From cfa2ac68a72457f67fb4d82ac8773e16f5edd8d1 Mon Sep 17 00:00:00 2001 From: Shrenik-Bhalgat <59737962+Shrenik-Bhalgat@users.noreply.github.com> Date: Mon, 24 Aug 2020 14:49:59 +0530 Subject: [PATCH 1/5] Add files via upload --- ShrenikBhalgat-assignment1.ipynb | 426 +++++++++++++++++++++++++++++++ 1 file changed, 426 insertions(+) create mode 100644 ShrenikBhalgat-assignment1.ipynb diff --git a/ShrenikBhalgat-assignment1.ipynb b/ShrenikBhalgat-assignment1.ipynb new file mode 100644 index 0000000..ae2a14f --- /dev/null +++ b/ShrenikBhalgat-assignment1.ipynb @@ -0,0 +1,426 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "list1=[1,2,3,4,5]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4, 5])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array1=np.array(list1)\n", + "array1" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "list2=[[1,2,3],[4,5,6],[7,8,9]]" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1, 2, 3],\n", + " [4, 5, 6],\n", + " [7, 8, 9]])" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array2=np.array(list2)\n", + "array2" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, 3, 5, 7, 9, 11, 13, 15, 17])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array3=np.arange(1,18,2)\n", + "array3" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 1, 3, 5],\n", + " [ 7, 9, 11],\n", + " [13, 15, 17]])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array3.reshape(3,3)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 6, 7, 2, 9, 7, 7, 2, 1, 4])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array4=np.random.randint(1,10,10)\n", + "array4" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3, 4, 5])" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array5=np.arange(1,6,1)\n", + "array5" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[1],\n", + " [2],\n", + " [3],\n", + " [4],\n", + " [5]])" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array5.reshape(5,1)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5,)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array5.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array6=np.arange(10)\n", + "array6" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array6[3]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "4" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array6[4]" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "9" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array6[9]" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "2\n", + "4\n", + "6\n", + "8\n" + ] + } + ], + "source": [ + "for i in array6:\n", + " if i%2==0:\n", + " print(i)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(7,10):\n", + " array6[i]=100" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 100, 100, 100])" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array6" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [], + "source": [ + "array7=np.arange(25)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "array7=array7.reshape(5,5)" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5, 5)" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array7.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 6, 7, 8],\n", + " [11, 12, 13],\n", + " [16, 17, 18]])" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "array7[1:4,1:4]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 75a0a755e66fe25aa40a7b773b3c26be7f494cde Mon Sep 17 00:00:00 2001 From: Shrenik-Bhalgat <59737962+Shrenik-Bhalgat@users.noreply.github.com> Date: Sun, 6 Sep 2020 13:05:53 +0530 Subject: [PATCH 2/5] Shreniik Bhalgat Asssignment 2 --- Assignment2 Shrenik Bhalgat.ipynb | 1270 +++++++++++++++++++++++++++++ 1 file changed, 1270 insertions(+) create mode 100644 Assignment2 Shrenik Bhalgat.ipynb diff --git a/Assignment2 Shrenik Bhalgat.ipynb b/Assignment2 Shrenik Bhalgat.ipynb new file mode 100644 index 0000000..20d821b --- /dev/null +++ b/Assignment2 Shrenik Bhalgat.ipynb @@ -0,0 +1,1270 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdEmployeeNameJobTitleBasePayOvertimePayOtherPayBenefitsTotalPayTotalPayBenefitsYearNotesAgencyStatus
01NATHANIEL FORDGENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY167411.180.00400184.25NaN567595.43567595.432011NaNSan FranciscoNaN
12GARY JIMENEZCAPTAIN III (POLICE DEPARTMENT)155966.02245131.88137811.38NaN538909.28538909.282011NaNSan FranciscoNaN
23ALBERT PARDINICAPTAIN III (POLICE DEPARTMENT)212739.13106088.1816452.60NaN335279.91335279.912011NaNSan FranciscoNaN
34CHRISTOPHER CHONGWIRE ROPE CABLE MAINTENANCE MECHANIC77916.0056120.71198306.90NaN332343.61332343.612011NaNSan FranciscoNaN
45PATRICK GARDNERDEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT)134401.609737.00182234.59NaN326373.19326373.192011NaNSan FranciscoNaN
..........................................
148649148650Roy I TilleryCustodian0.000.000.000.00.000.002014NaNSan FranciscoNaN
148650148651Not providedNot providedNaNNaNNaNNaN0.000.002014NaNSan FranciscoNaN
148651148652Not providedNot providedNaNNaNNaNNaN0.000.002014NaNSan FranciscoNaN
148652148653Not providedNot providedNaNNaNNaNNaN0.000.002014NaNSan FranciscoNaN
148653148654Joe LopezCounselor, Log Cabin Ranch0.000.00-618.130.0-618.13-618.132014NaNSan FranciscoNaN
\n", + "

148654 rows × 13 columns

\n", + "
" + ], + "text/plain": [ + " Id EmployeeName \\\n", + "0 1 NATHANIEL FORD \n", + "1 2 GARY JIMENEZ \n", + "2 3 ALBERT PARDINI \n", + "3 4 CHRISTOPHER CHONG \n", + "4 5 PATRICK GARDNER \n", + "... ... ... \n", + "148649 148650 Roy I Tillery \n", + "148650 148651 Not provided \n", + "148651 148652 Not provided \n", + "148652 148653 Not provided \n", + "148653 148654 Joe Lopez \n", + "\n", + " JobTitle BasePay \\\n", + "0 GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY 167411.18 \n", + "1 CAPTAIN III (POLICE DEPARTMENT) 155966.02 \n", + "2 CAPTAIN III (POLICE DEPARTMENT) 212739.13 \n", + "3 WIRE ROPE CABLE MAINTENANCE MECHANIC 77916.00 \n", + "4 DEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT) 134401.60 \n", + "... ... ... \n", + "148649 Custodian 0.00 \n", + "148650 Not provided NaN \n", + "148651 Not provided NaN \n", + "148652 Not provided NaN \n", + "148653 Counselor, Log Cabin Ranch 0.00 \n", + "\n", + " OvertimePay OtherPay Benefits TotalPay TotalPayBenefits Year \\\n", + "0 0.00 400184.25 NaN 567595.43 567595.43 2011 \n", + "1 245131.88 137811.38 NaN 538909.28 538909.28 2011 \n", + "2 106088.18 16452.60 NaN 335279.91 335279.91 2011 \n", + "3 56120.71 198306.90 NaN 332343.61 332343.61 2011 \n", + "4 9737.00 182234.59 NaN 326373.19 326373.19 2011 \n", + "... ... ... ... ... ... ... \n", + "148649 0.00 0.00 0.0 0.00 0.00 2014 \n", + "148650 NaN NaN NaN 0.00 0.00 2014 \n", + "148651 NaN NaN NaN 0.00 0.00 2014 \n", + "148652 NaN NaN NaN 0.00 0.00 2014 \n", + "148653 0.00 -618.13 0.0 -618.13 -618.13 2014 \n", + "\n", + " Notes Agency Status \n", + "0 NaN San Francisco NaN \n", + "1 NaN San Francisco NaN \n", + "2 NaN San Francisco NaN \n", + "3 NaN San Francisco NaN \n", + "4 NaN San Francisco NaN \n", + "... ... ... ... \n", + "148649 NaN San Francisco NaN \n", + "148650 NaN San Francisco NaN \n", + "148651 NaN San Francisco NaN \n", + "148652 NaN San Francisco NaN \n", + "148653 NaN San Francisco NaN \n", + "\n", + "[148654 rows x 13 columns]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df=pd.read_csv('Salaries.csv')\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Index(['Id', 'EmployeeName', 'JobTitle', 'BasePay', 'OvertimePay', 'OtherPay',\n", + " 'Benefits', 'TotalPay', 'TotalPayBenefits', 'Year', 'Notes', 'Agency',\n", + " 'Status'],\n", + " dtype='object')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Display colum names\n", + "df.columns" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(148654, 13)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Display the number of rows and columns\n", + "df.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "RangeIndex: 148654 entries, 0 to 148653\n", + "Data columns (total 13 columns):\n", + " # Column Non-Null Count Dtype \n", + "--- ------ -------------- ----- \n", + " 0 Id 148654 non-null int64 \n", + " 1 EmployeeName 148654 non-null object \n", + " 2 JobTitle 148654 non-null object \n", + " 3 BasePay 148045 non-null float64\n", + " 4 OvertimePay 148650 non-null float64\n", + " 5 OtherPay 148650 non-null float64\n", + " 6 Benefits 112491 non-null float64\n", + " 7 TotalPay 148654 non-null float64\n", + " 8 TotalPayBenefits 148654 non-null float64\n", + " 9 Year 148654 non-null int64 \n", + " 10 Notes 0 non-null float64\n", + " 11 Agency 148654 non-null object \n", + " 12 Status 0 non-null float64\n", + "dtypes: float64(8), int64(2), object(3)\n", + "memory usage: 14.7+ MB\n" + ] + } + ], + "source": [ + "#Display the dataframes info\n", + "df.info()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdBasePayOvertimePayOtherPayBenefitsTotalPayTotalPayBenefitsYearNotesStatus
count148654.000000148045.000000148650.000000148650.000000112491.000000148654.000000148654.000000148654.0000000.00.0
mean74327.50000066325.4488405066.0598863648.76729725007.89315174768.32197293692.5548112012.522643NaNNaN
std42912.85779542764.63549511454.3805598056.60186615402.21585850517.00527462793.5334831.117538NaNNaN
min1.000000-166.010000-0.010000-7058.590000-33.890000-618.130000-618.1300002011.000000NaNNaN
25%37164.25000033588.2000000.0000000.00000011535.39500036168.99500044065.6500002012.000000NaNNaN
50%74327.50000065007.4500000.000000811.27000028628.62000071426.61000092404.0900002013.000000NaNNaN
75%111490.75000094691.0500004658.1750004236.06500035566.855000105839.135000132876.4500002014.000000NaNNaN
max148654.000000319275.010000245131.880000400184.25000096570.660000567595.430000567595.4300002014.000000NaNNaN
\n", + "
" + ], + "text/plain": [ + " Id BasePay OvertimePay OtherPay \\\n", + "count 148654.000000 148045.000000 148650.000000 148650.000000 \n", + "mean 74327.500000 66325.448840 5066.059886 3648.767297 \n", + "std 42912.857795 42764.635495 11454.380559 8056.601866 \n", + "min 1.000000 -166.010000 -0.010000 -7058.590000 \n", + "25% 37164.250000 33588.200000 0.000000 0.000000 \n", + "50% 74327.500000 65007.450000 0.000000 811.270000 \n", + "75% 111490.750000 94691.050000 4658.175000 4236.065000 \n", + "max 148654.000000 319275.010000 245131.880000 400184.250000 \n", + "\n", + " Benefits TotalPay TotalPayBenefits Year Notes \\\n", + "count 112491.000000 148654.000000 148654.000000 148654.000000 0.0 \n", + "mean 25007.893151 74768.321972 93692.554811 2012.522643 NaN \n", + "std 15402.215858 50517.005274 62793.533483 1.117538 NaN \n", + "min -33.890000 -618.130000 -618.130000 2011.000000 NaN \n", + "25% 11535.395000 36168.995000 44065.650000 2012.000000 NaN \n", + "50% 28628.620000 71426.610000 92404.090000 2013.000000 NaN \n", + "75% 35566.855000 105839.135000 132876.450000 2014.000000 NaN \n", + "max 96570.660000 567595.430000 567595.430000 2014.000000 NaN \n", + "\n", + " Status \n", + "count 0.0 \n", + "mean NaN \n", + "std NaN \n", + "min NaN \n", + "25% NaN \n", + "50% NaN \n", + "75% NaN \n", + "max NaN " + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#Display stats of the dataframe\n", + "df.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id 0\n", + "EmployeeName 0\n", + "JobTitle 0\n", + "BasePay 609\n", + "OvertimePay 4\n", + "OtherPay 4\n", + "Benefits 36163\n", + "TotalPay 0\n", + "TotalPayBenefits 0\n", + "Year 0\n", + "Notes 148654\n", + "Agency 0\n", + "Status 148654\n", + "dtype: int64" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#display null values per column\n", + "df.isnull().sum(axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
IdEmployeeNameJobTitleBasePayOvertimePayOtherPayBenefitsTotalPayTotalPayBenefitsYearAgency
01NATHANIEL FORDGENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY167411.180.00400184.25NaN567595.43567595.432011San Francisco
12GARY JIMENEZCAPTAIN III (POLICE DEPARTMENT)155966.02245131.88137811.38NaN538909.28538909.282011San Francisco
23ALBERT PARDINICAPTAIN III (POLICE DEPARTMENT)212739.13106088.1816452.60NaN335279.91335279.912011San Francisco
34CHRISTOPHER CHONGWIRE ROPE CABLE MAINTENANCE MECHANIC77916.0056120.71198306.90NaN332343.61332343.612011San Francisco
45PATRICK GARDNERDEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT)134401.609737.00182234.59NaN326373.19326373.192011San Francisco
....................................
148649148650Roy I TilleryCustodian0.000.000.000.00.000.002014San Francisco
148650148651Not providedNot providedNaNNaNNaNNaN0.000.002014San Francisco
148651148652Not providedNot providedNaNNaNNaNNaN0.000.002014San Francisco
148652148653Not providedNot providedNaNNaNNaNNaN0.000.002014San Francisco
148653148654Joe LopezCounselor, Log Cabin Ranch0.000.00-618.130.0-618.13-618.132014San Francisco
\n", + "

148654 rows × 11 columns

\n", + "
" + ], + "text/plain": [ + " Id EmployeeName \\\n", + "0 1 NATHANIEL FORD \n", + "1 2 GARY JIMENEZ \n", + "2 3 ALBERT PARDINI \n", + "3 4 CHRISTOPHER CHONG \n", + "4 5 PATRICK GARDNER \n", + "... ... ... \n", + "148649 148650 Roy I Tillery \n", + "148650 148651 Not provided \n", + "148651 148652 Not provided \n", + "148652 148653 Not provided \n", + "148653 148654 Joe Lopez \n", + "\n", + " JobTitle BasePay \\\n", + "0 GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY 167411.18 \n", + "1 CAPTAIN III (POLICE DEPARTMENT) 155966.02 \n", + "2 CAPTAIN III (POLICE DEPARTMENT) 212739.13 \n", + "3 WIRE ROPE CABLE MAINTENANCE MECHANIC 77916.00 \n", + "4 DEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT) 134401.60 \n", + "... ... ... \n", + "148649 Custodian 0.00 \n", + "148650 Not provided NaN \n", + "148651 Not provided NaN \n", + "148652 Not provided NaN \n", + "148653 Counselor, Log Cabin Ranch 0.00 \n", + "\n", + " OvertimePay OtherPay Benefits TotalPay TotalPayBenefits Year \\\n", + "0 0.00 400184.25 NaN 567595.43 567595.43 2011 \n", + "1 245131.88 137811.38 NaN 538909.28 538909.28 2011 \n", + "2 106088.18 16452.60 NaN 335279.91 335279.91 2011 \n", + "3 56120.71 198306.90 NaN 332343.61 332343.61 2011 \n", + "4 9737.00 182234.59 NaN 326373.19 326373.19 2011 \n", + "... ... ... ... ... ... ... \n", + "148649 0.00 0.00 0.0 0.00 0.00 2014 \n", + "148650 NaN NaN NaN 0.00 0.00 2014 \n", + "148651 NaN NaN NaN 0.00 0.00 2014 \n", + "148652 NaN NaN NaN 0.00 0.00 2014 \n", + "148653 0.00 -618.13 0.0 -618.13 -618.13 2014 \n", + "\n", + " Agency \n", + "0 San Francisco \n", + "1 San Francisco \n", + "2 San Francisco \n", + "3 San Francisco \n", + "4 San Francisco \n", + "... ... \n", + "148649 San Francisco \n", + "148650 San Francisco \n", + "148651 San Francisco \n", + "148652 San Francisco \n", + "148653 San Francisco \n", + "\n", + "[148654 rows x 11 columns]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#remove columns with all values as nan\n", + "df.dropna(axis=1,how='all',inplace=True)\n", + "df" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id 148654\n", + "EmployeeName 110811\n", + "JobTitle 2159\n", + "BasePay 109489\n", + "OvertimePay 65998\n", + "OtherPay 83225\n", + "Benefits 98465\n", + "TotalPay 138486\n", + "TotalPayBenefits 142098\n", + "Year 4\n", + "Agency 1\n", + "dtype: int64" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#display number of unique values in each column\n", + "df.nunique()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id 148654\n", + "EmployeeName 110811\n", + "JobTitle 2159\n", + "BasePay 109489\n", + "OvertimePay 65998\n", + "OtherPay 83225\n", + "Benefits 98465\n", + "TotalPay 138486\n", + "TotalPayBenefits 142098\n", + "Year 4\n", + "Agency 1\n", + "dtype: int64" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#display number of unique values in each column\n", + "df.apply(lambda x: x.nunique(), axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Id 148654\n", + "EmployeeName 110811\n", + "JobTitle 2159\n", + "BasePay 109489\n", + "OvertimePay 65998\n", + "OtherPay 83225\n", + "Benefits 98465\n", + "TotalPay 138486\n", + "TotalPayBenefits 142098\n", + "Year 4\n", + "Agency 1\n", + "dtype: int64" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#display number of unique values in each column\n", + "df.apply(pd.Series.nunique)" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
YearTotalPay
0201171744.103871
1201274113.262265
2201377611.443142
3201475463.918140
\n", + "
" + ], + "text/plain": [ + " Year TotalPay\n", + "0 2011 71744.103871\n", + "1 2012 74113.262265\n", + "2 2013 77611.443142\n", + "3 2014 75463.918140" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#mean of total pay based on year\n", + "df.groupby('Year', as_index=False)['TotalPay'].mean()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "77321" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#how many people have 0 overtime pay\n", + "(df['OvertimePay']==0).sum()" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 0 71333.000000\n", + " 1 77321.000000\n", + "mean 0 90527.759214\n", + " 1 60229.348901\n", + "std 0 46961.054390\n", + " 1 49307.912350\n", + "min 0 0.000000\n", + " 1 -618.130000\n", + "25% 0 59104.230000\n", + " 1 13290.450000\n", + "50% 0 82984.830000\n", + " 1 58158.590000\n", + "75% 0 121560.910000\n", + " 1 91115.090000\n", + "max 0 538909.280000\n", + " 1 567595.430000\n", + "dtype: float64" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#stats of total pay of people having 0 overtime pay\n", + "df.groupby(df['OvertimePay']==0, as_index=False)['TotalPay'].describe()\n", + "# 0 represents people with non 0 overtime pay\n", + "# 1 represents people with 0 overtime pay" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "count 77321.000000\n", + "mean 60229.348901\n", + "std 49307.912350\n", + "min -618.130000\n", + "25% 13290.450000\n", + "50% 58158.590000\n", + "75% 91115.090000\n", + "max 567595.430000\n", + "Name: TotalPay, dtype: float64" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#stats of total pay of people having 0 overtime pay\n", + "df[df.OvertimePay==0].describe()['TotalPay']" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0 1\n", + "Name: Id, dtype: int64" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#find Id of that person with max TotalPay you got in previous question\n", + "df[df.TotalPay==df[df.OvertimePay==0].max()['TotalPay']]['Id']\n", + "#we can also use .Id instead of ['Id']" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "12345 REBECCA CHIU\n", + "Name: EmployeeName, dtype: object" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#name of employee with total pay benefits = 87619.78\n", + "df[df.TotalPayBenefits==87619.78]['EmployeeName'] # or .EmployeeName " + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "132" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#how many people have BasePay > 150000 and OvertimePay > 100000\n", + "df[(df['BasePay']> 150000) & (df['OvertimePay']> 100000)].size" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "JobTitle ZOO CURATOR\n", + "TotalPayBenefits 436224\n", + "dtype: object" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# which job title generally has highest average TotalPayBenefits\n", + "df.groupby('JobTitle', as_index=False)['TotalPayBenefits'].mean().max()" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2512" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#How many employees are POLICE\n", + "df[df['JobTitle'].str.contains('POLICE')] ['JobTitle'].size" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From e446bf76dbdf877e11cb4da6080db3ed809c8acf Mon Sep 17 00:00:00 2001 From: Shrenik-Bhalgat <59737962+Shrenik-Bhalgat@users.noreply.github.com> Date: Sun, 6 Sep 2020 13:22:07 +0530 Subject: [PATCH 3/5] Add files via upload From c99e7368e00abad4bdd8d2b78f4fa0febccb0887 Mon Sep 17 00:00:00 2001 From: Shrenik-Bhalgat <59737962+Shrenik-Bhalgat@users.noreply.github.com> Date: Sun, 6 Sep 2020 13:27:58 +0530 Subject: [PATCH 4/5] Add files via upload From 4a5e0a463f401a59d3c64d1e8e3dffa5eb321e7e Mon Sep 17 00:00:00 2001 From: Shrenik-Bhalgat <59737962+Shrenik-Bhalgat@users.noreply.github.com> Date: Sun, 6 Sep 2020 13:40:56 +0530 Subject: [PATCH 5/5] Add files via upload