Skip to content

Commit 53472ca

Browse files
abell1689neouserhwamzzxyijun-lee
authored
GLWE (#86)
* GLWE * Update i18n/ko/Basic Cryptography/General LWE.md Co-authored-by: hwam <137725515+hwamzzx@users.noreply.github.com> * Update i18n/ko/Basic Cryptography/General LWE.md Co-authored-by: hwam <137725515+hwamzzx@users.noreply.github.com> * Update i18n/ko/Basic Cryptography/General LWE.md Co-authored-by: hwam <137725515+hwamzzx@users.noreply.github.com> * glwe * chore: copy General LWE.md to Basic Cryptography directory --------- Co-authored-by: user <user@MacBook-Pro-4.local> Co-authored-by: hwam <137725515+hwamzzx@users.noreply.github.com> Co-authored-by: yijun-lee <yijunlee.000@gmail.com>
1 parent badc8a7 commit 53472ca

File tree

4 files changed

+47
-2
lines changed

4 files changed

+47
-2
lines changed

Cryptography

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
Subproject commit f60836de4bba01e0e33e053997551e88e79fc331
1+
Subproject commit e58ebf555964007b0f82b882aa11232eb6269030

content/Basic Cryptography/Basic Cryptography.md

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,4 +20,5 @@
2020
- [[Hash function]]
2121
- [[Merkle Tree]]
2222
- [[Digital Signature]]
23-
- [[Schnorr Signature]]
23+
- [[Schnorr Signature]]
24+
- [[General LWE]]
Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
## GLWE: general LWE - Secret Key Encryption
2+
3+
LWE와 RLWE을 일반화한 종류의 암호문이다.
4+
5+
1. secret key generation :
6+
$\vec{S}=(S_0,\dots, S_{k-1})\in \mathcal{R}^k \text{ where R: uniform binary distribution}$
7+
<br>
8+
9+
2. encryption :
10+
$q,p: \text{positive integers}\\ q: \text{ciphertext modulus}\\p: \text{plaintext modulus}\\ \Delta(=q/p): \text{scaling factor}$
11+
<br>
12+
13+
- $(A_0, \dots, A_{k-1},B)\in GLWE_{S,\sigma}(\Delta M)\subseteq \mathcal{R}_q^{k+1}\\A_i: \text{sampled uniformly random from Rq}$
14+
- $B = \sum_{i=0}^{k-1} A_i \cdot S_i + \Delta M + E \in \mathcal{R}_q \\(R_q: \text{coefficients sampled from gaussian distribution } \chi_\sigma)$ <br>
15+
A 부분은 주로 mask, B 부분은 body라고 불린다. 다항식 $\Delta M$은 message M의 encoding으로도 불린다.
16+
최종적으로 secret key $\vec{S}=(S_0,\dots, S_{k-1})\in \mathcal{R}^k$ 하에서 encrypt된 cipher text $(A_0, \dots, A_{k-1},B)\in GLWE_{S,\sigma}(\Delta M)\subseteq \mathcal{R}_q^{k+1}$를 얻을 수 있다.
17+
<br>
18+
19+
3. Decryption :
20+
- $B - \sum_{i=0}^{k-1} A_i \cdot S_i = \Delta M + E \in \mathcal{R}_q$
21+
- $M = \left\lfloor \frac{\Delta M + E}{\Delta} \right\rfloor.$<br>
22+
message M은 $\Delta$와 곱해지며 $\Delta M + E$의 MSB부분에, E는 LSB 부분에 생성됨을 확인할 수 있으며, $\left|E\right|<\Delta/2 $라면 decryption을 통한 원본 message의 복원이 가능하다.
Lines changed: 22 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
## GLWE: general LWE - Secret Key Encryption
2+
3+
LWE와 RLWE을 일반화한 종류의 암호문이다.
4+
5+
1. secret key generation :
6+
$\vec{S}=(S_0,\dots, S_{k-1})\in \mathcal{R}^k \text{ where R: uniform binary distribution}$
7+
<br>
8+
9+
2. encryption :
10+
$q,p: \text{positive integers}\\ q: \text{ciphertext modulus}\\p: \text{plaintext modulus}\\ \Delta(=q/p): \text{scaling factor}$
11+
<br>
12+
13+
- $(A_0, \dots, A_{k-1},B)\in GLWE_{S,\sigma}(\Delta M)\subseteq \mathcal{R}_q^{k+1}\\A_i: \text{sampled uniformly random from Rq}$
14+
- $B = \sum_{i=0}^{k-1} A_i \cdot S_i + \Delta M + E \in \mathcal{R}_q \\(R_q: \text{coefficients sampled from gaussian distribution } \chi_\sigma)$ <br>
15+
A 부분은 주로 mask, B 부분은 body라고 불린다. 다항식 $\Delta M$은 message M의 encoding으로도 불린다.
16+
최종적으로 secret key $\vec{S}=(S_0,\dots, S_{k-1})\in \mathcal{R}^k$ 하에서 encrypt된 cipher text $(A_0, \dots, A_{k-1},B)\in GLWE_{S,\sigma}(\Delta M)\subseteq \mathcal{R}_q^{k+1}$를 얻을 수 있다.
17+
<br>
18+
19+
3. Decryption :
20+
- $B - \sum_{i=0}^{k-1} A_i \cdot S_i = \Delta M + E \in \mathcal{R}_q$
21+
- $M = \left\lfloor \frac{\Delta M + E}{\Delta} \right\rfloor.$<br>
22+
message M은 $\Delta$와 곱해지며 $\Delta M + E$의 MSB부분에, E는 LSB 부분에 생성됨을 확인할 수 있으며, $\left|E\right|<\Delta/2 $라면 decryption을 통한 원본 message의 복원이 가능하다.

0 commit comments

Comments
 (0)