Skip to content

Commit b57b9a4

Browse files
committed
Migrate to @cross/boxframe: update package name and repository references
1 parent 00db73d commit b57b9a4

File tree

8 files changed

+94
-35
lines changed

8 files changed

+94
-35
lines changed

.github/workflows/deploy-pages.yml

Lines changed: 59 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,59 @@
1+
name: Deploy Lumocs Docs with GitHub Pages
2+
3+
on:
4+
# Runs on pushes targeting the main branch
5+
push:
6+
branches:
7+
- main
8+
9+
# Allows you to run this workflow manually from the Actions tab
10+
workflow_dispatch:
11+
12+
# Sets permissions of the GITHUB_TOKEN to allow deployment to GitHub Pages
13+
permissions:
14+
contents: read
15+
pages: write
16+
id-token: write
17+
18+
# Allow only one concurrent deployment, skipping runs queued between the run in-progress and latest queued.
19+
# However, do NOT cancel in-progress runs as we want to allow these production deployments to complete.
20+
concurrency:
21+
group: "pages"
22+
cancel-in-progress: false
23+
24+
jobs:
25+
# Build job
26+
build:
27+
runs-on: ubuntu-latest
28+
steps:
29+
- name: Checkout
30+
uses: actions/checkout@v4
31+
32+
- name: Setup Pages
33+
uses: actions/configure-pages@v5
34+
35+
- name: Install Deno
36+
uses: denoland/setup-deno@v2
37+
with:
38+
deno-version: v2.x
39+
40+
- name: Run Lume
41+
run: deno task lume
42+
working-directory: ./docs
43+
44+
- name: Upload artifact
45+
uses: actions/upload-pages-artifact@v3
46+
with:
47+
path: ./docs/_site
48+
49+
# Deployment job
50+
deploy:
51+
environment:
52+
name: github-pages
53+
url: ${{ steps.deployment.outputs.page_url }}
54+
runs-on: ubuntu-latest
55+
needs: build
56+
steps:
57+
- name: Deploy to GitHub Pages
58+
id: deployment
59+
uses: actions/deploy-pages@v4

docs/src/_data.json

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -11,12 +11,12 @@
1111
{
1212
"icon": "fab fa-github",
1313
"title": "GitHub Repository",
14-
"url": "https://github.com/pinta365/boxframe"
14+
"url": "https://github.com/cross-org/boxframe"
1515
},
1616
{
1717
"icon": "fas fa-box",
1818
"title": "JSR Package",
19-
"url": "https://jsr.io/@pinta365/boxframe"
19+
"url": "https://jsr.io/@cross/boxframe"
2020
}
2121
],
2222
"nav_links": [
@@ -26,7 +26,7 @@
2626
},
2727
{
2828
"title": "GitHub",
29-
"url": "https://github.com/pinta365/boxframe"
29+
"url": "https://github.com/cross-org/boxframe"
3030
}
3131
]
3232
}

docs/src/api/csv-parser.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -39,7 +39,7 @@ type DType = "int32" | "float64" | "string" | "bool" | "datetime";
3939
### Basic Usage
4040

4141
```typescript
42-
import { parseCsv, parseCsvFromFile } from "@pinta365/boxframe";
42+
import { parseCsv, parseCsvFromFile } from "@cross/boxframe";
4343

4444
// Parse CSV string with automatic type inference
4545
const df1 = parseCsv("name,age,salary,hire_date\nAlice,25,50000.50,2023-01-15\nBob,30,75000,2022-06-10");
@@ -129,7 +129,7 @@ const df9 = parseCsv(csvContent, {
129129
### Streaming Large CSVs
130130

131131
```typescript
132-
import { parseCsvBatchedStream, parseCsvStream } from "@pinta365/boxframe";
132+
import { parseCsvBatchedStream, parseCsvStream } from "@cross/boxframe";
133133

134134
// 1) Batched streaming with callbacks
135135
await parseCsvBatchedStream("/path/to/large.csv", {
@@ -159,7 +159,7 @@ console.log("total rows:", df.shape[0]);
159159
For very large CSV files, you can enable worker-based parallel parsing to leverage multiple CPU cores:
160160

161161
```typescript
162-
import { parseCsvBatchedStream, parseCsvStream, analyzeCsv } from "@pinta365/boxframe";
162+
import { parseCsvBatchedStream, parseCsvStream, analyzeCsv } from "@cross/boxframe";
163163

164164
// Enable workers for parallel processing (recommended for files > 100MB)
165165
await parseCsvBatchedStream("/path/to/very-large.csv", {
@@ -214,7 +214,7 @@ await parseCsvBatchedStream("/path/to/very-large.csv", {
214214
### Quick File Analysis (Sampling)
215215

216216
```typescript
217-
import { analyzeCsv } from "@pinta365/boxframe";
217+
import { analyzeCsv } from "@cross/boxframe";
218218

219219
const analysis = await analyzeCsv("/path/to/large.csv", { sampleLines: 1000 });
220220
console.log(analysis.columns); // inferred column names

docs/src/api/google-sheets.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ Provides methods to read data from public Google Sheets.
2525
## Example
2626

2727
```typescript
28-
import { GoogleSheets } from "@pinta365/boxframe";
28+
import { GoogleSheets } from "@cross/boxframe";
2929

3030
// From spreadsheet ID
3131
const df = await GoogleSheets.readSheet("1ABC123...");

docs/src/api/utilities.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ Helper functions for data type inference, conversion, and validation.
2222
## Examples
2323

2424
```typescript
25-
import { inferDType, isDType, isWasmEngineEnabled } from "@pinta365/boxframe";
25+
import { inferDType, isDType, isWasmEngineEnabled } from "@cross/boxframe";
2626

2727
// Type inference
2828
const dtype = inferDType(42); // "int32"

docs/src/examples.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ This page contains practical examples using BoxFrame.
1313
### Sales Data Analysis
1414

1515
```typescript
16-
import { DataFrame } from "@pinta365/boxframe";
16+
import { DataFrame } from "@cross/boxframe";
1717

1818
// Sample sales data
1919
const salesData = new DataFrame({
@@ -42,7 +42,7 @@ console.log(productSummary);
4242
### Employee Data Processing
4343

4444
```typescript
45-
import { DataFrame } from "@pinta365/boxframe";
45+
import { DataFrame } from "@cross/boxframe";
4646

4747
// Employee dataset
4848
const employees = new DataFrame({
@@ -75,7 +75,7 @@ const salaryAnalysis = employees.assign({
7575
### Cleaning Messy Data
7676

7777
```typescript
78-
import { DataFrame } from "@pinta365/boxframe";
78+
import { DataFrame } from "@cross/boxframe";
7979

8080
// Messy dataset with missing values and inconsistencies
8181
const messyData = new DataFrame({
@@ -136,7 +136,7 @@ console.log(normalized.toString());
136136
### Time Series Analysis
137137

138138
```typescript
139-
import { DataFrame } from "@pinta365/boxframe";
139+
import { DataFrame } from "@cross/boxframe";
140140

141141
// Stock price data
142142
const stockData = new DataFrame({
@@ -174,7 +174,7 @@ const withMA = withReturns.assign({
174174
Customer segmentation helps identify distinct groups based on demographics and behavior patterns. This example creates age and income groups, then analyzes spending patterns across segments.
175175

176176
```typescript
177-
import { DataFrame } from "@pinta365/boxframe";
177+
import { DataFrame } from "@cross/boxframe";
178178

179179
// Customer data with diverse age/income combinations
180180
const customers = new DataFrame({
@@ -229,7 +229,7 @@ Senior|Low 2000 4 8000
229229
### Large Dataset Processing
230230

231231
```typescript
232-
import { DataFrame } from "@pinta365/boxframe";
232+
import { DataFrame } from "@cross/boxframe";
233233

234234
// For large datasets, use appropriate operations
235235
const largeDataset = new DataFrame({
@@ -253,7 +253,7 @@ console.log("Processed", results.shape[0], "groups");
253253
### Streaming Large CSV Files
254254

255255
```typescript
256-
import { parseCsvBatchedStream } from "@pinta365/boxframe";
256+
import { parseCsvBatchedStream } from "@cross/boxframe";
257257

258258
// Stream a large CSV in batches and write to a database incrementally
259259
await parseCsvBatchedStream("/data/huge.csv", {
@@ -288,7 +288,7 @@ await parseCsvBatchedStream("/data/very-large.csv", {
288288
### Working with APIs
289289

290290
```typescript
291-
import { BoxFrame } from "@pinta365/boxframe";
291+
import { BoxFrame } from "@cross/boxframe";
292292

293293
// Fetch data from API and process
294294
async function processAPIData() {

docs/src/getting-started.md

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -14,37 +14,37 @@ BoxFrame is available on JSR (JavaScript Registry) and can be installed with you
1414

1515
#### Deno
1616
```bash
17-
deno add jsr:@pinta365/boxframe
17+
deno add jsr:@cross/boxframe
1818
```
1919

2020
#### Node.js
2121
```bash
22-
npx jsr add @pinta365/boxframe
22+
npx jsr add @cross/boxframe
2323
```
2424

2525
#### Bun
2626
```bash
27-
bunx jsr add @pinta365/boxframe
27+
bunx jsr add @cross/boxframe
2828
```
2929

3030
#### Other Package Managers
3131
```bash
3232
# pnpm
33-
pnpm i jsr:@pinta365/boxframe
33+
pnpm i jsr:@cross/boxframe
3434

3535
# yarn
36-
yarn add jsr:@pinta365/boxframe
36+
yarn add jsr:@cross/boxframe
3737

3838
# vlt
39-
vlt install jsr:@pinta365/boxframe
39+
vlt install jsr:@cross/boxframe
4040
```
4141

4242
#### Browser (ESM)
4343
For browser usage, you can import BoxFrame directly from esm.sh:
4444

4545
```html
4646
<script type="module">
47-
import { DataFrame } from "https://esm.sh/jsr/@pinta365/boxframe@0.0.1";
47+
import { DataFrame } from "https://esm.sh/jsr/@cross/boxframe@0.0.1";
4848
4949
// Use BoxFrame in your browser application
5050
const df = new DataFrame({
@@ -63,7 +63,7 @@ console.log(df.toString());
6363
Let's create a simple DataFrame to get started:
6464

6565
```typescript
66-
import { DataFrame } from "@pinta365/boxframe";
66+
import { DataFrame } from "@cross/boxframe";
6767

6868
// Create a DataFrame from an object
6969
const df = new DataFrame({
@@ -196,7 +196,7 @@ const names = df.get("name");
196196
A Series is a one-dimensional array with labels:
197197

198198
```typescript
199-
import { Series } from "@pinta365/boxframe";
199+
import { Series } from "@cross/boxframe";
200200

201201
// Create a Series
202202
const ages = new Series([25, 30, 35, 28], { name: "age" });
@@ -278,7 +278,7 @@ const df7 = await BoxFrame.readGoogleSheetFromUrl(
278278
When working with very large CSV files, consider using the streaming APIs to reduce memory usage and process data incrementally:
279279

280280
```typescript
281-
import { parseCsvBatchedStream } from "@pinta365/boxframe";
281+
import { parseCsvBatchedStream } from "@cross/boxframe";
282282

283283
await parseCsvBatchedStream("/path/to/large.csv", {
284284
hasHeader: true,

docs/src/index.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ from Rust for performance, it provides an intuitive API for data manipulation, a
1414
## Quick Start
1515

1616
```typescript
17-
import { DataFrame } from "@pinta365/boxframe";
17+
import { DataFrame } from "@cross/boxframe";
1818

1919
// Sales data analysis
2020
const sales = new DataFrame({
@@ -49,37 +49,37 @@ BoxFrame is available on JSR (JavaScript Registry) and can be installed with you
4949

5050
#### Deno
5151
```bash
52-
deno add jsr:@pinta365/boxframe
52+
deno add jsr:@cross/boxframe
5353
```
5454

5555
#### Node.js
5656
```bash
57-
npx jsr add @pinta365/boxframe
57+
npx jsr add @cross/boxframe
5858
```
5959

6060
#### Bun
6161
```bash
62-
bunx jsr add @pinta365/boxframe
62+
bunx jsr add @cross/boxframe
6363
```
6464

6565
#### Other Package Managers
6666
```bash
6767
# pnpm
68-
pnpm i jsr:@pinta365/boxframe
68+
pnpm i jsr:@cross/boxframe
6969

7070
# yarn
71-
yarn add jsr:@pinta365/boxframe
71+
yarn add jsr:@cross/boxframe
7272

7373
# vlt
74-
vlt install jsr:@pinta365/boxframe
74+
vlt install jsr:@cross/boxframe
7575
```
7676

7777
#### Browser (ESM)
7878
For browser usage, you can import BoxFrame directly from esm.sh:
7979

8080
```html
8181
<script type="module">
82-
import { DataFrame } from "https://esm.sh/jsr/@pinta365/boxframe@0.0.1";
82+
import { DataFrame } from "https://esm.sh/jsr/@cross/boxframe@0.0.1";
8383
8484
// Use BoxFrame in your browser application
8585
const df = new DataFrame({

0 commit comments

Comments
 (0)