|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": null, |
| 6 | + "id": "df13b096-f876-44d9-b80b-10d303e02793", |
| 7 | + "metadata": {}, |
| 8 | + "outputs": [], |
| 9 | + "source": [ |
| 10 | + "import numpy as np\n", |
| 11 | + "import scipy.stats.distributions as ds\n", |
| 12 | + "import matplotlib.pyplot as plt\n", |
| 13 | + "\n", |
| 14 | + "from mud.base import DensityProblem\n", |
| 15 | + "\n", |
| 16 | + "import mud_examples.poisson as ps" |
| 17 | + ] |
| 18 | + }, |
| 19 | + { |
| 20 | + "cell_type": "code", |
| 21 | + "execution_count": null, |
| 22 | + "id": "f1f73fca-73b5-429d-87ae-273204dc22df", |
| 23 | + "metadata": {}, |
| 24 | + "outputs": [], |
| 25 | + "source": [ |
| 26 | + "sample_dist = \"u\"\n", |
| 27 | + "input_dim = 2\n", |
| 28 | + "prefix = 1000\n", |
| 29 | + "fdir = f\"pde_{input_dim}D\"\n", |
| 30 | + "fname = f\"data/{fdir}/ref_{prefix}_{input_dim}{sample_dist}.pkl\"\n", |
| 31 | + "\n", |
| 32 | + "P = ps.pdeProblem(fname)\n", |
| 33 | + "P.load()\n", |
| 34 | + "if sample_dist == \"n\":\n", |
| 35 | + " P.dist = ds.norm # required for generator functions\n", |
| 36 | + " loc = -2.0\n", |
| 37 | + " scale = 0.2\n", |
| 38 | + "else:\n", |
| 39 | + " P.dist = ds.uniform\n", |
| 40 | + " loc = -4.0\n", |
| 41 | + " scale = 4.0" |
| 42 | + ] |
| 43 | + }, |
| 44 | + { |
| 45 | + "cell_type": "code", |
| 46 | + "execution_count": null, |
| 47 | + "id": "c25cda4f-3a26-4c8b-a9d6-4d4b7ae48923", |
| 48 | + "metadata": {}, |
| 49 | + "outputs": [], |
| 50 | + "source": [ |
| 51 | + "print(fname)" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": null, |
| 57 | + "id": "041017c4-ac99-4a65-8c4d-0bfc5746c4d2", |
| 58 | + "metadata": {}, |
| 59 | + "outputs": [], |
| 60 | + "source": [ |
| 61 | + "num_samples, num_max_qoi = P.qoi.shape\n", |
| 62 | + "print(f\"There are {num_max_qoi} sensors available and {num_samples} samples of {input_dim}-D parameter space.\")" |
| 63 | + ] |
| 64 | + }, |
| 65 | + { |
| 66 | + "cell_type": "code", |
| 67 | + "execution_count": null, |
| 68 | + "id": "36fdea18-087b-46a3-af14-db51a4a0921a", |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [ |
| 72 | + "# modify this method for new plot based on singular vectors\n", |
| 73 | + "num_qoi = 2\n", |
| 74 | + "ps.plot_without_fenics(\n", |
| 75 | + " fname,\n", |
| 76 | + " num_sensors=100,\n", |
| 77 | + " mode=\"hor\",\n", |
| 78 | + " num_qoi=num_qoi,\n", |
| 79 | + " example=\"mud\", # TODO: rename this variable\n", |
| 80 | + ")" |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "markdown", |
| 85 | + "id": "1af0b9c2-1586-4ca5-91ce-e02a178279e9", |
| 86 | + "metadata": {}, |
| 87 | + "source": [ |
| 88 | + "# Baseline Solution" |
| 89 | + ] |
| 90 | + }, |
| 91 | + { |
| 92 | + "cell_type": "code", |
| 93 | + "execution_count": null, |
| 94 | + "id": "7d4c5999-c869-48f2-b21a-3cd09c5e6217", |
| 95 | + "metadata": {}, |
| 96 | + "outputs": [], |
| 97 | + "source": [ |
| 98 | + "# generator function which takes (num_obs, sd) as arguments and returns a mud_problem\n", |
| 99 | + "mud_generator = P.mud_vector_horizontal(num_qoi, loc=loc, scale=scale)" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": null, |
| 105 | + "id": "2e1fa06a-9ef0-4e24-8172-85e0d6f3e003", |
| 106 | + "metadata": {}, |
| 107 | + "outputs": [], |
| 108 | + "source": [ |
| 109 | + "mud_problem = mud_generator(500, 0.01) # simulates noisy measurements" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "code", |
| 114 | + "execution_count": null, |
| 115 | + "id": "b2df0883-0c3a-4514-940b-c533ee40acf4", |
| 116 | + "metadata": {}, |
| 117 | + "outputs": [], |
| 118 | + "source": [ |
| 119 | + "mud_problem" |
| 120 | + ] |
| 121 | + }, |
| 122 | + { |
| 123 | + "cell_type": "code", |
| 124 | + "execution_count": null, |
| 125 | + "id": "8d5c8654-c7bc-4fb5-849d-700f75cb82ed", |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "mud_problem.mud_point()" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "markdown", |
| 134 | + "id": "5fc70123-6aec-4bba-9326-5eed435abc74", |
| 135 | + "metadata": {}, |
| 136 | + "source": [ |
| 137 | + "# Reference Solution" |
| 138 | + ] |
| 139 | + }, |
| 140 | + { |
| 141 | + "cell_type": "code", |
| 142 | + "execution_count": null, |
| 143 | + "id": "579f2d79-4f16-4d89-ace8-da0e02e3cc8a", |
| 144 | + "metadata": {}, |
| 145 | + "outputs": [], |
| 146 | + "source": [ |
| 147 | + "# TODO : turn this snippet into a method\n", |
| 148 | + "closest_fit_index_out = np.argmin(\n", |
| 149 | + " np.linalg.norm(P.qoi - np.array(P.qoi_ref), axis=1)\n", |
| 150 | + ")\n", |
| 151 | + "g_projected = P.lam[closest_fit_index_out, :].ravel()\n", |
| 152 | + "lam_true = g_projected\n", |
| 153 | + "print(lam_true)" |
| 154 | + ] |
| 155 | + }, |
| 156 | + { |
| 157 | + "cell_type": "markdown", |
| 158 | + "id": "aeafe0e4-a777-4aee-a028-9305e4ece09c", |
| 159 | + "metadata": {}, |
| 160 | + "source": [ |
| 161 | + "# SVD Approach" |
| 162 | + ] |
| 163 | + }, |
| 164 | + { |
| 165 | + "cell_type": "code", |
| 166 | + "execution_count": null, |
| 167 | + "id": "4766f95c-27b5-4fd4-8d40-0e30bff59471", |
| 168 | + "metadata": {}, |
| 169 | + "outputs": [], |
| 170 | + "source": [ |
| 171 | + "num_obs = 500\n", |
| 172 | + "sd = 0.05\n", |
| 173 | + "measure_true = P.qoi_ref[0:num_obs]\n", |
| 174 | + "measurements = P.qoi[:, 0:num_obs]\n", |
| 175 | + "noise = np.random.randn(num_obs) * sd\n", |
| 176 | + "data = measure_true + noise\n", |
| 177 | + "# q = wme(qoi, data, sd).reshape(-1, 1)" |
| 178 | + ] |
| 179 | + }, |
| 180 | + { |
| 181 | + "cell_type": "code", |
| 182 | + "execution_count": null, |
| 183 | + "id": "a5147528-1873-471f-a26b-f83ac9118d6e", |
| 184 | + "metadata": {}, |
| 185 | + "outputs": [], |
| 186 | + "source": [ |
| 187 | + "from sklearn.preprocessing import StandardScaler" |
| 188 | + ] |
| 189 | + }, |
| 190 | + { |
| 191 | + "cell_type": "code", |
| 192 | + "execution_count": null, |
| 193 | + "id": "ee69d7b4-20c1-419c-80f6-2e703d7d33b2", |
| 194 | + "metadata": {}, |
| 195 | + "outputs": [], |
| 196 | + "source": [ |
| 197 | + "scalar = StandardScaler()" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": null, |
| 203 | + "id": "ac4493b9-5430-4725-b05d-78f7552c6df6", |
| 204 | + "metadata": {}, |
| 205 | + "outputs": [], |
| 206 | + "source": [ |
| 207 | + "residuals = (measurements - data) / sd\n", |
| 208 | + "X = scalar.fit_transform(residuals)" |
| 209 | + ] |
| 210 | + }, |
| 211 | + { |
| 212 | + "cell_type": "code", |
| 213 | + "execution_count": null, |
| 214 | + "id": "98223fa6-e8fe-4e5e-b603-b7dc8e357da1", |
| 215 | + "metadata": {}, |
| 216 | + "outputs": [], |
| 217 | + "source": [ |
| 218 | + "U, singular_values, singular_vectors = np.linalg.svd(X)" |
| 219 | + ] |
| 220 | + }, |
| 221 | + { |
| 222 | + "cell_type": "code", |
| 223 | + "execution_count": null, |
| 224 | + "id": "bb4a51d9-6d87-4dee-bd2b-1e79b64fae8a", |
| 225 | + "metadata": {}, |
| 226 | + "outputs": [], |
| 227 | + "source": [ |
| 228 | + "top_singular_values = 5\n", |
| 229 | + "inds = np.arange(1, top_singular_values+1)\n", |
| 230 | + "plt.plot(inds, singular_values[0:top_singular_values])\n", |
| 231 | + "plt.xticks(inds)\n", |
| 232 | + "plt.xlabel(\"Index\", fontsize=12)\n", |
| 233 | + "plt.ylabel(\"$\\sigma_i$\", fontsize=12)\n", |
| 234 | + "plt.yscale('log')\n", |
| 235 | + "plt.title(f\"Top {top_singular_values} Singular Values of Scaled Residuals\", fontsize=16)\n", |
| 236 | + "plt.show()" |
| 237 | + ] |
| 238 | + }, |
| 239 | + { |
| 240 | + "cell_type": "code", |
| 241 | + "execution_count": null, |
| 242 | + "id": "0a40a994-8a8e-4e3d-a457-2ecbb7cb574a", |
| 243 | + "metadata": {}, |
| 244 | + "outputs": [], |
| 245 | + "source": [ |
| 246 | + "scalar = StandardScaler()\n", |
| 247 | + "S = scalar.fit_transform(singular_vectors)" |
| 248 | + ] |
| 249 | + }, |
| 250 | + { |
| 251 | + "cell_type": "code", |
| 252 | + "execution_count": null, |
| 253 | + "id": "22bd45ca-0516-4491-b3bf-f3fae16f5707", |
| 254 | + "metadata": {}, |
| 255 | + "outputs": [], |
| 256 | + "source": [ |
| 257 | + "top_singular_vectors = 2\n", |
| 258 | + "fig, ax = plt.subplots(1, top_singular_vectors, figsize=(1+5*top_singular_vectors, 5), sharey=True)\n", |
| 259 | + "for i in range(top_singular_vectors):\n", |
| 260 | + " ax[i].tricontour(P.sensors[0:num_obs, 0], P.sensors[0:num_obs, 1], singular_vectors[i, :], levels=20, alpha=1)\n", |
| 261 | + " ax[i].scatter(P.sensors[0:num_obs, 0], P.sensors[0:num_obs, 1], s=100, c=singular_vectors[i, :])\n", |
| 262 | + " ax[i].set_title(f\"$\\sigma_{i+1}$ = {singular_values[i]:1.2e}\")\n", |
| 263 | + " ax[i].set_xlabel(\"$x_1$\", fontsize=12)\n", |
| 264 | + " if i == 0: ax[i].set_ylabel(\"$x_2$\", fontsize=12)\n", |
| 265 | + "fig.suptitle(\"Singular Vector Components as Weights for Sensors\", fontsize=16)\n", |
| 266 | + "fig.show()" |
| 267 | + ] |
| 268 | + }, |
| 269 | + { |
| 270 | + "cell_type": "code", |
| 271 | + "execution_count": null, |
| 272 | + "id": "3751ce39-6ed2-4764-ac4d-636e1ed83448", |
| 273 | + "metadata": {}, |
| 274 | + "outputs": [], |
| 275 | + "source": [ |
| 276 | + "fig, ax = plt.subplots(1, 1, figsize=(5,4))\n", |
| 277 | + "# plt.plot((singular_vectors[0, :] + singular_vectors[1, :]))\n", |
| 278 | + "ax.plot(singular_vectors[0, :], c='xkcd:orange', label=\"$v_1$\", lw=3)\n", |
| 279 | + "ax.plot(singular_vectors[1, :], c='xkcd:light blue', label=\"$v_2$\", lw=3, zorder=0)\n", |
| 280 | + "ax.legend(fontsize=12)\n", |
| 281 | + "ax.set_xlabel(\"Sensor Index\", fontsize=12)\n", |
| 282 | + "ax.set_ylabel(\"Singular Vector Component Value\", fontsize=12)\n", |
| 283 | + "fig.show()" |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "cell_type": "code", |
| 288 | + "execution_count": null, |
| 289 | + "id": "82a4597d-2202-4952-871d-1f1a73386929", |
| 290 | + "metadata": {}, |
| 291 | + "outputs": [], |
| 292 | + "source": [ |
| 293 | + "# fig, ax = plt.subplots(figsize=(3,3))\n", |
| 294 | + "# ax.scatter(P.sensors[0:num_obs, 0], P.sensors[0:num_obs, 1], s=100, c= (singular_vectors[0, :] + singular_vectors[1, :]))\n", |
| 295 | + "# fig.show()" |
| 296 | + ] |
| 297 | + }, |
| 298 | + { |
| 299 | + "cell_type": "code", |
| 300 | + "execution_count": null, |
| 301 | + "id": "6e2d77d7-6512-48e6-b428-b766d16c7820", |
| 302 | + "metadata": {}, |
| 303 | + "outputs": [], |
| 304 | + "source": [ |
| 305 | + "num_qoi = 2\n", |
| 306 | + "new_qoi_map = singular_vectors[0:num_qoi, :]\n", |
| 307 | + "new_qoi = residuals @ new_qoi_map.T # ok shape, wrong solution, identical to using U@sigma" |
| 308 | + ] |
| 309 | + }, |
| 310 | + { |
| 311 | + "cell_type": "code", |
| 312 | + "execution_count": null, |
| 313 | + "id": "e85a3cfe-574c-4a9f-8998-7ac86910aeac", |
| 314 | + "metadata": {}, |
| 315 | + "outputs": [], |
| 316 | + "source": [ |
| 317 | + "ax.contour" |
| 318 | + ] |
| 319 | + }, |
| 320 | + { |
| 321 | + "cell_type": "code", |
| 322 | + "execution_count": null, |
| 323 | + "id": "0f0a725c-1a39-4c53-ac98-3385b0bb17e8", |
| 324 | + "metadata": {}, |
| 325 | + "outputs": [], |
| 326 | + "source": [ |
| 327 | + "top_singular_vectors = 2\n", |
| 328 | + "fig, ax = plt.subplots(1, top_singular_vectors, figsize=(1+5*top_singular_vectors, 5), sharey=True)\n", |
| 329 | + "for i in range(top_singular_vectors):\n", |
| 330 | + " ax[i].scatter(P.lam[:,0], P.lam[:,1], s=50, c=new_qoi[:,i])\n", |
| 331 | + " ax[i].tricontour(P.lam[:,0], P.lam[:,1], new_qoi[:,i], levels=20)\n", |
| 332 | + "# ax[i].set_title(f\"$\\sigma_{i}$ = {singular_values[i]:1.2e}\")\n", |
| 333 | + " ax[i].set_title(f\"$q_{i+1}$\", fontsize=12)\n", |
| 334 | + " ax[i].set_xlabel(\"$\\lambda_1$\", fontsize=12)\n", |
| 335 | + " if i == 0: ax[i].set_ylabel(\"$\\lambda_2$\", fontsize=12)\n", |
| 336 | + "# fig.supylabel(\"$\\lambda_2$\")\n", |
| 337 | + "fig.suptitle(\"QoI Component Surface Plot\", fontsize=16)\n", |
| 338 | + "fig.show()" |
| 339 | + ] |
| 340 | + }, |
| 341 | + { |
| 342 | + "cell_type": "code", |
| 343 | + "execution_count": null, |
| 344 | + "id": "66a5be8d-fc6f-47c9-a650-1703d2a49cf2", |
| 345 | + "metadata": {}, |
| 346 | + "outputs": [], |
| 347 | + "source": [ |
| 348 | + "d = DensityProblem(P.lam, new_qoi, P.domain, weights=None)\n", |
| 349 | + "print(d.mud_point())" |
| 350 | + ] |
| 351 | + }, |
| 352 | + { |
| 353 | + "cell_type": "code", |
| 354 | + "execution_count": null, |
| 355 | + "id": "60d1e3af-071e-4820-bff3-38a3b8421db9", |
| 356 | + "metadata": {}, |
| 357 | + "outputs": [], |
| 358 | + "source": [ |
| 359 | + "P.plot()\n", |
| 360 | + "plt.plot(np.linspace(0, 1, input_dim + 2), [0] + list(d.mud_point()) + [0], lw=5, c='blue', label='svd')\n", |
| 361 | + "plt.plot(np.linspace(0, 1, input_dim + 2), [0] + list(mud_problem.mud_point()) + [0], lw=5, c='purple', label='split')\n", |
| 362 | + "plt.legend()\n", |
| 363 | + "plt.show()" |
| 364 | + ] |
| 365 | + } |
| 366 | + ], |
| 367 | + "metadata": { |
| 368 | + "kernelspec": { |
| 369 | + "display_name": "Python (myenv)", |
| 370 | + "language": "python", |
| 371 | + "name": "myenv" |
| 372 | + }, |
| 373 | + "language_info": { |
| 374 | + "codemirror_mode": { |
| 375 | + "name": "ipython", |
| 376 | + "version": 3 |
| 377 | + }, |
| 378 | + "file_extension": ".py", |
| 379 | + "mimetype": "text/x-python", |
| 380 | + "name": "python", |
| 381 | + "nbconvert_exporter": "python", |
| 382 | + "pygments_lexer": "ipython3", |
| 383 | + "version": "3.9.7" |
| 384 | + } |
| 385 | + }, |
| 386 | + "nbformat": 4, |
| 387 | + "nbformat_minor": 5 |
| 388 | +} |
0 commit comments