diff --git a/stabl/adaptive.py b/stabl/adaptive.py index 01c32d1b..76570a38 100644 --- a/stabl/adaptive.py +++ b/stabl/adaptive.py @@ -214,14 +214,6 @@ class ALogitLasso(LogisticRegression): max_iter : int, default=100 Maximum number of iterations taken for the solvers to converge. - multi_class : {'auto', 'ovr', 'multinomial'}, default='auto' - If the option chosen is 'ovr', then a binary problem is fit for each - label. For 'multinomial' the loss minimised is the multinomial loss fit - across the entire probability distribution, *even when the data is - binary*. 'multinomial' is unavailable when solver='liblinear'. - 'auto' selects 'ovr' if the data is binary, or if solver='liblinear', - and otherwise selects 'multinomial'. - verbose : int, default=0 For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. @@ -264,7 +256,6 @@ def __init__( random_state=None, solver="liblinear", max_iter=int(1e6), - multi_class="auto", verbose=0, warm_start=False, n_jobs=None, @@ -283,7 +274,6 @@ def __init__( random_state=random_state, solver=solver, max_iter=max_iter, - multi_class=multi_class, verbose=verbose, warm_start=warm_start, n_jobs=n_jobs,