diff --git a/__pycache__/__init__.cpython-36.pyc b/__pycache__/__init__.cpython-36.pyc index 2ba0c81..511d225 100644 Binary files a/__pycache__/__init__.cpython-36.pyc and b/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_cond_prob/__pycache__/__init__.cpython-36.pyc b/q01_cond_prob/__pycache__/__init__.cpython-36.pyc index a5c1ab2..3c8c022 100644 Binary files a/q01_cond_prob/__pycache__/__init__.cpython-36.pyc and b/q01_cond_prob/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_cond_prob/__pycache__/build.cpython-36.pyc b/q01_cond_prob/__pycache__/build.cpython-36.pyc index 4654504..15b5c8f 100644 Binary files a/q01_cond_prob/__pycache__/build.cpython-36.pyc and b/q01_cond_prob/__pycache__/build.cpython-36.pyc differ diff --git a/q01_cond_prob/build.py b/q01_cond_prob/build.py index 46a16ee..88a5f56 100644 --- a/q01_cond_prob/build.py +++ b/q01_cond_prob/build.py @@ -1,3 +1,4 @@ +# %load q01_cond_prob/build.py # So that float division is by default in python 2.7 from __future__ import division @@ -7,6 +8,13 @@ # Enter Code Here +def cond_prob(df): + all_houses = df.shape[0] + houses_in_OldTown = df[df['Neighborhood'] == 'OldTown'].shape[0] + + conditional_prob = (houses_in_OldTown/all_houses) * ((houses_in_OldTown - 1)/(all_houses - 1)) * ((houses_in_OldTown - 2)/(all_houses - 2)) + return conditional_prob + diff --git a/q01_cond_prob/tests/__pycache__/__init__.cpython-36.pyc b/q01_cond_prob/tests/__pycache__/__init__.cpython-36.pyc index 9e8f52b..f0c354c 100644 Binary files a/q01_cond_prob/tests/__pycache__/__init__.cpython-36.pyc and b/q01_cond_prob/tests/__pycache__/__init__.cpython-36.pyc differ diff --git a/q01_cond_prob/tests/__pycache__/test_q01_cond_prob.cpython-36.pyc b/q01_cond_prob/tests/__pycache__/test_q01_cond_prob.cpython-36.pyc index e8852e9..ea3576b 100644 Binary files a/q01_cond_prob/tests/__pycache__/test_q01_cond_prob.cpython-36.pyc and b/q01_cond_prob/tests/__pycache__/test_q01_cond_prob.cpython-36.pyc differ diff --git a/q02_confidence_interval/__pycache__/__init__.cpython-36.pyc b/q02_confidence_interval/__pycache__/__init__.cpython-36.pyc index 741ad2d..087dd92 100644 Binary files a/q02_confidence_interval/__pycache__/__init__.cpython-36.pyc and b/q02_confidence_interval/__pycache__/__init__.cpython-36.pyc differ diff --git a/q02_confidence_interval/__pycache__/build.cpython-36.pyc b/q02_confidence_interval/__pycache__/build.cpython-36.pyc index b478df2..5c0ded4 100644 Binary files a/q02_confidence_interval/__pycache__/build.cpython-36.pyc and b/q02_confidence_interval/__pycache__/build.cpython-36.pyc differ diff --git a/q02_confidence_interval/build.py b/q02_confidence_interval/build.py index 023b81e..8c02839 100644 --- a/q02_confidence_interval/build.py +++ b/q02_confidence_interval/build.py @@ -1,3 +1,4 @@ +# %load q02_confidence_interval/build.py # Default imports import math import scipy.stats as stats @@ -8,6 +9,20 @@ # Write your solution here : - - +def confidence_interval(sample): + sample_mean = sample.mean() + + sample_std_dev = sample.std() + + z_critical = stats.norm.ppf(q = 0.95) # Get the z-critical value* + + margin_of_error = z_critical * (sample_std_dev/math.sqrt(len(sample))) + + confidence_interval = (sample_mean - margin_of_error, sample_mean + margin_of_error) + + low = confidence_interval[0] + + high = confidence_interval[1] + + return low, high diff --git a/q02_confidence_interval/tests/__pycache__/__init__.cpython-36.pyc b/q02_confidence_interval/tests/__pycache__/__init__.cpython-36.pyc index 2eb0cc4..f64ef2f 100644 Binary files a/q02_confidence_interval/tests/__pycache__/__init__.cpython-36.pyc and b/q02_confidence_interval/tests/__pycache__/__init__.cpython-36.pyc differ diff --git a/q02_confidence_interval/tests/__pycache__/test_q02_confidence_interval.cpython-36.pyc b/q02_confidence_interval/tests/__pycache__/test_q02_confidence_interval.cpython-36.pyc index c3788ca..edc9ef0 100644 Binary files a/q02_confidence_interval/tests/__pycache__/test_q02_confidence_interval.cpython-36.pyc and b/q02_confidence_interval/tests/__pycache__/test_q02_confidence_interval.cpython-36.pyc differ diff --git a/q03_t_test/__pycache__/__init__.cpython-36.pyc b/q03_t_test/__pycache__/__init__.cpython-36.pyc index cac7d29..5f3b7a1 100644 Binary files a/q03_t_test/__pycache__/__init__.cpython-36.pyc and b/q03_t_test/__pycache__/__init__.cpython-36.pyc differ diff --git a/q03_t_test/__pycache__/build.cpython-36.pyc b/q03_t_test/__pycache__/build.cpython-36.pyc index d55dfcf..0f65c44 100644 Binary files a/q03_t_test/__pycache__/build.cpython-36.pyc and b/q03_t_test/__pycache__/build.cpython-36.pyc differ diff --git a/q03_t_test/build.py b/q03_t_test/build.py index f966b62..d338a28 100644 --- a/q03_t_test/build.py +++ b/q03_t_test/build.py @@ -1,9 +1,23 @@ +# %load q03_t_test/build.py # Default imports import scipy.stats as stats import pandas as pd +import numpy as np df = pd.read_csv('data/house_pricing.csv') # Enter Code Here +def t_statistic(df): + z_statistic, p_value = stats.ttest_1samp(a= df[df['Neighborhood'] == 'OldTown']['GrLivArea'], popmean= df['GrLivArea'].mean()) + + t_stat = stats.norm.ppf(0.9) + + if p_value < t_stat: + test_result = np.False_ + else: + test_result = np.True_ + + return p_value, test_result + diff --git a/q03_t_test/tests/__pycache__/__init__.cpython-36.pyc b/q03_t_test/tests/__pycache__/__init__.cpython-36.pyc index c489290..06935cb 100644 Binary files a/q03_t_test/tests/__pycache__/__init__.cpython-36.pyc and b/q03_t_test/tests/__pycache__/__init__.cpython-36.pyc differ diff --git a/q03_t_test/tests/__pycache__/test_q03_t_test.cpython-36.pyc b/q03_t_test/tests/__pycache__/test_q03_t_test.cpython-36.pyc index ffd3551..93441c8 100644 Binary files a/q03_t_test/tests/__pycache__/test_q03_t_test.cpython-36.pyc and b/q03_t_test/tests/__pycache__/test_q03_t_test.cpython-36.pyc differ diff --git a/q04_chi2_test/__pycache__/__init__.cpython-36.pyc b/q04_chi2_test/__pycache__/__init__.cpython-36.pyc index 07afcf0..c24e0b2 100644 Binary files a/q04_chi2_test/__pycache__/__init__.cpython-36.pyc and b/q04_chi2_test/__pycache__/__init__.cpython-36.pyc differ diff --git a/q04_chi2_test/__pycache__/build.cpython-36.pyc b/q04_chi2_test/__pycache__/build.cpython-36.pyc index 699bd6a..9087863 100644 Binary files a/q04_chi2_test/__pycache__/build.cpython-36.pyc and b/q04_chi2_test/__pycache__/build.cpython-36.pyc differ diff --git a/q04_chi2_test/build.py b/q04_chi2_test/build.py index 4f20455..f71a40b 100644 --- a/q04_chi2_test/build.py +++ b/q04_chi2_test/build.py @@ -1,10 +1,26 @@ +# %load q04_chi2_test/build.py # Default imports import scipy.stats as stats import pandas as pd +import numpy as np df = pd.read_csv('data/house_pricing.csv') # Enter Code Here +def chi_square(df): + SalesPrice = pd.qcut(df['SalePrice'], 3, labels=['High','medium','low']) + + freqtab = pd.crosstab(df['LandSlope'],SalesPrice) + + chi2,p_value,dof,expected = stats.chi2_contingency(freqtab) + + if p_value < 0.05: + test_result = np.True_ + else: + test_result = np.False_ + + return p_value, test_result + diff --git a/q04_chi2_test/tests/__pycache__/__init__.cpython-36.pyc b/q04_chi2_test/tests/__pycache__/__init__.cpython-36.pyc index 45a1b92..2d59121 100644 Binary files a/q04_chi2_test/tests/__pycache__/__init__.cpython-36.pyc and b/q04_chi2_test/tests/__pycache__/__init__.cpython-36.pyc differ diff --git a/q04_chi2_test/tests/__pycache__/test_q04_chi2_test.cpython-36.pyc b/q04_chi2_test/tests/__pycache__/test_q04_chi2_test.cpython-36.pyc index b2a8c04..d13352e 100644 Binary files a/q04_chi2_test/tests/__pycache__/test_q04_chi2_test.cpython-36.pyc and b/q04_chi2_test/tests/__pycache__/test_q04_chi2_test.cpython-36.pyc differ