z:{valType:"data_array",editType:"calc+clearAxisTypes"},u:{valType:"data_array",editType:"calc"},v:{valType:"data_array",editType:"calc"},w:{valType:"data_array",editType:"calc"},sizemode:{valType:"enumerated",values:["scaled","absolute"],editType:"calc",dflt:"scaled"},sizeref:{valType:"number",editType:"calc",min:0},anchor:{valType:"enumerated",editType:"calc",values:["tip","tail","cm","center"],dflt:"cm"},text:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertemplate:a({editType:"calc"},{keys:["norm"]}),uhoverformat:i("u",1),vhoverformat:i("v",1),whoverformat:i("w",1),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),showlegend:l({},s.showlegend,{dflt:!1})};l(c,n("",{colorAttr:"u/v/w norm",showScaleDflt:!0,editTypeOverride:"calc"}));["opacity","lightposition","lighting"].forEach((function(t){c[t]=o[t]})),c.hoverinfo=l({},s.hoverinfo,{editType:"calc",flags:["x","y","z","u","v","w","norm","text","name"],dflt:"x+y+z+norm+text+name"}),c.transforms=void 0,e.exports=c},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628,"../mesh3d/attributes":862}],726:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){for(var r=e.u,i=e.v,a=e.w,o=Math.min(e.x.length,e.y.length,e.z.length,r.length,i.length,a.length),s=-1/0,l=1/0,c=0;co.level||o.starts.length&&a===o.level)}break;case"constraint":if(n.prefixBoundary=!1,n.edgepaths.length)return;var s=n.x.length,l=n.y.length,c=-1/0,u=1/0;for(r=0;r":p>c&&(n.prefixBoundary=!0);break;case"<":(pc||n.starts.length&&h===u)&&(n.prefixBoundary=!0);break;case"][":f=Math.min(p[0],p[1]),h=Math.max(p[0],p[1]),fc&&(n.prefixBoundary=!0)}}}},{}],733:[function(t,e,r){"use strict";var n=t("../../components/colorscale"),i=t("./make_color_map"),a=t("./end_plus");e.exports={min:"zmin",max:"zmax",calc:function(t,e,r){var o=e.contours,s=e.line,l=o.size||1,c=o.coloring,u=i(e,{isColorbar:!0});if("heatmap"===c){var f=n.extractOpts(e);r._fillgradient=f.reversescale?n.flipScale(f.colorscale):f.colorscale,r._zrange=[f.min,f.max]}else"fill"===c&&(r._fillcolor=u);r._line={color:"lines"===c?u:s.color,width:!1!==o.showlines?s.width:0,dash:s.dash},r._levels={start:o.start,end:a(o),size:l}}}},{"../../components/colorscale":373,"./end_plus":741,"./make_color_map":746}],734:[function(t,e,r){"use strict";e.exports={BOTTOMSTART:[1,9,13,104,713],TOPSTART:[4,6,7,104,713],LEFTSTART:[8,12,14,208,1114],RIGHTSTART:[2,3,11,208,1114],NEWDELTA:[null,[-1,0],[0,-1],[-1,0],[1,0],null,[0,-1],[-1,0],[0,1],[0,1],null,[0,1],[1,0],[1,0],[0,-1]],CHOOSESADDLE:{104:[4,1],208:[2,8],713:[7,13],1114:[11,14]},SADDLEREMAINDER:{1:4,2:8,4:1,7:13,8:2,11:14,13:7,14:11},LABELDISTANCE:2,LABELINCREASE:10,LABELMIN:3,LABELMAX:10,LABELOPTIMIZER:{EDGECOST:1,ANGLECOST:1,NEIGHBORCOST:5,SAMELEVELFACTOR:10,SAMELEVELDISTANCE:5,MAXCOST:100,INITIALSEARCHPOINTS:10,ITERATIONS:5}}},{}],735:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./label_defaults"),a=t("../../components/color"),o=a.addOpacity,s=a.opacity,l=t("../../constants/filter_ops"),c=l.CONSTRAINT_REDUCTION,u=l.COMPARISON_OPS2;e.exports=function(t,e,r,a,l,f){var h,p,d,m=e.contours,g=r("contours.operation");(m._operation=c[g],function(t,e){var r;-1===u.indexOf(e.operation)?(t("contours.value",[0,1]),Array.isArray(e.value)?e.value.length>2?e.value=e.value.slice(2):0===e.length?e.value=[0,1]:e.length<2?(r=parseFloat(e.value[0]),e.value=[r,r+1]):e.value=[parseFloat(e.value[0]),parseFloat(e.value[1])]:n(e.value)&&(r=parseFloat(e.value),e.value=[r,r+1])):(t("contours.value",0),n(e.value)||(Array.isArray(e.value)?e.value=parseFloat(e.value[0]):e.value=0))}(r,m),"="===g?h=m.showlines=!0:(h=r("contours.showlines"),d=r("fillcolor",o((t.line||{}).color||l,.5))),h)&&(p=r("line.color",d&&s(d)?o(e.fillcolor,1):l),r("line.width",2),r("line.dash"));r("line.smoothing"),i(r,a,p,f)}},{"../../components/color":361,"../../constants/filter_ops":470,"./label_defaults":745,"fast-isnumeric":185}],736:[function(t,e,r){"use strict";var n=t("../../constants/filter_ops"),i=t("fast-isnumeric");function a(t,e){var r,a=Array.isArray(e);function o(t){return i(t)?+t:null}return-1!==n.COMPARISON_OPS2.indexOf(t)?r=o(a?e[0]:e):-1!==n.INTERVAL_OPS.indexOf(t)?r=a?[o(e[0]),o(e[1])]:[o(e),o(e)]:-1!==n.SET_OPS.indexOf(t)&&(r=a?e.map(o):[o(e)]),r}function o(t){return function(e){e=a(t,e);var r=Math.min(e[0],e[1]),n=Math.max(e[0],e[1]);return{start:r,end:n,size:n-r}}}function s(t){return function(e){return{start:e=a(t,e),end:1/0,size:1/0}}}e.exports={"[]":o("[]"),"][":o("]["),">":s(">"),"<":s("<"),"=":s("=")}},{"../../constants/filter_ops":470,"fast-isnumeric":185}],737:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){var i=n("contours.start"),a=n("contours.end"),o=!1===i||!1===a,s=r("contours.size");!(o?e.autocontour=!0:r("autocontour",!1))&&s||r("ncontours")}},{}],738:[function(t,e,r){"use strict";var n=t("../../lib");function i(t){return n.extendFlat({},t,{edgepaths:n.extendDeep([],t.edgepaths),paths:n.extendDeep([],t.paths),starts:n.extendDeep([],t.starts)})}e.exports=function(t,e){var r,a,o,s=function(t){return t.reverse()},l=function(t){return t};switch(e){case"=":case"<":return t;case">":for(1!==t.length&&n.warn("Contour data invalid for the specified inequality operation."),a=t[0],r=0;r1e3){n.warn("Too many contours, clipping at 1000",t);break}return l}},{"../../lib":498,"./constraint_mapping":736,"./end_plus":741}],741:[function(t,e,r){"use strict";e.exports=function(t){return t.end+t.size/1e6}},{}],742:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./constants");function a(t,e,r,n){return Math.abs(t[0]-e[0])20&&e?208===t||1114===t?n=0===r[0]?1:-1:a=0===r[1]?1:-1:-1!==i.BOTTOMSTART.indexOf(t)?a=1:-1!==i.LEFTSTART.indexOf(t)?n=1:-1!==i.TOPSTART.indexOf(t)?a=-1:n=-1;return[n,a]}(f,r,e),p=[s(t,e,[-h[0],-h[1]])],d=t.z.length,m=t.z[0].length,g=e.slice(),v=h.slice();for(c=0;c<1e4;c++){if(f>20?(f=i.CHOOSESADDLE[f][(h[0]||h[1])<0?0:1],t.crossings[u]=i.SADDLEREMAINDER[f]):delete t.crossings[u],!(h=i.NEWDELTA[f])){n.log("Found bad marching index:",f,e,t.level);break}p.push(s(t,e,h)),e[0]+=h[0],e[1]+=h[1],u=e.join(","),a(p[p.length-1],p[p.length-2],o,l)&&p.pop();var y=h[0]&&(e[0]<0||e[0]>m-2)||h[1]&&(e[1]<0||e[1]>d-2);if(e[0]===g[0]&&e[1]===g[1]&&h[0]===v[0]&&h[1]===v[1]||r&&y)break;f=t.crossings[u]}1e4===c&&n.log("Infinite loop in contour?");var x,b,_,w,T,k,A,M,S,E,L,C,P,I,O,z=a(p[0],p[p.length-1],o,l),D=0,R=.2*t.smoothing,F=[],B=0;for(c=1;c=B;c--)if((x=F[c])=B&&x+F[b]M&&S--,t.edgepaths[S]=L.concat(p,E));break}V||(t.edgepaths[M]=p.concat(E))}for(M=0;Mt?0:1)+(e[0][1]>t?0:2)+(e[1][1]>t?0:4)+(e[1][0]>t?0:8);return 5===r||10===r?t>(e[0][0]+e[0][1]+e[1][0]+e[1][1])/4?5===r?713:1114:5===r?104:208:15===r?0:r}e.exports=function(t){var e,r,a,o,s,l,c,u,f,h=t[0].z,p=h.length,d=h[0].length,m=2===p||2===d;for(r=0;r=0&&(n=y,s=l):Math.abs(r[1]-n[1])<.01?Math.abs(r[1]-y[1])<.01&&(y[0]-r[0])*(n[0]-y[0])>=0&&(n=y,s=l):i.log("endpt to newendpt is not vert. or horz.",r,n,y)}if(r=n,s>=0)break;f+="L"+n}if(s===t.edgepaths.length){i.log("unclosed perimeter path");break}h=s,(d=-1===p.indexOf(h))&&(h=p[0],f+="Z")}for(h=0;hn.center?n.right-s:s-n.left)/(u+Math.abs(Math.sin(c)*o)),p=(l>n.middle?n.bottom-l:l-n.top)/(Math.abs(f)+Math.cos(c)*o);if(h<1||p<1)return 1/0;var d=v.EDGECOST*(1/(h-1)+1/(p-1));d+=v.ANGLECOST*c*c;for(var m=s-u,g=l-f,y=s+u,x=l+f,b=0;b2*v.MAXCOST)break;p&&(s/=2),l=(o=c-s/2)+1.5*s}if(h<=v.MAXCOST)return u},r.addLabelData=function(t,e,r,n){var i=e.fontSize,a=e.width+i/3,o=Math.max(0,e.height-i/3),s=t.x,l=t.y,c=t.theta,u=Math.sin(c),f=Math.cos(c),h=function(t,e){return[s+t*f-e*u,l+t*u+e*f]},p=[h(-a/2,-o/2),h(-a/2,o/2),h(a/2,o/2),h(a/2,-o/2)];r.push({text:e.text,x:s,y:l,dy:e.dy,theta:c,level:e.level,width:a,height:o}),n.push(p)},r.drawLabels=function(t,e,r,a,o){var l=t.selectAll("text").data(e,(function(t){return t.text+","+t.x+","+t.y+","+t.theta}));if(l.exit().remove(),l.enter().append("text").attr({"data-notex":1,"text-anchor":"middle"}).each((function(t){var e=t.x+Math.sin(t.theta)*t.dy,i=t.y-Math.cos(t.theta)*t.dy;n.select(this).text(t.text).attr({x:e,y:i,transform:"rotate("+180*t.theta/Math.PI+" "+e+" "+i+")"}).call(s.convertToTspans,r)})),o){for(var c="",u=0;ur.end&&(r.start=r.end=(r.start+r.end)/2),t._input.contours||(t._input.contours={}),i.extendFlat(t._input.contours,{start:r.start,end:r.end,size:r.size}),t._input.autocontour=!0}else if("constraint"!==r.type){var c,u=r.start,f=r.end,h=t._input.contours;if(u>f&&(r.start=h.start=f,f=r.end=h.end=u,u=r.start),!(r.size>0))c=u===f?1:a(u,f,t.ncontours).dtick,h.size=r.size=c}}},{"../../lib":498,"../../plots/cartesian/axes":549}],750:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("../heatmap/style"),o=t("./make_color_map");e.exports=function(t){var e=n.select(t).selectAll("g.contour");e.style("opacity",(function(t){return t[0].trace.opacity})),e.each((function(t){var e=n.select(this),r=t[0].trace,a=r.contours,s=r.line,l=a.size||1,c=a.start,u="constraint"===a.type,f=!u&&"lines"===a.coloring,h=!u&&"fill"===a.coloring,p=f||h?o(r):null;e.selectAll("g.contourlevel").each((function(t){n.select(this).selectAll("path").call(i.lineGroupStyle,s.width,f?p(t.level):s.color,s.dash)}));var d=a.labelfont;if(e.selectAll("g.contourlabels text").each((function(t){i.font(n.select(this),{family:d.family,size:d.size,color:d.color||(f?p(t.level):s.color)})})),u)e.selectAll("g.contourfill path").style("fill",r.fillcolor);else if(h){var m;e.selectAll("g.contourfill path").style("fill",(function(t){return void 0===m&&(m=t.level),p(t.level+.5*l)})),void 0===m&&(m=c),e.selectAll("g.contourbg path").style("fill",p(m-.5*l))}})),a(t)}},{"../../components/drawing":383,"../heatmap/style":800,"./make_color_map":746,"@plotly/d3":58}],751:[function(t,e,r){"use strict";var n=t("../../components/colorscale/defaults"),i=t("./label_defaults");e.exports=function(t,e,r,a,o){var s,l=r("contours.coloring"),c="";"fill"===l&&(s=r("contours.showlines")),!1!==s&&("lines"!==l&&(c=r("line.color","#000")),r("line.width",.5),r("line.dash")),"none"!==l&&(!0!==t.showlegend&&(e.showlegend=!1),e._dfltShowLegend=!1,n(t,e,a,r,{prefix:"",cLetter:"z"})),r("line.smoothing"),i(r,a,c,o)}},{"../../components/colorscale/defaults":371,"./label_defaults":745}],752:[function(t,e,r){"use strict";var n=t("../heatmap/attributes"),i=t("../contour/attributes"),a=t("../../components/colorscale/attributes"),o=t("../../lib/extend").extendFlat,s=i.contours;e.exports=o({carpet:{valType:"string",editType:"calc"},z:n.z,a:n.x,a0:n.x0,da:n.dx,b:n.y,b0:n.y0,db:n.dy,text:n.text,hovertext:n.hovertext,transpose:n.transpose,atype:n.xtype,btype:n.ytype,fillcolor:i.fillcolor,autocontour:i.autocontour,ncontours:i.ncontours,contours:{type:s.type,start:s.start,end:s.end,size:s.size,coloring:{valType:"enumerated",values:["fill","lines","none"],dflt:"fill",editType:"calc"},showlines:s.showlines,showlabels:s.showlabels,labelfont:s.labelfont,labelformat:s.labelformat,operation:s.operation,value:s.value,editType:"calc",impliedEdits:{autocontour:!1}},line:{color:i.line.color,width:i.line.width,dash:i.line.dash,smoothing:i.line.smoothing,editType:"plot"},transforms:void 0},a("",{cLetter:"z",autoColorDflt:!1}))},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../contour/attributes":730,"../heatmap/attributes":787}],753:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc"),i=t("../../lib"),a=t("../heatmap/convert_column_xyz"),o=t("../heatmap/clean_2d_array"),s=t("../heatmap/interp2d"),l=t("../heatmap/find_empties"),c=t("../heatmap/make_bound_array"),u=t("./defaults"),f=t("../carpet/lookup_carpetid"),h=t("../contour/set_contours");e.exports=function(t,e){var r=e._carpetTrace=f(t,e);if(r&&r.visible&&"legendonly"!==r.visible){if(!e.a||!e.b){var p=t.data[r.index],d=t.data[e.index];d.a||(d.a=p.a),d.b||(d.b=p.b),u(d,e,e._defaultColor,t._fullLayout)}var m=function(t,e){var r,u,f,h,p,d,m,g=e._carpetTrace,v=g.aaxis,y=g.baxis;v._minDtick=0,y._minDtick=0,i.isArray1D(e.z)&&a(e,v,y,"a","b",["z"]);r=e._a=e._a||e.a,h=e._b=e._b||e.b,r=r?v.makeCalcdata(e,"_a"):[],h=h?y.makeCalcdata(e,"_b"):[],u=e.a0||0,f=e.da||1,p=e.b0||0,d=e.db||1,m=e._z=o(e._z||e.z,e.transpose),e._emptypoints=l(m),s(m,e._emptypoints);var x=i.maxRowLength(m),b="scaled"===e.xtype?"":r,_=c(e,b,u,f,x,v),w="scaled"===e.ytype?"":h,T=c(e,w,p,d,m.length,y),k={a:_,b:T,z:m};"levels"===e.contours.type&&"none"!==e.contours.coloring&&n(t,e,{vals:m,containerStr:"",cLetter:"z"});return[k]}(t,e);return h(e,e._z),m}}},{"../../components/colorscale/calc":369,"../../lib":498,"../carpet/lookup_carpetid":703,"../contour/set_contours":749,"../heatmap/clean_2d_array":789,"../heatmap/convert_column_xyz":791,"../heatmap/find_empties":793,"../heatmap/interp2d":796,"../heatmap/make_bound_array":798,"./defaults":754}],754:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../heatmap/xyz_defaults"),a=t("./attributes"),o=t("../contour/constraint_defaults"),s=t("../contour/contours_defaults"),l=t("../contour/style_defaults");e.exports=function(t,e,r,c){function u(r,i){return n.coerce(t,e,a,r,i)}if(u("carpet"),t.a&&t.b){if(!i(t,e,u,c,"a","b"))return void(e.visible=!1);u("text"),"constraint"===u("contours.type")?o(t,e,u,c,r,{hasHover:!1}):(s(t,e,u,(function(r){return n.coerce2(t,e,a,r)})),l(t,e,u,c,{hasHover:!1}))}else e._defaultColor=r,e._length=null}},{"../../lib":498,"../contour/constraint_defaults":735,"../contour/contours_defaults":737,"../contour/style_defaults":751,"../heatmap/xyz_defaults":802,"./attributes":752}],755:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../contour/colorbar"),calc:t("./calc"),plot:t("./plot"),style:t("../contour/style"),moduleType:"trace",name:"contourcarpet",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","carpet","contour","symbols","showLegend","hasLines","carpetDependent","noHover","noSortingByValue"],meta:{}}},{"../../plots/cartesian":563,"../contour/colorbar":733,"../contour/style":750,"./attributes":752,"./calc":753,"./defaults":754,"./plot":756}],756:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../carpet/map_1d_array"),a=t("../carpet/makepath"),o=t("../../components/drawing"),s=t("../../lib"),l=t("../contour/make_crossings"),c=t("../contour/find_all_paths"),u=t("../contour/plot"),f=t("../contour/constants"),h=t("../contour/convert_to_constraints"),p=t("../contour/empty_pathinfo"),d=t("../contour/close_boundaries"),m=t("../carpet/lookup_carpetid"),g=t("../carpet/axis_aligned_line");function v(t,e,r){var n=t.getPointAtLength(e),i=t.getPointAtLength(r),a=i.x-n.x,o=i.y-n.y,s=Math.sqrt(a*a+o*o);return[a/s,o/s]}function y(t){var e=Math.sqrt(t[0]*t[0]+t[1]*t[1]);return[t[0]/e,t[1]/e]}function x(t,e){var r=Math.abs(t[0]*e[0]+t[1]*e[1]);return Math.sqrt(1-r*r)/r}e.exports=function(t,e,r,b){var _=e.xaxis,w=e.yaxis;s.makeTraceGroups(b,r,"contour").each((function(r){var b=n.select(this),T=r[0],k=T.trace,A=k._carpetTrace=m(t,k),M=t.calcdata[A.index][0];if(A.visible&&"legendonly"!==A.visible){var S=T.a,E=T.b,L=k.contours,C=p(L,e,T),P="constraint"===L.type,I=L._operation,O=P?"="===I?"lines":"fill":L.coloring,z=[[S[0],E[E.length-1]],[S[S.length-1],E[E.length-1]],[S[S.length-1],E[0]],[S[0],E[0]]];l(C);var D=1e-8*(S[S.length-1]-S[0]),R=1e-8*(E[E.length-1]-E[0]);c(C,D,R);var F,B,N,j,U=C;"constraint"===L.type&&(U=h(C,I)),function(t,e){var r,n,i,a,o,s,l,c,u;for(r=0;r=0;j--)F=M.clipsegments[j],B=i([],F.x,_.c2p),N=i([],F.y,w.c2p),B.reverse(),N.reverse(),V.push(a(B,N,F.bicubic));var H="M"+V.join("L")+"Z";!function(t,e,r,n,o,l){var c,u,f,h,p=s.ensureSingle(t,"g","contourbg").selectAll("path").data("fill"!==l||o?[]:[0]);p.enter().append("path"),p.exit().remove();var d=[];for(h=0;h=0&&(h=L,d=m):Math.abs(f[1]-h[1])=0&&(h=L,d=m):s.log("endpt to newendpt is not vert. or horz.",f,h,L)}if(d>=0)break;y+=S(f,h),f=h}if(d===e.edgepaths.length){s.log("unclosed perimeter path");break}u=d,(b=-1===x.indexOf(u))&&(u=x[0],y+=S(f,h)+"Z",f=null)}for(u=0;ug&&(n.max=g);n.len=n.max-n.min}(this,r,t,n,c,e.height),!(n.len<(e.width+e.height)*f.LABELMIN)))for(var i=Math.min(Math.ceil(n.len/I),f.LABELMAX),a=0;a0?+p[u]:0),f.push({type:"Feature",geometry:{type:"Point",coordinates:v},properties:y})}}var b=o.extractOpts(e),_=b.reversescale?o.flipScale(b.colorscale):b.colorscale,w=_[0][1],T=["interpolate",["linear"],["heatmap-density"],0,a.opacity(w)<1?w:a.addOpacity(w,0)];for(u=1;u<_.length;u++)T.push(_[u][0],_[u][1]);var k=["interpolate",["linear"],["get","z"],b.min,0,b.max,1];return i.extendFlat(c.heatmap.paint,{"heatmap-weight":d?k:1/(b.max-b.min),"heatmap-color":T,"heatmap-radius":m?{type:"identity",property:"r"}:e.radius,"heatmap-opacity":e.opacity}),c.geojson={type:"FeatureCollection",features:f},c.heatmap.layout.visibility="visible",c}},{"../../components/color":361,"../../components/colorscale":373,"../../constants/numerical":474,"../../lib":498,"../../lib/geojson_utils":492,"fast-isnumeric":185}],760:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../components/colorscale/defaults"),a=t("./attributes");e.exports=function(t,e,r,o){function s(r,i){return n.coerce(t,e,a,r,i)}var l=s("lon")||[],c=s("lat")||[],u=Math.min(l.length,c.length);u?(e._length=u,s("z"),s("radius"),s("below"),s("text"),s("hovertext"),s("hovertemplate"),i(t,e,o,s,{prefix:"",cLetter:"z"})):e.visible=!1}},{"../../components/colorscale/defaults":371,"../../lib":498,"./attributes":757}],761:[function(t,e,r){"use strict";e.exports=function(t,e){return t.lon=e.lon,t.lat=e.lat,t.z=e.z,t}},{}],762:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../scattermapbox/hover").hoverPoints,a=t("../scattermapbox/hover").getExtraText;e.exports=function(t,e,r){var o=i(t,e,r);if(o){var s=o[0],l=s.cd,c=l[0].trace,u=l[s.index];if(delete s.color,"z"in u){var f=s.subplot.mockAxis;s.z=u.z,s.zLabel=n.tickText(f,f.c2l(u.z),"hover").text}return s.extraText=a(c,u,l[0].t.labels),[s]}}},{"../../plots/cartesian/axes":549,"../scattermapbox/hover":993}],763:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../heatmap/colorbar"),formatLabels:t("../scattermapbox/format_labels"),calc:t("./calc"),plot:t("./plot"),hoverPoints:t("./hover"),eventData:t("./event_data"),getBelow:function(t,e){for(var r=e.getMapLayers(),n=0;n=0;r--)t.removeLayer(e[r][1])},o.dispose=function(){var t=this.subplot.map;this._removeLayers(),t.removeSource(this.sourceId)},e.exports=function(t,e){var r=e[0].trace,i=new a(t,r.uid),o=i.sourceId,s=n(e),l=i.below=t.belowLookup["trace-"+r.uid];return t.map.addSource(o,{type:"geojson",data:s.geojson}),i._addLayers(s,l),i}},{"../../plots/mapbox/constants":606,"./convert":759}],765:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){for(var r=0;r"),l.color=function(t,e){var r=t.marker,i=e.mc||r.color,a=e.mlc||r.line.color,o=e.mlw||r.line.width;if(n(i))return i;if(n(a)&&o)return a}(u,h),[l]}}},{"../../components/color":361,"../../lib":498,"../bar/hover":650}],773:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style").style,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("../bar/select"),moduleType:"trace",name:"funnel",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","oriented","showLegend","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"../bar/select":655,"./attributes":766,"./calc":767,"./cross_trace_calc":769,"./defaults":770,"./event_data":771,"./hover":772,"./layout_attributes":774,"./layout_defaults":775,"./plot":776,"./style":777}],774:[function(t,e,r){"use strict";e.exports={funnelmode:{valType:"enumerated",values:["stack","group","overlay"],dflt:"stack",editType:"calc"},funnelgap:{valType:"number",min:0,max:1,editType:"calc"},funnelgroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],775:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a=!1;function o(r,a){return n.coerce(t,e,i,r,a)}for(var s=0;s path").each((function(t){if(!t.isBlank){var e=s.marker;n.select(this).call(a.fill,t.mc||e.color).call(a.stroke,t.mlc||e.line.color).call(i.dashLine,e.line.dash,t.mlw||e.line.width).style("opacity",s.selectedpoints&&!t.selected?o:1)}})),c(r,s,t),r.selectAll(".regions").each((function(){n.select(this).selectAll("path").style("stroke-width",0).call(a.fill,s.connector.fillcolor)})),r.selectAll(".lines").each((function(){var t=s.connector.line;i.lineGroupStyle(n.select(this).selectAll("path"),t.width,t.color,t.dash)}))}))}}},{"../../components/color":361,"../../components/drawing":383,"../../constants/interactions":473,"../bar/style":657,"../bar/uniform_text":659,"@plotly/d3":58}],778:[function(t,e,r){"use strict";var n=t("../pie/attributes"),i=t("../../plots/attributes"),a=t("../../plots/domain").attributes,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../plots/template_attributes").texttemplateAttrs,l=t("../../lib/extend").extendFlat;e.exports={labels:n.labels,label0:n.label0,dlabel:n.dlabel,values:n.values,marker:{colors:n.marker.colors,line:{color:l({},n.marker.line.color,{dflt:null}),width:l({},n.marker.line.width,{dflt:1}),editType:"calc"},editType:"calc"},text:n.text,hovertext:n.hovertext,scalegroup:l({},n.scalegroup,{}),textinfo:l({},n.textinfo,{flags:["label","text","value","percent"]}),texttemplate:s({editType:"plot"},{keys:["label","color","value","text","percent"]}),hoverinfo:l({},i.hoverinfo,{flags:["label","text","value","percent","name"]}),hovertemplate:o({},{keys:["label","color","value","text","percent"]}),textposition:l({},n.textposition,{values:["inside","none"],dflt:"inside"}),textfont:n.textfont,insidetextfont:n.insidetextfont,title:{text:n.title.text,font:n.title.font,position:l({},n.title.position,{values:["top left","top center","top right"],dflt:"top center"}),editType:"plot"},domain:a({name:"funnelarea",trace:!0,editType:"calc"}),aspectratio:{valType:"number",min:0,dflt:1,editType:"plot"},baseratio:{valType:"number",min:0,max:1,dflt:.333,editType:"plot"}}},{"../../lib/extend":488,"../../plots/attributes":545,"../../plots/domain":579,"../../plots/template_attributes":628,"../pie/attributes":896}],779:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="funnelarea",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":614}],780:[function(t,e,r){"use strict";var n=t("../pie/calc");e.exports={calc:function(t,e){return n.calc(t,e)},crossTraceCalc:function(t){n.crossTraceCalc(t,{type:"funnelarea"})}}},{"../pie/calc":898}],781:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../plots/domain").defaults,o=t("../bar/defaults").handleText,s=t("../pie/defaults").handleLabelsAndValues;e.exports=function(t,e,r,l){function c(r,a){return n.coerce(t,e,i,r,a)}var u=c("labels"),f=c("values"),h=s(u,f),p=h.len;if(e._hasLabels=h.hasLabels,e._hasValues=h.hasValues,!e._hasLabels&&e._hasValues&&(c("label0"),c("dlabel")),p){e._length=p,c("marker.line.width")&&c("marker.line.color",l.paper_bgcolor),c("marker.colors"),c("scalegroup");var d,m=c("text"),g=c("texttemplate");if(g||(d=c("textinfo",Array.isArray(m)?"text+percent":"percent")),c("hovertext"),c("hovertemplate"),g||d&&"none"!==d){var v=c("textposition");o(t,e,l,c,v,{moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1})}a(e,l,c),c("title.text")&&(c("title.position"),n.coerceFont(c,"title.font",l.font)),c("aspectratio"),c("baseratio")}else e.visible=!1}},{"../../lib":498,"../../plots/domain":579,"../bar/defaults":647,"../pie/defaults":899,"./attributes":778}],782:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"funnelarea",basePlotModule:t("./base_plot"),categories:["pie-like","funnelarea","showLegend"],attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),style:t("./style"),styleOne:t("../pie/style_one"),meta:{}}},{"../pie/style_one":907,"./attributes":778,"./base_plot":779,"./calc":780,"./defaults":781,"./layout_attributes":783,"./layout_defaults":784,"./plot":785,"./style":786}],783:[function(t,e,r){"use strict";var n=t("../pie/layout_attributes").hiddenlabels;e.exports={hiddenlabels:n,funnelareacolorway:{valType:"colorlist",editType:"calc"},extendfunnelareacolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{"../pie/layout_attributes":903}],784:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("hiddenlabels"),r("funnelareacolorway",e.colorway),r("extendfunnelareacolors")}},{"../../lib":498,"./layout_attributes":783}],785:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("../../lib"),o=a.strScale,s=a.strTranslate,l=t("../../lib/svg_text_utils"),c=t("../bar/plot").toMoveInsideBar,u=t("../bar/uniform_text"),f=u.recordMinTextSize,h=u.clearMinTextSize,p=t("../pie/helpers"),d=t("../pie/plot"),m=d.attachFxHandlers,g=d.determineInsideTextFont,v=d.layoutAreas,y=d.prerenderTitles,x=d.positionTitleOutside,b=d.formatSliceLabel;function _(t,e){return"l"+(e[0]-t[0])+","+(e[1]-t[1])}e.exports=function(t,e){var r=t._fullLayout;h("funnelarea",r),y(e,t),v(e,r._size),a.makeTraceGroups(r._funnelarealayer,e,"trace").each((function(e){var u=n.select(this),h=e[0],d=h.trace;!function(t){if(!t.length)return;var e=t[0],r=e.trace,n=r.aspectratio,i=r.baseratio;i>.999&&(i=.999);var a,o=Math.pow(i,2),s=e.vTotal,l=s,c=s*o/(1-o)/s;function u(){var t,e={x:t=Math.sqrt(c),y:-t};return[e.x,e.y]}var f,h,p=[];for(p.push(u()),f=t.length-1;f>-1;f--)if(!(h=t[f]).hidden){var d=h.v/l;c+=d,p.push(u())}var m=1/0,g=-1/0;for(f=0;f-1;f--)if(!(h=t[f]).hidden){var A=p[k+=1][0],M=p[k][1];h.TL=[-A,M],h.TR=[A,M],h.BL=w,h.BR=T,h.pxmid=(S=h.TR,E=h.BR,[.5*(S[0]+E[0]),.5*(S[1]+E[1])]),w=h.TL,T=h.TR}var S,E}(e),u.each((function(){var u=n.select(this).selectAll("g.slice").data(e);u.enter().append("g").classed("slice",!0),u.exit().remove(),u.each((function(o,s){if(o.hidden)n.select(this).selectAll("path,g").remove();else{o.pointNumber=o.i,o.curveNumber=d.index;var u=h.cx,v=h.cy,y=n.select(this),x=y.selectAll("path.surface").data([o]);x.enter().append("path").classed("surface",!0).style({"pointer-events":"all"}),y.call(m,t,e);var w="M"+(u+o.TR[0])+","+(v+o.TR[1])+_(o.TR,o.BR)+_(o.BR,o.BL)+_(o.BL,o.TL)+"Z";x.attr("d",w),b(t,o,h);var T=p.castOption(d.textposition,o.pts),k=y.selectAll("g.slicetext").data(o.text&&"none"!==T?[0]:[]);k.enter().append("g").classed("slicetext",!0),k.exit().remove(),k.each((function(){var h=a.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),p=a.ensureUniformFontSize(t,g(d,o,r.font));h.text(o.text).attr({class:"slicetext",transform:"","text-anchor":"middle"}).call(i.font,p).call(l.convertToTspans,t);var m,y,x,b=i.bBox(h.node()),_=Math.min(o.BL[1],o.BR[1])+v,w=Math.max(o.TL[1],o.TR[1])+v;y=Math.max(o.TL[0],o.BL[0])+u,x=Math.min(o.TR[0],o.BR[0])+u,(m=c(y,x,_,w,b,{isHorizontal:!0,constrained:!0,angle:0,anchor:"middle"})).fontSize=p.size,f(d.type,m,r),e[s].transform=m,h.attr("transform",a.getTextTransform(m))}))}}));var v=n.select(this).selectAll("g.titletext").data(d.title.text?[0]:[]);v.enter().append("g").classed("titletext",!0),v.exit().remove(),v.each((function(){var e=a.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),c=d.title.text;d._meta&&(c=a.templateString(c,d._meta)),e.text(c).attr({class:"titletext",transform:"","text-anchor":"middle"}).call(i.font,d.title.font).call(l.convertToTspans,t);var u=x(h,r._size);e.attr("transform",s(u.x,u.y)+o(Math.min(1,u.scale))+s(u.tx,u.ty))}))}))}))}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../bar/plot":654,"../bar/uniform_text":659,"../pie/helpers":901,"../pie/plot":905,"@plotly/d3":58}],786:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../pie/style_one"),a=t("../bar/uniform_text").resizeText;e.exports=function(t){var e=t._fullLayout._funnelarealayer.selectAll(".trace");a(t,e,"funnelarea"),e.each((function(t){var e=t[0].trace,r=n.select(this);r.style({opacity:e.opacity}),r.selectAll("path.surface").each((function(t){n.select(this).call(i,t,e)}))}))}},{"../bar/uniform_text":659,"../pie/style_one":907,"@plotly/d3":58}],787:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../plots/attributes"),a=t("../../plots/font_attributes"),o=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../plots/template_attributes").texttemplateAttrs,c=t("../../components/colorscale/attributes"),u=t("../../lib/extend").extendFlat;e.exports=u({z:{valType:"data_array",editType:"calc"},x:u({},n.x,{impliedEdits:{xtype:"array"}}),x0:u({},n.x0,{impliedEdits:{xtype:"scaled"}}),dx:u({},n.dx,{impliedEdits:{xtype:"scaled"}}),y:u({},n.y,{impliedEdits:{ytype:"array"}}),y0:u({},n.y0,{impliedEdits:{ytype:"scaled"}}),dy:u({},n.dy,{impliedEdits:{ytype:"scaled"}}),xperiod:u({},n.xperiod,{impliedEdits:{xtype:"scaled"}}),yperiod:u({},n.yperiod,{impliedEdits:{ytype:"scaled"}}),xperiod0:u({},n.xperiod0,{impliedEdits:{xtype:"scaled"}}),yperiod0:u({},n.yperiod0,{impliedEdits:{ytype:"scaled"}}),xperiodalignment:u({},n.xperiodalignment,{impliedEdits:{xtype:"scaled"}}),yperiodalignment:u({},n.yperiodalignment,{impliedEdits:{ytype:"scaled"}}),text:{valType:"data_array",editType:"calc"},hovertext:{valType:"data_array",editType:"calc"},transpose:{valType:"boolean",dflt:!1,editType:"calc"},xtype:{valType:"enumerated",values:["array","scaled"],editType:"calc+clearAxisTypes"},ytype:{valType:"enumerated",values:["array","scaled"],editType:"calc+clearAxisTypes"},zsmooth:{valType:"enumerated",values:["fast","best",!1],dflt:!1,editType:"calc"},hoverongaps:{valType:"boolean",dflt:!0,editType:"none"},connectgaps:{valType:"boolean",editType:"calc"},xgap:{valType:"number",dflt:0,min:0,editType:"plot"},ygap:{valType:"number",dflt:0,min:0,editType:"plot"},xhoverformat:o("x"),yhoverformat:o("y"),zhoverformat:o("z",1),hovertemplate:s(),texttemplate:l({arrayOk:!1,editType:"plot"},{keys:["x","y","z","text"]}),textfont:a({editType:"plot",autoSize:!0,autoColor:!0,colorEditType:"style"}),showlegend:u({},i.showlegend,{dflt:!1})},{transforms:void 0},c("",{cLetter:"z",autoColorDflt:!1}))},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/font_attributes":580,"../../plots/template_attributes":628,"../scatter/attributes":922}],788:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib"),a=t("../../plots/cartesian/axes"),o=t("../../plots/cartesian/align_period"),s=t("../histogram2d/calc"),l=t("../../components/colorscale/calc"),c=t("./convert_column_xyz"),u=t("./clean_2d_array"),f=t("./interp2d"),h=t("./find_empties"),p=t("./make_bound_array"),d=t("../../constants/numerical").BADNUM;function m(t){for(var e=[],r=t.length,n=0;nD){O("x scale is not linear");break}}if(x.length&&"fast"===P){var R=(x[x.length-1]-x[0])/(x.length-1),F=Math.abs(R/100);for(k=0;kF){O("y scale is not linear");break}}}var B=i.maxRowLength(T),N="scaled"===e.xtype?"":r,j=p(e,N,g,v,B,M),U="scaled"===e.ytype?"":x,V=p(e,U,b,_,T.length,S);C||(e._extremes[M._id]=a.findExtremes(M,j),e._extremes[S._id]=a.findExtremes(S,V));var H={x:j,y:V,z:T,text:e._text||e.text,hovertext:e._hovertext||e.hovertext};if(e.xperiodalignment&&y&&(H.orig_x=y),e.yperiodalignment&&w&&(H.orig_y=w),N&&N.length===j.length-1&&(H.xCenter=N),U&&U.length===V.length-1&&(H.yCenter=U),L&&(H.xRanges=A.xRanges,H.yRanges=A.yRanges,H.pts=A.pts),E||l(t,e,{vals:T,cLetter:"z"}),E&&e.contours&&"heatmap"===e.contours.coloring){var q={type:"contour"===e.type?"heatmap":"histogram2d",xcalendar:e.xcalendar,ycalendar:e.ycalendar};H.xfill=p(q,N,g,v,B,M),H.yfill=p(q,U,b,_,T.length,S)}return[H]}},{"../../components/colorscale/calc":369,"../../constants/numerical":474,"../../lib":498,"../../plots/cartesian/align_period":546,"../../plots/cartesian/axes":549,"../../registry":633,"../histogram2d/calc":821,"./clean_2d_array":789,"./convert_column_xyz":791,"./find_empties":793,"./interp2d":796,"./make_bound_array":798}],789:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../lib"),a=t("../../constants/numerical").BADNUM;e.exports=function(t,e,r,o){var s,l,c,u,f,h;function p(t){if(n(t))return+t}if(e&&e.transpose){for(s=0,f=0;f=0;o--)(s=((f[[(r=(a=h[o])[0])-1,i=a[1]]]||m)[2]+(f[[r+1,i]]||m)[2]+(f[[r,i-1]]||m)[2]+(f[[r,i+1]]||m)[2])/20)&&(l[a]=[r,i,s],h.splice(o,1),c=!0);if(!c)throw"findEmpties iterated with no new neighbors";for(a in l)f[a]=l[a],u.push(l[a])}return u.sort((function(t,e){return e[2]-t[2]}))}},{"../../lib":498}],794:[function(t,e,r){"use strict";var n=t("../../components/fx"),i=t("../../lib"),a=t("../../plots/cartesian/axes"),o=t("../../components/colorscale").extractOpts;e.exports=function(t,e,r,s,l){l||(l={});var c,u,f,h,p=l.isContour,d=t.cd[0],m=d.trace,g=t.xa,v=t.ya,y=d.x,x=d.y,b=d.z,_=d.xCenter,w=d.yCenter,T=d.zmask,k=m.zhoverformat,A=y,M=x;if(!1!==t.index){try{f=Math.round(t.index[1]),h=Math.round(t.index[0])}catch(e){return void i.error("Error hovering on heatmap, pointNumber must be [row,col], found:",t.index)}if(f<0||f>=b[0].length||h<0||h>b.length)return}else{if(n.inbox(e-y[0],e-y[y.length-1],0)>0||n.inbox(r-x[0],r-x[x.length-1],0)>0)return;if(p){var S;for(A=[2*y[0]-y[1]],S=1;Sm&&(v=Math.max(v,Math.abs(t[a][o]-d)/(g-m))))}return v}e.exports=function(t,e){var r,i=1;for(o(t,e),r=0;r.01;r++)i=o(t,e,a(i));return i>.01&&n.log("interp2d didn't converge quickly",i),t}},{"../../lib":498}],797:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){t("texttemplate");var r=n.extendFlat({},e.font,{color:"auto",size:"auto"});n.coerceFont(t,"textfont",r)}},{"../../lib":498}],798:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib").isArrayOrTypedArray;e.exports=function(t,e,r,a,o,s){var l,c,u,f=[],h=n.traceIs(t,"contour"),p=n.traceIs(t,"histogram"),d=n.traceIs(t,"gl2d");if(i(e)&&e.length>1&&!p&&"category"!==s.type){var m=e.length;if(!(m<=o))return h?e.slice(0,o):e.slice(0,o+1);if(h||d)f=e.slice(0,o);else if(1===o)f=[e[0]-.5,e[0]+.5];else{for(f=[1.5*e[0]-.5*e[1]],u=1;u0;)_=w.c2p(R[S]),S--;for(_0;)M=T.c2p(F[S]),S--;if(MGt||Gt>T._length))for(E=Ut;EWt||Wt>w._length)){var Xt=u({x:Yt,y:qt},I,t._fullLayout);Xt.x=Yt,Xt.y=qt;var Zt=P.z[S][E];void 0===Zt?(Xt.z="",Xt.zLabel=""):(Xt.z=Zt,Xt.zLabel=s.tickText(Ft,Zt,"hover").text);var Jt=P.text&&P.text[S]&&P.text[S][E];void 0!==Jt&&!1!==Jt||(Jt=""),Xt.text=Jt;var Kt=l.texttemplateString(Dt,Xt,t._fullLayout._d3locale,Xt,I._meta||{});if(Kt){var Qt=Kt.split("
"),$t=Qt.length,te=0;for(L=0;L<$t;L++)te=Math.max(te,Qt[L].length);Ht.push({l:$t,c:te,t:Kt,x:Wt,y:Gt,z:Zt})}}}}var ee=I.textfont,re=ee.family,ne=ee.size,ie=t._fullLayout.font.size;if(!ne||"auto"===ne){var ae=1/0,oe=1/0,se=0,le=0;for(L=0;L0&&(a=!0);for(var l=0;la){var o=a-r[t];return r[t]=a,o}}return 0},max:function(t,e,r,i){var a=i[e];if(n(a)){if(a=Number(a),!n(r[t]))return r[t]=a,a;if(r[t]c?t>o?t>1.1*i?i:t>1.1*a?a:o:t>s?s:t>l?l:c:Math.pow(10,Math.floor(Math.log(t)/Math.LN10))}function p(t,e,r,n,a,s){if(n&&t>o){var l=d(e,a,s),c=d(r,a,s),u=t===i?0:1;return l[u]!==c[u]}return Math.floor(r/t)-Math.floor(e/t)>.1}function d(t,e,r){var n=e.c2d(t,i,r).split("-");return""===n[0]&&(n.unshift(),n[0]="-"+n[0]),n}e.exports=function(t,e,r,n,a){var s,l,c=-1.1*e,h=-.1*e,p=t-h,d=r[0],m=r[1],g=Math.min(f(d+h,d+p,n,a),f(m+h,m+p,n,a)),v=Math.min(f(d+c,d+h,n,a),f(m+c,m+h,n,a));if(g>v&&vo){var y=s===i?1:6,x=s===i?"M12":"M1";return function(e,r){var o=n.c2d(e,i,a),s=o.indexOf("-",y);s>0&&(o=o.substr(0,s));var c=n.d2c(o,0,a);if(cr.r2l(B)&&(j=o.tickIncrement(j,b.size,!0,p)),z.start=r.l2r(j),F||i.nestedProperty(e,v+".start").set(z.start)}var U=b.end,V=r.r2l(O.end),H=void 0!==V;if((b.endFound||H)&&V!==r.r2l(U)){var q=H?V:i.aggNums(Math.max,null,d);z.end=r.l2r(q),H||i.nestedProperty(e,v+".start").set(z.end)}var G="autobin"+s;return!1===e._input[G]&&(e._input[v]=i.extendFlat({},e[v]||{}),delete e._input[G],delete e[G]),[z,d]}e.exports={calc:function(t,e){var r,a,p,d,m=[],g=[],v="h"===e.orientation,y=o.getFromId(t,v?e.yaxis:e.xaxis),x=v?"y":"x",b={x:"y",y:"x"}[x],_=e[x+"calendar"],w=e.cumulative,T=h(t,e,y,x),k=T[0],A=T[1],M="string"==typeof k.size,S=[],E=M?S:k,L=[],C=[],P=[],I=0,O=e.histnorm,z=e.histfunc,D=-1!==O.indexOf("density");w.enabled&&D&&(O=O.replace(/ ?density$/,""),D=!1);var R,F="max"===z||"min"===z?null:0,B=l.count,N=c[O],j=!1,U=function(t){return y.r2c(t,0,_)};for(i.isArrayOrTypedArray(e[b])&&"count"!==z&&(R=e[b],j="avg"===z,B=l[z]),r=U(k.start),p=U(k.end)+(r-o.tickIncrement(r,k.size,!1,_))/1e6;r=0&&d=0;n--)s(n);else if("increasing"===e){for(n=1;n=0;n--)t[n]+=t[n+1];"exclude"===r&&(t.push(0),t.shift())}}(g,w.direction,w.currentbin);var K=Math.min(m.length,g.length),Q=[],$=0,tt=K-1;for(r=0;r=$;r--)if(g[r]){tt=r;break}for(r=$;r<=tt;r++)if(n(m[r])&&n(g[r])){var et={p:m[r],s:g[r],b:0};w.enabled||(et.pts=P[r],Y?et.ph0=et.ph1=P[r].length?A[P[r][0]]:m[r]:(e._computePh=!0,et.ph0=q(S[r]),et.ph1=q(S[r+1],!0))),Q.push(et)}return 1===Q.length&&(Q[0].width1=o.tickIncrement(Q[0].p,k.size,!1,_)-Q[0].p),s(Q,e),i.isArrayOrTypedArray(e.selectedpoints)&&i.tagSelected(Q,e,Z),Q},calcAllAutoBins:h}},{"../../lib":498,"../../plots/cartesian/axes":549,"../../registry":633,"../bar/arrays_to_calcdata":642,"./average":808,"./bin_functions":810,"./bin_label_vals":811,"./norm_functions":819,"fast-isnumeric":185}],813:[function(t,e,r){"use strict";e.exports={eventDataKeys:["binNumber"]}},{}],814:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/cartesian/axis_ids"),a=t("../../registry").traceIs,o=t("../bar/defaults").handleGroupingDefaults,s=n.nestedProperty,l=t("../../plots/cartesian/constraints").getAxisGroup,c=[{aStr:{x:"xbins.start",y:"ybins.start"},name:"start"},{aStr:{x:"xbins.end",y:"ybins.end"},name:"end"},{aStr:{x:"xbins.size",y:"ybins.size"},name:"size"},{aStr:{x:"nbinsx",y:"nbinsy"},name:"nbins"}],u=["x","y"];e.exports=function(t,e){var r,f,h,p,d,m,g,v=e._histogramBinOpts={},y=[],x={},b=[];function _(t,e){return n.coerce(r._input,r,r._module.attributes,t,e)}function w(t){return"v"===t.orientation?"x":"y"}function T(t,r,a){var o=t.uid+"__"+a;r||(r=o);var s=function(t,r){return i.getFromTrace({_fullLayout:e},t,r).type}(t,a),l=t[a+"calendar"]||"",c=v[r],u=!0;c&&(s===c.axType&&l===c.calendar?(u=!1,c.traces.push(t),c.dirs.push(a)):(r=o,s!==c.axType&&n.warn(["Attempted to group the bins of trace",t.index,"set on a","type:"+s,"axis","with bins on","type:"+c.axType,"axis."].join(" ")),l!==c.calendar&&n.warn(["Attempted to group the bins of trace",t.index,"set with a",l,"calendar","with bins",c.calendar?"on a "+c.calendar+" calendar":"w/o a set calendar"].join(" ")))),u&&(v[r]={traces:[t],dirs:[a],axType:s,calendar:t[a+"calendar"]||""}),t["_"+a+"bingroup"]=r}for(d=0;dS&&T.splice(S,T.length-S),M.length>S&&M.splice(S,M.length-S);var E=[],L=[],C=[],P="string"==typeof w.size,I="string"==typeof A.size,O=[],z=[],D=P?O:w,R=I?z:A,F=0,B=[],N=[],j=e.histnorm,U=e.histfunc,V=-1!==j.indexOf("density"),H="max"===U||"min"===U?null:0,q=a.count,G=o[j],Y=!1,W=[],X=[],Z="z"in e?e.z:"marker"in e&&Array.isArray(e.marker.color)?e.marker.color:"";Z&&"count"!==U&&(Y="avg"===U,q=a[U]);var J=w.size,K=x(w.start),Q=x(w.end)+(K-i.tickIncrement(K,J,!1,v))/1e6;for(r=K;r=0&&p=0&&d-1,flipY:E.tiling.flip.indexOf("y")>-1,orientation:E.tiling.orientation,pad:{inner:E.tiling.pad},maxDepth:E._maxDepth}).descendants(),O=1/0,z=-1/0;I.forEach((function(t){var e=t.depth;e>=E._maxDepth?(t.x0=t.x1=(t.x0+t.x1)/2,t.y0=t.y1=(t.y0+t.y1)/2):(O=Math.min(O,e),z=Math.max(z,e))})),p=p.data(I,u.getPtId),E._maxVisibleLayers=isFinite(z)?z-O+1:0,p.enter().append("g").classed("slice",!0),T(p,!1,{},[m,g],x),p.order();var D=null;if(w&&M){var R=u.getPtId(M);p.each((function(t){null===D&&u.getPtId(t)===R&&(D={x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1})}))}var F=function(){return D||{x0:0,x1:m,y0:0,y1:g}},B=p;return w&&(B=B.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!0,hideOnLeaves:!1,isTransitioning:!1})}))),B.each((function(s){s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-E.tiling.pad),s._hoverY=y(P?s.y1-E.tiling.pad/2:s.y0+E.tiling.pad/2);var p=n.select(this),d=i.ensureSingle(p,"path","surface",(function(t){t.style("pointer-events","all")}));w?d.transition().attrTween("d",(function(t){var e=k(t,!1,F(),[m,g],{orientation:E.tiling.orientation,flipX:E.tiling.flip.indexOf("x")>-1,flipY:E.tiling.flip.indexOf("y")>-1});return function(t){return x(e(t))}})):d.attr("d",x),p.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{isTransitioning:t._transitioning}),d.call(l,s,E,{hovered:!1}),s.x0===s.x1||s.y0===s.y1?s._text="":s._text=h(s,r,E,e,S)||"";var T=i.ensureSingle(p,"g","slicetext"),M=i.ensureSingle(T,"text","",(function(t){t.attr("data-notex",1)})),I=i.ensureUniformFontSize(t,u.determineTextFont(E,s,S.font));M.text(s._text||" ").classed("slicetext",!0).attr("text-anchor",C?"end":L?"start":"middle").call(a.font,I).call(o.convertToTspans,t),s.textBB=a.bBox(M.node()),s.transform=b(s,{fontSize:I.size}),s.transform.fontSize=I.size,w?M.transition().attrTween("transform",(function(t){var e=A(t,!1,F(),[m,g]);return function(t){return _(e(t))}})):M.attr("transform",_(s))})),D}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../sunburst/fx":1049,"../sunburst/helpers":1050,"../sunburst/plot":1054,"../treemap/constants":1073,"./partition":837,"./style":839,"@plotly/d3":58}],834:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"icicle",basePlotModule:t("./base_plot"),categories:[],animatable:!0,attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),style:t("./style").style,colorbar:t("../scatter/marker_colorbar"),meta:{}}},{"../scatter/marker_colorbar":940,"./attributes":829,"./base_plot":830,"./calc":831,"./defaults":832,"./layout_attributes":835,"./layout_defaults":836,"./plot":838,"./style":839}],835:[function(t,e,r){"use strict";e.exports={iciclecolorway:{valType:"colorlist",editType:"calc"},extendiciclecolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{}],836:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("iciclecolorway",e.colorway),r("extendiciclecolors")}},{"../../lib":498,"./layout_attributes":835}],837:[function(t,e,r){"use strict";var n=t("d3-hierarchy"),i=t("../treemap/flip_tree");e.exports=function(t,e,r){var a=r.flipX,o=r.flipY,s="h"===r.orientation,l=r.maxDepth,c=e[0],u=e[1];l&&(c=(t.height+1)*e[0]/Math.min(t.height+1,l),u=(t.height+1)*e[1]/Math.min(t.height+1,l));var f=n.partition().padding(r.pad.inner).size(s?[e[1],c]:[e[0],u])(t);return(s||a||o)&&i(f,e,{swapXY:s,flipX:a,flipY:o}),f}},{"../treemap/flip_tree":1078,"d3-hierarchy":110}],838:[function(t,e,r){"use strict";var n=t("../treemap/draw"),i=t("./draw_descendants");e.exports=function(t,e,r,a){return n(t,e,r,a,{type:"icicle",drawDescendants:i})}},{"../treemap/draw":1075,"./draw_descendants":833}],839:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../bar/uniform_text").resizeText;function s(t,e,r){var n=e.data.data,o=!e.children,s=n.i,l=a.castOption(r,s,"marker.line.color")||i.defaultLine,c=a.castOption(r,s,"marker.line.width")||0;t.style("stroke-width",c).call(i.fill,n.color).call(i.stroke,l).style("opacity",o?r.leaf.opacity:null)}e.exports={style:function(t){var e=t._fullLayout._iciclelayer.selectAll(".trace");o(t,e,"icicle"),e.each((function(t){var e=n.select(this),r=t[0].trace;e.style("opacity",r.opacity),e.selectAll("path.surface").each((function(t){n.select(this).call(s,t,r)}))}))},styleOne:s}},{"../../components/color":361,"../../lib":498,"../bar/uniform_text":659,"@plotly/d3":58}],840:[function(t,e,r){"use strict";for(var n=t("../../plots/attributes"),i=t("../../plots/template_attributes").hovertemplateAttrs,a=t("../../lib/extend").extendFlat,o=t("./constants").colormodel,s=["rgb","rgba","rgba256","hsl","hsla"],l=[],c=[],u=0;u0||n.inbox(r-o.y0,r-(o.y0+o.h*s.dy),0)>0)){var u,f=Math.floor((e-o.x0)/s.dx),h=Math.floor(Math.abs(r-o.y0)/s.dy);if(s._hasZ?u=o.z[h][f]:s._hasSource&&(u=s._canvas.el.getContext("2d").getImageData(f,h,1,1).data),u){var p,d=o.hi||s.hoverinfo;if(d){var m=d.split("+");-1!==m.indexOf("all")&&(m=["color"]),-1!==m.indexOf("color")&&(p=!0)}var g,v=a.colormodel[s.colormodel],y=v.colormodel||s.colormodel,x=y.length,b=s._scaler(u),_=v.suffix,w=[];(s.hovertemplate||p)&&(w.push("["+[b[0]+_[0],b[1]+_[1],b[2]+_[2]].join(", ")),4===x&&w.push(", "+b[3]+_[3]),w.push("]"),w=w.join(""),t.extraText=y.toUpperCase()+": "+w),Array.isArray(s.hovertext)&&Array.isArray(s.hovertext[h])?g=s.hovertext[h][f]:Array.isArray(s.text)&&Array.isArray(s.text[h])&&(g=s.text[h][f]);var T=c.c2p(o.y0+(h+.5)*s.dy),k=o.x0+(f+.5)*s.dx,A=o.y0+(h+.5)*s.dy,M="["+u.slice(0,s.colormodel.length).join(", ")+"]";return[i.extendFlat(t,{index:[h,f],x0:l.c2p(o.x0+f*s.dx),x1:l.c2p(o.x0+(f+1)*s.dx),y0:T,y1:T,color:b,xVal:k,xLabelVal:k,yVal:A,yLabelVal:A,zLabelVal:M,text:g,hovertemplateLabels:{zLabel:M,colorLabel:w,"color[0]Label":b[0]+_[0],"color[1]Label":b[1]+_[1],"color[2]Label":b[2]+_[2],"color[3]Label":b[3]+_[3]}})]}}}},{"../../components/fx":401,"../../lib":498,"./constants":842}],847:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),style:t("./style"),hoverPoints:t("./hover"),eventData:t("./event_data"),moduleType:"trace",name:"image",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","2dMap","noSortingByValue"],animatable:!1,meta:{}}},{"../../plots/cartesian":563,"./attributes":840,"./calc":841,"./defaults":843,"./event_data":844,"./hover":846,"./plot":848,"./style":849}],848:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.strTranslate,o=t("../../constants/xmlns_namespaces"),s=t("./constants"),l=i.isIOS()||i.isSafari()||i.isIE();e.exports=function(t,e,r,c){var u=e.xaxis,f=e.yaxis,h=!(l||t._context._exportedPlot);i.makeTraceGroups(c,r,"im").each((function(e){var r=n.select(this),l=e[0],c=l.trace,p=("fast"===c.zsmooth||!1===c.zsmooth&&h)&&!c._hasZ&&c._hasSource&&"linear"===u.type&&"linear"===f.type;c._realImage=p;var d,m,g,v,y,x,b=l.z,_=l.x0,w=l.y0,T=l.w,k=l.h,A=c.dx,M=c.dy;for(x=0;void 0===d&&x0;)m=u.c2p(_+x*A),x--;for(x=0;void 0===v&&x0;)y=f.c2p(w+x*M),x--;if(mI[0];if(O||z){var D=d+S/2,R=v+E/2;C+="transform:"+a(D+"px",R+"px")+"scale("+(O?-1:1)+","+(z?-1:1)+")"+a(-D+"px",-R+"px")+";"}}L.attr("style",C);var F=new Promise((function(t){if(c._hasZ)t();else if(c._hasSource)if(c._canvas&&c._canvas.el.width===T&&c._canvas.el.height===k&&c._canvas.source===c.source)t();else{var e=document.createElement("canvas");e.width=T,e.height=k;var r=e.getContext("2d");c._image=c._image||new Image;var n=c._image;n.onload=function(){r.drawImage(n,0,0),c._canvas={el:e,source:c.source},t()},n.setAttribute("src",c.source)}})).then((function(){var t;if(c._hasZ)t=B((function(t,e){return b[e][t]})).toDataURL("image/png");else if(c._hasSource)if(p)t=c.source;else{var e=c._canvas.el.getContext("2d").getImageData(0,0,T,k).data;t=B((function(t,r){var n=4*(r*T+t);return[e[n],e[n+1],e[n+2],e[n+3]]})).toDataURL("image/png")}L.attr({"xlink:href":t,height:E,width:S,x:d,y:v})}));t._promises.push(F)}function B(t){var e=document.createElement("canvas");e.width=S,e.height=E;var r,n=e.getContext("2d"),a=function(t){return i.constrain(Math.round(u.c2p(_+t*A)-d),0,S)},o=function(t){return i.constrain(Math.round(f.c2p(w+t*M)-v),0,E)},h=s.colormodel[c.colormodel],p=h.colormodel||c.colormodel,m=h.fmt;for(x=0;x0}function T(t){t.each((function(t){y.stroke(n.select(this),t.line.color)})).each((function(t){y.fill(n.select(this),t.color)})).style("stroke-width",(function(t){return t.line.width}))}function k(t,e,r){var n=t._fullLayout,i=o.extendFlat({type:"linear",ticks:"outside",range:r,showline:!0},e),a={type:"linear",_id:"x"+e._id},s={letter:"x",font:n.font,noHover:!0,noTickson:!0};function l(t,e){return o.coerce(i,a,v,t,e)}return m(i,a,l,s,n),g(i,a,l,s),a}function A(t,e,r){return[Math.min(e/t.width,r/t.height),t,e+"x"+r]}function M(t,e,r,i){var a=document.createElementNS("http://www.w3.org/2000/svg","text"),o=n.select(a);return o.text(t).attr("x",0).attr("y",0).attr("text-anchor",r).attr("data-unformatted",t).call(p.convertToTspans,i).call(f.font,e),f.bBox(o.node())}function S(t,e,r,n,i,a){var s="_cache"+e;t[s]&&t[s].key===i||(t[s]={key:i,value:r});var l=o.aggNums(a,null,[t[s].value,n],2);return t[s].value=l,l}e.exports=function(t,e,r,m){var g,v=t._fullLayout;w(r)&&m&&(g=m()),o.makeTraceGroups(v._indicatorlayer,e,"trace").each((function(e){var m,E,L,C,P,I=e[0].trace,O=n.select(this),z=I._hasGauge,D=I._isAngular,R=I._isBullet,F=I.domain,B={w:v._size.w*(F.x[1]-F.x[0]),h:v._size.h*(F.y[1]-F.y[0]),l:v._size.l+v._size.w*F.x[0],r:v._size.r+v._size.w*(1-F.x[1]),t:v._size.t+v._size.h*(1-F.y[1]),b:v._size.b+v._size.h*F.y[0]},N=B.l+B.w/2,j=B.t+B.h/2,U=Math.min(B.w/2,B.h),V=h.innerRadius*U,H=I.align||"center";if(E=j,z){if(D&&(m=N,E=j+U/2,L=function(t){return function(t,e){var r=Math.sqrt(t.width/2*(t.width/2)+t.height*t.height);return[e/r,t,e]}(t,.9*V)}),R){var q=h.bulletPadding,G=1-h.bulletNumberDomainSize+q;m=B.l+(G+(1-G)*b[H])*B.w,L=function(t){return A(t,(h.bulletNumberDomainSize-q)*B.w,B.h)}}}else m=B.l+b[H]*B.w,L=function(t){return A(t,B.w,B.h)};!function(t,e,r,i){var c,u,h,m=r[0].trace,g=i.numbersX,v=i.numbersY,T=m.align||"center",A=x[T],E=i.transitionOpts,L=i.onComplete,C=o.ensureSingle(e,"g","numbers"),P=[];m._hasNumber&&P.push("number");m._hasDelta&&(P.push("delta"),"left"===m.delta.position&&P.reverse());var I=C.selectAll("text").data(P);function O(e,r,n,i){if(!e.match("s")||n>=0==i>=0||r(n).slice(-1).match(_)||r(i).slice(-1).match(_))return r;var a=e.slice().replace("s","f").replace(/\d+/,(function(t){return parseInt(t)-1})),o=k(t,{tickformat:a});return function(t){return Math.abs(t)<1?d.tickText(o,t).text:r(t)}}I.enter().append("text"),I.attr("text-anchor",(function(){return A})).attr("class",(function(t){return t})).attr("x",null).attr("y",null).attr("dx",null).attr("dy",null),I.exit().remove();var z,D=m.mode+m.align;m._hasDelta&&(z=function(){var e=k(t,{tickformat:m.delta.valueformat},m._range);e.setScale(),d.prepTicks(e);var i=function(t){return d.tickText(e,t).text},o=function(t){return m.delta.relative?t.relativeDelta:t.delta},s=function(t,e){return 0===t||"number"!=typeof t||isNaN(t)?"-":(t>0?m.delta.increasing.symbol:m.delta.decreasing.symbol)+e(t)},l=function(t){return t.delta>=0?m.delta.increasing.color:m.delta.decreasing.color};void 0===m._deltaLastValue&&(m._deltaLastValue=o(r[0]));var c=C.select("text.delta");function h(){c.text(s(o(r[0]),i)).call(y.fill,l(r[0])).call(p.convertToTspans,t)}return c.call(f.font,m.delta.font).call(y.fill,l({delta:m._deltaLastValue})),w(E)?c.transition().duration(E.duration).ease(E.easing).tween("text",(function(){var t=n.select(this),e=o(r[0]),c=m._deltaLastValue,u=O(m.delta.valueformat,i,c,e),f=a(c,e);return m._deltaLastValue=e,function(e){t.text(s(f(e),u)),t.call(y.fill,l({delta:f(e)}))}})).each("end",(function(){h(),L&&L()})).each("interrupt",(function(){h(),L&&L()})):h(),u=M(s(o(r[0]),i),m.delta.font,A,t),c}(),D+=m.delta.position+m.delta.font.size+m.delta.font.family+m.delta.valueformat,D+=m.delta.increasing.symbol+m.delta.decreasing.symbol,h=u);m._hasNumber&&(!function(){var e=k(t,{tickformat:m.number.valueformat},m._range);e.setScale(),d.prepTicks(e);var i=function(t){return d.tickText(e,t).text},o=m.number.suffix,s=m.number.prefix,l=C.select("text.number");function u(){var e="number"==typeof r[0].y?s+i(r[0].y)+o:"-";l.text(e).call(f.font,m.number.font).call(p.convertToTspans,t)}w(E)?l.transition().duration(E.duration).ease(E.easing).each("end",(function(){u(),L&&L()})).each("interrupt",(function(){u(),L&&L()})).attrTween("text",(function(){var t=n.select(this),e=a(r[0].lastY,r[0].y);m._lastValue=r[0].y;var l=O(m.number.valueformat,i,r[0].lastY,r[0].y);return function(r){t.text(s+l(e(r))+o)}})):u(),c=M(s+i(r[0].y)+o,m.number.font,A,t)}(),D+=m.number.font.size+m.number.font.family+m.number.valueformat+m.number.suffix+m.number.prefix,h=c);if(m._hasDelta&&m._hasNumber){var R,F,B=[(c.left+c.right)/2,(c.top+c.bottom)/2],N=[(u.left+u.right)/2,(u.top+u.bottom)/2],j=.75*m.delta.font.size;"left"===m.delta.position&&(R=S(m,"deltaPos",0,-1*(c.width*b[m.align]+u.width*(1-b[m.align])+j),D,Math.min),F=B[1]-N[1],h={width:c.width+u.width+j,height:Math.max(c.height,u.height),left:u.left+R,right:c.right,top:Math.min(c.top,u.top+F),bottom:Math.max(c.bottom,u.bottom+F)}),"right"===m.delta.position&&(R=S(m,"deltaPos",0,c.width*(1-b[m.align])+u.width*b[m.align]+j,D,Math.max),F=B[1]-N[1],h={width:c.width+u.width+j,height:Math.max(c.height,u.height),left:c.left,right:u.right+R,top:Math.min(c.top,u.top+F),bottom:Math.max(c.bottom,u.bottom+F)}),"bottom"===m.delta.position&&(R=null,F=u.height,h={width:Math.max(c.width,u.width),height:c.height+u.height,left:Math.min(c.left,u.left),right:Math.max(c.right,u.right),top:c.bottom-c.height,bottom:c.bottom+u.height}),"top"===m.delta.position&&(R=null,F=c.top,h={width:Math.max(c.width,u.width),height:c.height+u.height,left:Math.min(c.left,u.left),right:Math.max(c.right,u.right),top:c.bottom-c.height-u.height,bottom:c.bottom}),z.attr({dx:R,dy:F})}(m._hasNumber||m._hasDelta)&&C.attr("transform",(function(){var t=i.numbersScaler(h);D+=t[2];var e,r=S(m,"numbersScale",1,t[0],D,Math.min);m._scaleNumbers||(r=1),e=m._isAngular?v-r*h.bottom:v-r*(h.top+h.bottom)/2,m._numbersTop=r*h.top+e;var n=h[T];"center"===T&&(n=(h.left+h.right)/2);var a=g-r*n;return a=S(m,"numbersTranslate",0,a,D,Math.max),l(a,e)+s(r)}))}(t,O,e,{numbersX:m,numbersY:E,numbersScaler:L,transitionOpts:r,onComplete:g}),z&&(C={range:I.gauge.axis.range,color:I.gauge.bgcolor,line:{color:I.gauge.bordercolor,width:0},thickness:1},P={range:I.gauge.axis.range,color:"rgba(0, 0, 0, 0)",line:{color:I.gauge.bordercolor,width:I.gauge.borderwidth},thickness:1});var Y=O.selectAll("g.angular").data(D?e:[]);Y.exit().remove();var W=O.selectAll("g.angularaxis").data(D?e:[]);W.exit().remove(),D&&function(t,e,r,a){var o,s,f,h,p=r[0].trace,m=a.size,g=a.radius,v=a.innerRadius,y=a.gaugeBg,x=a.gaugeOutline,b=[m.l+m.w/2,m.t+m.h/2+g/2],_=a.gauge,A=a.layer,M=a.transitionOpts,S=a.onComplete,E=Math.PI/2;function L(t){var e=p.gauge.axis.range[0],r=(t-e)/(p.gauge.axis.range[1]-e)*Math.PI-E;return r<-E?-E:r>E?E:r}function C(t){return n.svg.arc().innerRadius((v+g)/2-t/2*(g-v)).outerRadius((v+g)/2+t/2*(g-v)).startAngle(-E)}function P(t){t.attr("d",(function(t){return C(t.thickness).startAngle(L(t.range[0])).endAngle(L(t.range[1]))()}))}_.enter().append("g").classed("angular",!0),_.attr("transform",l(b[0],b[1])),A.enter().append("g").classed("angularaxis",!0).classed("crisp",!0),A.selectAll("g.xangularaxistick,path,text").remove(),(o=k(t,p.gauge.axis)).type="linear",o.range=p.gauge.axis.range,o._id="xangularaxis",o.ticklabeloverflow="allow",o.setScale();var I=function(t){return(o.range[0]-t.x)/(o.range[1]-o.range[0])*Math.PI+Math.PI},O={},z=d.makeLabelFns(o,0).labelStandoff;O.xFn=function(t){var e=I(t);return Math.cos(e)*z},O.yFn=function(t){var e=I(t),r=Math.sin(e)>0?.2:1;return-Math.sin(e)*(z+t.fontSize*r)+Math.abs(Math.cos(e))*(t.fontSize*u)},O.anchorFn=function(t){var e=I(t),r=Math.cos(e);return Math.abs(r)<.1?"middle":r>0?"start":"end"},O.heightFn=function(t,e,r){var n=I(t);return-.5*(1+Math.sin(n))*r};var D=function(t){return l(b[0]+g*Math.cos(t),b[1]-g*Math.sin(t))};f=function(t){return D(I(t))};if(s=d.calcTicks(o),h=d.getTickSigns(o)[2],o.visible){h="inside"===o.ticks?-1:1;var R=(o.linewidth||1)/2;d.drawTicks(t,o,{vals:s,layer:A,path:"M"+h*R+",0h"+h*o.ticklen,transFn:function(t){var e=I(t);return D(e)+"rotate("+-c(e)+")"}}),d.drawLabels(t,o,{vals:s,layer:A,transFn:f,labelFns:O})}var F=[y].concat(p.gauge.steps),B=_.selectAll("g.bg-arc").data(F);B.enter().append("g").classed("bg-arc",!0).append("path"),B.select("path").call(P).call(T),B.exit().remove();var N=C(p.gauge.bar.thickness),j=_.selectAll("g.value-arc").data([p.gauge.bar]);j.enter().append("g").classed("value-arc",!0).append("path");var U=j.select("path");w(M)?(U.transition().duration(M.duration).ease(M.easing).each("end",(function(){S&&S()})).each("interrupt",(function(){S&&S()})).attrTween("d",(V=N,H=L(r[0].lastY),q=L(r[0].y),function(){var t=i(H,q);return function(e){return V.endAngle(t(e))()}})),p._lastValue=r[0].y):U.attr("d","number"==typeof r[0].y?N.endAngle(L(r[0].y)):"M0,0Z");var V,H,q;U.call(T),j.exit().remove(),F=[];var G=p.gauge.threshold.value;(G||0===G)&&F.push({range:[G,G],color:p.gauge.threshold.color,line:{color:p.gauge.threshold.line.color,width:p.gauge.threshold.line.width},thickness:p.gauge.threshold.thickness});var Y=_.selectAll("g.threshold-arc").data(F);Y.enter().append("g").classed("threshold-arc",!0).append("path"),Y.select("path").call(P).call(T),Y.exit().remove();var W=_.selectAll("g.gauge-outline").data([x]);W.enter().append("g").classed("gauge-outline",!0).append("path"),W.select("path").call(P).call(T),W.exit().remove()}(t,0,e,{radius:U,innerRadius:V,gauge:Y,layer:W,size:B,gaugeBg:C,gaugeOutline:P,transitionOpts:r,onComplete:g});var X=O.selectAll("g.bullet").data(R?e:[]);X.exit().remove();var Z=O.selectAll("g.bulletaxis").data(R?e:[]);Z.exit().remove(),R&&function(t,e,r,n){var i,a,o,s,c,u=r[0].trace,f=n.gauge,p=n.layer,m=n.gaugeBg,g=n.gaugeOutline,v=n.size,x=u.domain,b=n.transitionOpts,_=n.onComplete;f.enter().append("g").classed("bullet",!0),f.attr("transform",l(v.l,v.t)),p.enter().append("g").classed("bulletaxis",!0).classed("crisp",!0),p.selectAll("g.xbulletaxistick,path,text").remove();var A=v.h,M=u.gauge.bar.thickness*A,S=x.x[0],E=x.x[0]+(x.x[1]-x.x[0])*(u._hasNumber||u._hasDelta?1-h.bulletNumberDomainSize:1);(i=k(t,u.gauge.axis))._id="xbulletaxis",i.domain=[S,E],i.setScale(),a=d.calcTicks(i),o=d.makeTransTickFn(i),s=d.getTickSigns(i)[2],c=v.t+v.h,i.visible&&(d.drawTicks(t,i,{vals:"inside"===i.ticks?d.clipEnds(i,a):a,layer:p,path:d.makeTickPath(i,c,s),transFn:o}),d.drawLabels(t,i,{vals:a,layer:p,transFn:o,labelFns:d.makeLabelFns(i,c)}));function L(t){t.attr("width",(function(t){return Math.max(0,i.c2p(t.range[1])-i.c2p(t.range[0]))})).attr("x",(function(t){return i.c2p(t.range[0])})).attr("y",(function(t){return.5*(1-t.thickness)*A})).attr("height",(function(t){return t.thickness*A}))}var C=[m].concat(u.gauge.steps),P=f.selectAll("g.bg-bullet").data(C);P.enter().append("g").classed("bg-bullet",!0).append("rect"),P.select("rect").call(L).call(T),P.exit().remove();var I=f.selectAll("g.value-bullet").data([u.gauge.bar]);I.enter().append("g").classed("value-bullet",!0).append("rect"),I.select("rect").attr("height",M).attr("y",(A-M)/2).call(T),w(b)?I.select("rect").transition().duration(b.duration).ease(b.easing).each("end",(function(){_&&_()})).each("interrupt",(function(){_&&_()})).attr("width",Math.max(0,i.c2p(Math.min(u.gauge.axis.range[1],r[0].y)))):I.select("rect").attr("width","number"==typeof r[0].y?Math.max(0,i.c2p(Math.min(u.gauge.axis.range[1],r[0].y))):0);I.exit().remove();var O=r.filter((function(){return u.gauge.threshold.value||0===u.gauge.threshold.value})),z=f.selectAll("g.threshold-bullet").data(O);z.enter().append("g").classed("threshold-bullet",!0).append("line"),z.select("line").attr("x1",i.c2p(u.gauge.threshold.value)).attr("x2",i.c2p(u.gauge.threshold.value)).attr("y1",(1-u.gauge.threshold.thickness)/2*A).attr("y2",(1-(1-u.gauge.threshold.thickness)/2)*A).call(y.stroke,u.gauge.threshold.line.color).style("stroke-width",u.gauge.threshold.line.width),z.exit().remove();var D=f.selectAll("g.gauge-outline").data([g]);D.enter().append("g").classed("gauge-outline",!0).append("rect"),D.select("rect").call(L).call(T),D.exit().remove()}(t,0,e,{gauge:X,layer:Z,size:B,gaugeBg:C,gaugeOutline:P,transitionOpts:r,onComplete:g});var J=O.selectAll("text.title").data(e);J.exit().remove(),J.enter().append("text").classed("title",!0),J.attr("text-anchor",(function(){return R?x.right:x[I.title.align]})).text(I.title.text).call(f.font,I.title.font).call(p.convertToTspans,t),J.attr("transform",(function(){var t,e=B.l+B.w*b[I.title.align],r=h.titlePadding,n=f.bBox(J.node());if(z){if(D)if(I.gauge.axis.visible)t=f.bBox(W.node()).top-r-n.bottom;else t=B.t+B.h/2-U/2-n.bottom-r;R&&(t=E-(n.top+n.bottom)/2,e=B.l-h.bulletPadding*B.w)}else t=I._numbersTop-r-n.bottom;return l(e,t)}))}))}},{"../../components/color":361,"../../components/drawing":383,"../../constants/alignment":466,"../../lib":498,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"../../plots/cartesian/axis_defaults":551,"../../plots/cartesian/layout_attributes":564,"../../plots/cartesian/position_defaults":567,"./constants":853,"@plotly/d3":58,"d3-interpolate":111}],857:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../mesh3d/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c=t("../../plot_api/edit_types").overrideAll;var u=e.exports=c(l({x:{valType:"data_array"},y:{valType:"data_array"},z:{valType:"data_array"},value:{valType:"data_array"},isomin:{valType:"number"},isomax:{valType:"number"},surface:{show:{valType:"boolean",dflt:!0},count:{valType:"integer",dflt:2,min:1},fill:{valType:"number",min:0,max:1,dflt:1},pattern:{valType:"flaglist",flags:["A","B","C","D","E"],extras:["all","odd","even"],dflt:"all"}},spaceframe:{show:{valType:"boolean",dflt:!1},fill:{valType:"number",min:0,max:1,dflt:.15}},slices:{x:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}},y:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}},z:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}}},caps:{x:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}},y:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}},z:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}}},text:{valType:"string",dflt:"",arrayOk:!0},hovertext:{valType:"string",dflt:"",arrayOk:!0},hovertemplate:a(),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),valuehoverformat:i("value",1),showlegend:l({},s.showlegend,{dflt:!1})},n("",{colorAttr:"`value`",showScaleDflt:!0,editTypeOverride:"calc"}),{opacity:o.opacity,lightposition:o.lightposition,lighting:o.lighting,flatshading:o.flatshading,contour:o.contour,hoverinfo:l({},s.hoverinfo)}),"calc","nested");u.flatshading.dflt=!0,u.lighting.facenormalsepsilon.dflt=0,u.x.editType=u.y.editType=u.z.editType=u.value.editType="calc+clearAxisTypes",u.transforms=void 0},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plot_api/edit_types":531,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628,"../mesh3d/attributes":862}],858:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc"),i=t("../streamtube/calc").processGrid,a=t("../streamtube/calc").filter;e.exports=function(t,e){e._len=Math.min(e.x.length,e.y.length,e.z.length,e.value.length),e._x=a(e.x,e._len),e._y=a(e.y,e._len),e._z=a(e.z,e._len),e._value=a(e.value,e._len);var r=i(e);e._gridFill=r.fill,e._Xs=r.Xs,e._Ys=r.Ys,e._Zs=r.Zs,e._len=r.len;for(var o=1/0,s=-1/0,l=0;l0;r--){var n=Math.min(e[r],e[r-1]),i=Math.max(e[r],e[r-1]);if(i>n&&n-1}function R(t,e){return null===t?e:t}function F(e,r,n){C();var i,a,o,l=[r],c=[n];if(s>=1)l=[r],c=[n];else if(s>0){var u=function(t,e){var r=t[0],n=t[1],i=t[2],a=function(t,e,r){for(var n=[],i=0;i-1?n[p]:L(d,m,v);h[p]=x>-1?x:I(d,m,v,R(e,y))}i=h[0],a=h[1],o=h[2],t._meshI.push(i),t._meshJ.push(a),t._meshK.push(o),++g}}function B(t,e,r,n){var i=t[3];in&&(i=n);for(var a=(t[3]-i)/(t[3]-e[3]+1e-9),o=[],s=0;s<4;s++)o[s]=(1-a)*t[s]+a*e[s];return o}function N(t,e,r){return t>=e&&t<=r}function j(t){var e=.001*(E-S);return t>=S-e&&t<=E+e}function U(e){for(var r=[],n=0;n<4;n++){var i=e[n];r.push([t._x[i],t._y[i],t._z[i],t._value[i]])}return r}function V(t,e,r,n,i,a){a||(a=1),r=[-1,-1,-1];var o=!1,s=[N(e[0][3],n,i),N(e[1][3],n,i),N(e[2][3],n,i)];if(!s[0]&&!s[1]&&!s[2])return!1;var l=function(t,e,r){return j(e[0][3])&&j(e[1][3])&&j(e[2][3])?(F(t,e,r),!0):a<3&&V(t,e,r,S,E,++a)};if(s[0]&&s[1]&&s[2])return l(t,e,r)||o;var c=!1;return[[0,1,2],[2,0,1],[1,2,0]].forEach((function(a){if(s[a[0]]&&s[a[1]]&&!s[a[2]]){var u=e[a[0]],f=e[a[1]],h=e[a[2]],p=B(h,u,n,i),d=B(h,f,n,i);o=l(t,[d,p,u],[-1,-1,r[a[0]]])||o,o=l(t,[u,f,d],[r[a[0]],r[a[1]],-1])||o,c=!0}})),c||[[0,1,2],[1,2,0],[2,0,1]].forEach((function(a){if(s[a[0]]&&!s[a[1]]&&!s[a[2]]){var u=e[a[0]],f=e[a[1]],h=e[a[2]],p=B(f,u,n,i),d=B(h,u,n,i);o=l(t,[d,p,u],[-1,-1,r[a[0]]])||o,c=!0}})),o}function H(t,e,r,n){var i=!1,a=U(e),o=[N(a[0][3],r,n),N(a[1][3],r,n),N(a[2][3],r,n),N(a[3][3],r,n)];if(!(o[0]||o[1]||o[2]||o[3]))return i;if(o[0]&&o[1]&&o[2]&&o[3])return m&&(i=function(t,e,r){var n=function(n,i,a){F(t,[e[n],e[i],e[a]],[r[n],r[i],r[a]])};n(0,1,2),n(3,0,1),n(2,3,0),n(1,2,3)}(t,a,e)||i),i;var s=!1;return[[0,1,2,3],[3,0,1,2],[2,3,0,1],[1,2,3,0]].forEach((function(l){if(o[l[0]]&&o[l[1]]&&o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]];if(m)i=F(t,[c,u,f],[e[l[0]],e[l[1]],e[l[2]]])||i;else{var p=B(h,c,r,n),d=B(h,u,r,n),g=B(h,f,r,n);i=F(null,[p,d,g],[-1,-1,-1])||i}s=!0}})),s?i:([[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2],[0,2,3,1],[1,3,2,0]].forEach((function(l){if(o[l[0]]&&o[l[1]]&&!o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]],p=B(f,c,r,n),d=B(f,u,r,n),g=B(h,u,r,n),v=B(h,c,r,n);m?(i=F(t,[c,v,p],[e[l[0]],-1,-1])||i,i=F(t,[u,d,g],[e[l[1]],-1,-1])||i):i=function(t,e,r){var n=function(n,i,a){F(t,[e[n],e[i],e[a]],[r[n],r[i],r[a]])};n(0,1,2),n(2,3,0)}(null,[p,d,g,v],[-1,-1,-1,-1])||i,s=!0}})),s||[[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2]].forEach((function(l){if(o[l[0]]&&!o[l[1]]&&!o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]],p=B(u,c,r,n),d=B(f,c,r,n),g=B(h,c,r,n);m?(i=F(t,[c,p,d],[e[l[0]],-1,-1])||i,i=F(t,[c,d,g],[e[l[0]],-1,-1])||i,i=F(t,[c,g,p],[e[l[0]],-1,-1])||i):i=F(null,[p,d,g],[-1,-1,-1])||i,s=!0}})),i)}function q(t,e,r,n,i,a,o,s,l,c,u){var f=!1;return d&&(D(t,"A")&&(f=H(null,[e,r,n,a],c,u)||f),D(t,"B")&&(f=H(null,[r,n,i,l],c,u)||f),D(t,"C")&&(f=H(null,[r,a,o,l],c,u)||f),D(t,"D")&&(f=H(null,[n,a,s,l],c,u)||f),D(t,"E")&&(f=H(null,[r,n,a,l],c,u)||f)),m&&(f=H(t,[r,n,a,l],c,u)||f),f}function G(t,e,r,n,i,a,o,s){return[!0===s[0]||V(t,U([e,r,n]),[e,r,n],a,o),!0===s[1]||V(t,U([n,i,e]),[n,i,e],a,o)]}function Y(t,e,r,n,i,a,o,s,l){return s?G(t,e,r,i,n,a,o,l):G(t,r,i,n,e,a,o,l)}function W(t,e,r,n,i,a,o){var s,l,c,u,f=!1,h=function(){f=V(t,[s,l,c],[-1,-1,-1],i,a)||f,f=V(t,[c,u,s],[-1,-1,-1],i,a)||f},p=o[0],d=o[1],m=o[2];return p&&(s=O(U([k(e,r-0,n-0)])[0],U([k(e-1,r-0,n-0)])[0],p),l=O(U([k(e,r-0,n-1)])[0],U([k(e-1,r-0,n-1)])[0],p),c=O(U([k(e,r-1,n-1)])[0],U([k(e-1,r-1,n-1)])[0],p),u=O(U([k(e,r-1,n-0)])[0],U([k(e-1,r-1,n-0)])[0],p),h()),d&&(s=O(U([k(e-0,r,n-0)])[0],U([k(e-0,r-1,n-0)])[0],d),l=O(U([k(e-0,r,n-1)])[0],U([k(e-0,r-1,n-1)])[0],d),c=O(U([k(e-1,r,n-1)])[0],U([k(e-1,r-1,n-1)])[0],d),u=O(U([k(e-1,r,n-0)])[0],U([k(e-1,r-1,n-0)])[0],d),h()),m&&(s=O(U([k(e-0,r-0,n)])[0],U([k(e-0,r-0,n-1)])[0],m),l=O(U([k(e-0,r-1,n)])[0],U([k(e-0,r-1,n-1)])[0],m),c=O(U([k(e-1,r-1,n)])[0],U([k(e-1,r-1,n-1)])[0],m),u=O(U([k(e-1,r-0,n)])[0],U([k(e-1,r-0,n-1)])[0],m),h()),f}function X(t,e,r,n,i,a,o,s,l,c,u,f){var h=t;return f?(d&&"even"===t&&(h=null),q(h,e,r,n,i,a,o,s,l,c,u)):(d&&"odd"===t&&(h=null),q(h,l,s,o,a,i,n,r,e,c,u))}function Z(t,e,r,n,i){for(var a=[],o=0,s=0;sMath.abs(d-M)?[A,d]:[d,M];$(e,T[0],T[1])}}var L=[[Math.min(S,M),Math.max(S,M)],[Math.min(A,E),Math.max(A,E)]];["x","y","z"].forEach((function(e){for(var r=[],n=0;n0&&(u.push(p.id),"x"===e?f.push([p.distRatio,0,0]):"y"===e?f.push([0,p.distRatio,0]):f.push([0,0,p.distRatio]))}else c=nt(1,"x"===e?b-1:"y"===e?_-1:w-1);u.length>0&&(r[i]="x"===e?tt(null,u,a,o,f,r[i]):"y"===e?et(null,u,a,o,f,r[i]):rt(null,u,a,o,f,r[i]),i++),c.length>0&&(r[i]="x"===e?Z(null,c,a,o,r[i]):"y"===e?J(null,c,a,o,r[i]):K(null,c,a,o,r[i]),i++)}var d=t.caps[e];d.show&&d.fill&&(z(d.fill),r[i]="x"===e?Z(null,[0,b-1],a,o,r[i]):"y"===e?J(null,[0,_-1],a,o,r[i]):K(null,[0,w-1],a,o,r[i]),i++)}})),0===g&&P(),t._meshX=n,t._meshY=i,t._meshZ=a,t._meshIntensity=o,t._Xs=v,t._Ys=y,t._Zs=x}(),t}e.exports={findNearestOnAxis:l,generateIsoMeshes:h,createIsosurfaceTrace:function(t,e){var r=t.glplot.gl,i=n({gl:r}),a=new c(t,i,e.uid);return i._trace=a,a.update(e),t.glplot.add(i),a}}},{"../../../stackgl_modules":1119,"../../components/colorscale":373,"../../lib/gl_format_color":494,"../../lib/str2rgbarray":523,"../../plots/gl3d/zip3":604}],860:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./attributes"),o=t("../../components/colorscale/defaults");function s(t,e,r,n,a){var s=a("isomin"),l=a("isomax");null!=l&&null!=s&&s>l&&(e.isomin=null,e.isomax=null);var c=a("x"),u=a("y"),f=a("z"),h=a("value");c&&c.length&&u&&u.length&&f&&f.length&&h&&h.length?(i.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x","y","z"],n),a("valuehoverformat"),["x","y","z"].forEach((function(t){a(t+"hoverformat");var e="caps."+t;a(e+".show")&&a(e+".fill");var r="slices."+t;a(r+".show")&&(a(r+".fill"),a(r+".locations"))})),a("spaceframe.show")&&a("spaceframe.fill"),a("surface.show")&&(a("surface.count"),a("surface.fill"),a("surface.pattern")),a("contour.show")&&(a("contour.color"),a("contour.width")),["text","hovertext","hovertemplate","lighting.ambient","lighting.diffuse","lighting.specular","lighting.roughness","lighting.fresnel","lighting.vertexnormalsepsilon","lighting.facenormalsepsilon","lightposition.x","lightposition.y","lightposition.z","flatshading","opacity"].forEach((function(t){a(t)})),o(t,e,n,a,{prefix:"",cLetter:"c"}),e._length=null):e.visible=!1}e.exports={supplyDefaults:function(t,e,r,i){s(t,e,r,i,(function(r,i){return n.coerce(t,e,a,r,i)}))},supplyIsoDefaults:s}},{"../../components/colorscale/defaults":371,"../../lib":498,"../../registry":633,"./attributes":857}],861:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults").supplyDefaults,calc:t("./calc"),colorbar:{min:"cmin",max:"cmax"},plot:t("./convert").createIsosurfaceTrace,moduleType:"trace",name:"isosurface",basePlotModule:t("../../plots/gl3d"),categories:["gl3d","showLegend"],meta:{}}},{"../../plots/gl3d":593,"./attributes":857,"./calc":858,"./convert":859,"./defaults":860}],862:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../surface/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat;e.exports=l({x:{valType:"data_array",editType:"calc+clearAxisTypes"},y:{valType:"data_array",editType:"calc+clearAxisTypes"},z:{valType:"data_array",editType:"calc+clearAxisTypes"},i:{valType:"data_array",editType:"calc"},j:{valType:"data_array",editType:"calc"},k:{valType:"data_array",editType:"calc"},text:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertemplate:a({editType:"calc"}),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),delaunayaxis:{valType:"enumerated",values:["x","y","z"],dflt:"z",editType:"calc"},alphahull:{valType:"number",dflt:-1,editType:"calc"},intensity:{valType:"data_array",editType:"calc"},intensitymode:{valType:"enumerated",values:["vertex","cell"],dflt:"vertex",editType:"calc"},color:{valType:"color",editType:"calc"},vertexcolor:{valType:"data_array",editType:"calc"},facecolor:{valType:"data_array",editType:"calc"},transforms:void 0},n("",{colorAttr:"`intensity`",showScaleDflt:!0,editTypeOverride:"calc"}),{opacity:o.opacity,flatshading:{valType:"boolean",dflt:!1,editType:"calc"},contour:{show:l({},o.contours.x.show,{}),color:o.contours.x.color,width:o.contours.x.width,editType:"calc"},lightposition:{x:l({},o.lightposition.x,{dflt:1e5}),y:l({},o.lightposition.y,{dflt:1e5}),z:l({},o.lightposition.z,{dflt:0}),editType:"calc"},lighting:l({vertexnormalsepsilon:{valType:"number",min:0,max:1,dflt:1e-12,editType:"calc"},facenormalsepsilon:{valType:"number",min:0,max:1,dflt:1e-6,editType:"calc"},editType:"calc"},o.lighting),hoverinfo:l({},s.hoverinfo,{editType:"calc"}),showlegend:l({},s.showlegend,{dflt:!1})})},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628,"../surface/attributes":1056}],863:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){e.intensity&&n(t,e,{vals:e.intensity,containerStr:"",cLetter:"c"})}},{"../../components/colorscale/calc":369}],864:[function(t,e,r){"use strict";var n=t("../../../stackgl_modules").gl_mesh3d,i=t("../../../stackgl_modules").delaunay_triangulate,a=t("../../../stackgl_modules").alpha_shape,o=t("../../../stackgl_modules").convex_hull,s=t("../../lib/gl_format_color").parseColorScale,l=t("../../lib/str2rgbarray"),c=t("../../components/colorscale").extractOpts,u=t("../../plots/gl3d/zip3");function f(t,e,r){this.scene=t,this.uid=r,this.mesh=e,this.name="",this.color="#fff",this.data=null,this.showContour=!1}var h=f.prototype;function p(t){for(var e=[],r=t.length,n=0;n=e-.5)return!1;return!0}h.handlePick=function(t){if(t.object===this.mesh){var e=t.index=t.data.index;t.data._cellCenter?t.traceCoordinate=t.data.dataCoordinate:t.traceCoordinate=[this.data.x[e],this.data.y[e],this.data.z[e]];var r=this.data.hovertext||this.data.text;return Array.isArray(r)&&void 0!==r[e]?t.textLabel=r[e]:r&&(t.textLabel=r),!0}},h.update=function(t){var e=this.scene,r=e.fullSceneLayout;this.data=t;var n,f=t.x.length,h=u(d(r.xaxis,t.x,e.dataScale[0],t.xcalendar),d(r.yaxis,t.y,e.dataScale[1],t.ycalendar),d(r.zaxis,t.z,e.dataScale[2],t.zcalendar));if(t.i&&t.j&&t.k){if(t.i.length!==t.j.length||t.j.length!==t.k.length||!g(t.i,f)||!g(t.j,f)||!g(t.k,f))return;n=u(m(t.i),m(t.j),m(t.k))}else n=0===t.alphahull?o(h):t.alphahull>0?a(t.alphahull,h):function(t,e){for(var r=["x","y","z"].indexOf(t),n=[],a=e.length,o=0;ov):g=A>w,v=A;var M=c(w,T,k,A);M.pos=_,M.yc=(w+A)/2,M.i=b,M.dir=g?"increasing":"decreasing",M.x=M.pos,M.y=[k,T],y&&(M.orig_p=r[b]),d&&(M.tx=e.text[b]),m&&(M.htx=e.hovertext[b]),x.push(M)}else x.push({pos:_,empty:!0})}return e._extremes[l._id]=a.findExtremes(l,n.concat(h,f),{padded:!0}),x.length&&(x[0].t={labels:{open:i(t,"open:")+" ",high:i(t,"high:")+" ",low:i(t,"low:")+" ",close:i(t,"close:")+" "}}),x}e.exports={calc:function(t,e){var r=a.getFromId(t,e.xaxis),i=a.getFromId(t,e.yaxis),s=function(t,e,r){var i=r._minDiff;if(!i){var a,s=t._fullData,l=[];for(i=1/0,a=0;a"+c.labels[x]+n.hoverLabelText(s,b,l.yhoverformat):((y=i.extendFlat({},h)).y0=y.y1=_,y.yLabelVal=b,y.yLabel=c.labels[x]+n.hoverLabelText(s,b,l.yhoverformat),y.name="",f.push(y),g[b]=y)}return f}function h(t,e,r,i){var a=t.cd,o=t.ya,l=a[0].trace,f=a[0].t,h=u(t,e,r,i);if(!h)return[];var p=a[h.index],d=h.index=p.i,m=p.dir;function g(t){return f.labels[t]+n.hoverLabelText(o,l[t][d],l.yhoverformat)}var v=p.hi||l.hoverinfo,y=v.split("+"),x="all"===v,b=x||-1!==y.indexOf("y"),_=x||-1!==y.indexOf("text"),w=b?[g("open"),g("high"),g("low"),g("close")+" "+c[m]]:[];return _&&s(p,l,w),h.extraText=w.join("
"),h.y0=h.y1=o.c2p(p.yc,!0),[h]}e.exports={hoverPoints:function(t,e,r,n){return t.cd[0].trace.hoverlabel.split?f(t,e,r,n):h(t,e,r,n)},hoverSplit:f,hoverOnPoints:h}},{"../../components/color":361,"../../components/fx":401,"../../constants/delta.js":468,"../../lib":498,"../../plots/cartesian/axes":549}],871:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"ohlc",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","showLegend"],meta:{},attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc").calc,plot:t("./plot"),style:t("./style"),hoverPoints:t("./hover").hoverPoints,selectPoints:t("./select")}},{"../../plots/cartesian":563,"./attributes":867,"./calc":868,"./defaults":869,"./hover":870,"./plot":873,"./select":874,"./style":875}],872:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib");e.exports=function(t,e,r,a){var o=r("x"),s=r("open"),l=r("high"),c=r("low"),u=r("close");if(r("hoverlabel.split"),n.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x"],a),s&&l&&c&&u){var f=Math.min(s.length,l.length,c.length,u.length);return o&&(f=Math.min(f,i.minRowLength(o))),e._length=f,f}}},{"../../lib":498,"../../registry":633}],873:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib");e.exports=function(t,e,r,a){var o=e.yaxis,s=e.xaxis,l=!!s.rangebreaks;i.makeTraceGroups(a,r,"trace ohlc").each((function(t){var e=n.select(this),r=t[0],a=r.t;if(!0!==r.trace.visible||a.empty)e.remove();else{var c=a.tickLen,u=e.selectAll("path").data(i.identity);u.enter().append("path"),u.exit().remove(),u.attr("d",(function(t){if(t.empty)return"M0,0Z";var e=s.c2p(t.pos-c,!0),r=s.c2p(t.pos+c,!0),n=l?(e+r)/2:s.c2p(t.pos,!0);return"M"+e+","+o.c2p(t.o,!0)+"H"+n+"M"+n+","+o.c2p(t.h,!0)+"V"+o.c2p(t.l,!0)+"M"+r+","+o.c2p(t.c,!0)+"H"+n}))}}))}},{"../../lib":498,"@plotly/d3":58}],874:[function(t,e,r){"use strict";e.exports=function(t,e){var r,n=t.cd,i=t.xaxis,a=t.yaxis,o=[],s=n[0].t.bPos||0;if(!1===e)for(r=0;r=t.length)return!1;if(void 0!==e[t[r]])return!1;e[t[r]]=!0}return!0}(t.map((function(t){return t.displayindex}))))for(e=0;e0;c&&(o="array");var u=r("categoryorder",o);"array"===u?(r("categoryarray"),r("ticktext")):(delete t.categoryarray,delete t.ticktext),c||"array"!==u||(e.categoryorder="trace")}}e.exports=function(t,e,r,f){function h(r,i){return n.coerce(t,e,l,r,i)}var p=s(t,e,{name:"dimensions",handleItemDefaults:u}),d=function(t,e,r,o,s){s("line.shape"),s("line.hovertemplate");var l=s("line.color",o.colorway[0]);if(i(t,"line")&&n.isArrayOrTypedArray(l)){if(l.length)return s("line.colorscale"),a(t,e,o,s,{prefix:"line.",cLetter:"c"}),l.length;e.line.color=r}return 1/0}(t,e,r,f,h);o(e,f,h),Array.isArray(p)&&p.length||(e.visible=!1),c(e,p,"values",d),h("hoveron"),h("hovertemplate"),h("arrangement"),h("bundlecolors"),h("sortpaths"),h("counts");var m={family:f.font.family,size:Math.round(f.font.size),color:f.font.color};n.coerceFont(h,"labelfont",m);var g={family:f.font.family,size:Math.round(f.font.size/1.2),color:f.font.color};n.coerceFont(h,"tickfont",g)}},{"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"../../lib":498,"../../plots/array_container_defaults":544,"../../plots/domain":579,"../parcoords/merge_length":893,"./attributes":876}],880:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),colorbar:{container:"line",min:"cmin",max:"cmax"},moduleType:"trace",name:"parcats",basePlotModule:t("./base_plot"),categories:["noOpacity"],meta:{}}},{"./attributes":876,"./base_plot":877,"./calc":878,"./defaults":879,"./plot":882}],881:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-interpolate").interpolateNumber,a=t("../../plot_api/plot_api"),o=t("../../components/fx"),s=t("../../lib"),l=s.strTranslate,c=t("../../components/drawing"),u=t("tinycolor2"),f=t("../../lib/svg_text_utils");function h(t,e,r,i){var a=t.map(F.bind(0,e,r)),o=i.selectAll("g.parcatslayer").data([null]);o.enter().append("g").attr("class","parcatslayer").style("pointer-events","all");var u=o.selectAll("g.trace.parcats").data(a,p),h=u.enter().append("g").attr("class","trace parcats");u.attr("transform",(function(t){return l(t.x,t.y)})),h.append("g").attr("class","paths");var y=u.select("g.paths").selectAll("path.path").data((function(t){return t.paths}),p);y.attr("fill",(function(t){return t.model.color}));var x=y.enter().append("path").attr("class","path").attr("stroke-opacity",0).attr("fill",(function(t){return t.model.color})).attr("fill-opacity",0);_(x),y.attr("d",(function(t){return t.svgD})),x.empty()||y.sort(m),y.exit().remove(),y.on("mouseover",g).on("mouseout",v).on("click",b),h.append("g").attr("class","dimensions");var w=u.select("g.dimensions").selectAll("g.dimension").data((function(t){return t.dimensions}),p);w.enter().append("g").attr("class","dimension"),w.attr("transform",(function(t){return l(t.x,0)})),w.exit().remove();var A=w.selectAll("g.category").data((function(t){return t.categories}),p),M=A.enter().append("g").attr("class","category");A.attr("transform",(function(t){return l(0,t.y)})),M.append("rect").attr("class","catrect").attr("pointer-events","none"),A.select("rect.catrect").attr("fill","none").attr("width",(function(t){return t.width})).attr("height",(function(t){return t.height})),T(M);var S=A.selectAll("rect.bandrect").data((function(t){return t.bands}),p);S.each((function(){s.raiseToTop(this)})),S.attr("fill",(function(t){return t.color}));var E=S.enter().append("rect").attr("class","bandrect").attr("stroke-opacity",0).attr("fill",(function(t){return t.color})).attr("fill-opacity",0);S.attr("fill",(function(t){return t.color})).attr("width",(function(t){return t.width})).attr("height",(function(t){return t.height})).attr("y",(function(t){return t.y})).attr("cursor",(function(t){return"fixed"===t.parcatsViewModel.arrangement?"default":"perpendicular"===t.parcatsViewModel.arrangement?"ns-resize":"move"})),k(E),S.exit().remove(),M.append("text").attr("class","catlabel").attr("pointer-events","none");var z=e._fullLayout.paper_bgcolor;A.select("text.catlabel").attr("text-anchor",(function(t){return d(t)?"start":"end"})).attr("alignment-baseline","middle").style("text-shadow",f.makeTextShadow(z)).style("fill","rgb(0, 0, 0)").attr("x",(function(t){return d(t)?t.width+5:-5})).attr("y",(function(t){return t.height/2})).text((function(t){return t.model.categoryLabel})).each((function(t){c.font(n.select(this),t.parcatsViewModel.categorylabelfont),f.convertToTspans(n.select(this),e)})),M.append("text").attr("class","dimlabel"),A.select("text.dimlabel").attr("text-anchor","middle").attr("alignment-baseline","baseline").attr("cursor",(function(t){return"fixed"===t.parcatsViewModel.arrangement?"default":"ew-resize"})).attr("x",(function(t){return t.width/2})).attr("y",-5).text((function(t,e){return 0===e?t.parcatsViewModel.model.dimensions[t.model.dimensionInd].dimensionLabel:null})).each((function(t){c.font(n.select(this),t.parcatsViewModel.labelfont)})),A.selectAll("rect.bandrect").on("mouseover",L).on("mouseout",C),A.exit().remove(),w.call(n.behavior.drag().origin((function(t){return{x:t.x,y:0}})).on("dragstart",P).on("drag",I).on("dragend",O)),u.each((function(t){t.traceSelection=n.select(this),t.pathSelection=n.select(this).selectAll("g.paths").selectAll("path.path"),t.dimensionSelection=n.select(this).selectAll("g.dimensions").selectAll("g.dimension")})),u.exit().remove()}function p(t){return t.key}function d(t){var e=t.parcatsViewModel.dimensions.length,r=t.parcatsViewModel.dimensions[e-1].model.dimensionInd;return t.model.dimensionInd===r}function m(t,e){return t.model.rawColor>e.model.rawColor?1:t.model.rawColor"),L=n.mouse(f)[0];o.loneHover({trace:h,x:b-d.left+m.left,y:_-d.top+m.top,text:E,color:t.model.color,borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontSize:10,fontColor:T,idealAlign:L1&&h.displayInd===f.dimensions.length-1?(i=c.left,a="left"):(i=c.left+c.width,a="right");var m=u.model.count,g=u.model.categoryLabel,v=m/u.parcatsViewModel.model.count,y={countLabel:m,categoryLabel:g,probabilityLabel:v.toFixed(3)},x=[];-1!==u.parcatsViewModel.hoverinfoItems.indexOf("count")&&x.push(["Count:",y.countLabel].join(" ")),-1!==u.parcatsViewModel.hoverinfoItems.indexOf("probability")&&x.push(["P("+y.categoryLabel+"):",y.probabilityLabel].join(" "));var b=x.join("
");return{trace:p,x:o*(i-e.left),y:s*(d-e.top),text:b,color:"lightgray",borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontSize:12,fontColor:"black",idealAlign:a,hovertemplate:p.hovertemplate,hovertemplateLabels:y,eventData:[{data:p._input,fullData:p,count:m,category:g,probability:v}]}}function L(t){if(!t.parcatsViewModel.dragDimension&&-1===t.parcatsViewModel.hoverinfoItems.indexOf("skip")){if(n.mouse(this)[1]<-1)return;var e,r=t.parcatsViewModel.graphDiv,i=r._fullLayout,a=i._paperdiv.node().getBoundingClientRect(),l=t.parcatsViewModel.hoveron;if("color"===l?(!function(t){var e=n.select(t).datum(),r=A(e);w(r),r.each((function(){s.raiseToTop(this)})),n.select(t.parentNode).selectAll("rect.bandrect").filter((function(t){return t.color===e.color})).each((function(){s.raiseToTop(this),n.select(this).attr("stroke","black").attr("stroke-width",1.5)}))}(this),S(this,"plotly_hover",n.event)):(!function(t){n.select(t.parentNode).selectAll("rect.bandrect").each((function(t){var e=A(t);w(e),e.each((function(){s.raiseToTop(this)}))})),n.select(t.parentNode).select("rect.catrect").attr("stroke","black").attr("stroke-width",2.5)}(this),M(this,"plotly_hover",n.event)),-1===t.parcatsViewModel.hoverinfoItems.indexOf("none"))"category"===l?e=E(r,a,this):"color"===l?e=function(t,e,r){t._fullLayout._calcInverseTransform(t);var i,a,o=t._fullLayout._invScaleX,s=t._fullLayout._invScaleY,l=r.getBoundingClientRect(),c=n.select(r).datum(),f=c.categoryViewModel,h=f.parcatsViewModel,p=h.model.dimensions[f.model.dimensionInd],d=h.trace,m=l.y+l.height/2;h.dimensions.length>1&&p.displayInd===h.dimensions.length-1?(i=l.left,a="left"):(i=l.left+l.width,a="right");var g=f.model.categoryLabel,v=c.parcatsViewModel.model.count,y=0;c.categoryViewModel.bands.forEach((function(t){t.color===c.color&&(y+=t.count)}));var x=f.model.count,b=0;h.pathSelection.each((function(t){t.model.color===c.color&&(b+=t.model.count)}));var _=y/v,w=y/b,T=y/x,k={countLabel:v,categoryLabel:g,probabilityLabel:_.toFixed(3)},A=[];-1!==f.parcatsViewModel.hoverinfoItems.indexOf("count")&&A.push(["Count:",k.countLabel].join(" ")),-1!==f.parcatsViewModel.hoverinfoItems.indexOf("probability")&&(A.push("P(color \u2229 "+g+"): "+k.probabilityLabel),A.push("P("+g+" | color): "+w.toFixed(3)),A.push("P(color | "+g+"): "+T.toFixed(3)));var M=A.join("
"),S=u.mostReadable(c.color,["black","white"]);return{trace:d,x:o*(i-e.left),y:s*(m-e.top),text:M,color:c.color,borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontColor:S,fontSize:10,idealAlign:a,hovertemplate:d.hovertemplate,hovertemplateLabels:k,eventData:[{data:d._input,fullData:d,category:g,count:v,probability:_,categorycount:x,colorcount:b,bandcolorcount:y}]}}(r,a,this):"dimension"===l&&(e=function(t,e,r){var i=[];return n.select(r.parentNode.parentNode).selectAll("g.category").select("rect.catrect").each((function(){i.push(E(t,e,this))})),i}(r,a,this)),e&&o.loneHover(e,{container:i._hoverlayer.node(),outerContainer:i._paper.node(),gd:r})}}function C(t){var e=t.parcatsViewModel;if(!e.dragDimension&&(_(e.pathSelection),T(e.dimensionSelection.selectAll("g.category")),k(e.dimensionSelection.selectAll("g.category").selectAll("rect.bandrect")),o.loneUnhover(e.graphDiv._fullLayout._hoverlayer.node()),e.pathSelection.sort(m),-1===e.hoverinfoItems.indexOf("skip"))){"color"===t.parcatsViewModel.hoveron?S(this,"plotly_unhover",n.event):M(this,"plotly_unhover",n.event)}}function P(t){"fixed"!==t.parcatsViewModel.arrangement&&(t.dragDimensionDisplayInd=t.model.displayInd,t.initialDragDimensionDisplayInds=t.parcatsViewModel.model.dimensions.map((function(t){return t.displayInd})),t.dragHasMoved=!1,t.dragCategoryDisplayInd=null,n.select(this).selectAll("g.category").select("rect.catrect").each((function(e){var r=n.mouse(this)[0],i=n.mouse(this)[1];-2<=r&&r<=e.width+2&&-2<=i&&i<=e.height+2&&(t.dragCategoryDisplayInd=e.model.displayInd,t.initialDragCategoryDisplayInds=t.model.categories.map((function(t){return t.displayInd})),e.model.dragY=e.y,s.raiseToTop(this.parentNode),n.select(this.parentNode).selectAll("rect.bandrect").each((function(e){e.yf.y+f.height/2&&(o.model.displayInd=f.model.displayInd,f.model.displayInd=l),t.dragCategoryDisplayInd=o.model.displayInd}if(null===t.dragCategoryDisplayInd||"freeform"===t.parcatsViewModel.arrangement){a.model.dragX=n.event.x;var h=t.parcatsViewModel.dimensions[r],p=t.parcatsViewModel.dimensions[i];void 0!==h&&a.model.dragXp.x&&(a.model.displayInd=p.model.displayInd,p.model.displayInd=t.dragDimensionDisplayInd),t.dragDimensionDisplayInd=a.model.displayInd}j(t.parcatsViewModel),N(t.parcatsViewModel),R(t.parcatsViewModel),D(t.parcatsViewModel)}}function O(t){if("fixed"!==t.parcatsViewModel.arrangement&&null!==t.dragDimensionDisplayInd){n.select(this).selectAll("text").attr("font-weight","normal");var e={},r=z(t.parcatsViewModel),i=t.parcatsViewModel.model.dimensions.map((function(t){return t.displayInd})),o=t.initialDragDimensionDisplayInds.some((function(t,e){return t!==i[e]}));o&&i.forEach((function(r,n){var i=t.parcatsViewModel.model.dimensions[n].containerInd;e["dimensions["+i+"].displayindex"]=r}));var s=!1;if(null!==t.dragCategoryDisplayInd){var l=t.model.categories.map((function(t){return t.displayInd}));if(s=t.initialDragCategoryDisplayInds.some((function(t,e){return t!==l[e]}))){var c=t.model.categories.slice().sort((function(t,e){return t.displayInd-e.displayInd})),u=c.map((function(t){return t.categoryValue})),f=c.map((function(t){return t.categoryLabel}));e["dimensions["+t.model.containerInd+"].categoryarray"]=[u],e["dimensions["+t.model.containerInd+"].ticktext"]=[f],e["dimensions["+t.model.containerInd+"].categoryorder"]="array"}}if(-1===t.parcatsViewModel.hoverinfoItems.indexOf("skip")&&!t.dragHasMoved&&t.potentialClickBand&&("color"===t.parcatsViewModel.hoveron?S(t.potentialClickBand,"plotly_click",n.event.sourceEvent):M(t.potentialClickBand,"plotly_click",n.event.sourceEvent)),t.model.dragX=null,null!==t.dragCategoryDisplayInd)t.parcatsViewModel.dimensions[t.dragDimensionDisplayInd].categories[t.dragCategoryDisplayInd].model.dragY=null,t.dragCategoryDisplayInd=null;t.dragDimensionDisplayInd=null,t.parcatsViewModel.dragDimension=null,t.dragHasMoved=null,t.potentialClickBand=null,j(t.parcatsViewModel),N(t.parcatsViewModel),n.transition().duration(300).ease("cubic-in-out").each((function(){R(t.parcatsViewModel,!0),D(t.parcatsViewModel,!0)})).each("end",(function(){(o||s)&&a.restyle(t.parcatsViewModel.graphDiv,e,[r])}))}}function z(t){for(var e,r=t.graphDiv._fullData,n=0;n=0;s--)u+="C"+c[s]+","+(e[s+1]+n)+" "+l[s]+","+(e[s]+n)+" "+(t[s]+r[s])+","+(e[s]+n),u+="l-"+r[s]+",0 ";return u+="Z"}function N(t){var e=t.dimensions,r=t.model,n=e.map((function(t){return t.categories.map((function(t){return t.y}))})),i=t.model.dimensions.map((function(t){return t.categories.map((function(t){return t.displayInd}))})),a=t.model.dimensions.map((function(t){return t.displayInd})),o=t.dimensions.map((function(t){return t.model.dimensionInd})),s=e.map((function(t){return t.x})),l=e.map((function(t){return t.width})),c=[];for(var u in r.paths)r.paths.hasOwnProperty(u)&&c.push(r.paths[u]);function f(t){var e=t.categoryInds.map((function(t,e){return i[e][t]}));return o.map((function(t){return e[t]}))}c.sort((function(e,r){var n=f(e),i=f(r);return"backward"===t.sortpaths&&(n.reverse(),i.reverse()),n.push(e.valueInds[0]),i.push(r.valueInds[0]),t.bundlecolors&&(n.unshift(e.rawColor),i.unshift(r.rawColor)),ni?1:0}));for(var h=new Array(c.length),p=e[0].model.count,d=e[0].categories.map((function(t){return t.height})).reduce((function(t,e){return t+e})),m=0;m0?d*(v.count/p):0;for(var y,x=new Array(n.length),b=0;b1?(t.width-80-16)/(n-1):0)*i;var a,o,s,l,c,u=[],f=t.model.maxCats,h=e.categories.length,p=e.count,d=t.height-8*(f-1),m=8*(f-h)/2,g=e.categories.map((function(t){return{displayInd:t.displayInd,categoryInd:t.categoryInd}}));for(g.sort((function(t,e){return t.displayInd-e.displayInd})),c=0;c0?o.count/p*d:0,s={key:o.valueInds[0],model:o,width:16,height:a,y:null!==o.dragY?o.dragY:m,bands:[],parcatsViewModel:t},m=m+a+8,u.push(s);return{key:e.dimensionInd,x:null!==e.dragX?e.dragX:r,y:0,width:16,model:e,categories:u,parcatsViewModel:t,dragCategoryDisplayInd:null,dragDimensionDisplayInd:null,initialDragDimensionDisplayInds:null,initialDragCategoryDisplayInds:null,dragHasMoved:null,potentialClickBand:null}}e.exports=function(t,e,r,n){h(r,t,n,e)}},{"../../components/drawing":383,"../../components/fx":401,"../../lib":498,"../../lib/svg_text_utils":524,"../../plot_api/plot_api":535,"@plotly/d3":58,"d3-interpolate":111,tinycolor2:307}],882:[function(t,e,r){"use strict";var n=t("./parcats");e.exports=function(t,e,r,i){var a=t._fullLayout,o=a._paper,s=a._size;n(t,o,e,{width:s.w,height:s.h,margin:{t:s.t,r:s.r,b:s.b,l:s.l}},r,i)}},{"./parcats":881}],883:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/layout_attributes"),a=t("../../plots/font_attributes"),o=t("../../plots/domain").attributes,s=t("../../lib/extend").extendFlat,l=t("../../plot_api/plot_template").templatedArray;e.exports={domain:o({name:"parcoords",trace:!0,editType:"plot"}),labelangle:{valType:"angle",dflt:0,editType:"plot"},labelside:{valType:"enumerated",values:["top","bottom"],dflt:"top",editType:"plot"},labelfont:a({editType:"plot"}),tickfont:a({editType:"plot"}),rangefont:a({editType:"plot"}),dimensions:l("dimension",{label:{valType:"string",editType:"plot"},tickvals:s({},i.tickvals,{editType:"plot"}),ticktext:s({},i.ticktext,{editType:"plot"}),tickformat:s({},i.tickformat,{editType:"plot"}),visible:{valType:"boolean",dflt:!0,editType:"plot"},range:{valType:"info_array",items:[{valType:"number",editType:"plot"},{valType:"number",editType:"plot"}],editType:"plot"},constraintrange:{valType:"info_array",freeLength:!0,dimensions:"1-2",items:[{valType:"any",editType:"plot"},{valType:"any",editType:"plot"}],editType:"plot"},multiselect:{valType:"boolean",dflt:!0,editType:"plot"},values:{valType:"data_array",editType:"calc"},editType:"calc"}),line:s({editType:"calc"},n("line",{colorscaleDflt:"Viridis",autoColorDflt:!1,editTypeOverride:"calc"}))}},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plot_api/plot_template":538,"../../plots/cartesian/layout_attributes":564,"../../plots/domain":579,"../../plots/font_attributes":580}],884:[function(t,e,r){"use strict";var n=t("./constants"),i=t("@plotly/d3"),a=t("../../lib/gup").keyFun,o=t("../../lib/gup").repeat,s=t("../../lib").sorterAsc,l=t("../../lib").strTranslate,c=n.bar.snapRatio;function u(t,e){return t*(1-c)+e*c}var f=n.bar.snapClose;function h(t,e){return t*(1-f)+e*f}function p(t,e,r,n){if(function(t,e){for(var r=0;r=e[r][0]&&t<=e[r][1])return!0;return!1}(r,n))return r;var i=t?-1:1,a=0,o=e.length-1;if(i<0){var s=a;a=o,o=s}for(var l=e[a],c=l,f=a;i*fe){h=r;break}}if(a=u,isNaN(a)&&(a=isNaN(f)||isNaN(h)?isNaN(f)?h:f:e-c[f][1]t[1]+r||e=.9*t[1]+.1*t[0]?"n":e<=.9*t[0]+.1*t[1]?"s":"ns"}(d,e);m&&(o.interval=l[a],o.intervalPix=d,o.region=m)}}if(t.ordinal&&!o.region){var g=t.unitTickvals,y=t.unitToPaddedPx.invert(e);for(r=0;r=x[0]&&y<=x[1]){o.clickableOrdinalRange=x;break}}}return o}function w(t,e){i.event.sourceEvent.stopPropagation();var r=e.height-i.mouse(t)[1]-2*n.verticalPadding,a=e.brush.svgBrush;a.wasDragged=!0,a._dragging=!0,a.grabbingBar?a.newExtent=[r-a.grabPoint,r+a.barLength-a.grabPoint].map(e.unitToPaddedPx.invert):a.newExtent=[a.startExtent,e.unitToPaddedPx.invert(r)].sort(s),e.brush.filterSpecified=!0,a.extent=a.stayingIntervals.concat([a.newExtent]),a.brushCallback(e),b(t.parentNode)}function T(t,e){var r=_(e,e.height-i.mouse(t)[1]-2*n.verticalPadding),a="crosshair";r.clickableOrdinalRange?a="pointer":r.region&&(a=r.region+"-resize"),i.select(document.body).style("cursor",a)}function k(t){t.on("mousemove",(function(t){i.event.preventDefault(),t.parent.inBrushDrag||T(this,t)})).on("mouseleave",(function(t){t.parent.inBrushDrag||y()})).call(i.behavior.drag().on("dragstart",(function(t){!function(t,e){i.event.sourceEvent.stopPropagation();var r=e.height-i.mouse(t)[1]-2*n.verticalPadding,a=e.unitToPaddedPx.invert(r),o=e.brush,s=_(e,r),l=s.interval,c=o.svgBrush;if(c.wasDragged=!1,c.grabbingBar="ns"===s.region,c.grabbingBar){var u=l.map(e.unitToPaddedPx);c.grabPoint=r-u[0]-n.verticalPadding,c.barLength=u[1]-u[0]}c.clickableOrdinalRange=s.clickableOrdinalRange,c.stayingIntervals=e.multiselect&&o.filterSpecified?o.filter.getConsolidated():[],l&&(c.stayingIntervals=c.stayingIntervals.filter((function(t){return t[0]!==l[0]&&t[1]!==l[1]}))),c.startExtent=s.region?l["s"===s.region?1:0]:a,e.parent.inBrushDrag=!0,c.brushStartCallback()}(this,t)})).on("drag",(function(t){w(this,t)})).on("dragend",(function(t){!function(t,e){var r=e.brush,n=r.filter,a=r.svgBrush;a._dragging||(T(t,e),w(t,e),e.brush.svgBrush.wasDragged=!1),a._dragging=!1,i.event.sourceEvent.stopPropagation();var o=a.grabbingBar;if(a.grabbingBar=!1,a.grabLocation=void 0,e.parent.inBrushDrag=!1,y(),!a.wasDragged)return a.wasDragged=void 0,a.clickableOrdinalRange?r.filterSpecified&&e.multiselect?a.extent.push(a.clickableOrdinalRange):(a.extent=[a.clickableOrdinalRange],r.filterSpecified=!0):o?(a.extent=a.stayingIntervals,0===a.extent.length&&M(r)):M(r),a.brushCallback(e),b(t.parentNode),void a.brushEndCallback(r.filterSpecified?n.getConsolidated():[]);var s=function(){n.set(n.getConsolidated())};if(e.ordinal){var l=e.unitTickvals;l[l.length-1]a.newExtent[0];a.extent=a.stayingIntervals.concat(c?[a.newExtent]:[]),a.extent.length||M(r),a.brushCallback(e),c?b(t.parentNode,s):(s(),b(t.parentNode))}else s();a.brushEndCallback(r.filterSpecified?n.getConsolidated():[])}(this,t)})))}function A(t,e){return t[0]-e[0]}function M(t){t.filterSpecified=!1,t.svgBrush.extent=[[-1/0,1/0]]}function S(t){for(var e,r=t.slice(),n=[],i=r.shift();i;){for(e=i.slice();(i=r.shift())&&i[0]<=e[1];)e[1]=Math.max(e[1],i[1]);n.push(e)}return 1===n.length&&n[0][0]>n[0][1]&&(n=[]),n}e.exports={makeBrush:function(t,e,r,n,i,a){var o,l=function(){var t,e,r=[];return{set:function(n){1===(r=n.map((function(t){return t.slice().sort(s)})).sort(A)).length&&r[0][0]===-1/0&&r[0][1]===1/0&&(r=[[0,-1]]),t=S(r),e=r.reduce((function(t,e){return[Math.min(t[0],e[0]),Math.max(t[1],e[1])]}),[1/0,-1/0])},get:function(){return r.slice()},getConsolidated:function(){return t},getBounds:function(){return e}}}();return l.set(r),{filter:l,filterSpecified:e,svgBrush:{extent:[],brushStartCallback:n,brushCallback:(o=i,function(t){var e=t.brush,r=function(t){return t.svgBrush.extent.map((function(t){return t.slice()}))}(e).slice();e.filter.set(r),o()}),brushEndCallback:a}}},ensureAxisBrush:function(t,e){var r=t.selectAll("."+n.cn.axisBrush).data(o,a);r.enter().append("g").classed(n.cn.axisBrush,!0),function(t,e){var r=t.selectAll(".background").data(o);r.enter().append("rect").classed("background",!0).call(d).call(m).style("pointer-events","auto").attr("transform",l(0,n.verticalPadding)),r.call(k).attr("height",(function(t){return t.height-n.verticalPadding}));var i=t.selectAll(".highlight-shadow").data(o);i.enter().append("line").classed("highlight-shadow",!0).attr("x",-n.bar.width/2).attr("stroke-width",n.bar.width+n.bar.strokeWidth).attr("stroke",e).attr("opacity",n.bar.strokeOpacity).attr("stroke-linecap","butt"),i.attr("y1",(function(t){return t.height})).call(x);var a=t.selectAll(".highlight").data(o);a.enter().append("line").classed("highlight",!0).attr("x",-n.bar.width/2).attr("stroke-width",n.bar.width-n.bar.strokeWidth).attr("stroke",n.bar.fillColor).attr("opacity",n.bar.fillOpacity).attr("stroke-linecap","butt"),a.attr("y1",(function(t){return t.height})).call(x)}(r,e)},cleanRanges:function(t,e){if(Array.isArray(t[0])?(t=t.map((function(t){return t.sort(s)})),t=e.multiselect?S(t.sort(A)):[t[0]]):t=[t.sort(s)],e.tickvals){var r=e.tickvals.slice().sort(s);if(!(t=t.map((function(t){var e=[p(0,r,t[0],[]),p(1,r,t[1],[])];if(e[1]>e[0])return e})).filter((function(t){return t}))).length)return}return t.length>1?t:t[0]}}},{"../../lib":498,"../../lib/gup":495,"./constants":888,"@plotly/d3":58}],885:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),colorbar:{container:"line",min:"cmin",max:"cmax"},moduleType:"trace",name:"parcoords",basePlotModule:t("./base_plot"),categories:["gl","regl","noOpacity","noHover"],meta:{}}},{"./attributes":883,"./base_plot":886,"./calc":887,"./defaults":889}],886:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../plots/get_data").getModuleCalcData,a=t("./plot"),o=t("../../constants/xmlns_namespaces");r.name="parcoords",r.plot=function(t){var e=i(t.calcdata,"parcoords")[0];e.length&&a(t,e)},r.clean=function(t,e,r,n){var i=n._has&&n._has("parcoords"),a=e._has&&e._has("parcoords");i&&!a&&(n._paperdiv.selectAll(".parcoords").remove(),n._glimages.selectAll("*").remove())},r.toSVG=function(t){var e=t._fullLayout._glimages,r=n.select(t).selectAll(".svg-container");r.filter((function(t,e){return e===r.size()-1})).selectAll(".gl-canvas-context, .gl-canvas-focus").each((function(){var t=this.toDataURL("image/png");e.append("svg:image").attr({xmlns:o.svg,"xlink:href":t,preserveAspectRatio:"none",x:0,y:0,width:this.style.width,height:this.style.height})})),window.setTimeout((function(){n.selectAll("#filterBarPattern").attr("id","filterBarPattern")}),60)}},{"../../constants/xmlns_namespaces":475,"../../plots/get_data":588,"./plot":895,"@plotly/d3":58}],887:[function(t,e,r){"use strict";var n=t("../../lib").isArrayOrTypedArray,i=t("../../components/colorscale"),a=t("../../lib/gup").wrap;e.exports=function(t,e){var r,o;return i.hasColorscale(e,"line")&&n(e.line.color)?(r=e.line.color,o=i.extractOpts(e.line).colorscale,i.calc(t,e,{vals:r,containerStr:"line",cLetter:"c"})):(r=function(t){for(var e=new Array(t),r=0;rf&&(n.log("parcoords traces support up to "+f+" dimensions at the moment"),d.splice(f));var m=s(t,e,{name:"dimensions",layout:l,handleItemDefaults:p}),g=function(t,e,r,o,s){var l=s("line.color",r);if(i(t,"line")&&n.isArrayOrTypedArray(l)){if(l.length)return s("line.colorscale"),a(t,e,o,s,{prefix:"line.",cLetter:"c"}),l.length;e.line.color=r}return 1/0}(t,e,r,l,u);o(e,l,u),Array.isArray(m)&&m.length||(e.visible=!1),h(e,m,"values",g);var v={family:l.font.family,size:Math.round(l.font.size/1.2),color:l.font.color};n.coerceFont(u,"labelfont",v),n.coerceFont(u,"tickfont",v),n.coerceFont(u,"rangefont",v),u("labelangle"),u("labelside")}},{"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"../../lib":498,"../../plots/array_container_defaults":544,"../../plots/cartesian/axes":549,"../../plots/domain":579,"./attributes":883,"./axisbrush":884,"./constants":888,"./merge_length":893}],890:[function(t,e,r){"use strict";var n=t("../../lib").isTypedArray;r.convertTypedArray=function(t){return n(t)?Array.prototype.slice.call(t):t},r.isOrdinal=function(t){return!!t.tickvals},r.isVisible=function(t){return t.visible||!("visible"in t)}},{"../../lib":498}],891:[function(t,e,r){"use strict";var n=t("./base_index");n.plot=t("./plot"),e.exports=n},{"./base_index":885,"./plot":895}],892:[function(t,e,r){"use strict";var n=t("glslify"),i=n(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nattribute vec4 p01_04, p05_08, p09_12, p13_16,\n p17_20, p21_24, p25_28, p29_32,\n p33_36, p37_40, p41_44, p45_48,\n p49_52, p53_56, p57_60, colors;\n\nuniform mat4 dim0A, dim1A, dim0B, dim1B, dim0C, dim1C, dim0D, dim1D,\n loA, hiA, loB, hiB, loC, hiC, loD, hiD;\n\nuniform vec2 resolution, viewBoxPos, viewBoxSize;\nuniform float maskHeight;\nuniform float drwLayer; // 0: context, 1: focus, 2: pick\nuniform vec4 contextColor;\nuniform sampler2D maskTexture, palette;\n\nbool isPick = (drwLayer > 1.5);\nbool isContext = (drwLayer < 0.5);\n\nconst vec4 ZEROS = vec4(0.0, 0.0, 0.0, 0.0);\nconst vec4 UNITS = vec4(1.0, 1.0, 1.0, 1.0);\n\nfloat val(mat4 p, mat4 v) {\n return dot(matrixCompMult(p, v) * UNITS, UNITS);\n}\n\nfloat axisY(float ratio, mat4 A, mat4 B, mat4 C, mat4 D) {\n float y1 = val(A, dim0A) + val(B, dim0B) + val(C, dim0C) + val(D, dim0D);\n float y2 = val(A, dim1A) + val(B, dim1B) + val(C, dim1C) + val(D, dim1D);\n return y1 * (1.0 - ratio) + y2 * ratio;\n}\n\nint iMod(int a, int b) {\n return a - b * (a / b);\n}\n\nbool fOutside(float p, float lo, float hi) {\n return (lo < hi) && (lo > p || p > hi);\n}\n\nbool vOutside(vec4 p, vec4 lo, vec4 hi) {\n return (\n fOutside(p[0], lo[0], hi[0]) ||\n fOutside(p[1], lo[1], hi[1]) ||\n fOutside(p[2], lo[2], hi[2]) ||\n fOutside(p[3], lo[3], hi[3])\n );\n}\n\nbool mOutside(mat4 p, mat4 lo, mat4 hi) {\n return (\n vOutside(p[0], lo[0], hi[0]) ||\n vOutside(p[1], lo[1], hi[1]) ||\n vOutside(p[2], lo[2], hi[2]) ||\n vOutside(p[3], lo[3], hi[3])\n );\n}\n\nbool outsideBoundingBox(mat4 A, mat4 B, mat4 C, mat4 D) {\n return mOutside(A, loA, hiA) ||\n mOutside(B, loB, hiB) ||\n mOutside(C, loC, hiC) ||\n mOutside(D, loD, hiD);\n}\n\nbool outsideRasterMask(mat4 A, mat4 B, mat4 C, mat4 D) {\n mat4 pnts[4];\n pnts[0] = A;\n pnts[1] = B;\n pnts[2] = C;\n pnts[3] = D;\n\n for(int i = 0; i < 4; ++i) {\n for(int j = 0; j < 4; ++j) {\n for(int k = 0; k < 4; ++k) {\n if(0 == iMod(\n int(255.0 * texture2D(maskTexture,\n vec2(\n (float(i * 2 + j / 2) + 0.5) / 8.0,\n (pnts[i][j][k] * (maskHeight - 1.0) + 1.0) / maskHeight\n ))[3]\n ) / int(pow(2.0, float(iMod(j * 4 + k, 8)))),\n 2\n )) return true;\n }\n }\n }\n return false;\n}\n\nvec4 position(bool isContext, float v, mat4 A, mat4 B, mat4 C, mat4 D) {\n float x = 0.5 * sign(v) + 0.5;\n float y = axisY(x, A, B, C, D);\n float z = 1.0 - abs(v);\n\n z += isContext ? 0.0 : 2.0 * float(\n outsideBoundingBox(A, B, C, D) ||\n outsideRasterMask(A, B, C, D)\n );\n\n return vec4(\n 2.0 * (vec2(x, y) * viewBoxSize + viewBoxPos) / resolution - 1.0,\n z,\n 1.0\n );\n}\n\nvoid main() {\n mat4 A = mat4(p01_04, p05_08, p09_12, p13_16);\n mat4 B = mat4(p17_20, p21_24, p25_28, p29_32);\n mat4 C = mat4(p33_36, p37_40, p41_44, p45_48);\n mat4 D = mat4(p49_52, p53_56, p57_60, ZEROS);\n\n float v = colors[3];\n\n gl_Position = position(isContext, v, A, B, C, D);\n\n fragColor =\n isContext ? vec4(contextColor) :\n isPick ? vec4(colors.rgb, 1.0) : texture2D(palette, vec2(abs(v), 0.5));\n}\n"]),a=n(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nvoid main() {\n gl_FragColor = fragColor;\n}\n"]),o=t("./constants").maxDimensionCount,s=t("../../lib"),l=new Uint8Array(4),c=new Uint8Array(4),u={shape:[256,1],format:"rgba",type:"uint8",mag:"nearest",min:"nearest"};function f(t,e,r,n,i){var a=t._gl;a.enable(a.SCISSOR_TEST),a.scissor(e,r,n,i),t.clear({color:[0,0,0,0],depth:1})}function h(t,e,r,n,i,a){var o=a.key;r.drawCompleted||(!function(t){t.read({x:0,y:0,width:1,height:1,data:l})}(t),r.drawCompleted=!0),function s(l){var c=Math.min(n,i-l*n);0===l&&(window.cancelAnimationFrame(r.currentRafs[o]),delete r.currentRafs[o],f(t,a.scissorX,a.scissorY,a.scissorWidth,a.viewBoxSize[1])),r.clearOnly||(a.count=2*c,a.offset=2*l*n,e(a),l*n+c>>8*e)%256/255}function m(t,e,r){for(var n=new Array(8*e),i=0,a=0;au&&(u=t[i].dim1.canvasX,o=i);0===s&&f(T,0,0,r.canvasWidth,r.canvasHeight);var p=function(t){var e,r,n,i=[[],[]];for(n=0;n<64;n++){var a=!t&&no._length&&(S=S.slice(0,o._length));var L,C=o.tickvals;function P(t,e){return{val:t,text:L[e]}}function I(t,e){return t.val-e.val}if(Array.isArray(C)&&C.length){L=o.ticktext,Array.isArray(L)&&L.length?L.length>C.length?L=L.slice(0,C.length):C.length>L.length&&(C=C.slice(0,L.length)):L=C.map(a(o.tickformat));for(var O=1;O=r||l>=i)return;var c=t.lineLayer.readPixel(s,i-1-l),u=0!==c[3],f=u?c[2]+256*(c[1]+256*c[0]):null,h={x:s,y:l,clientX:e.clientX,clientY:e.clientY,dataIndex:t.model.key,curveNumber:f};f!==B&&(u?a.hover(h):a.unhover&&a.unhover(h),B=f)}})),F.style("opacity",(function(t){return t.pick?0:1})),h.style("background","rgba(255, 255, 255, 0)");var N=h.selectAll("."+y.cn.parcoords).data(R,d);N.exit().remove(),N.enter().append("g").classed(y.cn.parcoords,!0).style("shape-rendering","crispEdges").style("pointer-events","none"),N.attr("transform",(function(t){return c(t.model.translateX,t.model.translateY)}));var j=N.selectAll("."+y.cn.parcoordsControlView).data(m,d);j.enter().append("g").classed(y.cn.parcoordsControlView,!0),j.attr("transform",(function(t){return c(t.model.pad.l,t.model.pad.t)}));var U=j.selectAll("."+y.cn.yAxis).data((function(t){return t.dimensions}),d);U.enter().append("g").classed(y.cn.yAxis,!0),j.each((function(t){O(U,t,_)})),F.each((function(t){if(t.viewModel){!t.lineLayer||a?t.lineLayer=b(this,t):t.lineLayer.update(t),(t.key||0===t.key)&&(t.viewModel[t.key]=t.lineLayer);var e=!t.context||a;t.lineLayer.render(t.viewModel.panels,e)}})),U.attr("transform",(function(t){return c(t.xScale(t.xIndex),0)})),U.call(n.behavior.drag().origin((function(t){return t})).on("drag",(function(t){var e=t.parent;S.linePickActive(!1),t.x=Math.max(-y.overdrag,Math.min(t.model.width+y.overdrag,n.event.x)),t.canvasX=t.x*t.model.canvasPixelRatio,U.sort((function(t,e){return t.x-e.x})).each((function(e,r){e.xIndex=r,e.x=t===e?e.x:e.xScale(e.xIndex),e.canvasX=e.x*e.model.canvasPixelRatio})),O(U,e,_),U.filter((function(e){return 0!==Math.abs(t.xIndex-e.xIndex)})).attr("transform",(function(t){return c(t.xScale(t.xIndex),0)})),n.select(this).attr("transform",c(t.x,0)),U.each((function(r,n,i){i===t.parent.key&&(e.dimensions[n]=r)})),e.contextLayer&&e.contextLayer.render(e.panels,!1,!E(e)),e.focusLayer.render&&e.focusLayer.render(e.panels)})).on("dragend",(function(t){var e=t.parent;t.x=t.xScale(t.xIndex),t.canvasX=t.x*t.model.canvasPixelRatio,O(U,e,_),n.select(this).attr("transform",(function(t){return c(t.x,0)})),e.contextLayer&&e.contextLayer.render(e.panels,!1,!E(e)),e.focusLayer&&e.focusLayer.render(e.panels),e.pickLayer&&e.pickLayer.render(e.panels,!0),S.linePickActive(!0),a&&a.axesMoved&&a.axesMoved(e.key,e.dimensions.map((function(t){return t.crossfilterDimensionIndex})))}))),U.exit().remove();var V=U.selectAll("."+y.cn.axisOverlays).data(m,d);V.enter().append("g").classed(y.cn.axisOverlays,!0),V.selectAll("."+y.cn.axis).remove();var H=V.selectAll("."+y.cn.axis).data(m,d);H.enter().append("g").classed(y.cn.axis,!0),H.each((function(t){var e=t.model.height/t.model.tickDistance,r=t.domainScale,i=r.domain();n.select(this).call(n.svg.axis().orient("left").tickSize(4).outerTickSize(2).ticks(e,t.tickFormat).tickValues(t.ordinal?i:null).tickFormat((function(e){return v.isOrdinal(t)?e:z(t.model.dimensions[t.visibleIndex],e)})).scale(r)),f.font(H.selectAll("text"),t.model.tickFont)})),H.selectAll(".domain, .tick>line").attr("fill","none").attr("stroke","black").attr("stroke-opacity",.25).attr("stroke-width","1px"),H.selectAll("text").style("text-shadow",u.makeTextShadow(T)).style("cursor","default");var q=V.selectAll("."+y.cn.axisHeading).data(m,d);q.enter().append("g").classed(y.cn.axisHeading,!0);var G=q.selectAll("."+y.cn.axisTitle).data(m,d);G.enter().append("text").classed(y.cn.axisTitle,!0).attr("text-anchor","middle").style("cursor","ew-resize").style("pointer-events","auto"),G.text((function(t){return t.label})).each((function(e){var r=n.select(this);f.font(r,e.model.labelFont),u.convertToTspans(r,t)})).attr("transform",(function(t){var e=I(t.model.labelAngle,t.model.labelSide),r=y.axisTitleOffset;return(e.dir>0?"":c(0,2*r+t.model.height))+l(e.degrees)+c(-r*e.dx,-r*e.dy)})).attr("text-anchor",(function(t){var e=I(t.model.labelAngle,t.model.labelSide);return 2*Math.abs(e.dx)>Math.abs(e.dy)?e.dir*e.dx<0?"start":"end":"middle"}));var Y=V.selectAll("."+y.cn.axisExtent).data(m,d);Y.enter().append("g").classed(y.cn.axisExtent,!0);var W=Y.selectAll("."+y.cn.axisExtentTop).data(m,d);W.enter().append("g").classed(y.cn.axisExtentTop,!0),W.attr("transform",c(0,-y.axisExtentOffset));var X=W.selectAll("."+y.cn.axisExtentTopText).data(m,d);X.enter().append("text").classed(y.cn.axisExtentTopText,!0).call(P),X.text((function(t){return D(t,!0)})).each((function(t){f.font(n.select(this),t.model.rangeFont)}));var Z=Y.selectAll("."+y.cn.axisExtentBottom).data(m,d);Z.enter().append("g").classed(y.cn.axisExtentBottom,!0),Z.attr("transform",(function(t){return c(0,t.model.height+y.axisExtentOffset)}));var J=Z.selectAll("."+y.cn.axisExtentBottomText).data(m,d);J.enter().append("text").classed(y.cn.axisExtentBottomText,!0).attr("dy","0.75em").call(P),J.text((function(t){return D(t,!1)})).each((function(t){f.font(n.select(this),t.model.rangeFont)})),x.ensureAxisBrush(V,T)}},{"../../components/colorscale":373,"../../components/drawing":383,"../../lib":498,"../../lib/gup":495,"../../lib/svg_text_utils":524,"../../plots/cartesian/axes":549,"./axisbrush":884,"./constants":888,"./helpers":890,"./lines":892,"@plotly/d3":58,"color-rgba":86}],895:[function(t,e,r){"use strict";var n=t("./parcoords"),i=t("../../lib/prepare_regl"),a=t("./helpers").isVisible,o={};function s(t,e,r){var n=e.indexOf(r),i=t.indexOf(n);return-1===i&&(i+=e.length),i}(e.exports=function(t,e){var r=t._fullLayout;if(i(t,[],o)){var l={},c={},u={},f={},h=r._size;e.forEach((function(e,r){var n=e[0].trace;u[r]=n.index;var i=f[r]=n._fullInput.index;l[r]=t.data[i].dimensions,c[r]=t.data[i].dimensions.slice()}));n(t,e,{width:h.w,height:h.h,margin:{t:h.t,r:h.r,b:h.b,l:h.l}},{filterChanged:function(e,n,i){var a=c[e][n],o=i.map((function(t){return t.slice()})),s="dimensions["+n+"].constraintrange",l=r._tracePreGUI[t._fullData[u[e]]._fullInput.uid];if(void 0===l[s]){var h=a.constraintrange;l[s]=h||null}var p=t._fullData[u[e]].dimensions[n];o.length?(1===o.length&&(o=o[0]),a.constraintrange=o,p.constraintrange=o.slice(),o=[o]):(delete a.constraintrange,delete p.constraintrange,o=null);var d={};d[s]=o,t.emit("plotly_restyle",[d,[f[e]]])},hover:function(e){t.emit("plotly_hover",e)},unhover:function(e){t.emit("plotly_unhover",e)},axesMoved:function(e,r){var n=function(t,e){return function(r,n){return s(t,e,r)-s(t,e,n)}}(r,c[e].filter(a));l[e].sort(n),c[e].filter((function(t){return!a(t)})).sort((function(t){return c[e].indexOf(t)})).forEach((function(t){l[e].splice(l[e].indexOf(t),1),l[e].splice(c[e].indexOf(t),0,t)})),t.emit("plotly_restyle",[{dimensions:[l[e]]},[f[e]]])}})}}).reglPrecompiled=o},{"../../lib/prepare_regl":511,"./helpers":890,"./parcoords":894}],896:[function(t,e,r){"use strict";var n=t("../../plots/attributes"),i=t("../../plots/domain").attributes,a=t("../../plots/font_attributes"),o=t("../../components/color/attributes"),s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../plots/template_attributes").texttemplateAttrs,c=t("../../lib/extend").extendFlat,u=a({editType:"plot",arrayOk:!0,colorEditType:"plot"});e.exports={labels:{valType:"data_array",editType:"calc"},label0:{valType:"number",dflt:0,editType:"calc"},dlabel:{valType:"number",dflt:1,editType:"calc"},values:{valType:"data_array",editType:"calc"},marker:{colors:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:o.defaultLine,arrayOk:!0,editType:"style"},width:{valType:"number",min:0,dflt:0,arrayOk:!0,editType:"style"},editType:"calc"},editType:"calc"},text:{valType:"data_array",editType:"plot"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"style"},scalegroup:{valType:"string",dflt:"",editType:"calc"},textinfo:{valType:"flaglist",flags:["label","text","value","percent"],extras:["none"],editType:"calc"},hoverinfo:c({},n.hoverinfo,{flags:["label","text","value","percent","name"]}),hovertemplate:s({},{keys:["label","color","value","percent","text"]}),texttemplate:l({editType:"plot"},{keys:["label","color","value","percent","text"]}),textposition:{valType:"enumerated",values:["inside","outside","auto","none"],dflt:"auto",arrayOk:!0,editType:"plot"},textfont:c({},u,{}),insidetextorientation:{valType:"enumerated",values:["horizontal","radial","tangential","auto"],dflt:"auto",editType:"plot"},insidetextfont:c({},u,{}),outsidetextfont:c({},u,{}),automargin:{valType:"boolean",dflt:!1,editType:"plot"},title:{text:{valType:"string",dflt:"",editType:"plot"},font:c({},u,{}),position:{valType:"enumerated",values:["top left","top center","top right","middle center","bottom left","bottom center","bottom right"],editType:"plot"},editType:"plot"},domain:i({name:"pie",trace:!0,editType:"calc"}),hole:{valType:"number",min:0,max:1,dflt:0,editType:"calc"},sort:{valType:"boolean",dflt:!0,editType:"calc"},direction:{valType:"enumerated",values:["clockwise","counterclockwise"],dflt:"counterclockwise",editType:"calc"},rotation:{valType:"number",min:-360,max:360,dflt:0,editType:"calc"},pull:{valType:"number",min:0,max:1,dflt:0,arrayOk:!0,editType:"calc"},_deprecated:{title:{valType:"string",dflt:"",editType:"calc"},titlefont:c({},u,{}),titleposition:{valType:"enumerated",values:["top left","top center","top right","middle center","bottom left","bottom center","bottom right"],editType:"calc"}}}},{"../../components/color/attributes":360,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/domain":579,"../../plots/font_attributes":580,"../../plots/template_attributes":628}],897:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="pie",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":614}],898:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("tinycolor2"),a=t("../../components/color"),o={};function s(t){return function(e,r){return!!e&&(!!(e=i(e)).isValid()&&(e=a.addOpacity(e,e.getAlpha()),t[r]||(t[r]=e),e))}}function l(t,e){var r,n=JSON.stringify(t),a=e[n];if(!a){for(a=t.slice(),r=0;r=0})),("funnelarea"===e.type?v:e.sort)&&a.sort((function(t,e){return e.v-t.v})),a[0]&&(a[0].vTotal=g),a},crossTraceCalc:function(t,e){var r=(e||{}).type;r||(r="pie");var n=t._fullLayout,i=t.calcdata,a=n[r+"colorway"],s=n["_"+r+"colormap"];n["extend"+r+"colors"]&&(a=l(a,o));for(var c=0,u=0;u0){s=!0;break}}s||(o=0)}return{hasLabels:r,hasValues:a,len:o}}e.exports={handleLabelsAndValues:l,supplyDefaults:function(t,e,r,n){function c(r,n){return i.coerce(t,e,a,r,n)}var u=l(c("labels"),c("values")),f=u.len;if(e._hasLabels=u.hasLabels,e._hasValues=u.hasValues,!e._hasLabels&&e._hasValues&&(c("label0"),c("dlabel")),f){e._length=f,c("marker.line.width")&&c("marker.line.color"),c("marker.colors"),c("scalegroup");var h,p=c("text"),d=c("texttemplate");if(d||(h=c("textinfo",Array.isArray(p)?"text+percent":"percent")),c("hovertext"),c("hovertemplate"),d||h&&"none"!==h){var m=c("textposition");s(t,e,n,c,m,{moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1}),(Array.isArray(m)||"auto"===m||"outside"===m)&&c("automargin"),("inside"===m||"auto"===m||Array.isArray(m))&&c("insidetextorientation")}o(e,n,c);var g=c("hole");if(c("title.text")){var v=c("title.position",g?"middle center":"top center");g||"middle center"!==v||(e.title.position="top center"),i.coerceFont(c,"title.font",n.font)}c("sort"),c("direction"),c("rotation"),c("pull")}else e.visible=!1}}},{"../../lib":498,"../../plots/domain":579,"../bar/defaults":647,"./attributes":896,"fast-isnumeric":185}],900:[function(t,e,r){"use strict";var n=t("../../components/fx/helpers").appendArrayMultiPointValues;e.exports=function(t,e){var r={curveNumber:e.index,pointNumbers:t.pts,data:e._input,fullData:e,label:t.label,color:t.color,value:t.v,percent:t.percent,text:t.text,bbox:t.bbox,v:t.v};return 1===t.pts.length&&(r.pointNumber=r.i=t.pts[0]),n(r,e,t.pts),"funnelarea"===e.type&&(delete r.v,delete r.i),r}},{"../../components/fx/helpers":397}],901:[function(t,e,r){"use strict";var n=t("../../lib");function i(t){return-1!==t.indexOf("e")?t.replace(/[.]?0+e/,"e"):-1!==t.indexOf(".")?t.replace(/[.]?0+$/,""):t}r.formatPiePercent=function(t,e){var r=i((100*t).toPrecision(3));return n.numSeparate(r,e)+"%"},r.formatPieValue=function(t,e){var r=i(t.toPrecision(10));return n.numSeparate(r,e)},r.getFirstFilled=function(t,e){if(Array.isArray(t))for(var r=0;r"),name:f.hovertemplate||-1!==h.indexOf("name")?f.name:void 0,idealAlign:t.pxmid[0]<0?"left":"right",color:g.castOption(_.bgcolor,t.pts)||t.color,borderColor:g.castOption(_.bordercolor,t.pts),fontFamily:g.castOption(w.family,t.pts),fontSize:g.castOption(w.size,t.pts),fontColor:g.castOption(w.color,t.pts),nameLength:g.castOption(_.namelength,t.pts),textAlign:g.castOption(_.align,t.pts),hovertemplate:g.castOption(f.hovertemplate,t.pts),hovertemplateLabels:t,eventData:[v(t,f)]},{container:r._hoverlayer.node(),outerContainer:r._paper.node(),gd:e,inOut_bbox:T}),t.bbox=T[0],c._hasHoverLabel=!0}c._hasHoverEvent=!0,e.emit("plotly_hover",{points:[v(t,f)],event:n.event})}})),t.on("mouseout",(function(t){var r=e._fullLayout,i=e._fullData[c.index],o=n.select(this).datum();c._hasHoverEvent&&(t.originalEvent=n.event,e.emit("plotly_unhover",{points:[v(o,i)],event:n.event}),c._hasHoverEvent=!1),c._hasHoverLabel&&(a.loneUnhover(r._hoverlayer.node()),c._hasHoverLabel=!1)})),t.on("click",(function(t){var r=e._fullLayout,i=e._fullData[c.index];e._dragging||!1===r.hovermode||(e._hoverdata=[v(t,i)],a.click(e,n.event))}))}function b(t,e,r){var n=g.castOption(t.insidetextfont.color,e.pts);!n&&t._input.textfont&&(n=g.castOption(t._input.textfont.color,e.pts));var i=g.castOption(t.insidetextfont.family,e.pts)||g.castOption(t.textfont.family,e.pts)||r.family,a=g.castOption(t.insidetextfont.size,e.pts)||g.castOption(t.textfont.size,e.pts)||r.size;return{color:n||o.contrast(e.color),family:i,size:a}}function _(t,e){for(var r,n,i=0;ie&&e>n||r=-4;g-=2)v(Math.PI*g,"tan");for(g=4;g>=-4;g-=2)v(Math.PI*(g+1),"tan")}if(f||p){for(g=4;g>=-4;g-=2)v(Math.PI*(g+1.5),"rad");for(g=4;g>=-4;g-=2)v(Math.PI*(g+.5),"rad")}}if(s||d||f){var y=Math.sqrt(t.width*t.width+t.height*t.height);if((a={scale:i*n*2/y,rCenter:1-i,rotate:0}).textPosAngle=(e.startangle+e.stopangle)/2,a.scale>=1)return a;m.push(a)}(d||p)&&((a=T(t,n,o,l,c)).textPosAngle=(e.startangle+e.stopangle)/2,m.push(a)),(d||h)&&((a=k(t,n,o,l,c)).textPosAngle=(e.startangle+e.stopangle)/2,m.push(a));for(var x=0,b=0,_=0;_=1)break}return m[x]}function T(t,e,r,n,i){e=Math.max(0,e-2*m);var a=t.width/t.height,o=S(a,n,e,r);return{scale:2*o/t.height,rCenter:A(a,o/e),rotate:M(i)}}function k(t,e,r,n,i){e=Math.max(0,e-2*m);var a=t.height/t.width,o=S(a,n,e,r);return{scale:2*o/t.width,rCenter:A(a,o/e),rotate:M(i+Math.PI/2)}}function A(t,e){return Math.cos(e)-t*e}function M(t){return(180/Math.PI*t+720)%180-90}function S(t,e,r,n){var i=t+1/(2*Math.tan(e));return r*Math.min(1/(Math.sqrt(i*i+.5)+i),n/(Math.sqrt(t*t+n/2)+t))}function E(t,e){return t.v!==e.vTotal||e.trace.hole?Math.min(1/(1+1/Math.sin(t.halfangle)),t.ring/2):1}function L(t,e){var r=e.pxmid[0],n=e.pxmid[1],i=t.width/2,a=t.height/2;return r<0&&(i*=-1),n<0&&(a*=-1),{scale:1,rCenter:1,rotate:0,x:i+Math.abs(a)*(i>0?1:-1)/2,y:a/(1+r*r/(n*n)),outside:!0}}function C(t,e){var r,n,i,a=t.trace,o={x:t.cx,y:t.cy},s={tx:0,ty:0};s.ty+=a.title.font.size,i=I(a),-1!==a.title.position.indexOf("top")?(o.y-=(1+i)*t.r,s.ty-=t.titleBox.height):-1!==a.title.position.indexOf("bottom")&&(o.y+=(1+i)*t.r);var l,c,u=(l=t.r,c=t.trace.aspectratio,l/(void 0===c?1:c)),f=e.w*(a.domain.x[1]-a.domain.x[0])/2;return-1!==a.title.position.indexOf("left")?(f+=u,o.x-=(1+i)*u,s.tx+=t.titleBox.width/2):-1!==a.title.position.indexOf("center")?f*=2:-1!==a.title.position.indexOf("right")&&(f+=u,o.x+=(1+i)*u,s.tx-=t.titleBox.width/2),r=f/t.titleBox.width,n=P(t,e)/t.titleBox.height,{x:o.x,y:o.y,scale:Math.min(r,n),tx:s.tx,ty:s.ty}}function P(t,e){var r=t.trace,n=e.h*(r.domain.y[1]-r.domain.y[0]);return Math.min(t.titleBox.height,n/2)}function I(t){var e,r=t.pull;if(!r)return 0;if(Array.isArray(r))for(r=0,e=0;er&&(r=t.pull[e]);return r}function O(t,e){for(var r=[],n=0;n1?(c=r.r,u=c/i.aspectratio):(u=r.r,c=u*i.aspectratio),c*=(1+i.baseratio)/2,l=c*u}o=Math.min(o,l/r.vTotal)}for(n=0;n")}if(a){var x=l.castOption(i,e.i,"texttemplate");if(x){var b=function(t){return{label:t.label,value:t.v,valueLabel:g.formatPieValue(t.v,n.separators),percent:t.v/r.vTotal,percentLabel:g.formatPiePercent(t.v/r.vTotal,n.separators),color:t.color,text:t.text,customdata:l.castOption(i,t.i,"customdata")}}(e),_=g.getFirstFilled(i.text,e.pts);(y(_)||""===_)&&(b.text=_),e.text=l.texttemplateString(x,b,t._fullLayout._d3locale,b,i._meta||{})}else e.text=""}}function R(t,e){var r=t.rotate*Math.PI/180,n=Math.cos(r),i=Math.sin(r),a=(e.left+e.right)/2,o=(e.top+e.bottom)/2;t.textX=a*n-o*i,t.textY=a*i+o*n,t.noCenter=!0}e.exports={plot:function(t,e){var r=t._fullLayout,a=r._size;d("pie",r),_(e,t),O(e,a);var h=l.makeTraceGroups(r._pielayer,e,"trace").each((function(e){var h=n.select(this),d=e[0],m=d.trace;!function(t){var e,r,n,i=t[0],a=i.r,o=i.trace,s=g.getRotationAngle(o.rotation),l=2*Math.PI/i.vTotal,c="px0",u="px1";if("counterclockwise"===o.direction){for(e=0;ei.vTotal/2?1:0,r.halfangle=Math.PI*Math.min(r.v/i.vTotal,.5),r.ring=1-o.hole,r.rInscribed=E(r,i))}(e),h.attr("stroke-linejoin","round"),h.each((function(){var v=n.select(this).selectAll("g.slice").data(e);v.enter().append("g").classed("slice",!0),v.exit().remove();var y=[[[],[]],[[],[]]],_=!1;v.each((function(i,a){if(i.hidden)n.select(this).selectAll("path,g").remove();else{i.pointNumber=i.i,i.curveNumber=m.index,y[i.pxmid[1]<0?0:1][i.pxmid[0]<0?0:1].push(i);var o=d.cx,c=d.cy,u=n.select(this),h=u.selectAll("path.surface").data([i]);if(h.enter().append("path").classed("surface",!0).style({"pointer-events":"all"}),u.call(x,t,e),m.pull){var v=+g.castOption(m.pull,i.pts)||0;v>0&&(o+=v*i.pxmid[0],c+=v*i.pxmid[1])}i.cxFinal=o,i.cyFinal=c;var T=m.hole;if(i.v===d.vTotal){var k="M"+(o+i.px0[0])+","+(c+i.px0[1])+C(i.px0,i.pxmid,!0,1)+C(i.pxmid,i.px0,!0,1)+"Z";T?h.attr("d","M"+(o+T*i.px0[0])+","+(c+T*i.px0[1])+C(i.px0,i.pxmid,!1,T)+C(i.pxmid,i.px0,!1,T)+"Z"+k):h.attr("d",k)}else{var A=C(i.px0,i.px1,!0,1);if(T){var M=1-T;h.attr("d","M"+(o+T*i.px1[0])+","+(c+T*i.px1[1])+C(i.px1,i.px0,!1,T)+"l"+M*i.px0[0]+","+M*i.px0[1]+A+"Z")}else h.attr("d","M"+o+","+c+"l"+i.px0[0]+","+i.px0[1]+A+"Z")}D(t,i,d);var S=g.castOption(m.textposition,i.pts),E=u.selectAll("g.slicetext").data(i.text&&"none"!==S?[0]:[]);E.enter().append("g").classed("slicetext",!0),E.exit().remove(),E.each((function(){var u=l.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),h=l.ensureUniformFontSize(t,"outside"===S?function(t,e,r){var n=g.castOption(t.outsidetextfont.color,e.pts)||g.castOption(t.textfont.color,e.pts)||r.color,i=g.castOption(t.outsidetextfont.family,e.pts)||g.castOption(t.textfont.family,e.pts)||r.family,a=g.castOption(t.outsidetextfont.size,e.pts)||g.castOption(t.textfont.size,e.pts)||r.size;return{color:n,family:i,size:a}}(m,i,r.font):b(m,i,r.font));u.text(i.text).attr({class:"slicetext",transform:"","text-anchor":"middle"}).call(s.font,h).call(f.convertToTspans,t);var v,y=s.bBox(u.node());if("outside"===S)v=L(y,i);else if(v=w(y,i,d),"auto"===S&&v.scale<1){var x=l.ensureUniformFontSize(t,m.outsidetextfont);u.call(s.font,x),v=L(y=s.bBox(u.node()),i)}var T=v.textPosAngle,k=void 0===T?i.pxmid:z(d.r,T);if(v.targetX=o+k[0]*v.rCenter+(v.x||0),v.targetY=c+k[1]*v.rCenter+(v.y||0),R(v,y),v.outside){var A=v.targetY;i.yLabelMin=A-y.height/2,i.yLabelMid=A,i.yLabelMax=A+y.height/2,i.labelExtraX=0,i.labelExtraY=0,_=!0}v.fontSize=h.size,p(m.type,v,r),e[a].transform=v,u.attr("transform",l.getTextTransform(v))}))}function C(t,e,r,n){var a=n*(e[0]-t[0]),o=n*(e[1]-t[1]);return"a"+n*d.r+","+n*d.r+" 0 "+i.largeArc+(r?" 1 ":" 0 ")+a+","+o}}));var T=n.select(this).selectAll("g.titletext").data(m.title.text?[0]:[]);if(T.enter().append("g").classed("titletext",!0),T.exit().remove(),T.each((function(){var e,r=l.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),i=m.title.text;m._meta&&(i=l.templateString(i,m._meta)),r.text(i).attr({class:"titletext",transform:"","text-anchor":"middle"}).call(s.font,m.title.font).call(f.convertToTspans,t),e="middle center"===m.title.position?function(t){var e=Math.sqrt(t.titleBox.width*t.titleBox.width+t.titleBox.height*t.titleBox.height);return{x:t.cx,y:t.cy,scale:t.trace.hole*t.r*2/e,tx:0,ty:-t.titleBox.height/2+t.trace.title.font.size}}(d):C(d,a),r.attr("transform",u(e.x,e.y)+c(Math.min(1,e.scale))+u(e.tx,e.ty))})),_&&function(t,e){var r,n,i,a,o,s,l,c,u,f,h,p,d;function m(t,e){return t.pxmid[1]-e.pxmid[1]}function v(t,e){return e.pxmid[1]-t.pxmid[1]}function y(t,r){r||(r={});var i,c,u,h,p=r.labelExtraY+(n?r.yLabelMax:r.yLabelMin),d=n?t.yLabelMin:t.yLabelMax,m=n?t.yLabelMax:t.yLabelMin,v=t.cyFinal+o(t.px0[1],t.px1[1]),y=p-d;if(y*l>0&&(t.labelExtraY=y),Array.isArray(e.pull))for(c=0;c=(g.castOption(e.pull,u.pts)||0)||((t.pxmid[1]-u.pxmid[1])*l>0?(y=u.cyFinal+o(u.px0[1],u.px1[1])-d-t.labelExtraY)*l>0&&(t.labelExtraY+=y):(m+t.labelExtraY-v)*l>0&&(i=3*s*Math.abs(c-f.indexOf(t)),(h=u.cxFinal+a(u.px0[0],u.px1[0])+i-(t.cxFinal+t.pxmid[0])-t.labelExtraX)*s>0&&(t.labelExtraX+=h)))}for(n=0;n<2;n++)for(i=n?m:v,o=n?Math.max:Math.min,l=n?1:-1,r=0;r<2;r++){for(a=r?Math.max:Math.min,s=r?1:-1,(c=t[n][r]).sort(i),u=t[1-n][r],f=u.concat(c),p=[],h=0;hMath.abs(f)?s+="l"+f*t.pxmid[0]/t.pxmid[1]+","+f+"H"+(a+t.labelExtraX+c):s+="l"+t.labelExtraX+","+u+"v"+(f-u)+"h"+c}else s+="V"+(t.yLabelMid+t.labelExtraY)+"h"+c;l.ensureSingle(r,"path","textline").call(o.stroke,e.outsidetextfont.color).attr({"stroke-width":Math.min(2,e.outsidetextfont.size/8),d:s,fill:"none"})}else r.select("path.textline").remove()}))}(v,m),_&&m.automargin){var k=s.bBox(h.node()),A=m.domain,M=a.w*(A.x[1]-A.x[0]),S=a.h*(A.y[1]-A.y[0]),E=(.5*M-d.r)/a.w,P=(.5*S-d.r)/a.h;i.autoMargin(t,"pie."+m.uid+".automargin",{xl:A.x[0]-E,xr:A.x[1]+E,yb:A.y[0]-P,yt:A.y[1]+P,l:Math.max(d.cx-d.r-k.left,0),r:Math.max(k.right-(d.cx+d.r),0),b:Math.max(k.bottom-(d.cy+d.r),0),t:Math.max(d.cy-d.r-k.top,0),pad:5})}}))}));setTimeout((function(){h.selectAll("tspan").each((function(){var t=n.select(this);t.attr("dy")&&t.attr("dy",t.attr("dy"))}))}),0)},formatSliceLabel:D,transformInsideText:w,determineInsideTextFont:b,positionTitleOutside:C,prerenderTitles:_,layoutAreas:O,attachFxHandlers:x,computeTransform:R}},{"../../components/color":361,"../../components/drawing":383,"../../components/fx":401,"../../lib":498,"../../lib/svg_text_utils":524,"../../plots/plots":614,"../bar/constants":645,"../bar/uniform_text":659,"./event_data":900,"./helpers":901,"@plotly/d3":58}],906:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("./style_one"),a=t("../bar/uniform_text").resizeText;e.exports=function(t){var e=t._fullLayout._pielayer.selectAll(".trace");a(t,e,"pie"),e.each((function(t){var e=t[0].trace,r=n.select(this);r.style({opacity:e.opacity}),r.selectAll("path.surface").each((function(t){n.select(this).call(i,t,e)}))}))}},{"../bar/uniform_text":659,"./style_one":907,"@plotly/d3":58}],907:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("./helpers").castOption;e.exports=function(t,e,r){var a=r.marker.line,o=i(a.color,e.pts)||n.defaultLine,s=i(a.width,e.pts)||0;t.style("stroke-width",s).call(n.fill,e.color).call(n.stroke,o)}},{"../../components/color":361,"./helpers":901}],908:[function(t,e,r){"use strict";var n=t("../scatter/attributes");e.exports={x:n.x,y:n.y,xy:{valType:"data_array",editType:"calc"},indices:{valType:"data_array",editType:"calc"},xbounds:{valType:"data_array",editType:"calc"},ybounds:{valType:"data_array",editType:"calc"},text:n.text,marker:{color:{valType:"color",arrayOk:!1,editType:"calc"},opacity:{valType:"number",min:0,max:1,dflt:1,arrayOk:!1,editType:"calc"},blend:{valType:"boolean",dflt:null,editType:"calc"},sizemin:{valType:"number",min:.1,max:2,dflt:.5,editType:"calc"},sizemax:{valType:"number",min:.1,dflt:20,editType:"calc"},border:{color:{valType:"color",arrayOk:!1,editType:"calc"},arearatio:{valType:"number",min:0,max:1,dflt:0,editType:"calc"},editType:"calc"},editType:"calc"},transforms:void 0}},{"../scatter/attributes":922}],909:[function(t,e,r){"use strict";var n=t("../../../stackgl_modules").gl_pointcloud2d,i=t("../../lib/str2rgbarray"),a=t("../../plots/cartesian/autorange").findExtremes,o=t("../scatter/get_trace_color");function s(t,e){this.scene=t,this.uid=e,this.type="pointcloud",this.pickXData=[],this.pickYData=[],this.xData=[],this.yData=[],this.textLabels=[],this.color="rgb(0, 0, 0)",this.name="",this.hoverinfo="all",this.idToIndex=new Int32Array(0),this.bounds=[0,0,0,0],this.pointcloudOptions={positions:new Float32Array(0),idToIndex:this.idToIndex,sizemin:.5,sizemax:12,color:[0,0,0,1],areaRatio:1,borderColor:[0,0,0,1]},this.pointcloud=n(t.glplot,this.pointcloudOptions),this.pointcloud._trace=this}var l=s.prototype;l.handlePick=function(t){var e=this.idToIndex[t.pointId];return{trace:this,dataCoord:t.dataCoord,traceCoord:this.pickXYData?[this.pickXYData[2*e],this.pickXYData[2*e+1]]:[this.pickXData[e],this.pickYData[e]],textLabel:Array.isArray(this.textLabels)?this.textLabels[e]:this.textLabels,color:this.color,name:this.name,pointIndex:e,hoverinfo:this.hoverinfo}},l.update=function(t){this.index=t.index,this.textLabels=t.text,this.name=t.name,this.hoverinfo=t.hoverinfo,this.bounds=[1/0,1/0,-1/0,-1/0],this.updateFast(t),this.color=o(t,{})},l.updateFast=function(t){var e,r,n,o,s,l,c=this.xData=this.pickXData=t.x,u=this.yData=this.pickYData=t.y,f=this.pickXYData=t.xy,h=t.xbounds&&t.ybounds,p=t.indices,d=this.bounds;if(f){if(n=f,e=f.length>>>1,h)d[0]=t.xbounds[0],d[2]=t.xbounds[1],d[1]=t.ybounds[0],d[3]=t.ybounds[1];else for(l=0;ld[2]&&(d[2]=o),sd[3]&&(d[3]=s);if(p)r=p;else for(r=new Int32Array(e),l=0;ld[2]&&(d[2]=o),sd[3]&&(d[3]=s);this.idToIndex=r,this.pointcloudOptions.idToIndex=r,this.pointcloudOptions.positions=n;var m=i(t.marker.color),g=i(t.marker.border.color),v=t.opacity*t.marker.opacity;m[3]*=v,this.pointcloudOptions.color=m;var y=t.marker.blend;if(null===y){y=c.length<100||u.length<100}this.pointcloudOptions.blend=y,g[3]*=v,this.pointcloudOptions.borderColor=g;var x=t.marker.sizemin,b=Math.max(t.marker.sizemax,t.marker.sizemin);this.pointcloudOptions.sizeMin=x,this.pointcloudOptions.sizeMax=b,this.pointcloudOptions.areaRatio=t.marker.border.arearatio,this.pointcloud.update(this.pointcloudOptions);var _=this.scene.xaxis,w=this.scene.yaxis,T=b/2||.5;t._extremes[_._id]=a(_,[d[0],d[2]],{ppad:T}),t._extremes[w._id]=a(w,[d[1],d[3]],{ppad:T})},l.dispose=function(){this.pointcloud.dispose()},e.exports=function(t,e){var r=new s(t,e.uid);return r.update(e),r}},{"../../../stackgl_modules":1119,"../../lib/str2rgbarray":523,"../../plots/cartesian/autorange":548,"../scatter/get_trace_color":932}],910:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes");e.exports=function(t,e,r){function a(r,a){return n.coerce(t,e,i,r,a)}a("x"),a("y"),a("xbounds"),a("ybounds"),t.xy&&t.xy instanceof Float32Array&&(e.xy=t.xy),t.indices&&t.indices instanceof Int32Array&&(e.indices=t.indices),a("text"),a("marker.color",r),a("marker.opacity"),a("marker.blend"),a("marker.sizemin"),a("marker.sizemax"),a("marker.border.color",r),a("marker.border.arearatio"),e._length=null}},{"../../lib":498,"./attributes":908}],911:[function(t,e,r){"use strict";["*pointcloud* trace is deprecated!","Please consider switching to the *scattergl* trace type."].join(" ");e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("../scatter3d/calc"),plot:t("./convert"),moduleType:"trace",name:"pointcloud",basePlotModule:t("../../plots/gl2d"),categories:["gl","gl2d","showLegend"],meta:{}}},{"../../plots/gl2d":591,"../scatter3d/calc":951,"./attributes":908,"./convert":909,"./defaults":910}],912:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("../../plots/attributes"),a=t("../../components/color/attributes"),o=t("../../components/fx/attributes"),s=t("../../plots/domain").attributes,l=t("../../plots/template_attributes").hovertemplateAttrs,c=t("../../components/colorscale/attributes"),u=t("../../plot_api/plot_template").templatedArray,f=t("../../plots/cartesian/axis_format_attributes").descriptionOnlyNumbers,h=t("../../lib/extend").extendFlat,p=t("../../plot_api/edit_types").overrideAll;(e.exports=p({hoverinfo:h({},i.hoverinfo,{flags:[],arrayOk:!1}),hoverlabel:o.hoverlabel,domain:s({name:"sankey",trace:!0}),orientation:{valType:"enumerated",values:["v","h"],dflt:"h"},valueformat:{valType:"string",dflt:".3s",description:f("value")},valuesuffix:{valType:"string",dflt:""},arrangement:{valType:"enumerated",values:["snap","perpendicular","freeform","fixed"],dflt:"snap"},textfont:n({}),customdata:void 0,node:{label:{valType:"data_array",dflt:[]},groups:{valType:"info_array",impliedEdits:{x:[],y:[]},dimensions:2,freeLength:!0,dflt:[],items:{valType:"number",editType:"calc"}},x:{valType:"data_array",dflt:[]},y:{valType:"data_array",dflt:[]},color:{valType:"color",arrayOk:!0},customdata:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:a.defaultLine,arrayOk:!0},width:{valType:"number",min:0,dflt:.5,arrayOk:!0}},pad:{valType:"number",arrayOk:!1,min:0,dflt:20},thickness:{valType:"number",arrayOk:!1,min:1,dflt:20},hoverinfo:{valType:"enumerated",values:["all","none","skip"],dflt:"all"},hoverlabel:o.hoverlabel,hovertemplate:l({},{keys:["value","label"]})},link:{label:{valType:"data_array",dflt:[]},color:{valType:"color",arrayOk:!0},customdata:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:a.defaultLine,arrayOk:!0},width:{valType:"number",min:0,dflt:0,arrayOk:!0}},source:{valType:"data_array",dflt:[]},target:{valType:"data_array",dflt:[]},value:{valType:"data_array",dflt:[]},hoverinfo:{valType:"enumerated",values:["all","none","skip"],dflt:"all"},hoverlabel:o.hoverlabel,hovertemplate:l({},{keys:["value","label"]}),colorscales:u("concentrationscales",{editType:"calc",label:{valType:"string",editType:"calc",dflt:""},cmax:{valType:"number",editType:"calc",dflt:1},cmin:{valType:"number",editType:"calc",dflt:0},colorscale:h(c().colorscale,{dflt:[[0,"white"],[1,"black"]]})})}},"calc","nested")).transforms=void 0},{"../../components/color/attributes":360,"../../components/colorscale/attributes":368,"../../components/fx/attributes":392,"../../lib/extend":488,"../../plot_api/edit_types":531,"../../plot_api/plot_template":538,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/domain":579,"../../plots/font_attributes":580,"../../plots/template_attributes":628}],913:[function(t,e,r){"use strict";var n=t("../../plot_api/edit_types").overrideAll,i=t("../../plots/get_data").getModuleCalcData,a=t("./plot"),o=t("../../components/fx/layout_attributes"),s=t("../../lib/setcursor"),l=t("../../components/dragelement"),c=t("../../plots/cartesian/select").prepSelect,u=t("../../lib"),f=t("../../registry");function h(t,e){var r=t._fullData[e],n=t._fullLayout,i=n.dragmode,a="pan"===n.dragmode?"move":"crosshair",o=r._bgRect;if("pan"!==i&&"zoom"!==i){s(o,a);var h={_id:"x",c2p:u.identity,_offset:r._sankey.translateX,_length:r._sankey.width},p={_id:"y",c2p:u.identity,_offset:r._sankey.translateY,_length:r._sankey.height},d={gd:t,element:o.node(),plotinfo:{id:e,xaxis:h,yaxis:p,fillRangeItems:u.noop},subplot:e,xaxes:[h],yaxes:[p],doneFnCompleted:function(r){var n,i=t._fullData[e],a=i.node.groups.slice(),o=[];function s(t){for(var e=i._sankey.graph.nodes,r=0;ry&&(y=a.source[e]),a.target[e]>y&&(y=a.target[e]);var x,b=y+1;t.node._count=b;var _=t.node.groups,w={};for(e=0;e<_.length;e++){var T=_[e];for(x=0;x0&&s(E,b)&&s(L,b)&&(!w.hasOwnProperty(E)||!w.hasOwnProperty(L)||w[E]!==w[L])){w.hasOwnProperty(L)&&(L=w[L]),w.hasOwnProperty(E)&&(E=w[E]),L=+L,h[E=+E]=h[L]=!0;var C="";a.label&&a.label[e]&&(C=a.label[e]);var P=null;C&&p.hasOwnProperty(C)&&(P=p[C]),c.push({pointNumber:e,label:C,color:u?a.color[e]:a.color,customdata:f?a.customdata[e]:a.customdata,concentrationscale:P,source:E,target:L,value:+S}),M.source.push(E),M.target.push(L)}}var I=b+_.length,O=o(r.color),z=o(r.customdata),D=[];for(e=0;eb-1,childrenNodes:[],pointNumber:e,label:R,color:O?r.color[e]:r.color,customdata:z?r.customdata[e]:r.customdata})}var F=!1;return function(t,e,r){for(var a=i.init2dArray(t,0),o=0;o1}))}(I,M.source,M.target)&&(F=!0),{circular:F,links:c,nodes:D,groups:_,groupLookup:w}}e.exports=function(t,e){var r=c(e);return a({circular:r.circular,_nodes:r.nodes,_links:r.links,_groups:r.groups,_groupLookup:r.groupLookup})}},{"../../components/colorscale":373,"../../lib":498,"../../lib/gup":495,"strongly-connected-components":301}],915:[function(t,e,r){"use strict";e.exports={nodeTextOffsetHorizontal:4,nodeTextOffsetVertical:3,nodePadAcross:10,sankeyIterations:50,forceIterations:5,forceTicksPerFrame:10,duration:500,ease:"linear",cn:{sankey:"sankey",sankeyLinks:"sankey-links",sankeyLink:"sankey-link",sankeyNodeSet:"sankey-node-set",sankeyNode:"sankey-node",nodeRect:"node-rect",nodeLabel:"node-label"}}},{}],916:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../components/color"),o=t("tinycolor2"),s=t("../../plots/domain").defaults,l=t("../../components/fx/hoverlabel_defaults"),c=t("../../plot_api/plot_template"),u=t("../../plots/array_container_defaults");function f(t,e){function r(r,a){return n.coerce(t,e,i.link.colorscales,r,a)}r("label"),r("cmin"),r("cmax"),r("colorscale")}e.exports=function(t,e,r,h){function p(r,a){return n.coerce(t,e,i,r,a)}var d=n.extendDeep(h.hoverlabel,t.hoverlabel),m=t.node,g=c.newContainer(e,"node");function v(t,e){return n.coerce(m,g,i.node,t,e)}v("label"),v("groups"),v("x"),v("y"),v("pad"),v("thickness"),v("line.color"),v("line.width"),v("hoverinfo",t.hoverinfo),l(m,g,v,d),v("hovertemplate");var y=h.colorway;v("color",g.label.map((function(t,e){return a.addOpacity(function(t){return y[t%y.length]}(e),.8)}))),v("customdata");var x=t.link||{},b=c.newContainer(e,"link");function _(t,e){return n.coerce(x,b,i.link,t,e)}_("label"),_("source"),_("target"),_("value"),_("line.color"),_("line.width"),_("hoverinfo",t.hoverinfo),l(x,b,_,d),_("hovertemplate");var w,T=o(h.paper_bgcolor).getLuminance()<.333?"rgba(255, 255, 255, 0.6)":"rgba(0, 0, 0, 0.2)";_("color",n.repeat(T,b.value.length)),_("customdata"),u(x,b,{name:"colorscales",handleItemDefaults:f}),s(e,h,p),p("orientation"),p("valueformat"),p("valuesuffix"),g.x.length&&g.y.length&&(w="freeform"),p("arrangement",w),n.coerceFont(p,"textfont",n.extendFlat({},h.font)),e._length=null}},{"../../components/color":361,"../../components/fx/hoverlabel_defaults":399,"../../lib":498,"../../plot_api/plot_template":538,"../../plots/array_container_defaults":544,"../../plots/domain":579,"./attributes":912,tinycolor2:307}],917:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),moduleType:"trace",name:"sankey",basePlotModule:t("./base_plot"),selectPoints:t("./select.js"),categories:["noOpacity"],meta:{}}},{"./attributes":912,"./base_plot":913,"./calc":914,"./defaults":916,"./plot":918,"./select.js":920}],918:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.numberFormat,o=t("./render"),s=t("../../components/fx"),l=t("../../components/color"),c=t("./constants").cn,u=i._;function f(t){return""!==t}function h(t,e){return t.filter((function(t){return t.key===e.traceId}))}function p(t,e){n.select(t).select("path").style("fill-opacity",e),n.select(t).select("rect").style("fill-opacity",e)}function d(t){n.select(t).select("text.name").style("fill","black")}function m(t){return function(e){return-1!==t.node.sourceLinks.indexOf(e.link)||-1!==t.node.targetLinks.indexOf(e.link)}}function g(t){return function(e){return-1!==e.node.sourceLinks.indexOf(t.link)||-1!==e.node.targetLinks.indexOf(t.link)}}function v(t,e,r){e&&r&&h(r,e).selectAll("."+c.sankeyLink).filter(m(e)).call(x.bind(0,e,r,!1))}function y(t,e,r){e&&r&&h(r,e).selectAll("."+c.sankeyLink).filter(m(e)).call(b.bind(0,e,r,!1))}function x(t,e,r,n){var i=n.datum().link.label;n.style("fill-opacity",(function(t){if(!t.link.concentrationscale)return.4})),i&&h(e,t).selectAll("."+c.sankeyLink).filter((function(t){return t.link.label===i})).style("fill-opacity",(function(t){if(!t.link.concentrationscale)return.4})),r&&h(e,t).selectAll("."+c.sankeyNode).filter(g(t)).call(v)}function b(t,e,r,n){var i=n.datum().link.label;n.style("fill-opacity",(function(t){return t.tinyColorAlpha})),i&&h(e,t).selectAll("."+c.sankeyLink).filter((function(t){return t.link.label===i})).style("fill-opacity",(function(t){return t.tinyColorAlpha})),r&&h(e,t).selectAll(c.sankeyNode).filter(g(t)).call(y)}function _(t,e){var r=t.hoverlabel||{},n=i.nestedProperty(r,e).get();return!Array.isArray(n)&&n}e.exports=function(t,e){for(var r=t._fullLayout,i=r._paper,h=r._size,m=0;m"),color:_(o,"bgcolor")||l.addOpacity(m.color,1),borderColor:_(o,"bordercolor"),fontFamily:_(o,"font.family"),fontSize:_(o,"font.size"),fontColor:_(o,"font.color"),nameLength:_(o,"namelength"),textAlign:_(o,"align"),idealAlign:n.event.x"),color:_(o,"bgcolor")||i.tinyColorHue,borderColor:_(o,"bordercolor"),fontFamily:_(o,"font.family"),fontSize:_(o,"font.size"),fontColor:_(o,"font.color"),nameLength:_(o,"namelength"),textAlign:_(o,"align"),idealAlign:"left",hovertemplate:o.hovertemplate,hovertemplateLabels:y,eventData:[i.node]},{container:r._hoverlayer.node(),outerContainer:r._paper.node(),gd:t});p(w,.85),d(w)}}},unhover:function(e,i,a){!1!==t._fullLayout.hovermode&&(n.select(e).call(y,i,a),"skip"!==i.node.trace.node.hoverinfo&&(i.node.fullData=i.node.trace,t.emit("plotly_unhover",{event:n.event,points:[i.node]})),s.loneUnhover(r._hoverlayer.node()))},select:function(e,r,i){var a=r.node;a.originalEvent=n.event,t._hoverdata=[a],n.select(e).call(y,r,i),s.click(t,{target:!0})}}})}},{"../../components/color":361,"../../components/fx":401,"../../lib":498,"./constants":915,"./render":919,"@plotly/d3":58}],919:[function(t,e,r){"use strict";var n=t("d3-force"),i=t("d3-interpolate").interpolateNumber,a=t("@plotly/d3"),o=t("@plotly/d3-sankey"),s=t("@plotly/d3-sankey-circular"),l=t("./constants"),c=t("tinycolor2"),u=t("../../components/color"),f=t("../../components/drawing"),h=t("../../lib"),p=h.strTranslate,d=h.strRotate,m=t("../../lib/gup"),g=m.keyFun,v=m.repeat,y=m.unwrap,x=t("../../lib/svg_text_utils"),b=t("../../registry"),_=t("../../constants/alignment"),w=_.CAP_SHIFT,T=_.LINE_SPACING;function k(t,e,r){var n,i=y(e),a=i.trace,u=a.domain,f="h"===a.orientation,p=a.node.pad,d=a.node.thickness,m=t.width*(u.x[1]-u.x[0]),g=t.height*(u.y[1]-u.y[0]),v=i._nodes,x=i._links,b=i.circular;(n=b?s.sankeyCircular().circularLinkGap(0):o.sankey()).iterations(l.sankeyIterations).size(f?[m,g]:[g,m]).nodeWidth(d).nodePadding(p).nodeId((function(t){return t.pointNumber})).nodes(v).links(x);var _,w,T,k=n();for(var A in n.nodePadding()=i||(r=i-e.y0)>1e-6&&(e.y0+=r,e.y1+=r),i=e.y1+p}))}(function(t){var e,r,n=t.map((function(t,e){return{x0:t.x0,index:e}})).sort((function(t,e){return t.x0-e.x0})),i=[],a=-1,o=-1/0;for(_=0;_o+d&&(a+=1,e=s.x0),o=s.x0,i[a]||(i[a]=[]),i[a].push(s),r=e-s.x0,s.x0+=r,s.x1+=r}return i}(v=k.nodes));n.update(k)}return{circular:b,key:r,trace:a,guid:h.randstr(),horizontal:f,width:m,height:g,nodePad:a.node.pad,nodeLineColor:a.node.line.color,nodeLineWidth:a.node.line.width,linkLineColor:a.link.line.color,linkLineWidth:a.link.line.width,valueFormat:a.valueformat,valueSuffix:a.valuesuffix,textFont:a.textfont,translateX:u.x[0]*t.width+t.margin.l,translateY:t.height-u.y[1]*t.height+t.margin.t,dragParallel:f?g:m,dragPerpendicular:f?m:g,arrangement:a.arrangement,sankey:n,graph:k,forceLayouts:{},interactionState:{dragInProgress:!1,hovered:!1}}}function A(t,e,r){var n=c(e.color),i=e.source.label+"|"+e.target.label+"__"+r;return e.trace=t.trace,e.curveNumber=t.trace.index,{circular:t.circular,key:i,traceId:t.key,pointNumber:e.pointNumber,link:e,tinyColorHue:u.tinyRGB(n),tinyColorAlpha:n.getAlpha(),linkPath:M,linkLineColor:t.linkLineColor,linkLineWidth:t.linkLineWidth,valueFormat:t.valueFormat,valueSuffix:t.valueSuffix,sankey:t.sankey,parent:t,interactionState:t.interactionState,flow:e.flow}}function M(){return function(t){if(t.link.circular)return e=t.link,r=e.width/2,n=e.circularPathData,"top"===e.circularLinkType?"M "+n.targetX+" "+(n.targetY+r)+" L"+n.rightInnerExtent+" "+(n.targetY+r)+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightSmallArcRadius+r)+" 0 0 1 "+(n.rightFullExtent-r)+" "+(n.targetY-n.rightSmallArcRadius)+"L"+(n.rightFullExtent-r)+" "+n.verticalRightInnerExtent+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightLargeArcRadius+r)+" 0 0 1 "+n.rightInnerExtent+" "+(n.verticalFullExtent-r)+"L"+n.leftInnerExtent+" "+(n.verticalFullExtent-r)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftLargeArcRadius+r)+" 0 0 1 "+(n.leftFullExtent+r)+" "+n.verticalLeftInnerExtent+"L"+(n.leftFullExtent+r)+" "+(n.sourceY-n.leftSmallArcRadius)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftSmallArcRadius+r)+" 0 0 1 "+n.leftInnerExtent+" "+(n.sourceY+r)+"L"+n.sourceX+" "+(n.sourceY+r)+"L"+n.sourceX+" "+(n.sourceY-r)+"L"+n.leftInnerExtent+" "+(n.sourceY-r)+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftSmallArcRadius-r)+" 0 0 0 "+(n.leftFullExtent-r)+" "+(n.sourceY-n.leftSmallArcRadius)+"L"+(n.leftFullExtent-r)+" "+n.verticalLeftInnerExtent+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftLargeArcRadius-r)+" 0 0 0 "+n.leftInnerExtent+" "+(n.verticalFullExtent+r)+"L"+n.rightInnerExtent+" "+(n.verticalFullExtent+r)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightLargeArcRadius-r)+" 0 0 0 "+(n.rightFullExtent+r)+" "+n.verticalRightInnerExtent+"L"+(n.rightFullExtent+r)+" "+(n.targetY-n.rightSmallArcRadius)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightSmallArcRadius-r)+" 0 0 0 "+n.rightInnerExtent+" "+(n.targetY-r)+"L"+n.targetX+" "+(n.targetY-r)+"Z":"M "+n.targetX+" "+(n.targetY-r)+" L"+n.rightInnerExtent+" "+(n.targetY-r)+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightSmallArcRadius+r)+" 0 0 0 "+(n.rightFullExtent-r)+" "+(n.targetY+n.rightSmallArcRadius)+"L"+(n.rightFullExtent-r)+" "+n.verticalRightInnerExtent+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightLargeArcRadius+r)+" 0 0 0 "+n.rightInnerExtent+" "+(n.verticalFullExtent+r)+"L"+n.leftInnerExtent+" "+(n.verticalFullExtent+r)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftLargeArcRadius+r)+" 0 0 0 "+(n.leftFullExtent+r)+" "+n.verticalLeftInnerExtent+"L"+(n.leftFullExtent+r)+" "+(n.sourceY+n.leftSmallArcRadius)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftSmallArcRadius+r)+" 0 0 0 "+n.leftInnerExtent+" "+(n.sourceY-r)+"L"+n.sourceX+" "+(n.sourceY-r)+"L"+n.sourceX+" "+(n.sourceY+r)+"L"+n.leftInnerExtent+" "+(n.sourceY+r)+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftSmallArcRadius-r)+" 0 0 1 "+(n.leftFullExtent-r)+" "+(n.sourceY+n.leftSmallArcRadius)+"L"+(n.leftFullExtent-r)+" "+n.verticalLeftInnerExtent+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftLargeArcRadius-r)+" 0 0 1 "+n.leftInnerExtent+" "+(n.verticalFullExtent-r)+"L"+n.rightInnerExtent+" "+(n.verticalFullExtent-r)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightLargeArcRadius-r)+" 0 0 1 "+(n.rightFullExtent+r)+" "+n.verticalRightInnerExtent+"L"+(n.rightFullExtent+r)+" "+(n.targetY+n.rightSmallArcRadius)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightSmallArcRadius-r)+" 0 0 1 "+n.rightInnerExtent+" "+(n.targetY+r)+"L"+n.targetX+" "+(n.targetY+r)+"Z";var e,r,n,a=t.link.source.x1,o=t.link.target.x0,s=i(a,o),l=s(.5),c=s(.5),u=t.link.y0-t.link.width/2,f=t.link.y0+t.link.width/2,h=t.link.y1-t.link.width/2,p=t.link.y1+t.link.width/2;return"M"+a+","+u+"C"+l+","+u+" "+c+","+h+" "+o+","+h+"L"+o+","+p+"C"+c+","+p+" "+l+","+f+" "+a+","+f+"Z"}}function S(t,e){var r=c(e.color),n=l.nodePadAcross,i=t.nodePad/2;e.dx=e.x1-e.x0,e.dy=e.y1-e.y0;var a=e.dx,o=Math.max(.5,e.dy),s="node_"+e.pointNumber;return e.group&&(s=h.randstr()),e.trace=t.trace,e.curveNumber=t.trace.index,{index:e.pointNumber,key:s,partOfGroup:e.partOfGroup||!1,group:e.group,traceId:t.key,trace:t.trace,node:e,nodePad:t.nodePad,nodeLineColor:t.nodeLineColor,nodeLineWidth:t.nodeLineWidth,textFont:t.textFont,size:t.horizontal?t.height:t.width,visibleWidth:Math.ceil(a),visibleHeight:o,zoneX:-n,zoneY:-i,zoneWidth:a+2*n,zoneHeight:o+2*i,labelY:t.horizontal?e.dy/2+1:e.dx/2+1,left:1===e.originalLayer,sizeAcross:t.width,forceLayouts:t.forceLayouts,horizontal:t.horizontal,darkBackground:r.getBrightness()<=128,tinyColorHue:u.tinyRGB(r),tinyColorAlpha:r.getAlpha(),valueFormat:t.valueFormat,valueSuffix:t.valueSuffix,sankey:t.sankey,graph:t.graph,arrangement:t.arrangement,uniqueNodeLabelPathId:[t.guid,t.key,s].join("_"),interactionState:t.interactionState,figure:t}}function E(t){t.attr("transform",(function(t){return p(t.node.x0.toFixed(3),t.node.y0.toFixed(3))}))}function L(t){t.call(E)}function C(t,e){t.call(L),e.attr("d",M())}function P(t){t.attr("width",(function(t){return t.node.x1-t.node.x0})).attr("height",(function(t){return t.visibleHeight}))}function I(t){return t.link.width>1||t.linkLineWidth>0}function O(t){return p(t.translateX,t.translateY)+(t.horizontal?"matrix(1 0 0 1 0 0)":"matrix(0 1 1 0 0 0)")}function z(t,e,r){t.on(".basic",null).on("mouseover.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.hover(this,t,e),t.interactionState.hovered=[this,t])})).on("mousemove.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.follow(this,t),t.interactionState.hovered=[this,t])})).on("mouseout.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.unhover(this,t,e),t.interactionState.hovered=!1)})).on("click.basic",(function(t){t.interactionState.hovered&&(r.unhover(this,t,e),t.interactionState.hovered=!1),t.interactionState.dragInProgress||t.partOfGroup||r.select(this,t,e)}))}function D(t,e,r,i){var o=a.behavior.drag().origin((function(t){return{x:t.node.x0+t.visibleWidth/2,y:t.node.y0+t.visibleHeight/2}})).on("dragstart",(function(a){if("fixed"!==a.arrangement&&(h.ensureSingle(i._fullLayout._infolayer,"g","dragcover",(function(t){i._fullLayout._dragCover=t})),h.raiseToTop(this),a.interactionState.dragInProgress=a.node,F(a.node),a.interactionState.hovered&&(r.nodeEvents.unhover.apply(0,a.interactionState.hovered),a.interactionState.hovered=!1),"snap"===a.arrangement)){var o=a.traceId+"|"+a.key;a.forceLayouts[o]?a.forceLayouts[o].alpha(1):function(t,e,r,i){!function(t){for(var e=0;e0&&n.forceLayouts[e].alpha(0)}}(0,e,a,r)).stop()}(0,o,a),function(t,e,r,n,i){window.requestAnimationFrame((function a(){var o;for(o=0;o0)window.requestAnimationFrame(a);else{var s=r.node.originalX;r.node.x0=s-r.visibleWidth/2,r.node.x1=s+r.visibleWidth/2,R(r,i)}}))}(t,e,a,o,i)}})).on("drag",(function(r){if("fixed"!==r.arrangement){var n=a.event.x,i=a.event.y;"snap"===r.arrangement?(r.node.x0=n-r.visibleWidth/2,r.node.x1=n+r.visibleWidth/2,r.node.y0=i-r.visibleHeight/2,r.node.y1=i+r.visibleHeight/2):("freeform"===r.arrangement&&(r.node.x0=n-r.visibleWidth/2,r.node.x1=n+r.visibleWidth/2),i=Math.max(0,Math.min(r.size-r.visibleHeight/2,i)),r.node.y0=i-r.visibleHeight/2,r.node.y1=i+r.visibleHeight/2),F(r.node),"snap"!==r.arrangement&&(r.sankey.update(r.graph),C(t.filter(B(r)),e))}})).on("dragend",(function(t){if("fixed"!==t.arrangement){t.interactionState.dragInProgress=!1;for(var e=0;el&&C[v].gap;)v--;for(x=C[v].s,m=C.length-1;m>v;m--)C[m].s=x;for(;lM[u]&&u=0;i--){var a=t[i];if("scatter"===a.type&&a.xaxis===r.xaxis&&a.yaxis===r.yaxis){a.opacity=void 0;break}}}}}},{}],929:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./attributes"),o=t("./constants"),s=t("./subtypes"),l=t("./xy_defaults"),c=t("./period_defaults"),u=t("./stack_defaults"),f=t("./marker_defaults"),h=t("./line_defaults"),p=t("./line_shape_defaults"),d=t("./text_defaults"),m=t("./fillcolor_defaults"),g=t("../../lib").coercePattern;e.exports=function(t,e,r,v){function y(r,i){return n.coerce(t,e,a,r,i)}var x=l(t,e,v,y);if(x||(e.visible=!1),e.visible){c(t,e,v,y),y("xhoverformat"),y("yhoverformat");var b=u(t,e,v,y),_=!b&&x=Math.min(e,r)&&d<=Math.max(e,r)?0:1/0}var n=Math.max(3,t.mrc||0),i=1-1/n,a=Math.abs(h.c2p(t.x)-d);return a=Math.min(e,r)&&m<=Math.max(e,r)?0:1/0}var n=Math.max(3,t.mrc||0),i=1-1/n,a=Math.abs(p.c2p(t.y)-m);return aW!=(N=z[I][1])>=W&&(R=z[I-1][0],F=z[I][0],N-B&&(D=R+(F-R)*(W-B)/(N-B),H=Math.min(H,D),q=Math.max(q,D)));H=Math.max(H,0),q=Math.min(q,h._length);var X=s.defaultLine;return s.opacity(f.fillcolor)?X=f.fillcolor:s.opacity((f.line||{}).color)&&(X=f.line.color),n.extendFlat(t,{distance:t.maxHoverDistance,x0:H,x1:q,y0:W,y1:W,color:X,hovertemplate:!1}),delete t.index,f.text&&!Array.isArray(f.text)?t.text=String(f.text):t.text=f.name,[t]}}}},{"../../components/color":361,"../../components/fx":401,"../../lib":498,"../../registry":633,"./get_trace_color":932}],934:[function(t,e,r){"use strict";var n=t("./subtypes");e.exports={hasLines:n.hasLines,hasMarkers:n.hasMarkers,hasText:n.hasText,isBubble:n.isBubble,attributes:t("./attributes"),supplyDefaults:t("./defaults"),crossTraceDefaults:t("./cross_trace_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./cross_trace_calc"),arraysToCalcdata:t("./arrays_to_calcdata"),plot:t("./plot"),colorbar:t("./marker_colorbar"),formatLabels:t("./format_labels"),style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("./select"),animatable:!0,moduleType:"trace",name:"scatter",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","symbols","errorBarsOK","showLegend","scatter-like","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"./arrays_to_calcdata":921,"./attributes":922,"./calc":923,"./cross_trace_calc":927,"./cross_trace_defaults":928,"./defaults":929,"./format_labels":931,"./hover":933,"./marker_colorbar":940,"./plot":943,"./select":944,"./style":946,"./subtypes":947}],935:[function(t,e,r){"use strict";var n=t("../../lib").isArrayOrTypedArray,i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults");e.exports=function(t,e,r,o,s,l){var c=(t.marker||{}).color;(s("line.color",r),i(t,"line"))?a(t,e,o,s,{prefix:"line.",cLetter:"c"}):s("line.color",!n(c)&&c||r);s("line.width"),(l||{}).noDash||s("line.dash")}},{"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"../../lib":498}],936:[function(t,e,r){"use strict";var n=t("../../constants/numerical"),i=n.BADNUM,a=n.LOG_CLIP,o=a+.5,s=a-.5,l=t("../../lib"),c=l.segmentsIntersect,u=l.constrain,f=t("./constants");e.exports=function(t,e){var r,n,a,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S=e.xaxis,E=e.yaxis,L="log"===S.type,C="log"===E.type,P=S._length,I=E._length,O=e.connectGaps,z=e.baseTolerance,D=e.shape,R="linear"===D,F=e.fill&&"none"!==e.fill,B=[],N=f.minTolerance,j=t.length,U=new Array(j),V=0;function H(r){var n=t[r];if(!n)return!1;var a=e.linearized?S.l2p(n.x):S.c2p(n.x),l=e.linearized?E.l2p(n.y):E.c2p(n.y);if(a===i){if(L&&(a=S.c2p(n.x,!0)),a===i)return!1;C&&l===i&&(a*=Math.abs(S._m*I*(S._m>0?o:s)/(E._m*P*(E._m>0?o:s)))),a*=1e3}if(l===i){if(C&&(l=E.c2p(n.y,!0)),l===i)return!1;l*=1e3}return[a,l]}function q(t,e,r,n){var i=r-t,a=n-e,o=.5-t,s=.5-e,l=i*i+a*a,c=i*o+a*s;if(c>0&&crt||t[1]it)return[u(t[0],et,rt),u(t[1],nt,it)]}function st(t,e){return t[0]===e[0]&&(t[0]===et||t[0]===rt)||(t[1]===e[1]&&(t[1]===nt||t[1]===it)||void 0)}function lt(t,e,r){return function(n,i){var a=ot(n),o=ot(i),s=[];if(a&&o&&st(a,o))return s;a&&s.push(a),o&&s.push(o);var c=2*l.constrain((n[t]+i[t])/2,e,r)-((a||n)[t]+(o||i)[t]);c&&((a&&o?c>0==a[t]>o[t]?a:o:a||o)[t]+=c);return s}}function ct(t){var e=t[0],r=t[1],n=e===U[V-1][0],i=r===U[V-1][1];if(!n||!i)if(V>1){var a=e===U[V-2][0],o=r===U[V-2][1];n&&(e===et||e===rt)&&a?o?V--:U[V-1]=t:i&&(r===nt||r===it)&&o?a?V--:U[V-1]=t:U[V++]=t}else U[V++]=t}function ut(t){U[V-1][0]!==t[0]&&U[V-1][1]!==t[1]&&ct([Z,J]),ct(t),K=null,Z=J=0}function ft(t){if(A=t[0]/P,M=t[1]/I,W=t[0]rt?rt:0,X=t[1]it?it:0,W||X){if(V)if(K){var e=$(K,t);e.length>1&&(ut(e[0]),U[V++]=e[1])}else Q=$(U[V-1],t)[0],U[V++]=Q;else U[V++]=[W||t[0],X||t[1]];var r=U[V-1];W&&X&&(r[0]!==W||r[1]!==X)?(K&&(Z!==W&&J!==X?ct(Z&&J?(n=K,a=(i=t)[0]-n[0],o=(i[1]-n[1])/a,(n[1]*i[0]-i[1]*n[0])/a>0?[o>0?et:rt,it]:[o>0?rt:et,nt]):[Z||W,J||X]):Z&&J&&ct([Z,J])),ct([W,X])):Z-W&&J-X&&ct([W||Z,X||J]),K=t,Z=W,J=X}else K&&ut($(K,t)[0]),U[V++]=t;var n,i,a,o}for("linear"===D||"spline"===D?$=function(t,e){for(var r=[],n=0,i=0;i<4;i++){var a=at[i],o=c(t[0],t[1],e[0],e[1],a[0],a[1],a[2],a[3]);o&&(!n||Math.abs(o.x-r[0][0])>1||Math.abs(o.y-r[0][1])>1)&&(o=[o.x,o.y],n&&Y(o,t)G(d,ht))break;a=d,(_=v[0]*g[0]+v[1]*g[1])>x?(x=_,h=d,m=!1):_=t.length||!d)break;ft(d),n=d}}else ft(h)}K&&ct([Z||K[0],J||K[1]]),B.push(U.slice(0,V))}return B}},{"../../constants/numerical":474,"../../lib":498,"./constants":926}],937:[function(t,e,r){"use strict";e.exports=function(t,e,r){"spline"===r("line.shape")&&r("line.smoothing")}},{}],938:[function(t,e,r){"use strict";var n={tonextx:1,tonexty:1,tonext:1};e.exports=function(t,e,r){var i,a,o,s,l,c={},u=!1,f=-1,h=0,p=-1;for(a=0;a=0?l=p:(l=p=h,h++),l0?Math.max(r,a):0}}},{"fast-isnumeric":185}],940:[function(t,e,r){"use strict";e.exports={container:"marker",min:"cmin",max:"cmax"}},{}],941:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults"),o=t("./subtypes");e.exports=function(t,e,r,s,l,c){var u=o.isBubble(t),f=(t.line||{}).color;(c=c||{},f&&(r=f),l("marker.symbol"),l("marker.opacity",u?.7:1),l("marker.size"),l("marker.color",r),i(t,"marker")&&a(t,e,s,l,{prefix:"marker.",cLetter:"c"}),c.noSelect||(l("selected.marker.color"),l("unselected.marker.color"),l("selected.marker.size"),l("unselected.marker.size")),c.noLine||(l("marker.line.color",f&&!Array.isArray(f)&&e.marker.color!==f?f:u?n.background:n.defaultLine),i(t,"marker.line")&&a(t,e,s,l,{prefix:"marker.line.",cLetter:"c"}),l("marker.line.width",u?1:0)),u&&(l("marker.sizeref"),l("marker.sizemin"),l("marker.sizemode")),c.gradient)&&("none"!==l("marker.gradient.type")&&l("marker.gradient.color"))}},{"../../components/color":361,"../../components/colorscale/defaults":371,"../../components/colorscale/helpers":372,"./subtypes":947}],942:[function(t,e,r){"use strict";var n=t("../../lib").dateTick0,i=t("../../constants/numerical").ONEWEEK;function a(t,e){return n(e,t%i==0?1:0)}e.exports=function(t,e,r,n,i){if(i||(i={x:!0,y:!0}),i.x){var o=n("xperiod");o&&(n("xperiod0",a(o,e.xcalendar)),n("xperiodalignment"))}if(i.y){var s=n("yperiod");s&&(n("yperiod0",a(s,e.ycalendar)),n("yperiodalignment"))}}},{"../../constants/numerical":474,"../../lib":498}],943:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../registry"),a=t("../../lib"),o=a.ensureSingle,s=a.identity,l=t("../../components/drawing"),c=t("./subtypes"),u=t("./line_points"),f=t("./link_traces"),h=t("../../lib/polygon").tester;function p(t,e,r,f,p,d,m){var g;!function(t,e,r,i,o){var s=r.xaxis,l=r.yaxis,u=n.extent(a.simpleMap(s.range,s.r2c)),f=n.extent(a.simpleMap(l.range,l.r2c)),h=i[0].trace;if(!c.hasMarkers(h))return;var p=h.marker.maxdisplayed;if(0===p)return;var d=i.filter((function(t){return t.x>=u[0]&&t.x<=u[1]&&t.y>=f[0]&&t.y<=f[1]})),m=Math.ceil(d.length/p),g=0;o.forEach((function(t,r){var n=t[0].trace;c.hasMarkers(n)&&n.marker.maxdisplayed>0&&r0;function y(t){return v?t.transition():t}var x=r.xaxis,b=r.yaxis,_=f[0].trace,w=_.line,T=n.select(d),k=o(T,"g","errorbars"),A=o(T,"g","lines"),M=o(T,"g","points"),S=o(T,"g","text");if(i.getComponentMethod("errorbars","plot")(t,k,r,m),!0===_.visible){var E,L;y(T).style("opacity",_.opacity);var C=_.fill.charAt(_.fill.length-1);"x"!==C&&"y"!==C&&(C=""),f[0][r.isRangePlot?"nodeRangePlot3":"node3"]=T;var P,I,O="",z=[],D=_._prevtrace;D&&(O=D._prevRevpath||"",L=D._nextFill,z=D._polygons);var R,F,B,N,j,U,V,H="",q="",G=[],Y=a.noop;if(E=_._ownFill,c.hasLines(_)||"none"!==_.fill){for(L&&L.datum(f),-1!==["hv","vh","hvh","vhv"].indexOf(w.shape)?(R=l.steps(w.shape),F=l.steps(w.shape.split("").reverse().join(""))):R=F="spline"===w.shape?function(t){var e=t[t.length-1];return t.length>1&&t[0][0]===e[0]&&t[0][1]===e[1]?l.smoothclosed(t.slice(1),w.smoothing):l.smoothopen(t,w.smoothing)}:function(t){return"M"+t.join("L")},B=function(t){return F(t.reverse())},G=u(f,{xaxis:x,yaxis:b,connectGaps:_.connectgaps,baseTolerance:Math.max(w.width||1,3)/4,shape:w.shape,simplify:w.simplify,fill:_.fill}),V=_._polygons=new Array(G.length),g=0;g1){var r=n.select(this);if(r.datum(f),t)y(r.style("opacity",0).attr("d",P).call(l.lineGroupStyle)).style("opacity",1);else{var i=y(r);i.attr("d",P),l.singleLineStyle(f,i)}}}}}var W=A.selectAll(".js-line").data(G);y(W.exit()).style("opacity",0).remove(),W.each(Y(!1)),W.enter().append("path").classed("js-line",!0).style("vector-effect","non-scaling-stroke").call(l.lineGroupStyle).each(Y(!0)),l.setClipUrl(W,r.layerClipId,t),G.length?(E?(E.datum(f),N&&U&&(C?("y"===C?N[1]=U[1]=b.c2p(0,!0):"x"===C&&(N[0]=U[0]=x.c2p(0,!0)),y(E).attr("d","M"+U+"L"+N+"L"+H.substr(1)).call(l.singleFillStyle,t)):y(E).attr("d",H+"Z").call(l.singleFillStyle,t))):L&&("tonext"===_.fill.substr(0,6)&&H&&O?("tonext"===_.fill?y(L).attr("d",H+"Z"+O+"Z").call(l.singleFillStyle,t):y(L).attr("d",H+"L"+O.substr(1)+"Z").call(l.singleFillStyle,t),_._polygons=_._polygons.concat(z)):(Z(L),_._polygons=null)),_._prevRevpath=q,_._prevPolygons=V):(E?Z(E):L&&Z(L),_._polygons=_._prevRevpath=_._prevPolygons=null),M.datum(f),S.datum(f),function(e,i,a){var o,u=a[0].trace,f=c.hasMarkers(u),h=c.hasText(u),p=tt(u),d=et,m=et;if(f||h){var g=s,_=u.stackgroup,w=_&&"infer zero"===t._fullLayout._scatterStackOpts[x._id+b._id][_].stackgaps;u.marker.maxdisplayed||u._needsCull?g=w?K:J:_&&!w&&(g=Q),f&&(d=g),h&&(m=g)}var T,k=(o=e.selectAll("path.point").data(d,p)).enter().append("path").classed("point",!0);v&&k.call(l.pointStyle,u,t).call(l.translatePoints,x,b).style("opacity",0).transition().style("opacity",1),o.order(),f&&(T=l.makePointStyleFns(u)),o.each((function(e){var i=n.select(this),a=y(i);l.translatePoint(e,a,x,b)?(l.singlePointStyle(e,a,u,T,t),r.layerClipId&&l.hideOutsideRangePoint(e,a,x,b,u.xcalendar,u.ycalendar),u.customdata&&i.classed("plotly-customdata",null!==e.data&&void 0!==e.data)):a.remove()})),v?o.exit().transition().style("opacity",0).remove():o.exit().remove(),(o=i.selectAll("g").data(m,p)).enter().append("g").classed("textpoint",!0).append("text"),o.order(),o.each((function(t){var e=n.select(this),i=y(e.select("text"));l.translatePoint(t,i,x,b)?r.layerClipId&&l.hideOutsideRangePoint(t,e,x,b,u.xcalendar,u.ycalendar):e.remove()})),o.selectAll("text").call(l.textPointStyle,u,t).each((function(t){var e=x.c2p(t.x),r=b.c2p(t.y);n.select(this).selectAll("tspan.line").each((function(){y(n.select(this)).attr({x:e,y:r})}))})),o.exit().remove()}(M,S,f);var X=!1===_.cliponaxis?null:r.layerClipId;l.setClipUrl(M,X,t),l.setClipUrl(S,X,t)}function Z(t){y(t).attr("d","M0,0Z")}function J(t){return t.filter((function(t){return!t.gap&&t.vis}))}function K(t){return t.filter((function(t){return t.vis}))}function Q(t){return t.filter((function(t){return!t.gap}))}function $(t){return t.id}function tt(t){if(t.ids)return $}function et(){return!1}}e.exports=function(t,e,r,i,a,c){var u,h,d=!a,m=!!a&&a.duration>0,g=f(t,e,r);((u=i.selectAll("g.trace").data(g,(function(t){return t[0].trace.uid}))).enter().append("g").attr("class",(function(t){return"trace scatter trace"+t[0].trace.uid})).style("stroke-miterlimit",2),u.order(),function(t,e,r){e.each((function(e){var i=o(n.select(this),"g","fills");l.setClipUrl(i,r.layerClipId,t);var a=e[0].trace,c=[];a._ownfill&&c.push("_ownFill"),a._nexttrace&&c.push("_nextFill");var u=i.selectAll("g").data(c,s);u.enter().append("g"),u.exit().each((function(t){a[t]=null})).remove(),u.order().each((function(t){a[t]=o(n.select(this),"path","js-fill")}))}))}(t,u,e),m)?(c&&(h=c()),n.transition().duration(a.duration).ease(a.easing).each("end",(function(){h&&h()})).each("interrupt",(function(){h&&h()})).each((function(){i.selectAll("g.trace").each((function(r,n){p(t,n,e,r,g,this,a)}))}))):u.each((function(r,n){p(t,n,e,r,g,this,a)}));d&&u.exit().remove(),i.selectAll("path:not([d])").remove()}},{"../../components/drawing":383,"../../lib":498,"../../lib/polygon":510,"../../registry":633,"./line_points":936,"./link_traces":938,"./subtypes":947,"@plotly/d3":58}],944:[function(t,e,r){"use strict";var n=t("./subtypes");e.exports=function(t,e){var r,i,a,o,s=t.cd,l=t.xaxis,c=t.yaxis,u=[],f=s[0].trace;if(!n.hasMarkers(f)&&!n.hasText(f))return[];if(!1===e)for(r=0;r0){var h=i.c2l(u);i._lowerLogErrorBound||(i._lowerLogErrorBound=h),i._lowerErrorBound=Math.min(i._lowerLogErrorBound,h)}}else o[s]=[-l[0]*r,l[1]*r]}return o}e.exports=function(t,e,r){var n=[i(t.x,t.error_x,e[0],r.xaxis),i(t.y,t.error_y,e[1],r.yaxis),i(t.z,t.error_z,e[2],r.zaxis)],a=function(t){for(var e=0;e-1?-1:t.indexOf("right")>-1?1:0}function b(t){return null==t?0:t.indexOf("top")>-1?-1:t.indexOf("bottom")>-1?1:0}function _(t,e){return e(4*t)}function w(t){return p[t]}function T(t,e,r,n,i){var a=null;if(l.isArrayOrTypedArray(t)){a=[];for(var o=0;o=0){var m=function(t,e,r){var n,i=(r+1)%3,a=(r+2)%3,o=[],l=[];for(n=0;n=0&&f("surfacecolor",h||p);for(var d=["x","y","z"],m=0;m<3;++m){var g="projection."+d[m];f(g+".show")&&(f(g+".opacity"),f(g+".scale"))}var v=n.getComponentMethod("errorbars","supplyDefaults");v(t,e,h||p||r,{axis:"z"}),v(t,e,h||p||r,{axis:"y",inherit:"z"}),v(t,e,h||p||r,{axis:"x",inherit:"z"})}else e.visible=!1}},{"../../lib":498,"../../registry":633,"../scatter/line_defaults":935,"../scatter/marker_defaults":941,"../scatter/subtypes":947,"../scatter/text_defaults":948,"./attributes":950}],955:[function(t,e,r){"use strict";e.exports={plot:t("./convert"),attributes:t("./attributes"),markerSymbols:t("../../constants/gl3d_markers"),supplyDefaults:t("./defaults"),colorbar:[{container:"marker",min:"cmin",max:"cmax"},{container:"line",min:"cmin",max:"cmax"}],calc:t("./calc"),moduleType:"trace",name:"scatter3d",basePlotModule:t("../../plots/gl3d"),categories:["gl3d","symbols","showLegend","scatter-like"],meta:{}}},{"../../constants/gl3d_markers":472,"../../plots/gl3d":593,"./attributes":950,"./calc":951,"./convert":953,"./defaults":954}],956:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../plots/attributes"),a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../../plots/template_attributes").texttemplateAttrs,s=t("../../components/colorscale/attributes"),l=t("../../lib/extend").extendFlat,c=n.marker,u=n.line,f=c.line;e.exports={carpet:{valType:"string",editType:"calc"},a:{valType:"data_array",editType:"calc"},b:{valType:"data_array",editType:"calc"},mode:l({},n.mode,{dflt:"markers"}),text:l({},n.text,{}),texttemplate:o({editType:"plot"},{keys:["a","b","text"]}),hovertext:l({},n.hovertext,{}),line:{color:u.color,width:u.width,dash:u.dash,shape:l({},u.shape,{values:["linear","spline"]}),smoothing:u.smoothing,editType:"calc"},connectgaps:n.connectgaps,fill:l({},n.fill,{values:["none","toself","tonext"],dflt:"none"}),fillcolor:n.fillcolor,marker:l({symbol:c.symbol,opacity:c.opacity,maxdisplayed:c.maxdisplayed,size:c.size,sizeref:c.sizeref,sizemin:c.sizemin,sizemode:c.sizemode,line:l({width:f.width,editType:"calc"},s("marker.line")),gradient:c.gradient,editType:"calc"},s("marker")),textfont:n.textfont,textposition:n.textposition,selected:n.selected,unselected:n.unselected,hoverinfo:l({},i.hoverinfo,{flags:["a","b","text","name"]}),hoveron:n.hoveron,hovertemplate:a()}},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/attributes":545,"../../plots/template_attributes":628,"../scatter/attributes":922}],957:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../scatter/colorscale_calc"),a=t("../scatter/arrays_to_calcdata"),o=t("../scatter/calc_selection"),s=t("../scatter/calc").calcMarkerSize,l=t("../carpet/lookup_carpetid");e.exports=function(t,e){var r=e._carpetTrace=l(t,e);if(r&&r.visible&&"legendonly"!==r.visible){var c;e.xaxis=r.xaxis,e.yaxis=r.yaxis;var u,f,h=e._length,p=new Array(h),d=!1;for(c=0;c")}return o}function y(t,e){var r;r=t.labelprefix&&t.labelprefix.length>0?t.labelprefix.replace(/ = $/,""):t._hovertitle,g.push(r+": "+e.toFixed(3)+t.labelsuffix)}}},{"../../lib":498,"../scatter/hover":933}],962:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../scatter/select"),eventData:t("./event_data"),moduleType:"trace",name:"scattercarpet",basePlotModule:t("../../plots/cartesian"),categories:["svg","carpet","symbols","showLegend","carpetDependent","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"../scatter/marker_colorbar":940,"../scatter/select":944,"../scatter/style":946,"./attributes":956,"./calc":957,"./defaults":958,"./event_data":959,"./format_labels":960,"./hover":961,"./plot":963}],963:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../plots/cartesian/axes"),a=t("../../components/drawing");e.exports=function(t,e,r,o){var s,l,c,u=r[0][0].carpet,f={xaxis:i.getFromId(t,u.xaxis||"x"),yaxis:i.getFromId(t,u.yaxis||"y"),plot:e.plot};for(n(t,f,r,o),s=0;s")}(c,m,t,l[0].t.labels),t.hovertemplate=c.hovertemplate,[t]}}},{"../../components/fx":401,"../../constants/numerical":474,"../../lib":498,"../scatter/get_trace_color":932,"./attributes":964}],970:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),calcGeoJSON:t("./plot").calcGeoJSON,plot:t("./plot").plot,style:t("./style"),styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"scattergeo",basePlotModule:t("../../plots/geo"),categories:["geo","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/geo":584,"../scatter/marker_colorbar":940,"../scatter/style":946,"./attributes":964,"./calc":965,"./defaults":966,"./event_data":967,"./format_labels":968,"./hover":969,"./plot":971,"./select":972,"./style":973}],971:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../lib/topojson_utils").getTopojsonFeatures,o=t("../../lib/geojson_utils"),s=t("../../lib/geo_location_utils"),l=t("../../plots/cartesian/autorange").findExtremes,c=t("../../constants/numerical").BADNUM,u=t("../scatter/calc").calcMarkerSize,f=t("../scatter/subtypes"),h=t("./style");e.exports={calcGeoJSON:function(t,e){var r,n,i=t[0].trace,o=e[i.geo],f=o._subplot,h=i._length;if(Array.isArray(i.locations)){var p=i.locationmode,d="geojson-id"===p?s.extractTraceFeature(t):a(i,f.topojson);for(r=0;r=g,w=2*b,T={},k=l.makeCalcdata(e,"x"),A=y.makeCalcdata(e,"y"),M=s(e,l,"x",k),S=s(e,y,"y",A),E=M.vals,L=S.vals;e._x=E,e._y=L,e.xperiodalignment&&(e._origX=k,e._xStarts=M.starts,e._xEnds=M.ends),e.yperiodalignment&&(e._origY=A,e._yStarts=S.starts,e._yEnds=S.ends);var C=new Array(w),P=new Array(b);for(r=0;r1&&i.extendFlat(s.line,p.linePositions(t,r,n));if(s.errorX||s.errorY){var l=p.errorBarPositions(t,r,n,a,o);s.errorX&&i.extendFlat(s.errorX,l.x),s.errorY&&i.extendFlat(s.errorY,l.y)}s.text&&(i.extendFlat(s.text,{positions:n},p.textPosition(t,r,s.text,s.marker)),i.extendFlat(s.textSel,{positions:n},p.textPosition(t,r,s.text,s.markerSel)),i.extendFlat(s.textUnsel,{positions:n},p.textPosition(t,r,s.text,s.markerUnsel)));return s}(t,0,e,C,E,L),z=d(t,x);return f(o,e),_?O.marker&&(I=O.marker.sizeAvg||Math.max(O.marker.size,3)):I=c(e,b),u(t,e,l,y,E,L,I),O.errorX&&v(e,l,O.errorX),O.errorY&&v(e,y,O.errorY),O.fill&&!z.fill2d&&(z.fill2d=!0),O.marker&&!z.scatter2d&&(z.scatter2d=!0),O.line&&!z.line2d&&(z.line2d=!0),!O.errorX&&!O.errorY||z.error2d||(z.error2d=!0),O.text&&!z.glText&&(z.glText=!0),O.marker&&(O.marker.snap=b),z.lineOptions.push(O.line),z.errorXOptions.push(O.errorX),z.errorYOptions.push(O.errorY),z.fillOptions.push(O.fill),z.markerOptions.push(O.marker),z.markerSelectedOptions.push(O.markerSel),z.markerUnselectedOptions.push(O.markerUnsel),z.textOptions.push(O.text),z.textSelectedOptions.push(O.textSel),z.textUnselectedOptions.push(O.textUnsel),z.selectBatch.push([]),z.unselectBatch.push([]),T._scene=z,T.index=z.count,T.x=E,T.y=L,T.positions=C,z.count++,[{x:!1,y:!1,t:T,trace:e}]}},{"../../constants/numerical":474,"../../lib":498,"../../plots/cartesian/align_period":546,"../../plots/cartesian/autorange":548,"../../plots/cartesian/axis_ids":553,"../scatter/calc":923,"../scatter/colorscale_calc":925,"./constants":977,"./convert":978,"./scene_update":986,"@plotly/point-cluster":59}],977:[function(t,e,r){"use strict";e.exports={TOO_MANY_POINTS:1e5,SYMBOL_SDF_SIZE:200,SYMBOL_SIZE:20,SYMBOL_STROKE:1,DOT_RE:/-dot/,OPEN_RE:/-open/,DASHES:{solid:[1],dot:[1,1],dash:[4,1],longdash:[8,1],dashdot:[4,1,1,1],longdashdot:[8,1,1,1]}}},{}],978:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("svg-path-sdf"),a=t("color-normalize"),o=t("../../registry"),s=t("../../lib"),l=t("../../components/drawing"),c=t("../../plots/cartesian/axis_ids"),u=t("../../lib/gl_format_color").formatColor,f=t("../scatter/subtypes"),h=t("../scatter/make_bubble_size_func"),p=t("./helpers"),d=t("./constants"),m=t("../../constants/interactions").DESELECTDIM,g={start:1,left:1,end:-1,right:-1,middle:0,center:0,bottom:1,top:-1},v=t("../../components/fx/helpers").appendArrayPointValue;function y(t,e){var r,i=t._fullLayout,a=e._length,o=e.textfont,l=e.textposition,c=Array.isArray(l)?l:[l],u=o.color,f=o.size,h=o.family,p={},d=t._context.plotGlPixelRatio,m=e.texttemplate;if(m){p.text=[];var g=i._d3locale,y=Array.isArray(m),x=y?Math.min(m.length,a):a,b=y?function(t){return m[t]}:function(){return m};for(r=0;rd.TOO_MANY_POINTS||f.hasMarkers(e)?"rect":"round";if(c&&e.connectgaps){var h=n[0],p=n[1];for(i=0;i1?l[i]:l[0]:l,d=Array.isArray(c)?c.length>1?c[i]:c[0]:c,m=g[p],v=g[d],y=u?u/.8+1:0,x=-v*y-.5*v;o.offset[i]=[m*y/h,x/h]}}return o}}},{"../../components/drawing":383,"../../components/fx/helpers":397,"../../constants/interactions":473,"../../lib":498,"../../lib/gl_format_color":494,"../../plots/cartesian/axis_ids":553,"../../registry":633,"../scatter/make_bubble_size_func":939,"../scatter/subtypes":947,"./constants":977,"./helpers":982,"color-normalize":84,"fast-isnumeric":185,"svg-path-sdf":305}],979:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./helpers"),o=t("./attributes"),s=t("../scatter/constants"),l=t("../scatter/subtypes"),c=t("../scatter/xy_defaults"),u=t("../scatter/period_defaults"),f=t("../scatter/marker_defaults"),h=t("../scatter/line_defaults"),p=t("../scatter/fillcolor_defaults"),d=t("../scatter/text_defaults");e.exports=function(t,e,r,m){function g(r,i){return n.coerce(t,e,o,r,i)}var v=!!t.marker&&a.isOpenSymbol(t.marker.symbol),y=l.isBubble(t),x=c(t,e,m,g);if(x){u(t,e,m,g),g("xhoverformat"),g("yhoverformat");var b=x100},r.isDotSymbol=function(t){return"string"==typeof t?n.DOT_RE.test(t):t>200}},{"./constants":977}],983:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib"),a=t("../scatter/get_trace_color");function o(t,e,r,o){var s=t.xa,l=t.ya,c=t.distance,u=t.dxy,f=t.index,h={pointNumber:f,x:e[f],y:r[f]};h.tx=Array.isArray(o.text)?o.text[f]:o.text,h.htx=Array.isArray(o.hovertext)?o.hovertext[f]:o.hovertext,h.data=Array.isArray(o.customdata)?o.customdata[f]:o.customdata,h.tp=Array.isArray(o.textposition)?o.textposition[f]:o.textposition;var p=o.textfont;p&&(h.ts=i.isArrayOrTypedArray(p.size)?p.size[f]:p.size,h.tc=Array.isArray(p.color)?p.color[f]:p.color,h.tf=Array.isArray(p.family)?p.family[f]:p.family);var d=o.marker;d&&(h.ms=i.isArrayOrTypedArray(d.size)?d.size[f]:d.size,h.mo=i.isArrayOrTypedArray(d.opacity)?d.opacity[f]:d.opacity,h.mx=i.isArrayOrTypedArray(d.symbol)?d.symbol[f]:d.symbol,h.mc=i.isArrayOrTypedArray(d.color)?d.color[f]:d.color);var m=d&&d.line;m&&(h.mlc=Array.isArray(m.color)?m.color[f]:m.color,h.mlw=i.isArrayOrTypedArray(m.width)?m.width[f]:m.width);var g=d&&d.gradient;g&&"none"!==g.type&&(h.mgt=Array.isArray(g.type)?g.type[f]:g.type,h.mgc=Array.isArray(g.color)?g.color[f]:g.color);var v=s.c2p(h.x,!0),y=l.c2p(h.y,!0),x=h.mrc||1,b=o.hoverlabel;b&&(h.hbg=Array.isArray(b.bgcolor)?b.bgcolor[f]:b.bgcolor,h.hbc=Array.isArray(b.bordercolor)?b.bordercolor[f]:b.bordercolor,h.hts=i.isArrayOrTypedArray(b.font.size)?b.font.size[f]:b.font.size,h.htc=Array.isArray(b.font.color)?b.font.color[f]:b.font.color,h.htf=Array.isArray(b.font.family)?b.font.family[f]:b.font.family,h.hnl=i.isArrayOrTypedArray(b.namelength)?b.namelength[f]:b.namelength);var _=o.hoverinfo;_&&(h.hi=Array.isArray(_)?_[f]:_);var w=o.hovertemplate;w&&(h.ht=Array.isArray(w)?w[f]:w);var T={};T[t.index]=h;var k=o._origX,A=o._origY,M=i.extendFlat({},t,{color:a(o,h),x0:v-x,x1:v+x,xLabelVal:k?k[f]:h.x,y0:y-x,y1:y+x,yLabelVal:A?A[f]:h.y,cd:T,distance:c,spikeDistance:u,hovertemplate:h.ht});return h.htx?M.text=h.htx:h.tx?M.text=h.tx:o.text&&(M.text=o.text),i.fillText(h,o,M),n.getComponentMethod("errorbars","hoverInfo")(h,o,M),M}e.exports={hoverPoints:function(t,e,r,n){var i,a,s,l,c,u,f,h,p,d,m=t.cd,g=m[0].t,v=m[0].trace,y=t.xa,x=t.ya,b=g.x,_=g.y,w=y.c2p(e),T=x.c2p(r),k=t.distance;if(g.tree){var A=y.p2c(w-k),M=y.p2c(w+k),S=x.p2c(T-k),E=x.p2c(T+k);i="x"===n?g.tree.range(Math.min(A,M),Math.min(x._rl[0],x._rl[1]),Math.max(A,M),Math.max(x._rl[0],x._rl[1])):g.tree.range(Math.min(A,M),Math.min(S,E),Math.max(A,M),Math.max(S,E))}else i=g.ids;var L=k;if("x"===n){var C=!!v.xperiodalignment,P=!!v.yperiodalignment;for(u=0;u=Math.min(I,O)&&w<=Math.max(I,O)?0:1/0}if(f=Math.min(z,D)&&T<=Math.max(z,D)?0:1/0}d=Math.sqrt(f*f+h*h),s=i[u]}}}else for(u=i.length-1;u>-1;u--)l=b[a=i[u]],c=_[a],f=y.c2p(l)-w,h=x.c2p(c)-T,(p=Math.sqrt(f*f+h*h))y.glText.length){var T=_-y.glText.length;for(m=0;mr&&(isNaN(e[n])||isNaN(e[n+1]));)n-=2;t.positions=e.slice(r,n+2)}return t})),y.line2d.update(y.lineOptions)),y.error2d){var A=(y.errorXOptions||[]).concat(y.errorYOptions||[]);y.error2d.update(A)}y.scatter2d&&y.scatter2d.update(y.markerOptions),y.fillOrder=s.repeat(null,_),y.fill2d&&(y.fillOptions=y.fillOptions.map((function(t,e){var n=r[e];if(t&&n&&n[0]&&n[0].trace){var i,a,o=n[0],s=o.trace,l=o.t,c=y.lineOptions[e],u=[];s._ownfill&&u.push(e),s._nexttrace&&u.push(e+1),u.length&&(y.fillOrder[e]=u);var f,h,p=[],d=c&&c.positions||l.positions;if("tozeroy"===s.fill){for(f=0;ff&&isNaN(d[h+1]);)h-=2;0!==d[f+1]&&(p=[d[f],0]),p=p.concat(d.slice(f,h+2)),0!==d[h+1]&&(p=p.concat([d[h],0]))}else if("tozerox"===s.fill){for(f=0;ff&&isNaN(d[h]);)h-=2;0!==d[f]&&(p=[0,d[f+1]]),p=p.concat(d.slice(f,h+2)),0!==d[h]&&(p=p.concat([0,d[h+1]]))}else if("toself"===s.fill||"tonext"===s.fill){for(p=[],i=0,t.splitNull=!0,a=0;a-1;for(m=0;m<_;m++){var L=r[m][0],C=L.trace,P=L.t,I=P.index,O=C._length,z=P.x,D=P.y;if(C.selectedpoints||S||E){if(S||(S=!0),C.selectedpoints){var R=y.selectBatch[I]=s.selIndices2selPoints(C),F={};for(g=0;g")}function u(t){return t+"\xb0"}}e.exports={hoverPoints:function(t,e,r){var o=t.cd,c=o[0].trace,u=t.xa,f=t.ya,h=t.subplot,p=360*(e>=0?Math.floor((e+180)/360):Math.ceil((e-180)/360)),d=e-p;if(n.getClosest(o,(function(t){var e=t.lonlat;if(e[0]===s)return 1/0;var n=i.modHalf(e[0],360),a=e[1],o=h.project([n,a]),l=o.x-u.c2p([d,a]),c=o.y-f.c2p([n,r]),p=Math.max(3,t.mrc||0);return Math.max(Math.sqrt(l*l+c*c)-p,1-3/p)}),t),!1!==t.index){var m=o[t.index],g=m.lonlat,v=[i.modHalf(g[0],360)+p,g[1]],y=u.c2p(v),x=f.c2p(v),b=m.mrc||1;t.x0=y-b,t.x1=y+b,t.y0=x-b,t.y1=x+b;var _={};_[c.subplot]={_subplot:h};var w=c._module.formatLabels(m,c,_);return t.lonLabel=w.lonLabel,t.latLabel=w.latLabel,t.color=a(c,m),t.extraText=l(c,m,o[0].t.labels),t.hovertemplate=c.hovertemplate,[t]}},getExtraText:l}},{"../../components/fx":401,"../../constants/numerical":474,"../../lib":498,"../scatter/get_trace_color":932}],994:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("../scattergeo/calc"),plot:t("./plot"),hoverPoints:t("./hover").hoverPoints,eventData:t("./event_data"),selectPoints:t("./select"),styleOnSelect:function(t,e){e&&e[0].trace._glTrace.update(e)},moduleType:"trace",name:"scattermapbox",basePlotModule:t("../../plots/mapbox"),categories:["mapbox","gl","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/mapbox":608,"../scatter/marker_colorbar":940,"../scattergeo/calc":965,"./attributes":988,"./defaults":990,"./event_data":991,"./format_labels":992,"./hover":993,"./plot":995,"./select":996}],995:[function(t,e,r){"use strict";var n=t("./convert"),i=t("../../plots/mapbox/constants").traceLayerPrefix,a=["fill","line","circle","symbol"];function o(t,e){this.type="scattermapbox",this.subplot=t,this.uid=e,this.sourceIds={fill:"source-"+e+"-fill",line:"source-"+e+"-line",circle:"source-"+e+"-circle",symbol:"source-"+e+"-symbol"},this.layerIds={fill:i+e+"-fill",line:i+e+"-line",circle:i+e+"-circle",symbol:i+e+"-symbol"},this.below=null}var s=o.prototype;s.addSource=function(t,e){this.subplot.map.addSource(this.sourceIds[t],{type:"geojson",data:e.geojson})},s.setSourceData=function(t,e){this.subplot.map.getSource(this.sourceIds[t]).setData(e.geojson)},s.addLayer=function(t,e,r){this.subplot.addLayer({type:t,id:this.layerIds[t],source:this.sourceIds[t],layout:e.layout,paint:e.paint},r)},s.update=function(t){var e,r,i,o=this.subplot,s=o.map,l=n(o.gd,t),c=o.belowLookup["trace-"+this.uid];if(c!==this.below){for(e=a.length-1;e>=0;e--)r=a[e],s.removeLayer(this.layerIds[r]);for(e=0;e=0;e--){var r=a[e];t.removeLayer(this.layerIds[r]),t.removeSource(this.sourceIds[r])}},e.exports=function(t,e){for(var r=e[0].trace,i=new o(t,r.uid),s=n(t.gd,e),l=i.below=t.belowLookup["trace-"+r.uid],c=0;c")}}e.exports={hoverPoints:function(t,e,r,a){var o=n(t,e,r,a);if(o&&!1!==o[0].index){var s=o[0];if(void 0===s.index)return o;var l=t.subplot,c=s.cd[s.index],u=s.trace;if(l.isPtInside(c))return s.xLabelVal=void 0,s.yLabelVal=void 0,i(c,u,l,s),s.hovertemplate=u.hovertemplate,o}},makeHoverPointText:i}},{"../scatter/hover":933}],1002:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"scatterpolar",basePlotModule:t("../../plots/polar"),categories:["polar","symbols","showLegend","scatter-like"],attributes:t("./attributes"),supplyDefaults:t("./defaults").supplyDefaults,colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,selectPoints:t("../scatter/select"),meta:{}}},{"../../plots/polar":617,"../scatter/marker_colorbar":940,"../scatter/select":944,"../scatter/style":946,"./attributes":997,"./calc":998,"./defaults":999,"./format_labels":1e3,"./hover":1001,"./plot":1003}],1003:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../constants/numerical").BADNUM;e.exports=function(t,e,r){for(var a=e.layers.frontplot.select("g.scatterlayer"),o={xaxis:e.xaxis,yaxis:e.yaxis,plot:e.framework,layerClipId:e._hasClipOnAxisFalse?e.clipIds.forTraces:null},s=e.radialAxis,l=e.angularAxis,c=0;c=c&&(y.marker.cluster=d.tree),y.marker&&(y.markerSel.positions=y.markerUnsel.positions=y.marker.positions=_),y.line&&_.length>1&&l.extendFlat(y.line,s.linePositions(t,p,_)),y.text&&(l.extendFlat(y.text,{positions:_},s.textPosition(t,p,y.text,y.marker)),l.extendFlat(y.textSel,{positions:_},s.textPosition(t,p,y.text,y.markerSel)),l.extendFlat(y.textUnsel,{positions:_},s.textPosition(t,p,y.text,y.markerUnsel))),y.fill&&!h.fill2d&&(h.fill2d=!0),y.marker&&!h.scatter2d&&(h.scatter2d=!0),y.line&&!h.line2d&&(h.line2d=!0),y.text&&!h.glText&&(h.glText=!0),h.lineOptions.push(y.line),h.fillOptions.push(y.fill),h.markerOptions.push(y.marker),h.markerSelectedOptions.push(y.markerSel),h.markerUnselectedOptions.push(y.markerUnsel),h.textOptions.push(y.text),h.textSelectedOptions.push(y.textSel),h.textUnselectedOptions.push(y.textUnsel),h.selectBatch.push([]),h.unselectBatch.push([]),d.x=w,d.y=T,d.rawx=w,d.rawy=T,d.r=g,d.theta=v,d.positions=_,d._scene=h,d.index=h.count,h.count++}})),a(t,e,r)}},e.exports.reglPrecompiled={}},{"../../lib":498,"../scattergl/constants":977,"../scattergl/convert":978,"../scattergl/plot":985,"../scattergl/scene_update":986,"@plotly/point-cluster":59,"fast-isnumeric":185}],1012:[function(t,e,r){"use strict";var n=t("../../plots/template_attributes").hovertemplateAttrs,i=t("../../plots/template_attributes").texttemplateAttrs,a=t("../../lib/extend").extendFlat,o=t("../scatter/attributes"),s=t("../../plots/attributes"),l=o.line;e.exports={mode:o.mode,real:{valType:"data_array",editType:"calc+clearAxisTypes"},imag:{valType:"data_array",editType:"calc+clearAxisTypes"},text:o.text,texttemplate:i({editType:"plot"},{keys:["real","imag","text"]}),hovertext:o.hovertext,line:{color:l.color,width:l.width,dash:l.dash,shape:a({},l.shape,{values:["linear","spline"]}),smoothing:l.smoothing,editType:"calc"},connectgaps:o.connectgaps,marker:o.marker,cliponaxis:a({},o.cliponaxis,{dflt:!1}),textposition:o.textposition,textfont:o.textfont,fill:a({},o.fill,{values:["none","toself","tonext"],dflt:"none"}),fillcolor:o.fillcolor,hoverinfo:a({},s.hoverinfo,{flags:["real","imag","text","name"]}),hoveron:o.hoveron,hovertemplate:n(),selected:o.selected,unselected:o.unselected}},{"../../lib/extend":488,"../../plots/attributes":545,"../../plots/template_attributes":628,"../scatter/attributes":922}],1013:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../constants/numerical").BADNUM,a=t("../scatter/colorscale_calc"),o=t("../scatter/arrays_to_calcdata"),s=t("../scatter/calc_selection"),l=t("../scatter/calc").calcMarkerSize;e.exports=function(t,e){for(var r=t._fullLayout,c=e.subplot,u=r[c].realaxis,f=r[c].imaginaryaxis,h=u.makeCalcdata(e,"real"),p=f.makeCalcdata(e,"imag"),d=e._length,m=new Array(d),g=0;g")}}e.exports={hoverPoints:function(t,e,r,a){var o=n(t,e,r,a);if(o&&!1!==o[0].index){var s=o[0];if(void 0===s.index)return o;var l=t.subplot,c=s.cd[s.index],u=s.trace;if(l.isPtInside(c))return s.xLabelVal=void 0,s.yLabelVal=void 0,i(c,u,l,s),s.hovertemplate=u.hovertemplate,o}},makeHoverPointText:i}},{"../scatter/hover":933}],1017:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"scattersmith",basePlotModule:t("../../plots/smith"),categories:["smith","symbols","showLegend","scatter-like"],attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,selectPoints:t("../scatter/select"),meta:{}}},{"../../plots/smith":624,"../scatter/marker_colorbar":940,"../scatter/select":944,"../scatter/style":946,"./attributes":1012,"./calc":1013,"./defaults":1014,"./format_labels":1015,"./hover":1016,"./plot":1018}],1018:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../constants/numerical").BADNUM,a=t("../../plots/smith/helpers").smith;e.exports=function(t,e,r){for(var o=e.layers.frontplot.select("g.scatterlayer"),s={xaxis:e.xaxis,yaxis:e.yaxis,plot:e.framework,layerClipId:e._hasClipOnAxisFalse?e.clipIds.forTraces:null},l=0;l"),o.hovertemplate=h.hovertemplate,a}function x(t,e){v.push(t._hovertitle+": "+e)}}},{"../scatter/hover":933}],1025:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../scatter/select"),eventData:t("./event_data"),moduleType:"trace",name:"scatterternary",basePlotModule:t("../../plots/ternary"),categories:["ternary","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/ternary":629,"../scatter/marker_colorbar":940,"../scatter/select":944,"../scatter/style":946,"./attributes":1019,"./calc":1020,"./defaults":1021,"./event_data":1022,"./format_labels":1023,"./hover":1024,"./plot":1026}],1026:[function(t,e,r){"use strict";var n=t("../scatter/plot");e.exports=function(t,e,r){var i=e.plotContainer;i.select(".scatterlayer").selectAll("*").remove();var a={xaxis:e.xaxis,yaxis:e.yaxis,plot:i,layerClipId:e._hasClipOnAxisFalse?e.clipIdRelative:null},o=e.layers.frontplot.select("g.scatterlayer");n(t,a,r,o)}},{"../scatter/plot":943}],1027:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../components/colorscale/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../scattergl/attributes"),l=t("../../plots/cartesian/constants").idRegex,c=t("../../plot_api/plot_template").templatedArray,u=t("../../lib/extend").extendFlat,f=n.marker,h=f.line,p=u(i("marker.line",{editTypeOverride:"calc"}),{width:u({},h.width,{editType:"calc"}),editType:"calc"}),d=u(i("marker"),{symbol:f.symbol,size:u({},f.size,{editType:"markerSize"}),sizeref:f.sizeref,sizemin:f.sizemin,sizemode:f.sizemode,opacity:f.opacity,colorbar:f.colorbar,line:p,editType:"calc"});function m(t){return{valType:"info_array",freeLength:!0,editType:"calc",items:{valType:"subplotid",regex:l[t],editType:"plot"}}}d.color.editType=d.cmin.editType=d.cmax.editType="style",e.exports={dimensions:c("dimension",{visible:{valType:"boolean",dflt:!0,editType:"calc"},label:{valType:"string",editType:"calc"},values:{valType:"data_array",editType:"calc+clearAxisTypes"},axis:{type:{valType:"enumerated",values:["linear","log","date","category"],editType:"calc+clearAxisTypes"},matches:{valType:"boolean",dflt:!1,editType:"calc"},editType:"calc+clearAxisTypes"},editType:"calc+clearAxisTypes"}),text:u({},s.text,{}),hovertext:u({},s.hovertext,{}),hovertemplate:o(),xhoverformat:a("x"),yhoverformat:a("y"),marker:d,xaxes:m("x"),yaxes:m("y"),diagonal:{visible:{valType:"boolean",dflt:!0,editType:"calc"},editType:"calc"},showupperhalf:{valType:"boolean",dflt:!0,editType:"calc"},showlowerhalf:{valType:"boolean",dflt:!0,editType:"calc"},selected:{marker:s.selected.marker,editType:"calc"},unselected:{marker:s.unselected.marker,editType:"calc"},opacity:s.opacity}},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plot_api/plot_template":538,"../../plots/cartesian/axis_format_attributes":552,"../../plots/cartesian/constants":556,"../../plots/template_attributes":628,"../scatter/attributes":922,"../scattergl/attributes":974}],1028:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../components/grid");e.exports={moduleType:"trace",name:"splom",categories:["gl","regl","cartesian","symbols","showLegend","scatter-like"],attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),calc:t("./calc"),plot:t("./plot"),hoverPoints:t("./hover").hoverPoints,selectPoints:t("./select"),editStyle:t("./edit_style"),meta:{}},n.register(i)},{"../../components/grid":405,"../../registry":633,"../scatter/marker_colorbar":940,"./attributes":1027,"./calc":1030,"./defaults":1031,"./edit_style":1032,"./hover":1034,"./plot":1036,"./select":1038}],1029:[function(t,e,r){"use strict";var n=t("regl-line2d"),i=t("../../registry"),a=t("../../lib/prepare_regl"),o=t("../../plots/get_data").getModuleCalcData,s=t("../../plots/cartesian"),l=t("../../plots/cartesian/axis_ids").getFromId,c=t("../../plots/cartesian/axes").shouldShowZeroLine,u={};function f(t,e,r){for(var n=r.matrixOptions.data.length,i=e._visibleDims,a=r.viewOpts.ranges=new Array(n),o=0;oh?b.sizeAvg||Math.max(b.size,3):a(e,x),p=0;pa&&l||i-1,P=!0;if(o(x)||!!p.selectedpoints||C){var I=p._length;if(p.selectedpoints){m.selectBatch=p.selectedpoints;var O=p.selectedpoints,z={};for(l=0;l1&&(u=m[y-1],h=g[y-1],d=v[y-1]),e=0;eu?"-":"+")+"x")).replace("y",(f>h?"-":"+")+"y")).replace("z",(p>d?"-":"+")+"z");var L=function(){y=0,M=[],S=[],E=[]};(!y||y2?t.slice(1,e-1):2===e?[(t[0]+t[1])/2]:t}function p(t){var e=t.length;return 1===e?[.5,.5]:[t[1]-t[0],t[e-1]-t[e-2]]}function d(t,e){var r=t.fullSceneLayout,i=t.dataScale,u=e._len,f={};function d(t,e){var n=r[e],o=i[c[e]];return a.simpleMap(t,(function(t){return n.d2l(t)*o}))}if(f.vectors=l(d(e._u,"xaxis"),d(e._v,"yaxis"),d(e._w,"zaxis"),u),!u)return{positions:[],cells:[]};var m=d(e._Xs,"xaxis"),g=d(e._Ys,"yaxis"),v=d(e._Zs,"zaxis");if(f.meshgrid=[m,g,v],f.gridFill=e._gridFill,e._slen)f.startingPositions=l(d(e._startsX,"xaxis"),d(e._startsY,"yaxis"),d(e._startsZ,"zaxis"));else{for(var y=g[0],x=h(m),b=h(v),_=new Array(x.length*b.length),w=0,T=0;T=0};v?(r=Math.min(g.length,x.length),l=function(t){return A(g[t])&&M(t)},f=function(t){return String(g[t])}):(r=Math.min(y.length,x.length),l=function(t){return A(y[t])&&M(t)},f=function(t){return String(y[t])}),_&&(r=Math.min(r,b.length));for(var S=0;S1){for(var P=a.randstr(),I=0;I"),name:A||z("name")?y.name:void 0,color:k("hoverlabel.bgcolor")||x.color,borderColor:k("hoverlabel.bordercolor"),fontFamily:k("hoverlabel.font.family"),fontSize:k("hoverlabel.font.size"),fontColor:k("hoverlabel.font.color"),nameLength:k("hoverlabel.namelength"),textAlign:k("hoverlabel.align"),hovertemplate:A,hovertemplateLabels:P,eventData:l};g&&(F.x0=E-i.rInscribed*i.rpx1,F.x1=E+i.rInscribed*i.rpx1,F.idealAlign=i.pxmid[0]<0?"left":"right"),v&&(F.x=E,F.idealAlign=E<0?"left":"right");var B=[];o.loneHover(F,{container:a._hoverlayer.node(),outerContainer:a._paper.node(),gd:r,inOut_bbox:B}),l[0].bbox=B[0],d._hasHoverLabel=!0}if(v){var N=t.select("path.surface");h.styleOne(N,i,y,{hovered:!0})}d._hasHoverEvent=!0,r.emit("plotly_hover",{points:l||[f(i,y,h.eventDataKeys)],event:n.event})}})),t.on("mouseout",(function(e){var i=r._fullLayout,a=r._fullData[d.index],s=n.select(this).datum();if(d._hasHoverEvent&&(e.originalEvent=n.event,r.emit("plotly_unhover",{points:[f(s,a,h.eventDataKeys)],event:n.event}),d._hasHoverEvent=!1),d._hasHoverLabel&&(o.loneUnhover(i._hoverlayer.node()),d._hasHoverLabel=!1),v){var l=t.select("path.surface");h.styleOne(l,s,a,{hovered:!1})}})),t.on("click",(function(t){var e=r._fullLayout,a=r._fullData[d.index],s=g&&(c.isHierarchyRoot(t)||c.isLeaf(t)),u=c.getPtId(t),p=c.isEntry(t)?c.findEntryWithChild(m,u):c.findEntryWithLevel(m,u),v=c.getPtId(p),y={points:[f(t,a,h.eventDataKeys)],event:n.event};s||(y.nextLevel=v);var x=l.triggerHandler(r,"plotly_"+d.type+"click",y);if(!1!==x&&e.hovermode&&(r._hoverdata=[f(t,a,h.eventDataKeys)],o.click(r,n.event)),!s&&!1!==x&&!r._dragging&&!r._transitioning){i.call("_storeDirectGUIEdit",a,e._tracePreGUI[a.uid],{level:a.level});var b={data:[{level:v}],traces:[d.index]},_={frame:{redraw:!1,duration:h.transitionTime},transition:{duration:h.transitionTime,easing:h.transitionEasing},mode:"immediate",fromcurrent:!0};o.loneUnhover(e._hoverlayer.node()),i.call("animate",r,b,_)}}))}},{"../../components/fx":401,"../../components/fx/helpers":397,"../../lib":498,"../../lib/events":487,"../../registry":633,"../pie/helpers":901,"./helpers":1050,"@plotly/d3":58}],1050:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../components/color"),a=t("../../lib/setcursor"),o=t("../pie/helpers");function s(t){return t.data.data.pid}r.findEntryWithLevel=function(t,e){var n;return e&&t.eachAfter((function(t){if(r.getPtId(t)===e)return n=t.copy()})),n||t},r.findEntryWithChild=function(t,e){var n;return t.eachAfter((function(t){for(var i=t.children||[],a=0;a0)},r.getMaxDepth=function(t){return t.maxdepth>=0?t.maxdepth:1/0},r.isHeader=function(t,e){return!(r.isLeaf(t)||t.depth===e._maxDepth-1)},r.getParent=function(t,e){return r.findEntryWithLevel(t,s(e))},r.listPath=function(t,e){var n=t.parent;if(!n)return[];var i=e?[n.data[e]]:[n];return r.listPath(n,e).concat(i)},r.getPath=function(t){return r.listPath(t,"label").join("/")+"/"},r.formatValue=o.formatPieValue,r.formatPercent=function(t,e){var r=n.formatPercent(t,0);return"0%"===r&&(r=o.formatPiePercent(t,e)),r}},{"../../components/color":361,"../../lib":498,"../../lib/setcursor":519,"../pie/helpers":901}],1051:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"sunburst",basePlotModule:t("./base_plot"),categories:[],animatable:!0,attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot").plot,style:t("./style").style,colorbar:t("../scatter/marker_colorbar"),meta:{}}},{"../scatter/marker_colorbar":940,"./attributes":1044,"./base_plot":1045,"./calc":1046,"./defaults":1048,"./layout_attributes":1052,"./layout_defaults":1053,"./plot":1054,"./style":1055}],1052:[function(t,e,r){"use strict";e.exports={sunburstcolorway:{valType:"colorlist",editType:"calc"},extendsunburstcolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{}],1053:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("sunburstcolorway",e.colorway),r("extendsunburstcolors")}},{"../../lib":498,"./layout_attributes":1052}],1054:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-hierarchy"),a=t("d3-interpolate").interpolate,o=t("../../components/drawing"),s=t("../../lib"),l=t("../../lib/svg_text_utils"),c=t("../bar/uniform_text"),u=c.recordMinTextSize,f=c.clearMinTextSize,h=t("../pie/plot"),p=t("../pie/helpers").getRotationAngle,d=h.computeTransform,m=h.transformInsideText,g=t("./style").styleOne,v=t("../bar/style").resizeText,y=t("./fx"),x=t("./constants"),b=t("./helpers");function _(t,e,c,f){var h=t._fullLayout,v=!h.uniformtext.mode&&b.hasTransition(f),_=n.select(c).selectAll("g.slice"),T=e[0],k=T.trace,A=T.hierarchy,M=b.findEntryWithLevel(A,k.level),S=b.getMaxDepth(k),E=h._size,L=k.domain,C=E.w*(L.x[1]-L.x[0]),P=E.h*(L.y[1]-L.y[0]),I=.5*Math.min(C,P),O=T.cx=E.l+E.w*(L.x[1]+L.x[0])/2,z=T.cy=E.t+E.h*(1-L.y[0])-P/2;if(!M)return _.remove();var D=null,R={};v&&_.each((function(t){R[b.getPtId(t)]={rpx0:t.rpx0,rpx1:t.rpx1,x0:t.x0,x1:t.x1,transform:t.transform},!D&&b.isEntry(t)&&(D=t)}));var F=function(t){return i.partition().size([2*Math.PI,t.height+1])(t)}(M).descendants(),B=M.height+1,N=0,j=S;T.hasMultipleRoots&&b.isHierarchyRoot(M)&&(F=F.slice(1),B-=1,N=1,j+=1),F=F.filter((function(t){return t.y1<=j}));var U=p(k.rotation);U&&F.forEach((function(t){t.x0+=U,t.x1+=U}));var V=Math.min(B,S),H=function(t){return(t-N)/V*I},q=function(t,e){return[t*Math.cos(e),-t*Math.sin(e)]},G=function(t){return s.pathAnnulus(t.rpx0,t.rpx1,t.x0,t.x1,O,z)},Y=function(t){return O+w(t)[0]*(t.transform.rCenter||0)+(t.transform.x||0)},W=function(t){return z+w(t)[1]*(t.transform.rCenter||0)+(t.transform.y||0)};(_=_.data(F,b.getPtId)).enter().append("g").classed("slice",!0),v?_.exit().transition().each((function(){var t=n.select(this);t.select("path.surface").transition().attrTween("d",(function(t){var e=function(t){var e,r=b.getPtId(t),n=R[r],i=R[b.getPtId(M)];if(i){var o=(t.x1>i.x1?2*Math.PI:0)+U;e=t.rpx1X?2*Math.PI:0)+U;e={x0:i,x1:i}}else e={rpx0:I,rpx1:I},s.extendFlat(e,K(t));else e={rpx0:0,rpx1:0};else e={x0:U,x1:U};return a(e,n)}(t);return function(t){return G(e(t))}})):f.attr("d",G),c.call(y,M,t,e,{eventDataKeys:x.eventDataKeys,transitionTime:x.CLICK_TRANSITION_TIME,transitionEasing:x.CLICK_TRANSITION_EASING}).call(b.setSliceCursor,t,{hideOnRoot:!0,hideOnLeaves:!0,isTransitioning:t._transitioning}),f.call(g,i,k);var p=s.ensureSingle(c,"g","slicetext"),_=s.ensureSingle(p,"text","",(function(t){t.attr("data-notex",1)})),w=s.ensureUniformFontSize(t,b.determineTextFont(k,i,h.font));_.text(r.formatSliceLabel(i,M,k,e,h)).classed("slicetext",!0).attr("text-anchor","middle").call(o.font,w).call(l.convertToTspans,t);var A=o.bBox(_.node());i.transform=m(A,i,T),i.transform.targetX=Y(i),i.transform.targetY=W(i);var S=function(t,e){var r=t.transform;return d(r,e),r.fontSize=w.size,u(k.type,r,h),s.getTextTransform(r)};v?_.transition().attrTween("transform",(function(t){var e=function(t){var e,r=R[b.getPtId(t)],n=t.transform;if(r)e=r;else if(e={rpx1:t.rpx1,transform:{textPosAngle:n.textPosAngle,scale:0,rotate:n.rotate,rCenter:n.rCenter,x:n.x,y:n.y}},D)if(t.parent)if(X){var i=t.x1>X?2*Math.PI:0;e.x0=e.x1=i}else s.extendFlat(e,K(t));else e.x0=e.x1=U;else e.x0=e.x1=U;var o=a(e.transform.textPosAngle,t.transform.textPosAngle),l=a(e.rpx1,t.rpx1),c=a(e.x0,t.x0),f=a(e.x1,t.x1),p=a(e.transform.scale,n.scale),d=a(e.transform.rotate,n.rotate),m=0===n.rCenter?3:0===e.transform.rCenter?1/3:1,g=a(e.transform.rCenter,n.rCenter);return function(t){var e=l(t),r=c(t),i=f(t),a=function(t){return g(Math.pow(t,m))}(t),s={pxmid:q(e,(r+i)/2),rpx1:e,transform:{textPosAngle:o(t),rCenter:a,x:n.x,y:n.y}};return u(k.type,n,h),{transform:{targetX:Y(s),targetY:W(s),scale:p(t),rotate:d(t),rCenter:a}}}}(t);return function(t){return S(e(t),A)}})):_.attr("transform",S(i,A))}))}function w(t){return e=t.rpx1,r=t.transform.textPosAngle,[e*Math.sin(r),-e*Math.cos(r)];var e,r}r.plot=function(t,e,r,i){var a,o,s=t._fullLayout,l=s._sunburstlayer,c=!r,u=!s.uniformtext.mode&&b.hasTransition(r);(f("sunburst",s),(a=l.selectAll("g.trace.sunburst").data(e,(function(t){return t[0].trace.uid}))).enter().append("g").classed("trace",!0).classed("sunburst",!0).attr("stroke-linejoin","round"),a.order(),u)?(i&&(o=i()),n.transition().duration(r.duration).ease(r.easing).each("end",(function(){o&&o()})).each("interrupt",(function(){o&&o()})).each((function(){l.selectAll("g.trace").each((function(e){_(t,e,this,r)}))}))):(a.each((function(e){_(t,e,this,r)})),s.uniformtext.mode&&v(t,s._sunburstlayer.selectAll(".trace"),"sunburst"));c&&a.exit().remove()},r.formatSliceLabel=function(t,e,r,n,i){var a=r.texttemplate,o=r.textinfo;if(!(a||o&&"none"!==o))return"";var l=i.separators,c=n[0],u=t.data.data,f=c.hierarchy,h=b.isHierarchyRoot(t),p=b.getParent(f,t),d=b.getValue(t);if(!a){var m,g=o.split("+"),v=function(t){return-1!==g.indexOf(t)},y=[];if(v("label")&&u.label&&y.push(u.label),u.hasOwnProperty("v")&&v("value")&&y.push(b.formatValue(u.v,l)),!h){v("current path")&&y.push(b.getPath(t.data));var x=0;v("percent parent")&&x++,v("percent entry")&&x++,v("percent root")&&x++;var _=x>1;if(x){var w,T=function(t){m=b.formatPercent(w,l),_&&(m+=" of "+t),y.push(m)};v("percent parent")&&!h&&(w=d/b.getValue(p),T("parent")),v("percent entry")&&(w=d/b.getValue(e),T("entry")),v("percent root")&&(w=d/b.getValue(f),T("root"))}}return v("text")&&(m=s.castOption(r,u.i,"text"),s.isValidTextValue(m)&&y.push(m)),y.join("
")}var k=s.castOption(r,u.i,"texttemplate");if(!k)return"";var A={};u.label&&(A.label=u.label),u.hasOwnProperty("v")&&(A.value=u.v,A.valueLabel=b.formatValue(u.v,l)),A.currentPath=b.getPath(t.data),h||(A.percentParent=d/b.getValue(p),A.percentParentLabel=b.formatPercent(A.percentParent,l),A.parent=b.getPtLabel(p)),A.percentEntry=d/b.getValue(e),A.percentEntryLabel=b.formatPercent(A.percentEntry,l),A.entry=b.getPtLabel(e),A.percentRoot=d/b.getValue(f),A.percentRootLabel=b.formatPercent(A.percentRoot,l),A.root=b.getPtLabel(f),u.hasOwnProperty("color")&&(A.color=u.color);var M=s.castOption(r,u.i,"text");return(s.isValidTextValue(M)||""===M)&&(A.text=M),A.customdata=s.castOption(r,u.i,"customdata"),s.texttemplateString(k,A,i._d3locale,A,r._meta||{})}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../bar/style":657,"../bar/uniform_text":659,"../pie/helpers":901,"../pie/plot":905,"./constants":1047,"./fx":1049,"./helpers":1050,"./style":1055,"@plotly/d3":58,"d3-hierarchy":110,"d3-interpolate":111}],1055:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../bar/uniform_text").resizeText;function s(t,e,r){var n=e.data.data,o=!e.children,s=n.i,l=a.castOption(r,s,"marker.line.color")||i.defaultLine,c=a.castOption(r,s,"marker.line.width")||0;t.style("stroke-width",c).call(i.fill,n.color).call(i.stroke,l).style("opacity",o?r.leaf.opacity:null)}e.exports={style:function(t){var e=t._fullLayout._sunburstlayer.selectAll(".trace");o(t,e,"sunburst"),e.each((function(t){var e=n.select(this),r=t[0].trace;e.style("opacity",r.opacity),e.selectAll("path.surface").each((function(t){n.select(this).call(s,t,r)}))}))},styleOne:s}},{"../../components/color":361,"../../lib":498,"../bar/uniform_text":659,"@plotly/d3":58}],1056:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c=t("../../plot_api/edit_types").overrideAll;function u(t){return{show:{valType:"boolean",dflt:!1},start:{valType:"number",dflt:null,editType:"plot"},end:{valType:"number",dflt:null,editType:"plot"},size:{valType:"number",dflt:null,min:0,editType:"plot"},project:{x:{valType:"boolean",dflt:!1},y:{valType:"boolean",dflt:!1},z:{valType:"boolean",dflt:!1}},color:{valType:"color",dflt:n.defaultLine},usecolormap:{valType:"boolean",dflt:!1},width:{valType:"number",min:1,max:16,dflt:2},highlight:{valType:"boolean",dflt:!0},highlightcolor:{valType:"color",dflt:n.defaultLine},highlightwidth:{valType:"number",min:1,max:16,dflt:2}}}var f=e.exports=c(l({z:{valType:"data_array"},x:{valType:"data_array"},y:{valType:"data_array"},text:{valType:"string",dflt:"",arrayOk:!0},hovertext:{valType:"string",dflt:"",arrayOk:!0},hovertemplate:o(),xhoverformat:a("x"),yhoverformat:a("y"),zhoverformat:a("z"),connectgaps:{valType:"boolean",dflt:!1,editType:"calc"},surfacecolor:{valType:"data_array"}},i("",{colorAttr:"z or surfacecolor",showScaleDflt:!0,autoColorDflt:!1,editTypeOverride:"calc"}),{contours:{x:u(),y:u(),z:u()},hidesurface:{valType:"boolean",dflt:!1},lightposition:{x:{valType:"number",min:-1e5,max:1e5,dflt:10},y:{valType:"number",min:-1e5,max:1e5,dflt:1e4},z:{valType:"number",min:-1e5,max:1e5,dflt:0}},lighting:{ambient:{valType:"number",min:0,max:1,dflt:.8},diffuse:{valType:"number",min:0,max:1,dflt:.8},specular:{valType:"number",min:0,max:2,dflt:.05},roughness:{valType:"number",min:0,max:1,dflt:.5},fresnel:{valType:"number",min:0,max:5,dflt:.2}},opacity:{valType:"number",min:0,max:1,dflt:1},opacityscale:{valType:"any",editType:"calc"},_deprecated:{zauto:l({},i.zauto,{}),zmin:l({},i.zmin,{}),zmax:l({},i.zmax,{})},hoverinfo:l({},s.hoverinfo),showlegend:l({},s.showlegend,{dflt:!1})}),"calc","nested");f.x.editType=f.y.editType=f.z.editType="calc+clearAxisTypes",f.transforms=void 0},{"../../components/color":361,"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plot_api/edit_types":531,"../../plots/attributes":545,"../../plots/cartesian/axis_format_attributes":552,"../../plots/template_attributes":628}],1057:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){e.surfacecolor?n(t,e,{vals:e.surfacecolor,containerStr:"",cLetter:"c"}):n(t,e,{vals:e.z,containerStr:"",cLetter:"c"})}},{"../../components/colorscale/calc":369}],1058:[function(t,e,r){"use strict";var n=t("../../../stackgl_modules").gl_surface3d,i=t("../../../stackgl_modules").ndarray,a=t("../../../stackgl_modules").ndarray_linear_interpolate.d2,o=t("../heatmap/interp2d"),s=t("../heatmap/find_empties"),l=t("../../lib").isArrayOrTypedArray,c=t("../../lib/gl_format_color").parseColorScale,u=t("../../lib/str2rgbarray"),f=t("../../components/colorscale").extractOpts;function h(t,e,r){this.scene=t,this.uid=r,this.surface=e,this.data=null,this.showContour=[!1,!1,!1],this.contourStart=[null,null,null],this.contourEnd=[null,null,null],this.contourSize=[0,0,0],this.minValues=[1/0,1/0,1/0],this.maxValues=[-1/0,-1/0,-1/0],this.dataScaleX=1,this.dataScaleY=1,this.refineData=!0,this.objectOffset=[0,0,0]}var p=h.prototype;p.getXat=function(t,e,r,n){var i=l(this.data.x)?l(this.data.x[0])?this.data.x[e][t]:this.data.x[t]:t;return void 0===r?i:n.d2l(i,0,r)},p.getYat=function(t,e,r,n){var i=l(this.data.y)?l(this.data.y[0])?this.data.y[e][t]:this.data.y[e]:e;return void 0===r?i:n.d2l(i,0,r)},p.getZat=function(t,e,r,n){var i=this.data.z[e][t];return null===i&&this.data.connectgaps&&this.data._interpolatedZ&&(i=this.data._interpolatedZ[e][t]),void 0===r?i:n.d2l(i,0,r)},p.handlePick=function(t){if(t.object===this.surface){var e=(t.data.index[0]-1)/this.dataScaleX-1,r=(t.data.index[1]-1)/this.dataScaleY-1,n=Math.max(Math.min(Math.round(e),this.data.z[0].length-1),0),i=Math.max(Math.min(Math.round(r),this.data._ylength-1),0);t.index=[n,i],t.traceCoordinate=[this.getXat(n,i),this.getYat(n,i),this.getZat(n,i)],t.dataCoordinate=[this.getXat(n,i,this.data.xcalendar,this.scene.fullSceneLayout.xaxis),this.getYat(n,i,this.data.ycalendar,this.scene.fullSceneLayout.yaxis),this.getZat(n,i,this.data.zcalendar,this.scene.fullSceneLayout.zaxis)];for(var a=0;a<3;a++){var o=t.dataCoordinate[a];null!=o&&(t.dataCoordinate[a]*=this.scene.dataScale[a])}var s=this.data.hovertext||this.data.text;return Array.isArray(s)&&s[i]&&void 0!==s[i][n]?t.textLabel=s[i][n]:t.textLabel=s||"",t.data.dataCoordinate=t.dataCoordinate.slice(),this.surface.highlight(t.data),this.scene.glplot.spikes.position=t.dataCoordinate,!0}};var d=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999];function m(t,e){if(t0){r=d[n];break}return r}function y(t,e){if(!(t<1||e<1)){for(var r=g(t),n=g(e),i=1,a=0;a_;)r--,r/=v(r),++r1?n:1},p.refineCoords=function(t){for(var e=this.dataScaleX,r=this.dataScaleY,n=t[0].shape[0],a=t[0].shape[1],o=0|Math.floor(t[0].shape[0]*e+1),s=0|Math.floor(t[0].shape[1]*r+1),l=1+n+1,c=1+a+1,u=i(new Float32Array(l*c),[l,c]),f=[1/e,0,0,0,1/r,0,0,0,1],h=0;h0&&null!==this.contourStart[t]&&null!==this.contourEnd[t]&&this.contourEnd[t]>this.contourStart[t]))for(i[t]=!0,e=this.contourStart[t];ea&&(this.minValues[e]=a),this.maxValues[e]",maxDimensionCount:60,overdrag:45,releaseTransitionDuration:120,releaseTransitionEase:"cubic-out",scrollbarCaptureWidth:18,scrollbarHideDelay:1e3,scrollbarHideDuration:1e3,scrollbarOffset:5,scrollbarWidth:8,transitionDuration:100,transitionEase:"cubic-out",uplift:5,wrapSpacer:" ",wrapSplitCharacter:" ",cn:{table:"table",tableControlView:"table-control-view",scrollBackground:"scroll-background",yColumn:"y-column",columnBlock:"column-block",scrollAreaClip:"scroll-area-clip",scrollAreaClipRect:"scroll-area-clip-rect",columnBoundary:"column-boundary",columnBoundaryClippath:"column-boundary-clippath",columnBoundaryRect:"column-boundary-rect",columnCells:"column-cells",columnCell:"column-cell",cellRect:"cell-rect",cellText:"cell-text",cellTextHolder:"cell-text-holder",scrollbarKit:"scrollbar-kit",scrollbar:"scrollbar",scrollbarSlider:"scrollbar-slider",scrollbarGlyph:"scrollbar-glyph",scrollbarCaptureZone:"scrollbar-capture-zone"}}},{}],1065:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../lib/extend").extendFlat,a=t("fast-isnumeric");function o(t){if(Array.isArray(t)){for(var e=0,r=0;r=e||c===t.length-1)&&(n[i]=o,o.key=l++,o.firstRowIndex=s,o.lastRowIndex=c,o={firstRowIndex:null,lastRowIndex:null,rows:[]},i+=a,s=c+1,a=0);return n}e.exports=function(t,e){var r=l(e.cells.values),p=function(t){return t.slice(e.header.values.length,t.length)},d=l(e.header.values);d.length&&!d[0].length&&(d[0]=[""],d=l(d));var m=d.concat(p(r).map((function(){return c((d[0]||[""]).length)}))),g=e.domain,v=Math.floor(t._fullLayout._size.w*(g.x[1]-g.x[0])),y=Math.floor(t._fullLayout._size.h*(g.y[1]-g.y[0])),x=e.header.values.length?m[0].map((function(){return e.header.height})):[n.emptyHeaderHeight],b=r.length?r[0].map((function(){return e.cells.height})):[],_=x.reduce(s,0),w=h(b,y-_+n.uplift),T=f(h(x,_),[]),k=f(w,T),A={},M=e._fullInput.columnorder.concat(p(r.map((function(t,e){return e})))),S=m.map((function(t,r){var n=Array.isArray(e.columnwidth)?e.columnwidth[Math.min(r,e.columnwidth.length-1)]:e.columnwidth;return a(n)?Number(n):1})),E=S.reduce(s,0);S=S.map((function(t){return t/E*v}));var L=Math.max(o(e.header.line.width),o(e.cells.line.width)),C={key:e.uid+t._context.staticPlot,translateX:g.x[0]*t._fullLayout._size.w,translateY:t._fullLayout._size.h*(1-g.y[1]),size:t._fullLayout._size,width:v,maxLineWidth:L,height:y,columnOrder:M,groupHeight:y,rowBlocks:k,headerRowBlocks:T,scrollY:0,cells:i({},e.cells,{values:r}),headerCells:i({},e.header,{values:m}),gdColumns:m.map((function(t){return t[0]})),gdColumnsOriginalOrder:m.map((function(t){return t[0]})),prevPages:[0,0],scrollbarState:{scrollbarScrollInProgress:!1},columns:m.map((function(t,e){var r=A[t];return A[t]=(r||0)+1,{key:t+"__"+A[t],label:t,specIndex:e,xIndex:M[e],xScale:u,x:void 0,calcdata:void 0,columnWidth:S[e]}}))};return C.columns.forEach((function(t){t.calcdata=C,t.x=u(t)})),C}},{"../../lib/extend":488,"./constants":1064,"fast-isnumeric":185}],1066:[function(t,e,r){"use strict";var n=t("../../lib/extend").extendFlat;r.splitToPanels=function(t){var e=[0,0],r=n({},t,{key:"header",type:"header",page:0,prevPages:e,currentRepaint:[null,null],dragHandle:!0,values:t.calcdata.headerCells.values[t.specIndex],rowBlocks:t.calcdata.headerRowBlocks,calcdata:n({},t.calcdata,{cells:t.calcdata.headerCells})});return[n({},t,{key:"cells1",type:"cells",page:0,prevPages:e,currentRepaint:[null,null],dragHandle:!1,values:t.calcdata.cells.values[t.specIndex],rowBlocks:t.calcdata.rowBlocks}),n({},t,{key:"cells2",type:"cells",page:1,prevPages:e,currentRepaint:[null,null],dragHandle:!1,values:t.calcdata.cells.values[t.specIndex],rowBlocks:t.calcdata.rowBlocks}),r]},r.splitToCells=function(t){var e=function(t){var e=t.rowBlocks[t.page],r=e?e.rows[0].rowIndex:0,n=e?r+e.rows.length:0;return[r,n]}(t);return(t.values||[]).slice(e[0],e[1]).map((function(r,n){return{keyWithinBlock:n+("string"==typeof r&&r.match(/[<$&> ]/)?"_keybuster_"+Math.random():""),key:e[0]+n,column:t,calcdata:t.calcdata,page:t.page,rowBlocks:t.rowBlocks,value:r}}))}},{"../../lib/extend":488}],1067:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../plots/domain").defaults;e.exports=function(t,e,r,o){function s(r,a){return n.coerce(t,e,i,r,a)}a(e,o,s),s("columnwidth"),s("header.values"),s("header.format"),s("header.align"),s("header.prefix"),s("header.suffix"),s("header.height"),s("header.line.width"),s("header.line.color"),s("header.fill.color"),n.coerceFont(s,"header.font",n.extendFlat({},o.font)),function(t,e){for(var r=t.columnorder||[],n=t.header.values.length,i=r.slice(0,n),a=i.slice().sort((function(t,e){return t-e})),o=i.map((function(t){return a.indexOf(t)})),s=o.length;s/i),l=!o||s;t.mayHaveMarkup=o&&i.match(/[<&>]/);var c,u="string"==typeof(c=i)&&c.match(n.latexCheck);t.latex=u;var f,h,p=u?"":T(t.calcdata.cells.prefix,e,r)||"",d=u?"":T(t.calcdata.cells.suffix,e,r)||"",m=u?null:T(t.calcdata.cells.format,e,r)||null,g=p+(m?a(m)(t.value):t.value)+d;if(t.wrappingNeeded=!t.wrapped&&!l&&!u&&(f=w(g)),t.cellHeightMayIncrease=s||u||t.mayHaveMarkup||(void 0===f?w(g):f),t.needsConvertToTspans=t.mayHaveMarkup||t.wrappingNeeded||t.latex,t.wrappingNeeded){var v=(" "===n.wrapSplitCharacter?g.replace(/i&&n.push(a),i+=l}return n}(i,l,s);1===c.length&&(c[0]===i.length-1?c.unshift(c[0]-1):c.push(c[0]+1)),c[0]%2&&c.reverse(),e.each((function(t,e){t.page=c[e],t.scrollY=l})),e.attr("transform",(function(t){var e=D(t.rowBlocks,t.page)-t.scrollY;return u(0,e)})),t&&(C(t,r,e,c,n.prevPages,n,0),C(t,r,e,c,n.prevPages,n,1),x(r,t))}}function L(t,e,r,a){return function(o){var s=o.calcdata?o.calcdata:o,l=e.filter((function(t){return s.key===t.key})),c=r||s.scrollbarState.dragMultiplier,u=s.scrollY;s.scrollY=void 0===a?s.scrollY+c*i.event.dy:a;var f=l.selectAll("."+n.cn.yColumn).selectAll("."+n.cn.columnBlock).filter(A);return E(t,f,l),s.scrollY===u}}function C(t,e,r,n,i,a,o){n[o]!==i[o]&&(clearTimeout(a.currentRepaint[o]),a.currentRepaint[o]=setTimeout((function(){var a=r.filter((function(t,e){return e===o&&n[e]!==i[e]}));b(t,e,a,r),i[o]=n[o]})))}function P(t,e,r,a){return function(){var o=i.select(e.parentNode);o.each((function(t){var e=t.fragments;o.selectAll("tspan.line").each((function(t,r){e[r].width=this.getComputedTextLength()}));var r,i,a=e[e.length-1].width,s=e.slice(0,-1),l=[],c=0,u=t.column.columnWidth-2*n.cellPad;for(t.value="";s.length;)c+(i=(r=s.shift()).width+a)>u&&(t.value+=l.join(n.wrapSpacer)+n.lineBreaker,l=[],c=0),l.push(r.text),c+=i;c&&(t.value+=l.join(n.wrapSpacer)),t.wrapped=!0})),o.selectAll("tspan.line").remove(),_(o.select("."+n.cn.cellText),r,t,a),i.select(e.parentNode.parentNode).call(z)}}function I(t,e,r,a,o){return function(){if(!o.settledY){var s=i.select(e.parentNode),l=B(o),c=o.key-l.firstRowIndex,f=l.rows[c].rowHeight,h=o.cellHeightMayIncrease?e.parentNode.getBoundingClientRect().height+2*n.cellPad:f,p=Math.max(h,f);p-l.rows[c].rowHeight&&(l.rows[c].rowHeight=p,t.selectAll("."+n.cn.columnCell).call(z),E(null,t.filter(A),0),x(r,a,!0)),s.attr("transform",(function(){var t=this.parentNode.getBoundingClientRect(),e=i.select(this.parentNode).select("."+n.cn.cellRect).node().getBoundingClientRect(),r=this.transform.baseVal.consolidate(),a=e.top-t.top+(r?r.matrix.f:n.cellPad);return u(O(o,i.select(this.parentNode).select("."+n.cn.cellTextHolder).node().getBoundingClientRect().width),a)})),o.settledY=!0}}}function O(t,e){switch(t.align){case"left":return n.cellPad;case"right":return t.column.columnWidth-(e||0)-n.cellPad;case"center":return(t.column.columnWidth-(e||0))/2;default:return n.cellPad}}function z(t){t.attr("transform",(function(t){var e=t.rowBlocks[0].auxiliaryBlocks.reduce((function(t,e){return t+R(e,1/0)}),0),r=R(B(t),t.key);return u(0,r+e)})).selectAll("."+n.cn.cellRect).attr("height",(function(t){return(e=B(t),r=t.key,e.rows[r-e.firstRowIndex]).rowHeight;var e,r}))}function D(t,e){for(var r=0,n=e-1;n>=0;n--)r+=F(t[n]);return r}function R(t,e){for(var r=0,n=0;n","<","|","/","\\"],dflt:">",editType:"plot"},thickness:{valType:"number",min:12,editType:"plot"},textfont:u({},s.textfont,{}),editType:"calc"},text:s.text,textinfo:l.textinfo,texttemplate:i({editType:"plot"},{keys:c.eventDataKeys.concat(["label","value"])}),hovertext:s.hovertext,hoverinfo:l.hoverinfo,hovertemplate:n({},{keys:c.eventDataKeys}),textfont:s.textfont,insidetextfont:s.insidetextfont,outsidetextfont:u({},s.outsidetextfont,{}),textposition:{valType:"enumerated",values:["top left","top center","top right","middle left","middle center","middle right","bottom left","bottom center","bottom right"],dflt:"top left",editType:"plot"},sort:s.sort,root:l.root,domain:o({name:"treemap",trace:!0,editType:"calc"})}},{"../../components/colorscale/attributes":368,"../../lib/extend":488,"../../plots/domain":579,"../../plots/template_attributes":628,"../pie/attributes":896,"../sunburst/attributes":1044,"./constants":1073}],1071:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="treemap",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":614}],1072:[function(t,e,r){"use strict";var n=t("../sunburst/calc");r.calc=function(t,e){return n.calc(t,e)},r.crossTraceCalc=function(t){return n._runCrossTraceCalc("treemap",t)}},{"../sunburst/calc":1046}],1073:[function(t,e,r){"use strict";e.exports={CLICK_TRANSITION_TIME:750,CLICK_TRANSITION_EASING:"poly",eventDataKeys:["currentPath","root","entry","percentRoot","percentEntry","percentParent"],gapWithPathbar:1}},{}],1074:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../components/color"),o=t("../../plots/domain").defaults,s=t("../bar/defaults").handleText,l=t("../bar/constants").TEXTPAD,c=t("../../components/colorscale"),u=c.hasColorscale,f=c.handleDefaults;e.exports=function(t,e,r,c){function h(r,a){return n.coerce(t,e,i,r,a)}var p=h("labels"),d=h("parents");if(p&&p.length&&d&&d.length){var m=h("values");m&&m.length?h("branchvalues"):h("count"),h("level"),h("maxdepth"),"squarify"===h("tiling.packing")&&h("tiling.squarifyratio"),h("tiling.flip"),h("tiling.pad");var g=h("text");h("texttemplate"),e.texttemplate||h("textinfo",Array.isArray(g)?"text+label":"label"),h("hovertext"),h("hovertemplate");var v=h("pathbar.visible");s(t,e,c,h,"auto",{hasPathbar:v,moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1}),h("textposition");var y=-1!==e.textposition.indexOf("bottom");h("marker.line.width")&&h("marker.line.color",c.paper_bgcolor);var x=h("marker.colors");(e._hasColorscale=u(t,"marker","colors")||(t.marker||{}).coloraxis)?f(t,e,c,h,{prefix:"marker.",cLetter:"c"}):h("marker.depthfade",!(x||[]).length);var b=2*e.textfont.size;h("marker.pad.t",y?b/4:b),h("marker.pad.l",b/4),h("marker.pad.r",b/4),h("marker.pad.b",y?b:b/4),e._hovered={marker:{line:{width:2,color:a.contrast(c.paper_bgcolor)}}},v&&(h("pathbar.thickness",e.pathbar.textfont.size+2*l),h("pathbar.side"),h("pathbar.edgeshape")),h("sort"),h("root.color"),o(e,c,h),e._length=null}else e.visible=!1}},{"../../components/color":361,"../../components/colorscale":373,"../../lib":498,"../../plots/domain":579,"../bar/constants":645,"../bar/defaults":647,"./attributes":1070}],1075:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../sunburst/helpers"),a=t("../bar/uniform_text").clearMinTextSize,o=t("../bar/style").resizeText,s=t("./plot_one");e.exports=function(t,e,r,l,c){var u,f,h=c.type,p=c.drawDescendants,d=t._fullLayout,m=d["_"+h+"layer"],g=!r;(a(h,d),(u=m.selectAll("g.trace."+h).data(e,(function(t){return t[0].trace.uid}))).enter().append("g").classed("trace",!0).classed(h,!0),u.order(),!d.uniformtext.mode&&i.hasTransition(r))?(l&&(f=l()),n.transition().duration(r.duration).ease(r.easing).each("end",(function(){f&&f()})).each("interrupt",(function(){f&&f()})).each((function(){m.selectAll("g.trace").each((function(e){s(t,e,this,r,p)}))}))):(u.each((function(e){s(t,e,this,r,p)})),d.uniformtext.mode&&o(t,m.selectAll(".trace"),h));g&&u.exit().remove()}},{"../bar/style":657,"../bar/uniform_text":659,"../sunburst/helpers":1050,"./plot_one":1084,"@plotly/d3":58}],1076:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../../lib/svg_text_utils"),s=t("./partition"),l=t("./style").styleOne,c=t("./constants"),u=t("../sunburst/helpers"),f=t("../sunburst/fx");e.exports=function(t,e,r,h,p){var d=p.barDifY,m=p.width,g=p.height,v=p.viewX,y=p.viewY,x=p.pathSlice,b=p.toMoveInsideSlice,_=p.strTransform,w=p.hasTransition,T=p.handleSlicesExit,k=p.makeUpdateSliceInterpolator,A=p.makeUpdateTextInterpolator,M={},S=t._fullLayout,E=e[0],L=E.trace,C=E.hierarchy,P=m/L._entryDepth,I=u.listPath(r.data,"id"),O=s(C.copy(),[m,g],{packing:"dice",pad:{inner:0,top:0,left:0,right:0,bottom:0}}).descendants();(O=O.filter((function(t){var e=I.indexOf(t.data.id);return-1!==e&&(t.x0=P*e,t.x1=P*(e+1),t.y0=d,t.y1=d+g,t.onPathbar=!0,!0)}))).reverse(),(h=h.data(O,u.getPtId)).enter().append("g").classed("pathbar",!0),T(h,!0,M,[m,g],x),h.order();var z=h;w&&(z=z.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!1,hideOnLeaves:!1,isTransitioning:!1})}))),z.each((function(s){s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-Math.min(m,g)/2),s._hoverY=y(s.y1-g/2);var h=n.select(this),p=i.ensureSingle(h,"path","surface",(function(t){t.style("pointer-events","all")}));w?p.transition().attrTween("d",(function(t){var e=k(t,!0,M,[m,g]);return function(t){return x(e(t))}})):p.attr("d",x),h.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{hideOnRoot:!1,hideOnLeaves:!1,isTransitioning:t._transitioning}),p.call(l,s,L,{hovered:!1}),s._text=(u.getPtLabel(s)||"").split("
").join(" ")||"";var d=i.ensureSingle(h,"g","slicetext"),T=i.ensureSingle(d,"text","",(function(t){t.attr("data-notex",1)})),E=i.ensureUniformFontSize(t,u.determineTextFont(L,s,S.font,{onPathbar:!0}));T.text(s._text||" ").classed("slicetext",!0).attr("text-anchor","start").call(a.font,E).call(o.convertToTspans,t),s.textBB=a.bBox(T.node()),s.transform=b(s,{fontSize:E.size,onPathbar:!0}),s.transform.fontSize=E.size,w?T.transition().attrTween("transform",(function(t){var e=A(t,!0,M,[m,g]);return function(t){return _(e(t))}})):T.attr("transform",_(s))}))}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../sunburst/fx":1049,"../sunburst/helpers":1050,"./constants":1073,"./partition":1082,"./style":1085,"@plotly/d3":58}],1077:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../../lib/svg_text_utils"),s=t("./partition"),l=t("./style").styleOne,c=t("./constants"),u=t("../sunburst/helpers"),f=t("../sunburst/fx"),h=t("../sunburst/plot").formatSliceLabel;e.exports=function(t,e,r,p,d){var m=d.width,g=d.height,v=d.viewX,y=d.viewY,x=d.pathSlice,b=d.toMoveInsideSlice,_=d.strTransform,w=d.hasTransition,T=d.handleSlicesExit,k=d.makeUpdateSliceInterpolator,A=d.makeUpdateTextInterpolator,M=d.prevEntry,S=t._fullLayout,E=e[0].trace,L=-1!==E.textposition.indexOf("left"),C=-1!==E.textposition.indexOf("right"),P=-1!==E.textposition.indexOf("bottom"),I=!P&&!E.marker.pad.t||P&&!E.marker.pad.b,O=s(r,[m,g],{packing:E.tiling.packing,squarifyratio:E.tiling.squarifyratio,flipX:E.tiling.flip.indexOf("x")>-1,flipY:E.tiling.flip.indexOf("y")>-1,pad:{inner:E.tiling.pad,top:E.marker.pad.t,left:E.marker.pad.l,right:E.marker.pad.r,bottom:E.marker.pad.b}}).descendants(),z=1/0,D=-1/0;O.forEach((function(t){var e=t.depth;e>=E._maxDepth?(t.x0=t.x1=(t.x0+t.x1)/2,t.y0=t.y1=(t.y0+t.y1)/2):(z=Math.min(z,e),D=Math.max(D,e))})),p=p.data(O,u.getPtId),E._maxVisibleLayers=isFinite(D)?D-z+1:0,p.enter().append("g").classed("slice",!0),T(p,!1,{},[m,g],x),p.order();var R=null;if(w&&M){var F=u.getPtId(M);p.each((function(t){null===R&&u.getPtId(t)===F&&(R={x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1})}))}var B=function(){return R||{x0:0,x1:m,y0:0,y1:g}},N=p;return w&&(N=N.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!0,hideOnLeaves:!1,isTransitioning:!1})}))),N.each((function(s){var p=u.isHeader(s,E);s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-E.marker.pad.r),s._hoverY=y(P?s.y1-E.marker.pad.b/2:s.y0+E.marker.pad.t/2);var d=n.select(this),T=i.ensureSingle(d,"path","surface",(function(t){t.style("pointer-events","all")}));w?T.transition().attrTween("d",(function(t){var e=k(t,!1,B(),[m,g]);return function(t){return x(e(t))}})):T.attr("d",x),d.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{isTransitioning:t._transitioning}),T.call(l,s,E,{hovered:!1}),s.x0===s.x1||s.y0===s.y1?s._text="":s._text=p?I?"":u.getPtLabel(s)||"":h(s,r,E,e,S)||"";var M=i.ensureSingle(d,"g","slicetext"),O=i.ensureSingle(M,"text","",(function(t){t.attr("data-notex",1)})),z=i.ensureUniformFontSize(t,u.determineTextFont(E,s,S.font));O.text(s._text||" ").classed("slicetext",!0).attr("text-anchor",C?"end":L||p?"start":"middle").call(a.font,z).call(o.convertToTspans,t),s.textBB=a.bBox(O.node()),s.transform=b(s,{fontSize:z.size,isHeader:p}),s.transform.fontSize=z.size,w?O.transition().attrTween("transform",(function(t){var e=A(t,!1,B(),[m,g]);return function(t){return _(e(t))}})):O.attr("transform",_(s))})),R}},{"../../components/drawing":383,"../../lib":498,"../../lib/svg_text_utils":524,"../sunburst/fx":1049,"../sunburst/helpers":1050,"../sunburst/plot":1054,"./constants":1073,"./partition":1082,"./style":1085,"@plotly/d3":58}],1078:[function(t,e,r){"use strict";e.exports=function t(e,r,n){var i;n.swapXY&&(i=e.x0,e.x0=e.y0,e.y0=i,i=e.x1,e.x1=e.y1,e.y1=i),n.flipX&&(i=e.x0,e.x0=r[0]-e.x1,e.x1=r[0]-i),n.flipY&&(i=e.y0,e.y0=r[1]-e.y1,e.y1=r[1]-i);var a=e.children;if(a)for(var o=0;o-1?C+O:-(I+O):0,D={x0:P,x1:P,y0:z,y1:z+I},R=function(t,e,r){var n=v.tiling.pad,i=function(t){return t-n<=e.x0},a=function(t){return t+n>=e.x1},o=function(t){return t-n<=e.y0},s=function(t){return t+n>=e.y1};return t.x0===e.x0&&t.x1===e.x1&&t.y0===e.y0&&t.y1===e.y1?{x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1}:{x0:i(t.x0-n)?0:a(t.x0-n)?r[0]:t.x0,x1:i(t.x1+n)?0:a(t.x1+n)?r[0]:t.x1,y0:o(t.y0-n)?0:s(t.y0-n)?r[1]:t.y0,y1:o(t.y1+n)?0:s(t.y1+n)?r[1]:t.y1}},F=null,B={},N={},j=null,U=function(t,e){return e?B[h(t)]:N[h(t)]},V=function(t,e,r,n){if(e)return B[h(x)]||D;var i=N[v.level]||r;return function(t){return t.data.depth-b.data.depth=(n-=(y?g:g.r)-s)){var x=(r+n)/2;r=x,n=x}var b;f?i<(b=a-(y?g:g.b))&&b"===tt?(l.x-=a,c.x-=a,u.x-=a,f.x-=a):"/"===tt?(u.x-=a,f.x-=a,o.x-=a/2,s.x-=a/2):"\\"===tt?(l.x-=a,c.x-=a,o.x-=a/2,s.x-=a/2):"<"===tt&&(o.x-=a,s.x-=a),$(l),$(f),$(o),$(c),$(u),$(s),"M"+K(l.x,l.y)+"L"+K(c.x,c.y)+"L"+K(s.x,s.y)+"L"+K(u.x,u.y)+"L"+K(f.x,f.y)+"L"+K(o.x,o.y)+"Z"},toMoveInsideSlice:et,makeUpdateSliceInterpolator:nt,makeUpdateTextInterpolator:it,handleSlicesExit:at,hasTransition:A,strTransform:ot}):w.remove()}},{"../../lib":498,"../bar/constants":645,"../bar/plot":654,"../bar/uniform_text":659,"../sunburst/helpers":1050,"./constants":1073,"./draw_ancestors":1076,"@plotly/d3":58,"d3-interpolate":111}],1085:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../sunburst/helpers"),s=t("../bar/uniform_text").resizeText;function l(t,e,r,n){var s,l,c=(n||{}).hovered,u=e.data.data,f=u.i,h=u.color,p=o.isHierarchyRoot(e),d=1;if(c)s=r._hovered.marker.line.color,l=r._hovered.marker.line.width;else if(p&&h===r.root.color)d=100,s="rgba(0,0,0,0)",l=0;else if(s=a.castOption(r,f,"marker.line.color")||i.defaultLine,l=a.castOption(r,f,"marker.line.width")||0,!r._hasColorscale&&!e.onPathbar){var m=r.marker.depthfade;if(m){var g,v=i.combine(i.addOpacity(r._backgroundColor,.75),h);if(!0===m){var y=o.getMaxDepth(r);g=isFinite(y)?o.isLeaf(e)?0:r._maxVisibleLayers-(e.data.depth-r._entryDepth):e.data.height+1}else g=e.data.depth-r._entryDepth,r._atRootLevel||g++;if(g>0)for(var x=0;x0){var x,b,_,w,T,k=t.xa,A=t.ya;"h"===p.orientation?(T=e,x="y",_=A,b="x",w=k):(T=r,x="x",_=k,b="y",w=A);var M=h[t.index];if(T>=M.span[0]&&T<=M.span[1]){var S=n.extendFlat({},t),E=w.c2p(T,!0),L=o.getKdeValue(M,p,T),C=o.getPositionOnKdePath(M,p,E),P=_._offset,I=_._length;S[x+"0"]=C[0],S[x+"1"]=C[1],S[b+"0"]=S[b+"1"]=E,S[b+"Label"]=b+": "+i.hoverLabelText(w,T,p[b+"hoverformat"])+", "+h[0].t.labels.kde+" "+L.toFixed(3),S.spikeDistance=y[0].spikeDistance;var O=x+"Spike";S[O]=y[0][O],y[0].spikeDistance=void 0,y[0][O]=void 0,S.hovertemplate=!1,v.push(S),(u={stroke:t.color})[x+"1"]=n.constrain(P+C[0],P,P+I),u[x+"2"]=n.constrain(P+C[1],P,P+I),u[b+"1"]=u[b+"2"]=w._offset+E}}m&&(v=v.concat(y))}-1!==d.indexOf("points")&&(c=a.hoverOnPoints(t,e,r));var z=f.selectAll(".violinline-"+p.uid).data(u?[0]:[]);return z.enter().append("line").classed("violinline-"+p.uid,!0).attr("stroke-width",1.5),z.exit().remove(),z.attr(u),"closest"===s?c?[c]:v:c?(v.push(c),v):v}},{"../../lib":498,"../../plots/cartesian/axes":549,"../box/hover":673,"./helpers":1090}],1092:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),crossTraceDefaults:t("../box/defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style"),styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../box/select"),moduleType:"trace",name:"violin",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","symbols","oriented","box-violin","showLegend","violinLayout","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"../box/defaults":671,"../box/select":678,"../scatter/style":946,"./attributes":1086,"./calc":1087,"./cross_trace_calc":1088,"./defaults":1089,"./hover":1091,"./layout_attributes":1093,"./layout_defaults":1094,"./plot":1095,"./style":1096}],1093:[function(t,e,r){"use strict";var n=t("../box/layout_attributes"),i=t("../../lib").extendFlat;e.exports={violinmode:i({},n.boxmode,{}),violingap:i({},n.boxgap,{}),violingroupgap:i({},n.boxgroupgap,{})}},{"../../lib":498,"../box/layout_attributes":675}],1094:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes"),a=t("../box/layout_defaults");e.exports=function(t,e,r){a._supply(t,e,r,(function(r,a){return n.coerce(t,e,i,r,a)}),"violin")}},{"../../lib":498,"../box/layout_defaults":676,"./layout_attributes":1093}],1095:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../box/plot"),s=t("../scatter/line_points"),l=t("./helpers");e.exports=function(t,e,r,c){var u=t._fullLayout,f=e.xaxis,h=e.yaxis;function p(t){var e=s(t,{xaxis:f,yaxis:h,connectGaps:!0,baseTolerance:.75,shape:"spline",simplify:!0,linearized:!0});return a.smoothopen(e[0],1)}i.makeTraceGroups(c,r,"trace violins").each((function(t){var r=n.select(this),a=t[0],s=a.t,c=a.trace;if(!0!==c.visible||s.empty)r.remove();else{var d=s.bPos,m=s.bdPos,g=e[s.valLetter+"axis"],v=e[s.posLetter+"axis"],y="both"===c.side,x=y||"positive"===c.side,b=y||"negative"===c.side,_=r.selectAll("path.violin").data(i.identity);_.enter().append("path").style("vector-effect","non-scaling-stroke").attr("class","violin"),_.exit().remove(),_.each((function(t){var e,r,i,a,o,l,f,h,_=n.select(this),w=t.density,T=w.length,k=v.c2l(t.pos+d,!0),A=v.l2p(k);if(c.width)e=s.maxKDE/m;else{var M=u._violinScaleGroupStats[c.scalegroup];e="count"===c.scalemode?M.maxKDE/m*(M.maxCount/t.pts.length):M.maxKDE/m}if(x){for(f=new Array(T),o=0;o")),u.color=function(t,e){var r=t[e.dir].marker,n=r.color,a=r.line.color,o=r.line.width;if(i(n))return n;if(i(a)&&o)return a}(h,g),[u]}function k(t){return n(m,t,h[d+"hoverformat"])}}},{"../../components/color":361,"../../constants/delta.js":468,"../../plots/cartesian/axes":549,"../bar/hover":650}],1108:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style").style,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("../bar/select"),moduleType:"trace",name:"waterfall",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","oriented","showLegend","zoomScale"],meta:{}}},{"../../plots/cartesian":563,"../bar/select":655,"./attributes":1101,"./calc":1102,"./cross_trace_calc":1104,"./defaults":1105,"./event_data":1106,"./hover":1107,"./layout_attributes":1109,"./layout_defaults":1110,"./plot":1111,"./style":1112}],1109:[function(t,e,r){"use strict";e.exports={waterfallmode:{valType:"enumerated",values:["group","overlay"],dflt:"group",editType:"calc"},waterfallgap:{valType:"number",min:0,max:1,editType:"calc"},waterfallgroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],1110:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a=!1;function o(r,a){return n.coerce(t,e,i,r,a)}for(var s=0;s0&&(g+=h?"M"+f[0]+","+d[1]+"V"+d[0]:"M"+f[1]+","+d[0]+"H"+f[0]),"between"!==p&&(r.isSum||s path").each((function(t){if(!t.isBlank){var e=s[t.dir].marker;n.select(this).call(a.fill,e.color).call(a.stroke,e.line.color).call(i.dashLine,e.line.dash,e.line.width).style("opacity",s.selectedpoints&&!t.selected?o:1)}})),c(r,s,t),r.selectAll(".lines").each((function(){var t=s.connector.line;i.lineGroupStyle(n.select(this).selectAll("path"),t.width,t.color,t.dash)}))}))}}},{"../../components/color":361,"../../components/drawing":383,"../../constants/interactions":473,"../bar/style":657,"../bar/uniform_text":659,"@plotly/d3":58}],1113:[function(t,e,r){"use strict";var n=t("../plots/cartesian/axes"),i=t("../lib"),a=t("../plot_api/plot_schema"),o=t("./helpers").pointsAccessorFunction,s=t("../constants/numerical").BADNUM;r.moduleType="transform",r.name="aggregate";var l=r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},groups:{valType:"string",strict:!0,noBlank:!0,arrayOk:!0,dflt:"x",editType:"calc"},aggregations:{_isLinkedToArray:"aggregation",target:{valType:"string",editType:"calc"},func:{valType:"enumerated",values:["count","sum","avg","median","mode","rms","stddev","min","max","first","last","change","range"],dflt:"first",editType:"calc"},funcmode:{valType:"enumerated",values:["sample","population"],dflt:"sample",editType:"calc"},enabled:{valType:"boolean",dflt:!0,editType:"calc"},editType:"calc"},editType:"calc"},c=l.aggregations;function u(t,e,r,a){if(a.enabled){for(var o=a.target,l=i.nestedProperty(e,o),c=l.get(),u=function(t,e){var r=t.func,n=e.d2c,a=e.c2d;switch(r){case"count":return f;case"first":return h;case"last":return p;case"sum":return function(t,e){for(var r=0,i=0;ii&&(i=u,o=c)}}return i?a(o):s};case"rms":return function(t,e){for(var r=0,i=0,o=0;o":return function(t){return h(t)>s};case">=":return function(t){return h(t)>=s};case"[]":return function(t){var e=h(t);return e>=s[0]&&e<=s[1]};case"()":return function(t){var e=h(t);return e>s[0]&&e=s[0]&&es[0]&&e<=s[1]};case"][":return function(t){var e=h(t);return e<=s[0]||e>=s[1]};case")(":return function(t){var e=h(t);return es[1]};case"](":return function(t){var e=h(t);return e<=s[0]||e>s[1]};case")[":return function(t){var e=h(t);return e=s[1]};case"{}":return function(t){return-1!==s.indexOf(h(t))};case"}{":return function(t){return-1===s.indexOf(h(t))}}}(r,a.getDataToCoordFunc(t,e,s,i),h),x={},b={},_=0;d?(g=function(t){x[t.astr]=n.extendDeep([],t.get()),t.set(new Array(f))},v=function(t,e){var r=x[t.astr][e];t.get()[e]=r}):(g=function(t){x[t.astr]=n.extendDeep([],t.get()),t.set([])},v=function(t,e){var r=x[t.astr][e];t.get().push(r)}),k(g);for(var w=o(e.transforms,r),T=0;T1?"%{group} (%{trace})":"%{group}");var l=t.styles,c=o.styles=[];if(l)for(a=0;a0?o-4:o;for(r=0;r>16&255,l[u++]=e>>8&255,l[u++]=255&e;2===s&&(e=i[t.charCodeAt(r)]<<2|i[t.charCodeAt(r+1)]>>4,l[u++]=255&e);1===s&&(e=i[t.charCodeAt(r)]<<10|i[t.charCodeAt(r+1)]<<4|i[t.charCodeAt(r+2)]>>2,l[u++]=e>>8&255,l[u++]=255&e);return l},r.fromByteArray=function(t){for(var e,r=t.length,i=r%3,a=[],o=0,s=r-i;os?s:o+16383));1===i?(e=t[r-1],a.push(n[e>>2]+n[e<<4&63]+"==")):2===i&&(e=(t[r-2]<<8)+t[r-1],a.push(n[e>>10]+n[e>>4&63]+n[e<<2&63]+"="));return a.join("")};for(var n=[],i=[],a="undefined"!=typeof Uint8Array?Uint8Array:Array,o="ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",s=0,l=o.length;s0)throw new Error("Invalid string. Length must be a multiple of 4");var r=t.indexOf("=");return-1===r&&(r=e),[r,r===e?0:4-r%4]}function u(t,e,r){for(var i,a,o=[],s=e;s>18&63]+n[a>>12&63]+n[a>>6&63]+n[63&a]);return o.join("")}i["-".charCodeAt(0)]=62,i["_".charCodeAt(0)]=63},{}],2:[function(t,e,r){},{}],3:[function(t,e,r){(function(e){(function(){ -/*! - * The buffer module from node.js, for the browser. - * - * @author Feross Aboukhadijeh - * @license MIT - */ -"use strict";var e=t("base64-js"),n=t("ieee754");r.Buffer=a,r.SlowBuffer=function(t){+t!=t&&(t=0);return a.alloc(+t)},r.INSPECT_MAX_BYTES=50;function i(t){if(t>2147483647)throw new RangeError('The value "'+t+'" is invalid for option "size"');var e=new Uint8Array(t);return e.__proto__=a.prototype,e}function a(t,e,r){if("number"==typeof t){if("string"==typeof e)throw new TypeError('The "string" argument must be of type string. Received type number');return l(t)}return o(t,e,r)}function o(t,e,r){if("string"==typeof t)return function(t,e){"string"==typeof e&&""!==e||(e="utf8");if(!a.isEncoding(e))throw new TypeError("Unknown encoding: "+e);var r=0|f(t,e),n=i(r),o=n.write(t,e);o!==r&&(n=n.slice(0,o));return n}(t,e);if(ArrayBuffer.isView(t))return c(t);if(null==t)throw TypeError("The first argument must be one of type string, Buffer, ArrayBuffer, Array, or Array-like Object. Received type "+typeof t);if(B(t,ArrayBuffer)||t&&B(t.buffer,ArrayBuffer))return function(t,e,r){if(e<0||t.byteLength=2147483647)throw new RangeError("Attempt to allocate Buffer larger than maximum size: 0x"+2147483647..toString(16)+" bytes");return 0|t}function f(t,e){if(a.isBuffer(t))return t.length;if(ArrayBuffer.isView(t)||B(t,ArrayBuffer))return t.byteLength;if("string"!=typeof t)throw new TypeError('The "string" argument must be one of type string, Buffer, or ArrayBuffer. Received type '+typeof t);var r=t.length,n=arguments.length>2&&!0===arguments[2];if(!n&&0===r)return 0;for(var i=!1;;)switch(e){case"ascii":case"latin1":case"binary":return r;case"utf8":case"utf-8":return D(t).length;case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return 2*r;case"hex":return r>>>1;case"base64":return R(t).length;default:if(i)return n?-1:D(t).length;e=(""+e).toLowerCase(),i=!0}}function h(t,e,r){var n=!1;if((void 0===e||e<0)&&(e=0),e>this.length)return"";if((void 0===r||r>this.length)&&(r=this.length),r<=0)return"";if((r>>>=0)<=(e>>>=0))return"";for(t||(t="utf8");;)switch(t){case"hex":return M(this,e,r);case"utf8":case"utf-8":return T(this,e,r);case"ascii":return k(this,e,r);case"latin1":case"binary":return A(this,e,r);case"base64":return w(this,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return S(this,e,r);default:if(n)throw new TypeError("Unknown encoding: "+t);t=(t+"").toLowerCase(),n=!0}}function p(t,e,r){var n=t[e];t[e]=t[r],t[r]=n}function d(t,e,r,n,i){if(0===t.length)return-1;if("string"==typeof r?(n=r,r=0):r>2147483647?r=2147483647:r<-2147483648&&(r=-2147483648),N(r=+r)&&(r=i?0:t.length-1),r<0&&(r=t.length+r),r>=t.length){if(i)return-1;r=t.length-1}else if(r<0){if(!i)return-1;r=0}if("string"==typeof e&&(e=a.from(e,n)),a.isBuffer(e))return 0===e.length?-1:m(t,e,r,n,i);if("number"==typeof e)return e&=255,"function"==typeof Uint8Array.prototype.indexOf?i?Uint8Array.prototype.indexOf.call(t,e,r):Uint8Array.prototype.lastIndexOf.call(t,e,r):m(t,[e],r,n,i);throw new TypeError("val must be string, number or Buffer")}function m(t,e,r,n,i){var a,o=1,s=t.length,l=e.length;if(void 0!==n&&("ucs2"===(n=String(n).toLowerCase())||"ucs-2"===n||"utf16le"===n||"utf-16le"===n)){if(t.length<2||e.length<2)return-1;o=2,s/=2,l/=2,r/=2}function c(t,e){return 1===o?t[e]:t.readUInt16BE(e*o)}if(i){var u=-1;for(a=r;as&&(r=s-l),a=r;a>=0;a--){for(var f=!0,h=0;hi&&(n=i):n=i;var a=e.length;n>a/2&&(n=a/2);for(var o=0;o>8,i=r%256,a.push(i),a.push(n);return a}(e,t.length-r),t,r,n)}function w(t,r,n){return 0===r&&n===t.length?e.fromByteArray(t):e.fromByteArray(t.slice(r,n))}function T(t,e,r){r=Math.min(t.length,r);for(var n=[],i=e;i239?4:c>223?3:c>191?2:1;if(i+f<=r)switch(f){case 1:c<128&&(u=c);break;case 2:128==(192&(a=t[i+1]))&&(l=(31&c)<<6|63&a)>127&&(u=l);break;case 3:a=t[i+1],o=t[i+2],128==(192&a)&&128==(192&o)&&(l=(15&c)<<12|(63&a)<<6|63&o)>2047&&(l<55296||l>57343)&&(u=l);break;case 4:a=t[i+1],o=t[i+2],s=t[i+3],128==(192&a)&&128==(192&o)&&128==(192&s)&&(l=(15&c)<<18|(63&a)<<12|(63&o)<<6|63&s)>65535&&l<1114112&&(u=l)}null===u?(u=65533,f=1):u>65535&&(u-=65536,n.push(u>>>10&1023|55296),u=56320|1023&u),n.push(u),i+=f}return function(t){var e=t.length;if(e<=4096)return String.fromCharCode.apply(String,t);var r="",n=0;for(;ne&&(t+=" ... "),""},a.prototype.compare=function(t,e,r,n,i){if(B(t,Uint8Array)&&(t=a.from(t,t.offset,t.byteLength)),!a.isBuffer(t))throw new TypeError('The "target" argument must be one of type Buffer or Uint8Array. Received type '+typeof t);if(void 0===e&&(e=0),void 0===r&&(r=t?t.length:0),void 0===n&&(n=0),void 0===i&&(i=this.length),e<0||r>t.length||n<0||i>this.length)throw new RangeError("out of range index");if(n>=i&&e>=r)return 0;if(n>=i)return-1;if(e>=r)return 1;if(this===t)return 0;for(var o=(i>>>=0)-(n>>>=0),s=(r>>>=0)-(e>>>=0),l=Math.min(o,s),c=this.slice(n,i),u=t.slice(e,r),f=0;f>>=0,isFinite(r)?(r>>>=0,void 0===n&&(n="utf8")):(n=r,r=void 0)}var i=this.length-e;if((void 0===r||r>i)&&(r=i),t.length>0&&(r<0||e<0)||e>this.length)throw new RangeError("Attempt to write outside buffer bounds");n||(n="utf8");for(var a=!1;;)switch(n){case"hex":return g(this,t,e,r);case"utf8":case"utf-8":return v(this,t,e,r);case"ascii":return y(this,t,e,r);case"latin1":case"binary":return x(this,t,e,r);case"base64":return b(this,t,e,r);case"ucs2":case"ucs-2":case"utf16le":case"utf-16le":return _(this,t,e,r);default:if(a)throw new TypeError("Unknown encoding: "+n);n=(""+n).toLowerCase(),a=!0}},a.prototype.toJSON=function(){return{type:"Buffer",data:Array.prototype.slice.call(this._arr||this,0)}};function k(t,e,r){var n="";r=Math.min(t.length,r);for(var i=e;in)&&(r=n);for(var i="",a=e;ar)throw new RangeError("Trying to access beyond buffer length")}function L(t,e,r,n,i,o){if(!a.isBuffer(t))throw new TypeError('"buffer" argument must be a Buffer instance');if(e>i||et.length)throw new RangeError("Index out of range")}function C(t,e,r,n,i,a){if(r+n>t.length)throw new RangeError("Index out of range");if(r<0)throw new RangeError("Index out of range")}function P(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,4),n.write(t,e,r,i,23,4),r+4}function I(t,e,r,i,a){return e=+e,r>>>=0,a||C(t,0,r,8),n.write(t,e,r,i,52,8),r+8}a.prototype.slice=function(t,e){var r=this.length;(t=~~t)<0?(t+=r)<0&&(t=0):t>r&&(t=r),(e=void 0===e?r:~~e)<0?(e+=r)<0&&(e=0):e>r&&(e=r),e>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t+--e],i=1;e>0&&(i*=256);)n+=this[t+--e]*i;return n},a.prototype.readUInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),this[t]},a.prototype.readUInt16LE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]|this[t+1]<<8},a.prototype.readUInt16BE=function(t,e){return t>>>=0,e||E(t,2,this.length),this[t]<<8|this[t+1]},a.prototype.readUInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),(this[t]|this[t+1]<<8|this[t+2]<<16)+16777216*this[t+3]},a.prototype.readUInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),16777216*this[t]+(this[t+1]<<16|this[t+2]<<8|this[t+3])},a.prototype.readIntLE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=this[t],i=1,a=0;++a=(i*=128)&&(n-=Math.pow(2,8*e)),n},a.prototype.readIntBE=function(t,e,r){t>>>=0,e>>>=0,r||E(t,e,this.length);for(var n=e,i=1,a=this[t+--n];n>0&&(i*=256);)a+=this[t+--n]*i;return a>=(i*=128)&&(a-=Math.pow(2,8*e)),a},a.prototype.readInt8=function(t,e){return t>>>=0,e||E(t,1,this.length),128&this[t]?-1*(255-this[t]+1):this[t]},a.prototype.readInt16LE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t]|this[t+1]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt16BE=function(t,e){t>>>=0,e||E(t,2,this.length);var r=this[t+1]|this[t]<<8;return 32768&r?4294901760|r:r},a.prototype.readInt32LE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]|this[t+1]<<8|this[t+2]<<16|this[t+3]<<24},a.prototype.readInt32BE=function(t,e){return t>>>=0,e||E(t,4,this.length),this[t]<<24|this[t+1]<<16|this[t+2]<<8|this[t+3]},a.prototype.readFloatLE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!0,23,4)},a.prototype.readFloatBE=function(t,e){return t>>>=0,e||E(t,4,this.length),n.read(this,t,!1,23,4)},a.prototype.readDoubleLE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!0,52,8)},a.prototype.readDoubleBE=function(t,e){return t>>>=0,e||E(t,8,this.length),n.read(this,t,!1,52,8)},a.prototype.writeUIntLE=function(t,e,r,n){(t=+t,e>>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=1,a=0;for(this[e]=255&t;++a>>=0,r>>>=0,n)||L(this,t,e,r,Math.pow(2,8*r)-1,0);var i=r-1,a=1;for(this[e+i]=255&t;--i>=0&&(a*=256);)this[e+i]=t/a&255;return e+r},a.prototype.writeUInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,255,0),this[e]=255&t,e+1},a.prototype.writeUInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeUInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,65535,0),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeUInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e+3]=t>>>24,this[e+2]=t>>>16,this[e+1]=t>>>8,this[e]=255&t,e+4},a.prototype.writeUInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,4294967295,0),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeIntLE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=0,o=1,s=0;for(this[e]=255&t;++a>0)-s&255;return e+r},a.prototype.writeIntBE=function(t,e,r,n){if(t=+t,e>>>=0,!n){var i=Math.pow(2,8*r-1);L(this,t,e,r,i-1,-i)}var a=r-1,o=1,s=0;for(this[e+a]=255&t;--a>=0&&(o*=256);)t<0&&0===s&&0!==this[e+a+1]&&(s=1),this[e+a]=(t/o>>0)-s&255;return e+r},a.prototype.writeInt8=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,1,127,-128),t<0&&(t=255+t+1),this[e]=255&t,e+1},a.prototype.writeInt16LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=255&t,this[e+1]=t>>>8,e+2},a.prototype.writeInt16BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,2,32767,-32768),this[e]=t>>>8,this[e+1]=255&t,e+2},a.prototype.writeInt32LE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),this[e]=255&t,this[e+1]=t>>>8,this[e+2]=t>>>16,this[e+3]=t>>>24,e+4},a.prototype.writeInt32BE=function(t,e,r){return t=+t,e>>>=0,r||L(this,t,e,4,2147483647,-2147483648),t<0&&(t=4294967295+t+1),this[e]=t>>>24,this[e+1]=t>>>16,this[e+2]=t>>>8,this[e+3]=255&t,e+4},a.prototype.writeFloatLE=function(t,e,r){return P(this,t,e,!0,r)},a.prototype.writeFloatBE=function(t,e,r){return P(this,t,e,!1,r)},a.prototype.writeDoubleLE=function(t,e,r){return I(this,t,e,!0,r)},a.prototype.writeDoubleBE=function(t,e,r){return I(this,t,e,!1,r)},a.prototype.copy=function(t,e,r,n){if(!a.isBuffer(t))throw new TypeError("argument should be a Buffer");if(r||(r=0),n||0===n||(n=this.length),e>=t.length&&(e=t.length),e||(e=0),n>0&&n=this.length)throw new RangeError("Index out of range");if(n<0)throw new RangeError("sourceEnd out of bounds");n>this.length&&(n=this.length),t.length-e=0;--o)t[o+e]=this[o+r];else Uint8Array.prototype.set.call(t,this.subarray(r,n),e);return i},a.prototype.fill=function(t,e,r,n){if("string"==typeof t){if("string"==typeof e?(n=e,e=0,r=this.length):"string"==typeof r&&(n=r,r=this.length),void 0!==n&&"string"!=typeof n)throw new TypeError("encoding must be a string");if("string"==typeof n&&!a.isEncoding(n))throw new TypeError("Unknown encoding: "+n);if(1===t.length){var i=t.charCodeAt(0);("utf8"===n&&i<128||"latin1"===n)&&(t=i)}}else"number"==typeof t&&(t&=255);if(e<0||this.length>>=0,r=void 0===r?this.length:r>>>0,t||(t=0),"number"==typeof t)for(o=e;o55295&&r<57344){if(!i){if(r>56319){(e-=3)>-1&&a.push(239,191,189);continue}if(o+1===n){(e-=3)>-1&&a.push(239,191,189);continue}i=r;continue}if(r<56320){(e-=3)>-1&&a.push(239,191,189),i=r;continue}r=65536+(i-55296<<10|r-56320)}else i&&(e-=3)>-1&&a.push(239,191,189);if(i=null,r<128){if((e-=1)<0)break;a.push(r)}else if(r<2048){if((e-=2)<0)break;a.push(r>>6|192,63&r|128)}else if(r<65536){if((e-=3)<0)break;a.push(r>>12|224,r>>6&63|128,63&r|128)}else{if(!(r<1114112))throw new Error("Invalid code point");if((e-=4)<0)break;a.push(r>>18|240,r>>12&63|128,r>>6&63|128,63&r|128)}}return a}function R(t){return e.toByteArray(function(t){if((t=(t=t.split("=")[0]).trim().replace(O,"")).length<2)return"";for(;t.length%4!=0;)t+="=";return t}(t))}function F(t,e,r,n){for(var i=0;i=e.length||i>=t.length);++i)e[i+r]=t[i];return i}function B(t,e){return t instanceof e||null!=t&&null!=t.constructor&&null!=t.constructor.name&&t.constructor.name===e.name}function N(t){return t!=t}}).call(this)}).call(this,t("buffer").Buffer)},{"base64-js":1,buffer:3,ieee754:4}],4:[function(t,e,r){r.read=function(t,e,r,n,i){var a,o,s=8*i-n-1,l=(1<>1,u=-7,f=r?i-1:0,h=r?-1:1,p=t[e+f];for(f+=h,a=p&(1<<-u)-1,p>>=-u,u+=s;u>0;a=256*a+t[e+f],f+=h,u-=8);for(o=a&(1<<-u)-1,a>>=-u,u+=n;u>0;o=256*o+t[e+f],f+=h,u-=8);if(0===a)a=1-c;else{if(a===l)return o?NaN:1/0*(p?-1:1);o+=Math.pow(2,n),a-=c}return(p?-1:1)*o*Math.pow(2,a-n)},r.write=function(t,e,r,n,i,a){var o,s,l,c=8*a-i-1,u=(1<>1,h=23===i?Math.pow(2,-24)-Math.pow(2,-77):0,p=n?0:a-1,d=n?1:-1,m=e<0||0===e&&1/e<0?1:0;for(e=Math.abs(e),isNaN(e)||e===1/0?(s=isNaN(e)?1:0,o=u):(o=Math.floor(Math.log(e)/Math.LN2),e*(l=Math.pow(2,-o))<1&&(o--,l*=2),(e+=o+f>=1?h/l:h*Math.pow(2,1-f))*l>=2&&(o++,l/=2),o+f>=u?(s=0,o=u):o+f>=1?(s=(e*l-1)*Math.pow(2,i),o+=f):(s=e*Math.pow(2,f-1)*Math.pow(2,i),o=0));i>=8;t[r+p]=255&s,p+=d,s/=256,i-=8);for(o=o<0;t[r+p]=255&o,p+=d,o/=256,c-=8);t[r+p-d]|=128*m}},{}],5:[function(t,e,r){var n,i,a=e.exports={};function o(){throw new Error("setTimeout has not been defined")}function s(){throw new Error("clearTimeout has not been defined")}function l(t){if(n===setTimeout)return setTimeout(t,0);if((n===o||!n)&&setTimeout)return n=setTimeout,setTimeout(t,0);try{return n(t,0)}catch(e){try{return n.call(null,t,0)}catch(e){return n.call(this,t,0)}}}!function(){try{n="function"==typeof setTimeout?setTimeout:o}catch(t){n=o}try{i="function"==typeof clearTimeout?clearTimeout:s}catch(t){i=s}}();var c,u=[],f=!1,h=-1;function p(){f&&c&&(f=!1,c.length?u=c.concat(u):h=-1,u.length&&d())}function d(){if(!f){var t=l(p);f=!0;for(var e=u.length;e;){for(c=u,u=[];++h1)for(var r=1;r0?c=c.ushln(f):f<0&&(u=u.ushln(-f));return s(c,u)}},{"./div":17,"./is-rat":19,"./lib/is-bn":23,"./lib/num-to-bn":24,"./lib/rationalize":25,"./lib/str-to-bn":26}],19:[function(t,e,r){"use strict";var n=t("./lib/is-bn");e.exports=function(t){return Array.isArray(t)&&2===t.length&&n(t[0])&&n(t[1])}},{"./lib/is-bn":23}],20:[function(t,e,r){"use strict";var n=t("bn.js");e.exports=function(t){return t.cmp(new n(0))}},{"bn.js":33}],21:[function(t,e,r){"use strict";var n=t("./bn-sign");e.exports=function(t){var e=t.length,r=t.words,i=0;if(1===e)i=r[0];else if(2===e)i=r[0]+67108864*r[1];else for(var a=0;a20)return 52;return r+32}},{"bit-twiddle":32,"double-bits":64}],23:[function(t,e,r){"use strict";t("bn.js");e.exports=function(t){return t&&"object"==typeof t&&Boolean(t.words)}},{"bn.js":33}],24:[function(t,e,r){"use strict";var n=t("bn.js"),i=t("double-bits");e.exports=function(t){var e=i.exponent(t);return e<52?new n(t):new n(t*Math.pow(2,52-e)).ushln(e-52)}},{"bn.js":33,"double-bits":64}],25:[function(t,e,r){"use strict";var n=t("./num-to-bn"),i=t("./bn-sign");e.exports=function(t,e){var r=i(t),a=i(e);if(0===r)return[n(0),n(1)];if(0===a)return[n(0),n(0)];a<0&&(t=t.neg(),e=e.neg());var o=t.gcd(e);if(o.cmpn(1))return[t.div(o),e.div(o)];return[t,e]}},{"./bn-sign":20,"./num-to-bn":24}],26:[function(t,e,r){"use strict";var n=t("bn.js");e.exports=function(t){return new n(t)}},{"bn.js":33}],27:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[0]),t[1].mul(e[1]))}},{"./lib/rationalize":25}],28:[function(t,e,r){"use strict";var n=t("./lib/bn-sign");e.exports=function(t){return n(t[0])*n(t[1])}},{"./lib/bn-sign":20}],29:[function(t,e,r){"use strict";var n=t("./lib/rationalize");e.exports=function(t,e){return n(t[0].mul(e[1]).sub(t[1].mul(e[0])),t[1].mul(e[1]))}},{"./lib/rationalize":25}],30:[function(t,e,r){"use strict";var n=t("./lib/bn-to-num"),i=t("./lib/ctz");e.exports=function(t){var e=t[0],r=t[1];if(0===e.cmpn(0))return 0;var a=e.abs().divmod(r.abs()),o=a.div,s=n(o),l=a.mod,c=e.negative!==r.negative?-1:1;if(0===l.cmpn(0))return c*s;if(s){var u=i(s)+4,f=n(l.ushln(u).divRound(r));return c*(s+f*Math.pow(2,-u))}var h=r.bitLength()-l.bitLength()+53;f=n(l.ushln(h).divRound(r));return h<1023?c*f*Math.pow(2,-h):(f*=Math.pow(2,-1023),c*f*Math.pow(2,1023-h))}},{"./lib/bn-to-num":21,"./lib/ctz":22}],31:[function(t,e,r){"use strict";function n(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>=0?(a=o,i=o-1):n=o+1}return a}function i(t,e,r,n,i){for(var a=i+1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)>0?(a=o,i=o-1):n=o+1}return a}function a(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<0?(a=o,n=o+1):i=o-1}return a}function o(t,e,r,n,i){for(var a=n-1;n<=i;){var o=n+i>>>1,s=t[o];(void 0!==r?r(s,e):s-e)<=0?(a=o,n=o+1):i=o-1}return a}function s(t,e,r,n,i){for(;n<=i;){var a=n+i>>>1,o=t[a],s=void 0!==r?r(o,e):o-e;if(0===s)return a;s<=0?n=a+1:i=a-1}return-1}function l(t,e,r,n,i,a){return"function"==typeof r?a(t,e,r,void 0===n?0:0|n,void 0===i?t.length-1:0|i):a(t,e,void 0,void 0===r?0:0|r,void 0===n?t.length-1:0|n)}e.exports={ge:function(t,e,r,i,a){return l(t,e,r,i,a,n)},gt:function(t,e,r,n,a){return l(t,e,r,n,a,i)},lt:function(t,e,r,n,i){return l(t,e,r,n,i,a)},le:function(t,e,r,n,i){return l(t,e,r,n,i,o)},eq:function(t,e,r,n,i){return l(t,e,r,n,i,s)}}},{}],32:[function(t,e,r){"use strict";function n(t){var e=32;return(t&=-t)&&e--,65535&t&&(e-=16),16711935&t&&(e-=8),252645135&t&&(e-=4),858993459&t&&(e-=2),1431655765&t&&(e-=1),e}r.INT_BITS=32,r.INT_MAX=2147483647,r.INT_MIN=-1<<31,r.sign=function(t){return(t>0)-(t<0)},r.abs=function(t){var e=t>>31;return(t^e)-e},r.min=function(t,e){return e^(t^e)&-(t65535)<<4,e|=r=((t>>>=e)>255)<<3,e|=r=((t>>>=r)>15)<<2,(e|=r=((t>>>=r)>3)<<1)|(t>>>=r)>>1},r.log10=function(t){return t>=1e9?9:t>=1e8?8:t>=1e7?7:t>=1e6?6:t>=1e5?5:t>=1e4?4:t>=1e3?3:t>=100?2:t>=10?1:0},r.popCount=function(t){return 16843009*((t=(858993459&(t-=t>>>1&1431655765))+(t>>>2&858993459))+(t>>>4)&252645135)>>>24},r.countTrailingZeros=n,r.nextPow2=function(t){return t+=0===t,--t,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)+1},r.prevPow2=function(t){return t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,(t|=t>>>16)-(t>>>1)},r.parity=function(t){return t^=t>>>16,t^=t>>>8,t^=t>>>4,27030>>>(t&=15)&1};var i=new Array(256);!function(t){for(var e=0;e<256;++e){var r=e,n=e,i=7;for(r>>>=1;r;r>>>=1)n<<=1,n|=1&r,--i;t[e]=n<>>8&255]<<16|i[t>>>16&255]<<8|i[t>>>24&255]},r.interleave2=function(t,e){return(t=1431655765&((t=858993459&((t=252645135&((t=16711935&((t&=65535)|t<<8))|t<<4))|t<<2))|t<<1))|(e=1431655765&((e=858993459&((e=252645135&((e=16711935&((e&=65535)|e<<8))|e<<4))|e<<2))|e<<1))<<1},r.deinterleave2=function(t,e){return(t=65535&((t=16711935&((t=252645135&((t=858993459&((t=t>>>e&1431655765)|t>>>1))|t>>>2))|t>>>4))|t>>>16))<<16>>16},r.interleave3=function(t,e,r){return t=1227133513&((t=3272356035&((t=251719695&((t=4278190335&((t&=1023)|t<<16))|t<<8))|t<<4))|t<<2),(t|=(e=1227133513&((e=3272356035&((e=251719695&((e=4278190335&((e&=1023)|e<<16))|e<<8))|e<<4))|e<<2))<<1)|(r=1227133513&((r=3272356035&((r=251719695&((r=4278190335&((r&=1023)|r<<16))|r<<8))|r<<4))|r<<2))<<2},r.deinterleave3=function(t,e){return(t=1023&((t=4278190335&((t=251719695&((t=3272356035&((t=t>>>e&1227133513)|t>>>2))|t>>>4))|t>>>8))|t>>>16))<<22>>22},r.nextCombination=function(t){var e=t|t-1;return e+1|(~e&-~e)-1>>>n(t)+1}},{}],33:[function(t,e,r){!function(e,r){"use strict";function n(t,e){if(!t)throw new Error(e||"Assertion failed")}function i(t,e){t.super_=e;var r=function(){};r.prototype=e.prototype,t.prototype=new r,t.prototype.constructor=t}function a(t,e,r){if(a.isBN(t))return t;this.negative=0,this.words=null,this.length=0,this.red=null,null!==t&&("le"!==e&&"be"!==e||(r=e,e=10),this._init(t||0,e||10,r||"be"))}var o;"object"==typeof e?e.exports=a:r.BN=a,a.BN=a,a.wordSize=26;try{o="undefined"!=typeof window&&void 0!==window.Buffer?window.Buffer:t("buffer").Buffer}catch(t){}function s(t,e){var r=t.charCodeAt(e);return r>=65&&r<=70?r-55:r>=97&&r<=102?r-87:r-48&15}function l(t,e,r){var n=s(t,r);return r-1>=e&&(n|=s(t,r-1)<<4),n}function c(t,e,r,n){for(var i=0,a=Math.min(t.length,r),o=e;o=49?s-49+10:s>=17?s-17+10:s}return i}a.isBN=function(t){return t instanceof a||null!==t&&"object"==typeof t&&t.constructor.wordSize===a.wordSize&&Array.isArray(t.words)},a.max=function(t,e){return t.cmp(e)>0?t:e},a.min=function(t,e){return t.cmp(e)<0?t:e},a.prototype._init=function(t,e,r){if("number"==typeof t)return this._initNumber(t,e,r);if("object"==typeof t)return this._initArray(t,e,r);"hex"===e&&(e=16),n(e===(0|e)&&e>=2&&e<=36);var i=0;"-"===(t=t.toString().replace(/\s+/g,""))[0]&&(i++,this.negative=1),i=0;i-=3)o=t[i]|t[i-1]<<8|t[i-2]<<16,this.words[a]|=o<>>26-s&67108863,(s+=24)>=26&&(s-=26,a++);else if("le"===r)for(i=0,a=0;i>>26-s&67108863,(s+=24)>=26&&(s-=26,a++);return this.strip()},a.prototype._parseHex=function(t,e,r){this.length=Math.ceil((t.length-e)/6),this.words=new Array(this.length);for(var n=0;n=e;n-=2)i=l(t,e,n)<=18?(a-=18,o+=1,this.words[o]|=i>>>26):a+=8;else for(n=(t.length-e)%2==0?e+1:e;n=18?(a-=18,o+=1,this.words[o]|=i>>>26):a+=8;this.strip()},a.prototype._parseBase=function(t,e,r){this.words=[0],this.length=1;for(var n=0,i=1;i<=67108863;i*=e)n++;n--,i=i/e|0;for(var a=t.length-r,o=a%n,s=Math.min(a,a-o)+r,l=0,u=r;u1&&0===this.words[this.length-1];)this.length--;return this._normSign()},a.prototype._normSign=function(){return 1===this.length&&0===this.words[0]&&(this.negative=0),this},a.prototype.inspect=function(){return(this.red?""};var u=["","0","00","000","0000","00000","000000","0000000","00000000","000000000","0000000000","00000000000","000000000000","0000000000000","00000000000000","000000000000000","0000000000000000","00000000000000000","000000000000000000","0000000000000000000","00000000000000000000","000000000000000000000","0000000000000000000000","00000000000000000000000","000000000000000000000000","0000000000000000000000000"],f=[0,0,25,16,12,11,10,9,8,8,7,7,7,7,6,6,6,6,6,6,6,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5],h=[0,0,33554432,43046721,16777216,48828125,60466176,40353607,16777216,43046721,1e7,19487171,35831808,62748517,7529536,11390625,16777216,24137569,34012224,47045881,64e6,4084101,5153632,6436343,7962624,9765625,11881376,14348907,17210368,20511149,243e5,28629151,33554432,39135393,45435424,52521875,60466176];function p(t,e,r){r.negative=e.negative^t.negative;var n=t.length+e.length|0;r.length=n,n=n-1|0;var i=0|t.words[0],a=0|e.words[0],o=i*a,s=67108863&o,l=o/67108864|0;r.words[0]=s;for(var c=1;c>>26,f=67108863&l,h=Math.min(c,e.length-1),p=Math.max(0,c-t.length+1);p<=h;p++){var d=c-p|0;u+=(o=(i=0|t.words[d])*(a=0|e.words[p])+f)/67108864|0,f=67108863&o}r.words[c]=0|f,l=0|u}return 0!==l?r.words[c]=0|l:r.length--,r.strip()}a.prototype.toString=function(t,e){var r;if(e=0|e||1,16===(t=t||10)||"hex"===t){r="";for(var i=0,a=0,o=0;o>>24-i&16777215)||o!==this.length-1?u[6-l.length]+l+r:l+r,(i+=2)>=26&&(i-=26,o--)}for(0!==a&&(r=a.toString(16)+r);r.length%e!=0;)r="0"+r;return 0!==this.negative&&(r="-"+r),r}if(t===(0|t)&&t>=2&&t<=36){var c=f[t],p=h[t];r="";var d=this.clone();for(d.negative=0;!d.isZero();){var m=d.modn(p).toString(t);r=(d=d.idivn(p)).isZero()?m+r:u[c-m.length]+m+r}for(this.isZero()&&(r="0"+r);r.length%e!=0;)r="0"+r;return 0!==this.negative&&(r="-"+r),r}n(!1,"Base should be between 2 and 36")},a.prototype.toNumber=function(){var t=this.words[0];return 2===this.length?t+=67108864*this.words[1]:3===this.length&&1===this.words[2]?t+=4503599627370496+67108864*this.words[1]:this.length>2&&n(!1,"Number can only safely store up to 53 bits"),0!==this.negative?-t:t},a.prototype.toJSON=function(){return this.toString(16)},a.prototype.toBuffer=function(t,e){return n(void 0!==o),this.toArrayLike(o,t,e)},a.prototype.toArray=function(t,e){return this.toArrayLike(Array,t,e)},a.prototype.toArrayLike=function(t,e,r){var i=this.byteLength(),a=r||Math.max(1,i);n(i<=a,"byte array longer than desired length"),n(a>0,"Requested array length <= 0"),this.strip();var o,s,l="le"===e,c=new t(a),u=this.clone();if(l){for(s=0;!u.isZero();s++)o=u.andln(255),u.iushrn(8),c[s]=o;for(;s=4096&&(r+=13,e>>>=13),e>=64&&(r+=7,e>>>=7),e>=8&&(r+=4,e>>>=4),e>=2&&(r+=2,e>>>=2),r+e},a.prototype._zeroBits=function(t){if(0===t)return 26;var e=t,r=0;return 0==(8191&e)&&(r+=13,e>>>=13),0==(127&e)&&(r+=7,e>>>=7),0==(15&e)&&(r+=4,e>>>=4),0==(3&e)&&(r+=2,e>>>=2),0==(1&e)&&r++,r},a.prototype.bitLength=function(){var t=this.words[this.length-1],e=this._countBits(t);return 26*(this.length-1)+e},a.prototype.zeroBits=function(){if(this.isZero())return 0;for(var t=0,e=0;et.length?this.clone().ior(t):t.clone().ior(this)},a.prototype.uor=function(t){return this.length>t.length?this.clone().iuor(t):t.clone().iuor(this)},a.prototype.iuand=function(t){var e;e=this.length>t.length?t:this;for(var r=0;rt.length?this.clone().iand(t):t.clone().iand(this)},a.prototype.uand=function(t){return this.length>t.length?this.clone().iuand(t):t.clone().iuand(this)},a.prototype.iuxor=function(t){var e,r;this.length>t.length?(e=this,r=t):(e=t,r=this);for(var n=0;nt.length?this.clone().ixor(t):t.clone().ixor(this)},a.prototype.uxor=function(t){return this.length>t.length?this.clone().iuxor(t):t.clone().iuxor(this)},a.prototype.inotn=function(t){n("number"==typeof t&&t>=0);var e=0|Math.ceil(t/26),r=t%26;this._expand(e),r>0&&e--;for(var i=0;i0&&(this.words[i]=~this.words[i]&67108863>>26-r),this.strip()},a.prototype.notn=function(t){return this.clone().inotn(t)},a.prototype.setn=function(t,e){n("number"==typeof t&&t>=0);var r=t/26|0,i=t%26;return this._expand(r+1),this.words[r]=e?this.words[r]|1<t.length?(r=this,n=t):(r=t,n=this);for(var i=0,a=0;a>>26;for(;0!==i&&a>>26;if(this.length=r.length,0!==i)this.words[this.length]=i,this.length++;else if(r!==this)for(;at.length?this.clone().iadd(t):t.clone().iadd(this)},a.prototype.isub=function(t){if(0!==t.negative){t.negative=0;var e=this.iadd(t);return t.negative=1,e._normSign()}if(0!==this.negative)return this.negative=0,this.iadd(t),this.negative=1,this._normSign();var r,n,i=this.cmp(t);if(0===i)return this.negative=0,this.length=1,this.words[0]=0,this;i>0?(r=this,n=t):(r=t,n=this);for(var a=0,o=0;o>26,this.words[o]=67108863&e;for(;0!==a&&o>26,this.words[o]=67108863&e;if(0===a&&o>>13,p=0|o[1],d=8191&p,m=p>>>13,g=0|o[2],v=8191&g,y=g>>>13,x=0|o[3],b=8191&x,_=x>>>13,w=0|o[4],T=8191&w,k=w>>>13,A=0|o[5],M=8191&A,S=A>>>13,E=0|o[6],L=8191&E,C=E>>>13,P=0|o[7],I=8191&P,O=P>>>13,z=0|o[8],D=8191&z,R=z>>>13,F=0|o[9],B=8191&F,N=F>>>13,j=0|s[0],U=8191&j,V=j>>>13,H=0|s[1],q=8191&H,G=H>>>13,Y=0|s[2],W=8191&Y,X=Y>>>13,Z=0|s[3],J=8191&Z,K=Z>>>13,Q=0|s[4],$=8191&Q,tt=Q>>>13,et=0|s[5],rt=8191&et,nt=et>>>13,it=0|s[6],at=8191&it,ot=it>>>13,st=0|s[7],lt=8191&st,ct=st>>>13,ut=0|s[8],ft=8191&ut,ht=ut>>>13,pt=0|s[9],dt=8191&pt,mt=pt>>>13;r.negative=t.negative^e.negative,r.length=19;var gt=(c+(n=Math.imul(f,U))|0)+((8191&(i=(i=Math.imul(f,V))+Math.imul(h,U)|0))<<13)|0;c=((a=Math.imul(h,V))+(i>>>13)|0)+(gt>>>26)|0,gt&=67108863,n=Math.imul(d,U),i=(i=Math.imul(d,V))+Math.imul(m,U)|0,a=Math.imul(m,V);var vt=(c+(n=n+Math.imul(f,q)|0)|0)+((8191&(i=(i=i+Math.imul(f,G)|0)+Math.imul(h,q)|0))<<13)|0;c=((a=a+Math.imul(h,G)|0)+(i>>>13)|0)+(vt>>>26)|0,vt&=67108863,n=Math.imul(v,U),i=(i=Math.imul(v,V))+Math.imul(y,U)|0,a=Math.imul(y,V),n=n+Math.imul(d,q)|0,i=(i=i+Math.imul(d,G)|0)+Math.imul(m,q)|0,a=a+Math.imul(m,G)|0;var yt=(c+(n=n+Math.imul(f,W)|0)|0)+((8191&(i=(i=i+Math.imul(f,X)|0)+Math.imul(h,W)|0))<<13)|0;c=((a=a+Math.imul(h,X)|0)+(i>>>13)|0)+(yt>>>26)|0,yt&=67108863,n=Math.imul(b,U),i=(i=Math.imul(b,V))+Math.imul(_,U)|0,a=Math.imul(_,V),n=n+Math.imul(v,q)|0,i=(i=i+Math.imul(v,G)|0)+Math.imul(y,q)|0,a=a+Math.imul(y,G)|0,n=n+Math.imul(d,W)|0,i=(i=i+Math.imul(d,X)|0)+Math.imul(m,W)|0,a=a+Math.imul(m,X)|0;var xt=(c+(n=n+Math.imul(f,J)|0)|0)+((8191&(i=(i=i+Math.imul(f,K)|0)+Math.imul(h,J)|0))<<13)|0;c=((a=a+Math.imul(h,K)|0)+(i>>>13)|0)+(xt>>>26)|0,xt&=67108863,n=Math.imul(T,U),i=(i=Math.imul(T,V))+Math.imul(k,U)|0,a=Math.imul(k,V),n=n+Math.imul(b,q)|0,i=(i=i+Math.imul(b,G)|0)+Math.imul(_,q)|0,a=a+Math.imul(_,G)|0,n=n+Math.imul(v,W)|0,i=(i=i+Math.imul(v,X)|0)+Math.imul(y,W)|0,a=a+Math.imul(y,X)|0,n=n+Math.imul(d,J)|0,i=(i=i+Math.imul(d,K)|0)+Math.imul(m,J)|0,a=a+Math.imul(m,K)|0;var bt=(c+(n=n+Math.imul(f,$)|0)|0)+((8191&(i=(i=i+Math.imul(f,tt)|0)+Math.imul(h,$)|0))<<13)|0;c=((a=a+Math.imul(h,tt)|0)+(i>>>13)|0)+(bt>>>26)|0,bt&=67108863,n=Math.imul(M,U),i=(i=Math.imul(M,V))+Math.imul(S,U)|0,a=Math.imul(S,V),n=n+Math.imul(T,q)|0,i=(i=i+Math.imul(T,G)|0)+Math.imul(k,q)|0,a=a+Math.imul(k,G)|0,n=n+Math.imul(b,W)|0,i=(i=i+Math.imul(b,X)|0)+Math.imul(_,W)|0,a=a+Math.imul(_,X)|0,n=n+Math.imul(v,J)|0,i=(i=i+Math.imul(v,K)|0)+Math.imul(y,J)|0,a=a+Math.imul(y,K)|0,n=n+Math.imul(d,$)|0,i=(i=i+Math.imul(d,tt)|0)+Math.imul(m,$)|0,a=a+Math.imul(m,tt)|0;var _t=(c+(n=n+Math.imul(f,rt)|0)|0)+((8191&(i=(i=i+Math.imul(f,nt)|0)+Math.imul(h,rt)|0))<<13)|0;c=((a=a+Math.imul(h,nt)|0)+(i>>>13)|0)+(_t>>>26)|0,_t&=67108863,n=Math.imul(L,U),i=(i=Math.imul(L,V))+Math.imul(C,U)|0,a=Math.imul(C,V),n=n+Math.imul(M,q)|0,i=(i=i+Math.imul(M,G)|0)+Math.imul(S,q)|0,a=a+Math.imul(S,G)|0,n=n+Math.imul(T,W)|0,i=(i=i+Math.imul(T,X)|0)+Math.imul(k,W)|0,a=a+Math.imul(k,X)|0,n=n+Math.imul(b,J)|0,i=(i=i+Math.imul(b,K)|0)+Math.imul(_,J)|0,a=a+Math.imul(_,K)|0,n=n+Math.imul(v,$)|0,i=(i=i+Math.imul(v,tt)|0)+Math.imul(y,$)|0,a=a+Math.imul(y,tt)|0,n=n+Math.imul(d,rt)|0,i=(i=i+Math.imul(d,nt)|0)+Math.imul(m,rt)|0,a=a+Math.imul(m,nt)|0;var wt=(c+(n=n+Math.imul(f,at)|0)|0)+((8191&(i=(i=i+Math.imul(f,ot)|0)+Math.imul(h,at)|0))<<13)|0;c=((a=a+Math.imul(h,ot)|0)+(i>>>13)|0)+(wt>>>26)|0,wt&=67108863,n=Math.imul(I,U),i=(i=Math.imul(I,V))+Math.imul(O,U)|0,a=Math.imul(O,V),n=n+Math.imul(L,q)|0,i=(i=i+Math.imul(L,G)|0)+Math.imul(C,q)|0,a=a+Math.imul(C,G)|0,n=n+Math.imul(M,W)|0,i=(i=i+Math.imul(M,X)|0)+Math.imul(S,W)|0,a=a+Math.imul(S,X)|0,n=n+Math.imul(T,J)|0,i=(i=i+Math.imul(T,K)|0)+Math.imul(k,J)|0,a=a+Math.imul(k,K)|0,n=n+Math.imul(b,$)|0,i=(i=i+Math.imul(b,tt)|0)+Math.imul(_,$)|0,a=a+Math.imul(_,tt)|0,n=n+Math.imul(v,rt)|0,i=(i=i+Math.imul(v,nt)|0)+Math.imul(y,rt)|0,a=a+Math.imul(y,nt)|0,n=n+Math.imul(d,at)|0,i=(i=i+Math.imul(d,ot)|0)+Math.imul(m,at)|0,a=a+Math.imul(m,ot)|0;var Tt=(c+(n=n+Math.imul(f,lt)|0)|0)+((8191&(i=(i=i+Math.imul(f,ct)|0)+Math.imul(h,lt)|0))<<13)|0;c=((a=a+Math.imul(h,ct)|0)+(i>>>13)|0)+(Tt>>>26)|0,Tt&=67108863,n=Math.imul(D,U),i=(i=Math.imul(D,V))+Math.imul(R,U)|0,a=Math.imul(R,V),n=n+Math.imul(I,q)|0,i=(i=i+Math.imul(I,G)|0)+Math.imul(O,q)|0,a=a+Math.imul(O,G)|0,n=n+Math.imul(L,W)|0,i=(i=i+Math.imul(L,X)|0)+Math.imul(C,W)|0,a=a+Math.imul(C,X)|0,n=n+Math.imul(M,J)|0,i=(i=i+Math.imul(M,K)|0)+Math.imul(S,J)|0,a=a+Math.imul(S,K)|0,n=n+Math.imul(T,$)|0,i=(i=i+Math.imul(T,tt)|0)+Math.imul(k,$)|0,a=a+Math.imul(k,tt)|0,n=n+Math.imul(b,rt)|0,i=(i=i+Math.imul(b,nt)|0)+Math.imul(_,rt)|0,a=a+Math.imul(_,nt)|0,n=n+Math.imul(v,at)|0,i=(i=i+Math.imul(v,ot)|0)+Math.imul(y,at)|0,a=a+Math.imul(y,ot)|0,n=n+Math.imul(d,lt)|0,i=(i=i+Math.imul(d,ct)|0)+Math.imul(m,lt)|0,a=a+Math.imul(m,ct)|0;var kt=(c+(n=n+Math.imul(f,ft)|0)|0)+((8191&(i=(i=i+Math.imul(f,ht)|0)+Math.imul(h,ft)|0))<<13)|0;c=((a=a+Math.imul(h,ht)|0)+(i>>>13)|0)+(kt>>>26)|0,kt&=67108863,n=Math.imul(B,U),i=(i=Math.imul(B,V))+Math.imul(N,U)|0,a=Math.imul(N,V),n=n+Math.imul(D,q)|0,i=(i=i+Math.imul(D,G)|0)+Math.imul(R,q)|0,a=a+Math.imul(R,G)|0,n=n+Math.imul(I,W)|0,i=(i=i+Math.imul(I,X)|0)+Math.imul(O,W)|0,a=a+Math.imul(O,X)|0,n=n+Math.imul(L,J)|0,i=(i=i+Math.imul(L,K)|0)+Math.imul(C,J)|0,a=a+Math.imul(C,K)|0,n=n+Math.imul(M,$)|0,i=(i=i+Math.imul(M,tt)|0)+Math.imul(S,$)|0,a=a+Math.imul(S,tt)|0,n=n+Math.imul(T,rt)|0,i=(i=i+Math.imul(T,nt)|0)+Math.imul(k,rt)|0,a=a+Math.imul(k,nt)|0,n=n+Math.imul(b,at)|0,i=(i=i+Math.imul(b,ot)|0)+Math.imul(_,at)|0,a=a+Math.imul(_,ot)|0,n=n+Math.imul(v,lt)|0,i=(i=i+Math.imul(v,ct)|0)+Math.imul(y,lt)|0,a=a+Math.imul(y,ct)|0,n=n+Math.imul(d,ft)|0,i=(i=i+Math.imul(d,ht)|0)+Math.imul(m,ft)|0,a=a+Math.imul(m,ht)|0;var At=(c+(n=n+Math.imul(f,dt)|0)|0)+((8191&(i=(i=i+Math.imul(f,mt)|0)+Math.imul(h,dt)|0))<<13)|0;c=((a=a+Math.imul(h,mt)|0)+(i>>>13)|0)+(At>>>26)|0,At&=67108863,n=Math.imul(B,q),i=(i=Math.imul(B,G))+Math.imul(N,q)|0,a=Math.imul(N,G),n=n+Math.imul(D,W)|0,i=(i=i+Math.imul(D,X)|0)+Math.imul(R,W)|0,a=a+Math.imul(R,X)|0,n=n+Math.imul(I,J)|0,i=(i=i+Math.imul(I,K)|0)+Math.imul(O,J)|0,a=a+Math.imul(O,K)|0,n=n+Math.imul(L,$)|0,i=(i=i+Math.imul(L,tt)|0)+Math.imul(C,$)|0,a=a+Math.imul(C,tt)|0,n=n+Math.imul(M,rt)|0,i=(i=i+Math.imul(M,nt)|0)+Math.imul(S,rt)|0,a=a+Math.imul(S,nt)|0,n=n+Math.imul(T,at)|0,i=(i=i+Math.imul(T,ot)|0)+Math.imul(k,at)|0,a=a+Math.imul(k,ot)|0,n=n+Math.imul(b,lt)|0,i=(i=i+Math.imul(b,ct)|0)+Math.imul(_,lt)|0,a=a+Math.imul(_,ct)|0,n=n+Math.imul(v,ft)|0,i=(i=i+Math.imul(v,ht)|0)+Math.imul(y,ft)|0,a=a+Math.imul(y,ht)|0;var Mt=(c+(n=n+Math.imul(d,dt)|0)|0)+((8191&(i=(i=i+Math.imul(d,mt)|0)+Math.imul(m,dt)|0))<<13)|0;c=((a=a+Math.imul(m,mt)|0)+(i>>>13)|0)+(Mt>>>26)|0,Mt&=67108863,n=Math.imul(B,W),i=(i=Math.imul(B,X))+Math.imul(N,W)|0,a=Math.imul(N,X),n=n+Math.imul(D,J)|0,i=(i=i+Math.imul(D,K)|0)+Math.imul(R,J)|0,a=a+Math.imul(R,K)|0,n=n+Math.imul(I,$)|0,i=(i=i+Math.imul(I,tt)|0)+Math.imul(O,$)|0,a=a+Math.imul(O,tt)|0,n=n+Math.imul(L,rt)|0,i=(i=i+Math.imul(L,nt)|0)+Math.imul(C,rt)|0,a=a+Math.imul(C,nt)|0,n=n+Math.imul(M,at)|0,i=(i=i+Math.imul(M,ot)|0)+Math.imul(S,at)|0,a=a+Math.imul(S,ot)|0,n=n+Math.imul(T,lt)|0,i=(i=i+Math.imul(T,ct)|0)+Math.imul(k,lt)|0,a=a+Math.imul(k,ct)|0,n=n+Math.imul(b,ft)|0,i=(i=i+Math.imul(b,ht)|0)+Math.imul(_,ft)|0,a=a+Math.imul(_,ht)|0;var St=(c+(n=n+Math.imul(v,dt)|0)|0)+((8191&(i=(i=i+Math.imul(v,mt)|0)+Math.imul(y,dt)|0))<<13)|0;c=((a=a+Math.imul(y,mt)|0)+(i>>>13)|0)+(St>>>26)|0,St&=67108863,n=Math.imul(B,J),i=(i=Math.imul(B,K))+Math.imul(N,J)|0,a=Math.imul(N,K),n=n+Math.imul(D,$)|0,i=(i=i+Math.imul(D,tt)|0)+Math.imul(R,$)|0,a=a+Math.imul(R,tt)|0,n=n+Math.imul(I,rt)|0,i=(i=i+Math.imul(I,nt)|0)+Math.imul(O,rt)|0,a=a+Math.imul(O,nt)|0,n=n+Math.imul(L,at)|0,i=(i=i+Math.imul(L,ot)|0)+Math.imul(C,at)|0,a=a+Math.imul(C,ot)|0,n=n+Math.imul(M,lt)|0,i=(i=i+Math.imul(M,ct)|0)+Math.imul(S,lt)|0,a=a+Math.imul(S,ct)|0,n=n+Math.imul(T,ft)|0,i=(i=i+Math.imul(T,ht)|0)+Math.imul(k,ft)|0,a=a+Math.imul(k,ht)|0;var Et=(c+(n=n+Math.imul(b,dt)|0)|0)+((8191&(i=(i=i+Math.imul(b,mt)|0)+Math.imul(_,dt)|0))<<13)|0;c=((a=a+Math.imul(_,mt)|0)+(i>>>13)|0)+(Et>>>26)|0,Et&=67108863,n=Math.imul(B,$),i=(i=Math.imul(B,tt))+Math.imul(N,$)|0,a=Math.imul(N,tt),n=n+Math.imul(D,rt)|0,i=(i=i+Math.imul(D,nt)|0)+Math.imul(R,rt)|0,a=a+Math.imul(R,nt)|0,n=n+Math.imul(I,at)|0,i=(i=i+Math.imul(I,ot)|0)+Math.imul(O,at)|0,a=a+Math.imul(O,ot)|0,n=n+Math.imul(L,lt)|0,i=(i=i+Math.imul(L,ct)|0)+Math.imul(C,lt)|0,a=a+Math.imul(C,ct)|0,n=n+Math.imul(M,ft)|0,i=(i=i+Math.imul(M,ht)|0)+Math.imul(S,ft)|0,a=a+Math.imul(S,ht)|0;var Lt=(c+(n=n+Math.imul(T,dt)|0)|0)+((8191&(i=(i=i+Math.imul(T,mt)|0)+Math.imul(k,dt)|0))<<13)|0;c=((a=a+Math.imul(k,mt)|0)+(i>>>13)|0)+(Lt>>>26)|0,Lt&=67108863,n=Math.imul(B,rt),i=(i=Math.imul(B,nt))+Math.imul(N,rt)|0,a=Math.imul(N,nt),n=n+Math.imul(D,at)|0,i=(i=i+Math.imul(D,ot)|0)+Math.imul(R,at)|0,a=a+Math.imul(R,ot)|0,n=n+Math.imul(I,lt)|0,i=(i=i+Math.imul(I,ct)|0)+Math.imul(O,lt)|0,a=a+Math.imul(O,ct)|0,n=n+Math.imul(L,ft)|0,i=(i=i+Math.imul(L,ht)|0)+Math.imul(C,ft)|0,a=a+Math.imul(C,ht)|0;var Ct=(c+(n=n+Math.imul(M,dt)|0)|0)+((8191&(i=(i=i+Math.imul(M,mt)|0)+Math.imul(S,dt)|0))<<13)|0;c=((a=a+Math.imul(S,mt)|0)+(i>>>13)|0)+(Ct>>>26)|0,Ct&=67108863,n=Math.imul(B,at),i=(i=Math.imul(B,ot))+Math.imul(N,at)|0,a=Math.imul(N,ot),n=n+Math.imul(D,lt)|0,i=(i=i+Math.imul(D,ct)|0)+Math.imul(R,lt)|0,a=a+Math.imul(R,ct)|0,n=n+Math.imul(I,ft)|0,i=(i=i+Math.imul(I,ht)|0)+Math.imul(O,ft)|0,a=a+Math.imul(O,ht)|0;var Pt=(c+(n=n+Math.imul(L,dt)|0)|0)+((8191&(i=(i=i+Math.imul(L,mt)|0)+Math.imul(C,dt)|0))<<13)|0;c=((a=a+Math.imul(C,mt)|0)+(i>>>13)|0)+(Pt>>>26)|0,Pt&=67108863,n=Math.imul(B,lt),i=(i=Math.imul(B,ct))+Math.imul(N,lt)|0,a=Math.imul(N,ct),n=n+Math.imul(D,ft)|0,i=(i=i+Math.imul(D,ht)|0)+Math.imul(R,ft)|0,a=a+Math.imul(R,ht)|0;var It=(c+(n=n+Math.imul(I,dt)|0)|0)+((8191&(i=(i=i+Math.imul(I,mt)|0)+Math.imul(O,dt)|0))<<13)|0;c=((a=a+Math.imul(O,mt)|0)+(i>>>13)|0)+(It>>>26)|0,It&=67108863,n=Math.imul(B,ft),i=(i=Math.imul(B,ht))+Math.imul(N,ft)|0,a=Math.imul(N,ht);var Ot=(c+(n=n+Math.imul(D,dt)|0)|0)+((8191&(i=(i=i+Math.imul(D,mt)|0)+Math.imul(R,dt)|0))<<13)|0;c=((a=a+Math.imul(R,mt)|0)+(i>>>13)|0)+(Ot>>>26)|0,Ot&=67108863;var zt=(c+(n=Math.imul(B,dt))|0)+((8191&(i=(i=Math.imul(B,mt))+Math.imul(N,dt)|0))<<13)|0;return c=((a=Math.imul(N,mt))+(i>>>13)|0)+(zt>>>26)|0,zt&=67108863,l[0]=gt,l[1]=vt,l[2]=yt,l[3]=xt,l[4]=bt,l[5]=_t,l[6]=wt,l[7]=Tt,l[8]=kt,l[9]=At,l[10]=Mt,l[11]=St,l[12]=Et,l[13]=Lt,l[14]=Ct,l[15]=Pt,l[16]=It,l[17]=Ot,l[18]=zt,0!==c&&(l[19]=c,r.length++),r};function m(t,e,r){return(new g).mulp(t,e,r)}function g(t,e){this.x=t,this.y=e}Math.imul||(d=p),a.prototype.mulTo=function(t,e){var r=this.length+t.length;return 10===this.length&&10===t.length?d(this,t,e):r<63?p(this,t,e):r<1024?function(t,e,r){r.negative=e.negative^t.negative,r.length=t.length+e.length;for(var n=0,i=0,a=0;a>>26)|0)>>>26,o&=67108863}r.words[a]=s,n=o,o=i}return 0!==n?r.words[a]=n:r.length--,r.strip()}(this,t,e):m(this,t,e)},g.prototype.makeRBT=function(t){for(var e=new Array(t),r=a.prototype._countBits(t)-1,n=0;n>=1;return n},g.prototype.permute=function(t,e,r,n,i,a){for(var o=0;o>>=1)i++;return 1<>>=13,r[2*o+1]=8191&a,a>>>=13;for(o=2*e;o>=26,e+=i/67108864|0,e+=a>>>26,this.words[r]=67108863&a}return 0!==e&&(this.words[r]=e,this.length++),this},a.prototype.muln=function(t){return this.clone().imuln(t)},a.prototype.sqr=function(){return this.mul(this)},a.prototype.isqr=function(){return this.imul(this.clone())},a.prototype.pow=function(t){var e=function(t){for(var e=new Array(t.bitLength()),r=0;r>>i}return e}(t);if(0===e.length)return new a(1);for(var r=this,n=0;n=0);var e,r=t%26,i=(t-r)/26,a=67108863>>>26-r<<26-r;if(0!==r){var o=0;for(e=0;e>>26-r}o&&(this.words[e]=o,this.length++)}if(0!==i){for(e=this.length-1;e>=0;e--)this.words[e+i]=this.words[e];for(e=0;e=0),i=e?(e-e%26)/26:0;var a=t%26,o=Math.min((t-a)/26,this.length),s=67108863^67108863>>>a<o)for(this.length-=o,c=0;c=0&&(0!==u||c>=i);c--){var f=0|this.words[c];this.words[c]=u<<26-a|f>>>a,u=f&s}return l&&0!==u&&(l.words[l.length++]=u),0===this.length&&(this.words[0]=0,this.length=1),this.strip()},a.prototype.ishrn=function(t,e,r){return n(0===this.negative),this.iushrn(t,e,r)},a.prototype.shln=function(t){return this.clone().ishln(t)},a.prototype.ushln=function(t){return this.clone().iushln(t)},a.prototype.shrn=function(t){return this.clone().ishrn(t)},a.prototype.ushrn=function(t){return this.clone().iushrn(t)},a.prototype.testn=function(t){n("number"==typeof t&&t>=0);var e=t%26,r=(t-e)/26,i=1<=0);var e=t%26,r=(t-e)/26;if(n(0===this.negative,"imaskn works only with positive numbers"),this.length<=r)return this;if(0!==e&&r++,this.length=Math.min(r,this.length),0!==e){var i=67108863^67108863>>>e<=67108864;e++)this.words[e]-=67108864,e===this.length-1?this.words[e+1]=1:this.words[e+1]++;return this.length=Math.max(this.length,e+1),this},a.prototype.isubn=function(t){if(n("number"==typeof t),n(t<67108864),t<0)return this.iaddn(-t);if(0!==this.negative)return this.negative=0,this.iaddn(t),this.negative=1,this;if(this.words[0]-=t,1===this.length&&this.words[0]<0)this.words[0]=-this.words[0],this.negative=1;else for(var e=0;e>26)-(l/67108864|0),this.words[i+r]=67108863&a}for(;i>26,this.words[i+r]=67108863&a;if(0===s)return this.strip();for(n(-1===s),s=0,i=0;i>26,this.words[i]=67108863&a;return this.negative=1,this.strip()},a.prototype._wordDiv=function(t,e){var r=(this.length,t.length),n=this.clone(),i=t,o=0|i.words[i.length-1];0!==(r=26-this._countBits(o))&&(i=i.ushln(r),n.iushln(r),o=0|i.words[i.length-1]);var s,l=n.length-i.length;if("mod"!==e){(s=new a(null)).length=l+1,s.words=new Array(s.length);for(var c=0;c=0;f--){var h=67108864*(0|n.words[i.length+f])+(0|n.words[i.length+f-1]);for(h=Math.min(h/o|0,67108863),n._ishlnsubmul(i,h,f);0!==n.negative;)h--,n.negative=0,n._ishlnsubmul(i,1,f),n.isZero()||(n.negative^=1);s&&(s.words[f]=h)}return s&&s.strip(),n.strip(),"div"!==e&&0!==r&&n.iushrn(r),{div:s||null,mod:n}},a.prototype.divmod=function(t,e,r){return n(!t.isZero()),this.isZero()?{div:new a(0),mod:new a(0)}:0!==this.negative&&0===t.negative?(s=this.neg().divmod(t,e),"mod"!==e&&(i=s.div.neg()),"div"!==e&&(o=s.mod.neg(),r&&0!==o.negative&&o.iadd(t)),{div:i,mod:o}):0===this.negative&&0!==t.negative?(s=this.divmod(t.neg(),e),"mod"!==e&&(i=s.div.neg()),{div:i,mod:s.mod}):0!=(this.negative&t.negative)?(s=this.neg().divmod(t.neg(),e),"div"!==e&&(o=s.mod.neg(),r&&0!==o.negative&&o.isub(t)),{div:s.div,mod:o}):t.length>this.length||this.cmp(t)<0?{div:new a(0),mod:this}:1===t.length?"div"===e?{div:this.divn(t.words[0]),mod:null}:"mod"===e?{div:null,mod:new a(this.modn(t.words[0]))}:{div:this.divn(t.words[0]),mod:new a(this.modn(t.words[0]))}:this._wordDiv(t,e);var i,o,s},a.prototype.div=function(t){return this.divmod(t,"div",!1).div},a.prototype.mod=function(t){return this.divmod(t,"mod",!1).mod},a.prototype.umod=function(t){return this.divmod(t,"mod",!0).mod},a.prototype.divRound=function(t){var e=this.divmod(t);if(e.mod.isZero())return e.div;var r=0!==e.div.negative?e.mod.isub(t):e.mod,n=t.ushrn(1),i=t.andln(1),a=r.cmp(n);return a<0||1===i&&0===a?e.div:0!==e.div.negative?e.div.isubn(1):e.div.iaddn(1)},a.prototype.modn=function(t){n(t<=67108863);for(var e=(1<<26)%t,r=0,i=this.length-1;i>=0;i--)r=(e*r+(0|this.words[i]))%t;return r},a.prototype.idivn=function(t){n(t<=67108863);for(var e=0,r=this.length-1;r>=0;r--){var i=(0|this.words[r])+67108864*e;this.words[r]=i/t|0,e=i%t}return this.strip()},a.prototype.divn=function(t){return this.clone().idivn(t)},a.prototype.egcd=function(t){n(0===t.negative),n(!t.isZero());var e=this,r=t.clone();e=0!==e.negative?e.umod(t):e.clone();for(var i=new a(1),o=new a(0),s=new a(0),l=new a(1),c=0;e.isEven()&&r.isEven();)e.iushrn(1),r.iushrn(1),++c;for(var u=r.clone(),f=e.clone();!e.isZero();){for(var h=0,p=1;0==(e.words[0]&p)&&h<26;++h,p<<=1);if(h>0)for(e.iushrn(h);h-- >0;)(i.isOdd()||o.isOdd())&&(i.iadd(u),o.isub(f)),i.iushrn(1),o.iushrn(1);for(var d=0,m=1;0==(r.words[0]&m)&&d<26;++d,m<<=1);if(d>0)for(r.iushrn(d);d-- >0;)(s.isOdd()||l.isOdd())&&(s.iadd(u),l.isub(f)),s.iushrn(1),l.iushrn(1);e.cmp(r)>=0?(e.isub(r),i.isub(s),o.isub(l)):(r.isub(e),s.isub(i),l.isub(o))}return{a:s,b:l,gcd:r.iushln(c)}},a.prototype._invmp=function(t){n(0===t.negative),n(!t.isZero());var e=this,r=t.clone();e=0!==e.negative?e.umod(t):e.clone();for(var i,o=new a(1),s=new a(0),l=r.clone();e.cmpn(1)>0&&r.cmpn(1)>0;){for(var c=0,u=1;0==(e.words[0]&u)&&c<26;++c,u<<=1);if(c>0)for(e.iushrn(c);c-- >0;)o.isOdd()&&o.iadd(l),o.iushrn(1);for(var f=0,h=1;0==(r.words[0]&h)&&f<26;++f,h<<=1);if(f>0)for(r.iushrn(f);f-- >0;)s.isOdd()&&s.iadd(l),s.iushrn(1);e.cmp(r)>=0?(e.isub(r),o.isub(s)):(r.isub(e),s.isub(o))}return(i=0===e.cmpn(1)?o:s).cmpn(0)<0&&i.iadd(t),i},a.prototype.gcd=function(t){if(this.isZero())return t.abs();if(t.isZero())return this.abs();var e=this.clone(),r=t.clone();e.negative=0,r.negative=0;for(var n=0;e.isEven()&&r.isEven();n++)e.iushrn(1),r.iushrn(1);for(;;){for(;e.isEven();)e.iushrn(1);for(;r.isEven();)r.iushrn(1);var i=e.cmp(r);if(i<0){var a=e;e=r,r=a}else if(0===i||0===r.cmpn(1))break;e.isub(r)}return r.iushln(n)},a.prototype.invm=function(t){return this.egcd(t).a.umod(t)},a.prototype.isEven=function(){return 0==(1&this.words[0])},a.prototype.isOdd=function(){return 1==(1&this.words[0])},a.prototype.andln=function(t){return this.words[0]&t},a.prototype.bincn=function(t){n("number"==typeof t);var e=t%26,r=(t-e)/26,i=1<>>26,s&=67108863,this.words[o]=s}return 0!==a&&(this.words[o]=a,this.length++),this},a.prototype.isZero=function(){return 1===this.length&&0===this.words[0]},a.prototype.cmpn=function(t){var e,r=t<0;if(0!==this.negative&&!r)return-1;if(0===this.negative&&r)return 1;if(this.strip(),this.length>1)e=1;else{r&&(t=-t),n(t<=67108863,"Number is too big");var i=0|this.words[0];e=i===t?0:it.length)return 1;if(this.length=0;r--){var n=0|this.words[r],i=0|t.words[r];if(n!==i){ni&&(e=1);break}}return e},a.prototype.gtn=function(t){return 1===this.cmpn(t)},a.prototype.gt=function(t){return 1===this.cmp(t)},a.prototype.gten=function(t){return this.cmpn(t)>=0},a.prototype.gte=function(t){return this.cmp(t)>=0},a.prototype.ltn=function(t){return-1===this.cmpn(t)},a.prototype.lt=function(t){return-1===this.cmp(t)},a.prototype.lten=function(t){return this.cmpn(t)<=0},a.prototype.lte=function(t){return this.cmp(t)<=0},a.prototype.eqn=function(t){return 0===this.cmpn(t)},a.prototype.eq=function(t){return 0===this.cmp(t)},a.red=function(t){return new T(t)},a.prototype.toRed=function(t){return n(!this.red,"Already a number in reduction context"),n(0===this.negative,"red works only with positives"),t.convertTo(this)._forceRed(t)},a.prototype.fromRed=function(){return n(this.red,"fromRed works only with numbers in reduction context"),this.red.convertFrom(this)},a.prototype._forceRed=function(t){return this.red=t,this},a.prototype.forceRed=function(t){return n(!this.red,"Already a number in reduction context"),this._forceRed(t)},a.prototype.redAdd=function(t){return n(this.red,"redAdd works only with red numbers"),this.red.add(this,t)},a.prototype.redIAdd=function(t){return n(this.red,"redIAdd works only with red numbers"),this.red.iadd(this,t)},a.prototype.redSub=function(t){return n(this.red,"redSub works only with red numbers"),this.red.sub(this,t)},a.prototype.redISub=function(t){return n(this.red,"redISub works only with red numbers"),this.red.isub(this,t)},a.prototype.redShl=function(t){return n(this.red,"redShl works only with red numbers"),this.red.shl(this,t)},a.prototype.redMul=function(t){return n(this.red,"redMul works only with red numbers"),this.red._verify2(this,t),this.red.mul(this,t)},a.prototype.redIMul=function(t){return n(this.red,"redMul works only with red numbers"),this.red._verify2(this,t),this.red.imul(this,t)},a.prototype.redSqr=function(){return n(this.red,"redSqr works only with red numbers"),this.red._verify1(this),this.red.sqr(this)},a.prototype.redISqr=function(){return n(this.red,"redISqr works only with red numbers"),this.red._verify1(this),this.red.isqr(this)},a.prototype.redSqrt=function(){return n(this.red,"redSqrt works only with red numbers"),this.red._verify1(this),this.red.sqrt(this)},a.prototype.redInvm=function(){return n(this.red,"redInvm works only with red numbers"),this.red._verify1(this),this.red.invm(this)},a.prototype.redNeg=function(){return n(this.red,"redNeg works only with red numbers"),this.red._verify1(this),this.red.neg(this)},a.prototype.redPow=function(t){return n(this.red&&!t.red,"redPow(normalNum)"),this.red._verify1(this),this.red.pow(this,t)};var v={k256:null,p224:null,p192:null,p25519:null};function y(t,e){this.name=t,this.p=new a(e,16),this.n=this.p.bitLength(),this.k=new a(1).iushln(this.n).isub(this.p),this.tmp=this._tmp()}function x(){y.call(this,"k256","ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f")}function b(){y.call(this,"p224","ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001")}function _(){y.call(this,"p192","ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff")}function w(){y.call(this,"25519","7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed")}function T(t){if("string"==typeof t){var e=a._prime(t);this.m=e.p,this.prime=e}else n(t.gtn(1),"modulus must be greater than 1"),this.m=t,this.prime=null}function k(t){T.call(this,t),this.shift=this.m.bitLength(),this.shift%26!=0&&(this.shift+=26-this.shift%26),this.r=new a(1).iushln(this.shift),this.r2=this.imod(this.r.sqr()),this.rinv=this.r._invmp(this.m),this.minv=this.rinv.mul(this.r).isubn(1).div(this.m),this.minv=this.minv.umod(this.r),this.minv=this.r.sub(this.minv)}y.prototype._tmp=function(){var t=new a(null);return t.words=new Array(Math.ceil(this.n/13)),t},y.prototype.ireduce=function(t){var e,r=t;do{this.split(r,this.tmp),e=(r=(r=this.imulK(r)).iadd(this.tmp)).bitLength()}while(e>this.n);var n=e0?r.isub(this.p):void 0!==r.strip?r.strip():r._strip(),r},y.prototype.split=function(t,e){t.iushrn(this.n,0,e)},y.prototype.imulK=function(t){return t.imul(this.k)},i(x,y),x.prototype.split=function(t,e){for(var r=Math.min(t.length,9),n=0;n>>22,i=a}i>>>=22,t.words[n-10]=i,0===i&&t.length>10?t.length-=10:t.length-=9},x.prototype.imulK=function(t){t.words[t.length]=0,t.words[t.length+1]=0,t.length+=2;for(var e=0,r=0;r>>=26,t.words[r]=i,e=n}return 0!==e&&(t.words[t.length++]=e),t},a._prime=function(t){if(v[t])return v[t];var e;if("k256"===t)e=new x;else if("p224"===t)e=new b;else if("p192"===t)e=new _;else{if("p25519"!==t)throw new Error("Unknown prime "+t);e=new w}return v[t]=e,e},T.prototype._verify1=function(t){n(0===t.negative,"red works only with positives"),n(t.red,"red works only with red numbers")},T.prototype._verify2=function(t,e){n(0==(t.negative|e.negative),"red works only with positives"),n(t.red&&t.red===e.red,"red works only with red numbers")},T.prototype.imod=function(t){return this.prime?this.prime.ireduce(t)._forceRed(this):t.umod(this.m)._forceRed(this)},T.prototype.neg=function(t){return t.isZero()?t.clone():this.m.sub(t)._forceRed(this)},T.prototype.add=function(t,e){this._verify2(t,e);var r=t.add(e);return r.cmp(this.m)>=0&&r.isub(this.m),r._forceRed(this)},T.prototype.iadd=function(t,e){this._verify2(t,e);var r=t.iadd(e);return r.cmp(this.m)>=0&&r.isub(this.m),r},T.prototype.sub=function(t,e){this._verify2(t,e);var r=t.sub(e);return r.cmpn(0)<0&&r.iadd(this.m),r._forceRed(this)},T.prototype.isub=function(t,e){this._verify2(t,e);var r=t.isub(e);return r.cmpn(0)<0&&r.iadd(this.m),r},T.prototype.shl=function(t,e){return this._verify1(t),this.imod(t.ushln(e))},T.prototype.imul=function(t,e){return this._verify2(t,e),this.imod(t.imul(e))},T.prototype.mul=function(t,e){return this._verify2(t,e),this.imod(t.mul(e))},T.prototype.isqr=function(t){return this.imul(t,t.clone())},T.prototype.sqr=function(t){return this.mul(t,t)},T.prototype.sqrt=function(t){if(t.isZero())return t.clone();var e=this.m.andln(3);if(n(e%2==1),3===e){var r=this.m.add(new a(1)).iushrn(2);return this.pow(t,r)}for(var i=this.m.subn(1),o=0;!i.isZero()&&0===i.andln(1);)o++,i.iushrn(1);n(!i.isZero());var s=new a(1).toRed(this),l=s.redNeg(),c=this.m.subn(1).iushrn(1),u=this.m.bitLength();for(u=new a(2*u*u).toRed(this);0!==this.pow(u,c).cmp(l);)u.redIAdd(l);for(var f=this.pow(u,i),h=this.pow(t,i.addn(1).iushrn(1)),p=this.pow(t,i),d=o;0!==p.cmp(s);){for(var m=p,g=0;0!==m.cmp(s);g++)m=m.redSqr();n(g=0;n--){for(var c=e.words[n],u=l-1;u>=0;u--){var f=c>>u&1;i!==r[0]&&(i=this.sqr(i)),0!==f||0!==o?(o<<=1,o|=f,(4===++s||0===n&&0===u)&&(i=this.mul(i,r[o]),s=0,o=0)):s=0}l=26}return i},T.prototype.convertTo=function(t){var e=t.umod(this.m);return e===t?e.clone():e},T.prototype.convertFrom=function(t){var e=t.clone();return e.red=null,e},a.mont=function(t){return new k(t)},i(k,T),k.prototype.convertTo=function(t){return this.imod(t.ushln(this.shift))},k.prototype.convertFrom=function(t){var e=this.imod(t.mul(this.rinv));return e.red=null,e},k.prototype.imul=function(t,e){if(t.isZero()||e.isZero())return t.words[0]=0,t.length=1,t;var r=t.imul(e),n=r.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m),i=r.isub(n).iushrn(this.shift),a=i;return i.cmp(this.m)>=0?a=i.isub(this.m):i.cmpn(0)<0&&(a=i.iadd(this.m)),a._forceRed(this)},k.prototype.mul=function(t,e){if(t.isZero()||e.isZero())return new a(0)._forceRed(this);var r=t.mul(e),n=r.maskn(this.shift).mul(this.minv).imaskn(this.shift).mul(this.m),i=r.isub(n).iushrn(this.shift),o=i;return i.cmp(this.m)>=0?o=i.isub(this.m):i.cmpn(0)<0&&(o=i.iadd(this.m)),o._forceRed(this)},k.prototype.invm=function(t){return this.imod(t._invmp(this.m).mul(this.r2))._forceRed(this)}}(void 0===e||e,this)},{buffer:2}],34:[function(t,e,r){"use strict";e.exports=function(t){var e,r,n,i=t.length,a=0;for(e=0;e>>1;if(!(u<=0)){var f,h=i.mallocDouble(2*u*s),p=i.mallocInt32(s);if((s=l(t,u,h,p))>0){if(1===u&&n)a.init(s),f=a.sweepComplete(u,r,0,s,h,p,0,s,h,p);else{var d=i.mallocDouble(2*u*c),m=i.mallocInt32(c);(c=l(e,u,d,m))>0&&(a.init(s+c),f=1===u?a.sweepBipartite(u,r,0,s,h,p,0,c,d,m):o(u,r,n,s,h,p,c,d,m),i.free(d),i.free(m))}i.free(h),i.free(p)}return f}}}function u(t,e){n.push([t,e])}function f(t){return n=[],c(t,t,u,!0),n}function h(t,e){return n=[],c(t,e,u,!1),n}},{"./lib/intersect":37,"./lib/sweep":41,"typedarray-pool":308}],36:[function(t,e,r){"use strict";function n(t){return t?function(t,e,r,n,i,a,o,s,l,c,u){return i-n>l-s?function(t,e,r,n,i,a,o,s,l,c,u){for(var f=2*t,h=n,p=f*n;hc-l?n?function(t,e,r,n,i,a,o,s,l,c,u){for(var f=2*t,h=n,p=f*n;h0;){var L=6*(S-=1),C=v[L],P=v[L+1],I=v[L+2],O=v[L+3],z=v[L+4],D=v[L+5],R=2*S,F=y[R],B=y[R+1],N=1&D,j=!!(16&D),U=u,V=w,H=k,q=A;if(N&&(U=k,V=A,H=u,q=w),!(2&D&&(I=p(t,C,P,I,U,V,B),P>=I)||4&D&&(P=d(t,C,P,I,U,V,F))>=I)){var G=I-P,Y=z-O;if(j){if(t*G*(G+Y)<1<<22){if(void 0!==(M=l.scanComplete(t,C,e,P,I,U,V,O,z,H,q)))return M;continue}}else{if(t*Math.min(G,Y)<128){if(void 0!==(M=o(t,C,e,N,P,I,U,V,O,z,H,q)))return M;continue}if(t*G*Y<1<<22){if(void 0!==(M=l.scanBipartite(t,C,e,N,P,I,U,V,O,z,H,q)))return M;continue}}var W=f(t,C,P,I,U,V,F,B);if(P=p0)&&!(p1>=hi)"),h=u("lo===p0"),p=u("lo>>1,f=2*t,h=u,p=o[f*u+e];for(;l=y?(h=v,p=y):g>=b?(h=m,p=g):(h=x,p=b):y>=b?(h=v,p=y):b>=g?(h=m,p=g):(h=x,p=b);for(var _=f*(c-1),w=f*h,T=0;Tr&&i[f+e]>c;--u,f-=o){for(var h=f,p=f+o,d=0;dh;++h,l+=s){if(i[l+f]===o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"loh;++h,l+=s){if(i[l+f]p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"lo<=p0":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=t+e,h=r;n>h;++h,l+=s){if(i[l+f]<=o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"hi<=p0":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=t+e,h=r;n>h;++h,l+=s){if(i[l+f]<=o)if(u===h)u+=1,c+=s;else{for(var p=0;s>p;++p){var d=i[l+p];i[l+p]=i[c],i[c++]=d}var m=a[h];a[h]=a[u],a[u++]=m}}return u},"lop;++p,l+=s){var d=i[l+f],m=i[l+h];if(dg;++g){var v=i[l+g];i[l+g]=i[c],i[c++]=v}var y=a[p];a[p]=a[u],a[u++]=y}}return u},"lo<=p0&&p0<=hi":function(t,e,r,n,i,a,o){for(var s=2*t,l=s*r,c=l,u=r,f=e,h=t+e,p=r;n>p;++p,l+=s){var d=i[l+f],m=i[l+h];if(d<=o&&o<=m)if(u===p)u+=1,c+=s;else{for(var g=0;s>g;++g){var v=i[l+g];i[l+g]=i[c],i[c++]=v}var y=a[p];a[p]=a[u],a[u++]=y}}return u},"!(lo>=p0)&&!(p1>=hi)":function(t,e,r,n,i,a,o,s){for(var l=2*t,c=l*r,u=c,f=r,h=e,p=t+e,d=r;n>d;++d,c+=l){var m=i[c+h],g=i[c+p];if(!(m>=o||s>=g))if(f===d)f+=1,u+=l;else{for(var v=0;l>v;++v){var y=i[c+v];i[c+v]=i[u],i[u++]=y}var x=a[d];a[d]=a[f],a[f++]=x}}return f}}},{}],40:[function(t,e,r){"use strict";e.exports=function(t,e){e<=128?n(0,e-1,t):function t(e,r,u){var f=(r-e+1)/6|0,h=e+f,p=r-f,d=e+r>>1,m=d-f,g=d+f,v=h,y=m,x=d,b=g,_=p,w=e+1,T=r-1,k=0;l(v,y,u)&&(k=v,v=y,y=k);l(b,_,u)&&(k=b,b=_,_=k);l(v,x,u)&&(k=v,v=x,x=k);l(y,x,u)&&(k=y,y=x,x=k);l(v,b,u)&&(k=v,v=b,b=k);l(x,b,u)&&(k=x,x=b,b=k);l(y,_,u)&&(k=y,y=_,_=k);l(y,x,u)&&(k=y,y=x,x=k);l(b,_,u)&&(k=b,b=_,_=k);for(var A=u[2*y],M=u[2*y+1],S=u[2*b],E=u[2*b+1],L=2*v,C=2*x,P=2*_,I=2*h,O=2*d,z=2*p,D=0;D<2;++D){var R=u[L+D],F=u[C+D],B=u[P+D];u[I+D]=R,u[O+D]=F,u[z+D]=B}a(m,e,u),a(g,r,u);for(var N=w;N<=T;++N)if(c(N,A,M,u))N!==w&&i(N,w,u),++w;else if(!c(N,S,E,u))for(;;){if(c(T,S,E,u)){c(T,A,M,u)?(o(N,w,T,u),++w,--T):(i(N,T,u),--T);break}if(--Tt;){var c=r[l-2],u=r[l-1];if(cr[e+1])}function c(t,e,r,n){var i=n[t*=2];return i>>1;a(h,M);var S=0,E=0;for(w=0;w=1<<28)p(l,c,E--,L=L-(1<<28)|0);else if(L>=0)p(o,s,S--,L);else if(L<=-(1<<28)){L=-L-(1<<28)|0;for(var C=0;C>>1;a(h,E);var L=0,C=0,P=0;for(k=0;k>1==h[2*k+3]>>1&&(O=2,k+=1),I<0){for(var z=-(I>>1)-1,D=0;D>1)-1;0===O?p(o,s,L--,z):1===O?p(l,c,C--,z):2===O&&p(u,f,P--,z)}}},scanBipartite:function(t,e,r,n,i,l,c,u,f,m,g,v){var y=0,x=2*t,b=e,_=e+t,w=1,T=1;n?T=1<<28:w=1<<28;for(var k=i;k>>1;a(h,E);var L=0;for(k=0;k=1<<28?(P=!n,A-=1<<28):(P=!!n,A-=1),P)d(o,s,L++,A);else{var I=v[A],O=x*A,z=g[O+e+1],D=g[O+e+1+t];t:for(var R=0;R>>1;a(h,w);var T=0;for(y=0;y=1<<28)o[T++]=x-(1<<28);else{var A=p[x-=1],M=m*x,S=f[M+e+1],E=f[M+e+1+t];t:for(var L=0;L=0;--L)if(o[L]===x){for(O=L+1;O0;){for(var p=r.pop(),d=(s=r.pop(),u=-1,f=-1,l=o[s],1);d=0||(e.flip(s,p),i(t,e,r,u,s,f),i(t,e,r,s,f,u),i(t,e,r,f,p,u),i(t,e,r,p,u,f)))}}},{"binary-search-bounds":31,"robust-in-sphere":282}],44:[function(t,e,r){"use strict";var n,i=t("binary-search-bounds");function a(t,e,r,n,i,a,o){this.cells=t,this.neighbor=e,this.flags=n,this.constraint=r,this.active=i,this.next=a,this.boundary=o}function o(t,e){return t[0]-e[0]||t[1]-e[1]||t[2]-e[2]}e.exports=function(t,e,r){var n=function(t,e){for(var r=t.cells(),n=r.length,i=0;i0||l.length>0;){for(;s.length>0;){var p=s.pop();if(c[p]!==-i){c[p]=i;u[p];for(var d=0;d<3;++d){var m=h[3*p+d];m>=0&&0===c[m]&&(f[3*p+d]?l.push(m):(s.push(m),c[m]=i))}}}var g=l;l=s,s=g,l.length=0,i=-i}var v=function(t,e,r){for(var n=0,i=0;i1&&i(r[h[p-2]],r[h[p-1]],a)>0;)t.push([h[p-1],h[p-2],o]),p-=1;h.length=p,h.push(o);var d=f.upperIds;for(p=d.length;p>1&&i(r[d[p-2]],r[d[p-1]],a)<0;)t.push([d[p-2],d[p-1],o]),p-=1;d.length=p,d.push(o)}}function u(t,e){var r;return(r=t.a[0]d[0]&&i.push(new o(d,p,2,l),new o(p,d,1,l))}i.sort(s);for(var m=i[0].a[0]-(1+Math.abs(i[0].a[0]))*Math.pow(2,-52),g=[new a([m,1],[m,0],-1,[],[],[],[])],v=[],y=(l=0,i.length);l=0}}(),a.removeTriangle=function(t,e,r){var n=this.stars;o(n[t],e,r),o(n[e],r,t),o(n[r],t,e)},a.addTriangle=function(t,e,r){var n=this.stars;n[t].push(e,r),n[e].push(r,t),n[r].push(t,e)},a.opposite=function(t,e){for(var r=this.stars[e],n=1,i=r.length;ne[2]?1:0)}function v(t,e,r){if(0!==t.length){if(e)for(var n=0;n=0;--a){var x=e[u=(S=n[a])[0]],b=x[0],_=x[1],w=t[b],T=t[_];if((w[0]-T[0]||w[1]-T[1])<0){var k=b;b=_,_=k}x[0]=b;var A,M=x[1]=S[1];for(i&&(A=x[2]);a>0&&n[a-1][0]===u;){var S,E=(S=n[--a])[1];i?e.push([M,E,A]):e.push([M,E]),M=E}i?e.push([M,_,A]):e.push([M,_])}return h}(t,e,h,g,r));return v(e,y,r),!!y||(h.length>0||g.length>0)}},{"./lib/rat-seg-intersect":51,"big-rat":18,"big-rat/cmp":16,"big-rat/to-float":30,"box-intersect":35,nextafter:260,"rat-vec":273,"robust-segment-intersect":287,"union-find":309}],51:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){var a=s(e,t),f=s(n,r),h=u(a,f);if(0===o(h))return null;var p=s(t,r),d=u(f,p),m=i(d,h),g=c(a,m);return l(t,g)};var n=t("big-rat/mul"),i=t("big-rat/div"),a=t("big-rat/sub"),o=t("big-rat/sign"),s=t("rat-vec/sub"),l=t("rat-vec/add"),c=t("rat-vec/muls");function u(t,e){return a(n(t[0],e[1]),n(t[1],e[0]))}},{"big-rat/div":17,"big-rat/mul":27,"big-rat/sign":28,"big-rat/sub":29,"rat-vec/add":272,"rat-vec/muls":274,"rat-vec/sub":275}],52:[function(t,e,r){e.exports={jet:[{index:0,rgb:[0,0,131]},{index:.125,rgb:[0,60,170]},{index:.375,rgb:[5,255,255]},{index:.625,rgb:[255,255,0]},{index:.875,rgb:[250,0,0]},{index:1,rgb:[128,0,0]}],hsv:[{index:0,rgb:[255,0,0]},{index:.169,rgb:[253,255,2]},{index:.173,rgb:[247,255,2]},{index:.337,rgb:[0,252,4]},{index:.341,rgb:[0,252,10]},{index:.506,rgb:[1,249,255]},{index:.671,rgb:[2,0,253]},{index:.675,rgb:[8,0,253]},{index:.839,rgb:[255,0,251]},{index:.843,rgb:[255,0,245]},{index:1,rgb:[255,0,6]}],hot:[{index:0,rgb:[0,0,0]},{index:.3,rgb:[230,0,0]},{index:.6,rgb:[255,210,0]},{index:1,rgb:[255,255,255]}],spring:[{index:0,rgb:[255,0,255]},{index:1,rgb:[255,255,0]}],summer:[{index:0,rgb:[0,128,102]},{index:1,rgb:[255,255,102]}],autumn:[{index:0,rgb:[255,0,0]},{index:1,rgb:[255,255,0]}],winter:[{index:0,rgb:[0,0,255]},{index:1,rgb:[0,255,128]}],bone:[{index:0,rgb:[0,0,0]},{index:.376,rgb:[84,84,116]},{index:.753,rgb:[169,200,200]},{index:1,rgb:[255,255,255]}],copper:[{index:0,rgb:[0,0,0]},{index:.804,rgb:[255,160,102]},{index:1,rgb:[255,199,127]}],greys:[{index:0,rgb:[0,0,0]},{index:1,rgb:[255,255,255]}],yignbu:[{index:0,rgb:[8,29,88]},{index:.125,rgb:[37,52,148]},{index:.25,rgb:[34,94,168]},{index:.375,rgb:[29,145,192]},{index:.5,rgb:[65,182,196]},{index:.625,rgb:[127,205,187]},{index:.75,rgb:[199,233,180]},{index:.875,rgb:[237,248,217]},{index:1,rgb:[255,255,217]}],greens:[{index:0,rgb:[0,68,27]},{index:.125,rgb:[0,109,44]},{index:.25,rgb:[35,139,69]},{index:.375,rgb:[65,171,93]},{index:.5,rgb:[116,196,118]},{index:.625,rgb:[161,217,155]},{index:.75,rgb:[199,233,192]},{index:.875,rgb:[229,245,224]},{index:1,rgb:[247,252,245]}],yiorrd:[{index:0,rgb:[128,0,38]},{index:.125,rgb:[189,0,38]},{index:.25,rgb:[227,26,28]},{index:.375,rgb:[252,78,42]},{index:.5,rgb:[253,141,60]},{index:.625,rgb:[254,178,76]},{index:.75,rgb:[254,217,118]},{index:.875,rgb:[255,237,160]},{index:1,rgb:[255,255,204]}],bluered:[{index:0,rgb:[0,0,255]},{index:1,rgb:[255,0,0]}],rdbu:[{index:0,rgb:[5,10,172]},{index:.35,rgb:[106,137,247]},{index:.5,rgb:[190,190,190]},{index:.6,rgb:[220,170,132]},{index:.7,rgb:[230,145,90]},{index:1,rgb:[178,10,28]}],picnic:[{index:0,rgb:[0,0,255]},{index:.1,rgb:[51,153,255]},{index:.2,rgb:[102,204,255]},{index:.3,rgb:[153,204,255]},{index:.4,rgb:[204,204,255]},{index:.5,rgb:[255,255,255]},{index:.6,rgb:[255,204,255]},{index:.7,rgb:[255,153,255]},{index:.8,rgb:[255,102,204]},{index:.9,rgb:[255,102,102]},{index:1,rgb:[255,0,0]}],rainbow:[{index:0,rgb:[150,0,90]},{index:.125,rgb:[0,0,200]},{index:.25,rgb:[0,25,255]},{index:.375,rgb:[0,152,255]},{index:.5,rgb:[44,255,150]},{index:.625,rgb:[151,255,0]},{index:.75,rgb:[255,234,0]},{index:.875,rgb:[255,111,0]},{index:1,rgb:[255,0,0]}],portland:[{index:0,rgb:[12,51,131]},{index:.25,rgb:[10,136,186]},{index:.5,rgb:[242,211,56]},{index:.75,rgb:[242,143,56]},{index:1,rgb:[217,30,30]}],blackbody:[{index:0,rgb:[0,0,0]},{index:.2,rgb:[230,0,0]},{index:.4,rgb:[230,210,0]},{index:.7,rgb:[255,255,255]},{index:1,rgb:[160,200,255]}],earth:[{index:0,rgb:[0,0,130]},{index:.1,rgb:[0,180,180]},{index:.2,rgb:[40,210,40]},{index:.4,rgb:[230,230,50]},{index:.6,rgb:[120,70,20]},{index:1,rgb:[255,255,255]}],electric:[{index:0,rgb:[0,0,0]},{index:.15,rgb:[30,0,100]},{index:.4,rgb:[120,0,100]},{index:.6,rgb:[160,90,0]},{index:.8,rgb:[230,200,0]},{index:1,rgb:[255,250,220]}],alpha:[{index:0,rgb:[255,255,255,0]},{index:1,rgb:[255,255,255,1]}],viridis:[{index:0,rgb:[68,1,84]},{index:.13,rgb:[71,44,122]},{index:.25,rgb:[59,81,139]},{index:.38,rgb:[44,113,142]},{index:.5,rgb:[33,144,141]},{index:.63,rgb:[39,173,129]},{index:.75,rgb:[92,200,99]},{index:.88,rgb:[170,220,50]},{index:1,rgb:[253,231,37]}],inferno:[{index:0,rgb:[0,0,4]},{index:.13,rgb:[31,12,72]},{index:.25,rgb:[85,15,109]},{index:.38,rgb:[136,34,106]},{index:.5,rgb:[186,54,85]},{index:.63,rgb:[227,89,51]},{index:.75,rgb:[249,140,10]},{index:.88,rgb:[249,201,50]},{index:1,rgb:[252,255,164]}],magma:[{index:0,rgb:[0,0,4]},{index:.13,rgb:[28,16,68]},{index:.25,rgb:[79,18,123]},{index:.38,rgb:[129,37,129]},{index:.5,rgb:[181,54,122]},{index:.63,rgb:[229,80,100]},{index:.75,rgb:[251,135,97]},{index:.88,rgb:[254,194,135]},{index:1,rgb:[252,253,191]}],plasma:[{index:0,rgb:[13,8,135]},{index:.13,rgb:[75,3,161]},{index:.25,rgb:[125,3,168]},{index:.38,rgb:[168,34,150]},{index:.5,rgb:[203,70,121]},{index:.63,rgb:[229,107,93]},{index:.75,rgb:[248,148,65]},{index:.88,rgb:[253,195,40]},{index:1,rgb:[240,249,33]}],warm:[{index:0,rgb:[125,0,179]},{index:.13,rgb:[172,0,187]},{index:.25,rgb:[219,0,170]},{index:.38,rgb:[255,0,130]},{index:.5,rgb:[255,63,74]},{index:.63,rgb:[255,123,0]},{index:.75,rgb:[234,176,0]},{index:.88,rgb:[190,228,0]},{index:1,rgb:[147,255,0]}],cool:[{index:0,rgb:[125,0,179]},{index:.13,rgb:[116,0,218]},{index:.25,rgb:[98,74,237]},{index:.38,rgb:[68,146,231]},{index:.5,rgb:[0,204,197]},{index:.63,rgb:[0,247,146]},{index:.75,rgb:[0,255,88]},{index:.88,rgb:[40,255,8]},{index:1,rgb:[147,255,0]}],"rainbow-soft":[{index:0,rgb:[125,0,179]},{index:.1,rgb:[199,0,180]},{index:.2,rgb:[255,0,121]},{index:.3,rgb:[255,108,0]},{index:.4,rgb:[222,194,0]},{index:.5,rgb:[150,255,0]},{index:.6,rgb:[0,255,55]},{index:.7,rgb:[0,246,150]},{index:.8,rgb:[50,167,222]},{index:.9,rgb:[103,51,235]},{index:1,rgb:[124,0,186]}],bathymetry:[{index:0,rgb:[40,26,44]},{index:.13,rgb:[59,49,90]},{index:.25,rgb:[64,76,139]},{index:.38,rgb:[63,110,151]},{index:.5,rgb:[72,142,158]},{index:.63,rgb:[85,174,163]},{index:.75,rgb:[120,206,163]},{index:.88,rgb:[187,230,172]},{index:1,rgb:[253,254,204]}],cdom:[{index:0,rgb:[47,15,62]},{index:.13,rgb:[87,23,86]},{index:.25,rgb:[130,28,99]},{index:.38,rgb:[171,41,96]},{index:.5,rgb:[206,67,86]},{index:.63,rgb:[230,106,84]},{index:.75,rgb:[242,149,103]},{index:.88,rgb:[249,193,135]},{index:1,rgb:[254,237,176]}],chlorophyll:[{index:0,rgb:[18,36,20]},{index:.13,rgb:[25,63,41]},{index:.25,rgb:[24,91,59]},{index:.38,rgb:[13,119,72]},{index:.5,rgb:[18,148,80]},{index:.63,rgb:[80,173,89]},{index:.75,rgb:[132,196,122]},{index:.88,rgb:[175,221,162]},{index:1,rgb:[215,249,208]}],density:[{index:0,rgb:[54,14,36]},{index:.13,rgb:[89,23,80]},{index:.25,rgb:[110,45,132]},{index:.38,rgb:[120,77,178]},{index:.5,rgb:[120,113,213]},{index:.63,rgb:[115,151,228]},{index:.75,rgb:[134,185,227]},{index:.88,rgb:[177,214,227]},{index:1,rgb:[230,241,241]}],"freesurface-blue":[{index:0,rgb:[30,4,110]},{index:.13,rgb:[47,14,176]},{index:.25,rgb:[41,45,236]},{index:.38,rgb:[25,99,212]},{index:.5,rgb:[68,131,200]},{index:.63,rgb:[114,156,197]},{index:.75,rgb:[157,181,203]},{index:.88,rgb:[200,208,216]},{index:1,rgb:[241,237,236]}],"freesurface-red":[{index:0,rgb:[60,9,18]},{index:.13,rgb:[100,17,27]},{index:.25,rgb:[142,20,29]},{index:.38,rgb:[177,43,27]},{index:.5,rgb:[192,87,63]},{index:.63,rgb:[205,125,105]},{index:.75,rgb:[216,162,148]},{index:.88,rgb:[227,199,193]},{index:1,rgb:[241,237,236]}],oxygen:[{index:0,rgb:[64,5,5]},{index:.13,rgb:[106,6,15]},{index:.25,rgb:[144,26,7]},{index:.38,rgb:[168,64,3]},{index:.5,rgb:[188,100,4]},{index:.63,rgb:[206,136,11]},{index:.75,rgb:[220,174,25]},{index:.88,rgb:[231,215,44]},{index:1,rgb:[248,254,105]}],par:[{index:0,rgb:[51,20,24]},{index:.13,rgb:[90,32,35]},{index:.25,rgb:[129,44,34]},{index:.38,rgb:[159,68,25]},{index:.5,rgb:[182,99,19]},{index:.63,rgb:[199,134,22]},{index:.75,rgb:[212,171,35]},{index:.88,rgb:[221,210,54]},{index:1,rgb:[225,253,75]}],phase:[{index:0,rgb:[145,105,18]},{index:.13,rgb:[184,71,38]},{index:.25,rgb:[186,58,115]},{index:.38,rgb:[160,71,185]},{index:.5,rgb:[110,97,218]},{index:.63,rgb:[50,123,164]},{index:.75,rgb:[31,131,110]},{index:.88,rgb:[77,129,34]},{index:1,rgb:[145,105,18]}],salinity:[{index:0,rgb:[42,24,108]},{index:.13,rgb:[33,50,162]},{index:.25,rgb:[15,90,145]},{index:.38,rgb:[40,118,137]},{index:.5,rgb:[59,146,135]},{index:.63,rgb:[79,175,126]},{index:.75,rgb:[120,203,104]},{index:.88,rgb:[193,221,100]},{index:1,rgb:[253,239,154]}],temperature:[{index:0,rgb:[4,35,51]},{index:.13,rgb:[23,51,122]},{index:.25,rgb:[85,59,157]},{index:.38,rgb:[129,79,143]},{index:.5,rgb:[175,95,130]},{index:.63,rgb:[222,112,101]},{index:.75,rgb:[249,146,66]},{index:.88,rgb:[249,196,65]},{index:1,rgb:[232,250,91]}],turbidity:[{index:0,rgb:[34,31,27]},{index:.13,rgb:[65,50,41]},{index:.25,rgb:[98,69,52]},{index:.38,rgb:[131,89,57]},{index:.5,rgb:[161,112,59]},{index:.63,rgb:[185,140,66]},{index:.75,rgb:[202,174,88]},{index:.88,rgb:[216,209,126]},{index:1,rgb:[233,246,171]}],"velocity-blue":[{index:0,rgb:[17,32,64]},{index:.13,rgb:[35,52,116]},{index:.25,rgb:[29,81,156]},{index:.38,rgb:[31,113,162]},{index:.5,rgb:[50,144,169]},{index:.63,rgb:[87,173,176]},{index:.75,rgb:[149,196,189]},{index:.88,rgb:[203,221,211]},{index:1,rgb:[254,251,230]}],"velocity-green":[{index:0,rgb:[23,35,19]},{index:.13,rgb:[24,64,38]},{index:.25,rgb:[11,95,45]},{index:.38,rgb:[39,123,35]},{index:.5,rgb:[95,146,12]},{index:.63,rgb:[152,165,18]},{index:.75,rgb:[201,186,69]},{index:.88,rgb:[233,216,137]},{index:1,rgb:[255,253,205]}],cubehelix:[{index:0,rgb:[0,0,0]},{index:.07,rgb:[22,5,59]},{index:.13,rgb:[60,4,105]},{index:.2,rgb:[109,1,135]},{index:.27,rgb:[161,0,147]},{index:.33,rgb:[210,2,142]},{index:.4,rgb:[251,11,123]},{index:.47,rgb:[255,29,97]},{index:.53,rgb:[255,54,69]},{index:.6,rgb:[255,85,46]},{index:.67,rgb:[255,120,34]},{index:.73,rgb:[255,157,37]},{index:.8,rgb:[241,191,57]},{index:.87,rgb:[224,220,93]},{index:.93,rgb:[218,241,142]},{index:1,rgb:[227,253,198]}]}},{}],53:[function(t,e,r){"use strict";var n=t("./colorScale"),i=t("lerp");function a(t){return[t[0]/255,t[1]/255,t[2]/255,t[3]]}function o(t){for(var e,r="#",n=0;n<3;++n)r+=("00"+(e=(e=t[n]).toString(16))).substr(e.length);return r}function s(t){return"rgba("+t.join(",")+")"}e.exports=function(t){var e,r,l,c,u,f,h,p,d,m;t||(t={});p=(t.nshades||72)-1,h=t.format||"hex",(f=t.colormap)||(f="jet");if("string"==typeof f){if(f=f.toLowerCase(),!n[f])throw Error(f+" not a supported colorscale");u=n[f]}else{if(!Array.isArray(f))throw Error("unsupported colormap option",f);u=f.slice()}if(u.length>p+1)throw new Error(f+" map requires nshades to be at least size "+u.length);d=Array.isArray(t.alpha)?2!==t.alpha.length?[1,1]:t.alpha.slice():"number"==typeof t.alpha?[t.alpha,t.alpha]:[1,1];e=u.map((function(t){return Math.round(t.index*p)})),d[0]=Math.min(Math.max(d[0],0),1),d[1]=Math.min(Math.max(d[1],0),1);var g=u.map((function(t,e){var r=u[e].index,n=u[e].rgb.slice();return 4===n.length&&n[3]>=0&&n[3]<=1||(n[3]=d[0]+(d[1]-d[0])*r),n})),v=[];for(m=0;m0||l(t,e,a)?-1:1:0===s?c>0||l(t,e,r)?1:-1:i(c-s)}var h=n(t,e,r);return h>0?o>0&&n(t,e,a)>0?1:-1:h<0?o>0||n(t,e,a)>0?1:-1:n(t,e,a)>0||l(t,e,r)?1:-1};var n=t("robust-orientation"),i=t("signum"),a=t("two-sum"),o=t("robust-product"),s=t("robust-sum");function l(t,e,r){var n=a(t[0],-e[0]),i=a(t[1],-e[1]),l=a(r[0],-e[0]),c=a(r[1],-e[1]),u=s(o(n,l),o(i,c));return u[u.length-1]>=0}},{"robust-orientation":284,"robust-product":285,"robust-sum":289,signum:55,"two-sum":307}],55:[function(t,e,r){"use strict";e.exports=function(t){return t<0?-1:t>0?1:0}},{}],56:[function(t,e,r){e.exports=function(t,e){var r=t.length,a=t.length-e.length;if(a)return a;switch(r){case 0:return 0;case 1:return t[0]-e[0];case 2:return t[0]+t[1]-e[0]-e[1]||n(t[0],t[1])-n(e[0],e[1]);case 3:var o=t[0]+t[1],s=e[0]+e[1];if(a=o+t[2]-(s+e[2]))return a;var l=n(t[0],t[1]),c=n(e[0],e[1]);return n(l,t[2])-n(c,e[2])||n(l+t[2],o)-n(c+e[2],s);case 4:var u=t[0],f=t[1],h=t[2],p=t[3],d=e[0],m=e[1],g=e[2],v=e[3];return u+f+h+p-(d+m+g+v)||n(u,f,h,p)-n(d,m,g,v,d)||n(u+f,u+h,u+p,f+h,f+p,h+p)-n(d+m,d+g,d+v,m+g,m+v,g+v)||n(u+f+h,u+f+p,u+h+p,f+h+p)-n(d+m+g,d+m+v,d+g+v,m+g+v);default:for(var y=t.slice().sort(i),x=e.slice().sort(i),b=0;bt[r][0]&&(r=n);return er?[[r],[e]]:[[e]]}},{}],60:[function(t,e,r){"use strict";e.exports=function(t){var e=n(t),r=e.length;if(r<=2)return[];for(var i=new Array(r),a=e[r-1],o=0;o=e[l]&&(s+=1);a[o]=s}}return t}(n(a,!0),r)}};var n=t("incremental-convex-hull"),i=t("affine-hull")},{"affine-hull":10,"incremental-convex-hull":233}],62:[function(t,e,r){"use strict";e.exports=function(t,e,r,n,i,a){var o=i-1,s=i*i,l=o*o,c=(1+2*i)*l,u=i*l,f=s*(3-2*i),h=s*o;if(t.length){a||(a=new Array(t.length));for(var p=t.length-1;p>=0;--p)a[p]=c*t[p]+u*e[p]+f*r[p]+h*n[p];return a}return c*t+u*e+f*r+h*n},e.exports.derivative=function(t,e,r,n,i,a){var o=6*i*i-6*i,s=3*i*i-4*i+1,l=-6*i*i+6*i,c=3*i*i-2*i;if(t.length){a||(a=new Array(t.length));for(var u=t.length-1;u>=0;--u)a[u]=o*t[u]+s*e[u]+l*r[u]+c*n[u];return a}return o*t+s*e+l*r[u]+c*n}},{}],63:[function(t,e,r){"use strict";var n=t("incremental-convex-hull"),i=t("uniq");function a(t,e){this.point=t,this.index=e}function o(t,e){for(var r=t.point,n=e.point,i=r.length,a=0;a=2)return!1;t[r]=n}return!0})):_.filter((function(t){for(var e=0;e<=s;++e){var r=v[t[e]];if(r<0)return!1;t[e]=r}return!0}));if(1&s)for(u=0;u<_.length;++u){h=(b=_[u])[0];b[0]=b[1],b[1]=h}return _}},{"incremental-convex-hull":233,uniq:310}],64:[function(t,e,r){(function(t){(function(){var r=!1;if("undefined"!=typeof Float64Array){var n=new Float64Array(1),i=new Uint32Array(n.buffer);if(n[0]=1,r=!0,1072693248===i[1]){e.exports=function(t){return n[0]=t,[i[0],i[1]]},e.exports.pack=function(t,e){return i[0]=t,i[1]=e,n[0]},e.exports.lo=function(t){return n[0]=t,i[0]},e.exports.hi=function(t){return n[0]=t,i[1]}}else if(1072693248===i[0]){e.exports=function(t){return n[0]=t,[i[1],i[0]]},e.exports.pack=function(t,e){return i[1]=t,i[0]=e,n[0]},e.exports.lo=function(t){return n[0]=t,i[1]},e.exports.hi=function(t){return n[0]=t,i[0]}}else r=!1}if(!r){var a=new t(8);e.exports=function(t){return a.writeDoubleLE(t,0,!0),[a.readUInt32LE(0,!0),a.readUInt32LE(4,!0)]},e.exports.pack=function(t,e){return a.writeUInt32LE(t,0,!0),a.writeUInt32LE(e,4,!0),a.readDoubleLE(0,!0)},e.exports.lo=function(t){return a.writeDoubleLE(t,0,!0),a.readUInt32LE(0,!0)},e.exports.hi=function(t){return a.writeDoubleLE(t,0,!0),a.readUInt32LE(4,!0)}}e.exports.sign=function(t){return e.exports.hi(t)>>>31},e.exports.exponent=function(t){return(e.exports.hi(t)<<1>>>21)-1023},e.exports.fraction=function(t){var r=e.exports.lo(t),n=e.exports.hi(t),i=1048575&n;return 2146435072&n&&(i+=1<<20),[r,i]},e.exports.denormalized=function(t){return!(2146435072&e.exports.hi(t))}}).call(this)}).call(this,t("buffer").Buffer)},{buffer:3}],65:[function(t,e,r){"use strict";e.exports=function(t,e){switch(void 0===e&&(e=0),typeof t){case"number":if(t>0)return function(t,e){var r,n;for(r=new Array(t),n=0;n=r-1){h=l.length-1;var d=t-e[r-1];for(p=0;p=r-1)for(var u=s.length-1,f=(e[r-1],0);f=0;--r)if(t[--e])return!1;return!0},s.jump=function(t){var e=this.lastT(),r=this.dimension;if(!(t0;--f)n.push(a(l[f-1],c[f-1],arguments[f])),i.push(0)}},s.push=function(t){var e=this.lastT(),r=this.dimension;if(!(t1e-6?1/s:0;this._time.push(t);for(var h=r;h>0;--h){var p=a(c[h-1],u[h-1],arguments[h]);n.push(p),i.push((p-n[o++])*f)}}},s.set=function(t){var e=this.dimension;if(!(t0;--l)r.push(a(o[l-1],s[l-1],arguments[l])),n.push(0)}},s.move=function(t){var e=this.lastT(),r=this.dimension;if(!(t<=e||arguments.length!==r+1)){var n=this._state,i=this._velocity,o=n.length-this.dimension,s=this.bounds,l=s[0],c=s[1],u=t-e,f=u>1e-6?1/u:0;this._time.push(t);for(var h=r;h>0;--h){var p=arguments[h];n.push(a(l[h-1],c[h-1],n[o++]+p)),i.push(p*f)}}},s.idle=function(t){var e=this.lastT();if(!(t=0;--f)n.push(a(l[f],c[f],n[o]+u*i[o])),i.push(0),o+=1}}},{"binary-search-bounds":31,"cubic-hermite":62}],69:[function(t,e,r){"use strict";e.exports=function(t){return new s(t||m,null)};function n(t,e,r,n,i,a){this._color=t,this.key=e,this.value=r,this.left=n,this.right=i,this._count=a}function i(t){return new n(t._color,t.key,t.value,t.left,t.right,t._count)}function a(t,e){return new n(t,e.key,e.value,e.left,e.right,e._count)}function o(t){t._count=1+(t.left?t.left._count:0)+(t.right?t.right._count:0)}function s(t,e){this._compare=t,this.root=e}var l=s.prototype;function c(t,e){var r;if(e.left&&(r=c(t,e.left)))return r;return(r=t(e.key,e.value))||(e.right?c(t,e.right):void 0)}function u(t,e,r,n){if(e(t,n.key)<=0){var i;if(n.left)if(i=u(t,e,r,n.left))return i;if(i=r(n.key,n.value))return i}if(n.right)return u(t,e,r,n.right)}function f(t,e,r,n,i){var a,o=r(t,i.key),s=r(e,i.key);if(o<=0){if(i.left&&(a=f(t,e,r,n,i.left)))return a;if(s>0&&(a=n(i.key,i.value)))return a}if(s>0&&i.right)return f(t,e,r,n,i.right)}function h(t,e){this.tree=t,this._stack=e}Object.defineProperty(l,"keys",{get:function(){var t=[];return this.forEach((function(e,r){t.push(e)})),t}}),Object.defineProperty(l,"values",{get:function(){var t=[];return this.forEach((function(e,r){t.push(r)})),t}}),Object.defineProperty(l,"length",{get:function(){return this.root?this.root._count:0}}),l.insert=function(t,e){for(var r=this._compare,i=this.root,l=[],c=[];i;){var u=r(t,i.key);l.push(i),c.push(u),i=u<=0?i.left:i.right}l.push(new n(0,t,e,null,null,1));for(var f=l.length-2;f>=0;--f){i=l[f];c[f]<=0?l[f]=new n(i._color,i.key,i.value,l[f+1],i.right,i._count+1):l[f]=new n(i._color,i.key,i.value,i.left,l[f+1],i._count+1)}for(f=l.length-1;f>1;--f){var h=l[f-1];i=l[f];if(1===h._color||1===i._color)break;var p=l[f-2];if(p.left===h)if(h.left===i){if(!(d=p.right)||0!==d._color){if(p._color=0,p.left=h.right,h._color=1,h.right=p,l[f-2]=h,l[f-1]=i,o(p),o(h),f>=3)(m=l[f-3]).left===p?m.left=h:m.right=h;break}h._color=1,p.right=a(1,d),p._color=0,f-=1}else{if(!(d=p.right)||0!==d._color){if(h.right=i.left,p._color=0,p.left=i.right,i._color=1,i.left=h,i.right=p,l[f-2]=i,l[f-1]=h,o(p),o(h),o(i),f>=3)(m=l[f-3]).left===p?m.left=i:m.right=i;break}h._color=1,p.right=a(1,d),p._color=0,f-=1}else if(h.right===i){if(!(d=p.left)||0!==d._color){if(p._color=0,p.right=h.left,h._color=1,h.left=p,l[f-2]=h,l[f-1]=i,o(p),o(h),f>=3)(m=l[f-3]).right===p?m.right=h:m.left=h;break}h._color=1,p.left=a(1,d),p._color=0,f-=1}else{var d;if(!(d=p.left)||0!==d._color){var m;if(h.left=i.right,p._color=0,p.right=i.left,i._color=1,i.right=h,i.left=p,l[f-2]=i,l[f-1]=h,o(p),o(h),o(i),f>=3)(m=l[f-3]).right===p?m.right=i:m.left=i;break}h._color=1,p.left=a(1,d),p._color=0,f-=1}}return l[0]._color=1,new s(r,l[0])},l.forEach=function(t,e,r){if(this.root)switch(arguments.length){case 1:return c(t,this.root);case 2:return u(e,this._compare,t,this.root);case 3:if(this._compare(e,r)>=0)return;return f(e,r,this._compare,t,this.root)}},Object.defineProperty(l,"begin",{get:function(){for(var t=[],e=this.root;e;)t.push(e),e=e.left;return new h(this,t)}}),Object.defineProperty(l,"end",{get:function(){for(var t=[],e=this.root;e;)t.push(e),e=e.right;return new h(this,t)}}),l.at=function(t){if(t<0)return new h(this,[]);for(var e=this.root,r=[];;){if(r.push(e),e.left){if(t=e.right._count)break;e=e.right}return new h(this,[])},l.ge=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a<=0&&(i=n.length),r=a<=0?r.left:r.right}return n.length=i,new h(this,n)},l.gt=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a<0&&(i=n.length),r=a<0?r.left:r.right}return n.length=i,new h(this,n)},l.lt=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a>0&&(i=n.length),r=a<=0?r.left:r.right}return n.length=i,new h(this,n)},l.le=function(t){for(var e=this._compare,r=this.root,n=[],i=0;r;){var a=e(t,r.key);n.push(r),a>=0&&(i=n.length),r=a<0?r.left:r.right}return n.length=i,new h(this,n)},l.find=function(t){for(var e=this._compare,r=this.root,n=[];r;){var i=e(t,r.key);if(n.push(r),0===i)return new h(this,n);r=i<=0?r.left:r.right}return new h(this,[])},l.remove=function(t){var e=this.find(t);return e?e.remove():this},l.get=function(t){for(var e=this._compare,r=this.root;r;){var n=e(t,r.key);if(0===n)return r.value;r=n<=0?r.left:r.right}};var p=h.prototype;function d(t,e){t.key=e.key,t.value=e.value,t.left=e.left,t.right=e.right,t._color=e._color,t._count=e._count}function m(t,e){return te?1:0}Object.defineProperty(p,"valid",{get:function(){return this._stack.length>0}}),Object.defineProperty(p,"node",{get:function(){return this._stack.length>0?this._stack[this._stack.length-1]:null},enumerable:!0}),p.clone=function(){return new h(this.tree,this._stack.slice())},p.remove=function(){var t=this._stack;if(0===t.length)return this.tree;var e=new Array(t.length),r=t[t.length-1];e[e.length-1]=new n(r._color,r.key,r.value,r.left,r.right,r._count);for(var l=t.length-2;l>=0;--l){(r=t[l]).left===t[l+1]?e[l]=new n(r._color,r.key,r.value,e[l+1],r.right,r._count):e[l]=new n(r._color,r.key,r.value,r.left,e[l+1],r._count)}if((r=e[e.length-1]).left&&r.right){var c=e.length;for(r=r.left;r.right;)e.push(r),r=r.right;var u=e[c-1];e.push(new n(r._color,u.key,u.value,r.left,r.right,r._count)),e[c-1].key=r.key,e[c-1].value=r.value;for(l=e.length-2;l>=c;--l)r=e[l],e[l]=new n(r._color,r.key,r.value,r.left,e[l+1],r._count);e[c-1].left=e[c]}if(0===(r=e[e.length-1])._color){var f=e[e.length-2];f.left===r?f.left=null:f.right===r&&(f.right=null),e.pop();for(l=0;l=0;--l){if(e=t[l],0===l)return void(e._color=1);if((r=t[l-1]).left===e){if((n=r.right).right&&0===n.right._color){if(s=(n=r.right=i(n)).right=i(n.right),r.right=n.left,n.left=r,n.right=s,n._color=r._color,e._color=1,r._color=1,s._color=1,o(r),o(n),l>1)(c=t[l-2]).left===r?c.left=n:c.right=n;return void(t[l-1]=n)}if(n.left&&0===n.left._color){if(s=(n=r.right=i(n)).left=i(n.left),r.right=s.left,n.left=s.right,s.left=r,s.right=n,s._color=r._color,r._color=1,n._color=1,e._color=1,o(r),o(n),o(s),l>1)(c=t[l-2]).left===r?c.left=s:c.right=s;return void(t[l-1]=s)}if(1===n._color){if(0===r._color)return r._color=1,void(r.right=a(0,n));r.right=a(0,n);continue}n=i(n),r.right=n.left,n.left=r,n._color=r._color,r._color=0,o(r),o(n),l>1&&((c=t[l-2]).left===r?c.left=n:c.right=n),t[l-1]=n,t[l]=r,l+11)(c=t[l-2]).right===r?c.right=n:c.left=n;return void(t[l-1]=n)}if(n.right&&0===n.right._color){if(s=(n=r.left=i(n)).right=i(n.right),r.left=s.right,n.right=s.left,s.right=r,s.left=n,s._color=r._color,r._color=1,n._color=1,e._color=1,o(r),o(n),o(s),l>1)(c=t[l-2]).right===r?c.right=s:c.left=s;return void(t[l-1]=s)}if(1===n._color){if(0===r._color)return r._color=1,void(r.left=a(0,n));r.left=a(0,n);continue}var c;n=i(n),r.left=n.right,n.right=r,n._color=r._color,r._color=0,o(r),o(n),l>1&&((c=t[l-2]).right===r?c.right=n:c.left=n),t[l-1]=n,t[l]=r,l+10)return this._stack[this._stack.length-1].key},enumerable:!0}),Object.defineProperty(p,"value",{get:function(){if(this._stack.length>0)return this._stack[this._stack.length-1].value},enumerable:!0}),Object.defineProperty(p,"index",{get:function(){var t=0,e=this._stack;if(0===e.length){var r=this.tree.root;return r?r._count:0}e[e.length-1].left&&(t=e[e.length-1].left._count);for(var n=e.length-2;n>=0;--n)e[n+1]===e[n].right&&(++t,e[n].left&&(t+=e[n].left._count));return t},enumerable:!0}),p.next=function(){var t=this._stack;if(0!==t.length){var e=t[t.length-1];if(e.right)for(e=e.right;e;)t.push(e),e=e.left;else for(t.pop();t.length>0&&t[t.length-1].right===e;)e=t[t.length-1],t.pop()}},Object.defineProperty(p,"hasNext",{get:function(){var t=this._stack;if(0===t.length)return!1;if(t[t.length-1].right)return!0;for(var e=t.length-1;e>0;--e)if(t[e-1].left===t[e])return!0;return!1}}),p.update=function(t){var e=this._stack;if(0===e.length)throw new Error("Can't update empty node!");var r=new Array(e.length),i=e[e.length-1];r[r.length-1]=new n(i._color,i.key,t,i.left,i.right,i._count);for(var a=e.length-2;a>=0;--a)(i=e[a]).left===e[a+1]?r[a]=new n(i._color,i.key,i.value,r[a+1],i.right,i._count):r[a]=new n(i._color,i.key,i.value,i.left,r[a+1],i._count);return new s(this.tree._compare,r[0])},p.prev=function(){var t=this._stack;if(0!==t.length){var e=t[t.length-1];if(e.left)for(e=e.left;e;)t.push(e),e=e.right;else for(t.pop();t.length>0&&t[t.length-1].left===e;)e=t[t.length-1],t.pop()}},Object.defineProperty(p,"hasPrev",{get:function(){var t=this._stack;if(0===t.length)return!1;if(t[t.length-1].left)return!0;for(var e=t.length-1;e>0;--e)if(t[e-1].right===t[e])return!0;return!1}})},{}],70:[function(t,e,r){"use strict";e.exports=function(t,e){var r=new u(t);return r.update(e),r};var n=t("./lib/text.js"),i=t("./lib/lines.js"),a=t("./lib/background.js"),o=t("./lib/cube.js"),s=t("./lib/ticks.js"),l=new Float32Array([1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]);function c(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t}function u(t){this.gl=t,this.pixelRatio=1,this.bounds=[[-10,-10,-10],[10,10,10]],this.ticks=[[],[],[]],this.autoTicks=!0,this.tickSpacing=[1,1,1],this.tickEnable=[!0,!0,!0],this.tickFont=["sans-serif","sans-serif","sans-serif"],this.tickSize=[12,12,12],this.tickAngle=[0,0,0],this.tickAlign=["auto","auto","auto"],this.tickColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.tickPad=[10,10,10],this.lastCubeProps={cubeEdges:[0,0,0],axis:[0,0,0]},this.labels=["x","y","z"],this.labelEnable=[!0,!0,!0],this.labelFont="sans-serif",this.labelSize=[20,20,20],this.labelAngle=[0,0,0],this.labelAlign=["auto","auto","auto"],this.labelColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.labelPad=[10,10,10],this.lineEnable=[!0,!0,!0],this.lineMirror=[!1,!1,!1],this.lineWidth=[1,1,1],this.lineColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.lineTickEnable=[!0,!0,!0],this.lineTickMirror=[!1,!1,!1],this.lineTickLength=[0,0,0],this.lineTickWidth=[1,1,1],this.lineTickColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.gridEnable=[!0,!0,!0],this.gridWidth=[1,1,1],this.gridColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.zeroEnable=[!0,!0,!0],this.zeroLineColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.zeroLineWidth=[2,2,2],this.backgroundEnable=[!1,!1,!1],this.backgroundColor=[[.8,.8,.8,.5],[.8,.8,.8,.5],[.8,.8,.8,.5]],this._firstInit=!0,this._text=null,this._lines=null,this._background=a(t)}var f=u.prototype;function h(){this.primalOffset=[0,0,0],this.primalMinor=[0,0,0],this.mirrorOffset=[0,0,0],this.mirrorMinor=[0,0,0]}f.update=function(t){function e(e,r,n){if(n in t){var i,a=t[n],o=this[n];(e?Array.isArray(a)&&Array.isArray(a[0]):Array.isArray(a))?this[n]=i=[r(a[0]),r(a[1]),r(a[2])]:this[n]=i=[r(a),r(a),r(a)];for(var s=0;s<3;++s)if(i[s]!==o[s])return!0}return!1}t=t||{};var r,a=e.bind(this,!1,Number),o=e.bind(this,!1,Boolean),l=e.bind(this,!1,String),c=e.bind(this,!0,(function(t){if(Array.isArray(t)){if(3===t.length)return[+t[0],+t[1],+t[2],1];if(4===t.length)return[+t[0],+t[1],+t[2],+t[3]]}return[0,0,0,1]})),u=!1,f=!1;if("bounds"in t)for(var h=t.bounds,p=0;p<2;++p)for(var d=0;d<3;++d)h[p][d]!==this.bounds[p][d]&&(f=!0),this.bounds[p][d]=h[p][d];if("ticks"in t){r=t.ticks,u=!0,this.autoTicks=!1;for(p=0;p<3;++p)this.tickSpacing[p]=0}else a("tickSpacing")&&(this.autoTicks=!0,f=!0);if(this._firstInit&&("ticks"in t||"tickSpacing"in t||(this.autoTicks=!0),f=!0,u=!0,this._firstInit=!1),f&&this.autoTicks&&(r=s.create(this.bounds,this.tickSpacing),u=!0),u){for(p=0;p<3;++p)r[p].sort((function(t,e){return t.x-e.x}));s.equal(r,this.ticks)?u=!1:this.ticks=r}o("tickEnable"),l("tickFont")&&(u=!0),a("tickSize"),a("tickAngle"),a("tickPad"),c("tickColor");var m=l("labels");l("labelFont")&&(m=!0),o("labelEnable"),a("labelSize"),a("labelPad"),c("labelColor"),o("lineEnable"),o("lineMirror"),a("lineWidth"),c("lineColor"),o("lineTickEnable"),o("lineTickMirror"),a("lineTickLength"),a("lineTickWidth"),c("lineTickColor"),o("gridEnable"),a("gridWidth"),c("gridColor"),o("zeroEnable"),c("zeroLineColor"),a("zeroLineWidth"),o("backgroundEnable"),c("backgroundColor"),this._text?this._text&&(m||u)&&this._text.update(this.bounds,this.labels,this.labelFont,this.ticks,this.tickFont):this._text=n(this.gl,this.bounds,this.labels,this.labelFont,this.ticks,this.tickFont),this._lines&&u&&(this._lines.dispose(),this._lines=null),this._lines||(this._lines=i(this.gl,this.bounds,this.ticks))};var p=[new h,new h,new h];function d(t,e,r,n,i){for(var a=t.primalOffset,o=t.primalMinor,s=t.mirrorOffset,l=t.mirrorMinor,c=n[e],u=0;u<3;++u)if(e!==u){var f=a,h=s,p=o,d=l;c&1<0?(p[u]=-1,d[u]=0):(p[u]=0,d[u]=1)}}var m=[0,0,0],g={model:l,view:l,projection:l,_ortho:!1};f.isOpaque=function(){return!0},f.isTransparent=function(){return!1},f.drawTransparent=function(t){};var v=[0,0,0],y=[0,0,0],x=[0,0,0];f.draw=function(t){t=t||g;for(var e=this.gl,r=t.model||l,n=t.view||l,i=t.projection||l,a=this.bounds,s=t._ortho||!1,u=o(r,n,i,a,s),f=u.cubeEdges,h=u.axis,b=n[12],_=n[13],w=n[14],T=n[15],k=(s?2:1)*this.pixelRatio*(i[3]*b+i[7]*_+i[11]*w+i[15]*T)/e.drawingBufferHeight,A=0;A<3;++A)this.lastCubeProps.cubeEdges[A]=f[A],this.lastCubeProps.axis[A]=h[A];var M=p;for(A=0;A<3;++A)d(p[A],A,this.bounds,f,h);e=this.gl;var S,E=m;for(A=0;A<3;++A)this.backgroundEnable[A]?E[A]=h[A]:E[A]=0;this._background.draw(r,n,i,a,E,this.backgroundColor),this._lines.bind(r,n,i,this);for(A=0;A<3;++A){var L=[0,0,0];h[A]>0?L[A]=a[1][A]:L[A]=a[0][A];for(var C=0;C<2;++C){var P=(A+1+C)%3,I=(A+1+(1^C))%3;this.gridEnable[P]&&this._lines.drawGrid(P,I,this.bounds,L,this.gridColor[P],this.gridWidth[P]*this.pixelRatio)}for(C=0;C<2;++C){P=(A+1+C)%3,I=(A+1+(1^C))%3;this.zeroEnable[I]&&Math.min(a[0][I],a[1][I])<=0&&Math.max(a[0][I],a[1][I])>=0&&this._lines.drawZero(P,I,this.bounds,L,this.zeroLineColor[I],this.zeroLineWidth[I]*this.pixelRatio)}}for(A=0;A<3;++A){this.lineEnable[A]&&this._lines.drawAxisLine(A,this.bounds,M[A].primalOffset,this.lineColor[A],this.lineWidth[A]*this.pixelRatio),this.lineMirror[A]&&this._lines.drawAxisLine(A,this.bounds,M[A].mirrorOffset,this.lineColor[A],this.lineWidth[A]*this.pixelRatio);var O=c(v,M[A].primalMinor),z=c(y,M[A].mirrorMinor),D=this.lineTickLength;for(C=0;C<3;++C){var R=k/r[5*C];O[C]*=D[C]*R,z[C]*=D[C]*R}this.lineTickEnable[A]&&this._lines.drawAxisTicks(A,M[A].primalOffset,O,this.lineTickColor[A],this.lineTickWidth[A]*this.pixelRatio),this.lineTickMirror[A]&&this._lines.drawAxisTicks(A,M[A].mirrorOffset,z,this.lineTickColor[A],this.lineTickWidth[A]*this.pixelRatio)}this._lines.unbind(),this._text.bind(r,n,i,this.pixelRatio);var F,B;function N(t){(B=[0,0,0])[t]=1}function j(t,e,r){var n=(t+1)%3,i=(t+2)%3,a=e[n],o=e[i],s=r[n],l=r[i];a>0&&l>0||a>0&&l<0||a<0&&l>0||a<0&&l<0?N(n):(o>0&&s>0||o>0&&s<0||o<0&&s>0||o<0&&s<0)&&N(i)}for(A=0;A<3;++A){var U=M[A].primalMinor,V=M[A].mirrorMinor,H=c(x,M[A].primalOffset);for(C=0;C<3;++C)this.lineTickEnable[A]&&(H[C]+=k*U[C]*Math.max(this.lineTickLength[C],0)/r[5*C]);var q=[0,0,0];if(q[A]=1,this.tickEnable[A]){-3600===this.tickAngle[A]?(this.tickAngle[A]=0,this.tickAlign[A]="auto"):this.tickAlign[A]=-1,F=1,"auto"===(S=[this.tickAlign[A],.5,F])[0]?S[0]=0:S[0]=parseInt(""+S[0]),B=[0,0,0],j(A,U,V);for(C=0;C<3;++C)H[C]+=k*U[C]*this.tickPad[C]/r[5*C];this._text.drawTicks(A,this.tickSize[A],this.tickAngle[A],H,this.tickColor[A],q,B,S)}if(this.labelEnable[A]){F=0,B=[0,0,0],this.labels[A].length>4&&(N(A),F=1),"auto"===(S=[this.labelAlign[A],.5,F])[0]?S[0]=0:S[0]=parseInt(""+S[0]);for(C=0;C<3;++C)H[C]+=k*U[C]*this.labelPad[C]/r[5*C];H[A]+=.5*(a[0][A]+a[1][A]),this._text.drawLabel(A,this.labelSize[A],this.labelAngle[A],H,this.labelColor[A],[0,0,0],B,S)}}this._text.unbind()},f.dispose=function(){this._text.dispose(),this._lines.dispose(),this._background.dispose(),this._lines=null,this._text=null,this._background=null,this.gl=null}},{"./lib/background.js":71,"./lib/cube.js":72,"./lib/lines.js":73,"./lib/text.js":75,"./lib/ticks.js":76}],71:[function(t,e,r){"use strict";e.exports=function(t){for(var e=[],r=[],s=0,l=0;l<3;++l)for(var c=(l+1)%3,u=(l+2)%3,f=[0,0,0],h=[0,0,0],p=-1;p<=1;p+=2){r.push(s,s+2,s+1,s+1,s+2,s+3),f[l]=p,h[l]=p;for(var d=-1;d<=1;d+=2){f[c]=d;for(var m=-1;m<=1;m+=2)f[u]=m,e.push(f[0],f[1],f[2],h[0],h[1],h[2]),s+=1}var g=c;c=u,u=g}var v=n(t,new Float32Array(e)),y=n(t,new Uint16Array(r),t.ELEMENT_ARRAY_BUFFER),x=i(t,[{buffer:v,type:t.FLOAT,size:3,offset:0,stride:24},{buffer:v,type:t.FLOAT,size:3,offset:12,stride:24}],y),b=a(t);return b.attributes.position.location=0,b.attributes.normal.location=1,new o(t,v,x,b)};var n=t("gl-buffer"),i=t("gl-vao"),a=t("./shaders").bg;function o(t,e,r,n){this.gl=t,this.buffer=e,this.vao=r,this.shader=n}var s=o.prototype;s.draw=function(t,e,r,n,i,a){for(var o=!1,s=0;s<3;++s)o=o||i[s];if(o){var l=this.gl;l.enable(l.POLYGON_OFFSET_FILL),l.polygonOffset(1,2),this.shader.bind(),this.shader.uniforms={model:t,view:e,projection:r,bounds:n,enable:i,colors:a},this.vao.bind(),this.vao.draw(this.gl.TRIANGLES,36),this.vao.unbind(),l.disable(l.POLYGON_OFFSET_FILL)}},s.dispose=function(){this.vao.dispose(),this.buffer.dispose(),this.shader.dispose()}},{"./shaders":74,"gl-buffer":78,"gl-vao":150}],72:[function(t,e,r){"use strict";e.exports=function(t,e,r,a,p){i(s,e,t),i(s,r,s);for(var y=0,x=0;x<2;++x){u[2]=a[x][2];for(var b=0;b<2;++b){u[1]=a[b][1];for(var _=0;_<2;++_)u[0]=a[_][0],h(l[y],u,s),y+=1}}var w=-1;for(x=0;x<8;++x){for(var T=l[x][3],k=0;k<3;++k)c[x][k]=l[x][k]/T;p&&(c[x][2]*=-1),T<0&&(w<0||c[x][2]E&&(w|=1<E&&(w|=1<c[x][1])&&(R=x);var F=-1;for(x=0;x<3;++x){if((N=R^1<c[B][0]&&(B=N)}var j=m;j[0]=j[1]=j[2]=0,j[n.log2(F^R)]=R&F,j[n.log2(R^B)]=R&B;var U=7^B;U===w||U===D?(U=7^F,j[n.log2(B^U)]=U&B):j[n.log2(F^U)]=U&F;var V=g,H=w;for(A=0;A<3;++A)V[A]=H&1< HALF_PI) && (b <= ONE_AND_HALF_PI)) ?\n b - PI :\n b;\n}\n\nfloat look_horizontal_or_vertical(float a, float ratio) {\n // ratio controls the ratio between being horizontal to (vertical + horizontal)\n // if ratio is set to 0.5 then it is 50%, 50%.\n // when using a higher ratio e.g. 0.75 the result would\n // likely be more horizontal than vertical.\n\n float b = positive_angle(a);\n\n return\n (b < ( ratio) * HALF_PI) ? 0.0 :\n (b < (2.0 - ratio) * HALF_PI) ? -HALF_PI :\n (b < (2.0 + ratio) * HALF_PI) ? 0.0 :\n (b < (4.0 - ratio) * HALF_PI) ? HALF_PI :\n 0.0;\n}\n\nfloat roundTo(float a, float b) {\n return float(b * floor((a + 0.5 * b) / b));\n}\n\nfloat look_round_n_directions(float a, int n) {\n float b = positive_angle(a);\n float div = TWO_PI / float(n);\n float c = roundTo(b, div);\n return look_upwards(c);\n}\n\nfloat applyAlignOption(float rawAngle, float delta) {\n return\n (option > 2) ? look_round_n_directions(rawAngle + delta, option) : // option 3-n: round to n directions\n (option == 2) ? look_horizontal_or_vertical(rawAngle + delta, hv_ratio) : // horizontal or vertical\n (option == 1) ? rawAngle + delta : // use free angle, and flip to align with one direction of the axis\n (option == 0) ? look_upwards(rawAngle) : // use free angle, and stay upwards\n (option ==-1) ? 0.0 : // useful for backward compatibility, all texts remains horizontal\n rawAngle; // otherwise return back raw input angle\n}\n\nbool isAxisTitle = (axis.x == 0.0) &&\n (axis.y == 0.0) &&\n (axis.z == 0.0);\n\nvoid main() {\n //Compute world offset\n float axisDistance = position.z;\n vec3 dataPosition = axisDistance * axis + offset;\n\n float beta = angle; // i.e. user defined attributes for each tick\n\n float axisAngle;\n float clipAngle;\n float flip;\n\n if (enableAlign) {\n axisAngle = (isAxisTitle) ? HALF_PI :\n computeViewAngle(dataPosition, dataPosition + axis);\n clipAngle = computeViewAngle(dataPosition, dataPosition + alignDir);\n\n axisAngle += (sin(axisAngle) < 0.0) ? PI : 0.0;\n clipAngle += (sin(clipAngle) < 0.0) ? PI : 0.0;\n\n flip = (dot(vec2(cos(axisAngle), sin(axisAngle)),\n vec2(sin(clipAngle),-cos(clipAngle))) > 0.0) ? 1.0 : 0.0;\n\n beta += applyAlignOption(clipAngle, flip * PI);\n }\n\n //Compute plane offset\n vec2 planeCoord = position.xy * pixelScale;\n\n mat2 planeXform = scale * mat2(\n cos(beta), sin(beta),\n -sin(beta), cos(beta)\n );\n\n vec2 viewOffset = 2.0 * planeXform * planeCoord / resolution;\n\n //Compute clip position\n vec3 clipPosition = project(dataPosition);\n\n //Apply text offset in clip coordinates\n clipPosition += vec3(viewOffset, 0.0);\n\n //Done\n gl_Position = vec4(clipPosition, 1.0);\n}"]),l=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec4 color;\nvoid main() {\n gl_FragColor = color;\n}"]);r.text=function(t){return i(t,s,l,null,[{name:"position",type:"vec3"}])};var c=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec3 normal;\n\nuniform mat4 model, view, projection;\nuniform vec3 enable;\nuniform vec3 bounds[2];\n\nvarying vec3 colorChannel;\n\nvoid main() {\n\n vec3 signAxis = sign(bounds[1] - bounds[0]);\n\n vec3 realNormal = signAxis * normal;\n\n if(dot(realNormal, enable) > 0.0) {\n vec3 minRange = min(bounds[0], bounds[1]);\n vec3 maxRange = max(bounds[0], bounds[1]);\n vec3 nPosition = mix(minRange, maxRange, 0.5 * (position + 1.0));\n gl_Position = projection * view * model * vec4(nPosition, 1.0);\n } else {\n gl_Position = vec4(0,0,0,0);\n }\n\n colorChannel = abs(realNormal);\n}"]),u=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec4 colors[3];\n\nvarying vec3 colorChannel;\n\nvoid main() {\n gl_FragColor = colorChannel.x * colors[0] +\n colorChannel.y * colors[1] +\n colorChannel.z * colors[2];\n}"]);r.bg=function(t){return i(t,c,u,null,[{name:"position",type:"vec3"},{name:"normal",type:"vec3"}])}},{"gl-shader":132,glslify:231}],75:[function(t,e,r){(function(r){(function(){"use strict";e.exports=function(t,e,r,a,s,l){var u=n(t),f=i(t,[{buffer:u,size:3}]),h=o(t);h.attributes.position.location=0;var p=new c(t,h,u,f);return p.update(e,r,a,s,l),p};var n=t("gl-buffer"),i=t("gl-vao"),a=t("vectorize-text"),o=t("./shaders").text,s=window||r.global||{},l=s.__TEXT_CACHE||{};s.__TEXT_CACHE={};function c(t,e,r,n){this.gl=t,this.shader=e,this.buffer=r,this.vao=n,this.tickOffset=this.tickCount=this.labelOffset=this.labelCount=null}var u=c.prototype,f=[0,0];u.bind=function(t,e,r,n){this.vao.bind(),this.shader.bind();var i=this.shader.uniforms;i.model=t,i.view=e,i.projection=r,i.pixelScale=n,f[0]=this.gl.drawingBufferWidth,f[1]=this.gl.drawingBufferHeight,this.shader.uniforms.resolution=f},u.unbind=function(){this.vao.unbind()},u.update=function(t,e,r,n,i){var o=[];function s(t,e,r,n,i,s){var c=l[r];c||(c=l[r]={});var u=c[e];u||(u=c[e]=function(t,e){try{return a(t,e)}catch(e){return console.warn('error vectorizing text:"'+t+'" error:',e),{cells:[],positions:[]}}}(e,{triangles:!0,font:r,textAlign:"center",textBaseline:"middle",lineSpacing:i,styletags:s}));for(var f=(n||12)/12,h=u.positions,p=u.cells,d=0,m=p.length;d=0;--v){var y=h[g[v]];o.push(f*y[0],-f*y[1],t)}}for(var c=[0,0,0],u=[0,0,0],f=[0,0,0],h=[0,0,0],p={breaklines:!0,bolds:!0,italics:!0,subscripts:!0,superscripts:!0},d=0;d<3;++d){f[d]=o.length/3|0,s(.5*(t[0][d]+t[1][d]),e[d],r[d],12,1.25,p),h[d]=(o.length/3|0)-f[d],c[d]=o.length/3|0;for(var m=0;m=0&&(i=r.length-n-1);var a=Math.pow(10,i),o=Math.round(t*e*a),s=o+"";if(s.indexOf("e")>=0)return s;var l=o/a,c=o%a;o<0?(l=0|-Math.ceil(l),c=0|-c):(l=0|Math.floor(l),c|=0);var u=""+l;if(o<0&&(u="-"+u),i){for(var f=""+c;f.length=t[0][i];--o)a.push({x:o*e[i],text:n(e[i],o)});r.push(a)}return r},r.equal=function(t,e){for(var r=0;r<3;++r){if(t[r].length!==e[r].length)return!1;for(var n=0;nr)throw new Error("gl-buffer: If resizing buffer, must not specify offset");return t.bufferSubData(e,a,i),r}function u(t,e){for(var r=n.malloc(t.length,e),i=t.length,a=0;a=0;--n){if(e[n]!==r)return!1;r*=t[n]}return!0}(t.shape,t.stride))0===t.offset&&t.data.length===t.shape[0]?this.length=c(this.gl,this.type,this.length,this.usage,t.data,e):this.length=c(this.gl,this.type,this.length,this.usage,t.data.subarray(t.offset,t.shape[0]),e);else{var s=n.malloc(t.size,r),l=a(s,t.shape);i.assign(l,t),this.length=c(this.gl,this.type,this.length,this.usage,e<0?s:s.subarray(0,t.size),e),n.free(s)}}else if(Array.isArray(t)){var f;f=this.type===this.gl.ELEMENT_ARRAY_BUFFER?u(t,"uint16"):u(t,"float32"),this.length=c(this.gl,this.type,this.length,this.usage,e<0?f:f.subarray(0,t.length),e),n.free(f)}else if("object"==typeof t&&"number"==typeof t.length)this.length=c(this.gl,this.type,this.length,this.usage,t,e);else{if("number"!=typeof t&&void 0!==t)throw new Error("gl-buffer: Invalid data type");if(e>=0)throw new Error("gl-buffer: Cannot specify offset when resizing buffer");(t|=0)<=0&&(t=1),this.gl.bufferData(this.type,0|t,this.usage),this.length=t}},e.exports=function(t,e,r,n){if(r=r||t.ARRAY_BUFFER,n=n||t.DYNAMIC_DRAW,r!==t.ARRAY_BUFFER&&r!==t.ELEMENT_ARRAY_BUFFER)throw new Error("gl-buffer: Invalid type for webgl buffer, must be either gl.ARRAY_BUFFER or gl.ELEMENT_ARRAY_BUFFER");if(n!==t.DYNAMIC_DRAW&&n!==t.STATIC_DRAW&&n!==t.STREAM_DRAW)throw new Error("gl-buffer: Invalid usage for buffer, must be either gl.DYNAMIC_DRAW, gl.STATIC_DRAW or gl.STREAM_DRAW");var i=t.createBuffer(),a=new s(t,r,i,0,n);return a.update(e),a}},{ndarray:259,"ndarray-ops":254,"typedarray-pool":308}],79:[function(t,e,r){"use strict";var n=t("gl-vec3");e.exports=function(t,e){var r=t.positions,i=t.vectors,a={positions:[],vertexIntensity:[],vertexIntensityBounds:t.vertexIntensityBounds,vectors:[],cells:[],coneOffset:t.coneOffset,colormap:t.colormap};if(0===t.positions.length)return e&&(e[0]=[0,0,0],e[1]=[0,0,0]),a;for(var o=0,s=1/0,l=-1/0,c=1/0,u=-1/0,f=1/0,h=-1/0,p=null,d=null,m=[],g=1/0,v=!1,y=0;yo&&(o=n.length(b)),y){var _=2*n.distance(p,x)/(n.length(d)+n.length(b));_?(g=Math.min(g,_),v=!1):v=!0}v||(p=x,d=b),m.push(b)}var w=[s,c,f],T=[l,u,h];e&&(e[0]=w,e[1]=T),0===o&&(o=1);var k=1/o;isFinite(g)||(g=1),a.vectorScale=g;var A=t.coneSize||.5;t.absoluteConeSize&&(A=t.absoluteConeSize*k),a.coneScale=A;y=0;for(var M=0;y=1},p.isTransparent=function(){return this.opacity<1},p.pickSlots=1,p.setPickBase=function(t){this.pickId=t},p.update=function(t){t=t||{};var e=this.gl;this.dirty=!0,"lightPosition"in t&&(this.lightPosition=t.lightPosition),"opacity"in t&&(this.opacity=t.opacity),"ambient"in t&&(this.ambientLight=t.ambient),"diffuse"in t&&(this.diffuseLight=t.diffuse),"specular"in t&&(this.specularLight=t.specular),"roughness"in t&&(this.roughness=t.roughness),"fresnel"in t&&(this.fresnel=t.fresnel),void 0!==t.tubeScale&&(this.tubeScale=t.tubeScale),void 0!==t.vectorScale&&(this.vectorScale=t.vectorScale),void 0!==t.coneScale&&(this.coneScale=t.coneScale),void 0!==t.coneOffset&&(this.coneOffset=t.coneOffset),t.colormap&&(this.texture.shape=[256,256],this.texture.minFilter=e.LINEAR_MIPMAP_LINEAR,this.texture.magFilter=e.LINEAR,this.texture.setPixels(function(t){for(var e=u({colormap:t,nshades:256,format:"rgba"}),r=new Uint8Array(1024),n=0;n<256;++n){for(var i=e[n],a=0;a<3;++a)r[4*n+a]=i[a];r[4*n+3]=255*i[3]}return c(r,[256,256,4],[4,0,1])}(t.colormap)),this.texture.generateMipmap());var r=t.cells,n=t.positions,i=t.vectors;if(n&&r&&i){var a=[],o=[],s=[],l=[],f=[];this.cells=r,this.positions=n,this.vectors=i;var h=t.meshColor||[1,1,1,1],p=t.vertexIntensity,d=1/0,m=-1/0;if(p)if(t.vertexIntensityBounds)d=+t.vertexIntensityBounds[0],m=+t.vertexIntensityBounds[1];else for(var g=0;g0){var m=this.triShader;m.bind(),m.uniforms=c,this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind()}},p.drawPick=function(t){t=t||{};for(var e=this.gl,r=t.model||f,n=t.view||f,i=t.projection||f,a=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],o=0;o<3;++o)a[0][o]=Math.max(a[0][o],this.clipBounds[0][o]),a[1][o]=Math.min(a[1][o],this.clipBounds[1][o]);this._model=[].slice.call(r),this._view=[].slice.call(n),this._projection=[].slice.call(i),this._resolution=[e.drawingBufferWidth,e.drawingBufferHeight];var s={model:r,view:n,projection:i,clipBounds:a,tubeScale:this.tubeScale,vectorScale:this.vectorScale,coneScale:this.coneScale,coneOffset:this.coneOffset,pickId:this.pickId/255},l=this.pickShader;l.bind(),l.uniforms=s,this.triangleCount>0&&(this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind())},p.pick=function(t){if(!t)return null;if(t.id!==this.pickId)return null;var e=t.value[0]+256*t.value[1]+65536*t.value[2],r=this.cells[e],n=this.positions[r[1]].slice(0,3),i={position:n,dataCoordinate:n,index:Math.floor(r[1]/48)};return"cone"===this.traceType?i.index=Math.floor(r[1]/48):"streamtube"===this.traceType&&(i.intensity=this.intensity[r[1]],i.velocity=this.vectors[r[1]].slice(0,3),i.divergence=this.vectors[r[1]][3],i.index=e),i},p.dispose=function(){this.texture.dispose(),this.triShader.dispose(),this.pickShader.dispose(),this.triangleVAO.dispose(),this.trianglePositions.dispose(),this.triangleVectors.dispose(),this.triangleColors.dispose(),this.triangleUVs.dispose(),this.triangleIds.dispose()},e.exports=function(t,e,r){var n=r.shaders;1===arguments.length&&(t=(e=t).gl);var s=d(t,n),l=m(t,n),u=o(t,c(new Uint8Array([255,255,255,255]),[1,1,4]));u.generateMipmap(),u.minFilter=t.LINEAR_MIPMAP_LINEAR,u.magFilter=t.LINEAR;var f=i(t),p=i(t),g=i(t),v=i(t),y=i(t),x=a(t,[{buffer:f,type:t.FLOAT,size:4},{buffer:y,type:t.UNSIGNED_BYTE,size:4,normalized:!0},{buffer:g,type:t.FLOAT,size:4},{buffer:v,type:t.FLOAT,size:2},{buffer:p,type:t.FLOAT,size:4}]),b=new h(t,u,s,l,f,p,y,g,v,x,r.traceType||"cone");return b.update(e),b}},{colormap:53,"gl-buffer":78,"gl-mat4/invert":98,"gl-mat4/multiply":100,"gl-shader":132,"gl-texture2d":146,"gl-vao":150,ndarray:259}],81:[function(t,e,r){var n=t("glslify"),i=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the cone vertex and normal at the given index.\n//\n// The returned vertex is for a cone with its top at origin and height of 1.0,\n// pointing in the direction of the vector attribute.\n//\n// Each cone is made up of a top vertex, a center base vertex and base perimeter vertices.\n// These vertices are used to make up the triangles of the cone by the following:\n// segment + 0 top vertex\n// segment + 1 perimeter vertex a+1\n// segment + 2 perimeter vertex a\n// segment + 3 center base vertex\n// segment + 4 perimeter vertex a\n// segment + 5 perimeter vertex a+1\n// Where segment is the number of the radial segment * 6 and a is the angle at that radial segment.\n// To go from index to segment, floor(index / 6)\n// To go from segment to angle, 2*pi * (segment/segmentCount)\n// To go from index to segment index, index - (segment*6)\n//\nvec3 getConePosition(vec3 d, float rawIndex, float coneOffset, out vec3 normal) {\n\n const float segmentCount = 8.0;\n\n float index = rawIndex - floor(rawIndex /\n (segmentCount * 6.0)) *\n (segmentCount * 6.0);\n\n float segment = floor(0.001 + index/6.0);\n float segmentIndex = index - (segment*6.0);\n\n normal = -normalize(d);\n\n if (segmentIndex > 2.99 && segmentIndex < 3.01) {\n return mix(vec3(0.0), -d, coneOffset);\n }\n\n float nextAngle = (\n (segmentIndex > 0.99 && segmentIndex < 1.01) ||\n (segmentIndex > 4.99 && segmentIndex < 5.01)\n ) ? 1.0 : 0.0;\n float angle = 2.0 * 3.14159 * ((segment + nextAngle) / segmentCount);\n\n vec3 v1 = mix(d, vec3(0.0), coneOffset);\n vec3 v2 = v1 - d;\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d)*0.25;\n vec3 y = v * sin(angle) * length(d)*0.25;\n vec3 v3 = v2 + x + y;\n if (segmentIndex < 3.0) {\n vec3 tx = u * sin(angle);\n vec3 ty = v * -cos(angle);\n vec3 tangent = tx + ty;\n normal = normalize(cross(v3 - v1, tangent));\n }\n\n if (segmentIndex == 0.0) {\n return mix(d, vec3(0.0), coneOffset);\n }\n return v3;\n}\n\nattribute vec3 vector;\nattribute vec4 color, position;\nattribute vec2 uv;\n\nuniform float vectorScale, coneScale, coneOffset;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 eyePosition, lightPosition;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n // Scale the vector magnitude to stay constant with\n // model & view changes.\n vec3 normal;\n vec3 XYZ = getConePosition(mat3(model) * ((vectorScale * coneScale) * vector), position.w, coneOffset, normal);\n vec4 conePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * conePosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n // vec4 m_position = model * vec4(conePosition, 1.0);\n vec4 t_position = view * conePosition;\n gl_Position = projection * t_position;\n\n f_color = color;\n f_data = conePosition.xyz;\n f_position = position.xyz;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform sampler2D texture;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = f_color * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * opacity;\n}\n"]),o=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the cone vertex and normal at the given index.\n//\n// The returned vertex is for a cone with its top at origin and height of 1.0,\n// pointing in the direction of the vector attribute.\n//\n// Each cone is made up of a top vertex, a center base vertex and base perimeter vertices.\n// These vertices are used to make up the triangles of the cone by the following:\n// segment + 0 top vertex\n// segment + 1 perimeter vertex a+1\n// segment + 2 perimeter vertex a\n// segment + 3 center base vertex\n// segment + 4 perimeter vertex a\n// segment + 5 perimeter vertex a+1\n// Where segment is the number of the radial segment * 6 and a is the angle at that radial segment.\n// To go from index to segment, floor(index / 6)\n// To go from segment to angle, 2*pi * (segment/segmentCount)\n// To go from index to segment index, index - (segment*6)\n//\nvec3 getConePosition(vec3 d, float rawIndex, float coneOffset, out vec3 normal) {\n\n const float segmentCount = 8.0;\n\n float index = rawIndex - floor(rawIndex /\n (segmentCount * 6.0)) *\n (segmentCount * 6.0);\n\n float segment = floor(0.001 + index/6.0);\n float segmentIndex = index - (segment*6.0);\n\n normal = -normalize(d);\n\n if (segmentIndex > 2.99 && segmentIndex < 3.01) {\n return mix(vec3(0.0), -d, coneOffset);\n }\n\n float nextAngle = (\n (segmentIndex > 0.99 && segmentIndex < 1.01) ||\n (segmentIndex > 4.99 && segmentIndex < 5.01)\n ) ? 1.0 : 0.0;\n float angle = 2.0 * 3.14159 * ((segment + nextAngle) / segmentCount);\n\n vec3 v1 = mix(d, vec3(0.0), coneOffset);\n vec3 v2 = v1 - d;\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d)*0.25;\n vec3 y = v * sin(angle) * length(d)*0.25;\n vec3 v3 = v2 + x + y;\n if (segmentIndex < 3.0) {\n vec3 tx = u * sin(angle);\n vec3 ty = v * -cos(angle);\n vec3 tangent = tx + ty;\n normal = normalize(cross(v3 - v1, tangent));\n }\n\n if (segmentIndex == 0.0) {\n return mix(d, vec3(0.0), coneOffset);\n }\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform float vectorScale, coneScale, coneOffset;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n vec3 normal;\n vec3 XYZ = getConePosition(mat3(model) * ((vectorScale * coneScale) * vector.xyz), position.w, coneOffset, normal);\n vec4 conePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n gl_Position = projection * view * conePosition;\n f_id = id;\n f_position = position.xyz;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec4"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"vector",type:"vec3"}]},r.pickShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec4"},{name:"id",type:"vec4"},{name:"vector",type:"vec3"}]}},{glslify:231}],82:[function(t,e,r){e.exports={0:"NONE",1:"ONE",2:"LINE_LOOP",3:"LINE_STRIP",4:"TRIANGLES",5:"TRIANGLE_STRIP",6:"TRIANGLE_FAN",256:"DEPTH_BUFFER_BIT",512:"NEVER",513:"LESS",514:"EQUAL",515:"LEQUAL",516:"GREATER",517:"NOTEQUAL",518:"GEQUAL",519:"ALWAYS",768:"SRC_COLOR",769:"ONE_MINUS_SRC_COLOR",770:"SRC_ALPHA",771:"ONE_MINUS_SRC_ALPHA",772:"DST_ALPHA",773:"ONE_MINUS_DST_ALPHA",774:"DST_COLOR",775:"ONE_MINUS_DST_COLOR",776:"SRC_ALPHA_SATURATE",1024:"STENCIL_BUFFER_BIT",1028:"FRONT",1029:"BACK",1032:"FRONT_AND_BACK",1280:"INVALID_ENUM",1281:"INVALID_VALUE",1282:"INVALID_OPERATION",1285:"OUT_OF_MEMORY",1286:"INVALID_FRAMEBUFFER_OPERATION",2304:"CW",2305:"CCW",2849:"LINE_WIDTH",2884:"CULL_FACE",2885:"CULL_FACE_MODE",2886:"FRONT_FACE",2928:"DEPTH_RANGE",2929:"DEPTH_TEST",2930:"DEPTH_WRITEMASK",2931:"DEPTH_CLEAR_VALUE",2932:"DEPTH_FUNC",2960:"STENCIL_TEST",2961:"STENCIL_CLEAR_VALUE",2962:"STENCIL_FUNC",2963:"STENCIL_VALUE_MASK",2964:"STENCIL_FAIL",2965:"STENCIL_PASS_DEPTH_FAIL",2966:"STENCIL_PASS_DEPTH_PASS",2967:"STENCIL_REF",2968:"STENCIL_WRITEMASK",2978:"VIEWPORT",3024:"DITHER",3042:"BLEND",3088:"SCISSOR_BOX",3089:"SCISSOR_TEST",3106:"COLOR_CLEAR_VALUE",3107:"COLOR_WRITEMASK",3317:"UNPACK_ALIGNMENT",3333:"PACK_ALIGNMENT",3379:"MAX_TEXTURE_SIZE",3386:"MAX_VIEWPORT_DIMS",3408:"SUBPIXEL_BITS",3410:"RED_BITS",3411:"GREEN_BITS",3412:"BLUE_BITS",3413:"ALPHA_BITS",3414:"DEPTH_BITS",3415:"STENCIL_BITS",3553:"TEXTURE_2D",4352:"DONT_CARE",4353:"FASTEST",4354:"NICEST",5120:"BYTE",5121:"UNSIGNED_BYTE",5122:"SHORT",5123:"UNSIGNED_SHORT",5124:"INT",5125:"UNSIGNED_INT",5126:"FLOAT",5386:"INVERT",5890:"TEXTURE",6401:"STENCIL_INDEX",6402:"DEPTH_COMPONENT",6406:"ALPHA",6407:"RGB",6408:"RGBA",6409:"LUMINANCE",6410:"LUMINANCE_ALPHA",7680:"KEEP",7681:"REPLACE",7682:"INCR",7683:"DECR",7936:"VENDOR",7937:"RENDERER",7938:"VERSION",9728:"NEAREST",9729:"LINEAR",9984:"NEAREST_MIPMAP_NEAREST",9985:"LINEAR_MIPMAP_NEAREST",9986:"NEAREST_MIPMAP_LINEAR",9987:"LINEAR_MIPMAP_LINEAR",10240:"TEXTURE_MAG_FILTER",10241:"TEXTURE_MIN_FILTER",10242:"TEXTURE_WRAP_S",10243:"TEXTURE_WRAP_T",10497:"REPEAT",10752:"POLYGON_OFFSET_UNITS",16384:"COLOR_BUFFER_BIT",32769:"CONSTANT_COLOR",32770:"ONE_MINUS_CONSTANT_COLOR",32771:"CONSTANT_ALPHA",32772:"ONE_MINUS_CONSTANT_ALPHA",32773:"BLEND_COLOR",32774:"FUNC_ADD",32777:"BLEND_EQUATION_RGB",32778:"FUNC_SUBTRACT",32779:"FUNC_REVERSE_SUBTRACT",32819:"UNSIGNED_SHORT_4_4_4_4",32820:"UNSIGNED_SHORT_5_5_5_1",32823:"POLYGON_OFFSET_FILL",32824:"POLYGON_OFFSET_FACTOR",32854:"RGBA4",32855:"RGB5_A1",32873:"TEXTURE_BINDING_2D",32926:"SAMPLE_ALPHA_TO_COVERAGE",32928:"SAMPLE_COVERAGE",32936:"SAMPLE_BUFFERS",32937:"SAMPLES",32938:"SAMPLE_COVERAGE_VALUE",32939:"SAMPLE_COVERAGE_INVERT",32968:"BLEND_DST_RGB",32969:"BLEND_SRC_RGB",32970:"BLEND_DST_ALPHA",32971:"BLEND_SRC_ALPHA",33071:"CLAMP_TO_EDGE",33170:"GENERATE_MIPMAP_HINT",33189:"DEPTH_COMPONENT16",33306:"DEPTH_STENCIL_ATTACHMENT",33635:"UNSIGNED_SHORT_5_6_5",33648:"MIRRORED_REPEAT",33901:"ALIASED_POINT_SIZE_RANGE",33902:"ALIASED_LINE_WIDTH_RANGE",33984:"TEXTURE0",33985:"TEXTURE1",33986:"TEXTURE2",33987:"TEXTURE3",33988:"TEXTURE4",33989:"TEXTURE5",33990:"TEXTURE6",33991:"TEXTURE7",33992:"TEXTURE8",33993:"TEXTURE9",33994:"TEXTURE10",33995:"TEXTURE11",33996:"TEXTURE12",33997:"TEXTURE13",33998:"TEXTURE14",33999:"TEXTURE15",34e3:"TEXTURE16",34001:"TEXTURE17",34002:"TEXTURE18",34003:"TEXTURE19",34004:"TEXTURE20",34005:"TEXTURE21",34006:"TEXTURE22",34007:"TEXTURE23",34008:"TEXTURE24",34009:"TEXTURE25",34010:"TEXTURE26",34011:"TEXTURE27",34012:"TEXTURE28",34013:"TEXTURE29",34014:"TEXTURE30",34015:"TEXTURE31",34016:"ACTIVE_TEXTURE",34024:"MAX_RENDERBUFFER_SIZE",34041:"DEPTH_STENCIL",34055:"INCR_WRAP",34056:"DECR_WRAP",34067:"TEXTURE_CUBE_MAP",34068:"TEXTURE_BINDING_CUBE_MAP",34069:"TEXTURE_CUBE_MAP_POSITIVE_X",34070:"TEXTURE_CUBE_MAP_NEGATIVE_X",34071:"TEXTURE_CUBE_MAP_POSITIVE_Y",34072:"TEXTURE_CUBE_MAP_NEGATIVE_Y",34073:"TEXTURE_CUBE_MAP_POSITIVE_Z",34074:"TEXTURE_CUBE_MAP_NEGATIVE_Z",34076:"MAX_CUBE_MAP_TEXTURE_SIZE",34338:"VERTEX_ATTRIB_ARRAY_ENABLED",34339:"VERTEX_ATTRIB_ARRAY_SIZE",34340:"VERTEX_ATTRIB_ARRAY_STRIDE",34341:"VERTEX_ATTRIB_ARRAY_TYPE",34342:"CURRENT_VERTEX_ATTRIB",34373:"VERTEX_ATTRIB_ARRAY_POINTER",34466:"NUM_COMPRESSED_TEXTURE_FORMATS",34467:"COMPRESSED_TEXTURE_FORMATS",34660:"BUFFER_SIZE",34661:"BUFFER_USAGE",34816:"STENCIL_BACK_FUNC",34817:"STENCIL_BACK_FAIL",34818:"STENCIL_BACK_PASS_DEPTH_FAIL",34819:"STENCIL_BACK_PASS_DEPTH_PASS",34877:"BLEND_EQUATION_ALPHA",34921:"MAX_VERTEX_ATTRIBS",34922:"VERTEX_ATTRIB_ARRAY_NORMALIZED",34930:"MAX_TEXTURE_IMAGE_UNITS",34962:"ARRAY_BUFFER",34963:"ELEMENT_ARRAY_BUFFER",34964:"ARRAY_BUFFER_BINDING",34965:"ELEMENT_ARRAY_BUFFER_BINDING",34975:"VERTEX_ATTRIB_ARRAY_BUFFER_BINDING",35040:"STREAM_DRAW",35044:"STATIC_DRAW",35048:"DYNAMIC_DRAW",35632:"FRAGMENT_SHADER",35633:"VERTEX_SHADER",35660:"MAX_VERTEX_TEXTURE_IMAGE_UNITS",35661:"MAX_COMBINED_TEXTURE_IMAGE_UNITS",35663:"SHADER_TYPE",35664:"FLOAT_VEC2",35665:"FLOAT_VEC3",35666:"FLOAT_VEC4",35667:"INT_VEC2",35668:"INT_VEC3",35669:"INT_VEC4",35670:"BOOL",35671:"BOOL_VEC2",35672:"BOOL_VEC3",35673:"BOOL_VEC4",35674:"FLOAT_MAT2",35675:"FLOAT_MAT3",35676:"FLOAT_MAT4",35678:"SAMPLER_2D",35680:"SAMPLER_CUBE",35712:"DELETE_STATUS",35713:"COMPILE_STATUS",35714:"LINK_STATUS",35715:"VALIDATE_STATUS",35716:"INFO_LOG_LENGTH",35717:"ATTACHED_SHADERS",35718:"ACTIVE_UNIFORMS",35719:"ACTIVE_UNIFORM_MAX_LENGTH",35720:"SHADER_SOURCE_LENGTH",35721:"ACTIVE_ATTRIBUTES",35722:"ACTIVE_ATTRIBUTE_MAX_LENGTH",35724:"SHADING_LANGUAGE_VERSION",35725:"CURRENT_PROGRAM",36003:"STENCIL_BACK_REF",36004:"STENCIL_BACK_VALUE_MASK",36005:"STENCIL_BACK_WRITEMASK",36006:"FRAMEBUFFER_BINDING",36007:"RENDERBUFFER_BINDING",36048:"FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE",36049:"FRAMEBUFFER_ATTACHMENT_OBJECT_NAME",36050:"FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL",36051:"FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE",36053:"FRAMEBUFFER_COMPLETE",36054:"FRAMEBUFFER_INCOMPLETE_ATTACHMENT",36055:"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT",36057:"FRAMEBUFFER_INCOMPLETE_DIMENSIONS",36061:"FRAMEBUFFER_UNSUPPORTED",36064:"COLOR_ATTACHMENT0",36096:"DEPTH_ATTACHMENT",36128:"STENCIL_ATTACHMENT",36160:"FRAMEBUFFER",36161:"RENDERBUFFER",36162:"RENDERBUFFER_WIDTH",36163:"RENDERBUFFER_HEIGHT",36164:"RENDERBUFFER_INTERNAL_FORMAT",36168:"STENCIL_INDEX8",36176:"RENDERBUFFER_RED_SIZE",36177:"RENDERBUFFER_GREEN_SIZE",36178:"RENDERBUFFER_BLUE_SIZE",36179:"RENDERBUFFER_ALPHA_SIZE",36180:"RENDERBUFFER_DEPTH_SIZE",36181:"RENDERBUFFER_STENCIL_SIZE",36194:"RGB565",36336:"LOW_FLOAT",36337:"MEDIUM_FLOAT",36338:"HIGH_FLOAT",36339:"LOW_INT",36340:"MEDIUM_INT",36341:"HIGH_INT",36346:"SHADER_COMPILER",36347:"MAX_VERTEX_UNIFORM_VECTORS",36348:"MAX_VARYING_VECTORS",36349:"MAX_FRAGMENT_UNIFORM_VECTORS",37440:"UNPACK_FLIP_Y_WEBGL",37441:"UNPACK_PREMULTIPLY_ALPHA_WEBGL",37442:"CONTEXT_LOST_WEBGL",37443:"UNPACK_COLORSPACE_CONVERSION_WEBGL",37444:"BROWSER_DEFAULT_WEBGL"}},{}],83:[function(t,e,r){var n=t("./1.0/numbers");e.exports=function(t){return n[t]}},{"./1.0/numbers":82}],84:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl,r=n(e),o=i(e,[{buffer:r,type:e.FLOAT,size:3,offset:0,stride:40},{buffer:r,type:e.FLOAT,size:4,offset:12,stride:40},{buffer:r,type:e.FLOAT,size:3,offset:28,stride:40}]),l=a(e);l.attributes.position.location=0,l.attributes.color.location=1,l.attributes.offset.location=2;var c=new s(e,r,o,l);return c.update(t),c};var n=t("gl-buffer"),i=t("gl-vao"),a=t("./shaders/index"),o=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function s(t,e,r,n){this.gl=t,this.shader=n,this.buffer=e,this.vao=r,this.pixelRatio=1,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.lineWidth=[1,1,1],this.capSize=[10,10,10],this.lineCount=[0,0,0],this.lineOffset=[0,0,0],this.opacity=1,this.hasAlpha=!1}var l=s.prototype;function c(t,e){for(var r=0;r<3;++r)t[0][r]=Math.min(t[0][r],e[r]),t[1][r]=Math.max(t[1][r],e[r])}l.isOpaque=function(){return!this.hasAlpha},l.isTransparent=function(){return this.hasAlpha},l.drawTransparent=l.draw=function(t){var e=this.gl,r=this.shader.uniforms;this.shader.bind();var n=r.view=t.view||o,i=r.projection=t.projection||o;r.model=t.model||o,r.clipBounds=this.clipBounds,r.opacity=this.opacity;var a=n[12],s=n[13],l=n[14],c=n[15],u=(t._ortho||!1?2:1)*this.pixelRatio*(i[3]*a+i[7]*s+i[11]*l+i[15]*c)/e.drawingBufferHeight;this.vao.bind();for(var f=0;f<3;++f)e.lineWidth(this.lineWidth[f]*this.pixelRatio),r.capSize=this.capSize[f]*u,this.lineCount[f]&&e.drawArrays(e.LINES,this.lineOffset[f],this.lineCount[f]);this.vao.unbind()};var u=function(){for(var t=new Array(3),e=0;e<3;++e){for(var r=[],n=1;n<=2;++n)for(var i=-1;i<=1;i+=2){var a=[0,0,0];a[(n+e)%3]=i,r.push(a)}t[e]=r}return t}();function f(t,e,r,n){for(var i=u[n],a=0;a0)(m=u.slice())[s]+=p[1][s],i.push(u[0],u[1],u[2],d[0],d[1],d[2],d[3],0,0,0,m[0],m[1],m[2],d[0],d[1],d[2],d[3],0,0,0),c(this.bounds,m),o+=2+f(i,m,d,s)}}this.lineCount[s]=o-this.lineOffset[s]}this.buffer.update(i)}},l.dispose=function(){this.shader.dispose(),this.buffer.dispose(),this.vao.dispose()}},{"./shaders/index":85,"gl-buffer":78,"gl-vao":150}],85:[function(t,e,r){"use strict";var n=t("glslify"),i=t("gl-shader"),a=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position, offset;\nattribute vec4 color;\nuniform mat4 model, view, projection;\nuniform float capSize;\nvarying vec4 fragColor;\nvarying vec3 fragPosition;\n\nvoid main() {\n vec4 worldPosition = model * vec4(position, 1.0);\n worldPosition = (worldPosition / worldPosition.w) + vec4(capSize * offset, 0.0);\n gl_Position = projection * view * worldPosition;\n fragColor = color;\n fragPosition = position;\n}"]),o=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float opacity;\nvarying vec3 fragPosition;\nvarying vec4 fragColor;\n\nvoid main() {\n if (\n outOfRange(clipBounds[0], clipBounds[1], fragPosition) ||\n fragColor.a * opacity == 0.\n ) discard;\n\n gl_FragColor = opacity * fragColor;\n}"]);e.exports=function(t){return i(t,a,o,null,[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"offset",type:"vec3"}])}},{"gl-shader":132,glslify:231}],86:[function(t,e,r){"use strict";var n=t("gl-texture2d");e.exports=function(t,e,r,n){i||(i=t.FRAMEBUFFER_UNSUPPORTED,a=t.FRAMEBUFFER_INCOMPLETE_ATTACHMENT,o=t.FRAMEBUFFER_INCOMPLETE_DIMENSIONS,s=t.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT);var c=t.getExtension("WEBGL_draw_buffers");!l&&c&&function(t,e){var r=t.getParameter(e.MAX_COLOR_ATTACHMENTS_WEBGL);l=new Array(r+1);for(var n=0;n<=r;++n){for(var i=new Array(r),a=0;au||r<0||r>u)throw new Error("gl-fbo: Parameters are too large for FBO");var f=1;if("color"in(n=n||{})){if((f=Math.max(0|n.color,0))<0)throw new Error("gl-fbo: Must specify a nonnegative number of colors");if(f>1){if(!c)throw new Error("gl-fbo: Multiple draw buffer extension not supported");if(f>t.getParameter(c.MAX_COLOR_ATTACHMENTS_WEBGL))throw new Error("gl-fbo: Context does not support "+f+" draw buffers")}}var h=t.UNSIGNED_BYTE,p=t.getExtension("OES_texture_float");if(n.float&&f>0){if(!p)throw new Error("gl-fbo: Context does not support floating point textures");h=t.FLOAT}else n.preferFloat&&f>0&&p&&(h=t.FLOAT);var m=!0;"depth"in n&&(m=!!n.depth);var g=!1;"stencil"in n&&(g=!!n.stencil);return new d(t,e,r,h,f,m,g,c)};var i,a,o,s,l=null;function c(t){return[t.getParameter(t.FRAMEBUFFER_BINDING),t.getParameter(t.RENDERBUFFER_BINDING),t.getParameter(t.TEXTURE_BINDING_2D)]}function u(t,e){t.bindFramebuffer(t.FRAMEBUFFER,e[0]),t.bindRenderbuffer(t.RENDERBUFFER,e[1]),t.bindTexture(t.TEXTURE_2D,e[2])}function f(t){switch(t){case i:throw new Error("gl-fbo: Framebuffer unsupported");case a:throw new Error("gl-fbo: Framebuffer incomplete attachment");case o:throw new Error("gl-fbo: Framebuffer incomplete dimensions");case s:throw new Error("gl-fbo: Framebuffer incomplete missing attachment");default:throw new Error("gl-fbo: Framebuffer failed for unspecified reason")}}function h(t,e,r,i,a,o){if(!i)return null;var s=n(t,e,r,a,i);return s.magFilter=t.NEAREST,s.minFilter=t.NEAREST,s.mipSamples=1,s.bind(),t.framebufferTexture2D(t.FRAMEBUFFER,o,t.TEXTURE_2D,s.handle,0),s}function p(t,e,r,n,i){var a=t.createRenderbuffer();return t.bindRenderbuffer(t.RENDERBUFFER,a),t.renderbufferStorage(t.RENDERBUFFER,n,e,r),t.framebufferRenderbuffer(t.FRAMEBUFFER,i,t.RENDERBUFFER,a),a}function d(t,e,r,n,i,a,o,s){this.gl=t,this._shape=[0|e,0|r],this._destroyed=!1,this._ext=s,this.color=new Array(i);for(var d=0;d1&&s.drawBuffersWEBGL(l[o]);var y=r.getExtension("WEBGL_depth_texture");y?d?t.depth=h(r,i,a,y.UNSIGNED_INT_24_8_WEBGL,r.DEPTH_STENCIL,r.DEPTH_STENCIL_ATTACHMENT):m&&(t.depth=h(r,i,a,r.UNSIGNED_SHORT,r.DEPTH_COMPONENT,r.DEPTH_ATTACHMENT)):m&&d?t._depth_rb=p(r,i,a,r.DEPTH_STENCIL,r.DEPTH_STENCIL_ATTACHMENT):m?t._depth_rb=p(r,i,a,r.DEPTH_COMPONENT16,r.DEPTH_ATTACHMENT):d&&(t._depth_rb=p(r,i,a,r.STENCIL_INDEX,r.STENCIL_ATTACHMENT));var x=r.checkFramebufferStatus(r.FRAMEBUFFER);if(x!==r.FRAMEBUFFER_COMPLETE){t._destroyed=!0,r.bindFramebuffer(r.FRAMEBUFFER,null),r.deleteFramebuffer(t.handle),t.handle=null,t.depth&&(t.depth.dispose(),t.depth=null),t._depth_rb&&(r.deleteRenderbuffer(t._depth_rb),t._depth_rb=null);for(v=0;vi||r<0||r>i)throw new Error("gl-fbo: Can't resize FBO, invalid dimensions");t._shape[0]=e,t._shape[1]=r;for(var a=c(n),o=0;o>8*p&255;this.pickOffset=r,i.bind();var d=i.uniforms;d.viewTransform=t,d.pickOffset=e,d.shape=this.shape;var m=i.attributes;return this.positionBuffer.bind(),m.position.pointer(),this.weightBuffer.bind(),m.weight.pointer(s.UNSIGNED_BYTE,!1),this.idBuffer.bind(),m.pickId.pointer(s.UNSIGNED_BYTE,!1),s.drawArrays(s.TRIANGLES,0,o),r+this.shape[0]*this.shape[1]}}}(),f.pick=function(t,e,r){var n=this.pickOffset,i=this.shape[0]*this.shape[1];if(r=n+i)return null;var a=r-n,o=this.xData,s=this.yData;return{object:this,pointId:a,dataCoord:[o[a%this.shape[0]],s[a/this.shape[0]|0]]}},f.update=function(t){var e=(t=t||{}).shape||[0,0],r=t.x||i(e[0]),o=t.y||i(e[1]),s=t.z||new Float32Array(e[0]*e[1]),l=!1!==t.zsmooth;this.xData=r,this.yData=o;var c,u,f,p,d=t.colorLevels||[0],m=t.colorValues||[0,0,0,1],g=d.length,v=this.bounds;l?(c=v[0]=r[0],u=v[1]=o[0],f=v[2]=r[r.length-1],p=v[3]=o[o.length-1]):(c=v[0]=r[0]+(r[1]-r[0])/2,u=v[1]=o[0]+(o[1]-o[0])/2,f=v[2]=r[r.length-1]+(r[r.length-1]-r[r.length-2])/2,p=v[3]=o[o.length-1]+(o[o.length-1]-o[o.length-2])/2);var y=1/(f-c),x=1/(p-u),b=e[0],_=e[1];this.shape=[b,_];var w=(l?(b-1)*(_-1):b*_)*(h.length>>>1);this.numVertices=w;for(var T=a.mallocUint8(4*w),k=a.mallocFloat32(2*w),A=a.mallocUint8(2*w),M=a.mallocUint32(w),S=0,E=l?b-1:b,L=l?_-1:_,C=0;C max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform sampler2D dashTexture;\nuniform float dashScale;\nuniform float opacity;\n\nvarying vec3 worldPosition;\nvarying float pixelArcLength;\nvarying vec4 fragColor;\n\nvoid main() {\n if (\n outOfRange(clipBounds[0], clipBounds[1], worldPosition) ||\n fragColor.a * opacity == 0.\n ) discard;\n\n float dashWeight = texture2D(dashTexture, vec2(dashScale * pixelArcLength, 0)).r;\n if(dashWeight < 0.5) {\n discard;\n }\n gl_FragColor = fragColor * opacity;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\n#define FLOAT_MAX 1.70141184e38\n#define FLOAT_MIN 1.17549435e-38\n\n// https://github.com/mikolalysenko/glsl-read-float/blob/master/index.glsl\nvec4 packFloat(float v) {\n float av = abs(v);\n\n //Handle special cases\n if(av < FLOAT_MIN) {\n return vec4(0.0, 0.0, 0.0, 0.0);\n } else if(v > FLOAT_MAX) {\n return vec4(127.0, 128.0, 0.0, 0.0) / 255.0;\n } else if(v < -FLOAT_MAX) {\n return vec4(255.0, 128.0, 0.0, 0.0) / 255.0;\n }\n\n vec4 c = vec4(0,0,0,0);\n\n //Compute exponent and mantissa\n float e = floor(log2(av));\n float m = av * pow(2.0, -e) - 1.0;\n\n //Unpack mantissa\n c[1] = floor(128.0 * m);\n m -= c[1] / 128.0;\n c[2] = floor(32768.0 * m);\n m -= c[2] / 32768.0;\n c[3] = floor(8388608.0 * m);\n\n //Unpack exponent\n float ebias = e + 127.0;\n c[0] = floor(ebias / 2.0);\n ebias -= c[0] * 2.0;\n c[1] += floor(ebias) * 128.0;\n\n //Unpack sign bit\n c[0] += 128.0 * step(0.0, -v);\n\n //Scale back to range\n return c / 255.0;\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform float pickId;\nuniform vec3 clipBounds[2];\n\nvarying vec3 worldPosition;\nvarying float pixelArcLength;\nvarying vec4 fragColor;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], worldPosition)) discard;\n\n gl_FragColor = vec4(pickId/255.0, packFloat(pixelArcLength).xyz);\n}"]),l=[{name:"position",type:"vec3"},{name:"nextPosition",type:"vec3"},{name:"arcLength",type:"float"},{name:"lineWidth",type:"float"},{name:"color",type:"vec4"}];r.createShader=function(t){return i(t,a,o,null,l)},r.createPickShader=function(t){return i(t,a,s,null,l)}},{"gl-shader":132,glslify:231}],91:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl||t.scene&&t.scene.gl,r=f(e);r.attributes.position.location=0,r.attributes.nextPosition.location=1,r.attributes.arcLength.location=2,r.attributes.lineWidth.location=3,r.attributes.color.location=4;var o=h(e);o.attributes.position.location=0,o.attributes.nextPosition.location=1,o.attributes.arcLength.location=2,o.attributes.lineWidth.location=3,o.attributes.color.location=4;for(var s=n(e),l=i(e,[{buffer:s,size:3,offset:0,stride:48},{buffer:s,size:3,offset:12,stride:48},{buffer:s,size:1,offset:24,stride:48},{buffer:s,size:1,offset:28,stride:48},{buffer:s,size:4,offset:32,stride:48}]),u=c(new Array(1024),[256,1,4]),p=0;p<1024;++p)u.data[p]=255;var d=a(e,u);d.wrap=e.REPEAT;var m=new v(e,r,o,s,l,d);return m.update(t),m};var n=t("gl-buffer"),i=t("gl-vao"),a=t("gl-texture2d"),o=new Uint8Array(4),s=new Float32Array(o.buffer);var l=t("binary-search-bounds"),c=t("ndarray"),u=t("./lib/shaders"),f=u.createShader,h=u.createPickShader,p=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function d(t,e){for(var r=0,n=0;n<3;++n){var i=t[n]-e[n];r+=i*i}return Math.sqrt(r)}function m(t){for(var e=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],r=0;r<3;++r)e[0][r]=Math.max(t[0][r],e[0][r]),e[1][r]=Math.min(t[1][r],e[1][r]);return e}function g(t,e,r,n){this.arcLength=t,this.position=e,this.index=r,this.dataCoordinate=n}function v(t,e,r,n,i,a){this.gl=t,this.shader=e,this.pickShader=r,this.buffer=n,this.vao=i,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.points=[],this.arcLength=[],this.vertexCount=0,this.bounds=[[0,0,0],[0,0,0]],this.pickId=0,this.lineWidth=1,this.texture=a,this.dashScale=1,this.opacity=1,this.hasAlpha=!1,this.dirty=!0,this.pixelRatio=1}var y=v.prototype;y.isTransparent=function(){return this.hasAlpha},y.isOpaque=function(){return!this.hasAlpha},y.pickSlots=1,y.setPickBase=function(t){this.pickId=t},y.drawTransparent=y.draw=function(t){if(this.vertexCount){var e=this.gl,r=this.shader,n=this.vao;r.bind(),r.uniforms={model:t.model||p,view:t.view||p,projection:t.projection||p,clipBounds:m(this.clipBounds),dashTexture:this.texture.bind(),dashScale:this.dashScale/this.arcLength[this.arcLength.length-1],opacity:this.opacity,screenShape:[e.drawingBufferWidth,e.drawingBufferHeight],pixelRatio:this.pixelRatio},n.bind(),n.draw(e.TRIANGLE_STRIP,this.vertexCount),n.unbind()}},y.drawPick=function(t){if(this.vertexCount){var e=this.gl,r=this.pickShader,n=this.vao;r.bind(),r.uniforms={model:t.model||p,view:t.view||p,projection:t.projection||p,pickId:this.pickId,clipBounds:m(this.clipBounds),screenShape:[e.drawingBufferWidth,e.drawingBufferHeight],pixelRatio:this.pixelRatio},n.bind(),n.draw(e.TRIANGLE_STRIP,this.vertexCount),n.unbind()}},y.update=function(t){var e,r;this.dirty=!0;var n=!!t.connectGaps;"dashScale"in t&&(this.dashScale=t.dashScale),this.hasAlpha=!1,"opacity"in t&&(this.opacity=+t.opacity,this.opacity<1&&(this.hasAlpha=!0));var i=[],a=[],o=[],s=0,u=0,f=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],h=t.position||t.positions;if(h){var p=t.color||t.colors||[0,0,0,1],m=t.lineWidth||1,g=!1;t:for(e=1;e0){for(var w=0;w<24;++w)i.push(i[i.length-12]);u+=2,g=!0}continue t}f[0][r]=Math.min(f[0][r],b[r],_[r]),f[1][r]=Math.max(f[1][r],b[r],_[r])}Array.isArray(p[0])?(v=p.length>e-1?p[e-1]:p.length>0?p[p.length-1]:[0,0,0,1],y=p.length>e?p[e]:p.length>0?p[p.length-1]:[0,0,0,1]):v=y=p,3===v.length&&(v=[v[0],v[1],v[2],1]),3===y.length&&(y=[y[0],y[1],y[2],1]),!this.hasAlpha&&v[3]<1&&(this.hasAlpha=!0),x=Array.isArray(m)?m.length>e-1?m[e-1]:m.length>0?m[m.length-1]:[0,0,0,1]:m;var T=s;if(s+=d(b,_),g){for(r=0;r<2;++r)i.push(b[0],b[1],b[2],_[0],_[1],_[2],T,x,v[0],v[1],v[2],v[3]);u+=2,g=!1}i.push(b[0],b[1],b[2],_[0],_[1],_[2],T,x,v[0],v[1],v[2],v[3],b[0],b[1],b[2],_[0],_[1],_[2],T,-x,v[0],v[1],v[2],v[3],_[0],_[1],_[2],b[0],b[1],b[2],s,-x,y[0],y[1],y[2],y[3],_[0],_[1],_[2],b[0],b[1],b[2],s,x,y[0],y[1],y[2],y[3]),u+=4}}if(this.buffer.update(i),a.push(s),o.push(h[h.length-1].slice()),this.bounds=f,this.vertexCount=u,this.points=o,this.arcLength=a,"dashes"in t){var k=t.dashes.slice();for(k.unshift(0),e=1;e1.0001)return null;v+=g[f]}if(Math.abs(v-1)>.001)return null;return[h,s(t,g),g]}},{barycentric:14,"polytope-closest-point/lib/closest_point_2d.js":270}],111:[function(t,e,r){var n=t("glslify"),i=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position, normal;\nattribute vec4 color;\nattribute vec2 uv;\n\nuniform mat4 model\n , view\n , projection\n , inverseModel;\nuniform vec3 eyePosition\n , lightPosition;\n\nvarying vec3 f_normal\n , f_lightDirection\n , f_eyeDirection\n , f_data;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvec4 project(vec3 p) {\n return projection * view * model * vec4(p, 1.0);\n}\n\nvoid main() {\n gl_Position = project(position);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * vec4(position , 1.0);\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n f_color = color;\n f_data = position;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\n//#pragma glslify: beckmann = require(glsl-specular-beckmann) // used in gl-surface3d\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness\n , fresnel\n , kambient\n , kdiffuse\n , kspecular;\nuniform sampler2D texture;\n\nvarying vec3 f_normal\n , f_lightDirection\n , f_eyeDirection\n , f_data;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (f_color.a == 0.0 ||\n outOfRange(clipBounds[0], clipBounds[1], f_data)\n ) discard;\n\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n //float specular = max(0.0, beckmann(L, V, N, roughness)); // used in gl-surface3d\n\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = vec4(f_color.rgb, 1.0) * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * f_color.a;\n}\n"]),o=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 uv;\n\nuniform mat4 model, view, projection;\n\nvarying vec4 f_color;\nvarying vec3 f_data;\nvarying vec2 f_uv;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n f_color = color;\n f_data = position;\n f_uv = uv;\n}"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform sampler2D texture;\nuniform float opacity;\n\nvarying vec4 f_color;\nvarying vec3 f_data;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_data)) discard;\n\n gl_FragColor = f_color * texture2D(texture, f_uv) * opacity;\n}"]),l=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 uv;\nattribute float pointSize;\n\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0.0, 0.0 ,0.0 ,0.0);\n } else {\n gl_Position = projection * view * model * vec4(position, 1.0);\n }\n gl_PointSize = pointSize;\n f_color = color;\n f_uv = uv;\n}"]),c=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform sampler2D texture;\nuniform float opacity;\n\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n vec2 pointR = gl_PointCoord.xy - vec2(0.5, 0.5);\n if(dot(pointR, pointR) > 0.25) {\n discard;\n }\n gl_FragColor = f_color * texture2D(texture, f_uv) * opacity;\n}"]),u=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n f_id = id;\n f_position = position;\n}"]),f=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]),h=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute float pointSize;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0.0, 0.0, 0.0, 0.0);\n } else {\n gl_Position = projection * view * model * vec4(position, 1.0);\n gl_PointSize = pointSize;\n }\n f_id = id;\n f_position = position;\n}"]),p=n(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec3 position;\n\nuniform mat4 model, view, projection;\n\nvoid main() {\n gl_Position = projection * view * model * vec4(position, 1.0);\n}"]),d=n(["precision highp float;\n#define GLSLIFY 1\n\nuniform vec3 contourColor;\n\nvoid main() {\n gl_FragColor = vec4(contourColor, 1.0);\n}\n"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec3"},{name:"normal",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"}]},r.wireShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"}]},r.pointShader={vertex:l,fragment:c,attributes:[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"pointSize",type:"float"}]},r.pickShader={vertex:u,fragment:f,attributes:[{name:"position",type:"vec3"},{name:"id",type:"vec4"}]},r.pointPickShader={vertex:h,fragment:f,attributes:[{name:"position",type:"vec3"},{name:"pointSize",type:"float"},{name:"id",type:"vec4"}]},r.contourShader={vertex:p,fragment:d,attributes:[{name:"position",type:"vec3"}]}},{glslify:231}],112:[function(t,e,r){"use strict";var n=t("gl-shader"),i=t("gl-buffer"),a=t("gl-vao"),o=t("gl-texture2d"),s=t("normals"),l=t("gl-mat4/multiply"),c=t("gl-mat4/invert"),u=t("ndarray"),f=t("colormap"),h=t("simplicial-complex-contour"),p=t("typedarray-pool"),d=t("./lib/shaders"),m=t("./lib/closest-point"),g=d.meshShader,v=d.wireShader,y=d.pointShader,x=d.pickShader,b=d.pointPickShader,_=d.contourShader,w=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function T(t,e,r,n,i,a,o,s,l,c,u,f,h,p,d,m,g,v,y,x,b,_,T,k,A,M,S){this.gl=t,this.pixelRatio=1,this.cells=[],this.positions=[],this.intensity=[],this.texture=e,this.dirty=!0,this.triShader=r,this.lineShader=n,this.pointShader=i,this.pickShader=a,this.pointPickShader=o,this.contourShader=s,this.trianglePositions=l,this.triangleColors=u,this.triangleNormals=h,this.triangleUVs=f,this.triangleIds=c,this.triangleVAO=p,this.triangleCount=0,this.lineWidth=1,this.edgePositions=d,this.edgeColors=g,this.edgeUVs=v,this.edgeIds=m,this.edgeVAO=y,this.edgeCount=0,this.pointPositions=x,this.pointColors=_,this.pointUVs=T,this.pointSizes=k,this.pointIds=b,this.pointVAO=A,this.pointCount=0,this.contourLineWidth=1,this.contourPositions=M,this.contourVAO=S,this.contourCount=0,this.contourColor=[0,0,0],this.contourEnable=!0,this.pickVertex=!0,this.pickId=1,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.lightPosition=[1e5,1e5,0],this.ambientLight=.8,this.diffuseLight=.8,this.specularLight=2,this.roughness=.5,this.fresnel=1.5,this.opacity=1,this.hasAlpha=!1,this.opacityscale=!1,this._model=w,this._view=w,this._projection=w,this._resolution=[1,1]}var k=T.prototype;function A(t,e){if(!e)return 1;if(!e.length)return 1;for(var r=0;rt&&r>0){var n=(e[r][0]-t)/(e[r][0]-e[r-1][0]);return e[r][1]*(1-n)+n*e[r-1][1]}}return 1}function M(t){var e=n(t,g.vertex,g.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e.attributes.normal.location=4,e}function S(t){var e=n(t,v.vertex,v.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e}function E(t){var e=n(t,y.vertex,y.fragment);return e.attributes.position.location=0,e.attributes.color.location=2,e.attributes.uv.location=3,e.attributes.pointSize.location=4,e}function L(t){var e=n(t,x.vertex,x.fragment);return e.attributes.position.location=0,e.attributes.id.location=1,e}function C(t){var e=n(t,b.vertex,b.fragment);return e.attributes.position.location=0,e.attributes.id.location=1,e.attributes.pointSize.location=4,e}function P(t){var e=n(t,_.vertex,_.fragment);return e.attributes.position.location=0,e}k.isOpaque=function(){return!this.hasAlpha},k.isTransparent=function(){return this.hasAlpha},k.pickSlots=1,k.setPickBase=function(t){this.pickId=t},k.highlight=function(t){if(t&&this.contourEnable){for(var e=h(this.cells,this.intensity,t.intensity),r=e.cells,n=e.vertexIds,i=e.vertexWeights,a=r.length,o=p.mallocFloat32(6*a),s=0,l=0;l0&&((f=this.triShader).bind(),f.uniforms=s,this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind());this.edgeCount>0&&this.lineWidth>0&&((f=this.lineShader).bind(),f.uniforms=s,this.edgeVAO.bind(),e.lineWidth(this.lineWidth*this.pixelRatio),e.drawArrays(e.LINES,0,2*this.edgeCount),this.edgeVAO.unbind());this.pointCount>0&&((f=this.pointShader).bind(),f.uniforms=s,this.pointVAO.bind(),e.drawArrays(e.POINTS,0,this.pointCount),this.pointVAO.unbind());this.contourEnable&&this.contourCount>0&&this.contourLineWidth>0&&((f=this.contourShader).bind(),f.uniforms=s,this.contourVAO.bind(),e.drawArrays(e.LINES,0,this.contourCount),this.contourVAO.unbind())},k.drawPick=function(t){t=t||{};for(var e=this.gl,r=t.model||w,n=t.view||w,i=t.projection||w,a=[[-1e6,-1e6,-1e6],[1e6,1e6,1e6]],o=0;o<3;++o)a[0][o]=Math.max(a[0][o],this.clipBounds[0][o]),a[1][o]=Math.min(a[1][o],this.clipBounds[1][o]);this._model=[].slice.call(r),this._view=[].slice.call(n),this._projection=[].slice.call(i),this._resolution=[e.drawingBufferWidth,e.drawingBufferHeight];var s,l={model:r,view:n,projection:i,clipBounds:a,pickId:this.pickId/255};((s=this.pickShader).bind(),s.uniforms=l,this.triangleCount>0&&(this.triangleVAO.bind(),e.drawArrays(e.TRIANGLES,0,3*this.triangleCount),this.triangleVAO.unbind()),this.edgeCount>0&&(this.edgeVAO.bind(),e.lineWidth(this.lineWidth*this.pixelRatio),e.drawArrays(e.LINES,0,2*this.edgeCount),this.edgeVAO.unbind()),this.pointCount>0)&&((s=this.pointPickShader).bind(),s.uniforms=l,this.pointVAO.bind(),e.drawArrays(e.POINTS,0,this.pointCount),this.pointVAO.unbind())},k.pick=function(t){if(!t)return null;if(t.id!==this.pickId)return null;for(var e=t.value[0]+256*t.value[1]+65536*t.value[2],r=this.cells[e],n=this.positions,i=new Array(r.length),a=0;ai[k]&&(r.uniforms.dataAxis=c,r.uniforms.screenOffset=u,r.uniforms.color=g[t],r.uniforms.angle=v[t],a.drawArrays(a.TRIANGLES,i[k],i[A]-i[k]))),y[t]&&T&&(u[1^t]-=M*p*x[t],r.uniforms.dataAxis=f,r.uniforms.screenOffset=u,r.uniforms.color=b[t],r.uniforms.angle=_[t],a.drawArrays(a.TRIANGLES,w,T)),u[1^t]=M*s[2+(1^t)]-1,d[t+2]&&(u[1^t]+=M*p*m[t+2],ki[k]&&(r.uniforms.dataAxis=c,r.uniforms.screenOffset=u,r.uniforms.color=g[t+2],r.uniforms.angle=v[t+2],a.drawArrays(a.TRIANGLES,i[k],i[A]-i[k]))),y[t+2]&&T&&(u[1^t]+=M*p*x[t+2],r.uniforms.dataAxis=f,r.uniforms.screenOffset=u,r.uniforms.color=b[t+2],r.uniforms.angle=_[t+2],a.drawArrays(a.TRIANGLES,w,T))}),m.drawTitle=function(){var t=[0,0],e=[0,0];return function(){var r=this.plot,n=this.shader,i=r.gl,a=r.screenBox,o=r.titleCenter,s=r.titleAngle,l=r.titleColor,c=r.pixelRatio;if(this.titleCount){for(var u=0;u<2;++u)e[u]=2*(o[u]*c-a[u])/(a[2+u]-a[u])-1;n.bind(),n.uniforms.dataAxis=t,n.uniforms.screenOffset=e,n.uniforms.angle=s,n.uniforms.color=l,i.drawArrays(i.TRIANGLES,this.titleOffset,this.titleCount)}}}(),m.bind=(h=[0,0],p=[0,0],d=[0,0],function(){var t=this.plot,e=this.shader,r=t._tickBounds,n=t.dataBox,i=t.screenBox,a=t.viewBox;e.bind();for(var o=0;o<2;++o){var s=r[o],l=r[o+2]-s,c=.5*(n[o+2]+n[o]),u=n[o+2]-n[o],f=a[o],m=a[o+2]-f,g=i[o],v=i[o+2]-g;p[o]=2*l/u*m/v,h[o]=2*(s-c)/u*m/v}d[1]=2*t.pixelRatio/(i[3]-i[1]),d[0]=d[1]*(i[3]-i[1])/(i[2]-i[0]),e.uniforms.dataScale=p,e.uniforms.dataShift=h,e.uniforms.textScale=d,this.vbo.bind(),e.attributes.textCoordinate.pointer()}),m.update=function(t){var e,r,n,i,o,s=[],l=t.ticks,c=t.bounds;for(o=0;o<2;++o){var u=[Math.floor(s.length/3)],f=[-1/0],h=l[o];for(e=0;e=0){var m=e[d]-n[d]*(e[d+2]-e[d])/(n[d+2]-n[d]);0===d?o.drawLine(m,e[1],m,e[3],p[d],h[d]):o.drawLine(e[0],m,e[2],m,p[d],h[d])}}for(d=0;d=0;--t)this.objects[t].dispose();this.objects.length=0;for(t=this.overlays.length-1;t>=0;--t)this.overlays[t].dispose();this.overlays.length=0,this.gl=null},c.addObject=function(t){this.objects.indexOf(t)<0&&(this.objects.push(t),this.setDirty())},c.removeObject=function(t){for(var e=this.objects,r=0;rMath.abs(e))c.rotate(a,0,0,-t*r*Math.PI*d.rotateSpeed/window.innerWidth);else if(!d._ortho){var o=-d.zoomSpeed*i*e/window.innerHeight*(a-c.lastT())/20;c.pan(a,0,0,f*(Math.exp(o)-1))}}}),!0)},d.enableMouseListeners(),d};var n=t("right-now"),i=t("3d-view"),a=t("mouse-change"),o=t("mouse-wheel"),s=t("mouse-event-offset"),l=t("has-passive-events")},{"3d-view":7,"has-passive-events":232,"mouse-change":247,"mouse-event-offset":248,"mouse-wheel":250,"right-now":278}],120:[function(t,e,r){var n=t("glslify"),i=t("gl-shader"),a=n(["precision mediump float;\n#define GLSLIFY 1\nattribute vec2 position;\nvarying vec2 uv;\nvoid main() {\n uv = position;\n gl_Position = vec4(position, 0, 1);\n}"]),o=n(["precision mediump float;\n#define GLSLIFY 1\n\nuniform sampler2D accumBuffer;\nvarying vec2 uv;\n\nvoid main() {\n vec4 accum = texture2D(accumBuffer, 0.5 * (uv + 1.0));\n gl_FragColor = min(vec4(1,1,1,1), accum);\n}"]);e.exports=function(t){return i(t,a,o,null,[{name:"position",type:"vec2"}])}},{"gl-shader":132,glslify:231}],121:[function(t,e,r){"use strict";var n=t("./camera.js"),i=t("gl-axes3d"),a=t("gl-axes3d/properties"),o=t("gl-spikes3d"),s=t("gl-select-static"),l=t("gl-fbo"),c=t("a-big-triangle"),u=t("mouse-change"),f=t("gl-mat4/perspective"),h=t("gl-mat4/ortho"),p=t("./lib/shader"),d=t("is-mobile")({tablet:!0,featureDetect:!0});function m(){this.mouse=[-1,-1],this.screen=null,this.distance=1/0,this.index=null,this.dataCoordinate=null,this.dataPosition=null,this.object=null,this.data=null}function g(t){var e=Math.round(Math.log(Math.abs(t))/Math.log(10));if(e<0){var r=Math.round(Math.pow(10,-e));return Math.ceil(t*r)/r}if(e>0){r=Math.round(Math.pow(10,e));return Math.ceil(t/r)*r}return Math.ceil(t)}function v(t){return"boolean"!=typeof t||t}e.exports={createScene:function(t){(t=t||{}).camera=t.camera||{};var e=t.canvas;if(!e){if(e=document.createElement("canvas"),t.container)t.container.appendChild(e);else document.body.appendChild(e)}var r=t.gl;r||(t.glOptions&&(d=!!t.glOptions.preserveDrawingBuffer),r=function(t,e){var r=null;try{(r=t.getContext("webgl",e))||(r=t.getContext("experimental-webgl",e))}catch(t){return null}return r}(e,t.glOptions||{premultipliedAlpha:!0,antialias:!0,preserveDrawingBuffer:d}));if(!r)throw new Error("webgl not supported");var y=t.bounds||[[-10,-10,-10],[10,10,10]],x=new m,b=l(r,r.drawingBufferWidth,r.drawingBufferHeight,{preferFloat:!d}),_=p(r),w=t.cameraObject&&!0===t.cameraObject._ortho||t.camera.projection&&"orthographic"===t.camera.projection.type||!1,T={eye:t.camera.eye||[2,0,0],center:t.camera.center||[0,0,0],up:t.camera.up||[0,1,0],zoomMin:t.camera.zoomMax||.1,zoomMax:t.camera.zoomMin||100,mode:t.camera.mode||"turntable",_ortho:w},k=t.axes||{},A=i(r,k);A.enable=!k.disable;var M=t.spikes||{},S=o(r,M),E=[],L=[],C=[],P=[],I=!0,O=!0,z=new Array(16),D=new Array(16),R={view:null,projection:z,model:D,_ortho:!1},F=(O=!0,[r.drawingBufferWidth,r.drawingBufferHeight]),B=t.cameraObject||n(e,T),N={gl:r,contextLost:!1,pixelRatio:t.pixelRatio||1,canvas:e,selection:x,camera:B,axes:A,axesPixels:null,spikes:S,bounds:y,objects:E,shape:F,aspect:t.aspectRatio||[1,1,1],pickRadius:t.pickRadius||10,zNear:t.zNear||.01,zFar:t.zFar||1e3,fovy:t.fovy||Math.PI/4,clearColor:t.clearColor||[0,0,0,0],autoResize:v(t.autoResize),autoBounds:v(t.autoBounds),autoScale:!!t.autoScale,autoCenter:v(t.autoCenter),clipToBounds:v(t.clipToBounds),snapToData:!!t.snapToData,onselect:t.onselect||null,onrender:t.onrender||null,onclick:t.onclick||null,cameraParams:R,oncontextloss:null,mouseListener:null,_stopped:!1,getAspectratio:function(){return{x:this.aspect[0],y:this.aspect[1],z:this.aspect[2]}},setAspectratio:function(t){this.aspect[0]=t.x,this.aspect[1]=t.y,this.aspect[2]=t.z,O=!0},setBounds:function(t,e){this.bounds[0][t]=e.min,this.bounds[1][t]=e.max},setClearColor:function(t){this.clearColor=t},clearRGBA:function(){this.gl.clearColor(this.clearColor[0],this.clearColor[1],this.clearColor[2],this.clearColor[3]),this.gl.clear(this.gl.COLOR_BUFFER_BIT|this.gl.DEPTH_BUFFER_BIT)}},j=[r.drawingBufferWidth/N.pixelRatio|0,r.drawingBufferHeight/N.pixelRatio|0];function U(){if(!N._stopped&&N.autoResize){var t=e.parentNode,r=1,n=1;t&&t!==document.body?(r=t.clientWidth,n=t.clientHeight):(r=window.innerWidth,n=window.innerHeight);var i=0|Math.ceil(r*N.pixelRatio),a=0|Math.ceil(n*N.pixelRatio);if(i!==e.width||a!==e.height){e.width=i,e.height=a;var o=e.style;o.position=o.position||"absolute",o.left="0px",o.top="0px",o.width=r+"px",o.height=n+"px",I=!0}}}N.autoResize&&U();function V(){for(var t=E.length,e=P.length,n=0;n0&&0===C[e-1];)C.pop(),P.pop().dispose()}function H(){if(N.contextLost)return!0;r.isContextLost()&&(N.contextLost=!0,N.mouseListener.enabled=!1,N.selection.object=null,N.oncontextloss&&N.oncontextloss())}window.addEventListener("resize",U),N.update=function(t){N._stopped||(t=t||{},I=!0,O=!0)},N.add=function(t){N._stopped||(t.axes=A,E.push(t),L.push(-1),I=!0,O=!0,V())},N.remove=function(t){if(!N._stopped){var e=E.indexOf(t);e<0||(E.splice(e,1),L.pop(),I=!0,O=!0,V())}},N.dispose=function(){if(!N._stopped&&(N._stopped=!0,window.removeEventListener("resize",U),e.removeEventListener("webglcontextlost",H),N.mouseListener.enabled=!1,!N.contextLost)){A.dispose(),S.dispose();for(var t=0;tx.distance)continue;for(var c=0;c 1.0) {\n discard;\n }\n baseColor = mix(borderColor, color, step(radius, centerFraction));\n gl_FragColor = vec4(baseColor.rgb * baseColor.a, baseColor.a);\n }\n}\n"]),r.pickVertex=n(["precision mediump float;\n#define GLSLIFY 1\n\nattribute vec2 position;\nattribute vec4 pickId;\n\nuniform mat3 matrix;\nuniform float pointSize;\nuniform vec4 pickOffset;\n\nvarying vec4 fragId;\n\nvoid main() {\n vec3 hgPosition = matrix * vec3(position, 1);\n gl_Position = vec4(hgPosition.xy, 0, hgPosition.z);\n gl_PointSize = pointSize;\n\n vec4 id = pickId + pickOffset;\n id.y += floor(id.x / 256.0);\n id.x -= floor(id.x / 256.0) * 256.0;\n\n id.z += floor(id.y / 256.0);\n id.y -= floor(id.y / 256.0) * 256.0;\n\n id.w += floor(id.z / 256.0);\n id.z -= floor(id.z / 256.0) * 256.0;\n\n fragId = id;\n}\n"]),r.pickFragment=n(["precision mediump float;\n#define GLSLIFY 1\n\nvarying vec4 fragId;\n\nvoid main() {\n float radius = length(2.0 * gl_PointCoord.xy - 1.0);\n if(radius > 1.0) {\n discard;\n }\n gl_FragColor = fragId / 255.0;\n}\n"])},{glslify:231}],123:[function(t,e,r){"use strict";var n=t("gl-shader"),i=t("gl-buffer"),a=t("typedarray-pool"),o=t("./lib/shader");function s(t,e,r,n,i){this.plot=t,this.offsetBuffer=e,this.pickBuffer=r,this.shader=n,this.pickShader=i,this.sizeMin=.5,this.sizeMinCap=2,this.sizeMax=20,this.areaRatio=1,this.pointCount=0,this.color=[1,0,0,1],this.borderColor=[0,0,0,1],this.blend=!1,this.pickOffset=0,this.points=null}e.exports=function(t,e){var r=t.gl,a=i(r),l=i(r),c=n(r,o.pointVertex,o.pointFragment),u=n(r,o.pickVertex,o.pickFragment),f=new s(t,a,l,c,u);return f.update(e),t.addObject(f),f};var l,c,u=s.prototype;u.dispose=function(){this.shader.dispose(),this.pickShader.dispose(),this.offsetBuffer.dispose(),this.pickBuffer.dispose(),this.plot.removeObject(this)},u.update=function(t){var e;function r(e,r){return e in t?t[e]:r}t=t||{},this.sizeMin=r("sizeMin",.5),this.sizeMax=r("sizeMax",20),this.color=r("color",[1,0,0,1]).slice(),this.areaRatio=r("areaRatio",1),this.borderColor=r("borderColor",[0,0,0,1]).slice(),this.blend=r("blend",!1);var n=t.positions.length>>>1,i=t.positions instanceof Float32Array,o=t.idToIndex instanceof Int32Array&&t.idToIndex.length>=n,s=t.positions,l=i?s:a.mallocFloat32(s.length),c=o?t.idToIndex:a.mallocInt32(n);if(i||l.set(s),!o)for(l.set(s),e=0;e>>1;for(r=0;r=e[0]&&a<=e[2]&&o>=e[1]&&o<=e[3]&&n++}return n}(this.points,i),u=this.plot.pickPixelRatio*Math.max(Math.min(this.sizeMinCap,this.sizeMin),Math.min(this.sizeMax,this.sizeMax/Math.pow(s,.33333)));l[0]=2/a,l[4]=2/o,l[6]=-2*i[0]/a-1,l[7]=-2*i[1]/o-1,this.offsetBuffer.bind(),r.bind(),r.attributes.position.pointer(),r.uniforms.matrix=l,r.uniforms.color=this.color,r.uniforms.borderColor=this.borderColor,r.uniforms.pointCloud=u<5,r.uniforms.pointSize=u,r.uniforms.centerFraction=Math.min(1,Math.max(0,Math.sqrt(1-this.areaRatio))),e&&(c[0]=255&t,c[1]=t>>8&255,c[2]=t>>16&255,c[3]=t>>24&255,this.pickBuffer.bind(),r.attributes.pickId.pointer(n.UNSIGNED_BYTE),r.uniforms.pickOffset=c,this.pickOffset=t);var f=n.getParameter(n.BLEND),h=n.getParameter(n.DITHER);return f&&!this.blend&&n.disable(n.BLEND),h&&n.disable(n.DITHER),n.drawArrays(n.POINTS,0,this.pointCount),f&&!this.blend&&n.enable(n.BLEND),h&&n.enable(n.DITHER),t+this.pointCount}),u.draw=u.unifiedDraw,u.drawPick=u.unifiedDraw,u.pick=function(t,e,r){var n=this.pickOffset,i=this.pointCount;if(r=n+i)return null;var a=r-n,o=this.points;return{object:this,pointId:a,dataCoord:[o[2*a],o[2*a+1]]}}},{"./lib/shader":122,"gl-buffer":78,"gl-shader":132,"typedarray-pool":308}],124:[function(t,e,r){e.exports=function(t,e,r,n){var i,a,o,s,l,c=e[0],u=e[1],f=e[2],h=e[3],p=r[0],d=r[1],m=r[2],g=r[3];(a=c*p+u*d+f*m+h*g)<0&&(a=-a,p=-p,d=-d,m=-m,g=-g);1-a>1e-6?(i=Math.acos(a),o=Math.sin(i),s=Math.sin((1-n)*i)/o,l=Math.sin(n*i)/o):(s=1-n,l=n);return t[0]=s*c+l*p,t[1]=s*u+l*d,t[2]=s*f+l*m,t[3]=s*h+l*g,t}},{}],125:[function(t,e,r){"use strict";e.exports=function(t){return t||0===t?t.toString():""}},{}],126:[function(t,e,r){"use strict";var n=t("vectorize-text");e.exports=function(t,e,r){var a=i[e];a||(a=i[e]={});if(t in a)return a[t];var o={textAlign:"center",textBaseline:"middle",lineHeight:1,font:e,lineSpacing:1.25,styletags:{breaklines:!0,bolds:!0,italics:!0,subscripts:!0,superscripts:!0},triangles:!0},s=n(t,o);o.triangles=!1;var l,c,u=n(t,o);if(r&&1!==r){for(l=0;l max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform vec4 highlightId;\nuniform float highlightScale;\nuniform mat4 model, view, projection;\nuniform vec3 clipBounds[2];\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float scale = 1.0;\n if(distance(highlightId, id) < 0.0001) {\n scale = highlightScale;\n }\n\n vec4 worldPosition = model * vec4(position, 1);\n vec4 viewPosition = view * worldPosition;\n viewPosition = viewPosition / viewPosition.w;\n vec4 clipPosition = projection * (viewPosition + scale * vec4(glyph.x, -glyph.y, 0, 0));\n\n gl_Position = clipPosition;\n interpColor = color;\n pickId = id;\n dataCoordinate = position;\n }\n}"]),o=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform vec2 screenSize;\nuniform vec3 clipBounds[2];\nuniform float highlightScale, pixelRatio;\nuniform vec4 highlightId;\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float scale = pixelRatio;\n if(distance(highlightId.bgr, id.bgr) < 0.001) {\n scale *= highlightScale;\n }\n\n vec4 worldPosition = model * vec4(position, 1.0);\n vec4 viewPosition = view * worldPosition;\n vec4 clipPosition = projection * viewPosition;\n clipPosition /= clipPosition.w;\n\n gl_Position = clipPosition + vec4(screenSize * scale * vec2(glyph.x, -glyph.y), 0.0, 0.0);\n interpColor = color;\n pickId = id;\n dataCoordinate = position;\n }\n}"]),s=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nattribute vec3 position;\nattribute vec4 color;\nattribute vec2 glyph;\nattribute vec4 id;\n\nuniform float highlightScale;\nuniform vec4 highlightId;\nuniform vec3 axes[2];\nuniform mat4 model, view, projection;\nuniform vec2 screenSize;\nuniform vec3 clipBounds[2];\nuniform float scale, pixelRatio;\n\nvarying vec4 interpColor;\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], position)) {\n\n gl_Position = vec4(0,0,0,0);\n } else {\n float lscale = pixelRatio * scale;\n if(distance(highlightId, id) < 0.0001) {\n lscale *= highlightScale;\n }\n\n vec4 clipCenter = projection * view * model * vec4(position, 1);\n vec3 dataPosition = position + 0.5*lscale*(axes[0] * glyph.x + axes[1] * glyph.y) * clipCenter.w * screenSize.y;\n vec4 clipPosition = projection * view * model * vec4(dataPosition, 1);\n\n gl_Position = clipPosition;\n interpColor = color;\n pickId = id;\n dataCoordinate = dataPosition;\n }\n}\n"]),l=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 fragClipBounds[2];\nuniform float opacity;\n\nvarying vec4 interpColor;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (\n outOfRange(fragClipBounds[0], fragClipBounds[1], dataCoordinate) ||\n interpColor.a * opacity == 0.\n ) discard;\n gl_FragColor = interpColor * opacity;\n}\n"]),c=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 fragClipBounds[2];\nuniform float pickGroup;\n\nvarying vec4 pickId;\nvarying vec3 dataCoordinate;\n\nvoid main() {\n if (outOfRange(fragClipBounds[0], fragClipBounds[1], dataCoordinate)) discard;\n\n gl_FragColor = vec4(pickGroup, pickId.bgr);\n}"]),u=[{name:"position",type:"vec3"},{name:"color",type:"vec4"},{name:"glyph",type:"vec2"},{name:"id",type:"vec4"}],f={vertex:a,fragment:l,attributes:u},h={vertex:o,fragment:l,attributes:u},p={vertex:s,fragment:l,attributes:u},d={vertex:a,fragment:c,attributes:u},m={vertex:o,fragment:c,attributes:u},g={vertex:s,fragment:c,attributes:u};function v(t,e){var r=n(t,e),i=r.attributes;return i.position.location=0,i.color.location=1,i.glyph.location=2,i.id.location=3,r}r.createPerspective=function(t){return v(t,f)},r.createOrtho=function(t){return v(t,h)},r.createProject=function(t){return v(t,p)},r.createPickPerspective=function(t){return v(t,d)},r.createPickOrtho=function(t){return v(t,m)},r.createPickProject=function(t){return v(t,g)}},{"gl-shader":132,glslify:231}],128:[function(t,e,r){"use strict";var n=t("is-string-blank"),i=t("gl-buffer"),a=t("gl-vao"),o=t("typedarray-pool"),s=t("gl-mat4/multiply"),l=t("./lib/shaders"),c=t("./lib/glyphs"),u=t("./lib/get-simple-string"),f=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1];function h(t,e){var r=t[0],n=t[1],i=t[2],a=t[3];return t[0]=e[0]*r+e[4]*n+e[8]*i+e[12]*a,t[1]=e[1]*r+e[5]*n+e[9]*i+e[13]*a,t[2]=e[2]*r+e[6]*n+e[10]*i+e[14]*a,t[3]=e[3]*r+e[7]*n+e[11]*i+e[15]*a,t}function p(t,e,r,n){return h(n,n),h(n,n),h(n,n)}function d(t,e){this.index=t,this.dataCoordinate=this.position=e}function m(t){return!0===t||t>1?1:t}function g(t,e,r,n,i,a,o,s,l,c,u,f){this.gl=t,this.pixelRatio=1,this.shader=e,this.orthoShader=r,this.projectShader=n,this.pointBuffer=i,this.colorBuffer=a,this.glyphBuffer=o,this.idBuffer=s,this.vao=l,this.vertexCount=0,this.lineVertexCount=0,this.opacity=1,this.hasAlpha=!1,this.lineWidth=0,this.projectScale=[2/3,2/3,2/3],this.projectOpacity=[1,1,1],this.projectHasAlpha=!1,this.pickId=0,this.pickPerspectiveShader=c,this.pickOrthoShader=u,this.pickProjectShader=f,this.points=[],this._selectResult=new d(0,[0,0,0]),this.useOrtho=!0,this.bounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.axesProject=[!0,!0,!0],this.axesBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.highlightId=[1,1,1,1],this.highlightScale=2,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.dirty=!0}e.exports=function(t){var e=t.gl,r=l.createPerspective(e),n=l.createOrtho(e),o=l.createProject(e),s=l.createPickPerspective(e),c=l.createPickOrtho(e),u=l.createPickProject(e),f=i(e),h=i(e),p=i(e),d=i(e),m=a(e,[{buffer:f,size:3,type:e.FLOAT},{buffer:h,size:4,type:e.FLOAT},{buffer:p,size:2,type:e.FLOAT},{buffer:d,size:4,type:e.UNSIGNED_BYTE,normalized:!0}]),v=new g(e,r,n,o,f,h,p,d,m,s,c,u);return v.update(t),v};var v=g.prototype;v.pickSlots=1,v.setPickBase=function(t){this.pickId=t},v.isTransparent=function(){if(this.hasAlpha)return!0;for(var t=0;t<3;++t)if(this.axesProject[t]&&this.projectHasAlpha)return!0;return!1},v.isOpaque=function(){if(!this.hasAlpha)return!0;for(var t=0;t<3;++t)if(this.axesProject[t]&&!this.projectHasAlpha)return!0;return!1};var y=[0,0],x=[0,0,0],b=[0,0,0],_=[0,0,0,1],w=[0,0,0,1],T=f.slice(),k=[0,0,0],A=[[0,0,0],[0,0,0]];function M(t){return t[0]=t[1]=t[2]=0,t}function S(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=1,t}function E(t,e,r,n){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[r]=n,t}function L(t,e,r,n){var i,a=e.axesProject,o=e.gl,l=t.uniforms,c=r.model||f,u=r.view||f,h=r.projection||f,d=e.axesBounds,m=function(t){for(var e=A,r=0;r<2;++r)for(var n=0;n<3;++n)e[r][n]=Math.max(Math.min(t[r][n],1e8),-1e8);return e}(e.clipBounds);i=e.axes&&e.axes.lastCubeProps?e.axes.lastCubeProps.axis:[1,1,1],y[0]=2/o.drawingBufferWidth,y[1]=2/o.drawingBufferHeight,t.bind(),l.view=u,l.projection=h,l.screenSize=y,l.highlightId=e.highlightId,l.highlightScale=e.highlightScale,l.clipBounds=m,l.pickGroup=e.pickId/255,l.pixelRatio=n;for(var g=0;g<3;++g)if(a[g]){l.scale=e.projectScale[g],l.opacity=e.projectOpacity[g];for(var v=T,L=0;L<16;++L)v[L]=0;for(L=0;L<4;++L)v[5*L]=1;v[5*g]=0,i[g]<0?v[12+g]=d[0][g]:v[12+g]=d[1][g],s(v,c,v),l.model=v;var C=(g+1)%3,P=(g+2)%3,I=M(x),O=M(b);I[C]=1,O[P]=1;var z=p(0,0,0,S(_,I)),D=p(0,0,0,S(w,O));if(Math.abs(z[1])>Math.abs(D[1])){var R=z;z=D,D=R,R=I,I=O,O=R;var F=C;C=P,P=F}z[0]<0&&(I[C]=-1),D[1]>0&&(O[P]=-1);var B=0,N=0;for(L=0;L<4;++L)B+=Math.pow(c[4*C+L],2),N+=Math.pow(c[4*P+L],2);I[C]/=Math.sqrt(B),O[P]/=Math.sqrt(N),l.axes[0]=I,l.axes[1]=O,l.fragClipBounds[0]=E(k,m[0],g,-1e8),l.fragClipBounds[1]=E(k,m[1],g,1e8),e.vao.bind(),e.vao.draw(o.TRIANGLES,e.vertexCount),e.lineWidth>0&&(o.lineWidth(e.lineWidth*n),e.vao.draw(o.LINES,e.lineVertexCount,e.vertexCount)),e.vao.unbind()}}var C=[[-1e8,-1e8,-1e8],[1e8,1e8,1e8]];function P(t,e,r,n,i,a,o){var s=r.gl;if((a===r.projectHasAlpha||o)&&L(e,r,n,i),a===r.hasAlpha||o){t.bind();var l=t.uniforms;l.model=n.model||f,l.view=n.view||f,l.projection=n.projection||f,y[0]=2/s.drawingBufferWidth,y[1]=2/s.drawingBufferHeight,l.screenSize=y,l.highlightId=r.highlightId,l.highlightScale=r.highlightScale,l.fragClipBounds=C,l.clipBounds=r.axes.bounds,l.opacity=r.opacity,l.pickGroup=r.pickId/255,l.pixelRatio=i,r.vao.bind(),r.vao.draw(s.TRIANGLES,r.vertexCount),r.lineWidth>0&&(s.lineWidth(r.lineWidth*i),r.vao.draw(s.LINES,r.lineVertexCount,r.vertexCount)),r.vao.unbind()}}function I(t,e,r,i){var a;a=Array.isArray(t)?e=this.pointCount||e<0)return null;var r=this.points[e],n=this._selectResult;n.index=e;for(var i=0;i<3;++i)n.position[i]=n.dataCoordinate[i]=r[i];return n},v.highlight=function(t){if(t){var e=t.index,r=255&e,n=e>>8&255,i=e>>16&255;this.highlightId=[r/255,n/255,i/255,0]}else this.highlightId=[1,1,1,1]},v.update=function(t){if("perspective"in(t=t||{})&&(this.useOrtho=!t.perspective),"orthographic"in t&&(this.useOrtho=!!t.orthographic),"lineWidth"in t&&(this.lineWidth=t.lineWidth),"project"in t)if(Array.isArray(t.project))this.axesProject=t.project;else{var e=!!t.project;this.axesProject=[e,e,e]}if("projectScale"in t)if(Array.isArray(t.projectScale))this.projectScale=t.projectScale.slice();else{var r=+t.projectScale;this.projectScale=[r,r,r]}if(this.projectHasAlpha=!1,"projectOpacity"in t){if(Array.isArray(t.projectOpacity))this.projectOpacity=t.projectOpacity.slice();else{r=+t.projectOpacity;this.projectOpacity=[r,r,r]}for(var n=0;n<3;++n)this.projectOpacity[n]=m(this.projectOpacity[n]),this.projectOpacity[n]<1&&(this.projectHasAlpha=!0)}this.hasAlpha=!1,"opacity"in t&&(this.opacity=m(t.opacity),this.opacity<1&&(this.hasAlpha=!0)),this.dirty=!0;var i,a,s=t.position,l=t.font||"normal",c=t.alignment||[0,0];if(2===c.length)i=c[0],a=c[1];else{i=[],a=[];for(n=0;n0){var O=0,z=x,D=[0,0,0,1],R=[0,0,0,1],F=Array.isArray(p)&&Array.isArray(p[0]),B=Array.isArray(v)&&Array.isArray(v[0]);t:for(n=0;n<_;++n){y+=1;for(w=s[n],T=0;T<3;++T){if(isNaN(w[T])||!isFinite(w[T]))continue t;f[T]=Math.max(f[T],w[T]),u[T]=Math.min(u[T],w[T])}k=(N=I(h,n,l,this.pixelRatio)).mesh,A=N.lines,M=N.bounds;var N,j=N.visible;if(j)if(Array.isArray(p)){if(3===(U=F?n0?1-M[0][0]:Y<0?1+M[1][0]:1,W*=W>0?1-M[0][1]:W<0?1+M[1][1]:1],Z=k.cells||[],J=k.positions||[];for(T=0;T0){var v=r*u;o.drawBox(f-v,h-v,p+v,h+v,a),o.drawBox(f-v,d-v,p+v,d+v,a),o.drawBox(f-v,h-v,f+v,d+v,a),o.drawBox(p-v,h-v,p+v,d+v,a)}}}},s.update=function(t){t=t||{},this.innerFill=!!t.innerFill,this.outerFill=!!t.outerFill,this.innerColor=(t.innerColor||[0,0,0,.5]).slice(),this.outerColor=(t.outerColor||[0,0,0,.5]).slice(),this.borderColor=(t.borderColor||[0,0,0,1]).slice(),this.borderWidth=t.borderWidth||0,this.selectBox=(t.selectBox||this.selectBox).slice()},s.dispose=function(){this.boxBuffer.dispose(),this.boxShader.dispose(),this.plot.removeOverlay(this)}},{"./lib/shaders":129,"gl-buffer":78,"gl-shader":132}],131:[function(t,e,r){"use strict";e.exports=function(t,e){var r=e[0],a=e[1],o=n(t,r,a,{}),s=i.mallocUint8(r*a*4);return new l(t,o,s)};var n=t("gl-fbo"),i=t("typedarray-pool"),a=t("ndarray"),o=t("bit-twiddle").nextPow2;function s(t,e,r,n,i){this.coord=[t,e],this.id=r,this.value=n,this.distance=i}function l(t,e,r){this.gl=t,this.fbo=e,this.buffer=r,this._readTimeout=null;var n=this;this._readCallback=function(){n.gl&&(e.bind(),t.readPixels(0,0,e.shape[0],e.shape[1],t.RGBA,t.UNSIGNED_BYTE,n.buffer),n._readTimeout=null)}}var c=l.prototype;Object.defineProperty(c,"shape",{get:function(){return this.gl?this.fbo.shape.slice():[0,0]},set:function(t){if(this.gl){this.fbo.shape=t;var e=this.fbo.shape[0],r=this.fbo.shape[1];if(r*e*4>this.buffer.length){i.free(this.buffer);for(var n=this.buffer=i.mallocUint8(o(r*e*4)),a=0;ar)for(t=r;te)for(t=e;t=0){for(var T=0|w.type.charAt(w.type.length-1),k=new Array(T),A=0;A=0;)M+=1;_[y]=M}var S=new Array(r.length);function E(){h.program=o.program(p,h._vref,h._fref,b,_);for(var t=0;t=0){if((d=h.charCodeAt(h.length-1)-48)<2||d>4)throw new n("","Invalid data type for attribute "+f+": "+h);s(t,e,p[0],i,d,a,f)}else{if(!(h.indexOf("mat")>=0))throw new n("","Unknown data type for attribute "+f+": "+h);var d;if((d=h.charCodeAt(h.length-1)-48)<2||d>4)throw new n("","Invalid data type for attribute "+f+": "+h);l(t,e,p,i,d,a,f)}}}return a};var n=t("./GLError");function i(t,e,r,n,i,a){this._gl=t,this._wrapper=e,this._index=r,this._locations=n,this._dimension=i,this._constFunc=a}var a=i.prototype;a.pointer=function(t,e,r,n){var i=this._gl,a=this._locations[this._index];i.vertexAttribPointer(a,this._dimension,t||i.FLOAT,!!e,r||0,n||0),i.enableVertexAttribArray(a)},a.set=function(t,e,r,n){return this._constFunc(this._locations[this._index],t,e,r,n)},Object.defineProperty(a,"location",{get:function(){return this._locations[this._index]},set:function(t){return t!==this._locations[this._index]&&(this._locations[this._index]=0|t,this._wrapper.program=null),0|t}});var o=[function(t,e,r){return void 0===r.length?t.vertexAttrib1f(e,r):t.vertexAttrib1fv(e,r)},function(t,e,r,n){return void 0===r.length?t.vertexAttrib2f(e,r,n):t.vertexAttrib2fv(e,r)},function(t,e,r,n,i){return void 0===r.length?t.vertexAttrib3f(e,r,n,i):t.vertexAttrib3fv(e,r)},function(t,e,r,n,i,a){return void 0===r.length?t.vertexAttrib4f(e,r,n,i,a):t.vertexAttrib4fv(e,r)}];function s(t,e,r,n,a,s,l){var c=o[a],u=new i(t,e,r,n,a,c);Object.defineProperty(s,l,{set:function(e){return t.disableVertexAttribArray(n[r]),c(t,n[r],e),e},get:function(){return u},enumerable:!0})}function l(t,e,r,n,i,a,o){for(var l=new Array(i),c=new Array(i),u=0;u4)throw new i("","Invalid uniform dimension type for matrix "+name+": "+v);t["uniformMatrix"+g+"fv"](s[u],!1,f);break}throw new i("","Unknown uniform data type for "+name+": "+v)}if((g=v.charCodeAt(v.length-1)-48)<2||g>4)throw new i("","Invalid data type");switch(v.charAt(0)){case"b":case"i":t["uniform"+g+"iv"](s[u],f);break;case"v":t["uniform"+g+"fv"](s[u],f);break;default:throw new i("","Unrecognized data type for vector "+name+": "+v)}}}}}}function c(t,e,n){if("object"==typeof n){var c=u(n);Object.defineProperty(t,e,{get:a(c),set:l(n),enumerable:!0,configurable:!1})}else s[n]?Object.defineProperty(t,e,{get:(f=n,function(t,e,r){return t.getUniform(e.program,r[f])}),set:l(n),enumerable:!0,configurable:!1}):t[e]=function(t){switch(t){case"bool":return!1;case"int":case"sampler2D":case"samplerCube":case"float":return 0;default:var e=t.indexOf("vec");if(0<=e&&e<=1&&t.length===4+e){if((r=t.charCodeAt(t.length-1)-48)<2||r>4)throw new i("","Invalid data type");return"b"===t.charAt(0)?o(r,!1):o(r,0)}if(0===t.indexOf("mat")&&4===t.length){var r;if((r=t.charCodeAt(t.length-1)-48)<2||r>4)throw new i("","Invalid uniform dimension type for matrix "+name+": "+t);return o(r*r,0)}throw new i("","Unknown uniform data type for "+name+": "+t)}}(r[n].type);var f}function u(t){var e;if(Array.isArray(t)){e=new Array(t.length);for(var r=0;r1){s[0]in a||(a[s[0]]=[]),a=a[s[0]];for(var l=1;l1)for(var l=0;l 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the tube vertex and normal at the given index.\n//\n// The returned vertex is for a tube ring with its center at origin, radius of length(d), pointing in the direction of d.\n//\n// Each tube segment is made up of a ring of vertices.\n// These vertices are used to make up the triangles of the tube by connecting them together in the vertex array.\n// The indexes of tube segments run from 0 to 8.\n//\nvec3 getTubePosition(vec3 d, float index, out vec3 normal) {\n float segmentCount = 8.0;\n\n float angle = 2.0 * 3.14159 * (index / segmentCount);\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d);\n vec3 y = v * sin(angle) * length(d);\n vec3 v3 = x + y;\n\n normal = normalize(v3);\n\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 color, position;\nattribute vec2 uv;\n\nuniform float vectorScale, tubeScale;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 eyePosition, lightPosition;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n // Scale the vector magnitude to stay constant with\n // model & view changes.\n vec3 normal;\n vec3 XYZ = getTubePosition(mat3(model) * (tubeScale * vector.w * normalize(vector.xyz)), position.w, normal);\n vec4 tubePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * tubePosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n f_lightDirection = lightPosition - cameraCoordinate.xyz;\n f_eyeDirection = eyePosition - cameraCoordinate.xyz;\n f_normal = normalize((vec4(normal, 0.0) * inverseModel).xyz);\n\n // vec4 m_position = model * vec4(tubePosition, 1.0);\n vec4 t_position = view * tubePosition;\n gl_Position = projection * t_position;\n\n f_color = color;\n f_data = tubePosition.xyz;\n f_position = position.xyz;\n f_uv = uv;\n}\n"]),a=n(["#extension GL_OES_standard_derivatives : enable\n\nprecision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat cookTorranceSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness,\n float fresnel) {\n\n float VdotN = max(dot(viewDirection, surfaceNormal), 0.0);\n float LdotN = max(dot(lightDirection, surfaceNormal), 0.0);\n\n //Half angle vector\n vec3 H = normalize(lightDirection + viewDirection);\n\n //Geometric term\n float NdotH = max(dot(surfaceNormal, H), 0.0);\n float VdotH = max(dot(viewDirection, H), 0.000001);\n float LdotH = max(dot(lightDirection, H), 0.000001);\n float G1 = (2.0 * NdotH * VdotN) / VdotH;\n float G2 = (2.0 * NdotH * LdotN) / LdotH;\n float G = min(1.0, min(G1, G2));\n \n //Distribution term\n float D = beckmannDistribution(NdotH, roughness);\n\n //Fresnel term\n float F = pow(1.0 - VdotN, fresnel);\n\n //Multiply terms and done\n return G * F * D / max(3.14159265 * VdotN, 0.000001);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform sampler2D texture;\n\nvarying vec3 f_normal, f_lightDirection, f_eyeDirection, f_data, f_position;\nvarying vec4 f_color;\nvarying vec2 f_uv;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n vec3 N = normalize(f_normal);\n vec3 L = normalize(f_lightDirection);\n vec3 V = normalize(f_eyeDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = min(1.0, max(0.0, cookTorranceSpecular(L, V, N, roughness, fresnel)));\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n vec4 surfaceColor = f_color * texture2D(texture, f_uv);\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = litColor * opacity;\n}\n"]),o=n(["precision highp float;\n\nprecision highp float;\n#define GLSLIFY 1\n\nvec3 getOrthogonalVector(vec3 v) {\n // Return up-vector for only-z vector.\n // Return ax + by + cz = 0, a point that lies on the plane that has v as a normal and that isn't (0,0,0).\n // From the above if-statement we have ||a|| > 0 U ||b|| > 0.\n // Assign z = 0, x = -b, y = a:\n // a*-b + b*a + c*0 = -ba + ba + 0 = 0\n if (v.x*v.x > v.z*v.z || v.y*v.y > v.z*v.z) {\n return normalize(vec3(-v.y, v.x, 0.0));\n } else {\n return normalize(vec3(0.0, v.z, -v.y));\n }\n}\n\n// Calculate the tube vertex and normal at the given index.\n//\n// The returned vertex is for a tube ring with its center at origin, radius of length(d), pointing in the direction of d.\n//\n// Each tube segment is made up of a ring of vertices.\n// These vertices are used to make up the triangles of the tube by connecting them together in the vertex array.\n// The indexes of tube segments run from 0 to 8.\n//\nvec3 getTubePosition(vec3 d, float index, out vec3 normal) {\n float segmentCount = 8.0;\n\n float angle = 2.0 * 3.14159 * (index / segmentCount);\n\n vec3 u = getOrthogonalVector(d);\n vec3 v = normalize(cross(u, d));\n\n vec3 x = u * cos(angle) * length(d);\n vec3 y = v * sin(angle) * length(d);\n vec3 v3 = x + y;\n\n normal = normalize(v3);\n\n return v3;\n}\n\nattribute vec4 vector;\nattribute vec4 position;\nattribute vec4 id;\n\nuniform mat4 model, view, projection;\nuniform float tubeScale;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n vec3 normal;\n vec3 XYZ = getTubePosition(mat3(model) * (tubeScale * vector.w * normalize(vector.xyz)), position.w, normal);\n vec4 tubePosition = model * vec4(position.xyz, 1.0) + vec4(XYZ, 0.0);\n\n gl_Position = projection * view * tubePosition;\n f_id = id;\n f_position = position.xyz;\n}\n"]),s=n(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying vec3 f_position;\nvarying vec4 f_id;\n\nvoid main() {\n if (outOfRange(clipBounds[0], clipBounds[1], f_position)) discard;\n\n gl_FragColor = vec4(pickId, f_id.xyz);\n}"]);r.meshShader={vertex:i,fragment:a,attributes:[{name:"position",type:"vec4"},{name:"color",type:"vec4"},{name:"uv",type:"vec2"},{name:"vector",type:"vec4"}]},r.pickShader={vertex:o,fragment:s,attributes:[{name:"position",type:"vec4"},{name:"id",type:"vec4"},{name:"vector",type:"vec4"}]}},{glslify:231}],143:[function(t,e,r){"use strict";var n=t("gl-vec3"),i=t("gl-vec4"),a=["xyz","xzy","yxz","yzx","zxy","zyx"],o=function(t,e,r,a){for(var o=0,s=0;s0)for(T=0;T<8;T++){var k=(T+1)%8;c.push(h[T],p[T],p[k],p[k],h[k],h[T]),f.push(y,v,v,v,y,y),d.push(m,g,g,g,m,m);var A=c.length;u.push([A-6,A-5,A-4],[A-3,A-2,A-1])}var M=h;h=p,p=M;var S=y;y=v,v=S;var E=m;m=g,g=E}return{positions:c,cells:u,vectors:f,vertexIntensity:d}}(t,r,a,o)})),f=[],h=[],p=[],d=[];for(s=0;se)return r-1}return r},l=function(t,e,r){return tr?r:t},c=function(t){var e=1/0;t.sort((function(t,e){return t-e}));for(var r=t.length,n=1;nf-1||y>h-1||x>p-1)return n.create();var b,_,w,T,k,A,M=a[0][d],S=a[0][v],E=a[1][m],L=a[1][y],C=a[2][g],P=(o-M)/(S-M),I=(c-E)/(L-E),O=(u-C)/(a[2][x]-C);switch(isFinite(P)||(P=.5),isFinite(I)||(I=.5),isFinite(O)||(O=.5),r.reversedX&&(d=f-1-d,v=f-1-v),r.reversedY&&(m=h-1-m,y=h-1-y),r.reversedZ&&(g=p-1-g,x=p-1-x),r.filled){case 5:k=g,A=x,w=m*p,T=y*p,b=d*p*h,_=v*p*h;break;case 4:k=g,A=x,b=d*p,_=v*p,w=m*p*f,T=y*p*f;break;case 3:w=m,T=y,k=g*h,A=x*h,b=d*h*p,_=v*h*p;break;case 2:w=m,T=y,b=d*h,_=v*h,k=g*h*f,A=x*h*f;break;case 1:b=d,_=v,k=g*f,A=x*f,w=m*f*p,T=y*f*p;break;default:b=d,_=v,w=m*f,T=y*f,k=g*f*h,A=x*f*h}var z=i[b+w+k],D=i[b+w+A],R=i[b+T+k],F=i[b+T+A],B=i[_+w+k],N=i[_+w+A],j=i[_+T+k],U=i[_+T+A],V=n.create(),H=n.create(),q=n.create(),G=n.create();n.lerp(V,z,B,P),n.lerp(H,D,N,P),n.lerp(q,R,j,P),n.lerp(G,F,U,P);var Y=n.create(),W=n.create();n.lerp(Y,V,q,I),n.lerp(W,H,G,I);var X=n.create();return n.lerp(X,Y,W,O),X}(e,t,p)},m=t.getDivergence||function(t,e){var r=n.create(),i=1e-4;n.add(r,t,[i,0,0]);var a=d(r);n.subtract(a,a,e),n.scale(a,a,1/i),n.add(r,t,[0,i,0]);var o=d(r);n.subtract(o,o,e),n.scale(o,o,1/i),n.add(r,t,[0,0,i]);var s=d(r);return n.subtract(s,s,e),n.scale(s,s,1/i),n.add(r,a,o),n.add(r,r,s),r},g=[],v=e[0][0],y=e[0][1],x=e[0][2],b=e[1][0],_=e[1][1],w=e[1][2],T=function(t){var e=t[0],r=t[1],n=t[2];return!(eb||r_||nw)},k=10*n.distance(e[0],e[1])/i,A=k*k,M=1,S=0,E=r.length;E>1&&(M=function(t){for(var e=[],r=[],n=[],i={},a={},o={},s=t.length,l=0;lS&&(S=F),D.push(F),g.push({points:P,velocities:I,divergences:D});for(var B=0;B<100*i&&P.lengthA&&n.scale(N,N,k/Math.sqrt(j)),n.add(N,N,C),O=d(N),n.squaredDistance(z,N)-A>-1e-4*A){P.push(N),z=N,I.push(O);R=m(N,O),F=n.length(R);isFinite(F)&&F>S&&(S=F),D.push(F)}C=N}}var U=o(g,t.colormap,S,M);return f?U.tubeScale=f:(0===S&&(S=1),U.tubeScale=.5*u*M/S),U};var u=t("./lib/shaders"),f=t("gl-cone3d").createMesh;e.exports.createTubeMesh=function(t,e){return f(t,e,{shaders:u,traceType:"streamtube"})}},{"./lib/shaders":142,"gl-cone3d":79,"gl-vec3":169,"gl-vec4":205}],144:[function(t,e,r){var n=t("gl-shader"),i=t("glslify"),a=i(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec4 uv;\nattribute vec3 f;\nattribute vec3 normal;\n\nuniform vec3 objectOffset;\nuniform mat4 model, view, projection, inverseModel;\nuniform vec3 lightPosition, eyePosition;\nuniform sampler2D colormap;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n vec3 localCoordinate = vec3(uv.zw, f.x);\n worldCoordinate = objectOffset + localCoordinate;\n vec4 worldPosition = model * vec4(worldCoordinate, 1.0);\n vec4 clipPosition = projection * view * worldPosition;\n gl_Position = clipPosition;\n kill = f.y;\n value = f.z;\n planeCoordinate = uv.xy;\n\n vColor = texture2D(colormap, vec2(value, value));\n\n //Lighting geometry parameters\n vec4 cameraCoordinate = view * worldPosition;\n cameraCoordinate.xyz /= cameraCoordinate.w;\n lightDirection = lightPosition - cameraCoordinate.xyz;\n eyeDirection = eyePosition - cameraCoordinate.xyz;\n surfaceNormal = normalize((vec4(normal,0) * inverseModel).xyz);\n}\n"]),o=i(["precision highp float;\n#define GLSLIFY 1\n\nfloat beckmannDistribution(float x, float roughness) {\n float NdotH = max(x, 0.0001);\n float cos2Alpha = NdotH * NdotH;\n float tan2Alpha = (cos2Alpha - 1.0) / cos2Alpha;\n float roughness2 = roughness * roughness;\n float denom = 3.141592653589793 * roughness2 * cos2Alpha * cos2Alpha;\n return exp(tan2Alpha / roughness2) / denom;\n}\n\nfloat beckmannSpecular(\n vec3 lightDirection,\n vec3 viewDirection,\n vec3 surfaceNormal,\n float roughness) {\n return beckmannDistribution(dot(surfaceNormal, normalize(lightDirection + viewDirection)), roughness);\n}\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec3 lowerBound, upperBound;\nuniform float contourTint;\nuniform vec4 contourColor;\nuniform sampler2D colormap;\nuniform vec3 clipBounds[2];\nuniform float roughness, fresnel, kambient, kdiffuse, kspecular, opacity;\nuniform float vertexColor;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n if (\n kill > 0.0 ||\n vColor.a == 0.0 ||\n outOfRange(clipBounds[0], clipBounds[1], worldCoordinate)\n ) discard;\n\n vec3 N = normalize(surfaceNormal);\n vec3 V = normalize(eyeDirection);\n vec3 L = normalize(lightDirection);\n\n if(gl_FrontFacing) {\n N = -N;\n }\n\n float specular = max(beckmannSpecular(L, V, N, roughness), 0.);\n float diffuse = min(kambient + kdiffuse * max(dot(N, L), 0.0), 1.0);\n\n //decide how to interpolate color \u2014 in vertex or in fragment\n vec4 surfaceColor =\n step(vertexColor, .5) * texture2D(colormap, vec2(value, value)) +\n step(.5, vertexColor) * vColor;\n\n vec4 litColor = surfaceColor.a * vec4(diffuse * surfaceColor.rgb + kspecular * vec3(1,1,1) * specular, 1.0);\n\n gl_FragColor = mix(litColor, contourColor, contourTint) * opacity;\n}\n"]),s=i(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec4 uv;\nattribute float f;\n\nuniform vec3 objectOffset;\nuniform mat3 permutation;\nuniform mat4 model, view, projection;\nuniform float height, zOffset;\nuniform sampler2D colormap;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 lightDirection, eyeDirection, surfaceNormal;\nvarying vec4 vColor;\n\nvoid main() {\n vec3 dataCoordinate = permutation * vec3(uv.xy, height);\n worldCoordinate = objectOffset + dataCoordinate;\n vec4 worldPosition = model * vec4(worldCoordinate, 1.0);\n\n vec4 clipPosition = projection * view * worldPosition;\n clipPosition.z += zOffset;\n\n gl_Position = clipPosition;\n value = f + objectOffset.z;\n kill = -1.0;\n planeCoordinate = uv.zw;\n\n vColor = texture2D(colormap, vec2(value, value));\n\n //Don't do lighting for contours\n surfaceNormal = vec3(1,0,0);\n eyeDirection = vec3(0,1,0);\n lightDirection = vec3(0,0,1);\n}\n"]),l=i(["precision highp float;\n#define GLSLIFY 1\n\nbool outOfRange(float a, float b, float p) {\n return ((p > max(a, b)) || \n (p < min(a, b)));\n}\n\nbool outOfRange(vec2 a, vec2 b, vec2 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y));\n}\n\nbool outOfRange(vec3 a, vec3 b, vec3 p) {\n return (outOfRange(a.x, b.x, p.x) ||\n outOfRange(a.y, b.y, p.y) ||\n outOfRange(a.z, b.z, p.z));\n}\n\nbool outOfRange(vec4 a, vec4 b, vec4 p) {\n return outOfRange(a.xyz, b.xyz, p.xyz);\n}\n\nuniform vec2 shape;\nuniform vec3 clipBounds[2];\nuniform float pickId;\n\nvarying float value, kill;\nvarying vec3 worldCoordinate;\nvarying vec2 planeCoordinate;\nvarying vec3 surfaceNormal;\n\nvec2 splitFloat(float v) {\n float vh = 255.0 * v;\n float upper = floor(vh);\n float lower = fract(vh);\n return vec2(upper / 255.0, floor(lower * 16.0) / 16.0);\n}\n\nvoid main() {\n if ((kill > 0.0) ||\n (outOfRange(clipBounds[0], clipBounds[1], worldCoordinate))) discard;\n\n vec2 ux = splitFloat(planeCoordinate.x / shape.x);\n vec2 uy = splitFloat(planeCoordinate.y / shape.y);\n gl_FragColor = vec4(pickId, ux.x, uy.x, ux.y + (uy.y/16.0));\n}\n"]);r.createShader=function(t){var e=n(t,a,o,null,[{name:"uv",type:"vec4"},{name:"f",type:"vec3"},{name:"normal",type:"vec3"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e.attributes.normal.location=2,e},r.createPickShader=function(t){var e=n(t,a,l,null,[{name:"uv",type:"vec4"},{name:"f",type:"vec3"},{name:"normal",type:"vec3"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e.attributes.normal.location=2,e},r.createContourShader=function(t){var e=n(t,s,o,null,[{name:"uv",type:"vec4"},{name:"f",type:"float"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e},r.createPickContourShader=function(t){var e=n(t,s,l,null,[{name:"uv",type:"vec4"},{name:"f",type:"float"}]);return e.attributes.uv.location=0,e.attributes.f.location=1,e}},{"gl-shader":132,glslify:231}],145:[function(t,e,r){"use strict";e.exports=function(t){var e=t.gl,r=y(e),n=b(e),s=x(e),l=_(e),c=i(e),u=a(e,[{buffer:c,size:4,stride:40,offset:0},{buffer:c,size:3,stride:40,offset:16},{buffer:c,size:3,stride:40,offset:28}]),f=i(e),h=a(e,[{buffer:f,size:4,stride:20,offset:0},{buffer:f,size:1,stride:20,offset:16}]),p=i(e),d=a(e,[{buffer:p,size:2,type:e.FLOAT}]),m=o(e,1,256,e.RGBA,e.UNSIGNED_BYTE);m.minFilter=e.LINEAR,m.magFilter=e.LINEAR;var g=new M(e,[0,0],[[0,0,0],[0,0,0]],r,n,c,u,m,s,l,f,h,p,d,[0,0,0]),v={levels:[[],[],[]]};for(var w in t)v[w]=t[w];return v.colormap=v.colormap||"jet",g.update(v),g};var n=t("bit-twiddle"),i=t("gl-buffer"),a=t("gl-vao"),o=t("gl-texture2d"),s=t("typedarray-pool"),l=t("colormap"),c=t("ndarray-ops"),u=t("ndarray-pack"),f=t("ndarray"),h=t("surface-nets"),p=t("gl-mat4/multiply"),d=t("gl-mat4/invert"),m=t("binary-search-bounds"),g=t("ndarray-gradient"),v=t("./lib/shaders"),y=v.createShader,x=v.createContourShader,b=v.createPickShader,_=v.createPickContourShader,w=[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],T=[[0,0],[0,1],[1,0],[1,1],[1,0],[0,1]],k=[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]];function A(t,e,r,n,i){this.position=t,this.index=e,this.uv=r,this.level=n,this.dataCoordinate=i}!function(){for(var t=0;t<3;++t){var e=k[t],r=(t+2)%3;e[(t+1)%3+0]=1,e[r+3]=1,e[t+6]=1}}();function M(t,e,r,n,i,a,o,l,c,u,h,p,d,m,g){this.gl=t,this.shape=e,this.bounds=r,this.objectOffset=g,this.intensityBounds=[],this._shader=n,this._pickShader=i,this._coordinateBuffer=a,this._vao=o,this._colorMap=l,this._contourShader=c,this._contourPickShader=u,this._contourBuffer=h,this._contourVAO=p,this._contourOffsets=[[],[],[]],this._contourCounts=[[],[],[]],this._vertexCount=0,this._pickResult=new A([0,0,0],[0,0],[0,0],[0,0,0],[0,0,0]),this._dynamicBuffer=d,this._dynamicVAO=m,this._dynamicOffsets=[0,0,0],this._dynamicCounts=[0,0,0],this.contourWidth=[1,1,1],this.contourLevels=[[1],[1],[1]],this.contourTint=[0,0,0],this.contourColor=[[.5,.5,.5,1],[.5,.5,.5,1],[.5,.5,.5,1]],this.showContour=!0,this.showSurface=!0,this.enableHighlight=[!0,!0,!0],this.highlightColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.highlightTint=[1,1,1],this.highlightLevel=[-1,-1,-1],this.enableDynamic=[!0,!0,!0],this.dynamicLevel=[NaN,NaN,NaN],this.dynamicColor=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.dynamicTint=[1,1,1],this.dynamicWidth=[1,1,1],this.axesBounds=[[1/0,1/0,1/0],[-1/0,-1/0,-1/0]],this.surfaceProject=[!1,!1,!1],this.contourProject=[[!1,!1,!1],[!1,!1,!1],[!1,!1,!1]],this.colorBounds=[!1,!1],this._field=[f(s.mallocFloat(1024),[0,0]),f(s.mallocFloat(1024),[0,0]),f(s.mallocFloat(1024),[0,0])],this.pickId=1,this.clipBounds=[[-1/0,-1/0,-1/0],[1/0,1/0,1/0]],this.snapToData=!1,this.pixelRatio=1,this.opacity=1,this.lightPosition=[10,1e4,0],this.ambientLight=.8,this.diffuseLight=.8,this.specularLight=2,this.roughness=.5,this.fresnel=1.5,this.vertexColor=0,this.dirty=!0}var S=M.prototype;S.genColormap=function(t,e){var r=!1,n=u([l({colormap:t,nshades:256,format:"rgba"}).map((function(t,n){var i=e?function(t,e){if(!e)return 1;if(!e.length)return 1;for(var r=0;rt&&r>0){var n=(e[r][0]-t)/(e[r][0]-e[r-1][0]);return e[r][1]*(1-n)+n*e[r-1][1]}}return 1}(n/255,e):t[3];return i<1&&(r=!0),[t[0],t[1],t[2],255*i]}))]);return c.divseq(n,255),this.hasAlphaScale=r,n},S.isTransparent=function(){return this.opacity<1||this.hasAlphaScale},S.isOpaque=function(){return!this.isTransparent()},S.pickSlots=1,S.setPickBase=function(t){this.pickId=t};var E=[0,0,0],L={showSurface:!1,showContour:!1,projections:[w.slice(),w.slice(),w.slice()],clipBounds:[[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]],[[0,0,0],[0,0,0]]]};function C(t,e){var r,n,i,a=e.axes&&e.axes.lastCubeProps.axis||E,o=e.showSurface,s=e.showContour;for(r=0;r<3;++r)for(o=o||e.surfaceProject[r],n=0;n<3;++n)s=s||e.contourProject[r][n];for(r=0;r<3;++r){var l=L.projections[r];for(n=0;n<16;++n)l[n]=0;for(n=0;n<4;++n)l[5*n]=1;l[5*r]=0,l[12+r]=e.axesBounds[+(a[r]>0)][r],p(l,t.model,l);var c=L.clipBounds[r];for(i=0;i<2;++i)for(n=0;n<3;++n)c[i][n]=t.clipBounds[i][n];c[0][r]=-1e8,c[1][r]=1e8}return L.showSurface=o,L.showContour=s,L}var P={model:w,view:w,projection:w,inverseModel:w.slice(),lowerBound:[0,0,0],upperBound:[0,0,0],colorMap:0,clipBounds:[[0,0,0],[0,0,0]],height:0,contourTint:0,contourColor:[0,0,0,1],permutation:[1,0,0,0,1,0,0,0,1],zOffset:-1e-4,objectOffset:[0,0,0],kambient:1,kdiffuse:1,kspecular:1,lightPosition:[1e3,1e3,1e3],eyePosition:[0,0,0],roughness:1,fresnel:1,opacity:1,vertexColor:0},I=w.slice(),O=[1,0,0,0,1,0,0,0,1];function z(t,e){t=t||{};var r=this.gl;r.disable(r.CULL_FACE),this._colorMap.bind(0);var n=P;n.model=t.model||w,n.view=t.view||w,n.projection=t.projection||w,n.lowerBound=[this.bounds[0][0],this.bounds[0][1],this.colorBounds[0]||this.bounds[0][2]],n.upperBound=[this.bounds[1][0],this.bounds[1][1],this.colorBounds[1]||this.bounds[1][2]],n.objectOffset=this.objectOffset,n.contourColor=this.contourColor[0],n.inverseModel=d(n.inverseModel,n.model);for(var i=0;i<2;++i)for(var a=n.clipBounds[i],o=0;o<3;++o)a[o]=Math.min(Math.max(this.clipBounds[i][o],-1e8),1e8);n.kambient=this.ambientLight,n.kdiffuse=this.diffuseLight,n.kspecular=this.specularLight,n.roughness=this.roughness,n.fresnel=this.fresnel,n.opacity=this.opacity,n.height=0,n.permutation=O,n.vertexColor=this.vertexColor;var s=I;for(p(s,n.view,n.model),p(s,n.projection,s),d(s,s),i=0;i<3;++i)n.eyePosition[i]=s[12+i]/s[15];var l=s[15];for(i=0;i<3;++i)l+=this.lightPosition[i]*s[4*i+3];for(i=0;i<3;++i){var c=s[12+i];for(o=0;o<3;++o)c+=s[4*o+i]*this.lightPosition[o];n.lightPosition[i]=c/l}var u=C(n,this);if(u.showSurface){for(this._shader.bind(),this._shader.uniforms=n,this._vao.bind(),this.showSurface&&this._vertexCount&&this._vao.draw(r.TRIANGLES,this._vertexCount),i=0;i<3;++i)this.surfaceProject[i]&&this.vertexCount&&(this._shader.uniforms.model=u.projections[i],this._shader.uniforms.clipBounds=u.clipBounds[i],this._vao.draw(r.TRIANGLES,this._vertexCount));this._vao.unbind()}if(u.showContour){var f=this._contourShader;n.kambient=1,n.kdiffuse=0,n.kspecular=0,n.opacity=1,f.bind(),f.uniforms=n;var h=this._contourVAO;for(h.bind(),i=0;i<3;++i)for(f.uniforms.permutation=k[i],r.lineWidth(this.contourWidth[i]*this.pixelRatio),o=0;o>4)/16)/255,i=Math.floor(n),a=n-i,o=e[1]*(t.value[1]+(15&t.value[2])/16)/255,s=Math.floor(o),l=o-s;i+=1,s+=1;var c=r.position;c[0]=c[1]=c[2]=0;for(var u=0;u<2;++u)for(var f=u?a:1-a,h=0;h<2;++h)for(var p=i+u,d=s+h,g=f*(h?l:1-l),v=0;v<3;++v)c[v]+=this._field[v].get(p,d)*g;for(var y=this._pickResult.level,x=0;x<3;++x)if(y[x]=m.le(this.contourLevels[x],c[x]),y[x]<0)this.contourLevels[x].length>0&&(y[x]=0);else if(y[x]Math.abs(_-c[x])&&(y[x]+=1)}for(r.index[0]=a<.5?i:i+1,r.index[1]=l<.5?s:s+1,r.uv[0]=n/e[0],r.uv[1]=o/e[1],v=0;v<3;++v)r.dataCoordinate[v]=this._field[v].get(r.index[0],r.index[1]);return r},S.padField=function(t,e){var r=e.shape.slice(),n=t.shape.slice();c.assign(t.lo(1,1).hi(r[0],r[1]),e),c.assign(t.lo(1).hi(r[0],1),e.hi(r[0],1)),c.assign(t.lo(1,n[1]-1).hi(r[0],1),e.lo(0,r[1]-1).hi(r[0],1)),c.assign(t.lo(0,1).hi(1,r[1]),e.hi(1)),c.assign(t.lo(n[0]-1,1).hi(1,r[1]),e.lo(r[0]-1)),t.set(0,0,e.get(0,0)),t.set(0,n[1]-1,e.get(0,r[1]-1)),t.set(n[0]-1,0,e.get(r[0]-1,0)),t.set(n[0]-1,n[1]-1,e.get(r[0]-1,r[1]-1))},S.update=function(t){t=t||{},this.objectOffset=t.objectOffset||this.objectOffset,this.dirty=!0,"contourWidth"in t&&(this.contourWidth=R(t.contourWidth,Number)),"showContour"in t&&(this.showContour=R(t.showContour,Boolean)),"showSurface"in t&&(this.showSurface=!!t.showSurface),"contourTint"in t&&(this.contourTint=R(t.contourTint,Boolean)),"contourColor"in t&&(this.contourColor=B(t.contourColor)),"contourProject"in t&&(this.contourProject=R(t.contourProject,(function(t){return R(t,Boolean)}))),"surfaceProject"in t&&(this.surfaceProject=t.surfaceProject),"dynamicColor"in t&&(this.dynamicColor=B(t.dynamicColor)),"dynamicTint"in t&&(this.dynamicTint=R(t.dynamicTint,Number)),"dynamicWidth"in t&&(this.dynamicWidth=R(t.dynamicWidth,Number)),"opacity"in t&&(this.opacity=t.opacity),"opacityscale"in t&&(this.opacityscale=t.opacityscale),"colorBounds"in t&&(this.colorBounds=t.colorBounds),"vertexColor"in t&&(this.vertexColor=t.vertexColor?1:0),"colormap"in t&&this._colorMap.setPixels(this.genColormap(t.colormap,this.opacityscale));var e=t.field||t.coords&&t.coords[2]||null,r=!1;if(e||(e=this._field[2].shape[0]||this._field[2].shape[2]?this._field[2].lo(1,1).hi(this._field[2].shape[0]-2,this._field[2].shape[1]-2):this._field[2].hi(0,0)),"field"in t||"coords"in t){var i=(e.shape[0]+2)*(e.shape[1]+2);i>this._field[2].data.length&&(s.freeFloat(this._field[2].data),this._field[2].data=s.mallocFloat(n.nextPow2(i))),this._field[2]=f(this._field[2].data,[e.shape[0]+2,e.shape[1]+2]),this.padField(this._field[2],e),this.shape=e.shape.slice();for(var a=this.shape,o=0;o<2;++o)this._field[2].size>this._field[o].data.length&&(s.freeFloat(this._field[o].data),this._field[o].data=s.mallocFloat(this._field[2].size)),this._field[o]=f(this._field[o].data,[a[0]+2,a[1]+2]);if(t.coords){var l=t.coords;if(!Array.isArray(l)||3!==l.length)throw new Error("gl-surface: invalid coordinates for x/y");for(o=0;o<2;++o){var c=l[o];for(v=0;v<2;++v)if(c.shape[v]!==a[v])throw new Error("gl-surface: coords have incorrect shape");this.padField(this._field[o],c)}}else if(t.ticks){var u=t.ticks;if(!Array.isArray(u)||2!==u.length)throw new Error("gl-surface: invalid ticks");for(o=0;o<2;++o){var p=u[o];if((Array.isArray(p)||p.length)&&(p=f(p)),p.shape[0]!==a[o])throw new Error("gl-surface: invalid tick length");var d=f(p.data,a);d.stride[o]=p.stride[0],d.stride[1^o]=0,this.padField(this._field[o],d)}}else{for(o=0;o<2;++o){var m=[0,0];m[o]=1,this._field[o]=f(this._field[o].data,[a[0]+2,a[1]+2],m,0)}this._field[0].set(0,0,0);for(var v=0;v0){for(var xt=0;xt<5;++xt)Q.pop();U-=1}continue t}Q.push(nt[0],nt[1],ot[0],ot[1],nt[2]),U+=1}}rt.push(U)}this._contourOffsets[$]=et,this._contourCounts[$]=rt}var bt=s.mallocFloat(Q.length);for(o=0;oi||r<0||r>i)throw new Error("gl-texture2d: Invalid texture size");return t._shape=[e,r],t.bind(),n.texImage2D(n.TEXTURE_2D,0,t.format,e,r,0,t.format,t.type,null),t._mipLevels=[0],t}function p(t,e,r,n,i,a){this.gl=t,this.handle=e,this.format=i,this.type=a,this._shape=[r,n],this._mipLevels=[0],this._magFilter=t.NEAREST,this._minFilter=t.NEAREST,this._wrapS=t.CLAMP_TO_EDGE,this._wrapT=t.CLAMP_TO_EDGE,this._anisoSamples=1;var o=this,s=[this._wrapS,this._wrapT];Object.defineProperties(s,[{get:function(){return o._wrapS},set:function(t){return o.wrapS=t}},{get:function(){return o._wrapT},set:function(t){return o.wrapT=t}}]),this._wrapVector=s;var l=[this._shape[0],this._shape[1]];Object.defineProperties(l,[{get:function(){return o._shape[0]},set:function(t){return o.width=t}},{get:function(){return o._shape[1]},set:function(t){return o.height=t}}]),this._shapeVector=l}var d=p.prototype;function m(t,e){return 3===t.length?1===e[2]&&e[1]===t[0]*t[2]&&e[0]===t[2]:1===e[0]&&e[1]===t[0]}function g(t){var e=t.createTexture();return t.bindTexture(t.TEXTURE_2D,e),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_MIN_FILTER,t.NEAREST),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_MAG_FILTER,t.NEAREST),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_WRAP_S,t.CLAMP_TO_EDGE),t.texParameteri(t.TEXTURE_2D,t.TEXTURE_WRAP_T,t.CLAMP_TO_EDGE),e}function v(t,e,r,n,i){var a=t.getParameter(t.MAX_TEXTURE_SIZE);if(e<0||e>a||r<0||r>a)throw new Error("gl-texture2d: Invalid texture shape");if(i===t.FLOAT&&!t.getExtension("OES_texture_float"))throw new Error("gl-texture2d: Floating point textures not supported on this platform");var o=g(t);return t.texImage2D(t.TEXTURE_2D,0,n,e,r,0,n,i,null),new p(t,o,e,r,n,i)}function y(t,e,r,n,i,a){var o=g(t);return t.texImage2D(t.TEXTURE_2D,0,i,i,a,e),new p(t,o,r,n,i,a)}function x(t,e){var r=e.dtype,o=e.shape.slice(),s=t.getParameter(t.MAX_TEXTURE_SIZE);if(o[0]<0||o[0]>s||o[1]<0||o[1]>s)throw new Error("gl-texture2d: Invalid texture size");var l=m(o,e.stride.slice()),c=0;"float32"===r?c=t.FLOAT:"float64"===r?(c=t.FLOAT,l=!1,r="float32"):"uint8"===r?c=t.UNSIGNED_BYTE:(c=t.UNSIGNED_BYTE,l=!1,r="uint8");var u,h,d=0;if(2===o.length)d=t.LUMINANCE,o=[o[0],o[1],1],e=n(e.data,o,[e.stride[0],e.stride[1],1],e.offset);else{if(3!==o.length)throw new Error("gl-texture2d: Invalid shape for texture");if(1===o[2])d=t.ALPHA;else if(2===o[2])d=t.LUMINANCE_ALPHA;else if(3===o[2])d=t.RGB;else{if(4!==o[2])throw new Error("gl-texture2d: Invalid shape for pixel coords");d=t.RGBA}}c!==t.FLOAT||t.getExtension("OES_texture_float")||(c=t.UNSIGNED_BYTE,l=!1);var v=e.size;if(l)u=0===e.offset&&e.data.length===v?e.data:e.data.subarray(e.offset,e.offset+v);else{var y=[o[2],o[2]*o[0],1];h=a.malloc(v,r);var x=n(h,o,y,0);"float32"!==r&&"float64"!==r||c!==t.UNSIGNED_BYTE?i.assign(x,e):f(x,e),u=h.subarray(0,v)}var b=g(t);return t.texImage2D(t.TEXTURE_2D,0,d,o[0],o[1],0,d,c,u),l||a.free(h),new p(t,b,o[0],o[1],d,c)}Object.defineProperties(d,{minFilter:{get:function(){return this._minFilter},set:function(t){this.bind();var e=this.gl;if(this.type===e.FLOAT&&o.indexOf(t)>=0&&(e.getExtension("OES_texture_float_linear")||(t=e.NEAREST)),s.indexOf(t)<0)throw new Error("gl-texture2d: Unknown filter mode "+t);return e.texParameteri(e.TEXTURE_2D,e.TEXTURE_MIN_FILTER,t),this._minFilter=t}},magFilter:{get:function(){return this._magFilter},set:function(t){this.bind();var e=this.gl;if(this.type===e.FLOAT&&o.indexOf(t)>=0&&(e.getExtension("OES_texture_float_linear")||(t=e.NEAREST)),s.indexOf(t)<0)throw new Error("gl-texture2d: Unknown filter mode "+t);return e.texParameteri(e.TEXTURE_2D,e.TEXTURE_MAG_FILTER,t),this._magFilter=t}},mipSamples:{get:function(){return this._anisoSamples},set:function(t){var e=this._anisoSamples;if(this._anisoSamples=0|Math.max(t,1),e!==this._anisoSamples){var r=this.gl.getExtension("EXT_texture_filter_anisotropic");r&&this.gl.texParameterf(this.gl.TEXTURE_2D,r.TEXTURE_MAX_ANISOTROPY_EXT,this._anisoSamples)}return this._anisoSamples}},wrapS:{get:function(){return this._wrapS},set:function(t){if(this.bind(),l.indexOf(t)<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);return this.gl.texParameteri(this.gl.TEXTURE_2D,this.gl.TEXTURE_WRAP_S,t),this._wrapS=t}},wrapT:{get:function(){return this._wrapT},set:function(t){if(this.bind(),l.indexOf(t)<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);return this.gl.texParameteri(this.gl.TEXTURE_2D,this.gl.TEXTURE_WRAP_T,t),this._wrapT=t}},wrap:{get:function(){return this._wrapVector},set:function(t){if(Array.isArray(t)||(t=[t,t]),2!==t.length)throw new Error("gl-texture2d: Must specify wrap mode for rows and columns");for(var e=0;e<2;++e)if(l.indexOf(t[e])<0)throw new Error("gl-texture2d: Unknown wrap mode "+t);this._wrapS=t[0],this._wrapT=t[1];var r=this.gl;return this.bind(),r.texParameteri(r.TEXTURE_2D,r.TEXTURE_WRAP_S,this._wrapS),r.texParameteri(r.TEXTURE_2D,r.TEXTURE_WRAP_T,this._wrapT),t}},shape:{get:function(){return this._shapeVector},set:function(t){if(Array.isArray(t)){if(2!==t.length)throw new Error("gl-texture2d: Invalid texture shape")}else t=[0|t,0|t];return h(this,0|t[0],0|t[1]),[0|t[0],0|t[1]]}},width:{get:function(){return this._shape[0]},set:function(t){return h(this,t|=0,this._shape[1]),t}},height:{get:function(){return this._shape[1]},set:function(t){return t|=0,h(this,this._shape[0],t),t}}}),d.bind=function(t){var e=this.gl;return void 0!==t&&e.activeTexture(e.TEXTURE0+(0|t)),e.bindTexture(e.TEXTURE_2D,this.handle),void 0!==t?0|t:e.getParameter(e.ACTIVE_TEXTURE)-e.TEXTURE0},d.dispose=function(){this.gl.deleteTexture(this.handle)},d.generateMipmap=function(){this.bind(),this.gl.generateMipmap(this.gl.TEXTURE_2D);for(var t=Math.min(this._shape[0],this._shape[1]),e=0;t>0;++e,t>>>=1)this._mipLevels.indexOf(e)<0&&this._mipLevels.push(e)},d.setPixels=function(t,e,r,o){var s=this.gl;this.bind(),Array.isArray(e)?(o=r,r=0|e[1],e=0|e[0]):(e=e||0,r=r||0),o=o||0;var l=u(t)?t:t.raw;if(l){this._mipLevels.indexOf(o)<0?(s.texImage2D(s.TEXTURE_2D,0,this.format,this.format,this.type,l),this._mipLevels.push(o)):s.texSubImage2D(s.TEXTURE_2D,o,e,r,this.format,this.type,l)}else{if(!(t.shape&&t.stride&&t.data))throw new Error("gl-texture2d: Unsupported data type");if(t.shape.length<2||e+t.shape[1]>this._shape[1]>>>o||r+t.shape[0]>this._shape[0]>>>o||e<0||r<0)throw new Error("gl-texture2d: Texture dimensions are out of bounds");!function(t,e,r,o,s,l,c,u){var h=u.dtype,p=u.shape.slice();if(p.length<2||p.length>3)throw new Error("gl-texture2d: Invalid ndarray, must be 2d or 3d");var d=0,g=0,v=m(p,u.stride.slice());"float32"===h?d=t.FLOAT:"float64"===h?(d=t.FLOAT,v=!1,h="float32"):"uint8"===h?d=t.UNSIGNED_BYTE:(d=t.UNSIGNED_BYTE,v=!1,h="uint8");if(2===p.length)g=t.LUMINANCE,p=[p[0],p[1],1],u=n(u.data,p,[u.stride[0],u.stride[1],1],u.offset);else{if(3!==p.length)throw new Error("gl-texture2d: Invalid shape for texture");if(1===p[2])g=t.ALPHA;else if(2===p[2])g=t.LUMINANCE_ALPHA;else if(3===p[2])g=t.RGB;else{if(4!==p[2])throw new Error("gl-texture2d: Invalid shape for pixel coords");g=t.RGBA}p[2]}g!==t.LUMINANCE&&g!==t.ALPHA||s!==t.LUMINANCE&&s!==t.ALPHA||(g=s);if(g!==s)throw new Error("gl-texture2d: Incompatible texture format for setPixels");var y=u.size,x=c.indexOf(o)<0;x&&c.push(o);if(d===l&&v)0===u.offset&&u.data.length===y?x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,u.data):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,u.data):x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,u.data.subarray(u.offset,u.offset+y)):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,u.data.subarray(u.offset,u.offset+y));else{var b;b=l===t.FLOAT?a.mallocFloat32(y):a.mallocUint8(y);var _=n(b,p,[p[2],p[2]*p[0],1]);d===t.FLOAT&&l===t.UNSIGNED_BYTE?f(_,u):i.assign(_,u),x?t.texImage2D(t.TEXTURE_2D,o,s,p[0],p[1],0,s,l,b.subarray(0,y)):t.texSubImage2D(t.TEXTURE_2D,o,e,r,p[0],p[1],s,l,b.subarray(0,y)),l===t.FLOAT?a.freeFloat32(b):a.freeUint8(b)}}(s,e,r,o,this.format,this.type,this._mipLevels,t)}}},{ndarray:259,"ndarray-ops":254,"typedarray-pool":308}],147:[function(t,e,r){"use strict";e.exports=function(t,e,r){e?e.bind():t.bindBuffer(t.ELEMENT_ARRAY_BUFFER,null);var n=0|t.getParameter(t.MAX_VERTEX_ATTRIBS);if(r){if(r.length>n)throw new Error("gl-vao: Too many vertex attributes");for(var i=0;i1?0:Math.acos(s)};var n=t("./fromValues"),i=t("./normalize"),a=t("./dot")},{"./dot":162,"./fromValues":168,"./normalize":179}],153:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.ceil(e[0]),t[1]=Math.ceil(e[1]),t[2]=Math.ceil(e[2]),t}},{}],154:[function(t,e,r){e.exports=function(t){var e=new Float32Array(3);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e}},{}],155:[function(t,e,r){e.exports=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t}},{}],156:[function(t,e,r){e.exports=function(){var t=new Float32Array(3);return t[0]=0,t[1]=0,t[2]=0,t}},{}],157:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2];return t[0]=i*l-a*s,t[1]=a*o-n*l,t[2]=n*s-i*o,t}},{}],158:[function(t,e,r){e.exports=t("./distance")},{"./distance":159}],159:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2];return Math.sqrt(r*r+n*n+i*i)}},{}],160:[function(t,e,r){e.exports=t("./divide")},{"./divide":161}],161:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]/r[0],t[1]=e[1]/r[1],t[2]=e[2]/r[2],t}},{}],162:[function(t,e,r){e.exports=function(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]}},{}],163:[function(t,e,r){e.exports=1e-6},{}],164:[function(t,e,r){e.exports=function(t,e){var r=t[0],i=t[1],a=t[2],o=e[0],s=e[1],l=e[2];return Math.abs(r-o)<=n*Math.max(1,Math.abs(r),Math.abs(o))&&Math.abs(i-s)<=n*Math.max(1,Math.abs(i),Math.abs(s))&&Math.abs(a-l)<=n*Math.max(1,Math.abs(a),Math.abs(l))};var n=t("./epsilon")},{"./epsilon":163}],165:[function(t,e,r){e.exports=function(t,e){return t[0]===e[0]&&t[1]===e[1]&&t[2]===e[2]}},{}],166:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.floor(e[0]),t[1]=Math.floor(e[1]),t[2]=Math.floor(e[2]),t}},{}],167:[function(t,e,r){e.exports=function(t,e,r,i,a,o){var s,l;e||(e=3);r||(r=0);l=i?Math.min(i*e+r,t.length):t.length;for(s=r;s0&&(a=1/Math.sqrt(a),t[0]=e[0]*a,t[1]=e[1]*a,t[2]=e[2]*a);return t}},{}],180:[function(t,e,r){e.exports=function(t,e){e=e||1;var r=2*Math.random()*Math.PI,n=2*Math.random()-1,i=Math.sqrt(1-n*n)*e;return t[0]=Math.cos(r)*i,t[1]=Math.sin(r)*i,t[2]=n*e,t}},{}],181:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[1],a=r[2],o=e[1]-i,s=e[2]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=e[0],t[1]=i+o*c-s*l,t[2]=a+o*l+s*c,t}},{}],182:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[0],a=r[2],o=e[0]-i,s=e[2]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=i+s*l+o*c,t[1]=e[1],t[2]=a+s*c-o*l,t}},{}],183:[function(t,e,r){e.exports=function(t,e,r,n){var i=r[0],a=r[1],o=e[0]-i,s=e[1]-a,l=Math.sin(n),c=Math.cos(n);return t[0]=i+o*c-s*l,t[1]=a+o*l+s*c,t[2]=e[2],t}},{}],184:[function(t,e,r){e.exports=function(t,e){return t[0]=Math.round(e[0]),t[1]=Math.round(e[1]),t[2]=Math.round(e[2]),t}},{}],185:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r,t[1]=e[1]*r,t[2]=e[2]*r,t}},{}],186:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e[0]+r[0]*n,t[1]=e[1]+r[1]*n,t[2]=e[2]+r[2]*n,t}},{}],187:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e,t[1]=r,t[2]=n,t}},{}],188:[function(t,e,r){e.exports=t("./squaredDistance")},{"./squaredDistance":190}],189:[function(t,e,r){e.exports=t("./squaredLength")},{"./squaredLength":191}],190:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2];return r*r+n*n+i*i}},{}],191:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2];return e*e+r*r+n*n}},{}],192:[function(t,e,r){e.exports=t("./subtract")},{"./subtract":193}],193:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t}},{}],194:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2];return t[0]=n*r[0]+i*r[3]+a*r[6],t[1]=n*r[1]+i*r[4]+a*r[7],t[2]=n*r[2]+i*r[5]+a*r[8],t}},{}],195:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[3]*n+r[7]*i+r[11]*a+r[15];return o=o||1,t[0]=(r[0]*n+r[4]*i+r[8]*a+r[12])/o,t[1]=(r[1]*n+r[5]*i+r[9]*a+r[13])/o,t[2]=(r[2]*n+r[6]*i+r[10]*a+r[14])/o,t}},{}],196:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2],c=r[3],u=c*n+s*a-l*i,f=c*i+l*n-o*a,h=c*a+o*i-s*n,p=-o*n-s*i-l*a;return t[0]=u*c+p*-o+f*-l-h*-s,t[1]=f*c+p*-s+h*-o-u*-l,t[2]=h*c+p*-l+u*-s-f*-o,t}},{}],197:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]+r[0],t[1]=e[1]+r[1],t[2]=e[2]+r[2],t[3]=e[3]+r[3],t}},{}],198:[function(t,e,r){e.exports=function(t){var e=new Float32Array(4);return e[0]=t[0],e[1]=t[1],e[2]=t[2],e[3]=t[3],e}},{}],199:[function(t,e,r){e.exports=function(t,e){return t[0]=e[0],t[1]=e[1],t[2]=e[2],t[3]=e[3],t}},{}],200:[function(t,e,r){e.exports=function(){var t=new Float32Array(4);return t[0]=0,t[1]=0,t[2]=0,t[3]=0,t}},{}],201:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2],a=e[3]-t[3];return Math.sqrt(r*r+n*n+i*i+a*a)}},{}],202:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]/r[0],t[1]=e[1]/r[1],t[2]=e[2]/r[2],t[3]=e[3]/r[3],t}},{}],203:[function(t,e,r){e.exports=function(t,e){return t[0]*e[0]+t[1]*e[1]+t[2]*e[2]+t[3]*e[3]}},{}],204:[function(t,e,r){e.exports=function(t,e,r,n){var i=new Float32Array(4);return i[0]=t,i[1]=e,i[2]=r,i[3]=n,i}},{}],205:[function(t,e,r){e.exports={create:t("./create"),clone:t("./clone"),fromValues:t("./fromValues"),copy:t("./copy"),set:t("./set"),add:t("./add"),subtract:t("./subtract"),multiply:t("./multiply"),divide:t("./divide"),min:t("./min"),max:t("./max"),scale:t("./scale"),scaleAndAdd:t("./scaleAndAdd"),distance:t("./distance"),squaredDistance:t("./squaredDistance"),length:t("./length"),squaredLength:t("./squaredLength"),negate:t("./negate"),inverse:t("./inverse"),normalize:t("./normalize"),dot:t("./dot"),lerp:t("./lerp"),random:t("./random"),transformMat4:t("./transformMat4"),transformQuat:t("./transformQuat")}},{"./add":197,"./clone":198,"./copy":199,"./create":200,"./distance":201,"./divide":202,"./dot":203,"./fromValues":204,"./inverse":206,"./length":207,"./lerp":208,"./max":209,"./min":210,"./multiply":211,"./negate":212,"./normalize":213,"./random":214,"./scale":215,"./scaleAndAdd":216,"./set":217,"./squaredDistance":218,"./squaredLength":219,"./subtract":220,"./transformMat4":221,"./transformQuat":222}],206:[function(t,e,r){e.exports=function(t,e){return t[0]=1/e[0],t[1]=1/e[1],t[2]=1/e[2],t[3]=1/e[3],t}},{}],207:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2],i=t[3];return Math.sqrt(e*e+r*r+n*n+i*i)}},{}],208:[function(t,e,r){e.exports=function(t,e,r,n){var i=e[0],a=e[1],o=e[2],s=e[3];return t[0]=i+n*(r[0]-i),t[1]=a+n*(r[1]-a),t[2]=o+n*(r[2]-o),t[3]=s+n*(r[3]-s),t}},{}],209:[function(t,e,r){e.exports=function(t,e,r){return t[0]=Math.max(e[0],r[0]),t[1]=Math.max(e[1],r[1]),t[2]=Math.max(e[2],r[2]),t[3]=Math.max(e[3],r[3]),t}},{}],210:[function(t,e,r){e.exports=function(t,e,r){return t[0]=Math.min(e[0],r[0]),t[1]=Math.min(e[1],r[1]),t[2]=Math.min(e[2],r[2]),t[3]=Math.min(e[3],r[3]),t}},{}],211:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r[0],t[1]=e[1]*r[1],t[2]=e[2]*r[2],t[3]=e[3]*r[3],t}},{}],212:[function(t,e,r){e.exports=function(t,e){return t[0]=-e[0],t[1]=-e[1],t[2]=-e[2],t[3]=-e[3],t}},{}],213:[function(t,e,r){e.exports=function(t,e){var r=e[0],n=e[1],i=e[2],a=e[3],o=r*r+n*n+i*i+a*a;o>0&&(o=1/Math.sqrt(o),t[0]=r*o,t[1]=n*o,t[2]=i*o,t[3]=a*o);return t}},{}],214:[function(t,e,r){var n=t("./normalize"),i=t("./scale");e.exports=function(t,e){return e=e||1,t[0]=Math.random(),t[1]=Math.random(),t[2]=Math.random(),t[3]=Math.random(),n(t,t),i(t,t,e),t}},{"./normalize":213,"./scale":215}],215:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]*r,t[1]=e[1]*r,t[2]=e[2]*r,t[3]=e[3]*r,t}},{}],216:[function(t,e,r){e.exports=function(t,e,r,n){return t[0]=e[0]+r[0]*n,t[1]=e[1]+r[1]*n,t[2]=e[2]+r[2]*n,t[3]=e[3]+r[3]*n,t}},{}],217:[function(t,e,r){e.exports=function(t,e,r,n,i){return t[0]=e,t[1]=r,t[2]=n,t[3]=i,t}},{}],218:[function(t,e,r){e.exports=function(t,e){var r=e[0]-t[0],n=e[1]-t[1],i=e[2]-t[2],a=e[3]-t[3];return r*r+n*n+i*i+a*a}},{}],219:[function(t,e,r){e.exports=function(t){var e=t[0],r=t[1],n=t[2],i=t[3];return e*e+r*r+n*n+i*i}},{}],220:[function(t,e,r){e.exports=function(t,e,r){return t[0]=e[0]-r[0],t[1]=e[1]-r[1],t[2]=e[2]-r[2],t[3]=e[3]-r[3],t}},{}],221:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=e[3];return t[0]=r[0]*n+r[4]*i+r[8]*a+r[12]*o,t[1]=r[1]*n+r[5]*i+r[9]*a+r[13]*o,t[2]=r[2]*n+r[6]*i+r[10]*a+r[14]*o,t[3]=r[3]*n+r[7]*i+r[11]*a+r[15]*o,t}},{}],222:[function(t,e,r){e.exports=function(t,e,r){var n=e[0],i=e[1],a=e[2],o=r[0],s=r[1],l=r[2],c=r[3],u=c*n+s*a-l*i,f=c*i+l*n-o*a,h=c*a+o*i-s*n,p=-o*n-s*i-l*a;return t[0]=u*c+p*-o+f*-l-h*-s,t[1]=f*c+p*-s+h*-o-u*-l,t[2]=h*c+p*-l+u*-s-f*-o,t[3]=e[3],t}},{}],223:[function(t,e,r){var n=t("glsl-tokenizer"),i=t("atob-lite");e.exports=function(t){for(var e=Array.isArray(t)?t:n(t),r=0;r0)continue;r=t.slice(0,1).join("")}return A(r),v+=r.length,(p=p.slice(r.length)).length}}function I(){return/[^a-fA-F0-9]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function O(){return"."===e||/[eE]/.test(e)?(p.push(e),h=5,r=e,u+1):"x"===e&&1===p.length&&"0"===p[0]?(h=11,p.push(e),r=e,u+1):/[^\d]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function z(){return"f"===e&&(p.push(e),r=e,u+=1),/[eE]/.test(e)?(p.push(e),r=e,u+1):("-"!==e&&"+"!==e||!/[eE]/.test(r))&&/[^\d]/.test(e)?(A(p.join("")),h=999,u):(p.push(e),r=e,u+1)}function D(){if(/[^\d\w_]/.test(e)){var t=p.join("");return h=k[t]?8:T[t]?7:6,A(p.join("")),h=999,u}return p.push(e),r=e,u+1}};var n=t("./lib/literals"),i=t("./lib/operators"),a=t("./lib/builtins"),o=t("./lib/literals-300es"),s=t("./lib/builtins-300es"),l=["block-comment","line-comment","preprocessor","operator","integer","float","ident","builtin","keyword","whitespace","eof","integer"]},{"./lib/builtins":226,"./lib/builtins-300es":225,"./lib/literals":228,"./lib/literals-300es":227,"./lib/operators":229}],225:[function(t,e,r){var n=t("./builtins");n=n.slice().filter((function(t){return!/^(gl\_|texture)/.test(t)})),e.exports=n.concat(["gl_VertexID","gl_InstanceID","gl_Position","gl_PointSize","gl_FragCoord","gl_FrontFacing","gl_FragDepth","gl_PointCoord","gl_MaxVertexAttribs","gl_MaxVertexUniformVectors","gl_MaxVertexOutputVectors","gl_MaxFragmentInputVectors","gl_MaxVertexTextureImageUnits","gl_MaxCombinedTextureImageUnits","gl_MaxTextureImageUnits","gl_MaxFragmentUniformVectors","gl_MaxDrawBuffers","gl_MinProgramTexelOffset","gl_MaxProgramTexelOffset","gl_DepthRangeParameters","gl_DepthRange","trunc","round","roundEven","isnan","isinf","floatBitsToInt","floatBitsToUint","intBitsToFloat","uintBitsToFloat","packSnorm2x16","unpackSnorm2x16","packUnorm2x16","unpackUnorm2x16","packHalf2x16","unpackHalf2x16","outerProduct","transpose","determinant","inverse","texture","textureSize","textureProj","textureLod","textureOffset","texelFetch","texelFetchOffset","textureProjOffset","textureLodOffset","textureProjLod","textureProjLodOffset","textureGrad","textureGradOffset","textureProjGrad","textureProjGradOffset"])},{"./builtins":226}],226:[function(t,e,r){e.exports=["abs","acos","all","any","asin","atan","ceil","clamp","cos","cross","dFdx","dFdy","degrees","distance","dot","equal","exp","exp2","faceforward","floor","fract","gl_BackColor","gl_BackLightModelProduct","gl_BackLightProduct","gl_BackMaterial","gl_BackSecondaryColor","gl_ClipPlane","gl_ClipVertex","gl_Color","gl_DepthRange","gl_DepthRangeParameters","gl_EyePlaneQ","gl_EyePlaneR","gl_EyePlaneS","gl_EyePlaneT","gl_Fog","gl_FogCoord","gl_FogFragCoord","gl_FogParameters","gl_FragColor","gl_FragCoord","gl_FragData","gl_FragDepth","gl_FragDepthEXT","gl_FrontColor","gl_FrontFacing","gl_FrontLightModelProduct","gl_FrontLightProduct","gl_FrontMaterial","gl_FrontSecondaryColor","gl_LightModel","gl_LightModelParameters","gl_LightModelProducts","gl_LightProducts","gl_LightSource","gl_LightSourceParameters","gl_MaterialParameters","gl_MaxClipPlanes","gl_MaxCombinedTextureImageUnits","gl_MaxDrawBuffers","gl_MaxFragmentUniformComponents","gl_MaxLights","gl_MaxTextureCoords","gl_MaxTextureImageUnits","gl_MaxTextureUnits","gl_MaxVaryingFloats","gl_MaxVertexAttribs","gl_MaxVertexTextureImageUnits","gl_MaxVertexUniformComponents","gl_ModelViewMatrix","gl_ModelViewMatrixInverse","gl_ModelViewMatrixInverseTranspose","gl_ModelViewMatrixTranspose","gl_ModelViewProjectionMatrix","gl_ModelViewProjectionMatrixInverse","gl_ModelViewProjectionMatrixInverseTranspose","gl_ModelViewProjectionMatrixTranspose","gl_MultiTexCoord0","gl_MultiTexCoord1","gl_MultiTexCoord2","gl_MultiTexCoord3","gl_MultiTexCoord4","gl_MultiTexCoord5","gl_MultiTexCoord6","gl_MultiTexCoord7","gl_Normal","gl_NormalMatrix","gl_NormalScale","gl_ObjectPlaneQ","gl_ObjectPlaneR","gl_ObjectPlaneS","gl_ObjectPlaneT","gl_Point","gl_PointCoord","gl_PointParameters","gl_PointSize","gl_Position","gl_ProjectionMatrix","gl_ProjectionMatrixInverse","gl_ProjectionMatrixInverseTranspose","gl_ProjectionMatrixTranspose","gl_SecondaryColor","gl_TexCoord","gl_TextureEnvColor","gl_TextureMatrix","gl_TextureMatrixInverse","gl_TextureMatrixInverseTranspose","gl_TextureMatrixTranspose","gl_Vertex","greaterThan","greaterThanEqual","inversesqrt","length","lessThan","lessThanEqual","log","log2","matrixCompMult","max","min","mix","mod","normalize","not","notEqual","pow","radians","reflect","refract","sign","sin","smoothstep","sqrt","step","tan","texture2D","texture2DLod","texture2DProj","texture2DProjLod","textureCube","textureCubeLod","texture2DLodEXT","texture2DProjLodEXT","textureCubeLodEXT","texture2DGradEXT","texture2DProjGradEXT","textureCubeGradEXT"]},{}],227:[function(t,e,r){var n=t("./literals");e.exports=n.slice().concat(["layout","centroid","smooth","case","mat2x2","mat2x3","mat2x4","mat3x2","mat3x3","mat3x4","mat4x2","mat4x3","mat4x4","uvec2","uvec3","uvec4","samplerCubeShadow","sampler2DArray","sampler2DArrayShadow","isampler2D","isampler3D","isamplerCube","isampler2DArray","usampler2D","usampler3D","usamplerCube","usampler2DArray","coherent","restrict","readonly","writeonly","resource","atomic_uint","noperspective","patch","sample","subroutine","common","partition","active","filter","image1D","image2D","image3D","imageCube","iimage1D","iimage2D","iimage3D","iimageCube","uimage1D","uimage2D","uimage3D","uimageCube","image1DArray","image2DArray","iimage1DArray","iimage2DArray","uimage1DArray","uimage2DArray","image1DShadow","image2DShadow","image1DArrayShadow","image2DArrayShadow","imageBuffer","iimageBuffer","uimageBuffer","sampler1DArray","sampler1DArrayShadow","isampler1D","isampler1DArray","usampler1D","usampler1DArray","isampler2DRect","usampler2DRect","samplerBuffer","isamplerBuffer","usamplerBuffer","sampler2DMS","isampler2DMS","usampler2DMS","sampler2DMSArray","isampler2DMSArray","usampler2DMSArray"])},{"./literals":228}],228:[function(t,e,r){e.exports=["precision","highp","mediump","lowp","attribute","const","uniform","varying","break","continue","do","for","while","if","else","in","out","inout","float","int","uint","void","bool","true","false","discard","return","mat2","mat3","mat4","vec2","vec3","vec4","ivec2","ivec3","ivec4","bvec2","bvec3","bvec4","sampler1D","sampler2D","sampler3D","samplerCube","sampler1DShadow","sampler2DShadow","struct","asm","class","union","enum","typedef","template","this","packed","goto","switch","default","inline","noinline","volatile","public","static","extern","external","interface","long","short","double","half","fixed","unsigned","input","output","hvec2","hvec3","hvec4","dvec2","dvec3","dvec4","fvec2","fvec3","fvec4","sampler2DRect","sampler3DRect","sampler2DRectShadow","sizeof","cast","namespace","using"]},{}],229:[function(t,e,r){e.exports=["<<=",">>=","++","--","<<",">>","<=",">=","==","!=","&&","||","+=","-=","*=","/=","%=","&=","^^","^=","|=","(",")","[","]",".","!","~","*","/","%","+","-","<",">","&","^","|","?",":","=",",",";","{","}"]},{}],230:[function(t,e,r){var n=t("./index");e.exports=function(t,e){var r=n(e),i=[];return i=(i=i.concat(r(t))).concat(r(null))}},{"./index":224}],231:[function(t,e,r){e.exports=function(t){"string"==typeof t&&(t=[t]);for(var e=[].slice.call(arguments,1),r=[],n=0;n0;)for(var s=(t=o.pop()).adjacent,l=0;l<=r;++l){var c=s[l];if(c.boundary&&!(c.lastVisited<=-n)){for(var u=c.vertices,f=0;f<=r;++f){var h=u[f];i[f]=h<0?e:a[h]}var p=this.orient();if(p>0)return c;c.lastVisited=-n,0===p&&o.push(c)}}return null},u.walk=function(t,e){var r=this.vertices.length-1,n=this.dimension,i=this.vertices,a=this.tuple,o=e?this.interior.length*Math.random()|0:this.interior.length-1,s=this.interior[o];t:for(;!s.boundary;){for(var l=s.vertices,c=s.adjacent,u=0;u<=n;++u)a[u]=i[l[u]];s.lastVisited=r;for(u=0;u<=n;++u){var f=c[u];if(!(f.lastVisited>=r)){var h=a[u];a[u]=t;var p=this.orient();if(a[u]=h,p<0){s=f;continue t}f.boundary?f.lastVisited=-r:f.lastVisited=r}}return}return s},u.addPeaks=function(t,e){var r=this.vertices.length-1,n=this.dimension,i=this.vertices,l=this.tuple,c=this.interior,u=this.simplices,f=[e];e.lastVisited=r,e.vertices[e.vertices.indexOf(-1)]=r,e.boundary=!1,c.push(e);for(var h=[];f.length>0;){var p=(e=f.pop()).vertices,d=e.adjacent,m=p.indexOf(r);if(!(m<0))for(var g=0;g<=n;++g)if(g!==m){var v=d[g];if(v.boundary&&!(v.lastVisited>=r)){var y=v.vertices;if(v.lastVisited!==-r){for(var x=0,b=0;b<=n;++b)y[b]<0?(x=b,l[b]=t):l[b]=i[y[b]];if(this.orient()>0){y[x]=r,v.boundary=!1,c.push(v),f.push(v),v.lastVisited=r;continue}v.lastVisited=-r}var _=v.adjacent,w=p.slice(),T=d.slice(),k=new a(w,T,!0);u.push(k);var A=_.indexOf(e);if(!(A<0)){_[A]=k,T[m]=v,w[g]=-1,T[g]=e,d[g]=k,k.flip();for(b=0;b<=n;++b){var M=w[b];if(!(M<0||M===r)){for(var S=new Array(n-1),E=0,L=0;L<=n;++L){var C=w[L];C<0||L===b||(S[E++]=C)}h.push(new o(S,k,b))}}}}}}h.sort(s);for(g=0;g+1=0?o[l++]=s[u]:c=1&u;if(c===(1&t)){var f=o[0];o[0]=o[1],o[1]=f}e.push(o)}}return e}},{"robust-orientation":284,"simplicial-complex":293}],234:[function(t,e,r){"use strict";var n=t("binary-search-bounds");function i(t,e,r,n,i){this.mid=t,this.left=e,this.right=r,this.leftPoints=n,this.rightPoints=i,this.count=(e?e.count:0)+(r?r.count:0)+n.length}e.exports=function(t){if(!t||0===t.length)return new v(null);return new v(g(t))};var a=i.prototype;function o(t,e){t.mid=e.mid,t.left=e.left,t.right=e.right,t.leftPoints=e.leftPoints,t.rightPoints=e.rightPoints,t.count=e.count}function s(t,e){var r=g(e);t.mid=r.mid,t.left=r.left,t.right=r.right,t.leftPoints=r.leftPoints,t.rightPoints=r.rightPoints,t.count=r.count}function l(t,e){var r=t.intervals([]);r.push(e),s(t,r)}function c(t,e){var r=t.intervals([]),n=r.indexOf(e);return n<0?0:(r.splice(n,1),s(t,r),1)}function u(t,e,r){for(var n=0;n=0&&t[n][1]>=e;--n){var i=r(t[n]);if(i)return i}}function h(t,e){for(var r=0;r>1],a=[],o=[],s=[];for(r=0;r3*(e+1)?l(this,t):this.left.insert(t):this.left=g([t]);else if(t[0]>this.mid)this.right?4*(this.right.count+1)>3*(e+1)?l(this,t):this.right.insert(t):this.right=g([t]);else{var r=n.ge(this.leftPoints,t,d),i=n.ge(this.rightPoints,t,m);this.leftPoints.splice(r,0,t),this.rightPoints.splice(i,0,t)}},a.remove=function(t){var e=this.count-this.leftPoints;if(t[1]3*(e-1)?c(this,t):2===(s=this.left.remove(t))?(this.left=null,this.count-=1,1):(1===s&&(this.count-=1),s):0;if(t[0]>this.mid)return this.right?4*(this.left?this.left.count:0)>3*(e-1)?c(this,t):2===(s=this.right.remove(t))?(this.right=null,this.count-=1,1):(1===s&&(this.count-=1),s):0;if(1===this.count)return this.leftPoints[0]===t?2:0;if(1===this.leftPoints.length&&this.leftPoints[0]===t){if(this.left&&this.right){for(var r=this,i=this.left;i.right;)r=i,i=i.right;if(r===this)i.right=this.right;else{var a=this.left,s=this.right;r.count-=i.count,r.right=i.left,i.left=a,i.right=s}o(this,i),this.count=(this.left?this.left.count:0)+(this.right?this.right.count:0)+this.leftPoints.length}else this.left?o(this,this.left):o(this,this.right);return 1}for(a=n.ge(this.leftPoints,t,d);athis.mid){var r;if(this.right)if(r=this.right.queryPoint(t,e))return r;return f(this.rightPoints,t,e)}return h(this.leftPoints,e)},a.queryInterval=function(t,e,r){var n;if(tthis.mid&&this.right&&(n=this.right.queryInterval(t,e,r)))return n;return ethis.mid?f(this.rightPoints,t,r):h(this.leftPoints,r)};var y=v.prototype;y.insert=function(t){this.root?this.root.insert(t):this.root=new i(t[0],null,null,[t],[t])},y.remove=function(t){if(this.root){var e=this.root.remove(t);return 2===e&&(this.root=null),0!==e}return!1},y.queryPoint=function(t,e){if(this.root)return this.root.queryPoint(t,e)},y.queryInterval=function(t,e,r){if(t<=e&&this.root)return this.root.queryInterval(t,e,r)},Object.defineProperty(y,"count",{get:function(){return this.root?this.root.count:0}}),Object.defineProperty(y,"intervals",{get:function(){return this.root?this.root.intervals([]):[]}})},{"binary-search-bounds":31}],235:[function(t,e,r){"use strict";e.exports=function(t){for(var e=new Array(t),r=0;r - * @license MIT - */ -e.exports=function(t){return null!=t&&(n(t)||function(t){return"function"==typeof t.readFloatLE&&"function"==typeof t.slice&&n(t.slice(0,0))}(t)||!!t._isBuffer)}},{}],238:[function(t,e,r){"use strict";e.exports=a,e.exports.isMobile=a,e.exports.default=a;var n=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino/i,i=/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series[46]0|symbian|treo|up\.(browser|link)|vodafone|wap|windows (ce|phone)|xda|xiino|android|ipad|playbook|silk/i;function a(t){t||(t={});var e=t.ua;if(e||"undefined"==typeof navigator||(e=navigator.userAgent),e&&e.headers&&"string"==typeof e.headers["user-agent"]&&(e=e.headers["user-agent"]),"string"!=typeof e)return!1;var r=t.tablet?i.test(e):n.test(e);return!r&&t.tablet&&t.featureDetect&&navigator&&navigator.maxTouchPoints>1&&-1!==e.indexOf("Macintosh")&&-1!==e.indexOf("Safari")&&(r=!0),r}},{}],239:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=t.length,n=0;n13)&&32!==e&&133!==e&&160!==e&&5760!==e&&6158!==e&&(e<8192||e>8205)&&8232!==e&&8233!==e&&8239!==e&&8287!==e&&8288!==e&&12288!==e&&65279!==e)return!1;return!0}},{}],240:[function(t,e,r){e.exports=function(t,e,r){return t*(1-r)+e*r}},{}],241:[function(t,e,r){var n=t("./normalize"),i=t("gl-mat4/create"),a=t("gl-mat4/clone"),o=t("gl-mat4/determinant"),s=t("gl-mat4/invert"),l=t("gl-mat4/transpose"),c={length:t("gl-vec3/length"),normalize:t("gl-vec3/normalize"),dot:t("gl-vec3/dot"),cross:t("gl-vec3/cross")},u=i(),f=i(),h=[0,0,0,0],p=[[0,0,0],[0,0,0],[0,0,0]],d=[0,0,0];function m(t,e,r,n,i){t[0]=e[0]*n+r[0]*i,t[1]=e[1]*n+r[1]*i,t[2]=e[2]*n+r[2]*i}e.exports=function(t,e,r,i,g,v){if(e||(e=[0,0,0]),r||(r=[0,0,0]),i||(i=[0,0,0]),g||(g=[0,0,0,1]),v||(v=[0,0,0,1]),!n(u,t))return!1;if(a(f,u),f[3]=0,f[7]=0,f[11]=0,f[15]=1,Math.abs(o(f)<1e-8))return!1;var y,x,b,_,w,T,k,A=u[3],M=u[7],S=u[11],E=u[12],L=u[13],C=u[14],P=u[15];if(0!==A||0!==M||0!==S){if(h[0]=A,h[1]=M,h[2]=S,h[3]=P,!s(f,f))return!1;l(f,f),y=g,b=f,_=(x=h)[0],w=x[1],T=x[2],k=x[3],y[0]=b[0]*_+b[4]*w+b[8]*T+b[12]*k,y[1]=b[1]*_+b[5]*w+b[9]*T+b[13]*k,y[2]=b[2]*_+b[6]*w+b[10]*T+b[14]*k,y[3]=b[3]*_+b[7]*w+b[11]*T+b[15]*k}else g[0]=g[1]=g[2]=0,g[3]=1;if(e[0]=E,e[1]=L,e[2]=C,function(t,e){t[0][0]=e[0],t[0][1]=e[1],t[0][2]=e[2],t[1][0]=e[4],t[1][1]=e[5],t[1][2]=e[6],t[2][0]=e[8],t[2][1]=e[9],t[2][2]=e[10]}(p,u),r[0]=c.length(p[0]),c.normalize(p[0],p[0]),i[0]=c.dot(p[0],p[1]),m(p[1],p[1],p[0],1,-i[0]),r[1]=c.length(p[1]),c.normalize(p[1],p[1]),i[0]/=r[1],i[1]=c.dot(p[0],p[2]),m(p[2],p[2],p[0],1,-i[1]),i[2]=c.dot(p[1],p[2]),m(p[2],p[2],p[1],1,-i[2]),r[2]=c.length(p[2]),c.normalize(p[2],p[2]),i[1]/=r[2],i[2]/=r[2],c.cross(d,p[1],p[2]),c.dot(p[0],d)<0)for(var I=0;I<3;I++)r[I]*=-1,p[I][0]*=-1,p[I][1]*=-1,p[I][2]*=-1;return v[0]=.5*Math.sqrt(Math.max(1+p[0][0]-p[1][1]-p[2][2],0)),v[1]=.5*Math.sqrt(Math.max(1-p[0][0]+p[1][1]-p[2][2],0)),v[2]=.5*Math.sqrt(Math.max(1-p[0][0]-p[1][1]+p[2][2],0)),v[3]=.5*Math.sqrt(Math.max(1+p[0][0]+p[1][1]+p[2][2],0)),p[2][1]>p[1][2]&&(v[0]=-v[0]),p[0][2]>p[2][0]&&(v[1]=-v[1]),p[1][0]>p[0][1]&&(v[2]=-v[2]),!0}},{"./normalize":242,"gl-mat4/clone":92,"gl-mat4/create":93,"gl-mat4/determinant":94,"gl-mat4/invert":98,"gl-mat4/transpose":109,"gl-vec3/cross":157,"gl-vec3/dot":162,"gl-vec3/length":172,"gl-vec3/normalize":179}],242:[function(t,e,r){e.exports=function(t,e){var r=e[15];if(0===r)return!1;for(var n=1/r,i=0;i<16;i++)t[i]=e[i]*n;return!0}},{}],243:[function(t,e,r){var n=t("gl-vec3/lerp"),i=t("mat4-recompose"),a=t("mat4-decompose"),o=t("gl-mat4/determinant"),s=t("quat-slerp"),l=f(),c=f(),u=f();function f(){return{translate:h(),scale:h(1),skew:h(),perspective:[0,0,0,1],quaternion:[0,0,0,1]}}function h(t){return[t||0,t||0,t||0]}e.exports=function(t,e,r,f){if(0===o(e)||0===o(r))return!1;var h=a(e,l.translate,l.scale,l.skew,l.perspective,l.quaternion),p=a(r,c.translate,c.scale,c.skew,c.perspective,c.quaternion);return!(!h||!p)&&(n(u.translate,l.translate,c.translate,f),n(u.skew,l.skew,c.skew,f),n(u.scale,l.scale,c.scale,f),n(u.perspective,l.perspective,c.perspective,f),s(u.quaternion,l.quaternion,c.quaternion,f),i(t,u.translate,u.scale,u.skew,u.perspective,u.quaternion),!0)}},{"gl-mat4/determinant":94,"gl-vec3/lerp":173,"mat4-decompose":241,"mat4-recompose":244,"quat-slerp":271}],244:[function(t,e,r){var n={identity:t("gl-mat4/identity"),translate:t("gl-mat4/translate"),multiply:t("gl-mat4/multiply"),create:t("gl-mat4/create"),scale:t("gl-mat4/scale"),fromRotationTranslation:t("gl-mat4/fromRotationTranslation")},i=(n.create(),n.create());e.exports=function(t,e,r,a,o,s){return n.identity(t),n.fromRotationTranslation(t,s,e),t[3]=o[0],t[7]=o[1],t[11]=o[2],t[15]=o[3],n.identity(i),0!==a[2]&&(i[9]=a[2],n.multiply(t,t,i)),0!==a[1]&&(i[9]=0,i[8]=a[1],n.multiply(t,t,i)),0!==a[0]&&(i[8]=0,i[4]=a[0],n.multiply(t,t,i)),n.scale(t,t,r),t}},{"gl-mat4/create":93,"gl-mat4/fromRotationTranslation":96,"gl-mat4/identity":97,"gl-mat4/multiply":100,"gl-mat4/scale":107,"gl-mat4/translate":108}],245:[function(t,e,r){"use strict";var n=t("binary-search-bounds"),i=t("mat4-interpolate"),a=t("gl-mat4/invert"),o=t("gl-mat4/rotateX"),s=t("gl-mat4/rotateY"),l=t("gl-mat4/rotateZ"),c=t("gl-mat4/lookAt"),u=t("gl-mat4/translate"),f=(t("gl-mat4/scale"),t("gl-vec3/normalize")),h=[0,0,0];function p(t){this._components=t.slice(),this._time=[0],this.prevMatrix=t.slice(),this.nextMatrix=t.slice(),this.computedMatrix=t.slice(),this.computedInverse=t.slice(),this.computedEye=[0,0,0],this.computedUp=[0,0,0],this.computedCenter=[0,0,0],this.computedRadius=[0],this._limits=[-1/0,1/0]}e.exports=function(t){return new p((t=t||{}).matrix||[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1])};var d=p.prototype;d.recalcMatrix=function(t){var e=this._time,r=n.le(e,t),o=this.computedMatrix;if(!(r<0)){var s=this._components;if(r===e.length-1)for(var l=16*r,c=0;c<16;++c)o[c]=s[l++];else{var u=e[r+1]-e[r],h=(l=16*r,this.prevMatrix),p=!0;for(c=0;c<16;++c)h[c]=s[l++];var d=this.nextMatrix;for(c=0;c<16;++c)d[c]=s[l++],p=p&&h[c]===d[c];if(u<1e-6||p)for(c=0;c<16;++c)o[c]=h[c];else i(o,h,d,(t-e[r])/u)}var m=this.computedUp;m[0]=o[1],m[1]=o[5],m[2]=o[9],f(m,m);var g=this.computedInverse;a(g,o);var v=this.computedEye,y=g[15];v[0]=g[12]/y,v[1]=g[13]/y,v[2]=g[14]/y;var x=this.computedCenter,b=Math.exp(this.computedRadius[0]);for(c=0;c<3;++c)x[c]=v[c]-o[2+4*c]*b}},d.idle=function(t){if(!(t1&&n(t[o[u-2]],t[o[u-1]],c)<=0;)u-=1,o.pop();for(o.push(l),u=s.length;u>1&&n(t[s[u-2]],t[s[u-1]],c)>=0;)u-=1,s.pop();s.push(l)}r=new Array(s.length+o.length-2);for(var f=0,h=(i=0,o.length);i0;--p)r[f++]=s[p];return r};var n=t("robust-orientation")[3]},{"robust-orientation":284}],247:[function(t,e,r){"use strict";e.exports=function(t,e){e||(e=t,t=window);var r=0,i=0,a=0,o={shift:!1,alt:!1,control:!1,meta:!1},s=!1;function l(t){var e=!1;return"altKey"in t&&(e=e||t.altKey!==o.alt,o.alt=!!t.altKey),"shiftKey"in t&&(e=e||t.shiftKey!==o.shift,o.shift=!!t.shiftKey),"ctrlKey"in t&&(e=e||t.ctrlKey!==o.control,o.control=!!t.ctrlKey),"metaKey"in t&&(e=e||t.metaKey!==o.meta,o.meta=!!t.metaKey),e}function c(t,s){var c=n.x(s),u=n.y(s);"buttons"in s&&(t=0|s.buttons),(t!==r||c!==i||u!==a||l(s))&&(r=0|t,i=c||0,a=u||0,e&&e(r,i,a,o))}function u(t){c(0,t)}function f(){(r||i||a||o.shift||o.alt||o.meta||o.control)&&(i=a=0,r=0,o.shift=o.alt=o.control=o.meta=!1,e&&e(0,0,0,o))}function h(t){l(t)&&e&&e(r,i,a,o)}function p(t){0===n.buttons(t)?c(0,t):c(r,t)}function d(t){c(r|n.buttons(t),t)}function m(t){c(r&~n.buttons(t),t)}function g(){s||(s=!0,t.addEventListener("mousemove",p),t.addEventListener("mousedown",d),t.addEventListener("mouseup",m),t.addEventListener("mouseleave",u),t.addEventListener("mouseenter",u),t.addEventListener("mouseout",u),t.addEventListener("mouseover",u),t.addEventListener("blur",f),t.addEventListener("keyup",h),t.addEventListener("keydown",h),t.addEventListener("keypress",h),t!==window&&(window.addEventListener("blur",f),window.addEventListener("keyup",h),window.addEventListener("keydown",h),window.addEventListener("keypress",h)))}g();var v={element:t};return Object.defineProperties(v,{enabled:{get:function(){return s},set:function(e){e?g():function(){if(!s)return;s=!1,t.removeEventListener("mousemove",p),t.removeEventListener("mousedown",d),t.removeEventListener("mouseup",m),t.removeEventListener("mouseleave",u),t.removeEventListener("mouseenter",u),t.removeEventListener("mouseout",u),t.removeEventListener("mouseover",u),t.removeEventListener("blur",f),t.removeEventListener("keyup",h),t.removeEventListener("keydown",h),t.removeEventListener("keypress",h),t!==window&&(window.removeEventListener("blur",f),window.removeEventListener("keyup",h),window.removeEventListener("keydown",h),window.removeEventListener("keypress",h))}()},enumerable:!0},buttons:{get:function(){return r},enumerable:!0},x:{get:function(){return i},enumerable:!0},y:{get:function(){return a},enumerable:!0},mods:{get:function(){return o},enumerable:!0}}),v};var n=t("mouse-event")},{"mouse-event":249}],248:[function(t,e,r){var n={left:0,top:0};e.exports=function(t,e,r){e=e||t.currentTarget||t.srcElement,Array.isArray(r)||(r=[0,0]);var i=t.clientX||0,a=t.clientY||0,o=(s=e,s===window||s===document||s===document.body?n:s.getBoundingClientRect());var s;return r[0]=i-o.left,r[1]=a-o.top,r}},{}],249:[function(t,e,r){"use strict";function n(t){return t.target||t.srcElement||window}r.buttons=function(t){if("object"==typeof t){if("buttons"in t)return t.buttons;if("which"in t){if(2===(e=t.which))return 4;if(3===e)return 2;if(e>0)return 1<=0)return 1< 0");"function"!=typeof t.vertex&&e("Must specify vertex creation function");"function"!=typeof t.cell&&e("Must specify cell creation function");"function"!=typeof t.phase&&e("Must specify phase function");for(var s=t.getters||[],l=new Array(a),c=0;c=0?l[c]=!0:l[c]=!1;return function(t,e,r,a,o,s){var l=[s,o].join(",");return(0,i[l])(t,e,r,n.mallocUint32,n.freeUint32)}(t.vertex,t.cell,t.phase,0,r,l)};var i={"false,0,1":function(t,e,r,n,i){return function(a,o,s,l){var c,u=0|a.shape[0],f=0|a.shape[1],h=a.data,p=0|a.offset,d=0|a.stride[0],m=0|a.stride[1],g=p,v=0|-d,y=0,x=0|-m,b=0,_=-d-m|0,w=0,T=0|d,k=m-d*u|0,A=0,M=0,S=0,E=2*u|0,L=n(E),C=n(E),P=0,I=0,O=-1,z=-1,D=0,R=0|-u,F=0|u,B=0,N=-u-1|0,j=u-1|0,U=0,V=0,H=0;for(A=0;A0){if(M=1,L[P++]=r(h[g],o,s,l),g+=T,u>0)for(A=1,c=h[g],I=L[P]=r(c,o,s,l),D=L[P+O],B=L[P+R],U=L[P+N],I===D&&I===B&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,D,B,U,o,s,l),V=C[P]=S++),P+=1,g+=T,A=2;A0)for(A=1,c=h[g],I=L[P]=r(c,o,s,l),D=L[P+O],B=L[P+R],U=L[P+N],I===D&&I===B&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,D,B,U,o,s,l),V=C[P]=S++,U!==B&&e(C[P+R],V,b,w,B,U,o,s,l)),P+=1,g+=T,A=2;A0){if(A=1,L[P++]=r(h[g],o,s,l),g+=T,f>0)for(M=1,c=h[g],I=L[P]=r(c,o,s,l),B=L[P+R],D=L[P+O],U=L[P+N],I===B&&I===D&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,B,D,U,o,s,l),V=C[P]=S++),P+=1,g+=T,M=2;M0)for(M=1,c=h[g],I=L[P]=r(c,o,s,l),B=L[P+R],D=L[P+O],U=L[P+N],I===B&&I===D&&I===U||(y=h[g+v],b=h[g+x],w=h[g+_],t(A,M,c,y,b,w,I,B,D,U,o,s,l),V=C[P]=S++,U!==B&&e(C[P+R],V,w,y,U,B,o,s,l)),P+=1,g+=T,M=2;M2&&a[1]>2&&n(i.pick(-1,-1).lo(1,1).hi(a[0]-2,a[1]-2),t.pick(-1,-1,0).lo(1,1).hi(a[0]-2,a[1]-2),t.pick(-1,-1,1).lo(1,1).hi(a[0]-2,a[1]-2)),a[1]>2&&(r(i.pick(0,-1).lo(1).hi(a[1]-2),t.pick(0,-1,1).lo(1).hi(a[1]-2)),e(t.pick(0,-1,0).lo(1).hi(a[1]-2))),a[1]>2&&(r(i.pick(a[0]-1,-1).lo(1).hi(a[1]-2),t.pick(a[0]-1,-1,1).lo(1).hi(a[1]-2)),e(t.pick(a[0]-1,-1,0).lo(1).hi(a[1]-2))),a[0]>2&&(r(i.pick(-1,0).lo(1).hi(a[0]-2),t.pick(-1,0,0).lo(1).hi(a[0]-2)),e(t.pick(-1,0,1).lo(1).hi(a[0]-2))),a[0]>2&&(r(i.pick(-1,a[1]-1).lo(1).hi(a[0]-2),t.pick(-1,a[1]-1,0).lo(1).hi(a[0]-2)),e(t.pick(-1,a[1]-1,1).lo(1).hi(a[0]-2))),t.set(0,0,0,0),t.set(0,0,1,0),t.set(a[0]-1,0,0,0),t.set(a[0]-1,0,1,0),t.set(0,a[1]-1,0,0),t.set(0,a[1]-1,1,0),t.set(a[0]-1,a[1]-1,0,0),t.set(a[0]-1,a[1]-1,1,0),t}}e.exports=function(t,e,r){return Array.isArray(r)||(r=n(e.dimension,"string"==typeof r?r:"clamp")),0===e.size?t:0===e.dimension?(t.set(0),t):function(t){var e=t.join();if(a=u[e])return a;for(var r=t.length,n=[f,h],i=1;i<=r;++i)n.push(p(i));var a=d.apply(void 0,n);return u[e]=a,a}(r)(t,e)}},{dup:65}],253:[function(t,e,r){"use strict";function n(t,e){var r=Math.floor(e),n=e-r,i=0<=r&&r0;){x<64?(l=x,x=0):(l=64,x-=64);for(var b=0|t[1];b>0;){b<64?(c=b,b=0):(c=64,b-=64),n=v+x*f+b*h,o=y+x*d+b*m;var _=0,w=0,T=0,k=p,A=f-u*p,M=h-l*f,S=g,E=d-u*g,L=m-l*d;for(T=0;T0;){m<64?(l=m,m=0):(l=64,m-=64);for(var g=0|t[0];g>0;){g<64?(s=g,g=0):(s=64,g-=64),n=p+m*u+g*c,o=d+m*h+g*f;var v=0,y=0,x=u,b=c-l*u,_=h,w=f-l*h;for(y=0;y0;){y<64?(c=y,y=0):(c=64,y-=64);for(var x=0|t[0];x>0;){x<64?(s=x,x=0):(s=64,x-=64);for(var b=0|t[1];b>0;){b<64?(l=b,b=0):(l=64,b-=64),n=g+y*h+x*u+b*f,o=v+y*m+x*p+b*d;var _=0,w=0,T=0,k=h,A=u-c*h,M=f-s*u,S=m,E=p-c*m,L=d-s*p;for(T=0;Tr;){v=0,y=m-o;e:for(g=0;gb)break e;y+=f,v+=h}for(v=m,y=m-o,g=0;g>1,q=H-j,G=H+j,Y=U,W=q,X=H,Z=G,J=V,K=i+1,Q=a-1,$=!0,tt=0,et=0,rt=0,nt=f,it=e(nt),at=e(nt);A=l*Y,M=l*W,N=s;t:for(k=0;k0){g=Y,Y=W,W=g;break t}if(rt<0)break t;N+=p}A=l*Z,M=l*J,N=s;t:for(k=0;k0){g=Z,Z=J,J=g;break t}if(rt<0)break t;N+=p}A=l*Y,M=l*X,N=s;t:for(k=0;k0){g=Y,Y=X,X=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*X,N=s;t:for(k=0;k0){g=W,W=X,X=g;break t}if(rt<0)break t;N+=p}A=l*Y,M=l*Z,N=s;t:for(k=0;k0){g=Y,Y=Z,Z=g;break t}if(rt<0)break t;N+=p}A=l*X,M=l*Z,N=s;t:for(k=0;k0){g=X,X=Z,Z=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*J,N=s;t:for(k=0;k0){g=W,W=J,J=g;break t}if(rt<0)break t;N+=p}A=l*W,M=l*X,N=s;t:for(k=0;k0){g=W,W=X,X=g;break t}if(rt<0)break t;N+=p}A=l*Z,M=l*J,N=s;t:for(k=0;k0){g=Z,Z=J,J=g;break t}if(rt<0)break t;N+=p}for(A=l*Y,M=l*W,S=l*X,E=l*Z,L=l*J,C=l*U,P=l*H,I=l*V,B=0,N=s,k=0;k0)){if(rt<0){for(A=l*b,M=l*K,S=l*Q,N=s,k=0;k0)for(;;){_=s+Q*l,B=0;t:for(k=0;k0)){_=s+Q*l,B=0;t:for(k=0;kV){t:for(;;){for(_=s+K*l,B=0,N=s,k=0;k1&&n?s(r,n[0],n[1]):s(r)}(t,e,l);return n(l,c)}},{"typedarray-pool":308}],258:[function(t,e,r){"use strict";var n=t("./lib/compile_sort.js"),i={};e.exports=function(t){var e=t.order,r=t.dtype,a=[e,r].join(":"),o=i[a];return o||(i[a]=o=n(e,r)),o(t),t}},{"./lib/compile_sort.js":257}],259:[function(t,e,r){var n=t("is-buffer"),i="undefined"!=typeof Float64Array;function a(t,e){return t[0]-e[0]}function o(){var t,e=this.stride,r=new Array(e.length);for(t=0;t=0&&(e+=a*(r=0|t),i-=r),new n(this.data,i,a,e)},i.step=function(t){var e=this.shape[0],r=this.stride[0],i=this.offset,a=0,o=Math.ceil;return"number"==typeof t&&((a=0|t)<0?(i+=r*(e-1),e=o(-e/a)):e=o(e/a),r*=a),new n(this.data,e,r,i)},i.transpose=function(t){t=void 0===t?0:0|t;var e=this.shape,r=this.stride;return new n(this.data,e[t],r[t],this.offset)},i.pick=function(t){var r=[],n=[],i=this.offset;return"number"==typeof t&&t>=0?i=i+this.stride[0]*t|0:(r.push(this.shape[0]),n.push(this.stride[0])),(0,e[r.length+1])(this.data,r,n,i)},function(t,e,r,i){return new n(t,e[0],r[0],i)}},2:function(t,e,r){function n(t,e,r,n,i,a){this.data=t,this.shape=[e,r],this.stride=[n,i],this.offset=0|a}var i=n.prototype;return i.dtype=t,i.dimension=2,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]}}),Object.defineProperty(i,"order",{get:function(){return Math.abs(this.stride[0])>Math.abs(this.stride[1])?[1,0]:[0,1]}}),i.set=function(e,r,n){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r,n):this.data[this.offset+this.stride[0]*e+this.stride[1]*r]=n},i.get=function(e,r){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r):this.data[this.offset+this.stride[0]*e+this.stride[1]*r]},i.index=function(t,e){return this.offset+this.stride[0]*t+this.stride[1]*e},i.hi=function(t,e){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,this.stride[0],this.stride[1],this.offset)},i.lo=function(t,e){var r=this.offset,i=0,a=this.shape[0],o=this.shape[1],s=this.stride[0],l=this.stride[1];return"number"==typeof t&&t>=0&&(r+=s*(i=0|t),a-=i),"number"==typeof e&&e>=0&&(r+=l*(i=0|e),o-=i),new n(this.data,a,o,s,l,r)},i.step=function(t,e){var r=this.shape[0],i=this.shape[1],a=this.stride[0],o=this.stride[1],s=this.offset,l=0,c=Math.ceil;return"number"==typeof t&&((l=0|t)<0?(s+=a*(r-1),r=c(-r/l)):r=c(r/l),a*=l),"number"==typeof e&&((l=0|e)<0?(s+=o*(i-1),i=c(-i/l)):i=c(i/l),o*=l),new n(this.data,r,i,a,o,s)},i.transpose=function(t,e){t=void 0===t?0:0|t,e=void 0===e?1:0|e;var r=this.shape,i=this.stride;return new n(this.data,r[t],r[e],i[t],i[e],this.offset)},i.pick=function(t,r){var n=[],i=[],a=this.offset;return"number"==typeof t&&t>=0?a=a+this.stride[0]*t|0:(n.push(this.shape[0]),i.push(this.stride[0])),"number"==typeof r&&r>=0?a=a+this.stride[1]*r|0:(n.push(this.shape[1]),i.push(this.stride[1])),(0,e[n.length+1])(this.data,n,i,a)},function(t,e,r,i){return new n(t,e[0],e[1],r[0],r[1],i)}},3:function(t,e,r){function n(t,e,r,n,i,a,o,s){this.data=t,this.shape=[e,r,n],this.stride=[i,a,o],this.offset=0|s}var i=n.prototype;return i.dtype=t,i.dimension=3,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]}}),Object.defineProperty(i,"order",{get:function(){var t=Math.abs(this.stride[0]),e=Math.abs(this.stride[1]),r=Math.abs(this.stride[2]);return t>e?e>r?[2,1,0]:t>r?[1,2,0]:[1,0,2]:t>r?[2,0,1]:r>e?[0,1,2]:[0,2,1]}}),i.set=function(e,r,n,i){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n,i):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n]=i},i.get=function(e,r,n){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n]},i.index=function(t,e,r){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r},i.hi=function(t,e,r){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,this.stride[0],this.stride[1],this.stride[2],this.offset)},i.lo=function(t,e,r){var i=this.offset,a=0,o=this.shape[0],s=this.shape[1],l=this.shape[2],c=this.stride[0],u=this.stride[1],f=this.stride[2];return"number"==typeof t&&t>=0&&(i+=c*(a=0|t),o-=a),"number"==typeof e&&e>=0&&(i+=u*(a=0|e),s-=a),"number"==typeof r&&r>=0&&(i+=f*(a=0|r),l-=a),new n(this.data,o,s,l,c,u,f,i)},i.step=function(t,e,r){var i=this.shape[0],a=this.shape[1],o=this.shape[2],s=this.stride[0],l=this.stride[1],c=this.stride[2],u=this.offset,f=0,h=Math.ceil;return"number"==typeof t&&((f=0|t)<0?(u+=s*(i-1),i=h(-i/f)):i=h(i/f),s*=f),"number"==typeof e&&((f=0|e)<0?(u+=l*(a-1),a=h(-a/f)):a=h(a/f),l*=f),"number"==typeof r&&((f=0|r)<0?(u+=c*(o-1),o=h(-o/f)):o=h(o/f),c*=f),new n(this.data,i,a,o,s,l,c,u)},i.transpose=function(t,e,r){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r;var i=this.shape,a=this.stride;return new n(this.data,i[t],i[e],i[r],a[t],a[e],a[r],this.offset)},i.pick=function(t,r,n){var i=[],a=[],o=this.offset;return"number"==typeof t&&t>=0?o=o+this.stride[0]*t|0:(i.push(this.shape[0]),a.push(this.stride[0])),"number"==typeof r&&r>=0?o=o+this.stride[1]*r|0:(i.push(this.shape[1]),a.push(this.stride[1])),"number"==typeof n&&n>=0?o=o+this.stride[2]*n|0:(i.push(this.shape[2]),a.push(this.stride[2])),(0,e[i.length+1])(this.data,i,a,o)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],r[0],r[1],r[2],i)}},4:function(t,e,r){function n(t,e,r,n,i,a,o,s,l,c){this.data=t,this.shape=[e,r,n,i],this.stride=[a,o,s,l],this.offset=0|c}var i=n.prototype;return i.dtype=t,i.dimension=4,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]*this.shape[3]}}),Object.defineProperty(i,"order",{get:r}),i.set=function(e,r,n,i,a){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i,a):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i]=a},i.get=function(e,r,n,i){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i]},i.index=function(t,e,r,n){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r+this.stride[3]*n},i.hi=function(t,e,r,i){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,"number"!=typeof i||i<0?this.shape[3]:0|i,this.stride[0],this.stride[1],this.stride[2],this.stride[3],this.offset)},i.lo=function(t,e,r,i){var a=this.offset,o=0,s=this.shape[0],l=this.shape[1],c=this.shape[2],u=this.shape[3],f=this.stride[0],h=this.stride[1],p=this.stride[2],d=this.stride[3];return"number"==typeof t&&t>=0&&(a+=f*(o=0|t),s-=o),"number"==typeof e&&e>=0&&(a+=h*(o=0|e),l-=o),"number"==typeof r&&r>=0&&(a+=p*(o=0|r),c-=o),"number"==typeof i&&i>=0&&(a+=d*(o=0|i),u-=o),new n(this.data,s,l,c,u,f,h,p,d,a)},i.step=function(t,e,r,i){var a=this.shape[0],o=this.shape[1],s=this.shape[2],l=this.shape[3],c=this.stride[0],u=this.stride[1],f=this.stride[2],h=this.stride[3],p=this.offset,d=0,m=Math.ceil;return"number"==typeof t&&((d=0|t)<0?(p+=c*(a-1),a=m(-a/d)):a=m(a/d),c*=d),"number"==typeof e&&((d=0|e)<0?(p+=u*(o-1),o=m(-o/d)):o=m(o/d),u*=d),"number"==typeof r&&((d=0|r)<0?(p+=f*(s-1),s=m(-s/d)):s=m(s/d),f*=d),"number"==typeof i&&((d=0|i)<0?(p+=h*(l-1),l=m(-l/d)):l=m(l/d),h*=d),new n(this.data,a,o,s,l,c,u,f,h,p)},i.transpose=function(t,e,r,i){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r,i=void 0===i?3:0|i;var a=this.shape,o=this.stride;return new n(this.data,a[t],a[e],a[r],a[i],o[t],o[e],o[r],o[i],this.offset)},i.pick=function(t,r,n,i){var a=[],o=[],s=this.offset;return"number"==typeof t&&t>=0?s=s+this.stride[0]*t|0:(a.push(this.shape[0]),o.push(this.stride[0])),"number"==typeof r&&r>=0?s=s+this.stride[1]*r|0:(a.push(this.shape[1]),o.push(this.stride[1])),"number"==typeof n&&n>=0?s=s+this.stride[2]*n|0:(a.push(this.shape[2]),o.push(this.stride[2])),"number"==typeof i&&i>=0?s=s+this.stride[3]*i|0:(a.push(this.shape[3]),o.push(this.stride[3])),(0,e[a.length+1])(this.data,a,o,s)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],e[3],r[0],r[1],r[2],r[3],i)}},5:function(t,e,r){function n(t,e,r,n,i,a,o,s,l,c,u,f){this.data=t,this.shape=[e,r,n,i,a],this.stride=[o,s,l,c,u],this.offset=0|f}var i=n.prototype;return i.dtype=t,i.dimension=5,Object.defineProperty(i,"size",{get:function(){return this.shape[0]*this.shape[1]*this.shape[2]*this.shape[3]*this.shape[4]}}),Object.defineProperty(i,"order",{get:r}),i.set=function(e,r,n,i,a,o){return"generic"===t?this.data.set(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a,o):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a]=o},i.get=function(e,r,n,i,a){return"generic"===t?this.data.get(this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a):this.data[this.offset+this.stride[0]*e+this.stride[1]*r+this.stride[2]*n+this.stride[3]*i+this.stride[4]*a]},i.index=function(t,e,r,n,i){return this.offset+this.stride[0]*t+this.stride[1]*e+this.stride[2]*r+this.stride[3]*n+this.stride[4]*i},i.hi=function(t,e,r,i,a){return new n(this.data,"number"!=typeof t||t<0?this.shape[0]:0|t,"number"!=typeof e||e<0?this.shape[1]:0|e,"number"!=typeof r||r<0?this.shape[2]:0|r,"number"!=typeof i||i<0?this.shape[3]:0|i,"number"!=typeof a||a<0?this.shape[4]:0|a,this.stride[0],this.stride[1],this.stride[2],this.stride[3],this.stride[4],this.offset)},i.lo=function(t,e,r,i,a){var o=this.offset,s=0,l=this.shape[0],c=this.shape[1],u=this.shape[2],f=this.shape[3],h=this.shape[4],p=this.stride[0],d=this.stride[1],m=this.stride[2],g=this.stride[3],v=this.stride[4];return"number"==typeof t&&t>=0&&(o+=p*(s=0|t),l-=s),"number"==typeof e&&e>=0&&(o+=d*(s=0|e),c-=s),"number"==typeof r&&r>=0&&(o+=m*(s=0|r),u-=s),"number"==typeof i&&i>=0&&(o+=g*(s=0|i),f-=s),"number"==typeof a&&a>=0&&(o+=v*(s=0|a),h-=s),new n(this.data,l,c,u,f,h,p,d,m,g,v,o)},i.step=function(t,e,r,i,a){var o=this.shape[0],s=this.shape[1],l=this.shape[2],c=this.shape[3],u=this.shape[4],f=this.stride[0],h=this.stride[1],p=this.stride[2],d=this.stride[3],m=this.stride[4],g=this.offset,v=0,y=Math.ceil;return"number"==typeof t&&((v=0|t)<0?(g+=f*(o-1),o=y(-o/v)):o=y(o/v),f*=v),"number"==typeof e&&((v=0|e)<0?(g+=h*(s-1),s=y(-s/v)):s=y(s/v),h*=v),"number"==typeof r&&((v=0|r)<0?(g+=p*(l-1),l=y(-l/v)):l=y(l/v),p*=v),"number"==typeof i&&((v=0|i)<0?(g+=d*(c-1),c=y(-c/v)):c=y(c/v),d*=v),"number"==typeof a&&((v=0|a)<0?(g+=m*(u-1),u=y(-u/v)):u=y(u/v),m*=v),new n(this.data,o,s,l,c,u,f,h,p,d,m,g)},i.transpose=function(t,e,r,i,a){t=void 0===t?0:0|t,e=void 0===e?1:0|e,r=void 0===r?2:0|r,i=void 0===i?3:0|i,a=void 0===a?4:0|a;var o=this.shape,s=this.stride;return new n(this.data,o[t],o[e],o[r],o[i],o[a],s[t],s[e],s[r],s[i],s[a],this.offset)},i.pick=function(t,r,n,i,a){var o=[],s=[],l=this.offset;return"number"==typeof t&&t>=0?l=l+this.stride[0]*t|0:(o.push(this.shape[0]),s.push(this.stride[0])),"number"==typeof r&&r>=0?l=l+this.stride[1]*r|0:(o.push(this.shape[1]),s.push(this.stride[1])),"number"==typeof n&&n>=0?l=l+this.stride[2]*n|0:(o.push(this.shape[2]),s.push(this.stride[2])),"number"==typeof i&&i>=0?l=l+this.stride[3]*i|0:(o.push(this.shape[3]),s.push(this.stride[3])),"number"==typeof a&&a>=0?l=l+this.stride[4]*a|0:(o.push(this.shape[4]),s.push(this.stride[4])),(0,e[o.length+1])(this.data,o,s,l)},function(t,e,r,i){return new n(t,e[0],e[1],e[2],e[3],e[4],r[0],r[1],r[2],r[3],r[4],i)}}};function l(t,e){var r=-1===e?"T":String(e),n=s[r];return-1===e?n(t):0===e?n(t,c[t][0]):n(t,c[t],o)}var c={generic:[],buffer:[],array:[],float32:[],float64:[],int8:[],int16:[],int32:[],uint8_clamped:[],uint8:[],uint16:[],uint32:[],bigint64:[],biguint64:[]};e.exports=function(t,e,r,a){if(void 0===t)return(0,c.array[0])([]);"number"==typeof t&&(t=[t]),void 0===e&&(e=[t.length]);var o=e.length;if(void 0===r){r=new Array(o);for(var s=o-1,u=1;s>=0;--s)r[s]=u,u*=e[s]}if(void 0===a){a=0;for(s=0;st==t>0?a===-1>>>0?(r+=1,a=0):a+=1:0===a?(a=-1>>>0,r-=1):a-=1;return n.pack(a,r)}},{"double-bits":64}],261:[function(t,e,r){r.vertexNormals=function(t,e,r){for(var n=e.length,i=new Array(n),a=void 0===r?1e-6:r,o=0;oa){var b=i[c],_=1/Math.sqrt(g*y);for(x=0;x<3;++x){var w=(x+1)%3,T=(x+2)%3;b[x]+=_*(v[w]*m[T]-v[T]*m[w])}}}for(o=0;oa)for(_=1/Math.sqrt(k),x=0;x<3;++x)b[x]*=_;else for(x=0;x<3;++x)b[x]=0}return i},r.faceNormals=function(t,e,r){for(var n=t.length,i=new Array(n),a=void 0===r?1e-6:r,o=0;oa?1/Math.sqrt(p):0;for(c=0;c<3;++c)h[c]*=p;i[o]=h}return i}},{}],262:[function(t,e,r){"use strict";e.exports=function(t,e,r,n,i,a,o,s,l,c){var u=e+a+c;if(f>0){var f=Math.sqrt(u+1);t[0]=.5*(o-l)/f,t[1]=.5*(s-n)/f,t[2]=.5*(r-a)/f,t[3]=.5*f}else{var h=Math.max(e,a,c);f=Math.sqrt(2*h-u+1);e>=h?(t[0]=.5*f,t[1]=.5*(i+r)/f,t[2]=.5*(s+n)/f,t[3]=.5*(o-l)/f):a>=h?(t[0]=.5*(r+i)/f,t[1]=.5*f,t[2]=.5*(l+o)/f,t[3]=.5*(s-n)/f):(t[0]=.5*(n+s)/f,t[1]=.5*(o+l)/f,t[2]=.5*f,t[3]=.5*(r-i)/f)}return t}},{}],263:[function(t,e,r){"use strict";e.exports=function(t){var e=(t=t||{}).center||[0,0,0],r=t.rotation||[0,0,0,1],n=t.radius||1;e=[].slice.call(e,0,3),u(r=[].slice.call(r,0,4),r);var i=new f(r,e,Math.log(n));i.setDistanceLimits(t.zoomMin,t.zoomMax),("eye"in t||"up"in t)&&i.lookAt(0,t.eye,t.center,t.up);return i};var n=t("filtered-vector"),i=t("gl-mat4/lookAt"),a=t("gl-mat4/fromQuat"),o=t("gl-mat4/invert"),s=t("./lib/quatFromFrame");function l(t,e,r){return Math.sqrt(Math.pow(t,2)+Math.pow(e,2)+Math.pow(r,2))}function c(t,e,r,n){return Math.sqrt(Math.pow(t,2)+Math.pow(e,2)+Math.pow(r,2)+Math.pow(n,2))}function u(t,e){var r=e[0],n=e[1],i=e[2],a=e[3],o=c(r,n,i,a);o>1e-6?(t[0]=r/o,t[1]=n/o,t[2]=i/o,t[3]=a/o):(t[0]=t[1]=t[2]=0,t[3]=1)}function f(t,e,r){this.radius=n([r]),this.center=n(e),this.rotation=n(t),this.computedRadius=this.radius.curve(0),this.computedCenter=this.center.curve(0),this.computedRotation=this.rotation.curve(0),this.computedUp=[.1,0,0],this.computedEye=[.1,0,0],this.computedMatrix=[.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],this.recalcMatrix(0)}var h=f.prototype;h.lastT=function(){return Math.max(this.radius.lastT(),this.center.lastT(),this.rotation.lastT())},h.recalcMatrix=function(t){this.radius.curve(t),this.center.curve(t),this.rotation.curve(t);var e=this.computedRotation;u(e,e);var r=this.computedMatrix;a(r,e);var n=this.computedCenter,i=this.computedEye,o=this.computedUp,s=Math.exp(this.computedRadius[0]);i[0]=n[0]+s*r[2],i[1]=n[1]+s*r[6],i[2]=n[2]+s*r[10],o[0]=r[1],o[1]=r[5],o[2]=r[9];for(var l=0;l<3;++l){for(var c=0,f=0;f<3;++f)c+=r[l+4*f]*i[f];r[12+l]=-c}},h.getMatrix=function(t,e){this.recalcMatrix(t);var r=this.computedMatrix;if(e){for(var n=0;n<16;++n)e[n]=r[n];return e}return r},h.idle=function(t){this.center.idle(t),this.radius.idle(t),this.rotation.idle(t)},h.flush=function(t){this.center.flush(t),this.radius.flush(t),this.rotation.flush(t)},h.pan=function(t,e,r,n){e=e||0,r=r||0,n=n||0,this.recalcMatrix(t);var i=this.computedMatrix,a=i[1],o=i[5],s=i[9],c=l(a,o,s);a/=c,o/=c,s/=c;var u=i[0],f=i[4],h=i[8],p=u*a+f*o+h*s,d=l(u-=a*p,f-=o*p,h-=s*p);u/=d,f/=d,h/=d;var m=i[2],g=i[6],v=i[10],y=m*a+g*o+v*s,x=m*u+g*f+v*h,b=l(m-=y*a+x*u,g-=y*o+x*f,v-=y*s+x*h);m/=b,g/=b,v/=b;var _=u*e+a*r,w=f*e+o*r,T=h*e+s*r;this.center.move(t,_,w,T);var k=Math.exp(this.computedRadius[0]);k=Math.max(1e-4,k+n),this.radius.set(t,Math.log(k))},h.rotate=function(t,e,r,n){this.recalcMatrix(t),e=e||0,r=r||0;var i=this.computedMatrix,a=i[0],o=i[4],s=i[8],u=i[1],f=i[5],h=i[9],p=i[2],d=i[6],m=i[10],g=e*a+r*u,v=e*o+r*f,y=e*s+r*h,x=-(d*y-m*v),b=-(m*g-p*y),_=-(p*v-d*g),w=Math.sqrt(Math.max(0,1-Math.pow(x,2)-Math.pow(b,2)-Math.pow(_,2))),T=c(x,b,_,w);T>1e-6?(x/=T,b/=T,_/=T,w/=T):(x=b=_=0,w=1);var k=this.computedRotation,A=k[0],M=k[1],S=k[2],E=k[3],L=A*w+E*x+M*_-S*b,C=M*w+E*b+S*x-A*_,P=S*w+E*_+A*b-M*x,I=E*w-A*x-M*b-S*_;if(n){x=p,b=d,_=m;var O=Math.sin(n)/l(x,b,_);x*=O,b*=O,_*=O,I=I*(w=Math.cos(e))-(L=L*w+I*x+C*_-P*b)*x-(C=C*w+I*b+P*x-L*_)*b-(P=P*w+I*_+L*b-C*x)*_}var z=c(L,C,P,I);z>1e-6?(L/=z,C/=z,P/=z,I/=z):(L=C=P=0,I=1),this.rotation.set(t,L,C,P,I)},h.lookAt=function(t,e,r,n){this.recalcMatrix(t),r=r||this.computedCenter,e=e||this.computedEye,n=n||this.computedUp;var a=this.computedMatrix;i(a,e,r,n);var o=this.computedRotation;s(o,a[0],a[1],a[2],a[4],a[5],a[6],a[8],a[9],a[10]),u(o,o),this.rotation.set(t,o[0],o[1],o[2],o[3]);for(var l=0,c=0;c<3;++c)l+=Math.pow(r[c]-e[c],2);this.radius.set(t,.5*Math.log(Math.max(l,1e-6))),this.center.set(t,r[0],r[1],r[2])},h.translate=function(t,e,r,n){this.center.move(t,e||0,r||0,n||0)},h.setMatrix=function(t,e){var r=this.computedRotation;s(r,e[0],e[1],e[2],e[4],e[5],e[6],e[8],e[9],e[10]),u(r,r),this.rotation.set(t,r[0],r[1],r[2],r[3]);var n=this.computedMatrix;o(n,e);var i=n[15];if(Math.abs(i)>1e-6){var a=n[12]/i,l=n[13]/i,c=n[14]/i;this.recalcMatrix(t);var f=Math.exp(this.computedRadius[0]);this.center.set(t,a-n[2]*f,l-n[6]*f,c-n[10]*f),this.radius.idle(t)}else this.center.idle(t),this.radius.idle(t)},h.setDistance=function(t,e){e>0&&this.radius.set(t,Math.log(e))},h.setDistanceLimits=function(t,e){t=t>0?Math.log(t):-1/0,e=e>0?Math.log(e):1/0,e=Math.max(e,t),this.radius.bounds[0][0]=t,this.radius.bounds[1][0]=e},h.getDistanceLimits=function(t){var e=this.radius.bounds;return t?(t[0]=Math.exp(e[0][0]),t[1]=Math.exp(e[1][0]),t):[Math.exp(e[0][0]),Math.exp(e[1][0])]},h.toJSON=function(){return this.recalcMatrix(this.lastT()),{center:this.computedCenter.slice(),rotation:this.computedRotation.slice(),distance:Math.log(this.computedRadius[0]),zoomMin:this.radius.bounds[0][0],zoomMax:this.radius.bounds[1][0]}},h.fromJSON=function(t){var e=this.lastT(),r=t.center;r&&this.center.set(e,r[0],r[1],r[2]);var n=t.rotation;n&&this.rotation.set(e,n[0],n[1],n[2],n[3]);var i=t.distance;i&&i>0&&this.radius.set(e,Math.log(i)),this.setDistanceLimits(t.zoomMin,t.zoomMax)}},{"./lib/quatFromFrame":262,"filtered-vector":68,"gl-mat4/fromQuat":95,"gl-mat4/invert":98,"gl-mat4/lookAt":99}],264:[function(t,e,r){ +"use strict";var n=Object.getOwnPropertySymbols,i=Object.prototype.hasOwnProperty,a=Object.prototype.propertyIsEnumerable;function o(t){if(null==t)throw new TypeError("Object.assign cannot be called with null or undefined");return Object(t)}e.exports=function(){try{if(!Object.assign)return!1;var t=new String("abc");if(t[5]="de","5"===Object.getOwnPropertyNames(t)[0])return!1;for(var e={},r=0;r<10;r++)e["_"+String.fromCharCode(r)]=r;if("0123456789"!==Object.getOwnPropertyNames(e).map((function(t){return e[t]})).join(""))return!1;var n={};return"abcdefghijklmnopqrst".split("").forEach((function(t){n[t]=t})),"abcdefghijklmnopqrst"===Object.keys(Object.assign({},n)).join("")}catch(t){return!1}}()?Object.assign:function(t,e){for(var r,s,l=o(t),c=1;c0){var f=Math.sqrt(u+1);t[0]=.5*(o-l)/f,t[1]=.5*(s-n)/f,t[2]=.5*(r-a)/f,t[3]=.5*f}else{var h=Math.max(e,a,c);f=Math.sqrt(2*h-u+1);e>=h?(t[0]=.5*f,t[1]=.5*(i+r)/f,t[2]=.5*(s+n)/f,t[3]=.5*(o-l)/f):a>=h?(t[0]=.5*(r+i)/f,t[1]=.5*f,t[2]=.5*(l+o)/f,t[3]=.5*(s-n)/f):(t[0]=.5*(n+s)/f,t[1]=.5*(o+l)/f,t[2]=.5*f,t[3]=.5*(r-i)/f)}return t}},{}],468:[function(t,e,r){"use strict";e.exports=function(t){var e=(t=t||{}).center||[0,0,0],r=t.rotation||[0,0,0,1],n=t.radius||1;e=[].slice.call(e,0,3),u(r=[].slice.call(r,0,4),r);var i=new f(r,e,Math.log(n));i.setDistanceLimits(t.zoomMin,t.zoomMax),("eye"in t||"up"in t)&&i.lookAt(0,t.eye,t.center,t.up);return i};var n=t("filtered-vector"),i=t("gl-mat4/lookAt"),a=t("gl-mat4/fromQuat"),o=t("gl-mat4/invert"),s=t("./lib/quatFromFrame");function l(t,e,r){return Math.sqrt(Math.pow(t,2)+Math.pow(e,2)+Math.pow(r,2))}function c(t,e,r,n){return Math.sqrt(Math.pow(t,2)+Math.pow(e,2)+Math.pow(r,2)+Math.pow(n,2))}function u(t,e){var r=e[0],n=e[1],i=e[2],a=e[3],o=c(r,n,i,a);o>1e-6?(t[0]=r/o,t[1]=n/o,t[2]=i/o,t[3]=a/o):(t[0]=t[1]=t[2]=0,t[3]=1)}function f(t,e,r){this.radius=n([r]),this.center=n(e),this.rotation=n(t),this.computedRadius=this.radius.curve(0),this.computedCenter=this.center.curve(0),this.computedRotation=this.rotation.curve(0),this.computedUp=[.1,0,0],this.computedEye=[.1,0,0],this.computedMatrix=[.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],this.recalcMatrix(0)}var h=f.prototype;h.lastT=function(){return Math.max(this.radius.lastT(),this.center.lastT(),this.rotation.lastT())},h.recalcMatrix=function(t){this.radius.curve(t),this.center.curve(t),this.rotation.curve(t);var e=this.computedRotation;u(e,e);var r=this.computedMatrix;a(r,e);var n=this.computedCenter,i=this.computedEye,o=this.computedUp,s=Math.exp(this.computedRadius[0]);i[0]=n[0]+s*r[2],i[1]=n[1]+s*r[6],i[2]=n[2]+s*r[10],o[0]=r[1],o[1]=r[5],o[2]=r[9];for(var l=0;l<3;++l){for(var c=0,f=0;f<3;++f)c+=r[l+4*f]*i[f];r[12+l]=-c}},h.getMatrix=function(t,e){this.recalcMatrix(t);var r=this.computedMatrix;if(e){for(var n=0;n<16;++n)e[n]=r[n];return e}return r},h.idle=function(t){this.center.idle(t),this.radius.idle(t),this.rotation.idle(t)},h.flush=function(t){this.center.flush(t),this.radius.flush(t),this.rotation.flush(t)},h.pan=function(t,e,r,n){e=e||0,r=r||0,n=n||0,this.recalcMatrix(t);var i=this.computedMatrix,a=i[1],o=i[5],s=i[9],c=l(a,o,s);a/=c,o/=c,s/=c;var u=i[0],f=i[4],h=i[8],p=u*a+f*o+h*s,d=l(u-=a*p,f-=o*p,h-=s*p);u/=d,f/=d,h/=d;var m=i[2],g=i[6],v=i[10],y=m*a+g*o+v*s,x=m*u+g*f+v*h,b=l(m-=y*a+x*u,g-=y*o+x*f,v-=y*s+x*h);m/=b,g/=b,v/=b;var _=u*e+a*r,w=f*e+o*r,T=h*e+s*r;this.center.move(t,_,w,T);var k=Math.exp(this.computedRadius[0]);k=Math.max(1e-4,k+n),this.radius.set(t,Math.log(k))},h.rotate=function(t,e,r,n){this.recalcMatrix(t),e=e||0,r=r||0;var i=this.computedMatrix,a=i[0],o=i[4],s=i[8],u=i[1],f=i[5],h=i[9],p=i[2],d=i[6],m=i[10],g=e*a+r*u,v=e*o+r*f,y=e*s+r*h,x=-(d*y-m*v),b=-(m*g-p*y),_=-(p*v-d*g),w=Math.sqrt(Math.max(0,1-Math.pow(x,2)-Math.pow(b,2)-Math.pow(_,2))),T=c(x,b,_,w);T>1e-6?(x/=T,b/=T,_/=T,w/=T):(x=b=_=0,w=1);var k=this.computedRotation,A=k[0],M=k[1],S=k[2],E=k[3],L=A*w+E*x+M*_-S*b,C=M*w+E*b+S*x-A*_,P=S*w+E*_+A*b-M*x,I=E*w-A*x-M*b-S*_;if(n){x=p,b=d,_=m;var O=Math.sin(n)/l(x,b,_);x*=O,b*=O,_*=O,I=I*(w=Math.cos(e))-(L=L*w+I*x+C*_-P*b)*x-(C=C*w+I*b+P*x-L*_)*b-(P=P*w+I*_+L*b-C*x)*_}var z=c(L,C,P,I);z>1e-6?(L/=z,C/=z,P/=z,I/=z):(L=C=P=0,I=1),this.rotation.set(t,L,C,P,I)},h.lookAt=function(t,e,r,n){this.recalcMatrix(t),r=r||this.computedCenter,e=e||this.computedEye,n=n||this.computedUp;var a=this.computedMatrix;i(a,e,r,n);var o=this.computedRotation;s(o,a[0],a[1],a[2],a[4],a[5],a[6],a[8],a[9],a[10]),u(o,o),this.rotation.set(t,o[0],o[1],o[2],o[3]);for(var l=0,c=0;c<3;++c)l+=Math.pow(r[c]-e[c],2);this.radius.set(t,.5*Math.log(Math.max(l,1e-6))),this.center.set(t,r[0],r[1],r[2])},h.translate=function(t,e,r,n){this.center.move(t,e||0,r||0,n||0)},h.setMatrix=function(t,e){var r=this.computedRotation;s(r,e[0],e[1],e[2],e[4],e[5],e[6],e[8],e[9],e[10]),u(r,r),this.rotation.set(t,r[0],r[1],r[2],r[3]);var n=this.computedMatrix;o(n,e);var i=n[15];if(Math.abs(i)>1e-6){var a=n[12]/i,l=n[13]/i,c=n[14]/i;this.recalcMatrix(t);var f=Math.exp(this.computedRadius[0]);this.center.set(t,a-n[2]*f,l-n[6]*f,c-n[10]*f),this.radius.idle(t)}else this.center.idle(t),this.radius.idle(t)},h.setDistance=function(t,e){e>0&&this.radius.set(t,Math.log(e))},h.setDistanceLimits=function(t,e){t=t>0?Math.log(t):-1/0,e=e>0?Math.log(e):1/0,e=Math.max(e,t),this.radius.bounds[0][0]=t,this.radius.bounds[1][0]=e},h.getDistanceLimits=function(t){var e=this.radius.bounds;return t?(t[0]=Math.exp(e[0][0]),t[1]=Math.exp(e[1][0]),t):[Math.exp(e[0][0]),Math.exp(e[1][0])]},h.toJSON=function(){return this.recalcMatrix(this.lastT()),{center:this.computedCenter.slice(),rotation:this.computedRotation.slice(),distance:Math.log(this.computedRadius[0]),zoomMin:this.radius.bounds[0][0],zoomMax:this.radius.bounds[1][0]}},h.fromJSON=function(t){var e=this.lastT(),r=t.center;r&&this.center.set(e,r[0],r[1],r[2]);var n=t.rotation;n&&this.rotation.set(e,n[0],n[1],n[2],n[3]);var i=t.distance;i&&i>0&&this.radius.set(e,Math.log(i)),this.setDistanceLimits(t.zoomMin,t.zoomMax)}},{"./lib/quatFromFrame":467,"filtered-vector":243,"gl-mat4/fromQuat":276,"gl-mat4/invert":287,"gl-mat4/lookAt":288}],469:[function(t,e,r){ /*! * pad-left * * Copyright (c) 2014-2015, Jon Schlinkert. * Licensed under the MIT license. */ -"use strict";var n=t("repeat-string");e.exports=function(t,e,r){return n(r=void 0!==r?r+"":" ",e)+t}},{"repeat-string":277}],265:[function(t,e,r){e.exports=function(t,e){e||(e=[0,""]),t=String(t);var r=parseFloat(t,10);return e[0]=r,e[1]=t.match(/[\d.\-\+]*\s*(.*)/)[1]||"",e}},{}],266:[function(t,e,r){"use strict";e.exports=function(t,e){for(var r=0|e.length,i=t.length,a=[new Array(r),new Array(r)],o=0;o0){o=a[u][r][0],l=u;break}s=o[1^l];for(var f=0;f<2;++f)for(var h=a[f][r],p=0;p0&&(o=d,s=m,l=f)}return i||o&&c(o,l),s}function f(t,r){var i=a[r][t][0],o=[t];c(i,r);for(var s=i[1^r];;){for(;s!==t;)o.push(s),s=u(o[o.length-2],s,!1);if(a[0][t].length+a[1][t].length===0)break;var l=o[o.length-1],f=t,h=o[1],p=u(l,f,!0);if(n(e[l],e[f],e[h],e[p])<0)break;o.push(t),s=u(l,f)}return o}function h(t,e){return e[1]===e[e.length-1]}for(o=0;o0;){a[0][o].length;var m=f(o,p);h(0,m)?d.push.apply(d,m):(d.length>0&&l.push(d),d=m)}d.length>0&&l.push(d)}return l};var n=t("compare-angle")},{"compare-angle":54}],267:[function(t,e,r){"use strict";e.exports=function(t,e){for(var r=n(t,e.length),i=new Array(e.length),a=new Array(e.length),o=[],s=0;s0;){var c=o.pop();i[c]=!1;var u=r[c];for(s=0;s0}))).length,g=new Array(m),v=new Array(m);for(p=0;p0;){var B=R.pop(),N=E[B];l(N,(function(t,e){return t-e}));var j,U=N.length,V=F[B];if(0===V){var H=d[B];j=[H]}for(p=0;p=0))if(F[q]=1^V,R.push(q),0===V)D(H=d[q])||(H.reverse(),j.push(H))}0===V&&r.push(j)}return r};var n=t("edges-to-adjacency-list"),i=t("planar-dual"),a=t("point-in-big-polygon"),o=t("two-product"),s=t("robust-sum"),l=t("uniq"),c=t("./lib/trim-leaves");function u(t,e){for(var r=new Array(t),n=0;n0&&e[i]===r[0]))return 1;a=t[i-1]}for(var s=1;a;){var l=a.key,c=n(r,l[0],l[1]);if(l[0][0]0))return 0;s=-1,a=a.right}else if(c>0)a=a.left;else{if(!(c<0))return 0;s=1,a=a.right}}return s}}(v.slabs,v.coordinates);return 0===a.length?y:function(t,e){return function(r){return t(r[0],r[1])?0:e(r)}}(l(a),y)};var n=t("robust-orientation")[3],i=t("slab-decomposition"),a=t("interval-tree-1d"),o=t("binary-search-bounds");function s(){return!0}function l(t){for(var e={},r=0;r=c?(k=1,y=c+2*h+d):y=h*(k=-h/c)+d):(k=0,p>=0?(A=0,y=d):-p>=f?(A=1,y=f+2*p+d):y=p*(A=-p/f)+d);else if(A<0)A=0,h>=0?(k=0,y=d):-h>=c?(k=1,y=c+2*h+d):y=h*(k=-h/c)+d;else{var M=1/T;y=(k*=M)*(c*k+u*(A*=M)+2*h)+A*(u*k+f*A+2*p)+d}else k<0?(b=f+p)>(x=u+h)?(_=b-x)>=(w=c-2*u+f)?(k=1,A=0,y=c+2*h+d):y=(k=_/w)*(c*k+u*(A=1-k)+2*h)+A*(u*k+f*A+2*p)+d:(k=0,b<=0?(A=1,y=f+2*p+d):p>=0?(A=0,y=d):y=p*(A=-p/f)+d):A<0?(b=c+h)>(x=u+p)?(_=b-x)>=(w=c-2*u+f)?(A=1,k=0,y=f+2*p+d):y=(k=1-(A=_/w))*(c*k+u*A+2*h)+A*(u*k+f*A+2*p)+d:(A=0,b<=0?(k=1,y=c+2*h+d):h>=0?(k=0,y=d):y=h*(k=-h/c)+d):(_=f+p-u-h)<=0?(k=0,A=1,y=f+2*p+d):_>=(w=c-2*u+f)?(k=1,A=0,y=c+2*h+d):y=(k=_/w)*(c*k+u*(A=1-k)+2*h)+A*(u*k+f*A+2*p)+d;var S=1-k-A;for(l=0;l0){var c=t[r-1];if(0===n(s,c)&&a(c)!==l){r-=1;continue}}t[r++]=s}}return t.length=r,t}},{"cell-orientation":47,"compare-cell":56,"compare-oriented-cell":57}],277:[function(t,e,r){ +"use strict";var n=t("repeat-string");e.exports=function(t,e,r){return n(r=void 0!==r?r+"":" ",e)+t}},{"repeat-string":517}],470:[function(t,e,r){"use strict";function n(t,e){if("string"!=typeof t)return[t];var r=[t];"string"==typeof e||Array.isArray(e)?e={brackets:e}:e||(e={});var n=e.brackets?Array.isArray(e.brackets)?e.brackets:[e.brackets]:["{}","[]","()"],i=e.escape||"___",a=!!e.flat;n.forEach((function(t){var e=new RegExp(["\\",t[0],"[^\\",t[0],"\\",t[1],"]*\\",t[1]].join("")),n=[];function a(e,a,o){var s=r.push(e.slice(t[0].length,-t[1].length))-1;return n.push(s),i+s+i}r.forEach((function(t,n){for(var i,o=0;t!=i;)if(i=t,t=t.replace(e,a),o++>1e4)throw Error("References have circular dependency. Please, check them.");r[n]=t})),n=n.reverse(),r=r.map((function(e){return n.forEach((function(r){e=e.replace(new RegExp("(\\"+i+r+"\\"+i+")","g"),t[0]+"$1"+t[1])})),e}))}));var o=new RegExp("\\"+i+"([0-9]+)\\"+i);return a?r:function t(e,r,n){for(var i,a=[],s=0;i=o.exec(e);){if(s++>1e4)throw Error("Circular references in parenthesis");a.push(e.slice(0,i.index)),a.push(t(r[i[1]],r)),e=e.slice(i.index+i[0].length)}return a.push(e),a}(r[0],r)}function i(t,e){if(e&&e.flat){var r,n=e&&e.escape||"___",i=t[0];if(!i)return"";for(var a=new RegExp("\\"+n+"([0-9]+)\\"+n),o=0;i!=r;){if(o++>1e4)throw Error("Circular references in "+t);r=i,i=i.replace(a,s)}return i}return t.reduce((function t(e,r){return Array.isArray(r)&&(r=r.reduce(t,"")),e+r}),"");function s(e,r){if(null==t[r])throw Error("Reference "+r+"is undefined");return t[r]}}function a(t,e){return Array.isArray(t)?i(t,e):n(t,e)}a.parse=n,a.stringify=i,e.exports=a},{}],471:[function(t,e,r){"use strict";var n=t("pick-by-alias");e.exports=function(t){var e;arguments.length>1&&(t=arguments);"string"==typeof t?t=t.split(/\s/).map(parseFloat):"number"==typeof t&&(t=[t]);t.length&&"number"==typeof t[0]?e=1===t.length?{width:t[0],height:t[0],x:0,y:0}:2===t.length?{width:t[0],height:t[1],x:0,y:0}:{x:t[0],y:t[1],width:t[2]-t[0]||0,height:t[3]-t[1]||0}:t&&(t=n(t,{left:"x l left Left",top:"y t top Top",width:"w width W Width",height:"h height W Width",bottom:"b bottom Bottom",right:"r right Right"}),e={x:t.left||0,y:t.top||0},null==t.width?t.right?e.width=t.right-e.x:e.width=0:e.width=t.width,null==t.height?t.bottom?e.height=t.bottom-e.y:e.height=0:e.height=t.height);return e}},{"pick-by-alias":475}],472:[function(t,e,r){e.exports=function(t){var e=[];return t.replace(i,(function(t,r,i){var o=r.toLowerCase();for(i=function(t){var e=t.match(a);return e?e.map(Number):[]}(i),"m"==o&&i.length>2&&(e.push([r].concat(i.splice(0,2))),o="l",r="m"==r?"l":"L");;){if(i.length==n[o])return i.unshift(r),e.push(i);if(i.length0){o=a[u][r][0],l=u;break}s=o[1^l];for(var f=0;f<2;++f)for(var h=a[f][r],p=0;p0&&(o=d,s=m,l=f)}return i||o&&c(o,l),s}function f(t,r){var i=a[r][t][0],o=[t];c(i,r);for(var s=i[1^r];;){for(;s!==t;)o.push(s),s=u(o[o.length-2],s,!1);if(a[0][t].length+a[1][t].length===0)break;var l=o[o.length-1],f=t,h=o[1],p=u(l,f,!0);if(n(e[l],e[f],e[h],e[p])<0)break;o.push(t),s=u(l,f)}return o}function h(t,e){return e[1]===e[e.length-1]}for(o=0;o0;){a[0][o].length;var m=f(o,p);h(0,m)?d.push.apply(d,m):(d.length>0&&l.push(d),d=m)}d.length>0&&l.push(d)}return l};var n=t("compare-angle")},{"compare-angle":133}],477:[function(t,e,r){"use strict";e.exports=function(t,e){for(var r=n(t,e.length),i=new Array(e.length),a=new Array(e.length),o=[],s=0;s0;){var c=o.pop();i[c]=!1;var u=r[c];for(s=0;s0}))).length,g=new Array(m),v=new Array(m);for(p=0;p0;){var B=R.pop(),N=E[B];l(N,(function(t,e){return t-e}));var j,U=N.length,V=F[B];if(0===V){var H=d[B];j=[H]}for(p=0;p=0))if(F[q]=1^V,R.push(q),0===V)D(H=d[q])||(H.reverse(),j.push(H))}0===V&&r.push(j)}return r};var n=t("edges-to-adjacency-list"),i=t("planar-dual"),a=t("point-in-big-polygon"),o=t("two-product"),s=t("robust-sum"),l=t("uniq"),c=t("./lib/trim-leaves");function u(t,e){for(var r=new Array(t),n=0;n0&&e[i]===r[0]))return 1;a=t[i-1]}for(var s=1;a;){var l=a.key,c=n(r,l[0],l[1]);if(l[0][0]0))return 0;s=-1,a=a.right}else if(c>0)a=a.left;else{if(!(c<0))return 0;s=1,a=a.right}}return s}}(v.slabs,v.coordinates);return 0===a.length?y:function(t,e){return function(r){return t(r[0],r[1])?0:e(r)}}(l(a),y)};var n=t("robust-orientation")[3],i=t("slab-decomposition"),a=t("interval-tree-1d"),o=t("binary-search-bounds");function s(){return!0}function l(t){for(var e={},r=0;r=-t},pointBetween:function(e,r,n){var i=e[1]-r[1],a=n[0]-r[0],o=e[0]-r[0],s=n[1]-r[1],l=o*a+i*s;return!(l-t)},pointsSameX:function(e,r){return Math.abs(e[0]-r[0])t!=o-i>t&&(a-c)*(i-u)/(o-u)+c-n>t&&(s=!s),a=c,o=u}return s}};return e}},{}],483:[function(t,e,r){var n={toPolygon:function(t,e){function r(e){if(e.length<=0)return t.segments({inverted:!1,regions:[]});function r(e){var r=e.slice(0,e.length-1);return t.segments({inverted:!1,regions:[r]})}for(var n=r(e[0]),i=1;i0}))}function u(t,n){var i=t.seg,a=n.seg,o=i.start,s=i.end,c=a.start,u=a.end;r&&r.checkIntersection(i,a);var f=e.linesIntersect(o,s,c,u);if(!1===f){if(!e.pointsCollinear(o,s,c))return!1;if(e.pointsSame(o,u)||e.pointsSame(s,c))return!1;var h=e.pointsSame(o,c),p=e.pointsSame(s,u);if(h&&p)return n;var d=!h&&e.pointBetween(o,c,u),m=!p&&e.pointBetween(s,c,u);if(h)return m?l(n,s):l(t,u),n;d&&(p||(m?l(n,s):l(t,u)),l(n,o))}else 0===f.alongA&&(-1===f.alongB?l(t,c):0===f.alongB?l(t,f.pt):1===f.alongB&&l(t,u)),0===f.alongB&&(-1===f.alongA?l(n,o):0===f.alongA?l(n,f.pt):1===f.alongA&&l(n,s));return!1}for(var f=[];!a.isEmpty();){var h=a.getHead();if(r&&r.vert(h.pt[0]),h.isStart){r&&r.segmentNew(h.seg,h.primary);var p=c(h),d=p.before?p.before.ev:null,m=p.after?p.after.ev:null;function g(){if(d){var t=u(h,d);if(t)return t}return!!m&&u(h,m)}r&&r.tempStatus(h.seg,!!d&&d.seg,!!m&&m.seg);var v,y=g();if(y){var x;if(t)(x=null===h.seg.myFill.below||h.seg.myFill.above!==h.seg.myFill.below)&&(y.seg.myFill.above=!y.seg.myFill.above);else y.seg.otherFill=h.seg.myFill;r&&r.segmentUpdate(y.seg),h.other.remove(),h.remove()}if(a.getHead()!==h){r&&r.rewind(h.seg);continue}if(t)x=null===h.seg.myFill.below||h.seg.myFill.above!==h.seg.myFill.below,h.seg.myFill.below=m?m.seg.myFill.above:i,h.seg.myFill.above=x?!h.seg.myFill.below:h.seg.myFill.below;else if(null===h.seg.otherFill)v=m?h.primary===m.primary?m.seg.otherFill.above:m.seg.myFill.above:h.primary?o:i,h.seg.otherFill={above:v,below:v};r&&r.status(h.seg,!!d&&d.seg,!!m&&m.seg),h.other.status=p.insert(n.node({ev:h}))}else{var b=h.status;if(null===b)throw new Error("PolyBool: Zero-length segment detected; your epsilon is probably too small or too large");if(s.exists(b.prev)&&s.exists(b.next)&&u(b.prev.ev,b.next.ev),r&&r.statusRemove(b.ev.seg),b.remove(),!h.primary){var _=h.seg.myFill;h.seg.myFill=h.seg.otherFill,h.seg.otherFill=_}f.push(h.seg)}a.getHead().remove()}return r&&r.done(),f}return t?{addRegion:function(t){for(var n,i,a,o=t[t.length-1],l=0;l=c?(k=1,y=c+2*h+d):y=h*(k=-h/c)+d):(k=0,p>=0?(A=0,y=d):-p>=f?(A=1,y=f+2*p+d):y=p*(A=-p/f)+d);else if(A<0)A=0,h>=0?(k=0,y=d):-h>=c?(k=1,y=c+2*h+d):y=h*(k=-h/c)+d;else{var M=1/T;y=(k*=M)*(c*k+u*(A*=M)+2*h)+A*(u*k+f*A+2*p)+d}else k<0?(b=f+p)>(x=u+h)?(_=b-x)>=(w=c-2*u+f)?(k=1,A=0,y=c+2*h+d):y=(k=_/w)*(c*k+u*(A=1-k)+2*h)+A*(u*k+f*A+2*p)+d:(k=0,b<=0?(A=1,y=f+2*p+d):p>=0?(A=0,y=d):y=p*(A=-p/f)+d):A<0?(b=c+h)>(x=u+p)?(_=b-x)>=(w=c-2*u+f)?(A=1,k=0,y=f+2*p+d):y=(k=1-(A=_/w))*(c*k+u*A+2*h)+A*(u*k+f*A+2*p)+d:(A=0,b<=0?(k=1,y=c+2*h+d):h>=0?(k=0,y=d):y=h*(k=-h/c)+d):(_=f+p-u-h)<=0?(k=0,A=1,y=f+2*p+d):_>=(w=c-2*u+f)?(k=1,A=0,y=c+2*h+d):y=(k=_/w)*(c*k+u*(A=1-k)+2*h)+A*(u*k+f*A+2*p)+d;var S=1-k-A;for(l=0;l0&&!this.aborted;){var r=this.ifds_to_read.shift();r.offset&&this.scan_ifd(r.id,r.offset,t)}},a.prototype.read_uint16=function(t){var e=this.input;if(t+2>e.length)throw n("unexpected EOF","EBADDATA");return this.big_endian?256*e[t]+e[t+1]:e[t]+256*e[t+1]},a.prototype.read_uint32=function(t){var e=this.input;if(t+4>e.length)throw n("unexpected EOF","EBADDATA");return this.big_endian?16777216*e[t]+65536*e[t+1]+256*e[t+2]+e[t+3]:e[t]+256*e[t+1]+65536*e[t+2]+16777216*e[t+3]},a.prototype.is_subifd_link=function(t,e){return 0===t&&34665===e||0===t&&34853===e||34665===t&&40965===e},a.prototype.exif_format_length=function(t){switch(t){case 1:case 2:case 6:case 7:return 1;case 3:case 8:return 2;case 4:case 9:case 11:return 4;case 5:case 10:case 12:return 8;default:return 0}},a.prototype.exif_format_read=function(t,e){var r;switch(t){case 1:case 2:return r=this.input[e];case 6:return(r=this.input[e])|33554430*(128&r);case 3:return r=this.read_uint16(e);case 8:return(r=this.read_uint16(e))|131070*(32768&r);case 4:return r=this.read_uint32(e);case 9:return 0|(r=this.read_uint32(e));case 5:case 10:case 11:case 12:case 7:default:return null}},a.prototype.scan_ifd=function(t,e,r){var a=this.read_uint16(e);e+=2;for(var o=0;othis.input.length)throw n("unexpected EOF","EBADDATA");for(var d=[],m=h,g=0;g0&&(this.ifds_to_read.push({id:s,offset:d[0]}),p=!0),!1===r({is_big_endian:this.big_endian,ifd:t,tag:s,format:l,count:c,entry_offset:e+this.start,data_length:f,data_offset:h+this.start,value:d,is_subifd_link:p}))return void(this.aborted=!0);e+=12}0===t&&this.ifds_to_read.push({id:1,offset:this.read_uint32(e)})},e.exports.ExifParser=a,e.exports.get_orientation=function(t){var e=0;try{return new a(t,0,t.length).each((function(t){if(0===t.ifd&&274===t.tag&&Array.isArray(t.value))return e=t.value[0],!1})),e}catch(t){return-1}}},{}],491:[function(t,e,r){"use strict";var n=t("./common").readUInt16BE,i=t("./common").readUInt32BE;function a(t,e){if(t.length<4+e)return null;var r=i(t,e);return t.length>4&15,i=15&t[4],a=t[5]>>4&15,o=n(t,6),l=8,c=0;ce.width||t.width===e.width&&t.height>e.height?t:e})),i=r.reduce((function(t,e){return t.height>e.height||t.height===e.height&&t.width>e.width?t:e})),n.width>i.height||n.width===i.height&&n.height>i.width?n:i),s=1;e.transforms.forEach((function(t){var e={1:6,2:5,3:8,4:7,5:4,6:3,7:2,8:1},r={1:4,2:3,3:2,4:1,5:6,6:5,7:8,8:7};if("imir"===t.type&&(s=0===t.value?r[s]:e[s=e[s=r[s]]]),"irot"===t.type)for(var n=0;n1&&(h.variants=f.variants),f.orientation&&(h.orientation=f.orientation),f.exif_location&&f.exif_location.offset+f.exif_location.length<=t.length){var p=a(t,f.exif_location.offset),d=t.slice(f.exif_location.offset+p+4,f.exif_location.offset+f.exif_location.length),m=s.get_orientation(d);m>0&&(h.orientation=m)}return h}}}}}}},{"../common":489,"../exif_utils":490,"../miaf_utils":491}],493:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt16LE,o=n("BM");e.exports=function(t){if(!(t.length<26)&&i(t,0,o))return{width:a(t,18),height:a(t,22),type:"bmp",mime:"image/bmp",wUnits:"px",hUnits:"px"}}},{"../common":489}],494:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt16LE,o=n("GIF87a"),s=n("GIF89a");e.exports=function(t){if(!(t.length<10)&&(i(t,0,o)||i(t,0,s)))return{width:a(t,6),height:a(t,8),type:"gif",mime:"image/gif",wUnits:"px",hUnits:"px"}}},{"../common":489}],495:[function(t,e,r){"use strict";var n=t("../common").readUInt16LE;e.exports=function(t){var e=n(t,0),r=n(t,2),i=n(t,4);if(0===e&&1===r&&i){for(var a=[],o={width:0,height:0},s=0;so.width||c>o.height)&&(o=u)}return{width:o.width,height:o.height,variants:a,type:"ico",mime:"image/x-icon",wUnits:"px",hUnits:"px"}}}},{"../common":489}],496:[function(t,e,r){"use strict";var n=t("../common").readUInt16BE,i=t("../common").str2arr,a=t("../common").sliceEq,o=t("../exif_utils"),s=i("Exif\0\0");e.exports=function(t){if(!(t.length<2)&&255===t[0]&&216===t[1])for(var e=2;;){if(t.length-e<2)return;if(255!==t[e++])return;for(var r,i,l=t[e++];255===l;)l=t[e++];if(208<=l&&l<=217||1===l)r=0;else{if(!(192<=l&&l<=254))return;if(t.length-e<2)return;r=n(t,e)-2,e+=2}if(217===l||218===l)return;if(225===l&&r>=10&&a(t,e,s)&&(i=o.get_orientation(t.slice(e+6,e+r))),r>=5&&192<=l&&l<=207&&196!==l&&200!==l&&204!==l){if(t.length-e0&&(c.orientation=i),c}e+=r}}},{"../common":489,"../exif_utils":490}],497:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt32BE,o=n("\x89PNG\r\n\x1a\n"),s=n("IHDR");e.exports=function(t){if(!(t.length<24)&&i(t,0,o)&&i(t,12,s))return{width:a(t,16),height:a(t,20),type:"png",mime:"image/png",wUnits:"px",hUnits:"px"}}},{"../common":489}],498:[function(t,e,r){"use strict";var n=t("../common").str2arr,i=t("../common").sliceEq,a=t("../common").readUInt32BE,o=n("8BPS\0\x01");e.exports=function(t){if(!(t.length<22)&&i(t,0,o))return{width:a(t,18),height:a(t,14),type:"psd",mime:"image/vnd.adobe.photoshop",wUnits:"px",hUnits:"px"}}},{"../common":489}],499:[function(t,e,r){"use strict";function n(t){return"number"==typeof t&&isFinite(t)&&t>0}var i=/<[-_.:a-zA-Z0-9][^>]*>/,a=/^<([-_.:a-zA-Z0-9]+:)?svg\s/,o=/[^-]\bwidth="([^%]+?)"|[^-]\bwidth='([^%]+?)'/,s=/\bheight="([^%]+?)"|\bheight='([^%]+?)'/,l=/\bview[bB]ox="(.+?)"|\bview[bB]ox='(.+?)'/,c=/in$|mm$|cm$|pt$|pc$|px$|em$|ex$/;function u(t){return c.test(t)?t.match(c)[0]:"px"}e.exports=function(t){if(function(t){var e,r=0,n=t.length;for(239===t[0]&&187===t[1]&&191===t[2]&&(r=3);r>14&16383),type:"webp",mime:"image/webp",wUnits:"px",hUnits:"px"}}}function h(t,e){return{width:1+(t[e+6]<<16|t[e+5]<<8|t[e+4]),height:1+(t[e+9]<t.length)){for(;e+8=10?r=r||u(t,e+8):"VP8L"===p&&d>=9?r=r||f(t,e+8):"VP8X"===p&&d>=10?r=r||h(t,e+8):"EXIF"===p&&(n=s.get_orientation(t.slice(e+8,e+8+d)),e=1/0),e+=8+d}else e++;if(r)return n>0&&(r.orientation=n),r}}}},{"../common":489,"../exif_utils":490}],502:[function(t,e,r){"use strict";e.exports={avif:t("./parse_sync/avif"),bmp:t("./parse_sync/bmp"),gif:t("./parse_sync/gif"),ico:t("./parse_sync/ico"),jpeg:t("./parse_sync/jpeg"),png:t("./parse_sync/png"),psd:t("./parse_sync/psd"),svg:t("./parse_sync/svg"),tiff:t("./parse_sync/tiff"),webp:t("./parse_sync/webp")}},{"./parse_sync/avif":492,"./parse_sync/bmp":493,"./parse_sync/gif":494,"./parse_sync/ico":495,"./parse_sync/jpeg":496,"./parse_sync/png":497,"./parse_sync/psd":498,"./parse_sync/svg":499,"./parse_sync/tiff":500,"./parse_sync/webp":501}],503:[function(t,e,r){"use strict";var n=t("./lib/parsers_sync");e.exports=function(t){return function(t){for(var e=Object.keys(n),r=0;r1)for(var r=1;r0){var c=t[r-1];if(0===n(s,c)&&a(c)!==l){r-=1;continue}}t[r++]=s}}return t.length=r,t}},{"cell-orientation":118,"compare-cell":135,"compare-oriented-cell":136}],512:[function(t,e,r){"use strict";var n=t("array-bounds"),i=t("color-normalize"),a=t("update-diff"),o=t("pick-by-alias"),s=t("object-assign"),l=t("flatten-vertex-data"),c=t("to-float32"),u=c.float32,f=c.fract32;e.exports=function(t,e){"function"==typeof t?(e||(e={}),e.regl=t):e=t;e.length&&(e.positions=e);if(!(t=e.regl).hasExtension("ANGLE_instanced_arrays"))throw Error("regl-error2d: `ANGLE_instanced_arrays` extension should be enabled");var r,c,p,d,m,g,v=t._gl,y={color:"black",capSize:5,lineWidth:1,opacity:1,viewport:null,range:null,offset:0,count:0,bounds:null,positions:[],errors:[]},x=[];return d=t.buffer({usage:"dynamic",type:"uint8",data:new Uint8Array(0)}),c=t.buffer({usage:"dynamic",type:"float",data:new Uint8Array(0)}),p=t.buffer({usage:"dynamic",type:"float",data:new Uint8Array(0)}),m=t.buffer({usage:"dynamic",type:"float",data:new Uint8Array(0)}),g=t.buffer({usage:"static",type:"float",data:h}),T(e),r=t({vert:"\n\t\tprecision highp float;\n\n\t\tattribute vec2 position, positionFract;\n\t\tattribute vec4 error;\n\t\tattribute vec4 color;\n\n\t\tattribute vec2 direction, lineOffset, capOffset;\n\n\t\tuniform vec4 viewport;\n\t\tuniform float lineWidth, capSize;\n\t\tuniform vec2 scale, scaleFract, translate, translateFract;\n\n\t\tvarying vec4 fragColor;\n\n\t\tvoid main() {\n\t\t\tfragColor = color / 255.;\n\n\t\t\tvec2 pixelOffset = lineWidth * lineOffset + (capSize + lineWidth) * capOffset;\n\n\t\t\tvec2 dxy = -step(.5, direction.xy) * error.xz + step(direction.xy, vec2(-.5)) * error.yw;\n\n\t\t\tvec2 position = position + dxy;\n\n\t\t\tvec2 pos = (position + translate) * scale\n\t\t\t\t+ (positionFract + translateFract) * scale\n\t\t\t\t+ (position + translate) * scaleFract\n\t\t\t\t+ (positionFract + translateFract) * scaleFract;\n\n\t\t\tpos += pixelOffset / viewport.zw;\n\n\t\t\tgl_Position = vec4(pos * 2. - 1., 0, 1);\n\t\t}\n\t\t",frag:"\n\t\tprecision highp float;\n\n\t\tvarying vec4 fragColor;\n\n\t\tuniform float opacity;\n\n\t\tvoid main() {\n\t\t\tgl_FragColor = fragColor;\n\t\t\tgl_FragColor.a *= opacity;\n\t\t}\n\t\t",uniforms:{range:t.prop("range"),lineWidth:t.prop("lineWidth"),capSize:t.prop("capSize"),opacity:t.prop("opacity"),scale:t.prop("scale"),translate:t.prop("translate"),scaleFract:t.prop("scaleFract"),translateFract:t.prop("translateFract"),viewport:function(t,e){return[e.viewport.x,e.viewport.y,t.viewportWidth,t.viewportHeight]}},attributes:{color:{buffer:d,offset:function(t,e){return 4*e.offset},divisor:1},position:{buffer:c,offset:function(t,e){return 8*e.offset},divisor:1},positionFract:{buffer:p,offset:function(t,e){return 8*e.offset},divisor:1},error:{buffer:m,offset:function(t,e){return 16*e.offset},divisor:1},direction:{buffer:g,stride:24,offset:0},lineOffset:{buffer:g,stride:24,offset:8},capOffset:{buffer:g,stride:24,offset:16}},primitive:"triangles",blend:{enable:!0,color:[0,0,0,0],equation:{rgb:"add",alpha:"add"},func:{srcRGB:"src alpha",dstRGB:"one minus src alpha",srcAlpha:"one minus dst alpha",dstAlpha:"one"}},depth:{enable:!1},scissor:{enable:!0,box:t.prop("viewport")},viewport:t.prop("viewport"),stencil:!1,instances:t.prop("count"),count:h.length}),s(b,{update:T,draw:_,destroy:k,regl:t,gl:v,canvas:v.canvas,groups:x}),b;function b(t){t?T(t):null===t&&k(),_()}function _(e){if("number"==typeof e)return w(e);e&&!Array.isArray(e)&&(e=[e]),t._refresh(),x.forEach((function(t,r){t&&(e&&(e[r]?t.draw=!0:t.draw=!1),t.draw?w(r):t.draw=!0)}))}function w(t){"number"==typeof t&&(t=x[t]),null!=t&&t&&t.count&&t.color&&t.opacity&&t.positions&&t.positions.length>1&&(t.scaleRatio=[t.scale[0]*t.viewport.width,t.scale[1]*t.viewport.height],r(t),t.after&&t.after(t))}function T(t){if(t){null!=t.length?"number"==typeof t[0]&&(t=[{positions:t}]):Array.isArray(t)||(t=[t]);var e=0,r=0;if(b.groups=x=t.map((function(t,c){var u=x[c];return t?("function"==typeof t?t={after:t}:"number"==typeof t[0]&&(t={positions:t}),t=o(t,{color:"color colors fill",capSize:"capSize cap capsize cap-size",lineWidth:"lineWidth line-width width line thickness",opacity:"opacity alpha",range:"range dataBox",viewport:"viewport viewBox",errors:"errors error",positions:"positions position data points"}),u||(x[c]=u={id:c,scale:null,translate:null,scaleFract:null,translateFract:null,draw:!0},t=s({},y,t)),a(u,t,[{lineWidth:function(t){return.5*+t},capSize:function(t){return.5*+t},opacity:parseFloat,errors:function(t){return t=l(t),r+=t.length,t},positions:function(t,r){return t=l(t,"float64"),r.count=Math.floor(t.length/2),r.bounds=n(t,2),r.offset=e,e+=r.count,t}},{color:function(t,e){var r=e.count;if(t||(t="transparent"),!Array.isArray(t)||"number"==typeof t[0]){var n=t;t=Array(r);for(var a=0;a 0. && baClipping < length(normalWidth * endBotJoin)) {\n\t\t//handle miter clipping\n\t\tbTopCoord -= normalWidth * endTopJoin;\n\t\tbTopCoord += normalize(endTopJoin * normalWidth) * baClipping;\n\t}\n\n\tif (nextReverse) {\n\t\t//make join rectangular\n\t\tvec2 miterShift = normalWidth * endJoinDirection * miterLimit * .5;\n\t\tfloat normalAdjust = 1. - min(miterLimit / endMiterRatio, 1.);\n\t\tbBotCoord = bCoord + miterShift - normalAdjust * normalWidth * currNormal * .5;\n\t\tbTopCoord = bCoord + miterShift + normalAdjust * normalWidth * currNormal * .5;\n\t}\n\telse if (!prevReverse && abClipping > 0. && abClipping < length(normalWidth * startBotJoin)) {\n\t\t//handle miter clipping\n\t\taBotCoord -= normalWidth * startBotJoin;\n\t\taBotCoord += normalize(startBotJoin * normalWidth) * abClipping;\n\t}\n\n\tvec2 aTopPosition = (aTopCoord) * adjustedScale + translate;\n\tvec2 aBotPosition = (aBotCoord) * adjustedScale + translate;\n\n\tvec2 bTopPosition = (bTopCoord) * adjustedScale + translate;\n\tvec2 bBotPosition = (bBotCoord) * adjustedScale + translate;\n\n\t//position is normalized 0..1 coord on the screen\n\tvec2 position = (aTopPosition * lineTop + aBotPosition * lineBot) * lineStart + (bTopPosition * lineTop + bBotPosition * lineBot) * lineEnd;\n\n\tstartCoord = aCoord * scaleRatio + translate * viewport.zw + viewport.xy;\n\tendCoord = bCoord * scaleRatio + translate * viewport.zw + viewport.xy;\n\n\tgl_Position = vec4(position * 2.0 - 1.0, depth, 1);\n\n\tenableStartMiter = step(dot(currTangent, prevTangent), .5);\n\tenableEndMiter = step(dot(currTangent, nextTangent), .5);\n\n\t//bevel miter cutoffs\n\tif (miterMode == 1.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tvec2 startMiterWidth = vec2(startJoinDirection) * thickness * miterLimit * .5;\n\t\t\tstartCutoff = vec4(aCoord, aCoord);\n\t\t\tstartCutoff.zw += vec2(-startJoinDirection.y, startJoinDirection.x) / scaleRatio;\n\t\t\tstartCutoff = startCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tstartCutoff += viewport.xyxy;\n\t\t\tstartCutoff += startMiterWidth.xyxy;\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tvec2 endMiterWidth = vec2(endJoinDirection) * thickness * miterLimit * .5;\n\t\t\tendCutoff = vec4(bCoord, bCoord);\n\t\t\tendCutoff.zw += vec2(-endJoinDirection.y, endJoinDirection.x) / scaleRatio;\n\t\t\tendCutoff = endCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tendCutoff += viewport.xyxy;\n\t\t\tendCutoff += endMiterWidth.xyxy;\n\t\t}\n\t}\n\n\t//round miter cutoffs\n\telse if (miterMode == 2.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tvec2 startMiterWidth = vec2(startJoinDirection) * thickness * abs(dot(startJoinDirection, currNormal)) * .5;\n\t\t\tstartCutoff = vec4(aCoord, aCoord);\n\t\t\tstartCutoff.zw += vec2(-startJoinDirection.y, startJoinDirection.x) / scaleRatio;\n\t\t\tstartCutoff = startCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tstartCutoff += viewport.xyxy;\n\t\t\tstartCutoff += startMiterWidth.xyxy;\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tvec2 endMiterWidth = vec2(endJoinDirection) * thickness * abs(dot(endJoinDirection, currNormal)) * .5;\n\t\t\tendCutoff = vec4(bCoord, bCoord);\n\t\t\tendCutoff.zw += vec2(-endJoinDirection.y, endJoinDirection.x) / scaleRatio;\n\t\t\tendCutoff = endCutoff * scaleRatio.xyxy + translate.xyxy * viewport.zwzw;\n\t\t\tendCutoff += viewport.xyxy;\n\t\t\tendCutoff += endMiterWidth.xyxy;\n\t\t}\n\t}\n}\n"]),frag:o(["precision highp float;\n#define GLSLIFY 1\n\nuniform float dashLength, pixelRatio, thickness, opacity, id, miterMode;\nuniform sampler2D dashTexture;\n\nvarying vec4 fragColor;\nvarying vec2 tangent;\nvarying vec4 startCutoff, endCutoff;\nvarying vec2 startCoord, endCoord;\nvarying float enableStartMiter, enableEndMiter;\n\nfloat distToLine(vec2 p, vec2 a, vec2 b) {\n\tvec2 diff = b - a;\n\tvec2 perp = normalize(vec2(-diff.y, diff.x));\n\treturn dot(p - a, perp);\n}\n\nvoid main() {\n\tfloat alpha = 1., distToStart, distToEnd;\n\tfloat cutoff = thickness * .5;\n\n\t//bevel miter\n\tif (miterMode == 1.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tdistToStart = distToLine(gl_FragCoord.xy, startCutoff.xy, startCutoff.zw);\n\t\t\tif (distToStart < -1.) {\n\t\t\t\tdiscard;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\talpha *= min(max(distToStart + 1., 0.), 1.);\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tdistToEnd = distToLine(gl_FragCoord.xy, endCutoff.xy, endCutoff.zw);\n\t\t\tif (distToEnd < -1.) {\n\t\t\t\tdiscard;\n\t\t\t\treturn;\n\t\t\t}\n\t\t\talpha *= min(max(distToEnd + 1., 0.), 1.);\n\t\t}\n\t}\n\n\t// round miter\n\telse if (miterMode == 2.) {\n\t\tif (enableStartMiter == 1.) {\n\t\t\tdistToStart = distToLine(gl_FragCoord.xy, startCutoff.xy, startCutoff.zw);\n\t\t\tif (distToStart < 0.) {\n\t\t\t\tfloat radius = length(gl_FragCoord.xy - startCoord);\n\n\t\t\t\tif(radius > cutoff + .5) {\n\t\t\t\t\tdiscard;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\talpha -= smoothstep(cutoff - .5, cutoff + .5, radius);\n\t\t\t}\n\t\t}\n\n\t\tif (enableEndMiter == 1.) {\n\t\t\tdistToEnd = distToLine(gl_FragCoord.xy, endCutoff.xy, endCutoff.zw);\n\t\t\tif (distToEnd < 0.) {\n\t\t\t\tfloat radius = length(gl_FragCoord.xy - endCoord);\n\n\t\t\t\tif(radius > cutoff + .5) {\n\t\t\t\t\tdiscard;\n\t\t\t\t\treturn;\n\t\t\t\t}\n\n\t\t\t\talpha -= smoothstep(cutoff - .5, cutoff + .5, radius);\n\t\t\t}\n\t\t}\n\t}\n\n\tfloat t = fract(dot(tangent, gl_FragCoord.xy) / dashLength) * .5 + .25;\n\tfloat dash = texture2D(dashTexture, vec2(t, .5)).r;\n\n\tgl_FragColor = fragColor;\n\tgl_FragColor.a *= alpha * opacity * dash;\n}\n"]),attributes:{lineEnd:{buffer:r,divisor:0,stride:8,offset:0},lineTop:{buffer:r,divisor:0,stride:8,offset:4},aColor:{buffer:t.prop("colorBuffer"),stride:4,offset:0,divisor:1},bColor:{buffer:t.prop("colorBuffer"),stride:4,offset:4,divisor:1},prevCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:0,divisor:1},aCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:8,divisor:1},bCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:16,divisor:1},nextCoord:{buffer:t.prop("positionBuffer"),stride:8,offset:24,divisor:1}}},n))}catch(t){e=i}return{fill:t({primitive:"triangle",elements:function(t,e){return e.triangles},offset:0,vert:o(["precision highp float;\n#define GLSLIFY 1\n\nattribute vec2 position, positionFract;\n\nuniform vec4 color;\nuniform vec2 scale, scaleFract, translate, translateFract;\nuniform float pixelRatio, id;\nuniform vec4 viewport;\nuniform float opacity;\n\nvarying vec4 fragColor;\n\nconst float MAX_LINES = 256.;\n\nvoid main() {\n\tfloat depth = (MAX_LINES - 4. - id) / (MAX_LINES);\n\n\tvec2 position = position * scale + translate\n + positionFract * scale + translateFract\n + position * scaleFract\n + positionFract * scaleFract;\n\n\tgl_Position = vec4(position * 2.0 - 1.0, depth, 1);\n\n\tfragColor = color / 255.;\n\tfragColor.a *= opacity;\n}\n"]),frag:o(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nvoid main() {\n\tgl_FragColor = fragColor;\n}\n"]),uniforms:{scale:t.prop("scale"),color:t.prop("fill"),scaleFract:t.prop("scaleFract"),translateFract:t.prop("translateFract"),translate:t.prop("translate"),opacity:t.prop("opacity"),pixelRatio:t.context("pixelRatio"),id:t.prop("id"),viewport:function(t,e){return[e.viewport.x,e.viewport.y,t.viewportWidth,t.viewportHeight]}},attributes:{position:{buffer:t.prop("positionBuffer"),stride:8,offset:8},positionFract:{buffer:t.prop("positionFractBuffer"),stride:8,offset:8}},blend:n.blend,depth:{enable:!1},scissor:n.scissor,stencil:n.stencil,viewport:n.viewport}),rect:i,miter:e}},v.defaults={dashes:null,join:"miter",miterLimit:1,thickness:10,cap:"square",color:"black",opacity:1,overlay:!1,viewport:null,range:null,close:!1,fill:null},v.prototype.render=function(){for(var t,e=[],r=arguments.length;r--;)e[r]=arguments[r];e.length&&(t=this).update.apply(t,e),this.draw()},v.prototype.draw=function(){for(var t=this,e=[],r=arguments.length;r--;)e[r]=arguments[r];return(e.length?e:this.passes).forEach((function(e,r){var n;if(e&&Array.isArray(e))return(n=t).draw.apply(n,e);"number"==typeof e&&(e=t.passes[e]),e&&e.count>1&&e.opacity&&(t.regl._refresh(),e.fill&&e.triangles&&e.triangles.length>2&&t.shaders.fill(e),e.thickness&&(e.scale[0]*e.viewport.width>v.precisionThreshold||e.scale[1]*e.viewport.height>v.precisionThreshold||"rect"===e.join||!e.join&&(e.thickness<=2||e.count>=v.maxPoints)?t.shaders.rect(e):t.shaders.miter(e)))})),this},v.prototype.update=function(t){var e=this;if(t){null!=t.length?"number"==typeof t[0]&&(t=[{positions:t}]):Array.isArray(t)||(t=[t]);var r=this.regl,o=this.gl;if(t.forEach((function(t,f){var d=e.passes[f];if(void 0!==t)if(null!==t){if("number"==typeof t[0]&&(t={positions:t}),t=s(t,{positions:"positions points data coords",thickness:"thickness lineWidth lineWidths line-width linewidth width stroke-width strokewidth strokeWidth",join:"lineJoin linejoin join type mode",miterLimit:"miterlimit miterLimit",dashes:"dash dashes dasharray dash-array dashArray",color:"color colour stroke colors colours stroke-color strokeColor",fill:"fill fill-color fillColor",opacity:"alpha opacity",overlay:"overlay crease overlap intersect",close:"closed close closed-path closePath",range:"range dataBox",viewport:"viewport viewBox",hole:"holes hole hollow",splitNull:"splitNull"}),d||(e.passes[f]=d={id:f,scale:null,scaleFract:null,translate:null,translateFract:null,count:0,hole:[],depth:0,dashLength:1,dashTexture:r.texture({channels:1,data:new Uint8Array([255]),width:1,height:1,mag:"linear",min:"linear"}),colorBuffer:r.buffer({usage:"dynamic",type:"uint8",data:new Uint8Array}),positionBuffer:r.buffer({usage:"dynamic",type:"float",data:new Uint8Array}),positionFractBuffer:r.buffer({usage:"dynamic",type:"float",data:new Uint8Array})},t=a({},v.defaults,t)),null!=t.thickness&&(d.thickness=parseFloat(t.thickness)),null!=t.opacity&&(d.opacity=parseFloat(t.opacity)),null!=t.miterLimit&&(d.miterLimit=parseFloat(t.miterLimit)),null!=t.overlay&&(d.overlay=!!t.overlay,f=D}));(I=I.slice(0,R)).push(D)}for(var F=function(t){var e=k.slice(2*z,2*I[t]).concat(D?k.slice(2*D):[]),r=(d.hole||[]).map((function(e){return e-D+(I[t]-z)})),n=c(e,r);n=n.map((function(e){return e+z+(e+zt.length)&&(e=t.length);for(var r=0,n=new Array(e);r 1.0 + delta) {\n\t\tdiscard;\n\t}\n\n\talpha -= smoothstep(1.0 - delta, 1.0 + delta, radius);\n\n\tfloat borderRadius = fragBorderRadius;\n\tfloat ratio = smoothstep(borderRadius - delta, borderRadius + delta, radius);\n\tvec4 color = mix(fragColor, fragBorderColor, ratio);\n\tcolor.a *= alpha * opacity;\n\tgl_FragColor = color;\n}\n"]),l.vert=h(["precision highp float;\n#define GLSLIFY 1\n\nattribute float x, y, xFract, yFract;\nattribute float size, borderSize;\nattribute vec4 colorId, borderColorId;\nattribute float isActive;\n\nuniform bool constPointSize;\nuniform float pixelRatio;\nuniform vec2 paletteSize, scale, scaleFract, translate, translateFract;\nuniform sampler2D paletteTexture;\n\nconst float maxSize = 100.;\n\nvarying vec4 fragColor, fragBorderColor;\nvarying float fragBorderRadius, fragWidth;\n\nfloat pointSizeScale = (constPointSize) ? 2. : pixelRatio;\n\nbool isDirect = (paletteSize.x < 1.);\n\nvec4 getColor(vec4 id) {\n return isDirect ? id / 255. : texture2D(paletteTexture,\n vec2(\n (id.x + .5) / paletteSize.x,\n (id.y + .5) / paletteSize.y\n )\n );\n}\n\nvoid main() {\n // ignore inactive points\n if (isActive == 0.) return;\n\n vec2 position = vec2(x, y);\n vec2 positionFract = vec2(xFract, yFract);\n\n vec4 color = getColor(colorId);\n vec4 borderColor = getColor(borderColorId);\n\n float size = size * maxSize / 255.;\n float borderSize = borderSize * maxSize / 255.;\n\n gl_PointSize = (size + borderSize) * pointSizeScale;\n\n vec2 pos = (position + translate) * scale\n + (positionFract + translateFract) * scale\n + (position + translate) * scaleFract\n + (positionFract + translateFract) * scaleFract;\n\n gl_Position = vec4(pos * 2. - 1., 0., 1.);\n\n fragBorderRadius = 1. - 2. * borderSize / (size + borderSize);\n fragColor = color;\n fragBorderColor = borderColor.a == 0. || borderSize == 0. ? vec4(color.rgb, 0.) : borderColor;\n fragWidth = 1. / gl_PointSize;\n}\n"]),g&&(l.frag=l.frag.replace("smoothstep","smoothStep"),s.frag=s.frag.replace("smoothstep","smoothStep")),this.drawCircle=t(l)}b.defaults={color:"black",borderColor:"transparent",borderSize:0,size:12,opacity:1,marker:void 0,viewport:null,range:null,pixelSize:null,count:0,offset:0,bounds:null,positions:[],snap:1e4},b.prototype.render=function(){return arguments.length&&this.update.apply(this,arguments),this.draw(),this},b.prototype.draw=function(){for(var t=this,e=arguments.length,r=new Array(e),n=0;nn)?e.tree=u(t,{bounds:f}):n&&n.length&&(e.tree=n),e.tree){var h={primitive:"points",usage:"static",data:e.tree,type:"uint32"};e.elements?e.elements(h):e.elements=o.elements(h)}var p=v.float32(t);return i({data:p,usage:"dynamic"}),a({data:v.fract32(t,p),usage:"dynamic"}),s({data:new Uint8Array(c),type:"uint8",usage:"stream"}),t}},{marker:function(e,r,n){var i=r.activation;if(i.forEach((function(t){return t&&t.destroy&&t.destroy()})),i.length=0,e&&"number"!=typeof e[0]){for(var a=[],s=0,l=Math.min(e.length,r.count);s=0)return a;if(t instanceof Uint8Array||t instanceof Uint8ClampedArray)e=t;else{e=new Uint8Array(t.length);for(var o=0,s=t.length;o4*n&&(this.tooManyColors=!0),this.updatePalette(r),1===i.length?i[0]:i},b.prototype.updatePalette=function(t){if(!this.tooManyColors){var e=this.maxColors,r=this.paletteTexture,n=Math.ceil(.25*t.length/e);if(n>1)for(var i=.25*(t=t.slice()).length%e;i2?(s[0],s[2],n=s[1],i=s[3]):s.length?(n=s[0],i=s[1]):(s.x,n=s.y,s.x+s.width,i=s.y+s.height),l.length>2?(a=l[0],o=l[2],l[1],l[3]):l.length?(a=l[0],o=l[1]):(a=l.x,l.y,o=l.x+l.width,l.y+l.height),[a,n,o,i]}function p(t){if("number"==typeof t)return[t,t,t,t];if(2===t.length)return[t[0],t[1],t[0],t[1]];var e=l(t);return[e.x,e.y,e.x+e.width,e.y+e.height]}e.exports=u,u.prototype.render=function(){for(var t,e=this,r=[],n=arguments.length;n--;)r[n]=arguments[n];return r.length&&(t=this).update.apply(t,r),this.regl.attributes.preserveDrawingBuffer?this.draw():(this.dirty?null==this.planned&&(this.planned=o((function(){e.draw(),e.dirty=!0,e.planned=null}))):(this.draw(),this.dirty=!0,o((function(){e.dirty=!1}))),this)},u.prototype.update=function(){for(var t,e=[],r=arguments.length;r--;)e[r]=arguments[r];if(e.length){for(var n=0;nk))&&(s.lower||!(T>>=e))<<3,(e|=r=(15<(t>>>=r))<<2)|(r=(3<(t>>>=r))<<1)|t>>>r>>1}function s(){function t(t){t:{for(var e=16;268435456>=e;e*=16)if(t<=e){t=e;break t}t=0}return 0<(e=r[o(t)>>2]).length?e.pop():new ArrayBuffer(t)}function e(t){r[o(t.byteLength)>>2].push(t)}var r=a(8,(function(){return[]}));return{alloc:t,free:e,allocType:function(e,r){var n=null;switch(e){case 5120:n=new Int8Array(t(r),0,r);break;case 5121:n=new Uint8Array(t(r),0,r);break;case 5122:n=new Int16Array(t(2*r),0,r);break;case 5123:n=new Uint16Array(t(2*r),0,r);break;case 5124:n=new Int32Array(t(4*r),0,r);break;case 5125:n=new Uint32Array(t(4*r),0,r);break;case 5126:n=new Float32Array(t(4*r),0,r);break;default:return null}return n.length!==r?n.subarray(0,r):n},freeType:function(t){e(t.buffer)}}}function l(t){return!!t&&"object"==typeof t&&Array.isArray(t.shape)&&Array.isArray(t.stride)&&"number"==typeof t.offset&&t.shape.length===t.stride.length&&(Array.isArray(t.data)||W(t.data))}function c(t,e,r,n,i,a){for(var o=0;o(i=s)&&(i=n.buffer.byteLength,5123===f?i>>=1:5125===f&&(i>>=2)),n.vertCount=i,i=o,0>o&&(i=4,1===(o=n.buffer.dimension)&&(i=0),2===o&&(i=1),3===o&&(i=4)),n.primType=i}function o(t){n.elementsCount--,delete s[t.id],t.buffer.destroy(),t.buffer=null}var s={},c=0,u={uint8:5121,uint16:5123};e.oes_element_index_uint&&(u.uint32=5125),i.prototype.bind=function(){this.buffer.bind()};var f=[];return{create:function(t,e){function s(t){if(t)if("number"==typeof t)c(t),f.primType=4,f.vertCount=0|t,f.type=5121;else{var e=null,r=35044,n=-1,i=-1,o=0,h=0;Array.isArray(t)||W(t)||l(t)?e=t:("data"in t&&(e=t.data),"usage"in t&&(r=Q[t.usage]),"primitive"in t&&(n=rt[t.primitive]),"count"in t&&(i=0|t.count),"type"in t&&(h=u[t.type]),"length"in t?o=0|t.length:(o=i,5123===h||5122===h?o*=2:5125!==h&&5124!==h||(o*=4))),a(f,e,r,n,i,o,h)}else c(),f.primType=4,f.vertCount=0,f.type=5121;return s}var c=r.create(null,34963,!0),f=new i(c._buffer);return n.elementsCount++,s(t),s._reglType="elements",s._elements=f,s.subdata=function(t,e){return c.subdata(t,e),s},s.destroy=function(){o(f)},s},createStream:function(t){var e=f.pop();return e||(e=new i(r.create(null,34963,!0,!1)._buffer)),a(e,t,35040,-1,-1,0,0),e},destroyStream:function(t){f.push(t)},getElements:function(t){return"function"==typeof t&&t._elements instanceof i?t._elements:null},clear:function(){X(s).forEach(o)}}}function m(t){for(var e=G.allocType(5123,t.length),r=0;r>>31<<15,i=(a<<1>>>24)-127,a=a>>13&1023;e[r]=-24>i?n:-14>i?n+(a+1024>>-14-i):15>=i,r.height>>=i,p(r,n[i]),t.mipmask|=1<e;++e)t.images[e]=null;return t}function C(t){for(var e=t.images,r=0;re){for(var r=0;r=--this.refCount&&F(this)}}),o.profile&&(a.getTotalTextureSize=function(){var t=0;return Object.keys(yt).forEach((function(e){t+=yt[e].stats.size})),t}),{create2D:function(e,r){function n(t,e){var r=i.texInfo;P.call(r);var a=L();return"number"==typeof t?M(a,0|t,"number"==typeof e?0|e:0|t):t?(I(r,t),S(a,t)):M(a,1,1),r.genMipmaps&&(a.mipmask=(a.width<<1)-1),i.mipmask=a.mipmask,c(i,a),i.internalformat=a.internalformat,n.width=a.width,n.height=a.height,D(i),E(a,3553),O(r,3553),R(),C(a),o.profile&&(i.stats.size=T(i.internalformat,i.type,a.width,a.height,r.genMipmaps,!1)),n.format=tt[i.internalformat],n.type=et[i.type],n.mag=rt[r.magFilter],n.min=nt[r.minFilter],n.wrapS=it[r.wrapS],n.wrapT=it[r.wrapT],n}var i=new z(3553);return yt[i.id]=i,a.textureCount++,n(e,r),n.subimage=function(t,e,r,a){e|=0,r|=0,a|=0;var o=v();return c(o,i),o.width=0,o.height=0,p(o,t),o.width=o.width||(i.width>>a)-e,o.height=o.height||(i.height>>a)-r,D(i),d(o,3553,e,r,a),R(),k(o),n},n.resize=function(e,r){var a=0|e,s=0|r||a;if(a===i.width&&s===i.height)return n;n.width=i.width=a,n.height=i.height=s,D(i);for(var l=0;i.mipmask>>l;++l){var c=a>>l,u=s>>l;if(!c||!u)break;t.texImage2D(3553,l,i.format,c,u,0,i.format,i.type,null)}return R(),o.profile&&(i.stats.size=T(i.internalformat,i.type,a,s,!1,!1)),n},n._reglType="texture2d",n._texture=i,o.profile&&(n.stats=i.stats),n.destroy=function(){i.decRef()},n},createCube:function(e,r,n,i,s,l){function f(t,e,r,n,i,a){var s,l=h.texInfo;for(P.call(l),s=0;6>s;++s)m[s]=L();if("number"!=typeof t&&t){if("object"==typeof t)if(e)S(m[0],t),S(m[1],e),S(m[2],r),S(m[3],n),S(m[4],i),S(m[5],a);else if(I(l,t),u(h,t),"faces"in t)for(t=t.faces,s=0;6>s;++s)c(m[s],h),S(m[s],t[s]);else for(s=0;6>s;++s)S(m[s],t)}else for(t=0|t||1,s=0;6>s;++s)M(m[s],t,t);for(c(h,m[0]),h.mipmask=l.genMipmaps?(m[0].width<<1)-1:m[0].mipmask,h.internalformat=m[0].internalformat,f.width=m[0].width,f.height=m[0].height,D(h),s=0;6>s;++s)E(m[s],34069+s);for(O(l,34067),R(),o.profile&&(h.stats.size=T(h.internalformat,h.type,f.width,f.height,l.genMipmaps,!0)),f.format=tt[h.internalformat],f.type=et[h.type],f.mag=rt[l.magFilter],f.min=nt[l.minFilter],f.wrapS=it[l.wrapS],f.wrapT=it[l.wrapT],s=0;6>s;++s)C(m[s]);return f}var h=new z(34067);yt[h.id]=h,a.cubeCount++;var m=Array(6);return f(e,r,n,i,s,l),f.subimage=function(t,e,r,n,i){r|=0,n|=0,i|=0;var a=v();return c(a,h),a.width=0,a.height=0,p(a,e),a.width=a.width||(h.width>>i)-r,a.height=a.height||(h.height>>i)-n,D(h),d(a,34069+t,r,n,i),R(),k(a),f},f.resize=function(e){if((e|=0)!==h.width){f.width=h.width=e,f.height=h.height=e,D(h);for(var r=0;6>r;++r)for(var n=0;h.mipmask>>n;++n)t.texImage2D(34069+r,n,h.format,e>>n,e>>n,0,h.format,h.type,null);return R(),o.profile&&(h.stats.size=T(h.internalformat,h.type,f.width,f.height,!1,!0)),f}},f._reglType="textureCube",f._texture=h,o.profile&&(f.stats=h.stats),f.destroy=function(){h.decRef()},f},clear:function(){for(var e=0;er;++r)if(0!=(e.mipmask&1<>r,e.height>>r,0,e.internalformat,e.type,null);else for(var n=0;6>n;++n)t.texImage2D(34069+n,r,e.internalformat,e.width>>r,e.height>>r,0,e.internalformat,e.type,null);O(e.texInfo,e.target)}))},refresh:function(){for(var e=0;ei;++i){for(c=0;ct;++t)r[t].resize(n);return e.width=e.height=n,e},_reglType:"framebufferCube",destroy:function(){r.forEach((function(t){t.destroy()}))}})},clear:function(){X(k).forEach(g)},restore:function(){x.cur=null,x.next=null,x.dirty=!0,X(k).forEach((function(e){e.framebuffer=t.createFramebuffer(),v(e)}))}})}function M(){this.w=this.z=this.y=this.x=this.state=0,this.buffer=null,this.size=0,this.normalized=!1,this.type=5126,this.divisor=this.stride=this.offset=0}function S(t,e,r,n,i,a,o){function s(){this.id=++f,this.attributes=[],this.elements=null,this.ownsElements=!1,this.offset=this.count=0,this.instances=-1,this.primitive=4;var t=e.oes_vertex_array_object;this.vao=t?t.createVertexArrayOES():null,h[this.id]=this,this.buffers=[]}var c=r.maxAttributes,u=Array(c);for(r=0;r=h.byteLength?c.subdata(h):(c.destroy(),r.buffers[s]=null)),r.buffers[s]||(c=r.buffers[s]=i.create(u,34962,!1,!0)),f.buffer=i.getBuffer(c),f.size=0|f.buffer.dimension,f.normalized=!1,f.type=f.buffer.dtype,f.offset=0,f.stride=0,f.divisor=0,f.state=1,t[s]=1;else i.getBuffer(u)?(f.buffer=i.getBuffer(u),f.size=0|f.buffer.dimension,f.normalized=!1,f.type=f.buffer.dtype,f.offset=0,f.stride=0,f.divisor=0,f.state=1):i.getBuffer(u.buffer)?(f.buffer=i.getBuffer(u.buffer),f.size=0|(+u.size||f.buffer.dimension),f.normalized=!!u.normalized||!1,f.type="type"in u?K[u.type]:f.buffer.dtype,f.offset=0|(u.offset||0),f.stride=0|(u.stride||0),f.divisor=0|(u.divisor||0),f.state=1):"x"in u&&(f.x=+u.x||0,f.y=+u.y||0,f.z=+u.z||0,f.w=+u.w||0,f.state=2)}for(c=0;ct&&(t=e.stats.uniformsCount)})),t},r.getMaxAttributesCount=function(){var t=0;return h.forEach((function(e){e.stats.attributesCount>t&&(t=e.stats.attributesCount)})),t}),{clear:function(){var e=t.deleteShader.bind(t);X(c).forEach(e),c={},X(u).forEach(e),u={},h.forEach((function(e){t.deleteProgram(e.program)})),h.length=0,f={},r.shaderCount=0},program:function(e,n,i,a){var o=f[n];o||(o=f[n]={});var p=o[e];if(p&&(p.refCount++,!a))return p;var d=new s(n,e);return r.shaderCount++,l(d,i,a),p||(o[e]=d),h.push(d),j(d,{destroy:function(){if(d.refCount--,0>=d.refCount){t.deleteProgram(d.program);var e=h.indexOf(d);h.splice(e,1),r.shaderCount--}0>=o[d.vertId].refCount&&(t.deleteShader(u[d.vertId]),delete u[d.vertId],delete f[d.fragId][d.vertId]),Object.keys(f[d.fragId]).length||(t.deleteShader(c[d.fragId]),delete c[d.fragId],delete f[d.fragId])}})},restore:function(){c={},u={};for(var t=0;t"+e+"?"+i+".constant["+e+"]:0;"})).join(""),"}}else{","if(",s,"(",i,".buffer)){",u,"=",a,".createStream(",34962,",",i,".buffer);","}else{",u,"=",a,".getBuffer(",i,".buffer);","}",f,'="type" in ',i,"?",o.glTypes,"[",i,".type]:",u,".dtype;",l.normalized,"=!!",i,".normalized;"),n("size"),n("offset"),n("stride"),n("divisor"),r("}}"),r.exit("if(",l.isStream,"){",a,".destroyStream(",u,");","}"),l}))})),o}function A(t,e,n,i,o){function s(t){var e=c[t];e&&(h[t]=e)}var l=function(t,e){if("string"==typeof(r=t.static).frag&&"string"==typeof r.vert){if(0>1)",s],");")}function e(){r(l,".drawArraysInstancedANGLE(",[d,m,g,s],");")}p&&"null"!==p?y?t():(r("if(",p,"){"),t(),r("}else{"),e(),r("}")):e()}function o(){function t(){r(u+".drawElements("+[d,g,v,m+"<<(("+v+"-5121)>>1)"]+");")}function e(){r(u+".drawArrays("+[d,m,g]+");")}p&&"null"!==p?y?t():(r("if(",p,"){"),t(),r("}else{"),e(),r("}")):e()}var s,l,c=t.shared,u=c.gl,f=c.draw,h=n.draw,p=function(){var i=h.elements,a=e;return i?((i.contextDep&&n.contextDynamic||i.propDep)&&(a=r),i=i.append(t,a),h.elementsActive&&a("if("+i+")"+u+".bindBuffer(34963,"+i+".buffer.buffer);")):(i=a.def(),a(i,"=",f,".","elements",";","if(",i,"){",u,".bindBuffer(",34963,",",i,".buffer.buffer);}","else if(",c.vao,".currentVAO){",i,"=",t.shared.elements+".getElements("+c.vao,".currentVAO.elements);",nt?"":"if("+i+")"+u+".bindBuffer(34963,"+i+".buffer.buffer);","}")),i}(),d=i("primitive"),m=i("offset"),g=function(){var i=h.count,a=e;return i?((i.contextDep&&n.contextDynamic||i.propDep)&&(a=r),i=i.append(t,a)):i=a.def(f,".","count"),i}();if("number"==typeof g){if(0===g)return}else r("if(",g,"){"),r.exit("}");tt&&(s=i("instances"),l=t.instancing);var v=p+".type",y=h.elements&&D(h.elements)&&!h.vaoActive;tt&&("number"!=typeof s||0<=s)?"string"==typeof s?(r("if(",s,">0){"),a(),r("}else if(",s,"<0){"),o(),r("}")):a():o()}function G(t,e,r,n,i){return i=(e=b()).proc("body",i),tt&&(e.instancing=i.def(e.shared.extensions,".angle_instanced_arrays")),t(e,i,r,n),e.compile().body}function Y(t,e,r,n){B(t,e),r.useVAO?r.drawVAO?e(t.shared.vao,".setVAO(",r.drawVAO.append(t,e),");"):e(t.shared.vao,".setVAO(",t.shared.vao,".targetVAO);"):(e(t.shared.vao,".setVAO(null);"),U(t,e,r,n.attributes,(function(){return!0}))),H(t,e,r,n.uniforms,(function(){return!0}),!1),q(t,e,e,r)}function W(t,e,r,n){function i(){return!0}t.batchId="a1",B(t,e),U(t,e,r,n.attributes,i),H(t,e,r,n.uniforms,i,!1),q(t,e,e,r)}function X(t,e,r,n){function i(t){return t.contextDep&&o||t.propDep}function a(t){return!i(t)}B(t,e);var o=r.contextDep,s=e.def(),l=e.def();t.shared.props=l,t.batchId=s;var c=t.scope(),u=t.scope();e(c.entry,"for(",s,"=0;",s,"<","a1",";++",s,"){",l,"=","a0","[",s,"];",u,"}",c.exit),r.needsContext&&M(t,u,r.context),r.needsFramebuffer&&S(t,u,r.framebuffer),L(t,u,r.state,i),r.profile&&i(r.profile)&&N(t,u,r,!1,!0),n?(r.useVAO?r.drawVAO?i(r.drawVAO)?u(t.shared.vao,".setVAO(",r.drawVAO.append(t,u),");"):c(t.shared.vao,".setVAO(",r.drawVAO.append(t,c),");"):c(t.shared.vao,".setVAO(",t.shared.vao,".targetVAO);"):(c(t.shared.vao,".setVAO(null);"),U(t,c,r,n.attributes,a),U(t,u,r,n.attributes,i)),H(t,c,r,n.uniforms,a,!1),H(t,u,r,n.uniforms,i,!0),q(t,c,u,r)):(e=t.global.def("{}"),n=r.shader.progVar.append(t,u),l=u.def(n,".id"),c=u.def(e,"[",l,"]"),u(t.shared.gl,".useProgram(",n,".program);","if(!",c,"){",c,"=",e,"[",l,"]=",t.link((function(e){return G(W,t,r,e,2)})),"(",n,");}",c,".call(this,a0[",s,"],",s,");"))}function Z(t,r){function n(e){var n=r.shader[e];n&&i.set(a.shader,"."+e,n.append(t,i))}var i=t.proc("scope",3);t.batchId="a2";var a=t.shared,o=a.current;M(t,i,r.context),r.framebuffer&&r.framebuffer.append(t,i),O(Object.keys(r.state)).forEach((function(e){var n=r.state[e].append(t,i);g(n)?n.forEach((function(r,n){i.set(t.next[e],"["+n+"]",r)})):i.set(a.next,"."+e,n)})),N(t,i,r,!0,!0),["elements","offset","count","instances","primitive"].forEach((function(e){var n=r.draw[e];n&&i.set(a.draw,"."+e,""+n.append(t,i))})),Object.keys(r.uniforms).forEach((function(n){var o=r.uniforms[n].append(t,i);Array.isArray(o)&&(o="["+o.join()+"]"),i.set(a.uniforms,"["+e.id(n)+"]",o)})),Object.keys(r.attributes).forEach((function(e){var n=r.attributes[e].append(t,i),a=t.scopeAttrib(e);Object.keys(new Q).forEach((function(t){i.set(a,"."+t,n[t])}))})),r.scopeVAO&&i.set(a.vao,".targetVAO",r.scopeVAO.append(t,i)),n("vert"),n("frag"),0=--this.refCount&&o(this)},i.profile&&(n.getTotalRenderbufferSize=function(){var t=0;return Object.keys(u).forEach((function(e){t+=u[e].stats.size})),t}),{create:function(e,r){function o(e,r){var n=0,a=0,u=32854;if("object"==typeof e&&e?("shape"in e?(n=0|(a=e.shape)[0],a=0|a[1]):("radius"in e&&(n=a=0|e.radius),"width"in e&&(n=0|e.width),"height"in e&&(a=0|e.height)),"format"in e&&(u=s[e.format])):"number"==typeof e?(n=0|e,a="number"==typeof r?0|r:n):e||(n=a=1),n!==c.width||a!==c.height||u!==c.format)return o.width=c.width=n,o.height=c.height=a,c.format=u,t.bindRenderbuffer(36161,c.renderbuffer),t.renderbufferStorage(36161,u,n,a),i.profile&&(c.stats.size=vt[c.format]*c.width*c.height),o.format=l[c.format],o}var c=new a(t.createRenderbuffer());return u[c.id]=c,n.renderbufferCount++,o(e,r),o.resize=function(e,r){var n=0|e,a=0|r||n;return n===c.width&&a===c.height||(o.width=c.width=n,o.height=c.height=a,t.bindRenderbuffer(36161,c.renderbuffer),t.renderbufferStorage(36161,c.format,n,a),i.profile&&(c.stats.size=vt[c.format]*c.width*c.height)),o},o._reglType="renderbuffer",o._renderbuffer=c,i.profile&&(o.stats=c.stats),o.destroy=function(){c.decRef()},o},clear:function(){X(u).forEach(o)},restore:function(){X(u).forEach((function(e){e.renderbuffer=t.createRenderbuffer(),t.bindRenderbuffer(36161,e.renderbuffer),t.renderbufferStorage(36161,e.format,e.width,e.height)})),t.bindRenderbuffer(36161,null)}}},xt=[];xt[6408]=4,xt[6407]=3;var bt=[];bt[5121]=1,bt[5126]=4,bt[36193]=2;var _t=["x","y","z","w"],wt="blend.func blend.equation stencil.func stencil.opFront stencil.opBack sample.coverage viewport scissor.box polygonOffset.offset".split(" "),Tt={0:0,1:1,zero:0,one:1,"src color":768,"one minus src color":769,"src alpha":770,"one minus src alpha":771,"dst color":774,"one minus dst color":775,"dst alpha":772,"one minus dst alpha":773,"constant color":32769,"one minus constant color":32770,"constant alpha":32771,"one minus constant alpha":32772,"src alpha saturate":776},kt={never:512,less:513,"<":513,equal:514,"=":514,"==":514,"===":514,lequal:515,"<=":515,greater:516,">":516,notequal:517,"!=":517,"!==":517,gequal:518,">=":518,always:519},At={0:0,zero:0,keep:7680,replace:7681,increment:7682,decrement:7683,"increment wrap":34055,"decrement wrap":34056,invert:5386},Mt={cw:2304,ccw:2305},St=new z(!1,!1,!1,(function(){}));return function(t){function e(){if(0===J.length)w&&w.update(),tt=null;else{tt=H.next(e),f();for(var t=J.length-1;0<=t;--t){var r=J[t];r&&r(P,null,0)}g.flush(),w&&w.update()}}function r(){!tt&&0=J.length&&n()}}}}function u(){var t=X.viewport,e=X.scissor_box;t[0]=t[1]=e[0]=e[1]=0,P.viewportWidth=P.framebufferWidth=P.drawingBufferWidth=t[2]=e[2]=g.drawingBufferWidth,P.viewportHeight=P.framebufferHeight=P.drawingBufferHeight=t[3]=e[3]=g.drawingBufferHeight}function f(){P.tick+=1,P.time=m(),u(),W.procs.poll()}function h(){F.refresh(),u(),W.procs.refresh(),w&&w.update()}function m(){return(q()-T)/1e3}if(!(t=i(t)))return null;var g=t.gl,v=g.getContextAttributes();g.isContextLost();var y=function(t,e){function r(e){var r;e=e.toLowerCase();try{r=n[e]=t.getExtension(e)}catch(t){}return!!r}for(var n={},i=0;ie;++e)et(j({framebuffer:t.framebuffer.faces[e]},t),l);else et(t,l);else l(0,t)},prop:V.define.bind(null,1),context:V.define.bind(null,2),this:V.define.bind(null,3),draw:s({}),buffer:function(t){return O.create(t,34962,!1,!1)},elements:function(t){return z.create(t,!1)},texture:F.create2D,cube:F.createCube,renderbuffer:U.create,framebuffer:G.create,framebufferCube:G.createCube,vao:D.createVAO,attributes:v,frame:c,on:function(t,e){var r;switch(t){case"frame":return c(e);case"lost":r=K;break;case"restore":r=Q;break;case"destroy":r=$}return r.push(e),{cancel:function(){for(var t=0;t * * Copyright (c) 2014-2015, Jon Schlinkert. * Licensed under the MIT License. */ -"use strict";var n,i="";e.exports=function(t,e){if("string"!=typeof t)throw new TypeError("expected a string");if(1===e)return t;if(2===e)return t+t;var r=t.length*e;if(n!==t||void 0===n)n=t,i="";else if(i.length>=r)return i.substr(0,r);for(;r>i.length&&e>1;)1&e&&(i+=t),e>>=1,t+=t;return i=(i+=t).substr(0,r)}},{}],278:[function(t,e,r){(function(t){(function(){e.exports=t.performance&&t.performance.now?function(){return performance.now()}:Date.now||function(){return+new Date}}).call(this)}).call(this,void 0!==n?n:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{}],279:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.length,r=t[t.length-1],n=e,i=e-2;i>=0;--i){var a=r,o=t[i];(l=o-((r=a+o)-a))&&(t[--n]=r,r=l)}var s=0;for(i=n;i0){if(a<=0)return o;n=i+a}else{if(!(i<0))return o;if(a>=0)return o;n=-(i+a)}var s=33306690738754716e-32*n;return o>=s||o<=-s?o:f(t,e,r)},function(t,e,r,n){var i=t[0]-n[0],a=e[0]-n[0],o=r[0]-n[0],s=t[1]-n[1],l=e[1]-n[1],c=r[1]-n[1],u=t[2]-n[2],f=e[2]-n[2],p=r[2]-n[2],d=a*c,m=o*l,g=o*s,v=i*c,y=i*l,x=a*s,b=u*(d-m)+f*(g-v)+p*(y-x),_=7771561172376103e-31*((Math.abs(d)+Math.abs(m))*Math.abs(u)+(Math.abs(g)+Math.abs(v))*Math.abs(f)+(Math.abs(y)+Math.abs(x))*Math.abs(p));return b>_||-b>_?b:h(t,e,r,n)}];function d(t){var e=p[t.length];return e||(e=p[t.length]=u(t.length)),e.apply(void 0,t)}function m(t,e,r,n,i,a,o){return function(e,r,s,l,c){switch(arguments.length){case 0:case 1:return 0;case 2:return n(e,r);case 3:return i(e,r,s);case 4:return a(e,r,s,l);case 5:return o(e,r,s,l,c)}for(var u=new Array(arguments.length),f=0;f0&&o>0||a<0&&o<0)return!1;var s=n(r,t,e),l=n(i,t,e);if(s>0&&l>0||s<0&&l<0)return!1;if(0===a&&0===o&&0===s&&0===l)return function(t,e,r,n){for(var i=0;i<2;++i){var a=t[i],o=e[i],s=Math.min(a,o),l=Math.max(a,o),c=r[i],u=n[i],f=Math.min(c,u);if(Math.max(c,u)=n?(i=f,(l+=1)=n?(i=f,(l+=1)>1,c=e[2*l+1];if(c===a)return l;a>1,c=e[2*l+1];if(c===a)return l;a>1,c=e[2*l+1];if(c===a)return l;a>1,s=a(t[o],e);s<=0?(0===s&&(i=o),r=o+1):s>0&&(n=o-1)}return i}function u(t,e){for(var r=new Array(t.length),i=0,o=r.length;i=t.length||0!==a(t[g],s)););}return r}function f(t,e){if(e<0)return[];for(var r=[],i=(1<>>u&1&&c.push(i[u]);e.push(c)}return s(e)},r.skeleton=f,r.boundary=function(t){for(var e=[],r=0,n=t.length;r>1:(t>>1)-1}function x(t){for(var e=v(t);;){var r=e,n=2*t+1,i=2*(t+1),a=t;if(n0;){var r=y(t);if(r>=0)if(e0){var t=k[0];return g(0,M-1),M-=1,x(0),t}return-1}function w(t,e){var r=k[t];return c[r]===e?t:(c[r]=-1/0,b(t),_(),c[r]=e,b((M+=1)-1))}function T(t){if(!u[t]){u[t]=!0;var e=s[t],r=l[t];s[r]>=0&&(s[r]=e),l[e]>=0&&(l[e]=r),A[e]>=0&&w(A[e],m(e)),A[r]>=0&&w(A[r],m(r))}}var k=[],A=new Array(a);for(f=0;f>1;f>=0;--f)x(f);for(;;){var S=_();if(S<0||c[S]>r)break;T(S)}var E=[];for(f=0;f=0&&r>=0&&e!==r){var n=A[e],i=A[r];n!==i&&C.push([n,i])}})),i.unique(i.normalize(C)),{positions:E,edges:C}};var n=t("robust-orientation"),i=t("simplicial-complex")},{"robust-orientation":284,"simplicial-complex":295}],298:[function(t,e,r){"use strict";e.exports=function(t,e){var r,a,o,s;if(e[0][0]e[1][0]))return i(e,t);r=e[1],a=e[0]}if(t[0][0]t[1][0]))return-i(t,e);o=t[1],s=t[0]}var l=n(r,a,s),c=n(r,a,o);if(l<0){if(c<=0)return l}else if(l>0){if(c>=0)return l}else if(c)return c;if(l=n(s,o,a),c=n(s,o,r),l<0){if(c<=0)return l}else if(l>0){if(c>=0)return l}else if(c)return c;return a[0]-s[0]};var n=t("robust-orientation");function i(t,e){var r,i,a,o;if(e[0][0]e[1][0])){var s=Math.min(t[0][1],t[1][1]),l=Math.max(t[0][1],t[1][1]),c=Math.min(e[0][1],e[1][1]),u=Math.max(e[0][1],e[1][1]);return lu?s-u:l-u}r=e[1],i=e[0]}t[0][1]0)if(e[0]!==o[1][0])r=t,t=t.right;else{if(l=c(t.right,e))return l;t=t.left}else{if(e[0]!==o[1][0])return t;var l;if(l=c(t.right,e))return l;t=t.left}}return r}function u(t,e,r,n){this.y=t,this.index=e,this.start=r,this.closed=n}function f(t,e,r,n){this.x=t,this.segment=e,this.create=r,this.index=n}s.prototype.castUp=function(t){var e=n.le(this.coordinates,t[0]);if(e<0)return-1;this.slabs[e];var r=c(this.slabs[e],t),i=-1;if(r&&(i=r.value),this.coordinates[e]===t[0]){var s=null;if(r&&(s=r.key),e>0){var u=c(this.slabs[e-1],t);u&&(s?o(u.key,s)>0&&(s=u.key,i=u.value):(i=u.value,s=u.key))}var f=this.horizontal[e];if(f.length>0){var h=n.ge(f,t[1],l);if(h=f.length)return i;p=f[h]}}if(p.start)if(s){var d=a(s[0],s[1],[t[0],p.y]);s[0][0]>s[1][0]&&(d=-d),d>0&&(i=p.index)}else i=p.index;else p.y!==t[1]&&(i=p.index)}}}return i}},{"./lib/order-segments":298,"binary-search-bounds":31,"functional-red-black-tree":69,"robust-orientation":284}],300:[function(t,e,r){"use strict";var n=t("robust-dot-product"),i=t("robust-sum");function a(t,e){var r=i(n(t,e),[e[e.length-1]]);return r[r.length-1]}function o(t,e,r,n){var i=-e/(n-e);i<0?i=0:i>1&&(i=1);for(var a=1-i,o=t.length,s=new Array(o),l=0;l0||i>0&&u<0){var f=o(s,u,l,i);r.push(f),n.push(f.slice())}u<0?n.push(l.slice()):u>0?r.push(l.slice()):(r.push(l.slice()),n.push(l.slice())),i=u}return{positive:r,negative:n}},e.exports.positive=function(t,e){for(var r=[],n=a(t[t.length-1],e),i=t[t.length-1],s=t[0],l=0;l0||n>0&&c<0)&&r.push(o(i,c,s,n)),c>=0&&r.push(s.slice()),n=c}return r},e.exports.negative=function(t,e){for(var r=[],n=a(t[t.length-1],e),i=t[t.length-1],s=t[0],l=0;l0||n>0&&c<0)&&r.push(o(i,c,s,n)),c<=0&&r.push(s.slice()),n=c}return r}},{"robust-dot-product":281,"robust-sum":289}],301:[function(t,e,r){!function(){"use strict";var t={not_string:/[^s]/,not_bool:/[^t]/,not_type:/[^T]/,not_primitive:/[^v]/,number:/[diefg]/,numeric_arg:/[bcdiefguxX]/,json:/[j]/,not_json:/[^j]/,text:/^[^\x25]+/,modulo:/^\x25{2}/,placeholder:/^\x25(?:([1-9]\d*)\$|\(([^)]+)\))?(\+)?(0|'[^$])?(-)?(\d+)?(?:\.(\d+))?([b-gijostTuvxX])/,key:/^([a-z_][a-z_\d]*)/i,key_access:/^\.([a-z_][a-z_\d]*)/i,index_access:/^\[(\d+)\]/,sign:/^[+-]/};function e(t){return i(o(t),arguments)}function n(t,r){return e.apply(null,[t].concat(r||[]))}function i(r,n){var i,a,o,s,l,c,u,f,h,p=1,d=r.length,m="";for(a=0;a=0),s.type){case"b":i=parseInt(i,10).toString(2);break;case"c":i=String.fromCharCode(parseInt(i,10));break;case"d":case"i":i=parseInt(i,10);break;case"j":i=JSON.stringify(i,null,s.width?parseInt(s.width):0);break;case"e":i=s.precision?parseFloat(i).toExponential(s.precision):parseFloat(i).toExponential();break;case"f":i=s.precision?parseFloat(i).toFixed(s.precision):parseFloat(i);break;case"g":i=s.precision?String(Number(i.toPrecision(s.precision))):parseFloat(i);break;case"o":i=(parseInt(i,10)>>>0).toString(8);break;case"s":i=String(i),i=s.precision?i.substring(0,s.precision):i;break;case"t":i=String(!!i),i=s.precision?i.substring(0,s.precision):i;break;case"T":i=Object.prototype.toString.call(i).slice(8,-1).toLowerCase(),i=s.precision?i.substring(0,s.precision):i;break;case"u":i=parseInt(i,10)>>>0;break;case"v":i=i.valueOf(),i=s.precision?i.substring(0,s.precision):i;break;case"x":i=(parseInt(i,10)>>>0).toString(16);break;case"X":i=(parseInt(i,10)>>>0).toString(16).toUpperCase()}t.json.test(s.type)?m+=i:(!t.number.test(s.type)||f&&!s.sign?h="":(h=f?"+":"-",i=i.toString().replace(t.sign,"")),c=s.pad_char?"0"===s.pad_char?"0":s.pad_char.charAt(1):" ",u=s.width-(h+i).length,l=s.width&&u>0?c.repeat(u):"",m+=s.align?h+i+l:"0"===c?h+l+i:l+h+i)}return m}var a=Object.create(null);function o(e){if(a[e])return a[e];for(var r,n=e,i=[],o=0;n;){if(null!==(r=t.text.exec(n)))i.push(r[0]);else if(null!==(r=t.modulo.exec(n)))i.push("%");else{if(null===(r=t.placeholder.exec(n)))throw new SyntaxError("[sprintf] unexpected placeholder");if(r[2]){o|=1;var s=[],l=r[2],c=[];if(null===(c=t.key.exec(l)))throw new SyntaxError("[sprintf] failed to parse named argument key");for(s.push(c[1]);""!==(l=l.substring(c[0].length));)if(null!==(c=t.key_access.exec(l)))s.push(c[1]);else{if(null===(c=t.index_access.exec(l)))throw new SyntaxError("[sprintf] failed to parse named argument key");s.push(c[1])}r[2]=s}else o|=2;if(3===o)throw new Error("[sprintf] mixing positional and named placeholders is not (yet) supported");i.push({placeholder:r[0],param_no:r[1],keys:r[2],sign:r[3],pad_char:r[4],align:r[5],width:r[6],precision:r[7],type:r[8]})}n=n.substring(r[0].length)}return a[e]=i}void 0!==r&&(r.sprintf=e,r.vsprintf=n),"undefined"!=typeof window&&(window.sprintf=e,window.vsprintf=n)}()},{}],302:[function(t,e,r){"use strict";e.exports=function(t,e){if(t.dimension<=0)return{positions:[],cells:[]};if(1===t.dimension)return function(t,e){for(var r=i(t,e),n=r.length,a=new Array(n),o=new Array(n),s=0;sn|0},vertex:function(t,e,r,n,i,a,o,s,l,c,u,f,h){var p=(o<<0)+(s<<1)+(l<<2)+(c<<3)|0;if(0!==p&&15!==p)switch(p){case 0:u.push([t-.5,e-.5]);break;case 1:u.push([t-.25-.25*(n+r-2*h)/(r-n),e-.25-.25*(i+r-2*h)/(r-i)]);break;case 2:u.push([t-.75-.25*(-n-r+2*h)/(n-r),e-.25-.25*(a+n-2*h)/(n-a)]);break;case 3:u.push([t-.5,e-.5-.5*(i+r+a+n-4*h)/(r-i+n-a)]);break;case 4:u.push([t-.25-.25*(a+i-2*h)/(i-a),e-.75-.25*(-i-r+2*h)/(i-r)]);break;case 5:u.push([t-.5-.5*(n+r+a+i-4*h)/(r-n+i-a),e-.5]);break;case 6:u.push([t-.5-.25*(-n-r+a+i)/(n-r+i-a),e-.5-.25*(-i-r+a+n)/(i-r+n-a)]);break;case 7:u.push([t-.75-.25*(a+i-2*h)/(i-a),e-.75-.25*(a+n-2*h)/(n-a)]);break;case 8:u.push([t-.75-.25*(-a-i+2*h)/(a-i),e-.75-.25*(-a-n+2*h)/(a-n)]);break;case 9:u.push([t-.5-.25*(n+r+-a-i)/(r-n+a-i),e-.5-.25*(i+r+-a-n)/(r-i+a-n)]);break;case 10:u.push([t-.5-.5*(-n-r-a-i+4*h)/(n-r+a-i),e-.5]);break;case 11:u.push([t-.25-.25*(-a-i+2*h)/(a-i),e-.75-.25*(i+r-2*h)/(r-i)]);break;case 12:u.push([t-.5,e-.5-.5*(-i-r-a-n+4*h)/(i-r+a-n)]);break;case 13:u.push([t-.75-.25*(n+r-2*h)/(r-n),e-.25-.25*(-a-n+2*h)/(a-n)]);break;case 14:u.push([t-.25-.25*(-n-r+2*h)/(n-r),e-.25-.25*(-i-r+2*h)/(i-r)]);break;case 15:u.push([t-.5,e-.5])}},cell:function(t,e,r,n,i,a,o,s,l){i?s.push([t,e]):s.push([e,t])}});return function(t,e){var r=[],i=[];return n(t,r,i,e),{positions:r,cells:i}}}};var o={}},{"ndarray-extract-contour":251,"zero-crossings":318}],303:[function(t,e,r){(function(r){(function(){"use strict";e.exports=function t(e,r,i){i=i||{};var o=a[e];o||(o=a[e]={" ":{data:new Float32Array(0),shape:.2}});var s=o[r];if(!s)if(r.length<=1||!/\d/.test(r))s=o[r]=function(t){for(var e=t.cells,r=t.positions,n=new Float32Array(6*e.length),i=0,a=0,o=0;o0&&(f+=.02);var p=new Float32Array(u),d=0,m=-.5*f;for(h=0;hMath.max(r,n)?i[2]=1:r>Math.max(e,n)?i[0]=1:i[1]=1;for(var a=0,o=0,l=0;l<3;++l)a+=t[l]*t[l],o+=i[l]*t[l];for(l=0;l<3;++l)i[l]-=o/a*t[l];return s(i,i),i}function h(t,e,r,i,a,o,s,l){this.center=n(r),this.up=n(i),this.right=n(a),this.radius=n([o]),this.angle=n([s,l]),this.angle.bounds=[[-1/0,-Math.PI/2],[1/0,Math.PI/2]],this.setDistanceLimits(t,e),this.computedCenter=this.center.curve(0),this.computedUp=this.up.curve(0),this.computedRight=this.right.curve(0),this.computedRadius=this.radius.curve(0),this.computedAngle=this.angle.curve(0),this.computedToward=[0,0,0],this.computedEye=[0,0,0],this.computedMatrix=new Array(16);for(var c=0;c<16;++c)this.computedMatrix[c]=.5;this.recalcMatrix(0)}var p=h.prototype;p.setDistanceLimits=function(t,e){t=t>0?Math.log(t):-1/0,e=e>0?Math.log(e):1/0,e=Math.max(e,t),this.radius.bounds[0][0]=t,this.radius.bounds[1][0]=e},p.getDistanceLimits=function(t){var e=this.radius.bounds[0];return t?(t[0]=Math.exp(e[0][0]),t[1]=Math.exp(e[1][0]),t):[Math.exp(e[0][0]),Math.exp(e[1][0])]},p.recalcMatrix=function(t){this.center.curve(t),this.up.curve(t),this.right.curve(t),this.radius.curve(t),this.angle.curve(t);for(var e=this.computedUp,r=this.computedRight,n=0,i=0,a=0;a<3;++a)i+=e[a]*r[a],n+=e[a]*e[a];var l=Math.sqrt(n),u=0;for(a=0;a<3;++a)r[a]-=e[a]*i/n,u+=r[a]*r[a],e[a]/=l;var f=Math.sqrt(u);for(a=0;a<3;++a)r[a]/=f;var h=this.computedToward;o(h,e,r),s(h,h);var p=Math.exp(this.computedRadius[0]),d=this.computedAngle[0],m=this.computedAngle[1],g=Math.cos(d),v=Math.sin(d),y=Math.cos(m),x=Math.sin(m),b=this.computedCenter,_=g*y,w=v*y,T=x,k=-g*x,A=-v*x,M=y,S=this.computedEye,E=this.computedMatrix;for(a=0;a<3;++a){var L=_*r[a]+w*h[a]+T*e[a];E[4*a+1]=k*r[a]+A*h[a]+M*e[a],E[4*a+2]=L,E[4*a+3]=0}var C=E[1],P=E[5],I=E[9],O=E[2],z=E[6],D=E[10],R=P*D-I*z,F=I*O-C*D,B=C*z-P*O,N=c(R,F,B);R/=N,F/=N,B/=N,E[0]=R,E[4]=F,E[8]=B;for(a=0;a<3;++a)S[a]=b[a]+E[2+4*a]*p;for(a=0;a<3;++a){u=0;for(var j=0;j<3;++j)u+=E[a+4*j]*S[j];E[12+a]=-u}E[15]=1},p.getMatrix=function(t,e){this.recalcMatrix(t);var r=this.computedMatrix;if(e){for(var n=0;n<16;++n)e[n]=r[n];return e}return r};var d=[0,0,0];p.rotate=function(t,e,r,n){if(this.angle.move(t,e,r),n){this.recalcMatrix(t);var i=this.computedMatrix;d[0]=i[2],d[1]=i[6],d[2]=i[10];for(var o=this.computedUp,s=this.computedRight,l=this.computedToward,c=0;c<3;++c)i[4*c]=o[c],i[4*c+1]=s[c],i[4*c+2]=l[c];a(i,i,n,d);for(c=0;c<3;++c)o[c]=i[4*c],s[c]=i[4*c+1];this.up.set(t,o[0],o[1],o[2]),this.right.set(t,s[0],s[1],s[2])}},p.pan=function(t,e,r,n){e=e||0,r=r||0,n=n||0,this.recalcMatrix(t);var i=this.computedMatrix,a=(Math.exp(this.computedRadius[0]),i[1]),o=i[5],s=i[9],l=c(a,o,s);a/=l,o/=l,s/=l;var u=i[0],f=i[4],h=i[8],p=u*a+f*o+h*s,d=c(u-=a*p,f-=o*p,h-=s*p),m=(u/=d)*e+a*r,g=(f/=d)*e+o*r,v=(h/=d)*e+s*r;this.center.move(t,m,g,v);var y=Math.exp(this.computedRadius[0]);y=Math.max(1e-4,y+n),this.radius.set(t,Math.log(y))},p.translate=function(t,e,r,n){this.center.move(t,e||0,r||0,n||0)},p.setMatrix=function(t,e,r,n){var a=1;"number"==typeof r&&(a=0|r),(a<0||a>3)&&(a=1);var o=(a+2)%3;e||(this.recalcMatrix(t),e=this.computedMatrix);var s=e[a],l=e[a+4],f=e[a+8];if(n){var h=Math.abs(s),p=Math.abs(l),d=Math.abs(f),m=Math.max(h,p,d);h===m?(s=s<0?-1:1,l=f=0):d===m?(f=f<0?-1:1,s=l=0):(l=l<0?-1:1,s=f=0)}else{var g=c(s,l,f);s/=g,l/=g,f/=g}var v,y,x=e[o],b=e[o+4],_=e[o+8],w=x*s+b*l+_*f,T=c(x-=s*w,b-=l*w,_-=f*w),k=l*(_/=T)-f*(b/=T),A=f*(x/=T)-s*_,M=s*b-l*x,S=c(k,A,M);if(k/=S,A/=S,M/=S,this.center.jump(t,q,G,Y),this.radius.idle(t),this.up.jump(t,s,l,f),this.right.jump(t,x,b,_),2===a){var E=e[1],L=e[5],C=e[9],P=E*x+L*b+C*_,I=E*k+L*A+C*M;v=R<0?-Math.PI/2:Math.PI/2,y=Math.atan2(I,P)}else{var O=e[2],z=e[6],D=e[10],R=O*s+z*l+D*f,F=O*x+z*b+D*_,B=O*k+z*A+D*M;v=Math.asin(u(R)),y=Math.atan2(B,F)}this.angle.jump(t,y,v),this.recalcMatrix(t);var N=e[2],j=e[6],U=e[10],V=this.computedMatrix;i(V,e);var H=V[15],q=V[12]/H,G=V[13]/H,Y=V[14]/H,W=Math.exp(this.computedRadius[0]);this.center.jump(t,q-N*W,G-j*W,Y-U*W)},p.lastT=function(){return Math.max(this.center.lastT(),this.up.lastT(),this.right.lastT(),this.radius.lastT(),this.angle.lastT())},p.idle=function(t){this.center.idle(t),this.up.idle(t),this.right.idle(t),this.radius.idle(t),this.angle.idle(t)},p.flush=function(t){this.center.flush(t),this.up.flush(t),this.right.flush(t),this.radius.flush(t),this.angle.flush(t)},p.setDistance=function(t,e){e>0&&this.radius.set(t,Math.log(e))},p.lookAt=function(t,e,r,n){this.recalcMatrix(t),e=e||this.computedEye,r=r||this.computedCenter;var i=(n=n||this.computedUp)[0],a=n[1],o=n[2],s=c(i,a,o);if(!(s<1e-6)){i/=s,a/=s,o/=s;var l=e[0]-r[0],f=e[1]-r[1],h=e[2]-r[2],p=c(l,f,h);if(!(p<1e-6)){l/=p,f/=p,h/=p;var d=this.computedRight,m=d[0],g=d[1],v=d[2],y=i*m+a*g+o*v,x=c(m-=y*i,g-=y*a,v-=y*o);if(!(x<.01&&(x=c(m=a*h-o*f,g=o*l-i*h,v=i*f-a*l))<1e-6)){m/=x,g/=x,v/=x,this.up.set(t,i,a,o),this.right.set(t,m,g,v),this.center.set(t,r[0],r[1],r[2]),this.radius.set(t,Math.log(p));var b=a*v-o*g,_=o*m-i*v,w=i*g-a*m,T=c(b,_,w),k=i*l+a*f+o*h,A=m*l+g*f+v*h,M=(b/=T)*l+(_/=T)*f+(w/=T)*h,S=Math.asin(u(k)),E=Math.atan2(M,A),L=this.angle._state,C=L[L.length-1],P=L[L.length-2];C%=2*Math.PI;var I=Math.abs(C+2*Math.PI-E),O=Math.abs(C-E),z=Math.abs(C-2*Math.PI-E);I0?r.pop():new ArrayBuffer(t)}function d(t){return new Uint8Array(p(t),0,t)}function m(t){return new Uint16Array(p(2*t),0,t)}function g(t){return new Uint32Array(p(4*t),0,t)}function v(t){return new Int8Array(p(t),0,t)}function y(t){return new Int16Array(p(2*t),0,t)}function x(t){return new Int32Array(p(4*t),0,t)}function b(t){return new Float32Array(p(4*t),0,t)}function _(t){return new Float64Array(p(8*t),0,t)}function w(t){return o?new Uint8ClampedArray(p(t),0,t):d(t)}function T(t){return s?new BigUint64Array(p(8*t),0,t):null}function k(t){return l?new BigInt64Array(p(8*t),0,t):null}function A(t){return new DataView(p(t),0,t)}function M(t){t=n.nextPow2(t);var e=n.log2(t),r=f[e];return r.length>0?r.pop():new a(t)}r.free=function(t){if(a.isBuffer(t))f[n.log2(t.length)].push(t);else{if("[object ArrayBuffer]"!==Object.prototype.toString.call(t)&&(t=t.buffer),!t)return;var e=t.length||t.byteLength,r=0|n.log2(e);u[r].push(t)}},r.freeUint8=r.freeUint16=r.freeUint32=r.freeBigUint64=r.freeInt8=r.freeInt16=r.freeInt32=r.freeBigInt64=r.freeFloat32=r.freeFloat=r.freeFloat64=r.freeDouble=r.freeUint8Clamped=r.freeDataView=function(t){h(t.buffer)},r.freeArrayBuffer=h,r.freeBuffer=function(t){f[n.log2(t.length)].push(t)},r.malloc=function(t,e){if(void 0===e||"arraybuffer"===e)return p(t);switch(e){case"uint8":return d(t);case"uint16":return m(t);case"uint32":return g(t);case"int8":return v(t);case"int16":return y(t);case"int32":return x(t);case"float":case"float32":return b(t);case"double":case"float64":return _(t);case"uint8_clamped":return w(t);case"bigint64":return k(t);case"biguint64":return T(t);case"buffer":return M(t);case"data":case"dataview":return A(t);default:return null}return null},r.mallocArrayBuffer=p,r.mallocUint8=d,r.mallocUint16=m,r.mallocUint32=g,r.mallocInt8=v,r.mallocInt16=y,r.mallocInt32=x,r.mallocFloat32=r.mallocFloat=b,r.mallocFloat64=r.mallocDouble=_,r.mallocUint8Clamped=w,r.mallocBigUint64=T,r.mallocBigInt64=k,r.mallocDataView=A,r.mallocBuffer=M,r.clearCache=function(){for(var t=0;t<32;++t)c.UINT8[t].length=0,c.UINT16[t].length=0,c.UINT32[t].length=0,c.INT8[t].length=0,c.INT16[t].length=0,c.INT32[t].length=0,c.FLOAT[t].length=0,c.DOUBLE[t].length=0,c.BIGUINT64[t].length=0,c.BIGINT64[t].length=0,c.UINT8C[t].length=0,u[t].length=0,f[t].length=0}}).call(this)}).call(this,void 0!==n?n:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"bit-twiddle":32,buffer:3,dup:65}],309:[function(t,e,r){"use strict";function n(t){this.roots=new Array(t),this.ranks=new Array(t);for(var e=0;e0&&(a=n.size),n.lineSpacing&&n.lineSpacing>0&&(o=n.lineSpacing),n.styletags&&n.styletags.breaklines&&(s.breaklines=!!n.styletags.breaklines),n.styletags&&n.styletags.bolds&&(s.bolds=!!n.styletags.bolds),n.styletags&&n.styletags.italics&&(s.italics=!!n.styletags.italics),n.styletags&&n.styletags.subscripts&&(s.subscripts=!!n.styletags.subscripts),n.styletags&&n.styletags.superscripts&&(s.superscripts=!!n.styletags.superscripts));return r.font=[n.fontStyle,n.fontVariant,n.fontWeight,a+"px",n.font].filter((function(t){return t})).join(" "),r.textAlign="start",r.textBaseline="alphabetic",r.direction="ltr",h(function(t,e,r,n,a,o){r=r.replace(/\n/g,""),r=!0===o.breaklines?r.replace(/\/g,"\n"):r.replace(/\/g," ");var s="",l=[];for(p=0;p-1?parseInt(t[1+i]):0,l=a>-1?parseInt(r[1+a]):0;s!==l&&(n=n.replace(S(),"?px "),g*=Math.pow(.75,l-s),n=n.replace("?px ",S())),m+=.25*x*(l-s)}if(!0===o.superscripts){var c=t.indexOf("+"),u=r.indexOf("+"),f=c>-1?parseInt(t[1+c]):0,h=u>-1?parseInt(r[1+u]):0;f!==h&&(n=n.replace(S(),"?px "),g*=Math.pow(.75,h-f),n=n.replace("?px ",S())),m-=.25*x*(h-f)}if(!0===o.bolds){var p=t.indexOf("b|")>-1,d=r.indexOf("b|")>-1;!p&&d&&(n=v?n.replace("italic ","italic bold "):"bold "+n),p&&!d&&(n=n.replace("bold ",""))}if(!0===o.italics){var v=t.indexOf("i|")>-1,y=r.indexOf("i|")>-1;!v&&y&&(n="italic "+n),v&&!y&&(n=n.replace("italic ",""))}e.font=n}for(h=0;h",a="",o=i.length,s=a.length,l="+"===e[0]||"-"===e[0],c=0,u=-s;c>-1&&-1!==(c=r.indexOf(i,c))&&-1!==(u=r.indexOf(a,c+o))&&!(u<=c);){for(var f=c;f=u)n[f]=null,r=r.substr(0,f)+" "+r.substr(f+1);else if(null!==n[f]){var h=n[f].indexOf(e[0]);-1===h?n[f]+=e:l&&(n[f]=n[f].substr(0,h+1)+(1+parseInt(n[f][h+1]))+n[f].substr(h+2))}var p=c+o,d=r.substr(p,u-p).indexOf(i);c=-1!==d?d:u+s}return n}function u(t,e){var r=n(t,128);return e?a(r.cells,r.positions,.25):{edges:r.cells,positions:r.positions}}function f(t,e,r,n){var i=u(t,n),a=function(t,e,r){for(var n=e.textAlign||"start",i=e.textBaseline||"alphabetic",a=[1<<30,1<<30],o=[0,0],s=t.length,l=0;l=0?e[a]:i}))},has___:{value:y((function(e){var n=v(e);return n?r in n:t.indexOf(e)>=0}))},set___:{value:y((function(n,i){var a,o=v(n);return o?o[r]=i:(a=t.indexOf(n))>=0?e[a]=i:(a=t.length,e[a]=i,t[a]=n),this}))},delete___:{value:y((function(n){var i,a,o=v(n);return o?r in o&&delete o[r]:!((i=t.indexOf(n))<0)&&(a=t.length-1,t[i]=void 0,e[i]=e[a],t[i]=t[a],t.length=a,e.length=a,!0)}))}})};d.prototype=Object.create(Object.prototype,{get:{value:function(t,e){return this.get___(t,e)},writable:!0,configurable:!0},has:{value:function(t){return this.has___(t)},writable:!0,configurable:!0},set:{value:function(t,e){return this.set___(t,e)},writable:!0,configurable:!0},delete:{value:function(t){return this.delete___(t)},writable:!0,configurable:!0}}),"function"==typeof r?function(){function n(){this instanceof d||x();var e,n=new r,i=void 0,a=!1;return e=t?function(t,e){return n.set(t,e),n.has(t)||(i||(i=new d),i.set(t,e)),this}:function(t,e){if(a)try{n.set(t,e)}catch(r){i||(i=new d),i.set___(t,e)}else n.set(t,e);return this},Object.create(d.prototype,{get___:{value:y((function(t,e){return i?n.has(t)?n.get(t):i.get___(t,e):n.get(t,e)}))},has___:{value:y((function(t){return n.has(t)||!!i&&i.has___(t)}))},set___:{value:y(e)},delete___:{value:y((function(t){var e=!!n.delete(t);return i&&i.delete___(t)||e}))},permitHostObjects___:{value:y((function(t){if(t!==m)throw new Error("bogus call to permitHostObjects___");a=!0}))}})}t&&"undefined"!=typeof Proxy&&(Proxy=void 0),n.prototype=d.prototype,e.exports=n,Object.defineProperty(WeakMap.prototype,"constructor",{value:WeakMap,enumerable:!1,configurable:!0,writable:!0})}():("undefined"!=typeof Proxy&&(Proxy=void 0),e.exports=d)}function m(t){t.permitHostObjects___&&t.permitHostObjects___(m)}function g(t){return!("weakmap:"==t.substr(0,"weakmap:".length)&&"___"===t.substr(t.length-3))}function v(t){if(t!==Object(t))throw new TypeError("Not an object: "+t);var e=t[l];if(e&&e.key===t)return e;if(s(t)){e={key:t};try{return o(t,l,{value:e,writable:!1,enumerable:!1,configurable:!1}),e}catch(t){return}}}function y(t){return t.prototype=null,Object.freeze(t)}function x(){h||"undefined"==typeof console||(h=!0,console.warn("WeakMap should be invoked as new WeakMap(), not WeakMap(). This will be an error in the future."))}}()},{}],314:[function(t,e,r){var n=t("./hidden-store.js");e.exports=function(){var t={};return function(e){if(("object"!=typeof e||null===e)&&"function"!=typeof e)throw new Error("Weakmap-shim: Key must be object");var r=e.valueOf(t);return r&&r.identity===t?r:n(e,t)}}},{"./hidden-store.js":315}],315:[function(t,e,r){e.exports=function(t,e){var r={identity:e},n=t.valueOf;return Object.defineProperty(t,"valueOf",{value:function(t){return t!==e?n.apply(this,arguments):r},writable:!0}),r}},{}],316:[function(t,e,r){var n=t("./create-store.js");e.exports=function(){var t=n();return{get:function(e,r){var n=t(e);return n.hasOwnProperty("value")?n.value:r},set:function(e,r){return t(e).value=r,this},has:function(e){return"value"in t(e)},delete:function(e){return delete t(e).value}}}},{"./create-store.js":314}],317:[function(t,e,r){"use strict";var n,i=function(){return function(t,e,r,n,i,a){var o=t[0],s=r[0],l=[0],c=s;n|=0;var u=0,f=s;for(u=0;u=0!=p>=0&&i.push(l[0]+.5+.5*(h+p)/(h-p)),n+=f,++l[0]}}};e.exports=(n={funcName:{funcName:"zeroCrossings"}.funcName},function(t){var e={};return function(r,n,i){var a=r.dtype,o=r.order,s=[a,o.join()].join(),l=e[s];return l||(e[s]=l=t([a,o])),l(r.shape.slice(0),r.data,r.stride,0|r.offset,n,i)}}(i.bind(void 0,n)))},{}],318:[function(t,e,r){"use strict";e.exports=function(t,e){var r=[];return e=+e||0,n(t.hi(t.shape[0]-1),r,e),r};var n=t("./lib/zc-core")},{"./lib/zc-core":317}]},{},[6])(6)}))}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{}]},{},[27])(27)})); \ No newline at end of file +"use strict";var n,i="";e.exports=function(t,e){if("string"!=typeof t)throw new TypeError("expected a string");if(1===e)return t;if(2===e)return t+t;var r=t.length*e;if(n!==t||void 0===n)n=t,i="";else if(i.length>=r)return i.substr(0,r);for(;r>i.length&&e>1;)1&e&&(i+=t),e>>=1,t+=t;return i=(i+=t).substr(0,r)}},{}],518:[function(t,e,r){(function(t){(function(){e.exports=t.performance&&t.performance.now?function(){return performance.now()}:Date.now||function(){return+new Date}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{}],519:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.length,r=t[t.length-1],n=e,i=e-2;i>=0;--i){var a=r,o=t[i];(l=o-((r=a+o)-a))&&(t[--n]=r,r=l)}var s=0;for(i=n;i0){if(a<=0)return o;n=i+a}else{if(!(i<0))return o;if(a>=0)return o;n=-(i+a)}var s=33306690738754716e-32*n;return o>=s||o<=-s?o:f(t,e,r)},function(t,e,r,n){var i=t[0]-n[0],a=e[0]-n[0],o=r[0]-n[0],s=t[1]-n[1],l=e[1]-n[1],c=r[1]-n[1],u=t[2]-n[2],f=e[2]-n[2],p=r[2]-n[2],d=a*c,m=o*l,g=o*s,v=i*c,y=i*l,x=a*s,b=u*(d-m)+f*(g-v)+p*(y-x),_=7771561172376103e-31*((Math.abs(d)+Math.abs(m))*Math.abs(u)+(Math.abs(g)+Math.abs(v))*Math.abs(f)+(Math.abs(y)+Math.abs(x))*Math.abs(p));return b>_||-b>_?b:h(t,e,r,n)}];function d(t){var e=p[t.length];return e||(e=p[t.length]=u(t.length)),e.apply(void 0,t)}function m(t,e,r,n,i,a,o){return function(e,r,s,l,c){switch(arguments.length){case 0:case 1:return 0;case 2:return n(e,r);case 3:return i(e,r,s);case 4:return a(e,r,s,l);case 5:return o(e,r,s,l,c)}for(var u=new Array(arguments.length),f=0;f0&&o>0||a<0&&o<0)return!1;var s=n(r,t,e),l=n(i,t,e);if(s>0&&l>0||s<0&&l<0)return!1;if(0===a&&0===o&&0===s&&0===l)return function(t,e,r,n){for(var i=0;i<2;++i){var a=t[i],o=e[i],s=Math.min(a,o),l=Math.max(a,o),c=r[i],u=n[i],f=Math.min(c,u);if(Math.max(c,u)=n?(i=f,(l+=1)=n?(i=f,(l+=1) */ +var n=t("buffer"),i=n.Buffer;function a(t,e){for(var r in t)e[r]=t[r]}function o(t,e,r){return i(t,e,r)}i.from&&i.alloc&&i.allocUnsafe&&i.allocUnsafeSlow?e.exports=n:(a(n,r),r.Buffer=o),o.prototype=Object.create(i.prototype),a(i,o),o.from=function(t,e,r){if("number"==typeof t)throw new TypeError("Argument must not be a number");return i(t,e,r)},o.alloc=function(t,e,r){if("number"!=typeof t)throw new TypeError("Argument must be a number");var n=i(t);return void 0!==e?"string"==typeof r?n.fill(e,r):n.fill(e):n.fill(0),n},o.allocUnsafe=function(t){if("number"!=typeof t)throw new TypeError("Argument must be a number");return i(t)},o.allocUnsafeSlow=function(t){if("number"!=typeof t)throw new TypeError("Argument must be a number");return n.SlowBuffer(t)}},{buffer:112}],531:[function(t,e,r){"use strict";e.exports=function(t){return i(n(t))};var n=t("boundary-cells"),i=t("reduce-simplicial-complex")},{"boundary-cells":103,"reduce-simplicial-complex":511}],532:[function(t,e,r){"use strict";e.exports=function(t,e,r,s){r=r||0,void 0===s&&(s=function(t){for(var e=t.length,r=0,n=0;n>1,c=e[2*l+1];if(c===a)return l;a>1,c=e[2*l+1];if(c===a)return l;a>1,c=e[2*l+1];if(c===a)return l;a>1,s=a(t[o],e);s<=0?(0===s&&(i=o),r=o+1):s>0&&(n=o-1)}return i}function u(t,e){for(var r=new Array(t.length),i=0,o=r.length;i=t.length||0!==a(t[g],s)););}return r}function f(t,e){if(e<0)return[];for(var r=[],i=(1<>>u&1&&c.push(i[u]);e.push(c)}return s(e)},r.skeleton=f,r.boundary=function(t){for(var e=[],r=0,n=t.length;r>1:(t>>1)-1}function x(t){for(var e=v(t);;){var r=e,n=2*t+1,i=2*(t+1),a=t;if(n0;){var r=y(t);if(r>=0)if(e0){var t=k[0];return g(0,M-1),M-=1,x(0),t}return-1}function w(t,e){var r=k[t];return c[r]===e?t:(c[r]=-1/0,b(t),_(),c[r]=e,b((M+=1)-1))}function T(t){if(!u[t]){u[t]=!0;var e=s[t],r=l[t];s[r]>=0&&(s[r]=e),l[e]>=0&&(l[e]=r),A[e]>=0&&w(A[e],m(e)),A[r]>=0&&w(A[r],m(r))}}var k=[],A=new Array(a);for(f=0;f>1;f>=0;--f)x(f);for(;;){var S=_();if(S<0||c[S]>r)break;T(S)}var E=[];for(f=0;f=0&&r>=0&&e!==r){var n=A[e],i=A[r];n!==i&&C.push([n,i])}})),i.unique(i.normalize(C)),{positions:E,edges:C}};var n=t("robust-orientation"),i=t("simplicial-complex")},{"robust-orientation":524,"simplicial-complex":536}],539:[function(t,e,r){"use strict";e.exports=function(t,e){var r,a,o,s;if(e[0][0]e[1][0]))return i(e,t);r=e[1],a=e[0]}if(t[0][0]t[1][0]))return-i(t,e);o=t[1],s=t[0]}var l=n(r,a,s),c=n(r,a,o);if(l<0){if(c<=0)return l}else if(l>0){if(c>=0)return l}else if(c)return c;if(l=n(s,o,a),c=n(s,o,r),l<0){if(c<=0)return l}else if(l>0){if(c>=0)return l}else if(c)return c;return a[0]-s[0]};var n=t("robust-orientation");function i(t,e){var r,i,a,o;if(e[0][0]e[1][0])){var s=Math.min(t[0][1],t[1][1]),l=Math.max(t[0][1],t[1][1]),c=Math.min(e[0][1],e[1][1]),u=Math.max(e[0][1],e[1][1]);return lu?s-u:l-u}r=e[1],i=e[0]}t[0][1]0)if(e[0]!==o[1][0])r=t,t=t.right;else{if(l=c(t.right,e))return l;t=t.left}else{if(e[0]!==o[1][0])return t;var l;if(l=c(t.right,e))return l;t=t.left}}return r}function u(t,e,r,n){this.y=t,this.index=e,this.start=r,this.closed=n}function f(t,e,r,n){this.x=t,this.segment=e,this.create=r,this.index=n}s.prototype.castUp=function(t){var e=n.le(this.coordinates,t[0]);if(e<0)return-1;this.slabs[e];var r=c(this.slabs[e],t),i=-1;if(r&&(i=r.value),this.coordinates[e]===t[0]){var s=null;if(r&&(s=r.key),e>0){var u=c(this.slabs[e-1],t);u&&(s?o(u.key,s)>0&&(s=u.key,i=u.value):(i=u.value,s=u.key))}var f=this.horizontal[e];if(f.length>0){var h=n.ge(f,t[1],l);if(h=f.length)return i;p=f[h]}}if(p.start)if(s){var d=a(s[0],s[1],[t[0],p.y]);s[0][0]>s[1][0]&&(d=-d),d>0&&(i=p.index)}else i=p.index;else p.y!==t[1]&&(i=p.index)}}}return i}},{"./lib/order-segments":539,"binary-search-bounds":100,"functional-red-black-tree":247,"robust-orientation":524}],541:[function(t,e,r){"use strict";var n=t("robust-dot-product"),i=t("robust-sum");function a(t,e){var r=i(n(t,e),[e[e.length-1]]);return r[r.length-1]}function o(t,e,r,n){var i=-e/(n-e);i<0?i=0:i>1&&(i=1);for(var a=1-i,o=t.length,s=new Array(o),l=0;l0||i>0&&u<0){var f=o(s,u,l,i);r.push(f),n.push(f.slice())}u<0?n.push(l.slice()):u>0?r.push(l.slice()):(r.push(l.slice()),n.push(l.slice())),i=u}return{positive:r,negative:n}},e.exports.positive=function(t,e){for(var r=[],n=a(t[t.length-1],e),i=t[t.length-1],s=t[0],l=0;l0||n>0&&c<0)&&r.push(o(i,c,s,n)),c>=0&&r.push(s.slice()),n=c}return r},e.exports.negative=function(t,e){for(var r=[],n=a(t[t.length-1],e),i=t[t.length-1],s=t[0],l=0;l0||n>0&&c<0)&&r.push(o(i,c,s,n)),c<=0&&r.push(s.slice()),n=c}return r}},{"robust-dot-product":521,"robust-sum":529}],542:[function(t,e,r){!function(){"use strict";var t={not_string:/[^s]/,not_bool:/[^t]/,not_type:/[^T]/,not_primitive:/[^v]/,number:/[diefg]/,numeric_arg:/[bcdiefguxX]/,json:/[j]/,not_json:/[^j]/,text:/^[^\x25]+/,modulo:/^\x25{2}/,placeholder:/^\x25(?:([1-9]\d*)\$|\(([^)]+)\))?(\+)?(0|'[^$])?(-)?(\d+)?(?:\.(\d+))?([b-gijostTuvxX])/,key:/^([a-z_][a-z_\d]*)/i,key_access:/^\.([a-z_][a-z_\d]*)/i,index_access:/^\[(\d+)\]/,sign:/^[+-]/};function e(t){return i(o(t),arguments)}function n(t,r){return e.apply(null,[t].concat(r||[]))}function i(r,n){var i,a,o,s,l,c,u,f,h,p=1,d=r.length,m="";for(a=0;a=0),s.type){case"b":i=parseInt(i,10).toString(2);break;case"c":i=String.fromCharCode(parseInt(i,10));break;case"d":case"i":i=parseInt(i,10);break;case"j":i=JSON.stringify(i,null,s.width?parseInt(s.width):0);break;case"e":i=s.precision?parseFloat(i).toExponential(s.precision):parseFloat(i).toExponential();break;case"f":i=s.precision?parseFloat(i).toFixed(s.precision):parseFloat(i);break;case"g":i=s.precision?String(Number(i.toPrecision(s.precision))):parseFloat(i);break;case"o":i=(parseInt(i,10)>>>0).toString(8);break;case"s":i=String(i),i=s.precision?i.substring(0,s.precision):i;break;case"t":i=String(!!i),i=s.precision?i.substring(0,s.precision):i;break;case"T":i=Object.prototype.toString.call(i).slice(8,-1).toLowerCase(),i=s.precision?i.substring(0,s.precision):i;break;case"u":i=parseInt(i,10)>>>0;break;case"v":i=i.valueOf(),i=s.precision?i.substring(0,s.precision):i;break;case"x":i=(parseInt(i,10)>>>0).toString(16);break;case"X":i=(parseInt(i,10)>>>0).toString(16).toUpperCase()}t.json.test(s.type)?m+=i:(!t.number.test(s.type)||f&&!s.sign?h="":(h=f?"+":"-",i=i.toString().replace(t.sign,"")),c=s.pad_char?"0"===s.pad_char?"0":s.pad_char.charAt(1):" ",u=s.width-(h+i).length,l=s.width&&u>0?c.repeat(u):"",m+=s.align?h+i+l:"0"===c?h+l+i:l+h+i)}return m}var a=Object.create(null);function o(e){if(a[e])return a[e];for(var r,n=e,i=[],o=0;n;){if(null!==(r=t.text.exec(n)))i.push(r[0]);else if(null!==(r=t.modulo.exec(n)))i.push("%");else{if(null===(r=t.placeholder.exec(n)))throw new SyntaxError("[sprintf] unexpected placeholder");if(r[2]){o|=1;var s=[],l=r[2],c=[];if(null===(c=t.key.exec(l)))throw new SyntaxError("[sprintf] failed to parse named argument key");for(s.push(c[1]);""!==(l=l.substring(c[0].length));)if(null!==(c=t.key_access.exec(l)))s.push(c[1]);else{if(null===(c=t.index_access.exec(l)))throw new SyntaxError("[sprintf] failed to parse named argument key");s.push(c[1])}r[2]=s}else o|=2;if(3===o)throw new Error("[sprintf] mixing positional and named placeholders is not (yet) supported");i.push({placeholder:r[0],param_no:r[1],keys:r[2],sign:r[3],pad_char:r[4],align:r[5],width:r[6],precision:r[7],type:r[8]})}n=n.substring(r[0].length)}return a[e]=i}void 0!==r&&(r.sprintf=e,r.vsprintf=n),"undefined"!=typeof window&&(window.sprintf=e,window.vsprintf=n)}()},{}],543:[function(t,e,r){e.exports=i;var n=t("events").EventEmitter;function i(){n.call(this)}t("inherits")(i,n),i.Readable=t("readable-stream/lib/_stream_readable.js"),i.Writable=t("readable-stream/lib/_stream_writable.js"),i.Duplex=t("readable-stream/lib/_stream_duplex.js"),i.Transform=t("readable-stream/lib/_stream_transform.js"),i.PassThrough=t("readable-stream/lib/_stream_passthrough.js"),i.finished=t("readable-stream/lib/internal/streams/end-of-stream.js"),i.pipeline=t("readable-stream/lib/internal/streams/pipeline.js"),i.Stream=i,i.prototype.pipe=function(t,e){var r=this;function i(e){t.writable&&!1===t.write(e)&&r.pause&&r.pause()}function a(){r.readable&&r.resume&&r.resume()}r.on("data",i),t.on("drain",a),t._isStdio||e&&!1===e.end||(r.on("end",s),r.on("close",l));var o=!1;function s(){o||(o=!0,t.end())}function l(){o||(o=!0,"function"==typeof t.destroy&&t.destroy())}function c(t){if(u(),0===n.listenerCount(this,"error"))throw t}function u(){r.removeListener("data",i),t.removeListener("drain",a),r.removeListener("end",s),r.removeListener("close",l),r.removeListener("error",c),t.removeListener("error",c),r.removeListener("end",u),r.removeListener("close",u),t.removeListener("close",u)}return r.on("error",c),t.on("error",c),r.on("end",u),r.on("close",u),t.on("close",u),t.emit("pipe",r),t}},{events:237,inherits:429,"readable-stream/lib/_stream_duplex.js":545,"readable-stream/lib/_stream_passthrough.js":546,"readable-stream/lib/_stream_readable.js":547,"readable-stream/lib/_stream_transform.js":548,"readable-stream/lib/_stream_writable.js":549,"readable-stream/lib/internal/streams/end-of-stream.js":553,"readable-stream/lib/internal/streams/pipeline.js":555}],544:[function(t,e,r){"use strict";var n={};function i(t,e,r){r||(r=Error);var i=function(t){var r,n;function i(r,n,i){return t.call(this,function(t,r,n){return"string"==typeof e?e:e(t,r,n)}(r,n,i))||this}return n=t,(r=i).prototype=Object.create(n.prototype),r.prototype.constructor=r,r.__proto__=n,i}(r);i.prototype.name=r.name,i.prototype.code=t,n[t]=i}function a(t,e){if(Array.isArray(t)){var r=t.length;return t=t.map((function(t){return String(t)})),r>2?"one of ".concat(e," ").concat(t.slice(0,r-1).join(", "),", or ")+t[r-1]:2===r?"one of ".concat(e," ").concat(t[0]," or ").concat(t[1]):"of ".concat(e," ").concat(t[0])}return"of ".concat(e," ").concat(String(t))}i("ERR_INVALID_OPT_VALUE",(function(t,e){return'The value "'+e+'" is invalid for option "'+t+'"'}),TypeError),i("ERR_INVALID_ARG_TYPE",(function(t,e,r){var n,i,o,s;if("string"==typeof e&&(i="not ",e.substr(!o||o<0?0:+o,i.length)===i)?(n="must not be",e=e.replace(/^not /,"")):n="must be",function(t,e,r){return(void 0===r||r>t.length)&&(r=t.length),t.substring(r-e.length,r)===e}(t," argument"))s="The ".concat(t," ").concat(n," ").concat(a(e,"type"));else{var l=function(t,e,r){return"number"!=typeof r&&(r=0),!(r+e.length>t.length)&&-1!==t.indexOf(e,r)}(t,".")?"property":"argument";s='The "'.concat(t,'" ').concat(l," ").concat(n," ").concat(a(e,"type"))}return s+=". Received type ".concat(typeof r)}),TypeError),i("ERR_STREAM_PUSH_AFTER_EOF","stream.push() after EOF"),i("ERR_METHOD_NOT_IMPLEMENTED",(function(t){return"The "+t+" method is not implemented"})),i("ERR_STREAM_PREMATURE_CLOSE","Premature close"),i("ERR_STREAM_DESTROYED",(function(t){return"Cannot call "+t+" after a stream was destroyed"})),i("ERR_MULTIPLE_CALLBACK","Callback called multiple times"),i("ERR_STREAM_CANNOT_PIPE","Cannot pipe, not readable"),i("ERR_STREAM_WRITE_AFTER_END","write after end"),i("ERR_STREAM_NULL_VALUES","May not write null values to stream",TypeError),i("ERR_UNKNOWN_ENCODING",(function(t){return"Unknown encoding: "+t}),TypeError),i("ERR_STREAM_UNSHIFT_AFTER_END_EVENT","stream.unshift() after end event"),e.exports.codes=n},{}],545:[function(t,e,r){(function(r){(function(){"use strict";var n=Object.keys||function(t){var e=[];for(var r in t)e.push(r);return e};e.exports=c;var i=t("./_stream_readable"),a=t("./_stream_writable");t("inherits")(c,i);for(var o=n(a.prototype),s=0;s0)if("string"==typeof e||o.objectMode||Object.getPrototypeOf(e)===s.prototype||(e=function(t){return s.from(t)}(e)),n)o.endEmitted?w(t,new _):S(t,o,e,!0);else if(o.ended)w(t,new x);else{if(o.destroyed)return!1;o.reading=!1,o.decoder&&!r?(e=o.decoder.write(e),o.objectMode||0!==e.length?S(t,o,e,!1):P(t,o)):S(t,o,e,!1)}else n||(o.reading=!1,P(t,o));return!o.ended&&(o.lengthe.highWaterMark&&(e.highWaterMark=function(t){return t>=1073741824?t=1073741824:(t--,t|=t>>>1,t|=t>>>2,t|=t>>>4,t|=t>>>8,t|=t>>>16,t++),t}(t)),t<=e.length?t:e.ended?e.length:(e.needReadable=!0,0))}function L(t){var e=t._readableState;c("emitReadable",e.needReadable,e.emittedReadable),e.needReadable=!1,e.emittedReadable||(c("emitReadable",e.flowing),e.emittedReadable=!0,r.nextTick(C,t))}function C(t){var e=t._readableState;c("emitReadable_",e.destroyed,e.length,e.ended),e.destroyed||!e.length&&!e.ended||(t.emit("readable"),e.emittedReadable=!1),e.needReadable=!e.flowing&&!e.ended&&e.length<=e.highWaterMark,R(t)}function P(t,e){e.readingMore||(e.readingMore=!0,r.nextTick(I,t,e))}function I(t,e){for(;!e.reading&&!e.ended&&(e.length0,e.resumeScheduled&&!e.paused?e.flowing=!0:t.listenerCount("data")>0&&t.resume()}function z(t){c("readable nexttick read 0"),t.read(0)}function D(t,e){c("resume",e.reading),e.reading||t.read(0),e.resumeScheduled=!1,t.emit("resume"),R(t),e.flowing&&!e.reading&&t.read(0)}function R(t){var e=t._readableState;for(c("flow",e.flowing);e.flowing&&null!==t.read(););}function F(t,e){return 0===e.length?null:(e.objectMode?r=e.buffer.shift():!t||t>=e.length?(r=e.decoder?e.buffer.join(""):1===e.buffer.length?e.buffer.first():e.buffer.concat(e.length),e.buffer.clear()):r=e.buffer.consume(t,e.decoder),r);var r}function B(t){var e=t._readableState;c("endReadable",e.endEmitted),e.endEmitted||(e.ended=!0,r.nextTick(N,e,t))}function N(t,e){if(c("endReadableNT",t.endEmitted,t.length),!t.endEmitted&&0===t.length&&(t.endEmitted=!0,e.readable=!1,e.emit("end"),t.autoDestroy)){var r=e._writableState;(!r||r.autoDestroy&&r.finished)&&e.destroy()}}function j(t,e){for(var r=0,n=t.length;r=e.highWaterMark:e.length>0)||e.ended))return c("read: emitReadable",e.length,e.ended),0===e.length&&e.ended?B(this):L(this),null;if(0===(t=E(t,e))&&e.ended)return 0===e.length&&B(this),null;var n,i=e.needReadable;return c("need readable",i),(0===e.length||e.length-t0?F(t,e):null)?(e.needReadable=e.length<=e.highWaterMark,t=0):(e.length-=t,e.awaitDrain=0),0===e.length&&(e.ended||(e.needReadable=!0),r!==t&&e.ended&&B(this)),null!==n&&this.emit("data",n),n},A.prototype._read=function(t){w(this,new b("_read()"))},A.prototype.pipe=function(t,e){var n=this,i=this._readableState;switch(i.pipesCount){case 0:i.pipes=t;break;case 1:i.pipes=[i.pipes,t];break;default:i.pipes.push(t)}i.pipesCount+=1,c("pipe count=%d opts=%j",i.pipesCount,e);var o=(!e||!1!==e.end)&&t!==r.stdout&&t!==r.stderr?l:g;function s(e,r){c("onunpipe"),e===n&&r&&!1===r.hasUnpiped&&(r.hasUnpiped=!0,c("cleanup"),t.removeListener("close",d),t.removeListener("finish",m),t.removeListener("drain",u),t.removeListener("error",p),t.removeListener("unpipe",s),n.removeListener("end",l),n.removeListener("end",g),n.removeListener("data",h),f=!0,!i.awaitDrain||t._writableState&&!t._writableState.needDrain||u())}function l(){c("onend"),t.end()}i.endEmitted?r.nextTick(o):n.once("end",o),t.on("unpipe",s);var u=function(t){return function(){var e=t._readableState;c("pipeOnDrain",e.awaitDrain),e.awaitDrain&&e.awaitDrain--,0===e.awaitDrain&&a(t,"data")&&(e.flowing=!0,R(t))}}(n);t.on("drain",u);var f=!1;function h(e){c("ondata");var r=t.write(e);c("dest.write",r),!1===r&&((1===i.pipesCount&&i.pipes===t||i.pipesCount>1&&-1!==j(i.pipes,t))&&!f&&(c("false write response, pause",i.awaitDrain),i.awaitDrain++),n.pause())}function p(e){c("onerror",e),g(),t.removeListener("error",p),0===a(t,"error")&&w(t,e)}function d(){t.removeListener("finish",m),g()}function m(){c("onfinish"),t.removeListener("close",d),g()}function g(){c("unpipe"),n.unpipe(t)}return n.on("data",h),function(t,e,r){if("function"==typeof t.prependListener)return t.prependListener(e,r);t._events&&t._events[e]?Array.isArray(t._events[e])?t._events[e].unshift(r):t._events[e]=[r,t._events[e]]:t.on(e,r)}(t,"error",p),t.once("close",d),t.once("finish",m),t.emit("pipe",n),i.flowing||(c("pipe resume"),n.resume()),t},A.prototype.unpipe=function(t){var e=this._readableState,r={hasUnpiped:!1};if(0===e.pipesCount)return this;if(1===e.pipesCount)return t&&t!==e.pipes||(t||(t=e.pipes),e.pipes=null,e.pipesCount=0,e.flowing=!1,t&&t.emit("unpipe",this,r)),this;if(!t){var n=e.pipes,i=e.pipesCount;e.pipes=null,e.pipesCount=0,e.flowing=!1;for(var a=0;a0,!1!==i.flowing&&this.resume()):"readable"===t&&(i.endEmitted||i.readableListening||(i.readableListening=i.needReadable=!0,i.flowing=!1,i.emittedReadable=!1,c("on readable",i.length,i.reading),i.length?L(this):i.reading||r.nextTick(z,this))),n},A.prototype.addListener=A.prototype.on,A.prototype.removeListener=function(t,e){var n=o.prototype.removeListener.call(this,t,e);return"readable"===t&&r.nextTick(O,this),n},A.prototype.removeAllListeners=function(t){var e=o.prototype.removeAllListeners.apply(this,arguments);return"readable"!==t&&void 0!==t||r.nextTick(O,this),e},A.prototype.resume=function(){var t=this._readableState;return t.flowing||(c("resume"),t.flowing=!t.readableListening,function(t,e){e.resumeScheduled||(e.resumeScheduled=!0,r.nextTick(D,t,e))}(this,t)),t.paused=!1,this},A.prototype.pause=function(){return c("call pause flowing=%j",this._readableState.flowing),!1!==this._readableState.flowing&&(c("pause"),this._readableState.flowing=!1,this.emit("pause")),this._readableState.paused=!0,this},A.prototype.wrap=function(t){var e=this,r=this._readableState,n=!1;for(var i in t.on("end",(function(){if(c("wrapped end"),r.decoder&&!r.ended){var t=r.decoder.end();t&&t.length&&e.push(t)}e.push(null)})),t.on("data",(function(i){(c("wrapped data"),r.decoder&&(i=r.decoder.write(i)),r.objectMode&&null==i)||(r.objectMode||i&&i.length)&&(e.push(i)||(n=!0,t.pause()))})),t)void 0===this[i]&&"function"==typeof t[i]&&(this[i]=function(e){return function(){return t[e].apply(t,arguments)}}(i));for(var a=0;a-1))throw new _(t);return this._writableState.defaultEncoding=t,this},Object.defineProperty(A.prototype,"writableBuffer",{enumerable:!1,get:function(){return this._writableState&&this._writableState.getBuffer()}}),Object.defineProperty(A.prototype,"writableHighWaterMark",{enumerable:!1,get:function(){return this._writableState.highWaterMark}}),A.prototype._write=function(t,e,r){r(new m("_write()"))},A.prototype._writev=null,A.prototype.end=function(t,e,n){var i=this._writableState;return"function"==typeof t?(n=t,t=null,e=null):"function"==typeof e&&(n=e,e=null),null!=t&&this.write(t,e),i.corked&&(i.corked=1,this.uncork()),i.ending||function(t,e,n){e.ending=!0,P(t,e),n&&(e.finished?r.nextTick(n):t.once("finish",n));e.ended=!0,t.writable=!1}(this,i,n),this},Object.defineProperty(A.prototype,"writableLength",{enumerable:!1,get:function(){return this._writableState.length}}),Object.defineProperty(A.prototype,"destroyed",{enumerable:!1,get:function(){return void 0!==this._writableState&&this._writableState.destroyed},set:function(t){this._writableState&&(this._writableState.destroyed=t)}}),A.prototype.destroy=f.destroy,A.prototype._undestroy=f.undestroy,A.prototype._destroy=function(t,e){e(t)}}).call(this)}).call(this,t("_process"),"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"../errors":544,"./_stream_duplex":545,"./internal/streams/destroy":552,"./internal/streams/state":556,"./internal/streams/stream":557,_process:504,buffer:112,inherits:429,"util-deprecate":595}],550:[function(t,e,r){(function(r){(function(){"use strict";var n;function i(t,e,r){return e in t?Object.defineProperty(t,e,{value:r,enumerable:!0,configurable:!0,writable:!0}):t[e]=r,t}var a=t("./end-of-stream"),o=Symbol("lastResolve"),s=Symbol("lastReject"),l=Symbol("error"),c=Symbol("ended"),u=Symbol("lastPromise"),f=Symbol("handlePromise"),h=Symbol("stream");function p(t,e){return{value:t,done:e}}function d(t){var e=t[o];if(null!==e){var r=t[h].read();null!==r&&(t[u]=null,t[o]=null,t[s]=null,e(p(r,!1)))}}function m(t){r.nextTick(d,t)}var g=Object.getPrototypeOf((function(){})),v=Object.setPrototypeOf((i(n={get stream(){return this[h]},next:function(){var t=this,e=this[l];if(null!==e)return Promise.reject(e);if(this[c])return Promise.resolve(p(void 0,!0));if(this[h].destroyed)return new Promise((function(e,n){r.nextTick((function(){t[l]?n(t[l]):e(p(void 0,!0))}))}));var n,i=this[u];if(i)n=new Promise(function(t,e){return function(r,n){t.then((function(){e[c]?r(p(void 0,!0)):e[f](r,n)}),n)}}(i,this));else{var a=this[h].read();if(null!==a)return Promise.resolve(p(a,!1));n=new Promise(this[f])}return this[u]=n,n}},Symbol.asyncIterator,(function(){return this})),i(n,"return",(function(){var t=this;return new Promise((function(e,r){t[h].destroy(null,(function(t){t?r(t):e(p(void 0,!0))}))}))})),n),g);e.exports=function(t){var e,r=Object.create(v,(i(e={},h,{value:t,writable:!0}),i(e,o,{value:null,writable:!0}),i(e,s,{value:null,writable:!0}),i(e,l,{value:null,writable:!0}),i(e,c,{value:t._readableState.endEmitted,writable:!0}),i(e,f,{value:function(t,e){var n=r[h].read();n?(r[u]=null,r[o]=null,r[s]=null,t(p(n,!1))):(r[o]=t,r[s]=e)},writable:!0}),e));return r[u]=null,a(t,(function(t){if(t&&"ERR_STREAM_PREMATURE_CLOSE"!==t.code){var e=r[s];return null!==e&&(r[u]=null,r[o]=null,r[s]=null,e(t)),void(r[l]=t)}var n=r[o];null!==n&&(r[u]=null,r[o]=null,r[s]=null,n(p(void 0,!0))),r[c]=!0})),t.on("readable",m.bind(null,r)),r}}).call(this)}).call(this,t("_process"))},{"./end-of-stream":553,_process:504}],551:[function(t,e,r){"use strict";function n(t,e){var r=Object.keys(t);if(Object.getOwnPropertySymbols){var n=Object.getOwnPropertySymbols(t);e&&(n=n.filter((function(e){return Object.getOwnPropertyDescriptor(t,e).enumerable}))),r.push.apply(r,n)}return r}function i(t,e,r){return e in t?Object.defineProperty(t,e,{value:r,enumerable:!0,configurable:!0,writable:!0}):t[e]=r,t}function a(t,e){for(var r=0;r0?this.tail.next=e:this.head=e,this.tail=e,++this.length}},{key:"unshift",value:function(t){var e={data:t,next:this.head};0===this.length&&(this.tail=e),this.head=e,++this.length}},{key:"shift",value:function(){if(0!==this.length){var t=this.head.data;return 1===this.length?this.head=this.tail=null:this.head=this.head.next,--this.length,t}}},{key:"clear",value:function(){this.head=this.tail=null,this.length=0}},{key:"join",value:function(t){if(0===this.length)return"";for(var e=this.head,r=""+e.data;e=e.next;)r+=t+e.data;return r}},{key:"concat",value:function(t){if(0===this.length)return o.alloc(0);for(var e,r,n,i=o.allocUnsafe(t>>>0),a=this.head,s=0;a;)e=a.data,r=i,n=s,o.prototype.copy.call(e,r,n),s+=a.data.length,a=a.next;return i}},{key:"consume",value:function(t,e){var r;return ti.length?i.length:t;if(a===i.length?n+=i:n+=i.slice(0,t),0==(t-=a)){a===i.length?(++r,e.next?this.head=e.next:this.head=this.tail=null):(this.head=e,e.data=i.slice(a));break}++r}return this.length-=r,n}},{key:"_getBuffer",value:function(t){var e=o.allocUnsafe(t),r=this.head,n=1;for(r.data.copy(e),t-=r.data.length;r=r.next;){var i=r.data,a=t>i.length?i.length:t;if(i.copy(e,e.length-t,0,a),0==(t-=a)){a===i.length?(++n,r.next?this.head=r.next:this.head=this.tail=null):(this.head=r,r.data=i.slice(a));break}++n}return this.length-=n,e}},{key:l,value:function(t,e){return s(this,function(t){for(var e=1;e0,(function(t){n||(n=t),t&&o.forEach(c),a||(o.forEach(c),i(n))}))}));return e.reduce(u)}},{"../../../errors":544,"./end-of-stream":553}],556:[function(t,e,r){"use strict";var n=t("../../../errors").codes.ERR_INVALID_OPT_VALUE;e.exports={getHighWaterMark:function(t,e,r,i){var a=function(t,e,r){return null!=t.highWaterMark?t.highWaterMark:e?t[r]:null}(e,i,r);if(null!=a){if(!isFinite(a)||Math.floor(a)!==a||a<0)throw new n(i?r:"highWaterMark",a);return Math.floor(a)}return t.objectMode?16:16384}}},{"../../../errors":544}],557:[function(t,e,r){e.exports=t("events").EventEmitter},{events:237}],558:[function(t,e,r){(function(r,n){(function(){var r=t("assert"),i=t("debug")("stream-parser");e.exports=function(t){var e=t&&"function"==typeof t._transform,r=t&&"function"==typeof t._write;if(!e&&!r)throw new Error("must pass a Writable or Transform stream in");i("extending Parser into stream"),t._bytes=o,t._skipBytes=s,e&&(t._passthrough=l);e?t._transform=u:t._write=c};function a(t){i("initializing parser stream"),t._parserBytesLeft=0,t._parserBuffers=[],t._parserBuffered=0,t._parserState=-1,t._parserCallback=null,"function"==typeof t.push&&(t._parserOutput=t.push.bind(t)),t._parserInit=!0}function o(t,e){r(!this._parserCallback,'there is already a "callback" set!'),r(isFinite(t)&&t>0,'can only buffer a finite number of bytes > 0, got "'+t+'"'),this._parserInit||a(this),i("buffering %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=0}function s(t,e){r(!this._parserCallback,'there is already a "callback" set!'),r(t>0,'can only skip > 0 bytes, got "'+t+'"'),this._parserInit||a(this),i("skipping %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=1}function l(t,e){r(!this._parserCallback,'There is already a "callback" set!'),r(t>0,'can only pass through > 0 bytes, got "'+t+'"'),this._parserInit||a(this),i("passing through %o bytes",t),this._parserBytesLeft=t,this._parserCallback=e,this._parserState=2}function c(t,e,r){this._parserInit||a(this),i("write(%o bytes)",t.length),"function"==typeof e&&(r=e),h(this,t,null,r)}function u(t,e,r){this._parserInit||a(this),i("transform(%o bytes)",t.length),"function"!=typeof e&&(e=this._parserOutput),h(this,t,e,r)}function f(t,e,r,a){if(t._parserBytesLeft-=e.length,i("%o bytes left for stream piece",t._parserBytesLeft),0===t._parserState?(t._parserBuffers.push(e),t._parserBuffered+=e.length):2===t._parserState&&r(e),0!==t._parserBytesLeft)return a;var o=t._parserCallback;if(o&&0===t._parserState&&t._parserBuffers.length>1&&(e=n.concat(t._parserBuffers,t._parserBuffered)),0!==t._parserState&&(e=null),t._parserCallback=null,t._parserBuffered=0,t._parserState=-1,t._parserBuffers.splice(0),o){var s=[];e&&s.push(e),r&&s.push(r);var l=o.length>s.length;l&&s.push(p(a));var c=o.apply(t,s);if(!l||a===c)return a}}var h=p((function t(e,r,n,i){return e._parserBytesLeft<=0?i(new Error("got data but not currently parsing anything")):r.length<=e._parserBytesLeft?function(){return f(e,r,n,i)}:function(){var a=r.slice(0,e._parserBytesLeft);return f(e,a,n,(function(o){return o?i(o):r.length>a.length?function(){return t(e,r.slice(a.length),n,i)}:void 0}))}}));function p(t){return function(){for(var e=t.apply(this,arguments);"function"==typeof e;)e=e();return e}}}).call(this)}).call(this,t("_process"),t("buffer").Buffer)},{_process:504,assert:76,buffer:112,debug:559}],559:[function(t,e,r){(function(n){(function(){function i(){var t;try{t=r.storage.debug}catch(t){}return!t&&void 0!==n&&"env"in n&&(t=n.env.DEBUG),t}(r=e.exports=t("./debug")).log=function(){return"object"==typeof console&&console.log&&Function.prototype.apply.call(console.log,console,arguments)},r.formatArgs=function(t){var e=this.useColors;if(t[0]=(e?"%c":"")+this.namespace+(e?" %c":" ")+t[0]+(e?"%c ":" ")+"+"+r.humanize(this.diff),!e)return;var n="color: "+this.color;t.splice(1,0,n,"color: inherit");var i=0,a=0;t[0].replace(/%[a-zA-Z%]/g,(function(t){"%%"!==t&&(i++,"%c"===t&&(a=i))})),t.splice(a,0,n)},r.save=function(t){try{null==t?r.storage.removeItem("debug"):r.storage.debug=t}catch(t){}},r.load=i,r.useColors=function(){if("undefined"!=typeof window&&window.process&&"renderer"===window.process.type)return!0;return"undefined"!=typeof document&&document.documentElement&&document.documentElement.style&&document.documentElement.style.WebkitAppearance||"undefined"!=typeof window&&window.console&&(window.console.firebug||window.console.exception&&window.console.table)||"undefined"!=typeof navigator&&navigator.userAgent&&navigator.userAgent.toLowerCase().match(/firefox\/(\d+)/)&&parseInt(RegExp.$1,10)>=31||"undefined"!=typeof navigator&&navigator.userAgent&&navigator.userAgent.toLowerCase().match(/applewebkit\/(\d+)/)},r.storage="undefined"!=typeof chrome&&void 0!==chrome.storage?chrome.storage.local:function(){try{return window.localStorage}catch(t){}}(),r.colors=["lightseagreen","forestgreen","goldenrod","dodgerblue","darkorchid","crimson"],r.formatters.j=function(t){try{return JSON.stringify(t)}catch(t){return"[UnexpectedJSONParseError]: "+t.message}},r.enable(i())}).call(this)}).call(this,t("_process"))},{"./debug":560,_process:504}],560:[function(t,e,r){var n;function i(t){function e(){if(e.enabled){var t=e,i=+new Date,a=i-(n||i);t.diff=a,t.prev=n,t.curr=i,n=i;for(var o=new Array(arguments.length),s=0;s0)return function(t){if((t=String(t)).length>100)return;var e=/^((?:\d+)?\.?\d+) *(milliseconds?|msecs?|ms|seconds?|secs?|s|minutes?|mins?|m|hours?|hrs?|h|days?|d|years?|yrs?|y)?$/i.exec(t);if(!e)return;var r=parseFloat(e[1]);switch((e[2]||"ms").toLowerCase()){case"years":case"year":case"yrs":case"yr":case"y":return 315576e5*r;case"days":case"day":case"d":return r*o;case"hours":case"hour":case"hrs":case"hr":case"h":return r*a;case"minutes":case"minute":case"mins":case"min":case"m":return r*i;case"seconds":case"second":case"secs":case"sec":case"s":return r*n;case"milliseconds":case"millisecond":case"msecs":case"msec":case"ms":return r;default:return}}(t);if("number"===l&&!1===isNaN(t))return e.long?s(r=t,o,"day")||s(r,a,"hour")||s(r,i,"minute")||s(r,n,"second")||r+" ms":function(t){if(t>=o)return Math.round(t/o)+"d";if(t>=a)return Math.round(t/a)+"h";if(t>=i)return Math.round(t/i)+"m";if(t>=n)return Math.round(t/n)+"s";return t+"ms"}(t);throw new Error("val is not a non-empty string or a valid number. val="+JSON.stringify(t))}},{}],562:[function(t,e,r){"use strict";var n=t("parenthesis");e.exports=function(t,e,r){if(null==t)throw Error("First argument should be a string");if(null==e)throw Error("Separator should be a string or a RegExp");r?("string"==typeof r||Array.isArray(r))&&(r={ignore:r}):r={},null==r.escape&&(r.escape=!0),null==r.ignore?r.ignore=["[]","()","{}","<>",'""',"''","``","\u201c\u201d","\xab\xbb"]:("string"==typeof r.ignore&&(r.ignore=[r.ignore]),r.ignore=r.ignore.map((function(t){return 1===t.length&&(t+=t),t})));var i=n.parse(t,{flat:!0,brackets:r.ignore}),a=i[0].split(e);if(r.escape){for(var o=[],s=0;s>5==6?2:t>>4==14?3:t>>3==30?4:t>>6==2?-1:-2}function s(t){var e=this.lastTotal-this.lastNeed,r=function(t,e,r){if(128!=(192&e[0]))return t.lastNeed=0,"\ufffd";if(t.lastNeed>1&&e.length>1){if(128!=(192&e[1]))return t.lastNeed=1,"\ufffd";if(t.lastNeed>2&&e.length>2&&128!=(192&e[2]))return t.lastNeed=2,"\ufffd"}}(this,t);return void 0!==r?r:this.lastNeed<=t.length?(t.copy(this.lastChar,e,0,this.lastNeed),this.lastChar.toString(this.encoding,0,this.lastTotal)):(t.copy(this.lastChar,e,0,t.length),void(this.lastNeed-=t.length))}function l(t,e){if((t.length-e)%2==0){var r=t.toString("utf16le",e);if(r){var n=r.charCodeAt(r.length-1);if(n>=55296&&n<=56319)return this.lastNeed=2,this.lastTotal=4,this.lastChar[0]=t[t.length-2],this.lastChar[1]=t[t.length-1],r.slice(0,-1)}return r}return this.lastNeed=1,this.lastTotal=2,this.lastChar[0]=t[t.length-1],t.toString("utf16le",e,t.length-1)}function c(t){var e=t&&t.length?this.write(t):"";if(this.lastNeed){var r=this.lastTotal-this.lastNeed;return e+this.lastChar.toString("utf16le",0,r)}return e}function u(t,e){var r=(t.length-e)%3;return 0===r?t.toString("base64",e):(this.lastNeed=3-r,this.lastTotal=3,1===r?this.lastChar[0]=t[t.length-1]:(this.lastChar[0]=t[t.length-2],this.lastChar[1]=t[t.length-1]),t.toString("base64",e,t.length-r))}function f(t){var e=t&&t.length?this.write(t):"";return this.lastNeed?e+this.lastChar.toString("base64",0,3-this.lastNeed):e}function h(t){return t.toString(this.encoding)}function p(t){return t&&t.length?this.write(t):""}r.StringDecoder=a,a.prototype.write=function(t){if(0===t.length)return"";var e,r;if(this.lastNeed){if(void 0===(e=this.fillLast(t)))return"";r=this.lastNeed,this.lastNeed=0}else r=0;return r=0)return i>0&&(t.lastNeed=i-1),i;if(--n=0)return i>0&&(t.lastNeed=i-2),i;if(--n=0)return i>0&&(2===i?i=0:t.lastNeed=i-3),i;return 0}(this,t,e);if(!this.lastNeed)return t.toString("utf8",e);this.lastTotal=r;var n=t.length-(r-this.lastNeed);return t.copy(this.lastChar,0,n),t.toString("utf8",e,n)},a.prototype.fillLast=function(t){if(this.lastNeed<=t.length)return t.copy(this.lastChar,this.lastTotal-this.lastNeed,0,this.lastNeed),this.lastChar.toString(this.encoding,0,this.lastTotal);t.copy(this.lastChar,this.lastTotal-this.lastNeed,0,t.length),this.lastNeed-=t.length}},{"safe-buffer":530}],564:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.length,r=new Array(e),n=new Array(e),i=new Array(e),a=new Array(e),o=new Array(e),s=new Array(e),l=0;l0;){e=c[c.length-1];var p=t[e];if(a[e]=0&&s[e].push(o[m])}a[e]=d}else{if(n[e]===r[e]){var g=[],v=[],y=0;for(d=l.length-1;d>=0;--d){var x=l[d];if(i[x]=!1,g.push(x),v.push(s[x]),y+=s[x].length,o[x]=f.length,x===e){l.length=d;break}}f.push(g);var b=new Array(y);for(d=0;dn|0},vertex:function(t,e,r,n,i,a,o,s,l,c,u,f,h){var p=(o<<0)+(s<<1)+(l<<2)+(c<<3)|0;if(0!==p&&15!==p)switch(p){case 0:u.push([t-.5,e-.5]);break;case 1:u.push([t-.25-.25*(n+r-2*h)/(r-n),e-.25-.25*(i+r-2*h)/(r-i)]);break;case 2:u.push([t-.75-.25*(-n-r+2*h)/(n-r),e-.25-.25*(a+n-2*h)/(n-a)]);break;case 3:u.push([t-.5,e-.5-.5*(i+r+a+n-4*h)/(r-i+n-a)]);break;case 4:u.push([t-.25-.25*(a+i-2*h)/(i-a),e-.75-.25*(-i-r+2*h)/(i-r)]);break;case 5:u.push([t-.5-.5*(n+r+a+i-4*h)/(r-n+i-a),e-.5]);break;case 6:u.push([t-.5-.25*(-n-r+a+i)/(n-r+i-a),e-.5-.25*(-i-r+a+n)/(i-r+n-a)]);break;case 7:u.push([t-.75-.25*(a+i-2*h)/(i-a),e-.75-.25*(a+n-2*h)/(n-a)]);break;case 8:u.push([t-.75-.25*(-a-i+2*h)/(a-i),e-.75-.25*(-a-n+2*h)/(a-n)]);break;case 9:u.push([t-.5-.25*(n+r+-a-i)/(r-n+a-i),e-.5-.25*(i+r+-a-n)/(r-i+a-n)]);break;case 10:u.push([t-.5-.5*(-n-r-a-i+4*h)/(n-r+a-i),e-.5]);break;case 11:u.push([t-.25-.25*(-a-i+2*h)/(a-i),e-.75-.25*(i+r-2*h)/(r-i)]);break;case 12:u.push([t-.5,e-.5-.5*(-i-r-a-n+4*h)/(i-r+a-n)]);break;case 13:u.push([t-.75-.25*(n+r-2*h)/(r-n),e-.25-.25*(-a-n+2*h)/(a-n)]);break;case 14:u.push([t-.25-.25*(-n-r+2*h)/(n-r),e-.25-.25*(-i-r+2*h)/(i-r)]);break;case 15:u.push([t-.5,e-.5])}},cell:function(t,e,r,n,i,a,o,s,l){i?s.push([t,e]):s.push([e,t])}});return function(t,e){var r=[],i=[];return n(t,r,i,e),{positions:r,cells:i}}}};var o={}},{"ndarray-extract-contour":454,"zero-crossings":620}],566:[function(t,e,r){"use strict";Object.defineProperty(r,"__esModule",{value:!0});var n=function(t,e){if(Array.isArray(t))return t;if(Symbol.iterator in Object(t))return function(t,e){var r=[],n=!0,i=!1,a=void 0;try{for(var o,s=t[Symbol.iterator]();!(n=(o=s.next()).done)&&(r.push(o.value),!e||r.length!==e);n=!0);}catch(t){i=!0,a=t}finally{try{!n&&s.return&&s.return()}finally{if(i)throw a}}return r}(t,e);throw new TypeError("Invalid attempt to destructure non-iterable instance")},i=2*Math.PI,a=function(t,e,r,n,i,a,o){var s=t.x,l=t.y;return{x:n*(s*=e)-i*(l*=r)+a,y:i*s+n*l+o}},o=function(t,e){var r=1.5707963267948966===e?.551915024494:-1.5707963267948966===e?-.551915024494:4/3*Math.tan(e/4),n=Math.cos(t),i=Math.sin(t),a=Math.cos(t+e),o=Math.sin(t+e);return[{x:n-i*r,y:i+n*r},{x:a+o*r,y:o-a*r},{x:a,y:o}]},s=function(t,e,r,n){var i=t*r+e*n;return i>1&&(i=1),i<-1&&(i=-1),(t*n-e*r<0?-1:1)*Math.acos(i)};r.default=function(t){var e=t.px,r=t.py,l=t.cx,c=t.cy,u=t.rx,f=t.ry,h=t.xAxisRotation,p=void 0===h?0:h,d=t.largeArcFlag,m=void 0===d?0:d,g=t.sweepFlag,v=void 0===g?0:g,y=[];if(0===u||0===f)return[];var x=Math.sin(p*i/360),b=Math.cos(p*i/360),_=b*(e-l)/2+x*(r-c)/2,w=-x*(e-l)/2+b*(r-c)/2;if(0===_&&0===w)return[];u=Math.abs(u),f=Math.abs(f);var T=Math.pow(_,2)/Math.pow(u,2)+Math.pow(w,2)/Math.pow(f,2);T>1&&(u*=Math.sqrt(T),f*=Math.sqrt(T));var k=function(t,e,r,n,a,o,l,c,u,f,h,p){var d=Math.pow(a,2),m=Math.pow(o,2),g=Math.pow(h,2),v=Math.pow(p,2),y=d*m-d*v-m*g;y<0&&(y=0),y/=d*v+m*g;var x=(y=Math.sqrt(y)*(l===c?-1:1))*a/o*p,b=y*-o/a*h,_=f*x-u*b+(t+r)/2,w=u*x+f*b+(e+n)/2,T=(h-x)/a,k=(p-b)/o,A=(-h-x)/a,M=(-p-b)/o,S=s(1,0,T,k),E=s(T,k,A,M);return 0===c&&E>0&&(E-=i),1===c&&E<0&&(E+=i),[_,w,S,E]}(e,r,l,c,u,f,m,v,x,b,_,w),A=n(k,4),M=A[0],S=A[1],E=A[2],L=A[3],C=Math.abs(L)/(i/4);Math.abs(1-C)<1e-7&&(C=1);var P=Math.max(Math.ceil(C),1);L/=P;for(var I=0;Ie[2]&&(e[2]=l[c+0]),l[c+1]>e[3]&&(e[3]=l[c+1]);return e}},{"abs-svg-path":67,"is-svg-path":439,"normalize-svg-path":568,"parse-svg-path":472}],568:[function(t,e,r){"use strict";e.exports=function(t){for(var e,r=[],o=0,s=0,l=0,c=0,u=null,f=null,h=0,p=0,d=0,m=t.length;d4?(o=g[g.length-4],s=g[g.length-3]):(o=h,s=p),r.push(g)}return r};var n=t("svg-arc-to-cubic-bezier");function i(t,e,r,n){return["C",t,e,r,n,r,n]}function a(t,e,r,n,i,a){return["C",t/3+2/3*r,e/3+2/3*n,i/3+2/3*r,a/3+2/3*n,i,a]}},{"svg-arc-to-cubic-bezier":566}],569:[function(t,e,r){"use strict";var n,i=t("svg-path-bounds"),a=t("parse-svg-path"),o=t("draw-svg-path"),s=t("is-svg-path"),l=t("bitmap-sdf"),c=document.createElement("canvas"),u=c.getContext("2d");e.exports=function(t,e){if(!s(t))throw Error("Argument should be valid svg path string");e||(e={});var r,f;e.shape?(r=e.shape[0],f=e.shape[1]):(r=c.width=e.w||e.width||200,f=c.height=e.h||e.height||200);var h=Math.min(r,f),p=e.stroke||0,d=e.viewbox||e.viewBox||i(t),m=[r/(d[2]-d[0]),f/(d[3]-d[1])],g=Math.min(m[0]||0,m[1]||0)/2;u.fillStyle="black",u.fillRect(0,0,r,f),u.fillStyle="white",p&&("number"!=typeof p&&(p=1),u.strokeStyle=p>0?"white":"black",u.lineWidth=Math.abs(p));if(u.translate(.5*r,.5*f),u.scale(g,g),function(){if(null!=n)return n;var t=document.createElement("canvas").getContext("2d");if(t.canvas.width=t.canvas.height=1,!window.Path2D)return n=!1;var e=new Path2D("M0,0h1v1h-1v-1Z");t.fillStyle="black",t.fill(e);var r=t.getImageData(0,0,1,1);return n=r&&r.data&&255===r.data[3]}()){var v=new Path2D(t);u.fill(v),p&&u.stroke(v)}else{var y=a(t);o(u,y),u.fill(),p&&u.stroke()}return u.setTransform(1,0,0,1,0,0),l(u,{cutoff:null!=e.cutoff?e.cutoff:.5,radius:null!=e.radius?e.radius:.5*h})}},{"bitmap-sdf":102,"draw-svg-path":175,"is-svg-path":439,"parse-svg-path":472,"svg-path-bounds":567}],570:[function(t,e,r){(function(r){(function(){"use strict";e.exports=function t(e,r,i){i=i||{};var o=a[e];o||(o=a[e]={" ":{data:new Float32Array(0),shape:.2}});var s=o[r];if(!s)if(r.length<=1||!/\d/.test(r))s=o[r]=function(t){for(var e=t.cells,r=t.positions,n=new Float32Array(6*e.length),i=0,a=0,o=0;o0&&(f+=.02);var p=new Float32Array(u),d=0,m=-.5*f;for(h=0;h=0&&(t._idleTimeoutId=setTimeout((function(){t._onTimeout&&t._onTimeout()}),e))},r.setImmediate="function"==typeof e?e:function(t){var e=l++,n=!(arguments.length<2)&&o.call(arguments,1);return s[e]=!0,i((function(){s[e]&&(n?t.apply(null,n):t.call(null),r.clearImmediate(e))})),e},r.clearImmediate="function"==typeof n?n:function(t){delete s[t]}}).call(this)}).call(this,t("timers").setImmediate,t("timers").clearImmediate)},{"process/browser.js":504,timers:571}],572:[function(t,e,r){!function(t){var r=/^\s+/,n=/\s+$/,i=0,a=t.round,o=t.min,s=t.max,l=t.random;function c(e,l){if(l=l||{},(e=e||"")instanceof c)return e;if(!(this instanceof c))return new c(e,l);var u=function(e){var i={r:0,g:0,b:0},a=1,l=null,c=null,u=null,f=!1,h=!1;"string"==typeof e&&(e=function(t){t=t.replace(r,"").replace(n,"").toLowerCase();var e,i=!1;if(S[t])t=S[t],i=!0;else if("transparent"==t)return{r:0,g:0,b:0,a:0,format:"name"};if(e=j.rgb.exec(t))return{r:e[1],g:e[2],b:e[3]};if(e=j.rgba.exec(t))return{r:e[1],g:e[2],b:e[3],a:e[4]};if(e=j.hsl.exec(t))return{h:e[1],s:e[2],l:e[3]};if(e=j.hsla.exec(t))return{h:e[1],s:e[2],l:e[3],a:e[4]};if(e=j.hsv.exec(t))return{h:e[1],s:e[2],v:e[3]};if(e=j.hsva.exec(t))return{h:e[1],s:e[2],v:e[3],a:e[4]};if(e=j.hex8.exec(t))return{r:I(e[1]),g:I(e[2]),b:I(e[3]),a:R(e[4]),format:i?"name":"hex8"};if(e=j.hex6.exec(t))return{r:I(e[1]),g:I(e[2]),b:I(e[3]),format:i?"name":"hex"};if(e=j.hex4.exec(t))return{r:I(e[1]+""+e[1]),g:I(e[2]+""+e[2]),b:I(e[3]+""+e[3]),a:R(e[4]+""+e[4]),format:i?"name":"hex8"};if(e=j.hex3.exec(t))return{r:I(e[1]+""+e[1]),g:I(e[2]+""+e[2]),b:I(e[3]+""+e[3]),format:i?"name":"hex"};return!1}(e));"object"==typeof e&&(U(e.r)&&U(e.g)&&U(e.b)?(p=e.r,d=e.g,m=e.b,i={r:255*C(p,255),g:255*C(d,255),b:255*C(m,255)},f=!0,h="%"===String(e.r).substr(-1)?"prgb":"rgb"):U(e.h)&&U(e.s)&&U(e.v)?(l=z(e.s),c=z(e.v),i=function(e,r,n){e=6*C(e,360),r=C(r,100),n=C(n,100);var i=t.floor(e),a=e-i,o=n*(1-r),s=n*(1-a*r),l=n*(1-(1-a)*r),c=i%6;return{r:255*[n,s,o,o,l,n][c],g:255*[l,n,n,s,o,o][c],b:255*[o,o,l,n,n,s][c]}}(e.h,l,c),f=!0,h="hsv"):U(e.h)&&U(e.s)&&U(e.l)&&(l=z(e.s),u=z(e.l),i=function(t,e,r){var n,i,a;function o(t,e,r){return r<0&&(r+=1),r>1&&(r-=1),r<1/6?t+6*(e-t)*r:r<.5?e:r<2/3?t+(e-t)*(2/3-r)*6:t}if(t=C(t,360),e=C(e,100),r=C(r,100),0===e)n=i=a=r;else{var s=r<.5?r*(1+e):r+e-r*e,l=2*r-s;n=o(l,s,t+1/3),i=o(l,s,t),a=o(l,s,t-1/3)}return{r:255*n,g:255*i,b:255*a}}(e.h,l,u),f=!0,h="hsl"),e.hasOwnProperty("a")&&(a=e.a));var p,d,m;return a=L(a),{ok:f,format:e.format||h,r:o(255,s(i.r,0)),g:o(255,s(i.g,0)),b:o(255,s(i.b,0)),a:a}}(e);this._originalInput=e,this._r=u.r,this._g=u.g,this._b=u.b,this._a=u.a,this._roundA=a(100*this._a)/100,this._format=l.format||u.format,this._gradientType=l.gradientType,this._r<1&&(this._r=a(this._r)),this._g<1&&(this._g=a(this._g)),this._b<1&&(this._b=a(this._b)),this._ok=u.ok,this._tc_id=i++}function u(t,e,r){t=C(t,255),e=C(e,255),r=C(r,255);var n,i,a=s(t,e,r),l=o(t,e,r),c=(a+l)/2;if(a==l)n=i=0;else{var u=a-l;switch(i=c>.5?u/(2-a-l):u/(a+l),a){case t:n=(e-r)/u+(e>1)+720)%360;--e;)n.h=(n.h+i)%360,a.push(c(n));return a}function M(t,e){e=e||6;for(var r=c(t).toHsv(),n=r.h,i=r.s,a=r.v,o=[],s=1/e;e--;)o.push(c({h:n,s:i,v:a})),a=(a+s)%1;return o}c.prototype={isDark:function(){return this.getBrightness()<128},isLight:function(){return!this.isDark()},isValid:function(){return this._ok},getOriginalInput:function(){return this._originalInput},getFormat:function(){return this._format},getAlpha:function(){return this._a},getBrightness:function(){var t=this.toRgb();return(299*t.r+587*t.g+114*t.b)/1e3},getLuminance:function(){var e,r,n,i=this.toRgb();return e=i.r/255,r=i.g/255,n=i.b/255,.2126*(e<=.03928?e/12.92:t.pow((e+.055)/1.055,2.4))+.7152*(r<=.03928?r/12.92:t.pow((r+.055)/1.055,2.4))+.0722*(n<=.03928?n/12.92:t.pow((n+.055)/1.055,2.4))},setAlpha:function(t){return this._a=L(t),this._roundA=a(100*this._a)/100,this},toHsv:function(){var t=f(this._r,this._g,this._b);return{h:360*t.h,s:t.s,v:t.v,a:this._a}},toHsvString:function(){var t=f(this._r,this._g,this._b),e=a(360*t.h),r=a(100*t.s),n=a(100*t.v);return 1==this._a?"hsv("+e+", "+r+"%, "+n+"%)":"hsva("+e+", "+r+"%, "+n+"%, "+this._roundA+")"},toHsl:function(){var t=u(this._r,this._g,this._b);return{h:360*t.h,s:t.s,l:t.l,a:this._a}},toHslString:function(){var t=u(this._r,this._g,this._b),e=a(360*t.h),r=a(100*t.s),n=a(100*t.l);return 1==this._a?"hsl("+e+", "+r+"%, "+n+"%)":"hsla("+e+", "+r+"%, "+n+"%, "+this._roundA+")"},toHex:function(t){return h(this._r,this._g,this._b,t)},toHexString:function(t){return"#"+this.toHex(t)},toHex8:function(t){return function(t,e,r,n,i){var o=[O(a(t).toString(16)),O(a(e).toString(16)),O(a(r).toString(16)),O(D(n))];if(i&&o[0].charAt(0)==o[0].charAt(1)&&o[1].charAt(0)==o[1].charAt(1)&&o[2].charAt(0)==o[2].charAt(1)&&o[3].charAt(0)==o[3].charAt(1))return o[0].charAt(0)+o[1].charAt(0)+o[2].charAt(0)+o[3].charAt(0);return o.join("")}(this._r,this._g,this._b,this._a,t)},toHex8String:function(t){return"#"+this.toHex8(t)},toRgb:function(){return{r:a(this._r),g:a(this._g),b:a(this._b),a:this._a}},toRgbString:function(){return 1==this._a?"rgb("+a(this._r)+", "+a(this._g)+", "+a(this._b)+")":"rgba("+a(this._r)+", "+a(this._g)+", "+a(this._b)+", "+this._roundA+")"},toPercentageRgb:function(){return{r:a(100*C(this._r,255))+"%",g:a(100*C(this._g,255))+"%",b:a(100*C(this._b,255))+"%",a:this._a}},toPercentageRgbString:function(){return 1==this._a?"rgb("+a(100*C(this._r,255))+"%, "+a(100*C(this._g,255))+"%, "+a(100*C(this._b,255))+"%)":"rgba("+a(100*C(this._r,255))+"%, "+a(100*C(this._g,255))+"%, "+a(100*C(this._b,255))+"%, "+this._roundA+")"},toName:function(){return 0===this._a?"transparent":!(this._a<1)&&(E[h(this._r,this._g,this._b,!0)]||!1)},toFilter:function(t){var e="#"+p(this._r,this._g,this._b,this._a),r=e,n=this._gradientType?"GradientType = 1, ":"";if(t){var i=c(t);r="#"+p(i._r,i._g,i._b,i._a)}return"progid:DXImageTransform.Microsoft.gradient("+n+"startColorstr="+e+",endColorstr="+r+")"},toString:function(t){var e=!!t;t=t||this._format;var r=!1,n=this._a<1&&this._a>=0;return e||!n||"hex"!==t&&"hex6"!==t&&"hex3"!==t&&"hex4"!==t&&"hex8"!==t&&"name"!==t?("rgb"===t&&(r=this.toRgbString()),"prgb"===t&&(r=this.toPercentageRgbString()),"hex"!==t&&"hex6"!==t||(r=this.toHexString()),"hex3"===t&&(r=this.toHexString(!0)),"hex4"===t&&(r=this.toHex8String(!0)),"hex8"===t&&(r=this.toHex8String()),"name"===t&&(r=this.toName()),"hsl"===t&&(r=this.toHslString()),"hsv"===t&&(r=this.toHsvString()),r||this.toHexString()):"name"===t&&0===this._a?this.toName():this.toRgbString()},clone:function(){return c(this.toString())},_applyModification:function(t,e){var r=t.apply(null,[this].concat([].slice.call(e)));return this._r=r._r,this._g=r._g,this._b=r._b,this.setAlpha(r._a),this},lighten:function(){return this._applyModification(v,arguments)},brighten:function(){return this._applyModification(y,arguments)},darken:function(){return this._applyModification(x,arguments)},desaturate:function(){return this._applyModification(d,arguments)},saturate:function(){return this._applyModification(m,arguments)},greyscale:function(){return this._applyModification(g,arguments)},spin:function(){return this._applyModification(b,arguments)},_applyCombination:function(t,e){return t.apply(null,[this].concat([].slice.call(e)))},analogous:function(){return this._applyCombination(A,arguments)},complement:function(){return this._applyCombination(_,arguments)},monochromatic:function(){return this._applyCombination(M,arguments)},splitcomplement:function(){return this._applyCombination(k,arguments)},triad:function(){return this._applyCombination(w,arguments)},tetrad:function(){return this._applyCombination(T,arguments)}},c.fromRatio=function(t,e){if("object"==typeof t){var r={};for(var n in t)t.hasOwnProperty(n)&&(r[n]="a"===n?t[n]:z(t[n]));t=r}return c(t,e)},c.equals=function(t,e){return!(!t||!e)&&c(t).toRgbString()==c(e).toRgbString()},c.random=function(){return c.fromRatio({r:l(),g:l(),b:l()})},c.mix=function(t,e,r){r=0===r?0:r||50;var n=c(t).toRgb(),i=c(e).toRgb(),a=r/100;return c({r:(i.r-n.r)*a+n.r,g:(i.g-n.g)*a+n.g,b:(i.b-n.b)*a+n.b,a:(i.a-n.a)*a+n.a})},c.readability=function(e,r){var n=c(e),i=c(r);return(t.max(n.getLuminance(),i.getLuminance())+.05)/(t.min(n.getLuminance(),i.getLuminance())+.05)},c.isReadable=function(t,e,r){var n,i,a=c.readability(t,e);switch(i=!1,(n=function(t){var e,r;e=((t=t||{level:"AA",size:"small"}).level||"AA").toUpperCase(),r=(t.size||"small").toLowerCase(),"AA"!==e&&"AAA"!==e&&(e="AA");"small"!==r&&"large"!==r&&(r="small");return{level:e,size:r}}(r)).level+n.size){case"AAsmall":case"AAAlarge":i=a>=4.5;break;case"AAlarge":i=a>=3;break;case"AAAsmall":i=a>=7}return i},c.mostReadable=function(t,e,r){var n,i,a,o,s=null,l=0;i=(r=r||{}).includeFallbackColors,a=r.level,o=r.size;for(var u=0;ul&&(l=n,s=c(e[u]));return c.isReadable(t,s,{level:a,size:o})||!i?s:(r.includeFallbackColors=!1,c.mostReadable(t,["#fff","#000"],r))};var S=c.names={aliceblue:"f0f8ff",antiquewhite:"faebd7",aqua:"0ff",aquamarine:"7fffd4",azure:"f0ffff",beige:"f5f5dc",bisque:"ffe4c4",black:"000",blanchedalmond:"ffebcd",blue:"00f",blueviolet:"8a2be2",brown:"a52a2a",burlywood:"deb887",burntsienna:"ea7e5d",cadetblue:"5f9ea0",chartreuse:"7fff00",chocolate:"d2691e",coral:"ff7f50",cornflowerblue:"6495ed",cornsilk:"fff8dc",crimson:"dc143c",cyan:"0ff",darkblue:"00008b",darkcyan:"008b8b",darkgoldenrod:"b8860b",darkgray:"a9a9a9",darkgreen:"006400",darkgrey:"a9a9a9",darkkhaki:"bdb76b",darkmagenta:"8b008b",darkolivegreen:"556b2f",darkorange:"ff8c00",darkorchid:"9932cc",darkred:"8b0000",darksalmon:"e9967a",darkseagreen:"8fbc8f",darkslateblue:"483d8b",darkslategray:"2f4f4f",darkslategrey:"2f4f4f",darkturquoise:"00ced1",darkviolet:"9400d3",deeppink:"ff1493",deepskyblue:"00bfff",dimgray:"696969",dimgrey:"696969",dodgerblue:"1e90ff",firebrick:"b22222",floralwhite:"fffaf0",forestgreen:"228b22",fuchsia:"f0f",gainsboro:"dcdcdc",ghostwhite:"f8f8ff",gold:"ffd700",goldenrod:"daa520",gray:"808080",green:"008000",greenyellow:"adff2f",grey:"808080",honeydew:"f0fff0",hotpink:"ff69b4",indianred:"cd5c5c",indigo:"4b0082",ivory:"fffff0",khaki:"f0e68c",lavender:"e6e6fa",lavenderblush:"fff0f5",lawngreen:"7cfc00",lemonchiffon:"fffacd",lightblue:"add8e6",lightcoral:"f08080",lightcyan:"e0ffff",lightgoldenrodyellow:"fafad2",lightgray:"d3d3d3",lightgreen:"90ee90",lightgrey:"d3d3d3",lightpink:"ffb6c1",lightsalmon:"ffa07a",lightseagreen:"20b2aa",lightskyblue:"87cefa",lightslategray:"789",lightslategrey:"789",lightsteelblue:"b0c4de",lightyellow:"ffffe0",lime:"0f0",limegreen:"32cd32",linen:"faf0e6",magenta:"f0f",maroon:"800000",mediumaquamarine:"66cdaa",mediumblue:"0000cd",mediumorchid:"ba55d3",mediumpurple:"9370db",mediumseagreen:"3cb371",mediumslateblue:"7b68ee",mediumspringgreen:"00fa9a",mediumturquoise:"48d1cc",mediumvioletred:"c71585",midnightblue:"191970",mintcream:"f5fffa",mistyrose:"ffe4e1",moccasin:"ffe4b5",navajowhite:"ffdead",navy:"000080",oldlace:"fdf5e6",olive:"808000",olivedrab:"6b8e23",orange:"ffa500",orangered:"ff4500",orchid:"da70d6",palegoldenrod:"eee8aa",palegreen:"98fb98",paleturquoise:"afeeee",palevioletred:"db7093",papayawhip:"ffefd5",peachpuff:"ffdab9",peru:"cd853f",pink:"ffc0cb",plum:"dda0dd",powderblue:"b0e0e6",purple:"800080",rebeccapurple:"663399",red:"f00",rosybrown:"bc8f8f",royalblue:"4169e1",saddlebrown:"8b4513",salmon:"fa8072",sandybrown:"f4a460",seagreen:"2e8b57",seashell:"fff5ee",sienna:"a0522d",silver:"c0c0c0",skyblue:"87ceeb",slateblue:"6a5acd",slategray:"708090",slategrey:"708090",snow:"fffafa",springgreen:"00ff7f",steelblue:"4682b4",tan:"d2b48c",teal:"008080",thistle:"d8bfd8",tomato:"ff6347",turquoise:"40e0d0",violet:"ee82ee",wheat:"f5deb3",white:"fff",whitesmoke:"f5f5f5",yellow:"ff0",yellowgreen:"9acd32"},E=c.hexNames=function(t){var e={};for(var r in t)t.hasOwnProperty(r)&&(e[t[r]]=r);return e}(S);function L(t){return t=parseFloat(t),(isNaN(t)||t<0||t>1)&&(t=1),t}function C(e,r){(function(t){return"string"==typeof t&&-1!=t.indexOf(".")&&1===parseFloat(t)})(e)&&(e="100%");var n=function(t){return"string"==typeof t&&-1!=t.indexOf("%")}(e);return e=o(r,s(0,parseFloat(e))),n&&(e=parseInt(e*r,10)/100),t.abs(e-r)<1e-6?1:e%r/parseFloat(r)}function P(t){return o(1,s(0,t))}function I(t){return parseInt(t,16)}function O(t){return 1==t.length?"0"+t:""+t}function z(t){return t<=1&&(t=100*t+"%"),t}function D(e){return t.round(255*parseFloat(e)).toString(16)}function R(t){return I(t)/255}var F,B,N,j=(B="[\\s|\\(]+("+(F="(?:[-\\+]?\\d*\\.\\d+%?)|(?:[-\\+]?\\d+%?)")+")[,|\\s]+("+F+")[,|\\s]+("+F+")\\s*\\)?",N="[\\s|\\(]+("+F+")[,|\\s]+("+F+")[,|\\s]+("+F+")[,|\\s]+("+F+")\\s*\\)?",{CSS_UNIT:new RegExp(F),rgb:new RegExp("rgb"+B),rgba:new RegExp("rgba"+N),hsl:new RegExp("hsl"+B),hsla:new RegExp("hsla"+N),hsv:new RegExp("hsv"+B),hsva:new RegExp("hsva"+N),hex3:/^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,hex6:/^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/,hex4:/^#?([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})([0-9a-fA-F]{1})$/,hex8:/^#?([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})([0-9a-fA-F]{2})$/});function U(t){return!!j.CSS_UNIT.exec(t)}void 0!==e&&e.exports?e.exports=c:window.tinycolor=c}(Math)},{}],573:[function(t,e,r){"use strict";e.exports=i,e.exports.float32=e.exports.float=i,e.exports.fract32=e.exports.fract=function(t,e){if(t.length){if(t instanceof Float32Array)return new Float32Array(t.length);e instanceof Float32Array||(e=i(t));for(var r=0,n=e.length;ro&&(o=t[0]),t[1]s&&(s=t[1])}function c(t){switch(t.type){case"GeometryCollection":t.geometries.forEach(c);break;case"Point":l(t.coordinates);break;case"MultiPoint":t.coordinates.forEach(l)}}for(e in t.arcs.forEach((function(t){for(var e,r=-1,l=t.length;++ro&&(o=e[0]),e[1]s&&(s=e[1])})),t.objects)c(t.objects[e]);return[i,a,o,s]}function i(t,e){var r=e.id,n=e.bbox,i=null==e.properties?{}:e.properties,o=a(t,e);return null==r&&null==n?{type:"Feature",properties:i,geometry:o}:null==n?{type:"Feature",id:r,properties:i,geometry:o}:{type:"Feature",id:r,bbox:n,properties:i,geometry:o}}function a(t,e){var n=r(t.transform),i=t.arcs;function a(t,e){e.length&&e.pop();for(var r=i[t<0?~t:t],a=0,o=r.length;a1)n=l(t,e,r);else for(i=0,n=new Array(a=t.arcs.length);i1)for(var a,s,c=1,u=l(i[0]);cu&&(s=i[0],i[0]=i[c],i[c]=s,u=a);return i})).filter((function(t){return t.length>0}))}}function u(t,e){for(var r=0,n=t.length;r>>1;t[i]=2))throw new Error("n must be \u22652");var r,i=(l=t.bbox||n(t))[0],a=l[1],o=l[2],s=l[3];e={scale:[o-i?(o-i)/(r-1):1,s-a?(s-a)/(r-1):1],translate:[i,a]}}var l,c,u=f(e),h=t.objects,p={};function d(t){return u(t)}function m(t){var e;switch(t.type){case"GeometryCollection":e={type:"GeometryCollection",geometries:t.geometries.map(m)};break;case"Point":e={type:"Point",coordinates:d(t.coordinates)};break;case"MultiPoint":e={type:"MultiPoint",coordinates:t.coordinates.map(d)};break;default:return t}return null!=t.id&&(e.id=t.id),null!=t.bbox&&(e.bbox=t.bbox),null!=t.properties&&(e.properties=t.properties),e}for(c in h)p[c]=m(h[c]);return{type:"Topology",bbox:l,transform:e,objects:p,arcs:t.arcs.map((function(t){var e,r=0,n=1,i=t.length,a=new Array(i);for(a[0]=u(t[0],0);++rMath.max(r,n)?i[2]=1:r>Math.max(e,n)?i[0]=1:i[1]=1;for(var a=0,o=0,l=0;l<3;++l)a+=t[l]*t[l],o+=i[l]*t[l];for(l=0;l<3;++l)i[l]-=o/a*t[l];return s(i,i),i}function h(t,e,r,i,a,o,s,l){this.center=n(r),this.up=n(i),this.right=n(a),this.radius=n([o]),this.angle=n([s,l]),this.angle.bounds=[[-1/0,-Math.PI/2],[1/0,Math.PI/2]],this.setDistanceLimits(t,e),this.computedCenter=this.center.curve(0),this.computedUp=this.up.curve(0),this.computedRight=this.right.curve(0),this.computedRadius=this.radius.curve(0),this.computedAngle=this.angle.curve(0),this.computedToward=[0,0,0],this.computedEye=[0,0,0],this.computedMatrix=new Array(16);for(var c=0;c<16;++c)this.computedMatrix[c]=.5;this.recalcMatrix(0)}var p=h.prototype;p.setDistanceLimits=function(t,e){t=t>0?Math.log(t):-1/0,e=e>0?Math.log(e):1/0,e=Math.max(e,t),this.radius.bounds[0][0]=t,this.radius.bounds[1][0]=e},p.getDistanceLimits=function(t){var e=this.radius.bounds[0];return t?(t[0]=Math.exp(e[0][0]),t[1]=Math.exp(e[1][0]),t):[Math.exp(e[0][0]),Math.exp(e[1][0])]},p.recalcMatrix=function(t){this.center.curve(t),this.up.curve(t),this.right.curve(t),this.radius.curve(t),this.angle.curve(t);for(var e=this.computedUp,r=this.computedRight,n=0,i=0,a=0;a<3;++a)i+=e[a]*r[a],n+=e[a]*e[a];var l=Math.sqrt(n),u=0;for(a=0;a<3;++a)r[a]-=e[a]*i/n,u+=r[a]*r[a],e[a]/=l;var f=Math.sqrt(u);for(a=0;a<3;++a)r[a]/=f;var h=this.computedToward;o(h,e,r),s(h,h);var p=Math.exp(this.computedRadius[0]),d=this.computedAngle[0],m=this.computedAngle[1],g=Math.cos(d),v=Math.sin(d),y=Math.cos(m),x=Math.sin(m),b=this.computedCenter,_=g*y,w=v*y,T=x,k=-g*x,A=-v*x,M=y,S=this.computedEye,E=this.computedMatrix;for(a=0;a<3;++a){var L=_*r[a]+w*h[a]+T*e[a];E[4*a+1]=k*r[a]+A*h[a]+M*e[a],E[4*a+2]=L,E[4*a+3]=0}var C=E[1],P=E[5],I=E[9],O=E[2],z=E[6],D=E[10],R=P*D-I*z,F=I*O-C*D,B=C*z-P*O,N=c(R,F,B);R/=N,F/=N,B/=N,E[0]=R,E[4]=F,E[8]=B;for(a=0;a<3;++a)S[a]=b[a]+E[2+4*a]*p;for(a=0;a<3;++a){u=0;for(var j=0;j<3;++j)u+=E[a+4*j]*S[j];E[12+a]=-u}E[15]=1},p.getMatrix=function(t,e){this.recalcMatrix(t);var r=this.computedMatrix;if(e){for(var n=0;n<16;++n)e[n]=r[n];return e}return r};var d=[0,0,0];p.rotate=function(t,e,r,n){if(this.angle.move(t,e,r),n){this.recalcMatrix(t);var i=this.computedMatrix;d[0]=i[2],d[1]=i[6],d[2]=i[10];for(var o=this.computedUp,s=this.computedRight,l=this.computedToward,c=0;c<3;++c)i[4*c]=o[c],i[4*c+1]=s[c],i[4*c+2]=l[c];a(i,i,n,d);for(c=0;c<3;++c)o[c]=i[4*c],s[c]=i[4*c+1];this.up.set(t,o[0],o[1],o[2]),this.right.set(t,s[0],s[1],s[2])}},p.pan=function(t,e,r,n){e=e||0,r=r||0,n=n||0,this.recalcMatrix(t);var i=this.computedMatrix,a=(Math.exp(this.computedRadius[0]),i[1]),o=i[5],s=i[9],l=c(a,o,s);a/=l,o/=l,s/=l;var u=i[0],f=i[4],h=i[8],p=u*a+f*o+h*s,d=c(u-=a*p,f-=o*p,h-=s*p),m=(u/=d)*e+a*r,g=(f/=d)*e+o*r,v=(h/=d)*e+s*r;this.center.move(t,m,g,v);var y=Math.exp(this.computedRadius[0]);y=Math.max(1e-4,y+n),this.radius.set(t,Math.log(y))},p.translate=function(t,e,r,n){this.center.move(t,e||0,r||0,n||0)},p.setMatrix=function(t,e,r,n){var a=1;"number"==typeof r&&(a=0|r),(a<0||a>3)&&(a=1);var o=(a+2)%3;e||(this.recalcMatrix(t),e=this.computedMatrix);var s=e[a],l=e[a+4],f=e[a+8];if(n){var h=Math.abs(s),p=Math.abs(l),d=Math.abs(f),m=Math.max(h,p,d);h===m?(s=s<0?-1:1,l=f=0):d===m?(f=f<0?-1:1,s=l=0):(l=l<0?-1:1,s=f=0)}else{var g=c(s,l,f);s/=g,l/=g,f/=g}var v,y,x=e[o],b=e[o+4],_=e[o+8],w=x*s+b*l+_*f,T=c(x-=s*w,b-=l*w,_-=f*w),k=l*(_/=T)-f*(b/=T),A=f*(x/=T)-s*_,M=s*b-l*x,S=c(k,A,M);if(k/=S,A/=S,M/=S,this.center.jump(t,q,G,Y),this.radius.idle(t),this.up.jump(t,s,l,f),this.right.jump(t,x,b,_),2===a){var E=e[1],L=e[5],C=e[9],P=E*x+L*b+C*_,I=E*k+L*A+C*M;v=R<0?-Math.PI/2:Math.PI/2,y=Math.atan2(I,P)}else{var O=e[2],z=e[6],D=e[10],R=O*s+z*l+D*f,F=O*x+z*b+D*_,B=O*k+z*A+D*M;v=Math.asin(u(R)),y=Math.atan2(B,F)}this.angle.jump(t,y,v),this.recalcMatrix(t);var N=e[2],j=e[6],U=e[10],V=this.computedMatrix;i(V,e);var H=V[15],q=V[12]/H,G=V[13]/H,Y=V[14]/H,W=Math.exp(this.computedRadius[0]);this.center.jump(t,q-N*W,G-j*W,Y-U*W)},p.lastT=function(){return Math.max(this.center.lastT(),this.up.lastT(),this.right.lastT(),this.radius.lastT(),this.angle.lastT())},p.idle=function(t){this.center.idle(t),this.up.idle(t),this.right.idle(t),this.radius.idle(t),this.angle.idle(t)},p.flush=function(t){this.center.flush(t),this.up.flush(t),this.right.flush(t),this.radius.flush(t),this.angle.flush(t)},p.setDistance=function(t,e){e>0&&this.radius.set(t,Math.log(e))},p.lookAt=function(t,e,r,n){this.recalcMatrix(t),e=e||this.computedEye,r=r||this.computedCenter;var i=(n=n||this.computedUp)[0],a=n[1],o=n[2],s=c(i,a,o);if(!(s<1e-6)){i/=s,a/=s,o/=s;var l=e[0]-r[0],f=e[1]-r[1],h=e[2]-r[2],p=c(l,f,h);if(!(p<1e-6)){l/=p,f/=p,h/=p;var d=this.computedRight,m=d[0],g=d[1],v=d[2],y=i*m+a*g+o*v,x=c(m-=y*i,g-=y*a,v-=y*o);if(!(x<.01&&(x=c(m=a*h-o*f,g=o*l-i*h,v=i*f-a*l))<1e-6)){m/=x,g/=x,v/=x,this.up.set(t,i,a,o),this.right.set(t,m,g,v),this.center.set(t,r[0],r[1],r[2]),this.radius.set(t,Math.log(p));var b=a*v-o*g,_=o*m-i*v,w=i*g-a*m,T=c(b,_,w),k=i*l+a*f+o*h,A=m*l+g*f+v*h,M=(b/=T)*l+(_/=T)*f+(w/=T)*h,S=Math.asin(u(k)),E=Math.atan2(M,A),L=this.angle._state,C=L[L.length-1],P=L[L.length-2];C%=2*Math.PI;var I=Math.abs(C+2*Math.PI-E),O=Math.abs(C-E),z=Math.abs(C-2*Math.PI-E);I":(e.length>100&&(e=e.slice(0,99)+"\u2026"),e=e.replace(i,(function(t){switch(t){case"\n":return"\\n";case"\r":return"\\r";case"\u2028":return"\\u2028";case"\u2029":return"\\u2029";default:throw new Error("Unexpected character")}})))}},{"./safe-to-string":581}],583:[function(t,e,r){"use strict";var n=t("../value/is"),i={object:!0,function:!0,undefined:!0};e.exports=function(t){return!!n(t)&&hasOwnProperty.call(i,typeof t)}},{"../value/is":589}],584:[function(t,e,r){"use strict";var n=t("../lib/resolve-exception"),i=t("./is");e.exports=function(t){return i(t)?t:n(t,"%v is not a plain function",arguments[1])}},{"../lib/resolve-exception":580,"./is":585}],585:[function(t,e,r){"use strict";var n=t("../function/is"),i=/^\s*class[\s{/}]/,a=Function.prototype.toString;e.exports=function(t){return!!n(t)&&!i.test(a.call(t))}},{"../function/is":579}],586:[function(t,e,r){"use strict";var n=t("../object/is");e.exports=function(t){if(!n(t))return!1;try{return!!t.constructor&&t.constructor.prototype===t}catch(t){return!1}}},{"../object/is":583}],587:[function(t,e,r){"use strict";var n=t("../value/is"),i=t("../object/is"),a=Object.prototype.toString;e.exports=function(t){if(!n(t))return null;if(i(t)){var e=t.toString;if("function"!=typeof e)return null;if(e===a)return null}try{return""+t}catch(t){return null}}},{"../object/is":583,"../value/is":589}],588:[function(t,e,r){"use strict";var n=t("../lib/resolve-exception"),i=t("./is");e.exports=function(t){return i(t)?t:n(t,"Cannot use %v",arguments[1])}},{"../lib/resolve-exception":580,"./is":589}],589:[function(t,e,r){"use strict";e.exports=function(t){return null!=t}},{}],590:[function(t,e,r){(function(e){(function(){"use strict";var n=t("bit-twiddle"),i=t("dup"),a=t("buffer").Buffer;e.__TYPEDARRAY_POOL||(e.__TYPEDARRAY_POOL={UINT8:i([32,0]),UINT16:i([32,0]),UINT32:i([32,0]),BIGUINT64:i([32,0]),INT8:i([32,0]),INT16:i([32,0]),INT32:i([32,0]),BIGINT64:i([32,0]),FLOAT:i([32,0]),DOUBLE:i([32,0]),DATA:i([32,0]),UINT8C:i([32,0]),BUFFER:i([32,0])});var o="undefined"!=typeof Uint8ClampedArray,s="undefined"!=typeof BigUint64Array,l="undefined"!=typeof BigInt64Array,c=e.__TYPEDARRAY_POOL;c.UINT8C||(c.UINT8C=i([32,0])),c.BIGUINT64||(c.BIGUINT64=i([32,0])),c.BIGINT64||(c.BIGINT64=i([32,0])),c.BUFFER||(c.BUFFER=i([32,0]));var u=c.DATA,f=c.BUFFER;function h(t){if(t){var e=t.length||t.byteLength,r=n.log2(e);u[r].push(t)}}function p(t){t=n.nextPow2(t);var e=n.log2(t),r=u[e];return r.length>0?r.pop():new ArrayBuffer(t)}function d(t){return new Uint8Array(p(t),0,t)}function m(t){return new Uint16Array(p(2*t),0,t)}function g(t){return new Uint32Array(p(4*t),0,t)}function v(t){return new Int8Array(p(t),0,t)}function y(t){return new Int16Array(p(2*t),0,t)}function x(t){return new Int32Array(p(4*t),0,t)}function b(t){return new Float32Array(p(4*t),0,t)}function _(t){return new Float64Array(p(8*t),0,t)}function w(t){return o?new Uint8ClampedArray(p(t),0,t):d(t)}function T(t){return s?new BigUint64Array(p(8*t),0,t):null}function k(t){return l?new BigInt64Array(p(8*t),0,t):null}function A(t){return new DataView(p(t),0,t)}function M(t){t=n.nextPow2(t);var e=n.log2(t),r=f[e];return r.length>0?r.pop():new a(t)}r.free=function(t){if(a.isBuffer(t))f[n.log2(t.length)].push(t);else{if("[object ArrayBuffer]"!==Object.prototype.toString.call(t)&&(t=t.buffer),!t)return;var e=t.length||t.byteLength,r=0|n.log2(e);u[r].push(t)}},r.freeUint8=r.freeUint16=r.freeUint32=r.freeBigUint64=r.freeInt8=r.freeInt16=r.freeInt32=r.freeBigInt64=r.freeFloat32=r.freeFloat=r.freeFloat64=r.freeDouble=r.freeUint8Clamped=r.freeDataView=function(t){h(t.buffer)},r.freeArrayBuffer=h,r.freeBuffer=function(t){f[n.log2(t.length)].push(t)},r.malloc=function(t,e){if(void 0===e||"arraybuffer"===e)return p(t);switch(e){case"uint8":return d(t);case"uint16":return m(t);case"uint32":return g(t);case"int8":return v(t);case"int16":return y(t);case"int32":return x(t);case"float":case"float32":return b(t);case"double":case"float64":return _(t);case"uint8_clamped":return w(t);case"bigint64":return k(t);case"biguint64":return T(t);case"buffer":return M(t);case"data":case"dataview":return A(t);default:return null}return null},r.mallocArrayBuffer=p,r.mallocUint8=d,r.mallocUint16=m,r.mallocUint32=g,r.mallocInt8=v,r.mallocInt16=y,r.mallocInt32=x,r.mallocFloat32=r.mallocFloat=b,r.mallocFloat64=r.mallocDouble=_,r.mallocUint8Clamped=w,r.mallocBigUint64=T,r.mallocBigInt64=k,r.mallocDataView=A,r.mallocBuffer=M,r.clearCache=function(){for(var t=0;t<32;++t)c.UINT8[t].length=0,c.UINT16[t].length=0,c.UINT32[t].length=0,c.INT8[t].length=0,c.INT16[t].length=0,c.INT32[t].length=0,c.FLOAT[t].length=0,c.DOUBLE[t].length=0,c.BIGUINT64[t].length=0,c.BIGINT64[t].length=0,c.UINT8C[t].length=0,u[t].length=0,f[t].length=0}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"bit-twiddle":101,buffer:112,dup:177}],591:[function(t,e,r){"use strict";function n(t){this.roots=new Array(t),this.ranks=new Array(t);for(var e=0;e0&&(a=n.size),n.lineSpacing&&n.lineSpacing>0&&(o=n.lineSpacing),n.styletags&&n.styletags.breaklines&&(s.breaklines=!!n.styletags.breaklines),n.styletags&&n.styletags.bolds&&(s.bolds=!!n.styletags.bolds),n.styletags&&n.styletags.italics&&(s.italics=!!n.styletags.italics),n.styletags&&n.styletags.subscripts&&(s.subscripts=!!n.styletags.subscripts),n.styletags&&n.styletags.superscripts&&(s.superscripts=!!n.styletags.superscripts));return r.font=[n.fontStyle,n.fontVariant,n.fontWeight,a+"px",n.font].filter((function(t){return t})).join(" "),r.textAlign="start",r.textBaseline="alphabetic",r.direction="ltr",h(function(t,e,r,n,a,o){r=r.replace(/\n/g,""),r=!0===o.breaklines?r.replace(/\/g,"\n"):r.replace(/\/g," ");var s="",l=[];for(p=0;p-1?parseInt(t[1+i]):0,l=a>-1?parseInt(r[1+a]):0;s!==l&&(n=n.replace(S(),"?px "),g*=Math.pow(.75,l-s),n=n.replace("?px ",S())),m+=.25*x*(l-s)}if(!0===o.superscripts){var c=t.indexOf("+"),u=r.indexOf("+"),f=c>-1?parseInt(t[1+c]):0,h=u>-1?parseInt(r[1+u]):0;f!==h&&(n=n.replace(S(),"?px "),g*=Math.pow(.75,h-f),n=n.replace("?px ",S())),m-=.25*x*(h-f)}if(!0===o.bolds){var p=t.indexOf("b|")>-1,d=r.indexOf("b|")>-1;!p&&d&&(n=v?n.replace("italic ","italic bold "):"bold "+n),p&&!d&&(n=n.replace("bold ",""))}if(!0===o.italics){var v=t.indexOf("i|")>-1,y=r.indexOf("i|")>-1;!v&&y&&(n="italic "+n),v&&!y&&(n=n.replace("italic ",""))}e.font=n}for(h=0;h",a="",o=i.length,s=a.length,l="+"===e[0]||"-"===e[0],c=0,u=-s;c>-1&&-1!==(c=r.indexOf(i,c))&&-1!==(u=r.indexOf(a,c+o))&&!(u<=c);){for(var f=c;f=u)n[f]=null,r=r.substr(0,f)+" "+r.substr(f+1);else if(null!==n[f]){var h=n[f].indexOf(e[0]);-1===h?n[f]+=e:l&&(n[f]=n[f].substr(0,h+1)+(1+parseInt(n[f][h+1]))+n[f].substr(h+2))}var p=c+o,d=r.substr(p,u-p).indexOf(i);c=-1!==d?d:u+s}return n}function u(t,e){var r=n(t,128);return e?a(r.cells,r.positions,.25):{edges:r.cells,positions:r.positions}}function f(t,e,r,n){var i=u(t,n),a=function(t,e,r){for(var n=e.textAlign||"start",i=e.textBaseline||"alphabetic",a=[1<<30,1<<30],o=[0,0],s=t.length,l=0;l=0?e[a]:i}))},has___:{value:y((function(e){var n=v(e);return n?r in n:t.indexOf(e)>=0}))},set___:{value:y((function(n,i){var a,o=v(n);return o?o[r]=i:(a=t.indexOf(n))>=0?e[a]=i:(a=t.length,e[a]=i,t[a]=n),this}))},delete___:{value:y((function(n){var i,a,o=v(n);return o?r in o&&delete o[r]:!((i=t.indexOf(n))<0)&&(a=t.length-1,t[i]=void 0,e[i]=e[a],t[i]=t[a],t.length=a,e.length=a,!0)}))}})};d.prototype=Object.create(Object.prototype,{get:{value:function(t,e){return this.get___(t,e)},writable:!0,configurable:!0},has:{value:function(t){return this.has___(t)},writable:!0,configurable:!0},set:{value:function(t,e){return this.set___(t,e)},writable:!0,configurable:!0},delete:{value:function(t){return this.delete___(t)},writable:!0,configurable:!0}}),"function"==typeof r?function(){function n(){this instanceof d||x();var e,n=new r,i=void 0,a=!1;return e=t?function(t,e){return n.set(t,e),n.has(t)||(i||(i=new d),i.set(t,e)),this}:function(t,e){if(a)try{n.set(t,e)}catch(r){i||(i=new d),i.set___(t,e)}else n.set(t,e);return this},Object.create(d.prototype,{get___:{value:y((function(t,e){return i?n.has(t)?n.get(t):i.get___(t,e):n.get(t,e)}))},has___:{value:y((function(t){return n.has(t)||!!i&&i.has___(t)}))},set___:{value:y(e)},delete___:{value:y((function(t){var e=!!n.delete(t);return i&&i.delete___(t)||e}))},permitHostObjects___:{value:y((function(t){if(t!==m)throw new Error("bogus call to permitHostObjects___");a=!0}))}})}t&&"undefined"!=typeof Proxy&&(Proxy=void 0),n.prototype=d.prototype,e.exports=n,Object.defineProperty(WeakMap.prototype,"constructor",{value:WeakMap,enumerable:!1,configurable:!0,writable:!0})}():("undefined"!=typeof Proxy&&(Proxy=void 0),e.exports=d)}function m(t){t.permitHostObjects___&&t.permitHostObjects___(m)}function g(t){return!("weakmap:"==t.substr(0,"weakmap:".length)&&"___"===t.substr(t.length-3))}function v(t){if(t!==Object(t))throw new TypeError("Not an object: "+t);var e=t[l];if(e&&e.key===t)return e;if(s(t)){e={key:t};try{return o(t,l,{value:e,writable:!1,enumerable:!1,configurable:!1}),e}catch(t){return}}}function y(t){return t.prototype=null,Object.freeze(t)}function x(){h||"undefined"==typeof console||(h=!0,console.warn("WeakMap should be invoked as new WeakMap(), not WeakMap(). This will be an error in the future."))}}()},{}],599:[function(t,e,r){var n=t("./hidden-store.js");e.exports=function(){var t={};return function(e){if(("object"!=typeof e||null===e)&&"function"!=typeof e)throw new Error("Weakmap-shim: Key must be object");var r=e.valueOf(t);return r&&r.identity===t?r:n(e,t)}}},{"./hidden-store.js":600}],600:[function(t,e,r){e.exports=function(t,e){var r={identity:e},n=t.valueOf;return Object.defineProperty(t,"valueOf",{value:function(t){return t!==e?n.apply(this,arguments):r},writable:!0}),r}},{}],601:[function(t,e,r){var n=t("./create-store.js");e.exports=function(){var t=n();return{get:function(e,r){var n=t(e);return n.hasOwnProperty("value")?n.value:r},set:function(e,r){return t(e).value=r,this},has:function(e){return"value"in t(e)},delete:function(e){return delete t(e).value}}}},{"./create-store.js":599}],602:[function(t,e,r){var n=t("get-canvas-context");e.exports=function(t){return n("webgl",t)}},{"get-canvas-context":248}],603:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Chinese",jdEpoch:1721425.5,hasYearZero:!1,minMonth:0,firstMonth:0,minDay:1,regionalOptions:{"":{name:"Chinese",epochs:["BEC","EC"],monthNumbers:function(t,e){if("string"==typeof t){var r=t.match(l);return r?r[0]:""}var n=this._validateYear(t),i=t.month(),a=""+this.toChineseMonth(n,i);return e&&a.length<2&&(a="0"+a),this.isIntercalaryMonth(n,i)&&(a+="i"),a},monthNames:function(t){if("string"==typeof t){var e=t.match(c);return e?e[0]:""}var r=this._validateYear(t),n=t.month(),i=["\u4e00\u6708","\u4e8c\u6708","\u4e09\u6708","\u56db\u6708","\u4e94\u6708","\u516d\u6708","\u4e03\u6708","\u516b\u6708","\u4e5d\u6708","\u5341\u6708","\u5341\u4e00\u6708","\u5341\u4e8c\u6708"][this.toChineseMonth(r,n)-1];return this.isIntercalaryMonth(r,n)&&(i="\u95f0"+i),i},monthNamesShort:function(t){if("string"==typeof t){var e=t.match(u);return e?e[0]:""}var r=this._validateYear(t),n=t.month(),i=["\u4e00","\u4e8c","\u4e09","\u56db","\u4e94","\u516d","\u4e03","\u516b","\u4e5d","\u5341","\u5341\u4e00","\u5341\u4e8c"][this.toChineseMonth(r,n)-1];return this.isIntercalaryMonth(r,n)&&(i="\u95f0"+i),i},parseMonth:function(t,e){t=this._validateYear(t);var r,n=parseInt(e);if(isNaN(n))"\u95f0"===e[0]&&(r=!0,e=e.substring(1)),"\u6708"===e[e.length-1]&&(e=e.substring(0,e.length-1)),n=1+["\u4e00","\u4e8c","\u4e09","\u56db","\u4e94","\u516d","\u4e03","\u516b","\u4e5d","\u5341","\u5341\u4e00","\u5341\u4e8c"].indexOf(e);else{var i=e[e.length-1];r="i"===i||"I"===i}return this.toMonthIndex(t,n,r)},dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:1,isRTL:!1}},_validateYear:function(t,e){if(t.year&&(t=t.year()),"number"!=typeof t||t<1888||t>2111)throw e.replace(/\{0\}/,this.local.name);return t},toMonthIndex:function(t,e,r){var i=this.intercalaryMonth(t);if(r&&e!==i||e<1||e>12)throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return i?!r&&e<=i?e-1:e:e-1},toChineseMonth:function(t,e){t.year&&(e=(t=t.year()).month());var r=this.intercalaryMonth(t);if(e<0||e>(r?12:11))throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return r?e>13},isIntercalaryMonth:function(t,e){t.year&&(e=(t=t.year()).month());var r=this.intercalaryMonth(t);return!!r&&r===e},leapYear:function(t){return 0!==this.intercalaryMonth(t)},weekOfYear:function(t,e,r){var i,o=this._validateYear(t,n.local.invalidyear),s=h[o-h[0]],l=s>>9&4095,c=s>>5&15,u=31&s;(i=a.newDate(l,c,u)).add(4-(i.dayOfWeek()||7),"d");var f=this.toJD(t,e,r)-i.toJD();return 1+Math.floor(f/7)},monthsInYear:function(t){return this.leapYear(t)?13:12},daysInMonth:function(t,e){t.year&&(e=t.month(),t=t.year()),t=this._validateYear(t);var r=f[t-f[0]];if(e>(r>>13?12:11))throw n.local.invalidMonth.replace(/\{0\}/,this.local.name);return r&1<<12-e?30:29},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,s,r,n.local.invalidDate);t=this._validateYear(i.year()),e=i.month(),r=i.day();var o=this.isIntercalaryMonth(t,e),s=this.toChineseMonth(t,e),l=function(t,e,r,n,i){var a,o,s;if("object"==typeof t)o=t,a=e||{};else{var l;if(!("number"==typeof t&&t>=1888&&t<=2111))throw new Error("Lunar year outside range 1888-2111");if(!("number"==typeof e&&e>=1&&e<=12))throw new Error("Lunar month outside range 1 - 12");if(!("number"==typeof r&&r>=1&&r<=30))throw new Error("Lunar day outside range 1 - 30");"object"==typeof n?(l=!1,a=n):(l=!!n,a=i||{}),o={year:t,month:e,day:r,isIntercalary:l}}s=o.day-1;var c,u=f[o.year-f[0]],p=u>>13;c=p&&(o.month>p||o.isIntercalary)?o.month:o.month-1;for(var d=0;d>9&4095,(m>>5&15)-1,(31&m)+s);return a.year=g.getFullYear(),a.month=1+g.getMonth(),a.day=g.getDate(),a}(t,s,r,o);return a.toJD(l.year,l.month,l.day)},fromJD:function(t){var e=a.fromJD(t),r=function(t,e,r,n){var i,a;if("object"==typeof t)i=t,a=e||{};else{if(!("number"==typeof t&&t>=1888&&t<=2111))throw new Error("Solar year outside range 1888-2111");if(!("number"==typeof e&&e>=1&&e<=12))throw new Error("Solar month outside range 1 - 12");if(!("number"==typeof r&&r>=1&&r<=31))throw new Error("Solar day outside range 1 - 31");i={year:t,month:e,day:r},a=n||{}}var o=h[i.year-h[0]],s=i.year<<9|i.month<<5|i.day;a.year=s>=o?i.year:i.year-1,o=h[a.year-h[0]];var l,c=new Date(o>>9&4095,(o>>5&15)-1,31&o),u=new Date(i.year,i.month-1,i.day);l=Math.round((u-c)/864e5);var p,d=f[a.year-f[0]];for(p=0;p<13;p++){var m=d&1<<12-p?30:29;if(l>13;!g||p=2&&n<=6},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return{century:o[Math.floor((i.year()-1)/100)+1]||""}},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year()+(i.year()<0?1:0),e=i.month(),(r=i.day())+(e>1?16:0)+(e>2?32*(e-2):0)+400*(t-1)+this.jdEpoch-1},fromJD:function(t){t=Math.floor(t+.5)-Math.floor(this.jdEpoch)-1;var e=Math.floor(t/400)+1;t-=400*(e-1),t+=t>15?16:0;var r=Math.floor(t/32)+1,n=t-32*(r-1)+1;return this.newDate(e<=0?e-1:e,r,n)}});var o={20:"Fruitbat",21:"Anchovy"};n.calendars.discworld=a},{"../main":617,"object-assign":466}],606:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Ethiopian",jdEpoch:1724220.5,daysPerMonth:[30,30,30,30,30,30,30,30,30,30,30,30,5],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Ethiopian",epochs:["BEE","EE"],monthNames:["Meskerem","Tikemet","Hidar","Tahesas","Tir","Yekatit","Megabit","Miazia","Genbot","Sene","Hamle","Nehase","Pagume"],monthNamesShort:["Mes","Tik","Hid","Tah","Tir","Yek","Meg","Mia","Gen","Sen","Ham","Neh","Pag"],dayNames:["Ehud","Segno","Maksegno","Irob","Hamus","Arb","Kidame"],dayNamesShort:["Ehu","Seg","Mak","Iro","Ham","Arb","Kid"],dayNamesMin:["Eh","Se","Ma","Ir","Ha","Ar","Ki"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return(t=e.year()+(e.year()<0?1:0))%4==3||t%4==-1},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear||n.regionalOptions[""].invalidYear),13},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(13===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return(t=i.year())<0&&t++,i.day()+30*(i.month()-1)+365*(t-1)+Math.floor(t/4)+this.jdEpoch-1},fromJD:function(t){var e=Math.floor(t)+.5-this.jdEpoch,r=Math.floor((e-Math.floor((e+366)/1461))/365)+1;r<=0&&r--,e=Math.floor(t)+.5-this.newDate(r,1,1).toJD();var n=Math.floor(e/30)+1,i=e-30*(n-1)+1;return this.newDate(r,n,i)}}),n.calendars.ethiopian=a},{"../main":617,"object-assign":466}],607:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}function o(t,e){return t-e*Math.floor(t/e)}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Hebrew",jdEpoch:347995.5,daysPerMonth:[30,29,30,29,30,29,30,29,30,29,30,29,29],hasYearZero:!1,minMonth:1,firstMonth:7,minDay:1,regionalOptions:{"":{name:"Hebrew",epochs:["BAM","AM"],monthNames:["Nisan","Iyar","Sivan","Tammuz","Av","Elul","Tishrei","Cheshvan","Kislev","Tevet","Shevat","Adar","Adar II"],monthNamesShort:["Nis","Iya","Siv","Tam","Av","Elu","Tis","Che","Kis","Tev","She","Ada","Ad2"],dayNames:["Yom Rishon","Yom Sheni","Yom Shlishi","Yom Revi'i","Yom Chamishi","Yom Shishi","Yom Shabbat"],dayNamesShort:["Ris","She","Shl","Rev","Cha","Shi","Sha"],dayNamesMin:["Ri","She","Shl","Re","Ch","Shi","Sha"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return this._leapYear(e.year())},_leapYear:function(t){return o(7*(t=t<0?t+1:t)+1,19)<7},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),this._leapYear(t.year?t.year():t)?13:12},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){return t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year(),this.toJD(-1===t?1:t+1,7,1)-this.toJD(t,7,1)},daysInMonth:function(t,e){return t.year&&(e=t.month(),t=t.year()),this._validate(t,e,this.minDay,n.local.invalidMonth),12===e&&this.leapYear(t)||8===e&&5===o(this.daysInYear(t),10)?30:9===e&&3===o(this.daysInYear(t),10)?29:this.daysPerMonth[e-1]},weekDay:function(t,e,r){return 6!==this.dayOfWeek(t,e,r)},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return{yearType:(this.leapYear(i)?"embolismic":"common")+" "+["deficient","regular","complete"][this.daysInYear(i)%10-3]}},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=t<=0?t+1:t,o=this.jdEpoch+this._delay1(a)+this._delay2(a)+r+1;if(e<7){for(var s=7;s<=this.monthsInYear(t);s++)o+=this.daysInMonth(t,s);for(s=1;s=this.toJD(-1===e?1:e+1,7,1);)e++;for(var r=tthis.toJD(e,r,this.daysInMonth(e,r));)r++;var n=t-this.toJD(e,r,1)+1;return this.newDate(e,r,n)}}),n.calendars.hebrew=a},{"../main":617,"object-assign":466}],608:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Islamic",jdEpoch:1948439.5,daysPerMonth:[30,29,30,29,30,29,30,29,30,29,30,29],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Islamic",epochs:["BH","AH"],monthNames:["Muharram","Safar","Rabi' al-awwal","Rabi' al-thani","Jumada al-awwal","Jumada al-thani","Rajab","Sha'aban","Ramadan","Shawwal","Dhu al-Qi'dah","Dhu al-Hijjah"],monthNamesShort:["Muh","Saf","Rab1","Rab2","Jum1","Jum2","Raj","Sha'","Ram","Shaw","DhuQ","DhuH"],dayNames:["Yawm al-ahad","Yawm al-ithnayn","Yawm ath-thulaathaa'","Yawm al-arbi'aa'","Yawm al-kham\u012bs","Yawm al-jum'a","Yawm as-sabt"],dayNamesShort:["Aha","Ith","Thu","Arb","Kha","Jum","Sab"],dayNamesMin:["Ah","It","Th","Ar","Kh","Ju","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:6,isRTL:!1}},leapYear:function(t){return(11*this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year()+14)%30<11},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){return this.leapYear(t)?355:354},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year(),e=i.month(),t=t<=0?t+1:t,(r=i.day())+Math.ceil(29.5*(e-1))+354*(t-1)+Math.floor((3+11*t)/30)+this.jdEpoch-1},fromJD:function(t){t=Math.floor(t)+.5;var e=Math.floor((30*(t-this.jdEpoch)+10646)/10631);e=e<=0?e-1:e;var r=Math.min(12,Math.ceil((t-29-this.toJD(e,1,1))/29.5)+1),n=t-this.toJD(e,r,1)+1;return this.newDate(e,r,n)}}),n.calendars.islamic=a},{"../main":617,"object-assign":466}],609:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Julian",jdEpoch:1721423.5,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Julian",epochs:["BC","AD"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"mm/dd/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return(t=e.year()<0?e.year()+1:e.year())%4==0},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(4-(n.dayOfWeek()||7),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return t=i.year(),e=i.month(),r=i.day(),t<0&&t++,e<=2&&(t--,e+=12),Math.floor(365.25*(t+4716))+Math.floor(30.6001*(e+1))+r-1524.5},fromJD:function(t){var e=Math.floor(t+.5)+1524,r=Math.floor((e-122.1)/365.25),n=Math.floor(365.25*r),i=Math.floor((e-n)/30.6001),a=i-Math.floor(i<14?1:13),o=r-Math.floor(a>2?4716:4715),s=e-n-Math.floor(30.6001*i);return o<=0&&o--,this.newDate(o,a,s)}}),n.calendars.julian=a},{"../main":617,"object-assign":466}],610:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}function o(t,e){return t-e*Math.floor(t/e)}function s(t,e){return o(t-1,e)+1}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Mayan",jdEpoch:584282.5,hasYearZero:!0,minMonth:0,firstMonth:0,minDay:0,regionalOptions:{"":{name:"Mayan",epochs:["",""],monthNames:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17"],monthNamesShort:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17"],dayNames:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],dayNamesShort:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],dayNamesMin:["0","1","2","3","4","5","6","7","8","9","10","11","12","13","14","15","16","17","18","19"],digits:null,dateFormat:"YYYY.m.d",firstDay:0,isRTL:!1,haabMonths:["Pop","Uo","Zip","Zotz","Tzec","Xul","Yaxkin","Mol","Chen","Yax","Zac","Ceh","Mac","Kankin","Muan","Pax","Kayab","Cumku","Uayeb"],tzolkinMonths:["Imix","Ik","Akbal","Kan","Chicchan","Cimi","Manik","Lamat","Muluc","Oc","Chuen","Eb","Ben","Ix","Men","Cib","Caban","Etznab","Cauac","Ahau"]}},leapYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),!1},formatYear:function(t){t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year();var e=Math.floor(t/400);return t%=400,t+=t<0?400:0,e+"."+Math.floor(t/20)+"."+t%20},forYear:function(t){if((t=t.split(".")).length<3)throw"Invalid Mayan year";for(var e=0,r=0;r19||r>0&&n<0)throw"Invalid Mayan year";e=20*e+n}return e},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),18},weekOfYear:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate),0},daysInYear:function(t){return this._validate(t,this.minMonth,this.minDay,n.local.invalidYear),360},daysInMonth:function(t,e){return this._validate(t,e,this.minDay,n.local.invalidMonth),20},daysInWeek:function(){return 5},dayOfWeek:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate).day()},weekDay:function(t,e,r){return this._validate(t,e,r,n.local.invalidDate),!0},extraInfo:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate).toJD(),a=this._toHaab(i),o=this._toTzolkin(i);return{haabMonthName:this.local.haabMonths[a[0]-1],haabMonth:a[0],haabDay:a[1],tzolkinDayName:this.local.tzolkinMonths[o[0]-1],tzolkinDay:o[0],tzolkinTrecena:o[1]}},_toHaab:function(t){var e=o((t-=this.jdEpoch)+8+340,365);return[Math.floor(e/20)+1,o(e,20)]},_toTzolkin:function(t){return[s((t-=this.jdEpoch)+20,20),s(t+4,13)]},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);return i.day()+20*i.month()+360*i.year()+this.jdEpoch},fromJD:function(t){t=Math.floor(t)+.5-this.jdEpoch;var e=Math.floor(t/360);t%=360,t+=t<0?360:0;var r=Math.floor(t/20),n=t%20;return this.newDate(e,r,n)}}),n.calendars.mayan=a},{"../main":617,"object-assign":466}],611:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar;var o=n.instance("gregorian");i(a.prototype,{name:"Nanakshahi",jdEpoch:2257673.5,daysPerMonth:[31,31,31,31,31,30,30,30,30,30,30,30],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Nanakshahi",epochs:["BN","AN"],monthNames:["Chet","Vaisakh","Jeth","Harh","Sawan","Bhadon","Assu","Katak","Maghar","Poh","Magh","Phagun"],monthNamesShort:["Che","Vai","Jet","Har","Saw","Bha","Ass","Kat","Mgr","Poh","Mgh","Pha"],dayNames:["Somvaar","Mangalvar","Budhvaar","Veervaar","Shukarvaar","Sanicharvaar","Etvaar"],dayNamesShort:["Som","Mangal","Budh","Veer","Shukar","Sanichar","Et"],dayNamesMin:["So","Ma","Bu","Ve","Sh","Sa","Et"],digits:null,dateFormat:"dd-mm-yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear||n.regionalOptions[""].invalidYear);return o.leapYear(e.year()+(e.year()<1?1:0)+1469)},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(1-(n.dayOfWeek()||7),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidMonth);(t=i.year())<0&&t++;for(var a=i.day(),s=1;s=this.toJD(e+1,1,1);)e++;for(var r=t-Math.floor(this.toJD(e,1,1)+.5)+1,n=1;r>this.daysInMonth(e,n);)r-=this.daysInMonth(e,n),n++;return this.newDate(e,n,r)}}),n.calendars.nanakshahi=a},{"../main":617,"object-assign":466}],612:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"Nepali",jdEpoch:1700709.5,daysPerMonth:[31,31,32,32,31,30,30,29,30,29,30,30],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,daysPerYear:365,regionalOptions:{"":{name:"Nepali",epochs:["BBS","ABS"],monthNames:["Baisakh","Jestha","Ashadh","Shrawan","Bhadra","Ashwin","Kartik","Mangsir","Paush","Mangh","Falgun","Chaitra"],monthNamesShort:["Bai","Je","As","Shra","Bha","Ash","Kar","Mang","Pau","Ma","Fal","Chai"],dayNames:["Aaitabaar","Sombaar","Manglbaar","Budhabaar","Bihibaar","Shukrabaar","Shanibaar"],dayNamesShort:["Aaita","Som","Mangl","Budha","Bihi","Shukra","Shani"],dayNamesMin:["Aai","So","Man","Bu","Bi","Shu","Sha"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:1,isRTL:!1}},leapYear:function(t){return this.daysInYear(t)!==this.daysPerYear},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){if(t=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear).year(),void 0===this.NEPALI_CALENDAR_DATA[t])return this.daysPerYear;for(var e=0,r=this.minMonth;r<=12;r++)e+=this.NEPALI_CALENDAR_DATA[t][r];return e},daysInMonth:function(t,e){return t.year&&(e=t.month(),t=t.year()),this._validate(t,e,this.minDay,n.local.invalidMonth),void 0===this.NEPALI_CALENDAR_DATA[t]?this.daysPerMonth[e-1]:this.NEPALI_CALENDAR_DATA[t][e]},weekDay:function(t,e,r){return 6!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=n.instance(),o=0,s=e,l=t;this._createMissingCalendarData(t);var c=t-(s>9||9===s&&r>=this.NEPALI_CALENDAR_DATA[l][0]?56:57);for(9!==e&&(o=r,s--);9!==s;)s<=0&&(s=12,l--),o+=this.NEPALI_CALENDAR_DATA[l][s],s--;return 9===e?(o+=r-this.NEPALI_CALENDAR_DATA[l][0])<0&&(o+=a.daysInYear(c)):o+=this.NEPALI_CALENDAR_DATA[l][9]-this.NEPALI_CALENDAR_DATA[l][0],a.newDate(c,1,1).add(o,"d").toJD()},fromJD:function(t){var e=n.instance().fromJD(t),r=e.year(),i=e.dayOfYear(),a=r+56;this._createMissingCalendarData(a);for(var o=9,s=this.NEPALI_CALENDAR_DATA[a][0],l=this.NEPALI_CALENDAR_DATA[a][o]-s+1;i>l;)++o>12&&(o=1,a++),l+=this.NEPALI_CALENDAR_DATA[a][o];var c=this.NEPALI_CALENDAR_DATA[a][o]-(l-i);return this.newDate(a,o,c)},_createMissingCalendarData:function(t){var e=this.daysPerMonth.slice(0);e.unshift(17);for(var r=t-1;r0?474:473))%2820+474+38)%2816<682},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-(n.dayOfWeek()+1)%7,"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(12===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=i.year(),e=i.month(),r=i.day();var a=t-(t>=0?474:473),s=474+o(a,2820);return r+(e<=7?31*(e-1):30*(e-1)+6)+Math.floor((682*s-110)/2816)+365*(s-1)+1029983*Math.floor(a/2820)+this.jdEpoch-1},fromJD:function(t){var e=(t=Math.floor(t)+.5)-this.toJD(475,1,1),r=Math.floor(e/1029983),n=o(e,1029983),i=2820;if(1029982!==n){var a=Math.floor(n/366),s=o(n,366);i=Math.floor((2134*a+2816*s+2815)/1028522)+a+1}var l=i+2820*r+474;l=l<=0?l-1:l;var c=t-this.toJD(l,1,1)+1,u=c<=186?Math.ceil(c/31):Math.ceil((c-6)/30),f=t-this.toJD(l,u,1)+1;return this.newDate(l,u,f)}}),n.calendars.persian=a,n.calendars.jalali=a},{"../main":617,"object-assign":466}],614:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Taiwan",jdEpoch:2419402.5,yearsOffset:1911,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Taiwan",epochs:["BROC","ROC"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:1,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(e.year());return a.leapYear(t)},weekOfYear:function(t,e,r){var i=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(i.year());return a.weekOfYear(t,i.month(),i.day())},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=this._t2gYear(i.year());return a.toJD(t,i.month(),i.day())},fromJD:function(t){var e=a.fromJD(t),r=this._g2tYear(e.year());return this.newDate(r,e.month(),e.day())},_t2gYear:function(t){return t+this.yearsOffset+(t>=-this.yearsOffset&&t<=-1?1:0)},_g2tYear:function(t){return t-this.yearsOffset-(t>=1&&t<=this.yearsOffset?1:0)}}),n.calendars.taiwan=o},{"../main":617,"object-assign":466}],615:[function(t,e,r){var n=t("../main"),i=t("object-assign"),a=n.instance();function o(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}o.prototype=new n.baseCalendar,i(o.prototype,{name:"Thai",jdEpoch:1523098.5,yearsOffset:543,daysPerMonth:[31,28,31,30,31,30,31,31,30,31,30,31],hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Thai",epochs:["BBE","BE"],monthNames:["January","February","March","April","May","June","July","August","September","October","November","December"],monthNamesShort:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],dayNames:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],dayNamesShort:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],dayNamesMin:["Su","Mo","Tu","We","Th","Fr","Sa"],digits:null,dateFormat:"dd/mm/yyyy",firstDay:0,isRTL:!1}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(e.year());return a.leapYear(t)},weekOfYear:function(t,e,r){var i=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);t=this._t2gYear(i.year());return a.weekOfYear(t,i.month(),i.day())},daysInMonth:function(t,e){var r=this._validate(t,e,this.minDay,n.local.invalidMonth);return this.daysPerMonth[r.month()-1]+(2===r.month()&&this.leapYear(r.year())?1:0)},weekDay:function(t,e,r){return(this.dayOfWeek(t,e,r)||7)<6},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate);t=this._t2gYear(i.year());return a.toJD(t,i.month(),i.day())},fromJD:function(t){var e=a.fromJD(t),r=this._g2tYear(e.year());return this.newDate(r,e.month(),e.day())},_t2gYear:function(t){return t-this.yearsOffset-(t>=1&&t<=this.yearsOffset?1:0)},_g2tYear:function(t){return t+this.yearsOffset+(t>=-this.yearsOffset&&t<=-1?1:0)}}),n.calendars.thai=o},{"../main":617,"object-assign":466}],616:[function(t,e,r){var n=t("../main"),i=t("object-assign");function a(t){this.local=this.regionalOptions[t||""]||this.regionalOptions[""]}a.prototype=new n.baseCalendar,i(a.prototype,{name:"UmmAlQura",hasYearZero:!1,minMonth:1,firstMonth:1,minDay:1,regionalOptions:{"":{name:"Umm al-Qura",epochs:["BH","AH"],monthNames:["Al-Muharram","Safar","Rabi' al-awwal","Rabi' Al-Thani","Jumada Al-Awwal","Jumada Al-Thani","Rajab","Sha'aban","Ramadan","Shawwal","Dhu al-Qi'dah","Dhu al-Hijjah"],monthNamesShort:["Muh","Saf","Rab1","Rab2","Jum1","Jum2","Raj","Sha'","Ram","Shaw","DhuQ","DhuH"],dayNames:["Yawm al-Ahad","Yawm al-Ithnain","Yawm al-Thal\u0101th\u0101\u2019","Yawm al-Arba\u2018\u0101\u2019","Yawm al-Kham\u012bs","Yawm al-Jum\u2018a","Yawm al-Sabt"],dayNamesMin:["Ah","Ith","Th","Ar","Kh","Ju","Sa"],digits:null,dateFormat:"yyyy/mm/dd",firstDay:6,isRTL:!0}},leapYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,n.local.invalidYear);return 355===this.daysInYear(e.year())},weekOfYear:function(t,e,r){var n=this.newDate(t,e,r);return n.add(-n.dayOfWeek(),"d"),Math.floor((n.dayOfYear()-1)/7)+1},daysInYear:function(t){for(var e=0,r=1;r<=12;r++)e+=this.daysInMonth(t,r);return e},daysInMonth:function(t,e){for(var r=this._validate(t,e,this.minDay,n.local.invalidMonth).toJD()-24e5+.5,i=0,a=0;ar)return o[i]-o[i-1];i++}return 30},weekDay:function(t,e,r){return 5!==this.dayOfWeek(t,e,r)},toJD:function(t,e,r){var i=this._validate(t,e,r,n.local.invalidDate),a=12*(i.year()-1)+i.month()-15292;return i.day()+o[a-1]-1+24e5-.5},fromJD:function(t){for(var e=t-24e5+.5,r=0,n=0;ne);n++)r++;var i=r+15292,a=Math.floor((i-1)/12),s=a+1,l=i-12*a,c=e-o[r-1]+1;return this.newDate(s,l,c)},isValid:function(t,e,r){var i=n.baseCalendar.prototype.isValid.apply(this,arguments);return i&&(i=(t=null!=t.year?t.year:t)>=1276&&t<=1500),i},_validate:function(t,e,r,i){var a=n.baseCalendar.prototype._validate.apply(this,arguments);if(a.year<1276||a.year>1500)throw i.replace(/\{0\}/,this.local.name);return a}}),n.calendars.ummalqura=a;var o=[20,50,79,109,138,168,197,227,256,286,315,345,374,404,433,463,492,522,551,581,611,641,670,700,729,759,788,818,847,877,906,936,965,995,1024,1054,1083,1113,1142,1172,1201,1231,1260,1290,1320,1350,1379,1409,1438,1468,1497,1527,1556,1586,1615,1645,1674,1704,1733,1763,1792,1822,1851,1881,1910,1940,1969,1999,2028,2058,2087,2117,2146,2176,2205,2235,2264,2294,2323,2353,2383,2413,2442,2472,2501,2531,2560,2590,2619,2649,2678,2708,2737,2767,2796,2826,2855,2885,2914,2944,2973,3003,3032,3062,3091,3121,3150,3180,3209,3239,3268,3298,3327,3357,3386,3416,3446,3476,3505,3535,3564,3594,3623,3653,3682,3712,3741,3771,3800,3830,3859,3889,3918,3948,3977,4007,4036,4066,4095,4125,4155,4185,4214,4244,4273,4303,4332,4362,4391,4421,4450,4480,4509,4539,4568,4598,4627,4657,4686,4716,4745,4775,4804,4834,4863,4893,4922,4952,4981,5011,5040,5070,5099,5129,5158,5188,5218,5248,5277,5307,5336,5366,5395,5425,5454,5484,5513,5543,5572,5602,5631,5661,5690,5720,5749,5779,5808,5838,5867,5897,5926,5956,5985,6015,6044,6074,6103,6133,6162,6192,6221,6251,6281,6311,6340,6370,6399,6429,6458,6488,6517,6547,6576,6606,6635,6665,6694,6724,6753,6783,6812,6842,6871,6901,6930,6960,6989,7019,7048,7078,7107,7137,7166,7196,7225,7255,7284,7314,7344,7374,7403,7433,7462,7492,7521,7551,7580,7610,7639,7669,7698,7728,7757,7787,7816,7846,7875,7905,7934,7964,7993,8023,8053,8083,8112,8142,8171,8201,8230,8260,8289,8319,8348,8378,8407,8437,8466,8496,8525,8555,8584,8614,8643,8673,8702,8732,8761,8791,8821,8850,8880,8909,8938,8968,8997,9027,9056,9086,9115,9145,9175,9205,9234,9264,9293,9322,9352,9381,9410,9440,9470,9499,9529,9559,9589,9618,9648,9677,9706,9736,9765,9794,9824,9853,9883,9913,9943,9972,10002,10032,10061,10090,10120,10149,10178,10208,10237,10267,10297,10326,10356,10386,10415,10445,10474,10504,10533,10562,10592,10621,10651,10680,10710,10740,10770,10799,10829,10858,10888,10917,10947,10976,11005,11035,11064,11094,11124,11153,11183,11213,11242,11272,11301,11331,11360,11389,11419,11448,11478,11507,11537,11567,11596,11626,11655,11685,11715,11744,11774,11803,11832,11862,11891,11921,11950,11980,12010,12039,12069,12099,12128,12158,12187,12216,12246,12275,12304,12334,12364,12393,12423,12453,12483,12512,12542,12571,12600,12630,12659,12688,12718,12747,12777,12807,12837,12866,12896,12926,12955,12984,13014,13043,13072,13102,13131,13161,13191,13220,13250,13280,13310,13339,13368,13398,13427,13456,13486,13515,13545,13574,13604,13634,13664,13693,13723,13752,13782,13811,13840,13870,13899,13929,13958,13988,14018,14047,14077,14107,14136,14166,14195,14224,14254,14283,14313,14342,14372,14401,14431,14461,14490,14520,14550,14579,14609,14638,14667,14697,14726,14756,14785,14815,14844,14874,14904,14933,14963,14993,15021,15051,15081,15110,15140,15169,15199,15228,15258,15287,15317,15347,15377,15406,15436,15465,15494,15524,15553,15582,15612,15641,15671,15701,15731,15760,15790,15820,15849,15878,15908,15937,15966,15996,16025,16055,16085,16114,16144,16174,16204,16233,16262,16292,16321,16350,16380,16409,16439,16468,16498,16528,16558,16587,16617,16646,16676,16705,16734,16764,16793,16823,16852,16882,16912,16941,16971,17001,17030,17060,17089,17118,17148,17177,17207,17236,17266,17295,17325,17355,17384,17414,17444,17473,17502,17532,17561,17591,17620,17650,17679,17709,17738,17768,17798,17827,17857,17886,17916,17945,17975,18004,18034,18063,18093,18122,18152,18181,18211,18241,18270,18300,18330,18359,18388,18418,18447,18476,18506,18535,18565,18595,18625,18654,18684,18714,18743,18772,18802,18831,18860,18890,18919,18949,18979,19008,19038,19068,19098,19127,19156,19186,19215,19244,19274,19303,19333,19362,19392,19422,19452,19481,19511,19540,19570,19599,19628,19658,19687,19717,19746,19776,19806,19836,19865,19895,19924,19954,19983,20012,20042,20071,20101,20130,20160,20190,20219,20249,20279,20308,20338,20367,20396,20426,20455,20485,20514,20544,20573,20603,20633,20662,20692,20721,20751,20780,20810,20839,20869,20898,20928,20957,20987,21016,21046,21076,21105,21135,21164,21194,21223,21253,21282,21312,21341,21371,21400,21430,21459,21489,21519,21548,21578,21607,21637,21666,21696,21725,21754,21784,21813,21843,21873,21902,21932,21962,21991,22021,22050,22080,22109,22138,22168,22197,22227,22256,22286,22316,22346,22375,22405,22434,22464,22493,22522,22552,22581,22611,22640,22670,22700,22730,22759,22789,22818,22848,22877,22906,22936,22965,22994,23024,23054,23083,23113,23143,23173,23202,23232,23261,23290,23320,23349,23379,23408,23438,23467,23497,23527,23556,23586,23616,23645,23674,23704,23733,23763,23792,23822,23851,23881,23910,23940,23970,23999,24029,24058,24088,24117,24147,24176,24206,24235,24265,24294,24324,24353,24383,24413,24442,24472,24501,24531,24560,24590,24619,24648,24678,24707,24737,24767,24796,24826,24856,24885,24915,24944,24974,25003,25032,25062,25091,25121,25150,25180,25210,25240,25269,25299,25328,25358,25387,25416,25446,25475,25505,25534,25564,25594,25624,25653,25683,25712,25742,25771,25800,25830,25859,25888,25918,25948,25977,26007,26037,26067,26096,26126,26155,26184,26214,26243,26272,26302,26332,26361,26391,26421,26451,26480,26510,26539,26568,26598,26627,26656,26686,26715,26745,26775,26805,26834,26864,26893,26923,26952,26982,27011,27041,27070,27099,27129,27159,27188,27218,27248,27277,27307,27336,27366,27395,27425,27454,27484,27513,27542,27572,27602,27631,27661,27691,27720,27750,27779,27809,27838,27868,27897,27926,27956,27985,28015,28045,28074,28104,28134,28163,28193,28222,28252,28281,28310,28340,28369,28399,28428,28458,28488,28517,28547,28577,28607,28636,28665,28695,28724,28754,28783,28813,28843,28872,28901,28931,28960,28990,29019,29049,29078,29108,29137,29167,29196,29226,29255,29285,29315,29345,29375,29404,29434,29463,29492,29522,29551,29580,29610,29640,29669,29699,29729,29759,29788,29818,29847,29876,29906,29935,29964,29994,30023,30053,30082,30112,30141,30171,30200,30230,30259,30289,30318,30348,30378,30408,30437,30467,30496,30526,30555,30585,30614,30644,30673,30703,30732,30762,30791,30821,30850,30880,30909,30939,30968,30998,31027,31057,31086,31116,31145,31175,31204,31234,31263,31293,31322,31352,31381,31411,31441,31471,31500,31530,31559,31589,31618,31648,31676,31706,31736,31766,31795,31825,31854,31884,31913,31943,31972,32002,32031,32061,32090,32120,32150,32180,32209,32239,32268,32298,32327,32357,32386,32416,32445,32475,32504,32534,32563,32593,32622,32652,32681,32711,32740,32770,32799,32829,32858,32888,32917,32947,32976,33006,33035,33065,33094,33124,33153,33183,33213,33243,33272,33302,33331,33361,33390,33420,33450,33479,33509,33539,33568,33598,33627,33657,33686,33716,33745,33775,33804,33834,33863,33893,33922,33952,33981,34011,34040,34069,34099,34128,34158,34187,34217,34247,34277,34306,34336,34365,34395,34424,34454,34483,34512,34542,34571,34601,34631,34660,34690,34719,34749,34778,34808,34837,34867,34896,34926,34955,34985,35015,35044,35074,35103,35133,35162,35192,35222,35251,35280,35310,35340,35370,35399,35429,35458,35488,35517,35547,35576,35605,35635,35665,35694,35723,35753,35782,35811,35841,35871,35901,35930,35960,35989,36019,36048,36078,36107,36136,36166,36195,36225,36254,36284,36314,36343,36373,36403,36433,36462,36492,36521,36551,36580,36610,36639,36669,36698,36728,36757,36786,36816,36845,36875,36904,36934,36963,36993,37022,37052,37081,37111,37141,37170,37200,37229,37259,37288,37318,37347,37377,37406,37436,37465,37495,37524,37554,37584,37613,37643,37672,37701,37731,37760,37790,37819,37849,37878,37908,37938,37967,37997,38027,38056,38085,38115,38144,38174,38203,38233,38262,38292,38322,38351,38381,38410,38440,38469,38499,38528,38558,38587,38617,38646,38676,38705,38735,38764,38794,38823,38853,38882,38912,38941,38971,39001,39030,39059,39089,39118,39148,39178,39208,39237,39267,39297,39326,39355,39385,39414,39444,39473,39503,39532,39562,39592,39621,39650,39680,39709,39739,39768,39798,39827,39857,39886,39916,39946,39975,40005,40035,40064,40094,40123,40153,40182,40212,40241,40271,40300,40330,40359,40389,40418,40448,40477,40507,40536,40566,40595,40625,40655,40685,40714,40744,40773,40803,40832,40862,40892,40921,40951,40980,41009,41039,41068,41098,41127,41157,41186,41216,41245,41275,41304,41334,41364,41393,41422,41452,41481,41511,41540,41570,41599,41629,41658,41688,41718,41748,41777,41807,41836,41865,41894,41924,41953,41983,42012,42042,42072,42102,42131,42161,42190,42220,42249,42279,42308,42337,42367,42397,42426,42456,42485,42515,42545,42574,42604,42633,42662,42692,42721,42751,42780,42810,42839,42869,42899,42929,42958,42988,43017,43046,43076,43105,43135,43164,43194,43223,43253,43283,43312,43342,43371,43401,43430,43460,43489,43519,43548,43578,43607,43637,43666,43696,43726,43755,43785,43814,43844,43873,43903,43932,43962,43991,44021,44050,44080,44109,44139,44169,44198,44228,44258,44287,44317,44346,44375,44405,44434,44464,44493,44523,44553,44582,44612,44641,44671,44700,44730,44759,44788,44818,44847,44877,44906,44936,44966,44996,45025,45055,45084,45114,45143,45172,45202,45231,45261,45290,45320,45350,45380,45409,45439,45468,45498,45527,45556,45586,45615,45644,45674,45704,45733,45763,45793,45823,45852,45882,45911,45940,45970,45999,46028,46058,46088,46117,46147,46177,46206,46236,46265,46295,46324,46354,46383,46413,46442,46472,46501,46531,46560,46590,46620,46649,46679,46708,46738,46767,46797,46826,46856,46885,46915,46944,46974,47003,47033,47063,47092,47122,47151,47181,47210,47240,47269,47298,47328,47357,47387,47417,47446,47476,47506,47535,47565,47594,47624,47653,47682,47712,47741,47771,47800,47830,47860,47890,47919,47949,47978,48008,48037,48066,48096,48125,48155,48184,48214,48244,48273,48303,48333,48362,48392,48421,48450,48480,48509,48538,48568,48598,48627,48657,48687,48717,48746,48776,48805,48834,48864,48893,48922,48952,48982,49011,49041,49071,49100,49130,49160,49189,49218,49248,49277,49306,49336,49365,49395,49425,49455,49484,49514,49543,49573,49602,49632,49661,49690,49720,49749,49779,49809,49838,49868,49898,49927,49957,49986,50016,50045,50075,50104,50133,50163,50192,50222,50252,50281,50311,50340,50370,50400,50429,50459,50488,50518,50547,50576,50606,50635,50665,50694,50724,50754,50784,50813,50843,50872,50902,50931,50960,50990,51019,51049,51078,51108,51138,51167,51197,51227,51256,51286,51315,51345,51374,51403,51433,51462,51492,51522,51552,51582,51611,51641,51670,51699,51729,51758,51787,51816,51846,51876,51906,51936,51965,51995,52025,52054,52083,52113,52142,52171,52200,52230,52260,52290,52319,52349,52379,52408,52438,52467,52497,52526,52555,52585,52614,52644,52673,52703,52733,52762,52792,52822,52851,52881,52910,52939,52969,52998,53028,53057,53087,53116,53146,53176,53205,53235,53264,53294,53324,53353,53383,53412,53441,53471,53500,53530,53559,53589,53619,53648,53678,53708,53737,53767,53796,53825,53855,53884,53913,53943,53973,54003,54032,54062,54092,54121,54151,54180,54209,54239,54268,54297,54327,54357,54387,54416,54446,54476,54505,54535,54564,54593,54623,54652,54681,54711,54741,54770,54800,54830,54859,54889,54919,54948,54977,55007,55036,55066,55095,55125,55154,55184,55213,55243,55273,55302,55332,55361,55391,55420,55450,55479,55508,55538,55567,55597,55627,55657,55686,55716,55745,55775,55804,55834,55863,55892,55922,55951,55981,56011,56040,56070,56100,56129,56159,56188,56218,56247,56276,56306,56335,56365,56394,56424,56454,56483,56513,56543,56572,56601,56631,56660,56690,56719,56749,56778,56808,56837,56867,56897,56926,56956,56985,57015,57044,57074,57103,57133,57162,57192,57221,57251,57280,57310,57340,57369,57399,57429,57458,57487,57517,57546,57576,57605,57634,57664,57694,57723,57753,57783,57813,57842,57871,57901,57930,57959,57989,58018,58048,58077,58107,58137,58167,58196,58226,58255,58285,58314,58343,58373,58402,58432,58461,58491,58521,58551,58580,58610,58639,58669,58698,58727,58757,58786,58816,58845,58875,58905,58934,58964,58994,59023,59053,59082,59111,59141,59170,59200,59229,59259,59288,59318,59348,59377,59407,59436,59466,59495,59525,59554,59584,59613,59643,59672,59702,59731,59761,59791,59820,59850,59879,59909,59939,59968,59997,60027,60056,60086,60115,60145,60174,60204,60234,60264,60293,60323,60352,60381,60411,60440,60469,60499,60528,60558,60588,60618,60648,60677,60707,60736,60765,60795,60824,60853,60883,60912,60942,60972,61002,61031,61061,61090,61120,61149,61179,61208,61237,61267,61296,61326,61356,61385,61415,61445,61474,61504,61533,61563,61592,61621,61651,61680,61710,61739,61769,61799,61828,61858,61888,61917,61947,61976,62006,62035,62064,62094,62123,62153,62182,62212,62242,62271,62301,62331,62360,62390,62419,62448,62478,62507,62537,62566,62596,62625,62655,62685,62715,62744,62774,62803,62832,62862,62891,62921,62950,62980,63009,63039,63069,63099,63128,63157,63187,63216,63246,63275,63305,63334,63363,63393,63423,63453,63482,63512,63541,63571,63600,63630,63659,63689,63718,63747,63777,63807,63836,63866,63895,63925,63955,63984,64014,64043,64073,64102,64131,64161,64190,64220,64249,64279,64309,64339,64368,64398,64427,64457,64486,64515,64545,64574,64603,64633,64663,64692,64722,64752,64782,64811,64841,64870,64899,64929,64958,64987,65017,65047,65076,65106,65136,65166,65195,65225,65254,65283,65313,65342,65371,65401,65431,65460,65490,65520,65549,65579,65608,65638,65667,65697,65726,65755,65785,65815,65844,65874,65903,65933,65963,65992,66022,66051,66081,66110,66140,66169,66199,66228,66258,66287,66317,66346,66376,66405,66435,66465,66494,66524,66553,66583,66612,66641,66671,66700,66730,66760,66789,66819,66849,66878,66908,66937,66967,66996,67025,67055,67084,67114,67143,67173,67203,67233,67262,67292,67321,67351,67380,67409,67439,67468,67497,67527,67557,67587,67617,67646,67676,67705,67735,67764,67793,67823,67852,67882,67911,67941,67971,68e3,68030,68060,68089,68119,68148,68177,68207,68236,68266,68295,68325,68354,68384,68414,68443,68473,68502,68532,68561,68591,68620,68650,68679,68708,68738,68768,68797,68827,68857,68886,68916,68946,68975,69004,69034,69063,69092,69122,69152,69181,69211,69240,69270,69300,69330,69359,69388,69418,69447,69476,69506,69535,69565,69595,69624,69654,69684,69713,69743,69772,69802,69831,69861,69890,69919,69949,69978,70008,70038,70067,70097,70126,70156,70186,70215,70245,70274,70303,70333,70362,70392,70421,70451,70481,70510,70540,70570,70599,70629,70658,70687,70717,70746,70776,70805,70835,70864,70894,70924,70954,70983,71013,71042,71071,71101,71130,71159,71189,71218,71248,71278,71308,71337,71367,71397,71426,71455,71485,71514,71543,71573,71602,71632,71662,71691,71721,71751,71781,71810,71839,71869,71898,71927,71957,71986,72016,72046,72075,72105,72135,72164,72194,72223,72253,72282,72311,72341,72370,72400,72429,72459,72489,72518,72548,72577,72607,72637,72666,72695,72725,72754,72784,72813,72843,72872,72902,72931,72961,72991,73020,73050,73080,73109,73139,73168,73197,73227,73256,73286,73315,73345,73375,73404,73434,73464,73493,73523,73552,73581,73611,73640,73669,73699,73729,73758,73788,73818,73848,73877,73907,73936,73965,73995,74024,74053,74083,74113,74142,74172,74202,74231,74261,74291,74320,74349,74379,74408,74437,74467,74497,74526,74556,74586,74615,74645,74675,74704,74733,74763,74792,74822,74851,74881,74910,74940,74969,74999,75029,75058,75088,75117,75147,75176,75206,75235,75264,75294,75323,75353,75383,75412,75442,75472,75501,75531,75560,75590,75619,75648,75678,75707,75737,75766,75796,75826,75856,75885,75915,75944,75974,76003,76032,76062,76091,76121,76150,76180,76210,76239,76269,76299,76328,76358,76387,76416,76446,76475,76505,76534,76564,76593,76623,76653,76682,76712,76741,76771,76801,76830,76859,76889,76918,76948,76977,77007,77036,77066,77096,77125,77155,77185,77214,77243,77273,77302,77332,77361,77390,77420,77450,77479,77509,77539,77569,77598,77627,77657,77686,77715,77745,77774,77804,77833,77863,77893,77923,77952,77982,78011,78041,78070,78099,78129,78158,78188,78217,78247,78277,78307,78336,78366,78395,78425,78454,78483,78513,78542,78572,78601,78631,78661,78690,78720,78750,78779,78808,78838,78867,78897,78926,78956,78985,79015,79044,79074,79104,79133,79163,79192,79222,79251,79281,79310,79340,79369,79399,79428,79458,79487,79517,79546,79576,79606,79635,79665,79695,79724,79753,79783,79812,79841,79871,79900,79930,79960,79990]},{"../main":617,"object-assign":466}],617:[function(t,e,r){var n=t("object-assign");function i(){this.regionalOptions=[],this.regionalOptions[""]={invalidCalendar:"Calendar {0} not found",invalidDate:"Invalid {0} date",invalidMonth:"Invalid {0} month",invalidYear:"Invalid {0} year",differentCalendars:"Cannot mix {0} and {1} dates"},this.local=this.regionalOptions[""],this.calendars={},this._localCals={}}function a(t,e,r,n){if(this._calendar=t,this._year=e,this._month=r,this._day=n,0===this._calendar._validateLevel&&!this._calendar.isValid(this._year,this._month,this._day))throw(c.local.invalidDate||c.regionalOptions[""].invalidDate).replace(/\{0\}/,this._calendar.local.name)}function o(t,e){return"000000".substring(0,e-(t=""+t).length)+t}function s(){this.shortYearCutoff="+10"}function l(t){this.local=this.regionalOptions[t]||this.regionalOptions[""]}n(i.prototype,{instance:function(t,e){t=(t||"gregorian").toLowerCase(),e=e||"";var r=this._localCals[t+"-"+e];if(!r&&this.calendars[t]&&(r=new this.calendars[t](e),this._localCals[t+"-"+e]=r),!r)throw(this.local.invalidCalendar||this.regionalOptions[""].invalidCalendar).replace(/\{0\}/,t);return r},newDate:function(t,e,r,n,i){return(n=(null!=t&&t.year?t.calendar():"string"==typeof n?this.instance(n,i):n)||this.instance()).newDate(t,e,r)},substituteDigits:function(t){return function(e){return(e+"").replace(/[0-9]/g,(function(e){return t[e]}))}},substituteChineseDigits:function(t,e){return function(r){for(var n="",i=0;r>0;){var a=r%10;n=(0===a?"":t[a]+e[i])+n,i++,r=Math.floor(r/10)}return 0===n.indexOf(t[1]+e[1])&&(n=n.substr(1)),n||t[0]}}}),n(a.prototype,{newDate:function(t,e,r){return this._calendar.newDate(null==t?this:t,e,r)},year:function(t){return 0===arguments.length?this._year:this.set(t,"y")},month:function(t){return 0===arguments.length?this._month:this.set(t,"m")},day:function(t){return 0===arguments.length?this._day:this.set(t,"d")},date:function(t,e,r){if(!this._calendar.isValid(t,e,r))throw(c.local.invalidDate||c.regionalOptions[""].invalidDate).replace(/\{0\}/,this._calendar.local.name);return this._year=t,this._month=e,this._day=r,this},leapYear:function(){return this._calendar.leapYear(this)},epoch:function(){return this._calendar.epoch(this)},formatYear:function(){return this._calendar.formatYear(this)},monthOfYear:function(){return this._calendar.monthOfYear(this)},weekOfYear:function(){return this._calendar.weekOfYear(this)},daysInYear:function(){return this._calendar.daysInYear(this)},dayOfYear:function(){return this._calendar.dayOfYear(this)},daysInMonth:function(){return this._calendar.daysInMonth(this)},dayOfWeek:function(){return this._calendar.dayOfWeek(this)},weekDay:function(){return this._calendar.weekDay(this)},extraInfo:function(){return this._calendar.extraInfo(this)},add:function(t,e){return this._calendar.add(this,t,e)},set:function(t,e){return this._calendar.set(this,t,e)},compareTo:function(t){if(this._calendar.name!==t._calendar.name)throw(c.local.differentCalendars||c.regionalOptions[""].differentCalendars).replace(/\{0\}/,this._calendar.local.name).replace(/\{1\}/,t._calendar.local.name);var e=this._year!==t._year?this._year-t._year:this._month!==t._month?this.monthOfYear()-t.monthOfYear():this._day-t._day;return 0===e?0:e<0?-1:1},calendar:function(){return this._calendar},toJD:function(){return this._calendar.toJD(this)},fromJD:function(t){return this._calendar.fromJD(t)},toJSDate:function(){return this._calendar.toJSDate(this)},fromJSDate:function(t){return this._calendar.fromJSDate(t)},toString:function(){return(this.year()<0?"-":"")+o(Math.abs(this.year()),4)+"-"+o(this.month(),2)+"-"+o(this.day(),2)}}),n(s.prototype,{_validateLevel:0,newDate:function(t,e,r){return null==t?this.today():(t.year&&(this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),r=t.day(),e=t.month(),t=t.year()),new a(this,t,e,r))},today:function(){return this.fromJSDate(new Date)},epoch:function(t){return this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear).year()<0?this.local.epochs[0]:this.local.epochs[1]},formatYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear);return(e.year()<0?"-":"")+o(Math.abs(e.year()),4)},monthsInYear:function(t){return this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear),12},monthOfYear:function(t,e){var r=this._validate(t,e,this.minDay,c.local.invalidMonth||c.regionalOptions[""].invalidMonth);return(r.month()+this.monthsInYear(r)-this.firstMonth)%this.monthsInYear(r)+this.minMonth},fromMonthOfYear:function(t,e){var r=(e+this.firstMonth-2*this.minMonth)%this.monthsInYear(t)+this.minMonth;return this._validate(t,r,this.minDay,c.local.invalidMonth||c.regionalOptions[""].invalidMonth),r},daysInYear:function(t){var e=this._validate(t,this.minMonth,this.minDay,c.local.invalidYear||c.regionalOptions[""].invalidYear);return this.leapYear(e)?366:365},dayOfYear:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate);return n.toJD()-this.newDate(n.year(),this.fromMonthOfYear(n.year(),this.minMonth),this.minDay).toJD()+1},daysInWeek:function(){return 7},dayOfWeek:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate);return(Math.floor(this.toJD(n))+2)%this.daysInWeek()},extraInfo:function(t,e,r){return this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),{}},add:function(t,e,r){return this._validate(t,this.minMonth,this.minDay,c.local.invalidDate||c.regionalOptions[""].invalidDate),this._correctAdd(t,this._add(t,e,r),e,r)},_add:function(t,e,r){if(this._validateLevel++,"d"===r||"w"===r){var n=t.toJD()+e*("w"===r?this.daysInWeek():1),i=t.calendar().fromJD(n);return this._validateLevel--,[i.year(),i.month(),i.day()]}try{var a=t.year()+("y"===r?e:0),o=t.monthOfYear()+("m"===r?e:0);i=t.day();"y"===r?(t.month()!==this.fromMonthOfYear(a,o)&&(o=this.newDate(a,t.month(),this.minDay).monthOfYear()),o=Math.min(o,this.monthsInYear(a)),i=Math.min(i,this.daysInMonth(a,this.fromMonthOfYear(a,o)))):"m"===r&&(!function(t){for(;oe-1+t.minMonth;)a++,o-=e,e=t.monthsInYear(a)}(this),i=Math.min(i,this.daysInMonth(a,this.fromMonthOfYear(a,o))));var s=[a,this.fromMonthOfYear(a,o),i];return this._validateLevel--,s}catch(t){throw this._validateLevel--,t}},_correctAdd:function(t,e,r,n){if(!(this.hasYearZero||"y"!==n&&"m"!==n||0!==e[0]&&t.year()>0==e[0]>0)){var i={y:[1,1,"y"],m:[1,this.monthsInYear(-1),"m"],w:[this.daysInWeek(),this.daysInYear(-1),"d"],d:[1,this.daysInYear(-1),"d"]}[n],a=r<0?-1:1;e=this._add(t,r*i[0]+a*i[1],i[2])}return t.date(e[0],e[1],e[2])},set:function(t,e,r){this._validate(t,this.minMonth,this.minDay,c.local.invalidDate||c.regionalOptions[""].invalidDate);var n="y"===r?e:t.year(),i="m"===r?e:t.month(),a="d"===r?e:t.day();return"y"!==r&&"m"!==r||(a=Math.min(a,this.daysInMonth(n,i))),t.date(n,i,a)},isValid:function(t,e,r){this._validateLevel++;var n=this.hasYearZero||0!==t;if(n){var i=this.newDate(t,e,this.minDay);n=e>=this.minMonth&&e-this.minMonth=this.minDay&&r-this.minDay13.5?13:1),c=i-(l>2.5?4716:4715);return c<=0&&c--,this.newDate(c,l,s)},toJSDate:function(t,e,r){var n=this._validate(t,e,r,c.local.invalidDate||c.regionalOptions[""].invalidDate),i=new Date(n.year(),n.month()-1,n.day());return i.setHours(0),i.setMinutes(0),i.setSeconds(0),i.setMilliseconds(0),i.setHours(i.getHours()>12?i.getHours()+2:0),i},fromJSDate:function(t){return this.newDate(t.getFullYear(),t.getMonth()+1,t.getDate())}});var c=e.exports=new i;c.cdate=a,c.baseCalendar=s,c.calendars.gregorian=l},{"object-assign":466}],618:[function(t,e,r){var n=t("object-assign"),i=t("./main");n(i.regionalOptions[""],{invalidArguments:"Invalid arguments",invalidFormat:"Cannot format a date from another calendar",missingNumberAt:"Missing number at position {0}",unknownNameAt:"Unknown name at position {0}",unexpectedLiteralAt:"Unexpected literal at position {0}",unexpectedText:"Additional text found at end"}),i.local=i.regionalOptions[""],n(i.cdate.prototype,{formatDate:function(t,e){return"string"!=typeof t&&(e=t,t=""),this._calendar.formatDate(t||"",this,e)}}),n(i.baseCalendar.prototype,{UNIX_EPOCH:i.instance().newDate(1970,1,1).toJD(),SECS_PER_DAY:86400,TICKS_EPOCH:i.instance().jdEpoch,TICKS_PER_DAY:864e9,ATOM:"yyyy-mm-dd",COOKIE:"D, dd M yyyy",FULL:"DD, MM d, yyyy",ISO_8601:"yyyy-mm-dd",JULIAN:"J",RFC_822:"D, d M yy",RFC_850:"DD, dd-M-yy",RFC_1036:"D, d M yy",RFC_1123:"D, d M yyyy",RFC_2822:"D, d M yyyy",RSS:"D, d M yy",TICKS:"!",TIMESTAMP:"@",W3C:"yyyy-mm-dd",formatDate:function(t,e,r){if("string"!=typeof t&&(r=e,e=t,t=""),!e)return"";if(e.calendar()!==this)throw i.local.invalidFormat||i.regionalOptions[""].invalidFormat;t=t||this.local.dateFormat;for(var n,a,o,s,l=(r=r||{}).dayNamesShort||this.local.dayNamesShort,c=r.dayNames||this.local.dayNames,u=r.monthNumbers||this.local.monthNumbers,f=r.monthNamesShort||this.local.monthNamesShort,h=r.monthNames||this.local.monthNames,p=(r.calculateWeek||this.local.calculateWeek,function(e,r){for(var n=1;w+n1}),d=function(t,e,r,n){var i=""+e;if(p(t,n))for(;i.length1},x=function(t,r){var n=y(t,r),a=[2,3,n?4:2,n?4:2,10,11,20]["oyYJ@!".indexOf(t)+1],o=new RegExp("^-?\\d{1,"+a+"}"),s=e.substring(A).match(o);if(!s)throw(i.local.missingNumberAt||i.regionalOptions[""].missingNumberAt).replace(/\{0\}/,A);return A+=s[0].length,parseInt(s[0],10)},b=this,_=function(){if("function"==typeof l){y("m");var t=l.call(b,e.substring(A));return A+=t.length,t}return x("m")},w=function(t,r,n,a){for(var o=y(t,a)?n:r,s=0;s-1){p=1,d=m;for(var E=this.daysInMonth(h,p);d>E;E=this.daysInMonth(h,p))p++,d-=E}return f>-1?this.fromJD(f):this.newDate(h,p,d)},determineDate:function(t,e,r,n,i){r&&"object"!=typeof r&&(i=n,n=r,r=null),"string"!=typeof n&&(i=n,n="");var a=this;return e=e?e.newDate():null,t=null==t?e:"string"==typeof t?function(t){try{return a.parseDate(n,t,i)}catch(t){}for(var e=((t=t.toLowerCase()).match(/^c/)&&r?r.newDate():null)||a.today(),o=/([+-]?[0-9]+)\s*(d|w|m|y)?/g,s=o.exec(t);s;)e.add(parseInt(s[1],10),s[2]||"d"),s=o.exec(t);return e}(t):"number"==typeof t?isNaN(t)||t===1/0||t===-1/0?e:a.today().add(t,"d"):a.newDate(t)}})},{"./main":617,"object-assign":466}],619:[function(t,e,r){"use strict";var n,i=function(){return function(t,e,r,n,i,a){var o=t[0],s=r[0],l=[0],c=s;n|=0;var u=0,f=s;for(u=0;u=0!=p>=0&&i.push(l[0]+.5+.5*(h+p)/(h-p)),n+=f,++l[0]}}};e.exports=(n={funcName:{funcName:"zeroCrossings"}.funcName},function(t){var e={};return function(r,n,i){var a=r.dtype,o=r.order,s=[a,o.join()].join(),l=e[s];return l||(e[s]=l=t([a,o])),l(r.shape.slice(0),r.data,r.stride,0|r.offset,n,i)}}(i.bind(void 0,n)))},{}],620:[function(t,e,r){"use strict";e.exports=function(t,e){var r=[];return e=+e||0,n(t.hi(t.shape[0]-1),r,e),r};var n=t("./lib/zc-core")},{"./lib/zc-core":619}],621:[function(t,e,r){"use strict";e.exports=[{path:"",backoff:0},{path:"M-2.4,-3V3L0.6,0Z",backoff:.6},{path:"M-3.7,-2.5V2.5L1.3,0Z",backoff:1.3},{path:"M-4.45,-3L-1.65,-0.2V0.2L-4.45,3L1.55,0Z",backoff:1.55},{path:"M-2.2,-2.2L-0.2,-0.2V0.2L-2.2,2.2L-1.4,3L1.6,0L-1.4,-3Z",backoff:1.6},{path:"M-4.4,-2.1L-0.6,-0.2V0.2L-4.4,2.1L-4,3L2,0L-4,-3Z",backoff:2},{path:"M2,0A2,2 0 1,1 0,-2A2,2 0 0,1 2,0Z",backoff:0,noRotate:!0},{path:"M2,2V-2H-2V2Z",backoff:0,noRotate:!0}]},{}],622:[function(t,e,r){"use strict";var n=t("./arrow_paths"),i=t("../../plots/font_attributes"),a=t("../../plots/cartesian/constants"),o=t("../../plot_api/plot_template").templatedArray;t("../../constants/axis_placeable_objects");e.exports=o("annotation",{visible:{valType:"boolean",dflt:!0,editType:"calc+arraydraw"},text:{valType:"string",editType:"calc+arraydraw"},textangle:{valType:"angle",dflt:0,editType:"calc+arraydraw"},font:i({editType:"calc+arraydraw",colorEditType:"arraydraw"}),width:{valType:"number",min:1,dflt:null,editType:"calc+arraydraw"},height:{valType:"number",min:1,dflt:null,editType:"calc+arraydraw"},opacity:{valType:"number",min:0,max:1,dflt:1,editType:"arraydraw"},align:{valType:"enumerated",values:["left","center","right"],dflt:"center",editType:"arraydraw"},valign:{valType:"enumerated",values:["top","middle","bottom"],dflt:"middle",editType:"arraydraw"},bgcolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"arraydraw"},bordercolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"arraydraw"},borderpad:{valType:"number",min:0,dflt:1,editType:"calc+arraydraw"},borderwidth:{valType:"number",min:0,dflt:1,editType:"calc+arraydraw"},showarrow:{valType:"boolean",dflt:!0,editType:"calc+arraydraw"},arrowcolor:{valType:"color",editType:"arraydraw"},arrowhead:{valType:"integer",min:0,max:n.length,dflt:1,editType:"arraydraw"},startarrowhead:{valType:"integer",min:0,max:n.length,dflt:1,editType:"arraydraw"},arrowside:{valType:"flaglist",flags:["end","start"],extras:["none"],dflt:"end",editType:"arraydraw"},arrowsize:{valType:"number",min:.3,dflt:1,editType:"calc+arraydraw"},startarrowsize:{valType:"number",min:.3,dflt:1,editType:"calc+arraydraw"},arrowwidth:{valType:"number",min:.1,editType:"calc+arraydraw"},standoff:{valType:"number",min:0,dflt:0,editType:"calc+arraydraw"},startstandoff:{valType:"number",min:0,dflt:0,editType:"calc+arraydraw"},ax:{valType:"any",editType:"calc+arraydraw"},ay:{valType:"any",editType:"calc+arraydraw"},axref:{valType:"enumerated",dflt:"pixel",values:["pixel",a.idRegex.x.toString()],editType:"calc"},ayref:{valType:"enumerated",dflt:"pixel",values:["pixel",a.idRegex.y.toString()],editType:"calc"},xref:{valType:"enumerated",values:["paper",a.idRegex.x.toString()],editType:"calc"},x:{valType:"any",editType:"calc+arraydraw"},xanchor:{valType:"enumerated",values:["auto","left","center","right"],dflt:"auto",editType:"calc+arraydraw"},xshift:{valType:"number",dflt:0,editType:"calc+arraydraw"},yref:{valType:"enumerated",values:["paper",a.idRegex.y.toString()],editType:"calc"},y:{valType:"any",editType:"calc+arraydraw"},yanchor:{valType:"enumerated",values:["auto","top","middle","bottom"],dflt:"auto",editType:"calc+arraydraw"},yshift:{valType:"number",dflt:0,editType:"calc+arraydraw"},clicktoshow:{valType:"enumerated",values:[!1,"onoff","onout"],dflt:!1,editType:"arraydraw"},xclick:{valType:"any",editType:"arraydraw"},yclick:{valType:"any",editType:"arraydraw"},hovertext:{valType:"string",editType:"arraydraw"},hoverlabel:{bgcolor:{valType:"color",editType:"arraydraw"},bordercolor:{valType:"color",editType:"arraydraw"},font:i({editType:"arraydraw"}),editType:"arraydraw"},captureevents:{valType:"boolean",editType:"arraydraw"},editType:"calc",_deprecated:{ref:{valType:"string",editType:"calc"}}})},{"../../constants/axis_placeable_objects":745,"../../plot_api/plot_template":816,"../../plots/cartesian/constants":834,"../../plots/font_attributes":856,"./arrow_paths":621}],623:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/cartesian/axes"),a=t("./draw").draw;function o(t){var e=t._fullLayout;n.filterVisible(e.annotations).forEach((function(e){var r=i.getFromId(t,e.xref),n=i.getFromId(t,e.yref),a=i.getRefType(e.xref),o=i.getRefType(e.yref);e._extremes={},"range"===a&&s(e,r),"range"===o&&s(e,n)}))}function s(t,e){var r,n=e._id,a=n.charAt(0),o=t[a],s=t["a"+a],l=t[a+"ref"],c=t["a"+a+"ref"],u=t["_"+a+"padplus"],f=t["_"+a+"padminus"],h={x:1,y:-1}[a]*t[a+"shift"],p=3*t.arrowsize*t.arrowwidth||0,d=p+h,m=p-h,g=3*t.startarrowsize*t.arrowwidth||0,v=g+h,y=g-h;if(c===l){var x=i.findExtremes(e,[e.r2c(o)],{ppadplus:d,ppadminus:m}),b=i.findExtremes(e,[e.r2c(s)],{ppadplus:Math.max(u,v),ppadminus:Math.max(f,y)});r={min:[x.min[0],b.min[0]],max:[x.max[0],b.max[0]]}}else v=s?v+s:v,y=s?y-s:y,r=i.findExtremes(e,[e.r2c(o)],{ppadplus:Math.max(u,d,v),ppadminus:Math.max(f,m,y)});t._extremes[n]=r}e.exports=function(t){var e=t._fullLayout;if(n.filterVisible(e.annotations).length&&t._fullData.length)return n.syncOrAsync([a,o],t)}},{"../../lib":776,"../../plots/cartesian/axes":827,"./draw":628}],624:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("../../plot_api/plot_template").arrayEditor;function o(t,e){var r,n,i,a,o,l,c,u=t._fullLayout.annotations,f=[],h=[],p=[],d=(e||[]).length;for(r=0;r0||r.explicitOff.length>0},onClick:function(t,e){var r,s,l=o(t,e),c=l.on,u=l.off.concat(l.explicitOff),f={},h=t._fullLayout.annotations;if(!c.length&&!u.length)return;for(r=0;r2/3?"right":"center"),{center:0,middle:0,left:.5,bottom:-.5,right:-.5,top:.5}[e]}for(var W=!1,X=["x","y"],Z=0;Z1)&&(nt===rt?((pt=it.r2fraction(e["a"+et]))<0||pt>1)&&(W=!0):W=!0),J=it._offset+it.r2p(e[et]),$=.5}else{var dt="domain"===ht;"x"===et?(Q=e[et],J=dt?it._offset+it._length*Q:J=T.l+T.w*Q):(Q=1-e[et],J=dt?it._offset+it._length*Q:J=T.t+T.h*Q),$=e.showarrow?.5:Q}if(e.showarrow){ft.head=J;var mt=e["a"+et];if(tt=ot*q(.5,e.xanchor)-st*q(.5,e.yanchor),nt===rt){var gt=l.getRefType(nt);"domain"===gt?("y"===et&&(mt=1-mt),ft.tail=it._offset+it._length*mt):"paper"===gt?"y"===et?(mt=1-mt,ft.tail=T.t+T.h*mt):ft.tail=T.l+T.w*mt:ft.tail=it._offset+it.r2p(mt),K=tt}else ft.tail=J+mt,K=tt+mt;ft.text=ft.tail+tt;var vt=w["x"===et?"width":"height"];if("paper"===rt&&(ft.head=o.constrain(ft.head,1,vt-1)),"pixel"===nt){var yt=-Math.max(ft.tail-3,ft.text),xt=Math.min(ft.tail+3,ft.text)-vt;yt>0?(ft.tail+=yt,ft.text+=yt):xt>0&&(ft.tail-=xt,ft.text-=xt)}ft.tail+=ut,ft.head+=ut}else K=tt=lt*q($,ct),ft.text=J+tt;ft.text+=ut,tt+=ut,K+=ut,e["_"+et+"padplus"]=lt/2+K,e["_"+et+"padminus"]=lt/2-K,e["_"+et+"size"]=lt,e["_"+et+"shift"]=tt}if(W)R.remove();else{var bt=0,_t=0;if("left"!==e.align&&(bt=(A-b)*("center"===e.align?.5:1)),"top"!==e.valign&&(_t=(D-_)*("middle"===e.valign?.5:1)),f)n.select("svg").attr({x:N+bt-1,y:N+_t}).call(u.setClipUrl,U?L:null,t);else{var wt=N+_t-m.top,Tt=N+bt-m.left;G.call(h.positionText,Tt,wt).call(u.setClipUrl,U?L:null,t)}V.select("rect").call(u.setRect,N,N,A,D),j.call(u.setRect,F/2,F/2,B-F,H-F),R.call(u.setTranslate,Math.round(C.x.text-B/2),Math.round(C.y.text-H/2)),O.attr({transform:"rotate("+P+","+C.x.text+","+C.y.text+")"});var kt,At=function(r,n){I.selectAll(".annotation-arrow-g").remove();var l=C.x.head,f=C.y.head,h=C.x.tail+r,p=C.y.tail+n,m=C.x.text+r,b=C.y.text+n,_=o.rotationXYMatrix(P,m,b),w=o.apply2DTransform(_),A=o.apply2DTransform2(_),L=+j.attr("width"),z=+j.attr("height"),D=m-.5*L,F=D+L,B=b-.5*z,N=B+z,U=[[D,B,D,N],[D,N,F,N],[F,N,F,B],[F,B,D,B]].map(A);if(!U.reduce((function(t,e){return t^!!o.segmentsIntersect(l,f,l+1e6,f+1e6,e[0],e[1],e[2],e[3])}),!1)){U.forEach((function(t){var e=o.segmentsIntersect(h,p,l,f,t[0],t[1],t[2],t[3]);e&&(h=e.x,p=e.y)}));var V=e.arrowwidth,H=e.arrowcolor,q=e.arrowside,G=I.append("g").style({opacity:c.opacity(H)}).classed("annotation-arrow-g",!0),Y=G.append("path").attr("d","M"+h+","+p+"L"+l+","+f).style("stroke-width",V+"px").call(c.stroke,c.rgb(H));if(g(Y,q,e),k.annotationPosition&&Y.node().parentNode&&!a){var W=l,X=f;if(e.standoff){var Z=Math.sqrt(Math.pow(l-h,2)+Math.pow(f-p,2));W+=e.standoff*(h-l)/Z,X+=e.standoff*(p-f)/Z}var J,K,Q=G.append("path").classed("annotation-arrow",!0).classed("anndrag",!0).classed("cursor-move",!0).attr({d:"M3,3H-3V-3H3ZM0,0L"+(h-W)+","+(p-X),transform:s(W,X)}).style("stroke-width",V+6+"px").call(c.stroke,"rgba(0,0,0,0)").call(c.fill,"rgba(0,0,0,0)");d.init({element:Q.node(),gd:t,prepFn:function(){var t=u.getTranslate(R);J=t.x,K=t.y,v&&v.autorange&&M(v._name+".autorange",!0),x&&x.autorange&&M(x._name+".autorange",!0)},moveFn:function(t,r){var n=w(J,K),i=n[0]+t,a=n[1]+r;R.call(u.setTranslate,i,a),S("x",y(v,t,"x",T,e)),S("y",y(x,r,"y",T,e)),e.axref===e.xref&&S("ax",y(v,t,"ax",T,e)),e.ayref===e.yref&&S("ay",y(x,r,"ay",T,e)),G.attr("transform",s(t,r)),O.attr({transform:"rotate("+P+","+i+","+a+")"})},doneFn:function(){i.call("_guiRelayout",t,E());var e=document.querySelector(".js-notes-box-panel");e&&e.redraw(e.selectedObj)}})}}};if(e.showarrow&&At(0,0),z)d.init({element:R.node(),gd:t,prepFn:function(){kt=O.attr("transform")},moveFn:function(t,r){var n="pointer";if(e.showarrow)e.axref===e.xref?S("ax",y(v,t,"ax",T,e)):S("ax",e.ax+t),e.ayref===e.yref?S("ay",y(x,r,"ay",T.w,e)):S("ay",e.ay+r),At(t,r);else{if(a)return;var i,o;if(v)i=y(v,t,"x",T,e);else{var l=e._xsize/T.w,c=e.x+(e._xshift-e.xshift)/T.w-l/2;i=d.align(c+t/T.w,l,0,1,e.xanchor)}if(x)o=y(x,r,"y",T,e);else{var u=e._ysize/T.h,f=e.y-(e._yshift+e.yshift)/T.h-u/2;o=d.align(f-r/T.h,u,0,1,e.yanchor)}S("x",i),S("y",o),v&&x||(n=d.getCursor(v?.5:i,x?.5:o,e.xanchor,e.yanchor))}O.attr({transform:s(t,r)+kt}),p(R,n)},clickFn:function(r,n){e.captureevents&&t.emit("plotly_clickannotation",Y(n))},doneFn:function(){p(R),i.call("_guiRelayout",t,E());var e=document.querySelector(".js-notes-box-panel");e&&e.redraw(e.selectedObj)}})}}}e.exports={draw:function(t){var e=t._fullLayout;e._infolayer.selectAll(".annotation").remove();for(var r=0;r=0,x=e.indexOf("end")>=0,b=d.backoff*g+r.standoff,_=m.backoff*v+r.startstandoff;if("line"===p.nodeName){o={x:+t.attr("x1"),y:+t.attr("y1")},u={x:+t.attr("x2"),y:+t.attr("y2")};var w=o.x-u.x,T=o.y-u.y;if(h=(f=Math.atan2(T,w))+Math.PI,b&&_&&b+_>Math.sqrt(w*w+T*T))return void z();if(b){if(b*b>w*w+T*T)return void z();var k=b*Math.cos(f),A=b*Math.sin(f);u.x+=k,u.y+=A,t.attr({x2:u.x,y2:u.y})}if(_){if(_*_>w*w+T*T)return void z();var M=_*Math.cos(f),S=_*Math.sin(f);o.x-=M,o.y-=S,t.attr({x1:o.x,y1:o.y})}}else if("path"===p.nodeName){var E=p.getTotalLength(),L="";if(E1){c=!0;break}}c?t.fullLayout._infolayer.select(".annotation-"+t.id+'[data-index="'+s+'"]').remove():(l._pdata=i(t.glplot.cameraParams,[e.xaxis.r2l(l.x)*r[0],e.yaxis.r2l(l.y)*r[1],e.zaxis.r2l(l.z)*r[2]]),n(t.graphDiv,l,s,t.id,l._xa,l._ya))}}},{"../../plots/gl3d/project":878,"../annotations/draw":628}],635:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib");e.exports={moduleType:"component",name:"annotations3d",schema:{subplots:{scene:{annotations:t("./attributes")}}},layoutAttributes:t("./attributes"),handleDefaults:t("./defaults"),includeBasePlot:function(t,e){var r=n.subplotsRegistry.gl3d;if(!r)return;for(var a=r.attrRegex,o=Object.keys(t),s=0;s=0))return t;if(3===o)n[o]>1&&(n[o]=1);else if(n[o]>=1)return t}var s=Math.round(255*n[0])+", "+Math.round(255*n[1])+", "+Math.round(255*n[2]);return a?"rgba("+s+", "+n[3]+")":"rgb("+s+")"}o.tinyRGB=function(t){var e=t.toRgb();return"rgb("+Math.round(e.r)+", "+Math.round(e.g)+", "+Math.round(e.b)+")"},o.rgb=function(t){return o.tinyRGB(n(t))},o.opacity=function(t){return t?n(t).getAlpha():0},o.addOpacity=function(t,e){var r=n(t).toRgb();return"rgba("+Math.round(r.r)+", "+Math.round(r.g)+", "+Math.round(r.b)+", "+e+")"},o.combine=function(t,e){var r=n(t).toRgb();if(1===r.a)return n(t).toRgbString();var i=n(e||c).toRgb(),a=1===i.a?i:{r:255*(1-i.a)+i.r*i.a,g:255*(1-i.a)+i.g*i.a,b:255*(1-i.a)+i.b*i.a},o={r:a.r*(1-r.a)+r.r*r.a,g:a.g*(1-r.a)+r.g*r.a,b:a.b*(1-r.a)+r.b*r.a};return n(o).toRgbString()},o.contrast=function(t,e,r){var i=n(t);return 1!==i.getAlpha()&&(i=n(o.combine(t,c))),(i.isDark()?e?i.lighten(e):c:r?i.darken(r):l).toString()},o.stroke=function(t,e){var r=n(e);t.style({stroke:o.tinyRGB(r),"stroke-opacity":r.getAlpha()})},o.fill=function(t,e){var r=n(e);t.style({fill:o.tinyRGB(r),"fill-opacity":r.getAlpha()})},o.clean=function(t){if(t&&"object"==typeof t){var e,r,n,i,s=Object.keys(t);for(e=0;e0?n>=l:n<=l));i++)n>u&&n0?n>=l:n<=l));i++)n>r[0]&&n1){var J=Math.pow(10,Math.floor(Math.log(Z)/Math.LN10));W*=J*c.roundUp(Z/J,[2,5,10]),(Math.abs(C.start)/C.size+1e-6)%1<2e-6&&(Y.tick0=0)}Y.dtick=W}Y.domain=[H+j,H+F-j],Y.setScale(),t.attr("transform",u(Math.round(l.l),Math.round(l.t)));var K,Q=t.select("."+A.cbtitleunshift).attr("transform",u(-Math.round(l.l),-Math.round(l.t))),$=t.select("."+A.cbaxis),tt=0;function et(n,i){var a={propContainer:Y,propName:e._propPrefix+"title",traceIndex:e._traceIndex,_meta:e._meta,placeholder:o._dfltTitle.colorbar,containerGroup:t.select("."+A.cbtitle)},s="h"===n.charAt(0)?n.substr(1):"h"+n;t.selectAll("."+s+",."+s+"-math-group").remove(),m.draw(r,n,f(a,i||{}))}return c.syncOrAsync([a.previousPromises,function(){if(-1!==["top","bottom"].indexOf(M)){var t,r=l.l+(e.x+B)*l.w,n=Y.title.font.size;t="top"===M?(1-(H+F-j))*l.h+l.t+3+.75*n:(1-(H+j))*l.h+l.t-3-.25*n,et(Y._id+"title",{attributes:{x:r,y:t,"text-anchor":"start"}})}},function(){if(-1!==["top","bottom"].indexOf(M)){var a=t.select("."+A.cbtitle),o=a.select("text"),f=[-e.outlinewidth/2,e.outlinewidth/2],h=a.select(".h"+Y._id+"title-math-group").node(),d=15.6;if(o.node()&&(d=parseInt(o.node().style.fontSize,10)*w),h?(tt=p.bBox(h).height)>d&&(f[1]-=(tt-d)/2):o.node()&&!o.classed(A.jsPlaceholder)&&(tt=p.bBox(o.node()).height),tt){if(tt+=5,"top"===M)Y.domain[1]-=tt/l.h,f[1]*=-1;else{Y.domain[0]+=tt/l.h;var m=g.lineCount(o);f[1]+=(1-m)*d}a.attr("transform",u(f[0],f[1])),Y.setScale()}}t.selectAll("."+A.cbfills+",."+A.cblines).attr("transform",u(0,Math.round(l.h*(1-Y.domain[1])))),$.attr("transform",u(0,Math.round(-l.t)));var y=t.select("."+A.cbfills).selectAll("rect."+A.cbfill).attr("style","").data(I);y.enter().append("rect").classed(A.cbfill,!0).style("stroke","none"),y.exit().remove();var x=S.map(Y.c2p).map(Math.round).sort((function(t,e){return t-e}));y.each((function(t,a){var o=[0===a?S[0]:(I[a]+I[a-1])/2,a===I.length-1?S[1]:(I[a]+I[a+1])/2].map(Y.c2p).map(Math.round);o[1]=c.constrain(o[1]+(o[1]>o[0])?1:-1,x[0],x[1]);var s=n.select(this).attr({x:U,width:Math.max(z,2),y:n.min(o),height:Math.max(n.max(o)-n.min(o),2)});if(e._fillgradient)p.gradient(s,r,e._id,"vertical",e._fillgradient,"fill");else{var l=L(t).replace("e-","");s.attr("fill",i(l).toHexString())}}));var b=t.select("."+A.cblines).selectAll("path."+A.cbline).data(v.color&&v.width?O:[]);b.enter().append("path").classed(A.cbline,!0),b.exit().remove(),b.each((function(t){n.select(this).attr("d","M"+U+","+(Math.round(Y.c2p(t))+v.width/2%1)+"h"+z).call(p.lineGroupStyle,v.width,E(t),v.dash)})),$.selectAll("g."+Y._id+"tick,path").remove();var _=U+z+(e.outlinewidth||0)/2-("outside"===e.ticks?1:0),T=s.calcTicks(Y),k=s.getTickSigns(Y)[2];return s.drawTicks(r,Y,{vals:"inside"===Y.ticks?s.clipEnds(Y,T):T,layer:$,path:s.makeTickPath(Y,_,k),transFn:s.makeTransTickFn(Y)}),s.drawLabels(r,Y,{vals:T,layer:$,transFn:s.makeTransTickLabelFn(Y),labelFns:s.makeLabelFns(Y,_)})},function(){if(-1===["top","bottom"].indexOf(M)){var t=Y.title.font.size,e=Y._offset+Y._length/2,i=l.l+(Y.position||0)*l.w+("right"===Y.side?10+t*(Y.showticklabels?1:.5):-10-t*(Y.showticklabels?.5:0));et("h"+Y._id+"title",{avoid:{selection:n.select(r).selectAll("g."+Y._id+"tick"),side:M,offsetLeft:l.l,offsetTop:0,maxShift:o.width},attributes:{x:i,y:e,"text-anchor":"middle"},transform:{rotate:"-90",offset:0}})}},a.previousPromises,function(){var n=z+e.outlinewidth/2;if(-1===Y.ticklabelposition.indexOf("inside")&&(n+=p.bBox($.node()).width),(K=Q.select("text")).node()&&!K.classed(A.jsPlaceholder)){var i,o=Q.select(".h"+Y._id+"title-math-group").node();i=o&&-1!==["top","bottom"].indexOf(M)?p.bBox(o).width:p.bBox(Q.node()).right-U-l.l,n=Math.max(n,i)}var s=2*e.xpad+n+e.borderwidth+e.outlinewidth/2,c=q-G;t.select("."+A.cbbg).attr({x:U-e.xpad-(e.borderwidth+e.outlinewidth)/2,y:G-N,width:Math.max(s,2),height:Math.max(c+2*N,2)}).call(d.fill,e.bgcolor).call(d.stroke,e.bordercolor).style("stroke-width",e.borderwidth),t.selectAll("."+A.cboutline).attr({x:U,y:G+e.ypad+("top"===M?tt:0),width:Math.max(z,2),height:Math.max(c-2*e.ypad-tt,2)}).call(d.stroke,e.outlinecolor).style({fill:"none","stroke-width":e.outlinewidth});var f=({center:.5,right:1}[e.xanchor]||0)*s;t.attr("transform",u(l.l-f,l.t));var h={},m=T[e.yanchor],g=k[e.yanchor];"pixels"===e.lenmode?(h.y=e.y,h.t=c*m,h.b=c*g):(h.t=h.b=0,h.yt=e.y+e.len*m,h.yb=e.y-e.len*g);var v=T[e.xanchor],y=k[e.xanchor];if("pixels"===e.thicknessmode)h.x=e.x,h.l=s*v,h.r=s*y;else{var x=s-z;h.l=x*v,h.r=x*y,h.xl=e.x-e.thickness*v,h.xr=e.x+e.thickness*y}a.autoMargin(r,e._id,h)}],r)}(r,e,t);v&&v.then&&(t._promises||[]).push(v),t._context.edits.colorbarPosition&&function(t,e,r){var n,i,a,s=r._fullLayout._size;l.init({element:t.node(),gd:r,prepFn:function(){n=t.attr("transform"),h(t)},moveFn:function(r,o){t.attr("transform",n+u(r,o)),i=l.align(e._xLeftFrac+r/s.w,e._thickFrac,0,1,e.xanchor),a=l.align(e._yBottomFrac-o/s.h,e._lenFrac,0,1,e.yanchor);var c=l.getCursor(i,a,e.xanchor,e.yanchor);h(t,c)},doneFn:function(){if(h(t),void 0!==i&&void 0!==a){var n={};n[e._propPrefix+"x"]=i,n[e._propPrefix+"y"]=a,void 0!==e._traceIndex?o.call("_guiRestyle",r,n,e._traceIndex):o.call("_guiRelayout",r,n)}}})}(r,e,t)})),e.exit().each((function(e){a.autoMargin(t,e._id)})).remove(),e.order()}}},{"../../constants/alignment":744,"../../lib":776,"../../lib/extend":766,"../../lib/setcursor":797,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"../../plots/cartesian/axis_defaults":829,"../../plots/cartesian/layout_attributes":842,"../../plots/cartesian/position_defaults":845,"../../plots/plots":890,"../../registry":904,"../color":639,"../colorscale/helpers":650,"../dragelement":658,"../drawing":661,"../titles":737,"./constants":641,"@plotly/d3":58,tinycolor2:572}],644:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t){return n.isPlainObject(t.colorbar)}},{"../../lib":776}],645:[function(t,e,r){"use strict";e.exports={moduleType:"component",name:"colorbar",attributes:t("./attributes"),supplyDefaults:t("./defaults"),draw:t("./draw").draw,hasColorbar:t("./has_colorbar")}},{"./attributes":640,"./defaults":642,"./draw":643,"./has_colorbar":644}],646:[function(t,e,r){"use strict";var n=t("../colorbar/attributes"),i=t("../../lib/regex").counter,a=t("../../lib/sort_object_keys"),o=t("./scales.js").scales;a(o);function s(t){return"`"+t+"`"}e.exports=function(t,e){t=t||"";var r,a=(e=e||{}).cLetter||"c",l=("onlyIfNumerical"in e?e.onlyIfNumerical:Boolean(t),"noScale"in e?e.noScale:"marker.line"===t),c="showScaleDflt"in e?e.showScaleDflt:"z"===a,u="string"==typeof e.colorscaleDflt?o[e.colorscaleDflt]:null,f=e.editTypeOverride||"",h=t?t+".":"";"colorAttr"in e?(r=e.colorAttr,e.colorAttr):s(h+(r={z:"z",c:"color"}[a]));var p=a+"auto",d=a+"min",m=a+"max",g=a+"mid",v=(s(h+p),s(h+d),s(h+m),{});v[d]=v[m]=void 0;var y={};y[p]=!1;var x={};return"color"===r&&(x.color={valType:"color",arrayOk:!0,editType:f||"style"},e.anim&&(x.color.anim=!0)),x[p]={valType:"boolean",dflt:!0,editType:"calc",impliedEdits:v},x[d]={valType:"number",dflt:null,editType:f||"plot",impliedEdits:y},x[m]={valType:"number",dflt:null,editType:f||"plot",impliedEdits:y},x[g]={valType:"number",dflt:null,editType:"calc",impliedEdits:v},x.colorscale={valType:"colorscale",editType:"calc",dflt:u,impliedEdits:{autocolorscale:!1}},x.autocolorscale={valType:"boolean",dflt:!1!==e.autoColorDflt,editType:"calc",impliedEdits:{colorscale:void 0}},x.reversescale={valType:"boolean",dflt:!1,editType:"plot"},l||(x.showscale={valType:"boolean",dflt:c,editType:"calc"},x.colorbar=n),e.noColorAxis||(x.coloraxis={valType:"subplotid",regex:i("coloraxis"),dflt:null,editType:"calc"}),x}},{"../../lib/regex":793,"../../lib/sort_object_keys":799,"../colorbar/attributes":640,"./scales.js":654}],647:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../lib"),a=t("./helpers").extractOpts;e.exports=function(t,e,r){var o,s=t._fullLayout,l=r.vals,c=r.containerStr,u=c?i.nestedProperty(e,c).get():e,f=a(u),h=!1!==f.auto,p=f.min,d=f.max,m=f.mid,g=function(){return i.aggNums(Math.min,null,l)},v=function(){return i.aggNums(Math.max,null,l)};(void 0===p?p=g():h&&(p=u._colorAx&&n(p)?Math.min(p,g()):g()),void 0===d?d=v():h&&(d=u._colorAx&&n(d)?Math.max(d,v()):v()),h&&void 0!==m&&(d-m>m-p?p=m-(d-m):d-m=0?s.colorscale.sequential:s.colorscale.sequentialminus,f._sync("colorscale",o))}},{"../../lib":776,"./helpers":650,"fast-isnumeric":242}],648:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./helpers").hasColorscale,a=t("./helpers").extractOpts;e.exports=function(t,e){function r(t,e){var r=t["_"+e];void 0!==r&&(t[e]=r)}function o(t,i){var o=i.container?n.nestedProperty(t,i.container).get():t;if(o)if(o.coloraxis)o._colorAx=e[o.coloraxis];else{var s=a(o),l=s.auto;(l||void 0===s.min)&&r(o,i.min),(l||void 0===s.max)&&r(o,i.max),s.autocolorscale&&r(o,"colorscale")}}for(var s=0;s=0;n--,i++){var a=t[n];r[i]=[1-a[0],a[1]]}return r}function d(t,e){e=e||{};for(var r=t.domain,o=t.range,l=o.length,c=new Array(l),u=0;u4/3-s?o:s}},{}],656:[function(t,e,r){"use strict";var n=t("../../lib"),i=[["sw-resize","s-resize","se-resize"],["w-resize","move","e-resize"],["nw-resize","n-resize","ne-resize"]];e.exports=function(t,e,r,a){return t="left"===r?0:"center"===r?1:"right"===r?2:n.constrain(Math.floor(3*t),0,2),e="bottom"===a?0:"middle"===a?1:"top"===a?2:n.constrain(Math.floor(3*e),0,2),i[e][t]}},{"../../lib":776}],657:[function(t,e,r){"use strict";r.selectMode=function(t){return"lasso"===t||"select"===t},r.drawMode=function(t){return"drawclosedpath"===t||"drawopenpath"===t||"drawline"===t||"drawrect"===t||"drawcircle"===t},r.openMode=function(t){return"drawline"===t||"drawopenpath"===t},r.rectMode=function(t){return"select"===t||"drawline"===t||"drawrect"===t||"drawcircle"===t},r.freeMode=function(t){return"lasso"===t||"drawclosedpath"===t||"drawopenpath"===t},r.selectingOrDrawing=function(t){return r.freeMode(t)||r.rectMode(t)}},{}],658:[function(t,e,r){"use strict";var n=t("mouse-event-offset"),i=t("has-hover"),a=t("has-passive-events"),o=t("../../lib").removeElement,s=t("../../plots/cartesian/constants"),l=e.exports={};l.align=t("./align"),l.getCursor=t("./cursor");var c=t("./unhover");function u(){var t=document.createElement("div");t.className="dragcover";var e=t.style;return e.position="fixed",e.left=0,e.right=0,e.top=0,e.bottom=0,e.zIndex=999999999,e.background="none",document.body.appendChild(t),t}function f(t){return n(t.changedTouches?t.changedTouches[0]:t,document.body)}l.unhover=c.wrapped,l.unhoverRaw=c.raw,l.init=function(t){var e,r,n,c,h,p,d,m,g=t.gd,v=1,y=g._context.doubleClickDelay,x=t.element;g._mouseDownTime||(g._mouseDownTime=0),x.style.pointerEvents="all",x.onmousedown=_,a?(x._ontouchstart&&x.removeEventListener("touchstart",x._ontouchstart),x._ontouchstart=_,x.addEventListener("touchstart",_,{passive:!1})):x.ontouchstart=_;var b=t.clampFn||function(t,e,r){return Math.abs(t)y&&(v=Math.max(v-1,1)),g._dragged)t.doneFn&&t.doneFn();else if(t.clickFn&&t.clickFn(v,p),!m){var r;try{r=new MouseEvent("click",e)}catch(t){var n=f(e);(r=document.createEvent("MouseEvents")).initMouseEvent("click",e.bubbles,e.cancelable,e.view,e.detail,e.screenX,e.screenY,n[0],n[1],e.ctrlKey,e.altKey,e.shiftKey,e.metaKey,e.button,e.relatedTarget)}d.dispatchEvent(r)}g._dragging=!1,g._dragged=!1}else g._dragged=!1}},l.coverSlip=u},{"../../lib":776,"../../plots/cartesian/constants":834,"./align":655,"./cursor":656,"./unhover":659,"has-hover":425,"has-passive-events":426,"mouse-event-offset":450}],659:[function(t,e,r){"use strict";var n=t("../../lib/events"),i=t("../../lib/throttle"),a=t("../../lib/dom").getGraphDiv,o=t("../fx/constants"),s=e.exports={};s.wrapped=function(t,e,r){(t=a(t))._fullLayout&&i.clear(t._fullLayout._uid+o.HOVERID),s.raw(t,e,r)},s.raw=function(t,e){var r=t._fullLayout,i=t._hoverdata;e||(e={}),e.target&&!t._dragged&&!1===n.triggerHandler(t,"plotly_beforehover",e)||(r._hoverlayer.selectAll("g").remove(),r._hoverlayer.selectAll("line").remove(),r._hoverlayer.selectAll("circle").remove(),t._hoverdata=void 0,e.target&&i&&t.emit("plotly_unhover",{event:e,points:i}))}},{"../../lib/dom":764,"../../lib/events":765,"../../lib/throttle":803,"../fx/constants":673}],660:[function(t,e,r){"use strict";r.dash={valType:"string",values:["solid","dot","dash","longdash","dashdot","longdashdot"],dflt:"solid",editType:"style"},r.pattern={shape:{valType:"enumerated",values:["","/","\\","x","-","|","+","."],dflt:"",arrayOk:!0,editType:"style"},fillmode:{valType:"enumerated",values:["replace","overlay"],dflt:"replace",editType:"style"},bgcolor:{valType:"color",arrayOk:!0,editType:"style"},fgcolor:{valType:"color",arrayOk:!0,editType:"style"},fgopacity:{valType:"number",editType:"style",min:0,max:1},size:{valType:"number",min:0,dflt:8,arrayOk:!0,editType:"style"},solidity:{valType:"number",min:0,max:1,dflt:.3,arrayOk:!0,editType:"style"},editType:"style"}},{}],661:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.numberFormat,o=t("fast-isnumeric"),s=t("tinycolor2"),l=t("../../registry"),c=t("../color"),u=t("../colorscale"),f=i.strTranslate,h=t("../../lib/svg_text_utils"),p=t("../../constants/xmlns_namespaces"),d=t("../../constants/alignment").LINE_SPACING,m=t("../../constants/interactions").DESELECTDIM,g=t("../../traces/scatter/subtypes"),v=t("../../traces/scatter/make_bubble_size_func"),y=t("../../components/fx/helpers").appendArrayPointValue,x=e.exports={};x.font=function(t,e,r,n){i.isPlainObject(e)&&(n=e.color,r=e.size,e=e.family),e&&t.style("font-family",e),r+1&&t.style("font-size",r+"px"),n&&t.call(c.fill,n)},x.setPosition=function(t,e,r){t.attr("x",e).attr("y",r)},x.setSize=function(t,e,r){t.attr("width",e).attr("height",r)},x.setRect=function(t,e,r,n,i){t.call(x.setPosition,e,r).call(x.setSize,n,i)},x.translatePoint=function(t,e,r,n){var i=r.c2p(t.x),a=n.c2p(t.y);return!!(o(i)&&o(a)&&e.node())&&("text"===e.node().nodeName?e.attr("x",i).attr("y",a):e.attr("transform",f(i,a)),!0)},x.translatePoints=function(t,e,r){t.each((function(t){var i=n.select(this);x.translatePoint(t,i,e,r)}))},x.hideOutsideRangePoint=function(t,e,r,n,i,a){e.attr("display",r.isPtWithinRange(t,i)&&n.isPtWithinRange(t,a)?null:"none")},x.hideOutsideRangePoints=function(t,e){if(e._hasClipOnAxisFalse){var r=e.xaxis,i=e.yaxis;t.each((function(e){var a=e[0].trace,o=a.xcalendar,s=a.ycalendar,c=l.traceIs(a,"bar-like")?".bartext":".point,.textpoint";t.selectAll(c).each((function(t){x.hideOutsideRangePoint(t,n.select(this),r,i,o,s)}))}))}},x.crispRound=function(t,e,r){return e&&o(e)?t._context.staticPlot?e:e<1?1:Math.round(e):r||0},x.singleLineStyle=function(t,e,r,n,i){e.style("fill","none");var a=(((t||[])[0]||{}).trace||{}).line||{},o=r||a.width||0,s=i||a.dash||"";c.stroke(e,n||a.color),x.dashLine(e,s,o)},x.lineGroupStyle=function(t,e,r,i){t.style("fill","none").each((function(t){var a=(((t||[])[0]||{}).trace||{}).line||{},o=e||a.width||0,s=i||a.dash||"";n.select(this).call(c.stroke,r||a.color).call(x.dashLine,s,o)}))},x.dashLine=function(t,e,r){r=+r||0,e=x.dashStyle(e,r),t.style({"stroke-dasharray":e,"stroke-width":r+"px"})},x.dashStyle=function(t,e){e=+e||1;var r=Math.max(e,3);return"solid"===t?t="":"dot"===t?t=r+"px,"+r+"px":"dash"===t?t=3*r+"px,"+3*r+"px":"longdash"===t?t=5*r+"px,"+5*r+"px":"dashdot"===t?t=3*r+"px,"+r+"px,"+r+"px,"+r+"px":"longdashdot"===t&&(t=5*r+"px,"+2*r+"px,"+r+"px,"+2*r+"px"),t},x.singleFillStyle=function(t){var e=(((n.select(t.node()).data()[0]||[])[0]||{}).trace||{}).fillcolor;e&&t.call(c.fill,e)},x.fillGroupStyle=function(t){t.style("stroke-width",0).each((function(t){var e=n.select(this);t[0].trace&&e.call(c.fill,t[0].trace.fillcolor)}))};var b=t("./symbol_defs");x.symbolNames=[],x.symbolFuncs=[],x.symbolNeedLines={},x.symbolNoDot={},x.symbolNoFill={},x.symbolList=[],Object.keys(b).forEach((function(t){var e=b[t],r=e.n;x.symbolList.push(r,String(r),t,r+100,String(r+100),t+"-open"),x.symbolNames[r]=t,x.symbolFuncs[r]=e.f,e.needLine&&(x.symbolNeedLines[r]=!0),e.noDot?x.symbolNoDot[r]=!0:x.symbolList.push(r+200,String(r+200),t+"-dot",r+300,String(r+300),t+"-open-dot"),e.noFill&&(x.symbolNoFill[r]=!0)}));var _=x.symbolNames.length;function w(t,e){var r=t%100;return x.symbolFuncs[r](e)+(t>=200?"M0,0.5L0.5,0L0,-0.5L-0.5,0Z":"")}x.symbolNumber=function(t){if(o(t))t=+t;else if("string"==typeof t){var e=0;t.indexOf("-open")>0&&(e=100,t=t.replace("-open","")),t.indexOf("-dot")>0&&(e+=200,t=t.replace("-dot","")),(t=x.symbolNames.indexOf(t))>=0&&(t+=e)}return t%100>=_||t>=400?0:Math.floor(Math.max(t,0))};var T={x1:1,x2:0,y1:0,y2:0},k={x1:0,x2:0,y1:1,y2:0},A=a("~f"),M={radial:{node:"radialGradient"},radialreversed:{node:"radialGradient",reversed:!0},horizontal:{node:"linearGradient",attrs:T},horizontalreversed:{node:"linearGradient",attrs:T,reversed:!0},vertical:{node:"linearGradient",attrs:k},verticalreversed:{node:"linearGradient",attrs:k,reversed:!0}};x.gradient=function(t,e,r,a,o,l){for(var u=o.length,f=M[a],h=new Array(u),p=0;p"+v(t);d._gradientUrlQueryParts[y]=1},x.pattern=function(t,e,r,a,o,s,l,u,f,h,p,d){var m="legend"===e;u&&("overlay"===f?(h=u,p=c.contrast(h)):(h=void 0,p=u));var g,v,y,x,b,_,w,T,k,A,M,S=r._fullLayout,E="p"+S._uid+"-"+a,L={};switch(o){case"/":g=s*Math.sqrt(2),v=s*Math.sqrt(2),_="path",L={d:y="M-"+g/4+","+v/4+"l"+g/2+",-"+v/2+"M0,"+v+"L"+g+",0M"+g/4*3+","+v/4*5+"l"+g/2+",-"+v/2,opacity:d,stroke:p,"stroke-width":(x=l*s)+"px"};break;case"\\":g=s*Math.sqrt(2),v=s*Math.sqrt(2),_="path",L={d:y="M"+g/4*3+",-"+v/4+"l"+g/2+","+v/2+"M0,0L"+g+","+v+"M-"+g/4+","+v/4*3+"l"+g/2+","+v/2,opacity:d,stroke:p,"stroke-width":(x=l*s)+"px"};break;case"x":g=s*Math.sqrt(2),v=s*Math.sqrt(2),y="M-"+g/4+","+v/4+"l"+g/2+",-"+v/2+"M0,"+v+"L"+g+",0M"+g/4*3+","+v/4*5+"l"+g/2+",-"+v/2+"M"+g/4*3+",-"+v/4+"l"+g/2+","+v/2+"M0,0L"+g+","+v+"M-"+g/4+","+v/4*3+"l"+g/2+","+v/2,x=s-s*Math.sqrt(1-l),_="path",L={d:y,opacity:d,stroke:p,"stroke-width":x+"px"};break;case"|":_="path",_="path",L={d:y="M"+(g=s)/2+",0L"+g/2+","+(v=s),opacity:d,stroke:p,"stroke-width":(x=l*s)+"px"};break;case"-":_="path",_="path",L={d:y="M0,"+(v=s)/2+"L"+(g=s)+","+v/2,opacity:d,stroke:p,"stroke-width":(x=l*s)+"px"};break;case"+":_="path",y="M"+(g=s)/2+",0L"+g/2+","+(v=s)+"M0,"+v/2+"L"+g+","+v/2,x=s-s*Math.sqrt(1-l),_="path",L={d:y,opacity:d,stroke:p,"stroke-width":x+"px"};break;case".":g=s,v=s,l.pattern_filled";S._patternUrlQueryParts[I]=1},x.initGradients=function(t){var e=t._fullLayout;i.ensureSingle(e._defs,"g","gradients").selectAll("linearGradient,radialGradient").remove(),e._gradientUrlQueryParts={}},x.initPatterns=function(t){var e=t._fullLayout;i.ensureSingle(e._defs,"g","patterns").selectAll("pattern").remove(),e._patternUrlQueryParts={}},x.getPatternAttr=function(t,e,r){return t&&i.isArrayOrTypedArray(t)?e=100,e.attr("d",w(u,l))}var f,h,p,d=!1;if(t.so)p=s.outlierwidth,h=s.outliercolor,f=o.outliercolor;else{var m=(s||{}).width;p=(t.mlw+1||m+1||(t.trace?(t.trace.marker.line||{}).width:0)+1)-1||0,h="mlc"in t?t.mlcc=n.lineScale(t.mlc):i.isArrayOrTypedArray(s.color)?c.defaultLine:s.color,i.isArrayOrTypedArray(o.color)&&(f=c.defaultLine,d=!0),f="mc"in t?t.mcc=n.markerScale(t.mc):o.color||"rgba(0,0,0,0)",n.selectedColorFn&&(f=n.selectedColorFn(t))}if(t.om)e.call(c.stroke,f).style({"stroke-width":(p||1)+"px",fill:"none"});else{e.style("stroke-width",(t.isBlank?0:p)+"px");var g=o.gradient,v=t.mgt;v?d=!0:v=g&&g.type,i.isArrayOrTypedArray(v)&&(v=v[0],M[v]||(v=0));var y=o.pattern,b=y&&x.getPatternAttr(y.shape,t.i,"");if(v&&"none"!==v){var _=t.mgc;_?d=!0:_=g.color;var T=r.uid;d&&(T+="-"+t.i),x.gradient(e,a,T,v,[[0,_],[1,f]],"fill")}else if(b){var k=x.getPatternAttr(y.bgcolor,t.i,null),A=x.getPatternAttr(y.fgcolor,t.i,null),S=y.fgopacity,E=x.getPatternAttr(y.size,t.i,8),L=x.getPatternAttr(y.solidity,t.i,.3),C=t.mcc||i.isArrayOrTypedArray(y.shape)||i.isArrayOrTypedArray(y.bgcolor)||i.isArrayOrTypedArray(y.size)||i.isArrayOrTypedArray(y.solidity),P=r.uid;C&&(P+="-"+t.i),x.pattern(e,"point",a,P,b,E,L,t.mcc,y.fillmode,k,A,S)}else c.fill(e,f);p&&c.stroke(e,h)}},x.makePointStyleFns=function(t){var e={},r=t.marker;return e.markerScale=x.tryColorscale(r,""),e.lineScale=x.tryColorscale(r,"line"),l.traceIs(t,"symbols")&&(e.ms2mrc=g.isBubble(t)?v(t):function(){return(r.size||6)/2}),t.selectedpoints&&i.extendFlat(e,x.makeSelectedPointStyleFns(t)),e},x.makeSelectedPointStyleFns=function(t){var e={},r=t.selected||{},n=t.unselected||{},a=t.marker||{},o=r.marker||{},s=n.marker||{},c=a.opacity,u=o.opacity,f=s.opacity,h=void 0!==u,p=void 0!==f;(i.isArrayOrTypedArray(c)||h||p)&&(e.selectedOpacityFn=function(t){var e=void 0===t.mo?a.opacity:t.mo;return t.selected?h?u:e:p?f:m*e});var d=a.color,g=o.color,v=s.color;(g||v)&&(e.selectedColorFn=function(t){var e=t.mcc||d;return t.selected?g||e:v||e});var y=a.size,x=o.size,b=s.size,_=void 0!==x,w=void 0!==b;return l.traceIs(t,"symbols")&&(_||w)&&(e.selectedSizeFn=function(t){var e=t.mrc||y/2;return t.selected?_?x/2:e:w?b/2:e}),e},x.makeSelectedTextStyleFns=function(t){var e={},r=t.selected||{},n=t.unselected||{},i=t.textfont||{},a=r.textfont||{},o=n.textfont||{},s=i.color,l=a.color,u=o.color;return e.selectedTextColorFn=function(t){var e=t.tc||s;return t.selected?l||e:u||(l?e:c.addOpacity(e,m))},e},x.selectedPointStyle=function(t,e){if(t.size()&&e.selectedpoints){var r=x.makeSelectedPointStyleFns(e),i=e.marker||{},a=[];r.selectedOpacityFn&&a.push((function(t,e){t.style("opacity",r.selectedOpacityFn(e))})),r.selectedColorFn&&a.push((function(t,e){c.fill(t,r.selectedColorFn(e))})),r.selectedSizeFn&&a.push((function(t,e){var n=e.mx||i.symbol||0,a=r.selectedSizeFn(e);t.attr("d",w(x.symbolNumber(n),a)),e.mrc2=a})),a.length&&t.each((function(t){for(var e=n.select(this),r=0;r0?r:0}x.textPointStyle=function(t,e,r){if(t.size()){var a;if(e.selectedpoints){var o=x.makeSelectedTextStyleFns(e);a=o.selectedTextColorFn}var s=e.texttemplate,l=r._fullLayout;t.each((function(t){var o=n.select(this),c=s?i.extractOption(t,e,"txt","texttemplate"):i.extractOption(t,e,"tx","text");if(c||0===c){if(s){var u=e._module.formatLabels,f=u?u(t,e,l):{},p={};y(p,e,t.i);var d=e._meta||{};c=i.texttemplateString(c,f,l._d3locale,p,t,d)}var m=t.tp||e.textposition,g=L(t,e),v=a?a(t):t.tc||e.textfont.color;o.call(x.font,t.tf||e.textfont.family,g,v).text(c).call(h.convertToTspans,r).call(E,m,g,t.mrc)}else o.remove()}))}},x.selectedTextStyle=function(t,e){if(t.size()&&e.selectedpoints){var r=x.makeSelectedTextStyleFns(e);t.each((function(t){var i=n.select(this),a=r.selectedTextColorFn(t),o=t.tp||e.textposition,s=L(t,e);c.fill(i,a),E(i,o,s,t.mrc2||t.mrc)}))}};function C(t,e,r,i){var a=t[0]-e[0],o=t[1]-e[1],s=r[0]-e[0],l=r[1]-e[1],c=Math.pow(a*a+o*o,.25),u=Math.pow(s*s+l*l,.25),f=(u*u*a-c*c*s)*i,h=(u*u*o-c*c*l)*i,p=3*u*(c+u),d=3*c*(c+u);return[[n.round(e[0]+(p&&f/p),2),n.round(e[1]+(p&&h/p),2)],[n.round(e[0]-(d&&f/d),2),n.round(e[1]-(d&&h/d),2)]]}x.smoothopen=function(t,e){if(t.length<3)return"M"+t.join("L");var r,n="M"+t[0],i=[];for(r=1;r=1e4&&(x.savedBBoxes={},O=0),r&&(x.savedBBoxes[r]=g),O++,i.extendFlat({},g)},x.setClipUrl=function(t,e,r){t.attr("clip-path",D(e,r))},x.getTranslate=function(t){var e=(t[t.attr?"attr":"getAttribute"]("transform")||"").replace(/.*\btranslate\((-?\d*\.?\d*)[^-\d]*(-?\d*\.?\d*)[^\d].*/,(function(t,e,r){return[e,r].join(" ")})).split(" ");return{x:+e[0]||0,y:+e[1]||0}},x.setTranslate=function(t,e,r){var n=t.attr?"attr":"getAttribute",i=t.attr?"attr":"setAttribute",a=t[n]("transform")||"";return e=e||0,r=r||0,a=a.replace(/(\btranslate\(.*?\);?)/,"").trim(),a=(a+=f(e,r)).trim(),t[i]("transform",a),a},x.getScale=function(t){var e=(t[t.attr?"attr":"getAttribute"]("transform")||"").replace(/.*\bscale\((\d*\.?\d*)[^\d]*(\d*\.?\d*)[^\d].*/,(function(t,e,r){return[e,r].join(" ")})).split(" ");return{x:+e[0]||1,y:+e[1]||1}},x.setScale=function(t,e,r){var n=t.attr?"attr":"getAttribute",i=t.attr?"attr":"setAttribute",a=t[n]("transform")||"";return e=e||1,r=r||1,a=a.replace(/(\bscale\(.*?\);?)/,"").trim(),a=(a+="scale("+e+","+r+")").trim(),t[i]("transform",a),a};var R=/\s*sc.*/;x.setPointGroupScale=function(t,e,r){if(e=e||1,r=r||1,t){var n=1===e&&1===r?"":"scale("+e+","+r+")";t.each((function(){var t=(this.getAttribute("transform")||"").replace(R,"");t=(t+=n).trim(),this.setAttribute("transform",t)}))}};var F=/translate\([^)]*\)\s*$/;x.setTextPointsScale=function(t,e,r){t&&t.each((function(){var t,i=n.select(this),a=i.select("text");if(a.node()){var o=parseFloat(a.attr("x")||0),s=parseFloat(a.attr("y")||0),l=(i.attr("transform")||"").match(F);t=1===e&&1===r?[]:[f(o,s),"scale("+e+","+r+")",f(-o,-s)],l&&t.push(l),i.attr("transform",t.join(""))}}))}},{"../../components/fx/helpers":675,"../../constants/alignment":744,"../../constants/interactions":751,"../../constants/xmlns_namespaces":753,"../../lib":776,"../../lib/svg_text_utils":802,"../../registry":904,"../../traces/scatter/make_bubble_size_func":1208,"../../traces/scatter/subtypes":1216,"../color":639,"../colorscale":651,"./symbol_defs":662,"@plotly/d3":58,"fast-isnumeric":242,tinycolor2:572}],662:[function(t,e,r){"use strict";var n=t("@plotly/d3");e.exports={circle:{n:0,f:function(t){var e=n.round(t,2);return"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"}},square:{n:1,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"}},diamond:{n:2,f:function(t){var e=n.round(1.3*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"Z"}},cross:{n:3,f:function(t){var e=n.round(.4*t,2),r=n.round(1.2*t,2);return"M"+r+","+e+"H"+e+"V"+r+"H-"+e+"V"+e+"H-"+r+"V-"+e+"H-"+e+"V-"+r+"H"+e+"V-"+e+"H"+r+"Z"}},x:{n:4,f:function(t){var e=n.round(.8*t/Math.sqrt(2),2),r="l"+e+","+e,i="l"+e+",-"+e,a="l-"+e+",-"+e,o="l-"+e+","+e;return"M0,"+e+r+i+a+i+a+o+a+o+r+o+r+"Z"}},"triangle-up":{n:5,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+e+","+n.round(t/2,2)+"H"+e+"L0,-"+n.round(t,2)+"Z"}},"triangle-down":{n:6,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+e+",-"+n.round(t/2,2)+"H"+e+"L0,"+n.round(t,2)+"Z"}},"triangle-left":{n:7,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M"+n.round(t/2,2)+",-"+e+"V"+e+"L-"+n.round(t,2)+",0Z"}},"triangle-right":{n:8,f:function(t){var e=n.round(2*t/Math.sqrt(3),2);return"M-"+n.round(t/2,2)+",-"+e+"V"+e+"L"+n.round(t,2)+",0Z"}},"triangle-ne":{n:9,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M-"+r+",-"+e+"H"+e+"V"+r+"Z"}},"triangle-se":{n:10,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M"+e+",-"+r+"V"+e+"H-"+r+"Z"}},"triangle-sw":{n:11,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M"+r+","+e+"H-"+e+"V-"+r+"Z"}},"triangle-nw":{n:12,f:function(t){var e=n.round(.6*t,2),r=n.round(1.2*t,2);return"M-"+e+","+r+"V-"+e+"H"+r+"Z"}},pentagon:{n:13,f:function(t){var e=n.round(.951*t,2),r=n.round(.588*t,2),i=n.round(-t,2),a=n.round(-.309*t,2);return"M"+e+","+a+"L"+r+","+n.round(.809*t,2)+"H-"+r+"L-"+e+","+a+"L0,"+i+"Z"}},hexagon:{n:14,f:function(t){var e=n.round(t,2),r=n.round(t/2,2),i=n.round(t*Math.sqrt(3)/2,2);return"M"+i+",-"+r+"V"+r+"L0,"+e+"L-"+i+","+r+"V-"+r+"L0,-"+e+"Z"}},hexagon2:{n:15,f:function(t){var e=n.round(t,2),r=n.round(t/2,2),i=n.round(t*Math.sqrt(3)/2,2);return"M-"+r+","+i+"H"+r+"L"+e+",0L"+r+",-"+i+"H-"+r+"L-"+e+",0Z"}},octagon:{n:16,f:function(t){var e=n.round(.924*t,2),r=n.round(.383*t,2);return"M-"+r+",-"+e+"H"+r+"L"+e+",-"+r+"V"+r+"L"+r+","+e+"H-"+r+"L-"+e+","+r+"V-"+r+"Z"}},star:{n:17,f:function(t){var e=1.4*t,r=n.round(.225*e,2),i=n.round(.951*e,2),a=n.round(.363*e,2),o=n.round(.588*e,2),s=n.round(-e,2),l=n.round(-.309*e,2),c=n.round(.118*e,2),u=n.round(.809*e,2);return"M"+r+","+l+"H"+i+"L"+a+","+c+"L"+o+","+u+"L0,"+n.round(.382*e,2)+"L-"+o+","+u+"L-"+a+","+c+"L-"+i+","+l+"H-"+r+"L0,"+s+"Z"}},hexagram:{n:18,f:function(t){var e=n.round(.66*t,2),r=n.round(.38*t,2),i=n.round(.76*t,2);return"M-"+i+",0l-"+r+",-"+e+"h"+i+"l"+r+",-"+e+"l"+r+","+e+"h"+i+"l-"+r+","+e+"l"+r+","+e+"h-"+i+"l-"+r+","+e+"l-"+r+",-"+e+"h-"+i+"Z"}},"star-triangle-up":{n:19,f:function(t){var e=n.round(t*Math.sqrt(3)*.8,2),r=n.round(.8*t,2),i=n.round(1.6*t,2),a=n.round(4*t,2),o="A "+a+","+a+" 0 0 1 ";return"M-"+e+","+r+o+e+","+r+o+"0,-"+i+o+"-"+e+","+r+"Z"}},"star-triangle-down":{n:20,f:function(t){var e=n.round(t*Math.sqrt(3)*.8,2),r=n.round(.8*t,2),i=n.round(1.6*t,2),a=n.round(4*t,2),o="A "+a+","+a+" 0 0 1 ";return"M"+e+",-"+r+o+"-"+e+",-"+r+o+"0,"+i+o+e+",-"+r+"Z"}},"star-square":{n:21,f:function(t){var e=n.round(1.1*t,2),r=n.round(2*t,2),i="A "+r+","+r+" 0 0 1 ";return"M-"+e+",-"+e+i+"-"+e+","+e+i+e+","+e+i+e+",-"+e+i+"-"+e+",-"+e+"Z"}},"star-diamond":{n:22,f:function(t){var e=n.round(1.4*t,2),r=n.round(1.9*t,2),i="A "+r+","+r+" 0 0 1 ";return"M-"+e+",0"+i+"0,"+e+i+e+",0"+i+"0,-"+e+i+"-"+e+",0Z"}},"diamond-tall":{n:23,f:function(t){var e=n.round(.7*t,2),r=n.round(1.4*t,2);return"M0,"+r+"L"+e+",0L0,-"+r+"L-"+e+",0Z"}},"diamond-wide":{n:24,f:function(t){var e=n.round(1.4*t,2),r=n.round(.7*t,2);return"M0,"+r+"L"+e+",0L0,-"+r+"L-"+e+",0Z"}},hourglass:{n:25,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"H-"+e+"L"+e+",-"+e+"H-"+e+"Z"},noDot:!0},bowtie:{n:26,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"V-"+e+"L-"+e+","+e+"V-"+e+"Z"},noDot:!0},"circle-cross":{n:27,f:function(t){var e=n.round(t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"},needLine:!0,noDot:!0},"circle-x":{n:28,f:function(t){var e=n.round(t,2),r=n.round(t/Math.sqrt(2),2);return"M"+r+","+r+"L-"+r+",-"+r+"M"+r+",-"+r+"L-"+r+","+r+"M"+e+",0A"+e+","+e+" 0 1,1 0,-"+e+"A"+e+","+e+" 0 0,1 "+e+",0Z"},needLine:!0,noDot:!0},"square-cross":{n:29,f:function(t){var e=n.round(t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"},needLine:!0,noDot:!0},"square-x":{n:30,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e+"M"+e+",-"+e+"L-"+e+","+e+"M"+e+","+e+"H-"+e+"V-"+e+"H"+e+"Z"},needLine:!0,noDot:!0},"diamond-cross":{n:31,f:function(t){var e=n.round(1.3*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"ZM0,-"+e+"V"+e+"M-"+e+",0H"+e},needLine:!0,noDot:!0},"diamond-x":{n:32,f:function(t){var e=n.round(1.3*t,2),r=n.round(.65*t,2);return"M"+e+",0L0,"+e+"L-"+e+",0L0,-"+e+"ZM-"+r+",-"+r+"L"+r+","+r+"M-"+r+","+r+"L"+r+",-"+r},needLine:!0,noDot:!0},"cross-thin":{n:33,f:function(t){var e=n.round(1.4*t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e},needLine:!0,noDot:!0,noFill:!0},"x-thin":{n:34,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e+"M"+e+",-"+e+"L-"+e+","+e},needLine:!0,noDot:!0,noFill:!0},asterisk:{n:35,f:function(t){var e=n.round(1.2*t,2),r=n.round(.85*t,2);return"M0,"+e+"V-"+e+"M"+e+",0H-"+e+"M"+r+","+r+"L-"+r+",-"+r+"M"+r+",-"+r+"L-"+r+","+r},needLine:!0,noDot:!0,noFill:!0},hash:{n:36,f:function(t){var e=n.round(t/2,2),r=n.round(t,2);return"M"+e+","+r+"V-"+r+"m-"+r+",0V"+r+"M"+r+","+e+"H-"+r+"m0,-"+r+"H"+r},needLine:!0,noFill:!0},"y-up":{n:37,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+e+","+i+"L0,0M"+e+","+i+"L0,0M0,-"+r+"L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-down":{n:38,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+e+",-"+i+"L0,0M"+e+",-"+i+"L0,0M0,"+r+"L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-left":{n:39,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M"+i+","+e+"L0,0M"+i+",-"+e+"L0,0M-"+r+",0L0,0"},needLine:!0,noDot:!0,noFill:!0},"y-right":{n:40,f:function(t){var e=n.round(1.2*t,2),r=n.round(1.6*t,2),i=n.round(.8*t,2);return"M-"+i+","+e+"L0,0M-"+i+",-"+e+"L0,0M"+r+",0L0,0"},needLine:!0,noDot:!0,noFill:!0},"line-ew":{n:41,f:function(t){var e=n.round(1.4*t,2);return"M"+e+",0H-"+e},needLine:!0,noDot:!0,noFill:!0},"line-ns":{n:42,f:function(t){var e=n.round(1.4*t,2);return"M0,"+e+"V-"+e},needLine:!0,noDot:!0,noFill:!0},"line-ne":{n:43,f:function(t){var e=n.round(t,2);return"M"+e+",-"+e+"L-"+e+","+e},needLine:!0,noDot:!0,noFill:!0},"line-nw":{n:44,f:function(t){var e=n.round(t,2);return"M"+e+","+e+"L-"+e+",-"+e},needLine:!0,noDot:!0,noFill:!0},"arrow-up":{n:45,f:function(t){var e=n.round(t,2);return"M0,0L-"+e+","+n.round(2*t,2)+"H"+e+"Z"},noDot:!0},"arrow-down":{n:46,f:function(t){var e=n.round(t,2);return"M0,0L-"+e+",-"+n.round(2*t,2)+"H"+e+"Z"},noDot:!0},"arrow-left":{n:47,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,0L"+e+",-"+r+"V"+r+"Z"},noDot:!0},"arrow-right":{n:48,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,0L-"+e+",-"+r+"V"+r+"Z"},noDot:!0},"arrow-bar-up":{n:49,f:function(t){var e=n.round(t,2);return"M-"+e+",0H"+e+"M0,0L-"+e+","+n.round(2*t,2)+"H"+e+"Z"},needLine:!0,noDot:!0},"arrow-bar-down":{n:50,f:function(t){var e=n.round(t,2);return"M-"+e+",0H"+e+"M0,0L-"+e+",-"+n.round(2*t,2)+"H"+e+"Z"},needLine:!0,noDot:!0},"arrow-bar-left":{n:51,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,-"+r+"V"+r+"M0,0L"+e+",-"+r+"V"+r+"Z"},needLine:!0,noDot:!0},"arrow-bar-right":{n:52,f:function(t){var e=n.round(2*t,2),r=n.round(t,2);return"M0,-"+r+"V"+r+"M0,0L-"+e+",-"+r+"V"+r+"Z"},needLine:!0,noDot:!0}}},{"@plotly/d3":58}],663:[function(t,e,r){"use strict";e.exports={visible:{valType:"boolean",editType:"calc"},type:{valType:"enumerated",values:["percent","constant","sqrt","data"],editType:"calc"},symmetric:{valType:"boolean",editType:"calc"},array:{valType:"data_array",editType:"calc"},arrayminus:{valType:"data_array",editType:"calc"},value:{valType:"number",min:0,dflt:10,editType:"calc"},valueminus:{valType:"number",min:0,dflt:10,editType:"calc"},traceref:{valType:"integer",min:0,dflt:0,editType:"style"},tracerefminus:{valType:"integer",min:0,dflt:0,editType:"style"},copy_ystyle:{valType:"boolean",editType:"plot"},copy_zstyle:{valType:"boolean",editType:"style"},color:{valType:"color",editType:"style"},thickness:{valType:"number",min:0,dflt:2,editType:"style"},width:{valType:"number",min:0,editType:"plot"},editType:"calc",_deprecated:{opacity:{valType:"number",editType:"style"}}}},{}],664:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../registry"),a=t("../../plots/cartesian/axes"),o=t("../../lib"),s=t("./compute_error");function l(t,e,r,i){var l=e["error_"+i]||{},c=[];if(l.visible&&-1!==["linear","log"].indexOf(r.type)){for(var u=s(l),f=0;f0;e.each((function(e){var f,h=e[0].trace,p=h.error_x||{},d=h.error_y||{};h.ids&&(f=function(t){return t.id});var m=o.hasMarkers(h)&&h.marker.maxdisplayed>0;d.visible||p.visible||(e=[]);var g=n.select(this).selectAll("g.errorbar").data(e,f);if(g.exit().remove(),e.length){p.visible||g.selectAll("path.xerror").remove(),d.visible||g.selectAll("path.yerror").remove(),g.style("opacity",1);var v=g.enter().append("g").classed("errorbar",!0);u&&v.style("opacity",0).transition().duration(s.duration).style("opacity",1),a.setClipUrl(g,r.layerClipId,t),g.each((function(t){var e=n.select(this),r=function(t,e,r){var n={x:e.c2p(t.x),y:r.c2p(t.y)};void 0!==t.yh&&(n.yh=r.c2p(t.yh),n.ys=r.c2p(t.ys),i(n.ys)||(n.noYS=!0,n.ys=r.c2p(t.ys,!0)));void 0!==t.xh&&(n.xh=e.c2p(t.xh),n.xs=e.c2p(t.xs),i(n.xs)||(n.noXS=!0,n.xs=e.c2p(t.xs,!0)));return n}(t,l,c);if(!m||t.vis){var a,o=e.select("path.yerror");if(d.visible&&i(r.x)&&i(r.yh)&&i(r.ys)){var f=d.width;a="M"+(r.x-f)+","+r.yh+"h"+2*f+"m-"+f+",0V"+r.ys,r.noYS||(a+="m-"+f+",0h"+2*f),!o.size()?o=e.append("path").style("vector-effect","non-scaling-stroke").classed("yerror",!0):u&&(o=o.transition().duration(s.duration).ease(s.easing)),o.attr("d",a)}else o.remove();var h=e.select("path.xerror");if(p.visible&&i(r.y)&&i(r.xh)&&i(r.xs)){var g=(p.copy_ystyle?d:p).width;a="M"+r.xh+","+(r.y-g)+"v"+2*g+"m0,-"+g+"H"+r.xs,r.noXS||(a+="m0,-"+g+"v"+2*g),!h.size()?h=e.append("path").style("vector-effect","non-scaling-stroke").classed("xerror",!0):u&&(h=h.transition().duration(s.duration).ease(s.easing)),h.attr("d",a)}else h.remove()}}))}}))}},{"../../traces/scatter/subtypes":1216,"../drawing":661,"@plotly/d3":58,"fast-isnumeric":242}],669:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../color");e.exports=function(t){t.each((function(t){var e=t[0].trace,r=e.error_y||{},a=e.error_x||{},o=n.select(this);o.selectAll("path.yerror").style("stroke-width",r.thickness+"px").call(i.stroke,r.color),a.copy_ystyle&&(a=r),o.selectAll("path.xerror").style("stroke-width",a.thickness+"px").call(i.stroke,a.color)}))}},{"../color":639,"@plotly/d3":58}],670:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("./layout_attributes").hoverlabel,a=t("../../lib/extend").extendFlat;e.exports={hoverlabel:{bgcolor:a({},i.bgcolor,{arrayOk:!0}),bordercolor:a({},i.bordercolor,{arrayOk:!0}),font:n({arrayOk:!0,editType:"none"}),align:a({},i.align,{arrayOk:!0}),namelength:a({},i.namelength,{arrayOk:!0}),editType:"none"}}},{"../../lib/extend":766,"../../plots/font_attributes":856,"./layout_attributes":680}],671:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry");function a(t,e,r,i){i=i||n.identity,Array.isArray(t)&&(e[0][r]=i(t))}e.exports=function(t){var e=t.calcdata,r=t._fullLayout;function o(t){return function(e){return n.coerceHoverinfo({hoverinfo:e},{_module:t._module},r)}}for(var s=0;s=0&&r.indexb[0]._length||at<0||at>_[0]._length)return d.unhoverRaw(t,e)}if(e.pointerX=it+b[0]._offset,e.pointerY=at+_[0]._offset,B="xval"in e?v.flat(s,e.xval):v.p2c(b,it),V="yval"in e?v.flat(s,e.yval):v.p2c(_,at),!i(B[0])||!i(V[0]))return o.warn("Fx.hover failed",e,t),d.unhoverRaw(t,e)}var ct=1/0;function ut(t,r){for(q=0;q$&&(tt.splice(0,$),ct=tt[0].distance),m&&0!==O&&0===tt.length){Q.distance=O,Q.index=!1;var f=Y._module.hoverPoints(Q,J,K,"closest",{hoverLayer:l._hoverlayer});if(f&&(f=f.filter((function(t){return t.spikeDistance<=O}))),f&&f.length){var h,d=f.filter((function(t){return t.xa.showspikes&&"hovered data"!==t.xa.spikesnap}));if(d.length){var g=d[0];i(g.x0)&&i(g.y0)&&(h=ht(g),(!rt.vLinePoint||rt.vLinePoint.spikeDistance>h.spikeDistance)&&(rt.vLinePoint=h))}var y=f.filter((function(t){return t.ya.showspikes&&"hovered data"!==t.ya.spikesnap}));if(y.length){var x=y[0];i(x.x0)&&i(x.y0)&&(h=ht(x),(!rt.hLinePoint||rt.hLinePoint.spikeDistance>h.spikeDistance)&&(rt.hLinePoint=h))}}}}}function ft(t,e,r){for(var n,i=null,a=1/0,o=0;o0&&Math.abs(t.distance)Tt-1;Mt--)Ct(tt[Mt]);tt=St,gt()}var Pt=t._hoverdata,It=[],Ot=j(t),zt=U(t);for(H=0;H1||tt.length>1)||"closest"===S&&nt&&tt.length>1,Wt=p.combine(l.plot_bgcolor||p.background,l.paper_bgcolor),Xt=I(tt,{gd:t,hovermode:S,rotateLabels:Yt,bgColor:Wt,container:l._hoverlayer,outerContainer:l._paper.node(),commonLabelOpts:l.hoverlabel,hoverdistance:l.hoverdistance});v.isUnifiedHover(S)||(!function(t,e,r){var n,i,a,o,s,l,c,u=0,f=1,h=t.size(),p=new Array(h),d=0;function m(t){var e=t[0],r=t[t.length-1];if(i=e.pmin-e.pos-e.dp+e.size,a=r.pos+r.dp+r.size-e.pmax,i>.01){for(s=t.length-1;s>=0;s--)t[s].dp+=i;n=!1}if(!(a<.01)){if(i<-.01){for(s=t.length-1;s>=0;s--)t[s].dp-=a;n=!1}if(n){var c=0;for(o=0;oe.pmax&&c++;for(o=t.length-1;o>=0&&!(c<=0);o--)(l=t[o]).pos>e.pmax-1&&(l.del=!0,c--);for(o=0;o=0;s--)t[s].dp-=a;for(o=t.length-1;o>=0&&!(c<=0);o--)(l=t[o]).pos+l.dp+l.size>e.pmax&&(l.del=!0,c--)}}}t.each((function(t){var n=t[e],i="x"===n._id.charAt(0),a=n.range;0===d&&a&&a[0]>a[1]!==i&&(f=-1),p[d++]=[{datum:t,traceIndex:t.trace.index,dp:0,pos:t.pos,posref:t.posref,size:t.by*(i?T:1)/2,pmin:0,pmax:i?r.width:r.height}]})),p.sort((function(t,e){return t[0].posref-e[0].posref||f*(e[0].traceIndex-t[0].traceIndex)}));for(;!n&&u<=h;){for(u++,n=!0,o=0;o.01&&y.pmin===x.pmin&&y.pmax===x.pmax){for(s=v.length-1;s>=0;s--)v[s].dp+=i;for(g.push.apply(g,v),p.splice(o+1,1),c=0,s=g.length-1;s>=0;s--)c+=g[s].dp;for(a=c/g.length,s=g.length-1;s>=0;s--)g[s].dp-=a;n=!1}else o++}p.forEach(m)}for(o=p.length-1;o>=0;o--){var b=p[o];for(s=b.length-1;s>=0;s--){var _=b[s],w=_.datum;w.offset=_.dp,w.del=_.del}}}(Xt,Yt?"xa":"ya",l),z(Xt,Yt,l._invScaleX,l._invScaleY));if(e.target&&e.target.tagName){var Zt=g.getComponentMethod("annotations","hasClickToShow")(t,It);f(n.select(e.target),Zt?"pointer":"")}if(!e.target||a||!function(t,e,r){if(!r||r.length!==t._hoverdata.length)return!0;for(var n=r.length-1;n>=0;n--){var i=r[n],a=t._hoverdata[n];if(i.curveNumber!==a.curveNumber||String(i.pointNumber)!==String(a.pointNumber)||String(i.pointNumbers)!==String(a.pointNumbers))return!0}return!1}(t,0,Pt))return;Pt&&t.emit("plotly_unhover",{event:e,points:Pt});t.emit("plotly_hover",{event:e,points:t._hoverdata,xaxes:b,yaxes:_,xvals:B,yvals:V})}(t,e,r,a)}))},r.loneHover=function(t,e){var r=!0;Array.isArray(t)||(r=!1,t=[t]);var i=e.gd,a=j(i),o=U(i),s=I(t.map((function(t){var r=t._x0||t.x0||t.x||0,n=t._x1||t.x1||t.x||0,s=t._y0||t.y0||t.y||0,l=t._y1||t.y1||t.y||0,c=t.eventData;if(c){var u=Math.min(r,n),f=Math.max(r,n),h=Math.min(s,l),d=Math.max(s,l),m=t.trace;if(g.traceIs(m,"gl3d")){var v=i._fullLayout[m.scene]._scene.container,y=v.offsetLeft,x=v.offsetTop;u+=y,f+=y,h+=x,d+=x}c.bbox={x0:u+o,x1:f+o,y0:h+a,y1:d+a},e.inOut_bbox&&e.inOut_bbox.push(c.bbox)}else c=!1;return{color:t.color||p.defaultLine,x0:t.x0||t.x||0,x1:t.x1||t.x||0,y0:t.y0||t.y||0,y1:t.y1||t.y||0,xLabel:t.xLabel,yLabel:t.yLabel,zLabel:t.zLabel,text:t.text,name:t.name,idealAlign:t.idealAlign,borderColor:t.borderColor,fontFamily:t.fontFamily,fontSize:t.fontSize,fontColor:t.fontColor,nameLength:t.nameLength,textAlign:t.textAlign,trace:t.trace||{index:0,hoverinfo:""},xa:{_offset:0},ya:{_offset:0},index:0,hovertemplate:t.hovertemplate||!1,hovertemplateLabels:t.hovertemplateLabels||!1,eventData:c}})),{gd:i,hovermode:"closest",rotateLabels:!1,bgColor:e.bgColor||p.background,container:n.select(e.container),outerContainer:e.outerContainer||e.container}),l=0,c=0;return s.sort((function(t,e){return t.y0-e.y0})).each((function(t,r){var n=t.y0-t.by/2;t.offset=n-5([\s\S]*)<\/extra>/;function I(t,e){var r=e.gd,i=r._fullLayout,a=e.hovermode,c=e.rotateLabels,f=e.bgColor,d=e.container,m=e.outerContainer,w=e.commonLabelOpts||{},T=e.fontFamily||y.HOVERFONT,k=e.fontSize||y.HOVERFONTSIZE,A=t[0],E=A.xa,L=A.ya,P=a.charAt(0),I=A[P+"Label"],z=V(r,m),D=z.top,R=z.width,F=z.height,B=void 0!==I&&A.distance<=e.hoverdistance&&("x"===a||"y"===a);if(B){var N,j,U=!0;for(N=0;Ni.width-b?(g=i.width-b,e.attr("d","M"+(b-M)+",0L"+b+","+x+M+"v"+x+(2*S+y.height)+"H-"+b+"V"+x+M+"H"+(b-2*M)+"Z")):e.attr("d","M0,0L"+M+","+x+M+"H"+(S+y.width/2)+"v"+x+(2*S+y.height)+"H-"+(S+y.width/2)+"V"+x+M+"H-"+M+"Z")}else{var _,C,P;"right"===L.side?(_="start",C=1,P="",g=E._offset+E._length):(_="end",C=-1,P="-",g=E._offset),v=L._offset+(A.y0+A.y1)/2,l.attr("text-anchor",_),e.attr("d","M0,0L"+P+M+","+M+"V"+(S+y.height/2)+"h"+P+(2*S+y.width)+"V-"+(S+y.height/2)+"H"+P+M+"V-"+M+"Z");var O,z=y.height/2,R=D-y.top-z,F="clip"+i._uid+"commonlabel"+L._id;if(g=0?it:at+lt=0?at:gt+lt=0?rt:nt+ct=0?nt:vt+ct=0,"top"!==t.idealAlign&&G||!Y?G?(z+=j/2,t.anchor="start"):t.anchor="middle":(z-=j/2,t.anchor="end");else if(t.pos=z,G=P+N/2+W<=R,Y=P-N/2-W>=0,"left"!==t.idealAlign&&G||!Y)if(G)P+=N/2,t.anchor="start";else{t.anchor="middle";var X=W/2,Z=P+X-R,J=P-X;Z>0&&(P-=Z),J<0&&(P+=-J)}else P-=N/2,t.anchor="end";w.attr("text-anchor",t.anchor),E&&A.attr("text-anchor",t.anchor),e.attr("transform",s(P,z)+(c?l(_):""))})),yt}function O(t,e,r,n,i,a){var s="",l="";void 0!==t.nameOverride&&(t.name=t.nameOverride),t.name&&(t.trace._meta&&(t.name=o.templateString(t.name,t.trace._meta)),s=B(t.name,t.nameLength));var c=r.charAt(0),u="x"===c?"y":"x";void 0!==t.zLabel?(void 0!==t.xLabel&&(l+="x: "+t.xLabel+"
"),void 0!==t.yLabel&&(l+="y: "+t.yLabel+"
"),"choropleth"!==t.trace.type&&"choroplethmapbox"!==t.trace.type&&(l+=(l?"z: ":"")+t.zLabel)):e&&t[c+"Label"]===i?l=t[u+"Label"]||"":void 0===t.xLabel?void 0!==t.yLabel&&"scattercarpet"!==t.trace.type&&(l=t.yLabel):l=void 0===t.yLabel?t.xLabel:"("+t.xLabel+", "+t.yLabel+")",!t.text&&0!==t.text||Array.isArray(t.text)||(l+=(l?"
":"")+t.text),void 0!==t.extraText&&(l+=(l?"
":"")+t.extraText),a&&""===l&&!t.hovertemplate&&(""===s&&a.remove(),l=s);var f=t.hovertemplate||!1;if(f){var h=t.hovertemplateLabels||t;t[c+"Label"]!==i&&(h[c+"other"]=h[c+"Val"],h[c+"otherLabel"]=h[c+"Label"]),l=(l=o.hovertemplateString(f,h,n._d3locale,t.eventData[0]||{},t.trace._meta)).replace(P,(function(e,r){return s=B(r,t.nameLength),""}))}return[l,s]}function z(t,e,r,i){var a=function(t){return t*r},o=function(t){return t*i};t.each((function(t){var r=n.select(this);if(t.del)return r.remove();var i=r.select("text.nums"),s=t.anchor,l="end"===s?-1:1,c={start:1,end:-1,middle:0}[s],f=c*(M+S),p=f+c*(t.txwidth+S),d=0,m=t.offset,g="middle"===s;g&&(f-=t.tx2width/2,p+=t.txwidth/2+S),e&&(m*=-A,d=t.offset*k),r.select("path").attr("d",g?"M-"+a(t.bx/2+t.tx2width/2)+","+o(m-t.by/2)+"h"+a(t.bx)+"v"+o(t.by)+"h-"+a(t.bx)+"Z":"M0,0L"+a(l*M+d)+","+o(M+m)+"v"+o(t.by/2-M)+"h"+a(l*t.bx)+"v-"+o(t.by)+"H"+a(l*M+d)+"V"+o(m-M)+"Z");var v=d+f,y=m+t.ty0-t.by/2+S,x=t.textAlign||"auto";"auto"!==x&&("left"===x&&"start"!==s?(i.attr("text-anchor","start"),v=g?-t.bx/2-t.tx2width/2+S:-t.bx-S):"right"===x&&"end"!==s&&(i.attr("text-anchor","end"),v=g?t.bx/2-t.tx2width/2-S:t.bx+S)),i.call(u.positionText,a(v),o(y)),t.tx2width&&(r.select("text.name").call(u.positionText,a(p+c*S+d),o(m+t.ty0-t.by/2+S)),r.select("rect").call(h.setRect,a(p+(c-1)*t.tx2width/2+d),o(m-t.by/2-1),a(t.tx2width),o(t.by+2)))}))}function D(t,e){var r=t.index,n=t.trace||{},a=t.cd[0],s=t.cd[r]||{};function l(t){return t||i(t)&&0===t}var c=Array.isArray(r)?function(t,e){var i=o.castOption(a,r,t);return l(i)?i:o.extractOption({},n,"",e)}:function(t,e){return o.extractOption(s,n,t,e)};function u(e,r,n){var i=c(r,n);l(i)&&(t[e]=i)}if(u("hoverinfo","hi","hoverinfo"),u("bgcolor","hbg","hoverlabel.bgcolor"),u("borderColor","hbc","hoverlabel.bordercolor"),u("fontFamily","htf","hoverlabel.font.family"),u("fontSize","hts","hoverlabel.font.size"),u("fontColor","htc","hoverlabel.font.color"),u("nameLength","hnl","hoverlabel.namelength"),u("textAlign","hta","hoverlabel.align"),t.posref="y"===e||"closest"===e&&"h"===n.orientation?t.xa._offset+(t.x0+t.x1)/2:t.ya._offset+(t.y0+t.y1)/2,t.x0=o.constrain(t.x0,0,t.xa._length),t.x1=o.constrain(t.x1,0,t.xa._length),t.y0=o.constrain(t.y0,0,t.ya._length),t.y1=o.constrain(t.y1,0,t.ya._length),void 0!==t.xLabelVal&&(t.xLabel="xLabel"in t?t.xLabel:m.hoverLabelText(t.xa,t.xLabelVal,n.xhoverformat),t.xVal=t.xa.c2d(t.xLabelVal)),void 0!==t.yLabelVal&&(t.yLabel="yLabel"in t?t.yLabel:m.hoverLabelText(t.ya,t.yLabelVal,n.yhoverformat),t.yVal=t.ya.c2d(t.yLabelVal)),void 0!==t.zLabelVal&&void 0===t.zLabel&&(t.zLabel=String(t.zLabelVal)),!(isNaN(t.xerr)||"log"===t.xa.type&&t.xerr<=0)){var f=m.tickText(t.xa,t.xa.c2l(t.xerr),"hover").text;void 0!==t.xerrneg?t.xLabel+=" +"+f+" / -"+m.tickText(t.xa,t.xa.c2l(t.xerrneg),"hover").text:t.xLabel+=" \xb1 "+f,"x"===e&&(t.distance+=1)}if(!(isNaN(t.yerr)||"log"===t.ya.type&&t.yerr<=0)){var h=m.tickText(t.ya,t.ya.c2l(t.yerr),"hover").text;void 0!==t.yerrneg?t.yLabel+=" +"+h+" / -"+m.tickText(t.ya,t.ya.c2l(t.yerrneg),"hover").text:t.yLabel+=" \xb1 "+h,"y"===e&&(t.distance+=1)}var p=t.hoverinfo||t.trace.hoverinfo;return p&&"all"!==p&&(-1===(p=Array.isArray(p)?p:p.split("+")).indexOf("x")&&(t.xLabel=void 0),-1===p.indexOf("y")&&(t.yLabel=void 0),-1===p.indexOf("z")&&(t.zLabel=void 0),-1===p.indexOf("text")&&(t.text=void 0),-1===p.indexOf("name")&&(t.name=void 0)),t}function R(t,e,r){var n,i,o=r.container,s=r.fullLayout,l=s._size,c=r.event,u=!!e.hLinePoint,f=!!e.vLinePoint;if(o.selectAll(".spikeline").remove(),f||u){var d=p.combine(s.plot_bgcolor,s.paper_bgcolor);if(u){var g,v,y=e.hLinePoint;n=y&&y.xa,"cursor"===(i=y&&y.ya).spikesnap?(g=c.pointerX,v=c.pointerY):(g=n._offset+y.x,v=i._offset+y.y);var x,b,_=a.readability(y.color,d)<1.5?p.contrast(d):y.color,w=i.spikemode,T=i.spikethickness,k=i.spikecolor||_,A=m.getPxPosition(t,i);if(-1!==w.indexOf("toaxis")||-1!==w.indexOf("across")){if(-1!==w.indexOf("toaxis")&&(x=A,b=g),-1!==w.indexOf("across")){var M=i._counterDomainMin,S=i._counterDomainMax;"free"===i.anchor&&(M=Math.min(M,i.position),S=Math.max(S,i.position)),x=l.l+M*l.w,b=l.l+S*l.w}o.insert("line",":first-child").attr({x1:x,x2:b,y1:v,y2:v,"stroke-width":T,stroke:k,"stroke-dasharray":h.dashStyle(i.spikedash,T)}).classed("spikeline",!0).classed("crisp",!0),o.insert("line",":first-child").attr({x1:x,x2:b,y1:v,y2:v,"stroke-width":T+2,stroke:d}).classed("spikeline",!0).classed("crisp",!0)}-1!==w.indexOf("marker")&&o.insert("circle",":first-child").attr({cx:A+("right"!==i.side?T:-T),cy:v,r:T,fill:k}).classed("spikeline",!0)}if(f){var E,L,C=e.vLinePoint;n=C&&C.xa,i=C&&C.ya,"cursor"===n.spikesnap?(E=c.pointerX,L=c.pointerY):(E=n._offset+C.x,L=i._offset+C.y);var P,I,O=a.readability(C.color,d)<1.5?p.contrast(d):C.color,z=n.spikemode,D=n.spikethickness,R=n.spikecolor||O,F=m.getPxPosition(t,n);if(-1!==z.indexOf("toaxis")||-1!==z.indexOf("across")){if(-1!==z.indexOf("toaxis")&&(P=F,I=L),-1!==z.indexOf("across")){var B=n._counterDomainMin,N=n._counterDomainMax;"free"===n.anchor&&(B=Math.min(B,n.position),N=Math.max(N,n.position)),P=l.t+(1-N)*l.h,I=l.t+(1-B)*l.h}o.insert("line",":first-child").attr({x1:E,x2:E,y1:P,y2:I,"stroke-width":D,stroke:R,"stroke-dasharray":h.dashStyle(n.spikedash,D)}).classed("spikeline",!0).classed("crisp",!0),o.insert("line",":first-child").attr({x1:E,x2:E,y1:P,y2:I,"stroke-width":D+2,stroke:d}).classed("spikeline",!0).classed("crisp",!0)}-1!==z.indexOf("marker")&&o.insert("circle",":first-child").attr({cx:E,cy:F-("top"!==n.side?D:-D),r:D,fill:R}).classed("spikeline",!0)}}}function F(t,e){return!e||(e.vLinePoint!==t._spikepoints.vLinePoint||e.hLinePoint!==t._spikepoints.hLinePoint)}function B(t,e){return u.plainText(t||"",{len:e,allowedTags:["br","sub","sup","b","i","em"]})}function N(t,e,r){var n=e[t+"a"],i=e[t+"Val"],a=e.cd[0];if("category"===n.type)i=n._categoriesMap[i];else if("date"===n.type){var o=e.trace[t+"periodalignment"];if(o){var s=e.cd[e.index],l=s[t+"Start"];void 0===l&&(l=s[t]);var c=s[t+"End"];void 0===c&&(c=s[t]);var u=c-l;"end"===o?i+=u:"middle"===o&&(i+=u/2)}i=n.d2c(i)}return a&&a.t&&a.t.posLetter===n._id&&("group"!==r.boxmode&&"group"!==r.violinmode||(i+=a.t.dPos)),i}function j(t){return t.offsetTop+t.clientTop}function U(t){return t.offsetLeft+t.clientLeft}function V(t,e){var r=t._fullLayout,n=e.getBoundingClientRect(),i=n.x,a=n.y,s=i+n.width,l=a+n.height,c=o.apply3DTransform(r._invTransform)(i,a),u=o.apply3DTransform(r._invTransform)(s,l),f=c[0],h=c[1],p=u[0],d=u[1];return{x:f,y:h,width:p-f,height:d-h,top:Math.min(h,d),left:Math.min(f,p),right:Math.max(f,p),bottom:Math.max(h,d)}}},{"../../lib":776,"../../lib/events":765,"../../lib/override_cursor":787,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"../../registry":904,"../color":639,"../dragelement":658,"../drawing":661,"../legend/defaults":691,"../legend/draw":692,"./constants":673,"./helpers":675,"@plotly/d3":58,"fast-isnumeric":242,tinycolor2:572}],677:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../color"),a=t("./helpers").isUnifiedHover;e.exports=function(t,e,r,o){function s(t){o.font[t]||(o.font[t]=e.legend?e.legend.font[t]:e.font[t])}o=o||{},e&&a(e.hovermode)&&(o.font||(o.font={}),s("size"),s("family"),s("color"),e.legend?(o.bgcolor||(o.bgcolor=i.combine(e.legend.bgcolor,e.paper_bgcolor)),o.bordercolor||(o.bordercolor=e.legend.bordercolor)):o.bgcolor||(o.bgcolor=e.paper_bgcolor)),r("hoverlabel.bgcolor",o.bgcolor),r("hoverlabel.bordercolor",o.bordercolor),r("hoverlabel.namelength",o.namelength),n.coerceFont(r,"hoverlabel.font",o.font),r("hoverlabel.align",o.align)}},{"../../lib":776,"../color":639,"./helpers":675}],678:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return void 0!==e[r]?e[r]:n.coerce(t,e,i,r,a)}return r("clickmode"),r("hovermode")}},{"../../lib":776,"./layout_attributes":680}],679:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../dragelement"),o=t("./helpers"),s=t("./layout_attributes"),l=t("./hover");e.exports={moduleType:"component",name:"fx",constants:t("./constants"),schema:{layout:s},attributes:t("./attributes"),layoutAttributes:s,supplyLayoutGlobalDefaults:t("./layout_global_defaults"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),getDistanceFunction:o.getDistanceFunction,getClosest:o.getClosest,inbox:o.inbox,quadrature:o.quadrature,appendArrayPointValue:o.appendArrayPointValue,castHoverOption:function(t,e,r){return i.castOption(t,e,"hoverlabel."+r)},castHoverinfo:function(t,e,r){return i.castOption(t,r,"hoverinfo",(function(r){return i.coerceHoverinfo({hoverinfo:r},{_module:t._module},e)}))},hover:l.hover,unhover:a.unhover,loneHover:l.loneHover,loneUnhover:function(t){var e=i.isD3Selection(t)?t:n.select(t);e.selectAll("g.hovertext").remove(),e.selectAll(".spikeline").remove()},click:t("./click")}},{"../../lib":776,"../dragelement":658,"./attributes":670,"./calc":671,"./click":672,"./constants":673,"./defaults":674,"./helpers":675,"./hover":676,"./layout_attributes":680,"./layout_defaults":681,"./layout_global_defaults":682,"@plotly/d3":58}],680:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../plots/font_attributes")({editType:"none"});i.family.dflt=n.HOVERFONT,i.size.dflt=n.HOVERFONTSIZE,e.exports={clickmode:{valType:"flaglist",flags:["event","select"],dflt:"event",editType:"plot",extras:["none"]},dragmode:{valType:"enumerated",values:["zoom","pan","select","lasso","drawclosedpath","drawopenpath","drawline","drawrect","drawcircle","orbit","turntable",!1],dflt:"zoom",editType:"modebar"},hovermode:{valType:"enumerated",values:["x","y","closest",!1,"x unified","y unified"],dflt:"closest",editType:"modebar"},hoverdistance:{valType:"integer",min:-1,dflt:20,editType:"none"},spikedistance:{valType:"integer",min:-1,dflt:-1,editType:"none"},hoverlabel:{bgcolor:{valType:"color",editType:"none"},bordercolor:{valType:"color",editType:"none"},font:i,align:{valType:"enumerated",values:["left","right","auto"],dflt:"auto",editType:"none"},namelength:{valType:"integer",min:-1,dflt:15,editType:"none"},editType:"none"},selectdirection:{valType:"enumerated",values:["h","v","d","any"],dflt:"any",editType:"none"}}},{"../../plots/font_attributes":856,"./constants":673}],681:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes"),a=t("./hovermode_defaults"),o=t("./hoverlabel_defaults");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}a(t,e)&&(r("hoverdistance"),r("spikedistance")),"select"===r("dragmode")&&r("selectdirection");var s=e._has("mapbox"),l=e._has("geo"),c=e._basePlotModules.length;"zoom"===e.dragmode&&((s||l)&&1===c||s&&l&&2===c)&&(e.dragmode="pan"),o(t,e,r)}},{"../../lib":776,"./hoverlabel_defaults":677,"./hovermode_defaults":678,"./layout_attributes":680}],682:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./hoverlabel_defaults"),a=t("./layout_attributes");e.exports=function(t,e){i(t,e,(function(r,i){return n.coerce(t,e,a,r,i)}))}},{"../../lib":776,"./hoverlabel_defaults":677,"./layout_attributes":680}],683:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../lib/regex").counter,a=t("../../plots/domain").attributes,o=t("../../plots/cartesian/constants").idRegex,s=t("../../plot_api/plot_template"),l={rows:{valType:"integer",min:1,editType:"plot"},roworder:{valType:"enumerated",values:["top to bottom","bottom to top"],dflt:"top to bottom",editType:"plot"},columns:{valType:"integer",min:1,editType:"plot"},subplots:{valType:"info_array",freeLength:!0,dimensions:2,items:{valType:"enumerated",values:[i("xy").toString(),""],editType:"plot"},editType:"plot"},xaxes:{valType:"info_array",freeLength:!0,items:{valType:"enumerated",values:[o.x.toString(),""],editType:"plot"},editType:"plot"},yaxes:{valType:"info_array",freeLength:!0,items:{valType:"enumerated",values:[o.y.toString(),""],editType:"plot"},editType:"plot"},pattern:{valType:"enumerated",values:["independent","coupled"],dflt:"coupled",editType:"plot"},xgap:{valType:"number",min:0,max:1,editType:"plot"},ygap:{valType:"number",min:0,max:1,editType:"plot"},domain:a({name:"grid",editType:"plot",noGridCell:!0},{}),xside:{valType:"enumerated",values:["bottom","bottom plot","top plot","top"],dflt:"bottom plot",editType:"plot"},yside:{valType:"enumerated",values:["left","left plot","right plot","right"],dflt:"left plot",editType:"plot"},editType:"plot"};function c(t,e,r){var n=e[r+"axes"],i=Object.keys((t._splomAxes||{})[r]||{});return Array.isArray(n)?n:i.length?i:void 0}function u(t,e,r,n,i,a){var o=e(t+"gap",r),s=e("domain."+t);e(t+"side",n);for(var l=new Array(i),c=s[0],u=(s[1]-c)/(i-o),f=u*(1-o),h=0;h1){if(!h&&!p&&!d)"independent"===k("pattern")&&(h=!0);g._hasSubplotGrid=h;var x,b,_="top to bottom"===k("roworder"),w=h?.2:.1,T=h?.3:.1;m&&e._splomGridDflt&&(x=e._splomGridDflt.xside,b=e._splomGridDflt.yside),g._domains={x:u("x",k,w,x,y),y:u("y",k,T,b,v,_)}}else delete e.grid}function k(t,e){return n.coerce(r,g,l,t,e)}},contentDefaults:function(t,e){var r=e.grid;if(r&&r._domains){var n,i,a,o,s,l,u,h=t.grid||{},p=e._subplots,d=r._hasSubplotGrid,m=r.rows,g=r.columns,v="independent"===r.pattern,y=r._axisMap={};if(d){var x=h.subplots||[];l=r.subplots=new Array(m);var b=1;for(n=0;n1);if(!1!==m||c.uirevision){var g=a.newContainer(e,"legend");if(T("uirevision",e.uirevision),!1!==m){T("bgcolor",e.paper_bgcolor),T("bordercolor"),T("borderwidth");var v,y,x,b=i.coerceFont(T,"font",e.font),_="h"===T("orientation");if(_?(v=0,n.getComponentMethod("rangeslider","isVisible")(t.xaxis)?(y=1.1,x="bottom"):(y=-.1,x="top")):(v=1.02,y=1,x="auto"),T("traceorder",h),l.isGrouped(e.legend)&&T("tracegroupgap"),T("itemsizing"),T("itemwidth"),T("itemclick"),T("itemdoubleclick"),T("groupclick"),T("x",v),T("xanchor"),T("y",y),T("yanchor",x),T("valign"),i.noneOrAll(c,g,["x","y"]),T("title.text")){T("title.side",_?"left":"top");var w=i.extendFlat({},b,{size:i.bigFont(b.size)});i.coerceFont(T,"title.font",w)}}}function T(t,e){return i.coerce(c,g,o,t,e)}}},{"../../lib":776,"../../plot_api/plot_template":816,"../../plots/layout_attributes":881,"../../registry":904,"./attributes":689,"./helpers":695}],692:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../plots/plots"),o=t("../../registry"),s=t("../../lib/events"),l=t("../dragelement"),c=t("../drawing"),u=t("../color"),f=t("../../lib/svg_text_utils"),h=t("./handle_click"),p=t("./constants"),d=t("../../constants/alignment"),m=d.LINE_SPACING,g=d.FROM_TL,v=d.FROM_BR,y=t("./get_legend_data"),x=t("./style"),b=t("./helpers");function _(t,e,r,n,i){var a=r.data()[0][0].trace,l={event:i,node:r.node(),curveNumber:a.index,expandedIndex:a._expandedIndex,data:t.data,layout:t.layout,frames:t._transitionData._frames,config:t._context,fullData:t._fullData,fullLayout:t._fullLayout};if(a._group&&(l.group=a._group),o.traceIs(a,"pie-like")&&(l.label=r.datum()[0].label),!1!==s.triggerHandler(t,"plotly_legendclick",l))if(1===n)e._clickTimeout=setTimeout((function(){t._fullLayout&&h(r,t,n)}),t._context.doubleClickDelay);else if(2===n){e._clickTimeout&&clearTimeout(e._clickTimeout),t._legendMouseDownTime=0,!1!==s.triggerHandler(t,"plotly_legenddoubleclick",l)&&h(r,t,n)}}function w(t,e,r){var n,a,s=t.data()[0][0],l=s.trace,u=o.traceIs(l,"pie-like"),h=!r._inHover&&e._context.edits.legendText&&!u,d=r._maxNameLength;s.groupTitle?(n=s.groupTitle.text,a=s.groupTitle.font):(a=r.font,r.entries?n=s.text:(n=u?s.label:l.name,l._meta&&(n=i.templateString(n,l._meta))));var m=i.ensureSingle(t,"text","legendtext");m.attr("text-anchor","start").call(c.font,a).text(h?T(n,d):n);var g=r.itemwidth+2*p.itemGap;f.positionText(m,g,0),h?m.call(f.makeEditable,{gd:e,text:n}).call(A,t,e,r).on("edit",(function(n){this.text(T(n,d)).call(A,t,e,r);var a=s.trace._fullInput||{},c={};if(o.hasTransform(a,"groupby")){var u=o.getTransformIndices(a,"groupby"),f=u[u.length-1],h=i.keyedContainer(a,"transforms["+f+"].styles","target","value.name");h.set(s.trace._group,n),c=h.constructUpdate()}else c.name=n;return o.call("_guiRestyle",e,c,l.index)})):A(m,t,e,r)}function T(t,e){var r=Math.max(4,e);if(t&&t.trim().length>=r/2)return t;for(var n=r-(t=t||"").length;n>0;n--)t+=" ";return t}function k(t,e){var r,a=e._context.doubleClickDelay,o=1,s=i.ensureSingle(t,"rect","legendtoggle",(function(t){e._context.staticPlot||t.style("cursor","pointer").attr("pointer-events","all"),t.call(u.fill,"rgba(0,0,0,0)")}));e._context.staticPlot||(s.on("mousedown",(function(){(r=(new Date).getTime())-e._legendMouseDownTimea&&(o=Math.max(o-1,1)),_(e,r,t,o,n.event)}})))}function A(t,e,r,n,i){n._inHover&&t.attr("data-notex",!0),f.convertToTspans(t,r,(function(){!function(t,e,r,n){var i=t.data()[0][0];if(!r._inHover&&i&&!i.trace.showlegend)return void t.remove();var a=t.select("g[class*=math-group]"),o=a.node();r||(r=e._fullLayout.legend);var s,l=r.borderwidth;s=1===n?r.title.font:i.groupTitle?i.groupTitle.font:r.font;var u,h,d=s.size*m;if(o){var g=c.bBox(o);u=g.height,h=g.width,1===n?c.setTranslate(a,l,l+.75*u):c.setTranslate(a,0,.25*u)}else{var v=t.select(1===n?".legendtitletext":".legendtext"),y=f.lineCount(v),x=v.node();if(u=d*y,h=x?c.bBox(x).width:0,1===n)"left"===r.title.side&&(h+=2*p.itemGap),f.positionText(v,l+p.titlePad,l+d);else{var b=2*p.itemGap+r.itemwidth;i.groupTitle&&(b=p.itemGap,h-=r.itemwidth),f.positionText(v,b,-d*((y-1)/2-.3))}}1===n?(r._titleWidth=h,r._titleHeight=u):(i.lineHeight=d,i.height=Math.max(u,16)+3,i.width=h)}(e,r,n,i)}))}function M(t){return i.isRightAnchor(t)?"right":i.isCenterAnchor(t)?"center":"left"}function S(t){return i.isBottomAnchor(t)?"bottom":i.isMiddleAnchor(t)?"middle":"top"}e.exports=function(t,e){return e||(e=t._fullLayout.legend||{}),function(t,e){var r,s,f=t._fullLayout,h="legend"+f._uid,d=e._inHover;d?(r=e.layer,h+="-hover"):r=f._infolayer;if(!r)return;t._legendMouseDownTime||(t._legendMouseDownTime=0);if(d){if(!e.entries)return;s=y(e.entries,e)}else{if(!t.calcdata)return;s=f.showlegend&&y(t.calcdata,e)}var m=f.hiddenlabels||[];if(!(d||f.showlegend&&s.length))return r.selectAll(".legend").remove(),f._topdefs.select("#"+h).remove(),a.autoMargin(t,"legend");var T=i.ensureSingle(r,"g","legend",(function(t){d||t.attr("pointer-events","all")})),E=i.ensureSingleById(f._topdefs,"clipPath",h,(function(t){t.append("rect")})),L=i.ensureSingle(T,"rect","bg",(function(t){t.attr("shape-rendering","crispEdges")}));L.call(u.stroke,e.bordercolor).call(u.fill,e.bgcolor).style("stroke-width",e.borderwidth+"px");var C=i.ensureSingle(T,"g","scrollbox"),P=e.title;if(e._titleWidth=0,e._titleHeight=0,P.text){var I=i.ensureSingle(C,"text","legendtitletext");I.attr("text-anchor","start").call(c.font,P.font).text(P.text),A(I,C,t,e,1)}else C.selectAll(".legendtitletext").remove();var O=i.ensureSingle(T,"rect","scrollbar",(function(t){t.attr(p.scrollBarEnterAttrs).call(u.fill,p.scrollBarColor)})),z=C.selectAll("g.groups").data(s);z.enter().append("g").attr("class","groups"),z.exit().remove();var D=z.selectAll("g.traces").data(i.identity);D.enter().append("g").attr("class","traces"),D.exit().remove(),D.style("opacity",(function(t){var e=t[0].trace;return o.traceIs(e,"pie-like")?-1!==m.indexOf(t[0].label)?.5:1:"legendonly"===e.visible?.5:1})).each((function(){n.select(this).call(w,t,e)})).call(x,t,e).each((function(){d||n.select(this).call(k,t)})),i.syncOrAsync([a.previousPromises,function(){return function(t,e,r,i){var a=t._fullLayout;i||(i=a.legend);var o=a._size,s=b.isVertical(i),l=b.isGrouped(i),u=i.borderwidth,f=2*u,h=p.itemGap,d=i.itemwidth+2*h,m=2*(u+h),g=S(i),v=i.y<0||0===i.y&&"top"===g,y=i.y>1||1===i.y&&"bottom"===g,x=i.tracegroupgap;i._maxHeight=Math.max(v||y?a.height/2:o.h,30);var _=0;i._width=0,i._height=0;var w=function(t){var e=0,r=0,n=t.title.side;n&&(-1!==n.indexOf("left")&&(e=t._titleWidth),-1!==n.indexOf("top")&&(r=t._titleHeight));return[e,r]}(i);if(s)r.each((function(t){var e=t[0].height;c.setTranslate(this,u+w[0],u+w[1]+i._height+e/2+h),i._height+=e,i._width=Math.max(i._width,t[0].width)})),_=d+i._width,i._width+=h+d+f,i._height+=m,l&&(e.each((function(t,e){c.setTranslate(this,0,e*i.tracegroupgap)})),i._height+=(i._lgroupsLength-1)*i.tracegroupgap);else{var T=M(i),k=i.x<0||0===i.x&&"right"===T,A=i.x>1||1===i.x&&"left"===T,E=y||v,L=a.width/2;i._maxWidth=Math.max(k?E&&"left"===T?o.l+o.w:L:A?E&&"right"===T?o.r+o.w:L:o.w,2*d);var C=0,P=0;r.each((function(t){var e=t[0].width+d;C=Math.max(C,e),P+=e})),_=null;var I=0;if(l){var O=0,z=0,D=0;e.each((function(){var t=0,e=0;n.select(this).selectAll("g.traces").each((function(r){var n=r[0].height;c.setTranslate(this,w[0],w[1]+u+h+n/2+e),e+=n,t=Math.max(t,d+r[0].width)})),O=Math.max(O,e);var r=t+h;r+u+z>i._maxWidth&&(I=Math.max(I,z),z=0,D+=O+x,O=e),c.setTranslate(this,z,D),z+=r})),i._width=Math.max(I,z)+u,i._height=D+O+m}else{var R=r.size(),F=P+f+(R-1)*h=i._maxWidth&&(I=Math.max(I,U),N=0,j+=B,i._height+=B,B=0),c.setTranslate(this,w[0]+u+N,w[1]+u+j+e/2+h),U=N+r+h,N+=n,B=Math.max(B,e)})),F?(i._width=N+f,i._height=B+m):(i._width=Math.max(I,U)+f,i._height+=B+m)}}i._width=Math.ceil(Math.max(i._width+w[0],i._titleWidth+2*(u+p.titlePad))),i._height=Math.ceil(Math.max(i._height+w[1],i._titleHeight+2*(u+p.itemGap))),i._effHeight=Math.min(i._height,i._maxHeight);var V=t._context.edits,H=V.legendText||V.legendPosition;r.each((function(t){var e=n.select(this).select(".legendtoggle"),r=t[0].height,i=H?d:_||d+t[0].width;s||(i+=h/2),c.setRect(e,0,-r/2,i,r)}))}(t,z,D,e)},function(){if(d||!function(t){var e=t._fullLayout.legend,r=M(e),n=S(e);return a.autoMargin(t,"legend",{x:e.x,y:e.y,l:e._width*g[r],r:e._width*v[r],b:e._effHeight*v[n],t:e._effHeight*g[n]})}(t)){var s,u,m,y,x=f._size,b=e.borderwidth,w=x.l+x.w*e.x-g[M(e)]*e._width,k=x.t+x.h*(1-e.y)-g[S(e)]*e._effHeight;if(!d&&f.margin.autoexpand){var A=w,P=k;w=i.constrain(w,0,f.width-e._width),k=i.constrain(k,0,f.height-e._effHeight),w!==A&&i.log("Constrain legend.x to make legend fit inside graph"),k!==P&&i.log("Constrain legend.y to make legend fit inside graph")}if(d||c.setTranslate(T,w,k),O.on(".drag",null),T.on("wheel",null),d||e._height<=e._maxHeight||t._context.staticPlot){var I=e._effHeight;d&&(I=e._height),L.attr({width:e._width-b,height:I-b,x:b/2,y:b/2}),c.setTranslate(C,0,0),E.select("rect").attr({width:e._width-2*b,height:I-2*b,x:b,y:b}),c.setClipUrl(C,h,t),c.setRect(O,0,0,0,0),delete e._scrollY}else{var z,D,R,F=Math.max(p.scrollBarMinHeight,e._effHeight*e._effHeight/e._height),B=e._effHeight-F-2*p.scrollBarMargin,N=e._height-e._effHeight,j=B/N,U=Math.min(e._scrollY||0,N);L.attr({width:e._width-2*b+p.scrollBarWidth+p.scrollBarMargin,height:e._effHeight-b,x:b/2,y:b/2}),E.select("rect").attr({width:e._width-2*b+p.scrollBarWidth+p.scrollBarMargin,height:e._effHeight-2*b,x:b,y:b+U}),c.setClipUrl(C,h,t),q(U,F,j),T.on("wheel",(function(){q(U=i.constrain(e._scrollY+n.event.deltaY/B*N,0,N),F,j),0!==U&&U!==N&&n.event.preventDefault()}));var V=n.behavior.drag().on("dragstart",(function(){var t=n.event.sourceEvent;z="touchstart"===t.type?t.changedTouches[0].clientY:t.clientY,R=U})).on("drag",(function(){var t=n.event.sourceEvent;2===t.buttons||t.ctrlKey||(D="touchmove"===t.type?t.changedTouches[0].clientY:t.clientY,q(U=function(t,e,r){var n=(r-e)/j+t;return i.constrain(n,0,N)}(R,z,D),F,j))}));O.call(V);var H=n.behavior.drag().on("dragstart",(function(){var t=n.event.sourceEvent;"touchstart"===t.type&&(z=t.changedTouches[0].clientY,R=U)})).on("drag",(function(){var t=n.event.sourceEvent;"touchmove"===t.type&&(D=t.changedTouches[0].clientY,q(U=function(t,e,r){var n=(e-r)/j+t;return i.constrain(n,0,N)}(R,z,D),F,j))}));C.call(H)}if(t._context.edits.legendPosition)T.classed("cursor-move",!0),l.init({element:T.node(),gd:t,prepFn:function(){var t=c.getTranslate(T);m=t.x,y=t.y},moveFn:function(t,r){var n=m+t,i=y+r;c.setTranslate(T,n,i),s=l.align(n,0,x.l,x.l+x.w,e.xanchor),u=l.align(i,0,x.t+x.h,x.t,e.yanchor)},doneFn:function(){void 0!==s&&void 0!==u&&o.call("_guiRelayout",t,{"legend.x":s,"legend.y":u})},clickFn:function(e,n){var i=r.selectAll("g.traces").filter((function(){var t=this.getBoundingClientRect();return n.clientX>=t.left&&n.clientX<=t.right&&n.clientY>=t.top&&n.clientY<=t.bottom}));i.size()>0&&_(t,T,i,e,n)}})}function q(r,n,i){e._scrollY=t._fullLayout.legend._scrollY=r,c.setTranslate(C,0,-r),c.setRect(O,e._width,p.scrollBarMargin+r*i,p.scrollBarWidth,n),E.select("rect").attr("y",b+r)}}],t)}(t,e)}},{"../../constants/alignment":744,"../../lib":776,"../../lib/events":765,"../../lib/svg_text_utils":802,"../../plots/plots":890,"../../registry":904,"../color":639,"../dragelement":658,"../drawing":661,"./constants":690,"./get_legend_data":693,"./handle_click":694,"./helpers":695,"./style":697,"@plotly/d3":58}],693:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("./helpers");e.exports=function(t,e){var r,a,o=e._inHover,s=i.isGrouped(e),l=i.isReversed(e),c={},u=[],f=!1,h={},p=0,d=0;function m(t,r){if(""!==t&&i.isGrouped(e))-1===u.indexOf(t)?(u.push(t),f=!0,c[t]=[r]):c[t].push(r);else{var n="~~i"+p;u.push(n),c[n]=[r],p++}}for(r=0;rA&&(k=A)}w[r][0]._groupMinRank=k,w[r][0]._preGroupSort=r}var M=function(t,e){return t.trace.legendrank-e.trace.legendrank||t._preSort-e._preSort};for(w.forEach((function(t,e){t[0]._preGroupSort=e})),w.sort((function(t,e){return t[0]._groupMinRank-e[0]._groupMinRank||t[0]._preGroupSort-e[0]._preGroupSort})),r=0;rr?r:t}e.exports=function(t,e,r){var v=e._fullLayout;r||(r=v.legend);var y="constant"===r.itemsizing,x=r.itemwidth,b=(x+2*p.itemGap)/2,_=o(b,0),w=function(t,e,r,n){var i;if(t+1)i=t;else{if(!(e&&e.width>0))return 0;i=e.width}return y?n:Math.min(i,r)};function T(t,a,o){var u=t[0].trace,f=u.marker||{},h=f.line||{},p=o?u.visible&&u.type===o:i.traceIs(u,"bar"),d=n.select(a).select("g.legendpoints").selectAll("path.legend"+o).data(p?[t]:[]);d.enter().append("path").classed("legend"+o,!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),d.exit().remove(),d.each((function(t){var i=n.select(this),a=t[0],o=w(a.mlw,f.line,5,2);i.style("stroke-width",o+"px");var p=a.mcc;if(!r._inHover&&"mc"in a){var d=c(f),m=d.mid;void 0===m&&(m=(d.max+d.min)/2),p=s.tryColorscale(f,"")(m)}var v=p||a.mc||f.color,y=f.pattern,x=y&&s.getPatternAttr(y.shape,0,"");if(x){var b=s.getPatternAttr(y.bgcolor,0,null),_=s.getPatternAttr(y.fgcolor,0,null),T=y.fgopacity,k=g(y.size,8,10),A=g(y.solidity,.5,1),M="legend-"+u.uid;i.call(s.pattern,"legend",e,M,x,k,A,p,y.fillmode,b,_,T)}else i.call(l.fill,v);o&&l.stroke(i,a.mlc||h.color)}))}function k(t,e,r){var o=t[0],s=o.trace,l=r?s.visible&&s.type===r:i.traceIs(s,r),c=n.select(e).select("g.legendpoints").selectAll("path.legend"+r).data(l?[t]:[]);if(c.enter().append("path").classed("legend"+r,!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),c.exit().remove(),c.size()){var u=(s.marker||{}).line,p=w(h(u.width,o.pts),u,5,2),d=a.minExtend(s,{marker:{line:{width:p}}});d.marker.line.color=u.color;var m=a.minExtend(o,{trace:d});f(c,m,d)}}t.each((function(t){var e=n.select(this),i=a.ensureSingle(e,"g","layers");i.style("opacity",t[0].trace.opacity);var s=r.valign,l=t[0].lineHeight,c=t[0].height;if("middle"!==s&&l&&c){var u={top:1,bottom:-1}[s]*(.5*(l-c+3));i.attr("transform",o(0,u))}else i.attr("transform",null);i.selectAll("g.legendfill").data([t]).enter().append("g").classed("legendfill",!0),i.selectAll("g.legendlines").data([t]).enter().append("g").classed("legendlines",!0);var f=i.selectAll("g.legendsymbols").data([t]);f.enter().append("g").classed("legendsymbols",!0),f.selectAll("g.legendpoints").data([t]).enter().append("g").classed("legendpoints",!0)})).each((function(t){var r,i=t[0].trace,o=[];if(i.visible)switch(i.type){case"histogram2d":case"heatmap":o=[["M-15,-2V4H15V-2Z"]],r=!0;break;case"choropleth":case"choroplethmapbox":o=[["M-6,-6V6H6V-6Z"]],r=!0;break;case"densitymapbox":o=[["M-6,0 a6,6 0 1,0 12,0 a 6,6 0 1,0 -12,0"]],r="radial";break;case"cone":o=[["M-6,2 A2,2 0 0,0 -6,6 V6L6,4Z"],["M-6,-6 A2,2 0 0,0 -6,-2 L6,-4Z"],["M-6,-2 A2,2 0 0,0 -6,2 L6,0Z"]],r=!1;break;case"streamtube":o=[["M-6,2 A2,2 0 0,0 -6,6 H6 A2,2 0 0,1 6,2 Z"],["M-6,-6 A2,2 0 0,0 -6,-2 H6 A2,2 0 0,1 6,-6 Z"],["M-6,-2 A2,2 0 0,0 -6,2 H6 A2,2 0 0,1 6,-2 Z"]],r=!1;break;case"surface":o=[["M-6,-6 A2,3 0 0,0 -6,0 H6 A2,3 0 0,1 6,-6 Z"],["M-6,1 A2,3 0 0,1 -6,6 H6 A2,3 0 0,0 6,0 Z"]],r=!0;break;case"mesh3d":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6H6L0,6Z"]],r=!1;break;case"volume":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6H6L0,6Z"]],r=!0;break;case"isosurface":o=[["M-6,6H0L-6,-6Z"],["M6,6H0L6,-6Z"],["M-6,-6 A12,24 0 0,0 6,-6 L0,6Z"]],r=!1}var u=n.select(this).select("g.legendpoints").selectAll("path.legend3dandfriends").data(o);u.enter().append("path").classed("legend3dandfriends",!0).attr("transform",_).style("stroke-miterlimit",1),u.exit().remove(),u.each((function(t,o){var u,f=n.select(this),h=c(i),p=h.colorscale,m=h.reversescale;if(p){if(!r){var g=p.length;u=0===o?p[m?g-1:0][1]:1===o?p[m?0:g-1][1]:p[Math.floor((g-1)/2)][1]}}else{var v=i.vertexcolor||i.facecolor||i.color;u=a.isArrayOrTypedArray(v)?v[o]||v[0]:v}f.attr("d",t[0]),u?f.call(l.fill,u):f.call((function(t){if(t.size()){var n="legendfill-"+i.uid;s.gradient(t,e,n,d(m,"radial"===r),p,"fill")}}))}))})).each((function(t){var e=t[0].trace,r="waterfall"===e.type;if(t[0]._distinct&&r){var i=t[0].trace[t[0].dir].marker;return t[0].mc=i.color,t[0].mlw=i.line.width,t[0].mlc=i.line.color,T(t,this,"waterfall")}var a=[];e.visible&&r&&(a=t[0].hasTotals?[["increasing","M-6,-6V6H0Z"],["totals","M6,6H0L-6,-6H-0Z"],["decreasing","M6,6V-6H0Z"]]:[["increasing","M-6,-6V6H6Z"],["decreasing","M6,6V-6H-6Z"]]);var o=n.select(this).select("g.legendpoints").selectAll("path.legendwaterfall").data(a);o.enter().append("path").classed("legendwaterfall",!0).attr("transform",_).style("stroke-miterlimit",1),o.exit().remove(),o.each((function(t){var r=n.select(this),i=e[t[0]].marker,a=w(void 0,i.line,5,2);r.attr("d",t[1]).style("stroke-width",a+"px").call(l.fill,i.color),a&&r.call(l.stroke,i.line.color)}))})).each((function(t){T(t,this,"funnel")})).each((function(t){T(t,this)})).each((function(t){var r=t[0].trace,o=n.select(this).select("g.legendpoints").selectAll("path.legendbox").data(r.visible&&i.traceIs(r,"box-violin")?[t]:[]);o.enter().append("path").classed("legendbox",!0).attr("d","M6,6H-6V-6H6Z").attr("transform",_),o.exit().remove(),o.each((function(){var t=n.select(this);if("all"!==r.boxpoints&&"all"!==r.points||0!==l.opacity(r.fillcolor)||0!==l.opacity((r.line||{}).color)){var i=w(void 0,r.line,5,2);t.style("stroke-width",i+"px").call(l.fill,r.fillcolor),i&&l.stroke(t,r.line.color)}else{var c=a.minExtend(r,{marker:{size:y?12:a.constrain(r.marker.size,2,16),sizeref:1,sizemin:1,sizemode:"diameter"}});o.call(s.pointStyle,c,e)}}))})).each((function(t){k(t,this,"funnelarea")})).each((function(t){k(t,this,"pie")})).each((function(t){var r,i,o=m(t),l=o.showFill,f=o.showLine,h=o.showGradientLine,p=o.showGradientFill,g=o.anyFill,v=o.anyLine,y=t[0],b=y.trace,_=c(b),T=_.colorscale,k=_.reversescale,A=u.hasMarkers(b)||!g?"M5,0":v?"M5,-2":"M5,-3",M=n.select(this),S=M.select(".legendfill").selectAll("path").data(l||p?[t]:[]);if(S.enter().append("path").classed("js-fill",!0),S.exit().remove(),S.attr("d",A+"h"+x+"v6h-"+x+"z").call(l?s.fillGroupStyle:function(t){if(t.size()){var r="legendfill-"+b.uid;s.gradient(t,e,r,d(k),T,"fill")}}),f||h){var E=w(void 0,b.line,10,5);i=a.minExtend(b,{line:{width:E}}),r=[a.minExtend(y,{trace:i})]}var L=M.select(".legendlines").selectAll("path").data(f||h?[r]:[]);L.enter().append("path").classed("js-line",!0),L.exit().remove(),L.attr("d",A+(h?"l"+x+",0.0001":"h"+x)).call(f?s.lineGroupStyle:function(t){if(t.size()){var r="legendline-"+b.uid;s.lineGroupStyle(t),s.gradient(t,e,r,d(k),T,"stroke")}})})).each((function(t){var r,i,o=m(t),l=o.anyFill,c=o.anyLine,f=o.showLine,h=o.showMarker,p=t[0],d=p.trace,g=!h&&!c&&!l&&u.hasText(d);function v(t,e,r,n){var i=a.nestedProperty(d,t).get(),o=a.isArrayOrTypedArray(i)&&e?e(i):i;if(y&&o&&void 0!==n&&(o=n),r){if(or[1])return r[1]}return o}function x(t){return p._distinct&&p.index&&t[p.index]?t[p.index]:t[0]}if(h||g||f){var b={},w={};if(h){b.mc=v("marker.color",x),b.mx=v("marker.symbol",x),b.mo=v("marker.opacity",a.mean,[.2,1]),b.mlc=v("marker.line.color",x),b.mlw=v("marker.line.width",a.mean,[0,5],2),w.marker={sizeref:1,sizemin:1,sizemode:"diameter"};var T=v("marker.size",a.mean,[2,16],12);b.ms=T,w.marker.size=T}f&&(w.line={width:v("line.width",x,[0,10],5)}),g&&(b.tx="Aa",b.tp=v("textposition",x),b.ts=10,b.tc=v("textfont.color",x),b.tf=v("textfont.family",x)),r=[a.minExtend(p,b)],(i=a.minExtend(d,w)).selectedpoints=null,i.texttemplate=null}var k=n.select(this).select("g.legendpoints"),A=k.selectAll("path.scatterpts").data(h?r:[]);A.enter().insert("path",":first-child").classed("scatterpts",!0).attr("transform",_),A.exit().remove(),A.call(s.pointStyle,i,e),h&&(r[0].mrc=3);var M=k.selectAll("g.pointtext").data(g?r:[]);M.enter().append("g").classed("pointtext",!0).append("text").attr("transform",_),M.exit().remove(),M.selectAll("text").call(s.textPointStyle,i,e)})).each((function(t){var e=t[0].trace,r=n.select(this).select("g.legendpoints").selectAll("path.legendcandle").data(e.visible&&"candlestick"===e.type?[t,t]:[]);r.enter().append("path").classed("legendcandle",!0).attr("d",(function(t,e){return e?"M-15,0H-8M-8,6V-6H8Z":"M15,0H8M8,-6V6H-8Z"})).attr("transform",_).style("stroke-miterlimit",1),r.exit().remove(),r.each((function(t,r){var i=n.select(this),a=e[r?"increasing":"decreasing"],o=w(void 0,a.line,5,2);i.style("stroke-width",o+"px").call(l.fill,a.fillcolor),o&&l.stroke(i,a.line.color)}))})).each((function(t){var e=t[0].trace,r=n.select(this).select("g.legendpoints").selectAll("path.legendohlc").data(e.visible&&"ohlc"===e.type?[t,t]:[]);r.enter().append("path").classed("legendohlc",!0).attr("d",(function(t,e){return e?"M-15,0H0M-8,-6V0":"M15,0H0M8,6V0"})).attr("transform",_).style("stroke-miterlimit",1),r.exit().remove(),r.each((function(t,r){var i=n.select(this),a=e[r?"increasing":"decreasing"],o=w(void 0,a.line,5,2);i.style("fill","none").call(s.dashLine,a.line.dash,o),o&&l.stroke(i,a.line.color)}))}))}},{"../../lib":776,"../../registry":904,"../../traces/pie/helpers":1170,"../../traces/pie/style_one":1176,"../../traces/scatter/subtypes":1216,"../color":639,"../colorscale/helpers":650,"../drawing":661,"./constants":690,"@plotly/d3":58}],698:[function(t,e,r){"use strict";t("./constants");e.exports={editType:"modebar",orientation:{valType:"enumerated",values:["v","h"],dflt:"h",editType:"modebar"},bgcolor:{valType:"color",editType:"modebar"},color:{valType:"color",editType:"modebar"},activecolor:{valType:"color",editType:"modebar"},uirevision:{valType:"any",editType:"none"},add:{valType:"string",arrayOk:!0,dflt:"",editType:"modebar"},remove:{valType:"string",arrayOk:!0,dflt:"",editType:"modebar"}}},{"./constants":700}],699:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../plots/plots"),a=t("../../plots/cartesian/axis_ids"),o=t("../../fonts/ploticon"),s=t("../shapes/draw").eraseActiveShape,l=t("../../lib"),c=l._,u=e.exports={};function f(t,e){var r,i,o=e.currentTarget,s=o.getAttribute("data-attr"),l=o.getAttribute("data-val")||!0,c=t._fullLayout,u={},f=a.list(t,null,!0),h=c._cartesianSpikesEnabled;if("zoom"===s){var p,d="in"===l?.5:2,m=(1+d)/2,g=(1-d)/2;for(i=0;i1?(P=["toggleHover"],I=["resetViews"]):v?(C=["zoomInGeo","zoomOutGeo"],P=["hoverClosestGeo"],I=["resetGeo"]):g?(P=["hoverClosest3d"],I=["resetCameraDefault3d","resetCameraLastSave3d"]):w?(C=["zoomInMapbox","zoomOutMapbox"],P=["toggleHover"],I=["resetViewMapbox"]):b?P=["hoverClosestGl2d"]:y?P=["hoverClosestPie"]:k?(P=["hoverClosestCartesian","hoverCompareCartesian"],I=["resetViewSankey"]):P=["toggleHover"];m&&(P=["toggleSpikelines","hoverClosestCartesian","hoverCompareCartesian"]);(function(t){for(var e=0;e0)){var m=function(t,e,r){for(var n=r.filter((function(r){return e[r].anchor===t._id})),i=0,a=0;a=n.max)e=F[r+1];else if(t=n.pmax)e=F[r+1];else if(t0?h+c:c;return{ppad:c,ppadplus:u?d:m,ppadminus:u?m:d}}return{ppad:c}}function u(t,e,r,n,i){var s="category"===t.type||"multicategory"===t.type?t.r2c:t.d2c;if(void 0!==e)return[s(e),s(r)];if(n){var l,c,u,f,h=1/0,p=-1/0,d=n.match(a.segmentRE);for("date"===t.type&&(s=o.decodeDate(s)),l=0;lp&&(p=f)));return p>=h?[h,p]:void 0}}e.exports=function(t){var e=t._fullLayout,r=n.filterVisible(e.shapes);if(r.length&&t._fullData.length)for(var o=0;oy?(k=f,E="y0",A=y,L="y1"):(k=y,E="y1",A=f,L="y0");Z(n),Q(s,r),function(t,e,r){var n=e.xref,i=e.yref,o=a.getFromId(r,n),s=a.getFromId(r,i),l="";"paper"===n||o.autorange||(l+=n);"paper"===i||s.autorange||(l+=i);u.setClipUrl(t,l?"clip"+r._fullLayout._uid+l:null,r)}(e,r,t),X.moveFn="move"===O?J:K,X.altKey=n.altKey},doneFn:function(){if(v(t))return;p(e),$(s),b(e,t,r),n.call("_guiRelayout",t,l.getUpdateObj())},clickFn:function(){if(v(t))return;$(s)}};function Z(r){if(v(t))O=null;else if(R)O="path"===r.target.tagName?"move":"start-point"===r.target.attributes["data-line-point"].value?"resize-over-start-point":"resize-over-end-point";else{var n=X.element.getBoundingClientRect(),i=n.right-n.left,a=n.bottom-n.top,o=r.clientX-n.left,s=r.clientY-n.top,l=!F&&i>10&&a>10&&!r.shiftKey?h.getCursor(o/i,1-s/a):"move";p(e,l),O=l.split("-")[0]}}function J(n,i){if("path"===r.type){var a=function(t){return t},o=a,l=a;z?B("xanchor",r.xanchor=G(x+n)):(o=function(t){return G(H(t)+n)},N&&"date"===N.type&&(o=m.encodeDate(o))),D?B("yanchor",r.yanchor=Y(T+i)):(l=function(t){return Y(q(t)+i)},U&&"date"===U.type&&(l=m.encodeDate(l))),B("path",r.path=w(I,o,l))}else z?B("xanchor",r.xanchor=G(x+n)):(B("x0",r.x0=G(c+n)),B("x1",r.x1=G(g+n))),D?B("yanchor",r.yanchor=Y(T+i)):(B("y0",r.y0=Y(f+i)),B("y1",r.y1=Y(y+i)));e.attr("d",_(t,r)),Q(s,r)}function K(n,i){if(F){var a=function(t){return t},o=a,l=a;z?B("xanchor",r.xanchor=G(x+n)):(o=function(t){return G(H(t)+n)},N&&"date"===N.type&&(o=m.encodeDate(o))),D?B("yanchor",r.yanchor=Y(T+i)):(l=function(t){return Y(q(t)+i)},U&&"date"===U.type&&(l=m.encodeDate(l))),B("path",r.path=w(I,o,l))}else if(R){if("resize-over-start-point"===O){var u=c+n,h=D?f-i:f+i;B("x0",r.x0=z?u:G(u)),B("y0",r.y0=D?h:Y(h))}else if("resize-over-end-point"===O){var p=g+n,d=D?y-i:y+i;B("x1",r.x1=z?p:G(p)),B("y1",r.y1=D?d:Y(d))}}else{var v=function(t){return-1!==O.indexOf(t)},b=v("n"),j=v("s"),V=v("w"),W=v("e"),X=b?k+i:k,Z=j?A+i:A,J=V?M+n:M,K=W?S+n:S;D&&(b&&(X=k-i),j&&(Z=A-i)),(!D&&Z-X>10||D&&X-Z>10)&&(B(E,r[E]=D?X:Y(X)),B(L,r[L]=D?Z:Y(Z))),K-J>10&&(B(C,r[C]=z?J:G(J)),B(P,r[P]=z?K:G(K)))}e.attr("d",_(t,r)),Q(s,r)}function Q(t,e){(z||D)&&function(){var r="path"!==e.type,n=t.selectAll(".visual-cue").data([0]);n.enter().append("path").attr({fill:"#fff","fill-rule":"evenodd",stroke:"#000","stroke-width":1}).classed("visual-cue",!0);var a=H(z?e.xanchor:i.midRange(r?[e.x0,e.x1]:m.extractPathCoords(e.path,d.paramIsX))),o=q(D?e.yanchor:i.midRange(r?[e.y0,e.y1]:m.extractPathCoords(e.path,d.paramIsY)));if(a=m.roundPositionForSharpStrokeRendering(a,1),o=m.roundPositionForSharpStrokeRendering(o,1),z&&D){var s="M"+(a-1-1)+","+(o-1-1)+"h-8v2h8 v8h2v-8 h8v-2h-8 v-8h-2 Z";n.attr("d",s)}else if(z){var l="M"+(a-1-1)+","+(o-9-1)+"v18 h2 v-18 Z";n.attr("d",l)}else{var c="M"+(a-9-1)+","+(o-1-1)+"h18 v2 h-18 Z";n.attr("d",c)}}()}function $(t){t.selectAll(".visual-cue").remove()}h.init(X),W.node().onmousemove=Z}(t,z,l,e,r,O):!0===l.editable&&z.style("pointer-events",P||c.opacity(S)*M<=.5?"stroke":"all");z.node().addEventListener("click",(function(){return function(t,e){if(!y(t))return;var r=+e.node().getAttribute("data-index");if(r>=0){if(r===t._fullLayout._activeShapeIndex)return void T(t);t._fullLayout._activeShapeIndex=r,t._fullLayout._deactivateShape=T,g(t)}}(t,z)}))}}function b(t,e,r){var n=(r.xref+r.yref).replace(/paper/g,"").replace(/[xyz][1-9]* *domain/g,"");u.setClipUrl(t,n?"clip"+e._fullLayout._uid+n:null,e)}function _(t,e){var r,n,o,s,l,c,u,f,h=e.type,p=a.getRefType(e.xref),g=a.getRefType(e.yref),v=a.getFromId(t,e.xref),y=a.getFromId(t,e.yref),x=t._fullLayout._size;if(v?"domain"===p?n=function(t){return v._offset+v._length*t}:(r=m.shapePositionToRange(v),n=function(t){return v._offset+v.r2p(r(t,!0))}):n=function(t){return x.l+x.w*t},y?"domain"===g?s=function(t){return y._offset+y._length*(1-t)}:(o=m.shapePositionToRange(y),s=function(t){return y._offset+y.r2p(o(t,!0))}):s=function(t){return x.t+x.h*(1-t)},"path"===h)return v&&"date"===v.type&&(n=m.decodeDate(n)),y&&"date"===y.type&&(s=m.decodeDate(s)),function(t,e,r){var n=t.path,a=t.xsizemode,o=t.ysizemode,s=t.xanchor,l=t.yanchor;return n.replace(d.segmentRE,(function(t){var n=0,c=t.charAt(0),u=d.paramIsX[c],f=d.paramIsY[c],h=d.numParams[c],p=t.substr(1).replace(d.paramRE,(function(t){return u[n]?t="pixel"===a?e(s)+Number(t):e(t):f[n]&&(t="pixel"===o?r(l)-Number(t):r(t)),++n>h&&(t="X"),t}));return n>h&&(p=p.replace(/[\s,]*X.*/,""),i.log("Ignoring extra params in segment "+t)),c+p}))}(e,n,s);if("pixel"===e.xsizemode){var b=n(e.xanchor);l=b+e.x0,c=b+e.x1}else l=n(e.x0),c=n(e.x1);if("pixel"===e.ysizemode){var _=s(e.yanchor);u=_-e.y0,f=_-e.y1}else u=s(e.y0),f=s(e.y1);if("line"===h)return"M"+l+","+u+"L"+c+","+f;if("rect"===h)return"M"+l+","+u+"H"+c+"V"+f+"H"+l+"Z";var w=(l+c)/2,T=(u+f)/2,k=Math.abs(w-l),A=Math.abs(T-u),M="A"+k+","+A,S=w+k+","+T;return"M"+S+M+" 0 1,1 "+(w+","+(T-A))+M+" 0 0,1 "+S+"Z"}function w(t,e,r){return t.replace(d.segmentRE,(function(t){var n=0,i=t.charAt(0),a=d.paramIsX[i],o=d.paramIsY[i],s=d.numParams[i];return i+t.substr(1).replace(d.paramRE,(function(t){return n>=s||(a[n]?t=e(t):o[n]&&(t=r(t)),n++),t}))}))}function T(t){y(t)&&(t._fullLayout._activeShapeIndex>=0&&(l(t),delete t._fullLayout._activeShapeIndex,g(t)))}e.exports={draw:g,drawOne:x,eraseActiveShape:function(t){if(!y(t))return;l(t);var e=t._fullLayout._activeShapeIndex,r=(t.layout||{}).shapes||[];if(e=0&&f(v),r.attr("d",m(e)),A&&!h)&&(k=function(t,e){for(var r=0;r1&&(2!==t.length||"Z"!==t[1][0])&&(0===T&&(t[0][0]="M"),e[w]=t,y(),x())}}()}}function I(t,r){!function(t,r){if(e.length)for(var n=0;n0&&l0&&(s=s.transition().duration(e.transition.duration).ease(e.transition.easing)),s.attr("transform",l(o-.5*f.gripWidth,e._dims.currentValueTotalHeight))}}function E(t,e){var r=t._dims;return r.inputAreaStart+f.stepInset+(r.inputAreaLength-2*f.stepInset)*Math.min(1,Math.max(0,e))}function L(t,e){var r=t._dims;return Math.min(1,Math.max(0,(e-f.stepInset-r.inputAreaStart)/(r.inputAreaLength-2*f.stepInset-2*r.inputAreaStart)))}function C(t,e,r){var n=r._dims,i=s.ensureSingle(t,"rect",f.railTouchRectClass,(function(n){n.call(A,e,t,r).style("pointer-events","all")}));i.attr({width:n.inputAreaLength,height:Math.max(n.inputAreaWidth,f.tickOffset+r.ticklen+n.labelHeight)}).call(a.fill,r.bgcolor).attr("opacity",0),o.setTranslate(i,0,n.currentValueTotalHeight)}function P(t,e){var r=e._dims,n=r.inputAreaLength-2*f.railInset,i=s.ensureSingle(t,"rect",f.railRectClass);i.attr({width:n,height:f.railWidth,rx:f.railRadius,ry:f.railRadius,"shape-rendering":"crispEdges"}).call(a.stroke,e.bordercolor).call(a.fill,e.bgcolor).style("stroke-width",e.borderwidth+"px"),o.setTranslate(i,f.railInset,.5*(r.inputAreaWidth-f.railWidth)+r.currentValueTotalHeight)}e.exports=function(t){var e=t._fullLayout,r=function(t,e){for(var r=t[f.name],n=[],i=0;i0?[0]:[]);function s(e){e._commandObserver&&(e._commandObserver.remove(),delete e._commandObserver),i.autoMargin(t,g(e))}if(a.enter().append("g").classed(f.containerClassName,!0).style("cursor","ew-resize"),a.exit().each((function(){n.select(this).selectAll("g."+f.groupClassName).each(s)})).remove(),0!==r.length){var l=a.selectAll("g."+f.groupClassName).data(r,v);l.enter().append("g").classed(f.groupClassName,!0),l.exit().each(s).remove();for(var c=0;c0||h<0){var v={left:[-d,0],right:[d,0],top:[0,-d],bottom:[0,d]}[b.side];e.attr("transform",l(v[0],v[1]))}}}return D.call(R),O&&(E?D.on(".opacity",null):(A=0,M=!0,D.text(y).on("mouseover.opacity",(function(){n.select(this).transition().duration(h.SHOW_PLACEHOLDER).style("opacity",1)})).on("mouseout.opacity",(function(){n.select(this).transition().duration(h.HIDE_PLACEHOLDER).style("opacity",0)}))),D.call(f.makeEditable,{gd:t}).on("edit",(function(e){void 0!==x?o.call("_guiRestyle",t,v,e,x):o.call("_guiRelayout",t,v,e)})).on("cancel",(function(){this.text(this.attr("data-unformatted")).call(R)})).on("input",(function(t){this.text(t||" ").call(f.positionText,_.x,_.y)}))),D.classed("js-placeholder",M),T}}},{"../../constants/alignment":744,"../../constants/interactions":751,"../../lib":776,"../../lib/svg_text_utils":802,"../../plots/plots":890,"../../registry":904,"../color":639,"../drawing":661,"@plotly/d3":58,"fast-isnumeric":242}],738:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("../color/attributes"),a=t("../../lib/extend").extendFlat,o=t("../../plot_api/edit_types").overrideAll,s=t("../../plots/pad_attributes"),l=t("../../plot_api/plot_template").templatedArray,c=l("button",{visible:{valType:"boolean"},method:{valType:"enumerated",values:["restyle","relayout","animate","update","skip"],dflt:"restyle"},args:{valType:"info_array",freeLength:!0,items:[{valType:"any"},{valType:"any"},{valType:"any"}]},args2:{valType:"info_array",freeLength:!0,items:[{valType:"any"},{valType:"any"},{valType:"any"}]},label:{valType:"string",dflt:""},execute:{valType:"boolean",dflt:!0}});e.exports=o(l("updatemenu",{_arrayAttrRegexps:[/^updatemenus\[(0|[1-9][0-9]+)\]\.buttons/],visible:{valType:"boolean"},type:{valType:"enumerated",values:["dropdown","buttons"],dflt:"dropdown"},direction:{valType:"enumerated",values:["left","right","up","down"],dflt:"down"},active:{valType:"integer",min:-1,dflt:0},showactive:{valType:"boolean",dflt:!0},buttons:c,x:{valType:"number",min:-2,max:3,dflt:-.05},xanchor:{valType:"enumerated",values:["auto","left","center","right"],dflt:"right"},y:{valType:"number",min:-2,max:3,dflt:1},yanchor:{valType:"enumerated",values:["auto","top","middle","bottom"],dflt:"top"},pad:a(s({editType:"arraydraw"}),{}),font:n({}),bgcolor:{valType:"color"},bordercolor:{valType:"color",dflt:i.borderLine},borderwidth:{valType:"number",min:0,dflt:1,editType:"arraydraw"}}),"arraydraw","from-root")},{"../../lib/extend":766,"../../plot_api/edit_types":809,"../../plot_api/plot_template":816,"../../plots/font_attributes":856,"../../plots/pad_attributes":889,"../color/attributes":638}],739:[function(t,e,r){"use strict";e.exports={name:"updatemenus",containerClassName:"updatemenu-container",headerGroupClassName:"updatemenu-header-group",headerClassName:"updatemenu-header",headerArrowClassName:"updatemenu-header-arrow",dropdownButtonGroupClassName:"updatemenu-dropdown-button-group",dropdownButtonClassName:"updatemenu-dropdown-button",buttonClassName:"updatemenu-button",itemRectClassName:"updatemenu-item-rect",itemTextClassName:"updatemenu-item-text",menuIndexAttrName:"updatemenu-active-index",autoMarginIdRoot:"updatemenu-",blankHeaderOpts:{label:" "},minWidth:30,minHeight:30,textPadX:24,arrowPadX:16,rx:2,ry:2,textOffsetX:12,textOffsetY:3,arrowOffsetX:4,gapButtonHeader:5,gapButton:2,activeColor:"#F4FAFF",hoverColor:"#F4FAFF",arrowSymbol:{left:"\u25c4",right:"\u25ba",up:"\u25b2",down:"\u25bc"}}},{}],740:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/array_container_defaults"),a=t("./attributes"),o=t("./constants").name,s=a.buttons;function l(t,e,r){function o(r,i){return n.coerce(t,e,a,r,i)}o("visible",i(t,e,{name:"buttons",handleItemDefaults:c}).length>0)&&(o("active"),o("direction"),o("type"),o("showactive"),o("x"),o("y"),n.noneOrAll(t,e,["x","y"]),o("xanchor"),o("yanchor"),o("pad.t"),o("pad.r"),o("pad.b"),o("pad.l"),n.coerceFont(o,"font",r.font),o("bgcolor",r.paper_bgcolor),o("bordercolor"),o("borderwidth"))}function c(t,e){function r(r,i){return n.coerce(t,e,s,r,i)}r("visible","skip"===t.method||Array.isArray(t.args))&&(r("method"),r("args"),r("args2"),r("label"),r("execute"))}e.exports=function(t,e){i(t,e,{name:o,handleItemDefaults:l})}},{"../../lib":776,"../../plots/array_container_defaults":822,"./attributes":738,"./constants":739}],741:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../plots/plots"),a=t("../color"),o=t("../drawing"),s=t("../../lib"),l=t("../../lib/svg_text_utils"),c=t("../../plot_api/plot_template").arrayEditor,u=t("../../constants/alignment").LINE_SPACING,f=t("./constants"),h=t("./scrollbox");function p(t){return t._index}function d(t,e){return+t.attr(f.menuIndexAttrName)===e._index}function m(t,e,r,n,i,a,o,s){e.active=o,c(t.layout,f.name,e).applyUpdate("active",o),"buttons"===e.type?v(t,n,null,null,e):"dropdown"===e.type&&(i.attr(f.menuIndexAttrName,"-1"),g(t,n,i,a,e),s||v(t,n,i,a,e))}function g(t,e,r,n,i){var a=s.ensureSingle(e,"g",f.headerClassName,(function(t){t.style("pointer-events","all")})),l=i._dims,c=i.active,u=i.buttons[c]||f.blankHeaderOpts,h={y:i.pad.t,yPad:0,x:i.pad.l,xPad:0,index:0},p={width:l.headerWidth,height:l.headerHeight};a.call(y,i,u,t).call(M,i,h,p),s.ensureSingle(e,"text",f.headerArrowClassName,(function(t){t.attr("text-anchor","end").call(o.font,i.font).text(f.arrowSymbol[i.direction])})).attr({x:l.headerWidth-f.arrowOffsetX+i.pad.l,y:l.headerHeight/2+f.textOffsetY+i.pad.t}),a.on("click",(function(){r.call(S,String(d(r,i)?-1:i._index)),v(t,e,r,n,i)})),a.on("mouseover",(function(){a.call(w)})),a.on("mouseout",(function(){a.call(T,i)})),o.setTranslate(e,l.lx,l.ly)}function v(t,e,r,a,o){r||(r=e).attr("pointer-events","all");var l=function(t){return-1==+t.attr(f.menuIndexAttrName)}(r)&&"buttons"!==o.type?[]:o.buttons,c="dropdown"===o.type?f.dropdownButtonClassName:f.buttonClassName,u=r.selectAll("g."+c).data(s.filterVisible(l)),h=u.enter().append("g").classed(c,!0),p=u.exit();"dropdown"===o.type?(h.attr("opacity","0").transition().attr("opacity","1"),p.transition().attr("opacity","0").remove()):p.remove();var d=0,g=0,v=o._dims,x=-1!==["up","down"].indexOf(o.direction);"dropdown"===o.type&&(x?g=v.headerHeight+f.gapButtonHeader:d=v.headerWidth+f.gapButtonHeader),"dropdown"===o.type&&"up"===o.direction&&(g=-f.gapButtonHeader+f.gapButton-v.openHeight),"dropdown"===o.type&&"left"===o.direction&&(d=-f.gapButtonHeader+f.gapButton-v.openWidth);var b={x:v.lx+d+o.pad.l,y:v.ly+g+o.pad.t,yPad:f.gapButton,xPad:f.gapButton,index:0},k={l:b.x+o.borderwidth,t:b.y+o.borderwidth};u.each((function(s,l){var c=n.select(this);c.call(y,o,s,t).call(M,o,b),c.on("click",(function(){n.event.defaultPrevented||(s.execute&&(s.args2&&o.active===l?(m(t,o,0,e,r,a,-1),i.executeAPICommand(t,s.method,s.args2)):(m(t,o,0,e,r,a,l),i.executeAPICommand(t,s.method,s.args))),t.emit("plotly_buttonclicked",{menu:o,button:s,active:o.active}))})),c.on("mouseover",(function(){c.call(w)})),c.on("mouseout",(function(){c.call(T,o),u.call(_,o)}))})),u.call(_,o),x?(k.w=Math.max(v.openWidth,v.headerWidth),k.h=b.y-k.t):(k.w=b.x-k.l,k.h=Math.max(v.openHeight,v.headerHeight)),k.direction=o.direction,a&&(u.size()?function(t,e,r,n,i,a){var o,s,l,c=i.direction,u="up"===c||"down"===c,h=i._dims,p=i.active;if(u)for(s=0,l=0;l0?[0]:[]);if(o.enter().append("g").classed(f.containerClassName,!0).style("cursor","pointer"),o.exit().each((function(){n.select(this).selectAll("g."+f.headerGroupClassName).each(a)})).remove(),0!==r.length){var l=o.selectAll("g."+f.headerGroupClassName).data(r,p);l.enter().append("g").classed(f.headerGroupClassName,!0);for(var c=s.ensureSingle(o,"g",f.dropdownButtonGroupClassName,(function(t){t.style("pointer-events","all")})),u=0;uw,A=s.barLength+2*s.barPad,M=s.barWidth+2*s.barPad,S=d,E=g+v;E+M>c&&(E=c-M);var L=this.container.selectAll("rect.scrollbar-horizontal").data(k?[0]:[]);L.exit().on(".drag",null).remove(),L.enter().append("rect").classed("scrollbar-horizontal",!0).call(i.fill,s.barColor),k?(this.hbar=L.attr({rx:s.barRadius,ry:s.barRadius,x:S,y:E,width:A,height:M}),this._hbarXMin=S+A/2,this._hbarTranslateMax=w-A):(delete this.hbar,delete this._hbarXMin,delete this._hbarTranslateMax);var C=v>T,P=s.barWidth+2*s.barPad,I=s.barLength+2*s.barPad,O=d+m,z=g;O+P>l&&(O=l-P);var D=this.container.selectAll("rect.scrollbar-vertical").data(C?[0]:[]);D.exit().on(".drag",null).remove(),D.enter().append("rect").classed("scrollbar-vertical",!0).call(i.fill,s.barColor),C?(this.vbar=D.attr({rx:s.barRadius,ry:s.barRadius,x:O,y:z,width:P,height:I}),this._vbarYMin=z+I/2,this._vbarTranslateMax=T-I):(delete this.vbar,delete this._vbarYMin,delete this._vbarTranslateMax);var R=this.id,F=u-.5,B=C?f+P+.5:f+.5,N=h-.5,j=k?p+M+.5:p+.5,U=o._topdefs.selectAll("#"+R).data(k||C?[0]:[]);if(U.exit().remove(),U.enter().append("clipPath").attr("id",R).append("rect"),k||C?(this._clipRect=U.select("rect").attr({x:Math.floor(F),y:Math.floor(N),width:Math.ceil(B)-Math.floor(F),height:Math.ceil(j)-Math.floor(N)}),this.container.call(a.setClipUrl,R,this.gd),this.bg.attr({x:d,y:g,width:m,height:v})):(this.bg.attr({width:0,height:0}),this.container.on("wheel",null).on(".drag",null).call(a.setClipUrl,null),delete this._clipRect),k||C){var V=n.behavior.drag().on("dragstart",(function(){n.event.sourceEvent.preventDefault()})).on("drag",this._onBoxDrag.bind(this));this.container.on("wheel",null).on("wheel",this._onBoxWheel.bind(this)).on(".drag",null).call(V);var H=n.behavior.drag().on("dragstart",(function(){n.event.sourceEvent.preventDefault(),n.event.sourceEvent.stopPropagation()})).on("drag",this._onBarDrag.bind(this));k&&this.hbar.on(".drag",null).call(H),C&&this.vbar.on(".drag",null).call(H)}this.setTranslate(e,r)},s.prototype.disable=function(){(this.hbar||this.vbar)&&(this.bg.attr({width:0,height:0}),this.container.on("wheel",null).on(".drag",null).call(a.setClipUrl,null),delete this._clipRect),this.hbar&&(this.hbar.on(".drag",null),this.hbar.remove(),delete this.hbar,delete this._hbarXMin,delete this._hbarTranslateMax),this.vbar&&(this.vbar.on(".drag",null),this.vbar.remove(),delete this.vbar,delete this._vbarYMin,delete this._vbarTranslateMax)},s.prototype._onBoxDrag=function(){var t=this.translateX,e=this.translateY;this.hbar&&(t-=n.event.dx),this.vbar&&(e-=n.event.dy),this.setTranslate(t,e)},s.prototype._onBoxWheel=function(){var t=this.translateX,e=this.translateY;this.hbar&&(t+=n.event.deltaY),this.vbar&&(e+=n.event.deltaY),this.setTranslate(t,e)},s.prototype._onBarDrag=function(){var t=this.translateX,e=this.translateY;if(this.hbar){var r=t+this._hbarXMin,i=r+this._hbarTranslateMax;t=(o.constrain(n.event.x,r,i)-r)/(i-r)*(this.position.w-this._box.w)}if(this.vbar){var a=e+this._vbarYMin,s=a+this._vbarTranslateMax;e=(o.constrain(n.event.y,a,s)-a)/(s-a)*(this.position.h-this._box.h)}this.setTranslate(t,e)},s.prototype.setTranslate=function(t,e){var r=this.position.w-this._box.w,n=this.position.h-this._box.h;if(t=o.constrain(t||0,0,r),e=o.constrain(e||0,0,n),this.translateX=t,this.translateY=e,this.container.call(a.setTranslate,this._box.l-this.position.l-t,this._box.t-this.position.t-e),this._clipRect&&this._clipRect.attr({x:Math.floor(this.position.l+t-.5),y:Math.floor(this.position.t+e-.5)}),this.hbar){var i=t/r;this.hbar.call(a.setTranslate,t+i*this._hbarTranslateMax,e)}if(this.vbar){var s=e/n;this.vbar.call(a.setTranslate,t,e+s*this._vbarTranslateMax)}}},{"../../lib":776,"../color":639,"../drawing":661,"@plotly/d3":58}],744:[function(t,e,r){"use strict";e.exports={FROM_BL:{left:0,center:.5,right:1,bottom:0,middle:.5,top:1},FROM_TL:{left:0,center:.5,right:1,bottom:1,middle:.5,top:0},FROM_BR:{left:1,center:.5,right:0,bottom:0,middle:.5,top:1},LINE_SPACING:1.3,CAP_SHIFT:.7,MID_SHIFT:.35,OPPOSITE_SIDE:{left:"right",right:"left",top:"bottom",bottom:"top"}}},{}],745:[function(t,e,r){"use strict";e.exports={axisRefDescription:function(t,e,r){return["If set to a",t,"axis id (e.g. *"+t+"* or","*"+t+"2*), the `"+t+"` position refers to a",t,"coordinate. If set to *paper*, the `"+t+"`","position refers to the distance from the",e,"of the plotting","area in normalized coordinates where *0* (*1*) corresponds to the",e,"("+r+"). If set to a",t,"axis ID followed by","*domain* (separated by a space), the position behaves like for","*paper*, but refers to the distance in fractions of the domain","length from the",e,"of the domain of that axis: e.g.,","*"+t+"2 domain* refers to the domain of the second",t," axis and a",t,"position of 0.5 refers to the","point between the",e,"and the",r,"of the domain of the","second",t,"axis."].join(" ")}}},{}],746:[function(t,e,r){"use strict";e.exports={INCREASING:{COLOR:"#3D9970",SYMBOL:"\u25b2"},DECREASING:{COLOR:"#FF4136",SYMBOL:"\u25bc"}}},{}],747:[function(t,e,r){"use strict";e.exports={FORMAT_LINK:"https://github.com/d3/d3-format/tree/v1.4.5#d3-format",DATE_FORMAT_LINK:"https://github.com/d3/d3-time-format/tree/v2.2.3#locale_format"}},{}],748:[function(t,e,r){"use strict";e.exports={COMPARISON_OPS:["=","!=","<",">=",">","<="],COMPARISON_OPS2:["=","<",">=",">","<="],INTERVAL_OPS:["[]","()","[)","(]","][",")(","](",")["],SET_OPS:["{}","}{"],CONSTRAINT_REDUCTION:{"=":"=","<":"<","<=":"<",">":">",">=":">","[]":"[]","()":"[]","[)":"[]","(]":"[]","][":"][",")(":"][","](":"][",")[":"]["}}},{}],749:[function(t,e,r){"use strict";e.exports={solid:[[],0],dot:[[.5,1],200],dash:[[.5,1],50],longdash:[[.5,1],10],dashdot:[[.5,.625,.875,1],50],longdashdot:[[.5,.7,.8,1],10]}},{}],750:[function(t,e,r){"use strict";e.exports={circle:"\u25cf","circle-open":"\u25cb",square:"\u25a0","square-open":"\u25a1",diamond:"\u25c6","diamond-open":"\u25c7",cross:"+",x:"\u274c"}},{}],751:[function(t,e,r){"use strict";e.exports={SHOW_PLACEHOLDER:100,HIDE_PLACEHOLDER:1e3,DESELECTDIM:.2}},{}],752:[function(t,e,r){"use strict";e.exports={BADNUM:void 0,FP_SAFE:1e-4*Number.MAX_VALUE,ONEMAXYEAR:316224e5,ONEAVGYEAR:315576e5,ONEMINYEAR:31536e6,ONEMAXQUARTER:79488e5,ONEAVGQUARTER:78894e5,ONEMINQUARTER:76896e5,ONEMAXMONTH:26784e5,ONEAVGMONTH:26298e5,ONEMINMONTH:24192e5,ONEWEEK:6048e5,ONEDAY:864e5,ONEHOUR:36e5,ONEMIN:6e4,ONESEC:1e3,EPOCHJD:2440587.5,ALMOST_EQUAL:.999999,LOG_CLIP:10,MINUS_SIGN:"\u2212"}},{}],753:[function(t,e,r){"use strict";r.xmlns="http://www.w3.org/2000/xmlns/",r.svg="http://www.w3.org/2000/svg",r.xlink="http://www.w3.org/1999/xlink",r.svgAttrs={xmlns:r.svg,"xmlns:xlink":r.xlink}},{}],754:[function(t,e,r){"use strict";r.version=t("./version").version,t("native-promise-only"),t("../build/plotcss");for(var n=t("./registry"),i=r.register=n.register,a=t("./plot_api"),o=Object.keys(a),s=0;splotly-logomark"}}},{}],756:[function(t,e,r){"use strict";r.isLeftAnchor=function(t){return"left"===t.xanchor||"auto"===t.xanchor&&t.x<=1/3},r.isCenterAnchor=function(t){return"center"===t.xanchor||"auto"===t.xanchor&&t.x>1/3&&t.x<2/3},r.isRightAnchor=function(t){return"right"===t.xanchor||"auto"===t.xanchor&&t.x>=2/3},r.isTopAnchor=function(t){return"top"===t.yanchor||"auto"===t.yanchor&&t.y>=2/3},r.isMiddleAnchor=function(t){return"middle"===t.yanchor||"auto"===t.yanchor&&t.y>1/3&&t.y<2/3},r.isBottomAnchor=function(t){return"bottom"===t.yanchor||"auto"===t.yanchor&&t.y<=1/3}},{}],757:[function(t,e,r){"use strict";var n=t("./mod"),i=n.mod,a=n.modHalf,o=Math.PI,s=2*o;function l(t){return Math.abs(t[1]-t[0])>s-1e-14}function c(t,e){return a(e-t,s)}function u(t,e){if(l(e))return!0;var r,n;e[0](n=i(n,s))&&(n+=s);var a=i(t,s),o=a+s;return a>=r&&a<=n||o>=r&&o<=n}function f(t,e,r,n,i,a,c){i=i||0,a=a||0;var u,f,h,p,d,m=l([r,n]);function g(t,e){return[t*Math.cos(e)+i,a-t*Math.sin(e)]}m?(u=0,f=o,h=s):r=i&&t<=a);var i,a},pathArc:function(t,e,r,n,i){return f(null,t,e,r,n,i,0)},pathSector:function(t,e,r,n,i){return f(null,t,e,r,n,i,1)},pathAnnulus:function(t,e,r,n,i,a){return f(t,e,r,n,i,a,1)}}},{"./mod":783}],758:[function(t,e,r){"use strict";var n=Array.isArray,i="undefined"!=typeof ArrayBuffer&&ArrayBuffer.isView?ArrayBuffer:{isView:function(){return!1}},a="undefined"==typeof DataView?function(){}:DataView;function o(t){return i.isView(t)&&!(t instanceof a)}function s(t){return n(t)||o(t)}function l(t,e,r){if(s(t)){if(s(t[0])){for(var n=r,i=0;ii.max?e.set(r):e.set(+t)}},integer:{coerceFunction:function(t,e,r,i){t%1||!n(t)||void 0!==i.min&&ti.max?e.set(r):e.set(+t)}},string:{coerceFunction:function(t,e,r,n){if("string"!=typeof t){var i="number"==typeof t;!0!==n.strict&&i?e.set(String(t)):e.set(r)}else n.noBlank&&!t?e.set(r):e.set(t)}},color:{coerceFunction:function(t,e,r){i(t).isValid()?e.set(t):e.set(r)}},colorlist:{coerceFunction:function(t,e,r){Array.isArray(t)&&t.length&&t.every((function(t){return i(t).isValid()}))?e.set(t):e.set(r)}},colorscale:{coerceFunction:function(t,e,r){e.set(o.get(t,r))}},angle:{coerceFunction:function(t,e,r){"auto"===t?e.set("auto"):n(t)?e.set(f(+t,360)):e.set(r)}},subplotid:{coerceFunction:function(t,e,r,n){var i=n.regex||u(r);"string"==typeof t&&i.test(t)?e.set(t):e.set(r)},validateFunction:function(t,e){var r=e.dflt;return t===r||"string"==typeof t&&!!u(r).test(t)}},flaglist:{coerceFunction:function(t,e,r,n){if("string"==typeof t)if(-1===(n.extras||[]).indexOf(t)){for(var i=t.split("+"),a=0;a=n&&t<=i?t:u}if("string"!=typeof t&&"number"!=typeof t)return u;t=String(t);var c=_(e),v=t.charAt(0);!c||"G"!==v&&"g"!==v||(t=t.substr(1),e="");var w=c&&"chinese"===e.substr(0,7),T=t.match(w?x:y);if(!T)return u;var k=T[1],A=T[3]||"1",M=Number(T[5]||1),S=Number(T[7]||0),E=Number(T[9]||0),L=Number(T[11]||0);if(c){if(2===k.length)return u;var C;k=Number(k);try{var P=g.getComponentMethod("calendars","getCal")(e);if(w){var I="i"===A.charAt(A.length-1);A=parseInt(A,10),C=P.newDate(k,P.toMonthIndex(k,A,I),M)}else C=P.newDate(k,Number(A),M)}catch(t){return u}return C?(C.toJD()-m)*f+S*h+E*p+L*d:u}k=2===k.length?(Number(k)+2e3-b)%100+b:Number(k),A-=1;var O=new Date(Date.UTC(2e3,A,M,S,E));return O.setUTCFullYear(k),O.getUTCMonth()!==A||O.getUTCDate()!==M?u:O.getTime()+L*d},n=r.MIN_MS=r.dateTime2ms("-9999"),i=r.MAX_MS=r.dateTime2ms("9999-12-31 23:59:59.9999"),r.isDateTime=function(t,e){return r.dateTime2ms(t,e)!==u};var T=90*f,k=3*h,A=5*p;function M(t,e,r,n,i){if((e||r||n||i)&&(t+=" "+w(e,2)+":"+w(r,2),(n||i)&&(t+=":"+w(n,2),i))){for(var a=4;i%10==0;)a-=1,i/=10;t+="."+w(i,a)}return t}r.ms2DateTime=function(t,e,r){if("number"!=typeof t||!(t>=n&&t<=i))return u;e||(e=0);var a,o,s,c,y,x,b=Math.floor(10*l(t+.05,1)),w=Math.round(t-b/10);if(_(r)){var S=Math.floor(w/f)+m,E=Math.floor(l(t,f));try{a=g.getComponentMethod("calendars","getCal")(r).fromJD(S).formatDate("yyyy-mm-dd")}catch(t){a=v("G%Y-%m-%d")(new Date(w))}if("-"===a.charAt(0))for(;a.length<11;)a="-0"+a.substr(1);else for(;a.length<10;)a="0"+a;o=e=n+f&&t<=i-f))return u;var e=Math.floor(10*l(t+.05,1)),r=new Date(Math.round(t-e/10));return M(a("%Y-%m-%d")(r),r.getHours(),r.getMinutes(),r.getSeconds(),10*r.getUTCMilliseconds()+e)},r.cleanDate=function(t,e,n){if(t===u)return e;if(r.isJSDate(t)||"number"==typeof t&&isFinite(t)){if(_(n))return s.error("JS Dates and milliseconds are incompatible with world calendars",t),e;if(!(t=r.ms2DateTimeLocal(+t))&&void 0!==e)return e}else if(!r.isDateTime(t,n))return s.error("unrecognized date",t),e;return t};var S=/%\d?f/g,E=/%h/g,L={1:"1",2:"1",3:"2",4:"2"};function C(t,e,r,n){t=t.replace(S,(function(t){var r=Math.min(+t.charAt(1)||6,6);return(e/1e3%1+2).toFixed(r).substr(2).replace(/0+$/,"")||"0"}));var i=new Date(Math.floor(e+.05));if(t=t.replace(E,(function(){return L[r("%q")(i)]})),_(n))try{t=g.getComponentMethod("calendars","worldCalFmt")(t,e,n)}catch(t){return"Invalid"}return r(t)(i)}var P=[59,59.9,59.99,59.999,59.9999];r.formatDate=function(t,e,r,n,i,a){if(i=_(i)&&i,!e)if("y"===r)e=a.year;else if("m"===r)e=a.month;else{if("d"!==r)return function(t,e){var r=l(t+.05,f),n=w(Math.floor(r/h),2)+":"+w(l(Math.floor(r/p),60),2);if("M"!==e){o(e)||(e=0);var i=(100+Math.min(l(t/d,60),P[e])).toFixed(e).substr(1);e>0&&(i=i.replace(/0+$/,"").replace(/[\.]$/,"")),n+=":"+i}return n}(t,r)+"\n"+C(a.dayMonthYear,t,n,i);e=a.dayMonth+"\n"+a.year}return C(e,t,n,i)};var I=3*f;r.incrementMonth=function(t,e,r){r=_(r)&&r;var n=l(t,f);if(t=Math.round(t-n),r)try{var i=Math.round(t/f)+m,a=g.getComponentMethod("calendars","getCal")(r),o=a.fromJD(i);return e%12?a.add(o,e,"m"):a.add(o,e/12,"y"),(o.toJD()-m)*f+n}catch(e){s.error("invalid ms "+t+" in calendar "+r)}var c=new Date(t+I);return c.setUTCMonth(c.getUTCMonth()+e)+n-I},r.findExactDates=function(t,e){for(var r,n,i=0,a=0,s=0,l=0,c=_(e)&&g.getComponentMethod("calendars","getCal")(e),u=0;u0&&t[e+1][0]<0)return e;return null}switch(e="RUS"===s||"FJI"===s?function(t){var e;if(null===c(t))e=t;else for(e=new Array(t.length),i=0;ie?r[n++]=[t[i][0]+360,t[i][1]]:i===e?(r[n++]=t[i],r[n++]=[t[i][0],-90]):r[n++]=t[i];var a=h.tester(r);a.pts.pop(),l.push(a)}:function(t){l.push(h.tester(t))},a.type){case"MultiPolygon":for(r=0;ri&&(i=c,e=l)}else e=r;return o.default(e).geometry.coordinates}(u),n.fIn=t,n.fOut=u,s.push(u)}else c.log(["Location",n.loc,"does not have a valid GeoJSON geometry.","Traces with locationmode *geojson-id* only support","*Polygon* and *MultiPolygon* geometries."].join(" "))}delete i[r]}switch(r.type){case"FeatureCollection":var h=r.features;for(n=0;n100?(clearInterval(a),n("Unexpected error while fetching from "+t)):void i++}),50)}))}for(var o=0;o0&&(r.push(i),i=[])}return i.length>0&&r.push(i),r},r.makeLine=function(t){return 1===t.length?{type:"LineString",coordinates:t[0]}:{type:"MultiLineString",coordinates:t}},r.makePolygon=function(t){if(1===t.length)return{type:"Polygon",coordinates:t};for(var e=new Array(t.length),r=0;r1||m<0||m>1?null:{x:t+l*m,y:e+f*m}}function l(t,e,r,n,i){var a=n*t+i*e;if(a<0)return n*n+i*i;if(a>r){var o=n-t,s=i-e;return o*o+s*s}var l=n*e-i*t;return l*l/r}r.segmentsIntersect=s,r.segmentDistance=function(t,e,r,n,i,a,o,c){if(s(t,e,r,n,i,a,o,c))return 0;var u=r-t,f=n-e,h=o-i,p=c-a,d=u*u+f*f,m=h*h+p*p,g=Math.min(l(u,f,d,i-t,a-e),l(u,f,d,o-t,c-e),l(h,p,m,t-i,e-a),l(h,p,m,r-i,n-a));return Math.sqrt(g)},r.getTextLocation=function(t,e,r,s){if(t===i&&s===a||(n={},i=t,a=s),n[r])return n[r];var l=t.getPointAtLength(o(r-s/2,e)),c=t.getPointAtLength(o(r+s/2,e)),u=Math.atan((c.y-l.y)/(c.x-l.x)),f=t.getPointAtLength(o(r,e)),h={x:(4*f.x+l.x+c.x)/6,y:(4*f.y+l.y+c.y)/6,theta:u};return n[r]=h,h},r.clearLocationCache=function(){i=null},r.getVisibleSegment=function(t,e,r){var n,i,a=e.left,o=e.right,s=e.top,l=e.bottom,c=0,u=t.getTotalLength(),f=u;function h(e){var r=t.getPointAtLength(e);0===e?n=r:e===u&&(i=r);var c=r.xo?r.x-o:0,f=r.yl?r.y-l:0;return Math.sqrt(c*c+f*f)}for(var p=h(c);p;){if((c+=p+r)>f)return;p=h(c)}for(p=h(f);p;){if(c>(f-=p+r))return;p=h(f)}return{min:c,max:f,len:f-c,total:u,isClosed:0===c&&f===u&&Math.abs(n.x-i.x)<.1&&Math.abs(n.y-i.y)<.1}},r.findPointOnPath=function(t,e,r,n){for(var i,a,o,s=(n=n||{}).pathLength||t.getTotalLength(),l=n.tolerance||.001,c=n.iterationLimit||30,u=t.getPointAtLength(0)[r]>t.getPointAtLength(s)[r]?-1:1,f=0,h=0,p=s;f0?p=i:h=i,f++}return a}},{"./mod":783}],772:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("tinycolor2"),a=t("color-normalize"),o=t("../components/colorscale"),s=t("../components/color/attributes").defaultLine,l=t("./array").isArrayOrTypedArray,c=a(s);function u(t,e){var r=t;return r[3]*=e,r}function f(t){if(n(t))return c;var e=a(t);return e.length?e:c}function h(t){return n(t)?t:1}e.exports={formatColor:function(t,e,r){var n,i,s,p,d,m=t.color,g=l(m),v=l(e),y=o.extractOpts(t),x=[];if(n=void 0!==y.colorscale?o.makeColorScaleFuncFromTrace(t):f,i=g?function(t,e){return void 0===t[e]?c:a(n(t[e]))}:f,s=v?function(t,e){return void 0===t[e]?1:h(t[e])}:h,g||v)for(var b=0;b1?(r*t+r*e)/r:t+e,i=String(n).length;if(i>16){var a=String(e).length;if(i>=String(t).length+a){var o=parseFloat(n).toPrecision(12);-1===o.indexOf("e+")&&(n=+o)}}return n}},{}],776:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-time-format").utcFormat,a=t("d3-format").format,o=t("fast-isnumeric"),s=t("../constants/numerical"),l=s.FP_SAFE,c=-l,u=s.BADNUM,f=e.exports={};f.adjustFormat=function(t){return!t||/^\d[.]\df/.test(t)||/[.]\d%/.test(t)?t:"0.f"===t?"~f":/^\d%/.test(t)?"~%":/^\ds/.test(t)?"~s":!/^[~,.0$]/.test(t)&&/[&fps]/.test(t)?"~"+t:t};var h={};f.warnBadFormat=function(t){var e=String(t);h[e]||(h[e]=1,f.warn('encountered bad format: "'+e+'"'))},f.noFormat=function(t){return String(t)},f.numberFormat=function(t){var e;try{e=a(f.adjustFormat(t))}catch(e){return f.warnBadFormat(t),f.noFormat}return e},f.nestedProperty=t("./nested_property"),f.keyedContainer=t("./keyed_container"),f.relativeAttr=t("./relative_attr"),f.isPlainObject=t("./is_plain_object"),f.toLogRange=t("./to_log_range"),f.relinkPrivateKeys=t("./relink_private");var p=t("./array");f.isTypedArray=p.isTypedArray,f.isArrayOrTypedArray=p.isArrayOrTypedArray,f.isArray1D=p.isArray1D,f.ensureArray=p.ensureArray,f.concat=p.concat,f.maxRowLength=p.maxRowLength,f.minRowLength=p.minRowLength;var d=t("./mod");f.mod=d.mod,f.modHalf=d.modHalf;var m=t("./coerce");f.valObjectMeta=m.valObjectMeta,f.coerce=m.coerce,f.coerce2=m.coerce2,f.coerceFont=m.coerceFont,f.coercePattern=m.coercePattern,f.coerceHoverinfo=m.coerceHoverinfo,f.coerceSelectionMarkerOpacity=m.coerceSelectionMarkerOpacity,f.validate=m.validate;var g=t("./dates");f.dateTime2ms=g.dateTime2ms,f.isDateTime=g.isDateTime,f.ms2DateTime=g.ms2DateTime,f.ms2DateTimeLocal=g.ms2DateTimeLocal,f.cleanDate=g.cleanDate,f.isJSDate=g.isJSDate,f.formatDate=g.formatDate,f.incrementMonth=g.incrementMonth,f.dateTick0=g.dateTick0,f.dfltRange=g.dfltRange,f.findExactDates=g.findExactDates,f.MIN_MS=g.MIN_MS,f.MAX_MS=g.MAX_MS;var v=t("./search");f.findBin=v.findBin,f.sorterAsc=v.sorterAsc,f.sorterDes=v.sorterDes,f.distinctVals=v.distinctVals,f.roundUp=v.roundUp,f.sort=v.sort,f.findIndexOfMin=v.findIndexOfMin,f.sortObjectKeys=t("./sort_object_keys");var y=t("./stats");f.aggNums=y.aggNums,f.len=y.len,f.mean=y.mean,f.median=y.median,f.midRange=y.midRange,f.variance=y.variance,f.stdev=y.stdev,f.interp=y.interp;var x=t("./matrix");f.init2dArray=x.init2dArray,f.transposeRagged=x.transposeRagged,f.dot=x.dot,f.translationMatrix=x.translationMatrix,f.rotationMatrix=x.rotationMatrix,f.rotationXYMatrix=x.rotationXYMatrix,f.apply3DTransform=x.apply3DTransform,f.apply2DTransform=x.apply2DTransform,f.apply2DTransform2=x.apply2DTransform2,f.convertCssMatrix=x.convertCssMatrix,f.inverseTransformMatrix=x.inverseTransformMatrix;var b=t("./angles");f.deg2rad=b.deg2rad,f.rad2deg=b.rad2deg,f.angleDelta=b.angleDelta,f.angleDist=b.angleDist,f.isFullCircle=b.isFullCircle,f.isAngleInsideSector=b.isAngleInsideSector,f.isPtInsideSector=b.isPtInsideSector,f.pathArc=b.pathArc,f.pathSector=b.pathSector,f.pathAnnulus=b.pathAnnulus;var _=t("./anchor_utils");f.isLeftAnchor=_.isLeftAnchor,f.isCenterAnchor=_.isCenterAnchor,f.isRightAnchor=_.isRightAnchor,f.isTopAnchor=_.isTopAnchor,f.isMiddleAnchor=_.isMiddleAnchor,f.isBottomAnchor=_.isBottomAnchor;var w=t("./geometry2d");f.segmentsIntersect=w.segmentsIntersect,f.segmentDistance=w.segmentDistance,f.getTextLocation=w.getTextLocation,f.clearLocationCache=w.clearLocationCache,f.getVisibleSegment=w.getVisibleSegment,f.findPointOnPath=w.findPointOnPath;var T=t("./extend");f.extendFlat=T.extendFlat,f.extendDeep=T.extendDeep,f.extendDeepAll=T.extendDeepAll,f.extendDeepNoArrays=T.extendDeepNoArrays;var k=t("./loggers");f.log=k.log,f.warn=k.warn,f.error=k.error;var A=t("./regex");f.counterRegex=A.counter;var M=t("./throttle");f.throttle=M.throttle,f.throttleDone=M.done,f.clearThrottle=M.clear;var S=t("./dom");function E(t){var e={};for(var r in t)for(var n=t[r],i=0;il||t=e)&&(o(t)&&t>=0&&t%1==0)},f.noop=t("./noop"),f.identity=t("./identity"),f.repeat=function(t,e){for(var r=new Array(e),n=0;nr?Math.max(r,Math.min(e,t)):Math.max(e,Math.min(r,t))},f.bBoxIntersect=function(t,e,r){return r=r||0,t.left<=e.right+r&&e.left<=t.right+r&&t.top<=e.bottom+r&&e.top<=t.bottom+r},f.simpleMap=function(t,e,r,n,i){for(var a=t.length,o=new Array(a),s=0;s=Math.pow(2,r)?i>10?(f.warn("randstr failed uniqueness"),l):t(e,r,n,(i||0)+1):l},f.OptionControl=function(t,e){t||(t={}),e||(e="opt");var r={optionList:[],_newoption:function(n){n[e]=t,r[n.name]=n,r.optionList.push(n)}};return r["_"+e]=t,r},f.smooth=function(t,e){if((e=Math.round(e)||0)<2)return t;var r,n,i,a,o=t.length,s=2*o,l=2*e-1,c=new Array(l),u=new Array(o);for(r=0;r=s&&(i-=s*Math.floor(i/s)),i<0?i=-1-i:i>=o&&(i=s-1-i),a+=t[i]*c[n];u[r]=a}return u},f.syncOrAsync=function(t,e,r){var n;function i(){return f.syncOrAsync(t,e,r)}for(;t.length;)if((n=(0,t.splice(0,1)[0])(e))&&n.then)return n.then(i);return r&&r(e)},f.stripTrailingSlash=function(t){return"/"===t.substr(-1)?t.substr(0,t.length-1):t},f.noneOrAll=function(t,e,r){if(t){var n,i=!1,a=!0;for(n=0;n0?e:0}))},f.fillArray=function(t,e,r,n){if(n=n||f.identity,f.isArrayOrTypedArray(t))for(var i=0;i1?i+o[1]:"";if(a&&(o.length>1||s.length>4||r))for(;n.test(s);)s=s.replace(n,"$1"+a+"$2");return s+l},f.TEMPLATE_STRING_REGEX=/%{([^\s%{}:]*)([:|\|][^}]*)?}/g;var z=/^\w*$/;f.templateString=function(t,e){var r={};return t.replace(f.TEMPLATE_STRING_REGEX,(function(t,n){var i;return z.test(n)?i=e[n]:(r[n]=r[n]||f.nestedProperty(e,n).get,i=r[n]()),f.isValidTextValue(i)?i:""}))};var D={max:10,count:0,name:"hovertemplate"};f.hovertemplateString=function(){return B.apply(D,arguments)};var R={max:10,count:0,name:"texttemplate"};f.texttemplateString=function(){return B.apply(R,arguments)};var F=/^[:|\|]/;function B(t,e,r){var n=this,a=arguments;e||(e={});var o={};return t.replace(f.TEMPLATE_STRING_REGEX,(function(t,s,l){var c,u,h,p="_xother"===s||"_yother"===s,d="_xother_"===s||"_yother_"===s,m="xother_"===s||"yother_"===s,g="xother"===s||"yother"===s||p||m||d,v=s;if((p||d)&&(v=v.substring(1)),(m||d)&&(v=v.substring(0,v.length-1)),g){if(void 0===(c=e[v]))return""}else for(h=3;h=48&&o<=57,c=s>=48&&s<=57;if(l&&(n=10*n+o-48),c&&(i=10*i+s-48),!l||!c){if(n!==i)return n-i;if(o!==s)return o-s}}return i-n};var N=2e9;f.seedPseudoRandom=function(){N=2e9},f.pseudoRandom=function(){var t=N;return N=(69069*N+1)%4294967296,Math.abs(N-t)<429496729?f.pseudoRandom():N/4294967296},f.fillText=function(t,e,r){var n=Array.isArray(r)?function(t){r.push(t)}:function(t){r.text=t},i=f.extractOption(t,e,"htx","hovertext");if(f.isValidTextValue(i))return n(i);var a=f.extractOption(t,e,"tx","text");return f.isValidTextValue(a)?n(a):void 0},f.isValidTextValue=function(t){return t||0===t},f.formatPercent=function(t,e){e=e||0;for(var r=(Math.round(100*t*Math.pow(10,e))*Math.pow(.1,e)).toFixed(e)+"%",n=0;n1&&(c=1):c=0,f.strTranslate(i-c*(r+o),a-c*(n+s))+f.strScale(c)+(l?"rotate("+l+(e?"":" "+r+" "+n)+")":"")},f.ensureUniformFontSize=function(t,e){var r=f.extendFlat({},e);return r.size=Math.max(e.size,t._fullLayout.uniformtext.minsize||0),r},f.join2=function(t,e,r){var n=t.length;return n>1?t.slice(0,-1).join(e)+r+t[n-1]:t.join(e)},f.bigFont=function(t){return Math.round(1.2*t)};var j=f.getFirefoxVersion(),U=null!==j&&j<86;f.getPositionFromD3Event=function(){return U?[n.event.layerX,n.event.layerY]:[n.event.offsetX,n.event.offsetY]}},{"../constants/numerical":752,"./anchor_utils":756,"./angles":757,"./array":758,"./clean_number":759,"./clear_responsive":761,"./coerce":762,"./dates":763,"./dom":764,"./extend":766,"./filter_unique":767,"./filter_visible":768,"./geometry2d":771,"./identity":774,"./increment":775,"./is_plain_object":777,"./keyed_container":778,"./localize":779,"./loggers":780,"./make_trace_groups":781,"./matrix":782,"./mod":783,"./nested_property":784,"./noop":785,"./notifier":786,"./preserve_drawing_buffer":790,"./push_unique":791,"./regex":793,"./relative_attr":794,"./relink_private":795,"./search":796,"./sort_object_keys":799,"./stats":800,"./throttle":803,"./to_log_range":804,"@plotly/d3":58,"d3-format":160,"d3-time-format":168,"fast-isnumeric":242}],777:[function(t,e,r){"use strict";e.exports=function(t){return window&&window.process&&window.process.versions?"[object Object]"===Object.prototype.toString.call(t):"[object Object]"===Object.prototype.toString.call(t)&&Object.getPrototypeOf(t).hasOwnProperty("hasOwnProperty")}},{}],778:[function(t,e,r){"use strict";var n=t("./nested_property"),i=/^\w*$/;e.exports=function(t,e,r,a){var o,s,l;r=r||"name",a=a||"value";var c={};e&&e.length?(l=n(t,e),s=l.get()):s=t,e=e||"";var u={};if(s)for(o=0;o2)return c[e]=2|c[e],h.set(t,null);if(f){for(o=e;o1){var e=["LOG:"];for(t=0;t1){var r=[];for(t=0;t"),"long")}},a.warn=function(){var t;if(n.logging>0){var e=["WARN:"];for(t=0;t0){var r=[];for(t=0;t"),"stick")}},a.error=function(){var t;if(n.logging>0){var e=["ERROR:"];for(t=0;t0){var r=[];for(t=0;t"),"stick")}}},{"../plot_api/plot_config":814,"./notifier":786}],781:[function(t,e,r){"use strict";var n=t("@plotly/d3");e.exports=function(t,e,r){var i=t.selectAll("g."+r.replace(/\s/g,".")).data(e,(function(t){return t[0].trace.uid}));i.exit().remove(),i.enter().append("g").attr("class",r),i.order();var a=t.classed("rangeplot")?"nodeRangePlot3":"node3";return i.each((function(t){t[0][a]=n.select(this)})),i}},{"@plotly/d3":58}],782:[function(t,e,r){"use strict";var n=t("gl-mat4");r.init2dArray=function(t,e){for(var r=new Array(t),n=0;ne/2?t-Math.round(t/e)*e:t}}},{}],784:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./array").isArrayOrTypedArray;function a(t,e){return function(){var r,n,o,s,l,c=t;for(s=0;s/g),l=0;la||c===i||cs)&&(!e||!l(t))}:function(t,e){var l=t[0],c=t[1];if(l===i||la||c===i||cs)return!1;var u,f,h,p,d,m=r.length,g=r[0][0],v=r[0][1],y=0;for(u=1;uMath.max(f,g)||c>Math.max(h,v)))if(cu||Math.abs(n(o,h))>i)return!0;return!1},a.filter=function(t,e){var r=[t[0]],n=0,i=0;function o(o){t.push(o);var s=r.length,l=n;r.splice(i+1);for(var c=l+1;c1&&o(t.pop());return{addPt:o,raw:t,filtered:r}}},{"../constants/numerical":752,"./matrix":782}],789:[function(t,e,r){(function(r){(function(){"use strict";var n=t("./show_no_webgl_msg"),i=t("regl");e.exports=function(t,e){var a=t._fullLayout,o=!0;return a._glcanvas.each((function(n){if(!n.regl&&(!n.pick||a._has("parcoords"))){try{n.regl=i({canvas:this,attributes:{antialias:!n.pick,preserveDrawingBuffer:!0},pixelRatio:t._context.plotGlPixelRatio||r.devicePixelRatio,extensions:e||[]})}catch(t){o=!1}n.regl||(o=!1),o&&this.addEventListener("webglcontextlost",(function(e){t&&t.emit&&t.emit("plotly_webglcontextlost",{event:e,layer:n.key})}),!1)}})),o||n({container:a._glcontainer.node()}),o}}).call(this)}).call(this,"undefined"!=typeof global?global:"undefined"!=typeof self?self:"undefined"!=typeof window?window:{})},{"./show_no_webgl_msg":798,regl:516}],790:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("is-mobile");e.exports=function(t){var e;if("string"!=typeof(e=t&&t.hasOwnProperty("userAgent")?t.userAgent:function(){var t;"undefined"!=typeof navigator&&(t=navigator.userAgent);t&&t.headers&&"string"==typeof t.headers["user-agent"]&&(t=t.headers["user-agent"]);return t}()))return!0;var r=i({ua:{headers:{"user-agent":e}},tablet:!0,featureDetect:!1});if(!r)for(var a=e.split(" "),o=1;o-1;s--){var l=a[s];if("Version/"===l.substr(0,8)){var c=l.substr(8).split(".")[0];if(n(c)&&(c=+c),c>=13)return!0}}}return r}},{"fast-isnumeric":242,"is-mobile":435}],791:[function(t,e,r){"use strict";e.exports=function(t,e){if(e instanceof RegExp){for(var r=e.toString(),n=0;ni.queueLength&&(t.undoQueue.queue.shift(),t.undoQueue.index--))},startSequence:function(t){t.undoQueue=t.undoQueue||{index:0,queue:[],sequence:!1},t.undoQueue.sequence=!0,t.undoQueue.beginSequence=!0},stopSequence:function(t){t.undoQueue=t.undoQueue||{index:0,queue:[],sequence:!1},t.undoQueue.sequence=!1,t.undoQueue.beginSequence=!1},undo:function(t){var e,r;if(!(void 0===t.undoQueue||isNaN(t.undoQueue.index)||t.undoQueue.index<=0)){for(t.undoQueue.index--,e=t.undoQueue.queue[t.undoQueue.index],t.undoQueue.inSequence=!0,r=0;r=t.undoQueue.queue.length)){for(e=t.undoQueue.queue[t.undoQueue.index],t.undoQueue.inSequence=!0,r=0;re}function u(t,e){return t>=e}r.findBin=function(t,e,r){if(n(e.start))return r?Math.ceil((t-e.start)/e.size-1e-9)-1:Math.floor((t-e.start)/e.size+1e-9);var a,o,f=0,h=e.length,p=0,d=h>1?(e[h-1]-e[0])/(h-1):1;for(o=d>=0?r?s:l:r?u:c,t+=1e-9*d*(r?-1:1)*(d>=0?1:-1);f90&&i.log("Long binary search..."),f-1},r.sorterAsc=function(t,e){return t-e},r.sorterDes=function(t,e){return e-t},r.distinctVals=function(t){var e,n=t.slice();for(n.sort(r.sorterAsc),e=n.length-1;e>-1&&n[e]===o;e--);for(var i,a=n[e]-n[0]||1,s=a/(e||1)/1e4,l=[],c=0;c<=e;c++){var u=n[c],f=u-i;void 0===i?(l.push(u),i=u):f>s&&(a=Math.min(a,f),l.push(u),i=u)}return{vals:l,minDiff:a}},r.roundUp=function(t,e,r){for(var n,i=0,a=e.length-1,o=0,s=r?0:1,l=r?1:0,c=r?Math.ceil:Math.floor;i0&&(n=1),r&&n)return t.sort(e)}return n?t:t.reverse()},r.findIndexOfMin=function(t,e){e=e||a;for(var r,n=1/0,i=0;ia.length)&&(o=a.length),n(e)||(e=!1),i(a[0])){for(l=new Array(o),s=0;st.length-1)return t[t.length-1];var r=e%1;return r*t[Math.ceil(e)]+(1-r)*t[Math.floor(e)]}},{"./array":758,"fast-isnumeric":242}],801:[function(t,e,r){"use strict";var n=t("color-normalize");e.exports=function(t){return t?n(t):[0,0,0,1]}},{"color-normalize":126}],802:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../lib"),a=i.strTranslate,o=t("../constants/xmlns_namespaces"),s=t("../constants/alignment").LINE_SPACING;function l(t,e){return t.node().getBoundingClientRect()[e]}var c=/([^$]*)([$]+[^$]*[$]+)([^$]*)/;r.convertToTspans=function(t,e,m){var M=t.text(),S=!t.attr("data-notex")&&"undefined"!=typeof MathJax&&M.match(c),C=n.select(t.node().parentNode);if(!C.empty()){var P=t.attr("class")?t.attr("class").split(" ")[0]:"text";return P+="-math",C.selectAll("svg."+P).remove(),C.selectAll("g."+P+"-group").remove(),t.style("display",null).attr({"data-unformatted":M,"data-math":"N"}),S?(e&&e._promises||[]).push(new Promise((function(e){t.style("display","none");var r=parseInt(t.node().style.fontSize,10),o={fontSize:r};!function(t,e,r){var a,o,s,l;MathJax.Hub.Queue((function(){return o=i.extendDeepAll({},MathJax.Hub.config),s=MathJax.Hub.processSectionDelay,void 0!==MathJax.Hub.processSectionDelay&&(MathJax.Hub.processSectionDelay=0),MathJax.Hub.Config({messageStyle:"none",tex2jax:{inlineMath:[["$","$"],["\\(","\\)"]]},displayAlign:"left"})}),(function(){if("SVG"!==(a=MathJax.Hub.config.menuSettings.renderer))return MathJax.Hub.setRenderer("SVG")}),(function(){var r="math-output-"+i.randstr({},64);return l=n.select("body").append("div").attr({id:r}).style({visibility:"hidden",position:"absolute"}).style({"font-size":e.fontSize+"px"}).text(t.replace(u,"\\lt ").replace(f,"\\gt ")),MathJax.Hub.Typeset(l.node())}),(function(){var e=n.select("body").select("#MathJax_SVG_glyphs");if(l.select(".MathJax_SVG").empty()||!l.select("svg").node())i.log("There was an error in the tex syntax.",t),r();else{var o=l.select("svg").node().getBoundingClientRect();r(l.select(".MathJax_SVG"),e,o)}if(l.remove(),"SVG"!==a)return MathJax.Hub.setRenderer(a)}),(function(){return void 0!==s&&(MathJax.Hub.processSectionDelay=s),MathJax.Hub.Config(o)}))}(S[2],o,(function(n,i,o){C.selectAll("svg."+P).remove(),C.selectAll("g."+P+"-group").remove();var s=n&&n.select("svg");if(!s||!s.node())return I(),void e();var c=C.append("g").classed(P+"-group",!0).attr({"pointer-events":"none","data-unformatted":M,"data-math":"Y"});c.node().appendChild(s.node()),i&&i.node()&&s.node().insertBefore(i.node().cloneNode(!0),s.node().firstChild),s.attr({class:P,height:o.height,preserveAspectRatio:"xMinYMin meet"}).style({overflow:"visible","pointer-events":"none"});var u=t.node().style.fill||"black",f=s.select("g");f.attr({fill:u,stroke:u});var h=l(f,"width"),p=l(f,"height"),d=+t.attr("x")-h*{start:0,middle:.5,end:1}[t.attr("text-anchor")||"start"],g=-(r||l(t,"height"))/4;"y"===P[0]?(c.attr({transform:"rotate("+[-90,+t.attr("x"),+t.attr("y")]+")"+a(-h/2,g-p/2)}),s.attr({x:+t.attr("x"),y:+t.attr("y")})):"l"===P[0]?s.attr({x:t.attr("x"),y:g-p/2}):"a"===P[0]&&0!==P.indexOf("atitle")?s.attr({x:0,y:g}):s.attr({x:d,y:+t.attr("y")+g-p/2}),m&&m.call(t,c),e(c)}))}))):I(),t}function I(){C.empty()||(P=t.attr("class")+"-math",C.select("svg."+P).remove()),t.text("").style("white-space","pre"),function(t,e){e=e.replace(g," ");var r,a=!1,l=[],c=-1;function u(){c++;var e=document.createElementNS(o.svg,"tspan");n.select(e).attr({class:"line",dy:c*s+"em"}),t.appendChild(e),r=e;var i=l;if(l=[{node:e}],i.length>1)for(var a=1;a doesnt match end tag <"+t+">. Pretending it did match.",e),r=l[l.length-1].node}else i.log("Ignoring unexpected end tag .",e)}x.test(e)?u():(r=t,l=[{node:t}]);for(var S=e.split(v),C=0;C|>|>)/g;var h={sup:"font-size:70%",sub:"font-size:70%",b:"font-weight:bold",i:"font-style:italic",a:"cursor:pointer",span:"",em:"font-style:italic;font-weight:bold"},p={sub:"0.3em",sup:"-0.6em"},d={sub:"-0.21em",sup:"0.42em"},m=["http:","https:","mailto:","",void 0,":"],g=r.NEWLINES=/(\r\n?|\n)/g,v=/(<[^<>]*>)/,y=/<(\/?)([^ >]*)(\s+(.*))?>/i,x=//i;r.BR_TAG_ALL=//gi;var b=/(^|[\s"'])style\s*=\s*("([^"]*);?"|'([^']*);?')/i,_=/(^|[\s"'])href\s*=\s*("([^"]*)"|'([^']*)')/i,w=/(^|[\s"'])target\s*=\s*("([^"\s]*)"|'([^'\s]*)')/i,T=/(^|[\s"'])popup\s*=\s*("([\w=,]*)"|'([\w=,]*)')/i;function k(t,e){if(!t)return null;var r=t.match(e),n=r&&(r[3]||r[4]);return n&&E(n)}var A=/(^|;)\s*color:/;r.plainText=function(t,e){for(var r=void 0!==(e=e||{}).len&&-1!==e.len?e.len:1/0,n=void 0!==e.allowedTags?e.allowedTags:["br"],i="...".length,a=t.split(v),o=[],s="",l=0,c=0;ci?o.push(u.substr(0,d-i)+"..."):o.push(u.substr(0,d));break}s=""}}return o.join("")};var M={mu:"\u03bc",amp:"&",lt:"<",gt:">",nbsp:"\xa0",times:"\xd7",plusmn:"\xb1",deg:"\xb0"},S=/&(#\d+|#x[\da-fA-F]+|[a-z]+);/g;function E(t){return t.replace(S,(function(t,e){return("#"===e.charAt(0)?function(t){if(t>1114111)return;var e=String.fromCodePoint;if(e)return e(t);var r=String.fromCharCode;return t<=65535?r(t):r(55232+(t>>10),t%1024+56320)}("x"===e.charAt(1)?parseInt(e.substr(2),16):parseInt(e.substr(1),10)):M[e])||t}))}function L(t){var e=encodeURI(decodeURI(t)),r=document.createElement("a"),n=document.createElement("a");r.href=t,n.href=e;var i=r.protocol,a=n.protocol;return-1!==m.indexOf(i)&&-1!==m.indexOf(a)?e:""}function C(t,e,r){var n,a,o,s=r.horizontalAlign,l=r.verticalAlign||"top",c=t.node().getBoundingClientRect(),u=e.node().getBoundingClientRect();return a="bottom"===l?function(){return c.bottom-n.height}:"middle"===l?function(){return c.top+(c.height-n.height)/2}:function(){return c.top},o="right"===s?function(){return c.right-n.width}:"center"===s?function(){return c.left+(c.width-n.width)/2}:function(){return c.left},function(){n=this.node().getBoundingClientRect();var t=o()-u.left,e=a()-u.top,s=r.gd||{};if(r.gd){s._fullLayout._calcInverseTransform(s);var l=i.apply3DTransform(s._fullLayout._invTransform)(t,e);t=l[0],e=l[1]}return this.style({top:e+"px",left:t+"px","z-index":1e3}),this}}r.convertEntities=E,r.sanitizeHTML=function(t){t=t.replace(g," ");for(var e=document.createElement("p"),r=e,i=[],a=t.split(v),o=0;oa.ts+e?l():a.timer=setTimeout((function(){l(),a.timer=null}),e)},r.done=function(t){var e=n[t];return e&&e.timer?new Promise((function(t){var r=e.onDone;e.onDone=function(){r&&r(),t(),e.onDone=null}})):Promise.resolve()},r.clear=function(t){if(t)i(n[t]),delete n[t];else for(var e in n)r.clear(e)}},{}],804:[function(t,e,r){"use strict";var n=t("fast-isnumeric");e.exports=function(t,e){if(t>0)return Math.log(t)/Math.LN10;var r=Math.log(Math.min(e[0],e[1]))/Math.LN10;return n(r)||(r=Math.log(Math.max(e[0],e[1]))/Math.LN10-6),r}},{"fast-isnumeric":242}],805:[function(t,e,r){"use strict";var n=e.exports={},i=t("../plots/geo/constants").locationmodeToLayer,a=t("topojson-client").feature;n.getTopojsonName=function(t){return[t.scope.replace(/ /g,"-"),"_",t.resolution.toString(),"m"].join("")},n.getTopojsonPath=function(t,e){return t+e+".json"},n.getTopojsonFeatures=function(t,e){var r=i[t.locationmode],n=e.objects[r];return a(e,n).features}},{"../plots/geo/constants":858,"topojson-client":575}],806:[function(t,e,r){"use strict";e.exports={moduleType:"locale",name:"en-US",dictionary:{"Click to enter Colorscale title":"Click to enter Colorscale title"},format:{date:"%m/%d/%Y"}}},{}],807:[function(t,e,r){"use strict";e.exports={moduleType:"locale",name:"en",dictionary:{"Click to enter Colorscale title":"Click to enter Colourscale title"},format:{days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"],periods:["AM","PM"],dateTime:"%a %b %e %X %Y",date:"%d/%m/%Y",time:"%H:%M:%S",decimal:".",thousands:",",grouping:[3],currency:["$",""],year:"%Y",month:"%b %Y",dayMonth:"%b %-d",dayMonthYear:"%b %-d, %Y"}}},{}],808:[function(t,e,r){"use strict";var n=t("../registry");e.exports=function(t){for(var e,r,i=n.layoutArrayContainers,a=n.layoutArrayRegexes,o=t.split("[")[0],s=0;s0&&o.log("Clearing previous rejected promises from queue."),t._promises=[]},r.cleanLayout=function(t){var e,n;t||(t={}),t.xaxis1&&(t.xaxis||(t.xaxis=t.xaxis1),delete t.xaxis1),t.yaxis1&&(t.yaxis||(t.yaxis=t.yaxis1),delete t.yaxis1),t.scene1&&(t.scene||(t.scene=t.scene1),delete t.scene1);var a=(s.subplotsRegistry.cartesian||{}).attrRegex,l=(s.subplotsRegistry.polar||{}).attrRegex,f=(s.subplotsRegistry.ternary||{}).attrRegex,h=(s.subplotsRegistry.gl3d||{}).attrRegex,m=Object.keys(t);for(e=0;e3?(O.x=1.02,O.xanchor="left"):O.x<-2&&(O.x=-.02,O.xanchor="right"),O.y>3?(O.y=1.02,O.yanchor="bottom"):O.y<-2&&(O.y=-.02,O.yanchor="top")),d(t),"rotate"===t.dragmode&&(t.dragmode="orbit"),c.clean(t),t.template&&t.template.layout&&r.cleanLayout(t.template.layout),t},r.cleanData=function(t){for(var e=0;e0)return t.substr(0,e)}r.hasParent=function(t,e){for(var r=b(e);r;){if(r in t)return!0;r=b(r)}return!1};var _=["x","y","z"];r.clearAxisTypes=function(t,e,r){for(var n=0;n1&&a.warn("Full array edits are incompatible with other edits",f);var y=r[""][""];if(c(y))e.set(null);else{if(!Array.isArray(y))return a.warn("Unrecognized full array edit value",f,y),!0;e.set(y)}return!m&&(h(g,v),p(t),!0)}var x,b,_,w,T,k,A,M,S=Object.keys(r).map(Number).sort(o),E=e.get(),L=E||[],C=u(v,f).get(),P=[],I=-1,O=L.length;for(x=0;xL.length-(A?0:1))a.warn("index out of range",f,_);else if(void 0!==k)T.length>1&&a.warn("Insertion & removal are incompatible with edits to the same index.",f,_),c(k)?P.push(_):A?("add"===k&&(k={}),L.splice(_,0,k),C&&C.splice(_,0,{})):a.warn("Unrecognized full object edit value",f,_,k),-1===I&&(I=_);else for(b=0;b=0;x--)L.splice(P[x],1),C&&C.splice(P[x],1);if(L.length?E||e.set(L):e.set(null),m)return!1;if(h(g,v),d!==i){var z;if(-1===I)z=S;else{for(O=Math.max(L.length,O),z=[],x=0;x=I);x++)z.push(_);for(x=I;x=t.data.length||i<-t.data.length)throw new Error(r+" must be valid indices for gd.data.");if(e.indexOf(i,n+1)>-1||i>=0&&e.indexOf(-t.data.length+i)>-1||i<0&&e.indexOf(t.data.length+i)>-1)throw new Error("each index in "+r+" must be unique.")}}function I(t,e,r){if(!Array.isArray(t.data))throw new Error("gd.data must be an array.");if(void 0===e)throw new Error("currentIndices is a required argument.");if(Array.isArray(e)||(e=[e]),P(t,e,"currentIndices"),void 0===r||Array.isArray(r)||(r=[r]),void 0!==r&&P(t,r,"newIndices"),void 0!==r&&e.length!==r.length)throw new Error("current and new indices must be of equal length.")}function O(t,e,r,n,a){!function(t,e,r,n){var i=o.isPlainObject(n);if(!Array.isArray(t.data))throw new Error("gd.data must be an array");if(!o.isPlainObject(e))throw new Error("update must be a key:value object");if(void 0===r)throw new Error("indices must be an integer or array of integers");for(var a in P(t,r,"indices"),e){if(!Array.isArray(e[a])||e[a].length!==r.length)throw new Error("attribute "+a+" must be an array of length equal to indices array length");if(i&&(!(a in n)||!Array.isArray(n[a])||n[a].length!==e[a].length))throw new Error("when maxPoints is set as a key:value object it must contain a 1:1 corrispondence with the keys and number of traces in the update object")}}(t,e,r,n);for(var l=function(t,e,r,n){var a,l,c,u,f,h=o.isPlainObject(n),p=[];for(var d in Array.isArray(r)||(r=[r]),r=C(r,t.data.length-1),e)for(var m=0;m-1?l(r,r.replace("titlefont","title.font")):r.indexOf("titleposition")>-1?l(r,r.replace("titleposition","title.position")):r.indexOf("titleside")>-1?l(r,r.replace("titleside","title.side")):r.indexOf("titleoffset")>-1&&l(r,r.replace("titleoffset","title.offset")):l(r,r.replace("title","title.text"));function l(e,r){t[r]=t[e],delete t[e]}}function U(t,e,r){t=o.getGraphDiv(t),_.clearPromiseQueue(t);var n={};if("string"==typeof e)n[e]=r;else{if(!o.isPlainObject(e))return o.warn("Relayout fail.",e,r),Promise.reject();n=o.extendFlat({},e)}Object.keys(n).length&&(t.changed=!0);var i=W(t,n),a=i.flags;a.calc&&(t.calcdata=void 0);var s=[h.previousPromises];a.layoutReplot?s.push(w.layoutReplot):Object.keys(n).length&&(V(t,a,i)||h.supplyDefaults(t),a.legend&&s.push(w.doLegend),a.layoutstyle&&s.push(w.layoutStyles),a.axrange&&H(s,i.rangesAltered),a.ticks&&s.push(w.doTicksRelayout),a.modebar&&s.push(w.doModeBar),a.camera&&s.push(w.doCamera),a.colorbars&&s.push(w.doColorBars),s.push(M)),s.push(h.rehover,h.redrag),c.add(t,U,[t,i.undoit],U,[t,i.redoit]);var l=o.syncOrAsync(s,t);return l&&l.then||(l=Promise.resolve(t)),l.then((function(){return t.emit("plotly_relayout",i.eventData),t}))}function V(t,e,r){var n=t._fullLayout;if(!e.axrange)return!1;for(var i in e)if("axrange"!==i&&e[i])return!1;for(var a in r.rangesAltered){var o=p.id2name(a),s=t.layout[o],l=n[o];if(l.autorange=s.autorange,s.range&&(l.range=s.range.slice()),l.cleanRange(),l._matchGroup)for(var c in l._matchGroup)if(c!==a){var u=n[p.id2name(c)];u.autorange=l.autorange,u.range=l.range.slice(),u._input.range=l.range.slice()}}return!0}function H(t,e){var r=e?function(t){var r=[],n=!0;for(var i in e){var a=p.getFromId(t,i);if(r.push(i),-1!==(a.ticklabelposition||"").indexOf("inside")&&a._anchorAxis&&r.push(a._anchorAxis._id),a._matchGroup)for(var o in a._matchGroup)e[o]||r.push(o);a.automargin&&(n=!1)}return p.draw(t,r,{skipTitle:n})}:function(t){return p.draw(t,"redraw")};t.push(y,w.doAutoRangeAndConstraints,r,w.drawData,w.finalDraw)}var q=/^[xyz]axis[0-9]*\.range(\[[0|1]\])?$/,G=/^[xyz]axis[0-9]*\.autorange$/,Y=/^[xyz]axis[0-9]*\.domain(\[[0|1]\])?$/;function W(t,e){var r,n,i,a=t.layout,l=t._fullLayout,c=l._guiEditing,h=F(l._preGUI,c),d=Object.keys(e),m=p.list(t),g=o.extendDeepAll({},e),v={};for(j(e),d=Object.keys(e),n=0;n0&&"string"!=typeof O.parts[D];)D--;var B=O.parts[D],N=O.parts[D-1]+"."+B,U=O.parts.slice(0,D).join("."),V=s(t.layout,U).get(),H=s(l,U).get(),W=O.get();if(void 0!==z){M[I]=z,S[I]="reverse"===B?z:R(W);var Z=f.getLayoutValObject(l,O.parts);if(Z&&Z.impliedEdits&&null!==z)for(var J in Z.impliedEdits)E(o.relativeAttr(I,J),Z.impliedEdits[J]);if(-1!==["width","height"].indexOf(I))if(z){E("autosize",null);var K="height"===I?"width":"height";E(K,l[K])}else l[I]=t._initialAutoSize[I];else if("autosize"===I)E("width",z?null:l.width),E("height",z?null:l.height);else if(N.match(q))P(N),s(l,U+"._inputRange").set(null);else if(N.match(G)){P(N),s(l,U+"._inputRange").set(null);var Q=s(l,U).get();Q._inputDomain&&(Q._input.domain=Q._inputDomain.slice())}else N.match(Y)&&s(l,U+"._inputDomain").set(null);if("type"===B){L=V;var $="linear"===H.type&&"log"===z,tt="log"===H.type&&"linear"===z;if($||tt){if(L&&L.range)if(H.autorange)$&&(L.range=L.range[1]>L.range[0]?[1,2]:[2,1]);else{var et=L.range[0],rt=L.range[1];$?(et<=0&&rt<=0&&E(U+".autorange",!0),et<=0?et=rt/1e6:rt<=0&&(rt=et/1e6),E(U+".range[0]",Math.log(et)/Math.LN10),E(U+".range[1]",Math.log(rt)/Math.LN10)):(E(U+".range[0]",Math.pow(10,et)),E(U+".range[1]",Math.pow(10,rt)))}else E(U+".autorange",!0);Array.isArray(l._subplots.polar)&&l._subplots.polar.length&&l[O.parts[0]]&&"radialaxis"===O.parts[1]&&delete l[O.parts[0]]._subplot.viewInitial["radialaxis.range"],u.getComponentMethod("annotations","convertCoords")(t,H,z,E),u.getComponentMethod("images","convertCoords")(t,H,z,E)}else E(U+".autorange",!0),E(U+".range",null);s(l,U+"._inputRange").set(null)}else if(B.match(k)){var nt=s(l,I).get(),it=(z||{}).type;it&&"-"!==it||(it="linear"),u.getComponentMethod("annotations","convertCoords")(t,nt,it,E),u.getComponentMethod("images","convertCoords")(t,nt,it,E)}var at=b.containerArrayMatch(I);if(at){r=at.array,n=at.index;var ot=at.property,st=Z||{editType:"calc"};""!==n&&""===ot&&(b.isAddVal(z)?S[I]=null:b.isRemoveVal(z)?S[I]=(s(a,r).get()||[])[n]:o.warn("unrecognized full object value",e)),T.update(A,st),v[r]||(v[r]={});var lt=v[r][n];lt||(lt=v[r][n]={}),lt[ot]=z,delete e[I]}else"reverse"===B?(V.range?V.range.reverse():(E(U+".autorange",!0),V.range=[1,0]),H.autorange?A.calc=!0:A.plot=!0):(l._has("scatter-like")&&l._has("regl")&&"dragmode"===I&&("lasso"===z||"select"===z)&&"lasso"!==W&&"select"!==W||l._has("gl2d")?A.plot=!0:Z?T.update(A,Z):A.calc=!0,O.set(z))}}for(r in v){b.applyContainerArrayChanges(t,h(a,r),v[r],A,h)||(A.plot=!0)}for(var ct in C){var ut=(L=p.getFromId(t,ct))&&L._constraintGroup;if(ut)for(var ft in A.calc=!0,ut)C[ft]||(p.getFromId(t,ft)._constraintShrinkable=!0)}return(X(t)||e.height||e.width)&&(A.plot=!0),(A.plot||A.calc)&&(A.layoutReplot=!0),{flags:A,rangesAltered:C,undoit:S,redoit:M,eventData:g}}function X(t){var e=t._fullLayout,r=e.width,n=e.height;return t.layout.autosize&&h.plotAutoSize(t,t.layout,e),e.width!==r||e.height!==n}function Z(t,e,n,i){t=o.getGraphDiv(t),_.clearPromiseQueue(t),o.isPlainObject(e)||(e={}),o.isPlainObject(n)||(n={}),Object.keys(e).length&&(t.changed=!0),Object.keys(n).length&&(t.changed=!0);var a=_.coerceTraceIndices(t,i),s=N(t,o.extendFlat({},e),a),l=s.flags,u=W(t,o.extendFlat({},n)),f=u.flags;(l.calc||f.calc)&&(t.calcdata=void 0),l.clearAxisTypes&&_.clearAxisTypes(t,a,n);var p=[];f.layoutReplot?p.push(w.layoutReplot):l.fullReplot?p.push(r._doPlot):(p.push(h.previousPromises),V(t,f,u)||h.supplyDefaults(t),l.style&&p.push(w.doTraceStyle),(l.colorbars||f.colorbars)&&p.push(w.doColorBars),f.legend&&p.push(w.doLegend),f.layoutstyle&&p.push(w.layoutStyles),f.axrange&&H(p,u.rangesAltered),f.ticks&&p.push(w.doTicksRelayout),f.modebar&&p.push(w.doModeBar),f.camera&&p.push(w.doCamera),p.push(M)),p.push(h.rehover,h.redrag),c.add(t,Z,[t,s.undoit,u.undoit,s.traces],Z,[t,s.redoit,u.redoit,s.traces]);var d=o.syncOrAsync(p,t);return d&&d.then||(d=Promise.resolve(t)),d.then((function(){return t.emit("plotly_update",{data:s.eventData,layout:u.eventData}),t}))}function J(t){return function(e){e._fullLayout._guiEditing=!0;var r=t.apply(null,arguments);return e._fullLayout._guiEditing=!1,r}}var K=[{pattern:/^hiddenlabels/,attr:"legend.uirevision"},{pattern:/^((x|y)axis\d*)\.((auto)?range|title\.text)/},{pattern:/axis\d*\.showspikes$/,attr:"modebar.uirevision"},{pattern:/(hover|drag)mode$/,attr:"modebar.uirevision"},{pattern:/^(scene\d*)\.camera/},{pattern:/^(geo\d*)\.(projection|center|fitbounds)/},{pattern:/^(ternary\d*\.[abc]axis)\.(min|title\.text)$/},{pattern:/^(polar\d*\.radialaxis)\.((auto)?range|angle|title\.text)/},{pattern:/^(polar\d*\.angularaxis)\.rotation/},{pattern:/^(mapbox\d*)\.(center|zoom|bearing|pitch)/},{pattern:/^legend\.(x|y)$/,attr:"editrevision"},{pattern:/^(shapes|annotations)/,attr:"editrevision"},{pattern:/^title\.text$/,attr:"editrevision"}],Q=[{pattern:/^selectedpoints$/,attr:"selectionrevision"},{pattern:/(^|value\.)visible$/,attr:"legend.uirevision"},{pattern:/^dimensions\[\d+\]\.constraintrange/},{pattern:/^node\.(x|y|groups)/},{pattern:/^level$/},{pattern:/(^|value\.)name$/},{pattern:/colorbar\.title\.text$/},{pattern:/colorbar\.(x|y)$/,attr:"editrevision"}];function $(t,e){for(var r=0;r1;)if(n.pop(),void 0!==(r=s(e,n.join(".")+".uirevision").get()))return r;return e.uirevision}function et(t,e){for(var r=0;r=i.length?i[0]:i[t]:i}function l(t){return Array.isArray(a)?t>=a.length?a[0]:a[t]:a}function c(t,e){var r=0;return function(){if(t&&++r===e)return t()}}return void 0===n._frameWaitingCnt&&(n._frameWaitingCnt=0),new Promise((function(a,u){function f(){n._currentFrame&&n._currentFrame.onComplete&&n._currentFrame.onComplete();var e=n._currentFrame=n._frameQueue.shift();if(e){var r=e.name?e.name.toString():null;t._fullLayout._currentFrame=r,n._lastFrameAt=Date.now(),n._timeToNext=e.frameOpts.duration,h.transition(t,e.frame.data,e.frame.layout,_.coerceTraceIndices(t,e.frame.traces),e.frameOpts,e.transitionOpts).then((function(){e.onComplete&&e.onComplete()})),t.emit("plotly_animatingframe",{name:r,frame:e.frame,animation:{frame:e.frameOpts,transition:e.transitionOpts}})}else t.emit("plotly_animated"),window.cancelAnimationFrame(n._animationRaf),n._animationRaf=null}function p(){t.emit("plotly_animating"),n._lastFrameAt=-1/0,n._timeToNext=0,n._runningTransitions=0,n._currentFrame=null;var e=function(){n._animationRaf=window.requestAnimationFrame(e),Date.now()-n._lastFrameAt>n._timeToNext&&f()};e()}var d,m,g=0;function v(t){return Array.isArray(i)?g>=i.length?t.transitionOpts=i[g]:t.transitionOpts=i[0]:t.transitionOpts=i,g++,t}var y=[],x=null==e,b=Array.isArray(e);if(!x&&!b&&o.isPlainObject(e))y.push({type:"object",data:v(o.extendFlat({},e))});else if(x||-1!==["string","number"].indexOf(typeof e))for(d=0;d0&&kk)&&A.push(m);y=A}}y.length>0?function(e){if(0!==e.length){for(var i=0;i=0;n--)if(o.isPlainObject(e[n])){var m=e[n].name,g=(u[m]||d[m]||{}).name,v=e[n].name,y=u[g]||d[g];g&&v&&"number"==typeof v&&y&&A<5&&(A++,o.warn('addFrames: overwriting frame "'+(u[g]||d[g]).name+'" with a frame whose name of type "number" also equates to "'+g+'". This is valid but may potentially lead to unexpected behavior since all plotly.js frame names are stored internally as strings.'),5===A&&o.warn("addFrames: This API call has yielded too many of these warnings. For the rest of this call, further warnings about numeric frame names will be suppressed.")),d[m]={name:m},p.push({frame:h.supplyFrameDefaults(e[n]),index:r&&void 0!==r[n]&&null!==r[n]?r[n]:f+n})}p.sort((function(t,e){return t.index>e.index?-1:t.index=0;n--){if("number"==typeof(i=p[n].frame).name&&o.warn("Warning: addFrames accepts frames with numeric names, but the numbers areimplicitly cast to strings"),!i.name)for(;u[i.name="frame "+t._transitionData._counter++];);if(u[i.name]){for(a=0;a=0;r--)n=e[r],a.push({type:"delete",index:n}),s.unshift({type:"insert",index:n,value:i[n]});var l=h.modifyFrames,u=h.modifyFrames,f=[t,s],p=[t,a];return c&&c.add(t,l,f,u,p),h.modifyFrames(t,a)},r.addTraces=function t(e,n,i){e=o.getGraphDiv(e);var a,s,l=[],u=r.deleteTraces,f=t,h=[e,l],p=[e,n];for(function(t,e,r){var n,i;if(!Array.isArray(t.data))throw new Error("gd.data must be an array.");if(void 0===e)throw new Error("traces must be defined.");for(Array.isArray(e)||(e=[e]),n=0;n=0&&r=0&&r=a.length)return!1;if(2===t.dimensions){if(r++,e.length===r)return t;var o=e[r];if(!y(o))return!1;t=a[i][o]}else t=a[i]}else t=a}}return t}function y(t){return t===Math.round(t)&&t>=0}function x(){var t,e,r={};for(t in f(r,o),n.subplotsRegistry){if((e=n.subplotsRegistry[t]).layoutAttributes)if(Array.isArray(e.attr))for(var i=0;i=l.length)return!1;i=(r=(n.transformsRegistry[l[c].type]||{}).attributes)&&r[e[2]],s=3}else{var u=t._module;if(u||(u=(n.modules[t.type||a.type.dflt]||{})._module),!u)return!1;if(!(i=(r=u.attributes)&&r[o])){var f=u.basePlotModule;f&&f.attributes&&(i=f.attributes[o])}i||(i=a[o])}return v(i,e,s)},r.getLayoutValObject=function(t,e){return v(function(t,e){var r,i,a,s,l=t._basePlotModules;if(l){var c;for(r=0;r=i&&(r._input||{})._templateitemname;o&&(a=i);var s,l=e+"["+a+"]";function c(){s={},o&&(s[l]={},s[l].templateitemname=o)}function u(t,e){o?n.nestedProperty(s[l],t).set(e):s[l+"."+t]=e}function f(){var t=s;return c(),t}return c(),{modifyBase:function(t,e){s[t]=e},modifyItem:u,getUpdateObj:f,applyUpdate:function(e,r){e&&u(e,r);var i=f();for(var a in i)n.nestedProperty(t,a).set(i[a])}}}},{"../lib":776,"../plots/attributes":823}],817:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../registry"),a=t("../plots/plots"),o=t("../lib"),s=t("../lib/clear_gl_canvases"),l=t("../components/color"),c=t("../components/drawing"),u=t("../components/titles"),f=t("../components/modebar"),h=t("../plots/cartesian/axes"),p=t("../constants/alignment"),d=t("../plots/cartesian/constraints"),m=d.enforce,g=d.clean,v=t("../plots/cartesian/autorange").doAutoRange;function y(t,e,r){for(var n=0;n=t[1]||i[1]<=t[0])&&(a[0]e[0]))return!0}return!1}function x(t){var e,i,s,u,d,m,g=t._fullLayout,v=g._size,x=v.p,_=h.list(t,"",!0);if(g._paperdiv.style({width:t._context.responsive&&g.autosize&&!t._context._hasZeroWidth&&!t.layout.width?"100%":g.width+"px",height:t._context.responsive&&g.autosize&&!t._context._hasZeroHeight&&!t.layout.height?"100%":g.height+"px"}).selectAll(".main-svg").call(c.setSize,g.width,g.height),t._context.setBackground(t,g.paper_bgcolor),r.drawMainTitle(t),f.manage(t),!g._has("cartesian"))return a.previousPromises(t);function T(t,e,r){var n=t._lw/2;return"x"===t._id.charAt(0)?e?"top"===r?e._offset-x-n:e._offset+e._length+x+n:v.t+v.h*(1-(t.position||0))+n%1:e?"right"===r?e._offset+e._length+x+n:e._offset-x-n:v.l+v.w*(t.position||0)+n%1}for(e=0;e<_.length;e++){var k=(u=_[e])._anchorAxis;u._linepositions={},u._lw=c.crispRound(t,u.linewidth,1),u._mainLinePosition=T(u,k,u.side),u._mainMirrorPosition=u.mirror&&k?T(u,k,p.OPPOSITE_SIDE[u.side]):null}var A=[],M=[],S=[],E=1===l.opacity(g.paper_bgcolor)&&1===l.opacity(g.plot_bgcolor)&&g.paper_bgcolor===g.plot_bgcolor;for(i in g._plots)if((s=g._plots[i]).mainplot)s.bg&&s.bg.remove(),s.bg=void 0;else{var L=s.xaxis.domain,C=s.yaxis.domain,P=s.plotgroup;if(y(L,C,S)){var I=P.node(),O=s.bg=o.ensureSingle(P,"rect","bg");I.insertBefore(O.node(),I.childNodes[0]),M.push(i)}else P.select("rect.bg").remove(),S.push([L,C]),E||(A.push(i),M.push(i))}var z,D,R,F,B,N,j,U,V,H,q,G,Y,W=g._bgLayer.selectAll(".bg").data(A);for(W.enter().append("rect").classed("bg",!0),W.exit().remove(),W.each((function(t){g._plots[t].bg=n.select(this)})),e=0;eT?u.push({code:"unused",traceType:y,templateCount:w,dataCount:T}):T>w&&u.push({code:"reused",traceType:y,templateCount:w,dataCount:T})}}else u.push({code:"data"});if(function t(e,r){for(var n in e)if("_"!==n.charAt(0)){var a=e[n],o=m(e,n,r);i(a)?(Array.isArray(e)&&!1===a._template&&a.templateitemname&&u.push({code:"missing",path:o,templateitemname:a.templateitemname}),t(a,o)):Array.isArray(a)&&g(a)&&t(a,o)}}({data:p,layout:h},""),u.length)return u.map(v)}},{"../lib":776,"../plots/attributes":823,"../plots/plots":890,"./plot_config":814,"./plot_schema":815,"./plot_template":816}],819:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./plot_api"),a=t("../plots/plots"),o=t("../lib"),s=t("../snapshot/helpers"),l=t("../snapshot/tosvg"),c=t("../snapshot/svgtoimg"),u=t("../version").version,f={format:{valType:"enumerated",values:["png","jpeg","webp","svg","full-json"],dflt:"png"},width:{valType:"number",min:1},height:{valType:"number",min:1},scale:{valType:"number",min:0,dflt:1},setBackground:{valType:"any",dflt:!1},imageDataOnly:{valType:"boolean",dflt:!1}};e.exports=function(t,e){var r,h,p,d;function m(t){return!(t in e)||o.validate(e[t],f[t])}if(e=e||{},o.isPlainObject(t)?(r=t.data||[],h=t.layout||{},p=t.config||{},d={}):(t=o.getGraphDiv(t),r=o.extendDeep([],t.data),h=o.extendDeep({},t.layout),p=t._context,d=t._fullLayout||{}),!m("width")&&null!==e.width||!m("height")&&null!==e.height)throw new Error("Height and width should be pixel values.");if(!m("format"))throw new Error("Export format is not "+o.join2(f.format.values,", "," or ")+".");var g={};function v(t,r){return o.coerce(e,g,f,t,r)}var y=v("format"),x=v("width"),b=v("height"),_=v("scale"),w=v("setBackground"),T=v("imageDataOnly"),k=document.createElement("div");k.style.position="absolute",k.style.left="-5000px",document.body.appendChild(k);var A=o.extendFlat({},h);x?A.width=x:null===e.width&&n(d.width)&&(A.width=d.width),b?A.height=b:null===e.height&&n(d.height)&&(A.height=d.height);var M=o.extendFlat({},p,{_exportedPlot:!0,staticPlot:!0,setBackground:w}),S=s.getRedrawFunc(k);function E(){return new Promise((function(t){setTimeout(t,s.getDelay(k._fullLayout))}))}function L(){return new Promise((function(t,e){var r=l(k,y,_),n=k._fullLayout.width,f=k._fullLayout.height;function h(){i.purge(k),document.body.removeChild(k)}if("full-json"===y){var p=a.graphJson(k,!1,"keepdata","object",!0,!0);return p.version=u,p=JSON.stringify(p),h(),t(T?p:s.encodeJSON(p))}if(h(),"svg"===y)return t(T?r:s.encodeSVG(r));var d=document.createElement("canvas");d.id=o.randstr(),c({format:y,width:n,height:f,scale:_,canvas:d,svg:r,promise:!0}).then(t).catch(e)}))}return new Promise((function(t,e){i.newPlot(k,r,A,M).then(S).then(E).then(L).then((function(e){t(function(t){return T?t.replace(s.IMAGE_URL_PREFIX,""):t}(e))})).catch((function(t){e(t)}))}))}},{"../lib":776,"../plots/plots":890,"../snapshot/helpers":908,"../snapshot/svgtoimg":910,"../snapshot/tosvg":912,"../version":1377,"./plot_api":813,"fast-isnumeric":242}],820:[function(t,e,r){"use strict";var n=t("../lib"),i=t("../plots/plots"),a=t("./plot_schema"),o=t("./plot_config").dfltConfig,s=n.isPlainObject,l=Array.isArray,c=n.isArrayOrTypedArray;function u(t,e,r,i,a,o){o=o||[];for(var f=Object.keys(t),h=0;hx.length&&i.push(d("unused",a,v.concat(x.length)));var A,M,S,E,L,C=x.length,P=Array.isArray(k);if(P&&(C=Math.min(C,k.length)),2===b.dimensions)for(M=0;Mx[M].length&&i.push(d("unused",a,v.concat(M,x[M].length)));var I=x[M].length;for(A=0;A<(P?Math.min(I,k[M].length):I);A++)S=P?k[M][A]:k,E=y[M][A],L=x[M][A],n.validate(E,S)?L!==E&&L!==+E&&i.push(d("dynamic",a,v.concat(M,A),E,L)):i.push(d("value",a,v.concat(M,A),E))}else i.push(d("array",a,v.concat(M),y[M]));else for(M=0;M1&&p.push(d("object","layout"))),i.supplyDefaults(m);for(var g=m._fullData,v=r.length,y=0;y0&&Math.round(f)===f))return{vals:i};c=f}for(var h=e.calendar,p="start"===l,d="end"===l,m=t[r+"period0"],g=a(m,h)||0,v=[],y=[],x=[],b=i.length,_=0;_A;)k=o(k,-c,h);for(;k<=A;)k=o(k,c,h);T=o(k,-c,h)}else{for(k=g+(w=Math.round((A-g)/u))*u;k>A;)k-=u;for(;k<=A;)k+=u;T=k-u}v[_]=p?T:d?k:(T+k)/2,y[_]=T,x[_]=k}return{vals:v,starts:y,ends:x}}},{"../../constants/numerical":752,"../../lib":776,"fast-isnumeric":242}],825:[function(t,e,r){"use strict";e.exports={xaxis:{valType:"subplotid",dflt:"x",editType:"calc+clearAxisTypes"},yaxis:{valType:"subplotid",dflt:"y",editType:"calc+clearAxisTypes"}}},{}],826:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("fast-isnumeric"),a=t("../../lib"),o=t("../../constants/numerical").FP_SAFE,s=t("../../registry"),l=t("../../components/drawing"),c=t("./axis_ids"),u=c.getFromId,f=c.isLinked;function h(t,e){var r,n,i=[],o=t._fullLayout,s=d(o,e,0),l=d(o,e,1),c=m(t,e),u=c.min,f=c.max;if(0===u.length||0===f.length)return a.simpleMap(e.range,e.r2l);var h=u[0].val,g=f[0].val;for(r=1;r0&&((T=E-s(x)-l(b))>L?k/T>C&&(_=x,w=b,C=k/T):k/E>C&&(_={val:x.val,nopad:1},w={val:b.val,nopad:1},C=k/E));if(h===g){var P=h-1,I=h+1;if(M)if(0===h)i=[0,1];else{var O=(h>0?f:u).reduce((function(t,e){return Math.max(t,l(e))}),0),z=h/(1-Math.min(.5,O/E));i=h>0?[0,z]:[z,0]}else i=S?[Math.max(0,P),Math.max(1,I)]:[P,I]}else M?(_.val>=0&&(_={val:0,nopad:1}),w.val<=0&&(w={val:0,nopad:1})):S&&(_.val-C*s(_)<0&&(_={val:0,nopad:1}),w.val<=0&&(w={val:1,nopad:1})),C=(w.val-_.val-p(e,x.val,b.val))/(E-s(_)-l(w)),i=[_.val-C*s(_),w.val+C*l(w)];return v&&i.reverse(),a.simpleMap(i,e.l2r||Number)}function p(t,e,r){var n=0;if(t.rangebreaks)for(var i=t.locateBreaks(e,r),a=0;a0?r.ppadplus:r.ppadminus)||r.ppad||0),S=A((t._m>0?r.ppadminus:r.ppadplus)||r.ppad||0),E=A(r.vpadplus||r.vpad),L=A(r.vpadminus||r.vpad);if(!T){if(h=1/0,p=-1/0,w)for(n=0;n0&&(h=a),a>p&&a-o&&(h=a),a>p&&a=I;n--)P(n);return{min:d,max:m,opts:r}},concatExtremes:m};function m(t,e,r){var n,i,a,o=e._id,s=t._fullData,l=t._fullLayout,c=[],f=[];function h(t,e){for(n=0;n=r&&(c.extrapad||!o)){s=!1;break}i(e,c.val)&&c.pad<=r&&(o||!c.extrapad)&&(t.splice(l,1),l--)}if(s){var u=a&&0===e;t.push({val:e,pad:u?0:r,extrapad:!u&&o})}}function x(t){return i(t)&&Math.abs(t)=e}},{"../../components/drawing":661,"../../constants/numerical":752,"../../lib":776,"../../registry":904,"./axis_ids":831,"@plotly/d3":58,"fast-isnumeric":242}],827:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("fast-isnumeric"),a=t("../../plots/plots"),o=t("../../registry"),s=t("../../lib"),l=s.strTranslate,c=t("../../lib/svg_text_utils"),u=t("../../components/titles"),f=t("../../components/color"),h=t("../../components/drawing"),p=t("./layout_attributes"),d=t("./clean_ticks"),m=t("../../constants/numerical"),g=m.ONEMAXYEAR,v=m.ONEAVGYEAR,y=m.ONEMINYEAR,x=m.ONEMAXQUARTER,b=m.ONEAVGQUARTER,_=m.ONEMINQUARTER,w=m.ONEMAXMONTH,T=m.ONEAVGMONTH,k=m.ONEMINMONTH,A=m.ONEWEEK,M=m.ONEDAY,S=M/2,E=m.ONEHOUR,L=m.ONEMIN,C=m.ONESEC,P=m.MINUS_SIGN,I=m.BADNUM,O={K:"zeroline"},z={K:"gridline",L:"path"},D={K:"tick",L:"path"},R={K:"tick",L:"text"},F=t("../../constants/alignment"),B=F.MID_SHIFT,N=F.CAP_SHIFT,j=F.LINE_SPACING,U=F.OPPOSITE_SIDE,V=e.exports={};V.setConvert=t("./set_convert");var H=t("./axis_autotype"),q=t("./axis_ids"),G=q.idSort,Y=q.isLinked;V.id2name=q.id2name,V.name2id=q.name2id,V.cleanId=q.cleanId,V.list=q.list,V.listIds=q.listIds,V.getFromId=q.getFromId,V.getFromTrace=q.getFromTrace;var W=t("./autorange");V.getAutoRange=W.getAutoRange,V.findExtremes=W.findExtremes;function X(t){var e=1e-4*(t[1]-t[0]);return[t[0]-e,t[1]+e]}V.coerceRef=function(t,e,r,n,i,a){var o=n.charAt(n.length-1),l=r._fullLayout._subplots[o+"axis"],c=n+"ref",u={};return i||(i=l[0]||("string"==typeof a?a:a[0])),a||(a=i),l=l.concat(l.map((function(t){return t+" domain"}))),u[c]={valType:"enumerated",values:l.concat(a?"string"==typeof a?[a]:a:[]),dflt:i},s.coerce(t,e,u,c)},V.getRefType=function(t){return void 0===t?t:"paper"===t?"paper":"pixel"===t?"pixel":/( domain)$/.test(t)?"domain":"range"},V.coercePosition=function(t,e,r,n,i,a){var o,l;if("range"!==V.getRefType(n))o=s.ensureNumber,l=r(i,a);else{var c=V.getFromId(e,n);l=r(i,a=c.fraction2r(a)),o=c.cleanPos}t[i]=o(l)},V.cleanPosition=function(t,e,r){return("paper"===r||"pixel"===r?s.ensureNumber:V.getFromId(e,r).cleanPos)(t)},V.redrawComponents=function(t,e){e=e||V.listIds(t);var r=t._fullLayout;function n(n,i,a,s){for(var l=o.getComponentMethod(n,i),c={},u=0;u2e-6||((r-t._forceTick0)/t._minDtick%1+1.000001)%1>2e-6)&&(t._minDtick=0)):t._minDtick=0},V.saveRangeInitial=function(t,e){for(var r=V.list(t,"",!0),n=!1,i=0;i.3*h||u(n)||u(a))){var p=r.dtick/2;t+=t+p.8){var o=Number(r.substr(1));a.exactYears>.8&&o%12==0?t=V.tickIncrement(t,"M6","reverse")+1.5*M:a.exactMonths>.8?t=V.tickIncrement(t,"M1","reverse")+15.5*M:t-=S;var l=V.tickIncrement(t,r);if(l<=n)return l}return t}(y,t,v,c,a)),g=y,0;g<=u;)g=V.tickIncrement(g,v,!1,a);return{start:e.c2r(y,0,a),end:e.c2r(g,0,a),size:v,_dataSpan:u-c}},V.prepTicks=function(t,e){var r=s.simpleMap(t.range,t.r2l,void 0,void 0,e);if(t._dtickInit=t.dtick,t._tick0Init=t.tick0,"auto"===t.tickmode||!t.dtick){var n,a=t.nticks;a||("category"===t.type||"multicategory"===t.type?(n=t.tickfont?s.bigFont(t.tickfont.size||12):15,a=t._length/n):(n="y"===t._id.charAt(0)?40:80,a=s.constrain(t._length/n,4,9)+1),"radialaxis"===t._name&&(a*=2)),"array"===t.tickmode&&(a*=100),t._roughDTick=Math.abs(r[1]-r[0])/a,V.autoTicks(t,t._roughDTick),t._minDtick>0&&t.dtick<2*t._minDtick&&(t.dtick=t._minDtick,t.tick0=t.l2r(t._forceTick0))}"period"===t.ticklabelmode&&function(t){var e;function r(){return!(i(t.dtick)||"M"!==t.dtick.charAt(0))}var n=r(),a=V.getTickFormat(t);if(a){var o=t._dtickInit!==t.dtick;/%[fLQsSMX]/.test(a)||(/%[HI]/.test(a)?(e=E,o&&!n&&t.dticka&&f=o:p<=o;p=V.tickIncrement(p,t.dtick,l,t.calendar)){if(t.rangebreaks&&!l){if(p=u)break}if(L.length>m||p===C)break;C=p;var P=!1;f&&p!==(0|p)&&(P=!0),L.push({minor:P,value:p})}if(h&&function(t,e,r){for(var n=0;n0?(a=n-1,o=n):(a=n,o=n);var s,l=t[a].value,c=t[o].value,u=Math.abs(c-l),f=r||u,h=0;f>=y?h=u>=y&&u<=g?u:v:r===b&&f>=_?h=u>=_&&u<=x?u:b:f>=k?h=u>=k&&u<=w?u:T:r===A&&f>=A?h=A:f>=M?h=M:r===S&&f>=S?h=S:r===E&&f>=E&&(h=E),h>=u&&(h=u,s=!0);var p=i+h;if(e.rangebreaks&&h>0){for(var d=0,m=0;m<84;m++){var L=(m+.5)/84;e.maskBreaks(i*(1-L)+L*p)!==I&&d++}(h*=d/84)||(t[n].drop=!0),s&&u>A&&(h=u)}(h>0||0===n)&&(t[n].periodX=i+h/2)}}(L,t,t._definedDelta),t.rangebreaks){var O="y"===t._id.charAt(0),z=1;"auto"===t.tickmode&&(z=t.tickfont?t.tickfont.size:12);var D=NaN;for(d=L.length-1;d>-1;d--)if(L[d].drop)L.splice(d,1);else{L[d].value=Mt(L[d].value,t);var R=t.c2p(L[d].value);(O?D>R-z:Du||Bu&&(F.periodX=u),B10||"01-01"!==n.substr(5)?t._tickround="d":t._tickround=+e.substr(1)%12==0?"y":"m";else if(e>=M&&a<=10||e>=15*M)t._tickround="d";else if(e>=L&&a<=16||e>=E)t._tickround="M";else if(e>=C&&a<=19||e>=L)t._tickround="S";else{var o=t.l2r(r+e).replace(/^-/,"").length;t._tickround=Math.max(a,o)-20,t._tickround<0&&(t._tickround=4)}}else if(i(e)||"L"===e.charAt(0)){var s=t.range.map(t.r2d||Number);i(e)||(e=Number(e.substr(1))),t._tickround=2-Math.floor(Math.log(e)/Math.LN10+.01);var l=Math.max(Math.abs(s[0]),Math.abs(s[1])),c=Math.floor(Math.log(l)/Math.LN10+.01),u=void 0===t.minexponent?3:t.minexponent;Math.abs(c)>u&&(ut(t.exponentformat)&&!ft(c)?t._tickexponent=3*Math.round((c-1)/3):t._tickexponent=c)}else t._tickround=null}function lt(t,e,r){var n=t.tickfont||{};return{x:e,dx:0,dy:0,text:r||"",fontSize:n.size,font:n.family,fontColor:n.color}}V.autoTicks=function(t,e){var r;function n(t){return Math.pow(t,Math.floor(Math.log(e)/Math.LN10))}if("date"===t.type){t.tick0=s.dateTick0(t.calendar,0);var a=2*e;if(a>v)e/=v,r=n(10),t.dtick="M"+12*ot(e,r,$);else if(a>T)e/=T,t.dtick="M"+ot(e,1,tt);else if(a>M){t.dtick=ot(e,M,t._hasDayOfWeekBreaks?[1,2,7,14]:rt);var o=V.getTickFormat(t),l="period"===t.ticklabelmode;l&&(t._rawTick0=t.tick0),/%[uVW]/.test(o)?t.tick0=s.dateTick0(t.calendar,2):t.tick0=s.dateTick0(t.calendar,1),l&&(t._dowTick0=t.tick0)}else a>E?t.dtick=ot(e,E,tt):a>L?t.dtick=ot(e,L,et):a>C?t.dtick=ot(e,C,et):(r=n(10),t.dtick=ot(e,r,$))}else if("log"===t.type){t.tick0=0;var c=s.simpleMap(t.range,t.r2l);if(e>.7)t.dtick=Math.ceil(e);else if(Math.abs(c[1]-c[0])<1){var u=1.5*Math.abs((c[1]-c[0])/e);e=Math.abs(Math.pow(10,c[1])-Math.pow(10,c[0]))/u,r=n(10),t.dtick="L"+ot(e,r,$)}else t.dtick=e>.3?"D2":"D1"}else"category"===t.type||"multicategory"===t.type?(t.tick0=0,t.dtick=Math.ceil(Math.max(e,1))):At(t)?(t.tick0=0,r=1,t.dtick=ot(e,r,at)):(t.tick0=0,r=n(10),t.dtick=ot(e,r,$));if(0===t.dtick&&(t.dtick=1),!i(t.dtick)&&"string"!=typeof t.dtick){var f=t.dtick;throw t.dtick=1,"ax.dtick error: "+String(f)}},V.tickIncrement=function(t,e,r,a){var o=r?-1:1;if(i(e))return s.increment(t,o*e);var l=e.charAt(0),c=o*Number(e.substr(1));if("M"===l)return s.incrementMonth(t,c,a);if("L"===l)return Math.log(Math.pow(10,t)+c)/Math.LN10;if("D"===l){var u="D2"===e?it:nt,f=t+.01*o,h=s.roundUp(s.mod(f,1),u,r);return Math.floor(f)+Math.log(n.round(Math.pow(10,h),1))/Math.LN10}throw"unrecognized dtick "+String(e)},V.tickFirst=function(t,e){var r=t.r2l||Number,a=s.simpleMap(t.range,r,void 0,void 0,e),o=a[1] ")}else t._prevDateHead=l,c+="
"+l;e.text=c}(t,o,r,c):"log"===u?function(t,e,r,n,a){var o=t.dtick,l=e.x,c=t.tickformat,u="string"==typeof o&&o.charAt(0);"never"===a&&(a="");n&&"L"!==u&&(o="L3",u="L");if(c||"L"===u)e.text=ht(Math.pow(10,l),t,a,n);else if(i(o)||"D"===u&&s.mod(l+.01,1)<.1){var f=Math.round(l),h=Math.abs(f),p=t.exponentformat;"power"===p||ut(p)&&ft(f)?(e.text=0===f?1:1===f?"10":"10"+(f>1?"":P)+h+"",e.fontSize*=1.25):("e"===p||"E"===p)&&h>2?e.text="1"+p+(f>0?"+":P)+h:(e.text=ht(Math.pow(10,l),t,"","fakehover"),"D1"===o&&"y"===t._id.charAt(0)&&(e.dy-=e.fontSize/6))}else{if("D"!==u)throw"unrecognized dtick "+String(o);e.text=String(Math.round(Math.pow(10,s.mod(l,1)))),e.fontSize*=.75}if("D1"===t.dtick){var d=String(e.text).charAt(0);"0"!==d&&"1"!==d||("y"===t._id.charAt(0)?e.dx-=e.fontSize/4:(e.dy+=e.fontSize/2,e.dx+=(t.range[1]>t.range[0]?1:-1)*e.fontSize*(l<0?.5:.25)))}}(t,o,0,c,m):"category"===u?function(t,e){var r=t._categories[Math.round(e.x)];void 0===r&&(r="");e.text=String(r)}(t,o):"multicategory"===u?function(t,e,r){var n=Math.round(e.x),i=t._categories[n]||[],a=void 0===i[1]?"":String(i[1]),o=void 0===i[0]?"":String(i[0]);r?e.text=o+" - "+a:(e.text=a,e.text2=o)}(t,o,r):At(t)?function(t,e,r,n,i){if("radians"!==t.thetaunit||r)e.text=ht(e.x,t,i,n);else{var a=e.x/180;if(0===a)e.text="0";else{var o=function(t){function e(t,e){return Math.abs(t-e)<=1e-6}var r=function(t){for(var r=1;!e(Math.round(t*r)/r,t);)r*=10;return r}(t),n=t*r,i=Math.abs(function t(r,n){return e(n,0)?r:t(n,r%n)}(n,r));return[Math.round(n/i),Math.round(r/i)]}(a);if(o[1]>=100)e.text=ht(s.deg2rad(e.x),t,i,n);else{var l=e.x<0;1===o[1]?1===o[0]?e.text="\u03c0":e.text=o[0]+"\u03c0":e.text=["",o[0],"","\u2044","",o[1],"","\u03c0"].join(""),l&&(e.text=P+e.text)}}}}(t,o,r,c,m):function(t,e,r,n,i){"never"===i?i="":"all"===t.showexponent&&Math.abs(e.x/t.dtick)<1e-6&&(i="hide");e.text=ht(e.x,t,i,n)}(t,o,0,c,m),n||(t.tickprefix&&!d(t.showtickprefix)&&(o.text=t.tickprefix+o.text),t.ticksuffix&&!d(t.showticksuffix)&&(o.text+=t.ticksuffix)),"boundaries"===t.tickson||t.showdividers){var g=function(e){var r=t.l2p(e);return r>=0&&r<=t._length?e:null};o.xbnd=[g(o.x-.5),g(o.x+t.dtick-.5)]}return o},V.hoverLabelText=function(t,e,r){r&&(t=s.extendFlat({},t,{hoverformat:r}));var n=Array.isArray(e)?e[0]:e,i=Array.isArray(e)?e[1]:void 0;if(void 0!==i&&i!==n)return V.hoverLabelText(t,n,r)+" - "+V.hoverLabelText(t,i,r);var a="log"===t.type&&n<=0,o=V.tickText(t,t.c2l(a?-n:n),"hover").text;return a?0===n?"0":P+o:o};var ct=["f","p","n","\u03bc","m","","k","M","G","T"];function ut(t){return"SI"===t||"B"===t}function ft(t){return t>14||t<-15}function ht(t,e,r,n){var a=t<0,o=e._tickround,l=r||e.exponentformat||"B",c=e._tickexponent,u=V.getTickFormat(e),f=e.separatethousands;if(n){var h={exponentformat:l,minexponent:e.minexponent,dtick:"none"===e.showexponent?e.dtick:i(t)&&Math.abs(t)||1,range:"none"===e.showexponent?e.range.map(e.r2d):[0,t||1]};st(h),o=(Number(h._tickround)||0)+4,c=h._tickexponent,e.hoverformat&&(u=e.hoverformat)}if(u)return e._numFormat(u)(t).replace(/-/g,P);var p,d=Math.pow(10,-o)/2;if("none"===l&&(c=0),(t=Math.abs(t))"+p+"":"B"===l&&9===c?t+="B":ut(l)&&(t+=ct[c/3+5]));return a?P+t:t}function pt(t,e){for(var r=[],n={},i=0;i1&&r=i.min&&t=0,a=u(t,e[1])<=0;return(r||i)&&(n||a)}if(t.tickformatstops&&t.tickformatstops.length>0)switch(t.type){case"date":case"linear":for(e=0;e=o(i)))){r=n;break}break;case"log":for(e=0;e0?r.bottom-f:0,h)))),e.automargin){n={x:0,y:0,r:0,l:0,t:0,b:0};var p=[0,1];if("x"===d){if("b"===l?n[l]=e._depth:(n[l]=e._depth=Math.max(r.width>0?f-r.top:0,h),p.reverse()),r.width>0){var g=r.right-(e._offset+e._length);g>0&&(n.xr=1,n.r=g);var v=e._offset-r.left;v>0&&(n.xl=0,n.l=v)}}else if("l"===l?n[l]=e._depth=Math.max(r.height>0?f-r.left:0,h):(n[l]=e._depth=Math.max(r.height>0?r.right-f:0,h),p.reverse()),r.height>0){var y=r.bottom-(e._offset+e._length);y>0&&(n.yb=0,n.b=y);var x=e._offset-r.top;x>0&&(n.yt=1,n.t=x)}n[m]="free"===e.anchor?e.position:e._anchorAxis.domain[p[0]],e.title.text!==c._dfltTitle[d]&&(n[l]+=gt(e)+(e.title.standoff||0)),e.mirror&&"free"!==e.anchor&&((i={x:0,y:0,r:0,l:0,t:0,b:0})[u]=e.linewidth,e.mirror&&!0!==e.mirror&&(i[u]+=h),!0===e.mirror||"ticks"===e.mirror?i[m]=e._anchorAxis.domain[p[1]]:"all"!==e.mirror&&"allticks"!==e.mirror||(i[m]=[e._counterDomainMin,e._counterDomainMax][p[1]]))}K&&(s=o.getComponentMethod("rangeslider","autoMarginOpts")(t,e)),a.autoMargin(t,xt(e),n),a.autoMargin(t,bt(e),i),a.autoMargin(t,_t(e),s)})),r.skipTitle||K&&"bottom"===e.side||Z.push((function(){return function(t,e){var r,n=t._fullLayout,i=e._id,a=i.charAt(0),o=e.title.font.size;if(e.title.hasOwnProperty("standoff"))r=e._depth+e.title.standoff+gt(e);else{var s=St(e);if("multicategory"===e.type)r=e._depth;else{var l=1.5*o;s&&(l=.5*o,"outside"===e.ticks&&(l+=e.ticklen)),r=10+l+(e.linewidth?e.linewidth-1:0)}s||(r+="x"===a?"top"===e.side?o*(e.showticklabels?1:0):o*(e.showticklabels?1.5:.5):"right"===e.side?o*(e.showticklabels?1:.5):o*(e.showticklabels?.5:0))}var c,f,p,d,m=V.getPxPosition(t,e);"x"===a?(f=e._offset+e._length/2,p="top"===e.side?m-r:m+r):(p=e._offset+e._length/2,f="right"===e.side?m+r:m-r,c={rotate:"-90",offset:0});if("multicategory"!==e.type){var g=e._selections[e._id+"tick"];if(d={selection:g,side:e.side},g&&g.node()&&g.node().parentNode){var v=h.getTranslate(g.node().parentNode);d.offsetLeft=v.x,d.offsetTop=v.y}e.title.hasOwnProperty("standoff")&&(d.pad=0)}return u.draw(t,i+"title",{propContainer:e,propName:e._name+".title.text",placeholder:n._dfltTitle[a],avoid:d,transform:c,attributes:{x:f,y:p,"text-anchor":"middle"}})}(t,e)})),s.syncOrAsync(Z)}}function Q(t){var r=p+(t||"tick");return w[r]||(w[r]=function(t,e){var r,n,i,a;t._selections[e].size()?(r=1/0,n=-1/0,i=1/0,a=-1/0,t._selections[e].each((function(){var t=yt(this),e=h.bBox(t.node().parentNode);r=Math.min(r,e.top),n=Math.max(n,e.bottom),i=Math.min(i,e.left),a=Math.max(a,e.right)}))):(r=0,n=0,i=0,a=0);return{top:r,bottom:n,left:i,right:a,height:n-r,width:a-i}}(e,r)),w[r]}},V.getTickSigns=function(t){var e=t._id.charAt(0),r={x:"top",y:"right"}[e],n=t.side===r?1:-1,i=[-1,1,n,-n];return"inside"!==t.ticks==("x"===e)&&(i=i.map((function(t){return-t}))),t.side&&i.push({l:-1,t:-1,r:1,b:1}[t.side.charAt(0)]),i},V.makeTransTickFn=function(t){return"x"===t._id.charAt(0)?function(e){return l(t._offset+t.l2p(e.x),0)}:function(e){return l(0,t._offset+t.l2p(e.x))}},V.makeTransTickLabelFn=function(t){var e=function(t){var e=t.ticklabelposition||"",r=function(t){return-1!==e.indexOf(t)},n=r("top"),i=r("left"),a=r("right"),o=r("bottom"),s=r("inside"),l=o||i||n||a;if(!l&&!s)return[0,0];var c=t.side,u=l?(t.tickwidth||0)/2:0,f=3,h=t.tickfont?t.tickfont.size:12;(o||n)&&(u+=h*N,f+=(t.linewidth||0)/2);(i||a)&&(u+=(t.linewidth||0)/2,f+=3);s&&"top"===c&&(f-=h*(1-N));(i||n)&&(u=-u);"bottom"!==c&&"right"!==c||(f=-f);return[l?u:0,s?f:0]}(t),r=e[0],n=e[1];return"x"===t._id.charAt(0)?function(e){return l(r+t._offset+t.l2p(dt(e)),n)}:function(e){return l(n,r+t._offset+t.l2p(dt(e)))}},V.makeTickPath=function(t,e,r,n){n=void 0!==n?n:t.ticklen;var i=t._id.charAt(0),a=(t.linewidth||1)/2;return"x"===i?"M0,"+(e+a*r)+"v"+n*r:"M"+(e+a*r)+",0h"+n*r},V.makeLabelFns=function(t,e,r){var n=t.ticklabelposition||"",a=function(t){return-1!==n.indexOf(t)},o=a("top"),l=a("left"),c=a("right"),u=a("bottom")||l||o||c,f=a("inside"),h="inside"===n&&"inside"===t.ticks||!f&&"outside"===t.ticks&&"boundaries"!==t.tickson,p=0,d=0,m=h?t.ticklen:0;if(f?m*=-1:u&&(m=0),h&&(p+=m,r)){var g=s.deg2rad(r);p=m*Math.cos(g)+1,d=m*Math.sin(g)}t.showticklabels&&(h||t.showline)&&(p+=.2*t.tickfont.size);var v,y,x,b,_,w={labelStandoff:p+=(t.linewidth||1)/2*(f?-1:1),labelShift:d},T=0,k=t.side,A=t._id.charAt(0),M=t.tickangle;if("x"===A)b=(_=!f&&"bottom"===k||f&&"top"===k)?1:-1,f&&(b*=-1),v=d*b,y=e+p*b,x=_?1:-.2,90===Math.abs(M)&&(f?x+=B:x=-90===M&&"bottom"===k?N:90===M&&"top"===k?B:.5,T=B/2*(M/90)),w.xFn=function(t){return t.dx+v+T*t.fontSize},w.yFn=function(t){return t.dy+y+t.fontSize*x},w.anchorFn=function(t,e){if(u){if(l)return"end";if(c)return"start"}return i(e)&&0!==e&&180!==e?e*b<0!==f?"end":"start":"middle"},w.heightFn=function(e,r,n){return r<-60||r>60?-.5*n:"top"===t.side!==f?-n:0};else if("y"===A){if(b=(_=!f&&"left"===k||f&&"right"===k)?1:-1,f&&(b*=-1),v=p,y=d*b,x=0,f||90!==Math.abs(M)||(x=-90===M&&"left"===k||90===M&&"right"===k?N:.5),f){var S=i(M)?+M:0;if(0!==S){var E=s.deg2rad(S);T=Math.abs(Math.sin(E))*N*b,x=0}}w.xFn=function(t){return t.dx+e-(v+t.fontSize*x)*b+T*t.fontSize},w.yFn=function(t){return t.dy+y+t.fontSize*B},w.anchorFn=function(t,e){return i(e)&&90===Math.abs(e)?"middle":_?"end":"start"},w.heightFn=function(e,r,n){return"right"===t.side&&(r*=-1),r<-30?-n:r<30?-.5*n:0}}return w},V.drawTicks=function(t,e,r){r=r||{};var n=e._id+"tick",i=r.vals;"period"===e.ticklabelmode&&(i=i.slice()).shift();var a=r.layer.selectAll("path."+n).data(e.ticks?i:[],mt);a.exit().remove(),a.enter().append("path").classed(n,1).classed("ticks",1).classed("crisp",!1!==r.crisp).call(f.stroke,e.tickcolor).style("stroke-width",h.crispRound(t,e.tickwidth,1)+"px").attr("d",r.path).style("display",null),Et(e,[D]),a.attr("transform",r.transFn)},V.drawGrid=function(t,e,r){r=r||{};var n=e._id+"grid",i=r.vals,a=r.counterAxis;if(!1===e.showgrid)i=[];else if(a&&V.shouldShowZeroLine(t,e,a))for(var o="array"===e.tickmode,s=0;sp||a.leftp||a.top+(e.tickangle?0:t.fontSize/4)e["_visibleLabelMin_"+r._id]?l.style("display","none"):"tick"!==t.K||i||l.style("display",null)}))}))}))}))},x(v,g+1?g:m);var b=null;e._selections&&(e._selections[f]=v);var _=[function(){return y.length&&Promise.all(y)}];e.automargin&&a._redrawFromAutoMarginCount&&90===g?(b=90,_.push((function(){x(v,g)}))):_.push((function(){if(x(v,m),p.length&&"x"===u&&!i(m)&&("log"!==e.type||"D"!==String(e.dtick).charAt(0))){b=0;var t,n=0,a=[];if(v.each((function(t){n=Math.max(n,t.fontSize);var r=e.l2p(t.x),i=yt(this),o=h.bBox(i.node());a.push({top:0,bottom:10,height:10,left:r-o.width/2,right:r+o.width/2+2,width:o.width+2})})),"boundaries"!==e.tickson&&!e.showdividers||r.secondary){var o=p.length,l=Math.abs((p[o-1].x-p[0].x)*e._m)/(o-1),c=e.ticklabelposition||"",f=function(t){return-1!==c.indexOf(t)},d=f("top"),g=f("left"),y=f("right"),_=f("bottom")||g||d||y?(e.tickwidth||0)+6:0,w=l<2.5*n||"multicategory"===e.type;for(t=0;t1)for(n=1;n2*o}(i,e))return"date";var g="strict"!==r.autotypenumbers;return function(t,e){for(var r=t.length,n=f(r),i=0,o=0,s={},u=0;u2*i}(i,g)?"category":function(t,e){for(var r=t.length,n=0;n=2){var l,c,u="";if(2===o.length)for(l=0;l<2;l++)if(c=y(o[l])){u=d;break}var f=i("pattern",u);if(f===d)for(l=0;l<2;l++)(c=y(o[l]))&&(e.bounds[l]=o[l]=c-1);if(f)for(l=0;l<2;l++)switch(c=o[l],f){case d:if(!n(c))return void(e.enabled=!1);if((c=+c)!==Math.floor(c)||c<0||c>=7)return void(e.enabled=!1);e.bounds[l]=o[l]=c;break;case m:if(!n(c))return void(e.enabled=!1);if((c=+c)<0||c>24)return void(e.enabled=!1);e.bounds[l]=o[l]=c}if(!1===r.autorange){var h=r.range;if(h[0]h[1])return void(e.enabled=!1)}else if(o[0]>h[0]&&o[1]n?1:-1:+(t.substr(1)||1)-+(e.substr(1)||1)},r.ref2id=function(t){return!!/^[xyz]/.test(t)&&t.split(" ")[0]},r.isLinked=function(t,e){return a(e,t._axisMatchGroups)||a(e,t._axisConstraintGroups)}},{"../../registry":904,"./constants":834}],832:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){if("category"===e.type){var i,a=t.categoryarray,o=Array.isArray(a)&&a.length>0;o&&(i="array");var s,l=r("categoryorder",i);"array"===l&&(s=r("categoryarray")),o||"array"!==l||(l=e.categoryorder="trace"),"trace"===l?e._initialCategories=[]:"array"===l?e._initialCategories=s.slice():(s=function(t,e){var r,n,i,a=e.dataAttr||t._id.charAt(0),o={};if(e.axData)r=e.axData;else for(r=[],n=0;nn?i.substr(n):a.substr(r))+o:i+a+t*e:o}function g(t,e){for(var r=e._size,n=r.h/r.w,i={},a=Object.keys(t),o=0;oc*x)||T)for(r=0;rO&&FP&&(P=F);h/=(P-C)/(2*I),C=l.l2r(C),P=l.l2r(P),l.range=l._input.range=S=0?Math.min(t,.9):1/(1/Math.max(t,-.3)+3.222))}function N(t,e,r,n,i){return t.append("path").attr("class","zoombox").style({fill:e>.2?"rgba(0,0,0,0)":"rgba(255,255,255,0)","stroke-width":0}).attr("transform",c(r,n)).attr("d",i+"Z")}function j(t,e,r){return t.append("path").attr("class","zoombox-corners").style({fill:f.background,stroke:f.defaultLine,"stroke-width":1,opacity:0}).attr("transform",c(e,r)).attr("d","M0,0Z")}function U(t,e,r,n,i,a){t.attr("d",n+"M"+r.l+","+r.t+"v"+r.h+"h"+r.w+"v-"+r.h+"h-"+r.w+"Z"),V(t,e,i,a)}function V(t,e,r,n){r||(t.transition().style("fill",n>.2?"rgba(0,0,0,0.4)":"rgba(255,255,255,0.3)").duration(200),e.transition().style("opacity",1).duration(200))}function H(t){n.select(t).selectAll(".zoombox,.js-zoombox-backdrop,.js-zoombox-menu,.zoombox-corners").remove()}function q(t){I&&t.data&&t._context.showTips&&(i.notifier(i._(t,"Double-click to zoom back out"),"long"),I=!1)}function G(t){var e=Math.floor(Math.min(t.b-t.t,t.r-t.l,P)/2);return"M"+(t.l-3.5)+","+(t.t-.5+e)+"h3v"+-e+"h"+e+"v-3h-"+(e+3)+"ZM"+(t.r+3.5)+","+(t.t-.5+e)+"h-3v"+-e+"h"+-e+"v-3h"+(e+3)+"ZM"+(t.r+3.5)+","+(t.b+.5-e)+"h-3v"+e+"h"+-e+"v3h"+(e+3)+"ZM"+(t.l-3.5)+","+(t.b+.5-e)+"h3v"+e+"h"+e+"v3h-"+(e+3)+"Z"}function Y(t,e,r,n,a){for(var o,s,l,c,u=!1,f={},h={},p=(a||{}).xaHash,d=(a||{}).yaHash,m=0;m=0)i._fullLayout._deactivateShape(i);else{var o=i._fullLayout.clickmode;if(H(i),2!==t||vt||qt(),gt)o.indexOf("select")>-1&&S(r,i,J,K,e.id,Pt),o.indexOf("event")>-1&&p.click(i,r,e.id);else if(1===t&&vt){var s=m?O:I,c="s"===m||"w"===v?0:1,f=s._name+".range["+c+"]",h=function(t,e){var r,n=t.range[e],i=Math.abs(n-t.range[1-e]);return"date"===t.type?n:"log"===t.type?(r=Math.ceil(Math.max(0,-Math.log(i)/Math.LN10))+3,a("."+r+"g")(Math.pow(10,n))):(r=Math.floor(Math.log(Math.abs(n))/Math.LN10)-Math.floor(Math.log(i)/Math.LN10)+4,a("."+String(r)+"g")(n))}(s,c),d="left",g="middle";if(s.fixedrange)return;m?(g="n"===m?"top":"bottom","right"===s.side&&(d="right")):"e"===v&&(d="right"),i._context.showAxisRangeEntryBoxes&&n.select(bt).call(u.makeEditable,{gd:i,immediate:!0,background:i._fullLayout.paper_bgcolor,text:String(h),fill:s.tickfont?s.tickfont.color:"#444",horizontalAlign:d,verticalAlign:g}).on("edit",(function(t){var e=s.d2r(t);void 0!==e&&l.call("_guiRelayout",i,f,e)}))}}}function zt(e,r){if(t._transitioningWithDuration)return!1;var n=Math.max(0,Math.min(tt,pt*e+_t)),i=Math.max(0,Math.min(et,dt*r+wt)),a=Math.abs(n-_t),o=Math.abs(i-wt);function s(){St="",Tt.r=Tt.l,Tt.t=Tt.b,Lt.attr("d","M0,0Z")}if(Tt.l=Math.min(_t,n),Tt.r=Math.max(_t,n),Tt.t=Math.min(wt,i),Tt.b=Math.max(wt,i),rt.isSubplotConstrained)a>P||o>P?(St="xy",a/tt>o/et?(o=a*et/tt,wt>i?Tt.t=wt-o:Tt.b=wt+o):(a=o*tt/et,_t>n?Tt.l=_t-a:Tt.r=_t+a),Lt.attr("d",G(Tt))):s();else if(nt.isSubplotConstrained)if(a>P||o>P){St="xy";var l=Math.min(Tt.l/tt,(et-Tt.b)/et),c=Math.max(Tt.r/tt,(et-Tt.t)/et);Tt.l=l*tt,Tt.r=c*tt,Tt.b=(1-l)*et,Tt.t=(1-c)*et,Lt.attr("d",G(Tt))}else s();else!at||o0){var u;if(nt.isSubplotConstrained||!it&&1===at.length){for(u=0;um[1]-1/4096&&(e.domain=s),i.noneOrAll(t.domain,e.domain,s)}return r("layer"),e}},{"../../lib":776,"fast-isnumeric":242}],846:[function(t,e,r){"use strict";var n=t("../../constants/alignment").FROM_BL;e.exports=function(t,e,r){void 0===r&&(r=n[t.constraintoward||"center"]);var i=[t.r2l(t.range[0]),t.r2l(t.range[1])],a=i[0]+(i[1]-i[0])*r;t.range=t._input.range=[t.l2r(a+(i[0]-a)*e),t.l2r(a+(i[1]-a)*e)],t.setScale()}},{"../../constants/alignment":744}],847:[function(t,e,r){"use strict";var n=t("polybooljs"),i=t("../../registry"),a=t("../../components/drawing").dashStyle,o=t("../../components/color"),s=t("../../components/fx"),l=t("../../components/fx/helpers").makeEventData,c=t("../../components/dragelement/helpers"),u=c.freeMode,f=c.rectMode,h=c.drawMode,p=c.openMode,d=c.selectMode,m=t("../../components/shapes/draw_newshape/display_outlines"),g=t("../../components/shapes/draw_newshape/helpers").handleEllipse,v=t("../../components/shapes/draw_newshape/newshapes"),y=t("../../lib"),x=t("../../lib/polygon"),b=t("../../lib/throttle"),_=t("./axis_ids").getFromId,w=t("../../lib/clear_gl_canvases"),T=t("../../plot_api/subroutines").redrawReglTraces,k=t("./constants"),A=k.MINSELECT,M=x.filter,S=x.tester,E=t("./handle_outline").clearSelect,L=t("./helpers"),C=L.p2r,P=L.axValue,I=L.getTransform;function O(t,e,r,n,i,a,o){var s,l,c,u,f,h,d,g,v,y=e._hoverdata,x=e._fullLayout.clickmode.indexOf("event")>-1,b=[];if(function(t){return t&&Array.isArray(t)&&!0!==t[0].hoverOnBox}(y)){F(t,e,a);var _=function(t,e){var r,n,i=t[0],a=-1,o=[];for(n=0;n0?function(t,e){var r,n,i,a=[];for(i=0;i0&&a.push(r);if(1===a.length&&a[0]===e.searchInfo&&(n=e.searchInfo.cd[0].trace).selectedpoints.length===e.pointNumbers.length){for(i=0;i1)return!1;if((i+=r.selectedpoints.length)>1)return!1}return 1===i}(s)&&(h=j(_))){for(o&&o.remove(),v=0;v=0&&n._fullLayout._deactivateShape(n),h(e)){var a=n._fullLayout._zoomlayer.selectAll(".select-outline-"+r.id);if(a&&n._fullLayout._drawing){var o=v(a,t);o&&i.call("_guiRelayout",n,{shapes:o}),n._fullLayout._drawing=!1}}r.selection={},r.selection.selectionDefs=t.selectionDefs=[],r.selection.mergedPolygons=t.mergedPolygons=[]}function N(t,e,r,n){var i,a,o,s=[],l=e.map((function(t){return t._id})),c=r.map((function(t){return t._id}));for(o=0;o0?n[0]:r;return!!e.selectedpoints&&e.selectedpoints.indexOf(i)>-1}function U(t,e,r){var n,a,o,s;for(n=0;n=0)L._fullLayout._deactivateShape(L);else if(!_){var r=z.clickmode;b.done(mt).then((function(){if(b.clear(mt),2===t){for(ft.remove(),$=0;$-1&&O(e,L,i.xaxes,i.yaxes,i.subplot,i,ft),"event"===r&&L.emit("plotly_selected",void 0);s.click(L,e)})).catch(y.error)}},i.doneFn=function(){dt.remove(),b.done(mt).then((function(){b.clear(mt),i.gd.emit("plotly_selected",et),Q&&i.selectionDefs&&(Q.subtract=ut,i.selectionDefs.push(Q),i.mergedPolygons.length=0,[].push.apply(i.mergedPolygons,K)),i.doneFnCompleted&&i.doneFnCompleted(gt)})).catch(y.error),_&&B(i)}},clearSelect:E,clearSelectionsCache:B,selectOnClick:O}},{"../../components/color":639,"../../components/dragelement/helpers":657,"../../components/drawing":661,"../../components/fx":679,"../../components/fx/helpers":675,"../../components/shapes/draw_newshape/display_outlines":727,"../../components/shapes/draw_newshape/helpers":728,"../../components/shapes/draw_newshape/newshapes":729,"../../lib":776,"../../lib/clear_gl_canvases":760,"../../lib/polygon":788,"../../lib/throttle":803,"../../plot_api/subroutines":817,"../../registry":904,"./axis_ids":831,"./constants":834,"./handle_outline":838,"./helpers":839,polybooljs:480}],848:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-time-format").utcFormat,a=t("../../lib"),o=a.numberFormat,s=t("fast-isnumeric"),l=a.cleanNumber,c=a.ms2DateTime,u=a.dateTime2ms,f=a.ensureNumber,h=a.isArrayOrTypedArray,p=t("../../constants/numerical"),d=p.FP_SAFE,m=p.BADNUM,g=p.LOG_CLIP,v=p.ONEWEEK,y=p.ONEDAY,x=p.ONEHOUR,b=p.ONEMIN,_=p.ONESEC,w=t("./axis_ids"),T=t("./constants"),k=T.HOUR_PATTERN,A=T.WEEKDAY_PATTERN;function M(t){return Math.pow(10,t)}function S(t){return null!=t}e.exports=function(t,e){e=e||{};var r=t._id||"x",p=r.charAt(0);function E(e,r){if(e>0)return Math.log(e)/Math.LN10;if(e<=0&&r&&t.range&&2===t.range.length){var n=t.range[0],i=t.range[1];return.5*(n+i-2*g*Math.abs(n-i))}return m}function L(e,r,n,i){if((i||{}).msUTC&&s(e))return+e;var o=u(e,n||t.calendar);if(o===m){if(!s(e))return m;e=+e;var l=Math.floor(10*a.mod(e+.05,1)),c=Math.round(e-l/10);o=u(new Date(c))+l/10}return o}function C(e,r,n){return c(e,r,n||t.calendar)}function P(e){return t._categories[Math.round(e)]}function I(e){if(S(e)){if(void 0===t._categoriesMap&&(t._categoriesMap={}),void 0!==t._categoriesMap[e])return t._categoriesMap[e];t._categories.push("number"==typeof e?String(e):e);var r=t._categories.length-1;return t._categoriesMap[e]=r,r}return m}function O(e){if(t._categoriesMap)return t._categoriesMap[e]}function z(t){var e=O(t);return void 0!==e?e:s(t)?+t:void 0}function D(t){return s(t)?+t:O(t)}function R(t,e,r){return n.round(r+e*t,2)}function F(t,e,r){return(t-r)/e}var B=function(e){return s(e)?R(e,t._m,t._b):m},N=function(e){return F(e,t._m,t._b)};if(t.rangebreaks){var j="y"===p;B=function(e){if(!s(e))return m;var r=t._rangebreaks.length;if(!r)return R(e,t._m,t._b);var n=j;t.range[0]>t.range[1]&&(n=!n);for(var i=n?-1:1,a=i*e,o=0,l=0;lu)){o=a<(c+u)/2?l:l+1;break}o=l+1}var f=t._B[o]||0;return isFinite(f)?R(e,t._m2,f):0},N=function(e){var r=t._rangebreaks.length;if(!r)return F(e,t._m,t._b);for(var n=0,i=0;it._rangebreaks[i].pmax&&(n=i+1);return F(e,t._m2,t._B[n])}}t.c2l="log"===t.type?E:f,t.l2c="log"===t.type?M:f,t.l2p=B,t.p2l=N,t.c2p="log"===t.type?function(t,e){return B(E(t,e))}:B,t.p2c="log"===t.type?function(t){return M(N(t))}:N,-1!==["linear","-"].indexOf(t.type)?(t.d2r=t.r2d=t.d2c=t.r2c=t.d2l=t.r2l=l,t.c2d=t.c2r=t.l2d=t.l2r=f,t.d2p=t.r2p=function(e){return t.l2p(l(e))},t.p2d=t.p2r=N,t.cleanPos=f):"log"===t.type?(t.d2r=t.d2l=function(t,e){return E(l(t),e)},t.r2d=t.r2c=function(t){return M(l(t))},t.d2c=t.r2l=l,t.c2d=t.l2r=f,t.c2r=E,t.l2d=M,t.d2p=function(e,r){return t.l2p(t.d2r(e,r))},t.p2d=function(t){return M(N(t))},t.r2p=function(e){return t.l2p(l(e))},t.p2r=N,t.cleanPos=f):"date"===t.type?(t.d2r=t.r2d=a.identity,t.d2c=t.r2c=t.d2l=t.r2l=L,t.c2d=t.c2r=t.l2d=t.l2r=C,t.d2p=t.r2p=function(e,r,n){return t.l2p(L(e,0,n))},t.p2d=t.p2r=function(t,e,r){return C(N(t),e,r)},t.cleanPos=function(e){return a.cleanDate(e,m,t.calendar)}):"category"===t.type?(t.d2c=t.d2l=I,t.r2d=t.c2d=t.l2d=P,t.d2r=t.d2l_noadd=z,t.r2c=function(e){var r=D(e);return void 0!==r?r:t.fraction2r(.5)},t.l2r=t.c2r=f,t.r2l=D,t.d2p=function(e){return t.l2p(t.r2c(e))},t.p2d=function(t){return P(N(t))},t.r2p=t.d2p,t.p2r=N,t.cleanPos=function(t){return"string"==typeof t&&""!==t?t:f(t)}):"multicategory"===t.type&&(t.r2d=t.c2d=t.l2d=P,t.d2r=t.d2l_noadd=z,t.r2c=function(e){var r=z(e);return void 0!==r?r:t.fraction2r(.5)},t.r2c_just_indices=O,t.l2r=t.c2r=f,t.r2l=z,t.d2p=function(e){return t.l2p(t.r2c(e))},t.p2d=function(t){return P(N(t))},t.r2p=t.d2p,t.p2r=N,t.cleanPos=function(t){return Array.isArray(t)||"string"==typeof t&&""!==t?t:f(t)},t.setupMultiCategory=function(n){var i,o,s=t._traceIndices,l=t._matchGroup;if(l&&0===t._categories.length)for(var c in l)if(c!==r){var u=e[w.id2name(c)];s=s.concat(u._traceIndices)}var f=[[0,{}],[0,{}]],d=[];for(i=0;id&&(o[n]=d),o[0]===o[1]){var c=Math.max(1,Math.abs(1e-6*o[0]));o[0]-=c,o[1]+=c}}else a.nestedProperty(t,e).set(i)},t.setScale=function(r){var n=e._size;if(t.overlaying){var i=w.getFromId({_fullLayout:e},t.overlaying);t.domain=i.domain}var a=r&&t._r?"_r":"range",o=t.calendar;t.cleanRange(a);var s,l,c=t.r2l(t[a][0],o),u=t.r2l(t[a][1],o),f="y"===p;if((f?(t._offset=n.t+(1-t.domain[1])*n.h,t._length=n.h*(t.domain[1]-t.domain[0]),t._m=t._length/(c-u),t._b=-t._m*u):(t._offset=n.l+t.domain[0]*n.w,t._length=n.w*(t.domain[1]-t.domain[0]),t._m=t._length/(u-c),t._b=-t._m*c),t._rangebreaks=[],t._lBreaks=0,t._m2=0,t._B=[],t.rangebreaks)&&(t._rangebreaks=t.locateBreaks(Math.min(c,u),Math.max(c,u)),t._rangebreaks.length)){for(s=0;su&&(h=!h),h&&t._rangebreaks.reverse();var d=h?-1:1;for(t._m2=d*t._length/(Math.abs(u-c)-t._lBreaks),t._B.push(-t._m2*(f?u:c)),s=0;si&&(i+=7,oi&&(i+=24,o=n&&o=n&&e=s.min&&(ts.max&&(s.max=n),i=!1)}i&&c.push({min:t,max:n})}};for(n=0;nr.duration?(!function(){for(var r={},n=0;n rect").call(o.setTranslate,0,0).call(o.setScale,1,1),t.plot.call(o.setTranslate,e._offset,r._offset).call(o.setScale,1,1);var n=t.plot.selectAll(".scatterlayer .trace");n.selectAll(".point").call(o.setPointGroupScale,1,1),n.selectAll(".textpoint").call(o.setTextPointsScale,1,1),n.call(o.hideOutsideRangePoints,t)}function g(e,r){var n=e.plotinfo,i=n.xaxis,l=n.yaxis,c=i._length,u=l._length,f=!!e.xr1,h=!!e.yr1,p=[];if(f){var d=a.simpleMap(e.xr0,i.r2l),m=a.simpleMap(e.xr1,i.r2l),g=d[1]-d[0],v=m[1]-m[0];p[0]=(d[0]*(1-r)+r*m[0]-d[0])/(d[1]-d[0])*c,p[2]=c*(1-r+r*v/g),i.range[0]=i.l2r(d[0]*(1-r)+r*m[0]),i.range[1]=i.l2r(d[1]*(1-r)+r*m[1])}else p[0]=0,p[2]=c;if(h){var y=a.simpleMap(e.yr0,l.r2l),x=a.simpleMap(e.yr1,l.r2l),b=y[1]-y[0],_=x[1]-x[0];p[1]=(y[1]*(1-r)+r*x[1]-y[1])/(y[0]-y[1])*u,p[3]=u*(1-r+r*_/b),l.range[0]=i.l2r(y[0]*(1-r)+r*x[0]),l.range[1]=l.l2r(y[1]*(1-r)+r*x[1])}else p[1]=0,p[3]=u;s.drawOne(t,i,{skipTitle:!0}),s.drawOne(t,l,{skipTitle:!0}),s.redrawComponents(t,[i._id,l._id]);var w=f?c/p[2]:1,T=h?u/p[3]:1,k=f?p[0]:0,A=h?p[1]:0,M=f?p[0]/p[2]*c:0,S=h?p[1]/p[3]*u:0,E=i._offset-M,L=l._offset-S;n.clipRect.call(o.setTranslate,k,A).call(o.setScale,1/w,1/T),n.plot.call(o.setTranslate,E,L).call(o.setScale,w,T),o.setPointGroupScale(n.zoomScalePts,1/w,1/T),o.setTextPointsScale(n.zoomScaleTxt,1/w,1/T)}s.redrawComponents(t)}},{"../../components/drawing":661,"../../lib":776,"../../registry":904,"./axes":827,"@plotly/d3":58}],853:[function(t,e,r){"use strict";var n=t("../../registry").traceIs,i=t("./axis_autotype");function a(t){return{v:"x",h:"y"}[t.orientation||"v"]}function o(t,e){var r=a(t),i=n(t,"box-violin"),o=n(t._fullInput||{},"candlestick");return i&&!o&&e===r&&void 0===t[r]&&void 0===t[r+"0"]}e.exports=function(t,e,r,s){r("autotypenumbers",s.autotypenumbersDflt),"-"===r("type",(s.splomStash||{}).type)&&(!function(t,e){if("-"!==t.type)return;var r,s=t._id,l=s.charAt(0);-1!==s.indexOf("scene")&&(s=l);var c=function(t,e,r){for(var n=0;n0&&(i["_"+r+"axes"]||{})[e])return i;if((i[r+"axis"]||r)===e){if(o(i,r))return i;if((i[r]||[]).length||i[r+"0"])return i}}}(e,s,l);if(!c)return;if("histogram"===c.type&&l==={v:"y",h:"x"}[c.orientation||"v"])return void(t.type="linear");var u=l+"calendar",f=c[u],h={noMultiCategory:!n(c,"cartesian")||n(c,"noMultiCategory")};"box"===c.type&&c._hasPreCompStats&&l==={h:"x",v:"y"}[c.orientation||"v"]&&(h.noMultiCategory=!0);if(h.autotypenumbers=t.autotypenumbers,o(c,l)){var p=a(c),d=[];for(r=0;r0?".":"")+a;i.isPlainObject(o)?l(o,e,s,n+1):e(s,a,o)}}))}r.manageCommandObserver=function(t,e,n,o){var s={},l=!0;e&&e._commandObserver&&(s=e._commandObserver),s.cache||(s.cache={}),s.lookupTable={};var c=r.hasSimpleAPICommandBindings(t,n,s.lookupTable);if(e&&e._commandObserver){if(c)return s;if(e._commandObserver.remove)return e._commandObserver.remove(),e._commandObserver=null,s}if(c){a(t,c,s.cache),s.check=function(){if(l){var e=a(t,c,s.cache);return e.changed&&o&&void 0!==s.lookupTable[e.value]&&(s.disable(),Promise.resolve(o({value:e.value,type:c.type,prop:c.prop,traces:c.traces,index:s.lookupTable[e.value]})).then(s.enable,s.enable)),e.changed}};for(var u=["plotly_relayout","plotly_redraw","plotly_restyle","plotly_update","plotly_animatingframe","plotly_afterplot"],f=0;f0&&i<0&&(i+=360);var s=(i-n)/4;return{type:"Polygon",coordinates:[[[n,a],[n,o],[n+s,o],[n+2*s,o],[n+3*s,o],[i,o],[i,a],[i-s,a],[i-2*s,a],[i-3*s,a],[n,a]]]}}e.exports=function(t){return new M(t)},S.plot=function(t,e,r){var n=this,i=e[this.id],a=[],o=!1;for(var s in w.layerNameToAdjective)if("frame"!==s&&i["show"+s]){o=!0;break}for(var l=0;l0&&a._module.calcGeoJSON(i,e)}if(!this.updateProjection(t,e)){this.viewInitial&&this.scope===r.scope||this.saveViewInitial(r),this.scope=r.scope,this.updateBaseLayers(e,r),this.updateDims(e,r),this.updateFx(e,r),d.generalUpdatePerTraceModule(this.graphDiv,this,t,r);var o=this.layers.frontplot.select(".scatterlayer");this.dataPoints.point=o.selectAll(".point"),this.dataPoints.text=o.selectAll("text"),this.dataPaths.line=o.selectAll(".js-line");var s=this.layers.backplot.select(".choroplethlayer");this.dataPaths.choropleth=s.selectAll("path"),this.render()}},S.updateProjection=function(t,e){var r=this.graphDiv,n=e[this.id],l=e._size,u=n.domain,f=n.projection,h=n.lonaxis,p=n.lataxis,d=h._ax,m=p._ax,v=this.projection=function(t){var e=t.projection,r=e.type,n=w.projNames[r];n="geo"+c.titleCase(n);for(var l=(i[n]||s[n])(),u=t._isSatellite?180*Math.acos(1/e.distance)/Math.PI:t._isClipped?w.lonaxisSpan[r]/2:null,f=["center","rotate","parallels","clipExtent"],h=function(t){return t?l:[]},p=0;pu*Math.PI/180}return!1},l.getPath=function(){return a().projection(l)},l.getBounds=function(t){return l.getPath().bounds(t)},l.precision(w.precision),t._isSatellite&&l.tilt(e.tilt).distance(e.distance);u&&l.clipAngle(u-w.clipPad);return l}(n),y=[[l.l+l.w*u.x[0],l.t+l.h*(1-u.y[1])],[l.l+l.w*u.x[1],l.t+l.h*(1-u.y[0])]],x=n.center||{},b=f.rotation||{},_=h.range||[],T=p.range||[];if(n.fitbounds){d._length=y[1][0]-y[0][0],m._length=y[1][1]-y[0][1],d.range=g(r,d),m.range=g(r,m);var k=(d.range[0]+d.range[1])/2,A=(m.range[0]+m.range[1])/2;if(n._isScoped)x={lon:k,lat:A};else if(n._isClipped){x={lon:k,lat:A},b={lon:k,lat:A,roll:b.roll};var M=f.type,S=w.lonaxisSpan[M]/2||180,L=w.lataxisSpan[M]/2||90;_=[k-S,k+S],T=[A-L,A+L]}else x={lon:k,lat:A},b={lon:k,lat:b.lat,roll:b.roll}}v.center([x.lon-b.lon,x.lat-b.lat]).rotate([-b.lon,-b.lat,b.roll]).parallels(f.parallels);var C=E(_,T);v.fitExtent(y,C);var P=this.bounds=v.getBounds(C),I=this.fitScale=v.scale(),O=v.translate();if(n.fitbounds){var z=v.getBounds(E(d.range,m.range)),D=Math.min((P[1][0]-P[0][0])/(z[1][0]-z[0][0]),(P[1][1]-P[0][1])/(z[1][1]-z[0][1]));isFinite(D)?v.scale(D*I):c.warn("Something went wrong during"+this.id+"fitbounds computations.")}else v.scale(f.scale*I);var R=this.midPt=[(P[0][0]+P[1][0])/2,(P[0][1]+P[1][1])/2];if(v.translate([O[0]+(R[0]-O[0]),O[1]+(R[1]-O[1])]).clipExtent(P),n._isAlbersUsa){var F=v([x.lon,x.lat]),B=v.translate();v.translate([B[0]-(F[0]-B[0]),B[1]-(F[1]-B[1])])}},S.updateBaseLayers=function(t,e){var r=this,i=r.topojson,a=r.layers,o=r.basePaths;function s(t){return"lonaxis"===t||"lataxis"===t}function l(t){return Boolean(w.lineLayers[t])}function c(t){return Boolean(w.fillLayers[t])}var u=(this.hasChoropleth?w.layersForChoropleth:w.layers).filter((function(t){return l(t)||c(t)?e["show"+t]:!s(t)||e[t].showgrid})),p=r.framework.selectAll(".layer").data(u,String);p.exit().each((function(t){delete a[t],delete o[t],n.select(this).remove()})),p.enter().append("g").attr("class",(function(t){return"layer "+t})).each((function(t){var e=a[t]=n.select(this);"bg"===t?r.bgRect=e.append("rect").style("pointer-events","all"):s(t)?o[t]=e.append("path").style("fill","none"):"backplot"===t?e.append("g").classed("choroplethlayer",!0):"frontplot"===t?e.append("g").classed("scatterlayer",!0):l(t)?o[t]=e.append("path").style("fill","none").style("stroke-miterlimit",2):c(t)&&(o[t]=e.append("path").style("stroke","none"))})),p.order(),p.each((function(r){var n=o[r],a=w.layerNameToAdjective[r];"frame"===r?n.datum(w.sphereSVG):l(r)||c(r)?n.datum(A(i,i.objects[r])):s(r)&&n.datum(function(t,e,r){var n,i,a,o=e[t],s=w.scopeDefaults[e.scope];"lonaxis"===t?(n=s.lonaxisRange,i=s.lataxisRange,a=function(t,e){return[t,e]}):"lataxis"===t&&(n=s.lataxisRange,i=s.lonaxisRange,a=function(t,e){return[e,t]});var l={type:"linear",range:[n[0],n[1]-1e-6],tick0:o.tick0,dtick:o.dtick};m.setConvert(l,r);var c=m.calcTicks(l);e.isScoped||"lonaxis"!==t||c.pop();for(var u=c.length,f=new Array(u),h=0;h-1&&b(n.event,i,[r.xaxis],[r.yaxis],r.id,f),s.indexOf("event")>-1&&p.click(i,n.event))}))}function h(t){return r.projection.invert([t[0]+r.xaxis._offset,t[1]+r.yaxis._offset])}},S.makeFramework=function(){var t=this,e=t.graphDiv,r=e._fullLayout,i="clip"+r._uid+t.id;t.clipDef=r._clips.append("clipPath").attr("id",i),t.clipRect=t.clipDef.append("rect"),t.framework=n.select(t.container).append("g").attr("class","geo "+t.id).call(h.setClipUrl,i,e),t.project=function(e){var r=t.projection(e);return r?[r[0]-t.xaxis._offset,r[1]-t.yaxis._offset]:[null,null]},t.xaxis={_id:"x",c2p:function(e){return t.project(e)[0]}},t.yaxis={_id:"y",c2p:function(e){return t.project(e)[1]}},t.mockAxis={type:"linear",showexponent:"all",exponentformat:"B"},m.setConvert(t.mockAxis,r)},S.saveViewInitial=function(t){var e,r=t.center||{},n=t.projection,i=n.rotation||{};this.viewInitial={fitbounds:t.fitbounds,"projection.scale":n.scale},e=t._isScoped?{"center.lon":r.lon,"center.lat":r.lat}:t._isClipped?{"projection.rotation.lon":i.lon,"projection.rotation.lat":i.lat}:{"center.lon":r.lon,"center.lat":r.lat,"projection.rotation.lon":i.lon},c.extendFlat(this.viewInitial,e)},S.render=function(){var t,e=this.projection,r=e.getPath();function n(t){var r=e(t.lonlat);return r?u(r[0],r[1]):null}function i(t){return e.isLonLatOverEdges(t.lonlat)?"none":null}for(t in this.basePaths)this.basePaths[t].attr("d",r);for(t in this.dataPaths)this.dataPaths[t].attr("d",(function(t){return r(t.geojson)}));for(t in this.dataPoints)this.dataPoints[t].attr("display",i).attr("transform",n)}},{"../../components/color":639,"../../components/dragelement":658,"../../components/drawing":661,"../../components/fx":679,"../../lib":776,"../../lib/geo_location_utils":769,"../../lib/topojson_utils":805,"../../registry":904,"../cartesian/autorange":826,"../cartesian/axes":827,"../cartesian/select":847,"../plots":890,"./constants":858,"./zoom":863,"@plotly/d3":58,"d3-geo":162,"d3-geo-projection":161,"topojson-client":575}],860:[function(t,e,r){"use strict";var n=t("../../plots/get_data").getSubplotCalcData,i=t("../../lib").counterRegex,a=t("./geo"),o="geo",s=i(o),l={};l.geo={valType:"subplotid",dflt:o,editType:"calc"},e.exports={attr:o,name:o,idRoot:o,idRegex:s,attrRegex:s,attributes:l,layoutAttributes:t("./layout_attributes"),supplyLayoutDefaults:t("./layout_defaults"),plot:function(t){for(var e=t._fullLayout,r=t.calcdata,i=e._subplots.geo,s=0;s0&&P<0&&(P+=360);var I,O,z,D=(C+P)/2;if(!p){var R=d?f.projRotate:[D,0,0];I=r("projection.rotation.lon",R[0]),r("projection.rotation.lat",R[1]),r("projection.rotation.roll",R[2]),r("showcoastlines",!d&&x)&&(r("coastlinecolor"),r("coastlinewidth")),r("showocean",!!x&&void 0)&&r("oceancolor")}(p?(O=-96.6,z=38.7):(O=d?D:I,z=(L[0]+L[1])/2),r("center.lon",O),r("center.lat",z),m&&(r("projection.tilt"),r("projection.distance")),g)&&r("projection.parallels",f.projParallels||[0,60]);r("projection.scale"),r("showland",!!x&&void 0)&&r("landcolor"),r("showlakes",!!x&&void 0)&&r("lakecolor"),r("showrivers",!!x&&void 0)&&(r("rivercolor"),r("riverwidth")),r("showcountries",d&&"usa"!==u&&x)&&(r("countrycolor"),r("countrywidth")),("usa"===u||"north america"===u&&50===c)&&(r("showsubunits",x),r("subunitcolor"),r("subunitwidth")),d||r("showframe",x)&&(r("framecolor"),r("framewidth")),r("bgcolor"),r("fitbounds")&&(delete e.projection.scale,d?(delete e.center.lon,delete e.center.lat):v?(delete e.center.lon,delete e.center.lat,delete e.projection.rotation.lon,delete e.projection.rotation.lat,delete e.lonaxis.range,delete e.lataxis.range):(delete e.center.lon,delete e.center.lat,delete e.projection.rotation.lon))}e.exports=function(t,e,r){i(t,e,r,{type:"geo",attributes:s,handleDefaults:c,fullData:r,partition:"y"})}},{"../../lib":776,"../get_data":864,"../subplot_defaults":898,"./constants":858,"./layout_attributes":861}],863:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../registry"),o=Math.PI/180,s=180/Math.PI,l={cursor:"pointer"},c={cursor:"auto"};function u(t,e){return n.behavior.zoom().translate(e.translate()).scale(e.scale())}function f(t,e,r){var n=t.id,o=t.graphDiv,s=o.layout,l=s[n],c=o._fullLayout,u=c[n],f={},h={};function p(t,e){f[n+"."+t]=i.nestedProperty(l,t).get(),a.call("_storeDirectGUIEdit",s,c._preGUI,f);var r=i.nestedProperty(u,t);r.get()!==e&&(r.set(e),i.nestedProperty(l,t).set(e),h[n+"."+t]=e)}r(p),p("projection.scale",e.scale()/t.fitScale),p("fitbounds",!1),o.emit("plotly_relayout",h)}function h(t,e){var r=u(0,e);function i(r){var n=e.invert(t.midPt);r("center.lon",n[0]),r("center.lat",n[1])}return r.on("zoomstart",(function(){n.select(this).style(l)})).on("zoom",(function(){e.scale(n.event.scale).translate(n.event.translate),t.render();var r=e.invert(t.midPt);t.graphDiv.emit("plotly_relayouting",{"geo.projection.scale":e.scale()/t.fitScale,"geo.center.lon":r[0],"geo.center.lat":r[1]})})).on("zoomend",(function(){n.select(this).style(c),f(t,e,i)})),r}function p(t,e){var r,i,a,o,s,h,p,d,m,g=u(0,e);function v(t){return e.invert(t)}function y(r){var n=e.rotate(),i=e.invert(t.midPt);r("projection.rotation.lon",-n[0]),r("center.lon",i[0]),r("center.lat",i[1])}return g.on("zoomstart",(function(){n.select(this).style(l),r=n.mouse(this),i=e.rotate(),a=e.translate(),o=i,s=v(r)})).on("zoom",(function(){if(h=n.mouse(this),function(t){var r=v(t);if(!r)return!0;var n=e(r);return Math.abs(n[0]-t[0])>2||Math.abs(n[1]-t[1])>2}(r))return g.scale(e.scale()),void g.translate(e.translate());e.scale(n.event.scale),e.translate([a[0],n.event.translate[1]]),s?v(h)&&(d=v(h),p=[o[0]+(d[0]-s[0]),i[1],i[2]],e.rotate(p),o=p):s=v(r=h),m=!0,t.render();var l=e.rotate(),c=e.invert(t.midPt);t.graphDiv.emit("plotly_relayouting",{"geo.projection.scale":e.scale()/t.fitScale,"geo.center.lon":c[0],"geo.center.lat":c[1],"geo.projection.rotation.lon":-l[0]})})).on("zoomend",(function(){n.select(this).style(c),m&&f(t,e,y)})),g}function d(t,e){var r,i={r:e.rotate(),k:e.scale()},a=u(0,e),o=function(t){var e=0,r=arguments.length,i=[];for(;++ed?(a=(f>0?90:-90)-p,i=0):(a=Math.asin(f/d)*s-p,i=Math.sqrt(d*d-f*f));var m=180-a-2*p,g=(Math.atan2(h,u)-Math.atan2(c,i))*s,v=(Math.atan2(h,u)-Math.atan2(c,-i))*s;return b(r[0],r[1],a,g)<=b(r[0],r[1],m,v)?[a,g,r[2]]:[m,v,r[2]]}function b(t,e,r,n){var i=_(r-t),a=_(n-e);return Math.sqrt(i*i+a*a)}function _(t){return(t%360+540)%360-180}function w(t,e,r){var n=r*o,i=t.slice(),a=0===e?1:0,s=2===e?1:2,l=Math.cos(n),c=Math.sin(n);return i[a]=t[a]*l-t[s]*c,i[s]=t[s]*l+t[a]*c,i}function T(t){return[Math.atan2(2*(t[0]*t[1]+t[2]*t[3]),1-2*(t[1]*t[1]+t[2]*t[2]))*s,Math.asin(Math.max(-1,Math.min(1,2*(t[0]*t[2]-t[3]*t[1]))))*s,Math.atan2(2*(t[0]*t[3]+t[1]*t[2]),1-2*(t[2]*t[2]+t[3]*t[3]))*s]}function k(t,e){for(var r=0,n=0,i=t.length;nMath.abs(s)?(c.boxEnd[1]=c.boxStart[1]+Math.abs(a)*_*(s>=0?1:-1),c.boxEnd[1]l[3]&&(c.boxEnd[1]=l[3],c.boxEnd[0]=c.boxStart[0]+(l[3]-c.boxStart[1])/Math.abs(_))):(c.boxEnd[0]=c.boxStart[0]+Math.abs(s)/_*(a>=0?1:-1),c.boxEnd[0]l[2]&&(c.boxEnd[0]=l[2],c.boxEnd[1]=c.boxStart[1]+(l[2]-c.boxStart[0])*Math.abs(_)))}}else c.boxEnabled?(a=c.boxStart[0]!==c.boxEnd[0],s=c.boxStart[1]!==c.boxEnd[1],a||s?(a&&(g(0,c.boxStart[0],c.boxEnd[0]),t.xaxis.autorange=!1),s&&(g(1,c.boxStart[1],c.boxEnd[1]),t.yaxis.autorange=!1),t.relayoutCallback()):t.glplot.setDirty(),c.boxEnabled=!1,c.boxInited=!1):c.boxInited&&(c.boxInited=!1);break;case"pan":c.boxEnabled=!1,c.boxInited=!1,e?(c.panning||(c.dragStart[0]=n,c.dragStart[1]=i),Math.abs(c.dragStart[0]-n).999&&(m="turntable"):m="turntable")}else m="turntable";r("dragmode",m),r("hovermode",n.getDfltFromLayout("hovermode"))}e.exports=function(t,e,r){var i=e._basePlotModules.length>1;o(t,e,r,{type:"gl3d",attributes:l,handleDefaults:u,fullLayout:e,font:e.font,fullData:r,getDfltFromLayout:function(e){if(!i)return n.validate(t[e],l[e])?t[e]:void 0},autotypenumbersDflt:e.autotypenumbers,paper_bgcolor:e.paper_bgcolor,calendar:e.calendar})}},{"../../../components/color":639,"../../../lib":776,"../../../registry":904,"../../get_data":864,"../../subplot_defaults":898,"./axis_defaults":872,"./layout_attributes":875}],875:[function(t,e,r){"use strict";var n=t("./axis_attributes"),i=t("../../domain").attributes,a=t("../../../lib/extend").extendFlat,o=t("../../../lib").counterRegex;function s(t,e,r){return{x:{valType:"number",dflt:t,editType:"camera"},y:{valType:"number",dflt:e,editType:"camera"},z:{valType:"number",dflt:r,editType:"camera"},editType:"camera"}}e.exports={_arrayAttrRegexps:[o("scene",".annotations",!0)],bgcolor:{valType:"color",dflt:"rgba(0,0,0,0)",editType:"plot"},camera:{up:a(s(0,0,1),{}),center:a(s(0,0,0),{}),eye:a(s(1.25,1.25,1.25),{}),projection:{type:{valType:"enumerated",values:["perspective","orthographic"],dflt:"perspective",editType:"calc"},editType:"calc"},editType:"camera"},domain:i({name:"scene",editType:"plot"}),aspectmode:{valType:"enumerated",values:["auto","cube","data","manual"],dflt:"auto",editType:"plot",impliedEdits:{"aspectratio.x":void 0,"aspectratio.y":void 0,"aspectratio.z":void 0}},aspectratio:{x:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},y:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},z:{valType:"number",min:0,editType:"plot",impliedEdits:{"^aspectmode":"manual"}},editType:"plot",impliedEdits:{aspectmode:"manual"}},xaxis:n,yaxis:n,zaxis:n,dragmode:{valType:"enumerated",values:["orbit","turntable","zoom","pan",!1],editType:"plot"},hovermode:{valType:"enumerated",values:["closest",!1],dflt:"closest",editType:"modebar"},uirevision:{valType:"any",editType:"none"},editType:"plot",_deprecated:{cameraposition:{valType:"info_array",editType:"camera"}}}},{"../../../lib":776,"../../../lib/extend":766,"../../domain":855,"./axis_attributes":871}],876:[function(t,e,r){"use strict";var n=t("../../../lib/str2rgbarray"),i=["xaxis","yaxis","zaxis"];function a(){this.enabled=[!0,!0,!0],this.colors=[[0,0,0,1],[0,0,0,1],[0,0,0,1]],this.drawSides=[!0,!0,!0],this.lineWidth=[1,1,1]}a.prototype.merge=function(t){for(var e=0;e<3;++e){var r=t[i[e]];r.visible?(this.enabled[e]=r.showspikes,this.colors[e]=n(r.spikecolor),this.drawSides[e]=r.spikesides,this.lineWidth[e]=r.spikethickness):(this.enabled[e]=!1,this.drawSides[e]=!1)}},e.exports=function(t){var e=new a;return e.merge(t),e}},{"../../../lib/str2rgbarray":801}],877:[function(t,e,r){"use strict";e.exports=function(t){for(var e=t.axesOptions,r=t.glplot.axesPixels,s=t.fullSceneLayout,l=[[],[],[]],c=0;c<3;++c){var u=s[a[c]];if(u._length=(r[c].hi-r[c].lo)*r[c].pixelsPerDataUnit/t.dataScale[c],Math.abs(u._length)===1/0||isNaN(u._length))l[c]=[];else{u._input_range=u.range.slice(),u.range[0]=r[c].lo/t.dataScale[c],u.range[1]=r[c].hi/t.dataScale[c],u._m=1/(t.dataScale[c]*r[c].pixelsPerDataUnit),u.range[0]===u.range[1]&&(u.range[0]-=1,u.range[1]+=1);var f=u.tickmode;if("auto"===u.tickmode){u.tickmode="linear";var h=u.nticks||i.constrain(u._length/40,4,9);n.autoTicks(u,Math.abs(u.range[1]-u.range[0])/h)}for(var p=n.calcTicks(u,{msUTC:!0}),d=0;d/g," "));l[c]=p,u.tickmode=f}}e.ticks=l;for(c=0;c<3;++c){o[c]=.5*(t.glplot.bounds[0][c]+t.glplot.bounds[1][c]);for(d=0;d<2;++d)e.bounds[d][c]=t.glplot.bounds[d][c]}t.contourLevels=function(t){for(var e=new Array(3),r=0;r<3;++r){for(var n=t[r],i=new Array(n.length),a=0;ar.deltaY?1.1:1/1.1,a=t.glplot.getAspectratio();t.glplot.setAspectratio({x:n*a.x,y:n*a.y,z:n*a.z})}i(t)}}),!!c&&{passive:!1}),t.glplot.canvas.addEventListener("mousemove",(function(){if(!1!==t.fullSceneLayout.dragmode&&0!==t.camera.mouseListener.buttons){var e=n();t.graphDiv.emit("plotly_relayouting",e)}})),t.staticMode||t.glplot.canvas.addEventListener("webglcontextlost",(function(r){e&&e.emit&&e.emit("plotly_webglcontextlost",{event:r,layer:t.id})}),!1)),t.glplot.oncontextloss=function(){t.recoverContext()},t.glplot.onrender=function(){t.render()},!0},w.render=function(){var t,e=this,r=e.graphDiv,n=e.svgContainer,i=e.container.getBoundingClientRect();r._fullLayout._calcInverseTransform(r);var a=r._fullLayout._invScaleX,o=r._fullLayout._invScaleY,s=i.width*a,l=i.height*o;n.setAttributeNS(null,"viewBox","0 0 "+s+" "+l),n.setAttributeNS(null,"width",s),n.setAttributeNS(null,"height",l),b(e),e.glplot.axes.update(e.axesOptions);for(var c,u=Object.keys(e.traces),h=null,m=e.glplot.selection,g=0;g")):"isosurface"===t.type||"volume"===t.type?(k.valueLabel=p.hoverLabelText(e._mockAxis,e._mockAxis.d2l(m.traceCoordinate[3]),t.valuehoverformat),E.push("value: "+k.valueLabel),m.textLabel&&E.push(m.textLabel),_=E.join("
")):_=m.textLabel;var L={x:m.traceCoordinate[0],y:m.traceCoordinate[1],z:m.traceCoordinate[2],data:w._input,fullData:w,curveNumber:w.index,pointNumber:T};d.appendArrayPointValue(L,w,T),t._module.eventData&&(L=w._module.eventData(L,m,w,{},T));var C={points:[L]};if(e.fullSceneLayout.hovermode){var P=[];d.loneHover({trace:w,x:(.5+.5*x[0]/x[3])*s,y:(.5-.5*x[1]/x[3])*l,xLabel:k.xLabel,yLabel:k.yLabel,zLabel:k.zLabel,text:_,name:h.name,color:d.castHoverOption(w,T,"bgcolor")||h.color,borderColor:d.castHoverOption(w,T,"bordercolor"),fontFamily:d.castHoverOption(w,T,"font.family"),fontSize:d.castHoverOption(w,T,"font.size"),fontColor:d.castHoverOption(w,T,"font.color"),nameLength:d.castHoverOption(w,T,"namelength"),textAlign:d.castHoverOption(w,T,"align"),hovertemplate:f.castOption(w,T,"hovertemplate"),hovertemplateLabels:f.extendFlat({},L,k),eventData:[L]},{container:n,gd:r,inOut_bbox:P}),L.bbox=P[0]}m.buttons&&m.distance<5?r.emit("plotly_click",C):r.emit("plotly_hover",C),c=C}else d.loneUnhover(n),r.emit("plotly_unhover",c);e.drawAnnotations(e)},w.recoverContext=function(){var t=this;t.glplot.dispose();var e=function(){t.glplot.gl.isContextLost()?requestAnimationFrame(e):t.initializeGLPlot()?t.plot.apply(t,t.plotArgs):f.error("Catastrophic and unrecoverable WebGL error. Context lost.")};requestAnimationFrame(e)};var k=["xaxis","yaxis","zaxis"];function A(t,e,r){for(var n=t.fullSceneLayout,i=0;i<3;i++){var a=k[i],o=a.charAt(0),s=n[a],l=e[o],c=e[o+"calendar"],u=e["_"+o+"length"];if(f.isArrayOrTypedArray(l))for(var h,p=0;p<(u||l.length);p++)if(f.isArrayOrTypedArray(l[p]))for(var d=0;dg[1][a])g[0][a]=-1,g[1][a]=1;else{var L=g[1][a]-g[0][a];g[0][a]-=L/32,g[1][a]+=L/32}if("reversed"===s.autorange){var C=g[0][a];g[0][a]=g[1][a],g[1][a]=C}}else{var P=s.range;g[0][a]=s.r2l(P[0]),g[1][a]=s.r2l(P[1])}g[0][a]===g[1][a]&&(g[0][a]-=1,g[1][a]+=1),v[a]=g[1][a]-g[0][a],this.glplot.setBounds(a,{min:g[0][a]*h[a],max:g[1][a]*h[a]})}var I=c.aspectmode;if("cube"===I)d=[1,1,1];else if("manual"===I){var O=c.aspectratio;d=[O.x,O.y,O.z]}else{if("auto"!==I&&"data"!==I)throw new Error("scene.js aspectRatio was not one of the enumerated types");var z=[1,1,1];for(a=0;a<3;++a){var D=y[l=(s=c[k[a]]).type];z[a]=Math.pow(D.acc,1/D.count)/h[a]}d="data"===I||Math.max.apply(null,z)/Math.min.apply(null,z)<=4?z:[1,1,1]}c.aspectratio.x=u.aspectratio.x=d[0],c.aspectratio.y=u.aspectratio.y=d[1],c.aspectratio.z=u.aspectratio.z=d[2],this.glplot.setAspectratio(c.aspectratio),this.viewInitial.aspectratio||(this.viewInitial.aspectratio={x:c.aspectratio.x,y:c.aspectratio.y,z:c.aspectratio.z}),this.viewInitial.aspectmode||(this.viewInitial.aspectmode=c.aspectmode);var R=c.domain||null,F=e._size||null;if(R&&F){var B=this.container.style;B.position="absolute",B.left=F.l+R.x[0]*F.w+"px",B.top=F.t+(1-R.y[1])*F.h+"px",B.width=F.w*(R.x[1]-R.x[0])+"px",B.height=F.h*(R.y[1]-R.y[0])+"px"}this.glplot.redraw()}},w.destroy=function(){this.glplot&&(this.camera.mouseListener.enabled=!1,this.container.removeEventListener("wheel",this.camera.wheelListener),this.camera=null,this.glplot.dispose(),this.container.parentNode.removeChild(this.container),this.glplot=null)},w.getCamera=function(){var t;return this.camera.view.recalcMatrix(this.camera.view.lastT()),{up:{x:(t=this.camera).up[0],y:t.up[1],z:t.up[2]},center:{x:t.center[0],y:t.center[1],z:t.center[2]},eye:{x:t.eye[0],y:t.eye[1],z:t.eye[2]},projection:{type:!0===t._ortho?"orthographic":"perspective"}}},w.setViewport=function(t){var e,r=t.camera;this.camera.lookAt.apply(this,[[(e=r).eye.x,e.eye.y,e.eye.z],[e.center.x,e.center.y,e.center.z],[e.up.x,e.up.y,e.up.z]]),this.glplot.setAspectratio(t.aspectratio),"orthographic"===r.projection.type!==this.camera._ortho&&(this.glplot.redraw(),this.glplot.clearRGBA(),this.glplot.dispose(),this.initializeGLPlot())},w.isCameraChanged=function(t){var e=this.getCamera(),r=f.nestedProperty(t,this.id+".camera").get();function n(t,e,r,n){var i=["up","center","eye"],a=["x","y","z"];return e[i[r]]&&t[i[r]][a[n]]===e[i[r]][a[n]]}var i=!1;if(void 0===r)i=!0;else{for(var a=0;a<3;a++)for(var o=0;o<3;o++)if(!n(e,r,a,o)){i=!0;break}(!r.projection||e.projection&&e.projection.type!==r.projection.type)&&(i=!0)}return i},w.isAspectChanged=function(t){var e=this.glplot.getAspectratio(),r=f.nestedProperty(t,this.id+".aspectratio").get();return void 0===r||r.x!==e.x||r.y!==e.y||r.z!==e.z},w.saveLayout=function(t){var e,r,n,i,a,o,s=this.fullLayout,l=this.isCameraChanged(t),c=this.isAspectChanged(t),h=l||c;if(h){var p={};if(l&&(e=this.getCamera(),n=(r=f.nestedProperty(t,this.id+".camera")).get(),p[this.id+".camera"]=n),c&&(i=this.glplot.getAspectratio(),o=(a=f.nestedProperty(t,this.id+".aspectratio")).get(),p[this.id+".aspectratio"]=o),u.call("_storeDirectGUIEdit",t,s._preGUI,p),l)r.set(e),f.nestedProperty(s,this.id+".camera").set(e);if(c)a.set(i),f.nestedProperty(s,this.id+".aspectratio").set(i),this.glplot.redraw()}return h},w.updateFx=function(t,e){var r=this.camera;if(r)if("orbit"===t)r.mode="orbit",r.keyBindingMode="rotate";else if("turntable"===t){r.up=[0,0,1],r.mode="turntable",r.keyBindingMode="rotate";var n=this.graphDiv,i=n._fullLayout,a=this.fullSceneLayout.camera,o=a.up.x,s=a.up.y,l=a.up.z;if(l/Math.sqrt(o*o+s*s+l*l)<.999){var c=this.id+".camera.up",h={x:0,y:0,z:1},p={};p[c]=h;var d=n.layout;u.call("_storeDirectGUIEdit",d,i._preGUI,p),a.up=h,f.nestedProperty(d,c).set(h)}}else r.keyBindingMode=t;this.fullSceneLayout.hovermode=e},w.toImage=function(t){t||(t="png"),this.staticMode&&this.container.appendChild(n),this.glplot.redraw();var e=this.glplot.gl,r=e.drawingBufferWidth,i=e.drawingBufferHeight;e.bindFramebuffer(e.FRAMEBUFFER,null);var a=new Uint8Array(r*i*4);e.readPixels(0,0,r,i,e.RGBA,e.UNSIGNED_BYTE,a),function(t,e,r){for(var n=0,i=r-1;n0)for(var s=255/o,l=0;l<3;++l)t[a+l]=Math.min(s*t[a+l],255)}}(a,r,i);var o=document.createElement("canvas");o.width=r,o.height=i;var s,l=o.getContext("2d"),c=l.createImageData(r,i);switch(c.data.set(a),l.putImageData(c,0,0),t){case"jpeg":s=o.toDataURL("image/jpeg");break;case"webp":s=o.toDataURL("image/webp");break;default:s=o.toDataURL("image/png")}return this.staticMode&&this.container.removeChild(n),s},w.setConvert=function(){for(var t=0;t<3;t++){var e=this.fullSceneLayout[k[t]];p.setConvert(e,this.fullLayout),e.setScale=f.noop}},w.make4thDimension=function(){var t=this.graphDiv._fullLayout;this._mockAxis={type:"linear",showexponent:"all",exponentformat:"B"},p.setConvert(this._mockAxis,t)},e.exports=_},{"../../components/fx":679,"../../lib":776,"../../lib/show_no_webgl_msg":798,"../../lib/str2rgbarray":801,"../../plots/cartesian/axes":827,"../../registry":904,"./layout/convert":873,"./layout/spikes":876,"./layout/tick_marks":877,"./project":878,"gl-plot3d":312,"has-passive-events":426,"webgl-context":602}],880:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){n=n||t.length;for(var i=new Array(n),a=0;aOpenStreetMap
contributors',a=['\xa9 Carto',i].join(" "),o=['Map tiles by Stamen Design','under CC BY 3.0',"|",'Data by OpenStreetMap contributors','under ODbL'].join(" "),s={"open-street-map":{id:"osm",version:8,sources:{"plotly-osm-tiles":{type:"raster",attribution:i,tiles:["https://a.tile.openstreetmap.org/{z}/{x}/{y}.png","https://b.tile.openstreetmap.org/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-osm-tiles",type:"raster",source:"plotly-osm-tiles",minzoom:0,maxzoom:22}]},"white-bg":{id:"white-bg",version:8,sources:{},layers:[{id:"white-bg",type:"background",paint:{"background-color":"#FFFFFF"},minzoom:0,maxzoom:22}]},"carto-positron":{id:"carto-positron",version:8,sources:{"plotly-carto-positron":{type:"raster",attribution:a,tiles:["https://cartodb-basemaps-c.global.ssl.fastly.net/light_all/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-carto-positron",type:"raster",source:"plotly-carto-positron",minzoom:0,maxzoom:22}]},"carto-darkmatter":{id:"carto-darkmatter",version:8,sources:{"plotly-carto-darkmatter":{type:"raster",attribution:a,tiles:["https://cartodb-basemaps-c.global.ssl.fastly.net/dark_all/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-carto-darkmatter",type:"raster",source:"plotly-carto-darkmatter",minzoom:0,maxzoom:22}]},"stamen-terrain":{id:"stamen-terrain",version:8,sources:{"plotly-stamen-terrain":{type:"raster",attribution:o,tiles:["https://stamen-tiles.a.ssl.fastly.net/terrain/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-terrain",type:"raster",source:"plotly-stamen-terrain",minzoom:0,maxzoom:22}]},"stamen-toner":{id:"stamen-toner",version:8,sources:{"plotly-stamen-toner":{type:"raster",attribution:o,tiles:["https://stamen-tiles.a.ssl.fastly.net/toner/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-toner",type:"raster",source:"plotly-stamen-toner",minzoom:0,maxzoom:22}]},"stamen-watercolor":{id:"stamen-watercolor",version:8,sources:{"plotly-stamen-watercolor":{type:"raster",attribution:['Map tiles by Stamen Design','under CC BY 3.0',"|",'Data by OpenStreetMap contributors','under CC BY SA'].join(" "),tiles:["https://stamen-tiles.a.ssl.fastly.net/watercolor/{z}/{x}/{y}.png"],tileSize:256}},layers:[{id:"plotly-stamen-watercolor",type:"raster",source:"plotly-stamen-watercolor",minzoom:0,maxzoom:22}]}},l=n(s);e.exports={requiredVersion:"1.10.1",styleUrlPrefix:"mapbox://styles/mapbox/",styleUrlSuffix:"v9",styleValuesMapbox:["basic","streets","outdoors","light","dark","satellite","satellite-streets"],styleValueDflt:"basic",stylesNonMapbox:s,styleValuesNonMapbox:l,traceLayerPrefix:"plotly-trace-layer-",layoutLayerPrefix:"plotly-layout-layer-",wrongVersionErrorMsg:["Your custom plotly.js bundle is not using the correct mapbox-gl version","Please install mapbox-gl@1.10.1."].join("\n"),noAccessTokenErrorMsg:["Missing Mapbox access token.","Mapbox trace type require a Mapbox access token to be registered.","For example:"," Plotly.newPlot(gd, data, layout, { mapboxAccessToken: 'my-access-token' });","More info here: https://www.mapbox.com/help/define-access-token/"].join("\n"),missingStyleErrorMsg:["No valid mapbox style found, please set `mapbox.style` to one of:",l.join(", "),"or register a Mapbox access token to use a Mapbox-served style."].join("\n"),multipleTokensErrorMsg:["Set multiple mapbox access token across different mapbox subplot,","using first token found as mapbox-gl does not allow multipleaccess tokens on the same page."].join("\n"),mapOnErrorMsg:"Mapbox error.",mapboxLogo:{path0:"m 10.5,1.24 c -5.11,0 -9.25,4.15 -9.25,9.25 0,5.1 4.15,9.25 9.25,9.25 5.1,0 9.25,-4.15 9.25,-9.25 0,-5.11 -4.14,-9.25 -9.25,-9.25 z m 4.39,11.53 c -1.93,1.93 -4.78,2.31 -6.7,2.31 -0.7,0 -1.41,-0.05 -2.1,-0.16 0,0 -1.02,-5.64 2.14,-8.81 0.83,-0.83 1.95,-1.28 3.13,-1.28 1.27,0 2.49,0.51 3.39,1.42 1.84,1.84 1.89,4.75 0.14,6.52 z",path1:"M 10.5,-0.01 C 4.7,-0.01 0,4.7 0,10.49 c 0,5.79 4.7,10.5 10.5,10.5 5.8,0 10.5,-4.7 10.5,-10.5 C 20.99,4.7 16.3,-0.01 10.5,-0.01 Z m 0,19.75 c -5.11,0 -9.25,-4.15 -9.25,-9.25 0,-5.1 4.14,-9.26 9.25,-9.26 5.11,0 9.25,4.15 9.25,9.25 0,5.13 -4.14,9.26 -9.25,9.26 z",path2:"M 14.74,6.25 C 12.9,4.41 9.98,4.35 8.23,6.1 5.07,9.27 6.09,14.91 6.09,14.91 c 0,0 5.64,1.02 8.81,-2.14 C 16.64,11 16.59,8.09 14.74,6.25 Z m -2.27,4.09 -0.91,1.87 -0.9,-1.87 -1.86,-0.91 1.86,-0.9 0.9,-1.87 0.91,1.87 1.86,0.9 z",polygon:"11.56,12.21 10.66,10.34 8.8,9.43 10.66,8.53 11.56,6.66 12.47,8.53 14.33,9.43 12.47,10.34"},styleRules:{map:"overflow:hidden;position:relative;","missing-css":"display:none;",canary:"background-color:salmon;","ctrl-bottom-left":"position: absolute; pointer-events: none; z-index: 2; bottom: 0; left: 0;","ctrl-bottom-right":"position: absolute; pointer-events: none; z-index: 2; right: 0; bottom: 0;",ctrl:"clear: both; pointer-events: auto; transform: translate(0, 0);","ctrl-attrib.mapboxgl-compact .mapboxgl-ctrl-attrib-inner":"display: none;","ctrl-attrib.mapboxgl-compact:hover .mapboxgl-ctrl-attrib-inner":"display: block; margin-top:2px","ctrl-attrib.mapboxgl-compact:hover":"padding: 2px 24px 2px 4px; visibility: visible; margin-top: 6px;","ctrl-attrib.mapboxgl-compact::after":'content: ""; cursor: pointer; position: absolute; background-image: url(\'data:image/svg+xml;charset=utf-8,%3Csvg viewBox="0 0 20 20" xmlns="http://www.w3.org/2000/svg"%3E %3Cpath fill="%23333333" fill-rule="evenodd" d="M4,10a6,6 0 1,0 12,0a6,6 0 1,0 -12,0 M9,7a1,1 0 1,0 2,0a1,1 0 1,0 -2,0 M9,10a1,1 0 1,1 2,0l0,3a1,1 0 1,1 -2,0"/%3E %3C/svg%3E\'); background-color: rgba(255, 255, 255, 0.5); width: 24px; height: 24px; box-sizing: border-box; border-radius: 12px;',"ctrl-attrib.mapboxgl-compact":"min-height: 20px; padding: 0; margin: 10px; position: relative; background-color: #fff; border-radius: 3px 12px 12px 3px;","ctrl-bottom-right > .mapboxgl-ctrl-attrib.mapboxgl-compact::after":"bottom: 0; right: 0","ctrl-bottom-left > .mapboxgl-ctrl-attrib.mapboxgl-compact::after":"bottom: 0; left: 0","ctrl-bottom-left .mapboxgl-ctrl":"margin: 0 0 10px 10px; float: left;","ctrl-bottom-right .mapboxgl-ctrl":"margin: 0 10px 10px 0; float: right;","ctrl-attrib":"color: rgba(0, 0, 0, 0.75); text-decoration: none; font-size: 12px","ctrl-attrib a":"color: rgba(0, 0, 0, 0.75); text-decoration: none; font-size: 12px","ctrl-attrib a:hover":"color: inherit; text-decoration: underline;","ctrl-attrib .mapbox-improve-map":"font-weight: bold; margin-left: 2px;","attrib-empty":"display: none;","ctrl-logo":'display:block; width: 21px; height: 21px; background-image: url(\'data:image/svg+xml;charset=utf-8,%3C?xml version="1.0" encoding="utf-8"?%3E %3Csvg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" viewBox="0 0 21 21" style="enable-background:new 0 0 21 21;" xml:space="preserve"%3E%3Cg transform="translate(0,0.01)"%3E%3Cpath d="m 10.5,1.24 c -5.11,0 -9.25,4.15 -9.25,9.25 0,5.1 4.15,9.25 9.25,9.25 5.1,0 9.25,-4.15 9.25,-9.25 0,-5.11 -4.14,-9.25 -9.25,-9.25 z m 4.39,11.53 c -1.93,1.93 -4.78,2.31 -6.7,2.31 -0.7,0 -1.41,-0.05 -2.1,-0.16 0,0 -1.02,-5.64 2.14,-8.81 0.83,-0.83 1.95,-1.28 3.13,-1.28 1.27,0 2.49,0.51 3.39,1.42 1.84,1.84 1.89,4.75 0.14,6.52 z" style="opacity:0.9;fill:%23ffffff;enable-background:new" class="st0"/%3E%3Cpath d="M 10.5,-0.01 C 4.7,-0.01 0,4.7 0,10.49 c 0,5.79 4.7,10.5 10.5,10.5 5.8,0 10.5,-4.7 10.5,-10.5 C 20.99,4.7 16.3,-0.01 10.5,-0.01 Z m 0,19.75 c -5.11,0 -9.25,-4.15 -9.25,-9.25 0,-5.1 4.14,-9.26 9.25,-9.26 5.11,0 9.25,4.15 9.25,9.25 0,5.13 -4.14,9.26 -9.25,9.26 z" style="opacity:0.35;enable-background:new" class="st1"/%3E%3Cpath d="M 14.74,6.25 C 12.9,4.41 9.98,4.35 8.23,6.1 5.07,9.27 6.09,14.91 6.09,14.91 c 0,0 5.64,1.02 8.81,-2.14 C 16.64,11 16.59,8.09 14.74,6.25 Z m -2.27,4.09 -0.91,1.87 -0.9,-1.87 -1.86,-0.91 1.86,-0.9 0.9,-1.87 0.91,1.87 1.86,0.9 z" style="opacity:0.35;enable-background:new" class="st1"/%3E%3Cpolygon points="11.56,12.21 10.66,10.34 8.8,9.43 10.66,8.53 11.56,6.66 12.47,8.53 14.33,9.43 12.47,10.34 " style="opacity:0.9;fill:%23ffffff;enable-background:new" class="st0"/%3E%3C/g%3E%3C/svg%3E\')'}}},{"../../lib/sort_object_keys":799}],883:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){var r=t.split(" "),i=r[0],a=r[1],o=n.isArrayOrTypedArray(e)?n.mean(e):e,s=.5+o/100,l=1.5+o/100,c=["",""],u=[0,0];switch(i){case"top":c[0]="top",u[1]=-l;break;case"bottom":c[0]="bottom",u[1]=l}switch(a){case"left":c[1]="right",u[0]=-s;break;case"right":c[1]="left",u[0]=s}return{anchor:c[0]&&c[1]?c.join("-"):c[0]?c[0]:c[1]?c[1]:"center",offset:u}}},{"../../lib":776}],884:[function(t,e,r){"use strict";var n=t("mapbox-gl/dist/mapbox-gl-unminified"),i=t("../../lib"),a=i.strTranslate,o=i.strScale,s=t("../../plots/get_data").getSubplotCalcData,l=t("../../constants/xmlns_namespaces"),c=t("@plotly/d3"),u=t("../../components/drawing"),f=t("../../lib/svg_text_utils"),h=t("./mapbox"),p=r.constants=t("./constants");function d(t){return"string"==typeof t&&(-1!==p.styleValuesMapbox.indexOf(t)||0===t.indexOf("mapbox://"))}r.name="mapbox",r.attr="subplot",r.idRoot="mapbox",r.idRegex=r.attrRegex=i.counterRegex("mapbox"),r.attributes={subplot:{valType:"subplotid",dflt:"mapbox",editType:"calc"}},r.layoutAttributes=t("./layout_attributes"),r.supplyLayoutDefaults=t("./layout_defaults"),r.plot=function(t){var e=t._fullLayout,r=t.calcdata,a=e._subplots.mapbox;if(n.version!==p.requiredVersion)throw new Error(p.wrongVersionErrorMsg);var o=function(t,e){var r=t._fullLayout;if(""===t._context.mapboxAccessToken)return"";for(var n=[],a=[],o=!1,s=!1,l=0;l1&&i.warn(p.multipleTokensErrorMsg),n[0]):(a.length&&i.log(["Listed mapbox access token(s)",a.join(","),"but did not use a Mapbox map style, ignoring token(s)."].join(" ")),"")}(t,a);n.accessToken=o;for(var l=0;l_/2){var w=v.split("|").join("
");x.text(w).attr("data-unformatted",w).call(f.convertToTspans,t),b=u.bBox(x.node())}x.attr("transform",a(-3,8-b.height)),y.insert("rect",".static-attribution").attr({x:-b.width-6,y:-b.height-3,width:b.width+6,height:b.height+3,fill:"rgba(255, 255, 255, 0.75)"});var T=1;b.width+6>_&&(T=_/(b.width+6));var k=[n.l+n.w*h.x[1],n.t+n.h*(1-h.y[0])];y.attr("transform",a(k[0],k[1])+o(T))}},r.updateFx=function(t){for(var e=t._fullLayout,r=e._subplots.mapbox,n=0;n0){for(var r=0;r0}function u(t){var e={},r={};switch(t.type){case"circle":n.extendFlat(r,{"circle-radius":t.circle.radius,"circle-color":t.color,"circle-opacity":t.opacity});break;case"line":n.extendFlat(r,{"line-width":t.line.width,"line-color":t.color,"line-opacity":t.opacity,"line-dasharray":t.line.dash});break;case"fill":n.extendFlat(r,{"fill-color":t.color,"fill-outline-color":t.fill.outlinecolor,"fill-opacity":t.opacity});break;case"symbol":var i=t.symbol,o=a(i.textposition,i.iconsize);n.extendFlat(e,{"icon-image":i.icon+"-15","icon-size":i.iconsize/10,"text-field":i.text,"text-size":i.textfont.size,"text-anchor":o.anchor,"text-offset":o.offset,"symbol-placement":i.placement}),n.extendFlat(r,{"icon-color":t.color,"text-color":i.textfont.color,"text-opacity":t.opacity});break;case"raster":n.extendFlat(r,{"raster-fade-duration":0,"raster-opacity":t.opacity})}return{layout:e,paint:r}}l.update=function(t){this.visible?this.needsNewImage(t)?this.updateImage(t):this.needsNewSource(t)?(this.removeLayer(),this.updateSource(t),this.updateLayer(t)):this.needsNewLayer(t)?this.updateLayer(t):this.updateStyle(t):(this.updateSource(t),this.updateLayer(t)),this.visible=c(t)},l.needsNewImage=function(t){return this.subplot.map.getSource(this.idSource)&&"image"===this.sourceType&&"image"===t.sourcetype&&(this.source!==t.source||JSON.stringify(this.coordinates)!==JSON.stringify(t.coordinates))},l.needsNewSource=function(t){return this.sourceType!==t.sourcetype||JSON.stringify(this.source)!==JSON.stringify(t.source)||this.layerType!==t.type},l.needsNewLayer=function(t){return this.layerType!==t.type||this.below!==this.subplot.belowLookup["layout-"+this.index]},l.lookupBelow=function(){return this.subplot.belowLookup["layout-"+this.index]},l.updateImage=function(t){this.subplot.map.getSource(this.idSource).updateImage({url:t.source,coordinates:t.coordinates});var e=this.findFollowingMapboxLayerId(this.lookupBelow());null!==e&&this.subplot.map.moveLayer(this.idLayer,e)},l.updateSource=function(t){var e=this.subplot.map;if(e.getSource(this.idSource)&&e.removeSource(this.idSource),this.sourceType=t.sourcetype,this.source=t.source,c(t)){var r=function(t){var e,r=t.sourcetype,n=t.source,a={type:r};"geojson"===r?e="data":"vector"===r?e="string"==typeof n?"url":"tiles":"raster"===r?(e="tiles",a.tileSize=256):"image"===r&&(e="url",a.coordinates=t.coordinates);a[e]=n,t.sourceattribution&&(a.attribution=i(t.sourceattribution));return a}(t);e.addSource(this.idSource,r)}},l.findFollowingMapboxLayerId=function(t){if("traces"===t)for(var e=this.subplot.getMapLayers(),r=0;r1)for(r=0;r-1&&v(e.originalEvent,n,[r.xaxis],[r.yaxis],r.id,t),i.indexOf("event")>-1&&c.click(n,e.originalEvent)}}},_.updateFx=function(t){var e=this,r=e.map,n=e.gd;if(!e.isStatic){var a,o=t.dragmode;a=f(o)?function(t,r){(t.range={})[e.id]=[c([r.xmin,r.ymin]),c([r.xmax,r.ymax])]}:function(t,r,n){(t.lassoPoints={})[e.id]=n.filtered.map(c)};var s=e.dragOptions;e.dragOptions=i.extendDeep(s||{},{dragmode:t.dragmode,element:e.div,gd:n,plotinfo:{id:e.id,domain:t[e.id].domain,xaxis:e.xaxis,yaxis:e.yaxis,fillRangeItems:a},xaxes:[e.xaxis],yaxes:[e.yaxis],subplot:e.id}),r.off("click",e.onClickInPanHandler),p(o)||h(o)?(r.dragPan.disable(),r.on("zoomstart",e.clearSelect),e.dragOptions.prepFn=function(t,r,n){d(t,r,n,e.dragOptions,o)},l.init(e.dragOptions)):(r.dragPan.enable(),r.off("zoomstart",e.clearSelect),e.div.onmousedown=null,e.onClickInPanHandler=e.onClickInPanFn(e.dragOptions),r.on("click",e.onClickInPanHandler))}function c(t){var r=e.map.unproject(t);return[r.lng,r.lat]}},_.updateFramework=function(t){var e=t[this.id].domain,r=t._size,n=this.div.style;n.width=r.w*(e.x[1]-e.x[0])+"px",n.height=r.h*(e.y[1]-e.y[0])+"px",n.left=r.l+e.x[0]*r.w+"px",n.top=r.t+(1-e.y[1])*r.h+"px",this.xaxis._offset=r.l+e.x[0]*r.w,this.xaxis._length=r.w*(e.x[1]-e.x[0]),this.yaxis._offset=r.t+(1-e.y[1])*r.h,this.yaxis._length=r.h*(e.y[1]-e.y[0])},_.updateLayers=function(t){var e,r=t[this.id].layers,n=this.layerList;if(r.length!==n.length){for(e=0;e=e.width-20?(a["text-anchor"]="start",a.x=5):(a["text-anchor"]="end",a.x=e._paper.attr("width")-7),r.attr(a);var o=r.select(".js-link-to-tool"),s=r.select(".js-link-spacer"),l=r.select(".js-sourcelinks");t._context.showSources&&t._context.showSources(t),t._context.showLink&&function(t,e){e.text("");var r=e.append("a").attr({"xlink:xlink:href":"#",class:"link--impt link--embedview","font-weight":"bold"}).text(t._context.linkText+" "+String.fromCharCode(187));if(t._context.sendData)r.on("click",(function(){b.sendDataToCloud(t)}));else{var n=window.location.pathname.split("/"),i=window.location.search;r.attr({"xlink:xlink:show":"new","xlink:xlink:href":"/"+n[2].split(".")[0]+"/"+n[1]+i})}}(t,o),s.text(o.text()&&l.text()?" - ":"")}},b.sendDataToCloud=function(t){var e=(window.PLOTLYENV||{}).BASE_URL||t._context.plotlyServerURL;if(e){t.emit("plotly_beforeexport");var r=n.select(t).append("div").attr("id","hiddenform").style("display","none"),i=r.append("form").attr({action:e+"/external",method:"post",target:"_blank"});return i.append("input").attr({type:"text",name:"data"}).node().value=b.graphJson(t,!1,"keepdata"),i.node().submit(),r.remove(),t.emit("plotly_afterexport"),!1}};var T=["days","shortDays","months","shortMonths","periods","dateTime","date","time","decimal","thousands","grouping","currency"],k=["year","month","dayMonth","dayMonthYear"];function A(t,e){var r=t._context.locale;r||(r="en-US");var n=!1,i={};function a(t){for(var r=!0,a=0;a1&&z.length>1){for(s.getComponentMethod("grid","sizeDefaults")(c,l),o=0;o15&&z.length>15&&0===l.shapes.length&&0===l.images.length,b.linkSubplots(h,l,f,n),b.cleanPlot(h,l,f,n);var N=!(!n._has||!n._has("gl2d")),j=!(!l._has||!l._has("gl2d")),U=!(!n._has||!n._has("cartesian"))||N,V=!(!l._has||!l._has("cartesian"))||j;U&&!V?n._bgLayer.remove():V&&!U&&(l._shouldCreateBgLayer=!0),n._zoomlayer&&!t._dragging&&d({_fullLayout:n}),function(t,e){var r,n=[];e.meta&&(r=e._meta={meta:e.meta,layout:{meta:e.meta}});for(var i=0;i0){var f=1-2*s;n=Math.round(f*n),i=Math.round(f*i)}}var h=b.layoutAttributes.width.min,p=b.layoutAttributes.height.min;n1,m=!e.height&&Math.abs(r.height-i)>1;(m||d)&&(d&&(r.width=n),m&&(r.height=i)),t._initialAutoSize||(t._initialAutoSize={width:n,height:i}),b.sanitizeMargins(r)},b.supplyLayoutModuleDefaults=function(t,e,r,n){var i,a,o,l=s.componentsRegistry,c=e._basePlotModules,f=s.subplotsRegistry.cartesian;for(i in l)(o=l[i]).includeBasePlot&&o.includeBasePlot(t,e);for(var h in c.length||c.push(f),e._has("cartesian")&&(s.getComponentMethod("grid","contentDefaults")(t,e),f.finalizeSubplots(t,e)),e._subplots)e._subplots[h].sort(u.subplotSort);for(a=0;a1&&(r.l/=m,r.r/=m)}if(f){var g=(r.t+r.b)/f;g>1&&(r.t/=g,r.b/=g)}var v=void 0!==r.xl?r.xl:r.x,y=void 0!==r.xr?r.xr:r.x,x=void 0!==r.yt?r.yt:r.y,_=void 0!==r.yb?r.yb:r.y;h[e]={l:{val:v,size:r.l+d},r:{val:y,size:r.r+d},b:{val:_,size:r.b+d},t:{val:x,size:r.t+d}},p[e]=1}else delete h[e],delete p[e];if(!n._replotting)return b.doAutoMargin(t)}},b.doAutoMargin=function(t){var e=t._fullLayout,r=e.width,n=e.height;e._size||(e._size={}),C(e);var i=e._size,a=e.margin,l=u.extendFlat({},i),c=a.l,f=a.r,h=a.t,d=a.b,m=e._pushmargin,g=e._pushmarginIds;if(!1!==e.margin.autoexpand){for(var v in m)g[v]||delete m[v];for(var y in m.base={l:{val:0,size:c},r:{val:1,size:f},t:{val:1,size:h},b:{val:0,size:d}},m){var x=m[y].l||{},_=m[y].b||{},w=x.val,T=x.size,k=_.val,A=_.size;for(var M in m){if(o(T)&&m[M].r){var S=m[M].r.val,E=m[M].r.size;if(S>w){var L=(T*S+(E-r)*w)/(S-w),P=(E*(1-w)+(T-r)*(1-S))/(S-w);L+P>c+f&&(c=L,f=P)}}if(o(A)&&m[M].t){var I=m[M].t.val,O=m[M].t.size;if(I>k){var z=(A*I+(O-n)*k)/(I-k),D=(O*(1-k)+(A-n)*(1-I))/(I-k);z+D>d+h&&(d=z,h=D)}}}}}var R=u.constrain(r-a.l-a.r,2,64),F=u.constrain(n-a.t-a.b,2,64),B=Math.max(0,r-R),N=Math.max(0,n-F);if(B){var j=(c+f)/B;j>1&&(c/=j,f/=j)}if(N){var U=(d+h)/N;U>1&&(d/=U,h/=U)}if(i.l=Math.round(c),i.r=Math.round(f),i.t=Math.round(h),i.b=Math.round(d),i.p=Math.round(a.pad),i.w=Math.round(r)-i.l-i.r,i.h=Math.round(n)-i.t-i.b,!e._replotting&&b.didMarginChange(l,i)){"_redrawFromAutoMarginCount"in e?e._redrawFromAutoMarginCount++:e._redrawFromAutoMarginCount=1;var V=3*(1+Object.keys(g).length);if(e._redrawFromAutoMarginCount0&&(t._transitioningWithDuration=!0),t._transitionData._interruptCallbacks.push((function(){n=!0})),r.redraw&&t._transitionData._interruptCallbacks.push((function(){return s.call("redraw",t)})),t._transitionData._interruptCallbacks.push((function(){t.emit("plotly_transitioninterrupted",[])}));var a=0,o=0;function l(){return a++,function(){o++,n||o!==a||function(e){if(!t._transitionData)return;(function(t){if(t)for(;t.length;)t.shift()})(t._transitionData._interruptCallbacks),Promise.resolve().then((function(){if(r.redraw)return s.call("redraw",t)})).then((function(){t._transitioning=!1,t._transitioningWithDuration=!1,t.emit("plotly_transitioned",[])})).then(e)}(i)}}r.runFn(l),setTimeout(l())}))}],a=u.syncOrAsync(i,t);return a&&a.then||(a=Promise.resolve()),a.then((function(){return t}))}b.didMarginChange=function(t,e){for(var r=0;r1)return!0}return!1},b.graphJson=function(t,e,r,n,i,a){(i&&e&&!t._fullData||i&&!e&&!t._fullLayout)&&b.supplyDefaults(t);var o=i?t._fullData:t.data,s=i?t._fullLayout:t.layout,l=(t._transitionData||{})._frames;function c(t,e){if("function"==typeof t)return e?"_function_":null;if(u.isPlainObject(t)){var n,i={};return Object.keys(t).sort().forEach((function(a){if(-1===["_","["].indexOf(a.charAt(0)))if("function"!=typeof t[a]){if("keepdata"===r){if("src"===a.substr(a.length-3))return}else if("keepstream"===r){if("string"==typeof(n=t[a+"src"])&&n.indexOf(":")>0&&!u.isPlainObject(t.stream))return}else if("keepall"!==r&&"string"==typeof(n=t[a+"src"])&&n.indexOf(":")>0)return;i[a]=c(t[a],e)}else e&&(i[a]="_function")})),i}return Array.isArray(t)?t.map((function(t){return c(t,e)})):u.isTypedArray(t)?u.simpleMap(t,u.identity):u.isJSDate(t)?u.ms2DateTimeLocal(+t):t}var f={data:(o||[]).map((function(t){var r=c(t);return e&&delete r.fit,r}))};if(!e&&(f.layout=c(s),i)){var h=s._size;f.layout.computed={margin:{b:h.b,l:h.l,r:h.r,t:h.t}}}return l&&(f.frames=c(l)),a&&(f.config=c(t._context,!0)),"object"===n?f:JSON.stringify(f)},b.modifyFrames=function(t,e){var r,n,i,a=t._transitionData._frames,o=t._transitionData._frameHash;for(r=0;r=0;a--)if(s[a].enabled){r._indexToPoints=s[a]._indexToPoints;break}n&&n.calc&&(o=n.calc(t,r))}Array.isArray(o)&&o[0]||(o=[{x:h,y:h}]),o[0].t||(o[0].t={}),o[0].trace=r,d[e]=o}}for(z(o,c,f),i=0;i1e-10?t:0}function h(t,e,r){e=e||0,r=r||0;for(var n=t.length,i=new Array(n),a=0;a0?r:1/0})),i=n.mod(r+1,e.length);return[e[r],e[i]]},findIntersectionXY:c,findXYatLength:function(t,e,r,n){var i=-e*r,a=e*e+1,o=2*(e*i-r),s=i*i+r*r-t*t,l=Math.sqrt(o*o-4*a*s),c=(-o+l)/(2*a),u=(-o-l)/(2*a);return[[c,e*c+i+n],[u,e*u+i+n]]},clampTiny:f,pathPolygon:function(t,e,r,n,i,a){return"M"+h(u(t,e,r,n),i,a).join("L")},pathPolygonAnnulus:function(t,e,r,n,i,a,o){var s,l;t=90||s>90&&l>=450?1:u<=0&&h<=0?0:Math.max(u,h);e=s<=180&&l>=180||s>180&&l>=540?-1:c>=0&&f>=0?0:Math.min(c,f);r=s<=270&&l>=270||s>270&&l>=630?-1:u>=0&&h>=0?0:Math.min(u,h);n=l>=360?1:c<=0&&f<=0?0:Math.max(c,f);return[e,r,n,i]}(p),b=x[2]-x[0],_=x[3]-x[1],w=h/f,T=Math.abs(_/b);w>T?(d=f,y=(h-(m=f*T))/n.h/2,g=[o[0],o[1]],v=[s[0]+y,s[1]-y]):(m=h,y=(f-(d=h/T))/n.w/2,g=[o[0]+y,o[1]-y],v=[s[0],s[1]]),this.xLength2=d,this.yLength2=m,this.xDomain2=g,this.yDomain2=v;var k=this.xOffset2=n.l+n.w*g[0],A=this.yOffset2=n.t+n.h*(1-v[1]),M=this.radius=d/b,S=this.innerRadius=e.hole*M,E=this.cx=k-M*x[0],L=this.cy=A+M*x[3],I=this.cxx=E-k,O=this.cyy=L-A;this.radialAxis=this.mockAxis(t,e,i,{_id:"x",side:{counterclockwise:"top",clockwise:"bottom"}[i.side],_realSide:i.side,domain:[S/n.w,M/n.w]}),this.angularAxis=this.mockAxis(t,e,a,{side:"right",domain:[0,Math.PI],autorange:!1}),this.doAutoRange(t,e),this.updateAngularAxis(t,e),this.updateRadialAxis(t,e),this.updateRadialAxisTitle(t,e),this.xaxis=this.mockCartesianAxis(t,e,{_id:"x",domain:g}),this.yaxis=this.mockCartesianAxis(t,e,{_id:"y",domain:v});var z=this.pathSubplot();this.clipPaths.forTraces.select("path").attr("d",z).attr("transform",l(I,O)),r.frontplot.attr("transform",l(k,A)).call(u.setClipUrl,this._hasClipOnAxisFalse?null:this.clipIds.forTraces,this.gd),r.bg.attr("d",z).attr("transform",l(E,L)).call(c.fill,e.bgcolor)},z.mockAxis=function(t,e,r,n){var i=o.extendFlat({},r,n);return d(i,e,t),i},z.mockCartesianAxis=function(t,e,r){var n=this,i=r._id,a=o.extendFlat({type:"linear"},r);p(a,t);var s={x:[0,2],y:[1,3]};return a.setRange=function(){var t=n.sectorBBox,r=s[i],o=n.radialAxis._rl,l=(o[1]-o[0])/(1-e.hole);a.range=[t[r[0]]*l,t[r[1]]*l]},a.isPtWithinRange="x"===i?function(t){return n.isPtInside(t)}:function(){return!0},a.setRange(),a.setScale(),a},z.doAutoRange=function(t,e){var r=this.gd,n=this.radialAxis,i=e.radialaxis;n.setScale(),m(r,n);var a=n.range;i.range=a.slice(),i._input.range=a.slice(),n._rl=[n.r2l(a[0],null,"gregorian"),n.r2l(a[1],null,"gregorian")]},z.updateRadialAxis=function(t,e){var r=this,n=r.gd,i=r.layers,a=r.radius,u=r.innerRadius,f=r.cx,p=r.cy,d=e.radialaxis,m=C(e.sector[0],360),g=r.radialAxis,v=u90&&m<=270&&(g.tickangle=180);var y=function(t){return l(g.l2p(t.x)+u,0)},x=D(d);if(r.radialTickLayout!==x&&(i["radial-axis"].selectAll(".xtick").remove(),r.radialTickLayout=x),v){g.setScale();var b=h.calcTicks(g),_=h.clipEnds(g,b),w=h.getTickSigns(g)[2];h.drawTicks(n,g,{vals:b,layer:i["radial-axis"],path:h.makeTickPath(g,0,w),transFn:y,crisp:!1}),h.drawGrid(n,g,{vals:_,layer:i["radial-grid"],path:function(t){return r.pathArc(g.r2p(t.x)+u)},transFn:o.noop,crisp:!1}),h.drawLabels(n,g,{vals:b,layer:i["radial-axis"],transFn:y,labelFns:h.makeLabelFns(g,0)})}var T=r.radialAxisAngle=r.vangles?I(R(P(d.angle),r.vangles)):d.angle,k=l(f,p),A=k+s(-T);F(i["radial-axis"],v&&(d.showticklabels||d.ticks),{transform:A}),F(i["radial-grid"],v&&d.showgrid,{transform:k}),F(i["radial-line"].select("line"),v&&d.showline,{x1:u,y1:0,x2:a,y2:0,transform:A}).attr("stroke-width",d.linewidth).call(c.stroke,d.linecolor)},z.updateRadialAxisTitle=function(t,e,r){var n=this.gd,i=this.radius,a=this.cx,o=this.cy,s=e.radialaxis,l=this.id+"title",c=void 0!==r?r:this.radialAxisAngle,f=P(c),h=Math.cos(f),p=Math.sin(f),d=0;if(s.title){var m=u.bBox(this.layers["radial-axis"].node()).height,g=s.title.font.size;d="counterclockwise"===s.side?-m-.4*g:m+.8*g}this.layers["radial-axis-title"]=x.draw(n,l,{propContainer:s,propName:this.id+".radialaxis.title",placeholder:L(n,"Click to enter radial axis title"),attributes:{x:a+i/2*h+d*p,y:o-i/2*p+d*h,"text-anchor":"middle"},transform:{rotate:-c}})},z.updateAngularAxis=function(t,e){var r=this,n=r.gd,i=r.layers,a=r.radius,u=r.innerRadius,f=r.cx,p=r.cy,d=e.angularaxis,m=r.angularAxis;r.fillViewInitialKey("angularaxis.rotation",d.rotation),m.setGeometry(),m.setScale();var g=function(t){return m.t2g(t.x)};"linear"===m.type&&"radians"===m.thetaunit&&(m.tick0=I(m.tick0),m.dtick=I(m.dtick));var v=function(t){return l(f+a*Math.cos(t),p-a*Math.sin(t))},y=h.makeLabelFns(m,0).labelStandoff,x={xFn:function(t){var e=g(t);return Math.cos(e)*y},yFn:function(t){var e=g(t),r=Math.sin(e)>0?.2:1;return-Math.sin(e)*(y+t.fontSize*r)+Math.abs(Math.cos(e))*(t.fontSize*M)},anchorFn:function(t){var e=g(t),r=Math.cos(e);return Math.abs(r)<.1?"middle":r>0?"start":"end"},heightFn:function(t,e,r){var n=g(t);return-.5*(1+Math.sin(n))*r}},b=D(d);r.angularTickLayout!==b&&(i["angular-axis"].selectAll("."+m._id+"tick").remove(),r.angularTickLayout=b);var _,w=h.calcTicks(m);if("linear"===e.gridshape?(_=w.map(g),o.angleDelta(_[0],_[1])<0&&(_=_.slice().reverse())):_=null,r.vangles=_,"category"===m.type&&(w=w.filter((function(t){return o.isAngleInsideSector(g(t),r.sectorInRad)}))),m.visible){var T="inside"===m.ticks?-1:1,k=(m.linewidth||1)/2;h.drawTicks(n,m,{vals:w,layer:i["angular-axis"],path:"M"+T*k+",0h"+T*m.ticklen,transFn:function(t){var e=g(t);return v(e)+s(-I(e))},crisp:!1}),h.drawGrid(n,m,{vals:w,layer:i["angular-grid"],path:function(t){var e=g(t),r=Math.cos(e),n=Math.sin(e);return"M"+[f+u*r,p-u*n]+"L"+[f+a*r,p-a*n]},transFn:o.noop,crisp:!1}),h.drawLabels(n,m,{vals:w,layer:i["angular-axis"],repositionOnUpdate:!0,transFn:function(t){return v(g(t))},labelFns:x})}F(i["angular-line"].select("path"),d.showline,{d:r.pathSubplot(),transform:l(f,p)}).attr("stroke-width",d.linewidth).call(c.stroke,d.linecolor)},z.updateFx=function(t,e){this.gd._context.staticPlot||(this.updateAngularDrag(t),this.updateRadialDrag(t,e,0),this.updateRadialDrag(t,e,1),this.updateMainDrag(t))},z.updateMainDrag=function(t){var e,r,s=this,c=s.gd,u=s.layers,f=t._zoomlayer,h=S.MINZOOM,p=S.OFFEDGE,d=s.radius,m=s.innerRadius,x=s.cx,T=s.cy,k=s.cxx,A=s.cyy,M=s.sectorInRad,L=s.vangles,C=s.radialAxis,P=E.clampTiny,I=E.findXYatLength,O=E.findEnclosingVertexAngles,z=S.cornerHalfWidth,D=S.cornerLen/2,R=g.makeDragger(u,"path","maindrag","crosshair");n.select(R).attr("d",s.pathSubplot()).attr("transform",l(x,T));var F,B,N,j,U,V,H,q,G,Y={element:R,gd:c,subplot:s.id,plotinfo:{id:s.id,xaxis:s.xaxis,yaxis:s.yaxis},xaxes:[s.xaxis],yaxes:[s.yaxis]};function W(t,e){return Math.sqrt(t*t+e*e)}function X(t,e){return W(t-k,e-A)}function Z(t,e){return Math.atan2(A-e,t-k)}function J(t,e){return[t*Math.cos(e),t*Math.sin(-e)]}function K(t,e){if(0===t)return s.pathSector(2*z);var r=D/t,n=e-r,i=e+r,a=Math.max(0,Math.min(t,d)),o=a-z,l=a+z;return"M"+J(o,n)+"A"+[o,o]+" 0,0,0 "+J(o,i)+"L"+J(l,i)+"A"+[l,l]+" 0,0,1 "+J(l,n)+"Z"}function Q(t,e,r){if(0===t)return s.pathSector(2*z);var n,i,a=J(t,e),o=J(t,r),l=P((a[0]+o[0])/2),c=P((a[1]+o[1])/2);if(l&&c){var u=c/l,f=-1/u,h=I(z,u,l,c);n=I(D,f,h[0][0],h[0][1]),i=I(D,f,h[1][0],h[1][1])}else{var p,d;c?(p=D,d=z):(p=z,d=D),n=[[l-p,c-d],[l+p,c-d]],i=[[l-p,c+d],[l+p,c+d]]}return"M"+n.join("L")+"L"+i.reverse().join("L")+"Z"}function $(t,e){return e=Math.max(Math.min(e,d),m),th?(t-1&&1===t&&_(e,c,[s.xaxis],[s.yaxis],s.id,Y),r.indexOf("event")>-1&&y.click(c,e,s.id)}Y.prepFn=function(t,n,a){var l=c._fullLayout.dragmode,u=R.getBoundingClientRect();c._fullLayout._calcInverseTransform(c);var h=c._fullLayout._invTransform;e=c._fullLayout._invScaleX,r=c._fullLayout._invScaleY;var p=o.apply3DTransform(h)(n-u.left,a-u.top);if(F=p[0],B=p[1],L){var m=E.findPolygonOffset(d,M[0],M[1],L);F+=k+m[0],B+=A+m[1]}switch(l){case"zoom":Y.moveFn=L?nt:et,Y.clickFn=ot,Y.doneFn=it,function(){N=null,j=null,U=s.pathSubplot(),V=!1;var t=c._fullLayout[s.id];H=i(t.bgcolor).getLuminance(),(q=g.makeZoombox(f,H,x,T,U)).attr("fill-rule","evenodd"),G=g.makeCorners(f,x,T),w(c)}();break;case"select":case"lasso":b(t,n,a,Y,l)}},R.onmousemove=function(t){y.hover(c,t,s.id),c._fullLayout._lasthover=R,c._fullLayout._hoversubplot=s.id},R.onmouseout=function(t){c._dragging||v.unhover(c,t)},v.init(Y)},z.updateRadialDrag=function(t,e,r){var i=this,c=i.gd,u=i.layers,f=i.radius,h=i.innerRadius,p=i.cx,d=i.cy,m=i.radialAxis,y=S.radialDragBoxSize,x=y/2;if(m.visible){var b,_,T,M=P(i.radialAxisAngle),E=m._rl,L=E[0],C=E[1],O=E[r],z=.75*(E[1]-E[0])/(1-e.hole)/f;r?(b=p+(f+x)*Math.cos(M),_=d-(f+x)*Math.sin(M),T="radialdrag"):(b=p+(h-x)*Math.cos(M),_=d-(h-x)*Math.sin(M),T="radialdrag-inner");var D,B,N,j=g.makeRectDragger(u,T,"crosshair",-x,-x,y,y),U={element:j,gd:c};F(n.select(j),m.visible&&h0==(r?N>L:Nn?function(t){return t<=0}:function(t){return t>=0};t.c2g=function(r){var n=t.c2l(r)-e;return(s(n)?n:0)+o},t.g2c=function(r){return t.l2c(r+e-o)},t.g2p=function(t){return t*a},t.c2p=function(e){return t.g2p(t.c2g(e))}}}(t,e);break;case"angularaxis":!function(t,e){var r=t.type;if("linear"===r){var i=t.d2c,s=t.c2d;t.d2c=function(t,e){return function(t,e){return"degrees"===e?a(t):t}(i(t),e)},t.c2d=function(t,e){return s(function(t,e){return"degrees"===e?o(t):t}(t,e))}}t.makeCalcdata=function(e,i){var a,o,s=e[i],l=e._length,c=function(r){return t.d2c(r,e.thetaunit)};if(s){if(n.isTypedArray(s)&&"linear"===r){if(l===s.length)return s;if(s.subarray)return s.subarray(0,l)}for(a=new Array(l),o=0;o0){for(var n=[],i=0;i=u&&(p.min=0,m.min=0,g.min=0,t.aaxis&&delete t.aaxis.min,t.baxis&&delete t.baxis.min,t.caxis&&delete t.caxis.min)}function d(t,e,r,n){var i=f[e._name];function o(r,n){return a.coerce(t,e,i,r,n)}o("uirevision",n.uirevision),e.type="linear";var h=o("color"),p=h!==i.color.dflt?h:r.font.color,d=e._name.charAt(0).toUpperCase(),m="Component "+d,g=o("title.text",m);e._hovertitle=g===m?g:d,a.coerceFont(o,"title.font",{family:r.font.family,size:a.bigFont(r.font.size),color:p}),o("min"),c(t,e,o,"linear"),s(t,e,o,"linear",{}),l(t,e,o,{outerTicks:!0}),o("showticklabels")&&(a.coerceFont(o,"tickfont",{family:r.font.family,size:r.font.size,color:p}),o("tickangle"),o("tickformat")),u(t,e,o,{dfltColor:h,bgColor:r.bgColor,blend:60,showLine:!0,showGrid:!0,noZeroLine:!0,attributes:i}),o("hoverformat"),o("layer")}e.exports=function(t,e,r){o(t,e,r,{type:"ternary",attributes:f,handleDefaults:p,font:e.font,paper_bgcolor:e.paper_bgcolor})}},{"../../components/color":639,"../../lib":776,"../../plot_api/plot_template":816,"../cartesian/line_grid_defaults":844,"../cartesian/tick_label_defaults":849,"../cartesian/tick_mark_defaults":850,"../cartesian/tick_value_defaults":851,"../subplot_defaults":898,"./layout_attributes":901}],903:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("tinycolor2"),a=t("../../registry"),o=t("../../lib"),s=o.strTranslate,l=o._,c=t("../../components/color"),u=t("../../components/drawing"),f=t("../cartesian/set_convert"),h=t("../../lib/extend").extendFlat,p=t("../plots"),d=t("../cartesian/axes"),m=t("../../components/dragelement"),g=t("../../components/fx"),v=t("../../components/dragelement/helpers"),y=v.freeMode,x=v.rectMode,b=t("../../components/titles"),_=t("../cartesian/select").prepSelect,w=t("../cartesian/select").selectOnClick,T=t("../cartesian/select").clearSelect,k=t("../cartesian/select").clearSelectionsCache,A=t("../cartesian/constants");function M(t,e){this.id=t.id,this.graphDiv=t.graphDiv,this.init(e),this.makeFramework(e),this.aTickLayout=null,this.bTickLayout=null,this.cTickLayout=null}e.exports=M;var S=M.prototype;S.init=function(t){this.container=t._ternarylayer,this.defs=t._defs,this.layoutId=t._uid,this.traceHash={},this.layers={}},S.plot=function(t,e){var r=e[this.id],n=e._size;this._hasClipOnAxisFalse=!1;for(var i=0;iE*b?i=(a=b)*E:a=(i=x)/E,o=v*i/x,l=y*a/b,r=e.l+e.w*m-i/2,n=e.t+e.h*(1-g)-a/2,p.x0=r,p.y0=n,p.w=i,p.h=a,p.sum=_,p.xaxis={type:"linear",range:[w+2*k-_,_-w-2*T],domain:[m-o/2,m+o/2],_id:"x"},f(p.xaxis,p.graphDiv._fullLayout),p.xaxis.setScale(),p.xaxis.isPtWithinRange=function(t){return t.a>=p.aaxis.range[0]&&t.a<=p.aaxis.range[1]&&t.b>=p.baxis.range[1]&&t.b<=p.baxis.range[0]&&t.c>=p.caxis.range[1]&&t.c<=p.caxis.range[0]},p.yaxis={type:"linear",range:[w,_-T-k],domain:[g-l/2,g+l/2],_id:"y"},f(p.yaxis,p.graphDiv._fullLayout),p.yaxis.setScale(),p.yaxis.isPtWithinRange=function(){return!0};var A=p.yaxis.domain[0],M=p.aaxis=h({},t.aaxis,{range:[w,_-T-k],side:"left",tickangle:(+t.aaxis.tickangle||0)-30,domain:[A,A+l*E],anchor:"free",position:0,_id:"y",_length:i});f(M,p.graphDiv._fullLayout),M.setScale();var S=p.baxis=h({},t.baxis,{range:[_-w-k,T],side:"bottom",domain:p.xaxis.domain,anchor:"free",position:0,_id:"x",_length:i});f(S,p.graphDiv._fullLayout),S.setScale();var L=p.caxis=h({},t.caxis,{range:[_-w-T,k],side:"right",tickangle:(+t.caxis.tickangle||0)+30,domain:[A,A+l*E],anchor:"free",position:0,_id:"y",_length:i});f(L,p.graphDiv._fullLayout),L.setScale();var C="M"+r+","+(n+a)+"h"+i+"l-"+i/2+",-"+a+"Z";p.clipDef.select("path").attr("d",C),p.layers.plotbg.select("path").attr("d",C);var P="M0,"+a+"h"+i+"l-"+i/2+",-"+a+"Z";p.clipDefRelative.select("path").attr("d",P);var I=s(r,n);p.plotContainer.selectAll(".scatterlayer,.maplayer").attr("transform",I),p.clipDefRelative.select("path").attr("transform",null);var O=s(r-S._offset,n+a);p.layers.baxis.attr("transform",O),p.layers.bgrid.attr("transform",O);var z=s(r+i/2,n)+"rotate(30)"+s(0,-M._offset);p.layers.aaxis.attr("transform",z),p.layers.agrid.attr("transform",z);var D=s(r+i/2,n)+"rotate(-30)"+s(0,-L._offset);p.layers.caxis.attr("transform",D),p.layers.cgrid.attr("transform",D),p.drawAxes(!0),p.layers.aline.select("path").attr("d",M.showline?"M"+r+","+(n+a)+"l"+i/2+",-"+a:"M0,0").call(c.stroke,M.linecolor||"#000").style("stroke-width",(M.linewidth||0)+"px"),p.layers.bline.select("path").attr("d",S.showline?"M"+r+","+(n+a)+"h"+i:"M0,0").call(c.stroke,S.linecolor||"#000").style("stroke-width",(S.linewidth||0)+"px"),p.layers.cline.select("path").attr("d",L.showline?"M"+(r+i/2)+","+n+"l"+i/2+","+a:"M0,0").call(c.stroke,L.linecolor||"#000").style("stroke-width",(L.linewidth||0)+"px"),p.graphDiv._context.staticPlot||p.initInteractions(),u.setClipUrl(p.layers.frontplot,p._hasClipOnAxisFalse?null:p.clipId,p.graphDiv)},S.drawAxes=function(t){var e=this.graphDiv,r=this.id.substr(7)+"title",n=this.layers,i=this.aaxis,a=this.baxis,o=this.caxis;if(this.drawAx(i),this.drawAx(a),this.drawAx(o),t){var s=Math.max(i.showticklabels?i.tickfont.size/2:0,(o.showticklabels?.75*o.tickfont.size:0)+("outside"===o.ticks?.87*o.ticklen:0)),c=(a.showticklabels?a.tickfont.size:0)+("outside"===a.ticks?a.ticklen:0)+3;n["a-title"]=b.draw(e,"a"+r,{propContainer:i,propName:this.id+".aaxis.title",placeholder:l(e,"Click to enter Component A title"),attributes:{x:this.x0+this.w/2,y:this.y0-i.title.font.size/3-s,"text-anchor":"middle"}}),n["b-title"]=b.draw(e,"b"+r,{propContainer:a,propName:this.id+".baxis.title",placeholder:l(e,"Click to enter Component B title"),attributes:{x:this.x0-c,y:this.y0+this.h+.83*a.title.font.size+c,"text-anchor":"middle"}}),n["c-title"]=b.draw(e,"c"+r,{propContainer:o,propName:this.id+".caxis.title",placeholder:l(e,"Click to enter Component C title"),attributes:{x:this.x0+this.w+c,y:this.y0+this.h+.83*o.title.font.size+c,"text-anchor":"middle"}})}},S.drawAx=function(t){var e,r=this.graphDiv,n=t._name,i=n.charAt(0),a=t._id,s=this.layers[n],l=i+"tickLayout",c=(e=t).ticks+String(e.ticklen)+String(e.showticklabels);this[l]!==c&&(s.selectAll("."+a+"tick").remove(),this[l]=c),t.setScale();var u=d.calcTicks(t),f=d.clipEnds(t,u),h=d.makeTransTickFn(t),p=d.getTickSigns(t)[2],m=o.deg2rad(30),g=p*(t.linewidth||1)/2,v=p*t.ticklen,y=this.w,x=this.h,b="b"===i?"M0,"+g+"l"+Math.sin(m)*v+","+Math.cos(m)*v:"M"+g+",0l"+Math.cos(m)*v+","+-Math.sin(m)*v,_={a:"M0,0l"+x+",-"+y/2,b:"M0,0l-"+y/2+",-"+x,c:"M0,0l-"+x+","+y/2}[i];d.drawTicks(r,t,{vals:"inside"===t.ticks?f:u,layer:s,path:b,transFn:h,crisp:!1}),d.drawGrid(r,t,{vals:f,layer:this.layers[i+"grid"],path:_,transFn:h,crisp:!1}),d.drawLabels(r,t,{vals:u,layer:s,transFn:h,labelFns:d.makeLabelFns(t,0,30)})};var L=A.MINZOOM/2+.87,C="m-0.87,.5h"+L+"v3h-"+(L+5.2)+"l"+(L/2+2.6)+",-"+(.87*L+4.5)+"l2.6,1.5l-"+L/2+","+.87*L+"Z",P="m0.87,.5h-"+L+"v3h"+(L+5.2)+"l-"+(L/2+2.6)+",-"+(.87*L+4.5)+"l-2.6,1.5l"+L/2+","+.87*L+"Z",I="m0,1l"+L/2+","+.87*L+"l2.6,-1.5l-"+(L/2+2.6)+",-"+(.87*L+4.5)+"l-"+(L/2+2.6)+","+(.87*L+4.5)+"l2.6,1.5l"+L/2+",-"+.87*L+"Z",O=!0;function z(t){n.select(t).selectAll(".zoombox,.js-zoombox-backdrop,.js-zoombox-menu,.zoombox-corners").remove()}S.clearSelect=function(){k(this.dragOptions),T(this.dragOptions.gd)},S.initInteractions=function(){var t,e,r,n,f,h,p,d,v,b,T,k,M=this,S=M.layers.plotbg.select("path").node(),L=M.graphDiv,D=L._fullLayout._zoomlayer;function R(t){var e={};return e[M.id+".aaxis.min"]=t.a,e[M.id+".baxis.min"]=t.b,e[M.id+".caxis.min"]=t.c,e}function F(t,e){var r=L._fullLayout.clickmode;z(L),2===t&&(L.emit("plotly_doubleclick",null),a.call("_guiRelayout",L,R({a:0,b:0,c:0}))),r.indexOf("select")>-1&&1===t&&w(e,L,[M.xaxis],[M.yaxis],M.id,M.dragOptions),r.indexOf("event")>-1&&g.click(L,e,M.id)}function B(t,e){return 1-e/M.h}function N(t,e){return 1-(t+(M.h-e)/Math.sqrt(3))/M.w}function j(t,e){return(t-(M.h-e)/Math.sqrt(3))/M.w}function U(i,a){var o=r+i*t,s=n+a*e,l=Math.max(0,Math.min(1,B(0,n),B(0,s))),c=Math.max(0,Math.min(1,N(r,n),N(o,s))),u=Math.max(0,Math.min(1,j(r,n),j(o,s))),m=(l/2+u)*M.w,g=(1-l/2-c)*M.w,y=(m+g)/2,x=g-m,_=(1-l)*M.h,w=_-x/E;x.2?"rgba(0,0,0,0.4)":"rgba(255,255,255,0.3)").duration(200),k.transition().style("opacity",1).duration(200),b=!0),L.emit("plotly_relayouting",R(p))}function V(){z(L),p!==f&&(a.call("_guiRelayout",L,R(p)),O&&L.data&&L._context.showTips&&(o.notifier(l(L,"Double-click to zoom back out"),"long"),O=!1))}function H(t,e){var r=t/M.xaxis._m,n=e/M.yaxis._m,i=[(p={a:f.a-n,b:f.b+(r+n)/2,c:f.c-(r-n)/2}).a,p.b,p.c].sort(o.sorterAsc),a=i.indexOf(p.a),l=i.indexOf(p.b),c=i.indexOf(p.c);i[0]<0&&(i[1]+i[0]/2<0?(i[2]+=i[0]+i[1],i[0]=i[1]=0):(i[2]+=i[0]/2,i[1]+=i[0]/2,i[0]=0),p={a:i[a],b:i[l],c:i[c]},e=(f.a-p.a)*M.yaxis._m,t=(f.c-p.c-f.b+p.b)*M.xaxis._m);var h=s(M.x0+t,M.y0+e);M.plotContainer.selectAll(".scatterlayer,.maplayer").attr("transform",h);var d=s(-t,-e);M.clipDefRelative.select("path").attr("transform",d),M.aaxis.range=[p.a,M.sum-p.b-p.c],M.baxis.range=[M.sum-p.a-p.c,p.b],M.caxis.range=[M.sum-p.a-p.b,p.c],M.drawAxes(!1),M._hasClipOnAxisFalse&&M.plotContainer.select(".scatterlayer").selectAll(".trace").call(u.hideOutsideRangePoints,M),L.emit("plotly_relayouting",R(p))}function q(){a.call("_guiRelayout",L,R(p))}this.dragOptions={element:S,gd:L,plotinfo:{id:M.id,domain:L._fullLayout[M.id].domain,xaxis:M.xaxis,yaxis:M.yaxis},subplot:M.id,prepFn:function(a,l,u){M.dragOptions.xaxes=[M.xaxis],M.dragOptions.yaxes=[M.yaxis],t=L._fullLayout._invScaleX,e=L._fullLayout._invScaleY;var m=M.dragOptions.dragmode=L._fullLayout.dragmode;y(m)?M.dragOptions.minDrag=1:M.dragOptions.minDrag=void 0,"zoom"===m?(M.dragOptions.moveFn=U,M.dragOptions.clickFn=F,M.dragOptions.doneFn=V,function(t,e,a){var l=S.getBoundingClientRect();r=e-l.left,n=a-l.top,L._fullLayout._calcInverseTransform(L);var u=L._fullLayout._invTransform,m=o.apply3DTransform(u)(r,n);r=m[0],n=m[1],f={a:M.aaxis.range[0],b:M.baxis.range[1],c:M.caxis.range[1]},p=f,h=M.aaxis.range[1]-f.a,d=i(M.graphDiv._fullLayout[M.id].bgcolor).getLuminance(),v="M0,"+M.h+"L"+M.w/2+", 0L"+M.w+","+M.h+"Z",b=!1,T=D.append("path").attr("class","zoombox").attr("transform",s(M.x0,M.y0)).style({fill:d>.2?"rgba(0,0,0,0)":"rgba(255,255,255,0)","stroke-width":0}).attr("d",v),k=D.append("path").attr("class","zoombox-corners").attr("transform",s(M.x0,M.y0)).style({fill:c.background,stroke:c.defaultLine,"stroke-width":1,opacity:0}).attr("d","M0,0Z"),M.clearSelect(L)}(0,l,u)):"pan"===m?(M.dragOptions.moveFn=H,M.dragOptions.clickFn=F,M.dragOptions.doneFn=q,f={a:M.aaxis.range[0],b:M.baxis.range[1],c:M.caxis.range[1]},p=f,M.clearSelect(L)):(x(m)||y(m))&&_(a,l,u,M.dragOptions,m)}},S.onmousemove=function(t){g.hover(L,t,M.id),L._fullLayout._lasthover=S,L._fullLayout._hoversubplot=M.id},S.onmouseout=function(t){L._dragging||m.unhover(L,t)},m.init(this.dragOptions)}},{"../../components/color":639,"../../components/dragelement":658,"../../components/dragelement/helpers":657,"../../components/drawing":661,"../../components/fx":679,"../../components/titles":737,"../../lib":776,"../../lib/extend":766,"../../registry":904,"../cartesian/axes":827,"../cartesian/constants":834,"../cartesian/select":847,"../cartesian/set_convert":848,"../plots":890,"@plotly/d3":58,tinycolor2:572}],904:[function(t,e,r){"use strict";var n=t("./lib/loggers"),i=t("./lib/noop"),a=t("./lib/push_unique"),o=t("./lib/is_plain_object"),s=t("./lib/dom").addStyleRule,l=t("./lib/extend"),c=t("./plots/attributes"),u=t("./plots/layout_attributes"),f=l.extendFlat,h=l.extendDeepAll;function p(t){var e=t.name,i=t.categories,a=t.meta;if(r.modules[e])n.log("Type "+e+" already registered");else{r.subplotsRegistry[t.basePlotModule.name]||function(t){var e=t.name;if(r.subplotsRegistry[e])return void n.log("Plot type "+e+" already registered.");for(var i in v(t),r.subplotsRegistry[e]=t,r.componentsRegistry)b(i,t.name)}(t.basePlotModule);for(var o={},l=0;l-1&&(f[p[r]].title={text:""});for(r=0;r")?"":e.html(t).text()}));return e.remove(),r}(T),T=(T=T.replace(/&(?!\w+;|\#[0-9]+;| \#x[0-9A-F]+;)/g,"&")).replace(c,"'"),i.isIE()&&(T=(T=(T=T.replace(/"/gi,"'")).replace(/(\('#)([^']*)('\))/gi,'("#$2")')).replace(/(\\')/gi,'"')),T}},{"../components/color":639,"../components/drawing":661,"../constants/xmlns_namespaces":753,"../lib":776,"@plotly/d3":58}],913:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){for(var r=0;rf+c||!n(u))}for(var p=0;pa))return e}return void 0!==r?r:t.dflt},r.coerceColor=function(t,e,r){return i(e).isValid()?e:void 0!==r?r:t.dflt},r.coerceEnumerated=function(t,e,r){return t.coerceNumber&&(e=+e),-1!==t.values.indexOf(e)?e:void 0!==r?r:t.dflt},r.getValue=function(t,e){var r;return Array.isArray(t)?e0?e+=r:u<0&&(e-=r)}return e}function z(t){var e=u,r=t.b,i=O(t);return n.inbox(r-e,i-e,_+(i-e)/(i-r)-1)}var D=t[f+"a"],R=t[h+"a"];m=Math.abs(D.r2c(D.range[1])-D.r2c(D.range[0]));var F=n.getDistanceFunction(i,p,d,(function(t){return(p(t)+d(t))/2}));if(n.getClosest(g,F,t),!1!==t.index&&g[t.index].p!==c){k||(L=function(t){return Math.min(A(t),t.p-y.bargroupwidth/2)},C=function(t){return Math.max(M(t),t.p+y.bargroupwidth/2)});var B=g[t.index],N=v.base?B.b+B.s:B.s;t[h+"0"]=t[h+"1"]=R.c2p(B[h],!0),t[h+"LabelVal"]=N;var j=y.extents[y.extents.round(B.p)];t[f+"0"]=D.c2p(x?L(B):j[0],!0),t[f+"1"]=D.c2p(x?C(B):j[1],!0);var U=void 0!==B.orig_p;return t[f+"LabelVal"]=U?B.orig_p:B.p,t.labelLabel=l(D,t[f+"LabelVal"],v[f+"hoverformat"]),t.valueLabel=l(R,t[h+"LabelVal"],v[h+"hoverformat"]),t.baseLabel=l(R,B.b,v[h+"hoverformat"]),t.spikeDistance=(function(t){var e=u,r=t.b,i=O(t);return n.inbox(r-e,i-e,w+(i-e)/(i-r)-1)}(B)+function(t){return P(A(t),M(t),w)}(B))/2,t[f+"Spike"]=D.c2p(B.p,!0),o(B,v,t),t.hovertemplate=v.hovertemplate,t}}function f(t,e){var r=e.mcc||t.marker.color,n=e.mlcc||t.marker.line.color,i=s(t,e);return a.opacity(r)?r:a.opacity(n)&&i?n:void 0}e.exports={hoverPoints:function(t,e,r,n,a){var o=u(t,e,r,n,a);if(o){var s=o.cd,l=s[0].trace,c=s[o.index];return o.color=f(l,c),i.getComponentMethod("errorbars","hoverInfo")(c,l,o),[o]}},hoverOnBars:u,getTraceColor:f}},{"../../components/color":639,"../../components/fx":679,"../../constants/numerical":752,"../../lib":776,"../../plots/cartesian/axes":827,"../../registry":904,"./helpers":920}],922:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc").crossTraceCalc,colorbar:t("../scatter/marker_colorbar"),arraysToCalcdata:t("./arrays_to_calcdata"),plot:t("./plot").plot,style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"bar",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","bar","oriented","errorBarsOK","showLegend","zoomScale"],animatable:!0,meta:{}}},{"../../plots/cartesian":841,"../scatter/marker_colorbar":1209,"./arrays_to_calcdata":913,"./attributes":914,"./calc":915,"./cross_trace_calc":917,"./defaults":918,"./event_data":919,"./hover":921,"./layout_attributes":923,"./layout_defaults":924,"./plot":925,"./select":926,"./style":928}],923:[function(t,e,r){"use strict";e.exports={barmode:{valType:"enumerated",values:["stack","group","overlay","relative"],dflt:"group",editType:"calc"},barnorm:{valType:"enumerated",values:["","fraction","percent"],dflt:"",editType:"calc"},bargap:{valType:"number",min:0,max:1,editType:"calc"},bargroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],924:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../plots/cartesian/axes"),a=t("../../lib"),o=t("./layout_attributes");e.exports=function(t,e,r){function s(r,n){return a.coerce(t,e,o,r,n)}for(var l=!1,c=!1,u=!1,f={},h=s("barmode"),p=0;p0}function S(t){return"auto"===t?0:t}function E(t,e){var r=Math.PI/180*e,n=Math.abs(Math.sin(r)),i=Math.abs(Math.cos(r));return{x:t.width*i+t.height*n,y:t.width*n+t.height*i}}function L(t,e,r,n,i,a){var o=!!a.isHorizontal,s=!!a.constrained,l=a.angle||0,c=a.anchor||"end",u="end"===c,f="start"===c,h=((a.leftToRight||0)+1)/2,p=1-h,d=i.width,m=i.height,g=Math.abs(e-t),v=Math.abs(n-r),y=g>2*_&&v>2*_?_:0;g-=2*y,v-=2*y;var x=S(l);"auto"!==l||d<=g&&m<=v||!(d>g||m>v)||(d>v||m>g)&&d.01?q:function(t,e,r){return r&&t===e?t:Math.abs(t-e)>=2?q(t):t>e?Math.ceil(t):Math.floor(t)};B=G(B,N,D),N=G(N,B,D),j=G(j,U,!D),U=G(U,j,!D)}var Y=A(a.ensureSingle(I,"path"),P,g,v);if(Y.style("vector-effect","non-scaling-stroke").attr("d",isNaN((N-B)*(U-j))||V&&t._context.staticPlot?"M0,0Z":"M"+B+","+j+"V"+U+"H"+N+"V"+j+"Z").call(l.setClipUrl,e.layerClipId,t),!P.uniformtext.mode&&R){var W=l.makePointStyleFns(f);l.singlePointStyle(c,Y,f,W,t)}!function(t,e,r,n,i,s,c,f,p,g,v){var w,T=e.xaxis,M=e.yaxis,C=t._fullLayout;function P(e,r,n){return a.ensureSingle(e,"text").text(r).attr({class:"bartext bartext-"+w,"text-anchor":"middle","data-notex":1}).call(l.font,n).call(o.convertToTspans,t)}var I=n[0].trace,O="h"===I.orientation,z=function(t,e,r,n,i){var o,s=e[0].trace;o=s.texttemplate?function(t,e,r,n,i){var o=e[0].trace,s=a.castOption(o,r,"texttemplate");if(!s)return"";var l,c,f,h,p="waterfall"===o.type,d="funnel"===o.type;"h"===o.orientation?(l="y",c=i,f="x",h=n):(l="x",c=n,f="y",h=i);function m(t){return u(h,h.c2l(t),!0).text}var g=e[r],v={};v.label=g.p,v.labelLabel=v[l+"Label"]=(y=g.p,u(c,c.c2l(y),!0).text);var y;var x=a.castOption(o,g.i,"text");(0===x||x)&&(v.text=x);v.value=g.s,v.valueLabel=v[f+"Label"]=m(g.s);var _={};b(_,o,g.i),p&&(v.delta=+g.rawS||g.s,v.deltaLabel=m(v.delta),v.final=g.v,v.finalLabel=m(v.final),v.initial=v.final-v.delta,v.initialLabel=m(v.initial));d&&(v.value=g.s,v.valueLabel=m(v.value),v.percentInitial=g.begR,v.percentInitialLabel=a.formatPercent(g.begR),v.percentPrevious=g.difR,v.percentPreviousLabel=a.formatPercent(g.difR),v.percentTotal=g.sumR,v.percenTotalLabel=a.formatPercent(g.sumR));var w=a.castOption(o,g.i,"customdata");w&&(v.customdata=w);return a.texttemplateString(s,v,t._d3locale,_,v,o._meta||{})}(t,e,r,n,i):s.textinfo?function(t,e,r,n){var i=t[0].trace,o="h"===i.orientation,s="waterfall"===i.type,l="funnel"===i.type;function c(t){return u(o?r:n,+t,!0).text}var f,h=i.textinfo,p=t[e],d=h.split("+"),m=[],g=function(t){return-1!==d.indexOf(t)};g("label")&&m.push((v=t[e].p,u(o?n:r,v,!0).text));var v;g("text")&&(0===(f=a.castOption(i,p.i,"text"))||f)&&m.push(f);if(s){var y=+p.rawS||p.s,x=p.v,b=x-y;g("initial")&&m.push(c(b)),g("delta")&&m.push(c(y)),g("final")&&m.push(c(x))}if(l){g("value")&&m.push(c(p.s));var _=0;g("percent initial")&&_++,g("percent previous")&&_++,g("percent total")&&_++;var w=_>1;g("percent initial")&&(f=a.formatPercent(p.begR),w&&(f+=" of initial"),m.push(f)),g("percent previous")&&(f=a.formatPercent(p.difR),w&&(f+=" of previous"),m.push(f)),g("percent total")&&(f=a.formatPercent(p.sumR),w&&(f+=" of total"),m.push(f))}return m.join("
")}(e,r,n,i):m.getValue(s.text,r);return m.coerceString(y,o)}(C,n,i,T,M);w=function(t,e){var r=m.getValue(t.textposition,e);return m.coerceEnumerated(x,r)}(I,i);var D="stack"===g.mode||"relative"===g.mode,R=n[i],F=!D||R._outmost;if(!z||"none"===w||(R.isBlank||s===c||f===p)&&("auto"===w||"inside"===w))return void r.select("text").remove();var B=C.font,N=d.getBarColor(n[i],I),j=d.getInsideTextFont(I,i,B,N),U=d.getOutsideTextFont(I,i,B),V=r.datum();O?"log"===T.type&&V.s0<=0&&(s=T.range[0]=G*(Z/Y):Z>=Y*(X/G);G>0&&Y>0&&(J||K||Q)?w="inside":(w="outside",H.remove(),H=null)}else w="inside";if(!H){W=a.ensureUniformFontSize(t,"outside"===w?U:j);var $=(H=P(r,z,W)).attr("transform");if(H.attr("transform",""),q=l.bBox(H.node()),G=q.width,Y=q.height,H.attr("transform",$),G<=0||Y<=0)return void H.remove()}var tt,et,rt=I.textangle;"outside"===w?(et="both"===I.constraintext||"outside"===I.constraintext,tt=function(t,e,r,n,i,a){var o,s=!!a.isHorizontal,l=!!a.constrained,c=a.angle||0,u=i.width,f=i.height,h=Math.abs(e-t),p=Math.abs(n-r);o=s?p>2*_?_:0:h>2*_?_:0;var d=1;l&&(d=s?Math.min(1,p/f):Math.min(1,h/u));var m=S(c),g=E(i,m),v=(s?g.x:g.y)/2,y=(i.left+i.right)/2,x=(i.top+i.bottom)/2,b=(t+e)/2,w=(r+n)/2,T=0,A=0,M=s?k(e,t):k(r,n);s?(b=e-M*o,T=M*v):(w=n+M*o,A=-M*v);return{textX:y,textY:x,targetX:b,targetY:w,anchorX:T,anchorY:A,scale:d,rotate:m}}(s,c,f,p,q,{isHorizontal:O,constrained:et,angle:rt})):(et="both"===I.constraintext||"inside"===I.constraintext,tt=L(s,c,f,p,q,{isHorizontal:O,constrained:et,angle:rt,anchor:I.insidetextanchor}));tt.fontSize=W.size,h(I.type,tt,C),R.transform=tt,A(H,C,g,v).attr("transform",a.getTextTransform(tt))}(t,e,I,r,p,B,N,j,U,g,v),e.layerClipId&&l.hideOutsideRangePoint(c,I.select("text"),w,C,f.xcalendar,f.ycalendar)}));var j=!1===f.cliponaxis;l.setClipUrl(c,j?null:e.layerClipId,t)}));c.getComponentMethod("errorbars","plot")(t,I,e,g)},toMoveInsideBar:L}},{"../../components/color":639,"../../components/drawing":661,"../../components/fx/helpers":675,"../../lib":776,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"../../registry":904,"./attributes":914,"./constants":916,"./helpers":920,"./style":928,"./uniform_text":930,"@plotly/d3":58,"fast-isnumeric":242}],926:[function(t,e,r){"use strict";function n(t,e,r,n,i){var a=e.c2p(n?t.s0:t.p0,!0),o=e.c2p(n?t.s1:t.p1,!0),s=r.c2p(n?t.p0:t.s0,!0),l=r.c2p(n?t.p1:t.s1,!0);return i?[(a+o)/2,(s+l)/2]:n?[o,(s+l)/2]:[(a+o)/2,l]}e.exports=function(t,e){var r,i=t.cd,a=t.xaxis,o=t.yaxis,s=i[0].trace,l="funnel"===s.type,c="h"===s.orientation,u=[];if(!1===e)for(r=0;r1||0===i.bargap&&0===i.bargroupgap&&!t[0].trace.marker.line.width)&&n.select(this).attr("shape-rendering","crispEdges")})),e.selectAll("g.points").each((function(e){d(n.select(this),e[0].trace,t)})),s.getComponentMethod("errorbars","style")(e)},styleTextPoints:m,styleOnSelect:function(t,e,r){var i=e[0].trace;i.selectedpoints?function(t,e,r){a.selectedPointStyle(t.selectAll("path"),e),function(t,e,r){t.each((function(t){var i,s=n.select(this);if(t.selected){i=o.ensureUniformFontSize(r,g(s,t,e,r));var l=e.selected.textfont&&e.selected.textfont.color;l&&(i.color=l),a.font(s,i)}else a.selectedTextStyle(s,e)}))}(t.selectAll("text"),e,r)}(r,i,t):(d(r,i,t),s.getComponentMethod("errorbars","style")(r))},getInsideTextFont:y,getOutsideTextFont:x,getBarColor:_,resizeText:l}},{"../../components/color":639,"../../components/drawing":661,"../../lib":776,"../../registry":904,"./attributes":914,"./helpers":920,"./uniform_text":930,"@plotly/d3":58}],929:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults"),o=t("../../lib").coercePattern;e.exports=function(t,e,r,s,l){var c=r("marker.color",s),u=i(t,"marker");u&&a(t,e,l,r,{prefix:"marker.",cLetter:"c"}),r("marker.line.color",n.defaultLine),i(t,"marker.line")&&a(t,e,l,r,{prefix:"marker.line.",cLetter:"c"}),r("marker.line.width"),r("marker.opacity"),o(r,"marker.pattern",c,u),r("selected.marker.color"),r("unselected.marker.color")}},{"../../components/color":639,"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"../../lib":776}],930:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib");function a(t){return"_"+t+"Text_minsize"}e.exports={recordMinTextSize:function(t,e,r){if(r.uniformtext.mode){var n=a(t),i=r.uniformtext.minsize,o=e.scale*e.fontSize;e.hide=oh.range[1]&&(x+=Math.PI);if(n.getClosest(c,(function(t){return m(y,x,[t.rp0,t.rp1],[t.thetag0,t.thetag1],d)?g+Math.min(1,Math.abs(t.thetag1-t.thetag0)/v)-1+(t.rp1-y)/(t.rp1-t.rp0)-1:1/0}),t),!1!==t.index){var b=c[t.index];t.x0=t.x1=b.ct[0],t.y0=t.y1=b.ct[1];var _=i.extendFlat({},b,{r:b.s,theta:b.p});return o(b,u,t),s(_,u,f,t),t.hovertemplate=u.hovertemplate,t.color=a(u,b),t.xLabelVal=t.yLabelVal=void 0,b.s<0&&(t.idealAlign="left"),[t]}}},{"../../components/fx":679,"../../lib":776,"../../plots/polar/helpers":892,"../bar/hover":921,"../scatterpolar/hover":1269}],935:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"barpolar",basePlotModule:t("../../plots/polar"),categories:["polar","bar","showLegend"],attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("../scatterpolar/format_labels"),style:t("../bar/style").style,styleOnSelect:t("../bar/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../bar/select"),meta:{}}},{"../../plots/polar":893,"../bar/select":926,"../bar/style":928,"../scatter/marker_colorbar":1209,"../scatterpolar/format_labels":1268,"./attributes":931,"./calc":932,"./defaults":933,"./hover":934,"./layout_attributes":936,"./layout_defaults":937,"./plot":938}],936:[function(t,e,r){"use strict";e.exports={barmode:{valType:"enumerated",values:["stack","overlay"],dflt:"stack",editType:"calc"},bargap:{valType:"number",dflt:.1,min:0,max:1,editType:"calc"}}},{}],937:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a,o={};function s(r,o){return n.coerce(t[a]||{},e[a],i,r,o)}for(var l=0;l0?(c=o,u=l):(c=l,u=o);var f=[s.findEnclosingVertexAngles(c,t.vangles)[0],(c+u)/2,s.findEnclosingVertexAngles(u,t.vangles)[1]];return s.pathPolygonAnnulus(n,i,c,u,f,e,r)};return function(t,n,i,o){return a.pathAnnulus(t,n,i,o,e,r)}}(e),p=e.layers.frontplot.select("g.barlayer");a.makeTraceGroups(p,r,"trace bars").each((function(){var r=n.select(this),s=a.ensureSingle(r,"g","points").selectAll("g.point").data(a.identity);s.enter().append("g").style("vector-effect","non-scaling-stroke").style("stroke-miterlimit",2).classed("point",!0),s.exit().remove(),s.each((function(t){var e,r=n.select(this),o=t.rp0=u.c2p(t.s0),s=t.rp1=u.c2p(t.s1),p=t.thetag0=f.c2g(t.p0),d=t.thetag1=f.c2g(t.p1);if(i(o)&&i(s)&&i(p)&&i(d)&&o!==s&&p!==d){var m=u.c2g(t.s1),g=(p+d)/2;t.ct=[l.c2p(m*Math.cos(g)),c.c2p(m*Math.sin(g))],e=h(o,s,p,d)}else e="M0,0Z";a.ensureSingle(r,"path").attr("d",e)})),o.setClipUrl(r,e._hasClipOnAxisFalse?e.clipIds.forTraces:null,t)}))}},{"../../components/drawing":661,"../../lib":776,"../../plots/polar/helpers":892,"@plotly/d3":58,"fast-isnumeric":242}],939:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../bar/attributes"),a=t("../../components/color/attributes"),o=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../lib/extend").extendFlat,c=n.marker,u=c.line;e.exports={y:{valType:"data_array",editType:"calc+clearAxisTypes"},x:{valType:"data_array",editType:"calc+clearAxisTypes"},x0:{valType:"any",editType:"calc+clearAxisTypes"},y0:{valType:"any",editType:"calc+clearAxisTypes"},dx:{valType:"number",editType:"calc"},dy:{valType:"number",editType:"calc"},xperiod:n.xperiod,yperiod:n.yperiod,xperiod0:n.xperiod0,yperiod0:n.yperiod0,xperiodalignment:n.xperiodalignment,yperiodalignment:n.yperiodalignment,xhoverformat:o("x"),yhoverformat:o("y"),name:{valType:"string",editType:"calc+clearAxisTypes"},q1:{valType:"data_array",editType:"calc+clearAxisTypes"},median:{valType:"data_array",editType:"calc+clearAxisTypes"},q3:{valType:"data_array",editType:"calc+clearAxisTypes"},lowerfence:{valType:"data_array",editType:"calc"},upperfence:{valType:"data_array",editType:"calc"},notched:{valType:"boolean",editType:"calc"},notchwidth:{valType:"number",min:0,max:.5,dflt:.25,editType:"calc"},notchspan:{valType:"data_array",editType:"calc"},boxpoints:{valType:"enumerated",values:["all","outliers","suspectedoutliers",!1],editType:"calc"},jitter:{valType:"number",min:0,max:1,editType:"calc"},pointpos:{valType:"number",min:-2,max:2,editType:"calc"},boxmean:{valType:"enumerated",values:[!0,"sd",!1],editType:"calc"},mean:{valType:"data_array",editType:"calc"},sd:{valType:"data_array",editType:"calc"},orientation:{valType:"enumerated",values:["v","h"],editType:"calc+clearAxisTypes"},quartilemethod:{valType:"enumerated",values:["linear","exclusive","inclusive"],dflt:"linear",editType:"calc"},width:{valType:"number",min:0,dflt:0,editType:"calc"},marker:{outliercolor:{valType:"color",dflt:"rgba(0, 0, 0, 0)",editType:"style"},symbol:l({},c.symbol,{arrayOk:!1,editType:"plot"}),opacity:l({},c.opacity,{arrayOk:!1,dflt:1,editType:"style"}),size:l({},c.size,{arrayOk:!1,editType:"calc"}),color:l({},c.color,{arrayOk:!1,editType:"style"}),line:{color:l({},u.color,{arrayOk:!1,dflt:a.defaultLine,editType:"style"}),width:l({},u.width,{arrayOk:!1,dflt:0,editType:"style"}),outliercolor:{valType:"color",editType:"style"},outlierwidth:{valType:"number",min:0,dflt:1,editType:"style"},editType:"style"},editType:"plot"},line:{color:{valType:"color",editType:"style"},width:{valType:"number",min:0,dflt:2,editType:"style"},editType:"plot"},fillcolor:n.fillcolor,whiskerwidth:{valType:"number",min:0,max:1,dflt:.5,editType:"calc"},offsetgroup:i.offsetgroup,alignmentgroup:i.alignmentgroup,selected:{marker:n.selected.marker,editType:"style"},unselected:{marker:n.unselected.marker,editType:"style"},text:l({},n.text,{}),hovertext:l({},n.hovertext,{}),hovertemplate:s({}),hoveron:{valType:"flaglist",flags:["boxes","points"],dflt:"boxes+points",editType:"style"}}},{"../../components/color/attributes":638,"../../lib/extend":766,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../bar/attributes":914,"../scatter/attributes":1191}],940:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../plots/cartesian/axes"),a=t("../../plots/cartesian/align_period"),o=t("../../lib"),s=t("../../constants/numerical").BADNUM,l=o._;e.exports=function(t,e){var r,c,y,x,b,_,w,T=t._fullLayout,k=i.getFromId(t,e.xaxis||"x"),A=i.getFromId(t,e.yaxis||"y"),M=[],S="violin"===e.type?"_numViolins":"_numBoxes";"h"===e.orientation?(y=k,x="x",b=A,_="y",w=!!e.yperiodalignment):(y=A,x="y",b=k,_="x",w=!!e.xperiodalignment);var E,L,C,P,I,O,z=function(t,e,r,i){var s,l=e+"0"in t,c="d"+e in t;if(e in t||l&&c){var u=r.makeCalcdata(t,e);return[a(t,r,e,u).vals,u]}s=l?t[e+"0"]:"name"in t&&("category"===r.type||n(t.name)&&-1!==["linear","log"].indexOf(r.type)||o.isDateTime(t.name)&&"date"===r.type)?t.name:i;for(var f="multicategory"===r.type?r.r2c_just_indices(s):r.d2c(s,0,t[e+"calendar"]),h=t._length,p=new Array(h),d=0;dE.uf};if(e._hasPreCompStats){var U=e[x],V=function(t){return y.d2c((e[t]||[])[r])},H=1/0,q=-1/0;for(r=0;r=E.q1&&E.q3>=E.med){var Y=V("lowerfence");E.lf=Y!==s&&Y<=E.q1?Y:p(E,C,P);var W=V("upperfence");E.uf=W!==s&&W>=E.q3?W:d(E,C,P);var X=V("mean");E.mean=X!==s?X:P?o.mean(C,P):(E.q1+E.q3)/2;var Z=V("sd");E.sd=X!==s&&Z>=0?Z:P?o.stdev(C,P,E.mean):E.q3-E.q1,E.lo=m(E),E.uo=g(E);var J=V("notchspan");J=J!==s&&J>0?J:v(E,P),E.ln=E.med-J,E.un=E.med+J;var K=E.lf,Q=E.uf;e.boxpoints&&C.length&&(K=Math.min(K,C[0]),Q=Math.max(Q,C[P-1])),e.notched&&(K=Math.min(K,E.ln),Q=Math.max(Q,E.un)),E.min=K,E.max=Q}else{var $;o.warn(["Invalid input - make sure that q1 <= median <= q3","q1 = "+E.q1,"median = "+E.med,"q3 = "+E.q3].join("\n")),$=E.med!==s?E.med:E.q1!==s?E.q3!==s?(E.q1+E.q3)/2:E.q1:E.q3!==s?E.q3:0,E.med=$,E.q1=E.q3=$,E.lf=E.uf=$,E.mean=E.sd=$,E.ln=E.un=$,E.min=E.max=$}H=Math.min(H,E.min),q=Math.max(q,E.max),E.pts2=L.filter(j),M.push(E)}}e._extremes[y._id]=i.findExtremes(y,[H,q],{padded:!0})}else{var tt=y.makeCalcdata(e,x),et=function(t,e){for(var r=t.length,n=new Array(r+1),i=0;i=0&&it0){var ut,ft;if((E={}).pos=E[_]=B[r],L=E.pts=nt[r].sort(f),P=(C=E[x]=L.map(h)).length,E.min=C[0],E.max=C[P-1],E.mean=o.mean(C,P),E.sd=o.stdev(C,P,E.mean),E.med=o.interp(C,.5),P%2&&(lt||ct))lt?(ut=C.slice(0,P/2),ft=C.slice(P/2+1)):ct&&(ut=C.slice(0,P/2+1),ft=C.slice(P/2)),E.q1=o.interp(ut,.5),E.q3=o.interp(ft,.5);else E.q1=o.interp(C,.25),E.q3=o.interp(C,.75);E.lf=p(E,C,P),E.uf=d(E,C,P),E.lo=m(E),E.uo=g(E);var ht=v(E,P);E.ln=E.med-ht,E.un=E.med+ht,at=Math.min(at,E.ln),ot=Math.max(ot,E.un),E.pts2=L.filter(j),M.push(E)}e._extremes[y._id]=i.findExtremes(y,e.notched?tt.concat([at,ot]):tt,{padded:!0})}return function(t,e){if(o.isArrayOrTypedArray(e.selectedpoints))for(var r=0;r0?(M[0].t={num:T[S],dPos:N,posLetter:_,valLetter:x,labels:{med:l(t,"median:"),min:l(t,"min:"),q1:l(t,"q1:"),q3:l(t,"q3:"),max:l(t,"max:"),mean:"sd"===e.boxmean?l(t,"mean \xb1 \u03c3:"):l(t,"mean:"),lf:l(t,"lower fence:"),uf:l(t,"upper fence:")}},T[S]++,M):[{t:{empty:!0}}]};var c={text:"tx",hovertext:"htx"};function u(t,e,r){for(var n in c)o.isArrayOrTypedArray(e[n])&&(Array.isArray(r)?o.isArrayOrTypedArray(e[n][r[0]])&&(t[c[n]]=e[n][r[0]][r[1]]):t[c[n]]=e[n][r])}function f(t,e){return t.v-e.v}function h(t){return t.v}function p(t,e,r){return 0===r?t.q1:Math.min(t.q1,e[Math.min(o.findBin(2.5*t.q1-1.5*t.q3,e,!0)+1,r-1)])}function d(t,e,r){return 0===r?t.q3:Math.max(t.q3,e[Math.max(o.findBin(2.5*t.q3-1.5*t.q1,e),0)])}function m(t){return 4*t.q1-3*t.q3}function g(t){return 4*t.q3-3*t.q1}function v(t,e){return 0===e?0:1.57*(t.q3-t.q1)/Math.sqrt(e)}},{"../../constants/numerical":752,"../../lib":776,"../../plots/cartesian/align_period":824,"../../plots/cartesian/axes":827,"fast-isnumeric":242}],941:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib"),a=t("../../plots/cartesian/constraints").getAxisGroup,o=["v","h"];function s(t,e,r,o){var s,l,c,u=e.calcdata,f=e._fullLayout,h=o._id,p=h.charAt(0),d=[],m=0;for(s=0;s1,b=1-f[t+"gap"],_=1-f[t+"groupgap"];for(s=0;s0){var q=E.pointpos,G=E.jitter,Y=E.marker.size/2,W=0;q+G>=0&&((W=V*(q+G))>M?(H=!0,j=Y,B=W):W>R&&(j=Y,B=M)),W<=M&&(B=M);var X=0;q-G<=0&&((X=-V*(q-G))>S?(H=!0,U=Y,N=X):X>F&&(U=Y,N=S)),X<=S&&(N=S)}else B=M,N=S;var Z=new Array(c.length);for(l=0;l0?(g="v",v=x>0?Math.min(_,b):Math.min(b)):x>0?(g="h",v=Math.min(_)):v=0;if(v){e._length=v;var S=r("orientation",g);e._hasPreCompStats?"v"===S&&0===x?(r("x0",0),r("dx",1)):"h"===S&&0===y&&(r("y0",0),r("dy",1)):"v"===S&&0===x?r("x0"):"h"===S&&0===y&&r("y0"),i.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x","y"],a)}else e.visible=!1}function f(t,e,r,i){var a=i.prefix,o=n.coerce2(t,e,c,"marker.outliercolor"),s=r("marker.line.outliercolor"),l="outliers";e._hasPreCompStats?l="all":(o||s)&&(l="suspectedoutliers");var u=r(a+"points",l);u?(r("jitter","all"===u?.3:0),r("pointpos","all"===u?-1.5:0),r("marker.symbol"),r("marker.opacity"),r("marker.size"),r("marker.color",e.line.color),r("marker.line.color"),r("marker.line.width"),"suspectedoutliers"===u&&(r("marker.line.outliercolor",e.marker.color),r("marker.line.outlierwidth")),r("selected.marker.color"),r("unselected.marker.color"),r("selected.marker.size"),r("unselected.marker.size"),r("text"),r("hovertext")):delete e.marker;var f=r("hoveron");"all"!==f&&-1===f.indexOf("points")||r("hovertemplate"),n.coerceSelectionMarkerOpacity(e,r)}e.exports={supplyDefaults:function(t,e,r,i){function s(r,i){return n.coerce(t,e,c,r,i)}if(u(t,e,s,i),!1!==e.visible){o(t,e,i,s),s("xhoverformat"),s("yhoverformat");var l=e._hasPreCompStats;l&&(s("lowerfence"),s("upperfence")),s("line.color",(t.marker||{}).color||r),s("line.width"),s("fillcolor",a.addOpacity(e.line.color,.5));var h=!1;if(l){var p=s("mean"),d=s("sd");p&&p.length&&(h=!0,d&&d.length&&(h="sd"))}s("boxmean",h),s("whiskerwidth"),s("width"),s("quartilemethod");var m=!1;if(l){var g=s("notchspan");g&&g.length&&(m=!0)}else n.validate(t.notchwidth,c.notchwidth)&&(m=!0);s("notched",m)&&s("notchwidth"),f(t,e,s,{prefix:"box"})}},crossTraceDefaults:function(t,e){var r,i;function a(t){return n.coerce(i._input,i,c,t)}for(var o=0;ot.lo&&(x.so=!0)}return a}));h.enter().append("path").classed("point",!0),h.exit().remove(),h.call(a.translatePoints,o,s)}function l(t,e,r,a){var o,s,l=e.val,c=e.pos,u=!!c.rangebreaks,f=a.bPos,h=a.bPosPxOffset||0,p=r.boxmean||(r.meanline||{}).visible;Array.isArray(a.bdPos)?(o=a.bdPos[0],s=a.bdPos[1]):(o=a.bdPos,s=a.bdPos);var d=t.selectAll("path.mean").data("box"===r.type&&r.boxmean||"violin"===r.type&&r.box.visible&&r.meanline.visible?i.identity:[]);d.enter().append("path").attr("class","mean").style({fill:"none","vector-effect":"non-scaling-stroke"}),d.exit().remove(),d.each((function(t){var e=c.c2l(t.pos+f,!0),i=c.l2p(e-o)+h,a=c.l2p(e+s)+h,d=u?(i+a)/2:c.l2p(e)+h,m=l.c2p(t.mean,!0),g=l.c2p(t.mean-t.sd,!0),v=l.c2p(t.mean+t.sd,!0);"h"===r.orientation?n.select(this).attr("d","M"+m+","+i+"V"+a+("sd"===p?"m0,0L"+g+","+d+"L"+m+","+i+"L"+v+","+d+"Z":"")):n.select(this).attr("d","M"+i+","+m+"H"+a+("sd"===p?"m0,0L"+d+","+g+"L"+i+","+m+"L"+d+","+v+"Z":""))}))}e.exports={plot:function(t,e,r,a){var c=e.xaxis,u=e.yaxis;i.makeTraceGroups(a,r,"trace boxes").each((function(t){var e,r,i=n.select(this),a=t[0],f=a.t,h=a.trace;(f.wdPos=f.bdPos*h.whiskerwidth,!0!==h.visible||f.empty)?i.remove():("h"===h.orientation?(e=u,r=c):(e=c,r=u),o(i,{pos:e,val:r},h,f),s(i,{x:c,y:u},h,f),l(i,{pos:e,val:r},h,f))}))},plotBoxAndWhiskers:o,plotPoints:s,plotBoxMean:l}},{"../../components/drawing":661,"../../lib":776,"@plotly/d3":58}],949:[function(t,e,r){"use strict";e.exports=function(t,e){var r,n,i=t.cd,a=t.xaxis,o=t.yaxis,s=[];if(!1===e)for(r=0;r=10)return null;for(var i=1/0,a=-1/0,o=e.length,s=0;s0?Math.floor:Math.ceil,I=L>0?Math.ceil:Math.floor,O=L>0?Math.min:Math.max,z=L>0?Math.max:Math.min,D=P(S+C),R=I(E-C),F=[[f=M(S)]];for(a=D;a*L=0;i--)a[u-i]=t[f][i],o[u-i]=e[f][i];for(s.push({x:a,y:o,bicubic:l}),i=f,a=[],o=[];i>=0;i--)a[f-i]=t[i][0],o[f-i]=e[i][0];return s.push({x:a,y:o,bicubic:c}),s}},{}],963:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib/extend").extendFlat;e.exports=function(t,e,r){var a,o,s,l,c,u,f,h,p,d,m,g,v,y,x=t["_"+e],b=t[e+"axis"],_=b._gridlines=[],w=b._minorgridlines=[],T=b._boundarylines=[],k=t["_"+r],A=t[r+"axis"];"array"===b.tickmode&&(b.tickvals=x.slice());var M=t._xctrl,S=t._yctrl,E=M[0].length,L=M.length,C=t._a.length,P=t._b.length;n.prepTicks(b),"array"===b.tickmode&&delete b.tickvals;var I=b.smoothing?3:1;function O(n){var i,a,o,s,l,c,u,f,p,d,m,g,v=[],y=[],x={};if("b"===e)for(a=t.b2j(n),o=Math.floor(Math.max(0,Math.min(P-2,a))),s=a-o,x.length=P,x.crossLength=C,x.xy=function(e){return t.evalxy([],e,a)},x.dxy=function(e,r){return t.dxydi([],e,o,r,s)},i=0;i0&&(p=t.dxydi([],i-1,o,0,s),v.push(l[0]+p[0]/3),y.push(l[1]+p[1]/3),d=t.dxydi([],i-1,o,1,s),v.push(f[0]-d[0]/3),y.push(f[1]-d[1]/3)),v.push(f[0]),y.push(f[1]),l=f;else for(i=t.a2i(n),c=Math.floor(Math.max(0,Math.min(C-2,i))),u=i-c,x.length=C,x.crossLength=P,x.xy=function(e){return t.evalxy([],i,e)},x.dxy=function(e,r){return t.dxydj([],c,e,u,r)},a=0;a0&&(m=t.dxydj([],c,a-1,u,0),v.push(l[0]+m[0]/3),y.push(l[1]+m[1]/3),g=t.dxydj([],c,a-1,u,1),v.push(f[0]-g[0]/3),y.push(f[1]-g[1]/3)),v.push(f[0]),y.push(f[1]),l=f;return x.axisLetter=e,x.axis=b,x.crossAxis=A,x.value=n,x.constvar=r,x.index=h,x.x=v,x.y=y,x.smoothing=A.smoothing,x}function z(n){var i,a,o,s,l,c=[],u=[],f={};if(f.length=x.length,f.crossLength=k.length,"b"===e)for(o=Math.max(0,Math.min(P-2,n)),l=Math.min(1,Math.max(0,n-o)),f.xy=function(e){return t.evalxy([],e,n)},f.dxy=function(e,r){return t.dxydi([],e,o,r,l)},i=0;ix.length-1||_.push(i(z(o),{color:b.gridcolor,width:b.gridwidth}));for(h=u;hx.length-1||m<0||m>x.length-1))for(g=x[s],v=x[m],a=0;ax[x.length-1]||w.push(i(O(d),{color:b.minorgridcolor,width:b.minorgridwidth}));b.startline&&T.push(i(z(0),{color:b.startlinecolor,width:b.startlinewidth})),b.endline&&T.push(i(z(x.length-1),{color:b.endlinecolor,width:b.endlinewidth}))}else{for(l=5e-15,u=(c=[Math.floor((x[x.length-1]-b.tick0)/b.dtick*(1+l)),Math.ceil((x[0]-b.tick0)/b.dtick/(1+l))].sort((function(t,e){return t-e})))[0],f=c[1],h=u;h<=f;h++)p=b.tick0+b.dtick*h,_.push(i(O(p),{color:b.gridcolor,width:b.gridwidth}));for(h=u-1;hx[x.length-1]||w.push(i(O(d),{color:b.minorgridcolor,width:b.minorgridwidth}));b.startline&&T.push(i(O(x[0]),{color:b.startlinecolor,width:b.startlinewidth})),b.endline&&T.push(i(O(x[x.length-1]),{color:b.endlinecolor,width:b.endlinewidth}))}}},{"../../lib/extend":766,"../../plots/cartesian/axes":827}],964:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../../lib/extend").extendFlat;e.exports=function(t,e){var r,a,o,s=e._labels=[],l=e._gridlines;for(r=0;re.length&&(t=t.slice(0,e.length)):t=[],i=0;i90&&(p-=180,l=-l),{angle:p,flip:l,p:t.c2p(n,e,r),offsetMultplier:c}}},{}],978:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("./map_1d_array"),o=t("./makepath"),s=t("./orient_text"),l=t("../../lib/svg_text_utils"),c=t("../../lib"),u=c.strRotate,f=c.strTranslate,h=t("../../constants/alignment");function p(t,e,r,i,s,l){var c="const-"+s+"-lines",u=r.selectAll("."+c).data(l);u.enter().append("path").classed(c,!0).style("vector-effect","non-scaling-stroke"),u.each((function(r){var i=r,s=i.x,l=i.y,c=a([],s,t.c2p),u=a([],l,e.c2p),f="M"+o(c,u,i.smoothing);n.select(this).attr("d",f).style("stroke-width",i.width).style("stroke",i.color).style("fill","none")})),u.exit().remove()}function d(t,e,r,a,o,c,h,p){var d=c.selectAll("text."+p).data(h);d.enter().append("text").classed(p,!0);var m=0,g={};return d.each((function(o,c){var h;if("auto"===o.axis.tickangle)h=s(a,e,r,o.xy,o.dxy);else{var p=(o.axis.tickangle+180)*Math.PI/180;h=s(a,e,r,o.xy,[Math.cos(p),Math.sin(p)])}c||(g={angle:h.angle,flip:h.flip});var d=(o.endAnchor?-1:1)*h.flip,v=n.select(this).attr({"text-anchor":d>0?"start":"end","data-notex":1}).call(i.font,o.font).text(o.text).call(l.convertToTspans,t),y=i.bBox(this);v.attr("transform",f(h.p[0],h.p[1])+u(h.angle)+f(o.axis.labelpadding*d,.3*y.height)),m=Math.max(m,y.width+o.axis.labelpadding)})),d.exit().remove(),g.maxExtent=m,g}e.exports=function(t,e,r,i){var l=e.xaxis,u=e.yaxis,f=t._fullLayout._clips;c.makeTraceGroups(i,r,"trace").each((function(e){var r=n.select(this),i=e[0],h=i.trace,m=h.aaxis,g=h.baxis,y=c.ensureSingle(r,"g","minorlayer"),x=c.ensureSingle(r,"g","majorlayer"),b=c.ensureSingle(r,"g","boundarylayer"),_=c.ensureSingle(r,"g","labellayer");r.style("opacity",h.opacity),p(l,u,x,m,"a",m._gridlines),p(l,u,x,g,"b",g._gridlines),p(l,u,y,m,"a",m._minorgridlines),p(l,u,y,g,"b",g._minorgridlines),p(l,u,b,m,"a-boundary",m._boundarylines),p(l,u,b,g,"b-boundary",g._boundarylines);var w=d(t,l,u,h,i,_,m._labels,"a-label"),T=d(t,l,u,h,i,_,g._labels,"b-label");!function(t,e,r,n,i,a,o,l){var u,f,h,p,d=c.aggNums(Math.min,null,r.a),m=c.aggNums(Math.max,null,r.a),g=c.aggNums(Math.min,null,r.b),y=c.aggNums(Math.max,null,r.b);u=.5*(d+m),f=g,h=r.ab2xy(u,f,!0),p=r.dxyda_rough(u,f),void 0===o.angle&&c.extendFlat(o,s(r,i,a,h,r.dxydb_rough(u,f)));v(t,e,r,n,h,p,r.aaxis,i,a,o,"a-title"),u=d,f=.5*(g+y),h=r.ab2xy(u,f,!0),p=r.dxydb_rough(u,f),void 0===l.angle&&c.extendFlat(l,s(r,i,a,h,r.dxyda_rough(u,f)));v(t,e,r,n,h,p,r.baxis,i,a,l,"b-title")}(t,_,h,i,l,u,w,T),function(t,e,r,n,i){var s,l,u,f,h=r.select("#"+t._clipPathId);h.size()||(h=r.append("clipPath").classed("carpetclip",!0));var p=c.ensureSingle(h,"path","carpetboundary"),d=e.clipsegments,m=[];for(f=0;f90&&y<270,b=n.select(this);b.text(h.title.text).call(l.convertToTspans,t),x&&(_=(-l.lineCount(b)+g)*m*a-_),b.attr("transform",f(e.p[0],e.p[1])+u(e.angle)+f(0,_)).attr("text-anchor","middle").call(i.font,h.title.font)})),b.exit().remove()}},{"../../components/drawing":661,"../../constants/alignment":744,"../../lib":776,"../../lib/svg_text_utils":802,"./makepath":975,"./map_1d_array":976,"./orient_text":977,"@plotly/d3":58}],979:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../lib/search").findBin,a=t("./compute_control_points"),o=t("./create_spline_evaluator"),s=t("./create_i_derivative_evaluator"),l=t("./create_j_derivative_evaluator");e.exports=function(t){var e=t._a,r=t._b,c=e.length,u=r.length,f=t.aaxis,h=t.baxis,p=e[0],d=e[c-1],m=r[0],g=r[u-1],v=e[e.length-1]-e[0],y=r[r.length-1]-r[0],x=v*n.RELATIVE_CULL_TOLERANCE,b=y*n.RELATIVE_CULL_TOLERANCE;p-=x,d+=x,m-=b,g+=b,t.isVisible=function(t,e){return t>p&&tm&&ed||eg},t.setScale=function(){var e=t._x,r=t._y,n=a(t._xctrl,t._yctrl,e,r,f.smoothing,h.smoothing);t._xctrl=n[0],t._yctrl=n[1],t.evalxy=o([t._xctrl,t._yctrl],c,u,f.smoothing,h.smoothing),t.dxydi=s([t._xctrl,t._yctrl],f.smoothing,h.smoothing),t.dxydj=l([t._xctrl,t._yctrl],f.smoothing,h.smoothing)},t.i2a=function(t){var r=Math.max(0,Math.floor(t[0]),c-2),n=t[0]-r;return(1-n)*e[r]+n*e[r+1]},t.j2b=function(t){var e=Math.max(0,Math.floor(t[1]),c-2),n=t[1]-e;return(1-n)*r[e]+n*r[e+1]},t.ij2ab=function(e){return[t.i2a(e[0]),t.j2b(e[1])]},t.a2i=function(t){var r=Math.max(0,Math.min(i(t,e),c-2)),n=e[r],a=e[r+1];return Math.max(0,Math.min(c-1,r+(t-n)/(a-n)))},t.b2j=function(t){var e=Math.max(0,Math.min(i(t,r),u-2)),n=r[e],a=r[e+1];return Math.max(0,Math.min(u-1,e+(t-n)/(a-n)))},t.ab2ij=function(e){return[t.a2i(e[0]),t.b2j(e[1])]},t.i2c=function(e,r){return t.evalxy([],e,r)},t.ab2xy=function(n,i,a){if(!a&&(ne[c-1]|ir[u-1]))return[!1,!1];var o=t.a2i(n),s=t.b2j(i),l=t.evalxy([],o,s);if(a){var f,h,p,d,m=0,g=0,v=[];ne[c-1]?(f=c-2,h=1,m=(n-e[c-1])/(e[c-1]-e[c-2])):h=o-(f=Math.max(0,Math.min(c-2,Math.floor(o)))),ir[u-1]?(p=u-2,d=1,g=(i-r[u-1])/(r[u-1]-r[u-2])):d=s-(p=Math.max(0,Math.min(u-2,Math.floor(s)))),m&&(t.dxydi(v,f,p,h,d),l[0]+=v[0]*m,l[1]+=v[1]*m),g&&(t.dxydj(v,f,p,h,d),l[0]+=v[0]*g,l[1]+=v[1]*g)}return l},t.c2p=function(t,e,r){return[e.c2p(t[0]),r.c2p(t[1])]},t.p2x=function(t,e,r){return[e.p2c(t[0]),r.p2c(t[1])]},t.dadi=function(t){var r=Math.max(0,Math.min(e.length-2,t));return e[r+1]-e[r]},t.dbdj=function(t){var e=Math.max(0,Math.min(r.length-2,t));return r[e+1]-r[e]},t.dxyda=function(e,r,n,i){var a=t.dxydi(null,e,r,n,i),o=t.dadi(e,n);return[a[0]/o,a[1]/o]},t.dxydb=function(e,r,n,i){var a=t.dxydj(null,e,r,n,i),o=t.dbdj(r,i);return[a[0]/o,a[1]/o]},t.dxyda_rough=function(e,r,n){var i=v*(n||.1),a=t.ab2xy(e+i,r,!0),o=t.ab2xy(e-i,r,!0);return[.5*(a[0]-o[0])/i,.5*(a[1]-o[1])/i]},t.dxydb_rough=function(e,r,n){var i=y*(n||.1),a=t.ab2xy(e,r+i,!0),o=t.ab2xy(e,r-i,!0);return[.5*(a[0]-o[0])/i,.5*(a[1]-o[1])/i]},t.dpdx=function(t){return t._m},t.dpdy=function(t){return t._m}}},{"../../lib/search":796,"./compute_control_points":967,"./constants":968,"./create_i_derivative_evaluator":969,"./create_j_derivative_evaluator":970,"./create_spline_evaluator":971}],980:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e,r){var i,a,o,s=[],l=[],c=t[0].length,u=t.length;function f(e,r){var n,i=0,a=0;return e>0&&void 0!==(n=t[r][e-1])&&(a++,i+=n),e0&&void 0!==(n=t[r-1][e])&&(a++,i+=n),r0&&a0&&i1e-5);return n.log("Smoother converged to",k,"after",A,"iterations"),t}},{"../../lib":776}],981:[function(t,e,r){"use strict";var n=t("../../lib").isArray1D;e.exports=function(t,e,r){var i=r("x"),a=i&&i.length,o=r("y"),s=o&&o.length;if(!a&&!s)return!1;if(e._cheater=!i,a&&!n(i)||s&&!n(o))e._length=null;else{var l=a?i.length:1/0;s&&(l=Math.min(l,o.length)),e.a&&e.a.length&&(l=Math.min(l,e.a.length)),e.b&&e.b.length&&(l=Math.min(l,e.b.length)),e._length=l}return!0}},{"../../lib":776}],982:[function(t,e,r){"use strict";var n=t("../../plots/template_attributes").hovertemplateAttrs,i=t("../scattergeo/attributes"),a=t("../../components/colorscale/attributes"),o=t("../../plots/attributes"),s=t("../../components/color/attributes").defaultLine,l=t("../../lib/extend").extendFlat,c=i.marker.line;e.exports=l({locations:{valType:"data_array",editType:"calc"},locationmode:i.locationmode,z:{valType:"data_array",editType:"calc"},geojson:l({},i.geojson,{}),featureidkey:i.featureidkey,text:l({},i.text,{}),hovertext:l({},i.hovertext,{}),marker:{line:{color:l({},c.color,{dflt:s}),width:l({},c.width,{dflt:1}),editType:"calc"},opacity:{valType:"number",arrayOk:!0,min:0,max:1,dflt:1,editType:"style"},editType:"calc"},selected:{marker:{opacity:i.selected.marker.opacity,editType:"plot"},editType:"plot"},unselected:{marker:{opacity:i.unselected.marker.opacity,editType:"plot"},editType:"plot"},hoverinfo:l({},o.hoverinfo,{editType:"calc",flags:["location","z","text","name"]}),hovertemplate:n(),showlegend:l({},o.showlegend,{dflt:!1})},a("",{cLetter:"z",editTypeOverride:"calc"}))},{"../../components/color/attributes":638,"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/template_attributes":899,"../scattergeo/attributes":1233}],983:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../constants/numerical").BADNUM,a=t("../../components/colorscale/calc"),o=t("../scatter/arrays_to_calcdata"),s=t("../scatter/calc_selection");function l(t){return t&&"string"==typeof t}e.exports=function(t,e){var r,c=e._length,u=new Array(c);r=e.geojson?function(t){return l(t)||n(t)}:l;for(var f=0;f")}(t,f,o),[t]}},{"../../lib":776,"../../plots/cartesian/axes":827,"./attributes":982}],987:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../heatmap/colorbar"),calc:t("./calc"),calcGeoJSON:t("./plot").calcGeoJSON,plot:t("./plot").plot,style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"choropleth",basePlotModule:t("../../plots/geo"),categories:["geo","noOpacity","showLegend"],meta:{}}},{"../../plots/geo":860,"../heatmap/colorbar":1061,"./attributes":982,"./calc":983,"./defaults":984,"./event_data":985,"./hover":986,"./plot":988,"./select":989,"./style":990}],988:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../lib/geo_location_utils"),o=t("../../lib/topojson_utils").getTopojsonFeatures,s=t("../../plots/cartesian/autorange").findExtremes,l=t("./style").style;e.exports={calcGeoJSON:function(t,e){for(var r=t[0].trace,n=e[r.geo],i=n._subplot,l=r.locationmode,c=r._length,u="geojson-id"===l?a.extractTraceFeature(t):o(r,i.topojson),f=[],h=[],p=0;p=0;n--){var i=r[n].id;if("string"==typeof i&&0===i.indexOf("water"))for(var a=n+1;a=0;r--)t.removeLayer(e[r][1])},s.dispose=function(){var t=this.subplot.map;this._removeLayers(),t.removeSource(this.sourceId)},e.exports=function(t,e){var r=e[0].trace,i=new o(t,r.uid),a=i.sourceId,s=n(e),l=i.below=t.belowLookup["trace-"+r.uid];return t.map.addSource(a,{type:"geojson",data:s.geojson}),i._addLayers(s,l),e[0].trace._glTrace=i,i}},{"../../plots/mapbox/constants":882,"./convert":992}],996:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../mesh3d/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c={x:{valType:"data_array",editType:"calc+clearAxisTypes"},y:{valType:"data_array",editType:"calc+clearAxisTypes"},z:{valType:"data_array",editType:"calc+clearAxisTypes"},u:{valType:"data_array",editType:"calc"},v:{valType:"data_array",editType:"calc"},w:{valType:"data_array",editType:"calc"},sizemode:{valType:"enumerated",values:["scaled","absolute"],editType:"calc",dflt:"scaled"},sizeref:{valType:"number",editType:"calc",min:0},anchor:{valType:"enumerated",editType:"calc",values:["tip","tail","cm","center"],dflt:"cm"},text:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertemplate:a({editType:"calc"},{keys:["norm"]}),uhoverformat:i("u",1),vhoverformat:i("v",1),whoverformat:i("w",1),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),showlegend:l({},s.showlegend,{dflt:!1})};l(c,n("",{colorAttr:"u/v/w norm",showScaleDflt:!0,editTypeOverride:"calc"}));["opacity","lightposition","lighting"].forEach((function(t){c[t]=o[t]})),c.hoverinfo=l({},s.hoverinfo,{editType:"calc",flags:["x","y","z","u","v","w","norm","text","name"],dflt:"x+y+z+norm+text+name"}),c.transforms=void 0,e.exports=c},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../mesh3d/attributes":1132}],997:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){for(var r=e.u,i=e.v,a=e.w,o=Math.min(e.x.length,e.y.length,e.z.length,r.length,i.length,a.length),s=-1/0,l=1/0,c=0;co.level||o.starts.length&&a===o.level)}break;case"constraint":if(n.prefixBoundary=!1,n.edgepaths.length)return;var s=n.x.length,l=n.y.length,c=-1/0,u=1/0;for(r=0;r":p>c&&(n.prefixBoundary=!0);break;case"<":(pc||n.starts.length&&h===u)&&(n.prefixBoundary=!0);break;case"][":f=Math.min(p[0],p[1]),h=Math.max(p[0],p[1]),fc&&(n.prefixBoundary=!0)}}}},{}],1004:[function(t,e,r){"use strict";var n=t("../../components/colorscale"),i=t("./make_color_map"),a=t("./end_plus");e.exports={min:"zmin",max:"zmax",calc:function(t,e,r){var o=e.contours,s=e.line,l=o.size||1,c=o.coloring,u=i(e,{isColorbar:!0});if("heatmap"===c){var f=n.extractOpts(e);r._fillgradient=f.reversescale?n.flipScale(f.colorscale):f.colorscale,r._zrange=[f.min,f.max]}else"fill"===c&&(r._fillcolor=u);r._line={color:"lines"===c?u:s.color,width:!1!==o.showlines?s.width:0,dash:s.dash},r._levels={start:o.start,end:a(o),size:l}}}},{"../../components/colorscale":651,"./end_plus":1012,"./make_color_map":1017}],1005:[function(t,e,r){"use strict";e.exports={BOTTOMSTART:[1,9,13,104,713],TOPSTART:[4,6,7,104,713],LEFTSTART:[8,12,14,208,1114],RIGHTSTART:[2,3,11,208,1114],NEWDELTA:[null,[-1,0],[0,-1],[-1,0],[1,0],null,[0,-1],[-1,0],[0,1],[0,1],null,[0,1],[1,0],[1,0],[0,-1]],CHOOSESADDLE:{104:[4,1],208:[2,8],713:[7,13],1114:[11,14]},SADDLEREMAINDER:{1:4,2:8,4:1,7:13,8:2,11:14,13:7,14:11},LABELDISTANCE:2,LABELINCREASE:10,LABELMIN:3,LABELMAX:10,LABELOPTIMIZER:{EDGECOST:1,ANGLECOST:1,NEIGHBORCOST:5,SAMELEVELFACTOR:10,SAMELEVELDISTANCE:5,MAXCOST:100,INITIALSEARCHPOINTS:10,ITERATIONS:5}}},{}],1006:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("./label_defaults"),a=t("../../components/color"),o=a.addOpacity,s=a.opacity,l=t("../../constants/filter_ops"),c=l.CONSTRAINT_REDUCTION,u=l.COMPARISON_OPS2;e.exports=function(t,e,r,a,l,f){var h,p,d,m=e.contours,g=r("contours.operation");(m._operation=c[g],function(t,e){var r;-1===u.indexOf(e.operation)?(t("contours.value",[0,1]),Array.isArray(e.value)?e.value.length>2?e.value=e.value.slice(2):0===e.length?e.value=[0,1]:e.length<2?(r=parseFloat(e.value[0]),e.value=[r,r+1]):e.value=[parseFloat(e.value[0]),parseFloat(e.value[1])]:n(e.value)&&(r=parseFloat(e.value),e.value=[r,r+1])):(t("contours.value",0),n(e.value)||(Array.isArray(e.value)?e.value=parseFloat(e.value[0]):e.value=0))}(r,m),"="===g?h=m.showlines=!0:(h=r("contours.showlines"),d=r("fillcolor",o((t.line||{}).color||l,.5))),h)&&(p=r("line.color",d&&s(d)?o(e.fillcolor,1):l),r("line.width",2),r("line.dash"));r("line.smoothing"),i(r,a,p,f)}},{"../../components/color":639,"../../constants/filter_ops":748,"./label_defaults":1016,"fast-isnumeric":242}],1007:[function(t,e,r){"use strict";var n=t("../../constants/filter_ops"),i=t("fast-isnumeric");function a(t,e){var r,a=Array.isArray(e);function o(t){return i(t)?+t:null}return-1!==n.COMPARISON_OPS2.indexOf(t)?r=o(a?e[0]:e):-1!==n.INTERVAL_OPS.indexOf(t)?r=a?[o(e[0]),o(e[1])]:[o(e),o(e)]:-1!==n.SET_OPS.indexOf(t)&&(r=a?e.map(o):[o(e)]),r}function o(t){return function(e){e=a(t,e);var r=Math.min(e[0],e[1]),n=Math.max(e[0],e[1]);return{start:r,end:n,size:n-r}}}function s(t){return function(e){return{start:e=a(t,e),end:1/0,size:1/0}}}e.exports={"[]":o("[]"),"][":o("]["),">":s(">"),"<":s("<"),"=":s("=")}},{"../../constants/filter_ops":748,"fast-isnumeric":242}],1008:[function(t,e,r){"use strict";e.exports=function(t,e,r,n){var i=n("contours.start"),a=n("contours.end"),o=!1===i||!1===a,s=r("contours.size");!(o?e.autocontour=!0:r("autocontour",!1))&&s||r("ncontours")}},{}],1009:[function(t,e,r){"use strict";var n=t("../../lib");function i(t){return n.extendFlat({},t,{edgepaths:n.extendDeep([],t.edgepaths),paths:n.extendDeep([],t.paths),starts:n.extendDeep([],t.starts)})}e.exports=function(t,e){var r,a,o,s=function(t){return t.reverse()},l=function(t){return t};switch(e){case"=":case"<":return t;case">":for(1!==t.length&&n.warn("Contour data invalid for the specified inequality operation."),a=t[0],r=0;r1e3){n.warn("Too many contours, clipping at 1000",t);break}return l}},{"../../lib":776,"./constraint_mapping":1007,"./end_plus":1012}],1012:[function(t,e,r){"use strict";e.exports=function(t){return t.end+t.size/1e6}},{}],1013:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./constants");function a(t,e,r,n){return Math.abs(t[0]-e[0])20&&e?208===t||1114===t?n=0===r[0]?1:-1:a=0===r[1]?1:-1:-1!==i.BOTTOMSTART.indexOf(t)?a=1:-1!==i.LEFTSTART.indexOf(t)?n=1:-1!==i.TOPSTART.indexOf(t)?a=-1:n=-1;return[n,a]}(f,r,e),p=[s(t,e,[-h[0],-h[1]])],d=t.z.length,m=t.z[0].length,g=e.slice(),v=h.slice();for(c=0;c<1e4;c++){if(f>20?(f=i.CHOOSESADDLE[f][(h[0]||h[1])<0?0:1],t.crossings[u]=i.SADDLEREMAINDER[f]):delete t.crossings[u],!(h=i.NEWDELTA[f])){n.log("Found bad marching index:",f,e,t.level);break}p.push(s(t,e,h)),e[0]+=h[0],e[1]+=h[1],u=e.join(","),a(p[p.length-1],p[p.length-2],o,l)&&p.pop();var y=h[0]&&(e[0]<0||e[0]>m-2)||h[1]&&(e[1]<0||e[1]>d-2);if(e[0]===g[0]&&e[1]===g[1]&&h[0]===v[0]&&h[1]===v[1]||r&&y)break;f=t.crossings[u]}1e4===c&&n.log("Infinite loop in contour?");var x,b,_,w,T,k,A,M,S,E,L,C,P,I,O,z=a(p[0],p[p.length-1],o,l),D=0,R=.2*t.smoothing,F=[],B=0;for(c=1;c=B;c--)if((x=F[c])=B&&x+F[b]M&&S--,t.edgepaths[S]=L.concat(p,E));break}V||(t.edgepaths[M]=p.concat(E))}for(M=0;Mt?0:1)+(e[0][1]>t?0:2)+(e[1][1]>t?0:4)+(e[1][0]>t?0:8);return 5===r||10===r?t>(e[0][0]+e[0][1]+e[1][0]+e[1][1])/4?5===r?713:1114:5===r?104:208:15===r?0:r}e.exports=function(t){var e,r,a,o,s,l,c,u,f,h=t[0].z,p=h.length,d=h[0].length,m=2===p||2===d;for(r=0;r=0&&(n=y,s=l):Math.abs(r[1]-n[1])<.01?Math.abs(r[1]-y[1])<.01&&(y[0]-r[0])*(n[0]-y[0])>=0&&(n=y,s=l):i.log("endpt to newendpt is not vert. or horz.",r,n,y)}if(r=n,s>=0)break;f+="L"+n}if(s===t.edgepaths.length){i.log("unclosed perimeter path");break}h=s,(d=-1===p.indexOf(h))&&(h=p[0],f+="Z")}for(h=0;hn.center?n.right-s:s-n.left)/(u+Math.abs(Math.sin(c)*o)),p=(l>n.middle?n.bottom-l:l-n.top)/(Math.abs(f)+Math.cos(c)*o);if(h<1||p<1)return 1/0;var d=v.EDGECOST*(1/(h-1)+1/(p-1));d+=v.ANGLECOST*c*c;for(var m=s-u,g=l-f,y=s+u,x=l+f,b=0;b2*v.MAXCOST)break;p&&(s/=2),l=(o=c-s/2)+1.5*s}if(h<=v.MAXCOST)return u},r.addLabelData=function(t,e,r,n){var i=e.fontSize,a=e.width+i/3,o=Math.max(0,e.height-i/3),s=t.x,l=t.y,c=t.theta,u=Math.sin(c),f=Math.cos(c),h=function(t,e){return[s+t*f-e*u,l+t*u+e*f]},p=[h(-a/2,-o/2),h(-a/2,o/2),h(a/2,o/2),h(a/2,-o/2)];r.push({text:e.text,x:s,y:l,dy:e.dy,theta:c,level:e.level,width:a,height:o}),n.push(p)},r.drawLabels=function(t,e,r,a,o){var l=t.selectAll("text").data(e,(function(t){return t.text+","+t.x+","+t.y+","+t.theta}));if(l.exit().remove(),l.enter().append("text").attr({"data-notex":1,"text-anchor":"middle"}).each((function(t){var e=t.x+Math.sin(t.theta)*t.dy,i=t.y-Math.cos(t.theta)*t.dy;n.select(this).text(t.text).attr({x:e,y:i,transform:"rotate("+180*t.theta/Math.PI+" "+e+" "+i+")"}).call(s.convertToTspans,r)})),o){for(var c="",u=0;ur.end&&(r.start=r.end=(r.start+r.end)/2),t._input.contours||(t._input.contours={}),i.extendFlat(t._input.contours,{start:r.start,end:r.end,size:r.size}),t._input.autocontour=!0}else if("constraint"!==r.type){var c,u=r.start,f=r.end,h=t._input.contours;if(u>f&&(r.start=h.start=f,f=r.end=h.end=u,u=r.start),!(r.size>0))c=u===f?1:a(u,f,t.ncontours).dtick,h.size=r.size=c}}},{"../../lib":776,"../../plots/cartesian/axes":827}],1021:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("../heatmap/style"),o=t("./make_color_map");e.exports=function(t){var e=n.select(t).selectAll("g.contour");e.style("opacity",(function(t){return t[0].trace.opacity})),e.each((function(t){var e=n.select(this),r=t[0].trace,a=r.contours,s=r.line,l=a.size||1,c=a.start,u="constraint"===a.type,f=!u&&"lines"===a.coloring,h=!u&&"fill"===a.coloring,p=f||h?o(r):null;e.selectAll("g.contourlevel").each((function(t){n.select(this).selectAll("path").call(i.lineGroupStyle,s.width,f?p(t.level):s.color,s.dash)}));var d=a.labelfont;if(e.selectAll("g.contourlabels text").each((function(t){i.font(n.select(this),{family:d.family,size:d.size,color:d.color||(f?p(t.level):s.color)})})),u)e.selectAll("g.contourfill path").style("fill",r.fillcolor);else if(h){var m;e.selectAll("g.contourfill path").style("fill",(function(t){return void 0===m&&(m=t.level),p(t.level+.5*l)})),void 0===m&&(m=c),e.selectAll("g.contourbg path").style("fill",p(m-.5*l))}})),a(t)}},{"../../components/drawing":661,"../heatmap/style":1070,"./make_color_map":1017,"@plotly/d3":58}],1022:[function(t,e,r){"use strict";var n=t("../../components/colorscale/defaults"),i=t("./label_defaults");e.exports=function(t,e,r,a,o){var s,l=r("contours.coloring"),c="";"fill"===l&&(s=r("contours.showlines")),!1!==s&&("lines"!==l&&(c=r("line.color","#000")),r("line.width",.5),r("line.dash")),"none"!==l&&(!0!==t.showlegend&&(e.showlegend=!1),e._dfltShowLegend=!1,n(t,e,a,r,{prefix:"",cLetter:"z"})),r("line.smoothing"),i(r,a,c,o)}},{"../../components/colorscale/defaults":649,"./label_defaults":1016}],1023:[function(t,e,r){"use strict";var n=t("../heatmap/attributes"),i=t("../contour/attributes"),a=t("../../components/colorscale/attributes"),o=t("../../lib/extend").extendFlat,s=i.contours;e.exports=o({carpet:{valType:"string",editType:"calc"},z:n.z,a:n.x,a0:n.x0,da:n.dx,b:n.y,b0:n.y0,db:n.dy,text:n.text,hovertext:n.hovertext,transpose:n.transpose,atype:n.xtype,btype:n.ytype,fillcolor:i.fillcolor,autocontour:i.autocontour,ncontours:i.ncontours,contours:{type:s.type,start:s.start,end:s.end,size:s.size,coloring:{valType:"enumerated",values:["fill","lines","none"],dflt:"fill",editType:"calc"},showlines:s.showlines,showlabels:s.showlabels,labelfont:s.labelfont,labelformat:s.labelformat,operation:s.operation,value:s.value,editType:"calc",impliedEdits:{autocontour:!1}},line:{color:i.line.color,width:i.line.width,dash:i.line.dash,smoothing:i.line.smoothing,editType:"plot"},transforms:void 0},a("",{cLetter:"z",autoColorDflt:!1}))},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../contour/attributes":1001,"../heatmap/attributes":1058}],1024:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc"),i=t("../../lib"),a=t("../heatmap/convert_column_xyz"),o=t("../heatmap/clean_2d_array"),s=t("../heatmap/interp2d"),l=t("../heatmap/find_empties"),c=t("../heatmap/make_bound_array"),u=t("./defaults"),f=t("../carpet/lookup_carpetid"),h=t("../contour/set_contours");e.exports=function(t,e){var r=e._carpetTrace=f(t,e);if(r&&r.visible&&"legendonly"!==r.visible){if(!e.a||!e.b){var p=t.data[r.index],d=t.data[e.index];d.a||(d.a=p.a),d.b||(d.b=p.b),u(d,e,e._defaultColor,t._fullLayout)}var m=function(t,e){var r,u,f,h,p,d,m,g=e._carpetTrace,v=g.aaxis,y=g.baxis;v._minDtick=0,y._minDtick=0,i.isArray1D(e.z)&&a(e,v,y,"a","b",["z"]);r=e._a=e._a||e.a,h=e._b=e._b||e.b,r=r?v.makeCalcdata(e,"_a"):[],h=h?y.makeCalcdata(e,"_b"):[],u=e.a0||0,f=e.da||1,p=e.b0||0,d=e.db||1,m=e._z=o(e._z||e.z,e.transpose),e._emptypoints=l(m),s(m,e._emptypoints);var x=i.maxRowLength(m),b="scaled"===e.xtype?"":r,_=c(e,b,u,f,x,v),w="scaled"===e.ytype?"":h,T=c(e,w,p,d,m.length,y),k={a:_,b:T,z:m};"levels"===e.contours.type&&"none"!==e.contours.coloring&&n(t,e,{vals:m,containerStr:"",cLetter:"z"});return[k]}(t,e);return h(e,e._z),m}}},{"../../components/colorscale/calc":647,"../../lib":776,"../carpet/lookup_carpetid":974,"../contour/set_contours":1020,"../heatmap/clean_2d_array":1060,"../heatmap/convert_column_xyz":1062,"../heatmap/find_empties":1064,"../heatmap/interp2d":1067,"../heatmap/make_bound_array":1068,"./defaults":1025}],1025:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../heatmap/xyz_defaults"),a=t("./attributes"),o=t("../contour/constraint_defaults"),s=t("../contour/contours_defaults"),l=t("../contour/style_defaults");e.exports=function(t,e,r,c){function u(r,i){return n.coerce(t,e,a,r,i)}if(u("carpet"),t.a&&t.b){if(!i(t,e,u,c,"a","b"))return void(e.visible=!1);u("text"),"constraint"===u("contours.type")?o(t,e,u,c,r,{hasHover:!1}):(s(t,e,u,(function(r){return n.coerce2(t,e,a,r)})),l(t,e,u,c,{hasHover:!1}))}else e._defaultColor=r,e._length=null}},{"../../lib":776,"../contour/constraint_defaults":1006,"../contour/contours_defaults":1008,"../contour/style_defaults":1022,"../heatmap/xyz_defaults":1072,"./attributes":1023}],1026:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../contour/colorbar"),calc:t("./calc"),plot:t("./plot"),style:t("../contour/style"),moduleType:"trace",name:"contourcarpet",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","carpet","contour","symbols","showLegend","hasLines","carpetDependent","noHover","noSortingByValue"],meta:{}}},{"../../plots/cartesian":841,"../contour/colorbar":1004,"../contour/style":1021,"./attributes":1023,"./calc":1024,"./defaults":1025,"./plot":1027}],1027:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../carpet/map_1d_array"),a=t("../carpet/makepath"),o=t("../../components/drawing"),s=t("../../lib"),l=t("../contour/make_crossings"),c=t("../contour/find_all_paths"),u=t("../contour/plot"),f=t("../contour/constants"),h=t("../contour/convert_to_constraints"),p=t("../contour/empty_pathinfo"),d=t("../contour/close_boundaries"),m=t("../carpet/lookup_carpetid"),g=t("../carpet/axis_aligned_line");function v(t,e,r){var n=t.getPointAtLength(e),i=t.getPointAtLength(r),a=i.x-n.x,o=i.y-n.y,s=Math.sqrt(a*a+o*o);return[a/s,o/s]}function y(t){var e=Math.sqrt(t[0]*t[0]+t[1]*t[1]);return[t[0]/e,t[1]/e]}function x(t,e){var r=Math.abs(t[0]*e[0]+t[1]*e[1]);return Math.sqrt(1-r*r)/r}e.exports=function(t,e,r,b){var _=e.xaxis,w=e.yaxis;s.makeTraceGroups(b,r,"contour").each((function(r){var b=n.select(this),T=r[0],k=T.trace,A=k._carpetTrace=m(t,k),M=t.calcdata[A.index][0];if(A.visible&&"legendonly"!==A.visible){var S=T.a,E=T.b,L=k.contours,C=p(L,e,T),P="constraint"===L.type,I=L._operation,O=P?"="===I?"lines":"fill":L.coloring,z=[[S[0],E[E.length-1]],[S[S.length-1],E[E.length-1]],[S[S.length-1],E[0]],[S[0],E[0]]];l(C);var D=1e-8*(S[S.length-1]-S[0]),R=1e-8*(E[E.length-1]-E[0]);c(C,D,R);var F,B,N,j,U=C;"constraint"===L.type&&(U=h(C,I)),function(t,e){var r,n,i,a,o,s,l,c,u;for(r=0;r=0;j--)F=M.clipsegments[j],B=i([],F.x,_.c2p),N=i([],F.y,w.c2p),B.reverse(),N.reverse(),V.push(a(B,N,F.bicubic));var H="M"+V.join("L")+"Z";!function(t,e,r,n,o,l){var c,u,f,h,p=s.ensureSingle(t,"g","contourbg").selectAll("path").data("fill"!==l||o?[]:[0]);p.enter().append("path"),p.exit().remove();var d=[];for(h=0;h=0&&(h=L,d=m):Math.abs(f[1]-h[1])=0&&(h=L,d=m):s.log("endpt to newendpt is not vert. or horz.",f,h,L)}if(d>=0)break;y+=S(f,h),f=h}if(d===e.edgepaths.length){s.log("unclosed perimeter path");break}u=d,(b=-1===x.indexOf(u))&&(u=x[0],y+=S(f,h)+"Z",f=null)}for(u=0;ug&&(n.max=g);n.len=n.max-n.min}(this,r,t,n,c,e.height),!(n.len<(e.width+e.height)*f.LABELMIN)))for(var i=Math.min(Math.ceil(n.len/I),f.LABELMAX),a=0;a0?+p[u]:0),f.push({type:"Feature",geometry:{type:"Point",coordinates:v},properties:y})}}var b=o.extractOpts(e),_=b.reversescale?o.flipScale(b.colorscale):b.colorscale,w=_[0][1],T=["interpolate",["linear"],["heatmap-density"],0,a.opacity(w)<1?w:a.addOpacity(w,0)];for(u=1;u<_.length;u++)T.push(_[u][0],_[u][1]);var k=["interpolate",["linear"],["get","z"],b.min,0,b.max,1];return i.extendFlat(c.heatmap.paint,{"heatmap-weight":d?k:1/(b.max-b.min),"heatmap-color":T,"heatmap-radius":m?{type:"identity",property:"r"}:e.radius,"heatmap-opacity":e.opacity}),c.geojson={type:"FeatureCollection",features:f},c.heatmap.layout.visibility="visible",c}},{"../../components/color":639,"../../components/colorscale":651,"../../constants/numerical":752,"../../lib":776,"../../lib/geojson_utils":770,"fast-isnumeric":242}],1031:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../components/colorscale/defaults"),a=t("./attributes");e.exports=function(t,e,r,o){function s(r,i){return n.coerce(t,e,a,r,i)}var l=s("lon")||[],c=s("lat")||[],u=Math.min(l.length,c.length);u?(e._length=u,s("z"),s("radius"),s("below"),s("text"),s("hovertext"),s("hovertemplate"),i(t,e,o,s,{prefix:"",cLetter:"z"})):e.visible=!1}},{"../../components/colorscale/defaults":649,"../../lib":776,"./attributes":1028}],1032:[function(t,e,r){"use strict";e.exports=function(t,e){return t.lon=e.lon,t.lat=e.lat,t.z=e.z,t}},{}],1033:[function(t,e,r){"use strict";var n=t("../../plots/cartesian/axes"),i=t("../scattermapbox/hover").hoverPoints,a=t("../scattermapbox/hover").getExtraText;e.exports=function(t,e,r){var o=i(t,e,r);if(o){var s=o[0],l=s.cd,c=l[0].trace,u=l[s.index];if(delete s.color,"z"in u){var f=s.subplot.mockAxis;s.z=u.z,s.zLabel=n.tickText(f,f.c2l(u.z),"hover").text}return s.extraText=a(c,u,l[0].t.labels),[s]}}},{"../../plots/cartesian/axes":827,"../scattermapbox/hover":1261}],1034:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../heatmap/colorbar"),formatLabels:t("../scattermapbox/format_labels"),calc:t("./calc"),plot:t("./plot"),hoverPoints:t("./hover"),eventData:t("./event_data"),getBelow:function(t,e){for(var r=e.getMapLayers(),n=0;n=0;r--)t.removeLayer(e[r][1])},o.dispose=function(){var t=this.subplot.map;this._removeLayers(),t.removeSource(this.sourceId)},e.exports=function(t,e){var r=e[0].trace,i=new a(t,r.uid),o=i.sourceId,s=n(e),l=i.below=t.belowLookup["trace-"+r.uid];return t.map.addSource(o,{type:"geojson",data:s.geojson}),i._addLayers(s,l),i}},{"../../plots/mapbox/constants":882,"./convert":1030}],1036:[function(t,e,r){"use strict";var n=t("../../lib");e.exports=function(t,e){for(var r=0;r"),l.color=function(t,e){var r=t.marker,i=e.mc||r.color,a=e.mlc||r.line.color,o=e.mlw||r.line.width;if(n(i))return i;if(n(a)&&o)return a}(u,h),[l]}}},{"../../components/color":639,"../../lib":776,"../bar/hover":921}],1044:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style").style,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("../bar/select"),moduleType:"trace",name:"funnel",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","oriented","showLegend","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"../bar/select":926,"./attributes":1037,"./calc":1038,"./cross_trace_calc":1040,"./defaults":1041,"./event_data":1042,"./hover":1043,"./layout_attributes":1045,"./layout_defaults":1046,"./plot":1047,"./style":1048}],1045:[function(t,e,r){"use strict";e.exports={funnelmode:{valType:"enumerated",values:["stack","group","overlay"],dflt:"stack",editType:"calc"},funnelgap:{valType:"number",min:0,max:1,editType:"calc"},funnelgroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],1046:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a=!1;function o(r,a){return n.coerce(t,e,i,r,a)}for(var s=0;s path").each((function(t){if(!t.isBlank){var e=s.marker;n.select(this).call(a.fill,t.mc||e.color).call(a.stroke,t.mlc||e.line.color).call(i.dashLine,e.line.dash,t.mlw||e.line.width).style("opacity",s.selectedpoints&&!t.selected?o:1)}})),c(r,s,t),r.selectAll(".regions").each((function(){n.select(this).selectAll("path").style("stroke-width",0).call(a.fill,s.connector.fillcolor)})),r.selectAll(".lines").each((function(){var t=s.connector.line;i.lineGroupStyle(n.select(this).selectAll("path"),t.width,t.color,t.dash)}))}))}}},{"../../components/color":639,"../../components/drawing":661,"../../constants/interactions":751,"../bar/style":928,"../bar/uniform_text":930,"@plotly/d3":58}],1049:[function(t,e,r){"use strict";var n=t("../pie/attributes"),i=t("../../plots/attributes"),a=t("../../plots/domain").attributes,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../plots/template_attributes").texttemplateAttrs,l=t("../../lib/extend").extendFlat;e.exports={labels:n.labels,label0:n.label0,dlabel:n.dlabel,values:n.values,marker:{colors:n.marker.colors,line:{color:l({},n.marker.line.color,{dflt:null}),width:l({},n.marker.line.width,{dflt:1}),editType:"calc"},editType:"calc"},text:n.text,hovertext:n.hovertext,scalegroup:l({},n.scalegroup,{}),textinfo:l({},n.textinfo,{flags:["label","text","value","percent"]}),texttemplate:s({editType:"plot"},{keys:["label","color","value","text","percent"]}),hoverinfo:l({},i.hoverinfo,{flags:["label","text","value","percent","name"]}),hovertemplate:o({},{keys:["label","color","value","text","percent"]}),textposition:l({},n.textposition,{values:["inside","none"],dflt:"inside"}),textfont:n.textfont,insidetextfont:n.insidetextfont,title:{text:n.title.text,font:n.title.font,position:l({},n.title.position,{values:["top left","top center","top right"],dflt:"top center"}),editType:"plot"},domain:a({name:"funnelarea",trace:!0,editType:"calc"}),aspectratio:{valType:"number",min:0,dflt:1,editType:"plot"},baseratio:{valType:"number",min:0,max:1,dflt:.333,editType:"plot"}}},{"../../lib/extend":766,"../../plots/attributes":823,"../../plots/domain":855,"../../plots/template_attributes":899,"../pie/attributes":1165}],1050:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="funnelarea",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":890}],1051:[function(t,e,r){"use strict";var n=t("../pie/calc");e.exports={calc:function(t,e){return n.calc(t,e)},crossTraceCalc:function(t){n.crossTraceCalc(t,{type:"funnelarea"})}}},{"../pie/calc":1167}],1052:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../plots/domain").defaults,o=t("../bar/defaults").handleText,s=t("../pie/defaults").handleLabelsAndValues;e.exports=function(t,e,r,l){function c(r,a){return n.coerce(t,e,i,r,a)}var u=c("labels"),f=c("values"),h=s(u,f),p=h.len;if(e._hasLabels=h.hasLabels,e._hasValues=h.hasValues,!e._hasLabels&&e._hasValues&&(c("label0"),c("dlabel")),p){e._length=p,c("marker.line.width")&&c("marker.line.color",l.paper_bgcolor),c("marker.colors"),c("scalegroup");var d,m=c("text"),g=c("texttemplate");if(g||(d=c("textinfo",Array.isArray(m)?"text+percent":"percent")),c("hovertext"),c("hovertemplate"),g||d&&"none"!==d){var v=c("textposition");o(t,e,l,c,v,{moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1})}a(e,l,c),c("title.text")&&(c("title.position"),n.coerceFont(c,"title.font",l.font)),c("aspectratio"),c("baseratio")}else e.visible=!1}},{"../../lib":776,"../../plots/domain":855,"../bar/defaults":918,"../pie/defaults":1168,"./attributes":1049}],1053:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"funnelarea",basePlotModule:t("./base_plot"),categories:["pie-like","funnelarea","showLegend"],attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),style:t("./style"),styleOne:t("../pie/style_one"),meta:{}}},{"../pie/style_one":1176,"./attributes":1049,"./base_plot":1050,"./calc":1051,"./defaults":1052,"./layout_attributes":1054,"./layout_defaults":1055,"./plot":1056,"./style":1057}],1054:[function(t,e,r){"use strict";var n=t("../pie/layout_attributes").hiddenlabels;e.exports={hiddenlabels:n,funnelareacolorway:{valType:"colorlist",editType:"calc"},extendfunnelareacolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{"../pie/layout_attributes":1172}],1055:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("hiddenlabels"),r("funnelareacolorway",e.colorway),r("extendfunnelareacolors")}},{"../../lib":776,"./layout_attributes":1054}],1056:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/drawing"),a=t("../../lib"),o=a.strScale,s=a.strTranslate,l=t("../../lib/svg_text_utils"),c=t("../bar/plot").toMoveInsideBar,u=t("../bar/uniform_text"),f=u.recordMinTextSize,h=u.clearMinTextSize,p=t("../pie/helpers"),d=t("../pie/plot"),m=d.attachFxHandlers,g=d.determineInsideTextFont,v=d.layoutAreas,y=d.prerenderTitles,x=d.positionTitleOutside,b=d.formatSliceLabel;function _(t,e){return"l"+(e[0]-t[0])+","+(e[1]-t[1])}e.exports=function(t,e){var r=t._fullLayout;h("funnelarea",r),y(e,t),v(e,r._size),a.makeTraceGroups(r._funnelarealayer,e,"trace").each((function(e){var u=n.select(this),h=e[0],d=h.trace;!function(t){if(!t.length)return;var e=t[0],r=e.trace,n=r.aspectratio,i=r.baseratio;i>.999&&(i=.999);var a,o=Math.pow(i,2),s=e.vTotal,l=s,c=s*o/(1-o)/s;function u(){var t,e={x:t=Math.sqrt(c),y:-t};return[e.x,e.y]}var f,h,p=[];for(p.push(u()),f=t.length-1;f>-1;f--)if(!(h=t[f]).hidden){var d=h.v/l;c+=d,p.push(u())}var m=1/0,g=-1/0;for(f=0;f-1;f--)if(!(h=t[f]).hidden){var A=p[k+=1][0],M=p[k][1];h.TL=[-A,M],h.TR=[A,M],h.BL=w,h.BR=T,h.pxmid=(S=h.TR,E=h.BR,[.5*(S[0]+E[0]),.5*(S[1]+E[1])]),w=h.TL,T=h.TR}var S,E}(e),u.each((function(){var u=n.select(this).selectAll("g.slice").data(e);u.enter().append("g").classed("slice",!0),u.exit().remove(),u.each((function(o,s){if(o.hidden)n.select(this).selectAll("path,g").remove();else{o.pointNumber=o.i,o.curveNumber=d.index;var u=h.cx,v=h.cy,y=n.select(this),x=y.selectAll("path.surface").data([o]);x.enter().append("path").classed("surface",!0).style({"pointer-events":"all"}),y.call(m,t,e);var w="M"+(u+o.TR[0])+","+(v+o.TR[1])+_(o.TR,o.BR)+_(o.BR,o.BL)+_(o.BL,o.TL)+"Z";x.attr("d",w),b(t,o,h);var T=p.castOption(d.textposition,o.pts),k=y.selectAll("g.slicetext").data(o.text&&"none"!==T?[0]:[]);k.enter().append("g").classed("slicetext",!0),k.exit().remove(),k.each((function(){var h=a.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),p=a.ensureUniformFontSize(t,g(d,o,r.font));h.text(o.text).attr({class:"slicetext",transform:"","text-anchor":"middle"}).call(i.font,p).call(l.convertToTspans,t);var m,y,x,b=i.bBox(h.node()),_=Math.min(o.BL[1],o.BR[1])+v,w=Math.max(o.TL[1],o.TR[1])+v;y=Math.max(o.TL[0],o.BL[0])+u,x=Math.min(o.TR[0],o.BR[0])+u,(m=c(y,x,_,w,b,{isHorizontal:!0,constrained:!0,angle:0,anchor:"middle"})).fontSize=p.size,f(d.type,m,r),e[s].transform=m,h.attr("transform",a.getTextTransform(m))}))}}));var v=n.select(this).selectAll("g.titletext").data(d.title.text?[0]:[]);v.enter().append("g").classed("titletext",!0),v.exit().remove(),v.each((function(){var e=a.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),c=d.title.text;d._meta&&(c=a.templateString(c,d._meta)),e.text(c).attr({class:"titletext",transform:"","text-anchor":"middle"}).call(i.font,d.title.font).call(l.convertToTspans,t);var u=x(h,r._size);e.attr("transform",s(u.x,u.y)+o(Math.min(1,u.scale))+s(u.tx,u.ty))}))}))}))}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../bar/plot":925,"../bar/uniform_text":930,"../pie/helpers":1170,"../pie/plot":1174,"@plotly/d3":58}],1057:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../pie/style_one"),a=t("../bar/uniform_text").resizeText;e.exports=function(t){var e=t._fullLayout._funnelarealayer.selectAll(".trace");a(t,e,"funnelarea"),e.each((function(t){var e=t[0].trace,r=n.select(this);r.style({opacity:e.opacity}),r.selectAll("path.surface").each((function(t){n.select(this).call(i,t,e)}))}))}},{"../bar/uniform_text":930,"../pie/style_one":1176,"@plotly/d3":58}],1058:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../plots/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../components/colorscale/attributes"),l=t("../../lib/extend").extendFlat;e.exports=l({z:{valType:"data_array",editType:"calc"},x:l({},n.x,{impliedEdits:{xtype:"array"}}),x0:l({},n.x0,{impliedEdits:{xtype:"scaled"}}),dx:l({},n.dx,{impliedEdits:{xtype:"scaled"}}),y:l({},n.y,{impliedEdits:{ytype:"array"}}),y0:l({},n.y0,{impliedEdits:{ytype:"scaled"}}),dy:l({},n.dy,{impliedEdits:{ytype:"scaled"}}),xperiod:l({},n.xperiod,{impliedEdits:{xtype:"scaled"}}),yperiod:l({},n.yperiod,{impliedEdits:{ytype:"scaled"}}),xperiod0:l({},n.xperiod0,{impliedEdits:{xtype:"scaled"}}),yperiod0:l({},n.yperiod0,{impliedEdits:{ytype:"scaled"}}),xperiodalignment:l({},n.xperiodalignment,{impliedEdits:{xtype:"scaled"}}),yperiodalignment:l({},n.yperiodalignment,{impliedEdits:{ytype:"scaled"}}),text:{valType:"data_array",editType:"calc"},hovertext:{valType:"data_array",editType:"calc"},transpose:{valType:"boolean",dflt:!1,editType:"calc"},xtype:{valType:"enumerated",values:["array","scaled"],editType:"calc+clearAxisTypes"},ytype:{valType:"enumerated",values:["array","scaled"],editType:"calc+clearAxisTypes"},zsmooth:{valType:"enumerated",values:["fast","best",!1],dflt:!1,editType:"calc"},hoverongaps:{valType:"boolean",dflt:!0,editType:"none"},connectgaps:{valType:"boolean",editType:"calc"},xgap:{valType:"number",dflt:0,min:0,editType:"plot"},ygap:{valType:"number",dflt:0,min:0,editType:"plot"},xhoverformat:a("x"),yhoverformat:a("y"),zhoverformat:a("z",1),hovertemplate:o(),showlegend:l({},i.showlegend,{dflt:!1})},{transforms:void 0},s("",{cLetter:"z",autoColorDflt:!1}))},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../scatter/attributes":1191}],1059:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib"),a=t("../../plots/cartesian/axes"),o=t("../../plots/cartesian/align_period"),s=t("../histogram2d/calc"),l=t("../../components/colorscale/calc"),c=t("./convert_column_xyz"),u=t("./clean_2d_array"),f=t("./interp2d"),h=t("./find_empties"),p=t("./make_bound_array"),d=t("../../constants/numerical").BADNUM;function m(t){for(var e=[],r=t.length,n=0;nD){O("x scale is not linear");break}}if(x.length&&"fast"===P){var R=(x[x.length-1]-x[0])/(x.length-1),F=Math.abs(R/100);for(k=0;kF){O("y scale is not linear");break}}}var B=i.maxRowLength(T),N="scaled"===e.xtype?"":r,j=p(e,N,g,v,B,M),U="scaled"===e.ytype?"":x,V=p(e,U,b,_,T.length,S);C||(e._extremes[M._id]=a.findExtremes(M,j),e._extremes[S._id]=a.findExtremes(S,V));var H={x:j,y:V,z:T,text:e._text||e.text,hovertext:e._hovertext||e.hovertext};if(e.xperiodalignment&&y&&(H.orig_x=y),e.yperiodalignment&&w&&(H.orig_y=w),N&&N.length===j.length-1&&(H.xCenter=N),U&&U.length===V.length-1&&(H.yCenter=U),L&&(H.xRanges=A.xRanges,H.yRanges=A.yRanges,H.pts=A.pts),E||l(t,e,{vals:T,cLetter:"z"}),E&&e.contours&&"heatmap"===e.contours.coloring){var q={type:"contour"===e.type?"heatmap":"histogram2d",xcalendar:e.xcalendar,ycalendar:e.ycalendar};H.xfill=p(q,N,g,v,B,M),H.yfill=p(q,U,b,_,T.length,S)}return[H]}},{"../../components/colorscale/calc":647,"../../constants/numerical":752,"../../lib":776,"../../plots/cartesian/align_period":824,"../../plots/cartesian/axes":827,"../../registry":904,"../histogram2d/calc":1091,"./clean_2d_array":1060,"./convert_column_xyz":1062,"./find_empties":1064,"./interp2d":1067,"./make_bound_array":1068}],1060:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../../lib"),a=t("../../constants/numerical").BADNUM;e.exports=function(t,e,r,o){var s,l,c,u,f,h;function p(t){if(n(t))return+t}if(e&&e.transpose){for(s=0,f=0;f=0;o--)(s=((f[[(r=(a=h[o])[0])-1,i=a[1]]]||m)[2]+(f[[r+1,i]]||m)[2]+(f[[r,i-1]]||m)[2]+(f[[r,i+1]]||m)[2])/20)&&(l[a]=[r,i,s],h.splice(o,1),c=!0);if(!c)throw"findEmpties iterated with no new neighbors";for(a in l)f[a]=l[a],u.push(l[a])}return u.sort((function(t,e){return e[2]-t[2]}))}},{"../../lib":776}],1065:[function(t,e,r){"use strict";var n=t("../../components/fx"),i=t("../../lib"),a=t("../../plots/cartesian/axes"),o=t("../../components/colorscale").extractOpts;e.exports=function(t,e,r,s,l){l||(l={});var c,u,f,h,p=l.isContour,d=t.cd[0],m=d.trace,g=t.xa,v=t.ya,y=d.x,x=d.y,b=d.z,_=d.xCenter,w=d.yCenter,T=d.zmask,k=m.zhoverformat,A=y,M=x;if(!1!==t.index){try{f=Math.round(t.index[1]),h=Math.round(t.index[0])}catch(e){return void i.error("Error hovering on heatmap, pointNumber must be [row,col], found:",t.index)}if(f<0||f>=b[0].length||h<0||h>b.length)return}else{if(n.inbox(e-y[0],e-y[y.length-1],0)>0||n.inbox(r-x[0],r-x[x.length-1],0)>0)return;if(p){var S;for(A=[2*y[0]-y[1]],S=1;Sm&&(v=Math.max(v,Math.abs(t[a][o]-d)/(g-m))))}return v}e.exports=function(t,e){var r,i=1;for(o(t,e),r=0;r.01;r++)i=o(t,e,a(i));return i>.01&&n.log("interp2d didn't converge quickly",i),t}},{"../../lib":776}],1068:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib").isArrayOrTypedArray;e.exports=function(t,e,r,a,o,s){var l,c,u,f=[],h=n.traceIs(t,"contour"),p=n.traceIs(t,"histogram"),d=n.traceIs(t,"gl2d");if(i(e)&&e.length>1&&!p&&"category"!==s.type){var m=e.length;if(!(m<=o))return h?e.slice(0,o):e.slice(0,o+1);if(h||d)f=e.slice(0,o);else if(1===o)f=[e[0]-.5,e[0]+.5];else{for(f=[1.5*e[0]-.5*e[1]],u=1;u0;)h=p.c2p(T[y]),y--;for(h0;)v=d.c2p(k[y]),y--;if(v0&&(a=!0);for(var l=0;la){var o=a-r[t];return r[t]=a,o}}return 0},max:function(t,e,r,i){var a=i[e];if(n(a)){if(a=Number(a),!n(r[t]))return r[t]=a,a;if(r[t]c?t>o?t>1.1*i?i:t>1.1*a?a:o:t>s?s:t>l?l:c:Math.pow(10,Math.floor(Math.log(t)/Math.LN10))}function p(t,e,r,n,a,s){if(n&&t>o){var l=d(e,a,s),c=d(r,a,s),u=t===i?0:1;return l[u]!==c[u]}return Math.floor(r/t)-Math.floor(e/t)>.1}function d(t,e,r){var n=e.c2d(t,i,r).split("-");return""===n[0]&&(n.unshift(),n[0]="-"+n[0]),n}e.exports=function(t,e,r,n,a){var s,l,c=-1.1*e,h=-.1*e,p=t-h,d=r[0],m=r[1],g=Math.min(f(d+h,d+p,n,a),f(m+h,m+p,n,a)),v=Math.min(f(d+c,d+h,n,a),f(m+c,m+h,n,a));if(g>v&&vo){var y=s===i?1:6,x=s===i?"M12":"M1";return function(e,r){var o=n.c2d(e,i,a),s=o.indexOf("-",y);s>0&&(o=o.substr(0,s));var c=n.d2c(o,0,a);if(cr.r2l(B)&&(j=o.tickIncrement(j,b.size,!0,p)),z.start=r.l2r(j),F||i.nestedProperty(e,v+".start").set(z.start)}var U=b.end,V=r.r2l(O.end),H=void 0!==V;if((b.endFound||H)&&V!==r.r2l(U)){var q=H?V:i.aggNums(Math.max,null,d);z.end=r.l2r(q),H||i.nestedProperty(e,v+".start").set(z.end)}var G="autobin"+s;return!1===e._input[G]&&(e._input[v]=i.extendFlat({},e[v]||{}),delete e._input[G],delete e[G]),[z,d]}e.exports={calc:function(t,e){var r,a,p,d,m=[],g=[],v=o.getFromId(t,"h"===e.orientation?e.yaxis:e.xaxis),y="h"===e.orientation?"y":"x",x={x:"y",y:"x"}[y],b=e[y+"calendar"],_=e.cumulative,w=h(t,e,v,y),T=w[0],k=w[1],A="string"==typeof T.size,M=[],S=A?M:T,E=[],L=[],C=[],P=0,I=e.histnorm,O=e.histfunc,z=-1!==I.indexOf("density");_.enabled&&z&&(I=I.replace(/ ?density$/,""),z=!1);var D,R="max"===O||"min"===O?null:0,F=l.count,B=c[I],N=!1,j=function(t){return v.r2c(t,0,b)};for(i.isArrayOrTypedArray(e[x])&&"count"!==O&&(D=e[x],N="avg"===O,F=l[O]),r=j(T.start),p=j(T.end)+(r-o.tickIncrement(r,T.size,!1,b))/1e6;r=0&&d=0;n--)s(n);else if("increasing"===e){for(n=1;n=0;n--)t[n]+=t[n+1];"exclude"===r&&(t.push(0),t.shift())}}(g,_.direction,_.currentbin);var J=Math.min(m.length,g.length),K=[],Q=0,$=J-1;for(r=0;r=Q;r--)if(g[r]){$=r;break}for(r=Q;r<=$;r++)if(n(m[r])&&n(g[r])){var tt={p:m[r],s:g[r],b:0};_.enabled||(tt.pts=C[r],G?tt.ph0=tt.ph1=C[r].length?k[C[r][0]]:m[r]:(e._computePh=!0,tt.ph0=H(M[r]),tt.ph1=H(M[r+1],!0))),K.push(tt)}return 1===K.length&&(K[0].width1=o.tickIncrement(K[0].p,T.size,!1,b)-K[0].p),s(K,e),i.isArrayOrTypedArray(e.selectedpoints)&&i.tagSelected(K,e,X),K},calcAllAutoBins:h}},{"../../lib":776,"../../plots/cartesian/axes":827,"../../registry":904,"../bar/arrays_to_calcdata":913,"./average":1078,"./bin_functions":1080,"./bin_label_vals":1081,"./norm_functions":1089,"fast-isnumeric":242}],1083:[function(t,e,r){"use strict";e.exports={eventDataKeys:["binNumber"]}},{}],1084:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../plots/cartesian/axis_ids"),a=t("../../registry").traceIs,o=t("../bar/defaults").handleGroupingDefaults,s=n.nestedProperty,l=t("../../plots/cartesian/constraints").getAxisGroup,c=[{aStr:{x:"xbins.start",y:"ybins.start"},name:"start"},{aStr:{x:"xbins.end",y:"ybins.end"},name:"end"},{aStr:{x:"xbins.size",y:"ybins.size"},name:"size"},{aStr:{x:"nbinsx",y:"nbinsy"},name:"nbins"}],u=["x","y"];e.exports=function(t,e){var r,f,h,p,d,m,g,v=e._histogramBinOpts={},y=[],x={},b=[];function _(t,e){return n.coerce(r._input,r,r._module.attributes,t,e)}function w(t){return"v"===t.orientation?"x":"y"}function T(t,r,a){var o=t.uid+"__"+a;r||(r=o);var s=function(t,r){return i.getFromTrace({_fullLayout:e},t,r).type}(t,a),l=t[a+"calendar"]||"",c=v[r],u=!0;c&&(s===c.axType&&l===c.calendar?(u=!1,c.traces.push(t),c.dirs.push(a)):(r=o,s!==c.axType&&n.warn(["Attempted to group the bins of trace",t.index,"set on a","type:"+s,"axis","with bins on","type:"+c.axType,"axis."].join(" ")),l!==c.calendar&&n.warn(["Attempted to group the bins of trace",t.index,"set with a",l,"calendar","with bins",c.calendar?"on a "+c.calendar+" calendar":"w/o a set calendar"].join(" ")))),u&&(v[r]={traces:[t],dirs:[a],axType:s,calendar:t[a+"calendar"]||""}),t["_"+a+"bingroup"]=r}for(d=0;dS&&T.splice(S,T.length-S),M.length>S&&M.splice(S,M.length-S);var E=[],L=[],C=[],P="string"==typeof w.size,I="string"==typeof A.size,O=[],z=[],D=P?O:w,R=I?z:A,F=0,B=[],N=[],j=e.histnorm,U=e.histfunc,V=-1!==j.indexOf("density"),H="max"===U||"min"===U?null:0,q=a.count,G=o[j],Y=!1,W=[],X=[],Z="z"in e?e.z:"marker"in e&&Array.isArray(e.marker.color)?e.marker.color:"";Z&&"count"!==U&&(Y="avg"===U,q=a[U]);var J=w.size,K=x(w.start),Q=x(w.end)+(K-i.tickIncrement(K,J,!1,v))/1e6;for(r=K;r=0&&p=0&&d-1,flipY:E.tiling.flip.indexOf("y")>-1,orientation:E.tiling.orientation,pad:{inner:E.tiling.pad},maxDepth:E._maxDepth}).descendants(),O=1/0,z=-1/0;I.forEach((function(t){var e=t.depth;e>=E._maxDepth?(t.x0=t.x1=(t.x0+t.x1)/2,t.y0=t.y1=(t.y0+t.y1)/2):(O=Math.min(O,e),z=Math.max(z,e))})),p=p.data(I,u.getPtId),E._maxVisibleLayers=isFinite(z)?z-O+1:0,p.enter().append("g").classed("slice",!0),T(p,!1,{},[m,g],x),p.order();var D=null;if(w&&M){var R=u.getPtId(M);p.each((function(t){null===D&&u.getPtId(t)===R&&(D={x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1})}))}var F=function(){return D||{x0:0,x1:m,y0:0,y1:g}},B=p;return w&&(B=B.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!0,hideOnLeaves:!1,isTransitioning:!1})}))),B.each((function(s){s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-E.tiling.pad),s._hoverY=y(P?s.y1-E.tiling.pad/2:s.y0+E.tiling.pad/2);var p=n.select(this),d=i.ensureSingle(p,"path","surface",(function(t){t.style("pointer-events","all")}));w?d.transition().attrTween("d",(function(t){var e=k(t,!1,F(),[m,g],{orientation:E.tiling.orientation,flipX:E.tiling.flip.indexOf("x")>-1,flipY:E.tiling.flip.indexOf("y")>-1});return function(t){return x(e(t))}})):d.attr("d",x),p.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{isTransitioning:t._transitioning}),d.call(l,s,E,{hovered:!1}),s.x0===s.x1||s.y0===s.y1?s._text="":s._text=h(s,r,E,e,S)||"";var T=i.ensureSingle(p,"g","slicetext"),M=i.ensureSingle(T,"text","",(function(t){t.attr("data-notex",1)})),I=i.ensureUniformFontSize(t,u.determineTextFont(E,s,S.font));M.text(s._text||" ").classed("slicetext",!0).attr("text-anchor",C?"end":L?"start":"middle").call(a.font,I).call(o.convertToTspans,t),s.textBB=a.bBox(M.node()),s.transform=b(s,{fontSize:I.size}),s.transform.fontSize=I.size,w?M.transition().attrTween("transform",(function(t){var e=A(t,!1,F(),[m,g]);return function(t){return _(e(t))}})):M.attr("transform",_(s))})),D}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../sunburst/fx":1308,"../sunburst/helpers":1309,"../sunburst/plot":1313,"../treemap/constants":1332,"./partition":1107,"./style":1109,"@plotly/d3":58}],1104:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"icicle",basePlotModule:t("./base_plot"),categories:[],animatable:!0,attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot"),style:t("./style").style,colorbar:t("../scatter/marker_colorbar"),meta:{}}},{"../scatter/marker_colorbar":1209,"./attributes":1099,"./base_plot":1100,"./calc":1101,"./defaults":1102,"./layout_attributes":1105,"./layout_defaults":1106,"./plot":1108,"./style":1109}],1105:[function(t,e,r){"use strict";e.exports={iciclecolorway:{valType:"colorlist",editType:"calc"},extendiciclecolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{}],1106:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("iciclecolorway",e.colorway),r("extendiciclecolors")}},{"../../lib":776,"./layout_attributes":1105}],1107:[function(t,e,r){"use strict";var n=t("d3-hierarchy"),i=t("../treemap/flip_tree");e.exports=function(t,e,r){var a=r.flipX,o=r.flipY,s="h"===r.orientation,l=r.maxDepth,c=e[0],u=e[1];l&&(c=(t.height+1)*e[0]/Math.min(t.height+1,l),u=(t.height+1)*e[1]/Math.min(t.height+1,l));var f=n.partition().padding(r.pad.inner).size(s?[e[1],c]:[e[0],u])(t);return(s||a||o)&&i(f,e,{swapXY:s,flipX:a,flipY:o}),f}},{"../treemap/flip_tree":1337,"d3-hierarchy":163}],1108:[function(t,e,r){"use strict";var n=t("../treemap/draw"),i=t("./draw_descendants");e.exports=function(t,e,r,a){return n(t,e,r,a,{type:"icicle",drawDescendants:i})}},{"../treemap/draw":1334,"./draw_descendants":1103}],1109:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../bar/uniform_text").resizeText;function s(t,e,r){var n=e.data.data,o=!e.children,s=n.i,l=a.castOption(r,s,"marker.line.color")||i.defaultLine,c=a.castOption(r,s,"marker.line.width")||0;t.style("stroke-width",c).call(i.fill,n.color).call(i.stroke,l).style("opacity",o?r.leaf.opacity:null)}e.exports={style:function(t){var e=t._fullLayout._iciclelayer.selectAll(".trace");o(t,e,"icicle"),e.each((function(t){var e=n.select(this),r=t[0].trace;e.style("opacity",r.opacity),e.selectAll("path.surface").each((function(t){n.select(this).call(s,t,r)}))}))},styleOne:s}},{"../../components/color":639,"../../lib":776,"../bar/uniform_text":930,"@plotly/d3":58}],1110:[function(t,e,r){"use strict";for(var n=t("../../plots/attributes"),i=t("../../plots/template_attributes").hovertemplateAttrs,a=t("../../lib/extend").extendFlat,o=t("./constants").colormodel,s=["rgb","rgba","rgba256","hsl","hsla"],l=[],c=[],u=0;u0||n.inbox(r-o.y0,r-(o.y0+o.h*s.dy),0)>0)){var u,f=Math.floor((e-o.x0)/s.dx),h=Math.floor(Math.abs(r-o.y0)/s.dy);if(s._hasZ?u=o.z[h][f]:s._hasSource&&(u=s._canvas.el.getContext("2d").getImageData(f,h,1,1).data),u){var p,d=o.hi||s.hoverinfo;if(d){var m=d.split("+");-1!==m.indexOf("all")&&(m=["color"]),-1!==m.indexOf("color")&&(p=!0)}var g,v=a.colormodel[s.colormodel],y=v.colormodel||s.colormodel,x=y.length,b=s._scaler(u),_=v.suffix,w=[];(s.hovertemplate||p)&&(w.push("["+[b[0]+_[0],b[1]+_[1],b[2]+_[2]].join(", ")),4===x&&w.push(", "+b[3]+_[3]),w.push("]"),w=w.join(""),t.extraText=y.toUpperCase()+": "+w),Array.isArray(s.hovertext)&&Array.isArray(s.hovertext[h])?g=s.hovertext[h][f]:Array.isArray(s.text)&&Array.isArray(s.text[h])&&(g=s.text[h][f]);var T=c.c2p(o.y0+(h+.5)*s.dy),k=o.x0+(f+.5)*s.dx,A=o.y0+(h+.5)*s.dy,M="["+u.slice(0,s.colormodel.length).join(", ")+"]";return[i.extendFlat(t,{index:[h,f],x0:l.c2p(o.x0+f*s.dx),x1:l.c2p(o.x0+(f+1)*s.dx),y0:T,y1:T,color:b,xVal:k,xLabelVal:k,yVal:A,yLabelVal:A,zLabelVal:M,text:g,hovertemplateLabels:{zLabel:M,colorLabel:w,"color[0]Label":b[0]+_[0],"color[1]Label":b[1]+_[1],"color[2]Label":b[2]+_[2],"color[3]Label":b[3]+_[3]}})]}}}},{"../../components/fx":679,"../../lib":776,"./constants":1112}],1117:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),style:t("./style"),hoverPoints:t("./hover"),eventData:t("./event_data"),moduleType:"trace",name:"image",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","2dMap","noSortingByValue"],animatable:!1,meta:{}}},{"../../plots/cartesian":841,"./attributes":1110,"./calc":1111,"./defaults":1113,"./event_data":1114,"./hover":1116,"./plot":1118,"./style":1119}],1118:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.strTranslate,o=t("../../constants/xmlns_namespaces"),s=t("./constants"),l=i.isIOS()||i.isSafari()||i.isIE();e.exports=function(t,e,r,c){var u=e.xaxis,f=e.yaxis,h=!(l||t._context._exportedPlot);i.makeTraceGroups(c,r,"im").each((function(e){var r=n.select(this),l=e[0],c=l.trace,p=("fast"===c.zsmooth||!1===c.zsmooth&&h)&&!c._hasZ&&c._hasSource&&"linear"===u.type&&"linear"===f.type;c._realImage=p;var d,m,g,v,y,x,b=l.z,_=l.x0,w=l.y0,T=l.w,k=l.h,A=c.dx,M=c.dy;for(x=0;void 0===d&&x0;)m=u.c2p(_+x*A),x--;for(x=0;void 0===v&&x0;)y=f.c2p(w+x*M),x--;if(mI[0];if(O||z){var D=d+S/2,R=v+E/2;C+="transform:"+a(D+"px",R+"px")+"scale("+(O?-1:1)+","+(z?-1:1)+")"+a(-D+"px",-R+"px")+";"}}L.attr("style",C);var F=new Promise((function(t){if(c._hasZ)t();else if(c._hasSource)if(c._canvas&&c._canvas.el.width===T&&c._canvas.el.height===k&&c._canvas.source===c.source)t();else{var e=document.createElement("canvas");e.width=T,e.height=k;var r=e.getContext("2d");c._image=c._image||new Image;var n=c._image;n.onload=function(){r.drawImage(n,0,0),c._canvas={el:e,source:c.source},t()},n.setAttribute("src",c.source)}})).then((function(){var t;if(c._hasZ)t=B((function(t,e){return b[e][t]})).toDataURL("image/png");else if(c._hasSource)if(p)t=c.source;else{var e=c._canvas.el.getContext("2d").getImageData(0,0,T,k).data;t=B((function(t,r){var n=4*(r*T+t);return[e[n],e[n+1],e[n+2],e[n+3]]})).toDataURL("image/png")}L.attr({"xlink:href":t,height:E,width:S,x:d,y:v})}));t._promises.push(F)}function B(t){var e=document.createElement("canvas");e.width=S,e.height=E;var r,n=e.getContext("2d"),a=function(t){return i.constrain(Math.round(u.c2p(_+t*A)-d),0,S)},o=function(t){return i.constrain(Math.round(f.c2p(w+t*M)-v),0,E)},h=s.colormodel[c.colormodel],p=h.colormodel||c.colormodel,m=h.fmt;for(x=0;x0}function T(t){t.each((function(t){y.stroke(n.select(this),t.line.color)})).each((function(t){y.fill(n.select(this),t.color)})).style("stroke-width",(function(t){return t.line.width}))}function k(t,e,r){var n=t._fullLayout,i=o.extendFlat({type:"linear",ticks:"outside",range:r,showline:!0},e),a={type:"linear",_id:"x"+e._id},s={letter:"x",font:n.font,noHover:!0,noTickson:!0};function l(t,e){return o.coerce(i,a,v,t,e)}return m(i,a,l,s,n),g(i,a,l,s),a}function A(t,e,r){return[Math.min(e/t.width,r/t.height),t,e+"x"+r]}function M(t,e,r,i){var a=document.createElementNS("http://www.w3.org/2000/svg","text"),o=n.select(a);return o.text(t).attr("x",0).attr("y",0).attr("text-anchor",r).attr("data-unformatted",t).call(p.convertToTspans,i).call(f.font,e),f.bBox(o.node())}function S(t,e,r,n,i,a){var s="_cache"+e;t[s]&&t[s].key===i||(t[s]={key:i,value:r});var l=o.aggNums(a,null,[t[s].value,n],2);return t[s].value=l,l}e.exports=function(t,e,r,m){var g,v=t._fullLayout;w(r)&&m&&(g=m()),o.makeTraceGroups(v._indicatorlayer,e,"trace").each((function(e){var m,E,L,C,P,I=e[0].trace,O=n.select(this),z=I._hasGauge,D=I._isAngular,R=I._isBullet,F=I.domain,B={w:v._size.w*(F.x[1]-F.x[0]),h:v._size.h*(F.y[1]-F.y[0]),l:v._size.l+v._size.w*F.x[0],r:v._size.r+v._size.w*(1-F.x[1]),t:v._size.t+v._size.h*(1-F.y[1]),b:v._size.b+v._size.h*F.y[0]},N=B.l+B.w/2,j=B.t+B.h/2,U=Math.min(B.w/2,B.h),V=h.innerRadius*U,H=I.align||"center";if(E=j,z){if(D&&(m=N,E=j+U/2,L=function(t){return function(t,e){var r=Math.sqrt(t.width/2*(t.width/2)+t.height*t.height);return[e/r,t,e]}(t,.9*V)}),R){var q=h.bulletPadding,G=1-h.bulletNumberDomainSize+q;m=B.l+(G+(1-G)*b[H])*B.w,L=function(t){return A(t,(h.bulletNumberDomainSize-q)*B.w,B.h)}}}else m=B.l+b[H]*B.w,L=function(t){return A(t,B.w,B.h)};!function(t,e,r,i){var c,u,h,m=r[0].trace,g=i.numbersX,v=i.numbersY,T=m.align||"center",A=x[T],E=i.transitionOpts,L=i.onComplete,C=o.ensureSingle(e,"g","numbers"),P=[];m._hasNumber&&P.push("number");m._hasDelta&&(P.push("delta"),"left"===m.delta.position&&P.reverse());var I=C.selectAll("text").data(P);function O(e,r,n,i){if(!e.match("s")||n>=0==i>=0||r(n).slice(-1).match(_)||r(i).slice(-1).match(_))return r;var a=e.slice().replace("s","f").replace(/\d+/,(function(t){return parseInt(t)-1})),o=k(t,{tickformat:a});return function(t){return Math.abs(t)<1?d.tickText(o,t).text:r(t)}}I.enter().append("text"),I.attr("text-anchor",(function(){return A})).attr("class",(function(t){return t})).attr("x",null).attr("y",null).attr("dx",null).attr("dy",null),I.exit().remove();var z,D=m.mode+m.align;m._hasDelta&&(z=function(){var e=k(t,{tickformat:m.delta.valueformat},m._range);e.setScale(),d.prepTicks(e);var i=function(t){return d.tickText(e,t).text},o=function(t){return m.delta.relative?t.relativeDelta:t.delta},s=function(t,e){return 0===t||"number"!=typeof t||isNaN(t)?"-":(t>0?m.delta.increasing.symbol:m.delta.decreasing.symbol)+e(t)},l=function(t){return t.delta>=0?m.delta.increasing.color:m.delta.decreasing.color};void 0===m._deltaLastValue&&(m._deltaLastValue=o(r[0]));var c=C.select("text.delta");function h(){c.text(s(o(r[0]),i)).call(y.fill,l(r[0])).call(p.convertToTspans,t)}return c.call(f.font,m.delta.font).call(y.fill,l({delta:m._deltaLastValue})),w(E)?c.transition().duration(E.duration).ease(E.easing).tween("text",(function(){var t=n.select(this),e=o(r[0]),c=m._deltaLastValue,u=O(m.delta.valueformat,i,c,e),f=a(c,e);return m._deltaLastValue=e,function(e){t.text(s(f(e),u)),t.call(y.fill,l({delta:f(e)}))}})).each("end",(function(){h(),L&&L()})).each("interrupt",(function(){h(),L&&L()})):h(),u=M(s(o(r[0]),i),m.delta.font,A,t),c}(),D+=m.delta.position+m.delta.font.size+m.delta.font.family+m.delta.valueformat,D+=m.delta.increasing.symbol+m.delta.decreasing.symbol,h=u);m._hasNumber&&(!function(){var e=k(t,{tickformat:m.number.valueformat},m._range);e.setScale(),d.prepTicks(e);var i=function(t){return d.tickText(e,t).text},o=m.number.suffix,s=m.number.prefix,l=C.select("text.number");function u(){var e="number"==typeof r[0].y?s+i(r[0].y)+o:"-";l.text(e).call(f.font,m.number.font).call(p.convertToTspans,t)}w(E)?l.transition().duration(E.duration).ease(E.easing).each("end",(function(){u(),L&&L()})).each("interrupt",(function(){u(),L&&L()})).attrTween("text",(function(){var t=n.select(this),e=a(r[0].lastY,r[0].y);m._lastValue=r[0].y;var l=O(m.number.valueformat,i,r[0].lastY,r[0].y);return function(r){t.text(s+l(e(r))+o)}})):u(),c=M(s+i(r[0].y)+o,m.number.font,A,t)}(),D+=m.number.font.size+m.number.font.family+m.number.valueformat+m.number.suffix+m.number.prefix,h=c);if(m._hasDelta&&m._hasNumber){var R,F,B=[(c.left+c.right)/2,(c.top+c.bottom)/2],N=[(u.left+u.right)/2,(u.top+u.bottom)/2],j=.75*m.delta.font.size;"left"===m.delta.position&&(R=S(m,"deltaPos",0,-1*(c.width*b[m.align]+u.width*(1-b[m.align])+j),D,Math.min),F=B[1]-N[1],h={width:c.width+u.width+j,height:Math.max(c.height,u.height),left:u.left+R,right:c.right,top:Math.min(c.top,u.top+F),bottom:Math.max(c.bottom,u.bottom+F)}),"right"===m.delta.position&&(R=S(m,"deltaPos",0,c.width*(1-b[m.align])+u.width*b[m.align]+j,D,Math.max),F=B[1]-N[1],h={width:c.width+u.width+j,height:Math.max(c.height,u.height),left:c.left,right:u.right+R,top:Math.min(c.top,u.top+F),bottom:Math.max(c.bottom,u.bottom+F)}),"bottom"===m.delta.position&&(R=null,F=u.height,h={width:Math.max(c.width,u.width),height:c.height+u.height,left:Math.min(c.left,u.left),right:Math.max(c.right,u.right),top:c.bottom-c.height,bottom:c.bottom+u.height}),"top"===m.delta.position&&(R=null,F=c.top,h={width:Math.max(c.width,u.width),height:c.height+u.height,left:Math.min(c.left,u.left),right:Math.max(c.right,u.right),top:c.bottom-c.height-u.height,bottom:c.bottom}),z.attr({dx:R,dy:F})}(m._hasNumber||m._hasDelta)&&C.attr("transform",(function(){var t=i.numbersScaler(h);D+=t[2];var e,r=S(m,"numbersScale",1,t[0],D,Math.min);m._scaleNumbers||(r=1),e=m._isAngular?v-r*h.bottom:v-r*(h.top+h.bottom)/2,m._numbersTop=r*h.top+e;var n=h[T];"center"===T&&(n=(h.left+h.right)/2);var a=g-r*n;return a=S(m,"numbersTranslate",0,a,D,Math.max),l(a,e)+s(r)}))}(t,O,e,{numbersX:m,numbersY:E,numbersScaler:L,transitionOpts:r,onComplete:g}),z&&(C={range:I.gauge.axis.range,color:I.gauge.bgcolor,line:{color:I.gauge.bordercolor,width:0},thickness:1},P={range:I.gauge.axis.range,color:"rgba(0, 0, 0, 0)",line:{color:I.gauge.bordercolor,width:I.gauge.borderwidth},thickness:1});var Y=O.selectAll("g.angular").data(D?e:[]);Y.exit().remove();var W=O.selectAll("g.angularaxis").data(D?e:[]);W.exit().remove(),D&&function(t,e,r,a){var o,s,f,h,p=r[0].trace,m=a.size,g=a.radius,v=a.innerRadius,y=a.gaugeBg,x=a.gaugeOutline,b=[m.l+m.w/2,m.t+m.h/2+g/2],_=a.gauge,A=a.layer,M=a.transitionOpts,S=a.onComplete,E=Math.PI/2;function L(t){var e=p.gauge.axis.range[0],r=(t-e)/(p.gauge.axis.range[1]-e)*Math.PI-E;return r<-E?-E:r>E?E:r}function C(t){return n.svg.arc().innerRadius((v+g)/2-t/2*(g-v)).outerRadius((v+g)/2+t/2*(g-v)).startAngle(-E)}function P(t){t.attr("d",(function(t){return C(t.thickness).startAngle(L(t.range[0])).endAngle(L(t.range[1]))()}))}_.enter().append("g").classed("angular",!0),_.attr("transform",l(b[0],b[1])),A.enter().append("g").classed("angularaxis",!0).classed("crisp",!0),A.selectAll("g.xangularaxistick,path,text").remove(),(o=k(t,p.gauge.axis)).type="linear",o.range=p.gauge.axis.range,o._id="xangularaxis",o.ticklabeloverflow="allow",o.setScale();var I=function(t){return(o.range[0]-t.x)/(o.range[1]-o.range[0])*Math.PI+Math.PI},O={},z=d.makeLabelFns(o,0).labelStandoff;O.xFn=function(t){var e=I(t);return Math.cos(e)*z},O.yFn=function(t){var e=I(t),r=Math.sin(e)>0?.2:1;return-Math.sin(e)*(z+t.fontSize*r)+Math.abs(Math.cos(e))*(t.fontSize*u)},O.anchorFn=function(t){var e=I(t),r=Math.cos(e);return Math.abs(r)<.1?"middle":r>0?"start":"end"},O.heightFn=function(t,e,r){var n=I(t);return-.5*(1+Math.sin(n))*r};var D=function(t){return l(b[0]+g*Math.cos(t),b[1]-g*Math.sin(t))};f=function(t){return D(I(t))};if(s=d.calcTicks(o),h=d.getTickSigns(o)[2],o.visible){h="inside"===o.ticks?-1:1;var R=(o.linewidth||1)/2;d.drawTicks(t,o,{vals:s,layer:A,path:"M"+h*R+",0h"+h*o.ticklen,transFn:function(t){var e=I(t);return D(e)+"rotate("+-c(e)+")"}}),d.drawLabels(t,o,{vals:s,layer:A,transFn:f,labelFns:O})}var F=[y].concat(p.gauge.steps),B=_.selectAll("g.bg-arc").data(F);B.enter().append("g").classed("bg-arc",!0).append("path"),B.select("path").call(P).call(T),B.exit().remove();var N=C(p.gauge.bar.thickness),j=_.selectAll("g.value-arc").data([p.gauge.bar]);j.enter().append("g").classed("value-arc",!0).append("path");var U=j.select("path");w(M)?(U.transition().duration(M.duration).ease(M.easing).each("end",(function(){S&&S()})).each("interrupt",(function(){S&&S()})).attrTween("d",(V=N,H=L(r[0].lastY),q=L(r[0].y),function(){var t=i(H,q);return function(e){return V.endAngle(t(e))()}})),p._lastValue=r[0].y):U.attr("d","number"==typeof r[0].y?N.endAngle(L(r[0].y)):"M0,0Z");var V,H,q;U.call(T),j.exit().remove(),F=[];var G=p.gauge.threshold.value;(G||0===G)&&F.push({range:[G,G],color:p.gauge.threshold.color,line:{color:p.gauge.threshold.line.color,width:p.gauge.threshold.line.width},thickness:p.gauge.threshold.thickness});var Y=_.selectAll("g.threshold-arc").data(F);Y.enter().append("g").classed("threshold-arc",!0).append("path"),Y.select("path").call(P).call(T),Y.exit().remove();var W=_.selectAll("g.gauge-outline").data([x]);W.enter().append("g").classed("gauge-outline",!0).append("path"),W.select("path").call(P).call(T),W.exit().remove()}(t,0,e,{radius:U,innerRadius:V,gauge:Y,layer:W,size:B,gaugeBg:C,gaugeOutline:P,transitionOpts:r,onComplete:g});var X=O.selectAll("g.bullet").data(R?e:[]);X.exit().remove();var Z=O.selectAll("g.bulletaxis").data(R?e:[]);Z.exit().remove(),R&&function(t,e,r,n){var i,a,o,s,c,u=r[0].trace,f=n.gauge,p=n.layer,m=n.gaugeBg,g=n.gaugeOutline,v=n.size,x=u.domain,b=n.transitionOpts,_=n.onComplete;f.enter().append("g").classed("bullet",!0),f.attr("transform",l(v.l,v.t)),p.enter().append("g").classed("bulletaxis",!0).classed("crisp",!0),p.selectAll("g.xbulletaxistick,path,text").remove();var A=v.h,M=u.gauge.bar.thickness*A,S=x.x[0],E=x.x[0]+(x.x[1]-x.x[0])*(u._hasNumber||u._hasDelta?1-h.bulletNumberDomainSize:1);(i=k(t,u.gauge.axis))._id="xbulletaxis",i.domain=[S,E],i.setScale(),a=d.calcTicks(i),o=d.makeTransTickFn(i),s=d.getTickSigns(i)[2],c=v.t+v.h,i.visible&&(d.drawTicks(t,i,{vals:"inside"===i.ticks?d.clipEnds(i,a):a,layer:p,path:d.makeTickPath(i,c,s),transFn:o}),d.drawLabels(t,i,{vals:a,layer:p,transFn:o,labelFns:d.makeLabelFns(i,c)}));function L(t){t.attr("width",(function(t){return Math.max(0,i.c2p(t.range[1])-i.c2p(t.range[0]))})).attr("x",(function(t){return i.c2p(t.range[0])})).attr("y",(function(t){return.5*(1-t.thickness)*A})).attr("height",(function(t){return t.thickness*A}))}var C=[m].concat(u.gauge.steps),P=f.selectAll("g.bg-bullet").data(C);P.enter().append("g").classed("bg-bullet",!0).append("rect"),P.select("rect").call(L).call(T),P.exit().remove();var I=f.selectAll("g.value-bullet").data([u.gauge.bar]);I.enter().append("g").classed("value-bullet",!0).append("rect"),I.select("rect").attr("height",M).attr("y",(A-M)/2).call(T),w(b)?I.select("rect").transition().duration(b.duration).ease(b.easing).each("end",(function(){_&&_()})).each("interrupt",(function(){_&&_()})).attr("width",Math.max(0,i.c2p(Math.min(u.gauge.axis.range[1],r[0].y)))):I.select("rect").attr("width","number"==typeof r[0].y?Math.max(0,i.c2p(Math.min(u.gauge.axis.range[1],r[0].y))):0);I.exit().remove();var O=r.filter((function(){return u.gauge.threshold.value||0===u.gauge.threshold.value})),z=f.selectAll("g.threshold-bullet").data(O);z.enter().append("g").classed("threshold-bullet",!0).append("line"),z.select("line").attr("x1",i.c2p(u.gauge.threshold.value)).attr("x2",i.c2p(u.gauge.threshold.value)).attr("y1",(1-u.gauge.threshold.thickness)/2*A).attr("y2",(1-(1-u.gauge.threshold.thickness)/2)*A).call(y.stroke,u.gauge.threshold.line.color).style("stroke-width",u.gauge.threshold.line.width),z.exit().remove();var D=f.selectAll("g.gauge-outline").data([g]);D.enter().append("g").classed("gauge-outline",!0).append("rect"),D.select("rect").call(L).call(T),D.exit().remove()}(t,0,e,{gauge:X,layer:Z,size:B,gaugeBg:C,gaugeOutline:P,transitionOpts:r,onComplete:g});var J=O.selectAll("text.title").data(e);J.exit().remove(),J.enter().append("text").classed("title",!0),J.attr("text-anchor",(function(){return R?x.right:x[I.title.align]})).text(I.title.text).call(f.font,I.title.font).call(p.convertToTspans,t),J.attr("transform",(function(){var t,e=B.l+B.w*b[I.title.align],r=h.titlePadding,n=f.bBox(J.node());if(z){if(D)if(I.gauge.axis.visible)t=f.bBox(W.node()).top-r-n.bottom;else t=B.t+B.h/2-U/2-n.bottom-r;R&&(t=E-(n.top+n.bottom)/2,e=B.l-h.bulletPadding*B.w)}else t=I._numbersTop-r-n.bottom;return l(e,t)}))}))}},{"../../components/color":639,"../../components/drawing":661,"../../constants/alignment":744,"../../lib":776,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"../../plots/cartesian/axis_defaults":829,"../../plots/cartesian/layout_attributes":842,"../../plots/cartesian/position_defaults":845,"./constants":1123,"@plotly/d3":58,"d3-interpolate":164}],1127:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../mesh3d/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c=t("../../plot_api/edit_types").overrideAll;var u=e.exports=c(l({x:{valType:"data_array"},y:{valType:"data_array"},z:{valType:"data_array"},value:{valType:"data_array"},isomin:{valType:"number"},isomax:{valType:"number"},surface:{show:{valType:"boolean",dflt:!0},count:{valType:"integer",dflt:2,min:1},fill:{valType:"number",min:0,max:1,dflt:1},pattern:{valType:"flaglist",flags:["A","B","C","D","E"],extras:["all","odd","even"],dflt:"all"}},spaceframe:{show:{valType:"boolean",dflt:!1},fill:{valType:"number",min:0,max:1,dflt:.15}},slices:{x:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}},y:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}},z:{show:{valType:"boolean",dflt:!1},locations:{valType:"data_array",dflt:[]},fill:{valType:"number",min:0,max:1,dflt:1}}},caps:{x:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}},y:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}},z:{show:{valType:"boolean",dflt:!0},fill:{valType:"number",min:0,max:1,dflt:1}}},text:{valType:"string",dflt:"",arrayOk:!0},hovertext:{valType:"string",dflt:"",arrayOk:!0},hovertemplate:a(),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),valuehoverformat:i("value",1),showlegend:l({},s.showlegend,{dflt:!1})},n("",{colorAttr:"`value`",showScaleDflt:!0,editTypeOverride:"calc"}),{opacity:o.opacity,lightposition:o.lightposition,lighting:o.lighting,flatshading:o.flatshading,contour:o.contour,hoverinfo:l({},s.hoverinfo)}),"calc","nested");u.flatshading.dflt=!0,u.lighting.facenormalsepsilon.dflt=0,u.x.editType=u.y.editType=u.z.editType=u.value.editType="calc+clearAxisTypes",u.transforms=void 0},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plot_api/edit_types":809,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../mesh3d/attributes":1132}],1128:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc"),i=t("../streamtube/calc").processGrid,a=t("../streamtube/calc").filter;e.exports=function(t,e){e._len=Math.min(e.x.length,e.y.length,e.z.length,e.value.length),e._x=a(e.x,e._len),e._y=a(e.y,e._len),e._z=a(e.z,e._len),e._value=a(e.value,e._len);var r=i(e);e._gridFill=r.fill,e._Xs=r.Xs,e._Ys=r.Ys,e._Zs=r.Zs,e._len=r.len;for(var o=1/0,s=-1/0,l=0;l0;r--){var n=Math.min(e[r],e[r-1]),i=Math.max(e[r],e[r-1]);if(i>n&&n-1}function R(t,e){return null===t?e:t}function F(e,r,n){C();var i,a,o,l=[r],c=[n];if(s>=1)l=[r],c=[n];else if(s>0){var u=function(t,e){var r=t[0],n=t[1],i=t[2],a=function(t,e,r){for(var n=[],i=0;i-1?n[p]:L(d,m,v);h[p]=x>-1?x:I(d,m,v,R(e,y))}i=h[0],a=h[1],o=h[2],t._meshI.push(i),t._meshJ.push(a),t._meshK.push(o),++g}}function B(t,e,r,n){var i=t[3];in&&(i=n);for(var a=(t[3]-i)/(t[3]-e[3]+1e-9),o=[],s=0;s<4;s++)o[s]=(1-a)*t[s]+a*e[s];return o}function N(t,e,r){return t>=e&&t<=r}function j(t){var e=.001*(E-S);return t>=S-e&&t<=E+e}function U(e){for(var r=[],n=0;n<4;n++){var i=e[n];r.push([t._x[i],t._y[i],t._z[i],t._value[i]])}return r}function V(t,e,r,n,i,a){a||(a=1),r=[-1,-1,-1];var o=!1,s=[N(e[0][3],n,i),N(e[1][3],n,i),N(e[2][3],n,i)];if(!s[0]&&!s[1]&&!s[2])return!1;var l=function(t,e,r){return j(e[0][3])&&j(e[1][3])&&j(e[2][3])?(F(t,e,r),!0):a<3&&V(t,e,r,S,E,++a)};if(s[0]&&s[1]&&s[2])return l(t,e,r)||o;var c=!1;return[[0,1,2],[2,0,1],[1,2,0]].forEach((function(a){if(s[a[0]]&&s[a[1]]&&!s[a[2]]){var u=e[a[0]],f=e[a[1]],h=e[a[2]],p=B(h,u,n,i),d=B(h,f,n,i);o=l(t,[d,p,u],[-1,-1,r[a[0]]])||o,o=l(t,[u,f,d],[r[a[0]],r[a[1]],-1])||o,c=!0}})),c||[[0,1,2],[1,2,0],[2,0,1]].forEach((function(a){if(s[a[0]]&&!s[a[1]]&&!s[a[2]]){var u=e[a[0]],f=e[a[1]],h=e[a[2]],p=B(f,u,n,i),d=B(h,u,n,i);o=l(t,[d,p,u],[-1,-1,r[a[0]]])||o,c=!0}})),o}function H(t,e,r,n){var i=!1,a=U(e),o=[N(a[0][3],r,n),N(a[1][3],r,n),N(a[2][3],r,n),N(a[3][3],r,n)];if(!(o[0]||o[1]||o[2]||o[3]))return i;if(o[0]&&o[1]&&o[2]&&o[3])return m&&(i=function(t,e,r){var n=function(n,i,a){F(t,[e[n],e[i],e[a]],[r[n],r[i],r[a]])};n(0,1,2),n(3,0,1),n(2,3,0),n(1,2,3)}(t,a,e)||i),i;var s=!1;return[[0,1,2,3],[3,0,1,2],[2,3,0,1],[1,2,3,0]].forEach((function(l){if(o[l[0]]&&o[l[1]]&&o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]];if(m)i=F(t,[c,u,f],[e[l[0]],e[l[1]],e[l[2]]])||i;else{var p=B(h,c,r,n),d=B(h,u,r,n),g=B(h,f,r,n);i=F(null,[p,d,g],[-1,-1,-1])||i}s=!0}})),s?i:([[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2],[0,2,3,1],[1,3,2,0]].forEach((function(l){if(o[l[0]]&&o[l[1]]&&!o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]],p=B(f,c,r,n),d=B(f,u,r,n),g=B(h,u,r,n),v=B(h,c,r,n);m?(i=F(t,[c,v,p],[e[l[0]],-1,-1])||i,i=F(t,[u,d,g],[e[l[1]],-1,-1])||i):i=function(t,e,r){var n=function(n,i,a){F(t,[e[n],e[i],e[a]],[r[n],r[i],r[a]])};n(0,1,2),n(2,3,0)}(null,[p,d,g,v],[-1,-1,-1,-1])||i,s=!0}})),s||[[0,1,2,3],[1,2,3,0],[2,3,0,1],[3,0,1,2]].forEach((function(l){if(o[l[0]]&&!o[l[1]]&&!o[l[2]]&&!o[l[3]]){var c=a[l[0]],u=a[l[1]],f=a[l[2]],h=a[l[3]],p=B(u,c,r,n),d=B(f,c,r,n),g=B(h,c,r,n);m?(i=F(t,[c,p,d],[e[l[0]],-1,-1])||i,i=F(t,[c,d,g],[e[l[0]],-1,-1])||i,i=F(t,[c,g,p],[e[l[0]],-1,-1])||i):i=F(null,[p,d,g],[-1,-1,-1])||i,s=!0}})),i)}function q(t,e,r,n,i,a,o,s,l,c,u){var f=!1;return d&&(D(t,"A")&&(f=H(null,[e,r,n,a],c,u)||f),D(t,"B")&&(f=H(null,[r,n,i,l],c,u)||f),D(t,"C")&&(f=H(null,[r,a,o,l],c,u)||f),D(t,"D")&&(f=H(null,[n,a,s,l],c,u)||f),D(t,"E")&&(f=H(null,[r,n,a,l],c,u)||f)),m&&(f=H(t,[r,n,a,l],c,u)||f),f}function G(t,e,r,n,i,a,o,s){return[!0===s[0]||V(t,U([e,r,n]),[e,r,n],a,o),!0===s[1]||V(t,U([n,i,e]),[n,i,e],a,o)]}function Y(t,e,r,n,i,a,o,s,l){return s?G(t,e,r,i,n,a,o,l):G(t,r,i,n,e,a,o,l)}function W(t,e,r,n,i,a,o){var s,l,c,u,f=!1,h=function(){f=V(t,[s,l,c],[-1,-1,-1],i,a)||f,f=V(t,[c,u,s],[-1,-1,-1],i,a)||f},p=o[0],d=o[1],m=o[2];return p&&(s=O(U([k(e,r-0,n-0)])[0],U([k(e-1,r-0,n-0)])[0],p),l=O(U([k(e,r-0,n-1)])[0],U([k(e-1,r-0,n-1)])[0],p),c=O(U([k(e,r-1,n-1)])[0],U([k(e-1,r-1,n-1)])[0],p),u=O(U([k(e,r-1,n-0)])[0],U([k(e-1,r-1,n-0)])[0],p),h()),d&&(s=O(U([k(e-0,r,n-0)])[0],U([k(e-0,r-1,n-0)])[0],d),l=O(U([k(e-0,r,n-1)])[0],U([k(e-0,r-1,n-1)])[0],d),c=O(U([k(e-1,r,n-1)])[0],U([k(e-1,r-1,n-1)])[0],d),u=O(U([k(e-1,r,n-0)])[0],U([k(e-1,r-1,n-0)])[0],d),h()),m&&(s=O(U([k(e-0,r-0,n)])[0],U([k(e-0,r-0,n-1)])[0],m),l=O(U([k(e-0,r-1,n)])[0],U([k(e-0,r-1,n-1)])[0],m),c=O(U([k(e-1,r-1,n)])[0],U([k(e-1,r-1,n-1)])[0],m),u=O(U([k(e-1,r-0,n)])[0],U([k(e-1,r-0,n-1)])[0],m),h()),f}function X(t,e,r,n,i,a,o,s,l,c,u,f){var h=t;return f?(d&&"even"===t&&(h=null),q(h,e,r,n,i,a,o,s,l,c,u)):(d&&"odd"===t&&(h=null),q(h,l,s,o,a,i,n,r,e,c,u))}function Z(t,e,r,n,i){for(var a=[],o=0,s=0;sMath.abs(d-M)?[A,d]:[d,M];$(e,T[0],T[1])}}var L=[[Math.min(S,M),Math.max(S,M)],[Math.min(A,E),Math.max(A,E)]];["x","y","z"].forEach((function(e){for(var r=[],n=0;n0&&(u.push(p.id),"x"===e?f.push([p.distRatio,0,0]):"y"===e?f.push([0,p.distRatio,0]):f.push([0,0,p.distRatio]))}else c=nt(1,"x"===e?b-1:"y"===e?_-1:w-1);u.length>0&&(r[i]="x"===e?tt(null,u,a,o,f,r[i]):"y"===e?et(null,u,a,o,f,r[i]):rt(null,u,a,o,f,r[i]),i++),c.length>0&&(r[i]="x"===e?Z(null,c,a,o,r[i]):"y"===e?J(null,c,a,o,r[i]):K(null,c,a,o,r[i]),i++)}var d=t.caps[e];d.show&&d.fill&&(z(d.fill),r[i]="x"===e?Z(null,[0,b-1],a,o,r[i]):"y"===e?J(null,[0,_-1],a,o,r[i]):K(null,[0,w-1],a,o,r[i]),i++)}})),0===g&&P(),t._meshX=n,t._meshY=i,t._meshZ=a,t._meshIntensity=o,t._Xs=v,t._Ys=y,t._Zs=x}(),t}e.exports={findNearestOnAxis:l,generateIsoMeshes:h,createIsosurfaceTrace:function(t,e){var r=t.glplot.gl,i=n({gl:r}),a=new c(t,i,e.uid);return i._trace=a,a.update(e),t.glplot.add(i),a}}},{"../../components/colorscale":651,"../../lib/gl_format_color":772,"../../lib/str2rgbarray":801,"../../plots/gl3d/zip3":880,"gl-mesh3d":303}],1130:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./attributes"),o=t("../../components/colorscale/defaults");function s(t,e,r,n,a){var s=a("isomin"),l=a("isomax");null!=l&&null!=s&&s>l&&(e.isomin=null,e.isomax=null);var c=a("x"),u=a("y"),f=a("z"),h=a("value");c&&c.length&&u&&u.length&&f&&f.length&&h&&h.length?(i.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x","y","z"],n),a("valuehoverformat"),["x","y","z"].forEach((function(t){a(t+"hoverformat");var e="caps."+t;a(e+".show")&&a(e+".fill");var r="slices."+t;a(r+".show")&&(a(r+".fill"),a(r+".locations"))})),a("spaceframe.show")&&a("spaceframe.fill"),a("surface.show")&&(a("surface.count"),a("surface.fill"),a("surface.pattern")),a("contour.show")&&(a("contour.color"),a("contour.width")),["text","hovertext","hovertemplate","lighting.ambient","lighting.diffuse","lighting.specular","lighting.roughness","lighting.fresnel","lighting.vertexnormalsepsilon","lighting.facenormalsepsilon","lightposition.x","lightposition.y","lightposition.z","flatshading","opacity"].forEach((function(t){a(t)})),o(t,e,n,a,{prefix:"",cLetter:"c"}),e._length=null):e.visible=!1}e.exports={supplyDefaults:function(t,e,r,i){s(t,e,r,i,(function(r,i){return n.coerce(t,e,a,r,i)}))},supplyIsoDefaults:s}},{"../../components/colorscale/defaults":649,"../../lib":776,"../../registry":904,"./attributes":1127}],1131:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults").supplyDefaults,calc:t("./calc"),colorbar:{min:"cmin",max:"cmax"},plot:t("./convert").createIsosurfaceTrace,moduleType:"trace",name:"isosurface",basePlotModule:t("../../plots/gl3d"),categories:["gl3d","showLegend"],meta:{}}},{"../../plots/gl3d":869,"./attributes":1127,"./calc":1128,"./convert":1129,"./defaults":1130}],1132:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../surface/attributes"),s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat;e.exports=l({x:{valType:"data_array",editType:"calc+clearAxisTypes"},y:{valType:"data_array",editType:"calc+clearAxisTypes"},z:{valType:"data_array",editType:"calc+clearAxisTypes"},i:{valType:"data_array",editType:"calc"},j:{valType:"data_array",editType:"calc"},k:{valType:"data_array",editType:"calc"},text:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"calc"},hovertemplate:a({editType:"calc"}),xhoverformat:i("x"),yhoverformat:i("y"),zhoverformat:i("z"),delaunayaxis:{valType:"enumerated",values:["x","y","z"],dflt:"z",editType:"calc"},alphahull:{valType:"number",dflt:-1,editType:"calc"},intensity:{valType:"data_array",editType:"calc"},intensitymode:{valType:"enumerated",values:["vertex","cell"],dflt:"vertex",editType:"calc"},color:{valType:"color",editType:"calc"},vertexcolor:{valType:"data_array",editType:"calc"},facecolor:{valType:"data_array",editType:"calc"},transforms:void 0},n("",{colorAttr:"`intensity`",showScaleDflt:!0,editTypeOverride:"calc"}),{opacity:o.opacity,flatshading:{valType:"boolean",dflt:!1,editType:"calc"},contour:{show:l({},o.contours.x.show,{}),color:o.contours.x.color,width:o.contours.x.width,editType:"calc"},lightposition:{x:l({},o.lightposition.x,{dflt:1e5}),y:l({},o.lightposition.y,{dflt:1e5}),z:l({},o.lightposition.z,{dflt:0}),editType:"calc"},lighting:l({vertexnormalsepsilon:{valType:"number",min:0,max:1,dflt:1e-12,editType:"calc"},facenormalsepsilon:{valType:"number",min:0,max:1,dflt:1e-6,editType:"calc"},editType:"calc"},o.lighting),hoverinfo:l({},s.hoverinfo,{editType:"calc"}),showlegend:l({},s.showlegend,{dflt:!1})})},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899,"../surface/attributes":1315}],1133:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){e.intensity&&n(t,e,{vals:e.intensity,containerStr:"",cLetter:"c"})}},{"../../components/colorscale/calc":647}],1134:[function(t,e,r){"use strict";var n=t("gl-mesh3d"),i=t("delaunay-triangulate"),a=t("alpha-shape"),o=t("convex-hull"),s=t("../../lib/gl_format_color").parseColorScale,l=t("../../lib/str2rgbarray"),c=t("../../components/colorscale").extractOpts,u=t("../../plots/gl3d/zip3");function f(t,e,r){this.scene=t,this.uid=r,this.mesh=e,this.name="",this.color="#fff",this.data=null,this.showContour=!1}var h=f.prototype;function p(t){for(var e=[],r=t.length,n=0;n=e-.5)return!1;return!0}h.handlePick=function(t){if(t.object===this.mesh){var e=t.index=t.data.index;t.data._cellCenter?t.traceCoordinate=t.data.dataCoordinate:t.traceCoordinate=[this.data.x[e],this.data.y[e],this.data.z[e]];var r=this.data.hovertext||this.data.text;return Array.isArray(r)&&void 0!==r[e]?t.textLabel=r[e]:r&&(t.textLabel=r),!0}},h.update=function(t){var e=this.scene,r=e.fullSceneLayout;this.data=t;var n,f=t.x.length,h=u(d(r.xaxis,t.x,e.dataScale[0],t.xcalendar),d(r.yaxis,t.y,e.dataScale[1],t.ycalendar),d(r.zaxis,t.z,e.dataScale[2],t.zcalendar));if(t.i&&t.j&&t.k){if(t.i.length!==t.j.length||t.j.length!==t.k.length||!g(t.i,f)||!g(t.j,f)||!g(t.k,f))return;n=u(m(t.i),m(t.j),m(t.k))}else n=0===t.alphahull?o(h):t.alphahull>0?a(t.alphahull,h):function(t,e){for(var r=["x","y","z"].indexOf(t),n=[],a=e.length,o=0;ov):g=A>w,v=A;var M=c(w,T,k,A);M.pos=_,M.yc=(w+A)/2,M.i=b,M.dir=g?"increasing":"decreasing",M.x=M.pos,M.y=[k,T],y&&(M.orig_p=r[b]),d&&(M.tx=e.text[b]),m&&(M.htx=e.hovertext[b]),x.push(M)}else x.push({pos:_,empty:!0})}return e._extremes[l._id]=a.findExtremes(l,n.concat(h,f),{padded:!0}),x.length&&(x[0].t={labels:{open:i(t,"open:")+" ",high:i(t,"high:")+" ",low:i(t,"low:")+" ",close:i(t,"close:")+" "}}),x}e.exports={calc:function(t,e){var r=a.getFromId(t,e.xaxis),i=a.getFromId(t,e.yaxis),s=function(t,e,r){var i=r._minDiff;if(!i){var a,s=t._fullData,l=[];for(i=1/0,a=0;a"+c.labels[x]+n.hoverLabelText(s,b,l.yhoverformat):((y=i.extendFlat({},h)).y0=y.y1=_,y.yLabelVal=b,y.yLabel=c.labels[x]+n.hoverLabelText(s,b,l.yhoverformat),y.name="",f.push(y),g[b]=y)}return f}function h(t,e,r,i){var a=t.cd,o=t.ya,l=a[0].trace,f=a[0].t,h=u(t,e,r,i);if(!h)return[];var p=a[h.index],d=h.index=p.i,m=p.dir;function g(t){return f.labels[t]+n.hoverLabelText(o,l[t][d],l.yhoverformat)}var v=p.hi||l.hoverinfo,y=v.split("+"),x="all"===v,b=x||-1!==y.indexOf("y"),_=x||-1!==y.indexOf("text"),w=b?[g("open"),g("high"),g("low"),g("close")+" "+c[m]]:[];return _&&s(p,l,w),h.extraText=w.join("
"),h.y0=h.y1=o.c2p(p.yc,!0),[h]}e.exports={hoverPoints:function(t,e,r,n){return t.cd[0].trace.hoverlabel.split?f(t,e,r,n):h(t,e,r,n)},hoverSplit:f,hoverOnPoints:h}},{"../../components/color":639,"../../components/fx":679,"../../constants/delta.js":746,"../../lib":776,"../../plots/cartesian/axes":827}],1141:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"ohlc",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","showLegend"],meta:{},attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc").calc,plot:t("./plot"),style:t("./style"),hoverPoints:t("./hover").hoverPoints,selectPoints:t("./select")}},{"../../plots/cartesian":841,"./attributes":1137,"./calc":1138,"./defaults":1139,"./hover":1140,"./plot":1143,"./select":1144,"./style":1145}],1142:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib");e.exports=function(t,e,r,a){var o=r("x"),s=r("open"),l=r("high"),c=r("low"),u=r("close");if(r("hoverlabel.split"),n.getComponentMethod("calendars","handleTraceDefaults")(t,e,["x"],a),s&&l&&c&&u){var f=Math.min(s.length,l.length,c.length,u.length);return o&&(f=Math.min(f,i.minRowLength(o))),e._length=f,f}}},{"../../lib":776,"../../registry":904}],1143:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib");e.exports=function(t,e,r,a){var o=e.yaxis,s=e.xaxis,l=!!s.rangebreaks;i.makeTraceGroups(a,r,"trace ohlc").each((function(t){var e=n.select(this),r=t[0],a=r.t;if(!0!==r.trace.visible||a.empty)e.remove();else{var c=a.tickLen,u=e.selectAll("path").data(i.identity);u.enter().append("path"),u.exit().remove(),u.attr("d",(function(t){if(t.empty)return"M0,0Z";var e=s.c2p(t.pos-c,!0),r=s.c2p(t.pos+c,!0),n=l?(e+r)/2:s.c2p(t.pos,!0);return"M"+e+","+o.c2p(t.o,!0)+"H"+n+"M"+n+","+o.c2p(t.h,!0)+"V"+o.c2p(t.l,!0)+"M"+r+","+o.c2p(t.c,!0)+"H"+n}))}}))}},{"../../lib":776,"@plotly/d3":58}],1144:[function(t,e,r){"use strict";e.exports=function(t,e){var r,n=t.cd,i=t.xaxis,a=t.yaxis,o=[],s=n[0].t.bPos||0;if(!1===e)for(r=0;r=t.length)return!1;if(void 0!==e[t[r]])return!1;e[t[r]]=!0}return!0}(t.map((function(t){return t.displayindex}))))for(e=0;e0;c&&(o="array");var u=r("categoryorder",o);"array"===u?(r("categoryarray"),r("ticktext")):(delete t.categoryarray,delete t.ticktext),c||"array"!==u||(e.categoryorder="trace")}}e.exports=function(t,e,r,f){function h(r,i){return n.coerce(t,e,l,r,i)}var p=s(t,e,{name:"dimensions",handleItemDefaults:u}),d=function(t,e,r,o,s){s("line.shape"),s("line.hovertemplate");var l=s("line.color",o.colorway[0]);if(i(t,"line")&&n.isArrayOrTypedArray(l)){if(l.length)return s("line.colorscale"),a(t,e,o,s,{prefix:"line.",cLetter:"c"}),l.length;e.line.color=r}return 1/0}(t,e,r,f,h);o(e,f,h),Array.isArray(p)&&p.length||(e.visible=!1),c(e,p,"values",d),h("hoveron"),h("hovertemplate"),h("arrangement"),h("bundlecolors"),h("sortpaths"),h("counts");var m={family:f.font.family,size:Math.round(f.font.size),color:f.font.color};n.coerceFont(h,"labelfont",m);var g={family:f.font.family,size:Math.round(f.font.size/1.2),color:f.font.color};n.coerceFont(h,"tickfont",g)}},{"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"../../lib":776,"../../plots/array_container_defaults":822,"../../plots/domain":855,"../parcoords/merge_length":1162,"./attributes":1146}],1150:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),colorbar:{container:"line",min:"cmin",max:"cmax"},moduleType:"trace",name:"parcats",basePlotModule:t("./base_plot"),categories:["noOpacity"],meta:{}}},{"./attributes":1146,"./base_plot":1147,"./calc":1148,"./defaults":1149,"./plot":1152}],1151:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-interpolate").interpolateNumber,a=t("../../plot_api/plot_api"),o=t("../../components/fx"),s=t("../../lib"),l=s.strTranslate,c=t("../../components/drawing"),u=t("tinycolor2"),f=t("../../lib/svg_text_utils");function h(t,e,r,i){var a=t.map(F.bind(0,e,r)),o=i.selectAll("g.parcatslayer").data([null]);o.enter().append("g").attr("class","parcatslayer").style("pointer-events","all");var u=o.selectAll("g.trace.parcats").data(a,p),h=u.enter().append("g").attr("class","trace parcats");u.attr("transform",(function(t){return l(t.x,t.y)})),h.append("g").attr("class","paths");var y=u.select("g.paths").selectAll("path.path").data((function(t){return t.paths}),p);y.attr("fill",(function(t){return t.model.color}));var x=y.enter().append("path").attr("class","path").attr("stroke-opacity",0).attr("fill",(function(t){return t.model.color})).attr("fill-opacity",0);_(x),y.attr("d",(function(t){return t.svgD})),x.empty()||y.sort(m),y.exit().remove(),y.on("mouseover",g).on("mouseout",v).on("click",b),h.append("g").attr("class","dimensions");var w=u.select("g.dimensions").selectAll("g.dimension").data((function(t){return t.dimensions}),p);w.enter().append("g").attr("class","dimension"),w.attr("transform",(function(t){return l(t.x,0)})),w.exit().remove();var A=w.selectAll("g.category").data((function(t){return t.categories}),p),M=A.enter().append("g").attr("class","category");A.attr("transform",(function(t){return l(0,t.y)})),M.append("rect").attr("class","catrect").attr("pointer-events","none"),A.select("rect.catrect").attr("fill","none").attr("width",(function(t){return t.width})).attr("height",(function(t){return t.height})),T(M);var S=A.selectAll("rect.bandrect").data((function(t){return t.bands}),p);S.each((function(){s.raiseToTop(this)})),S.attr("fill",(function(t){return t.color}));var E=S.enter().append("rect").attr("class","bandrect").attr("stroke-opacity",0).attr("fill",(function(t){return t.color})).attr("fill-opacity",0);S.attr("fill",(function(t){return t.color})).attr("width",(function(t){return t.width})).attr("height",(function(t){return t.height})).attr("y",(function(t){return t.y})).attr("cursor",(function(t){return"fixed"===t.parcatsViewModel.arrangement?"default":"perpendicular"===t.parcatsViewModel.arrangement?"ns-resize":"move"})),k(E),S.exit().remove(),M.append("text").attr("class","catlabel").attr("pointer-events","none");var z=e._fullLayout.paper_bgcolor;A.select("text.catlabel").attr("text-anchor",(function(t){return d(t)?"start":"end"})).attr("alignment-baseline","middle").style("text-shadow",f.makeTextShadow(z)).style("fill","rgb(0, 0, 0)").attr("x",(function(t){return d(t)?t.width+5:-5})).attr("y",(function(t){return t.height/2})).text((function(t){return t.model.categoryLabel})).each((function(t){c.font(n.select(this),t.parcatsViewModel.categorylabelfont),f.convertToTspans(n.select(this),e)})),M.append("text").attr("class","dimlabel"),A.select("text.dimlabel").attr("text-anchor","middle").attr("alignment-baseline","baseline").attr("cursor",(function(t){return"fixed"===t.parcatsViewModel.arrangement?"default":"ew-resize"})).attr("x",(function(t){return t.width/2})).attr("y",-5).text((function(t,e){return 0===e?t.parcatsViewModel.model.dimensions[t.model.dimensionInd].dimensionLabel:null})).each((function(t){c.font(n.select(this),t.parcatsViewModel.labelfont)})),A.selectAll("rect.bandrect").on("mouseover",L).on("mouseout",C),A.exit().remove(),w.call(n.behavior.drag().origin((function(t){return{x:t.x,y:0}})).on("dragstart",P).on("drag",I).on("dragend",O)),u.each((function(t){t.traceSelection=n.select(this),t.pathSelection=n.select(this).selectAll("g.paths").selectAll("path.path"),t.dimensionSelection=n.select(this).selectAll("g.dimensions").selectAll("g.dimension")})),u.exit().remove()}function p(t){return t.key}function d(t){var e=t.parcatsViewModel.dimensions.length,r=t.parcatsViewModel.dimensions[e-1].model.dimensionInd;return t.model.dimensionInd===r}function m(t,e){return t.model.rawColor>e.model.rawColor?1:t.model.rawColor"),L=n.mouse(f)[0];o.loneHover({trace:h,x:b-d.left+m.left,y:_-d.top+m.top,text:E,color:t.model.color,borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontSize:10,fontColor:T,idealAlign:L1&&h.displayInd===f.dimensions.length-1?(i=c.left,a="left"):(i=c.left+c.width,a="right");var m=u.model.count,g=u.model.categoryLabel,v=m/u.parcatsViewModel.model.count,y={countLabel:m,categoryLabel:g,probabilityLabel:v.toFixed(3)},x=[];-1!==u.parcatsViewModel.hoverinfoItems.indexOf("count")&&x.push(["Count:",y.countLabel].join(" ")),-1!==u.parcatsViewModel.hoverinfoItems.indexOf("probability")&&x.push(["P("+y.categoryLabel+"):",y.probabilityLabel].join(" "));var b=x.join("
");return{trace:p,x:o*(i-e.left),y:s*(d-e.top),text:b,color:"lightgray",borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontSize:12,fontColor:"black",idealAlign:a,hovertemplate:p.hovertemplate,hovertemplateLabels:y,eventData:[{data:p._input,fullData:p,count:m,category:g,probability:v}]}}function L(t){if(!t.parcatsViewModel.dragDimension&&-1===t.parcatsViewModel.hoverinfoItems.indexOf("skip")){if(n.mouse(this)[1]<-1)return;var e,r=t.parcatsViewModel.graphDiv,i=r._fullLayout,a=i._paperdiv.node().getBoundingClientRect(),l=t.parcatsViewModel.hoveron;if("color"===l?(!function(t){var e=n.select(t).datum(),r=A(e);w(r),r.each((function(){s.raiseToTop(this)})),n.select(t.parentNode).selectAll("rect.bandrect").filter((function(t){return t.color===e.color})).each((function(){s.raiseToTop(this),n.select(this).attr("stroke","black").attr("stroke-width",1.5)}))}(this),S(this,"plotly_hover",n.event)):(!function(t){n.select(t.parentNode).selectAll("rect.bandrect").each((function(t){var e=A(t);w(e),e.each((function(){s.raiseToTop(this)}))})),n.select(t.parentNode).select("rect.catrect").attr("stroke","black").attr("stroke-width",2.5)}(this),M(this,"plotly_hover",n.event)),-1===t.parcatsViewModel.hoverinfoItems.indexOf("none"))"category"===l?e=E(r,a,this):"color"===l?e=function(t,e,r){t._fullLayout._calcInverseTransform(t);var i,a,o=t._fullLayout._invScaleX,s=t._fullLayout._invScaleY,l=r.getBoundingClientRect(),c=n.select(r).datum(),f=c.categoryViewModel,h=f.parcatsViewModel,p=h.model.dimensions[f.model.dimensionInd],d=h.trace,m=l.y+l.height/2;h.dimensions.length>1&&p.displayInd===h.dimensions.length-1?(i=l.left,a="left"):(i=l.left+l.width,a="right");var g=f.model.categoryLabel,v=c.parcatsViewModel.model.count,y=0;c.categoryViewModel.bands.forEach((function(t){t.color===c.color&&(y+=t.count)}));var x=f.model.count,b=0;h.pathSelection.each((function(t){t.model.color===c.color&&(b+=t.model.count)}));var _=y/v,w=y/b,T=y/x,k={countLabel:v,categoryLabel:g,probabilityLabel:_.toFixed(3)},A=[];-1!==f.parcatsViewModel.hoverinfoItems.indexOf("count")&&A.push(["Count:",k.countLabel].join(" ")),-1!==f.parcatsViewModel.hoverinfoItems.indexOf("probability")&&(A.push("P(color \u2229 "+g+"): "+k.probabilityLabel),A.push("P("+g+" | color): "+w.toFixed(3)),A.push("P(color | "+g+"): "+T.toFixed(3)));var M=A.join("
"),S=u.mostReadable(c.color,["black","white"]);return{trace:d,x:o*(i-e.left),y:s*(m-e.top),text:M,color:c.color,borderColor:"black",fontFamily:'Monaco, "Courier New", monospace',fontColor:S,fontSize:10,idealAlign:a,hovertemplate:d.hovertemplate,hovertemplateLabels:k,eventData:[{data:d._input,fullData:d,category:g,count:v,probability:_,categorycount:x,colorcount:b,bandcolorcount:y}]}}(r,a,this):"dimension"===l&&(e=function(t,e,r){var i=[];return n.select(r.parentNode.parentNode).selectAll("g.category").select("rect.catrect").each((function(){i.push(E(t,e,this))})),i}(r,a,this)),e&&o.loneHover(e,{container:i._hoverlayer.node(),outerContainer:i._paper.node(),gd:r})}}function C(t){var e=t.parcatsViewModel;if(!e.dragDimension&&(_(e.pathSelection),T(e.dimensionSelection.selectAll("g.category")),k(e.dimensionSelection.selectAll("g.category").selectAll("rect.bandrect")),o.loneUnhover(e.graphDiv._fullLayout._hoverlayer.node()),e.pathSelection.sort(m),-1===e.hoverinfoItems.indexOf("skip"))){"color"===t.parcatsViewModel.hoveron?S(this,"plotly_unhover",n.event):M(this,"plotly_unhover",n.event)}}function P(t){"fixed"!==t.parcatsViewModel.arrangement&&(t.dragDimensionDisplayInd=t.model.displayInd,t.initialDragDimensionDisplayInds=t.parcatsViewModel.model.dimensions.map((function(t){return t.displayInd})),t.dragHasMoved=!1,t.dragCategoryDisplayInd=null,n.select(this).selectAll("g.category").select("rect.catrect").each((function(e){var r=n.mouse(this)[0],i=n.mouse(this)[1];-2<=r&&r<=e.width+2&&-2<=i&&i<=e.height+2&&(t.dragCategoryDisplayInd=e.model.displayInd,t.initialDragCategoryDisplayInds=t.model.categories.map((function(t){return t.displayInd})),e.model.dragY=e.y,s.raiseToTop(this.parentNode),n.select(this.parentNode).selectAll("rect.bandrect").each((function(e){e.yf.y+f.height/2&&(o.model.displayInd=f.model.displayInd,f.model.displayInd=l),t.dragCategoryDisplayInd=o.model.displayInd}if(null===t.dragCategoryDisplayInd||"freeform"===t.parcatsViewModel.arrangement){a.model.dragX=n.event.x;var h=t.parcatsViewModel.dimensions[r],p=t.parcatsViewModel.dimensions[i];void 0!==h&&a.model.dragXp.x&&(a.model.displayInd=p.model.displayInd,p.model.displayInd=t.dragDimensionDisplayInd),t.dragDimensionDisplayInd=a.model.displayInd}j(t.parcatsViewModel),N(t.parcatsViewModel),R(t.parcatsViewModel),D(t.parcatsViewModel)}}function O(t){if("fixed"!==t.parcatsViewModel.arrangement&&null!==t.dragDimensionDisplayInd){n.select(this).selectAll("text").attr("font-weight","normal");var e={},r=z(t.parcatsViewModel),i=t.parcatsViewModel.model.dimensions.map((function(t){return t.displayInd})),o=t.initialDragDimensionDisplayInds.some((function(t,e){return t!==i[e]}));o&&i.forEach((function(r,n){var i=t.parcatsViewModel.model.dimensions[n].containerInd;e["dimensions["+i+"].displayindex"]=r}));var s=!1;if(null!==t.dragCategoryDisplayInd){var l=t.model.categories.map((function(t){return t.displayInd}));if(s=t.initialDragCategoryDisplayInds.some((function(t,e){return t!==l[e]}))){var c=t.model.categories.slice().sort((function(t,e){return t.displayInd-e.displayInd})),u=c.map((function(t){return t.categoryValue})),f=c.map((function(t){return t.categoryLabel}));e["dimensions["+t.model.containerInd+"].categoryarray"]=[u],e["dimensions["+t.model.containerInd+"].ticktext"]=[f],e["dimensions["+t.model.containerInd+"].categoryorder"]="array"}}if(-1===t.parcatsViewModel.hoverinfoItems.indexOf("skip")&&!t.dragHasMoved&&t.potentialClickBand&&("color"===t.parcatsViewModel.hoveron?S(t.potentialClickBand,"plotly_click",n.event.sourceEvent):M(t.potentialClickBand,"plotly_click",n.event.sourceEvent)),t.model.dragX=null,null!==t.dragCategoryDisplayInd)t.parcatsViewModel.dimensions[t.dragDimensionDisplayInd].categories[t.dragCategoryDisplayInd].model.dragY=null,t.dragCategoryDisplayInd=null;t.dragDimensionDisplayInd=null,t.parcatsViewModel.dragDimension=null,t.dragHasMoved=null,t.potentialClickBand=null,j(t.parcatsViewModel),N(t.parcatsViewModel),n.transition().duration(300).ease("cubic-in-out").each((function(){R(t.parcatsViewModel,!0),D(t.parcatsViewModel,!0)})).each("end",(function(){(o||s)&&a.restyle(t.parcatsViewModel.graphDiv,e,[r])}))}}function z(t){for(var e,r=t.graphDiv._fullData,n=0;n=0;s--)u+="C"+c[s]+","+(e[s+1]+n)+" "+l[s]+","+(e[s]+n)+" "+(t[s]+r[s])+","+(e[s]+n),u+="l-"+r[s]+",0 ";return u+="Z"}function N(t){var e=t.dimensions,r=t.model,n=e.map((function(t){return t.categories.map((function(t){return t.y}))})),i=t.model.dimensions.map((function(t){return t.categories.map((function(t){return t.displayInd}))})),a=t.model.dimensions.map((function(t){return t.displayInd})),o=t.dimensions.map((function(t){return t.model.dimensionInd})),s=e.map((function(t){return t.x})),l=e.map((function(t){return t.width})),c=[];for(var u in r.paths)r.paths.hasOwnProperty(u)&&c.push(r.paths[u]);function f(t){var e=t.categoryInds.map((function(t,e){return i[e][t]}));return o.map((function(t){return e[t]}))}c.sort((function(e,r){var n=f(e),i=f(r);return"backward"===t.sortpaths&&(n.reverse(),i.reverse()),n.push(e.valueInds[0]),i.push(r.valueInds[0]),t.bundlecolors&&(n.unshift(e.rawColor),i.unshift(r.rawColor)),ni?1:0}));for(var h=new Array(c.length),p=e[0].model.count,d=e[0].categories.map((function(t){return t.height})).reduce((function(t,e){return t+e})),m=0;m0?d*(v.count/p):0;for(var y,x=new Array(n.length),b=0;b1?(t.width-80-16)/(n-1):0)*i;var a,o,s,l,c,u=[],f=t.model.maxCats,h=e.categories.length,p=e.count,d=t.height-8*(f-1),m=8*(f-h)/2,g=e.categories.map((function(t){return{displayInd:t.displayInd,categoryInd:t.categoryInd}}));for(g.sort((function(t,e){return t.displayInd-e.displayInd})),c=0;c0?o.count/p*d:0,s={key:o.valueInds[0],model:o,width:16,height:a,y:null!==o.dragY?o.dragY:m,bands:[],parcatsViewModel:t},m=m+a+8,u.push(s);return{key:e.dimensionInd,x:null!==e.dragX?e.dragX:r,y:0,width:16,model:e,categories:u,parcatsViewModel:t,dragCategoryDisplayInd:null,dragDimensionDisplayInd:null,initialDragDimensionDisplayInds:null,initialDragCategoryDisplayInds:null,dragHasMoved:null,potentialClickBand:null}}e.exports=function(t,e,r,n){h(r,t,n,e)}},{"../../components/drawing":661,"../../components/fx":679,"../../lib":776,"../../lib/svg_text_utils":802,"../../plot_api/plot_api":813,"@plotly/d3":58,"d3-interpolate":164,tinycolor2:572}],1152:[function(t,e,r){"use strict";var n=t("./parcats");e.exports=function(t,e,r,i){var a=t._fullLayout,o=a._paper,s=a._size;n(t,o,e,{width:s.w,height:s.h,margin:{t:s.t,r:s.r,b:s.b,l:s.l}},r,i)}},{"./parcats":1151}],1153:[function(t,e,r){"use strict";var n=t("../../components/colorscale/attributes"),i=t("../../plots/cartesian/layout_attributes"),a=t("../../plots/font_attributes"),o=t("../../plots/domain").attributes,s=t("../../lib/extend").extendFlat,l=t("../../plot_api/plot_template").templatedArray;e.exports={domain:o({name:"parcoords",trace:!0,editType:"plot"}),labelangle:{valType:"angle",dflt:0,editType:"plot"},labelside:{valType:"enumerated",values:["top","bottom"],dflt:"top",editType:"plot"},labelfont:a({editType:"plot"}),tickfont:a({editType:"plot"}),rangefont:a({editType:"plot"}),dimensions:l("dimension",{label:{valType:"string",editType:"plot"},tickvals:s({},i.tickvals,{editType:"plot"}),ticktext:s({},i.ticktext,{editType:"plot"}),tickformat:s({},i.tickformat,{editType:"plot"}),visible:{valType:"boolean",dflt:!0,editType:"plot"},range:{valType:"info_array",items:[{valType:"number",editType:"plot"},{valType:"number",editType:"plot"}],editType:"plot"},constraintrange:{valType:"info_array",freeLength:!0,dimensions:"1-2",items:[{valType:"any",editType:"plot"},{valType:"any",editType:"plot"}],editType:"plot"},multiselect:{valType:"boolean",dflt:!0,editType:"plot"},values:{valType:"data_array",editType:"calc"},editType:"calc"}),line:s({editType:"calc"},n("line",{colorscaleDflt:"Viridis",autoColorDflt:!1,editTypeOverride:"calc"}))}},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plot_api/plot_template":816,"../../plots/cartesian/layout_attributes":842,"../../plots/domain":855,"../../plots/font_attributes":856}],1154:[function(t,e,r){"use strict";var n=t("./constants"),i=t("@plotly/d3"),a=t("../../lib/gup").keyFun,o=t("../../lib/gup").repeat,s=t("../../lib").sorterAsc,l=t("../../lib").strTranslate,c=n.bar.snapRatio;function u(t,e){return t*(1-c)+e*c}var f=n.bar.snapClose;function h(t,e){return t*(1-f)+e*f}function p(t,e,r,n){if(function(t,e){for(var r=0;r=e[r][0]&&t<=e[r][1])return!0;return!1}(r,n))return r;var i=t?-1:1,a=0,o=e.length-1;if(i<0){var s=a;a=o,o=s}for(var l=e[a],c=l,f=a;i*fe){h=r;break}}if(a=u,isNaN(a)&&(a=isNaN(f)||isNaN(h)?isNaN(f)?h:f:e-c[f][1]t[1]+r||e=.9*t[1]+.1*t[0]?"n":e<=.9*t[0]+.1*t[1]?"s":"ns"}(d,e);m&&(o.interval=l[a],o.intervalPix=d,o.region=m)}}if(t.ordinal&&!o.region){var g=t.unitTickvals,y=t.unitToPaddedPx.invert(e);for(r=0;r=x[0]&&y<=x[1]){o.clickableOrdinalRange=x;break}}}return o}function w(t,e){i.event.sourceEvent.stopPropagation();var r=e.height-i.mouse(t)[1]-2*n.verticalPadding,a=e.brush.svgBrush;a.wasDragged=!0,a._dragging=!0,a.grabbingBar?a.newExtent=[r-a.grabPoint,r+a.barLength-a.grabPoint].map(e.unitToPaddedPx.invert):a.newExtent=[a.startExtent,e.unitToPaddedPx.invert(r)].sort(s),e.brush.filterSpecified=!0,a.extent=a.stayingIntervals.concat([a.newExtent]),a.brushCallback(e),b(t.parentNode)}function T(t,e){var r=_(e,e.height-i.mouse(t)[1]-2*n.verticalPadding),a="crosshair";r.clickableOrdinalRange?a="pointer":r.region&&(a=r.region+"-resize"),i.select(document.body).style("cursor",a)}function k(t){t.on("mousemove",(function(t){i.event.preventDefault(),t.parent.inBrushDrag||T(this,t)})).on("mouseleave",(function(t){t.parent.inBrushDrag||y()})).call(i.behavior.drag().on("dragstart",(function(t){!function(t,e){i.event.sourceEvent.stopPropagation();var r=e.height-i.mouse(t)[1]-2*n.verticalPadding,a=e.unitToPaddedPx.invert(r),o=e.brush,s=_(e,r),l=s.interval,c=o.svgBrush;if(c.wasDragged=!1,c.grabbingBar="ns"===s.region,c.grabbingBar){var u=l.map(e.unitToPaddedPx);c.grabPoint=r-u[0]-n.verticalPadding,c.barLength=u[1]-u[0]}c.clickableOrdinalRange=s.clickableOrdinalRange,c.stayingIntervals=e.multiselect&&o.filterSpecified?o.filter.getConsolidated():[],l&&(c.stayingIntervals=c.stayingIntervals.filter((function(t){return t[0]!==l[0]&&t[1]!==l[1]}))),c.startExtent=s.region?l["s"===s.region?1:0]:a,e.parent.inBrushDrag=!0,c.brushStartCallback()}(this,t)})).on("drag",(function(t){w(this,t)})).on("dragend",(function(t){!function(t,e){var r=e.brush,n=r.filter,a=r.svgBrush;a._dragging||(T(t,e),w(t,e),e.brush.svgBrush.wasDragged=!1),a._dragging=!1,i.event.sourceEvent.stopPropagation();var o=a.grabbingBar;if(a.grabbingBar=!1,a.grabLocation=void 0,e.parent.inBrushDrag=!1,y(),!a.wasDragged)return a.wasDragged=void 0,a.clickableOrdinalRange?r.filterSpecified&&e.multiselect?a.extent.push(a.clickableOrdinalRange):(a.extent=[a.clickableOrdinalRange],r.filterSpecified=!0):o?(a.extent=a.stayingIntervals,0===a.extent.length&&M(r)):M(r),a.brushCallback(e),b(t.parentNode),void a.brushEndCallback(r.filterSpecified?n.getConsolidated():[]);var s=function(){n.set(n.getConsolidated())};if(e.ordinal){var l=e.unitTickvals;l[l.length-1]a.newExtent[0];a.extent=a.stayingIntervals.concat(c?[a.newExtent]:[]),a.extent.length||M(r),a.brushCallback(e),c?b(t.parentNode,s):(s(),b(t.parentNode))}else s();a.brushEndCallback(r.filterSpecified?n.getConsolidated():[])}(this,t)})))}function A(t,e){return t[0]-e[0]}function M(t){t.filterSpecified=!1,t.svgBrush.extent=[[-1/0,1/0]]}function S(t){for(var e,r=t.slice(),n=[],i=r.shift();i;){for(e=i.slice();(i=r.shift())&&i[0]<=e[1];)e[1]=Math.max(e[1],i[1]);n.push(e)}return 1===n.length&&n[0][0]>n[0][1]&&(n=[]),n}e.exports={makeBrush:function(t,e,r,n,i,a){var o,l=function(){var t,e,r=[];return{set:function(n){1===(r=n.map((function(t){return t.slice().sort(s)})).sort(A)).length&&r[0][0]===-1/0&&r[0][1]===1/0&&(r=[[0,-1]]),t=S(r),e=r.reduce((function(t,e){return[Math.min(t[0],e[0]),Math.max(t[1],e[1])]}),[1/0,-1/0])},get:function(){return r.slice()},getConsolidated:function(){return t},getBounds:function(){return e}}}();return l.set(r),{filter:l,filterSpecified:e,svgBrush:{extent:[],brushStartCallback:n,brushCallback:(o=i,function(t){var e=t.brush,r=function(t){return t.svgBrush.extent.map((function(t){return t.slice()}))}(e).slice();e.filter.set(r),o()}),brushEndCallback:a}}},ensureAxisBrush:function(t,e){var r=t.selectAll("."+n.cn.axisBrush).data(o,a);r.enter().append("g").classed(n.cn.axisBrush,!0),function(t,e){var r=t.selectAll(".background").data(o);r.enter().append("rect").classed("background",!0).call(d).call(m).style("pointer-events","auto").attr("transform",l(0,n.verticalPadding)),r.call(k).attr("height",(function(t){return t.height-n.verticalPadding}));var i=t.selectAll(".highlight-shadow").data(o);i.enter().append("line").classed("highlight-shadow",!0).attr("x",-n.bar.width/2).attr("stroke-width",n.bar.width+n.bar.strokeWidth).attr("stroke",e).attr("opacity",n.bar.strokeOpacity).attr("stroke-linecap","butt"),i.attr("y1",(function(t){return t.height})).call(x);var a=t.selectAll(".highlight").data(o);a.enter().append("line").classed("highlight",!0).attr("x",-n.bar.width/2).attr("stroke-width",n.bar.width-n.bar.strokeWidth).attr("stroke",n.bar.fillColor).attr("opacity",n.bar.fillOpacity).attr("stroke-linecap","butt"),a.attr("y1",(function(t){return t.height})).call(x)}(r,e)},cleanRanges:function(t,e){if(Array.isArray(t[0])?(t=t.map((function(t){return t.sort(s)})),t=e.multiselect?S(t.sort(A)):[t[0]]):t=[t.sort(s)],e.tickvals){var r=e.tickvals.slice().sort(s);if(!(t=t.map((function(t){var e=[p(0,r,t[0],[]),p(1,r,t[1],[])];if(e[1]>e[0])return e})).filter((function(t){return t}))).length)return}return t.length>1?t:t[0]}}},{"../../lib":776,"../../lib/gup":773,"./constants":1157,"@plotly/d3":58}],1155:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../plots/get_data").getModuleCalcData,a=t("./plot"),o=t("../../constants/xmlns_namespaces");r.name="parcoords",r.plot=function(t){var e=i(t.calcdata,"parcoords")[0];e.length&&a(t,e)},r.clean=function(t,e,r,n){var i=n._has&&n._has("parcoords"),a=e._has&&e._has("parcoords");i&&!a&&(n._paperdiv.selectAll(".parcoords").remove(),n._glimages.selectAll("*").remove())},r.toSVG=function(t){var e=t._fullLayout._glimages,r=n.select(t).selectAll(".svg-container");r.filter((function(t,e){return e===r.size()-1})).selectAll(".gl-canvas-context, .gl-canvas-focus").each((function(){var t=this.toDataURL("image/png");e.append("svg:image").attr({xmlns:o.svg,"xlink:href":t,preserveAspectRatio:"none",x:0,y:0,width:this.style.width,height:this.style.height})})),window.setTimeout((function(){n.selectAll("#filterBarPattern").attr("id","filterBarPattern")}),60)}},{"../../constants/xmlns_namespaces":753,"../../plots/get_data":864,"./plot":1164,"@plotly/d3":58}],1156:[function(t,e,r){"use strict";var n=t("../../lib").isArrayOrTypedArray,i=t("../../components/colorscale"),a=t("../../lib/gup").wrap;e.exports=function(t,e){var r,o;return i.hasColorscale(e,"line")&&n(e.line.color)?(r=e.line.color,o=i.extractOpts(e.line).colorscale,i.calc(t,e,{vals:r,containerStr:"line",cLetter:"c"})):(r=function(t){for(var e=new Array(t),r=0;rf&&(n.log("parcoords traces support up to "+f+" dimensions at the moment"),d.splice(f));var m=s(t,e,{name:"dimensions",layout:l,handleItemDefaults:p}),g=function(t,e,r,o,s){var l=s("line.color",r);if(i(t,"line")&&n.isArrayOrTypedArray(l)){if(l.length)return s("line.colorscale"),a(t,e,o,s,{prefix:"line.",cLetter:"c"}),l.length;e.line.color=r}return 1/0}(t,e,r,l,u);o(e,l,u),Array.isArray(m)&&m.length||(e.visible=!1),h(e,m,"values",g);var v={family:l.font.family,size:Math.round(l.font.size/1.2),color:l.font.color};n.coerceFont(u,"labelfont",v),n.coerceFont(u,"tickfont",v),n.coerceFont(u,"rangefont",v),u("labelangle"),u("labelside")}},{"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"../../lib":776,"../../plots/array_container_defaults":822,"../../plots/cartesian/axes":827,"../../plots/domain":855,"./attributes":1153,"./axisbrush":1154,"./constants":1157,"./merge_length":1162}],1159:[function(t,e,r){"use strict";var n=t("../../lib").isTypedArray;r.convertTypedArray=function(t){return n(t)?Array.prototype.slice.call(t):t},r.isOrdinal=function(t){return!!t.tickvals},r.isVisible=function(t){return t.visible||!("visible"in t)}},{"../../lib":776}],1160:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),colorbar:{container:"line",min:"cmin",max:"cmax"},moduleType:"trace",name:"parcoords",basePlotModule:t("./base_plot"),categories:["gl","regl","noOpacity","noHover"],meta:{}}},{"./attributes":1153,"./base_plot":1155,"./calc":1156,"./defaults":1158,"./plot":1164}],1161:[function(t,e,r){"use strict";var n=t("glslify"),i=n(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nattribute vec4 p01_04, p05_08, p09_12, p13_16,\n p17_20, p21_24, p25_28, p29_32,\n p33_36, p37_40, p41_44, p45_48,\n p49_52, p53_56, p57_60, colors;\n\nuniform mat4 dim0A, dim1A, dim0B, dim1B, dim0C, dim1C, dim0D, dim1D,\n loA, hiA, loB, hiB, loC, hiC, loD, hiD;\n\nuniform vec2 resolution, viewBoxPos, viewBoxSize;\nuniform float maskHeight;\nuniform float drwLayer; // 0: context, 1: focus, 2: pick\nuniform vec4 contextColor;\nuniform sampler2D maskTexture, palette;\n\nbool isPick = (drwLayer > 1.5);\nbool isContext = (drwLayer < 0.5);\n\nconst vec4 ZEROS = vec4(0.0, 0.0, 0.0, 0.0);\nconst vec4 UNITS = vec4(1.0, 1.0, 1.0, 1.0);\n\nfloat val(mat4 p, mat4 v) {\n return dot(matrixCompMult(p, v) * UNITS, UNITS);\n}\n\nfloat axisY(float ratio, mat4 A, mat4 B, mat4 C, mat4 D) {\n float y1 = val(A, dim0A) + val(B, dim0B) + val(C, dim0C) + val(D, dim0D);\n float y2 = val(A, dim1A) + val(B, dim1B) + val(C, dim1C) + val(D, dim1D);\n return y1 * (1.0 - ratio) + y2 * ratio;\n}\n\nint iMod(int a, int b) {\n return a - b * (a / b);\n}\n\nbool fOutside(float p, float lo, float hi) {\n return (lo < hi) && (lo > p || p > hi);\n}\n\nbool vOutside(vec4 p, vec4 lo, vec4 hi) {\n return (\n fOutside(p[0], lo[0], hi[0]) ||\n fOutside(p[1], lo[1], hi[1]) ||\n fOutside(p[2], lo[2], hi[2]) ||\n fOutside(p[3], lo[3], hi[3])\n );\n}\n\nbool mOutside(mat4 p, mat4 lo, mat4 hi) {\n return (\n vOutside(p[0], lo[0], hi[0]) ||\n vOutside(p[1], lo[1], hi[1]) ||\n vOutside(p[2], lo[2], hi[2]) ||\n vOutside(p[3], lo[3], hi[3])\n );\n}\n\nbool outsideBoundingBox(mat4 A, mat4 B, mat4 C, mat4 D) {\n return mOutside(A, loA, hiA) ||\n mOutside(B, loB, hiB) ||\n mOutside(C, loC, hiC) ||\n mOutside(D, loD, hiD);\n}\n\nbool outsideRasterMask(mat4 A, mat4 B, mat4 C, mat4 D) {\n mat4 pnts[4];\n pnts[0] = A;\n pnts[1] = B;\n pnts[2] = C;\n pnts[3] = D;\n\n for(int i = 0; i < 4; ++i) {\n for(int j = 0; j < 4; ++j) {\n for(int k = 0; k < 4; ++k) {\n if(0 == iMod(\n int(255.0 * texture2D(maskTexture,\n vec2(\n (float(i * 2 + j / 2) + 0.5) / 8.0,\n (pnts[i][j][k] * (maskHeight - 1.0) + 1.0) / maskHeight\n ))[3]\n ) / int(pow(2.0, float(iMod(j * 4 + k, 8)))),\n 2\n )) return true;\n }\n }\n }\n return false;\n}\n\nvec4 position(bool isContext, float v, mat4 A, mat4 B, mat4 C, mat4 D) {\n float x = 0.5 * sign(v) + 0.5;\n float y = axisY(x, A, B, C, D);\n float z = 1.0 - abs(v);\n\n z += isContext ? 0.0 : 2.0 * float(\n outsideBoundingBox(A, B, C, D) ||\n outsideRasterMask(A, B, C, D)\n );\n\n return vec4(\n 2.0 * (vec2(x, y) * viewBoxSize + viewBoxPos) / resolution - 1.0,\n z,\n 1.0\n );\n}\n\nvoid main() {\n mat4 A = mat4(p01_04, p05_08, p09_12, p13_16);\n mat4 B = mat4(p17_20, p21_24, p25_28, p29_32);\n mat4 C = mat4(p33_36, p37_40, p41_44, p45_48);\n mat4 D = mat4(p49_52, p53_56, p57_60, ZEROS);\n\n float v = colors[3];\n\n gl_Position = position(isContext, v, A, B, C, D);\n\n fragColor =\n isContext ? vec4(contextColor) :\n isPick ? vec4(colors.rgb, 1.0) : texture2D(palette, vec2(abs(v), 0.5));\n}\n"]),a=n(["precision highp float;\n#define GLSLIFY 1\n\nvarying vec4 fragColor;\n\nvoid main() {\n gl_FragColor = fragColor;\n}\n"]),o=t("./constants").maxDimensionCount,s=t("../../lib"),l=new Uint8Array(4),c=new Uint8Array(4),u={shape:[256,1],format:"rgba",type:"uint8",mag:"nearest",min:"nearest"};function f(t,e,r,n,i){var a=t._gl;a.enable(a.SCISSOR_TEST),a.scissor(e,r,n,i),t.clear({color:[0,0,0,0],depth:1})}function h(t,e,r,n,i,a){var o=a.key;r.drawCompleted||(!function(t){t.read({x:0,y:0,width:1,height:1,data:l})}(t),r.drawCompleted=!0),function s(l){var c=Math.min(n,i-l*n);0===l&&(window.cancelAnimationFrame(r.currentRafs[o]),delete r.currentRafs[o],f(t,a.scissorX,a.scissorY,a.scissorWidth,a.viewBoxSize[1])),r.clearOnly||(a.count=2*c,a.offset=2*l*n,e(a),l*n+c>>8*e)%256/255}function m(t,e,r){for(var n=new Array(8*e),i=0,a=0;au&&(u=t[i].dim1.canvasX,o=i);0===s&&f(T,0,0,r.canvasWidth,r.canvasHeight);var p=function(t){var e,r,n,i=[[],[]];for(n=0;n<64;n++){var a=!t&&no._length&&(S=S.slice(0,o._length));var L,C=o.tickvals;function P(t,e){return{val:t,text:L[e]}}function I(t,e){return t.val-e.val}if(Array.isArray(C)&&C.length){L=o.ticktext,Array.isArray(L)&&L.length?L.length>C.length?L=L.slice(0,C.length):C.length>L.length&&(C=C.slice(0,L.length)):L=C.map(a(o.tickformat));for(var O=1;O=r||l>=i)return;var c=t.lineLayer.readPixel(s,i-1-l),u=0!==c[3],f=u?c[2]+256*(c[1]+256*c[0]):null,h={x:s,y:l,clientX:e.clientX,clientY:e.clientY,dataIndex:t.model.key,curveNumber:f};f!==B&&(u?a.hover(h):a.unhover&&a.unhover(h),B=f)}})),F.style("opacity",(function(t){return t.pick?0:1})),h.style("background","rgba(255, 255, 255, 0)");var N=h.selectAll("."+y.cn.parcoords).data(R,d);N.exit().remove(),N.enter().append("g").classed(y.cn.parcoords,!0).style("shape-rendering","crispEdges").style("pointer-events","none"),N.attr("transform",(function(t){return c(t.model.translateX,t.model.translateY)}));var j=N.selectAll("."+y.cn.parcoordsControlView).data(m,d);j.enter().append("g").classed(y.cn.parcoordsControlView,!0),j.attr("transform",(function(t){return c(t.model.pad.l,t.model.pad.t)}));var U=j.selectAll("."+y.cn.yAxis).data((function(t){return t.dimensions}),d);U.enter().append("g").classed(y.cn.yAxis,!0),j.each((function(t){O(U,t,_)})),F.each((function(t){if(t.viewModel){!t.lineLayer||a?t.lineLayer=b(this,t):t.lineLayer.update(t),(t.key||0===t.key)&&(t.viewModel[t.key]=t.lineLayer);var e=!t.context||a;t.lineLayer.render(t.viewModel.panels,e)}})),U.attr("transform",(function(t){return c(t.xScale(t.xIndex),0)})),U.call(n.behavior.drag().origin((function(t){return t})).on("drag",(function(t){var e=t.parent;S.linePickActive(!1),t.x=Math.max(-y.overdrag,Math.min(t.model.width+y.overdrag,n.event.x)),t.canvasX=t.x*t.model.canvasPixelRatio,U.sort((function(t,e){return t.x-e.x})).each((function(e,r){e.xIndex=r,e.x=t===e?e.x:e.xScale(e.xIndex),e.canvasX=e.x*e.model.canvasPixelRatio})),O(U,e,_),U.filter((function(e){return 0!==Math.abs(t.xIndex-e.xIndex)})).attr("transform",(function(t){return c(t.xScale(t.xIndex),0)})),n.select(this).attr("transform",c(t.x,0)),U.each((function(r,n,i){i===t.parent.key&&(e.dimensions[n]=r)})),e.contextLayer&&e.contextLayer.render(e.panels,!1,!E(e)),e.focusLayer.render&&e.focusLayer.render(e.panels)})).on("dragend",(function(t){var e=t.parent;t.x=t.xScale(t.xIndex),t.canvasX=t.x*t.model.canvasPixelRatio,O(U,e,_),n.select(this).attr("transform",(function(t){return c(t.x,0)})),e.contextLayer&&e.contextLayer.render(e.panels,!1,!E(e)),e.focusLayer&&e.focusLayer.render(e.panels),e.pickLayer&&e.pickLayer.render(e.panels,!0),S.linePickActive(!0),a&&a.axesMoved&&a.axesMoved(e.key,e.dimensions.map((function(t){return t.crossfilterDimensionIndex})))}))),U.exit().remove();var V=U.selectAll("."+y.cn.axisOverlays).data(m,d);V.enter().append("g").classed(y.cn.axisOverlays,!0),V.selectAll("."+y.cn.axis).remove();var H=V.selectAll("."+y.cn.axis).data(m,d);H.enter().append("g").classed(y.cn.axis,!0),H.each((function(t){var e=t.model.height/t.model.tickDistance,r=t.domainScale,i=r.domain();n.select(this).call(n.svg.axis().orient("left").tickSize(4).outerTickSize(2).ticks(e,t.tickFormat).tickValues(t.ordinal?i:null).tickFormat((function(e){return v.isOrdinal(t)?e:z(t.model.dimensions[t.visibleIndex],e)})).scale(r)),f.font(H.selectAll("text"),t.model.tickFont)})),H.selectAll(".domain, .tick>line").attr("fill","none").attr("stroke","black").attr("stroke-opacity",.25).attr("stroke-width","1px"),H.selectAll("text").style("text-shadow",u.makeTextShadow(T)).style("cursor","default");var q=V.selectAll("."+y.cn.axisHeading).data(m,d);q.enter().append("g").classed(y.cn.axisHeading,!0);var G=q.selectAll("."+y.cn.axisTitle).data(m,d);G.enter().append("text").classed(y.cn.axisTitle,!0).attr("text-anchor","middle").style("cursor","ew-resize").style("pointer-events","auto"),G.text((function(t){return t.label})).each((function(e){var r=n.select(this);f.font(r,e.model.labelFont),u.convertToTspans(r,t)})).attr("transform",(function(t){var e=I(t.model.labelAngle,t.model.labelSide),r=y.axisTitleOffset;return(e.dir>0?"":c(0,2*r+t.model.height))+l(e.degrees)+c(-r*e.dx,-r*e.dy)})).attr("text-anchor",(function(t){var e=I(t.model.labelAngle,t.model.labelSide);return 2*Math.abs(e.dx)>Math.abs(e.dy)?e.dir*e.dx<0?"start":"end":"middle"}));var Y=V.selectAll("."+y.cn.axisExtent).data(m,d);Y.enter().append("g").classed(y.cn.axisExtent,!0);var W=Y.selectAll("."+y.cn.axisExtentTop).data(m,d);W.enter().append("g").classed(y.cn.axisExtentTop,!0),W.attr("transform",c(0,-y.axisExtentOffset));var X=W.selectAll("."+y.cn.axisExtentTopText).data(m,d);X.enter().append("text").classed(y.cn.axisExtentTopText,!0).call(P),X.text((function(t){return D(t,!0)})).each((function(t){f.font(n.select(this),t.model.rangeFont)}));var Z=Y.selectAll("."+y.cn.axisExtentBottom).data(m,d);Z.enter().append("g").classed(y.cn.axisExtentBottom,!0),Z.attr("transform",(function(t){return c(0,t.model.height+y.axisExtentOffset)}));var J=Z.selectAll("."+y.cn.axisExtentBottomText).data(m,d);J.enter().append("text").classed(y.cn.axisExtentBottomText,!0).attr("dy","0.75em").call(P),J.text((function(t){return D(t,!1)})).each((function(t){f.font(n.select(this),t.model.rangeFont)})),x.ensureAxisBrush(V,T)}},{"../../components/colorscale":651,"../../components/drawing":661,"../../lib":776,"../../lib/gup":773,"../../lib/svg_text_utils":802,"../../plots/cartesian/axes":827,"./axisbrush":1154,"./constants":1157,"./helpers":1159,"./lines":1161,"@plotly/d3":58,"color-rgba":128}],1164:[function(t,e,r){"use strict";var n=t("./parcoords"),i=t("../../lib/prepare_regl"),a=t("./helpers").isVisible;function o(t,e,r){var n=e.indexOf(r),i=t.indexOf(n);return-1===i&&(i+=e.length),i}e.exports=function(t,e){var r=t._fullLayout;if(i(t)){var s={},l={},c={},u={},f=r._size;e.forEach((function(e,r){var n=e[0].trace;c[r]=n.index;var i=u[r]=n._fullInput.index;s[r]=t.data[i].dimensions,l[r]=t.data[i].dimensions.slice()}));n(t,e,{width:f.w,height:f.h,margin:{t:f.t,r:f.r,b:f.b,l:f.l}},{filterChanged:function(e,n,i){var a=l[e][n],o=i.map((function(t){return t.slice()})),s="dimensions["+n+"].constraintrange",f=r._tracePreGUI[t._fullData[c[e]]._fullInput.uid];if(void 0===f[s]){var h=a.constraintrange;f[s]=h||null}var p=t._fullData[c[e]].dimensions[n];o.length?(1===o.length&&(o=o[0]),a.constraintrange=o,p.constraintrange=o.slice(),o=[o]):(delete a.constraintrange,delete p.constraintrange,o=null);var d={};d[s]=o,t.emit("plotly_restyle",[d,[u[e]]])},hover:function(e){t.emit("plotly_hover",e)},unhover:function(e){t.emit("plotly_unhover",e)},axesMoved:function(e,r){var n=function(t,e){return function(r,n){return o(t,e,r)-o(t,e,n)}}(r,l[e].filter(a));s[e].sort(n),l[e].filter((function(t){return!a(t)})).sort((function(t){return l[e].indexOf(t)})).forEach((function(t){s[e].splice(s[e].indexOf(t),1),s[e].splice(l[e].indexOf(t),0,t)})),t.emit("plotly_restyle",[{dimensions:[s[e]]},[u[e]]])}})}}},{"../../lib/prepare_regl":789,"./helpers":1159,"./parcoords":1163}],1165:[function(t,e,r){"use strict";var n=t("../../plots/attributes"),i=t("../../plots/domain").attributes,a=t("../../plots/font_attributes"),o=t("../../components/color/attributes"),s=t("../../plots/template_attributes").hovertemplateAttrs,l=t("../../plots/template_attributes").texttemplateAttrs,c=t("../../lib/extend").extendFlat,u=a({editType:"plot",arrayOk:!0,colorEditType:"plot"});e.exports={labels:{valType:"data_array",editType:"calc"},label0:{valType:"number",dflt:0,editType:"calc"},dlabel:{valType:"number",dflt:1,editType:"calc"},values:{valType:"data_array",editType:"calc"},marker:{colors:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:o.defaultLine,arrayOk:!0,editType:"style"},width:{valType:"number",min:0,dflt:0,arrayOk:!0,editType:"style"},editType:"calc"},editType:"calc"},text:{valType:"data_array",editType:"plot"},hovertext:{valType:"string",dflt:"",arrayOk:!0,editType:"style"},scalegroup:{valType:"string",dflt:"",editType:"calc"},textinfo:{valType:"flaglist",flags:["label","text","value","percent"],extras:["none"],editType:"calc"},hoverinfo:c({},n.hoverinfo,{flags:["label","text","value","percent","name"]}),hovertemplate:s({},{keys:["label","color","value","percent","text"]}),texttemplate:l({editType:"plot"},{keys:["label","color","value","percent","text"]}),textposition:{valType:"enumerated",values:["inside","outside","auto","none"],dflt:"auto",arrayOk:!0,editType:"plot"},textfont:c({},u,{}),insidetextorientation:{valType:"enumerated",values:["horizontal","radial","tangential","auto"],dflt:"auto",editType:"plot"},insidetextfont:c({},u,{}),outsidetextfont:c({},u,{}),automargin:{valType:"boolean",dflt:!1,editType:"plot"},title:{text:{valType:"string",dflt:"",editType:"plot"},font:c({},u,{}),position:{valType:"enumerated",values:["top left","top center","top right","middle center","bottom left","bottom center","bottom right"],editType:"plot"},editType:"plot"},domain:i({name:"pie",trace:!0,editType:"calc"}),hole:{valType:"number",min:0,max:1,dflt:0,editType:"calc"},sort:{valType:"boolean",dflt:!0,editType:"calc"},direction:{valType:"enumerated",values:["clockwise","counterclockwise"],dflt:"counterclockwise",editType:"calc"},rotation:{valType:"number",min:-360,max:360,dflt:0,editType:"calc"},pull:{valType:"number",min:0,max:1,dflt:0,arrayOk:!0,editType:"calc"},_deprecated:{title:{valType:"string",dflt:"",editType:"calc"},titlefont:c({},u,{}),titleposition:{valType:"enumerated",values:["top left","top center","top right","middle center","bottom left","bottom center","bottom right"],editType:"calc"}}}},{"../../components/color/attributes":638,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/domain":855,"../../plots/font_attributes":856,"../../plots/template_attributes":899}],1166:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="pie",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":890}],1167:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("tinycolor2"),a=t("../../components/color"),o={};function s(t){return function(e,r){return!!e&&(!!(e=i(e)).isValid()&&(e=a.addOpacity(e,e.getAlpha()),t[r]||(t[r]=e),e))}}function l(t,e){var r,n=JSON.stringify(t),a=e[n];if(!a){for(a=t.slice(),r=0;r0){s=!0;break}}s||(o=0)}return{hasLabels:r,hasValues:a,len:o}}e.exports={handleLabelsAndValues:l,supplyDefaults:function(t,e,r,n){function c(r,n){return i.coerce(t,e,a,r,n)}var u=l(c("labels"),c("values")),f=u.len;if(e._hasLabels=u.hasLabels,e._hasValues=u.hasValues,!e._hasLabels&&e._hasValues&&(c("label0"),c("dlabel")),f){e._length=f,c("marker.line.width")&&c("marker.line.color"),c("marker.colors"),c("scalegroup");var h,p=c("text"),d=c("texttemplate");if(d||(h=c("textinfo",Array.isArray(p)?"text+percent":"percent")),c("hovertext"),c("hovertemplate"),d||h&&"none"!==h){var m=c("textposition");s(t,e,n,c,m,{moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1}),(Array.isArray(m)||"auto"===m||"outside"===m)&&c("automargin"),("inside"===m||"auto"===m||Array.isArray(m))&&c("insidetextorientation")}o(e,n,c);var g=c("hole");if(c("title.text")){var v=c("title.position",g?"middle center":"top center");g||"middle center"!==v||(e.title.position="top center"),i.coerceFont(c,"title.font",n.font)}c("sort"),c("direction"),c("rotation"),c("pull")}else e.visible=!1}}},{"../../lib":776,"../../plots/domain":855,"../bar/defaults":918,"./attributes":1165,"fast-isnumeric":242}],1169:[function(t,e,r){"use strict";var n=t("../../components/fx/helpers").appendArrayMultiPointValues;e.exports=function(t,e){var r={curveNumber:e.index,pointNumbers:t.pts,data:e._input,fullData:e,label:t.label,color:t.color,value:t.v,percent:t.percent,text:t.text,bbox:t.bbox,v:t.v};return 1===t.pts.length&&(r.pointNumber=r.i=t.pts[0]),n(r,e,t.pts),"funnelarea"===e.type&&(delete r.v,delete r.i),r}},{"../../components/fx/helpers":675}],1170:[function(t,e,r){"use strict";var n=t("../../lib");function i(t){return-1!==t.indexOf("e")?t.replace(/[.]?0+e/,"e"):-1!==t.indexOf(".")?t.replace(/[.]?0+$/,""):t}r.formatPiePercent=function(t,e){var r=i((100*t).toPrecision(3));return n.numSeparate(r,e)+"%"},r.formatPieValue=function(t,e){var r=i(t.toPrecision(10));return n.numSeparate(r,e)},r.getFirstFilled=function(t,e){if(Array.isArray(t))for(var r=0;r"),name:f.hovertemplate||-1!==h.indexOf("name")?f.name:void 0,idealAlign:t.pxmid[0]<0?"left":"right",color:g.castOption(_.bgcolor,t.pts)||t.color,borderColor:g.castOption(_.bordercolor,t.pts),fontFamily:g.castOption(w.family,t.pts),fontSize:g.castOption(w.size,t.pts),fontColor:g.castOption(w.color,t.pts),nameLength:g.castOption(_.namelength,t.pts),textAlign:g.castOption(_.align,t.pts),hovertemplate:g.castOption(f.hovertemplate,t.pts),hovertemplateLabels:t,eventData:[v(t,f)]},{container:r._hoverlayer.node(),outerContainer:r._paper.node(),gd:e,inOut_bbox:T}),t.bbox=T[0],c._hasHoverLabel=!0}c._hasHoverEvent=!0,e.emit("plotly_hover",{points:[v(t,f)],event:n.event})}})),t.on("mouseout",(function(t){var r=e._fullLayout,i=e._fullData[c.index],o=n.select(this).datum();c._hasHoverEvent&&(t.originalEvent=n.event,e.emit("plotly_unhover",{points:[v(o,i)],event:n.event}),c._hasHoverEvent=!1),c._hasHoverLabel&&(a.loneUnhover(r._hoverlayer.node()),c._hasHoverLabel=!1)})),t.on("click",(function(t){var r=e._fullLayout,i=e._fullData[c.index];e._dragging||!1===r.hovermode||(e._hoverdata=[v(t,i)],a.click(e,n.event))}))}function b(t,e,r){var n=g.castOption(t.insidetextfont.color,e.pts);!n&&t._input.textfont&&(n=g.castOption(t._input.textfont.color,e.pts));var i=g.castOption(t.insidetextfont.family,e.pts)||g.castOption(t.textfont.family,e.pts)||r.family,a=g.castOption(t.insidetextfont.size,e.pts)||g.castOption(t.textfont.size,e.pts)||r.size;return{color:n||o.contrast(e.color),family:i,size:a}}function _(t,e){for(var r,n,i=0;ie&&e>n||r=-4;g-=2)v(Math.PI*g,"tan");for(g=4;g>=-4;g-=2)v(Math.PI*(g+1),"tan")}if(f||p){for(g=4;g>=-4;g-=2)v(Math.PI*(g+1.5),"rad");for(g=4;g>=-4;g-=2)v(Math.PI*(g+.5),"rad")}}if(s||d||f){var y=Math.sqrt(t.width*t.width+t.height*t.height);if((a={scale:i*n*2/y,rCenter:1-i,rotate:0}).textPosAngle=(e.startangle+e.stopangle)/2,a.scale>=1)return a;m.push(a)}(d||p)&&((a=T(t,n,o,l,c)).textPosAngle=(e.startangle+e.stopangle)/2,m.push(a)),(d||h)&&((a=k(t,n,o,l,c)).textPosAngle=(e.startangle+e.stopangle)/2,m.push(a));for(var x=0,b=0,_=0;_=1)break}return m[x]}function T(t,e,r,n,i){e=Math.max(0,e-2*m);var a=t.width/t.height,o=S(a,n,e,r);return{scale:2*o/t.height,rCenter:A(a,o/e),rotate:M(i)}}function k(t,e,r,n,i){e=Math.max(0,e-2*m);var a=t.height/t.width,o=S(a,n,e,r);return{scale:2*o/t.width,rCenter:A(a,o/e),rotate:M(i+Math.PI/2)}}function A(t,e){return Math.cos(e)-t*e}function M(t){return(180/Math.PI*t+720)%180-90}function S(t,e,r,n){var i=t+1/(2*Math.tan(e));return r*Math.min(1/(Math.sqrt(i*i+.5)+i),n/(Math.sqrt(t*t+n/2)+t))}function E(t,e){return t.v!==e.vTotal||e.trace.hole?Math.min(1/(1+1/Math.sin(t.halfangle)),t.ring/2):1}function L(t,e){var r=e.pxmid[0],n=e.pxmid[1],i=t.width/2,a=t.height/2;return r<0&&(i*=-1),n<0&&(a*=-1),{scale:1,rCenter:1,rotate:0,x:i+Math.abs(a)*(i>0?1:-1)/2,y:a/(1+r*r/(n*n)),outside:!0}}function C(t,e){var r,n,i,a=t.trace,o={x:t.cx,y:t.cy},s={tx:0,ty:0};s.ty+=a.title.font.size,i=I(a),-1!==a.title.position.indexOf("top")?(o.y-=(1+i)*t.r,s.ty-=t.titleBox.height):-1!==a.title.position.indexOf("bottom")&&(o.y+=(1+i)*t.r);var l,c,u=(l=t.r,c=t.trace.aspectratio,l/(void 0===c?1:c)),f=e.w*(a.domain.x[1]-a.domain.x[0])/2;return-1!==a.title.position.indexOf("left")?(f+=u,o.x-=(1+i)*u,s.tx+=t.titleBox.width/2):-1!==a.title.position.indexOf("center")?f*=2:-1!==a.title.position.indexOf("right")&&(f+=u,o.x+=(1+i)*u,s.tx-=t.titleBox.width/2),r=f/t.titleBox.width,n=P(t,e)/t.titleBox.height,{x:o.x,y:o.y,scale:Math.min(r,n),tx:s.tx,ty:s.ty}}function P(t,e){var r=t.trace,n=e.h*(r.domain.y[1]-r.domain.y[0]);return Math.min(t.titleBox.height,n/2)}function I(t){var e,r=t.pull;if(!r)return 0;if(Array.isArray(r))for(r=0,e=0;er&&(r=t.pull[e]);return r}function O(t,e){for(var r=[],n=0;n1?(c=r.r,u=c/i.aspectratio):(u=r.r,c=u*i.aspectratio),c*=(1+i.baseratio)/2,l=c*u}o=Math.min(o,l/r.vTotal)}for(n=0;n")}if(a){var x=l.castOption(i,e.i,"texttemplate");if(x){var b=function(t){return{label:t.label,value:t.v,valueLabel:g.formatPieValue(t.v,n.separators),percent:t.v/r.vTotal,percentLabel:g.formatPiePercent(t.v/r.vTotal,n.separators),color:t.color,text:t.text,customdata:l.castOption(i,t.i,"customdata")}}(e),_=g.getFirstFilled(i.text,e.pts);(y(_)||""===_)&&(b.text=_),e.text=l.texttemplateString(x,b,t._fullLayout._d3locale,b,i._meta||{})}else e.text=""}}function R(t,e){var r=t.rotate*Math.PI/180,n=Math.cos(r),i=Math.sin(r),a=(e.left+e.right)/2,o=(e.top+e.bottom)/2;t.textX=a*n-o*i,t.textY=a*i+o*n,t.noCenter=!0}e.exports={plot:function(t,e){var r=t._fullLayout,a=r._size;d("pie",r),_(e,t),O(e,a);var h=l.makeTraceGroups(r._pielayer,e,"trace").each((function(e){var h=n.select(this),d=e[0],m=d.trace;!function(t){var e,r,n,i=t[0],a=i.r,o=i.trace,s=g.getRotationAngle(o.rotation),l=2*Math.PI/i.vTotal,c="px0",u="px1";if("counterclockwise"===o.direction){for(e=0;ei.vTotal/2?1:0,r.halfangle=Math.PI*Math.min(r.v/i.vTotal,.5),r.ring=1-o.hole,r.rInscribed=E(r,i))}(e),h.attr("stroke-linejoin","round"),h.each((function(){var v=n.select(this).selectAll("g.slice").data(e);v.enter().append("g").classed("slice",!0),v.exit().remove();var y=[[[],[]],[[],[]]],_=!1;v.each((function(i,a){if(i.hidden)n.select(this).selectAll("path,g").remove();else{i.pointNumber=i.i,i.curveNumber=m.index,y[i.pxmid[1]<0?0:1][i.pxmid[0]<0?0:1].push(i);var o=d.cx,c=d.cy,u=n.select(this),h=u.selectAll("path.surface").data([i]);if(h.enter().append("path").classed("surface",!0).style({"pointer-events":"all"}),u.call(x,t,e),m.pull){var v=+g.castOption(m.pull,i.pts)||0;v>0&&(o+=v*i.pxmid[0],c+=v*i.pxmid[1])}i.cxFinal=o,i.cyFinal=c;var T=m.hole;if(i.v===d.vTotal){var k="M"+(o+i.px0[0])+","+(c+i.px0[1])+C(i.px0,i.pxmid,!0,1)+C(i.pxmid,i.px0,!0,1)+"Z";T?h.attr("d","M"+(o+T*i.px0[0])+","+(c+T*i.px0[1])+C(i.px0,i.pxmid,!1,T)+C(i.pxmid,i.px0,!1,T)+"Z"+k):h.attr("d",k)}else{var A=C(i.px0,i.px1,!0,1);if(T){var M=1-T;h.attr("d","M"+(o+T*i.px1[0])+","+(c+T*i.px1[1])+C(i.px1,i.px0,!1,T)+"l"+M*i.px0[0]+","+M*i.px0[1]+A+"Z")}else h.attr("d","M"+o+","+c+"l"+i.px0[0]+","+i.px0[1]+A+"Z")}D(t,i,d);var S=g.castOption(m.textposition,i.pts),E=u.selectAll("g.slicetext").data(i.text&&"none"!==S?[0]:[]);E.enter().append("g").classed("slicetext",!0),E.exit().remove(),E.each((function(){var u=l.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),h=l.ensureUniformFontSize(t,"outside"===S?function(t,e,r){var n=g.castOption(t.outsidetextfont.color,e.pts)||g.castOption(t.textfont.color,e.pts)||r.color,i=g.castOption(t.outsidetextfont.family,e.pts)||g.castOption(t.textfont.family,e.pts)||r.family,a=g.castOption(t.outsidetextfont.size,e.pts)||g.castOption(t.textfont.size,e.pts)||r.size;return{color:n,family:i,size:a}}(m,i,r.font):b(m,i,r.font));u.text(i.text).attr({class:"slicetext",transform:"","text-anchor":"middle"}).call(s.font,h).call(f.convertToTspans,t);var v,y=s.bBox(u.node());if("outside"===S)v=L(y,i);else if(v=w(y,i,d),"auto"===S&&v.scale<1){var x=l.ensureUniformFontSize(t,m.outsidetextfont);u.call(s.font,x),v=L(y=s.bBox(u.node()),i)}var T=v.textPosAngle,k=void 0===T?i.pxmid:z(d.r,T);if(v.targetX=o+k[0]*v.rCenter+(v.x||0),v.targetY=c+k[1]*v.rCenter+(v.y||0),R(v,y),v.outside){var A=v.targetY;i.yLabelMin=A-y.height/2,i.yLabelMid=A,i.yLabelMax=A+y.height/2,i.labelExtraX=0,i.labelExtraY=0,_=!0}v.fontSize=h.size,p(m.type,v,r),e[a].transform=v,u.attr("transform",l.getTextTransform(v))}))}function C(t,e,r,n){var a=n*(e[0]-t[0]),o=n*(e[1]-t[1]);return"a"+n*d.r+","+n*d.r+" 0 "+i.largeArc+(r?" 1 ":" 0 ")+a+","+o}}));var T=n.select(this).selectAll("g.titletext").data(m.title.text?[0]:[]);if(T.enter().append("g").classed("titletext",!0),T.exit().remove(),T.each((function(){var e,r=l.ensureSingle(n.select(this),"text","",(function(t){t.attr("data-notex",1)})),i=m.title.text;m._meta&&(i=l.templateString(i,m._meta)),r.text(i).attr({class:"titletext",transform:"","text-anchor":"middle"}).call(s.font,m.title.font).call(f.convertToTspans,t),e="middle center"===m.title.position?function(t){var e=Math.sqrt(t.titleBox.width*t.titleBox.width+t.titleBox.height*t.titleBox.height);return{x:t.cx,y:t.cy,scale:t.trace.hole*t.r*2/e,tx:0,ty:-t.titleBox.height/2+t.trace.title.font.size}}(d):C(d,a),r.attr("transform",u(e.x,e.y)+c(Math.min(1,e.scale))+u(e.tx,e.ty))})),_&&function(t,e){var r,n,i,a,o,s,l,c,u,f,h,p,d;function m(t,e){return t.pxmid[1]-e.pxmid[1]}function v(t,e){return e.pxmid[1]-t.pxmid[1]}function y(t,r){r||(r={});var i,c,u,h,p=r.labelExtraY+(n?r.yLabelMax:r.yLabelMin),d=n?t.yLabelMin:t.yLabelMax,m=n?t.yLabelMax:t.yLabelMin,v=t.cyFinal+o(t.px0[1],t.px1[1]),y=p-d;if(y*l>0&&(t.labelExtraY=y),Array.isArray(e.pull))for(c=0;c=(g.castOption(e.pull,u.pts)||0)||((t.pxmid[1]-u.pxmid[1])*l>0?(y=u.cyFinal+o(u.px0[1],u.px1[1])-d-t.labelExtraY)*l>0&&(t.labelExtraY+=y):(m+t.labelExtraY-v)*l>0&&(i=3*s*Math.abs(c-f.indexOf(t)),(h=u.cxFinal+a(u.px0[0],u.px1[0])+i-(t.cxFinal+t.pxmid[0])-t.labelExtraX)*s>0&&(t.labelExtraX+=h)))}for(n=0;n<2;n++)for(i=n?m:v,o=n?Math.max:Math.min,l=n?1:-1,r=0;r<2;r++){for(a=r?Math.max:Math.min,s=r?1:-1,(c=t[n][r]).sort(i),u=t[1-n][r],f=u.concat(c),p=[],h=0;hMath.abs(f)?s+="l"+f*t.pxmid[0]/t.pxmid[1]+","+f+"H"+(a+t.labelExtraX+c):s+="l"+t.labelExtraX+","+u+"v"+(f-u)+"h"+c}else s+="V"+(t.yLabelMid+t.labelExtraY)+"h"+c;l.ensureSingle(r,"path","textline").call(o.stroke,e.outsidetextfont.color).attr({"stroke-width":Math.min(2,e.outsidetextfont.size/8),d:s,fill:"none"})}else r.select("path.textline").remove()}))}(v,m),_&&m.automargin){var k=s.bBox(h.node()),A=m.domain,M=a.w*(A.x[1]-A.x[0]),S=a.h*(A.y[1]-A.y[0]),E=(.5*M-d.r)/a.w,P=(.5*S-d.r)/a.h;i.autoMargin(t,"pie."+m.uid+".automargin",{xl:A.x[0]-E,xr:A.x[1]+E,yb:A.y[0]-P,yt:A.y[1]+P,l:Math.max(d.cx-d.r-k.left,0),r:Math.max(k.right-(d.cx+d.r),0),b:Math.max(k.bottom-(d.cy+d.r),0),t:Math.max(d.cy-d.r-k.top,0),pad:5})}}))}));setTimeout((function(){h.selectAll("tspan").each((function(){var t=n.select(this);t.attr("dy")&&t.attr("dy",t.attr("dy"))}))}),0)},formatSliceLabel:D,transformInsideText:w,determineInsideTextFont:b,positionTitleOutside:C,prerenderTitles:_,layoutAreas:O,attachFxHandlers:x,computeTransform:R}},{"../../components/color":639,"../../components/drawing":661,"../../components/fx":679,"../../lib":776,"../../lib/svg_text_utils":802,"../../plots/plots":890,"../bar/constants":916,"../bar/uniform_text":930,"./event_data":1169,"./helpers":1170,"@plotly/d3":58}],1175:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("./style_one"),a=t("../bar/uniform_text").resizeText;e.exports=function(t){var e=t._fullLayout._pielayer.selectAll(".trace");a(t,e,"pie"),e.each((function(t){var e=t[0].trace,r=n.select(this);r.style({opacity:e.opacity}),r.selectAll("path.surface").each((function(t){n.select(this).call(i,t,e)}))}))}},{"../bar/uniform_text":930,"./style_one":1176,"@plotly/d3":58}],1176:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("./helpers").castOption;e.exports=function(t,e,r){var a=r.marker.line,o=i(a.color,e.pts)||n.defaultLine,s=i(a.width,e.pts)||0;t.style("stroke-width",s).call(n.fill,e.color).call(n.stroke,o)}},{"../../components/color":639,"./helpers":1170}],1177:[function(t,e,r){"use strict";var n=t("../scatter/attributes");e.exports={x:n.x,y:n.y,xy:{valType:"data_array",editType:"calc"},indices:{valType:"data_array",editType:"calc"},xbounds:{valType:"data_array",editType:"calc"},ybounds:{valType:"data_array",editType:"calc"},text:n.text,marker:{color:{valType:"color",arrayOk:!1,editType:"calc"},opacity:{valType:"number",min:0,max:1,dflt:1,arrayOk:!1,editType:"calc"},blend:{valType:"boolean",dflt:null,editType:"calc"},sizemin:{valType:"number",min:.1,max:2,dflt:.5,editType:"calc"},sizemax:{valType:"number",min:.1,dflt:20,editType:"calc"},border:{color:{valType:"color",arrayOk:!1,editType:"calc"},arearatio:{valType:"number",min:0,max:1,dflt:0,editType:"calc"},editType:"calc"},editType:"calc"},transforms:void 0}},{"../scatter/attributes":1191}],1178:[function(t,e,r){"use strict";var n=t("gl-pointcloud2d"),i=t("../../lib/str2rgbarray"),a=t("../../plots/cartesian/autorange").findExtremes,o=t("../scatter/get_trace_color");function s(t,e){this.scene=t,this.uid=e,this.type="pointcloud",this.pickXData=[],this.pickYData=[],this.xData=[],this.yData=[],this.textLabels=[],this.color="rgb(0, 0, 0)",this.name="",this.hoverinfo="all",this.idToIndex=new Int32Array(0),this.bounds=[0,0,0,0],this.pointcloudOptions={positions:new Float32Array(0),idToIndex:this.idToIndex,sizemin:.5,sizemax:12,color:[0,0,0,1],areaRatio:1,borderColor:[0,0,0,1]},this.pointcloud=n(t.glplot,this.pointcloudOptions),this.pointcloud._trace=this}var l=s.prototype;l.handlePick=function(t){var e=this.idToIndex[t.pointId];return{trace:this,dataCoord:t.dataCoord,traceCoord:this.pickXYData?[this.pickXYData[2*e],this.pickXYData[2*e+1]]:[this.pickXData[e],this.pickYData[e]],textLabel:Array.isArray(this.textLabels)?this.textLabels[e]:this.textLabels,color:this.color,name:this.name,pointIndex:e,hoverinfo:this.hoverinfo}},l.update=function(t){this.index=t.index,this.textLabels=t.text,this.name=t.name,this.hoverinfo=t.hoverinfo,this.bounds=[1/0,1/0,-1/0,-1/0],this.updateFast(t),this.color=o(t,{})},l.updateFast=function(t){var e,r,n,o,s,l,c=this.xData=this.pickXData=t.x,u=this.yData=this.pickYData=t.y,f=this.pickXYData=t.xy,h=t.xbounds&&t.ybounds,p=t.indices,d=this.bounds;if(f){if(n=f,e=f.length>>>1,h)d[0]=t.xbounds[0],d[2]=t.xbounds[1],d[1]=t.ybounds[0],d[3]=t.ybounds[1];else for(l=0;ld[2]&&(d[2]=o),sd[3]&&(d[3]=s);if(p)r=p;else for(r=new Int32Array(e),l=0;ld[2]&&(d[2]=o),sd[3]&&(d[3]=s);this.idToIndex=r,this.pointcloudOptions.idToIndex=r,this.pointcloudOptions.positions=n;var m=i(t.marker.color),g=i(t.marker.border.color),v=t.opacity*t.marker.opacity;m[3]*=v,this.pointcloudOptions.color=m;var y=t.marker.blend;if(null===y){y=c.length<100||u.length<100}this.pointcloudOptions.blend=y,g[3]*=v,this.pointcloudOptions.borderColor=g;var x=t.marker.sizemin,b=Math.max(t.marker.sizemax,t.marker.sizemin);this.pointcloudOptions.sizeMin=x,this.pointcloudOptions.sizeMax=b,this.pointcloudOptions.areaRatio=t.marker.border.arearatio,this.pointcloud.update(this.pointcloudOptions);var _=this.scene.xaxis,w=this.scene.yaxis,T=b/2||.5;t._extremes[_._id]=a(_,[d[0],d[2]],{ppad:T}),t._extremes[w._id]=a(w,[d[1],d[3]],{ppad:T})},l.dispose=function(){this.pointcloud.dispose()},e.exports=function(t,e){var r=new s(t,e.uid);return r.update(e),r}},{"../../lib/str2rgbarray":801,"../../plots/cartesian/autorange":826,"../scatter/get_trace_color":1201,"gl-pointcloud2d":314}],1179:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes");e.exports=function(t,e,r){function a(r,a){return n.coerce(t,e,i,r,a)}a("x"),a("y"),a("xbounds"),a("ybounds"),t.xy&&t.xy instanceof Float32Array&&(e.xy=t.xy),t.indices&&t.indices instanceof Int32Array&&(e.indices=t.indices),a("text"),a("marker.color",r),a("marker.opacity"),a("marker.blend"),a("marker.sizemin"),a("marker.sizemax"),a("marker.border.color",r),a("marker.border.arearatio"),e._length=null}},{"../../lib":776,"./attributes":1177}],1180:[function(t,e,r){"use strict";["*pointcloud* trace is deprecated!","Please consider switching to the *scattergl* trace type."].join(" ");e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("../scatter3d/calc"),plot:t("./convert"),moduleType:"trace",name:"pointcloud",basePlotModule:t("../../plots/gl2d"),categories:["gl","gl2d","showLegend"],meta:{}}},{"../../plots/gl2d":867,"../scatter3d/calc":1220,"./attributes":1177,"./convert":1178,"./defaults":1179}],1181:[function(t,e,r){"use strict";var n=t("../../plots/font_attributes"),i=t("../../plots/attributes"),a=t("../../components/color/attributes"),o=t("../../components/fx/attributes"),s=t("../../plots/domain").attributes,l=t("../../plots/template_attributes").hovertemplateAttrs,c=t("../../components/colorscale/attributes"),u=t("../../plot_api/plot_template").templatedArray,f=t("../../plots/cartesian/axis_format_attributes").descriptionOnlyNumbers,h=t("../../lib/extend").extendFlat,p=t("../../plot_api/edit_types").overrideAll;(e.exports=p({hoverinfo:h({},i.hoverinfo,{flags:[],arrayOk:!1}),hoverlabel:o.hoverlabel,domain:s({name:"sankey",trace:!0}),orientation:{valType:"enumerated",values:["v","h"],dflt:"h"},valueformat:{valType:"string",dflt:".3s",description:f("value")},valuesuffix:{valType:"string",dflt:""},arrangement:{valType:"enumerated",values:["snap","perpendicular","freeform","fixed"],dflt:"snap"},textfont:n({}),customdata:void 0,node:{label:{valType:"data_array",dflt:[]},groups:{valType:"info_array",impliedEdits:{x:[],y:[]},dimensions:2,freeLength:!0,dflt:[],items:{valType:"number",editType:"calc"}},x:{valType:"data_array",dflt:[]},y:{valType:"data_array",dflt:[]},color:{valType:"color",arrayOk:!0},customdata:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:a.defaultLine,arrayOk:!0},width:{valType:"number",min:0,dflt:.5,arrayOk:!0}},pad:{valType:"number",arrayOk:!1,min:0,dflt:20},thickness:{valType:"number",arrayOk:!1,min:1,dflt:20},hoverinfo:{valType:"enumerated",values:["all","none","skip"],dflt:"all"},hoverlabel:o.hoverlabel,hovertemplate:l({},{keys:["value","label"]})},link:{label:{valType:"data_array",dflt:[]},color:{valType:"color",arrayOk:!0},customdata:{valType:"data_array",editType:"calc"},line:{color:{valType:"color",dflt:a.defaultLine,arrayOk:!0},width:{valType:"number",min:0,dflt:0,arrayOk:!0}},source:{valType:"data_array",dflt:[]},target:{valType:"data_array",dflt:[]},value:{valType:"data_array",dflt:[]},hoverinfo:{valType:"enumerated",values:["all","none","skip"],dflt:"all"},hoverlabel:o.hoverlabel,hovertemplate:l({},{keys:["value","label"]}),colorscales:u("concentrationscales",{editType:"calc",label:{valType:"string",editType:"calc",dflt:""},cmax:{valType:"number",editType:"calc",dflt:1},cmin:{valType:"number",editType:"calc",dflt:0},colorscale:h(c().colorscale,{dflt:[[0,"white"],[1,"black"]]})})}},"calc","nested")).transforms=void 0},{"../../components/color/attributes":638,"../../components/colorscale/attributes":646,"../../components/fx/attributes":670,"../../lib/extend":766,"../../plot_api/edit_types":809,"../../plot_api/plot_template":816,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/domain":855,"../../plots/font_attributes":856,"../../plots/template_attributes":899}],1182:[function(t,e,r){"use strict";var n=t("../../plot_api/edit_types").overrideAll,i=t("../../plots/get_data").getModuleCalcData,a=t("./plot"),o=t("../../components/fx/layout_attributes"),s=t("../../lib/setcursor"),l=t("../../components/dragelement"),c=t("../../plots/cartesian/select").prepSelect,u=t("../../lib"),f=t("../../registry");function h(t,e){var r=t._fullData[e],n=t._fullLayout,i=n.dragmode,a="pan"===n.dragmode?"move":"crosshair",o=r._bgRect;if("pan"!==i&&"zoom"!==i){s(o,a);var h={_id:"x",c2p:u.identity,_offset:r._sankey.translateX,_length:r._sankey.width},p={_id:"y",c2p:u.identity,_offset:r._sankey.translateY,_length:r._sankey.height},d={gd:t,element:o.node(),plotinfo:{id:e,xaxis:h,yaxis:p,fillRangeItems:u.noop},subplot:e,xaxes:[h],yaxes:[p],doneFnCompleted:function(r){var n,i=t._fullData[e],a=i.node.groups.slice(),o=[];function s(t){for(var e=i._sankey.graph.nodes,r=0;ry&&(y=a.source[e]),a.target[e]>y&&(y=a.target[e]);var x,b=y+1;t.node._count=b;var _=t.node.groups,w={};for(e=0;e<_.length;e++){var T=_[e];for(x=0;x0&&s(E,b)&&s(L,b)&&(!w.hasOwnProperty(E)||!w.hasOwnProperty(L)||w[E]!==w[L])){w.hasOwnProperty(L)&&(L=w[L]),w.hasOwnProperty(E)&&(E=w[E]),L=+L,h[E=+E]=h[L]=!0;var C="";a.label&&a.label[e]&&(C=a.label[e]);var P=null;C&&p.hasOwnProperty(C)&&(P=p[C]),c.push({pointNumber:e,label:C,color:u?a.color[e]:a.color,customdata:f?a.customdata[e]:a.customdata,concentrationscale:P,source:E,target:L,value:+S}),M.source.push(E),M.target.push(L)}}var I=b+_.length,O=o(r.color),z=o(r.customdata),D=[];for(e=0;eb-1,childrenNodes:[],pointNumber:e,label:R,color:O?r.color[e]:r.color,customdata:z?r.customdata[e]:r.customdata})}var F=!1;return function(t,e,r){for(var a=i.init2dArray(t,0),o=0;o1}))}(I,M.source,M.target)&&(F=!0),{circular:F,links:c,nodes:D,groups:_,groupLookup:w}}e.exports=function(t,e){var r=c(e);return a({circular:r.circular,_nodes:r.nodes,_links:r.links,_groups:r.groups,_groupLookup:r.groupLookup})}},{"../../components/colorscale":651,"../../lib":776,"../../lib/gup":773,"strongly-connected-components":564}],1184:[function(t,e,r){"use strict";e.exports={nodeTextOffsetHorizontal:4,nodeTextOffsetVertical:3,nodePadAcross:10,sankeyIterations:50,forceIterations:5,forceTicksPerFrame:10,duration:500,ease:"linear",cn:{sankey:"sankey",sankeyLinks:"sankey-links",sankeyLink:"sankey-link",sankeyNodeSet:"sankey-node-set",sankeyNode:"sankey-node",nodeRect:"node-rect",nodeLabel:"node-label"}}},{}],1185:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../components/color"),o=t("tinycolor2"),s=t("../../plots/domain").defaults,l=t("../../components/fx/hoverlabel_defaults"),c=t("../../plot_api/plot_template"),u=t("../../plots/array_container_defaults");function f(t,e){function r(r,a){return n.coerce(t,e,i.link.colorscales,r,a)}r("label"),r("cmin"),r("cmax"),r("colorscale")}e.exports=function(t,e,r,h){function p(r,a){return n.coerce(t,e,i,r,a)}var d=n.extendDeep(h.hoverlabel,t.hoverlabel),m=t.node,g=c.newContainer(e,"node");function v(t,e){return n.coerce(m,g,i.node,t,e)}v("label"),v("groups"),v("x"),v("y"),v("pad"),v("thickness"),v("line.color"),v("line.width"),v("hoverinfo",t.hoverinfo),l(m,g,v,d),v("hovertemplate");var y=h.colorway;v("color",g.label.map((function(t,e){return a.addOpacity(function(t){return y[t%y.length]}(e),.8)}))),v("customdata");var x=t.link||{},b=c.newContainer(e,"link");function _(t,e){return n.coerce(x,b,i.link,t,e)}_("label"),_("source"),_("target"),_("value"),_("line.color"),_("line.width"),_("hoverinfo",t.hoverinfo),l(x,b,_,d),_("hovertemplate");var w,T=o(h.paper_bgcolor).getLuminance()<.333?"rgba(255, 255, 255, 0.6)":"rgba(0, 0, 0, 0.2)";_("color",n.repeat(T,b.value.length)),_("customdata"),u(x,b,{name:"colorscales",handleItemDefaults:f}),s(e,h,p),p("orientation"),p("valueformat"),p("valuesuffix"),g.x.length&&g.y.length&&(w="freeform"),p("arrangement",w),n.coerceFont(p,"textfont",n.extendFlat({},h.font)),e._length=null}},{"../../components/color":639,"../../components/fx/hoverlabel_defaults":677,"../../lib":776,"../../plot_api/plot_template":816,"../../plots/array_container_defaults":822,"../../plots/domain":855,"./attributes":1181,tinycolor2:572}],1186:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),calc:t("./calc"),plot:t("./plot"),moduleType:"trace",name:"sankey",basePlotModule:t("./base_plot"),selectPoints:t("./select.js"),categories:["noOpacity"],meta:{}}},{"./attributes":1181,"./base_plot":1182,"./calc":1183,"./defaults":1185,"./plot":1187,"./select.js":1189}],1187:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=i.numberFormat,o=t("./render"),s=t("../../components/fx"),l=t("../../components/color"),c=t("./constants").cn,u=i._;function f(t){return""!==t}function h(t,e){return t.filter((function(t){return t.key===e.traceId}))}function p(t,e){n.select(t).select("path").style("fill-opacity",e),n.select(t).select("rect").style("fill-opacity",e)}function d(t){n.select(t).select("text.name").style("fill","black")}function m(t){return function(e){return-1!==t.node.sourceLinks.indexOf(e.link)||-1!==t.node.targetLinks.indexOf(e.link)}}function g(t){return function(e){return-1!==e.node.sourceLinks.indexOf(t.link)||-1!==e.node.targetLinks.indexOf(t.link)}}function v(t,e,r){e&&r&&h(r,e).selectAll("."+c.sankeyLink).filter(m(e)).call(x.bind(0,e,r,!1))}function y(t,e,r){e&&r&&h(r,e).selectAll("."+c.sankeyLink).filter(m(e)).call(b.bind(0,e,r,!1))}function x(t,e,r,n){var i=n.datum().link.label;n.style("fill-opacity",(function(t){if(!t.link.concentrationscale)return.4})),i&&h(e,t).selectAll("."+c.sankeyLink).filter((function(t){return t.link.label===i})).style("fill-opacity",(function(t){if(!t.link.concentrationscale)return.4})),r&&h(e,t).selectAll("."+c.sankeyNode).filter(g(t)).call(v)}function b(t,e,r,n){var i=n.datum().link.label;n.style("fill-opacity",(function(t){return t.tinyColorAlpha})),i&&h(e,t).selectAll("."+c.sankeyLink).filter((function(t){return t.link.label===i})).style("fill-opacity",(function(t){return t.tinyColorAlpha})),r&&h(e,t).selectAll(c.sankeyNode).filter(g(t)).call(y)}function _(t,e){var r=t.hoverlabel||{},n=i.nestedProperty(r,e).get();return!Array.isArray(n)&&n}e.exports=function(t,e){for(var r=t._fullLayout,i=r._paper,h=r._size,m=0;m"),color:_(o,"bgcolor")||l.addOpacity(m.color,1),borderColor:_(o,"bordercolor"),fontFamily:_(o,"font.family"),fontSize:_(o,"font.size"),fontColor:_(o,"font.color"),nameLength:_(o,"namelength"),textAlign:_(o,"align"),idealAlign:n.event.x"),color:_(o,"bgcolor")||i.tinyColorHue,borderColor:_(o,"bordercolor"),fontFamily:_(o,"font.family"),fontSize:_(o,"font.size"),fontColor:_(o,"font.color"),nameLength:_(o,"namelength"),textAlign:_(o,"align"),idealAlign:"left",hovertemplate:o.hovertemplate,hovertemplateLabels:y,eventData:[i.node]},{container:r._hoverlayer.node(),outerContainer:r._paper.node(),gd:t});p(w,.85),d(w)}}},unhover:function(e,i,a){!1!==t._fullLayout.hovermode&&(n.select(e).call(y,i,a),"skip"!==i.node.trace.node.hoverinfo&&(i.node.fullData=i.node.trace,t.emit("plotly_unhover",{event:n.event,points:[i.node]})),s.loneUnhover(r._hoverlayer.node()))},select:function(e,r,i){var a=r.node;a.originalEvent=n.event,t._hoverdata=[a],n.select(e).call(y,r,i),s.click(t,{target:!0})}}})}},{"../../components/color":639,"../../components/fx":679,"../../lib":776,"./constants":1184,"./render":1188,"@plotly/d3":58}],1188:[function(t,e,r){"use strict";var n=t("d3-force"),i=t("d3-interpolate").interpolateNumber,a=t("@plotly/d3"),o=t("@plotly/d3-sankey"),s=t("@plotly/d3-sankey-circular"),l=t("./constants"),c=t("tinycolor2"),u=t("../../components/color"),f=t("../../components/drawing"),h=t("../../lib"),p=h.strTranslate,d=h.strRotate,m=t("../../lib/gup"),g=m.keyFun,v=m.repeat,y=m.unwrap,x=t("../../lib/svg_text_utils"),b=t("../../registry"),_=t("../../constants/alignment"),w=_.CAP_SHIFT,T=_.LINE_SPACING;function k(t,e,r){var n,i=y(e),a=i.trace,u=a.domain,f="h"===a.orientation,p=a.node.pad,d=a.node.thickness,m=t.width*(u.x[1]-u.x[0]),g=t.height*(u.y[1]-u.y[0]),v=i._nodes,x=i._links,b=i.circular;(n=b?s.sankeyCircular().circularLinkGap(0):o.sankey()).iterations(l.sankeyIterations).size(f?[m,g]:[g,m]).nodeWidth(d).nodePadding(p).nodeId((function(t){return t.pointNumber})).nodes(v).links(x);var _,w,T,k=n();for(var A in n.nodePadding()=i||(r=i-e.y0)>1e-6&&(e.y0+=r,e.y1+=r),i=e.y1+p}))}(function(t){var e,r,n=t.map((function(t,e){return{x0:t.x0,index:e}})).sort((function(t,e){return t.x0-e.x0})),i=[],a=-1,o=-1/0;for(_=0;_o+d&&(a+=1,e=s.x0),o=s.x0,i[a]||(i[a]=[]),i[a].push(s),r=e-s.x0,s.x0+=r,s.x1+=r}return i}(v=k.nodes));n.update(k)}return{circular:b,key:r,trace:a,guid:h.randstr(),horizontal:f,width:m,height:g,nodePad:a.node.pad,nodeLineColor:a.node.line.color,nodeLineWidth:a.node.line.width,linkLineColor:a.link.line.color,linkLineWidth:a.link.line.width,valueFormat:a.valueformat,valueSuffix:a.valuesuffix,textFont:a.textfont,translateX:u.x[0]*t.width+t.margin.l,translateY:t.height-u.y[1]*t.height+t.margin.t,dragParallel:f?g:m,dragPerpendicular:f?m:g,arrangement:a.arrangement,sankey:n,graph:k,forceLayouts:{},interactionState:{dragInProgress:!1,hovered:!1}}}function A(t,e,r){var n=c(e.color),i=e.source.label+"|"+e.target.label+"__"+r;return e.trace=t.trace,e.curveNumber=t.trace.index,{circular:t.circular,key:i,traceId:t.key,pointNumber:e.pointNumber,link:e,tinyColorHue:u.tinyRGB(n),tinyColorAlpha:n.getAlpha(),linkPath:M,linkLineColor:t.linkLineColor,linkLineWidth:t.linkLineWidth,valueFormat:t.valueFormat,valueSuffix:t.valueSuffix,sankey:t.sankey,parent:t,interactionState:t.interactionState,flow:e.flow}}function M(){return function(t){if(t.link.circular)return e=t.link,r=e.width/2,n=e.circularPathData,"top"===e.circularLinkType?"M "+n.targetX+" "+(n.targetY+r)+" L"+n.rightInnerExtent+" "+(n.targetY+r)+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightSmallArcRadius+r)+" 0 0 1 "+(n.rightFullExtent-r)+" "+(n.targetY-n.rightSmallArcRadius)+"L"+(n.rightFullExtent-r)+" "+n.verticalRightInnerExtent+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightLargeArcRadius+r)+" 0 0 1 "+n.rightInnerExtent+" "+(n.verticalFullExtent-r)+"L"+n.leftInnerExtent+" "+(n.verticalFullExtent-r)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftLargeArcRadius+r)+" 0 0 1 "+(n.leftFullExtent+r)+" "+n.verticalLeftInnerExtent+"L"+(n.leftFullExtent+r)+" "+(n.sourceY-n.leftSmallArcRadius)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftSmallArcRadius+r)+" 0 0 1 "+n.leftInnerExtent+" "+(n.sourceY+r)+"L"+n.sourceX+" "+(n.sourceY+r)+"L"+n.sourceX+" "+(n.sourceY-r)+"L"+n.leftInnerExtent+" "+(n.sourceY-r)+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftSmallArcRadius-r)+" 0 0 0 "+(n.leftFullExtent-r)+" "+(n.sourceY-n.leftSmallArcRadius)+"L"+(n.leftFullExtent-r)+" "+n.verticalLeftInnerExtent+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftLargeArcRadius-r)+" 0 0 0 "+n.leftInnerExtent+" "+(n.verticalFullExtent+r)+"L"+n.rightInnerExtent+" "+(n.verticalFullExtent+r)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightLargeArcRadius-r)+" 0 0 0 "+(n.rightFullExtent+r)+" "+n.verticalRightInnerExtent+"L"+(n.rightFullExtent+r)+" "+(n.targetY-n.rightSmallArcRadius)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightSmallArcRadius-r)+" 0 0 0 "+n.rightInnerExtent+" "+(n.targetY-r)+"L"+n.targetX+" "+(n.targetY-r)+"Z":"M "+n.targetX+" "+(n.targetY-r)+" L"+n.rightInnerExtent+" "+(n.targetY-r)+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightSmallArcRadius+r)+" 0 0 0 "+(n.rightFullExtent-r)+" "+(n.targetY+n.rightSmallArcRadius)+"L"+(n.rightFullExtent-r)+" "+n.verticalRightInnerExtent+"A"+(n.rightLargeArcRadius+r)+" "+(n.rightLargeArcRadius+r)+" 0 0 0 "+n.rightInnerExtent+" "+(n.verticalFullExtent+r)+"L"+n.leftInnerExtent+" "+(n.verticalFullExtent+r)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftLargeArcRadius+r)+" 0 0 0 "+(n.leftFullExtent+r)+" "+n.verticalLeftInnerExtent+"L"+(n.leftFullExtent+r)+" "+(n.sourceY+n.leftSmallArcRadius)+"A"+(n.leftLargeArcRadius+r)+" "+(n.leftSmallArcRadius+r)+" 0 0 0 "+n.leftInnerExtent+" "+(n.sourceY-r)+"L"+n.sourceX+" "+(n.sourceY-r)+"L"+n.sourceX+" "+(n.sourceY+r)+"L"+n.leftInnerExtent+" "+(n.sourceY+r)+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftSmallArcRadius-r)+" 0 0 1 "+(n.leftFullExtent-r)+" "+(n.sourceY+n.leftSmallArcRadius)+"L"+(n.leftFullExtent-r)+" "+n.verticalLeftInnerExtent+"A"+(n.leftLargeArcRadius-r)+" "+(n.leftLargeArcRadius-r)+" 0 0 1 "+n.leftInnerExtent+" "+(n.verticalFullExtent-r)+"L"+n.rightInnerExtent+" "+(n.verticalFullExtent-r)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightLargeArcRadius-r)+" 0 0 1 "+(n.rightFullExtent+r)+" "+n.verticalRightInnerExtent+"L"+(n.rightFullExtent+r)+" "+(n.targetY+n.rightSmallArcRadius)+"A"+(n.rightLargeArcRadius-r)+" "+(n.rightSmallArcRadius-r)+" 0 0 1 "+n.rightInnerExtent+" "+(n.targetY+r)+"L"+n.targetX+" "+(n.targetY+r)+"Z";var e,r,n,a=t.link.source.x1,o=t.link.target.x0,s=i(a,o),l=s(.5),c=s(.5),u=t.link.y0-t.link.width/2,f=t.link.y0+t.link.width/2,h=t.link.y1-t.link.width/2,p=t.link.y1+t.link.width/2;return"M"+a+","+u+"C"+l+","+u+" "+c+","+h+" "+o+","+h+"L"+o+","+p+"C"+c+","+p+" "+l+","+f+" "+a+","+f+"Z"}}function S(t,e){var r=c(e.color),n=l.nodePadAcross,i=t.nodePad/2;e.dx=e.x1-e.x0,e.dy=e.y1-e.y0;var a=e.dx,o=Math.max(.5,e.dy),s="node_"+e.pointNumber;return e.group&&(s=h.randstr()),e.trace=t.trace,e.curveNumber=t.trace.index,{index:e.pointNumber,key:s,partOfGroup:e.partOfGroup||!1,group:e.group,traceId:t.key,trace:t.trace,node:e,nodePad:t.nodePad,nodeLineColor:t.nodeLineColor,nodeLineWidth:t.nodeLineWidth,textFont:t.textFont,size:t.horizontal?t.height:t.width,visibleWidth:Math.ceil(a),visibleHeight:o,zoneX:-n,zoneY:-i,zoneWidth:a+2*n,zoneHeight:o+2*i,labelY:t.horizontal?e.dy/2+1:e.dx/2+1,left:1===e.originalLayer,sizeAcross:t.width,forceLayouts:t.forceLayouts,horizontal:t.horizontal,darkBackground:r.getBrightness()<=128,tinyColorHue:u.tinyRGB(r),tinyColorAlpha:r.getAlpha(),valueFormat:t.valueFormat,valueSuffix:t.valueSuffix,sankey:t.sankey,graph:t.graph,arrangement:t.arrangement,uniqueNodeLabelPathId:[t.guid,t.key,s].join("_"),interactionState:t.interactionState,figure:t}}function E(t){t.attr("transform",(function(t){return p(t.node.x0.toFixed(3),t.node.y0.toFixed(3))}))}function L(t){t.call(E)}function C(t,e){t.call(L),e.attr("d",M())}function P(t){t.attr("width",(function(t){return t.node.x1-t.node.x0})).attr("height",(function(t){return t.visibleHeight}))}function I(t){return t.link.width>1||t.linkLineWidth>0}function O(t){return p(t.translateX,t.translateY)+(t.horizontal?"matrix(1 0 0 1 0 0)":"matrix(0 1 1 0 0 0)")}function z(t,e,r){t.on(".basic",null).on("mouseover.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.hover(this,t,e),t.interactionState.hovered=[this,t])})).on("mousemove.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.follow(this,t),t.interactionState.hovered=[this,t])})).on("mouseout.basic",(function(t){t.interactionState.dragInProgress||t.partOfGroup||(r.unhover(this,t,e),t.interactionState.hovered=!1)})).on("click.basic",(function(t){t.interactionState.hovered&&(r.unhover(this,t,e),t.interactionState.hovered=!1),t.interactionState.dragInProgress||t.partOfGroup||r.select(this,t,e)}))}function D(t,e,r,i){var o=a.behavior.drag().origin((function(t){return{x:t.node.x0+t.visibleWidth/2,y:t.node.y0+t.visibleHeight/2}})).on("dragstart",(function(a){if("fixed"!==a.arrangement&&(h.ensureSingle(i._fullLayout._infolayer,"g","dragcover",(function(t){i._fullLayout._dragCover=t})),h.raiseToTop(this),a.interactionState.dragInProgress=a.node,F(a.node),a.interactionState.hovered&&(r.nodeEvents.unhover.apply(0,a.interactionState.hovered),a.interactionState.hovered=!1),"snap"===a.arrangement)){var o=a.traceId+"|"+a.key;a.forceLayouts[o]?a.forceLayouts[o].alpha(1):function(t,e,r,i){!function(t){for(var e=0;e0&&n.forceLayouts[e].alpha(0)}}(0,e,a,r)).stop()}(0,o,a),function(t,e,r,n,i){window.requestAnimationFrame((function a(){var o;for(o=0;o0)window.requestAnimationFrame(a);else{var s=r.node.originalX;r.node.x0=s-r.visibleWidth/2,r.node.x1=s+r.visibleWidth/2,R(r,i)}}))}(t,e,a,o,i)}})).on("drag",(function(r){if("fixed"!==r.arrangement){var n=a.event.x,i=a.event.y;"snap"===r.arrangement?(r.node.x0=n-r.visibleWidth/2,r.node.x1=n+r.visibleWidth/2,r.node.y0=i-r.visibleHeight/2,r.node.y1=i+r.visibleHeight/2):("freeform"===r.arrangement&&(r.node.x0=n-r.visibleWidth/2,r.node.x1=n+r.visibleWidth/2),i=Math.max(0,Math.min(r.size-r.visibleHeight/2,i)),r.node.y0=i-r.visibleHeight/2,r.node.y1=i+r.visibleHeight/2),F(r.node),"snap"!==r.arrangement&&(r.sankey.update(r.graph),C(t.filter(B(r)),e))}})).on("dragend",(function(t){if("fixed"!==t.arrangement){t.interactionState.dragInProgress=!1;for(var e=0;el&&C[v].gap;)v--;for(x=C[v].s,m=C.length-1;m>v;m--)C[m].s=x;for(;lM[u]&&u=0;i--){var a=t[i];if("scatter"===a.type&&a.xaxis===r.xaxis&&a.yaxis===r.yaxis){a.opacity=void 0;break}}}}}},{}],1198:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./attributes"),o=t("./constants"),s=t("./subtypes"),l=t("./xy_defaults"),c=t("./period_defaults"),u=t("./stack_defaults"),f=t("./marker_defaults"),h=t("./line_defaults"),p=t("./line_shape_defaults"),d=t("./text_defaults"),m=t("./fillcolor_defaults");e.exports=function(t,e,r,g){function v(r,i){return n.coerce(t,e,a,r,i)}var y=l(t,e,g,v);if(y||(e.visible=!1),e.visible){c(t,e,g,v),v("xhoverformat"),v("yhoverformat");var x=u(t,e,g,v),b=!x&&y=Math.min(e,r)&&d<=Math.max(e,r)?0:1/0}var n=Math.max(3,t.mrc||0),i=1-1/n,a=Math.abs(h.c2p(t.x)-d);return a=Math.min(e,r)&&m<=Math.max(e,r)?0:1/0}var n=Math.max(3,t.mrc||0),i=1-1/n,a=Math.abs(p.c2p(t.y)-m);return aW!=(N=z[I][1])>=W&&(R=z[I-1][0],F=z[I][0],N-B&&(D=R+(F-R)*(W-B)/(N-B),H=Math.min(H,D),q=Math.max(q,D)));H=Math.max(H,0),q=Math.min(q,h._length);var X=s.defaultLine;return s.opacity(f.fillcolor)?X=f.fillcolor:s.opacity((f.line||{}).color)&&(X=f.line.color),n.extendFlat(t,{distance:t.maxHoverDistance,x0:H,x1:q,y0:W,y1:W,color:X,hovertemplate:!1}),delete t.index,f.text&&!Array.isArray(f.text)?t.text=String(f.text):t.text=f.name,[t]}}}},{"../../components/color":639,"../../components/fx":679,"../../lib":776,"../../registry":904,"./get_trace_color":1201}],1203:[function(t,e,r){"use strict";var n=t("./subtypes");e.exports={hasLines:n.hasLines,hasMarkers:n.hasMarkers,hasText:n.hasText,isBubble:n.isBubble,attributes:t("./attributes"),supplyDefaults:t("./defaults"),crossTraceDefaults:t("./cross_trace_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./cross_trace_calc"),arraysToCalcdata:t("./arrays_to_calcdata"),plot:t("./plot"),colorbar:t("./marker_colorbar"),formatLabels:t("./format_labels"),style:t("./style").style,styleOnSelect:t("./style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("./select"),animatable:!0,moduleType:"trace",name:"scatter",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","symbols","errorBarsOK","showLegend","scatter-like","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"./arrays_to_calcdata":1190,"./attributes":1191,"./calc":1192,"./cross_trace_calc":1196,"./cross_trace_defaults":1197,"./defaults":1198,"./format_labels":1200,"./hover":1202,"./marker_colorbar":1209,"./plot":1212,"./select":1213,"./style":1215,"./subtypes":1216}],1204:[function(t,e,r){"use strict";var n=t("../../lib").isArrayOrTypedArray,i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults");e.exports=function(t,e,r,o,s,l){var c=(t.marker||{}).color;(s("line.color",r),i(t,"line"))?a(t,e,o,s,{prefix:"line.",cLetter:"c"}):s("line.color",!n(c)&&c||r);s("line.width"),(l||{}).noDash||s("line.dash")}},{"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"../../lib":776}],1205:[function(t,e,r){"use strict";var n=t("../../constants/numerical"),i=n.BADNUM,a=n.LOG_CLIP,o=a+.5,s=a-.5,l=t("../../lib"),c=l.segmentsIntersect,u=l.constrain,f=t("./constants");e.exports=function(t,e){var r,n,a,h,p,d,m,g,v,y,x,b,_,w,T,k,A,M,S=e.xaxis,E=e.yaxis,L="log"===S.type,C="log"===E.type,P=S._length,I=E._length,O=e.connectGaps,z=e.baseTolerance,D=e.shape,R="linear"===D,F=e.fill&&"none"!==e.fill,B=[],N=f.minTolerance,j=t.length,U=new Array(j),V=0;function H(r){var n=t[r];if(!n)return!1;var a=e.linearized?S.l2p(n.x):S.c2p(n.x),l=e.linearized?E.l2p(n.y):E.c2p(n.y);if(a===i){if(L&&(a=S.c2p(n.x,!0)),a===i)return!1;C&&l===i&&(a*=Math.abs(S._m*I*(S._m>0?o:s)/(E._m*P*(E._m>0?o:s)))),a*=1e3}if(l===i){if(C&&(l=E.c2p(n.y,!0)),l===i)return!1;l*=1e3}return[a,l]}function q(t,e,r,n){var i=r-t,a=n-e,o=.5-t,s=.5-e,l=i*i+a*a,c=i*o+a*s;if(c>0&&crt||t[1]it)return[u(t[0],et,rt),u(t[1],nt,it)]}function st(t,e){return t[0]===e[0]&&(t[0]===et||t[0]===rt)||(t[1]===e[1]&&(t[1]===nt||t[1]===it)||void 0)}function lt(t,e,r){return function(n,i){var a=ot(n),o=ot(i),s=[];if(a&&o&&st(a,o))return s;a&&s.push(a),o&&s.push(o);var c=2*l.constrain((n[t]+i[t])/2,e,r)-((a||n)[t]+(o||i)[t]);c&&((a&&o?c>0==a[t]>o[t]?a:o:a||o)[t]+=c);return s}}function ct(t){var e=t[0],r=t[1],n=e===U[V-1][0],i=r===U[V-1][1];if(!n||!i)if(V>1){var a=e===U[V-2][0],o=r===U[V-2][1];n&&(e===et||e===rt)&&a?o?V--:U[V-1]=t:i&&(r===nt||r===it)&&o?a?V--:U[V-1]=t:U[V++]=t}else U[V++]=t}function ut(t){U[V-1][0]!==t[0]&&U[V-1][1]!==t[1]&&ct([Z,J]),ct(t),K=null,Z=J=0}function ft(t){if(A=t[0]/P,M=t[1]/I,W=t[0]rt?rt:0,X=t[1]it?it:0,W||X){if(V)if(K){var e=$(K,t);e.length>1&&(ut(e[0]),U[V++]=e[1])}else Q=$(U[V-1],t)[0],U[V++]=Q;else U[V++]=[W||t[0],X||t[1]];var r=U[V-1];W&&X&&(r[0]!==W||r[1]!==X)?(K&&(Z!==W&&J!==X?ct(Z&&J?(n=K,a=(i=t)[0]-n[0],o=(i[1]-n[1])/a,(n[1]*i[0]-i[1]*n[0])/a>0?[o>0?et:rt,it]:[o>0?rt:et,nt]):[Z||W,J||X]):Z&&J&&ct([Z,J])),ct([W,X])):Z-W&&J-X&&ct([W||Z,X||J]),K=t,Z=W,J=X}else K&&ut($(K,t)[0]),U[V++]=t;var n,i,a,o}for("linear"===D||"spline"===D?$=function(t,e){for(var r=[],n=0,i=0;i<4;i++){var a=at[i],o=c(t[0],t[1],e[0],e[1],a[0],a[1],a[2],a[3]);o&&(!n||Math.abs(o.x-r[0][0])>1||Math.abs(o.y-r[0][1])>1)&&(o=[o.x,o.y],n&&Y(o,t)G(d,ht))break;a=d,(_=v[0]*g[0]+v[1]*g[1])>x?(x=_,h=d,m=!1):_=t.length||!d)break;ft(d),n=d}}else ft(h)}K&&ct([Z||K[0],J||K[1]]),B.push(U.slice(0,V))}return B}},{"../../constants/numerical":752,"../../lib":776,"./constants":1195}],1206:[function(t,e,r){"use strict";e.exports=function(t,e,r){"spline"===r("line.shape")&&r("line.smoothing")}},{}],1207:[function(t,e,r){"use strict";var n={tonextx:1,tonexty:1,tonext:1};e.exports=function(t,e,r){var i,a,o,s,l,c={},u=!1,f=-1,h=0,p=-1;for(a=0;a=0?l=p:(l=p=h,h++),l0?Math.max(r,a):0}}},{"fast-isnumeric":242}],1209:[function(t,e,r){"use strict";e.exports={container:"marker",min:"cmin",max:"cmax"}},{}],1210:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/helpers").hasColorscale,a=t("../../components/colorscale/defaults"),o=t("./subtypes");e.exports=function(t,e,r,s,l,c){var u=o.isBubble(t),f=(t.line||{}).color;(c=c||{},f&&(r=f),l("marker.symbol"),l("marker.opacity",u?.7:1),l("marker.size"),l("marker.color",r),i(t,"marker")&&a(t,e,s,l,{prefix:"marker.",cLetter:"c"}),c.noSelect||(l("selected.marker.color"),l("unselected.marker.color"),l("selected.marker.size"),l("unselected.marker.size")),c.noLine||(l("marker.line.color",f&&!Array.isArray(f)&&e.marker.color!==f?f:u?n.background:n.defaultLine),i(t,"marker.line")&&a(t,e,s,l,{prefix:"marker.line.",cLetter:"c"}),l("marker.line.width",u?1:0)),u&&(l("marker.sizeref"),l("marker.sizemin"),l("marker.sizemode")),c.gradient)&&("none"!==l("marker.gradient.type")&&l("marker.gradient.color"))}},{"../../components/color":639,"../../components/colorscale/defaults":649,"../../components/colorscale/helpers":650,"./subtypes":1216}],1211:[function(t,e,r){"use strict";var n=t("../../lib").dateTick0,i=t("../../constants/numerical").ONEWEEK;function a(t,e){return n(e,t%i==0?1:0)}e.exports=function(t,e,r,n,i){if(i||(i={x:!0,y:!0}),i.x){var o=n("xperiod");o&&(n("xperiod0",a(o,e.xcalendar)),n("xperiodalignment"))}if(i.y){var s=n("yperiod");s&&(n("yperiod0",a(s,e.ycalendar)),n("yperiodalignment"))}}},{"../../constants/numerical":752,"../../lib":776}],1212:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../registry"),a=t("../../lib"),o=a.ensureSingle,s=a.identity,l=t("../../components/drawing"),c=t("./subtypes"),u=t("./line_points"),f=t("./link_traces"),h=t("../../lib/polygon").tester;function p(t,e,r,f,p,d,m){var g;!function(t,e,r,i,o){var s=r.xaxis,l=r.yaxis,u=n.extent(a.simpleMap(s.range,s.r2c)),f=n.extent(a.simpleMap(l.range,l.r2c)),h=i[0].trace;if(!c.hasMarkers(h))return;var p=h.marker.maxdisplayed;if(0===p)return;var d=i.filter((function(t){return t.x>=u[0]&&t.x<=u[1]&&t.y>=f[0]&&t.y<=f[1]})),m=Math.ceil(d.length/p),g=0;o.forEach((function(t,r){var n=t[0].trace;c.hasMarkers(n)&&n.marker.maxdisplayed>0&&r0;function y(t){return v?t.transition():t}var x=r.xaxis,b=r.yaxis,_=f[0].trace,w=_.line,T=n.select(d),k=o(T,"g","errorbars"),A=o(T,"g","lines"),M=o(T,"g","points"),S=o(T,"g","text");if(i.getComponentMethod("errorbars","plot")(t,k,r,m),!0===_.visible){var E,L;y(T).style("opacity",_.opacity);var C=_.fill.charAt(_.fill.length-1);"x"!==C&&"y"!==C&&(C=""),f[0][r.isRangePlot?"nodeRangePlot3":"node3"]=T;var P,I,O="",z=[],D=_._prevtrace;D&&(O=D._prevRevpath||"",L=D._nextFill,z=D._polygons);var R,F,B,N,j,U,V,H="",q="",G=[],Y=a.noop;if(E=_._ownFill,c.hasLines(_)||"none"!==_.fill){for(L&&L.datum(f),-1!==["hv","vh","hvh","vhv"].indexOf(w.shape)?(R=l.steps(w.shape),F=l.steps(w.shape.split("").reverse().join(""))):R=F="spline"===w.shape?function(t){var e=t[t.length-1];return t.length>1&&t[0][0]===e[0]&&t[0][1]===e[1]?l.smoothclosed(t.slice(1),w.smoothing):l.smoothopen(t,w.smoothing)}:function(t){return"M"+t.join("L")},B=function(t){return F(t.reverse())},G=u(f,{xaxis:x,yaxis:b,connectGaps:_.connectgaps,baseTolerance:Math.max(w.width||1,3)/4,shape:w.shape,simplify:w.simplify,fill:_.fill}),V=_._polygons=new Array(G.length),g=0;g1){var r=n.select(this);if(r.datum(f),t)y(r.style("opacity",0).attr("d",P).call(l.lineGroupStyle)).style("opacity",1);else{var i=y(r);i.attr("d",P),l.singleLineStyle(f,i)}}}}}var W=A.selectAll(".js-line").data(G);y(W.exit()).style("opacity",0).remove(),W.each(Y(!1)),W.enter().append("path").classed("js-line",!0).style("vector-effect","non-scaling-stroke").call(l.lineGroupStyle).each(Y(!0)),l.setClipUrl(W,r.layerClipId,t),G.length?(E?(E.datum(f),N&&U&&(C?("y"===C?N[1]=U[1]=b.c2p(0,!0):"x"===C&&(N[0]=U[0]=x.c2p(0,!0)),y(E).attr("d","M"+U+"L"+N+"L"+H.substr(1)).call(l.singleFillStyle)):y(E).attr("d",H+"Z").call(l.singleFillStyle))):L&&("tonext"===_.fill.substr(0,6)&&H&&O?("tonext"===_.fill?y(L).attr("d",H+"Z"+O+"Z").call(l.singleFillStyle):y(L).attr("d",H+"L"+O.substr(1)+"Z").call(l.singleFillStyle),_._polygons=_._polygons.concat(z)):(Z(L),_._polygons=null)),_._prevRevpath=q,_._prevPolygons=V):(E?Z(E):L&&Z(L),_._polygons=_._prevRevpath=_._prevPolygons=null),M.datum(f),S.datum(f),function(e,i,a){var o,u=a[0].trace,f=c.hasMarkers(u),h=c.hasText(u),p=tt(u),d=et,m=et;if(f||h){var g=s,_=u.stackgroup,w=_&&"infer zero"===t._fullLayout._scatterStackOpts[x._id+b._id][_].stackgaps;u.marker.maxdisplayed||u._needsCull?g=w?K:J:_&&!w&&(g=Q),f&&(d=g),h&&(m=g)}var T,k=(o=e.selectAll("path.point").data(d,p)).enter().append("path").classed("point",!0);v&&k.call(l.pointStyle,u,t).call(l.translatePoints,x,b).style("opacity",0).transition().style("opacity",1),o.order(),f&&(T=l.makePointStyleFns(u)),o.each((function(e){var i=n.select(this),a=y(i);l.translatePoint(e,a,x,b)?(l.singlePointStyle(e,a,u,T,t),r.layerClipId&&l.hideOutsideRangePoint(e,a,x,b,u.xcalendar,u.ycalendar),u.customdata&&i.classed("plotly-customdata",null!==e.data&&void 0!==e.data)):a.remove()})),v?o.exit().transition().style("opacity",0).remove():o.exit().remove(),(o=i.selectAll("g").data(m,p)).enter().append("g").classed("textpoint",!0).append("text"),o.order(),o.each((function(t){var e=n.select(this),i=y(e.select("text"));l.translatePoint(t,i,x,b)?r.layerClipId&&l.hideOutsideRangePoint(t,e,x,b,u.xcalendar,u.ycalendar):e.remove()})),o.selectAll("text").call(l.textPointStyle,u,t).each((function(t){var e=x.c2p(t.x),r=b.c2p(t.y);n.select(this).selectAll("tspan.line").each((function(){y(n.select(this)).attr({x:e,y:r})}))})),o.exit().remove()}(M,S,f);var X=!1===_.cliponaxis?null:r.layerClipId;l.setClipUrl(M,X,t),l.setClipUrl(S,X,t)}function Z(t){y(t).attr("d","M0,0Z")}function J(t){return t.filter((function(t){return!t.gap&&t.vis}))}function K(t){return t.filter((function(t){return t.vis}))}function Q(t){return t.filter((function(t){return!t.gap}))}function $(t){return t.id}function tt(t){if(t.ids)return $}function et(){return!1}}e.exports=function(t,e,r,i,a,c){var u,h,d=!a,m=!!a&&a.duration>0,g=f(t,e,r);((u=i.selectAll("g.trace").data(g,(function(t){return t[0].trace.uid}))).enter().append("g").attr("class",(function(t){return"trace scatter trace"+t[0].trace.uid})).style("stroke-miterlimit",2),u.order(),function(t,e,r){e.each((function(e){var i=o(n.select(this),"g","fills");l.setClipUrl(i,r.layerClipId,t);var a=e[0].trace,c=[];a._ownfill&&c.push("_ownFill"),a._nexttrace&&c.push("_nextFill");var u=i.selectAll("g").data(c,s);u.enter().append("g"),u.exit().each((function(t){a[t]=null})).remove(),u.order().each((function(t){a[t]=o(n.select(this),"path","js-fill")}))}))}(t,u,e),m)?(c&&(h=c()),n.transition().duration(a.duration).ease(a.easing).each("end",(function(){h&&h()})).each("interrupt",(function(){h&&h()})).each((function(){i.selectAll("g.trace").each((function(r,n){p(t,n,e,r,g,this,a)}))}))):u.each((function(r,n){p(t,n,e,r,g,this,a)}));d&&u.exit().remove(),i.selectAll("path:not([d])").remove()}},{"../../components/drawing":661,"../../lib":776,"../../lib/polygon":788,"../../registry":904,"./line_points":1205,"./link_traces":1207,"./subtypes":1216,"@plotly/d3":58}],1213:[function(t,e,r){"use strict";var n=t("./subtypes");e.exports=function(t,e){var r,i,a,o,s=t.cd,l=t.xaxis,c=t.yaxis,u=[],f=s[0].trace;if(!n.hasMarkers(f)&&!n.hasText(f))return[];if(!1===e)for(r=0;r0){var h=i.c2l(u);i._lowerLogErrorBound||(i._lowerLogErrorBound=h),i._lowerErrorBound=Math.min(i._lowerLogErrorBound,h)}}else o[s]=[-l[0]*r,l[1]*r]}return o}e.exports=function(t,e,r){var n=[i(t.x,t.error_x,e[0],r.xaxis),i(t.y,t.error_y,e[1],r.yaxis),i(t.z,t.error_z,e[2],r.zaxis)],a=function(t){for(var e=0;e-1?-1:t.indexOf("right")>-1?1:0}function b(t){return null==t?0:t.indexOf("top")>-1?-1:t.indexOf("bottom")>-1?1:0}function _(t,e){return e(4*t)}function w(t){return p[t]}function T(t,e,r,n,i){var a=null;if(l.isArrayOrTypedArray(t)){a=[];for(var o=0;o=0){var m=function(t,e,r){var n,i=(r+1)%3,a=(r+2)%3,o=[],l=[];for(n=0;n=0&&f("surfacecolor",h||p);for(var d=["x","y","z"],m=0;m<3;++m){var g="projection."+d[m];f(g+".show")&&(f(g+".opacity"),f(g+".scale"))}var v=n.getComponentMethod("errorbars","supplyDefaults");v(t,e,h||p||r,{axis:"z"}),v(t,e,h||p||r,{axis:"y",inherit:"z"}),v(t,e,h||p||r,{axis:"x",inherit:"z"})}else e.visible=!1}},{"../../lib":776,"../../registry":904,"../scatter/line_defaults":1204,"../scatter/marker_defaults":1210,"../scatter/subtypes":1216,"../scatter/text_defaults":1217,"./attributes":1219}],1224:[function(t,e,r){"use strict";e.exports={plot:t("./convert"),attributes:t("./attributes"),markerSymbols:t("../../constants/gl3d_markers"),supplyDefaults:t("./defaults"),colorbar:[{container:"marker",min:"cmin",max:"cmax"},{container:"line",min:"cmin",max:"cmax"}],calc:t("./calc"),moduleType:"trace",name:"scatter3d",basePlotModule:t("../../plots/gl3d"),categories:["gl3d","symbols","showLegend","scatter-like"],meta:{}}},{"../../constants/gl3d_markers":750,"../../plots/gl3d":869,"./attributes":1219,"./calc":1220,"./convert":1222,"./defaults":1223}],1225:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../plots/attributes"),a=t("../../plots/template_attributes").hovertemplateAttrs,o=t("../../plots/template_attributes").texttemplateAttrs,s=t("../../components/colorscale/attributes"),l=t("../../lib/extend").extendFlat,c=n.marker,u=n.line,f=c.line;e.exports={carpet:{valType:"string",editType:"calc"},a:{valType:"data_array",editType:"calc"},b:{valType:"data_array",editType:"calc"},mode:l({},n.mode,{dflt:"markers"}),text:l({},n.text,{}),texttemplate:o({editType:"plot"},{keys:["a","b","text"]}),hovertext:l({},n.hovertext,{}),line:{color:u.color,width:u.width,dash:u.dash,shape:l({},u.shape,{values:["linear","spline"]}),smoothing:u.smoothing,editType:"calc"},connectgaps:n.connectgaps,fill:l({},n.fill,{values:["none","toself","tonext"],dflt:"none"}),fillcolor:n.fillcolor,marker:l({symbol:c.symbol,opacity:c.opacity,maxdisplayed:c.maxdisplayed,size:c.size,sizeref:c.sizeref,sizemin:c.sizemin,sizemode:c.sizemode,line:l({width:f.width,editType:"calc"},s("marker.line")),gradient:c.gradient,editType:"calc"},s("marker")),textfont:n.textfont,textposition:n.textposition,selected:n.selected,unselected:n.unselected,hoverinfo:l({},i.hoverinfo,{flags:["a","b","text","name"]}),hoveron:n.hoveron,hovertemplate:a()}},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/template_attributes":899,"../scatter/attributes":1191}],1226:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../scatter/colorscale_calc"),a=t("../scatter/arrays_to_calcdata"),o=t("../scatter/calc_selection"),s=t("../scatter/calc").calcMarkerSize,l=t("../carpet/lookup_carpetid");e.exports=function(t,e){var r=e._carpetTrace=l(t,e);if(r&&r.visible&&"legendonly"!==r.visible){var c;e.xaxis=r.xaxis,e.yaxis=r.yaxis;var u,f,h=e._length,p=new Array(h),d=!1;for(c=0;c")}return o}function y(t,e){var r;r=t.labelprefix&&t.labelprefix.length>0?t.labelprefix.replace(/ = $/,""):t._hovertitle,g.push(r+": "+e.toFixed(3)+t.labelsuffix)}}},{"../../lib":776,"../scatter/hover":1202}],1231:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../scatter/select"),eventData:t("./event_data"),moduleType:"trace",name:"scattercarpet",basePlotModule:t("../../plots/cartesian"),categories:["svg","carpet","symbols","showLegend","carpetDependent","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"../scatter/marker_colorbar":1209,"../scatter/select":1213,"../scatter/style":1215,"./attributes":1225,"./calc":1226,"./defaults":1227,"./event_data":1228,"./format_labels":1229,"./hover":1230,"./plot":1232}],1232:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../plots/cartesian/axes"),a=t("../../components/drawing");e.exports=function(t,e,r,o){var s,l,c,u=r[0][0].carpet,f={xaxis:i.getFromId(t,u.xaxis||"x"),yaxis:i.getFromId(t,u.yaxis||"y"),plot:e.plot};for(n(t,f,r,o),s=0;s")}(c,m,t,l[0].t.labels),t.hovertemplate=c.hovertemplate,[t]}}},{"../../components/fx":679,"../../constants/numerical":752,"../../lib":776,"../scatter/get_trace_color":1201,"./attributes":1233}],1239:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),calcGeoJSON:t("./plot").calcGeoJSON,plot:t("./plot").plot,style:t("./style"),styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("./select"),moduleType:"trace",name:"scattergeo",basePlotModule:t("../../plots/geo"),categories:["geo","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/geo":860,"../scatter/marker_colorbar":1209,"../scatter/style":1215,"./attributes":1233,"./calc":1234,"./defaults":1235,"./event_data":1236,"./format_labels":1237,"./hover":1238,"./plot":1240,"./select":1241,"./style":1242}],1240:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../lib/topojson_utils").getTopojsonFeatures,o=t("../../lib/geojson_utils"),s=t("../../lib/geo_location_utils"),l=t("../../plots/cartesian/autorange").findExtremes,c=t("../../constants/numerical").BADNUM,u=t("../scatter/calc").calcMarkerSize,f=t("../scatter/subtypes"),h=t("./style");e.exports={calcGeoJSON:function(t,e){var r,n,i=t[0].trace,o=e[i.geo],f=o._subplot,h=i._length;if(Array.isArray(i.locations)){var p=i.locationmode,d="geojson-id"===p?s.extractTraceFeature(t):a(i,f.topojson);for(r=0;r=g,w=2*b,T={},k=l.makeCalcdata(e,"x"),A=y.makeCalcdata(e,"y"),M=s(e,l,"x",k),S=s(e,y,"y",A),E=M.vals,L=S.vals;e._x=E,e._y=L,e.xperiodalignment&&(e._origX=k,e._xStarts=M.starts,e._xEnds=M.ends),e.yperiodalignment&&(e._origY=A,e._yStarts=S.starts,e._yEnds=S.ends);var C=new Array(w),P=new Array(b);for(r=0;r1&&i.extendFlat(s.line,p.linePositions(t,r,n));if(s.errorX||s.errorY){var l=p.errorBarPositions(t,r,n,a,o);s.errorX&&i.extendFlat(s.errorX,l.x),s.errorY&&i.extendFlat(s.errorY,l.y)}s.text&&(i.extendFlat(s.text,{positions:n},p.textPosition(t,r,s.text,s.marker)),i.extendFlat(s.textSel,{positions:n},p.textPosition(t,r,s.text,s.markerSel)),i.extendFlat(s.textUnsel,{positions:n},p.textPosition(t,r,s.text,s.markerUnsel)));return s}(t,0,e,C,E,L),z=d(t,x);return f(o,e),_?O.marker&&(I=O.marker.sizeAvg||Math.max(O.marker.size,3)):I=c(e,b),u(t,e,l,y,E,L,I),O.errorX&&v(e,l,O.errorX),O.errorY&&v(e,y,O.errorY),O.fill&&!z.fill2d&&(z.fill2d=!0),O.marker&&!z.scatter2d&&(z.scatter2d=!0),O.line&&!z.line2d&&(z.line2d=!0),!O.errorX&&!O.errorY||z.error2d||(z.error2d=!0),O.text&&!z.glText&&(z.glText=!0),O.marker&&(O.marker.snap=b),z.lineOptions.push(O.line),z.errorXOptions.push(O.errorX),z.errorYOptions.push(O.errorY),z.fillOptions.push(O.fill),z.markerOptions.push(O.marker),z.markerSelectedOptions.push(O.markerSel),z.markerUnselectedOptions.push(O.markerUnsel),z.textOptions.push(O.text),z.textSelectedOptions.push(O.textSel),z.textUnselectedOptions.push(O.textUnsel),z.selectBatch.push([]),z.unselectBatch.push([]),T._scene=z,T.index=z.count,T.x=E,T.y=L,T.positions=C,z.count++,[{x:!1,y:!1,t:T,trace:e}]}},{"../../constants/numerical":752,"../../lib":776,"../../plots/cartesian/align_period":824,"../../plots/cartesian/autorange":826,"../../plots/cartesian/axis_ids":831,"../scatter/calc":1192,"../scatter/colorscale_calc":1194,"./constants":1245,"./convert":1246,"./scene_update":1254,"@plotly/point-cluster":59}],1245:[function(t,e,r){"use strict";e.exports={TOO_MANY_POINTS:1e5,SYMBOL_SDF_SIZE:200,SYMBOL_SIZE:20,SYMBOL_STROKE:1,DOT_RE:/-dot/,OPEN_RE:/-open/,DASHES:{solid:[1],dot:[1,1],dash:[4,1],longdash:[8,1],dashdot:[4,1,1,1],longdashdot:[8,1,1,1]}}},{}],1246:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("svg-path-sdf"),a=t("color-normalize"),o=t("../../registry"),s=t("../../lib"),l=t("../../components/drawing"),c=t("../../plots/cartesian/axis_ids"),u=t("../../lib/gl_format_color").formatColor,f=t("../scatter/subtypes"),h=t("../scatter/make_bubble_size_func"),p=t("./helpers"),d=t("./constants"),m=t("../../constants/interactions").DESELECTDIM,g={start:1,left:1,end:-1,right:-1,middle:0,center:0,bottom:1,top:-1},v=t("../../components/fx/helpers").appendArrayPointValue;function y(t,e){var r,i=t._fullLayout,a=e._length,o=e.textfont,l=e.textposition,c=Array.isArray(l)?l:[l],u=o.color,f=o.size,h=o.family,p={},d=t._context.plotGlPixelRatio,m=e.texttemplate;if(m){p.text=[];var g=i._d3locale,y=Array.isArray(m),x=y?Math.min(m.length,a):a,b=y?function(t){return m[t]}:function(){return m};for(r=0;rd.TOO_MANY_POINTS||f.hasMarkers(e)?"rect":"round";if(c&&e.connectgaps){var h=n[0],p=n[1];for(i=0;i1?l[i]:l[0]:l,d=Array.isArray(c)?c.length>1?c[i]:c[0]:c,m=g[p],v=g[d],y=u?u/.8+1:0,x=-v*y-.5*v;o.offset[i]=[m*y/h,x/h]}}return o}}},{"../../components/drawing":661,"../../components/fx/helpers":675,"../../constants/interactions":751,"../../lib":776,"../../lib/gl_format_color":772,"../../plots/cartesian/axis_ids":831,"../../registry":904,"../scatter/make_bubble_size_func":1208,"../scatter/subtypes":1216,"./constants":1245,"./helpers":1250,"color-normalize":126,"fast-isnumeric":242,"svg-path-sdf":569}],1247:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../registry"),a=t("./helpers"),o=t("./attributes"),s=t("../scatter/constants"),l=t("../scatter/subtypes"),c=t("../scatter/xy_defaults"),u=t("../scatter/period_defaults"),f=t("../scatter/marker_defaults"),h=t("../scatter/line_defaults"),p=t("../scatter/fillcolor_defaults"),d=t("../scatter/text_defaults");e.exports=function(t,e,r,m){function g(r,i){return n.coerce(t,e,o,r,i)}var v=!!t.marker&&a.isOpenSymbol(t.marker.symbol),y=l.isBubble(t),x=c(t,e,m,g);if(x){u(t,e,m,g),g("xhoverformat"),g("yhoverformat");var b=x100},r.isDotSymbol=function(t){return"string"==typeof t?n.DOT_RE.test(t):t>200}},{"./constants":1245}],1251:[function(t,e,r){"use strict";var n=t("../../registry"),i=t("../../lib"),a=t("../scatter/get_trace_color");function o(t,e,r,o){var s=t.xa,l=t.ya,c=t.distance,u=t.dxy,f=t.index,h={pointNumber:f,x:e[f],y:r[f]};h.tx=Array.isArray(o.text)?o.text[f]:o.text,h.htx=Array.isArray(o.hovertext)?o.hovertext[f]:o.hovertext,h.data=Array.isArray(o.customdata)?o.customdata[f]:o.customdata,h.tp=Array.isArray(o.textposition)?o.textposition[f]:o.textposition;var p=o.textfont;p&&(h.ts=i.isArrayOrTypedArray(p.size)?p.size[f]:p.size,h.tc=Array.isArray(p.color)?p.color[f]:p.color,h.tf=Array.isArray(p.family)?p.family[f]:p.family);var d=o.marker;d&&(h.ms=i.isArrayOrTypedArray(d.size)?d.size[f]:d.size,h.mo=i.isArrayOrTypedArray(d.opacity)?d.opacity[f]:d.opacity,h.mx=i.isArrayOrTypedArray(d.symbol)?d.symbol[f]:d.symbol,h.mc=i.isArrayOrTypedArray(d.color)?d.color[f]:d.color);var m=d&&d.line;m&&(h.mlc=Array.isArray(m.color)?m.color[f]:m.color,h.mlw=i.isArrayOrTypedArray(m.width)?m.width[f]:m.width);var g=d&&d.gradient;g&&"none"!==g.type&&(h.mgt=Array.isArray(g.type)?g.type[f]:g.type,h.mgc=Array.isArray(g.color)?g.color[f]:g.color);var v=s.c2p(h.x,!0),y=l.c2p(h.y,!0),x=h.mrc||1,b=o.hoverlabel;b&&(h.hbg=Array.isArray(b.bgcolor)?b.bgcolor[f]:b.bgcolor,h.hbc=Array.isArray(b.bordercolor)?b.bordercolor[f]:b.bordercolor,h.hts=i.isArrayOrTypedArray(b.font.size)?b.font.size[f]:b.font.size,h.htc=Array.isArray(b.font.color)?b.font.color[f]:b.font.color,h.htf=Array.isArray(b.font.family)?b.font.family[f]:b.font.family,h.hnl=i.isArrayOrTypedArray(b.namelength)?b.namelength[f]:b.namelength);var _=o.hoverinfo;_&&(h.hi=Array.isArray(_)?_[f]:_);var w=o.hovertemplate;w&&(h.ht=Array.isArray(w)?w[f]:w);var T={};T[t.index]=h;var k=o._origX,A=o._origY,M=i.extendFlat({},t,{color:a(o,h),x0:v-x,x1:v+x,xLabelVal:k?k[f]:h.x,y0:y-x,y1:y+x,yLabelVal:A?A[f]:h.y,cd:T,distance:c,spikeDistance:u,hovertemplate:h.ht});return h.htx?M.text=h.htx:h.tx?M.text=h.tx:o.text&&(M.text=o.text),i.fillText(h,o,M),n.getComponentMethod("errorbars","hoverInfo")(h,o,M),M}e.exports={hoverPoints:function(t,e,r,n){var i,a,s,l,c,u,f,h,p,d,m=t.cd,g=m[0].t,v=m[0].trace,y=t.xa,x=t.ya,b=g.x,_=g.y,w=y.c2p(e),T=x.c2p(r),k=t.distance;if(g.tree){var A=y.p2c(w-k),M=y.p2c(w+k),S=x.p2c(T-k),E=x.p2c(T+k);i="x"===n?g.tree.range(Math.min(A,M),Math.min(x._rl[0],x._rl[1]),Math.max(A,M),Math.max(x._rl[0],x._rl[1])):g.tree.range(Math.min(A,M),Math.min(S,E),Math.max(A,M),Math.max(S,E))}else i=g.ids;var L=k;if("x"===n){var C=!!v.xperiodalignment,P=!!v.yperiodalignment;for(u=0;u=Math.min(I,O)&&w<=Math.max(I,O)?0:1/0}if(f=Math.min(z,D)&&T<=Math.max(z,D)?0:1/0}d=Math.sqrt(f*f+h*h),s=i[u]}}}else for(u=i.length-1;u>-1;u--)l=b[a=i[u]],c=_[a],f=y.c2p(l)-w,h=x.c2p(c)-T,(p=Math.sqrt(f*f+h*h))v.glText.length){var w=b-v.glText.length;for(d=0;dr&&(isNaN(e[n])||isNaN(e[n+1]));)n-=2;t.positions=e.slice(r,n+2)}return t})),v.line2d.update(v.lineOptions)),v.error2d){var k=(v.errorXOptions||[]).concat(v.errorYOptions||[]);v.error2d.update(k)}v.scatter2d&&v.scatter2d.update(v.markerOptions),v.fillOrder=s.repeat(null,b),v.fill2d&&(v.fillOptions=v.fillOptions.map((function(t,e){var n=r[e];if(t&&n&&n[0]&&n[0].trace){var i,a,o=n[0],s=o.trace,l=o.t,c=v.lineOptions[e],u=[];s._ownfill&&u.push(e),s._nexttrace&&u.push(e+1),u.length&&(v.fillOrder[e]=u);var f,h,p=[],d=c&&c.positions||l.positions;if("tozeroy"===s.fill){for(f=0;ff&&isNaN(d[h+1]);)h-=2;0!==d[f+1]&&(p=[d[f],0]),p=p.concat(d.slice(f,h+2)),0!==d[h+1]&&(p=p.concat([d[h],0]))}else if("tozerox"===s.fill){for(f=0;ff&&isNaN(d[h]);)h-=2;0!==d[f]&&(p=[0,d[f+1]]),p=p.concat(d.slice(f,h+2)),0!==d[h]&&(p=p.concat([0,d[h+1]]))}else if("toself"===s.fill||"tonext"===s.fill){for(p=[],i=0,t.splitNull=!0,a=0;a-1;for(d=0;d")}function u(t){return t+"\xb0"}}e.exports={hoverPoints:function(t,e,r){var o=t.cd,c=o[0].trace,u=t.xa,f=t.ya,h=t.subplot,p=360*(e>=0?Math.floor((e+180)/360):Math.ceil((e-180)/360)),d=e-p;if(n.getClosest(o,(function(t){var e=t.lonlat;if(e[0]===s)return 1/0;var n=i.modHalf(e[0],360),a=e[1],o=h.project([n,a]),l=o.x-u.c2p([d,a]),c=o.y-f.c2p([n,r]),p=Math.max(3,t.mrc||0);return Math.max(Math.sqrt(l*l+c*c)-p,1-3/p)}),t),!1!==t.index){var m=o[t.index],g=m.lonlat,v=[i.modHalf(g[0],360)+p,g[1]],y=u.c2p(v),x=f.c2p(v),b=m.mrc||1;t.x0=y-b,t.x1=y+b,t.y0=x-b,t.y1=x+b;var _={};_[c.subplot]={_subplot:h};var w=c._module.formatLabels(m,c,_);return t.lonLabel=w.lonLabel,t.latLabel=w.latLabel,t.color=a(c,m),t.extraText=l(c,m,o[0].t.labels),t.hovertemplate=c.hovertemplate,[t]}},getExtraText:l}},{"../../components/fx":679,"../../constants/numerical":752,"../../lib":776,"../scatter/get_trace_color":1201}],1262:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("../scattergeo/calc"),plot:t("./plot"),hoverPoints:t("./hover").hoverPoints,eventData:t("./event_data"),selectPoints:t("./select"),styleOnSelect:function(t,e){e&&e[0].trace._glTrace.update(e)},moduleType:"trace",name:"scattermapbox",basePlotModule:t("../../plots/mapbox"),categories:["mapbox","gl","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/mapbox":884,"../scatter/marker_colorbar":1209,"../scattergeo/calc":1234,"./attributes":1256,"./defaults":1258,"./event_data":1259,"./format_labels":1260,"./hover":1261,"./plot":1263,"./select":1264}],1263:[function(t,e,r){"use strict";var n=t("./convert"),i=t("../../plots/mapbox/constants").traceLayerPrefix,a=["fill","line","circle","symbol"];function o(t,e){this.type="scattermapbox",this.subplot=t,this.uid=e,this.sourceIds={fill:"source-"+e+"-fill",line:"source-"+e+"-line",circle:"source-"+e+"-circle",symbol:"source-"+e+"-symbol"},this.layerIds={fill:i+e+"-fill",line:i+e+"-line",circle:i+e+"-circle",symbol:i+e+"-symbol"},this.below=null}var s=o.prototype;s.addSource=function(t,e){this.subplot.map.addSource(this.sourceIds[t],{type:"geojson",data:e.geojson})},s.setSourceData=function(t,e){this.subplot.map.getSource(this.sourceIds[t]).setData(e.geojson)},s.addLayer=function(t,e,r){this.subplot.addLayer({type:t,id:this.layerIds[t],source:this.sourceIds[t],layout:e.layout,paint:e.paint},r)},s.update=function(t){var e,r,i,o=this.subplot,s=o.map,l=n(o.gd,t),c=o.belowLookup["trace-"+this.uid];if(c!==this.below){for(e=a.length-1;e>=0;e--)r=a[e],s.removeLayer(this.layerIds[r]);for(e=0;e=0;e--){var r=a[e];t.removeLayer(this.layerIds[r]),t.removeSource(this.sourceIds[r])}},e.exports=function(t,e){for(var r=e[0].trace,i=new o(t,r.uid),s=n(t.gd,e),l=i.below=t.belowLookup["trace-"+r.uid],c=0;c")}}e.exports={hoverPoints:function(t,e,r,a){var o=n(t,e,r,a);if(o&&!1!==o[0].index){var s=o[0];if(void 0===s.index)return o;var l=t.subplot,c=s.cd[s.index],u=s.trace;if(l.isPtInside(c))return s.xLabelVal=void 0,s.yLabelVal=void 0,i(c,u,l,s),s.hovertemplate=u.hovertemplate,o}},makeHoverPointText:i}},{"../scatter/hover":1202}],1270:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"scatterpolar",basePlotModule:t("../../plots/polar"),categories:["polar","symbols","showLegend","scatter-like"],attributes:t("./attributes"),supplyDefaults:t("./defaults").supplyDefaults,colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover").hoverPoints,selectPoints:t("../scatter/select"),meta:{}}},{"../../plots/polar":893,"../scatter/marker_colorbar":1209,"../scatter/select":1213,"../scatter/style":1215,"./attributes":1265,"./calc":1266,"./defaults":1267,"./format_labels":1268,"./hover":1269,"./plot":1271}],1271:[function(t,e,r){"use strict";var n=t("../scatter/plot"),i=t("../../constants/numerical").BADNUM;e.exports=function(t,e,r){for(var a=e.layers.frontplot.select("g.scatterlayer"),o={xaxis:e.xaxis,yaxis:e.yaxis,plot:e.framework,layerClipId:e._hasClipOnAxisFalse?e.clipIds.forTraces:null},s=e.radialAxis,l=e.angularAxis,c=0;c=c&&(y.marker.cluster=d.tree),y.marker&&(y.markerSel.positions=y.markerUnsel.positions=y.marker.positions=_),y.line&&_.length>1&&l.extendFlat(y.line,s.linePositions(t,p,_)),y.text&&(l.extendFlat(y.text,{positions:_},s.textPosition(t,p,y.text,y.marker)),l.extendFlat(y.textSel,{positions:_},s.textPosition(t,p,y.text,y.markerSel)),l.extendFlat(y.textUnsel,{positions:_},s.textPosition(t,p,y.text,y.markerUnsel))),y.fill&&!h.fill2d&&(h.fill2d=!0),y.marker&&!h.scatter2d&&(h.scatter2d=!0),y.line&&!h.line2d&&(h.line2d=!0),y.text&&!h.glText&&(h.glText=!0),h.lineOptions.push(y.line),h.fillOptions.push(y.fill),h.markerOptions.push(y.marker),h.markerSelectedOptions.push(y.markerSel),h.markerUnselectedOptions.push(y.markerUnsel),h.textOptions.push(y.text),h.textSelectedOptions.push(y.textSel),h.textUnselectedOptions.push(y.textUnsel),h.selectBatch.push([]),h.unselectBatch.push([]),d.x=w,d.y=T,d.rawx=w,d.rawy=T,d.r=g,d.theta=v,d.positions=_,d._scene=h,d.index=h.count,h.count++}})),a(t,e,r)}}},{"../../lib":776,"../scattergl/constants":1245,"../scattergl/convert":1246,"../scattergl/plot":1253,"../scattergl/scene_update":1254,"@plotly/point-cluster":59,"fast-isnumeric":242}],1279:[function(t,e,r){"use strict";var n=t("../../plots/template_attributes").hovertemplateAttrs,i=t("../../plots/template_attributes").texttemplateAttrs,a=t("../scatter/attributes"),o=t("../../plots/attributes"),s=t("../../components/colorscale/attributes"),l=t("../../components/drawing/attributes").dash,c=t("../../lib/extend").extendFlat,u=a.marker,f=a.line,h=u.line;e.exports={a:{valType:"data_array",editType:"calc"},b:{valType:"data_array",editType:"calc"},c:{valType:"data_array",editType:"calc"},sum:{valType:"number",dflt:0,min:0,editType:"calc"},mode:c({},a.mode,{dflt:"markers"}),text:c({},a.text,{}),texttemplate:i({editType:"plot"},{keys:["a","b","c","text"]}),hovertext:c({},a.hovertext,{}),line:{color:f.color,width:f.width,dash:l,shape:c({},f.shape,{values:["linear","spline"]}),smoothing:f.smoothing,editType:"calc"},connectgaps:a.connectgaps,cliponaxis:a.cliponaxis,fill:c({},a.fill,{values:["none","toself","tonext"],dflt:"none"}),fillcolor:a.fillcolor,marker:c({symbol:u.symbol,opacity:u.opacity,maxdisplayed:u.maxdisplayed,size:u.size,sizeref:u.sizeref,sizemin:u.sizemin,sizemode:u.sizemode,line:c({width:h.width,editType:"calc"},s("marker.line")),gradient:u.gradient,editType:"calc"},s("marker")),textfont:a.textfont,textposition:a.textposition,selected:a.selected,unselected:a.unselected,hoverinfo:c({},o.hoverinfo,{flags:["a","b","c","text","name"]}),hoveron:a.hoveron,hovertemplate:n()}},{"../../components/colorscale/attributes":646,"../../components/drawing/attributes":660,"../../lib/extend":766,"../../plots/attributes":823,"../../plots/template_attributes":899,"../scatter/attributes":1191}],1280:[function(t,e,r){"use strict";var n=t("fast-isnumeric"),i=t("../scatter/colorscale_calc"),a=t("../scatter/arrays_to_calcdata"),o=t("../scatter/calc_selection"),s=t("../scatter/calc").calcMarkerSize,l=["a","b","c"],c={a:["b","c"],b:["a","c"],c:["a","b"]};e.exports=function(t,e){var r,u,f,h,p,d,m=t._fullLayout[e.subplot].sum,g=e.sum||m,v={a:e.a,b:e.b,c:e.c};for(r=0;r"),o.hovertemplate=h.hovertemplate,a}function x(t,e){v.push(t._hovertitle+": "+e)}}},{"../scatter/hover":1202}],1285:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),supplyDefaults:t("./defaults"),colorbar:t("../scatter/marker_colorbar"),formatLabels:t("./format_labels"),calc:t("./calc"),plot:t("./plot"),style:t("../scatter/style").style,styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../scatter/select"),eventData:t("./event_data"),moduleType:"trace",name:"scatterternary",basePlotModule:t("../../plots/ternary"),categories:["ternary","symbols","showLegend","scatter-like"],meta:{}}},{"../../plots/ternary":900,"../scatter/marker_colorbar":1209,"../scatter/select":1213,"../scatter/style":1215,"./attributes":1279,"./calc":1280,"./defaults":1281,"./event_data":1282,"./format_labels":1283,"./hover":1284,"./plot":1286}],1286:[function(t,e,r){"use strict";var n=t("../scatter/plot");e.exports=function(t,e,r){var i=e.plotContainer;i.select(".scatterlayer").selectAll("*").remove();var a={xaxis:e.xaxis,yaxis:e.yaxis,plot:i,layerClipId:e._hasClipOnAxisFalse?e.clipIdRelative:null},o=e.layers.frontplot.select("g.scatterlayer");n(t,a,r,o)}},{"../scatter/plot":1212}],1287:[function(t,e,r){"use strict";var n=t("../scatter/attributes"),i=t("../../components/colorscale/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../scattergl/attributes"),l=t("../../plots/cartesian/constants").idRegex,c=t("../../plot_api/plot_template").templatedArray,u=t("../../lib/extend").extendFlat,f=n.marker,h=f.line,p=u(i("marker.line",{editTypeOverride:"calc"}),{width:u({},h.width,{editType:"calc"}),editType:"calc"}),d=u(i("marker"),{symbol:f.symbol,size:u({},f.size,{editType:"markerSize"}),sizeref:f.sizeref,sizemin:f.sizemin,sizemode:f.sizemode,opacity:f.opacity,colorbar:f.colorbar,line:p,editType:"calc"});function m(t){return{valType:"info_array",freeLength:!0,editType:"calc",items:{valType:"subplotid",regex:l[t],editType:"plot"}}}d.color.editType=d.cmin.editType=d.cmax.editType="style",e.exports={dimensions:c("dimension",{visible:{valType:"boolean",dflt:!0,editType:"calc"},label:{valType:"string",editType:"calc"},values:{valType:"data_array",editType:"calc+clearAxisTypes"},axis:{type:{valType:"enumerated",values:["linear","log","date","category"],editType:"calc+clearAxisTypes"},matches:{valType:"boolean",dflt:!1,editType:"calc"},editType:"calc+clearAxisTypes"},editType:"calc+clearAxisTypes"}),text:u({},s.text,{}),hovertext:u({},s.hovertext,{}),hovertemplate:o(),xhoverformat:a("x"),yhoverformat:a("y"),marker:d,xaxes:m("x"),yaxes:m("y"),diagonal:{visible:{valType:"boolean",dflt:!0,editType:"calc"},editType:"calc"},showupperhalf:{valType:"boolean",dflt:!0,editType:"calc"},showlowerhalf:{valType:"boolean",dflt:!0,editType:"calc"},selected:{marker:s.selected.marker,editType:"calc"},unselected:{marker:s.unselected.marker,editType:"calc"},opacity:s.opacity}},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plot_api/plot_template":816,"../../plots/cartesian/axis_format_attributes":830,"../../plots/cartesian/constants":834,"../../plots/template_attributes":899,"../scatter/attributes":1191,"../scattergl/attributes":1243}],1288:[function(t,e,r){"use strict";var n=t("regl-line2d"),i=t("../../registry"),a=t("../../lib/prepare_regl"),o=t("../../plots/get_data").getModuleCalcData,s=t("../../plots/cartesian"),l=t("../../plots/cartesian/axis_ids").getFromId,c=t("../../plots/cartesian/axes").shouldShowZeroLine;function u(t,e,r){for(var n=r.matrixOptions.data.length,i=e._visibleDims,a=r.viewOpts.ranges=new Array(n),o=0;oh?b.sizeAvg||Math.max(b.size,3):a(e,x),p=0;pa&&l||i-1,P=!0;if(o(x)||!!p.selectedpoints||C){var I=p._length;if(p.selectedpoints){m.selectBatch=p.selectedpoints;var O=p.selectedpoints,z={};for(l=0;l1&&(u=m[y-1],h=g[y-1],d=v[y-1]),e=0;eu?"-":"+")+"x")).replace("y",(f>h?"-":"+")+"y")).replace("z",(p>d?"-":"+")+"z");var L=function(){y=0,M=[],S=[],E=[]};(!y||y2?t.slice(1,e-1):2===e?[(t[0]+t[1])/2]:t}function p(t){var e=t.length;return 1===e?[.5,.5]:[t[1]-t[0],t[e-1]-t[e-2]]}function d(t,e){var r=t.fullSceneLayout,i=t.dataScale,u=e._len,f={};function d(t,e){var n=r[e],o=i[c[e]];return a.simpleMap(t,(function(t){return n.d2l(t)*o}))}if(f.vectors=l(d(e._u,"xaxis"),d(e._v,"yaxis"),d(e._w,"zaxis"),u),!u)return{positions:[],cells:[]};var m=d(e._Xs,"xaxis"),g=d(e._Ys,"yaxis"),v=d(e._Zs,"zaxis");if(f.meshgrid=[m,g,v],f.gridFill=e._gridFill,e._slen)f.startingPositions=l(d(e._startsX,"xaxis"),d(e._startsY,"yaxis"),d(e._startsZ,"zaxis"));else{for(var y=g[0],x=h(m),b=h(v),_=new Array(x.length*b.length),w=0,T=0;T=0};v?(r=Math.min(g.length,x.length),l=function(t){return A(g[t])&&M(t)},f=function(t){return String(g[t])}):(r=Math.min(y.length,x.length),l=function(t){return A(y[t])&&M(t)},f=function(t){return String(y[t])}),_&&(r=Math.min(r,b.length));for(var S=0;S1){for(var P=a.randstr(),I=0;I"),name:A||z("name")?y.name:void 0,color:k("hoverlabel.bgcolor")||x.color,borderColor:k("hoverlabel.bordercolor"),fontFamily:k("hoverlabel.font.family"),fontSize:k("hoverlabel.font.size"),fontColor:k("hoverlabel.font.color"),nameLength:k("hoverlabel.namelength"),textAlign:k("hoverlabel.align"),hovertemplate:A,hovertemplateLabels:P,eventData:l};g&&(F.x0=E-i.rInscribed*i.rpx1,F.x1=E+i.rInscribed*i.rpx1,F.idealAlign=i.pxmid[0]<0?"left":"right"),v&&(F.x=E,F.idealAlign=E<0?"left":"right");var B=[];o.loneHover(F,{container:a._hoverlayer.node(),outerContainer:a._paper.node(),gd:r,inOut_bbox:B}),l[0].bbox=B[0],d._hasHoverLabel=!0}if(v){var N=t.select("path.surface");h.styleOne(N,i,y,{hovered:!0})}d._hasHoverEvent=!0,r.emit("plotly_hover",{points:l||[f(i,y,h.eventDataKeys)],event:n.event})}})),t.on("mouseout",(function(e){var i=r._fullLayout,a=r._fullData[d.index],s=n.select(this).datum();if(d._hasHoverEvent&&(e.originalEvent=n.event,r.emit("plotly_unhover",{points:[f(s,a,h.eventDataKeys)],event:n.event}),d._hasHoverEvent=!1),d._hasHoverLabel&&(o.loneUnhover(i._hoverlayer.node()),d._hasHoverLabel=!1),v){var l=t.select("path.surface");h.styleOne(l,s,a,{hovered:!1})}})),t.on("click",(function(t){var e=r._fullLayout,a=r._fullData[d.index],s=g&&(c.isHierarchyRoot(t)||c.isLeaf(t)),u=c.getPtId(t),p=c.isEntry(t)?c.findEntryWithChild(m,u):c.findEntryWithLevel(m,u),v=c.getPtId(p),y={points:[f(t,a,h.eventDataKeys)],event:n.event};s||(y.nextLevel=v);var x=l.triggerHandler(r,"plotly_"+d.type+"click",y);if(!1!==x&&e.hovermode&&(r._hoverdata=[f(t,a,h.eventDataKeys)],o.click(r,n.event)),!s&&!1!==x&&!r._dragging&&!r._transitioning){i.call("_storeDirectGUIEdit",a,e._tracePreGUI[a.uid],{level:a.level});var b={data:[{level:v}],traces:[d.index]},_={frame:{redraw:!1,duration:h.transitionTime},transition:{duration:h.transitionTime,easing:h.transitionEasing},mode:"immediate",fromcurrent:!0};o.loneUnhover(e._hoverlayer.node()),i.call("animate",r,b,_)}}))}},{"../../components/fx":679,"../../components/fx/helpers":675,"../../lib":776,"../../lib/events":765,"../../registry":904,"../pie/helpers":1170,"./helpers":1309,"@plotly/d3":58}],1309:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("../../components/color"),a=t("../../lib/setcursor"),o=t("../pie/helpers");function s(t){return t.data.data.pid}r.findEntryWithLevel=function(t,e){var n;return e&&t.eachAfter((function(t){if(r.getPtId(t)===e)return n=t.copy()})),n||t},r.findEntryWithChild=function(t,e){var n;return t.eachAfter((function(t){for(var i=t.children||[],a=0;a0)},r.getMaxDepth=function(t){return t.maxdepth>=0?t.maxdepth:1/0},r.isHeader=function(t,e){return!(r.isLeaf(t)||t.depth===e._maxDepth-1)},r.getParent=function(t,e){return r.findEntryWithLevel(t,s(e))},r.listPath=function(t,e){var n=t.parent;if(!n)return[];var i=e?[n.data[e]]:[n];return r.listPath(n,e).concat(i)},r.getPath=function(t){return r.listPath(t,"label").join("/")+"/"},r.formatValue=o.formatPieValue,r.formatPercent=function(t,e){var r=n.formatPercent(t,0);return"0%"===r&&(r=o.formatPiePercent(t,e)),r}},{"../../components/color":639,"../../lib":776,"../../lib/setcursor":797,"../pie/helpers":1170}],1310:[function(t,e,r){"use strict";e.exports={moduleType:"trace",name:"sunburst",basePlotModule:t("./base_plot"),categories:[],animatable:!0,attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc").calc,crossTraceCalc:t("./calc").crossTraceCalc,plot:t("./plot").plot,style:t("./style").style,colorbar:t("../scatter/marker_colorbar"),meta:{}}},{"../scatter/marker_colorbar":1209,"./attributes":1303,"./base_plot":1304,"./calc":1305,"./defaults":1307,"./layout_attributes":1311,"./layout_defaults":1312,"./plot":1313,"./style":1314}],1311:[function(t,e,r){"use strict";e.exports={sunburstcolorway:{valType:"colorlist",editType:"calc"},extendsunburstcolors:{valType:"boolean",dflt:!0,editType:"calc"}}},{}],1312:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e){function r(r,a){return n.coerce(t,e,i,r,a)}r("sunburstcolorway",e.colorway),r("extendsunburstcolors")}},{"../../lib":776,"./layout_attributes":1311}],1313:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("d3-hierarchy"),a=t("d3-interpolate").interpolate,o=t("../../components/drawing"),s=t("../../lib"),l=t("../../lib/svg_text_utils"),c=t("../bar/uniform_text"),u=c.recordMinTextSize,f=c.clearMinTextSize,h=t("../pie/plot"),p=t("../pie/helpers").getRotationAngle,d=h.computeTransform,m=h.transformInsideText,g=t("./style").styleOne,v=t("../bar/style").resizeText,y=t("./fx"),x=t("./constants"),b=t("./helpers");function _(t,e,c,f){var h=t._fullLayout,v=!h.uniformtext.mode&&b.hasTransition(f),_=n.select(c).selectAll("g.slice"),T=e[0],k=T.trace,A=T.hierarchy,M=b.findEntryWithLevel(A,k.level),S=b.getMaxDepth(k),E=h._size,L=k.domain,C=E.w*(L.x[1]-L.x[0]),P=E.h*(L.y[1]-L.y[0]),I=.5*Math.min(C,P),O=T.cx=E.l+E.w*(L.x[1]+L.x[0])/2,z=T.cy=E.t+E.h*(1-L.y[0])-P/2;if(!M)return _.remove();var D=null,R={};v&&_.each((function(t){R[b.getPtId(t)]={rpx0:t.rpx0,rpx1:t.rpx1,x0:t.x0,x1:t.x1,transform:t.transform},!D&&b.isEntry(t)&&(D=t)}));var F=function(t){return i.partition().size([2*Math.PI,t.height+1])(t)}(M).descendants(),B=M.height+1,N=0,j=S;T.hasMultipleRoots&&b.isHierarchyRoot(M)&&(F=F.slice(1),B-=1,N=1,j+=1),F=F.filter((function(t){return t.y1<=j}));var U=p(k.rotation);U&&F.forEach((function(t){t.x0+=U,t.x1+=U}));var V=Math.min(B,S),H=function(t){return(t-N)/V*I},q=function(t,e){return[t*Math.cos(e),-t*Math.sin(e)]},G=function(t){return s.pathAnnulus(t.rpx0,t.rpx1,t.x0,t.x1,O,z)},Y=function(t){return O+w(t)[0]*(t.transform.rCenter||0)+(t.transform.x||0)},W=function(t){return z+w(t)[1]*(t.transform.rCenter||0)+(t.transform.y||0)};(_=_.data(F,b.getPtId)).enter().append("g").classed("slice",!0),v?_.exit().transition().each((function(){var t=n.select(this);t.select("path.surface").transition().attrTween("d",(function(t){var e=function(t){var e,r=b.getPtId(t),n=R[r],i=R[b.getPtId(M)];if(i){var o=(t.x1>i.x1?2*Math.PI:0)+U;e=t.rpx1X?2*Math.PI:0)+U;e={x0:i,x1:i}}else e={rpx0:I,rpx1:I},s.extendFlat(e,K(t));else e={rpx0:0,rpx1:0};else e={x0:U,x1:U};return a(e,n)}(t);return function(t){return G(e(t))}})):f.attr("d",G),c.call(y,M,t,e,{eventDataKeys:x.eventDataKeys,transitionTime:x.CLICK_TRANSITION_TIME,transitionEasing:x.CLICK_TRANSITION_EASING}).call(b.setSliceCursor,t,{hideOnRoot:!0,hideOnLeaves:!0,isTransitioning:t._transitioning}),f.call(g,i,k);var p=s.ensureSingle(c,"g","slicetext"),_=s.ensureSingle(p,"text","",(function(t){t.attr("data-notex",1)})),w=s.ensureUniformFontSize(t,b.determineTextFont(k,i,h.font));_.text(r.formatSliceLabel(i,M,k,e,h)).classed("slicetext",!0).attr("text-anchor","middle").call(o.font,w).call(l.convertToTspans,t);var A=o.bBox(_.node());i.transform=m(A,i,T),i.transform.targetX=Y(i),i.transform.targetY=W(i);var S=function(t,e){var r=t.transform;return d(r,e),r.fontSize=w.size,u(k.type,r,h),s.getTextTransform(r)};v?_.transition().attrTween("transform",(function(t){var e=function(t){var e,r=R[b.getPtId(t)],n=t.transform;if(r)e=r;else if(e={rpx1:t.rpx1,transform:{textPosAngle:n.textPosAngle,scale:0,rotate:n.rotate,rCenter:n.rCenter,x:n.x,y:n.y}},D)if(t.parent)if(X){var i=t.x1>X?2*Math.PI:0;e.x0=e.x1=i}else s.extendFlat(e,K(t));else e.x0=e.x1=U;else e.x0=e.x1=U;var o=a(e.transform.textPosAngle,t.transform.textPosAngle),l=a(e.rpx1,t.rpx1),c=a(e.x0,t.x0),f=a(e.x1,t.x1),p=a(e.transform.scale,n.scale),d=a(e.transform.rotate,n.rotate),m=0===n.rCenter?3:0===e.transform.rCenter?1/3:1,g=a(e.transform.rCenter,n.rCenter);return function(t){var e=l(t),r=c(t),i=f(t),a=function(t){return g(Math.pow(t,m))}(t),s={pxmid:q(e,(r+i)/2),rpx1:e,transform:{textPosAngle:o(t),rCenter:a,x:n.x,y:n.y}};return u(k.type,n,h),{transform:{targetX:Y(s),targetY:W(s),scale:p(t),rotate:d(t),rCenter:a}}}}(t);return function(t){return S(e(t),A)}})):_.attr("transform",S(i,A))}))}function w(t){return e=t.rpx1,r=t.transform.textPosAngle,[e*Math.sin(r),-e*Math.cos(r)];var e,r}r.plot=function(t,e,r,i){var a,o,s=t._fullLayout,l=s._sunburstlayer,c=!r,u=!s.uniformtext.mode&&b.hasTransition(r);(f("sunburst",s),(a=l.selectAll("g.trace.sunburst").data(e,(function(t){return t[0].trace.uid}))).enter().append("g").classed("trace",!0).classed("sunburst",!0).attr("stroke-linejoin","round"),a.order(),u)?(i&&(o=i()),n.transition().duration(r.duration).ease(r.easing).each("end",(function(){o&&o()})).each("interrupt",(function(){o&&o()})).each((function(){l.selectAll("g.trace").each((function(e){_(t,e,this,r)}))}))):(a.each((function(e){_(t,e,this,r)})),s.uniformtext.mode&&v(t,s._sunburstlayer.selectAll(".trace"),"sunburst"));c&&a.exit().remove()},r.formatSliceLabel=function(t,e,r,n,i){var a=r.texttemplate,o=r.textinfo;if(!(a||o&&"none"!==o))return"";var l=i.separators,c=n[0],u=t.data.data,f=c.hierarchy,h=b.isHierarchyRoot(t),p=b.getParent(f,t),d=b.getValue(t);if(!a){var m,g=o.split("+"),v=function(t){return-1!==g.indexOf(t)},y=[];if(v("label")&&u.label&&y.push(u.label),u.hasOwnProperty("v")&&v("value")&&y.push(b.formatValue(u.v,l)),!h){v("current path")&&y.push(b.getPath(t.data));var x=0;v("percent parent")&&x++,v("percent entry")&&x++,v("percent root")&&x++;var _=x>1;if(x){var w,T=function(t){m=b.formatPercent(w,l),_&&(m+=" of "+t),y.push(m)};v("percent parent")&&!h&&(w=d/b.getValue(p),T("parent")),v("percent entry")&&(w=d/b.getValue(e),T("entry")),v("percent root")&&(w=d/b.getValue(f),T("root"))}}return v("text")&&(m=s.castOption(r,u.i,"text"),s.isValidTextValue(m)&&y.push(m)),y.join("
")}var k=s.castOption(r,u.i,"texttemplate");if(!k)return"";var A={};u.label&&(A.label=u.label),u.hasOwnProperty("v")&&(A.value=u.v,A.valueLabel=b.formatValue(u.v,l)),A.currentPath=b.getPath(t.data),h||(A.percentParent=d/b.getValue(p),A.percentParentLabel=b.formatPercent(A.percentParent,l),A.parent=b.getPtLabel(p)),A.percentEntry=d/b.getValue(e),A.percentEntryLabel=b.formatPercent(A.percentEntry,l),A.entry=b.getPtLabel(e),A.percentRoot=d/b.getValue(f),A.percentRootLabel=b.formatPercent(A.percentRoot,l),A.root=b.getPtLabel(f),u.hasOwnProperty("color")&&(A.color=u.color);var M=s.castOption(r,u.i,"text");return(s.isValidTextValue(M)||""===M)&&(A.text=M),A.customdata=s.castOption(r,u.i,"customdata"),s.texttemplateString(k,A,i._d3locale,A,r._meta||{})}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../bar/style":928,"../bar/uniform_text":930,"../pie/helpers":1170,"../pie/plot":1174,"./constants":1306,"./fx":1308,"./helpers":1309,"./style":1314,"@plotly/d3":58,"d3-hierarchy":163,"d3-interpolate":164}],1314:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../bar/uniform_text").resizeText;function s(t,e,r){var n=e.data.data,o=!e.children,s=n.i,l=a.castOption(r,s,"marker.line.color")||i.defaultLine,c=a.castOption(r,s,"marker.line.width")||0;t.style("stroke-width",c).call(i.fill,n.color).call(i.stroke,l).style("opacity",o?r.leaf.opacity:null)}e.exports={style:function(t){var e=t._fullLayout._sunburstlayer.selectAll(".trace");o(t,e,"sunburst"),e.each((function(t){var e=n.select(this),r=t[0].trace;e.style("opacity",r.opacity),e.selectAll("path.surface").each((function(t){n.select(this).call(s,t,r)}))}))},styleOne:s}},{"../../components/color":639,"../../lib":776,"../bar/uniform_text":930,"@plotly/d3":58}],1315:[function(t,e,r){"use strict";var n=t("../../components/color"),i=t("../../components/colorscale/attributes"),a=t("../../plots/cartesian/axis_format_attributes").axisHoverFormat,o=t("../../plots/template_attributes").hovertemplateAttrs,s=t("../../plots/attributes"),l=t("../../lib/extend").extendFlat,c=t("../../plot_api/edit_types").overrideAll;function u(t){return{show:{valType:"boolean",dflt:!1},start:{valType:"number",dflt:null,editType:"plot"},end:{valType:"number",dflt:null,editType:"plot"},size:{valType:"number",dflt:null,min:0,editType:"plot"},project:{x:{valType:"boolean",dflt:!1},y:{valType:"boolean",dflt:!1},z:{valType:"boolean",dflt:!1}},color:{valType:"color",dflt:n.defaultLine},usecolormap:{valType:"boolean",dflt:!1},width:{valType:"number",min:1,max:16,dflt:2},highlight:{valType:"boolean",dflt:!0},highlightcolor:{valType:"color",dflt:n.defaultLine},highlightwidth:{valType:"number",min:1,max:16,dflt:2}}}var f=e.exports=c(l({z:{valType:"data_array"},x:{valType:"data_array"},y:{valType:"data_array"},text:{valType:"string",dflt:"",arrayOk:!0},hovertext:{valType:"string",dflt:"",arrayOk:!0},hovertemplate:o(),xhoverformat:a("x"),yhoverformat:a("y"),zhoverformat:a("z"),connectgaps:{valType:"boolean",dflt:!1,editType:"calc"},surfacecolor:{valType:"data_array"}},i("",{colorAttr:"z or surfacecolor",showScaleDflt:!0,autoColorDflt:!1,editTypeOverride:"calc"}),{contours:{x:u(),y:u(),z:u()},hidesurface:{valType:"boolean",dflt:!1},lightposition:{x:{valType:"number",min:-1e5,max:1e5,dflt:10},y:{valType:"number",min:-1e5,max:1e5,dflt:1e4},z:{valType:"number",min:-1e5,max:1e5,dflt:0}},lighting:{ambient:{valType:"number",min:0,max:1,dflt:.8},diffuse:{valType:"number",min:0,max:1,dflt:.8},specular:{valType:"number",min:0,max:2,dflt:.05},roughness:{valType:"number",min:0,max:1,dflt:.5},fresnel:{valType:"number",min:0,max:5,dflt:.2}},opacity:{valType:"number",min:0,max:1,dflt:1},opacityscale:{valType:"any",editType:"calc"},_deprecated:{zauto:l({},i.zauto,{}),zmin:l({},i.zmin,{}),zmax:l({},i.zmax,{})},hoverinfo:l({},s.hoverinfo),showlegend:l({},s.showlegend,{dflt:!1})}),"calc","nested");f.x.editType=f.y.editType=f.z.editType="calc+clearAxisTypes",f.transforms=void 0},{"../../components/color":639,"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plot_api/edit_types":809,"../../plots/attributes":823,"../../plots/cartesian/axis_format_attributes":830,"../../plots/template_attributes":899}],1316:[function(t,e,r){"use strict";var n=t("../../components/colorscale/calc");e.exports=function(t,e){e.surfacecolor?n(t,e,{vals:e.surfacecolor,containerStr:"",cLetter:"c"}):n(t,e,{vals:e.z,containerStr:"",cLetter:"c"})}},{"../../components/colorscale/calc":647}],1317:[function(t,e,r){"use strict";var n=t("gl-surface3d"),i=t("ndarray"),a=t("ndarray-linear-interpolate").d2,o=t("../heatmap/interp2d"),s=t("../heatmap/find_empties"),l=t("../../lib").isArrayOrTypedArray,c=t("../../lib/gl_format_color").parseColorScale,u=t("../../lib/str2rgbarray"),f=t("../../components/colorscale").extractOpts;function h(t,e,r){this.scene=t,this.uid=r,this.surface=e,this.data=null,this.showContour=[!1,!1,!1],this.contourStart=[null,null,null],this.contourEnd=[null,null,null],this.contourSize=[0,0,0],this.minValues=[1/0,1/0,1/0],this.maxValues=[-1/0,-1/0,-1/0],this.dataScaleX=1,this.dataScaleY=1,this.refineData=!0,this.objectOffset=[0,0,0]}var p=h.prototype;p.getXat=function(t,e,r,n){var i=l(this.data.x)?l(this.data.x[0])?this.data.x[e][t]:this.data.x[t]:t;return void 0===r?i:n.d2l(i,0,r)},p.getYat=function(t,e,r,n){var i=l(this.data.y)?l(this.data.y[0])?this.data.y[e][t]:this.data.y[e]:e;return void 0===r?i:n.d2l(i,0,r)},p.getZat=function(t,e,r,n){var i=this.data.z[e][t];return null===i&&this.data.connectgaps&&this.data._interpolatedZ&&(i=this.data._interpolatedZ[e][t]),void 0===r?i:n.d2l(i,0,r)},p.handlePick=function(t){if(t.object===this.surface){var e=(t.data.index[0]-1)/this.dataScaleX-1,r=(t.data.index[1]-1)/this.dataScaleY-1,n=Math.max(Math.min(Math.round(e),this.data.z[0].length-1),0),i=Math.max(Math.min(Math.round(r),this.data._ylength-1),0);t.index=[n,i],t.traceCoordinate=[this.getXat(n,i),this.getYat(n,i),this.getZat(n,i)],t.dataCoordinate=[this.getXat(n,i,this.data.xcalendar,this.scene.fullSceneLayout.xaxis),this.getYat(n,i,this.data.ycalendar,this.scene.fullSceneLayout.yaxis),this.getZat(n,i,this.data.zcalendar,this.scene.fullSceneLayout.zaxis)];for(var a=0;a<3;a++){var o=t.dataCoordinate[a];null!=o&&(t.dataCoordinate[a]*=this.scene.dataScale[a])}var s=this.data.hovertext||this.data.text;return Array.isArray(s)&&s[i]&&void 0!==s[i][n]?t.textLabel=s[i][n]:t.textLabel=s||"",t.data.dataCoordinate=t.dataCoordinate.slice(),this.surface.highlight(t.data),this.scene.glplot.spikes.position=t.dataCoordinate,!0}};var d=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999];function m(t,e){if(t0){r=d[n];break}return r}function y(t,e){if(!(t<1||e<1)){for(var r=g(t),n=g(e),i=1,a=0;a_;)r--,r/=v(r),++r1?n:1},p.refineCoords=function(t){for(var e=this.dataScaleX,r=this.dataScaleY,n=t[0].shape[0],a=t[0].shape[1],o=0|Math.floor(t[0].shape[0]*e+1),s=0|Math.floor(t[0].shape[1]*r+1),l=1+n+1,c=1+a+1,u=i(new Float32Array(l*c),[l,c]),f=[1/e,0,0,0,1/r,0,0,0,1],h=0;h0&&null!==this.contourStart[t]&&null!==this.contourEnd[t]&&this.contourEnd[t]>this.contourStart[t]))for(i[t]=!0,e=this.contourStart[t];ea&&(this.minValues[e]=a),this.maxValues[e]",maxDimensionCount:60,overdrag:45,releaseTransitionDuration:120,releaseTransitionEase:"cubic-out",scrollbarCaptureWidth:18,scrollbarHideDelay:1e3,scrollbarHideDuration:1e3,scrollbarOffset:5,scrollbarWidth:8,transitionDuration:100,transitionEase:"cubic-out",uplift:5,wrapSpacer:" ",wrapSplitCharacter:" ",cn:{table:"table",tableControlView:"table-control-view",scrollBackground:"scroll-background",yColumn:"y-column",columnBlock:"column-block",scrollAreaClip:"scroll-area-clip",scrollAreaClipRect:"scroll-area-clip-rect",columnBoundary:"column-boundary",columnBoundaryClippath:"column-boundary-clippath",columnBoundaryRect:"column-boundary-rect",columnCells:"column-cells",columnCell:"column-cell",cellRect:"cell-rect",cellText:"cell-text",cellTextHolder:"cell-text-holder",scrollbarKit:"scrollbar-kit",scrollbar:"scrollbar",scrollbarSlider:"scrollbar-slider",scrollbarGlyph:"scrollbar-glyph",scrollbarCaptureZone:"scrollbar-capture-zone"}}},{}],1324:[function(t,e,r){"use strict";var n=t("./constants"),i=t("../../lib/extend").extendFlat,a=t("fast-isnumeric");function o(t){if(Array.isArray(t)){for(var e=0,r=0;r=e||c===t.length-1)&&(n[i]=o,o.key=l++,o.firstRowIndex=s,o.lastRowIndex=c,o={firstRowIndex:null,lastRowIndex:null,rows:[]},i+=a,s=c+1,a=0);return n}e.exports=function(t,e){var r=l(e.cells.values),p=function(t){return t.slice(e.header.values.length,t.length)},d=l(e.header.values);d.length&&!d[0].length&&(d[0]=[""],d=l(d));var m=d.concat(p(r).map((function(){return c((d[0]||[""]).length)}))),g=e.domain,v=Math.floor(t._fullLayout._size.w*(g.x[1]-g.x[0])),y=Math.floor(t._fullLayout._size.h*(g.y[1]-g.y[0])),x=e.header.values.length?m[0].map((function(){return e.header.height})):[n.emptyHeaderHeight],b=r.length?r[0].map((function(){return e.cells.height})):[],_=x.reduce(s,0),w=h(b,y-_+n.uplift),T=f(h(x,_),[]),k=f(w,T),A={},M=e._fullInput.columnorder.concat(p(r.map((function(t,e){return e})))),S=m.map((function(t,r){var n=Array.isArray(e.columnwidth)?e.columnwidth[Math.min(r,e.columnwidth.length-1)]:e.columnwidth;return a(n)?Number(n):1})),E=S.reduce(s,0);S=S.map((function(t){return t/E*v}));var L=Math.max(o(e.header.line.width),o(e.cells.line.width)),C={key:e.uid+t._context.staticPlot,translateX:g.x[0]*t._fullLayout._size.w,translateY:t._fullLayout._size.h*(1-g.y[1]),size:t._fullLayout._size,width:v,maxLineWidth:L,height:y,columnOrder:M,groupHeight:y,rowBlocks:k,headerRowBlocks:T,scrollY:0,cells:i({},e.cells,{values:r}),headerCells:i({},e.header,{values:m}),gdColumns:m.map((function(t){return t[0]})),gdColumnsOriginalOrder:m.map((function(t){return t[0]})),prevPages:[0,0],scrollbarState:{scrollbarScrollInProgress:!1},columns:m.map((function(t,e){var r=A[t];return A[t]=(r||0)+1,{key:t+"__"+A[t],label:t,specIndex:e,xIndex:M[e],xScale:u,x:void 0,calcdata:void 0,columnWidth:S[e]}}))};return C.columns.forEach((function(t){t.calcdata=C,t.x=u(t)})),C}},{"../../lib/extend":766,"./constants":1323,"fast-isnumeric":242}],1325:[function(t,e,r){"use strict";var n=t("../../lib/extend").extendFlat;r.splitToPanels=function(t){var e=[0,0],r=n({},t,{key:"header",type:"header",page:0,prevPages:e,currentRepaint:[null,null],dragHandle:!0,values:t.calcdata.headerCells.values[t.specIndex],rowBlocks:t.calcdata.headerRowBlocks,calcdata:n({},t.calcdata,{cells:t.calcdata.headerCells})});return[n({},t,{key:"cells1",type:"cells",page:0,prevPages:e,currentRepaint:[null,null],dragHandle:!1,values:t.calcdata.cells.values[t.specIndex],rowBlocks:t.calcdata.rowBlocks}),n({},t,{key:"cells2",type:"cells",page:1,prevPages:e,currentRepaint:[null,null],dragHandle:!1,values:t.calcdata.cells.values[t.specIndex],rowBlocks:t.calcdata.rowBlocks}),r]},r.splitToCells=function(t){var e=function(t){var e=t.rowBlocks[t.page],r=e?e.rows[0].rowIndex:0,n=e?r+e.rows.length:0;return[r,n]}(t);return(t.values||[]).slice(e[0],e[1]).map((function(r,n){return{keyWithinBlock:n+("string"==typeof r&&r.match(/[<$&> ]/)?"_keybuster_"+Math.random():""),key:e[0]+n,column:t,calcdata:t.calcdata,page:t.page,rowBlocks:t.rowBlocks,value:r}}))}},{"../../lib/extend":766}],1326:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../plots/domain").defaults;e.exports=function(t,e,r,o){function s(r,a){return n.coerce(t,e,i,r,a)}a(e,o,s),s("columnwidth"),s("header.values"),s("header.format"),s("header.align"),s("header.prefix"),s("header.suffix"),s("header.height"),s("header.line.width"),s("header.line.color"),s("header.fill.color"),n.coerceFont(s,"header.font",n.extendFlat({},o.font)),function(t,e){for(var r=t.columnorder||[],n=t.header.values.length,i=r.slice(0,n),a=i.slice().sort((function(t,e){return t-e})),o=i.map((function(t){return a.indexOf(t)})),s=o.length;s/i),l=!o||s;t.mayHaveMarkup=o&&i.match(/[<&>]/);var c,u="string"==typeof(c=i)&&c.match(n.latexCheck);t.latex=u;var f,h,p=u?"":T(t.calcdata.cells.prefix,e,r)||"",d=u?"":T(t.calcdata.cells.suffix,e,r)||"",m=u?null:T(t.calcdata.cells.format,e,r)||null,g=p+(m?a(m)(t.value):t.value)+d;if(t.wrappingNeeded=!t.wrapped&&!l&&!u&&(f=w(g)),t.cellHeightMayIncrease=s||u||t.mayHaveMarkup||(void 0===f?w(g):f),t.needsConvertToTspans=t.mayHaveMarkup||t.wrappingNeeded||t.latex,t.wrappingNeeded){var v=(" "===n.wrapSplitCharacter?g.replace(/i&&n.push(a),i+=l}return n}(i,l,s);1===c.length&&(c[0]===i.length-1?c.unshift(c[0]-1):c.push(c[0]+1)),c[0]%2&&c.reverse(),e.each((function(t,e){t.page=c[e],t.scrollY=l})),e.attr("transform",(function(t){var e=D(t.rowBlocks,t.page)-t.scrollY;return u(0,e)})),t&&(C(t,r,e,c,n.prevPages,n,0),C(t,r,e,c,n.prevPages,n,1),x(r,t))}}function L(t,e,r,a){return function(o){var s=o.calcdata?o.calcdata:o,l=e.filter((function(t){return s.key===t.key})),c=r||s.scrollbarState.dragMultiplier,u=s.scrollY;s.scrollY=void 0===a?s.scrollY+c*i.event.dy:a;var f=l.selectAll("."+n.cn.yColumn).selectAll("."+n.cn.columnBlock).filter(A);return E(t,f,l),s.scrollY===u}}function C(t,e,r,n,i,a,o){n[o]!==i[o]&&(clearTimeout(a.currentRepaint[o]),a.currentRepaint[o]=setTimeout((function(){var a=r.filter((function(t,e){return e===o&&n[e]!==i[e]}));b(t,e,a,r),i[o]=n[o]})))}function P(t,e,r,a){return function(){var o=i.select(e.parentNode);o.each((function(t){var e=t.fragments;o.selectAll("tspan.line").each((function(t,r){e[r].width=this.getComputedTextLength()}));var r,i,a=e[e.length-1].width,s=e.slice(0,-1),l=[],c=0,u=t.column.columnWidth-2*n.cellPad;for(t.value="";s.length;)c+(i=(r=s.shift()).width+a)>u&&(t.value+=l.join(n.wrapSpacer)+n.lineBreaker,l=[],c=0),l.push(r.text),c+=i;c&&(t.value+=l.join(n.wrapSpacer)),t.wrapped=!0})),o.selectAll("tspan.line").remove(),_(o.select("."+n.cn.cellText),r,t,a),i.select(e.parentNode.parentNode).call(z)}}function I(t,e,r,a,o){return function(){if(!o.settledY){var s=i.select(e.parentNode),l=B(o),c=o.key-l.firstRowIndex,f=l.rows[c].rowHeight,h=o.cellHeightMayIncrease?e.parentNode.getBoundingClientRect().height+2*n.cellPad:f,p=Math.max(h,f);p-l.rows[c].rowHeight&&(l.rows[c].rowHeight=p,t.selectAll("."+n.cn.columnCell).call(z),E(null,t.filter(A),0),x(r,a,!0)),s.attr("transform",(function(){var t=this.parentNode.getBoundingClientRect(),e=i.select(this.parentNode).select("."+n.cn.cellRect).node().getBoundingClientRect(),r=this.transform.baseVal.consolidate(),a=e.top-t.top+(r?r.matrix.f:n.cellPad);return u(O(o,i.select(this.parentNode).select("."+n.cn.cellTextHolder).node().getBoundingClientRect().width),a)})),o.settledY=!0}}}function O(t,e){switch(t.align){case"left":return n.cellPad;case"right":return t.column.columnWidth-(e||0)-n.cellPad;case"center":return(t.column.columnWidth-(e||0))/2;default:return n.cellPad}}function z(t){t.attr("transform",(function(t){var e=t.rowBlocks[0].auxiliaryBlocks.reduce((function(t,e){return t+R(e,1/0)}),0),r=R(B(t),t.key);return u(0,r+e)})).selectAll("."+n.cn.cellRect).attr("height",(function(t){return(e=B(t),r=t.key,e.rows[r-e.firstRowIndex]).rowHeight;var e,r}))}function D(t,e){for(var r=0,n=e-1;n>=0;n--)r+=F(t[n]);return r}function R(t,e){for(var r=0,n=0;n","<","|","/","\\"],dflt:">",editType:"plot"},thickness:{valType:"number",min:12,editType:"plot"},textfont:u({},s.textfont,{}),editType:"calc"},text:s.text,textinfo:l.textinfo,texttemplate:i({editType:"plot"},{keys:c.eventDataKeys.concat(["label","value"])}),hovertext:s.hovertext,hoverinfo:l.hoverinfo,hovertemplate:n({},{keys:c.eventDataKeys}),textfont:s.textfont,insidetextfont:s.insidetextfont,outsidetextfont:u({},s.outsidetextfont,{}),textposition:{valType:"enumerated",values:["top left","top center","top right","middle left","middle center","middle right","bottom left","bottom center","bottom right"],dflt:"top left",editType:"plot"},sort:s.sort,root:l.root,domain:o({name:"treemap",trace:!0,editType:"calc"})}},{"../../components/colorscale/attributes":646,"../../lib/extend":766,"../../plots/domain":855,"../../plots/template_attributes":899,"../pie/attributes":1165,"../sunburst/attributes":1303,"./constants":1332}],1330:[function(t,e,r){"use strict";var n=t("../../plots/plots");r.name="treemap",r.plot=function(t,e,i,a){n.plotBasePlot(r.name,t,e,i,a)},r.clean=function(t,e,i,a){n.cleanBasePlot(r.name,t,e,i,a)}},{"../../plots/plots":890}],1331:[function(t,e,r){"use strict";var n=t("../sunburst/calc");r.calc=function(t,e){return n.calc(t,e)},r.crossTraceCalc=function(t){return n._runCrossTraceCalc("treemap",t)}},{"../sunburst/calc":1305}],1332:[function(t,e,r){"use strict";e.exports={CLICK_TRANSITION_TIME:750,CLICK_TRANSITION_EASING:"poly",eventDataKeys:["currentPath","root","entry","percentRoot","percentEntry","percentParent"],gapWithPathbar:1}},{}],1333:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./attributes"),a=t("../../components/color"),o=t("../../plots/domain").defaults,s=t("../bar/defaults").handleText,l=t("../bar/constants").TEXTPAD,c=t("../../components/colorscale"),u=c.hasColorscale,f=c.handleDefaults;e.exports=function(t,e,r,c){function h(r,a){return n.coerce(t,e,i,r,a)}var p=h("labels"),d=h("parents");if(p&&p.length&&d&&d.length){var m=h("values");m&&m.length?h("branchvalues"):h("count"),h("level"),h("maxdepth"),"squarify"===h("tiling.packing")&&h("tiling.squarifyratio"),h("tiling.flip"),h("tiling.pad");var g=h("text");h("texttemplate"),e.texttemplate||h("textinfo",Array.isArray(g)?"text+label":"label"),h("hovertext"),h("hovertemplate");var v=h("pathbar.visible");s(t,e,c,h,"auto",{hasPathbar:v,moduleHasSelected:!1,moduleHasUnselected:!1,moduleHasConstrain:!1,moduleHasCliponaxis:!1,moduleHasTextangle:!1,moduleHasInsideanchor:!1}),h("textposition");var y=-1!==e.textposition.indexOf("bottom");h("marker.line.width")&&h("marker.line.color",c.paper_bgcolor);var x=h("marker.colors");(e._hasColorscale=u(t,"marker","colors")||(t.marker||{}).coloraxis)?f(t,e,c,h,{prefix:"marker.",cLetter:"c"}):h("marker.depthfade",!(x||[]).length);var b=2*e.textfont.size;h("marker.pad.t",y?b/4:b),h("marker.pad.l",b/4),h("marker.pad.r",b/4),h("marker.pad.b",y?b:b/4),e._hovered={marker:{line:{width:2,color:a.contrast(c.paper_bgcolor)}}},v&&(h("pathbar.thickness",e.pathbar.textfont.size+2*l),h("pathbar.side"),h("pathbar.edgeshape")),h("sort"),h("root.color"),o(e,c,h),e._length=null}else e.visible=!1}},{"../../components/color":639,"../../components/colorscale":651,"../../lib":776,"../../plots/domain":855,"../bar/constants":916,"../bar/defaults":918,"./attributes":1329}],1334:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../sunburst/helpers"),a=t("../bar/uniform_text").clearMinTextSize,o=t("../bar/style").resizeText,s=t("./plot_one");e.exports=function(t,e,r,l,c){var u,f,h=c.type,p=c.drawDescendants,d=t._fullLayout,m=d["_"+h+"layer"],g=!r;(a(h,d),(u=m.selectAll("g.trace."+h).data(e,(function(t){return t[0].trace.uid}))).enter().append("g").classed("trace",!0).classed(h,!0),u.order(),!d.uniformtext.mode&&i.hasTransition(r))?(l&&(f=l()),n.transition().duration(r.duration).ease(r.easing).each("end",(function(){f&&f()})).each("interrupt",(function(){f&&f()})).each((function(){m.selectAll("g.trace").each((function(e){s(t,e,this,r,p)}))}))):(u.each((function(e){s(t,e,this,r,p)})),d.uniformtext.mode&&o(t,m.selectAll(".trace"),h));g&&u.exit().remove()}},{"../bar/style":928,"../bar/uniform_text":930,"../sunburst/helpers":1309,"./plot_one":1343,"@plotly/d3":58}],1335:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../../lib/svg_text_utils"),s=t("./partition"),l=t("./style").styleOne,c=t("./constants"),u=t("../sunburst/helpers"),f=t("../sunburst/fx");e.exports=function(t,e,r,h,p){var d=p.barDifY,m=p.width,g=p.height,v=p.viewX,y=p.viewY,x=p.pathSlice,b=p.toMoveInsideSlice,_=p.strTransform,w=p.hasTransition,T=p.handleSlicesExit,k=p.makeUpdateSliceInterpolator,A=p.makeUpdateTextInterpolator,M={},S=t._fullLayout,E=e[0],L=E.trace,C=E.hierarchy,P=m/L._entryDepth,I=u.listPath(r.data,"id"),O=s(C.copy(),[m,g],{packing:"dice",pad:{inner:0,top:0,left:0,right:0,bottom:0}}).descendants();(O=O.filter((function(t){var e=I.indexOf(t.data.id);return-1!==e&&(t.x0=P*e,t.x1=P*(e+1),t.y0=d,t.y1=d+g,t.onPathbar=!0,!0)}))).reverse(),(h=h.data(O,u.getPtId)).enter().append("g").classed("pathbar",!0),T(h,!0,M,[m,g],x),h.order();var z=h;w&&(z=z.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!1,hideOnLeaves:!1,isTransitioning:!1})}))),z.each((function(s){s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-Math.min(m,g)/2),s._hoverY=y(s.y1-g/2);var h=n.select(this),p=i.ensureSingle(h,"path","surface",(function(t){t.style("pointer-events","all")}));w?p.transition().attrTween("d",(function(t){var e=k(t,!0,M,[m,g]);return function(t){return x(e(t))}})):p.attr("d",x),h.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{hideOnRoot:!1,hideOnLeaves:!1,isTransitioning:t._transitioning}),p.call(l,s,L,{hovered:!1}),s._text=(u.getPtLabel(s)||"").split("
").join(" ")||"";var d=i.ensureSingle(h,"g","slicetext"),T=i.ensureSingle(d,"text","",(function(t){t.attr("data-notex",1)})),E=i.ensureUniformFontSize(t,u.determineTextFont(L,s,S.font,{onPathbar:!0}));T.text(s._text||" ").classed("slicetext",!0).attr("text-anchor","start").call(a.font,E).call(o.convertToTspans,t),s.textBB=a.bBox(T.node()),s.transform=b(s,{fontSize:E.size,onPathbar:!0}),s.transform.fontSize=E.size,w?T.transition().attrTween("transform",(function(t){var e=A(t,!0,M,[m,g]);return function(t){return _(e(t))}})):T.attr("transform",_(s))}))}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../sunburst/fx":1308,"../sunburst/helpers":1309,"./constants":1332,"./partition":1341,"./style":1344,"@plotly/d3":58}],1336:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../../lib/svg_text_utils"),s=t("./partition"),l=t("./style").styleOne,c=t("./constants"),u=t("../sunburst/helpers"),f=t("../sunburst/fx"),h=t("../sunburst/plot").formatSliceLabel;e.exports=function(t,e,r,p,d){var m=d.width,g=d.height,v=d.viewX,y=d.viewY,x=d.pathSlice,b=d.toMoveInsideSlice,_=d.strTransform,w=d.hasTransition,T=d.handleSlicesExit,k=d.makeUpdateSliceInterpolator,A=d.makeUpdateTextInterpolator,M=d.prevEntry,S=t._fullLayout,E=e[0].trace,L=-1!==E.textposition.indexOf("left"),C=-1!==E.textposition.indexOf("right"),P=-1!==E.textposition.indexOf("bottom"),I=!P&&!E.marker.pad.t||P&&!E.marker.pad.b,O=s(r,[m,g],{packing:E.tiling.packing,squarifyratio:E.tiling.squarifyratio,flipX:E.tiling.flip.indexOf("x")>-1,flipY:E.tiling.flip.indexOf("y")>-1,pad:{inner:E.tiling.pad,top:E.marker.pad.t,left:E.marker.pad.l,right:E.marker.pad.r,bottom:E.marker.pad.b}}).descendants(),z=1/0,D=-1/0;O.forEach((function(t){var e=t.depth;e>=E._maxDepth?(t.x0=t.x1=(t.x0+t.x1)/2,t.y0=t.y1=(t.y0+t.y1)/2):(z=Math.min(z,e),D=Math.max(D,e))})),p=p.data(O,u.getPtId),E._maxVisibleLayers=isFinite(D)?D-z+1:0,p.enter().append("g").classed("slice",!0),T(p,!1,{},[m,g],x),p.order();var R=null;if(w&&M){var F=u.getPtId(M);p.each((function(t){null===R&&u.getPtId(t)===F&&(R={x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1})}))}var B=function(){return R||{x0:0,x1:m,y0:0,y1:g}},N=p;return w&&(N=N.transition().each("end",(function(){var e=n.select(this);u.setSliceCursor(e,t,{hideOnRoot:!0,hideOnLeaves:!1,isTransitioning:!1})}))),N.each((function(s){var p=u.isHeader(s,E);s._x0=v(s.x0),s._x1=v(s.x1),s._y0=y(s.y0),s._y1=y(s.y1),s._hoverX=v(s.x1-E.marker.pad.r),s._hoverY=y(P?s.y1-E.marker.pad.b/2:s.y0+E.marker.pad.t/2);var d=n.select(this),T=i.ensureSingle(d,"path","surface",(function(t){t.style("pointer-events","all")}));w?T.transition().attrTween("d",(function(t){var e=k(t,!1,B(),[m,g]);return function(t){return x(e(t))}})):T.attr("d",x),d.call(f,r,t,e,{styleOne:l,eventDataKeys:c.eventDataKeys,transitionTime:c.CLICK_TRANSITION_TIME,transitionEasing:c.CLICK_TRANSITION_EASING}).call(u.setSliceCursor,t,{isTransitioning:t._transitioning}),T.call(l,s,E,{hovered:!1}),s.x0===s.x1||s.y0===s.y1?s._text="":s._text=p?I?"":u.getPtLabel(s)||"":h(s,r,E,e,S)||"";var M=i.ensureSingle(d,"g","slicetext"),O=i.ensureSingle(M,"text","",(function(t){t.attr("data-notex",1)})),z=i.ensureUniformFontSize(t,u.determineTextFont(E,s,S.font));O.text(s._text||" ").classed("slicetext",!0).attr("text-anchor",C?"end":L||p?"start":"middle").call(a.font,z).call(o.convertToTspans,t),s.textBB=a.bBox(O.node()),s.transform=b(s,{fontSize:z.size,isHeader:p}),s.transform.fontSize=z.size,w?O.transition().attrTween("transform",(function(t){var e=A(t,!1,B(),[m,g]);return function(t){return _(e(t))}})):O.attr("transform",_(s))})),R}},{"../../components/drawing":661,"../../lib":776,"../../lib/svg_text_utils":802,"../sunburst/fx":1308,"../sunburst/helpers":1309,"../sunburst/plot":1313,"./constants":1332,"./partition":1341,"./style":1344,"@plotly/d3":58}],1337:[function(t,e,r){"use strict";e.exports=function t(e,r,n){var i;n.swapXY&&(i=e.x0,e.x0=e.y0,e.y0=i,i=e.x1,e.x1=e.y1,e.y1=i),n.flipX&&(i=e.x0,e.x0=r[0]-e.x1,e.x1=r[0]-i),n.flipY&&(i=e.y0,e.y0=r[1]-e.y1,e.y1=r[1]-i);var a=e.children;if(a)for(var o=0;o-1?C+O:-(I+O):0,D={x0:P,x1:P,y0:z,y1:z+I},R=function(t,e,r){var n=v.tiling.pad,i=function(t){return t-n<=e.x0},a=function(t){return t+n>=e.x1},o=function(t){return t-n<=e.y0},s=function(t){return t+n>=e.y1};return t.x0===e.x0&&t.x1===e.x1&&t.y0===e.y0&&t.y1===e.y1?{x0:t.x0,x1:t.x1,y0:t.y0,y1:t.y1}:{x0:i(t.x0-n)?0:a(t.x0-n)?r[0]:t.x0,x1:i(t.x1+n)?0:a(t.x1+n)?r[0]:t.x1,y0:o(t.y0-n)?0:s(t.y0-n)?r[1]:t.y0,y1:o(t.y1+n)?0:s(t.y1+n)?r[1]:t.y1}},F=null,B={},N={},j=null,U=function(t,e){return e?B[h(t)]:N[h(t)]},V=function(t,e,r,n){if(e)return B[h(x)]||D;var i=N[v.level]||r;return function(t){return t.data.depth-b.data.depth=(n-=(y?g:g.r)-s)){var x=(r+n)/2;r=x,n=x}var b;f?i<(b=a-(y?g:g.b))&&b"===tt?(l.x-=a,c.x-=a,u.x-=a,f.x-=a):"/"===tt?(u.x-=a,f.x-=a,o.x-=a/2,s.x-=a/2):"\\"===tt?(l.x-=a,c.x-=a,o.x-=a/2,s.x-=a/2):"<"===tt&&(o.x-=a,s.x-=a),$(l),$(f),$(o),$(c),$(u),$(s),"M"+K(l.x,l.y)+"L"+K(c.x,c.y)+"L"+K(s.x,s.y)+"L"+K(u.x,u.y)+"L"+K(f.x,f.y)+"L"+K(o.x,o.y)+"Z"},toMoveInsideSlice:et,makeUpdateSliceInterpolator:nt,makeUpdateTextInterpolator:it,handleSlicesExit:at,hasTransition:A,strTransform:ot}):w.remove()}},{"../../lib":776,"../bar/constants":916,"../bar/plot":925,"../bar/uniform_text":930,"../sunburst/helpers":1309,"./constants":1332,"./draw_ancestors":1335,"@plotly/d3":58,"d3-interpolate":164}],1344:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../components/color"),a=t("../../lib"),o=t("../sunburst/helpers"),s=t("../bar/uniform_text").resizeText;function l(t,e,r,n){var s,l,c=(n||{}).hovered,u=e.data.data,f=u.i,h=u.color,p=o.isHierarchyRoot(e),d=1;if(c)s=r._hovered.marker.line.color,l=r._hovered.marker.line.width;else if(p&&h===r.root.color)d=100,s="rgba(0,0,0,0)",l=0;else if(s=a.castOption(r,f,"marker.line.color")||i.defaultLine,l=a.castOption(r,f,"marker.line.width")||0,!r._hasColorscale&&!e.onPathbar){var m=r.marker.depthfade;if(m){var g,v=i.combine(i.addOpacity(r._backgroundColor,.75),h);if(!0===m){var y=o.getMaxDepth(r);g=isFinite(y)?o.isLeaf(e)?0:r._maxVisibleLayers-(e.data.depth-r._entryDepth):e.data.height+1}else g=e.data.depth-r._entryDepth,r._atRootLevel||g++;if(g>0)for(var x=0;x0){var x,b,_,w,T,k=t.xa,A=t.ya;"h"===p.orientation?(T=e,x="y",_=A,b="x",w=k):(T=r,x="x",_=k,b="y",w=A);var M=h[t.index];if(T>=M.span[0]&&T<=M.span[1]){var S=n.extendFlat({},t),E=w.c2p(T,!0),L=o.getKdeValue(M,p,T),C=o.getPositionOnKdePath(M,p,E),P=_._offset,I=_._length;S[x+"0"]=C[0],S[x+"1"]=C[1],S[b+"0"]=S[b+"1"]=E,S[b+"Label"]=b+": "+i.hoverLabelText(w,T,p[b+"hoverformat"])+", "+h[0].t.labels.kde+" "+L.toFixed(3),S.spikeDistance=y[0].spikeDistance;var O=x+"Spike";S[O]=y[0][O],y[0].spikeDistance=void 0,y[0][O]=void 0,S.hovertemplate=!1,v.push(S),(u={stroke:t.color})[x+"1"]=n.constrain(P+C[0],P,P+I),u[x+"2"]=n.constrain(P+C[1],P,P+I),u[b+"1"]=u[b+"2"]=w._offset+E}}m&&(v=v.concat(y))}-1!==d.indexOf("points")&&(c=a.hoverOnPoints(t,e,r));var z=f.selectAll(".violinline-"+p.uid).data(u?[0]:[]);return z.enter().append("line").classed("violinline-"+p.uid,!0).attr("stroke-width",1.5),z.exit().remove(),z.attr(u),"closest"===s?c?[c]:v:c?(v.push(c),v):v}},{"../../lib":776,"../../plots/cartesian/axes":827,"../box/hover":944,"./helpers":1349}],1351:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults"),crossTraceDefaults:t("../box/defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style"),styleOnSelect:t("../scatter/style").styleOnSelect,hoverPoints:t("./hover"),selectPoints:t("../box/select"),moduleType:"trace",name:"violin",basePlotModule:t("../../plots/cartesian"),categories:["cartesian","svg","symbols","oriented","box-violin","showLegend","violinLayout","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"../box/defaults":942,"../box/select":949,"../scatter/style":1215,"./attributes":1345,"./calc":1346,"./cross_trace_calc":1347,"./defaults":1348,"./hover":1350,"./layout_attributes":1352,"./layout_defaults":1353,"./plot":1354,"./style":1355}],1352:[function(t,e,r){"use strict";var n=t("../box/layout_attributes"),i=t("../../lib").extendFlat;e.exports={violinmode:i({},n.boxmode,{}),violingap:i({},n.boxgap,{}),violingroupgap:i({},n.boxgroupgap,{})}},{"../../lib":776,"../box/layout_attributes":946}],1353:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes"),a=t("../box/layout_defaults");e.exports=function(t,e,r){a._supply(t,e,r,(function(r,a){return n.coerce(t,e,i,r,a)}),"violin")}},{"../../lib":776,"../box/layout_defaults":947,"./layout_attributes":1352}],1354:[function(t,e,r){"use strict";var n=t("@plotly/d3"),i=t("../../lib"),a=t("../../components/drawing"),o=t("../box/plot"),s=t("../scatter/line_points"),l=t("./helpers");e.exports=function(t,e,r,c){var u=t._fullLayout,f=e.xaxis,h=e.yaxis;function p(t){var e=s(t,{xaxis:f,yaxis:h,connectGaps:!0,baseTolerance:.75,shape:"spline",simplify:!0,linearized:!0});return a.smoothopen(e[0],1)}i.makeTraceGroups(c,r,"trace violins").each((function(t){var r=n.select(this),a=t[0],s=a.t,c=a.trace;if(!0!==c.visible||s.empty)r.remove();else{var d=s.bPos,m=s.bdPos,g=e[s.valLetter+"axis"],v=e[s.posLetter+"axis"],y="both"===c.side,x=y||"positive"===c.side,b=y||"negative"===c.side,_=r.selectAll("path.violin").data(i.identity);_.enter().append("path").style("vector-effect","non-scaling-stroke").attr("class","violin"),_.exit().remove(),_.each((function(t){var e,r,i,a,o,l,f,h,_=n.select(this),w=t.density,T=w.length,k=v.c2l(t.pos+d,!0),A=v.l2p(k);if(c.width)e=s.maxKDE/m;else{var M=u._violinScaleGroupStats[c.scalegroup];e="count"===c.scalemode?M.maxKDE/m*(M.maxCount/t.pts.length):M.maxKDE/m}if(x){for(f=new Array(T),o=0;o")),u.color=function(t,e){var r=t[e.dir].marker,n=r.color,a=r.line.color,o=r.line.width;if(i(n))return n;if(i(a)&&o)return a}(h,g),[u]}function k(t){return n(m,t,h[d+"hoverformat"])}}},{"../../components/color":639,"../../constants/delta.js":746,"../../plots/cartesian/axes":827,"../bar/hover":921}],1367:[function(t,e,r){"use strict";e.exports={attributes:t("./attributes"),layoutAttributes:t("./layout_attributes"),supplyDefaults:t("./defaults").supplyDefaults,crossTraceDefaults:t("./defaults").crossTraceDefaults,supplyLayoutDefaults:t("./layout_defaults"),calc:t("./calc"),crossTraceCalc:t("./cross_trace_calc"),plot:t("./plot"),style:t("./style").style,hoverPoints:t("./hover"),eventData:t("./event_data"),selectPoints:t("../bar/select"),moduleType:"trace",name:"waterfall",basePlotModule:t("../../plots/cartesian"),categories:["bar-like","cartesian","svg","oriented","showLegend","zoomScale"],meta:{}}},{"../../plots/cartesian":841,"../bar/select":926,"./attributes":1360,"./calc":1361,"./cross_trace_calc":1363,"./defaults":1364,"./event_data":1365,"./hover":1366,"./layout_attributes":1368,"./layout_defaults":1369,"./plot":1370,"./style":1371}],1368:[function(t,e,r){"use strict";e.exports={waterfallmode:{valType:"enumerated",values:["group","overlay"],dflt:"group",editType:"calc"},waterfallgap:{valType:"number",min:0,max:1,editType:"calc"},waterfallgroupgap:{valType:"number",min:0,max:1,dflt:0,editType:"calc"}}},{}],1369:[function(t,e,r){"use strict";var n=t("../../lib"),i=t("./layout_attributes");e.exports=function(t,e,r){var a=!1;function o(r,a){return n.coerce(t,e,i,r,a)}for(var s=0;s0&&(g+=h?"M"+f[0]+","+d[1]+"V"+d[0]:"M"+f[1]+","+d[0]+"H"+f[0]),"between"!==p&&(r.isSum||s path").each((function(t){if(!t.isBlank){var e=s[t.dir].marker;n.select(this).call(a.fill,e.color).call(a.stroke,e.line.color).call(i.dashLine,e.line.dash,e.line.width).style("opacity",s.selectedpoints&&!t.selected?o:1)}})),c(r,s,t),r.selectAll(".lines").each((function(){var t=s.connector.line;i.lineGroupStyle(n.select(this).selectAll("path"),t.width,t.color,t.dash)}))}))}}},{"../../components/color":639,"../../components/drawing":661,"../../constants/interactions":751,"../bar/style":928,"../bar/uniform_text":930,"@plotly/d3":58}],1372:[function(t,e,r){"use strict";var n=t("../plots/cartesian/axes"),i=t("../lib"),a=t("../plot_api/plot_schema"),o=t("./helpers").pointsAccessorFunction,s=t("../constants/numerical").BADNUM;r.moduleType="transform",r.name="aggregate";var l=r.attributes={enabled:{valType:"boolean",dflt:!0,editType:"calc"},groups:{valType:"string",strict:!0,noBlank:!0,arrayOk:!0,dflt:"x",editType:"calc"},aggregations:{_isLinkedToArray:"aggregation",target:{valType:"string",editType:"calc"},func:{valType:"enumerated",values:["count","sum","avg","median","mode","rms","stddev","min","max","first","last","change","range"],dflt:"first",editType:"calc"},funcmode:{valType:"enumerated",values:["sample","population"],dflt:"sample",editType:"calc"},enabled:{valType:"boolean",dflt:!0,editType:"calc"},editType:"calc"},editType:"calc"},c=l.aggregations;function u(t,e,r,a){if(a.enabled){for(var o=a.target,l=i.nestedProperty(e,o),c=l.get(),u=function(t,e){var r=t.func,n=e.d2c,a=e.c2d;switch(r){case"count":return f;case"first":return h;case"last":return p;case"sum":return function(t,e){for(var r=0,i=0;ii&&(i=u,o=c)}}return i?a(o):s};case"rms":return function(t,e){for(var r=0,i=0,o=0;o":return function(t){return h(t)>s};case">=":return function(t){return h(t)>=s};case"[]":return function(t){var e=h(t);return e>=s[0]&&e<=s[1]};case"()":return function(t){var e=h(t);return e>s[0]&&e=s[0]&&es[0]&&e<=s[1]};case"][":return function(t){var e=h(t);return e<=s[0]||e>=s[1]};case")(":return function(t){var e=h(t);return es[1]};case"](":return function(t){var e=h(t);return e<=s[0]||e>s[1]};case")[":return function(t){var e=h(t);return e=s[1]};case"{}":return function(t){return-1!==s.indexOf(h(t))};case"}{":return function(t){return-1===s.indexOf(h(t))}}}(r,a.getDataToCoordFunc(t,e,s,i),h),x={},b={},_=0;d?(g=function(t){x[t.astr]=n.extendDeep([],t.get()),t.set(new Array(f))},v=function(t,e){var r=x[t.astr][e];t.get()[e]=r}):(g=function(t){x[t.astr]=n.extendDeep([],t.get()),t.set([])},v=function(t,e){var r=x[t.astr][e];t.get().push(r)}),k(g);for(var w=o(e.transforms,r),T=0;T1?"%{group} (%{trace})":"%{group}");var l=t.styles,c=o.styles=[];if(l)for(a=0;a - - @@ -45,7 +43,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -59,37 +57,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -171,432 +139,7 @@

About

About this blog

-
-
-
- - -
-
-
-
- - - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-

-
- - -
-
-
-No matching items -
-
+
-
+
@@ -476,7 +462,7 @@

-
+
@@ -517,7 +503,7 @@

-
+
@@ -558,7 +544,7 @@

-
+
@@ -599,7 +585,7 @@

-
+
@@ -640,7 +626,7 @@

-
+
@@ -673,7 +659,7 @@

Apr 28, 2020

-Catherine-Alexandra Gagnon +Dr Catherine-Alexandra Gagnon
diff --git a/docs/listings.json b/docs/listings.json index 1f7935f..cdc82e2 100644 --- a/docs/listings.json +++ b/docs/listings.json @@ -1,60 +1,4 @@ [ - { - "listing": "/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative/index.html", - "items": [] - }, - { - "listing": "/posts/2020-09-21-data-visualization/index.html", - "items": [] - }, - { - "listing": "/posts/2021-11-02-introduction-to-gams/index.html", - "items": [] - }, - { - "listing": "/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution/index.html", - "items": [] - }, - { - "listing": "/posts/2020-06-15-science-communication/index.html", - "items": [] - }, - { - "listing": "/posts/2021-06-22-introduction-to-shiny-apps/index.html", - "items": [] - }, - { - "listing": "/posts/2021-05-04-building-r-packages/index.html", - "items": [] - }, - { - "listing": "/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index.html", - "items": [] - }, - { - "listing": "/posts/2022-05-19-introduction-to-microbiome-analysis/index.html", - "items": [] - }, - { - "listing": "/posts/2020-12-07-making-websites-with-hugo/index.html", - "items": [] - }, - { - "listing": "/posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique/index.html", - "items": [] - }, - { - "listing": "/posts/2021-03-25-point-count-data-analysis/index.html", - "items": [] - }, - { - "listing": "/posts/2021-07-19-glm-community-ecology/index.html", - "items": [] - }, - { - "listing": "/summer-schools/BiodiversityModelling2022.html", - "items": [] - }, { "listing": "/index.html", "items": [ @@ -72,25 +16,5 @@ "/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative/index.html", "/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution/index.html" ] - }, - { - "listing": "/about.html", - "items": [ - "/index.html", - "/summer-schools/BiodiversityModelling2022.html", - "/posts/2021-05-04-building-r-packages/index.html", - "/posts/2020-09-21-data-visualization/index.html", - "/posts/2021-07-19-glm-community-ecology/index.html", - "/posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique/index.html", - "/posts/2021-11-02-introduction-to-gams/index.html", - "/posts/2022-05-19-introduction-to-microbiome-analysis/index.html", - "/posts/2021-06-22-introduction-to-shiny-apps/index.html", - "/posts/2020-12-07-making-websites-with-hugo/index.html", - "/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution/index.html", - "/posts/2021-03-25-point-count-data-analysis/index.html", - "/posts/2020-06-15-science-communication/index.html", - "/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative/index.html", - "/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand/index.html" - ] } ] \ No newline at end of file diff --git a/docs/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution/index.html b/docs/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution/index.html index 75f464c..8364607 100644 --- a/docs/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution/index.html +++ b/docs/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution/index.html @@ -115,8 +115,6 @@ - - @@ -131,7 +129,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -145,35 +143,6 @@ "search-submit-button-title": "Submit" } } - @@ -415,34 +384,13 @@

Thanks

- -
-
-
-
- -
-
-No matching items -
-

References

+

References

Otto, Sarah P, and Troy Day. 2007. A Biologist’s Guide to Mathematical Modeling in Ecology and Evolution. Vol. 13. Princeton University Press.
-

Citation

BibTeX citation:
@online{p.otto2020,
-  author = {Sarah P. Otto},
-  title = {Mathematical {Modeling} in {Ecology} and {Evolution}},
-  date = {2020-01-14},
-  url = {https://bios2.github.io/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution},
-  langid = {en}
-}
-
For attribution, please cite this work as:
-Sarah P. Otto. 2020. “Mathematical Modeling in Ecology and -Evolution.” BIOS2 Education Resources. January 14, -2020. https://bios2.github.io/posts/2020-01-14-mathematical-modeling-in-ecology-and-evolution. -
+
- - @@ -49,7 +47,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -63,37 +61,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -173,23 +141,16 @@

Sensibilisation aux réalités autochtones et recherche collab -
-
Author
-
- -
- Catherine-Alexandra Gagnon -
-
-

- Érébia - Cabinet-conseil en environnement -

-
-
- +
- +
+
Author
+
+

Dr Catherine-Alexandra Gagnon

+
+
+
Published
@@ -212,12 +173,12 @@

On this page

  • 1 Partie 1 - Sensibilisation aux réalités autochtones
  • 2 Partie 2 - Recherche en collaboration avec les communautés autochtones
  • 3 Ressources
      @@ -244,8 +205,8 @@

      Objectifs de la
    • Développer des notions et compétences afin d’agir contre les préjugés et le racisme.

    -
    -

    Durant ce webinaire, nous allons: 

    +
    +

    Durant ce webminaire, nous allons: 

    • Faire un survol des événements historiques importants et de leurs impacts à ce jour (Loi sur les Indiens, politiques d’assimilation, les pensionnats, etc.). 

    • Acquérir des connaissances sur la terminologie autochtone.

    • @@ -263,8 +224,8 @@

      Objectifs de l
    • Développer une meilleure compréhension des perceptions et attentes des communautés envers la recherche et les chercheurs.

    -
    -

    Durant ce webminaire, nous allons: 

    +
    +

    Durant ce webminaire, nous allons: 

    • Mieux comprendre la nécessité de prendre en compte les connaissances autochtones dans divers aspects de la gestion environnementale au Canada; 

    • Discuter du désir des communauté d’avoir une présence accrue dans le milieu de la recherche : comment faire?

    • @@ -309,32 +270,10 @@

      Formatrice :

      Catherine-Alexandra Gagnon possède une expertise dans le travail collaboratif en milieux autochtones. Elle s’intéresse particulièrement à la mise en commun des savoirs locaux, autochtones et scientifiques. Elle détient un doctorat en Sciences de l’environnement et une maîtrise en Gestion de la faune de l’Université du Québec à Rimouski, un baccalauréat en biologie faunique de l’université McGill ainsi qu’un certificat en Études autochtones de l’université de Montréal. Durant ses études, elle a travaillé sur les connaissances locales et ancestrales des Aîné(e)s et chasseurs Inuit, Inuvialuit et Gwich’in du Nunavut, des Territoires du Nord-Ouest et du Yukon.

      -
    -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{gagnon2020,
    -  author = {Catherine-Alexandra Gagnon},
    -  title = {Sensibilisation Aux Réalités Autochtones Et Recherche
    -    Collaborative},
    -  date = {2020-04-28},
    -  url = {https://bios2.github.io/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Catherine-Alexandra Gagnon. 2020. “Sensibilisation Aux Réalités -Autochtones Et Recherche Collaborative.” BIOS2 -Education Resources. April 28, 2020. https://bios2.github.io/posts/2020-04-28-sensibilisation-aux-ralits-autochtones-et-recherche-collaborative. -
    + - - @@ -50,7 +48,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -64,37 +62,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -175,31 +143,17 @@

    Science Communication

  • -
    -
    Authors
    -
    - -
    - Gracielle Higino -
    -
    -

    - Université de Montréal -

    -
    -
    - Katherine Hébert -
    -
    -

    - Université de Sherbrooke -

    -
    -
    - +
    - +
    +
    Authors
    +
    +

    Gracielle Higino

    +

    Katherine Hébert

    +
    +
    +
    Published
    @@ -282,31 +236,10 @@

    Objectives:





    - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{higino2020,
    -  author = {Gracielle Higino and Katherine Hébert},
    -  title = {Science {Communication}},
    -  date = {2020-06-15},
    -  url = {https://bios2.github.io/posts/2020-06-15-science-communication},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Gracielle Higino, and Katherine Hébert. 2020. “Science -Communication.” BIOS2 Education Resources. June 15, -2020. https://bios2.github.io/posts/2020-06-15-science-communication. -
    + - - @@ -113,7 +111,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -127,35 +125,6 @@ "search-submit-button-title": "Submit" } } - @@ -170,7 +139,6 @@ - @@ -251,31 +219,17 @@

    Data Visualization

    -
    -
    Authors
    -
    - -
    - Alex Arkilanian -
    -
    -

    - McGill University -

    -
    -
    - Katherine Hébert -
    -
    -

    - Université de Sherbrooke -

    -
    -
    - +
    - +
    +
    Authors
    +
    +

    Alex Arkilanian

    +

    Katherine Hébert

    +
    +
    +
    Published
    @@ -993,32 +947,11 @@

    Inspiration (pre

    2019: The Year in Visual Stories and Graphics
    Collection of the most popular visualizations by the New York Times in 2019.

    - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{arkilanian2020,
    -  author = {Alex Arkilanian and Katherine Hébert},
    -  title = {Data {Visualization}},
    -  date = {2020-09-21},
    -  url = {https://bios2.github.io/posts/2020-09-21-data-visualization},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Alex Arkilanian, and Katherine Hébert. 2020. “Data -Visualization.” BIOS2 Education Resources. September -21, 2020. https://bios2.github.io/posts/2020-09-21-data-visualization. -
    + - - @@ -113,7 +111,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -127,37 +125,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -238,31 +206,17 @@

    Making Websites with HUGO

    -
    -
    Authors
    -
    - -
    - Dominique Gravel -
    -
    -

    - Université de Sherbrooke -

    -
    -
    - Guillaume Larocque -
    -
    -

    - Quebec Centre for Biodiversity Science -

    -
    -
    - +
    - +
    +
    Authors
    +
    +

    Dominique Gravel

    +

    Guillaume Larocque

    +
    +
    +
    Published
    @@ -753,32 +707,11 @@

    Exercise 5

    }
    - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{gravel2020,
    -  author = {Dominique Gravel and Guillaume Larocque},
    -  title = {Making {Websites} with {HUGO}},
    -  date = {2020-12-07},
    -  url = {https://bios2.github.io/posts/2020-12-07-making-websites-with-hugo},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Dominique Gravel, and Guillaume Larocque. 2020. “Making Websites -with HUGO.” BIOS2 Education Resources. December 7, -2020. https://bios2.github.io/posts/2020-12-07-making-websites-with-hugo. -
    + - - @@ -112,7 +110,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -126,35 +124,6 @@ "search-submit-button-title": "Submit" } } - @@ -223,7 +192,7 @@
    -

    Spatial Statistics in Ecology

    +

    4-Day Training in Spatial Statistics with Philippe Marchand

    Training session about statistical analysis of spatial data in ecology, hosted by Philippe Marchand (UQAT). | Session de formation sur l’analyse statistique des données spatiales en écologie, animée par Pr. Philippe Marchand (UQAT).

    @@ -237,23 +206,16 @@

    Spatial Statistics in Ecology

    -
    -
    Author
    -
    - -
    - Philippe Marchand -
    -
    -

    - Université du Québec en Abitibi-Témiscamingue -

    -
    -
    - +
    - +
    +
    Author
    +
    +

    Philippe Marchand

    +
    +
    +
    Published
    @@ -273,7 +235,7 @@

    Spatial Statistics in Ecology

    On this page

      -
    • 1 Spatial Statistics in Ecology +
    • 1 Spatial statistics in ecology
    • @@ -448,7 +410,7 @@

      On this page

      Version en français à la suite.

      -

      1 Spatial Statistics in Ecology

      +

      1 Spatial statistics in ecology

      BIOS² hosted an online training session about statistical analysis of spatial data in ecology, led by Pr. Philippe Marchand (UQAT). This 12-hour training was conducted in 4 sessions: January 12, 14, 19 & 21 (2021) from 1:00 to 4:00 pm EST.

      The content included three types of spatial statistical analyses and their applications to ecology: (1) point pattern analysis to study the distribution of individuals or events in space; (2) geostatistical models to represent the spatial correlation of variables sampled at geolocated points; and (3) areal data models, which apply to measurements taken on areas in space and model spatial relationships as networks of neighbouring regions. The training also included practical exercises using the R statistical programming environment.

      Philippe Marchand is a professor in ecology and biostatistics at Institut de recherche sur les forêts, Université du Québec en Abitibi-Témiscamingue (UQAT) and BIOS² academic member. His research focuses on modeling processes that influence the spatial distribution of populations, including: seed dispersal and seedling establishment, animal movement, and the spread of forest diseases.

      @@ -3965,30 +3927,10 @@

      Référence

      Moraga, Paula (2019) Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny. Chapman & Hall/CRC Biostatistics Series. Disponible en ligne: https://www.paulamoraga.com/book-geospatial/.

      -
      -
      -
      -
      -
      - -
      -
      -No matching items -
      -

      Citation

      BibTeX citation:
      @online{marchand2021,
      -  author = {Philippe Marchand},
      -  title = {Spatial {Statistics} in {Ecology}},
      -  date = {2021-01-12},
      -  url = {https://bios2.github.io/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand},
      -  langid = {en}
      -}
      -
      For attribution, please cite this work as:
      -Philippe Marchand. 2021. “Spatial Statistics in Ecology.” -BIOS2 Education Resources. January 12, 2021. https://bios2.github.io/posts/2021-01-12-4-day-training-in-spatial-statistics-with-philippe-marchand. -
      + - - @@ -50,7 +48,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -64,37 +62,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -184,7 +152,7 @@

      Introduction to EDI Concepts in a Scientific Context

    - Université de Sherbrooke + Faculté des Sciences à Université de Sherbrooke

    @@ -263,30 +231,9 @@

    2 Introduction au





    - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{riallan2021,
    -  author = {Agathe Riallan and Marie-José Naud},
    -  title = {Introduction to {EDI} {Concepts} in a {Scientific} {Context}},
    -  date = {2021-01-22},
    -  url = {https://bios2.github.io/posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Agathe Riallan, and Marie-José Naud. 2021. “Introduction to EDI -Concepts in a Scientific Context.” BIOS2 Education -Resources. January 22, 2021. https://bios2.github.io/posts/2021-01-22-introduction-aux-concepts-edi-en-contexte-scientifique. -
    + - - @@ -112,7 +110,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -126,37 +124,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -226,7 +194,7 @@

    Point-count Data Analysis

    -

    Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Péter Sólymos to BIOS2 Fellows in March 2021.

    +

    Analysis of point-count data in the presence of variable survey methodologies and detection error offered by Peter Solymos to BIOS2 Fellows in March 2021.

    @@ -236,23 +204,16 @@

    Point-count Data Analysis

    -
    -
    Author
    -
    - -
    - Péter Sólymos -
    -
    -

    - University of Alberta -

    -
    -
    - +
    - +
    +
    Author
    +
    +

    Peter Solymos

    +
    +
    +
    Published
    @@ -483,29 +444,9 @@

    License

    The course material is licensed under Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) license. Source code is under MIT license.

    - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{sólymos2021,
    -  author = {Péter Sólymos},
    -  title = {Point-Count {Data} {Analysis}},
    -  date = {2021-03-25},
    -  url = {https://bios2.github.io/posts/2021-03-25-point-count-data-analysis},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Péter Sólymos. 2021. “Point-Count Data Analysis.” -BIOS2 Education Resources. March 25, 2021. https://bios2.github.io/posts/2021-03-25-point-count-data-analysis. -
    + - - @@ -112,7 +110,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -126,37 +124,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -407,29 +375,9 @@

    Useful links

    https://builder.r-hub.io/about.html

    - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{macdonald2021,
    -  author = {Andrew MacDonald},
    -  title = {Building {R} Packages},
    -  date = {2021-05-04},
    -  url = {https://bios2.github.io/posts/2021-05-04-building-r-packages},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Andrew MacDonald. 2021. “Building R Packages.” -BIOS2 Education Resources. May 4, 2021. https://bios2.github.io/posts/2021-05-04-building-r-packages. -
    + - - @@ -115,7 +113,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -129,37 +127,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -229,7 +197,7 @@

    Introduction to Shiny Apps

    - Introduction to interactive app development with R Shiny. +

    Introduction to interactive app development with R Shiny.

    @@ -240,47 +208,19 @@

    Introduction to Shiny Apps

    -
    -
    Authors
    -
    - -
    - Katherine Hébert -
    -
    -

    - Université de Sherbrooke -

    -
    -
    - Andrew MacDonald -
    -
    -

    - Université de Sherbrooke -

    -
    -
    - Jake Lawlor -
    -
    -

    - McGill University -

    -
    -
    - Vincent Bellavance -
    -
    -

    - Université de Sherbrooke -

    -
    -
    - +
    - +
    +
    Authors
    +
    +

    Katherine Hébert

    +

    Andrew MacDonald

    +

    Jake Lawlor

    +

    Vincent Bellevance

    +
    +
    +
    Published
    @@ -811,10 +751,10 @@

    Populating the Layou

    Below, we show the necessary code to include in both the UI and the Server to create each plot element. Notice that after the reactive value selected_volcanoes is created in the selection box, this is the only object that is used to create the other elements in the app.

    ----++++ @@ -1132,32 +1072,10 @@

    Barplot of continent - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{hébert2021,
    -  author = {Katherine Hébert and Andrew MacDonald and Jake Lawlor and
    -    Vincent Bellavance},
    -  title = {Introduction to {Shiny} {Apps}},
    -  date = {2021-06-22},
    -  url = {https://bios2.github.io/posts/2021-06-22-introduction-to-shiny-apps},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Katherine Hébert, Andrew MacDonald, Jake Lawlor, and Vincent Bellavance. -2021. “Introduction to Shiny Apps.” BIOS2 -Education Resources. June 22, 2021. https://bios2.github.io/posts/2021-06-22-introduction-to-shiny-apps. -
    + - - @@ -112,7 +110,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -126,35 +124,6 @@ "search-submit-button-title": "Submit" } } - @@ -236,23 +205,16 @@

    Generalized Linear Models for Community Ecology

    -
    -
    Author
    -
    - -
    - Pedro Peres-Neto -
    -
    -

    - Concordia University -

    -
    -
    - +
    - +
    +
    Author
    +
    +

    Pedro Peres-Neto

    +
    +
    +
    Published
    @@ -3011,27 +2973,7 @@

    Generalized Linear Models for Community Ecology

    - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{peres-neto2021,
    -  author = {Pedro Peres-Neto},
    -  title = {Generalized {Linear} {Models} for {Community} {Ecology}},
    -  date = {2021-05-17},
    -  url = {https://bios2.github.io/posts/2021-07-19-glm-community-ecology},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Pedro Peres-Neto. 2021. “Generalized Linear Models for Community -Ecology.” BIOS2 Education Resources. May 17, 2021. https://bios2.github.io/posts/2021-07-19-glm-community-ecology. -
    + - - @@ -112,7 +110,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -126,37 +124,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -236,23 +204,16 @@

    Introduction to Generalized Additive Models (GAMs)

    -
    -
    Author
    -
    - -
    - Eric Pedersen -
    -
    -

    - Concordia University -

    -
    -
    - +
    - +
    +
    Author
    +
    +

    Eric Pedersen

    +
    +
    +
    Published
    @@ -411,30 +372,9 @@

    6 Other useful GA - -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{pedersen2021,
    -  author = {Eric Pedersen},
    -  title = {Introduction to {Generalized} {Additive} {Models} {(GAMs)}},
    -  date = {2021-11-02},
    -  url = {https://bios2.github.io/posts/2021-11-02-introduction-to-gams},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Eric Pedersen. 2021. “Introduction to Generalized Additive Models -(GAMs).” BIOS2 Education Resources. November 2, 2021. -https://bios2.github.io/posts/2021-11-02-introduction-to-gams. -
    + - - @@ -114,7 +112,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -128,37 +126,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -253,19 +221,9 @@

    Introduction to Microbiome Analysis

    Zihui Wang
    -
    -

    - Université du Québec à Montréal -

    -
    Salix Dubois
    -
    -

    - Université du Québec à Montréal -

    -
    @@ -650,6 +608,9 @@

    Trimming and truncLen=c(200,230), maxN=0, maxEE=2, truncQ=2, rm.phix=TRUE, compress=TRUE, multithread=TRUE, verbose=TRUE)

    +
    +
    Creating output directory: /Users/katherine/Documents/GitHub/bios2.github.io/posts/2022-05-19-introduction-to-microbiome-analysis/dada2-filtered
    +
    @@ -657,30 +618,30 @@

    Inferring ASVs

    Now that we have our trimmed quality-control sequences, we can infer the identity and abundance of ASVs in our sequence files.

    The first step of this process is to learn the error rates of our sequences. DADA2 uses information about error rates to infer the identity of ASVs in the samples.

    -
    # Learn error rates
    -errF <- learnErrors(filtFs, multithread=TRUE)
    +
    # Learn error rates
    +errF <- learnErrors(filtFs, multithread=TRUE)
    103149200 total bases in 606760 reads from 32 samples will be used for learning the error rates.
    -
    errR <- learnErrors(filtRs, multithread=TRUE)
    +
    errR <- learnErrors(filtRs, multithread=TRUE)
    101062620 total bases in 500310 reads from 22 samples will be used for learning the error rates.

    Once we have learned the error rates, we do some bookkeeping to reduce the time required to infer ASVs by removing replicate sequences from each sample. A given FASTQ file might contain large numbers of identical sequences. We don’t need to analyse each of these sequences separately; we’ll dereplicate the file by removing duplicates of identical sequences. This keeps track of the number of duplicates so that at the end of our process we know the actual abundance of each of these identical sequences.

    -
    # Dereplicate the filtered fastq files
    -derepFs <- derepFastq(filtFs)
    -derepRs <- derepFastq(filtRs)
    -# Name the derep-class objects by the sample names
    -names(derepFs) <- sample.names
    -names(derepRs) <- sample.names
    +
    # Dereplicate the filtered fastq files
    +derepFs <- derepFastq(filtFs)
    +derepRs <- derepFastq(filtRs)
    +# Name the derep-class objects by the sample names
    +names(derepFs) <- sample.names
    +names(derepRs) <- sample.names

    Now we are ready to use the DADA2 algorithm to identify ASVs in our samples. DADA2 uses a model of the error rate in sequences to identify the unique amplicon sequence variants (ASVs) that are present in our samples.

    When carrying out ASV binning and chimera identification, we have the option to pool together samples (the pool argument). There are different strategies for pooling samples together. It is quicker to bin ASVs on a per-sample basis, but this might miss extremely rare ASVs that occur with low abundance in multiple samples. By pooling samples together, we can increase our ability to accurately identify these rare ASVs. The downside is that pooling samples together takes more time since we not have to analyse a larger number of sequences at the same time. The “pseudo-pooling” option strikes a balance between these options and is the approach we’ll use today. There is an in-depth explanation of the different pooling options at the DADA2 website.

    -
    # Infer the sequence variants in each sample
    -dadaFs <- dada(derepFs, err=errF, pool="pseudo", multithread=TRUE)
    +
    # Infer the sequence variants in each sample
    +dadaFs <- dada(derepFs, err=errF, pool="pseudo", multithread=TRUE)
    Sample 1 - 43893 reads in 4133 unique sequences.
     Sample 2 - 1535 reads in 279 unique sequences.
    @@ -722,7 +683,7 @@ 

    Inferring ASVs

    selfConsist step 2
    -
    dadaRs <- dada(derepRs, err=errR, pool="pseudo", multithread=TRUE)
    +
    dadaRs <- dada(derepRs, err=errR, pool="pseudo", multithread=TRUE)
    Sample 1 - 43893 reads in 3352 unique sequences.
     Sample 2 - 1535 reads in 196 unique sequences.
    @@ -771,23 +732,23 @@ 

    M

    Now that we have identified ASVs from our sequences, we can merge together the forward and reverse reads into a single sequence that will cover the full length of our amplicon. This approach works by looking for matching nucleotides in the overlapping portion of the forward and reverse reads.

    As noted above, if your forward and reverse reads do not overlap, they cannot be merged. It is still possible to merge them by concatenating together the forward and reverse reads, but this approach makes it more difficult to do taxonomic annotation.

    -
    # Merge the denoised forward and reverse reads:
    -mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs)
    +
    # Merge the denoised forward and reverse reads:
    +mergers <- mergePairs(dadaFs, derepFs, dadaRs, derepRs)

    Construct sequence table

    We have identified ASVs and merged the forward and reverse reads into a single ASV. We can now construct the sequence table, which is a matrix of ASV abundances in each sample.

    -
    # construct sequence table
    -seqtab <- makeSequenceTable(mergers)
    -# look at dimension of sequence table (# samples, # ASVs)
    -dim(seqtab)
    +
    # construct sequence table
    +seqtab <- makeSequenceTable(mergers)
    +# look at dimension of sequence table (# samples, # ASVs)
    +dim(seqtab)
    [1]   37 2540
    -
    # look at length of ASVs
    -table(nchar(getSequences(seqtab)))
    +
    # look at length of ASVs
    +table(nchar(getSequences(seqtab)))
    
     295 296 297 298 299 300 301 302 303 304 305 306 307 308 312 318 
    @@ -799,18 +760,18 @@ 

    Construct sequenc

    Remove chimeras

    The final step of processing the sequence files involves identifying and removing chimeric sequences. These are sequences that contain portions of two distinct organisms. Chimeric sequences can arise at different stages in the process of sequencing samples including during PCR and during sequencing.

    -
    # remove chimeras
    -seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=TRUE)
    +
    # remove chimeras
    +seqtab.nochim <- removeBimeraDenovo(seqtab, method="consensus", multithread=TRUE, verbose=TRUE)
    Identified 1425 bimeras out of 2540 input sequences.
    -
    # look at dimension of sequence table (# samples, # ASVs) after chimera removal
    -dim(seqtab.nochim)
    +
    # look at dimension of sequence table (# samples, # ASVs) after chimera removal
    +dim(seqtab.nochim)
    [1]   37 1115
    -
    # what % of reads remain after chimera removal?
    -sum(seqtab.nochim)/sum(seqtab)
    +
    # what % of reads remain after chimera removal?
    +sum(seqtab.nochim)/sum(seqtab)
    [1] 0.9836811
    @@ -820,12 +781,12 @@

    Remove chimeras

    Tracking read fate through the pipeline

    Now we have completed the processing of our files. We can track how many reads per sample remain after the different steps of the process.

    -
    # summary - track reads through the pipeline
    -getN <- function(x) sum(getUniques(x))
    -track <- cbind(out, sapply(dadaFs, getN), sapply(mergers, getN), rowSums(seqtab), rowSums(seqtab.nochim))
    -colnames(track) <- c("input", "filtered", "denoised", "merged", "tabled", "nonchim")
    -rownames(track) <- sample.names
    -head(track)
    +
    # summary - track reads through the pipeline
    +getN <- function(x) sum(getUniques(x))
    +track <- cbind(out, sapply(dadaFs, getN), sapply(mergers, getN), rowSums(seqtab), rowSums(seqtab.nochim))
    +colnames(track) <- c("input", "filtered", "denoised", "merged", "tabled", "nonchim")
    +rownames(track) <- sample.names
    +head(track)
                input filtered denoised merged tabled nonchim
     AUC.C1.2X1  45852    43893    43836  43297  43297   43268
    @@ -845,8 +806,8 @@ 

    Higher-l

    For taxonomic annotation at ranks from domains to genera, DADA2 uses the RDP Naive Bayesian Classifier algorithm. This algorithm compares each ASV sequence to the reference database. If the bootstrap confidence in the taxonomic annotation at each rank is 50% or greater, we assign that annotation to the ASV at that rank. If an ASV cannot be confidently identified at a given rank, there will be a NA value in the taxonomy table.

    Note that this step can be time consuming, especially if you have a large number of ASVs to identify. Running this annotation step on a computer with numerous cores/threads will speed up the process.

    -
    # identify taxonomy
    -taxa <- assignTaxonomy(seqtab.nochim, "SILVA138.1/silva_nr99_v138.1_train_set.fa.gz", multithread=TRUE, tryRC=TRUE)
    +
    # identify taxonomy
    +taxa <- assignTaxonomy(seqtab.nochim, "SILVA138.1/silva_nr99_v138.1_train_set.fa.gz", multithread=TRUE, tryRC=TRUE)

    @@ -854,15 +815,15 @@

    Species

    We use the RDP Naive Bayesian Classifier algorithm for taxonomic annotations at ranks from domains to genera. This allows for annotations even if there is not an exact match between ASV sequences and sequences in the reference database. At the species level, we need a different strategy, since we do not want to identify an ASV as belonging to a species unless its sequence matches that species exactly. Note that this approach means that we cannot carry out species-level taxonomic annotation if we concatenated our sequences rather than merging them together into a single sequence.

    This step can also be somewhat time consuming depending on the number of ASVs to be annotated.

    -
    # exact species matching (won't work if concatenating sequences)
    -taxa.sp <- addSpecies(taxa,  "SILVA138.1/silva_species_assignment_v138.1.fa.gz", allowMultiple = TRUE, tryRC = TRUE)
    +
    # exact species matching (won't work if concatenating sequences)
    +taxa.sp <- addSpecies(taxa,  "SILVA138.1/silva_species_assignment_v138.1.fa.gz", allowMultiple = TRUE, tryRC = TRUE)

    Now that we have the taxonomic annotations, we can inspect them. We create a special version of the taxonomy table with the ASV names removed (the name of each ASV is its full sequence, so the names are very long).

    -
    # inspect the taxonomic assignments
    -taxa.print <- taxa.sp # Removing sequence rownames for display only
    -rownames(taxa.print) <- NULL
    -head(taxa.print, n=20)
    +
    # inspect the taxonomic assignments
    +taxa.print <- taxa.sp # Removing sequence rownames for display only
    +rownames(taxa.print) <- NULL
    +head(taxa.print, n=20)
          Kingdom    Phylum             Class                 Order             
      [1,] "Bacteria" "Proteobacteria"   "Alphaproteobacteria" "Rhizobiales"     
    @@ -935,11 +896,11 @@ 

    Species

    Final steps - clean up and save data objects and workspace

    We have now completed our analysis of the sequence files. We have created an ASV table seqtab.nochim that contains the error-corrected non-chimeric ASV sequences and their abundances in each sample. For each ASV we also have the taxonomic annotations of the ASV in the object taxa.sp. We will save these data objects to the file system, along with a copy of the entire workspace containing all the output of the analyses so far. We will use these files to continue our analyses in the next part of the workshop.

    -
    ## Save sequence table and taxonomic annotations to individual files
    -saveRDS(seqtab.nochim, "seqtab.nochim.rds")
    -saveRDS(taxa.sp, "taxa.sp.rds")
    -## Save entire R workspace to file
    -save.image("Microbiome-sequence-analysis-workspace.RData")
    +
    ## Save sequence table and taxonomic annotations to individual files
    +saveRDS(seqtab.nochim, "seqtab.nochim.rds")
    +saveRDS(taxa.sp, "taxa.sp.rds")
    +## Save entire R workspace to file
    +save.image("Microbiome-sequence-analysis-workspace.RData")

    @@ -958,39 +919,39 @@

    About the data setInstall and load required packages and data

    For this part of the workshop we will need to install several R packages. The commands below should work to install these packages, you should make sure you have the latest version of R installed (version 4.2.0 at the time of writing this document).

    -
    # install packages from CRAN
    -install.packages(pkgs = c("Rcpp", "RcppArmadillo", "picante", "ggpubr", "pheatmap"), dependencies = TRUE)
    -# install packages from Bioconductor
    -if (!require("BiocManager", quietly = TRUE))
    -  install.packages("BiocManager")
    -BiocManager::install("dada2", version = "3.15", update = FALSE)
    -# if the dada2 install returns a warning for BiocParallel, install from binary using this command:
    -# BiocManager::install("BiocParallel", version = "3.15", type="binary", update = FALSE)
    -BiocManager::install("DESeq2")
    -BiocManager::install("phyloseq")
    -BiocManager::install("ANCOMBC")
    +
    # install packages from CRAN
    +install.packages(pkgs = c("Rcpp", "RcppArmadillo", "picante", "ggpubr", "pheatmap"), dependencies = TRUE)
    +# install packages from Bioconductor
    +if (!require("BiocManager", quietly = TRUE))
    +  install.packages("BiocManager")
    +BiocManager::install("dada2", version = "3.15", update = FALSE)
    +# if the dada2 install returns a warning for BiocParallel, install from binary using this command:
    +# BiocManager::install("BiocParallel", version = "3.15", type="binary", update = FALSE)
    +BiocManager::install("DESeq2")
    +BiocManager::install("phyloseq")
    +BiocManager::install("ANCOMBC")

    To begin, we will load the required packages.

    -
    ### load packages
    -library(picante)
    -library(vegan)
    -library(ggplot2)
    -library(reshape2)
    -library(ggpubr)
    -library(DESeq2)
    -library(pheatmap)
    -library(ANCOMBC)
    -library(phyloseq)
    +
    ### load packages
    +library(picante)
    +library(vegan)
    +library(ggplot2)
    +library(reshape2)
    +library(ggpubr)
    +library(DESeq2)
    +library(pheatmap)
    +library(ANCOMBC)
    +library(phyloseq)

    Load DADA2 results

    We will continue our analyses picking up where we left off at the end of day 1 of the workshop. We used the DADA2 package to identify ASVs and their abundances in samples, and to annotate ASVs taxonomically by comparing them to the SILVA rRNA database. We saved these data objects as files. You will need to place a copy of the files “seqtab.nochim.rds” and “taxa.sp.rds” in the working directory, and then we load them into our R workspace.

    -
    # load sequence table (nonchimeric ASV abundances in samples)
    -seqtab.nochim <- readRDS("seqtab.nochim.rds")
    -# load taxonomic annotations (taxonomic ID of each ASV)
    -taxa.sp <- readRDS("taxa.sp.rds")
    +
    # load sequence table (nonchimeric ASV abundances in samples)
    +seqtab.nochim <- readRDS("seqtab.nochim.rds")
    +# load taxonomic annotations (taxonomic ID of each ASV)
    +taxa.sp <- readRDS("taxa.sp.rds")
    @@ -998,10 +959,10 @@

    Load metadata

    The metadata file we will use for this workshop is available for download at the following URL: https://figshare.com/articles/dataset/Data_files_for_BIOS2_Microbiome_Analysis_Workshop/19763077.

    You will need to download the file “metadata-Qleaf_BACT.csv” and place a copy of this file in the working directory. Then we can load the metadata.

    -
    # load metadata
    -metadata <- read.csv("metadata-Qleaf_BACT.csv", row.names = 1)
    -# inspect metadata
    -head(metadata)
    +
    # load metadata
    +metadata <- read.csv("metadata-Qleaf_BACT.csv", row.names = 1)
    +# inspect metadata
    +head(metadata)
                Description    SampleType StandType TransplantedSite
     ASH.S2.2       ASH.S2.2 Leaf.Bacteria    Boreal    Ashuapmushuan
    @@ -1042,37 +1003,37 @@ 

    Load metadata

    Cleaning and summarizing DADA2 results

    Our first steps will be to do some cleaning up of the DADA2 results to make it easier to work with them. We create community and taxonomy objects that we will work with.

    -
    # community object from nonchimeric ASV sequence table
    -comm <- seqtab.nochim
    -# taxonomy object - make sure order of ASVs match between community and taxonomy
    -taxo <- taxa.sp[colnames(comm),]
    -# keep metadata only for community samples
    -metadata <- metadata[rownames(comm),]
    +
    # community object from nonchimeric ASV sequence table
    +comm <- seqtab.nochim
    +# taxonomy object - make sure order of ASVs match between community and taxonomy
    +taxo <- taxa.sp[colnames(comm),]
    +# keep metadata only for community samples
    +metadata <- metadata[rownames(comm),]

    We will also rename the ASVs in our community and taxonomy data objects. By default, ASVs are named by their full sequence. This makes it hard to look at these objects since the names are too long to display easily. We will replace the names of ASVs by “ASV_XXX” where XXX is a number from 1 to the number of observed ASVs.

    -
    # ASV names are their full sequences by default
    -# This makes it very hard to look at them (the names are too long)
    -# Store ASV sequence information and rename ASVs as "ASV_XXX"
    -ASV.sequence.info <- data.frame(ASV.name=paste0('ASV_',1:dim(comm)[2]),
    -                                ASV.sequence=colnames(comm))
    -colnames(comm) <- ASV.sequence.info$ASV.name
    -rownames(taxo) <- ASV.sequence.info$ASV.name
    +
    # ASV names are their full sequences by default
    +# This makes it very hard to look at them (the names are too long)
    +# Store ASV sequence information and rename ASVs as "ASV_XXX"
    +ASV.sequence.info <- data.frame(ASV.name=paste0('ASV_',1:dim(comm)[2]),
    +                                ASV.sequence=colnames(comm))
    +colnames(comm) <- ASV.sequence.info$ASV.name
    +rownames(taxo) <- ASV.sequence.info$ASV.name

    Exploring community data

    Now we can begin to look at our data in more depth.

    -
    # community - number of samples (rows) and ASVs (columns)
    -dim(comm)
    +
    # community - number of samples (rows) and ASVs (columns)
    +dim(comm)
    [1]   37 1115

    We have 37 samples and 1115 ASVs. If we look at our data objects, we can see the type of data in each of the different objects.

    -
    # look at community data object
    -head(comm)[,1:6]
    +
    # look at community data object
    +head(comm)[,1:6]
                ASV_1 ASV_2 ASV_3 ASV_4 ASV_5 ASV_6
     AUC.C1.2X1  10335   158  3993  4092   584  3225
    @@ -1082,8 +1043,8 @@ 

    Exploring communi AUC.N2.1.X1 1871 1853 1431 20 58 2 AUC.N2.1X2 19648 4200 6465 191 7221 2054

    -
    # look at taxonomy object
    -head(taxo)
    +
    # look at taxonomy object
    +head(taxo)
          Kingdom    Phylum           Class                 Order             
     ASV_1 "Bacteria" "Proteobacteria" "Alphaproteobacteria" "Rhizobiales"     
    @@ -1107,8 +1068,8 @@ 

    Exploring communi ASV_5 NA ASV_6 NA

    -
    # look at metadata object
    -head(metadata)
    +
    # look at metadata object
    +head(metadata)
                Description    SampleType StandType TransplantedSite
     AUC.C1.2X1   AUC.C1.2X1 Leaf.Bacteria     Mixed          Auclair
    @@ -1142,8 +1103,8 @@ 

    Subset

    When using a primer that targets bacteria, host DNA and DNA of non-target organisms in the samples will typically show up ASVs annotated as belonging to a non-Bacteria domain (Archaea or Eukaryota), or the taxonomic order is “Chloroplast”, or the taxonomic family is “Mitochondria”.

    First we check whether any of our sequence are classified into a domain other than the bacteria.

    -
    # How many ASVs are classified to different domains?
    -table(taxo[,"Kingdom"])
    +
    # How many ASVs are classified to different domains?
    +table(taxo[,"Kingdom"])
    
     Bacteria 
    @@ -1152,14 +1113,14 @@ 

    Subset

    All of the ASVs are classified as belonging to the domain Bacteria. Now let’s check for chloroplasts and mitochondria.

    -
    # How many ASVs are classified as Chloroplasts?
    -table(taxo[,"Order"])["Chloroplast"]
    +
    # How many ASVs are classified as Chloroplasts?
    +table(taxo[,"Order"])["Chloroplast"]
    Chloroplast 
              12 
    -
    # How many ASVs are classified as Mitochondria?
    -table(taxo[,"Family"])["Mitochondria"]
    +
    # How many ASVs are classified as Mitochondria?
    +table(taxo[,"Family"])["Mitochondria"]
    Mitochondria 
                2 
    @@ -1167,10 +1128,10 @@

    Subset

    There are only a few ASVs classified as chloroplasts and mitochondria. This is expected since we used a primer that should exclude this host DNA. We will remove these ASVs before continuing our analyses.

    -
    # Remove chloroplast and mitochondria ASVs from taxonomy table
    -taxo <- subset(taxo, taxo[,"Order"]!="Chloroplast" & taxo[,"Family"]!="Mitochondria")
    -# Remove these ASVs from the community matrix as well
    -comm <- comm[,rownames(taxo)]
    +
    # Remove chloroplast and mitochondria ASVs from taxonomy table
    +taxo <- subset(taxo, taxo[,"Order"]!="Chloroplast" & taxo[,"Family"]!="Mitochondria")
    +# Remove these ASVs from the community matrix as well
    +comm <- comm[,rownames(taxo)]

    If you find a large number of ASVs classified as non-Bacteria, or as chloroplasts or mitochondria, you will need to remove them from your data set prior to further analysis. Sometimes this can mean that many of your samples will contain few sequences after removing the host DNA and non-bacterial ASVs. If this is the case, you can consider using a primer that will not amplify host DNA, or sequencing your samples more deeply so that enough bacterial DNA will remain after removing the host DNA. However, this latter approach will waste a lot of your sequences, and in some cases if your samples contain mostly host DNA it will be difficult to obtain enough bacterial sequences to carry out ecological analyses.

    @@ -1178,26 +1139,26 @@

    Subset

    Summary statistics

    To begin with, we can calculate summary statistics for our community and taxonomy data. We mentioned earlier that the number of sequences per sample (library size) is normalized, meaning we aimed to sequence approximately the same number of reads per sample.

    -
    # number of reads per sample
    -rowSums(comm)
    +
    # number of reads per sample
    +rowSums(comm)
     AUC.C1.2X1    AUC.C1.3    AUC.N1.1    AUC.N1.3 AUC.N2.1.X1  AUC.N2.1X2 
    -      43110        1305         307       33424        4966       63971 
    +      43110        1305         307       33460        4966       63971 
        AUC.N2.2 AUC.S1.1.X2    AUC.S1X1    AUC.S2.2     BC.C1.2   BC.C2.1X1 
    -      13344       19407       33599       45548        8670       25333 
    +      13344       19423       33599       45852        8670       25333 
       BC.C2.3X2  BC.C2.3X2b   BC.N1.3X2       BC.N1  BC.N2.1.X3   BC.N2.1X1 
    -        271       24140        7507       15009       22164       20475 
    +        271       24140        7507       15011       22165       20475 
       BC.N2.1X2    PAR.C1.1    PAR.C1.2    PAR.C2.3    PAR.N1.3 QLbactNeg19 
           10486          13         161       23407        6927          27 
     QLbactNeg20  S.M.C1.3X2    S.M.C2.3  S.M.C2.3X2  S.M.S1.1X1     SF.C1.3 
    -         84       10137       20858        8403         485       19081 
    +         84       10137       21022        8403         485       19081 
         SF.C2.2     SF.N2.3     SF.S1.3     T2.C1.1     T2.C2.3     T2.N1.1 
    -        273       31314       19664       23534         602       20712 
    +        273       31340       19664       23534         602       20712 
         T2.S2.1 
           21663 
    -
    # visualize log10 number of reads per sample
    -hist(log10(rowSums(comm)))
    +
    # visualize log10 number of reads per sample
    +hist(log10(rowSums(comm)))

    @@ -1205,8 +1166,8 @@

    Summary statistics

    We can see that most samples have at least 4000-10000 sequences/sample. But there are some samples with fewer reads. This includes both the negative control samples as well as some of the ‘real’ samples. We will need to remove samples with too few reads - we’ll return to this shortly.

    We can also look at the number of sequences per ASV.

    -
    # log10 of number of reads per ASV
    -hist(log10(colSums(comm)))
    +
    # log10 of number of reads per ASV
    +hist(log10(colSums(comm)))

    @@ -1221,14 +1182,14 @@

    Rarefaction curves

    We will visualize the relationship between the number of sequences in each sample (“sample size” in the figures below) versus the number of ASVs they contain (“species” in the figures below). These rarefaction curves make it clear why we need to take the number of sequences per sample into account when we analyse sample diversity.

    First we plot a rarefaction curve for all samples. Each curve shows how the number of ASVs per sample changes with number of sequences in a particular sample.

    -
    rarecurve(comm, step=200, label=TRUE)
    +
    rarecurve(comm, step=200, label=TRUE)

    For these rarefaction curves, the key thing to look for is where ASV richness (number of ASVs per sample) reaches a plateau relative to the number of reads per sample. It does look like the samples we can see have reached a plateau of ASV richness. But it’s hard to see the curve for many of the samples because of the x-axis limits - a few samples with a lot of sequences make it hard to see the less diverse samples. Let’s zoom in to look just at the range from 0 to 5000 sequences/sample.

    -
    rarecurve(comm, step=200, label=TRUE, xlim=c(0,5000))
    +
    rarecurve(comm, step=200, label=TRUE, xlim=c(0,5000))

    @@ -1239,20 +1200,20 @@

    Rarefaction curves

    Visualize community composition

    Another way to quickly visualize the composition of all of our samples is to do an ordination to visualize similarity in composition among samples. Here we will visualize a principal components analysis on Hellinger-transformed ASV abundance data. Normally we should normalize the data before doing any diversity analysis but here we just want a quick look at whether some samples have very different composition from the rest. We do a PCA analysis and then plot the ordination results, overlaying confidence ellipses around the samples from the different transplanted stand types/biomes.

    -
    # PCA on Hellinger-transformed community data
    -comm.pca <- prcomp(decostand(comm,"hellinger"))
    -# plot ordination results
    -ordiplot(comm.pca, display="sites", type="text",cex=0.5)
    -ordiellipse(comm.pca, metadata$StandType, label=TRUE,cex=0.8)
    +
    # PCA on Hellinger-transformed community data
    +comm.pca <- prcomp(decostand(comm,"hellinger"))
    +# plot ordination results
    +ordiplot(comm.pca, display="sites", type="text",cex=0.5)
    +ordiellipse(comm.pca, metadata$StandType, label=TRUE,cex=0.8)

    There are two things to note in this ordination figure. First, we can see that along the first axis there is a separation between the negative control samples and a few other samples that cluster with the negative controls, versus all the other samples. Second, we can see that the composition of the communities seems to differ among stand type/biome along the second axis, varying from boreal to mixed to temperate forests. We’ll return to this observation later, but for now the important thing is that we can see that there are some samples that are more similar to the negative control samples than they are to the other ‘real’ samples. Let’s visualize the number of sequences per sample (library size) mapped onto these ordination axes.

    -
    # Surface plot - plot number of sequences/sample (library size)
    -ordisurf(comm.pca, rowSums(comm), bubble=TRUE, cex=2,
    -         main="Library size (sequences/sample)")
    +
    # Surface plot - plot number of sequences/sample (library size)
    +ordisurf(comm.pca, rowSums(comm), bubble=TRUE, cex=2,
    +         main="Library size (sequences/sample)")

    @@ -1266,13 +1227,13 @@

    Visualize

    Check negative controls

    We sequenced negative controls in this study to ensure that our samples were not contaminated and that the sequences we obtained come from bacteria on leaves and not from some other step of the sample processing such as from the DNA extraction kits or during PCR. As we saw above, the inclusion of these negative control samples is useful because we can look at their composition to identify ‘real’ samples that might contain contaminants. As a final step, let’s look at the negative control samples to see what ASVs they contain.

    -
    # Abundance of ASVs in negative controls
    -comm['QLbactNeg19',][comm['QLbactNeg19',]>0]
    +
    # Abundance of ASVs in negative controls
    +comm['QLbactNeg19',][comm['QLbactNeg19',]>0]
      ASV_1  ASV_44  ASV_77 ASV_138 
           1      11      11       4 
    -
    comm['QLbactNeg20',][comm['QLbactNeg20',]>0]
    +
    comm['QLbactNeg20',][comm['QLbactNeg20',]>0]
       ASV_8   ASV_30   ASV_77   ASV_91  ASV_418  ASV_625 ASV_1002 
            1        1        2        1       72        3        4 
    @@ -1280,8 +1241,8 @@

    Check negative con

    Our negative controls look clean - they contain only a few sequences (fewer than 100) belonging to a small number of ASVs. This is the type of result we are looking for, and we will remove these negative controls shortly when we remove low quality samples with small numbers of sequences. We can also look at the taxonomic identity of the ASVs that are present in the negative controls.

    -
    # Taxonomic identity of ASVs present in negative controls
    -taxo[names(comm['QLbactNeg19',][comm['QLbactNeg19',]>0]),]
    +
    # Taxonomic identity of ASVs present in negative controls
    +taxo[names(comm['QLbactNeg19',][comm['QLbactNeg19',]>0]),]
            Kingdom    Phylum           Class                 Order             
     ASV_1   "Bacteria" "Proteobacteria" "Alphaproteobacteria" "Rhizobiales"     
    @@ -1299,7 +1260,7 @@ 

    Check negative con ASV_77 "cristatus/gordonii/ictaluri/mitis/porcorum/sanguinis" ASV_138 NA

    -
    taxo[names(comm['QLbactNeg20',][comm['QLbactNeg20',]>0]),]
    +
    taxo[names(comm['QLbactNeg20',][comm['QLbactNeg20',]>0]),]
             Kingdom    Phylum           Class                 Order             
     ASV_8    "Bacteria" "Proteobacteria" "Alphaproteobacteria" "Sphingomonadales"
    @@ -1334,31 +1295,31 @@ 

    -
    # what is the dimension of the full community data set
    -dim(comm)
    +
    # what is the dimension of the full community data set
    +dim(comm)
    -
    [1]   37 1027
    -
    -
    # take subset of communities with at least 4000 sequences
    -comm.sub <- comm[rowSums(comm)>=4000,]
    -# also take subset of ASVs present in the remaining samples
    -comm.sub <- comm.sub[,apply(comm.sub,2,sum)>0]
    -# what is the dimension of the subset community data set?
    -dim(comm.sub)
    +
    [1]   37 1032
    +

    +
    # take subset of communities with at least 4000 sequences
    +comm.sub <- comm[rowSums(comm)>=4000,]
    +# also take subset of ASVs present in the remaining samples
    +comm.sub <- comm.sub[,apply(comm.sub,2,sum)>0]
    +# what is the dimension of the subset community data set?
    +dim(comm.sub)
    -
    [1]   27 1008
    -
    -
    # subset metadata and taxonomy to match
    -metadata.sub <- metadata[rownames(comm.sub),]
    -taxo.sub <- taxo[colnames(comm.sub),]
    -# descriptive stats for samples and ASVs
    -# number of sequences per sample
    -hist(rowSums(comm.sub))
    +
    [1]   27 1013
    +
    +
    # subset metadata and taxonomy to match
    +metadata.sub <- metadata[rownames(comm.sub),]
    +taxo.sub <- taxo[colnames(comm.sub),]
    +# descriptive stats for samples and ASVs
    +# number of sequences per sample
    +hist(rowSums(comm.sub))

    -
    # log10 number of sequences per ASV
    -hist(log10(colSums(comm.sub)))
    +
    # log10 number of sequences per ASV
    +hist(log10(colSums(comm.sub)))

    @@ -1367,10 +1328,10 @@

    PCA on subset data

    Before we normalize the data, let’s do the same PCA analysis on Hellinger-transformed ASV abundances, this time only for the samples that remain after getting rid of those with fewer than 5000 sequences/sample.

    -
    comm.sub.pca <- prcomp(decostand(comm.sub,"hellinger"))
    -# plot ordination results
    -ordiplot(comm.sub.pca, display="sites", type="text",cex=0.5)
    -ordiellipse(comm.sub.pca, metadata.sub$StandType, label=TRUE)
    +
    comm.sub.pca <- prcomp(decostand(comm.sub,"hellinger"))
    +# plot ordination results
    +ordiplot(comm.sub.pca, display="sites", type="text",cex=0.5)
    +ordiellipse(comm.sub.pca, metadata.sub$StandType, label=TRUE)

    @@ -1390,35 +1351,35 @@

    Rarefaction

    To rarefy our data, we will randomly select the same number of sequences per sample for all of our samples. Because we already excluded samples containing fewer than 4000 sequences, we know that we can rarefy the remaining samples to at least 4000 sequences. Let’s look at the rarefaction curve for our subset of samples.

    -
    # What is the smallest number of sequences/sample for subset of samples?
    -min(rowSums(comm.sub))
    +
    # What is the smallest number of sequences/sample for subset of samples?
    +min(rowSums(comm.sub))
    [1] 4966
    -
    # Rarefaction curve for subset of samples
    -rarecurve(comm.sub, step=200, label=FALSE, xlim=c(0,8000))
    +
    # Rarefaction curve for subset of samples
    +rarecurve(comm.sub, step=200, label=FALSE, xlim=c(0,8000))

    We can see that nearly all samples have reached a plateau of ASV richness by around 3000-4000 sequences/sample. The sample with the smallest number of sequences remaining contains 4966 sequences. We will randomly rarefy our data to this number of sequences. This way, we can feel confident that our samples contain enough sequences to adequately quantify the diversity of ASVs present in the sample even after rarefaction.

    -
    set.seed(0)
    -# Randomly rarefy samples
    -comm_rarfy <- rrarefy(comm.sub, sample = min(rowSums(comm.sub)))
    -# Remove any ASVs whose abundance is 0 after rarefaction
    -comm_rarfy <- comm_rarfy[,colSums(comm_rarfy)>1]
    -# Match ASV taxonomy to rarefied community
    -taxo_rarfy <- taxo.sub[colnames(comm_rarfy),]
    +
    set.seed(0)
    +# Randomly rarefy samples
    +comm_rarfy <- rrarefy(comm.sub, sample = min(rowSums(comm.sub)))
    +# Remove any ASVs whose abundance is 0 after rarefaction
    +comm_rarfy <- comm_rarfy[,colSums(comm_rarfy)>1]
    +# Match ASV taxonomy to rarefied community
    +taxo_rarfy <- taxo.sub[colnames(comm_rarfy),]

    Check the effect of rarefaction

    Let’s check to see what effect rarefaction had on the ASV richness of samples.

    -
    # Rarefaction is not expected to have a major influence on the diversity (as rarefaction curves have reached the plateau).
    -richness_raw <- rowSums((comm.sub>0)*1)
    -richness_rarfy <- rowSums((comm_rarfy>0)*1)
    -plot(richness_rarfy~richness_raw,xlab='number of ASVs in raw data',ylab='number of ASVs in rarefied data')
    +
    # Rarefaction is not expected to have a major influence on the diversity (as rarefaction curves have reached the plateau).
    +richness_raw <- rowSums((comm.sub>0)*1)
    +richness_rarfy <- rowSums((comm_rarfy>0)*1)
    +plot(richness_rarfy~richness_raw,xlab='number of ASVs in raw data',ylab='number of ASVs in rarefied data')

    @@ -1443,28 +1404,28 @@

    Phylum-level taxonomic composition of samples

    Remember that for each ASV, we have taxonomic annotations at different ranks. Here we’ll look at the relative abundance of bacterial phyla in each sample. We can repeat these analyses at different taxonomic ranks, but as we go to finer ranks there will be more ASVs with missing data because we could not confidently determine their taxonomic annotation, so there will be more unidentified taxa. Nearly all ASVs have an annotation at the phylum level. We first manipulate the ASV data to create a new data object of phylum abundances, and then we can visualize those abundances.

    -
    # community data aggregation at a taxonomic level. e.g. phylum 
    -# take the sum of each phylum in each sample
    -taxa.agg <- aggregate(t(comm_rarfy),by=list(taxo.sub[colnames(comm_rarfy),2]),FUN=sum)
    -# clean up resulting object
    -rownames(taxa.agg) <- taxa.agg$Group.1
    -phylum_data <- t(taxa.agg[,-1])
    -# convert abundances to relative abundances
    -phylum_data <- phylum_data/rowSums(phylum_data)
    -# remove rare phyla
    -phylum_data <- phylum_data[,colSums(phylum_data)>0.01]
    -# now reshape phylum data to long format
    -phylum_data <- reshape2::melt(phylum_data)
    -# rename columns
    -colnames(phylum_data)[1:2] <- c('Samples','Bacteria_phylum')
    -# now we can plot phylum relative abundance per sample
    -ggplot(phylum_data, aes(Samples, weight = value, fill = Bacteria_phylum)) +
    -  geom_bar(color = "black", width = .7, position = 'fill') +
    -  labs( y = 'Relative abundance (%)') +
    -  scale_y_continuous(expand = c(0,0)) +
    -  scale_fill_viridis_d(direction = -1L) +
    -  theme_classic() +
    -  coord_flip()
    +
    # community data aggregation at a taxonomic level. e.g. phylum 
    +# take the sum of each phylum in each sample
    +taxa.agg <- aggregate(t(comm_rarfy),by=list(taxo.sub[colnames(comm_rarfy),2]),FUN=sum)
    +# clean up resulting object
    +rownames(taxa.agg) <- taxa.agg$Group.1
    +phylum_data <- t(taxa.agg[,-1])
    +# convert abundances to relative abundances
    +phylum_data <- phylum_data/rowSums(phylum_data)
    +# remove rare phyla
    +phylum_data <- phylum_data[,colSums(phylum_data)>0.01]
    +# now reshape phylum data to long format
    +phylum_data <- reshape2::melt(phylum_data)
    +# rename columns
    +colnames(phylum_data)[1:2] <- c('Samples','Bacteria_phylum')
    +# now we can plot phylum relative abundance per sample
    +ggplot(phylum_data, aes(Samples, weight = value, fill = Bacteria_phylum)) +
    +  geom_bar(color = "black", width = .7, position = 'fill') +
    +  labs( y = 'Relative abundance (%)') +
    +  scale_y_continuous(expand = c(0,0)) +
    +  scale_fill_viridis_d(direction = -1L) +
    +  theme_classic() +
    +  coord_flip()

    @@ -1474,17 +1435,17 @@

    Phylum-level composition for each transplant site

    It is also useful to see how taxonomic composition varies with respect to different variables we measured. For example, how does phylum-level taxonomic composition differ among different transplant sites?

    -
    # aggregate average phylum abundances per transplanted site
    -phylum_data_agg <- aggregate(phylum_data$value,by=list(metadata.sub[phylum_data$Samples,]$TransplantedSite,phylum_data$Bacteria_phylum),FUN=mean)
    -# rename columns
    -colnames(phylum_data_agg) <- c('TransplantedSite','Bacteria_phylum','value')
    -# now we can plot phylum abundance by transplant site
    -ggplot(phylum_data_agg, aes(TransplantedSite, weight =value, fill = Bacteria_phylum)) +
    -  geom_bar(color = "black", width = .7, position = 'fill') +
    -  labs( y = 'Relative abundance (%)') +
    -  scale_y_continuous(expand = c(0,0)) +
    -  scale_fill_viridis_d(direction = -1L) +
    -  theme_classic()
    +
    # aggregate average phylum abundances per transplanted site
    +phylum_data_agg <- aggregate(phylum_data$value,by=list(metadata.sub[phylum_data$Samples,]$TransplantedSite,phylum_data$Bacteria_phylum),FUN=mean)
    +# rename columns
    +colnames(phylum_data_agg) <- c('TransplantedSite','Bacteria_phylum','value')
    +# now we can plot phylum abundance by transplant site
    +ggplot(phylum_data_agg, aes(TransplantedSite, weight =value, fill = Bacteria_phylum)) +
    +  geom_bar(color = "black", width = .7, position = 'fill') +
    +  labs( y = 'Relative abundance (%)') +
    +  scale_y_continuous(expand = c(0,0)) +
    +  scale_fill_viridis_d(direction = -1L) +
    +  theme_classic()

    @@ -1497,14 +1458,14 @@

    Commun

    Calculate ASV richness and Shannon diversity of bacterial community

    -
    # calculate ASV richness
    -# calculate Shannon index
    -Shannon <- diversity(comm_rarfy)
    -hist(richness_rarfy)
    +
    # calculate ASV richness
    +# calculate Shannon index
    +Shannon <- diversity(comm_rarfy)
    +hist(richness_rarfy)

    -
    hist(Shannon)
    +
    hist(Shannon)

    @@ -1514,24 +1475,24 @@

    Compare bacterial diversity among categories

    We can ask how diversity differs with respect to seedling genotype and environment. Here, let’s ask specifically whether leaf bacterial alpha diversity differs between stand types. See Figure 2 of the article by De Bellis et al. 2022 for a comparable analysis.

    -
    # create data frame to hold alpha diversity values by stand type
    -div_standtype <- data.frame(richness=richness_rarfy, Shannon=Shannon, standtype=metadata.sub$StandType)
    -# set up analysis to compare diversity among different pairs of stand types
    -my_comparisons <- list( c("Mixed", "Boreal"), c("Mixed", "Temperate"), c("Boreal", "Temperate") )
    -# plot ASV richness as a function of stand type
    -ggboxplot(div_standtype, x = "standtype", y = "richness", hide.ns=F,
    -          color = "standtype", palette = "jco",add = "jitter") + 
    -  stat_compare_means(comparisons = my_comparisons,method = "t.test")
    +
    # create data frame to hold alpha diversity values by stand type
    +div_standtype <- data.frame(richness=richness_rarfy, Shannon=Shannon, standtype=metadata.sub$StandType)
    +# set up analysis to compare diversity among different pairs of stand types
    +my_comparisons <- list( c("Mixed", "Boreal"), c("Mixed", "Temperate"), c("Boreal", "Temperate") )
    +# plot ASV richness as a function of stand type
    +ggboxplot(div_standtype, x = "standtype", y = "richness", hide.ns=F,
    +          color = "standtype", palette = "jco",add = "jitter") + 
    +  stat_compare_means(comparisons = my_comparisons,method = "t.test")
    [1] FALSE

    -
    # plot Shannon index as a function of stand type
    -ggboxplot(div_standtype, x = "standtype", y = "Shannon",hide.ns=F,
    -          color = "standtype", palette = "jco",add = "jitter")+ 
    -  stat_compare_means(comparisons = my_comparisons,method = "t.test")
    +
    # plot Shannon index as a function of stand type
    +ggboxplot(div_standtype, x = "standtype", y = "Shannon",hide.ns=F,
    +          color = "standtype", palette = "jco",add = "jitter")+ 
    +  stat_compare_means(comparisons = my_comparisons,method = "t.test")
    [1] FALSE
    @@ -1545,15 +1506,15 @@

    Bacterial diversity related to numeric variables

    We can also ask if bacterial diversity differs with respect to numeric variables, for example with respect to latitude. To ask how richness varies with latitude, we will use a generalized linear model to take into account that richness counts are count data and thus are more likely to follow a Poisson distribution than a normal distribution.

    -
    # plot richness versus latitude
    -plot(richness_rarfy~metadata.sub$TransplantedSiteLat,xlab='Latitude',ylab='ASV richness')
    -# add best fit line
    -abline(glm(richness_rarfy~metadata.sub$TransplantedSiteLat), family="poisson")
    +
    # plot richness versus latitude
    +plot(richness_rarfy~metadata.sub$TransplantedSiteLat,xlab='Latitude',ylab='ASV richness')
    +# add best fit line
    +abline(glm(richness_rarfy~metadata.sub$TransplantedSiteLat), family="poisson")

    -
    # generalized linear model of richness vs. latitude
    -summary(glm(richness_rarfy~metadata.sub$TransplantedSiteLat, family="poisson"))
    +
    # generalized linear model of richness vs. latitude
    +summary(glm(richness_rarfy~metadata.sub$TransplantedSiteLat, family="poisson"))
    
     Call:
    @@ -1562,20 +1523,20 @@ 

    -
    # plot Shannon index versus latitude
    -plot(Shannon~metadata.sub$TransplantedSiteLat,xlab='Latitude',ylab='Shannon diversity')
    -# add best fit line
    -abline(lm(Shannon~metadata.sub$TransplantedSiteLat))
    +
    # plot Shannon index versus latitude
    +plot(Shannon~metadata.sub$TransplantedSiteLat,xlab='Latitude',ylab='Shannon diversity')
    +# add best fit line
    +abline(lm(Shannon~metadata.sub$TransplantedSiteLat))

    -
    # linear model of Shannon index vs. latitude
    -summary(lm(Shannon~metadata.sub$TransplantedSiteLat))
    +
    # linear model of Shannon index vs. latitude
    +summary(lm(Shannon~metadata.sub$TransplantedSiteLat))
    
     Call:
    @@ -1599,18 +1560,18 @@ 

    Legendre and Gallagher (2001) showed that several transformations including the Chord and Hellinger transformation allow ecological community data matrices to be analyzed using PCA. Here we will use the Hellinger transformation to transform ASV abundances prior to analyzing them with a PCA ordination.

    -
    # Create Hellinger-transformed version of rarefied community data
    -comm_hel <- decostand(comm_rarfy,method='hellinger')
    -# PCA analysis of Hellinger-transformed community data
    -comm_hel_PCA <- prcomp(comm_hel)
    -# Summarize variance in beta diversity explained by PCA axes
    -summary(comm_hel_PCA)
    +
    # Create Hellinger-transformed version of rarefied community data
    +comm_hel <- decostand(comm_rarfy,method='hellinger')
    +# PCA analysis of Hellinger-transformed community data
    +comm_hel_PCA <- prcomp(comm_hel)
    +# Summarize variance in beta diversity explained by PCA axes
    +summary(comm_hel_PCA)
    Importance of components:
    -                          PC1     PC2     PC3    PC4     PC5     PC6     PC7
    -Standard deviation     0.2599 0.20969 0.19519 0.1718 0.16095 0.15289 0.14424
    -Proportion of Variance 0.1497 0.09746 0.08445 0.0654 0.05742 0.05181 0.04612
    -Cumulative Proportion  0.1497 0.24712 0.33157 0.3970 0.45439 0.50620 0.55232
    -                           PC8    PC9    PC10    PC11    PC12    PC13    PC14
    -Standard deviation     0.13835 0.1327 0.12813 0.12268 0.12067 0.11446 0.11003
    -Proportion of Variance 0.04242 0.0390 0.03639 0.03336 0.03228 0.02904 0.02684
    -Cumulative Proportion  0.59474 0.6338 0.67014 0.70350 0.73577 0.76481 0.79165
    +                          PC1     PC2     PC3     PC4     PC5     PC6    PC7
    +Standard deviation     0.2589 0.20916 0.19538 0.17237 0.16093 0.15440 0.1438
    +Proportion of Variance 0.1484 0.09685 0.08452 0.06578 0.05734 0.05278 0.0458
    +Cumulative Proportion  0.1484 0.24529 0.32980 0.39558 0.45291 0.50569 0.5515
    +                           PC8     PC9    PC10    PC11    PC12    PC13    PC14
    +Standard deviation     0.13831 0.13314 0.12828 0.12318 0.12099 0.11374 0.11051
    +Proportion of Variance 0.04235 0.03925 0.03643 0.03359 0.03241 0.02864 0.02704
    +Cumulative Proportion  0.59384 0.63309 0.66952 0.70311 0.73552 0.76416 0.79119
                               PC15    PC16    PC17    PC18    PC19    PC20    PC21
    -Standard deviation     0.10440 0.10234 0.09813 0.09351 0.09258 0.09083 0.08976
    -Proportion of Variance 0.02416 0.02321 0.02134 0.01938 0.01900 0.01829 0.01786
    -Cumulative Proportion  0.81581 0.83902 0.86037 0.87975 0.89875 0.91704 0.93490
    +Standard deviation     0.10567 0.10227 0.09812 0.09407 0.09282 0.09092 0.08889
    +Proportion of Variance 0.02472 0.02316 0.02131 0.01959 0.01907 0.01830 0.01749
    +Cumulative Proportion  0.81591 0.83907 0.86039 0.87998 0.89905 0.91735 0.93484
                               PC22    PC23    PC24    PC25    PC26      PC27
    -Standard deviation     0.08279 0.08176 0.07641 0.07181 0.06955 2.431e-16
    -Proportion of Variance 0.01519 0.01482 0.01294 0.01143 0.01072 0.000e+00
    -Cumulative Proportion  0.95009 0.96491 0.97785 0.98928 1.00000 1.000e+00
    -
    -
    # Plot PCA results
    -ordiplot(comm_hel_PCA, display = 'sites', type = 'text',cex=0.8, main="PCA on Hellinger transformed data")
    -# Add ellipses around samples from different stand types
    -ordiellipse(comm_hel_PCA, metadata.sub$StandType, label=TRUE)
    +Standard deviation 0.08364 0.08127 0.07621 0.07199 0.06958 2.022e-16 +Proportion of Variance 0.01549 0.01462 0.01286 0.01147 0.01072 0.000e+00 +Cumulative Proportion 0.95033 0.96495 0.97781 0.98928 1.00000 1.000e+00

    +
    +
    # Plot PCA results
    +ordiplot(comm_hel_PCA, display = 'sites', type = 'text',cex=0.8, main="PCA on Hellinger transformed data")
    +# Add ellipses around samples from different stand types
    +ordiellipse(comm_hel_PCA, metadata.sub$StandType, label=TRUE)

    @@ -1669,14 +1630,14 @@

    Faith et al. 1987, Gallagher and Legendre 2001).

    Here we’ll calculate a NMDS ordination using Bray-Curtis distance.

    -
    # NMDS ordination based on Bray-Curtis distances
    -comm_NMDS <- metaMDS(comm_hel, distance="bray", trace=FALSE)
    -ordiplot(comm_NMDS, cex = 0.5, type = 'text', display='sites')
    -ordiellipse(comm_NMDS, metadata.sub$StandType, label=TRUE)
    -# overlay the direction of latitude effect on bacteria community composition
    -ef <- envfit(comm_NMDS, metadata.sub$TransplantedSiteLat)
    -rownames(ef$vectors$arrows)='Latitude'
    -plot(ef)
    +
    # NMDS ordination based on Bray-Curtis distances
    +comm_NMDS <- metaMDS(comm_hel, distance="bray", trace=FALSE)
    +ordiplot(comm_NMDS, cex = 0.5, type = 'text', display='sites')
    +ordiellipse(comm_NMDS, metadata.sub$StandType, label=TRUE)
    +# overlay the direction of latitude effect on bacteria community composition
    +ef <- envfit(comm_NMDS, metadata.sub$TransplantedSiteLat)
    +rownames(ef$vectors$arrows)='Latitude'
    +plot(ef)

    @@ -1688,10 +1649,10 @@

    PERMANOVA

    Ordination analyses allow us to visualize how the composition of communities differs among samples and how it relates to different variables in a qualitative way. For example, we can see from the ordination diagrams above that it seems that community composition differs among stand types. We can statistically test whether stand types differ in composition using permutational multivariate analysis of variance (PERMANOVA). A PERMANOVA works in a way similar to an ANOVA, but with multivariate compositional data. PERMANOVA tests indicate whether community composition (beta diversity) differs among groups of samples.

    Here we can first use a PERMANOVA to test whether community composition differs among stand types. As with ordination methods, a PERMANOVA can be run on any distance metric. Let’s try computing a PERMANOVA using both Hellinger distance (used for the PCA) and Bray-Curtis distance (used for the NMDS).

    -
    # set number of permutations for PERMANOVA
    -perm <- how(nperm = 999)
    -# PERMANOVA on Hellinger-transformed Euclidean distances
    -adonis2(formula = dist(comm_hel) ~ StandType, data = metadata.sub, permutations = perm)
    +
    # set number of permutations for PERMANOVA
    +perm <- how(nperm = 999)
    +# PERMANOVA on Hellinger-transformed Euclidean distances
    +adonis2(formula = dist(comm_hel) ~ StandType, data = metadata.sub, permutations = perm)
    Permutation test for adonis under reduced model
     Terms added sequentially (first to last)
    @@ -1699,15 +1660,15 @@ 

    PERMANOVA

    Number of permutations: 999 adonis2(formula = dist(comm_hel) ~ StandType, data = metadata.sub, permutations = perm) - Df SumOfSqs R2 F Pr(>F) -StandType 2 1.8390 0.15678 2.2311 0.001 *** -Residual 24 9.8911 0.84322 -Total 26 11.7301 1.00000 + Df SumOfSqs R2 F Pr(>F) +StandType 2 1.8383 0.15653 2.227 0.001 *** +Residual 24 9.9057 0.84347 +Total 26 11.7440 1.00000 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    -
    # PERMANOVA on Bray-Curtis distances
    -adonis2(formula = vegdist(comm_rarfy, method="bray") ~ StandType, data = metadata.sub, permutations = perm)
    +
    # PERMANOVA on Bray-Curtis distances
    +adonis2(formula = vegdist(comm_rarfy, method="bray") ~ StandType, data = metadata.sub, permutations = perm)
    Permutation test for adonis under reduced model
     Terms added sequentially (first to last)
    @@ -1716,9 +1677,9 @@ 

    PERMANOVA

    adonis2(formula = vegdist(comm_rarfy, method = "bray") ~ StandType, data = metadata.sub, permutations = perm) Df SumOfSqs R2 F Pr(>F) -StandType 2 0.9716 0.17856 2.6085 0.001 *** -Residual 24 4.4697 0.82144 -Total 26 5.4413 1.00000 +StandType 2 0.9714 0.17849 2.6073 0.001 *** +Residual 24 4.4711 0.82151 +Total 26 5.4425 1.00000 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    @@ -1726,8 +1687,8 @@

    PERMANOVA

    Both of these analyses indicate that community composition differs significantly among stand types, explaining around 16-18% of variation in the distance metric.

    PERMANOVA can also be used to test more complex experimental designs. Here, let’s replicate the analyses by De Bellis et al. (2022). We used PERMANOVA on Bray-Curtis distances to measure the relative importance of transplanted region and site (environment) versus origin region and site (genotype) in determining the composition of leaf bacterial communities. Site is nested within region for both variable types, which we represent using “/” in the formula (region/site).

    -
    permanova.bc <- adonis2(formula = vegdist(comm_rarfy, method="bray") ~ StandType/TransplantedSite * SeedSourceRegion/SeedSourceOrigin, data = metadata.sub, permutations = perm)
    -print(permanova.bc)
    +
    permanova.bc <- adonis2(formula = vegdist(comm_rarfy, method="bray") ~ StandType/TransplantedSite * SeedSourceRegion/SeedSourceOrigin, data = metadata.sub, permutations = perm)
    +print(permanova.bc)
    Permutation test for adonis under reduced model
     Terms added sequentially (first to last)
    @@ -1736,30 +1697,30 @@ 

    PERMANOVA

    adonis2(formula = vegdist(comm_rarfy, method = "bray") ~ StandType/TransplantedSite * SeedSourceRegion/SeedSourceOrigin, data = metadata.sub, permutations = perm) Df SumOfSqs -StandType 2 0.9716 -SeedSourceRegion 2 0.2277 -StandType:TransplantedSite 3 0.6410 -StandType:SeedSourceRegion 3 0.5562 -StandType:TransplantedSite:SeedSourceRegion 3 0.7350 -StandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 5 1.1043 -Residual 8 1.2056 -Total 26 5.4413 +StandType 2 0.9714 +SeedSourceRegion 2 0.2306 +StandType:TransplantedSite 3 0.6369 +StandType:SeedSourceRegion 3 0.5521 +StandType:TransplantedSite:SeedSourceRegion 3 0.7395 +StandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 5 1.1115 +Residual 8 1.2005 +Total 26 5.4425 R2 F -StandType 0.17856 3.2236 -SeedSourceRegion 0.04184 0.7554 -StandType:TransplantedSite 0.11780 1.4177 -StandType:SeedSourceRegion 0.10222 1.2302 -StandType:TransplantedSite:SeedSourceRegion 0.13507 1.6256 -StandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 0.20294 1.4654 -Residual 0.22157 +StandType 0.17849 3.2368 +SeedSourceRegion 0.04238 0.7684 +StandType:TransplantedSite 0.11703 1.4148 +StandType:SeedSourceRegion 0.10144 1.2264 +StandType:TransplantedSite:SeedSourceRegion 0.13587 1.6426 +StandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 0.20422 1.4814 +Residual 0.22058 Total 1.00000 Pr(>F) StandType 0.001 *** -SeedSourceRegion 0.835 -StandType:TransplantedSite 0.058 . -StandType:SeedSourceRegion 0.191 -StandType:TransplantedSite:SeedSourceRegion 0.019 * -StandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 0.031 * +SeedSourceRegion 0.825 +StandType:TransplantedSite 0.059 . +StandType:SeedSourceRegion 0.190 +StandType:TransplantedSite:SeedSourceRegion 0.015 * +StandType:TransplantedSite:SeedSourceRegion:SeedSourceOrigin 0.028 * Residual Total --- @@ -1778,46 +1739,46 @@

    Differentiall

    DESeq2

    The DESeq2 approach (Love et al. 2014. Genome Biol 15:550) models taxa abundances using a negative binomial distribution to detect taxa that are differentially abundant between groups. This approach was initially developed for gene expression analyses, but it is commonly used in the analysis of differential taxa abundances in microbial ecology.

    -
    # conduct DESeq analysis of ASV abundances between temperate and boreal stand types
    -# We add a pseudocount (+1) to each abundance value to avoid zeroes
    -countdata <- data.frame(ASV=colnames(comm_rarfy),t(comm_rarfy+1))
    -metas <- metadata.sub
    -metas$StandType <- relevel(as.factor(metas$StandType),ref='Boreal')
    -dds <- DESeqDataSetFromMatrix(countData=countdata, 
    -                              colData=metas,
    -                              design=~StandType, tidy = TRUE)
    +
    # conduct DESeq analysis of ASV abundances between temperate and boreal stand types
    +# We add a pseudocount (+1) to each abundance value to avoid zeroes
    +countdata <- data.frame(ASV=colnames(comm_rarfy),t(comm_rarfy+1))
    +metas <- metadata.sub
    +metas$StandType <- relevel(as.factor(metas$StandType),ref='Boreal')
    +dds <- DESeqDataSetFromMatrix(countData=countdata, 
    +                              colData=metas,
    +                              design=~StandType, tidy = TRUE)
    converting counts to integer mode
    -
    dds2 <- DESeq(dds, fitType="local", quiet=TRUE)
    -res <- results(dds2, name="StandType_Temperate_vs_Boreal")
    -#coef of differently abundant ASV between temperate and boreal forest
    -head(res[order(res$padj),])
    +
    dds2 <- DESeq(dds, fitType="local", quiet=TRUE)
    +res <- results(dds2, name="StandType_Temperate_vs_Boreal")
    +#coef of differently abundant ASV between temperate and boreal forest
    +head(res[order(res$padj),])
    log2 fold change (MLE): StandType Temperate vs Boreal 
     Wald test p-value: StandType Temperate vs Boreal 
     DataFrame with 6 rows and 6 columns
             baseMean log2FoldChange     lfcSE      stat      pvalue        padj
            <numeric>      <numeric> <numeric> <numeric>   <numeric>   <numeric>
    -ASV_8  102.71993        6.31596  1.070810   5.89830 3.67260e-09 1.31686e-06
    -ASV_37  16.25372        5.24749  0.906315   5.78992 7.04201e-09 1.31686e-06
    -ASV_94   8.43527        4.85485  0.860202   5.64385 1.66291e-08 2.07309e-06
    -ASV_26  29.32340        5.88306  1.086821   5.41309 6.19468e-08 5.79203e-06
    -ASV_22  36.19921        5.19054  0.994117   5.22126 1.77713e-07 1.32929e-05
    -ASV_44  20.59886       -5.09305  1.001330  -5.08629 3.65139e-07 2.27603e-05
    -
    -
    #Number of significantly different ASVs (adjusted_p_value<0.05)
    -dim(res[is.na(res$padj)==F&res$padj<0.05,])[1]
    +ASV_8 102.04960 6.50835 1.067510 6.09676 1.08243e-09 3.97251e-07 +ASV_37 15.78403 5.30425 0.915866 5.79151 6.97561e-09 1.28002e-06 +ASV_26 29.14312 6.12917 1.080029 5.67501 1.38680e-08 1.69651e-06 +ASV_22 36.65986 5.38986 1.001350 5.38259 7.34201e-08 5.38903e-06 +ASV_94 8.39685 4.46011 0.827277 5.39131 6.99456e-08 5.38903e-06 +ASV_44 20.12295 -4.50073 0.907804 -4.95782 7.12877e-07 3.81254e-05
    +
    +
    #Number of significantly different ASVs (adjusted_p_value<0.05)
    +dim(res[is.na(res$padj)==F&res$padj<0.05,])[1]
    -
    [1] 77
    -
    -
    sig_des <- rownames(res[is.na(res$padj)==F&res$padj<0.05,])
    -# show the distribution of these marker ASV in a heatmap
    -metatoshow <- subset(metas,!metas$StandType%in%'Mixed')
    -datatoshow <- comm_rarfy[rownames(metatoshow),rownames(res[order(res$padj),])[1:20]]
    -annotation_col = data.frame(standtype = as.factor(metatoshow$StandType))
    -rownames(annotation_col)=rownames(datatoshow)
    -pheatmap(t(datatoshow),scale= "row", annotation_col = annotation_col,cluster_cols = F)
    +
    [1] 57
    +
    +
    sig_des <- rownames(res[is.na(res$padj)==F&res$padj<0.05,])
    +# show the distribution of these marker ASV in a heatmap
    +metatoshow <- subset(metas,!metas$StandType%in%'Mixed')
    +datatoshow <- comm_rarfy[rownames(metatoshow),rownames(res[order(res$padj),])[1:20]]
    +annotation_col = data.frame(standtype = as.factor(metatoshow$StandType))
    +rownames(annotation_col)=rownames(datatoshow)
    +pheatmap(t(datatoshow),scale= "row", annotation_col = annotation_col,cluster_cols = F)

    @@ -1827,43 +1788,43 @@

    DESeq2

    ANCOM-BC

    The ANCOM-BC approach (Lin and Peddada. 2020. Nat. Comm. 35:14) detects differentially abundant taxa by analysis of compositions of microbiomes with bias correction. Nearing et al. (2022) found this method to be among the best-performing methods for detection of differentially abundant taxa.

    -
    # conduct ANCOM-BC analysis of differentially abundant taxa between boreal/temperate stand types
    -ASV <- otu_table(countdata[,-1],taxa_are_rows<-T)
    -TAX <- tax_table(as.matrix(taxo.sub))
    -META <- sample_data(metas)
    -phyloseqobj = phyloseq(ASV, TAX, META)
    -ancob <- ancombc(phyloseq=phyloseqobj,formula='StandType',p_adj_method = "holm", zero_cut = 0.90, lib_cut = 1000,
    -                                 group = 'StandType', struc_zero = TRUE, neg_lb = F,
    -                                 tol = 1e-5, max_iter = 100, conserve = TRUE,
    -                                 alpha = 0.05, global = TRUE)
    -res_ancob <- ancob$res
    -#show coefficients of differential abundance test between temperate vs. boreal
    -coef_ancob <- data.frame(beta=res_ancob$beta$StandTypeTemperate,se=res_ancob$se$StandTypeTemperate,W=res_ancob$W$StandTypeTemperate,
    -           p_val=res_ancob$p_val$StandTypeTemperate,p_adj=res_ancob$q_val$StandTypeTemperate,sign_dif=res_ancob$diff_abn$StandTypeTemperate,
    -           row.names = rownames(res_ancob$beta))
    -coef_ancob <- coef_ancob[order(coef_ancob$p_adj),]
    -head(coef_ancob)
    +
    # conduct ANCOM-BC analysis of differentially abundant taxa between boreal/temperate stand types
    +ASV <- otu_table(countdata[,-1],taxa_are_rows<-T)
    +TAX <- tax_table(as.matrix(taxo.sub))
    +META <- sample_data(metas)
    +phyloseqobj = phyloseq(ASV, TAX, META)
    +ancob <- ancombc(phyloseq=phyloseqobj,formula='StandType',p_adj_method = "holm", zero_cut = 0.90, lib_cut = 1000,
    +                                 group = 'StandType', struc_zero = TRUE, neg_lb = F,
    +                                 tol = 1e-5, max_iter = 100, conserve = TRUE,
    +                                 alpha = 0.05, global = TRUE)
    +res_ancob <- ancob$res
    +#show coefficients of differential abundance test between temperate vs. boreal
    +coef_ancob <- data.frame(beta=res_ancob$beta$StandTypeTemperate,se=res_ancob$se$StandTypeTemperate,W=res_ancob$W$StandTypeTemperate,
    +           p_val=res_ancob$p_val$StandTypeTemperate,p_adj=res_ancob$q_val$StandTypeTemperate,sign_dif=res_ancob$diff_abn$StandTypeTemperate,
    +           row.names = rownames(res_ancob$beta))
    +coef_ancob <- coef_ancob[order(coef_ancob$p_adj),]
    +head(coef_ancob)
    -
                  beta        se         W        p_val        p_adj sign_dif
    -ASV_44  -2.2721929 0.4081187 -5.567481 2.584489e-08 2.101189e-05     TRUE
    -ASV_22   2.5469174 0.5179469  4.917333 8.773119e-07 7.123773e-04     TRUE
    -ASV_11   2.2662741 0.4980824  4.549998 5.364645e-06 4.350727e-03     TRUE
    -ASV_101 -1.8558870 0.4108073 -4.517658 6.252726e-06 5.064708e-03     TRUE
    -ASV_37   2.3964439 0.5694741  4.208170 2.574473e-05 2.082749e-02     TRUE
    -ASV_129  0.4651886 0.1182296  3.934619 8.332862e-05 6.732952e-02    FALSE
    -
    -
    #Number of significantly different ASVs (adjusted p_value<0.05)
    -dim(coef_ancob[coef_ancob$p_adj<0.05,])
    +
                 beta        se         W        p_val        p_adj sign_dif
    +ASV_44  -2.213915 0.3357059 -6.594805 4.258139e-11 3.427802e-08     TRUE
    +ASV_22   2.616980 0.5076264  5.155326 2.531901e-07 2.035649e-04     TRUE
    +ASV_101 -1.863384 0.4046194 -4.605276 4.119198e-06 3.307716e-03     TRUE
    +ASV_37   2.407737 0.5650358  4.261212 2.033216e-05 1.630639e-02     TRUE
    +ASV_139  1.531506 0.3612910  4.238980 2.245373e-05 1.798544e-02     TRUE
    +ASV_11   2.228209 0.5398152  4.127725 3.663692e-05 2.930953e-02     TRUE
    +
    +
    #Number of significantly different ASVs (adjusted p_value<0.05)
    +dim(coef_ancob[coef_ancob$p_adj<0.05,])
    -
    [1] 5 6
    -
    -
    sig_ancob <- rownames(coef_ancob[1:dim(coef_ancob[coef_ancob$p_adj<0.05,])[1],])
    -# show the significant ASVs
    -metatoshow <- subset(metas,!metas$StandType%in%'Mixed')
    -datatoshow <- comm_rarfy[rownames(metatoshow),sig_ancob]
    -annotation_col = data.frame(standtype = as.factor(metatoshow$StandType))
    -rownames(annotation_col)=rownames(datatoshow)
    -pheatmap(t(datatoshow),scale= "row", annotation_col = annotation_col,cluster_cols = F)
    +
    [1] 6 6
    +
    +
    sig_ancob <- rownames(coef_ancob[1:dim(coef_ancob[coef_ancob$p_adj<0.05,])[1],])
    +# show the significant ASVs
    +metatoshow <- subset(metas,!metas$StandType%in%'Mixed')
    +datatoshow <- comm_rarfy[rownames(metatoshow),sig_ancob]
    +annotation_col = data.frame(standtype = as.factor(metatoshow$StandType))
    +rownames(annotation_col)=rownames(datatoshow)
    +pheatmap(t(datatoshow),scale= "row", annotation_col = annotation_col,cluster_cols = F)

    @@ -1873,25 +1834,25 @@

    ANCOM-BC

    Comparing differentially abundant taxa among methods

    In a comparison between boreal and temperate forest stand types, ANCOM-BC and DESeq2 detected different numbers of differentially abundant ASVs. As noted earlier, there is still debate about which methods perform best for differentially abundant taxa detection. While DESeq2 and ANCOM identified differentially abundant taxa that are potentially unique to each method, there may be some ASVs that were detected as differentially abundant using both methods. This type of cross-method comparison can help us to identify statistically robust results - if taxa are differentially abundant enough to be detected by multiple methods, they should differ strongly in their abundance between groups. Let’s look at the distribution of these differentially abundant ASVs identified by both methods.

    -
    # identify significantly differentially abundant ASVs according to both methods
    -sig_both <- sig_des[sig_des%in%sig_ancob]
    -sig_both
    +
    # identify significantly differentially abundant ASVs according to both methods
    +sig_both <- sig_des[sig_des%in%sig_ancob]
    +sig_both
    -
    [1] "ASV_11"  "ASV_22"  "ASV_37"  "ASV_44"  "ASV_101"
    -
    -
    # show the distribution of these differentially abundant ASVs
    -metatoshow <- subset(metas,!metas$StandType%in%'Mixed')
    -datatoshow <- comm_rarfy[rownames(metatoshow),sig_both]
    -annotation_col = data.frame(standtype = as.factor(metatoshow$StandType))
    -rownames(annotation_col)=rownames(datatoshow)
    -pheatmap(t(datatoshow),scale= "row", annotation_col = annotation_col,cluster_cols = F)
    +
    [1] "ASV_11"  "ASV_22"  "ASV_37"  "ASV_44"  "ASV_101" "ASV_139"
    +
    +
    # show the distribution of these differentially abundant ASVs
    +metatoshow <- subset(metas,!metas$StandType%in%'Mixed')
    +datatoshow <- comm_rarfy[rownames(metatoshow),sig_both]
    +annotation_col = data.frame(standtype = as.factor(metatoshow$StandType))
    +rownames(annotation_col)=rownames(datatoshow)
    +pheatmap(t(datatoshow),scale= "row", annotation_col = annotation_col,cluster_cols = F)

    We can also inspect the taxonomic annotations of these differentially abundant ASVs.

    -
    taxo_rarfy[sig_both,]
    +
    taxo_rarfy[sig_both,]
            Kingdom    Phylum           Class                 Order             
     ASV_11  "Bacteria" "Proteobacteria" "Alphaproteobacteria" "Rhizobiales"     
    @@ -1899,12 +1860,21 @@ 

    +ASV_139 "Bacteria" "Proteobacteria" "Alphaproteobacteria" "Sphingomonadales" + Family Genus +ASV_11 "Beijerinckiaceae" "Methylobacterium-Methylorubrum" +ASV_22 "Hymenobacteraceae" "Hymenobacter" +ASV_37 "Sphingomonadaceae" "Sphingomonas" +ASV_44 "Shewanellaceae" "Shewanella" +ASV_101 "Beijerinckiaceae" "Methylocella" +ASV_139 "Sphingomonadaceae" "Sphingomonas" + Species +ASV_11 NA +ASV_22 NA +ASV_37 NA +ASV_44 "algae/haliotis" +ASV_101 NA +ASV_139 "glacialis/psychrolutea"

    @@ -1913,37 +1883,16 @@

    Final steps - clean up and save data objects and workspace

    We have now completed our ecological analyses of leaf bacterial communities. You may want to save the R workspace containing all the different data objects so that you can reload it in the future without having to re-run the analyses.

    -
    ## Save entire R workspace to file
    -save.image("Microbiome-ecological-analysis-workspace.RData")
    +
    ## Save entire R workspace to file
    +save.image("Microbiome-ecological-analysis-workspace.RData")
    -

    -
    -
    -
    -
    - -
    -
    -No matching items -
    -

    Citation

    BibTeX citation:
    @online{kembel2022,
    -  author = {Steven Kembel and Zihui Wang and Salix Dubois},
    -  title = {Introduction to {Microbiome} {Analysis}},
    -  date = {2022-05-19},
    -  url = {https://bios2.github.io/posts/2022-05-19-introduction-to-microbiome-analysis},
    -  langid = {en}
    -}
    -
    For attribution, please cite this work as:
    -Steven Kembel, Zihui Wang, and Salix Dubois. 2022. “Introduction -to Microbiome Analysis.” BIOS2 Education Resources. -May 19, 2022. https://bios2.github.io/posts/2022-05-19-introduction-to-microbiome-analysis. -
    + - - @@ -50,7 +48,7 @@ "copy-button": false, "collapse-after": 3, "panel-placement": "end", - "type": "textbox", + "type": "overlay", "limit": 20, "language": { "search-no-results-text": "No results", @@ -64,37 +62,7 @@ "search-submit-button-title": "Submit" } } - - - @@ -332,20 +300,10 @@

    More information

    Visit the course homepage here and learn more about the course content and format here.

    - -
    -
    -
    -
    - -
    -
    -No matching items -
    -
    +