diff --git a/ann_parameters.py b/ann_parameters.py new file mode 100644 index 0000000..a4f8f44 --- /dev/null +++ b/ann_parameters.py @@ -0,0 +1,85 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +""" +Created on Fri Apr 5 21:27:07 2019 + +@author: bruna +""" + +# Artificial Neural Network + +# Installing Theano +# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git + +# Installing Tensorflow +# pip install tensorflow + +# Installing Keras +# pip install --upgrade keras + +# Part 1 - Data Preprocessing + +# Importing the libraries +import numpy as np +import matplotlib.pyplot as plt +import pandas as pd + +# Importing the dataset +dataset = pd.read_csv('Churn_Modelling.csv') +X = dataset.iloc[:, 3:13].values +y = dataset.iloc[:, 13].values + +# Encoding categorical data +from sklearn.preprocessing import LabelEncoder, OneHotEncoder +labelencoder_X_1 = LabelEncoder() +X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1]) +labelencoder_X_2 = LabelEncoder() +X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2]) +onehotencoder = OneHotEncoder(categorical_features = [1]) +X = onehotencoder.fit_transform(X).toarray() +X = X[:, 1:] + +# Splitting the dataset into the Training set and Test set +from sklearn.model_selection import train_test_split +X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0) + +# Feature Scaling +from sklearn.preprocessing import StandardScaler +sc = StandardScaler() +X_train = sc.fit_transform(X_train) +X_test = sc.transform(X_test) + +# Part 2 - Now let's make the ANN! + +# Importing the Keras libraries and packages +import keras +from keras.models import Sequential +from keras.layers import Dense + +# Initialising the ANN +classifier = Sequential() + +# Adding the input layer and the first hidden layer +classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'linear', input_dim = 11)) + +# Adding the second hidden layer +classifier.add(Dense(units = 10, kernel_initializer = 'uniform', activation = 'relu')) + +# Adding the output layer +classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid')) + +# Compiling the ANN +classifier.compile(optimizer = 'sgd', loss = 'binary_crossentropy', metrics = ['accuracy']) + +# Fitting the ANN to the Training set +classifier.fit(X_train, y_train, batch_size = 10, epochs = 100) + +# Part 3 - Making predictions and evaluating the model + +# Predicting the Test set results +y_pred = classifier.predict(X_test) +y_pred = (y_pred > 0.5) + +# Making the Confusion Matrix +from sklearn.metrics import confusion_matrix +cm = confusion_matrix(y_test, y_pred) \ No newline at end of file