diff --git a/q01_load_data/build.py b/q01_load_data/build.py index a29c139..b68fcc9 100644 --- a/q01_load_data/build.py +++ b/q01_load_data/build.py @@ -1,7 +1,16 @@ +# %load q01_load_data/build.py import pandas as pd import numpy as np from sklearn.model_selection import train_test_split +def q01_load_data(path): + tss=pd.read_csv(path) + tss['Datetime']=pd.to_datetime(tss['Datetime']) + return tss.shape, tss + + + + diff --git a/q01_load_data/tests/test_sol.pkl b/q01_load_data/tests/test_sol.pkl new file mode 100644 index 0000000..7912fb6 Binary files /dev/null and b/q01_load_data/tests/test_sol.pkl differ diff --git a/q01_load_data/tests/user_sol.pkl b/q01_load_data/tests/user_sol.pkl new file mode 100644 index 0000000..2ad49fc Binary files /dev/null and b/q01_load_data/tests/user_sol.pkl differ diff --git a/q02_data_splitter/build.py b/q02_data_splitter/build.py index b6c715f..cbf824e 100644 --- a/q02_data_splitter/build.py +++ b/q02_data_splitter/build.py @@ -1,7 +1,19 @@ +# %load q02_data_splitter/build.py import pandas as pd import numpy as np from sklearn.model_selection import TimeSeriesSplit from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data +def q02_data_splitter(path): + seed=9 + shape,df = q01_load_data(path) + tssf= TimeSeriesSplit(n_splits=3) + trainl=() + validl=() + for train_index,valid_index in tssf.split(df): + trainl=trainl+ tuple(train_index) + validl=validl + tuple(valid_index) + return [[trainl,trainl],[validl,validl]] + + - diff --git a/q02_data_splitter/tests/test_sol.pkl b/q02_data_splitter/tests/test_sol.pkl new file mode 100644 index 0000000..a3e9cc5 Binary files /dev/null and b/q02_data_splitter/tests/test_sol.pkl differ diff --git a/q02_data_splitter/tests/user_sol.pkl b/q02_data_splitter/tests/user_sol.pkl new file mode 100644 index 0000000..70c2333 Binary files /dev/null and b/q02_data_splitter/tests/user_sol.pkl differ diff --git a/q03_time_plot/build.py b/q03_time_plot/build.py index bf18743..cb5cfa7 100644 --- a/q03_time_plot/build.py +++ b/q03_time_plot/build.py @@ -1,7 +1,18 @@ +# %load q03_time_plot/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt + from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') +def q03_time_plot(path): + shp,df=q01_load_data(path) + plt.figure(figsize=(16, 6)) + plt.plot(df['Datetime'], df['Demand']) + plt.xlabel('Time') + plt.ylabel('Demand') + plt.title('SateTime vs Demand in Australia') + plt.show() + diff --git a/q04_boxplot/build.py b/q04_boxplot/build.py index c69f931..2c46da1 100644 --- a/q04_boxplot/build.py +++ b/q04_boxplot/build.py @@ -1,7 +1,18 @@ +# %load q04_boxplot/build.py import pandas as pd import numpy as np +import seaborn as sns import matplotlib.pyplot as plt from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') - +def q04_boxplot(path): + + shp,df=q01_load_data(path) + plt.figure(figsize=(16, 7)) + sns.factorplot(x='WorkDay', y='Demand', data=df, kind='box', size=8, aspect=float(16/7)) + plt.xlabel('Workday') + plt.ylabel('Demand') + plt.title('Each workday demand in Australia') + + diff --git a/q04_boxplot/tests/test_sol.pkl b/q04_boxplot/tests/test_sol.pkl new file mode 100644 index 0000000..f863f64 Binary files /dev/null and b/q04_boxplot/tests/test_sol.pkl differ diff --git a/q04_boxplot/tests/user_sol.pkl b/q04_boxplot/tests/user_sol.pkl new file mode 100644 index 0000000..44dda79 Binary files /dev/null and b/q04_boxplot/tests/user_sol.pkl differ diff --git a/q05_feature_engineering/build.py b/q05_feature_engineering/build.py index 97e29e7..caabbed 100644 --- a/q05_feature_engineering/build.py +++ b/q05_feature_engineering/build.py @@ -1,3 +1,4 @@ +# %load q05_feature_engineering/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt @@ -6,4 +7,12 @@ +def q05_feature_engineering(path): + tss,df=q01_load_data(path) + p_corf=np.corrcoef(df['Temperature'], df['Demand']) + plt.scatter(df['Temperature'], df['Demand']) + plt.show() + +#path='data/elecdemand.csv' +#q05_feature_engineering(path) diff --git a/q05_feature_engineering/tests/test_sol.pkl b/q05_feature_engineering/tests/test_sol.pkl new file mode 100644 index 0000000..c8990f6 Binary files /dev/null and b/q05_feature_engineering/tests/test_sol.pkl differ diff --git a/q05_feature_engineering/tests/user_sol.pkl b/q05_feature_engineering/tests/user_sol.pkl new file mode 100644 index 0000000..9f2b9ec Binary files /dev/null and b/q05_feature_engineering/tests/user_sol.pkl differ diff --git a/q05_feature_engineering_part2/build.py b/q05_feature_engineering_part2/build.py index 53e6749..51f7201 100644 --- a/q05_feature_engineering_part2/build.py +++ b/q05_feature_engineering_part2/build.py @@ -1,8 +1,23 @@ +# %load q05_feature_engineering_part2/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt -from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data +from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') +def q05_feature_engineering_part2(path): + shape, data = q01_load_data(path) + 'write your solution here' + data['hour'] = data['Datetime'].dt.hour + + plt.figure(figsize=(16, 6)) + + hours = [] + for i in range(24): + one = data[data['hour'] == i]['Demand'].values + hours.append(one) + plt.boxplot(hours, labels=[str(i) for i in range(24)]) + plt.xlabel('Hour') + plt.ylabel('Demand') + plt.title('Change in Electricity demand wrt to Hour') - diff --git a/q05_feature_engineering_part2/tests/test_sol.pkl b/q05_feature_engineering_part2/tests/test_sol.pkl new file mode 100644 index 0000000..2f666a1 Binary files /dev/null and b/q05_feature_engineering_part2/tests/test_sol.pkl differ diff --git a/q05_feature_engineering_part2/tests/user_sol.pkl b/q05_feature_engineering_part2/tests/user_sol.pkl new file mode 100644 index 0000000..9a90e98 Binary files /dev/null and b/q05_feature_engineering_part2/tests/user_sol.pkl differ diff --git a/q05_feature_engineering_part3/build.py b/q05_feature_engineering_part3/build.py index 7da14f7..1714766 100644 --- a/q05_feature_engineering_part3/build.py +++ b/q05_feature_engineering_part3/build.py @@ -1,8 +1,18 @@ +# %load q05_feature_engineering_part3/build.py import pandas as pd import numpy as np import matplotlib.pyplot as plt +import seaborn as sns from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data plt.switch_backend('agg') - - +def q05_feature_engineering_part3(path): + tss,df=q01_load_data(path) + df.info() + df['hour']=df['Datetime'].dt.hour + df['month']=df['Datetime'].dt.strftime('%b') + sns.factorplot(x='month', y='Demand', data=df, kind='box', order=['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug','Sep', 'Oct', 'Nov', 'Dec'], size=8, aspect=float(16/7)) + +#path='data/elecdemand.csv' +#q05_feature_engineering_part3(path) + diff --git a/q05_feature_engineering_part3/tests/test_sol.pkl b/q05_feature_engineering_part3/tests/test_sol.pkl new file mode 100644 index 0000000..017cf66 Binary files /dev/null and b/q05_feature_engineering_part3/tests/test_sol.pkl differ diff --git a/q05_feature_engineering_part3/tests/user_sol.pkl b/q05_feature_engineering_part3/tests/user_sol.pkl new file mode 100644 index 0000000..4d921c9 Binary files /dev/null and b/q05_feature_engineering_part3/tests/user_sol.pkl differ diff --git a/q05_feature_engineering_part4/build.py b/q05_feature_engineering_part4/build.py index 2731397..a8fa4f1 100644 --- a/q05_feature_engineering_part4/build.py +++ b/q05_feature_engineering_part4/build.py @@ -1,9 +1,18 @@ +# %load q05_feature_engineering_part2/build.py import pandas as pd import numpy as np -from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data -plt.switch_backend('agg') -def q05_feature_engineering_part4(): - + +def q05_feature_engineering_part4(path): + shape, data = q01_load_data(path) + data['hour'] = data['Datetime'].dt.hour + data['month'] = data['Datetime'].dt.strftime('%b') + data['Peakhours']=data['hour'].apply(lambda x : 1 if x in range(6,20) else 0) + data['Peakmonths']=data['month'].apply(lambda x : 1 if x in ['Feb', 'May', 'Jun', 'Jul', 'Aug'] else 0) + return data + +#path='data/elecdemand.csv' +#q05_feature_engineering_part4(path) + diff --git a/q05_feature_engineering_part4/tests/test_sol.pkl b/q05_feature_engineering_part4/tests/test_sol.pkl new file mode 100644 index 0000000..fca5817 Binary files /dev/null and b/q05_feature_engineering_part4/tests/test_sol.pkl differ diff --git a/q05_feature_engineering_part4/tests/user_sol.pkl b/q05_feature_engineering_part4/tests/user_sol.pkl new file mode 100644 index 0000000..49a7e7f Binary files /dev/null and b/q05_feature_engineering_part4/tests/user_sol.pkl differ diff --git a/q06_linear_regression/build.py b/q06_linear_regression/build.py index 8c11052..4de1e06 100644 --- a/q06_linear_regression/build.py +++ b/q06_linear_regression/build.py @@ -1,12 +1,34 @@ +# %load q06_linear_regression/build.py import pandas as pd import numpy as np import math from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error + +from greyatomlib.time_series_day_02_project.q01_load_data.build import q01_load_data from greyatomlib.time_series_day_02_project.q05_feature_engineering_part4.build import q05_feature_engineering_part4 from greyatomlib.time_series_day_02_project.q02_data_splitter.build import q02_data_splitter -fe = ["WorkDay", "Peakhours", "Peakmonths"] - +fe = ['WorkDay', 'Peakhours', 'Peakmonths'] +def q06_linear_regression(path,columns = fe, random_state =9): + np.random.seed(random_state) + data = q05_feature_engineering_part4(path) + splits = q02_data_splitter(path) + 'write your solution here' + rmse = [] + for i in splits: + train = i[0] + valid = i[1] + x_train, y_train = data[fe].values[train], data['Demand'].values[train] + x_valid, y_valid = data[fe].values[valid], data['Demand'].values[valid] + model = LinearRegression() + model.fit(x_train, y_train) + pred = model.predict(x_valid) + measure = math.pow(mean_squared_error(y_valid, pred), 0.5) + rmse.append(measure) + return np.mean(rmse) + + + diff --git a/q06_linear_regression/tests/test_sol.pkl b/q06_linear_regression/tests/test_sol.pkl new file mode 100644 index 0000000..e0cbf28 Binary files /dev/null and b/q06_linear_regression/tests/test_sol.pkl differ diff --git a/q06_linear_regression/tests/user_sol.pkl b/q06_linear_regression/tests/user_sol.pkl new file mode 100644 index 0000000..6794af1 Binary files /dev/null and b/q06_linear_regression/tests/user_sol.pkl differ diff --git a/q07_randomforest_regressor/build.py b/q07_randomforest_regressor/build.py index 4cdb470..d300887 100644 --- a/q07_randomforest_regressor/build.py +++ b/q07_randomforest_regressor/build.py @@ -1,3 +1,4 @@ +# %load q07_randomforest_regressor/build.py import pandas as pd import numpy as np import math @@ -6,7 +7,28 @@ from greyatomlib.time_series_day_02_project.q05_feature_engineering_part4.build import q05_feature_engineering_part4 from greyatomlib.time_series_day_02_project.q02_data_splitter.build import q02_data_splitter -fe = ["WorkDay", "Peakhours", "Peakmonths"] +fe = ['WorkDay', 'Peakhours', 'Peakmonths'] +def q07_randomforest_regressor(path,columns = fe, random_state =9): + np.random.seed(random_state) + data = q05_feature_engineering_part4(path) + splits = q02_data_splitter(path) + rmse = [] + for i in splits: + train = i[0] + valid = i[1] + x_train, y_train = data[fe].values[train], data['Demand'].values[train] + x_valid, y_valid = data[fe].values[valid], data['Demand'].values[valid] + model = RandomForestRegressor( n_estimators=50, min_samples_leaf=30, random_state=10) + model.fit(x_train, y_train) + pred = model.predict(x_valid) + measure = math.pow(mean_squared_error(y_valid, pred), 0.5) + rmse.append(measure) + return np.mean(rmse) + + +#path= 'data/elecdemand.csv' +#q07_randomforest_regressor(path) + diff --git a/q08_gradientboosting_regressor/build.py b/q08_gradientboosting_regressor/build.py index e661aac..bfdba77 100644 --- a/q08_gradientboosting_regressor/build.py +++ b/q08_gradientboosting_regressor/build.py @@ -1,3 +1,4 @@ +# %load q08_gradientboosting_regressor/build.py import pandas as pd import numpy as np import math @@ -6,5 +7,31 @@ from greyatomlib.time_series_day_02_project.q05_feature_engineering_part4.build import q05_feature_engineering_part4 from greyatomlib.time_series_day_02_project.q02_data_splitter.build import q02_data_splitter -fe = ["WorkDay", "Peakhours", "Peakmonths"] +fe = ['WorkDay', 'Peakhours', 'Peakmonths'] + + +def q08_gradientboosting_regressor(path,columns = fe, random_state =9): + np.random.seed(random_state) + data = q05_feature_engineering_part4(path) + splits = q02_data_splitter(path) + rmse = [] + + for i in splits: + train = i[0] + valid = i[1] + x_train, y_train = data[fe].values[train], data['Demand'].values[train] + x_valid, y_valid = data[fe].values[valid], data['Demand'].values[valid] + model = GradientBoostingRegressor( n_estimators=200, min_samples_leaf=10, learning_rate=0.01, random_state=random_state) + model.fit(x_train, y_train) + pred = model.predict(x_valid) + measure = math.pow(mean_squared_error(y_valid, pred), 0.5) + rmse.append(measure) + return np.mean(rmse) + + + +#path= 'data/elecdemand.csv' +#q08_gradientboosting_regressor(path) + + diff --git a/test_sol.pkl b/test_sol.pkl new file mode 100644 index 0000000..cec104b Binary files /dev/null and b/test_sol.pkl differ diff --git a/user_sol.pkl b/user_sol.pkl new file mode 100644 index 0000000..fb41a08 Binary files /dev/null and b/user_sol.pkl differ