diff --git a/Vikas Dongare Assignment2.ipynb b/Vikas Dongare Assignment2.ipynb
new file mode 100644
index 0000000..c68d60b
--- /dev/null
+++ b/Vikas Dongare Assignment2.ipynb
@@ -0,0 +1,1219 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import pandas as pd\n",
+ "#%matplotlib notebook\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "import the dataset into a dataframe"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Id | \n",
+ " EmployeeName | \n",
+ " JobTitle | \n",
+ " BasePay | \n",
+ " OvertimePay | \n",
+ " OtherPay | \n",
+ " Benefits | \n",
+ " TotalPay | \n",
+ " TotalPayBenefits | \n",
+ " Year | \n",
+ " Notes | \n",
+ " Agency | \n",
+ " Status | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " NATHANIEL FORD | \n",
+ " GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY | \n",
+ " 167411.18 | \n",
+ " 0.00 | \n",
+ " 400184.25 | \n",
+ " NaN | \n",
+ " 567595.43 | \n",
+ " 567595.43 | \n",
+ " 2011 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " GARY JIMENEZ | \n",
+ " CAPTAIN III (POLICE DEPARTMENT) | \n",
+ " 155966.02 | \n",
+ " 245131.88 | \n",
+ " 137811.38 | \n",
+ " NaN | \n",
+ " 538909.28 | \n",
+ " 538909.28 | \n",
+ " 2011 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " ALBERT PARDINI | \n",
+ " CAPTAIN III (POLICE DEPARTMENT) | \n",
+ " 212739.13 | \n",
+ " 106088.18 | \n",
+ " 16452.60 | \n",
+ " NaN | \n",
+ " 335279.91 | \n",
+ " 335279.91 | \n",
+ " 2011 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " CHRISTOPHER CHONG | \n",
+ " WIRE ROPE CABLE MAINTENANCE MECHANIC | \n",
+ " 77916.00 | \n",
+ " 56120.71 | \n",
+ " 198306.90 | \n",
+ " NaN | \n",
+ " 332343.61 | \n",
+ " 332343.61 | \n",
+ " 2011 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " PATRICK GARDNER | \n",
+ " DEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT) | \n",
+ " 134401.60 | \n",
+ " 9737.00 | \n",
+ " 182234.59 | \n",
+ " NaN | \n",
+ " 326373.19 | \n",
+ " 326373.19 | \n",
+ " 2011 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 148649 | \n",
+ " 148650 | \n",
+ " Roy I Tillery | \n",
+ " Custodian | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 2014 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 148650 | \n",
+ " 148651 | \n",
+ " Not provided | \n",
+ " Not provided | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 2014 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 148651 | \n",
+ " 148652 | \n",
+ " Not provided | \n",
+ " Not provided | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 2014 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 148652 | \n",
+ " 148653 | \n",
+ " Not provided | \n",
+ " Not provided | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 2014 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 148653 | \n",
+ " 148654 | \n",
+ " Joe Lopez | \n",
+ " Counselor, Log Cabin Ranch | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " -618.13 | \n",
+ " 0.0 | \n",
+ " -618.13 | \n",
+ " -618.13 | \n",
+ " 2014 | \n",
+ " NaN | \n",
+ " San Francisco | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
148654 rows × 13 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Id EmployeeName \\\n",
+ "0 1 NATHANIEL FORD \n",
+ "1 2 GARY JIMENEZ \n",
+ "2 3 ALBERT PARDINI \n",
+ "3 4 CHRISTOPHER CHONG \n",
+ "4 5 PATRICK GARDNER \n",
+ "... ... ... \n",
+ "148649 148650 Roy I Tillery \n",
+ "148650 148651 Not provided \n",
+ "148651 148652 Not provided \n",
+ "148652 148653 Not provided \n",
+ "148653 148654 Joe Lopez \n",
+ "\n",
+ " JobTitle BasePay \\\n",
+ "0 GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY 167411.18 \n",
+ "1 CAPTAIN III (POLICE DEPARTMENT) 155966.02 \n",
+ "2 CAPTAIN III (POLICE DEPARTMENT) 212739.13 \n",
+ "3 WIRE ROPE CABLE MAINTENANCE MECHANIC 77916.00 \n",
+ "4 DEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT) 134401.60 \n",
+ "... ... ... \n",
+ "148649 Custodian 0.00 \n",
+ "148650 Not provided NaN \n",
+ "148651 Not provided NaN \n",
+ "148652 Not provided NaN \n",
+ "148653 Counselor, Log Cabin Ranch 0.00 \n",
+ "\n",
+ " OvertimePay OtherPay Benefits TotalPay TotalPayBenefits Year \\\n",
+ "0 0.00 400184.25 NaN 567595.43 567595.43 2011 \n",
+ "1 245131.88 137811.38 NaN 538909.28 538909.28 2011 \n",
+ "2 106088.18 16452.60 NaN 335279.91 335279.91 2011 \n",
+ "3 56120.71 198306.90 NaN 332343.61 332343.61 2011 \n",
+ "4 9737.00 182234.59 NaN 326373.19 326373.19 2011 \n",
+ "... ... ... ... ... ... ... \n",
+ "148649 0.00 0.00 0.0 0.00 0.00 2014 \n",
+ "148650 NaN NaN NaN 0.00 0.00 2014 \n",
+ "148651 NaN NaN NaN 0.00 0.00 2014 \n",
+ "148652 NaN NaN NaN 0.00 0.00 2014 \n",
+ "148653 0.00 -618.13 0.0 -618.13 -618.13 2014 \n",
+ "\n",
+ " Notes Agency Status \n",
+ "0 NaN San Francisco NaN \n",
+ "1 NaN San Francisco NaN \n",
+ "2 NaN San Francisco NaN \n",
+ "3 NaN San Francisco NaN \n",
+ "4 NaN San Francisco NaN \n",
+ "... ... ... ... \n",
+ "148649 NaN San Francisco NaN \n",
+ "148650 NaN San Francisco NaN \n",
+ "148651 NaN San Francisco NaN \n",
+ "148652 NaN San Francisco NaN \n",
+ "148653 NaN San Francisco NaN \n",
+ "\n",
+ "[148654 rows x 13 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df=pd.read_csv(\"Salaries.csv\")\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "display the column names"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['Id', 'EmployeeName', 'JobTitle', 'BasePay', 'OvertimePay', 'OtherPay',\n",
+ " 'Benefits', 'TotalPay', 'TotalPayBenefits', 'Year', 'Notes', 'Agency',\n",
+ " 'Status'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.columns\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "display the number of rows and cols"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Number of rows: 148654\n",
+ "Number of columns: 13\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(\"Number of rows: \", len(df))\n",
+ "print(\"Number of columns: \", len(df.axes[1]))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "display the dataframe info (types of data in columns and not null values etc.)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 148654 entries, 0 to 148653\n",
+ "Data columns (total 13 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 Id 148654 non-null int64 \n",
+ " 1 EmployeeName 148654 non-null object \n",
+ " 2 JobTitle 148654 non-null object \n",
+ " 3 BasePay 148045 non-null float64\n",
+ " 4 OvertimePay 148650 non-null float64\n",
+ " 5 OtherPay 148650 non-null float64\n",
+ " 6 Benefits 112491 non-null float64\n",
+ " 7 TotalPay 148654 non-null float64\n",
+ " 8 TotalPayBenefits 148654 non-null float64\n",
+ " 9 Year 148654 non-null int64 \n",
+ " 10 Notes 0 non-null float64\n",
+ " 11 Agency 148654 non-null object \n",
+ " 12 Status 0 non-null float64\n",
+ "dtypes: float64(8), int64(2), object(3)\n",
+ "memory usage: 14.7+ MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "display stats of the dataframe like count, mean, std, max, 25% etc....."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Id | \n",
+ " BasePay | \n",
+ " OvertimePay | \n",
+ " OtherPay | \n",
+ " Benefits | \n",
+ " TotalPay | \n",
+ " TotalPayBenefits | \n",
+ " Year | \n",
+ " Notes | \n",
+ " Status | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | count | \n",
+ " 148654.000000 | \n",
+ " 148045.000000 | \n",
+ " 148650.000000 | \n",
+ " 148650.000000 | \n",
+ " 112491.000000 | \n",
+ " 148654.000000 | \n",
+ " 148654.000000 | \n",
+ " 148654.000000 | \n",
+ " 0.0 | \n",
+ " 0.0 | \n",
+ "
\n",
+ " \n",
+ " | mean | \n",
+ " 74327.500000 | \n",
+ " 66325.448841 | \n",
+ " 5066.059886 | \n",
+ " 3648.767297 | \n",
+ " 25007.893151 | \n",
+ " 74768.321972 | \n",
+ " 93692.554811 | \n",
+ " 2012.522643 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | std | \n",
+ " 42912.857795 | \n",
+ " 42764.635495 | \n",
+ " 11454.380559 | \n",
+ " 8056.601866 | \n",
+ " 15402.215858 | \n",
+ " 50517.005274 | \n",
+ " 62793.533483 | \n",
+ " 1.117538 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | min | \n",
+ " 1.000000 | \n",
+ " -166.010000 | \n",
+ " -0.010000 | \n",
+ " -7058.590000 | \n",
+ " -33.890000 | \n",
+ " -618.130000 | \n",
+ " -618.130000 | \n",
+ " 2011.000000 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 25% | \n",
+ " 37164.250000 | \n",
+ " 33588.200000 | \n",
+ " 0.000000 | \n",
+ " 0.000000 | \n",
+ " 11535.395000 | \n",
+ " 36168.995000 | \n",
+ " 44065.650000 | \n",
+ " 2012.000000 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 50% | \n",
+ " 74327.500000 | \n",
+ " 65007.450000 | \n",
+ " 0.000000 | \n",
+ " 811.270000 | \n",
+ " 28628.620000 | \n",
+ " 71426.610000 | \n",
+ " 92404.090000 | \n",
+ " 2013.000000 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | 75% | \n",
+ " 111490.750000 | \n",
+ " 94691.050000 | \n",
+ " 4658.175000 | \n",
+ " 4236.065000 | \n",
+ " 35566.855000 | \n",
+ " 105839.135000 | \n",
+ " 132876.450000 | \n",
+ " 2014.000000 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ " | max | \n",
+ " 148654.000000 | \n",
+ " 319275.010000 | \n",
+ " 245131.880000 | \n",
+ " 400184.250000 | \n",
+ " 96570.660000 | \n",
+ " 567595.430000 | \n",
+ " 567595.430000 | \n",
+ " 2014.000000 | \n",
+ " NaN | \n",
+ " NaN | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Id BasePay OvertimePay OtherPay \\\n",
+ "count 148654.000000 148045.000000 148650.000000 148650.000000 \n",
+ "mean 74327.500000 66325.448841 5066.059886 3648.767297 \n",
+ "std 42912.857795 42764.635495 11454.380559 8056.601866 \n",
+ "min 1.000000 -166.010000 -0.010000 -7058.590000 \n",
+ "25% 37164.250000 33588.200000 0.000000 0.000000 \n",
+ "50% 74327.500000 65007.450000 0.000000 811.270000 \n",
+ "75% 111490.750000 94691.050000 4658.175000 4236.065000 \n",
+ "max 148654.000000 319275.010000 245131.880000 400184.250000 \n",
+ "\n",
+ " Benefits TotalPay TotalPayBenefits Year Notes \\\n",
+ "count 112491.000000 148654.000000 148654.000000 148654.000000 0.0 \n",
+ "mean 25007.893151 74768.321972 93692.554811 2012.522643 NaN \n",
+ "std 15402.215858 50517.005274 62793.533483 1.117538 NaN \n",
+ "min -33.890000 -618.130000 -618.130000 2011.000000 NaN \n",
+ "25% 11535.395000 36168.995000 44065.650000 2012.000000 NaN \n",
+ "50% 28628.620000 71426.610000 92404.090000 2013.000000 NaN \n",
+ "75% 35566.855000 105839.135000 132876.450000 2014.000000 NaN \n",
+ "max 96570.660000 567595.430000 567595.430000 2014.000000 NaN \n",
+ "\n",
+ " Status \n",
+ "count 0.0 \n",
+ "mean NaN \n",
+ "std NaN \n",
+ "min NaN \n",
+ "25% NaN \n",
+ "50% NaN \n",
+ "75% NaN \n",
+ "max NaN "
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "display null values per column"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Id 0\n",
+ "EmployeeName 0\n",
+ "JobTitle 0\n",
+ "BasePay 609\n",
+ "OvertimePay 4\n",
+ "OtherPay 4\n",
+ "Benefits 36163\n",
+ "TotalPay 0\n",
+ "TotalPayBenefits 0\n",
+ "Year 0\n",
+ "Notes 148654\n",
+ "Agency 0\n",
+ "Status 148654\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.isnull().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "remove columns will all values as NaN"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " | \n",
+ " Id | \n",
+ " EmployeeName | \n",
+ " JobTitle | \n",
+ " BasePay | \n",
+ " OvertimePay | \n",
+ " OtherPay | \n",
+ " Benefits | \n",
+ " TotalPay | \n",
+ " TotalPayBenefits | \n",
+ " Year | \n",
+ " Agency | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " | 0 | \n",
+ " 1 | \n",
+ " NATHANIEL FORD | \n",
+ " GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY | \n",
+ " 167411.18 | \n",
+ " 0.00 | \n",
+ " 400184.25 | \n",
+ " NaN | \n",
+ " 567595.43 | \n",
+ " 567595.43 | \n",
+ " 2011 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | 1 | \n",
+ " 2 | \n",
+ " GARY JIMENEZ | \n",
+ " CAPTAIN III (POLICE DEPARTMENT) | \n",
+ " 155966.02 | \n",
+ " 245131.88 | \n",
+ " 137811.38 | \n",
+ " NaN | \n",
+ " 538909.28 | \n",
+ " 538909.28 | \n",
+ " 2011 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | 2 | \n",
+ " 3 | \n",
+ " ALBERT PARDINI | \n",
+ " CAPTAIN III (POLICE DEPARTMENT) | \n",
+ " 212739.13 | \n",
+ " 106088.18 | \n",
+ " 16452.60 | \n",
+ " NaN | \n",
+ " 335279.91 | \n",
+ " 335279.91 | \n",
+ " 2011 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | 3 | \n",
+ " 4 | \n",
+ " CHRISTOPHER CHONG | \n",
+ " WIRE ROPE CABLE MAINTENANCE MECHANIC | \n",
+ " 77916.00 | \n",
+ " 56120.71 | \n",
+ " 198306.90 | \n",
+ " NaN | \n",
+ " 332343.61 | \n",
+ " 332343.61 | \n",
+ " 2011 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | 4 | \n",
+ " 5 | \n",
+ " PATRICK GARDNER | \n",
+ " DEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT) | \n",
+ " 134401.60 | \n",
+ " 9737.00 | \n",
+ " 182234.59 | \n",
+ " NaN | \n",
+ " 326373.19 | \n",
+ " 326373.19 | \n",
+ " 2011 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ " ... | \n",
+ "
\n",
+ " \n",
+ " | 148649 | \n",
+ " 148650 | \n",
+ " Roy I Tillery | \n",
+ " Custodian | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 0.0 | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 2014 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | 148650 | \n",
+ " 148651 | \n",
+ " Not provided | \n",
+ " Not provided | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 2014 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | 148651 | \n",
+ " 148652 | \n",
+ " Not provided | \n",
+ " Not provided | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 2014 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | 148652 | \n",
+ " 148653 | \n",
+ " Not provided | \n",
+ " Not provided | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " NaN | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " 2014 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ " | 148653 | \n",
+ " 148654 | \n",
+ " Joe Lopez | \n",
+ " Counselor, Log Cabin Ranch | \n",
+ " 0.00 | \n",
+ " 0.00 | \n",
+ " -618.13 | \n",
+ " 0.0 | \n",
+ " -618.13 | \n",
+ " -618.13 | \n",
+ " 2014 | \n",
+ " San Francisco | \n",
+ "
\n",
+ " \n",
+ "
\n",
+ "
148654 rows × 11 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " Id EmployeeName \\\n",
+ "0 1 NATHANIEL FORD \n",
+ "1 2 GARY JIMENEZ \n",
+ "2 3 ALBERT PARDINI \n",
+ "3 4 CHRISTOPHER CHONG \n",
+ "4 5 PATRICK GARDNER \n",
+ "... ... ... \n",
+ "148649 148650 Roy I Tillery \n",
+ "148650 148651 Not provided \n",
+ "148651 148652 Not provided \n",
+ "148652 148653 Not provided \n",
+ "148653 148654 Joe Lopez \n",
+ "\n",
+ " JobTitle BasePay \\\n",
+ "0 GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY 167411.18 \n",
+ "1 CAPTAIN III (POLICE DEPARTMENT) 155966.02 \n",
+ "2 CAPTAIN III (POLICE DEPARTMENT) 212739.13 \n",
+ "3 WIRE ROPE CABLE MAINTENANCE MECHANIC 77916.00 \n",
+ "4 DEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT) 134401.60 \n",
+ "... ... ... \n",
+ "148649 Custodian 0.00 \n",
+ "148650 Not provided NaN \n",
+ "148651 Not provided NaN \n",
+ "148652 Not provided NaN \n",
+ "148653 Counselor, Log Cabin Ranch 0.00 \n",
+ "\n",
+ " OvertimePay OtherPay Benefits TotalPay TotalPayBenefits Year \\\n",
+ "0 0.00 400184.25 NaN 567595.43 567595.43 2011 \n",
+ "1 245131.88 137811.38 NaN 538909.28 538909.28 2011 \n",
+ "2 106088.18 16452.60 NaN 335279.91 335279.91 2011 \n",
+ "3 56120.71 198306.90 NaN 332343.61 332343.61 2011 \n",
+ "4 9737.00 182234.59 NaN 326373.19 326373.19 2011 \n",
+ "... ... ... ... ... ... ... \n",
+ "148649 0.00 0.00 0.0 0.00 0.00 2014 \n",
+ "148650 NaN NaN NaN 0.00 0.00 2014 \n",
+ "148651 NaN NaN NaN 0.00 0.00 2014 \n",
+ "148652 NaN NaN NaN 0.00 0.00 2014 \n",
+ "148653 0.00 -618.13 0.0 -618.13 -618.13 2014 \n",
+ "\n",
+ " Agency \n",
+ "0 San Francisco \n",
+ "1 San Francisco \n",
+ "2 San Francisco \n",
+ "3 San Francisco \n",
+ "4 San Francisco \n",
+ "... ... \n",
+ "148649 San Francisco \n",
+ "148650 San Francisco \n",
+ "148651 San Francisco \n",
+ "148652 San Francisco \n",
+ "148653 San Francisco \n",
+ "\n",
+ "[148654 rows x 11 columns]"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.dropna(axis=1, how='all')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "display number of unique values in each column"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Id 148654\n",
+ "EmployeeName 110811\n",
+ "JobTitle 2159\n",
+ "BasePay 109489\n",
+ "OvertimePay 65998\n",
+ "OtherPay 83225\n",
+ "Benefits 98465\n",
+ "TotalPay 138486\n",
+ "TotalPayBenefits 142098\n",
+ "Year 4\n",
+ "Notes 0\n",
+ "Agency 1\n",
+ "Status 0\n",
+ "dtype: int64"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.nunique()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "mean of total pay of all people based on year"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Year\n",
+ "2011 71744.103871\n",
+ "2012 74113.262265\n",
+ "2013 77611.443142\n",
+ "2014 75463.918140\n",
+ "Name: TotalPay, dtype: float64"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.groupby('Year').mean()['TotalPay']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "how many people have 0 overtime pay"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "77321"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df.OvertimePay==0].count()['OvertimePay']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "max, min, mean, median and other stats of TotalPay of people having 0 OvertimePay"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 77321.000000\n",
+ "mean 60229.348901\n",
+ "std 49307.912350\n",
+ "min -618.130000\n",
+ "25% 13290.450000\n",
+ "50% 58158.590000\n",
+ "75% 91115.090000\n",
+ "max 567595.430000\n",
+ "Name: TotalPay, dtype: float64"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df.OvertimePay==0].describe()['TotalPay']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "find Id of that person with max TotalPay you got in previous question"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 1\n",
+ "Name: Id, dtype: int64"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df.TotalPay==567595.430000].Id"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "name of employee with total pay benefits = 87619.78"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "12345 REBECCA CHIU\n",
+ "Name: EmployeeName, dtype: object"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df.TotalPay==87619.78].EmployeeName"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "how many people have BasePay > 150000 and OvertimePay > 100000"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "156"
+ ]
+ },
+ "execution_count": 4,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[(df['BasePay']> 150000) & (df['OvertimePay']> 100000)].size"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "which job title generally has highest average TotalPayBenefits"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "110533 Chief Investment Officer\n",
+ "Name: JobTitle, dtype: object"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#df[df['TotalPayBenefits']== df['TotalPayBenefits'].max()]['JobTitle']\n",
+ "df[df['TotalPayBenefits']==(df.groupby('JobTitle')['TotalPayBenefits'].mean().max())]['JobTitle']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "How many employees are POLICE"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "2512"
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# .str.contains()\n",
+ "df[df['JobTitle'].str.contains('POLICE')] ['JobTitle'].size"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}
diff --git a/VikasDongare-Assignment-1.ipynb b/VikasDongare-Assignment-1.ipynb
new file mode 100644
index 0000000..6491189
--- /dev/null
+++ b/VikasDongare-Assignment-1.ipynb
@@ -0,0 +1,358 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Assignment"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import numpy as np"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Make a python list => \\[1,2,3,4,5\\]\n",
+ "\n",
+ "Convert it into numpy array and print it"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[1 2 3 4 5]\n"
+ ]
+ }
+ ],
+ "source": [
+ "list1 = [1,2,3,4,5]\n",
+ "list1_np = np.array(list1)\n",
+ "print(list1_np)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Make a python matrix (3 x 3) => \\[[1,2,3],[4,5,6],[7,8,9]\\]\n",
+ "\n",
+ "Convert it into numpy array and print it"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[1 2 3]\n",
+ " [4 5 6]\n",
+ " [7 8 9]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "matrix = [[1,2,3],[4,5,6],[7,8,9]]\n",
+ "matrix_np = np.array(matrix)\n",
+ "print(matrix_np)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Make a matrix (3 x 3) using built-in methods (like arange(), reshape() etc.):\n",
+ "\n",
+ "\\[ [1,3,5],\n",
+ "\n",
+ " [7,9,11],\n",
+ " \n",
+ " [13,15,17] \\]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 1 3 5]\n",
+ " [ 7 9 11]\n",
+ " [13 15 17]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "matrix1 = np.arange(1,18,2)\n",
+ "matrix1 = matrix1.reshape(3,3)\n",
+ "print(matrix1)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create a numpy array with 10 random numbers from 0 to 10 (there should be few numbers greater than 1)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[9 2 1 2 0 5 7 1 9 1]\n"
+ ]
+ }
+ ],
+ "source": [
+ "random_array = np.random.randint(0,10,10)\n",
+ "print(random_array)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create numpy array => \\[1,2,3,4,5\\] and convert it to 2D array with 5 rows"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[1 2 3 4 5]\n",
+ "(5,)\n"
+ ]
+ }
+ ],
+ "source": [
+ "np_array = np.array([1,2,3,4,5])\n",
+ "np_array = np_array.reshape(5,)\n",
+ "print(np_array)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Print the shape of the above created array"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(5,)\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(np_array.shape)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create a numpy array with 10 elements in it. Access and print its 3rd, 4th and 9th element."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "3rd element : 10\n",
+ "4th element : 54\n",
+ "9th element : 89\n"
+ ]
+ }
+ ],
+ "source": [
+ "npy_array = np.array([0,50,10,54,7,3,87,45,89,34])\n",
+ "print(\"3rd element : \",npy_array[2])\n",
+ "print(\"4th element : \",npy_array[3])\n",
+ "print(\"9th element : \",npy_array[8])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Print alternate elements of that array"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "0\n",
+ "10\n",
+ "7\n",
+ "87\n",
+ "100\n"
+ ]
+ }
+ ],
+ "source": [
+ "i=0\n",
+ "for i in range(len(npy_array)):\n",
+ " if i%2 == 0:\n",
+ " print(npy_array[i])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Change last 3 elements into 100 using broadcasting and print"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[ 0 50 10 54 7 3 87 100 100 100]\n"
+ ]
+ }
+ ],
+ "source": [
+ "npy_array[7:] = 100\n",
+ "print(npy_array)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Create a 5 x 5 matrix (fill it with any element you like), print it.\n",
+ "\n",
+ "Then print the middle (3 x 3) matrix."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 0 1 2 3 4]\n",
+ " [ 5 6 7 8 9]\n",
+ " [10 11 12 13 14]\n",
+ " [15 16 17 18 19]\n",
+ " [20 21 22 23 24]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "npy_matrix = np.arange(0,25).reshape(5,5)\n",
+ "print(npy_matrix)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[[ 6 7 8]\n",
+ " [11 12 13]\n",
+ " [16 17 18]]\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(npy_matrix[1:4,1:4])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.6"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}