|
| 1 | +from pathlib import Path |
| 2 | +import superannotate as sa |
| 3 | + |
| 4 | +sa.init(Path.home() / ".superannotate" / "config.json") |
| 5 | + |
| 6 | +test_root = Path().resolve() / 'tests' |
| 7 | + |
| 8 | + |
| 9 | +def test_benchmark(): |
| 10 | + annot_types = ['polygon', 'bbox', 'point'] |
| 11 | + gt_project_name = 'consensus_1' |
| 12 | + project_names = ['consensus_2', 'consensus_3'] |
| 13 | + df_column_names = [ |
| 14 | + 'creatorEmail', 'imageName', 'instanceId', 'area', 'className', |
| 15 | + 'attributes', 'projectName', 'score' |
| 16 | + ] |
| 17 | + export_path = test_root / 'consensus_benchmark' |
| 18 | + for annot_type in annot_types: |
| 19 | + res_df = sa.benchmark( |
| 20 | + gt_project_name, |
| 21 | + project_names, |
| 22 | + export_root=export_path, |
| 23 | + annot_type=annot_type |
| 24 | + ) |
| 25 | + #test content of projectName column |
| 26 | + assert sorted(res_df['projectName'].unique()) == project_names |
| 27 | + |
| 28 | + #test structure of resulting DataFrame |
| 29 | + assert sorted(res_df.columns) == sorted(df_column_names) |
| 30 | + |
| 31 | + #test lower bound of the score |
| 32 | + assert (res_df['score'] >= 0).all() |
| 33 | + |
| 34 | + #test upper bound of the score |
| 35 | + assert (res_df['score'] <= 1).all() |
| 36 | + |
| 37 | + image_names = [ |
| 38 | + 'bonn_000000_000019_leftImg8bit.png', |
| 39 | + 'bielefeld_000000_000321_leftImg8bit.png' |
| 40 | + ] |
| 41 | + |
| 42 | + #test filtering images with given image names list |
| 43 | + res_images = sa.benchmark( |
| 44 | + gt_project_name, |
| 45 | + project_names, |
| 46 | + export_root=export_path, |
| 47 | + image_list=image_names |
| 48 | + ) |
| 49 | + |
| 50 | + assert sorted(res_images['imageName'].unique()) == sorted(image_names) |
0 commit comments