diff --git a/src/strict-positivity.md b/src/strict-positivity.md index 9855532..fb4f141 100644 --- a/src/strict-positivity.md +++ b/src/strict-positivity.md @@ -10,7 +10,7 @@ Inductive bad := r (c : bad -> nat). ```agda -- rejected by Agda data Bad : Set where - r : (Bad → ℕ) → Curry + r : (Bad → ℕ) → Bad ``` Here, the type `bad` is defined recursively as consisting of a @@ -157,4 +157,4 @@ three are necessary: [^abel]: Section 7.1 of [A Semantic Analysis of Structural Recursion](http://www.cs.cmu.edu/~abel/publications.html), Andreas Abel (1999) -[^blanqui]: [Inductive types in the Calculus of Algebraic Constructions](https://arxiv.org/abs/cs/0610070), Frédéric Blanqui (2006) \ No newline at end of file +[^blanqui]: [Inductive types in the Calculus of Algebraic Constructions](https://arxiv.org/abs/cs/0610070), Frédéric Blanqui (2006)