@@ -49,7 +49,6 @@ class TestFunctional(unittest.TestCase):
4949 waveform_train , sr_train = torchaudio .load (test_filepath )
5050
5151 def test_torchscript_spectrogram (self ):
52-
5352 tensor = torch .rand ((1 , 1000 ))
5453 n_fft = 400
5554 ws = 400
@@ -92,7 +91,6 @@ def test_torchscript_griffinlim(self):
9291 )
9392
9493 def test_batch_griffinlim (self ):
95-
9694 torch .random .manual_seed (42 )
9795 tensor = torch .rand ((1 , 201 , 6 ))
9896
@@ -423,7 +421,6 @@ def test_linearity_of_istft4(self):
423421 self ._test_linearity_of_istft (data_size , kwargs4 , atol = 1e-5 , rtol = 1e-8 )
424422
425423 def test_batch_istft (self ):
426-
427424 stft = torch .tensor (
428425 [
429426 [[4.0 , 0.0 ], [4.0 , 0.0 ], [4.0 , 0.0 ], [4.0 , 0.0 ], [4.0 , 0.0 ]],
@@ -437,7 +434,6 @@ def test_batch_istft(self):
437434 def _test_create_fb (
438435 self , n_mels = 40 , sample_rate = 22050 , n_fft = 2048 , fmin = 0.0 , fmax = 8000.0
439436 ):
440-
441437 librosa_fb = librosa .filters .mel (
442438 sr = sample_rate ,
443439 n_fft = n_fft ,
@@ -556,7 +552,6 @@ def test_pitch(self):
556552 self ._test_batch (F .detect_pitch_frequency , waveform , sample_rate )
557553
558554 def _test_batch_shape (self , functional , tensor , * args , ** kwargs ):
559-
560555 kwargs_compare = {}
561556 if "atol" in kwargs :
562557 atol = kwargs ["atol" ]
@@ -586,7 +581,6 @@ def _test_batch_shape(self, functional, tensor, *args, **kwargs):
586581 return tensors , expected
587582
588583 def _test_batch (self , functional , tensor , * args , ** kwargs ):
589-
590584 tensors , expected = self ._test_batch_shape (functional , tensor , * args , ** kwargs )
591585
592586 kwargs_compare = {}
@@ -612,7 +606,6 @@ def _test_batch(self, functional, tensor, *args, **kwargs):
612606 computed = functional (tensors .clone (), * args , ** kwargs )
613607
614608 def test_torchscript_create_fb_matrix (self ):
615-
616609 n_stft = 100
617610 f_min = 0.0
618611 f_max = 20.0
@@ -635,7 +628,6 @@ def test_torchscript_amplitude_to_DB(self):
635628 )
636629
637630 def test_torchscript_DB_to_amplitude (self ):
638-
639631 x = torch .rand ((1 , 100 ))
640632 ref = 1.0
641633 power = 1.0
@@ -685,36 +677,31 @@ def test_DB_to_amplitude(self):
685677 self .assertTrue (torch .allclose (spec , x2 , atol = 5e-5 ))
686678
687679 def test_torchscript_create_dct (self ):
688-
689680 n_mfcc = 40
690681 n_mels = 128
691682 norm = "ortho"
692683
693684 _test_torchscript_functional (F .create_dct , n_mfcc , n_mels , norm )
694685
695686 def test_torchscript_mu_law_encoding (self ):
696-
697687 tensor = torch .rand ((1 , 10 ))
698688 qc = 256
699689
700690 _test_torchscript_functional (F .mu_law_encoding , tensor , qc )
701691
702692 def test_torchscript_mu_law_decoding (self ):
703-
704693 tensor = torch .rand ((1 , 10 ))
705694 qc = 256
706695
707696 _test_torchscript_functional (F .mu_law_decoding , tensor , qc )
708697
709698 def test_torchscript_complex_norm (self ):
710-
711699 complex_tensor = torch .randn (1 , 2 , 1025 , 400 , 2 )
712700 power = 2
713701
714702 _test_torchscript_functional (F .complex_norm , complex_tensor , power )
715703
716704 def test_mask_along_axis (self ):
717-
718705 specgram = torch .randn (2 , 1025 , 400 )
719706 mask_param = 100
720707 mask_value = 30.0
@@ -725,7 +712,6 @@ def test_mask_along_axis(self):
725712 )
726713
727714 def test_mask_along_axis_iid (self ):
728-
729715 specgrams = torch .randn (4 , 2 , 1025 , 400 )
730716 mask_param = 100
731717 mask_value = 30.0
0 commit comments