-
Notifications
You must be signed in to change notification settings - Fork 15
Description
python train.py --datasets_folder noisy --n_epochs 5 --GPU 0 --train_datasets_size 60 --patch_x 80 --patch_t 80
A module that was compiled using NumPy 1.x cannot be run in
NumPy 2.0.2 as it may crash. To support both 1.x and 2.x
versions of NumPy, modules must be compiled with NumPy 2.0.
Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
If you are a user of the module, the easiest solution will be to
downgrade to 'numpy<2' or try to upgrade the affected module.
We expect that some modules will need time to support NumPy 2.
Traceback (most recent call last): File "F:\Denoising_and_super-resolution\SRDTrans-main\SRDTrans-main\train.py", line 45, in
from SRDTrans import SRDTrans
File "F:\Denoising_and_super-resolution\SRDTrans-main\SRDTrans-main\SRDTrans_init_.py", line 4, in
from SRDTrans.SpatioTemporalTrans import SpatioTemporalTrans
File "F:\Denoising_and_super-resolution\SRDTrans-main\SRDTrans-main\SRDTrans\SpatioTemporalTrans_init_.py", line 5, in
from SRDTrans.SpatioTemporalTrans.SpatioiTrans import SpatioTransLayer
File "F:\Denoising_and_super-resolution\SRDTrans-main\SRDTrans-main\SRDTrans\SpatioTemporalTrans\SpatioiTrans.py", line 7, in
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\timm_init_.py", line 2, in
from .layers import (
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\timm\layers_init_.py", line 1, in
from .fx import (
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\timm\layers_fx.py", line 8, in
from torchvision.models.feature_extraction import create_feature_extractor as create_feature_extractor
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\torchvision_init.py", line 5, in
from torchvision import datasets, io, models, ops, transforms, utils
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\torchvision\models_init.py", line 17, in
from . import detection, optical_flow, quantization, segmentation, video
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\torchvision\models\detection_init_.py", line 1, in
from .faster_rcnn import *
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\torchvision\models\detection\faster_rcnn.py", line 16, in
from .anchor_utils import AnchorGenerator
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 10, in
class AnchorGenerator(nn.Module):
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\torchvision\models\detection\anchor_utils.py", line 63, in AnchorGenerator
device: torch.device = torch.device("cpu"),
D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\torchvision\models\detection\anchor_utils.py:63: UserWarning: Failed to initialize NumPy: ARRAY_API not found (Triggered internally at C:\actions-runner_work\pytorch\pytorch\builder\windows\pytorch\torch\csrc\utils\tensor_numpy.cpp:77.)
device: torch.device = torch.device("cpu"),
D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\timm\models\layers_init.py:49: FutureWarning: Importing from timm.models.layers is deprecated, please import via timm.layers
warnings.warn(f"Importing from {name} is deprecated, please import via timm.layers", FutureWarning)
Training parameters ----->
Namespace(n_epochs=5, GPU='0', patch_x=80, patch_t=80, overlap_factor=0.5, train_datasets_size=60, datasets_path='datasets', pth_path='./pth', datasets_folder='noisy', output_path='./results', lr=0.0001, b1=0.5, b2=0.999, select_img_num=10000000000, test_datasize=10000000000, scale_factor=1, patch_y=80, gap_x=40, gap_y=40, gap_t=40, ngpu=1, batch_size=1)
ckp is saved in pth\noisy_202601290920
Image list for training ----->
All files are in -----> datasets\noisy
Total stack number -----> 7
Reading files...
Please check the shape of these image stacks, since some hyperstacks have unusual shapes. In that case, you just need to re-store these images by ImageJ.
clean_200Hz_2400frames_pxlsize30nm.tif -----> the shape is (24000, 328, 328)
noise_200Hz_2400frames_pxlsize30nm_-0.05dBSNR_24000x328x328.tif -----> the shape is (24000, 328, 328)
noise_200Hz_2400frames_pxlsize30nm_12.04dBSNR_24000x328x328.tif -----> the shape is (24000, 328, 328)
noise_200Hz_2400frames_pxlsize30nm_14.14dBSNR_24000x328x328.tif -----> the shape is (24000, 328, 328)
noise_200Hz_2400frames_pxlsize30nm_3.90dBSNR_24000x328x328.tif -----> the shape is (24000, 328, 328)
noise_200Hz_2400frames_pxlsize30nm_8.27dBSNR_24000x328x328.tif -----> the shape is (24000, 328, 328)
Traceback (most recent call last):
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\tifffile\tifffile.py", line 4281, in init
byteorder = {b'II': '<', b'MM': '>', b'EP': '<'}[header[:2]]
KeyError: b''
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "F:\Denoising_and_super-resolution\SRDTrans-main\SRDTrans-main\train.py", line 73, in
train_name_list, train_noise_img, train_coordinate_list, stack_index = train_preprocess_lessMemoryMulStacks(opt)
File "F:\Denoising_and_super-resolution\SRDTrans-main\SRDTrans-main\data_process.py", line 213, in train_preprocess_lessMemoryMulStacks
noise_im = tiff.imread(im_dir)
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\tifffile\tifffile.py", line 1245, in imread
with TiffFile(
File "D:\ProgramData\Anaconda3\envs\SRDTrans\lib\site-packages\tifffile\tifffile.py", line 4283, in init
raise TiffFileError(f'not a TIFF file {header!r}') from exc
tifffile.tifffile.TiffFileError: not a TIFF file b''
dear sir
When I used SMLM data and train.py to train the model, the above error occurred. May I ask how to solve this error? Or is that why I used SMLM data, but the shape of the data is (24000,328,328)? Is it because I set the parameters incorrectly?