Skip to content

Redis Caching Layer - Sub-200ms query responses #79

@jordanpartridge

Description

@jordanpartridge

Goal

Achieve sub-200ms query responses through aggressive Redis caching

Why

Read-optimized architecture for instant AI context injection

Tasks

  • Cache embeddings (key: hash of text, TTL: 7 days)
  • Cache search results (key: query hash, TTL: 1 hour)
  • Cache Qdrant collection stats (TTL: 5 minutes)
  • Implement cache warming on startup
  • Add cache invalidation on entry updates
  • Monitor cache hit rates in know stats

Success Criteria

  • Cached query < 50ms (90th percentile)
  • Uncached query < 200ms (90th percentile)
  • 80%+ cache hit rate in normal usage
  • know stats shows cache metrics

Priority

🟡 HIGH - Performance critical for AI integration

Related

Part of strategic pivot to AI-first semantic context engine. See ROADMAP.md

Metadata

Metadata

Assignees

No one assigned

    Labels

    enhancementNew feature or request

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions