diff --git a/q01_load_data/build.py b/q01_load_data/build.py index a29c139..ee38216 100644 --- a/q01_load_data/build.py +++ b/q01_load_data/build.py @@ -1,7 +1,12 @@ +# %load q01_load_data/build.py import pandas as pd import numpy as np from sklearn.model_selection import train_test_split +def q01_load_data(path): + df = pd.read_csv(path) + df['Datetime'] = pd.to_datetime(df['Datetime']) + return df.shape,df +q01_load_data('data/elecdemand.csv') - diff --git a/q01_load_data/tests/test_sol.pkl b/q01_load_data/tests/test_sol.pkl new file mode 100644 index 0000000..7912fb6 Binary files /dev/null and b/q01_load_data/tests/test_sol.pkl differ diff --git a/q01_load_data/tests/user_sol.pkl b/q01_load_data/tests/user_sol.pkl new file mode 100644 index 0000000..2ad49fc Binary files /dev/null and b/q01_load_data/tests/user_sol.pkl differ diff --git a/q02_data_splitter/build.py b/q02_data_splitter/build.py index b6c715f..07fe25e 100644 --- a/q02_data_splitter/build.py +++ b/q02_data_splitter/build.py @@ -1,7 +1,16 @@ +# %load q02_data_splitter/build.py import pandas as pd import numpy as np from sklearn.model_selection import TimeSeriesSplit from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data +def q02_data_splitter(path): + np.random.seed(9) + df_shape,df = q01_load_data(path) + time_series_Split = TimeSeriesSplit(n_splits=2) + train = time_series_Split.split(X=df) + return list(train) + +q02_data_splitter('data/elecdemand.csv') + - diff --git a/q02_data_splitter/tests/test_sol.pkl b/q02_data_splitter/tests/test_sol.pkl new file mode 100644 index 0000000..a3e9cc5 Binary files /dev/null and b/q02_data_splitter/tests/test_sol.pkl differ diff --git a/q02_data_splitter/tests/user_sol.pkl b/q02_data_splitter/tests/user_sol.pkl new file mode 100644 index 0000000..70c2333 Binary files /dev/null and b/q02_data_splitter/tests/user_sol.pkl differ diff --git a/q03_time_plot/build.py b/q03_time_plot/build.py index bf18743..430cb62 100644 --- a/q03_time_plot/build.py +++ b/q03_time_plot/build.py @@ -1,7 +1,14 @@ +# %load q03_time_plot/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') +import datetime + +def q03_time_plot(path): + df_shape,df = q01_load_data(path) + plt.plot(df['Datetime'],df['Demand']) +q03_time_plot('data/elecdemand.csv') diff --git a/q04_boxplot/build.py b/q04_boxplot/build.py index c69f931..1a2a143 100644 --- a/q04_boxplot/build.py +++ b/q04_boxplot/build.py @@ -1,7 +1,15 @@ +# %load q04_boxplot/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') +import seaborn as sns + +def q04_boxplot(path): + df_shape,df = q01_load_data(path) + sns.boxplot(x='WorkDay',y='Demand',data=df) + +q04_boxplot('data/elecdemand.csv') + - diff --git a/q04_boxplot/tests/test_sol.pkl b/q04_boxplot/tests/test_sol.pkl new file mode 100644 index 0000000..f863f64 Binary files /dev/null and b/q04_boxplot/tests/test_sol.pkl differ diff --git a/q04_boxplot/tests/user_sol.pkl b/q04_boxplot/tests/user_sol.pkl new file mode 100644 index 0000000..44dda79 Binary files /dev/null and b/q04_boxplot/tests/user_sol.pkl differ diff --git a/q05_feature_engineering/build.py b/q05_feature_engineering/build.py index 97e29e7..4799134 100644 --- a/q05_feature_engineering/build.py +++ b/q05_feature_engineering/build.py @@ -1,9 +1,14 @@ +# %load q05_feature_engineering/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') +def q05_feature_engineering(path): + df_shape,df = q01_load_data(path) + plt.scatter(df['Temperature'],df['Demand']) +q05_feature_engineering('data/elecdemand.csv') diff --git a/q05_feature_engineering/tests/test_sol.pkl b/q05_feature_engineering/tests/test_sol.pkl new file mode 100644 index 0000000..c8990f6 Binary files /dev/null and b/q05_feature_engineering/tests/test_sol.pkl differ diff --git a/q05_feature_engineering/tests/user_sol.pkl b/q05_feature_engineering/tests/user_sol.pkl new file mode 100644 index 0000000..9f2b9ec Binary files /dev/null and b/q05_feature_engineering/tests/user_sol.pkl differ diff --git a/q05_feature_engineering_part2/build.py b/q05_feature_engineering_part2/build.py index 53e6749..a62600f 100644 --- a/q05_feature_engineering_part2/build.py +++ b/q05_feature_engineering_part2/build.py @@ -1,8 +1,18 @@ +# %load q05_feature_engineering_part2/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt -from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data +from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') +def q05_feature_engineering_part2(path): + df_shape, df = q01_load_data(path) + df['hour'] = df['Datetime'].dt.hour + hours = [] + for i in range(24): + one = df[df['hour'] == i]['Demand'].values + hours.append(one) + plt.boxplot(hours, labels=[str(i) for i in range(24)]) + plt.show() + - diff --git a/q05_feature_engineering_part2/tests/test_sol.pkl b/q05_feature_engineering_part2/tests/test_sol.pkl new file mode 100644 index 0000000..2f666a1 Binary files /dev/null and b/q05_feature_engineering_part2/tests/test_sol.pkl differ diff --git a/q05_feature_engineering_part2/tests/user_sol.pkl b/q05_feature_engineering_part2/tests/user_sol.pkl new file mode 100644 index 0000000..9a90e98 Binary files /dev/null and b/q05_feature_engineering_part2/tests/user_sol.pkl differ diff --git a/q05_feature_engineering_part3/build.py b/q05_feature_engineering_part3/build.py index 7da14f7..26c4ba9 100644 --- a/q05_feature_engineering_part3/build.py +++ b/q05_feature_engineering_part3/build.py @@ -1,8 +1,19 @@ +# %load q05_feature_engineering_part3/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') +def q05_feature_engineering_part3(path): + df_shape,df = q01_load_data(path) + df['month'] = df['Datetime'].dt.strftime('%b') + demands=[] + months = ['Jan','Feb','Mar','Apr','Jun','Jul','Aug','Sep','Oct','Nov','Dec'] + for month in months: + temp = df[df['month']==month]['Demand'] + demands.append(list(temp)) + plt.boxplot(demands,labels=months) +q05_feature_engineering_part3('data/elecdemand.csv') + - diff --git a/q05_feature_engineering_part3/tests/test_sol.pkl b/q05_feature_engineering_part3/tests/test_sol.pkl new file mode 100644 index 0000000..017cf66 Binary files /dev/null and b/q05_feature_engineering_part3/tests/test_sol.pkl differ diff --git a/q05_feature_engineering_part3/tests/user_sol.pkl b/q05_feature_engineering_part3/tests/user_sol.pkl new file mode 100644 index 0000000..4d921c9 Binary files /dev/null and b/q05_feature_engineering_part3/tests/user_sol.pkl differ diff --git a/q05_feature_engineering_part4/build.py b/q05_feature_engineering_part4/build.py index 2731397..140800d 100644 --- a/q05_feature_engineering_part4/build.py +++ b/q05_feature_engineering_part4/build.py @@ -1,9 +1,17 @@ +# %load q05_feature_engineering_part2/build.py import pandas as pd import numpy as np -from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') -def q05_feature_engineering_part4(): - +def q05_feature_engineering_part4(path): + df_shape,df = q01_load_data(path) + df['hour'] = df['Datetime'].dt.hour + df['month'] = df['Datetime'].dt.strftime('%b') + df['Peakhours'] = ((df['hour']>=6) & (df['hour']<20))*1 + df['Peakmonths'] = df['month'].apply(lambda x : 1 if x in ['Feb', 'May', 'Jun', 'Jul', 'Aug'] else 0) + return df +q05_feature_engineering_part4('data/elecdemand.csv') + + diff --git a/q05_feature_engineering_part4/tests/test_sol.pkl b/q05_feature_engineering_part4/tests/test_sol.pkl new file mode 100644 index 0000000..fca5817 Binary files /dev/null and b/q05_feature_engineering_part4/tests/test_sol.pkl differ diff --git a/q05_feature_engineering_part4/tests/user_sol.pkl b/q05_feature_engineering_part4/tests/user_sol.pkl new file mode 100644 index 0000000..49a7e7f Binary files /dev/null and b/q05_feature_engineering_part4/tests/user_sol.pkl differ diff --git a/q06_linear_regression/build.py b/q06_linear_regression/build.py index 8c11052..7615197 100644 --- a/q06_linear_regression/build.py +++ b/q06_linear_regression/build.py @@ -1,3 +1,4 @@ +# %load q06_linear_regression/build.py import pandas as pd import numpy as np import math @@ -5,8 +6,29 @@ from sklearn.metrics import mean_squared_error from greyatomlib.time_series_day_02_project.q05_feature_engineering_part4.build import q05_feature_engineering_part4 from greyatomlib.time_series_day_02_project.q02_data_splitter.build import q02_data_splitter +from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data -fe = ["WorkDay", "Peakhours", "Peakmonths"] - +fe = ['WorkDay', 'Peakhours', 'Peakmonths'] +def q06_linear_regression(path,columns = fe, random_state =9): + np.random.seed(random_state) + data = q05_feature_engineering_part4(path) + splits = q02_data_splitter(path) + 'write your solution here' + rmse = [] + for i in splits: + train = i[0] + valid = i[1] + x_train, y_train = data[fe].values[train], data['Demand'].values[train] + x_valid, y_valid = data[fe].values[valid], data['Demand'].values[valid] + model = LinearRegression() + model.fit(x_train, y_train) + pred = model.predict(x_valid) + measure = math.pow(mean_squared_error(y_valid, pred), 0.5) + rmse.append(measure) + return np.mean(rmse) + + + + diff --git a/q06_linear_regression/tests/test_sol.pkl b/q06_linear_regression/tests/test_sol.pkl new file mode 100644 index 0000000..e0cbf28 Binary files /dev/null and b/q06_linear_regression/tests/test_sol.pkl differ diff --git a/q06_linear_regression/tests/user_sol.pkl b/q06_linear_regression/tests/user_sol.pkl new file mode 100644 index 0000000..6794af1 Binary files /dev/null and b/q06_linear_regression/tests/user_sol.pkl differ diff --git a/q07_randomforest_regressor/build.py b/q07_randomforest_regressor/build.py index 4cdb470..8c713c3 100644 --- a/q07_randomforest_regressor/build.py +++ b/q07_randomforest_regressor/build.py @@ -1,3 +1,4 @@ +# %load q07_randomforest_regressor/build.py import pandas as pd import numpy as np import math @@ -6,7 +7,29 @@ from greyatomlib.time_series_day_02_project.q05_feature_engineering_part4.build import q05_feature_engineering_part4 from greyatomlib.time_series_day_02_project.q02_data_splitter.build import q02_data_splitter -fe = ["WorkDay", "Peakhours", "Peakmonths"] +fe = ['WorkDay', 'Peakhours', 'Peakmonths'] +def q07_randomforest_regressor(path,columns = fe, random_state =9): + np.random.seed(random_state) + data = q05_feature_engineering_part4(path) + splits = q02_data_splitter(path) + 'write your solution here' + + rmse = [] + for i in splits: + train = i[0] + valid = i[1] + x_train, y_train = data[fe].values[train], data['Demand'].values[train] + x_valid, y_valid = data[fe].values[valid], data['Demand'].values[valid] + model = RandomForestRegressor(n_estimators=50, min_samples_leaf=30, random_state=10) + model.fit(x_train, y_train) + pred = model.predict(x_valid) + measure = math.pow(mean_squared_error(y_valid, pred), 0.5) + rmse.append(measure) + return np.mean(rmse) +q07_randomforest_regressor('data/elecdemand.csv',columns = fe, random_state =9) + + + diff --git a/q08_gradientboosting_regressor/build.py b/q08_gradientboosting_regressor/build.py index e661aac..31fbe0e 100644 --- a/q08_gradientboosting_regressor/build.py +++ b/q08_gradientboosting_regressor/build.py @@ -1,3 +1,4 @@ +# %load q08_gradientboosting_regressor/build.py import pandas as pd import numpy as np import math @@ -6,5 +7,26 @@ from greyatomlib.time_series_day_02_project.q05_feature_engineering_part4.build import q05_feature_engineering_part4 from greyatomlib.time_series_day_02_project.q02_data_splitter.build import q02_data_splitter -fe = ["WorkDay", "Peakhours", "Peakmonths"] - +fe = ['WorkDay', 'Peakhours', 'Peakmonths'] +def q08_gradientboosting_regressor(path,columns = fe, random_state =9): + np.random.seed(random_state) + data = q05_feature_engineering_part4(path) + splits = q02_data_splitter(path) + 'write your solution here' + + rmse = [] + for i in splits: + train = i[0] + valid = i[1] + x_train, y_train = data[fe].values[train], data['Demand'].values[train] + x_valid, y_valid = data[fe].values[valid], data['Demand'].values[valid] + model = GradientBoostingRegressor(n_estimators=200, min_samples_leaf=10, learning_rate=0.01, random_state=random_state) + model.fit(x_train, y_train) + pred = model.predict(x_valid) + measure = math.pow(mean_squared_error(y_valid, pred), 0.5) + rmse.append(measure) + return np.mean(rmse) + +q08_gradientboosting_regressor('data/elecdemand.csv',columns = fe, random_state =9) + + diff --git a/test_sol.pkl b/test_sol.pkl new file mode 100644 index 0000000..cec104b Binary files /dev/null and b/test_sol.pkl differ diff --git a/user_sol.pkl b/user_sol.pkl new file mode 100644 index 0000000..fb41a08 Binary files /dev/null and b/user_sol.pkl differ