diff --git a/notebooks/01_thicket_tutorial.ipynb b/notebooks/01_thicket_tutorial.ipynb index 3e8d1c78..339eb7ad 100644 --- a/notebooks/01_thicket_tutorial.ipynb +++ b/notebooks/01_thicket_tutorial.ipynb @@ -181,8 +181,55 @@ "tags": [] }, "source": [ - "## 4. Thicket Components\n", + "## 4. Thicket Components" + ] + }, + { + "cell_type": "markdown", + "id": "3fe4f805", + "metadata": {}, + "source": [ + "### 4.i Profiles\n", "\n", + "The file paths for performance profiles are represented as integer hashes in Thicket. The mapping between the integer hashes and the performance profile paths can be accessed in the `Thicket.profile_mapping` dictionary" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "332798db", + "metadata": {}, + "outputs": [], + "source": [ + "th_lassen.profile_mapping" + ] + }, + { + "cell_type": "markdown", + "id": "569b2677", + "metadata": {}, + "source": [ + "#### Filtering Profiles\n", + "\n", + "We can filter for specific profiles using the `Thicket.filter_profiles()` function. Lets say we only want the profiles with a problem size less than 4 milion. We can either read in the files for 1 and 2 million into a new Thicket, or we can filter the existing Thicket object, which is shown below." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2127de91", + "metadata": {}, + "outputs": [], + "source": [ + "th_less_4m = th_lassen.filter_profile([1814734126, 3448088579])\n", + "th_less_4m.profile_mapping" + ] + }, + { + "cell_type": "markdown", + "id": "a9572ecd", + "metadata": {}, + "source": [ "### 4.1 Performance Data\n", "\n", "The performance data table is a multi-dimensional, multi-indexed component of thicket. The rows represent nodes that each contain a different execution (i.e., profile index) of the associated call tree node. \n", @@ -1172,7 +1219,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.12" + "version": "3.11.7" }, "papermill": { "default_parameters": {},