@@ -122,40 +122,40 @@ def _get_location_from_best(obj):
122122 # (or center) of the axes box.
123123 # 1. Key points of the legend
124124 lower_left_legend = x0_legend
125- lower_right_legend = np .array ([x1_legend [0 ], x0_legend [1 ]], dtype = np .float_ )
126- upper_left_legend = np .array ([x0_legend [0 ], x1_legend [1 ]], dtype = np .float_ )
125+ lower_right_legend = np .array ([x1_legend [0 ], x0_legend [1 ]], dtype = np .float32 )
126+ upper_left_legend = np .array ([x0_legend [0 ], x1_legend [1 ]], dtype = np .float32 )
127127 upper_right_legend = x1_legend
128128 center_legend = x0_legend + dimension_legend / 2.0
129129 center_left_legend = np .array (
130- [x0_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float_
130+ [x0_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float32
131131 )
132132 center_right_legend = np .array (
133- [x1_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float_
133+ [x1_legend [0 ], x0_legend [1 ] + dimension_legend [1 ] / 2.0 ], dtype = np .float32
134134 )
135135 lower_center_legend = np .array (
136- [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x0_legend [1 ]], dtype = np .float_
136+ [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x0_legend [1 ]], dtype = np .float32
137137 )
138138 upper_center_legend = np .array (
139- [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x1_legend [1 ]], dtype = np .float_
139+ [x0_legend [0 ] + dimension_legend [0 ] / 2.0 , x1_legend [1 ]], dtype = np .float32
140140 )
141141
142142 # 2. Key points of the axes
143143 lower_left_axes = x0_axes
144- lower_right_axes = np .array ([x1_axes [0 ], x0_axes [1 ]], dtype = np .float_ )
145- upper_left_axes = np .array ([x0_axes [0 ], x1_axes [1 ]], dtype = np .float_ )
144+ lower_right_axes = np .array ([x1_axes [0 ], x0_axes [1 ]], dtype = np .float32 )
145+ upper_left_axes = np .array ([x0_axes [0 ], x1_axes [1 ]], dtype = np .float32 )
146146 upper_right_axes = x1_axes
147147 center_axes = x0_axes + dimension_axes / 2.0
148148 center_left_axes = np .array (
149- [x0_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float_
149+ [x0_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float32
150150 )
151151 center_right_axes = np .array (
152- [x1_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float_
152+ [x1_axes [0 ], x0_axes [1 ] + dimension_axes [1 ] / 2.0 ], dtype = np .float32
153153 )
154154 lower_center_axes = np .array (
155- [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x0_axes [1 ]], dtype = np .float_
155+ [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x0_axes [1 ]], dtype = np .float32
156156 )
157157 upper_center_axes = np .array (
158- [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x1_axes [1 ]], dtype = np .float_
158+ [x0_axes [0 ] + dimension_axes [0 ] / 2.0 , x1_axes [1 ]], dtype = np .float32
159159 )
160160
161161 # 3. Compute the distances between comparable points.
0 commit comments