You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: 1_introduction.html
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -304,7 +304,7 @@ <h3><span class="section-number">1.2.2. </span>Creating the venv<a class="header
304
304
<h2><spanclass="section-number">1.3. </span>Installing Python packages<aclass="headerlink" href="#installing-python-packages" title="Permalink to this headline">¶</a></h2>
305
305
<p>Suppose we’ve created and activated a venv, and now there’s a Python package
306
306
we’d like to have access to. Installation of Python packages is handled by the
307
-
Python package <aclass="reference external" href="https://pip.pypa.io/en/stable/" title="(in pip v21.3)"><spanclass="xref std std-doc">Pip</span></a>, which you will usually find
307
+
Python package <aclass="reference external" href="https://pip.pypa.io/en/stable/" title="(in pip v22.0)"><spanclass="xref std std-doc">Pip</span></a>, which you will usually find
308
308
pre-installed in your Python installation. Pip has many usage options, which
309
309
enable a large number of different installation configurations. However, for
310
310
most users most of the time, a few simple pip commands suffice. As with
<p>There are a number of Python packages which support code testing. The concepts
648
648
are largely similar so rather than get bogged down in the details of multiple
649
-
frameworks, we will introduce <aclass="reference external" href="https://docs.pytest.org/en/latest/index.html" title="(in pytest v7.1.0.dev95+g71baf24b6)"><spanclass="xref std std-doc">Pytest</span></a>, which is one of the
649
+
frameworks, we will introduce <aclass="reference external" href="https://docs.pytest.org/en/latest/index.html" title="(in pytest v7.1.0.dev166+g90b1c93f7)"><spanclass="xref std std-doc">Pytest</span></a>, which is one of the
650
650
most widely used. Pytest is simply a Python package, so you can install it into
Copy file name to clipboardExpand all lines: 5_abstract_data_types.html
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -651,7 +651,7 @@ <h2><span class="section-number">5.5. </span>Linked lists<a class="headerlink" h
651
651
<divclass="admonition hint">
652
652
<pclass="admonition-title">Hint</p>
653
653
<p>Raising exceptions is the subject of <aclass="reference internal" href="6_exceptions.html#raising-exceptions"><spanclass="std std-numref">Section 6.4</span></a>,
654
-
to which we will turn presently. Fur current purposes, it is
654
+
to which we will turn presently. For current purposes, it is
655
655
sufficient to know that iteration is halted when <aclass="reference external" href="https://docs.python.org/3/library/stdtypes.html#iterator.__next__" title="(in Python v3.10)"><codeclass="xref py py-meth docutils literal notranslate"><spanclass="pre">__next__()</span></code></a>
because it’s a very useful tool for applied mathematicians and statisticians
83
83
who need to work with real data, and partly because it’s a convenient somewhat
84
84
larger library on which to practice tools and techniques for debugging.</p>
85
-
<p>At the core of Pandas is the <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v1.3.5)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">DataFrame</span></code></a> class, which is
85
+
<p>At the core of Pandas is the <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v1.4.0)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">DataFrame</span></code></a> class, which is
86
86
a two-dimensional dataset somewhat analogous to a spreadsheet. Unlike, for
87
-
example, a <aclass="reference external" href="https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray" title="(in NumPy v1.22)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">numpy.ndarray</span></code></a>, a <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v1.3.5)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">DataFrame</span></code></a> is not indexed
87
+
example, a <aclass="reference external" href="https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray" title="(in NumPy v1.22)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">numpy.ndarray</span></code></a>, a <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v1.4.0)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">DataFrame</span></code></a> is not indexed
88
88
by a pair of numbers, but is instead organised as a collection of named
89
-
one-dimensional <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v1.3.5)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">pandas.Series</span></code></a> of data. One can think of a
90
-
<aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v1.3.5)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">pandas.Series</span></code></a> as a column of data with a title. This perhaps best
89
+
one-dimensional <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v1.4.0)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">pandas.Series</span></code></a> of data. One can think of a
90
+
<aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v1.4.0)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">pandas.Series</span></code></a> as a column of data with a title. This perhaps best
<p>Observe that the <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v1.3.5)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">DataFrame</span></code></a> acts as a dictionary of
161
-
one-dimensional data <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v1.3.5)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">Series</span></code></a>. A <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v1.3.5)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">pandas.Series</span></code></a> can be
160
+
<p>Observe that the <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html#pandas.DataFrame" title="(in pandas v1.4.0)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">DataFrame</span></code></a> acts as a dictionary of
161
+
one-dimensional data <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v1.4.0)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">Series</span></code></a>. A <aclass="reference external" href="https://pandas.pydata.org/docs/reference/api/pandas.Series.html#pandas.Series" title="(in pandas v1.4.0)"><codeclass="xref py py-class docutils literal notranslate"><spanclass="pre">pandas.Series</span></code></a> can be
162
162
indexed and sliced like any other Python <aclass="reference external" href="https://docs.python.org/3/library/stdtypes.html#typesseq" title="(in Python v3.10)"><spanclass="xref std std-ref">sequence type</span></a>. This
163
163
very high level introduction is all we’ll need to use pandas in demonstrations
164
164
in this chapter. Much more documentation is available on the <aclass="reference external" href="https://pandas.pydata.org/docs/">Pandas website</a>.</p>
0 commit comments