|
| 1 | +import argparse |
| 2 | +import time |
| 3 | +import numpy as np |
| 4 | + |
| 5 | +try: |
| 6 | + import mlx.core as mx |
| 7 | +except Exception as e: |
| 8 | + mx = None |
| 9 | + |
| 10 | +def time_fn(fn, iters: int = 10): |
| 11 | + # Simple timing helper: run fn() iters times and return average seconds |
| 12 | + start = time.perf_counter() |
| 13 | + for _ in range(iters): |
| 14 | + fn() |
| 15 | + end = time.perf_counter() |
| 16 | + return (end - start) / iters |
| 17 | + |
| 18 | + |
| 19 | +def bench_searchsorted_mx(a_sizes, v_sizes, side, dtype): |
| 20 | + if mx is None: |
| 21 | + raise RuntimeError("mlx.core not available. Install MLX Python first.") |
| 22 | + |
| 23 | + results = [] |
| 24 | + for n in a_sizes: |
| 25 | + for m in v_sizes: |
| 26 | + # Create sorted array 'a' and values 'v' |
| 27 | + a_np = np.sort(np.random.rand(n).astype(dtype)) |
| 28 | + v_np = np.random.rand(m).astype(dtype) |
| 29 | + |
| 30 | + a = mx.array(a_np) |
| 31 | + v = mx.array(v_np) |
| 32 | + |
| 33 | + # Warm-up |
| 34 | + idx = mx.searchsorted(a, v, side=side) |
| 35 | + mx.eval(idx) |
| 36 | + |
| 37 | + def _run(): |
| 38 | + out = mx.searchsorted(a, v, side=side) |
| 39 | + mx.eval(out) |
| 40 | + return out |
| 41 | + |
| 42 | + t = time_fn(_run) |
| 43 | + results.append((n, m, t)) |
| 44 | + return results |
| 45 | + |
| 46 | + |
| 47 | +def bench_searchsorted_numpy(a_sizes, v_sizes, side, dtype): |
| 48 | + results = [] |
| 49 | + for n in a_sizes: |
| 50 | + for m in v_sizes: |
| 51 | + a = np.sort(np.random.rand(n).astype(dtype)) |
| 52 | + v = np.random.rand(m).astype(dtype) |
| 53 | + |
| 54 | + # Warm-up |
| 55 | + _ = np.searchsorted(a, v, side=side) |
| 56 | + |
| 57 | + def _run(): |
| 58 | + return np.searchsorted(a, v, side=side) |
| 59 | + |
| 60 | + t = time_fn(_run) |
| 61 | + results.append((n, m, t)) |
| 62 | + return results |
| 63 | + |
| 64 | + |
| 65 | +def fmt_results(tag, results): |
| 66 | + print(f"\n{tag} results (a_size, v_size, time_ms):") |
| 67 | + for n, m, t in results: |
| 68 | + print(f"{n:>8} {m:>8} {t*1e3:8.3f}") |
| 69 | + |
| 70 | + |
| 71 | +def main(): |
| 72 | + parser = argparse.ArgumentParser(description="Benchmark searchsorted for MLX vs NumPy") |
| 73 | + parser.add_argument("--side", choices=["left", "right"], default="left") |
| 74 | + parser.add_argument("--dtype", choices=["float32", "float64"], default="float32") |
| 75 | + parser.add_argument("--a-sizes", type=int, nargs="*", default=[1_000, 10_000, 100_000, 1_000_000]) |
| 76 | + parser.add_argument("--v-sizes", type=int, nargs="*", default=[10, 100, 1_000, 10_000]) |
| 77 | + args = parser.parse_args() |
| 78 | + |
| 79 | + dtype = np.float32 if args.dtype == "float32" else np.float64 |
| 80 | + |
| 81 | + np_results = bench_searchsorted_numpy(args.a_sizes, args.v_sizes, args.side, dtype) |
| 82 | + fmt_results("NumPy", np_results) |
| 83 | + |
| 84 | + try: |
| 85 | + mx_results = bench_searchsorted_mx(args.a_sizes, args.v_sizes, args.side, dtype) |
| 86 | + fmt_results("MLX", mx_results) |
| 87 | + except Exception as e: |
| 88 | + print(f"\nMLX benchmark skipped: {e}") |
| 89 | + |
| 90 | + |
| 91 | +if __name__ == "__main__": |
| 92 | + main() |
0 commit comments