From 60ced20a9445ef94813d26dbb6697d1cbb21db06 Mon Sep 17 00:00:00 2001 From: Dylan Date: Fri, 10 Jan 2025 16:09:53 -0800 Subject: [PATCH] add docs --- docs/Hyperdrive_Yieldspace_whitepaper.pdf | Bin 0 -> 356236 bytes docs/long/long.tex | 535 +++++++++++++++++++++ docs/main.tex | 90 ++++ docs/short/short.tex | 549 ++++++++++++++++++++++ 4 files changed, 1174 insertions(+) create mode 100644 docs/Hyperdrive_Yieldspace_whitepaper.pdf create mode 100644 docs/long/long.tex create mode 100644 docs/main.tex create mode 100644 docs/short/short.tex diff --git a/docs/Hyperdrive_Yieldspace_whitepaper.pdf b/docs/Hyperdrive_Yieldspace_whitepaper.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4149717d237115beee6b9592d44958868dfd8d95 GIT binary patch literal 356236 zcmeFYWo#tPnyqVQW_Fp~W@ct)W`;I1GgF)0X681wnVFfHnVISOJA04r%(?U9{5sN= zrc{-ohm8R=MI$hw~LKVcX-7yt|aJENa4JUjq;8B1GJLq|(b zQxgE=cMZVI%ErXZ2B4P!Xakry8QB4B42%F>0KGhbk%I+5FZx|@GB7X$=;Z)R-$#}2 z6IeJnSOI)|Fs8O9|BMRwzx4W^2;+a6h>C~3DS%!>$<*w78m6}9&K3YhR#pJLn5DI| zspEHPZRl(&Vrpz>@*VcCQo+#C#tHC`3c_~QE;hDKfbVz(M^h6^V`n=@03*})tN`@t z-%2n7n7=>YGDzB*n7aSd@GT-U)4!X{>;P=+-iRFK*#38U=p{t}+B_ykW*o*QW*kfmrmSqn?1t=&Y$i-*rc7qv6*FUYBR(D$Q)WgE z4rW86?;F6#V93d7#=^nE^!;XGF)}h?W9QTT=O#EgJDM8Wz_@1`8<`kvn;RGz7;r!n zx3~+C8k2;ZM1s|o1W5c^04Viq{UtbAk$!kVTBidqn=p)wgOOv$OYo8^VfL7Dh5-iT85kHp zm8pT>!UG(V@W^iBccmdW;S2V!NwAL)+Hu83@`OQv63sB0|H+eoU*-ShjQQV{|DXE* zDDXcD{Eq_vqrm?t@IMOt|5<@=7W@af{sU^|3~fxE0F3OM|H3eNdsACMV`ob{TL23y z+rQgfoUOmn*9pMP`EPVnFf=!n{aSQYaAKmo-H2)Lz@ALkJnZkz7hSqlG|A~4T zIhg;`1^lHY%?(UX0~lPQv*{2gZB|YKM=S98#O3y z+{kS{umnSQPfC$YE2MLkeTSJN4?{t>0BO~)kt)Ma;04}w9hozHSDNYbo%AWZeg!5$ zQSI&_rL=}vz z6Zd>L^cB_;VqRe4T{S8kP4u)T9l2YGl0h>v>0eQGxx}r>ghxW-C&?-qXE+$_w4MiL zO{@knDKupOQ_~sIl07o|?D^$!s~b`Kaw-K8CZ{$z*;YuIJ(E(gIHpqEb)^)@P&s|B z3)PtiV=_?~gSo)>?qYP`OzNTiBB%VR5z+r~4M-fMc`t~ebZZ;RFdm<{BvBVt{PcWA zONsv>WpD2(cz+i72{f(3RktXQ3xd48ONgekd!Y6{dfeljHJPlyrHKAg&GL!K02vY% zbB%igsHF#B5j0B1_?w{>pk8jvEQM-%nK0Dfnpr}v{J`Ztt{-_9xRnRWT!Xmz~}c_UAs2@USqMxb6Akbn?iyldp?` zvoEWd81Uy!fJ)R`5`iksL3aMXaQu($`hPQ9(AL(@+3DMWu(19sZCO}3{#Qb?u>LFA zzdeeuovpK}?ROO8w=er&u0;0R(ijTa{bOAI@qTRI&W4?n=^sDyZGpZ+0n9A_SgC*f zi>Z^Hi=**(#HcpM#>B|N@?SE1LPI)sj}4{s zsT%2#l*BlMUeUxK&n!O8BnWI}!_uHObwn^_+1SQ%nY{ExJZ{YSd^Nz=vQ{!yMeJ+da3TfUBsun9HT zWM4O4yT;MtygzM+a}eTdUu-)HPe*?vd8+;19q#Tfo&d{aN@jdh=rFESPGS_=2TVs~ zV;_f}l=3w&`|nN#k@eQ0kHJxil~axp>s)i!WS3U~n5lH8ZU?MN?YjXeR70ln2+s#= z?GieNl|_Ad_3IScHcYziDX*SOh`O5aQf>{)x!5rA!n*0ld?(_! zUhz~imkW3)1bP!^Er^OnKhBR9|KiwD4`iZHL8h5OVctIr7{Mj5IBG#?%aNZDR=wII&rGvY3ju$4my~ z=r6GhWiI0=3RpO|V`r;l*U$|jOe&l|GrIB&{zAT-NsCts%d+8vYER%VLXwf6tp&*YI+UicH z)A{v&rNLIB9BwtLyq=GkNv`W*(2Mv}R{0lV+_ZT#GXwBRX$)CrfX;9`C16C=Y!9WS zXMBQjm6ZcQrZvRQr|ft>F%Gf@C78!ngdi;j1q(VVQy40^pJQkS1v*BE7|Rk_4TZ=Q(T+Gb8^~1^?@>b77v3s`I{b zos5?Cm@!}NWUCI3LKcmL(Ihp6!z?YF_O8sSu+TuhB|M-PtR(^W@K<6n9|RD{Y!OT% z_T)O^gYc7P8lV=UQ_5Qpeah0D7T27+kW75ohGmD*1bYcXwR*c!i(A8Iq{wk>)=^XlZF^J8>#xX_Xkp$^&lTB3Bsb0hd<;)xV*3*ck9^hWOa^jM z8QortvdSadh)gaje}{DilSqUG}<26T*_F{;b4fPV>nT zl&SG3`HQ~~U%Mm`p=7*(=tMA?s7WLrk5jWoEoHDbv3G3_hyTQpf=?P3`9n;-t&MND z`9+g}L%vfujncNCtq~g$fPv1+MS5lXiSBjs;!8Oyg_v((OralHq|-f_HsdPAPr~yC zN81#5z#|CsE0h}1XRPpV`6?`=>Npd0B|F&0thAeoV=m|pgieX6E;|;cj<@Wq;Lkhm zdK^F8k}tQDFpmcIOo{6Of{^loknYsgbPgy5erJC!?f`ZqeF+}By52SMh^CtIk&3}d zHfBBovI@wckwomdB`ZO)?jU(KW@$!WkO4%YaP%L1przj1ibnXfhk)U2^V~8*I7Tfk&ANm?%uxY$_wFmMWNUSJ*zijLT zmNLtYW5bNS>}b)~+yVLJmOj1*@a{t2k>j@_f3w;P9^Kn>#cYu@$aSqBt z)v+xw`=P|U;Jy_nqFYe!xZ`FO5qdBG@C%+wnhd%vf@)1kwD&-JW_LEH{n&{b%F{e7 z`PX#HIFMD9$Ivz?914NMP{Q~S)RpkSPxF#Gls?@V6Rp)y(eu%)A zS}dqfzh9#AJgy!L(IA|y;AZs#dE1&a%#5g)H-T+hvrJ{{BpoR}AOgxghDO;-u&;zy ziP*}_U9~+$?VN+!y8O5^%A-OtrNmJ6US~%o5v(BqDm#T{{tjeu zRtIQnWVD7Ey?QeJIv73|gUp$}G5y;b{F~GNf&2eJc6JW-|4KA5ZjdaQx=U;` zfg;s2Vo6A*VpkoaF*v$#%vghP1#bCGNMJMEGolopF#u1f{7@0teAG_K+xDwFzN@e5 z2cI)Nt4pT~*T>DHRr8I$!HUWu5=cQU!Q^--bpk%UI1T|p!dx6zLJxXLR~1a&NP876cie`fE~iL z@&XW#YasC_meo7sHpKe^E)XI8R#)H0!3Q-G+|3%cwM~q(GYCn$0hG2sJRAZzkJ{q4 z%Y*X)ggTT{3=&9y0C6udP$@Iesih6%JG$Q181$?5$dhz*Rrk~o^a)svASUob z(2BqeJqRIY4L90$q+`(Q%X`UgPPl(8B2a*48%RZNBLi5^*367i=>%akpEue#ssW6U z(|7Od!@HO1uVPHF2!F2+o6k4z04a#jSXP$iPnCDOtahGR)a^bJQkd->Oc3Db=l)i5ROms7HkP9 zlbFw)H-6=hrm?Tsov!?MJJPSK;G~W1>#d)^wqC!);a!7!IzE{M5*H`Xd4bX;?y&%$ zYx792<`xI>_QQT>D!M(#jB&!tyDR6B zSa~EMkq=0bA%_=4N;sg_&(N>o#Z~waq1ZD!wmj(<%ugS7fxK)5tH2iQ!UmD>kBqn` z^94s|0v>&_BJ!0^tYXL8=kdJNb-M6tJx4WD9&Mql;STR5*}pZ#{SGv55ho>6u1@%R z?$Y^kXGK>FbC|7r`dZLtL#40$Xx3v3kBr-McgJJ4&!5hZJ}CSC3(+figDHFG4$t()QEi-VJ2_c{mMfW zi6$$AwyE=a_Q=l{{V-^+sWf-|{5g+$G)qTrCxxa(ta*mrT;#X}=1=io=@nuhGbM$T za{KEBjkML1(5-b8!dr zk!bSo`(Ekt+xc^yFNvevt?u#?t;FRDp{EP&2q%L9BAKPPUR`Q1Su*+r4^XyU$+9#& zmNue+WQKWZe+s?!K2wmmKn>}Xne%SUC--|sZ)dTY8%W)&VXXLX;hTQ8-@N~^34K~3MqMLAC7zfulI|6Sm8T3+d&$^up);nRYbhuCdj1Xny=uAqd z_g0$-KL8)?GwbCyklS_FGsedCq4T(UHiT^oeMe4!-<%=nE%Ps`ijF^j^tLNUAka5H zmv_-4AIZADP4}_80_zJ78SHhvdJ}bq_9;5L1vQL?@K7Ab6fF;}TR2kS=R#8-lz)8vslOAMlC%eyO87Z0`(kELtneJ*O8_u!uns`4UfZ#HnTjyV` z#!}Aeh@vb&Xyu)t+JJkDnHFA$J5K)x8$+22p`?+En*^|T4+&iE8HwU}fXWL(-#Bmy zwkmpVI7WkE7*8IrsGtpBh7G0&MeFIcO~J2!UeYA*s+34*%Ea&(@OS)&mqGJzW3HN# zgKFYKCQWp_I61%f+1OG@c-;ll3pc@J2&HOANxL{Hg@oNQAkpt~t%*gFr?sL|A)MR( zGHulP3K+mp=1r50A|2PARfRimfOIPWe+CXa%NZ2t&Gh%f>MDj&n`hn?^bMqM@wd_A z4!)ccFDhvYCBbQSu!U#}QRc{pFXQOn%5I>#<3U5kJ#QVV{X`YbqOZh7FEFu(7vU5z zPza67eoyu(9#WB$1bPb|DqaHKgQ}YAD+fAeV=Y6Oa%3!~i=etFsuxu$4O_^>RBx(1 z6L(eV_0;F#;CnCX8JIZA8sUdYjo4s+$bbz?YgFoN-f8YaQ*eu(kED3UGuk<{%HBT} z2wxLsobjmyVGAB5gJ;8By4*BI)Gj=)%b6VM#0rlycaln&_(?xkLxUasjaqZph!JAl zQ|8uJhMMHLp7}g#^_2;v5G;Mvv%r*kp$G0r-mqTzHD|Ow*qE6 zt!YbqlZ)PG)8Ms9-thK?9h$*Khgw(%duc`@vf7)w!pY;0YJ!SUNOHPX9Zo~{5}(rr zONlov*9trL6<8(WN{Qza9H=DPz803eaGSxn}I~ zOwoA_hHvX(N8`ffPvVpA17@2YSG6&8hYd(}XAd95axiFJ_I*#9Us}N!w zo^Df6RTO1_%0FD9e++xHh_&j-CJx0|pm`aoI-?^|QDk4IDJ$HQ9tAz!JtGP z%m1??2Gi`cgEKk-DNI`{Eh?h8Jca+unsC_!=@vAQZ!7&i#UT`CIEk>z z6J)Lk{EwYO^cAGyg^V7o=pKiQsJ-2Gd57jNEfHvKF;*@z=1aLEco{duXd%8qYdLzn z-2pw;I86aQ{?tTDKU(Tm7g*S_Od?BD!&OB-%D=YFSpkM7$DKw8QD}|ikp-`|nfbmN zIz*amY_ak*WCwph)ThGqaH~ub91}d@czX0x2RYbsLN)kLtCmVn&(ccw{S2Rka*6rz zuykp;yJCD~nnbv7wOHQYBaRuNoSyOK&u%#pnMJkMnaC*@`n_d&Wh33J?1hB7y6RnQ ze$5;&z|gJ48)N98P1mO2FMpc#bD>l9n4xJQ1)7{}msLyrqaJIItZ&;gzv1@5GP zcoE6Mb~*wQ9IU$L0K&|H)8lgdBC40d=%L{`#xyX}4|5(fguee6eVHr1Cqh?#qc|6` zC4L4~^AJFl2AU)>~_Nand6JdQ|U)f-Htm8>^yNN&5P8g>cZ?6YsDGyn`(-atZb* z_OJ%5pS3KOUq%QyuVH+W4Yz%t5oFo>?m!Ghi<0NfP?0et#}3k-f&ByZh$*olB7Ga0 z@}gSCrB4%kh~{Jug`l;(IU15;uo<&YP?5SE_83jkrFnYV!dwy3YJ~iI|D9XeoAuR3 zp4Z2$p4(*b8goIO8yssnO*uZvNFJWI$xF)^p4F)Gx`PZfc2xWeY*Uq2CZrf1w9 z!GaeXSE32l^-E~I{HMbe{SkJ{p(AR&L?^-o%IIlkxA^tCs!B3ityOKXfznLbX*cSo z=`68%=n9ndf3;;R{qTP;O+Fx`@(?)45W)}i)|DGDxdIt z*=PTaMJCb!FXaH?Y;>ifufH3(cZcnd@jJE(f&}VCEz{#yhY|B06!G-q7}r&4xy3(r zD+IHL()vD|YCAc+s>2DBIzce#GJ`|UmT>nas#DbMyR_ibW1b6V2x(l_w`W5`J`VFQ~OyX{bqWv zRo>0%d<&&~2sfYScPVx@{rDFt_0_`g9VB#HVtGVKcCC1CCOj^l9R&@YjA)5+ z)RH&^;Kj&VAY*t(0__N%pfN`5i5`j zC2yaLgBh9PsOyGDHJ~lG`5s<>{jg_cPUy?a?Zx=hk0AsFD6e#vmC zZ;PQ$qQaJV8wnx5R&8f3tuU<3wNsB|S9R6s^^v^jj>xJI*zMHZicD@sL8z8*QA;#I zKo$SweY<}xOWIJKXn0cDVk|(I$=RRbW98U>c%pbDh=y4B{Zej|D5yWocz^PAtkV5_HeG#l$_4*__8)+jD8!kY!4( z&-8_ka2i0KctYD9RJ&ztN#?1IpK*L69sA6HYLelw?9$HOP5iDY4 zCBlLGgx2_hhz+z4YHYA5(5m^doa_?u#dQ`tEoIHwTcNY9N*cY5u!8o2ImnkP-7ZQZ`e$gazNgY$@98VTU4nB=sMo0a62WEX>D-Q9z4w>67 z#|uv6h217l!P>Col!l>@=d5Hs_|st)W&^2x@nfh-*H76JH~G7f45`xDQ8=iRPJOB>Oz(Lmh=T;E!-M+a2Mk-FJVk~7$#$YV=>Kavo&i5 z^v2R~5lA3&tYV8bsg)GglHzKYBrzxY`#KWef^2&_v;8)-YptFR9IObU@zTV&;am~o zB14L-6Ooz`lb3IEMSPHI?&9Er6EDMsaVo9&jl5hd* zQIqDFM4QCe`n@c5UN_4?p@7#t=H~APq&AP_O)Owa(VV=A7`|lqy8FeUYLLrLS&&dWp+ALI9v_~((;C^$_6@#a*Ar} z_!|=K7FEzKwH7+cJi?ny?_03n?uUK0F3| zD`nJHVUgLp<+nvnS}z{O&j->6nD&W*s=hh;qS3-fu*zq6yZ|zypE!06oEA-mbvMKB zTNPT-$~BIzKI*x;Tv#$AV>b2eGoKjei3M*#o&{HtoLRtyzsQ6qy~aODUD(-*h+_xD zngD7CDDKl}b&|iaWj~aOTudu zx2&z(yb=jmiP9bU7Tqk0-3ldm+|i|KQZG&Y#X3T}oaWQ4;Dh?E(!jre*P-LYQ&D&K z8liR3s$<=#MR}JHE+_ps(rQPH``o3;4;D+IEUTt%!eB_dsuRVz+fiE+t73A1->|mw zJ?pdn#&{*L^CfKWpoj%+h@a8snKPH$m4(0jCHKVP5*LR-TQb>MY{gY*KY=V%H4yzi2$R`nZOI)oy- z%-+eZ)?mqgkAEK88l>Ajb= zH)XcrIbR-jLz95=BwcT!G6yn0PB(!qw6mo(oRRxgMCYB% zcDUj%te85}3)sF-rrnB~YYv&u1C^GZ6ww-B4DcPTr=^wa^*t6zluxq|T^aZ8y(3myh*?gh3TEf3yHF7!2ILjYd zT3~R{qwdGL7o>A~IZ65@ylNjDw!F1>WOgq(AD-qZc|^=Z(=K(J_^9eS(;aSKKFkx9 zIQoKi<#sb3gm{ATTTqPeray)d-g#?s*mWWshgpGf*&#&_Z$`A;PGZS zpg7UEv|oz{x#C5zSKB@O1PVO5vX9rqydUJKPLloQL63)~;;%8_Z(QIo5uBMPFB2|) zyP)+uq3*oD$HN0@*1G5n6i)jrT*k5RnG>*gf;B``VQTu8BS5lEk**)2xutVqesuVYo9tUdJlIaU0B^gp)H7u zK>?bRXBnpKVvov;Z-pGCH}+7~Aoy+jYWI9WPmh;M=Feo^N5GwegJ>8a}N>Z$VyfCK{ibI-5AI<`aET_&$@_^e3SSb zS?b9(>qldjbNxPTRMrHIUTsSzJaDiAsF^bjuJHOb9?@^ctk8~0MqTQd%jG=UHL$!vFQ(*K8FOp)(^8u+VjcpU|sXt6)>FwV45o3;U_x~pQ zWv3x1?8XIz%{|^hbK`J_m&kD?t-ea-B`5^)%&R6DgG%2$ZTjsnS^V2tG zPYwRY51ZV>1wj$V_+nN~~jpIYH&0bcnOs+aUQkd!j4`wZ50*zj0 zwimIk`m!2ULhGjXnJM}hXEd`_bA!lCwt~NG_LODB0#o`m5AE9EL#xd}yya}N`y@*D zwh9zwwC##;CTy!E) zJ^Cfw3G9wnJ z0qm@BL1|r6lw%!RyEMvzjxRDgcJkz+-VvJP}Q9$pAF^D%MH70b9cbK(0%b+Yh zJ1w7DkA~aIJBjLsz~?ZARV zpmy#lVcO^r>C1M=gFMF1#Wb4@?VK0I+`97Yu04j_I;axZ#?{jsOWyv}?;OYAIg`y3 za&F-mGthTb%*fuA$=Z~YkDyEn;omo1KL|SFYS#1Emdane^am4N*m`ioVD(O5z5Ph} z%e?(piT{Wv z`~f@E?asBT9?MJv#-z; z2)4mbb8g}?T}b`v9+eV@H*719eR8^T$;x)bH~y6KLD_%9aMQUD$y=67NMbb`a(QSR z51fMw6*y$XTQ9XwrM*}F1<65%IQieLng6r9@c(ShoQ?7OUsM0u?8gM)Wcp`|>%VIM zdCi=Wftiu*zib1HX#`iuJVBw0whDxVX48lR1huubL1G*D3!2%xHGx4xUy{1py9KsE zx^g#|A!s ze{Uc6YX9$G%p#13Irb_X~R)dvgOo-6NXEwQ!Da z0)ssS3seH7AaOGYsES1_4D^Ly0|jcmvw^K}_GP~d+5*DyhtEg0W5)%7upL~0j?22c zMxEH)0y&yF>bQi@eSZ%>a*r$jF3Q75VDR!{m>c!5pV=!R-IpKO7yiN5;LVq;#Nfi@B_eAd z;pwivl~YVEBt;w`&|=K!@)fQWf+f7^^SuJTbB!IRZ;g#ZfG`& zhm;&Qx+G$2wjX6_>DtvO@H3>8Kvr_;M*3kL_iC;tnKdJ6=e9q6u4n||Y~Jg2yeu9~ zlIj^7wP73EX4bgTe3iJnAaZhHN2M(Pn(8QsmCL0yBJpkm(QPcCCQQ+y`)u%Pst|XP zzuC24K5u-L-6Mrm^S#WHo5jq7v2D5)_=$@1Kfy17hdCo7~iYDGr`*w;7UC;DDnM#^HE{ z&J_Jf!gz>QiWS`i+UdC#P34*|b)jD++HngM)_`!K1OA+!i|;j3FR_>_dUYInI_BvN z!@lw-u?GdxUULH39*%C!r^;Lh5se&137W_Zcq%NwhB`*^N{@pK*?=!L1x z(_-?#tr1`QKM@94d$llllAT<@)GfqAx<7-7Zjgs$Lf66O4~NfdWXsFa!t0i<^fDK*>AV6<7;mQ zK}zLFyGM;2l+Yi~}WwowVqLo58djZ;1SL|bi{Yv?+)2e=|l z!t@iEv)mLim>*N{bU_2~Y3&gFnW;#|H|M&WpiWSlVP@lRfBe&zG}Urvz+;3@pM-`U z{{mx2f0`(tEiBVZx5@PHDBO7Qj202?+i4V4KFU*AA#|0%iMuh% zB5PH-Rdg!XmtS-Ra>k0XKZ9qBL3^QNE2a?9O)X~)be#;ef8FzKa!WOS{bV@BY^+)1 zi5l*9@&#${A#Lfn!z#vst0q^tHpFMmui|einO6o7GV@J!c)S51H~yX#js&9_iW<^79VbN$$jyY zaOdtFFICcd>+hf6OUUS_I@HjMV#NX}epb`hzL`I;Iq8PX1sk}_JSXc>83{346!w27 zn(Wbufi-5W8l|PRr(`17B^4pe)C?B>fG4yGs)?f3gcG~)lNzm!iXSbFG%(7xoWWIH zB$NZ;N1&ydzqK0Q_I5}{CRpMVNvE_G73Qj`dX9!OhmZ@2@TV&6 z94Qtxasve^ZPAOypPaEXkPdaWSCbNc!cg+d{H0xK6+O|IV5x1ZIF4xzcKU*Cql*SR z%Jhm*{d(#g{mC~AY0=8U@6FE4F?b9Qn*W({ru_V`{@@@(gttiuI*50PH;49pfC)SW9%0Hnoa4rvPn-s^bBgdM4`1Y!s z^OrS?YC$tuEw%{YrH5Kn5H39OJs-fs+Yt?3^UqEv=C}VSr629r>UPH3ppH@BKBOxX zsJ#{1kAbaENT!a$N;HA;X6JWlQ$QUZO(3DD7Yk$)3dA2-qA99jvNK>)zo6&75G;Hx ze?elTbj}s;a#MDPZ+g1Sc;0l9pNC+&&i_>#{h?H7zi9|%x;-($DkURWe!*~dFmus3 zZw_HVbi?#JHQT-$tmMV=ZjVWSL1BU|oz`WkA$i=|wT=_GvrU~^x^FLx{XX17=ElmN ztKS~y0ynd11ry?)UnhRE+-~RbJcO4Dg<8Et+aMLbq~7&by_dbYGuC-=wyQ2>O8c&) z29foz#wE(@ZFCe6Vwd%M{xdO~)-zG{4bxnMqMeEcs4JU|mj9~{*VV$a=mDANpOSZ>9%{X=tTJ`!WA^4{mmI|QN%kxSRrYg z?=jB8T^8&)zZA~#3x%DCbd;n^IMFw|kNGTo`+4opvF$O)P@{AdykmEnXTafkkKhFK z#&Nt*(f<9?fwG5w(XV9**}lfVxK;!63mZ=%I&e}O`(Y7YrZbYynib$h^CIotG;O4~ zS+(KCBUCl-v~@!UB{0=rOQKmOv4qQG@DUDqbpao8V^qt@Yz*3@H{q?tt7xN={>R;^ z)AaDU)jLdft11X-elM>XgE(&Xf=^-0Zj;cJ=Pnm62%6r7KfdyOU#^nMe__7%5FU=D z$Oto5gV&NPUFa2;T>I`a?kHd^l6e*#%bziS#$*?Hm~=iXfYIp|pd9vwMft+z{dExV z?NHsCjGQM`Nn3eT`k)xZt2yHl5`O;k&f!*TSkU;vH>9?ctPQtT?JnF=SXx8)k68uk4__EpOqE9UP0?=}`rE*K#nQ%mks>ZbqfGd7%YB9O8wdij!j#WBS zp5ZTl?~SynDuf#R%ZzPGVc+(6a7Y2k%r-Ad6n2MXQhhjHzz{|T3YR<^T%swq?ZRN$?9;$~Mxkmn$*);J%CSFbuERjw z^R9h-6x2(kLb=K=v_|w&^)R&jb?1sYODqPpcBZ{E9B=S}BXGwK107m;p65tme^412 z_#~8C#7x#Txsv@2oyR6g2&~8dN$X&>llFrbFZ51sv^~i5 z8OR;sT;b@6G(-o6*HN#!7S5W{bNw?(_SaSGc`cor zd9GzFrmHNp*+!k`B@DB{yN8}ZV4Ipk*k~d8EnYt<9T9NVJub4>WP;N%K_Sd(XLseiZX#GbM%ZX5Af+|`nE5`)zdZgj<_)gsy(Wa z-x7Tvm`3p!U;xVNzT;>avAs8?P%i?%d8YSlxrIJEVBSP$sPv2k-SatTfB)r5auQ*= z!HK_2BZZ5>Z0RZU{dljeHB3mK7{yPP#oT%k#;9?Pk4N8!N`QK$2-X`d|LL@%k<_4~ zeGM-WZ_}ly9p=3F+ujz6v}}Rw;m`gxxh|2tMl#w{lBJ4+`YNZd_ln4h53&;)F&FcP zjVFE&E?bLS?TtVAbh8QJCyWmrr}MhY)tD0%Bfps?RUE;dc0S5F%xMmPR#D~m674IXq*NO2=wyrpleKrLus2}LxY%X;-6e==?&#R z3_pTGyvPzuTRk))RD^-TKdlSy(hl#Sh__p$Ja@n%3oUH+(j&L(1RyMLkF{X2iSqOg zo*y<~b1-D|XqN<~nKybVVecjahqAj%1A_)iKaPIFS40HOsUM8}O<36ocJ+v8KaCl8 z6)?@Z=8l$VAc7&*!3(u(cp6~`n+#JKv%a2U;|g3zo(zqr?UZB%VG@u3U2cqAgj1wPfQDN=iV+#PUk38F@<&kpV z3}bG`N~>b%G*mp|P}|GxTrnf4cS8MhoS9>>p`oVV7J2Fwha|`fDj$XJ4o6ORhWQ+M z&A{P+?tZkTo1l=}MSFeP{PSH(64Z@*_v-KIKqwvhI$bKTn-cy)Vm&!CLCh6P$FgUW z#fDcx;TDEC@^Q8C%1H0SXZxhA!KYbx{bF(grsG))6uKmJHw0J*9X;t3D~f?T$;DbdQAK6fhzY;C=-b)MY0ogI*+L~qhp|%si*Cpjw8p<4pFI+!tzU$FtPl+SdX-JsLDz~ z;;~_UC$c&r#XZl0_)?if@uMcey8;Rv_??o|8$pF^ks0-%-?CRqF>jOHaE!9*L})0m zH@|BNWH(Cr|OyuzaFrc!mX9mn~w2s$hC&UNp_ zPVnNuy`iH-MvxoS`3R9I^3-P*@m_Y!8r2+HZXycBB?{nWsc^Mvq76+}$zD_RriEy4ZcKT1Xka7sXAMT}Hc|`0FI*kbt?>Vcv2%(MCF-_y z+t_W}w!Pc7ZQHhO+qP}nwrzLceR6V=bCW;0_o0%iS}#?VjAX8w^BZF^tG#iR09W-` zRW6FOmaQi}v%b9|M3beIF|d&-x+6+k%lU5sU_Ei?B#%SkkNyNPa4hf!naOUa%mP6=wA`A7M>z0OYG%s8fYBemI-7!)-TEueK|KOk=Qe?9TG2c z0RdwV*8#Vb%a=Jf>r{M4Dbf!!tk1e5uq4^h2q^mNdSr5*sG1YzB5YV<3f(E87 zc|Ia|K$%0u<$B6O8sE+3-yZpy^b}(R#+MDX{FsfH3KV5PJ{YS>Gy;{be{fD)L!|=q ztwL%s2z}g8XauK5J-V?UBeu1eqe!E}C@sYQq8C4W<+~d0gq{6pw)NpRP~$z7h)gip zACgUEJK*}Zw_Buu2l%MVlOH{!j;78 z$(IzuwO$E}D6*s?+3;Q;qJ%RI)Jb@|{M4?gGqKtHtnu=`kWeZ2+Kg1u%nYkU(7o5v z!U6~^rfDR!)e<%&Mt~R$K)neb_^!B@T8Tuq=9z6=s@xKTqT4Hq?sAEDPTPvkZPCZk zsO26Nxmr4}neUUIEwkL0HYHFAeUNP1i3?@1zo2!?yfjTW5})hpL2=$qQo9x@_}U*G zjG+~+Z0&mlxaZehaWtsr%)#r)tmncQ&~SDI`t_j7hKmYA{bu?6a1xo3f=`sf{RYn} z!nQjeoq%Mn=tE;Hc9gHO-11Bl94UBau(1%Zqm9bAdys6I>Cncs%-5{SR~RrMG_olo zCIe)(>LWiZGw(MLjs{!lVC0PKN zcS3d^`MXu<^HlTUK30(VolzoyiFG`&bB8soX&99rA12<>NlyS<2qa0#Q4eeyT>pYF zelzJZ!Ae{s8wr1_?dT&e+o>}qD>pSw+m)vT5o*UL%dU#) zqMl`>NP=BEKN{#MwY`5wy>#+d6YLJ7h~uRW`s=>+0T@LAG+%u$1{9rZ_mAMld1n;M z+oFxDaQRjx4@P-A`BZakNit;;mR(hSYy!?Wgk&n1{uv=&6w3VUY6lAwisD_6Tz^?H zv}(U_E}K$MyeoxkUF#9z^cyAUhptJsq9DqYws^2siLte-sI z>AAx2Y!&YyF|q*nt@+pa_cMkHe>Bc)i=A0a^Id;8Zv&=h9@2_(!(~T!(?^w#zxwy#j=8;f`VAZGU&^T^$83{0RK*Oi_d3~1E zN}xCn?eW-cYu~hA9|6v;f@7@nVymS`d23QX7;mw$SpbBaix*d`4}APdfPvHixsj+% zwwgOOfx~^S)tr_e(N*u#+6LsvQdyvE=6Zv+j$QMDXcny}I%q7_3i}xL6!3{SIGUk@ zatPhu29j5E??pj#in`er4W?A9r;h?BgO$(kx;NC02XLzs0z$;?p>jA2O!j4hCP^@Z zQg@y!{*PIGI?785UKUavfI;971L7}wB+DbJm6|DGxAHOlg6*L2}5J+x9a+*|eSSr6HSH_?_6_SJ5joU6tmu=YX5YT*H#C=LipqVA8E1&Z~$%h-JFRgqa1wuEgLk>tPXoxP_X9R76B7P@|KNAziU@69|`5|H#$Fs>@mHe zO+36R%`)06vGe<7|D*xD9B|cu{1c% zXsd98+*rK66|Lz>R3{{(MCh7CFGgTQv(i^k0Kj1Aa-R}u>XNdiSH#ui6B99*)9G2; zcYE*are`+zLBpMLI$Xh=as!=wa;FcO5zyNzTgG2Dbx zfZDb_fn2a8QIL_O?^#MUiop)oT}7-hu&#=8oc&#o$yBSU)oRmOqu_k&)gLOjDEj5B zL*#0SaN85E0>=K%!pSY&YSv0imxqaI)RP})WVxvtl?tl(vXJ&s<9VIK|Lr3v42&_x zV0?!2#<6m}oG&Mly;>-Nk!4ROI9%EFuMu*p+}S2&HZjGOBKB1bnw10+ut=v&MKck$ z)X!nC5|5U^YmRWd@ZR`+E_X8(!>g1lTY#74M5H?fU-;iDV9_7I5_d%Rr|xFioE%6KTxZm^m%DEUc&41XCtmg6Lae| z8*|lqk#|a)$^&A$bh@{PNZF(m9c*XuT!=m4fEm2KlYhO&5ZmhD3%aWaE$p);0Z@dy z9(yX=D4pgdTFj&+my)xTOdRdJmtUzJRq-z8(PZ32GQoif%BZh z(bZPGRcbY0dBs7NO$?vuqp@n^81_nN_|baWwt*Q zEc(wATGw5RyiT{7K{8Y zI-(i%xyt!H{eW(2Zb>Y1A5)82s~|EtEZ980KgK7;wy(<{_@fqQ8Y?#%Iy?vqbBw{AAmH>j#9YmiG#axWdWZ9L9jCnA~T zx4-uyX9I$B50!%32-BWVm1>6Z6j8Z<^Dcg*Ume2eC>ccnhoDxtDEiZmLVt2D?U-+k zCr(FNay)D6%eTT!H{reEQZ{udEJkRa1AOU4i!Pl^yArITid?ETd22>e<+AI3(|b`O z9_SxLq_Eoq`9?78qg#P#xpGgdOi80$_`j5K!J)nqI4}i~D@s9LYE>+)7f~-_dz2>o zXz(UsdCg8;Rrf+Mr*JVdLywCn(M_A}6ok+PVqaY|%JcC=xe}NXbBr$;t?YSb_T88! z(FQF-63{NkzColhK)r*8J#$%O_t54gX7svD__E?u9?5Ae>%(xV32o>?q0nGrj;HKh zz^)#37pyXBPrcp0C&C?{^b1iDA!S6ghMQ^rEIek7tobJDJy?pI1=62OV1tu7G~ z$an^GI~wp7O%_MVz>jDAEFBe{z6$Kv@7mV%uJs6nF@R&mJ|zGIPo{f#;5<(Y;m!M% zki`T$VLDH!l?n^yNz=c8je+ejzllH!>(L%Apd@Z;m`u>MqYBb4$r*x{@!M^UbL`9v zvf9?!byTqI0rgQVg0$mIuxbp0KH^)7lxwVb6JRu)+CJ+aiplo5O%Y^dBPGHKq%@wK z(#bc-kJB{-u6=s+t`dz3PA5{sdyTVD^9kiV{HU%C;Q(AMl1`gtAT8%IT7Gjwntm45&L$VwDNP`Ex&xs<74EaB*3)YAoZEuWjSgB7R zoO(Tkx>)QKLcqUD+x#tgV^;A<6~5gu79FLi=5!S$V}`{?u&+@Osf@zL&w`0I;p&OB za@fQ}bd5WUQ(>p#1K}@E;NPp{?f)7J;_nK>sk1uOkk7CMR&gPh{E{oj<0TdziYm1KEW7Vzif~wH?X- z6W98Xl7X{1jfSUhmNw0+KBwg}N;lk+ZqK z8Fl&)zLkyVlL?rF!^F7($vTacZ%gp7>N(w(P}9%_jYf@;(M-qLj8w-N^)3Meq6R^! zN9rW#!sq!2P4RPw?D+R@jPm{WR=t_Q&WNUbf;SPrXp1RiVy`is6?hjt>uAjSc;|Bk zUVZ;ZOUe7{??#b@z?585%^C=2$!-xq6{nv`G68BJj$rV@nqknch1IABM4oq%_!A$ zxt>h$=V4MJQDbiCpkP!UNXkj|WvV&NIf-_p>!RyDJAd_smYB3FypTlTfV6_&Ow<>1 zB|#*!_`POworTpj;axKCW>f~H4>LE=SCfSK`*nGH z8Xj&j)=LG=pmWl?c0hK{cY_to?`%K9gKac2W;0s=;L{4v39MJ!DnwsvRbdw8k<*gi zLC^=$#wwFiE!-fhayzYUb$E1aIDmy>}7e0QL228*=h z67!R%PBwa?(!cIx*lSNwd+G89hoKb9S<5tcO@3}tkgF)d=Af~w*JR)q1!9476*uz` z1rGUNTqTOp=S>92ts-L^mDpxYOMrJ=jKEpQhaPmvh8{AUX7F-{y=gcm619VI30rpG z#d+2WkPOCF;3&v`+TKPOrd?AC418B4yL$NA4OoK z%ncynYD%(fiXaK=9K6sJ5R0Tc7px~(Mx{9s*7|=Pg~}&X*<;Ax8F>o~@d>SdGoZPI zia)B?^77W>&4xeMYeAK<&W$by#=!Rb;Y<3}s#4l^7vM7r;PEP)T(;K-SSM{%hjV2o zgqF$AgzXts8(mA&A01c&WDt_j$ty)1M#nPQ)5e6L2hx0OxU~!>iDPy6ZKfqSBhiAQnlvf9o(89aS`9SOlSiK%UQO^uyPh_4^EFV`3h@u|z%6|s zAK_Ux1?$ewR4|B}B74J+7NDd{r9v<-j*cUYL5rR)p?cJ_9~te4uel7)5w37Z*1Ox=L@usTV|V`ju(H!n>M-$BYWc;y--$f#g6gb=JpBbIB_#UzPveXKWs3O! zF}{e;#?0`4O(j|@_uCxMBX^xrb%jb?`x|f(`$G||L&mdPX`(c3P!X44K_VgtG<|+Y|j?OZ@=-v2q)reMDxtJjHI=q<7Oc&Ekk$<=IfV#S>D{94*+~h=4NOMf( zx>sUsQP39Vu&L(-vc>?It$4*ILN-^IrKF`ou;Y-rQO>bt;9{RET14 zNiXA2pLUv?SYDNkY$fQH@Tf|E4-FBWZlR_)r?ZN>v4bD#fMdZ=yeMn8bfdQfHt~z8 zs0gpdZn@ewh58R)#yXnDRC?@!JaS<5u8%ve`mhJX_rDd>NNX$ zRhj44 zZf*vWN_(v5SZFV7l+ME*9`Q|i+<%hGe|d-g|H*~^{~?!<|CY;D3+1v!ZCsiSv6vi0 z=+C#u7XHO_EsR`-UY=Zyr{gpWQ^%4wkWhwh3> z3#N&z>{YSlWb^g9cguvT^fn*+Lj}d_=>%NWt@udKs&t+np3ASvZ`6b!*^-%O&8zoz z6nmSkbFXXGZAp4%eJ19kq|fG!QtLDlQf!u^sv4{E3hv%Max@+1nwwlpWoAWZn7*c1 zWRQ`v_DgE~FD?8HeVyC4{l&HZ^3{eJuj!#GoBKs4eC-_pCZB8a^~Fi{_Aa?2)8*rR zTdQ2ZTa#Md#Eq8V>G$f1-ufF?pz6ft=se^3Xn<0(wXy7|w0WoWqfH^lDKslxgs@TO zMK6aiRZFLT1$MIRJ<6pK!nE;Kos|3@Tqh8zp9-k_R~2W>V081TS9+dfgY$?GTHP~>Tn|e@z7mW zs1ED1)Px!aaFu^*DapaiO7j@m8*&l>^GJ{cu_J}FN3=^Ic@GXL!q+`ZcQ_CXoG6Fu zA@qsijd1$tT*`7f;BJO!pJzN086{xzKy)ZfjKj(f*)l_MD0Ci+E~zp*n@79N$qnT` zpMCFpQ)Jznz1!r*xMz_S@tIBx7tEO=J{l(`kR^q6XQVtDm-=^u`e^(tj?D0Hjuh&H z(L)?rBaAzv@R;I=U=Aa~L(+I$sg*-F)9>VKuTz(_n`mvVj{6PgEB?pm3ZIkP!NrKq z?xCUQ5asVZ{QF(2|GXo@H*lw8nd5&@3&;P?Px)_mTv-DPMJMb38GOfQWMukh7xy1s zab^CE$p6=pgQF8ZJ3ZU~rKW9-ZCk8%1m9U*fjl}__+s`ff>3I>(3cEO8aw#VH>f6_ zBmL$CgTk1j35U3!*Y9Zw36&Mnh9WHw1}mEOt^HN6FO!hY_ylNL1s5surTPML8K#H} zauGB`yCi6d!aqr7lV`~5_5j+*qvK}@k{H{DF6rpS9a)qTFldMq7tH!Fa57Y9^hBV| z5>7*qL=1+cEfMUL+l5DE8$o8p7KNKYfv~e`3U&7wd<~F8E(T0t)k`IRG*kT6eCqw= zhHR<=;3QP~y_z*ZJ7X=917O!Zia2S54~Q$26Oh2* zi9-I&q|uinL85b@khQDTUKFj#^p7D^f=wMEw)sg273+bgYcrCHz{D3AfMZ~%#C)$8 z8#($Dkyk5dQCf6Uw%JO}?KPw+&1X2)UyG!oY_--mWP~Ye(XMDCQIZ-pQHCooQDBWC zA0R;tsTC^B;qXbvISf%YYl?)=p_|E4M?soVjP?$00xt_4iMf#eb}9euYE!4C zv(0qb0F+<7q`Ot2qg9=r$XMt&H(=0pMr;GXt+z^Z1LWGLiKX>ppSsQEAKJvx;r~r* zCF*BK&!}tnZv&*r#5x17a`Xm{G~kci=HI$Kw#ZvY_-fK>N?lYYdpt$6d3t=>zBnvM zQCgMSJAx$v8=5Z!8*ulJmjnqk7Q^ORGFV#HgRx*Hj@hmcT(xM!;ORU2<4oJrS3zN_ zJ0N($=Scucx;X!4!hkysVpqeMIlW`6+|zfm7sMEk292!%lDnru7*M?dfL3h*769{~TTzNMhHjir`EZd~#n78VE|~5FMLZ-w~tT*}2c0vPfWio5 zAu?sePTb)U!{0{<4+jX>f$|)U!`)qSru%&mxbY5NP_Of4E6a1whbjvga#3;nDxYKP z^jAM{(ncB8@*9xNLQs>v&C=oFwWPIROr~8MgQhM#2q`Xt2}K{;PqncUFjs(YUmUn_ z>Jq&|_Dv6ohAzo+0So(RdzIu5;d5x2S%utWv0ladk==$}ZtU2hX&ezzH$g(>9 zgyC__J74vnbL?@tg!P-YeBnVxO~hTEDH846_wN{?fCPHZ=-FO@sB6Te`5k}U@t-wP zG9`~&5lSawW+y`~-v=2hAVe}x80|t!)M>$P!A=@9F09c%YtsjX6jx3jgeN}iPG;zdm@lQiiIBVzLU7e5NHXjoiL56$C1g6cE zhJZKO3ac$o(g$2cS<}gl@p7N*Y~mEK8du`5mu3A551J}x>CAXl)Lk9lMt&3*H3)noY9T6_QIFUw3dcs~SZlR_}qoOv9sYif}FF)SSt>EGPpfPS%g zJhif}&H0AEhdaXfPxaCNj%E9gMbLlqf&ct=IsPl5?SI%o1{Qjje-U&40Ul&!{1@Bt zzr)R`#!xJdG>oDeqw1Cd`Bxa}jhJgPhqs<$b0MRqlGyXgJ>wf&C% zIhz9h!{pM+3OvRHVB`mPLTiUyz%NQ?YAH#zI_vy%iokCy0jqa%a#Hk}%EiC7v$ejl zv<8T8du3s4^V?ofUXR0%VrF4|bMf5!SMFZDy@T_Cp3%e2jUIiolO7i{L*IrtVa;OVk=FXAv zD>?p^`ql`>hbNjx)OXMbgZS5nAx5?%ZKutxtEp>XtGjL1Aycx zX$jueTj(1xP4hFIdwOei4LN80VZ~ z@+%83_if5w2KdXB0(95tI1Q-e%hrL5#Fcn{iuU+>>hha9`P)nTOEvLpS@^pfMZ9%& z^;2B>(c1qTyR){lF>}d>nwx!j^1%W6&^N1Y_tsmIaq^3+jgXhU{<|#RiRn8NP#0Ld z?b|xPAw00LxFt2dvAlG#d;MVB{-GOaVtTDt1L9Qwb7=uM$Hc_&jkkU3l)mAkgGZao z^G=uietP$HOEQcj%OOHS##Xo|et8xGr7_QK}t@dM1K*z`fy;BAwWoLabiO7h-1TsrlE_m*D1 z&3DJ7{Mmc&D1-64|LM*|5A+-JWB&Pm^A`HS#5LNxjGg<$!Qbb*H1U%VH6I<5`I=>Q=y)eY%(5zARlp`nK_6>-r@C zBwIu~6{+j`3qOmM)vuwRPR5z8N#yIsac2hxXFk4Q>;2->B&~?ibq%tWF_MK_(Sdf0 zSqMUszn0YL==0{N62S<12X2E(P=4=dB)CW^=;w%m{Cu5Rsht<2$E(asX_Nr^SA|0s zuN1cuO{qsr-YlUrND%5+LKZ?W@MRLo{r*QEkjD1}zFrEECTmw1+p;`%22S$pG2zvu z88cE6kCvkb4vyfBXX6OFICgAY72_(GcXz^|_1*WxUW6p7CK!&CZroxo;e%?QJyd1x z(G+~*xghcN*fY(9YtuY!h8%#r_YYhDTadh0Vv|@o3D&>Yk<`Pv`;rkU%cugi5ZT<8 zU2?TA-jO`a%<>x?#CGMjmVN4r?O9E{oV|a68CEmqCZhmPH~H6kYbnVKW8o{-I3ufJ zJV9L5Iw<6NDvis(ir)d-A{}U*TGp|RH2t%a2(4-Uu`E>nPJI0F(A~r~Zz0uMjC+X7 zWQ00g7s}<}yOMky$WomANSY**0jddd-awi95BM_7G>07A3FgO)bD;5y2h(G}!;Mmc&aD_)h3qH;}OI%OSR0z%^!I~TlMPYiCB@8VS#&MsOKVdky8R!P}COC*}F zX^cSsZx^AQVg3%Jh)l?e9o&dXzB~NPv*4z-OLJJ;rq(Phsp3s)gCcjXNJG<|1NzQ7 zQ>#5%)BXzD1QTREtBp8g^vr@Of$QcO!|E-}0Z7k|ayO^&%6gYO6f8tU!%&nKU0YGF z-iaJ#QP3*8X9_5&Smi^6W4$(APmKHB!W53kM*ZOHfTS3Hgc)uZeP}siycdjra@|~$ z)}A1Z495Pb!@U`a3&?kiV(mcS4=$y)6It1%JZMNOn>mzZxuca*43}#BZliMSo&l*b zt$fN4=p|S5?y^J`Fgxy+(%~z2<;=Agk$jJ;Fw2@hNBC}bEqS}lk zp^_IU#-+0=?v!Lrt+e@{QY-Sd)Y$~gmHg|^An`f0*{sAb;ffP~T+GdT`whl?m4$pMWTq4_L z>I37%I&)0JoG$e_mfUFLSd9og zSScZ&4x!yk3g%N$z}IZkJS-k1X+kC+y}r)8G{r~UcR9V-%AV1dZwEfXr*V`W7mX+O z^v&B9nq5%gvP`E`Y2HMr$pEiB<>Id$4DS!3Fh(|o?E2Vx)JDw5va;zX%HP>^`o2^i z>7FkxE^|eCX;~Zxy8Yn|3|;RlrwlbOD01>%dg=LmGlpz-PL{J z&Ni!k7oboOU>&C3SMB1Rn|}B{>Tg9wo_Rn#xKQ(=c5Ev^QAbLN}}8tNFYJJaw?&>eT`AT$93g_cohG-qsh!5U0zY zVl{NDI6#|RSqkr<*&=y?_jB5Sx?q~+^4a^GFB+$ZnGYnRDVKc`k$uizjl!{u`vyxG z_X^tD}!m;0mgG4u9{tnvb$?q%DMMWDqFNV^GvmDxj-w_;ASCLiyAPduV3hsP62dPseGLe6xwLQ)Yg z@_r5R@Wf<@bjzyZTqWi&IU7U?1lh!LbYzc>?cf@CaPMPjRt-p_@8#W+AXaMg=cVp) z_hu<`7^m=FLMN_ny%>Ya_;9ax!$gt#L7I3nA?7OHvcOC~qj_F~(OPOz^4WjIp3`n6 z!$DlxjsZ{hbWo~y!UA0hEZCprC%4a7ze41Yt2C?V5P!B{B2^SNXCW-y$y%rsj#yB< zqG$F!*5{4Rxm9R@NHd{1pOgJqey0XYA-nH_j#UverIYboOP~}{ir4ZVv9dBzCRqmu zc?aC`7OA<+ddvfOZ_aDb!nRG3&0XpatbTnl$olet8TY zJ`>O4f$|AyJW90znQopo{Yhmyrn>0NG_;&knRuP6+Q&Y0Wi%)g&8nsP1N8;Znr_>; z2kt{^B=C3-mNvhPL2Z|Wt8uhI@ysFP`}nPFxmi50+`sN1N~{Nq2Z^%2p$A8Q25UVr zuAD|k_~)Xk^)J^rOT{8eeAwA~L1Lj=lPcNRIj4XvDg*pg0YNR93xLN>!vv7r4Y&=< zn5R>u)2HF?AS3mXyZt(^!2#x@U2?wFhHawm-^_%9d}=PDFq*|ye@(0~V&tF;H*{}p z75QS6Y%Hb7c7T-6#FyN6>26p8;bSMi?UU>&8)5A2^|2#!L7sj$=~c*{d3uqZ7xp03 z1tOFH%+G26jW4T^PrtUrMGK2F9JI{-hpjhUhubVQA1eQQEH<(MpYhio_1uj52dgGZoCFg=B9Bv+ z&Sj8{OBu4cJ*%uP;DF_rr3AP^k#a+B`txZp?_Yh!5bF#@F^T}ue3hFC6v0ycLN zpeWI#7)OVgGLBQ(yWw!r$Y`BR&u1Hh<~D^jlYqM6D+Gk~>mj|PSC1U=79A01_oz_5 zo&ig~RJ0+)7G0yQeHf2-4-d%$|Y z?5iwqoZZCu3^+__xYs#V*bF9tS-<`f;3;1UnUntF@urv%GAfJ*y9p4vxIFo8AmI=; zaIARA$oIo;%E=s;uTkzGduIGVJFxS^eHqB7Pt;SD>qPOi%_Kv3Do?8B4Zk@Pb`A1q zI6s}R<`CBxX3bUB*aeJSE=n_PPGZH=Lz!-G(czfSC=NIdfaY3miTshH=Ov$(i#2o{ ztiYSzK8iQOkUmiMzMBmFK0>syX6!BBHSZLE7uvaC!HT@SoHi*cyOOkoW(z<^+>{h6!eoP z=mO{9eJFzWS;ZGSpcdPVc#(7QmWYb9;_{$oeHlf;v#K%eoR=M{{TNC1#yf+V!BlVX z(hVon@SPbIg(Z>s#0d<1HzZ~`BK?v}Glm_$ab+Bth;ulBoCpuDqqQ!w^tt~=-|n$5 zeuv~uxWfq*@$g-`px19Unj2%zVr41$rvFGZ+%SaE7E!6pbOdGs4OV9&`S`1cXu-`vMc z^$QpS-uhBzl)zD$7}AuAZa3r3u12Bnhm)`g!1%n}JZUy*6n@>wtU;=NJ5p(ca@XO{ zH?bbEI`&m1Ebp3tmmJz7>rx{vu-cTMRF-2~VT5Z@F>I-_?o=T<~~>pi(fHIP00W&DyfjfZ*OG0B1kDw&89W zKl?15PTo(jL8?*E1VO;Y)!ZBP7Vud4#5VHB>pKUcEScuVkN@t3Iuefe=X@OWCF~R6 zFz%liWer4>T)HDWlHI!i8rA8bv`eh*#qzJC5IF2AGfZbpr3G_|kOY&G2d*=#V3MwX z2IejHzeew~TJ(b6X{0Ncjh!{T#pn@nd{IDOS)8hvi;VaKK30vMR8%75yO%X_G?{v7N zUQ@zVqpUqVZQ9r*L(u0Q3yXtQ?z-1^BHb>_c5(FrpgV&Xd!?^Z`K&;a z6dccyThgM3Mhm2;K%P7Y4h^69@QUo~7mr*=|22-Z@+r-_VTDQWudrZ1%zn-xQD^w7 zcVGM&WvUSDA*9KQ7s3wNLOM_{Uvv>tp{N=|h^vE25BdbOBbg~ZVs3ye072QfExG7a z4zjT5%u{k-8mhKEXaF<0M4t98>g7{1L^lehe5CN^$R^}YA>OrDZP0xfb7d|#L5A{F z;k~*#<;YTdDjEcKSuo^cOPz;ETRFaIraK0W?6Q*)asVR=XX;Js*t33N zPV0qQmxCBjo8qpPY1m)-S3ykLWXOhS_{n^8>@c$~5EKxIqtqFC`&E15Yu8Xrkv)AI z@n!br917IIeJ>$`u%uwiTWd8OU{}+JiT4Y~eEXmneK3p1ysgk=@Zu&Jt}o1egTlz% zK&Vmbyn45d>1K4Orvxcqnrswe!Qu+Zyx;$sKCR~)bl%`j2K?=JQj5hc(PGzSFZ_ju zsN{Y?@3=KN{3&r44?ffmgeL6(Or>@lsYHt=F}!%*Yh{_aU{VGE%4G?unKr99-|H;t zw4$KCIrE4vOAyc;|*Clow3rP_Vw-Fr3qM2uoG)KunkX(4g?4ME%g zNwH$UF*yME6R52W6)(k#hoPB@xNpibGoO9_=Pw}bk*!XTRildmau{Cprsv>5rLK%Q zWLr>ISCaDV_K19~qG?kX-@}!xsydJFjh1J_{~s~P0ZhI4R{ zv;~M+hP!o5<0L*A>vZ;-O%_x3EKh%>i<3sV%|r{{ki73`5DYQY*SkVETJnm)>$cJA zF`CbJDEt{mY?Evw0tx@}y`ecmK0*^YQMroeWCOOAU+00n3zT2OKDV&|;(+28(xTxg zV7S{q#-0b(j*|F`5IU2@41*6KKkf+GCk3t_Y+)?;FHc&Y3MVL+5!6Cx%R7yraI?3F zi&w7RQJ#WzH|B;rDucasA*SA2U6uSz)}Xj>6aQ+Wec}e zl15O_Xk#CXz5taYl)JrpYQYgU@z;sRb5ibGcra6O99K$)V|6+U5@f`I zV2Q`N&pexzg>}rIwt#JTXfv^Bm25rD+}zgWm~l|ygc08tJ7R`d3Z%VJB$q=)aTm1X z9AoQR#~m7S7e-S2ntL5Zwa7*GLaB~f8c`TVO!DU;mVZEigcG~>t`_vzdym#Ni~1B< zfk)FrU8vj!VygH~1}Wv>w;`|)u0PqPQA~gY9+~=s(%bltv4_C5z3GCZE1B$AeF){M45{b!o`)FIDC^W zeVlBj0;#iT;8$}+wM}oB=Aoq7Xv(cA%c3E6^hZ;wbU`s(CzRYh-di2_V>&omklzVi zAR2U64}S<&i(TAR=?^DKB5O0ZIh6lBSJ6R+F!2O4!mToI>R+y)zxKxHb$je1oocjS z`7sRb0rUy7j%sJ^c=U<2X5UQnWz*^Mv&ig7#S={8U<9a7V|2uy_+DcPu`4Prajp?^ zfkqUf{9#39R6$tSzXVm0|kbywu;;aa6Lx+RvG2 zsFUlw)q>dK5>Ud|+bg%|gYiLD6WU5NyrrN9y+N<8s|+OZCy8lOJ3|PCBr^-(a|;9? z)OF<0!Hi&Noa@1e35i&^WNbA=_}-7J_2bjI^3e4rU2C7@VU?Qe*6eH%Y~=qE)D~79 zrHXJZ=-zD9K`8E}t zFaGOQQ>xp~w`YdOuN)Yi_}ZD|iNHRum*V=1>zCs=jEv-eJ_>osXKS5ODA7{tZ>`}? z$h*qvtG-gn(KQ*C6DJ4OMli(NwXTB0r@IlGtk{^VF%3m{N@fm9ergYSY44-LjR)=1 zz#O`TerUlBrfj69-$!is;q5bm6OJ9-#2``BVTd1E120o~O+_S7s^M1Uh#ZkGbOcx$&%LQ_Z#Lo}wN~S*mU% zfxx0NR8h#WeD4DsUMLN*-#?pW0rp!|8#W-+5ro4~X@IanZ<7(DqoQinl$5uQLis~| z7e}r$$%qP|GT9<=M7Xkh&+lV}*XbDW?tk98rtqH9j?^|(G0O{D$~bo)fN`qaMsC*Z z-o(VYO;q8iZ8KSBV#5M5DWdK?mw(#3reJHKecXy8D3-5is?yE*l%Jc{D*1A+GO8I) zZbmkrM*=q^RR4i#&=ffl#c#SpD?kN5BJSJ%QDYlF%&N{2zKdeUy6wvNxyogI{|TL* zqDWjQNVIq{pR_Z6D&*EN=+x2T#*fJ@hVoU`$1r81~W8{ltnIHId7`xI_Ls)dR^Y|JbpIF zK$-G7e$#rDj1Lnzr-4-a3&%F5Hyy_UmweDLLvU;M5&Ulp8$5DLi43UDJiQ~T9*Svm zl}qMhii{{+VU9vp;YyXT$gA|E`4fx9|KQq-pXGT2R2%gKqd@BoROR^8K1%Q~f7KS5 zXRa9T)&_DJ@}vy7A}? zhNKfkJu)uNnvX&cN4|KM)JnusaCcpj0jcZ>0RmrwN;VP+BMoDje(0RGX*lJFh|-F| zxt-v)E!P`?MVf7}BSv_fD3_nIyE-A?3MR&ZnkV3)8`X%@k5rXd;MW~$rtOBLiwqg| zkS}%2Y<_$rNOVk+Uw!|4Gx7mV1Jr(zGleoagU3c*nYS9)OWHH9C;_!_F}66Z(d5M+ zq&4WF`^WHIy7;NN8z$F6bF^KR{AUOGS^p_)KHOAv$tJ8gBV6X30X^AoLMOrzvhC_* z=#r~qVEel;o5yYj!a=ka;q>gy&BFpoJt5c0Oj>AZOd}+Y5ld==eFUv$w?T+ee3M4n zl+?VFX1P%K;rqi(zLiFBsJ0Z-3yx09I;v}|QF6_-KR z#taqh`6?js1dB{GI^fRU#l?D&S$U-rMAfs2iER26m(nyM(_j8%;!aD-azxu#1mFdM zOOYjBuO_c-oy4RS?NS0_n-FChbdg?5E(|5Q!6(c+StreBpY3ZU71aUJ7m;C?OX}=g`oov5+b2*fPA!2_lDl6Y6=4z zP^@6rxil;bM;eu2RE1pzbZpR`6N$+iK5&qp9W?q~kFf&Nk4Yw5DW9)% zDk_h>-nP*WVa**^QVbRK8H6mmH!C&%t4~oWKIfj-KoqU;$0_*qmQh(b#ZniyeJdOd ziX4Z=_t8>Be`(Rn`p1^N@Q+V+FMM}AG8-{cZm1IHvMGi`1i%9Xf4 z$}8@L_ZqQ`;!kFRrblmUnuf~p2TJeRN5l=>yL^vZ*J0SuGh6Ye*xG+q)XQAtCk!-f zD)PHGT9F^N(Zv?c?aF|d=rAwU0CLi{|DwfJA1^3}BT@8ESa6tP;=(?t5d5Bu34QTI zQ?Q|QsnM?ipLIzKh(N+rjV@gU3v4TDi~}8aW{tl+;dIw_eldmjm1m@U&B4kPRu4Ox z8#}ivuR(O?a%HQ^a2pR{WUTi$f53B;mBj6_hH@`TBq+iJD3T?8WI;m}^p}|udzd~r zk=po?hi#zF^r?5FU^t@$I>kO->ihAK9b4u$5ldEXi`L=WkEKeYe5cpSQV*Bnp+qBJ z#v>pG^)`-Q*r6aYy4ARJ6JTEna2)KxP8remazMPmwsl7?{Cz~6)^>4zN3#@##H$^B zr@j&Y;Xi#MerLhFD!MSBu#)$!&UKpc>%~O8s4lYU@skhJU@9w#t>`mv!5*r>G_=w` zRBqD*e4fTYQ=fwU2ZDgvn_JUgA{ z>qIdi@$PkrW;5pAr!3f%JGw8r^UXuP9JJbdN-VBR53iDDrW9oWKk^2q;qgwG1?2N# z;tq%F9|Etsai3w<#LB-2k*6z54=44#@If!1w&{NVX|L@X{Aa;^>Wr!7X9%{^YscWm zRw_%!WHK)M0IB40@wxr6zD84-PXANd4Ba=dLwCj!bLRx6I}dP{xUV^bpr@j5y*oi? zGXqQ5!EFF!c!&Td3vus2Sr855L}6oIu#27WfYND{kl!2yk--?CqJR?m$pC=^VXFd=nE^Mdl0_Fk5K!+jm`D(T{m}6F@Rn4Zae7SiVRj(cQJ;R{1z^8BPL0BtZHEL=urZ#fY<^xI6 zUM#D>io|ug@VBeD%L@*DX-Z@gyYbrXuYvI8(U4w5zl*RJo{v>olPc2T+88FI__|Wg zPVC+u730p{YAmGZTC6($!E=$sI?J#L_ypRr{M)Ks5NFdL2-{a{oZkh@sQJLf>mf)v z1Y?5$=edAf{heI)V#4q44fxK-#BpjKN?SUWVnt?H=$l8~XO*o zo;Q*$*n9-+#AH!N%7!ZbvuOfl6lGH&Z-nfguq(2SM8Z4J(d z>Er%kQKH}Jxi+otT!OQJ*ef|oab+e zl~Yg|5<7=e!5>pPp@?(lmdGLO(;G?hC*Y2e(PE_1V?*qeyAdn})-xc`A~LRVWT^?< z<&*R=?CqcfR(KM_5FzR6l;A_duSbVP+mi;RF+5b59Y;_O?5Y< zF#~!&wx2^HMM~r`#klEqYLZ)FebKT9L~S%)TQxC_8z$I1$m=nCa{q;xOZ6eeO4Avg zmgCUnXg>O7j#3MpOL0DMZ9w{8m?-b_K0$k*AAMQ2pi6tv81%B!gK(d z&EeE#JAh_?WJNgprf}ylR2nZFjw|A477!(^G$OH6!r&AZTyT->#O-6jD{O|g^L)Z& z7o(^Su?xR|2-RcyCH!GDY&dPBXmq04`1D&>=ob$_k}$(i8VoNaIbnMM&Whu2$f~+o zcfFcyd3yD`6AyI5QgnDW|I?6Y`+RYu$)x}i!r?N#>uv|KPUAoxJOR%xAc0^Z6$Usz zDW_^LN|qQo{5qV)!;ksNZhvQzg3T8=pxCAhv_PyPJ_OxFvCt2OilXk@qa~vb1iopX zM~=v9Mj{6T1mBKjU+tzml~o;6kZGY!ptMc_q5QlWJwt!I5GIH{q>)6mKByF9LuyB* zlO(^AOa-*~>K|wfx{o|wVl_@Ih$%J42!|5!0xLCRCe`jR=pyP4OMfl$QH_<1l{2{% zC9wNCi063vqG|zLAWbd9Gq4`O89B-M6{c`G>+i2$Owe)-ty@&*o!0AuY+iveR@enq z&|Ds9kGU{-SN4ZBLt|7u3;T`zV|#EieJHg=nxYvwy zt71F2;%*P4TvTN8AtTMsqzuEB(c#fv1b@0y8C6f!tBdjHo>aq)~!*s7jQ~d?3 zq)$rMG!O5S0{*uU+|bb*(gr2np59)elQMG-Q)t^DPZC2%7TTiUZtS{^ha3H0#I_T9 z0Xe*0%qTUKgTc?|rn!MPOOwOP%|lOR%em+)vsij85}1XPTa&zyfSZS^t_E$m>6U^T zhPC;b$Bp=a5_}a$y!O)qYm*wb;KblCqR#>>|G2N3R`1d2+6()j^C2ZzDjJf{V-@F= zI73|32H)d@I}nZ~=QIHJ@|9RYVo>>zoWqJ|ZaR%p=Hj+RFS@RJ+}!S_8nQL2x1ld; zQ%c^dRA#BR@O1w!=bs@vcDJ} z%UWbn^^k(34*`E=dJoe>F(+VR7WyE6)YJ_`szKNDP)T5rn!|bg6%0pSCNCWKoBIN4 zaIFLSCxXf7w*D)AO=|lv$OVn)39Aipcn7XLcQ zSwPM_@P`U(0A2p_)${1ZQxE;2>ktZ7R(nQriKFPyPs{n-AgO@TrOSEA#npX9N|>)p zTWOsEw08dvmvpA3I9t$mLK2JNQxF-56>ECgt@7UWiQ)GN^m*Y!j|0dUrH7RcPHjIPLn)z;P!=EhU}$OpOQ zC!)l%v3KkzzVzVT45ZV}k6?XK3AAEbW824*YARXP>M~=8e_Q<`DQX9)%hLYCN1W*5 zf+@(G#T*PeyycX4xf)X~8uvK-)15kq{b<{N@Ad0u$Q*_8Pn9|^{O*zVJ6*7$;X<11 z=&;JdsKYcErhv~}tTxQN1hgMnjdNV8_j>*t33bJOT+QbJn<*pes1W3*Lf8Q!Jcl=9 zi-f_pPYOh$%fnKL=s$b+cy7!MCkKgAf_{4s`(_M<+Eu4!3nO#%y$G_V`wd6WWe>{N zeN+tH^4Z)6*&J@2Z^HZCCJsgooiLmG=vWoicsyN_=FU9v=MZaUUCIF&tjPh&Kx|h8 zh9|oa+(uDn-hZ1TTp{U%?vjuuG2 zv(3Mf*+|1)uJFi9JZbR4(1nE2faX}_n>9BlDAF!|vyPgm1pxX_+WGxb*cKRTFMCtn zsh-hELIojPGliQvYOENZ(Ge(y2F@YtLv7Kz@au{VGH5NCt^8Ec0n3T4FHLMsDhbmW zNsK;P*=GKvGOf%S+WzzdiD|X=-P%)s-Zq1@G@bHv_nb+`>7X?&Zw`3eT8g~y9%+9o zg_}(w12df7&8lKN@zpyDFqzZdX(z$i)gfL8M5t2Ki9=m^7kF1F2x=R&QBgNwAgouf zl(ic7-I0!n$}G(O4>4U3GsY7b;S$gJ1izvw(2b$;XuaZJxvpAF!>E`Vrqg&|zZ4Aq zRmaC1aidMjvvh{(ev)aS{&A1v9`yItMeK(W=gd+>=5N1GnsAAust1C^*|*Ji(|
9s zKUTo+xKgB1O)Adh=!(|4j7=L(S4;;&NBm*VeUl)EK1V_z$whAt`jVJJyI zU7o9C!`EH6V)EsH?j4fy=UEwy-G-$a-Jy^X9;`l+{|JUWOhgSG#@y0@o!5wfbCGMp z$7vSlw>Na;d)yy{_&%n<(lyLUBU?Q`!7Ygmy)5r*U-U5|gq`1mM+#o6d>A47Lwhx* z$v9Hw#K-c)pj&{)3lW*lST>W%PNnN)UN%CYd0l<1Oc`K1#6ug3tQicTm?#4D1jnAU zMByd+`vc|%WG8ldFg*qC^0|L2SV3l&i;7PX~>ML)C%nq&I87N5r6akSVck@9!y9wX%U5oTRyS z5Z@Z}+?y#Wx?E+Ha+XsmLbX|F&7iRuqCzjB^X0Q=sY*d07Ho1DE!a1O9xQs9^(%6fTkfq=s} ze(yVYRqeWjlQW&addB$^vYIlOQLFelu7j?JeuSS%P%bV=|Ru9WYF%jX!D=Ch} zT5(D`C()9-8Yn7}JXgPbNLDKT7vw9MvjJKySCA~?TzO08v`~v@0U$lwMMVP$zMP$_ zM}Nk`4HXn#CZH7COBI}qPY7aaJXc!qh7m2!b-fOQgplFW)NM;iJEA9e;aA`vV}+3Y zBou>`^I3n3498ve)|oe!s&}SUAdaV=#I8lgPuaS@xa9fwt>#yipdr`OPb5HQ+<1|s z>l|bJO*N60QM_=?ldxxOT5@do+poH5BhDddK1Z91M=cx_#pGI}>MGY~hdP)xLD4m| z6QH$82CeGwS!&Z(TaJl2p^6$MAQ!55aoWLrVQM*N{54xMzeMx6oF#_rV^4M8rB1td z4sjrV-wV5uWic@M!P2aw$N^K5-9$~x1V-ONpeLMKD5bHM)?SQ*r<83wR=iKy-Roq* zp{?QX%t>C8H3}W1gc&?MhM_|x!JmS_KdUB*aahJM$=*kC)kKjZSZ_f7$Y4<(#}y6= z|11#_n@Tl%N}U*7+Clm(v-~80-`3U2Cy8$<43g1huF`gKvpiBm!91j1fb_WKz2}cB zhsNeEtSQh(&XwI3X_80h?w8>*;nOME^&Wswin665{B?u540??oI_Wc_w@t_9xh1c0 zE2!Kw5@JGDQYOA^K!_I@E1x`|{pd>9Xh$u*^ z#PBv$skVWTIu2pHuW>5sPEZ7YT*7<^}je$U~1e@%1F|e)xvCGZy^V#_=faaLv(OtV7F6Y*+oS6nnu|J>2@MvzU!{h z{Ke8uZ5?q_-tf4MZ3s_$iz$l^C9}!F?;4vPn zTw?}Ja(>SN@;%M3K<@Avc&oc_f_wh*#X}*4LTLM6klCo8F2XO$iK{U5GE(PV-Xwu^ z+04p0O8~j`6T!ViNc9E zSI2^wopgRaP`(irx#=9zu3qwFTv z@U=H*rvatG0^uq_F$Nx)XDuvAuo|3!2(*+x3gVIHEWvZj^2{_<)x2<248#*<#tHQwrW%7+mo#lk`*0KeG;WqN_^@#gJ2uj8K`OeQL@yZ1V?;oL(}O}} zP5^foiiFOR(CSyXZl}UMTB7WU{-h5lr&DI2=K#%rwG5H{u@UY#mLiPQQ+t)zFL2t zFBH^m>%-9!g|NvU=NJ1@geF-{Qq`Opa!((O(Qv_dNHkx=iZU*0om?x!ecWH4G3iz1 z27q-h4f9#5PH`bF8LuwI@x4Fpb|DgKvhkl+77!vvWyl~2X@=K5kvmWXIECh&stoj) z<(EH;0e)Sjw_=d;sw;dk?TY(mui8-guqB5F%%0B*d*A;#zb_xSGgsl%4tQ30=>auG z7kn$eHW_HNoJDNrL=)#er|GQQ>t<-Amb0m#9FEcmi>ZVOYk9@x#r1N^U)HOI7>jFj zMtV%sOQ3OtUfjoWc%hCb;bSkr z#pqc$xitBOn4x_}>==JBU8L$xVp2bDQ?l?$Yb9yjK)80x&qQ}k^X-4}fA%@A3c89-$5 zu|p^%BtdB{GO#Q;_h@u}S&OB(D7JF9Do>fb8JV}Mg4KQl+^SsX-U`&?<5sXA<5j@Y zjoY2}pEg@%(Q$`3Ky8_);VH#}!Y1w*nVFCz8gd{*Y6m`-F)HDwNXx{4c%2zZG5xZx zX|u6s@dEeoNON)nDm1jEoFQk5e%bj3%PjylJw=HIkw8!bb#{F}+i`N{@YoMHz{~35 zIav)!=}AWUz?tQikbaaMNDMp23zvF5d0Q-FbXYN+|9pchz2Zc~i7$YK!abeRSF=$m zOYF{exD9}8viMW(Ux+AwmpY0+_C)1v$J)Ic#G-yw_y!W@+k|Hk-quFLxzW8p0{9N`X_?#Gog&U6IiG7-8~<@FqI$_yBr?B zk7Jw@LRKU#yH}o2%vgnP$0q*ST0P$A-FDrS%H<`R;u^@n6%H7CCrRUb!?J)w-5rhT z_H91zrEl@1#Z{_wzL&j%|Ni4E%4);D36P~rvevs_WslM3dJh{b{_ zkz(us0Et%!iez?`LELy4h3J_)0>0YUS-JfX?d0aVTY;k}-Mgoa#8*-2IN>E_u*I8uiTLF~`#$N~SZDu6 zU=V*}P%@%>_`=Dm!Oq2Yy~vg|5?~b=PMJ|<*I`~)R+FcuAANbnVUlj!F13i3QxRdvhOM|Y9Py1!ELujXo#~d*PZ}9d$X>}7R>oR4ll}?B3I)dP~ zivDRWb#m2=9RxiLVK#l>pWU=l#`dCnhq(|(!>$&k|B?bZX2XkwS_f=1myzJI(-6OX z+)Q-RA7sF(oTwB%K}bYaX2lvyCc?l$PhioA-)8s3*e*m;pBYAlBMo&%(=*?%-UtCT6dd?P#vI9zNT zx8SH|>K$ePiqKqU8#Xo`v>|u<6DE`FhYaq^!ZZFdJTeSghl#WL7`JH?OLpD}W0V>Y zJaTs5rG5`sbk2M_T}g$0h<>~D@1|7LWKH*&ivKJcfJPD(T)c%=X0Nt?Ou|F_ORmD1 zWRYK3kdvePp{IB6?eA)bYdz{z<7?w(mT9iPzle6E&;p_fV0@s!HhUXKdl29PrNYM+ zHvlcIjtng=t`iuTwI&<*nD5oupAL95RZVoIH{CzxXb@x9uz$-~eoN zewzGgnsRB8(0zl$Bu{vRQ^M%@zz=oJAZ2zy$og_&RGfj#Q{$V%D;p!%-^ZclmP;;05s@ps0SzCx)f=`)>~UyLH_)*va&L9 zg;Zoy!x~w^ID6)oCctw+ZG!)THz|I6B4A|!*aW_@BjGaub1n7G-;?>EjsM2Q@t)8pT=9leFWVn)#4Oz0qB zgV@>pa<-afEPWFzfIxDIiYHEw4u;@G`JjZZAO`fz)`S0qcQN&TJO$JMezPS}UW&9J{N7vVqTAov`(%6Deshn1Oviq6Cw|8sd{I7rU5HO_ z_U=k^-{}T^N8ucrobP@z?~AltTT5x={CTc{o_xza;(Aq7p-%MPdwD_G<`!wi1grn4 z$V4<%IW+0QiaV;Y)=uc!zl>Mk4d=0~^5LD+DzEWmq5T3gBQJfuWH&)ud_8!za+%*t zp&y#Kf3+1*p+eMu>W#U-fB@nmp~tYYFU2LezrFx;Z%Un;g518#4FKYhpd3A+0J&jK z;pzg~^M36MfxZCpj_^u)_4u3 zI4MiXiU)s|e-_!m=iYVi%Da78X1|vrFMIbCfm(MPd6!)p?ft(jKT1!wxb=Ub+&INv zefvw*xqXCk$U0X4J;i&=x9|v0!s4vGma${dORs#XDgXT{p2xqa_P0_ljfN` zzFHj9y4ASls2+50EAg z-tR=C?oQ>6;(F?Q*t>Ofwgn(bRA+;E412cP;ogCI2zO)^2cm`%8?1zqN|zyB*7{>4 zMpst2sKqdw)!7f$a zWa(}DG}N3n3#aRCxR(K?>27C`#GkcJoU+HiC9mDic~D%YDf~BIxbHm90($YxzI%ys zeawpAo1=ZHwy5sZ4_i?lUIIF5;MouXs=Z%iq(}K>>msHbVBiNEiFU|BPI>w^SQ*#| zMvsA3-TnTQU80`$ZVwA>6d)v>^BXL~w0KveyvtYKc4b2ipr+T>uXVzc zj6`EfULo0a25?X7VGGvGII$`|(ee*JrPLJA+~M<3C~xp;Yoh%Zi124Z7D~KG>W)Rv z>i5N*#dmJsO6O0OQ9P3t6qBt!icrRhq5HK`Ji3*8O3AYPXGTUbZH*J|&k0Z+h3uka zvYp5r;UK6LCKSSpP2$QSJ`1d2q3v<>i7I6wUZhhp!&`rfCy{L#n=aey#_=rlBp2Q9 zs(ikhgMCzGbKk0M9Twe$WRn#;;?!L?-o%_uLkU|8Thm`TSQn~_hQb3eYAj{TC4xK_ zjWI+_yIPY|T*pVeQinet>v=CYxCL^F10mOZV;mzeu4+~}5Kjm*--&(FX~LxP1@NWtKO$t?=}8juIR&5_dEy3{5(?HM4wE7I3Rpe$o9pzMQY{c^ezBz;We4c%$6Y z%-usd-?U?ut;tt#>fozhX_ZK?A9>8jq2K2Av8Dk{46_pIR_wpNOur=;wJ}_uWJce_ znG>6ms7eK$>oWit1O}0Q7hb8tNv%G4^PV;^${HXf;J`uO^c5jXt!|+_p6mMx%j!btj$(3mrjb$emkre_$r;w4XX?w{>hiT%Q0$cWZW#{9qgAl!H zl0NgTFNKco1zcC6PxcnIQ-6S$8d}XT;}S(URCx(~CN&@Cn6{f*YhkuEgcwwakT2r* z>SD6FM)4cWQmvMYNZuYB6xDKQZw~I1o~7x7XCYP|GdZAY$TC}UQe^wGK?Bg2Ymt;^ zE=FgONY#Cjz9R5_nIfx=$hW>YQb2XL%u-uj<*OzZh#-@HD4RQpEImNwF_F&omuOv! zSNH4AhYU|TZ|518614(Zqi9Dr!`3%A*yln7!^28Im$*@?#Wc&!Hmg^qvSvR z$9@Wma16?N6wdr;IR&z~EvQ(C=e79#;VDjFuvxq^1Kc;8 zXs(OM=S$-dk-bDEZNcjv!F;B~vVSf%Qb~liT6hcJ(UXB`quXBEsnIH#-VGMH41IpakUOeL-~eE}2eb)`Z8d^Rke>nP zQl2DG7{4`N(4s&C@T&kNKSEt~73rn6{XE?IBX^Lr{k6Y|hs#P)yrwZFdZ;B04DI$k z7_UAOqSO@vWF~UJjM(|CG}*k!nsOJ+#_A9TDpPb z-KZ8nMpeO?(kcZN39!ehSG8Mjn$NaxtUzF&Q%-l^FkdpfCHg07;>G`}ZbXcU42YrN z9vZpsbJZhy$XBQ`PzF_1tFcswwTOmJsFbQWH1-)lMgg_W8=>F4m0_4gk-CCfDqe(U zj%=YyYLGUSdjf?Ab>$iTOCokfA zeGLd2#!EI2<#`a2TS1s=afF8h$A2MxfTZ2It4~dk)OPv)tM{JMDvmhl05xUW%qd|L z=yST}P^1zyzN^n!%tdS|mzG9kxEM4?RT^xBfw^0LOUstgL2X#ug}zvrE@H?g)1GHi zDz7%5zilFA^~r#h&lzW~{iAgwLtkN)9&m8Q8x5I6EQM-jySUd-) zD6e5BXAEe7@oLsD)&RHzLw!^V+t4Y1KKcjnBpVRX$7oB3xca2Uq z%~eG>c$J4VS>a+k5z_t2>pd?h49=5@*q>fkG?4pg&}fF5{5O=C#^^5_pn@qMReB{( zwT7qU&COG_hSo%#?xl10lC~_3T`IYaaH~BKYG&~S$$G%KcFoAGQX#fVXTIZ1 zkhdibL7-nJal7wm?E+Esg`A6bXi8txqc}uw;mfn=;kG??c$}jHY%oqv1i;LUbC57 zM+R-}hQ;GX#&dC7(}bJwDF$13kFgE57SsrnNU)}`#zZRZFg9gAxK);)yBd$UYQz2ByIiryS%Yn(;#%t7-E&9c)Mvj8sH@C#5C>$=O0O zj4d}G{f9|kRX+=pC;ugp{feuEOPpqSD~;E6ZMl4EC~C+D5{J$Lm*v(#*1$6Qh!@K5 zFda!?7YE}@AnS?!2nX#=%7JC?Us`KT;_+!txI&0|eFqc8bG=W;<*D^FDvL7rpXgDb zeQao1k%`o&*4?vn*gBA!QZKw1x!Va>wo1(CW9}Jep9^^dCr}RT0wy;C4E5F71KglZ zND$-$alk&0M=e%t$;VL}tl+pi(X;eS%4jw#L-t&hYOY{6 z(+wNe3U+eK?p%>9S=U0)ACSP{0R=PsHSx;PEj@eGaf#H}*y6}YQ5BC@ET6^Ed-KrA zUOnM>$Y#8|!9lGem#kN~*xKAPOv|$e=XFE7Cj}ZH?%7S&>DnzQ(d4fzucvx$siH|F z!7EwPcZX8uJs=+%*Op?x4|J{AHzGJ%Z4hc(4&|GL2QG$xW~1ujwemF$^>-eR zXS?NIEm`OO8gM`GJTK83Fh!|&W!`Q@&8#%sBOaPfB24s{lmaC;EA%-Hk(SX&Nc-swuHD#Y*Se~tji{!uq_D7mspeSRzGF?~UVQfXGEk%V^iN(QHltc~R zK>3`m>RZJ=Y8AsYp%0+ng{KT@kdG!GcLOPN=A2qIH9)ueCnb)OeHu7GdKUmMwX-XV zH0}QjyV=dQ-Y_i8!gzZN9em8FlyeM<(ZlIPd6`%+|E;{mU;<`P(=-5W0wvY3@>X5Q zq}g2^e-3B&?;VT9P??Sx>(x^QkP?Koo_9gO9>ThHpJjwjvB#PkB>vTXM}D9d-lwDOGKueI=n-E4#Rg?PZ370BjK;&r2b}rO z{Hz7zRcLf^{zhLTXzV3WJmNwq{WK@2HMx&nQqMr5KBYujT4XIX_h)%HBK^tH!0pCe z((0;npDV74`UMKlS~b3GJ~ki9m$)BaAY^#uX&c`YKUT2N8(Gn~o~$7FtV{`NCwSKs zA#j=vU0EA;+o31Y_$mnP))gvv?mm5OSP18Z0_sn8w(d$Al5jk{*ys{=gCTSr?PvB` zoX@Y>&|~}3YlXX$=jiKHRSe;W_!g}CwaE6=sX0{xispX!EyiWC8GHNIiy9>ql6`f| z?5T+?sAAk9PDvgHWzObD!7amANL@$GLq@DBkGR{}Mo93t2)*95IR!aR z0{+}-E3#_EM46w=BAeb!@usN?5*1S(mk%DjV%iGlo1C4h*^B7Mr3~6cEs_Dl&oNcJEkG+} z$I{Ws+uQDH&Z#C`^VA_*j_PT;u_BNo*ZEuU*J6dT8!(z@I3z5HnM2JdjvlfZd7k6_SMenUY-$LSCE>?sk-MJZifvbE?HG+7ChDCU@-bK^?${sFIY9m{~mHp;?lfgaDuit-_cEo zr^H@>N=eZr#-fOPZcrr%Zrcy2GcgN$uE?-rna2ikAiM&PEY`|lP}vftU^dMs>?e&Y z2VWck53TVZ;^cAfO$+|Ta^(3S@<2Pdn<|WyOP78e+Jikd0cTA zDw24W1eW?TK=hE#wJ=gaUeH|s*uy|5He4z+X!oqEolpO%vrxthW?bK+_G9tL8@!zfEq$zIv5Gqn=P_6RFW0)8@D`_c-f zc|HQI;Pr4UR7*n2J9{Lc7)SFdy5vL7+BnWWv?CZ8_8t_49>z?SQs&kkAQF{X&m%?N z|KlecC!Z0Br|ut&jw&62?55$C-ExZ*ys#Dgd;y4~=n>ipHnuzdFN)TQgMc80M8g#OcH zddE&ZfePD?L0KXK8#FCoXgm1HzZ=GxD^G;>^an2`62t)y^)hECdd53Xg@<;2e@e{WYDP@|1B$bqTKzMF#Yn zo{oMRVM%`?A;uvh2@bZcs|E7t_=ll^!EvhWJXAW8eBrU}kWKizaxJ@KHy!`aa9x6q z0!y3QM(C1o2)%vozSa4>99q8-NeMl1Y=#bBDuFV|2;~5Jn!rO#LbD7LFMZa)b_GkC znEwzdC;il4v6^m8lZPgP7?Mo{mxFaxD5psryy`g?QVaNJCK6zP=05o=88~VFd#?J& zOI{-CPmG_?aBkNTh-UX|W~2$=l<1NO4Kqy(8-$SStwHF8jVJh3yb{&Wu&gmUT9uyo zk~uMUQ^qfm8@B0pqNtj0@0VHLO(S^4+1F1oj)&{oq{u%B*6*^N->HFsL<;Wm)Wvg zcu1nMYt9eFJf!B~wz`fUVlQMG{S5fYaBJs0@KBYs4Ht~t0;j|gpK~PJ>4G7jpZvJG z9c6=GS@nJHTwAkNx{J9YyJiEKpVYJPnqPSl+)j4w8Y{Zk9d=QJe^3ks=r9k>4NbOkKQ}6rr98^)I`Zln`6MRICezN)mBPVAtr8|-DJ{T`?IW0o0@$X z6BKJz>WWu(Tv-2(JfMD_6N~QGc4Z7%zn|x_L2jXc5|DqwoO5BIfziT26%-tI_ zzM#-o`xg9 zz&>Xds1_4+p5E4{OHH+y<$(G|2({tRt-`}qR4jHKs4S6B^Hyf$vfu`&xfzq;8N`ds zv*UAAAa}^RW?@8(S3%C_@I~YjpjGFi7*OqsT->6%QZIGAmQ|n$NqT!7Lu}_2WL$k2 zP!MTBN|m@+NaMn?d84A9~5PZGY(&v3rPeOVP zOt=X+kopLORPM+31y$%k5|!D9aoN_2`l8~v0U8V6c71bqOcBRPQN@P4Z=_3RgP%*k zo~&Iy5f%>|Fd$%oYGF9evGw}wjv3`I@pdu*pE(k?6B~4J#p^thht#}NmPeg2R1JV1 zMA>z;iUJot|05}G*|ntI?0#~*w(-h6!3pb}o54PSbW1ZR8A*N5Q^poA&24EJj^Hk> z5{%@Xx4MErqBh5U5vg;vmh~PIicueSIo|r1C7N!aR983GI)LzsXRV(muoPcY9h&AL zuFDj-^I^b>hG*cUOLRt1mNkdhGdIh-WJpGT_qWmO?|S+pt*Uq5{&a6R#B9>OYoxw}V>8|1owBLAo%}mMz=5W!tuH*|u%lwr$?BZQJ%& zwr#&Zq9@%EZ_tCBWMrIqp4e+I3=O9zBxW9bxo9-w+^FcHT7J7U50$GqpM6^9Sqjw* zY6U48&<1xY+(Dv`L5BzvHs4KquD=55=IAo*{HVpe z!IJV1RcK64u@71fSKd^A$|BIHt(k>cZGO^RK{H-;FX`EaYC$kfN7v?>H-rszsJ(dUoV{ysj#J;{cTx;x zyjDs_w2>M2O(*s_z{g&lGah^7V#`LVZNed`&O#miDlwMZc3wm7@?h(9`j|dSkj&vK zb5)!@gFCQOGB2S{n4>{@yLfo>z!`?T41n{ar{g}{xBYb3qG>;Z(PmL$M$S5X;EnVe zl=0nn3K&H*$b8cB_kDi)LB;BxmuT%0a3hTg^$1O{J6<8jU&jwutQ?%`rMgU2|nC(fN?u~Zi-QB5sm3|YQ(Au3c6iQnget_cWm<~)Aq32lfbV7Y0aWL zOjQ7)6kNi~*In2z8?bq|tDoEdan?yFJ@w{ye;Xfe036o4G+?&}oK{vtjzmhh823mn zUx$=|{dpG=c;#Ghb7gl=?QO<9(jRPgQc+|Os7N|RCK&z;24%03WMtBC;UfCox_jR1 zxvNPyr_>Rs*O_v*VvdWZ6AV^r@lxsK2s8+F;4Ns${Y`iJF40^iN_|TCC^C%`v6t^G z`ubz@mAR(42CQJ+YB*&ODcO^oUv@2^=Kji-{-=1zk+m>GisaN%eB zppq(OQH2#c zj>9QdH#i+DbCM(DQ{l{rw7raH0b^^Ba&C$%R$7Cb5TAuO9JDZ)-ja#{ZD?gK1TC4ggO<~Bb9Sr1m% z!uXjs1cgH)nh|;EB9{6g!rMe|&z0{;k+gZx?G=lQ0=0OOO2eSg-dh_Z|I%7eBURS2 zoQ9V`Z`gH|uWnRjY=gl+>hi~a_w{=DdiIpElWeTTqab<)7#gREggiv1%`R9gGZav| zdcW7=xH-Op>gU?CWX_n*7wP6Gfb(t+Uj~qJyNPg3$(nFag_Y251bnnqXUu7?bMrw3 zbL3V32o;1L+iWG!y8TAW>z2rzpq~GUF8vJej&E$6-rb{yCrP=3!3aKA8OHo)5=|e} z{qNBeHnX^Q>;96)%STGh1*3U~u{s~aw;Zx--rj^^U+^Ylg6B0k-rJ+jST6gGSIW=F z$StcnL((xxX9;Rcn?t5r41f|1BU z&JR1q{o^S=?xTV9bF1-SIffb{#y7WNfJ(gNu?kc>&IWicB3)x*0>RxL*w~drwxjl5 z8*`-ri0_aHqF;xURQ%Zb^VR%F)n!LN_Js%ixRwGgC1n8#!Hvklh(0AG@nMGmn2n;6 zd<^T(JxPDCm(t^B?_-CVvY>Ig*EnYd@FJuX)IN0~1KdnBR{E59fjvChEHg z%Gcs*n^fCg=3bY?!H$GOU#$INCGWrpe+5K47t{yOpL|xfdV*q~<}LYtKmpL(oAM%x z8z*$LM*-QXFX3HN>Fl<62N52t(6}~Z);|3HlE@HEe4)qj&3M}W*VX8fKE$!W!7xRx zQe$ykvwwH9-0{Z>XS7dK)&^MyiWYw+@uM;caR$u$1vKD z5a{3u*?cLAt|KyZas~eEn^ItAbT=pCqMDT?q)2=-r6yLcbo@h~ymg>axs^I@D1veI z(Z$tE_4Y`M_?@}QjrXagE?q%kJ`%nE7D*DKR|jc8@vNWLLD=^({j+?nF2+rBv~$(BUj8Vt&ieStHaDfKw&W0*nsAVZ&l>7`Z-nv?$ckmL| z#4YC?B3c=GH9xKuhBW_?fF0XQo9U)M?l_#;L*QsfI&3syj)FfA7Bg1nGJX{8Cg$OPeTTCflZ2Hl7wg{YWxf&1sI{`DDOx^3Wen&s@YDQmg*5dt3 zm?9NxtG=55S977H!#%odXyE1|!~*-^m43(UgY`?M%1@{1>-5~cnwtwWk&DAGrDAml zBun=!PIAXasLz8@ew;ocG0;&obljW-%!grQ??Ue^F;#n;Gsrt+@j+WU6z0`Ku1&Xe zVDz$t#tPlY{7Gv({s5&@r80W($1lyqOJyOO?CaD{W8T)Ui)%cTf6rAG{-n;Yk+?D5 zX*h(5;$v(~(!hDG$0gzGN-NtkULu8O5giS3Qc|LmWkC;gS}=jRix`=-U0J~0Nz2y( z-Yw~_9aZemFHjBPFz;nk=oVorBF=YYQ=Ud`cz@T)vquS23V2w@MM&IGddE1__@|x(l)gE}0D(2cPj`XEX-q#bHme$uYdTme^VbLM#=R zS6T?SrNsRp+*;kH+C8c_KoD)(sw@ez$c)VDxZUwE-@a@nYrc8F?v^Q@(tB@5*_6pR zV)4KbZ}AnD?_a?hc#C|!Z)YJ3az!np>9`wgy~J9P7wTmDom{hIOQH$n@L?l(BWVQ4 zKy){$U12F)4-k7mxlLI(W<7~H-7we$vAVu`j1&ZZe>{Y9;S;on!IbX&wi(qZ$5bK4 z#kJ36am4f9XG}&2oyYzP`s|w5d8>Vu{LSp9{=n!nxb;1CNNIcvN77*v>~oC#pM4n) zb=C1l^>2&oo0mp{BaGps<`!V0M7?eZlOQz4Cl4^HoV4K;CSJql{;JCorp%^nGl>x3 zA^tG%FL9)0Zpllo=(^kB9tDW!{X)QsLLFY|!BBXFPmg0;YOJ)SG6*2DRYOytKujM` z_qjiOb&~|6m z=#Fyo-@1|t&HpkCuM^=cSW5}bqkKMjuS!=$b8X{9Serc=YALjYiqq9#L;kxzTqid& z@7;1lhe^?d!7pWty?O3qc!l;O8FiC_B>R;*HtgL~$(Cyl zLF%Cnk^PY^USk!)9umM2Qrx_#7v3!{JmpDv#l8RtOg=VEXagfM zxFj*2kHqs(+Ap2tDtAepNar>i_u(Tt?v;Rf)aW=LgL})q6bHT*h zNeEtBi4? zhutJ$fm_=+wByePj!<%^*ZYnRmi1(*vFi)*%i1b$zc!-BrDNRNGETRR<=kHaDFqk3 zIO)AP0JQuQ+yz2a{IG;GQi!=Z+KfZ=e4#@akh?FCf&bV2fL)ip1{k8!_&FLa`e0a5 zZSI@eB@>Qjii~*&V`Hg~XGvDi%k0-b?Zy>Erl;N(mh2tr$|f>hnby?deD)f?5I<-@ zu&kYy0~p@$4XBbw+-%V&soPZLn~t+XjGJF>7X5a9$^Bjp90;Nm(OQM6C-|FesQy)R zk_!jfueu8s7Z?6pMx+b3?j%K;A2WZ(qNzI)tF+at6BNxIg)JW|y|!053ae$pP5Y^2 zJ!T$qCLY1-^9K(zs+Zu}3#pbny6KaBev-PEwrhCnEH3Lm^rBJ-RhC2m1of**xXO;4 zOQoq>Za9%m-{c6%+*o*7pd34Pql4C;TmIX#9zF@o9hq0hGAD0jX&^tb#gw6rsLd>y zo;c20gqcu^N2mbzZ9uY~8;BbVxu&N{Qm(e{BVnRBREat(1cAo$j>6LC-8Zd-o2-qL zEES8(=+#w#r@N&LE%Y#-0A}3iY6@fbnvXeaMoeQ%-@`zNF0INa1RWeM| zQD3&7_~u0EjkR;F$M+9bs06_-Byn^-ty8PZ7L_Rny5o1&3&vgEA&~1%RaQHg2-*Qy z-XYeT!&QH3cRl@LZZw!0jm)2Ykg#+{3vkA8?Z4GV;tKZs!Bi|B6RCn%by^=s^AM9*pAVfx>y zGTZa^p0;R+Oi&`_q z=}HfE%PcpdN`w}0GC1-W@m7HP~uE{%kipA9mfwfm_vnYO}vVZ?yGln z4KwbVn|dt_>GkEB^}FgO-U}J5I^5d$N5VRO@8K{K0|jRJ)^I;vr>uUJD8b|Reu3`H zt=#`NDu?C&pUUC-zo{H%c1HI9oyy_(@7@1H<+On-cArjxY<-`g0#; z`Mb=3fi}LFn7O$*L_sQOaBNQ`5IkQ02As`*AP-l-Rj!~|z%CsqT7X(XpO&#;F<5zK z7T4FgLJJcF59syZ0QKOKOrmkXKHJCw0Llc>L-+rvIGe#Wf3av^&4KXt>Sll$Sr~t1 zU)5jiiCHcMk^;lR*wtDEt<_nqQ3Dz>$)E}-iN=83fR}&+R>k^21Je-L>)r(^3Np#& z_t^I07XyKy4NZaWT88>QoEe)rn!tG&IWshWZW8Y~W-i&IwQ(W=8k&LC0|*g)m#8dF zkXXGpT{MUK;ns$>hc?$g1SU3SwkBU)@Fe2eVy@OKJmLw>>-tP}QddFjM1|Q!apOUAlhGOii zX|=y0zmCH(Mlb|qCMEn|D-XMJ$jCT<0(kgnU<2|(bD{gEheyHpe0=Y|?D5G8HuPP; zXw(6Kb%?v{EBBr{oag+k+#eL+XMI#5&^LQ#@ND(-AfV-6%5Rqc9Gv@?IFG+gJHHa| zzsc|RX}?vAziq_O;?h$BU(5awU;bZ$G%V65*zDuMw_GYFJK401^T%dv; zzIpWf=R195p8ni-SD9ErdjE2q{&53aP(NAV?w2cQ#?}V$FW-4wow}e8+YeAjCm_t@ zA2A&nAh8mEB-jAOV}fBA1C?*c24KvUpTBjq*uR8!Kt-#&5ud4#O9Bz7{ZL;xJqU0l z^NXub1hB8xt`NTk>f}Rx$e;F4UL0REzpesUu|MGY?}EQUb?}(K@LYO{6SvY|&tJdL zp4UT9`gbk7(f$K#RtIJpVH)}0FEvzg& z0So*3cdm#7|4mE%%Km6UDf1_sqG_Az+q2%S{qNGX{Toz2a$9gu!2Pz$y_X!e_dnA?_0(8w_HBI6i)G6eg2eH_;ovS zJ~FiN7{P6t+9aBMUUhFP6qQU9DwU7^4Q$7OjNL(FsmNP-kTrtMECAA68_C?6corAm zAho=X3}je#d1&~WGu`aty`H@0Ts(x?_Er!z-wt*61xo$XGC0 zIFVwvRYs-MIr&*Uctj3PMIV`B8A`z7Z7A+Yl@5>B@s}nWWX`FLo#v(JnJZ@80S6z*(rn_d z`B^#?Z&(^q<3mYJ?;cGO^SA{`gi+{K-D`SpyD=!cEmC!a+(_^KYq*_!ctQmbxX30q zM}`s^u3l_~9BSOamLI7^Ab4jwOJEwQC;=8bjbZ5m1^Q~(hMCqC(Q6!HM?2kS#ug?H zuvr`r>cjnJl#oSf-jjy(aw4VQ`lRsBXM^It?cinljHV&$(n<)6__*!JSMMF%7MZ{j zB7>$Z6g2(fyP{+Z&y$2coSw~-gPdpt>%-a&F|>^SwSn_iYiOCf8`wqm00Mt3HzCa zTsjrF*O_~U7#fzxk_(UZdp@R>GE?SQ{;E&No=Xqg-(e~C5p`R*@sgnXm*HmL(tK{l zycKXD0<&kNPiVT0E!G!?mugk|Ri4OaVnLzQmgWRI{75F~EHk*+ts>UMU@A-Ez{*5x zglbepMT`xX&V7i6iZVNrnLEMaL?CuPrPB5L0aySyqE%(KzgT|jeBtT&K^teAeo5y0)U9oJgh zIWskl=vnU2Y-6o_UpE-B4q4kSPYW0T!h^WI+Jnm8QD}p9{XlyQ*#?c<9>1TOVMmD( z(DpvLWIg*0BG?5C8i#iRb^dwcsOeG(^mqQ1fP?940CIE&-ly!OF+On#4MR3fkxR`{E_Y||FC4KXC|f=u za~?@Z^A$3x>*0PUKQ3FLm)`^e$Su9!^s_zD;S*OIsJ|vh@9WjzR&GpL17#lIE>E)y9#eJF?m``_t z%pRVhaBPxl^w#ZtRpAjHRCjOJiZfCd)B>PDDX-CC8kJr(KVXS`tZQWY(dU!W%p*Z`;$Hx3iRQ4GYM91dg+8t-y z?g#yac+K(`FOE7@EGwlq>BzbiuJ7NS^k{~$s`3PX7~@mpT6-CmBe#>8Zd3LZ7+E^zwh8K?6PzGJ>h){5N?`%A2_i(#D z?gQ+VrD*s)wsQn=wz_V?wU|bbToHD1a{t0+(y`^GDmTr|54Nq?qMR@+0;{nvYY2m z4Pkf1G`cbF*L~70+~d>>;S)JibkdIAF%<>E9ZhKrT<7Xb29WZN4FAm_^4&Z z-28Ka9@sI83Eq@*(UgBgjq1H|wG?V*eY1~hLo5l8CTN)EZT(-N?n8A~IaP1dkyAgI zGIHa|jN<84wc#{nq?pPAoL_2xn~l^}e?G!DCJ<9Z1Hn{c0wc5c@Q!j>)Bs%0PBS}j z4WP9>j8Tu4@sHE)u_%SsLq&zMb6}s*PLADPI}u`&k<5!|@N|(qTEfeZ9_?z>Zr&Ok zp3DG`2EEayGleaeNPR9Vj@=8U-BVd_F3dWN(*O^n51ZdkH z5eAnUNJ<#+cboFR_-me%MgC4~R||ZYH-PIjzT=Pr z4iq-U@rMb3IKNltplzUgrIej|Z?(BndtUDUGf??^l=5w3ZF^f6M_X5@ndLTfhbkS7 z-<_V+t*@##bdYv`NP8j;EP_OwPYs#TvD0WT+P6aJ%7I2)1upb~(m7aR^S@PQ^8C_$BkOKNQKB%eo)yhYQ0b%C22PilCw%-KW&nH(3~%V2b68YFHd zjqA!ruf3{;{QOfPF@wq%CaP`id?NTybYS#YxQbRXRCPUSzEZFE?sL1NR-SH2H{;F) zjhYaw3X93M{2`(iO1my`DQXFcbUl8`aZp}IZO{%@U0|s&mK)7uqE)&3&Va%=n#X1h zP@C+Kbtg&&tLS@x)@!aR`cmV02V$}x$2H#-vSw!n@%-GzGwq3)NVqHHQyKf<>8Zw0 zT- zM!@B|zGOAQhKa_|cl6Trm0OL=DY@K%U3z zg}IdsR~1BSpGo`}R1xj)r$=-@SpYX4nGKoF$I7d<1V|yb5Hx!Jf^t~en5>w%n$Ti( zr}m_2FePwJ#cg_#mMVi%mv)CQvh?oF;r4eKr_BDj`7S9N?ZZ=LHJF)rVz=yb#pNep z^dEE023+8j0r!d8_}|y-n&=}~VHrYR08!q7tieTDz47BD9kfl$aqBIm3tB&_KS*jx zr8nf^TW9yz`5uVg(3H&sv z@MfF8p4Hj?=S$;z0Z8M5d(^f?1BaJ2&6~AR=|AS}x9~Gg1RK{0n}r{-Gw_anrS5UZ)w$lKa4k@S&HyQ_o!-Zwk6IX{vx z@hTY-jLO1R#p}Vcgi_HL1PS2lfe%JzW5+oRL))36q=Qlx74IOSq|C?~oWe zqMLg63HJQZqk{k|Np5O`Vtos{+|*lWi!S?RPtfxb3TQWw0~@UsICgdJjW!w_9)eBH z10Jy6pCs1?<7+yN-%?0=VtV<__@5i53NCT1=@gF1J{o)yl?{|RhrxeccKX`=$)d8f zWC{=fZ53?YiroF0?o5K5srLiRlFVLte>H|aBHo*mf?I<B%}=)l)(L20?JY+>sen{!A~ z;2i0)#U|+0FMh)eMTppbFZ3FzuvN zOhPteo4t4ltdsfoG89|d0?!JVl^?h$jeRt+Gd6}&P}@3aFdpgado6TfjIy&M(O0?7 zdaq9VK(aX{-U=i3#9moA%BNk#9&PTNrx0T}g=MH~X1C8DuX@zA%pu5M5zF2UV?U-O_{jb8tv(46GW=GP2)Xc5*v|BD24mdK90Lw-jG z!MYf^UIAM*=;l$Y7XH)s zPh3U}NAkmayoUQaSa?yiB-bwL$@ki|b$#fc+^*njR0o#HX7ft3ia;PrQ{t0CiY^|5 zZOzauk)Pr;AStD#whBn3?B$Uh5bxFHswDCNC9BR5)kQwLn`zHV@_HX|)3K3^iV1}w z&)i{0lYAMjq8>K5OnS!aD|!ok@bf|8eJ;c#u&?n{-E}zp1_V9L;zfh9JK7Baf*o=t z3rw~$f-Vfo_kpISji++>$c6VNF-{Q|By<%MuVU+asBM1GKhGq;hn=rnq`RD~Fmh98 z(ZG=m!>;srmFeyo2L4fLpA2WSkZwmDIjh*dWxLlIXeV8kme@P~zC}LI*VXn|-0V6=7V& zo$>&DEe%5yLTGi8fL_c~)o8GW#aLKFhXRDgv5%J3BdPgj;%08js{B3K|Co3kYEGse z{q)=ce|9`)7@cESBx>q{?(#Uj7l25WgtaX2jq#f(Hgasj<|cq$IR_r-n`F4qoPpab zDg*ONXdP$?wOGGX)rF;A3gk&se?Ht6FouBbZZN*A>Q-{28I&%6Np|VoU!?w@|72~H zEd&d$TAEGlbGA%qaT0Z(KRCE`pu02Nc8Xa_x=p%Nr67H1j+2Q@5uANv4xZ+;E9l_J zoO)H61KI=<2jhrFGrd8ma^n@BS%Q@zT`9j1+OUD|{Gcpn8GPi;!bc26-sNE_?;##l zOWt^jUHz4;57EeFY(S8;v{La(a!TL6J?w9>(|#kU@PEZT%$xEt_tzwr{Oh^=b9Mn!;m6;S4%tu~|$c-jxv3k{eTOdsu zfQ*9PMELloYXzhAVK|7Pcmn(E_W7=VFrUv)swzk2bPERK9d~f-BL;9-5iL4&Ux2;+ zsYF=9UTH}iDug01p>J#-A;TnmJ3fuWl(7aAflG8dDyh==5~9dSH7msTtp1C6N47AO z2_dZIk5|*Z1_$*7guvOn#4>JDzLC^`01c~n-3ik|ux}^#$uu|!A?QX1VAK;2q<~J) zNkE~m<&Qa7bYjnukUiU`e$+i+;^CtFVEwG>snBhF8^|+xTG;1Tq;3T4jtecNIgib% znnu|tm<)kO{wDEnQ(=B6I)Q99NmaeC&oG*vG&%+4jlw-lOBuVxcFNGRIZ7{)Rv*nY zeRB#JvuRPFH-%)Cwa;qeSkG!DQj;O4`XpP6jsV7kPXRxXpaWx!>8An81Hh z4Rbo1*QdW+E?{bm+wKlyWF%bDhdRE22H`S?nIseNxxk)4fv(eoz2@Ds4=O9cepWsF znmj(nLzB(pZQ-A{%$y$*jam}aTH4()p?;j#SkIMBk+#LZH>wwop1K7_peSa^i83C% zGHryf@;U3ida_ufu=MNVG8|)$ zq}Fsj#O0D?W2=37SdHEMIEMn+McC4ape%s!ITGyL!AXrTTQlF=nu6J%CTZ!{lanau zA%Rp(tAiai4|*9tH&zM5tHb5lek)t>3cI$q0NJBZ_(^a>`#rO^5T z(PNQ>jAo47mj>tOVn$$0inDQ7FF{obv9HW{P&4UsogiYR6;FcIeKAXFl+@Qq#L<$g zvRQV;v+F5bmn2K4Ajsnvxk9TCd6-fVkYJR+PGxZR+wuSs=lwi++?TTLpd=~-`> z|ABlHMi+<2P^i{6?*AN3(E6oSBFo6c+eP}{#w#N##D{6pt8VTwUNO059CVZZaD+|5 zy4*Yh;RV=?wW#syB!gt5S6IfDOJt3lCxkn(79vWo@bztA2>0`r6>$xDtmt;c@xQj% zY*r z=7WeKzwq-s#-zN5^qM^g*IfZ>jZyxFrV*>q^G}^n>hDfxc?6`Z-CEn^jM#apC0FZ% zRq4QIAbX|hV0pK>P4G5s!%eFe+%)4YYKzS3><4*}_`)|Y6u+NI19!6A9800wKwT0` zE-*vrQP+|yYPxX{iBf$HcO#Ud&o}vJG!?bFyOh#1BMkw?6AKp00eTu?U3SZ=7NIl< z85lB##;FxSk6W}bda6KbcwyXD2Rv@i@4Q>zLfXG};ZgCt2yNw|LmUksE{k)UpjCRF zsxt3lBPlF|;|4@E;)#S$9nI>i`_=4N@>&u8@qlJ8;eq2=WN}Q<0}N)XWU)ezyZ9Aa zwFcxfiY!F7R6Fv7QLzo@h&1cXt}X%21f56i4^3cq_gKg5*b7O?bnwnS{l6#Otz{ja2`WSS^Xs1~I+_uu^S)Zyw~e&xnsE%} zKy1pF!VavRSt7b+bJ0PccZj@wX9U}uWb4U?xW$W45k^jj_m=n*xlX(ABb0szU&2^C zO?68P_8Z$~I@fJ(O6$`!2KKe(Tmz1aGp5smFVDmW&*bS_y8nZVT1Zq$TTMATKGAr| zjoIn!>>th*zf|Ps@DpB19uEiGq42af#R0 zMnsl?ZcDyQ`U_R8-w481@z+3hW1;xVt`(;isK$YY5J{Z)$fSGt{TwyyLdF1Hmm+t_ zkG)4lA7dmP1P^8}@z9B5sgJbGc_6=v%;5IhP`*?Lg$y6i(+af~<(uPNmn_&lK%4v< zU)P|-(x4aPZno{4e31H4SR8Dwl`kpD_7Q*zbITG!rrYdM;4bVD{^fM2w)X{H6B54w ztugH?)#Wrtmgw;K(?|cNuzGI^U_l`nt<{2XMWUlwzWAuwy!rTmk|PIKKO8-kxF=ox zg@0V{0?3)VK38Zi8Wr*AFpCFF!333Ax>#DCb~(LO4Lq}t#$FPvrMr0zbTj~#Yqe}N2c2j!Fo}=giWZ$C>W)% z$?*9ei1n6{0mDY|)!L8gvVdJvnBT|?$D)UKbF{?pY1Dq{lk8D>c0{@74_&7=c2~II z3Rn9s{4u-c{Vo99M)?|eMyN%W7NnhnDe`Kl*7QP;Gvw#BNjh(okSMir{{{$a{4;bc zGfQCL=3ybsBuBW+MPhj> zC?4+G(*-HoZ)5^B1sz!p-#au}3pq&Z5v-CK7Prxb%P*O^RFdQyPqR6)F01kaLsN8* z6&sCte#F8qh)8IzC5tsw)0b|lXQHm8KEBz(aF&nE^}aQ=fqR_yuPBW;C*RjH6#awx z68a|E;E1bU>9*MydM5zZVFJ0*U^J%gKJMk;0P)b4*3F^HkJkfe=4wNjGtfSN+;3x= z2Hls$1FX5on&?B>HOFvou(s3_*xnSZP2nnJhKC|^?FjbSjX172)2UZ_yEK&>BWo>t<)Sp3Up2O)%`elw_-xqVSRy;UQEB8z55$8-`guk z*0=VzRjG5TL$n1q8b0C;+45s4<#lJV$?SicDLo0@h1eV|1wA@0A3zOVTkV}(ebKpN1 zYT~D58wONhi~6Vp%4eNWZe65(ykhjX=TGIF_MUW6<+*sZ;F)vfkJ833h6D+ol<9xO zfJ4VKE#|%f6%h_glbR-!-irmc=%B(iL6cM_@kuxi(O?Z&XK7tqH==h2hW;JHoV6=A zi7M_VmoU9(QwGuSi=Bc!Gi)vW8W=L5yc!bV!+;UB<3ps`(DR;O6W_H+yHQMKgJgSvoF< zWSGQrc0I!l9RRb!8 zsepyYc6|W+`6g@lgSt}CjpU~YYkW#G&zpU|T*!-a9UHY3Gxnbmct-2VBru;ki_Onz zAEtnn%bh|4`_V|UG-cJ!3L`LxjZU-d-s5o+o!M0`zK6dYNBD

Y9>yaN*YjlvLus z!iECkGSIOQlLhNnAHa+K87!^w7UV^`sTK0T;xkuepCmu4;c%Q( z)LhMNpBwThRuAx4bs*$(iVMIhUS{6DwWYiRKtQG%F0@%^l$Un7XzO{YL8k zoZjIpO$a+k_6A>m_gX4;sM23ejT@!#CGV4u}VEf((-V@i;n@3%T4Vi?E9@ zh|^boA5e^qnPJxMlG|I)^5z(X*Y*gIp}220@?iI|=U0V)Pituor3suT(T6o;+sKML zJYgX*cq|M-l~Bv(_^MYJ_+K4bf_~E>+g)dAaZAeN3lF`lQ6rX5#70!nghS215z%L33wJ-WRit|5u9O<( zUw@*r@VVpc5(+XZXr24d9h}A1ZG!M$5!=F5+ot6ZgqMK{Zf0MVPuufP zw)lGeOY4;Sv*7r`A-MFpESC&>mliR8oTY_?S$mZy)&;knaUWOyWplLHYfjlqy6!vz zb%an;ZD)esPIIA)6Ic5sqaX+IHI5)EwiojkZo8|pMTPctE`9Y*&Eg)MAsAQW(P8oG z7t9;n)Ti!7eIm{RJi&XK1B*$y0m?$6U=(8E*?3J+8iWOtk2efHT{tX1TWSYH_tn}J zX{aei3;r?&Z9D=~A8&sHW*FoqOh$Q%=xyGItAzwk+ri%Cb$<;*pJ5B%IgI7GmAyk9 z*sfyB#m<+|QCs2R>BpB$tJS(k1GP|kuDauaBa8`6JMi?H8aahZ&Ecg6A})2yZD zwe(_EEIGbShVLVVhV9yD4nslxzC|8d29eiAuboR}x!^c04gAxyU)~oE(VTgl;h=D7=Es({QiQI|gNLn|tIYvk zvpnrw;~H}Z=_VSOe2um`Wm0#9`Q!SZElEMS=RZW)yV=41zZ;wWrYU1Yt^Wk23u`|J zYod0JDll+-W#l3_I4%RIFJ#K4pi_B-0$C^<5V5#{w9m~i0u|T-iR!M@Yn|+7l5w)T z5o-~d=Y%gip*@7+DLL~c3k+ROh`lHw`#Nc0^GFU#9wFh0jbrvkEfQE$#rx>_Q3FG{}f4L*|pQ94aw50iVGu!!?EB zPW?T9m*H-OprYVP#{N=ZF8gt{5g@IV25W^SwWvM(2++dDT)=_7e7`(oRtbQ&*uZ!_J#!FAyJn`7;+ zuzhZ}?%)|Gat1eu9j(E9rN@e$L?y%-oJh8ObQZkB|M*Gq=`K5{asRWeCNgV?4w|pM z4LhA0g4DribWhI23l`5d+qFHFc2RFnlTJYD97Bz?3w%90d?J~3qEhVs-MCDMpH2na%w?!b7e zbFPk41_v?E3Gf7$qb6Cq=7QvMoBp6iDTz0Vl|B<3zqqNRo_EL>EIFMzyam0{bmkx% zyzSDYJb0_&Z1G;O@Ss?sE>a!!O0JS~zkrG!W&tEAV|MtPwal9e|7|M{$I6y3r+UT# zV1e^8V6`XKTsXq%>zCJ*?%s{c`-q_P`#No;n^&Ij5?#z-3g`)w z_s`4ZWs+IUrjpv!s!~Z+ecw6A4aR^F z2b7OC%ee#opC!8$mUSFKbBrKHHmTl8OfkFgeas)y+Bk=k(w*OrHHBzO6{-|1xw1K+ z;u5Tw3j*7kK)&st=0P~tGGrRsoKS9`l0>$OQ|85?;Y=9D)I0@0?kamdfLO;7yMu`A zykg%6Fc?@nnRo8!j9h4#DGjm#n1z^`ZsNM7@eTZkoqiuDU@A!1LU8ynMHhuA(hmCr zV~ptDUmW8JT#P~g?8QCCa{U)9M`wmMBRb^8#}(G(G-1KS#ort5uiLzUHgw6F$KYhL zGK_jprwE311gJH=Ab^{`@8>PS&P4?-%Cr5#1alQDTO6UmfnjLaZ@XgS1$ca!^6mxDl zUY#PmGBz+9qiF=-gqlg;h>(2eg3yGldnO&v4rgLsIN>Zibbh8mC{Nb=!tY;3!Cm~Z z5Yilyc&xFo(&%DE$B{;>|4Npj<-|yoDv7YcaG-b1nQTXk;pEoNHs`G|ssTUneQ>|L zNK2WmmMk`=@Rs}UPAp9J;H(d`BQIW@R`fcL=p;g~A653*#i4Zz5>KB#sXcI=F!c3R zF+@98Fg)O`iEBm2!@=)Wp5dfd@y~5QGNv0e>MoXOc(E8=i=*{y#a;UKvBy~m1ESdh zEe2_)nN}Ex0l};+~$zR7yS6QLm7i$`q0|DBot-_}8*u z;@euFS7u-So!r~avGq*wYs$KoWpQvC=X^({vtNaXR_ef|I4K!?h#DU}Z1?_XF*8>L zd;JY@v-c!ZQozdR^L8@_ZTtL1`S$LW=lZ=4MRDqyaSy>rj;+&W}?V4>W-{VY(D^D%v zGhPb_%ENJV$mXtF z$};B`Kk1W2w0gn5$9auekl)EAKWGDs?yunba-h!!*o~8LXx_y z3eJ6MVw{xzG7V3aj)VE{Bdlm}yqR|vt|iL#4UMuz6Hgo4n%jVC$~{XoRH5vq4-4MR zqWfB7D|iyPQBDAgHr#@IPDe_b1)e5Ah)P1p-G*;Otn#ZyrzzgjV*&{~Xf@q{Lx`J(VyJ%oaH}{R z3NLkQ$BTJr3o3H0qiC9KrYm>ATY|3Bo69xjo-rvW zoOyDwD*|ZWF`m*&vszn8h3wmKA@(~ilr-#9#%SGA+pzkjUfQx8dr)r(o#(Q<%|(H( z_p->r-B?#9Pjt_PwY5R)j6mw=DE2dz(?lAf;!f#AbrE1ZJ5a-$>Kb+`dt`e9?{sKp zy+c{)T)7a}>O_%c3!E;?&*{465PTw*QyheNsp$hZ+Oru5OT5yB_THJe+~N4FAJW>D zmC*pJZxL6Tx7-OOCIwT+*qeNyg_lS=ydOou4ceJ5HwfUKuG7z6DsLw|+TO$k`wru1IU~Iy06EZsdJ~7`CNAKwdNVvLzRwC_7!3 zXsXfa=Vul=#lRC3vpyQ{LCy$J>|$vbGGsPWPy}(`_@1SJ^qP=H<0+GbCI%@=UdxqV zJgt6FRY-n!x&pQGWQn$)UgLGlE%j5}{Cs(d#dd!D!?_!QghxaKgy!jL0Yj> zVHX)NT)PF9`&bh2iD)o_Bp30r<;Lh+3GW@LQcBHKq%>(@<3Ax;xp;1_=F&Xii}b^& zD0BY2C>z)}2YaGz%3p~c;)TC*pR%Vm*KB%f%2+rrr~Z644WXblA?dGfBjX#3X-5pI zLF7(Y!{Ll`Qg+D}zlqvK6uC>Kj8=$a;l*q^Wg86;Hw2Q*y#ME&>(MK6m&&!rh$cn>MCj!nh?GGD_FmLeZ#K z7}+?=jxv_UiM&-w#@qH_vzytYp$kIn2e@Xu zz2Fo(685J^m?hKT{X#Vw1S(K)QvI%QU_2Kh1heNy;JCTMn0yZB-^@=%Ca@tS8One91_cEHJ37IVq?n{NqGD!M zr)rOls*}y8o}W0Pjj8Mpx71u8JnGA6(p?+L%)Q84qyyftRLU{K=#bZ<^%t``9E6l9 zw+|56Tlq>-R481|%qP;@u;j0g)81*lEtuiT5F8R+H_Q0`Mm!9`E;whDQzPnShww71 zM8e7gGfVPGF`jbD5Z5O>+CMAzcK zOa$!gEdQ(NiG!Vu^?z2%T0m8jwXxY`B-)DqwT_&p=VJn$-GX2k`XQzfgo6ll1O1() zA_-_Ia}pN`cXXxJ!aR51vY&o_wf5S~YRq3<)|~dd^w)ebE|yz3NNEpF5i~hq1}0`e zkpOwr6&3fv{RO&p2oT`eh>O@z48cF9qG$dU#vMZk4T*js+;2euiEnKd4TgQPp>V(y zoEw1cpMcsyMcP3{1qcA(AxOUR1lp4z1hB55{$qOrL^)sxXJ$KcY7YuSUfu+A_|5#K z0i;2z2Cy|W6pY=w0Fd+wM_vYk0WSAPWJCD;WY_Y)0noCCrT{s3s6(PLVuJ_{f& zZ-2j-GwTBo7Xc0@PT?Eh7>F;`Q{OaGgVec$*H;9LLCjBezeNS|@R9FUFM!|dYFe0E zu&2M!8iIzYYJH*g&JF;V{rRzU2%r~zLbtN(ep}Uq5CHrV67lK~|5Q&v1h;5x{rV>@ zyf_4XIoo~HZ^-ZNoc*`}YHz{<-uY_rpZwPJ=JnJd{`QUm@9y7A4|c&bGqCl+S_A;6 z2v!s@pLdsUX5lON-hS_L3U2<0=eb_n0P}Twe(Gdz&yB%D*E~OPzdpSJq^P8*w6d@K z$iHjkq@Zr#?hjBv93Jn2Z_X#kU=X|X-aopcxG>*U(DQp0Pz=-@{@BlDTc0+6<;QCM z5dBZ+9qNI8bY)O|=d>XFPwW!0gWd(v-r#S4%`1Q9K7Nhg>!^O&6MyZ58|hqK`*vvh zzJKxA*YPaR9@P7J|L7vT0VxFRO#!_26?n$;7pewm2_H16nfb_@$=UMJ zA?)FEFKeP*!ZoOb5z$!xD4fRWo~12c=QD(JZDanuvhA1y3iugwtD}eB`urUF$W8Op zF*x&TAoRsQqKD~7Tk89a576wV^}C1-(+2=>bp-M<*u($kJp^}m*n?h1I{eAn03bkz ziEWn$+@8Azt`Fok{N*w;Gz6GGOuJw|{0+HH0sE;tQI8Xt@)NKHKzM{72L{mk27Uzc zU-cXE;sZ4N_4fwIU*ad=2RQ$NrvLyT@*VPnwKzCDcJ2f2^YGyR_Pf8+1_N>k(=d>i z@23?3)>i}Z<)lw4c0AI-MiJ(g;95I7z?o(p5pkZ3?$(H0k&@3+{7b>TGeB$gw^37d z@`1Kh;poFFB~wX`_#G zzf`en`bg0sQxDdp5iuapP=3ihWpLFu)4 z^n-{4gmvz4j#vE$W%V!M&iy!Q9>qc@)Fd@5eD>-cae|dMxOt5+-JN_CS=^f_-{ow~ zOi>spnApmD)x=KY`WvFCF^RhG{tWF5r-vv??m0#@8Xp$W#?Iz@@CA!9ORJGvIeBm4 zTca`$Ti6}KwDVv4&zKH+`GKzP+9$gM(VLq*(xaSmjXpXkJzbAD4veb^zBe`PFObJC zz;u_Y`Tp|$%&d9uF{FIA^v`7TR%=os78I?*NiPu$TfaqYzQDHH-7H&z4@Hducl;H0 z!q-#U5oi{b(4~P+b#)ESF}wD3`^e2Hf-V%v9HASMI0i@G)sE8uRNLmkNDCVg?`=iJ zOSH*=rGuwE59tI;Kkqvxj6QCO& zE5>(9W(~41$8B2l0yYPfr;fTqOuPBWoqTuKe8LWErV-b_SI>gK>?xFWo+BAw;F#?h z^dvgkcP4ungTaWW%c{+A9rG%_+>>AvSaWx%A6s;wIYgv$!AGxGa9Voa;dmS?c*CWC ziBhmoIb{g~KwHFD1BGnPq2W6LmdBLrNoVEm{bGg zP47BGj3&kdHPgtz6z3e*QYMq;+2j{!1v|j;siBSxE&hUyBB@OGhvv@ zrr0-8cQ-=seq*Mqf7iGMtZ-evm{%jRL_CRQ1GXO9kBD)N9j$N|;=CyJy_x0Bv9%t` z06XMS6X+k%&Naird{`^^fABBz?eFtcX51mv{5uyD-(Ejt%s)-Hd}ouRawCY-3h^6V z_=;*5kdSb7DIDcFjkz*fBUJH`FtS?u^XyO9>_Eb>LpASBm0rO$HmhZ#S>lU9B|-)l zoiuo8z2r)cBN6Agzi`OisrFZic*;X*hRTi|<%5AYD!&@T??(Aka!KBU5Nt0{Dk&>g z=#;2Omo4Q|a-F~-lP&&BK_nnAe=HxM;Yi|cuk?+jHUDvF@Mc2srLM- z%FS#o47lYNvt%HPx=d_;@3LTPfs1rb=}Ei-UEqu$kxrjc!w^;L-Bfe z2cDL;UZmEFt^`j<{&Jp0%*ojR!iFTdWw(i=n=$HB0QY!dPEmGONZ4&IISsCZVD7k>mtu-@@i9Nq&wz#y8qr{@ z_Pu#19Wa0D?7a4)EN(jm=+86@-onkgo2Peke5v|qc9^@T-0B~a%njS+4y-2mu8=c8 zHOdP^R773{qJ>&<5syDadF&zFfni>tY2-?DCm@=??4hL~IN-E9{=5(x>r=Dz z&dLOdVVa~Tvw*1Np`<%v+<78xpn5SX3S2fX+!U~I?b~byoA8$Pj-0Wfm*W-cyeJmN zVS^r#(zz5V9tfmcWNHv`nFkE{A=tJer?%V!z_6+3ML(+TyoPI#us_GH^Mes1-6(Wt zHXJP>6!oW7Y)QJnkVPG}C?6Egk!E zAmG?HIp&ot9+Fg(%iG25iKVqX-6mMyTcFQTk=wO&YWW2XOou;H+Hg<)lh3$40DML{ z$fKp8V(NTml)w5n-TJO4N3`&AV6PGc>02t-!Mq652;gcxbteU>omO9D7N?&sUUr zf}b(%t&cu~E|@AaYV2f-=+Ew49LHeNp{O-SkcyeS>Fvb6+80LO@4hzRh%-xO;~O$< zUb7i$xd1DT*l{>IshcBmKJhkVs>zIE(m9rTLslbXQB^8 zVO%fbi?UHCw2enV!x#O{UJYI(5Ef0*R_wvklkGuvHl%uGV;!`_RB$`K6Ms$TOuC1W zwoXORw$izrZ@}NW&$dg=9OT?I36vf4V79-o4fctg=g%fvTgxk4iKlL;gQi|3FU#AB zqh_~q6rbD9T312Y0k|0?b%-SDYQmpI<}>1u$r2YRYNbmL4ib>b#pGWUL?#WF~g=v_DKEJ+3c<;oi3BCz|-MLjjMXPC36 zp-;29xW=|sncAU>U1a|EwCYSxFlk@Mt{?GMUEM{_7vwl>Mi@n|E8tV24oF@@)6hW%t<*wS1sGjxbuE=?Q*A=5})y{X3cIe1s z^WVnuf#@aC1|koUIOU;QQ}t1h4@=2UjYu3q(QK~dvsN{57%a@Mse0#V2P4|?Q0lJd zsQBewzkhfcu{nMh^%8X~uC;#VIQ!_;RL?Hp;FXnZE2^XjUvKcDtCBf}#1v-f()qS< zC7(P}_)Hp87>dH1Ga&U?nAFDcUE;O5nX8D_RKBzN6m!{HrYYmkN^ChILKf~_%>UaF zetO*k5*8erw?F*Hr|1n!#}Y{*)}YYNK{BUaHzieRZBAxut3I>R>oinb7dx(VMB`8N za@*7)4^!26^orKgqA!QaVEz6nG$)MeBYlaXsm7YPyKX}eAxUDx2s9q0mKrXdW0ofLQ zYb^JJmJ39+k(hM-n(7BxXh8!f942*lOm<1GN3k=i7*humC)G zq;BAYhNxqPb#2=C-jaq)oC%WaErfz!KNTAEX3&bBd3FlupZNwys&Qca?qy7S$8J&H z<4Ne2hV0zUlDRmO{%ML1Zj`+ym~6{5m{QKVUPNXshU1o zzc*>Y|KzzHmDSeoSW93OTM)p<((uzby!%q9ZXF+Wr4#IWNM>epjR9mOO-idRP{-O~ zMf}X8@)e;tEqWV39@XAyiWwZ$)4cGu;>Og${Z`yCh^k&e8qCtVVkI?_z(cBJO2Fty zCa^z6^k09NQ0DbXySu9?7NcW)nFsQ4!UeZ(GwM80^TS(KF~}V|K*$Efo&PLINQtoP zNVD3VYOT&E%fFySKFaz2p-;Nn?ZeyYi?#~{!1G);fpTZCpKB~%d>^lO}CU|;24QYk50ZK^B}O#d<7eld_T&8#Q{CQgjDjN zDZUDj<>*y?+TKmEcuwncMS3~8bZ%ZDZ$x306=uNCU!BMl(P181AkEP_yx&qVIWhXN zqO)`z91Sb?GYwcL>ffiNhkk-lq}RTt`{%MH>EdRpiuwuLZgeN|;+~+Bq|c3@A_F6& z*yT0`Zwc&k6W@~Gxjq-ZbbOf6U0^hSZ-GwbSqEsmGt#3JBLQZM6C8sOK(W zG`iM<(koS)Ue70qiW0EbQ#bmPW>TOVx2`S6&dw^&BeRU|FW~OA{TE0D-6)O#1!CW5 zUaf*=lOk*%hNH7=JDW0v*eu8ydC+U^KuIO>O+s3$qO`LL4VZ3OylrV%Dbsf&X&e0P zE8Rc1cT)^I684Iwi7LlvbTd#g3Oo_q6 zFjEh%NCrSj_3XOsYE5 z9TFw*w2T8uf$;_swjC=ACYn%ge#NXzQI5NU&XIEksRadP&P*wqNqgjipGz0eRO%7q zPH!E3IX{`N`)g=)1HmOEdEneb7vE0Pedhj3;EnSS>K6emW4+aSNbV16SQ|r{G?ta; zZ=`B^%(v0lHB?eypugugv8dDZ?2ToZV^|pu+{}9zwQPT5;5xZmWe{*{icrGq`9SV_ z>7k2}ih!nRs4A*$ZVaPLdb!}oy>bXHXW2(cxh5+!o?~bkt89%CO{yZL$Fi1qa|`KqQ#Wf(tk3RP1sNX3jzNR2|3%k@*N4Ppc5~X*Vft} zp(MBIo5(L0Ln}LX?bYo2T7;XSjs4Ev9ywy*|mBF2naYO~i>!;9}_FD$lx@IIAwv*0->z z;U5OSGjGEf&dMI6_nwS1(|4oXqkAdRxE>(_%vshAp<*G*s1#7`3?C1JBe_j=od2j-GYxu~|8BZxCiF3|P(`|lZjugKJOx~@uIqG*PV z^lGx=FvJkp&`RqB5V}%F;giB+JFak!j+!4*JPPeWY#JtW1@h_9!**y(RdE`T&$tEK z*;4(w@r{loB(60BPcPP1vGz!Vsw3Ya&BlkM%D#f6 zML&x#fdc1x<0%TJ*LsJ5kJSr-9ZHJZ`pU;1dqvfY#2%t4Z1d6xLoTR#kBXr8BzOL5%mmC;JY#oLVkxgBiUSMz{pfmC= zb)37s3IR5IASfi|fPdM^0-jX*z6#d`Z%}Mf6j0iovR!)=llkLs=6V~TE3vpCKrKZ{ z3IKgrd@~t}=$1;v!~IafXUAS|Fc)2D8029yO)JB5F99!nAz3wy{js(Keb6+_t*IQr z1n$6Uph4b8rv!}G1?s9ei%?~K0Sniaba~()uwAk6$~HO@){1<`5D!_l5k!>`!K@)& zL4YyQy|4!u?9o+{YRDY041nMhwhTXuD4kvjn_5~JsmjWvTuH{gxS44jpPKcEc;%utC zsXoJ)L)xuCh|UOq_XSuj`gDgFNyW|Hr8#o{H9+bDr0oV=T(KScn#EWaAMw?&Eha)- z6f?%?%D$Y^>w$hj7RPCIX-N-0#RYl$A;Jk4N~=}igaXerl&_!j2zGWL3yDRs^5-fY zXxEgxhg7=F2;}~n71pP zk;vtC&9U}8crvbM{T!#)-!3=iDNE8M$? z8@GTs`&2V<){$a=Lki57cn~EOkpXft>YtgVj8gClLKP7E8nV37=@=pY-sLB(kc_$- zbooZCT}J-VGAaHbAM#1aIG}=%OkTO)OEG#FZ2Fa3x8B$wUMlY<4h zCCw0I?QWo%mrb<0U5X3u^vgMm(b^h|#qC%S0?uVoj42kfv);?@q;B8!{I@?jA&S&b z1;l^Wp?xK_<(Z8Vm;QAS)6bvqd4eaQ z??C%QfJwQ!AE9o6nORk<&xll!hhb|&P1qX=*oPcpjx&*@y`aE<2ds$y&USeY2(Hp3 zl+s~yF)ei?hoK-2SE&>bnW+W=|KaC@=T2yPiHFcSN$w@FSbcSq-g|ws2-i>_G-hM zo1C+;HF2rP#3YP>fjL|6!MmZIqwvLR`MT#Z1X@;uOMO1PKj$X#D;V&2YrcGX4)r1% z%SE<#+j9{osb;um{Om6$wnMoxha?_?s1u|+?zgxRf1Q-ywOD^_L3A2D@v|iMYYSyc z7=f78_|y!Ets=+Tr>OjQx(QB6Ohb^cA_qhF_re*RvV2c_2pvQqK0z^H{TzH$S9E0| zM9qrICqujjM&bwcaP7*fkYU_IYFlws@&O0Qz z<^p|uo>0rnC6a?PX7+fGoi>SQ^UR_w^!jCAs`!m(ZjDn#!~Q7t`ldzw8aPJ9A-a34k8uGdJH_ zLmuzL%gN%rHrKhg!tYpt&>bOP{l$Z2U+)liS=o@q8U^DGyV$ZmFPv9CQa>zON>xde z2K*Spe_8%aFS5Q~6L;OVb-B90km05X9#d621@xU&GPJMAw{RGV-Oqq0(Vr;9=q+=s z9T~19e0w0*(19(5WXn+2u@{K2^J=SBk@Pj9zdTCVE99FvFfzL;yEaapZgz^!MYvX+ z$2Ke3M{m0<(owm!PHk9v`J(|>`^tq4NstB<_B3!e>7~Xb38(AZXQTWAW?I)MUkpam(^V;&ppT?l6`}Xp59vCmNHXyr2)}I-o2+hmHO{z>f+TK z3ic&y_Z?#(GEqndKncvA)(Ho>f+lHY9@O=8F_i0YblM3WmocOydY}+v8fo?tPFBcB z2gNont+q^3<@CddJ;Bo!Qx$C9j_o4d@sXvL4ix3u^jV|g)Ud#{U7N@y*gJ_scrSIe z`me3Ipa^zVuFr#3>F3vizJb$%J}`<^*O7kc8Frv;WUW5)R(k|H zYGpKcD3;q^rSWB8Io;Z$>tnE}AKMv1xkk*Wc^iC3J3@DM7NLOg`Ji_c~K(L6}zDKhsel z>M1B#+x;%48+nOXB2ez>b<~CWA1B#|s@6L+IV2gQVStYCAH?0&Gcr(A8So8v_T?~Z z6t)(PtCw&WXPnGJ!Wk_(xPUqty-~#8e_j!(7HgjW;o57wUvudIpW!5)AmpuQ(5I-v zc1KV3TTZ%7bl72A?7$HzR9Ub>W25|~#fjdquFo-f; z1Ie`Mgi(M7>z$~HQhl&EJ1L=&Qlmo$!Ul1%VM2kIuFFvi&8=vD!5et6Q~$TP3hVzl zuENg3{{Q1DjEoE%jQ>6T4@a3^#?;o_*@A$PiIJ1ze+E{X|1prY(P*Q!l^Ctf2QVlBj5=Puc4TLDHs4vZf^W%C6W(c z;qc@Lpr!AvGW~D?SxTD$)b#XhL;JP?3tI)q<0~3)1qLvzA)9?>EG(^o6`I&V0SEAY zQ3J*Lkzic+jm=!0oQ#=TUCbKY8W9Rj0onul|1pyDndc`^Ex_J)7z7s9(caz6Wh9aT zT%_Zl_8eKgoa(b0kP+^w>H#x=ZnE`xb*`uV<^0!<0a!6T{1buaZ|#gf`d~2tez#%$ zQzBmW4t^efa3M_I(wZ77Dtc;y8gjtLXMqgh8UcZli;pwS1ZWPy9iIawC%lgxs|G*gXMiHW z?3)}Mn4K8{1K!m#{e_rdK!9>dL>dYs@<`=7ks?U8@0 zduD8GZMc7pebs$1MOji%Nl489?mYCl7#Y3Z0?>=80T5%8L;I(sWTEzdd)|NCQB02J z`&Alz#8pM-bnyD8oZMOJ*InqNcKrwgWcsBBq22Edpxo$dLW9hIg&lj+WYd(^;jjKD zv2ybGJ9fXP_+v-%yBAojV{QGTwDeW-`&%AkBglsLi_x993i{Ov0QFjDW$@Nls@30@ zrUqyM=GgG9UjwuL?t&YLAo^gFWP)Fy#mg@s>`YI>UH#R*3YLNO%`xpA5 z9yopFCx`=J`tnz-yBol4$&Yw;@7#qv=9l(k2exSgKOVIo<_owHFn#9Nzb=F3$A25Z z?24ZN-hbm1{ylU0bua#gHL+&Oueq+;wDl9X_q62~xL1q&3%jvzlS?D;N1^Za{2BZh zgn|1PP~Q&x3*5WrF>ctpZeaW0dJ()o{~3OP^@%-z2K@Bb{AA~sMpPCx6U)&O`)Jmx zSXRWTPWD$SD^5SKIoTX6T6Lus&juZZCWu^?fksG9e@($2>vXTt3pIK)lZE5dh%g%U z5|#Nvm==z=>4p!Qp?zB>TkI~g_C!6{s%VTTZ8r|sMB?hIj$Ax)1b1hOXI1W-B@w>h z&QkMSR?BXk$7$z14*m4I=Q zg2K&iY|0%KszboAau97~v$tU}(jW8c3=4$DeTW>Zm*h*0tmW${+X_3AI?=DU%8ahS zaFVDY__<57_CXguXZHi6xYec+;bftorNg4q0pn=H!VV~?DB2Gm`_R0G%nT2Y6hmee zY{}jA?5s0YX1$CH@IsHZuUGW|`1V-ePE0LX*W1rw?Li~vg(qn>0CqOe+W5OP767=9jXr%v4 z!-?~?gMk+`FT7=qY&wI)75{MG{wNfuw(kuu5-~ILG2q2DdyBTVP1%VVaP9NgA`!)KLyR z3ju1m_2yQ=v1Uv!dw!^_D&(iG<6njM{Q@i+znJ#L_%?SC#dC(NqH=rshTnG0ubkCc z{*S_BOmCySc_o+^9i11jZ) zl*gFsIUa)s{^X5+NjljO5r zZ6H+C+anw?;=+8cKNe$4ZAA&$RD}HCsQEf`JX5orjiH0mAA$moNKS3fA<;CHNs?wAZ zip|qI?$sig4BA*SAyS=~i)iK$=B547WQ3eeqgLX%$0>)|=S3t4I~RWu+tD^J#&nmN zzKm-dHUak3Bb1t=zvt;MRE_PkQ%6|NvTXD z8@7ziVQ?%mIC|%u3OoJ69_RZt9np|RwA76Pnf_Qnp%b$z_uty2C29N564of^^es*K zOt}wvg(r>5qv!x}mInr(uHs;j$^TKMtT%+?HHIEFm(bfM=Rt;6LBpZ+=4TrtoNNrm zo27dq6a_~9yH#_)@TtnIqke9hNhg%VS*Gxt`NeZFb-b(JcdLeF9+=|N(m=$?|tehizdnPdN90asxZWX4P zrvrneDTtVP+{?u_^f0FW4yEYB%+i1}ICjyx&EQHgR4P@2Ljg(h^Rg|NBzSj_`}jA;!B zb`Uue+Q@=U8RYchXmJYSDVDV?Kbqx_r_u%&{4uy-Y9I~f-|XGMr7g8p&}9#cw=v`? z0&2VLkVf*uF1tt{SxDkGcuhVW+QhcZVv${L74DuU1NcTFH5sB(xPGMbV|kT1jos@g z^7r%!jv8GE-^Z*pqHmOKz=mj&XpYRPDKVyf;koj!(BlKoUkTq3b;~q&0M8|zC$HtY zFSyu%186w^R(*3BRGXV+PTp=%;^}jw-E$>Y-S(SMc-d?)OBkK8VmbZl(1GcC1SB8z z0GftmO`cs6Q*j#+%!PHly#0B3XvvUqn{dlC^b`*882}t`DqCH>F;r(%uZ*O!G0z#1 zbPG^6pQGM$ZUJ^!5Xq6F(BCAtmJg(-Qk7=q3*13;7FF4`F^!-q>GY<$@OXCPT_4hD zeH^r%J$(Kgp|k>@S^qcW($KxA=JS8DxrPeLSoj`ZZiDe%!t`=dJ1Q9)G#iApN(ss3 zh8Y+(cPEm^2*@V;1&?0RQ1Pc?^FWL=wayYi0N zrCpKL$L&$^LWw%Ja4TS8n|*XTn! zpj#_Xf_XQe3M*#s{2028Jj2d6`cn(nHqEJ1bqQ~;SKc#~8j&4a-CnGx_#jmAN*pIS z!!pGvpeM>*p;}V!;Yd|wsXV2@Szd&Qn)B#tJJR)60rE#9-qcHa>>&B;ZwYKe0#fw- zJK`y4Zc-tZ!Gnm_-s#N;Q|Z7Qpvk|u!T?j6gsyH{J<$(5@G^26UEy6)LWAoF;3s!f zaxaIx`H#s3qE-%ZT5w5INhKybW!FWW+K3#a(^=W zjNJy1xU|nsf1CNk>W)ZZJ9SY;9pN+OHj}G=m3~`=+K?OFnCYHMCDp<&!8O}8_Bn}i zGyhx)4X?BKk?hl{^ng#5C`&U!OA4h4Ri2+hrcBiS3-{s} zCI!1=gq%&+KReyWmp`P^sh2!3u+@u$W~SWgSo*Yti^nWO6<##g_TD4jVI)Hj!oj?> zVNRGxV69lnfooP`!}SMs=jGRCciw?XZKHYLWctf2S2Xc<9!|Hh z#a~o4)=L|#tSX{W|CnX1OfX27rPi>w+i((*UD#73?g3)Ome^#UR>ip9AZ8^HDR&^# zt(E)Ovq%sraC8%kAL|eM$Avh0{QS=6Zc8mVQViVWP|(6s?ZBYE&tjPg#9o*Rg+Bym zcJQzV{fxxyen)TP^5b5YSzw1=QWNA}3cekipCo>s<`1e4oJB1FZv${>@YtpGx^Q=) zU-?DXx0bv0N$|`tFFk^+wAZCrTwrqwTjSu5iCl`(o0q_VUv-{O?Fo0TFOTJismLoj z|I`+gkjIHCa71hsfL$KGEBEs6INf=an|(f`sbcXMW(yDX#U+>YGX@YX65dXAvKH-R;6uS_GO*;;j&}*q>YJ>6novxq zV2eCha9GK{L=h+yx9qlU+t%5(ZQDNEwr$(CZQHhOd*AaW_uh0T{h{jz zR8pyWR#s)rF(&jX#rO6Ny8SHs?)jYz`&U@|<^$>ro;iJlfpj$5Zs-BZ+zcBT+{1m` zVt+Uom4MeK#*oBwh8{Icou^rD3FxS2#H1qQ5VIYO16#E`o{O*eU(KZ~Huv+Wt@S0~ zQ=Rnf72FS@u9{ggxM(shZ_UL7j&bp{r6fivYCx#a}JvRkoSePQ=un?e+iy3 z%He49z@)W@c&nY)p%_*hPz^%*FLrdgD43)}C5<|ERuE&VmnJ|MXEvRpSKHwCvsS%E9z`)$8R6|=b-o&HE4ry0ZqQ$B9xVtrn{QP zOThLC>nN(vnDi)KKnk8zPeqXU#9JD#m-Xz_`fkYU?ILv1GZIkHyDN`wBBk@*@Hf$O zqUGZhLy{j2k+WE1b#$AK3P>eRwVG-^@9p(@)mg;|-VwI}2&lIK@Xf^7`boX;W}xNc zJ;{rCMxL@af;%|>L<}2cAQ~i^R8F8rLPS{T%{~e^`+Yn%6bd+_9D`Q%tSSy&-@<5! zV?y%6BGipu2;@j=Ip5^~<0+zb>ZyT)_4Bj$!1a@3aFGp!j#rBF`FBj|QeKbtc0!)K zy==jVsRCBQXV7#Qbq-L0^c)*J@IeNzTWu{r(?=p3i z$i6#Cu5S}6Zt%RnFm*?sKT7+Ox(eYlUy~%A=jgV0d_PsKg~d>gw&7J zDo+JgUe7nk@7;$#1tv?JQylalX37aZWki+c5E(by2@P&rV5}40N-015C9d_NFU`6U z{{L#-ZvD*Y(9&S}>F1WyAx`L6HIlB}78b+yGzSrC=n)&7-njf$oxZ1#)C{ zAU#9e1Xz@XQsRDW4y)>bu+a)C$pcXbsky5|GPdrI*@^i(fFCL!^(M^VP|2be?n82c zw&+DKIdkgWfCgtU#ulIGc6@QQjE{w(wlz>m%!Ic;vDTy}Tb_F0U3wu!W@A(ijCN}6 z0S8g#z8DroPp8l3f|krQ8=}q!EPZ^gvazS!Y+wGxI0?w8e>=AIs&vU?nbHBCGAY0v z2HaTw(|Hqt6cyt|)Zs4#duQdtv6YkdDV-e#4m=71!hx%k*#L)acy1~>u}b(GjvXr# zDdL>pP^lH6wH+Z0bL~bCx#G?6l3ur^wo1F}&H!GV`j(Hr zR4n3K&ZNt1o`WyMBj!IP4-g@tsUSq<&dB@Z#Z*;GPh*fQ!YGoHvtEK}BxUkcHc&5w zZ3S39NIsIahsqU!^P}h)-X=sunbwdIG)v7@AHV4P!lXqs+lHhA9jAd@4mE zuh;_mM9j3a(6qYnL)FA{vt+7?nv%Nyd|{9BBF3{^rQW-OTqrc-=pk-^Rzk? zl+gykl1^#FqZ_bt`aJFl5zO=Ii9FyE$gGA|NEe|IuQtcZ=nyKM1!{CkNs|jvON0{e zwQr=JnlbQWT6#ZzjVs4zz?beE5#08r&9ZQH0IYFu?B&98Uj&Qh{vkleO)uM()*GPG z>B6773-~EL?65pHou7TwiN;6#EOctP{Q)+0e_TZ=7=$%E@oX!>UnxTto?D1PCqiMn zmZTg&7PV`lqmf=gni-G2y1jmRfuHD{i~BLO4E{7S@PG@JyMTMBzwB9;hvV{*MS_nv z$df95#@yx6^7mVuDej0%wQgDUkPIitZ!YgcGOYbjFA2!>*`nYDJ!Vr-1WN{OmWGa z2}6=%K;%N+8>Afhyb?m3R#-1V7(D=N?D@WPW4VdYLOWu8Jn5lk;<{40UPz@hYvu#@o-O%pqosiLSn%J!@*ZTz_jw>~gB3rlb$htjnlAr9@#VnmwNE6RujJ$LZ>&fS>z z$SkzegnX*{TtT8%=K4XZaIcG-p6Xy{;D}3NZ37vujjIcd*BLMvUHuH$O;REiiB1>q z=N{`&(e5#U3JJ{O2Hi1ac-N?<6q1n=pgWg=8TsCH=KjWg1Fyqqf83=?d`1dV0)0pf z1_oeS?5;Zzwvr94mWLg811|rCaa3`ky|ONupd62PZ!PO1`T{FvSm)b&1#YNLK>9r7 zgYrChTf#m0jSj=`4u|W%^7-c}wD5XFq9LKXYE7#U@#xPk=4Ov{hd5VY>Z>1)qSHk% z8wlLayQ;OG0#tn_Zf!odfhZtlAj6Z#WMuTM89c0@>K7AcHmiC|H~}xH91nGA1nLr6 zS)iL?G&1v&E)DA`=PX455n38IPKx7;sFDeMm^D3rDrgHaMC5|T;;MJTqOJSk*>#aP zx;A|%-11H5hyZ8SU5_vUj#OJ07c)9{pChHcx6W{KkDOV76(de-YsDT~!6@gD z`ir51dEA&Lr`8^~hXA$)-xG0nxhe8!0&WOBk31&$rx0{SK^vTM^Y?&>Cs+t?OYH*3 zRHxskT^r{N_ZgG<__=l4?Wi~eZXv;LHhSp`+;Y^oW}2`V9Rr$IME7L$!Ln50UhL`MkJ*h0t!*Cxl?!C)EZT?%YV zgx9@gLLUAd$w-8f!VcF-6pPQ_88=1vBWohB&KB-n` z(`ym0UtpE()05R$8avJ|uozjnxTkcOq-ZJqsB(xsVvCAjeiQxRn<48BDC&$gjPOWR zrdJ2!VGSl4^rY2Rs(!M>CFk9!^9gk1os8>bfLR%9VC1!cnrOTjk8nI>7edkUjzbxr ztLP74)g3TlX`=e<9jKA!>3Z%pTtweT#MO4Av5~Q&uAjofa;+TFon#=v9wN3$)*R9B z;{=LXG0hC+d@rb6SC=4YY$>L|YII>$B&X_$cpkl@Iexj(Iy(Z{qr>{MDRInaJt(;!i|R}RdD z()_j(Au~hNCYB}i{!dZBDolK0yH$>0R5MnHIVNj$^c`CP()-`1M#d2Iw^x_NPWUC8&d>dQ&3$T+q)KE7CJo)HPI>qm3i^`3vNc#FbSWeT zxsY?$9*U%~Z1byGInDTz8-5ChpJI9#UBd{a<|{Gur;k5IWBE-4o7)SxI8WiIgx+S@ z@2K!)^z3$qVG-fpt+t9j((z4$D2AD-a`FfA~tuZqSbuo7>FHuLXh zO_PEnqWB%Ut^GW!Tz9&)+wiE5Z5Tga#nhL9p{P+Gn3j)o?l!kts634<8^vm>))_@K z-i*4(=J27r=xxOoIr4WS*LIQ7&+Zp3<#IzN%!RWRT-EC!ni^rSN11-zn#JhfuZ)V- z!1R!i?6#om47ZEu_;8ZjH)u zU_dFI5}!i4`XNBu{T&*oh+FWi4&)+n-cMv;EvS$~Lw`e`aGQcZdgIiG$>?br z(OAy5@al^Bpk))jh{(AmInr@oi@Q&|Y{8Pq@T16Lc%%@)08l5OFQO*gR3o|USJ2`1k=R}WxME0MV<0Q;f z|6FreVj}6V z`tsgq)<2OTooQgEw4LaZcAjmaWa-F_2M4$I3NQ>D&RnuNuza6IhyYtmAJivusf%Lt zF3o>8wq+#g=Xk>Pd=_Qj@@oCTo#=9fC;rlcwnRv@*r!G6g_cY{|KZfW;9^h$wM?@$anm2axaivs~QoBjYZDFm_MxEAn?u^TffBuPjO-iG@r zgunP^Cc89G$-G9t{-j|DHqSW)69@4YuwWfhL4Boh2Tzp;lw1uY4hdFbo-Pw86Zi>% zrW)8vjlL`)HDHw4U^~A|NanT^NwMV`UHNuVHC7^`hPmRCqP9?P^&F(RV0(L?Xna1z z8m-Cadg^qP5GrwNlOH?V!7sl3ZK!fYwzv#y*~L_z`4;H~jV;?hE>D-LE4Ee5Z`;u= zH#|A}B*lQu6r8;2d7cZnIDGf7vPre6KitBr?0$Vf1UVwd$ zOP5`2O+$nKB4SIZClVz!ALIL1#ioj$@9&IpWBhK78v*t!|7Ho~@REJC*X>Nsrre9Y zR(W&0beCfk@;u*v zA8!tw%_=!sz^mor-R7#|qh?4ha5U~9ZzLp%nh=1HxNsovieRvoS~5UtdcJc>Qk&1}*ndsc$NJ3rmEJ2fb+F^saPc%EPOd_`p?UyCMn2n=33ns9cV z;Z=-BI>XnvH9L#qLr|5B+>CrY!x7r=b?V%gSULHSM{BP0?Z%z!0oa#>$6dd*1jzQm zSF7q`Q6w3;Qhfo|XofXFQO5>3qnVfWmkZN^wcaMqNs7TaXsdJKB2$hc?*=dFqR%Vq ze44{r9%}#IsOYHn>~u~UN&Cb#ciS0=5fQ`kaH}x#*_Vj+EL1Iq_arbQjmub48Ysf6 zmT1RXLAq>!Pb6mqD*DU_#D!Td(n>{8&v#;N$OF1+u1w8~hTvc*kfXV^Fy_)q7X!!; zmD@6Li-Ob1pAu=87~VKKr-A@XUZ#w#lcSB{?F&xtEHP7pPV0(SLWhDce-()|1^x|} z2~#`0u;s64aL#v`xI_L{L2hauP}Ijgsx8Tx^8|iYS-8N!!+2x+jEp6? z>wz$LiiL4AulDwe#R&Kt9lJ=RB_%t^%>to-%=3Q_^Ub?gaWF$uAZ^t0fuv%t<$ZJ4 zfAZ{Q=MAZu9Z_{piRKr_Reev(wj)?Lm=oUQG%KbzQIOp$sm3KF!Tx9u4Sl2*f*AsGX(RpyUUaUf``GMkb2HYTvlrN>ROu_wknfWqbqF#Ut^ZhQ$i}kO6ZiKf(7$!A*2)`?QOxyrJkQd(a#u> z%m#x?QNf@+iF(d)+5`B8p!|2d`BnFMtbomOv!1-=q>=PVmx4|#o5})C6sKV98di~w zMtH28`;uQce;Hz3b_2B;2}I7+CYpxz;OH?&;8uOuCArirv z#3XM0h@jA=g9w6HB!Tn%8s+>FZw5L1bXFJ%OdqbBl$!w@(;DBf#O+zWjhj!(!^pBl z#{m9Bv;0JdBg@_lUvx-uwy^Wo{}8(t%=#q;RoDH2vYux)DsFEmIrcUh-Yp$HwK~~V zc7BWt2FA}5JGsnZjoD0uEBAdpZxP|L27@HpDsgwu^YfVHX@T zd1foFbW+}r{=4DZa*J>LG`v9O#Y_GE0FQR-26|50HOi6eVXcZ3eLrVX`Enb|M)B># z%g}Nx*dzlocTqPFly35|ozTNFBkWxSVUPH)@RSKqFa=MPg|bO0yEC7!Hbzf#9qPAs zR9ZodwJfhd3HuDp81v^|rmN1LAH+UdkA~Srgk{N60Le6iH|PFu54O#e+j4TK24}8% zaj5HN#I<1`wFR*v4zruZ3b9tQg8Q2+=D?vF@eFGW4v2g`;I{=f+tmKAxR-1TIHyQ2GouDRY176&|W8 z)lfng17!~*_^6`-bZguzU_3LFEGtysB_}Q3e%#~Xb-{T-$o}Wd(`N}%+ZJC)l9lT% z_cb?8m<~BpOj4BcBGSH!pQD_>mmRR!2+8}I>*zX5CnOHRCC~lqo~HnyD7yM?1*%v=puRza1uZ;*9emGp|Oc(E+AadV8RTz%SSfSk)sMs zPTizwJzzX=E3i$N+;=SFaX#q5_AahZ1K+X_i<1tK&LVdJ3qjGasxdhGk=k14dJ~^b z=>@9lfOCZw*iW$t4elsna}0Oh95XzYEdGpSRzH`Y@bZkJ9-AV>Hyyl2Fxy1I0M1kp zY;t*gi#+1z4fpUQ`VnoJMB%oz6wMk#t(4Y3je#J#+aJX*r@<0uHR~bE&i3^NC)0H@ zbQ<*>Y;f=sj!mItiuF25L}$tXguHwj5cppE zKh9y*J6OH-U9}3^I;i&8b_ET(V8@9L_yq-MFOY_e(`4;*%8o_QyN0Qw>~J=aMx^2> zEk8a1EQ#a z)JHsoZP&EoV0`JdZU$+D#1@C<=$kfOx3f^9D8FfE@xATZ5)FALjYTbC_e20Qj9TZ5 zo~}YX9s^EP%)hAZ`8=yem_YO!egb<$Q6e()Ov>HxVaU`wW&Sc`?J6@FYf_>w;sh(_ zS_67Gzc|q%6VWXeAZOFo~k0r6~$|A;l-KWd}F#N zc=e6<5UYawYqN;#c1AJDd?%i^r3Q4^L=E1K8zF8E_R1`fx|gCD5Y2v*T(PhOI>L9( zVcev_kR7O^8M1S`4jZXJ*bZ59|3w8oU?RpBT++9xf0@PxH^Ps6)U$E5%ygOlqw8qL z&iUlWSl7JPJoM@9xguuMiDI4>!r8f#4J>nwTv zqtsa)=99q2OHHYj?2+Kjr(txWt@P1LXrTeNorsB87uJJ6$9+zyLlc+2HXw>wUF}FN zt<6=i(1XmY+}NDsduw%0iR+A2QCfp|xlwvfiCnO#3oQFIX<`I zq;8zIb}Ske%m#j`sLz2=4wQ;)%kXbL9Xm*LMuHo|cyfCg_2=98y%#{J2AZ@t|A~-E zyaQb03yRt&tk*xZ8+5*`R?YSdaU`;TRIH<2%ehz_2gdVe&*7Uo>eOp|=&5$X*!x#Ex@|i9&#}mfWm4v3rZ||6u~-Uj9qBQug%mB-bkT zX@2Ae6{`*xw*1&nMc$4{oc_n1f>VUELAE#U3J9OniA*j&q!~(~M@{;zhKvQveQxar z3wdKukG}xaq+=NWFEW7j|CbD4`oqlrKly(q0wzW_rvC*6{!cQ1iJ6g|<^LiBqFO+e zQLZ-VV2H$BC1JP!b4|}NIJt&~v532}i4*GpEhsLKZsVG5-Tt)P-2Sd|n$@FCIj=gO zGRwzNR5FI81xouT5P++Jp^2L6`lSU>K{NZMr$@)9r=#Ws2ySmI!@b!uatD*mtq)@z z^?j!Lr!mhBq0%6;*@JFU`r!aH*th_ou>wGo(?g@vGc)@or>CF#!U)WC0oWtES~>aw z5%Z%R0XX@WA^>xEaA;|1wg*`JoD%zOM1l1U3=WF?(!2VF@yxAnObr3%=^t2vHi0u| zq^|)k@tdyjtJVHO2~67_UtEk$4jt|9_nRBu4nR1xpcLhUyQz0-0xJ8{@te8kaqPMF z1Bf7d?(rov4k!UERafc!#8>*$X!A&C{maPr&1}G&?E$^mIWmBA0{8tl7(hI?k8kwu z3v&kedjsni9DmHW|8xD#71uo2n3?H?PGzj-tKG;919mmd#~_ZJLp1?~i`HG56beitGq7*yZp?+FwGsHP@Y-)}e^8Zhlo|K2{AmM73tT7Ty# zkp9p2W3C+7-ZK+8$C~>$X|7WaX4$9>EF_9owLB_Y9?jBe@e+Xm&62I_4Wcl~ufyndT z!2REoegfP2y(WASFw`}E{q+Tx`5>grUcl>t)0Tb-?7p#l5z=%o;en7ZzQFJOoP8rs z0hu%Y-BzmcmjJGA2F4g1@BCMMZQWPu>iYNXH|I~{yB@+8!(J}LUddOZ`LD%`ZFeH} z8}Cn>Uu4r8a6cHDZ~yKDAMC#VC+zkwL){nJ7v#wOCeG2xmzqRX#aNOH*|p3lPl%k&-yQTLqK9Z8>8dTztP%5k3NS#0uXZq z*d6r+vDSA0XY*X#g-<-*wb`rj`zeAg0sKB5e(02n@mqj@KYok$yYYn$1-8Bc`r&;)1ep1eW4~*hI5`Kn~D>V>Vkp8DO8 zuyfVs;rAT|fbYMihrlcU)I-Q>AJx0>+wr|`48ZLE3D}!)`#mRSPhgvS$FKPHxSra| z>JPO0UVTM;qx{1Es{N(&~+Qr)NUxkiFFwpZv&p!~IdrjSV)DIy!Lbs_bILevFVa zQHp8!hxZITc}npp-E?|CVW5o(VPK&k*S%m$cXul9)XSGNCAu{5l`F!8`e9zj?Awj+ z^t(|pd$|}p7Do;}72yKQ+d5)F%!y9~?KD)*Vt!&Tz>L}#(H;)T`vMA>>X6q;G`iU` zO2|>-oqrF zEsz1VW6SwVrWH*d3_00noG1Mga)Tslm;6opX`g4(l#scRj?D@G2%{fTtmgJzthb_s zdAR0TqY2*y?+lEvmM|-#wnR^9b_VLcYKNzt2&uR^TgIk4OM#vKYnj-`@igU=qNEY2E#m?7$x4HPyq zBVkcL{T{t4fYfJtVYC7^l5q9d_ML{wZDcoJ@pHgTQ+)UD? zita+za2F@EpqTEi?$3_S*O7o89kHx{N>dpF!D}Snfa|=zKvx-jEvq~R*F^_MTyu}o zc?=d1Bl7d9Sj5z}2?bN(OuXszW9nSG39l^}nw7I=b}j5dYhA%Km;YdAB9 z*@hC8+^|6z(61xQPKz__u$Ln1cr2xxyDCH$XZO{txtf*;APWgT%|KJ2!Su_#p*~^D z+i4j?=;fi}j0$7YI?02$Ag0^pT-n@;9+^m-iGn3YKKke7urWD-vCbqR#iv)BKCk^s ze-%0>^`~f2t#r-kN7P$OL=(|&kDi&E1s zn=ZTX6TPqLFp8(uELq^^%?+3JYL{)8yu^sB8 zGX}Mo;r36vntihA%iU+d9rjc9XfHC8LFBez$qB{Wm3SlV_(2|w{PXiP97zdjHb)>yL|?a2;}gCE|G?ExQ2 z&h`?RkUYRN-Za8>py~ocpS=TnR4YHe5qsHvkrJ1K%{VFX*`D2kVUdSkZg`P=dMSLK zA@A$2jnsk(d((Q`iv3}h!cn7=Bxs_A-}|b^!`WAc@8Lvt;}Un8L46U~Y>XmHL%BWW zi%z#-_)M~M>OvIHmRqwk0FL`%+i1?@je&-WP}AwbPG%r`Ha`yRzMF`@E4Kp&s`#Yl zosHH1u%^DP{|6xXwHmM@Iw#n;swcng`ZRnaSA1aajsHbo&JHxB9I2&zG>6MLrwRoh>(sj?c@A*Qf=2$~ z#?4j?&KcHB4VyAe1iG^>d^|O z%T7j{De@o`bv@1rqltic4l=p7!6Olo)Gm{dg8UmJ<)6IIFD3Yio`>e?&rk4i01S4g z&WBH^1znAP%e_rdnR#|v1)yFYnG88wwWW~M>ie@t*+5k(S(W*Et-46gO;V%Kya}%4 zMvPak<6T)$kDYGXkv|KWb1PB8gP0v%isRJ+ifTUpAk^{hQ1F-qa`qmYZg_jRI!P~c z38z8cUzCsjw3(Sxo-11UW0#-A_&QKH@=ee4KPJepl(yW__B4eXS@u%`+fZmk8xPm{ z>Q5Q$pdExtqkVR~xw*$ib^`8D7xtxQFq~W8!Dal2MZDmn%=WTU)4)!h~Yp z`vxf-Kp#Mt14Rj!@D2&C7w#po7WXDTDyi0}kFv?*W?x2_-@;r} zZ=w)%lJxKnYAAM43kimYh3JTFzXj7N8uY_^_w`55K`{xT(aFn~ocig(TOG@|b<3U< zgh5=Fc(@t$oj2%m9cs^I%}&LLmk&UKRu+zAAxvC(9piBJK;bW$6aQpAA2eZSS-gDe zGP>R5``99$7qsKBio4N|KzD1;u1x3F&=A?E9BYKd5ba_P*RmPTWp$5R%@Y5}g_uTNXT-xkGirpCa1;mEe^hB%tw< z?~0-eInvstVDc@$^5zbaE)(?DEW8do!Kay#+QI6B7^VnyIHx<=w@ru;LP}(STl`A4 zZQkKnkn=B2U?R__6zv|Jt?MTy#amnr zz*Q_hz=@i-ujbX1a0<+o9v;y>##g@BBN9t^Qc3W!5A_r_QP3{87wfMg&uCkaHCnW0X^tzc;1>6lka*Z4)#b;y9H04N^iJ zHvFq_G8Nv8*@1A|kzxVA>>?9{&{-vjT;3RMRfiI)MNf&T^I6iO?Sry2$Dx`Grvc&e z&gWcynlAInN8y&MbioBKO-IVifx$sMBq4crP}Hwj7BQrDck-L{9kZuGB7ROxw!z}> z`_vrkpi}eeejonlntD%3AArkxkvuVcgLB_0CDOL{qq5K6;=gRUJogc#(cA!o>$*qJ zL!_9Eu6GXu0rutlE>c9shfIri161aBH~>lkd|=(uWpg`X^hGEm~|4yRE!21{wg_B1_c61oCI zyALM=tP zaOK(y38+)8JI@|X5}}coB%aWvE-IPiXiztoF3GygU*q*yyV*3086UnY3POS^3dmga;CZm49DL7=?^hftl9sx3HhDBgxTAeS z@9VpviXr*(p5n(#7_7bZ8DocRm)Xyc~S(A(_WtTltq9;

gN|ESnRcZ$7kgsY_z79+V0OjRZ;;Aw-kBAT4v8D9y zTCD%=34plBq|=BQ_D?rZo;}|>r`!aBs(Rv15bZ58!@QPg(P_-8^kHzl1T7a)D!u9Db0Nv@ z0Bz$Ev@r%WkOV?LwX$4Jtb@_XR0xZAb#b=1&6=GtG){{{anI%{1<3SLcTI`?Wzcx5 zuP!#m@u9}sAWEi^5~$oLY>>B0_h6H%sxH32dUaY{+A3JwMX?G)VE+spF!c%(?zm(T zmH0q)G5#X1pZ`w9==l!&2#@r8lUYZ5No2kqS#-v{o36drf`r80(A;3x{uQ$}sF2s@=M~nTN<}`O-ufb~i z*z9>ItNwROl+-Bo6Q@pBtYPsj$(5&Yi_7CEF$tbnA<>13Vc)#LHVmOj-?_{f+9Ye) zE1~|_?bT0x`1+(-@Ww0t;gM+_c4uIAsysHPaC9>F=)JUGdj)rxMq z=1=XDh)t@Z`Y)4nGon1@8G3$^>1yO62~3NA@#c>QUm%L@(TIDmtGJ7LNK*~3NY+UG zryv^$;zH4D3gOKM+q^n`1i#4hbPBySP}}lG=%pa;OIib@>lzHRb$)BmiWXl{uo^F@ zh8Mhh%U=Z(?x{8(mr^L41~cJOEVa!GR9k$lrbiE=kz>iB8L_4I9CWKPth(Q25xaMIxzt;t1-+P>rC}=e7E2<~Qe;GR_pLQ1L=BdjUQ%j1HYh2Pr&ihk?)q zKyl!GrC`rP(7|(6%64qt7^pPCe^tmYt(#0UvZX}D)@VfiR-EQ5Hp%|oe662!oTaj{ zCG*Z%3ciRDdb@Wc!*uD$-Ac3pACTfG_98;u#uUH8u@a5zri!}k3#QHQ*gnU*MPaaqf79!QUwwoPSx zdQ^qCkM4I4GBL1rJ^9?5E{7JJdDSi+WV3Fbed%$=jNd)xjnV5Mu14?!SX?@heI9pS z{~jYUu6#)z`5c}K43f%zA(vR!mWvrBHgZ257!;XzXM~$8AD-7RhF=Bf#=i2*iIEAv zg}Lu^uAo1V<+GppuogCZ5)Z_J&U5(y1Ljb4mTKzd?H1p%3%7Ym8@c3(ya?3PBQMZC z_C!hGiNqpWuOIS~xfsXg7U0mi1#u=bqk&+sr6@jOl^*4OeQ_Qr(k-3*RC~|K|58S< z0$TlOm^c+G&o2>0*|Zm0{b9ithC=UDF92NK=W(`h*XOWl_`XlnDm1=P=Jdr6c?n#d zO?j9YXM=CTwGE-Q)m;y6(t!2gt522m#haadv%g=jGh2|rgQ%F5US#ii66>Os6i+)s z;x53X>5@)$c}w~(scw=CihN3qb!(&IL$17R9O#={?w*vj-z%hzje1cD5E0NgL0LMv zd_5K8j2brl8(x@zvSct42%B&-&a0@oZt{oj=!O)x082f<`%Ed*ghX)STqNFGL%1Vi zd#twly6#Ns3}}@y!kz2r-&?V~U3Q);7)!CQJXX?MCzq6c31TAXQQF4Ye%S^WKS;BZ z9G_iWyf*06SCQ;SsljGyPU86U(v92h-}J%Yr|9lmE2VsnOQm~46*cApE&Q7m-&k8m zKw~a6SZiX^RXvAD`SwBVd$jBe+~!k7Nyl}Xxv^3beZZzdbb`YZ#azZq!_*b4@BjHl zR!u-Cu^tQ0nc-9-bYmJ~O{B}yimCDNBH(-b{aC$kO@y-VNdeO1)Mm2_tm4<^@w*KZS9Z={lS^LjfFq2U! z(CwB3)?Cei8^DrT%E2Q8=I^5MDvy&#r`+A$B_YA9>>)CtNCk7*VE)Z1l8l!QeZGEQ zDRE#!=)7aJ4?3=t#WSoHb-%Hbm*V}bwZHFxIU;XC&hoDtQxdY!e5%l4g5V6fH1wu=3xfAP#vF^M2NN-i`XoQu z;AJq!VuAcwqc4ERWKsPAj~m~9^Pe5f4@-*%rc+gy8n-z94P`tU>8nT~>3vT?$=fs> z@f&v1BE@xkE2OHd*%Xv|;UaqxK~TXo6dEEtUxgh|7fv#Q+9tATLd}HfVA|$=5RU(K zU~`y_X00|)&!H0w-_+9 zEMgC6^U55O?d}|J82u#EDiwBeNk3#P=TVA9)%jKV8G0wJ%9Fkur=Ff+}_ z8LRqDFjSR~(#5G2cAbZgDukJF&T%B9>eejEBoa$BN2? z-)rC0@a(XOi$+MLRnUnG6WToNe}qRlH#Lc2o)d`Akf84QV0hspMgN|}6$)WwH7ed! zHr?2K+zM)7+93S>#^S1grNAK4!g^q&cX>*KA`PnZspBO8>wjP;kFk1Vck_KbRAz2N zk!RiD9D$3lR0MY_E90s_p{%$_7T%@uhsteEVxPpE24}0-flmBKC~u=Pdg(z{^K%L}WyhhBGG`lvkiVpMh{f%Fs>`xu{irfJ zYc>E^ep+tgIJw&XA?VoyrCgzzE;*=c2j)X-li>@oE)Jy?4F`EOApjrX9DO}LMtZB9 zccvwYh{`4msp519EF*Jh^wMQnIU`YO;b9cF&Sf|T=J0Qtw)k0>Sln7$f}NOB#FvKh ziTX&XlaV6)r@@*4H?gU%4Pqb?y1~y_+&N<{1|@W`_rIEyi6^vcwKXn(Jn98mewmj! zYS4qQjjK5)_YGesdI)eM#rkubFnWO7ugpPyorO*GizYr&?1?o|kU*ur(*BEqKs4MH zPs{O!_w!-e^8;~OGA4Y=Uai0}X8?k#OVaQ@T0(?-1DsGJ=MD{Qbul&swYL+nurh>- zI3UDp6kCxr{WwtxKB`HlI`fZY7t8006dC7Wa7iCE{CZa3Sy6O zt~)onY}Nx2Pa{ypmb$oe;aG&2t>;$|ddB>V8~N9pOD`S9cVVC-<^5cDa?eVpfv_wl zy~$3u%|uEp zu+p@KQAgABzojHu!vGGgg`C24D&{kZKE~$^9ScHVV>rp6!;$;9W632En+SXQgB`d$ z!AAB^wNwtWUd&)O5l#Kc^&%`FBsG4y8J;`F--Ku}K-x*#uRp%Q@c0(w^ZrojvHpLs zTZDL3N>^X%^k*Ws#^(%~)Po(oNxR;aczk0WGwhet!XygBgR|!5u@$H+ui3HmP*vP> zX*In&;c*_z_#X1n@=JD?Jm4b6MMGwT_mDt1TOm=JNe(*xsoNVWZ6hXEm|PJgEJY1d zr|Z@+PcVS5(}8H#<>aTXd~mIZl^WF97?CO|BYH$=rY`-T2QumcNS_kL;YQWUY2&7`}CJHxN&5=CpG)8rY+c0Uy6tKBTOtn8Bm4 ze1<30;rXb7iSR4T2-oTnAD$^}1Y>NcKaA4MQ#q66HZf6>wrO`@x-wKDD2&?-;= zx>-Y4mjpOWHpe*PPn1sK&U!z@qX=xU39VD2D1a=5k4G*FV5Y>@Z5P>I@h2Ict+pCg zu@4`wfY+vgV}p+khz^V8|S4(+mUpq z=pQTuF?Y!M1VWVz$7^k;(pI8(4Xc;KKjp#SP-naG_(jkxRFuB9J1Z#W%yg1QGGW5H zz#gxeOj~fhwH&0SY({IO>&TxWDLc3GlE}f^cWgt=oMjV>lsY6`l9G@z>1obA4iDy4 z_!LH#k6%zy+a_|SYr`PikJerf^}v=og8qtybV2#GQjIi&2DTiLa`Wu|gze1eN6=na zo&o5TTMk{tI7YZ+a$t8{=2D@>-g_f|O93GaNy!(5%uur;B-Ve@{z;Oc7`O7uBp0xm zPQBhu_4>i_EBli)x?51bv>G=;J~Mk^*}k_3d0~d9SIkGC#X6H!D`XyaSj1hy?0Q3O4hIW099>-B#1Bfj#;hQlJm?3vP|CiT7@HQAPFi? z^dm+L`(oDCBg;Pv44_H`O*+p+eD<`y6HHkxd-8GRults;!+dcUFZ@szo-dzAMCRGQ zyb)Yl6WOo}Dtc^5k`VRH9MpVnIKzM!b>it>&Ed6D3W3a3ERBPqy?52^4BD(B^acNH zc@R5}D`ANgw`7TCq9pk`q3BhNazI=}7!IfmimREBvRdj?K z9JX(%Hja8PT0AV>M*y8~a@y`<6y;AVT4^d+TjXj7$hu2v4?hG^$l-)3)}|n|jqy1iUO*>aevKnwP3A&yi6m2Kqao3m0@yNia+P`sJ@N+wi|{S4wtW)v@cwC2QytIklcKt@*{b6@ZbT~O z1#OB4Mxn(WPYCbrsBLCHNkAd;yw%z;xvudRM4&)$JF`2Z%%=IrTB_{{0rhjQwuG?Y zCf##cV%i%tD6IR(-jm~5*)kY*M4y7K7)h+YHyK>WTTA6Y@ukU}F4P3mU-yy&9^}jY zq@~qXiBls;qQS`)oOoD>0+!EbUG4UjySnz9jW_2_L9%T8YP1f?J$rB#P-pOSf`0lr zT021*f0)mg77aRboaWQOBD6U#g~DjRV_??U@{PAvrwwh#=jerTy!~N_Ar&-@p!$bX zFBsA)bTMRhr-*C10{+GiiC{k~ZezkynID8~?#1o`cZ<2GS>@>l3lCoN)2no#PQCrW zkoQuDM6Z4PBcY}wxh@bP>7GZsim|Ob1^|e8+DC1hG})c*X~A4O={v`z(|5}v>(n;Gi`$qH79GcVuOVDo7*2?cEQ z?H^=*!tCfJW^7rsKXxw26%9!W?7~q;1q|2n173Jg_lvE|BF$<9=&_IohwrBG3MuL& zR<(2NboQAyW#nTD35!j=sY<`CP|yMvJ5OccUowiF`>hptKzA4RJTHmtED$#{ls+F8 zZVhM7An~fy*|g}1$k-T56~O7?o7T0_<}Sj)BIiuW2H_{OY~t#_VXLc;RgP{$r~zXu^@-QihiaE9YP%Wzmpccs$8on}}Rs4Wcbd z=Xmo05~438s+F*i&`;ObiB~KV{~Q5ku*v&cPcyYiWYbf9uRcKC0WxD*~V6WueLmO0y62RY6bt8 z3@^EB{KWVeGt~myq9s!`QFGFa`qHZX1WyGNQfXd$X5@ud5Tm*Iv#Q^gioO$-VV&t0KJjGOgl_KSqrop$C8E8zE5k^lpJk;bhg z5w}QPixXzW)zG4cKI2NxKDYszx@XEiHJLJf$LlZ6zFIEuhRs_GL1u`zMolQv=i{f; zh$sQU`!v&Fx1LP=LpXoN!ypA&!zqA3AF$p`HkqEg`l#@w8Y?Yl&=C)~Cz*dU&6WiN zK$QqbWJd-51?mJEq^Mn~_j%=2gIckDi%EuQ4! zUiy@Ozdkkj$htcv&z6 z_uMQ>2BJLg815Ddn!HZbe7oFwxCR8bo}1j@uQX~{Kx;UJ?0?%MXzDDaITT78I6s5OuDIjiFc15QG> z=cXu{X^!FQR(eZ9(8{{~5m6LaLdK|91lrA!YF6(IZqbfgUNd@`Ep9xRWq3KqH>UP> z(kAN-jZvcy=H5^P!6K(F6o{|oI^Ex#ci?%Nw{2~3Kv(u^Jk3l~xZ2#l!gyjm5kf@! zoX9`!NWJsER3NTtNOEnhy6K;~h|365$Zo+IwW;En8`rC7Fu~Oc*M(ZtY$PyL>a?fc zixT8|J3bS>Shi@C0tlJ{FJW=1eZz;dti|a>;R1{ru#>SN<)ynUvr=Fz3ZWjg0JLHg ztd6K1zneCtg=w|ZAd@A*m&98jbG~pBw9iy(bx9xI)GZZ!H35SToSmSsMNpfr5&mFC z&FOua-W)#`qgbXz1&0uL3Axv57CUPpwjir|+YNfCxh|Ng@8w@vMRPJs(;#QA&(v!Z zPKy=a46VD92wW=kqU*%O3pC63IlEOZIDZ$k*YYFwWW{Up@xjYLaR{@C-!SayjR}>0 ztK1wf&D00=Z~)g)$u%aj_bL<$PhV>#Iv(Ied?-b_kU06F1L1c_@U@HQk=3A+?P|h$D&>C6*yo5AG?NKtp%@nZn&saOB19JQ zu@+m$SHn6Wd>F?lqZS%zezG3LVj>n_vU;N~gfb!Fk;vJt z_s-9QMv548I^7Ov;jtz06g_^fSJV?@!<(oleG6M3ToGDVqK+U_2h(|aTE3Su%eD3-=?OjpU*4?c^L5*!I?bjuPH11!a|gvC{BOowlH7e zOd2}VL61zZp&{-5JM2xvY1V^ zWtoQ928Ak-++d9B9S~Qyc&N?T$0YlToXjeUrL2*3M;m3Mz3ZWWH^{vQdbNXe(}OTN zu!dAZ56!E)$~BeWca%bpJrJk(_MJTSKVWj0tU7VewU;OjKM;`D>)HY($Lm4GL!~SV zzhH3G;W?iVfnbCP{35u;883fgw)l64YwmN*pCpb29`|Od0a76d2(@(kFI`P$ka7vE z{9e}6ZhbPg(V^6W=31!h)#SypO7iqh)8C8^oNp;3M9O9VAX?(tlky_{we*yb3a9F( z>(0zp9z5bm@)hK%;2T9`&ae_6dE|C2rA&9t!x<-FleO6>&+$#p@POuVnMHzNuj8Pf zH43_Guj_+8E9~~98y*aR2Z1aasLocxS2qn(&(>@S2gvz>i}zYRl@`Q|H5HZ{9j+3b5xpf)LvL?|G%_SzjT?5J?& zOV?v6>R9T-MVgxev$)qknlvPt{j<&M=2jWVLtC6G{%*f!9C7SxRJXl5*@M}RuACp< z^x}6^rP{i$m&blH)SO&gKhIN8hN8m>k9r007qEE~B|)7M{0DJ4(HlplK0PSF@ehT= z;@o7e9A4j>NYVugbi)26x?k_(kYYkl;9ohZbcl4?yIYcM`LnQ*>qM(^Z6TE862O{B zQr204x1gIK)b@YKCC5Lpt#)`s-sv~JH@f9CPvP|cdbXDvVC5kA*DyY4Tv{f7YO9TV z+PyP(GqBe1DO3&KbD0VmPPu>|Lpx_G90|o08gj-%j1%w$ti=s_W6;$+(E*(#puLnD*Nv$BI>QteVA^*h|TV7eB$m8glUT z-w<{ci%HLSg>WH^U(=Q2d~cw=gVxL72GHESO}CL1DJ#I!Cw)u^asCE<%Y$~-4>&CK z3^i}rsigPOsIC}~mzNvl8k@4BqHN`CI)TrgRs#?!`^hKbQ%x3>9~U@r3&jr|DE0JO zFH$Y#d*iJ`tKl#nkaJu!@Kl!BRE#QY-v1nR(5fPm<&HU`I*<+t(Pvz1ELvqUlZsal zVWa_4Uwv{$B}*T%hfqmy9oN>EOa-K@3q+oXq~MkDCcOTI&SPoz;s%u$QC(JFqHvcwr8SuMVZax9mo2~CX^YAxrjn7gK-=)S z4#MsovUN;QY@{*&0v%r>o26zoSFg1m931WN(^#yb?A`cIEsgr%2vjN}$YMTX3PIBD z@Q7hLF}B)tHRg!GJ^Xy>obsy*V^gbl;ssn0XS(F3bgS|ixvfR&D%q_s=nTn9BbTd6 z9Ya!Du05cnszSrOs7R#LTJk9e-&eCm^}FKEcn>P~A^7`DKxP^W@a0nM?ybh^vq9kU zWxg79ZCFxZ`}aNvH~CnyOcnGae_q3~_B=uHN|LT!wuLa@h>bee2g3j@JxwMHmE#J3 z5nr*R2XXl@Mh_ilT*e5I?|#H7kg==;qr5xQM-_+hS1&R|c^6&xrAI(co+A!1{2ApO z?mDrXhwLeThxZ%Km1zeYTLMb9t%lBg6|5flX)Qm*=F-n(HblPFi*;zxy~(6|0ZJ8% z@V*m|$srUg|IVVeQb?CRN0qFs=Du+3J~<;$fPxCie7uN?Lnq>`ps(y4gVrDt^9ZF8 zy2(WY#p>-ipJ<6FmOirFf;fn-9eyYGFrub~vYUh- zsLKW@SLDwh$Q7zalu$F)UMWFeI#u6ox+J0-VTX}71o(QSn=UeD&yh~&u@mFN%aP$b zJmv_To(Xhay!Cl4O4j)Z7s>#mduX4s*cKuk;6#_qLA{Fzfn~3Z5zqzgAD;?9^UwJ+ z2_u~#*x(r#dTElLmJV<^rM*5*o^T?0t{LO(33?Zt*nv7fcnOKA6?Ng21;Yow3l4Ds z#Z8Xh^v--IMwH!@6Kh@6f`lLIhOr`lHWqX>8Q@lEBlSj;jnnAk1I2oL9mv>7l;P9M zAfkuK01_a;jtF+w9*b;QQsFlgreP&vAkkSC%VGy6^8W9u`#RToB=Tk zofmNIFVnP{Sjcvd4OO2qwl5ap25A?H8!=dl7zt2ehn=b~@ z1s8+hN5l|oawGwd9F}Q8kQ_oR2TaIHqx< zxm2cZY20lyW2x!mP${9n7Z=BjMM_1J+s=P8%nj~WMSo8;9V+!gjlBz;Qx$;d7d>>! z3CqS_k`#m6W=>Uz5pMV9@gs%D5jgw-im|CJsSfGbdy#<&m4m#+c(90g+yQbM z%D4VAL4bG-p0N3Olc)RWdQ@I+hhTMOOk_l?_q@_wtr#9thNJ zs1mW&B0>1}@q|Rg<6S#310?b1*>GC8s1K%C7NOR$vl4y45_{f?)+pjA#r~n4MNQgu z$$91oI)kqL8A=62oa01K{`Ov-bOBlc>ZF){r_q_Y$FW7r9`^XoXBkYSXoq9r)Og=O z{)~DR$8WDF`mI|HILl#qtjy!4iKIttrbN50Zv3;d9BP56>|X)YA(wn=$Srdgq_jlV z@BY&{M&NQ`?|cOZWV30RrN|S?yVO1x!$^wP@|WuHwHxyfB}{TB&tC(B?dCu_OHYj# zl6H!$9*bxBZdnC#QS}9P5R!~=Ue-jd9IcbmVUwyLtMNP=3Lo@fwd3sjlhSJwezRJT zN(O4hVR{`%#&Xy08%=)akibFGm-aO%j@}HLoTfxCc5#z7#!X2q^#R6w^AYH<82;x6 zGD8*_w;l=UAN{&bCS)~`!(I$+<-C^7fg*xz_unvSQ=J)tTM8%S~uJd?lc31SH#^H|DpOdTOVdn7J zm+T9%@8XYFgXRTx3)!KU0N%E*pb;?KEMq_DAlaq+m*OO(M{N8w`i07qUaG=u2#J)U zKe2_`&`RNpy!@{PGzTc%D|=m^40ly%c0t62UvL)^uHx*X(SCnhevzW_gLk3nz}BV7GV>9xY_{?Si?{v@Cm&% zVD*7P3J4^F^}ob|<*h+6q>@ZEOUR4lo=XZ`LXgsIbyiJV}9&y4E5- zCvX39{*WB?T9($uV)+NVAw+5g6=Ym^JpTN<4b4X)t{?3*m|RBL#LOKu#wo)-u%ANU zZhtqw?;ZjagD8gQV)DSskp;(A(5VO)(!TYa%32VI+QZBx_r2OQL2@C;gsWh+KvxLx zC?9ZQjj)FdPLsUWpo>_-=ao*`*ZBmw?O<0hX@p|!y1dYM%^|!+XfZ|1?HJdPt32e9 zuYii2qL#>a!mFT4LH$tE>0ic}l^>$CZ>edeDQluf;2DjZ0t1CE^k(o?CSihRtHs*+ z`1Nz}xrij1%tZD9++f?Y;fE5>GEg#_b6VZbnP+1%Hsq;luC_S+e#>@+|4P3=zJ=z~ zagwYD$daok^t7E<$GdpR*D*AYeB8OB-N1VWMO;ANX8nq@;Zy#u*xcURId+LQ|M}-h z8WpK8snmz&yq~JUot}I1H+o?o6)(4wQ1nW`y%YO2hk*3EUCZ%4h|3r^)+L|>%2`-{ zmyKtUJ4jpTFixIZQ>TY$Y1?!6b8Gy@s#mW=hrNsC-aYo7aj9`7D+J%sCUCs2b7Tm_>0;jdb6;T>eU=KX(8){*( zUPD;~61UPOF&8S5%;<}NG1?H!XM-!Gx{3*R(wdA=C&?le1d|>X1tRY122cm*sFPCX z<7{vV0)w=1j>upPi~RA_E2IpqwQ05mGo&ESQf%f0tV65_%w&4&d~5Fw@5x6@PT2cd z)GS*fuelt!7%UL6=BNhwDv!9&`?y)R^z60HpA&~R&uI|J2Q$3cn2QlFHxv$cTt=yC z%_5k1hr0R zt8xLLe7Opgh5D+etD`jP_-pTk?B)gDO1$?_u)+GQHGf_3BWnI$8Q5Fg{@1BL|l)L0!O(S%tlKqvhCHLxMar9Ggn!PHkoVaof%$a~MP87SPceysl5n zi`UlY=6Ya!bf6|_&wb=<48vUxTPF{ni6<%7Ib5Y$F;8H|lmeWP3j9ZvM9I0a9?Mx+L;<;zL_qpZ4OHuw$i-4>}!@vuoB^p0Qw7n#`K^ z)S!9IjWn@{0j2XjjWDs+6nR+q4@8T6`S?zb(b_uHWx7q}Wf(+_E1Vv}=o{uI6lS&X z5YJn!C6Iz?S@n*N5`Z&Bvvh|W*TgaRf~Gl0tEDNZ_vI4I{zv8q*}oh)F};`Ug%A#2 zFV~oJjcl4m{}wF!v?A>3Gcr2Lf9=bA(4V#-`;X(SP{Qu*9Dy^}wHVUxH|OxmlL~u{ zzY5wDQDGsTktRn30iyf78Yk%%QfdVZu9TY+2OnPE^D;3R^fInOm-h_>I18cNPimWT zpSSF2AKw}F1v7)Ap4mJ_8<5?TNFqsWK`Ww_?czzaS<%& zcHpfRgD&3`q<VPLi0HSEW0_AXN>-2LDu4M_wIa)b%8|0a(0;ZL}~k-_xq95|$(GV{Q_rnkKxZS;=i+CIZUc7bCH&cqQ}-Y0R>c zXge$^Yogi?WSd9yklgz|N#f$(PPK}hJQIhMA(De)wa;x!V}Pz_i$^1n@D!SAH8UR6;{_pZXGs z3LkOhaEt?|c2o~rUk1ppGT*4X{|ZqrS`qE3Ub@#)iOt#21vZN+vcHrq{Sql>I%k8c zgvUF=`(P?v!((anlMAqfL46vF%q_Y9{dxoyj~?w=B$zIi>1FNUGx9)2tj5uJU6ElU z%HKX}bGoPcN%urkjf9(S!0ePiJQ)7-Q(_|ck4}5%iQV}eMMt3L(_iUJL@=A@t982c zNK925P!towfvO!xp>UxOMDFbdYjGgf^iqraD$O6`Dy^;B7_RY|$isMAo35jq^$OQN zi!GO>$?^tK)Avj`8K zJG+~fp|h;c?Ne7k%Rn#8wc(?mVu8lS0nYN3Q@(r|8PRG>$-T$uWd_Hw-hPD@NGrV7UtZ}n7V&e;FVG$BZVSW5 zNnVu`{ESgU<9qXjE^gz>Q@Ly1y~N$bka0N{eiT@(AE0gVdJ-TCZn3)IJLNWBlV-dR z11N;aK05_x4(Eqrs~lWFgb(4zQ1iH6a^ z_r6a=O?XZ#`?|o}lNu$8g$6fAUk{fPuIX+3hWsZ2B$O%1umL~_b#&w{Cdcm`1|_vx zZc0QoUOSDBD5OMSUYY9Fwl?6>Y)dZX2b*!w7{o)&TK~HIotXQwGDo=v9lA zb6}4LEbf&-nxd+jg+gYX1@&cVOPNl$>&`s|E-3Y*M;;|w24MkGRrAc~qE-xF>2!Z7j(C&FJM8g&HOExt019`C zUB|o|2}AzA9k>1F;%>&39vGI_O?v}OywpB zJo)`(S>QpO9I4nymdRx79}s3lAIF&F03+oq+pF4&L{XPyg|XZ3D_ zUDmlc$q&fo+Kz#S3EGsKHT^BHS%A>TK}=b0gH6{tF$s|O^G;vYJDYkH{#RXA3s=>(%YQddTh{1~87RyDmdDaL!UPnEXM1PvnXDxgp8 zGXbseG38(D3dNl?=1*vaY%Gt_RE4p*0%%H#sWmo*%RS6#UL|Cu#|uV0ozkV)5u=1@ z=#sRtZgof`r2)&F(}lRaMLV#RLNl!~axyCDi@VvWM>l>h2Jk_ec*r(V z!Chhhf`G7b9q<`}v&&x#jo(8k@HeNBLj6rVRf`+w>TO)=LHHA7Lz8fVC8rutry%2h z|DS|aO_i8f`)iybWH{;XngQiFXC~9UfPvXiD$hw&osC@lWvn1i;d%#19qDy#3WA!Y zI15ufT_PAnyQ36#kn~UudSK0cNgx`wZ7&WZA+MI!u^%ZvY0&R+f3eKfiQ5lke+Z|* zuI!~RPjQ|l%4lboB5iWM3QbD-oL_3kWj;SXx$Wh zz)*EP+ll!PX{69)aC5h_aJoN>4yXMd;#hV1lnFEREH=N6+Jv}Y3}R6(#H@+aUQun@ z+J5+e97_?Ai3Ve8$*kYrXCXBPzNv}5MSqV!y%{W4(Dk{QUn8h;cn}U6I2O59IAK?*VJ`u$0g*D2D_809>KiXh zoWBucAfMfwjbYK3i~~RqQ#wdyBM0kY?j*@QChKm^Zw}=l%5Gx9cce+0pgeXgjn_navAY{qsU1 z?TZl-P@@~qJgQo*M#1qxO#?W^EkkD#w|ckSW*C|su#$+#p`iS1r%cHugegzoS+uCP z%;DR|tJ*_#%hglt?h1JyALAKx zH)aZ>W5d5|UcfbAjzPjIsER4PW}P~8TLL722U69i|M-*%9jFcj5qR=%Crx?=L%4}L$2cM@ve0# zId{$MVK)>(Lp^m-WfAx`JB??tdtFgG4I{$%ig&o{M*~YF6O}eN<5W2ow)SKtYpxO1oc~33DFpRj0|t{tlHnqg-*AW*I)g0ZHbeh z#auDIVU7u_Y>p?UQb=5(_VrLTQcHPAMQ_lm9rn47?oo3PW|{W2ipBv*Y0r&0p!&$Z z?!N@7NF8f(-AW;d4EfBc^#JU{`bZ|uqiPZ+Ms5}+%B{EL+q&alC7Fxr>}JY$oiCff zRe1if>HOZamu#pj+*70#(WzJkG_Y821DdyW)utKr2PWo&4KLL{*<-$|cS(Rc^HZFR zc>0|C^L2&6d841*0>E_8OFZkosRuV!5rwE*HWvV~3E?(JFnb+!JK>V3BkXVe79~t+ z%WjgT8@0WW{k#-*aA~c@od*ePNYLRN$8{kvpwmSYJUS)KLm=1L=$GY)|tLQ=e_3V*wP&Z?>vJU zxcaGpb`S18&GC5@qTyB4hXPw_tMnzlq}HP7M5Cu zw(T*5x})|-P?FtlOw|)OcXmz0*N96Jpk3X<(+GaFSho9qdWCO*+AG=8o}rUMN)~`F z`kgNRb|ZrPp#~8*(ZwPa0VJ(kXLGzm`gcfq3H4!20hMHRe65jDdus54 zvtuAgi0_D+>ksWIanmr@7tfinbkfoSv!iM9Nu2hJ07-&o3!VqB`HZBFzQ|L>dPdZ% z;~d%LZ_3~c?WNAMzTY3%s+32hhL)$^#I7FLsG%?D6EIR-`(Y{gGV=Rx{b^QtslbRYA5K9UcI{X- zmam9~+x!m|7~E?!&(iFF0ngh<>{w%8SpkLv7a9mves<)a^nT#QD5u!_6V(gV8{A2u zUp!c;yM!O+-TKV0@1ONZDz8vJOcq>7h=;V?Y*#*70wx1tN?L=g)`m0`CZQXd^&z%* zN`gZzw-L)G$yu2Z&S!nh0;dRl5+$aY0Ar`ag9bx{Ld8PQs?3I8BZ8D_{d@sv3OY-#0}F@-mW z6Cnp8R+*PiUud;z@jNjIan`mC)D8X{-OdP-s|}KM_Uhc<%;-bHl(nl}tA#x^xS&)L zJWYH6h%mvGi@1*Y*RST9QN#*tp7!MEUGgB{yGAcHx6wocrIfB9y8uxaW=Xpq#NVoW zjJ)D$=kQC}A)mkB3YFR^WRp6ufDI#7pW$78(Gk?C_B(+_FoTbG$| zKq9g?{AQojsVB^x8i3+E}v0m8e0d%wSw zHB#kK}f^pwBNm|qCQzSXWT27r6rFlin0Kus|4LK z&kLKAz6b!<({{glOfVk)gt));hPI#Ypq(9;?!NjB9EX3=h8E)E@d<<31?@*9M@)v1 zvkNSwa%BK(VHvh*sz*gIDtBb$B}7ZPylX1*r<_=gC$7&y63Y20N9|IpOtqPUG^DjYvK z{g^RxRcx%d#B9GRY_l+PM_3|SZ$$RSQaPuIo0wiuz0e9^`i3R$p=Z-{R?%#>iek61 z$0qGWOoXmuXzvdJ`#&b&K9%ZEZm}i0n;pwTNBF#7&!UbPFjU}xMA*oS_OQI!-gi+U zY&6rx;CzVT$_KnNeuk9|%GvX6Sg^wv!J`+&HlB^AD+?z*UG*0W-DW&aK)^A+vvdIT zO_X}CEHnEWOHv*)f4iO%vlvInTG`uPgc;m=9i5~hCSl=jkdaR8)lcI^V|Lq2y;bXudG5euOupsBnea&m3i|67Z z#k$P0Wo-97+cnprmcs!`suZ=~LPZPFM2@7 zik8hq^psBK*fxYhwCTGncm~<*S+i0<^F`7K5e2_1W}izXUxYl-1_1vLHfCvkm;uSl znV@2irZM0h`nb{%uOtL~?(FjdrcA?$PVDtn#1^-l-(ji4+DDsRjwX9rsd5oVBf1CG zUk={E9TpYK`&p%vY9)bAVtCin-r%X~esw9$p>b;MhGhk$*(Mci0AhBcZj#yI#n41@ zCp?4bLlmo)$g!I`yMCivMR+)>t4Q1cqs2_?3rFTxLrgab==dN69wH>H$|Dz+NEKi^ zsxbPM!h@F;7291H?mRAArx*{C)oyz+>F9lxDNt^zn zA~z3k?Q*i3DAFa|^O<`oGeBbWyQD3M#?JjbqbugNi%6R#cGUUh&MEO!45RMmA;gE6 zBj#$S%bvjG!WT)hpdF2j+es(0rEK{}I&4AR8Gfyh>{Ypl3|4olOB2%j$&f@_!7?`u z&Nqs)7ov1w$O&vQ+OudIWNX~ECbVq>U!6rM)h;P!f))DNZA#VfD>bwMng?PCMn2}d zhOYF^GLym|Kw=oZ$1f3!gyzY^#{y|!0j?Mar6xW%sy3V#B9p|;$HFz&QqAn~1_3m; zHJbvr(=>1j6H)t9n9ziNVT_~YTko563}ncd45$^teVwz;OLzU@yO%j_a4j`=&CSNi z{3`6Czq7JlLbT0pfd!%>^kG`l#z#y3^F6MP4cP(>q8^8yWqFX^OM^_Q2+N4eGZhit zYunuq@i~TRP|XTj0Ger~lJW(Kn+k`}FAALbVna@4fElf?Z22CTS5TA}YOyH;+U%RM zLXXnEr8=m_t920u&?up_{dd*1J8jUe7Dzyh#o)P-)(pw3>h7S zepm(B^kEt#BQJEW6OPo_uaECk>Wi}%!FAEX{0rkv2qHGD1Tj%#b(*vwUW|M6PqUq_ ze$Kta_epauiWdEz{l9)D@0(+gQ4~baTG&kOAgaNJVawLAOe?+j!;YoDFgVK0+m3kR z5qr;GUS3!YOuZJ$_n>6E<$l$2>xxv{_oTyxUTot~7R^CF6a^eebEF(d)gJKkJ(da4Jo`&C*sM0+YlsmaT)Dj;zxLHcW zxEtjURrDfU<1KMykha2l+x}@6F5KqQnnZ0`T4qE&7 zc=mpNGC`VmrDCquSzB<^|IA2Y>%9p^+T#~y90?%dxPf$CD_Bwtj}IJwL*yry=I;GJ zY?KRD~%x2U6$%<@zT+-uoqn zZV=E7(>6rzgqGGBBAKQ$YtM3UVvXWqEHK|+&;j_UQ3sP6;EVC^u!Fp*4QJo2m3VIh z&dp9}BMvlMJCrPZL(L_0WOQgD3RtF>wYcb}h->neaoUTpbRMN6yPb%IB-=m0e>sO> zI&z|Yl6M0K_i4%_=aT-h`~qVi(LcPJ)DItPS5()@EB;yfj1E(GPW9W+EhExi` zpSxqnXti$l2{wE8eAW_AnLz48a^t#biyN3|HZW0fQCT=ouzvS;t6>Ini@VDi4AtHx z*oJJX(wf{Sa@Bi}9J0t#UJ692+Kf-#qD$F@6$QvLBd~QnGU?+s(?=9Bt>_j!XvbXQ z8_Zu3+g;-bYPo|CJdAK)92TfWe?Gq&d5=B$Nar!?6{~<&&h~#Xu-X5=3~WYr7N-AZ zU~{rFGyd1^eG=K_tbDpK}|&x5}3b*Ip^02ZteM$~pbe205p z_-O}pUWB}ZAPf)jZ;;#!=WCYZ?QiX~x8+Jkx@qd^_UHDj52hK5Ge=Q%Hf=xDjJzux z0eLHgfT|4k81UZ7$??(2iJ+<8TyPtAz%NrF^I4$24T5ReSTB%~zFypCq72;84@&6? z3}~4f2asPEK%O6jynIk5cHiJM?N_dVX&Qt8+!16wSeZSLa#p?`yAzm(DLOvJ(8|pB zdD`z6D1%l#fZxDCz?E+ia8Y(2Ll`Oqlss_zrhj&hY!eVCkW*GQfu3vbZ-E|Kqob=U z;{L(I!@~gxXS+SupcSe58lVn>E4Lrp8Z68sh!(I9JB&Oyr~mI&6mm9To+Y^b=VHyF z)!_|jfIpxdm{=Gp#>Gq0K43H0Ab?ybuv3x>AQqk8S#E!YFIXM$PX{(Y9P%6cw(fdw zIKdo$f}pDEj4T~N89ayube%s(03a4rMb^#E%@qK`(uXU-*!=W6CH@g)07n2#F3?XI z4v2i*3Xoq8)>kDjJ2l48@OJbf?7>^7NX;&bTq_NHbBeQz1Ca3c_MGo3Ik>-nbxzH8 z=;iD zaY1pON!8Gc>8S6gkx^DRpbt)$7XTcd4}pNXI0V7iEG)#EEt(9%Q7u*5uY^j-1_yA^ zFU`w&%8ydrsqUlck0rZ0!0&YN%@>I#gWo%Tbf(>-qZY3>;BRj7kJ!X-Zl7=C*DlLX zFDRuO2iMQO$)@W}n;z0?(J(!lI&{p-;56Wb&OZTqS350(DYxXuluP!P8cwFYEua{h=@$uc0 zLmMyU13dbhx&6Th`ejcy!%ALu)}7uWPXK7`jn$PYB1J@>Ct z%GJZukRWb9+s&`Kzwf^&^psy)&bjXgH21>p6CDM>?i=}w1)0v3{?xZU zw`S~6_paPx)|X&*G5#OV^6uyfbns{Dr#4>Gy)Wm&;n(my=j0pzYZMv^%rmfhE)_ki z`p@7M_CSZtMbUUShYR`eDTWIylLp6EivBj9>spyPO>;XTb{+M3(>#2e<>tdwsv`AL z?^n!5raUpXViT9|$8ILM`RtWT0lf?|tV}YF1UsB!fr8zcr1$gh@kK5EmERiNZsCCZ z-UVS$wMLNdA#2{*HivpW7hZi`<#V&@9_WboFpXH2PL+h+I*)L^@eVnXCWEuFf>?Y_3OmsiNVoC*Km zV7K|&E+=5Nocr)HPlHKH)U&qPtIo{gE*S(gA77fnf1G9OTaV{G=;o(Zr~M z)K_mA<3X+WP`%D#>`qapBZWbQx_Dh|VYk*>y54!$e{Z|G{y0{}%@~I2c&v?Cd;*n*E#gfEwI|XKOxrHm}>p<%bH&PB(Q`gQT62&^Xx9@>ztiNuM+^To#| z=uMAomIg4HnQT{h`gKQ3H?D9V`MX_sJX>UCbCqsMHPv(o6T{SkNoZ#OwL@}4z*`0-9L7NT=ZF80*4UpvD0;;D#uIriW zLWPQKx>H4=YPMmn!m`wbY3eMJ=j;haK(9u8r@&53ci+|I0OuHj_9sDk^0;`?U?_tg z55sK2z5IYE+HnzUUl2V_U2_plm?8+$hH=8ANLqd|+Yucfw&i4xF?Uvj4tp}EICH2IeA z&4|>aPW@1_;P8xG4bv9vuSKUCy`Z8v^;P~(3iSCu6RB8|8W%C8!u1Dw32fCL-q z;W%w~{#JykYUt-zzLqrP7}AbXDn9klu4}){O61&@dQ_`Dn6WDS^BTwUYTj_*wU~E^OwrO-Pb(h5e`@hQ#>uE(S zw4AV=M6>X%&OSmi3fo+KFBYioNt9d(LIbSl#orPoz6f2@r+rar_dEc^D^vksP&(Pt_|W>Kz{S`n*HHJAD*|J2NP{q#cm?$=fIpSXgu_X5kj| zJ_5hDqI2lJHcGAIO;s&8a6u9PZIVR8sYQu1BE;fTjvnt~shAt)WYLgO%XVycYBT^HrB1>$@;r3bYGJP}e-a*TZ*m>d{6lm?99bNG^;Z7!a7T- z=_zsmh@PCy;WkiAR0}R!_W7{h2usi=h#Hl;o=o{f{wl6j3Q)3v-HJQjNi}a}W_zAx z>=0f2FLFZMCsBsP$h-^HPu{=5|CjyDtPnkP?n#IfE&Hm1Q{b>NblZe@ zg4c*dw|M^6yVveVKezD7>R|W5LzC(7atq&P8`1kt+|LNJNg(@8_c322>vO}ds0O}l zY@3~z*O7J#^JUD4w6U6M7_AD=-L30k))#vjOwDp#ra~Of%!JKVB0Yr%?R7d&>e+xq z%tX=E(JreBp+U8bYX+P`Rwak%4|4I9_Ph+DudVcAb<|&O2EsdMXWCQMA91^h=)1*V zz06d87IV*_B9D3_vG-Q?&zik(aGEEFu0Iwp`&mQchsBz|LbD@TrwB#G-=Znm*$Q&5 zp*(?;5RB)VK~U!?-Z*3y3pk9mwBYMBx|thYE49B(b6q5)t~_Zdp@yvJV?{6*jTCa zbg`U3Olx$3!`?%bW!AToq>tqnx+;_#(~nTK=fBH7&P8XDS)4st2M5&m4fh3mPn5On z>pTJp?H0RJmL~URSuM&;-Y3HZCT)n((5-4CDo!3`ul?CD95e6=_=6gT1QQ%14sjo7 zrLj@He&Whu*=$6d0Lh8Y;ZYlZt-HtqX-iv}G&SDLM=Hf0ST{XowTV@$ZajU{XEh!X z{d2a~uKRe7&oLSRFNGA!F(d*u_kQ53{rwh$3m=PVZ8L?7B8EtxnZil4sL?X0J8ay2iD z=>Y%Q4gf3lAiawo7Sl&ougU6VIHlH-)Z$z74HfLYS1IybyhVVv*9Kjgxu_;}NY_!h z0V=TLWfxLop_K?Lt|bwEm5k2GiZf?QE|~k7J+C>u&$&% zy5N{qlM8{7OSIO#lt5Dy#Ai1>RS}sO;=lW-?^X{H}X)>aMk6zM&-AJI4QGXg=eOg6qZ@Q zawua3l#OU!Ga~9OicGhGaGH{Sp+t>5Fwea>vOf%sMhU@%ds(idzuuZzLbN0DzrMMxnbt3O|Xv znzC>6?f`G7POW>s`7TVvAcu7W9b|OZCKW;R2dv~lms#yC@jQ#dOW89H)R=rgtV3>(Awo%kdh)Lp03+2V|m z_ZS@EtIYp;MFR58>e(zbbkXw6h9$5FLtkHkqS1thdAym$g-o7EJlyd*m^8`K7X0Vs z^1K0RK}}Y^5vl;aobszPsEDTeA$icP(9#=+^X`&}m&Ip8HX8g3_ZoDxTpP4kcmIgk ziQ&>#qzU|^Gi4E#lD@6Hwcx=fe=e$=8OwgvUiXxolJY3r70=-S%8PWp^$v$cSPU2` zJ24~s=wTyf$Kr~jJ$v^5UOMQBEN$QLU(K-6@n=<~;#JqE%&EZmQ}`sWK5ik_rp$wF zArsRm2m~-UarYSyy&`l*0w|&t_1e2My=LNCu3tgD1}cO%saS9WWop&Oa@byFW6u#5 zHo8BUt@b2B3?>Z3j2+;cfwZCG00=TceLWjRsfr)9czUY6Vi*?G0IE*dZQR*b5e*iI zjORw{$Cm6G%5AuIiwK9fE_b-RQhy_7&4#RsR}Ak_@bc-_f`Z=Qtw@v+=2fTLF|9PQ z;+~y9yO+eL?LD^kGWOV|^fgIpDX`#O`%Gt>Sh?@+uM+>|J(z<79PuM-*O9lUM{8GR z`yy@4)R-)dtt2>yp#CIfIv+8g!K90xMe)gbM-DcdZwnG8(}$}aD=zRdJZ7Gx2x-2) zH)19^OK()R22+cSg=T8>=U4={R7Q(oHL0DB;}h*C6+%+YUVMAyu-p0t`e@t{oaHKp zds@#!QMgo0uM-7MTV-tqbpSO|K)_JWrJSZD_eGv9kItkGgzoY0!p!owW-dOhy(`SF){05&0cRoT#YRh3 z6NHieT5cY-q03R3?rk4t{@H>eoum;X;c9)x5*4IW^_H7M3&7NDw$I8m&V<_|yhWum zjbTh2=Bj1J>;JAF8_e^lU0&rCaqTwO)K$0YSPgY5V3Xblz`JZ))|rk-QxmCW`3)uw zRfW2!!I)7Tyxe$j(hK*U(~uG?I+l?Oi;R+X`!nB#D}K=cQV!dRMbt*j!3J?)_xf+U z-m9Q>&U?j%ypIgs-$DRZV4eCOVJCi-*9muakawb6Vssc}uDlSSmeD@dLD6^{{otlM zI_h~DiRK_SnvfOw5u<*Qp7y3wSLgO@v-KX7R|{*@-=?n7`CfvKR$%=x#tM6*r~@iz zRJ)I1wyCc@$-bDVUh!vRRi)gNEH6@#fnm)#Y81RQ7<|`*Q&Su0pcz#FGj-2D5DYig z1BT~IS&_&|X@;j-niS~^MM%-9QYEx3<3_bw>=or4PfC^9qe*lc-5o;Px)RsbCC>K7 z@HuL(T3!&$aM zBs$COJ-@>VplwtJ8m=^+l~6L?Y^SNYr*Ul7*+%8yf(Q#8RV{F{^wsZEt?t_0Stio& zGq0yJ5}UV!fsr=f*(R}XI!kcn`%-w*GIYk{^{zd?9@7bN~Px>2g3Z z?%W(3%ImmZ56ZO)8h$Pa=hneLRl6~I^yZ3}p(2+yf(@0bT7L-)Fg4&9$c$GP7`4r? zbXgv6-{>H$g+!4e5y6qq3N2TiJ)Ftne4gK}OS$N|<`f~*(fJR`W`G(zP~D|zk&SFX zvcql9WSMPb1n&CI8*6an(Ru+HHuqzPQcX;W*}e%~e|LwK%E|C)%wV_9CIYSGu0@ zrSI8&U5d@OAoLdaC9k&jhS0a>uk)utU8RT$i3I|4 z2*Ftf7P3X6-zcYYTY~RfR_~Cj-X9*$fC_u9%xjhFc=8G1RzCgboXo0+FX<-}^0kE` zV?P5jTn&?V{HpNMF~FawFqOopZZ-KBR9^Gb9}VJ~a$Dl3(KM6mrey$mz?OvVlSSpc zig(I-qKAKj=EfWA#rx0l8>-pqE(AQ`-UmanNg^|)PV5iD#FRcWVn;<+s8MSTk z>-+TzX~A=WW2D!dGe&}K#FoPB4a{R}Exye?q|;rW5E|{+#Z=9h7Sq#-_xGFbj#Vdx5*U(5f`x!Gp92udtal? z<)X&6);ujh;6f;Nq9cxbu@kW?28G}Z=IWb7i;vl`&3z&4qK2*YP05;4dN&b`33JVe zWt-HD>CwiSx&0>;58n+ZjY0W5@k&$V%Cgf1Gk&x;KfD?i8Z3RWcSq$+mkZg`j+56g9!oC7!F5Bw%d?D1m81Vnh0?!}BDzfhw9CW^#r%P>VqRTcq6=~)w$=IlG?hO_S6%uAh63itg*uQtQ zEiWtjfaa^u?ynAODY`8Bjo-1C?MSAevQV>CcVwguK%#h z@1`l$x$Kz2VLh*!h3++qU=Iv90*9}H(n7(iKJQ^#fwJ3FoOM@=d>_2?>{AxO)CxFr z7ZNGBcbf_)@c2-H_)fHuLmWY`jEm}H;H4N2oyEv9pr_McPc<;Dkr$CG{AgV?NP%Dc zj$~UU&K;%I!(3+zrlv*=SUd7>rv`;*FJ~zpT+iZK>=TBg-1ZY+A$p_FFqo5w5FtJk zNH``gX<8y%Ej#$)?aq3tBUpFK-DA!8l6Q{ng3Cw5cpg<$qvz4NTb^UqJ>Lioo>U{9`w^=yL3 zIAjUHrlEyv1kg{$b^?^OQye@E?Y7J>N*`!|VGDi!)j)e=G1W_|T)iZqQOqrpbBrLg zoyO0h9_`t0ljT9ZV&_>r9Y#u82}3yui{)dFRCFH7k+(z22#MQ8Hx$>C58x56*{Cl- z&&&ob9$qGUZ5MNBG%b`mc|YXMK}_;8+r0LX!`oT+lj1fqG*=1^hiT$$0=~|6h^KI*P zY+Nokwu&C6=c%!WFm*>U;h~XcY^@s=ZWM~jwjeF`u}hY27T@~WFbUlc5*S(ytogzR zhx)XNDxAeStSDHtdycausxsbrS{$B1D<|q*Z86v|OLNW;Ot#hRAGwv%m_clj&? z#Fxsp(rInZ%Gl`S6TqaPHaL;zE}VCw6f$Tcfuw0mu* zL5!^XssD#M^Q}&WK$*F}N^HY8z@S7hQD`AyiVe1t>qO$`K5Z`7hE7{#e75vbS*>zH#_^m+*cJb5ju;0ugn9BM#&vOyfTC2KXei<%Y0 zpmc`z_N}kY7{?}ul>m%@{YUyj!tB2&7WYO#9FjQKDijsZlrXQ7=;ZPhzK2Zj-C-ul z3U$8(359D&Q;B@*V`KD;-oJ>|xq6uu_2CT8B$;pOj8Br|q7d{&Gl75=&d1#P@gbsj zR2k0h0Ce3&7>*!YO|!UbR+MXhy8$(CZ-+CHQ&o`p&2lN9qGj-`vAN9`nheG{LhRbv zpJ;bZaHD2mIt#Kr&OA?Inn=}x8V-trT6DFxasvJ;#SVKkV_P=auRIv?I7nG|JF)Rx z($Y8SQ5EY(Y~3Gak|{jNZ`QM56pl@6Hx!8?K0-t01GgzK4NCO-oBW04vW@zv=rzd! zs7R$8mSa=dGoPn@mKnvKV+@8Q;nq+G8~V3+yT%UuASrFwO5t-=<285GLUc~OJBQ_y za=qRnVe|!-0@Q(Y^|&sj1f^t(?_EXj@HhiGYaniaBkPmk;a>6wP1FKIrR z`Z~Kz3>-$QBC21Aui^<`=1giF@-##lh@y!|qcn=vTj_a*b$-ym4{mJ%Z}sV){`=iS z@N%!J1^qGVNR#M4#eFkcHLFqIGz@VGN@!hUM3RQ8N9T;iyViFXk*TjSU@N-L%v~gY zYj*|at^mt*Fmn=Ngm?~fGm!pOG^YGr! z#6k;V3|K}S7Y1S7);;fEsLglJI2m0Ss;Hv=(<^yKY$-(TKfEC2vX9>~&&b~ft< zof3KPL>h|CUqRRi)D(x#GhZJ06=||fiGIC2=V6J*1@?MCn9cm+U~0@_Oxh;YY|eR(XZ=n;wSfcYSi!3UTah1XO)lKnQ|D^ zlPva;ESTO!7Tm^)Zw%tJyxKh22e)iBT`lTta|lvgvR<<%EPrxiiTRF$VH=jyd^M=| zArr>TnlYII@3M2kN*=oykyv)7OvwggDz@3LK$bs6<(K6$xGK0ifQqz94^8|Y0F(To>CQIEF|-@qVU{K%-z82YR5!a~jSxTo z;l0Cio`kvHfU+uj0u$2>L!{V{>d~tsu7ku}?^gx~h}ySxsmjzH!?3)Pq|)8G?i?ar z5g@mvt;Hi-a*z{};(7BBa#wGM-SzfWujiQn7#t-SI`#7NQvw^0h3($UpooY-2@K!2 zurS#@#?#%YA$(g_xXPmEZ1rQtK19(CQ##?Xwk0_AW4_F%E3D`!LX|>q-vUg(A#v~) zFM(Ms2LSqHI!^t6j?9;a)T~OvXrs0W(zfflj|X)mY^%RP4BGw^nBmT6xMb_l;g zF-o$08SS`JE_j{!K7-#+*Io+N)DU;0f)ni8e45YEy?iao z>r5-sEDMyE;ht(dO52tOgZG_=hb}|z`xH^9Y1ndE0;3aV)Ik-hM)t)$c+hGrvLF?u zc-Q4G6=V3tqRl!d;mf2CaJ-xsY?q+Fhpq6vTxzcX2Z>aC>+Be?HB-u)vma1vSL^#> z`cj0UiAtkTCNzN^&bYA~FLGUYs)fxJkj*n8bP^E&b)MQQnVCrF`dx?OT{X<}k7qx6M zGCp7^-`6L-A75nEoIF7*K!UKme*|Qm%T924<RGq&0GNSjXS+(pqknz`>no&eCI)#?2kJF=1CCF;nU zVN>|fYtU^h)SO&wR&Spj<0w-?D5m_>6S6@S4!Em4%l>?js;1}3rbd>PUVpjLq~RFQ z8?tO}y1?nV*(o3Al`;Vr)Sq;zFVYuQM>z_Ho{6xP8RWc`$yWaX&0s_Fdd=u6QD#r* zns-sj$cK|G1?2_9r;@-5ZiIVUIE^x+)|I&M*K@@^V4)!DB3}eInS6Yxmx^C|uY^&) z@71EXefDKx8e8s@Yce4N~iD#EMq&U1j+BsDC&OFpw$b!LT%W&N8 zh}}~c7O@LbNdSLAv!@=%Rb!s@x#Sn>4Y&_4kz}~=q}P)-6El5BL$eG#n;<0x)_M=k ztZTu=u%gpDq`z(nYeu|jWRw{HJUAjzO~EJvZ8ok_2Zo-kex6;Zj^z1wET%6txW6Ik zWhI&0M)7OII-LKsdn%$q*z{zmzuPPqbT8aCHs$>R6S885&_VKSbw;3e-6+8f(A2BM z&+Z+jV5LhDgB0a{y6;;JB_@oGGUI%wlH^|yV2x-k405wSPAyRdpHS<$ZKA4*lG}`d zm%N>uwpusaDa5^Nc6ad#9E$JjRtf>Y3%2;hvPy=Ylu;J+{bNTj<<-JkcjZ%gsmzdM zKZ6G5+kk>KA0v4n>dF$O(T_$~oCMXX zP(T$0?<;^@rxwar@xn?q^=RFT{SuQ9q-$Fz5p4MPymM={ia=tBjx%Z#|zl?YJs^Av#vaJeCeo5A?K~e5*(`x*Wg~%3&$IY>%~c zNhi4?m7yWEV!@i#p-r_kSSH84u$&}1{4_aa!D?yrxc7KX5JlNMFpW?S$2#-xhGPv& z#lLnY5&i*vl^KcT&L;1=bNyON!tLax;YCttYy`W+D(SXq6Sh*$Ec*+4O)rRno2lBz zGuf*Z_U;_<;jJ6yJcvv-Ih9|MwchRG1+-Z@>ky7v|>P8k2B6djR@aPnp8`HASImnsD zFV;COkdcegNyISEX_o0Y-`!YdF#Oh^Ot0PV2VIhjU#DsaUFkj&?mc>sKkY`f{VjVpzBZx%Man-^+?rL0>XcnfGoxv!iDi zKGfgVK0My<+1=T64UN4*vnHtu3FcLWw+@QcmqaI={Q(0*VmRDptD`spB^Aiz(gQw8 z4mRYxwpqD5StJQtN3~umj2mx==+dDl%gV2IT`%gxr+Z`mfHt%DY5rdeA%E-<^|9@fDRuE3~?LZ-*80Vu~ zcy53|5C}|ecw%vUcHlOAg7z*DH{6U2E~dBNzE!WPwZget9hI_I4wW(k&%)Xf3KNhv z|M4LM+w5&^eT4jJCm8{J^yw)O(5HXt>CFYUuq4fn4(M19YjF7I%Cl+ZlMbUC9s)D~{-#1HGr0wS6GTJx124CR zbpBeb25NPAWOniU$AN;ClK`K7qVK~t1-Adgdjqwkr~uSs7tr_Ptops^2l&1+_utmu z_AC3M`g9{CzmC&)l9FmKO5&Ktf@}iN6vDypM|-T)w$-)8=66b8u@iFwQ+qe+?g-;p z9@suyIEWjZ33yb*1#POv9{*irhA9tju!e}od0zN&3eAmgN zUIsDzaKGHm=c`@81$_(t`0Z#79jvbQld5-g1H99RpeirLmJc!v3JLU`^s@ln@QcK^+YPl0^^W+x?!L``e>b;Bbu_ly7&wI8 z{pav^ILA#;Q<_w&Hb&9&&CD^Cx7p7@VBS2JX7GO0`N=4{_%Hp zyQlF>2lLzaGTz0-{yot6UHZpY-9fZG@J09AptrMw>-ER+?Et9%cU1}Y;iR1>RGoht z`!_||k-<0Xk32nka3>VpIVseGuX-uZCbh+Yv6B6mMzRHw=g`k=ffA*6&yV7IpDdJrfxi*H)}ZlO zWZ!zvMYeB#17bV4e}Qo!UcW#dxJ5nxZKHbrEvp}s#|xjz>-ei$qTbQLHEI8OK;&*c z@Vm#0;{-kgX#oDt4%Fg>YN~?$^3J5S$ZpzYWiZK^<=y%n~oPr zbE-J*h5hbO;Yekg!06=K+o8)_Ai_jq$+Z2pl|f=2Th02nR8+ht%6l!j;=H7<=wvBn z`@X~Rbpg6XM z0(!zCehwULEca8=u7o`4=bnaEeLRoekuLf$$4ZD^6+B&Y02%ouloVV=;+c?dqh6zT z-D<=V-QR&+SarJCd%gXL9ID!0@NjRv8zj%<4fGK2U3MWEaaCohZPyn*x#K%qw2=@V zrFi;2SW)^qnj_+NoWyiANY*=4_8^(C?0qcYw#*yIE z>T5PR=G?gHXD#&PMItAEiJe9eyBfKbAmUiFnO}<7YEWQshuFkVq(y{F zc^vi7b3?Hr0IUc0%IerCWlpA@@X`F7PYzCTY?Viyjx;CM&M9z{j5&P+M;7TI&y zI+b!!Kga;9dYS8<;M+A zKf~QsoAcVQiO4@#KFs{R-~Ftr6HyTQ#9?qao?4ssLvI_V_Lh4*xE8S?O*kZC0fSz*EcRbPLtiv>7ITYC>xx@X*pdN~z1|Y!X;S_pzB$^G z$uNt-Z*|u&8^P&es*9h!-kSI+l3BD=XYJS8D9Nqv_B0O;Qal` zxtknE0I(RXxg(Y0PNa1N?O-c+f$#p;8I4&K%EVTNJ|t!P_ix;t_3f6$!W$Qh?)%Dd zqzgU>!nK~R3v=y7$40*GUEG+sNnO_7Cob_3#)YhZ)16*0baw>;RWV}-X)xwu%8Q27 zjmt=_A!^u-)u4QJ4v7EVxfHSg6l0s*AbF6vrrqFa=o7UrNvArw|LdM$-Nr|seu+K7?F*MmX3P)SH;D=( z%Ht7H&0u$(sxM8iowH{a?^4;=H_|uB34?!c4>Fse@p6=yo@Ev@i1_Q&f-FmPRufK1 zDH9ft1R0XsX6dY$+gT%~5>vJpS&wR{=*TOwV4mhcQU91MULiVbwQ3Ub;hLOSF8#`z zZ044c0LQL_BP(U-t8xb@KB4pZ_(=?*zK$z|(!Z6-PB{|QXLWXOEkkWi7_%Vw6dgX+5<_LEK*4v5G4oC?c>%lWvDO^LXYK5z57~n<^Gfa;fE?#G%|JC34i& z8N$GHur(LD%k+3j$PVBYqSaMby=p}^U2ld)iiI<_jKy|BFNWh;f|s^Zrf#gIH*(Bt z6c+U`c&;#p9=7|yT;07?f>x6mTWZWPd?AIU_CGi+@jNt!#o6rJ*Rbu^o-+mtw1Y4A zL$!axdxc(3OUrUEnrAjQCH`rR7AD#hV75k*z<1*(qgin9VD*L3L3&zldUlt$%F?8% zH0uzTnOT`{Ejif>PM?g|ad$~J$O;aidP)CgMOZ6nbc<(uzegnP^VNS*d;}%&EJSVF zC@QWB&IQLvwU&EVJHQ1}3Y$bbt&J-4W^Rw%i2`VDlNG6%Scxp7j-$hg(A3z+IZ`T? zCjiKCfC~p18h3Tw)LM&WY(`ZkbonIPWIS&UOs>O|hvRzsCPeQX?K2ejFu$h7&*S%a z_Vs^Cz;U_)rQ^pfTDZA-FnRTzvl;E#2Jdr-L@JZBidVz;c0a^hkEpxUO)6~B5(xi0 zz0Y&RyM{d&#n>bx%=F%he33Cp`=(nlD3LoUouBF<<66PCQ@O_-&KEvzVQ0qS@d~YObI5Vh0uX_c!{|V)~EUU0(OHI z3i2MGf2_Q@L_y!aSMyoCRFFn(o3Q~sW+i27He9DccwM8{aD%+S30zjiLH> z)ha$_m=oC-^4Ts;#aX#R110&pVl42)_;+SPn9{QG z;6d@QC00<~K~v`ATG5Z8a`;}{y8Mk>c8HRQWTv^7t77fJu6bpYTNtq)`A#6#xF+!T zH&3WMktSW{jR%>BRp}*_ggEiPmhR@|3r+c?>91pO-w+HrSg~TO%RedK{Bs^umJw6q z9HACW9A~*VXSEzM^@bahHxMsN;lgZ-?zan&QqGUvSIkYP7SEeJF@u{xra3N0!n4uE z91Urh9S&V*-x`*neIe}X^FUzhx|fedb@L{oBv`pXmL(+zuR;ydT9?K2I!HTR%1%!< zz_>jkPMeh0)LC90{tH%vta}WG()M}xy%1YaV^Xi)_aLnLG}Ryso&u{#A;PELGN3o} zj+$8r&lR`-a+LKM5qc5w0!6j&Z_z`Agto%TmwcsSxhW;#B-D$xYj49dph)wx2kuu5 zS#PwhfPr_fJMXZD2W<6dDK6vV#gOE|b<~0XjGW-@=ERFlN`&@VyLZx3y_dqPxVBkR z8G#u3ENj|eZQq`8a=B+;uK-r%L?<#s-hOF14E4zrr7zh-u97$c93oS0qJlIF#-@Zy z^Ub0-O-lkY5&B*4h{Boyq+I>(5hIkdD9o11SW z4I3jHKx5f$<^WSC@nn2oMder_(ht&l#P@&-*L)uIuUsmSDU$gKrwmXAhD zLWFgHo`s@zH)`af8zh?DzL|^vkp8(a^=d?ytVe*HUe+Y48?ZDvCwP}BWxT@klZ>hj zPuaMx?Cw7S)yZPx+wenVNEkOP<(B^q5=^Hm6l3zsU(dqYf$h0Z1EN-GIUT&-{Im>a zE@uwz_NLS?U+$sM?3kQYat+SbdM{TS5tfsG0Z1r$^{VPQOpTXv!{5k-CQoe!n?XKO z*?3*QL?XOCt+%($lEq@u|8a}bD|fl2NOxhQ>QuGAp({0Uj6M)K=w}dA5z5%nkHXm| z`95fOcU&a|ee)9kUHwMYQO;VTGMKu#+ zlNTsUWFYn(QO-P;oW6YaIW`=)I{y}U0LiF6h1;TE!746a57!7xNkoM3=N_BwIJWlj z_LM6FI)h9?qgANcP5e4#Qz>S>SJN?T3~vsWCfd%cz@rs)dsOSPE zh`{HbP*|`D1QUx$9Gb0vPKgcedQc4tQf_1&kU+w*7oMv-Go|5s;qZOU8A|YmTw-W2 zTZtZux;wL-w>N2yeaxmV1s&D$!i)A4^Cqh6obX_8M|*0?qqM@EZ08&42Ab$KEe~#n zCi{fheqW;83%03?b{gDEGJEevXPuW#VA%DSefF>IyV?GyLN09yMZ`Qm?PX$K(9zpq zJ_n!1mkeJRmVqL2%?BjDdOk4?r@b!rfKE<(KsG`}e@ppy&6y=G?V~_dJBS-CG(*eh zH5f8d%-ELqb}wWH3g>3(B`^n%!nLuJs0qY(XR7!F<6!Vz`U-Yiy$RRv@gS5|GyfEw z{Byo;_E^*msU*^uey3?JT=`$tXpQ)*_zRJ!zOSU-Ty$9EQ%|-)*6}tvLR(DjydaAx zR9SNVo$N~?C#so#Xm2p0$j44m73OI!hcHlMyIfBZwg^zihfeVi0nTQ~w4jWS>;xXS zf9-?_ez5)lEdz4}7qUS##3=;^ln{KU{echiHARt+8wT4#;MMxo%<#Pl-KvEqAlV`3 z(*&95myL5#D^0kbY?xw;c6h>>#6Ej^`fX^_oR&Pdaiz@Dt-$8Ny@H}FkM3T5Sn^3C zXT$9)#hg>^g8JGm?2O4Qa;CW5ZR^5hh=b@@)Do{-I)R6$KcS3qz7Zw91 zAEy=-pvZjbvX=dI+4 zI1eV*+$w)9P1?Y$JfUwa^&s0Rk60llFIb?gTh5VG+u?#X_cd8I#mIXu-wFocOLjcRSIJisCl18xUEy2ZO_>Gs9?+0I0r#lf)F|)d!9C|&~^36^DJFn8mBp= z3nL-lyTn`HevV)an%CO))Lju#%u`Dy2^U<~WDa8{Uk<=3T8fmX41|_)Tw10v&WG0z zj0V9GS@oZHzS*F;@vjJtcy2wz?^S{Jb+mxE`^v*O<1sZnQU@yYYO+viq$3#Dt%1)- z5^3+0>p3%&gdOg;iGZSp8-^rw>R&Zj0WuvXy&0h5r#tCxY9x1q-s_RxJ8Dtc#DScV z3zX9X2T9>=E7y=J(c<^u@m4*0m(go_C}ae%PRYZ>WMv`dQd_;V%|=_0N*Fk_xy0Jk z%5b9qs~t!gHHYlo$mJ0opwh$~NVKIu5Zi&I+FbYmCO!;eiUJ>I- zruw{MH7m7EN$i4Wp;+m$KlSo!8?`UVZv8W zN1T3tQ6QN{8srJ~qid!R&Nv%@^RQi8@Ty9Tnvt0g6O(%kDd65}_VwYmZIZQy2b@61jqqKCI!0c-LQ1M`H|+*P;W`OwQ)1w; zLVng#Y~Y!hGg~S`2laATZV#fE)}`p@Ce;#8EhfMZ#%a(PzMHal63^he(Aj(Yw#HEd zlbxQ)R!da=1H@#z=CqA}Gz9i?R8Lwa*6~7&D4bP=wG=`*LX?WVzzZ})?!o3tG_5qI z6)(}&9}<`>Oay*HaAD)=w-IiL43~Kj8j^Ty^jcqrXvRa0Eap`(E4>~1maD@9jZi-< zSw|gc^Cdp^tgTDq(qc?Te#LgK){ciUM&l=W8(TKf*Rvdh*B5(=Kl^lzTwo8wpx)Xo z;SpR(RqiC-h!gX)d57loT8$X{Wu#Zixs@_CH2UMuSEkAcONf81TQjxK>tSqMPNU(# zV_O^$nvL71UmPl(dH(s0_Foglr0`Z5Ylra?nTm-G&mAf| zxJB?&wN{4Fo_)C{1p`9~;Bt@Yn@dJ!fXM|My>4a?(H;JVIzVxmv38Lz=6d7J{shR7 zwCdN04kjdkK30cRwY_3;S5%V34$nT|^=r137^~gjC@32y8HPO2K+n3}sq-WIH>V=1 zLy3MYxY-okk>R;O?hsV8OQim^*0)_DD>jZhXUd3Zz!>D=g(~Z_Q(DUYA+*IJRA3Pq$fPvl~CJ3 z2BLN72=`Pbn#VM-a@e_6_@CXUg;v<=6FiEUKf&@8%lbC~I-?&>?hp|cq*ePO_wCKC zw_5)NU?pk*F}|{rnfTH48|t+bDMc}Y*tt984ODSGajRW_T*D@7veLi+t%zEtM33V(~W>pqU!-QOE}^u7vGhw@&}H?CRYt|4}}X+<2!Jk>-;+R zPm)lJGR6$*Ix8pNs|4W%t0cSuE&r@_qgE&R|o6V@Q~1J~~vpnmS(%WeM6KC-dcsg!_6AS;qO;16Hk zdZ7d*GQimSyjMx>by?wx-XXFn7`>*;>(eT`1o`TK<7SD0B5OP%CuHCjU7++%nZvxr zgT{cZ7;8=QS>-gL>_WU{hwWs_wo1J56!}T&=wkNcA$%R)f=_uL9p&+nN7G-q=u z1IVz8R@cb#f(@T5vpF$ALL;$DNWM7MAhmPFp2Y^^Tn1`JQh8>IL z=-@~>UO~&(#l1pXOhkqjx5LZd^T?j86S4i^onV}30OEgQf2vl+K141Jv^d& z+qaHSh$X2fpB{fL4z_2_X~Ju=NTYot*k6SAT#;tF6!=*QbIp5mR3bm{s&{(Lk5rGi zLxX!?^0-Q!w0M&EGNVkU1=~&lGnO~gylcH2f$L5SO)Ip$Ha0EcW5et+0R_XI#H4q8 z97URT2a^*|n$*4FZc9W07M}-X<#?i@Am8ABw`CrBq#N!o2LeTX>nm)tw$$6&2&sd= zzhRhFFcnq{6@{fKaHWiXJ77}f>o6#i4aiNBt8Qa_?$%-X*sU23Ojc!lC~asTLrC@A z&sstq6BBU^V|eOu(9|sfkt;ETVF@T@Y}NR@2`wz(l^Lzs8Fi?FS7(&BOh^^kQk|(a zklx-uJj%xW&M!z|D+Ms1y7ar%Hqy(c|IGtMkVc;5}HvP zSP=m=^g4ai9Om`hvPA%s@o^t;U&#*52dZLls4v21E4b47`ROLyS zF-KZDz|Dk^=|u;i$t+wmYHu+Cba}S|c-|27Sxl!IKjnDZtF0LNVCfrUy=LlZmRUm6 z(UVLdFIe88<393Xb0yiQHS~T1z;{35eBC(?8MI$p6dm|);F|I;?s$o6FKp(jYiNlE z70T~CQP|SdZx^~|e^EgaL&A8QAI=-+ULx);1z8M&fjr(vXjbC}(&oD2QT7RtVN1mJ zvvI`bN}Fh{gv~Y!Z^V1@1rF6U=909@b3{u%Pl9)`XgQqnCXT@q@hv_gDi)f}T*0#5c8pud)5KD3?|=GLT3H zi}6cnPPW4#7$qf$L`(XO8s1yg_l`m-r(|zUzh;U>LcoS|>{0fv zI7FLYj{RmZXFd5xRddma)NnNCuq0ThOW@`*QaUJb@&V`IZQF|X=V1`tTGIK6NKm9q zPK(($Pfkg3Q%ktelS<#ai-OaeSMM$FpT|S0<#!`0lp{pu;hT>s7hODo*|;^km|`Oy zw_-G`fIwZJItYKOX4cG3xDi53F09{rC5yg8<8Nkle)HmRVG9+_+(a}>?6YOZG#9f4 zau~OVfymu;@1r(4%R}hg!7c?YwNv1R*N8J<_IUIC^z%cBv5=p;=zv zpf=UlV`t%&-)k=-y79FP1EM}+=ZMKPhUl3q=_ByhCfS^oXukiKX>@9EfD!$aOo;5u zs9vS0FYX);v+&`oYYt0?(2LJc#TtvtiPele5&JFOG>wWZs%ga2Q%B2ib}x zS@jCSsH`vky8|IMzot&CsK8mjLWseIK|J$FFcpas<)fLAgRbDlUc5I%LP44 zp^HMGDPME(NB^8glI1{01Z{=63l6=EdEsjyNg2Q}FOg9Ht5s;uSJWR=;C?vxDy-Q& z_`;=+X6O>7#U=pT+n=7ILpZomqT09Ug~v3&uX5*#@DW_9PYgvSVAA`Q4ukw4;8DW* ztmYb3j+C&Oy>&5FRC%XX^LZ3eRXL5RHnwJQ#FQy-A|%tryyBy>oCGx`j0VaC52WJb z4VZ;DX`wKj=%s%Mc3yq0v#CEF&iiZr8lxAgiGj?wybE(+T%x(C&n1$0O+A40sx@o* z5j|O7FXhmWIfmRol$37F^ zjlH?%HGU*Q#qBsyCKA7kpYYR6J9nX?u`T*93S$@PkJ4X3LEYaxQm;-0RXL7G!7c~4 zt}VBcL++Ru?`oQdcly*^|A*|Q?w$6rUZ5kVDUf^VY_}LRjL-ffer>K285{>%hhwkF zpAoxgMgr8@O0{RBqU5RG=kyT&*4Q4K!Ydu-{iE$|jlqx%LTeM+aI;l`0SCLEqZ1u< z@V!7nNZoByL;>gSys`gZI`FE`V{Fv4qp{4r0+cnX7YEu@7`*FFtIy4oLYqU;gbR}g z6XPfCxF_K;&1qSy!swEmtHB_Y9Xo)M-sNh}_VQn*;*V0ixNdp8x{v0Dw^<^-%X65R z+M85$%!_O#jnyXL)h+v|YM~IW82^jQY0E{aMjdU_;8tN=Im5A5I+_@HtW4j>dlF$S z2iE=vIdL{X(K6!{brXlt6(h86wMaULTm$Jr?{Bun-%!gY#C;HG^RmYU3?IW!AMvY& zZ%UhJcr+UNrD#RaW-86kwa{vz*i@L**?+zCbc}6H^Wgw;Gt*MLjG^Vq(l&z*=3d~$ zD2rJKG8puLc>?fo_xpzYxW{FMh~@7jdm!=}Ciq%2#l&PohLz)K)C1GsmR1X9-?@W?o727Qe{Go^#RaKY zjKFo|lV;nb4GtrE7O&Z?x!FOu&K@CTapXtRj5;oj&4R6Qi0;q!?plY<5DI47G3T^{ zpC7brZ6)5RN2z4GT2ZC0zk&`5E3Z@b%~Hc2QN|zlHwie$p@#p;@+bM#_&%axWF9Ob z@DgHnVX0P&CP+pXmB?Z&-{wPad)@;io*0H3MrXK-{L=8FP+C43Z58sC_gfdVuuan? z9^4+?rkU=9cVCQBXV&t%DBpU+Xzo3S2EcG7v691m6`F`&zCzM-JX1C*eLmIk7mpn< zX1NzjXIP)l`L>lCB0_4|1`h6jx8r(d)gAjGxF;ub&BIt$CwKX_bj?7CwQ~h9k!pk% zkji!_6xO~~H1El(d7Aq|bG`Ps4|;Z+;p6=0C5<(jiRxLVV)l!5>5Afsjh(1Se0AdGC|mtszo} z$blw@)2K&`TxCoqpfasyJXCH@c^cGe;)NTd8$q*QKBlrg5rxP{?SVL{tff_9WrS(g zsNkIa(9-llBmpXt*^)DNm|E6q&MdPFph1Q#b*pS_!3+5Be^8O8u^Xdf?TkyKU%uRd ztyBU#Eko6*ZMe1X5W`IG)tA8SV=7f`AkgChmCu+_R#TWlzQDwwUi_Ag*=f+*?WCfl z!EKWAx8KGUv5GPJCD}MK*ck6q@^Naix56X3R7<&Pmxy{1eh_A$i$sxl^!S5lmr4$l zMFjz`Sy-KF8Ra)#9zX%i>r-lsS}_g-gWaf}x0XESRON(yB)+9kn5s^-uTHUMzsO#S z$@xi33+Vjyq}AT!j`La?+~k=0q5H=PrQYKx2P<;KEF;`MZQ}Bn&?9gZ#@?(4GMk#G z!g*l0wUcZec5Ti5HV>j~YN=vc@DL53W9^`nt);RGGhdUpefvJGqPf&QO>{%OCSk^| z&22&b4D#WH=IBZWZhgx%}?C^ZB(f2A} z%Szlvt?EZbr=iPTpW%lO-kUVlC;{Uz+sAh|w{_rc_6V6?bs-F@(}g~C+7*fzO?RV* z_#kHbLzUde>blfAKJ(bQ=qWo#2cI2WvO9c)%#z|1Fs{2VMZR+f-w?moV+15A)2 zef0v>4O3QnE&22^Za%zesbh^)sv#mFsjT2VUo@@MVt0}r=~mA}N)tvVlQ^?smaNh{2YRTM7K%_Je259LclO1Wef4Xav$eRvfL!r`Pb z*}6?kQlgdzKlWu1#{F0sp?zB>Dz@GT@4`6m=yM_{HL>sO)e5U+v!PvSJdV%xBh}Bh zZg#%7n%ipVl}Cqj|G|t^YKBqf*Y#_Rw0nP)XM<3_Z)dQ;G=q3~M0foAAmL6+=kFr6{YE2_vw zQO3iVMD=L&fDQ8RHs#Tpf(9qrY$_-biCXP3qPN^Le2iMw_D}qvWMTLA@R6G!`DL|v zxqCzEw57lqPOQ6GxGs!c{uT#F(oeAO^!PVv@22N1F7lv*n{yerj#X)g^NypCd0LgUf+ z7fm9&^1_>W^}g5-!gd_^TU2Ex^>1q&WA9FU*>npu9I)3gdm~gJ)<^Wt7Rtk*uGHTk zyI=)^bGp<P8^AEwiu$h(OS9>8~6?0lTy+;y)7JVnT2>z4ubdPG;4-MIKAn|2PAh=-X^wQoPYApwF0 z>;{=W1_<#?&jwZ55~yJHk=$$B3&}xm=-+ zRzMMOnk?Nx+}iNrs=;BiyfeST9n7kJwkLCTI(tyU!ij@$J?VoIT)!w07G!Qr0KyZP zs8XWCC7=F#d2mLwN5tEm?28AbYqqqY+QW%OVN-dAYbiblRJ~y{ll6U|EJa z_?@UUeS6s` zU$^l1KbM)aU72P8>t6PAslSK1790534^v@@yg+L|)7GvtMMciy;-$B@YFgWL(U3~K zbo#qxC4Skyc$CByu2fA*!w)Xaisr>n*EcLf-D}=N32V!v2|P7_`(DIq4#P$04VRyt zUEd8pNOm$x2v_(^#?DT{V!zjE=P_k!hM=j{GT!5`V(mE?%M=dp&WO%y+efK7u%7$=ht`ZF-rsz%9+b~g~rdtCjj zTiHKWC$^>@@bdjHS@;qZF1F}I+e~4yHY$dQ*uC$FSi=D*gwWzl z3=AW%@=FtU(Qhbrg;K64PNFQp7(=QZ3zvR5fWwY()Rn@L1<|CT5I#9M3<#SuACr1B zYqQGz9f;bQf3aDTUBV(Yebq8Sd=s3{x{9S`G3_cObjglpRfFtP**SsZD430T@u1*H1kH3y@k}U7XMKG#(zF44E694BTv*PzwwId_py<0O~oAiyL?r@NW^c z0!t(CuWSrtAX0%HsMCjd&8fk`rQsnANDs7)pqYSox;r@gf1Pj4`#&}TSus2U6Nnan z@r~d7U@!rHDPRMW!=HN&e-FRZ2;;x@=E%&<;N0TK-t-B*qys=E&>$3&6U?1nT}%Kn z*E4@iERC*?9&hZ9?0_3t8GYE_xgC%KQYxSZkF$6D*E-WVf^l_pGIRu6{TNJtsHeT- zNw24eaBgk_-sj1<0@4Y*|MJi8j0#5h-+P~C3FHIt zroQ$Yfi!+UzuzYIecPsSuWfsOGyZmT%w#!HMKM)B`yv0-Ny$$4A@2=M&OjNO9Gd_% zG}k);w(sEm{AkX8`~WK?thc7y;Fb54d4D;@=y7r1)<;f8c}d}$w@H?(}Q^^2fgI)BpUJe$-R`(gFYaKO{OgHh*hNKcs*Didh?hH@tqt|M=?d z>h7BB_wV}vU;oxrpx@`Zr~qaJ?cDyD(scRT0rCNgZ@1)aV7tIx7zCD#Nx%z`nS;|J@6NF?_%Q@y6>s^ z3s`e+<9q7ur^~?Y9r9rZ&VTvN1b6Rk@<5)GV>j8g#nt&EeagG<&uHi~ zZyTTXOdsOE4_$Na&FJph7xTm2g@0F`eyK5cYjFbqsW!L+)#1VYIeFOEZT0VS`~D|m z+@gEM!_7Au#eF7I%#o-qDlm&k$gbyWQhy zPV$hm)r2GD49E7jQj=EM~lOF#xpWXpAfs{ zP(^niE35VJ^;~bzDad3+Pbaj^MvS^lr)fef#kSewR=DSDT$t_5Ndtx`A;THplCPz= z8)0%LQyZ?iVTc-ctu}7~M8y>(Sn~`W^lz5ptL}Iilm|&ogcA*TmDd>MSkx$}f2-d|ve1 z36P23a&j>=;c#AEyU~61a)@bIIi+4*YqDXlQ6kAeG@Xl0H#n>Ug=z)Vaxbtr@<&S4 zVvS;xV@pMJ?wDQ8msq>kXm@69f0pr6SmMsPZpp(Nrvh=y&OI^Rr?K<{Py<}{|8V8i0c-1KojW}B zF^+-M{jRfoMiIMACqsk*8UJv0m27ev5}5K|cwHrAC(%A*g;VmN@~M|6E0%7@W2sGoFoAa1?<`tr~VENPWhnCA$`)8x^Nz6?>xt^B2dW!FzL z_I(zf0)@h+_mr?OdqdT#mk@Q@h=rMHM1_Iq=Yli*8`+!W4-uyO;)f4hkH{cj%f#~!@7?5MfFj*w&Vwp`Q=;QJI`^+CTssIdGY^IQnN?FB zEQco}$;0j}2)k1XgbNR6s)(>4Tq^->L zb9Oe^>Z*IftGIqzD-VUYrvan<-%tia;TeCFYQQhcDDzrt4O8u$oyjTrW|tkbokISB zBSCtwbXI0{KVW&fnUwLCh9vIfYfg@x-_&wxklSo*t9MO%(LO76W$DuqMy<e#Xr|QKzZcuAPbKm9a}L}>nk~L3EK~c) z5*`{Pz*SNGL@^vn22!V?xg)JU zvGT43Ac4C|UCW*k`=2|Q6qP<5X%nX7sXHMoHi@TF*UUe4PI6A};;&Rt@`mZ#atCp> zg->g}P73^3SYT%+WDwvPhO1`Ei*{*E4lTDg)QJ-sZv0@- z3vf27jEN`B*Q7(sgk8%NPzF8tcW~jeZtRzVb# zM-@IJ1SC2sqIN_Pcc5`X=i~e>IgH*KhTWqB2&lft>hI@QAz*%}dyB$wGG%4E?GKj2 zvHSyzd73{M=oC8+y1K976m4drN)wfaCU0L!N)lalaRH^LqZR?+qVBPV*F*C-0>v9l zOO7exU8?^YE_aui5u~KV{(KeJ3XbDWgLJm|fR^Pou^&5C%#YO+75-J{?r7kx!IDMg z8dUmzpIMFhE-Thn19q|4zGpEiSTAu>-ge~2J&8+vY zA{+eoTkZK@SreVSzpyGFnky%2YiFg%$?QlC2ebB+{GQ7wL)5CR8gz7soGFLw&Kj?! z8|*?(#&)ox%A<#^H4=n_Pss`aUV^9Op=F~bRy=-=if`}RNq_cZSm9p=C!#`)cttue z0WfbN|bb=5PB=qKP~af+g<${taJ`ZG7`vuoRjyR?_bXk1JCfs_Q(00IP;%5# z)m%(rz%$zH`$|kQHg`;?(ggzA4Ie$ON)BytLYzu(YFuF*sPGJR6%t`0L(O(GAm-jd z>s;Z;0utNM!+)|Bu7Ay^p%i%bN$O(la}5sSN`huyFoB#ba)Z3xs$IO!|i~Q*CWrdU5)*<6J(+EjXo9ph#RlEn1I=;uOHmHKBcs zQ)T=Yv?Y13ec5Q_Yv^pT{brQ?9)}21vEZ4wiNH0djRWMFW)ekSb2?KvCh-2>TtF1Y zexUd!Iu0T%Ub@W64rrs>B3yZ63(y%wo@Ztp@VTUX=P}RAAP3R7L%I*QrL-aT_jEGBWF@n z>jA2;c!GJYCr|aOQ-R`OvfTH;qiN-AKyTI|N|2yrTgcd&|5*~xsnutbuc3)R<=|kF zS;Nqihq}+yhzYui|%Q=pW8C9Rt755h4xxloGG*>@HYci$Cteg-&G5N`Kkuqsmc>g zZlNNsnxZsd>{;m?vKl#-y`Q`HtSxOqSPT@~v!XJ#L78`K+;5w8BwmgT1@B7_nZ>29 z!vj%ti)bn^35KW1j)mCia?d?9?6wEl_~(CnVw4~sB*gU|MB`Og{?M@;t^P2M&Xt-_ z1!iY=_?;3GGFWqpyeclGjq(UW0;Kf&Jgv6nRyG$p+7371c@i<2PB50T>nKJ{;SI_2ek>awfbL|i9hWRh!1^7;k$f|? z%`IlVFw5;`)UOi>i&`qHD8&h=J>TRZ5ute>^WBQ666nfra3JdcVTJc7pbiL5A&W zztkqtw(3is5|3`al1SH-4=0ETt_@jq&eGcKd$L^>Z~~mEa_d&eId4W+nq5&=P`n%M zXVHifd5D@`XS~N|u=bAJ4#HW-H;< z8VHxZqf6WZvGPt@`t-x#RHSie_b*&ZMwR)Dj9$A65E#M;5*9)6UEv{_e0~Q2Z+zVX zjF7FYoMn&cz9rRk7qd;Jx5kxXeUyER#hbpoA4^8SCg#dqa#=)(SaYO}cWGK$Rz``? zA=WKS#`fgRfQ0uZ(?Utjg8TL`m-+Zja0c+7_f5XhuoKZnE%yoSiQp-mbB|Jel!l6N zM>4RHw%(4N88$d!n>oU&W77(xn2At4iUm*m{&FibsN{cAopvK$TE%gl%EO}37pD}d zs&2*#=Git|f6-by$V>WrjKFWU=TlD!UA|AxzDB8$NYh{+*SfxAy2m|z6a)Mw6+T$4 z2F?q_N4Jh6*LvHDIK7=DjQDyZXH#J~IeYX>I>p+-!(INAM5tz#XXWIMoM?A>!9zL& z)X-5XCKeF5a-PWNCofP(kkcD?fGe$v+;)y{Kjk1sJz2lm%|@&+DWY*#{*<{Mw&QdDTmJz{F6o;eMq*ghR;D{ zhu@~?Js9b$#=fb{kZRiM!q_az8CL;Y*^Z#KWojS{GTBsJJN> zRSN&}$0ztT|LQS-&BdJ$wbGXUdpJk&#|HT4tOHmpQ}9dra|T)El>ISXutJz+!=b3| zzyshC5Jk=1MOAb}AdR6I1~I^|5jc_CilG6E_>$$e1fnRjmxu81eOgeJx^K;@UIcWP zilku3>J-y}X@!G^5RFl`iKZ{B!Z7MnZ31J+$x#tI)_%X=~M5=xU;w4>5t)u`@qhU6*bvL(!vW_7H9%u`;7$!rh``MyHhv*M=~teKZ|(Q>1;N%(C_q~0Exc)PI_-Mv@;5N(Xf1m{P2l^ znDrB(-r~NbE2#mSFyHi_wNj)J4X4{Up%{_9jMYO!NVGgmWSNP`2?ai_%dx2Wk3VN9 z4((x+P7R}`$#CPwUN$F#$eM8=DWwVzd%@FVd#Y*C>XVe7Ut#cr5^1hAWB8@y?d(VF|*Ev86X|~Lp6Ge&} zZP|5uNReSuu1t(f48hzw20x3JB*u=%q*kTnE9VxXD4s-|mLuV77)%d5xA|FTOdKHH zea?y09^IoS7&VcTi&*32=7SvI!}AmC<*TPr*m#u*6E21+hldpwWTq>+{*hb}3%2i( zhG-*gT?qw&XnHLJ{GjA$$*aLcre4IY3fW2H&gcQqruDg7Ib^~)Af#0A3^ASZC0FpX zFs=q%k}Lj--P@i792$X9Yl)8BZ~vCuD$zzoNHPs(2ybsXb0g2Flfvp4>v^4k=)0A_ z39K~%e~jqwn(l~COP*#1u=q47!@INY5rn`9#!4!{jWH zS)3?sm*h0so(V}Qy#NRB8l8HGS0lJ;;V@z)8&2&xL68~_KjC&tHoha*)f46O*}78S zo3LMVuV9bhK2W4Qbg2?{|2diGiU?hhBwJ(#{jhD_Q2#)QYkvRq_(c zjHJwfTD?WVo*iPGPAGss?x4e6ry-h7AYEO6SY2kWU=fIY5rUwSdHl3QzO1Tjxa)~* zoTCa)&yBn943>24linpi*JUU?m7ltzq6U*fM818-OVr*s7(@9=GS;2Mg>ak|WpY>^ zyXiHYg`OJ@37>Ov^`MDNHn0~qADIoK(Y?4xY;p1L4XGnCWBrN5OGbX@cra&5sOe0e zYx~t#RqjuN+W!LXaJ@Dz7K2G7e6@1D28AU}WLzA8H(A>=1u^cv6e08dbKiVGmX2_pJe?G2TNBVF;x(6;Oyjf?6na6D75bpTl}S!?vP2;9B z$cEWrBH0vi*AlzeaF-#TkP;zk2;*-a|O|L#{81V*aS0iWg()5@J#yCMS- zIdmkPWIQ%7bPiJawZ0zX@yvh1$jNhHivu|JZRg{1cb32c4!;JGQVkj62Ae-keN7`?wGM*)9|VwTB)Z+TpP zokAjM{$5TKwOUPLFN{*bdS~db!hNpI-CgQ*RQbkh|5lirzPa6bSuDC%-i^(dgJerxXy%s~@MlS&P0ln&Hz+e1n3wl-PpoD4PE?y=Pf3CccGx7rqVZa6UfE1qxSBn5%j z(}FDXz2vVsxGwEqK2j z%~N!QTyDn3w5ih!H&>E(R&maG$Mbg>JSRzixsk+sVCQ=}fwz}eZ*u(=Cr-VtKHVwW z`1Rt^AevGK;aGyVK9h#%I(77uDKSyv0wubMCxzBOG(tHNvM+&)hG3DGE$l5UZkO_~ zTaE|n+0ZQk=NNe>#`65+1?Z`*HAEZK(Ila$-L+?%R%Xo|KV6O+uVcLj%P2|jxG;eT zSN}D?CK4Vn;9ueUU9cgPpbeuyq*gpDxtPvKNn;)Hw#1#$qcKN*M)lmGYM*D1SVP!8 zcEbDv?&eq5Y>w5NTTqaNbOMx37x@0YHcs?NtyaPbr&Y0)36K?0(Y?=jd7c)-3uV=G z`RASE_eTg8C&#L)J)I$d0a)BD<-w=I3lEyb=7Yw>>E8Nngmn{Vg+1vBu&eD({l4J- z+3>*I=j-F`GdPB;PmZ46OTzerD36T@-a@Z8Rh^t%@X5K>3yVw%q4fZwX+tx1hWP9=uNFPAl@HXZ&jqgwup$>+uAZr|h+CVr3Y+RR$D< zNaT#O!;*!`N3Qg`Y02+MA1?MC;gl<=DD){wQyC^9m!fE#vQyxQiez+DA4RLWLBE8} zZ79u|M#oyDIPB0=bi__^@{fDjY(w*9*v@XL)r#=?Gkzw$YT>JYVE7|JJFeDWl!qPQ zJrfpw0&YB}1PdYi1J2RW?E=D&OxHassZGsWChgefyPs&{TM=jn5*Dn(HThP$-zV{D*agY1_)%dM9|ec9E0d&noV(5^2bX!u!dcHpBgt?96y+yu6no9 zje@wbOpR4m?e@?eDPv|OCiu2u13M2Q5s5OXMQKo*b8|R}@Kw-5Mvrb4>pj88Pwzgi zd2Mzyop!Kp{8&X8QUPZg)urNII769v<7zCo3_(C0F~{Dz5IRy#Mln2vI9Zcr*N9mX z<3Kd#rdA3poaQD%q9uDKZ-*VIZ4bPkpEpU_$A)Y<;=b_2n3HWUv^pxF*p$kObe3>~ zN4|MA7>mW+ULo&p?Veeyqd&`o7xHKV)Up9MlP6#6yICYBW-2bYhFVi_*hPZd-th*2 z5G;_QQwCkxq_8N${?g)4*?d|`B6EHXw|;m!CDL!_hiP>qny4x2+12pxd!MxZle#$ihlLA^LN!Ra>n&x6>pL*}*liQf#I z9j!rytJNwOv-QcMuVdPl`Y2MLSl3_hrvF8Q1Xa+| z>(^C@{+B$$(26>IH-M8A(eyx(W|N#PU*&!A=nBDGrBHx|oJNEFGfwy^_b{~EzlPrD zOPiSQMs>7O2=5X;J7gR1MC4L-j@K<4+N+Q~Z$zY3@Dw>K$ zTPVk)5ecSsB3TTI@xADjqsC1}9cb1F(tgqF`(?Gh24{ZDhT(lGALRib2-Z?y{5mb6 zs`&@j$}hi&8~;~C*Wr5fm4L6uonbxiFhySUYwf+L1oJU9)qTfcXEDZ#!8;3%|B>X; z+!oFo=|qm#6wXuxb4k>lo4Nw8*kXU&d$hy^7I~4VaqzOSEJfb*72~uL_8<7L==;OE zEO*-?@G;e;SmpqaXkhv2$l@rA!S=8AAQRxUUEXu&yJY){q*ilA{#d4t(=j4q7bS}N zI64k-qV)FLb+2RBmx9=6VEx4X@K;vdja&jf^=%4A<{YW4BfyaO2K-JJ?Pl^*r~wTB(|mjM^<;@_tEbf) zWUES2GFSBreG;)l)yQ%o!YKrEt=WddSUzsZl^?cvG|?#n^ve5{uhU@hUGIIF}5)L;@Xn2bjjnSedCb?`d@Dxy^;Ogi-{O`=Yj+-D?EA;IG1scOxe z1vz7gOE&i(1gnJEL1*-Kq{iTsmYUbrTH2{^4u1>1uC-7~WPmyeceq8qfIsAmXEA1G zj~LTUOfw&i3%pRwZP_fP{#r@0;?Duc@RUfb8hKC8bLME-IjS3m0Jmfb-^BgxlB9I;LR}lFh-K>q?uBHw~WX12~!cZ~HLn%v*v0LS~cxsK)w**dhd*J;o* zdM8<)*5JuDp4f7;0-Aj8pa|Gvii~agVmAsV5&7(%C~5$1o@Ribf#TgB#o-KbM7z#A z`na&l^@lPNq9&zsCe6N&hcQJOBfJ;(a&u2lSycZ|kB6~jZCV~|vCELiW~8L}hn-^y8I8E#?U& zj}Ip2P}T3K@pMLA)t42f7^X+O&aZ4AzMB#8_om*u25Y!Mm)7p;UCgXDu>Z{nuBz2Z z6-@?l)w%s{BnCYG?GK6H??-JEBaUZBj>F-uJES+h%myp!@N6RxEdAaC0NliOJ8g^h zZO+D0+BHATvAFU_Q+fy+;9X|^73-@pibb%6b@FodcZn{qSL3m8^rhJspTE(Gh)0;M zcrXLs89&Crkh``5hwugzE&!FUBDWfnx;CYL_XnN-FRdJZuK8%NJj4LM%>p|^*b63% zDf72zQ*6+_F0lv)fwNG4K3+dgh;T5SAy|XD^*%M(>EPkV*wKU&culsT4@vmf>k85% z)|DN{M>Gh($hCg}XBK5Zx$N*YzPHv#)6(Il`CW< zp@|giwVT%xli`q{AeiuLZACEELM22K_-qh56f(;~EQktD#f8PxM%|`H70g#oufbYA zC-6hORRDWOq2)N0hb)s(_u@>dj>6XJVPCm~Ca07(C8~?O<0_YJ8F&nsrw+G#(qn|} zMRV-jI+Ls!d@Yg(&`lEQhqV(F%1;>qzJGKhFmyarK9c5aeY(Aa;TaC&G-~&yArGAW_N|DyEoxPvIRzvmN8#=FB2>@eWOX3U52s3WcE789 zk_!cOG;Pwz;sH>DJ%MAsk|gSNQsH+Pr7SqrE$zlr=Pm2+m{HaycU+Yw^O2h3|ZFr;tRd!krc@)_E$u2=Ux#`&k1qr_J|dBjq)ue-PqErWYJ^kR;B zHj&!=-hg>w$w@b0AJ8 z&n&Y;g$~br!gWWl^f`i1+?^U23Q30_V8ppFbq6(M+?1=l=VGFh>d&S;*?Cw0E?*7@ zttTLKb=;%>^60*gTS?96V3d6TZ4V8Y{@ZoY2>;8bnLZ@^xfH!YzCvYG3GtvAKVAG? zgZ&@`yeX1p84fVvA4_(O0D+j=b@+-z*{N0P)W@rqI8}E)bg1J&UMmmNbKo?cxKz8V z*LdoRAL;dAw-T!8@&P!xKYTx%zEFi*Aa_rJ?GYJn>0APT@B@YrU_P!rYWX0ybZ4o2 zLk|Gwoan-@WoWySf2?e!Z7VjlT_rpI`rfy=mT~25BtK9dQB~PgUEM~dK4_u5=%~$R zlECb+7xE380n_8wgsrlpK7Ur7>>!1hO|LE36AB5Gf()b}<-@7x%rfq;O%pq-+7ZKe z;G^}1dWW~q_;280>gJ1}v%dnK!TAtOfik>LK=#Ug&i>bfiKPEPxIe(zcGdJ0_6kkR z*GwQ$rLz&ucq4n5sVsv5|4RUnZN7+FSx}|yBJLHM6MS_bVMkvt%$(&%W8}SEqx9Q$A!sWIoq?v zJezrl9(dpNb=xIVx*m^IH{$IpQOI#?q)bNoFGm05v#B>X;}~N*FmrT?`BoK zP|~8X+x}(ezb4b->$LK&5G4~N>`GLxI_FxTUXqG1ze=92@7j*N%WbiaLgV8#poI&7 zvU`A)KIG8;Ms<5ghY~9Sd|zD=U_BjE2wc+6ZMJ#uVeq^HF^2_iKWw90{*T3puU?%39w$(Fg;N{$!s!}F1Z6x^zC z+2gN|OmRQniSFz6$8ONpM5t1V!5lLd!qXRP;rl-7Fj#v?mF=fIgc~yio{F?1$N$6z zvl5uAAE#-?GA$7CwT}Le6^!*!vtgqTpmP{JQrXE@`zWW0?~@^hp5%}*NVZRtXK871ag75ABZI}s&f6FoHI3DG^1qvcU|hEb>v#}TI&4?56cgkTpv8onqb z>}+2F7}WgvqlVjsEBq6T@<83zhD(ZM8b1h%f`6{5bML-ki16i9~$X5(H#lSA#8hz+s}0WP&%c(~{b8;}$h#0B0; zpsxTayXYCE+`h-+pKZsDV{qc$gNc4iP)?`Hew|RUxR!nZoIZ-I z%;_S{CYsb4z5aNsX@qLFprRd!#AXtC@CiLsOo;dyH94~yq*pH6MaM^Zs-?#&HWMPZ{2H>`UHTc9GuMn%=Gw6!462`uj3 zqtu0;5MOdY#x**0jv1d9Q)A^lZ8dZg7eW#`dRz?zZpJN)w)cR>NrJeF2f8Wx44G+DHI4~;7s1~$*R_`M*vmy zO1bY)@{e*DUely}N5LLc*HB_PjeEGc`a$!l;3Qqg8RMS*_qIk@x$OZ_RseA!Xm7uP zRH12N(}E#7-y+2KNP;d6-Gdrv7d^V@O#~E;O60C+Fw>iwdDVG;yK__#L=Y{0ds9Y_ zGF^X9d`{3~9o0Km-I@g^LweP!Vy0CWdpsaCLSxmJZ5`=hxn=`FV7l2wCg^+BWdH_; zN}FQuJik&f;W?faJOy|<&$nRrS)~zL_>PFp;^H~{-#>*j_@;I2T2qVS3vuUT%N3vv-^S_57@fIv_9gZUg8 z=axM?^du0&uA=yrst&L-i*NPqEDPBFYr}O~gKOkk(|Zk*lv%Ps{)}ikt@Jp^yeHqJ zO&u??Jp@JHivaghhY2VPp)btP{NlzRcnslvI&fwllGJsMzEZ_>1A5bu_0C~d?f2*K zez(NCNmp14O$7b3U!)YFq$a_x{MxC}n*d9+u2X@J(IDuOXqarW-+@nUqG1%g&Z-}J z>k)gD+^FcX1s5&J1)Do>x^YWw(2?qjHNQhq)%$7hU-5tzN|4UXlb+){zY1+^_XEMr zqO-#12WVp}zdWU_q87dF9;_d$KEzHPkH<9OJ-pl%6!*+F9b)bMMq%hZmX3r%Yw9@s zikz2vpMuZ5A%==_54=&Gyy_L18x@$Z@k|7391=5W+vkz>GZIQNjKF$FSicT1`;NoV zB%R({c@0`a)LOa4{rWOUi;;U+BrQMdW+(9@&tvOAN|!`6?p#iun4Wwpe!{3Qa25$J z47t}9Vxge|Vi^V(l7$4~sh8OGnNg#@YRt~dm(xd}`fSqs&O-=2b4(sbWNys@Tt{2i z`}27E38+l3sVRe&6j_j@UDB{h80g4qiZri!VefH4x_5SVjY{ZvIWxECrM1_mH9Tap z{mfdz2!^*|%t{@vg@>RQ2w%j%&1M>cJmPRoavkGQ@_9(1CYZ;}gH|Xulfsh~vx^5^M_?Hcc?o>I+3_4WB z#O-a`E?}m;68Y>eD#gr3*wiXocZjCfLV<2Z1I@CG^$*mz3Nfmi8Qo)SL#*+h>RSXW z3eK*X5+C}VOO;Kt%Z@~iq<9se;L+w5f%6dOx>ipytBo8t+vr$_0SH&T(HFzhFWa5P7sQB-WTva}m%x4_}4+#KMw+lF`z~ zMQILv1ZMX0$-O)`12an3wThnC?8q^AHR~L-*i^l4cWTT2L^}9ku&rwyB_|%#LL)~y ziDi)@k8lER8o?P*WHp^ZhO`uOt~wXeG{}dZnkEG4cW-#Ou%>P#1imK6vzWS`tf!bl zlfI-`qj6B<%@TXrPP12X^`a6`v_ZkA3NNhXSQzJbjCkn6EZX2EC1J59tGe?U8YWm; zZdhQ%9Hh{qNB^bn)$3D+RL_TcC2n3_A3^IWj+$}ZFmdN;J3;rE?f$)!byBy@$at}w zcos^lrZ}3IY23CF2upQ5%pvTodNSfpza-hH`mp@a(8<`@KJ#e9c@zb{aU*0X5a zgwiGW?AQWttbL2WK3g!3o}X?Hp*qGQeX_Ep2&sC`;$n}q;DSzYi|r2!{_s4!ztuQT zsh1xo7^J1e{Ijq?s(h<#hXksEia~UFlgS?Y9AuKr^E}^R?L6fuT5N9&|KJ7gs~0 zZ16GO^7`2tkvG(f*rsS^B3D4TqzNAj4abB802hgc5UKBV)K0acqU!IzALr0*2EaM_G4zSK6jiPprQgRXv#VPp&z`$eIuS!;>am z*S`Zxa$n05c%n3ofNOtEniW51RYsOGk3W89jOdO77$*ay1sh#&j^k-onG1Ggv_xjv zzaZ89Z)>gIS@?}_mx}FuKGHmk7tB)ZotR9kmGr@uNEA9QrwEPuX#Ek3Zi2U*D?vTO9Cqj5uT z^FGt{VZ4oY`hF)aO?8S^`QMrsJvd%q7s|DrKi2#GIJWAyFhKaJ+}oESCK zP42RHXP0m$dM~w(y_iqTVl_w4GEKNMxW!_=p78Ulo*5H%qCAI>OOUqbV;nWC2H5^l z<#GG8%tuFiW8;GmOr4pO(fj4lG)=z`ipy(nF2uj~EhOgE;G`HAM!R`G+oT)Uc^h{zeB0v7%r7C* z51BX7aCMF)L=e13r%Wd5Rb%p$3+h>jrmONH*H8HfC>>rL@!m2u>l5e_&I|7ti%V^t z98}Jruil-?4UPwk4BaZRL*$TUnYI0SiZt?#=BmK<6nWx)1HM&&5ZsfG>6I+1?{cx5 zyaLe-_B8l#{)2~;jW|UUm_lRmr|m^1(iD2M!+O{sqCrsXzKFk>m8>_yitvM$MIXYS zBd8kW#BC6$Y%|{ZBshfe^o*FcBaN-3t;5}vWVKVMS7E7kU}&Mcyix(8T#3|nJ zw%b6LkKvW$br9IQ(Hg+LJ-$}ux3RCJTHpbI%dK({Ds6;fOA6`ed!)$=Q+_;SKZVGR zuDxBdDB_bL_~*s0gI=g7)qJPLRPr=vS(BPH;afBiO`Mu#%;Etw7n=ER2{X*7vOcJY zM-Rq$@;B;BkE#}!!^+<}u$@Z=<5*lmQY@$O)d+3=hofv0EAAI2ov}m26B>P8Tf0k2 zSj*vJc3fWJ#QORHH%Z7T-ap5vT`kN@R7H}2!Y*58!-p;VG8G!)-TaNODbb;1`2v&` zAXJ&)S+vD=7yOKQqu_36MKSq&b<*s-d?1>G~dB`8p>1LmS~ zs83GhpZ^S%QbQ8~C+4g#t)VGzd01IG8X4b*ec>0kz;jGf57uZuB4Epnj*X{j)qlgM&|IpNQbAxUnL(Zz$E?Tb%7CBbj6-}|tZq_zB#kfOS; zsMWns^^JXpk$q40pg;MvFsri*;%q4ph@M zkygx6c_DTB=L3_%K4Oexw!d5Wn;1I52F*31?%yC+Ow7q>-%RiC5KOpjAuGKyt<+lb@G z&xOP8O>fi@FFgZ`y)6uBAo^M;+lKbRoF+@qRDg21m7+fnDB(1&}G1F{_!J5qL(pK9rnBpPZ|5=h*)PHIul=Vw*sx)nW_U0aJGd277**&Vn|v**Tu1a9 z5pLCn>e{lXVDWZ4HzXF@Ehy-`3EC5Iq*7im$$Oh4?gqatucDWuX2=jj9V*RuRPpo(CF!eOuFIN# zs0V&7O=i!|!NkElW6XludR}cRlp_DJi8TV;#0y#hTa!p?vUxZo4=P4cZE|<|MH0q( zdz2c`4w|6w5s>3rG*S5MY(O>A+aC+SnH{LAn&)+_ir&YH$FabLek{xQ5fB^NsQiPd)0^jr^P95 zr=xOg7S`uwh0M?BSMa}UfKC_()nwhzrGK6j5*lR0ArWs_(3{>;C3Xbv=UN?2`n9vd5?aGWEhDTGA z5WP=yX)-g`y_L#nqg|V`VC{y$2bto`(5izx8ap%eBzR1@bM8egjMS4_s&d)mr4D3# z-kP^~7{*?n9#0WqWW6503qaOLW}6no=)>xi?-aLrMK8&WwCrQwh6QFhz1x19} z>?YPH4+4ptR)NdHJA1)(oH=_+_F9_i1ce=Zif*t&C5u_ehg(^464QUcALgjr|F08) zk)Hnl*NMQu%=Uj2K3Q4m8U80F0vjv+|7ApQ2WQ^iS?xVX(1B+Wdgc^@?|IveAUA>u zWneOJE?hhB34!kcS@41vwj&UZLM;RrKs?SOzVo{Cx%=x|eXG&1I(5r6yYqSF{n{`y z{l^uROVHPivxr(5DEuG93B(WSU)Wl}0RaI36awncPeADEN`#IH`-4Sh$QIDqIS>yK z@mDYJ91^&IE)5wyif&1S0PxR^9e@}HAVSiAnAo4+A0D3kw~b&?1t=fn)qex98596h z9Ar5rTn8cI(KUpFy^!JS`v+n_&>ooo@X*k^ZwK&^R$dJqBpSdxXdzY}Z8{d79$P;= zxIf?g&M$aB(NVZa0WmNzH#ZkZAB_#LxGD&S4X+<5)D;Ase0Ss2}|O z${qk8aK3Nw=j4Y99_C>S1111pM_xae4dwu#K5U=>KnH~euo*2A4nTDMhY@6GCm!9e z9vmGEe9I8Vw+t4neEbTyKOO3?a_-+Dlu*GA$hQ8y9t+ejR1k-$NpKF~;s|IYe;2~f zq#WcaREYlUj@EtMDJM~UF2r7++ADo<&QBfV^|nIbD8#yvTY2ZA9xHnI`Cd9O@;`XM z$f(Fje}MThfO529h5I!y(OvR$yGOR@ih(_}5MjV;1{3}tgID=!@Ps<7bzms|u1=vJ zpTDH{vq%UKp!ETKbAOs;z)<{8H)j}_mcORa=RK5D(0TyFV{jk$9FhA zmtY=5{9iJiX^x+q#xXt2{ZA|YcEG>rlAvL7G^qX0ws|~25r6n;tn)wWw>{cFzLdYn z$3Cc^J|;znupz%EZ9kY_Jlt!bAg@1@0EJpEOeWAx@o8%O->qfjPc!G10#|ysv_I38 z1^sE}aUyK`$W!ngG=SZ|prLJLeO-Aj9(2sZcQF<}`y;(4urPvrPjR;OIxMgwP>^4= zFbu|Urc+dhA@L_R(2?nRzBd(7{&?5EP#JMyYAPCOy&c*!NKM?@HKznJ? zKVgP^XqbcBS2}>B*g<9ti?9xS-;w&SnQtPO@UAMV(C-=sX&t{hKRrzOax`Q?X1=Ik z@lehlD4V|W1hf0&J?s%Zjhkpm`nxD(0jF-i+pBVs_!7<+^?}ja%US!*U2To`<7zzM zxq*@NwW8bX{1fIDZst_Sz0N@dzu*0~BwKLuCY;1w18r&^%bY`cg}jLAQJ}RzrVZy; zM(JuX_p6h#!7ACdny|wz05tvw3=SzwU`|!uHYc>N3J&NkO3(3c1P|sq|m#FsXf|8Opjvt?k!76*eh%Dqk2vB+_fmFA(;NUEA96Ro)~Hh9=5f?-+6SQdt%}B z%cbEQ=&bc>;rMuyO6Ko@{xLMDLQi|s<@%nBFsTY<02Cgslw8hO*r=t-uX`TefI7NQ zeH2r-B!sf98N018Pr}%EYjEjhB>_lN9E~nJSH!Gkk=b2^^n3ECLMxU%qOR(WBd4P> zV3?gTo-}m!Ky5HpH zrBwgvy>T~GyzY(NrWT(Wf)wjrp?!-#eo_*X?oA_sp58MOfS7nrh-#<`T&xOGwNz+K z#9Ng02;pnikaundaAs>=-8lPLi6=%j+>~;MDaJ;=GH4!_*30p_swXrAp6LK!{R=kSHxZ^rJ9&F^maYM%JQ zrWgg?Q;9U-DyxBDDETx}yMpcF`+`z}EmN;xWk(vy_aZ%5elEvWbLzm5*H+IhlqRNY z6X-C2ZymMYCKtGgNR*e_qVvw)KWqGcD(~P>caNOe$UBq~wybdwLEZT9IZE_{Ty9BLU^ zqTUn_@aBdE7+z{4*v9rI5+UGRG-tEu-2%+m!)k;vk;qin@OVq<{s_)Nb#>D&Iq^nS zuFLw!&x~b2JJMnwz7Pd)c+#8C*^jHs^~~<7IaOOP$M8nK>o0eA^7!f5&lPd`ZWH#M zjA1)9p?2B!Zrhe>in}wGEH~nsWsgQ3gaE`1WAysAda8;YA=+##b?R)a7$eVFm#2eY zcxhgM^2BHTby8|HY8S{RhOZ>pTP81Y{p{aiacuCBr?KUXekC(Ni+Uba!T{k45rCnsUX}69zNaRg zCxaT{a5i@NQ2lu)L-$*H^i?W}BXu`uSUegSS>qQ&Yp0rcbkcAQiADGLSx3!=k(se4 zMv?w5$2^}m&O<5IE^L`Ch~?~E%j&b+IiT>^-KA1jdZoAStn?i)j8Wf8 zU&|nfE#;>k$0Qc3VS4w$in|tWfuBf=V`Btss?wTleU?*BHa3EP38Y1GYqVM|iHaD7 zMZr9`Zt$|Sh<{(ZkMXP{lzH3Pc8$k2HM%uL1@x69yw|{|;tS#V|43!~4SS;rO>Yy@ zG)&p6zYIxzvVm$A!;R|Y&5j9%%3+Qsw4F6j6*aXiNA9**(&pwepE{a(lelM3efa_! z-sWtwZK@`x`2>YeYI+f$PKN5$#sY|21p1Bidt@@{ayh7mvQpzv6E`L4RI(I}mK;Jc zz(IOB-Tqev*8la?Gm*8_8t9|FX>!^Tq#KAF;9U#LaG)ySaCO9Q{XSXAl`_Xtokrg< zYtNH{aQwW{-SFZ3nNhv0ocF#nQ}&&Bz~jDE#C_zIAfGn!O)A_5i12!|#3hsH@_Xyi zU%^0{q4lJNIaB3#9 zVthI!*=%V+qD`&7lsoX;I@f5G`_lUir=qGi`}j3rKd4kEtMmuJPuYVq2@>OH@+Q1^n-> z8b_&XvaO#H>d_HviB=zKDeADo4>lxq1Z@k=&Cr9>FT8!oy8!GEm54eftYK9485gVx zFypi~=#t7)#@Ik7Iaz_1ObhPw>$@}3_}Z7#1IuIt?1eSG9mZQyuf$86@i3oVIL$rL zo&BwoOJ~%$-7vo<)QZ!BPC7A zx2j);_j>_aS4)28x{7YN=W@fIq(ih(Gxrl#s-YYkHy#DWqQ2kS`M9YecSqBZCaIjP%+60&w>^G4G-ynmdc*DxvL1Dd zxH(0mZ`m%80c_qbUpMb%gaHl#zMaG%${jjAWcY|)Hm3LZ_c5ZOpWF|x>U|ovI74k; zTY&-brWsjYfq&c|;B!8;s@GVv=Zn3P!WT{3wDK=whs^micC;#$qe<{H5Z9o&lkHyS z3>t9z!b`yib>a;wLooT4q7PbDu%J@Kol>%ImDbE1yYo_ZD~4bgz72|^)c$%z$h{Kd zb(*->)pi1=*-YX-n%0V8!zgZ4@hy_f!9OXR*dxQcV#^2F!JgH(%67DzC!~;#$w0u$Iz-v%?f$(f1+n^hvhZDeQ08*O zut^?nDs5|O6k+eDv0?G{zz>N5a;GJaId<2h8tvH6m*a%&hlv#W$*WXMculSj&2NiF z>RSrZDf@5Klo1XAsSa3@H@+^kPHS_nLQp(d(1Bi^`s)hDVbMU-Md%Zo$iu(iOdv%O zEOa2%KwkiJ6W^?b1yjpEWdTX@T3l{Tq!R5NyOZH6kdt>loPTv{Wx2Kl^rxA3Ga(NO zo>pV2?037Q-`epr_(oj2BR_?7KqB+JqJ%o%@GGN^Ot*z4BmCYYVKQLIS#9UX3@T#_ zYs2fY1SPo&Cr&R0?_bi6jz8;W-}A*e%>CVs}*rcMY5|yw~`4n6R4t6 zRth?`Pg&(wZpiDXPVPahBcS&Hjodez0vMcT$MNY|p6N$Ce7zM;LvqwB*=xj~ zS2#U3_9&M|l`A;42S#J@hA&AmJuZz^B|_QY8Dr*0ALFx>SKtyC+Cf|AbwcrULm#}Q z%}l3>`dPmH4c|=;_Dk(c8t(w@sNQ}}5RhEqiki3hVJeT>7HxG@FhnWs#^17Oa_y}ZMN5I@iI~u&vuM$YI4%`ZynRi*xp5_87XsIc=RJgP zYWs!gr<41HU%SVY>4t?NaMlbUnhm)oCu&PC?LT#LKL_BVL!kBHZ zs}GsbJ=K_E~9qaKtvIT<)~vr^Y!4HG zkh~z=l>ds=mk=CV=>YQZcUXpl^FZV8mhrr*Z=G|%%xTjN-gZE8hnHD(3!V^@Phx1VZ3Ygbch3s?lV$}PR^E_ zlP7Nq%Xk@TaQENDn$#)0P|-yF+_s7jF$>PEAA3f$NvgHundy%<*@w>pJxk44kMr077IDP*Tf5Bj>JUWMS!KVAEw@xkyFT2 z1gZ{VV=oZ?2cxe4dt;srhv`OH9FL(VnY0^i0`FpoGXANE_R4|`aFpz31Wa*k@=}jn z@LKkOmffa+in3F29m&sKB2Ea;BCI=D#z|s&(CFG^Zb(R-63=w^Ts6i8e1O(!o6fpY ztB5EGT9T1+22lC|NM1wZo7LyWxz(p1wR@NEbuDsk61K>t-ynkf%V|J+|BAK5Rw_+T z7*H@9e@B#Bs=ItKdm=EcujOhX8B>5gdrw7eBMHG)kZgujKO6HZPSA4_CnQCuIZJSahe@Wc%@oS564HrZ`s_Xxm%y;4uQ@aK;<@ zd0(+iA;*m3P5FpN%7|s0GwVGh(~TkS`>O`-SbH-!QgnXT%3la~+l>#lO9D<0_>Pj( zwY~RKbJJB+l{jN9fX98ZglC((_!LW0fyJ4 z74@i-CD8@*W8IYV3Dial(#n6LdGTL3{T&N-~SH(Z@r{cm@ivbBkrWm!* zvzfS@5orU;nW+tTY+^ZeA-3cs6Vag`OcERWiO+Bz-+I06A9)+&2DproHg1?uL$RjH zQmiGeky_>bFi$bO0-kPD;_aJfr2qV-o?3gpCdOl#+P{OTZdF=r+m5ihH!lfF%TMk) z%hxG{9%+fBO|*bIZoxjRX+ha#B|Z%jr}l9pvi(Ur=<$9sArwiMD3=eP%-|XryOZ z_%UZTluIti9RyE24W3h4w@Q0+s7EVz!F_*<=PF6q{_mwY5*}3RktqWj?A?c2areiQ zgu6JUh>u$*N3_oEcGuj4mlz|z!UdIHTfc*rrzVp)w;9sD zd!#$>shB$(cY?=YB|I<2x^``Dkawb&ZwR@bl}Pv92(VA8y( zlF|!UbI>xZQ!s&qdwnvdBv*@UHa@t8UN0_;54>@;b8)JG;!hDs#3h5-M~)^Awzk=n zzII}sYSD}%-?FAZ8zWmqIJ_PR!||VylFpU-vDYW!&Zm?SBZl~{Ah$J-H9G`Xh^17GA0nOa~%Go#K^*Gtathm)*G_nLV#;eOXFb!g!h z#*^b9r??D-P;#guJU%;sWpbWc=`%*M!#YDqrssr;l5R9_lubMF;R#t+Bcru^#gt>G zF+XvGp|YRjau1ecc1`gRZZ_OWx^-#>WbpB>`M)C9%FoyI3TNul5e_RCdV0z1Hkuq|C#Q=MzudLr$pSgu!fjP!Yl&n~r&_zEfFmL}Ds znpC-!gq4BiRWr?RC&XZlfW7)HDm$2BD>hZfd~@(rW!q$kKlMbSACH&!*klM3mFnTs z#SRe;zpO&aEy!(hE)gBfPGHSO-Tox~MAx`|i|qVIfXhT^OpTDnp|468jEr}XqTc} z>fAF#5(RBFM}X}7M4Q>R&;13~E1Ef{)1)m}2B- zq_4|HI*Dj6T6t87Rv7_zXnOx=)ruES0hcCEFnME4*KaxN6BWkOp-f~`t6 zq8V{Uon@&oI=tJjD5>(RR6E7-ahOo#ZLe(NwRk-LH#fB zqlficbN1U#hTKElM+rxDAxUYLTwht&^P8+VSvJJFUFiJCaLix%PC9uLqhf)1dz+OOi4d^0sl5Q~C#Z#N2EAKdr!c-3~S>RR1#z_FFZ_U2d9OoG)0 z3mSq92;xilcbE1?umgY~A^-&hPqcUZgGV=e*Q3X1Bf!3i7FNV_(CV)T4BVVgd(W2yncx5ngAIS{XYZ4Y zGYTCU3S95c1Oz75X~e`G-)hec(8a;8rvjXR110uLVD(L~4fyTC3Q!OK&Uf-V`KtmE z@SOt_G9XV|D_;x;WC2$%#6ASLDTyhFZa0ksfNb#<1>xcxxw?S_td5b1#CD8~MWiSS+p^O}s3(E3P@hQ^L~B>P&$2MU4-JA~T>cRx47 zNuZ!B-q(lf3Q=6MQ%7LUqa6U30Ko>=UOA|TOfCEhX9_n4fS=!GXjq5{(2fOg`_BpB zm(p(k2Y@JXa z-T&V1N|6 zkRR!CaJKQR>s`Dz5?gjaP2=s=MW z{z5Yk$u3E@VKlSfTV^qsu5uMg+H8T*?wq#f`-!N!)XdCWLxqb`Ry#}6cSo=Wa z-=ZTKlYtRQGZwp}Q49yinuE_7=}IF@`7?{$Fv@tadix{zhjJ&FMj5l-s?&!{U#F*@ zO`To25!gM-cjRbPQTZl?Pbx>#7jl;dg>uu1RZe3E2|?aTekqCeNfrGhfo8aSC6?IJ zlanZW6CjR&$PJvYQ-p=~N%Na)E1_1Hm||eT9-bxaexIN4JZGu6-K*iO;tQdN0$w8s zCf)Tkd4;{hr!S{NW0Nda&`A`zLIYd!NVV7IKe<6zKV3K7j~!2=47T8uYt7AbMQCiB zi%8m7#Rx*E*qwIxP(-CmpG=r4$iJP2PWS8IaTYUkA|m7mfQ3Bb$jVbjO1U+o}BB|nBEKha~p^ymG-*3R8f#{1hyC!1U@(_WT#Ib+B0k@iVXBE-;WbJ>Mz|K;0=zJ);XR$b=sJ z;82L}ugVbbaPs()3K82>I9>T6+`Zw(!`vKpTY)w*>aA|)EK3B zV9)97xn-@R(*z5KG>-N5CnMwaOi)r2 z6QQI9-?D%L>{CDQzHvnLGvaQ(Lb||WC2B-lA?L4;>6D$S!sz04)wtOZw$iXe1v1!c z@HLBU)o3_tit7e$Hl^}%Y%K#eo0@m zS#Yxxy48~hCC3I_@(3iyeaV!>;+2x2(8l%dA=E8HCkB0cV)KFvb;}0!Obcoeb51*h z-plNZjl`Fnm8wz=2zQl@vW1!lI{c<2EzRv9WCj2Y5VXF~)AM$totY<63qw)GF1Ct# zJXL(P=JCE0Oqc(Q_{(IE$l|Pja@pp21P;Wu+!Yq+gn&el&}N{Z*e{xWc14QKZi*tE zpcD zEt;eGQGZWNK$$c!@2?-9fqtmU)u$1465=d4uE;lu6bGEqWv6?WHeSsh7w|8+LW*YjW zv#hYPbsIdyOU-cQ&SaWW{#q`snia;(8mfDcF7)Q;_N0!x03@#^Y)ShaJ9&=gY4EcP zQ7ma0Sj=4Vg}V9Ar_y}AFdaJ4emfr2sI`C%e7%9!+HKQWJtQrN8=vYuE>QUGI68*j zsa8;y%NLCRnQ|bjz0t#r0%0gq(9x1xz@bmATFTxpkyHMN zBG@=W1djAhJA4Vdd*+ijtc_9PmL@pXtnMek;wsDfz6Xif2tf#;^_^`R;);cZdfbU#d zdhoBq0$gV=ZpQs>SZ>wLAv!GG^?q-YobMJgG^%j6M-G;|o%$5g&@OF&43{@h-aYl0 zkQ|qAD1@nSn(LfOvv>qHdI$_X4KdlZBdFAdgO#aDDuq1^kNTPk2^<7jtc!wC8_!sR z;-z6C&L5M;k#N>$Cu^n8WeRZW!x^0pOWi97qtX3<=aMdL3Y>NkY(p`IArLTBJB!c- zllNokH6(8|`f2t)YxG>?j5Ks%^2(H9>5FPCKs3zf2zk1luvHO9*^Ut95k4B-sVY1& zu&Tcvb-!x+d^lk6y~nB}1Vdm@epma@N9f=}lm;<8dQdIqt~L4x7en*#03F&8tJ z(2y*F>%hC$1nX5viB8G>3ido@5d$$Uh8Oy*b%M>LF2N?Q2bPfPx1B0W<<-(?kWJTQ zv60l45$*Kt__4GTtlScj{3Fa|n~hkmFTS;8l_l++oy3}(t(BJW+!xhmdR0AT?(A)P zW_0KkCdEU)AnPEC%Ey=B72d~2^q7u99yRfaRI2lmaRWltR4*;4~rJ2E3qbryM= zJD8akTsP+)Yf@5ZL`0W9Kf@%AnPUt^R=hvn2_(R9I5-EHYs7#^^miUKgsQu#bf^5f zVx^w_HmsCn7(+%^QGgW{10QkOc6FpH71$CbBm2Wjps|GYvowrF7;}+(pXsnyx}cI~`W{O8x>bh&1<&5ZbA+yQW-jN0AbBAO;nY+mSr9Dw4i;=h&H3gm32V5JE-WG=madzbaarn({?;GTgLOC zt{?q6L!(6?qX4B%kn!yC7CVOLY7ZiAWQBsB+I;pX#)Ouf5rdQqC}mxwYj5GtI7LHg zLaT?eG?9(j#+xMwldxqDAI%)EiY-*DlQfQzGXK0*MQQ|Ypl9e#2UlV?q>HCsuYdk4 z*8=9esbT*>OWe|!S$sLxx2~%5x}0C?+QvxGiDM&wZ1K<-&?5!ce zh0X157ZpZK{SMF!UpqQoCFn(@8Y9@m-i@}qkW6>Z7S;VP_TDKt*KS?cjcpq}wr$(C zZQJRwZQDtYogUjsk8Rt@%0K5`dyY}-U$w@;-c@T>jg#+t>uvApRd>6eyS3-B1RtcZ zEWBueeHSIHuL+RLq91c+(%n;N6#KnO@}o#h8Z^_DEg>p>vwM+SL;YDGsjMtJRtrlS zS5I38j|0DwNhnPl39B&B%IS(V_+q|K;^mEDb;AKlyrb&ypgQJftos4}gTn*vYU(?4g;)hAk>I~>U^h{)#7|pAJtZd)M)ALUNIp_k@PGyjkf(u5%>CW0=HljDYjP}zguHU0>>f_s& zxwTv?)jTv^1M%;6b<_5grsJ{k-ydb&(B4g1L5Z?KlpD(*A*s-4qrjkR3t}6=iIaa~ zKKdA%Y_=xfB27)=ubZHe{J=5UbFm~%;^K{Mt`a(l_Fc=yrw0a8Z5RWGoK{fAwb{LL zQodnuqLez4*XJDMg{xAOpDoXC0RvkcBKo%v&d^oI);4^@1s=2R^pT)MG=EMn`RjJ z+9<~YhqbwPyY&)ukiR{x#?Y%5c8z&?D;7m@wv*tAjLd!s zqk{6Q4OmsBF|kmdnRtaVp1Ws6_ZAD`@(Yx|m65m8Y77=M(CZPJq+X}TS~aM5cslN_ zBG#MR5|@HfsL#GNza+Y$-=m4ell##hF<7{lVdM*ytxIQo)NgRzGzQaiQz%o?TCRCp zDwhDpvJ0*KKy#Nhm)uf$DKVC<8C;@zvol0;?g6%;z!%x2@BmfqnSk;}vS=_rUP%Yf zHQqRDooN*~8@TnPXE@@hzp*YS7&G|FZ zg+enfv+*qer3=7-^tGr(jFJ%X{$0t8PIY%#+#e;Nmnzft#PxfQCXqU6T#R_1Z*a@k zP4p+=IFQwIKq(g}7clyvyru*5+rjAi3D0w3x2D#%L}JYiOQ)gA5GVFPai~pla!;EOV*K@(*0c>wKCd@aY*934#VVQLoCaV z4fyspTeq~}#l;cB64~uhTk1uItZTbldfBNB5VO1Stq>%z;ge8jKeYpPrI0mc-VHwQ zUTjg2D@>CLvC%2D5$>XHqli*t7+17ANr@;%i0wRuxLg*hgZyqzbLC^t;}w?Yf`rPG z!EL;D>DP+E{u{ndE2vy~0tHt$S_)r~pF-wF8M^+&rYTY^w2LggPd|QcnHo>}SqVYQpWDI>=NvFv{fRR)-Bt}$Zr8nO=GO10 z_?ET@v?o+x*g#7u4>?-+(x^gn+ht)b?5q}Qx(6Prsg4zaRjN0CNJ_-2>EfPx;?`UG zp8B9n>o)%Fh~OL8-PE?Q&C;_Au<- zOB!tx=VdfypcFhr11wd_inh9=wvrYrZPb$ChwzHIFSF_B-vd+{DV6KJ1ltA>RlUprWJdxP7LuxXNItXicY6 z$;&R;9H5O0Z77t=nB;Q&S!8V}M%EDW932xBj31{pQ_om*b(>`f-&yr=q!-M3S)>it z`H@D8Ow+QOZpcY=prkZkhng-(l<0Uu4*{{N#J9TLa|e4YuT#C(x_RDWIf)~>SwQf$ zI3BSSaC63`|FaT88?-EgZRAWGU7Sew60AdfZ)}4bB}rOE|+gEN^crx<1(A zoNG(02tTv}nK_;Y;7J&7Va)fwc1Q^=jV&&6Wo$`{FAb&;Wj2RBNhjXxXq|VrlwMY9{nd5q#FYF|;-%ZS1IJ$~u#rAE(N)q#2BM`j?~ zZrW^4b=N92?f}KUK9ie?ir4wII#2#?tLQlBS4ba-q?(1n@obkWCuHfg5jZG_p91eD zrU{J}`X~k`OX(w5p9(sVS0-;dQIL_Dq`obI_pG#;_l4kXN?O*nWEy%1s0|ZkFKy&+ zkuW69)QROVwfSmQ>r>ryXHKjVEkBElxZ0*_fA11W=<7t?9mzxPD3i3sWzjjEOQ&Dj zC(Gg~VQP(?CQlcb(CPlwpgJMuudG;Wly!!mHX2oCV%JrNyH&=l*OW9GD&fjZdg_Nu zMzPqxx6#f`{AVL#qi`o;7z9VMKCv7j2e<$#G|c-{+W0(J5#F;b0Z#AafjTsGuItF& zTLkMmL)V{D;Ak?xus~kd-oRz{*=^5FdRpr3f@C52r0S7>F^dqnthW27r~%)L2u>a|Vr00wC z)!4(PcAy>EPs=7Df$sYl%Sufa4(yfn`pxO8r79OALD2wBG_b65wsnUE$!uiL?b_~Q zV`1V#sICO}sPRV?1~Fe$QZc|E`D)CJM_z_+PS_~>8>iE7&bYE!6cM~`Iwa@~W|^og z&Z6`@n-i!FjlrNZzo6RClTqquG-Zt`#=S~RC@c@mMdsWTls zkI>ukvfSv@?K_Zru9G*M;mBy$B#`N}281Vs#*@d}z*sWEgi+-YQ5`1tM{Ma$u#9zh zCQr@L$~2W*jK*-Es^l3FxIvToCF1Q8@yqw|#Ygv8X@{JRg)yV6AjenIx=cEYfB)KY z9X}pjO!?B}*&%BI;_kF4HT4pN$9#NPCE-^Y34H7C4<^vJ&$vMGdMbtL4@;F$*8KVO zBiZFrhnsr=Ugqr(-T)>IZG(5`GG3?DL(_w1oBBP|SBWjTDB9rqQHqQ(9gIXN9jDG z>I{{<2r%R#4uB$DfsALj)RH^dN~jm2t(uh~<}-1)+*BPTA5F+CnNS{1X`+U%>}CLS!d-`UOB zigy-FqAj(!+HBIH_bOV+#?lpOnp3y_9k(7x3GG*=l=+}7pFFbEfs*%6N=*6|fl1We|r&ahCS)JPRn+Z5F< zI7iWDF+y&2!RR}k;SisoFJrj5+{H1!h+{xV@on`ej+^uKB-@8z*a=~_2p^QUgBO@U z$cmWeW{@8cd((vn!h6G0_R+Blvb^)nCc@!iB}84Wk$26G6XRsvQX>*&vr3V8*(6`r z%Vv&5WxQ>b_nit2bFq`3*U1l@3dyOUJe99DZkTe(9ystZ{KmlEEqpV{Xu1z2#%n$1 z@~0DXp1Ds(jwFV8=q^xlbmJBcjH|TKfkag$IeyM4%E_H`pwzJZ&os|Be^te~}kf4%UCx7iAf{U3!GBBQImfSpi^~>ESMDcqb3#88nR$ih zQ@a~{Hhk;eYUkExAHU^==38E>RjV4n)n+HZI<2TPKiT)9?>;>mq~|)W+sA4ej^=9` zKWaYeW)tpEwa^AB8*Cmfq#bh`_@dSq9A0qXi}#X&VRl&nMcMiDGQxP`0Qe)WDM-QV z0P-M5*Z~$0+Q3o#e-A3U6S(*bw`(I-ao{QG+gW7>P?Lq)NrhC3;Lo1G||Rwi?(3f`z3GH>_~Vj&(di`&pC$x&wNM zHgFVTcx4l#{@NWZwZ%5vB)-KahI{gc7W~$2YlvRTOA2Q>_9w1s-z6)cwi6TSHTi~N zT{ZnFd3Svebhl|ZT+W4fG1tLQ?HF5$j)cKW`x(Ps5QosebU}*TT)aG0c_!sBC#XZR z9Bw*by4DqFdHt-9#|rU%j`6uz&PN_k{Slcz!!|sgEujyeA6AH(lhK3Yo3v zc)WlP^2_=>e{GJO&gbe8l7>nXSslT}%I@uaAv;clPcwM$aBxiu@dMo9B52_62w?e_ z31IoZk$~aEk78ap7p|S{?&bbj2VYK8I3qoJQ3^k6znYH6@NluIHsB?jWEWUdcCq>StyP#_;&MCckFC^El zR^hQ}IP~gG6smr#scuaXKT*8(kI3MrPT$CL>T>iF=pyR}1A|nA{{e;sD1yi}bOe9~ z$ncK>=7){<;s+$xrv3@82rgbU4w_F2?C)#=k%t9kgNl(w1;A7^yzq0HfEtWT6g{1I zCf+~ZQxqsf6uk?g-(tc<7-NbY;Ep~^pq;^hy>trD17j*rbg17x9VE}TzfB9j){Pav zw&T6!tai%2i61KzhJvHr@#KcXP|v~uVcNS>^qgj9W;=nrgmd|YJk?e~yg~y(SKn5^ z+m`%s^DwOVN~-nV$4NW#`)47(+fJbM>WtLY;nZk1uOtdqLrQlT^LZ?jFkcT7zuzX= zLyuyLN0&g?E9+TVOz{Kr$?a!1!-FEyui>Au0b~P+K<<)V!GR%3o)Vxo7MC2Yl}V@9 zIM45vWcHI?c0xxZi|nR; zO}L&OLTkT>x}AHn&7P?!UTxG!X3r`74~LYegoKMFklI{;Y!djnAV zZvg%cz`q1Q$4=nw-vPk(F9N{EO#jac@W1oe=gpLhmbGzdw#4EE#5k`{XE#Lu?6IxM zDy$z(k-j~)DeneYmer6fj9b1hQ%CzLYCfYH%9AD+`wv+ zT4I;zPlf`OQDrP%UDeWT)p|1ZM_(dn?z~ac+TZPH^HJaW#bv0Ir*BXz%u%UL%Mu`AT*JJdD#xdzpL%B> zbpHtFbG%){a{ujtKsY7X8^kjTqK<_A8hqFL0Q1Kqu6&Ojo-s&OU^&lzbd_#qr;?{F|2l?`ffmE7SZtS~&hyTE1_l@bW@AIXjvd*g&~w{jc@gkpHaT{)4vs z<*z@!8-sxrW^&?yy`8f zHe;E}$(bg2J z9T4!TeCsOoW*XNH-$+T*yIylGZMVt!%U*Ze%YcgIR!(k^mf75n- zw8~e4I`K*fXC4IKqmDAeI5NmG=hsyV~pEO0tZr>_q|(j z#zv?o$vK*%?gz{k!^6V%zycE(SqT&4OrrJ=es@GJs34c z5=Vt{CK&feQ3&NQ;XTHLN0dl~avDY-rrznczUFRNcTl@{JrCN>*1e8%HNR$d!Yi@8 ze4=A75G&t@`S$wxzNJOv9==GZ)c0>-VfYu@eSU`>|Hq9OrCmgbW+v zad`-E{}Fbi+5ThLVNF_L>Gq!+v8jt_HJ1a5 zWWzt_x~hMh~2(Yx4hyW-924%L5MS1GB?baVBinvk`oEuHV<2ifa$9Hso#@=Sr6faNCY1d1^Shr>a3^$E$|&^%5OY|k;DCdy&y)n&}n%uWVsoHthiZGJ{i_G zEa73u0m#)Obj-qk!IJh3OG4J^Hrc@REE!?;B`qphHoF{&w{6mWn?n9{bjHhi*~pRT zATJx`O`F2lk*IR<&t$>|G!bk_tN*q ztkyfndFL+4A-7cencL($>d4gjuc%}8tWZt2eX2Y3viv`yj&_FS<>!T*zoHH%-cKX_ zdu@;}fQ_!wu)m|_U%d86!13Ki_n)Oj#%_%hq4P|wE)?LTkA;s|kroEH$QYR89$4o3 zx+Z2|A2Q5Ds2Tp{DfX9DrcJz1)S`VG7Z*;5Tdptfly{F`4AY%Rgx*anpPWt>%T{yf z?q$t}+mQ~A+?LU~k)IBaFDhTD&l85+ZnuXy{?N`n2MJ%)##&qKa#d`ipf~PNRv_>0 zC&ee%nd`6{iP`kg&INN6Q}}-A&V5P(uQoa)ieF$L>j!e_ULAf9)Psm*y8pu;wl~}% zcC%i&=djV$_0Fs+DF#r~N8MguCd47~=8e=TbYxf6< zl`CrJw7&eLEZ**&n3A}TW5mLAjuP`)0p@7%%92tTY%uT!jdPd`c(q>fR)Z-L$6k7mr>H+ zonu*DQ@Z}ql1&>jqnRJ0Osoz-S59F|aY&?wk{WDBewb+2tEjmNjY%w3V9%ToquESj zxT{^wP_kYpxes|L|3mC1UVTBKD$oLfjvc(+YE;+%x28iBr>0X>R|ZFtab8BX;0tsN z#g>!w3(XZMTi2m`K-#oqKxTgToPMoA&S)2fY4Ip=NK*nJLwYNe@oa=qg^(tu&fGj=ex zaUa~%H7VSM#`RQb>oz;7n~YnkF|%sPiCx-mAaF5F58%7@NY(3DqiSaM)`TmN&iy}X z&M!KXobtZRiGo+CT`2BEAq<;2js2hgI`?9BI}bO5%ds*yd^PH)cz;LpzZ&%a-%T@{7cabB zsX>;+J}+!(OVZtJgLv9AFmmHTE<0}M$FoWqo#Gfs)o}O96@7nwnx1>uOY+J%{p0-4 zD0i?XL5o@VjgwoEo(XL0p zOTXk8joEq7wVtpHLl1bX zLaoC*B!hXu-br7|Fi^>mGE^nQgpCfU5JaltDB;eHVT>JNlC)yxC@At~E*rV_KZ*V3 z53#9*Fq?vUms%PiDBbmjrBe3xV=*m%UR~U_e(A(<*BoYO)wn#9-_kwJD>>*kHXQfS zidat4Q{c5yF+_8_L1ky38^cap)@cm%!?7yv>r3_~+a?+AE*QVETne}a_JT3n4~uO| zns`9%A+wY>5rVEP4~ z{DJTM=tsZul|S(bPx!{iyz&)2`iuF%MzsCFx$6)<#=j7Nf*Vl`nb3kn<47v zF%S0<{JenA6SDS-w%gY_;tNpT=S2GNX#U4z2+AJzCIobHhL%dsHvhBV009ddBMSkY zsD-t&iR1UbwSlvVu!)hK@%NXq1PtGb{k`VsL9S$3k@0Q+dEF@5+ z2Y#<1pq?a-RI~L9+%0{|@SL@%n5k$?SC8+R{!^Tfg)wvhhc&B4)$6H#yrn3#UbtkW zyaeG6o9f(vq?7`M**5xW)=xbZ%!3^@HC6LxmgI*&)2dVa_$QQhxbLr&5IE=++t(bb z482|?{=V|^@ySVGp5!VLpp%*wWx~gm(j-l=^7XyJpr>OhbCfuj`AGV@px&IoFckU= zVi+|6jtesdCdI+N$TK9c z;2{hA(cEXhr`RG$VCxTp6NDuQgMhg+0v$2J#R0W8-Xzb4g+nISL(oba;dCymDi0Ac zP*EWVirj`#O#uT)!7I}cRK?{rB`=17%{0J?Gv$;;>re0_C}Kf;I*2p?APiVr64${K-U-7S7(y_b9Z)Gjl|a;=tqf;EK4?YU zieCZiTr_b1517**aXSOJQbbsPIUuNBDSr-aVIJ_beyPZNeK@;g8ck_{{vicMh&Vuu zzzji9e`-ecI!ah1|2THE=M)793~Ym#GIQz)MA#`ro~6GYXf#Q#$qT`~7=R`j3m708 zrNWm0l9C930nrtI7d-Z9BweFbgIg;JN80tV7dL+DeSNyAY>9OMq5Eho!qe5#u`cpx zEWSl9dJ5@E(ZQL%%>Q~>{`Pu2xRa_*7(dVF?kWdOIlwdCU-`Z)NC9^uJ`2v_(Kb$M zp-Y^{m4(966L`%eLkvn{RPX3MC~Vv$)ub(&mBtJum831W90wf}X0nOV3RO7T5ox1U z8<;f94IAW0ce=IZUr(gUQCx?hHB)x*3e9 z!}gite>RFDbYKZW`l0I#*i>a%SCDgZI3^(boU{J zq1?ma`*J(@Ne2(F7l_X!2tRE~g#jQpvp4JQ)1awsL#x&Z)Y7X!HUeAm`uw_gxVDI6 z8i6Vtzr@O8UA#Q;cKWdGI3jECh2sif36pbombVHtR z`ro-dA8o%VR_}Kb;e>#3Ub?3in8i#3iP$D)KbEKA@Ogg3K(&ZDT?i1{jmKr`n-jzF zcsPAcUcm?C?>&(S3)$jx!3Y#(FFZSTCjiNVhVzssQQ+gZ(i&#pZ|bkFJX z^ZiQOzG3@5=zJRZ(;f+zrEf|+&e!w#{`#3DJ$7=X-T?sLp(70fy96>sH1NIyJr@6? zdzwLf9R<~A>&R~A4~noz(xEZ%zE}HmW6h^O!1Uvw^)G#EI%|+o=C29Wo8KNWrlof- zdh7km;63==ZwKyQ2l*&0u16#yWreJ})P& zoKJ?YY@IExIL~`GeFCw$b_89CA^1Ez?oU4uJ)I32j&XSsFC3kM0$RfXjKqFi|2h(b zkI9V_Tg&8bKNFb8yCAJ{p@#MTd>)M4)AQrt?)FnZ9fJ|>{G-!9$;^rTNi90#@wVHt zS84~Ct(J|-^a|*!O!s?0B7{^CiUDXQ5?yYy$0G=)>y(~3ZhyenKb_f(ZAa&~^bmRu z#f8^=2<1il+$W)po*lMfj4n5a`yhu@yy+^T-w9=}EFA~3L@ zwGf9gn@}sENj&n6a8y-5EPm(5^^X7VwP=c@t3!x53fYx@6n@7syt#N;PE(0evJ(tq zT$!T&ppEl@leH9IPA>7a&qgCTExTV-JABt88dnw=_<7Rsx*a?m&-Rh{;s}q%SRY-? zt~n(y>F#RwiZPVn=+S_W@d48dVq)72Q@H@e(1z1KW){J#(B(;jFPpJUu5Sny(hH{3 zLJLNdkiSaxtI<^KQ?MF0naWGUO{Z09$9P_?fV<(b^u+%>UJfo)62^d^l%M{Hx>GIE znCo2EI;xV#Bz83;bgX~<;Ruc7nvgWV6!kb_`NkVv@IBgwjX(q*Xuh|Z$*m6TpplfH zYPsb~9j?YHJj3WruGpFWN3w1o&c|HBX4}MCQ;DmUgK6w_QG)vcV~da!LJ4DGdg_4J zqa2hGfBngDqHNoQ7)P|{MXCUS-G?HjA@c`_q6lRoID2TAbZS7AMJnTiT;m#txhO5L z0R@Q`XuoW438}@4*{Q^gzxm8-I*1Z3RdId|Bxug1Tts&)S}xx-VN%Y7M|CLs*Ntae zmL2_wqr45WUqmITC_>_IK`=i@B1#r_=+8xk%N;#en=3v0=NuA)d4pWo*&;-J;QiSI zPe(5y)b+sk;G^H0+T&iBLCS4Km`+f}qT2Yow&!|S8;P30msy1i9>wM1}kV8Tz7pIFHP5@PFdZ`Y2#XMlbWldfi8nOM6pW^X8CsC)&nO zb;_%38b{kDTMz6eZe6w-{Bmj~uakhf?j}F#)R} z*5Ovf2KXv~+`ax#BcRAJ3=%Rb60|_!E(FbQ;}<60I2QHtfk4|q`UW{*YNv{V-_z&8 z%WH|r7SF80QV114Bh|+yMXXAD(nTVSnzSvIY@f^m;c!$k6|vwlyz^@w0iDKCLmmbK zR3QpLdk&cZT}<=}2ITURhuO=+N*sg-lf-oi&*^R_>5JrS!y>LM&d8Ov!@AaWOQmn` z8?@kdBA?tdeUj#Ocq_rstaau!C60v)Xy)r8G(%LIM^0%8k`)kZD5%r zU97Q>dDKPa!6ZvoGru4Yfl7^zs*m2O?6TA1yci3c;^$@+p`gmWgZhmwq(t@(nr zT8%OHr+@`#sLQ{`Gaf}sB>+8JNdAr`eq@j*6>Z>THo8Ipu4Ul;$=@x`1N*F>$P5zO zy*Cm$s*so=@4}o#N-(&aN*2!j#Ly|LRgWuL99eO|lUhiJ+(KZmwA`FxmBH&VdVe*r z^h2GEx#nX0Dlw(1!2C1;;GI?jXR%GV@}cqB398oxI#R5qSxN%@yL__dquwLjOihgw z@Eg;#39LW8KzS9Edc{URU|<4yt&Okq=S(@d5HJC1Te2vd3*h8t5Io3h+{C!}p>RFD zaKzJ(XckUIgycp?ICtOI9f(mAJVW2235%FPU9#DkplFK=wMJBiMxo#LKsp0d(iei; zu46Ml3q>#jBcqeJ%r)m*Bk7ay<+p)Tdm)L6;Tu={aX^fc2~l^Tf?U=GXMs>DincWk zPgpSW`itr5r1oKu4RCuag2Qur0T5s>Oz2-kz=sscvauy&>1#owA+3jt6`l0&_NODz z>cvfiIH0P-u$JAVC|NWMR%Tvpcq-V)ZxQ=5(Z}4(k4Dp}>yIF~PiE=Okqz~s5$EwH zg+q(?Izta1Yc?1SbVb%?7uGxjlIGU`fbqcA%(3oP$!ch3Q1~fEkaKyCckWii>@^Xo z<+bwbE>kEU&a*m=>3o)B?*i^(&OcJm&?e7G4=SWCNMgd3l%yf&N6h2{2uYDz%rtr+ zV^iEf2om9@Kq_Am+1Z!pE(DVv2naM`4~u8;3j-`V*ZHek&3WtED(uMAs9-2Y8F~>! zNFvOYnIXq11)ag3DBPJ!jx9{9P=aa33nDvEOg00V*cQ|dxH7ILO?u3cJPg>l6GQW# zA?_2n#>OhUYYnM$jeUCTiJMc2U=p4btI1^=Y(^-h+uf^YYT9EQpJmD7K`3~RmF+o6 zlOZJW?T-&G^}1)+&|D=`8Cgl5=nQQ>VOiK#yqpLJg6Ho^#|#z##7`AaAM{tDQDK>w zI0g!-Dl}7Wv-0{GoOUWmWwIyBnm?}#HqEz`@@NTkG{FGZD$biJ^o;%gG6ZX>xx%x}=p z^R=VK<;U8?c57&x=P@_ z3JH-A{JI0Kld@!q6MaUQ3tbih7i%=8%}A=ty3mH7tf<~n8bK;H;Dqt|07OiXbuY?t zpCrAdd&sJ<4DDvVvii9H^jyqQB2c2B@)iQR&6&D}{8JxM5C3_ zB6HM();bKeL^S7Ak#b_YRf$s{HJ`__xKQJaf~og`9cmT#_E2|r<~^=giL9Dl&lSlH zMY{!uv^++Z(J&)t1>MrPU}3D7;k%^2G&cC4+W* zK_XNdzr2!r^neh&Sm{QJw!my%A#5*;^*rchUiGoAW}wuj3*-cbRYlj01(cWFN1o_B zRw~@;oYrVbqcz?48U-MeVCAiDBiFVml5&~tlNv^lI#@n+#_Z1f#*M-E#gYUqd7cbc zuvVMfMmHzpkfd}WQg8;*cqaup8MDxk7Tc3|^ehl2G|$|!xnpJcMuo)VF>axZ#4+<1 zIlDEq_4rYsa9T8Xuj$ z8u-h#r%w-6pX#{_xu+fyl<{9tUYDu4-LGvbf@F5w}!fUi)wd^ zySGYR70VALn_1O|cb<3CCO$fT++jwXW!Pfi|B z_Dr?-^t@Mjt!qvP2Tgt3Gidl|mej^qT3(@gp2UeGLeEe33cN>hS=V0Q&zj+w6nuV4 zw-jZTzTfN>+$nS0HiU-o^7Mk79a#H>06Y3{z85*l=Z^LE9E0d;4+blvLN)P7U3dd? zl*v2&;%z!VWr{gwC^B6pc)iMXl;i-*~L6o1s#J<{h5 zOmk0CjblSV<>QA)qp6)@N66C7$(^2yaBR<*X1zlN8S5bsq&+%w@$rpDytR%GG=d6$ z_&WWXWc#(T8>&j-3xN#w!w9};N+t-W*sIl+URJ-^Eect@sgS<`QM|32zne<#=vNP- z$2H~D#@PHUO_h5GxX(pmm^)oZEz^8r{d1bH@PPYKi4VW%2I@WCSYWTCLo{9WQ*-m0 zxuz!vK+wf+d0h$20K$=ukN~E%4PwQ523@|!3^x)=zI@!f!OUN6T9Uyl>qH1&kEwPsQisT?M{-hfmZaQneuHZW$c z4M2?7TR^w{k!N?YcZ;4586;7Yiiy=2GH4!6ow`DlFHa8#rk^K!37#zQ>+w0Q5vpxD zegP}Xk+o|JPWA7NGW=f_Hm)vhnIVL7l2~X$-D~5^W0|HwkqI3f@LdlD_grQ13(XHY z%99%D+3*6{xA!13En57Auw*9;FxA3cBRZRVIHHGB{f|EM5B-L3isxE2;_q}DHsQF5 z>c1F-jZU;m=GMHBQq?TLNkXa)MZ*VWkkD5)Ri{K8`-bM1tlzoL)L2Vm)!^Epn!8jg zTVh~6-6)nPq-6WPwdq!~%5sQx)-z?6`AdLgQ*hU7E^wrE zWsqb6d{M#Viny-xnyX}#3myRj=5YH$%Ki$K{hE)gqv@_VoYl>}DL8d`f&X-kYtO$;2qgOAuqI(vN) z7Xll!Bm5UQ@zb%Nh#B>!_U%vduKvW$>eC$@TW}3w4?o$HN1$w3wqxgZno=7lv1#U( zBhlI&o3AZ_A02Y7ANVLYy+_NLB-Y)l_27|rgJ7kfC$k5mU3-((pfexAQuC$`9`&V< zMW2|ZA~5Y6((O{67qm~rtY@-J@`y7zH4f+(fA}{1s8>;&Lw!4j9uFxE zI5>4=F!WaqJ5E}-tXn=@;VNgO0MAS&_t6P$eAdicMo6LsRsBSZ>WhgzwGoan!9W1dg|>82`0>F8fcN(R5CL@I#6yP; z-r)?*XA%2j#sYLqH2Wf5!!LY{W}(*Jh6-4kpYoT%zMsOVN1X#c!3?x1q7e6fvlFj| z>H)ti!a*R{`S4>X`=3Jx#T>s{3da;BaE%xmQ$*sUf_h0VnynCgR!lbtysPAzL?PB( z@nih(-ug{1_^bm0*@oje9R(fOH~94O`_FENDPS*SK}VXRy678Fi1(7?3{fqO*Ym4T^;)$ zuLu2Y9h-rJndyI9$L3)EpJi-zMuvYXV{d5K*x|4sd`{I~4?jjO|Hp>ps%1fS?3dI1g`Xyrrj`4bdIJQWbVejExdenI2Rt zEFtEou8`X(8sp~3a-iSbkBNAM%pK7fU)==Lntk^gCcgRw74>ASjKb4EDJm^glvZ?s zBIezoM_}o!P~$aX|bbp`pde7!1+}`8(_cm%uZKAz=AcpO76w1EiLET#c3= zp~HWJlx_?rK%{qsVw@@}YtXc_IsK-sB_awnUmgCgGpM)wkK~k*>wCP^4`C5P1ODlV zAK`H*Bn)$A5QG%?Q3cerK$2quAc4!sU@-PoB#7G@WQidFeUS)+D7dP!+@}m^(!(f( zRH-1po)^N1jOy{L$xWFA3A%R8@IhPBsCA9f1%HgB4NHY3KGOr4Aa(pGk%0Uf1=p}f zk2MabNrV#3`%wqc0CT8fFRBX)K|g4;yUhp|G#~Ul&4jTtpMpmSVaiSg0x8)*02%Hd z|7%+UgTpLfTZQ?$Jv6c~ep(5I6c8FKJ^?~PM9;G!Lco*p&yapZ9KoR>;Ik>eW*QLT z2vzMLtf(wt5aH<~2w77^^?EuU$Up>0d3JwBK;GTBbuv2LvO}qdbDxesRZHlrylRu! zi{4$n9jbJCOD%lRi*cH@DtCJwxxK2T8t-R8&D(c_4=-)6#bvq8rKLjv&EeGyFsw`h zqIxKpzeHOuV%r{D=)7Q-$#|kX_^GXm#%OQ^4gs-y>47ms)B4gVHm404LWQ>D_yf}>(P4JDSBq9dsd8_j0Y|N zayHo|fG9+7X%L72h+yvIgR3keMDwAeH`;rk)ALT&N`5%91c%CBKo5bCK4KkQ>Bgi- z$Qld+I8M`g^?%0LaK+;Yxz5M+gLs9p4CVCVP&#!~X~j5%;l^9VxiOY3%dl;wQ0uCG z1iW=12v=Yt{s?VxD3Vg-(|aU9i7eKeuZ#r zPuXvG<*R(u%(blD7u6`zR@$~|ppJF0tK+7yy%yeI&b1Tqe>7V;>8MD0Ig;dSQ824x zTYn@B=bV~xAOv&1-*5Xe*n?hCE!paAgH6y(VMI5Fg4-6H@_tadL+|ELr%@)m%_Kg7 z)Rh+C&NuhsDmsDbJf)bkDHPZ}@)u5Imc0v+#!70@C^@hh$+mdHQ@A;VCcI7Z=$|^f zbj#gyUZH!)`@ce2wjhjq)!4UFp4mc)rbf86Z6lICJ<2*g@c!J(!R)AYoX#~|74Ts> zV7Pjv*@#Qs0hr*?@PdzkmZo6k>7;!`&Wwe#^|Qt}e}hYRD?>VGs>f;xor$yzt|lI3 z^M`Kbt}o`%w5hvT-Kg>@+4pny{d(0}?EG+FDX5+3y6|*uUeWIUYP9gxvYD!pyEpt0 z`(-`NXT3V8;RNT>45c+Geq>EcrOOIAA*T`_u zySrPnS&iRpjIZ~#fSLL;|0dcJ;E=`JUpLgp$X-Djg+3b@m#u=*xqAH^V9iXZnFU-ZMc zk1){1@gpJ8^&F*dHSQo#YD)Ui*VMP3S5FUBZ9IEArCRT!>E(6u(49!WKONsy$frrIFb|LaEirf#xYz_j=DdS{En`lo1Lr8aI2RhZlo@NFRL2)^WGbPjq0`Yd5C>jNbXeEWY6fU^&OR z-FSq8l(Xfau_Z2CiOVnfQKYT>EOn=dG3>dz2l|LKmtOy*E?MVPMzcwOX>paaOMZbI zhK|HY{XZ|crcjbK@J{A;{3XGd(vbZa28B>$BKXWQCdcy2V%bsa!<-jnLd?ppqGA|0 z@_|b1RgvyicKfetHSzB{V`~Mw?8n@r75{^?cMQ^`?XpJ8w(aV&ZQDkdUDajVwr$(C zZKKQXvT+x_e$G4Ri+5t?oS2xOSLV)){F4!T?Y&UYIL5?a>Yd!8Qxccb28;8|ah10= zww)u5b>;9}BhdOQT4O_&`?wq`)TFxAr2oV5lrSLWyXNUM;v672dJi{>;2crJzELS? zaH(pE`zMp^kjs0}EOJ`}j>>Y%kqN5uGBtTiRtV-*f^j5ig=(Nc6UPIv6(ir+pT_L2 zP%3-R!3ToAQCxJ3(HozqDUAYaSHD3n3W!kjxIEyTLQK4s8|4qE2mdSbXP%$kbc|D4 zFjmHwQFv6+vexE&?~HuL`p(OU4S})yC|cy7lLQpl0-@Iw^R2>IS0Yf$Y^UT|;ZF+e zmPAd19*Qkp)>l2C6DorwNnswfjN$eEg08VcLF6aD;qW+Y-~VkY9?VkXihVo)@6{98!G z!urqSe=C(uo$Op3jZK}1SlRz+DE?mhS1+MxXm0vXTVQHyVrOIp^FO7)urU5L?*I3t z_=xtl(_t&J-;4ghIVu|$@he%l$zm9Lk336;CHGx3Vh1lHicJ%RN-gE?({&dfYC3f74d9xnIvg)3;w|@B4epafWeiyqK#`60|Nejk7w|-+9=^ z6E}d|j}%=0!}D|Kc6+VPl^}Y7TW}QB!ttbiC(&`f{;Hr0%HnmdqtxK%n z-s%BMAanW`OzG=>QI}PmUGgO1mP^kTtBZsH8^oXa?=2&$DetY?F1tZ%>FBl}Xf%kt zA1n<96YZ>g1Gu)YxU*tb)DyuieEVT&7qV7dnNt32KTmeW7AH(np;ZF;Mq@4n;(6(( zngY41qzl0c*f$cnor!ct-XdjLG+@M3BQr>TI-X?1i~2%p_;vKY&!Oj_%!!s}8+SW% zo+L_at4pr*jM~na9y91RO;Yz~T z`~jX+=uRwA@AEUhm}?tSs3$t z^4KrI*W@0|zTF+Q!5s$m-3lqW=Ei>HiE{#ooNP&?GJ%uWGSzJ7E_+Do**xZ+uwtV2 zbQqEmb}qQDVr=xhf#~E^`#)L*d%lwj%p~AJ!Axc$&98OzOeFiaTz?BAJA9~%pUvkslh>-glT za$g13oOOgM@P!*doD`=g{c-+CM*7ihG=N+m%~z(8nKJLsV#Ov)p3V(cK+*sX22wPT zp+1syLO*(%?9AwmQ8Jk5bb%Zn^hyf|CdPSS}tcb0i%=|uNm zCrt4)N<3wUD8nG4nLHnAZZZw zj0rUyQFX>fz}89z=>{7~1fYC>2i%}`!wxx1ku2P^2Co!n;$^^e$Ak>=o^H||I&Eju za!!xHf(1~3{a`@Sbjawxv<#p__fLy#7!u3q>8o;c5jHJ0md=KsB7bJfHWGf$&4y@5TkP_bTk6pl&t7-I9_{S5Qkz$4b+?hZPLdug3BChW$Adce z5RV^fjXY>Aa?$I#)!as$QEjBZuVwgZ9ADQz66PpP^UkuIAoI*E zQvD9nAwcmnT3sjCQVNu4dkpuTCE&Uq;na<8p^QEwKK4IBPCI--*9srwI>w(I7TG7Z`dYhsYHp$4UPTvk`erT-=#ZHL5JQqwA^FV5Bi231BzaTHiJPKtJ#WI3 z&dm}ay#B1Y#3qoQ+Gx4ej8adDk)=qP+lojVgMjNDj+`-U-+5^29cp%0V`^mko*@Qt z;51ePH5V}E5|@s+?3=T>R;@6l;1LM}b)Z$j``(S+kc8IW5&yDS7B;%ibpIIkai=BR z>#~LHFWIbY@_1+ef^v)Z#N2|Z-=-~JFUD>M1Pk@w2>D~;rJx>?@2>`gC`J5mGsNz~2HSiim{QJhn4Fxt2M|t_!7g}x5WL~Q zCEHyv4<`nUi>W4dqm|rG!vNPUdL|{^5*Q*GnHNBl)l^j0xlYi4cfYlTsJagz_zpc# zDvwboRVIbuW!~RP#@T8Ir<_g0ds7Uni8Fj1IMS@;Ma|}11^iF9hqVUs;6WN>->aYg z)egNdFh9l`UB4BRTq;4Ou8aNnkY_W_%BZaw<7aQDO@g+P zQeST29cp9J<~t-yT9(+jF#KL%)?4aY)MDC&uy}n>99M8%hP6 ze!@2>86KqVdqrsDUVHeKGnJfTKWx8YJ)HqMTL(tE{t*lpG-wwY66$Jwg@IXFmWxs?)TM$F!%>~mR0nMro7=}`i8>!~Xq~y|^xJgn`!v|QeIl*F7 zt09g3jLbzq;(9w0cQ|`AA4_RTRS93=;~pE zFi-GF_X|Vl-%SyOH(rYtvb|bLbV1ro0lCV7Rr3v35u#tO1$HkQ{&mWR9?lw6HRn-u z1dGiDD=Pp_3={m!eLpAEuRdgHx2>6X#C`KQlWa=%!r_Wf-*o(;1bZZ-9)i$J$(xc< z|fj9MVEms2sf6fwYgjqVEQp z{X{8GtUvK^q;8z2($b?ot`3VS_GG_Mde;`v=ad@XWc35_rUsm5yrmq**?t_i2AL0h z7y8KpLo-1;QvmIJ5zxO3hICH)UFRj9e*ioo8MV)TuQ5ja2(gs}9dN-;nioJU=NRtc zrryoZs6qw%)tAZiR&Io2bjVQUcvxK&`S~Ejo%cTMa*ubpjH;291IeBgl{}@_P7jVb`mT1hr}(~>v$3dX14W=_ zss7waL&3_q`VAbo5Gwj#;mg0XaQ|DXt*oi7xw8cm5y#*0B*VWB%zr@&2lM}X`sWS* zaf67B`7e6;ci3U$XwHgfwd@j4#Jx}iR~Um-B)WV?jzwQ27Qw`VH4Vptx={2YPa;aO z5P^csRw#PYBmRiggQ~~z((|IbtG(;_mEAPQe{tEAH#AieD|ASFJqs1jC@HE6VNhig7e-^jx#|3WWE-P z_DegR4kHNUtWqd>`KcetKXVc^90urb_Lnnj-PVG8_B0zV@KE8`&NV;KxBd~>Cqv^K z!+Tw%3xEQJ7&HLLo(vALUTB?o!36Q^Sq|1F3Yhl;GE~6rtIe4X%B=>G$o{H;2q?C` z$4tP@5ky1@%HJOb;`jqEt{=pi$sP;?p0Pha|IANI5p8ke^Lq-QABsWXc@>1RdA-TC z;73FzkAEKOe?fY;roJVdQ%m^J$YcqFj)P?zpk2MzSzr-KjHvXl-E4!Zjr zVQYj!LGJwm)QfDV^qbb_Ady0$3OKTPw$7$kj0Ka2$=iPwsrjf(#=}!8;FVZan8koF zxySV3)x$vovKneJ?R zwnHvwM3C6_va=i>F>T*BjFRVcgs@q5UU)YTCoCOw0>fiK@Q79NW_oRagfFg1`4Ih% z)Xu3PO451=1wd9hWO&v6+@sc6Y%rYlBN)F|4z9ZxEzf|kQy27|6p_mt3^AJjd|l2k zMY(37V4>hg&~0mYE<8-b@KKdkJ)9)Y@B({WR;s)67%5G4d|J=V^eTh(fiEsuV(tLL zAcv$M6H6j=owR@Z@FbOfqAj?|NDP|CnS~3LHumFk@uAD1&RyZTUzyg4sIfO=U8wpo z<~CPHNLw1v`NCp{d-NH?GyaH24BUSs2z??e;UBSU-9AA*@j?yTgwN59jfHVTHh8U} zVUKl}t);|J zM5i#K&mqzGs^#Pif<}Tn;k1l%cSpxL1UT_wWsG1n{WfK8o;tf_SLUaaOI*&b@gTD< zA_J2=aHLj#Z>TVBl0m%he=gO*dvdEjL)z!YB8(uQ)IYCA%rP)%m3!dEiQ-kb3TQ4o z3s$@u#Ek=v;S=O}YX=Y@`(n8@@sE|R2)8dc#^Tit*;ptq;ztEwHs%)LI0y!CCuk*w~Hqa`5TQ#J6` zEX|?~e$C>#9JGBE3#!*|uh?k`^+K_5W=KIk?nuDg$y#YqSjFLp2h6&A}`qmNSB3Gjh$WGMg9*GhxZ#ABGPlI0)rUAV z9p_GGmOghjY%|%EPc$OfD{?MEE>SNPkLVVBRcwU0WdVk`c5%>+;hBY|q%27?7@vUs z`Lc@-)(`D!MQ(ugS%_kf*OS5dwze@_q;@c8@KEvIEhX4iXI9WGA?FhBtFal3ovG-$*G}tKTy|>Z$4T`F;#9qzi4xw)L_dDgvYR8z{YZOUl`jp|0J{L)-`=7epxljaD zRm_}HxwD!owE-S?HIR;Nxw&$#6wW4}xmfM2a8-cl%t}BmKAHO1KHIM1!v3){PB)L0 z(F5SlaKj6RC_?o2YpZ3Y!XV>%$AZ;{fO<~r+pC-N0h#yMM?tL{GIMm|z&uwB10`ULz16A&s({eHW? zjP{#zsx&w?uLI9egJf%f&cg`!GVo(liEXmShJuDwVhEp_X2h3PXb?{lm9m%lq5Ms4 z{HUZ>R=FMEr0xd697F*zC`EM{Og@P3v~cRJuW^n2nC9&@tI0KL`P26)Xw-;Eubs^C z?8Hc+PS_wP*Y=T4Kh747ZmtNOWF`7TED}E^q6rYoNM$lqIisX{3+Cb=W%+%-?)e=+pkoOGA0qpw63{Q6v^~PsaVKzF4S9+f zNx(DqEfQl37m1p!Zj-kp4INs-LuLL@lsR zyRGsHaMD6LJ5b!R=m-;L2Yypz2W13kcw1Ra90)zL)ze6^|p41!Bs zL`qJe8Ddswx4PTL#RyA9tmd>&eIwW#%5Ukjzmw-J;krQx76DGTJnne|FY-o6XTp^& zdX?(JBv0#HE>u|=(TECdZ$}=DJC++Nhr3--kDu=hCZ0*crIc_PXFXtYBnND)Q)zAmH+r*{Y%1EoMp@cU`Ivo#9(A}29vQ6GY zN1@7PaT3|w?6s<4`95wnQWzHsF zYlWv1Gf_p)*ki3Af|G*eOj+k#c@C0Ztez5q0n|^A*6N462Rb0~H5T#bMMl|m=j)u$ z=~ozd5S}~6`Y3QLqY}?1zpF{lp0teJ%-|Y_8ULSo;>oy{RHs)qi$9J!Agc3k^}pA_ zM@*e;OExYvo7ZN-_o{EuLbFw<2&}abY2%|`KtDCeiOB`7?u|ZTdB-)n6P6M?X}^r4 zyztQ+<y(j)3`|-pnCK()bOTuK$pr6*bB@ieLkkLH8U#QZ zsCae>xT|eAn8sx?NtccL>yUlTRM5F81KdByM&YsvE!E#4P-jPM3kF}w_94AlNUS1$ z@;N(^kU?Nbvn}w_>U+f*3n~pKAxI$GT&wX~XP0k3YCOd4i^WuN{p7MhAc^H9KHafE zjVn^5n(w60<_tVppz>vAb+fJ1%zBrjcisL-TwBVkMmf)0a4Hi=23b?**aO1^5vU!R zXZ8e7F@^X0c~$>Q?L6wd@ba0A#qNropSw(oizk6MvEoKL&#$I)zkxY*(bIY0>W)5Q zUrXzrY`ovbm+GTOBUZ~*hcVx{t7!@1z|`Ccy>oC}za8?^^4v~e$h)wP;qA)*IJ|$Q$Z<2`W2#>Zyt!+iL|N|U#L^p$l-OxO&@aK#pGZ7|OR>5PXEJNzrtd8} z99&-ZR-+O41*CmM{z~2@1*(7i{@i*DbGdsM=kA^0bTv~F;N zzZLWRxB=K`6-&pW=PFo+z4WlwsHh3~ z*dHY@3b`v4P*A;X1{o!nUvK#Hi}JTL7;UpZGLBI*T>MEdPJTPL|H0W*<8iU5)6Gyi zM8noC3ddQC2^dTKomqM3R6JMFqWrEY(~b09E7dpdH~ciRCTX%==)SX;bthljg_DEZ z1#9!8ts8nr-N({`9nuRKX>=yG6K7Uw25T02^}^HJ<8>sshazL}otFio7T59F)S`f= zM$@B-;;C8B>Q4b$e@ni>LuyqX39vrpknP>pC)dT*=+m1Eu9>-E%l|$^-xNW za3dg!BVw@_#1kELh$X|}DBn9NMDfOM^+TU-!u&KP95D?y2+mYPqJ9W*H_3quPFbD_QH7@~uyn+tC04{n2&>tY2`Rx0?Ob3W^~z;#@Ej+8)6Kj2rLYF|v9 z$hu*h6`FNGhGSO8EuAjT{cj5;67XHqn45-2iTAf*e)o+#)pU!pSfW3<7<*YL=p>|S zAu;78%YRI&(|XtdmVP?ayTox#m8nI`6!0+Lm+lxTQ$mOc8F67^%a{{en25OefpXSy8=Yb!G%o#N*-;#iYhJufcykO`KhzH6EJGJ^wy6(X zy%}$ElC5E?t;VDi-I|`B!!D9$R*AMo+if54Um*oR!fQVFtb9%t-T@9u@Nrlnnkdo`z52$I1!KSH|~L zGY8o-a-9-q2XsXhqwXi_nkVPpvl2QVvd1Udb5H4*vR-oC0zXP0j*wx;+n5L4U7QMO z326A)9xh{bcq+NL<|EB37D{u(z?{`XUp@0lBc9ugZo*X_50P-xSG0O=qwB(UPs>Hm z98+#@nwL4;(|r3rem{{2_J=&ZXRdVO%n$HZ2D1?)-7^VFZJKc`D0=xSX||VCuDO9= zzDYYJe+L*pSel#y>I!%Pr3-mVX#VUZ#$V-PtU9Mri#>C;d9YT)9dP^<{3VUy6U8ti zeT%lb-4p5BOMCd+^ATA%NoL7cB|PEeOTTi_kojwt-%ViKON&bgP~*}0=^aZUz)9Vv zg>43xXc7gkK{<6`r3j;2UgyhgI!MeH&iFPkXSvb6*U+Gw-*};zzBeKEIAsPx=MA-x zgEq>JL;mU87p^=;HBC|5Qo8HtVS(>ykksHx8*t;vR%e9uZhvX9(DKQITKBW`yy=mw zmkE8ca@y* zC^h7BeY1?e6A@9`!?*e-Jr(s?h7~H{)%n36ZLq1mVJF>VaQgCx4PU7Gil3^m4<}9o0(wsc zCjPA8jgvr)P>xz>!`+03(h6nhu8Z2zrer4e(VAJD8wSRgDwfnx5fqe*n}$^vcb-jj zvBY88HTYFRWw9+Vk6Q|YdGSbcnjo3u_mRg;KbI%fS=&M5srQ{9E)Q&~4Q20m9gvy_ z9;QAoXve=_@1l^(%-k-(7KY6-o1vrnJb9_*BWX8Dm2NkOdx~i=;Z(@+a7g*-HR-!O zG-So-4M8wnfZPWgkHqsGuY3a?JQCad*YW4SlQ;i=#-BtSO#j(?&gZYUd(mHS_lJLF zhm5iZr&C7`mn9Fis;SgGX9g~bSpflaJ?_@+!bz!DRYJ}if0%uoY)sF@o#x~%Z)ZIP zc~R+IuIGeKzHiL=+-(0o(skk9boFd*ZGG}^@kW{x(YU%Kvu(2JwaGf4O=z=ua;Ut@ zcw(b!xsmfKF(7mRSor}|*zi)47wclb-2YtdDHPq4JL+Yf4>|M|LAU+r)j?G~NW&j3 z{Y4nu=>~>LxygMIduH>9(Zt`tNyE?jceO?`f=lKl9o1P;`WCgbvXBvcw0+9CaoEb| zyyHoS!C>o<9jc)0eM*-bx``kMpttQ)J;Ul!+4a*bM_$~r7PUdFt$#Ri@M|`@(>=ue zb75{5QffCsT~*s^+*fy5Z?{|1mg-2lYT9vU{qwu6^&q-!NETiY-smN9(a_FDIBaII zr+FEQ%z!KsWFG}MMo^dvp-XVzzVkqEAB5^p$+Z1CI5QXwf=Tg3HBsbjWTgPWaFyOP zxTfSF8j17h9RlmVc-F~aQ^TCb;F^>wKxLNPck}~|vrJy~pnfsBKuheFb`rXd@_G@E zy`MUi0G&mAsj}OVmGwfAv{tJu)NCf#!eXgj!;1$WfZz`L~0p?l^I4v49tjO;pE*w>CoGpK$PwJk&>w@UU|N2|}yW#u)B{ltHg8i45^uHoC{aqLQ zf0LU2r|#M;OkDq&B7LPJ<%Bzi-us|2O=qxS@zP6njHld?==he1GR42nEeJ+gAdCVB zw3+JH)5ifj&$ra%4`xbr90h^Ls^`|{JN1%^!LWng{kjHTm-pS?`T8g2QOsaK`lrq| znlRN#HAA(7EVYUbT@<0YMw;FXJ7DDMSci%Y@V2H_N9RgzEoj5`|TNy5QKJ7Yna~^ zN5opI0T}I5K#tM8URZ zDy=^-3QK-vdoW=}XL+h|V5d@#RVS!u;-o)%h8JbB1Z6nk$+0R~S>(sGNj09yFb&>< zYz|nWYIYe5t=zxAf0}jGv7Q=s_4erruyVguE+5#`RNef#+J1_?p}tC6!ECGQCJ|0= zcZ?w6H)B7^;HR8f)8d|nuFvck>X6#vL$MrCxq(4NyK_C0q&?JWi6zTb(jMc*vgkHb z2OP;J%ct5BrDFuS{PZ`KjSrSd9O0Ven!8j@J31M2_@0?Q?}ztkCgwG7Jxhwbl(l81 z%v%x}on*2>(0&1@O-XLzpE}KGK4G2Gh;gXk>W?J(Nz=$q%DJ%ZTd15W<$+Y;BR)c$ zUT;|9(YR8s`@Eb?f`}abC)>6#L&x}-nV<8(gVUD95CcnU2RgI}x#rkdJUhjJ0Mu|d zBM=sgc{8^|$iY?;d!oID%^`!2Y+r78>-Qf%6&-{e)=PYj26?!PW*B2>Iw{n#4o0zx zjt45t_vB5NXkg4vQT(>BUjM};WMPop|T{qX^_{_s}@H^XZeEk#ejql z3K{XLyi(yUD9?!uk>#vBw5!GjrD0PZt|IP#{s_d`2{_W!O0NfY2dCGzVB(vJRBjB& zwhDS0kgaF8Dr{MZxNR$KtWUdzT}1SZ9ZqBwWQ@fo@)iQq?ri<6UdF%+lGwA)7X+~} z8_dJ|C0bqh0to_t*wG@mm%dU8bz~37nZQo5J;*0E0bQMt2 z@iu;+yg@+jJqc)qM~Sy^ibbVR9%z>T;BJB*#$aRxfe5=0DwRVZVflRnmY@>9OQh*k z^5q>VR6Gr(kBhTugoP6+#Z){y5`WCa^%}kx*Z6~ZiO7~Qa=!bPTU$2I&GNW{6*51F zCJ4UN;F)XZUU16etkxac?mRKskieP~p29r;bvwI2vYYtWXe?2D631Q64M9#FN)5i4 zwrm15QM~A`BwVe5p}!e>G|yIfyBLZkn`sa&FDS?IE6D-Vu{z zT$x;Y7z!xBkp~nWEIT9_5!zwsLJufVGBt^x=-%0zQEE_5|Kvdo;U)QTz<}P!>b+l9 zmXLQsqB(i^%=JE>BZgL*k7KM_i!i#RL${A&cYaZk}!4T`lWPJ;m zx1uDRBN-%@wPk!N--G@RZl5woxY;o(5F}y~cTG&7=F_^vGaqi-y6NYdUFDz8E_8CD z^Oz#lBU?3}w`;|?vOWU0m8NQh#qmah?=R(P?MENczFO4H_I8DvwHNf5F~C!AX&04D zm4Qsl`@7CAy=#?@5b_X^keUkHo4NR+p$>mTp>H9+i#Qr$?PY#RMJMV>;9s|lmG0M`C!P;gYY_+pU<6{w2hv_l9qc{?WkDvMm%hPSW69k=#Vdy@2 zO?BkA`wWz2=e3s()4Mbxce=L5u@j6QS_)iARDW24<3#08DvR~9<8V{EEcV`BBpuKd z1+iy9QqNR1-epj=gjj%+5$5egdLPo*vdyrI93VC5nc!U%#OSpVI?kT9hpygFhTgw) z7Xyk6PAg8Y2;^NmcIxg5E~nl?CPQixhHRWYUHdxnzFRkKLjlh2*lv{&Hpk2lwZl## zeB4s>J##9iiGYmP6Yt!~R7pVvVGz`jThx11^WCi|kIHFjp4>^!mpAuH^^plI(WW0s zy&ghz0aAzW^^8<9EJ6NaO2;(NjgAWh>LiqzMI78(v6q$%EuZHUVUnq_qu_r7Oe*ZF zdmbfam<%bN(pslIyZV+f7xDwXl-IaZUHzyqL~_zvp|4nY`AP;g|E5V<=a&Ht`+sFG|{el!hk4j8I7g#bD2(pV~s_?Ft6 z(9TE&)3T~>_GhDt;4$eS<2(q(n*E+mj?N132S{aM&9nn2De955ML@&bfL?R_A;fy_ zo9X|q%if|`Df5($P%0e*G$`9*ofOFAE}GtFP_>0((5l^1x#cMuUCy<`7axX6N9S4Y z|0&TXErX%h6X$eoDz7G|{6*AI#K}lHr6~wqSLnMry7a?~F@5#N$TaU+qI~JdwB_k% zHv4YShSzv5Y2er^o);2zgq4NY8lKnbBrpmp`*JZD^+-7#nn=zD>NS3hE)Pm55UNg2 zLGe|5SrEb*V=xS^G|s$e^xn$vnxfRv3BiRVb!Kp}M{}DSQ+sh8fZzV6UKQFC)ygx{sN|^(lufr6 z!93@DApSfZmYaJ1-LPIM1#pajj<=V;c$?u}grIT0{H9Ie8OsIa-Ngv-r>e0ar#NaLGmJso<1{-rqW{41u@2Ob`R?WOMb}8Lw5^wJS#?k5 zHl45Tt}Zo~S9g^j?;f#v*0$~Ev#T0>ZEe15nz*UaTqdlsfFgF5^pyJaHRao9`<8~E zuH7{O!ON3|+Ii+^GK-AHtSm!jrwboTPbEX&;uvlxwhST0N)c7`E`>ntS5M7O&BYD- z)^X+6ov+F!Xzs}uVJmLo(}SlL#U-Xo;`dzv^=e(~%B~&Fdz>j#zNgF5?{%NwHJM#q zTO*Dw#vK`Yefr62poeB#=)Q_qh8jIuzb|D_9veJa)BIv`K5uhdGXb+|sOp4O#|GYU zwUWn^qbtBa4>EY316O%^^;duCXnaEh`RIIhc8)gCS7aJiQIBUeP8P}eTybr__6ev` zG;h+kN!gI`wf8N5@Auc9pz_;lm?nu#({$IYwgg(3{zNs<*{2R@%y4ai1kfEW0FOfj zNx(hG5~D5N;+!WI)Hq|=$2H=TL< zQF6I^-hHjWsaj?c&T=bX7fT;niCL!$_=fZ%kX%N{y=FYXqz5KXZJJ~9w>yv?ljuQ< z4{pvwmB}_bD$WR04$uTJR@qMnH&K5IOXRzrZVHmYM68nRfPfC)eglIXN`kwIadYSt zIYhUaa+#`$M6wioFt+JkCyK$?$Pme8z`9(=e--t&CS8ZT6tJ(L-<`f3*z`SuouA#^jsU#&@C6)4v4r3q23fZ5e;NQZ9^A{X*Utnv~ zQBFstA`ZWmhvJ8Q4@bZ(wwmC~vo`mXRwN3o&)y(PCn^0`wDj-cC_=Wjc7FvRKZ#iX z3NZeGJb%R={})01lMC^`MNpjop%nRVWg-95zzG&cE{^}i&)U|ON%|`b>7A>ar^~#D z8O0TC^_Em_tx`@2YEo%QY4q8X&c+_av!qpO>iT**7Y`!q4=CQaye96DBwM#;#o5*u z5bSOLc{>uP!Ta_7^cUF>nzYy#W9ONm6y4w(71gu39v0Eso}G4=%d4upJ%%$Y+0gw{0x*`AyKg z-|AY=+3g4}T)d5YyxfB$wjJASTGwuO^}jtI+%)H;p-$wIJ9cd2B~b{^haGo!w)KO$ zg<4ZG`F5+T^@J9(3!5nR8In>n~DLJv~_BzXwBhR&}#0x%OygzMw5h^J+bW zEwio#U)s9(dZev>+i-+wv?tp6DUxg?Y;^LYL^#7vb*rE!TBxf*jHf?mmWvikw_&g^ zt40N%bq!hvvJ~OTdb%>_$c@4#X_@uNQUD+@sL;zJq86LcljLX0UYJ! zl=RuK#MZsY`B+$_mpdEPoq=`2$otc`qsTKE+SoQUa|uoibj=g;^S54fUhpr@mlkm8 z6^Ps&cNr@ja^ijwZhm3y5jVQ;KEF7xT*YqzB%dXfN7@Kq=nla3AZP}nyukeJ!F%Oa znO|yKDW)wEgV_?!_vd>rGJ(_n_=Xw+%$#%(p+=jjC&a|TEv&4N?0uePhGYfI~w?7;`O;c zA40p8CeYV^>R;$D+~5_As218)M9)W$?@>FUaXXC3o*2$mHjASgh>WPZtjTS4fS z?Nv!%1&U_BBvp_`56UosLi^rn8W~10nrMlvzo>9M-+8f-lrAl}Ay$h&&`l*BEaVQm zzJiK+I6}4a>FH#5Oyqk$d(}Ta68jfKX`j7TpoO5Sz-W~K=DPnXUlpyWG*x=y=~D%Z z4+2)*!)uXsrEL6EHk8odR~jIVL6Cbi1X6mW`S}|ab{u}5kwKOFm?PxvR(giRtAROD zjlhX|rhD~UA?g&GLl6SkGR8=6a(JS)x3A;<6Gq9OVOW@IR+Jng^g*!AxBdN1qj$Yu z#2>S?e_|JM5z^pjUbkx`t17R&eY{je9)%fq{8u{Rk#<^fTCU}(u$c-x4oke@P+dN} zvLLj;o^~Wu?;N97Nj5Q>3wu80Z-hBwX#@{0exFWu!A1PTt6pe(X&~hJt&wF&g3^k2 zX*JikuU=i!W4?tRL?Zb$pqAHQd!OAUgYd6@$`c6iU;@&nr71bUvMpsLcMe~KX=LnT zm@I-F>GHm*WPosn5u*stupvqtv|k^-g|%lGbtfMLz)ZyW%5@1zF)SZrvQyJt2tniA zlqsnYWs3B7m_;y)M~99vO3+Y)YjlyK5pbW|6}v19se+B1GvX6u=eij7b23~iqlRNS z$}7dY!h}A2Rrd5}N?M^mAEM>$rT?<`GRH9_CPMsrBdXN&@-=P96^AdpgQg+sh2Q5$g0wNJh!2AUPiA8A1aP19I-IU%fS>FKwWz z*iKB`y(p^}Y!rh1h>HcQK?o^QuK%1wCxHhUOYE&!+tbiBCz-I}4)lyP^!t!;&o!vg zZAF#ix(kzwo?o#9@yPErn;ilZ9t7bV#g77r!Mk-Np%WWQTIvvg99&9XBS;-< z5G2Dfa4u1yLeUS$d%fLf&Eqp_wC-0-Rn=+12FKPWI94aPNx`MaFGW^&OKuFNt=6^}@3nNdOhok>L&~PmAC51ynT!Mv+sN(25yo z4*e`VjtA{X^%!$+_jD_-^(+=J&gk#Jw}^TXwnoJyurNH9EIc~!+fb4R?KEhD7CFSt zRY(S#NIvC?szH5wra$QssgTl0;)7zIQ5?+$Iem%E>DhA}=R>L-IP@^r1>cP&WVnDe zQZ0WmxYXh~ZT2DIKfylCHoK84h)T%P6^IAIAN+{%3=t=I04wL(54nX}kerzQT~fAJ zC^>-isBSQ~bJBa!s9RoN!GZiYkvs9>5D;nf z5KjfRxzz()Fd|oibT_p|1{m5hPI-0kfpE48wr1R_IV*c3b1D@JNmnztNr?1lIV(dZ zZF%-vyZMF@cZ=aH$gChei4FgabqhwBv%X0SM)ca7cguwl(g5XymJA)mXu@^dLALxE zY``z|KbRt9oPcF%zYVRa2n1g>;QkBZ~RMwK*ZPP11UbB|C;<4hJLWfSIz4U=^X5q)^0PB)4k9ksnoh@Nf`Jm%9& zJTmCm4OkddF`wgj3nH1vba&4az2Do)tx)888`I6w^6-vb8K!qA znn@}Y^6J!ENRPTgN=^%7X!i}j1JNsZ(tZrOE79d1SL!PqC}=!yN3^z5b=^g!o-zla zBA^o2%w*e|rHcy$<);26-djOIkY!K^`-S6afF6aDb(yz$-5V6QPP( z)0Bp68J}dKzp7Tddu>NFuTsQb@!_qpG?o)Rt=p#!`QlcT>WP!!4&(1u=1m0PChNJ+ zf?HJpFr?ecgqHfr0h6F{dn9El(VKEjh&f7E!&uXG;}9=y3s~Q8hv>pB5p!onX=n25 z_vMvJG@HX0?wp~d^v%ES2>ZCWo)fA|8w|JIbAHiY`nvOFqaUs~z}~ZmsabM0&#zaN ziqN!=qk+8KHKkd-gONAq>v}#%I*U|w#>Sk4bzanO2XH)U!OXN36rj3BgoHHs+NM!- zAt|=wmZfrN){YUR8>S#N9q>5Y!}$m!wG!A_{o!hvnNLC7g%|3?>*^0hNQ{A@%ljFN0uN;eWf@6MRWx7Dn%EJ*D(0I_>EE-eg8 z)C$>|I-4+7`}}Gu>B-3fcw!=uP3we(P}B(y>X5Er*wV=-kfT}&@0nIO z)8zwrp9$YccUFFI#lV)SBs{l{PiL_@`c1@cQlgukrrT?uD7(!5sg@2Qr5g_|nCJOv zE;N5)h4IuF&sZP$H%WDf}4>kBFV*|bEE7}zXI)euQtB>j^flv&gf&he!1F_lbBC| zwyECMIXH%vN|`WOO)l$Luoc8y6=&0dGo*wQD+KIY5%7rm-?{QzMJp%_xmk;D>T+!N z@bWU&BY9JaJYgo8Yl_tnkW_6gID38+{^+!YhVW3YaIlsT#KqAORGLDgUSK3I2+q20 zg?Ms32)}vyhO|LCE39-XeZ~-kjWC;>E@jzSQ{+@ghPS-ab$$U_Z-24DMKFlTZIa30 zY#%w2qT<-*o*C3ex(NdG#p{fqBO}topnEdXV#*~d#U$yU{jJu|hN6Cc@}fb{avMP> z#i4d!P#1B~(Qm@3fxlAhzjE{c$l3Z2;rYLZbp0E~`PWW}mGd76r2H52{0rf*a{g2P zpRv#XlU($_1wUN>!czaeCjNh%iNwtI_dEYxopSY4#*TCh`Jeq!Lg0*RA0dP{G!ibO zqZDmF)Zg)=wq;s)vv!gWL$-ci-RZ{m(gRUgvU-HV6nYk$?uweekJ^ezlp8pmuja!0 zZl6wF@0(uzAaYp;eeDfwDcFK6rnaO}22JfQMql-={-@{XA;+#0F0JaY=;lVkxnO}a|( zKDIVi;O;Jet?ye3hTYwE960&l#(`7EJ#r!?`s<_ONAtVaEKdAUG$kv?u$CI%W2-ue zjs>)7p+Tr7#b(VyG)#P1B)oBOW_9LzdE*?VX8p_oL)P+5jq9Sof!{RD01P!GkP1+(~4>7k%*w(PV_dgREHPZ&A(~O@G(q5HO3XaLTyL((SifF8 z@ZTfGUFgex%u{K<35d_i+Q~iBP-$DP_;CjsIfczzmpB|2f+1EOBhE*~goxT+Kaj9G z6E8s1%&eVh7%Vcs&(T4aan&d}p@KwiN=kbx3g!>qwmuwGhgz)fQoKMAhPaM2{vrTv z*o_K0S~%YX>@k8ktK#o%-DioT8}B4XQ)n5}fO}X`l%8)V2B8rNoji3!Bp*C|EjCX~ zFDDht=$ldo;2<9;TUIBs@;>_HWV2cZA%?C)4Vt8EVvjO#hcgeN2TTg!hLW&ydPWWf z?NHiC^XmplSJU`4InIPiOX878UkUc##qtjFtmX94dP{EJMc8=-Us9%;A+>N$Vo!2} zLFYo53ZWRhx1XRg+A;Y2=-!f|z)+{WXVSr$|g zcIBj4Xv~wDgv!qoMr}$kb_TVewkVQPOH}FDrAWN#WCldu2!fZw2VQDKI6JkE@ivPg z;8~{F*7ioPRL&K$ZA(PkCKO6qIftb!lqkKj=`=mUiDQG8Zb2q_u7hcCxKK->P8bIj zZAZWBw=1i%_oKQDrOn+~Y8zHTjbIU>iDoKW)AUd%PmZiqO5nV`G!c@b2;MJAw2tOfqAHOh93_vxeYSgGtsnT|dv zX@8H++Qtnf6K{^WSic1)f&X5g=efSe@gJ?4p@lu{8prM$;&smkn)FA`b>CskjXt8pg|2AZ1=x+LggbN3uDi!#gkm{@arb(teN1|z2)We?pE9Lp8il2eP+9wKY@l^z{Fi4+&9cW|odc=aafy3iy zalD-yb|>C~#qi4n<;8x+whT1=Yoy90vU@ z!V0|TI?6atg>;~>nUm6bBoD(x=d+aee>#sBM&gR6o{)SBpBjSCl2UNtx|qOPf}Qs>tpOb>hXd4IVz z`1LLR*gN>n{ViB??ep&Jw94oG(((3wLT$V9sP;ZMbtV7#>ht`7`S~}QZXbqd@o6(W zZ{_#yYOnTf`rIY`@F{+HGi~ke|DNnXpMROCh$z_VixXg+W+ZDu=Z0I}y$r?ubdnN0WP4PHX5w$nryGYgtgFwfW~^% zO{19!Yh(wQaK-6bsqZDi#$c)NRN=@tawBJhvSbD3>K^6B2WpH;k?|Bda%iM3^zjjN#ySU8l z4T9YuZ!wg}zKO+wkxPbT00|0z6kZ6x3wVQyLtBbkRAp-65L7rBuhoah88V)jE|f#T zVs0v}zllwS9C|RhUV|*F>v9CLYIn8q>Nv#IM{=fUEl6`g8O61EZp6c32K0;a83n1Z-(x+sJ|!iz5NtIR>YAzB_T`pPFV4)HN)vY?u-6FiifF zm7~gS=C!xDpQi5<43OmAk>6wx; zqW*X|7!XM`8t8nleC{I1Cp-UVnBn2JoOdvZI+`lHZY6>pH7Vb9OETZ;QvR0C>(ZX> zb6f4#gR|b}FL&SJ<;S~EafV-=J{7)?4z1nY?;Q;^N)17j2sv`)n6r1s`qsKaf&?6JO4MCc^*T?EfqF^#8lt z&;GAT!GGKA|BsFTAqK_6^Zy|$`A?cQ0TVm(f5A)rBj0UD>UmdtP#B29?7@d}Tm@u; zJ*8Cn6Rd6p(zMzbJl>35W;^(J^Ci%RTh|w-R6CgZYmZc4S-RG%KQ5_>!dG8WYkt~` zZuI(g_Pj0ZfK}o;WSpP9)$B(hNy!!$6D+o!y|uh~IJ18}zKKIdNTHYoJqAQ@s7MZ^ zg)y=Gw$FqYgAF1JU!+%7i11x?ABe{LY{pYBp|=o95AwW(X<}(0m6I|zGDbDhJwAIs zul%V7TRR`2qAh8NNmdZXv}En^cwgJpFPEjK*s1ufod4*lXz=neq{lLaM7Xw4VAS=9I zGb6GO2OnVPNYGVIcvC`$U>8ivlEZN-Xa%WtXJmD1KE}R=-Gd5eP))Vx)iQ5yNGm&> zpSqSF5GjpiVa4!(A5b)Qn#U4yz^!Q#WML*r9x&t&R?X^*bxoaq+4B73!V zmv11yYm<-e*2o6;Ybe+D%X63R=GOy9_L87Cc3G@a^%e8j!KW#6uSX0%icnB&_$9&D zh$FO3*X}(NpNFTqUB-)b$I!|kfiE3RqyG%%Px<-~p{zkW_5Ms|?AuffioD1gXar}O zBN2(YoTL#BgAr#(O$cf)Iq7;sy^6Ppi8G~f0pd{*0#s3+Gozd+9%I51BM?KDyVi&*#gQHWVB?kUTEzHr1a)U+!i+-HA^KU!9 zc}|Rp^AmaH$eZr%H_=fvsULuHhCT3K11cS=r|%bqmkO>xAi3!U+*1dRtnUqjcnL2l z)x_4uy-W!`H+ZQ)GX)ebrYZ!wS$Qw+vqY!ej11zN#x5Uq54{FRmeJyP_XMzdVnI~y z;%Q#DAJO_Cs*85r@S#BhtT@*3ZW6qEf0&&>nhy;CXj_Ep|@ig~sOiWy!C zH1>os4954J_QC?Elz8JGD%~pJg^vqg2K#=2TifGGRhoHz`d(e$rOcgC=%z*sPFt^p zx``L5ZjF&SzM0I>X$H4Pe`RLVLYJzh5JQ@N!f5_(N-^y>R+Pxc! z4=Pg{Yf>)*g`X_NrbgWh5u%geWsJ@3Q`&BVINQ*9<{J%$L+bZ%gSe(in%^T<6Rt*$ z&lp#MEg%WnWW`9QsVz>cp-#r;_TiKze-jI~;X~e+X->)2hUq*EH@&n<%>aPNId-=XR9~H~5&`bZE5Ql9j zbbag`nZh&%ty)T@lp&NLx`IGq)+}_7Vu|2=isC!jbisEKQr8ohO=RgamCyRkcjNup z32x2zkhgShExS2&ScaDAC~rMw$w=FSldM1KlLubElMG55rB@wi9vl)1q{#D%grh7` z6K5mwWDy9CRZoqglpTC^paSPzIu97B)0_ub3Kjsuf+($cCx5|io@xqyp~;bi zWiNbQr1&yqORud;m#c$iV{>nL>mJ1*19bTor+5m37Tf!Nn{UbB3-Ltug}SSQ64**K zOi5pj^rU|+By#@@uCOHO_ZW9Y<%8bA9EPrq!!|9%MHMlN^X0_D`(5JQbkh@O+gig; zNO*;fbj()&l9o~wR!sPPazY77ifaT^6<%MRn1ncaJ%b=x=f;JfK)9+F{Tt5<>aa&h z_*vy<*v0;e@W#b7E{nwCH2K#?3sG0qUQW_;_k6AafFjeEgVnO=89H3sq5=IfKEGo!7|Mb|rwFDyycTHW^6 zja;1OC{Fdv`-HdeTR9qh|9)-C!j3C3_x0z5d#_j(eZ;4kLAWbjY{s)@_K}y0CY~&b zaRNQsd8<=P<)L35)+scEpp#dqFXyLX29eh>LFhwj1$fbTR>m1VsdLBE@5disOPHpn z&UkXHgq=F?FBxxb=0D{$ba^v)w*7h1)&XN%+DFK>6t6CjI){h$e1# zLENFEqRSk#L>0eSi;zN}azZE(%M}#XZ0zHszqRa;w7H=?wybJMnXJ7l0Y@v_0P0dP zYA>RVmpNg}txk=dk@eQfD6Lh1fBWQ>^C);7-och(%Bqp+K^>3D_lZ=(Mpqn2-RIf; z4#D5m>p3x8tl^6yf6U3?xR52_ef$c2f180QeMB%jhvQI?PF8KbU-BM@>SyVn zqBmOHgM3uv(diE#h)$4o;{&-S)pkkHMbGhZdu=BT_+eIr?R}!;!~yk+X!FWwOZe=M zf9jEt7qVu2LgwLr@ExlYy5^t}BB{ca>HS90@6aqqQm-0u_^_Q@QA)_LSK+mhvYd`6 z_4W-sMmRF_fA*gl|6Qo)Kl5+)fA*RG1-1DXMCN}>!v7_v`ad8o{Bx^+Q)1=#zi}2A z|EJ6$X6FAQiS!TB0(C1=&$-$S2URA+({PNp#8TsdcGggZR5338%UC=IBSyM#&u}l_ z7QnP0k|Z?YgJ$D;2nl=vfZgr21s5iFMdo}rg%;iG+ui`ab5Xnt*86#e(y%WZW6_T#{W8cX78qE zb2Xs$Zi2<9p_XasJ!Rvd9?Jgc*g`#cP*YV~T1DYzR|oRtU%dqWy>2)793Mwv`uyBU z+v9;zvWp}A@pWRQifj6A*$I`qsRGBFc5J2xv#eK5l(i1^K)f8raIYuCZ%dZJK}_?M zC;|fnLoz=;8!2YlATEnyGhDRtr#ESSvh0P#&!8S5);qzQL8Nc!ub3c{60j+=iGitN zg)0lXcwu);2E{27W%nq&TCHu3PmkfO7`gR86=_IgxM?4#8TtL=5(5AHII!+O4Kk3d zo%hOPkb+@w$mr7Hd!;YW%4jo1k>CbL1Z(HQR?Ia za@(AXH^}V003x|GV+f~(`Jln71w33<>J%+v;zj4|m?9B9k=_iKyLc;H&_Hv6=)U`er-gtD?yAq1kFfUKt*y3wa*1-59fTvx_Wn!AE zfTt}Fkt`+mn;t&$!UbDGj){VNGA;kK=xy>yAUD}KZ|3IU@jR?HE)P^2L2ZGZod8#v zhlRb|uyK*b48x#5_}&&yDZkMXRCB&2Xb)nT2Zdb zJDt;`rR)32kCG@yU^1AbjhXx4{ux!O*nywVus4ZHh*)e2eITWiiL>MoAU})KDQqEw zNqcD?%Ej|%_P~8aa!1WR`e#dj`SAHrJdD!|=R(sESr3#COEIMPZTs}z&nh8~iq4$C z%l|m3BjX!^bdU1{J^&&G=_9ZLo>x&^2>(vPVhAKqRRZcXcqOeP zJZYq`A!VW#f_0ys3(1A-Mab}hsYeSz2BT4hxafhV>7=_r7MmZdgSX z32AygQ;JcSxOdX9@0H6efUh1Bv%ly}xe{XEL4gAyUHYtb-6s)GwJ;${s8y<*;t5Sl zI3;Q@hXkcmOwfoQKu$S2-|^ z{Kh-`?0^lpvyf9G4fDho%5iJV9SxRPC7g5zmNL`K3LdPEDgw_$2S|5cWKw2ML>nROvOGNR3h4X!l-8*k^ zlV>p`QgJVVnSOwn4UBE=?QLaFB&}~##8pdiJU~)mZ6~!Bk?_t4JoRJnO zfQEaZSpr4{qwP`TyRW)ace{Bw8l-tvr!J2A*#9_seA|^6&mTO)0uox9ms3&RUd#K;Z9wh71%B*$Th#?i zywVou>@^_0kPl&_Qo|8Q3_MA}Yz-zvx?QIJf%J}jL`qN*NOD3|F|**&@s~O+@LMou zSq-|0)2t09(qFRU=vSn$QUmS}<$DL6nm6*M8BkeH5yFgUU=>T)GQ|_NgY*dB7CTma ztq&vf-NHzdh0zpNFX^w${*4i zmV!e|ejtGO22+0fFuBklKWLCWBRjv!6c2I*NVo*$zw zNXiMUk8#3FC<~~0XVl~Er8R};c?Klu)wbM+%R-)Pcw#* zv>XIo`rp|f8qpTMdE~>3zRE_H1dEnGZ-&;~iefAi`ihgIr`=Bi^^H zduorr)*b<&H#CKF|TFI ze_djwHr%g)r;VN51e#hiWsC@#j=w=$AJ0p|r`QjF?7%%NR&CtU!8-5rssBuUcb5Xi zobO7%T*z?fjxFUfHm1DcT8xmiC9Cx$7ZSNGsX%B{d6brLf9e#!cW|-^#@CwPuhU5C z^u%9AR`g`dZ0`w`MVRq{`b?cdLd}IZyd9HvN0XD<9Ym+NFs$qqRT6h>E0Wg9fczB7m#=jV{4iC7?e2#RiDj))dG%GE;MtDl9e+uENAfB6V}>aLZN)~1r;b{=|- zev1*iKJ-&-uBGX~=M=3r05{tu>0XS%)T*l!k$j`GYc^uw1M&LcI0nD~;2z;^Gl=hy zv@&^WlMB%QjINS6j1kx?Er<+k2}s7%djb2NTFGmAs) zimFuBJr9umv$*z=T>iUEc!tuwEgWMS_gi&BO7Smz3_~X7O3`jq27V$FSKWRFm%&zF zgvS*uvT5scQu`$=kU6cXw_*+Vf#2vao#dF~r50}RZYDK-)$ecD7oJ`5Qobm5i@qiN z6GucVWSlt@n#KB?MrayVF8)>8G2Y}U|7H~~S$ZT1mixRIs+eq9qK?LvK46-Qr}AM-8G`le*+>4mI0+5rBe!nVfk%cj}@Y@2}%t zGttd2lq5L*=(@G5R|MI(Dz5o>V(~ECM2y(g|3+#+#if||0L1yq|C?7w^}nh9{+*Ei zpVi;LP)7d(2mR%S|6|_r*I(m5ZvUtk{|f@?e@<KT@zl7h0Gor#B zM3HT^YoQN84cVPYEKL12rR@1(f$;Tu6^s+QKN9C=FezL|7mU}DS+rK#AB4PrW%*1L zBOGA@E4?MzF-v=ZDAmt_(UIt!Z*|Gxo;lH`oHHza$pFu0+>3ojqicD>6vdgmlxKD; zw2{t)n)vY>Tef5I(L{ppc&Y5~%lG%K!{EeNo(3B2=hJ(AX=jhM3!0wwa9z226xN(QR0{?dx_rt?726xUFYTJT0dc zciWycbUTt?HTiB=;BM;cO!^$PkPET!RMPQ0i>y}CWj~9w$?Lpahui0`ciw0&Q`2?7 zh_so|a(z=V6%m46E0U+s+a4y4% zb+6mR{&cm%)c?u&_1v+|R3OYhq;b6ge^zQzaX%RLfh&bOvY!)Ad_u!ht_IT>FK%0FOgua8zJ^IE?9`Q~Ub#$>%|4KImn&SFP>`|rC8+da0)4JA`eNX%nm>^Z=O|z2( zRs*wB{Gvc=XN-;<(|BtJ#5JA#qfAGP|K$Vs>zc8X1k}pz^T5^OKLXNS{}qs?)9@S^ zt!I_8dqc!$fUfdJ)yR`2yS!zsWs-9hc-T+5;r>XF-$JrY;NJV|_GBwEv$?q*9Xy@M z)VS**ICB9EK%<4EjGdLvPHz7Ki39YvPg1dzR8jwBSYS$N$E^dJgqtDwO$kkRJ<|!YE z&y{Fr1JV|VV4q<<&gZko28f}IS7^j^Pv6l^D_KhFxg9tSxhq+?b2rgq?p-qnza^IC zK6|?}HKG{fvcT2AGj{de zXjc24I`C&4%;s~6avpNiam=4j-G-ej-RJ%zvPWCi`DQAtg*&bf<|M?4kTvGjx}Bk#*zM4<O8av-fBcB9R;{IkRkZ+)dC1!4W+_3GV5 zjA8Z6fU*C_)oZC~oxa_&EX>TisSL=ONlsm~uoS{2&XT3n8RUp9hZR`C9m9~49w?>cwZpPZy)scj0l zp&X9!JO@8L`=XUADS0=dTlTdv^{K+0G(mlOexg@BFU6#HPl<)PZ3?fmR;DaTE)0+B=wC+?1uEv5aw5)v zd*RVYr(t7@Qr{zz0WVVv_E!Vde+~N01-e+Sk^v8+NT5rrKJ~uoG%*h=UD4t`q zG@K9xR1Z*;_7QZJ=4GNp8!)6*4omNU>v4o-(@HipwJ(CCRAqM%B^b6B!w1?m`pt5s ze!^{Nnghi}RKtmLB!c>b#WOO2o@@xREuk&De{&OZGyu%JgkZD{JkTv_8WT-7cvl1# z4}&%%=0z8~@CSvF=d@PSl#+pw6B47^+`JHwdxOmAOj>?%?Wmv5Uf!}?aXYm>XB)zW z=kadPPC508qtA!=IJ19L_`3F5($7X(~9!$8rZiKx`DeyuiBo_*v7!uY zhdGv>@R000zEsX!Uog>|gr9{cWDFMe=mp%$1Nv43CNm2-5MTkowoKZTX4~I02)oy~ z7Hh&KIobqQ1%U!Eo6xOW)hNy(6?6qF+xYJItYQ@ zoHSX9qFt!HC|@3;(&ay@|CtDnc%=v(D8rKDCtnD6p-ZzBt_uW#UTG?Hl3`h|q`y=W zEqOeN;+=+2J&oK|>}3{urDeFhEYG#Ql?c14lzBtbNSTR%l%N_cj}vS}!s97GzJ zww-f$xDk_PWatu*X3zx>a+!=82LLXg;rV^sM8P8MDB7ljDNsA6A2M!yXYw#*C>jAJ z=B%#4k}A7A0hOjNa)OAHV>Z#>AZ#x9Ff0LbZ0Ute%}Il-$a{=dmuXN)q9}vNCbqyi z9~dBF-v(9{35r!W&O09hiy)^ATn9U34wsnV&mqGIiu@8LlGYkCV-V4wPe437aHVMT z!f~xZkN|eARVqKyc* ziO0b$ucFwx}2y;q7Q*GVHr(46eEjM zf<*sklfXYZBqmg}<%cS=11=(yJ{-8lIq9gUP`uC&h8ysx`UGR76GGE?oLzqO0}L6z z-DE2c=&AW*a2i61R#v~Ig0f@TqhUA2Js*tmER~%CGP6xeuGd=w|;b$qoOgHxjdSP>gJVJHnAll!1|&KAsGdI-Viux8PT?5?D24zjg3+M@aeJ=n0Auw$ z>UO+CB&jqd^%S9gE@D~YA4l@M$-B&m+^USGr!aQE1f$XtjrW5xFiFtCvET^B1yE55 zN8AWwviy{6w%r>vhQyw$#aYNxj2FU!Ys_PVG$Bu{*9VEj7)l`81ikvU#qKfnRR5x> zeowEI;LY%8H?t;C4WXA)_E{k92SzYTlEAmvghha=K^V(jT&}bEdnDM8u|rbZfBDVk zYRVkd)m5*y7$`$Fd|QNBbFTYcf`CxMhFm&D(_D~0qDHH~e z5J)8&f|Z49nmqJdWa6+6({3dg{^2gzRKFt6yqE%VkSn5mWkfJ0usYNTZ6!wL4uFtZiYcFy7TSLMJW zRA4!1U!y32cDq_&(@ckk(^QdvW9eoB1Vnt91dYkO5DbD14~fFZW$Y-)X~2d@q-@2E zgOgm4KS|yQT+{(|f&vsOmYQIIRH7@GxVxLJvj$T~tf3cF5Kq%|XaI<-^1i>7AwIHI z7^fmFthcD3u8<3$1}H}#r#?hJ9(cKkLp48EwT0Y3v7)Xx=g<&KIqG$|jC`lhsO1gG zAInf3iBXC{gF2v7+0NQQ!&_BHce=9TN8Y9ccC53FdaNNyKT%o27<0bqgi6G8@%-@B zZ~=Hc(dKvq@_E6X^hIp_a0Ch>7CERHk`ZD;I3Sro?vYC-cp7<~D3D=*W=i2iIXEXO zin$mXiMnZD>{vkOx~_^Q*3f!AjUd6PY~L8IH6C9dk5jeYC|YOO|CX)JrV8FLU^#Vc zVSJ56)j?=l$)>CS2aF1AIVh^CFra*F6%{AijV2p;j|JhV9%q|8@8 zJ{ht2hLbi7WoB<=oz6fe&JsB)|$e7K^YIvU2dtBmAOTF;@qYTId19o+H&^n%e|50GZLp|ZRsF%90A zC=$r230fgIO>xVVl&);3O`!dyIq6UMVe8Ga?6T^dsx{OcDP3Aj)*yqV)Z|};(4KU~ zPo>u#(?2d+a$rn*?7?8Y08!-==*LE+)ns)R5)1lZgIf%wU~GeA&-VH zdlbI-o|$Vpi$lZf_h)jI;D1TgEL?oGRl2>q-v3u4O8R27W6KoGIJ0m zBm2|Yz~(^w!o;dOxR143UF2_-W3FTAR&Bx=BGMWF-&fVn$$bfparrWgTC20HHp`su zegdr%h?tTlUd4o9)>~QS^7l7dK*2o-GygO+dh=;~;?n++#aG3prKI!|8uw)uk9^pRC~Ar+Y!(y9=O* zz*NYl&;-p?5Re_6MOKJOu;dP5L#dar)MIF(6D{B43Q3_+M@m~`ZmMSjQL_qZSpty` zVT-UAoPC=_zO@vc1s;^-+(2pyi6fyrT1ROD=m2YZ2BZK@hfzO*Rs-ofT@D$LnKL74 z9oU!!EU&!DZFUix$3w_p%f-S`3ZDO|ml|~jwdrOlYSJE^1#aNfh>OWH(ZFjyy@1qQ z9^$01SY>Ql-HFgP4M<5&VGdy84p_c(UbmWH7PP`tG}1+BqN$gHvI;;S!)mT~zmS=| zLn6M=Ghq80u51<-otXo<-uI5|v1s;67Lf8lO2vt_Gcfg z2={$6-pV@Tr10z)4MpkVQ=m1OS=F7U^(UFx<-bg4kzZuydyf>WV32O0wC$*{Ub3?V z7>k`!8h9Ed7{n&I!LOZHndJQ$oQFi0^?{!he=S{Is#~P+G~7f)f*F zerYi(2Be5Kq^85#D&~D-X5q*wf9wV7ac;(@Fx4(!VnIh!a}Pb-a;^JIk-0a`{I!Nd zbA=#;X^8N6X7O|C32KslnYjeyAxFuuEK1G0&}9x%TO8p?*2;_I$u7nw39vAAMTZ&C z>d;IE6>7Um&}tr}yv3uT8PB^&wpTQM>4fH&kwG@klqhQnDb%S48Z;RwMd6u;D)RSW z+Hw)=12csDd<@WQ0A_A!oRr^dI*%7Lv_BB* zl0sEnQ!0%Vv6Dk=E@%iKJ!mXEh|KVqxT6}$%=aCj%`0y#+jm>ip76-C)Oe-F(NwIe`j=&t9y zXe>${$|tM-eNcXp=^pTseW(Iy0hFK|rRN0yL}05L(-6DMN>Z^|q$%uC>u9-ckU{JV znqLx`xLb=G5@tc7riB?BGmA2=m1(LPwuZhSAZVX!NHI$ufmpKXqCrH-tyTfI-#1AY zb&~%}zG{$ZS3fM-a$kGPd%#rfsv^}g!qM7r*Pub$S2nW3p@qrSw^gwyG@W)GQ)CoGWOu zG%^M9N*B&lPuD1-9;&Fa_AoM~4G0#DQ?@WNg(7AyU!%%N(+H3Y!U!K`X0}3NRtRIM zXKGx&&FZ7*tem7_8Ui2|!2O)8YMzXU?*1DZ`2sUYEzZfNGwT( z!Yn-*8@*Z-osOr`Mq!_ou5s5V3Eh&OHr!_uPG#L>J!P!9I$1?C&LJW?mo1@DB!MEF z$R@|OBD$zYo+hC&L~__bW|L)YI=)x692%Vvj04DIwJaoJ@}r#b)QLDO;78z(AuyiPZMHs7(@~q4H=q5qhzLuSfeKW2Em~9Ai79pr^PQlTSiw`aOsc-f6kx1gTa?TP=bXaDL;QgZBMRd3oB zO2-(fs+6&I2x3|D+1qo;42b2=su#Uy$~ITiGTNJQO6vNx9ld&_@ADOiXQfq5|1eR2 z*P)V0_YnE}Hv3Gq=CS^WT$`xfj<*n#(%JaELQS(d|&0hG=gOW@ns>D3J`hnNijXb!=^7vQ5^QR6~f*~JNNK5cI0OHj!8nOKu=lc0Tb@m9O-B_wctG=2^9sMk@J6nSQH?9 zh@E7alGdEO8?d91Hz>m$1? znakKnt5q+vYGNL`wiH1UH+;lmszWk@6iWOEQ2T2RpB{wbs9vQTf2M%_r<3!e?650m z(Iba_N^^3%#;y!X)AvI)QG@q1J(EyW{jEpDUf0PUC!T7mFlU`JJ4f9ViM!O}Ipq&A zIz#YYvP90W;E!Pbf_^8=BprwuM_r$^f)LUMe4b4sL|{Lq=8`24PQMbl#1mYl8$znC zU%swg?jAREm$4Xb7^A(t&K|xFt-&eF-Blp*axb$}?(YuvIYH`+qda+^`?&~ZsVc8B ze7G(it_g_!PQ}_F^mSMj;6TP3tv7ze{sn|y`MMwYU}ns*nZz?^1TW;UD{n=(fM{MW_Lcfj{bUm z*uVO^d%O5D1gS?UO3GKE+1bg(yS8%cKl$7^xMbBs`;$grl2S2n6fJR0H+@ZSXZK^Q zq7%OYnfzEq)RBbigA`lB=exY7j^*vo-I-Lzr+aDl*Y$Ae`$pz>2TJgFdz-H>3_ImJ zJ6FdBG&o1{nI=Uu7|PwN!Qtv(bt7 zRP%S{VcXbNH$%kJGC_i#+#c{q?XEd|ZhKzz=`I8o9rykS8rXW@>5}?AH~)hCeqp3cadadx8R9EP`Ba#2!s!^Y2EvT}+)Do6WCd%*;KcsqRp ziSl}#IYSv-#?2cHu3B zZ>Bda??D)UsGsLxS3!4Hk~aW6dw1wAJ)qvkrn#lCcL>!;TZ*&#{~N{(=1uy1TPjh)Sk zs*XinI7tjn)(6w@9c{RSl za3H*^j`!e?uA*)AwN!u2SAd&9Ks18jt8m(FB)<$Qqj8qU`{a*Kf9(8kX3_sH_xFGC z3}7T+WMSa^f2>iN2-uk!{?kGA-#t?~nAq6;No-aG-OzpEL261Tk$ukOXn|JZZE9B)%ul_3QNex7Fu&MstqG)Aq{t^Y(L3 zO=z-$QmEE4wgH%eNT0%{zz;r$J``3~69Rs}*q?r(v9b8M$toBj4WS>Gqh?E?9K;5Y zZ7<(KJPsj#@~wOxh-c_!A$}k^?W-Vuz<|6u4tbHRScJZrQSv8t#624LIEeOvDj-W9 zKQl-U(D0cz(7n?=*v8-j+nLvQv_5cC2*B`=NSjY7h%p|)Gy?-9ygW#L9%ASQNk}f2qDgh`@4?z_FF&PI37qdElO89KO9&vFmvHJL^HK8*4>pcfJ+?6 z;fy)YOBFze0`^r+0Ky>95rk71&<&6|@0}n{OD1#<3!s z$AQ{{48P)*Xm{Pt3H%DG&;iced%3T1`etdw(BpwYYu_31&uZx#R;qql{DK@D0=pC> zU$tL{2GfW)m)*Z^zBI0!I0oRZ9$QU70<|_ium{(NqUT|4;x$zsEVM4f#ZvR$!-fVv-e`-lY4Lzh|H_?0R;HP=kx2{)OCWv z3UqV(0RQD0?Y`pFipu=d=?m+XUyzeCh`TRR3jn!$jIj>_czp>5B5I}Q`>rX33i$jJ zc%7?l(gwHBc2MhMM}Kymqw^i-cNr_R3iM4^64O>p2io_9ups*y^wQUgu=~xv<6HW% zWByh7`#bT^_f~vCWcTMa$A+HYH!-}U-~Zz5oq|M(+AhtiI^|QgZQHhO+qP{Rr)=A{ zZQHgr^))7XV*csqn465qn~Z(2-pJg!*ILh-=O_QB!U~8pCm)Du9MDiRg1B1U zoU{!pp6;KBt#YW(&u7Mf&ZA>pe7JiRhti$MPh&wF;inrOq+PwBC)%gGzYu@;rl;{> zKR1qcGz0)>cdMkT@UMH;pm&e_3FTVI{Wj9Q0a(CIKXoHP@BaXH;`Dg=O8EfPoY+3- z{vO?AX4!tcPQ`BEd^h`2;sDu)`rVa~!s&(Mb)4s>;3n5I*=$+{Ca8Uk@j|_|fjvyx z%WFdxpy(PpGt8SRNg$Q*0wGUbZC6aNe~oITaXo8P>6bpieNIp1wwh1qJ$dXObH1mt z)i7!lL*#=tS_KNRd)x_}&@f52gYUa=nOknqV5<<^h%RL*+S|b1ppr*${k4&|wXC6% zP$e!wUf9uI7Gc(SI7cxP-%Qy&q@d66a197p}j;;$5x^a4RdRag8}7+zJK% zF|7u)1f#+yLjVca(QxO_g#2p5>aSo8uI4N&)KQTzk{xwktVeGmzw^vF9Av##{HH^I zfVN%~DtK_~N*1o+sK9!k2i{ZY2$&bcH&@82n!B_=O=zcVpZbYnH92J%2a=9A@hvvK2YTG$xm*e?mEbgUInF6z z^A}|$Fj{6rytc8Y;<9i}Ysl8TYHj5o(3QIneO1{UXeVg=I`55mf6J0)qP+(>j~c~% z6jJ0!xNKO7+IHmgF>_67Ok~Kuaq-R&Horpfm)Z^wg1v(<{7&M-s+!goU8yEEHc73z zhPNGS>$)Ra@?*Yrt0UgH(TQk;8DiOWnN?b@^iVsmx}nK-FPSp#QAUA!GI-($RbBw3 zTe&m{Yzys(wc_wfKmbkzIIkO-vy-+f{!B{52_mJ0sZrP3M6$JAGG6GU`v}tl0|9gn zN`=y*E|i54moJ@_+D+56nazdvwMRX`Bcz!U&+A}*poYl2RG-a_|C~zh@+}Rb>fy{@9%BK0!nly!+{I0d`Z~u;L zc_z`EepLruGFiH%i}yM8r;GF+)+%>a1yzB+JhY)Ijaf2sHncB(*Dr0%gTD{A^SISrIA}OhbfK z5wY3eBc1-bBrKFsme7wQ(zIt7M4ID?6v<9)O0}6>xfl2%W!7AvcerLZ)8b3S!7mj^ ziY8<+c=%Q_a!|f}Qj`1}inkUB5}IOTQP*2UHtg9=OTONC6oKu51~Ju2s_-jEienk8 zv$&p|l77rMRkN%2O@?Vwxq%!%zm0D+JAi1;rF`d>nqsQ1CFN)`qGWBF1Q|ec?d&S0 z?Ti`#Ud-UK1}GpGJZ4dfgx-z^j_x#80;;S-(5~5kUcr6Y^yB(E+$h1C_-UZ#oR%T8 z@nVxceEt&7Cubi#GJsGKVJC#h8nm1M#R4>Hgu73lgIY`E4jKcMJ0D3~rR;GvhsEF& zN5ReKOFUbiU*xCPCP^qxB4BAB>>sQqPa*$fO|@2qpoTStTYgfgJ}6=+iY+T%9OCSu z#}%W}*@7KN|JRTmBP0JCle`O&gVG%8^97iZHV?K?efevnC{MBF-=B@ZB8}_Jev+wh z43D!jzkNsl-MN8%@@xMW6AyN^S9ZWPirrIWB~Q^?OH|fqZ2?t$)egn~n(A(}c=Kee z=e=T}eQ&lqgMe|AU4T3u)F|Hmm^tL-wPNAGqdpnz9jcCZ5E1b)YDmw?sCY&p1W@9y zVpj_`HpQgw-+-^YJQ|iLKr)x4rOX-h-mL536pKD_l#eKsaa_%QI_bnR)#M)(h!b}h zCY)xj0|Hcrx_fmUflD`1XuVr#7EEfManCs@Z-L-mVp2cCq_dL}nM>Jwtul{o-Liw! zWWIErby3E7hw&Q6q9Z@}9@MaXM&r<0PH=Wa~Jsv+3VJY;G!()nx z68OfvHdWgrdzAR*-19H~$%`Y@2x}eeFS%{jM{E+sr$H*6lx(uB64PC$gl7+lyt`7Z zs&WQf`KN=k#Ka{5?R+SKg7o67`;v-=)zQJ|`4JuOveqOm&adV7+6HaTITx_|TZA~? zXjrPj3YLFj#3IPqWvIF(B*K;9E9jrF?&?3LX~YN~nQJ{$`Pakflq&a0Ls{awI86Ck zL1&f4aQfEW@f?LIr$8LF7~X`HnFlrTiCz$!K)y>$KqCG!(u7_OTLGb^_nX7|=KFo^ zFXMd5`$Gvke+C9vg*=M8K>`OTH!mt8%>ie+62vj27i{8JNEO48++3+ot%Tdm( z(_zPX*b&^Rnm(#)*S9z~5DFcCw@l~UC?BDuG9m{UhtrrVU-M#I2x7dI-GdY+b6MVRvX|$ zH2fvZAuHbnWUmh2M}>&$fbh4&-~A$PSHqY#4I%oif^kdQcJ1|T4|SwIt~kuhAI6+$ zC)Cc$XO-4Vn5w{hv&m#y^Y7S%7gzHmag!)71>Z<0Qjy?jn397;?ho(K8NTzTmCtRJ`4?8e!?~f7l^u&OyUAvtlS@tagiy}jTMbsI z3|B;7#4fZt5rxoUzVSo@S9*~6>ThwK-GB(YLfJPOHS(@@sO44YZDXR~`)oc!j95O# zOav+ipi^%y@H5Vr){;K|d6h!sIcg)IIM^ujYlLe?O0?f8luH5WN`i|vRVo2Sd<6EU z>EPXxzsN2W6Px(+6Ju4tAHZsFaoC?g=c*QXR!UuoObvGT|qoAWQb>)hpQTvAj{A z!VD<{8+HEq75@`rRqw7?OW~*IRkAcw_k->h&k<#)BYKU3OQ)`2-Y=Jce0M)&Afrf1 z#e^aq202GG)ujJL^pLiArF_$IPf#(#Gp5)Xuos?)tNVc)X%y{3A~Ct8mN;nyQStkq zAvMj*Y~u-L$_E;q_jF_6tRrbG{~l*v8tl!tj~X1mZBRoG3l&>8!otzPvnV_96%XkB z3t{40QWH{phw-$}iVNXKiMF6fqE5#!qr6#0_NqM8_kQeg?E>WVc!}f{mU$UVcJeEDt-yQDjV$bIa$p*6wju=`s#?T4_oW(JA?tKFc+xV< zyHKVJVdkBCVjIKx?FY&VevMN0JdytzdbpgjT4K=AX#!Xs`B~X&v76PH%E+7#pyUq# z>sapOtGyCcdxJ*;8kTKuU6=s%#^w zuS{wZzJ0vOIIQA(w*B>X+8eL+VVleiI^{7Oc&T|4dS+AMnz?RV!5EBZ)ob*UYlsz= zuKWGt38x%uoHj;}Sf8b{r3K)|aoSY&HetZeVY=6Ryx_wr)XsKPE46M-*RDy&zlMKQ z^G8iZhujY>#7-=>6(0tp1g1?n^V4HN>90!}=}YYwj=&*EPl!%>K8BF);&5!VKBYuh zVl~XQPFKr3Hod$eMxSUsp!><7GP-2r zOVWWM^Hp8=zwy9=zS9i635@!?)j#lWOf_{Zqa}#Cf~E%9 zcSjYl7KN(LPlmY-8o3~#zMU~6%9HMOb|$RI4JJN(l`{5?pkzfYZFZXeGJ_AMdUfCy z0WTD^$y=!lbz^y|@iT0@uWB3h93~L6xyy4PfRW?#MUVZ}SFL3DEspa+q}e$n<6bL6 z=$X~XrXo?zY-(saUzrVEbrrDFp%qFL3q+Uy&=>hU$Ygeq-WeAde5xh)jUqIk8eW1U zI<;Z(J6BN|b_^#)bA0nz*TYmz{FnNWBpHJp_M96u5ap#m+Vxn82KRV(mszz(QZC3P zdE;gcxJu)^=a05Q@_ia5Xnh;kav^o7Ego6zv>wUvS$t_XnAnef?c>rl6#0s%lcQds z!`Jg{L0V$v?Ua~T-Mq+CCT9Mg_a$#>AbL~dS@tKHS)%^noQpDBf7p|d+Zw+va)TjJ zK$1QZuTAB^qM(pBy}){5din)=PY**Md|B`tTt(3~uP$`-cad~n^cLvVpI+f2zJyDW zj&?z4kSr}0p{DKoYoUk8H8xei~%-=|*F7Wy)nQ*5n_@+sav-+EOs zP^G%3hm}1=6O&7rT8vfby_8B)9pa0RDY)e&)j9|+qkl}L6mJb#9Z&N#yR>Q%dir5K zAYDz~f(Z-?tr|Y$L^`2|{?;$^$otQG@Oe0(*DV)t_rImii0K6{iygfi320WdEDm{J zvoxL%DS(mboZs{#?BzT<&Gk26Kem>Dti8iEk z^Ww)qb&$m1=QeGjfXu8u0WMT{Bv8534d;aYBT+dAOoB|LIOpi3d}Aa+&eDnD2Oi`F z=o2-wT#W`bA%2;hfNf6tf@GbIbor<_9*u43w4X8O8~qS=#TL=U;~Wp}naeZh1L5Sj zHeJW<0h1|PT%>)3yrgYOfop{I9hj*iPdSepgmm6XXW7k$+R`_vqEcL=AS)>+8=@Ta z=XTgyS-MVsxPSLkDLs2dc2$rjd37i43)b1lJM_1le({EijpSaeD4o=v2{*vX4&8jr z9BZf)(oG7|zf|8bNe^_KP2-CJ51gx?B{o@N3xv~p_d6gvBHWI+R%{9QT09O->0|6S zN8Li=(T6wC5W^TVS0oNjRLu*~^w1V@jnUu%q%|Zf7~-8=fG$-{4o$jIlF25r*f*oC zWEHlX`GPCegv9R@|a7DKsSe_FY|+CemC2%Wl!b6W@((~?&t^A^n91N@P@ zBkIVB$UCfNTcg53F=2{rdsLhXx46EH*-aX-QZF!GW$xk9waTs)y_x34L_>S$d`X6k zqHv^8zsD8xocIyNP8XIwSNw#Q!R7#Q^Yio&29gD~u&VKm4o{ZX9Zmy$@ghp>@HctLR_V;>u>X49d?21(y;^AnWM%^>=3`c=7 z!wqlNaEgYrBxxfXdK=sFX-$*Wt!9|}<9kh|Ts1h|%2y|BBO?=Dyl1}97=#XV%;{(e zEpG6V-#?DeD*tWDgOM)L>1TLSW`mLn+EqGZ^UOSpLO_$fcWK)d$| z#UpC?mjeq(nMeu2+)MWwf69NPzHVm zuIXYM^@A>uo64)9;%s3Hg9TI%F?-L9tVc$G_lTHc-04ONs z(8nt@0txJ!<=+h2l}sE>rzUqAr`U^zYSxpROdcD?M{;gO=oX(groH6LrE8+4Ew)1C zcAox8i(}jRfg`;Ltr;hXN2mKe=Nvd38Kbl5qC(PPV;ez5!R^k;kUOi;S2aC$?d7lHItaHAGdjxLU)t zf-Vc=Gm+>J4RnGC#^?I7%{e`E=zbSPa9pR;CgS*(e0XDBmar4+QEr~{@YWrjqR=QP zZL#E!UAiZ=Ov)9JvGLbfoeSVKtF4g4PS)H%9#so1d`H5bToceaMzL0wlj3U9m(M;q zY>r0g$hqB8D!u55y-BnC@BI70cUpUb(w&bC?jqRhy`@Od-SYV})7q=uZp)eM4?KZP zNr->HrxfXB)bj!NiATcpzcsY6?~L@7FNlX$FHTRS1^=$iq>;bCNa3gc? zU5DS1}WrJ7{tkX$<+-eg9}=QPScr=44PNf&1lSs_7&;GEMK zs)t_2V|8~OLLL2~IhpI^6kM-=A-c*Jv*(n4FU*C1dk6Tya}Ua-38QFhKB!Re@lA?w zdcw3>Xv|u|ZYh#@;Pjg~4aURuO^&`$#sTw)#{hv1r`_jynfb!Pfj3HtKx4&t!xjco#VG329{GeKUq*Zb_k z_gtM@vwF-%e%=lsz+NOpeMfPEW3n}dt>P3-lDF9YG7?epkX#i~*1l)Z8=P8|^4{&m za~msjVvhEubNtQVD75QUHyA-Z;K`BSQK*AXA9R2&Ld;8_8Ee*7cvRJmm|lW20-!%k z^i}&YF2Y~_^n4iK-(OK72x)-}n}ws5&m1E*2(Qs4^CO~$tj@iECf&$OK>%HB1%bZd zIkLopN2*-pWMjb9C_4=;o!o{x_$a>H#W$Bv$oj_3KQ+gFU-yl=C;jbdCoD6564`Kv z>X52Pf8@=1wyvyuirzAgd1xZ7+eh}wXT-L? zrq5RqZswL1X1AJM0d5x~T%-0Ldo(Zk|)28W~s?ka0qXR{`m&I9%#+4OYU`dqmu=O5~O*~OMvSYE3W3Prr9RPEr9p&C8U>X*W9G*YZC5A`8rmnF z#h0GyuAY0bZNCpjE?2{&8)$OQ_ygq5IFJtO*H@qbK=idH25vRM5AfLuRc7M`IH(F< zi50S?b+%wO4*yeEC={~pdS{^DT4jIJve1PSFWXdf=RBYx;{*AzonNmkU@XR1Z`K*OLaX z%f#U&Gp#+jXH2$dRIUYvs@sw;WFBCY-2-|ILvt$S-Vt*1Kyd;} ze0Sn|rZQOQKnr|jG2_&|ytM<+dy`5gS5T$BmWsN+*wmb=_7eC98IgfS;!?Em~ zB?LN^lzXI;_BY%~96`AF17T=#;&(loWY?!ZM^EofwZVMcG1@X~N2d~O2_?*Zkd>0K zH@b3Md~;El4b_8|b6v7QUVm5JMS@=g-78j4vJZ|iVG2)I37lIioz z8aGu#ZnO0AyfOEWnRlVpp|G~{KJEZuvpYTBVM!15X%)PG@J_&?+X{#q9pe^d3e|Gh_; z0gsvOH(dWe?*3Qn0t*|{e_>s?d8Ww%3h=`N7lb6BOA2yw6$=ZZgZcwS|A$c!LQGPE z0z2Q&sl379Pd_6fKLes92gwPfBy%lA07cfI1Y0WBX!C&!05uI0508fCeb<$PZyF-NFMyxU4+Y#9%)UPp9F!gCaZis7_~7Acn`D=^b-Ru7uq4G&;vQr}2p&M%0N}gDKLBh~@Jm>=2iRS}-J2}{;8);p?Q7fT8UeZ0 z8zVS0C|3v2KCV1EO+V;Gc%WJN!YCA7xO-2?;t&kk&**;1Gd?&vRM$2tPmimFuw|(*_v2 zR?f+b8vQ@P>c7T?{`IBw9XL>D``}XY?_fPGqW^AOfX_`UjZ32g*az}+^SgTWO=i7y z3i*VA{B$rRxxI4;;rwGoC&=fO%K|rv8;*)_2nv`BR}F_-^Mn0bB20h>P#Y2;4?r14 zjU;lPbB@M3cpMw8&I5D~NC#rjN(un*{r>eag(XO9$u>Fnz2M`efAVmM`Tc9fV8}M!Y=QT%*ISm>s@vcOBlKZQ|xTObb z_q_t<_eWNw`2c-mFhJ|~fCFPLI9!xF_@}Sqm+SaX^nOqIXOG(V4m5cO2gf&z<5$cN zu6`Wi;@kr*z<`D-k_e!NT@;Mo541PXTY(0381v%NSxK=||) zf?qlZw3q>N3%nn40sec-Jwc>o_iz9LczoGJX-kGw@P4TPB6-Vju{(>Pw-0^0WKxg- zj1928pfPxFO(yX406mN*tacZ=J_){ypdAEoX#>8BK#sRPmphQ5d|Y^X31<*&ukvx; z!g2@V=~#iBH|udk-#YW*b$B;&&x{00sqro>9_f92#_lzGX*6yi^QNd$3 zI;RrH6ta7SIwnWZnkE%#;TMFLb-(xtk!6Soj><|>h*V&u zD}1^|f`hoD6L|?k8Z9Dz2lcwTDZ{lk{#B)|bE*ctAph!S@k#|8{~0;)A~#{|3?3fTQ5) z+Z{BCx>bZ(fDPYTl53q{eha5x9#Snx{!HHmyI02N?eJ_ZF9*&NaVgrjXx*B8yqS_l_ z70Q4`mx_2lE$4>vMWhLjk_t3Hx$mUST8@rlBxGJR z*IS$*pMABXI@FaVl)&TE%-+QhFEwPp>fl|8RZjJ~ai9$q_wq~!27r6W}-iE#piors$LU0!@{|B>b{!!-$aGFpw9No~y zCPaE@Bjtk1^U97=+EF1d2OuKieT{r1uyVgHK8p;&UBzV#-emXDp27Cd^#ZPO&*eg9 z$NIcxg{jp%YMo|L+Y$6>DYtZ7ZFDM3@zw?2 zVunoB*D3qDi#y^nTs6Tqs!HRu-ek%b;UJX;iGN#3A)7FEWL?(jZt$M>!cj74J$Sb%i2B-TwH*Lb%3E-Wu>wKJ3!~`k#U0G+u-Z-a6VAHf zHfuhS`_?IZRw&n(ardV|auIi*g7APY=o@4s{MRlbQ=?796d8@fJ~g>B)y>$|Yyr^Z z@^-1=mQ2NiKkgkIh;9BcLM|4sp8+5CAt=a8hMBbDwBAWV883RS%XNlzCka65M31|i zVBD2ztOrs1Ei+o$8ElE8#Qb$mUI!3+sW`|yoO8_9D1YTYPR>9NczLNk5@P2MD7_CA z&M7)|>^!X9mM0tFGf@`ihw=B(FWrO(Rkp0h85SZGO6Fmgv6;;_?+-M}S7-Fbj#IT4 z&Tr^eu8)rd*>(kP)FcyoGF?lmf({ksxaXz{uo75c#?b_(6yj1&WB~)ER1(x{g`;gO zg`j=U;s2Dba)~^miag|jfb!A~Cd{gHwdl^vwisS*DYc9VWuI?Ew7G0BuHCFpPf9FK1UEMByCvK^;&NZ3?kUcj_+qKwd#bnTDNRbhNUtZd)89)z2M>9sGnGUns)8}MDcPGbBrjGcudT8|}c|mdR zXA*(Yqz^VRC=D*C`2%J&pIH@CDp?{#f3RRl;*Ez-^scsw2g4J7%0+;(T5IiZJaYM0 zxY2m|i2o&sa6d(V(}Uia=>%a5K7cqoZHA!~1!Lc)0+p1BBR`=}00#*OCJ~Ai}eDe8vwD8p)q!CY%+%Zv;bXAV! zPW&|))^X9>epsD3P$28egMwC=H<5*)9y@j>Fst= zappgyq;B(3ZjXehGhYR}gE6DtBh(K%Cz!lO@`M-rvBYjvZXDNxMhFsAo_S1#kk!K~ zgc4yN?9|RvrbNhQ$gC~E69XAkR<-ICFR68530&(oM5cFq53j05UdZ{!M=5Wr)LIR4 zDIA(uFYw_aDo6-m84>GTjYjcciwhGvcfMVe`KS zrelxo{?Evs!xU@P~djH19%k<%wT7PI5M-0eSC zN|HevrW*-d#gC)4OWSI8D8C^6C1IiBMc$Buv){8cL$F&zwmEPfR<$i=fq$(|xWQq- zsIjJt^r(f4jBTY06HahSC1YEc4mY_TkYv3qW`4kgar{$-7zUtzP>Sc}Ij{%U6ki!6 zM_E0vzTSxTH830?Q{?>T74jd+QfiCK9G-H0^VOAk3d6y|2y4yCjy;l*r(+mxq0Ui~ zDnjZ3H0EJ((CLxVSy{wJGl~I@2K!Tid{WTBTVVeB<-d-=IZ_>;Vn?VomVVvf|aUy z{JVU?z8*To*`$yzN6rY(o&zNzMiNtWwe)r{XvM1QuDihPgxxeM2~Djq8Bdk$>|@z^ zX&0%u@{nita~`OmYWatGU~g>mJ7N$fxk zS351W(>7n8Ob=ymDC^3K_v}<04&c%!5mF3*wsu6SOucsTE){Z*?zwX+QFiiKu!3t~ z$tAgb_QEYmq3q`NkbqyL(O*Gv?2ItNPh%hKUJvUEvHUBOZBYz4sZH!E=cE;NapP7Cw7o;^(Ho1ijwf$Z+@raCyaJf@0TUa*>vn^33r$zo?h?WR--Wpp)aQOF=<*0wB`C=yI6G+ zw!!wLfmP2f@Q9k>u$?L$$pdT5tFzW0_#88FP)UB`%!q((S^TJNuD2&%1 z9~}`(qXqPA8-a})j+a)OQqQuNE><^(cv2V9!_Ke2go>~T={ z*SSFnWg#@-ELhUK#L2s&1e*A0Gb&@rsCo7C35jAd$F{Ce=vlT3x_t4hUT#AcKxF)D zN$wg3!UxbGZ!;9l%#C2{)C=*>GjnidLCW!p@CEAQIlrA1d!}^J6@kNY zeStN`KIc7t65XOXP6jKi_2=aegAfzhYC~w*^m~WyFUVkz#m8VIcG9wofWX+WQB5qR zPHqSOV?irUNRRL^pe<9)T3<0WqeWjt3H=Z2=1go!GU2%o79IMmrpmAiktIu^+tF!Q znE9+9_9L>}+c$w+6EUCuE9+DXSA!PY-x(}k=KYv#RX8kq z|2BA*9EjC2mEq}#9K7D3+qET@jPs`KQ#kLX$KF|pZ(=Tv))RAMYYxYaYZ{55nQvZ6 zcM}zSaET91-{RcNM^=ZFj!T(t4equZdEsaD{Y4Sp0vELQ!iDzzKt#s@?Nkz4N5e7r zW?yc%N>Z1%-D)xW*Qbh38gF!D32;hZ#fVbRvQ7EW%On}=^<}+<-VRo!h6gWhxPv;p zWcepYK4_We1}I!zR(K_pf^9Q|PJ9^D39yS&vhSDBpk+Me99h#YdHzkdtuNr*Nysg? zur7o@4^hnd>6U$0^FQdMZrEsCD0{mYFmU!bI?K~6&yh|((jFGyBO#Kd zk(m=klsC3MXzefn;+c{;A-22+sfn~-TAxswqbarXdKg`4lVEClaKbVX2V6$K z{Gtvw$MV7gtbTi+&3Fu+gnE}){lmLJ8t9jxr<{42Mj64}x>)@1u;3CMS@4Q0JJ`G?vqVXQmeL%tVjnH9Sl zR0ds0x1|JL4CrNNjOQ1j9CQ<~-d{;>+EMY${hT`O~8TG|ta$9EJDZOcD@)IOy#VY5tvB}z!i*N+BPVnV7Bakm5?yGD%>1APH0vUxNYg$d800t zBO!pP?Tc-8iv40~cyfFTU72EW&9cUo@A60Zhqy#KGnD&m2szeyL@LkQvN_vELi+db z_YiY`*9ul*fpL$LrT$>TY+F-TP4LV=`tshEt}>ldPh6XV{@hCoB7&$)tV*QCD$?yp ztLmA#<+xc2p4LPAWzLl+AYz&Ex^?j$@&+)rPHx{}unS)x*7@pxjMPq*<3#=;Dzao4 zESLWg1FR4>QHo_H!y-X4yHLo<#5a(4p*1RT>6pVAqmobdL1NKlDejS|zBY$aM!|)x zCGY6g{}-s_q9T(Lw(^@u{;Q@d!30fSHi%4>wJ9oQiyiftzBHkRoUZX15~=l{+z?LvWUsPy9W9GH(9);i)2T@ z4w4!;Uw5OR5^C1NoDxTSmKm7Rn4Klw7S4{MEbUBxQR_WP1mWWL#CEI3> zCuuIXFuRFkJh<$3akm$bhj};{LHgFu7|XGcU1IY3v}%zzQI(;C^iK+ZD3#sNLz$B_D>lzISkFFpM@)o|Eg!+IOF^r6(p24FldbulXHT`Z5q^*OJM0S@j* z((h>Jl8`Y*Rh|UoAm4iUQHs`+%O}?hnLMep-s#(?p(e zuiLgfjtl@NMvr3j#XB*2WND?aR`}4phEf+aJ63*{Y^Ozlo1?)Cpk0N0K5dzt-`UZ0 z^o&VKclBbl4C?PtntL;Wa6NX3srNY3O2z0$y*V4{fnqW$uf!0)+5LRsQ{)6pR+%#E zzG+68bg&<~1yMTez>cR^Ujy4wo(_Z;qf(s9aBMLIqh7zrZuKD1(KG$vwsG)Z{ujq( z|EYogKLKsB{Ng|V*IH+5C28AzI=HSARX5n=^*=+nME;QYYY_2lR+`BcO{!v2tO(+A z;Gy3iPnd|6D%^0=**lY+cYhsUE}S{%lv`R5pGMa*xLs4b8xt>Iu93F3jwQSjKjd5d19&dKx4yHIq!s_Nuj!s2 z$h9EC+=jc zmpQB@60{cuLuM#hclGm!haxpAjc?!Cm{wm)-k_b8bOjf ztRqcgJFKGEXCEj*AKf+vs3klkFc#yhaZQKLnf^7M=m_u0cl4Vo=`YFqn+G8KO}`07 zXQHJXdtcR4OhsB^dQYuaG&cb(e7}-KNis9BvQ(wnl;iBc4v8|D8UL9Y7oe5Ri#~2k z_|JKU*CORx$(aCM4j7*^qSvB@-PGki+AOf1C@7zF;af^X)}GUed|HSftINENc`{n> zn`a1WN)1FcIA=@SkITiZIALCmpo8O~4N3Sfu!4`k>HqftFwp%U4*>K3egJ~_g5xfO z#ITyHB%0PKiHb49y~u(Df4<(MAyg`G!boOpO}1Zy+diJ!GfwNdSHnFHFQ>9MBz0HC z-#vGPU0u~RwJbKEW|mW$v1DgtFPm&5v#?ja+ozhPnYq~Ro5^KT=VK~!#D{&9q;qp& zJA7MwNrkmlC&u;^vO>z!?d*0c_72&2u^B__XweFic$;}utse#l2~RcwGm51)Fc>on z&XmD2V#Z^X6`xhm7_TEKi@?BE>54TR-YoD6go9BN2K-pg3ay{l0-s1o3 zek{7GI1b$Ml|PnoNv-BoFV*AHs8KhMtca}BbpmeY;;$B zcDz>2hTi^F-FsoL6@R*rw8^q#iQ4S9dijUW->n0J-h}`VV&Tb258|Z#`EUCFQwy96 zA;$iz|MXw|Z~jOB_W#j8f`!8WxBeg4ohJLlxC~)JL{Ph+2Fxdoh0vzS0Deb-znxy6 ztz;Td9c?;SWPHG`3^>$MzZzMn^7zB_p%t@Z7b7yb3x)_ zzi+soTO0+gE~zs@{yLt4pQnqCJ7Ascp-Vo^l})(qmiekAs_=#W;u_pd|D=G>Fwz$5 zKNC&}d>iBe0Rj#2lmNM&FzINg3bC|@emk@zv-{7JyVaCBKvx5_rxDWUO#N1Jq>q*x z_P@=5^R1+5A1z^^t_k|5#LyJ&d;O_oKQE@{X)|MlITcjI*j^b z0W%woc4yb&obS~}z~_IV|NkHb{^twe|Hclm|EB=r|A`i0_#dda|38>H_WvF0`M*8* zf3DzvQ#OIez|7A6{}{m`4N1p?*8i}cZ^f20)H(re7}$xDx5}#)Rg4cLU>ZDUH5#il zG#!ZCi%opIyFvLPa&uL!NKq9@GNP|VURGe^R9}#5d|LO<-cK?rY!gs&Jm$5r+HMZl<$4`jO3 zq-we_=|W0jkhGOiJxGY=!-hxVz(Gt$)dm*1>63$*XT%)ahV%J5A0&|iO=Q+EAqog% z=)j3GtfX0RL9dvy zH}crhUKx9`Cr_saqQIC##&EAg%22R>h0rMmi2l|0gGm{{>Fm-exu-5$> z+s`bui+pBhS?gbamRa(TB2K2spxH4cBXr1wL0MwyB~ljg?40H6BcZw?mHBJ-N%rdG z$|4WJI8wC2FMUl5xkei1ueUnMujMnbc)M`eo#@tP~DF-sP*#YJp%z8AR{S$ z$!{j~G$2%KosssRV!~O1Q93K9P&+1#XKx<7!0@WSBri%*?&y;sQ3tT*45H6rM9@k4 z?VS5PnS7~QXLB-rguQ2Dm>dFgG#3I1H!WMS;xkf&__4Ml!VsuZYW`~av|GxOTpB^_RDK;Lwi_F{u?aK?%fl>~_trpZ}} z)aoRmso~>mlzJyQUvgB(eF1G2UKEh=KsY2_&pTyNNZ*>;NPWVjzCC8$_QOVV;I=u~ zPzbvvrsnebF>m(PplddYp)>CqQt|*BKq-oKIqXgqgVdSPzq4!b&45J9@uSNGsIva5 z30HG25Rxca$>d*HY^f+YNwxN1j7&YU_+s|d_Od>SCmk1)TfSPbsv{Oc9qiPqB5D;2 z_j~R5lEJUp8?;+41F3bG<7j9M?iK819{pBw_?@dL)28n1U2~t0k_RNAjv(qn+eHIX zW(elT1T$X(M9W5ge)Ov~Ysu?`##M`791f$XK*|xok2@j`TPKMxBu?BIiTw|%q~H}i zI#QzuX7VtG^5jVLiu}p5Zzx9(;p)%Eb9Yc?yFhx8x)1$!Dnm9pBO-M4Fn1RVCj3` zW>mqmi|-&HnvK859hjvkBey$Kh1<%sWBkBPK?c4bccXe)mvl`zMO#BME#fY8Q&Dv= zoQyLUTI1dUj~u{{m{}J$5AC);Twq$|34(oJ0;parkHe59?QCdIcVyk1L+gnnkesy` zalJrrWOccERu%Mq+X9x>Z&8BzdAr$5z^j*lrTGvx0xbX@W zVVfW(6()TjWxq(#AbvfK4BE^EW3Pilq@1l%isj=xTRkakZ`roVjuWlq{&&I_uf z9?lKW0P5N~X|uVrCTU_(t~idZ+3!cphC1aePXuzXI>~;JCd|gblAqAi`z1p`iTY4Y zmka-g@hc;Y+a(QO$}rPF#8>}Z&hVx6G1Q^1)v^NJo)U0?0AV^xktJfj46XWG$$VXu zqh`k{=Nu{e5wcjxz%^L*7b-Y}wxTfM$-3?mDre@?$q;EXLP9_69Efq(FKk{477Le9 z8c{u*=*%D?=lEcz!b`6b2Rub=c9lech!*N+_$A@GRkZ=g315vXDdY<8aLjppUR|Xt zDXG`kb!qeE>`*=J%Nx)2BlGu5qMigNJNc4(olm?RRo>J&ky4;`ZI5nA3ccKo+ft@s zKdzt8V`jUYHWJsN$9(OFX|4N+?c2sOL+8epKnK1m<7wUbxx7Rd#ut~~5?)5C&U}H# z^KKIS>yn{NRz88r;n8y0)AgBzQ{4;_#P1LdMQr+wFe7F?o545r$EM3uTFdL5?tE^S zB=P7r9wyYsUT2T{2VL0uB!~_>j-psNiTwh}GoytY+PSlRkQY(Tqf94Gy`BX$bCgX6 z?kWB619_Y^`ZPP$7^o~Ki<5Q_lPw#)#l)myWOBB zi)axKN(Lt_VoG~=9A&Vo-e2@-&FS5KjGW9KHJD&jh?DrtcF+3;x0x_fa3tBTj>=?h zQ4spz5PsOz+MnN2w-}CTk+oJh^2-{!Z_-koC z7w1jg2A=Cq@?E(75;xprN>XV3iK|;WZs?52k~tlM&bX25cM7iU7-u9T!zw3fhAMw| zk8#EVn_d{Qk&ru>r`1=jnBS5xMs{2wImf9zRip#P^xW%wIt_P=T0|BH%c28MqSrXoJwf9%y_ z{GWC#GqN+Y{hRpR!kS1pXujjs>(gRSMvZzQQsE^|UahN0NXjldtnC1=9!yuL!u_q7 z@$?>N>&gZo2?E)5To>;6%U{1?ZtIkdzOj|c?C$Cx70c~y@8?)H&|+D~?X7JzX$XU6 zT4u%&=;f{HsJ0VN15ZI4^}17Pt}Dm{PHk;9_WI+`K3i6!Pr{TM+nX~Rx9w$Y8z!ju z?QKsMcN~-4x>P!ao(*uyqN*$T_{fpm9OS zQsinlynC(SZ{bnF_ zq%q=U!Fo3!NIXkn;zi(%E6 zlO*7h6y^YRuXWfO7PIXDJOp0F0!PjcW?ORT($N`^_VV7SOf^sj_0!mz&h$V#&hXfG zN5Dt3P=f2k!+^G{4+N#DrS0_rudpAOIP>U83*H0&q`0`^TX!A;pqobg1eM2DpU7cYiRBB_@pTCwLs;P(^j ztY9;c56(5;vMPV0fEX>&V2KDBF*Q#UP9tq^$@%U)Gl{m_&IGt&7BnpgxGh}_`>EdK-$v| z#UAkgbELNtHg+R`lhiHnOgzqEMd`!$B)z+GF$8ow68qVKfViupMMLx|ge>i;InykY zeb7G<6_-7KTqi`i^c8i5@qRbz4KNL<2aW{pm;Mz=p%28 z!Z|p7bFF$o8g%y6Z>CtW)=6Y#%1ZHfx1R6v86`wOVq?_(1+l#J=QqEj3A-)^oU6QY?wBP<2IEQHhv_qvzvJoOUox)$OJ;EIk0Pr(6J`f z!%0~nk5E+#Auk+A|Dbg`nOHkgkQ0!(?YBLSB043Q0nb<)r!pFw1({(2EP8oWtcuNOA70VG2Cm%<=x8U@V+@16?{-Curl(gQ_2{R zvKw=}TaMf(N*>V!Y7iJZ4ZDJna(ZgyzVp4!Uz`5aQ%iq;Ybt-EC9zH2Uzp zrghouT=mZI=*U5UTS;bKyt}r<#=A+v`Q$H#IP1A~ADn^$=QE1H(rA}<65tjvlDT0K zWZF=vh$@7Tp!A%GsAh3PC{EPb`3i;%1z`@)Mc*&p&ePQS_>6_)`))9uv&2KQ8jsQm zC!?z7L*?owU63zzV7`zCo+~vD0?`3&SH#}3PDMI0Qw=OEp)y4#e)J5eu?Vp0#Dr34 zM{&8Y0QG_EbUY?$5_$o+FG9L)IlH%Du;_7>d$mW{0eS0*q|#zoMrvO27~db=A<8iq z>IaJk+9T8BXq1Q8H2Uqzy7hl~RR+)>Rn;v62MG<_mo#=CRE%E-{MK1K#H@D>6_q`t zz)+K}KO=3o03jN9#Mpavb?t7f)*!K#f!_6zI$J3G7rUu^u?S(ghIm^=41$$O@YkVy z2UhWX0R!3^)TkaEUUQ~=kC1>~@LF{w;6U1kr}~Tq7Vh$f%qwxyCq0uMAgnkb@8S(P zvO1cx$Or(-OblI;%4`f;oz{8&cfYJ9YUg?t`#d=~Z znwyI?-~Qsj3wut5ijr~24Y^N7j&!NR$HN4pQ;|A(#)Dq&-DLrj9y&wZVTs_`06+7$ zAin@`u7t%vGYr0jMIuUIcT{2+VJuhbvJo`B?toulfZv<=`bOpIyI)tmACBiA^?f*R zvT@9$>|K<+AcdgGfn{N@vegbV1u;==G zFV2+%KiCnTagY}i*hFp)D%K9maOOdYHS1_+_l-bK2~rC+gStkh-z7TPrrST*>(b;U zNv&3FwioSFbwqg~4mCJ?d4i{8dIO(ky9Vsij3jU(IYO$v-WwR7zLRfkcD6NE zdL`>lKfy%(UL1j9LFHsorZ|XDzh}6JLGJJ3>^Ae-598vf#I^d$peg(6*Bam;+Z=BF zso7Cp#&OT887eiS_{cU}RCJ4e9{&&t6jz(b-;<9Qg5D_@uI-3~m4XF*e>UhI^LI5; zvZuB0iFp>0wZwCfSCj&1N2yazuMZEtX^g;nuZ`a+lU2e{C&Jkrh6rPBrc z+1P5L$9iHOcw)UF<2Z9u(50a922X)?oDIB1G|vsa8``=OBjUC`u(&7@;&L3g3fr`y z3ftyws45E>b}D;inzW8T(C+J7e0vvlCMyF64ndDof-ftO-0JN1H$$ov_dE}pb2>0h zD0^&N7JR`qJq~*^>}5P;L2fFnzQf>b?XAn8`op*26wW9)V-{VX>;j%m&;*sSx@Zgs}ExqD!Az-f8F93}r1Suk0Q6rNg| zlO>^=zrI?Payf~Hd^^SbDH-=4l*J=ifkfWcxPnUGb(d&kw{o<|*~J*!mb;amv%sA* zk0bc@+uB9Eko5ZJ)CH0ok0sK_@{8BK>tmwr=%-Y(7WxLkR++SC*Ds@+_EVp!mxI7Y zfMD=o+UGA$#RkDfIQs1nZb9x0(OsqJ&Et}hM zx@i|zwL6toYHVWv8Ju!E9dxqKz1^ybakdj5Okz zO;Xg3jUry1zpotBc|Fo(#G(%Ab5IzF_C(YmXjk2@UlurEzBPQ-%N09KdtW=}Q(ZlV z+QYy|HLXCddpL)q6|V}Pp^%%=E*%gjBp=D?%ir~5K?-{tSbbEpAW)3CdVtz(2^jxD z^#8|tT?U4KTvo(qVEAWoE(60qKYTMV{1XOr@acqXZJdm4oE-5P|1Y|A85sUmxBH(V z;D1`K%gFk7W%0jHVXw5b95;r4d9T#;60x(e{hcG3zR$`YG^Vqs7iX9-y5O22)w36i z2jgFn_jH@m;oEEYC6S1jAD|-xq3!srJY?%snm^MPuBo9je}7-y??u_@27CDqec)5Id1Nb}s%5=bD@ zx(gv?O1IU$=_&TZ7@X5zyx4FR!Z_1R^bP#;Jml}AcDN+s2; zeID;W$uVo~?ydYHDX3i&<9j4UwyQ{N9{={fs}WXlL>EK}F#+9^6h=<8V5q>Xmi%QJ zo>yS3#meF~x1=Mmd#36fq3UdLm?#BkuUZgx5|sKw3{xBA@Dv30nO6B;P>Tc1KJ$~r z>L+zoua5HMmXAzdCQjhwHxk=Cky7>srm1KH!QRvcFW>5*yB8QK_8|Pw?Aw%|T21&| zu6~diOok%9HN#@JD5kAx$0rRUC6xk$&aVROS?WtUWCb*Xd<N9(kok)-Q5b;eBQeZSW-TS1*e(1m%t45~uJ5^$UBD{`Jvua1%| zN@UeOqsDdu4ulfa1?Q75)bV016|?`sy4CG2)P|!-;af=SE*0tB>DKX zK~i(9Z+0Gvwh64<5AAP<pg_=Z1LzDWW>jNi}#Z_RXRpEt-Y+u(XsIC7;my0vVUaaVx~tan7r zKE5j=FPrcnvy`lt{J7E-bj3qNTeiNg+k-xNo0a7&S0d%oc?id z86wC)e4iL}S;BC^BIyxmA@TW>Ugs&2Og?x(Hx#H*uCk4BYe4QMnha%<$M~R%Ytdtl zjaVUZeB41xO{M11eTc&2pTxK~da);br6+=hz>wv}=WI~~1z#k>W*A|}f-*VKV@pAt zn_1}?&V@QB{?+EAB@?ag(zkTG;3x7=>beH*#&@=vnVIVz#I5>byIj2>xw^h9AgEK& zo>X;sa{j4P7ysn?z~reQjtHRL)$j2x*i@Sf_1?8F7L5fU@C50sdO&1MpA^_h>nP_a zGa0v}CHj3feAHqUK^*M8dDKc2uSOtEh*micrdKSp@u^y-zITdcK@7;F)qyOHiG4WG zMMsW?K%kgkjaliG*=X;7Hu9SLZ58LX*Yp3dMF_GYvyW{+`70Wm8rL$lN@-{syTvVy z?uzsa^XE%nzB^@AADWE}&TDuqI_y}U%k&fLD>Tw>#oEKyrn#c=MXRGQV9L!lAVw*<2My9P#E&-2*5Glxb+;+oiPgWN=~A} z;%#SKXOOWilu}{?swqE3y#iOgBU^U(tN6}QZD#gAtA3SB9OW=>ZIy&ErF@Ok zePH2u04Sv2U#)n9b-grR6(C@y#~L67lOjBX`i%;pK}qxWtB#Y=V7G%3eVt(qcz9A| zpJ7*silr8AMD`P=2fM>SATGaOZJ-1>SftzY9P z^GKKxR8|OEC_B$U#1mhd*=gtXz3@n~)ghCpp}gj@?r_ug>FIN^y9{EFPs zC$aZv(H5`Ob&_=wExf8DE;_YJWrL^oLWO6lBvTR|yvk8Kf_A0pp96QjvwpL02?u^| zvC-ntn{+X5t*hiLtXPxrVvdaM{&eSi7-9U>b516OH#;owQO%tU6NBw+GmwDYYHLU> zpoghr&4_TG1Sz%;#-yNsd)8@lG?fZcaCh!nE1urzSinkI!~>!0`S@@h36CpKTtSB9 zuZrrfDS0z#@KJ-M2=S<(f`vrdabx))Ic?~#*prdZ&f#Q1I2gJuFL?XoT7&w=cZ~qp z_u$ZB2d=o;5_}dr;m}lSWBR~;TvMZ)&HVg_E2d#>9~9QK4KJB)e8cYXc=}|JaI-7j zdgr6Z)!?>@F8~>C-%6EM115HF#H8J?zF?`=tMdg|@cS|Sp`z(e<0&Jum z%2CZxO%8&Mo0diRvSrT)0jcJzjC}0DPT9O?J@{jZB}ci;k#jOY5bxu%CVbEyuLtgv zX`1%|ya@lz`u5QyKB;=k{cgZr?n`apQq5C<1@Tw`whgIM?p4X;kPo{2PfDE4-p>E#EEvwobe z6zdxn|C=ZuuN6O=ltdcB10fWS{)oSJzExkF9iwX9KE5q~c@aynam~Qq#cycwin9M; zC}jNa)gk|{pM-(&Upo6=BAVg9{`OaQGyT(5@^3o(UuKd2KSmP<#{Z+v{>RDx6Q>Ci z!`~j0f7jU>wpe3`J|{J4Vo-NcAG}e-qy9QK*FtF9s0hTPf~lao}1!Oe{+(OU_4Sp` zZKuWXL{W4}QLEBIe%T9dK$ujVEuCJ`6=n1_;8D)oS(eMi+(W7V(ibTgd3rdNiQ~zR zH{Y@w^Fy^IHt?A@M~Eg1ny+J_*F%Yl3jixOkQPH_>jOg@tPOD>-i0M-{#!v_b+3HU zOUhDa#-6G&wb!ISv(YPM%1ANcpF(I!TmahVA8Mjd0IXO+q_~hUyLMkL3Kb}*RL--6 z2UWfoHqv$-p~*mh4^VXqP=(u!maf?p56jY7US^%P1m2nIPi2o1eK#0CUOmB4>Rxc+ zAq&IJE{ic>Y-=0_&<66VjGtIk%iPJJc^Ngn=nLJ6FDfBPVr~E%pXg*so->45V5xbN zaa?OzZ&3XPVu1tCE-4}87wh*};X*|vtc^O0L2eo1pd@#D=Fpvi?qu3L$5qD$nob}P z;JVz1sJcm)2q@J+Nno*J+O%ub*_IV5;E5`FF=f%6p2NV@{m53lGVx?mKggAd4oW~l z7R`{oSA6tV6$RqyDA!W4wE6JD#+xI-l4FIw=itqu0Xm@=IbZ&mX|jdM5DOk&4?-Y4f?Tg%+`jr24*o%*|A2Z*sa5g?aJt`Lg`4YW~dvd z()x88?zA-eW$_mOw|k5xgTQdbn_<0q9~bQgmhVaSibEi#AEpPln9?pX+s}He{hmHQ zP8+TsovEeomT17x`+BU&!;{kzSTmEaZHG-Nx=-s}!R#F;hQq-P7f%-yG5Yt&6%@tL zt6_H*aB@$Y?<%Lv=hDXof1*S1#4a#PeKy!bipdSaDoT8WJzeTs|o5Ge7`as}nb2yNXW4nWLlN=S`4 zagS0-EWgfk{^a99c1!V)R{rCrU=s^WawFwSMluL7Xif25a8=7Nq`>h4UU~jj03(3S z$CzmqgkMw;>m-`NKqhklyA(hK0G#^C@TjjN7vmgbqrXH0j5n`Bprrs#SrRN~v5?q$ z1*5mwJlq}czUdYqsnwn9L=|^;@))+_v}RQ(5u6mF*>@deNbny$Z4R*P4(c(xYD8`O z7enkKW1~=$+*5Dlpi~z%%h>HZx!v!#ne9r1e2VgSrBL(<_rYs%VIvNDoVdI0Jsvr0 zMoWv4yu$nM8R0<1%@2>b>GU@FNg(|ppsXi4uJ*HCL5vs9XSAsh3oh~aa{k7l^!t~C zku}u`e4M23bq}W9In_S~UU6=ojn7Y=uN&{4c{N7|Uwd?DWC>8}4i_whto(Q&TVNd0 zxcOY9JJ0nhL2skt7rqv@h|{z_ni z)A8;LtpY~v=B`sjpW0emrn9k$F< z049ga3br^c+o<;@EA7$`=e9$P(B4P~hnxkk_6E#9fc9N@2n7UaRyVjsx`6v0qHKpK zT3Ms&HSs~Dq}~>F4UdI>GG`S_3VL4Cr&u^>t<7vDPppk%!xa!-dx6Gu2w^6ymt3CM z1esTe$g{mEbLAG9ty@9)DoE`uHB2?gCp>pzGj>rk6R)!q^guvZiWnVelBIAjC5o=h zJEp*~xT`GsO_PsCB~4O{NXlHZqXSNl4iK#OifU+A=;h!SObM**c1!W=H_=@G`g=wA zk7Gl>6{E;jBTRJfvwzjDs#smV1PRi(Tyd8rV8H_MD<4 zetdllcFOX4_>_6Ux8o-Ie#5=-iB;H|Vc2jG%K#?wU>>I4T^+L>_esfV=d6b7t*jSb&vEgfx zYd*QeK~M2-;*(qJ3*?$}mOk`PJWxn{!42*9u7t>YDFV!*dahADcT$~*dy5`qQW&a# zXkAq8yt=7~UuOZ9H^A94*u)mQ9Vm8k$L*uuqO}LS5nR+KDtZ}#BF;No523)*qu)8y zU$}X78O|O4&5mAk+|VF|UbB*l{+q)m1hX5>A)rzWe|-eUN~K@}{|0En zlTVg1;9J`^K;$gTf9!ItC+~8@bdl`Pz=ghPBAbl(;$-Md_5D!)>3f?|XfPl7~ zt3fS&&Y&IsYfao4B8a5AD5gEZeAH+3Ft?KUamHB^olWoq&NRB>Z`bRCw;r-Q=n;Zr zZ{s5NBg-0p_tX>v%_(FaFd-D7Xo3x0c9Itj`MXFq4fry^=F#@StC}f6mZW=x<^LzIPGh2`DZjie3Yp*u}_rzT+(zuWB0eBnV{M9d5iM$`!ZnK>O3&PB7pd zjyaT)-R!N>wGK)wg}GC>x@|6|4i*~rKf|>cA!PPDWc-$4Krn|;1)CKIc=8v?YbW?Z zhI2>Xz60vSF!sEcyY4cSZsp1wG>6l|bCTX2n>oVf`0RDPm)E_lYn^7(H8bG7gmE?p ze)t}y3-`#G5`&<7@rgAmnd~Bn5HR}mBEEUDg=?EG6}X0--w^WT#i(EvniYKr+~ThP;?{QY2xTDlS4ZFrHYPKU+v%c$e>7H2t0|6RT~vQr zYmyorAw3>26hCr7PiIL&G>6$rtgT-t5*orJN2eNYuG6DwHo)0@n-dGOwrDNHM%s{T z^}Kzp`}z_3(5wEcqCmt?uQgL)}>8|!t1d0E(~ z$7}@DDE%;+K2QiH3v<~tH~Lg4&;dZJ^~}sWGUL;pN-#?eEckMwF>EZ6l#XN=uzp58 zY)(U>Hv%Xi=VB(}&K2D-`L#Ew_shE~DIPp^>H1c2YV?{cp=5a3A8&NXZ?|>ro;^8f z?Qvp!;Zs=ly7c-hd^7O|3CH~YGH?9$(uXkBqRCa0^9xXj9WfU>)3<>uS1%O!-Pu9# zCz@-y$LZ$=Zveh0v@{V<_!4hm#F6P$1rw8an*co}9E$K8UM78m_CJgo{=p#s3p4&3 z0{zQh#PkpQ(Ld1VpQa)PrhlOk)4xU#O#d7~{C6Z``j>_1{~L)|{&_f^qOqf`v%_y= z$G`Xa7f=1i(Zhe8{J);{|75;rqW|lU`gbIfiY016?7mQQiVI{JjX17&gV67VG~^m3 z7$yZi+9EO12b$`6RB5!T2fo$>1?lXdzy+W z+2PZj;r-EUA7`>HDyz1o%13D!Rw-_lE^lw|F6++xdAmAT5^R67@NLlhxroqgWp(M^ z9&TiSbRJ7Y0?=2f0oe3 z?6S3)e|7eJ`g+o<%?w7ETrnSlZ=I<|)2w)7kx-5EKN=c#Xt9Q$N;$+`Uqwxkh|XMc zam_oL8_Imz%PI2xZbA~m;TXtrPGg#Uil9Oki)Pkfs*%Qh2mtX|MLjn6f;J(z^ImDD zuC&fiGA&lc7)@t2tmij401{yYx1f&wu(FdZVliy;+P1Ql6eHqR>h!r;+D28iOdq=H z%X8+^*wkq@g9hGW-7r2Mp&WZnk{b@K*16BSGHlq`mce!1IxrfCz88So!O~#9a?KC^ zWf4SMxDbp*e>UreQxbu0`+PBAkbKQ-ZkCwCW0M;CM7vpe(y_6M)r@|~Y;DoE(@Z04 z-qY?bfYmTdjZPwjR%>+C@a;?e9_%mZ*@JI>Mo-15p=!yp{qE7hTbT))RJ_<39kGeC ze{|r3(^$=%qU@Le+92r}@b{Y0cB1?x(LfZp9OT zUOB?JcR^;Y!=(F>|1^6qYbGO3TG^&<-e^MJ*Zzi1VxX?415g6}r4nV*)W2|U@oI%c zmMB?-6ZVjXG(IpHhY1#9J>A`&^F@z*hFz-GTfD6M z0kfy43|l&XrdJGhDoEhGwy|plJO8M*w@o)R-MO}Gb^Z-lV2h2-bRMOil}VSeqG9WB z!ND+4S0zX#=pS`ppXy^iF~@Yz0R1FN`JE6y=BAk~Wt!2oi8a@=xZ# z2q%eP{`kDRex5J}J}JA_#Dsc_GPE;W#-KzjXI+vupCmumOyM$T=De<0vu5#3FLu^; zZ$IipV|1uL3*rZ~G*~j9_j;=gCsWER`5S@q*DbweM>n4?zVWBW!1E2km3}O>AuYHR z^`ZAqFe{j>L;+Nr6J}9Ye_)MF;=Sifv5~<&m8EA`tb)#bH`D z5qWr!bE4UOos7=JvAy@`p?iZMErJ8hCS)5L=kIZ>k9wiTJ5_PcQeR}nWHyEc4eCs4 zZ+!Xq-hj8~eSz)Nsp7R3tHJ(Zg9uJYopF;bXrcr}I^#Ld-&M)F)} zOr`F~C7MkeGYOSncQr!q)bm7dT)im!5 zD~CNadBx^gC_!LT{|H^;!i-xPCM0v14fFxF8qU8pXr!Ao-5oSqF&n4+=`@)qO%C5d zb)f*Lzpl4dyfzX0L_pNf`;yOgm{fOV6#>nk+g0EP@?{iK*<^|=RNDqXIX^Kf?IItf zKH?)5Qu!Sjd?X)2S+dNuel+SKte~?ECCR6gdhP;wzUqOER*M1q$$|B>=s1?q=LA!6 z)JxHHF%sKvOS~$HR1!9TSf36u8j&&cBm9agkuhO~Ch#(Qd7~P-8q>tsj-wFUUMdd> zlt!Bwx@GSvV&6hTofZnC(`H1mgZom)=+aWST9pjFE5n1*eD-bvYUT@pQOOiu{H@?r z5TkAv^_%=#Uau0hprQt~Tp&KdE+Yg~6dTIvt{onGDC6ThckkLC2;>C6?E?F&2t7PY zo(i1BLP@@G=M@M5Hei1iLs+GK@=%Wo7udCg9TP640S`Jj*LhdNjcPUhpX;lgmAK&(??IG?#`xY}U%Z9PFmx13=C zruu#+AizCL!NSte04DainQ8rSxfI(qaRByL( zpkyVTzFF$HP$AX$!*Iw_jA#c58`8_ju~4+i+KCMV9-ABc30W08z7k1>l6*fNUA7B? z+lQ_Q#YAgG)mx;woI1mwbHZ9NOKb=(H(#rx@37@bQle44#;n8zesyGayz@|AJkAQ) zy2eV%z)D5ab^*o)31K;~!m(fhZDQgBv)d|Avi3Ph=Y(8Xf8gbkkDIt?2+1gLWamI> zTpeQs&LNdhMP*CK@5PMJIB&)J9P+%WF<|b)tCdx$iwWk?bZAacfRl*^E`OcM&jW?a zU!fdvF27UsrK4f67-C@9$qD^=D?>0BNI6G5U`H{_7mNdaNnQsZcM5?bspU|r5{vm$ z8AM$kFc#k-OAcV)c-Bu!$uJq;vMj%q)F(X=x%y|2)K8u*~u>j}NT_zbEbzm;BZ(a;x#$72{gkl2a zCyz~~=NRxN89a(q+bz}@5RHUhD|bq|1hWW>5rngT7Y;ZgTb<*v|gbp}v`D z;k5uDhk_9jTh&MDBjO?f6tKZEUU%??ZqRpHjIYWPg1o5vFpsv>l2`+Kujrd(nI+GA zl7_>jJXd2StN_GrDopPJ^C!4{_;ss%AGa^)=<=Ek)Zp+Csedyap(F}$DL7MnHy!On z8YoCAH?U3@1^lUO1cGHT2Q zB0TpK^c;La^&%~J0U|na@WyeLCQ>nG?6U{rCeY>pDIXS7MB3TpwSUglbbBcWy#S0^ zT##KBFZb|04HI^t`3Dx3b7uX2rxvFFxCqR^{4Yvj`6q%fF#n5ISpGS3G1FNsiEQok&t#Q1rDp0rAsoj4A zt@v^HoPpA{qmZ)H&gY@xpsU{2?xdPMbw||HtyT0WiG&wv)sZ|(r&cffgNo^kbFz$v z#q4$e{Qd;52CchaN5dlW^7>NT-q>t3Eu~u-0bNE1mtXki+rOv<*3!G87iZZw}Oa91`d%deN2u85-QnV4O-CjGmqre<3?@^r2@%TmMR zIELK6Q7?$f>&(8T)k|kkRrCP~nu=BrwP!}RTd&LOapb5*&ZqD9N3&qk zu#lWe;m)`Fo8uDs83J-@&WLC#TjW+@TarVwrqw`lhPCTN%Tm|W{np3E)V<1+d52F! zr6#rN%0z0Wh_k1ClSYsBrAy0uCd5H@;pPp{#hLj3F zlbLA{-5&yl&u?%l-MtRINd2f<5sSAF&P96O`PCjeU1cPuP9DRBWUA!2rMRe&K_N$4 z$-WEsPYm0FiPhUs3t0O2u2Jo=s=S~4+u76KCV+~mf@l49pvL9-sAgsof1t%f3agWb z64F9OmV|uDpSE-JbT4k|ylyP- zt_6x<2VS_p^<`kBs(@)ULvYkC7@BSjLIO=P)9G2n!CVX2NC2|$+0>!P??4>$^opG( z72oc^eVWDW5=Ey)_0}%zY#B~D{h7d+80}BG-NwjtIPde*mYIhqBfcd{g!gVjePrNr zug^>gAeH;hK}z2(loa-BD3na0`39j9?NV`5E zjJ;@whY^p%ECegWGK4)%D&6xM4tWQ84E*cX=GHoP*@;++WMMaRQWw1NxO34856I2r z9b;DgHaI~5^|%{#Oi^^*b~ugTPL15GRdv`WbhX!ntQ{Y zx=U5nkCp9BHQrS6VZ+u`eS2${C-LRwjM(}lTIL2QZ`)e+J5&*rlexE=_dEa9d1y7- z)6|v66B!TUb>!N`6X}6TKp$FCY{-+EY8sei`ar#x^=3!q8%J@3YN1wC&nk@`&+x5! zZ|KI>)cY4L6X=D$@f3{1DHv;z@cuRoEoHuKwdL8*g}d53GsRlYV&>3@LxVSVmLsi! z#N!vXZ&x*}F=(Tt73fR%%#>!*ApwxiYWu^_5yMJrYja6@6M>m{w(vQ&Q6D*rHd-5U z!9r~X$5ON-H9>P7SrL$?2ptkBlPf=_0uG6@Rk4OB5~H}^-$mA6h(NIdaTpDR;bU#h z{q&?WyIL&80g+9CcHoW#N>tCt7egDQmDh~+YKle~fxPdWhgJ;<^ZKa}sod=kuD=B4 zk}p@?>&qkdO1&X&v`}+v|7PM)9{;U6Xcu6IHsf9KY@Bev-Gmf&6Tw9V+Gy+a?_(G9 zGtFQlhhHZ=Vz#B%t799jnZ&Z%hu!aHgE&`kej_v&a(ykJFs9Zyd@C3-Q$DH#pWr>h z#4e675@$2XR~LQuvjc~?%L9M9e06LxwFk~@wG1;kHTdZ1mT8{HJ&{&0tESP#kl3Mnu#3UaEH(iu} zLF{%X&pgVT|lhl>^-BhqFmtOirO%z6Hff%lQ97O4baY!alixAH-U(q%fMx2=MMO%3h zDC|~X#j*d3Kp~XH*QHIi4pVLqP`}R&?y`Ldkr691Ku1g+6B7C~`qWecEgL^yWnED7 zo;+jGX-LSBM>tU*opTKHy;e^iG4g6{QDZjwWS6DN2vCtfljl6*+~F@nLtOxga`5t2QyJgpQUO3c9PaUzjY!Ccr{ zE2?@IlmmYFxB^P5{++#S2v&^aq7o-`o4+ma;;sNmE|yiwE9WOrTZ;Bnr+gE_%WZMx z%=|rV^HuLxYAM08ewzt6j}*y>h8TsKoNU*_ zr|^qikybs^WEs}%ci_)8K}=PZLC{B*cn#IWcPF>y|8Aqp`a5X|c>K=jile0zkFBdg zpWg}^eFhM=Wo8dJwf?x;2M7tWLn+O|+_uLQc`T+9U;ctUHJus=CVIG6`ZU9yNr&Yk zrV)F;cYhV?`0)H!5t2Rg7L@9lVfzFQVy!s)}AE3XIj8f9Y|fz977aN!VJCJ>4qWx*DW(8-vRp>xjYH3=J6%nF z#UABTJXqpM364}G|GPq{dL+LTnhfQS|B0oK5n^LDLJJ!;X`vZ)>Vib}fIRzFFu;^N zZn*qe`c<^5Fk;y%fxxdRyE8JfnZ+7Iz1e6Ss;{h?eYwzwd|u9GOlSmeaR0?UW@5xH za*hPt^-7ekgxHP;fBlZWt?@FfuY^1Aq2}Plv9TN^Qm}(}ftDcSJmmOguVI znms$p=o3RG&K*&B&m}!~PF9{>lQ`2T8M?pBDbKu5Dn`O_R5&&|X>o6>!D6u#(uLMU zPBvNYfU1N~Hk7#&TvUYBWJ0RpE|Fx`{j!?6v&`K(f7Qe-z((e3Uk6tv#yN@x>U+~n}U+|j#h|b&{%cmJZ&x9GV{T| z5@~$kE{Sqi__y5leJZ1J{~yxcDM+)e-PTRpwpnT0W~FW0s;sna+qP}n&Pv;M=E?QX z`JcVkK69^FvCq}G=`o^TeDRIm`unujcz8VRFt?;f6sK#Ec~ypv{^X+9d`E@xo;qos zj{@uuKJPTmUj}&Bi+JP`8VBfJs=1k8rP$%O=iyMqO(=qR{E3taM!Uh@$DrC}gPm3$ z;OkXkFX+p|A~n9Oi$+2uV<=Q-Jz1UH%^taSTji{wyRLNy_GD>20n#Bfz|em<8yX8#A) zD2KG1hFa&=y52~7e4bkQnB%Ydjkzm6b)Iz^R;3!KW$ca30eq?)>~iA=^TtZ-E$XYX z^703;%B?wQvHFM2^4Bxx2UnS=n-%S68c_2^EBUA9Dx2eLCWsvac^0=ut&3ApI`kAx z;k>1Seq@CyouDa(3<#+9cV~J?>8ZKO;^uMVi~0$z9IGmgN$Io z#bJ!v=z-|qGxMZj4sOl~D_l+NFBgXuEX1XKtcWdvd7LDT7}P%3mZ>SDOkOgjdHxpJ z`@-MS@%%_zpFk{bo%-{~Sj#>yb+kcFm_EI;bJA;KOMa}%+x_jRS{Ir%w^3LQ&Vzf> zksyVkUf6;a!6SaVheBQ&9_0)K8d4#`u_Hf>tOdd#636Tl8`7*Ol&KGlOe4fw24Sb>exh;svsrjt2?rHo0`Z&W%SoJlewQ(%(w;A<~2V?Blbo!Qx@>gD` zNBI5~8O5#cHXVr{xri9gL*&yJ<*ZYl>k9%1N%3ciCO^LL%+`y`?yT+EVHo)X#`6H! zD#S!6vdds4sfD}x5d}v&Ag*+_H=C@=oohpRqN8ahmQXDBpAe2;$=;K-b*;mB8373e z9cwRLMKbbi!`JoWtm~m;Vrs`_QTX>VCf17A|TY@6q&!^a;RQUKN`33ys7S* zKpx_pTR|goPz9QZY%lw~V?ail1|1tk{5Dzd3A%Er#P^2re!vicpI)E?|ko_?j8-QY|!hD-i5)S0c273j)u)UKB19 z4cIozTx$(0uF^uyZ(@u)y){6ity&^RaDRA!l>nqt$&PC^%mi01N@hj_8T+Ne`ylgy zid6#?DTGW7XhsK`SAcTeQ#o{*lX^|>O3;72&8c_k{(+96+=+o_;Y}pXf z!Zl;pT)x~Qs7Ank|2~K#Bcx`2gZTC8_9{qrj-! zp%~&Pqq-QoH_m`U-+-~0>TzMrgz%nE@a|_9%~j{#;PQ6Rb*V?x8oYS28#{aAmopS3 z(xCIso{=^lvDM-mBw)_9Pt^ENoX^KGOTXJ9l#0^XhD+DuHh;can8gkIlDa84znxDT2qB=Qb$kfPYV%X_0CSU3DGNBL1vD`)s4=@UVhs5~&z}wg$Mbpfvc!|i_(F+Vm&WTO;Hu2W1wnzo#DMJ%( z{nVUL9GKV|Ncq&7WCPZRUt~66Vst)EE*8D35H!yG?Rk=S4g7^ATVBm9zZ;|g&8KCdE54=6X|^RpRHb+z^N$()6^Y@aUp?9|Y3tjWkZ zO0rOl82_8d}?%hQnPo8eu>)KN=T@osCQk+|!r7`EDd?{(SyD^5BWmb6q-?UFk_4&Quxtd=;=WTb^~MhN3mw3VB~`_KkMEvgfRDj1tJU_ zpG}c1@yLR{^ydkBdIAvAgEFCP&+@Vqb~%~HZPyNuVt@ml*1@*2b~RB=Ec$wg7%iF@ zTFS>uNq!n$LeQn?7d4O%C?_xZpY z#_}%w+za~TEkr+dq6C=e)nt5xrqqBiN1A}~4YAJsvOAXkNU3$?19J#9QY$|1i}che zl%7bs7Wv_O8z;Gaq_JfXo&lo#aH%Z=?VCiO9pdW_Q+quxw3<{B8gbyNh9VSS3|04N zjhRJ2eNLqd=$l*{gsd}t5F;&wU@Cg8i)4ze;&ebwFQE_LJ5rHzMp`t>DPI-ir$rDK z_{@)2@*X??7$6)3&^B&y>7!G7GTuZRWHEF|dg+4*QdcGdO0fHT!Ze_ap8bB^*e^u-i5kq|Xc(OIRtA@44KFtk9b?QG+W^IN*0m z8u+`c@S{)Av{kg|BQQBV6xSa(hfE(JBeB(QjsSFF?x>3j`s5kY1{~_34+de6@2V_1QHE@KYXii(uT>_*a zGHeCWEh`QinI`fVz0P%7hSJ#T5m8; zZt@4HG<08$62UX?DsMK%#}Y1ChBpe*`SdpZuaX$gg8qU#CUievR5KP;M=$8aA_NM> zPYyKSiUzF;B2;Q@d}>{l>DX0pWqI2B83c|yLuX)~N3rwq08BeoHdSR_}8U%Pbs zGzZ}BW6$;i!rB6F~PTIUg1HIBxPHEj3@>HB(}d zlCNsnz-;ADSY`LSSU__y$Pe$q*Rv~KVA$icGuwO&{lAZXoxF~S-0f;;jo5oASFhI{ zkExw?_6m-TlRj)%-*A`iLls3OIp{wrx6EXq+0wl*GC9v%5eQ*QRgza7^@uO*h~*SJ zjtHR-S@q?opNosu(nU@!08_80r2@DA#Iu1B%z&KDD`P_4e4$!L=CvYhliZZ^D`!Kn z+5SjDAdhG6$U}cu5)V%#9O=T)A!G33E-*#{a;u3Gkt?6*gD47I^LE)`B7S!{&%Ixi z<@zI-;s&jM`-dt&{;hf=W=yxRXJox@(_0VpY6qIyqld2MeixeB48N-f%J#Fr@}oJ# z<5u15HN0X6dbaaIwi?|3;9}D0z2bzJI=VeSsoB;jCUkGM7D!P^sMkTiJ_q*;xcTOh z_aC&ye~5>FpWpvqD2?%NvW)Rx)1UuseDjyg_`lNeMfw9})i%?urkU2a+d>8b>7zO8I9K zg)iB*+S~JK&(*dh3qX>D1(*bG8=d-^4g(n;owy)`f(76+sh0#n#mFyItGZLVtt zxIm&X)N#xP!JtI#AMKBKDq5TEgXkJk6Q`SPepk?7T+Yo^G~4P=%m}?U3>F}JK|pl7 zfDnCjM?(1^_6iXQB((^Gv2ZPOg^Jr->4VP_oqF+V*YwU{;6M%{4a6KBKv&fP1#=TD z4sB=9$AShBH9!aEX`{#dG>2A8oTqgBS9R9F!S*vM8KUJKzQJn*_`sbq3=wXeAmi>Zh6 z4tl)fX1ztjk?g>fwAxO)nKnRV=wAcRIqA?HgS3u~S(!NdLI~`<=Td~PaFh|4Gx)%Y zzhmhxwT}@E1_2=71)LzN;a#0Ij~J2snNfenSV=R3z~CWvo>ZxBn~r@}HL)S_7PWPh zZyxONxB+Ri_5ifp<2kIK+wz!wPtsejh z1YkbCC0EF<(trSnAF(f!iY`-;+Pzd;PIBvP(-v(D5c2r4TL@nlEW*b0rQE(5dv%v} zw3A)0h9$gM*T0zHMh$hBEnUtZ(g%LcG~ik2ZmE16dN11yUyj0{@;6V?`mnt%c3uA7 zPTd5HI=Q+`Yih1YYy-L7XawKQyx;y@u-QKO({<^qo>uOwe%T&8>2h|(%PDyF`>XuX zsX6+5 zano`fT*bzhW`|2x8HKOkk@q_BI{@au#I?K9wQ&o(rfv1@D0nLN+=i$0aVgH?#>rJ# z)0JX)zZ)DRr?tK8!)g^J!~(AJtF85lt$orqei2K~f^h6>!IIoc8E(PZ2C}c`-s%7V ztkO(8uO{7zmdW~m}3|tb#ZxWHlr7+1du@ARe~6D zz@f#+?Ri_wyRf%ltK){@l7_=JcHgmr?JeizZ>{omU?4y{u;15J?aSjcvbb8w~P)S zP1dpM9C1dHG433%)Way&yKOn;x`T;iB4gwU$OY&nJP9EXCvEc5c}#2{Ph!cQNS{qA z4lL&JW|$luUknOe6I;_G-TIDfw7ZV%$=lD?bE4s3V!Zt^iW*vbL||GcU@9S0XK_+q z4eCa?tn~)qI(})g)y*@lu6`{BW0?%ZJ6KC0C1X?O55J`NN**AB#MCexOOoDXM&NKg zmpW2^=A+^t4ps=DyD7De?P1EH!f%ac=va)@7WojAm1;E^$+GqvMNUTc_({z1Ug$zO z-1AEs$%+28a1+o^ts0FPK zfDa|jN6H|kTLykfyn2B3^^~p%pJKuc>dc%y=SY@(l7Y&=8|ZnL59> z*s-xB%{qtVZNBAjfiLV6UYK%VO7lW(t9aZ0?X()bEG{)%pe53r-vk^ULL0` z1^X(Ao8lc6pLJwL+J!Wg%s~Hwa=FMX<##vwFwC9R!oe~G2h>a-bI%NQ!C=n1b=-e8 zYrvM18Dy^wFVKz)YA0nOo>nz}O)H8Dw=7Db9G1iKFo$%qZ? zG}|`9TIj{|vl#dIDCptXRnXa|o0?`iB~AyF8mA3|JZXeou z0ZYA5iu62c5jbq?!;f3Kw>I2*b+K!&emn!b`W)J-fWNpg@=3-&1*oZNI_qC*Om4pt zYDNfi74Ovs;~&y;sr4n&ZYJQ+m|&KRE8w-xIZn39$vBTHC8myFbr_*f&G=2j;u|-= z6G0Aeuyh}*4q##mNbq8?;A$z05$+Is8$g9Ehgjo=oYVpDBr~kTACi-z*c{76ref0; zCZr>Pf6*1GKZFf9U_O?>2JOxaJqb`~X@E$Jr`!bH?%ZnVae2FLE4FG=KdS?@0CLQm zZ!T99d*18a2SK@#t>z&npvJvX1zx@`VQHsbKgzN7B^BE`y9{`*(cW#qUS4DEU;l<}>2+P;K_SX@FB)b2EY`Hh;Q9NUoo z)`nHvLrnFmq4HP5Ex*+I_kV_?!`9lbW5Re?%T4??F7Kmh%?o0_qMa|B{&4_amrT!v&8zqyTSmd3;r5|b>m6IKdlZ^QipjncaAw$CJp!a2%FbSKeV^hOB>ii4 zl}jJFYc_muy1u(N?J10W0ezIbVMF?M^&TwId-@_q9@UaFpTcjzZC4su}l zu*_1Xw%eh_f-lcGt=Q-Ebpfzd#32lRJ@M)8n@h^7uAio;RqaKv*(?2LI|tVlki~az zuV76-VCc419@1Ee*st5+G@lr(=9e#=>PVDOhxd3F_XN{-oYH7V)8~p_c#+!)HhHF6I>*#IaGw!oN9Wl`x))TJ zg}o7tC0b%*vZQ^Iu#^`9+28_y-)_O$pNcKc$&I0;`*N-o@D2(q`x5*p^SZNI)Q|7m$GkduRTo{W*19fjkj>H(3?XeP^#oP!65mW!sR zNqmkle;rRvYT8Gw87ivMqqRs8{v}$t&k)L4o?s77wst3p)uSfXh$;;0f@Re^! zbEn~>F;hP<9RSmWPfUXX=)<8n`J%z(%ISdNFbO3-14s`1pgK_OT&C12rpga{BJn|TAH@R&8S{a)hW%A;sY>OM!o*f9X_ub%CVkLELSn26w zS6&8krF3BdS;YA1W7VrmA0(*(XTH)>e05U$aC3C}qSH`h$^_f}u2as(AJ{Z*PzwUHA$C09-EQi)zbyXQ;-P_uUq6BQ z+@IoegQ3IA&T?I!Nlc~gUw4fT2KQ!p;^S-S*2aSypW#6;2%@rcEE*W&@8icE=XT}| zUTVzpP+eZAPM$aGR6qn%ZTy;l$`#S3G+<$?0+mDy?;)F!5vv5Lm1f=aP)Dbb zvLuQu%kvs>D#FOzkkwag@)~k&If#OBoBk;3zuPM^9d}=5HHincalJ#Qd%JeR)3ITD zJGi`18XJ8_i0mbsZWmkOB-xj?B=X^g2L-=)7q>vJtG%(^q=1muo8`@Z8eyvS&h9@j1TC#*m6qm(K z6vZRYr+$vC2|T`xTIn+K|IV{|!S{5g&NM2dNQWyZ)=fKMN(P#X#2P4{ zH&CpeeI+7njWQ94w{EAg4apxHWPQ+s)nUFOO9>WAq%dM6%GTZ9`EnBk2F2J@sF2tY zXO>?+I6v9EwY-Si0enb~lk_pw=+Q@LIk@AX?df)Ej@W-;5w4zQ3*xhY|9-VILztJaXxU|mk58L(Hm~xQ7Z5eZy zY)-7a&h7E3PbM>)Rg$l=Gld#AyU&w8XW#$4sJOL0&?RGEdF_ttwc4bE{}H$gvW*3U zfeC7B5)!W2#%;L&)bFw-Ln7l^%R4laU!O%|FKieQiv1%6w_v;LNa|b11E1n zmK!U;@=_)N1XV_68FML?jld+GjA~g zeF`ZTT!GWRGuet*cDLvioRRaUcnu%wNwruo&y-V8u!s|vMRw<)u776vic2_UaeT0M z5)AE%Z4s26aiOuF6529!nKn+CTmh@8!_YHCz=>gRQg*l&TF&*&YQ)ii9|wh;!Zt)N z=)E5D(+^z0J!T6Mub(Lx9eM^GSlzcU?_*3i>jA~Th;|vcVTV8taFq^%q}qu|u?-J3 zd!iT2N66u0C~MR(tQ40w#t74XtKrh*PVay&f$K##CA=T>59DcYw1=tX>CtgCb2c12j z@f^5*J{n(P=ZQr=#e$#W@kyVMXdR7WKH0UlI#v;XT4UApHKzy-uK1{r= zRbeA94BiV@`VfM9vJHhK3E5kaQI`5Ho*cc`E|Rfz z)?Rv6o?0#rpcwa@(ltX7?~B)Fuyoe3l`gm_KCE`RnU4ziuDF!K9nKaUDo+eWgBvbkNS=9Fvui^+ja zVl{|kbT&ijLA~eBqR?}E38O+$DjzXf;Vp}(v2?boX+vOmn{XsOr7`T3)!xxc(g}-t z=N`)XQLc~TqXs^|hZMLz)82+pe7rH>v}C?H(^7Tbc9z|>{>(6n4F4w%mJ3MmvHp%= z-)R7&Qf~|hlUB`m0-=+!9vDt$?ZTgFC=sPNr)LD;HHHN}Z413isCZY^959zcV_%GX zSbyn>gP>ka#PzSuf>A1eeH0qLQ>Rp(-0_NK<45FE#-)d&Th4MIT$q$T&R}V88UxGc z#027%KP*oKPNf)cri9e!+++L<8WdgJ2|s2+W?QP9TmN@> z2P5vR*u4yr)#JQ(eRH*40J_{Mi1Em(-@2#*v$0O5Dzn8@PRjSC8`Ly&nWC7;wAQLG zT0SaH0TwIZi@$I$Fp=1M8C}77WKndX!9tXYYdlVsMAj7}4v{$V zOoh&NiBS*tW1;%_r)LnAcz)&Oosv7gP=a5<&Ssi?I?_Znk-jcoYRtmCfsf|5D17*xV4p@&o7}UMxN8L1ic#fe z(iXC0Bsrj$_M-|8Pci!36vSWO^91q+T&dQFEy#WXdOC}KhlIosZ5u0_=Y-9~Aj}Qf zEr@!Kte}+}iz(Es+Ba9uwb6QyXmSJefWUtOgId1K|JO!%Q4 zH{S*ED`|C~T-59>EmTfUmDsa8PE8au=#hX#l1$u5KetdUC%e(d(c~4PyMUFYQstcR zh#W`rB>BuC)cxYpKPdCHQ>9|ecx}b{d!zMYc%c?*tZhf1C;McvZ)23r2S)zb3U^wi z{ew(HQO1Tkw0M+rL}~W+nt$A*Ci{5YgXKuDEa$u6x0>SX77Vh-g zMXwfKBO+*+-=G=KkW-f|aJ(kO$A zae@@s-FhNns`xD@3_)Jv@~biGcws4M+dW**4q8UB`$O~FhuTOxCBWLIS-pC~s7Q-9D zrXXwjU(5JaT0(@Gd0@J z@M`p*UZAV4-Dx%^N_oQ}QCKP?{LwSXY#ed)qGlqbCH{xd(pTtbFZ1ti7CbKz7~3+q zd^`_}dtSAgywkO(g$NB0k)}IF(gWy%rK6c*(~KK7P2e3d$QZwUVeYmGl*@?hFV-cI z^e>Dmxpdi~Z2#=6`VPm5yp%REdRAmc<~z&{3}g@*(0t7ZSu*`mxILTf*=?m6nv!jQ2@`} zG~k$FJ5j_5?LqD4bQp5F+q*N{vI#H zRmm5Wisoi#QOm8!!;FJofE$J!uc^QPYyg;;#k0A3UN80!cNO16LPnK~d6N!~syV|+ zHQnPCrnqW->!HDG&B`pl-&QO%z!ws1~FI#re>CX+Vys;72l*9~&P zko6Ziqg3Yeu=Pf;nR@Sa)X+w1XzMZsaWgUaB~j5kOq{6H9mW0N zsW(uHPgCEVC!tAAEzQ#In9o7GP6+>ySkA4N-sK1RIfe&;=Jo-R%>z7dvkdB$04AC^fX7wh315>0}EZ-@*Z;i_t8Fy98wjLTohP@5wT z6@}bOXa1cu5o^RO5{G!8&X~p%OMN1Of~1(fxN9e^$T)d#JmEnxIyc^>Hu)ob-kyvC zIrIc==Ur}X#+EXahgvo`gXr-pEyFij)%;znI;lkU!KJgE&~iWGb>8ca&?bUi?$zVu zYp#r9Oq@ddurZo}XWyunvr7h!JR;azssMPP2GX>edXU4ZXA@SR);7tSWa1-I-^K>g z@$M*qL!V$7`nFv`V0#lu8yzj}jATwre5mq*n*HU|>(-0tnxR^lG}A{sw+}2;vB`Z! z*6TA-RjMOkk1;UsmLbk&)CYU3yHW#;f(^h#^2N%b|cQKFW59E?Jl~!3zNB5j*bMu&`92;&mS}&Yk?o-2CNZ&-Ql_ zPG5l}EjT=@qTHv7f$C)kejE)t6Xy>x z`G(AvU_sH|Kpk<_#~t@AJh<H+RDF{%r{hUN_OwEs8O~>c308%C)_2{Q{#acIfweS9VRh_X9@Y{ z;?%HMcxm2p@raG?re&_jbM}=n3d^xZGyx_3;+$ni?gSK~EZ&7u0f>1bLWtX;F=&HA z(`csl4djZ?k@c0Ad;iBD*Osu`xp5k_d_EH+CGxw=;%?iLFjBHBiguE)^35ZjdK&SUB zXC5&{NDLboRFv3@Ck#jo%SF918_Lgo=s~JihXghnCXixgM+Cu1RffaACj$?*V=68< zFBYZ4JBpWK|Jo`l~il)w(DF%D#7RcqO{627rdX&$BD&!8f$G4Tiu`PhjEH1fzo+J+J?`>f@(mM?+F zoDt!0?PGSc9Kw9rB+(W4^_HJ!!;pWnqRu9L7lSu!tOH_F*>N)tm-ehFqlu`bINung z*I0#Px9!jR|nssoaoB@6bJfyR$^QY$dhfT?^4Lh63pTywO7FM}lh8YSB zytS~3W)>JPE)Jd$>8SzIoA36vTKIi)DyO-pM42ZBQ|&-hCqzCZ${vsqi$+MHw+tQ* z1iflc&XyvSl!Qza4|%Gm;QpdKL0+f^20ho;dcb<6{Io%ud+B+Ew?JL-GLG+ydAY?Y zWLN}wcK);5DNRj8+%{l&fI)U8(DM#e_^mUY)b$sdSm0Y8i4hN!}j(cHHB) zAOrsRu`J4y9eVZrGOzstb@ENTRj=SOagk{CDLhi18$efcbeTzlTwG7%am>VRlOYkh&DE8 z8E@TDvq^m`+yS3I`*ij5B`Yf{2(WXB^gU~ErFiSn??|w%e?Bkj!`0c|dEulV?j){Q zr<1Sp>@bL8E2Y@mM6S&nGRqxr30+DJ+tZ2GO0P=*yGslt_yzdBr0VYfdxB#AN9Q{u z>t9|9M%KS<7mTcb@lcGcf7vb=S^wc=^*?vK|83OxUpZZjY=0li{xPSE`G4woXJr51 zO0q9B)g9MGk-WYuLb~J+>=>VFm8-(`Bo)$&H!GT&ns&KoNJ#W$Vxi#2r>eJX;d}tt zK`0ef;xzcwK)}ACDc-J2ya;o9#hKk;=rphH&bH^*-vZFzxIj}&8*NL1u$0O+{>~7J zYW?of?EP(WIX+!id)xE(4~9pBeg<+kgQ~%9KvG%yiq`8h5RHlZy*5XfU6UJRu3gZN zf7e3i{cab3mC{n>*_ihGPSD}P^yBsSznTcw<}CyRsX$@{7oEaHIeRsn{M7R4P5aN9 zg%`3?y% zTu2?Z^PAq%T86iZ~p%A8eHCH*A%39w6bjF?fYPDgo7k_sV`apI+Hf|Cb-swMH( zQ736C2al)p;%T57id3KmR}SfGSwqPd7{s0$n>^S74r1m0F+Q4)q9+eyFcpSyp(jdV zjR`?dlgPv2A}7L9Suj96RTCaTKzKFd9~lM-;3Oqj2n8hcBA;Fj2gly)b=viP+7m#j zAxtcqMVmHT=)vAb7ZxG{cj_WTZSvW2`WMF5VpIz`Wl^?&Abc)5ZS*bP^qS50}rtgo6O9eQD z#UAaXdN^Zwkj03_+Q$8_y6tctEKm&Vt^lBc&D>WiWDKMd@hhtrADT^c%5XVJq zoL~zXyw$vRLX29=gL!!#-qV`FDR^h9?>I({Qmh4++B>RGyI&F^ z_x!Fu)19>iJ4RCw4|A*?#nF2-Wezy{7SS{&XBt>!FjOE4(=h-g@n=A&_Z)6)gO?+jubk}fZ!OvC~>;z~S2i8de~ zC|9|vxthFKz~+^*wAjN#RM90ry@Gvu2m@|hq+}YbN&tkRFatdyoLBt8m2^ON1hA|9 z+)*(t*^>u)U1(Wq57y?dG0s3D;{h`i7pw#_`NJMK8gB~lpjx;Y|7|P8&WRSFg}wqyL(!=X zNTvdn09eDJS%50_mx0diueD7u=D_WCMm_WtFcsM=FHQI|z3vZ&b?k5NY}p4{vBm;! z*l#}i#_R)rrQG)5XL5>t_K+V^0gqU|j3@Ww%^K<}DeUX{AWR5M3(W>0`}2Kf`yP9J&}_>{KN;KR4xPbRbWG*^>oMjA1VwNn zzYq|0pVQjujLOPgjZIi8_o&+lrg`sS$N~w4To1)>^rAQ>HOs znr_@d=e;S*y67P97{Ts<*x21BVe)(u3@vSCb**)e=JJI|rvf6v1$l=WO4S&5UM(e|87vBqBNW#fcG=rcE^9XI76m0;+S3<5!wgP~n)M*>)HAdt+L@NbR-vzLPok?;}H1c4jt+1ZV?? z74eWPb(EvaBC4Nd}QN8LL+!^iFm z!r3)w1Si$3$DEyysD^JUw3M&>@9V|gyUU6~gH^>vBpo=C*7}C@84PVi$7RH}LAZBh zs!_iDX7bBxR4l~e-`*DIrf&e_ZRWP24z)Y0AA)>;VO|}cxp{YL6)x}nte5?A=r^g8 zM0fo>xLEk=lp!8}UF~p3SNE2#NaA=g)IZhTu?k>h4VzB^@K0aQ8L>k>X4eaRQN0%I zOmi+s(Xt&=Zj+{axTg=#cSYXN5iDPCXW!QDe?t|k?2ut%gF6(to3}3GFv&Vvvgf)P zh_pxztMcDcr#Uye1mA96JY z-GXl^g+%#dtuZDv=v?3OT9ARCy`c{U_XAcGxT2#Qg}XI8v35FbP_NEj=Y0X$m!Qq! zO#Y(G4Nc1#ANNC}vKrM7;_DGt3vtmZcoL-bmoPJv8B?7;)z#j_7)k}mgqDe zW3`t_rFkn&kCDUQ7aCi2+=oN^gfrLaRpZ9cSTx|)B;J|U?>@^!zM3Z?Q zA?Q*w6fCc{91o9A3-<5d<+iWFd-9Vb0Tvk1Bc=Bg&r(pV(=VL7KY3iU9EZNMaIe?X zH{V;cVd++{@_~0H zA-~wl&)Z_59FjWluI9Ny$cw|3Dm|5xOstHAsR^Y-MTbYAh?s3a5WcAIOInRAOE^iItA@MMARNfIhcxN9e1smL=9Sac9j zIcw-=GNsm>d}l$|j#3LRf{>{#;lq6=$F7`8okp(IIb!`9T}NmFj@>Z-S}F>+VAVk(FVTAsy4E()@b4;Vob#omDNUaQj*KND!*L;M zJ;QoDbW04QI`HWH!ny5tQd)p}J~$*Zu%2VJw|H8&G{3r^ivNY(%XgSGL9>?^^jGNIAp4poy6(L4(Dh zw6_Vkbdm{lCz{2>?LP=nTBM;Uztb)TR0nj{Zi2Gd40pYF^)O`tw7)`gq*5c@mF^SZ zL3v)`j5Qxs7E(ALT_HUuP$C9CzNq}07t@I+oJ;hoz5s!-pZ_87_g|3Gzpp+27sJH* z*HtMa+g}3Wzg)ro&wbkeAQb*KX8f~I_>cAf-phZ>Cb7_S{1O525ywrBL{nZUkz7zl(%rSC)slfZMXSoVw`Q$tWzNEt?D#U} zI+anlsV&xCU2XRIHLj|f?LBCH6f&>nTCL+M4Pnr5(ZCo0z1Z1y(Usom?%3U)1zl=# zS%6m^(mq54FB6&c~=cG&N>-MyrhOhY4vo(9*{1JY#Q(&L{h8b z>?m3gZ;z6MG(ks7ktA7-l2?N<(RQA=#j<3QfKdb|^;O9bO*r-N`z`ASrybM~B-1PX zb@7mNn3>f9yJAXVI<)T|wEsNAuF~A9!A0Q&tkGHGZH;9G1*U#lHgY=kK$8yd)O47v zcwT8L0q5ZTe9~5hP5L-=D&5b}J#Jk*qT)zgx7N(X%+xZjJCe;`@kuycjS=o`t5(h9 z+73Ps7ay;*yxrPWkKz75{H5%9es>I2rw1#~-9)>MPbAIaUhs$tnFCc`Wn}qVdUNDRJW>L-C;X-YmM}lr2{n`PS8>F z;_Ja$tF<`;9R9k#SXR}Ev>!Z3vvQ@|g{GpJdk&G2knV;Jc9<#Yi)AMUI(C{dmqJZ~ zSX;lRGY6oFkc38z`~hkDBGUiJtY5c$j8d~ro0jo|x+?`4iy^|5D8&>5Ro3odSXK3_ z!$3lC1Hynol1YN3$?op)v>o5fHJtCWG+!7%8n1t**^6jTSJT`MZntDZToBWR zpGH1okkl4yeOcJCn~w7S&aUj5&kc4G;cDA`Fzl1u9;e?-NHK`M7)oZ7#pL!?sdb<3 ztQb6_atgzXlgAL0ZV>aA6r3aYxNp-=Q^1)-5wYxfHkwO$!4KILR=U8z)JDU@K$h=_ z-WpHLJbFQnsL4D1H=qS3Yd>FONsH0NYICv?miW#YSO$t+L2>ROpLP|Hb8E4zOd0h0 zM%mIFBGoBY5AlmE1D-1^vfSr|=^^Bz~b+{Fi-^s8yVzVggDA2W&_X&&xtlS^Qn0`ONXl=eeYu3B9A2(2^ zUET)qs_RpuWh4!LKe2sI+wP7Bv*0b=oEUhb3sT|j5S+1_A*1V5d6GmIKTh>2YAt!{ z-Mp=BUR|-BX>Wrt+5_QBFRw^!tQd4|a2Kq&>p{MubT&V+odmX{lrKALJ()&N*Tvv| zpC|Tg%YQgzm-Hc&t_+N%p=`~SlHmN91oH%xu$)KkVU#@1@TzU;e?v+zj|gp>vf zx`SG!sDJtcF#rv!7}`3ENURlzIDwd}p!Ms!rNPRvIl$C*hg{YTe~acL8VT~mVz2U< z;dAhJnD=>V)z^nh>xH_NI};o~Cvvu%PI?xp_w7&g>ZjmA_c5%LU(bd(U27!Z#iR#b zoWS3G4S?CV7*NiHJY->H6fcJnrMm17AT6s+{|{&16f8=#WO;1cwr%?!+q%cLZQHi* zv2EM7ZFBDH?$L$E`s0IVD?z1$f$!z5&9)LKqVqs)vVHA#f&}n+|!v(#hPnb)&^4G?~~> z9M?!526RG+C<^4)Xk3VJ1kCheUxCkY=zh%7&Yl;%GHU>()hsbuufYd>!uFTG5_n?b zgH~N*O->40HGh-(rXfy}fEx~Bq@0d)Bo4%0T0%!t8%*%67a&T>`*TUM=y-ZQmHK?CNhP>yDHDpd0l;|?0N0+Zw@rPjH+H=L&dzjFms0D zVqT^Qp?ItVs1EAnp|ywoL?S%eX%5axCz#Ur)6*H~Cfsz{L`=i|je?*tpOPxHQ9&Xq zvd9uP?2v~Kicvfnp?FtYp|C{QM+y@WyIV`x$P43b$sSt3YswL zD#+nYxdiFjmk0kGyS&eW*Un*Q`A|FdnVsHpY$1m(5B&_^s#|0I|`}UBkY?Qgq|DYKz`7f$ps&Of~(yq50)yeH8Vmo0IJR zb3QR|o-*>G(r)|_*{kQjlZHOl8t{XCY zDi$Em)lsI&G~|U)kUp_%5Kq$D@miT)ojMKH(0&55a+DIMmNwNDRvgT!QS||ge}6Vw zepcCh@jlfiyH+aDN}MGOsLL)Y z)W5^eShl~P(HDSm{km5{Mr*rw{?zu>C&#sk4S6Y2{~inYXXLh>3Mr|f^y4v;%U(r|Z) zlget9xbTrpw~OtCE$F~9m4Vpk_EJSlgKqVcaUg-wrY2HezF^%wA*V$<*a_^k)#uL) z`jWg-!d%Y;@`vsH1v-r~e6N}v!%b8LjgEHR$~jTNg!{5GHMZ0}jV){#Oz51=YXTaE ztrw|LbUZh5_0>(2IGXMZ8`1Kbza=}cJJ(6{+^#gV80?Lj%k9J-C&`pJ|W zB}SGTPUH&r_du103OmxIof=H>Z3xHWs~j|1eg~p=h1V>u6UQTVh8Eaja|35?%^V{Q z9{vr{?rnEHLO$YbzQ_vJLtlp!&Z;QBpq`3v%`yeGT^cWhAs(;uIXF5nS%Lwz?m!qs z;+6@;=HP)yv{6G9ITIpd+ zri9Ol3u_MwFp7%R3eKET*Or)=?4lCyzl7RpmcDE69s;PaAt;~{4i8AdFE?UTa6q1N zRl;I^85KS@X4}uw@7AIfrP}-q4UMLEtYE&p{waY)^qB#J4VC4HL6K;KSSSOjZ|| z*sS2WhqQ6Gv9`u;yG^2~4N1xOXw=?~{X9LLj1Cx}q6%XQ6yB>rUumB=8n!2*ZKC&) zQ*Z7oplN(CN3^ZqJo+(ieDVHUXL15$R86$~O=H^j#8>QyM{jXwQZ@4K7_vbl$M48l z^WD6ij(v4$=G*T;PVC4D^6O?G*7PJOTI839K(tpB)leqZJQpHy<0nl$8gKw!?a)V$Htf!Mkw@9(kANz9ab{4qazRAs~SpTq>VXBCz8buhW8;igAsix%CL`&&kJS>@Lk6pbDnV+|H^v-BUx+-D=5@ycAE-qFxeykgh(KZDYudHX0w7LWrqR?=&s|d@i zd%An8+iT-sSijDlvv|Jc4Nm(SdTxwMw6d{_dP-B(okB_jK}&PZ{CIWyx?TphYjkn) z74ryU4AvNcZ$<)Ct`(wKPAfkogK5XUOChn&o#WXFxpcl`~Pk)$GqbhsuE$2&M{$%C+{5NHI~?8wlNb zGI&2~x8cHsfmG$_cac9?r+sYGsiwGWtPZAJaIC+RnKnXxgzq--PAim0?{TtR*moy0v@_+ z-jhw}G_)2_TE48g*SD96hFqV$X1hW2>d1-A07${8=3vzjyZnd=(YuSwdnIQ+bfHN! zm99^R>cz^<{lpCoub%F^T!&_BY`(>bi&yn+t3O;`Iw98x=E=N7Dc-uc>ln;SFkCFP>!H(l$zp<1o zO76wY5>|(i_Cz-Fv}xD7PfoqMG^Oz;|ka;-w7AGh?1__f1;_l7!>{%u?pD){7XrDC->`}n-=XANg`miacHIF%)5`m^huberDl96^Q2k&tkbHubmo3=$Nc5^C-mo`{@R!K#Cy1kd0=kSE<<**1; zZq0!p1BcO5#OAnQqYZ=Wqi{WCPo?ek=D@^L4^%1sp-qK{;Z~n}BMoJzdFweUn*BCf z#Z8l+Wl+5;C8s(wCxAZ~l1%C@2@V>9*hEV4H=X2szJy}brMX8h*e$`uI@=A8aXn@< zu+{SGqQ!I561|)5qEGWTB?U&6Y39hEDd#S)+Z2WVscm1MsQDARjQ#76Hq?gIi>Y=v zT&urbqlJ5)uT`w6AK3WC$;I32Wh#(pr*clTrLE>qHx-)-98Cv-@JpKMhbx9p%{*V^SIKrYROGb}O)eF4%l(}ln^st43*OeLx zL5CtrEre&J0nBLpu~*_lj^(kqmQ_L+2}i-gd&QcNdF>R zTb;XB4=V==vZ{jC2TK@e<$f>YoV{kGo$ZfwT&6`AxD#T*4@OU-%Chku@c6$Ba|oVF zOAyCA@ymKOh#w9tRlht5ZbBezanllvV1%E0?o-tpv3#F(V|CR&{5EY?h9IHPMGoE6c zIH&94TdTLg88LFLW$$O?101OzHv$-0RK|&fRa=YBo4Z)dMHq=9$@(Kiq|+SdXD9%c zhGYXX3P24;OY$U+@4>;Z4Af1ng!8c{z}lTDLagD+MPP6aWzTrFcqAi*`2i(bozzEj zj4rFgRUCx_1BmHFuS`bdbuQ5VhdJ6xk2vHg?MFhA1H0yAq&kVTy^5TdRv`&_Z8xuy zpQ=AL*}KI0WsmP8ur-dbo)WWwpEoX%NrX9zkjXc!VE@d2yJl`Kej!jwk5y-cYVZAf z&mLPUeP2W4#(Lu}6R(<7xz13->Zi<@g z5}8_J(Dr`y$bhkrT9Z$(1X{YpHu1V;5@zgeJI1c_iM!5a1sHO8mpDCK5`YQ1I){N- zW6Yv5)9|byQkfy3L%vOrcCFqw2(=Vl`N_@Tgim~p1`5wyDO`N2RzGZ}z7}B^Q{gBz zCrBEHjrKGk5b!WAvgN{b6!1C&L9~bq(@6!VTMmT{cVE)x0s+=GgFhE>nTr;mLibIH zi^ZXg@}dFBZP18g5%Ff<5(1lC1WyqgTF7yV;m%q^NKO`(yREtz4@Xhbx?j@YrKRH-mze!L8om*fv;#&3apg=PLeX#)xFJnlH@SC*M* z@L}lcT74gd;nJ<3hcAklClPigLgOty$7nUOt`MKiLn`dbHe1&spW6V)N^BVSj?86C z?hnEmkSCfr>6kO20P&a6v}KN+S-& zoFeY3oHqt%oJu1i;sCHqVu)pb7dt_sH42@U@)ZU@fz`fjKw`S$bL9=lp%3GCWU2u0 z6*Mluj)h+ZrHKw7NgTXSYT8M2BS9$SigKHy_}wdU5uO_4%P2{-zJ^mRu4NnZC(zQ(k$Q}`(aJ(V^5--PXk-&bfqc?+@*M{TtIu--N^QUo(b1x@Pcamq5g13m_eQ15e z^2vm^b#CZ=Y^_v=ejAp5sTJ@2WNCs$H}yOXKu79bGq+$SXI%fDrQX9f6%l zII^|I_W_1B7#bAUZd7QcqQH(&9N-%(JinZe1`I7#&-3!`Ez8!&jIc>-_OAC78L2g* zZ$<_61vZGB049$wkMwBiW~IAc`pxGEheF%VVh0%hcdF_KVgcefvnYlb^epOP1W;9& znO&263M-Ax6Q9|5RZxz49?~Y#ghyj$?NgJRtifab- zfS9?B#j`4;1BH5Dz^gyr976>&H74)i%;63Dforiks-WNo-GFsGX5m{92$)VmCidNc z?EKTlZOBPSWr|V?ho{4$FY_}f8VhSO46gfufSyje#u%sCc$4@nHN-a?F&aV-wcg%4 z)h!*%_757I5qZeNBs?)s6BkDUxH~kp7TZSMDgGF1a$%}f#U~RTC!sISU^Ec% z9NXJoV`errabZ_Ekai&>N$e^&sK=-oGGgrpNen~`7GOyrjE{m6shDB+IaCk&QLv ziU9(H#2+pectEah7dE@~du;CR1T?TW*YG%K#WOZt>QS5i*6ve;Aq?R;0#NzEk5VE} zdeATOc`PXJlPVJd5}XABQ|eLO#wklaD?C8d9RNus53D!VjT+2?Xxm?~mtapv-6?8z z#n773QD}^elTJS37ZN3mlIYMRgZX$PD4t?pqFNup19C9;pin~}WKtl+2eod+BY-9Z z*ktin5ZDV&Z;&J_&?W%_NM$ofH4y|@E%YVa!+|d!2n>guUmtWTumJTZAaEKAz#ON( z)QDbRS+XABtmbdunP1tnf`*p7-TYKls+3}uq@DeaL)A#l5^h6Hd}4-;y5dES`(;R8 z^uDj}mJ1)tpU}AkWZN0r{66pGceRZX!xq2-?Vhb&to)g3HLCLr(otp;n@ zihr28apmZ4J_f*Q>3yD7UK(!bOusPsH7VQ~yE8Gz^?Et5(BkwU3OQ-;5#};d;e(t> zRm1Q00qgSHv(P-s>B#+<{jgKu598{+%-oIc;%;Ts`HU)63iMjrRTf2~cuPDdoa7N6;4Y`Y%dk6dN>;>lHK zK$_TH`SJs^v_IbOc`khPJ#MoJcZ(=C3E>5qV+bjB8i$#UrGS9HO@#JcwtNgf>h5fQ zfkQPN*j`@`H=r+2y&6C>hz!@Iqf|_r%z{E}F)cW)P-PdOLge{Hsc9PXuiRr)$v*BR z>O2e37n`P5>#j4Mf=&Fw{u!lOzA8w8-IKQxO^+9$Rl37FL){|7j>F=kqs^eTggr#Z zc9~xu-dtNl(TuZR|8<1z7})^2wnpqQj>dW8B*xi?xl~>ZtiL7gMm2XVA!T}jFq2I@ zn2Xdxv5J6bM{+`&=u!T+dGih}FpQiuuas1P7N&Vp3H$-&G$Ak6slJFnPH`l+pJ2dD z&1@&G1=+vC)Tm*xrt!y1lBo<170!YhAxqA$!em3$0h&}VY*#mCAqlWP3*e}1ShU#1 z-va^lC*hqc^2_>sAh75M(+8?61rKVwrh zGPZWyc#mS6HIu(tuwcQB2@qACjZY0BS^xSn0`$$h&2HNT#N}3hegAR&T64DL!knIa zdubFkX8Jm?L_x%j8`HNz*F0GkGLk6n_vW2A{q|;G$$T0*t8|i9Xd{f$SG@)$PWkGl z75qI1o+$E!CR;DJPELY`gy(VL-9OQsjm-PF|s`(nHI*6qc_l612J+>$FvLLv$PV1~07DVONp&?TWU zUNC%M_lux4V^1njA@M_PUOagDw$;c^`q1+Iyy^I0j?i)dhuR5_I**2!R4{LcSCN(9M;Hij^->p;#|uDE8e9Lwr0iUQp>>4YZu>MTh@I>M}J+tgvgE z&mx0TdcALsmkFDy2ZYPOAjPj8*(=VAkB9LG?_!$#8KIrYi%p#2^Zg7`3rPftNaD+I zPfq@}@hQFeLkqR3VkXS0F#^!y*kkc}1M_a%gbxB21HP?SQWOYf=NPnnb6WIS#6aZY z`Df_Jgv+~EQt48@#aw9b%BTsUH@tnyRb$k{GmkB+5wU8FtkK_We1lmFkBUS*O~E!v zsgbKV*+6dE@GDuhSTi*2I&WzWOgI6q4?&&Frxq<1o(JNILVKFZlqZ|474j=8x_6lJ zqno9UY_ehUc@w7d@BCh{>x5|P{kYaXZ5o9+ih)xgj+_It@eX{xogdEwt>0|U(K*zO=w zp_2Z;3Jb{Z`G~;$!TURJnU?m$jvaf0PddcOqs!QkLjTr`@epvpCp3$abd&$2w{+E%=FQFCY!8hVj8KC+wJ(YGeK;7fF`3`U|VxT@u~ z8C=;B0vr5YU2tjdS_wGizOi=LT^;ovabKm}mxaOnsPE?;5Hm-K%v3hX*Lb+RN>RKx z&frZKI8oRGfB8B9=XLAJyt3~al^$%wY}LtiZ~YLHDb7LI>B+k%v#N)S<5uQm&d>nM zd8e9maP0#0hpX1xQkP^jb~y|~U*!VRD0V!?Mo4C?9C>@f`+F0|vb&A<{y7Xqo@XrW zy6B$(3wKR1KA7MC0hr%4sreU4+W%0t#7Mx%!N%~<%#DeFgPn!*pI85w0Qb+7j+29x z^}mo7qnkjLQMA!nrCnW_{hZ*k=eM>PVSr&+okE>LS>_?;bpnc#@`@V$2ncZ{q54DR z-aCJKmS3tgBGWye!@Z}sPWmNEizg_pfg3_7dbN2t{k3@t05qK4i3#BSLPKLCLqpL6 z;}zh~&p_TbV*1Pg>|gx)wMBd%;+#YMc<`+q2xi2^oztKNh9)2Z4uJtcMg4^ecz6JG z@$lk%aDQJH0C2{!FM{PwgUb823Ggsr82_&Jxt8bloEhQr{Q;@<(*P7eL?n#i?+2Wp zMsTITI0TXhcV8FI!lw=p{7X*7z<|1Y{E&k}v-gyfQ&X_9!N-84>>_0I)1w7u5txqa(LCta2RU66=KTh7`rVwvN8k#vJGTo0Dy+?eC)}xR zMR4smat@$l%<5M{J$NK%+Qg5`0pJS@4sZzcop@bysu!L|=L-_ptDn|DJvsz`ZU9~z z%q0kr0cD|`)189@5EnT`FCLc&e#wY;2phoVUx||!xC$l;#wCU%*p-t1iTDBcZq@R!o9JMF9+Wj4!An{d~|@mxmNjfY|TCE zwRa9j%dY+(g`hK|lc!*Z~I7t!BRd_~qnMAHpNNPJFHk z%llDJqUwLFf{{R2K)ZkTL)-$m3j^d_>&E5z?fC!X{Dsnfuqc<1wIQp5It<@a-)14J z-|jx0zOH5Ty-6nuJ^}zUH8cD@llZ76z>fC!A1hz6)W@o`EKIYh#y@|Kd<8Hu)94BO z5>xSe$Eb-$fdTHJZ-Ik?+yDiCWQsrozC{mP^o`NAFa!?ex?=<1GaFv?i1gnqh1CIn zriuYQljuNt?`!6#+(6uVV}1R8W;}j~4}av2d+I;+lD~VRP&%`+zI!#konC)-2~5ip zcl7XL=b!Gqw1J&h513j%YyJ=(&TOfKt_pNz{h+HngYZ@dHb!PI@COEYPzZPvvT4f8 z)qdqhye(A!SgvH{(IL>Lfj_QX0PTX@-+sbBx9aPUjGzx5D5Urb#EpEt+5U1zXP7)* zDY%1z01~*qCg6`6vGn1A1OW1j#Wn}N`w|`nu%SawJ28aVt?MH2qn*S(SjoPB0BEh+ z64Vbv9$Z!evoL*u{su-w_=c@}{v4ru^$dDAV1AMF+qLy8z2J9=AMq1+7QEaPlx35L zS0j(x;m5dT9DcgPba?yo$q#^kn6m?Lu|wq7{{#9h3i9SF?sIYYvL9>szA^pd zS+au#2=!(BBfRwUd*X$E)V9$_{Chy{&^K-e0{RpDJ^IcU<5TvHf6V7#@`ZyAo;)t} ziy!ox7{504!!YgypZdG3s%OTRXB{Do9we%c1s*t3l!HaoNrzoR>D|soPQuG*lWo%E z2u9uE=K0+}Fr!a17yWtdOOea)k#>8$gl8gnk?Cs2FE9pe@pPKyioM0(HD$)Rq-95+ zMm8QsE(K459bTbO$^QJ;709;}Gz)~Y$fe(n%5NHn2c+RSD#FfZOyx&wyo&cn!oON@ z&r)4^)Q4(|5M~AbKAJ|al)6){ zfJEo*qD;=8B`jXuSiXDmLo%bqFmw?7l5`*=7iJX+bReqnW!>p{(zSLz3ds!J^I#7y zk0VCtI5PutK);<~nYMEyF=Hk;V||{pgH?POeY4UCgM9j)HxxX1-Nn(0jj{qoLNUg4 z%nMKkw-tTvSfFEZUo6)>~V5Luc+M&>y}Hz>jz?-nS8s&l}DA9Gr;6cn*-832k1L7R*55y8;HE((j-JK*q_D za`)qdVar)W>{Lk`nC>1G-eYwGkb0hHhY6Qisp*eWU*|Cw%3NxN#TKDcC$EgahPjzk zS*zZ;bQ986mXA_GjgB?wz;GJ)t0Bt!J8-2>iGGU39lyED9Cx%&t(E@qtrHz{P zYPD~K*vG9NI68#1WSVACr8GWrb)*P146;b7KQ5$SE*WCyxFq<87?lLl`F(3HeTz{v z)^=Y={v3w?eIoP`61r<)%|I)I9v$BKQ0YN*>E5>-rAxcLXf;d8Lnmiyk9&`{Y1hJn zC*_FPmzV}^S?yGG#h%m6hYL zXK4vSbgH`sXD>y4^ZJ{JvPD7{6_%i5}S|T%@=58Md7z*Hp;njC{^81Iyt!`e1 zm*uDw9<6A0!n7#d1$}wGYQqqAWQ{w_F5Ixi3SlRiZ=cvr^QIlxDqazTwSDgze`&ZI zTP@Z5Dn7w>%geU%!-u%cy3oAJxL6^qT=h^6UV3#Y+KQuOjlZ@bmy70N@6oc+)a%qOP`d?mD<5x2 z&xdq5u62a_*lI_|*7%*!=f~L!GSx8?5n^=?7v{F4?Xa+y(e~+1*T5EMZo+(3PFGC$ zX06bQv20{oV5tIBpFD~YtM*3rhux*AjDVUYBkQb>TRIfnROpy5nsc^+f}HpYhGff@AxNzV zjOj^A^JM4~o-g*oyDV3ED~;KYipX}}Q#qF9ndX1hEF8hcX} z7`t3dDw@5Wl)T+7`f%dxN{1|N^GRFPLx|Bw4GmC`WwwluzN*3==aOO-CS*1U+#%LV&czCW#QA?X+>KDsIO7er9)2X`;A^%Jw zbt`;@5K8V)G3NJS;Bg$;gADRpdKK6rA?vYOrnvAkuhv9{2OUpWh?G|)dVlt%WeDOi zoU~*_=K+ZOh|@14 zrD{#$RaYC({fcqpvv;5@#i)v8D*G}zPN(KEUeXq!ugH5HSh)z%UsUpF>(cFL10tB? zg0w;l&(wMK)HxkqKt1@pW&nXIwPE=K7C=?(E3j?n}cH~de7qER_14=Ywu#5 zITJiRG1t+(Cu|qPA$F@MIz-qnx0fKi82Km%+rHQ7POhKG;t< zHRRuU6MH)JtxS)>mLP|pBzB4MW@l%Qlc~h2T?lL2HR%m8kMy|@b4b?x8AYp3kLVl; z$DoGIgOr%BJNJbeq_5+!xp4ghB1b2@{Bs~>;t)(>Vy2=?T?{X8?W%V1)YLjEaebHi zx-|Blf5!0xy=1*<=y?eg);S2@b#)xkSa=3(^jR$0-^Mcxlh-jD2bU4WQ@H3T5{!{n z^!ZfZOQ^|sYPTaytP~T%NVXR~q<^;zn%ehgr#ibuWU!@}DFbXm;=X^Rei!bO*`e2x(8*mOVs6MrC|xx_?FQ7f zkiteWvvM)|o2WC%tFXZiFYE$aWSs*{V3J)F18KS1SJ1i!)siO>Xk{lg#`odNOkmhk z41snL0l-LutrxA}o?I)*hJepVv~$6_kH-5(@LIOgnx!a9E)rP7tK)O73pSS0;HXY( z{3qvEqLt5K4n~yd zVCo?kF?$CkbMGs5*8mtsX4lETL@UtxRO}J;713kDaIlJB#M(oTeO{1j5xO5O=6vM5 zYboxLK`$QJ=rLo@mRE}K#f^%mkplzksZ(%5)GnYV``50?9y!6OjJBku1Ydv zfW>a=7iXH?x6gE2aQ9s|1u<8=L!>fayD?k7Dv5DSkwT^^b9e|rSYSsGU)P+S@%UIf z^q79CCEm~@$Q-p;+oMsgBzoTkTV;p!m2UM}#wlB`_L0v77*W=g593_1lAHXIqjJsh+9O0{uptMvw49ia$ zKtyF!ej;I_OtrYZaZlSx(Mr$Inagn+xg47*L#6hvo_d9rvEM{S#s|@oN){d4~4(b#^YoO(P&+{(3Yt;A4O6G$UTFbjLBUqY>#( zNM*RfuXKaYVp`OAMcLuEm$f$r>a{4K=bwF?3iUmU{ehgF7fud}Yr!-9N~bUIkSke0 zheQtub*2PetXpvs=#C)~jO=9W7{^P!1OC`G`ba!HfQjVC%3f05kzWc*}9`@2y&11(329n5p_*&L|yM)B&%u1+8A z<$PuP(VtLArkE@2QOulWe)J6lIHzpjj!i5Q!9*ihpPDZDPIV_KIEKB+b0UYt0lIwn zsk1NY{xN~S_9?kWv^(W-dvJ5$WH%%G0%*xg(};dXc`Nipm2B@Kf=iXf1JlJTRPyT+ z`we<>0YL@V>Q6y|f+#FTEH2oJu7j~{A<;jIhU1?OhL`5ah$S+$|09=Iz-Kg{%`m1S z!bK|`CNEcARE*b!KH^Lp^OV)O;`zRKrTM+0 zvg3u1sv#PVGv)!?^LJq=eX$L=Ff`N=%d zXP`IYHvJ zI0!99;3&qKrBIOxknT$<{;py`WHJH!CLZ8nf2DLoGk!WvwvVF|$r!($hL;AHfRO^V z?EnbWEiI>;_($%>$dvrlRrqC7>B`WRkpk2da)$OOmR>=xEjb(i#cSSLk1pxB;7ZQB zQZ9w!Gvr47-`?w~mYCc3pw3j;10LA3Vo#&A;Cp!~7gyG60ZgHoMO4=?=pZR&p+g

%!2w9rmK9Il3RQz_-f$><6INYAlQQz`1*A^coZ%&R4Czwg?El7sUz5qlEcHy z&r(nxD2&!e`9nW9E*```_N>tbEpn=Xs{>nW&la!?!cY$M@wrt?XId}E>FE<{Zk~By za1s@q{TY&pEEkfdH~GX+;dS=imF?w*an%m{`mcTWvAM2D5c9Yrw>>dDswb> zK=HstU-kZK$BR^YEeH~CkvhD%A^TuC6D6iSk+Sg7_#+sV#c3)kRDYGC(5R2?|N z$OL=tJKTK*M5UVv5DDh^TLTQt_5%FrkZ{+L(t7o~Tzfl~8!TJddW52xQ5UOypdVa*&HHSsXhGAo0(r(VAZvun^%P}h0sl0Ooc zSSf(ZZDgl;h8ZEYXQL}b*Td2=Sgs$fV*_HSdnf6uk^>ELND1(!NKOPsh@Vr6>ZR~c zfzXm=(fixrmd_^@A9B0fdFjb7i=(?-Sabmns3QaC-+ZJzmRh^p$2t~glOd1EwF7sk ztX_7f*zR$wCcr7J9|hH*NV0H>q{HJpVFMMMpoA_6{M?d7ik3gVqX zuA?9)?8m&Epgi1`kmUESEg8z(r+kLr24njb;x$n;3?%{f-3+AI)LVA3@^i`yTO(WW zo|Mvfs@C1XKQS9929n%-gAwIf9F&QZ;RI7g*(d}Db0bZmo%JRdytixul)h83>=-qc z*R7o{^}fND-@~lMrB{I84hh`Wx7KX*tcwZA6rN-oz8rZ3_&2;rEOT5iQ0_T)n{*r& z0t|J&;j;A`L?}k58eQIcITVLpK5Zyv^yn=q$nO?p7+9AI-aeZd*wipgJB?5_=+0ga z8Tenr^u>`|%Bb`H)N!yV=^F}6N{LV36`h%f7|uA;M;ne9;LPNn0fl>t z6x=sBqm{#-D$z@{IhZ!sbsrb&oESa&!9oHbQ%FoWlp2481(I`lUH}6Zoo+1%`JxEU zRg*ygiDV$P>EC6Sov1Hn3;?S#)|)VySc23Vaq_M)g^A{0r(Kwpf}Ypy%aC|O@48?dkk-W zTeu%IoS6O{j76QM@+POUWEw5?czwyke5~Zg@eGV?&!kt|;Ifo;&izIuk zYDcb6KkOQ6%e#wg_@UhO`4XX8)+ekt7dUV`67e2$?^Kn#$AZ;eLQlsiS3;#TEqvRA zmg2t%6H=zMZQM5BZ`lf2;^fkZnu${;=;YwBK?<{byenP&lZ@veTd zM0QpfSr5T38W1mB#|X{4JeZRXP{Vc4aWVSV(g}91naxz%kRVP#zkNAA?T!uLH-ESs zy#IREjku8c2c_fuqXp!eIYgW7D{qk?goJ067+QLCl~il>6M z*vqL%jK$xDBLb}0WH#qmTGFBKNoXmewRfYAAVD}JQ$OtNoh=@dsSPJN;&p%vxFN4n zmLh76mE5~FemRwfZ#~nlsI;zO_|Sbbe)fy!US=(lq!OU@G+jxDxp~eh(%Yz=Lhd~m z0wz;*e+j}$PZSmGZAcdV`8qX7uY5#(+cE(*hWZ4^X^C8Pag6eu!jWGyaAqe}Izsvw zj(#rLldt2iU&w&4xrfi8Q?7vM*iP8A{o{d87{8BVaDt8&^T6dMNnqfVdJ&WwR39u+Y#_mDCX4LwqNG2 z$ziV^p95R@aQI778Yr#p%(r8^tbP6GT@xa!wQ`s13y6oe3}K1H%B_k60Fw<|)358- z5StQ6D_5UiI9GP|EK{o}XEINl4QaX;8&t>b*SUh7$zXAy>VF@GgcPm7i2u%aC3L>s z(qR>y0;UM2g;UYW5EOH=rWPbguCL>yoAUI>zYY{%hr=!AUCo|sLkIO5pdd@~=ujux zqt+=o$h6t>;gCgfjycvu8l@MTNYQ=&O%Vd(nP4Y0`#jJ&CY2>WRdur+nsnE6m{3ZgBLUP zLq=n&53GBhE~|&-mhl-U>5ug~B_|A%KGYGiTM})umII!x^19W^Z^IW1PDytBz>A@z z>2nAJomfZ&c62Up53%SAp%yBDi(gj99~@KE3eZCEF5esMCYSj#qRT!U6f(uU_4NU_ z`o%Q6MpGtK^7F-O;>Eu?2i!5UfDBEBY9%BZXdGRrAKw&`GMzM9q@nY>w0ov0hmgbt z`B^J`i?PNVMUp#FKntke%Si5kWjA3H$IC6ZiFoTg20e#&L6DYbl5ai2_*7hrZ?l3T zp~xD51Fa5M?Om8&;j0CeLcWAsqyHCU=M)@T6lL2uH@5BM#>9Em)X<7OiPv>31*P@l1xos@Uyp`4KsYXjFqQ(YKsXv#bt zb`KD1>2qTbJ2YhVK3t(vaLI0=2({LXiueHkQzlf0XMvJ0Lm*fZKP`ZvL!AypHV{Kf zK9~riIX3UygwkX>LwUY|#8g3OdxwhqS;x3)LH(n6XN{~L)88#pSjZ{0ZpFV)EtW;H zW!pNvrcu{VnE7wHRFsG_51YtoDbGM;G~K2aC_w<-;vVH)m~LbBDO-O1ZG;-<3{*G{ zifZ&poEx8?=@`_xtvqqdx~sbkN;c@$B2!ecj~~}+7KbVW{Ys>!xE#=jE8|xj%$tUK&J2aXqN(~bl*Nz>WWM&F%f^pPK4S{vh^s4lM7EE|FkS z>CjVQqGc940Qr$+C{_)fCm>^&P?}+T+o7-oeo9?=aGPsKbGPMD{ z{K8fofx5nZAai8>X+E5ebO}8B8CnXf3!;uy6)*$V_A2#_Rz5|vK|4}y_bNB~K z*~=4Bx&lL*1ef4g-Ks_E_v7K#!(LO^$ETz92Ly_I&3G9|^ zS3q)od?4Ya7m^P7y`_cs*Vmq}U~iT=^)&nF+ZK`kKoE$T0b^`UiXA9dm$WICtMj>5 z7p?Rm7gilub+S{tpr8NH)k40z5w;iQtSIdj-NH;u^E&U9&@fb6ABWMT*)ax)OHL2NqE@oTs(mk^#lKX6g()+!-}S+{bZ z22sjNbNw46!*rR?g%oqH%F?3WGGF0}9PG~Z?O6%WDxI%$yPd20BPAbGoE=B7P0%Hi zU$J5)92PNaq&afRqtZBFnZ=l_RzPH9vQL?O0iCCGX1e1acVo>Lu1O|Mue#VTHmpi^ z^w{Wku4R=#cAL?~Xg=Ms9Ir5SN0mJDfd{9E2arS(GPtuNdGb257AG9wtj+kB3`UHT zK$_?orRe<_X0xkl6b#cFsvZY@5eBXo3BH#FeL6$9_3pPedf@<;z8Z@<6$rTKIWVLS zGssx&Y58}K*OI=i-KSb)ISonAyCpoPANyXcKx(0DaXey!9~@e?la4yh@ z6aM$Eji19iv|HWVuo$aJ$n2cCj0+2wza}&V9pld9~=F61fa#&3LnZmkpyc(}!Z5aE*9o z+6UiG_{@ouC?{;^VT~@4F@)+E$<2$R%Hv;@YsH}PLq{x}CtT&KjIAz2Nlk}pD$Yrv zy#pDYDiD+V98sijD$HXKntBrM8#5uFQ>`baBspn=Ab?7SyN1E+-+IFh{byH}u_lg( z;9=Itox2DrriC2Onie-Fb9;lD9`{rl`E>rUsrT%3>3nLiCJ)xFG{kaTm`@7jRr0=| zhVAb8yJNEaGOJ-ijGtx}6kfD}St?^|^dQvE`t!FkGrhYZu@y#D~=`$~NLFTC4-!fOAAbjUC7#zOa- zK=`ku0s}rP!*5#T|DFCP@5aW!`2TAYq8dRJk*u*;q{aUJbCCpr2#dN#KFcl~Tm^%+ z#WHX#`Qwi`?;q$G`uio;;`rweAq63UC;H9D$J_VMiRaE5`$qOh`^`o4Nju(jhI{a5 zI9(#lCoW{z5jX@u5y1HRU($U5d|6e1Kgfhfhag0?(zm?E^3p_X!=Qcw|Gp;pF@QsK zX{}rcRwa0?kP&nD&Orbmfcf<0@$D$^;qgI0{(X-i1jPYu2DK9C0$2h1f(recPa(v)xAK@)c4Bhx9u&E`tv?yaRYQ83|yDK+E(Yr2iPY^ zj2|BW8gK~6a@Y9}@fq)BigD}J&BM`=0X!~%!*0ndIoAMWS+vipLw)y+B z0x+ZJ-`JMajvTKZ+v_SwAi(`GFFhgcKt$p7`N8sL?mZ}&$xr32Kd)00z^ zhWQQ3U#EI{he9b<7Wwid8X_zl5FZ_SFag<>f`mX$&X@Jn9z)MIM&~csA4q(;)d~1s zBadzX4dmd*lPLc|0RPhoGJrFXmZ84{m)`k3fMGs>EPpzD;OXOhh*o_re~Q~D-|;#| zd(vu8eHcQ2>VD!!b=pXNqCT@UA8Ai@)_(LqT;6*|zYl*bf@M`ENg}_B?k50$PChT@ z{0F#qW#{3L$V(kV2Qp%ZZ)#A|Hs4gh1BFK0pNYB=v3wNuY&BNk9bfY0^U8mC=4hU0`Fj`s1=P~ybTaA-=nWGsjHsS(B+Iw57 z5D;il$+w7LQ~Ib2PfQYY1AGqhpwxHc#}6>syNUND+aUk z<0dOl`Pxuh$K?7?j>m@YTpR{*7uH406Ftf6USMR#Z&4~+*K*pQdJ;M4M_XQQ@VvX{ zR0V#k*36C%5&?mAQba0f^s~aj89QtQ^GK4=zEoH?!8)+>NZ*uEQG9`ClsXaRxkR3> zg_T;0!eNxxFG|Ts<=2&jxcCW9LmsnCzoWpNE;WfY+Uk@;k#YGTlTNVDGyJ`ZJ@RkR zmPpm=YLMTzZ(S2=Rr%iC)h&V=pLjd4XmtKj-I%Hhw*&v~E|MB(LBpdRPr#7sBm@8n zPUK%;nbe`OiQ8hqj{QWY-=^oi;n`3mdIG3dlz1&)zM*@;QPP_{TzI9;MIE4T1K82? zfTDWEZ^3{1D-2%;PsOi!#L;aIaTE0d34%;Jx4B98GD;y61Tr93hdmsd4V!B+ z3*;XxGj17{K)()@{bHmo5;w@Qts2+4+y$F6$(H0H-|C#Xb2>{g^F*&CEXC9)*}}HA z++sc~)x@`d^tD%%2*`SW2!K^oDOwEb7zC1IVoiS{U>n6_?(DjV18o*M0aa5uGG?w6 z%@~Et)kRUWyu#&(xX#=~Ch0+^dYbWSESdp67uGMC8G73y-+$d#1y0$XTAqiPPZqU0 z%oq&o(oy@5X-*2y$BtUg?>+k%gA-lYZK-pPdizH4I0$92WrbrK;A?i6sZTolaC-yK zFC?CYmJ5g+)LO~&8O3hp%1z6XzR_#v=X`)OR0L`rwXQD?F8p8qr}NX!uAg*)>*LD~ zLHwnifmy%(bPrefcQKxDh(r=oDJKzA!uYBeY2WsB6lO_DI>E+tJpG!{7DN$le6|;T zU6!y2GnuNZId5i#I=uYLeB^TEejV>9^@3SAPz``_Bgnnd7AN{tG5vjd$xrvZpCc>f zj$^gw$6Bot)^Y-ltk5qDT-`V|HJdh5I+z2xPC^C~psnL%YaU+7>Ur12L&CUZxWf}& z{6e0-_QsSGu~DOWnk`4{7gZ7HN+%cGb%XTg0Qg7Z%fo;|8| zgO{AhvT4--ue0J-_N?Ne`La%xS~r5R{f9jj2orhER9Ocu{X)6W-J$QV(@0H3gW-L$ zyqZ9iW#ve`il&e@9rll~2CYa`9bEts$Irr7LXqm@e52j+r!_AvG)M4@j+MGcCl6(&a_A)zW%&lpv zy&X&D=%gi7d$Cf^H7?M>wu|YiMw6AegsQ?;xREeCuO@D&^ckb8u-%MF7w3l4`G5CG zAC6zX%9jB+W9uAOmKkGBqLz_yHm>K+L1ba1(+et_L4qVu^Y@zKWELUH{g(QGN%pAP zQ6P^KB3~7bF)-ADu8`Ug=q9T>fBlNO_F0Um&(Jj0ZhQ!pt@qS}!1THoOh9=1upiW- zh*cggX@|+JZg!LrkiD}v`uAEHw>La|!2HvhO{KS`W^xdponKQs8y%wDY>?32SA8c( za!-T9lhS359SIxr)TZi+q%HMB0*aM!wAf)o`U1n&=p#$Ys(zJ z96$kTAI4DHFzcUH$*Ia$exFDL_`EcF?k3VLN=L6%hgi1nXQ_B)Uj6?JU|Wq~NAe;S zZRb88EPT#9+A~y{7=m%U_&QSS6Dg}~<&qoi;UgIhV-vPMHzz!HKTlV8p2v&F;`UeB zwUg*>zK)(csa&D%R-dTuoS=)vXL_)sKyDxrlSxYD0k}-*^qGYx4H_o1- zByJ3&C9bRB7#Cc+e}k<5(jDc~V4R_Q>ZL5^2G{nbSMQV!vF+!y_3DzrWi=&g+;1lM zt_9n2M8X8qY}gsHM!Yy+%R8zk)fcv5s+P4jC~7ip%ZxNK_M^#iJ_LB8d*~z%vgiuKcjWN;8K}OSFs+z4qo> z*#{Z+p|*|GPu;?!iHLBe|Be^QM0Yjx_Yr7}=_*dAG0dw7RS#bREqtwa01B=+?_3JV z7ttB$OEx)6OZ)R}pU*)_GQpW&2vR#D`Rs zM~$cXcGNwZnKFdeBn4h4#U~dO7$>pD6;jt_ZDHV5F9gfXU5OO?BD`O$Z^3V0(ns6G zsHtySPbp7Wh3)M4Tfe@z{B~mO*)HwM@d_-TZ=(Oh1>hD}n_dEmzl+f_L3)CsCU;jQ|0*Gvq3r4Q@9sG8+$7a zxx%>6@oZ1L_zu)0N8EFC4<))xRNj$=JN`6j+#|Ubxd?C>0tVPxlitCb?glL`!%S`< zyO?cRb6ttI^{yrvKE>;7src`_Lg$hZ77~DQi;;J~w=k}EqN{bh3+Hlfo5Io7Nd@Yg zfI47?UKX3aO7+#)#)H`Abpe8+f9wXBk3?vPxC$I}&H7OMis?jW)F3P1zB{uYD%&8N zskx^NaFh`$A8bXakzL&r9`+RBk?rP65{mB=P?Zu-i=Sj|#W$H^*5YROWj3uu(!Zk* z&uf%{?Uye;zt-e>(^;+=rBwPk9hZB>W?3Idx zhoJ_SiIVP6sLy8of<$_@SuYlfJx0y~j#M7rmIuCe?JG=*dW$glzsTLP$9={Od}3dS zjtbi5amHc!G`#BX-Q`-FN=iOdy0XDGY(32 z$bCMB*u7$c$X!aEFD(E!kHgGC#@;eozYQTC!vj_!tQ4j&tZE}-U70vN3(B{YY za>@%`>O(5)J;#yw9t7%fyl_T&WW@n!m9^LyCk&#})5S}Ud5u&EFiQ}j+OV$hWMV4< zB`OPzwkGwKd_@4f!O(cWAv?l5XCd#cy|5OVA+u`V2N{W-`5sd%;#;u~w zgZ+0eR@9D6=t3PDQMbE^#@(uPdL^0est6R-r-Rsm6r2m((R!H(7>F|8eSrccH z(6H_B9YG4vm0iK0Sa$!7I0U#=gisKsN3n>mlJnthvqmh}bq%TK^cJ4gLJ>|BV%lbtX-LhoU zu^i;5Uz7LYDP+9R3oeJ=J`f6!N;pZXP2qo8Gj=C{J_o83cyAyX#^B0?~5aDwX_i8veAr6nlr3 z)Zp97;)IE&6=L2l#Zvp;Kjc;t#CGQG3A9!SaUY|L?s?H@JVtu%WaDoY&XTY;Q&2tb z#mY5n?rCl_y&o3if{=P)#cO(!7%tT3JG5MmUI;As&gT^!eYu1H&1DP)=rs=#d9{eq zbmQfl#;)S3W5oKkecy>eEGJX4OUKvqPZx%urF2n)rU%U%)J#r1!^WE<1Q~+n>crfT z7BOIhdhIxC7F`6>!*P1Csb0bLYl!WR6lfgMgsjTi&Q@tW0?WiRQDa8n;y6#>AmUp2 za?b}2tgm>3!q`5G`b`)GW(SlF3&Qr|vyYihXvvA&g$9ZkPzUkG>~NrSK)6+bMNjVz z^w@lp?EumjlWzq>JA*N6jNq0)y+n`@m+z8y*QbCXis`L(9!RrtK};)p-|+lJM%526 zY5dn&z&{Bra!bn<1hx?N6(+HO6BUw{%EYyUoYKO&&Nj+{s}_{3k#X11R?6t~*Nhtd zflraS0w24eoPCBd!ILW-13K*@H&A0Y8x%GQ7vQLJI|2#s>E%df>EJj$Feetc-13s^ z^s^TRMDq?pqu3Y$b}9$<*>Tj~&9Eb|r@fVh?8Kj^E$L%KORt4asCBa>-R^+MFL9yD*l1LbCPjrk}2BIo?`QoNEv$*181%33D z@AgkQnB8SP7brQ2?dz8pswB6Hiy95Ac57sgDji38-lh!FaI#fPThsuscgL`H@Qod#vGU7b*LyYuy9> zGy$$~q?InT`<|Ohz5p_vo=A%Em-&MwADviJHnUpD10xNW`8NU9r^Vp$yc0P<=4_9I zilq%MPj};8psriWisTTS`d9xP)X%4vZspc>Z>?#$EmExb4lTGmjNol)XJk^pt=on!MpKzBsh8y9-RGD)y;(g7CQ7p%X?ZUFpjF%uMR{k?DC`wm?Ar_z#547LUGD0k{!l+#HEdcWobwm6dz=Pccx9S@Xp z0M72@o$9X0J6(~us=;eRWzt70B=;?^_woE%n1BQ47rA`>SQ3$%F2C%ck?` zS$HbFb7b_5SOTRrhA=FVy##?7<1uv1(jw2oe_K=I9rn~D>R_U;nD>;L6^9QSmJjBC zwF}&GBS&nCM;_jDC018w742ymA}f?Lz)@Kwsk~xhZSXqto$d+(Wi1rz5G|s*&zQL9 zu}-ng=9|o$QHl+ugRjY0>h18tJQHWC`>TA^f}PhRNPHs1`uiv74RS zo#YR)P1Drl3$WxADJo;rkn5vg_qiZEvX$CiQ?o(&qT)E34~CwTRyp^;p9)H(SYiAD z1sO;oG7$TwP^XdGR)kA0y%@u}%8SyE1C;SwozKe(J772c1H6}ETuswHE8w)X?ElJB zXc_kZ2Do0%*J@jwXq}gkxTS<`?4p%*l~;Z;U)Y&_64(afB=jG~bLf_8wg;1K@a(U7 zTrGNDI!?+Tllstv9yFCIe|EBf266OkvR}D&zO%rdB3vqC76l(ZUl~4?yymrx0|wY! z<)fA7b;A5ZZgshrFg3oxAkx!Y?+ySft{!7?e`V$;v8K3?b))385|v|ABr}hGCvxx> z5xxz*nxOOKZ4aU?zp^(lQBcbH7~{jGnhSJe zT?S8P4Ge^TeIr|aA>Q;q&Vr=mnICV1VncJJHbU5=8d(`L4Zbuw8)P8kG!=bKBX+@uRAc&6x6p zy==)h$(8am-^mVhDX^N|YhbvE5oTa0v(^x8Xo70=(niw38_U$Z8d;M##U0Nch`Sts z{~Zy4)|ae-=v5?mB(QO@21AlDL^T7T4nsU%ArTqauQ^cieL98<`ml6i7p-C%XrnS7 zWmhl$*?N>3=mm(M=?#zawHsAvf6w&`TXyeP8i=)@^E(m!?B0(F2pwrR<-Khwx}RSv zr%d5_0&`jkq7Wgb_9dAsIL5}Mv-U&grs#wK+aVy$XY*{vE#Qa6#us;*D5!j@X8YbU zqVN75pqzJo7PeejK-suFUS7XXXu?|y&X`ioh@Lwhtr$e*3PXGZcPN;_-s4jKZDQR? zUvsalBAF%KZxLZ-3WVRd*TKoeLxN|=n|Z{2 z`|~ID>(S^-LaDgvzn-tyA zy2$oLc{L*-FzU@@p2C&w-tq|K;FgcL^@PN=81_BV1evsWehQYQ{bt^_V$SIDKs{^T zWWN=(IgVj*-`GKjCvr*L&8Jp9Wx=2U?uV^3I(KY^#{D=@+2&S!;`-@PN@_qoTFHN8 zxpH2&>d((hmRC`CYd#gOrVS2x6431MB0 z;4`L5_k`hnsE5 z%m#|6q;SPj+n$WOPi4(Rvb%pu$YUkT}q2UNFI5hNw8+Z@$tM_qRS;~g-E&o2h zlV2~nW9-x7-~sbp_sizACSX^C2+N&t%2}tS>hRMewZQy|8NAntKIc;9O5#nnEwT=i zIAE@0fSvFPa89>(D`g5#YR%vUy*xDKPr6%}Lk{5a+osFH@(v!6p76vpz`=tNDTuu77lwl0rey&?)8v{ryVtjfq(4(DmzzqyKFLRw6(>bm zw=@pp0=V~eb+i7Vr3^CiQ<9)YS=}v-cIGhR-`&guxp72#Oism-LO}*Me~GY39I3Sz zlTS{kV?9XHCAlxl{mT-E9qXZEyH28Gr96cPEjP3r|qd%mp`N}oAY~Vc+8l=FTmMtbZaFL^jcCbjc`)fcS6Uwhenx1AFzisOK*(8#+=jbx;e(S|m0UP1GM+xACKC+D?~b}5M!azX6)~6H2;md_KHJak zb%ji#g(gc5`F>0p=5n)#E@@UAG{4t#a**b^J7O(e1dSYhlb0A3!P`NhEYyTjjOEE- zq_K*el9UqychneS5Exq}-qBEs+5SrJa~G~#)lK}oTEK+_w3BMIssyuxfWy6TB$rEE z33r=xW1;?tK}`=F5R89L#2eo4{f>ou@8iyE!{C67?c%;gO2%m8@xKX}W?Wz=1Q!(8D}tK^aF zQ##k&5%`Yg-vLu`*cx*VCjBW)vxk}Bk*M&kD>X8Bpxdc zoZ+uJdE8E^ZKf%H{Q^dUvrp%NVr*(K9?w*f)jOsSM|QKnOy#d@xb9VBeXS(dV%d>n zjb-z^I|bG9`sGvJKh8&l%NdsOieoE##(_rKj}_$l??h+Vx2>ensL{&V=NROZuh)@Z zLkr#N05UZN&Q~dZ1 zWNR5o8<-~VV6gSA4(?Nrctrs+KskLi#Ke3L;9PtQfze^>=mLNgCp9g5VPi0;Cocij z>7f3s9!>cK=^{1R+1Vk30c~wp~Z)&bHsdwQ;(M)JeLceZc{dxwtVAW8~DPSCI z0R*)&>3vqnfc*lfaZA3zUPqeN`Sq@4Yj|gr;Y*8_ZcwSTaQrxALlY=f`HyKML=ld8 z87yj{eBnTVApSrC^-2TOh6KUfy4YT^M(^?_ZuShtJbk#b_hSPp$58uv;VbWs&`Q#p zFtXD1f?h*D-@Ui&_aKn6vi2hC?*Y+)YY671{s{RX2UL9z#<0SLxB@`)#S9*R`Fi_& z^I&k>PauLd`8>qD;iW(+&MK~WSAAc`1pg?Di}(HNl`=Q+0m$I+PU9+aPXPQz0%m+f zS7e$W%{grwsPm!G4E&g*Xinm~@FAL8{k*^vOxwf5)fRCK4)q_)lz&pJymje5!;`Dx97Df- zwPzJ=TeZ0|@+t;sI;^Ktl!rxcULbLt_5~##;gW^MS?VqsYUP^dtWO;2ZtpACs2( zbfJZlfx=3-4M-~)$-BIy~Dqu z71_d$N82Pfa!Xo`bg$O#3I-LCIuI8sb8IIbSz-gepW?@o4~-P|V2Wtcn2#laBe<>! zXuM>9cw@L`DTcWQ9@$-IGA@dKvQ7q`5>MpASYjNoK#_uY*kSHL_jb`EQWmGlgzGVC z{5OZP)neS|G}~v`upuHcUo|s1a0hULcNHHaN(yWm4}!f7zpc8*Fj|R zM-^7i5&Mr8`LDoAHZ16qFw2;ivP;dNc*JFQ=zLZM{Yk@MRBzzqKz!{x5p4v%-8!Kf z104+^+%5yX=f0tRgKfh#%O2y%OJC3#Gw6L7TGgspZkPzBCf$6(0~Fw20Zmk{GHOs~S09CJ#Bxso zVVPOVEw=yQSF`xsMmCqAXJq>P>`c_6$x9NBMxeqQkD4}i^k}941+g2zsM}Z9fm5sK zG2J4I_z8M7)MXESir&ei$(H(t05po8uT>0%bD}!cqw;KpJ91lYaXhy-IgbWai%CIX z85^>!pFFJr@rHl5*SPR#B|9?O9())32jFZ2X>7S(0Mc-zg&|G%z&X`rqxuZ)(xXES zyL8=93xxG&`W`xfg6vN2LYs~euazcQ%2fX9UQ70Tw*(y?xqNfWYsw}PM!sF>=QCV@ z4l)|?%0fG}VyuYcv|wN+B7^HNp_g2OoK1q5_9BadX?nMV_v#9`EA)xSo}r4^sv!rB zvN~lk_tWj0!<|p$=4;_b#eg-b;ld5%8TQK_kRA6(PJ*6!%$llytbhzosh8Pt7nIQA35&t-H}6$jms^Y2jT(7O^@z>sqxvb@H3r zKkl|S@hSlj0bi!_4td>wvn|ZM{3lDRXtnL~*{-?GV$8qat*H?UYnPNUthl0G{Sr|R zt)k}7LEG_}xWincsp7xZKa*S5#6A+zK#y8MUb%OIMRgRk4sd3=nQdi%hg~4Ac9&TI zH3;8)D=1)4CN?m;2{JmM%%;O|CB3F?@|on&!pqv}8I|h1OxoRR{S$-_2E;E2J6Ut8 zCSs9hMf!`%@}XDC{ar`;?-E03vb{tzyoSTMW~pKxxMFC67;kvWOPk6BZ@HTX8rY+z znsc}(rjXY_;Y2lf2yqxGCjuuRX~&g8WL%UV*B5M!qr6hhqXL^@*kdf$!7VnM?PK2I z!h*qziCh4;%u(wywodh7?IKfH$I~SZ$Hl_!jD^m#gZH9(0&TLT4rD9KMg%DgZ0>#d z>$|iI7h@tON z)vh$$!sbqm&5;H)LmD5P4BPwyKG*m8fcjd2SLu~oLg1!qIFhhy9uo-yez2r_rI$Xo ziav4_%f?`*$k|QT`*)rjJbKtOBRt0#lOgm=;H}O0Ed0C8pkeHLjTz-vRq}BNOMd7-U) zebQbdtu#4FcbrWKJvN?>8#iiAX2g1|J7KNCu9R@jec{5XSg%URUA4O4uB(fjO@bdr zj++HX-bik5aF4iyGT#1K9yn7Sj8;6y~E^CU2!h2fYql_$GvxninOr=*=7IL z$?8)3Fc)Dye^rfD%+Uax2!T!8>)H!0m3brLz{tW->;yPY=} z4-I4N$uFxAYzwCrzaCOnHb%w%A}2IJQT=zt6e(+mRdLC!ypyQR-GhHPXTn}P^*Rij z3KiLn6n;kTL?rdb^Z-}-Sq|BaXcfsIF7S|HOl zQOjanD#Bz4U;Pm5>p_y>9jz|RpZVx%G-2U$?}7zd8{pDzF4ZJwYK-Ta zx5t3jaY@#`|FMhZZP?bkXcAkvw^3Q2u%ZJb~yzm&Onm?63U$1*0Z0uJ*ZoXtqrI!#24~&zXR@*Mr^FBt3PfS{I zmh4|%isuu=8U(BY!sgQ&>C4)G+8x^!;~-_J8rab?|Iv9uL|-x72j3!i1BX4r+Q(LQ zX=lY`G>kUPKGf9FWt3V-(DSdI=aq8bdnP$H-h9jGsuTW#QHtcm5wLk^z5A9a*JXy@ zgyl{z8j4on5|Tzwt&@KIwm-I9AB#%igCrdBSGDSn_a4a^D|>gwkJfR&W(jna(%CLU zSPW8GnAfRAte_x+TpARR;{n&0-$25bnO6gj!<~AGe3680_ztwTg$~VOHgbChYKnYj z2>Nbf*k>C-+2iFkcicI}H>-a9UaW4C&LzDEzTY>T!!OSuj=6*8PB5w6myvcA=$&0Bqyh?E7Q1Ot+J}| z0|g_-&!}rx%>JfdqAw&%#*5QrAyD_TzC)BZA$OUpEYKPD|`D*e{d^t#ou6wTvE zmw1*gkj`=jh#vtU`>e1D_}Cn9+dS6d9TEUzM3_;plqn} zdlJZyKhr{U6Ioy61l+|z8jH1KDaQ(aVMD6?gSz)zBEuE`N=E5Kd~h1iE0&;tANjb7 zpK{B!7j;-rAKEQ=a7$1J5{AO{Yu9XOcw_@Rgbe5F*Y7@h?{ipXvv@Iy7p#5|hsoHa zx;=>E1mAm#)RG5$p+~K~Mn&&mg^L1}6e>$=ABKkJ^*lr~Wp3e_(02+H5L?@Mu4wo9`W;!GuG73gWT(lK|0{?Ay>995ylqVlW$4bd(SC`?8vCz$lY^l zb5TU*VJbF*i_1REJvJbTIX-+$s-La}^%BE6MeLH0JuQ9K~O_8vi|?*j|#LB%C=Q zHR5%7;|sd*4?*~Y0pCOojS#>2Zm-A8asN=nnl z5UZl}q`%F-SybU-(naK_?w$2Rrru{B~m<-tQuf0z^|L%HIBCQvu=rHFYuCwmM1FfVW4F=@9x$e?@nwQh72 zdI?2<;3u8L<*am`8Ijw^&_1qfG-m(&DynYSww*9Zu+9z5?Zk9=sdh7OX+jgF*nn-x zY9gK1+C9QlsXo_H=*FgMEN;Y)TW-=G<1VhYk93{pdN9E!i5nP;dRH7t$+uKFY9=D` z&Bk%v-BjRoyfz2?y2D!FlIv7!-yG7f0ffb^sF}JY4F|uG= zS4PN__~)PAXjo{X+xa$V{f4N*d(-HI-VtsFOT5N2d8*zcEM&M842-R+^e9R)ynVjf z%Cf!k@BkTxk_pk1t3Jnpj`g6OwMu!UU(U{neD(gwI5n9a3bfn1s3-YZE3;weuNu*D zAG&S7s2j?b?Qq};Pe7P{5p`P6Vj-1KtBf6QP6Q8QcPw7vbSdu3We3Er>2`MbR4=d| zAFPBy7-15M%?%Ka@lSQN^$PgUX^}Dz#zw4Liv&pk%BOZ;3`-g-0J=K$&}`9NDh)mLzym8r*_m8pk}@yib#02O=UpDB1{J=*V${4 zcWSHe)J-lc}uUyRvM%z_pdZo8PB2I$+nBq_wAH3V4k+h z?LcI5w9I!Bh~p_`QVt%|EH|0O6|C z2&%g=-v`iIOpUBNWxj?+&WT`|!#C!VFy(`^l}8$&>pz_jWDs>%w*2x6?`9<6At_)X zXWbZqkGy6!%tc`*_zs2J61U+C2bk4a1MX&~Qu8W%_7g0oqHGezQ6SkTGKARbe6-VZ zs%u|^#3;Tky~e3tc?$LMJ*};^D%k67+704K=25vlMFQSC`$Wbkx3dwLC|D2lO?8<> zY-O(x9hWi%S!ro0u*M=fxAVBlmUMd0B-He3T^RWR)X&9AOar4gV>jf){xH09OnKMq z>5VONN5j_wpNMB2H?|4x$S3}ltKD(xyje?}UPu5YV^RRb&{2=knAt`>^6q*tz%)>W zBDWB!!HO^Uog-}Em2+1xiW-ltDQtna4MVlv<^9UL{>sgWZXUlaMq^-UUpk%po)9w} zo8hfM;y4#k3k-)X@V8i(?|&Dfnl0s^fDMo{29pL8QaES5m(j49jA5cP$SwwK?9679 zIb%ebB4mH^!aPSy(`Q3LyWF$V6rxh9g)u}p1+D8ZIUcy43n|~C++0|}!Vb{hC5`~a z_1wR3j7EK*o((C9xiA4!jcUqt@-cluGQrHAh_%vgp+Zl0@6Hokc)!f)CC;t_OE zpBppQR;(Ki5dsB&_V`)qPUTU9hiE2ymgdliSd-W{1Tk%Vlowh5Z`d5J3(0W1Vex*= zrDqw=P$aE|ADVgwOX7s{B`B&jvhl@#RNr+bf;*rJ?dAsLo|w{!7U8jzBM{bjLs-^l zvc!Bh5PCQP<|U_voGz5RDp7sWfrih(4U-1f6uk#i*&SV{?P_V~BmJUz4w-M)D~eYDldyoFA)NX_EZ$x z*io1MOe_snaAYi@L@P?cc<_Q8G9Oi%(gf(Uva%wxL_z=zI>+nFaq~~eR*CbeE=}q=JL^=JB>s?YkKQm95Jlgem(x(LQ;7jEblDhrw)SZ!S z7i)@Eg5~%j$g#2HK^eT|GrshUl=D1ObQUaSubaTtcLeEcOB5k5rixC*S>Zu_t}y_c zJLF7M`DMWIXwd+p#&#!-n}Oa_TuLsL9rfqw;EV@sliU09@*${`wO)FtoEKS}E5^tT zRlS$B20WcAVn~bd;1>b%9#1#mzUGQCe(VeZ7)sw{>_*Q1H}(&0lcQ*WtojlQRXrnW z`-Jp$kFx{N3HZsF08f`-M$G7;mBqR8_<*z3VR#?}zR5>a2nw#*q! z4rZYD^JQt}S!U22ZoXVl-a-zt7)BDMrQ4%qRSBJ6OQ#toNI{+uOPF+$7`?P}_6za@ z{;`d7?QF;cBMn}ukTz2_KaqI^ZA;}Qe~jpZF3W0Z++7o%=6tv~Zb^6GbqL0zOMsxq z*Iq}z)D@|ngTC$*pVBTgYauLVm~!<<7CyVLr^px~#7wTyL#(61ZE@9dAd05n;eKXr zAwRg|m7QDd-a%Dr4RWifETZ#zRxL6FrFK&&eZ)h<`bVB=pkcB1>WBUZW9Qf-3e;xV zGH%(nZQHK8W%HJ8+qP}nwr$(CIW?I~r#pE+^q)A{IeR^O4O_SrJTQitKHks8Hh{G+ zWZv*14~cG(-aQArgI=yYMjSZRw*m@6I$3F+!%W;SlW`DCl@^;~6r6AB6aWe*4$el_ z!YQ8FKj<8sij!vHw-pbapzzbERvfR0Z3|oO zT-{F-KZmX;(^IbOYi}G5kJpv9iBm`v#4}jWw0ZC!puq?Ko^2+F7U0xlv4IU8W8w@YjGwyVC&vWGng;4t4Ca2uQZ`WcY%L-8Ui5cD-|+s?^mwi9}I32mr(W3bH?tT=+QU^LnuqxY4oIz+ZQ8&HW zm?hGGSQbnRwR`^x`n(L>&%)Q`*4jrMHRlf!{?nLg2~^a1o`3@Ah1c(vIC^1l5JL?G z-iLfaD9j-Rl`PaR zyz(xu&j&(`(n2KZ!Ov~?BSP~jxd$Z`ec}sRZDF3o2ttYu~*t85-+VTh%Z@~~ciB#21 z$wm5+@{CDGJ8C-f?#ERvnH$7~G|eC*ajKFD-CXBzjVMk1hMAbvn^pDSD!NZ3roxv# zGb0*t<~6OZ*Lu6D!siYQ=?HVr7vY{>?6s}!BC zv`L)9(yCQwkT>jbAQ_pCaYa-?Ci#cyG=2ns$3hf4Z+Ra?D&S(B8#~+y3$Bv$`4xP6 zDfBRrwWvTMeRA8hI!Yy6B;F4Ja~c(Czz3_2&$x(G)<8AL9i7qMhr}0#auaQSh|7Og zeP!;dDa|;*%Ucg_j6$H2JN&AkGM6SmCoOcPDbzO38-E~-dCsj^RZgMu4d)`K{99DK z=_$YROl)^#a9~hU$!o*0(rrvR)rL{Gm(y=;s9vbK#2DYlzY{eZoUzNx-(}Uo7kQNc z-_P@^?rT$3(QHqf>(LfrGH}D%-_eKu6lB-_)75)feOt_7m+aD~!7Nf(qm|KQ zf@JHzGdM&+s*!&KVD$tjz0Su=$KqGazKciM;UX%H9NB{L=AWH7ulT^$6VSLc>CaVY zw<~qUHkR_xb;Rr|s9Q+SOCgk+E!nkfqKj<4%B=31IBG{gKhSK~wQZc5sej0v2Gg3t zo#|2uA%>E-nI4VDol-_@g&=!Q;@Hm+)%r|hfqeO}Gq80(dT*;1j2>2Dvl1ID8{a{j z*#}DPkVQ;@{FK%f#DE)3%vwF>kUFR7>VtJi~R}v0@zdY z(I9mKmO~n1A$4;4W+$bofyx?+SkhdUP-Tu8v)oerbB-l6>TrLp?ke%+RL|ol7HIx; zDTzg!_j50L5NTg(CR#T|br)#6?uUo8cNyr2ZPopcocumB_o^7R`GlK52Oo|kO-gub zSuun6h^{h^s=1BaqvYs8xF#uTNgFoMknvP4eG@_sF(SvWmmR*xCg&?VU8(C35lXR+`iYy6u(clh751 zcABH~^=vx~mI5;3oxm3Q5NoU|6YFOk!0j$M0Vl8Z7hFnvzybBt<1+opx%k6GO6@KW zf@tJ9eJ@HWkcr8D%#rq3$KWppWz(DYClEO`g^G+AAyCt=S)K2$q=eUu-XB~!a z4Mxt6#4}U{9F3n#wis;qKx)4F~E!ySmBC>Fy3Pfe8AWQ}jb5LE;^k z2e}K2i^bX%jE;M(#|TclmCk;%apnIX5rpli@n-nngyYIeULVrfF+@Kt{5t#VMV2P zMI2FN!7WcIzocAaN8nc!6q)moaa8z`TnJP{tPsE zNZ5dP-2-*iEjzQ7T}JGI8))EtiI`+D#1g0vrNYTl7W=+w;7ZNgkZGKo`}=h2AOvbQ z)8ak&KqzKyhL3ghqJFe{`6Df`(Cq6rodDN?=k~y#{ zN7%FoC$LK48_%r z{YKwN-^->2ivtnyzVlu7&S6))J;(}Kv%`FFg+$%ki_;X%%j8U4n%cudV3I1I0vfuY zjPm-AHc}=vXkvk#W5bC~5r7}a+UQAzA(7qs1>_aO?= z8qS$4c~7mnRFdiQ3$k{h?uI&KZF>NTozO-S*l0s{@mIe!B?3MG?Y2imkJ?@B`;(Mz zD_+D|Q4FJzTl!%D)db3t)qF~9q-#j`BJ&~MQ4NnbD-x47p4U1QOM%$G22Zm}RO>z5 z-I6w^n+v@=DMcy(V24ABG9XcdG3W1i#4OxoKRqcR?;>3)QKB2A&Wl*|i7u!Wa;X{C z@71(E6g)<|j&}gz-Qb#w`zeX%!o=ui2(V!0D5>GR-KD}?Rrx~dwpwFs8JO~a$KqE{ z$~sU{Whqeyk)uK8CxZE=kG>Yj)0_vREJsjdRUfBsMugB|w(}7)a@ddbE(42ol&PRM zhtKl^gwggW<9hS3J;hb{aChn1X}>P*C)w^RBS=zGR)!kcxvW(*m>BvJ*5daKyPR#r zO(Hhy`u98GH*-LfH=Vr`5bxY{IB74v&=7H2A1=g*6b*>2Y!R1~jR~#{Q-+vS4!d#L zWl(wMv)P^W>=Uz&kB5QvsSl}Sq*2yU<=8+S;y)C>3Lb`1SsXcd-vkf?pK*j=ymSS5Y^d-t^^;m)6D-z6`VAQ^kjV?zJVcuUV7*`Zi*>se`Azid0!@TlrK`HZ*NgfER{#P-6=^Apt%5)SIK z_bsPgR6+y@7z*msW4O0iiHub<8PrYvT;~B9#t9Q0`=axw1Opt{r)NP&9a#`5@a4jt z_AO<{rz9bxqyYy5HqfiR>chXnscp6TenQ!8 zK>-jpGAa`2SpYOb0|7IG5&~?euLSM~Z7HCc#PH3xii4<};gh_b;L@wBwkIUi(b4Ir zM|06<9{x@SfVdSjzyS~nf?FlXLh$Vlj;3G6f&$Vbf2AXwT*HZ)2yyF=ov!_0@4uPW_YJNG1Q>vMb>Vi= zgq}yapuLQC{AS4?tzm3cR1xb_o};COKwi%JRP`|zhwevpx#T7Ev0jD@dKP^9(q1Ky zx9!js>gCZAxz3NZ#)Y71>Osa9{>Gcc^#djDt5;A!Q~>CQ;dkBO4E?0EIXnn|#XT!qSht2P&{QhVD)rYNcZ}0MxYx0Nd+b2+;R@@|~ z2PD&&rz!5wxf8qX>@DZYVU;FHeawOwL3lc-VE*Qlk4n8J`a;2 z?Ugets$7?ax{>PXTStP;)pID7Epx_K?BhYHQF|6Kuq-B)gW$sj#W2zd!aUCY#gPS_ zcVlZ!#+WrAEq@;YjSD6ht1L%_(S<@J1=|f_^UR_@>o?;t_tt>;#r15A6vOB%QBtwm zGE$Dw!)s*s+S>Nyb@j;pN85T9ih>c`sXB(|jjc(S+_k=u^mymPFiwn|$o=0Ya+W(v zi|z^FZVn)E!a6Q2mAu6F*e`YIB z{m)kuhWTYfnH{99#p}82aNU1N3R7hRzMiHwLDH;Z5zPnrJV8s;Z{yYU<@8z`#*I;CR83* zbrY8u>VL-sy)H4OaG2JqoWf(=d{?rCdNeDjq}FB4|7wj=P~=b3aMDBE7s|x%wMTH0 z82h@Ub?gaic4fd3OWiuR){nSTc#APyY30ull+oeohE1KX$6ggY+y!^YMUo2g?Fxkl z)l6!HLbwY!q>&|!3$|+oS%p5PjFaPJTczcEaj&<)OutyS$;_j9rV&jf^=*i9k7)BT z#Lbv<-Iv~sT-dOY@nV|GSC6R|Jri7>?}#p+D>gv#!ckD6qegSiusp$W; zqA+EVsxY$DN^0iOKF&0CmFaVOJ3A6R(==pSY#wAz>dXi<4zX+7Q9QABxzl0ifR7bT z|E2b8M=I(Pt{cz5XU83~xw)|TnMU#x`ZgjE zQso8eZS!CLmE0A?Yw=NQY)F%NWnaos$&r~?`zRygRa7&^MxurouIXEEXZ;Mou=^gvBI?z z7+f8PU_$d9;Y~cbDQ3jE!WQ%_igo{m_jl203Fzs$k2NLwdk>H0#;-dguCShl58h7olXwB~YjVis>|HKdk>mBc z?aaT=?k>6+TF&;h^>#;& ziZ|Q`#u7nG+qgvQj&l}u@R8Rf0FL9LeD`!A7b6(E)u55zCi|BgRuUKtvZ4RAx`I;D z9&nnRJcVT@Y*k#AcSd6g|5|FV`@<{RDMA~j_`{cy4~9MlFy5R2eqOsQnT&5vHHp)j z#nZzh=v1APf!j>GA`tLf_y%o}!nFrQGUvZ^w`%3j8|-14`>jHudOKtM zV77m|)^(#dBG9~tFV_gdGtJZ)JPs+Kij@sg_-x0gBANj3EE8b+k2?oUaRUaW{Vf-%$y zC*P)vizfhWCR%_mhsrN|JG9u3jjo&qfq31>3)0SXH8?a|tci&bIhr1Wa|S)ZNwrAn zJxJOj##_okmq!5Ujy{n=T2+i4+P}V6Z1;wfXws;H2*(t4;q@t3$u2Ssqi9D7qLC5H zDoyuknJOV}m&Wefme=WISm3t1$0^3r>F0g98*uE5a0rmtOH97gbR=L-6>}MCU5C9SAvt{Mw?OL zo}>vb^nFf;$Oz^7xS~Z0Ho}EjYNu->3GXB>^R%bXQ0_BYEF#t- z0@Gp2zvgG>pAu~_{T$jm+@-N(e4|{IxrH2>Wn|y*Qn4CEuJHz#mingWo;e#ZpROhK z>iQWOKDR+9A*!R;c*nz6hV6niH=~0jl_yqA%yqDm;77j2p^}1RzWL82tF7o~|vDT#*7%Ox?nIXa$Rg=S#aB0U|E|^2KPw;~chR92h;c2_2(a7(y z21p=t?#V{zs5eSDv>Z5C`KGU5*~+0RjW(}l8lQ>u9g{7xJAZM^&A}6LD$RaH;KDU|1Bvt8$c-ni|wT zG-T^Vpi-4@ynNcWK)k%dOPa{;r^77ROKIGuwhJ$B`E@>Gi>wu4X)NY*zMuR@NGpW| z8lN5@c~DNyQPBq}j8Xm?3*C2?6Su_sTjWLIi?yj19YjE98I(6~^qcUtLz81lpUrX0#L0eSJL z$ZkS#HCh}K5pgJ#ph4!blJ5-}7D;E)m7^2@`I2k~h6V~09WjaDtGN*F^g9xCmBYC0 zISXBALCm9J4l;;q!lpTVxLLLESKnKrnL&;iGbaf_lDY8Fficu>$mQLg)W}p~dh&UZ zLFYs;RwZAtF?TWEAhsF#l*!7Yu!EV=FUOcpKH^uLOb`yfrTR8~7@>O{`t+}@;yG;{ zd+iBw<{l_Rl`(0OA4yIlK)h?G4q=cvigC%xISahpFVT8ro{ z-$lLR-}A6Y>RE^uWO*iV3oEoqi(f#VZ8IV{V`$Y@dgefqfe$uU+TWn%Fy>-A3|C21 zXce;lSZv1T?8DpVxi$I9bjTxd5Yo~9Y^!{nPg(QJ@~G_<&DduKXxm(54I362SVX29 z)1WQv%C|*dL_eH%A9zRT>R5*L1Lqo|r(9LNnA0JtU~bptR}q=1e6_qev8xd4RT%PZ z0SFrl+z`c$SBfa5g=)(`TO0;w{2LDzK?hIUyWCZp2rZvG)*owY+_P&w?a}30L|inb z^?C61!u3o#4&X3N#*WJNIx>3n`>)yXH>nfe8_xENY5+CHT#$8L{N-JL=J9Z2tN{!i zmk5>mX$-;S=i8T<_x_Qsw(#O&dKqc48N27_hqFlFU5G+v4mwO12#s`tg8Kp$e6$P? zRpx-HIH|&Fv0?T+po}EH|!A-ZxB6V30GVZ!jvI7 z3M519^4EQQ=G|wuS*br$~PLlfpc71<=A>MCZ zkm7jIr-G@JET`v0Q%X5=Y{6nF)ckeh5z+iP1BrPyN-J0Tsylxop~^!Jos6Tir8M7i z?_*qsn;9${}DRQ9oA}Ny2<^E7+2NiEkE@Sf-g`q~^XL5B!adx0RuFu>0 z;LYoz8rWCYFWt|I6}<6BQgby?s)&8=YTWTtj^F|L?ldLH5%HzQ82?V4Y`aW{TU^c@ zbEYHb%a++Mr7_~ndTC^cd@w`6vpv$4tzha88aD+hbvND{#20sLf5Mu81IOL!H~zU_ ztC%gKGJM4~Z_5Yo+duG^qU&BmxiqXg39PSODTU?!InwW9{R4x-z}hrl*-){B2)GlF z&O#Np+|b|Le7WDNhVv17e?)t$_*30SL*d?5l$GR=1$R#D8nNKWFqL>-C+bw4L~wot z46C4WP}&Loi#fvN4a)=&&2U|8I+fGR09#vTcF>&5i_K^WSAJib%=loA5{NYI0Wzna z7D0$JD=#da_i=I}Q9Qe=6?C59NKo_XPIs(dv2%=?ZEv0aQtm(T9}HU-<_wc zFCyZqq6@Qduk(@hTx}}9gt;;+IWTaQ^;4g^e==*H!)UBag?Z=>)w+gSyv3TM%Ok3y zjn5sY#CYLn$jHvR^s%j7QE8+=z|M+{tltG$_{j{gOF6x9MWB^&?7jdnu;(3%l2{R3 z+90X)5!_KR$vk^WRn%3C+SdCJiJskD7MyjkH1Qe*PhIbCx1V%!_4h}HIp*_r(o?RlNFP4jY+M)LM6Q{^zu z=g_w;*>oRaoxRQ7GIPnbI3O~|%a9;?mufWs)2sgKnJ z1$Jnc0qaY6oWWDtcZrYDNbs?1jzMIc_nIVOiWp??LV?nTydq2~DrWk44>cqy9ehmC_{eQ# zas}0NMs{$LEy#N;@t$>5mK|`iflAu!qNI_uP3Iw0cAW#=>G~4x#G}GPOP@ZXc!o4J zducHZ+c55*8(zDQJH0r)o+QmU$h{P~R;d0uvfHII{juVKH4Qm(1`rWW^kF7Bp0Ebr zdM{U3%rg9`MR~U@mDkybbV61E&5Zfr}LHMawMi6%Xp@gynQ0~Ig(jAA;F{i&y)Q5%E;*HW92%z*fGi4yv7d* z%O*Miekh!j0us>?25n%6bey|E6)Gb~48}Arp=290+{!cW4}{q9-EgB&UgSsG-CegyEPvC4RkHq~MOg+?i5Wt43bg_A_@DF( z##N>TYM$vbq9{JDv^UbR)5`2g(F=Rd$pWrN8*i)Mq}<>fJQ=xmsDj2ihEvF>nVm5TrhFCM73ca`CDp(T!%FCbjr?5#O+VM|>+$ zt_G4GQ|H) z{?>*SH9sAfsFM`Bdp&nlRhv&?RXP0}r{_wfpj~0n*ovU%1A5nP^4%51Z+K%^+CS)2 z=DP^q)Dg)d-5xcxF$kLA(QW%9$XlaSgZ*fhx|AwT?GuXnC5nzwDoT6{#MsDLyLE}i z!gRQfJ|z$Ol$!r9Cfj|X`y~LFwxK1tCFZc)vs7|uS2hukIMW@aN(sSMdfHw{+5~8yw@g6rKc7`l@z1#UZD(y-8W(9F+cVdle%X z^X9sbb)uZ*>h&DyDgVchgF{PisS*iqZ=V}q?Li##6R2^WGi|p%gugpk8Kl6ptg+ki z*Fj^MN9ADnW8VK3rH_{7W~pq)U#bGnR`1u?NO-_Q_YZRWDw0f#HS;4M*#2#eHp;4Y z(5Yh@ph_B(ck-W*61i@ETU^OOzeuK;gs@Q34u}yiJU6cBZ^I zO&SsIEZ;iyd313;y^qJV+%CdZ<`07b`mJSfNYJsCQXAYszRN)TLr(@oN>htA^pd%e z267LnM=wMF_mI#hz;o1$a5HEXf;0^P1nzip6qTpxIH1C+daH9+k{qQ&=KSW`$-mm5 zu_zmRO`l+Kl$Iwr(%vwP{JE(reJB;kqhrL7BfMP@F5EmgZ*b!B^~jZgIBt7il2CB# zalq5xLAOjMVt-BP)2*Y;lHIQ8Qt{w`eD*+cbA<&-2}B&FsdYgYf7Z#Pf`zn^K@+6O zgF3D$SP}N?y%k2%yArxRcq|9qe-c=cib005X)3*DWX8-$!eB>=S2AG`D1sqw**Wbl z7`e>Xy%u-TuxRO=x7X68*MQ>~1gAayavu#CBCiN*v2+rr9!XI(#XWFPy>3HqOX+LE z9?(p~C>5(yFKgrgScrHY8~)6b}Qhbg!JPshCUsNu=iKTQ;sdJu~P8lo!GcFN>JxP?5{; z7rbM^>&hgQjP1tFBX8N`^j9^y7V|$|10Cr5rOwKmb}LEnb~fV$1Ae=I4;UF5!j0j5 zBYAP&uc*R9@a}REZC+d{;W~IBRFowZOjt!mlfa!n%q_0r7n0x%p%PCx4M=i(*RJ(R z(IbXke>C34dS5o0Ti7@f=$x^opWeoVF?HW2(rtC=b;wSxDblC-~r_=+t@%N9iT6afdgq*)5`xLkd=o8teyuG!- z_x1fg?eO2d53{s`ygGf?^FMd-)VzjmZTZmL$peEJ0_vzLOu(}e7n=~UTp8ZUgP1`w zOBjp`o3rvb?sV`0-&9-p)M#RU45lkpqGa`okxoSoKIbhP?9|W z3O~RfqABnHp$}yJU-yB`94!C80sNiAplAAzq7DvvMz;Ui2mXpW61CA-rCr!U86BA% zOB~tAC7}oY?;6JBEJcxTZX*PF)*nftE$w-dG6-=OpVz?;-kFad3$LB@rfZIs?Uikl z8;5GI)ijvMx1`J6W_T8M=pi~{d~%q-%Pe!qh#(Mu!XY63{6VU1$l#Z!jqSMtxip3c zLHrXU@e`02>FfK~g%t(-nAJFSU#iWS;;A)YaJu!e1>8$lfoIodLHCD#8I2i7yV(k7NM;y2Z#3 zclhV6f&~!B**A;``K@FC-8$wThydT0D*y@^+K=EykXz3g9%R?r#kZ~)mVXBZ=p&)> zfy@u?c4ZGB5G3$B;kxE@CoH#?&tE`~esc*1BJ4LU(doOP6OqnEXMWu zAHTdP3t`c|~b8yiEoptZFh>w)P37}Gxi?H>Hh%HR8&X%OEQ z4!*en2LAs3@%`}tphf#AfwH#yNhL_h=tzBtH{K&yh-x%B=&#yw0zmp_9pFEPIEz}XPnV{#DquOBZt zNk>`zm%H?6IY0A1tp>SmdBJtf95=c&KO=9q1e;jDGaH0pyJ)CLAP|s{5kSP(sDMAy z{{Z~Il}GptSoEK5eHU|%wzC#?NIbra0IPez0O1sDWwx5Q3= z)USO4KYz+TU6Ow)W`9};S>Vu8_&&9K5Wo4nW2qL0PUwcS?0NpWDCR=-WPq;zC`=Lf zL|4-e!k+KF_vpwVpIT!k>cP5%AEP0nz$1Sxz>1U$bP+g%{Y75AlUw>UWBcNE4+8o#;=*RAchaE>;zl;brxn|Q@&3|XPEWsi{Zb1V5eCc;0Wuo0dtH4K zi{2}DYE5~CzwHx>0f6k=C+|Yw+kp!V@N5gxcN38m4*($0BjZCT0WkZ_Cw?mH%0J4N z3juI?3+F24{6^QQ$OiunNB#$Z@EdRlkbjXc7a8F63H(!)O%D!a-@5T9c1yd$=YVe; z0b&pfh%_}VFuTIUdnTl7q#wKibT*X--%F2C1`tC3;vh4L^Z#SmELI zeSy3JCKB$eI8e0j^=mFKRE>ORVECg#Ks3+v#=thKSgR6EFjziE#sOQP_p;Qr!)(HGw+G~nGxgwH*?Fh6eO-v|b4TslbJx5JwF zy?p7{s?!$bzaNK*joLrzk!X(HsyRLaHVg6EjL(yb)&n;g-ng|f5rou`=+pKwbwCe6 zRNmtE9`bW^+o-J_rSL^Yn_4=X@_TNR$!c~WReJgxbSpj*v0uq&U2Bp0nf<8i{c_y; zjREm+g!@CdZKpwBLaczuN4S0*M=+*TaJ<#W#8NnHJ~ls-oTXH%p%!#{Qg-yqiuL30 zN^+IodXc5Z6{jof4V8ANR>hef$PH*W5sHBLQ;Q|;DBLo9FVIXU&2IE%hMbEc7`CIO z-1o@EQ`ei6 z>=|nIx>!@kb|ed?s_(+Ubr08cdDTB- z@>?_lC)3d*L~P1lgW0xU*~l|&ykb(qGGSg)cTEn)m#W1@12xXQdXb0|F0dguGlGF1 za_tXBIXa^Cbfmq(Q*DA}gWSw!s2tti4HI*NGfiwii@ua~(i|;=*6YX!#+<{oJgemH zAy%UP@+{`q=#@TNN*W@c2}EPdb#`Sm6IBl76| z_VXQr;V3-7k{8JEZ1cZ}nRit{Y-`8cV72L>uE{~ykj_?(!yc7w7+jKU-xIY&k#aoFa00$qpjz?+P2WdRq-^hTsj=W(XUjym`lTE z@{l@ATEdhB7(946`Clo31Gq{4jCyUr(6Z4r-aPZl7`sf3dC>N4w#-T&Q) zpq>}k^r;sshn)-xPMJURQEqR(b-d^}!#OeQ8*9ctHf7cGB^ik*d5E zg?yLs@T6Km93O+SIH1$D{*)oAK&qoTNPPV`6S_|EH+{lT9IP^lxaw)-g_UA>|zizQuhtQJa1K04jv8q%na51ozuQRw*oO5O1 zSl>0u5uOCXO0sjkg>0{MM53_l={c4k_Dbo(0={n9Lo~L0l4>YyV$<9#gM_T()NKeG8NLw z(Co&plmiqCvdAH~mXYlyG5xp5!ierQ%qAswc@D}8DnyGgwj$K+&8m+-!HP+-l;`!g z&*P4o)Y+QonRf$p45K7}@~_>dE9r{%c_XDur?;|@w-M>SfMLD!)N9pvLkzgG9ADrl zM%e7Lg6`@V6JIt~_*Q)RikH4xG*co7b4G228m-8Prs=`&2@P+IfVQ)>>W+32hpjdVkJI3tJ4>Ysm}{3GckKMm!E5)~2v0^)9`1 zI-=)%B5Qe}#oM&^{v2G8xy=Ol+-!TpBAy4m;#3q;l_PX-EN~7mjZK9QP-~!sKzrq<(Alwj6ajFJ+{8^#xRhKBqJaxe6n8Guj>p+NG8 zx1=iUp|5$^YbAeosaypFR;`bO9T5+mSeJQ7h-p^vYTB88iVTO>e{#L_Ux$|J*aE76 zsq3*M;gYUbO!~@yg)Zf3E`q3ARfkA#pARGl<0|fn#ZwP5&4{;{ep^QA&QWjR)1?)w zUdUx}KrQ-Bor@fSAC?cN%7%Ddggm%&=$ux=kJxxn9QcVoiG-MT{4O;Png7y2jn38# zDeY%3vXxh!G50$S5o|vAU%5?drj-XM6v%tO+PeqW`BR5|0EyqIYS?Z?etaF;`tHNX zKe>0@ExtI`=!Q`^+HMXP8D2xm+_KFM>}KHpjlxQ~qn&_}%t#MqFRI7HSt2$^+uL9Z z*dA(qB-6bM7TVNU1P%WiwX~oQRlYB(HUoZNvdsP`%j$#74O+8O*;gNRETqXSr_-wZ z&L4#W<~g)U0Esf}d=1_bOJur8Q>P!CoaTCIZ(Yuf?L;z6(Am?IB(w1MpFZ!T^FpNs zxfT5;{p`JCiP0$4Pa&@BY1yd~6`Ny+VO2sQdYp^K3!;aI{Xpz0eZ2~nB{eG0svITG zJOw*FrT+qzaTfed07?vpkuzawCq3Pl2yv(T52N`TuY>|&*+euwj|&NS;JrU*qDwpD zXXDr&DcKe1-jmg;F_J@@5Q!aqiC2feN06!)u{otS*M`A9qLcfiA5VDP7}-R)^HkUU zD@@K!#)It6Y1}cohLd&hxz2h<2m4xp@G9nC4kEXo^c`jkT(ZSPp{JZHAVfCV z<gYKs3SHh3@vkcjH|8md%ZYeh@c! z2wedwt<(D*8R7#}gXjTNX_>-gwL0t#(7GD8W{f01xBNie``ywEbZBN*G@luouSY6 zCoN442$X#XJ)rFLqCIze6wb|*=4d)o*pVVLBuvU3B|#?#4Q7c?&qLX2ONoA^UYN1# z0ve-Tcu3nWHeB+<)ixJcRhGr7^lI%KX-=qftZpnKv>2Vd>13&95ip0m>v7BRN`aT^ zg%EC}0e5p&YOAAysykIzDnkOC<)k>jOvvA{v7I#f;xKn)0|?OyEMm$j6kK zMrv20g7=og_1O{gT#_;~E(~M@g_R>~Y-0&sS%ND0o7*dcC&29%hzz?LmReKicIDP* zqMG-eH?-#XtF+DH;^VUk&OaW5I#!l8o6R`w$x6leQ~00lv%WyPkQoW~W%r_lVDzTM zk%xI`^&kw;)iX#3IhmyD^nZ0%hA35LACzd4FA&L7{f3TAJuqQ!`PTG~+Aawdx!P<| z8g#|Qe45s70@|8B%@>bohFR1B4^9@MOj$<bZmGxd4LXO$1KmQ zEWvk|L`c*Dl@y_B{V8)~Lpl$VWzn8R@T_OOIHgx_d0K5~6}m6P`3C;=j+c?IyHx1| zZJQ2jJVQl)^l|2BD~u3M~<)3nPWzWiGyW;vG{N`TMV$S?4MV$^(HI4e+kF& z<<+G#%;t`vY|vEZ;Q@lHTRJZA(1Bb!)=n&2C|4{T*mQT_P&&* z?zx?<9LRk5QhE>og^v+v5h0&w2d)-BX@HOEflUQJVn{{f?^ zskh=uZ|0lZIfI732SjM3hAiaj#BJXop51(aS|PrXSV8BsgVz8cFw5i1{c=xzH?p2__pL~nsnFX9LOgkNP_TB4nbitsI= zFWg+0=?kE~%fdK?Rl2tF$L7LMjsl94Fp^bxb(~Bp&eybe&!G-ZS>(hlbHtBg*eT(-i}}t@tiqXVACN z1>OA(Y>Ashxq~=w6oo~xGqy(w8fpIW3GGzmI2~`6xb1_tUs?WeaWhNFR;4eYT@+Q* z7pljH!6j|sg$TtDpZi6zZBc3Mbe-wUDB2RGJjM&Oqc{) zh%b^rwHX(ghy0KqfDS&jN&a8?fxUNmuhv0Hid)0f1uqi}Zkj={_ET_o?|b>S`8Hxy z?;1fKC2eFVY!?iniFXVrlj3Kg)??t)PHg>uX3nG)>YQI`p&#&S4lI_ntpk<0m9~19 z&G-44)mHZx9=+z-uH!M_990v5UTU+CQhfU;9(73-GcFz59jrh*;y*IR3U<65E*n$V zso4G$%~PI&jXp$HpdpoarRV8BCCL9D#?GNh6sXCzW!t!A+qP}nwr$(CZQHhO`<7kR z_YJ-m-4Q+LNk*K1kdbHYy-tJM%>(f|fX3e!%krYkfu4Lp0ei7*1}3$AzdZuw-x$-H zoL-1Hqi(GlagPQt|5+il3&kXRx!GJ8+sd)&+B{vm7X-Ip*h^e%@{h|=h?L0yQWP)* zKhtfz2?byl^sQ$wjsKOg6!)h`)XWI0c&-ApHxT<2^Hg=U)s9&e%79YA*@s(4ya zA*6i9YrJdeAl*)cando2t9o;p_AT`jHDifveW4B4&J{MYR;q#AW~eF?tm%HWK?0s^ z4v@y!(Sog#Eu``bV9+)dAgCbDO)s}8xN@i4P(B^tI|G%3y|V zw5=n(mAC_qScn}QP=&Fj!_GJ@l2ffL&v^=uwXs&)zTGo);SdSAjY|JDXDA%$Oy=uU zm?3U}Z6mwznY=Mm(larXi`nf!aDIrM0=>eqed{_9S3VcI%rkeFo8d|aHInr0J`SMeRob_Ye9c|u)^%+UI~p`{x0bg_4X_yXZTT+1 zAAhpU~V^mXMe znQ=vYGiW;iHvAy%w94GQ!8G-01j@EYbEdmDQNmu0*epR`JuGaCw(x~WVmoI_Q@fkw zR_Iu%;*YC?E}gpx{5;`G=CZYDjcXR0W$fmr?6p@XS89^G&ahgsr?gxyK7RGyF(g0^ zSbMPX>nP;gF%%AddG=7IE>pxvHJOHeKBv;16(4oxbzrM$`3U9uI)G&o-Qm~VzHJ<) zznfhSDh_5~6t;DM;?dC_*2lhV|4uJ-Hqsl2V=WDSmI@m~ZyRt_$^n<$;Vki)L1e~D zs@;q6F^!I@4KH9IRF^won)^x|sdrlZd(Co&c&aKOqyk$@yR4dQ|jHgQE{_kZOpFC-Qji&fwDaoAzOU%SY1& z5HZhm6q?6}@uM{7al^nWD>s8lWNkWIO~w2 zDQ8`&V_Fi6PF#WFzI<3j|8N`Yk5uZUc?B3@H{NaQMSV*607p9eZNeXxHT7lfjii!+ zQ%O^dlB$*gDIL~ldmVe~oN(*y)OFF~{uTmd@EEQq!)ndT4EP$4JAgA_qAWf41`NpT z#Tu-u1u@{t0l6FX`^DaJYCk+8e>OAg1v7|@4!1XZ4e6hGAm>&=bHN*u)_@d!a3j=5 zFM~Vf+~m!yW0M0Yo0h+nb9cGOh9oiFe|KHniwN=v_PZn@ay{>u>dABqth_~6nNAro z%&N)HsQv``Htyrn=g_+!p?=~Z&G1-`Q15X4DYhPjB{;tyt?{8mM7*l$S=R|7sWJBn zx_4AKP&xM;IbGGVpd`F5a0<-PXqmnZM4j?yQ@$85xB5N?n;i-`$FT5WDMRXhYS=6^ zY{$Tfu7Um#Z7iHpL~XU*nhgxcQ#79qFsDYG3p}|f3(+j?#cfBw@X2*pU`%8!LIQn8z*brsWJLlT)QSooBgP8z~=enL@6T}g# zdkVtkc7R?NB4jdgDycP*w5lWF=Ms-fQb&{th&zlVS%^pH!!?D#^JRXraJ7;*$wK2- zvdp)cUW31aaU6jXIFKw&zbZaG_RWKi+sc2KJnyyS(P4JL(0>MajMC)BbyKQ7guUoW z6)nNSx;D2+z}Fw#A@eujG4=b&spSaTLHbQFP15!p?$dmP$ED`>?E= z0Gl;YjhBAMx-Z-f3WuOIDo&%tN!lY5h7y)IFnrb}ny#RWo3tq!{hDtO*DQL1Mm|?A zakz?4G-@n4F22>D84M8=HHOg8rsmO| z%+O@P{p&l$V3KNRe><;1hMj>5Y3i<~5H9G~_uCqiNyK+@ZEN!^}8-iVy+Dm;VO2H(Y2!&^6P#ubOBfWy|$vNBAMftC6^6|rYG zT;+dX@UJchS9Qu8m$s;k@Px3~_r4)#qkP_^y(QEGQ+Las#9#i@;w!33S~|<=^2^;i zqD?eneiYCu)dy$Bg@q-^vTJET7bEa78h*{pjgIO2f&|4_A~Q?C2RG?nQriuQu#?&E0VnuvN3A2gp?0^sJ8HPmYq(Lo!d%w2iWaZY!SmF&W^adA z7SqcJ%%31i?OwB*BKC`M??ISqtUgF9e=Y?#r8-*@xx>7?VamQ-g#wJO|1~nWGb1%t z9`0SX_N6i4h=+9_O2osv`$`gXCP<#pfu)O@I%B^dJkhSUdmD?(^D)g!Oiah*hzqey zl8yf(lz%eG(Bd`z0C&-ioThhyld|1dTGNIy&70*p8) z1FUjt#I}HvF%+0UgrH&-leYAOZmy?v{lal9)#m+P`W6ThQES*E1ryTk3BUq))~lo6 zL?&*7;+^REjMUMc?FWSBWvSzyv|CS{?vKa zbw=K{yl%SAZkFYjEYF*!GzV+?pX9^UR%cuP5d^SM!NHM*0{{nS!v+UOr=+QY8(x9? zqT`~h!Cl_~1#&_72qL(F0qf-5GWM^X6ILk)=AW2>>z{z#KSn-0MnBvKuy?SB_=$pW zK?52G*da&-P+|2)S_Zrhl%#@nd2$R@-)iSwdtZ|S01ij&ryw7ndr)KNU&OtJ0R+SW zsN`3}uK#utL70cjhXobruhsoc2^1I}U0G2G&)FFo3W7Di8w7J{MKdx6bm!N$0npS( zuW#a7NBZk!?2k2%`!#27UEU0UgB?D#2WL~BQUyMb3FFSXF2Ju3o_2=71};_4wBNzW zucZK*e+%LImR0@076AHp?f`&&gZ($>Ht!#^gAeBi3M_zM-a|A$0DY(rTOYU{0C?$0 zXN{`B=Lq20{_i__V<5Y_<~Q!p;!J|h z8sOnEm}>HS*rT=JciartHPrse{yxI~DUg2-fWBNj?B^X2r*7_@d0 zz5f9pBiq6L2>{RU!IvM}ryjwtAJ%Wq$uH&O?~VBE%($RL6IVE}I`AdX`*$ONItK^)&)93Xc0Su&UD#9;@vmb*p4(X;)g-5XerjJ@bW|EV zfU_%@XMrO(RYX)8`u@;+cTB4OT%RzEzL}GMCvO-)ZrLNSxgnup`j=fFD0CK-UUhJa)hBH~2AN{ni(t2jF!)-@cPZ*T13j z`P*+s)5P@!n0F=k>p$m$^KXP?|G%OA%m*VdMIR=EfPHM`_!}eZz}Q3D%YM@ z6G+X(jOua-WMJ=oq0dC8E+dMfDozB=9ypm^Pd?k3(aX_vkd)c^Q?2eil0rde6A~fQL5}<3?2h*A(Fq*CLU~Dj z(Pysk6WSLB%_C1YrmG(9lA)7_l=RT`@Nk$PAT#5{Susm8l?eOYvT9;e6=&YCpafV` zm*TWRxAve1`Ehj-#IX3GSq}wy-{8@@mRO$gd~8?}FQu*Rgo~sj-cfGErj)R-Z0`V1 zC5gGKngILcDhM-EDV0}tVivl*nrD$<=%H`ulkXw9qtRWVQB`d6a_l#$7{w_@_ybvA z_sa0%Gc6!JpD635NefG#PMb0KKV>{^+$~!llqPZ8^zsRjij4FP_EC&{k4tc*+RKLz z>G{hLt(yJ$>CTK;@JN11OW(7n&YjQWPU(Dx$+Y?2XEz4|oBJkd+`5J1Rsl=m2GEl1 z%!74-L*wCw5{Gj%nb_6xwWyt?sq!DT?*fL6Dz^Zx$}HZWl}puxzq3eLo0;!RH@)UZ zvFpAlgV770_WJxvMwz@8$(x|M$v|}kpKW-AqIn;Yu8|KzUP=0p;>Kc8F=1op4~D3E zuJ_l|x;lkpU&7KO#ElN#Mk^QvrrJ3&Qur=>?9Qr0Yb3TcDFxcPW>_3pbcH-Mh}%!k zkW96e>Q9A+L+-)NTowyYL@j*u=`$uS7L7^_D8a5vNnd)t#{iDKqEs37ktBnqozewA|r z+vVA~y?aK;`ccHwdv@%FbvNuE59rpOtvoo8Y%t_wvIYE02rV&o}PZlZpXyS_rhp(DKkB_?mhc3yypDpo=g6yp)cjt z+CJqbs+=J7`cAM&fQcnVSZSy$!v>}pZFpUIx6Z9E!KikSjMI!^)(2+khf3CTOwwTdWf?3MHITU9v}MhJZ3 z%zB^&i;Y;?JhIHXvf_pJlF+q9b_)|e37ru0y}RST>yeOM)EONYZEcB8(i2!{%pC}Q zq5(!#^Xf))%m+{a-*T;uY1J6!K-iV-1}D?J{(c^ZbITX0EwpfVRW4IoA}eqs;#;UW zeV9snDNJI0m6f`ktgePP=lb(_CyZZ)a(N8%#Czh6?Y9* zYjyz-vZE6R{YYzuZm}*k3qyZ)F$3>G2aif>8UR5)7%|3HdW`}e>bAy&V9tA-0*Sxdy zAqo`^3gLh&A0N7YTMTJ#PuJxv)0jqY_9tR8t~*B`Og# zvP_sY-(3rzHZG$HIQX$p5S}NqOADzH4LggmKbHVU9J=sq`Hr|g4?%`tltX{$i*Y~2 zdo%47z6DHa;rd0VEHGY(Mju8vrbYt>D7<){YmyIcvCYD~YALG+z5|PGxJz&c>)Pzx zMP5J78(|*d@sFc$`vyaOAg982!#bqagsuF0{Kg5EYlm+$r+Rke1r^J_G~ds6()RXr z$frih<;gQ{EN8P>!FIH^r9^+^V{qSAvFE&_7GD|ivBsYamL0WTO}K%Oh_b2(D`J!e zzl=aQkiorkmlX7+Z1iK+UBj__`)DQU-0(*Dx3Tz44k{Ir9#szYU}ZP9!HT(Sj%keVHn^Wc?gW|gsr3{fqDqu^yA^Ez3LrHLwzl?~1+;8E z*A#yWBC(4E7jOa?Q)U-*L=#`xm+5{`yY|<40c^rz-26lL-br(p{TUH&Vzv| z_e@c5v_Tm^iC@yFG(W2rE|AM78g_h}$^fZDyh!g5Hz36Ap%q~b$p!de2{V3Sd3q=F zh+%Y8DH+nJ*oFCbVNjKS;!6XXNBABBMhCtAOf#UcrPxZ7;Cu0%i zDJ>fMpD>xO7;qjJOvmOtF$Ob~soA*e`}=9cXgjeNM`~3NNbH!UAe0N4h+qkY;KTJw zdNGriNG)65CEV=!S!j-yAhn~f0uP1xyHeT?k@K?!&e4JnH+p(yWC}~H4O6{GDIjN?`$pmYm%**3^ ztRf0%BUZ8GqJSBNyL)6O9|~H%U9HblWT}JHE+6k$fgCo^B&kuX5-4oq=o{TlYyTye zF2~b1UkPQnQ9T8K-A#RFMd2tu*%{gBotaU2e0!{lW>GeZOL* z;0!$+z$KLZsQd3nT1t^fpT%E~w?qp?pp+jHS{cGMY zsHOymQ9p(%!)l}<5eba_JhVJGlGSU(Z|?M`oK8b8fnZcgkgc zyC7mNzGLeliNO~HQbg#2}-y1*tDEq zPvx4g-cJzkD{4d=yu)L!h|oRrc}ys1qn{qaG!UhjuZ`NP%S1Wb1pLT_8S&sE4D^t=qlvUusM^iWZdlCy&U?ij z(p2MxIx~jB9P6iJP>PbCrMu#* ze!G_yHp6zvjVyV20nFreD7>RKT6n&DNcliNB$ge$#~VW|D*{l1aoHLk`od(0mrF zqyCSTvgtpC)`ueBS4d>i2@au0dVp;?-4A+tq5h!t(}w{@b$W^N=>_Vg3|lIf^6&9N zZ@ifuTvru-WaJP+p)qZO(mS)Twe=odmNU5r8=1cfHV^f7nrTvB)0!U;a!ln&ahr%M zbMlB18|-hTY=I>{ACipU>QY9*KoUo=!pD+&;I2#+QHK$|n6<{H@lcY}Ef$cuF^*dRI0jbnvW(umP9RfpNrfO32oRjGs%gw($B|Ukp^&ZH%&G9f!aOr7$nmjY^2{eTAx@iRLHP088UUK*Ww!V}~>j z%x2WjQk!SFb1{>O;@#`jcfMxx z?0qNp=AlCJC^-0h(KHOon^XOER+RM4^o}YTqTV>=J&a63)9amP{;tw1o3ck-c2Z=3 z$!%9A+#Mr(B1GMRg{!xZ{;s?ci_q`qV5+LHy=aztr$OO;p_Tdn5 z0d;z{sOgb=Lv5=w4s6@*B$zAVT?}Nc7?kf^^t70zE&4^qwQ;QoaR6`abbqy|qxY>% z6??OE>a%9CD_~cN{VBD}|9cHC(p#kdZ|!CGM4l?gImvQD=c~mq#FLQ_jZ>5Ksuc&b zy89Q1vt`g^-?rz}knM&<>plMYY>Oc5(st8(kDwv`77TJ^(nYPpm@a>`*=sOb7|MWF zh@Q)C9awQ&CQD9e>p#qcQXeB9T+|+KD&~$U&-8kqxJxlchKpbdL`u`G{*s*WKGak5 zm7u_9S$>&?bB(uwgoX1I;FX=Hzd}2Rt=z^aq~V=3AXXH3Igx&Lfm24a^|@uo)EUMf zM1oKi^}E^YTg4cU7K~WvB{ihmyT-jTnIRxo)sz#N?a*>GSA@l_Qv8Z8y$R$YFDYNb zVB$LR4Q+zhwHPnsU$FE!vK2ehg6-hkw|C^W5L$T(&TtO>k#Ap#E}yc0<=vUR^zj0U zRp&m5V4}Oi15DG>E@=x_yIfcU;F0?~vCx^mDh4V4@o1p+U8KTRQZffk$VaSaFRj2~ zme_6_VT_L(WXLInytwWAu#PeOKYfKhtIPJ3#eW=IgYm!W-=#|fL* z*0km$bPZw?SZDN8LNitC)pe4R4rVvc{#m|P%KFr|z`&0=kOZBoj`BO~IZHr^T?24i z)Zy)E8`McZ7^|y;$dKanWqp(u9UY|idesFZBw(jq>@cjZ-g$yDnqofVZmfC$)HB={ z8G0N2;+z}5wmPbM;nk?@<5=q>E1UHt~3`8b)~BE z=jetyD)tyj#pIAVKMquxL&{;wK#>h(Q}~dKHc& zi$xd}XpdRPK^wO|7litr7y*|}*vm}UEY4MhYZW|}hl`iCtkGU0h&`g=shiOegYb%W z>Tvfm5>PIh9%W7Qm4^RL@^2r2umxPREmoc*Hf~y_t={tS;*cFVWPmkQyHsFJyZj0g zc5r)1$x+BkL+EyeFc1XTCGiNT2$$(#K*W+TFt2-CTjfxVLLS}4mvZZ$?cFpG1k^|G zxfLc{4I@)3dgzvQsv?J;>gcm=qt9zL_BFm8$jt7#`*#fr!o(9_`!y;bfjD#nBJ=J8-*<4q7{7GK19ov0s`q+9Bck5d#=)+Q1ahf~zNz^Jl zKV$j_X}keKD>F1?gQUWzFm}AzfK&R3@+Xy|+&pux%^y7vV4&=Dw@}y|iNb9F9law% z#a8f~B-pt@21%E{?-I5~x)OE~F?4Ds?wWT)h>ng`lEi&0e*gm`^Y zDbCtmYAHJop;jz((LJ_7ywBZ)TT(kJdJ(bAdosr^YwNNo?!I2VtZg(4uRy~WS}%2m zIO|4KVK8lO=gW^K#woG{li5-IOsm2jk2xKoYaW3@Ym|c{Ko`56LnvwaXMlPow&YgC zmgI&!Md}%h|AkamUz(^+Q1CB~7)Zw zH@y*vhontf_*+PDgAJwto01|AmdVlJY?hWW>#DS-CKNj_YZ6gmge#yPp?8hcfxry$ucT}Dj1T&i`wt%-rJ^7V-heL!~&JW z%|et^^|O6ZAZ5KJB&C&vE)r3uR*NV7PQs@w2+K9JKSHzJ<4MJyqrKx*6P|oX7)A;} z$g*yRD^S#%)omx$aCeQ?h@sQ&fCokZtG_8C~Ebp;_UVll_b6PmK4Gi&>;zX*nw`i@TbGbL!c~e&TBt{gTaQVFYySS zyNKZI1TH?gqz27YIiTgQZL|}}8o{bW3@NtGI$}%?Fhqj)J6&1d^(G-`Rg8Oy$wCryaOWeGNC73Jv*C;PN z0U#PVvpAW;)xcJ+>%XCTQM8pvPuaW!A<0V|dOfzDZ-50Ox(SR z(KM0pm`C&-ZooKG9TnX^7-pA51dO&d;9WE{90q8~EHtrLR%p68i_>e*bR|qhwX?2M zvg19qzQE=RTP5XjAqhJOxFaoXm44K(rD5C!7Ts&6MaLEtGQur?7W5!Dyx-P~Y-Oe| zhEt!|kq9VL+}mfl*jN8GtsBh znwr~m`(eDKEg2n3R|2{0boxaC^dtaJw3mO8)J0ObiYt()qURXoSY64KCMk`QaX~sD}4K~TgCxQNI< z6$-a1``T2oAGXw zGc9=lp?P`Wnumg9nMd+Y%Mu(yNN9>%&iQCxZr4}H^prkdZDAKFXjbgP<~!hG zg09jUqs?XQd{No0d>B#CXLpzshW7#fA#%px;1COZMcZ|r#<+V}6tmDI_FUZT&IXZP zW5o@+(Nc$ZU=%_q@e?0u{-AImnb}H!|3Ul=?-{p~!K$P!GO>6KiG4)^2KMQ#EGW#$ zP3CHs6$6@@MlDa8o+-4KM}%7Y@*M!>mrRTUqbc_t7a?2g54-hMz`v(UXFXZ1Ok3VE z1$X6=G3i9BwLq>!(FlXKsr4kvw=lVZ9=DT5HI4oplJPc%3$z>3DH^I4n-A(rj2fMM zz{zb#zcI67Bfzi1*NB?5Xi}wHS)Pb;7)>m75rUJmiOwy~$=YVwzQxxlGT(au)bfTT z!~BhZ*AQ%&rkJlv`#OhnO%5f2Zxc~k65cVjHZi3~=$n)OgPoI+ET{WX&*5I6X-t5k zq8m1@%(iGDsX@t~-1fObxQJtVxf#vB>@P@79t@xAKsv_v*vlP!HL`6$T-?lZwUATZ zrSN-S(WtK-xGj$~c3ITZYfZ)(_4gWaP5QBU^D=AaDEH^ktral#2uF4V{*OIIWEnR+ zKZ4D{R*2gZ#4*q-SKY3>V#5m6Fwyg6>amEF*Pfn2nvQ}m$cZ!`IaIul-`;F+Wim?C zw_w2zG&Iz&4M9Y%z=(pO2^Y)Sw*b@-JWAjk!iJl7-M!#|ZKJG|hr5(=4$lzvsFvbV zoQCu^fzkD6_6nreRAr<3fbWN5LPl7}Dpmm~kr?G1RJAxj@wDrtB;-S$yGX6~1zMCvBp$hd$dHWpl5&*K>Kbr@X?2|lhS@j@=R}GfV%H3?;D@&mc{p$2$(@HTZ#_aMk~u{ zRJHg7!3Mi{a$sUsb6I2R)X=N`46KLpGq_h_@czM7X z6L7baTov0UohrvEG3E8S2vggy_D96?ufo6ul|9PPByul$v*E?TB4`miZ)AazpGTw% z#w|0WJV`ywOy-i(i@nsq^Eyegn*`Fj`$Fx< zH)s2u`$)DJi260)9T%RJD|n2Xk2SO_a+bs3D#2^arVnSVdRcI3Pn_Gv+6~9nKs_T~ zEoLL7^?G}|^k~>N70hmxtjI|TKMgPG@@;O=H2pd^nsbW#4#qzQ2b4i%@wXkfjK?H~ zcaI8i&Fn07ZE1Wp!>e&^r6kBG$c=OvRbZbXj)~JbXwQ=pr9FAui4B^6qcg_qEzf z<_pFx%q}ZHlwJXm10jS*Q{V3L50QJG&XlAI8W1+C)8lwC@)psPQU+%|1MnOl`aq4=DX>>X_$`nRMY1SQjnhRyH{BKRCq!G|tg|>1sW6R1SYPay?a7XLSX*`Cf&$saZ`g z)aY*mbmN;sIv7=ZF3?vVbO9t`CNBG}t6|Exa>E2rNh9I$dtgu(ps$#7>}14@u4Ol! z;Xv@vr4NU!p?v)umOo@WBirpNJS1DyT!V%IC%AyUMaM0`CEb4usU&Szn2ERCGh|-T z{fVG_iLjU^)%6i+!8tFk)9^x>VNo4Y$2Z9wOU8Qmv&{%XT+mQW9StQ&PFU@9ml&oY zO+?n%SqyFHUT&jG0{^Ap4(x%<=h!EMUYVkUpBt7N z@~k!mVo^C7H|-<@{Dpl7)8w|;mdZ-#JE-(2^-ROYgJlDVgt7Om=OA+*jc13E+b9Jo#p~&Z69Sff<^Elb%_)M}XOz9INWb}12Uv#T{ty-tkX`~$WubW4mc#=7-tBL%JqT6T7Q zE}m&Eq3n(AbgjL0Lf_1~o-$Yofj1{@Y*+SdOR^|#I~qoOH>cB=*0{wu@M`2Hb77gi z-tbpYlm<;bRx>H5K;*ElQT)d1yw zB=bqm1_8!J39+YQ$qGlIA5dThGBIdlvP5toA}6r z5TLl#t|XViyl6UF0BFjmH$5zS0ZqdT+X(|7(ZUgX0aM0+b#E3copiuKvGDn2oI}W? zX1yS!PV42cWXP5cbS6~KZr?Ej48>uT{MGUdmdMQIndVO=*A>FBgd})6&$o#s0J8wh zW(F9^`wVPk0aoMCap8nsO;PN;+3#wrytmXn#2d-V#|!(Q622!wxGL4_6$2a9=`nFL zUF>C6z8y=&f!;VQy2MR)>X$^o9cX8Xa>Pp|O&cxXxWL$7Tw z*HztH0@(9~kI|C^tmWjJzfA`uw(;BKfE4nr-3cWfJDg>)UTYjU2(ATU_~SSo7ecLFT(Xy7O!!vJeGq7` ztkeSK11F(z%HC5fEmxni;VF-y?yuR;pXNJXljfu%G-+|G-dkE_6gJ z)(=GcC45nt=&4d>7j8*9F4XIWv&r+bTeOh`+&ciUG?*?(1$QNw;a-d%8Ny9Ma(2PN zVJs0!^_uy?x%n?@Ox;L8+cy=DEcTO9=caF8^K zpxr#h(8xeqr+&4QqbT6FF?ME-)czz&Y8hifRUIl^z&ys!-R~<%dBApt=-~!Q6ny+} z1YGjZN6s|aYU>Hj3(QDZ4}orRD(4S<#?EnR1SCo*Y$t-@YurkktNdcarSNVnmTXbGe+ zj_BR|w8Ph?hwBk{LwsCbrt-!jRNiFa#KL=uUyS`KD;D~(pHw-f7w zO`RJ~k{eS-1Y>lW_A*wvnd;;knNtq?3hnzQr^q`VL9$ut~8_W{Xb1!D;4*+2?URD2k2|g$?ID{ITfFTBakZ4h3`p< z?_WFo#R1Wj+X>o-zq}a=<}z^ywe89EXd9gBX5Ea4^L^Q9BKT=+lke<1qIF!1ENT>g z6W!&nj5;izDvwd%)4qNIFDR3j{uij5{r?PgGchpzhvNPxW@Bbz{LkyZGu>=VOice1 z>2~{9#CWsHO0a`Z0ui*x;T(=1^F)uYc-Rj^KMVsS6y(3SBQ7o}?v|#wxI>786qua+ zP*8WramMr8xB6P6VRhQ^+FR>$*Z$J9THkQ)|9+e=?v&1m6mW`s3@!=CJm8oa$Pa)( zJ`E27h1l3|F|goT-**#iEvHXT#*Rerj0XXV0u$KVKp{Ba=PwSzKeGXcPY#2Cl7xhk z1_T5s$e(|_$4@K?l@H+%AOx8C1;9cKbSgYv>hEkXHc(T&py=<%1H?|#4iK1_c-Y-{ z0l?vf0c8s)0KiOOZk7H$6N84p1%P1z7*??Jix{Z1i524-kAz_F;&KwU&UH_upvtJ- z4WP!piIorS6j-3GFW+C62&jqRwVt>52Dt&?xoTh5_eZ~&WD_+o5YQIJ)gBsS@FMgu z+J8{qKWhtce+&!21{~v%u6|SxK({~d6aeHM^cVFO{!*1M%^!dJ0D{V& zWE&1_UUhX}tgFBS5CP-~9l`J{xcfjz8{eKQ{2g}R?GnMi@ec$*N5x+`A6Yc=cHqs3 zJxJTvD$xKv1KZ8&V1G*dn;Qd&X5@pqFO&oF^bwi89nc?`HM9U{5%(XT#$cjv)GNlqE z82*oYoNR!RKs2_!Air~#zcTN?5npP_zba?HISGwTIXiZIXL|m>WAF`OTOGe4@{X-R z1wYvO0H0QREC%xJP2YZActr$kRQO@_jh||t`?8bvY#7Smv90w#QY3vh_1O2nNmar1 z{DOWq5%J|10D*!6+mHcliU>%kpzct+)yOEPFIpi0fW9C|K0<)(>_t6*sp2RHbqV1R zKp?iAVSzgs`hD8LzYul@(SkeF6L*li+uyJ6ucCwcw)D`08x+MOzmM49dF!b3N*9m#qN;WCKhz)3T2LvJ$U1MHIxpy+?hr{2OUfDG3d(};Fg_F zos3ZnI68KO*_Z_vxV~LPYAY^j{t0q-3!!W9Vs&J`t?RJqHkQ^Iv9n0UoEyq!wK-K6 zhVBqOZbZROJTa-kgmYv(Xpzss*_#&{7cu9zhI#UE(T!e{b|jSxvR-J%zL&WURc?(I zq`5T!$J3-;$<{rRw=#|l@X#S77#NGhANC-<->!+i4-o#Y8xf~aquZ?6C7f%ye#=sG}E_Pn{i(|enTbBDQ z9?tB>(HS3bh#P^eyIO|}NZobgAiN~9)s>#{@+E(qFkK@ul;u0#4OJ%U+b+<(&u{BpwSi~QHc!$gu41!BKJlHV z+wd6UKS;xC`s8Bx@6le?j3i(d+r$L&--_K)EcXM)#~cmHNH9Po2zEcx-7EQCuKqu z$JuUG#gzmPb^hGVtcpO^lDPSB|AXoPh{NZEq3p-DE(6W~_6f575_Mcg74}mCPjTQ;GjAS4g zucW)RA+j7*UCYcXh*tHO_<@W-wLR~Y-Jr6i=Po~NB=stzGNRa4{;)1B)*X5ZR_-?l z(xPl>4O|(Xo7oHhv`J+S{DZ{V*qWT3b+gLNBoqT8&*CLzx8(Z$_Pa3$H_|BK_`nF} zGa)3W;mD#Ic8-6mXCvIReng&}T4ymqK>Au~C>3mRq%3u?K)r%0Hc4H==$XDfA_aP@Op8k21ihGwmM)2|0j;ihz+y;H3+<3?!6Or0WgYS9GJml`hqj zuU2WhHHJ){EvQeF#77RIkl|rJFl7)p0HGoHeAFy>3;w!r&c&B*5 z0T*%NKyra$rtSnRE{1}vHCBkHh}}1Vz7H_Y6tAH~o}L<>()n}@w%}O$IU)>xb#KOE z1z1I?Va}nHKgnt)0`kz_Nk*b)t`fhOJDu7SFus4%;yF5Tx@b(Nb|fWX*?B-M@x4#6 zE?joiAT_ZPiM8a{A0(Wkg8EooGrcr}H}`|jL=kuUXbpS1PQLf+Rn8{U{2B03_fm+R zTQ>H<&F*>~7qck+HX!eu&L4ZY;1#X%`vrI*gTY!!EXlXu` z{+_p)6-EAc3u48Wq!7##8%u@`E|qc+@CwUZ#;dbf6U5S%!)c$tZ%rkPb`!eOAaEj9 z#c6lj7E^j+QA4w)+XSaD*C}!AiXnN6*GL5_uUNxW{w#ZZC1s^J`s12tiIRxT5P7m`Hg#>b4a&EICkv>eEWDZ#^gkZb%CxHsb;94dK5pOw$r zZSsqr?U_KkvHB+t!-{G1k?_P6me=$A))XJ zLX4&{K|q~rq1BM+^nrFDzfBM>p^W(#fvZ1Iwi41El4u^2$Z4Bh+?*-1ym;FFt{u%- zkM;FGeY>rN93Ul9Tg-M-AQfCz`AU+7l#jhVDHTSH^v^4+!ES}r)LJ^EA`?jqb%5Qb zqA*9J-F755T*Gu2j+k9MX^~y0u_Zm^`D3w*RImE*q-Y*r_Lj0X#XK9+AM7?2k^?1K z=K`1o{_@*UGzg6LP#@y_yyB@(!6zIOsHSE21Trx`1KHh|O%JOQhljsrk;3XgMcVLd zyp=Wb=A9%(gwrUEJ6&!%iLPdr+mTHK^!w6s|v{0l(SN?E2qJJ5lYOr`I_uO zw>mmP=7I|shGW%e)Z`P|^!U;ore10pGnO{YmF^zxJ^2bN%X%Fr;SAQppx_9V5%YyX zd7LmEj|wg4unk`F?}?HHM6RJmW?k?E@&;XlDd~a+H#2-3j9bRO zb-KbgLy`}D?UJ#4j5G-8X=Qdf=O3UASZf12x$ZIyb!^4^fke(OypdNQxqSL`Zb!wOYYF#nWE-sd4+3Hu2Vmu)m(k|qeE zeD=|KCnomcxqe78k;XkK3J(BrUWY`Fao2@fs2~i|8_+9yAg~^GOL$@TsQEq)ufUq5 z`89+-+Z{bb5UD6(F&DQVqcBBbshK_OsjzlUd-?JjkXIG4j~!2V7W~^e+;>yC7q`U? zl)6ycrjl9T;8@S5t*U`;p6B+vCtRzv8O)*e*evBT_)t2<@cn3A;Z45Iwuxg1{%*5$ zWBQ=2tB4OL$oOtjq1X9>gvhv;KOu#{C_m7ch*5q>(?s1;F5QSipmgS^*aU#^QoJEJ zLnZm;f;k8Ua|fDnN}ihMl5fJrjd4aqPExtszh$bil+CYM_<0j= zW**((x3dkO6i>7qUGHi+mZTaYZCNR&An>N3=?@^$1$}$1w7|j$}o7B6aP;w~iQm$N1UjGP4tqOkk6xo)+QdiFT*0I+SDg)! z)|p0IVQNHQOFJ&LWiGg}ycUcaZ|e!J8sRV43RS{gl$~E(JAXbA_fT$sr4!Fr5Cvb% ze!+P*8x?dN{1r?g={*_;a-?Zbg}F0N%ZD6woPihG{ZP;t#X-gPhiaU7N&A3t0^b5| zrfL0-)e2$z_)FB-)Zht$YA=jisjldlK7#fMyd@o8#&M?>wOD*#nB(LP8lv)!=P2XD zOQg3#g_Uv(hDKz9bGKSoDyz=9iGzB?daZQJc%Mrci@`zMz)EZsz)@Y_g_F67<0UMC z+L>5Bnf-B8CSf+P)wt}38Z_thqZ2|PW%0yTrRX4vlu()f85w0s(shVNvD&PDrq545F^B}KyIk0vUb z6wcK$Pv^y=PlYzujM}}i8=W%IwAw;?iHT8%I@JlFwRJe8+X+AH}YBPttG6L4rpa4jbh;=^}h=gUUmPO>$_; zoL{(eCJm96@>1n1P3UwlU;Xs8*E0O$)(>84ygQPcO2t&2>B74=tW6%|?&i8-L^oY~ zFIyPs#>9!JwQ7d{3Q>~TDAxmL9{U3G zwUc?yfmpq~TC<~(u<9d*;HNMWHau+ajy5y~Nj{-$wlvh_hCAlnx^R9d{=_u* z^3-pxt~8gV)(Hu7=Jkg%EHD<8dU^s-i*7%zs|zDY8n}ANutsOmeFWS=@kssq4vPi* z=WHph{X2F-kss$MH0(|?8m&I{2Qt3y`L~^X432jHUU@@+KgGUAxnEnNWZb|w5g=D~ zZtIN_HRle!L##i*&tss#%;XD6hqfx`0-bq->b~w3Y<%Z-Ec~prh|!;^gzZg!o8y$> zNk;7$o8Dar(Zu|yps8!p+|Y??K~~63k_|HHy#-A)(*ItiL=_aHIZJ1Mot;vKoQkEV ztXJNgm{sYA5J>E4QppF7BU_L`xM=MJe#2qon@s}Rd`K)JK;~C` z=-cW@Qy%rCw`FWK2gINB;B#TNlz-Y?=imazV6CWJKejURiJC8@Q7e`=*K?h|+`g|? z&?LNt2|(^_c92dKtsowZJisX%}CY<_?mGa8O12FDtD$Rv1!Ly}dL&9q}qN_RA{&@&w=uQCIo7hiY83Tc6o`(qGZe zt+WwtkeqpK1BRyWJbIh}@4*4pCP<_X7Jk|Fg7RYyKZ}Nj_-A~p`!FPhqPk_JWVjeg z3F_g+3j05Mb7PaZsvnVzPgZwrP*8nZLl65iv8~SEo(J$3>Fd3SR$TQ*2tzWL@gFtS zGFnc&MBtNhi1Q(`7GISPZ(6vYgHqYE8=XC^1)~`qgqFra&HYkg6braLzf3|87BZU} z#A5fZatoTCZePSBhCzqEz z=>API?GJ1NR7>lT#0w63IVa5Q^_NCpRUxjH@qS*Sld-VmJvUj&;RtC)+eMXDYf>^U z zh@;lG{9J?jk~Nov$FAeqaT9PosCPH(9G?=eoBEoDC`5j*bT;0?;c*a-Cd^c#-j;MvE&rUWjy4F7dq1+1|IV=y^*Fswbe+$Uk&+8D%7{ z&Nrw~OaElcEa)0eakq6?U%@DKr+Bp@+bMUx(hb69btuUwZb$G6>$}R7$;x6DYQ1cY zsj=`-E_@H(Dd|3)5dA{TQ?lvPIk?o~HXC4ZA6!RPyb}fe`2-3YD@TtrJ8JiXPSJW( znjc~H*D%Gc-jh^UD*TJR3C0`Ss*&3;^ZfZcSy*Sf+%2Ku@ zILSdLVAd#+ny3U40DJ%sl$7bI9gBUY^A`2N9gKCWe4`cph(@lL#6{rU4sM1UZUOh`(ufZSqCugE)Mo) zzuGc=qk?T=3LwJevGzu<7%V@0QJ(LVaKxK58~yOHES0&}#F$Ja++<0evKUoMl>KsX za&VkzA8D>I#>K%lGiXtMQHPQ8S?Z8w)yAq8pKBxPb{cXSU2qqUSINPQN)ZUp{evBe z#-)Ex=hzd)E}KmS$j@IViuMa#427pXw~)`FZ1TN;h(bO zL096{JF>7GNfYlOgKH2tM};Y&t8TbFY%{u?w7TI zQjVS6r}%@ERQ>ze9+{Iw%g2qSfhX!t2V%QC5X*t_!&8F4hYuJr>}19p)vCh2IeC5R z8lg~-qBCUSPR)1yeNUVd-0=?q*MZgMgonE`l>(L64`I@!yDCWTYs=lmLk8v5(&G}I zzseAzhdBM0T!j0Zki*A!Kpma@ja}21ej1Ya19~rg^(hinI#rqVY)nb(-nD_PO*RIT;#g_QbXdgZ5 zCS}zXE9{OC0$Rp0HdA-jz8Tp~5A5zo&zzvU<{0rCVf1kAV-dQ?WHXAU7)}YaNiJv~ zF$oYjAI`bPPJs7G1dQdjm5o6PMdC$6%M93vK$T)B`RANkN=vn=#2jt|f3 zo-A3f)G%#V68O;BrcuU9>d;pA*y*;tF(ebzixW=f@*6j#i$i^c4B`L0VWwB-O#I%X zp<+1YYA;vj?=bMGSULJA61!(Os1TWGL?IR#Mo1uFJJB!R#fI&XmE%`pD3Q7T;?llbU4A8J#MsqAp~}bXb&_p=I{efpv2*#r4OkCkv73w4MA$$wm zE>MDk$Opiydg-akAK0mSbt4+(qjbr`X*G6C(TQDeoeKVaiaL=tYI$u8mpEgC=OrZ9 zdN1l|DD2}Pb?fOhJ@0Ri!XU)f(+8cHO67&tQ1_%(BYQBoWT`?SRctL%v7BwuS#?A) z6;a1@q*L4`i_7T5jlf4Ih|yZ^Cn0|8sacqPUN3xQ)`kDm{p=S0@be@QZqkFW#um+@ zg-I59*)q*y9;j zCdfQ%q!uXN;OjCdf%WpM!H{Tufiv!EW^Op;jR@)nxbz;U1e5A=oD1FTStnS1!sG`# zsMnM4dwi)d7$_xqbQTyZMYsm~H?N$ue=iZ_k2~H-Q|vH5f6;x}w$hARmF1!Owgc}> z9ngwXCn&YG*t%XFL@c%nH98{OW!D$HpghOx0ngx#o-1`;#fGcoKC=Q(_EVb9OmIL3 zV^0A+bvNFnY(eR90N`O*WsDvBc=Ni3W_90s7)heOCU3VD@XD;fvLBd$+C!wuFE%Xs zqt|Q*1w0#DN?e^uFq5Imf-vqi)YQ%I*RE<3Pw9-y8V@jVh8cPa!Rx4X-y>_({NxpR z`ksqfsR7{K*y*L0mR8Gm{8Sg3_nT(@rm-iz>ry)*JBMFMmkeX9`WY9?fi2}yq&E1| zk3xY!38mn|RX0YYJ;@?!y%l>gHk{zh(TX@XFnjwt9muF(W1W7qgwu0Qth{T>Dt(0UejZtXuX6@b+^4Vg_od5;Gd>|W-63QPM=jh2wWVvH{xqH%RXBE9 z_^frIFl=3EsQMYZd_(yV^l`Pj0RH~k6xK)VH0$wlF>!H^MlfMzCY*RT6}cu$WH(GFUtoXa`LxK5u%)2P$pRM*NBPUtxBw3P)|lCWYAR@7R!^Xq-mSrVzA z+FO)W!S^{#BfYNW&wTjI zQF?PbE}2>=L^zJyp_@9}DVy}$fhpwUp?W77*RYrVo4l9bdBpWUfnpsuaoy#QPZ!Z7 z2mCcjKw%i${->f@gX;j!!F8W7f&2cJ@11X5mk8FmG~yuMSupViLzhFVs1TVGe)Nlk zxWh3m5SXDs(X+2LvM=8v=m?xMmpHa^Sfz>F?Vhs-0Xis7SG=T6K#?neUm13c_M|e% zcQ3YwaHY%RjIZ~K-BUUnFVHY@gdzVOHe4+KHf;VrN&XjXHvfXn1J)`u`sX|zfTtRb z@^A6YDqFQbB^p)m_+dP8@lwMb1~L6V55u7+wo+aD&M3O~=bi*d)V%yz+;@+m7n`}! zyGGB9F(SX@BzeI$d%!AX2irV#t;#dr{i(h%qjqUN{!!*uxKppeQbZgvYfpRg3+Bvd z3)(Zd#=qn0d^&lqVwzO)X~Bf-2?eKCE;Ph_f9 z_;jSPv3&KubR+6IY;jhV{Nv}r&!(mZaM))cTlg7;tRusEU_5HN4Zou!N|yg%`d334 zFQYBMn2p&Q_bApM*e#JHR#@|;KVz@o%6#RCk=>FB?U1YHGs(e}*08pY35L;+P@Umd zk>%lJh{C0B;Py?YTV>W?%GFhX8P(D@s&%J0bm2h4$Fn(h3^uhH=zUgi zcJEt(-P5@v7qdgVGqa6cOwj4FUhvRp&033KW6N;MAsBpef2@0QXnFHYp&wGQ*!*?b zJl%7OYb$^nw0P)NywdZSYO*3Z#Rhx(>F(_Gtc(wN!p6rk+IVV=LTN4iVxLy13;}>{ zAO?l;+PJaobP}%=qbviUS>!uXu=jOj=?F)=lAir(d9+a?ek`JqU00ND)#|;`!uOEw zyM40f?o=r6vG31;b;aG`MjWCzeTOz;5WI*i|3rG)fpCSmB)bM63PoentduxGY5yT~ zcXhhm^Bgj@f_s+LhJoLKWm(d^nE9l)6Rh{N;jcPWFEtD%YHWCIz*gydW%-Jsm?-NO zM5PU1jPiMw6(+A=5F#Qj|Mw(3aK{12vhEN|Rh42AOO2I>E5%x>^Of0nktK`@a;9U& zK9Q~)D^HrHtUeObI=nlWjlu?!`2&tG`JxC^^he{&qp=i3zWPbcDKdROv(!&tycI%Z zA#g&G!7@Fw1|}s+g$Se-!ta3|>-6$>5csN6&#;Em#q8VJ3Yh`K65Q5RW}*(zZqiKy zA}?%`C@YSTk62tH64_d&xXf{ikL=r+JrlmtLZ_uznV+t$<;#a4sRK2LCFiise2dLs zGK#Wmg7C(D*h$eje53 zy@viafb$sMdI6QoSZF@u#Srl}fN=pe)kMf7{3X`%R;;1%2KG(inZQW*w_(fZ&qFpO zZ}E-m?geO-Ldz9f;afdat^0M8%wQhRwuDX}dzm<&f1wR*|E4zZ@cun_q^+7fXo(N4 z^+=;C1md8RQ;0&D2?;vS1e*66TK@dJBD!b$W2mWE1M0(FOs#dgZJb!-jC~V7KVh(I zmbc)TXNONT`;|nv!9}BxqFx5)T0_X@X~l}`o*tp%n(?u*kKSi*ETKZLJ6y%hc6SRv z-^MjBrBLL`Qd7)aSxmgBCsAL9zu@L8?JNJ0OaGnKttauSLN`zRfET_3h;}d6G>+v0 zp2}ia$bk>#>7rE0ATQygW{g+uno+PZYsWd-6@6{8(QzRn-UX6X&}0svd1@!ZyG0Kj zIvubUQ`qQ%YjE2OrrqtB+`Qmu!{{FGeeR#`x5PE*eF2P24sAWyyG0n1npA6t3AX3? zTi%{6>0w^Qz_sQJv;lJdT$iV){W{yas5;rKBQh|qP5@ITrH__`8o$k@xwP&)?4;=w z>MrB~%5i2&H0d&drXPwJebI#_d>J7%Ay9np2q1`s*BS944vUk1xj|S%5I_+^$RjIh zl?FiyBQrpwK+KQ>OC*9tkh?hr+!E+|vA)TsZUVJPb2pKq@UcZTdv%0IfIPBoQ81{8 z2o1n&IEc^3P`*0Q_Uqe(h=EKf5h%9x(`=B$zIR%pF@vA4vbCV_VbVE~i*OFhEQO=i zYYQMbyZEf}l`7-3rr;bo9}6t`j*p6G55Enq_$(a&Ka^t~N=f*`o_|l!2Suh!WK?4__{KxXrQ$yfQ7FNffG`Q7Ub+;x3xCJ#mZW1? znlh~ZqFm1Y`O;J|X}FRFx`dAPl*`Zk32T@7_EXl;IH3<^n2mUc^vJjPyQ$0RK=m{^ zpe8*YT6|ckFm^dl0bgDsYr;6Yj6J(RZk{JsW&d&TSxlfG(vtqCu?(#HQ?QPQ{^21((JxNaun3c30Ii9m6Jq)Lt^!E07 ziQFueEf%nEJhL(Z0rU?Fzh$GnB$C%=%Aj}PZ*j*4J^`$03wKh^Is2W6xCsLkU((H6 z^Y}c))NVWG7T#7(-k#W=)->MVnZ0==znmQ%zme3w1q{8S@;wQq9KR`D0DmNLu;ZR*#`>ruFUZXSP7o}gVO0BwPDt~drlT)l6o z69-@Zg)09Q7zhGdAqWVNFn_VMaWVzJpKXksOvO!&K_;gE5kE-6&B^ljf$d$D-|0}> zo`xH0;v#e}fWi-fbm3zh&v66Yj8$c9iXDZN(ua`Or<*G@-G2D8 zQW__-(bMGSmABJBS|+1wveJ#6T$6w8JQ$|GCf6sH2hU7lcpNN(Z9QDF$}iPa?od%$ zt%hEjYM>82Vyn-bF-UkqRyr1haxeeP`NuTueOsFw4TXMIzw>~9bjfTYYhh&TIQVs< z;JhTjdNIK38f2y}_vQ!w0rtn^F&2&@z_Bi`a1Ak>BZ9MDG@k#LBA zk#PGha<0!Y<|ntNXvF!VIMR#16Be;z8e5DO`WG@PqE}to{rXM=nQwiBtPV;0wA4ML z{j^5*fbg-&`OFO_0Xk_aME42jypMT3 zYaP|QJs5Xo66f(ror>D9LI=|4@zDWUPUz2hQ|r{_0a+aGQUNjT7I*go_i{eB$d`&g z`~TSS$GdK=3ij5Ql-yR!veeNNBR>kVYn`VK28@re z-H%{)n&Y7g4vU{_Q3Z_G4Bm`Bi=Sgaup?sJ@}Uen&NWFN^j86ValM?4E8`#MiK~a- zoksfWBa%uzte@A5X6G# z8>~uZ^fBz4rNTsnQC^;IBE`&F4k52`J5t@ZsCQ5MkL(H#Zw<{a$jw167R+9z=DU0C z5vQk@4b2(l1X<dElVApaqECI3hP+k}PKmaD8m(qLlztyM^e>&>N)VDF{2R&Mjxhvt%o2C-k2HXW`2 zE^WtlqobN-@!6TTOiI!%`;4O0!b{3lV4_VT+ z-%6!A$ZO6eSr^3yH|A>wi5G5IPaM&i6pE0;Xd#aRD4NjvFuD*5qVOm@$hb$k{Kggj zX`(>+C^uO2rjNJ}?kSYegndc_AK9&ZK-PYI5=ah^d`*#l%qF-59HBhtIKE#CIR->B z+2B8u>E?B%X@%1N9*&J5oE~@Frs;v*$HC{M$kxJ*OdddeL+|S`hEu@4cLNRk+=que`Qas!bRcE+Kx0VP$4G+tiNxDsN%v& z4Z^)c-NL_DpD0Wkxu=G7DdhR-a&&&zEG{6baKf_{FZzem-Q0M8D&Th9LEQ^$r_yaX zt59%kv4i_BvbS{iPqIh2Y2W7Ytp1vD`(iARcy}Up$6}{w@cpWLz9Tcl?dEZrwrB1n zMNg@))hGOI%%y)+A$;M={mEr9njLbl@Z^Az*Xvt{T;FAGbzZj5rql9iKPdm1E>J3X zhNtd{Xpsl|3NaDvO?g*C6mrm2=n2;%S^}QGEgZ&rxohD-g%N58C_3D+v>!+G=48Cd zaK{uLWb$~^?g|yWXRN!ZZ+(+uT=^ydKmmQ?kon4xyn|+-+&BGpH_DWBrRdT6@J{%E z#rxW9mEJ-KX-Lko1vgq!&Q`%0_ab}G*riXB~N0lM&VIZmB4n7>7 zI2#SDZd@lkF2126X`(_f!VR7DY~OF+*lk~00*QDPlcAjCalPxObXIYJYE(-lS@(N0DT7 zN9Eg2PIFW)Gm3?WVzzPT7E6{?H;{L5G z?MbvF{60?vLZ@$_k`ROoE=fy9e8!qlgJaha0EoHsMN2S;C;#?K*LEacbg4L6H*nD7 zOAbH$25*;W45(4j`}&oExe@Z$VHe~B{qFDTkxssKtUZ{l@bR(Eii1cwl98vW9GuZ* zC@afdY!3tSVuC#q1}tgK^Vf|Z;?#<)oBE@Vm&s2G+pa^2s+Nr-GLpuJh=3rBlp`EPt&~3hnOlbWn^u(AzsEKL=W>M{^8aq#|SlZ8iHjg*;iYWIYN! z9m6_gYckiWyCv3lX=u^6j%jbm&mx@FsNeHh2Z3tT-LmStT(#(*4-2p;O!IVWUTI9c zGbJdB7|4DOk)b$^pP||%Az(jkSRh+)AZBFBL=ea z0kTPT_xIw=s(!a1HT>r(6sJh#~6H7&)m5P(?e-ca{Hm?7Hfhv%&vHVp9c61_P<^KCqxhRd# zju@I+=IIP>QB8h6S!us>p`^#8 zV#h-;al3Rk+4?X(3)5B09(R$khXMT|cpmDLSoEbzXmIPifOK%+1vPWOl)HcB;)i*b zaSZGEkH8G0PS+lS=-C}cRQv$Cf3XtBb3R2YbG>v)z~1v!ktp z^GgqN*VUD}@q<2rlo$izth+X)-B<}9TL)BK4q{))D8%!;ixh_=&L6(a?tqb%6-~Jm zZPrfIUXp}zDxwdKR7AM%hfUu~o}{!A~R@hsl+Ub%)7IbO8lz{UPF|;%O`CZ^p}uP3G9* z9KiOTKdFuuyjjU%=?tl;3vkuK%2C_Oan`ZA6qnUsl!*E3oWtT02~}bU=@tq^kj2F8 z>~0pZg5}%cls?7br#`J1Z1=T-j~@CQXROE~KgU_s;MpHZvp_F!{yHtd8z^W}bwq{O zCS%rgSr%f{n>0$AGtT7TPqN~!F`ys5VYeuwZNSx~m;>@=B5}Xq2O|4;zBqWB|0=e@ zO0FcP?9>q$wUJSoLu_S`GADIREDi`@ruQ`C5DZI~Vgjbw$V}`a?}p2f8z!;n2kq5U zp3p5?wgC=iY|N!zdQ+>AV#2tVnHaG6T3Xf0^)c3R4RLHIDM2`vat?Lj3O_5jS}cqU zCJuF@N4@r^HmEV@>rCoQ`5VFW&0#|Wrn(;OY$vZf2i?D>wmMW^uKM`7-UKV$qu8mrja<{L_{@b7Emoi^w$Mv)wGBq zJMsgbTbCjfZR_~lV9L0p~>{c*~SKFWM}v8h|;K9SUQrt7kd-4 z_m&w*)J?&T@1l^fGqG~8a`Liqak4YAF>x`nGI6jlz1t66n!f~)vve_iHyLaky0j$L z_C`(?j;2N=F8}wdTudBHEbme&fk7tD#((|DKO6s#Hr}gLoPk!R#!ml`SJl$V=KXKK zUsVMg+1s0%yc;4T8%NW>NWH0@$zPr`*MD7}_fONNscdTYpN5T%o%??K39|-?4hbs>`}?8yE}`W&QxaC5cdIBZ zPNE}V0yN_>HZkL2V=?9AGUhhoX5}(rGc#o~d;ef&%ncM2;4o!p<>6sB0`l;(u(BBO z@|tn*aIn1>4h|sDgo|5H?{8j;F%SZh>Pvy-Dw3SAI&tVWGR*hLoHr30GY5(bXhRo_ zluQ`2ak#kUVnY}1lou>gw*lSQ^5APGnRSy|UzpavdXT~Mw zhv9EIjUhu#7ND^~ka4=v9~}A=ss@zNieDkc>BgXHJHMI22;b5L*iN?~keT)hQ^fPm zcbFM|N40siWFa7XMQ7NAq{8vDt%m6vKC=XM+8G)WQc6l6Q@pV~E+In5kJA7C?}|Y3 lzpwx8f&cA+|9?Gz;OJxoc5-_k9T3=9xezERB^19P{2%3eV|@Ss literal 0 HcmV?d00001 diff --git a/docs/long/long.tex b/docs/long/long.tex new file mode 100644 index 00000000..e5c9bf39 --- /dev/null +++ b/docs/long/long.tex @@ -0,0 +1,535 @@ +\subsection{Max long} + +\subsubsection{The Hyperdrive-Yieldspace AMM} + +For a deployed market pool, the Hyperdrive-Yieldspace AMM uses a modified \href{https://yield.is/YieldSpace.pdf}{constant power sum formula} to derive a price relationship between two assets. +In this case, our assets are vault shares, $z$, and bonds, $y$. +When base, $x$, is supplied to the market, it is converted into shares, $z$, by depositing the base into an underlying yield bearing vault. +The Hyperdrive AMM then supplies bonds, $y$, such that $k$ is kept constant. +The two are related via an invariance formula (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/yield_space.rs#L285}{yieldspace.rs, l285}): + +\begin{equation}\label{keq} +\begin{aligned} +k &= \tfrac{\mu}{c}^{-t_{s}} x^{1 - t_{s}} + y^{1 - t_{s}} \\ +&= \tfrac{c}{\mu} (\mu z)^{1 - t_{s}} + y^{1 - t_{s}} +\end{aligned} +\end{equation} + +where $t_{s}$ is the time stretch constant, $c$ is the current vault share price, and $\mu$ is the share price of the vault when the Hyperdrive pool was created (aka \code{initial_share_price}). + +The relationship between shares and bonds is also described using the spot price. +Our generic equation for spot price (\href{https://github.com/delvtech/hyperdrive/blob/34b562e8952cf9cf235e551484790bbc7ff65884/crates/hyperdrive-math/src/long/max.rs#L154}{max.rs, l154} and \href{https://github.com/delvtech/hyperdrive/blob/570263e2b85c411b4097132bfe7ad2a085e3180b/crates/hyperdrive-math/src/yield_space.rs#L36-L37}{yieldspace.rs, l36}) is given by: + +\begin{equation}\label{simple-price} +p = \left( \tfrac{\mu z}{y} \right)^{t_s} +\end{equation} + +\begin{callout} +\callouttext{bulb}{NOTE} + +We can use the procedure outlined in Appendix C of the \href{https://yield.is/YieldSpace.pdf}{YieldSpace paper} to relate the price and invariant formula. +Recall from the paper: + +\begin{displayquote} +In any invariant-based liquidity provision formula, the price at any point along the curve is equal to the negation of the derivative at that point + +$p_{x} = -\tfrac{dy}{dx}$ +\end{displayquote} + +However, in Hyperdrive we consider a price that is $<=1$, while the YieldSpace paper assumes it is $>=1$, which we can express as an inversion: +$p_{\text{hyperdrive}} = \tfrac{1}{p_{\text{yieldspace}}}$. +Given this, and that base is converted to shares via $x = cz$, we can derive the invariant from the price as such: + +\begin{displaymath} +\begin{aligned} +-\tfrac{dy}{dx} &= p^{-1} \\ +-\tfrac{dy}{dx} &= \left( \tfrac{\mu z}{y} \right)^{-t_s} \\ +-\tfrac{dy}{dx} &= \left( \mu \tfrac{x}{c} \right)^{-t_s} y^{t_{s}} \\ +-y^{-t_{s}} \tfrac{dy}{dx} &= \left( \mu \tfrac{x}{c} \right)^{-t_s} \\ +-\int{y^{-t_{s}}}{dy} &= \int{\left( \mu \tfrac{x}{c} \right)^{-t_s}}{dx} \\ +-\tfrac{1}{1-t_{s}} y^{1 - t_{s}} + \alpha_{1} &= \mu^{-t_{s}} \tfrac{1}{c^{-t_{s}}} \left( \tfrac{1}{1-t_{s}} x^{1-t_{s}} + \alpha_{2} \right) \\ +-y^{1 - t_{s}} + \alpha_{1}^{\prime} &= \left( \tfrac{\mu}{c} \right)^{-t_{s}} x^{1-t_{s}} + \alpha_{2}^{\prime\prime} \\ +\alpha_{1}^{\prime} - \alpha_{2}^{\prime\prime} &= \left( \tfrac{\mu}{c} \right)^{-t_{s}} x^{1 - t_{s}} + y^{1 - t_{s}} \\ +k &= \tfrac{c}{\mu} \left( \tfrac{\mu}{c} \right)^{1 - t_{s}} x^{1 - t_{s}} + y^{1 - t_{s}} \\ +k &= \tfrac{c}{\mu} \left( \tfrac{\mu}{c} x \right)^{1 - t_{s}} + y^{1 - t_{s}} \\ +k &= \tfrac{c}{\mu} (\mu z)^{1 - t_{s}} + y^{1 - t_{s}} \\ +\end{aligned} +\end{displaymath} + +\end{callout} + +Hyperdrive computes fees that are removed from the system whenever a trade is made. +The fee constants are denoted with $\phi$, where $\phi_{f}$ refers to the flat fee, $\phi_{c}$ refers to the curve fee, and $\phi_{g}$ is the governance fee. +The open-long governance and curve fees can be written as a function of the base transferred, $\Delta x$, and initial spot price (\href{https://github.com/delvtech/hyperdrive/blob/2a8c81fa401f31031be8ad87117a0a7a85a866ff/crates/hyperdrive-math/src/long/fees.rs}{fees.rs}): + +\begin{align} +\label{curve-fee} \Phi_{c}(\Delta x) &= \phi_{c} \left( \tfrac{1}{p_{0}} - 1 \right) \Delta x \\ +\label{gov-fee} \Phi_{g}(\Delta x) &= \phi_{g} p_{0} \Phi_{c}(\Delta x) = \phi_{g} \phi_{c} \left( 1 - p_{0} \right) \Delta x +\end{align} + +where $p_{0}$ is the spot price before the trade, i.e. the current spot price. +We do not include a function for the flat fee because it is only applied when closing a long. + +\begin{callout} +\callouttext{bulb}{NOTE} + +We will use capital letters to denote functions and lower-case letters to denote scalars. +\end{callout} + +The pool's maximum spot price such that the trade doesn't result in negative interest is given by (\href{https://github.com/delvtech/hyperdrive/blob/570263e2b85c411b4097132bfe7ad2a085e3180b/crates/hyperdrive-math/src/long/max.rs#L147}{max.rs, line 147} and derived in \href{https://github.com/delvtech/hyperdrive/issues/655}{issue \#655}): + +\begin{equation}\label{pmax} +p_{\text{max}} = \tfrac{(1 - \phi_{f})}{1 + \phi_{c} \left( \tfrac{1}{p_{0}}-1 \right)(1-\phi_{f})} +\end{equation} + +\subsubsection{Deriving the target base and bond amounts} + +Our goal is to determine the maximum long that can be opened for a given market, which will result in the max spot price. +The two price equations can be used to derive the target reserve levels for a pool with the max spot price. +These are given as target shares, $z_{t}$, and target bonds, $y_{t}$. +First we will solve for the target bond reserves in terms of the target share reserves by setting equations \eqref{simple-price} and \eqref{pmax} to be equal \href{https://github.com/delvtech/hyperdrive/blob/570263e2b85c411b4097132bfe7ad2a085e3180b/crates/hyperdrive-math/src/long/max.rs#L162}{max.rs, l162}: + +\begin{equation} +\begin{aligned} +p &= p_{\text{max}} \\ +\left( \tfrac{\mu z_{t}}{y_{t}} \right)^{T_s} &= \tfrac{(1 - \phi_{f})}{1 + \phi_{c} \left( \tfrac{1}{p_{0}}-1 \right)(1-\phi_{f})} \\ +\tfrac{\mu z_{t}}{y_{t}} &= \left( \tfrac{\left( 1 - \phi_{f} \right)}{1 + \phi_{c} \left( \tfrac{1}{p_{0}}-1 \right) \left( 1-\phi_{f} \right)} \right)^{\tfrac{1}{t_{s}}} \\ +y_{t} &= \tfrac{\mu z_{t}}{\left( \tfrac{(1 - \phi_{f})}{1 + \phi_{c} \left( \tfrac{1}{p_{0}}-1 \right)(1-\phi_{f})} \right)^{\tfrac{1}{t_{s}}}} \\ +y_{t} &= \mu z_{t} \left( \tfrac{1 + \phi_{c} (\tfrac{1}{p_{0}} - 1) (1 - \phi_{f})}{1 - \phi_{f}} \right)^{\tfrac{1}{t_{s}}} +\end{aligned} +\end{equation} + +\begin{callout} +\callouttext{bulb}{NOTE} +That last step required some algebra acrobatics: +\begin{displaymath} +\tfrac{1}{\left( \cfrac{x}{y} \right)^{c}} = \tfrac{1}{\cfrac{x^c}{y^c}} = \tfrac{1}{\cfrac{y^{-c}}{x^{-c}}} = \tfrac{1}{\left( \cfrac{y}{x} \right)^{-c}} = \left( \tfrac{y}{x} \right)^{c} +\end{displaymath} +\end{callout} + +Using the invariant equation we can solve for $z_{t}$ isolated, without $y_{t}$ \href{https://github.com/delvtech/hyperdrive/blob/570263e2b85c411b4097132bfe7ad2a085e3180b/crates/hyperdrive-math/src/long/max.rs#L175}{max.rs, l175}: + +\begin{equation} +\begin{aligned} +k &= \tfrac{c}{\mu} (\mu z_{t})^{1 - t_{s}} + y_{t}^{1 - t_{s}} \\ +k &= \tfrac{c}{\mu} (\mu z_{t})^{1-t_{s}} + \left( \mu z_{t} \left( \tfrac{1 + \phi_{c} (\tfrac{1}{p_{0}}-1) (1 - \phi_{f})}{1 - \phi_{f}} \right)^{\tfrac{1}{t_{s}}} \right)^{1-t_{s}} \\ +k &= \left( \mu z_{t} \right)^{1 - t_{s}} \left( \tfrac{c}{\mu} + \left( \tfrac{1 + \phi_{c}\left( \tfrac{1}{p_{0}} - 1 \right) \left( 1 - \phi_{f} \right)}{1 - \phi_{f}} \right)^{\tfrac{1-t_{s}}{t_{s}}} \right) \\ +\left( \mu z_{t} \right)^{1-t_{s}} &= k \bigg/ \left( \tfrac{c}{\mu} + \left( \tfrac{1 + \phi_{c}\left( \tfrac{1}{p_{0}} - 1 \right) \left( 1 - \phi_{f} \right)}{1 - \phi_{f}} \right)^{\tfrac{1-t_{s}}{t_{s}}} \right) \\ +\mu z_{t} &= \left( k \bigg/ \left( \tfrac{c}{\mu} + \left( \tfrac{1 + \phi_{c}\left( \tfrac{1}{p_{0}} - 1 \right) \left( 1 - \phi_{f} \right)}{1 - \phi_{f}} \right)^{\tfrac{1-t_{s}}{t_{s}}} \right) \right)^{\tfrac{1}{1-t_{s}}} \\ +z_{t} &= \tfrac{1}{\mu} \left( k \bigg/ \left( \tfrac{c}{\mu} + \left( \tfrac{1 + \phi_{c} \left( \tfrac{1}{p_{0}} - 1 \right) \left( 1 - \phi_{f} \right)}{1 - \phi_{f}} \right)^{\tfrac{1-t_{s}}{t_{s}}} \right) \right)^{\tfrac{1}{1 - t_{s}}} +\end{aligned} +\end{equation} + +Next, we plug this result into our earlier equation to get $y_{t}$ isolated (\href{https://github.com/delvtech/hyperdrive/blob/570263e2b85c411b4097132bfe7ad2a085e3180b/crates/hyperdrive-math/src/long/max.rs#L202}{max.rs, l202}): + +\begin{equation}\label{yt-price} +\begin{aligned} +y_{t} &= \mu z_{t} \left( \tfrac{1 + \phi_{c} (\tfrac{1}{p_{0}} - 1) (1 - \phi_{f})}{1 - \phi_{f}} \right)^{\tfrac{1}{t_{s}}} \\ +&= \left( k \bigg/ \left( \tfrac{c}{\mu} + \left( \tfrac{1 + \phi_{c} \left( \tfrac{1}{p_{0}} - 1 \right) \left( 1 - \phi_{f} \right)}{1 - \phi_{f}} \right)^{\tfrac{1-t_{s}}{t_{s}}} \right) \right)^{\tfrac{1}{1 - t_{s}}} \left( \tfrac{1 + \phi_{c} \left( \tfrac{1}{p_{0}} - 1 \right) \left( 1 - \phi_{f} \right)}{1 - \phi_{f}} \right)^{\tfrac{1}{t_{s}}} \\ +\end{aligned} +\end{equation} + +These target reserve levels then correspond to opening a long for a delta base or bonds (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L207}{max.rs, l213} and \href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L213}{max.rs, l219}, respectively): + +\begin{align} +\Delta x &= c (z_{t} - z) \label{dx} \\ +\Delta y &= (y - y_{t}) - \Phi_{c}(\Delta x) \label{dy} +\end{align} + +If the pool is solvent after opening this long, then we're done. +Otherwise, we will use a numerical approach to estimate the actual trade amount. + +\subsubsection{Iterative refinement of the maximum long amount} + +Opening a long causes a change in both base and bonds and is impacted by fees. +Without a closed-form solution, we will need a numerical approach to estimate the actual trade amount for most pool conditions. +Specifically, we will use Newton's method with the pool's solvency as our objective function. +Solvency captures the protocol's ability to pay its debts by measuring its assets versus its liabilities and minimum reserves. +Assets are the share reserves, $z$. +Liabilities are the aggregate long exposure. +Minimum share reserves are set in a pool's configuration, as $z_{\text{min}}$. +Liabilities and reserves are converted to common units (base or shares) via the share price, $c$. + +\begin{equation}\label{solvency} +\begin{aligned} +S(z) &= \text{assets} - \text{liabilities} - \text{minimum\_reserves} \\ +&= z - \tfrac{l}{c} - z_{\text{min}} \\ +&= \tfrac{1}{c} \left( x - l - x_{\text{min}} \right) +\end{aligned} +\end{equation} + +For a single long, the change in exposure is given by the amount of bonds returned, $\Delta l = Y(\Delta x)$ (aka the amount of longs opened, or long amount). +The amount of bonds returned can be broken down into a component without fees and a fee component (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/open.rs#L11}{open.rs, l11}): + +\begin{equation}\label{long-amount} +Y(\Delta x) = Y_{*}(\Delta x) - \Phi_{c}(\Delta x) +\end{equation} + +where, for some initial bond reserves, $y_{0}$, and base reserves, $x_{0}$ (or alternatively initial \href{https://github.com/delvtech/hyperdrive/blob/34b562e8952cf9cf235e551484790bbc7ff65884/contracts/src/libraries/HyperdriveMath.sol#L147}{effective share reserves}, $z_{0}$), + +\begin{equation} +\begin{aligned} +Y_{*}(\Delta x) &= y_{0} - \left( k - \tfrac{c}{\mu} \left( \mu \left( z_{0} + \tfrac{\Delta x}{c} \right) \right)^{1 - t_{s}} \right)^{\tfrac{1}{1 - t_{s}}} \\ +&= y_{0} - \left( k - \tfrac{c}{\mu} \left( \tfrac{\mu}{c} \left( x_{0} + \Delta x \right) \right)^{1 - t_{s}} \right)^{\tfrac{1}{1 - t_{s}}} \\ +&= y_{0} - \left( k - \left( \tfrac{\mu}{c} \right)^{- t_{s}} \left( x_{0} + \Delta x \right)^{1 - t_{s}} \right)^{\tfrac{1}{1 - t_{s}}} \\ +\end{aligned} +\end{equation} + +When a long is opened, the share reserves is increased by (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L315}{max.rs, l315}): + +\begin{equation}\label{dz} +\Delta z = \tfrac{\Delta x - \Phi_{g}(\Delta x)}{c} +\end{equation} + +Using these components, we can derive our objective function as the solvency after a change in shares (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L329}{max.rs, l329}): + +\begin{equation} +\begin{aligned} +S(\Delta z) &= \left( z_{0} + \Delta z \right) - \left( \tfrac{l_{0} + l_{\text{chk}} + \Delta l}{c} \right) - z_{\text{min}} \\ +\therefore \\ +S(\Delta x) &= \tfrac{1}{c} \left( x_{0} + \Delta x - \Phi_{g}\left( \Delta x \right) - l_{0} - l_{\text{chk}} - Y(\Delta x) - x_{\text{min}} \right) \\ +\end{aligned} +\end{equation} + +where $l_{\text{chk}}$ is the checkpoint long exposure and is assumed to be $>= 0$. +We add the checkpoint exposure to account for negative exposure from non-netted shorts in the checkpoint. +We will keep everything in units of base, but see \href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L336}{max.rs, l336} for the implementation using units of shares. + +In summary, our optimization objective is + +\begin{equation} +\begin{split} +\argmax\limits_{\Delta x} -S(\Delta x) \\ +\text{s.t.} S(\Delta x) > 0 +\end{split} +\end{equation} + + +To perform Newton's method we also need the gradient of the objective, starting with the long amount: + +\begin{equation}\label{long-amount-no-fees} +Y^{\prime}(\Delta x) = Y_{*}^{\prime}(\Delta x) - \Phi_{c}^{\prime}(\Delta x) +\end{equation} + +where, + +\begin{equation} +\begin{aligned} +Y_{*}^{\prime}(\Delta x) &= \left( \tfrac{\mu}{c} \right)^{-t_{s}} \left( x_{0} + \Delta x \right)^{-t_{s}} \left( k - \left( \tfrac{\mu}{c} \right)^{-t_{s}} \left( x_{0} + \Delta x \right)^{1-t_{s}} \right)^{\tfrac{t_{s}}{1-t_{s}}} \\ +&= \left( \mu (z_{0} + \tfrac{\Delta x}{c}) \right)^{-t_{s}} \left( k - \tfrac{c}{\mu} \left( \mu (z_{0} + \tfrac{\Delta x}{c} \right)^{1 - t_{s}} \right)^{\tfrac{t_{s}}{1 - t_{s}}} \\ +\end{aligned} +\end{equation} + +We also need the gradient of the governance and curve fee calculations: + +\begin{align} +\Phi_{c}^{\prime}(\Delta x) &= \phi_{c}(\tfrac{1}{p_{0}} - 1) \\ +\Phi_{g}^{\prime}(\Delta x) &= \phi_{g}p_{0}\Phi_{c}^{\prime}(\Delta x) +\end{align} + +Together, these give us the solvency gradient: + +\begin{equation} +\begin{aligned} +S^{\prime}(\Delta x) &= \tfrac{1}{c} \left( 1 - \Phi_{g}^{\prime}(\Delta x) - Y^{\prime}(\Delta x) \right) \\ +\end{aligned} +\end{equation} + +We want to discover a $\Delta x$ to push the pool to be as close to insolvent as possible, without passing over to actually being insolvent. +We achieve this by maximizing the negative solvency, since solvency decreases as more longs are opened. +For each iteration of Newton's method (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L73}{max.rs, l73}): + +\begin{equation} +\begin{aligned} +\Delta x_{n+1} &= \Delta x_n - \tfrac{S(\Delta x_n)}{S'(\Delta x_n)} \\ +&= \Delta x_n + \tfrac{S(\Delta x_n)}{-S'(\Delta x_n)} +\end{aligned} +\end{equation} + +In the actual implementation, we will iteratively compute solvency for the new $\Delta x_{n}$ until the system is no longer solvent, and then back up one step to return the maximum long. + +\subsubsection{Deriving an initial guess for the max long amount} + +The rate of convergence for Newton's method is improved with a better initial guess, $\Delta x_{n=0}$. +To derive an initial guess, we can use a conservative price estimate, $p_{r}$, to approximate $Y(\Delta x)$ (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L253}{max.rs, l253}): + +\begin{equation}\label{approx-long-amount} +\begin{aligned} +Y(\Delta x) &\approx \tfrac{\Delta x}{p_{r}} - \Phi_{c}(\Delta x) \\ +&\approx \Delta x \left( \tfrac{1}{p_{r}} - \phi_{c} \left( \tfrac{1}{p_{0}} - 1 \right) \right) \\ +\end{aligned} +\end{equation} + +We define our initial solvency as in equation \eqref{solvency}: +$s_{0} = \tfrac{1}{c} \left(x_{0} - l_{0} - x_{\text{min}} \right)$. +Plugging this into our solvency function $S(\Delta x)$, we can calculate the share reserves and exposure after opening a long with $\Delta x$ base as (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L259}{max.rs, l259}): + +\begin{equation} +\begin{aligned} +Z(\Delta x) &= z_0 + \tfrac{\Delta x - \Phi_{g}(\Delta x)}{c} \\ +Z(\Delta x) &= \tfrac{1}{c} \left( x_0 + \Delta x - \Phi_{g}(\Delta x) \right) \\ +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +L(\Delta x) &= l_0 + l_{\text{chk}} + 2 Y(\Delta x) - \Delta x + \Phi_{g}(\Delta x) \\ +&= l_0 + l_{\text{chk}} + 2 p_{r}^{-1} \Delta x - 2 \Phi_{c}(\Delta x) - \Delta x + \Phi_{g}(\Delta x) +\end{aligned} +\end{equation} + +These formulae allow us to calculate the approximate ending solvency of (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L271}{max.rs, l271}): + +\begin{equation} +\begin{aligned} +S(\Delta x) &\approx Z(\Delta x) - \tfrac{L(\Delta x)}{c} - z_{\text{min}} \\ +&\approx \tfrac{1}{c} \left( x_0 + \Delta x - \Phi_{g}(\Delta x) - L(\Delta x) - x_{\text{min}} \right) \\ +&\approx \tfrac{1}{c} \left( x_0 + 2 \Delta x - 2 \Phi_{g}(\Delta x) - l_{0} - l_{\text{chk}} - 2\tilde{Y}(\Delta x) - x_{\text{min}} \right) \\ +\end{aligned} +\end{equation} + +If we rearrange to represent the initial solvency, $s_0$, then we can solve for $\Delta x$ (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/long/max.rs#L278}{max.rs, l278}): + +\begin{equation}\label{approx-solvency} +\begin{aligned} +s_{0} - \tfrac{1}{c} l_{\text{chk}} + \tfrac{2}{c} \left( \Delta x - \Phi_{g}(\Delta x) - \tilde{Y}(\Delta x) \right) &\approx 0 \\ +s_{0} - \tfrac{1}{c} l_{\text{chk}} + \tfrac{2}{c} \left( \Delta x - \Phi_{g}(\Delta x) - \tilde{Y}(\Delta x) \right) &\approx 0 \\ +s_{0} - \tfrac{1}{c} l_{\text{chk}} + \tfrac{2}{c} \Delta x \left( 1 - \phi_{g}\phi_{c} \left( 1 - p_{0} \right) - \tfrac{1}{p_{r}} + \phi_{c} \left( \tfrac{1}{p_{0}} - 1 \right) \right) &\approx 0 \\ +\end{aligned} +\end{equation} + +\begin{equation} +\begin{aligned} +&\therefore \\ +\Delta x &\approx \tfrac{c}{2} \tfrac{-(s_{0}-(\tfrac{1}{c} l_{\text{chk}}))}{1 - \phi_{g}\phi_{c} \left( 1 - p_{0} \right) - p_{r}^{-1} + \phi_{c} \left( p_{0}^{-1} - 1 \right)} \\ +\Delta x &\approx \tfrac{c}{2} \tfrac{s_{0} + \tfrac{1}{c} l_{\text{chk}}}{p_{r}^{-1} + \phi_{g}\phi_{c} \left( 1 - p_{0} \right) - \phi_{c} \left( p_{0}^{-1} - 1 \right) - 1} \\ +\end{aligned} +\end{equation} + +This gives us the initial value for $\Delta x_{0}$ in the iterative process. + +\begin{callout} +\callouttext{exclamation}{Discrepancy} + +This does not match \href{https://github.com/delvtech/hyperdrive/blob/5c12ca877c7dec2da03fac2e033141db8cfeb099/crates/hyperdrive-math/src/long/max.rs#L73}{max.rs, l73}, which has the numerator equal to $s_{0} + l_{\text{chk}}$. + +\end{callout} + + +\subsection{Targeted long} + +\subsubsection{Targeted long for a given rate} + +We can follow a similar derivation to get a long that results in a \textit{target} fixed rate (aka spot rate). The fixed rate for a Hyperdrive pool given the spot price, $p$, and the annualized position duration, $t_{d}$ is given by: + +\begin{equation} +r = (1-p)(p t_{d})^{-1} +\end{equation} + +Note that the conversion from a ``price'' (which is computed at a single point in time) to a ``rate'' (which is computed using at least 2 points in time) is automatic because of the predetermined position duration. +Solving for $p$, we get: + +\begin{equation} +\begin{aligned} +(1-p)(p t_{d})^{-1} &= r \\ +\tfrac{1}{p t_{d}} - \tfrac{1}{t_{d}} &= r \\ +\tfrac{1}{p} \tfrac{1}{t_{d}} &= r + \tfrac{1}{t_{d}} \\ +\tfrac{1}{p} &= t_{d} \left( r + \tfrac{1}{t_{d}} \right) \\ +p &= \left( rt_{d} + 1 \right)^{-1} +\end{aligned} +\end{equation} + +As before, we use $p = \left( \tfrac{\mu z_{t}}{y_{t}} \right)^{t_{s}}$ to find target reserve bonds, $y_{t}$, in terms of a target rate, $r_{t}$ (\href{https://github.com/delvtech/hyperdrive/blob/f410574fffcb8b2556208c158494ba2972525843/crates/hyperdrive-math/src/utils.rs#L112}{utils.rs, l112}): + +\begin{equation}\label{yt-zt-rate} +\begin{aligned} +\left( \tfrac{\mu z_t}{y_t} \right)^{t_s} &= \tfrac{1}{r t_d + 1} \\ +\tfrac{\mu z_t}{y_t} &= \left( \tfrac{1}{r t_d + 1} \right)^{\tfrac{1}{t_s}} \\ +y_t &= \tfrac{\mu z_t}{\left( \tfrac{1}{r t_d + 1} \right)^{\tfrac{1}{t_s}}} \\ +y_t &= \mu z_t \left( r t_d + 1 \right)^{\tfrac{1}{t_s}} +\end{aligned} +\end{equation} + +We then use the invariant formula from Equation \eqref{keq} to determine the share reserves required for a given rate. + +\begin{equation} +\begin{aligned} +\tfrac{c}{\mu} (\mu z_{t})^{1 - t_{s}} + y_{t}^{1 - t_{s}} &= k \\ +\tfrac{c}{\mu} (\mu z_{t})^{1 - t_{s}} + \left( \mu z_{t} \left( r_{t}t_{d}+1 \right)^{\tfrac{1}{t_{s}}} \right)^{1 - t_{s}} &= k \\ +\tfrac{c}{\mu} (\mu z_{t})^{1 - t_{s}} + \left( \mu z_{t} \right)^{1-t_{s}} \left( \left( r_{t}t_{d}+1 \right)^{\tfrac{1}{t_{s}}} \right)^{1 - t_{s}} &= k \\ +(\mu z_{t})^{1 - t_{s}} \left( \tfrac{c}{\mu} + \left( (r_{t} t_{d}+1)^{\tfrac{1}{t_{s}}} \right)^{1-t_{s}} \right) &= k \\ +(\mu z_{t})^{1 - t_{s}} &= \tfrac{k}{ \tfrac{c}{\mu} + \left( (r_{t} t_{d}+1)^{\tfrac{1}{t_{s}}} \right)^{1-t_{s}}} \\ +z_{t} &= \tfrac{1}{\mu} \left( \tfrac{k}{ \tfrac{c}{\mu} + \left( (r_{t} t_{d}+1)^{\tfrac{1}{t_{s}}} \right)^{1-t_{s}}} \right)^{\tfrac{1}{1-t_{s}}} +\end{aligned} +\end{equation} + +And finally, we plug this in to equation \eqref{yt-zt-rate} to isolate the target bonds, $y_{t}$. + +\begin{equation} +y_{t} = \left( \tfrac{k}{ \tfrac{c}{\mu} + \left( \left( r_{t} t_{d} + 1 \right)^{\tfrac{1}{t_{s}}} \right)^{1-t_{s}}} \right)^{1-t_{s}} \left( r_{t} t_{d} + 1 \right)^{\tfrac{1}{t_{s}}} +\end{equation} + +Using these targets in Equations \eqref{dx} and \eqref{dy}, we can compute the long base amount to hit a target rate assuming an infinitesimally-derived price (i.e. spot price). +The approximate reserve levels for a target rate are much more likely to be solvent than the reserves after an approximated maximum long, but we still have to deal with the discrepancy between the spot price and the realized price that arises from a realistic trade size. + +\subsubsection{Iteratively finding a trade for a target rate} + +We need to know how the rate changes when base reserves change, $R(\Delta x)$, which will become our new objective function. +The derivative of this objective will give us the updates in each step of the refinement algorithm. + +Picking up from \eqref{long-amount}, we can write the full equation for the bonds received for a given base provided from a long trade (\href{https://github.com/delvtech/hyperdrive/blob/c167ab4b35722388c3d75ac012cbb262cba00a77/crates/hyperdrive-math/src/long/open.rs#L12}{open.rs, l112}): + +\begin{equation} + Y(\Delta x) = y_{0} - \left( k - \left( \tfrac{\mu}{c} \right)^{- t_{s}} \left( x_{0} + \Delta x \right)^{1 - t_{s}} \right)^{\tfrac{1}{1 - t_{s}}} - \phi_{c} \left( \tfrac{1}{p_{0}} - 1 \right) \Delta x +\end{equation} + +This is also the amount that is subtracted from the pool, i.e. $\Delta y_{\text{pool}} = Y(\Delta x)$ and thus $y_{\text{new-pool}} = y_{\text{old-pool}} - Y(\Delta x)$. +The corresponding delta that would be applied to the pool's effective share reserves is (\href{https://github.com/delvtech/hyperdrive/blob/c167ab4b35722388c3d75ac012cbb262cba00a77/crates/hyperdrive-math/src/long/open.rs#L63}{open.rs, l63}): + +\begin{equation} +\begin{aligned} +\Delta z_{e, \text{pool}} &= \tfrac{1}{c} \left( \Delta x - \Phi_{g}(\Delta x) \right) - \zeta \\ +&= \tfrac{\Delta x}{c} \left( 1 - \phi_{g} \phi_{c} \left( 1 - p_{0} \right) \right) - \zeta +\end{aligned} +\end{equation} + +where $\zeta$ is the pool's zeta adjustment state, which is unchanged when opening positions. +The instantaneous spot price given pool reserve levels $(z_{e}, y)$ is + +\begin{equation} +p = \left( \tfrac{\mu z_{e}}{y} \right)^{t_{s}} +\end{equation} + +Together these allow us to derive the new share price after opening a long (\href{https://github.com/delvtech/hyperdrive/blob/18dfd4aa5a7f8d19bd34d9693aadf773995b1b14/crates/hyperdrive-math/src/long/open.rs#L52}{open.rs, l52}): + +\begin{equation} +\begin{aligned} +P(\Delta x) &= \left( \tfrac{\mu \left( z_{e0, \text{pool}} + \Delta z_{e, \text{pool}} \right)}{\left( y - \Delta y_{\text{pool}} \right)} \right)^{t_{s}} \\ +&= \left( \tfrac{\mu \left( z_{e0} + \tfrac{\Delta x}{c} \left( 1 - \phi_{g} \phi_{c} \left( 1 - p_{0} \right) \right) - \zeta \right)}{\left( y_{0} - \left( y_{0} - \left( k - \left( \tfrac{\mu}{c} \right)^{- t_{s}} \left( x_{0} + \Delta x \right)^{1 - t_{s}} \right)^{\tfrac{1}{1 - t_{s}}} - \phi_{c} \left( \tfrac{1}{p_{0}} - 1 \right) \Delta x \right) \right)} \right)^{t_{s}} \\ +\end{aligned} +\end{equation} + +where again $p_{0}$, $y_{0}$, $z_{e0}$, and $x_{0}$ are the spot price, bond reserves, effective share reserves, and base reserves before the trade, respectively. + +We will also need the derivative of this function: + +\begin{multline} +P^{\prime}(\Delta x) = t_{s} \left( \frac{y_{0} - Y(\Delta x)}{\mu \left( z_{e0} + \tfrac{\Delta x}{c} - \tfrac{\Phi_{g}(\Delta x)}{c} - \zeta \right)} \right)^{1 - t_{s}} \\ +\frac{ \left( y_{0} - Y(\Delta x) \right) \tfrac{\mu}{c} \left( 1 - \Phi^{\prime}_{g}(\Delta x) \right) + Y^{\prime}(\Delta x) \mu \left( z_{e0} + \tfrac{\Delta x}{c} - \tfrac{\Phi_{g}(\Delta x)}{c} - \zeta \right)}{\left( y_{0} - Y(\Delta x) \right)^{2}} +\end{multline} + +Given this, we can write the rate: + +\begin{equation} +R(\Delta x) = \left( 1 - P(\Delta x) \right) \left( P(\Delta x) t_{d} \right)^{-1} +\end{equation} + +And the derivative of the rate: + +\begin{equation} +\begin{aligned} +R^{\prime}(\Delta x) &= \frac{-P^{\prime}(\Delta x) P(\Delta x) t_{d} - \left( 1 - P(\Delta x) \right) \left( P^{\prime}(\Delta x) t_{d} \right)}{(P(\Delta x) t_{d})^{2}} \\ +&= \frac{-P^{\prime}(\Delta x) P(\Delta x) t_{d} - P^{\prime}(\Delta x) t_{d} + P^{\prime}(\Delta x) P(\Delta x) t_{d}}{(P(\Delta x) t_{d})^{2}} \\ +&= \frac{-P^{\prime}(\Delta x)}{P(\Delta x)^2 t_{d}} +\end{aligned} +\end{equation} + +We can now write our optimization function for the Newton updates. +$l(\Delta x) = R(\Delta x) - r_{t}$ shifts the trading curve down towards the zero-point. + +\begin{equation} +\begin{split} +\argmax\limits_{\Delta x} (R(\Delta x) - r_{t}) \\ +\text{s.t.} S(\Delta x) > 0 +\end{split} +\end{equation} + +As before, the derivative of loss gives us our $\Delta x$: + +\begin{equation} +\begin{aligned} +\Delta x_{n+1} &= \Delta x - \frac{l(\Delta x)}{l^{\prime}(\Delta x)} \\ +&= \Delta x_{n} - \frac{R(\Delta x) - r_{t}}{R^{\prime}(\Delta x)} \\ +&= \Delta x_{n} + \frac{R(\Delta x) - r_{t}}{-R^{\prime}(\Delta x)} +\end{aligned} +\end{equation} + +\pagebreak + +The derivative of the price after a long. + +The price after a long that moves shares by $\Delta z$ and bonds by $\Delta y$ +is equal to + +\begin{equation} +p(\Delta z) = \left( \frac{\mu \cdot + (z_{0} + \Delta z - (\zeta_{0} + \Delta \zeta))} + {y - \Delta y} \right)^{t_{s}} +\end{equation} + +where $t_{s}$ is the time stretch constant and $z_{0}$ is the initial +share reserves, and $\zeta$ is the zeta adjustment. +The zeta adjustment is constant when opening a long, i.e. +$\Delta \zeta = 0$, so we drop the subscript. Equivalently, for some +amount of \code{delta_base}$= \Delta x$ provided to open a long, we can write: + +\begin{equation} +p(\Delta x) = \left( + \frac{\mu (z_{0} + \frac{1}{c} + \cdot \left( \Delta x - \Phi_{g}(\Delta x) \right) - \zeta)} + {y_0 - y(\Delta x)} +\right)^{t_{s}} +\end{equation} + +where $\Phi_{g}(\Delta x)$ is the \code{open_long_governance_fee} (Eq \eqref{gov-fee}), +$y(\Delta x)$ is the \code{long_amount}, + +In other words, + +\begin{equation} +z_1 = z_0 + \frac{ + \Delta x - \phi_g \phi_c \left( 1 - p \right) \Delta x +}{c} +\end{equation} + +and $z_{e,1} = z_{1} - \zeta$. Therefore, + +\begin{equation} +z_{e,1} = z_0 + \frac{ + \Delta x - \phi_g \phi_n \left( 1 - p \right) \Delta x +}{c} - \zeta +\end{equation} + +and + +\begin{equation} +p(\Delta x) = \left( \frac{\mu z_{e,1}}{y_{0} - y(x)} \right)^{t_{s}} +\end{equation} + +To compute the derivative, we first define some auxiliary variables: + +\begin{equation} +\begin{aligned} +a(\Delta x) &= \mu (z_{0} + \frac{\Delta x}{c} - \frac{\Phi_{g}(\Delta x)}{c} - \zeta) \\ +&= \mu \left( z_{e,0} + \frac{\Delta x}{c} - \frac{\Phi_{g}(\Delta x)}{c} \right) \\ +b(\Delta x) &= y_0 - y(\Delta x) \\ +v(\Delta x) &= \frac{a(\Delta x)}{b(\Delta x)} +\end{aligned} +\end{equation} + +and thus $p(\Delta x) = v(\Delta x)^{t_{s}}$. +Given these, we can write out intermediate derivatives: + +\begin{equation} +\begin{aligned} +a'(\Delta x) &= \frac{\mu}{c} (1 - \Phi_{g}'(\Delta x)) \\ +b'(\Delta x) &= -y'(\Delta x) \\ +v'(\Delta x) &= \frac{b(\Delta x) a'(\Delta x) - a(\Delta x) b'(\Delta x)}{b(\Delta x)^2} +\end{aligned} +\end{equation} + +And finally, the price after long derivative is: + +\begin{equation} +p'(\Delta x) = v'(\Delta x) t_{s} v(\Delta x)^{(t_{s} - 1)} +\end{equation} \ No newline at end of file diff --git a/docs/main.tex b/docs/main.tex new file mode 100644 index 00000000..bf47996b --- /dev/null +++ b/docs/main.tex @@ -0,0 +1,90 @@ +\documentclass{article} + +\usepackage{graphicx} % inserting images +\usepackage{hyperref} % hyperlinks +\hypersetup{ % hyperlink config + colorlinks=true, + linkcolor=blue, % equation numbers + filecolor=magenta, + urlcolor=blue, % href links + } +\usepackage{amsmath} % math formatting +\usepackage{amssymb} % math symbols + +\usepackage{tikz} % render plots +\usepackage{pgfplots} +\pgfplotsset{compat=1.18} + +\usepackage[many]{tcolorbox} % callout box +\usepackage{csquotes} % quotes +%\usepackage{emoji} % emoji + +\pgfplotsset{compat=1.17} % render plots + +\newcommand{\argmax}{\operatornamewithlimits{argmax}} +\newcommand{\argmin}{\operatornamewithlimits{argmin}} + +\newcommand{\code}[1]{\texttt{\detokenize{#1}}} + +\newcommand{\callouttext}[2]{\emoji{#1} \textbf{#2}\smallskip} +\newtcolorbox{callout}{ + colback = sub, + colframe = main, + boxrule = 0pt, + leftrule = 6pt % left rule weight +} +\newenvironment{infobox}{\wrapfigure{r}{5cm}}{\endwrapfigure} +\definecolor{main}{HTML}{5989cf} % setting main color to be used +\definecolor{sub}{HTML}{cde4ff} % setting sub color to be used +\tcbset{ + sharp corners, + colback = white, + before skip = 0.2cm, % add extra space before the box + after skip = 0.5cm % add extra space after the box +} + +\setlength{\parindent}{0pt} % don't indent on new paragraphs + +%% Heading +\title{The Hyperdrive-Yieldspace AMM} +\author{Dylan Paiton} + +%% Document +\begin{document} + +\maketitle + + +\begin{abstract} +This document gives a complete description of the Hyperdrive + Yieldspace AMM. +In contrast to the existing \href{https://github.com/delvtech/hyperdrive/blob/main/docs/Hyperdrive_Whitepaper.pdf}{Hyperdrive whitepaper}, which provides an abstracted view of how Hyperdrive can be built on top of any AMM curve, this document provides details of the specific implementation deployed by the Element DAO on Ethereum mainnet and several L2 chains. +\end{abstract} + +\section{Introduction} + +\subsection{The Hyperdrive-Yieldspace AMM} + +For a deployed market pool, the Hyperdrive-Yieldspace AMM uses a modified \href{https://yield.is/YieldSpace.pdf}{constant power sum formula} to derive a price relationship between two assets. +In this case, our assets are vault shares, $z$, and bonds, $y$. +When base, $x$, is supplied to the pool, it is converted into shares, $z$, by depositing the base into an underlying yield bearing vault. +The relationship between base and shares is determined via the vault share price, $c = \tfrac{x}{z}$. +The Hyperdrive AMM also accounts for an additional ``zeta'' adjustment to produce the effective shares, $z_e = z - \zeta$, as described in the \href{https://github.com/delvtech/hyperdrive/blob/main/docs/Hyperdrive_Whitepaper.pdf}{whitepaper}. +Finally, the AMM then mints bonds, $y$, such that $k$ is kept constant. +In accordance with the YieldSpace AMM dynamics, effective shares and bonds are related via an invariance formula: + +\begin{equation}\label{keq} +k = \tfrac{c}{\mu} (\mu z_e)^{1 - t_{s}} + y^{1 - t_{s}} +\end{equation} + +where $t_{s}$ is a time stretch constant that influences price slippage, and $\mu$ is the vault share price when the Hyperdrive pool was created. + +\section{Shorts} +\input{short/short.tex} + +\section{Longs} +\input{long/long.tex} + +\section{Liquidity} +TODO + +\end{document} diff --git a/docs/short/short.tex b/docs/short/short.tex new file mode 100644 index 00000000..ff089558 --- /dev/null +++ b/docs/short/short.tex @@ -0,0 +1,549 @@ +\subsection{Open short} + +\subsubsection{Trader deposit}\label{trader-deposit} +For some number of bonds being shorted, $\Delta y$, the short deposit in shares is made up of several components: + +\begin{itemize} +\item The \textbf{total value} that underlies the bonds: $V(\Delta y) = \left( \frac{c_1}{c_0} + \phi_f \right) \cdot \frac{\Delta y}{c}$ +\item The \textbf{curve fee}: $\Phi_{\text{c,os}}(\Delta y) = \phi_{c} \cdot (1 - p) \cdot \frac{\Delta y}{c}$ +\item The \textbf{short principal}: $L(\Delta y) = z_e - \tfrac{1}{\mu} \cdot (\tfrac{\mu}{c} \cdot (k - (y + \Delta y)^{1 - t_s}))^{\tfrac{1}{1 - t_s}}$ +\end{itemize} + +where $p$ is the \textbf{spot price}, which defines the relationship between shares and bonds when making an infinitesimally small trade and is given by + +\begin{equation}\label{spot-price} +p = \left( \tfrac{\mu \cdot z_e}{y} \right)^{t_s} +\end{equation} + +The trader opening a short has to pay a \textbf{deposit}, $D(\Delta y)$, which is their maximum loss when closing the short, or + +\begin{equation}\label{short-deposit} +D(\Delta y) = +\begin{cases} + V(\Delta y) - L(\Delta y) + \Phi_{c,os}(\Delta y), + & \text{if } V(\Delta y) > L(\Delta y) - \Phi_{c,os}(\Delta y) \\ + 0, & \text{otherwise} +\end{cases} +\end{equation} + +The cases avoid situations with negative interest and thus ensure we are trading in a valid regime. +The success case is also defined as the \textbf{short proceeds}, which are the proceeds in shares of closing a short position and are given by + +\begin{equation}\label{short-proceeds} +\text{short\_proceeds} = V(\Delta y) - \Delta z = \left( \tfrac{c_1}{c_0} + \phi_f \right) \cdot \tfrac{\Delta y}{c} - \Delta z +\end{equation} + +Where $\Delta z = L(\Delta y) - \Phi_{c,os}(\Delta y)$ is the fee-adjusted share delta. +Importantly, this surfaces a constraint that the short principal must be greater than the curve fee for a given $\Delta y$. +Due to the different scaling properties between the non-linear $L(\Delta y)$ and linear $\Phi_{c,os}(\Delta y)$, this constraint is not strictly a function of market parameters, but is also a function of the magnitude of $\Delta y$. + +For some deposit, the realized price for the trader is + +\begin{equation}\label{realized-price} +p_r = 1 - \frac{D(\Delta y)}{\Delta y} +\end{equation} + +LPs take the opposite side of trades, so when a trader opens a short the LP opens a long. +The short principal is the price paid by the LP to buy bonds, which are then set aside as if ``sold'' by the trader when they opened their short. +The price the LP paid is + +\begin{equation}\label{lp-price} +p_{l} = \frac{L(\Delta y)}{\Delta y} +\end{equation} + +\subsubsection{Open Short Derivatives} + +\subsubsubsection{Curve fee} +The curve fee derivative is: + +\begin{equation}\label{curve-fee-derivative} +\Phi^{\prime}_{\text{c,os}}(\Delta y) = \tfrac{1}{c} \cdot \phi_{c} \cdot (1 - p) +\end{equation} + +\subsubsubsection{Total value} +The total value derivative is also a constant: + +\begin{equation} +V^{\prime}(\Delta y) = \tfrac{c_{1}}{c_{0} \cdot c} + \tfrac{\phi_{f}}{c} +\end{equation} + +\subsubsubsection{Short principal}\label{short-principal-derivative} +For the short principal derivative, let: + +\begin{equation} +u = \frac{\mu}{c} \cdot \left( k - (y + \Delta y)^{1-t_s} \right) +\end{equation} + +\begin{equation} +\frac{du}{d \Delta y} = \frac{\mu}{c} \cdot -(1 - t_s) \cdot (y + \Delta y)^{-t_s} +\end{equation} + +therefore, + +\begin{equation}\label{eq-short-principal-derivative} +\begin{aligned} +L^{\prime}(\Delta y) &= - \frac{1}{\mu} \cdot \frac{1}{1-t_s} \cdot u^{\frac{1}{1-t_s} - 1} \cdot \frac{du}{d \Delta y} \\ +&= - \frac{1}{\mu} \cdot \frac{1}{1-t_s} \left( \frac{\mu}{c} \left( k - (y + \Delta y)^{1 - t_s} \right) \right)^{\frac{t_s}{1-t_s}} +\cdot \frac{\mu}{c} \cdot -(1 - t_s) \cdot (y + \Delta y)^{t_s} \\ +&= \frac{1}{c} \cdot (y + \Delta y)^{-t_s} \cdot \left( \frac{\mu}{c} \cdot \left( k - (y + \Delta y)^{1 - t_s} \right) \right)^{\frac{t_s}{1 - t_s}} +\end{aligned} +\end{equation} + +\subsubsubsection{Short deposit} +Together these give us the short deposit derivative in units of base: + +\begin{equation} +D^{\prime}(\Delta y) = +\begin{cases} + c \cdot \left( V^{\prime}(\Delta y) - L^{\prime}(\Delta y) + \Phi^{\prime}_{\text{c,os}}(\Delta y) \right), + & \text{if } V(\Delta y) > L(\Delta y) - \Phi_{\text{c,os}}(\Delta y) \\ + 0, & \text{otherwise} +\end{cases} +\end{equation} + +Simplifying the condition where the derivative is non-zero, let: + +\begin{displaymath} +\begin{aligned} +d &= c \cdot \left( V^{\prime}(\Delta y) - L^{\prime}(\Delta y) + \Phi^{\prime}_{\text{c,os}}(\Delta y) \right) \\ +&= c \cdot \left( +\left( \tfrac{c_{1}}{c_{0} \cdot c} + \tfrac{\phi_{f}}{c} \right) +- \left( \frac{1}{c} \left( \frac{\mu}{c} \cdot \left( k - (y + \Delta y)^{1 - t_s} \right) \right)^{\frac{t_s}{1 - t_s}} \cdot (y + \Delta y)^{-t_s} \right) ++ \left( \phi_{c} \cdot (1 - p) \right) \right) \\ +&= +\tfrac{c_{1}}{c_{0}} + \phi_{f} +- \left( \frac{\mu}{c} \cdot \left( k - (y + \Delta y)^{1 - t_s} \right) \right)^{\frac{t_s}{1 - t_s}} \cdot (y + \Delta y)^{-t_s} ++ c \cdot \phi_{c} \cdot (1 - p) \\ +\end{aligned} +\end{displaymath} + + +\subsubsection{Estimating the maximum possible short} + +We must compute the maximum possible short for a given pool in order to provide an upper bound for user trades. + +\subsubsubsection{Share reserves after a short} +When a short trade for $\Delta y$ bonds is executed, the Hyperdrive pool's share reserves become: + +\begin{equation}\label{reserve-after-max} + z_1(\Delta y) = \tfrac{1}{\mu} + \cdot \left( \tfrac{\mu}{c} \cdot \left( k - (y_0 + \Delta y)^{1 - t_s} \right) \right)^{\tfrac{1}{1 - t_s}} + + \phi_c \cdot (1 - p) \cdot (1 - \phi_g) \cdot \tfrac{\Delta y}{c} +\end{equation} + +We will label the left-hand side of the equation as the YieldSpace component and the right-hand side as the fee component. +The final reserve levels for bonds, $y_1 = y_0 + \Delta y$, and shares, $z_1 = z_0 + \Delta z$, result in a net increase in bonds. +The shares typically decrease, but in situations with low spot price and high fees, it is possible that the reduction in shares used to mint bonds is less than the additional shares paid by the trader in the form of fees, resulting in a net increase in pool share reserves. + +\subsubsubsection{Minimum share reserves given exposure} + +A pool's realized minimum share reserves is a function of the preset minimum constant, $z_{\text{min}}$, the exposure, $e$, and the share adjustment, $\zeta$: + +\begin{equation}\label{solvency-constraints} +\begin{aligned} + z_1 &\ge z_{\text{min}} \\ + z_1 &\ge z_{\text{min}} + \zeta \\ + z_1 &\ge z_{\text{min}} + \tfrac{e}{c} +\end{aligned} +\end{equation} + +Exposure is a positive value represented in bonds, which we convert to shares by dividing by the vault share price. +These checks are performed independently, and thus can be combined via max operations: $ z_1 - \text{max}\left( \zeta, \tfrac{e}{c}, 0 \right) \ge z_{\text{min}}$. +When a short is opened, the exposure is reduced by the short bond amount, which impacts the solvency constraint. +To account for this, we can define the exposure after a short, $e_s(\Delta y) = \text{max}(e - \Delta y, 0)$. +With this in mind, our solvency-constrained maximum short is given by: + +\begin{equation}\label{pool-min-share-reserves} +\begin{aligned} + z_{1,\text{min}} = &z_{\text{min}} + \text{max}\left( \zeta, \tfrac{e_s(\Delta y_{\text{max}})}{c}, 0 \right) \\ + = &\tfrac{1}{\mu} \cdot \left( + \tfrac{\mu}{c} \cdot \left( k - (y_0 + \Delta y_{\text{max}})^{1 - t_s} \right) + \right)^{\tfrac{1}{1 - t_s}} \\ + &+ \phi_c \cdot (1 - p) \cdot (1 - \phi_g) \cdot \tfrac{\Delta y_{\text{max}}}{c} +\end{aligned} +\end{equation} + + +From here, we cannot determine a closed-form solution for $\Delta y_{\text{max}}$, but we can approximate it with a linear estimate. + +\subsubsubsection{Conservative YieldSpace estimate} + +Considering \eqref{pool-min-share-reserves}, we want to compute a linear approximation that underestimates the YieldSpace component, resulting in a smaller estimated $\Delta y$. +This can be achieved via a first-order Taylor Series tangent line approximation, which always lies below the convex YieldSpace curve: + +\begin{equation} +\begin{aligned} + z_{1,ys}(\Delta y) = f(\Delta y) &= \frac{1}{\mu} \left( \frac{\mu}{c} \left( k - \left( y_0 + \Delta y \right)^{1 - t_s} \right)\right)^{\frac{1}{1 - t_s}} \\ + &\ge f(0) + f'(0) \cdot \Delta y +\end{aligned} +\end{equation} + +The derivative is computed via the chain rule: + +\begin{equation} +\begin{aligned} + h(\Delta y) &= \frac{\mu}{c} \left( k - \left( y_0 + \Delta y \right)^{1 - t_s} \right) \\ + h'(\Delta y) &= - \frac{\mu}{c} \cdot (1 - t_s) \cdot (y_0 + \Delta y)^{-t_s} \\ + f(\Delta y) &= \frac{1}{\mu} \left( h(\Delta y) \right)^{\frac{1}{1-t_s}} \\ + f'(\Delta y) &= \frac{1}{\mu} \cdot \left( \frac{1}{1 - t_s} \right) \cdot h(\Delta y)^{\frac{t_s}{1 - t_s}} \cdot h'(\Delta y) \\ + &= \frac{1}{\mu} \cdot \left( \frac{1}{1 - t_s} \right) \cdot h(\Delta y)^{\frac{t_s}{1 - t_s}} \cdot \left( - \frac{\mu}{c} \cdot \left( 1 - t_s \right) \cdot \left( y_0 + \Delta y \right)^{-t_s} \right) \\ + &= - \frac{1}{c} \cdot h(\Delta y)^{\frac{t_s}{1 - t_s}} \cdot \left( y_0 + \Delta y \right)^{-t_s} \\ + &= - \frac{1}{c} \cdot \left( \frac{\mu}{c} \left( k - \left( y_0 + \Delta y \right)^{1 - t_s} \right) \right)^{\frac{t_s}{1 - t_s}} \cdot \left( y_0 + \Delta y \right)^{-t_s} \\ + &= -L^{\prime}(\Delta y) \\ + \therefore \\ + f(\Delta y) &\ge \frac{1}{\mu} \left( \frac{\mu}{c} \left( k - (y_0 + 0)^{1-t_s} \right) \right)^{\frac{1}{1 - t_s}} \\ + &- \frac{1}{c} \left( \frac{\mu}{c} \left( k - (y_0 + 0)^{1 - t_s} \right) \right)^{\frac{t_s}{1 - t_s}} \cdot (y_0 + 0)^{-t_s} \cdot \Delta y \\ +\end{aligned} +\end{equation} + +To simplify the equation, we start from the YieldSpace invariant \eqref{keq}: + +\begin{equation}\label{alt-h0} +\begin{aligned} + k &= \tfrac{c}{\mu} \left( \mu \cdot \left( z_0 - \zeta \right) \right)^{1 - t_{s}} + y_0^{1 - t_{s}} \\ + \therefore \\ + \left( \mu \cdot \left( z_0 - \zeta \right) \right)^{1 - t_s} &= \frac{\mu}{c} \cdot \left( k - y_0^{1-t_s} \right) = h(0) +\end{aligned} +\end{equation} + +We can substitute \eqref{alt-h0} into $f(0)$ to get the initial effective share reserves: + +\begin{equation} +\begin{aligned} + f(0) &= \frac{1}{\mu} \left( \frac{\mu}{c} \left( k - y_0^{1-t_s} \right) \right)^{\frac{1}{1 - t_s}} \\ + &= \frac{1}{\mu} h(0)^{\frac{1}{1 - t_s}} \\ + &= \frac{1}{\mu} \left( \left( \mu \cdot \left( z_0 - \zeta \right) \right)^{1 - t_s} \right)^{\frac{1}{1 - t_s}} \\ + &= z_0 - \zeta +\end{aligned} +\end{equation} + +We can also substitute \eqref{alt-h0} into $f'(0)$ and write it in terms of the spot price, \eqref{spot-price}: + +\begin{equation} +\begin{aligned} + f'(0) &= - \frac{1}{c} \cdot h(0)^{\frac{t_s}{1 - t_s}} \cdot \ y_0^{-t_s} \\ + &= - \frac{1}{c} \cdot \left( \left( \mu \cdot \left( z_0 - \zeta \right) \right)^{1 - t_s} \right)^{\frac{t_s}{1 - t_s}} \cdot \ y_0^{-t_s} \\ + &= - \frac{1}{c} \left( \frac{\mu \cdot \left( z_0 - \zeta \right)}{y_0} \right)^{t_s} \\ + &= - \frac{p}{c} +\end{aligned} +\end{equation} + +This gives us a simplified Taylor approximation to set a bound on the YieldSpace contribution to the maximum short amount: + +\begin{equation}\label{approx-f-of-dy} +\begin{aligned} + z_{1,ys}(\Delta y) &= \frac{1}{\mu} \left( \frac{\mu}{c} \left( k - \left( y_0 + \Delta y \right)^{1 - t_s} \right)\right)^{\frac{1}{1 - t_s}} \\ + &\ge f(0) + f'(0) \Delta y\\ + \therefore\\ + z_{1,ys}(\Delta y) &\ge z_0 - \zeta - \tfrac{p}{c} \cdot \Delta y \\ +\end{aligned} +\end{equation} + +We can now combine the conservative YieldSpace term with the fee term to get a conservative linear estimate given some short amount, $\Delta y$: + +\begin{equation}\label{z1-and-z1est} +\begin{aligned} + z_1(\Delta y) = &\tfrac{1}{\mu} + \cdot \left( \tfrac{\mu}{c} \cdot \left( k - (y_0 + \Delta y)^{1 - t_s} \right) \right)^{\tfrac{1}{1 - t_s}} \\ + &+ \phi_c \cdot (1 - p) \cdot (1 - \phi_g) \cdot \tfrac{\Delta y}{c} \\ + \\ + z_{1,\text{est}}(\Delta y) = &z_0 - \zeta - \tfrac{\Delta y}{c} \cdot p + \tfrac{\Delta y}{c} \cdot \phi_c \cdot (1 - p) \cdot (1 - \phi_g) \\ + = &z_0 - \zeta + \tfrac{\Delta y}{c} \cdot \left( \phi_c \cdot (1 - p) \cdot (1 - \phi_g) - p \right) +\end{aligned} +\end{equation} + +Together, Equations \eqref{approx-f-of-dy} and \eqref{z1-and-z1est} demonstrate that for some short amount, the actual pool reserve amount is greater than the linear estimate: $z_1(\Delta y) \ge z_{1,\text{est}}(\Delta y)$. +Alternatively, we can find two short amounts that make them equal: $z_{1,\text{min}} = z_1(\Delta y_{\text{max}}) = z_{1,\text{est}}(\Delta y_{\text{est}})$. +The Taylor approximation always lies \emph{below} the YieldSpace curve except at $(z_0, y_0)$, where they are equal. +Therefore, the computed $y_{1,\text{est}}$ for a fixed $z$ must be below the corresponding $y_{1,\text{ys}}$ for the YieldSpace curve. +And thus, $\Delta y_{\text{est}} \le \Delta y_{\text{max}}$. + +\newpage + +\subsubsubsection{Final linear estimate}\label{conservative-abs-max} + +Plugging the minimum share reserves into the approximate equation gives + +\begin{equation} + z_0 - \zeta + \tfrac{\Delta y}{c} \cdot \left( \phi_c \cdot (1 - p) \cdot (1 - \phi_g) - p \right) = z_{\text{min}} + \text{max}\left( \zeta, \tfrac{e_s(\Delta y)}{c}, 0 \right) +\end{equation} + +Where again the exposure after a short is $e_s(\Delta y) = \text{max}(e - \Delta y, 0)$. +One solution for handling the non-linearities resulting from the \code{max} functions is to ignore their dependency on $\Delta y$ by assuming an upper-bound on exposure: + +\begin{equation} +\begin{split} + z_0 - \zeta + \tfrac{\Delta y}{c} \cdot \left( \phi_c \cdot (1 - p) \cdot (1 - \phi_g) - p \right) = z_{\text{min}} + \text{max}\left( \zeta, \tfrac{e}{c}, 0 \right) \\ + \Delta y = \frac{c \cdot \left( z_{\text{min}} + \text{max}\left( \zeta, \tfrac{e}{c}, 0 \right) - \left( z_0 - \zeta \right) \right)}{\phi_c \cdot (1 - p) \cdot (1 - \phi_g) - p} +\end{split} +\end{equation} + +However, when exposure is large this overestimate will result in $z_1 > z_0$, which incorrectly implies no short is possible. +Instead, we can break the problem into conditionals. +If $\zeta \ge \tfrac{e}{c}$, then any reduction in exposure due to the short is irrelevant. +The limiting factor is the share adjustment, $\zeta$: + +\begin{equation}\label{dy-zeta-limiting} + \Delta y = \frac{c \cdot \left( z_{\text{min}} + \zeta - \left( z_0 - \zeta \right) \right)}{\phi_c \cdot (1 - p) \cdot (1 - \phi_g) - p} +\end{equation} + +If $\zeta < \tfrac{e}{c}$, then the exposure is the limiting factor, but only while $\tfrac{e - \Delta y}{c} > \zeta$. +If $\Delta y \ge e - c \cdot \zeta$, then Equation \eqref{dy-zeta-limiting} holds. +Otherwise, if $\Delta y < e - c \cdot \zeta$, then we should consider exposure reduction due to the short: + +\begin{equation}\label{dy-exposure-limiting} +\begin{aligned} + z_0 - \zeta + \tfrac{\Delta y}{c} \cdot \left( \phi_c \cdot (1 - p) \cdot (1 - \phi_g) - p \right) &= z_{\text{min}} + \tfrac{e}{c} - \tfrac{\Delta y}{c} \\ + \tfrac{\Delta y}{c} \cdot \left( \phi_c \cdot (1 - p) \cdot (1 - \phi_g) - p + 1 \right) &= z_{\text{min}} + \tfrac{e}{c} - \left( z_0 - \zeta \right) \\ + \Delta y = \frac{c \cdot \left( z_{\text{min}} + \tfrac{e}{c} - \left( z_0 - \zeta \right) \right)}{\phi_c \cdot (1 - p) \cdot (1 - \phi_g) - p + 1} \\ +\end{aligned} +\end{equation} + +In practice, we will solve for both of the solutions in Equations \eqref{dy-zeta-limiting} and \eqref{dy-exposure-limiting}, and use the larger of the two that is still solvent. + + +\subsubsubsection{Estimate visualization} + +To understand the impact of the estimate, we can compare against solving the YieldSpace component in isolation, ignoring fees. +To do this, we solve for the bond amount on the curve, $y_{1,ys}$ given the minimum share amount: + +\begin{equation}\label{linear-ys-y1} +\begin{aligned} + k &= \tfrac{c}{\mu} \cdot \left( \mu \cdot \left( z_{1} - \zeta \right) \right)^{1 - t_s} + y_{1,ys}^{1 - t_s} \\ + \therefore \\ + y_{1,ys} &= \left( k - \tfrac{c}{\mu} \cdot \left( \mu \cdot \left( z_{1} - \zeta \right) \right)^{1 - t_s} \right)^{\tfrac{1}{1 - t_s}} +\end{aligned} +\end{equation} + +Finally, we can visualize the relationship between these quantities by setting some constants: + +\begin{tikzpicture} + \begin{axis}[ + xlabel={$z$ (share reserves)}, + ylabel={$y$ (bond reserves)}, + grid=major, % Adds grid lines + axis lines=middle, % Places the axes in the middle + width=10cm, + height=10cm, + xmin=0, xmax=0.8, + ymin=0.6, ymax=1.8, + domain=0:2, + samples=200, % Number of sample points for smooth curve + every axis label/.append style={font=\large}, % Makes labels larger + ticklabel style = {font=\small}, + xlabel style={at={(ticklabel* cs:1.05)}, anchor=north, xshift=-1.9cm, yshift=-0.5cm}, % Moves xlabel outside + ylabel style={at={(ticklabel* cs:1.05)}, anchor=south, xshift=1.0cm, yshift=-0.3cm}, % Moves ylabel outside + ] + + % Constants & initial conditions + \def\k{1.5} + \def\ts{0.5} + \def\u{1.5} + \def\c{1.15} + \def\phic{0.15} + \def\phig{0.1} + \def\zzero{0.3} + \def\zone{0.1} + \def\zeta{0.0001} + + % Points y0, y1 + \pgfmathsetmacro{\yzero}{( \k - \c/\u * (\u*\zzero)^(1-\ts) )^(1/(1-\ts))} + \pgfmathsetmacro{\yone}{( \k - \c/\u * (\u*\zone)^(1-\ts) )^(1/(1-\ts))} + % Plot points + \addplot[only marks, mark=*] coordinates {(\zzero,\yzero) (\zone,\yone)}; + % Labels points + \node[anchor=south west] at (axis cs:\zzero, \yzero) {$(z_0, y_0)$}; + \node[anchor=south west] at (axis cs:\zone, \yone) {$(z_{1,\text{min}}, y_{1,ys})$}; + % Show real ∆y, ∆z + \draw[cyan, thick, ->] (axis cs:\zzero,\yzero) -- (axis cs:\zone,\yzero) node[midway, below, xshift=-0.4cm] {$\Delta z$}; + \draw[cyan, thick, ->] (axis cs:\zone,\yzero) -- (axis cs:\zone,\yone) node[midway, left, yshift=0.5cm] {$\Delta y_{\text{ys}}$}; + + % YieldSpace curve in red + \addplot[thick, red] + { ( \k - \c/\u * (\u * x)^(1-\ts) )^(1/(1-\ts)) }; + % Label for the yieldspace curve + \def\labelz{0.04} + \pgfmathsetmacro{\labely}{( \k - \c/\u * (\u*\labelz)^(1-\ts) )^(1/(1-\ts))} + \node[anchor=north west, red, xshift=0.25cm] at (axis cs:\labelz,\labely) {$k = \frac{c}{\mu}(\mu z)^{1 - t_s} + y^{1 - t_s}$}; + + % Compute spot price 'p' + \pgfmathsetmacro{\p}{ ( (\u * (\zzero - \zeta)) / \yzero )^\ts } + + % Compute slope 'm' of the tangent line at (z0, y0) + % m = dy/dz = 1 / (dz/dy) = 1 / (-p*/c) = -c/p* + \pgfmathsetmacro{\m}{ -\c / \p} + + % Plot tangent line at (z0, y0) + \addplot [dashed, red] { \yzero + \m * (x - \zzero) }; + % Label for the tangent line + \pgfmathsetmacro{\fprimelabelx}{ 0.4 } + \pgfmathsetmacro{\fprimelabely}{\yzero + \m * (\fprimelabelx - \zzero)} + \node[red, xshift=-0.8cm, yshift=-0.6cm] at (axis cs:\fprimelabelx, \fprimelabely) {$f(0) + f'(0) \Delta y$}; + + % Using the linear approximation to find ~y1 + \pgfmathsetmacro{\tildedeltay}{ (\c * (\zzero - \zeta - \zone)) / (\p - \phic * (1 - \p) * (1 - \phig))} + \pgfmathsetmacro{\tildeyone}{\yzero + \tildedeltay} + + % Define and plot ~z1 for estimated ∆y + \pgfmathsetmacro{\tildedeltaz}{\zzero - (1 / \u) * ((\u / \c) * (\k - \tildeyone^(1-\ts)))^(1 / (1-\ts)) + \phic * (1 - \p) * (1 - \phig) * (\tildedeltay / \c) } + \pgfmathsetmacro{\tildezone}{\zzero - \tildedeltaz} + \addplot[only marks, mark=*] coordinates {(\tildezone, \tildeyone)}; + \node[anchor=south west, yshift=-0.2cm] at (axis cs:\tildezone, \tildeyone) {$(\Tilde{z_1}, \Tilde{y_1})$}; + % Label ~∆z and ~∆y + \draw[blue, thick, ->] (axis cs:\zzero,\yzero) -- (axis cs:\tildezone,\yzero) node[midway, below] {$\Tilde{\Delta z}$}; + \draw[blue, thick, ->] (axis cs:\tildezone,\yzero) -- (axis cs:\tildezone,\tildeyone) node[left, yshift=-1.00cm] {$\Tilde{\Delta y}$}; + + \end{axis} +\end{tikzpicture} + +\subsubsection{Refining the maximum possible short estimate}\label{newton-refinement} + +Starting from the estimate in section \ref{conservative-abs-max}, we will use Newton's Method to refine our guess. +The non-linearity arising from the nested \code{max} functions in equation \eqref{pool-min-share-reserves} creates an additional challenge for refining the estimate using a gradient-base method. +We circumvent this problem by ignoring the exposure in the loss, and checking for it in an early-stopping condition during optimization. +Thus, we define the target share reserves ignoring exposure as $z_t = z_\text{min} + \text{max}(\zeta, 0)$, which is used in our loss function: + +\begin{equation}\label{newton-loss} + l(\Delta y) = z_t - z_1(\Delta y) +\end{equation} + +where $z_1(\Delta y)$ is the share reserves after our current max short guess, defined in equation \eqref{reserve-after-max}. +Newton's method also requires the derivative, which we can simplify by writing in terms of the short principal derivative (Equation \eqref{eq-short-principal-derivative}) and curve fee derivative (Equation \eqref{curve-fee-derivative}). + +\begin{equation}\label{delta-shares-derivative} +\begin{aligned} + \frac{d \Delta z}{d \Delta y} &= -L^{\prime}(\Delta y) + - \Phi^{\prime}_{\text{c,os}}(\Delta y) \cdot (1 - \phi_g) \\ + \therefore \\ + l^{\prime}(\Delta y) &= -\frac{d \Delta z}{d \Delta y} \\ +\end{aligned} +\end{equation} + +This gives us our Newton update: + +\begin{equation}\label{newton-update} + \Delta y_{n+1} = \Delta y_{n} - \frac{l(\Delta y_{n})}{l^{\prime}(\Delta y_{n})} +\end{equation} + +\subsection{Close short} +Closing a short depends on the amount of bonds to be closed, the vault share price when opening the short, the current vault share price, the maturity time of the short, and the current time. +We first compute a normalized time remaining for the bonds: + +\begin{equation}\label{normalized-time-remaining} + \bar{T} = \frac{t_{m} - t_{c}}{d} +\end{equation} + +where $t_{m}$ is the maturity time of the short, $t_c$ is the current checkpoint time, and $d$ is the bond position duration. +The pool share delta is made up of a curve component, flat component, and fee component. +The flat component is + +\begin{equation}\label{close-short-flat} + \Delta z_{\text{flat}}(\Delta y) = \frac{\Delta y}{c} \cdot (1 - \bar{T}) +\end{equation} + +The curve component is + +\begin{equation}\label{close-short-curve} +\Delta z_{\text{curve}}(\Delta y) = +\begin{cases} + \frac{1}{\mu} \cdot \left( \frac{\mu}{c} \cdot k - \left( y_0 - \Delta y \cdot \bar{T}^{-1} \right)^{1-t_s} \right)^{\frac{1}{1 - t_s}} - (z_{0} - \zeta) , & \text{if} \bar{T} > 0 \\ + 0, & \text{otherwise} +\end{cases} +\end{equation} + +The fee component is + +\begin{equation}\label{close-short-fees} +\Delta z_{\text{fees}}(\Delta y) = \frac{\Delta y}{c} \cdot \left( \phi_c \cdot (1 - p) \cdot \bar{T} + \phi_f \cdot (1 - \bar{T}) \right) +\end{equation} + +Together these give the pool share delta: + +\begin{equation}\label{close-short-shares-returend} +\Delta z(\Delta y) = \Delta z_{\text{flat}}(\Delta y) + \Delta z_{\text{curve}}(\Delta y) + \Delta z_{\text{fees}}(\Delta y) +\end{equation} + +The amount returned to the trader is a function of this pool share delta: + +\begin{equation}\label{close-short-trader-return} + R(\Delta y) = V(\Delta y) + \phi_f \cdot \frac{\Delta y}{c} - \Delta z(\Delta y) +\end{equation} + +where $V(\Delta y)$ is defined in section \ref{trader-deposit} with the ending share price set to the share price at time of closing the short, $c_1 = c$ and $c_0$ is the share price when opening the short. +This return is only valid if the left terms, $V(\Delta y) + \phi_f \cdot \frac{\Delta y}{c}$, are greater than the pool share delta, $\Delta z$. +Otherwise, the user receives zero shares. + +\subsubsection{Determining the close short bond amount from a desired return} +It could be the case where a trader wants to determine how many bonds to close to get a certain return back, in shares. +This is an intractable inverse function, much like the max short function. +However, we can follow the same procedure in sections \ref{conservative-abs-max} to produce a linear approximation of the non-linear curve pool share delta term. +Ignoring the condition where the close short returns are zero, + +\begin{equation} +\begin{aligned} + \Delta z_{\text{curve}}(\Delta y) = f(\Delta y) &= + \frac{1}{\mu} \cdot \left( \frac{\mu}{c} \cdot k - \left( y_0 - \Delta y \cdot \bar{T}^{-1} \right)^{1-t_s} \right)^{\frac{1}{1 - t_s}} - (z_{0} - \zeta) \\ + &\ge f(0) + f'(0) \cdot \Delta y +\end{aligned} +\end{equation} + +When we evaluate $f(\Delta y)$ at $\Delta y = 0$ we cancel the $\bar{T}$ term. +The additional terms from computing a share delta cancels out the initial effective share reserves, giving us: + +\begin{equation}\label{close-short-delta-z-curve-approx} + \Delta z_{\text{curve}}(\Delta y) \ge \Tilde{\Delta z}_{\text{curve}}(\Delta y) = - \frac{p}{c} \cdot \Delta y +\end{equation} + +This was the only non-linear term, so now we can write out our full linear approximation and invert it: + +\begin{equation}\label{close-short-delta-z-approx} +\begin{aligned} + \Tilde{\Delta z}(\Delta y) &= \Delta z_{\text{flat}}(\Delta y) + \Tilde{\Delta z}_{\text{curve}}(\Delta y) + \Delta z_{\text{fees}}(\Delta y) \\ + \therefore \\ + R(\Delta y) &= V(\Delta y) + \phi_f \cdot \tfrac{\Delta y}{c} - \Delta z(\Delta y) \\ + &\ge \tfrac{\Delta y}{c} \cdot \left( \tfrac{c_1}{c} + 2 \cdot \phi_f - \left(1 - \bar{T} \right) + p - \phi_c \cdot (1 - p) \cdot \bar{T} - \phi_f \cdot \left( 1 - \bar{T} \right) \right) \\ + \therefore \\ + \Delta y \le \Tilde{\Delta y} &= \frac{c \cdot R(\Delta y)}{\tfrac{c_1}{c} + 2 \cdot \phi_f - \left(1 - \bar{T} \right) + p - \phi_c \cdot (1 - p) \cdot \bar{T} - \phi_f \cdot \left( 1 - \bar{T} \right)} +\end{aligned} +\end{equation} + +This equation allows us to conservatively approximate the amount of bonds to be shorted, $\Tilde{\Delta y}$, to provide a requested return amount to the trader, $R(\Delta y)$. +As in section \ref{newton-refinement}, we can use Newton's Method to refine the result: + +\begin{equation} +\begin{aligned} + l(\Delta y) &= R_{t}(\Delta y) - R(\Delta y) \\ + l^{\prime}(\Delta y) &= - \frac{d R(\Delta y)}{d \Delta y} \\ + R^{\prime}(\Delta y) &= V^{\prime}(\Delta Y) + \frac{\phi_f}{c} - \Delta z^{\prime}(\Delta y) \\ + \Delta z^{\prime}(\Delta y) &= \Delta z^{\prime}_{\text{curve}}(\Delta y) + + \frac{1}{c} \cdot + \left( \bar{T} + \phi_c \cdot (1-p) \cdot \bar{T} + \phi_f \cdot \left(1 - \bar{T}\right) \right) +\end{aligned} +\end{equation} + +We will need to follow the procedure in section \ref{short-principal-derivative} to find the derivative $\Delta z^{\prime}_{\text{curve}}(\Delta y)$. +Let, + +\begin{equation} +u = \frac{\mu}{c} \cdot \left( k - (y + \Delta y \cdot \bar{T})^{1-t_s} \right) +\end{equation} + +\begin{equation} +\frac{du}{d \Delta y} = \frac{\mu}{c} \cdot -(1 - t_s) \cdot \bar{T} \cdot (y + \Delta y \cdot \bar{T})^{-t_s} +\end{equation} + +therefore, + +\begin{equation} +\begin{aligned} +\Delta z^{\prime}_{\text{curve}}(\Delta y) &= - \tfrac{1}{\mu} \cdot \tfrac{1}{1-t_s} \cdot u^{\tfrac{1}{1-t_s} - 1} \cdot \tfrac{du}{d \Delta y} \\ +&= - \tfrac{1}{\mu} \cdot \tfrac{1}{1-t_s} \left( \tfrac{\mu}{c} \left( k - (y + \Delta y \cdot \bar{T})^{1 - t_s} \right) \right)^{\tfrac{t_s}{1-t_s}} +\cdot \tfrac{\mu}{c} \cdot -(1 - t_s) \cdot \bar{T} \cdot (y + \Delta y \cdot \bar{T})^{t_s} \\ +&= \tfrac{\bar{T}}{c} \cdot (y + \Delta y \cdot \bar{T})^{-t_s} \cdot \left( \tfrac{\mu}{c} \cdot \left( k - (y + \Delta y \cdot \bar{T})^{1 - t_s} \right) \right)^{\tfrac{t_s}{1 - t_s}} +\end{aligned} +\end{equation} + +Given these, the Newton update is the same as Equation \eqref{newton-update}. + +\subsection{Targeted short}\label{targeted-short} +TODO \ No newline at end of file