diff --git a/analysis/Analysis/Section_3_1.lean b/analysis/Analysis/Section_3_1.lean index 95e686b2..261af9c4 100644 --- a/analysis/Analysis/Section_3_1.lean +++ b/analysis/Analysis/Section_3_1.lean @@ -855,25 +855,25 @@ theorem SetTheory.Set.coe_ssubset (X Y:Set) : (X : _root_.Set Object) ⊂ (Y : _root_.Set Object) ↔ X ⊂ Y := by sorry /-- Compatibility of singleton -/ -theorem SetTheory.Set.coe_singleton (x: Object) : ({x} : _root_.Set Object) = {x} := by sorry +theorem SetTheory.Set.coe_singleton (x: Object) : (({x}:Set) : _root_.Set Object) = {x} := by sorry /-- Compatibility of union -/ theorem SetTheory.Set.coe_union (X Y: Set) : - (X ∪ Y : _root_.Set Object) = (X : _root_.Set Object) ∪ (Y : _root_.Set Object) := by sorry + ((X ∪ Y:Set) : _root_.Set Object) = (X : _root_.Set Object) ∪ (Y : _root_.Set Object) := by sorry /-- Compatibility of pair -/ -theorem SetTheory.Set.coe_pair (x y: Object) : ({x, y} : _root_.Set Object) = {x, y} := by sorry +theorem SetTheory.Set.coe_pair (x y: Object) : (({x, y}:Set) : _root_.Set Object) = {x, y} := by sorry /-- Compatibility of subtype -/ theorem SetTheory.Set.coe_subtype (X: Set) : (X : _root_.Set Object) = X.toSubtype := by sorry /-- Compatibility of intersection -/ theorem SetTheory.Set.coe_intersection (X Y: Set) : - (X ∩ Y : _root_.Set Object) = (X : _root_.Set Object) ∩ (Y : _root_.Set Object) := by sorry + ((X ∩ Y:Set) : _root_.Set Object) = (X : _root_.Set Object) ∩ (Y : _root_.Set Object) := by sorry /-- Compatibility of set difference-/ theorem SetTheory.Set.coe_diff (X Y: Set) : - (X \ Y : _root_.Set Object) = (X : _root_.Set Object) \ (Y : _root_.Set Object) := by sorry + ((X \ Y:Set) : _root_.Set Object) = (X : _root_.Set Object) \ (Y : _root_.Set Object) := by sorry /-- Compatibility of disjointness -/ theorem SetTheory.Set.coe_Disjoint (X Y: Set) :