@@ -13,7 +13,7 @@ This page contains practical examples using BoxFrame.
1313### Sales Data Analysis
1414
1515``` typescript
16- import { DataFrame } from " @pinta365 /boxframe" ;
16+ import { DataFrame } from " @cross /boxframe" ;
1717
1818// Sample sales data
1919const salesData = new DataFrame ({
@@ -42,7 +42,7 @@ console.log(productSummary);
4242### Employee Data Processing
4343
4444``` typescript
45- import { DataFrame } from " @pinta365 /boxframe" ;
45+ import { DataFrame } from " @cross /boxframe" ;
4646
4747// Employee dataset
4848const employees = new DataFrame ({
@@ -75,7 +75,7 @@ const salaryAnalysis = employees.assign({
7575### Cleaning Messy Data
7676
7777``` typescript
78- import { DataFrame } from " @pinta365 /boxframe" ;
78+ import { DataFrame } from " @cross /boxframe" ;
7979
8080// Messy dataset with missing values and inconsistencies
8181const messyData = new DataFrame ({
@@ -136,7 +136,7 @@ console.log(normalized.toString());
136136### Time Series Analysis
137137
138138``` typescript
139- import { DataFrame } from " @pinta365 /boxframe" ;
139+ import { DataFrame } from " @cross /boxframe" ;
140140
141141// Stock price data
142142const stockData = new DataFrame ({
@@ -174,7 +174,7 @@ const withMA = withReturns.assign({
174174Customer segmentation helps identify distinct groups based on demographics and behavior patterns. This example creates age and income groups, then analyzes spending patterns across segments.
175175
176176``` typescript
177- import { DataFrame } from " @pinta365 /boxframe" ;
177+ import { DataFrame } from " @cross /boxframe" ;
178178
179179// Customer data with diverse age/income combinations
180180const customers = new DataFrame ({
@@ -229,7 +229,7 @@ Senior|Low 2000 4 8000
229229### Large Dataset Processing
230230
231231``` typescript
232- import { DataFrame } from " @pinta365 /boxframe" ;
232+ import { DataFrame } from " @cross /boxframe" ;
233233
234234// For large datasets, use appropriate operations
235235const largeDataset = new DataFrame ({
@@ -253,7 +253,7 @@ console.log("Processed", results.shape[0], "groups");
253253### Streaming Large CSV Files
254254
255255``` typescript
256- import { parseCsvBatchedStream } from " @pinta365 /boxframe" ;
256+ import { parseCsvBatchedStream } from " @cross /boxframe" ;
257257
258258// Stream a large CSV in batches and write to a database incrementally
259259await parseCsvBatchedStream (" /data/huge.csv" , {
@@ -288,7 +288,7 @@ await parseCsvBatchedStream("/data/very-large.csv", {
288288### Working with APIs
289289
290290``` typescript
291- import { BoxFrame } from " @pinta365 /boxframe" ;
291+ import { BoxFrame } from " @cross /boxframe" ;
292292
293293// Fetch data from API and process
294294async function processAPIData() {
0 commit comments